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RESUMÉ 

La cryptococcose chez les patients atteints du VIH-1 est principalement causée par 

Cryptococcus neoformans var. grubii tandis que Cryptococcus gattii infecte surtout les 

personnes immunocompétentes. Afin d’élucider les mécanismes causant la susceptibilité 

différentielle à l’égard de ces deux espèces de Cryptococcus dans le contexte de l’infection au 

VIH-1, nous avons utilisé un modèle novateur de la cryptococcose chez la souris transgénique 

CD4C/HIVMutA, qui exprime les gènes nef, env et rev du VIH-1. L’expression du transgène 

VIH-1 a augmenté le recrutement pulmonaire des macrophages alvéolaires mais a diminué 

celui des lymphocytes T CD4+ et CD8+ en réponse à l’infection par le C. neoformans ou le C. 

gattii. La production pulmonaire des chimiokines MCP-1 (CCL2) et RANTES (CCL5) était 

également réduite chez les souris transgéniques infectées par l’une ou l’autre de ces espèces de 

Cryptococcus. La production pulmonaire de MIP-1α, MIP-1β, TNF-α, TGF-β, IL-2, IL-4 et 

IL-13 était augmentée chez la souris infectée au C. neoformans comparativement à C. gattii. 

In vitro, les macrophages alvéolaires prélevés chez la souris Tg et stimulés par des agonistes 

ont produit davantage de MIP-1β, alors que les chimiokines MCP-1 et RANTES n’ont pas été 

détectées. 

MOTS-CLÉS 

Cryptococcose 

Cryptococcus neoformans 

Cryptococcus gattii 

VIH-1 

Souris transgénique 

Cytokines



SUMMARY 

The most common cause of cryptococcosis in HIV-1-infected patients is Cryptococcus 

neoformans var. grubii, while Cryptococcus gattii usually infects immunocompetent people. 

We used a novel inhalation model of cryptococcosis in CD4C/HIVMutA transgenic mice 

expressing nef, env, and rev of HIV-1 to examine the mechanisms that cause differential 

susceptibility to these species of Cryptococcus in the context of HIV-1 infection.  HIV-1 

transgene expression increased alveolar macrophage but decreased pulmonary CD4+ and 

CD8+ T lymphocyte recruitment.  Pulmonary production of the CC chemokines MCP-1 

(CCL2) and RANTES (CCL5) was reduced in transgenic mice infected with C. neoformans or 

C. gattii, and concentrations were lower after infection with C. gattii compared to C. 

neoformans.  Production of MIP-1α, MIP-1β, TNF-α, TGF-β, IL-2, IL-4 and IL-13 was 

increased in mice infected with C. neoformans compared to C. gattii. Production of MIP-1β by 

alveolar macrophages harvested from Tg mice was enhanced after agonist exposure in vitro, 

but production of the chemokines MCP-1 and RANTES was undetectable. 
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CHAPTER 1- CRYPTOCOCCUS AND CRYPTOCOCCOSIS 

 

Taxonomy and Reproduction 

In 1894, an Italian scientist named Francesco Sanfelice isolated a yeast from fermenting peach 

juice which he called Saccharomyces neoformans (Bovers et al. 2008; Dixit et al. 2009; 

Barnett 2010).  In the same year, a German professor, named Otto Busse, observed a pathogen 

isolated from a woman’s tibia and concluded that it resembled organisms from the genus 

Saccharomyces (Barnett 2010).  In 1901, Jean-Paul Vuillemin examined these cultures and 

placed them in the genus Cryptococcus because they were unable to produce ascospores, a 

characteristic of the Saccharomyces genus.  Both of these cultures later became known as C. 

neoformans (Bovers et al. 2008; Barnett 2010).  C. gattii was first isolated from a leukemia 

patient in 1970 (Bovers et al. 2008; Dixit et al. 2009).  The genus Cryptococcus consists of 

basidiomycetous yeasts that are part of the order Tremellales (Loftus et al. 2005; Byrnes et al. 

2009).  There are currently 37 recognized species in the genus Cryptococcus, but only C. 

neoformans, C. gattii, C. laurentii, and C. albidus are pathogenic in humans and animals (Li 

and Mody 2010).  Both C. neoformans and C. gattii are major human pathogens, while C. 

laurentii and C. albidus rarely cause disease in immunocompromised patients.  C. neoformans 

was originally classified into four serotypes (A-D) based on capsular agglutination reactions, 

but due to molecular analysis serotypes B and C have been reclassified as a separate species, 

C. gattii (Li and Mody 2010).  C. neoformans has been divided into two varieties, C. 

neoformans var. grubii (serotype A) and C. neoformans var. neoformans (serotype D) (Dixit 

et al. 2009; Li and Mody 2010).  The third serotype of C. neoformans is the hybrid serotype 

AD (Dixit et al. 2009; Li and Mody 2010; Li et al. 2012).  Other hybrids, such as BD and AB, 



  

2  

have been observed, but are extremely rare (Dixit et al. 2009).  Both species have been further 

divided into four major molecular types, VNI-VNIV for C. neoformans and VGI-VGIV for C. 

gattii (Li and Mody 2010).  The two most prevalent molecular types are VNI and VGI (Dixit 

et al. 2009).  Both in nature and patients, Cryptococcus is most commonly found as unicellular 

budding yeast (Lin and Heitman 2006; Kozubowski and Heitman 2012).  It has also been 

occasionally observed as pseudohyphae, which could serve as a strategy to avoid predators in 

the environment (Kozubowski and Heitman 2012). Cryptococcus can also be found in hyphal 

form. 

Sexual reproduction of Cryptococcus has never been observed in nature or within a host, and 

only specific conditions in the laboratory have been able to trigger mating between compatible 

yeast cells (Kozubowski and Heitman 2012) (Figure 1).  The perfect states of C. neoformans 

and C. gattii, discovered by Dr. Kwon-Chung, are named Filobasidiella neoformans and F. 

bacilispora respectively (Kwon-Chung 1976; Kwon-Chung 1976).  Different serotypes differ 

in their ability to mate; most of the serotype D strains mate, while the ability of serotype A and 

C. gattii to mate is strain specific. Cryptococcus has a bipolar mating system, where there is 

only a single mating locus called the MAT locus (Kozubowski and Heitman 2012).  The MAT 

locus of C. neoformans, which is greater than 100kb and codes for over 20 genes, is longer 

than the MAT loci of other fungi (Kozubowski and Heitman 2012). The mating type of 

Cryptococcus is called either a or α, depending on the MAT locus (Lin and Heitman 2006; 

Kozubowski and Heitman 2012).  There is an overwhelming predominance of mating type α 

in the environment (98-99.9%), which could explain why sexual reproduction in nature is rare 

(Lin and Heitman 2006).  Sexual reproduction of Cryptococcus begins when fusion occurs 

between haploid yeast MATa and MATα, to create a dikaryon (Lin and Heitman 2006) 
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(Figure 1).  The dikaryon undergoes a dimorphic transition and becomes dikaryotic hyphae 

(Lin and Heitman 2006).  The hyphal tips swell to create basidia, where nuclear fusion occurs 

(Lin and Heitman 2006).  Meiosis then follows to create four haploid meiotic daughter nuclei 

(Lin and Heitman 2006).  This leads to the production of four chains of basidiospores, which 

are readily aerosolized (Lin and Heitman 2006). 

Figure 1. Mating and monokaryotic fruiting of Cryptococcus  (Lin and Heitman 2006) 

Used with permission from Annual Review of Microbiology (License number 

3172580616034) 

C. neoformans can also undergo same-sex mating when exposed to the right conditions, also 

known as monokaryotic fruiting (Lin and Heitman 2006; Kozubowski and Heitman 2012) 
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(Figure 1).  Although it was originally thought to be asexual haploid fruiting, it has later been 

shown to be a modified version of sexual reproduction occurring between strains of the same 

mating type (Lin and Heitman 2006; Kozubowski and Heitman 2012).  This can occur with 

both a and α mating types, and similar to sexual reproduction, monokaryotic fruiting has not 

been observed in the environment (Kozubowski and Heitman 2012).  Monokaryotic fruiting is 

very similar to sexual reproduction, except the hyphal cells only contain one nucleus 

(Kozubowski and Heitman 2012).   The spores generated from monokaryotic fruiting are also 

smaller and rounder than those produced from sexual reproduction (Kozubowski and Heitman 

2012). 

 

Ecology and Epidemiology 

In the environment, C. neoformans can be isolated worldwide from avian excreta and the soil 

surrounding it (Harrison 2000; Litvintseva and Mitchell 2009).  Aged avian excreta and the 

soil surrounding it are more likely to contain C. neoformans compared to fresh avian guano 

(Lin and Heitman 2006; Lin 2009).  C. neoformans thrives on the nitrogenous components 

associated with avian excreta (Mitchell and Perfect 1995).  Although it is more commonly 

isolated from avian guano, C. neoformans has also been isolated from decaying wood and tree 

hollows (Harrison 2000; Lin and Heitman 2006; Litvintseva and Mitchell 2009).  

Cryptococcus can infect a wide variety of domestic and wild animals, though no transmission 

between animals and humans has been reported (Lin and Heitman 2006).  However, 

substantial evidence has shown that birds, specifically pigeons, are directly linked to the 

worldwide distribution of C. neoformans (Mitchell and Perfect 1995; Lin and Heitman 2006; 

Lin 2009).  Most evidence shows that pigeons themselves are not infected and act as carriers 
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(Lin and Heitman 2006; Lin 2009).   Human infection usually occurs without direct contact 

with birds (Harrison 2000; Warkentien and Crum-Cianflone 2010).  Prior to 1955, there had 

only been less than 300 reported cases of cryptococcosis (Perfect 2005).  Currently, C. 

neoformans is responsible for an estimated one million cases a year resulting in approximately 

625,000 deaths (Kronstad et al. 2011).  The majority of these reported cases occur in Sub-

Saharan Africa, where the number of fatal cases can surpass the number of deaths due to 

tuberculosis in some areas (Kronstad et al. 2011).  The increase in incidence of C. neoformans 

infections can be attributed to the increased number of immunocompromised individuals, 

including HIV/AIDS and transplant patients (Perfect 2005; Li and Mody 2010).  

Approximately 90% of all cryptococcal infections and 99% of cryptococcosis cases in AIDS 

patients are attributed to C. neoformans var. grubii (serotype A) (Bovers et al. 2008; 

Litvintseva and Mitchell 2009).  Of the patients that are HIV-uninfected, over 90% displayed 

some form of immunodeficiency (Li and Mody 2010).   C. neoformans var. neoformans 

(serotype D) also infects mainly immunocompromised patients, but is less common worldwide 

and considered less virulent (Litvintseva and Mitchell 2009). In Europe, serotype D is more 

common and is responsible for 30% of reported cases (Bovers et al. 2008). Hybrid serotype 

AD has been isolated from patients in North America and Europe, but is uncommon 

(Litvintseva and Mitchell 2009). 

Unlike C. neoformans, the most common environmental niche for C. gattii is the red gum 

group of eucalyptus trees, primarily Eucalyptus camaldulensis (Mitchell and Perfect 1995; 

Sorrell 2001; Lin and Heitman 2006; Dixit et al. 2009).  It has also been isolated from other 

tree species including almond, golden shower and Douglas fir (Lin and Heitman 2006; Dixit et 

al. 2009).  Like C. neoformans, C. gattii has been isolated from decaying trees and tree 
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hollows (Lin and Heitman 2006).  C. gattii can also infect both domestic and wild animals 

including cats, dogs, sheep, rabbits, foxes, and koalas (Lin and Heitman 2006).  There are 1.5 

times more veterinary cases of C. gattii infections compared to human cases (Mak et al. 2010).  

Although C. gattii infections have been occasionally reported in immunocompromised 

patients, 70-80% of cases are associated with apparently healthy individuals (Sorrell 2001; Lin 

and Heitman 2006).  The AIDS pandemic has not had an effect on the incidence of C. gattii 

infections (Morgan et al. 2006).  C. gattii is endemic to tropical and subtropical regions, and a 

majority of reported cases C. gattii infections occur in Australia and Papua New Guinea (Dixit 

et al. 2009; Litvintseva and Mitchell 2009; Mak et al. 2010).  Serotype B is more commonly 

isolated in clinical and environmental samples compared to serotype C (Springer and 

Chaturvedi 2010).  Serotype C has been isolated from clinical samples from India, Africa, and 

Southern California, but is rarely isolated from the environment (Sorrell 2001; Springer and 

Chaturvedi 2010).  

Beginning in 1999, there was a dramatic increase in the incidence of C. gattii infections, in 

both humans and animals, on the east coast of Vancouver Island in British Colombia, Canada 

(Mak et al. 2010; Kronstad et al. 2011).  British Columbia Centre for Disease Control 

(BCCDC) recognized the increased incidence of C. gattii infections as an outbreak in 2002 

(Hoang et al. 2004).   The current incidence of C. gattii infections in British Columbia is 5 

cases per million inhabitants, which is superior to the Australian average (0.94 cases/ million), 

where C. gattii is more common (Hoang et al. 2004; Dixit et al. 2009).  The central eastern 

coast of Vancouver Island has the highest annual incidence rate for both animal and human 

cases of C. gattii infections (Figure 2) (Duncan et al. 2006).  In the decade following the initial 
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outbreak, there have been 236 reported cases of C. gattii infections in humans, resulting in 19 

deaths, as well as numerous reports of veterinary cases (Kronstad et al. 2011).  

 

Figure 2. Distribution of reported human and veterinary cases of cryptococcosis in 

British Columbia between 1999 and 2011.  (BC CDC) 

The molecular types of C. gattii responsible for this outbreak are two sub-genotypes of VGII 

(Ngamskulrungroj et al. 2011).  VGIIa is the predominant sub-genotype in both the 

environment and in patients, and shows a higher virulence than other C. gattii genotypes 

(Kidd, Bach, et al. 2007; Kronstad et al. 2011; Ngamskulrungroj et al. 2011).  VGIIb is the 

minor sub-genotype and was responsible for a few cases on Vancouver Island (Kidd, Bach, et 

al. 2007).   The original outbreak strain of C. gattii is R265 of the VGIIa molecular type 
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(Ngamskulrungroj et al. 2011).  The endemic area for C. gattii in the Pacific Northwest has 

expanded past Vancouver Island; in 2004, cases of C. gattii infections were reported from 

mainland Vancouver, Oregon, and Washington (Kronstad et al. 2011).  There have been 

approximately 60 reported cases in Washington, Oregon, Idaho, and California since 2004 

(Kronstad et al. 2011).  The molecular type of C. gattii most commonly isolated from this 

region is VGIIa, the same as the major type in British Columbia (Ngamskulrungroj et al. 

2011).  VGIIc, a new molecular type, has been isolated exclusively from Oregon (Byrnes and 

Heitman 2009; Datta et al. 2009).  The emergence of C. gattii in the Pacific Northwest is 

thought to have partly originated from Australia because the VGIIb strain from Vancouver 

Island is identical to the Australian VGIIb clinical isolate NT-13 (Dixit et al. 2009).  The 

VGIIa strain has been hypothesized to originate from South America, because VGIIa isolates 

from both Brazil and Vancouver Island are of mating type α (Dixit et al. 2009).  Some possible 

methods of dispersal of C. gattii to the Pacific Northwest include human-mediated spread (C. 

gattii transferred by contact surfaces like shoes), passive transport by wild and domestic 

animals, and airborne dispersal through deforestation (Kidd, Bach, et al. 2007).  C. gattii has 

been observed to be able to survive on shoes for over 144 days, but the active usage of the 

shoes reduced the levels of viable C. gattii (Kidd, Bach, et al. 2007).  Samples taken from 

cutting down and chipping of a Red alder (Alnus rubra) and a Douglas fir (Pseudotsuga 

menziesii) resulted in high levels (up to 53,125 CFU/m3) of C. gattii 0-15 meters above the 

ground (Kidd, Bach, et al. 2007). 
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Pathogenesis 

Natural Cryptococcus infections begin with the inhalation of infectious propagules (Botts and 

Hull 2010; Kronstad et al. 2011). Desiccated yeast cells or spores are considered to be the 

infectious propagule for Cryptococcus, because their small size, 1-3 μm, allows them to be 

deposited more easily deep in the alveoli of the lung (Botts et al. 2009; Giles et al. 2009; 

Kronstad et al. 2011).  Spores have been more generally accepted as the infectious propagules 

of Cryptococcus because they are more resistant to environmental stress compared to 

desiccated yeast cells, making them better suited for air dispersal and survival (Giles et al. 

2009; Botts and Hull 2010; Kronstad et al. 2011).  Purified spores have thick cell walls, which 

allow them to have a greater resistance to desiccation, oxidative stress, and temperature 

compared to desiccated yeast (Botts et al. 2009; Kronstad et al. 2011).  Cryptococcus spores 

have been shown to be very infectious, having a lethal dose of as few as 500 cells in a murine 

model (Velagapudi et al. 2009; Kronstad et al. 2011).  In the lungs, Cryptococcus is 

phagocytized by alveolar macrophages through interactions between fungal β- (1,3)- glucan 

and host receptors Dectin-1 and CD11b (Giles et al. 2009).   Cryptococcus is well adapted to 

survive and reproduce in an acidic environment, such as the microenvironment of macrophage 

phagolysosomes (Levitz et al. 1999).  Cryptococcus is able to produce extracellular vesicles, 

named “virulence factor delivery bags”, that allow it to export protein components important 

to virulence outside of the cell wall (Rodrigues et al. 2007; Rodrigues et al. 2008; Oliveira et 

al. 2010; Kronstad et al. 2011). The major capsular polysaccharide, glucuronoxylomanan 

(GXM) is exported in these vesicles which are necessary for the formation of the capsule 

(Rodrigues et al. 2008). The enzymes laccase, which synthesizes melanin, phospholipase B, 

and urease are also transported in the “delivery bags” (Rodrigues et al. 2008; Kronstad et al. 
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2011).  In mice, these “delivery bags” induce production of TNF-α, IL-10, TGF-β, and nitric 

oxide (NO), and alternatively activate macrophage antimicrobial activity (Oliveira et al. 2010). 

Cryptococcus is a facultative intracellular pathogen and has developed a variety of strategies 

to avoid being killed by macrophages (Garcia-Rodas and Zaragoza 2012).  These mechanisms 

are separated into two groups, capsule-dependent and capsule-independent (Garcia-Rodas and 

Zaragoza 2012).  The capsule itself acts as a physical barrier that successfully inhibits 

mannose-binding lectin, binding and conceals surfactant protein A binding sites, which can 

opsonize fungal cells (Seider et al. 2010; Garcia-Rodas and Zaragoza 2012).  It is also able to 

bind to CD14 and both TLR2 and TLR4, which translocate NF-κB to the nucleus, inhibiting 

the secretion of TNF-α; this inhibition causes a deficient activation of macrophages (Garcia-

Rodas and Zaragoza 2012).  Glucuronoxylomannan (GXM) affects neutrophils by reducing 

expression of L-selectin (CD62L), thus impairing neutrophil migration; restraining neutrophil 

rolling on the endothelium; and inducing the loss of tumor necrosis factor receptor (TNFR), 

which inhibits neutrophil activation by TNF- α (Urban et al. 2006).  C. neoformans is also able 

to produce enlarged “titan” cells (Garcia-Rodas and Zaragoza 2012; Okagaki and Nielsen 

2012).  Titan cells are 5 to 10 times larger than normal yeast cells and are characterized by an 

altered capsule structure, thickened cell wall, and increased ploidy (Okagaki and Nielsen 

2012).  Titan cells represent approximately 20% of the cryptococcal cell population during 

pulmonary infections (Okagaki and Nielsen 2012).  These titan cells are more resistant to 

phagocytosis as well as oxidative stress and nitrosative antimicrobial mechanisms (Okagaki 

and Nielsen 2012).  Cryptococcus is able to secrete antiphagocytic protein 1 (APP1) which 

binds to the complement receptors CR2 and CR3, thereby inhibiting phagocytosis mediated by 

these receptors (Stano et al. 2009; Garcia-Rodas and Zaragoza 2012).  Recently, the 
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pleiotropic virulence determinant Gat201 has been shown to be important in the 

antiphagocytic activity of Cryptococcus (Garcia-Rodas and Zaragoza 2012).  Mutants lacking 

Gat201 had a basal capsule and were more readily phagocytized than acapsular mutants 

(Garcia-Rodas and Zaragoza 2012). 

In vitro and in vivo, Cryptococcus has been observed to be able to exit macrophages through 

phagosomal extrusion, avoiding pathogen and host cell death, as quickly as 2 hours after 

phagocytosis (Alvarez and Casadevall 2006).  This process occurs when a mature phagosome 

containing Cryptococcus fuses with the plasma membrane and the yeast cells are expulsed into 

the extracellular space (Ma et al. 2006; Casadevall 2010).  This mechanism is used by both C. 

neoformans and C. gattii, but they differ slightly from one another (Alvarez and Casadevall 

2006).  C. neoformans var. grubii has been observed being ejected as individual cells, while C. 

neoformans var. neoformans and C. gattii are expulsed as yeast cells accumulated in a 

polysaccharide matrix (Alvarez and Casadevall 2006). 

Systemic dissemination of Cryptococcus from the lungs can occur though different 

mechanisms.  In vitro, Cryptococcus has been shown to adhere and be internalized by 

pulmonary epithelial cells (Filler and Sheppard 2006).   Also, human type II pneumocytes, 

which cover approximately 5% of the surface area of alveoli, have a receptor for GXM, which 

allows them to internalize Cryptococcus (Filler and Sheppard 2006; Zhao et al. 2010).  

Another mechanism Cryptococcus can use to disseminate from the lungs is a “Trojan horse” 

approach (Figure 3), in which Cryptococcus uses an infected phagocyte as transportation 

(Casadevall 2010).  Infected phagocytes can then migrate through blood vessels and cross the 

blood-brain barrier (BBB) carrying Cryptococcus (Casadevall 2010).  The second strategy that 

Cryptococcus can use to cross the BBB is by direct transcytosis of free yeast cells (Casadevall 
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2010).  This is achieved when cryptococcal cells stop suddenly, without rolling or tethering, in 

the capillaries adjacent to the meninges, most likely due to their inability to pass through the 

narrow capillary (Casadevall 2010; Shi et al. 2010).  Following this microembolic event, 

cryptococcal cells are observed crossing the capillary wall in a manner that requires the 

deformation of cell morphology, and is urease dependent (Casadevall 2010; Shi et al. 2010). 

Cryptococcal hyaluronic acid interacts with CD44 of brain microvascular endothelial cells 

(BMEC), which activates protein kinase C α (PKCα) (Jong, Wu, Prasadarao, et al. 2008; Jong, 

Wu, Shackleford, et al. 2008).  PKCα in turn regulates actin rearrangement in BMEC, 

facilitating yeast internalization (Jong, Wu, Prasadarao, et al. 2008).  It has also been shown 

that dual specificity tyrosine phosphorylation-regulation kinase 3 is required for internalization 

of Cryptococcus, suggesting that Cryptococcus may use the endocytic signaling pathway to 

facilitate transcytosis of BMEC (Huang et al. 2011).  
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Figure 3. Cryptococcal mechanisms of crossing the blood-brain barrier (Kronstad et al. 

2011). Used with permission from Nature Publishing Group (License number 

3172560360717) 

 

Virulence Factors 

The ability to grow at 37°C, melanin synthesis, and the capsule are the three major virulence 

factors of Cryptococcus. 

The only Tremellales that are capable of growing optimally at temperatures superior to 30°C 

are C. neoformans and C. gattii (Bovers et al. 2008).  This allows Cryptococcus to grow in the 

environment of the human body which is at 37°C (Perfect 2005).  Mutants of Cryptococcus 

that are unable to grow at temperatures above 30°C have been shown to be avirulent in 

mammalian models (Perfect 2005). Over 15 genes have been shown to be associated with high 

temperature growth of Cryptococcus, but these most likely represent a fraction of the genes 

necessary for growth at 37°C (Perfect 2005). Calcineurin A (CNA1) gene has been shown to 
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be necessary for survival at 37°C, and regulates pathogenicity (Buchanan and Murphy 1998; 

Alspaugh et al. 2000; Perfect 2005).   Ras proteins serve as molecular switches and are 

implicated in the activation of many signaling pathways; Cryptococcus with a mutated RAS1 

gene is not viable at 37°C, has a severe defect in mating and poorly adheres to the surface of 

the agar (Alspaugh et al. 2000).  The guanine nucleotide exchange factor Cdc24, a RAS1 

effector, functions in a RAS1 signaling cascade and is important for Cryptococcus growth at 

37°C (Nichols et al. 2007).  Rac1, a small G protein, interacts with Ste20, a PAK kinase, and 

acts downstream of Ras proteins to control both growth at elevated temperatures and cellular 

differentiation (Vallim et al. 2005).   ROM2 is necessary for growth at 37°C because it is 

involved in actin and microtubule organization specifically at high temperatures (Fuchs et al. 

2007). 

The production of melanin, a brown or black pigment, protects Cryptococcus from oxidative 

host defenses, phagocytosis, ionizing radiation, heavy metals and UV light (Mitchell and 

Perfect 1995; Buchanan and Murphy 1998; Langfelder et al. 2003; Eisenman et al. 2009).  

Melanized Cryptococcus cells are also less susceptible to the antifungal drugs amphotericin B 

and caspofungin (van Duin et al. 2002; Walton et al. 2005).  Melanin is produced in 

intracellular vesicles and transported to the cell wall where melanin granules are incorporated 

into the cell wall (Eisenman et al. 2007; Eisenman et al. 2009).  Melanogenesis is 

accomplished when cryptococcal laccase catalyzes phenol components, such as both L- and 

D- 3, 4-dihydroxyphenylalanine (L- or D- DOPA) but not tyrosine, to dopaquinone (Buchanan 

and Murphy 1998; Eisenman et al. 2007; Frases et al. 2007).  Dopaquinone is then rearranged 

to dopachrome and polymerized to melanin, both of which are spontaneous events (Buchanan 

and Murphy 1998).  The brain is a tissue that is rich in phenol components, which could partly 
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explain why the brain is a target of Cryptococcus (Buchanan and Murphy 1998; Nosanchuk et 

al. 2000).  Melanization is also dependent on other factors such as the copper transporter CC2, 

the copper chaperone Atx1, the chitin synthase Chs3, the transcriptional coactivator Mbf1, and 

the chromatin-remodeling enzyme Snf5 (Walton et al. 2005).  Melanin reduces the production 

of TNF-α from alveolar macrophages and shields the yeast from microbicidal proteins 

(Jacobson 2000). Since melanin is negatively charged it effectively neutralizes neutrophil 

defensins as well as other cationic antimicrobial peptides (Liu and Nizet 2009).  It can also 

reduce the amount of ferric iron, by converting Fe3+ to Fe2+, thus improving survival of 

Cryptococcus in vivo (Liu and Nizet 2009). 

The polysaccharide capsule is the most important virulence factor of Cryptococcus.  It is 

responsible for inhibition of phagocytosis, alterations in cytokine secretion by leukocytes, 

impairment of complement recognition, resistance to NO and reactive oxygen species (ROS), 

reduction of antibody production and leukocyte migration, down-regulation of MHC I, II, and 

CD83, inducing the shedding of L-selectin from neutrophils and a non-protective Th2 

response to Cryptococcus (Kozel et al. 1991; Buchanan and Murphy 1998; Lupo et al. 2008; 

Zaragoza et al. 2008; De Jesus et al. 2009).  Cryptococcal polysaccharides interact with CD18 

on neutrophils, inhibiting them from adhering to endothelial cells, thus inhibiting their 

migration to the site of infection (Dong and Murphy 1997).  The capsule can also increase the 

expression of CTLA-4 on CD4+ T cells, which reduces the production of IFN-γ and IL-2, and 

inhibits T cell proliferation (Pietrella, Perito, et al. 2001).  It has the ability to mask C3b and 

C3bi deposits, which facilitate binding of Cryptococcus to CR3 on leukocytes, and block the 

Fc fragment on antibodies, which binds to the Fc receptor on phagocytes (Buchanan and 

Murphy 1998). 
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The capsule is composed of approximately 90% glucuronoxylomannan (GXM), 7% 

galactoxylomannan (GalXM), and the remaining 3% is composed of mannoprotein (Bose et al. 

2003).  CAP genes (CAP59, CAP64, CAP60, CAP10) are all individually necessary for 

capsule biosynthesis (Janbon 2004; Zaragoza et al. 2009).  GXM is responsible for many 

different pathological properties that are attributed to the capsule (Perfect 2005).  GXM can 

interfere with E-selectin binding, as well as down-regulate C5aR on neutrophils, which inhibit 

migration (Ellerbroek et al. 2004; Monari, Kozel, et al. 2006).  GXM is handled differently by 

PMNs and macrophages; in macrophages there is continuous intracellular accumulation of 

GXM while in PMNs it is expulsed from the cell (Zaragoza et al. 2009).  This differential 

handling of GXM is reflected on cytokine production, where in macrophages GXM induces 

IL-10, IL-8, TNF-β, and IL-6; while TNF-α, IL-1β, IL-6 and IL-8 production is increased in 

neutrophils (Zaragoza et al. 2009).  The production of TNF-β inhibits T cell proliferation and 

down-regulates MHC-II and B7 expression (Monari, Bistoni, et al. 2006).  GXM can also 

induce macrophage apoptosis by dissociating the tetramers of 6-phosphofructo-1-kinase 

(PFK), therefore inhibiting the glycolytic pathway (Grechi et al. 2011). GXM also interacts 

with CD18 and FcγII, which down-regulates caspase-3 activity, promoting NO-dependent 

apoptosis of macrophages (Chiapello et al. 2008).  GalXM is located in discrete pockets on the 

outer edge of the capsule, and is a transient component of the capsule (De Jesus et al. 2009).  It 

strongly induces the production of TNF-α and NO, as well as the production of IL-6, IL-10, 

and IFN-γ (Pericolini et al. 2006; Villena et al. 2008; Zaragoza et al. 2009).  GalXM is also 

able to induce Fas/ FasLigand expression, which leads to macrophage apoptosis (Villena et al. 

2008). Increased Fas/FasL expression also induces apoptosis of T lymphocytes by activating 

caspase-8 (Pericolini et al. 2006).  Mannoprotein induces an increase in TNF-α production, 
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and regulates the expression of other cytokines in monocytes such as IL-12, IL-6, IL-8, IFN-γ, 

and IL-10 (Zaragoza et al. 2009).  Mannoprotein 4 reduces the expression of L-selectin and 

TNF receptor on neutrophils (Coenjaerts et al. 2001). 

The ability of Cryptococcus to secrete extracellular enzymes, laccase, phospholipase, and 

urease, is an important contribution to its virulence (Kronstad et al. 2011).  Only C. 

neoformans and C. gattii produce laccase (Chan and Tay 2010).  Laccase is important to 

virulence because it facilitates the production of melanin (Buchanan and Murphy 1998; Frases 

et al. 2007).  The two conditions that induce LAC1 are a low concentration of glucose or a 

high concentration of copper (Zhu and Williamson 2004).  IPC1, GPA1, MET3, and STE12 

are all involved in the regulation of laccase (Noverr et al. 2004).  Laccase is able to oxidize 

phagosomal iron in macrophages, limiting the formation of hydroxyl radicals (Liu et al. 1999).   

Cryptococcus also secrets phospholipases, including lysophospholipase, lysophospholipase 

transacylase, and phospholipase B (PLB), which are most active between 25°C and 40°C 

(Santangelo et al. 1999). The activation of SEC14 is required for the secretion of PLB 

(Chayakulkeeree et al. 2011).  PLB can hydrolyze the phospholipids PG and DPPC, the most 

common components of lung surfactant, which facilitates adherence of Cryptococcus to lung 

epithelial cells and dissemination (Santangelo et al. 1999; Djordjevic 2010).  In macrophages, 

the disruption of the phagolysosome membrane by PLB1 is required for non-lytic extrusion of 

Cryptococcus (Djordjevic 2010; Chayakulkeeree et al. 2011).  The enzyme urease is a key 

virulence factor, because it has been shown to increase the accumulation of immature dendritic 

cells and induce a non-protective Th2 response (Osterholzer, Surana, et al. 2009; Li and Mody 

2010).  Urease also promotes microvascular sequestration, enhancing the ability of 

Cryptococcus to invade the central nervous system (CNS) (Olszewski et al. 2004). 
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Cryptococcus also has other elements that play a minor role in virulence.  Cryptococcus 

encounters a hostile nutrient environment in the phagosomes of macrophages, and in order to 

survive Cryptococcus undergoes autophagy (Hu, Hacham, et al. 2008).  Autophagy is the 

recycling of the cells` cytoplasm and defective organelles in order to survive in high stress 

conditions (Hu, Hacham, et al. 2008; Palmer et al. 2008).  PI3K signaling is required in 

Cryptococcus to survive during nutrient-deprived conditions; it also plays a role in vesicular 

transportation of vacuolar hydrolases (Hu, Hacham, et al. 2008; Palmer et al. 2008).  The 

interconversion of CO2 and HCO3 is catalyzed by carbon anhydrases, which allow 

Cryptococcus to regulate CO2 levels (Elleuche and Poggeler 2010).   Adenylyl cyclase helps 

regulate CO2 concentrations by acting as a CO2 chemosensor (Klengel et al. 2005).  

Glucosylceramide has been shown to be associated with the cell wall, and allows 

Cryptococcus to survive in alkaline conditions (Rhome et al. 2007).  Gcn5, a histone 

acetyltranferase, facilitates survival at high temperatures, decreases sensitivity to oxidative 

stress, and is important in capsule attachment to the cell surface (O'Meara et al. 2010).  The 

sexual mating type of Cryptococcus plays a role in virulence, and the majority of clinical 

samples are MATα (Nielsen et al. 2005; Li and Mody 2010).  The STE12α gene exists only in 

MATα cells, and is involved in capsule and melanin production (Chang et al. 2000).  Ctr2 

regulates copper homeostasis and is important in the production of the polysaccharide capsule 

and inhibition of phagocytosis (Chun and Madhani 2010).  The PKC1 protein and its 

downstream components are essential for cryptococcal defense against nitrosative and 

oxidative stresses, as well as playing a role in temperature sensitivity, capsule production, and 

the synthesis of melanin (Gerik et al. 2008).  C. neoformans produces D-mannitol, which 

protects the yeast cells from free radicals (Niehaus and Flynn 1994; Guimaraes et al. 2010).  
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Superoxide dismutase (SOD) is an enzyme that has the ability to neutralize toxic levels of 

superoxide radicals by converting them into hydrogen peroxide and oxygen (Cox et al. 2003).  

Copper and zinc SODs are vital for the survival of C. gattii in neutrophils, and in the 

expression of laccase, urease, and phospholipase (Narasipura et al. 2003).  The trehalose 

synthesis pathway, controlled by synthesis genes TPS1 and TPS2, regulates protein secretion, 

mating, and cell wall integrity in C. gattii (Ngamskulrungroj et al. 2009). 

 

Clinical Manifestations 

The majority of humans have already been exposed to Cryptococcus before the age of 5 years 

(Bovers et al. 2008).  Humans frequently come in contact with Cryptococcus, but 

immunocompetent individuals are able to either clear it or it remains latent (Bovers et al. 

2008).  The incubation period for C. neoformans infection is on average 110 months, while the 

incubation of C. gattii from Vancouver Island was determined to have a shorter incubation 

period of between 2 and 11 months, with the average being 6 or 7 months (MacDougall and 

Fyfe 2006; Kidd, Chow, et al. 2007).  A majority of cryptococcosis patients are 

immunodeficient, including patients with AIDS, organ transplant recipients (primarily kidney 

and liver), patients receiving immunosuppressive medications, and patients with diabetes, or 

an autoimmune disease (Shirley and Baddley 2009; Li and Mody 2010; Pfaller and Diekema 

2010; Warkentien and Crum-Cianflone 2010).  Interestingly, it is extremely rare for a patient 

with either cancer or bone marrow transplant to be infected with Cryptococcus (Pukkila-

Worley and Mylonakis 2008).  The age of the patient also seems to be a factor in 

Cryptococcus infections.  Children are rarely affected by Cryptococcus, and the incidence of 

cryptococcosis in children with AIDS is extremely low at around 1% (Subramanian and 
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Mathai 2005; Severo et al. 2009; Pfaller and Diekema 2010).  The mean age of  Cryptococcus-

infected HIV-negative individuals is ≥45 years (Pfaller and Diekema 2010).  The sex of the 

individual also seems to be an important risk factor as males are 3 times more likely to be 

infected by Cryptococcus than females (Chen et al. 2000; Subramanian and Mathai 2005; Li 

and Mody 2010).   A retrospective study done by Subramanian et al. showed that, out of the 

105 cryptococcosis cases in their center, 90% of the patients were male (Subramanian and 

Mathai 2005).  

Cryptococcosis is caused by C. neoformans and C. gattii and most commonly affects the lungs 

and the brain (Sorrell 2001).  It is considered to be the most common cause of fungal 

meningitis (Sorrell 2001).  The site, degree of severity of cryptococcal infection, and the 

health status of the patient can affect the clinical manifestations of cryptococcosis, ranging 

from being asymptomatic or a cough to meningoencephalopathy or even death (Li and Mody 

2010). There are numerous signs and symptoms of cryptococcal infection, and they do not all 

necessarily manifest in every case (Li and Mody 2010).  These include: cough, headache, 

fever, nausea, chest pain, loss of weight, profound hearing or visual loss, altered mental state, 

and coma (Pappalardo and Melhem 2003; Black and Baden 2007; Baddley et al. 2008; Costa 

et al. 2009; Li and Mody 2010).  Chest X-rays are performed when the patient displays 

pulmonary disease.  Chest X-ray findings in cryptococcosis include solitary or multiple small 

nodules (60-80% of cases), which resemble those of tuberculosis (Subramanian and Mathai 

2005; Shirley and Baddley 2009).  The diagnosis is then confirmed through biopsy, cultures of 

bronchoalveolar lavage and cerebrospinal fluid (CSF), and detection of Cryptococcus 

polysaccharide in serum or CSF (Goldman et al. 1995; Subramanian and Mathai 2005).  The 

lungs are primarily infected by Cryptococcus since they are the portal of entry (Dixit et al. 
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2009; Li and Mody 2010; Kronstad et al. 2011).  Immunocompetent patients are normally able 

to contain Cryptococcus infection in the lungs (Shankar et al. 2007).  Dissemination through 

the bloodstream most commonly leads to infection of the CNS, but Cryptococcus can also 

infect other organs including the skin, eyes, prostate, liver, urinary tract, bones, mucus 

membranes (mouth, larynx and anal region), and joints (Subramanian and Mathai 2005; Dixit 

et al. 2009; Li and Mody 2010).  Dissemination from the lungs to other organs occurs in 50% 

of immunocompromised patients (Shankar et al. 2007).  A meningoencephalitis occurs when 

Cryptococcus disseminates to the brain, and predominantly occurs in AIDS patients (Li and 

Mody 2010; Pfaller and Diekema 2010).  Dissemination to the brain is more common with C. 

gattii than with C. neoformans (Galanis et al. 2009).  On chest X-rays, C. gattii appears as 

large inflammatory masses while C. neoformans presents as small pulmonary lesions (Severo 

et al. 2009).  C. gattii can also be differentiated from C. neoformans because of its slightly 

greenish coloration when growing on creatinine dextrose bromothymol blue thymine medium, 

while C. neoformans develops as either bright red colonies (serotype D) or pale colonies 

(serotype A) (Irokanulo et al. 1994).  

 

Treatment 

Untreated cases of cryptococcal meningitis have a mortality rate of 100% (Pfaller and 

Diekema 2010).  In the 1950’s, the introduction of amphotericin B monotherapy (0.4 

mg/kg/day), given intravenously (IV) for six weeks, improved the cure rate of cryptococcal 

meningitis to over 50%, but dose-related nephrotoxicity was a frequent adverse event 

(Subramanian and Mathai 2005; Pfaller and Diekema 2010).  To decrease toxicity, liposomal 

amphotericin B was developed, and has been shown to be safe and effective, although more 
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costly than regular amphotericin B (Subramanian and Mathai 2005).  Flucytosine 

monotherapy has been previously used, but usually results in Cryptococcus developing 

resistance (Subramanian and Mathai 2005).  The combination of amphotericin B (0.5-1 

mg/kg/day) or liposomal amphotericin B (3-4 mg/kg/day) with oral flucytosine (150 

mg/kg/day) for 2 weeks (induction phase) followed by oral fluconazole (400 mg/day) 

maintenance therapy for 10 weeks is now the standard treatment regimen for cryptococcal 

meningitis (Subramanian and Mathai 2005; Perfect et al. 2010; Pfaller and Diekema 2010).  

This combination therapy has shown sustained clearance of Cryptococcus from the CNS 

(60%) compared to amphotericin B monotherapy (51%) (Subramanian and Mathai 2005).  In 

the case of mild to moderate pulmonary infections the recommended treatment is fluconazole 

(200-400 mg/day) for up to 36 months (Subramanian and Mathai 2005; Ritter and Goldman 

2009; Perfect et al. 2010). Certain patients cannot tolerate fluconazole; these patients are then 

treated with itraconazole (200-400 mg/day) for 4-12 months (Subramanian and Mathai 2005; 

Ritter and Goldman 2009).  Itraconazole is hydrophobic, thus the drug is accumulated in the 

host cells and reduces its penetration of the CNS (Subramanian and Mathai 2005; Gomez-

Lopez et al. 2008).  AFR1 efflux pumps of C. neoformans have been shown to be important to 

its ability to become resistant to azoles (Morschhauser 2010).  Cryptococcosis patients with 

AIDS are given chronic suppressive therapy with fluconazole (200 mg/day) to prevent relapse 

(Subramanian and Mathai 2005).  In Africa, amphotericin B is not readily available, thus 

patients are treated with fluconazole monotherapy, with a clinical cure rate of 63% in AIDS 

patients (Subramanian and Mathai 2005).  Dosage of fluconazole can be increased to 800 

mg/day for patients who show no improvement (Subramanian and Mathai 2005).  If the 

infection is persistent, then the induction phase can be reinstituted for a longer period, as well 
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as increasing the dosage for amphotericin B and flucytosine (Perfect et al. 2010).  Also, 

recombinant IFN-γ treatment (100 μl/m2 for adults who weigh over 50 kg) 3 times a week for 

10 weeks can be added to the patients’ treatment (Perfect et al. 2010).  Dexamethasone, a 

corticosteroid, has been used to treat persistent C. gattii infections (75%), where patients 

present with worsening mental status and/or inflammatory lesions on brain images (Phillips et 

al. 2009).  Interestingly, radioimmunotherapy has been shown to be more effective than 

amphotericin B by almost completely eliminating Cryptococcus from the lungs and brain in 

mice (Bryan et al. 2010).  
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CHAPTER 2- HOST IMMUNE RESPONSE TO CRYPTOCOCCUS 

Immune cell response to Cryptococcus 

Alveolar Macrophages 

The first immune cells exposed to Cryptococcus following its inhalation into the lungs are 

alveolar macrophages (Osterholzer, Milam, et al. 2009; Garcia-Rodas and Zaragoza 2012). 

Macrophages are derived from granulocyte/macrophage progenitor cells in the bone marrow 

(Goldsby and Goldsby 2003).  Progenitor cells differentiate into pro-monocytes and enter the 

circulation, where they mature into monocytes (Goldsby and Goldsby 2003).  Monocytes 

leave the circulation and then differentiate into different phenotypes according to their 

location: osteoclasts in bones, Kupffer cells in the liver, microglia in neural tissue, histiocytes 

in connective tissue, and alveolar macrophages in the lungs (Goldsby and Goldsby 2003). 

Phagocytosis by macrophages can be initiated through adherence to a microorganism, viral 

particles, or through the use of antibodies or complement particles that act as opsonins 

(Goldsby and Goldsby 2003).  

Macrophage recognition normally occurs through antibodies that are bound to Cryptococcus 

and bind to the Fcγ receptors, or by complement component C3b which binds to CR3 on 

macrophages; however, it has been shown that alveolar macrophages do not need opsonins to 

phagocytize Cryptococcus (Casadevall and Pirofski 2005).  Macrophages have been shown to 

recognize GXM of the cryptococcal capsule (Chang et al. 2006).  Chitosan, which is present in 

the cell wall of Cryptococcus, can also be recognized by macrophages and this interaction 

induces an inflammatory response (Gorzelanny et al. 2010).  Other than direct antifungal 

activity, macrophages have an assortment of roles, which include antigen presentation, 

polysaccharide sequestration, and cytokine and chemokine production (He et al. 2003). There 
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is an increased production of MCP-1, which stimulates recruitment of monocytes and T cells 

to the site of inflammation, and TNF-α, which promotes DC cell migration from tissues to 

lymph nodes, induces chemokines, and up-regulates antigen presentation by macrophages in 

response to Cryptococcus (Herring et al. 2002; He et al. 2003).   Macrophages can be 

classically activated by IFN-γ, which induces an anti-cryptococcal Th1 response, or they can 

be alternatively activated by IL-4, prompting a non-protective Th2 response (Arora et al. 

2011). If the concentrations of both IL-4 and IFN-γ are relatively equal, macrophages are 

intermediately activated and express both nitric oxide synthase (Th1 response) and arginase 

(Th2 response) (Arora et al. 2011).  The activation phenotype of macrophages is important, 

because it predicts fungal clearance or persistence (Hardison, Ravi, et al. 2010).  Classically 

activated macrophages also produce IL-6 and IL-23, which are important for differentiating 

naïve CD4+ T lymphocytes into the Th17 subset (Hardison, Wozniak, et al. 2010).  Activation 

markers, MHC-II, adhesion molecule ICAM-1 and FcγR, are all up-regulated when 

macrophages are exposed to Cryptococcus (Kawakami et al. 1994). In both rat and rabbit 

models, alveolar macrophages showed increased levels of oxidative metabolism, phagocytosis, 

as well as lower pH in phagolysosomes as soon as 24 h after exposure to Cryptococcus (Gross 

et al. 1997; Nessa et al. 1997).  Macrophages are also able to produce reactive oxygen 

intermediates and nonoxidative mediators, which can kill Cryptococcus (Schop 2007).  After 

phagocytosis of Cryptococcus, macrophages fail to respond as well to chemokines, which 

allows the host to contain the infected macrophages and reduce dissemination (Luo et al. 

2009).   

  



  

26  

Dendritic Cells 

Dendritic cells (DC) are, along with alveolar macrophages, one of the first immune cells to 

interact with Cryptococcus (Osterholzer, Milam, et al. 2009).  There are two major types of 

DCs: myeloid DCs, which are important for antigen presentation and the induction of the 

adaptive immune response, and plasmacytoid DCs, which play a role in antiviral immunity 

and produce type I IFN (Ueno et al. 2010).   Immature DCs capture foreign antigens through 

phagocytosis, receptor-mediated endocytosis, or pinocytosis; they then mature and migrate to 

secondary lymphoid organs in order to present the antigen to T lymphocytes (Goldsby and 

Goldsby 2003; Andersson et al. 2008).  All dendritic cell populations constitutively express 

MHC class I and II as well as the co-stimulatory molecules, CD80 and CD86 (Goldsby and 

Goldsby 2003).  They also express CD40, which activates T and B lymphocytes by interaction 

with CD40L (Goldsby and Goldsby 2003).  

DCs have the capacity to perform phagocytosis and kill Cryptococcus, but require the use of 

opsonins, either complement or antibodies (Wozniak and Levitz 2008).  Following 

phagocytosis, Cryptococcus is processed via the endocytic pathway for presentation with 

MHC-II (Wozniak and Levitz 2008).  In a murine model, DCs have been shown to be 

necessary for survival to a cryptococcal infection (Osterholzer, Milam, et al. 2009).  In DC-

depleted mice, death was caused by a massive accumulation of neutrophils and B lymphocytes 

that causes neutrophil bronchopneumonia, cyst formation, and alveolar damage (Osterholzer, 

Milam, et al. 2009).  The co-stimulation of CD40 and CD40L is necessary for an efficient 

immune response to Cryptococcus, because it regulates cytokine production, T cell activation, 

CD28 co-stimulatory molecule expression, and NO2
- production (Chen et al. 2010).  

Pulmonary recruitment of DC is dependent on CCR2, and up-regulation of its ligands MCP-1 



  

27  

and MCP-3 (Osterholzer et al. 2008).  Both macrophages and DCs have mannose receptors 

and FcγR II, required for the uptake of Cryptococcus, but DCs are more efficient at presenting 

antigens to T lymphocytes (Syme et al. 2002).  The interaction of cryptococcal mannoproteins 

with mannose receptor CD206, CD209 (DC-SIGN), and FcγRII of dendritic cells induces 

differentiation of naïve T lymphocytes towards a Th1 response, through the increased 

expression of maturation markers CD80, CD86, MHC II, and co-stimulatory molecule CD40, 

which increases IL-12 production (Mansour et al. 2002; Syme et al. 2002; Dan et al. 2008).  In 

a murine model, DCs originating from the bone marrow can recognize C. neoformans with 

TLR9 and TLR2, but not TLR4, and activate the MyD88 pathway, leading to the production 

of IL-12 and IL-23 (Netea et al. 2004; Yauch et al. 2004; Biondo et al. 2005).  GXM can 

associate with TLR4 and CD14, but DC activation is incomplete and does not stimulate TNF-

α production (Shoham et al. 2001). 

 

Neutrophils 

Neutrophils are formed in the bone marrow through hematopoiesis and circulate in the 

peripheral blood (Goldsby and Goldsby 2003).  Upon inflammatory stimulation, neutrophils 

rapidly migrate to infected tissue sites (Zhang et al. 2005).  The lung vasculature contains 

approximately 40% of the total body’s polymorphonuclear neutrophil (PMN) population, 

although only a few PMNs can be observed in the alveolar space in normal states (Zhang et al. 

2005). 

PMN recruitment is vital to the protective immune response to Cryptococcus infections (Ye et 

al. 2001).  Cryptococcus stimulates the production of IL-17 by T lymphocytes, which recruits 

PMNs to the site of infection and enhances neutrophil phagocytosis and antimicrobial 
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respiratory burst (Ye et al. 2001; Hardison, Wozniak, et al. 2010).  PMNs have been shown to 

be able to phagocytize Cryptococcus (Kozel et al. 1987).  Mannose binding lectin, a 

carbohydrate-binding protein, activates the lectin pathway of complement, as well as increases 

PMN phagocytosis of acapsular strains of Cryptococcus (van Asbeck et al. 2008).  PMNs can 

also directly kill Cryptococcus through the use of oxidative and non-oxidative mechanisms 

(Mambula et al. 2000).  Myeloperoxidase (MPO) is found in PMNs and, in the presence of 

hydrogen peroxide, produces hypochlorous acid (HOCl) and hydroxyl radicals (OH), which 

can kill Cryptococcus but requires a higher concentration than bacteria (Chaturvedi et al. 

1996; Mambula et al. 2000; Aratani et al. 2006).  PMNs have three major elements that have 

antimicrobial activity: primary and secondary granules and cytoplasm (Mambula et al. 2000).  

Granules fuse with phagosomes, after phagocytosis, and release their contents on the pathogen 

(Mambula et al. 2000).  Primary granules contain the antimicrobial substances: defensins, 

elastase, cathespsin G, collagenase, proteinase 3, bacterial permeability factor, and azurocidin 

(Mambula et al. 2000).  Lysozyme and lactoferrin are the antimicrobial proteins in secondary 

granules.  The cytoplasm contains the zinc-binding protein, calprotectin (Mambula et al. 

2000).  Of these substances, calprotectin, lysozyme, lactoferrin, and defensins inhibit or kill 

Cryptococcus (Mambula et al. 2000). 

 

CD4+ T lymphocytes 

CD4+ T lymphocytes circulate in the blood and lymph nodes until they are activated through 

contact with an antigen by antigen-presenting cells (Goldsby and Goldsby 2003).  CD4+ T 

lymphocytes can then differentiate into either Th1, Th2, Th17, or Treg sub-populations 

(Goldsby and Goldsby 2003).  The Th1 sub-population secretes IL-12, IFN-γ, and TGF-β; it is 
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also responsible for activating CD8+ cytotoxic lymphocytes and delayed type hypersensitivity 

(DTH) (Goldsby and Goldsby 2003).   Th2 lymphocytes secrete IL-4, IL-5, Il-6, and IL-10 

and also activate B lymphocytes (Goldsby and Goldsby 2003).  The Th17 sub-population is 

involved in inflammatory responses, auto-immune diseases, and resistance to pathogens 

(Goldsby and Goldsby 2003; Harrington et al. 2005).  Tregs have a strong immunosuppressive 

activity (Honda et al. 2011).  CD4+ T cells located in secondary lymphoid tissue are 

specialized for proliferation, but are poor effectors, while CD4+ T lymphocytes from the site 

of infection readily produce effector cytokines, but lack proliferative capacities (Lindell et al. 

2006).  In pulmonary C. neoformans infections, CD4+ T lymphocytes are recruited to the 

lungs through MCP-1 (Huffnagle et al. 1995). CD4+ T lymphocytes are able to kill C. 

neoformans through granulysin, which is dependent on IL-2, STAT5, and PI3K (Zheng et al. 

2007; Xing et al. 2010). Activated CD4+ T lymphocytes that are present in the CNS play an 

important role in leukocyte accumulation at this site (Buchanan and Murphy 1998).  CD4+ T 

lymphocytes are involved in the formation of granulomas, which traps Cryptococcus in 

multinucleated giant cells, and helps prevent dissemination (Hill 1992). 

 

Th1, Th2, Th17 response 

Th1 cell-mediated immunity is driven by the production of IFN-γ, TNF-α, and IL-12 (Herring 

et al. 2002; Arora et al. 2011). The Th1 response results in leukocyte recruitment and the 

production of granulomas, containing classically activated macrophages, promoting 

cryptococcal clearance (Huffnagle et al. 1995; Jain et al. 2009).  CCR2 is required for the 

promotion of Th1 differentiation in the lymph nodes in response to C. neoformans (Traynor et 

al. 2002).  TNF-α, one of the first cytokines produced by activated macrophages, is necessary 
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for driving the production of IFN-γ by APCs and IL-12 by T and NK cells, which induces a 

protective Th1 response (Herring et al. 2002).  Higher concentrations of IFN-γ and TNF-α, as 

well as G-CSF and IL-6, in the cerebrospinal fluid (CSF) resulted in a faster decline in 

cryptococcal CFUs in the CSF (Siddiqui et al. 2005).   

Contrary to Th1 responses, Th2 immune responses are non-protective (Jain et al. 2009).  Th2 

responses are driven by the production of IL-4, IL-5, and IL-13 and are characterized by 

pulmonary eosinophilia, alternatively activated macrophages, increased mucus production, 

and elevated airway hyperactivity (Muller et al. 2007; Jain et al. 2009). Th2-activated 

macrophages have significantly lowered anticryptococcal activities, and they also have a lower 

rate of cryptococcal expulsion, compared to Th1- or Th17-activated macrophages (Voelz et al. 

2009).  GM-CSF, which activates macrophages and increases their antifungal and antibacterial 

activities, plays a dual role in the immune response to C. neoformans (Chen et al. 2007).  It 

induces the production of Th2 cytokines, producing a nonprotective Th2 response, but also 

stimulates the production of Th1 cytokines, producing a protective Th1 response (Chen et al. 

2007).  Th2 responses are responsible for inhibiting anticryptococcal functions, thus 

promoting a chronic Cryptococcus infection (Voelz et al. 2009; Voelz and May 2010). 

The Th17 immune responses are characterized by the secretion of IL-17, IL-6, and TNF-α, 

which leads to an increased inflammatory response and clearance of C. neoformans in the 

lungs (Kleinschek et al. 2006; Kleinschek et al. 2010).  IL-23, secreted by macrophages and 

DCs, stabilizes the differentiation of Th17 CD4+ T lymphocytes during the immune response 

(Kleinschek et al. 2010).  IL-13 expression down-regulates the Th17 response and induces a 

non-protective Th2 immune response (Muller et al. 2007).  Both Th1 and Th17 cells are 

essential to the anticryptococcal immune response by decreasing cryptococcal intracellular 
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proliferation and expulsion, but have no effect on dissemination (Voelz et al. 2009; Zhang et 

al. 2009). 

 

CD8+ T lymphocytes 

CD8+ T lymphocytes are antigen specific cytotoxic cells that must first be activated by an 

antigen-presenting cell (Goldsby and Goldsby 2003).  The two mechanisms that CD8+ T 

lymphocytes use to kill a pathogen are by either mediating cell death through the Fas/FasL 

pathway, or through the production of cytotoxic proteins, such as perforin and granulysin 

(Waring and Mullbacher 1999; Goldsby and Goldsby 2003).  Anticryptococcal activity due to 

CD8+ T lymphocytes, in humans, is attributed to the secretion of granulysin (Ma et al. 2002).  

Granulysin secretion is dependent on presentation of cryptococcal mitogen to CD4+ T 

lymphocytes, which activates accessory cells such as monocytes or macrophages (Ma et al. 

2002).  The accessory cells produce IL-15, activating CD8+ T lymphocytes to produce 

granulysin (Ma et al. 2002). The JAK/STAT pathway was also found to be necessary for 

granulysin production in response to IL-15 and IL-21 (Oykhman and Mody 2010).  Granulysin 

causes cell death by interacting with lipids in the cell membrane and also by activating lipid-

degrading enzymes (Ma et al. 2002; Oykhman and Mody 2010).   

 

Natural killer cells 

Natural killer (NK) cells are important during the early immune response to Cryptococcus due 

to their ability to directly kill Cryptococcus without the help of accessory cells (Marr et al. 

2006). After the direct contact of NK cells and Cryptococcus, NK cells are activated and 

undergo degranulation and release granules containing perforin and granzyme A, B, and H 
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(Marr et al. 2009).  Perforin is necessary for NK cell anticryptococcal activity (Marr et al. 

2009).  Following direct contact with Cryptococcus, NK cells produce IFN-γ inducing the 

transcription of perforin (Marr et al. 2006; Marr et al. 2009).  Perforin secretion is dependent 

on activation of ERK1 and ERK2 through the PI3K pathway (Wiseman et al. 2007).  The 

interaction between NK cells and Cryptococcus also inhibits the production of GM-CSF and 

TNFα (Murphy et al. 1997).  NKT cells, which express both T cell and NK cell receptors, 

interact with C. neoformans and produce IFN- γ, increasing the protective Th1 response 

(Kawakami 2004). 

 

B lymphocytes 

B lymphocytes have been shown to play an important role against Cryptococcus in the 

absence of T lymphocytes, or T lymphocyte impairment, in the brain (Aguirre and Johnson 

1997).  The Cryptococcus capsule has been shown to stimulate B lymphocytes, but this 

interaction is not accompanied by increased antibody production (Rodrigues et al. 2005).   

IgM+ memory B lymphocytes are essential to encapsulated pathogens, due to their production 

of TNF-α, IFN-γ, and IL-12 (Subramaniam et al. 2009).  Antibody production by B 

lymphocytes plays a role in the cryptococcal immune response, but its protective effect is 

dependent on the quantity, specificity, and isotype composition of the antibody, and also the 

susceptibility of Cryptococcus (Casadevall and Pirofski 2005).  Antibodies can be specific to 

the capsule, proteins, and mannoproteins of Cryptococcus (Casadevall and Pirofski 2005; 

Robertson and Casadevall 2009).  Antibodies specific to GXM play a role in the inhibition of 

biofilm formation (Robertson and Casadevall 2009).  They can also bind to extracellular 

GXM, preventing GXM from inhibiting leukocyte recruitment (Casadevall and Pirofski 2005).  
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IgG1 bound to the cell wall of C. neoformans caused changes in lipid metabolism and 

produced specific differences in the pattern of phosphorylated proteins, which resulted in 

increased susceptibility to amphotericin B (McClelland et al. 2010).  Antibodies also act as 

opsonins, with complement components, due to the fact that macrophages phagocytize 

Cryptococcus only in the presence of opsonins (Macura et al. 2007).   

Protective and Non-protective Cytokine Response to Cryptococcus 

IL-1β 

The expression of IL-1β is induced by the activation of NF-κB, and is synthesized by 

monocytes, macrophages, and dendritic cells as an inactive precursor molecule (proIL-1β) 

(Fettelschoss et al. 2011; Contassot et al. 2012).  ProIL-1β is processed by a protease, usually 

caspase-1, to the active form of IL-1β (Fettelschoss et al. 2011).  IL-1β plays a critical role in 

the inflammatory response (Fettelschoss et al. 2011; Contassot et al. 2012).  GXM induces the 

production of IL-1β in both monocytes and neutrophils (Zaragoza et al. 2009). 

IL-2 

IL-2 is produced by recently activated T-cells (Goldsby and Goldsby 2003; Malek 2003).  The 

main function of IL-2 is to induce the production of Tregs and the differentiation of CD4+ T 

lymphocytes to effector T subsets following antigen-mediated activation (Malek 2003; 

Boyman and Sprent 2012).  IL-2 also plays a role in NK cell activation and proliferation, and 

B cell proliferation (Goldsby and Goldsby 2003). 
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IL-4 

IL-4 is produced by both Th2 lymphocytes and mast cells (Goldsby and Goldsby 2003).  It 

induces the differentiation of naïve CD4+ T lymphocyte to the Th2 subset (Goldsby and 

Goldsby 2003).  IL-4 is also the first signal in the induction of IgE synthesis by B cells (Jabara 

et al. 1991).  The secretion of IL-4 also induces the development of alternatively activated 

macrophages (Byers and Holtzman 2011). 

 

IL-6 

IL-6 is a pleiotropic cytokine that has a wide range of activities in inflammation, 

hematopoiesis, immune regulation, and ontogenesis (Furuya et al. 2010).  It was originally 

known as B cell differentiation factor, because it induces the final maturation of B cells into 

antibody-producing B cells (Kishimoto et al. 1995).  It is produced by both macrophages and 

endothelial cells (Goldsby and Goldsby 2003).  The production of IL-6 can be induced by all 

three capsule components of Cryptococcus (Zaragoza et al. 2009). 

 

IL-10 

IL-10 is an anti-inflammatory cytokine produced by both myeloid cells and lymphocytes, that 

can have effects on both the innate and adaptive immune responses (Trinchieri 2007; Bolpetti 

et al. 2010).  IL-10 has the ability to inhibit the pro-inflammatory cytokine production of 

APCs, which can suppress the function of NK cells and T lymphocytes (Trinchieri 2007).  All 

three components of the Cryptococcus capsule have the ability to induce IL-10 production 

(Zaragoza et al. 2009). 
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IL-12 

Macrophages and DCs produce IL-12 (Goldsby and Goldsby 2003).  IL-12 is a heterodimer 

and is essential for an immune response against cancer cells and microbial pathogens (Minkis 

et al. 2008).  It can induce a Th1 response, as well as enhance the cytotoxic activities of NK 

cells and CD8+ T lymphocytes (Wang et al. 2000; Minkis et al. 2008).  The mannoprotein 

component of the capsule of Cryptococcus can induce the production of IL-12 (Zaragoza et al. 

2009). 

IL-13 

IL-13 closely resembles IL-4, in that they both are important factors in up-regulating Th2 

responses, and they both use IL-4Rα-chain as a receptor (de Vries 1998; Muller et al. 2007). 

IL-13 also down-regulates the Th17 response, alternatively activates macrophages, and 

modulates goblet cell function (Muller et al. 2007).  IL -13 is mainly secreted by CD4+ Th2 

lymphocytes, but can also be produced by other T-cell subsets and DCs (de Vries 1998; Zhu et 

al. 1999) 

IL-17A 

IL-17A is mostly produced by Th17 lymphocytes, but can also be produced by γδ and CD8+ T 

lymphocytes and NKT cells (He et al. 2006; Xu and Cao 2010; Pappu et al. 2011).  Both IL-21 

and IL-23 play important roles in the maintenance of Th17 lymphocytes and IL-17A 

production (Pappu et al. 2011).  IL-21 stimulation of Th17 cells leads to the upregulation of 

the expression of IL-23R; IL-23 then interacts with IL-23R on Th17 lymphocytes and induces 

the production of IL-17A as well as other effector cytokines (Pappu et al. 2011; Siakavellas 
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and Bamias 2012).  IL-17A acts as a pro-inflammatory cytokine, and can induce the 

production of other cytokines, chemokines, antimicrobial peptides, thereby regulating 

neutrophil mobilization (Xu and Cao 2010; Pappu et al. 2011).   In vitro experiments have 

shown that treatment with IL-17A reduced C. neoformans proliferation and expulsion from 

macrophages, compared to IL-4 or IL-13 treated macrophages (Wozniak et al. 2011). 

 

IL-21 

IL-21 is mainly produced by CD4+ T lymphocytes, but also by NKT and CD8+ T 

lymphocytes under certain conditions (Yi et al. 2010).  IL-21 affects both the innate and 

adaptive immune responses by activating macrophages, CD8+ T lymphocytes, and NK cells, 

development of Th17 lymphocytes, and inducing the differentiation of B cells to plasma cells 

(Yi et al. 2010). 

 

TNF-α 

The primary source of tumor necrosis factor alpha (TNF-α) is activated macrophages, but it 

can also be produced by activated T lymphocytes (Goldsby and Goldsby 2003; De Paepe et al. 

2012).  TNF-α activates macrophages, T and B lymphocytes, and neutrophils (Goldsby and 

Goldsby 2003; De Paepe et al. 2012).  It also induces the production of other cytokines and 

cell adhesion molecules, and upregulates NF-κB signaling pathways (De Paepe et al. 2012).  

Cryptococcus inhibits the activation of neutrophils by TNF-α by inducing the loss of TNFR on 

neutrophils (Urban et al. 2006).  The capsule components of Cryptococcus induce production 

of TNF-α (Zaragoza et al. 2009).  Production of TNF-α is also induced in macrophages when 
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they are incubated with cryptococcal “virulence factor delivery bags” in vitro (Oliveira et al. 

2010). 

 

TGF-β 

Transforming growth factor β (TGF-β) is produced by many cell types including macrophages 

and T lymphocytes (Goldsby and Goldsby 2003; Kubiczkova et al. 2012). TGF-β is one of the 

most potent regulators of immune cells (Kubiczkova et al. 2012).  It is involved in B 

lymphocyte maturation and differentiation including stimulating isotype switching to IgA, 

inhibiting the transferrin receptor, and inducing MHC-II expression (Lebman and Edmiston 

1999; Goldsby and Goldsby 2003; Kubiczkova et al. 2012).  TGF-β also serves to differentiate 

naïve CD4+ T lymphocytes to the Th17 and Treg subsets (Jin et al. 2009).  In macrophages 

and monocytes, TGF-β plays a suppressive role, and can inhibit cell proliferation and down-

regulate the production of NO and ROS (Kubiczkova et al. 2012).  Cryptococcal extracellular 

vesicles induce the production of TGF-β when incubated with macrophages in vitro (Oliveira 

et al. 2010).  Macrophages activated through the alternate pathway are also able to produce 

TGF-β (Arora et al. 2011). 

 

IFN-γ 

Interferon-γ (IFN- γ) is secreted by Th1 lymphocytes, CD8+ T lymphocytes, and NK cells 

(Szabo et al. 2002; Goldsby and Goldsby 2003).  IFN- γ is a hallmark Th1 cytokine and it 

activates macrophages through the classical pathway (Szabo et al. 2002).  It also increases the 

expression of MHC I and II, which increase antigen presentation (Goldsby and Goldsby 

2003).  It has been shown that IFN- γ knockout mice have a higher fungal burden than wild 
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type mice infected with C. neoformans (Voelz et al. 2009; Voelz and May 2010).  Both 

GalXM and mannoproteins can induce production of IFN- γ (Zaragoza et al. 2009). 

 

MIP-1α (CCL3) 

Macrophage inflammatory protein 1α (MIP-1α) is produced mainly by macrophages, but can 

also be produced by monocytes, DCs, and lymphocytes (Cook 1996; Maurer and von Stebut 

2004).  MIP-1α has a wide variety of effects on both the adaptive and innate immune 

responses, and induces the recruitment of CD8+ T and B lymphocytes, monocytes, 

eosinophils, and NK cells (Cook 1996).  It can also stimulate basophils to release histamines, 

the degranulation of mast cells, and the production of TNF-α, IL-1, and IL-6 (Cook 1996).  

Human microglial cells have been shown to produce MIP-1α when they are exposed to C. 

neoformans, in vitro (Goldman et al. 2001).  Sixteen days after being infected with C. 

neoformans, MIP-1α knockout mice have seven times the organ fungal burden compared to 

wild type mice (Olszewski et al. 2000). 

 

MIP-1β (CCL4) 

Macrophages are mostly responsible for the production of macrophage inflammatory protein-

1β (MIP-1β), but it can also be secreted by DCs, monocytes and lymphocytes (Maurer and von 

Stebut 2004).  It has some of the same effects as MIP-1α, for example, they both induce the 

recruitment of monocytes and NK cells (Cook 1996; Maurer and von Stebut 2004).  MIP-1β 

also induces the recruitment of CD4+ T lymphocytes (Cook 1996).  Exposure to C. 

neoformans can induce MIP-1β production in both HIV- positive and negative human 

peripheral blood mononuclear cells (PBMC) (Huang and Levitz 2000). 
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MCP-1 (CCL2) 

Monocyte chemotactant protein 1 (MCP-1) can be produced by epithelial cells, endothelial 

cells, fibroblasts and alveolar macrophages in the lungs (Huffnagle et al. 1995). Monocytes, 

astrocytes, mesangial, and microglial cells can also produce MCP-1 (Deshmane et al. 2009).  

MCP-1 induces the recruitment of monocytes, T lymphocytes, and NK cells to the site of 

infection (Huffnagle et al. 1995; He et al. 2003; Deshmane et al. 2009).  Rats infected with C. 

neoformans had increased amounts of MCP-1 in the lungs (He et al. 2003).  There are 

increased levels of MCP-1 in the bronchoalveolar lavage fluid of mice infected with C. 

neoformans, which correlate with elevated levels of CD4+ T lymphocytes (Huffnagle et al. 

1995).   

 

RANTES (CCL5) 

Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) was originally 

considered to be secreted only by T lymphocytes, but it is now known that epithelial cells, 

platelets, macrophages, and monocytes also produce RANTES (Crawford et al. 2011; Qian et 

al. 2011). RANTES induces the recruitment of Th1 lymphocytes, macrophages, eosinophils, 

DCs, and NK cells (Murooka et al. 2008; Crawford et al. 2011).  HIV-positive PBMC infected 

with C. neoformans showed an increase in the production of RANTES, while HIV-negative 

PBMC had no detectable production of RANTES (Huang and Levitz 2000). 
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Toll-like receptors 2 and 4 

Toll-like receptors (TLR) are innate immune-pattern recognition receptors that recognize 

molecules that are broadly shared by pathogens (Goldsby and Goldsby 2003).  Signals that are 

transduced through TLRs usually result in the activation of transcription, synthesis, and 

secretion of pro-inflammatory cytokines (Goldsby and Goldsby 2003).  TLR2 and TLR4 

activate macrophages and DCs, and can induce the production of several cytokines (Goldsby 

and Goldsby 2003).  LPS is recognized by both TLR2 and TLR4, but lipoproteins, cell-wall 

components of Gram-positive bacteria, and the yeast cell wall component zymosan are 

recognized by TLR2 (Goldsby and Goldsby 2003).  Myeloid differentiation factor 88 

(MyD88) is a TLR-associated protein that, when activated, leads to the activation NF-κB and 

MAPK (Biondo et al. 2005).  The activation of NF-κB and MAPK subsequently leads to the 

production of cytokines and increased expression of MHC and co-stimulatory molecules 

(Shoham et al. 2001; Biondo et al. 2005).  The cryptococcal capsule component GXM has 

been shown to bind to both TLR2 and TLR4 (Shoham et al. 2001; Roeder et al. 2004; Yauch 

et al. 2004).  In C57BL/6 mice, it has been shown that both TLR2 and MyD88, but not TLR4, 

critically contribute to the anti-cryptococcal immune response by inducing the production of 

TNF-α, IFN-γ, and IL-12 (Biondo et al. 2005).  
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CHAPTER 3- HIV AND HIV INFECTION 

According to World Health Organization`s (WHO) Global HIV/AIDS Response Progress 

Report 2011, at the end of 2010, there were an estimated 34 million people infected with HIV 

globally, of whom 3.4 million were children less than 15 years of age. Approximately two-

thirds of all people infected with HIV reside in Sub-Saharan Africa.  Annually, the number of 

newly infected individuals has decreased, from 3.1 million in 2001 to 2.7 million in 2010. 

AIDS, caused by HIV-1, was first reported in 1981 in Los Angeles, San Francisco and New 

York.   HIV-1 is most commonly transmitted through sexual contact, but can also be 

transmitted by receiving contaminated blood, blood products, and drug injections, and from 

mother to infant (Goldsby and Goldsby 2003; Forsman and Weiss 2008). 

Human Immunodeficiency Virus type 1 (HIV-1) 

HIV-1 is a member of the genus Lentivirus, part of the Retroviridae family, which are capsular 

viruses containing two copies of single-stranded RNA (Goldsby and Goldsby 2003) (Figure 

4).  There are three known groups of HIV-1: major (M), outlier (O), and non-M and non-O 

(N), and >90% of infections worldwide are caused by group M subtypes (clades A-J) (Vasan 

et al. 2006). Clade B is responsible for the majority of cases that occur in North America and 

Europe (Forsman and Weiss 2008).  The 9.2-kb ssRNA of HIV-1 contains 9 different genes 

(Goldsby and Goldsby 2003).  The three major genes are gag, env, and pol, which encode 

polyprotein precursors that are cleaved to produce the nucleocapsid core proteins, envelope 

glycoproteins, and enzymes required for replication. Gag encodes the precursor gag 

polyprotein that is processed during maturation by viral protease to create p17, which forms 

the outer core-protein layer; p24, which forms the inner core-protein layer; p9, a component of 
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the nucleoid core; and p7, which binds directly to the viral genomic RNA (Goldsby and 

Goldsby 2003).  The env gene encodes a 160-kDa precursor, and is cleaved by cellular 

protease to create gp41, a transmembrane protein associated with gp120 and required for 

fusion; and gp120, a surface lipoprotein that binds to CD4 (Goldsby and Goldsby 2003).  The 

pol precursor, encoded by pol gene, is also cleaved by viral protease and produces the 

following enzymes: p64, which has reverse transcriptase and RNase activity; p51, that also has 

reverse transcriptase activity; p10, a protease that cleaves the gag precursor; and p32, an 

integrase (Goldsby and Goldsby 2003).  The tat, rev, and nef genes all encode regulatory 

proteins that play a vital role in controlling viral gene expression (Goldsby and Goldsby 

2003).  P14, encoded by the tat gene, strongly activates the transcription of proviral DNA 

(Goldsby and Goldsby 2003; Pugliese, Vidotto, Beltramo, Petrini, et al. 2005).  The rev gene 

encodes p19 that allows the export of unspliced and singly spliced mRNAs from the nucleus 

of the target cell.  Nef encodes p27 which downregulates both host-cell MHC class I, class II 

and CD4 (Goldsby and Goldsby 2003).  Vif and vpu both encode proteins that are required for 

maturation of HIV-1.  Vif encodes p23, which promotes maturation and the infectivity of the 

virus, while vpu encodes p16 (Goldsby and Goldsby 2003).  P16 is necessary for viral 

assembly and budding, promotes the extracellular release of viral particles, and degrades CD4 

in the endoplasmic reticulum (Goldsby and Goldsby 2003).  Finally, vpr encodes p15, a 

protein that promotes nuclear localization of preintegration complex and inhibits cell division 

(Goldsby and Goldsby 2003).  
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Figure 4. Human Immunodeficiency Virus (HIV) structure (from www.avert.org/hiv-

virus.htm) 

 

HIV-1 Replication 

To complete replication, HIV-1 must first attach itself to the target cell (Goldsby and Goldsby 

2003).  HIV-1 attaches to CD4 T lymphocytes through the CXCR4 receptor, and to 

macrophages and dendritic cells through the CCR5 receptor (Goldsby and Goldsby 2003; 

Vasan et al. 2006).  Gp120 of HIV-1 must also be engaged to CD4 on the target cell in order 

to initiate fusion of the viral envelope with the host cell membrane (Goldsby and Goldsby 

2003).  Gp41 from HIV-1, and either CXCR4 or CCR5 from the target cell, mediate fusion 

allowing the nucleocapsid, containing the viral genome and enzymes, to enter the target cell 

(Goldsby and Goldsby 2003).  The viral genome and enzymes are released following the 

dissolution of the capsid.  The viral reverse transcriptase then initiates reverse transcription of 

the ssRNA creating a RNA-DNA hybrid (Goldsby and Goldsby 2003).  The RNA is partially 
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degraded by ribonuclease H, allowing for the synthesis of the second strand of DNA (Goldsby 

and Goldsby 2003).  The double-stranded HIV DNA is translocated and integrated into the 

host chromosomal DNA by p32, a viral integrase enzyme, thus forming a provirus (Goldsby 

and Goldsby 2003).  The provirus can remain latent in the host cell genome until events in the 

cell trigger its activation.  Transcription of the proviral DNA leads to the formation of several 

mRNAs and genomic ssRNA (Goldsby and Goldsby 2003).  Viral RNA is exported to the 

cytoplasm where host ribosomes catalyze the synthesis of viral precursor proteins.  Viral 

protease cleaves these precursor proteins into viral proteins, which assemble beneath the host 

cell membrane(Goldsby and Goldsby 2003).  Gp41 and gp120 are inserted into the host 

membrane and bud out during viral egress to form part of the viral envelope (Goldsby and 

Goldsby 2003).  The budded viron is still immature until the gag precursor polyprotein is 

cleaved to create the matrix, capsid, and nucleocapsid proteins  (Goldsby and Goldsby 2003).  

These structural components can then assemble to create a mature HIV-1 virus that is capable 

of infecting another target cell (Goldsby and Goldsby 2003). 

 

Natural Course of HIV Infection 

The natural progression of HIV infection towards AIDS is separated into three different 

phases: the acute, chronic, and AIDS phases (Forsman and Weiss 2008) (Figure 5).  The acute 

phase of HIV infection (primary infection) is characterized by high viral load and a depletion 

of CD4+ T cells, and only lasts a few months (Forsman and Weiss 2008).  HIV-1 infects the 

mucosal-associated lymphoid tissue (MALT) at the portal of entry, damaging the integrity of 

the gut epithelium, thus allowing commensal gut bacteria to penetrate into the MALT and 

cause an inflammatory response mediated by their bacterial LPS (Forsman and Weiss 2008).  
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Depletion of CD4+ T cells is also more clearly seen in the MALT compared to peripheral 

blood (Forsman and Weiss 2008).  Due to vigorous HIV-1 replication in the MALT, the viral 

load in peripheral blood reaches a peak before sharply falling after seroconversion (Forsman 

and Weiss 2008).  This sharp fall is associated with the appearance of HIV-specific CD8+ 

cytotoxic T cells and the lack of CD4+ T cells is necessary to maintain a high viral load 

(Forsman and Weiss 2008).  The acute phase of HIV-1 infection is usually asymptomatic, but 

a minority of patients present with fever, lymphadenopathy, and rash lasting no more than a 

few weeks (Forsman and Weiss 2008).  The chronic phase of HIV-1 infection commences 

after seroconversion has occurred (Forsman and Weiss 2008).  The viral load in peripheral 

blood settles down to a “set point” which is predictive of the rate of progression to AIDS 

(Forsman and Weiss 2008).  A high set point is associated with a more rapid progression 

towards AIDS.  On average, the progression of HIV-1 infection towards AIDS takes 

approximately 9 years, but is variable (Forsman and Weiss 2008).  Five years is considered a 

rapid progression and long-term nonprogressors show little or no decrease in CD4+ T cells for 

15 or more years (Forsman and Weiss 2008).   During this period, active replication of HIV-1 

and the destruction of CD4+ T cells continue in the MALT and lymph nodes, while the viral 

load in plasma remains fairly stable (Forsman and Weiss 2008).  For the physician, a 

decreasing number of CD4+ T cells in peripheral blood is an important marker of when to 

initiate antiretroviral therapy (Le et al. 2013).  Progression to the AIDS phase of HIV-1 

infection begins when the CD4+ T lymphocyte count falls below 200 cells/mm3 in peripheral 

blood (Goldsby and Goldsby 2003; Forsman and Weiss 2008).  A high HIV-1 viral load, 

decreased or absent delayed-type hypersensitivity (DTH), and an increase in opportunistic 

infections, such as cryptococcosis and candidiasis, also accompany the progression to AIDS 
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(Goldsby and Goldsby 2003).  Opportunistic neoplasms, such as Kaposi`s sarcoma, or non-

Hodgkin`s lymphoma, can also occur during AIDS and are mainly caused by latent oncogenic 

viruses (Forsman and Weiss 2008).  The most frequent cause of death in AIDS patients is 

attributed to opportunistic infections and not AIDS itself (Forsman and Weiss 2008). 

 

Figure 5.  Progression of HIV-1 infection.  HIV viral load (grey line) and circulating CD4+ 

T lymphocytes (blue line) (Forsman and Weiss 2008) Used with permission from Elsevier 

(License number 3172570874300) 

 

HIV Treatment 

Although the highest priority of researchers is to develop a vaccine to prevent the spread of 

HIV/AIDS, it is also critical to develop effective antiretroviral drugs and therapies that can 

reverse the effects of HIV-1 infection.  The objective of these drugs or therapies is to target 

HIV-1 specifically and not to interfere with normal cellular processes (Goldsby and Goldsby 

2003).  Three different strategies have been used to target susceptible steps in the life cycle of 
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HIV-1.  The first successful strategy was to target reverse transcriptase of viral RNA to cDNA 

(Goldsby and Goldsby 2003).  The prototype for this kind of drug is Zidovudine or 

azidothymidine (AZT) (Goldsby and Goldsby 2003).  AZT introduces itself into the growing 

cDNA chain of retroviruses and causes the termination of the chain (Goldsby and Goldsby 

2003).  One of the problems with AZT is that it can also be used by human DNA polymerase 

and can be inserted into the host DNA, killing the cell (Goldsby and Goldsby 2003). Precursor 

red blood cells are susceptible to AZT, causing anemia in some patients as well as nausea, 

headache, weakness, insomnia, and neutropenia (Goldsby and Goldsby 2003).  Other drugs, 

such as Nevirapine, target the reverse transcriptase directly (Goldsby and Goldsby 2003).  The 

second strategy is to use protease inhibitors, which inhibit the cleavage of precursor 

polyproteins (Goldsby and Goldsby 2003).  This method has been proven effective when 

combined with AZT or other reverse transcriptase inhibitors.  This combination therapy has 

been designated HAART (highly active anti-retroviral therapy) (Goldsby and Goldsby 2003). 

HAART has been shown to be an effective method that appears to overcome the ability of the 

virus to rapidly produce mutants that are drug resistant (Goldsby and Goldsby 2003).  There 

are many serious side effects that are associated with HAART such as blurred vision, metallic 

taste in the mouth, abnormal distribution of fat, and elevated triglyceride and cholesterol levels 

(Goldsby and Goldsby 2003).  The last strategy, and the newest, is to inhibit intergrase, thus 

inhibiting the integration of viral DNA into the host genome and the formation of a provirus 

(Goldsby and Goldsby 2003; Savarino 2006).  The first FDA-approved integrase inhibitor was 

Raltegravir, in 2007 (Savarino 2006).  There are also some drugs that are being tested that act 

at the stage of viral attachment to the host cell (Goldsby and Goldsby 2003).  The main 

disadvantages to these drugs or therapies are the cost (around $15,000/year) and the possibility 
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of side effects that range from nausea to peripheral neuropathy (Goldsby and Goldsby 2003).  

Currently, the best option to stop the spread AIDS is the discovery of a safe, inexpensive 

vaccine that prevents infection and progression of the disease (Goldsby and Goldsby 2003). 

 

Immunological Effects of HIV-1 

Several immunological abnormalities are associated with HIV-1 infection, the most evident 

being the severe depletion of CD4+ T lymphocytes (Wahl et al. 2003; Forsman and Weiss 

2008).  The inability of lymph nodes to trap antigens or support the activation of T and B cells, 

a decrease in T helper cells, a shift in cytokine production from the Th1 to the Th2 subset, the 

elimination of DTH response, and a reduced activity of cytotoxic T lymphocytes (CTL), are 

just some of the other abnormalities that occur during HIV-1 infection (Goldsby and Goldsby 

2003). Nef protein (p27) affects intracellular signaling pathways, inducing AP-1 and NF-κB in 

lymphocytes (Percario et al. 2003).  Additionally, nef activates T cell receptor chain (TCR) 

signaling as well as calcium-dependent signaling in a TCR-independent manner (Percario et 

al. 2003).  HIV-1 disrupts signaling events in the JAK/STAT pathway, which suppresses 

granulysin expression in CD8+ T lymphocytes (Hogg et al. 2009).   HIV-1 infected 

macrophages resist HIV-1 mediated apoptotic death and play an important role in long-term 

persistence of the virus by acting as a reservoir (Wahl et al. 2003).  Infected macrophages 

induce chemotaxis and activation of resting T lymphocytes, facilitating a more productive 

HIV-1 infection (Swingler et al. 1999; Wahl et al. 2003).  Nef induces an activation state in 

macrophages, which leads to an increase in transcription and release of MIP-1α, MIP-1β, IL-

1β, IL-6, and TNF-α (Olivetta et al. 2003; Percario et al. 2003).  The nef-dependent release of 

inflammatory cytokines is also accompanied by an activation of NF-κB transcription factor 
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(Olivetta et al. 2003).  STAT3 is also activated by nef through mechanisms mediated by the 

release of MIP-1α and MIP-1β (Percario et al. 2003).  Gp120 impairs lysosome-phagosome 

fusion in phagocytes and down-regulates the production of IL-12 and oxidative burst in 

macrophages (Pugliese, Vidotto, Beltramo and Torre 2005).  Neutrophils from HIV-infected 

patients have been shown to be impaired in neutrophil fungal killing and cytokine production 

(Vecchiarelli et al. 2000). IL-8 production is reduced due to decreased expression of CD88 

(complement component 5a receptor) in neutrophils (Monari et al. 1999).  Lower levels of 

dendritic cells have been observed in HIV-1 infected patients (de Repentigny et al. 2004). 

Both the viral matrix and nef have been shown to cause only partial maturation of 

plasmacytoid dendritic cells (pDC); they also acquire a migratory phenotype, facilitating travel 

to the lymph nodes (Coleman and Wu 2009). These dendritic cells (DC) fail to express an 

increase of the maturation markers MHC-II, CD80, and CD86 (Coleman and Wu 2009).  HIV-

1 also suppresses the activation of antiviral Toll-like receptors TLR7 and TLR8, by blocking 

the release of antiviral IFN-α in pDCs (Coleman and Wu 2009). 

Altered Innate and Adaptive Immune Response to Cryptococcus 

Cryptococcosis is one of the leading fungal causes of morbidity and mortality among AIDS 

patients (Mitchell and Perfect 1995).  C. neoformans var. neoformans serotype A is 

responsible for almost all of cryptococcosis cases in AIDS patients globally, while it is 

responsible for only 75% of cryptococcosis cases in patients without AIDS (Mitchell and 

Perfect 1995).  There are many differences in clinical manifestations between cryptococcosis 

in immunocompromised and immunocompetent patients.  The sites of cryptococcal infections 

in AIDS patients usually contain a higher fungal burden and a low inflammatory cell response 
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(Mitchell and Perfect 1995).  In an immunocompromised host, cryptococcal pneumonia tends 

to have a more rapid clinical course.  C. neoformans will usually disseminate rapidly from the 

lungs to establish an infection in the CNS (Huang and Crothers 2009). In some cases, 

dissemination to the meninges occurred 2-20 weeks after being diagnosed with pulmonary 

cryptococcosis (Mitchell and Perfect 1995).  At the time of CNS cryptococcosis diagnosis, 

HIV-1 infected patients commonly develop a second site of infection, for example cutaneous 

cryptococcosis (Mitchell and Perfect 1995; Kovarik and Barnard 2009).  In immunocompetent 

patients, chest radiographs of cryptococcal pneumonia reveal well-defined, noncalcified, 

single or multiple lung nodules; in immunocompromised patients, chest radiographs reveal 

alveolar or interstitial infiltrates, single or multiple lesions, masses, cavitary lesions, and 

pleural effusions (Mitchell and Perfect 1995; Huang and Crothers 2009). In AIDS patients, the 

prostate and CNS represent potential reservoirs for clinical relapse of cryptococcosis (Mitchell 

and Perfect 1995).  

 

HIV-1 infection can reduce the anti-cryptococcal host response, and increase the virulence of 

Cryptococcus (Lortholary et al. 2005). Gp120 of HIV-1 has many effects that facilitate 

Cryptococcus infections.  It has been shown to inhibit the anti-cryptococcal activity of human 

alveolar macrophages.  Gp120 also inhibits the production of IL-12 and the expression of IL-

12 receptor and induces the production of IL-10, inhibiting the translocation of CD40, which 

inhibits the generation of a Th1 response against Cryptococcus (Pietrella, Kozel, et al. 2001; 

Lortholary et al. 2005).  Gp120 can also inhibit the protective Th1 response by decreasing the 

surface expression of CD86 and MHC-II, inhibiting the production of IFN-γ, and promoting 

the induction of IL-4 release (Pietrella et al. 1999; Pietrella, Kozel, et al. 2001).  The 
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decreased expression of CD88 on neutrophils and IL-8 production due to HIV-1 infection 

reduces the activation of the complement system (Monari et al. 1999).   Cryptococcus also 

promotes HIV-1 replication (Harrison et al. 1997).  C. neoformans causes an increase in 

production of TNF-α in monocytes, which increases the production of HIV-1 by stimulating 

transcription from the HIV long terminal repeat (Harrison et al. 1997).  The secretion of MIP-

1β by microglial cells can inhibit HIV-1, but C. neoformans is able to inhibit microglial cell 

production of MIP-1β (Harrison et al. 1997).  So, HIV-1 and Cryptococcus can mutually 

increase their virulence. 
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CHAPTER 4- MODELS OF CRYPTOCOCCOSIS AND HIV-1 

INFECTION 

Invertebrate Models of Cryptococcosis 

Invertebrates can be excellent models of disease because they have certain advantages that 

include reduced maintenance costs, fewer ethical restrictions, shorter reproduction times, and 

large brood sizes (Sabiiti et al. 2012).  Invertebrates also lack an adaptive immune system, 

providing an excellent method to study the innate immune response to diseases without the 

potential confusion of the adaptive immune response (Sabiiti et al. 2012). 

Amoeboid models are useful because amoebas feed through phagocytosis in a method that is 

similar to phagocytosis of microbes by macrophages in humans (Sabiiti et al. 2012).  Thus, 

amoebas provide a simple model to investigate phagocytosis of microorganisms like 

Cryptococcus. Two amoeboid models, Dictyostelium discoideum and Acantamoeba 

castellanii, have been used to study Cryptococcus neoformans infection (Sabiiti et al. 2012). 

A. castellanii is advantageous because the amoebae are viable above 25°C, which better 

simulates the conditions of a human infection compared to D. disoideum (Sabiiti et al. 2012). 

D. disoideum is useful because it is more thoroughly genetically characterized, and is more 

receptive to genetic manipulation than A. castellanii. Both of these models have been used to 

show that an acapsular mutant of C. neoformans is eliminated when consumed by these 

amoebas, while the capsular strain was able to replicate inside the amoebae just like in 

macrophages (Sabiiti et al. 2012).  Also, it was shown that there is a significant increase in 

growth when C. neoformans is incubated with the amoebae compared to when it is incubated 

in PBS alone (Sabiiti et al. 2012).  These results suggest the characteristics that contribute to 
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the virulence of C. neoformans in mammals are a result of its adaptations to survive in the 

environment(Sabiiti et al. 2012). 

 

Caenorhabditis elegans is a nematode that has been used for immunological study of many 

pathogens, and was established as a model for Cryptococcus by Mylonakis et al. in 2002 

(Mylonakis et al. 2002).  They showed that C. elegans was able to ingest C. neoformans, C. 

laurentii, and C. kuetzingii; but only C. neoformans was virulent and able to kill C. elegans. 

The ability of C. neoformans to kill C. elegans is dependent on the presence of its 

polysaccharide capsule, the MATα mating type, laccase production (LAC1), and genes 

associated with signal transduction pathways (GPA1, PKA1, BRK1, and RAS1) (Mylonakis et 

al. 2002; Sabiiti et al. 2012).  These factors have been previously shown to be important in the 

ability of C. neoformans to be virulent in mammals (Sabiiti et al. 2012).  The largest problem 

of C. elegans as a method to investigate mammalian pathogenesis is that the mode of infection 

is completely different in nematodes compared to mammals (Sabiiti et al. 2012).  C. elegans 

ingests C. neoformans, and it is restricted to the intestines, while in mammals it is inhaled and 

in humans can subsequently disseminate (London et al. 2006; Sabiiti et al. 2012). 

 

Galleria mellonella, or the greater wax moth larva, has been used to examine either whole-

organism virulence or antifungal activity of several species of pathogenic fungi (Mylonakis et 

al. 2005; London et al. 2006; Sabiiti et al. 2012).  Some advantages that G. mellonella has over 

other invertebrate models are its ability to live at mammalian body temperature, that it is easy 

to inoculate, and the injections are minimally invasive due to the fact that the haemocoel does 

not have to be pierced to inject Cryptococcus (Sabiiti et al. 2012).  Mylonakis et al. developed 
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the first model of G. mellonella for Cryptococcus in 2005, and they showed that all tested 

strains of Cryptococcus were virulent and caused larval death (Mylonakis et al. 2005).  They 

then showed the beneficial effects of combining the antihistamine Astemizole, and a closely 

related analog (A2) to fluconazole for G. mellonella survival (Mylonakis et al. 2005; Sabiiti et 

al. 2012). 

Another insect model that has been used as a model for Cryptococcus infection is Droshophila 

melanogaster (London et al. 2006; Sabiiti et al. 2012).  The immune signaling pathways are 

highly conserved between flies and humans making this model useful (Sabiiti et al. 2012). 

The relevance of this, with regards to fungal diseases, is the capability of antifungal peptide 

production from the downstream activation of Toll receptors by D. melanogaster (Sabiiti et al. 

2012).  Three Cryptococcus species have been studied with D. melanogaster: C. neoformans, 

C. laurentii, and C. keutzingii (Apidianakis et al. 2004).  When these species were injected 

into D. melanogaster, causing a systemic infection, none were virulent; once ingested, only C. 

neoformans was virulent (Apidianakis et al. 2004).  The death of the flies after ingestion of C. 

neoformans implicates several virulence factors, such as the polysaccharide capsule, the 

MATα mating type, and laccase production, shown previously with Caenorhabditis elegans 

(Apidianakis et al. 2004).  Toll-like receptors (TLR) do not play a role when Cryptococcus is 

ingested by D. melanogaster (Apidianakis et al. 2004; Sabiiti et al. 2012).  When 

Cryptococcus is injected, TLRs are activated and are crucial for host resistance against 

Cryptococcus and other fungal pathogens such as Aspergillus fumigatus or Candida albicans 

(Apidianakis et al. 2004; Sabiiti et al. 2012). This suggests that Cryptococcus triggers different  
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responses in either systemic or digestive related immunity in D. melanogaster (Apidianakis et 

al. 2004; Sabiiti et al. 2012). 

Mammalian Models of Cryptococcosis 

The ability of Cryptococcus to naturally infect mammals and cause a disease similar to 

humans makes mammals relevant to study Cryptococcus infection (Carroll et al. 2007).  The 

advantage of vertebrate over invertebrate models is that they are more anatomically, 

physiologically, and immunologically similar to humans, allowing a more accurate method to 

model Cryptococcus infections (Carroll et al. 2007). 

The first mammal used to model Cryptococcus infections is Cavia porcellus, or guinea pig 

(Carroll et al. 2007; Sabiiti et al. 2012).  The guinea pig has been used to model many other 

invasive fungal infections caused by Zygomycota, Candida, and Aspergillus (Carroll et al. 

2007).  The docile nature, and medium body size and susceptibility to Cryptococcus make the 

guinea pig a suitable host for Cryptococcus infection (Carroll et al. 2007; Sabiiti et al. 2012). 

It was shown that female guinea pigs are more resistant to Cryptococcus infections compared 

to male animals; the same gender effect can be observed in human cryptococcal disease 

susceptibility (Carroll et al. 2007).  Administration of corticosteroids to infected guinea pigs 

revealed the important role of cell-mediated immunity in host resistance to C. neoformans, 

which is consistent with findings from studies with rabbits, rats, and mice (Carroll et al. 2007).  

Unlike murine models and humans, guinea pig alveolar macrophages are unable to eliminate 

acapsular C. neoformans, and capsular C. neoformans is able to completely inhibit 

phagocytosis by alveolar macrophages (Carroll et al. 2007). Other disadvantages of the guinea 
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pig model are that there are only a few inbred strains of guinea pigs available, and there is a 

lack of immunologic reagents and genetic tools available for analysis of disease pathogenesis 

(Carroll et al. 2007). 

 

Oryctolagus cuniculus, or rabbits are naturally resistant to Cryptococcus infection, which is 

partially due to their high normal body temperature (39.3-39.5° C) (Carroll et al. 2007).  The 

high body temperature of rabbits inhibits fungal replication and dissemination through the 

respiratory tract; to overcome this problem rabbits are immunosuppressed with corticosteroids 

(Carroll et al. 2007).  The dosages of corticosteroid closely match those in patients with organ 

transplants (Carroll et al. 2007). Rabbits are mostly used to study cryptococcal 

meningoencephalitis, because their large size allows multiple samplings of cerebrospinal fluid 

(CSF) and better access to study Cryptococcus at the site of infection (Carroll et al. 2007; 

Sabiiti et al. 2012).  The large size of the rabbit has also allowed researchers to investigate the 

effectiveness of various antifungal medications for the treatment of cryptococcal meningitis 

(Carroll et al. 2007). Limitations of rabbit models for Cryptococcus infections include high 

purchase and maintenance costs, large infectious dose, requirement of immunosuppression, 

and the limited repertoire of immunologic reagents and genetic information available (Carroll 

et al. 2007). 

 

The Rattus norvegicus, or rat, is mainly used to study chronic or latent pulmonary 

Cryptococcus infections (longer than 18 months) (Carroll et al. 2007; Sabiiti et al. 2012).  

Intratracheal infection of C. neoformans in the rat reproduces many histopathological and 

serological features of human cryptococcal pneumonia, and unlike the rabbit establishment of 
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infection does not require the use of corticosteroids (Carroll et al. 2007). Immunocompetent 

rats show no dissemination from pulmonary infection after intratracheal inoculation, 

indicating that rats may be more resistant to progressive cryptococcal disease.  The rats’ 

ability to contain the infection in the lungs may be due to macrophage-derived MCP-1 and 

inducible nitric oxide synthase (NOS) that mediates cellular recruitment to the lungs after 

cryptococcal infection (Carroll et al. 2007).  Intracellular persistence and long-term survival of 

Cryptococcus is due to a downregulation of cellular and humoral immunity in the host (Carroll 

et al. 2007).  An advantage that rats have is that they are large enough for intratracheal 

infections that are less invasive and do not require surgery (Carroll et al. 2007).  In order to 

study cryptococcal meningitis in rats, intracisternal inoculation is used.  Compared to mice, 

the main disadvantages of rat models of Cryptococcus infection are high acquisition costs and 

the limited number of immunologic reagents available (Carroll et al. 2007). 

 

The most widely used animal for Cryptococcus infection is Mus musculus, or mouse (Carroll 

et al. 2007; Sabiiti et al. 2012).  Mice are highly susceptible to Cryptococcus infection by 

many different routes including intranasal, intratracheal, intravenous, and intraperitoneal 

routes, without the need for immunosuppression (Carroll et al. 2007; Sabiiti et al. 2012).  The 

route of infection and genetic background of the mice are of critical importance to the 

outcome of the host-pathogen interaction (Carroll et al. 2007).  For example, BALB/c mice are 

more resistant to intratracheal inoculation of C. neoformans compared to CBA/J mice, but 

there is no difference in resistance after intravenous inoculation (Zaragoza et al. 2007).  One 

of the greatest advantages to using a murine model is that Cryptococcus infection in mice 

closely resembles Cryptococcus infection in humans, where susceptible mice strains develop 
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disseminated disease after experimental pulmonary infection (Carroll et al. 2007). Some other 

advantages of the murine model are the relatively inexpensive costs of purchase and 

maintenance (Carroll et al. 2007). The ease of handling, the availability of numerous inbred 

strains, as well as extensive immunologic and genetic resources available are also notable 

advantages (Carroll et al. 2007; Sabiiti et al. 2012).  The main disadvantage in using a murine 

model of Cryptococcus is the small size of mice, which could hinder some procedures (Carroll 

et al. 2007). The overall conclusion arising from the studies conducted with murine models is 

that robust innate and cell-mediated immunity interacting with humoral host defenses is 

essential for protection and clearance of Cryptococcus infections (Carroll et al. 2007).   

Murine Models of HIV-infection and AIDS 

Many models of retroviral infections have been employed, including primate models using 

Simian immunodeficiency virus (SIV) or a SIV/HIV chimera, and a feline model using feline 

immunodeficiency virus (Borkow 2005).  Some of the disadvantages of these models are the 

high costs to purchase and maintain the animals, lengthy primate/feline maturation, uncertain 

value in predicting human immune responses, and the molecular and immunogenetic diversity 

of SIV, SIV/HIV, FIV, and HIV (Borkow 2005).  Murine models provide certain unique 

advantages.  The ready availability of mice, shorter time periods required for the experiments, 

the ability to increase the number of subjects to achieve higher statistical significance, and the 

relative ease of transgenic manipulations are just some of the advantages to using a murine 

model (Borkow 2005). 
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Murine acquired immunodeficiency syndrome (MAIDS) is a disease that can be induced in 

sensitive strains of mice using the retroviral mixture designated LP-BM5 murine leukemia 

virus (MuLV) (Fredrickson et al. 2010; Jones et al. 2012).  LP-BM5 is comprised of the 

replication competent helper virus BM5e, the mink cell cytopathic focus-inducing virus, and 

the replication-defective BM5def (Jones et al. 2012).  There are many similarities between 

MAIDS and human AIDS including hypergammaglobulinemia, lymphadenopathy, severely 

depressed T- and B-cell responses to mitogens, increased susceptibility to infections, disease 

progression, and the development of B-cell lymphomas and splenomegaly (Jolicoeur 1991; 

Jones et al. 2012).  Due to the similarities between LP-BM5 and HIV transmission and disease 

outcome, it is a good model for examining sexual transmission of HIV and has been used for 

the initial evaluation of new drugs (Jolicoeur 1991; Jones et al. 2012).  The main problems 

with the MAIDS model are that, unlike human AIDS, the mice may die of lymphadenopathy, 

respiratory failure, or from extensive lymphoid infiltration and associated dysfunction of the 

liver or the kidneys (Fredrickson et al. 2010).  Nevertheless, mice with MAIDS have been 

successfully used to investigate the immunopathogenesis of oral candidiasis (Deslauriers et al. 

1997). 

Another murine model that has been used to examine HIV-1 is a humanized mouse model that 

has been infected with HIV-1 (Brady et al. 1994).  The two main strategies that are used to 

humanize mice are to either intraperitoneally inject human peripheral blood lymphocytes 

(PBL) into severely combined immunodeficiency (SCID) mice (hu-PBL-SCID model), or to 

implant fragments of fetal human thymus and liver under the kidney capsule of SCID mice 

(SCID-hu (Thy/Liv) model) (Borkow 2005).  These mice can then be infected with HIV-1 
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which causes a rapid depletion of CD4+ T-cells within a few weeks of infection (Borkow 

2005).  The hu-PBL-SCID-HIV-1 mouse model has been used to study HIV-1 infection, 

pathogenesis, viral fitness, and different approaches to generate effective anti-HIV-1 responses 

(Borkow 2005).  Some of the disadvantages associated with the hu-PBL-SCID-HIV-1 mouse 

model are that the infection can only persist up to 16 weeks, a progressive restriction of T- and 

B-cell repertoires occurs, the engrafted T-cells become anergic and unresponsive to T-cell 

receptor stimulation, and the inability to create cytotoxic T-lymphocytes against viral antigens 

(Borkow 2005).  The SCID-hu (Thy/Liv)-HIV-1 mouse model has been used mainly to study 

HIV-1 infection, tropism, cellular pathogenesis, and to investigate gene therapy and the effects 

of antiviral treatment on the renewal of thymopoiesis (Borkow 2005).  The two main 

disadvantages to this model are the lack of humoral and cellular responses to the viral load, 

and that the implanted tissues are of fetal origin which may not accurately reflect the structure 

and function of their adult counterparts (Borkow 2005). 

There have been many different transgenic mouse models developed to study HIV-1 infection, 

but most of these models differ too much from HIV-1 infections in humans (Brady et al. 

1994).  Since mice are resistant to HIV-1, it is essential to create a transgenic mouse model 

that closely resembles HIV-1 infection in humans.   

CD4C/HIVMut Mice 

The laboratory of Dr. Paul Jolicoeur (IRCM) created and characterized transgenic (Tg) mice 

(on a C3H background) using the whole coding, or a partially mutated sequence of HIV-1, 

along with the regulatory sequences of the human CD4 promoter, and the murine CD4 
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enhancer (Hanna, Kay, Cool, et al. 1998).   This allowed the HIV-1 genome (partial or whole) 

to be expressed in the targeted cells normally infected in HIV-1-positive individuals, including 

CD4+ T lymphocytes, immature CD4+CD8+ thymic T lymphocytes, dendritic cells, and 

macrophages (Hanna, Kay, Cool, et al. 1998).  These Tg mice developed a severe AIDS-like 

disease characterized by thymic atrophy, loss of CD4+ lymphocytes and mature dendritic 

cells, an accumulation of immature dendritic cells, loss of architecture of lymphoid organs, 

muscle wasting, weight loss, diarrhea, interstitial lymphocytic pneumonitis, and tubular-

interstitial nephritis eventually leading to premature death that can occur as early as one month 

of age (Hanna, Kay, Cool, et al. 1998).  These Tg mice also display an increase in apoptosis of 

T lymphocytes due to an overexpression of Fas and FasL, which is also observed among 

patients infected with HIV-1 (Priceputu et al. 2005).  The severity of the AIDS-like disease in 

these mice is directly associated with the level of expression of the transgene in the target 

cells, which is similar to an increased replication of HIV-1 leading to a faster progression to 

AIDS in humans (Hanna, Kay, Cool, et al. 1998).  

Five different mutants (CD4C/HIVMutA, B, C, G, H) were constructed from the HIV-1 genome 

(Hanna, Kay, Rebai, et al. 1998) (Figure 6). It was shown that only nef is required and 

sufficient to cause an AIDS-like disease phenotype in CD4C/HIVMutG Tg mice (Hanna, Kay, 

Rebai, et al. 1998).  CD4C/HIVMutH mice have a mutated nef gene to make it inactive, express 

all the other HIV-1 genes, and do not develop the AIDS-like phenotype (Hanna, Kay, Rebai, 

et al. 1998).  These results demonstrate that nef alone is required to cause an AIDS-like 

phenotype in these transgenic mice.  CD4C/HIVMutA mice, which express nef, env, and rev, 

also develop an AIDS-like disease phenotype (Hanna, Kay, Rebai, et al. 1998). 
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Figure 6. Genetic construction of CD4C/HIVMut transgenic mice.  The X`s represent 

mutated genes (Hanna, Kay, Rebai, et al. 1998).  Used with permission from Elsevier (License 

number 3172571069951) 

 

Different founders of CD4C/HIVMutA mice developed AIDS-like disease between 30 days and 

16 months of age and had a much higher life expectancy compared to CD4C/HIVWT mice 

(Hanna, Kay, Rebai, et al. 1998).  In the laboratory of Dr. Louis de Repentigny, 

CD4C/HIVMutA Tg mice have previously been used to analyze the immunopathogenesis of 

persistent oropharyngeal candidiasis, which closely resembles those found in patients infected 

with HIV-1 (de Repentigny et al. 2004).  CD4C/HIVMutA Tg mice provide an ideal candidate 

to develop a model of C. neoformans and C. gattii infections, in the context of HIV-1 

infection.    
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HYPOTHESIS 

Cryptococcosis caused by C. neoformans usually infects immunocompromised patients, in 

contrast to C. gattii, which mostly infects immunocompetent people.  We formulate the 

hypothesis that CD4C/HIVMutA transgenic mice present functional and/or quantitative immune 

alterations that selectively augment their susceptibility to C. neoformans but not to C. gattii 

infection. 

 

OBJECTIVES 

We aim to analyze potential differences in pulmonary immune cell recruitment and cytokine 

production, in transgenic mice and non-transgenic controls infected with either C. neoformans 

or C. gattii.  

 

SPECIFIC AIMS 

To quantitate: 

1.  The recruitment of dendritic cells, interstitial and alveolar macrophages, CD4+ and CD8+ 

T lymphocytes, and Gr-1+ cells by flow cytometry, in both Tg and non-Tg mice 14 days after 

infection with C. neoformans or C. gattii.  

2. Pulmonary production of cytokines, in both Tg and non-Tg mice, 7 and 14 days after 

infection with C. neoformans. 

3.  Alveolar macrophage production of MIP-1α, MIP-1β, MCP-1, and RANTES in vitro, 24 

and 48 hours after exposure to C. neoformans (viable or heat-killed), C. gattii (viable or heat-

killed), lipopolysaccharide, and lipoteichoic acid, using macrophages harvested from both Tg 

and non-Tg mice.   
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CHAPTER 5- MATERIALS AND METHODS 

 

CD4C/HIVMutA Transgenic mice 

CD4C/HIVMutA Tg mice, from founder mouse F31388, express nef, env, and rev from the 

HIV-1 genome at moderate levels (Hanna, Kay, Rebai, et al. 1998).  Both Tg and control mice 

are from the C3H lineage.  The mice are certified pathogen-free.  They are housed in sterile 

microisolation cages in the G-5 animal facility at Université de Montréal, where the 

temperature, humidity, and light cycles are controlled.  Mice are supplied with sterile water 

and are fed sterile mouse chow. Francine Aumont and Mathieu Goupil, from the laboratory of 

Dr. Louis de Repentigny, maintained the colony. Male Tg mice from the colony are placed 

with two C3H females from Harlan Laboratories for reproduction.  Males used for 

reproduction must show no signs of infection.  Littermates of both sexes used for 

experimentation were between the ages of 42 to 65 days. It is also important to note that the 

room designated for experimentation is separate from the room for reproduction.   

The presence of the transgene was determined by using REDExtract-N-Amp Tissue PCR kit, 

from Sigma-Aldrich, to extract DNA from a tail tissue sample of the mouse according to the 

manufacturer’s instructions.  Briefly, an extraction and tissue preparation mixture was added 

to the tail sample and incubated at room temperature for 10 minutes, the mixture was then 

incubated at 95°C for three minutes, and finally a neutralization solution was added.   PCR 

was then performed using the REDExtract-N-Amp PCR reaction mix and specific 

oligonucleotides for either the functional gene, or the mutated gene due to the insertion of the 

transgene.  The presence or absence of the transgene was observed by polyacrylamide gel 
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electrophoresis.  All experiments were approved by the Comité de déontologie de 

l’expérimentation sur les animaux (CDEA) of the Université de Montréal. 

 

Preparation of C. neoformans and C. gattii inocula 

The H99 strain of C. neoformans var. grubii (serotype A), molecular type VNI, was isolated 

from the CSF of an HIV positive patient.  The R265 strain of C. gattii, molecular type VGIIa, 

was isolated from the bronchoalveolar lavage of an infected patient from Vancouver Island in 

2001.  Both of the strains were provided by Dr. James Kronstad of the University of British 

Columbia.   

Aliquots of the strains were kept frozen at -80°C.  Prior to inoculation, the yeast were thawed 

and grown for 48 hours at 30°C on yeast extract-peptone-dextrose (YPD) agar.  After 

incubation, several colonies were transferred from the agar into 10 mL of YPD broth and 

agitated for 18 hours at 35°C.  They were then washed twice with sterile PBS and centrifuged 

and pelleted at 200 x g for 10 minutes.  After resuspension in 10 mL of PBS the yeast were 

counted using a hemacytometer.  Different inocula were prepared, dependent on the species of 

Cryptococcus and/or the experiment being performed. The suspension of Cryptococcus in 

PBS, or KRPG for in vitro experiments, was contained in a 1 mL volume in an Eppendorf 

tube.  50 μL of the suspension was used to inoculate one mouse.  In the in vitro experiments, 

200 μL of the suspension was deposited in individual wells of a 96-well plate. 

 

Intranasal inoculation of mice 

Intranasal inoculation of mice was performed under sterile conditions in a biological safety 

cabinet at the G-5 animal facility.  The mice were anesthetized with an intraperitoneal 
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injection of 100 to 150 μL, depending on the weight of the mouse, of a ketamine/xylazine 

solution (1.5 mL of ketamine 100 mg/mL (Bioniche, Belleville, ON), 0.1 mL of xylazine 100 

mg/mL (Bimeda-MTC, Cambridge, ON), and 8.5 mL of sterile saline solution).   Anesthetized 

mice were then suspended by their incisors on a sterile nylon thread attached across the 

opening of a polystyrene box.  This is done to ensure that the airway of the mouse is fully 

open and to prevent leakage of the inoculum from the nares.  With the use of a pipette, 50 μL 

of inoculum is taken from the Eppendorf tube and is slowly pipetted into the nares of each 

mouse.  The mice are then left suspended for 10 minutes in order to ensure optimal aspiration 

of yeast into the lungs.  The mice are then returned to their microisolation cages until they are 

euthanized 7 or 14 days postinfection. 

 

Flow cytometry analysis of lung immune cell populations 

All manipulations were performed under sterile conditions in a biological safety cabinet.  

Groups of six CD4C/HIVMutA and non-Tg littermates were infected intranasally with 1.25 X 

104 CFU of H99, 1.25 X 105 CFU of R265, or PBS for control mice and euthanized 14 days 

postinfection.  After the lethal dose of ketamine/xylazine, the mice were exsanguinated by 

cutting the left atrium and injecting a 0.9% NaCl solution into the right ventricle.  The lungs 

were then excised and mechanically disrupted in 3 mL of sterile PBS using a mortar and 

pestle.  The lung cell suspension was then placed in a 15 mL conical tube and 1 mL of 1% 

collagenase (Sigma-Aldrich) in RPMI 1640 medium (Wisent) supplemented with 5% heat-

inactivated fetal bovine serum (Wisent), 100 U/mL penicillin-streptomycin, and 50 μg/mL 

gentamicin was added.  This suspension was incubated for 1 hour on a rotating platform at 

37°C, and every 15 minutes the suspension was manually agitated.  The solution was then 
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filtered with a 10 mL syringe equipped with a sterile nylon filter with a pore size of 80 μm.  

The suspension was centrifuged at 200 g for 10 minutes and the supernatant was removed.  

The cells were resuspended with 3 mL of sterile PBS, and 250 μL of the cell suspension was 

added to each of 11 FACS tubes.  These cell suspensions were then ready to be labeled with 

fluorochrome-conjugated antibodies.  Analysis of immune cell populations was performed 

with different panels of antibodies (Table I). 

Table I. Antibodies used to analyze immune cell populations by flow cytometery 

Antibody Fluorochrome Manufacturer Cat. No. 

CD45 PE Biolegend 103106 

Macrophages and Dendritic Cells 

CD11b APC Biolegend 101211 
CD11c PE/Cy7 Biolegend 117318 
F4/80 FITC Biolegend 123108 
isotype APC Biolegend 400612 
isotype PE/Cy7 Biolegend 400922 
isotype FITC Biolegend 400506 

Gr1+ cells 

CD3 FITC Biolegend 100204 
Gr-1 PE/Cy7 Biolegend 108416 
isotype FITC Biolegend 400606 
isotype PE/Cy7 Biolegend 400618 

CD4+/ CD8+ T Lymphocytes 

CD4 FITC Biolegend 100406 
CD8 PE/Cy7 Biolegend 100722 
isotype FITC Biolegend 400606 
isotype PE/Cy7 Biolegend 400522 

 

The antibodies and their isotypes were placed in their correct tube and incubated at 4°C for 30 

minutes (Table II).  In order to lyse all the red blood cells and to fix immune cells, 2 mL of 

lysing solution (BD Biosciences) was then added to each tube for 10 minutes in the dark at 

room temperature.  Then, 1 mL of PBS was added to each tube and the tubes were centrifuged 
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at 200 g for 10 minutes.  The supernatant was removed and the cells were resuspended in 

either 400 μL of PBS for the calibration tubes or 250 μL of PBS for the experimental tubes.  

Tubes 1 to 6, 8, and 10 are used to calibrate the FACS, while tubes 7, 9, and 11 are 

experimental tubes.  The labeled cells were then analyzed on a FACSCalibur flow cytometer 

(BD Biosciences) equipped with CellQuest software.  Labeled immune cell populations were 

first gated as CD45+, and further gated according to the expression of specific markers: 

interstitial (CD45+, CD11b+, CD11c-, F4/80+) and alveolar (CD45+, CD11b+, CD11chi, 

F4/80low) macrophages; dendritic cells (CD45+, CD11bhi, CD11chi); CD4+ T lymphocytes 

(CD45+, CD4+, CD8-); CD8+ T lymphocytes (CD45+, CD4-, CD8+); and Gr-1+ cells (CD45+, 

CD3-, Gr-1+).  Data were acquired for 30,000 CD45+ events, and the immune cell populations 

were calculated as a percentage of CD45+ cells. 

Table II.  Combinations of antibodies used in flow cytometery analysis of lung immune 

cell populations  

Tubes Antibodies 

1 No Antibody 
2 CD45 
3 CD45 + CD11b 
4 CD45 + CD11c 
5 CD45 + F4/80 
6 CD45 + isotypes (Macrophages and DCs) 
7 CD45 + CD11b + CD11c + F4/80 
8 CD45 + isotypes (CD4 and CD8 T lymphocytes) 
9 CD45 + CD4 + CD8 
10 CD45 + isotypes (Gr-1+ cells) 
11 CD45 + CD3 + Gr-1 
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Production of cytokines in the lungs 7 and 14 days postinoculation 

Manipulations were performed in a sterile biological safety cabinet.  Mice were infected at the 

same inoculum as for analysis of immune cell populations, but were euthanized at fixed times 

7 or 14 days postinfection.  After the mice were given a lethal dose of ketamine/xylazine, they 

were exsanguinated and the lungs were excised.  The lungs for each mouse were mechanically 

disrupted with a mortar and pestle after adding 1.5 mL of PBS.  The lung homogenates were 

then filtered using a 5 mL syringe equipped with a nylon filter with a pore size of 80 μm, and 

the filter was washed with 0.5 mL of PBS.  The filtered suspension was centrifuged at 2000 g 

for 10 minutes, and the supernatant was collected and stored at -80°C.  The cytokines in the 

supernatants were then assayed using the BD Flex cytometric bead array set (BD Biosciences) 

according to the manufacturer’s instructions.  Briefly, Flex set standards are prepared and 50 

μL of standard or sample is added to each FACS tube.  Fifty μL of a mixture containing all of 

the capture beads was added to a FACS tube and incubated for 1 hour at room temperature 

(Table III).  Fifty μL of mixed PE detection reagent was added to each tube, and incubated for 

1 hour for mouse assays, or 2 hours for human-based assays (Human TGF-β bead kit was 

employed as it is cross-reactive with mouse TGF-β).  One mL of wash buffer was added to 

each tube and centrifuged at 200 g for 5 minutes.  The supernatant was aspirated and the beads 

were resuspended in 300 μL of wash buffer.  The tubes were read on a FACSCalibur flow 

cytometer equipped with CellQuest software.  The data was analyzed using BD FCAP array 

3.0 software. 
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Table III. Cytometric bead array beads used to analyze pulmonary production of 

cytokines by Cryptococcus-infected mice 

 

Cytokine Bead Position Manufacturer Cat. No. 
IL-1β E5 BD Biosciences 560232 
IL-2 A5 BD Biosciences 558297 
IL-4 A7 BD Biosciences 558298 
IL-6 B4 BD Biosciences 558301 
IL-10 C4 BD Biosciences 558300 
IL-12p70 D7 BD Biosciences 558303 
IL-13 B8 BD Biosciences 558349 
IL-17A C5 BD Biosciences 560283 
IL-21 B6 BD Biosciences 560160 
TNF-α C8 BD Biosciences 558299 
IFN-γ A4 BD Biosciences 558296 
MIP-1α C7 BD Biosciences 558449 
MIP-1β C9 BD Biosciences 558343 
MCP-1 B7 BD Biosciences 558342 
RANTES D8 BD Biosciences 558345 
Human TGF-β B6 (Single plex) BD Biosciences 560429 

 

Cytokine analysis of alveolar macrophage supernatants 

Groups of 7 Tg and 7 non-Tg uninfected mice were euthanized with a lethal dose of 

ketamine/xylazine.  Bronchoalveolar lavages were performed as previously described 

(Zaragoza et al. 2007).  Briefly, euthanized mice were exsanguinated, and their tracheas were 

cannulated with PE (0.030-inch) tubing.  The lungs were lavaged 10 times with sterile ice cold 

PBS.  The lavage fluid was centrifuged at 200 g for 10 minutes and resupended with 2 mL of 

KRPG supplemented with 100 U/mL penicillin-streptomycin, and 50 μg/mL gentamicin.  

Alveolar macrophages were counted using a hemacytometer, and 1 X 105 macrophages were 

added to the wells of a 96-well plate.  The plate was then incubated at 37°C with 5% CO2 for 2 

hours to promote macrophage adherence (Goupil 2009).  The supernatant was discarded and 
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the wells were washed with 100 μL of KRPG.  Two hundred microliters of KRPG, H99 (1 X 

106 CFU), R265 (1 X 106 CFU), heat-killed H99 (1 X 106 CFU), heat-killed R265 (1 X 106 

CFU), LPS from E. coli (100 ng/mL), or LTA from S. aureus (10 μg/mL) were added to the 

wells (Grunfeld et al. 1999).  Heat-killed Cryptococcus was prepared by incubating the 

cultures at 65°C for 30 minutes (Luo et al. 2005).  The plate was then incubated for 24 or 48 

hours at 37°C with 5% CO2, and the supernatants were collected and stored at -80°C.  MCP-1, 

RANTES, MIP-1α, and MIP-1β concentrations in the supernatants were analyzed using BD 

Flex cytometric bead array set (BD Biosciences) according to the manufacturer’s instructions, 

as described above (Table III).  The tubes were read on a BD FACSCanto II flow cytometer 

equipped with FACSDiva software.  The data was analyzed with BD FACP array 3.0 

software. 

 

Statistical Analysis 

Statistical analysis for both immune cell populations and cytokine production was performed 

by analysis of variance using SPSS software (SPSS, Chicago, IL).  Differences were 

considered significant at a P value <0.05.  
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CHAPTER 6- RESULTS 

Quantification of pulmonary immune cell populations 14 days postinfection in Tg and non-Tg 

mice  

To determine if expression of the HIV-1 transgene alters immune cell recruitment in mice 

infected with C. neoformans or C. gattii, CD4C/HIVMutA Tg and non-Tg mice were inoculated 

with either control PBS, C. neoformans H99, or C. gattii R265 and lung immune cell 

populations were quantified 14 days later (Figure 7).   

 

Figure 7.  Percentages of lung immune cell populations, quantified by flow cytometry, in 

CD4C/HIVMutA Tg and non-Tg mice 14 days after inoculation with PBS control, C. 

neoformans H99, or C. gattii R265.  Data are presented as percentages of CD45+ cells and 

represent the means ± standard error of the means (SEM).  * Tg > non-Tg mice (P < 0.05) and 

** Tg < non-Tg mice (P < 0.001). 
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Expression of the HIV-1 transgene caused a prominent decrease in the percentages of CD4+ 

and CD8+ T lymphocytes (P<0.001), independently of infection with C. neoformans and C. 

gattii.  The percentage of alveolar macrophages recruited in Tg mice was also significantly 

higher (P<0.05) compared to non-Tg mice, independently of cryptococcal infection.  The 

percentages of Gr-1+ cells also showed a trend towards enhanced percentages in Tg mice 

(P=0.075).  R265 infection displayed a higher percentage of interstitial macrophages 

compared to the PBS control or H99 infection in both Tg and non-Tg mice (P=0.024).  No 

significant differences were observed between percentages of dendritic cells in Tg and non-Tg 

mice (P>0.05). 

Figure 8 represents the number of extracted pulmonary cells in Tg and non-Tg mice 14 days 

after inoculation with PBS control, H99, or R265.  Numbers of extracted cells, determined by 

hemacytometer count of cell suspensions after collagenase treatment, were significantly lower 

in Tg mice compared to non-Tg mice (P=0.02). 
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Figure 8. Total number of extracted pulmonary cells 14 days after inoculation of 

CD4C/HIVMutA Tg and non-Tg mice with PBS control, C. neoformans H99, or C. gattii 

R265.  Cells were counted using a hemacytometer after treatment of disrupted lung tissue with 

collagenase and red blood cell lysing solution.  Results represent the means ± standard error of 

the means (SEM). * Tg < non-Tg (P<0.02). 
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Altered pulmonary cytokine response to Cryptococcus in Tg and non-Tg mice 

To determine if the previously observed reduced inflammatory response in the lungs of Tg 

mice (Leongson K. M.Sc. thesis, Université de Montréal, 2011) was associated with defective 

cytokine production, cytokines from the lungs of CD4C/HIVMutA Tg and non-Tg mice were 

quantified 7 and 14 days after inoculation with PBS control, C. neoformans H99, or C. gattii 

R265 (Figure 9). 

 

Figure 9. Cytokine production in the lungs of CD4C/HIVMutA Tg mice and non-Tg mice 7 

and 14 days after inoculation with PBS control, C. neoformans H99, and C. gattii R265.  

IL-12p70, not shown, was undetectable in all mice.  Data are the means ± standard error of the 

means (SEM) of the results from six mice.  * Tg > non-Tg mice (P < 0.05) and ** Tg < non-

Tg mice (P < 0.05). 
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The production of RANTES by Tg mice was reduced under all three conditions after both 7 

and 14 days (P<0.01).  IL-2 production in Tg mice was also significantly reduced (P<0.03) at 

7 days after inoculation.  This same effect can be seen with the diminished production of 

MCP-1 in Tg mice both 7 and 14 days after infection with C. neoformans or C. gattii 

(P<0.01).  14 days after C. neoformans infection, the production of IL-4 was decreased and 

IL-17A production was increased (P<0.001) in Tg compared to non-Tg mice. The production 

of cytokines was also affected by C. neoformans and C. gattii infections independently of 

transgene expression.  The production of MCP-1 and RANTES, 7 and 14 days after infection, 

was significantly reduced (P<0.001) in mice infected with C. gattii compared to C. 

neoformans.  Fourteen days after infection, higher concentrations of MIP-1α, MIP-1β, TNF-α, 

TGF-β, IL-13, IL-2, and IL-4 were detected in mice infected with C. neoformans compared to 

C. gattii (P<0.001). The production of MIP-1β, TGF-β, IL-1β, TNF-α, IL-13, and IL-4 

increased significantly from day 7 to day 14 after infection with C. neoformans (P<0.001), but 

not C. gattii (P>0.05). At both 7 and 14 days after infection, C. neoformans triggered 

production of IFN-γ, while this cytokine was undetectable in mice infected with C. gattii.  The 

concentration of IL-6 increased significantly (P<0.05) from day 7 to day 14 after infection 

with either C. neoformans or C. gattii.  Production of IL-12p70 was undetectable under all 

conditions in both Tg and non-Tg mice.   

 

Cytokine production by alveolar macrophages of Tg and non-Tg mice 24 and 48 hours after 

agonist exposure 

Figure 10 represents the production of cytokines by alveolar macrophages of CD4C/HIVMutA 

Tg and non-Tg mice 24 and 48 hours after exposure to KRPG control, heat-killed C. 
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neoformans H99 and C. gattii R265, viable H99 and R265, lipoteichoic acid (LTA) from S. 

aureus, and lipopolysaccharide (LPS) from E. coli.  

Figure 10. Cytokine production by alveolar macrophages of CD4C/HIVMutA Tg and non-

Tg mice 24 or 48 hours after exposure to KRPG control, heat-killed C. neoformans H99 

and C. gattii R265, live H99 and R265, lipoteichoic acid, or lipopolysaccharide.  MCP-1 

and RANTES, not shown, were undetectable in the supernatants.  Data are the means ± 

standard error of the means (SEM) of the results. *Tg > non-Tg (P = 0.03) and ** LPS > 

agonists and control (P < 0.05). 
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Both MCP-1 and RANTES were undetectable at both 24 and 48 hours after exposure in both 

Tg and non-Tg mice independently of the agonist present.  At 24 hours, alveolar macrophages 

from Tg mice had a higher production of MIP-1β than non-Tg macrophages independently of 

the agonist present (P = 0.03).  In contrast, at 48 hours after agonist exposure, the 

concentrations of both MIP-1α and MIP-1β in Tg and non-Tg alveolar macrophages were not 

significantly different (P>0.05).  The concentration of MIP-1α did not increase significantly 

between 24 and 48 hours under all conditions, while MIP-1β concentrations from Tg mice 

were significantly higher at 24 hours compared to 48 hours (P = 0.025). MIP-1α and MIP-1β 

production by alveolar macrophages from Tg and non-Tg mice exposed to LPS was 

significantly higher compared to other agonists and control at both 24 and 48 hours (P < 0.05).  
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CHAPTER 7- DISCUSSION 

Histopathological examination of the lungs at 14 days postinfection with C. neoformans or C. 

gattii, previously conducted by Kassandre Leongson, showed an increased inflammatory cell 

response compared to 7 days postinfection (Leongson et al. 2013).  Flow cytometry analysis of 

pulmonary immune cell populations 7 days postinfection (Annex 2), previously performed by 

Kassandre Leongson, showed reduced percentages of CD4+ and CD8+ T lymphocytes, and 

increased percentages of alveolar macrophages and Gr-1+ cells, in Tg mice infected with C. 

neoformans or C. gattii (Leongson et al. 2013).  Therefore, flow cytometry analysis of 

immune cell populations 14 days after infection with C. neoformans H99 or C. gattii R265 

was conducted to establish a quantitative assessment of the progression of immune cell 

recruitment to the lungs of CD4C/HIVMutA Tg and non-Tg mice, from day 7 to day 14 after 

inoculation (Figure 7). 

The expression of the HIV-1 transgene, independently of cryptococcal infection, resulted in an 

increased percentage of alveolar macrophages.  The HIV-1 nef protein, expressed in 

CD4C/HIVMutA Tg mice, interacts with the macrophage CD40 ligand signaling pathway, 

enabling the recruitment and subsequent infection by HIV-1 of T lymphocytes (Swingler et al. 

1999; Swingler et al. 2003; de Repentigny et al. 2004; Mangino et al. 2007; Goupil et al. 

2009).  Nef is also responsible for modulating signal transduction pathways including 

apoptosis, MAPK, STAT1, STAT3, JNK, and ERK1/2 in macrophages (Federico et al. 2001; 

Mangino et al. 2007). The increased percentage of macrophages in Tg mice is consistent with 

the enhanced survival of HIV-1-infected macrophages, which act as long-term reservoirs for 

the virus (Vazquez et al. 2005).  Infection with either C. neoformans or C. gattii had no 

significant effect on the percentage of alveolar macrophages; the same result was shown on 
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total lung macrophages in C57BL/6 mice (Cheng et al. 2009).  Interestingly, interstitial 

macrophages displayed a significant increase in percentage (P=0.043) during infection with C. 

gattii compared to C. neoformans. The percentages of both alveolar and interstitial 

macrophages significantly increased (P≤0.001) 14 days after infection, compared to the 

percentages previously observed at 7 days by Kassandre Leongson.  This could be a result of 

macrophage recruitment to the lungs caused by the increased production of MCP-1, RANTES, 

MIP-1α, and MIP-1β (Huffnagle et al. 1995; Cook 1996; Murooka et al. 2008).   

Interestingly, transgene expression had no significant effect (P=0.371) on the percentage of 

dendritic cells (DC) in the lungs 14 days after infection (Figure 7).  This result is congruent 

with the results obtained 7 days postinfection, but is surprising because CD4C/HIVMutA Tg 

mice showed depletion of mature DCs (de Repentigny et al. 2004).  Moreover, the percentage 

of DCs was significantly increased (P=0.02) at 14 days after infection compared to day 7.  

Since we did not differentiate between mature and immature DCs during the present 

experiments, further work will be needed to investigate the possible depletion of mature DCs 

which has been shown in Tg mice aged between 3 and 5 months (Poudrier et al. 2003). 

Cheng and colleagues showed a significant decrease in the percentage of DCs when C57BL/6 

mice were infected with C. gattii compared to C. neoformans, an effect also seen, but not 

significantly so, in Tg and non-Tg mice (Cheng et al. 2009).  This could be caused by the 

differential susceptibility of mouse genetic lineages; C57BL/6 mice have been shown to be 

more susceptible to Cryptococcus infections, while C3H mice are more resistant (Rhodes et al. 

1980; Huffnagle et al. 1998).   It must also be noted that the flow cytometry method used by 

Cheng et al. to arbitrarily differentiate DCs and macrophages by low (DCs) and high 
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(macrophages) autofluorescence is not very precise and prone to experimental and user bias 

which could affect the results (Cheng et al. 2009).   

The expression of the transgene significantly decreased (P<0.001) the percentages of both 

CD4+ and CD8+ T lymphocytes (Figure 7).  These results are consistent with the well-

characterized reduction of these populations in the oral mucosa, secondary lymphoid organs, 

and peripheral blood of these Tg mice (Lewandowski et al. 2006), and correlate with the 

reduced number of CD4+ T lymphocytes in human cases of HIV-1 infection. Cryptococcus 

infection had no significant effect on the recruitment of CD4+ or CD8+ T lymphocytes.  There 

was also no significant increase in the percentage of CD4+ T lymphocytes when comparing 

results 7 and 14 days after infection.  Interestingly, the percentage of CD8+ T lymphocytes 

was significantly decreased (P=0.001) 14 days after infection compared to 7 days.  The 

reduction of CD8+ T lymphocytes could be caused by the upregulation of TNF-α and FasL 

production by DCs, and the activation of caspase 8 by nef, resulting in CD8+ T lymphocyte 

apoptosis (Quaranta et al. 2004). 

Transgene expression did not significantly increase (P=0.75) the percentage of Gr-1+ cells at 

day 14 after inoculation. Gr-1+ cells include not only PMNs, but also plasmacytoid dendritic 

cells and inflammatory monocytes that express Ly6C but not CD3.   The increase in Gr-1+ 

cells previously showed at day 7 after infection could result from the constitutive activation of 

macrophages and their enhanced production of cytokines such as TNF-α, IL-1β, and IL-8, 

which recruit PMNs (Wesselius et al. 1997; de Repentigny et al. 2004).  Moreover, it has been 

shown that CD4C/HIVMutA Tg mice show elevated percentages of neutrophils in peripheral 

blood (Lewandowski et al. 2006).   C. gattii infection increased the percentage of Gr-1+ cells 

compared to C. neoformans infection, but the difference was not significant (P=0.09).  This 
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result was surprising because Cheng et al. (2009) observed a significant reduction of 

pulmonary neutrophils in C. gattii infections compared to C. neoformans infection (Cheng et 

al. 2009).  The differences could be attributed to the fact that Gr-1+ cell populations may 

include, in addition to PMNs, plasmacytoid DCs and inflammatory monocytes recruited to the 

lungs. Moreover, Cheng et al. (2009) manually counted pulmonary cell suspensions and 

calculated Gr-1+ cells as a percentage of total leukocytes present in the sample; in addition, 

the different susceptibilities to cryptococcosis of the mouse genetic lineages employed may be 

associated with differing host immune responses (Rhodes et al. 1980; Huffnagle et al. 1998; 

Cheng et al. 2009).  Nevertheless, percentages of Gr-1+ cells were significantly increased 

(P<0.001) between 7 and 14 days after infection, which could be the result of Gr-1+ cell 

recruitment to the site of infection.  

The total number of extracted pulmonary cells was lower in Tg compared to non-Tg mice, 14 

days after infection with C. neoformans H99 or C. gattii R265.  Some technical issues need to 

be considered when interpreting these results.  The lungs were manually disrupted with a 

mortar and pestle, and it is impossible to completely disrupt the lungs.  Lungs from mice 

infected with C. gattii were rubbery and proved very difficult to disrupt.  Since the lungs were 

not completely disrupted into a homogenized mixture, some portions of the lung would be lost 

when the mixture is filtered.  These factors resulted in a loss of pulmonary cells.  The 

expression of the transgene resulted in a significantly reduced number of extracted pulmonary 

cells.  This result correlates with histopathological examination that shows reduced 

inflammation and cellular recruitment in Tg mice compared to non-Tg mice.  There was also a 

significant increase (P<0.001) in the number of extracted pulmonary cells, in both Tg and non-

Tg mice, 14 days after infection compared to 7 days, which is congruent with the increased 
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inflammation and cellular recruitment between day 7 and 14 postinfection observed on  

histopathology.  Cryptococcus infection had no significant effect on the number of extracted 

pulmonary cells.  To assess if the reduced inflammatory cell recruitment observed in the lungs 

of Tg mice infected with Cryptococcus was caused by an altered cytokine response, cytokines 

were quantified from the lungs of Tg and non-Tg mice 7 or 14 days after infection. MCP-1 

and RANTES concentrations were significantly reduced (P<0.05) as a result of transgene 

expression, independently of Cryptococcus infection and the duration of infection.  

Specifically MCP-1 and RANTES play critical roles in the recruitment of leukocytes in 

response to Cryptococcus infection in the lungs (Huffnagle et al. 1995; Murooka et al. 2008).  

This effect can be seen in the significantly reduced recruitment of CD4+ and CD8+ T 

lymphocytes in the lungs of Tg mice 7 and 14 days after infection, which is likely a 

combination of both HIV-1 transgene-induced depletion and impaired recruitment to the lungs 

of these lymphocyte populations.  However, production of MCP-1 has been shown to be 

increased in peritoneal macrophages of Tg mice (Goupil et al. 2009).  There might be a site-

specific difference between the pulmonary and peritoneal macrophage response, since the 

production of MCP-1 by pulmonary macrophages was consistently reduced after exposure to 

C. neoformans compared to LPS- exposure in a rat model of cryptococcosis (He et al. 2003).  

This reduced production of MCP-1 could be caused by the induction of TGF-β by 

cryptococcal extracellular vesicles inhibiting macrophage proliferation (Oliveira et al. 2010; 

Kubiczkova et al. 2012).   It would be interesting to examine if the production of MCP-2 and 

MCP-3 are impaired due to the expression of the transgene, because the increased production 

of these cytokines could possibly compensate for the reduced production of MCP-1.  The 

significant increase of IL-17 in Tg mice infected with C. neoformans is interesting because its 
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effects are associated with a protective antifungal response (Kleinschek et al. 2006).  The 

presence of IL-17 along with IL-6 and TNF-α, which are markers of a Th17 response, in Tg 

mice indicates that transgene expression has no major effect on Th17 polarization and 

response in the lungs.  The significant reduction of IL-4 in Tg mice infected with C. 

neoformans at day 14 after infection is also surprising because IL-4 is usually associated with 

a non-protective Th2 response that alternatively activates macrophages, reducing their anti-

cryptococcal activity (Arora et al. 2011).  CD4C/HIVMutA Tg mice usually display a 

constitutive Th2-like cytokine pattern (Lewandowski et al. 2006). 

The production of IL-10 was not significantly altered by the expression of the HIV-1 

transgene, while some studies have shown that human monocytes and macrophages have an 

increased production of IL-10 in HIV-1 infection (Borghi et al. 1995; Leghmari et al. 2008).  

Since the HIV-1 Tat protein activates the classical and alternative NF-κB pathways, inducing 

the production of IL-10, this effect cannot be seen in CD4C/HIVMutA Tg mice because these 

mice express nef, env and rev but not the tat gene (Hanna, Kay, Rebai, et al. 1998; Leghmari 

et al. 2008). 

The lower cytokine response to C. gattii compared to C. neoformans infection correlates with 

the diminished immune cell response observed on histopathology.  The production of MCP-1, 

RANTES, MIP-1α, MIP-1β, IL-1β, IL-2, IL-4, IL-13, TNF-α, IFN-γ, and TGF-β are all 

reduced, in comparison to C. neoformans, in Tg and non-Tg mice infected with C. gattii.  The 

production of MCP-1, RANTES, MIP-1α, and TNF-α play important roles in pulmonary 

leukocyte recruitment in response to Cryptococcus infection (Huffnagle et al. 1996; Huffnagle 

et al. 2000; Traynor et al. 2002).  This reduced cytokine response could potentially explain the 

slightly diminished percentage of CD4+ and CD8+ T lymphocytes 14 days after infection with 
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C. gattii.  IFN-γ is a marker for a Th1 protective response and is responsible for classically 

activating macrophages, thus augmenting the anti-cryptococcal effects of the host (Goldsby 

and Goldsby 2003; Arora et al. 2011).  The lack of IFN-γ production at both 7 and 14 days 

after C. gattii infection suggests a non-protective response.  A reduced production of IFN-γ 

has been observed in HIV-infected patients infected with C. gattii compared to C. neoformans 

infection (Brouwer et al. 2007).  The production of most cytokines increased between days 7 

and 14, which correlates with the increased number of extracted pulmonary cells 14 days after 

infection compared to day 7.  

The effect of transgene expression on the production of MIP-1α, MIP-1β, MCP-1, and 

RANTES by alveolar macrophages 24 and 48 hours after agonist exposure produced 

surprising results (Figure 10).  In Tg mice, the production of MIP-1β was increased compared 

to non-Tg mice 24 hours after exposure to the agonists.  The production in non-Tg mice is 

nearly nonexistent, and all Tg mice produced elevated concentrations of MIP-1β.  

Interestingly, this effect is no longer distinguishable 48 hours after exposure to the agonists; 

the concentrations of MIP-1β are relatively equal (Figure 10).  The elevated production of 

MIP-1β by alveolar macrophages 24 hours after exposure could result from Tg mouse 

macrophages being constitutively activated (de Repentigny et al. 2004).  The increased 

production of MIP-1β in Tg mice may also be caused by upregulation of NF-κB by nef, 

causing the macrophages from Tg mice to respond more quickly to agonist exposure (Olivetta 

et al. 2003).  Surprisingly, the production of MCP-1 and RANTES by alveolar macrophages 

was undetectable 24 and 48 hours after exposure to different agonists.  The theory for the lack 

of production of these cytokines is that alveolar macrophages need to be stimulated by both 

the agonist and IFN-γ in order to fully activate and produce MCP-1 and RANTES (Hu, 
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Chakravarty, et al. 2008).  The use of IFN-γ, which inactivates feedback inhibitory 

mechanisms, to prime alveolar macrophages may result in the increased production of MCP-1 

and RANTES after exposure to the same agonists (Hu, Chakravarty, et al. 2008; Goupil et al. 

2009).  Moreover, the production of MCP-1 has been shown to peak at 1-2 months after 

infection in both rats and CBA/J mice (Huffnagle et al. 1995; He et al. 2003).  It would 

therefore be interesting to quantify the cytokine production of alveolar macrophages 7 days 

after exposure to the agonists.   
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PERSPECTIVES 

The results obtained using this novel murine model to examine Cryptococcus infection creates 

a solid foundation from which to continue the study of the pathogenesis of cryptococcosis with 

regards to HIV-1 infection.  

Since there was no production of MCP-1 and RANTES in alveolar macrophages after both 24 

and 48 hours of exposure to agonists, it would be interesting to examine if priming the 

macrophages with IFN-γ to classically activate them would result in an increased production 

of these cytokines.  IFN-γ priming of macrophages has previously been done in our laboratory 

to examine the production of H2O2 and NO in peritoneal macrophages (Goupil et al. 2009). 

RNA from the alveolar macrophages, 24 and 48 hours after agonist exposure has already been 

extracted using RNeasy kit (Qiagen) and stored at -80°C. The same process could be used for 

IFN-γ primed alveolar macrophages.  It would therefore be interesting to examine if there is an 

upregulation of certain genes following agonist exposure and IFN-γ priming.  The genes that 

would be fascinating to assess would be for the cytokines analyzed (MIP-1α, MIP-1β, MCP-1, 

and RANTES); both TLR2 and TLR4; important proteins in the MyD88 pathway (MyD88, 

MAPK, PI3K, TRAF6, and IRAK-4); and transcription factors (NF-κB and AP-1) (Medzhitov 

et al. 1998; Suzuki et al. 2002; Biondo et al. 2005; Laird et al. 2009). 

It has been shown that both alveolar macrophages and dendritic cells play an important role in 

the initial innate immune response following C. neoformans infection (Osterholzer, Milam, et 

al. 2009). DCs have the ability to produce MIP-1α, MIP-1β, and TGF-β; and the stimulation of 

immature murine DC with LPS has been shown to upregulate the expression of both TLR2 

and TLR4 (Morelli et al. 2001; An et al. 2002; Maurer and von Stebut 2004).  The production 

of cytokines by purified, flow-sorted, DCs following exposure to the same agonists that were 
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used with alveolar macrophages would be interesting to examine.  Accounting for the fact that 

Tg mice have an elevated percentage of immature DCs, this would enable us to examine the 

altered response by DCs due to transgene expression (de Repentigny et al. 2004). 

It would be fascinating to examine if the expression of the transgene modulates 

phosphorylation in the pathways involved in the production of MCP-1, RANTES, MIP-1α, 

and MIP-1β.  This could be analyzed in alveolar macrophages cultured in a phosphate-free 

medium and the addition of orthophosphate (33P) containing a radiolabel followed by an 

exposure to an agonist (Anderson and Roche 1998). This would allow the examination of the 

downstream effects that transgene expression could have in pathway signal transduction.   

Better understanding the mechanisms involved in enhanced susceptibility of Tg mice to C. 

neoformans and C. gattii infections could enable the production of new and more efficient 

treatments for cryptococcosis in healthy and immunocompromised patients, as well as 

developing new strategies to control the outbreak on Vancouver Island and limit the expansion 

in the Pacific Northwest. 
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ANNEX 1- CULTURE MEDIA 

YPD (Agar) 

Yeast Extract 10g 
Peptone 20g 
Dextrose 20g 
Agar 20g 
H2O 1L 
 
 
YPD (Broth) 

Yeast Extract 2.5g 
Peptone 5g 
Dextrose 5g 
H20 250mL 
 

Krebs Ringer Phosphate Glucose (KRPG) Medium 

NaCl 145mM 
Sodium Phosphate 5.7mM 
KCl 4.86mM 
CaCl2 0.54mM 
Glucose 5.5mM 
Adjust pH to 7.35 
 
 

Modified Supplemented RPMI Medium 

RPMI 1640 without phenol red 
Penicillin/Streptomycin 100 U/mL 
Amphotericin B 0.25 ug/mL 
Gentamycin 50 ug/mL 
L- glutamine 2 mM 
HEPES 20 mM 
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ANNEX 2- ARTICLE 

The article entitled “Altered immune response differentially enhances susceptibility to 

Cryptococcus neoformans and Cryptococcus gattii infection in mice expressing the HIV-1 

transgene” published in the April 2013 issue of Infection and Immunity, of which I am a co-

senior author with Kassandre Leongson, includes histopathological and 7 day postinfection 

pulmonary immune cell recruitment results that are used in the discussion.  These results were 

produced by Kassandre Leongson. My contributions to this article are quantification and 

analysis of pulmonary immune cell recruitment at day 14 postinfection, and pulmonary 

cytokine production at days 7 and 14 after infection. 



  Published Ahead of Print 22 January 2013. 
2013, 81(4):1100. DOI: 10.1128/IAI.01339-12. Infect. Immun. 

Repentigny
Paul Jolicoeur, James W. Kronstad and Louis de
Goupil, Francine Aumont, Serge Sénéchal, Louis Gaboury, 
Kassandre Leongson, Vincent Cousineau-Côté, Mathieu

Transgene
Infection in Mice Expressing the HIV-1 
neoformans and Cryptococcus gattii
Enhances Susceptibility to Cryptococcus 
Altered Immune Response Differentially

http://iai.asm.org/content/81/4/1100
Updated information and services can be found at: 

These include:
SUPPLEMENTAL MATERIAL  Supplemental material

REFERENCES
http://iai.asm.org/content/81/4/1100#ref-list-1at: 

This article cites 77 articles, 44 of which can be accessed free

CONTENT ALERTS
 more»articles cite this article), 

Receive: RSS Feeds, eTOCs, free email alerts (when new

http://journals.asm.org/site/misc/reprints.xhtmlInformation about commercial reprint orders: 
http://journals.asm.org/site/subscriptions/To subscribe to to another ASM Journal go to: 

xiv

http://iai.asm.org/content/suppl/2013/03/13/IAI.01339-12.DCSupplemental.html
http://iai.asm.org/cgi/alerts
http://iai.asm.org/


Altered Immune Response Differentially Enhances Susceptibility to
Cryptococcus neoformans and Cryptococcus gattii Infection in Mice
Expressing the HIV-1 Transgene

Kassandre Leongson,a Vincent Cousineau-Côté,a Mathieu Goupil,a Francine Aumont,a Serge Sénéchal,a Louis Gaboury,b

Paul Jolicoeur,a,c,d James W. Kronstad,e Louis de Repentignya

Departments of Microbiology and Immunologya and Pathology and Cell Biology,b Faculty of Medicine, University of Montreal, Laboratory of Molecular Biology, Clinical
Research Institute of Montreal,c and Division of Experimental Medicine, McGill University,d Montreal, Quebec, Canada; The Michael Smith Laboratories, Department of
Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canadae

Cryptococcus neoformans var. grubii is the most frequent cause of AIDS-associated cryptococcosis worldwide, while Cryptococcus gat-
tii usually infects immunocompetent people. To understand the mechanisms which cause differential susceptibility to these cryptococ-
cal species in HIV infection, we established and characterized a model of cryptococcosis in CD4C/HIVMutA transgenic (Tg) mice ex-
pressing gene products of HIV-1 and developing an AIDS-like disease. Tg mice infected intranasally with C. neoformans var. grubii
strain H99 or C23 consistently displayed reduced survival compared to non-Tg mice at three graded inocula, while shortened survival
of Tg mice infected with C. gattii strain R265 or R272 was restricted to a single high inoculum. HIV-1 transgene expression selectively
augmented systemic dissemination to the liver and spleen for strains H99 and C23 but not strains R265 and R272. Histopathologic ex-
amination of lungs of Tg mice revealed large numbers of widely scattered H99 cells, with a minimal inflammatory cell response, while
in the non-Tg mice H99 was almost completely embedded within extensive mixed inflammatory cell infiltrates. In contrast to H99,
R265 was dispersed throughout the lung parenchyma and failed to induce a strong inflammatory response in both Tg and non-Tg
mice. HIV-1 transgene expression reduced pulmonary production of CCL2 and CCL5 after infection with H99 or R265, and produc-
tion of these two chemokines was lower after infection with R265. These results indicate that an altered immune response in these Tg
mice markedly enhances C. neoformans but not C. gattii infection. This model therefore provides a powerful new tool to further inves-
tigate the immunopathogenesis of cryptococcosis.

Cryptococcal meningitis is one of the most important HIV-
related opportunistic infections worldwide, especially in sub-

Saharan Africa (1). Globally, approximately 957,900 cases occur
each year, resulting in 624,700 deaths among persons living with
HIV/AIDS (1). Although cryptococcosis can occur in apparently
healthy hosts, most infections are observed in HIV-infected pa-
tients, who are particularly susceptible to this life-threatening fun-
gal infection (1). Inhalation of basidiospores or yeast cells of Cryp-
tococcus from the environment results in pulmonary infection and
preferential dissemination to the central nervous system, causing
meningoencephalitis. Cryptococcus neoformans var. grubii (sero-
type A) is by far the most frequent cause of AIDS-associated cryp-
tococcosis worldwide, with fewer cases caused by Cryptococcus
neoformans var. neoformans (serotype D), Cryptococcus gattii (se-
rotypes B and C) (2–7), or, exceptionally, a C. neoformans var.
grubii serotype A � C. gattii serotype B hybrid (8, 9). In contrast to
C. neoformans var. grubii, C. gattii usually infects immunocompe-
tent people (10) and is only occasionally found in patients with
HIV/AIDS (2–6). In a survey from South Africa, however, al-
though only 2.4% of all Cryptococcus isolates were confirmed to be
C. gattii, 24 of these cases occurred in HIV-infected patients, and
only a single case involved an HIV-uninfected person (6). Accord-
ingly, although HIV/AIDS may potentially augment susceptibility
to C. gattii infection in specific circumstances combining both
environmental exposure in an area of endemicity and limited ac-
cess to antiretroviral therapy, most of the enhanced burden of
cryptococcal infection in HIV/AIDS is caused by the ubiquitous C.
neoformans var. grubii (6).

A major endemic outbreak of C. gattii infection that began on

Vancouver Island in 1999 led to 239 reported cases and at least 19
deaths by the end of 2008 (10–12; www.BCCDC.ca), and it has
now spread to mainland British Columbia and the Pacific North-
west in the United States (10, 13–15). Consistent with the epide-
miology of C. gattii infections in Australia and New Zealand (7,
16), these infections in the British Columbia outbreak occurred
mainly in immunocompetent people, and only 6.2% of confirmed
C. gattii-infected patients were infected with HIV (12).

The mechanisms underlying the differential ability of C. gattii
and C. neoformans var. grubii to cause disease in healthy persons or
patients with HIV/AIDS are largely unknown. As a first step to-
ward understanding the ability of C. gattii to cause disease in im-
munocompetent hosts, a previous study revealed reduced levels of
neutrophil infiltration and reduced inflammatory cytokine pro-
duction in the lungs of C57BL/6 mice infected with C. gattii com-
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pared to those of mice infected with C. neoformans var. grubii (17).
However, a comprehensive analysis of virulence and host immune
cell responses to these Cryptococcus species would be facilitated
greatly by the availability of a relevant animal model of cryptococ-
cosis in HIV infection. We previously devised a novel model of
mucosal candidiasis in CD4C/HIV transgenic (Tg) mice express-
ing gene products of HIV-1 in immune cells and developing an
AIDS-like disease (18). These CD4C/HIV Tg mice are immuno-
deficient and exhibit severe atrophy and fibrosis of lymphoid or-
gans and a preferential depletion of CD4� T cells, with altered
CD4� T-cell proliferation in vitro, loss of CD4� T-cell help, CD4�

T-cell and B-cell activation, and impaired dendritic cell (DC)
function (19–23). In addition, diseases of the lung (lymphocytic
interstitial pneumonitis), heart (myocytolysis and myocarditis),
and kidney (tubulointerstitial nephritis, segmental glomerulo-
sclerosis, and microcystic dilatation) develop in these Tg mice (19,
24). Mucosal Candida infection in these Tg mice closely mimics
the clinical and pathological features of candidal infection in hu-
man HIV infection (18, 25) and has allowed us to perform con-
trolled studies on the immunopathogenesis of mucosal candidia-
sis in HIV infection (26–28).

With the recognition that a cause-and-effect analysis of the
immunopathogenesis of cryptococcosis and the virulence of
Cryptococcus species could potentially be achieved with these Tg
mice, the present study was undertaken to establish and charac-
terize a novel model of cryptococcosis in these animals and to
examine the infections caused by C. neoformans var. grubii and C.
gattii, using survival assays, organ fungal burdens, histopathology,
and assessments of the host immune response during a time
course of infection.

MATERIALS AND METHODS
Strains. C. neoformans var. grubii strains H99 and C23 and C. gattii strains
R265 and R272 were used in this study. Clinical strains H99 and C23, both
of molecular type VNI (29), were obtained from Joseph Heitman and
Thomas Mitchell (Duke University Medical Center). R265 and R272 were
both isolated in 2001 from the bronchial washings of immunocompetent
patients infected during the outbreak on Vancouver Island and belong to
the major VGIIa and less frequent VGIIb molecular types of C. gattii
causing this outbreak, respectively (11).

Infection of Tg mice expressing HIV-1. CD4C/HIVMutA Tg mice
have been described elsewhere (19). CD4C/HIVMutA mutant DNA har-
bors mouse CD4 enhancer and human CD4 promoter elements to drive
expression of the nef, env, and rev genes of HIV-1 in CD4� CD8� and
CD4� thymocytes, peripheral CD4� T cells, macrophages, and DCs. The
founder mouse F21388 was bred on the C3H background. Animals from
this line express moderate levels of the transgene, with 50% survival at 3
months (19). Several HIV-1 genes (gag, pol, vif, vpr, tat, and vpu) are
mutated in the CD4C/HIVMutA DNA, whereas nef, env, and rev are intact.
Specific-pathogen-free male and female Tg mice and non-Tg littermates
were housed in sterilized individual cages equipped with filter hoods,
supplied with sterile water, and fed with sterile mouse chow. All animal
experiments were approved by the animal care committee of the Univer-
sity of Montreal.

Cryptococcus strains were grown in yeast extract-peptone-dextrose
(YPD) medium for 24 h at 30°C, washed twice with phosphate-buffered
saline (PBS), counted in a hemacytometer, and resuspended in PBS at a
density of 2.5 � 106 or 2.5 � 105 yeast cells/ml. Intranasal inoculation of
the mice was performed as described previously (17). For the survival
assay, animals reaching predetermined morbidity endpoints (�20%
weight loss, immobile, no response when stimulated, or irregular/labored
abdominal respiration) were designated premortem and euthanized with
a lethal dose of ketamine and xylazine (18). For all other assays, mice were

euthanized on the indicated days. Quantification of Cryptococcus in inter-
nal organs, histopathology, and determination of Cryptococcus cell body
diameters and capsule thicknesses in mucicarmine-stained tissue sections
were done using methods described elsewhere (17, 18, 30).

Flow cytometry analysis of lung immune cell populations. Groups of
five CD4C/HIVMutA Tg and non-Tg littermates (42 to 69 days old) were
infected intranasally with 1.25 � 104 CFU of C. neoformans H99 or 1.25 �
105 CFU of C. gattii R265 and assessed at 7 and 14 days postinfection.
Uninfected control mice received intranasal PBS alone. Independent ex-
periments were conducted by pooling cells from all mice within each
group. Mice were anesthetized with a mixture of ketamine and xylazine
and then exsanguinated with 0.9% NaCl. Single-cell suspensions of lung
tissue were prepared by mechanical disruption in a mortar containing 3
ml of PBS and incubation at 37°C for 1 h with 1% collagenase type IV
(Sigma) in RPMI 1640 medium (Wisent Inc., St. Bruno, Canada) supple-
mented with 5% heat-inactivated fetal bovine serum (FBS; Wisent), 100
U/ml penicillin-streptomycin, and 50 �g/ml gentamicin. Cells were fil-
tered through a sterile nylon mesh (pore size, 80 �m) to obtain a homo-
geneous suspension. Cells were surface stained with anti-mouse anti-
CD45, anti-CD11b, anti-CD11c, and anti-F4/80 fluorescence-labeled
monoclonal antibodies and their respective isotype controls (all from Bio-
Legend, San Diego, CA) for quantitation of interstitial (CD45� CD11b�

CD11c� F4/80�) and alveolar (CD45� CD11b� CD11c� F4/80�) mac-
rophages and dendritic cells (CD45� CD11b� CD11c� F4/80�); with
anti-CD45, anti-CD3, and anti-Gr-1 to quantitate Gr-1� cells (CD45�

CD3� Gr-1�); and with anti-CD45, anti-CD4, and anti-CD8 to quanti-
tate CD4� (CD45� CD4� CD8�) and CD8� (CD45� CD4� CD8�)
T-cell populations. Red blood cells were removed with FACS lysing solu-
tion (BD Biosciences), and the remaining total extracted cells were
counted using a hemacytometer. Cell surface marker analysis was con-
ducted on a FACSCalibur flow cytometer (BD Biosciences) equipped with
CellQuest software. Data were acquired for 30,000 events by gating on
CD45� cells. Results for each immune cell population were calculated as
both the percentage of CD45� cells and the absolute number of cells
extracted from the lungs of a single mouse.

Production of cytokines. To assay the production of cytokines, lungs
were harvested from CD4C/HIVMutA Tg mice and non-Tg littermates 7 or
14 days after intranasal infection with 1.25 � 104 CFU of C. neoformans
H99 or 1.25 � 105 CFU of C. gattii R265. Uninfected control mice re-
ceived intranasal PBS. Lungs were mechanically disrupted in a mortar
containing 2 ml of PBS. Lung homogenates were centrifuged, and super-
natants were stored at �80°C. Cytokines in supernatants were assayed
using a BD Flex cytometric bead array set (BD Biosciences) according to
the manufacturer’s protocol on a FACSCalibur flow cytometer equipped
with BD CellQuest software. Data analysis was performed using BD FCAP
array software 3.0.

Statistical analysis. Kaplan-Meier modeling and a log rank (Mantel-
Cox) test were used to compare survival of C. neoformans var. grubii- and
C. gattii-infected Tg and non-Tg mice. Organ burdens of Cryptococcus
were compared using the Kruskal-Wallis test, and significant interactions
were further analyzed by use of the Mann-Whitney test. Cryptococcus cell
body diameters and capsule thicknesses, lung immune cell populations,
and cytokine production were analyzed with SPSS, version 19, software
(SPSS, Chicago, IL), using analysis of variance. Differences were consid-
ered significant if the P value was �0.05.

RESULTS
Enhanced susceptibility to cryptococcosis in Tg mice. Tg and
non-Tg mice were infected intranasally with three graded inocula
of C. neoformans (strain H99 or C23) or C. gattii (strain R265 or
R272) and then assessed for survival and organ burdens. Survival
of both Tg and non-Tg mice was inversely correlated with the
inoculum size of C. neoformans and C. gattii, with the single ex-
ception of Tg mice infected with strain R265 (Fig. 1A). Although
C. neoformans strain C23 was less virulent than C. neoformans
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strain H99 in Tg and non-Tg mice at all three inocula (P � 0.03),
Tg mice infected with these two C. neoformans strains consistently
displayed reduced survival compared to non-Tg mice infected at
the same three inocula. The enhanced susceptibility to cryptococ-
cosis in the Tg mice was especially prominent in animals infected
with the low inoculum of 1.25 � 104 CFU of C. neoformans H99,
none of which survived, in comparison to the 70% survival of the
non-Tg animals (Fig. 1A). Likewise, the mortality of Tg mice in-
fected with C. neoformans C23 at this inoculum was 90%, com-
pared to 10% for the non-Tg mice (Fig. 1A). In contrast to the C.
neoformans infections, shortened survival of Tg mice infected with
C. gattii strain R265 or R272 was restricted to a single higher in-
oculum (1.25 � 105 or 1.25 � 106, respectively) (Fig. 1A). Lungs
harvested at necropsy from Tg and non-Tg mice infected with C.
neoformans H99 or C. gattii R265 were macroscopically indistin-
guishable. All showed multiple hemorrhagic and abscess-like sur-
face lesions (Fig. 1B and C). Taken together, the results of these
survival studies clearly demonstrated that HIV-1 transgene ex-
pression markedly and consistently enhanced susceptibility to C.
neoformans, independent of the inoculum, while this effect was
discernible only at a single inoculum with C. gattii.

Organ burdens of euthanized mice premortem, determined as
CFU/g (Tables 1 and 2), demonstrated a close correlation with
survival of Tg and non-Tg mice infected with C. neoformans or C.
gattii. In non-Tg mice, organ burdens in the liver and spleen in-
creased significantly with the inoculum size of the two C. neofor-
mans strains (P � 0.001), but not the two C. gattii strains (P �
0.05), but in Tg mice, inoculum size had no significant effect on
organ burdens of either C. neoformans or C. gattii (P � 0.05). The
two C. neoformans strains produced comparable burdens in the
liver and spleen within the Tg and non-Tg groups of mice (P �
0.05), but both sets of burdens were greater than those produced
by the two C. gattii strains (P � 0.03), which did not differ signif-
icantly from each other (P � 0.05). Interestingly, the reduced
survival of Tg mice infected with C. neoformans compared to in-
fected non-Tg animals was correlated with strikingly enhanced
systemic dissemination to the liver and spleen of strains H99 and
C23 at the two lowest inocula (1.25 � 104 and 1.25 � 105 CFU)
(P � 0.03) (Table 1). In contrast, burdens of C. gattii strains R265
and R272 in these organs were comparable at all three inocula in
Tg and non-Tg mice (P � 0.05) (Table 2), demonstrating that
HIV-1 transgene expression selectively augments systemic dis-

FIG 1 (A) Survival of Tg and non-Tg mice infected with Cryptococcus neoformans (strain H99 or C23) or Cryptococcus gattii (strain R265 or R272). Ten mice were
infected intranasally at each of the indicated inocula. Significant differences are indicated as follows: *, P � 0.01 versus mice infected with the same strain at an
inoculum of 1.25 � 106 CFU; and **, P � 0.01 for Tg versus non-Tg mice infected with identical inocula of the same strain. (B and C) Lungs harvested at necropsy
from Tg and non-Tg mice infected with C. neoformans H99 or C. gattii R265 all showed multiple hemorrhagic (filled arrowhead) and abscess-like (open
arrowhead) surface lesions. Representative examples are shown for a non-Tg mouse infected with C. neoformans H99 (B) and a Tg mouse infected with C. gattii
R265 (C).
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semination to the liver and spleen for C. neoformans but not C.
gattii. However, enhanced burdens in brains of Tg compared to
non-Tg mice were observed at the two lowest inocula with C.
neoformans strain C23 only (P � 0.002), not strain H99 (P � 0.05)
or the two C. gattii strains (P � 0.05) (Tables 1 and 2), showing
that HIV-1 transgene-mediated augmentation of C. neoformans
dissemination to the brain may be strain dependent.

Enhanced cryptococcal burdens and more frequent dissemina-
tion to the liver and spleen were also found in Tg compared to
non-Tg mice euthanized at the fixed time of 14 days after infection
with the lowest inoculum (1.25 � 104 CFU) of C. neoformans H99
(P � 0.05) (Table 3). Seven days after infection, however, no sys-
temic dissemination had yet occurred, and pulmonary burdens
were comparatively lower than those at day 14 (P � 0.02) and were
not significantly different (P � 0.05) in Tg and non-Tg mice (Ta-
ble 3). In contrast to the case with C. neoformans H99, however,

lung burdens were comparable at days 7 and 14 (P � 0.05), the
frequency of systemic dissemination remained low, and crypto-
coccal burdens in the liver and spleen were comparable in Tg and
non-Tg mice 14 days after infection with an intermediate inocu-
lum (1.25 � 105 CFU) of C. gattii strain R265 (P � 0.05) (Table 3).

Defective inflammatory cell response to Cryptococcus in Tg
mice. Histopathologic examination of lungs was conducted on
days 7 and 14 after infection and premortem to identify the na-
ture, location, and extent of the inflammatory cell response to C.
neoformans strain H99 and C. gattii strain R265 (Fig. 2; see Fig. S1
to S3 in the supplemental material). The pulmonary inflamma-
tory responses to C. neoformans were strikingly and consistently
different in Tg and non-Tg mice. Seven days after infection of the
Tg mice, numerous C. neoformans cells were located in the bron-
chioles and formed cysts or were individually dispersed through-
out the lung parenchyma, with a minimal scattered mononuclear

TABLE 3 Viable CFU in organs of CD4C/HIVMutA Tg mice inoculated intranasally with Cryptococcus spp.

Strain (inoculum) and variable

Valuea

Tg mice Control non-Tg mice

Cryptococcus neoformans H99 (1.25 � 104 CFU)
Days after inoculation 7 14 7 14
No. of inoculated mice 6 6 6 6
Variables for organs culture positive for C. neoformans

Brain
No. of mice 0 4 0 2
C. neoformans count (CFU/g) NA 2.5 � 106 NA 6.9 � 106

Range of counts NA 4.4 � 104-8.5 � 106 NA 3.8 � 105-1.4 � 107

Lungs
No. of mice 6 6 6 6
C. neoformans count (CFU/g) 1.1 � 108 6.1 � 108 6.7 � 107 2.0 � 108

Range of counts 3.3 � 107-3.9 � 108 4.6 � 107-1.1 � 109 3.6 � 107-1.0 � 108 1.0 � 108-3.1 � 108

Liver
No. of mice 0 4 2 1
C. neoformans count (CFU/g) NA 4.1 � 104 9.6 � 103 6.5 � 103

Range of counts NA 2.3 � 104-5.8 � 104 7.9 � 103-1.1 � 104 NA
Spleen

No. of mice 0 4 0 1
C. neoformans count (CFU/g) NA 2.7 � 105 NA 1.8 � 104

Range of counts NA 1.6 � 105-4.2 � 105 NA NA

Cryptococcus gattii R265 (1.25 � 105 CFU)
Days after inoculation 7 14 7 14
No. of inoculated mice 6 6 6 6
Variables for organs culture positive for C. gattii

Brain
No. of mice 0 1 4 0
C. gattii count (CFU/g) NA 3.5 � 105 2.4 � 104 NA
Range of counts NA NA 1.3 � 104-5.9 � 104 NA

Lungs
No. of mice 6 6 6 6
C. gattii count (CFU/g) 1.7 � 108 1.9 � 108 1.6 � 108 2.5 � 108

Range of counts 3.9 � 107-2.4 � 108 1.0 � 108-3.6 � 108 4.0 � 107-2.6 � 108 1.8 � 108-3.3 � 108

Liver
No. of mice 0 2 1 1
C. gattii count (CFU/g) NA 6.0 � 103 3.7 � 103 5.7 � 104

Range of counts NA 4.2 � 103-7.8 � 103 NA NA
Spleen

No. of mice 0 0 0 0
C. gattii count (CFU/g) NA NA NA NA
Range of counts NA NA NA NA

a Mice studied included Tg and control non-Tg offspring derived from the founder mouse F21388. NA, not applicable.
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cell infiltrate (see Fig. S2L1 and S3L2). In contrast, the non-Tg
mice displayed dense bronchovascular infiltrates containing
mononuclear cells and polymorphonuclear leukocytes (PMNs)
completely enclosing C. neoformans (see Fig. S2K1). Fourteen

days after infection of the Tg mice, much larger numbers of C.
neoformans cells were widely scattered in the lung tissue, with a
minimal inflammatory cell response, and were rarely observed
within discrete bronchovascular infiltrates containing mostly

FIG 2 Histopathology of lungs from Tg and non-Tg mice, either uninfected or assessed on day 14 or premortem after intranasal infection with 1.25 � 104 CFU
of Cryptococcus neoformans H99 or 1.25 � 105 CFU of Cryptococcus gattii R265. Tissues were stained with hematoxylin phloxine saffron (HPS). Fourteen days
after infection of non-Tg mice (C1), C. neoformans was present in great numbers and was almost entirely embedded within extensive mixed inflammatory
infiltrates comprised of macrophages (filled arrowheads) and polymorphonuclear leukocytes (open arrowheads) (C1, enlarged inset) and only rarely observed
in the remaining lung parenchyma, in marked contrast to the case with Tg mice, which displayed predominantly innumerable and widely scattered C. neoformans
cells, with a minimal inflammatory cell response (D1) and only rarely enclosed within discrete bronchovascular infiltrates (enlarged inset). Premortem non-Tg
mice displayed necrotizing granulomas containing epithelioid cells (filled arrowhead) and Langhans-type giant cells (open arrowhead) (E1), in contrast to Tg
mice, which showed no granulomas but numerous macrophages (filled arrowhead) and polymorphonuclear leukocytes (open arrowhead) and wide areas of lung
parenchyma containing numerous C. neoformans cells but no inflammatory response (F1). C. gattii was widely dispersed throughout the lung tissue and induced
only a modest and localized inflammatory response comprised of macrophages (filled arrowheads) and polymorphonuclear leukocytes (open arrowhead) in Tg
and non-Tg mice (G1 to J1). BR, bronchiole; BV, blood vessel. Images are representative of 2 (A1 and B1) or 6 (C1 to J1) mice per group, with consistent results.

Leongson et al.

1106 iai.asm.org Infection and Immunity

xxi

http://iai.asm.org
http://iai.asm.org/


PMNs and a few mononuclear cells (Fig. 2D1; see Fig. S1D2). In
striking contrast, in non-Tg mice, C. neoformans cells were almost
entirely embedded within far more extensive mixed inflammatory
infiltrates comprised of PMNs and macrophages and were seldom
observed in the remaining lung parenchyma, which was devoid of
inflammatory cells (Fig. 2C1). Finally, premortem non-Tg mice
again displayed a widespread inflammatory response, with the
added appearance at this late time point of necrotizing granulo-
mas containing epithelioid cells and Langhans-type giant cells
(Fig. 2E1). This was in contrast to the Tg mice, which displayed
more limited inflammatory foci containing abundant macro-
phages and PMNs but no granulomas, as well as broad areas of
lung parenchyma containing numerous C. neoformans cells but
no inflammatory response (Fig. 2F1).

In sharp contrast to the case for infection with C. neoformans,
numerous C. gattii cells were widely dispersed throughout the
lung tissue and induced only a sparse inflammatory response on
days 7 and 14 after infection in both Tg and non-Tg mice (Fig. 2G1
and H1; see Fig. S1 to S3 in the supplemental material). A modest
and circumscribed inflammatory response comprised of macro-
phages and PMNs appeared only in premortem animals and was
independent of HIV-1 transgene expression (Fig. 2I1 and J1).

Interestingly, macrophages in lung tissue sections from Tg and
non-Tg mice infected with C. neoformans or C. gattii often dis-
played the distinctive appearance of “hueco” cells filled with ves-
icles containing capsular polysaccharide (31, 32). These cells were
observed beginning on day 14 after infection and became more
abundant in mice assessed premortem.

Histopathologic examination of the brains of Tg and non-Tg
mice on day 7 after infection with C. neoformans showed that the
brains were entirely normal, in accordance with the absence of
systemic dissemination to this organ at this early time point (Table
3). On day 14 after infection, however, histopathology revealed C.
neoformans in the brain parenchyma of a single non-Tg mouse
which displayed culture evidence of dissemination to this organ,
but not in the other animals, which were either culture positive or
negative (Table 3). Taken together with the organ burdens, these
results indicated that the onset of dissemination to the brain for C.
neoformans was detectable more than 7 days after infection in both
Tg and non-Tg mice and did not occur earlier in the Tg mice,
despite their enhanced frequency of systemic dissemination (Ta-
bles 1 and 2). Examination of the brains of Tg and non-Tg mice 7
and 14 days after infection with C. gattii did not show histopatho-
logic evidence of the fungus, in accordance with lower burdens of
C. gattii than of C. neoformans in this organ (Table 3).

Cell body diameters and capsule thicknesses of 100 randomly
selected C. neoformans or C. gattii cells were determined in lung
tissue sections from Tg and non-Tg mice 7 or 14 days after infec-
tion. For both C. neoformans and C. gattii, cell body diameters and
capsule thicknesses increased significantly from day 7 to day 14
after infection of non-Tg mice (P � 0.001) but not Tg mice (P �
0.05), and both measurements were greater in non-Tg than in Tg
mice on day 14 after infection with these two species (P � 0.001)
(Table 4). However, cell body diameters and capsule thicknesses
of C. neoformans H99 were markedly greater than those of C. gattii
R265 both 7 and 14 days after infection of both Tg and non-Tg
mice (P � 0.001), showing that the dimensions of these two spe-
cies consistently differ in vivo, irrespective of time after infection
or HIV-1 transgene expression (Table 4). Interestingly, using a cell
body diameter threshold of 15 �m, 22 to 53% of C. neoformans

H99 cells comprised giant (titan) cells (33), but these cells were
seen less frequently (3 to 12% of cells) in tissue sections from mice
infected with C. gattii 265.

Altered lung immune cell populations in response to Crypto-
coccus in Tg mice. To quantitatively assess the impact of HIV-1
transgene expression on lung immune cell populations, multipara-
metric flow cytometry analysis was conducted on CD4C/HIVMutA Tg
mice and non-Tg littermates 7 and 14 days after infection or no in-
fection with C. neoformans H99 or C. gattii R265. On both days, trans-
gene expression independently caused striking reductions in the
percentages of CD4� and CD8� T cells (P � 0.001) (Fig. 3). Further-
more, on day 14, total numbers of extracted pulmonary cells were
significantly lower in Tg mice than in non-Tg mice (P � 0.002),
correlating with the defective inflammatory cell response to Crypto-
coccus observed on histopathology. Independent of cryptococcal in-
fection, percentages of alveolar macrophages were significantly in-
creased (P � 0.05) in Tg compared to non-Tg mice on days 7 and 14
(Fig. 3). Similar findings were observed with Gr-1� cells, but they
reached statistical significance only on day 7 (Fig. 3). In addition,
from day 7 to day 14, in both Tg and non-Tg mice, the percentages of
dendritic cells, alveolar macrophages, and Gr-1� cells were signifi-
cantly increased in animals infected with either C. neoformans or C.
gattii (P � 0.02), while a similar increase in interstitial macrophages
during the same interval was restricted to C. gattii (P � 0.001). We
cannot formally exclude the possibility that in addition to PMNs,
plasmacytoid dendritic cells and inflammatory monocytes, express-
ing Ly6C but not CD3, may have been recognized by the anti-Gr-1
antibody. Finally, absolute numbers of CD4� and CD8� cells, but
not the other cell populations, were significantly diminished (P �
0.05) in the Tg compared to non-Tg mice on days 7 and 14 after
infection or no infection with C. neoformans or C. gattii (data not
shown).

Altered production of pulmonary cytokines in response to
Cryptococcus in Tg mice. To determine if the reduced pulmo-
nary inflammatory response to Cryptococcus observed in the Tg
mice was associated with defective production of cytokines, Tg
and non-Tg mice were assessed 7 or 14 days after infection or
no infection with C. neoformans H99 or C. gattii R265. In com-
parison to the levels in non-Tg mice, HIV-1 transgene expres-

TABLE 4 Cell body diameters and capsule thicknesses of C. neoformans
H99 and C. gattii R265 in mucicarmine-stained lung tissue sections 7 or
14 days after infection of CD4C/HIVMutA Tg or non-Tg mice

Measurement and
strain

Value after infectiona

Tg mice Non-Tg mice

7 days 14 days 7 days 14 days

Cell body diameter
(�m)

C. neoformans H99 11.8 � 4.2b 11.4 � 4.5b 12.4 � 3.6b 15.4 � 3.5b,c,d

C. gattii R265 10.3 � 2.8 9.8 � 2.7 9.5 � 2.9 12.0 � 2.8c,d

Capsule thickness
(�m)

C. neoformans H99 5.0 � 1.9b 5.6 � 2.5b 6.3 � 1.8b 8.2 � 2.0b,c,d

C. gattii R265 4.9 � 1.4 4.7 � 2.3 3.5 � 1.3 6.2 � 2.0c,d

a Data are means � standard deviations for 100 randomly selected cells.
b P � 0.001 compared to C. gattii R265.
c P � 0.001 compared to non-Tg mice at day 7.
d P � 0.001 compared to Tg mice at day 14.
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sion consistently reduced pulmonary production of the CC
chemokines monocyte chemoattractant protein 1 (MCP-1;
CCL2) and RANTES (CCL5) both 7 and 14 days after infection
with C. neoformans or C. gattii (P � 0.01) (Fig. 4), suggesting
that defective production of these chemotactic cytokines may
contribute to the defective inflammatory response to Crypto-
coccus in Tg mice. In addition, in comparison to the case with
C. neoformans, production of these two chemokines was signif-
icantly lower after infection with C. gattii (P � 0.001), which
may partially explain the markedly reduced pulmonary inflam-
matory response to C. gattii in comparison to that to C. neofor-

mans in the non-Tg mice (Fig. 2). Indeed, a wide array of cy-
tokines (interleukin-1	 [IL-1	], tumor necrosis factor alpha
[TNF-
], macrophage inflammatory protein 1	 [MIP-1	], IL-
13, transforming growth factor beta [TGF-	], and IL-4) in-
creased significantly from day 7 to day 14 after infection with C.
neoformans (P � 0.001) but not C. gattii (P � 0.05), and higher
concentrations of TNF-
, MIP-1
, MIP-1	, IL-13, TGF-	,
IL-2, and IL-4 were also found on day 14 after infection with C.
neoformans compared to C. gattii (P � 0.001), independent of
transgene expression. This differential production of cytokines
after infection by the two species was especially prominent in

FIG 3 Flow cytometry analysis of lung immune cell populations in CD4C/HIVMutA Tg and non-Tg mice 7 and 14 days after infection or no infection with C.
neoformans H99 or C. gattii R265. Data are presented as percentages of CD45� cells and are the means � standard errors of the means (SEM) of results from three
or four independent experiments. Significant differences are indicated as follows: *, Tg � non-Tg mice (P � 0.05); and **, Tg � non-Tg mice (P � 0.001).
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the case of gamma interferon (IFN-�), which was produced
exclusively in response to infection with C. neoformans.

In sharp contrast, however, production of IL-6 and IL-10 in-
creased significantly from day 7 to day 14 after infection with
either of the two species (P � 0.05), suggesting that the lower
pulmonary inflammatory response observed after infection with
C. gattii than after infection with C. neoformans was not associated
with a differing production of these two cytokines.

In addition to MCP-1 and RANTES, HIV-1 transgene expres-
sion resulted in decreased production of IL-2 on day 7 after infec-
tion (P � 0.03), a defect previously associated with enhanced sus-
ceptibility to cryptococcosis at this early time point of infection
(34). However, in comparison to non-Tg controls on day 14, Tg
mice infected with C. neoformans unexpectedly had reduced pro-
duction of IL-4 (P � 0.001) and increased production of IL-17A
(P � 0.001), both of which are associated with a protective rather
than nonprotective anticryptococcal host response (35–37).

DISCUSSION

The model which we established recapitulates the hallmark histo-
pathological features of human pulmonary C. neoformans (38, 39)
and C. gattii (40) infections, including a minimal inflammatory
cell infiltrate in transgenic mice infected with C. neoformans that
reproduces the pathological findings in AIDS patients (38). The
present results also clearly establish, for the first time in an animal

model, using controlled conditions with two strains each and
three inocula of C. neoformans and C. gattii, that HIV-1 expression
consistently augments susceptibility to C. neoformans but not that
to C. gattii. This finding provides experimental evidence to support
the results of epidemiological studies of cryptococcosis, which dem-
onstrate that C. neoformans causes the overwhelming majority of in-
fections in the setting of HIV infection, while C. gattii infections occur
mostly in immunocompetent persons (12, 16). The lack of a signifi-
cant transgene effect on mortality at the lowest inoculum of C. gattii
(1.25�104 CFU), in contrast to an inoculum of 1.25�105 CFU, may
have resulted from differing levels of the inflammatory response to C.
gattii at these two inocula.

Assessments of organ burdens, lung histopathology, immune
cell populations, and cytokine production were conducted at the
fixed time points of 7 and 14 days after infection with 1.25 � 104

CFU of C. neoformans H99 or 1.25 � 105 CFU of C. gattii R265.
These inocula were selected on the basis of the results of the sur-
vival study, which showed the greatest transgene effect on mortal-
ity at these inocula (Fig. 1), and therefore they were most likely to
reveal differences in organ burdens at the fixed time points. Im-
mune response parameters were assessed for the same inocula to
allow a meaningful correlation with organ burden data.

In comparison to C. neoformans, infection of immunocompe-
tent non-Tg C3H mice with C. gattii elicited a markedly reduced
pulmonary inflammatory cell response, as reported previously for

FIG 4 Cytokine production in lungs of CD4C/HIVMutA Tg and non-Tg mice 7 and 14 days after infection or no infection with C. neoformans H99 or C. gattii
R265. IL-12p70 (not shown) was undetectable in all mice. Data are the means � SEM of results from six mice. Significant differences are indicated as follows: *,
Tg � non-Tg mice (P � 0.05); and **, Tg � non-Tg mice (P � 0.05).
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C57BL/6 and A/JCr mice infected with identical inocula of the two
species (17, 41). It is therefore unlikely that the less robust pulmo-
nary inflammatory cell response to C. gattii than that to C. neofor-
mans which we found in the non-Tg mice was caused by the higher
inoculum.

The lower pulmonary inflammatory cell response to C. gattii
was closely correlated with diminished production of several cy-
tokines and chemokines, including MCP-1, RANTES, MIP-1
,
MIP-1	, IL-1	, IL-2, IL-4, IL-13, TNF-
, IFN-�, and TGF-	.
Among these, MCP-1, MIP-1
, TNF-
, and IFN-� all play a role
in leukocyte recruitment to the lungs in response to C. neoformans
infection (42–52). Accordingly, reduced production of these four
cytokines may explain, at least in part, the strikingly sparse inflam-
matory cell response to C. gattii compared to that to C. neoformans
in the non-Tg C3H mice. Interestingly, we found greater capsule
thicknesses of C. neoformans than C. gattii, and it has been re-
ported that increasing capsule thicknesses of C. neoformans aug-
ment the magnitudes of IL-1	 and TNF-
 release by human
PMNs (53). It would be relevant in future work to examine infec-
tion by C. neoformans 145A, which like C. gattii R265 induces a
limited pulmonary inflammatory response (54), to determine if it
behaves similarly to C. gattii in HIV-1-expressing Tg mice.

Despite these strikingly dissimilar host immune responses to
C. neoformans and C. gattii, comparable lung burdens of both
cryptococcal species were found on days 7 and 14 after infection
and premortem. This seemingly paradoxical finding could possi-
bly be explained by the antiphagocytic properties of the crypto-
coccal capsule (55) and the reduced phagocytosis of cryptococcal
giant (titan) cells (33, 56–58), which would allow C. neoformans to
proliferate at a rate comparable to that of C. gattii despite the
enhanced inflammatory cell response. However, in a recent report
(41), C. gattii R265 produced higher lung burdens than those of C.
neoformans H99 after infection of C57BL/6 and BALB/c mice, sug-
gesting that the protective pulmonary immune responses to Cryp-
tococcus of these two mouse strains may differ qualitatively or
quantitatively from those of non-Tg C3H mice. Nevertheless, in
the non-Tg C3H mice, dissemination of C. neoformans to the liver
and spleen at the time of euthanasia largely exceeded that of C.
gattii, demonstrating a greater capacity of C. neoformans for sys-
temic dissemination in the immunocompetent host (41). The
greater capsule thickness of C. neoformans than that of C. gattii,
providing protection against reactive oxygen and nitrogen species
within phagocytes (55), may have facilitated dissemination by a
“Trojan horse” mechanism (59). Despite this enhanced dissemi-
nation, however, the survival of non-Tg C3H mice infected with
the C. neoformans and C. gattii strains did not differ significantly,
suggesting that the variable virulence of strains within each species
outweighs any potentially consistent difference in virulence be-
tween these two cryptococcal species. In fact, previous studies
comparing the virulence of C. neoformans H99 and C. gattii R265
in C57BL/6 and BALB/c mice produced inconsistent results (17,
41), indicating that the virulence of C. neoformans and C. gattii is
likely comparable in many, if not most, strains of immunocom-
petent mice. This interpretation is supported by the balanced up-
regulation in production of protective (IFN-�) and nonprotective
(IL-4 and IL-13) cytokines (36, 51, 52, 60, 61) in non-Tg C3H
mice infected with C. neoformans compared to those infected with
C. gattii. Taken together, the results of our survival studies dem-
onstrate that HIV-1 transgene expression alters the course of cryp-
tococcal infection to a far larger degree than any intrinsic differ-

ences in virulence, systemic dissemination, or host immune
responses between C. neoformans and C. gattii.

Enhanced susceptibility to C. neoformans infection in the Tg
mice was associated with a sharply reduced pulmonary inflamma-
tory cell response and decreased production of the CC chemo-
kines MCP-1 (CCL2) and RANTES (CCL5). The striking deple-
tion of pulmonary CD4� and CD8� T cells in infected or
uninfected Tg mice is congruent with the quantitative reductions
of these cell populations in the oral mucosa, secondary lymphoid
organs, and peripheral blood of these Tg mice (18, 23). The pres-
ent results therefore suggest that the defective pulmonary CD4�

and CD8� T-cell response to C. neoformans infection in Tg mice
resulted from the primary depletion of these cell populations as a
consequence of HIV-1 transgene expression, combined with a
failure of their recruitment as a result of reduced production of the
chemokines MCP-1 and RANTES, which attract activated T cells,
monocytes, and dendritic cells. During pulmonary C. neoformans
infection, upregulation of MCP-1 and MCP-3 (CCL7) production
is required for CCR2-mediated recruitment of T cells, dendritic
cells, and macrophages, formation of bronchovascular cell infil-
trates, and development of protective Th1 immunity (42–48).
Furthermore, SJL/J mice, which are resistant to C. neoformans
infection, show enhanced MCP-1 mRNA expression compared to
susceptible C57BL/6 mice (62). Potential cellular sources of
MCP-1 in the lungs include epithelial cells, endothelial cells, fibro-
blasts, and macrophages (42). Of these specific cell populations,
only macrophages express the HIV-1 transgene (19) and would
thus be susceptible primarily to altered cytokine expression. In
this regard, we have previously shown that F4/80� macrophages
recruited to the gastric submucosa and oral mucosa of HIV-1-
expressing Tg mice in response to Candida albicans infection ex-
press the mannose receptor (CD206) almost uniformly, but
MCP-1 only very infrequently (26), consistent with an alterna-
tively activated (M2) phenotype known to be associated with sus-
ceptibility to cryptococcosis (36, 52). Furthermore, because it has
been shown that experimental depletion of CD4� and CD8� T
cells independently abrogates the appearance of a protective in-
flammatory response to pulmonary C. neoformans infection and
augments systemic dissemination (63–65), it is likely that the de-
pletion of these T-cell populations in the Tg mice contributed to
the reduced pulmonary inflammatory cell response to C. neofor-
mans and the augmented systemic dissemination to the liver and
spleen. Despite the defective pulmonary inflammatory cell re-
sponse to C. neoformans in the Tg mice, pulmonary fungal bur-
dens were remarkably comparable to those in non-Tg mice, sug-
gesting that reduced survival of the Tg mice was caused primarily
by enhanced systemic dissemination rather than increased prolif-
eration of C. neoformans in the lungs (66). Surprisingly, aug-
mented susceptibility of the Tg mice to C. neoformans infection
was associated with diminished pulmonary production of IL-4
and increased production of IL-17A, which result in an alteration
of the Th1-Th2-Th17 balance associated with a protective rather
than a nonprotective host response to C. neoformans (35–37, 55).
The augmented dissemination of C. neoformans to the liver and
spleen in Tg mice, also previously observed in IL-23p19�/� mice
with impaired production of IL-17 (35), was therefore likely
caused by perturbations other than a defective Th17 response.

Capsule thicknesses of C. neoformans and C. gattii in the lungs
increased significantly during the course of infection of non-Tg
mice (30) but not Tg mice. The mechanisms responsible for dif-
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ferences in capsule thickness in vivo are unknown (30) but could
potentially include variations in iron, CO2, and nutrient concen-
trations in host tissues (30, 67). Interestingly, CD4C/HIVNef

transgenic mice display increased circulating ferritin levels due to
Nef-dependent release of ferritin from macrophages, and plasma
ferritin levels are correlated with viral RNA in HIV-1-infected
patients (68). C. neoformans can acquire iron bound to the major
carrier transferrin by a reductive iron uptake pathway (69). Be-
cause growth of C. neoformans at high iron concentrations results
in cells with thinner capsules (30) and lower expression of the
CAP60 gene that is required for capsule production (70), in-
creased availability of iron from the ferritin carrier may have con-
tributed to the lack of capsule thickening during the course of
cryptococcal infection in the Tg mice. However, despite the ab-
sence of capsule thickening during infection by both species, the
capsule thickness of C. neoformans remained greater than that of
C. gattii in the Tg mice and may have contributed to its enhanced
systemic dissemination to the liver and spleen, which was also
observed in the non-Tg mice.

The percentages of pulmonary dendritic cells, alveolar macro-
phages, and Gr-1� cells increased from day 7 to day 14 after infec-
tion of Tg and non-Tg mice with C. neoformans, and absolute
numbers of these cell populations extracted from the lungs were
not significantly diminished in the Tg mice. Dendritic cells in
CD4C/HIVMutA Tg mice have an immature phenotype, with low
expression of major histocompatibility complex (MHC) class II
and costimulatory molecules and a decreased capacity to present
antigen in vitro (20, 27). In view of the defective production of
MCP-1 in the Tg mice, dendritic cells could potentially have failed
to accumulate in the lungs in response to C. neoformans infection
because of defective CCR2-mediated recruitment and differenti-
ation of monocytes (46). Preserved production of other CCR2
agonists, such as MCP-2 and MCP-3, may have compensated for
the defective production of MCP-1. Because dendritic cells and
alveolar macrophages play a critical role in the early innate pro-
tective host response against C. neoformans (71) and are associated
with natural resistance to progressive infection (62), it is likely that
functional defects of these cell populations also contributed to the
increased susceptibility of the Tg mice to C. neoformans infection.
Blood monocytes and alveolar macrophages from HIV-infected
patients have impaired fungistatic activity against C. neoformans
(72–76).

In summary, the present findings clearly demonstrate that
HIV-1 transgene expression consistently augments susceptibility
to C. neoformans but not C. gattii infection, and it reduces the
pulmonary inflammatory cell response by both depletion of im-
mune cells and diminished production of chemokines. In the ab-
sence of this protective host response in Tg mice, the greater cap-
sule thickness of C. neoformans than that of C. gattii in vivo may
become a primary determinant of the host-pathogen interaction
and result in selectively enhanced virulence of C. neoformans, con-
sidering that both species qualitatively share all of the known ma-
jor C. neoformans virulence traits (7, 77).
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