Université de Montréal

Effet du resvératrol sur la dysfonction endothéliale des artères coronaires épicardiques associée à l'hypertrophie ventriculaire gauche dans un modèle porcin.

Par : Célia Sid-Otmame

Département de pharmacologie
Faculté de médecine
Université de Montréal

Mémoire présenté à la Faculté des Études Supérieures en vue de l'obtention du grade de maîtrise en pharmacologie

Juillet 2013

© Célia Sid-Otmame, 2013
Université de Montréal
Faculté des Études Supérieures

Ce mémoire intitulé :

Effet du resvératrol sur la dysfonction endothéliale des artères coronaires épicardiques associée à l’hypertrophie ventriculaire gauche dans un modèle porcin

Présenté par
Célia Sid-Otmane

A été évalué par un jury composé des personnes suivantes :

Président rapporteur : Dr Guy Rousseau
Directeur de recherche : Dr Louis P. Perrault
Membre du jury : Dr Pedro D’Orléans-Juste
RÉSUMÉ

Les propriétés antioxydantes du resvératrol sont d’un grand intérêt pour contrer la dysfonction endothéliale où la contribution du stress oxydant est majeure. Cette dysfonction endothéliale est d’ailleurs bien caractérisée en hypertrophie ventriculaire gauche (HVG). Cette étude vise à explorer les effets thérapeutiques du resvératrol sur la dysfonction endothéliale des artères coronaires épicardiques associée à l’HVG.

L’HVG est induite suite à un cerclage aortique (CA) sur des porcelets de 2 mois. Le resvératrol est ensuite administré à 20 mg/kg/jour per os aux animaux répertoriés dans différents groupes. Le groupe 1 comprend les animaux contrôles sans CA alors que le groupe 2 représente les porcelets ayant subit le CA sans traitement. Le groupe 3 comprend les animaux traités pendant les 60 jours après la chirurgie alors que le groupe 4 est traité seulement à partir du 30ème jour jusqu’au jour 60. Des analyses échocardiographiques et histologiques ont été effectuées afin de déterminer le degré d’hypertrophie et l’impact du resvératrol sur la progression de l’HVG alors que la réactivité vasculaire a été évaluée par des expériences de chambres d’organes. La dysfonction endothéliale a été étudiée in vitro par quantification des métabolites nitriques et des niveaux de GMPc tandis que le stress oxydant est décrit par les niveaux d’angiotensine II (Ang II) et de protéines carbonylées.

Les courbes dose-réponse à la sérotonine du groupe 3 traité pendant les 60 jours au resvératrol ont démontré une relaxation vasculaire significativement améliorée comparé au groupe 2 non-traité (p<0,05). Le pourcentage de changement du rapport de la masse du ventricule gauche sur la masse corporelle (LVmass/BW) a démontré une inhibition du développement de l’HVG dans le groupe 3 alors que le groupe 4 n’a pas eu d’effets bénéfiques des 30 jours de traitement au resvératrol. La biodisponibilité du NO représentée par la mesure de ses métabolites en circulation (398,71±21,74 ; 151,04±14,95 ; 241,86±15,53 ; 208,17±26,52 uM pour les groupes 1, 2, 3 et 4 respectivement, p<0,001 pour groupe 1 et 3 vs groupe 2) et par le niveau de GMPc a été augmentée avec l’administration du polyphénol (2,54±0,63 ; 0,67±0,45 ; 1,71±0,25 ; 1,98±0,29 pmol/ml pour les groupes 1, 2, 3 et 4 respectivement, p<0,05 pour groupe 1, 3 et 4 vs groupe 2). Le rôle antioxydant du resvérolatrol a été confirmé avec une réduction des niveaux de protéines carbonylées chez le groupe 3 comparé aux valeurs du
groupe 2 (0,14±0,05 vs 0,33±0,03 nmol/mg respectivement) sans diminution des niveaux d’Ang II. Le resvératrol a aussi réduit l’hypertrophie des cardiomyocytes et la fibrose interstitielle.

Ainsi, le resvératrol peut effectivement réduire la dysfonction endothéliale des artères coronaires épicaudiques et limiter l’occurrence de remodelage myocardique associé à l’HVG, principalement à travers l’activation de la signalisation dépendante du NO.

ABSTRACT

Antioxidant properties of resveratrol are of great interest regarding endothelial dysfunction in which oxidative stress has a major causative role. This dysfunction is well characterized in left ventricular hypertrophy (LVH). The current study was designed to explore the effects of resveratrol as a treatment for the coronary endothelial dysfunction associated with LVH.

An aortic banding (AB) was performed on swine to induce LVH on two-month-old swine for 60 days. Resveratrol was administered at 20 mg/kg/d per os to different groups. Group 1 represented healthy controls while group 2 was not treated. After AB, group 3 received resveratrol from day 1 to 60 post-surgery whereas group 4 was treated from day 30 to 60 only. Echocardiographic and histological studies were performed to evaluate the degree of LVH. Vascular reactivity of epicardial coronary arteries was assessed in organ chamber experiments. Endothelial dysfunction was evaluated in vitro by nitric oxide (NO) metabolites and cyclic guanosine-3,5-monophosphate (cGMP) while angiotensin II (Ang II) levels and protein carbonylation evaluated Oxidative stress.

After treatment, the LVmass/body weight ratio was improved in group 3 associated with reduced cardiomyocyte hypertrophy and interstitial fibrosis (p<0.05). Dose-response curves to serotonin for the resveratrol treated group 3 demonstrated a greater vascular relaxation compared to LVH untreated group 2 (p<0.05). Bioavailability of NO measured by its circulating metabolites (398,71±21,74; 151,04±14,95; 241,86±15,53; 208,17±26,52 uM for groups 1, 2, 3 and 4 respectively, p<0,001 for groups 1 and 3 vs group 2) and by vascular cGMP (2,54±0,63; 0,67±0,45; 1,71±0,25; 1,98±0,29 pmol/ml for groups 1, 2, 3 and 4 respectively, p<0,05 for group 1,3 and 4 vs group 2) was increased. The antioxidant effect of the polyphenol was confirmed by decreased protein carbonylation with the 60 days treatment (0,14±0,05 vs 0,33±0,03 nmol/mg for group 3 vs 2) associated to unchanged Ang II levels.

Therefore, resveratrol effectively reduces epicardial coronary endothelial dysfunction and limits the occurrence of cardiac remodelling associated with LVH, mainly through an NO-dependent pathway.
Key words: Endothelial dysfunction, resveratrol, polyphenol, left ventricular hypertrophy, oxidative stress, coronary artery.
TABLE DES MATIÈRES

Identification des membres du jury ... ii
Résumé .. iii
Abstract .. v
Table des matières .. vii
Liste des figures .. vi
Liste des abréviations ... xiii
Remerciements .. xvi

Chapitre I : Introduction générale ... 1

Chapitre II : Les fonctions de l’endothélium vasculaire sain .. 5
 Description de l’endothélium ... 6
 Facteurs relaxants dérivés de l’endothélium ... 8
 Monoxyde d’azote (NO) ... 9
 Prostacycline .. 14
 EDHF ... 15
 Facteurs contractants dérivés de l’endothélium ... 18
 Endothéline I .. 18
 Prostanoïdes .. 20
 Angiotensine II ... 21
 Espèces oxygénées réactives ... 22

Chapitre III : Le stress oxydant .. 25
 Espèces oxygénées réactives ... 27
 Anion superoxyde .. 27
 Radical hydroxyle ... 27
 Peroxyde d’hydrogène ... 28
 Peroxynitrite ... 28
 Source des ROS ... 29
 Mitochondrie .. 30
 NADPH oxydase ... 30
 Xanthine oxydase .. 32
 eNOS .. 33
 Antioxydants endogènes .. 34
 Superoxyde dismutase .. 34
 Catalase ... 34
 Glutathion peroxydase .. 35
 Hème oxygénase .. 36
 Rôles physiologiques des ROS .. 36
 Dysfonction endothéliale ... 37
Chapitre IV : Rôle du stress oxydant dans la dysfonction endothéliale caractérisant diverses maladies cardiovasculaires...40
 La dysfonction endothéliale et les maladies cardiovasculaires...41
 Vieillissement...42
 Athérosclérose...44
 Hypertension artérielle...45
 Hypertension pulmonaire..46
 Diabète..47
 Ischémie-reperfusion...48
 Hypertrophie ventriculaire gauche..49
 Insuffisance cardiaque..52

Chapitre V : Les thérapies pour le rétablissement de la fonction endothéliale.................................54
 Statines...55
 Inhibition de la NADPH oxydase...56
 Inhibiteurs de ECA et antagonistes du récepteur AT1...57
 Inhibition de la xanthine oxydase..58
 Prévention du découplage de eNOS..59
 Action sur le GMPc..60
 Vitamine E...61
 Vitamine C...62
 Polyphénols...62
 Les antioxydants en recherche...63

Chapitre VI : Le resvératrol comme stratégie thérapeutique..64
 Description du resvératrol...65
 Rôles du resvératrol...67
 Antioxydant...67
 Anticancéreux...69
 Antivieillissement...71
 Neuroprotecteur...72
 Antiplaquettaire..73
 Anti-inflammatoire..74
 Vasodilatateur...75
 Le resvératrol et les maladies cardiovasculaires..77
 Athérosclérose...78
 Diabète..79
 Ischémie-reperfusion/préconditionnement..80
 Hypertension/ hypertrophie cardiaque...82
 Insuffisance cardiaque..84
 Rôles des sirt1 en cardiovasculaire...85
 Biodisponibilité et métabolisme du resvératrol..87
 Données cliniques...90
LISTE DES FIGURES

Figure 1: Facteurs de relaxation dérivés de l’endothélium. CE: cellule endothéliale, CML: cellule musculaire lisse, EDHF: facteur hyperpolarisant dérivé de l’endothélium. SK$_{Ca}$/IK$_{Ca}$: canaux potassiques, à conductance petite et intermédiaire respectivement, activés par le calcium. COX: cyclooxygénase, GCs: guanylate cyclase soluble, GTP: guanosine triphosphate, GMPc: guanosine monophosphate cyclique, PGI$_2$: prostacycline, IP: récepteur à prostacycline, AC: adénylate cyclase, ATP: adénosine triphosphate, AMPc: adénosine monophosphate cyclique (p8).

Figure 2: L’activation de eNOS par le calcium et sa régulation par la liaison à la cavéoline (CaV1). eNOS: NO synthase endothéliale, CaM: calmoduline, B2: récepteur B2, BK: bradykinine, PLC: phospholipase C, DAG: diacylglycerol, IP$_3$: inositol triphosphate, Hsp90: heat shock protein 90 (p11).

Figure 3: Dimérisation de eNOS pour la production de NO. NADPH: nicotinamide dinucléotide phosphate, FAD: flavine adénine dinucléotide, FMN: flavine mononucléotide, CaM: calmoduline, BH$_4$: tetrahydrobioptérine (p12).

Figure 4: Les multiples rôles du monoxyde d’azote NO. BK: bradykinine, ADP: adénosine diphosphate, B2: récepteur à bradykinine, 5-HT: sérotonine, 5-HT$_{1D}$: récepteur à sérotonine 1D, ET-1: endothéline 1, ET$_B$: récepteur à endothéline type B, Gi: protéine Gi, Gq: Protéine Gq, LDLox: lipoprotéine de faible densité oxydée (p13).

Figure 5: Les hypothèses quant à la nature de EDHF. BK bradykinine, PLA2 phospholipase A2, Cyt P450: cytochrome p450, EETs: acide epoxyeicosatrienoïque, 12-LOX: 12-lipoxygénase, 12-HETE: acide12-hydroxyeicosatetraénoïque, SK$_{Ca}$/IK$_{Ca}$: canaux potassique activés par le calcium à
conductance faible/intermédiaire respectivement, BK_{Ca}: canaux potassique activés par le calcium à large conductance, Cx40/43: connexines 40 et 43 (p16).

Figure 6: Facteurs de contraction dérivés de l’endothélium. CE: cellule endothéliale, CML: cellule musculaire lisse, PLA$_2$: phospholipase A$_2$, AA: acide arachidonique, COX: cyclooxygénase, ROS: espèce oxygénée réactive, ET-1: endothéline 1, ET$_{A/B}$: récepteur à endothéline A/B, Ang II: angiotensine II, AT$_1$: récepteur à angiotensine 1, PGF$_{2\alpha}$/E$_2$/H$_2$: prostaglandines F$_{2\alpha}$/E$_2$/H$_2$, TXA$_2$: thromboxane A$_2$, PGI$_2$: prostacycline, TP: récepteur à thromboxane (p18).

Figure 7: Production d’anion superoxyde par la NADPH oxydase suite à l’association de ses sous-unités. NADPH: nicotinamide adénine dinucléotide phosphate (p31).

Figure 8: Les systèmes antioxydants enzymatiques endogènes. O$_2$: oxygène moléculaire, O$_2^-$: anion superoxyde, H$_2$O$_2$: peroxyde d’hydrogène, ’OH: radicale hydroxyle, H$_2$O: eau, CO: monoxyde de carbone, GSH: Glutathione, GSSG: Glutathione disulfide (p35).

Figure 9: Dérégulation de l’homéostasie endothéliale impliquée dans les maladies cardiovasculaires. NO: monoxyde d’azote, EDHF: facteur hyperpolarisant dérivé de l’endothélium, PGI$_2$: prostacycline, TXA$_2$: thromboxane A$_2$, PGH$_2$: prostaglandine H$_2$, ET-1: endothéline 1, Ang II: angiotensine II, ROS: espèces oxygénées réactives (p42).

Figure 10: Le remodelage cardiaque associé à l’hypertrophie ventriculaire concentrique et excentrique (p50). *Adaptée de (1)*

Figure 11: Les multiples stratégies thérapeutiques contre la dysfonction endothéliale. ECA: enzyme de conversion de l’angiotensine, BK: bradyninidine, LDLox: lipoprotéine de faible densité (oxydées), B2: récepteur à bradyninidine, LDL-R: récepteur à LDL, SR: récepteur scavenger, BH$_4$: tetrahydrobioptérine, L-Arg L-Arginine, O$_2^-$: Anion superoxyde, H$_2$O$_2$: peroxyde d’hydrogène,
SOD: superoxyde dismutase, CAT: catalase, Ang II: angiotensine II, AT₁: récepteur à angiotensine type 1, XO: xanthine oxydase (p56).

Figure 12: Les structures moléculaires du resvératrol et des principaux métabolites (p67).

D’après (2).

Figure 13: L’hétérogénéité des rôles du resvératrol (p77).

Figure 14: Les cascades de signalisation intracellulaire induites par le resvératrol. Sirt1: sirtuine 1, LKB1: liver kinase B1, AMPK: protéine kinase activée par amp, eEF2: facteur d’elongation eucaryote 2, NFAT: facteur nucléaire de cellules T activées, Akt: protéine kinase B, GSK-3B: glycogène synthase kinase 3B (p87).
LISTE DES ABRÉVIATIONS

5-HT : Sérotonine
12-HETE : acide 12-hydroxy-eicosatetraenoïque
12-LOX : 12-lipoxygénase
AA : Acide arachidonique
AB : Aortic banding
AC : Adénylate cyclase
ACh : Acétylcholine
ADMA : Diméthylarginine asymétrique
ADN : Acide désoxyribonucléique
ADP : Adénosine diphosphate
AHR : Récepteur aryle hydrocarbone
Akt : Protéine kinase sérine/thréonine
AMPc : Adénosine monophosphate cyclique
AMPK : AMP-activated protein kinase
Ang : Angiotensine
AP-1 : Activator protein 1
ApoE : Apolipoproteine E
ARE : Elément de réponse aux antioxydants
ARNm : Acide ribonucléique messager
AT\(_1\)/AT\(_2\) : Récepteur de type 1 et 2 à l’angiotensine II
ATP : Adénosine triphosphate
B2 : Récepteur à la bradykinine
BH\(_4\) : Tétrahydrobioptérine
BK : Bradykinine
BK\(_{Ca}\) : Canaux potassique activés par le calcium à large conductance
2+ : Calcium
CA : Cerclage aortique
CaM : Calmoduline
CAT : Catalase
Cav : Canaux calciques voltage dépendant
CaV-1 : Cavéoline-1
CE : Cellules endothéliales
CML : Cellules musculaires lisses
CNP : Peptide natriuretique C
CO : Monoxyde de carbone
COX : Cyclooxygénase
Cx : Connexine
DOCA : Acétate de deoxycorticosterone
ECA : Enzyme de conversion de l’angiotensine
EDCF : Facteurs contractants dérivés de l’endothélium
EDHF : Facteur hyperpolarisant dérivé de l’endothélium
EDRF : Facteurs relaxants dérivés de l’endothélium
EET : Acide époxyécosatriénoïque
eNOS : Monoxyde d’azote synthétase endothéliale
eEF2 : facteur d’élongation eucaryote 2
EPC : Cellules endothéliales progénitrices
ET-1 : Endothéline-1
ETA : Récepteur de type A de l’endothéline
ETB : Récepteur de type B de l’endothéline
FAD : Flavine adénine dinucléotide
FMD : Flow mediated dilatation
FMN : Flavine mononucléotide
GCs : Guanylate cyclase soluble
GLUT-4 : Transporteur de glucose de type 4
GMPc : Guanosine monophosphate cyclique
GPx : Glutation peroxydase
GSH : Glutation réduit
GSK3β : Glycogène synthase kinase 3β
GST-π : Gluthathione S-transférase
GTP : Guanosine triphosphate
GTPCH : GTP cyclohydrolase
H2O2 : Peroxyde d’hydrogène
HO : Hème oxygénase
H2S : Sulfure d’hydrogène
HDL : Lipoprotéine de haute densité
HMG-CoA : 3-hydroxy-3-méthylglutaryl coenzyme A
HTA : Hypertension artérielle
HTP : Hypertension pulmonaire
HVG : Hypertrophie ventriculaire gauche
IC : Insuffisance cardiaque
ICAM : Molécule d’adhésion intracellulaire
IGF : Facteur de croissance insuline-like
IKCa : Canaux potassiques calcium dépendant conductance intermédiaire
iNOS : Monoxyde d’azote synthétase inductible
IP : Récepteur de la prostacycline
IP3 : Inositol triphosphate
I/R : Ischémie/reperfusion
JNK : c-Jun N-terminal kinase
KCa : Canal potassique sensible au calcium
L-arg : L-arginine
LDL : Lipoprotéine de faible densité
LDLox : Lipoprotéine de faible densité oxydée
LKB1 : Liver kinase B1
L-NAME : L-N^6-nitroarginine methyl ester
LTB4 : Leucotriène B4
LVH : Left ventricular hypertrophy
MAPK : mitogen activated protein kinase
MDA : Malondialdéhyde
mTOR : Cible de la rapamycine chez les mammifères
NAD : Nicotinamide adénine dinucléotide
NADH : Nicotinamide adénine dinucléotide réduit
NADPH : Nicotinamide adénine dinucléotide phosphate réduit
NF-kB : Nuclear factor kappa light chain enhancer of activated B cells
nNOS : Monoxyde d’azote synthétase neuronale
NOS : Monoxyde d’azote synthétase
NO : Monoxyde d’azote
Nrf-2 : Nuclear factor erythroid 2-related factor
O₂⁻ : Anion superoxyde
OH⁻ : Radical hydroxyle
ONOO⁻ : Peroxynitrite
P66Shc : protéine adaptatrice
PDGF : Facteur de croissance dérivé des plaquettes
PECAM-1 : Platelet endothelial cell adhesion molecule 1
PGC-1α : Peroxisome proliferator activated receptor γ coactivator 1α
PGD₂ : Prostaglandine D₂
PGE₂ : Prostaglandine E₂
PGF₂α : Prostaglandine F₂α
PGH₂ : Prostaglandine H₂
PGI₂ : Prostacycline
PI3K : Phosphoinositide 3-kinase
PKA : Protéine kinase A
PKC : Protéine kinase C
PMA : Acétate de phorbol myristate
ROS : Espèces oxygénées réactives
SERCA : Ca ATPase du reticulum sarcoplasmique
SHR : Rat spontanément hypertendu
Sirt1 : Sirtuine
SKCa : Canaux potassiques dépendants du calcium à petite conductance
SOD : Superoxyde dismutase
SRAA : Système rénine-angiotensine-aldosterone
STZ : Streptozotocin
TNF-α : Facteur de nécrose tumorale alpha
TP : Récepteur thromboxane
TXA₂ : Thromboxane A₂
VCAM-1 : Molécule d’adhésion cellulaire vasculaire
VEGF : Facteur de croissance vasculaire endothélial
XDH : Xanthine déshydrogénase
XO : Xanthine oxydase
XOR : Xanthine oxydoréductase
Remerciements

Je voudrais remercier en premier lieu mon directeur de recherche; Dr Louis Perrault. Je vous remercie de m’avoir accueilli au sein de votre équipe et de m’avoir donné une liberté d’agir qui a grandement amélioré mon autonomie. Merci d’avoir été généreux envers moi, de m’avoir fait confiance et d’avoir cru en mon potentiel. Un grand merci aussi aux autres membres du jury d’avoir été généreux de votre temps pour évaluer ce mémoire. Sachez que c’est extrêmement apprécié.

Un énorme merci aux deux techniciennes en or, Stéphanie Blanchet et Marie-Pierre Mathieu, pour avoir pris en charge ce projet avec moi. Merci de vous être investit à mes côtés et merci d’avoir été là pour mes petits animaux et d’avoir toujours eu leur santé et l’intérêt de mon projet à cœur. Je vous suis énormément reconnaisante. J’ai adoré tous les moments passés ensemble, même ceux qui impliquaient des dizaines et des dizaines de cœurs à disséquer avec une petite odeur particulière en toile de fond! Isabelle, jeune femme devenue maman extraordinaire pendant mon séjour au laboratoire, merci pour ta joie de vivre qui emplit le laboratoire et qui nous infecte toutes, qu’on le veuille ou non. Comme j’ai partagé le bureau avec Stéphanie et Isabelle, je vous dis un grand merci d’avoir toujours maintenu une ambiance harmonieuse même si le stress était à son comble parfois. Je garderai dans mon cœur tous ces moments de délires qu’on a eu. Stéphanie je te souhaite du fond du cœur tout le bonheur du monde parce que s’il y a bien une personne sur cette terre qui le mérite, c’est bien toi. Chanceux sera t-il celui qui partagera ta vie! Isabelle, que du bonheur pour toi et ta petite famille, qui j’espère s’agrandira encore plus. Un avenir glorieux au petit beau gosse! Marie-Pierre, une vie remplie de joie à toi aux côtés de ta moitié, une grande carrière en récompense à ta détermination.

Le personnel de l’animalerie a été d’une grande importance pour mon projet car sans eux, ce projet aurait été 10000 fois plus ardu à réaliser. Merci à Johanne, Adan, Janick et autres d’avoir suivi mes petits cochons et d’avoir été aussi assidus dans l’administration de leurs médicaments. Je vous remercie d’avoir été là chaque jour pour donner la petite pilule primordiale même s’il y avait quelques animaux pas très coopératifs et très criards! Je me dois de faire un petit hommage particulier à Vanessa Durocher-Ganger, celle qui a géré ce projet en terme d’hébergement, de transport et d’accommodations multiples concernant les animaux. Je considère que tu es le pilier de cette animalerie. Ta grande efficacité, ta versatilité et ta générosité ne sont que certaines des qualités que j’ai vue et qui font de toi une parfaite gestionnaire. Je te souhaite une vie remplie de belles choses, je suis sure que les deux petits jeunes hommes feront ton bonheur et le reste viendra surement. Que de beaux moments avec les autres chikitas. Peu importe ou la vie nous mènera, je vous garde toutes ensemble dans un petit coin de mon cœur! Mes remerciements vont aussi à Marie-Élaine Clavet pour son aide en histologie, merci d’avoir été généreuse envers moi et d’avoir partagé ton savoir tout en étant patiente, puisque je ne suis que novice dans l’analyse histologique.

En dernier mais pas les moindres, ma petite famille chérie, mon sang, mon cœur, mon centre de gravité je vous adore. Je veux juste dire qu’on est venu de loin, mais je suis sure qu’on ira très loin. Il n’y a que du succès en avant. Que Dieu nous garde ensemble encore pour très très longtemps.
« Savoir s’étonner à propos est le premier pas fait sur la route de la découverte »
Louis Pasteur.
Chapitre I : Introduction
La découverte du rôle primordial de l’endothélium vasculaire, autrefois considérée comme une simple barrière mécanique, a révolutionné la recherche cardiovasculaire et l’ère de la biologie endothéliale a prit son essor (3). Furchgott et Zawadzki (4), en décrivant la relaxation vasculaire des aortes isolées de lapins en réponse à l’acétylcholine comme étant dépendante de la diffusion d’un facteur des cellules endothéliales vers les cellules musculaires lisses, ont décrit l’importance de cette fine couche cellulaire à localisation stratégique (3). Depuis ce temps et jusqu’à présent, l’endothélium vasculaire demeure un sujet de recherche de grand intérêt puisqu’il s’agit d’un organe impliqué dans toutes les maladies cardiovasculaires. Les approches thérapeutiques, que ce soit pour le traitement de l’athérosclérose, de l’hypertension ou des maladies coronariennes, se préoccupent du rétablissement de la fonction endothéliale altérée afin d’améliorer le pronostic des patients (5).

Plusieurs études expérimentales et cliniques ont démontré une forte association entre la dysfonction endothéliale et l’hypertrophie ventriculaire gauche (HVG) à cause d’une altération de la relaxation vasculaire coronarienne en réponse à l’acétylcholine, l’adénosine et la substance P (6). HVG est caractérisée par une augmentation de la masse myocardique en guise de mécanisme d’adaptation à l’augmentation chronique de la post-charge, soit dans des conditions d’hypertension artérielle systémique ou suite à une sténose aortique (7, 8). Toutefois, cet effort continu du cœur pour normaliser le stress sur la paroi ventriculaire résulte en une diminution de la contractilité cardiaque, principalement à cause de la fibrose myocardique, aboutissant souvent à une insuffisance cardiaque (9).
Notre laboratoire a développé et décrit un modèle porcin où, suite à une surcharge de pression induite par un cerclage de l’aorte ascendante, l’animal développe l’HVG au bout de deux mois (10). Plusieurs études effectuées sur ce modèle ont permis de caractériser une dysfonction endothéliale des artères coronaires épicaudiques assez importante associée à l’HVG. Malo et coll a démontré que le mécanisme régissant cette dysfonction impliquait la relaxation endothélium-dépendante médiée par les protéines hétérotrimériques Gi et Gq en réponse à la stimulation par la sérotonine et la bradykinine respectivement, avec un plus grand impact sur la voie des protéines Gi (10). À ces conclusions s’ajoutent les observations d’une baisse des niveaux de guanosine monophosphate cyclique (GMPc) et des métabolites nitriques. Plus tard, Desjardins et coll a aussi prouvé que les animaux HVG démontraient une plus grande vasoconstriction en réponse à l’endothéline-1 (ET-1) avec une augmentation de la concentration de ce vasoconstricteur dans le plasma, spécifiant aussi que cet effet serait le résultat de la stimulation du récepteur ETₐ sur les cellules musculaires lisses alors que l’expression des récepteurs ET₉ sur l’endothélium serait en baisse (11). Ces études ont permis d’établir que la dysfonction endothéliale des artères coronaires épicaudiques était due à un déséquilibre entre la vasodilatation et la vasoconstriction régulée par l’endothélium avec une réduction de la biodisponibilité de NO de même qu’une production accrue de vasoconstricteurs tel ET-1.

Autre aspect important dans ce modèle pathologique est le rôle du stress oxydant. En effet, l’augmentation de la production des espèces réactives oxygénées va s’accaparer du NO et abroger son effet vasodilatateur. Une augmentation de ONOO⁻, résultat de la réaction entre NO et O₂⁻⁻ confirme un état de stress oxydant avancé dans ce modèle (12).
Des approches thérapeutiques se basant sur le potentiel des molécules antioxydantes ont donc été envisagées. Malo et coll a démontré qu’un supplément avec la superoxyde dismutase ou la catalase améliorait la relaxation vasculaire endothélium dépendante in vitro (12). Aubin et coll a par ailleurs prouvé l’efficacité du probucol, un anti-lipidique avec des propriétés antioxydantes, sur la relaxation vasculaire des artères coronaires épicaudiques dans ce modèle porcin d’HVG. Il a donc été confirmé dans cette étude que le probucol pouvait prévenir l’HVG, ceci probablement par son action sur la biodisponibilité du NO et le niveau de stress oxydant (13).

Dans cet ordre d’idée, le projet décrit ici a pour but de déterminer l’efficacité d’un polyphénol présent dans le vin rouge, le resvératrol, sur la dysfonction endothéliale accompagnant l’HVG. Cette molécule attire l’attention depuis la description du phénomène du paradoxe français en 1992, exposant la faible incidence de maladies cardiovasculaires chez les Français malgré une alimentation riche en gras, et ce grâce à leur consommation quotidienne et modérée de vin rouge (2). Avec une quantité de données accumulées sur les effets bénéfique du resvératrol, ce projet vise à évaluer son efficacité à renverser et/ou faire régresser l’HVG et la dysfonction endothéliale la caractérisant.
Chapitre II : L’endothélium sain et ses fonctions
Description de l’endothélium

Comme il est souvent le cas dans le monde médical, la découverte qui changera à jamais la conception du contrôle vasomoteur est le résultat d’une simple expérience de laboratoire. L’observation par Robert Furchgott que la dénudation des artères de leur endothélium abolissait la réponse vasodilatatrice en réponse à l’acétylcholine a permis de démontrer le rôle fondamental de cet organe (4). Les cellules endothéliales s’organisent ainsi en une fine couche recouvrant la surface interne des vaisseaux et des valves cardiaques. L’endothélium représente approximativement 10^{13} cellules contribuant ainsi à 1,5% de la masse totale du corps (14). Dans la plupart des lits vasculaires, la couche cellulaire endothéliale apparaît continue et sans fenestration mais elle peut être autant continue et fenestrée que discontinue et sinusoïdale, reflétant ses fonctions diversifiées au sein de l’organisme (15, 16). Malgré une exposition constante de ces cellules aux forces hémodynamiques, leur renouvellement demeure relativement lent alors que le temps de régénération est autour de 3 ans (17).

L’emplacement stratégique de l’endothélium lui permet de réagir rapidement à toute perturbation hémodynamique ou neurohumorale en secrétant des substances vasoactives. Il y a en fait une balance critique entre les facteurs endothéliaux de relaxation (EDRF pour endothelium derived relaxing factor) et de contraction (EDCF pour endothelium derived contracting factor), permettant le maintien de l’homéostasie vasculaire alors que la rupture de cet équilibre prédispose le lit vasculaire à une vasoconstriction et à un état inflammatoire considérable (18). Ces substances vasoactives diffusent vers les cellules musculaires lisses et provoquent des changements sur le niveau de contraction du système vasomoteur.
Le joueur clé responsable de la vasodilatation est le monoxyde d’azote (NO), qui est aussi un élément essentiel pour la protection de l’endothélium, et agit en synergie avec la prostacycline, substance vasodilatatrice dérivée de l’acide arachidonique. Le NO joue un rôle primordial dans la prévention de l’adhésion des leucocytes à l’endothélium et leur transmigration, l’inhibition de la prolifération des cellules musculaires lisses et l’adhésion ainsi que l’agrégation plaquettaire (18). L’autre joueur clé dans la modulation du tonus vasculaire induite par l’endothélium est le facteur hyperpolarisant dérivé de l’endothélium (EDHF endothelium derived hyperpolarizing factor), dont le rôle est plus accentué dans les artères de résistance (19). L’angiotensine II, l’endothéline-1 et les prostaglandines H₂ et thromboxane A₂ représentent quant à eux les principaux facteurs endothéliaux de contraction (EDCF) (20).

Lorsque les cellules endothéliales perdent l’habilité de réguler le tonus vasculaire, en général par une biodisponibilité réduite du NO, la dysfonction endothéliale s’ensuit. L’altération de la fonction endothéliale va activer une chaine de réponses indésirables incluant l’augmentation de l’agrégation plaquettaire, l’expression de molécules d’adhésion et la prolifération des cellules musculaires lisses vasculaires. Ainsi, un cercle vicieux s’établit avec l’augmentation de la thrombose, de l’inflammation, du remodelage vasculaire et ultimement le développement de l’athérosclérose (21). Ceci constitue une empreinte de multiples maladies cardiovasculaires et caractérise souvent leur sévérité (18). Dans un cas de dysfonction endothéliale, les facteurs contractants sécrétés par l’endothélium prennent de l’ampleur et leur implication dans des pathologies telles que l’hypertension, le diabète, l’insuffisance cardiaque ou juste dans le cas d’un endothélium vieillissant, est amplement documentée (20).
En plus de l’endothélium vasculaire, l’endocarde est aussi tapissé par une couche endothéliale reconnue pour son rôle dans la régulation de la contractilité et de la rythmicité du myocarde mais aussi de la croissance des cardiomyocytes grâce à des effets autocrines et paracrines (22). Toutefois, certains affirment que la vaste majorité des cellules endothéliales dans le cœur sont dans les petits vaisseaux et les lits capillaires alors que les cellules endothéliales microvasculaires coronaires dépassant largement la présence des cellules endothéliales endocardiques (23).

Les facteurs relaxants dérivés de l’endothélium

En condition normale physiologique, la stimulation de l’endothélium aboutit à la production et à la relâche de facteurs induisant la vasorelaxation qui sont principalement le NO, l’EDHF et la PGI2 alors que les EDCF n’ont qu’une contribution mineure au contrôle vasomoteur (Figure 1).

![Diagram](https://via.placeholder.com/150)

Figure 1: Facteurs de relaxation dérivés de l’endothélium
1. **Monoxyde d’azote (NO)**

Dans les années suivant la découverte des propriétés vasomotrices de l’endothélium, le mécanisme derrière cette capacité vasodilatatrice et l’identité du facteur responsable a été élucidé, non sans de virulents débats (24). Ce facteur a alors porté le nom de EDRF (endothelium derived relaxing factor) avant la description exacte de sa structure. En fait, il y a eu deux types d’observations sur lesquels les scientifiques ont pu se baser. Premièrement, il a été question d’un facteur relâché par l’endothélium permettant la relaxation vasculaire grâce à la stimulation des guanylates cyclases solubles (GCs) des cellules musculaires lisses aboutissant à une production accrue de guanosine monophosphate cyclique (GMPc) (25).

Ensuite, il a été démontré, entre autre par le groupe de Moncada, que ce facteur avait une très courte demi-vie, ce qui a rendu son identification encore plus ardue (26). Ils ont décrit EDRF comme étant une molécule qui réagissait rapidement avec l’anion superoxyde. Plusieurs années auparavant, le groupe de Murad avait déjà démontré que le NO activait la GCs et disparaissait suite à sa réaction avec l’anion superoxyde (27). Basé sur ces informations ainsi que ses propres expérimentations, Robert Furchgott a proposé que l’EDRF était en fait du NO, affirmation confirmée par le groupe d’Ignarro (28). Quelques années plus tard, le prix Nobel de médecine de 1998 honorait les trois chercheurs américains Furchgott, Murad et Ignarro pour leurs travaux sur le NO.

La production de NO contribue en grande partie aux relaxations dépendantes de l’endothélium dans les grandes artères telles que les artères coronaires, mésentériques, pulmonaires et cérébrales.
Il est produit par une enzyme constitutivement active dans les cellules endothéliales, la NO synthase endothéliale (eNOS ou NOS III) qui catalyse la transformation de la L-arginine en L-citrulline. En fait, il existe deux autres isoformes de la NO synthase en plus de la forme endothéliale. L’isoforme neuronale (nNOS ou NOS I) est exprimé dans le cerveau et les cellules ganglionnaires alors que l’isoforme inductible iNOS (NOS II) est activé dans les macrophages par les lipopolysaccharides et les cytokines (29). La localisation exclusive de eNOS dans les cellules endothéliales a été révoquée puisque l’enzyme a aussi été isolée à partir des cellules myocardiques (30). En réalité, la localisation de l’expression de ces isoformes est plus diversifiée que leurs noms le suggèrent. Par exemple, les trois isoformes peuvent se retrouver sur les parois vasculaires. La nNOS est exprimée dans les nerfs périvasculaires mais a été détectée également sur les cellules endothéliales et musculaires lisses (31) alors que iNOS a été retrouvée dans plusieurs types de cellules nucléées du système cardiovasculaire telles que les cellules musculaires lisses, les cellules endothéliales, les fibroblastes et les leucocytes (32). La iNOS est une enzyme à haut rendement lorsqu’activée de façon indépendante du calcium.

Dans les vaisseaux, eNOS est prédominante à produire le NO (33). L’activation de la eNOS, tout comme la nNOS, dépend de la concentration de calcium intracellulaire mais aussi de plusieurs cofacteurs incluant la calmoduline, la tetrahydroptérine (BH₄), nicotinamide-adenine-dinucléotide phosphate (NADP) et flavine mononucléotide (FMN), ceci afin de catalyser l’oxydation du groupement guanido nitrogénique de la L-arginine (18). La dimérisation de l’enzyme est nécessaire à son activité alors que le groupement hème joue un rôle dans la formation de l’homodimère et que BH₄ sert à stabiliser ce dimère.
Dans la cellule endothéliale au repos, la eNOS est liée à la cavéoline, protéine structurale des cavéolaes qui constituent des microdomaines au niveau de la membrane plasmique. Le détachement de eNOS de cavéoline 1 constitue la première étape dans son activation dépendante d’une augmentation de Ca$^{2+}$ intracellulaire (Figure 2).

Figure 2: L’activation de eNOS par le calcium et sa régulation par la liaison à la cavéoline (CaV1)

Les trois isoformes de NOS ont en commun une même organisation de leurs domaines catalytiques : une activité oxygénase dans la partie N-terminale et une partie réductase au bout C-terminal, les deux domaines étant liés par le site de liaison à la calmoduline (34). Concrètement, la NOS catalyse le transfert d’électrons avec l’aide de FMD du domaine C-terminal lié au NADPH vers l’hème du bout N-terminal (Figure 3). Ce processus est enclenché alors que la calmoduline, stimulée par le Ca$^{2+}$, se lie à NOS pour augmenter l’efficacité du transfert d’électrons du NADPH vers les flavines puis du domaine réductase vers l’hème du domaine oxygénase (33, 35). La synthèse du NO doit être sous fine régulation, surtout qu’il s’agit d’un radical diffusible à haute activité biologique (36).
Figure 3: Dimérisation de eNOS pour la production de NO.

Une fois produit, le NO diffuse donc des cellules endothéliales vers les cellules musculaires lisses sous-jacentes pour aller activer l’enzyme cytosolique, la guanylate cyclase soluble (GCs), hétérodème produisant le GMPc à partir du GTP. La relaxation qui s’en suit s’explique par l’effet inhibiteur du GMPc sur l’appareil contractile.

La relâche de NO par les cellules endothéliales est finement régulée par plusieurs facteurs, que ce soit de façon neurohumorale ou par les forces hémodynamiques. L’augmentation du flux sanguin traduisant l’augmentation des forces hémodynamiques de façon aigue ou chronique va élever les niveaux de NO en augmentant l’expression et l’activité de la eNOS, un phénomène décrit dès 1992. Cette production de NO calcium indépendante fait intervenir la mécanotransduction permettant de traduire des changements physiques en réponses chimiques. L’activation de eNOS vient donc suite à la phosphorylation par la sérine thréonine kinase Akt sur la ser-1177 (37).
La phosphorylation de la protéine a été décrite sur plusieurs résidus sérine, thréonine et tyrosine alors que la phosphorylation de ser1177 induit l’activation et celle de Thr495, l’inhibition sur la séquence humaine de eNOS (33). Le NO représente le facteur qui permet à l’endothélium d’offrir une protection contre les maladies coronariennes (38). En effet, on lui attribue plusieurs rôles incluant l’inhibition de l’adhésion et de la migration leucocytaire par inhibition de l’expression des molécules d’adhésion, l’inhibition de sécrétion de l’endothéline-1 de même que de l’agrégation plaquettaire prévenant ainsi les thromboses et la prolifération de cellules musculaires lisses (Figure 4). Avec toutes ses vertus en plus de son potentiel antioxydant, la réduction de la biodisponibilité du NO a été clairement liée au développement de nombreuses maladies vasculaires (29). La régulation à la baisse de NO survient principalement lorsqu’il y a production d’espèces oxygénées réactives tel que l’anion superoxyde puisque celui-ci réagit rapidement avec le NO pour former le peroxynitrite (ONOO), réduisant alors la biodisponibilité du facteur relaxant.

Figure 4: Les multiples rôles du monoxyde d’azote NO.
2. **Prostacycline (PGI₂)**

L’enzyme clé dans la production de prostanoïdes est la cyclo-oxygénase (COX) qui, dans des conditions physiologiques, participe à la vasodilatation dépendante de l’endothélium par la synthèse de PGI₂, qui contrôle le tonus vasculaire aux côtés du NO. L’isoforme produisant ce vasodilatateur est la COX-1, isoforme exprimée de façon constitutive dans les cellules endothéliales. Un deuxième isoforme, la COX-2, est quant à elle induite en réponse à la stimulation pro-inflammatoire.

La disponibilité du substrat de la COX, l’acide arachidonique (AA) relâché des phospholipides membranaires par la phospholipase A₂, est l’étape limitante dans la synthèse des prostanoïdes. L’acide arachidonique est transformé en endoperoxyde instable PGG₂ par la COX-1, converti ensuite en PGH₂ qui subit une isomérisation catalysée par la PGI₂ synthase, forme finalement la PGI₂. La production de celle-ci est stimulée par l’hypoxie, les forces de cisaillement ou suite à l’activation des récepteurs à l’ATP, ADP, bradykinine ou histamine entre autre (39).

La PGI₂ se lie à ses récepteurs transmembranaires spécifiques (IP) et active l’adénylate cyclase pour produire la 3,5 adénosine monophosphate cyclique (AMPc) (40). Ce messager intracellulaire va stimuler la protéine kinase dépendante de l’AMPc (PKA), capable d’induire la relaxation des cellules musculaires lisses. Même si la prostacycline ne joue qu’un rôle mineur dans la relaxation dépendante de l’endothélium, son effet donne du poids au contrôle du tonus vasculaire par le NO et agit en synergie pour inhiber l’agrégation plaquettaire (41).
3. Facteur hyperpolarisant dérivé de l’endothélium (EDHF)

La sécrétion de NO et la production de prostacycline ne sont pas les seules façons pour l’endothélium de réguler les changements vasomoteurs. Sur plusieurs types de vaisseaux de différentes espèces incluant l’humain, il y a eu observation de relaxation vasculaire endothélium-dépendante en présence d’inhibiteurs de eNOS et de COX. Plusieurs études électrophysiologiques sur artères isolées ont attribué ce phénomène indépendant du NO à une hyperpolarisation des cellules musculaires lisses accompagnée d’une baisse des taux de calcium intracellulaires (42). La séquence mécanistique de la relâche de l’EDHF commence par une augmentation de calcium intracellulaire qui active les canaux potassiques (K+) dépendants du Ca2+ et engendre un efflux de K+, provoquant l’hyperpolarisation de la cellule endothéliale. Ceci va générer un signal pouvant diffuser vers les cellules musculaires lisses (42-44). À ce niveau, l’EDHF active les canaux K+ et l’hyperpolarisation générée diminue l’influx calcique, soit en réduisant l’ouverture des canaux calcium voltage dépendant (Cav) ou par l’activation des Cav du réticulum sarcoplasmique, ce qui produit la relaxation des CML.

Les canaux potassiques impliqués dans la réponse à la stimulation par l’EDHF et leur distribution entre les cellules endothéliales et les cellules musculaires lisses demeure encore confuse. Il est quand même prouvé que les canaux potassiques dépendant du Ca2+ à conductance petite et intermédiaire (SKCa et IKCa respectivement) sont responsables de l’hyperpolarisation des cellules endothéliales, alors que les canaux à large conductance (BKCa) agissent au niveau des cellules musculaire lisses vasculaires (45).
La nature exacte de l’EDHF reste controversée, probablement dû aux nombreuses hypothèses générées par différentes études sur des vaisseaux variés. Des molécules très différentes ont été suggérées comme potentielles EDHF et les premiers sont les eicosanoïdes (EETs), générés par les cytochromes P450 époxygénases (46, 47).

Figure 5: Les hypothèses quant à la nature de EDHF.

La proposition est telle que les EETs diffusent vers les cellules musculaires lisses et stimulent les canaux potassiques à large conductance (48). Ces métabolites peuvent aussi agir de façon autocrine et provoquer une relaxation endothéliale dépendante de la relâche de NO (49). Des expérimentations in vivo et in vitro ont confirmé ce rôle vasodilatateur sur les artères coronaires et mammaires mais aussi au niveau des artérioles musculaires périphériques et sous-cutanées humaines (50-52).
Par le même mécanisme d’ouverture des canaux BK\textsubscript{ca}, les métabolites 12-HETE (acide 12-S-hydroxyeicosatetraenoïque) produits des lipoxygénases 12-LOX, peuvent être relâchés par les cellules endothéliales et provoquer la relaxation vasculaire, les preuves expérimentales provenant des artères coronaires de rats et de porcs (53). D’autres hypothèses soutiennent que l’EDHF ne serait nul autre que l’ion potassique en soi, provenant des courants SK\textsubscript{ca} et IK\textsubscript{ca} des cellules endothéliales qui agirait de façon humorale et provoquerait l’hyperpolarisation des cellules musculaires lisses, activant les canaux IKr et la pompe NA+/K+ ATPase (54-56). Les expériences sur les artères hépatiques et mésentériques de rat ont commencé à proposer cette hypothèse et puis plusieurs autres observations de la même sorte provenant d’artères de différentes espèces incluant l’humain l’ont confirmé (19) (Figure 5).

Un autre postulat émergeait et prétendait que l’EDHF pourrait simplement être le couplage électrique qu’il y avait entre les cellules endothéliales et musculaires grâce aux jonctions communicantes myoendothéliales. Ceci expliquerait par le fait même l’importance de l’EDHF dans les artères de résistance, donc par définition de petit calibre (<300um de diamètre) (45, 57). Il s’agit d’une notion qui a déjà été présentée par Segal et Duling alors qu’ils attribuaient un rôle clé aux jonctions communicantes dans la vasodilatation induite par l’acétylcholine sur les artérioles de la microcirculation (58), identifiant quelques années plus tard les connexines 40 et 43 comme composantes de ces jonctions (59).

Bien d’autres molécules ont aussi été proposées comme potentielles EDHF tels que le peptide natriurétique C (CNP), le peroxyde d’hydrogène (H\textsubscript{2}O\textsubscript{2}) ou encore des molécules gazeuses telles le monoxyde de carbone (CO) ou le sulfate d’hydrogène (H\textsubscript{2}S) (42).
Facteurs contractants dérivés de l’endothélium

En certaines circonstances, l’endothélium peut produire des substances diffusibles pouvant activer le processus contractile dans le muscle lisse sous jacent. En théorie, la contraction dépendante de l’endothélium est la conséquence, soit de l’élimination de l’effet vasodilatateur du NO, ou de la production de vasoconstricteurs tels que ET-1, Ang II, les prostanoïdes ou encore les ROS (Figure 6).

![Diagramme des facteurs contractants dérivés de l’endothélium](image)

Figure 6: Facteurs de contraction dérivés de l’endothélium.

1. **Endothéline-1 (ET-1)**

Les cellules endothéliales produisent l’endothéline-1, ce peptide de 21 acides aminés, en réponse à une multitude de facteurs métaboliques et hormonaux ou encore en réponse à l’hypoxie et aux forces de cisaillement (60).
En fait, le produit du gène preproET-1 est un peptide inactif et subit séquentiellement un clivage en plusieurs étapes par des métalloprotéases et les endothélines convertases, qui aboutit ultimement au peptide vasoactif ET-1.

Les fonctions de ET-1 découlent de sa liaison aux récepteurs à endothéline à 7 passages transmembranaires. Deux récepteurs ont été clonés et caractérisés selon leur localisation (61, 62). Les ET_A se retrouvent sur les cellules musculaires lisses vasculaires et leur stimulation provoque une vasoconstriction alors que les ET_B peuvent être sur les cellules endothéliales et sur les cellules musculaires lisses. La stimulation des ET_B du muscle vasculaire induit la vasoconstriction mais celle des ET_B de l’endothélium engendre la vasodilatation. Il est à préciser toutefois que l’affinité de ET-1 aux récepteurs ET_A est plus élevée (63). L’ET-1 est le vasoconstricteur endogène le plus puissant relâché de façon continue par les cellules endothéliales. Le NO inhibe fortement la sécrétion de ce peptide, ce qui fait que le NO et ET-1 sont interdépendants puisque l’ET-1 inhibe à son tour l’action vasodilatatrice du NO (64). Les récepteurs musculaires sont couplés aux protéines G hétérottrimériques et leur activation produit une augmentation de calcium intracellulaire par libération des stocks intracellulaires et par accentuation de l’influx Ca²⁺ extracellulaire, mais aussi par augmentation de la sensibilité de l’appareil contractile au Ca²⁺ (65).

Sa production n’est pas limitée aux cellules endothéliales et s’étend même aux cellules musculaires lisses, aux leucocytes et aux macrophages. À des concentrations élevées en cas de pathologie, l’ET-1 devient pro-inflammatoire et stimule la prolifération des cellules musculaires lisses (66).
De plus, ET-1 contribue significativement à la régulation de la contractilité cardiaque (67). Son effet inotrope positif a été décrit dans plusieurs espèces incluant le rat (68) le lapin (69) le chien (70) et chez l’Homme aussi (71), avec des magnitudes de réponse qui diffèrent entre les espèces.

2. **Prostanoïdes (thromboxane A₂, prostaglandine H₂)**

Les produits métaboliques de l’acide arachidonique (AA) ont été identifiés comme des facteurs contractants dérivés de l’endothélium depuis les expérimentations sur les artères et veines canines, où l’inhibition non-sélective par l’indométacine de la cyclooxygénase, enzyme métabolisant l’AA, a supprimé cette contraction. Les mêmes observations ont été décrites sur des aortes de rats spontanément hypertendus (SHR), témoignant de l’importance des prostanoïdes dans la contraction endothélium-dépendante (72).

Les cyclooxygénases convertissent l’AA, relâché par la phospholipase A₂ des lipides membranaires en un intermédiaire, l’endoperoxyde PGH₂. Ce dernier peut soit agir en soit comme EDCF (73, 74) ou être transformé subséquemment en prostacycline, thromboxane A₂, prostaglandine D₂, E₂ ou F₂α grâce à leurs synthases respectives (75-78). La relâche même de ces EDCF serait la conséquence d’une augmentation de calcium qui activerait la phospholipase A₂ (79). Le thromboxane A₂ et la prostaglandine H₂ sont les deux produits identifiés avec la plus grande prévalence et le plus grand impact. La COX-1 est considérée comme l’enzyme clé produisant ces facteurs puisqu’elle est constitutive dans les cellules endothéliales malgré que la COX-2, lorsque présente dans certains vaisseaux, peut générer des prostanoïdes contribuant à la contraction dépendante de l’endothélium (80).
Plus tard, il a été prouvé que c’est par les récepteurs TP, récepteurs à 7 passages transmembranaires, que la contraction s’amorçait puisque les essais avec des antagonistes de ces récepteurs abolissent la vasoconstriction (81, 82). L’activation de ces récepteurs sur les cellules musculaires lisses résulte en un influx massif de Ca$^{2+}$ par les canaux voltage-dépendant et la sensibilisation des myofilaments par la Rho-Kinase (83).

La prostacycline à haute concentration peut, elle aussi, activer les récepteurs à thromboxane et induire de ce fait la vasoconstriction (84). Lors de contractions induites par l’acétylcholine, il y a de plus fortes libérations de PGI$_2$ que de prostaglandines, produisant la vasoconstriction plutôt que de la vasodilatation (78). Cette contraction est toutefois de faible envergure et transitoire car l’affinité de PGI$_2$ pour les récepteurs TP est très faible et sa dégradation est rapide, alors qu’elle a une demi-vie de 3 minutes à pH physiologique (78).

Dans certains vaisseaux (aorte de hamster) ou avec le vieillissement ou la maladie, une augmentation de la contribution de PGE$_2$ et PGF$_{2\alpha}$ à la contraction vasculaire est décrite (85, 86). En fait, ces prostaglandines sont produites abondamment en état de stress oxydant conséquemment à l’inhibition de PGI synthase par le peroxynitrite formé. Bref, l’implication des divers prostanoïdes dans la vasoconstriction endothélium-dépendante varie selon l’espèce et son état de santé, le lit vasculaire étudié et l’agoniste utilisé (80).

3. Angiotensine II (Ang II)

Ang II est une molécule vasoactive très importante générée à partir de l’angiotensine I par l’enzyme de conversion de l’angiotensine (ECA) exprimée au sein même des cellules endothéliales.
En fait, c’est la rénine produite par le système endocrinien qui transforme l’angiotensinogène, une glycoprotéine, par clivage du N-terminal, en angiotensine I qui ne possède pas d’activité. L’activité de l’ECA est détectée à la surface luminale des cellules mais la production d’Ang II peut se faire aussi à l’intérieur de la cellule, prouvant une capacité à induire un effet autocrine et paracrine (84). La vasorégulation par l’ECA peut aussi provenir de son habilité à dégrader la bradykinine, agent vasodilatateur, en fragment inactif (87). Via l’activation du récepteur à angiotensine de type 1 AT₁, l’Ang II provoque la vasoconstriction alors que la stimulation de son récepteur AT₂ induit plutôt la vasodilatation.

La signalisation en aval de AT₁ du muscle lisse vasculaire est associée aux actions pathophysiologiques de Ang II incluant la croissance et la migration cellulaire, le dépôt de matrice extracellulaire et la stimulation de l’inflammation (88). Les actions contrôlées par l’activation de AT₂ sont liées à des mécanismes pro-apoptotiques et anti-prolifératifs, principalement par antagonisme du récepteur AT₁ (89). L’Ang II est le principal effecteur du système rénine-angiotensine-aldostérone (SRAA), avec un rôle important dans la régulation de la pression artérielle et du tonus des cellules musculaires lisses vasculaires entre autres. La production de ROS, spécifiquement de l’anion superoxyde, est intimement reliée à l’action de l’Ang II puisqu’elle peut aussi stimuler la NADPH oxydase endothéliale et musculaire par la stimulation des récepteurs AT₁ (90, 91).

4. Espèces oxygénées réactives (reactive oxygen species ROS)

L’endothélium peut lui même générer des espèces oxygénées réactives en situations physiologiques mais encore plus dans des cas pathologiques.
Les enzymes telle que la NADPH oxydase, la xanthine oxydase ou encore la eNOS peuvent en produire. Les ROS peuvent aussi être des sous-produits de l’activité de la COX. Ils possèdent la capacité d’agir directement comme EDCF ou indirectement en potentialisant les réponses contractiles de différents EDCF en activant par exemple la COX au niveau du muscle lisse vasculaire (92). Ainsi, le peroxyde d’hydrogène qui peut agir comme vasodilatateur en tant que EDHF, peut aussi contribuer à la stimulation de COX dans les cellules musculaires lisses vasculaires (93).

La production de l’anion superoxyde en particulier, est néfaste pour le fonctionnement optimal de l’endothélium car il réagit avec le NO pour former le peroxynitrite ONOO et diminuer ainsi la disponibilité du NO (94, 95). Le rôle des ROS dans les contractions dépendantes de l’endothélium dépend largement des modèles expérimentaux utilisés et du type de stimulus. Par exemple, l’infusion d’acétylcholine dans les aortes de SHR suscite une grande production de ROS dans les cellules endothéliales, un effet inhibé par l’indométacine, inhibiteur de la COX. Ainsi, cette enzyme parait être une source majeure de ROS dans de telles conditions (96).

De plus, ces radicaux dépolarisent directement les cellules musculaires lisses vasculaires en inhibant divers canaux potassiques (100, 101). Plusieurs mécanismes expliquent donc la vasoconstriction médiée par les ROS.
Chapitre III : Le stress oxydant et son impact sur la dysfonction endothéliale.
Différents facteurs de risques cardiovasculaires conduisent à l’augmentation de la production de ROS générés par la COX, la NADPH oxydase, la xanthine oxydase, la chaîne mitochondriale de transport des électrons, et le découplage de eNOS généralement. Lorsque la capacité du système de défense antioxydant par les enzymes telle la superoxyde dismutase (SOD), la catalase (CAT), la glutathion peroxydase (GPx) ou l’hème oxygénase (HO) est atténuée, un état de stress oxydant survient et peut promouvoir l’athérogénèse. Ainsi, plusieurs facteurs de risque tels le diabète, le tabagisme ou l’hypertension sont associés à des niveaux de ROS significativement élevés dans le système vasculaire. Les ROS produits généralement sont les radicaux d’oxygène, les anions d’oxygène et les peroxydes. L’anion superoxyde réagit avec le NO° pour former le peroxynitrite (ONOO−), réduisant la disponibilité du NO° et sa bio-activité (102).

Le stress oxydant augmente la prolifération cellulaire, l’hypertrophie, l’apoptose et l’inflammation en activant diverses cascades mécanistiques et facteurs de transcription sensibles à l’état redox de la cellule (103). L’excès de ROS, particulièrement les radicaux libres, oxydent plusieurs molécules dans l’organisme. La peroxydation lipidique et l’oxydation de protéines sont des conséquences de la production de ROS et induisent la surexpression de gènes redox, augmentent le calcium, et fragmentent l’ADN, tout ceci endommageant les cellules musculaires lisses vasculaires, les cellules endothéliales et myocardiques (104).
Les espèces oxygénées réactives (Reactive oxygen species ROS)

Les radicaux libres sont définis comme des molécules contenant un ou plus d’électrons libres dans leurs orbitales atomiques ou moléculaires. L’électron libre confère à la molécule un degré de réactivité considérable et dans les organismes vivants, les radicaux libres dérivés de l’oxygène sont les plus importants et les plus abondants (104). Les espèces oxygénées réactives sont les produits du métabolisme cellulaire normal. Ils sont reconnus pour jouer à la fois un rôle délétère et bénéfique dans les systèmes vivants (105).

$O_2^•−$ est généré suite à l’addition d’un électron à l’oxygène moléculaire O_2, qui se produit soit dans un processus métabolique ou suivant l’activation de l’oxygène par des irradiations. Il est considéré comme le ROS primaire puisqu’il peut réagir et former des ROS secondaires, que ce soit directement ou en participant en tant que catalyseur (106). Au niveau vasculaire, sa production est principalement assurée par la NADPH oxydase, tel que décrit subséquemment. Les membranes plasmiques sont imperméables à ce radical, restreignant son action sur des cibles proximales, d’autant plus que sa demi-vie est très courte (105). Sa participation à la génération de $^•$OH et ONOO- est exposée ci-dessous.

Le radical hydroxyle $^•$OH possède aussi une réactivité élevée, avec une très courte demi-vie d’environ 10^{-9}s (107). Ainsi, lorsque produit dans l’organisme, il réagit rapidement autour de son site de formation. L’état redox cellulaire est majoritairement lié à la présence de fer et cuivre, et cet état est sous maintien strict physiologiquement pour ne pas laisser de fer libre intracellulaire. Toutefois, en situation de stress, un excès d’anion superoxyde va augmenter la quantité de fer libre qui pourra alors participer à la réaction de Fenton générant le radical hydroxyle $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + ^•$OH + OH•.
L’importance de la réaction de Fenton in vivo n’est pas claire particulièrement à cause de la faible occurrence de fer libre puisqu’il est séquestré par plusieurs protéines liant les métaux (108). Cependant, dans les organismes surchargés de fer, par exemple, en présence de β-thalassémie ou d’hémolyse, il y a justement une disponibilité plus élevée d’ions ferriques apportant son lot d’effets nocifs (108). Le radical hydroxyle peut aussi être formé à partir de la réaction Haber-Weiss $O_2^{-} + H_2O_2 \rightarrow O_2 + \cdot OH + OH^-$. Ce radical est connu pour réagir avec tous les composants de l’ADN, endommageant les purines et les pyrimidines tout comme le squelette désoxyribose (104).

Le peroxyde d’hydrogène H_2O_2 est dérivé principalement de la réaction de dismutation de SOD sur O_2^{-}, mais il peut provenir d’une perte d’électrons de la chaine mitochondriale (109). Il s’agit d’une espèce oxygénée réactive non chargée, ce qui la rend relativement stable et lui permet de diffuser à travers les membranes mitochondriales et entre les cellules. Il peut réguler des mécanismes compensatoires tel que démontré sur des cellules endothéliales, en induisant la eNOS de façon dépendante de la signalisation calcique sur les kinases dépendantes de la calmoduline (110).

Le monoxyde d’azote NO^* aussi est une molécule avec un électron libre, généré abondamment dans divers tissus avec une importance biologique primordiale, tel que décrit précédemment. Le NO^* a une très courte demi-vie (quelques secondes) avec une meilleure stabilité en présence d’une faible concentration d’oxygène. Avec un débalancement du système redox de l’organisme, les cellules immunitaires consomment beaucoup d’oxygène qui va être alors utilisé par la NADPH oxydase pour générer O_2^{-} qui réagit très rapidement avec le NO pour produire le $ONOO^-$, autre molécule oxydante très néfaste pour la cellule (111). La molécule est
cytotoxique puisqu’elle augmente la vasoconstriction et l’agrégation plaquettaire, en plus d’induire le découplage de eNOS suite à l’oxydation de BH$_4$ (33).

Les sources de ROS

1. **Mitochondries :**

En condition physiologique, la mitochondrie contribue largement à la production de ROS (112). La chaîne de transport des électrons est la source principale générant les ROS dans la mitochondrie (113). Les électrons du NADH et FADH$_2$ générés par le cycle de Krebs sont transférés à travers la chaîne pour réduire l’oxygène moléculaire en H$_2$O.

Le complexe IV (cytochrome c oxydase) est le composant terminal de la chaîne qui retient les intermédiaires partiellement réduits jusqu’à la réduction complète de l’oxygène, mais d’autres complexes peuvent relâcher des électrons et générer O$_2$•− par réduction partielle de O$_2$. D’ailleurs, les sources prédominantes de O$_2$•− dans la mitochondrie sont les complexe I et III (113). L’anion superoxyde dérivé du complexe I est relâché dans la matrice alors que celui dérivé du complexe III est libéré dans la matrice mitochondriale et l’espace intermembranaire (114). In vivo, la production de O$_2$•− du complexe I prend place lorsque les niveaux de NADH sont élevés, ce qui peut se produire suite à un dommage à la chaîne respiratoire ou en condition ischémique (115). La production de ROS peut aussi dépendre de l’état métabolique de la mitochondrie avec une génération de O$_2$•− plus accrue dans des conditions de faible consommation de O$_2$, un faible flot électrique et synthèse réduite d’ATP avec un ratio élevé de NADH/NAD+ (116). La génération de ces espèces réactives survient quand le potentiel redox de la mitochondrie est substantiellement réduit comme en hypoxie ou significativement oxydé comme en insuffisance cardiaque.
Cette dernière condition présente une diminution de la capacité antioxydante résultant d’une baisse de NADPH. D’ailleurs une étude récente a montré qu’une augmentation de Na⁺ dans les cardiomyocytes d’un myocarde défaillant était associée à une diminution de Ca²⁺ mitochondrial par augmentation de l’efflux de Ca²⁺, diminuant le NADPH et aboutissant à une augmentation de ROS (117).

2. NADPH oxydase

La NADPH oxydase (Nox) produit l’anion superoxyde O₂⁻ en transférant les électrons du NADPH de l’intérieur de la cellule, traversant la membrane plasmique, pour réduire les molécules d’oxygène. Plusieurs isoformes sont retrouvés exprimés dans des types cellulaires variés du système vasculaire que ce soit les cellules endothéliales, les cellules musculaires lisses ou les fibroblastes.

L’enzyme est constituée de plusieurs composantes protéiques dont l’assemblage est nécessaire pour son activité (118). Les Nox ont été initialement décrites dans les phagocytes avec un rôle primordial dans le processus de défense cellulaire. Séquentiellement, plusieurs isoformes de Nox ont été identifiés dans d’autres cellules incluant les cellules endothéliales. Tous les isoformes partagent la même structure avec 6 domaines transmembranaires conservés et les extrémités COOH et NH₂ du côté cytoplasmique (119). Les isoformes sont classés selon la fonction de la sous-unité catalytique gp91phos (Nox2). Ainsi Nox1, Nox3 et Nox4 sont structurellement similaires à Nox2 alors que Nox5 possède un domaine calmodulin-like avec 4 sites de liaison au Ca²⁺. Dans l’endothélium vasculaire, Nox2 et Nox4 sont prédominantes (120, 121).
Nox2 joue un rôle critique dans la prolifération suite à un dommage aux vaisseaux alors que Nox4 est requise pour le maintien du phénotype différencié des cellules musculaires lisses vasculaires (122). L’activation de Nox requiert la translocation des sous-unités cytosoliques p47phox et p67phox à la membrane cellulaire pour s’associer à p22phox et former l’enzyme active (123). Le NADPH sert alors de donneur d’électrons pour former l’anion superoxyde (Figure 7).

Figure 7: Production d’anion superoxyde par la NADPH oxydase suite à l’association de ses sous-unités.

Les Nox vasculaires sont constitutivement actives et relâchent une faible fraction d’anion superoxyde mais de façon soutenue. Ces enzymes peuvent être activées à travers la stimulation du récepteur AT1 par l’angiotensine avec un mécanisme PKC dépendant. En fait, Ang II, le facteur de croissance dérivé des plaquettes (PDGF) et les forces hémodynamiques peuvent induire l’expression et l’activité de Nox (124, 125).
Une régulation à la hausse de la NADPH oxydase a été démontrée dans différents modèles de maladies vasculaires. Les souris avec un gène NOX1 défectueux présentaient une plus faible hausse de la pression sanguine en réponse à l’Ang II alors que les souris surexprimant NOX1 dans les cellules musculaires lisses vasculaires avaient un niveau plus important de \(\text{O}_2^- \) et une hausse de la pression sanguine après stimulation par l’Ang II (126, 127).

3. Xanthine oxydase XO

L’enzyme est majoritairement issue du foie après protéolyse du précurseur xanthine déshydrogénase XDH. La XO et XDH sont des iso-enzymes interconvertibles de la xanthine oxydoréductase XOR. Cette dernière catalyse les deux étapes finales de la dégradation de purine adénosine réduisant l’hypoxanthine et la xanthine en acide urique. La XDH réduit préférentiellement NAD\(^+\) alors que la XO réduit l’oxygène moléculaire O\(_2\) produisant O\(_2^-\) et H\(_2\)O\(_2\) (105). La XDH est la forme prédominante dans les tissus bien oxygénés qui est convertie en XO soit de façon réversible par oxydation sulphydrile ou irréversible par modification protéolytique (128). Les deux formes agissent comme des NADH oxydases produisant des ROS (129). La XO adhère aux cellules endothéliales grâce à sa forte affinité avec la charge positive des glycosaminoglycans (130). Les médiateurs pro-inflammatoires, les forces de cisaillement et l’hypoxie induisent la conversion de la xanthine déshydrogénase XDH en XO, promouvant encore plus le stress oxydant (130). De plus, la fonction de XO est liée à l’activité de la NADPH oxydase puisque la production de ROS par cette dernière augmente la production de H\(_2\)O\(_2\) par XO (131).
Une boucle de rétro-activation permet donc au stress oxydant d’augmenter encore plus la production de ROS. Il existe aussi une relation inverse entre l’activité de XO lié à l’endothélium et la vasodilatation dépendante de l’endothélium chez les patients avec maladie coronarienne (132).

4. eNOS

La participation de eNOS au stress oxydant est devenue évidente il y a déjà quelques années. Son découplage est reconnu comme un important contribuable à la production d’anion superoxyde dans la paroi vasculaire. Tel que décrit précédemment, les deux monomères servent de navettes pour le transport des électrons des flavines du domaine réductase d’un monodimère vers l’hème du domaine oxydase de l’autre monodimère (133).

La liaison du cofacteur BH₄ est essentielle pour le transport d’électrons efficace vers la L-arginine assurant le bon couplage de l’enzyme (134). Toutefois, le BH₄ est fortement oxydé et donc dégradé par les ROS, particulièrement par le peroxynitrite. Ainsi, en absence de L-arginine ou BH₄, la eNOS devient découpée, transportant les électrons vers l’oxygène et produisant alors des radicaux superoxydes plutôt que du NO (33). Même si le BH₄ est reconnu comme étant le cofacteur critique pour le bon fonctionnement de eNOS et son oxydation joue un rôle prédominant dans la pathogenèse de la dysfonction endothéliale, la supplémentation par du BH₄ ne restore que partiellement l’activité de eNOS. Ceci suggère donc que d’autres mécanismes régulés par le stress oxydant peuvent contrôler la fonction de eNOS et restent à être élucidés. La génération de NO par iNOS semble aussi pathologique dans des conditions de stress oxydant élevé particulièrement avec une augmentation de O₂⁺ (135).
Systèmes antioxydants endogènes

1. **Superoxyde dismutase (SOD)**

 Chez l’humain, il existe trois isoformes de SOD. SOD1 (Cu-Zn SOD) est sous forme soluble dans le cytoplasme mais peut être retrouvée aussi dans l’espace inter-membranaire mitochondrial. La SOD2 (Mn-SOD) est retrouvée dans la matrice mitochondriale alors que SOD3 (EC-SOD) est une enzyme sécrétée en milieu l’extracellulaire. Les trois isoformes catalysent la dismutation de O_2^{-} en O_2 et H_2O_2. Il a été rapporté que 50% de la SOD humaine dans le système vasculaire était extracellulaire (136). Même si la réaction de SOD sur O_2^{-} est rapide, le peroxyde d’hydrogène résultant en soi est un messager intracellulaire impliqué dans le remodelage vasculaire, l’inflammation et la croissance de cellules musculaires lisses vasculaires. Les interventions thérapeutiques avec des antioxydants ou des agents antihypertenseurs ont souvent montré une élévation du niveau protéique et de l’activité enzymatique de SOD, particulièrement Cu-Zn SOD et Mn-SOD dans l’endothélium vasculaire et les cellules musculaires lisses d’aortes d’animaux expérimentaux (103, 137).

2. **Catalase (CAT)**

 Il s’agit d’un tétramère de polypeptides qui contient 4 groupements hèmes porphyrines pour réagir avec H_2O_2. La CAT accélère la décomposition de H_2O_2 en oxygène et eau. L’enzyme a une grande efficacité puisqu’aucune concentration de H_2O_2 ne peut la saturer, elle est particulièrement importante lors d’une exposition chronique au stress oxydant (138, 139).
3. **Glutathion peroxidase (GPx)**

Tout comme la catalase, la GPx élimine le H$_2$O$_2$. Généralement, son importance est plus grande que la catalase pour l’élimination de H$_2$O$_2$ chez l’humain. Plusieurs isoformes existent chez les mammifères mais celle qui s’occupe de la réduction du peroxyde d’hydrogène est la GPx1 (140). Cette enzyme ubiquitaire a une distribution similaire à SOD, c’est à dire qu’on peut la retrouver dans le cytosol et dans la mitochondrie. Elle peut aussi agir comme peroxynitrite réductase (141). En fait, la GPx catalyse la conversion de glutathion (GSH) en forme oxydée GSSG, ceci permettant alors de neutraliser le H$_2$O$_2$ (142). Cette activité antioxydante avec l’aide du GSH est utile majoritairement en situation de faibles niveaux de stress oxydant.

![Figure 8: Les systèmes antioxydants enzymatiques endogènes.](image)
Hème oxygénase HO

HO catalyse la première étape de la dégradation de l’hème pour générer des quantités équimolaires de monoxyde de carbone (CO), de biliverdine et du fer. Plusieurs preuves ont été accumulées décrivant la capacité de protection de HO contre les dommages vasculaires et l’athérogénèse (143). En fait, l’enzyme serait induite par un processus adaptatif par le stress oxydant et son mécanisme de protection serait donc la dégradation de l’hème pro-oxydante en biliverdine qui est ensuite convertie en bilirubine, qui à son tour peut éliminer les radicaux libres. La bilirubine peut aussi directement inhiber l’activité de Nox et bloquer son assemblage, une autre façon d’interrompre son activation (144).

Les rôles physiologiques des ROS

Les ROS peuvent réguler plusieurs fonctions au sein du système cardiovasculaire en condition normale. Le premier exemple flagrant est bien sûr le rôle primordial du NO dans le contrôle du tonus vasomoteur et de la régulation du flot sur divers lits vasculaires. Tel que mentionné maintes fois, le NO inhibe l’agrégation plaquettaire et l’adhésion des leucocytes à la paroi endothéliale (145, 146).

Le H$_2$O$_2$ à de faibles concentrations (2-20nM) stimule l’activité de la cyclooxygénase pour produire les prostanoïdes dont le vasodilatateur prostacycline (147, 148). De plus, tel que mentionné précédemment, H$_2$O$_2$ peut agir comme EDHF sur plusieurs types de lits vasculaires murins (149) mais aussi sur les artères mésentériques (150) et coronaires humaines (151).
Toutefois cet effet régulateur de la vasodilatation à travers l’hyperpolarisation du muscle lisse vasculaire varie dépendamment du lit vasculaire, de l’espèce, de l’âge et de la condition pathophysiologique. À titre d’exemple, la surexpression spécifique dans la cellule vasculaire de catalase diminue la pression sanguine, témoignant aussi de la vasoconstriction contrôlée par H₂O₂ (152).

En ce qui concerne les ROS produits par les phagocytes, ce sont des éléments clés de la défense contre les pathogènes, l’invasion par des microorganismes ou par des cellules malignes. Ce sont des régulateurs de la synthèse de NO, de plusieurs cascades de signalisation intracellulaire incluant les cytokines, les facteurs de croissance, les MAPK et NFκB et impliqués dans la modulation de la réponse immunitaire, de l’apoptose et de la mutagénèse (153, 154).

Les ROS peuvent induire divers processus biologiques avec des élévations transitoires du calcium intracellulaire, la phosphorylation de protéines et de facteurs de transcription, la stimulation de la croissance cellulaire et la modulation du métabolisme des eicosanoides. Les LDL-ox peuvent aussi jouer un rôle biologique en permettant à l’organisme d’augmenter sa capacité de défense antioxydante par mécanisme adaptatif (102).

Dysfonction endothéliale

Nombreux sont les désordres cardiovasculaires qui sont associés à la détérioration des réponses vasodilatatrices à l’acétylcholine et/ou à l’augmentation du flot sanguin. Cette altération, portant le nom de dysfonction endothéliale, reflète un défaut qui réduit la disponibilité du NO et son activité biologique, soit par diminution de sa production, ou par augmentation de son élimination suite à la réaction avec les ROS générés dans milieu...
endothélial ou dans le muscle lisse sous-jacent. La biodisponibilité réduite du NO ne provoque pas une inhibition complète de la vasodilatation en réponse à des agonistes ou au flot, possiblement grâce à la compensation partielle offerte par les autres facteurs relaxants dérivés de l’endothélium.

Dépendamment du lit vasculaire, la dilatation contrôlée par le flot est initiée par la PGI2 ou EDHF dans des souris eNOS-/- (155, 156). Plusieurs ont démontré une augmentation de la relaxation dépendante de l’EDHF en absence de NO, alors qu’une application de NO de façon exogène diminuait la réponse de l’EDHF sur artères isolées et dans la microcirculation coronarienne in vivo (157). Ces observations ont alors généré l’hypothèse que le NO pouvait inhiber la production de EDHF en situation normale physiologique, alors qu’en cas d’altération pathologique caractérisée par une baisse de la biodisponibilité du NO, l’EDHF devient principal initiateur de vasorelaxation (158).

Furchgott et Zawadzki ont d’abord démontré qu’un dommage physique à la monocouche cellulaire endothéliale avait comme conséquence une augmentation de la vasoconstriction en réponse à l’acétylcholine (4). Avec l’angiographie coronarienne, il a été rapporté subséquemment que les vaisseaux athérosclérotiques humains relaxaient en réponse à la nitroglycérine, donneur exogène de NO, alors qu’ils contractaient suite à la stimulation par l’acétylcholine, contrairement aux vaisseaux provenant d’humains avec angiographie normale, qui relaxaient aux deux agents. Ceci a permis dans les années 80 de lier l’athérosclérose à une dysfonction endothéliale (159).
Une plus large définition de la dysfonction endothéliale inclut non seulement la réduction de la relaxation dépendante de l’endothélium mais aussi l’augmentation de l’expression des molécules d’adhésion, de la prolifération des cellules musculaires lisses vasculaires et du développement d’un état d’hypercoagulation (160).

L’implication du stress oxydant dans le développement de la dysfonction endothéliale est majeure. Puisque la cinétique de la réaction entre $O_2^{•−}$ et NO est trois fois plus rapide que celle de $O_2^{•−}$ et SOD, il est évident qu’une partie du superoxyde généré réagit avec le NO dans la cellule et dans le milieu extracellulaire, mais le système antioxydant endogène minimise toujours cette réaction. L’oxydation du BH₄, cofacteur de eNOS, résulte aussi à la diminution de la biodisponibilité du NO par découplage de eNOS. L’implication des ROS dans la dysfonction endothéliale est aussi expliquée par leur capacité à stimuler et/ou faciliter la production de vasoconstricteurs, particulièrement les prostanoïdes, dans les cellules musculaires lisses vasculaires (96).
Chapitre IV : Rôle du stress oxydant dans la dysfonction endothéliale caractérisant diverses maladies cardiovasculaires
La dysfonction endothéliale et les maladies cardiovasculaires

Les données obtenues des études de culture cellulaire et de modèles animaux tout autant que des études cliniques soutiennent le rôle du stress oxydant dans le développement de maladies cardiovasculaires comme l’athérosclérose, l’hypertension, l’hypertrophie, l’insuffisance cardiaque et les lésions d’ischémie-reperfusion (105). Ce stress oxydant, tel que mentionné précédemment, est délétère non seulement à cause du vaste remodelage provoqué sur les cellules vasculaires mais aussi sur la fonction endothéliale des vaisseaux sanguins puisqu’il supprime les nombreux bénéfices conférés par le NO. Un dérèglement du contrôle vasomoteur par l’endothélium a été décrit comme facteur de risque dans plusieurs maladies cardiovasculaires, la première étant l’athérosclérose alors que Celermajer avait mis en évidence l’altération de l’endothélium chez les enfants avec hypercholestérolémie familiale (161). De façon similaire, un contrôle anormal du tonus vasculaire a été documenté chez des sujets souffrant d’hypertension (162), de diabète (163, 164), chez les fumeurs (165) et les patients ayant de faibles niveaux de HDL (166).

La présence de cette dysfonction peut aussi augmenter la susceptibilité à développer l’hypertension et le diabète, prouvant aussi qu’il ne s’agit pas seulement d’un facteur de risque collatéral, mais également d’un mécanisme pathogénique participant au développement de la maladie (167, 168). Un grand nombre d’études prospectives sur différents groupes de patients ont prouvé que l’association de la dysfonction endothéliale aux maladies cardiovasculaires représentait un élément pronostic négatif significatif (169).
La dysfonction endothéliale mesurée au niveau de l’avant bras a été montrée comme prédisant les événements cardiovasculaires néfastes même chez des patients sans maladies cardiovasculaires apparentes et chez les patients avec des maladies artérielles périphériques (170, 171).

Figure 9: Dérégulation de l’homéostasie endothéliale impliquée dans les maladies cardiovasculaires.

Vieillissement

La monocouche cellulaire endothéliale reste quiescente pendant longtemps avant de commencer un processus de vieillissement une fois l’organisme à maturité. Une régénération grâce à un processus apoptotique est initiée et fortement accélérée en présence de facteurs de risques cardiovasculaires tels l’hypertension ou le diabète.
Le remplacement rapide de cellules apoptotiques éliminées par le flot sanguin peut alors avoir un impact sur les cellules avoisinantes, puisque l’inhibition par contact est atteinte (38, 172). Selon plusieurs expériences sur des artères porcines isolées, les cellules endothéliales régénérées sont dysfonctionnelles (173). Par exemple, un mois après la dénudation d’une partie de l’artère avec un ballon, les anneaux avec endothélium régénéré présentaient une relaxation en réponse à la sérotonine et à la thrombine altérée alors que celle initié par la bradykinine reste intacte. Alors, cette couche régénérée peut produire du NO mais la relaxation dépendante de la signalisation médiée par la voie des protéines Gi est dysfonctionnelle.

Les cultures primaires de cellules dérivées d’endothélium régénéré présentaient des marqueurs de sénescence accélérée, une expression et activité de eNOS réduite, une production de ROS par NADPH oxydase endothéliale avec plus de LDL-oxydés (174, 175). Les LDL-ox réduisent alors la production de NO et la relaxation dépendante de l’endothélium en réponse à la sérotonine, mécanisme dépendant des protéines Gi. Ces LDL-ox ont un effet inhibiteur sur la phosphorylation de eNOS et donc sur son activité ainsi qu’au niveau de son expression et de son découplage (176-178). Chez les animaux et les humains, le vieillissement réduit l’habilité de l’endothélium à initier la vasodilatation in vitro et in vivo (179-181). Ceci est principalement dû à l’augmentation de l’activité de l’arginase, compétiteur de eNOS pour le substrat L-arginine (182), et à la réduction de l’activité de eNOS et de son expression aboutissant à une relâche moindre de NO (179).
Athérosclérose

L’athérosclérose prend son origine dans la dysfonction endothéliale et l’inflammation. Les ROS participent fortement au processus athérogénique commençant par la dysfonction endothéliale de la paroi vasculaire jusqu’à la rupture de la plaque athérosclérotique riche en lipides (183). La dysfonction endothéliale donne lieu à l’augmentation de l’adhésion et de la perméabilité endothéliale et confère des propriétés pro-coagulantes à l’endothélium et une production de vasoconstricteurs, de cytokines et de facteurs de croissance. Ceci mène vers l’accumulation des LDL qui vont diffuser à travers les jonctions cellulaires vers la matrice sous-endothéliale. Plusieurs modifications ont alors lieu sur ces LDL telles l’oxydation, la glycation et leur agrégation sous forme de LDL-ox stimule l’endothélium à produire des molécules pro-inflammatoires incluant les molécules d’adhésion et les facteurs de croissance, qui vont stimuler d’autant plus l’oxydation des LDL.

L’internalisation des LDL-ox du lit vasculaire par les macrophages va mener vers leur transformation en cellules spumeuses riches en lipides, qui est caractéristique des lésions artérielles (184). L’accumulation de ces cellules spumeuses dans l’intima va engendrer un état inflammatoire par sécrétion de cytokines pro-inflammatoires et vont produire des ROS qui vont promouvoir l’oxydation des LDL, établissant un cercle vicieux. Les macrophages matures et les cellules spumeuses participent à la rupture de la plaque par la relâche de protéases dégradant la matrice et par des effets cytotoxiques sur les cellules musculaires lisses vasculaires adjacentes.
Hypertension artérielle (HTA)

L’HTA est caractérisée par une augmentation de la résistance vasculaire périphérique qui provoque essentiellement une augmentation de la pression artérielle systémique. Un changement structurel majeur se produit alors que la lumière vasculaire est réduite, accompagné d’un épaississement de la média. L’hypertension est considérée comme une maladie cardiovasculaire mais constitue aussi un facteur de risque important pour le développement d’autres maladies cardiaques (185).

La surexpression de Nox1 dans des cellules musculaires lisses vasculaires augmente le niveau de O₂⁻⁻ en réponse à l’infusion d’Ang II, ce qui a eu comme conséquence le découplage de eNOS, diminuant la biodisponibilité de NO et altérant la vasorelaxation avec une augmentation significative de la pression systolique (191, 192).
Maintes fois démontrée, la relaxation dépendante de l’endothélium est réduite dans les artères isolées de divers modèles animaux d’hypertension. De la même façon, la réponse de vasodilatation dépendante de l’endothélium à différents agents est bloquée chez les humains hypertendus (38). Cette altération est probablement liée à un vieillissement prématuré de l’endothélium dû à une exposition chronique à une pression sanguine élevée (193). Dans les SHR, l’altération de la relaxation dépendante de l’endothélium est principalement due à une relâche de prostanoïdes vasoconstricteurs (194) accompagnée d’une baisse de l’expression de eNOS et de la guanylate cyclase est observée (195, 196). Il est de ce fait évident que la dysfonction endothéliale induite par le stress oxydant est belle et bien associée au développement et à la progression de l’hypertension.

Hypertension pulmonaire (HTP)

L’HTP peut être idiopathique (ou primaire) comme il peut s’agir d’une composante d’un autre état pathologique incluant les maladies congénitales cardiaques et le syndrome d’immunodéficience humain. La pathophysiologie de la forme primaire de HP consiste en un remodelage des petites artères pulmonaires avec une augmentation de la résistance vasculaire pulmonaire et une défaillance du ventricule droit (197). En plus de la vasoconstriction, il y a développement de fibrose et de thrombose avec une hypertrophie de la paroi vasculaire (198, 199). Il a été démontré que la prolifération anormale de cellules musculaires lisses vasculaires et endothéliales ainsi que l’infiltration par les cellules inflammatoires sont des processus qui contribuent à l’HP (200). Ces changements sont accompagnés d’une augmentation de ET-1 et diminution de NO et PGI₂.
L’hypoxie chronique induit l’hypertension pulmonaire et aboutit à une réduction des relaxations endothéliales des artères pulmonaires à cause de la surproduction de radicaux libres. Ceux-ci vont diminuer l’activité de eNOS et renforcer l’association de eNOS avec la cavéoline-1 (201, 202). Sur le modèle d’HTP induit par la monocrotaline, la dysfonction endothéliale est aussi conséquente au stress oxydant (203).

Diabète :

Le diabète de type 1, insulino-dépendant, touche seulement 10% des patients diabétiques alors que le pourcentage le plus élevé représente les patients souffrant du diabète de type 2, insulino-indépendant. Leur capacité à produire de l’insuline reste intacte, du moins au début, mais leurs réponses cellulaires sont altérées, développant une résistance à l’insuline (204). La relaxation endothéliale en réponse à l’acétylcholine est inhibée dans plusieurs artères isolées de modèles animaux diabétiques (205). Ceci est dû à la diminution de la biodisponibilité du NO et à la relâche concomitante des EDCF, causée par la surexpression de COX 1 et 2 suite à l’augmentation du stress oxydant induite par l’exposition à de fortes concentrations de glucose (206-208).

L’exposition chronique à l’hyperglycémie dans le cas du diabète et de la résistance à l’insuline cause une altération marquante de la vasorelaxation endothéliale chez les animaux et les humains (205, 209, 210). L’hyperglycéémie stimule la production cellulaire de ROS par différentes sources mais la chaine de transport des électrons agit comme initiateur de la production de O$_2^-$ (211). L’accumulation de O$_2^-$ conduit à l’activation de PKC qui peut à son
tour activer la NADPH oxydase et inhiber par le fait même l’activité de eNOS par modifications post-traductionnelles (211, 212).

Le découplage de eNOS par diminution de la disponibilité de BH₄, l’activité de l’arginase élevée s’accompagnant de la L-arginine, et les niveaux élevés de l’inhibiteur endogène de eNOS, la diméthylarginine asymétrique (ADMA), sont parmi les mécanismes expliquant la dysfonction endothéliale reliée au diabète (213). Aussi l’élévation des niveaux de Ang II chez les patients diabétiques peut diminuer l’expression de DHFR et donc réduire le recyclage de BH₂ en BH₄ (214). Il y a des évidences consistantes de l’altération de la réserve du flot coronarien chez les patients diabétiques et ceci pourrait être un marqueur d’athérosclérose précoce (215, 216). Tout ceci montre le rôle clé de l’hyperglycémie dans la pathogénèse de la dysfonction vasculaire liée au diabète.

Lésions d’ischémie-reperfusion (IR)

Ce type de lésion est cliniquement pertinent représentant l’impact d’une restauration du flot sanguin suite à une occlusion coronarienne ayant provoqué un dommage au myocarde. Durant l’ischémie, malgré une faible tension de l’oxygène, il y a une production modérée et soutenue de ROS probablement par la mitochondrie (217, 218). Lors de la reperfusion, il y a une production massive de ROS de différentes sources cellulaires qui va engendrer des lésions tissulaires (217). En ischémie, la consommation accrue d’ATP mène vers une accumulation de catabolites purines qui, avec l’influx d’oxygène au moment de la reperfusion, sont métabolisés par la XO pour finalement produire d’énormes quantités de O₂⁻ et H₂O₂ (219). Dans un modèle d’ischémie-reperfusion chez la souris, l’administration d’un composé synthétique mimétique de
SOD et la surexpression génétique de MnSOD réduit significativement la lésion myocardique et la nécrose (220).

La dysfonction endothéliale est décrite comme un des mécanismes contribuant à la lésion vasculaire après ischémie-reperfusion (221) alors qu’une détérioration de la vasodilatation dépendante de l’endothélium est observée dans les artères coronaires (222, 223). Il est évident que la production de ROS, O₂⁻ particulièrement, mène à la réduction de la disponibilité du NO accompagné de l’oxydation du BH₄, tout ceci menant à cette altération de la relaxation vasculaire.

La diminution de la L-arginine, précurseur de NO, a aussi son rôle dans l’établissement de cette dysfonction puisqu’une supplémentation avec ce composé a permis de restaurer la synthèse de NO (222, 224). Dans un modèle canin d’IR, une augmentation du flot sanguin coronarien et de la contractilité après administration intracoronarienne d’un donneur de NO a été observée, avec une amélioration de la vasodilatation des artères coronaires en réponse à l’acétylcholine (225).

La iNOS peut aussi jouer un rôle délétère lors d’ischémie puisque son expression augmente, produisant ainsi une grande quantité de NO qui peut alors induire des lésions myocardiques médiées par sa réaction avec les ROS en reperfusion (226, 227).

Hypertrophie ventriculaire gauche (HVG)

Pendant plusieurs années, l’hypertrophie cardiaque a été considérée seulement comme un processus adaptatif à un stimulus biomécanique, hémodynamique ou neurohumoral dans le but de normaliser le stress sur les parois ventriculaires et maintenir le bon fonctionnement du
myocarde. Une surcharge de pression induit l'hypertrophie concentrique alors que l’augmentation de volume aboutit à l’hypertrophie excentrique (228). L’hypertrophie soutenue est associée à un remodelage cardiaque pathologique, particulièrement avec l’apparition de la fibrose (Figure 10).

Figure 10: Le remodelage cardiaque associé à l’hypertrophie ventriculaire concentrique et excentrique. Adaptée de (1)

(233, 234). Tous ces exemples supportent le rôle de l’anion superoxyde dans le développement de l’hypertrophie suite à la hausse de l’activité de Nox.

La fonction endothéliale chez le cobaye développant l’HVG suite à la post charge, est altérée en réponse à la stimulation par la substance P et la bradykinine alors que l’expression et la fonction de eNOS restent intactes (235). Cette dysfonction endothéliale est donc une conséquence de l’augmentation du stress oxydant qui réduit la biodisponibilité du NO. Le peroxynitrite contribue à la dysfonction endothéliale tel que montré dans un modèle de cerclage aortique chez le rat et chez le porc (12, 236). La supplémentation en BH₄ a induit la régression de l’HVG, de la fibrose et de la dysfonction des cardiomyocytes causées par une surcharge de pression, démontrant alors l’implication du découplage de eNOS dans la pathologie hypertrophique (237). Un effet bénéfique a aussi été démontré avec l’ajout de d’un analogue de BH₄ dans ces modèles et la supplémentation avec la SOD et la CAT confirment que l’augmentation du stress oxydant est primordial dans l’établissement de la dysfonction endothéliale en HVG (12). Par contre, l’atorvastatine a failli à traiter l’hypertrophie et la dysfonction endothéliale sur un modèle HVG porcin (238) alors que la quercetine, flavonoïde, a eu un effet anti-hypertrophique sans effet sur la dysfonction endothéliale après constriction de l’aorte abdominale sur le rat (239). Le stress oxydant demeure une caractéristique indéniable de l’HVG et de la dysfonction endothéliale, représentant alors une cible thérapeutique de choix.

Notre modèle porcin développe de l’hypertrophie ventriculaire gauche suite à la surcharge de pression causée par le cerclage de l’aorte ascendante. Ce stress de pression induit une hypertrophie de type concentrique alors que les cardiomyocytes croissent en largeur par addition de sarcomères.
Ceci aboutit à l’épaississement des parois du ventricule gauche, caractéristique typique de l’HVG concentrique alors que l’excentrique est plutôt associée à une dilation de la chambre. Ce modèle est aussi caractérisé par une altération de la fonction diastolique alors que la fraction d’éjection et les paramètres systoliques restent intacts.

Insuffisance cardiaque (IC)

L’insuffisance cardiaque est souvent conséquence de l’aggravation d’une pathologie cardiovasculaire existante, une lésion myocardique initiale. Les niveaux de neurohormones circulantes augmentent et le ventricule gauche subit un remodelage extensif qui réduit significativement l’efficacité de la fonction de pompage du cœur (240). Une panoplie de données expérimentales a été accumulée suggérant que l’altération de la disponibilité de NO dérivé de eNOS mène vers une altération du contrôle vasomoteur chez les patients en insuffisance cardiaque congestive (ICC) et vers une augmentation du remodelage et de la dysfonction ventriculaire (241). D’ailleurs, une surexpression endothéliale et au niveau des cardiomyocytes de eNOS résulte en une amélioration de la fonction ventriculaire après infarctus du myocarde (242, 243).

Au niveau clinique, une étude sur 259 patients avec insuffisance cardiaque congestive (ICC) a démontré que lorsque la vasodilatation contrôlée par le flot et dépendante de l’endothélium est diminuée en même temps qu’une diminution de la production de NO, ceci est associé à un risque plus élevé de mortalité ou de transplantation urgente (244). Les patients avec insuffisance cardiaque en état décompensé ont une altération sévère du contrôle vasomoteur par l’endothélium, vraisemblablement causée par le stress oxydant (245).
Le degré de détérioration de la vasodilatation endothélium dépendante prédit la gravité du pronostic des patients avec ICC (246). Dans le cœur défaillant, la mitochondrie produit plus de O_2^- que la NADPH ox sans atteinte de l’activité antioxydante endogène (247) et ces ROS sont nocifs pour les mitochondries. En fait, cela peut générer un cercle vicieux où les dommages sur les mitochondries vont encore plus stimuler la production de ROS (248).
Chapitre V : Stratégies thérapeutiques pour le rétablissement de la fonction endothéliale.
Les études sur les statines, inhibiteurs de HMG-CoA réductase, prennent de l’ampleur dans la prévention de la dysfonction endothéliale. Leurs effets pléiotropiques en plus de baisser les LDL-cholestérol, contribuent à l’amélioration de la vasodilatation dépendante de l’endothélium et à une réduction du stress oxydant dans la paroi vasculaire (249).

En fait, ce traitement améliore le pronostic des patients à risque de maladies vasculaires athérosclérotiques même lorsque le niveau de cholestérol plasmatique est normal. Les statines améliorent la fonction endothéliale en ischémie transitoire par régulation à la hausse de l’expression de eNOS (250-252). Des rats anesthésiés sujet à une occlusion temporaire de l’artère coronaire suivie d’une reperfusion ont montré une augmentation de l’activité de IP3 kinase, Akt et eNOS et une réduction de la taille de l’infarctus avec un traitement à la simvastatine alors que L-NAME, inhibiteur de eNOS, avait bloqué l’effet cardioprotecteur de la statine (253). La taille de l’infarctus est aussi diminuée chez les rats après traitement à l’atorvastatine accompagné d’une amélioration du flot régional myocardique, un effet toujours aboli par l’ajout de L-NAME (254).

Pratiquement toutes les statines ont eu un effet inhibiteur sur l’activité de la NADPH oxydase, dans les cellules vasculaires et sur les artères mammaires de patients athérosclérotiques (255, 256). Le traitement à l’atorvastatine de SHR entraîne une baisse de production de ROS au niveau de l’aorte avec réduction de l’expression de p22phox et Nox1 (255). Il s’agit d’une thérapie qui a donc pour cible la génération de ROS par NADPH oxydase, une cible importante à inhiber pour la restauration de la fonction endothéliale.
Figure 11: Les multiples stratégies thérapeutiques contre la dysfonction endothéliale.

- Inhibition de NADPH oxydase

En plus des statines qui ont un effet répresseur sur l’activité et l’expression des Nox, plusieurs peptides ont été développés pour inhiber l’association de la sous-unité de p47phox aux autres constituants de Nox afin d’empêcher son activation, mais ils restent encore au niveau expérimental animal (257). D’ailleurs, un peptide de neuf acides aminés, le Gp91 ds-tat, agit comme un leurre en interagissant avec p47phox, bloquant ainsi la liaison de la sous unité gp91phox, ce qui inhibe l’activité de Nox. Il a déjà été montré que ce peptide réduisait l’hypertension induite par infusion d’angII et réduit O$_2^-$ au niveau vasculaire (258).

L’apocynine est un agent actif qui peut bloquer l’assemblage de Nox (259). Un traitement oral à l’apocynine bloque le développement de l’hypertension, abolit le O$_2^-$ vasculaire et prévient la dysfonction endothéliale chez les rats hypertendus DOCA (260).
Il s’agit toutefois d’un agent non spécifique puisqu’il peut affecter le métabolisme de l’acide arachidonique, et augmenter la glutathion peroxydase et activer le facteur de transcription AP-1 (261).

Les inhibiteurs de PKC peuvent aussi servir d’inhibiteurs de Nox car l’activation de Nox dépend de la phosphorylation de p47phox par PKC (262). Un essai clinique a d’ailleurs montré qu’un inhibiteur sélectif de PKC-B réduit significativement la dysfonction endothéliale induite par l’hyperglycémie en réduisant vraisemblablement le O₂⁻⁻ (263). Les agents affectant le système rénine-angiotensine peuvent aussi réduire l’activité oxydase. Les antagonistes des récepteurs d’angiotensine et les inhibiteurs de l’enzyme de conversion de l’angiotensine ont démontré une efficacité à réduire la production de O₂⁻⁻ et inhiber l’expression et l’activité de Nox. Ils seront discutés dans la section suivante.

Inhibiteurs de ECA et antagonistes de AT₁ :

Comme l’Ang II est un activateur de la NADPH oxydase, les agents pharmacologiques bloquant son activité peuvent agir comme des antioxydants indirects. Les inhibiteurs des ECA améliorent grandement la fonction endothéliale des patients avec des maladies coronariennes et chez les hypertendus. Une étude a montré que le quinapril était associé à une amélioration de FMD chez les patients avec maladie coronarienne (264). Ils ont été décrits comme efficaces dans la pathogénèse de l’athéroclérose et plusieurs essais cliniques démontrent déjà l’habilité de plusieurs de ces agents tels le perindopril à réduire les événements cardiaques chez les patients avec syndrome coronarien (265).
Les inhibiteurs de ECA inhibent la dégradation de la bradykinine, stimulateur de la relâche de NO, en plus d’inhiber la production endothéliale de Ang II et ET-1. Il y a aussi plusieurs preuves que les inhibiteurs de ECA peuvent agir directement sur la NADPH oxydase en réduisant l’expression de p22phox ou en inhibant son activation (266).

Les effets inhibiteurs des antagonistes de AT₁ sur la NADPH oxydase ont été observés avec élimination de O₂⁻ et amélioration de la fonction endothéliale (267, 268). Par exemple, le candésartan augmente la relâche tonique de NO tout en réduisant la vasoconstriction en réponse à ET-1 endogène chez les patients hypertendus (269). Un groupe a montré que l’antagonisme de AT₁ était plus efficace pour diminuer l’expression de gp91phox au niveau de l’artère mammaire de patients ayant subis un pontage coronarien par rapport au traitement avec inhibiteurs de ECA (270).

- **Inhibition de XO**

Il y a eu un grand intérêt envers l’usage de l’allopurinol ou son métabolite actif, l’oxypurinol pour réduire la production de ROS par la XO en condition pathophysiologique. L’allopurinol a d’ailleurs montré une efficacité à contrer la dysfonction endothéliale chez les patients athérosclérotiques et ceux en insuffisance cardiaque (271). Des études à long terme sont toutefois manquantes pour évaluer l’effet de cet agent sur des maladies cardiovasculaires reliées au stress oxydant.
Prévention du découplage de eNOS

On peut augmenter la biodisponibilité de BH₄ par ingestion orale, ceci représentant d’ailleurs une procédure déjà prouvée comme cliniquement efficace et sécuritaire. L’administration de BH₄ à des patients avec maladie coronarienne ou en hypertension restaure la vasodilatation dépendante de l’endothélium en réponse à l’acétylcholine (272, 273). Le sepiapterin, précurseur stable de BH₄, a réussi à prévenir la dysfonction endothéliale et le stress oxydant chez des animaux diabétiques lorsqu’ingéré oralement (274). Pour augmenter la disponibilité du BH₄, des manipulations génétiques ont montré que le transfert du gène de l’enzyme clé de synthèse du BH₄, la GTP cyclohydrolase (GTPCH), permettait une amélioration de la fonction endothéliale, en culture cellulaire ou in vivo sur des SHR (275, 276).

La compétition entre eNOS et l’arginase, enzyme du cycle de l’urée, pour le substrat L-arginine est aussi un mécanisme découplant eNOS. Avec le vieillissement, l’activité de l’arginase augmente, principalement à cause de l’action de iNOS. Ainsi, l’inhibition de l’arginase chez des rats âgés a permis de restaurer le couplage de eNOS et renverser la rigidité vasculaire (277). La supplémentation en L-arginine améliore la vasodilatation dans la circulation coronarienne et périphérique chez les patients hypercholestérolémiques mais pas la fonction endothéliale des sujets diabétiques. Ceci indique que la pathophysiologie de la dysfonction endothéliale varie chez différents sujets avec différents facteurs de risque et donc, que des stratégies thérapeutiques spécifiques et adaptées doivent être développées (278). Une étude récente a montré que l’inhibition de Nox avec l’apocynine était suffisante pour re-coupler eNOS et restaurer la fonction cardiaque (279).
De plus, l’inhibition des récepteurs AT\(_1\) par le telmisartan bloque l’expression de Nox dans l’endothélium diabétique et ceci induit le re-couplage de eNOS et l’augmentation de la vasodilatation (280). Ainsi, en bloquant l’effet de l’Ang II sur la Nox, on peut rétablir la fonction endothéliale en renversant le découplage de eNOS.

- **Action sur le GMPc :**

Le sildénafil, inhibiteur sélectif de la phosphodiesterase-5 induit une relaxation des artères coronaires porcines isolées et augmente les niveaux de GMPc dans le tissu (281). Sur des cœurs de rats sous perfusion, le traitement avec L-NAME a dégradé grandement la fonction myocardique en post-ischémie alors que l’addition de sildénafil a considérablement réduit cet effet néfaste avec élévation du GMPc dans le myocarde. Ainsi, l’inhibition de la phosphodiestérase-5 procure une protection du système cardiovasculaire contre l’ischémie en maintenant le niveau tissulaire de GMPc (282).

Aussi, sur des chiens anesthésiés sujet à une circulation extracorporelle avec un arrêt cardioplégique, le pré-conditionnement avec un activateur de la guanylate cyclase soluble, le Cinaciguat, a abouti à un rétablissement plus efficace de la contractilité ventriculaire, accompagné d’une vasodilatation améliorée en réponse à l’acétylcholine (283). Cette nouvelle stratégie thérapeutique agissant sur l’activité de la GCs serait une option efficace de protection contre les lésions d’ischémie reperfusion.
Vitamine E

Pour ses propriétés antioxydantes, la vitamine E est considérée comme thérapie pour prévenir les maladies associées au stress oxydant. Une attention particulière est dirigée vers la vitamine E comme suppresseur de l’oxydation des LDL, puisque c’est le principal système antioxydant des lipoprotéines humaines (284). La vitamine E inhibe de façon considérable la prolifération de cellules musculaires lisses de l’intima et l’épaississement de l’intima de l’aorte de lapins hypercholestérolémiques suite à une lésion endothéliale (285). Avec l’administration de vitamine E, il y a réduction de l’habilité des monocytes à se lier à l’endothélium (286, 287) et l’expression de E-selectine sur l’endothélium, importante dans le processus athérothrombotique, est réduite en culture cellulaire (287).

La combinaison de vitamine E et de simvastatine améliore le FMD de l’artère brachiale de patients hypercholestérolémiques, un effet plus important comparé à la monothérapie avec la statine (288). Toutefois, les études cliniques randomisées sur la vitamine E ont abouti à des résultats conflictuels. L’étude CHAOS (Cambridge Heart AntiOxidant Study) a montré que la vitamine E pouvait réduire l’incidence d’événements cardiovasculaires. Plus tard, les études multicentriques (HOPE SECURE, GISSI) n’ont pas confirmé cet effet (289). Les raisons avancées pouvant expliquer ce manque d’efficacité seraient que cet antioxydant n’élimine pas la surproduction de ROS mais plutôt les sous-produits nocifs (LDL-ox) en plus du fait que la cinétique de la réaction de la vitamine E avec O₂⁻ est beaucoup plus lente que la réaction de NO avec O₂⁻. Elle ne peut donc pas empêcher la génération de ONOO et la dysfonction endothéliale qui en résulte (290).
- **Vitamine C**

La vitamine C, ou acide ascorbique, a aussi souvent été étudiée pour la prévention de l’athérosclérose. Elle peut prévenir l’apoptose causée par les cytokines des cellules endothéliales en culture (291). Elle peut aussi augmenter l’activité de eNOS et protéger l’endothélium vasculaire et l’inhibition de l’oxydation du cofacteur BH₄ serait le mécanisme d’action expliquant cet effet bénéfique (292). La vitamine C restaure la fonction endothéliale des patients hypercholestérolémiques et diabétiques et la circulation périphérique et coronarienne est aussi améliorée chez les patients hypertendus, démontrant une amélioration de la fonction endothéliale avec l’acide ascorbique (278, 288). Toutefois, comme pour la vitamine E, les études à long terme sur le traitement oral à la vitamine C n’ont pas corroboré ces résultats et n’ont donc pas montré un impact sur le risque de maladies coronarienne ou autre évènement cardiovasculaire (293).

- **Les polyphénols**

Ils peuvent donc agir comme antioxydants en inhibant l’expression d’enzymes pro-oxydantes telles la NADPH oxydase et la xanthine oxydase mais aussi augmenter la présence des enzymes antioxydantes telle la catalase (299, 300). Les polyphénols peuvent également augmenter les systèmes de détoxification cellulaires incluant la SOD, la CAT et la GPx. Les effets bénéfiques cardiovasculaires des polyphénols ne se limitent pas à leur potentiel antioxydant mais aussi à leurs propriétés vasodilatatrices, anti-inflammatoires, antiapoptotiques (301).

Les antioxydants en recherche

Les études sur les modèles animaux ont montré une multitude d’effets bénéfiques des antioxydants, mais ces effets ne sont pas toujours reproductibles dans les essais cliniques. Une des raisons de cette défaillance est le manque d’interaction entre les antioxydants et les ROS spécifiquement associés à la pathologie à l’étude. Le ciblage spécifique aux tissus et à des sources oxydantes subcellulaires améliorait fortement l’efficacité de ces antioxydants. Le moment d’administration de l’antioxydant est aussi souvent tardif alors que la pathologie est déjà bien avancée, ce qui limite alors les bénéfices acquis de l’antioxydant (302).

Il est important de mentionner que les effets bénéfiques des antioxydants sur la santé cardiovasculaire ne se limitent pas à l’élimination des ROS mais aussi à leurs propriétés anti-inflammatoires et anti-thrombotiques (303). L’intérêt envers ces agents est donc justifié par l’étendue des bénéfices qui peuvent être générés en plus de leur capacité antioxydante.
Chapitre VI : Le resvératrol, une nouvelle stratégie thérapeutique contre la dysfonction endothéliale.
Description du resvératrol

Les polyphénols sont des substances naturelles possédant les qualités des phytoalexines, des composés synthétisés par les plantes en réponse à un stress environnemental; des pathogènes extérieurs comme des microbes, des radiations UV ou tout autre attaque des microorganismes. Ces composés sont responsables de la croissance, la reproduction et la résistance aux maladies. La structure chimique des polyphénols inclut au moins un cycle aromatique avec un minimum d’une substitution et un groupement hydroxyle. Parmi les phytoalexines, on retrouve les stilbènes et spécifiquement le resvératrol, un triphénon non flavonoïde identifié comme le composé le plus actif de ce groupe (294). Le resvératrol (3,4’,5-trihydroxy-trans-stilbene) est présent dans la nature sous deux isoformes : le trans-resvératrol et le cis-resvératrol; le trans ayant une plus grande activité biologique (304, 305). En fait, la présence de l’isomère cis est très faible naturellement ainsi que dans le vin, ce qui a notamment poussé la recherche à se concentrer seulement sur la forme trans, d’autant plus que ce n’est que récemment que la forme cis du produit est commercialisée.

La première identification du resvératrol en 1940 a été faite dans des racines séchées de l’ellébore blanc Polygonum cuspidatum, une plante très prisée dans la médecine traditionnelle chinoise et japonaise. La peau de raisins est la source prédominante de resvératrol dans l’alimentation que l’on peut aussi retrouver dans une plus large variété de fruits tels que les bleuets, les canneberges, les mures, les myrtilles et les arachides. On retrouve aussi le resvératrol dans le vin, particulièrement le vin rouge. Ce polyphénol n’a pas attiré l’attention en recherche avant 1992, alors que l’hypothèse d’un lien entre les effets cardioprotecteurs et le vin rouge a été postulé (2).
En effet, il y a des dizaines d’années, les études épidémiologiques ont associé la consommation de vin rouge de la population française à une incidence réduite en maladies cardiovasculaires malgré l’existence de facteurs de risque tels que la sédentarité et la diète riche en triglycérides. Cette corrélation inverse a dès lors porté le nom du « paradoxe français » (306, 307). Le vin rouge est connu pour contenir plusieurs sortes de composés polyphénoliques avec des propriétés antioxydantes pouvant expliquer la protection cardiovasculaire prodiguée (308). Une multitude de preuves a été assemblée jusqu’à présent pour attribuer au resvératrol la cardioprotection induite par la consommation quotidienne de vin rouge. Dans le cœur, le composé bloque la peroxydation lipidique, augmente les niveaux de HDL, induit la vasorelaxation, réduit les espèces oxygénées réactives et prévient l’agrégation plaquettaire (309, 310). Outre les bénéfices sur le système cardiovasculaire, le resvératrol peut aussi prévenir les pathologies neurodégénératives et cancéreuses, inhibant la carcinogenèse et offrant une neuroprotection efficace de façon dose-dépendante (311, 312).

Le mécanisme d’action pouvant expliquer ce large spectre d’effets bénéfiques à travers les espèces et les diverses maladies reste encore indéterminé. Les études in vitro ont abouti à une multitude de cibles directes, alors que les concentrations utilisées ont vite été contestées puisqu’elles étaient beaucoup plus élevées que les concentrations physiologiques, surtout relativement à la métabolisation rapide du resvératrol (2). Il est donc primordial d’accumuler des données provenant de modèles in vivo afin de confirmer et solidifier les découvertes des études in vitro.
Figure 12: Les structures moléculaires du resvératrol et des principaux métabolites. D’après (2).

Les multiples rôles du resvératrol

- **Antioxydant** :

 Le potentiel antioxydant de ce composé représente la propriété la plus décrite dans la littérature sous plusieurs mécanismes. Le resvératrol élimine les radicaux libres via la réaction : \(\text{Res-(OH)}_3 + R^- \rightarrow \text{Res-(OH)}_2O^- + RH \); où \(\text{Res-(OH)}_3 \) représente le resvératrol et \(R^- \) le radical libre. Ainsi, l’électron libre du produit \(\text{Res-(OH)}_2O^- \) peut être délocalisé dans le cycle aromatique et avoir une réactivité minimale (313). Le resvératrol réagit avec l’anion hydroxyle ‘OH produit par réaction de Fenton, mais aussi avec l’anion superoxyde \(\text{O}_2^- \) et le peroxyde d’oxygène \(\text{H}_2\text{O}_2 \) (313-316). La capacité antioxydante de l’isomère \(\text{cis} \) est beaucoup plus limitée comparée à la forme \(\text{trans} \).
Toutefois, l’action antioxydante directe du resvératrol est moins efficace et moins puissante que d’autres antioxydants bien caractérisés tels que l’ascorbate ou la cystéine (317). Ainsi, les effets protecteurs contre le stress oxydant proviendraient plus d’une action indirecte via une augmentation de l’efficacité du système antioxydant endogène en induisant les enzymes antioxydantes ou leurs substrats. Il a été rapporté que le resvératrol pouvait induire la superoxyde dismutase SOD dans des cellules endothéliales (318, 319) mais aussi dans les cellules myocardiques (320).

Il régule à la hausse la glutathion peroxydase et la catalase dans des segments aortiques ainsi que dans des cultures de CML de l’aorte (316, 321). Une augmentation des niveaux d’expression du régulateur redox intracellulaire thioredoxine-1 et de l’enzyme cytoprotective l’hème oxygénase (HO-1) a aussi été décrite chez le rat après infarctus du myocarde (322). Le mécanisme par lequel le resvératrol induit ces enzymes antioxydantes reste évasif. Cependant, des études récentes ont démontré l’importance de la sirt1, déacétylase, et du Nrf-2 (nuclear factor-E2-related factor 2) dans ce processus. Dans des cultures de cellules endothéliales d’artères coronaires, l’augmentation de l’activité de SOD2 par le resvératrol est intimement liée à la présence de sirt1 (323).

Une action directe du resvératrol sur la production de ROS par la NADPH oxydase a été observée (319). L’expression de Nox 2 et 4 dans le myocarde de souris hypercholestérolémiques ainsi que de Nox 1, 2 et 4 dans l’aorte de rats ayant subi un traumatisme hémorragique a été réduite par un traitement au resvératrol (318, 324).
Aussi, afin de réduire l’activité de la Nox lorsque stimulée par LDL ox ou Ang II, le resvératrol cible ses sous-unités régulatrices tel que démontré sur des cellules endothéliales en culture alors qu’il réduit l’expression de gp91phox et Rac1 (325). Le resvératrol prévient l’oxydation des LDL in vitro par chélation du cuivre combinée à une élimination directe des ROS (326). Il prévient également l’augmentation de peroxydation lipidique induite par des tumeurs et les radiations UV (327, 328).

- **Anticancéreux**

In vitro, le resvératrol inhibe l’activité enzymatique de divers cytochromes (CYP) et bloque leur transcription par antagonisme du récepteur AHR (aryl hydrocarbon receptor), ceci afin de réduire l’exposition aux carcinogènes (330, 331). Ainsi, il peut prévenir l’activation des carcinogènes tout en augmentant la capacité du corps à éliminer les molécules toxiques.
Le resvératrol peut moduler le cycle cellulaire et induire l’apoptose en plus de son potentiel anti-angiogénique expliquant son habilité à supprimer le processus métastatique (332). La capacité du composé polyphénolique à inhiber la prolifération a été largement décrite in vitro sur des cellules tumores humaines (332-335). Delmas et son groupe ont montré que le resvératrol, lorsque présent dans le milieu de culture, avait un impact négatif sur la prolifération de cellules d’hépatoblastome humain et d’hépatome chez le rat. Ceci décrit alors l’aptitude du composé à prévenir ou retarder l’entrée en mitose, augmentant le nombre de cellules bloquées en phase S et G2/M (336).

L’activation de sirt 1, à travers la régulation positive par le resvératrol sur son activité et son expression, permet d’inhiber l’expression et/ou l’activité de plusieurs oncogènes, d’induire l’apoptose et diminuer la prolifération cellulaire (337). Ainsi, un traitement in vitro au resvératrol va activer et induire la translocation au noyau de MAP Kinase, phosphorylation de sérine 15 sur p53 et conclure sur l’enclenchement du processus apoptotique (338).

La COX-2 est une des enzymes fortement activée en carcinogenèse et elle a été associée à la prolifération et différenciation cellulaire, à l’apoptose, à l’angiogenèse et au processus invasif et métastatique. Ainsi, le resvératrol a montré une habilité à diminuer son expression de façon dose-dépendante et démontre un effet anti-tumoral sur des cellules humaines de l’adénocarcinome du colon (335). Il est alors justifié de déclarer que le resvératrol représente un bon agent thérapeutique et préventif contre le cancer. Cet effet anticancéreux est surtout obtenu avec des concentrations élevées de resvératrol.
- **Antivieillissement**

Plusieurs études ont testé le resvératrol pour ses aptitudes à contrer le vieillissement. Des expérimentations ont démontré qu’il pouvait mimer les effets positifs de la restriction calorique tels que la préservation de la fonction vasculaire et la régulation des gènes impliqués dans le métabolisme, l’inflammation et le stress entre autre (339, 340).

Les résultats les plus intéressants sont issus des études sur les mouches à fruit et les nématodes. En 2003, Howitz et Sinclair ont montré que le resvératrol pouvait rallonger la vie du vers *Caenorhabditis elegans*, de la *Drosophila melanogaster* et de *Saccharomyces cerevisiae* (341, 342). L’implication de la déacétylase sir2 a été démontrée chez ces organismes, puisque l’élimination du gène codant abolit l’effet du polyphénol (343). Le resvératrol induit des changements divers pour augmenter la durée de vie entre autre en augmentant la sensibilité à l’insuline, réduisant l’IGF-1 (Insulin growth factor-1), augmentant l’AMPK (AMP-activated protein kinase) et PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1a), et augmentant la quantité de mitochondries (2).

Autre mécanisme par lequel le resvératrol permet de rallonger la durée de vie serait par son impact sur la phosphorylation oxydative mitochondriale. En fait, le traitement de souris avec le polyphénol, améliore leur capacité aérobie, démontrée par une augmentation de consommation d’oxygène. L’effet du resvératrol dans ce cas est lié à l’induction de plusieurs gènes de la phosphorylation oxydative et la biogénèse mitochondriale (344).
- **Neuroprotecteur**

Le resvératrol est proclamé comme un composé idéal pour le traitement de maladies neuro-dégénératives (345). Une diminution de la formation de plaques neuro-dégénératives a été dépeinte sur un modèle transgénique d’Alzheimer de façon spécifique à la région, alors que le pourcentage de réduction de l’aire occupée par la plaque était de 48% dans le cortex median, 89% dans le striatum et 90% dans l’hypothalamus (346). Le resvératrol a aussi montré une habilité à prévenir la déficience cognitive induite par le streptozotocin (STZ) intracérébroventriculaire chez le rat (347).

L’hypercholestérolémie est connue comme un facteur de risque pour la maladie d’Alzheimer et le stress oxydant peut jouer un rôle important dans la progression de la pathologie. Dans ce cas ci, le resvératrol a été décrit comme efficace à moduler plusieurs mécanismes impliqués dans la maladie et a pu diminuer les niveaux intracellulaires du peptide amyloïde-β, par promotion de sa dégradation par le protéasome (348). Le traitement de souris transgéniques p25 avec le polyphénol à donné lieu à une réduction de la perte de cellules neuronales et une amélioration de l’apprentissage par association comparé aux souris contrôles (349).

De multiples groupes explorent l’implication de sirt1 dans ces effets puisque des études de surexpression de sirt1 où l’activation pharmacologique de la déacétylase avec NAD+ atténue la production de peptides amyloïde-β dans des neurones embryonnaires de souris in vitro (350).
- **Antiplaquettaire** :

 L’agrégation plaquettaire joue un rôle crucial dans le processus athérosclérotique et les agents antiplaquettaires permettent de réduire l’incidence d’infarctus du myocarde et d’accidents vasculaires cérébraux. Le resvératrol a inhibé de façon significative l’agrégation induite par le collagène, la thrombine et l’ADP de plaquettes recueillis de sujets humains en santé (351, 352). Il a aussi bloqué l’agrégation plaquettaire induite par l’ADP chez des lapins sous diète hypercholestérolémique (351).

 Le resvératrol peut aussi réduire la synthèse de thromboxane A₂ via l’inhibition d’un mécanisme dépendant de p38 MAP kinase mais aussi par renforcement de la cascade NO/GMPc (353). Une inhibition directe irréversible de COX-1 a aussi été décrite in vitro et puisque les plaquettes ne peuvent plus synthétiser de protéines, même une exposition transitoire au resvératrol peut avoir des effets à long terme in vivo étant donné que le renouvellement des plaquettes ne se fait qu’au bout de 10 jours (354). Ces mécanismes sont similaires à ceux décrits pour l’aspirine en tant que cardioprotecteur (355).

 Une autre façon de contrer l’agrégation plaquettaire serait par induction de l’apoptose. Ceci se produirait à des concentrations plus élevées que celles utilisées pour l’inhibition de l’activation plaquettaire, de l’ordre de 5 uM et plus. Un groupe a montré que le resvératrol stimule l’activation de caspase-9, caspase-3 et caspase-8 ainsi que la relâche de cytochrome C, permettant la destruction des plaquettes pour prévenir la formation du thrombus (356).
- **Anti-inflammatoire**

L’athérogénèse est induite suite à l’activation du processus inflammatoire caractérisé par l’activation des cellules inflammatoires associée à une augmentation de l’infiltration, l’amplification de la relâche de cytokines et chimio-attractants, ainsi que l’augmentation de l’interaction entre les leucocytes et les cellules endothéliales. Le resvératrol agit en tant qu’anti-inflammatoire en modulant les réponses biochimiques des leucocytes, par exemple en interférant avec la relâche de médiateurs inflammatoires tel PECAM-1 (platelet endothelial cell adhesion molecule-1) (307).

Concernant la COX-2, qui est induite par des médiateurs inflammatoires une fois le processus enclenché, il a été montré que le resvératrol pouvait réduire et même supprimer l’expression et l’activité de l’enzyme (361). Il peut aussi supprimer les effets médiés par COX-2 à plusieurs niveaux. Sur des cellules épithéliales mammaires humaines, le polyphénol a pu éliminer la transcription de COX-2 stimulé par PMA (phorbol myristate acetate) en inhibant la transduction du signal de PKC et en interférant aussi avec l’activité de son promoteur (362). Le resvératrol peut aussi inhiber l’activité de COX-2 directement tel que montré par le blocage de synthèse de PGE₂ de façon dose-dépendante (362, 363).
Les effets anti-inflammatoires et anticancéreux largement documentés ont permis de générer des hypothèses quand à un possible impact sur NF-κB, facteur de transcription pour l’induction de gènes de la réponse inflammatoire. Il y a déjà une dizaine d’année que la première démonstration de l’effet modulateur qu’exerce le resvératrol sur l’activité du NF-κB (nuclear factor –κB) a été présentée, ceci dans plusieurs types cellulaires d’origine lymphoïde et myéloïde ainsi que dans des cellules épithéliales (364). Le polyphénol module la concentration plasmatique des marqueurs inflammatoires et auto-immunes induit par NF-κB, démontrant aussi un potentiel thérapeutique contre les maladies auto-immunes (365, 366).

- **Vasodilatateur**

Le traitement oral par le resvératrol augmente les relaxations dépendantes de l’endothélium en réponse à divers agonistes dans plusieurs modèles animaux tels que les rats hypertendus, les rats et souris diabétiques, et des lapins hypercholésterolémiques. La vasodilatation induite par le resvératrol est majoritairement expliquée par son effet sur la biodisponibilité du NO. Le stilbène peut augmenter l’expression de eNOS et la stabilité de son ARN messager dans les cellules endothéliales (367). Il peut aussi augmenter l’activité de eNOS en augmentant sa phosphorylation sur le résidu serine 1177 (368).

Le resvératrol agit également en induisant la déacétylation par sirt1 de deux résidus lysines (496 et 506) sur le domaine calmoduline de eNOS afin de hausser son activité (369). L’utilisation d’ARN interféron pour baisser les niveaux de sirt1 atténue la transcription et l’expression de eNOS (370). De plus, le resvératrol peut diminuer les niveaux intracellulaires de
l’inhibiteur endogène de eNOS; ADMA (asymmetric dimethylarginine), une action aussi démontrée par un dérivé du resvératrol, le BTM-0512 (371, 372).

Aussi, l’interaction entre eNOS et Cav-1 est réduite en présence de resvératrol accompagnée d’une prévention du découplage de l’enzyme en inhibant l’oxydation de BH₄ (318). Son rôle d’antioxydant lui permet également d’augmenter la bio-activité du NO en inhibant sa réaction avec l’anion superoxyde. Il peut agir aussi en antagoniste sur la vasoconstriction en diminuant les niveaux de ET-1 (373-375), Ang II (375) et du récepteur à Ang II, AT₁ (376).

La présence de cellules progénitrices endothéliales (EPC) circulantes dans le système vasculaire représente un important mécanisme endogène réparateur et pour le maintien de l’intégrité de l’endothélium des vaisseaux sanguins. Le resvératrol est d’ailleurs associé à une élévation significative de la quantité d’EPC de la moelle osseuse dans la circulation en post-ischémie dans un modèle génétique de souris hypercholestérolémique ApoE(-/-) (377). De plus, il a la capacité d’augmenter la migration des EPC à travers la signalisation Akt-eNOS-NO-VEGF lorsqu’elles sont exposées aux LDL oxydés. De façon générale, le phytoalexine est important pour la fonction, la prolifération, l’adhésion et la migration des EPC (378-381).
Figure 13: L’hétérogénéité des rôles du resvératrol.

Le resvératrol et les maladies cardiovasculaires

Les maladies cardiovasculaires sont dépendantes de facteurs non modifiables tels que le sexe, l’âge et la génétique mais aussi d’un facteur modifiable qui est l’hygiène de vie. Plusieurs facteurs de risques peuvent conduire au développement de maladies cardiovasculaires, avec entre autre des taux élevés de cholestérol, de l’inflammation, du stress oxydant ou des dommages au niveau de l’endothélium.

Depuis le début des années 2000, la littérature scientifique relate de plus en plus d’effets bénéfiques du resvératrol sur la santé cardiovasculaire et celui ci peut agir sur les divers facteurs de risques relatés précédemment. Ainsi, il sera question dans cette section de l’établissement de liens entre les nombreux rôles décrits précédemment avec de multiples pathologies cardiovasculaires afin d’appuyer les hypothèses proposant le resvératrol comme stratégie thérapeutique efficace des maladies du cœur.
Athérosclérose :

L’athérosclérose est une maladie conséquente à un dommage de la barrière endothéliale qui abouti à une accumulation de LDL, de lipides et de tissu fibreux, ceci pouvant engendrer la formation d’une plaque qui peut éclater et provoquer une thrombose. Comme le resvératrol peut réguler la production de NO en contrant les effets de ET-1, il peut induire une thrombogénèse et éviter l’athérogénèse. L’inhibition de ET-1 par le resvératrol serait le résultat de l’inhibition de l’expression du gène ET-1, par interférence avec la cascade ERK1/2.

Il est connu et documenté que l’inflammation est présente à tous les stades de l’athérosclérose et il existe plusieurs preuves in vitro de l’impact du resvératrol sur plusieurs médiateurs de l’inflammation. Tel que décrit précédemment, le polyphénol peut inhiber la production de prostaglandine E2 en régulant au niveau transcriptionnel l’activité de COX-2. De plus, le resvératrol inhibe l’oxydation de LDL, considérée comme une étape clé vers l’athérosclérose et bloque l’agrégation plaquettaire. Chez des lapins hypercholestérolémiques, le groupe de Wang a observé une diminution de la taille et de la densité de la plaque athérosclérotique avec une réduction de l’épaisseur de l’intima (382).

Les effets hypocholestérolémiques du resvératrol ont aussi été explorés chez la souris ApoE(-/-). La concentration plasmatique du cholestérol total et de LDL-cholestérol a significativement baissé dans le groupe recevant la supplémentation en resvératrol par rapport au contrôle. Une réduction de l’activité de HMG-CoA réductase accompagnée d’une baisse de dépôts lipidiques et de lésions athérosclérotiques ont été mises en évidence. Les molécules d’adhésion ICAM et VCAM-1 avaient aussi une expression réduite dans le groupe recevant le resvératrol (383).

- **Diabète :**

 L’insuline régule l’homéostasie du glucose en réduisant la production du glucose et en augmentant son transport à l’intérieur du muscle squelettique. Le diabète de type 2 est souvent associé à une résistance à l’insuline. Plusieurs études ont eu comme sujet l’effet du resvératrol sur la sensibilité à l’insuline dans des modèles rongeurs. Presque toutes ces études démontrent que le resvératrol diminue le niveau d’insuline ou augmente la sensibilité à l’insuline, ceci à plusieurs dosages différents s’étalant de 2,5 mg à 400 mg/Kg/jour (389). Les effets observés sur le glucose et l’insuline seraient dus à la stimulation de l’AMPK qui module la gluconéogenèse, le transport du glucose et la sensibilité à l’insuline (310).

 L’équipe de Zhang a traité des souris diabétiques avec du resvératrol pendant 4 semaines afin d’évaluer l’impact sur la fonction cardiovasculaire. Grâce notamment à de l’imagerie par résonnance magnétique, ils ont conclu que la dysfonction diastolique était améliorée, probablement par l’efficacité du resvératrol à promouvoir la biodisponibilité du NO et à réduire le stress oxydant, permettant ainsi de limiter le développement de dysfonction cardiaque secondaire au diabète de type 2 (390).
Une autre étude a rapporté qu’une infusion de resvératrol en intra-cérébroventriculaire a normalisé l’hyperglycémie tout en améliorant l’hyperinsulinémie chez les souris diabétiques, ceci étant indépendant de changements pondéraux, de consommation calorique et de niveaux de leptine circulante (391). Les effets anti-hyperglycémiques du resvératrol ont été largement démontrés chez les rats ayant développé le diabète de type 1 induit par STZ et de type 2 induit par STZ et nicotinamide (392).

La réduction des niveaux de glucose dans le sang est une résultante de l’augmentation de la récupération de ce glucose par les tissus périphériques. D’ailleurs, sur cellules isolées, le resvératrol a stimulé la récupération de glucose même en absence d’insuline (392). La stimulation de la sécrétion d’insuline induite par le glucose a été potentialisée par le resvératrol dans les cellules beta de manière dépendante de sirt1 (393).

Le composé polyphénolique agit surtout au niveau de la protection contre le développement de pathologies cardiovasculaires subséquentes au diabète; que ce soit au niveau vasculaire ou myocardique. Ainsi, il réduit les dépôts de collagène et l’épaississement de la paroi vasculaire de rats diabétiques par un mécanisme impliquant l’activation de ERK1/2 et la suppression de NF-κB (394).

- **Ischémie-reperfusion et préconditionnement** :

 Le resvératrol a été démontré efficace à protéger des cœurs isolés lors d’expériences d’ischémie-reperfusion soit étant présent dans le perfusât avant l’ischémie ou directement lors de la reperfusion (395, 396).
Une perfusion à 10 uM pendant 15 minutes avant l’ischémie aboutit à une amélioration du flux aortique et de la pression, une baisse de malondialdéhyde (MDA) et une réduction de la taille de l’infarctus. Les auteurs ont attribué cet effet à la réaction entre les radicaux libres et le groupement peroxyde, donc à l’effet direct antioxydant du resvératrol (397, 398). De façon similaire, lorsque des rats ont été préalablement traités au resvératrol, la contractilité et le flot coronarien en post-ischémie des cœurs ex-vivo ont été améliorés (399, 400).

Le resvératrol améliore la fonction myocardique, réduit la taille de l’infarctus et l’apparition d’arythmies ventriculaires chez le rat ayant subit une ligature de l’artère interventriculaire antérieure (IVA) (322, 401, 402). Des mécanismes réduisant le stress oxydant par effet inhibiteur sur la production d’anion superoxyde (403), de peroxydation lipidique (399) et activation du système antioxydant endogène (395) ont été montrés responsables de la protection du cœur durant l’ischémie-reperfusion. La contribution du NO est aussi décrite dans le rétablissement fonctionnel post-ischémique puisque le blocage par L-NAME de eNOS a abrogé l’effet bénéfique du resvératrol (400, 401).

Certains groupes ont expliqué que la capacité du resvératrol à induire des facteurs pro-angiogéniques tel le VEGF était aussi de mise comme mécanisme protecteur du myocarde (322, 404, 405). D’ailleurs, sur un modèle porcin d’ischémie, le resvératrol améliore la perfusion myocardique et la croissance de vaisseaux collatéraux à travers l’augmentation de VEGF (406). Le pré-conditionnement du cœur avec le polyphénol empreinte un mécanisme dépendant de eNOS et du VEGF chez le rat (407). Une étude a montré que l’isomère cis-resvératrol avait un effet pro-angiogénique qui est cependant limité par rapport à la forme trans-resvératrol (408).
D’autres groupes ont toutefois montré un effet anti-angiogénique du resvératrol, un mécanisme anti-tumoral bien établi puisque le polyphénol inhibe la croissance des tumeurs en bloquant l’angiogenèse (409, 410). La différence de dosage explique cette divergence par rapport à l’angiogenèse. En effet, des doses supérieures à 30 mg/kg inhibent l’angiogenèse (409-411) alors que des doses de l’ordre de 5-10mg/kg sont pro-angiogéniques (402, 404).

- **Hypertension/Hypertrophie cardiaque** :

Des effets antihypertrophiques ont été attribués au resvératrol sur plusieurs modèles d’hypertrophie cardiaque chez les rongeurs. Chez le rat ayant subit une néphrectomie partielle induisant l’hypertrophie du cœur, un traitement oral de 50 mg/kg/jour a réduit l’hypertrophie et la pression systolique de 20mm Hg, des effets expliqués par une diminution des niveaux de l’endothéline-1 et une augmentation du NO (375). Chez des SHR ayant subi une ovariectomie, une supplémentation de leur diète avec 5mg/kg/jour de resvératrol a amélioré la vasorelaxation dépendante de l’endothélium et diminué la pression systolique de 15% après 3 semaines de traitement (412). De plus, chez des rats ayant une diète à base de fructose, le traitement chronique avec 10mg/kg/jour a permis de prévenir l’élévation de la pression systolique et le développement de l’hypertrophie cardiaque en restaurant entre autre l’activité de eNOS (413).

Les mêmes bénéfices antihypertrophiques ont été observés chez le SHR traité à de plus faibles doses de resvératrol (2,5mg/kg/jour) et cette dernière étude n’a pas eu d’effet significatif sur la tension artérielle, prouvant que les effets du polyphénols résultent d’un impact sur le remodelage myocardique plutôt qu’exclusivement par un effet antihypertenseur
(414, 415). Le même dosage de resvératrol a pu faire régresser l’hypertrophie induite par une augmentation de la post-charge sans effet sur l’hypertrophie conséquente à la surcharge en volume suggérant que l’antioxydant est efficace contre l’hypertrophie concentrique sans impact sur le type excentrique. Ceci a été partiellement expliqué par une régulation positive de eNOS, dont l’activité est plus altérée en hypertrophie concentrique (416).

L’augmentation de la synthèse protéique contribue de façon majeure à l’augmentation de la taille des myocytes cardiaques (417). Ainsi, le resvératrol a montré un potentiel régulateur sur diverses voies de signalisation impliquées dans la synthèse de protéines et la croissance des cardiomyocytes isolées alors qu’il y a eu inhibition de la synthèse de protéines associées avec le processus hypertrophique via l’activation de AMPK (418). L’implication de la signalisation par AMPK est importante pour la régression de l’hypertrophie d’autant plus que des études récentes ont montré que l’absence de cette kinase rendait le myocarde plus sensible à la stimulation pro-hypertrophique (414, 419).

Chez le rat SHR, le stress oxydant a inhibé l’activité de AMPK via l’inhibition de l’activité de la kinase en amont qui régule son activité, LKB1, et l’administration de resvératrol à ces rats a réduit les niveaux de HNE (4-hydroxy-2-nonenal; produit du stress oxydant) et rétablit la signalisation LKB1-AMPK tout en réduisant l’hypertrophie ventriculaire (414). Le mécanisme antihypertrophique impliquerait LKB1 alors que le resvératrol peut inactiver l’inhibition imposée par le stress oxydant sur LKB1. L’activation subséquente de AMPK suivie de l’inactivation de la signalisation de mTOR-proteine ribosomale S6 kinase va prévenir la synthèse accrue de protéines et ainsi protéger le cœur contre le remodelage négatif (420, 421).
La sirtuine 1 peut aussi participer à l’effet antihypertrophique du resvératrol (422). Toutefois, cette implication dans le processus contrant l’hypertrophie serait dépendant du niveau d’expression de la sirt1 puisqu’une hausse de son expression de plus de 12 fois le niveau endogène induit la croissance de cardiomyocytes alors qu’une surexpression de l’ordre de 7,5 fois plus que le niveau endogène prévient l’hypertrophie (423). Son rôle et son implication reste toutefois incertaine et doit être établie dans des modèles in vivo.

Le resvératrol peut donc prévenir l’hypertrophie cardiaque mais aussi plusieurs types de remodelage associés incluant l’inhibition de l’infiltration de cellules inflammatoires et de la fibrose cardiaque (424, 425).

- **Insuffisance cardiaque** :

 Il s’agit d’une pathologie développée lorsqu’il y a aggravation d’une maladie cardiaque tel l’infarctus du myocarde, l’hypertension la cardiomyopathie et l’hypertrophie. Dans le myocarde insuffisant, il y a augmentation de catécholamines dans le ventricule gauche due à un déficit de recyclage augmentant ainsi les concentrations de noradrénaline. Ceci réduit la sensibilité du myocarde aux catécholamines (426). L’administration de resvératrol a normalisé la densité de récepteurs β-adrénergiques et recouvert la sensibilité à la dobutamine du myocarde de rats après ligature de l’IVA, ceci accompagné d’une amélioration de la fonction myocardique avec réduction de la taille de l’infarctus (427). Chez des rats ayant subi un infarctus du myocarde, le traitement au resvératrol a permis de réduire de façon significative les niveaux de norépinephrine avec une réduction de l’hyper-innervation sympathique aboutissant à une meilleure compliance du cœur et à une capacité d’éjection améliorée (428).
Le resvératrol a induit une augmentation de l’expression de MnSOD dans le myocarde défaillant de hamster, un effet dépendant de l’accumulation de sirt1 dans le noyau des cardiomyocytes (320). Il peut protéger les cardiomyocytes de ce stress oxydant et de la mort cellulaire grâce à l’amélioration de la fonction mitochondriale, une réduction des ROS et l’augmentation de l’expression d’enzymes antioxydantes (429, 430).

Rôle des sirt1 déacétylase en cardiovasculaire :

Une restriction calorique modeste a permis une amélioration de la fonction contractile, du remodelage cardiaque et une prévention de la dysfonction diastolique. La compréhension de la signalisation cellulaire dans le but de mimer l’action de la restriction calorique est primordiale puisque celle-ci ne peut être suivie de façon rigoureuse dans la vie quotidienne (431). C’est ainsi qu’un analogue chez les mammifères de sir2 des organismes primaires a pu être découvert, la sirt1, avec sa molécule activatrice le resvératrol.

Plusieurs isoformes de la sirtuine sont encodés dans le génome mammifère, de sirt1 à sirt7 qui possèdent toutes un domaine conservé déacétylase. Les sirtuines font partie des histones déacétylases de classe III qui dépendent du NAD pour leur activité. Ce sont donc des enzymes sensibles au ratio NAD/NADH alors qu’un niveau élevé de NAD augmente l’activité enzymatique des sirtuines et que l’élévation de NADH induit le contraire. Sirt1 régule une grande variété de processus cellulaires impliqués dans la survie, l’apoptose, la croissance et la sénescence ainsi que le métabolisme, ceci au niveau génomique agissant en déacétylase sur les histones mais aussi sur toute une panoplie d’autres protéines (432).
Initialement identifiée comme une protéine nucléaire dans les cellules mammifères, des études récentes ont montré une localisation cytoplasmique aussi dans certaines cellules dont au niveau cardiaque. Ainsi, dans le myocarde embryonnaire de la souris à E10,5 et 12,5 alors que les quatre chambres du cœur se forment, la sirt1 est exprimée en grande quantité dans le noyau des myocytes et cette expression diminue avec l’organogénèse. Dans le cœur adulte des rongeurs, la sirt1 est principalement localisée dans le cytoplasme mais redirigée vers le noyau en situation de stress. Un rôle potentiel de la cascade de PI3K/Akt dans cette relocalisation a été soulevé dans une étude utilisant l’inhibiteur de PI3K, LY294002 dans des cardiomyocytes. La phosphorylation de sirt1 médie par JNK1 a aussi un rôle dans sa translocation vers le noyau, cette dernière étant très importante pour son rôle cytoprotecteur (422).

Initialement, il a été proposé que le stilbène pouvait activer directement la déacétylase avec des expériences in vitro utilisant un peptide fluorogénique acétylé dérivé du substrat natif p53. Toutefois, d’autres expérimentations ont failli à reproduire ce même résultat lorsque le fluorophore est enlevé. Le resvératrol n’a pas pu augmenter l’activité déacétylase de sirt1 envers ses substrats natifs p53, PGC-1α et acétyl-CoA synthétase 1 in vitro (433).

Puisque sirt1 et AMPK sont toutes deux sensibles au statut énergétique de la cellule, il n’est pas surprenant de retrouver des molécules cibles en commun dans leurs voies de signalisation respectives. En culture cellulaire, la surexpression de sirt1 réduit l’acétylation de LKB2, et augmente son activité (434). Une autre kinase reliée à AMPK est Akt et leurs voies de signalisation se croisent dans plusieurs systèmes de régulation. La stimulation par l’insuline ou l’activation génétique de Akt réduit l’activité de AMPK par phosphorylation de sa sous-unité α (435, 436).
La régulation inverse de cet axe de signalisation n’est pas présente lorsqu’il y a stimulation par le resvératrol et l’activation subséquente de Akt n’altère pas l’activité de l’AMPK tel que démontré sur des myocytes de souris (435). Il reste aussi à établir si ces deux kinases participent à l’augmentation de production de NO par le resvératrol puisque les deux peuvent phosphoryler et donc activer eNOS (418).

Figure 14: Les cascades de signalisation intracellulaire induites par le resvératrol.

Biodisponibilité et métabolisme du resvératrol :

Les niveaux de resvératrol dans le vin rouge dépend du temps de fermentation en présence des raisins puisque c’est dans la peau du fruit qu’est synthétisé le polyphénol. Les plus hautes concentrations ont été rapportées dans des vins préparés à partir de grappes de pinot noir atteignant 5,13 mg/L (304). Avec une consommation quotidienne de vin rouge constante de 375 ml (2 verres), une personne de 70 kg peut recevoir jusqu’à 27 ug/kg de resvératrol. Avec une consommation plus élevée de vin, les effets néfastes de l’alcool peuvent toutefois masquer
tout avantage du resvératrol sur la santé (2). Jusqu’à présent, un large spectre de concentrations a été expérimenté in vitro allant du uM au mM selon l’objectif de l’étude.

Dans des cellules SH-SY5Y des doses de 0.1, 1 et 10 uM ont été prouvées neuroprotectives en se basant sur la relâche de lactate déshydrégénase, l’activité de caspase 3 et par l’étude de la cascade JNK et mTOR (437). A 50 uM, le resvératrol inhibait la mort cellulaire sur ce même modèle en inhibant entre autre la caspase 7 (438). Pour l’action de chemoprévention du resvératrol, il est important de savoir sur quel mécanisme l’effet est dirigé. En fait, pour l’inhibition de la prolifération cellulaire, les concentrations utilisées avec efficacité sont généralement proches de 100 uM alors que de 10 à 40 uM, l’apoptose est induite via activation de JNK, notamment décrit sur les cellules épidermiques de souris JB6 (439). L’expression de NOS pour le rôle cardioprotecteur est stimulée à des concentrations de 1 uM (440).

La solubilité faible du resvératrol limite la quantité absorbée par la muqueuse buccale, alors que la métabolisation en glucoronate et conjugué sulfaté survient rapidement dans l’intestin et le foie principalement (441). Avec ingestion orale de 25 mg, moins de 5ng/ml de la molécule primaire a été détectée dans le plasma (441). Il y a eu identification de cinq métabolites différents par ce groupe; le resvératrol monosulphate, deux isomères de la forme monoglucoronide, dihydroresvératrol monosulphate et le dihydroresvératrol monoglucoronide. Les conjugués sulfatés représentaient 37% des métabolites dans l’urine alors que les glucoroniodes étaient à un total de 19%. De plus, ce même groupe a conclu que l’exposition aux métabolites du resvératrol était beaucoup plus grande qu’à la molécule mère puisque la demi-vie de ces conjugués dans le sérum était de plus de 9 heures (307, 441).
Plusieurs études ont voulu explorer la biodisponibilité du resvératrol dans des modèles animaux. Chez des rats, le *trans*-resvératrol a été retrouvé sous des formes différentes de molécules conjuguées, la forme aglycone étant le métabolite le plus retenu dans les tissus (442-444).

Le resvératrol a une très courte demi-vie (8-14 minutes pour la molécule primaire) étant métabolisé rapidement. Avec le temps, sa concentration plasmatique diminue jusqu’à l’apparition d’un second pic dû à la recirculation suite à la relâche par la bile (442). Chez des rats ingérant du resvératrol à 50 mg/kg pendant 8 semaines, il n’y avait pas de traces de la molécule primaire, ni de conjugués après 24 heures (443). Les prédictions du groupe de Baur font état d’un pic de concentration plasmatique de resvératrol non modifié à 2,4 nM et 180 nM en incluant tous les métabolites avec la consommation de 2 verres de vin (2). Il est toutefois encore impossible de déterminer les concentrations dans d’autres tissus alors que des accumulations significatives ont été signalées dans la bile, l’estomac, le foie et les reins (445), et que le resvératrol est 30 fois plus abondant dans les muqueuses intestinales (446). Les futures études doivent mettre l’emphase sur l’investigation des métabolites afin de déterminer s’ils possèdent une quelconque activité ou encore s’ils peuvent représenter une réserve pour la régénération du resvératrol.

Une autre avenue à considérer est l’interaction potentielle du resvératrol avec d’autres constituants de la diète alors qu’une synergie a été observée avec la quercetine sur l’induction de l’apoptose de cellules leucémiques humaines ou encore avec la vitamine E dans l’inhibition de la peroxydation lipidique (447, 448).
Ces effets peuvent expliquer comment une dose aussi faible de resvératrol obtenue de la consommation de vin ou de toute autre diète peut produire des effets bénéfiques mesurables. Une étude a d’ailleurs exploré l’effet de trois métabolites sulfatés du resvératrol présent chez l’humain; t-resvératrol-3-O-sulfate, t-resvératrol-4’-O-sulfate et t-resvératrol-3-O-4’-O-disulfate. Leur activité anticancéreuse a été évaluée sur des lignées cellulaires du cancer du sein (449). Le groupe a découvert que leur cytotoxicité était moindre que la molécule primaire. Toutefois l’action in vitro ne peut refléter la fonction in vivo dû à la présence de sulfatases et de β-glucoronidases qui peuvent convertir les métabolites en resvératrol (449, 450). Plusieurs groupes se penchent sur la façon de rendre le resvératrol plus soluble par diverses modifications chimiques telle la glycosylation ou encore la méthylation pour ralentir la métabolisation du resvératrol (451).

Données cliniques :

La consommation de vin rouge induit une augmentation de la vasodilatation mesurée par le flot dans l’artère brachiale (flow mediated dilatation FMD) chez des sujets en santé (452, 453). Le vin rouge permet aussi de contrer la dysfonction endothéliale résultant d’une diète riche en gras chez des volontaires sains (454) et augmente FMD tout en diminuant la pression sanguine chez des fumeurs (455). Le groupe de Chiva-Blanch a montré dans une petite étude clinique prospective qu’une consommation quotidienne d’une dose raisonnable de vin dé-alcoolisé (275 ml/jour) diminue les pressions systolique et diastolique (456). Une étude très récente a investigué le pouvoir cardioprotecteur du resvératrol sur 40 patients après infarctus du myocarde. L’étude clinique randomisée a alors conclu que le resvératrol à 10 mg pendant 3
mois a significativement amélioré la fonction diastolique du ventricule gauche avec amélioration de la fonction endothéliale (FMD) et une diminution des LDL-cholestérol (457).

Les études de biodisponibilité du resvératrol sur les modèles animaux sont primordiales afin de conduire des études cliniques randomisées. Jusqu’à présent, seulement quelques études explorant la pharmacocinétique et le métabolisme du resvératrol ont été décrites dans la littérature (458-462). Parmi celles-ci, le groupe de Golberg a administré oralement du resvératrol à raison de 25 mg/70kg à des volontaires en santé dissous dans trois matrices différentes : vin blanc, jus de raisin blanc et jus de légumes afin d’examiner l’absorption (463). L’analyse sanguine a montré que le plus haut ratio resvératrol/métabolite a été atteint 30 minutes après ingestion et la fraction de resvératrol était de 1,7-1,9% de la dose totale plasmatique, indiquant la faible biodisponibilité du polyphénol. Il n’y a pas eu de différences d’absorption selon les matrices, toutefois les faibles niveaux de resvératrol (40nmol/L) sont loin des concentrations utilisées in vitro (5-100uM) suggérant que la quantité obtenue par la diète ne serait pas efficace biologiquement (463).

L’étude plus élaborée de Walle évaluant l’absorption, la biodisponibilité et le métabolisme a montré qu’une ingestion orale de 25mg de C14-resvératrol par six volontaires était associée à une absorption efficace à 70%. Toutefois, la disponibilité de resvératrol non métabolisé était très faible (5ng/ml) alors que la radioactivité totale décrivait un pic plasmatique à 2 uM, la majorité représentant les métabolites résultants de l’action des enzymes de phase II (441). Un second pic est observé 6h après ingestion, indicatif de recirculation entéro-hépatique de métabolites conjugués par réabsorption après hydrolyse intestinale (441).
Une étude de phase I avec escalade de dose (0.5, 1.0, 2.5 ou 5g) a évalué la pharmacocinétique et la tolérance du resvératrol sur des volontaires sains (464). Avec des méthodes d’analyse par HPLC combinées à la spectrométrie de masse, le groupe a déterminé une concentration plasmatique maximale à 2,4 uM de resvératrol alors que deux métabolites monoglucuronides (resveratrol-3-O-glucuronide et resvératrol-4’-o-glucoronide) étaient de 3 à 8 fois plus abondants (464).

Un autre aspect important à investiguer dans la pharmacocinétique du resvératrol est la capacité d’atteindre les tissus cibles. Plusieurs études sur rongeurs ont été conduites mais cela reste difficile dans le cas d’études cliniques humaines. En fait, une petite étude sur 20 patients atteints de cancer colorectal a adressé cet aspect alors qu’un groupe consommait un comprimé de 500 mg quotidiennement durant 8 jours pendant que l’autre groupe consommait 2 comprimés de 500 mg/jour avant la résection de la tumeur (465). Les échantillons analysés contenaient effectivement le resvératrol en plus de six autres métabolites. Les concentrations de resvératrol maximales atteintes dans les sections proximales à la tumeur étaient de 19 et 674 nmol/g pour respectivement le dosage de 0,5 et 1g, des quantités plus élevées par rapport à ce qui a été observé au niveau plasmatique (465).

Le resvératrol est généralement bien toléré mais seulement quelques études à très court terme ont été effectuées chez l’humain. Huit volontaires ont été exposés à 2 g deux fois par jour pendant 8 jours et le résultat fait état de six d’entre eux qui ont présenté des effets néfastes gastro-intestinaux principalement au début de la période de traitement (461).
Dans une étude randomisée contrôlée par placebo, jusqu’à 975 mg/jour ont été donnés aux volontaires avec plusieurs groupes contenant 2 adultes chacun et recevant 25, 50, 100 ou 150 mg six fois par jour pendant deux jours. Les effets secondaires étaient alors décrits comme modérés et comparables dans tous les groupes. L’administration répétitive a été bien tolérée mais les concentrations plasmatiques de resvératrol étaient relativement faibles malgré le dosage élevé et l’intervalle de temps court entre chaque dose (466). La toxicité du polyphénol a été évalué sur 44 volontaires sains avec escalade de doses (0.5, 1.0, 2.5, 5g) pendant 29 jours. Dans ce cas, le composé a été jugé sécuritaire avec des profils cliniques, biochimiques et hématologiques normaux, sans évènements négatifs (467). Il y a eu toutefois 28 patients ayant rapporté un effet néfaste aux deux plus hautes doses, au niveau gastro-intestinal (diarrhées, nausées). Tous les effets néfastes rapportés étaient transitoires et d’intensité modérée. Les auteurs ont alors recommandé que les doses quotidiennes de resvératrol pour des études futures ne devaient pas dépasser 1g. La même conclusion avec le même seuil a été obtenue par un groupe avec leur étude clinique de 4 semaines (468).

Les effets pharmacodynamiques du resvératrol sur l’humain représentent aussi un aspect encore peu exploré. Brown et son groupe ont observé une faible mais significative diminution d’IGF-1 circulant, facteur important mitogénique et anti-apoptotique (467). Une étude a investigué l’interaction du resvératrol avec des enzymes de phase 1 cytochrome p450 ainsi que l’enzyme de conjugaison glutathion S-transferase (GST) sur des volontaires sains recevant 1g quotidiennement pendant 4 semaines (468). Le polyphénol a réduit significativement les indices phénotypiques de CYP3A4, 2D6 et 2C9 associé dans certains cas avec induction de l’expression de GST-π.
L’inhibition de CYP3A4 et de 2C9 particulièrement, peut mener à une augmentation des concentrations plasmatiques mais aussi à une toxicité plus élevée. Les auteurs ont précisé que même si cette inhibition représenterait un des mécanismes anti-carcinogènes du resvératrol, il est important d’utiliser des doses plus faible que 1g lors des futures essais cliniques afin de minimiser les interactions néfastes (468).

Les études jusqu’à présent sont encourageantes pour le développement du resvératrol comme thérapie puisque des doses aussi élevées que 5 g sont bien tolérées et relativement sécuritaires. Toutefois, les recommandations sont de l’ordre de 1 uM pour mimer le niveau atteint avec ingestion de 1g, dose optimale limitant toute interaction négative avec les enzymes de métabolisation et tout effet indésirable sur le système gastro-intestinal (469).
Hypothèse et buts

En fait, ce modèle a été développé et caractérisé par notre laboratoire dans les années précédentes et la dysfonction endothéliale s’établissant avec le développement de l’HVG suite au cerclage aortique a été amplement décrite (10, 477). Il a donc déjà été établi que la dysfonction endothéliale était causée par la diminution de la biodisponibilité du NO, principalement dû à l’augmentation du stress oxydant.
De ce fait, les stratégies thérapeutiques explorées utilisant les antioxydants tel le probucol, la catalase ou la SOD ont toutes convergé à l’augmentation de la vasorelaxation des artères coronaires épicaudiques (12, 13).

Ainsi, l’objectif de cette étude est d’établir l’efficacité du resvératrol à augmenter la biodisponibilité du NO et à réduire le stress oxydant, principalement la production de l’anion superoxyde qui désactive le NO. Le resvératrol devrait alors réduire la fibrose myocardique et l’hypertrophie des cardiomyocytes. L’hypothèse est donc que ce polyphénol va renverser et/ou limiter la progression de l’HVG tout en améliorant la relaxation endothéliale des artères coronaires.
Contribution originale
Resveratrol Decreases Endothelial Dysfunction of Epicardial Coronary Arteries in a Porcine Model of Left Ventricular Hypertrophy

Celia Sid-Otmane, MSc,*‡ Yan Fen Shi, MD,* Michel Carrier, MD,*† Jean-Claude Tardif, MD,*§ and Louis P. Perrault, MD, PhD*†§

From the *Research Center, †Department of Surgery, ‡Department of Pharmacology, §Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada.

Address correspondence to: Dr. L.P. Perrault, Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada. Tel.: (514) 376-3330 (3471); Fax: (514) 376-1355.

Short Title: Resveratrol decreases endothelial dysfunction

Acknowledgments

The authors would like to thank Marie-Pierre Mathieu, Stephanie Blanchet and Marie-Elaine Clavet for their technical assistance and Asmaa Mansour for statistical analysis.

Funding: Montreal Heart Institute Foundation

Conflict of Interest: none.
Abstract:

Background: Antioxidant properties of resveratrol are of great interest regarding endothelial dysfunction, well characterized in left ventricular hypertrophy (LVH). Therefore, this study explores the therapeutic effects of resveratrol on the coronary endothelial dysfunction associated with LVH.

Methods: An aortic banding (AB) was performed on swine to induce LVH, except for controls (group 1). Group 2 was not treated. Group 3 received resveratrol (20 mg/kg/d) from day 1 to 60 whereas group 4 was treated from day 30 to 60. Echocardiographic and histological studies were performed to evaluate LVH. Vascular reactivity of coronary arteries was assessed in organ chambers. Endothelial dysfunction was evaluated by nitric oxide (NO) metabolites and cyclic guanosine-3,5-monophosphate (cGMP) while angiotensin II (Ang II) and protein carbonylation levels evaluated oxidative stress.

Results: After treatment, the LVmass/body weight ratio was improved in group 3 associated with reduced cardiomyocyte hypertrophy and interstitial fibrosis. Dose-response curves to serotonin for group 3 demonstrated a greater vascular relaxation compared to group 2. Bioavailability of NO measured by its circulating metabolites and vascular cGMP was increased and protein carbonylation decreased with unchanged Ang II levels in group 3.

Conclusion: Hence, resveratrol effectively reduces coronary endothelial dysfunction and limits the occurrence of cardiac remodelling associated with LVH.

Key Words: endothelial dysfunction, resveratrol, polyphenol, left ventricular hypertrophy, oxidative stress, coronary artery
INTRODUCTION

Left ventricular hypertrophy (LVH) is defined as an adaptive mechanism with an increased ventricular mass with or without wall thickness (concentric or eccentric hypertrophy, respectively) in response to work overload. This is often consequent to long-standing aortic stenosis (AS) or systemic arterial hypertension that creates a sustained stress on the ventricular wall, resulting primarily in hypertrophic growth. The left ventricle’s response to this pressure overload is compensatory and beneficial in the short-term view, aiming to maintain adequate cardiac output. However due to pathological cardiac remodelling, LVH ultimately leads to deleterious heart conditions such as myocardial infarction, sudden death or more frequently heart failure.

Interest in developing therapeutic strategies is of considerable clinical importance, especially given that LVH affects 23% of men and 33% of women over the age of 60. Furthermore, for patients suffering from aortic stenosis, even with aortic valve replacement, studies demonstrate that residual hypertrophy carries a negative prognosis.

Impaired endothelium-dependent relaxation, both in experimental and clinical studies, has been pointed out as a characteristic of LVH. Several reports have described an altered vascular relaxation in response to various stimuli such as acetylcholine, substance P or adenosine in animal models of LVH and in human vessels. Moreover, endothelial dysfunction is not only characterised by a reduced vasodilation but also by an increased proliferation of vascular smooth muscle cells, platelet aggregation and inflammatory response.
A porcine model of LVH developed secondary to aortic banding showed a significant endothelial dysfunction illustrated by altered NO-dependent relaxations in epicardial coronary arteries. Decreased synthesis and/or bioavailability of nitric oxide (NO) are responsible for this impaired coronary relaxation. The sustained release of reactive oxygen species (ROS), essentially superoxide anion O_2^-, creates an oxidative stress that decreases levels of NO in the vascular system in this model. This is further confirmed by the recovery of maximal relaxation in presence of superoxide dismutase or catalase, two important antioxidant enzymes. Furthermore, Aubin et al from our laboratory showed that oral administration of probucol, a lipid lowering agent with antioxidant properties, prevented LVH by reducing fibrosis, oxidative stress and improving the coronary endothelial function. Thus, there is a strong therapeutic potential in using antioxidants to protect the coronary endothelial function and concomitantly regress LVH.

Epidemiological studies have linked a reduced incidence of coronary heart disease to a regular consumption of red wine, which is known to contain important amounts of polyphenolic compounds. In the late '90s, this phenomenon called “the French paradox” implied that even with a fatty-diet, the French population showed low incidence of cardiovascular events.

Over the last 2 decades, increased attention has been given to Resveratrol (trans-3,4,5-trihydroxystilbene), a polyphenol found in red wine well studied for its pleiotropic effects alongside its antioxidant role, including anticancer, antiproliferative, anti-inflammatory and antifibrotic properties. In vitro studies with endothelial cells have already proven the effectiveness of this compound to increase resistance to oxidative stress and stimulate nitric oxide synthesis. Furthermore, experiments using human internal
mammary artery rings demonstrated the impact of resveratrol on endothelial function by its abrogating effects on superoxide anion production and enhancement of NO dependent relaxation \(^{16}\). In various animal models of cardiovascular diseases such as hypertension, cardiac hypertrophy or myocardial infarct, beneficial effects of resveratrol have been demonstrated on hemodynamic parameters and myocardial remodelling \(^{17-20}\). Moreover, chronic hypertrophy induced by pressure overload in rats was reversed with resveratrol treatment \(^{21}\).

Thus, these results justify our urge to experiment resveratrol on our porcine model in order to determine if it can help prevent LVH. The ultimate objective of this study is to establish whether this polyphenol can effectively increase NO bioavailability to restore endothelial function in the coronary circulation.

METHODS

Experimental Groups

This study was conducted in accordance with recommendations of the guidelines on the care and use of laboratory animals issued by the Canadian Council on Animal Research and the Guidelines of the Animal Care, and the ethics committee for animal research at the Montreal Heart Institute approved the experimental protocol. Twenty 8-week-old Landrace swine (Primipor Inc., St-Gabriel de Brandon, Quebec, Canada) were randomized into four groups. Group 1 (n=3) represents healthy control swine without any surgery or treatment. Animals from LVH group were subjected to thoracotomy followed by aortic banding without treatment schedule representing group 2 (n=5). Animals from group 3 (n=6) underwent through thoracotomy with aortic banding and were subjected to
treatment by trans-resveratrol (20 mg/kg/d *per os*, Pharmascience, Montreal, Quebec, Canada) for the 60 days following the surgery while group 4 (n=6) was subjected to resveratrol treatment for the last thirty days only, after aortic banding.

Surgical Procedure

Pigs were anesthetized with ketamine and xylazine. Artificial ventilation was provided by a mixture of oxygen/air to ensure a saturation of over 95% throughout the surgery and isoflurane 2% was used to maintain anesthesia. The operative field was shaved and skin was disinfected by chlorexidine 0.5%. A catheter was placed in femoral vein for antibiotic administration before surgery (Borgal 16mg/kg) and for intravenous fluid infusion during the procedure. Arterial cannulation was performed through the right femoral artery for blood pressure analysis. The chest was entered through a left anterior thoracotomy in the third intercostal space and the aortic banding was realized by gently tying an umbilical cord around the aorta, 3cm above the coronary ostia, to obtain a systolic gradient of at least 15mm Hg, distally to the banding area. The pericardium and chest were closed in multiple layers. An intramuscular injection of an analgesic (Buprenorphine, 0.6 mg/mL; Reckitt Benckiser Healthcare Limited, Dansom Lane, UK) was given at the end of the surgery and recovery was completed in temperature-controlled quarters.

Echocardiographic Studies

Pigs were sedated (see above) for transthoracic echocardiograms performed before the surgery, for baseline data, and at the end of the treatment, before being killed. An S3 probe (ranging from 1.6 to 3.2 MHz) with a standard echocardiographic system (Sonos 5500 Hewlett-Packard, Andover, MA) was used. Ascending aorta dimensions at the banding area, 5mm both proximally and distally away from the banding were measured in
the parasternal long-axis view. Continuous-wave Doppler was used in a modified left ventricular apical long-axis view to follow the peak velocity and gradient across the banding. A 2-dimensional guided M-mode study of the left ventricle and 2-dimensional apical 4-chamber and 2-chamber views were performed and recorded on video-tape for off-line measurements. The thickness of the interventricular septum (IVS) and left ventricular posterior wall (LVPW) were measured on M-mode at end-diastole using the average of 3 cardiac cycles. Left ventricular mass was calculated using the following formula: left ventricular mass = 1.05 [(D+LVPW+ IVS)^3–D^3] −14 g, where D represents the left ventricular cavity end-diastolic diameter.

Animal Sacrifice/Coronary Harvest

At the end study, swine were once again anesthetized and euthanized by exsanguination through a median sternotomy. Heart was excised, weighted and immediately put in a modified Krebs solution: (composition in mmol/L: NaCl 118.3, KCl 4.7, CaCl₂ 2.5, MgSO₄ 1.2, KH₂PO₄ 1.2, NaHCO₃ 25, ethylenediamine-tetraacetate (EDTA) 0.026, dextrose 11.1). The left anterior descending, the left circumflex and the right epicardial coronary arteries were dissected from connective tissue and fat and cut into rings of 4 mm length.

Vascular Studies

Rings were put in organ chambers filled with modified Krebs bicarbonate solution maintained at 37°C, and oxygenated with a mixture of 95% O₂/5% CO₂. The rings were suspended between 2 metal sturrups, one connected to an isometric force transducer. Data were recorded on data acquisition software (IOS3, Emka Inc., Paris, France). A stabilization time of 30 minutes was followed by a progressive tension increase to reach 3.5g
approximately, the optimal tension of the rings active length-tension curve determined by measuring the contraction to potassium chloride (KCl; 30 mmol/L) at different levels of stretch. A maximal contraction was obtained in response to KCl (60 mmol/L) and the baths were washed. Studies were all performed in presence of indomethacin (10^{-5} mol/L; to prevent the endogenous production of prostanoïds), propranolol (10^{-7} mol/L; to prevent the activation of β-adrenergic receptors), and ketanserin (10^{-6} mol/L; to antagonize smooth muscle cell serotonin 5-HT_2 receptors) for 45 minutes of incubation. Pre-contraction was done in response to prostaglandin F2α (range 2 x 10^{-6} to 10^{-5} mol/L) to average 50-70% of KCl contraction. The NO-dependent relaxation pathway was explored by constructing concentration-response curves to serotonin (5-HT; 10^{-10} to 10^{-5} mol/L mediating relaxation by stimulating endothelial 5-HT_1D receptors coupled to Gi-proteins) and to Bradykinin (BK; 10^{-12} to 10^{-6} mol/L mediating relaxation by binding to endothelial B_2 receptors coupled to Gq-proteins).

Plasma Nitrite Nitrates Metabolites Measurement

Blood samples were collected in EDTA-coated tubes before killing, centrifuged at 2500g for 15 minutes at 4°C and plasma was isolated and stored at -80°C until measurement. NO metabolites were quantified using the manufacturer protocol of a colorimetric assay provided by Cayman chemical company (nitrate/nitrite colorimetric assay, Michigan, USA). Briefly, plasma samples were prepared by ultrafiltration through a 30KDa molecular weight cut-off filter (microcentrifuge) before disposing it in a 96 well plate with the standards. Three hours of incubation with enzyme cofactor mixture and nitrate reductase mixture were necessary to convert all the nitrate metabolite into nitrite before converting to purple azo compound with the addition of Griess reagent. Absorbance
was read at 540nm.

Coronary Artery cGMP Level

Following vessel harvesting, some segments were frozen in liquid nitrogen and stored at -80°C until measurements of cGMP levels. The samples were subsequently pulverized, resuspended in trichloroacetic solution (6.25% wt/vol) to precipitate tissue membranes, and centrifuged at 1400g for 15 minutes at 4°C. The supernatants were then washed with diethylether to preserve cGMP and eliminate trichloroacetic solution. Finally, the washed supernatants were heated at 70°C to remove the residual ether. cGMP levels were measured using a non-acetylation enzyme immunoassay system based on rabbit anti-cGMP antibody (Cayman Chemical Company, Michigan, USA), following the manufacturer protocol.

Protein Carbonylation Level

Oxidative stress can be evaluated by the extent of protein carbonylation. A colorimetric assay was used (Cayman Chemical Company, Michigan, USA) following the manufacturer protocol. DNPH (2,4-dinitrophenylhydrazine) reacts with carbonylated proteins to form a Schiff base and produces the corresponding hydrazine that can be analysed subsequently by spectrophotometry between 360-385nm. Plasma samples were used for this measure.

Histological Analysis

After coronary harvesting, 4 surgical biopsies were taken from the left ventricle and the septum fixed in 10% buffered formalin and embedded in paraffin. Sections were cut into 6 um thick for Hematoxilin-phloxine saffran to assess cardiac hypertrophy, while 8 um thick sections were used for Sirius red stain to quantify interstitial fibrosis, based on
approximately 700 cells/animal. Images were taken with a Qimaging camera Qicam mounted on a BX45 Olympus microscope and opened with the program image pro plus (MediaCybernetics, Maryland, USA). Fibrosis was evaluated by quantification of collagen II based on images obtained with a polarized filter.

Statistical Analysis

Relaxations are expressed as a percentage of the maximal contraction to prostaglandin F2α for serotonin, and to serotonin for bradykinin curves in each group. Repeated measure analysis of variance studies were performed to compare concentration–response curves. Analysis of variance studies followed by the Dunnet pairwise comparisons were used to analyze the differences between groups, using the untreated group as reference. For the determination of statistical differences among groups regarding cGMP, NO, Ang II levels, cardiomyocyte hypertrophy and fibrosis the untreated AB group was used as reference. The EC50 and the Emax were measured from each individual concentration–response curve using Graphpad curve-fitting software. For these specific parameters, the differences between groups were evaluated with a 2-tailed unpaired Student t test. A p value of <0.05 was considered to be statistically significant.

RESULTS

Echocardiographic Analysis

It is fundamentally important to make sure that the aortic banding is equally created between groups to guarantee a reliable conclusion regarding the therapeutic effect of resveratrol on LVH. As shown in Fig. 1A, there is a reduction in aortic dimension at the banding area when comparing the LVH group with the control group, and treatment with
Resveratrol did not change these values, in groups 3 and 4. Also, based on peak velocity and mean gradient (Fig. 1B and 1C), it can be concluded that the aortic banding is of the same extent between the three groups that underwent surgery. The degree of LVH is similar in the three groups.

Resveratrol attenuated LVH in animals treated from the beginning, demonstrated by the significant change in the LV mass/BW ratio. Group 3 showed a decrease of 6.4% in Fig. 1D while group 2 displayed an increased ratio of 16.3% (p<0.05). Although only small effects are seen on individual parameters such as LV mass, IVS or LPVW, the comparison on the basis of this ratio is strongly consistent. There is no beneficial effect of resveratrol on LVH in group 4 (treated only from the 30th day post-surgery) with an increased ratio of 9.5%.

Histology

Resveratrol demonstrated a significant effect on cardiomyocyte hypertrophy by decreasing cellular width in group 3 compared to untreated group (p<0.05) in Fig. 2A. Furthermore, interstitial fibrosis, known to be a strong burden in any cardiovascular disease including LVH, was reduced and reached control levels in group 3 with the 60 day treatment (Fig. 2B).

Vascular Reactivity

Endothelium Dependent Relaxations

Vascular relaxation is impaired in coronary artery rings from untreated LVH group as compared to control group (p<0.05) in Fig. 3.
Dose-response curves of coronary artery rings to serotonin from group 3, treated for 60 days, showed an improved vascular relaxation compared with the LVH group (p<0.05). As shown in Fig. 3, the curve representing group 4 demonstrated an attenuation of endothelial dysfunction, although not to the same extent as group 3. Concentration-response curves to bradykinin (Fig. 4) did not show any significant impairment of vasorelaxation in group 2 when compared to the control group and no change was seen with resveratrol administration (groups 3 and 4).

There is a significant decrease in sensitivity in group 2 compared to the control group based on pD2 and treatment with resveratrol greatly improved this sensitivity in groups 3 and 4 (p<0.05) as shown in Table 2.

Endothelial Function In Vitro

A significant decrease of nitric metabolites levels was observed in the untreated group compared to control level (151.04 ± 19.95 uM vs 398.71 ± 21.75 uM respectively), consistent with a reduced NO production associated with this endothelial dysfunction (Fig. 5). Resveratrol significantly increased NO metabolites level in treated group 3 with 241.86 ± 15.53 uM (p<0.05). Regarding cGMP in Fig. 6, resveratrol effectively elevated the level in group 3, to a lesser extent in group 4, compared to untreated group. These two results combined confirm the recovered bioavailability of NO.
Oxidative Stress

Protein carbonylation, an endpoint of ROS production, was elevated in the untreated LVH group (0.22 ± 0.03 nmol/mg) and was extensively reduced with resveratrol treatment in group 3 (0.14 ± 0.08 nmol/mg with p<0.05) as presented in Fig. 7A. Conversely, Ang II quantification did not significantly decrease with treatment (group 3 62.08 ± 15.16 pg/ml and group 4 51.16 ± 22.34 pg/ml), showing levels comparable to LVH group (63.5 ± 5.31 pg/ml) in Fig. 7B.

DISCUSSION

The major findings of the present study are: on this swine model of LVH, resveratrol reversed cardiac remodelling that occurred in response to pressure overload and prevented endothelial dysfunction with increased NO bioavailability, decreased protein carbonylation attributed to oxidative stress and likewise, reversed cardiomyocyte hypertrophy and interstitial fibrosis.

The Framingham study has identified LVH as a strong predictor of cardiovascular events and heart failure. The type of hypertrophy is important for prognosis as concentric hypertrophy being associated with worse outcomes than the eccentric type. In this porcine model, systolic parameters are preserved but diastolic function is impaired due to reduced chamber compliance. Echocardiographic data effectively showed the extensive left ventricular geometry reorganization ensued and the increased LV mass to body weight ratio (LVmass/BW) confirmed the development of the concentric hypertrophy. The percentage of change of this ratio tended towards control values, showing prevention of
ventricular growth when resveratrol is administered from the beginning right after surgery. This improvement was not observed in swine treated from the 30th day only. Hence, resveratrol restrained the development of ventricular remodelling after the pressure overload but could not reverse the already established reorganization, when treatment is administered halfway through.

One of the maladaptive pathways contributing to the onset of heart failure include those promoting fibrosis, mainly through increased collagen synthesis, in response to angiotensin II, aldosterone and transforming growth factor-β (TGF-β) 23. The increment in LV mass secondary to increased afterload cannot ultimately normalize wall stress and maintain myocardial function in the presence of myocardial fibrosis 24. In the current study, resveratrol alleviated the development of interstitial fibrosis as collagen accumulation was lessened. This antifibrotic ability can preserve myocardial function and avoid progression of LVH to a decompensated state and ultimately to heart failure. Numerous publications have described the dominant role of TGF-β signalling in stimulating extracellular matrix synthesis and fibrosis in pressure overload mouse heart 25. TGF-β could be responsible for the massive fibrosis characterizing the present LVH model. Maintaining appropriate expression of the antifibrogenic factor PPARγ is essential to assure structure adaptation of the heart in response to pressure overload stress 23. This signalling pattern is described to efficiently inhibit chronic overload induced cardiac hypertrophy, collagen accumulation and interstitial fibrosis in rodent models of abdominal aortic constriction 26, 27.

The purpose of this study was to explore endothelial dependent relaxations represented by dose-response curves to serotonin and bradykinin. Alterations in the
cellular signalling pathway underlying the endothelial dysfunction described herein preferentially involve Gi mediated relaxations, as represented by responses to serotonin and moderately the Gq mediated relaxations to bradykinin. Untreated LVH is associated with a substantial impairment of epicardial coronary endothelium-dependent vasodilation compared to the healthy group. There is a considerable increase in vasorelaxation of coronary arteries from the 60 days treated swine meanwhile a slight but non-significant improvement in endothelial relaxation in swine treated for only the 30 last days is observed. This allows us to conclude on the salutary effects of resveratrol regarding vasomotor control by preventing endothelial dysfunction. As shown in Fig. 5, NO metabolites were increased revealing higher NO production to re-establish the endothelial function. One of the major roles of resveratrol documented by prior reports is certainly its ability to regulate eNOS activity and expression. Some studies described the increased expression of eNOS while others the accumulation of the phosphorylated form. In isolated swine coronary arteries, resveratrol induced endothelium dependent relaxation with increased eNOS activity. Multiple targets have been discovered throughout the years for resveratrol but the prevailing is certainly sirtuin 1, NAD+ dependent deacetylase, firstly described in lower organisms with a pivotal role in calorie restriction. The implication of sirt1 in the cardioprotective process mediated by resveratrol remains controversial. The mechanisms are partly understood but some reports offered an explanation for the enhanced NO production mainly through an upregulation of eNOS expression and/or activity due to decreased acetylation provided by Sirt1.

The proximal mediator for NO induced vasorelaxation is cGMP produced by soluble guanylyl cyclase (sGC). Our results demonstrated increased cGMP in swine receiving
resveratrol from the beginning. There are other studies hypothesizing on the potential direct effect of resveratrol on guanylyl cyclase. Bhatt et al described an upregulation of the B1 subunit of sGC, considered to be responsible for responsiveness to NO, with resveratrol treatment of their SHR model 34. In the same optic, a group proved that resveratrol protective effect on coronary artery is related to the sGC of the underlying smooth muscle 35. Another explanation for the enhanced cGMP would be inhibition of its degradation by phosphodiesterases (PDEs). For that matter, a new study showed that resveratrol inhibits PDEs to increase cyclic AMP and activate Sirt1 36.

With regard to dosage, treatment in this study was given at 20 mg/kg/day according to previous studies demonstrating the efficacy of this dose. Aubin et al showed a significant improvement in endothelial relaxation in response to acetylcholine in rats fed a high fat diet. It also prevented the systolic and diastolic blood pressure increase 37. Pioneering work has been done with the same dosage of resveratrol by Baur et al and concluded on an improvement in health and survival of mice consuming excess calories 38. More recently, another group used a dosage of 18 mg/kg/d on a rat model of hypertension leading to heart failure and proved that resveratrol had a salutary effect on endothelial function in an NO-dependent pathway 17. Unfortunately, this concentration is not attainable by nutrition considering that red wine contains an estimated 5 mg/L of resveratrol if optimistic 13. This dose could then only be reached by supplementation rather than by regular intake but possible tissue accumulation could ensure the benefits in the long term. This field of research has not been extensively explored yet a small number of studies described accumulation in liver and kidney 39.
Angiotensin II is a potent activator of NADPH oxidase, a big producer of reactive oxygen species (ROS), specifically superoxide anion (O$_2^-$) that contributes intensively to the endothelial dysfunction characterized in this LVH model. This study described an increased oxidative stress as portrayed by protein carbonylation, an endpoint of ROS generation, and antioxidant treatment with resveratrol reduced this level. Likewise, our experiments did demonstrate increased Ang II in untreated LVH, indicating the activation of the renin-angiotensin-aldosterone system RAAS, but resveratrol treatment did not diminish these levels. Thus, this means that resveratrol at this dose does not exhibit its antioxidant effect through abrogating ROS production by NADPH oxidase.

Resveratrol has been shown to lower the expression of AT$_1$ receptor mRNA in mouse aorta, blunting Ang II induced hypertension and a down regulation of AT$_1$ receptors in rat smooth muscle cells mediate inhibitory effects of resveratrol on the renin-angiotensin-aldosterone system 40. In our case, given that resveratrol did not reduce directly Ang II levels, the beneficial effects can then be a consequence of the downregulation of AT$_1$ expression.

Along with NADPH oxidase, eNOS can itself be a source of ROS under pathological conditions. Thus when the tight regulation in electron transfer within NOS that allows NO production is disrupted, it leads to O$_2^-$ generation 41. In a previous report from our group, eNOS uncoupling was shown to be responsible at least in part of the oxidative stress characterized within the model and for that matter, it was demonstrated that in vitro supplementation of an analog of the NOS cofactor BH$_4$, methyltetrahydropterin, significantly improved endothelial dependent relaxation 10. Therefore, resveratrol could
protect against vascular damage and regulate coronary circulation by reducing eNOS uncoupling via inhibition of BH₄ oxidation as described in SHR³⁴ and mice⁴².

In view of the pleiotropic effects of resveratrol, it is likely that the beneficial results are multifactorial and involve multiple signalling pathways acting on different cellular targets. Free oxygen radical scavenging with antioxidant as a therapeutic approach against cardiovascular diseases was not considered a successful strategy in clinical trials and this is partially explained by the absence of a restoring effect on endothelial NO production. Thus, resveratrol, which stimulates NO production, represents a more promising pharmacological therapy against heart disease.

This study design is not without restraints as outlined below. The short duration of this project limits the extent of information acquired about the therapeutic impact of resveratrol on LVH evolution toward a decompensated state. Indeed, this porcine model only describes the compensated LVH and because of logistic reasons, mainly the rapid weight gain of these animals, we could not pursue the study beyond the 2 months. Genomic regulation by resveratrol of foetal genes reactivated in hypertrophy such as ANP or serca 2 would be a great field to explore.

Collectively, our results demonstrate that oral administration of resveratrol potentiated vascular relaxation in epicardial coronary arteries of a porcine model with higher bioavailability of NO and reduced oxidative stress. Hence, the large spectrum of benefits displayed by resveratrol on vascular endothelium and fibrosis strengthens its therapeutic potential.
REFERENCES

Figure Legend

Figure 1. Echocardiographic data. A) Aortic dimensions at the banding area. B) Peak velocity. C) Mean gradient. D) Percentage of change in LVmass/BW ratio. Data are presented as Mean ± SEM. * vs group 2 † vs group 1 p<0.05.

Figure 2. Influence of resveratrol on cellular morphology. A) Resveratrol impact on cardiomyocytes hypertrophy. B) Resveratrol and interstitial fibrosis. Results are presented as the mean ± SEM. * vs group 2 † vs group 1 p<0.05.

Figure 3. Cumulative concentrations-response curves in response to serotonin (5-HT) in rings of porcine coronary arteries from group 1 (O), 2 (■), 3 (▲), 4 (×). Responses are given as the percent of relaxation to the contraction induced by prostaglandin F2α. Results are presented as the mean ± SEM. * vs group 2 p<0.05.

Figure 4. Cumulative concentrations-response curves in response to bradykinin (BK) in rings of porcine coronary arteries from group 1 (O), 2 (■), 3 (▲), 4 (×). Responses are given as the percent of relaxation to the contraction induced by serotonin. Results are presented as the mean ± SEM.

Figure 5. Influence of resveratrol on plasmatic levels of NO. Quantification of NO metabolites (nitrites + nitrates). Results presented as the mean ± SEM. ** vs group 2 p<0.001 † vs group 1 p<0.05.

Figure 6. Influence of resveratrol on vascular cGMP levels. Results are presented as the mean ± SEM. * vs group 2 p<0.05.

Figure 7. Influence of resveratrol on oxidative stress. A) Plasmatic levels of protein carbonylation and B) Angiotensin II. Results are presented as mean ±SEM.
Table I: Experimental groups and treatment schedule.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Period of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>None (no surgery)</td>
<td>--</td>
</tr>
<tr>
<td>Group 2</td>
<td>AB* placebo</td>
<td>0# to 60 days</td>
</tr>
<tr>
<td>Group 3</td>
<td>AB with resveratrol 20 mg/kg/d</td>
<td>0 to 60 days</td>
</tr>
<tr>
<td>Group 4</td>
<td>AB with resveratrol 20 mg/kg/d</td>
<td>30 to 60 days</td>
</tr>
</tbody>
</table>

*AB: aortic banding. # 0 day represents the day of surgery.

Figure 1:

A) [Graph showing aortic dimension banding area for different groups.]

B) [Graph showing mean gradient for different groups.]
Figure 2:

A) Gr1: Control
Gr2: LVH no treatment
Gr3: LVH treated
Gr4: LVH treated 30-60d

Group

cardiomyocyte height (um)

0,018

0,016

0,014

0,012

0,01

0,008

0,006

0,004

0,002

0

Group 1
Group 2
Group 3
Group 4

A
Figure 3:

Porcine coronary arteries

![Graph showing interstitial fibrosis in different groups.](image)
Figure 4:

Porcine coronary arteries

![Graph showing concentration-response curves to 5-HT and BK.]

Table II: pD$_2$ and E$_{max}$ values of concentration-response curves to 5-HT and BK.

<table>
<thead>
<tr>
<th></th>
<th>pD$_2$ (5-HT)</th>
<th>E$_{max}$ (5-HT)</th>
<th>pD$_2$ (BK)</th>
<th>E$_{max}$ (BK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>7.86 ± 0.04*</td>
<td>37.97 ± 1.61</td>
<td>9.23 ± 0.02</td>
<td>95.81 ± 2.13</td>
</tr>
<tr>
<td>Group 2</td>
<td>8.57 ± 0.22</td>
<td>18.32 ± 4.05</td>
<td>8.98 ± 0.33</td>
<td>93.39 ± 1.99</td>
</tr>
<tr>
<td>Group 3</td>
<td>7.62 ± 0.20*</td>
<td>48.48 ± 5.14*§</td>
<td>9.18 ± 0.02§</td>
<td>93.45 ± 4.78</td>
</tr>
<tr>
<td>Group 4</td>
<td>7.59 ± 0.51*</td>
<td>34.61 ± 3.76*§</td>
<td>8.93 ± 0.07**</td>
<td>88.52 ± 4.19</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SEM.

E$_{max}$ indicates the maximal percent of relaxation; pD$_2$ is the negative log of EC$_{50}$.

p<0.05 * vs group 2; § vs group 4; † vs group 1
Figure 5:

![Bar chart showing nitrite + nitrate concentrations (µM) for Group 1 to Group 4.

- Group 1: Control
- Group 2: LVH no treatment
- Group 3: LVH treated 0-60d
- Group 4: LVH treated 30-60d

Key:
- **: p < 0.01
- †: p < 0.1

Figure 6:

![Bar chart showing cGMP concentrations (pmol/ml) for Group 1 to Group 4.

- Group 1: Control
- Group 2: LVH no treatment
- Group 3: LVH treated 0-60d
- Group 4: LVH treated 30-60d

Key:
- *: p < 0.05
- #: p < 0.01
Figure 7:

A) Carbonylated proteins (nmol/mg)

Gr1: Control
Gr2: LVH no treatment
Gr3: LVH treated 0-60d
Gr4: LVH treated 30-60d

B) AngII concentrations (pg/ml)

Gr1: Control
Gr2: LVH no treatment
Gr3: LVH treated 0-60d
Gr4: LVH treated 30-60d

* Indicate statistical significance
+ Indicate trend towards significance
Discussion
L’HVG est reconnu comme un facteur de risque important des maladies cardiovasculaires et principalement de l’insuffisance cardiaque, tel que démontré par l’étude de Framingham il y a déjà plusieurs années. Cette étude a aussi statué que l’hypertrophie concentrique est associée à un pronostique plus négatif que le type excentrique (484). L’HVG concentrique est développée suite à une surcharge de pression et caractérisée par une augmentation de la masse du myocarde dû à l’élargissement des cardiomyocytes, aboutissant à l’épaississement de la paroi du ventricule gauche et du septum. L’HVG excentrique est quant à elle typiquement liée à une augmentation du volume de la chambre (497). Ainsi, le modèle d’étude subit un cerclage aortique qui crée un stress sur les parois ventriculaires et qui va pousser les myocytes vers la croissance en largeur par addition de sarcomères en série afin de normaliser cette pression (1). Ce modèle est caractérisé par une préservation de la fonction systolique alors que la fonction diastolique est altérée à cause de la réduction de la compliance du ventricule (10). Les données échocardiographiques de notre étude ont effectivement montré l’ampleur de la réorganisation ventriculaire surtout avec l’augmentation du rapport de la masse du ventricule gauche sur la masse corporelle (LVmass/BW). Le traitement avec le resvératrol a réduit ce ratio vers les valeurs du groupe contrôle. Ceci est synonyme d’une prévention de la croissance du ventricule avec l’administration du resvératrol, un bénéfice seulement significatif chez le groupe 3 alors que les animaux traités seulement à partir du 30ème jour ont un rapport LVmass/BW similaire au groupe HVG non traité. On peut alors dire à partir de ces résultats que le resvératrol a le potentiel d’empêcher l’initiation du remodelage négatif du cœur alors qu’il n’a pas été efficace pour renverser le remodelage déjà établi, lorsque le traitement est entamé.
plus tard. Il est toutefois possible que le polyphénol, même s’il ne renverse pas l’HVG une fois installée, puisse bloquer sa progression vers l’état décompensé si le modèle animal reste sous traitement plus longtemps.

Le potentiel antihypertrophique du resvératrol, démontrée ici avec la réduction de l’hypertrophie des cardiomyocytes, est probablement relié à sa capacité d’inhiber la synthèse protéique. D’ailleurs, plusieurs publications ont rapporté l’effet répresseur du polyphénol sur des facteurs de transcription tels que NFAT-calcineurine et eEF2, bloquant ainsi la transcription de gènes impliqués dans la croissance des myocytes (418). Il peut donc s’agir d’un des nombreux effets pléiotropiques du resvératrol pour contrer le remodelage du myocarde.

Un des processus de maladaptation contribuant à l’établissement de l’insuffisance cardiaque est le développement de la fibrose, avec une augmentation de la synthèse de collagène en réponse à l’aldostérone, Ang II et TGF-β (485). Ainsi, avec la présence de fibrose dans le myocarde, l’augmentation de la masse ventriculaire en réponse à la post-charge élevée ne peut normaliser la pression sur les parois du ventricule en raison d’une compliance réduite (486). Cette étude décrit notamment une réduction substantielle de la fibrose interstitielle avec un traitement au resvératrol, l’accumulation de collagène étant plus faible avec le traitement durant la période des 60 jours. Cette habilité anti-fibrique du polyphénol peut alors préserver les fonctions myocardiques et empêcher ainsi la progression de l’HVG vers un état de décompensation, et subséquemment vers la défaillance cardiaque.

En fait, le facteur antifibrogénique PPARγ serait fortement inhibé par TGF-β, ce qui veut dire que le maintien d’un niveau adéquat de l’expression de ce facteur est essentiel pour assurer une adaptation structurale du cœur à une surcharge de pression (485).
Cette signalisation a déjà été décrite comme étant efficace pour inhiber l’hypertrophie cardiaque, l’accumulation de collagène et la fibrose interstitielle sur des modèles de cerclage de l’aorte abdominale produisant une surcharge de pression chez le rongeur (488, 489). Il serait alors d’un intérêt considérable d’explorer l’implication de TGF-β dans la signalisation induisant la fibrose dans ce modèle et de ce fait, étudier l’impact du resvératrol sur le PPARγ pour inhiber la fibrose.

La sténose aortique n’est pas seule à induire l’HVG puisque l’hypertension systémique est une autre étiologie très fréquente de la pathologie. Ce modèle porcin n’est toutefois pas associé à un développement d’hypertension alors que des publications précédentes de notre laboratoire ne montrent aucune élévation de la pression artérielle (12). Dans le cadre de cette étude, il n’y a pas eu d’augmentation de la pression artérielle avec le développement de l’HVG et le traitement antioxydant n’a démontré aucun effet significatif sur ce paramètre. Ceci implique que le resvératrol n’a pas d’impact sur la résistance périphérique, caractéristique du développement de l’hypertension, dans ce modèle. L’absence d’hypertension permet alors de conclure que la dysfonction endothéliale caractérisant ce modèle d’HVG est un résultat de la diminution de l’activité biologique du NO et non due à une altération du débit cardiaque ou des forces de cisaillement.

Ce projet explore uniquement la relaxation dépendante à l’endothélium représentée par les courbes dose-réponse à la sérotonine et à la bradykinine. Au niveau de la signalisation moléculaire, les mécanismes impliqués dans la dysfonction endothéliale décrite chez ce modèle sont préférentiellement liés à la relaxation médiée par les protéines Gi présentée par la réponse à la sérotonine et moindrement celle médiée par les protéines Gq en réponse à la
bradykinine (BK) (477). Les courbes en réponse à la BK représentent la vasodilatation dépendante de l’endothélium médiée par le facteur hyperpolarisant dérivé de l’endothélium (EDHF). Nos résultats montrent que cette signalisation ne caractérise pas l’altération de la relaxation vasculaire dans ce modèle alors que les courbes dose-réponse du groupe contrôle et du groupe malade ne diffèrent pas, une affirmation confirmée avec les valeurs pD2 décrivant la même sensibilité à la stimulation de BK. La signalisation par EDHF n’est donc pas impliquée dans la dysfonction endothéliale caractérisée dans ce modèle.

L’altération de la relaxation vasculaire en réponse à la sérotonine dans le groupe non traité est bien démontrée en comparaison au groupe contrôle sain. Le traitement au resvératrol augmente considérablement la vasorelaxation dans les anneaux de coronaires provenant des animaux traités pendant les 60 jours et moindrement pour le groupe 4, traité seulement à partir du 30ème jour. Nous avons aboutit à cette même conclusion en évaluant la fonction endothéliale in vitro à travers les métabolites nitriques. Ceux-ci sont plus abondant lorsque le resvératrol est administré tout le long de l’étude. Il y a donc toujours un effet plus important chez le groupe 3 lorsque le resvératrol est consommé avant même l’établissement de l’HVG et de la dysfonction endothéliale.

Tout comme mentionné précédemment concernant le remodelage, le resvératrol semble perdre de son efficacité pour contrer la dysfonction endothéliale lorsqu’elle est déjà établie. Une étude avec un autre polyphénol, la catéchine, a justement révélée que dans un modèle d’athérosclérose, le traitement amorcé tard dans le développement de la maladie n’a pas pu renverser les dommages endothéliaux, alors que ce traitement a amélioré la fonction
endothéliale lorsqu’administré avant l’établissement de l’athérosclérose (498). Ainsi, dans ce cas-ci, l’utilisation d’un antioxydant ne permet pas de rétablir la fonction endothéliale.

L’importance de l’endothélium endocardique dans le développement de l’hypertrophie n’est pas traitée en profondeur dans la littérature. Plusieurs pensent que les cellules endothéliales vasculaire, microvasculaires et capillaires sont largement plus abondantes et ont donc une plus grande importance que les cellules endothéliales tapissant l’endocarde (23, 499). Toutefois, un rôle dans la régulation de la croissance des cardiomyocytes et dans la contractilité du myocarde adjacent a été découvert il y a déjà quelques décennies pour ces cellules. L’importance du NO dans l’endothélium du cœur est discutée puisqu’un rapport récent a attribué un plus grand impact à la prostacycline comme vasodilatateur plutôt qu’au NO, particulièrement dans le ventricule gauche (500). L’implication du NO de l’endothélium endocardique suite au traitement au resvératrol dans ce cas-ci est donc incertaine et mérite une plus grande analyse. Il serait toutefois probable que le NO relâché par ces cellules endothéliales de l’endocarde puisse participer à la relaxation ventriculaire en télé-diastole particulièrement (499). Ceci pourrait ainsi bénéficier la fonction diastolique altérée dans ce modèle.

Un des rôles majeurs et maintes fois documenté du resvératrol est certainement son habilité à réguler l’activité et l’expression de eNOS. Certains ont décrit une augmentation de l’expression de l’enzyme et d’autres ont rapporté une augmentation de la forme phosphorylée (367, 368). Par exemple, dans les artères coronaires isolées de porcs, le resvératrol a induit la relaxation dépendante de l’endothélium par un mécanisme impliquant l’élévation de l’activité de eNOS (490).
Plusieurs cibles moléculaires ont déjà été découvertes pour le resvératrol mais la plus importante est la sirtuine 1, qui est telle que décrite précédemment, une déacétylase dépendante du NAD+ découverte originellement dans les études de restriction calorifique pour son rôle primordial chez les organismes inférieurs (491). Son potentiel cardioprotecteur induit suite à l’activation par le resvératrol est controversé car les preuves montrant l’effet direct du polyphénol sur l’enzyme ont été plusieurs fois contestées, toutefois une étude récente a montré une réponse dose-dépendante de sirt1 au resvératrol dans les cardiomyocytes (501). Les mécanismes d’action du resvératrol ne sont que très peu élucidés mais certains ont offert une explication pour l’augmentation de la production du NO à travers une régulation à la hausse de l’expression et/ou de l’activité de eNOS, dû à la diminution de son acétylation grâce à l’activité déacétylase de sirt 1 (369).

Le médiateur immédiat de NO pour induire la vasorelaxation est le GMPc produit par la guanylate cyclase soluble (GCs). Plusieurs études ont lancé des hypothèses à savoir que le resvératrol pouvait avoir un impact direct sur la guanylate cyclase. En fait, le groupe de Bhatt a décrit une augmentation de l’expression de la sous unité B1 de GC, considérée comme responsable de la réponse au NO, dans un modèle SHR traité au resvératrol (492).

Dans la même optique, un autre groupe a prouvé que l’effet protecteur du resvératrol sur les artères coronaires isolées était relié à la GC des cellules du muscle lisse sous-jacent (493). Le resvératrol dans cette étude pourrait alors avoir eu un effet direct sur la production de GMPc sans forcément passer par la stimulation par le NO. Une autre explication pour l’augmentation de GMPc serait l’inhibition de sa dégradation par les phosphodiésterases.
À ce propos, une étude récente a montré que le resvératrol pouvait inhiber les phosphodiésterases pour augmenter l’AMPc et activer la sirt1 indirectement via AMPK et NAD (494). Toutefois, le problème majeur des études mécanistiques sur le resvératrol vient des concentrations utilisées in vitro qui sont beaucoup plus élevées que ce qui peut être atteint in vivo. Le manque d’information sur la spécificité du resvératrol envers des cibles moléculaires constitue aussi une grande lacune.

La dysfonction endothéliale caractérisée sur ce modèle est intimement associée à l’altération de la signalisation du NO et non à une perte de cellules endothéliales tel que démontré dans notre laboratoire précédemment (10). Généralement, la dysfonction endothéliale n’est pas seulement décrite par une diminution de la relâche ou de la disponibilité de facteurs relaxants mais aussi par une accumulation de facteurs contractants (38). Dans ce modèle particulier, il a déjà été prouvé que l’endothéline-1 contribue fortement à la dysfonction endothéliale des artères coronaires épicaudiques alors que le niveau plasmatique est élevé accompagné d’une réduction de la densité de son récepteur endothéial ETa, qui lorsque stimulé provoque une relaxation vasculaire (11).

Le dosage testé au cours de ce projet était de 20 mg/kg/jour, en se basant sur plusieurs autres études ayant décrit l’efficacité de cette dose. Une publication de notre laboratoire a utilisé la même dose sur les rats consommant une diète riche en gras et a démontré que la relaxation endothéliale en réponse à l’acétylcholine était grandement améliorée avec le resvératrol en plus de la prévention de l’élévation de pression systolique et diastolique (495). Des travaux de grande envergure ont été produits par le groupe de Baur avec cette même dose sur des souris consommant une diète riche en gras alors que la publication présentait une
amélioration de la santé de ces animaux en plus d’augmenter leur taux de survie (496). Plus récemment, un groupe a administré 18 mg/kg/jour à des rats spontanément hypertendus SHR prônes au développement de l’insuffisance cardiaque et a montré des effets salutaires du resvératrol sur la fonction endothéliale de façon dépendante de la relâche de NO (470).

La problématique avec ce dosage cependant est qu’il n’est pas atteignable exclusivement avec la consommation modérée de vin rouge, si on considère qu’une bouteille contient approximativement 5 mg/L en moyenne même si d’autres peuvent atteindre 14mg/L de resvératrol (2). Les quantités utilisées peuvent alors être obtenues par une supplémentation plutôt que par consommation quotidienne de vin. Malgré cela, il y a une possibilité qu’il y est accumulation du resvératrol dans les tissus suite à une consommation régulière, pouvant alors assurer des effets bénéfiques à long terme. D’ailleurs, un nombre restreint d’études ont décrit une accumulation du polyphénol dans le foie et les reins mais il reste que ce domaine est peu exploré dans la pharmacocinétique du resvératrol (445).

L’angiotensine II est un puissant activateur de la NADPH oxydase, enzyme produisant les espèces oxygénées réactives et spécifiquement l’anion superoxyde (O₂⁻), ce radical contribuant grandement à la dysfonction endothéliale caractérisée dans ce modèle HVG. Ce modèle d’HVG est caractérisé par une augmentation du stress oxydant représenté par le taux de protéines carbonylées, marqueur typique de la production de ROS, avec une diminution significative en présence de resvératrol, toujours chez le groupe le recevant pendant toute la période d’étude. Une augmentation d’Ang II chez les animaux malades indique que le système rénine-angiotensine-aldostérone (SRAA) est activé sans toutefois que le traitement puisse y remédier.
Ces résultats impliquent que le resvératrol n’exerce pas sa capacité antioxydante en inhibant la génération de ROS produit par NADPH stimulée par Ang II alors qu’il a déjà été montré sur des modèles d’hypertrophie que le stilbène pouvait interférer avec le SRAA (375, 492). Le groupe de Liu et ses collaborateurs ont découvert qu’en traitant les rats ayant subi une néphrectomie partielle avec le resvératrol, les effets antihypertrophiques résulttaient de la potentialisation de la signalisation par le NO combinée à une diminution des niveaux de Ang II et de ET-1 (375). Aussi, un effet sur l’expression du récepteur à Ang II, AT-1 a été démontré sur l’aorte de souris alors que le resvératrol bloquait l’hypertension induite par Ang II en réduisant l’ARNm de AT-1 (376). Dans notre cas, puisque le polyphénol n’a pas eu d’effet direct sur les niveaux d’Ang II, les effets bénéfiques pourraient découler d’une régulation à la baisse de ce récepteur.

En plus de la NADPH oxydase, les ROS peuvent aussi être générés par eNOS elle même en condition pathologique. Ainsi, la rupture de la régulation du transfert d’électron au sein du dimère eNOS perturbe la production de NO et aboutit à la formation de O₂⁻⁻ (33). Dans une publication précédente de notre laboratoire, le découplage de eNOS a été montré responsable au moins partiellement du stress oxydant présent dans ce modèle. D’ailleurs une supplémentation in vitro d’un analogue de BH₄, a grandement amélioré la relaxation endothéliale (12). De ce fait, le resvératrol pourrait protéger contre les dommages vasculaires et réguler la circulation coronarienne en réduisant le découplage de eNOS par inhibition de l’oxydation du cofacteur BH₄. Cet effet a d’ailleurs été établi chez la souris et le SHR (318, 492).
Une des limitations de cette étude est la courte durée du projet qui restreint l’étendue d’informations acquises à propos du potentiel thérapeutique du resvératrol sur l’HVG et sur son évolution vers l’état décompensé. Ce modèle porcin ne décrit que l’HVG compensatoire et, à cause notamment du gain de poids rapide des animaux, l’étude ne peut dépasser les deux mois pour des raisons logistiques. Il y a donc possibilité de voir des paramètres décrivant l’HVG être influencé par le resvératrol dans un état plus avancé de la maladie. Autre limitation du projet est la possibilité que le cerclage aortique établi sur l’animal puisse modifier le flot sanguin au niveau de la circulation coronarienne, ainsi se distinguant de ce qui est observé en hypertension systémique ou en sténose aortique. Cependant, aucune preuve n’a été établie décrivant une altération de la fonction endothéliale de façon aigue à cause d’une modification de la pression de perfusion au niveau des coronaires causée par le cerclage.

Les mécanismes d’action du resvératrol sur la dysfonction endothéliale n’ont pas été explorés dans ce projet. Nous n’avons pas étudié l’impact au niveau génomique du polyphénol sur les gènes foetaux réactivés en hypertrophie tels que le peptide natriurétique de type A ou B (ANP et BNP) ou la Ca²⁺ ATPase sarcoplasmique (Serca2). Ceci aurait constitué un mécanisme antihypertrophique au niveau de la morphologie cellulaire et ventriculaire. La sirt1 est certainement une cible du resvératrol qui doit être investiguée, son expression et son implication dans les effets bénéfiques du resvératrol sur l’endothélium mais aussi sur le remodelage myocardique. Élucider une partie de ces questionnements pourrait aussi permettre d’éclaircir les mécanismes d’action du resvératrol dans ce cas-ci et de comprendre la divergence entre les deux groupes expérimentaux quant à leur réponse au traitement.
Conclusion
Un modèle d’HVG secondaire à un cerclage aortique et caractérisé par une dysfonction endothéliale des artères coronaires épicaïques a été utilisé dans le cadre de cette étude. L’objectif était de documenter l’effet thérapeutique du resvératrol sur cette dysfonction endothéliale ainsi que sur le remodelage myocardique associé à l’HVG. L’usage de l’antioxydant polyphénolique est justifié par la contribution majeure du stress oxydant dans le développement et l’établissement de la dysfonction endothéliale au sein de ce modèle porcin.

En résumé, cette étude a démontré l’effet bénéfique qu’a le resvératrol sur l’altération de la vasorelaxation endothéliale des artères coronaires épicaïques associée à l’HVG. Ainsi, grâce au rétablissement de la biodisponibilité du NO, démontré par l’augmentation des métabolites nitriques et du GMPc, la relaxation vasculaire a significativement été améliorée. Le resvératrol a aussi induit une régression du remodelage négatif du myocarde avec un impact sur l’hypertrophie des cardiomyocytes et particulièrement sur la fibrose interstitielle, lourd fardeau de toute pathologie cardiovasculaire. L’impact du resvératrol sur le stress oxydant a été relativement significatif au niveau de la carboxylation des protéines, sans toutefois réduire les niveaux d’Ang II. Les résultats obtenus sont toutefois beaucoup plus significatifs lorsque le traitement est amorcé avant même le développement de l’HVG. On peut donc conclure que le resvératrol est beaucoup plus efficace comme thérapie préventive contre la dysfonction endothéliale. Il est évident que plusieurs spécificités de l’agent pharmacologique restent à acquérir mais les bénéfices exposés dans le cadre de ce projet soutiennent l’utilisation de ce polyphénol comme traitement précoce afin de limiter les dommages à l’endothélium.
Bibliographie

70. Chu L, Takahashi R, Norota I, Miyamoto T, Takeishi Y, Ishii K, et al. Signal transduction and Ca2+ signaling in contractile regulation induced by crosstalk between endothelin-1 and

Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR. Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in

Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovascular research. 2011;89(2):265-72. Epub 2010/10/01.

