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Résumé 
 Dans ce mémoire, je considère un modèle de sélection standard avec sélection non 
aléatoire. D’abord, je discute la validité et la ‘‘sharpness1’’ des  bornes sur l’intervalle 
interquantile de la distribution de la variable aléatoire latente non censurée, dérivées par 
Blundell et al. (2007). Ensuite, je dérive les bornes ‘‘sharp2’’ sur l’intervalle interquantile 
lorsque la distribution observée domine stochastiquement au premier ordre celle non 
observée. Enfin, je discute la ‘‘sharpness’’ des bornes sur la variance de la distribution de 
la variable latente, dérivées par Stoye (2010). Je montre que les bornes sont valides mais 
pas nécessairement ‘‘sharp’’. Je propose donc des bornes inférieures ‘‘sharp’’ pour la 
variance et le coefficient de variation de ladite distribution.  
 
Mots clés : Sélection, Identification partielle, Mesures d’inégalité. 

                                                            
1 veut dire étroitesse. 
2 c’est‐à‐dire les plus étroites possibles. 
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IDENTIFICATION OF INEQUALITY MEASURES IN SAMPLE
SELECTION MODELS
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Abstract. In this master thesis, I consider a standard selection model with non-

randomly censored outcome. First, I discuss validity and sharpness of bounds on

the interquantile range of the distribution of the uncensored outcome, derived by

Blundell et al. (2007). Second, I give sharp bounds on the interquantile range

respectively under stochastic dominance of the unobserved outcome distribution

by the observed one, and in presence of an exclusion variable. Third, I discuss

sharpness of the variance bounds given by Stoye (2010). I show that the bounds

are not necessarily sharp and I provide sharp lower bounds on the variance and the

coefficient of variation.
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4 IDENTIFICATION OF INEQUALITY MEASURES IN SAMPLE SELECTION MODELS

1. Introduction

The sample selection problem as discussed in Gronau (1974) and Heckman (1974, 1979)

arises when the outcome of interest is only observed for a non-randomly selected subpopulation.

Gronau (1974) criticizes the fact that the empirical validation of the labor economics theory is

often based on the observed wage distribution whereas much of the theory concerning labor-force

participation, wages, and earnings centers on the wage-offer distribution. Treating the wage offers

and the observed wages as interchangeable is particularly suspect when there are substantial numbers

of unemployed workers. In this case, the observed distribution represents only one part of the wage-

offer distribution, while the other part is rejected by the job seekers as unacceptable.

Without additional assumptions, the wage-offer distribution is not point-identified, but only

partially identified (see Manski, 1989). Parameters such as interquantile range, variance and coeffi-

cient of variation, as functions of the unidentified distribution, are also often only partially identified.

Recognizing partial identification helps avoid selection bias at the expense of increasing uncertainty.

The advantage is that the identification region contains the population parameter with probability

one. The identification region is said to be sharp if it is the tightest set that includes the parameter

of interest with probability one. Bounds on the wage-offer distribution are provided in Manski (1994,

2003), Stoye (2010) and in many other papers. Their bounds are pointwise sharp, but not function-

ally sharp because they do not take into account the functional property1 mentioned in Crowder

(1991), Bedford and Meilijson (1997), Vazquez-Alvarez, Melenberg and van Soest (2002), Blundell

et al. (2007) and Henry et al. (2015). I explain this in detail in Section 3.

In this paper, I’m interested in identification of three well-known measures of dispersion:

the variance, the coefficient of variation and the interquantile range. I explain how useful each of

these measures are in Section 2. I show that the variance bounds given by Stoye (2010) are not

necessarily sharp. I derive sharp lower bounds on the variance and the coefficient of variation.

Concerning the interquantile range, Vazquez-Alvarez, Melenberg and van Soest (1999) con-

structed bounds on quantiles in the presence of full and partial item nonresponse in the case where

item nonresponse is nonrandom. Later, Vazquez-Alvarez, Melenberg and van Soest (2002), in their

working paper “Selection bias and Measures of Inequality” provided bounds on the interquartile

range2, and sketched a proof of the sharpness of those bounds. Likewise, Blundell et al. (2007)

derived bounds on the interquantile range, which turn out to be sharp, as I show below, but they

did not show the sharpness of the bounds.

1Note however that this terminology is exclusively due to Henry et al. (2015).
2which is a spread case of the interquantile range for quartiles 0.25 and 0.75.
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Considering a sample selection model, I prove under some assumptions the sharpness of

bounds on the interquantile range derived by Blundell et al. (2007). Unlike the paper of Vazquez-

Alvarez, Melenberg and van Soest (2002), I show conditions under which the bounds hold and are

sharp. I also derive sharp bounds on the interquantile range under stochastic dominance of the

unobserved outcome distribution by the observed one, and in presence of an exclusion variable.

This note is organized as follows: the first section presents the sample selection model

discussed in this article, the second explains bounds on the distributions of interest; the third,

bounds on the interquantile range as well as a proof of validity and sharpness and the fourth section

discusses the sharpness of variance bounds.

2. The model

I consider the following censoring model Y = Y1D, where Y is a real-valued observed

outcome, D is an observed selection indicator and Y1 is a real-valued unobserved potential outcome.

I denote by F1 the distribution function of the potential outcome Y1. For example, D could be

the labor-force participation (equal to 1 if the individual is working and 0 otherwise) and Y1 the

wage-offer.

In this paper, I study three commonly used measures of dispersion for the distribution

F1: the variance, the coefficient of variation and the interquantile range. Unlike the variance, which

depends on the unit of measurement, the coefficient of variation does not. For example, in comparing

wage dispersion for different countries, say the U.K. (with the pound as currency) and the U.S. (with

the dollar as currency), one cannot compare directly the wage variance for the two countries. But, we

may compare instead their coefficients of variation. Both the variance and the coefficient of variation

are easy to compute, but they are sensitive to outliers. The interquantile range is often used to avoid

the comparison noise due to outliers. Although there are many other inequality measures (like the

Gini index, the Theil index, etc.), these three basic measures of dispersion are the ones of interest

in this article. They are defined in the following sections.

I assume, for example, that there is a positive minimum wage ymin and a maximum wage

ymax that a worker cannot exceed. Therefore, I state the following assumption.

Assumption 1. Y is bounded with compact support, i.e. Supp(Y ) ≡ [ymin, ymax].

The following section summarizes the results in the literature about the distribution of the

potential outcome Y1.

3. Sharp Bounds on the distribution F1

The starting point is the works of Manski (1994, 2003), which provide bounds on F1. As I

explain in the previous section, Y is a censored outcome, Y1 is the potential outcome of interest and
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D is the selection variable. We observe Y = Y1 only when D = 1 and 0 otherwise. Let F1 denote

the c.d.f. of Y1.

For all y ∈ R, we have:

F1(y) ≡ (P(Y1 ≤ y) = P(Y1 ≤ y,D = 1) + P(Y1 ≤ y,D = 0) (3.1)

F1(y) = P(Y1 ≤ y|D = 1)P(D = 1) + P(Y1 ≤ y|D = 0)︸ ︷︷ ︸
counterfactual

P(D = 0) (3.2)

Without additional assumptions, we only know that the counterfactual probability P(Y1 ≤ y|D = 0)

lies between 0 and 1. Then, the distribution function F1 is only partially identified. This gives the

Manski pointwise bounds on the distribution F1.

pF11(y) ≤ F1(y) ≤ pF11(y) + 1− p (3.3)

where F11(y) = P (Y1 ≤ y|D = 1) and p = P(D = 1), 0 < p < 1.

Since the functions pF11(y) and pF11(y) + 1 − p are not c.d.f.s 3, Stoye (2010) bounds the

counterfactual probability by FL(y) = 1{y ≥ ymin} and FU (y) = 1{y ≥ ymax} instead of 0 and 1

respectively. Then we have the bounds of equation 3.4 below.

Let θ be a parameter or a function of interest. Denote H(θ) the identification region of θ.

Then the identification region of the c.d.f of interest F1 is that derived by Manski (1994) and Stoye

(2010):

H(F1) = {F ∗ : pF11 + (1− p)FU ≤ F ∗ ≤ pF11 + (1− p)FL} (3.4)

But not all distributions within the identification region are observationally compatible with the

data. Any distribution that is compatible with the data, in addition to be in the identification

region, must satisfy equation (3.5) below (see figure 1), otherwise the identification region alone is

not sharp. For all y, y′ such that y < y′

p (F11(y′)− F11(y)) ≤ F1(y′)− F1(y) (3.5)

Indeed, equation 3.5 follows from the following inequality.

P(y < Y1 ≤ y′) ≥ P(y < Y1 ≤ y′, D = 1)

The property implied by equation (3.5) is called the functional property4 in Henry et al. (2005).

This property states that the distribution F1(y) of the potential outcome Y1, cannot increase slower

than pF11(y) (see figure 1). I call H∗(F1) the sharp identified set of F1, that is, the set of distribution

functions that satisfy simutaneously equations (3.4) and (3.5).

3Because pF11(1) = p < 1 and pF11(0) + 1− p = 1− p > 0.
4This property is also derived by Crowder (1991), Bedford and Meilijson (1997),Vazquez-Alvarez,

Melenberg and van Soest (2003), Blundell et al. (2007).
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Figure 1. Bounds on the distribution F1
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Since the distribution of the potential outcome Y1 is only partially identified, parameters that

are functions of this distribution are often only partially identified too, unless additional assumptions

are made. I explain through the following definitions what a partially identified parameter and sharp

bounds for a scalar parameter mean precisely in this article.

Definition 1. “A parameter is partially identified if the data generating process, together with

assumptions a researcher is willing to make, reveals some nontrivial information about it but does

not identify it in the conventional sense, that is, distinct parameter values may be observationally

equivalent” (Stoye 2010).

Definition 2. Bounds for a scalar parameter are sharp if the lower and upper bounds are attain-

able and any convex combination of them is also attainable.

I now present bounds on quantiles and interquantile ranges, and a proof of the sharpness of

bounds on the interquantile range.

4. Sharp bounds on interquantile ranges

Definition 3. Let q ∈ [0, 1]. The quantile of order q of the c.d.f. F1 is defined as

Q(F1; q) = inf {y ∈ supp(Y ) : F1(y) ≥ q} ∀ q ∈ [0, 1] (4.1)
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I use the convention in Stoye (2010) and set Q(F11; q) = ymin for q ≤ 0 and Q(F11; q) = ymax

for q ≥ 1.

Definition 4. Let q1, q2 ∈ [0, 1] such that q1 < q2. The interquantile range of orders q1 and q2 of

F1 is defined as

IQR(F1; q1, q2) = Q(F1; q2)−Q(F1; q1) (4.2)

The interquantile range is the length of the interval containing q2 − q1 of the observations, leaving a

fraction q1 on its left and 1− q2 on its right.

The following definition from Stoye (2010) may help understand the bounds for the quantile

and the interquantile range.

Definition 5. (1) θ is a D1-parameter if it increases with first-order stochastic dominance:

F (y) ≤ G(y) ∀ y =⇒ θ(F ) ≥ θ(G). (4.3)

(2) θ is a D2-parameter if for distributions that have equal expectation, it decreases with second-

order stochastic dominance:∫
ydF =

∫
ydG &

∫ k

ymin

F (y)dy ≤
∫ k

ymin

G(y)dy ∀ k =⇒ θ(G) ≥ θ(F ). (4.4)

For example, the quantile and the expectation are D1-parameters while the variance and

the coefficient of variation are D2-parameters. But the interquantile range in neither a D1 nor

D2-parameter.

Denote yl(q) = Q(F11; 1− 1−q
p ) and yu(q) = Q(F11; qp ) ∀ q ∈ [0, 1]. Then, since the quantile

is D1-parameter, bounds on the quantile Q(F1; q) follow directly from bounds on the distribution

F1. That is,

yl(q) ≤ Q(F1; q) ≤ yu(q) (4.5)

Thus, bounds on the interquantile range IQR(F1; q1, q2) = Q(F1; q2) − Q(F1; q1), q1 < q2, can be

obtained by taking the difference of the bounds on the corresponding quantiles. Indeed,

yl(q2)− yu(q1) ≤ IQR(F1; q1, q2) ≤ yu(q2)− yl(q1) (4.6)

As the interquantile range is nonnegative, the lower bound is IQRl(F1; q1, q2) = max
{

0, yl(q2)− yu(q1)
}

.

Blundell et al. (2007) uses property (3.5) to tighten the upper bound. The idea is explained in detail

in the proof of claim 1 in Appendix A.2. However, the following assumption is important for the

validity of the bound.

Assumption 2. F11 is continuous on
[
yl(q1), yu(q2)

)
and strictly increasing on [yl(q1), yu(q1)).
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The following claim holds.

Claim 1. Under assumptions 1 and 2, the following quantities given by Blundell et al. (2007)

IQRl(F1; q1, q2) = max
{

0, yl(q2)− yu(q1)
}

IQRu(F1; q1, q2) = sup
y0∈[yl(q1),yu(q1)]

{
Q

(
F11;F11(y0) +

q2 − q1

p

)
− y0

}
are sharp bounds for the interquantile range IQR(F1; q1, q2).

Proof. See Appendix A.2. �

Remark 1. Assumption 2 is necessary for the validity of the bounds in claim 1 as I show in the

proof. In the case where there is a jump in the distribution F11 on [yl(q1), yu(q2)), the bounds are not

valid. For example, if there is only one jump in F11 at ỹ between y0 and ỹu(q2), then the following

function

F ∗y01 (y) =


p (F11(y)− F11(y0)) + q1 if y ∈

[
yl(q1), ỹ

)
p (F11(y)− F11(y0)) + q1 − p(F11(ỹ)− F11(ỹ−)) if y ∈ [ỹ, yu(q2))

gives the upper bound for the interquantile range. Notice that this function is continuous and satisfies

the functional property.

Remark 2. Because the interquantile range is partially identified, we may have uncertainty about

its nondecreasingness as I explain next. The bounds on the interquantile range Q(F1; q1, q2) are such

that for all 0 < q1 < q′1 < q′2 < q2 < 1, IQRl(F1; q′1, q
′
2) ≤ IQRl(F1; q1, q2) and IQRu(F1; q′1, q

′
2) ≤

IQRu(F1; q1, q2). But, this does not tell us whether or not IQR(F1; q′1, q
′
2) ≤ IQR(F1; q1, q2), unless

IQRu(F1; q′1, q
′
2) ≤ IQRl(F1; q1, q2).

I now derive sharp bounds on the interquantile range under a commonly held assumption

in the literature, the stochastic dominance assumption.

Assumption 3 (Stochastic dominance). F11 first order stochastically dominates F10, that is:

F11(y) ≤ F10(y) ∀ y.

Denote F (y) = P(Y ≤ y), yl(q) = Q(F11; 1− 1−q
p ), y11(q) = Q(F11; q) and y(q) = Q(F ; q).

Assumption 4. F11 is continuous on
[
yl(q1), y11(q2)

)
and strictly increasing on [yl(q1), y11(q1)).

Assumption 4 is technical and is the analog of assumption 2 under stochastic dominance

of F10 by F11. Assumption 3 however, is justified motivated by economic reasons. For example,

in the case where the selection variable is the labor force participation, assumption 3 means that
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the distribution of wages of workers first-order stochastically dominates that of nonworkers. This

expresses a positive selection into the labor market5.

Proposition 1. Under assumptions 1, 4, and 3, sharp bounds for the interquantile range IQR(F1; q1, q2)

are given by:

IQRlD(F1; q1, q2) = max
{

0, yl(q2)− y11(q1)
}

IQRuD(F1; q1, q2) = sup
y0∈[yl(q2),y11(q2)]

{
y0 −Q

(
F11;F11(y0)− q2 − q1

p

)}
Proof. By a suitable adaptation of the proof of claim 1, the proof of this proposition 1 is straight-

forward. �

4.1. Sharp bounds under exclusion restriction. Having an instrument (exclusion variable) Z

could help tighten the bounds. I consider here the cases where the exclusion variable has finite or

compact support. In the case where its support is unbounded, the potential outcome distribution

could be identified at infinity as I explain below. Although I consider a real-valued exclusion variable

in this paper, I conjecture that the results generalize to the multidimensional exlcusion variable. I

state the following assumption for the exclusion variable.

Assumption 5 (Exclusion Restriction). There is a variable Z such that Z is statistically indepen-

dent of Y1 i.e. Z ⊥ Y1.

Note that the exclusion variable Z affects the selection variable D, but not the potential

outcome Y1. Then for all y ∈ R, we have

P(Y1 ≤ y) = P(Y1 ≤ y|Z = z) ∀ z ∈ Supp(Z)

= P(Y1 ≤ y,D = 1|Z = z) + P(Y1 ≤ y,D = 0|Z = z) ∀ z ∈ Supp(Z)

If the support of Z is rich enough, we could find z∞ ∈ Supp(Z) such that D(z∞) = 1 a.s., that is,

P (Y1 ≤ y) = P(Y1 ≤ y,D = 1|Z = z∞) = P(Y ≤ y,D = 1|Z = z∞) = P(Y ≤ y|Z = z∞). In this

case, we say that the distribution of Y1 is identified at infinity.

Notation 1. F11(y|z) = P(Y1 ≤ y|D = 1, Z = z), Q(F11; q|z) = inf {y ∈ Supp(Y ) : F11(y|z) ≥ q},
p(z) = P(D = 1|Z = z), yl(q|z) = Q(F11; 1− 1−q

p(z) |z) and yu(q|z) = Q(F11; q
p(z) |z).

I use the following assumption throughout this subsection.

5See Blundell et al. (2007). This assumption stems from the fact that individuals with higher

potential wages will be more likely to work unless the difference between wages and reservation wages

is negatively associated with wages. Individuals with higher preference for work and low reservation

wages can be expected to have invested more in human capital in the past and thus to end up with

higher wages.
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Assumption 6. 0 < p(z) < 1 ∀ z ∈ Supp(Z).

4.1.1. Discrete instrument with finite support. Suppose that the support of Z is finite. Then I derive

sharp bounds for the interquantile range under the following assumption.

Assumption 7. F11(y|z) is continuous in y on
[
yl(q1|z), yu(q2|z)

)
and strictly increasing in y on

[yl(q1|z), yu(q1|z)) for every z ∈ Supp(Z).

Proposition 2. Under assumptions 1, 5, 6 and 7, sharp bounds on IQR(F1; q1, q2) are

IQRlE(F1; q1, q2) = max
z

{
max

{
0, yl(q2|z)− yu(q1|z)

}}
,

IQRuE(F1; q1, q2) = min
z

{
sup

y0∈[yl(q1|z),yu(q1|z)]

{
Q

(
F11;F11(y0|z) +

q2 − q1

p(z)
|z
)
− y0

}}
.

Proof. See Appendix B.1. �

4.1.2. Continuous instrument with compact support. Suppose Supp(Z) =
[
zl, zu

]
. I add the follow-

ing assumption to derive sharp bounds for the interquantile range.

Assumption 8. p(z) is continuous in z and F11(y|z) is continuous in z for all y.

Proposition 3. Under assumptions 1, 5, 6,7 and 8, sharp bounds on IQR(F ; q1, q2) are

IQRlE(F1; q1, q2) = sup
z∈[zl,zu]

{
max

{
0, yl(q2|z)− yu(q1|z)

}}
,

IQRuE(F1; q1, q2) = inf
z∈[zl,zu]

{
sup

y0∈[yl(q1|z),yu(q1|z)]

{
Q

(
F11;F11(y0|z) +

q2 − q1

p(z)
|z
)
− y0

}}
.

Proof. See Appendix B.2. �

5. Bounds on the variance and the coefficient of variation

In this section, I discuss the sharpness of bounds on the variance, derived by Stoye (2010)

and I propose sharp lower bounds on the variance and the coefficient of variation. The definition of

the variance is helpful to understand the derivation of the bounds.

Definition 6. The variance measures the average absolute dispersion around the mean. The vari-

ance V (F1) is defined as

V (F1) = E [Y1 − µ1]
2

=

∫ ymax

ymin

(y − µ1)2dF1(y) (5.1)

where µ1 = E [Y1].
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5.1. The Stoye(2010) joint bounds idea. The joint bounds idea in Stoye (2010) is to provide the

identified set H(µ1) for the mean µ1 and then for each value µ ∈ H(µ1), provide the identification

region of the variance of all distributions that have µ as mean. Corollary 4 in Stoye (2010) states

that given a fixed value of µ1, the identification region for the variance6 (when Supp(Y ) = [0, 1]) is:

H (V (F1)) =
[
pµF 2

11
+ (1− p)µ2

10 − µ2
1 , pV (F11) + µ1 − µ2

1

]
(5.2)

where µ11 ≡ E [Y1|D = 1], µ10 ≡ E [Y1|D = 0] = (µ1 − pµ11)/(1 − p) ∀ p ∈ (0, 1) and µF 2
11
≡

E
[
Y 2

1 |D = 1
]
.

I acknowledge this joint bounds idea is helpful as I show in the following lemma.

Lemma 1. Let H(µ1) = [pµ11 + (1− p)ymin, pµ11 + (1− p)ymax] be the identified set of the mean

µ1.

If H (V (µ)) =
[
V L(µ), V U (µ)

]
is sharp for all µ ∈ H(µ1), then

H (V (F1)) =
⋃

µ∈H(µ1)

H (V (µ)) =

[
inf

µ∈H(µ1)
V L(µ), sup

µ∈H(µ1)

V U (µ)

]
is also sharp.

Proof. See Appendix C.1. �

The following figure illustrates more the result of the lemma.

Figure 2. Illustration of the joint bounds idea by Stoye (2010) with Supp(Y ) = [0, 1]

 

 

 

 

6Stoye (2010) takes advantage on the fact that the variance is a D2-parameter to derive its

identification region. See Stoye (2010) for more details.
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Remark 3. The result of lemma 1 does not hold only for variance. It does hold for every function

that is continuous in a translation in µ (e.g. the coefficient of variation when the identification

region of µ does not contain 0).

The idea of joint bounds is nice. However, the bounds on V (F1) in Stoye (2010) seem

too large, even if everybody is observed working (D = 1). In fact, if bounds for a parameter are

sharp, they should be identical to the true parameter whenever the probability p goes to 1, that

is, if everybody is observed working. Obviously, the upper bound of Stoye for the variance goes to

V (F1) + µ1 − µ2
1 whenever p goes to 1, which is different from the true variance V (F1), unless µ1

equals 0 or 1. So, the bounds for the variance V (F1) seem not to be sharp.

5.2. Tighter bounds on the variance. This subsection discusses the sharpness of bounds on

variance in Stoye (2010) and provides tighter bounds.

Proposition 4. Given µ1, the following bounds are valid for the variance of the distribution F1.

V L(F1) ≤ V (F1) ≤ V U (F1) (5.3)

where

V L(F1) = E
[
(Y1 − µ1)2|D = 1

]
+ (1− p)(µ10 − µ1)2

V U (F1) = min
{
E
[
(Y1 − µ1)2|D = 1

]
+ (1− p) max([ymax − µ1]

2
, [ymin − µ1]

2
), pµF 2

11
+ (1− p)y2

max − µ2
1

}
Proof. See Appendix C.2. �

Claim 2. The lower bound V L(F1) in proposition 4 is equal to the lower bound in Stoye (2010).

Proof. See Appendix C.3. �

Claim 3. The upper bound V U (F1) in proposition 4 could be less than that in Stoye (2010) for some

values of µ1.

For example, if Supp(Y ) = [0, 1] and µ1 = pµ11 + 1− p, the lower bound V L(F1) is equal to

the upper bound V U (F1), which means that the variance is point-identified. But, the lower bound

of Stoye (2010) is not equal to his upper bound. Then, the upper bound V U (F1) is less than that

of Stoye (2010).

Moreover, in the the following example, the upper bound V U (F1) is less than that of Stoye.

Example 1. Assume F1 ∼ U[0,1], but this is unknown and F11 ∼ U[0,p].

µ2
F11

=

∫ 1

0

y2dF11(y) =

∫ p

0

y2/pdy = p2/3; µ1 = 1/2; µ11 = p/2; µ10 =
1/2− p/2 ∗ p

1− p
= (1 + p)/2
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In this cases, the lower and upper bounds of Stoye(2010) are respectively

V SL = p ∗ p2/3 + (1− p) ∗ (
1 + p

2
)2 − (1/2)2 = p3/12− p2/4 + p/4

V SU = p ∗ p2/12 + 1/2− (1/2)2 = p3/12 + 1/4

The upper bound in proposition 4 is

V U = min
{
p(p2/12) + p(p/2− 1/2)2 + (1− p) max[(1− 1/2)2, (0− 1/2)2], p3/3 + (1− p)− 1/4

}
= min

{
1/3p3 − 1/2p2 + 1/4p+ (1− p) ∗ 1/4, p3/3 + (1− p)− 1/4

}
= 1/3p3 − 1/2p2 + 1/4p+ (1− p)/4

Cleary, V SU − V U = p2(2 − p)/4 > 0 ∀ p ∈ (0, 1). Then, in this example, the upper bound in

proposition 4 is much tighter than that of Stoye for all p ∈ (0, 1). Figure 3 shows the gap between

the bounds for p ∈ [0.1, 0.99].

Figure 3. Stoye’s bounds and my bounds on variance for F1 ∼ U[0,1] and F11 ∼ U[0,p].

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

The probability of being treated

Va
ria

nc
es

Bounds on variance

 

 

Our lower bound
Our upper bound
Actual Variance
Stoye lower bound
Stoye upper bound
Variance of treated

Then, the following proposition holds.

Proposition 5. Given µd ∈ H(µd), tighter bounds on variance are given by:

H∗ (V (F1)) =
[
V SL(F1),min

{
V SU (F1), V U (F1)

}]
(5.4)

where V SL and V SU are respectively the lower and upper bounds in Stoye (2010), V U is the upper

bound in proposition 4.

In example 1, this proposition yields H∗ (V (F1)) =
[
V SL(F1), V U (F1)

]
∀ µ1 ∈ H(µ1).
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5.3. The sharp lower bound on the variance. I propose here the sharp lower bound for the

variance of F1 when there is no information about the mean µ1.

Proposition 6. The sharp lower bound on variance is given by:

V L
∗
(F1) = pV (F11) (5.5)

Proof. See Appendix C.4. �

Remark 4. I don’t provide sharp upper bound for the variance because I don’t find for each µ1, a

c.d.f. that achieves the bound. However, given µ1, the upper bound V U (F1) may be attainable. For

example, for µ1 = pµ11 +(1−p)ymax, the upper bound V U (F1) = pµF 2
11

+(1−p)y2
max−µ2

1 is attained

by F1(y) = pF11(y) + (1− p)1 {y ≥ ymax}.

5.4. The sharp lower bound on the coefficient of variation.

Definition 7. The coefficient of variation measures the average relative dispersion around the mean.

It’s defined as

CV (F1) =

√
V (F1)

µ1
=

1

µ1

√∫ ymax

ymin

(y − µ1)2dF1(y) (5.6)

Proposition 7. The sharp lower bound on the coefficient of variation is given by:

CV L
∗
(F1) = min (CV (pF11 + (1− p)1 {Y ≥ ymax}), CV (pF11 + (1− p)1 {Y ≥ ymin})) (5.7)

Proof. See Appendix C.5. �

6. Conclusion

This master thesis discusses the sharpness of bounds on basic inequality measures: the

interquantile range, the variance and the coefficient of variation. I show that the bounds derived

by Blundell et al. (2007) are sharp. I provide, in the same way, sharp bounds on interquantile

range under stochastic dominance and exclusion restriction assumptions. However, variance bounds

provided by Stoye (2010) are not sharp. I explain this through an example in which the bounds fail

to be sharp. Accordingly, I provide the sharp lower bounds on the variance and the coefficient of

variation.

Appendix A. Proof of sharpness of bounds on the interquantile range

To prove claim 1, I use throughout the following lemma.

Lemma 2. Let α ∈ (0, 1). Then, the following holds.

∀ ε > 0, F (y − ε) < α and F (y) ≥ α⇔ Q (F ;α) = y
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A.1. Proof of lemma 2.

Proof. “⇒”, By way of contradiction

∃ y0 s.t. y0 < y and F (y0) ≥ α ⇒ F (y0) ≥ α > F (y − ε) ∀ ε > 0

⇒ y0 > y − ε As F is nondecreasing

⇒ y − ε < y0 < y ∀ ε > 0

⇒ y ≤ y0 < y

⇒ y < y (absurd).

“⇐”, obvious from the definition of a quantile. �

A.2. Proof of claim 1.

Proof. - Validity: The validity of the lower bound IQRl(F1; q1, q2) = max
{

0, yl(q2)− yu(q1)
}

is

explained in the main text. I focus on the upper bound. Take y0 ∈
[
yl(q1), yu(q1)

]
. Accord-

ing to the functional property, any c.d.f. F y01 that pass trough y0 and that could have gener-

ated the data should have at least the same slope as the following function F̃ y01 = p(F11(y) −
F11(y0)) + q1 over

[
yl(q1), yu(q2)

)
. This implies that F̃ y01 first-order stochastically dominates F y01

over
[
yl(q1), yu(q2)

)
. Therefore, as the quantile is a D1-parameter, we have Q(F y01 ; q2) ≤ Q(F̃ y01 ; q2).

Then IQR(F y01 ; q1, q2) = Q(F y01 ; q2) − Q(F y01 ; q1) ≤ Q(F̃ y01 ; q2) − y0. Notice that strict increas-

ingness of F11 on
[
yl(q1), yu(q1)

]
ensures that Q(F̃ y01 ; q1) = y0. Thus, for any potential distri-

bution F1, we have IQR(F1; q1, q2) ≤ supy0∈[yl(q1),yu(q1)]

{
Q(F̃ y01 ; q2)− y0

}
= IQRu(F1; q1, q2) =

supy0∈[yl(q1),yu(q1)]

{
Q
(
F11;F11(y0) + q2−q1

p

)
− y0

}
.

Now, assume that there is a jump in F11 at ỹ between y0 and ỹu(q2). Then the following

function

F
y0
1 (y) =


p (F11(y)− F11(y0)) + q1 if y ∈

[
yl(q1), ỹ

)
p (F11(y)− F11(y0)) + q1 − ε if y ∈ [ỹ, yu(q2))

such that p (F11(ỹ)− F11(ỹ−)) > ε > 0 could be completed to get a c.d.f. that may have gener-

ated the data and first-order stochastically dominates F̃1. It’s easy to see that IQR(F
y0
1 ; q1, q2) ≥

IQR(F̃ y01 ; q1, q2).

- Sharpness: I have to show that the bounds are attainable and any element withinH(IQR(F1; q1, q2))

is also attainable, that is, for each element of H(IQR(F1; q1, q2)), I have to show a distribution that

attains it.
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Let’s consider the case where F11 is continuous and strictly increasing on [yl(q1), yu(q2)).

Then, the quantile Q (F11;F11(y0) + (q2 − q1)/p) is the ordinary inverse function F−1
11 (F11(y0) +

(q2 − q1)/p).

Step 1 : The upper bound is attainable

F̃1(y) =


0 if y < ymin

p (F11(y)− F11(y∗0)) + q1 if y ∈ [ymin, ymax)

1 if y ≥ ymax

(A.1)

where y∗0 = argmaxy0∈[yl(q1),yu(q1)]

{
F−1

11 (F11(y0) + (q2 − q1)/p)− y0

}
, (y∗0 exists by Weierstrass

maximum Theorem). By construction, y∗0 is the q1th quantile of F̃1 and F−1
11 (F11(y∗0) + (q2 − q1)/p)

is the q2th quantile of F̃1. Indeed,

F̃1(y∗0) = q1

Let’s take ε > 0.

F̃1(y∗0 − ε) = p (F11(y∗0 − ε)− F11(y∗0)) + q1

< q1 as F11 is strictly increasing.

Then by lemma 2, y∗0 is the q1th quantile of F̃1.

F̃1(F−1
11 (F11(y∗0) + (q2 − q1)/p)) = p

(
F11(F−1

11 (F11(y∗0) + (q2 − q1)/p))− F11(y∗0)
)

+ q1

= p (F11(y∗0) + (q2 − q1)/p− F11(y∗0)) + q1

= q2

Let’s take ε > 0.

F̃1(F−1
11 (F11(y∗0) + (q2 − q1)/p)− ε) = p

(
F11(F−1

11 (F11(y∗0) + (q2 − q1)/p)− ε)− F11(y∗0)
)

+ q1

< p
(
F11(F−1

11 (F11(y∗0) + (q2 − q1)/p))− F11(y∗0)
)

+ q1

as F11 is strictly increasing.

= p (F11(y∗0) + (q2 − q1)/p− F11(y∗0)) + q1

= q2

Then by lemma 2, F−1
11 (F11(y∗0) + (q2 − q1)/p) is the q2th quantile of F̃1.

Step 2 : The lower bound is attainable

Case 1 : yl(q2) ≤ yu(q1)

Then IQRl (F1; q1, q2) = 0

F̃1(y) = pF11(y) + (1− p)1 {y ≥ yu(q1)} (A.2)



18 IDENTIFICATION OF INEQUALITY MEASURES IN SAMPLE SELECTION MODELS

F̃1(yu(q1)) = pF11(yu(q1)) + (1− p)

= (pF11 + (1− p)1 {Y1 ≥ ymin}) (yu(q1))

> (pF11 + (1− p)1 {Y1 ≥ ymin}) (yl(q2))

≥ q2 > q1

Let’s take ε > 0.

F̃1(yu(q1)− ε) = pF11(yu(q1)− ε)

= (pF11(y) + (1− p)1 {Y1 ≥ ymax}) (yu(q1)− ε)

< q1 < q2

Then by lemma 2, Q
(
F̃1; q2

)
= yu(q1) = Q

(
F̃1; q1

)
. From where, IQR

(
F̃1; q1, q2

)
= 0.

Case 2 : yl(q2) > yu(q1)

Then IQRl (F1; q1, q2) = yl(q2)− yu(q1)

F̃1(y) = pF11(y) + (1− p)1
{
y ≥ yl(q2)

}
(A.3)

F̃1(yu(q1)) = pF11(yu(q1))

= (pF11 + (1− p)1 {Y1 ≥ ymax}) (yu(q1))

≥ q1

Let’s take ε > 0.

F̃1(yu(q1)− ε) = pF11(yu(q1)− ε)

= (pF11 + (1− p)1 {Y1 ≥ ymax}) (yu(q1)− ε)

< q1

Then by lemma 2, Q
(
F̃1; q1

)
= yu(q1).

F̃1(yl(q2)) =
(
pF11 + (1− p)1

{
Y1 ≥ yl(q2)

})
(yl(q2))

≥ q2

Let’s take ε > 0.

F̃1(yl(q2)− ε) = pF11(yl(q2)− ε)

= (pF11 + (1− p)1 {Y1 ≥ ymax}) (yl(q2)− ε)

< q2

Then by lemma 2, Q
(
F̃1; q2

)
= yl(q2).

Step 3 : Any element between the lower and upper bounds is attainable

Let β ∈ H(IQR(F1; q1, q2)). Keeping in mind that y∗0 +β ≤ F−1
11 (F11(y∗0)+(q2−q1)/p), I distinguish

two cases:
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case 1 : y∗0 + β ≥ yl(q2)

F̃1(y) =


0 if y < ymin

p (F11(y)− F11(y∗0)) + q1 if y ∈ [ymin, y
∗
0 + β)

pF11(y) + 1− p if y ≥ y∗0 + β

(A.4)

Then F̃1(y∗0) = q1 and ∀ ε > 0, F̃1(y∗0 − ε) < q1 ⇒ Q(F̃1; q1) = y∗0 . And, F̃1(y∗0 + β) ≥ q2 and

∀ ε > 0, F̃1(y∗0 + β − ε) < q2 ⇒ Q(F̃1; q2) = y∗0 + β.

case 2 : y∗0 + β < yl(q2)

Then, choose ỹ ∈
[
y∗0 , y

l(q2)
]

s.t. ỹ + β ≥ yl(q2) and p (F11(ỹ + β)− F11(ỹ)) + q1 ≤ q2
7, and define:

F̃1(y) =


0 if y < ymin

p (F11(y)− F11(ỹ)) + q1 if y ∈ [ymin, ỹ + β)

pF11(y) + 1− p if y ≥ ỹ + β

(A.5)

Then F̃1(ỹ) = q1 and ∀ ε > 0, F̃1(ỹ − ε) < q1 ⇒ Q(F̃1; q1) = ỹ. And, F̃1(ỹ + β) ≥ q2 and

∀ ε > 0, F̃1(ỹ + β − ε) < q2 ⇒ Q(F̃1; q2) = ỹ + β. �

Appendix B. Proofs for sharp bounds on IQR under exclusion restriction

assumption

B.1. Sharp bounds with discrete instrument.

Proof. - Validity: Straightforward

- Sharpness: Since Z is discrete with finite support, then there exist z0 and z0 that achieve

respectively the lower and upper bounds. That is,

IQRlE(F1; q1, q2) = max
{

0, yl(q2|z0)− yu(q1|z0)
}
,

IQRuE(F1; q1, q2) = sup
y0∈[yl(q1|z0),yu(q1|z0)]

{
Q

(
F11;F11(y0|z0) +

q2 − q1

p(z0)
|z0

)
− y0

}

Therefore, considering the case where F11(y|z) is continuous and strictly increasing in y on [yl(q1|z), yu(q2|z)),
the same distributions used to prove claim 1 conditionned on z0 and z0 respectively for the lower

and the upper bounds achieve the bounds. �

7Note that ỹ exists, since p (F11(y)− F11(ỹ)) + q1 is a horizontal translation of

p (F11(y)− F11(y∗0)) + q1, its value at ỹ + β is at most q2.
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B.2. Sharp bounds with continuous instrument. I use the following lemma to come up with

the proof of sharpness of the bounds.

Lemma 3. Let F (y|z) be a conditional cumulative distribution function of a real-valued random

variable Y with compact support. Assume that F (y|z) is continuous in y for all z and continuous in

z for all y. Then, the quantile function Q(F ; q|z) defined for every q ∈ (0, 1) by

Q(F ; q|z) = inf {y ∈ Supp(Y ) : F (y|z) ≥ q} (B.1)

is also continuous in z for all q.

Proof. Notice that Q(F ; q|z) is the unique solution of the following optimization problem:

min f(z, y) = y s.t. y ∈ Γ(z) = {y ∈ Supp(Y ) : F (y|z) ≥ q}

I use the Theorem of the Maximum (Theorem 3.6 of Stokey and Lucas p.62). Like in Stokey and

Lucas, I define

h(z) = min
y∈Γ(z)

y = − max
y∈Γ(z)

−y (B.2)

G(z) = {y ∈ Γ(z) : f(z, y) = h(z)} (B.3)

The function f is continuous. I’m going to show that the correspondence Γ is compact-valued and

continuous.

Compactness: Γ(z) ⊂ Supp(Y ) compact. Then, Γ(z) is bounded. Now, let yn ∈ Γ(z) s.t.

yn → y. Let’s show that y ∈ Γ(z).

yn ∈ Γ(z) ⇒ F (yn|z) ≥ q

⇒ lim
n→∞

F (yn|z) ≥ q

⇒ F ( lim
n→∞

yn|z) ≥ q by continuity of F (y|z) in y

⇒ F (y|z) ≥ q

⇒ y ∈ Γ(z)

Then, Γ(z) is closed. Thus, Γ(z) is compact.

Continuity: I show that Γ(z) is lower hemicontinuous (l.h.c.) and upper hemicontinuous

(u.h.c.). I use the definitions in Stokey and Lucas p.56. Γ(z) is nonempty for all z.

l.h.c.: Take y ∈ Γ(z). Then, F (y|z) ≥ q. Let zn be a sequence s.t. zn → z. By continuity

of F (y|z) in z, F (y|zn)→ F (y|z). That is, ∀ ε > 0, ∃ nε : ∀ n > nε, |F (y|zn)− F (y|z)| < ε, which

implies that F (y|zn) > F (y|z)− ε ≥ q − ε. Hence, for ε→ 0, ∃ n0 : ∀ n > n0, F (y|zn) ≥ q. Then,

considering the sequence {yn = y}∞n=n0
, we have yn → y and yn ∈ Γ(zn). This shows that Γ(z) is

l.h.c..
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u.h.c.: Take zn → z and yn ∈ Γ(zn). I’m going to show that there exists a subsequence

{yk} → y ∈ Γ(z). We have F (yn|zn) ≥ q ∀ n. Moreover, yn ∈ Γ(zn), which is real-valued and

bounded. Then, by Bolzano-Weierstrass theorem, there exists a subsequence {yk} s.t. yk → y.

Now, it remains to show that y ∈ Γ(z). Indeed, we have the following implications.

F (yk|zn) ≥ q ∀ n, ∀ k ⇒ lim
n→∞

F (yk|zn) ≥ q

⇒ F (yk| lim
n→∞

zn) = F (yk|z) ≥ q by continuity in z

⇒ lim
k→∞

F (yk|z) ≥ q

⇒ F ( lim
k→∞

yk|z) = F (y|z) ≥ q by continuity in y

⇒ y ∈ Γ(z)

Then, Γ(z) is u.h.c..

Therefore, by the Theorem of Maximum, the function h(z) is continuous and the correspon-

dence G(z) is nonempty, compact-valued and u.h.c.. Since, the quantile function Q(F ; q|z) is the

unique solution of the problem, Q(F ; q|z) is continuous in z. �

The following is the proof of proposition 3.

Proof. - Validity: Straightforward

- Sharpness: Under assumptions 6, 7 and 8, by lemma 3, the quantities yl(q|z) = Q(F11; 1−
1−q
p(z) |z) and yu(q|z) = Q(F11; q

p(z) |z) are continuous in z. Since the function max is continuous,

max
{

0, yl(q2|z)− yu(q1|z)
}

is continuous in z. Then, by Weierstrass Theorem, there exists z0 such

that

IQRlE(F1; q1, q2) = max
{

0, yl(q2|z0)− yu(q1|z0)
}
.

Therefore, considering the case where F11(y|z) is continuous and strictly increasing in y on [yl(q1|z), yu(q2|z)),
the same distributions used to prove claim 1 conditionned on z0 attain the lower bound.

Moreover, the quantile Q(F11; q|z) = F−1
11 (q|z) is continuous in q ∈ (q1, q2) for all z and in z

for all q ∈ (q1, q2). Then, under assumptions, F11(y0|z) + q2−q1
p(z) is continuous in y0 for all z (resp. in

z for all y0) and Q(F11;F11(y0|z)+ q2−q1
p(z) )−y0 is continuous in y0 for all z (resp. in z for all y0). The

correspondence Γ(z) =
[
yl(q1|z), yu(q1|z)

]
is continuous in z8, then by the Theorem of Maximum,

the function

sup
y0∈[yl(q1|z),yu(q1|z)]

{
Q

(
F11;F11(y0|z) +

q2 − q1

p(z)
|z
)
− y0

}
is continuous in z. Therefore, by Weierstrass, there exist z0 and y∗0(z0) such that

8Under assumptions, the proof of the continuity of Γ(z) is very similar to that of lemma 3.
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IQRuE(F1; q1, q2) = Q

(
F11;F11(y∗0(z0)|z0) +

q2 − q1

p(z0)
|z0

)
− y∗0(z0).

Thus, the same distributions used in the proof of claim 1 conditionned on z0 achieve the upper

bound. �

Appendix C. Proofs for bounds on the variance and the coefficient of variation

C.1. Proof of lemma 1.

Proof. V i(µ) (i = L, U) is continuous (in µ) over H(µ1), which is compact. Then , by Weirstrass

theorem, ∃ µ and µ in H(µ1) such that

inf
µ∈H(µ1)

V L(µ) = V (µ) and sup
µ∈H(µ1)

V U (µ) = V (µ)

Because µ and µ belong to H(µ1) and H(µ1) is sharp then, there exist F and F in H∗(F1) s.t. µ(F ) =

µ and µ(F ) = µ. We know that V (µ(F )) (resp. V (µ(F )) ∈ H (V (µ(F ))) (resp. H
(
V (µ(F ))

)
). As

H (V (µ(F ))) (resp. H
(
V (µ(F ))

)
) is sharp, there exists a distribution F ∗ (resp. F

∗
) in H∗(F1) s.t.

V (F ∗) = V (µ(F )) (resp. V (F
∗
) = V

(
µ(F

)
)). Q.E.D. �

C.2. Proof of proposition 4.

Proof. By the Law of Iterated Expectations (L.I.E.), the following equality holds:

E
[
(Y1 − µ1)2

]
= pE

[
(Y1 − µ1)2|D = 1

]
+ (1− p)E

[
(Y1 − µ1)2|D = 0

]
The unidentified term is E

[
(Y1 − µ1)2|D = 0

]
. Obviously, by monotonicity of (positive) integral,

0 ≤ E
[
(Y1 − µ1)2|D = 0

]
≤ max

{
[ymax − µ1]

2
, [ymin − µ1]

2
}

(C.1)

But, taking an attentive look at E
[
(Y1 − µ1)2|D = 0

]
yields:

E
[
(Y1 − µ1)2|D = 0

]
= E

[
((Y1 − µ10) + (µ10 − µ1))2|D = 0

]
= E

[
(Y1 − µ10)2|D = 0

]
+ (µ10 − µ1)

2

Since 0 ≤ E
[
(Y1 − µ10)2|D = 0

]
≤ max

{
[ymax − µ10]

2
, [ymin − µ10]

2
}

, then

(µ10 − µ1)
2 ≤ E

[
(Y1 − µ1)2|D = 0

]
≤ max

{
[ymax − µ10]

2
, [ymin − µ10]

2
}

+ (µ10 − µ1)
2

(C.2)

From equations C.1 and C.2, the followings holds.

(µ10 − µd)2 ≤ E
[
(Y1 − µ1)2|D = 0

]
≤

min
{

max
{

[ymax − µ1]
2
, [ymin − µ1]

2
}
,max

{
[ymax − µ10]

2
, [ymin − µ10]

2
}

+ (µ10 − µ1)2
}

Because (y − µ1)2 ≤ (y − µ10)2 + (µ10 − µ1)2 ∀ y (triangle inequality), the second upper bound is

higher than the first.
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Now, let’s rewrite V (F1).

V (F1) = E
[
Y 2

1

]
− µ2

1

= pE
[
Y 2

1 |D = 1
]

+ (1− p)E
[
Y 2

1 |D = 0
]
− µ2

1

≤ pµF 2
11

+ (1− p)y2
max − µ2

1

From where the result holds. �

C.3. Proof of claim 2.

Proof.

V L(F1) = pE
[
((y − µ11) + (µ11 − µ1))

2 |D = 1
]

+ (1− p)(µ10 − µ1)2

= pE
[
(y − µ11)

2 |D = 1
]

+ p(µ11 − µ1)2 + (1− p)(µ10 − µ1)2

= pV (F11) + pµ2
11 + (1− p)µ2

10 − µ2
d

= p(V (F11) + µ2
11) + (1− p)µ2

10 − µ2
1

= pµF 2
11

+ (1− p)µ2
10 − µ2

1

�

C.4. Proof of proposition 6.

Proof. ∀ µ1 ∈ H(µ1), the c.d.f. F̃1(y) = pF11(y) + (1 − p)1 {y ≥ µ10} attains the lower bound

V L(F1) = infµ1∈H(µ1)

{
pE
[
(y − µ1)2|D = 1

]
+ (1− p)(µ10 − µ1)2

}
= infµ1∈H(µ1)

{
pµF 2

11
+ (1− p)µ2

10 − µ2
1

}
.

Then from lemma 1, the lower bound infµ1∈H(µ1) V
L(F1) is attainable. The function

µ1 7−→ inf
µ1∈H(µ1)

{
pµF 2

11
+ (1− p)µ2

10 − µ2
1

}
is strictly convex. Then the first order condition (f.o.c.) is sufficient to get a global minimum. The

f.o.c. implies

2(1− p)( 1

1− p
)µ10 − 2µ1 = 0

⇒ 2(µ10 − µ1) = 0

⇒ µ1 = µ10

⇒ µ1 = µ11

The second derivative w.r.t. µ1 is equal to 2p/(1−p), which is greater than 0 as p ∈ (0, 1). Replacing

µ1 by µ11 in the lower bound yields V L(F1) = pV (F11). �
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C.5. Proof of proposition 7.

Proof. By definition, CV (F1) =

√
V (F1)

µ1
. Then, as V (F1) ≥ V L(F1) ∀ µ1 ∈ H(µ1), I have

√
V (F1)

µ1
≥√

V L(F1)

µ1
∀ µ1 ∈ H(µ1), that is, CV (F1) ≥

√
V L(F1)

µ1
∀ µ1 ∈ H(µ1). This lower bound

√
V L(F1)

µ1
is

attained by the distribution F̃1 = pF11(y) + (1 − p)1 {y ≥ µ10} ∀ µ1 ∈ H(µ1). And, because the

coefficient of variation CV (F1) is continuous (in µ1) over H(µ1), lemma 1 applies, that is,

CV L∗(F1) = inf
µ1∈H(µ1)


√
pµF 2

11
+ (1− p)µ2

10 − µ2
1

µ1


As the function

µ1 7−→

√
pµF 2

11
+ (1− p)µ2

10 − µ2
1

µ1

is continuous on the compact set H(µ1) = [pµ11 + (1− p)ymin, pµ11 + (1− p)ymax], the minimum is

attained (Weirstrass).

First, I show that there is no interior solution to this minimization problem. The f.o.c. for

an interior solution is

2(µ10 − µ1)µ1 − V L(F1)

µ2
1 [V L(F1)]

1/2
= 0

⇒ V L(F1) = 2(µ10 − µ1)µ1

⇒ µ10 − µ1 ≥ 0 and V L(F1) = 2(µ10d − µ1)µ1

⇒ µ1 ≥ µ11 and V L(F1) = 2(µ10 − µ1)µ1

⇒ CV L∗(F1) = inf
µ1∈[µ11,pµ11+(1−p)ymax]

[2(µ10 − µ1)µ1]
1/2

µ1

⇒ CV L∗(F1) = inf
µ1∈[µ11,pµ11+(1−p)ymax]

[2p/(1− p) ∗ (1− µ11/µ1)]
1/2

⇒ µ∗1 = µ11, V
L(F1) = 2p/(1− p)(µ1 − µ11)µ1 = 0 and V L(F1) = pV (F11) > 0 (contradiction)

Then, CV L(F1) is minimized at µ1 = pµ11 + (1 − p)ymin or µ1 = pµ11 + (1 − p)ymax, that is,

µ10 = ymin or µ10 = ymax, and the corresponding distribution is pF11(y) + (1 − p)1 {y ≥ ymin} or

pF11(y) + (1− p)1 {y ≥ ymax}. This completes the proof. �
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