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Résumé 
 

La scoliose idiopathique est une déformation tridimensionnelle de la colonne 

vertébrale dont la pathogenèse reste obscure. Cette maladie affecte 2-4% des adolescents de 

10-18 ans parmi les garçons et les filles. Il est à noter que les filles sont plus sévèrement 

affectées et ce en plus grand nombre que les garçons. Les études de jumeaux ont montré que 

les facteurs génétiques jouent un rôle important dans la scoliose idiopathique de l'adolescent 

(SIA). 

Depuis 2010, les études d'association pan génomiques ont été multipliées dans les 

recherches, visant à trouver des gènes candidats impliqués dans la SIA à travers des examens 

des polymorphismes nucléotidiques (SNPs). Un test génétique nommé "ScoliScore" a été 

publié pour essayer de prédire la progression de courbure dans la population caucasienne. 

Cependant, l'association n'a pas été reproduite dans une grande étude japonaise, soulignant 

l'importance d'une étude de réplication dans une population caucasienne indépendante. 

Dans ce contexte, mon projet de maîtrise a permis de génotyper plus de 1,4 millions de 

SNPs dans une cohorte canadienne-française dans le but: 1) de valider l'association de 

ScoliScoreTM; et 2) d’identifier les variants génomiques associées à la SIA dans la population 

québécoise. 

Notre étude a montré qu’aucun des variants constituant le test ScoliScoreTM n’était 

associé à la SIA. Ceci suggère que l'absence d'association dans une cohorte japonaise n'est pas 

due à l'appartenance ethnique. Aussi, nous avons identifié des variants génomiques associés 

significativement à l’initiation et/ou la progression de SIA dans la population québécoise, 

suggérant des gènes candidats impliqués dans la pathogenèse de SIA. 

 

Mots-Clés 

scoliose idiopathique de l'adolescent, polymorphisme d'un seul nucléotide, variant génomique, 

étude d'association pan génomique, ScoliScoreTM, progression de la courbe de colonne 

vertébrale, population caucasienne, canadienne-française, analyse de l'association, génotypage 
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Abstract 
 

Idiopathic scoliosis is a common spinal deformation occurring without clear reason. 

This disease affects 2-4% adolescents aging from 10-18 years old in both genders. Of note, 

girls are more affected in number and severity than boys. Twin studies demonstrated that 

genetic factors play an important role in adolescent idiopathic scoliosis (AIS).  

Since 2010, Genome-wide association studies (GWAS) have been multiplied in AIS 

researches, aiming to find out candidate genes involved in the disease by an examination of 

single nucleotide polymorphisms (SNPs) throughout the entire genome. A genetic test named 

“ScoliScore” was released for the prediction of curvature progression in Caucasian AIS 

population using 53 SNPs. However, such association was not replicated in a larger Japanese-

population study. Such a discrepancy could be explained by ethnicity, raising the importance 

of a replication study in an independent Caucasian population of European descent. 

In that context, we genotyped over 1.4 million SNPs in a French-Canadian cohort: 1) 

to validate the association in ScoliScoreTM test; and 2) to identify genomic variants associated 

with AIS in the population of Quebec.  

As a result, the association of ScoliScoreTM genomic markers could not be reproduced 

in French-Canadian AIS patients, suggesting that the lack of association of these SNPs in a 

Japanese cohort is not due to ethnicity. Meanwhile, we identified genome-wide significant 

variants associated with spinal curve initiation and/or progression in French-Canadian 

population, suggesting candidate genes involved in AIS pathogenesis. 

 

Keywords 

adolescent idiopathic scoliosis, single nucleotide polymorphism, genomic variant, genome-

wide association study, ScoliScoreTM, spinal curve progression, Caucasian, French-Canadian, 

association analysis, genotype 
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1.1 Introduction of idiopathic scoliosis 
 

Scoliosis was first documented in 400 B.C. by Hippocrates in Greece, characterized by 

a lateral spinal curvature, usually accompanied by vertebral rotation. It is a three dimensional 

spinal deformation in the frontal (lateral curvature), sagittal (thoracic lordosis) and transversal 

plane (vertebral rotation). The Scoliosis Research Society (SRS) has defined scoliosis as a 

lateral curvature of the spine exceeding 10 degrees as measured using the Cobb method on a 

standing radiograph [Kane 1977].  

There are four categories of scoliosis: 1) idiopathic scoliosis (IS) is the most common 

type of scoliosis. It occurs in 80% of scoliosis patients without clear reason; 2) congenital 

scoliosis is a rare type of scoliosis. It is often due to abnormal formation of the bones of the 

spine; 3) neuromuscular scoliosis is a lateral curvature of the spine due to loss of control of 

the nerves or muscles that support the spine; 4) degenerative scoliosis occurs in adults and is 

due to degeneration of the spine that occurs with aging. 

 

1.1.1 Sub-groups of IS by age at disease onset  

 

Idiopathic scoliosis (IS, OMIM 181800) can be observed at any age. Traditionally, it 

is categorized by patient’s age when the scoliosis is first identified. Infantile idiopathic 

scoliosis is defined by the age at disease onset as younger than 3 years and accounts for fewer 

than 1% of all IS cases in the United States. Juvenile idiopathic scoliosis is defined as 

scoliosis detected between ages 3 and 10. Adolescent idiopathic scoliosis is detected between 

the age of 10 years and skeletal maturity. Idiopathic scoliosis is more common in juveniles and 

adolescents when children are growing rapidly. Juvenile represents 12-21% of patients with IS, 

whereas adolescent makes up approximately 80% of all IS cases [Dobbs and Weinstein 1999; 

James 1954; Riseborough and Wynne-Davies 1973] .  

In my project, we focus on scoliosis presenting in adolescents without clear 

undergoing cause, termed as adolescent idiopathic scoliosis (AIS), because AIS constitutes the 

majority of the IS cases. 
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1.1.2 Prevalence of IS in adolescents 

 

The scoliosis affects 2% to 4% of adolescents in the world with unknown reason. Of 

adolescents diagnosed with scoliosis, only 10% have curve progression requiring medical 

intervention. The ratio of girls to boys with small curves around 10 degrees is equal. But the 

ratio increases, among cases with curves greater than 30 degrees, to an impressive 10 to 1. 

Scoliosis in girls tends to progress more frequently. Therefore, girls need treatment more 

commonly than boys do. Patient gender is one of the main factors to be taken under 

consideration in the estimation of curve progression risk by clinicians. Besides this, patient’s 

age and the curve magnitude at the time of diagnosis need to be taken into account while 

estimating the risk. Younger patients having greater growth potential are at high risk of curve 

progression. The larger the initial curve, the greater the likelihood of curve progression [Miller 

1999; Roach 1999].  

Several studies supported that AIS clusters in families. There is a higher incidence of 

AIS within the families of affected patients than in the general population. First-degree 

relatives of the affected individuals are at the highest risk and third-degree relatives are at the 

lowest risk [Riseborough and Wynne-Davies 1973; Ward, Ogilvie, Argyle et al. 2010; Wynne-

Davies 1968]. 
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1.2 Scoliosis detection and screening 
 

Currently, there is no diagnostic tool to predict the occurrence of idiopathic scoliosis 

among asymptomatic adolescents. Patients’ family members are usually the first to notice the 

physical symptoms indicating scoliosis, such as one shoulder higher than the other or uneven 

leg lengths.  

School-based scoliosis screening is recommended as a valuable tool to identify 

suspected cases which are sent for diagnostic confirmation. This screening allows the 

identification of scoliosis at an earlier stage. Given the statements of the SRS International 

Task Force on Scoliosis screening, supported by the SRS Board of Directors, females should 

be screened twice, at age 10 and 12, and boys once, at age 13 or 14. 

At present, the scoliometer is a good tool in terms of reliability and validity to identify 

suspect individuals with spinal deformity in scoliosis screening. It is small and non-invasive 

that is placed over the spine while the person being measured is in a forward bending position 

(Adam’s forward bend test, Figure 1). The scoliometer is a good indicator for trunk 

asymmetry, but should not be used as a diagnostic tool. The scolimeter measurement may 

underestimate the actual curve. An adolescent with positive screening results may be referred 

for a spinal x-ray. If so, the Cobb angle of the spinal curve(s) would be reported [Cote, Kreitz, 

Cassidy et al. 1998; Kotwicki, Chowanska, Kinel et al. 2013].  

The Cobb angle was first described in 1948 by Dr. John Robert Cobb (1903-1967), 

where he outlined how to measure the angle of the spinal curve. The Cobb angle measurement 

is used as the standard measurement to quantify and track the progression of scoliosis (Figure 

2). Today, it is the “gold standard” of scoliosis evaluation endorsed by the Scoliosis Research 

Society (SRS). The Cobb angle degree is also an important parameter in our study for 

quantification of the severity of scoliosis deformation.  
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Figure 1. The Adam’s forward bending test by scoliometer.  

Clinicians identify the suspected adolescents with scoliosis by this screening, in which the 

individual bends from the waist as if touching the toes.  

Figure adapted from http://www.posturetek.com/en/scoliometer.html 

 

 

 

 
 

Figure 2. The Cobb method to quantify spinal curve severity. 

Step 1. Identify the upper and lower end vertebrae 

Step 2. Draw lines extending along the vertebral borders 

Step 3. Measure the Cobb angle directly or geometrically 

Figure adapted from e-radiography.net and core concepts 
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1.3 Scoliosis management 
 

In clinics, scoliosis is defined when Cobb angle is greater than 10 degrees. At this time, 

there is no cure program for scoliosis but treatment options for scoliosis patients based on their 

severity of the curves, including observation, bracing, and surgical treatment [Kotwicki, 

Chowanska, Kinel et al. 2013].  

 

1.3.1 Observation 

 

Patients with a spinal curve less than 25 degrees take routine x-ray testing periodically 

to observe the tendency of curve progression. In x-ray exams, two radiologic pictures are 

usually taken in a standing position, one from the back (postero-anterior or PA view) and one 

from the side (lateral view). The scoliosis patients might be asked to repeat the radiologic 

testing at regular intervals, sometimes every 3-12 months, to monitor the curve progression. If 

the curve remains below 25 degrees, no treatment is needed. 

Although the amount of radiation used in an x-ray testing is small to minimize 

radiation hazards, adolescents in the growth stage are more vulnerable to radioactive harm. 

Thus, greater care is recommended in deciding which adolescents need further x-ray tests in 

their future. 

 

1.3.2 Bracing 

 

If the curve is between 25 and 45 degrees and the patients are still growing, 

adolescents need to wear a corset until their growth finish (Figure 3). More recently, 

Weinstein et al. reported a significant improvement on treatment success rate after bracing 

(72%) compared to the rate after observation (48%) among high-risk patients given references 

for bracing treatment. They revealed a positive association of average hours of daily brace 

wear with the treatment’s success rate [Weinstein, Dolan, Wright et al. 2013].  

It is important to note that bracing does not correct scoliotic curvature, but may help 

slow or halt the spinal curve from getting worse until skeletal maturity. Patients reaching 
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skeletal maturity are unlikely to benefit from the use of a brace [Weinstein, Dolan, Wright et 

al. 2013]. 

 

1.3.3 Surgery 

 

Once the curve is greater than 45 degrees, it will probably continue getting worse for 

the rest of patients’ life. It leads very much likely to lung or heart problems. As the last resort, 

a spinal fusion surgery is called, in which bone grafts combined with metal screws and rods 

are used to prevent further curvature in specific parts of the spine (Figure 4). In most cases, 

there is no need to remove the metal screws and rods from the spine. The goal of fusion 

surgery is to correct and stabilize the spinal curve. 

 

The treatment cost for scoliosis varies by region in the world. Typically, it 

costs $1,000 or more per year for observation, including periodic x-rays and doctor visits, 

about $2,000-$6,000 for initial bracing, and about $100,000-$150,000 or more for surgery. For 

example, according to a study of hospital charges to more than 76,000 patients, the average 

cost to the patient for scoliosis surgery was about $113,000 [Daffner, Beimesch and Wang 

2010]. Such expensive costs of scoliosis treatment raise the importance of developing a 

genetic test in the prediction of curve progression. Effective diagnostic/prognostic tool would 

help the AIS patients to be treated as soon as possible, notably with new fusionless devices 

and minimally invasive surgical approaches.  
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Figure 3. A corset worn in brace treatment for scoliosis.  

The goal of brace treatment is to prevent the spinal curve from getting worse.  

Figure adapted from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002221/ 

 

 

 

 

 

 

Figure 4. Spinal fusion surgery for severe scoliosis case.  

The goal of fusion surgery is to correct and stabilize the spinal curve. 

Figure adapted from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002221/  
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1.4 Etiopathogenesis of scoliosis 
 

Despite considerable advances made in the scoliosis management in the past decades, 

the etiopathogenesis of AIS has not been clarified. Etiologic hypotheses and concepts of AIS 

etiopathogenesis have been proposed, most including genetic theory, neurological theory, 

muscular theory, connective tissue theory, bone growth mismatch theory and endocrine 

abnormality theory [Burwell and Dangerfield 2012; Burwell, Dangerfield, Moulton et al. 2011; 

Dayer, Haumont, Belaieff et al. 2013; Kouwenhoven and Castelein 2008; Wang, Yeung, Chu 

et al. 2011; Yagi, Machida and Asazuma 2014].  

 

1.4.1 Genetic theory 

 

AIS is sometimes abounded in certain families with multiple members affected, 

suggesting that AIS is inherited within families and that relatives of AIS patients have a 

greater risk than general populations [Wynne-Davies 1968].  

More evidence of a genetic contribution to AIS was revealed by studies in twins. 

Monozygotic twins have identical genetic information while dizygotic twins share half of their 

genetic information.  A concordance rate is defined as the proportion of a certain condition’s 

occurrence in both twins among total twin pairs that at least one of the twins has the condition.  

If the genetic contribution exists, this rate in monozygotic twins will be significantly different 

to that in dizygotic twins. By a meta-analysis of studies in twins, Kesling and Reinker reported 

a concordance rate of AIS at 73% in 37 pairs of monozygotic twins and at 36% in 31 pairs of 

dizygotic twins [Kesling and Reinker 1997].  

Recently, using the Danish Twin Registry, one of the most comprehensive registers of 

twins in the world, Andersen et al. reported concordance rates for AIS in 110 sets of twins, in 

which one or both of the twins were considered to have AIS.  In their findings, 6 out of total 

44 monozygotic pairs were affected by AIS in both twins. They did not find one pair that was 

both affected among 91 dizygotic twins. The concordance rates were 13% and zero for 

monozygotic and dizygotic twins, respectively [Andersen, Thomsen and Kyvik 2007].  

Both twin studies showed statistically significant concordance rates in monozygotic 

twins and in dizygotic twins, supporting the evidence of genetic contribution to AIS. 
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Nevertheless, within families of 207 AIS patients, Riseborough and Wynne-Davies reported 

the disease risk at 11%, 2.4% and 1.4% in first-, second- and third-degree relatives, 

respectively, suggesting a multifactorial mode of AIS inheritance which is distinct from single 

gene disease [Riseborough and Wynne-Davies 1973]. In addition, a heritability study of 69 

extended Utah families with a history of AIS indicated that this disease is a polygenic and 

multifactorial condition, demonstrating the genetic and phenotypic complexity for AIS [Ward, 

Ogilvie, Argyle et al. 2010].  

Focusing on different hypotheses of genetic contribution to human complex diseases 

like AIS, researchers performed various approaches in genetic studies, including family-based 

linkage studies, population-based association studies and whole exome sequencing studies 

[Gorman, Julien, Oliazadeh et al. 2014]. 

 

1.4.1.1 Linkage studies in pedigrees 

 

Distinct observation of AIS aggregation within families suggested heritability of the 

disease, leading linkage studies in multiplex families. Linkage study is a statistical approach in 

a hypothesis-driven fashion, in which polymorphic markers are tested for linkage with disease. 

This approach has been successful in the discovery of Mendelian disease genes. But the 

majority has failed to identify causative genes for complex disease, such as AIS. The failure 

could possibly come from genetic and phenotypic heterogeneity [Dawn Teare and Barrett 

2005].  

In AIS research field, candidate genes from clinical observation were examined in 

early linkage studies. The findings were limited by the studied sample size in pedigrees and 

uncertain gene functions at that time. Since 2000, through non-biased whole-genome linkage 

studies, several loci have been reported significant under different modes of inheritance: 

3q12.1, 5q13.3, 9q31.2-34.2, 12p, 17p11, 19p13.3, Xq22.3-27.2, 6q15-q21, 10q23-q25.3 and 

19p13.3, supporting that AIS is genetically heterogeneous and multifactorial disease [Gorman, 

Julien and Moreau 2012]. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Riseborough%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=4760104
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1.4.1.2 Genome-wide association studies 

 

Genome-wide association study (GWAS) is an effective and non-hypothesis based 

approach to discover risk variants associated with a trait through a large-scale genomic 

screening. It is an approach designed to identify common genetic variants with minor effect. 

Currently, only two genome-wide association studies have been documented in AIS field, one 

in the Caucasian population, the other in the Japanese population.  

In 2011, the first GWAS study was conducted in Caucasian population. AIS-associated 

variants were first identified in 419 trio-families in Utah. Two most significant variants in the 

same gene were replicated in other three independent cohorts. Their findings demonstrated the 

most significant SNP (rs10510181, p-value=8.22×10-7, odds ratio: OR=1.37, 95% confidence 

interval: CI=1.20-1.58) in the gene CHL1 (cell adhesion molecule with homology to L1CAM), 

suggesting the involvement of the axon guidance pathway in AIS susceptibility in the 

Caucasian population [Sharma, Gao, Londono et al. 2011]. Furthermore, they suggested 

another two genes, DSCAM (Down syndrome cell adhesion molecule) and CNTNAP2 

(contactin associated protein-like 2), as candidate genes in AIS pathogenesis, which are 

involved in the axon guidance pathway. However, there was no statistical association between 

the polymorphisms and AIS susceptibility in Chinese populations [Qiu, Lv, Zhu et al. 2014; 

Zhou, Zhu, Qiu et al. 2012]. 

The other GWAS study was conducted in a Japanese female population composed of 

1033 AIS-affected patients and 1473 healthy individuals. Based on the genotype data from 

their GWAS and then combined with a replication study in a total of 11000 Japanese female 

cohort, they reported that three risk variants located near the gene LBX1 (ladybird homeobox 

1) were significantly associated with AIS susceptibility [Takahashi, Kou, Takahashi et al. 

2011]. The most significant association in Japanese population (rs11190870, combined p-

value=1.24×10-19, OR=1.56, 95% CI=1.41-1.71) was successfully replicated in three 

independent Chinese populations, suggesting that the abnormal somatosensory function was 

implicated in the etiology of spinal deformity in East Asia population [Fan, Song, Chan et al. 

2012; Gao, Peng, Liang et al. 2013; Jiang, Qiu, Dai et al. 2013; Liang, Xing, Li et al. 2014].  

Likewise, another significant genetic association with AIS was identified through the 

above GWAS, and then followed by three replication studies using Japanese, Chinese and 
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Europe-ancestry populations (rs6570507, combined p-value=1.27×10-14, OR=1.27, 95% 

CI=1.20-1.35). This time, the variant locates in the intron region of the GPR126 gene (G 

protein-coupled receptor 126), which is involved in the growth and ossification of developing 

spine and in neurological development. The variant reached sufficient significance level in 

East Asia and Europe-ancestry populations, suggesting the involvement of the GPR126 gene 

in AIS occurrence [Kou, Takahashi, Johnson et al. 2013].  

With a definition of severe curvature if the Cobb angle was above 40°, genotype data 

from the above GWAS in Japanese females was used to find risk variants associated with 

severe curves compared with control subjects. The association of rs12946942, located between 

two genes (SOX9 and KCNJ2), was identified with severe curves in females and followed by 

replication studies in Japanese and Chinese populations (combined p value=6.43×10-12, 

OR=2.21, 95% CI=1.76-2.77). Although the variant rs12946942 was located in a region 

without clear effect yet, their findings suggested closest genes SOX9 (sex determining region 

Y-box 9) and KCNJ2 (potassium inwardly-rectifying channel, subfamily J, member 2) as 

promising candidate genes that played a role in AIS onset and/or progression in Japanese and 

Chinese female patients [Miyake, Kou, Takahashi et al. 2013]. 

There were other independent GWA studies in AIS field presented in seminars and 

conferences, suggesting chromosome 3p25.3, 9p21.1, 10q24.3 and 12q12 as AIS susceptibility 

loci [Dormans, Grant, Sampson et al. 2011; Nelson, Chettier, Ogilvie et al. 2011].  

From another unpublished GWAS, 53 SNPs have been reported associated with AIS 

curve progression among Caucasian female patients in the United States. These genotyping 

data gave birth to an AIS progression prognostic tool [Ward, Ogilvie, Singleton et al. 2010]. 

Incorporating patients’ initial Cobb angle measured between 9 and 13 years, this tool was built 

to quantify risk of spinal curve progression for Caucasian patients with a Cobb angle <25º, 

which was then commercialized under the name of ScoliScoreTM. Although not yet approved 

by the FDA (the U.S Food and Drug Administration), ScoliScoreTM is the only DNA-based 

test developed to identify patients with mild AIS in Caucasian population who have a low risk 

of spinal curve progression. However, for some academic and/or commercial reasons, the 

authors did not describe enough details in their study design, leading to hesitation and 

consideration about the scientific foundation of ScoliScoreTM [Dobbs and Gurnett 2011; 

Grant and Dormans 2011]. In addition, a recent study in an independent 85 Caucasian AIS 
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patients failed to replicate any genetic association between the 53 SNPs of ScoliScoreTM and 

spinal curve progression [Roye, Wright, Williams et al. 2012]. Another study in a Japanese 

population did not yield any result supporting the presumed genetic associations by 

ScoliScoreTM [Ogura, Takahashi, Kou et al. 2013]. 

 

1.4.1.3 Whole exome sequencing 

 

Most of the associated variants found in GWAS were located in non-protein-coding 

region with unexplained biological function.   

Lately, the first study of rare variants was published in AIS field. Buchan et al. 

reported rare variants (defined as absent from the dbSNP database build 137) in the genes 

FBN1 (fibrillin 1) and FBN2 (fibrillin 2) that were concentrated in AIS patients with severe 

curve.  Identified in an exome sequencing screen among 91 severe AIS cases (Cobb angle 

≥40° or surgically treated) and 337 controls, frequency of rare variants in FBN1 among severe 

cases was significantly different from that among controls (p-value=3.17×10-4, OR=10.4, 95% 

CI=2.7-39.5). Meanwhile the related gene FBN2 demonstrated a weak association to severe 

AIS (p-value=0.04). Verified in a larger cohort of European ancestry (323 severe cases versus 

493 controls), the frequency of FBN1 and FBN2 rare variants in severe AIS was over 3 times 

the frequencies in two independent control cohorts (7.6% versus 2.4% and 2.3%, respectively). 

Moreover, FBN1 and FBN2 rare variants were not significantly associated with non-severe 

AIS cases compared to control cohorts (p-value=0.47 and 0.42, respectively). Similar results 

were observed in a replication study using 370 Chinese AIS patients (p-value=0.048) [Buchan, 

Alvarado, Haller et al. 2014].  

Of course, one of the limitations of this study is the fact that it remains to be proven 

that these variants have a pathological contribution by measuring changes in the expression of 

genes located in the vicinity of these variants. Furthermore, functional analysis in animal 

models will be required to further understand their contribution. We expect that in the next 

few years there will be more studies of rare variants (unknown or/and with low frequency) that 

can shed light on our understanding of AIS pathogenesis.  
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1.4.2 Neurological theory 

 

The nervous system has been studied to explore potential factors playing a role in the 

etiopathogenesis of AIS. Children with AIS demonstrated abnormalities in 

electroencephalographic activity, postural balance, vestibular, somatosensory function 

equilibrium [Beaulieu, Toulotte, Gatto et al. 2009; Cheng, Guo, Sher et al. 1999; Guo, Chau, 

Hui-Chan et al. 2006; Petersen, Sahlstrand and Sellden 1979; Sahlstrand and Petruson 1979; 

Sahlstrand, Petruson and Ortengren 1979; Simoneau, Richer, Mercier et al. 2006]. Regional 

brain volume differences, examined via magnetic resonance imaging (MRI), were revealed 

among children with AIS when compared with age-matched healthy control individuals [Liu, 

Chu, Young et al. 2008]. Evidence in other MRI studies also revealed an uncoupled growth 

between the skeleton and the neural system in AIS cases. Mismatch of bone growth and spinal 

cord growth could induce stretching-tethering forces on the spine which result in spinal 

deformation with the continuing growth of the vertebral bodies [Chu, Lam, Chan et al. 2006; 

Chu, Man, Lam et al. 2008; Porter 2001a; 2000; 2001b], proposing the asynchronous spinal 

neuro-osseous growth theory for AIS etiopathogenesis.  

 

1.4.3 Muscular theory 

 

The paraspinal muscles have been suggested as a possible causative factor in AIS 

etiology. Several electromyographic studies showed an increased activity of the paraspinal 

muscles on the convex side of the spine [Alexander and Season 1978; Cheung, Halbertsma, 

Veldhuizen et al. 2005; Zetterberg, Bjork, Ortengren et al. 1984]. However, interpretations of 

the electromyographic findings are quite different. It remains an argument whether the 

increased muscle activity is a causative factor to initiate the spinal curve initiation or a 

secondary consequence due to the curvature of spine. 
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1.4.4 Connective tissue theory   

 

Because scoliosis is sometimes associated with connective tissue diseases, such as 

osteogenesis imperfecta and Marfan’s syndrome [Sponseller, Hobbs, Riley et al. 1995], 

connective tissues could also have implicated in the AIS pathogenesis. Hadley-Miller et al. 

reported that a high proportion (82%) of AIS patients exhibited disarrangement of elastic 

fibers in the ligamentum flavum. Moreover, 23% of AIS patients showed a marked decrease in 

fiber density. Seventeen percent of patients demonstrated a defect of fibrillin in the 

metabolism of its incorporation into the extracellular, suggesting the potential role of the 

elastic fiber system as a component in the pathogenesis of some AIS patients [Hadley-Miller, 

Mims and Milewicz 1994]. However, this could be secondary to the physical changes 

associated with the spinal deformity. 

Most recently, through an exome sequencing study, a burden of rare variants in 

fibrillin genes, FBN1 (fibrillin 1) and FBN2 (fibrillin 2), was found in severely affected AIS 

cases [Buchan, Alvarado, Haller et al. 2014]. Previous studies have demonstrated that 

mutations in FBN1 are associated with Marfan’s syndrome [Dietz, Loeys, Carta et al. 2005; 

Kainulainen, Karttunen, Puhakka et al. 1994]. Mutations in FBN2 are associated with Beals 

syndrome, a rare congenital connective tissue disorder [Gupta, Putnam, Carmical et al. 2002; 

Putnam, Zhang, Ramirez et al. 1995]. Although further studies are needed to prove the 

pathological contribution of these variants, this study suggests the role of fibrillin-related 

genes involved in AIS etiopathogenesis. 

 

1.4.5 Bone growth mismatch theory 

 

Idiopathic scoliosis occurs more often in adolescents when their skeletons are growing 

rapidly, proposing abnormal spinal growth as a contributing factor in the etiology of idiopathic 

scoliosis. A simple model of the spine shaped a scoliosis as a result of overgrowth of the 

anterior spine relative to the posterior spinal growth. The greater the overgrowth, the more 

pronounced the deformity [Murray and Bulstrode 1996]. However, the cause of this 

imbalance of the anterior and posterior structures of the spine has not been reported yet. 
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Factors inducing skeletal growth mismatch could play a role in the initiation and progression 

of a scoliosis. 

1.4.6 Endocrine abnormality theory  

 

Several endocrine abnormalities, such as calmodulin and melatonin, have been 

described associated with AIS disease. 

Calmodulin (CaM), a calcium receptor protein modulating intracellular calcium 

activity, regulates the contractile properties of skeletal muscle and platelets through its 

interaction with actin-myosin system. Increased CaM levels over time in platelet have been 

shown in association with the curve progression of AIS patients. But these levels usually 

decreased in patients undergoing curve stabilization by bracing or spinal fusion [Kindsfater, 

Lowe, Lawellin et al. 1994; Lowe, Lawellin, Smith et al. 2002]. However, there was no 

establishment of the normal range for platelet CaM because of a large inexplicable 

discrepancy between baseline levels of different patients, necessitating the use of the AIS 

subjects as their own controls. Dr. Lowe considered the platelet as a “mini” skeletal muscle 

with a similar actin-myosin contractile system, suggesting the muscle hypothesis in the AIS 

etiology [Lowe, Burwell and Dangerfield 2004]. Furthermore, elevated CaM is a feature of 

activated platelets, which release growth factors as well, such as transforming growth 

factor beta (TGF-β), suggesting a skeletal hypothesis [Geoffrey Burwell and Dangerfield 

2003]. 

Idiopathic scoliosis-like changes were induced by experimental pinealectomy in 

chickens and bipedal rats, but not in quadrupedal rats, suggesting the importance of melatonin 

in the bipedal animal models [Machida, Murai, Miyashita et al. 1999; Thillard 1959]. 

Melatonin, also known as N-acetyl-5-methoxytryptamine, is a hormone secreted from the 

pineal gland. There were lower blood melatonin concentrations in pinealectomized chickens 

with scoliosis. Furthermore, melatonin administration may prevent the progression of scoliosis 

in the pinealectomized chickens model and in AIS patients [Machida, Dubousset, Imamura et 

al. 1995; Machida, Dubousset, Yamada et al. 2009]. However, there are no significant 

differences in circulating melatonin levels among AIS patients and healthy controls, 

http://en.wikipedia.org/wiki/Transforming_growth_factor
http://en.wikipedia.org/wiki/Transforming_growth_factor
http://en.wikipedia.org/wiki/Acetyl
http://en.wikipedia.org/wiki/Methoxy
http://en.wikipedia.org/wiki/Methoxy


17 

 

suggesting the role of other components in the melatonin signaling pathway [Girardo, Bettini, 

Dema et al. 2011].  

Dr. Moreau demonstrated several years ago the occurrence of a melatonin signaling 

impairment in AIS patients using their osteoblasts and PBMCs (peripheral blood mononuclear 

cells) [Akoume, Azeddine, Turgeon et al. 2010; Moreau, Wang, Forget et al. 2004]. Recently, 

a significantly lower expression of MT2 (or MTNR1B, melatonin receptor 1B) was found in 

AIS patients and was also correlated with abnormal systemic skeletal growth [Yim, Yeung, Sun 

et al. 2013]. Although the mechanism of melatonin signaling pathway in skeletal bone growth 

is not completely understood, the findings mentioned above suggest the important role of 

melatonin and its receptors and signaling pathway to the etiopathogenesis of AIS.  
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1.5 Hypothesis and objectives 
 

1.5.1 Hypothesis 

 

The contribution of genetic factors to the pathogenesis of Adolescent Idiopathic 

Scoliosis (AIS) has been revealed by twin studies. The identification of genetic variants 

associated with the susceptibility or severity of spinal curvature would facilitate the 

development of diagnostic/prognostic tools. The population in Quebec is unique because it is 

more isolated than the rest of North America and the incidence of AIS is higher than average 

here, leading to a valuable founder population with low genetic variability to medical genetic 

research. Thus, there is strong potential to identify variants aggregated in this population due 

to founder effects.  

We assumed that AIS is a consequence of a moderate to large number of common 

genetic variants, each of which contributes to several percent of the risk for curvature and/or 

progression. For complex common diseases with an apparent polygenic inheritance, the 

common disease-common variant hypothesis (CDCV hypothesis) has motivated the pursuit of 

genome-wide association studies (GWAS). The goal of GWAS is to identify the causative 

variants that are underlying genomic markers associated with a disease, and then to 

characterize their functional effects.  

 

1.5.2 Objectives 

 

There have been a number of loci identified through genome-wide association studies 

in many populations. Here with a French-Canadian cohort, we performed a GWAS approach 

to: 1) verify the AIS-associated genetic loci previously identified by ScoliScoreTM research 

team through GWAS; 2) identify and validate the genetic variants associated with the 

development or/and the progression of adolescent idiopathic scoliosis, in order to determine 

their values in clinical practice and in further etiopathogenesis research.  



CHAPTER 2. ARTICLE I 
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Structured abstract 

 

Study Design: A replication association study that used genomic data generated from French-

Canadian case and control cohorts.  

Objectives: To determine whether the 53 single nucleotide polymorphisms (SNPs) that were 

previously associated with spinal deformity progression in an American Caucasian cohort, are 

similarly associated in the French-Canadian population.  

Summary of Background Data: It is widely accepted that genetic factors contribute to AIS. 

The identification of genetic variants associated with the predisposition or progression of 

curvature could facilitate diagnostic/prognostic tool development. Although 53 SNPs have 

been associated with spinal curve progression in Caucasian cohorts in the USA, these 

associations were not replicated in a large Japanese-population study, arguing that such a 

discrepancy could be explained by ethnicity, thus raising the importance of a replication study 

in an independent Caucasian population of European descent. 

Methods: Genomic data were collected from the French-Canadian population, using the 

Illumina HumanOmni 2.5M BeadChip. Fifty-two SNPs, tested in ScoliScoreTM or in high 

linkage disequilibrium (LD) with SNPs in the test, were selected to assess their association 

with scoliosis generally, and with spinal curve progression. One SNP in ScoliScoreTM, 

rs16909285, could not be evaluated in our GWAS. 

Results: None of the SNPs used in ScoliScoreTM were associated with AIS curve progression 

or curve occurrence in the French-Canadian population. We evaluated 52 SNPs in severe 

patients by comparing risk allele frequencies with those in non-severe patients and with those 

in control individuals. There was no significant difference between the severe group and the 

non-severe group or between the severe group and the control group.  

Conclusions: Although the 52 SNPs studied here were previously associated with curve 

progression in an American population of European descent, we found no association in 

French-Canadian AIS patients. This second replication cohort suggests that the lack of 

association of these SNPs in a Japanese cohort is not due to ethnicity.  
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KEYWORDS: adolescent idiopathic scoliosis, single nucleotide polymorphism, ScoliScoreTM, 

spinal curve progression, French-Canadian, Caucasian, genetic test, genotype, association 

analysis, statistical power 

 

 

Key Points 

--Previously reported association of 53 SNPs with curve progression in white AIS patients was 

evaluated in a French-Canadian cohort. 

--The association is not statistical significant in the first replication study in Caucasians. 

--The lack of association of these SNPs in a previous Japanese cohort is not due to ethnicity.  

  

Mini abstract 

 

The association of 53 SNPs with scoliosis progression has been reported in a 

Caucasian population, generating a commercial product (ScoliScoreTM) that evaluates risk of 

curve progression. A previous study using a Japanese population failed to replicate the 

association. Our study indicates no genetic association between these SNPs and AIS among 

French-Canadian population. 
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Introduction 

 

Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity, affecting 

an average of about 4% of children globally, from 10 to 18 years old [Kane 1977; Lonstein 

1994; Weinstein, Dolan, Cheng et al. 2008]. Among those affected, only 10% have curve 

progression so that medical intervention is required [Miller 1999]. It is observed that girls tend 

to develop progressive curves more often than boys, and the reason for this is unknown 

[Roach 1999]. In pedigrees, AIS tends to cluster so that the disease incidence in patients’ 

relatives is much higher than in the general population, indicating a genetic basis 

[Riseborough and Wynne-Davies 1973; Ward, Ogilvie, Argyle et al. 2010; Wynne-Davies 

1968].  Furthermore, there is strong evidence from twin studies showing that genetic factors 

contribute to AIS [Andersen, Thomsen and Kyvik 2007; Kesling and Reinker 1997]. 

Identification of genetic factors that are associated with AIS could facilitate screening for risk 

of curve onset and/or progression. 

In 2010, from an unpublished Genome-Wide association study (GWAS), Ward et 

al. selected 53 single nucleotide polymorphisms (SNPs) associated with AIS curve 

progression among Caucasian female patients in the United States. Based on the genotype data 

for these 53 SNPs, as well as the patients’ initial Cobb angle measured between 9 and 13 years, 

they built an algorithm to quantify risk of spinal curve progression for Caucasian patients with 

a Cobb angle <25º, which was then commercialized under the name of ScoliScoreTM. 

Although not yet approved by the FDA (the U.S Food and Drug Administration), 

ScoliScoreTM is the only DNA-based test developed to identify patients with mild AIS in 

Caucasian population who have low risk of spinal curve progression [Ward, Ogilvie, Singleton 

et al. 2010].  

However, in an independent study of Caucasian AIS patients who received 

ScoliScoreTM testing, no significant difference was found in risk scores between patients at 

low risk and at high risk, both being evaluated by traditional clinical estimates [Roye, Wright, 

Williams et al. 2012]. In addition, a recent study failed to replicate any genetic association 

between the 53 SNPs (of ScoliScoreTM) and spinal curve progression in a Japanese population 

[Ogura, Takahashi, Kou et al. 2013]. To determine whether this association is exclusive to the 
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Caucasian population, we conducted a replication study in a French-Canadian cohort using 

genomic data. 

 

Materials and methods 

 

Study population and data source 

This study has the approval from the institutional review boards of The Sainte-Justine 

University Hospital, The Montreal Children’s Hospital, The Shriners Hospital for Children in 

Montreal and McGill University, as well as the Affluent and Montreal English School Boards. 

We recruited 1056 individuals from schools. Additional genomic control data of 750 

individuals were from the CARTaGENE project [Awadalla, Boileau, Payette et al. 2013; 

Godard, Marshall and Laberge 2007]. To rule out the presence of scoliosis among study 

populations, school screening was conducted by one of the orthopedic surgeons at Sainte-

Justine Hospital in Montreal, Quebec, Canada, and the CARTaGENE adult phenotype records 

were checked.  

Genomic DNA samples were extracted from the peripheral blood for the subjects at the 

hospital and schools and then genotyped by the Illumina HumanOmni 2.5-8 BeadChip. 

Control data from CARTaGENE was merged into the microarray outcome to generate files in 

the appropriate format to be analyzed.  

 

Quality control for genomic data 

Quality control (QC) measure was applied to genomic data following previously 

outlined standards [Turner, Armstrong, Bradford et al. 2011; Weale 2010]. PLINK [Purcell, 

Neale, Todd-Brown et al. 2007] and R [Team 2012] software packages were utilized to 1) 

filter gender mismatches, 2) filter missingness at both the sample- (< 2%) and SNP-level (< 

2%), 3) assessment of sample heterozygosity, 4) filter SNPs with a minor allele frequency 

(MAF) less than 1%, and 5) filter SNPs in Hardy-Weinberg disequilibrium [Neale and Purcell 

2008; Samani, Erdmann, Hall et al. 2007]. Linkage disequilibrium (LD) thinning was 

performed on the filtered genomic data prior to ancestral and relatedness testing using 

EIGENSTRAT [Price, Patterson, Plenge et al. 2006] and PLINK [Purcell, Neale, Todd-
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Brown et al. 2007] identity-by-descent (IBD), respectively. Ancestral outliers and related 

samples (pi_hat >0.1875) were removed. These QC procedures retained over 1.4 million SNPs 

among 667 AIS patients (545 females and 122 males) and 901 controls (476 females and 425 

males, 170 individuals from schools and 731 individuals from the CARTaGENE project).  

 

Definition of severe and non-severe cases 

Curve severity was defined by the Cobb angle that was recorded at the last clinic visit. 

As scoliosis curvatures vary from a single type to quadruple type, the worst curve or the major 

curve for each individual was used to determine AIS patients’ severity. Severe patients were 

defined by a major curve Cobb angle ≥40º. Two patients were included even though their 

major curve Cobb angles were less than 40º at their last visits. One female with a major curve 

of 39º was considered as a severe case because she was less than 12 years old at the last 

recorded visit. The second exception was a patient with a curvature of 37º at her last visit, 

since her highest Cobb angle in prior records reached 41º. 

Non-severe AIS patients were defined as their major curve Cobb angle between 10º 

and 39º by skeletal maturity. To simplify the concept “skeletal maturity”, we fixed the cutoff 

age as 14 years for girls and 16 years for boys. Because generally AIS has an unclear 

curvature progression tendency, patients having major curve Cobb angle 10º-39º, younger than 

14 for girls and younger than 16 for boys, were excluded from non-severe group, but were still 

kept in case group. The non-severe group consisted of skeletally mature patients only. Certain 

individuals, whose major curve Cobb angles were less than 10º at their last visit, were 

included in non-severe group if their prior spinal curve degrees had been ≥10º and were 

reduced because of bracing impact or unclear reason. 

As a result of the criteria we define here, 148 patients were classified as severe and 302 

patients were in a non-severe group. Clinical characteristics of two groups are shown in Table 

I. 

 

 

 

 



28 

 

Association study 

Among the 53 SNPs previously associated with curve progression among Caucasians 

[Ward, Ogilvie, Singleton et al. 2010], 25 were included in our genomic data (Table II). For 

the remaining 28 SNPs, we searched for proxy SNPs that were in high linkage disequilibrium 

(LD). Conceptually, LD is when an allele of one SNP is often observed with an allele of 

another SNP within a population. Thus, the allele of the one SNP is able to represent the allele 

of the other SNP. We queried the 28 SNPs using SNAP (www.broadinstiture.org/mpg/snap/), 

an online tool for SNP Annotation and Proxy, based on genotype data from the International 

HapMap Project and the 1000 Genomes Project [Johnson, Handsaker, Pulit et al. 2008]. We 

restricted our search to SNPs represented on the Illumina OmniChip 2.5M array, and used an 

r2>0.8 as a cutoff for a proxy in European ancestry population. In the genetic analysis, LD is 

reported in terms of D’ (D-prime) and r2 (r-square). Both are statistical measures of linkage 

disequilibrium scaled from 0 to 1. The case D’=1 is referred to as complete LD, indicating no 

recombination between the two SNPs within the population. The case r2=1 happens 

exclusively if 2 of the 4 possible haplotypes are present in the population and the two SNPs 

have the same allele frequencies, which is referred to as perfect LD. SNPs in perfect LD are 

necessarily in complete LD, but SNPs in complete LD may have low r2 value if the alleles at 

two loci are not correlated. These values are represented for each SNP in Table III. We found 

27 SNPs in our genomic dataset that are in high LD with their relative SNPs in ScoliScoreTM. 

However, no SNP matched our query criteria to represent the rs16909285 SNP in 

ScoliScoreTM. 

Using PLINK software, we evaluated the association of 52 SNPs with AIS in French-

Canadian population by chi-square test. Considering that the 53 SNPs in the original study 

were associated among Caucasian female AIS patients only, we conducted our association 

analyses in all French-Canadian samples as well as in females only. For all SNPs, we 

evaluated associations among totals and among female case versus female control for: 1) 

presence of scoliosis versus controls; 2) severe scoliosis versus controls; and 3) severe 

scoliosis versus non-severe scoliosis.   

For statistical significance, we used a conservative Bonferroni correction to adjust the 

p-value depicting probable association. We adjusted the probability of the false positive results 

from 0.05 to (0.05/k) where k is the number of SNPs tested in each independent association 
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test (k=52 in our study). Therefore, SNPs with a p-value <1×10-3 demonstrate significant 

association in statistics [Bush and Moore 2012]. 

 

Statistical power calculation 

The pwr package in R software (http://www.statmethods.net/stats/power.html) 

[Champely and Champely 2007] was used in statistical power calculations for each 

association study while effect size was defined as small, medium and large, respectively, as 

outlined by Cohen [Cohen 1988]. 

 

Results 

 

Disease-associated study 

To evaluate whether the 52 SNPs are associated with the occurrence of spinal 

curvature, we compared the frequency of each SNP among all AIS patients to those of all 

controls. We applied the same comparison in female samples as well (545 cases vs. 476 

controls). As shown in Table IV-V, none of the 52 SNPs were significantly associated (p-

value<1×10-3) in either cohort.   

 

Progression-associated study 

To detect the genetic association with AIS progression, we conducted two association 

analyses independently: one between 148 severe AIS patients and 302 non-severe patients, the 

other between 148 severe patients and 901 healthy controls, in both genders as well as in 

females. All the association analysis results are shown in Tables VI-IX. There is no 

association between the SNPs and severe AIS, in total samples or in female samples in 

French-Canadian population. 

 

Statistic power analysis 

Power calculations for each association study are listed in Table X. We concluded that 

the statistical power for each association analysis is strong enough for medium genetic effect. 

 



30 

 

Discussion 

 

In this study, we first attempted to replicate the association between AIS and the 53 

SNPs from an unpublished GWAS, and then we attempted to replicate the association of these 

SNPs to severe curvature. Although the genome chip used in our study contained only 25 of 

the SNPs published by Ward et al. [Ward, Ogilvie, Singleton et al. 2010], we identified 27 

SNPs in high linkage disequilibrium with the remaining SNPs of the original study. One SNP 

was completely unavailable for us to study. We were unable to replicate any association 

between these 52 SNPs and AIS in our French-Canadian population.  

This is the second study that has not replicated the association between AIS and the 53 

SNPs used in the algorithm that the ScoliScoreTM test employs for its prediction of risk of 

curve progression. Recently, Y. Ogura et al. genotyped Japanese AIS patients, of which 600 

individuals were divided into a progression group and 1114 individuals were divided into a 

non-progression group. With power greater than 80% in 24 out of 53 SNPs, no association 

with curve severity was found [Ogura, Takahashi, Kou et al. 2013]. However, it was possible 

that this lack of replication in the Japanese study population came from the ethnic admixture 

in Japanese and Caucasian cohorts between the two studies. Populations having distinct 

migration sources are likely to have a different disease penetrance due to varying degrees of 

genetic contributions, resulting in population stratification. Thus, our study sought to ascertain 

association of the SNPs in a Caucasian population of European descent, similar to that of the 

original study. Furthermore, an earlier study found no significant correlation in risk prediction 

of curve progression between ScoliScoreTM results and common clinical estimates in 83 

Caucasians [Roye, Wright, Williams et al. 2012], emphasizing the need for replication of the 

original genetic association in a Caucasian cohort. 

 That the original GWAS that produced the association between AIS and the 53 SNPs 

has not been published brought hesitation and consideration about the scientific foundation of 

ScoliScoreTM [Dobbs and Gurnett 2011; Grant and Dormans 2011]. To evaluate the statistical 

power of the initial study, we lack important details in the study design such as: control cohort 

definition, quality control criteria for SNPs and subjects, quantity of testing markers and 

adjusted significance level. In light of this missing information and assuming that the original 

GWAS was a classical case/control design, we first tested the association of the 53 SNPs to 
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AIS, and then tested for association to curve severity. With 100% power to detect a moderate 

to strong genetic effect and 75% power to detect a minor effect, we did not find an association 

between the 52 tested SNPs and AIS. Using two approaches, we did not find an association 

between curve severity and the 52 SNPs. By our calculations, we had sufficient power to 

detect a large and moderate effect, although we had reduced power to detect a minor genetic 

effect. However, with a study sample composed of 450 patients classified into a severe group 

and a non-severe group, the latter test was similar in size to that in the ScoliScoreTM validation 

study.  

Possible reasons for the irreproducibility of genetic associations lie in various factors 

that affect the statistical power in association studies [Hirschhorn, Lohmueller, Byrne et al. 

2002; McClellan and King 2010; Sham and Purcell 2014]. One important determinant of 

statistical power in association studies is variable LD between studied markers and the true 

causal variants [Hirschhorn, Lohmueller, Byrne et al. 2002]. For the proxy SNPs that we used 

in our study that are not in perfect LD with the query SNPs of the original study, it is possible 

that recombination events among individuals caused disassociation. Sixteen out of 27 proxy 

SNPs were in absolute LD (r2=1, D’=1) with query SNPs. In 2 cases where D’<1, there was 

still chance in French-Canadian population that query SNPs have been separated from proxy 

SNPs by recombination events. Even no recombination happened in 9 cases (D’=1, r2<1), 

proxy SNPs could not substitute completely query ones as the allele frequencies at two loci 

were not exactly the same. Still with r2 ≥0.8, we had a quite small number of subjects carrying 

mismatched alleles from SNPs in LD [Wray 2005]. Therefore, it is quite reasonable to expect 

that the negative result of genetic association of SNPs in ScoliScoreTM with spinal curve 

progression in French-Canadian population was not entirely due to our employment of proxy 

SNPs. Importantly, there was no evidence that the 53 identified SNPs were causal variants in 

AIS progression. They might have a correlation with the causal variants because of linkage 

disequilibrium in the initial study. Therefore, an increased sample size was required in the 

replication study to reach the same level of statistical power in the initial study [Hirschhorn, 

Lohmueller, Byrne et al. 2002; Sham and Purcell 2014], which reduced the probability to 

reproduce the prior association results in our study.  

Another important consideration for the discrepancy between our results and the 

original study is the criteria used to define the phenotype. Firstly, skeletal maturity was 
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defined slightly differently between our study and the initial study. Ward et al. defined mature 

patients by a Risser sign level or by chronological age. In our study, we used the age recorded 

at the last clinic visit. Secondly, the criteria to discriminate severe and non-severe curves were 

not exactly the same. Skeletally mature individuals having Cobb angle 40°-50° were allocated 

into the severe group in our study, while they were classified into non-severe group in the 

initial study [Ward, Ogilvie, Singleton et al. 2010]. Difference in disease severity definition 

influences the statistical power among independent studies, influencing in the reproducibility 

of the initial association study [Sham and Purcell 2014]. 

To multigenetic disease such as AIS, weak genetic effects lead to false positive 

associations that cannot be replicated [Hirschhorn, Lohmueller, Byrne et al. 2002]. Obtained 

from initial GWAS [Ward, Ogilvie, Singleton et al. 2010], the odds ratios, representing the 

effect size for the risk allele associated with severe scoliosis, varied from 0.26 to 1.94, 

suggesting that the effect size was small and might even be overestimated because of the 

phenomenon “Winner’s curse” [Xiao and Boehnke 2009]. In auctions, the winners are likely 

to overestimate the true value of the item. In association studies, the first published positive 

report is equivalent to the winning bid. It is more likely that the underlying genetic effect size 

is upwardly biased in the original discovery study, causing the failure of replication study in 

small size. 

 Genetic heterogeneity is another factor that makes replication studies difficult 

regarding complex diseases. Although our cohorts and initial studied cohorts are both 

Caucasian, it is still possible that the same variants have distinct behaviors in clinical 

manifestation or phenotype, as well as that several causal variants lead to the same phenotype 

[McClellan and King 2010]. Ideally, a replication study for original GWAS would be 

conducted in another independent population, which is in perfect match with the initial one in 

the genetic and environmental background [Hirschhorn, Lohmueller, Byrne et al. 2002]. 

Although Ward et al. reported their results in validating AIS progression risk score, the 

discovery study from which they identified the genetic association of 53 SNPs was not 

mentioned, nor was any replication study by them in another matched population to strengthen 

their findings. 

In summary, our study attempted to reproduce the association of SNPs originally 

associated with AIS and used to calculate risk of curve progression in the ScoliScoreTM test. 



33 

 

As demonstrated by an earlier study in a Japanese cohort, we did not find any significant 

association to AIS generally or to curve severity, in a Caucasian French-Canadian population. 

This study suggests that the lack of replication in the Japanese population is not due to 

ethnicity. 
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Tables and figures 

 

Table I. Demographic and clinical characteristics of severe patients and non-severe 

patients with AIS.  

 

Subjects Characteristics 

   All Subjects Female Male 

   N 
Mean Age 

(Years) 
Scoliosis Cobb 

Angles (o) 
N 

Mean Age 
(Years) 

Scoliosis Cobb 
Angles (o) 

N 
Mean Age 

(Years) 
Scoliosis Cobb 

Angles (o) 

           

Severe AIS 
patients 

148 
15 ± 2  56 ± 12  

129 
15 ± 2  55 ± 12  

19 
16 ± 2  60 ± 11  

(10 – 25) (37 – 90) (10 – 25) (37 – 90) (12 – 19) (40 – 87) 

          

Non-severe 
AIS patients 

302 
16 ± 1 21 ± 8 

259 
16 ± 1 21 ± 9 

43 
17 ± 1 19 ± 7 

 (14 – 22)  (3 – 39)  (14 – 22)  (3 – 39)  (16 – 19)  (7 – 35) 

          

All values represent mean Cobb Angles ± standard deviation, and range values for respective groups. 

Severe AIS patient was defined as Cobb angle ≥40º for major spinal curves. 

Non-severe AIS patient was defined as the highest historical record of Cobb angle between 10º and 39º for spinal 

curves by skeletal maturity (girls ≥ 14 years and boys ≥ 16 years). 
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Table II. Twenty-five SNPs included both in ScoliScoreTM and in Illumina 

genotyping microarray. 

 

dbSNP  Chromosome Associated Gene 

rs6691909 chr1 AIM1L 

rs10493083 chr1 RRAGC 

rs17021437 chr1 AMY1C 

rs2209158 chr1 KCNC4 

rs12474952 chr2 ID2 

rs1991127 chr2 APOB 

rs17044552 chr2 KLHL29 

rs6798946 chr3 ARPP21 

rs6414345 chr3 CLSTN2 

rs11747787 chr5 TNIP1 

rs6420139 chr6 SCAF8 

rs4724981 chr7 MICALL2 

rs6952104 chr7 NPY 

rs2976514 chr8 NRG1 

rs2449539 chr8 LAPTM4B 

rs10794280 chr11 MUC2 

rs17210350 chr11 EED 

rs1558729 chr12 NEDD1 

rs1265566 chr12 CUX2 

rs4765072 chr12 TMEM132B 

rs17719756 chr14 EXOC5 

rs1437480 chr15 FOXB1 

rs9945359 chr18 SETBP1 

rs17635546 chr19 NLRP11 

rs132898 chr22 KIAA1671 
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Table III. Twenty-seven SNPs in ScoliScoreTM and their proxy SNPs in Illumina 

genotyping microarray.  

 

ScoliScoreTM 
1000 GENOMES                             

Pilot1, panel CEU 
Illumina HumanOnmi2.5M 

dbSNP Chromosome r-square D-prime Proxy SNP 
Associated 

Gene 

rs4661748 chr1 1 1 rs4661747 SPATA21 

rs6693477 chr1 1 1 rs7365544 EFNA3 

rs10798036 chr1 1 1 rs6425017 HMCN1 

rs16865244 chr2 0.831 1 rs16865273 CMPK2 

rs12618119 chr2 0.926407 1 rs6711194 GYPC 

rs10168146 chr2 1 1 rs6431278 ARL4C 

rs7613792 chr3 1 1 rs13433861 ZBTB20 

rs10004901 chr4 1 1 rs10011602 C4orf22 

rs10000472 chr4 1 1 rs1384135 ARHGAP24 

rs2045904 chr5 0.965 1 rs10512969 ITGA1 

rs831653 chr5 1 1 rs831649 GPBP1 

rs16902899 chr5 1 1 rs2178270 TMEM161B 

rs239794 chr6 0.84 0.964 rs12192659 FAM83B 

rs1349887 chr6 0.967 1 rs1902064 ARID1B 

rs2700910 chr7 1 1 rs2726052 EEPD1 

rs17165447 chr7 1 1 rs4729090 CALCR 

rs7840870 chr8 0.934 0.966 rs17817357 RIMS2 

rs10787096 chr10 0.962 1 rs10884639 SORCS1 

rs16968878 chr16 1 1 rs2113177 CHD11 

rs4782809 chr16 0.966 1 rs4782543 CHD13 

rs16945692 chr17 1 1 rs12451910 INTS2 

rs11083276 chr18 0.864 1 rs2311719 CDH2 

rs8093693 chr18 0.93 1 rs2909638 SERPINB8 

rs448013 chr20 1 1 rs447915 CBLN4 

rs136187 chr22 0.894 1 rs767855 MYH9 

rs6528028 chrX 1 1 rs952077 GPM6B 

rs500243 chrX 1 1 rs485156 SLC16A2 
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Table IV. Association of 25 ScoliScoreTM SNPs with AIS in French-Canadian 

population (667 cases vs. 901 controls; 545 female cases vs. 476 female controls). 

 

 

ScoliScoreTM AIS case vs. Control 
female-only  

AIS case vs. Control 

dbSNP ID P value Odds Ratio (95% CI) P value Odds Ratio (95% CI) 

rs6691909 0.9371 0.9943 (0.8627-1.146) 0.4078 0.9291 (0.7806-1.106) 

rs10493083 0.353 0.7784 (0.4582-1.322) 0.4534 0.7825 (0.4114-1.488) 

rs17021437 0.003928 0.6041 (0.4275-0.8536) 0.0318 0.6374 (0.4213-0.9645) 

rs2209158 0.1936 0.9069 (0.7827-1.051) 0.05134 0.8357 (0.6976-1.001) 

rs12474952 0.1656 0.9033 (0.7822-1.043) 0.1013 0.8624 (0.7225-1.03) 

rs1991127 0.2083 1.36 (0.8409-2.199) 0.4647 1.247 (0.689-2.258) 

rs17044552 0.4882 1.147 (0.7786-1.689) 0.2045 1.373 (0.8399-2.244) 

rs6798946 0.4739 0.8906 (0.6485-1.223) 0.4126 0.8499 (0.5758-1.255) 

rs6414345 0.3685 0.8303 (0.5534-1.246) 0.2847 0.7653 (0.4682-1.251) 

rs11747787 0.4884 0.9509 (0.8246-1.096) 0.05752 0.8441 (0.7086-1.005) 

rs6420139 0.3425 0.9261 (0.7902-1.085) 0.148 0.8672 (0.7149-1.052) 

rs4724981 0.2588 1.086 (0.9413-1.252) 0.4653 1.067 (0.896-1.271) 

rs6952104 0.7274 0.9751 (0.8461-1.124) 0.9847 0.9983 (0.8387-1.188) 

rs2976514 0.8504 0.9863 (0.8542-1.139) 0.9077 1.011 (0.8467-1.206) 

rs2449539 0.5843 0.8782 (0.5514-1.399) 0.5321 0.8348 (0.4735-1.472) 

rs10794280 0.6155 1.039 (0.8956-1.205) 0.446 1.073 (0.8946-1.288) 

rs17210350 0.2268 0.766 (0.4966-1.182) 0.4421 0.8121 (0.4772-1.382) 

rs1558729 0.9912 1.001 (0.8576-1.168) 0.7451 0.9689 (0.8007-1.172) 

rs1265566 0.6256 0.9629 (0.8274-1.121) 0.8049 0.977 (0.8122-1.175) 

rs4765072 0.6903 1.029 (0.8931-1.186) 0.9763 0.9974 (0.8378-1.187) 

rs17719756 0.2696 1.083 (0.9399-1.248) 0.2783 1.101 (0.9251-1.311) 

rs1437480 0.06253 0.6451 (0.4053-1.027) 0.2936 0.7524 (0.4418-1.282) 

rs9945359 0.288 1.12 (0.9087-1.381) 0.6897 1.054 (0.8127-1.368) 

rs17635546 0.1921 0.8745 (0.7149-1.07) 0.4245 0.9048 (0.7077-1.157) 

rs132898 0.3077 1.077 (0.9341-1.241) 0.5289 1.058 (0.8883-1.259) 

     

CI: confidence interval 
Significance level is p-value ≤ 0.001 
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Table V. Association of 27 Proxy SNPs with AIS in French-Canadian population 

(667 cases vs. 901 controls; 545 female cases vs. 476 female controls). 

 

 

 

 

 

 

 

Proxy AIS case vs. Control 
female-only  

AIS case vs. Control 

dbSNP ID P value Odds Ratio (95% CI) P value Odds Ratio (95% CI) 

rs4661748 0.2714 0.9187(0.7898-1.069) 0.2007 0.8854(0.7347-1.067) 

rs6693477 0.9596 1.004(0.8712-1.156) 0.7137 1.033(0.8682-1.229) 

rs10798036 0.07926 1.135(0.9853-1.308) 0.2867 1.099(0.9235-1.309) 

rs16865244 0.9229 1.01(0.821-1.243) 0.8898 1.018(0.7903-1.311) 

rs12618119 0.08106 1.143(0.9836-1.328) 0.3028 1.102(0.9161-1.325) 

rs10168146 0.2655 1.094(0.9338-1.282) 0.2246 1.128(0.9287-1.37) 

rs7613792 0.837 0.9482(0.5713-1.574) 0.1704 0.6578(0.3599-1.202) 

rs10004901 0.8966 0.9847(0.781-1.242) 0.8375 0.9711(0.7338-1.285) 

rs10000472 0.5558 1.049(0.8951-1.229) 0.5396 1.063(0.8753-1.29) 

rs2045904 0.6947 0.972(0.8435-1.12) 0.6017 1.048(0.8799-1.247) 

rs831653 0.9786 1.002(0.8685-1.156) 0.3455 0.9191(0.7712-1.095) 

rs16902899 0.7969 0.9774(0.8213-1.163) 0.8609 1.019(0.8229-1.263) 

rs239794 0.6133 0.9634(0.8337-1.113) 0.6778 1.039(0.8689-1.241) 

rs1349887 0.5058 1.049(0.9107-1.209) 0.3844 1.08(0.9078-1.285) 

rs2700910 0.6668 1.038(0.8773-1.227) 0.4831 1.076(0.8766-1.321) 

rs17165447 0.9199 1.019(0.7125-1.456) 0.822 0.9526(0.624-1.454) 

rs7840870 0.2563 1.086(0.9416-1.254) 0.2093 1.119(0.9387-1.335) 

rs10787096 0.9363 1.006(0.8701-1.163) 0.9175 1.01(0.8439-1.208) 

rs16968878 0.08869 0.8808(0.761-1.019) 0.03976 0.8291(0.6935-0.9913) 

rs4782809 0.7197 1.026(0.8899-1.184) 0.7515 0.9721(0.8157-1.158) 

rs16945692 0.2633 0.8919(0.7299-1.09) 0.2432 0.8666(0.6812-1.102) 

rs11083276 0.8624 0.986(0.8402-1.157) 0.5932 1.055(0.8671-1.283) 

rs8093693 0.7541 0.9772(0.8457-1.129) 0.5142 0.9426(0.7893-1.126) 

rs448013 0.3316 0.7886(0.4877-1.275) 0.4427 0.7993(0.4506-1.418) 

rs136187 0.6034 0.9607(0.8259-1.118) 0.9515 1.006(0.8344-1.213) 

rs6528028 0.209 0.8955(0.7539-1.064) 0.4343 0.9252(0.7613-1.124)  

rs500243 0.8811 0.9876(0.8384-1.163) 0.7203 1.034(0.8598-1.244) 

     

CI: confidence interval 
Significance level is p-value ≤ 0.001 
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Table VI. Association of 25 ScoliScoreTM SNPs with AIS progression in French-

Canadian population (148 severe cases vs. 901 controls; 129 severe female cases vs. 

476 female controls). 

 

 

 

 

 

 

 

 

 

ScoliScoreTM Severe case vs. Control 
female-only  

Severe case vs. Control 

dbSNP ID P value Odds Ratio (95% CI) P value Odds Ratio (95% CI) 

rs6691909 0.04146 1.292 (1.01-1.653) 0.446 1.113 (0.8451-1.466) 

rs10493083 0.3886 0.6359 (0.2253-1.795) 0.1575 0.3641 (0.08454-1.568) 

rs17021437 0.04324 0.4968 (0.2488-0.992) 0.04771 0.4548 (0.2046-1.011) 

rs2209158 0.1732 0.8351 (0.6442-1.083) 0.1467 0.8074 (0.6046-1.078) 

rs12474952 0.08775 0.8023 (0.6229-1.033) 0.0979 0.7872 (0.5927-1.045) 

rs1991127 0.1942 1.631 (0.774-3.436) 0.1572 1.775 (0.7933-3.971) 

rs17044552 0.8856 1.051 (0.5312-2.081) 0.3895 1.381 (0.6598-2.892) 

rs6798946 0.3935 0.7736 (0.4284-1.397) 0.5218 0.8112 (0.4272-1.54) 

rs6414345 0.3138 0.6678 (0.3029-1.473) 0.4502 0.7291 (0.32-1.661) 

rs11747787 0.8042 1.032 (0.8061-1.32) 0.7507 0.9562 (0.7256-1.26) 

rs6420139 0.9903 0.9983 (0.7601-1.311) 0.6543 0.9328 (0.688-1.265) 

rs4724981 0.6229 1.064 (0.8307-1.363) 0.6573 1.065 (0.8074-1.404) 

rs6952104 0.5245 1.083 (0.847-1.385) 0.4714 1.106 (0.8402-1.457) 

rs2976514 0.4468 1.101 (0.8592-1.411) 0.5118 1.098 (0.831-1.45) 

rs2449539 0.5898 0.7898 (0.3343-1.866) 0.3163 0.5839 (0.2014-1.693) 

rs10794280 0.9446 0.9909 (0.7651-1.283) 0.9647 1.007 (0.7536-1.344) 

rs17210350 0.1523 0.516 (0.2052-1.297) 0.1902 0.5008 (0.1744-1.438) 

rs1558729 0.972 1.005 (0.7685-1.314) 0.631 0.9281 (0.6846-1.258) 

rs1265566 0.6028 0.932 (0.7149-1.215) 0.6779 0.9396 (0.7003-1.261) 

rs4765072 0.97 1.005 (0.7853-1.285) 0.9005 1.018 (0.7726-1.341) 

rs17719756 0.1599 0.8368 (0.6525-1.073) 0.3607 0.8787 (0.6658-1.16) 

rs1437480 0.4986 0.7605 (0.3432-1.685) 0.7311 0.864 (0.375-1.99) 

rs9945359 0.6268 1.094 (0.7621-1.57) 0.8254 0.9537 (0.6256-1.454) 

rs17635546 0.3251 0.8346 (0.582-1.197) 0.4151 0.8463 (0.5664-1.265) 

rs132898 0.6935 1.051 (0.8211-1.345) 0.8761 1.022 (0.7756-1.347) 

     

CI: confidence interval 
Significance level is p-value ≤ 0.001 
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Table VII. Association of 27 Proxy SNPs with AIS progression in French-Canadian 

population (148 severe cases vs. 901 controls; 129 severe female cases vs. 476 female 

controls). 

 

 

 

 

 
 

 

Proxy Severe case vs. Control 
female-only  

Severe case vs. Control 

dbSNP ID P value Odds Ratio (95% CI) P value Odds Ratio (95% CI) 

rs4661748 0.2831 0.8644 (0.6623-1.128) 0.4343 0.8883 (0.6599-1.196) 

rs6693477 0.1778 0.8441 (0.6596-1.08) 0.4643 1.108 (0.8415-1.459) 

rs10798036 0.1208 1.215 (0.9498-1.554) 0.3357 1.145 (0.8692-1.508) 

rs16865244 0.591 1.101 (0.7753-1.563) 0.5188 1.136 (0.7708-1.675) 

rs12618119 0.07728 1.259 (0.9748-1.626) 0.3013 1.164 (0.8724-1.554) 

rs10168146 0.4919 1.101 (0.8373-1.447) 0.4241 1.132 (0.8348-1.536) 

rs7613792 0.9764 0.987 (0.4129-2.359) 0.5284 0.7328 (0.2777-1.933) 

rs10004901 0.7321 1.071 (0.7235-1.585) 0.8332 0.953 (0.6091-1.491) 

rs10000472 0.9832 0.997 (0.756-1.315) 0.7597 0.9526 (0.6976-1.301) 

rs2045904 0.4144 1.108 (0.8663-1.417) 0.2004 1.197 (0.9088-1.576) 

rs831653 0.2515 1.155 (0.9026-1.478) 0.4656 1.108 (0.841-1.46) 

rs16902899 0.07997 1.288 (0.9697-1.712) 0.03737 1.399 (1.019-1.921) 

rs239794 0.6146 0.9373 (0.7286-1.206) 0.9584 0.9925 (0.748-1.317) 

rs1349887 0.08914 1.238 (0.9676-1.584) 0.1576 1.22 (0.9258-1.607) 

rs2700910 0.846 0.9712 (0.7231-1.304) 0.5899 0.9122 (0.6531-1.274) 

rs17165447 0.9981 1.001 (0.5366-1.866) 0.6555 0.8524 (0.4223-1.72) 

rs7840870 0.293 1.142 (0.8916-1.462) 0.5384 1.091 (0.8264-1.441) 

rs10787096 0.005894 0.6907 (0.5303-0.8998) 0.03061 0.7225 (0.5378-0.9708) 

rs16968878 0.1386 0.8239 (0.6374-1.065) 0.0635 0.7626 (0.5725-1.016) 

rs4782809 0.7546 1.04 (0.8121-1.332) 0.7995 0.9647 (0.7307-1.273) 

rs16945692 0.5617 0.9014 (0.6349-1.28) 0.4187 0.8521 (0.578-1.256) 

rs11083276 0.4956 0.9063 (0.683-1.203) 0.7735 0.9549 (0.6972-1.308) 

rs8093693 0.5068 0.9181 (0.7134-1.182) 0.3583 0.8758 (0.6598-1.162) 

rs448013 0.2092 0.5229 (0.1868-1.464) 0.3163 0.5839 (0.2014-1.693) 

rs136187 0.9478 0.9913 (0.7629-1.288) 0.9596 1.008 (0.7498-1.354) 

rs6528028 0.9359 0.9884 (0.7435-1.314) 0.6799 1.066 (0.7874-1.442) 

rs500243 0.3661 0.8792 (0.665-1.162) 0.6302 0.9299 (0.6918-1.25) 

     

CI: confidence interval 
Significance level is p-value ≤ 0.001 
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Table VIII. Association of 25 ScoliScoreTM SNPs with AIS progression in French-

Canadian population (148 severe cases vs. 302 non-severe cases; 129 severe female 

cases vs. 259 non-severe female cases). 

 

 
 

 

 

 

 

 

 

ScoliScoreTM Severe case vs. Non-severe case 
female-only  

Severe case vs. Non-severe case 

dbSNP ID P value Odds Ratio (95% CI) P value Odds Ratio (95% CI) 

rs6691909 0.01073 1.438 (1.087-1.902) 0.047 1.354 (1.004-1.828) 

rs10493083 0.498 0.6758 (0.2161-2.114) 0.2192 0.3969 (0.08632-1.825) 

rs17021437 0.8289 0.9157 (0.4117-2.036) 0.5713 0.7747 (0.3194-1.879) 

rs2209158 0.407 0.8835 (0.6591-1.184) 0.5835 0.9158 (0.6687-1.254) 

rs12474952 0.6149 0.9291 (0.6977-1.237) 0.4899 0.8971 (0.6591-1.221) 

rs1991127 0.5186 1.322 (0.5653-3.089) 0.3433 1.524 (0.6338-3.665) 

rs17044552 0.7473 0.8832 (0.4148-1.881) 0.8065 0.9091 (0.4239-1.95) 

rs6798946 0.3299 0.7248 (0.3784-1.388) 0.736 0.8871 (0.4418-1.781) 

rs6414345 0.694 0.8364 (0.343-2.039) 0.9932 1.004 (0.4002-2.519) 

rs11747787 0.384 1.132 (0.856-1.498) 0.4163 1.133 (0.8387-1.53) 

rs6420139 0.1923 1.232 (0.9002-1.686) 0.4026 1.154 (0.8252-1.614) 

rs4724981 0.661 1.065 (0.8044-1.409) 0.3872 1.142 (0.8452-1.543) 

rs6952104 0.8548 1.026 (0.7771-1.355) 0.6123 1.08 (0.8013-1.456) 

rs2976514 0.4419 1.117 (0.843-1.479) 0.5767 1.09 (0.8055-1.475) 

rs2449539 0.4818 0.7144 (0.2787-1.831) 0.2533 0.5281 (0.1735-1.608) 

rs10794280 0.8499 0.9722 (0.7258-1.302) 0.738 0.9479 (0.6929-1.297) 

rs17210350 0.2433 0.5556 (0.2042-1.511) 0.1568 0.4603 (0.1533-1.382) 

rs1558729 0.6963 1.063 (0.7836-1.441) 0.8848 1.025 (0.7352-1.429) 

rs1265566 0.365 0.8713 (0.6467-1.174) 0.508 0.8982 (0.6537-1.234) 

rs4765072 0.9104 0.9841 (0.7447-1.3) 0.5435 1.097 (0.8133-1.48) 

rs17719756 0.005894 0.6746 (0.5094-0.8933) 0.03268 0.7208 (0.5335-0.9738) 

rs1437480 0.5744 1.315 (0.5044-3.427) 0.5958 1.296 (0.4963-3.383) 

rs9945359 0.9114 1.023 (0.6806-1.539) 0.6093 0.8887 (0.565-1.398) 

rs17635546 0.6052 0.8983 (0.5981-1.349) 0.6595 0.9064 (0.5853-1.404) 

rs132898 0.5285 0.9143 (0.6918-1.208) 0.4445 0.8898 (0.6596-1.2) 

     

CI: confidence interval 
Significance level is p-value ≤ 0.001 
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Table IX. Association of 27 Proxy SNPs with AIS progression in French-Canadian 

population (148 severe cases vs. 302 non-severe cases; 129 severe female cases vs. 

259 non-severe female cases). 

 

 

Proxy Severe case vs. Non-severe case 
female-only  

Severe case vs. Non-severe case 

dbSNP ID P value Odds Ratio (95% CI) P value Odds Ratio (95% CI) 

rs4661748 0.7112 0.9447 (0.699-1.277) 0.8529 0.9699 (0.7019-1.34) 

rs6693477 0.04717 0.7541 (0.5705-0.9968) 0.243 1.195 (0.8861-1.611) 

rs10798036 0.8081 1.035 (0.7837-1.367) 1 1 (0.7418-1.348) 

rs16865244 0.5989 1.113 (0.7463-1.66) 0.7023 1.086 (0.7125-1.654) 

rs12618119 0.3165 1.16 (0.8678-1.549) 0.3995 1.145 (0.836-1.567) 

rs10168146 0.7736 0.9559 (0.7028-1.3) 0.6818 0.9338 (0.6731-1.296) 

rs7613792 0.5544 1.368 (0.4823-3.879) 0.6874 1.26 (0.408-3.89) 

rs10004901 0.9205 1.023 (0.6567-1.593) 0.6419 0.8922 (0.5516-1.443) 

rs10000472 0.3353 0.8588 (0.63-1.171) 0.1917 0.8008 (0.5735-1.118) 

rs2045904 0.3996 1.127 (0.8533-1.489) 0.3885 1.14 (0.8459-1.538) 

rs831653 0.3103 1.156 (0.8739-1.528) 0.1259 1.264 (0.9361-1.707) 

rs16902899 0.03038 1.438 (1.034-2) 0.008447 1.605 (1.127-2.286) 

rs239794 0.9365 1.012 (0.7605-1.346) 0.9903 0.9981 (0.7342-1.357) 

rs1349887 0.4985 1.101 (0.8332-1.455) 0.9567 1.008 (0.7474-1.36) 

rs2700910 0.4652 0.8841 (0.6353-1.231) 0.2445 0.8086 (0.5653-1.157) 

rs17165447 0.9519 0.9786 (0.4846-1.976) 0.905 0.9543 (0.4426-2.058) 

rs7840870 0.498 1.102 (0.8325-1.458) 0.8729 0.9757 (0.722-1.319) 

rs10787096 0.003236 0.6424 (0.478-0.8633) 0.0152 0.675 (0.491-0.9278) 

rs16968878 0.7888 0.961 (0.7184-1.285) 0.6338 0.9269 (0.6782-1.267) 

rs4782809 0.3369 1.148 (0.8665-1.52) 0.4139 1.134 (0.8381-1.536) 

rs16945692 0.5621 0.8901 (0.6004-1.32) 0.5584 0.882 (0.5792-1.343) 

rs11083276 0.4595 0.8869 (0.6452-1.219) 0.477 0.8843 (0.6299-1.241) 

rs8093693 0.6206 0.9305 (0.6997-1.237) 0.6678 0.9349 (0.6874-1.272) 

rs448013 0.2147 0.5034 (0.1668-1.519) 0.3151 0.5669 (0.1847-1.74) 

rs136187 0.8838 1.022 (0.7599-1.375) 0.929 1.015 (0.7361-1.399) 

rs6528028 0.4119 1.144 (0.8298-1.576) 0.2891 1.197 (0.8585-1.668) 

rs500243 0.3386 0.8598 (0.6309-1.172) 0.3516 0.8593 (0.6245-1.182) 

     

CI: confidence interval 
Significance level is p-value ≤ 0.001 
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Table X. Statistical power calculations for each association study in R software. 
 

 Power (%) 

 Case vs. Control Severe case vs. Control Severe case vs. Non-severe case 

 ALL FEMALE ALL FEMALE ALL FEMALE 

Effect sizea       

small 74.8 46.2 47.9 20.3 12.1 9.3 

medium 100 100 100 100 99.9 99.6 

large 100 100 100 100 100 100 

a Cohen proposed rules of thumb for interpreting effect sizes: a “small” effect size is 20%, 

a “medium” effect size is 50%, and a “large” effect size is 80%. 
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Structured abstract 

 

Study Design:  An association study that used genomic data generated from French-Canadian 

case and control cohorts.  

Objectives: To identify Single Nucleotide Polymorphisms (SNPs) associated with Adolescent 

Idiopathic Scoliosis (AIS) through a genome-wide association study (GWAS) in a French-

Canadian cohort, which represents a Caucasian population of European descent. 

Summary of Background Data: The contribution of genetic factors to the pathogenesis of 

AIS has been widely recognized. The identification of genetic variants associated with the 

susceptibility or severity of spinal curvature would facilitate the development of 

diagnostic/prognostic tools. There have been a number of loci identified through GWAS in 

other populations. The population in Quebec is unique because the incidence of idiopathic 

scoliosis is generally higher in Quebec (average 4.5%), and because 51% of our cohort 

reported a familial incidence of scoliosis, we expected a strong genetic effect in our population. 

Methods: We recruited 667 AIS patients and 901 healthy control individuals from the French-

Canadian population. Genomic DNA was extracted from blood and was genotyped using the 

Illumina HumanOmni 2.5M BeadChip, a commercial genotyping platform with a high density 

of SNPs. Genotyping data quality control was ensured by previously outlined standards. 

Results: We evaluated the association of 1.4 million SNPs through allelic association analysis. 

Three variants were identified significantly associated with spinal curve predisposition and/or 

progress, suggesting several novel candidate genes involved in the disease etiopathogenesis.  

Conclusions: A genome-wide association study was performed to find genomic variants 

linked to Adolescent Idiopathic Scoliosis in French-Canadian population using a genotyping 

microarray with the highest density of SNPs used in the AIS research field so far. We 

identified several genetic variants linked to disease susceptibility and/or severity and 

suggested novel candidate genes in etiopathogenesis. Associated loci already reported were 

not significant in the French-Canadian cohort. The observation of non-association may derive 

from population stratification and genetic heterogeneity of AIS. Further replication with larger 

samples is required to validate our findings.  
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KEYWORDS: adolescent idiopathic scoliosis, single nucleotide polymorphism, genetic 

variant, genome-wide association study, French-Canadian population, Caucasian, spinal 

curvature severity, genotype, association analysis 

 

 

Key Points 

 A genome-wide association study demonstrated a number of genetic variants linked to AIS 

susceptibility and/or severity, suggesting novel candidate genes that play a role in disease 

etiopathogenesis. 

 Using a microarray with a very high density of SNPs, we have performed the most 

comprehensive genomic survey done yet.  

 The observation of non-association of previously reported variants may derive from 

population stratification and genetic heterogeneity of AIS disease. 

 Requirement of further replication study with larger samples and in other ethnic 

populations is important to validate our findings in GWAS.  

 

Mini abstract 

 

Genetic association of a number of loci has been identified with adolescent idiopathic 

scoliosis (AIS) through genome-wide association studies. Here with an association study in a 

French-Canadian population, we identified significant variants linked to AIS, suggesting novel 

candidate genes that may play a role in spinal curve predisposition and/or progress. 
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Introduction 

 

Idiopathic scoliosis (IS, OMIM #181800) is the most common spinal deformity, 

characterized by a lateral curvature of the spine greater than 10 degrees, although it usually 

manifests in three-dimensions, without a clear cause. Adolescents make up 80% of all IS cases 

[Riseborough and Wynne-Davies 1973], which is termed as adolescent idiopathic scoliosis 

(AIS). AIS affects about 2.5% children in the world [Asher and Burton 2006]. Females have a 

tenfold the risk of curve progression requiring medical intervention than males [Miller 1999]. 

Although that the pathogenesis of the disease is still unknown, AIS is observed 

aggregated within families of patients [Riseborough and Wynne-Davies 1973; Wynne-Davies 

1968], suggesting heritability. The scoliosis curves in monozygous twins are more likely to 

develop and progress together than in dizygous twins, demonstrating strong evidence for a 

genetic etiology in AIS [Andersen, Thomsen and Kyvik 2007; Kesling and Reinker 1997]. 

Based on families or populations, genetic studies have identified several candidate genes or 

loci in AIS etiology. However, these studies have a poor success rate in replication studies 

[Gorman, Julien and Moreau 2012]. 

Since 2010, genome-wide association studies (GWAS) have been applied to AIS. This 

type of genomic survey presents a non-hypothesis based approach, by genotyping population-

defined single nucleotide polymorphisms (SNPs). To date, only two case-control discovery 

studies have been published, one in Utah using a Caucasian population [Sharma, Gao, 

Londono et al. 2011], the other in Japan with Japanese population [Takahashi, Kou, 

Takahashi et al. 2011]. Based on the genotyping outcome and subsequent replication studies, 

three loci: 3p26.3 [Sharma, Gao, Londono et al. 2011], 10q24.31 [Takahashi, Kou, Takahashi 

et al. 2011] and 6q24.1 [Kou, Takahashi, Johnson et al. 2013], have been associated with AIS 

predisposition. However, these significant variants have a minor effect size (odds ratio, OR<2), 

indicating that they are not major contributors to the disease etiology. Using the same genomic 

data in the Japanese population, one locus, 17q24.3, was significantly associated with AIS 

severity of medium effect (rs12946942, combined OR=2.2 in East-Asia population) [Miyake, 

Kou, Takahashi et al. 2013]. But their findings have not been validated in other ethnic groups. 
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Here with a French-Canadian cohort, we conducted a GWAS to identify genetic 

variants in AIS patients. The French-Canadian population was founded on migrants who 

moved from Europe in the 17th and 18th centuries. Compared to the rest of North America, it is 

relatively isolated, leading the Quebec Founder Population which is valuable to medical 

genetic research with low genetic variability [De Braekeleer and Dao 1994]. In addition, the 

incidence of AIS is higher in the population in Quebec than average [Rogala, Drummond and 

Gurr 1978]. A survey of our clinical database shows that among 920 patients, 467 (51%) 

reported a familial incidence of scoliosis, suggesting a strong genetic effect in our population. 

 

Materials and methods 

 

Study population and data source 

This study has the approval from the institutional review boards of The Sainte-Justine 

University Hospital, The Montreal Children’s Hospital, The Shriners Hospital for Children in 

Montreal and McGill University, as well as the Affluent and Montreal English School Boards. 

We recruited 1056 individuals from schools. Additional genomic control data of 750 

individuals were from the CARTaGENE project [Awadalla, Boileau, Payette et al. 2013; 

Godard, Marshall and Laberge 2007]. To rule out the presence of scoliosis from the controls 

of the studied population, school screening was conducted by one of the orthopedic surgeons 

at Sainte-Justine Hospital in Montreal, Quebec, Canada, and the CARTaGENE adult 

phenotype records were checked.  

 

Genome wide association study (GWAS) 

Genomic DNA samples were derived from the peripheral blood of the subjects at the 

hospital and schools and then genotyped by the Illumina HumanOmni 2.5M BeadChip, which 

genotyped 2.5 million SNPs per sample. Control data from CARTaGENE was merged into the 

microarray outcome to generate files in the appropriate format to be analyzed.  

Quality control (QC) measures were applied to genomic data following standards 

previously outlined [Turner, Armstrong, Bradford et al. 2011; Weale 2010]. We used PLINK 

[Purcell, Neale, Todd-Brown et al. 2007] and R [Team 2012] software packages to: 1) filter 
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gender mismatches, 2) filter missingness at both the sample-level (< 2%) and SNP-level (< 

2%), 3) assess sample heterozygosity, 4) filter SNPs with a minor allele frequency (MAF) less 

than 1% and 5) filter SNPs in Hardy-Weinberg disequilibrium [Neale and Purcell 2008; 

Samani, Erdmann, Hall et al. 2007].   

Linkage disequilibrium (LD) thinning was performed on the filtered genomic data 

prior to ancestral and relatedness testing by applying respectively EIGENSTRAT [Price, 

Patterson, Plenge et al. 2006] and PLINK [Purcell, Neale, Todd-Brown et al. 2007] identity-

by-descent (IBD). Ancestral outliers and related samples (pi_hat >0.1875) were thus removed.   

These QC procedures retained over 1.4 million SNPs among 667 AIS patients (545 

females and 122 males) and 901 controls (476 females and 425 males, 170 individuals from 

schools and 731 individuals from the CARTaGENE project).  

 

Definition of severe and non-severe cases 

To identify genetic variants associated with the spinal curve severity, we classified 

AIS-affected patients into severe and non-severe groups, defined by the Cobb angles of major 

curve records. Severe patients were defined by a major curve Cobb angle ≥40º. Non-severe 

AIS patients were defined as their major curve Cobb angle between 10º and 39º by skeletal 

maturity. To simplify the concept “skeletal maturity”, we fixed the cutoff age as 14 years for 

girls and 16 years for boys. The non-severe group consisted of skeletally mature patients only.  

As a result of the criteria we define here, 148 patients were classified as severe and 302 

patients were in a non-severe group. Clinical characteristics of two groups at the last clinic 

visit are shown in Table XI. 

 

Statistical analyses 

Using PLINK software, we evaluated the association of 1.4 million SNPs with AIS 

predisposition and severity in French-Canadian population by Chi-square test for allele model. 

To achieve statistical significance, we used a conservative Bonferroni correction to adjust the 

p-value depicting probable association [Bush and Moore 2012]. We adjusted the probability 

for the false positive results from 0.05 to (0.05/k) where k is the number of SNPs tested in 

each independent association test (k=1.4×106 in our genome-wide test). Therefore, SNPs with 
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a p-value <10-8 demonstrate a statistically significant association with AIS. SNPs with a p-

value <10-5 are treated as suggestively significant variants. 

 

Statistical power calculation 

The pwr package in R software (http://www.statmethods.net/stats/power.html) 

[Champely and Champely 2007] was used in statistical power calculations for each 

association study while effect size was defined as small, medium or large, as outlined by 

Cohen [Cohen 1988]. 

 

Results 

 

Power calculation for association analysis is listed in Table XII. We concluded that 

the statistical power for each association analysis is strong enough to detect a medium genetic 

effect. 

Two SNPs reached genome-wide significance level through the GWAS association 

analysis (Figure 5). The most significant was SNP rs114646323 (p-value=1.34×10-9) in the 

intron region of the KLC4 gene on chromosome 6. This variant was found in about 2% AIS-

affected patients (14 out of 667 cases), but not in healthy control subjects. Neither was it in 

severe AIS cases. However, the association of this variant was significant to the non-severe 

cases (p-value=2.04×10-11). About 2.6% patients in non-severe group had this variant (8 out of 

302). This was the only variant significantly associated with non-severe cases when compared 

to control subjects. 

Another significant SNP in GWAS, rs1607639, is located on chromosome 2 between 

genes GCFC2 and LRRTM4 (p-value=8.68×10-9, odds ratio, OR=1.52, 95% Confidence 

Interval, CI=1.32-1.75). The association of this variant with severe cases and with non-severe 

cases reached a suggestive significance level (p-value=3.42×10-5 and 2.55×10-6, respectively). 

Through the association analysis between AIS severe cases and healthy control 

subjects, SNP rs201793089, located in the intron of gene CELF2 on chromosome 10, attained 

the genome-wide significance level (p-value=1.2810-9). The associations of this variant with 

non-severe cases and total AIS cases reached our genome-wide suggestive significance 

threshold (p-value=7.18×10-7 in case/control study and 4.05×10-8 in non-severe/control study). 

http://en.wikipedia.org/wiki/Confidence_interval
http://en.wikipedia.org/wiki/Confidence_interval
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None of the control individuals had this variant. This variant was detected in about 1.4% of 

total affected cases (9 out of 667), 2% of severe cases (3 out of 148) and 1.6% of non-severe 

cases (5 out of 302). 

In summary, Table XIII listed the three significant SNPs and the candidate genes. 

 

Discussion 

 

We performed a genome-wide association study to find genomic variants linked to 

adolescent idiopathic scoliosis in French-Canadian population using the Illumina 

HumanOmni 2.5M BeadChip, a genotyping microarray with the highest density of SNPs used 

in the AIS research field so far. A genome-wide association study (GWAS) is an examination 

tool to detect genetic association with a trait in different individuals. By genotyping millions 

of single nucleotide polymorphisms (SNPs) through the entire genome and comparing allele 

frequencies between two different groups, researchers are capable of detecting genetic 

polymorphisms that have an association with one group. These genetic polymorphisms may be 

in linkage disequilibrium (LD) with causal genes that are located within or around the 

polymorphism loci. In general, the association study is a statistical approach. SNPs detected in 

GWAS are usually common in the population (minor allele frequency, MAF>5%) [Bush and 

Moore 2012; Spencer, Su, Donnelly et al. 2009]. Here with the highest density of the 

genotyping chip in AIS study, we were capable of detecting the variants more rare (MAF>1%). 

In addition, with a French-Canadian population, a valuable founder population in genetic 

research, we identified three variants statistically correlated to AIS disease.  

Two SNPs, rs114646323 and rs1607639, were identified significantly associated with 

AIS disease in GWAS case/control analysis (P-value <10-8) while SNP rs201793089 was 

found significantly associated with AIS-affected severe cases (P-value <10-8).  It is noteworthy 

that the variant rs114646323 demonstrated significant association in case/control study but 

was not observed in severe cases. A t-test 

(http://www.socscistatistics.com/tests/ztest/Default2.aspx) suggests this significant distinction 

between severe and non-severe groups (P-value=0.0455). Our hypothesis is that since the 

allele is associated with curve predisposition, it may have protective effects against curve 
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progression. However, the small cohort size being taken under consideration, the distinction 

may represent a possible statistical bias. Therefore, extensive genotyping among severe cases 

is necessary to investigate this trend further. 

The variants identified in the association study suggest novel candidate genes that play 

a role in AIS susceptibility and/or severity pathogenesis in French-Canadian population. The 

KLC4 gene encodes the protein kinesin light chain 4 in humans. Kinesins, composed of two 

heavy chains and two light chains, are microtubule-based molecular motors that transport 

various intracellular cargos, including neurons and ciliated cells. Intracellular transport is 

important in the regulation of several physiological processes in mammals, including the 

development of the body axis, brain wiring and development, higher brain function, left–right 

body determination and tumor suppression [Hirokawa, Noda, Tanaka et al. 2009]. The gene 

LRRTM4 (leucine rich repeat transmembrane neuronal 4, OMIM 610870) positively 

regulates excitatory synapse development in cultured neurons and in vivo, playing a role in 

regulation of synapse development and function [de Wit, O'Sullivan, Savas et al. 2013]. 

Variants in the GCFC2 gene (GC-rich sequence DNA-binding factor 2, OMIM 189901) were 

found to have a genome-wide significant association with Alzheimer disease-related 

quantitative measures of hippocampal volume [Melville, Buros, Parrado et al. 2012]. A 

haplotype for this GC-rich sequence DNA-binding factor gene has been associated with 

dyslexia in a set of Finnish families [Anthoni, Zucchelli, Matsson et al. 2007]. The protein 

encoded by the gene CELF2 (CUGBP- and Elav-like family member 2, OMIM 602538) is a 

member of CELF/BRUNOL protein family, which was implicated in the regulation of several 

post-transcriptional events. It mediates exon inclusion and/or exclusion in tissue-specific pre-

mRNA alternative splicing, including cardiac and skeletal muscle, smooth muscle and 

neuronal cells [Barreau, Paillard, Mereau et al. 2006].  

The fact that these significantly associated variants are located in non-protein-coding 

regions, creates barrier to a forthcoming explanation of their biological functions. However, as 

assayed by ChIP-seq (Chromatin Immunoprecipitation sequencing) from the ENCODE 

(Encyclopedia of DNA Elements) project, the most significant variant rs114646323 is located 

in a putative binding site for transcription factor YY1 (Yin and yang 1, OMIM 600013). 

Inquiring the sequence surrounding the variant rs114646323 (5’-CTGCC[A/G]TCTC-3’ 
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where A is reference allele and G is alternative allele) on the ALGGEN (Algorithmics and 

Genetics Group) website (http://alggen.lsi.upc.es/), we found that the reference sequence 

showed the most similarity with the YY1 binding site while the alternative sequence did not 

match with any binding site of transcription factor in human beings [Farre, Roset, Huerta et al. 

2003; Messeguer, Escudero, Farre et al. 2002]. Binding to the consensus sequence              

5’-CCGCCATNTT-3’, YY1 exhibits multiple controls (initiate, activate, or repress 

transcription) on a large number of genes by binding to sites overlapping the transcription start 

site. There is evidence that this transcription factor plays an important role in embryogenesis, 

differentiation, and cellular replication, proliferation, senescence, and response to genotoxic 

stimuli [Gordon, Akopyan, Garban et al. 2006]. Therefore, this variant, albeit its location in a 

non-coding region, is worthy of further investigation because of its putative functions in 

transcriptional regulation of other genes. 

We surveyed the significant SNPs that were previously reported through the GWAS 

approach in AIS disease by other research groups [Kou, Takahashi, Johnson et al. 2013; 

Miyake, Kou, Takahashi et al. 2013; Sharma, Gao, Londono et al. 2011; Takahashi, Kou, 

Takahashi et al. 2011]. However, they did not attain the genome-wide suggestive significance 

level as we found in French-Canadian population (p-value>10-5). The irreproducibility of the 

association could mainly come from population stratification. Population in Quebec shows 

relatively low genetic variation due to the founder effect.  

Genetic heterogeneity is another possible barrier contributing to AIS genetic and 

phenotypic complexity. On one hand, individuals carrying a same variant may demonstrate 

various clinical manifestations. On the other hand, the same disorder may be triggered by 

variants in different genes due to the involvement in the same or related biological pathways 

[McClellan and King 2010]. Genetic heterogeneity could be a reason that significant variants 

were associated with a small fraction of a particular population.  

From this GWAS in French-Canadian population, we demonstrated three genetic 

variants significantly associated with spinal curve susceptibility and/or progress. It should 

keep in mind that our findings might be overestimated as impacted by the phenomenon of 

“winner’s curse” [Xiao and Boehnke 2009]. To prevent this upward bias in our GWAS 

discovery, it is ideal to validate our findings, for the next step, in a larger cohort which has an 

exact match with the original French-Canadian cohort both in genetics and environmental 
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background. Again, an independent replication study is also required to verify our significant 

variants in other ethnic population with a large sample size to confirm the GWAS result.   
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Tables and figures 

 

 
 

Figure 5. Manhattan plot showing the P values from genome-wide association study.  

The horizontal lines represent the genome-wide significant threshold (P-value =10-8) and 

suggestive significant threshold (P-value =10-5). 
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Table XI. Demographic and clinical characteristics of severe patients and non-severe 

patients with AIS at the last visit. 

 
Subjects Characteristics 

   All Subjects Female Male 

   N 
Mean Age 

(Years) 
Scoliosis Cobb 

Angles (o) 
N 

Mean Age 
(Years) 

Scoliosis Cobb 
Angles (o) 

N 
Mean Age 

(Years) 
Scoliosis Cobb 

Angles (o) 

           

Severe AIS 

patients 
148 

15 ± 2  56 ± 12  
129 

15 ± 2  55 ± 12  
19 

16 ± 2  60 ± 11  

(10 – 25) (37 – 90) (10 – 25) (37 – 90) (12 – 19) (40 – 87) 

          

Non-severe 
AIS patients 

302 
16 ± 1 21 ± 8 

259 
16 ± 1 21 ± 9 

43 
17 ± 1 19 ± 7 

 (14 – 22)  (3 – 39)  (14 – 22)  (3 – 39)  (16 – 19)  (7 – 35) 

          

All values represent mean Cobb Angles ± standard deviation, and range values for respective groups. 

Severe AIS patient was defined as Cobb angle ≥40º for major spinal curves. 

Non-severe AIS patient was defined as the highest historical record of Cobb angle between 10º and 39º for spinal 

curves by skeletal maturity (girls ≥ 14 years and boys ≥ 16 years). 

 

 

 

 

 

Table XII. Statistical power calculations for each association study in R software. 

 

 Power (%) 

 Case vs. Control Severe case vs. Control Non-severe case vs. Control 

 667 vs. 901 148 vs. 901 302 vs. 901 

Effect size a 

small 74.8 47.9 12.1 

medium 100 100 99.9 

large 100 100 100 

a Cohen proposed rules of thumb for interpreting effect sizes: a “small” effect size is 20%, a 

“medium” effect size is 50%, and a “large” effect size is 80%. 
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Table XIII. Significant SNPs and candidate genes identified by GWAS approach in 

French-Canadian population. 

 
dbSNP CHR P value a candidate gene 

    
case  

vs. control 
severe  

vs. control 
non-severe  
vs. control   

  
    

  

rs114646323 6 1.34×10-9 NaN 2.04×10-11 KLC4 

  
    

  

rs1607639 2 8.68×10-9 3.42×10-5 2.55×10-6 GCFC2, LRRTM4 

  
    

  

rs201793089 10 7.18×10-7 1.28×10-9 4.05×10-8 CELF2 

      
a calculated by Chi-square test. 

P values below the genome-wide significance level (P-value <10-8) are in bold. 
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Adolescent idiopathic scoliosis (AIS) is the most common form of pediatric spinal 

malformation with unknown cause. There is strong evidence of genetic factors’ contribution to 

the pathogenesis of AIS. It is a complex common disease with polygenic inheritance [Kesling 

and Reinker 1997; Ward, Ogilvie, Argyle et al. 2010]. The hypothesis suggests that AIS is a 

consequence of a moderate to large number of common genetic variants, each of which 

contributes to several percent of the risk for curvature and/or progression. Genome-wide 

association study (GWAS) is designed to test this so-called common disease-common variant 

hypothesis (CDCV hypothesis) [Bush and Moore 2012; McCarthy, Abecasis, Cardon et al. 

2008].  

With the GWAS approach, we test common SNPs across the entire genome in 

thousands of individuals without the necessity of any biological knowledge. By comparing 

SNPs’ frequencies between patients and controls, we may find out associated SNPs and 

identify genomic regions of interest thanks to the linkage disequilibrium (LD) method. 

However, common SNPs are often located in introns and intergenic regions with unclear 

functions, making it difficult to comprehend these SNPs’ roles in human diseases’ 

pathogenesis. When evaluating the effectiveness of a GWAS, it is important to take under 

consideration multiple factors, such as the sample sizes, the odds ratios, the allele frequencies, 

the threshold of significance, and the performance of the commercial microarrays in a 

population [Hong and Park 2012; Jorgenson and Witte 2006; Korte and Farlow 2013; Magi, 

Pfeufer, Nelis et al. 2007; McCarthy, Abecasis, Cardon et al. 2008; Riancho 2012; Stranger, 

Stahl and Raj 2011]. Even with such limitation, GWAS has become more and more prevalent 

in genetic researches of human disease [Wellcome Trust Case Control 2007]. There were a 

total of 689 GWA studies in 2012, and 860 studies in 2013 (http://hugenavigator.net).  This is 

likely due to the decreasing cost and improved power for the technologies. The recent 

generation of commercially available chips also has improved the genomic coverage and the 

representation of alleles that occur at a minor frequency in the population. For example, 

variants with minor allele frequencies (MAFs) of greater than 5% are used to be defined as 

common and be tested in a GWAS. The microarray, we used in our GWAS approach, covers 

genomic variants with MAF as low as 1%. 

To identify genomic variants associated with AIS disease, we performed a genome-

wide association study (GWAS) in French-Canadian population, by genotyping over 1.4 
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million SNPs among 667 AIS patients and 901 healthy controls. Using a microarray with a 

very high density of single nucleotide polymorphisms (SNPs), our study has the capacity to 

detect more genomic variants with more rare frequency (minor allele frequency, MAF>1% by 

quality control of genotyping data), representing the most comprehensive genomic survey 

done yet in AIS research field. 

 

In the first article, we evaluated 53 SNPs that were previously associated with spinal 

curve progression in an American population of European descent to determine whether there 

is a similar association in a Caucasian French-Canadian population. As demonstrated by an 

earlier study in a Japanese cohort, we did not find any significant association to AIS initiation 

or to curve severity, in a French-Canadian cohort, suggesting that the lack of replication in the 

Japanese population is not due to ethnicity. 

The irreproducibility may come from ethnic differences (also termed as population 

stratification), over-estimate of the original GWAS findings because of the “winner’s curse”, 

or uncertain statistical power that was affected by various determinants. Commercially 

available genotyping chips show diverse performances in a same ethnic group, as well as 

among distinct ethnic groups. The disagreement of important parameters among original 

association studies, such as the criteria of quality control in genotyping data and the 

ascertainment of phenotypes to survey, sets obstacle to evaluate the statistical power of 

original studies and to reproduce the original signals of association in replication studies.  

 

In the second article, we identified genome-wide significant SNPs linked to spinal 

curve predisposition and/or severity through a GWAS in French-Canadian population. So far, 

the fact that these significantly associated variants are located in non-protein-coding regions, 

creates barrier to a forthcoming explanation of their biological functions. However, thanks to 

the linkage disequilibrium (LD) between the associated variants and the causal genes, the 

significant variants suggested novel candidate genes involved in the incidence and/or 

progression of the spinal curvature.  

The KLC4 gene (kinesin light chain 4) encodes a composition of kinesin which is a 

molecular motor of neurons and ciliated cells in intracellular transport for the development of 

body axis and brain wiring and development. LRRTM4 (leucine rich repeat transmembrane 
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neuronal 4, OMIM610870) has a function in synapse development. A GC-rich sequence 

DNA-binding factor gene (GCFC2, OMIM189901) has an association with dyslexia and 

Alzheimer disease. The protein encoded by the gene CELF2 (CUGBP- and Elav-like family 

member 2, OMIM 602538) mediates exon inclusion/exclusion in cardiac and skeletal muscle, 

smooth muscle and neuronal cells. Functional study of these candidate genes may highlight 

the pathogenesis of AIS disease. 

In addition, it is noteworthy that the most significant variant rs114646323 is located in 

a putative binding site for transcription factor YY1 (Yin and yang 1, OMIM 600013), which 

has multiple functions in transcriptional regulation of a large number of genes involved in 

basic cellular functions. Thus, this variant calls for further investigation, albeit its location in a 

non-coding region. 

 

4.1 Future work in GWAS approach 
 

Population-based association study through whole genome is a statistical approach. 

Sampling is an important determinant to generate a true association signal. The small cohort 

recruited in the discovery phase of association study may not have enough power to detect 

variants with small to medium effect sizes. Meanwhile, current commercially available 

genotyping technologies have the possibility to introduce a range of errors and biases in 

GWAS analysis. Therefore, the next step for our GWAS approach is a replication study, using 

a second genotyping platform to genotype significant variants in another independent French-

Canadian cohort, e.g., 1000 AIS cases vs. 1000 healthy controls. It allows early validation of 

false positive association signals coming from technical errors and validates our original 

findings in larger samples. Functional studies of the candidate genes in animal models are also 

important to validate gene functions in the pathogenesis of AIS disease for further clinical 

applications and drug innovations [Manolio 2013]. 

GWAS is an effective approach on the basis of the hypothesis “common disease-

common variant (CDCV)”. Since most of the common variants are located in non-coding 

region, we missed most of the variants in protein-coding region, where exome sequencing is 

effective. 
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4.2 Other genetic hypotheses and relative approaches in 

AIS study 
 

Despite the notable success of GWAS in revealing numerous new disease-associated 

genes and loci, all the identified SNPs collectively account for a small proportion of the 

heritability for common complex diseases. This has led to the important consideration on the 

reasons for “missing heritability” [Chaufan and Joseph 2013; Eichler, Flint, Gibson et al. 

2010; Manolio, Collins, Cox et al. 2009]. Rare variants and genetic interactions are likely to 

play an important role in complex diseases [Zuk, Hechter, Sunyaev et al. 2012; Zuk, Schaffner, 

Samocha et al. 2014], but neither has yet been well examined in GWAS. Studies of gene-gene 

and gene-environment interactions are still a challenge for researchers [Ackert-Bicknell and 

Karasik 2013; Jiao, Hsu, Berndt et al. 2012; Okser, Pahikkala and Aittokallio 2013]. Rare 

variants, assumed in “common disease-rare variant” (CDRV) hypothesis, is likely to be the 

major contributors to genetic susceptibility to complex disease, each with relative major effect 

[Gibson 2011; Schork, Murray, Frazer et al. 2009]. Besides CDRV hypothesis, changes in 

gene expression because of epigenetic modification may modulate the phenotype in complex 

diseases [Feinberg 2010; Schumacher and Petronis 2006]. In addition, Moreau et al. have 

demonstrated the existence of functional sub-groups among AIS patients, suggesting a genetic 

heterogeneity in AIS [Akoume, Azeddine, Turgeon et al. 2010; McClellan and King 2010]. 

 

4.2.1 Common disease-rare variant hypothesis and whole 

exome sequencing 

 

Rare variants, the allele frequency of which is typically <1%, are thought to exist as 

recently derived highly penetrant alleles that account for high disease susceptibility [Gibson 

2011]. The disease could occur from an accumulation of these rare variants in a functional 

class or network. Currently, tools such as whole exome sequencing is available for the 

investigation of rare variants [Bamshad, Ng, Bigham et al. 2011]. Earlier investigations have 

suggested promising results associated with complex disease like AIS [Buchan, Alvarado, 

Haller et al. 2014; Christodoulou, Wiskin, Gibson et al. 2013; de Ligt, Veltman and Vissers 

2013]. 
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Rare variants can occur as point mutations, or as gene deletions/duplications. To enrich 

for harmful alleles in each gene, whole exome sequencing typically focuses on non-

synonymous variants in protein-coding region (missense, nonsense, gain/loss of start/stop 

codon, splice site/frameshift change) with a low population frequency (typically <1%). 

Generally, comparing sequences of diseased individuals with a healthy control cohort and/or 

with existing databases like 1000 Genomes Project (www.1000genomes.org) allows to 

identify genes in which there is an elevated aggregation of rare variants [Li and Leal 2008; 

Morris and Zeggini 2010].  

When applied to a large pedigree, exome sequencing has the potential to identify 

family specific causative genes that might explain some of the cases in the population [Peng, 

Fan, Palculict et al. 2013]. When applied to a population, exome sequencing can suggest 

important genes and pathways that are accumulated with rare variants in cases versus controls 

[Moens, De Rijk, Reumers et al. 2011]. It is possible to validate or predict whether a 

variant/gene is likely to have damaging effects via in vitro biochemical experiments or 

computational programs [Romeo, Yin, Kozlitina et al. 2009; Sunyaev 2012]. Studying gene 

sets that are aggregated in genetic loci identified by GWAS is a potentially powerful strategy, 

because genes linked to a trait are likely to harbor both common and rare variants [Rivas, 

Beaudoin, Gardet et al. 2011; Teslovich, Musunuru, Smith et al. 2010].  

The limitation with exome sequencing is that these rare variants are studied in the 

protein-coding region, which accounts for only 1% of the genome. Large sample collections 

are required for both common and rare variants studies. CDCV and CDRV hypotheses are 

complementary to each other. 
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4.2.2 Gene expression studies on epigenetic modifications 

 

Gene expression can be influenced by genome modifications other than variations in 

the DNA sequence itself. Unlike DNA sequence changes, genome functional changes, such as 

DNA methylation and histone modification, can regulate how genes are expressed without 

altering the underlying DNA sequence. It is thought that such epigenetic modifications 

influence the observed phenotypic variability for complex diseases [Feinberg 2010; 

Schumacher and Petronis 2006]. With a concordance rate less than 100% among monozygotic 

twins, who have nearly identical genetic information, it is feasible to presume that epigenetic 

modification may modulate the phenotype with or without genetic variations. 

A real-time polymerase chain reaction (also known as quantitative PCR, qPCR) 

[Bustin, Benes, Garson et al. 2009] has been employed in quantification of gene expression. 

Quantitative PCR technology is more rapid, cost-effective, easier to use, and capable of higher 

throughput in molecular biology applications [VanGuilder, Vrana and Freeman 2008]. 

However, for those diseases such as AIS, multiple tissues are affected. The choice of tissue to 

be explored and the timing of sample collection could have an important impact on the 

outcome of gene expression inquiries.   

 

Micro ribonucleic acids (miRNAs) can regulate gene expression in a tissue-specific 

way. Micro RNA is a class of short (22 nucleotides) noncoding RNA, which targets messenger 

RNAs (mRNAs) in a sequence-specific manner. The human genome may encode over 1000 

miRNAs, which may regulate about 60% of human protein coding genes [Friedman, Farh, 

Burge et al. 2009]. Most recently, the Affymetrix Company introduced a commercially 

available high-density miRNA Target Site Genotyping Arrays. Announced by the 

Encyclopedia of DNA Elements (ENCODE) Consortium, miRNAs contain important 

regulatory elements with functional importance. We expect that studies using miRNA arrays 

could elucidate important biological pathways involved in AIS pathogenesis [Xiao, Diao, 

Yang et al. 2013].  

 

 

 

http://en.wikipedia.org/wiki/DNA_methylation
http://en.wikipedia.org/wiki/Histone_modification
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Real-time_polymerase_chain_reaction#Quantification_of_gene_expression
http://en.wikipedia.org/wiki/Molecular_biology
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4.2.3 Functional group classification among AIS patients 

 

Recent work on the biological basis of AIS by Moreau and colleagues has 

demonstrated the existence of functional groups among patients [Akoume, Azeddine, Turgeon 

et al. 2010; Letellier, Azeddine, Blain et al. 2007; Moreau, Wang, Forget et al. 2004]. Based 

on their experimental data, melatonin signaling dysfunction was found only in AIS patients 

and not in healthy controls. Using osteoblasts and peripheral blood mononuclear cells 

(PBMCs), they have validated the signaling impairment by functional in vitro assays. 

Moreover, depending on the cellular response to melatonin, they suggested a classification of 

AIS patients in three different functional groups. There is a hypothesis that diverse 

variants/genes and their related signaling pathways are implicated in each group. The 

application of functional group classification of AIS studies in large cohorts of patients and 

controls could reduce genetic heterogeneity and increase the chances of detecting more 

genomic variants associated with each subgroup. 
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The main goal of this project was to identify genomic variants significantly associated 

with idiopathic scoliosis among adolescents in French-Canadian population. Firstly, using 

genomic data from a genome-wide association study, we verified that previously reported 

association in ScoliScoreTM was not found in a French-Canadian cohort. This second 

replication cohort suggested that the lack of association of these variants in a Japanese cohort 

was not due to ethnicity. Secondly, through the typical case/control GWA study, we identified 

several genomic variants which were significantly associated with spinal curve initiation 

and/or progression in French-Canadian population. Our results suggested novel candidate 

genes that may play a role in AIS pathogenesis. The observed non-association of previously 

reported genomic loci suggests possible bias from the population stratification and/or the 

genetic heterogeneity involved in AIS etiopathogenesis. 

 

With comprehensive genetic studies in complex human diseases such as AIS, we 

expect that in the next few years there will be more breakthroughs on genomic variants 

associated with diseases. Our findings are worthy of further investigation and could make 

contribution to clinical applications. Disease-associated genomic variants like those we 

singled out are valuable in early detection of high-risk individuals, patients’ classification for 

improved medical care and drug innovation for disease prevention. 
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