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SOMMAIRE

Le sujet de cette these est le partage de colit. Plus précisément pour un probléeme
de partage de coiit donné, j’étudie différentes méthodes de partage de coiit selon
Papproche axiomatique. Le probleme de partage de coiit est un probléme od un
nombre fini d’agents cherchent & partager le coiit joint de la production nécessaire &
la satisfaction de leur demande. Une méthode de partage de coiit est une fonction
qui associe a chaque probléme les proportions ou parts du coiit total qui doivent étre
allouées a chacun des agents. L’approche axiomatique vise donc & caractériser un
ensemble de méthodes de partage de colit en se basant sur des propriétés ou axiomes
mathématiques généraux ou normatifs.

La these est divisée en trois chapitres, chacun étant lui méme composé d’une ou
plusieurs sections.

Le premier chapitre est une revue de la littérature ot sont résumés les résultats les
plus importants qui ont suivi I’article de Shapley [1953]. Dans ce chapitre, le partage
de colit est présenté d’un point de vue général comme faisant partie intégrante d’une
économie de production ou ’on aborde a la fois les probléemes d’équité, d’éfficacité et
de compatibilité des incitations de la méthode de partage de cotit.

Le deuxiéme chapitre s’appuie sur le modele discret introduit par Moulin [1995]
a travers trois sections. La premiére section caractérise I’ensemble des méthodes qui
satisfont les axiomes d’Additivité et “Dummy”. Le principal resultat de la section est
que cet ensemble est généré par toutes les combinaisons convexes de méthodes dites
“path generated”. C’est un résultat important pour étudier 'effet des autres axiomes
sur la caractérisation de la méthode de partage de cotit. La deuxieme section étudie la

version discrete de la méthode d’Aumann-Shapley. Nous donnons une caractérisation
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par les axiomes d’Additivité, de Dummy, et de Proportionalité pour les cas ot le
nombre d’agents est égal a deux (n = 2) et la demande d’un des agents est égale & un
(34,7; = 1). Dans la troisiéme section, nous proposons un nouvel axiome dit Invari-
ance a la Mesure (Measurement Invariance). Nous démontrons ensuite que I’ensemble
des méthodes satisfaisant les axiomes d’Additivité, de Dummy, et d’Invariance 3 la
Mesure est I’ensemble des méthodes “Simple Random Order Values” (SROV) et que
la méthode de Shapley-Shubik est I'unique méthode symétrique de 1’ensemble des
SROV.

Le troisieme chapitre repose sur le modéle continu étudié par Friedman et Moulin
[1995]. Dans la premiére section , nous étudions impact de 1’axiome d’Ordinalité
introduit par Sprumont [1998] sur les méthodes additives de partage de coit et
nous généralisons le résultat de la deuxiéme section du Chapitre 2 au cas continu
en remplagant I’axiome d’invariance & la mesure par celui d’Ordinalité. Dans la
deuxiéme section de ce chapitre, nous considérons une méthode “non-additive”, c.-a-
d., la méthode proportionelle ajustée au colt marginal dites “Proportionally Adjusted
Marginal Pricing” (PAMP). Nous caractérisons la méthode PAMP par les axiomes d’

Independance Locale, de Proportionalité, d’Invariance & I’échelle, et de Continuité.
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INTRODUCTION GENERALE

Nous considérons le probleme de partage de colit ot un nombre fini d’agents
N = {1,2,...,n} cherchent & partager le coiit joint de la production nécessaire 3
la satisfaction de leur demande. Chaque agent 7 a une demande ¢; et le coiit total
est donné par une fonction C(gy,---,¢n). Une méthode de partage de coiit est une
fonction qui associe a chaque probléme représenté par (g; C), les proportions ou parts
du coiit total qui doivent étre allouées & chacun des agents.

Le probleme de partage de coiit est étroitement relié & des modeles importants
en économie normative, par exemple, le probleéme de 1’exploitation des ressources
communes, la régulation d’un monopoleur naturel et le partage de coit dans un
réseau de télécommunication, etc.

Ce qui nous concerne dans cette these est ’analyse axiomatique des différentes
méthodes de partage de colt. L’approche axiomatique vise donc & caractériser un
ensemble de méthodes de partage de cofit en se basant sur les propriétés ou axiomes
mathématiques généraux ou normatifs. Cette approche axiomatique a été montrée
tres fructueusement dans la littérature.

Nous suivons les modéles standards du probléme de partage de coiit. Il existe
trois formulations particulieres dans la littérature, qui sont le modéle de demande
binaire (chaque agent a une demande 0 ou 1), le modele discret (les demandes sont
des nombres entiers) et le modele continu. Dans le modéle de demande binaire, le
colt de satisfaire les demandes d’une coalition d’agents est donné par c¢(S). Il est
identique au modele standard des jeux coopératifs avec utilité transférable. Suite &

'article important de Shapley [1953], il existe une vaste littérature sur les solutions



des jeux coopératifs et leurs applications dans le partage de coit (voir Young [1985a]
pour une revue de cette littérature).

Le modele discret a d’abord été introduit par Moulin [1995]. La théorie de la
valeur de Shapley a été généralisée au cas ol les demandes peuvent étre des nombres
entiers. En plus des axiomes d’Additivité et “Dummy” de Shapley, quelques nouveaux
axiomes ont été ajoutés, telle que la Monotonicité dans la demande. La Monotonicité
dans la demande exige .que la part de coit d’un agent soit non-décroissante quand
sa demande augmente. Moulin a caractérisé I’ensemble des méthodes de partage de
cout satisfaisant les axiomes d’Additivité, de Dummy, et de Monotonicité.

Le modele continu a largement été étudié dans la littérature apres ’article de
Billera et al [1978], qui utilise la théorie des jeux non-atomiques (Aumann et Shap-
ley [1974]) dans un probleme de télécommunication pour fixer les taux de chaque
appel. La littérature s’est concentrée sur les prix d’Aumann-Shapley (voir Tauman
[1988] pour un survol). En 1995, Friedman et Moulin ont caractérisé la méthode
de Shapley-Shubik (S-S) a ’aide de I’axiome de Monotonicité dans la demande. Ils
ont aussi introduit et caractérisé la méthode de Friedman-Moulin Serial (F-M). IIs
ont découvert que les méthodes de S-S, de F-M, et de A-S peuvent se baser sur une
représentation caractérisée par les axiomes d’Additivité et de Dummy. Précisément,
la méthode S-S est caractérisée par la Monotonicié dans la demande et I’Invariance
a I’échelle, la méthode A-S est caractérisée par I'Invariance & 1’échelle et la Propor-
tionalité, et la méthode F-M est caractérisée par la Monotonicié dans la demande et
la “Serial Property” (voir Friedman et Moulin [1995]). Récemment, Friedman [1998]
et Haimanko [1998] ont montré que ’ensemble des méthodes additives satisfaisant
Iaxiome “Dummy” est généré par toutes les combinaisons convexes des méthodes

dites “path generated”.



Un cas spécial du modele continu est le cas d’un bien homogéne. La méthode
du colit moyen avait été la seule méthode concevable dans ce dernier cas avant que
la méthode sérielle ait été proposée par Moulin et Shenker [1992]. Cette dernitre
méthode a des propriétés normatives et stratégiques remarquables (Moulin et Shenker
(1992](1994]). Dans un article récent, Moulin et Shenker [1999] ont introduit I’axiome
de Distributivité et caractérisé I’ensemble de méthodes satisfaisant les axiomes d’Additivité,
de Distributivité, et de rendements constants. Cet ensemble inclut la méthode du coiit
moyen, la méthode sérielle, la méthode incrémentale, et beaucoup d’autres.

Le premier chapitre de cette thése est une revue de la littérature. 11 illustre
comment la théorie des jeux coopératifs a été appliquée & des problemes de partage
de coiit et a motivé I’approche axiomatique récente. Nous discutons essentiellement
I'approche axiomatique de partage de coiit, mais nous discutons aussi briévement les
questions de l'incitation-compatibilité et de 1efficacité de ces méthodes.

Dans le second chapitre, on considére le modele discret. Dans la premiére sec-
tion, on étudie l'ensemble des méthodes qui satisfont les axiomes d’Additivité et
Dummy. On montre que cet ensemble est généré par toutes les combinaisons con-
vexes de méthodes dites “path generated”. Un chemin est une fonction croissante de
{0,1,.., ¢} 2 [0,4]. Etant donné un chemin, une méthode “path generated” as-
signe la somme des colits marginaux a chaque agent le long du chemin. Dans le cadre
des jeux cooperatifs, Weber [1988] a caractérisé ’ensemble des valeurs satisfaisant les
axiomes d’Additivité et de Dummy comme étant les valeurs d’ordre aléatoire. Dans
le modéle de demande binaire, les valeurs d’ordre aléatoire sont identiques aux combi-
naisons convexes de méthodes “path generated”, donc notre caractérisation généralise
le résultat de Weber [1988]. Cette caractérisation est aussi tres utile pour analyser

les implications des autres axiomes, par exemple, I’axiome de Monotonicité dans la



demande. A titre d’application, en utilisant un lemme de représentation de cette sec-
tion, Sprumont [1998b] a caractérisé les méthodes d’ordre aléatoire par les axiomes
d’Additivité, de Dummy, de Cohérence stricte et de Monotonicité dans la demande.
Une méthode d’ordre aléatoire simple est une méthode qui utilise le méme ordre
aléatoire pour tout vecteur de demande ayant les mémes agents actifs. A laide du
résultat de la section, Moulin [1999] a caractérisé la méthode S-S par les axiomes
d’Additivité, de Dummy, et de Lower Bound.

Dans la section 2, nous discutons la méthode discrete de A-S. La méthode discréte
de A-S est été introduite par Moulin [1995], mais sans caractérisation. Nous es-
sayons d’examiner cette méthode et d’obtenir une caractérisation par les axiomes
d’Additivité, de Dummy, et de Proportionalité. La Proportionalité est une propriété
qui exige que la part de coit soit proportionnelle & la demande quand la fonction de
colit est homogene. Nous avons construit un exemple pour montrer qu’en général, les
axiomes d’Additivité, de Dummy, et de Proportionalité ne sont pas suffisants pour
caractériser la méthode de A-S. Par contre, pour le cas de deux agents avec un agent
ayant une demande d’une unité, nous avons montré que la méthode de A-S est la seule
méthode qui satisfait les trois axiomes ci-dessus. Récemment, en utilisant ’approche
de la théorie des jeux, E. Calvo et al [1998] ont donné une caractérisation récursive de
la méthode de A-S par les axiomes d’Efficacité et de Contribution équilibrée (Myerson
[1977], Hart et Mas-Colell [1989]). Mais nous pensons qu'il est possible de trouver
une caractérisation sans avoir recours & la théorie des jeux.

Dans la section 3 du chapitre 2, nous étudions I'impact d’un axiome d’invariance
a la mesure sur les méthodes additives. L’axiome d’invariance & la mesure est la
version discrete de 'axiome d’invariance & 1’échelle. Nous démontrons que 1’ensemble

de méthodes satisfaisant les axiomes d’Additivité, de Dummy, et d’invariance a la



mesure est composé des méthodes d’ordre aléatoire et que la méthode de S-S est la
seule méthode symétrique dans cet ensemble. La méthode discrete de A-S ne satisfait
pas cet axiome.

Dans le chapitre 3, nous considérons le modéle continu. Dans la section 1, nous
examinons encore les méthodes additives satisfaisant I’axiome de Dummy. Nous don-
nons une caractérisation du sous-ensemble des méthodes qui satisfont les axiomes
d’Additivité, de Dummy, et d’Ordinalité. L’axiome d’Ordinalité, qui a été introduit
par Sprumont [1998a], est intuitivement la combinaison des axiomes de Monotonicité
dans la demande et d’Invariance & P’échelle. Plus précisément, cet axiome exige que
les parts de colit solent invariants par rapport & toute transformation croissante de
P'unité du bien. Parallelement au modéle discret, nous montrons que l’ensemble des
méthodes qui satisfont les axiomes d’Additivité, de Dummy, et d’Ordinalité est com-
posé de toutes les méthodes d’ordre aléatoire simple, et que la méthode de S-S est la
seule méthode symétrique dans cet ensemble.

Dans la section 2 du chapitre 3, nous considérons une méthode “non-additive”,
la méthode proportionelle ajustée au colt marginal dite “Proportionally Adjusted
Marginal Pricing” (PAMP). Cette méthode peut étre aussi considérée comme une
contrepartie modifiée de la “separable cost-remaining benefit method” (SCRB, voir
Young [1985b]) dans le modeéle continu. Nous caractérisons la méthode PAMP par
les axiomes d’Independance Locale, de Proportionalité, d’Invariance & 1’échelle, et de

Continuité.



General Introduction

A finite number of agents N = {1,2,...,n} share a production facility. Each agent
i € N demands a quantity of an idiosyncratic output (good or service) ¢;. They have
to decide how to divide the total cost of production C(q, ..., ¢,). The only information
available to them are the cost data at various demand levels summarized by the cost
function C and the reported demand profile ¢ = (g, ...,¢,). They seek a solution or
cost sharing method which provides them with a systematic way to allocate the cost
among them for each such problem summarized by a pair (¢; C).

The cost sharing problem defined above exists in many important models of nor-
mative economics, from the exploitation of common resources, the regulation of a
natural monopoly, cost sharing in a computer or telecommunication network, coop-
eration in production, and so on.

What we are concerned with in this thesis is the axiomatic analysis of various cost
sharing methods. That is, we use normative or mathematical structural axioms to
characterize and compare various cost sharing methods. This axiomatic approach to
the cost sharing problem has proved to be very fruitful.

We follow the standard modeling practice of the cost sharing problem. There
are three particular formulations in the literature. They are the binary demand
model (each agent’s demand is 0 or 1), the discrete model (integer demands), and
the continuous model (demands are real numbers). In the binary demand model, the
cost of satisfying the demands of a coalition S (a subset of agents) is conveniently
denoted as ¢(5). This is identical to the standard model of cooperative games with
transferable utility. Following Shapley’s [1953] seminal paper, there has been a vast
literature on the solutions of cooperative games and their applications in cost sharing

(see Young [1985a] for a review of this literature).



Moulin [1995] proposed the discrete model which allows the demands to vary in
integer quantity. He extended the Shapléy value theory to the discrete model by
introducing the Demand Monotonicity axiom and retaining Shapley’s two original
axioms, Additivity and Dummy. The Demand Monotonicity requires that one’s cost
share should not decrease as one’s demand increases. Moulin characterized the class
of cost sharing methods satisfying Additivity, Dummy and Demand Monotonicity.

For the continuous model, the literature has been inspired by the paper of Billera
et al [1978], in which non-atomic game theory (Aumann and Shapley [1975]) was
used. Most of the literature focuses on the so-called Aumann-Shapley prices (see
Tauman [1988] for the survey). In 1995, Friedman and Moulin provided an alterna-
tive axiomatic approach for the continuous model. They first proved a representation
result for all cost sharing methods characterized by the axioms of Additivity and
Dummy (hereafter called additive methods). Then, they showed that the well-known
Shapley-Shubik (S-S) method is characterized by Demand Monotonicity and Scale In-
variance, the Aumann-Shapley (A-S) method is characterized by Proportionality and
Scale Invariance, and the Friedman-Moulin Serial (F-M) method is characterized by
Demand Monotonicity and the Serial Property. The Proportionality axiom requires
that when the cost function is homogeneous, the method uses average cost as price
for each agent. The Scale Invariance axiom requires that cost shares be independent
of the measuring scales of the goods. And the Serial Property says that when the
cost function is homogeneous, cost shares are calculated by the well-known serial cost
sharing method first proposed in the seminal paper of Moulin and Shenker [1992].
More recently, Friedman [1998] and Haimanko [1998] showed that the set of additive
methods satisfying the dummy axiom is generated by all the convex combinations of

the path generated methods.



In a recent paper, Sprumont [1998] proposed an Ordinality axiom which general-
izes Scale Invariance to the invariance of cost shares with respect to any monotonic
non-linear changes of the measurements of any good. He provided a characterization
of the Shapley-Shubik method by Additivity, Dummy, Symmetry, and Ordinality.
More importantly, he used Ordinality to explore non-additive methods.

In another direction, Moulin and Shenker [1999] provided an extensive study of
the homogeneous good model based on two structural axioms: Additivity and Dis-
tributivity. Before, Average Cost Pricing had been the only conceivable method in
this model. In 1992, Moulin and Shenker proposed the alternative serial cost sharing
method, which can be derived by the following two properties: the “Equal Treatment
of Equals’; and that “cost shares are independent of larger demands”. The serial
cost sharing method has other remarkable normative and strategic properties (see
Moulin and Shenker [1992]{1994]). Recently, the above two authors [1999] introduced
the Distributivity axiom and investigated the family of methods satisfying Additiv-
ity, Distributivity, and Constant Returns. The Distributivity axiom requires that
cost sharing methods commute with the composition of cost functions. Moulin and
Shenker characterized the family of methods satisfying the above three axioms and
showed that this family is very rich, including the average cost pricing, serial cost
sharing, incremental cost sharing, and more.

The first chapter of this thesis is a review of the literature. It summarizes how
cooperative game theory has been used in cost sharing and motivated the recent
axiomatic approach. While the most part of this review concentrates on axiomatic
cost sharing, the review also includes a brief survey of the literature on the issues of
incentive-compatibility and efficiency a cost sharing method generates.

Chapter 2 deals with the discrete model. There are three sections in this chapter.



Section 1 studies the set of additive methods. We show that this set is the set of all
convex combinations of the so-called path generated methods. A path is a monotonic
mapping from {0,1,...,3"¢:} to [0, ¢]. Given a path, a path generated method assigns
to each agent the sum of his (or her) marginal costs along this path. In the cooperative
game model, Weber [1988] characterized the set of values satisfying Additivity and
Dummy as being the random order values. The random order values are the convex
combinations of the incremental values, each of which is associated with a random
order of the agents (permutations of {1,2,...,n}). Note that in the binary demand
model or the cooperative game model, random order methods are identical to the
convex combinations of the path generated methods since all the paths in {0,1}"
correspond (one-to-one) to the permutations of the agents. But in our discrete model,
the random order values in the Weber’s definition only correspond to a subset of
paths (edges of the demand interval [0, g]). Therefore, our characterization generalizes
Weber’s.

This characterization result of additive methods is very useful in analyzing the im-
plications of other axioms, e.g. Demand Monotonicity. As an application, Sprumont
[1998b] used the (discrete) representation lemma to characterize the simple random
order methods by the axioms of Additivity, Dummy, Strict Coherence (an informal
explanation is given below) and Demand Monotonicity. By simple random order
method we mean that the method uses the same random order method for all the
demand vectors having the same active agents. Another application of this charac-
terization result is Moulin [1999)’s characterization of the S-S method by Additivity,
Dummy, and the Lower Bound axiom. See the survey of Moulin [1999] for more
applications.

Section 2 (in chapter 2) discusses the discrete Aumann-Shapley method. The
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discrete A-S method was first proposed (but not characterized) by Moulin [1995]. It
is defined as the Shapley value of the replica game (in which each unit of each good
is considered as a player) corresponding to the cost sharing problem. The discrete
A-S is the arithmetic average of the path generated methods. It satisfies Additivity,
Dummy, and Proportionality. Recall the characterization of the A-S method (Samet
and Tauman [1982]). We want to know if we can find a similar characterization for the
discrete Aumann-Shapley method. Unfortunately, in the discrete model, we do not
have a scale invariance axiom which can play the same rule as the Scale Invariance
axiom in the continuous model. All the discrete versions of the scale invariance
(Measurement Invariance, Moulin’s Ordinality, Sprumont’s Coherence) we have seen
so far are so strong that they force additive methods to be simple random order
methods (so the discrete A-S is excluded). On the other hand, we show by an example
that the three axioms, Additivity, Dummy and Proportionality are not sufficient to
characterize the discrete A-S. In the two-agent case where one agent’s demand is fixed
at one unit, we show that the discrete A-S is the only method satisfying Additivity,
Dummy and Proportionality. In general, we introduce a condition called Constant
Cost Sharing Ratios (CCSR) and show that Additivity, Dummy, Proportionality, and
CCSR characterize the discrete A-S method. E. Calvo et al [1998] obtained a recursive
characterization of the discrete A-S method using the game-theoretic approach (by
converting the cost sharing problem into a multichoice game). The discrete A-S
method is then characterized by efficiency and balanced contributions, which is similar
to Myerson’s [1977] and Hart and Mas-Colell’s [1989] characterizations of the Shapley
Value. However, our characterization does not rely on game theory.

In Section 3 of this chapter 2, we study the impact of a measurement invariance

axiom on additive methods. The measurement invariance axiom is a discrete version
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of the well-known scale invariance axiom. We show that the set of methods satisfying
Additivity, Dummy, and Measurement Invariance consists of the simple random order
methods, and that the Shapley-Shubik method is the unique symmetric method in
that set. There are other formulations of scale invariance for the discrete model.
Moulin [1995] used the Ordinality axiom (it is different from Sprumont’s Ordinality
[1998a], see below). Informally speaking, the axiom says that if the cost function is
flat between two consecutive demands, erasing one unit of this good does not affect
cost shares. Recently, Sprumont [1998b] proposed a Coherence axiom which requires
that a cost sharing method should not always prescribe different cost shares between
a given problem and its refined problem no matter what the refined cost function
turns out to be. A cost function refines another cost function if the first one provides
‘finer’ cost data than the second. Generally speaking, Coherence is probably the most
pertinent scale invariance in the discrete model. See Sprumont [1998b] for details.
The Measurement Invariance, on the other hand, is probably the crudest version of
the scale invariance.

Chapter 3 deals with the continuous model. In Section 1, we still consider the set of
additive methods. But we study a subset of additive methods constrained by an axiom
called Ordinality first introduced by Sprumont [1998]. Ordinality requires that cost
shares be invariant with respect to any increasing (e.g., non-linear) transformations
of the measurement of any good. Thus, it completely dispenses with any conventions
to be used to measure the goods. This axiom is compelling in cost sharing problems
which involve non-physical goods, e.g., services. Mathematically, Ordinality combines
the properties of Scale Invariance and Demand Monotonicity. We show that the set of
additive methods satisfying Ordinality consists of all simple random order methods,

and as a corollary, the Shapley-Shubik is the only symmetric method in that set.
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This result parallels the characterization of simple random order methods by the
axioms of Additivity, Dummy, and Measurement Invariance in the discrete model
(section 3 in Chapter 2). In spite of the strong restriction on the class of additive
methods, Ordinality itself is still a flexible axiom. In fact, it has been combined with
other axioms such as Proportionality or the Serial Property, to explore non-additive
methods (see Sprumont [1998a)).

In Section 2 of Chapter 3, we propose and study a non-additive method called
the Proportionally Adjusted Marginal Pricing method (PAMP). This method is not
derived from Ordinality, but instead, is derived from a new axiom (with other axioms)
called Local Independence. By Local Independence we mean that cost shares only de-
pend on the information about costs around the final demand profile ¢ (to be precise,
the costs and the first order derivatives of the cost function at ¢). We are interested
in PAMP because of its connection with the well-known Ramsey pricing as well as
the separable cost-remaining benefit method (SCRB) (Moulin [1989], p139), which is
frequently used in applications (see Young [1985c]). We provide a characterization of

PAMP by Local Independence, Scale Invariance, Proportionality, and Continuity.
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1 Introduction

A group of agents share a production facility with variable returns. Each demands
a (variable) quantity of output(s). The total (non-separable) cost of these output(s)
must be shared “fairly” among these agents. This definition of a cost sharing problem
is quite general. The agents in a cost sharing problem can be interpreted either as
people who share the joint production, or as goods whose real contributions to the
total joint cost must be calculated, or as services a public facility provides, and more.
The problem just defined is also non-trivial and often challenging because of the
assumptions of variable returns of the production technology and the heterogeneity
of the individual demands as well as, perhaps more important, the controversial notion
of “equity” or “fairness”.

The formal modeling of the cost sharing problem is usually divided into two kinds
of models, namely the models with preferences and the models without preferences
but with demands. The models with preferences are used to discuss the efficiency and
incentive compatibility issues along with the fairness issue in choosing cost sharing
methods. The models without preferences are used to focus on the fairness issue.
The advantages of the second kind of models are among others their simplicity and
applicability. It is this kind of models that are called aziomatic cost sharing in the
literature and will be discussed in this thesis.

Our general 1;10de1 of the cost sharing problem, then, can be formally described as
follows. A finite set of agents N = {1,2,...,n} share a cost function C which is defined
on a domain of all the conceivable demand profiles ¢, which are the vectors in the
space RY representing the list of demands. A problem is a pair (¢;C). A solution is

a vector z in RQ_’ assigning agent ¢ the cost share z; and satisfying the budget balance

Y z; = C(g). A method (or a rule, interchangeably called) is a mapping associating
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with each problem a solution.

The above generally described cost sharing problems are, in fact, widespread in
practice. The following three historical examples of cost sharing problems provide
a snapshot of how the problems are identified, formulated and solved. They also
provide anecdotes from the classical cooperative game theory approach to the more
recent axiomatic approach, both of which will be discussed below. These examples
have had significant influence in the literature.

The first example is the multipurpose reservoir. A dam on a river is planned to
serve several different regional interests, such as flood control, hydro-electric power,
navigation, irrigation, and municipal supply. The dam can be built to different
heights, depending on which purposes are to be included. The cost function asso-
ciated with such a problem exhibits decreasing marginal costs per acre-foot of water
up to some critical height of the dam. The problem is how to apportion the cost
among the different purposes. The problem was modeled as a cooperative game and
the Shapley value (Shapley [1953]) was used as a solution. This problem has a rich
history (see Ransmeier [1942] and Parker [1943]) and has been of both theoretical
and practical importance. On the one hand, the idea of the “core” concept (Gillies
[1959]) in cooperative game theory was foreshadowed in the cost-benefit analysis of
this project (see Ransmeier [1942], p220, Young [1985], p8). On the other hand, cer-
tain cost sharing formulas recommended for this problem are still in use today by
water resource agencies.

The second example was provided by Billera, Heath, and Raanan {1978] to set
telephone billing rates which would allocate the cost arising in serving the consumers.
The well-known Aumann-Shapley prices were used by casting the problem into a non-

atomic cooperative game (Aumann and Shapley [1974]). Later, Aumann-Shapley
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prices were characterized axiomatically by Billera and Heath [1982] and Mirman and
Tauman [1982]. A vast literature on the Aumann-Shapley prices followed (see the
survey by Tauman [1988]).

The third example is the Airport landing fees for Birmingham airport (see Lit-
tlechild and Thompson [1977]). The cost of a runway is determined by the size of the
largest aircraft using it. A cooperative game model was defined by the problem and
the well-known Shapley value was applied to that game. It turns out that the cost
of serving the smallest types of aircraft is divided equally among the aircraft of all
types, then the incremental cost of serving the second smallest type is divided equally
among all aircraft except those of the smallest type, and so on. Interestingly, this
equal splitting of the incremental cost among relevant agents coincides with the idea
of serial cost sharing (see Moulin and Shenker [1992]).

The above examples typically have two characteristics. The first is that costs
must be allocated exactly, with no profit or deficit. The second is that there is no
objective basis at hand for attributing costs directly to specific agents, or products,
or services. The problem is to find criteria and methods for allocating the costs in
a just, equitable, fair, and reasonable way. Therefore, equity and fairness ! are the
ultimate concerns of cost sharing (however, see section 1.4 for the issues of economic
efficiency and incentive-compatibility in cost sharing).

Despite these practical applications, there has until recently been relatively little
theory about how cost sharing should be accomplished. In a classical example of
pricing a multi-output monopoly which is constrained by budget balance, economic
efficiency of the pricing method is emphasized, rather than the fairness property of the

pricing. There had been a large literature centering on “Ramsey pricing” (Ramsey

In fact, the meaning of the word fairness in cost sharing is context-dependent. We will see that
this notion can be best approached from various perspectives using the axiomatic approach.
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[1927], Boiteux [1971], Baumol and Bradford [1970]). The main idea of Ramsey
pricing is that in industries with declining average costs the percentage mark-up over
marginal cost is greater the more inelastic the demand for the good is?. Paradoxically,
in spite of its theoretic significance, Ramsey pricing has not been well accepted in
practice. It has two problems. The first is that it is equity-blind. Another problem
with Ramsey pricing is that it is not practical since it relies on information about
market demands that are hard to estimate.

A close relative to the cost sharing problem, the rationing problem has a long
history dating back to Aristotle. A given amount of divisible good must be divided
among agents with different claims (see O’Neill [1982], and Rabinovich [1973] for ex-
amples of rationing problems). The amount is short of the total claims. A solution
is a vector which specifies how much each agent gets. A rationing method provides
each rationing problem a solution. Aristotle proposed that “equals should be treated
equally, unequals unequally according to their differences and similarities”. Accord-
ing to this principle, the Proportional method (the proportional division with respect
to the claims) has been suggested and it has been the dominant method for rationing
problems (until other methods have been discovered recently by the axiomatic ap-
proach, see the section 1.3).

While Aristotle’s principle of equity has far-reaching implications in distributive
justice, its limit in cost sharing is immediate. In the case of a homogeneous good
and constant returns of scale, Aristotle’s principle implies proportional division. In
general cases, such as variable returns of scale and heterogeneous outputs, it is not
clear how to interpret the second part of the principle.

The recent axiomatic cost sharing literature explores the logical limits of Aris-

2See the interesting explanation by W. Arthur Lewis [1949]: The principle is ... that those
who cannot escape must make the largest contribution to indivisible cost, and those to whom the
commodity does not matter much may escape.
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totle’s principle within a number of specifications of our general cost sharing model
defined in the beginning. This literature has drawn on classical cooperative game
theory. Particularly, it has been inspired by the seminal paper of Shapley [1953].
Shapley [1953] developed a set of simple but persuasive axioms, mainly the Additiv-
ity and Dummy axioms, which lead to the selection of a value (Shapley value) for each
player (agent) in a cooperative game (see the next section). Briefly, a cooperative
game is a function associating with each subset (called coalition) of players a real
number. A value is a solution mapping each game to a vector such that the sum of
the components of this vector is equal to the number (the worth) associated with the
grand coalition (the whole player set). In fact, Shapley showed that there exists a
unique symmetric solution, the Shapley value, satisfying the Additivity and Dummy
axioms®,

Shapley’s Additivity axiom is a mathematical invariance property. It requires
that the solution commutes with the addition of two games. In other words, it
says that it does not matter whether we compute cost shares on the two separate
components of the total costs or on the combined costs. A standard interpretation is
accounting decentralization (Billera and Heath [1982], Mirman and Tauman {1982])%.
Additivity is not an equity axiom and has no ethical meaning, and had once been a
source of controversies (Moriarty [1981]). Now this axiom has become standard in
the literature. Shapley’s second axiom, the Dummy axiom, is an equity axiom which
requires that if a player in a game contributes nothing to each coalition, his value
should be zero®. This dummy axiom has been well accepted.

Shubik {1962] was the first to propose using the Shapley value to cost sharing

3Weber [1988] generalized Shapley’s result by dropping the Symmetry axiom and showed that
the pair of Additivity and Dummy characterizes the set of random order values. See Chapter II.

“A. Roth [1988] argued that Additivity can be considered as a risk neutrality property.

®The Dummy axiom rules out the equal division solution, namely ¢(N)/n, where n = |N| is the
total number of players.
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problems. In the binary demand case in which each agent’s demand is either 0 or 1,
the problem is equivalent to a cooperative game (see the next section). Then, the
Shapley value can be used as a solution. In the variable demand case, a so-called
stand alone cost game can be generated for each given cost sharing problem, which
associates with each coalition the costs of fully serving the agents in the coalition and
not serving agents outside the coalition (see the formal definition in the next section).
Applying the Shapley value to the stand alone game a cost sharing problem generates
defines the so-called Shapley-Shubik method (see the formula in section 3.2).
Aumann and Shapley [1974] further generalized the Shapley value theory to games
with infinite number of agents, the so-called non-atomic games. Briefly, a non-atom
game is function v defined on a o-field B of all Borel sets of the interval [0, 1]. The sets
in B are called coalitions. Aumann and Shapley [1974] extended the Shapley’s axioms
in n-person game theory (usually called cooperative game theory) to non-atomic
games and defined the so-called Aumann-Shapley value. In continuous cost sharing
model (see the classification below), a cost sharing problem corresponds to a non-
atomic game and the Aumann-Shapley value of the non-atomic games corresponds to
the well-known Aumann-Shapley (pricing) method. See Tauman [1988] for details.
However, the above game theoretic approach to cost sharing has limitations. In
the variable demand case, in order to use the solution concepts in cooperative game
theory, first we have to cast a cost sharing problem into a game (the stand alone
game). This casting makes a cost sharing method depend only on the stand alone
costs, ignoring the information of the cost function at other demand levels. Therefore,
the implication of some other axioms, for instance, the Demand Monotonicity (firstly
proposed by Moulin [1995]) on cost sharing methods can not be analyzed. This

limitation motivates us to take the general axiomatic approach, which is beyond and
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independent of the game-theoretic interpretation.

The idea of the axiomatic approach to cost sharing, as the Shapley value approach
in the cooperative game theory, is simply to use axioms to select and characterize var-
lous cost sharing methods. Following the tradition initiated by Shapley [1953], we
adapt his two original Additivity and Dummy axioms to cost sharing models. The
interpretations of these two axioms in cost sharing are the same as in cooperative
game theory. However, in addition to these two classical axioms, new axioms can be
introduced thanks to the variable demands. The two most prominent examples are
the Proportionality axiom and the Demand Monotonicity axiom. The Proportion-
ality axiom requires that if the cost function is homogeneous (one-dimensional, see
the next paragraph) then cost shares should be proportional to demands (also called
Average Cost Pricing). The Proportionality axiom is relatively classical and within
the additive methods © it essentially characterizes the well-known Aumann-Shapley
pricing (Billera et al [1982], Samet and Tauman [1982]). The Demand Monotonicity
(Moulin [1995]) requires that each agent’s cost share should be a non-decreasing func-
tion of his demand. Within the additive methods, this axiom essentially characterizes
the Shapley-Shubik method.

In the literature, cost sharing problems are conveniently classified into two families
of models, namely the homogeneous (demand) model and the heterogeneous (demand)
model. In the former case, the demands enter additively into the cost function, and
the cost function is called homogeneous. Symmetrically, when each agent’s demand
is a personalized good (may or may not be the same with each other) and therefore
each agent can be identified by his demand, we say the problem is heterogeneous.

The heterogeneous problems are further classified into three kinds of models,

€A method is called additive if it satisfies both Additivity and Dummy axioms. Sometimes we
explicitly mention the Dummy axiom when we want to emphasize these two axioms.
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namely the binary demand model, the discrete model (Moulin [1995]) in which de-
mands are integers, and the continuous model in which demands are real numbers.
Since the binary demand model is equivalent to the (monotonic) cooperative game
model, it is the last two models that are to be discussed in this thesis.

Until recently, the literature on axiomatic cost sharing had been mainly focusing
on the Aumann-Shapley method (see Tauman [1988]). In 1995, Moulin first gener-
alized the axiomatic theory of the Shapley value to the discrete model. He showed
that the Aumann-Shapley method violates Demand Monotonicity and the Shapley-
Shubik method is recommended instead. His approach opened an alternative route
in axiomatic cost sharing, which turned out to be very rich. Apart from the Shapley-
Shubik method, other methods have been discovered, e.g., the serial method and the
incremental methods (Moulin [1995]).

In 1995, Friedman and Moulin considered the continuous model and provided a
systematic study of the family of additive methods. Similar as Moulin’s discussion
on the discrete model, they showed that the demand monotonicity again puts the
Shapley-Shubik method in the front. In particular, they provided a representation
formula for the family of additive methods, which has played an important rule in
analyzing the impact of other axioms (see the following discussion for the refinements
of this representation result).

The axiomatic cost sharing literature has since experienced a fast expansion. Re-
cently, Moulin and Shenker [1999] reconsidered the homogeneous model and found
that the two prominent methods, average cost pricing and serial cost sharing, are
only two extreme examples among a very rich family of methods which combine the

properties of proportionality and priority” in a very complex way 2. This analysis is

"The agents are ordered and the incremental costs are charged according to the given ordering.
This is called the incremental method (or value).

8The combination of proportionality and priority is determined by the divisions of the demand



24

very deep and complex and can be regarded as an exploration of the second part of
the Aristotle’s equity principle in full dimension.

In another direction, namely the heterogeneous models, Friedman and Moulin’s
[1995] integral representation of additive methods has been refined by Friedman [1998]
and Haimanko [1998]. They showed that the set of additive methods is the set of all
(infinite) convex combinations of the path generated methods. A path is a monotonic
mapping from a finite interval, say [0, 1], to the domain of demand vectors. A path
generated method assigns to each agent the integral of his marginal costs along this
path. In the discrete model, a parallel result has been established by Wang [1999]
(see Chapter II). Using the language of isomorphism® or structure equivalence, now
we can summarize the structures of three families of additive methods across three
different models, namely the rationing model, the discrete cost sharing model, and
the continuous cost sharing model as follows: the set of additive methods in the
homogeneous model is linearly isomorphic to the set of rationing methods, and the
set of rationing methods is isomorphic to the extreme points 1 of the convex set of
additive methods in the heterogeneous models'! (see section 1.3). These isomorphisms
allow us to follow the “same” method across three different models (see Moulin [1999],
page 4).

As we said in the beginning, our discussion of axiomatic cost sharing considers only

space, rather than the traditional convex combinations of methods. See Moulin and Shenker [1999)
for the detail.

9We say a set A in a vector space is isomorphic to a set B in another vector space if there is a
linear one-to-one mapping from A to B.

104 set is called convex if for any two points in the set the whole line connecting these two points
is in the set. A point of a convex set is said to be an extreme point if it cannot be the center of a
line between two points in the set. The formal definition of convex set and its extreme points can
be found in the first paper of the next chapter or in the book of Rockafellar [1970].

11The discrete model deserves special attention. The corresponding rationing problems should be
the discrete counterparts of the traditional rationing problems, namely, the amount to be divided,
the individual claims, as well as the shares are all integers. See the recent paper of Moulin [1999],
“The Proportional Random Allocation of Indivisible Units,” for the detail.
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the models with demands instead of preferences. Therefore, the issues of efficiency
and the incentive properties of the cost sharing methods can not be discussed. To
discuss these issues, the models must include preferences. There are two different
approaches in the literature. One is in the mode of decentralization, i.e., given a cost
sharing (or surplus sharing, symmetrically) method, what is the equilibrium outcome
of the generated cost sharing game? There, the incentive compatibility or strategy-
proofness is implicitly incorporated into the equilibrium concept. But this approach
puts the efficiency issue of the method in the second place, giving no responsibility
to the users to compare and choose alternative cost sharing methods (no means to
enforce the efficient methods). Recall the problem of the Tragedy of the Commons
(Hardin [1968]). We will not discuss this literature in this thesis. See Moulin and
Watts [1994] and Watts [1996] for a discussion of it. Another approach, which is more
general, is to regard the problem as a social choice problem, and an efficient, incentive-
compatible, and equitable cost sharing method is to be selected. This approach is in
the mode of centralization. We will discuss it briefly in section 1.4. But a thorough
discussion of it will be beyond the scope of the thesis.

In the following sections we will provide a further detailed review of the literature.
Section 1.2 is a brief introduction of cooperative game theory. Section 1.3 summa-
rizes the modern axiomatic approach to cost sharing. Section 1.4 briefly discusses
the economic efficiency and demand revelation related to cost sharing. Section 1.5

concludes this overview.

2 Cooperative Game Theory-An Anecdote

In this section, we give a brief introduction of cooperative game theory and show how

it is used to solve cost sharing problems. The most relevant part is Shapley’s value
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theory, which inspired the recent axiomatic cost sharing literature.

Let N = {1,...,n} be the set of agents (users or outputs or services) of a public
facility. Each agent will be served at some targeted level if he is included or not served
at all if he is not included. The problem is to determine how much to charge for the
services, based on the costs of providing them.

Formally, the problem can be modeled in the following two equivalent ways!2.
First, in terms of the standard cost sharing modeling, each agent ¢ € N is represented
by a binary variable ¢; = 0, or 1. So, a demand vector ¢ is a vector in {0,1}". The
cost of serving the agents in a subset S C N is denoted by C(1s,0_g), where 15 is
the restriction of the vector e = (1,...,1) on S, —S denotes N — S which is N \ §,
similarly Og is the restriction of the zero vector on subset —S. Thus, a cost function is
a (non-decreasing) mapping C : {0,1} — R with C(0,...,0) = 0. Finally, a problem
is a pair (¢; C).

The second, and more natural formulation of this (binary demand) problem, is

the following cooperative game model:
For each S C N, denote ¢(S) the cost of serving agents of S. Usually, call ¢(5)
the stand-alone cost of the coalition S. Most often, ¢(.5) represents the least cost of
serving the agents in S by the most efficient means. Naturally, ¢ is monotonic, i.e.,
¢(S) < ¢(T) when S C T C N. The cost of serving no one is assumed to be zero:
() = 0.

Thus, a game is a (here, monotonic) mapping ¢ : 2V — R with ¢(f) = 0, where
2N = {S|S C N}

By the above definitions, obviously,

¢(8) = C(1s,0_5), 5 C N. (1)

2[nterestingly, this is exactly the point that the cooperative game model and the cost sharing
model divide.
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In other words, a binary demand cost sharing model is equivalent to a cooperative

game model.

A solution (here a cost sharing method) is a mapping = defined for all (finite set)

N and all ¢ on N such that
z(c) = (z1,...,x,) € RN and > z; = ¢(N).

where z; is the charge assigned to agent 1.
Many solution concepts of cooperative game theory can be used. The “core”

(Gillies [1959]) is the set of cost share vectors : {(z1,...,2n)| T 2; = ¢(N)} such that
Z“’i < ¢(S), for all S C N.
5

The interpretation is that if cooperation among the agents is to be voluntary, then
the calculus of self-interest dictates that no participant or group of participants be
charged more than their stand-alone (opportunity) costs. Otherwise they would have
no incentive to agree to the proposed allocation.

An equivalent equity interpretation of this incentive compatibility condition, called

no subsidizing, is as follows.
Y zi > c(N)—¢(N—S), forall S C N.
s

Shapley [1953] used the following three axioms to characterize (and derive) a one-

point solution, the well-known Shapley value, for cooperative games:

1) Additivity:
z(c1 + ¢2) = z(ey) + z(ez), for any two cost games cy, cs.
2) Dummy: If : € N and ¢(SU¢) —¢(S) =0 for all S C N, then

(C,’(c) = 0.
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3) Symmetry: If,j € N and ¢(SUi)—¢(S) = ¢(SUj)—c(S5) forall S C N(i,j ¢ S),
then

He showed that there is a unique value z satisfying these three axioms, namely,

IS —i|l|N = S|!
wi(c) = Z INl‘
SCN-ies :

(e(S)—ce(S—1)),i=1,..,n.

The Shapley value is an important solution concept in cooperative game theory
(see the book A. Roth “The Shapley Value” [1988]). It has been characterized from
many different angles (e.g., Young [1985b], Myerson [1977], Hart and Mas-Colell
[1989]). It generalizes the concept of marginal value, namely the incremental value
for a given ordering of the agents (see below), by taking a convex combination of all
these incremental values with equal probability to each possible ordering.

Given an ordering of N, say {1,2,...,n}, the incremental value with respect to

this ordering is defined as
zir(e) = ¢({1,2,...,i}) — ¢({1,2,...,i — 1}),for each i € N. (2)

The Shapley value has the following interpretation in cost sharing. Imagine that
the participants in a cost sharing problem are rational agents who view the outcome
as being subject to uncertainty. They might reason about their prospects as follows.
Everyone is thought of as “signing up”, or committing themselves to some random
order. At each stage of the sign-up the cost sharing method is myopic: each player
must pay the incremental cost of being included at the moment of signing. The
assessments will therefore depend on the particular order in which the players join.
Instead of actually proceeding in this way, rational agents might simply evaluate their
prospects by calculating their expected cost shares from such a scheme. Assume that

all orderings are a priori equally likely. Then, the formula is agent ¢'s “expected” cost
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share. That is, it is the average marginal contribution to the total cost each player
would make.
Another solution concept in cooperative game theory is the “nucleolus” (Schmei-

dler [1968]). First, given a cost sharing vector z, we say coalition S is better off than

T with respect to z if
(8)=> zi>c(T) =) =
s T
The number e(z, S) = ¢(S) — g z; is called the excess of S relative to .

Then, we find an allocation 2 that maximizes the minimum excess e(z, S) overall

proper subsets § C .S C N, i.e.,

max €
st.  e(z,8)>eVS#0D,N,

Yz = ¢(N).
N

If the solution is unique, it is called the “nucleolus” of c. If it is not unique, use
the following tie-breaking rule. Order e(z,S)(0 C S C N), from lowest to highest
and denote this 2" — 2 vector by e(z). The “nucleolus” is the vector z that maximizes
e(z) lexicographically, i.e., for which the value of the smallest excess is as large as
possible and is attained on as few sets as possible, the next smallest excess is as large
as possible, and is attained on as few sets as possible, and so on. The “nucleolus” was

axiomatically characterized by Sobolev [1975] on the basis of a consistency axiom.

3 Axiomatic Cost Sharing

Axiomatic cost sharing, as we said in the introduction, draws on Shapley’s axiomatic
approach to cooperative game theory. It goes beyond the cooperative game approach

to cost sharing. The axiomatic approach allows us to introduce and investigate many
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other axioms beyond Shapley’s two axioms!?® on cost sharing methods. More interest-
ing cost sharing methods can be studied and selected based on various combinations
of these axioms.

A number of papers using the axiomatic approach in cost sharing had been scat-
tered in the literature. Inspired by the Shapley value theory, Loehman and Whinston
[1974] were among the first who explicitly used the axiomatic approach in cost shar-
ing. Later, inspired by the non-atomic game theory (Aumann-Shapley [1974], Billera,
Heath and Raanan [1978]), Billera and Heath [1982], Mirman and Tauman [1982],
Samet and Tauman [1982] used the axiomatic approach to characterize the Aumann-
Shapley method.

The paper of Moulin {1995], who firstly extended the Shapley value theory to
the discrete cost sharing model by introducing the remarkable Demand Monotonicity
axiom, motivated the recent alternative current of the literature. In the same vein,
the paper of Friedman and Moulin [1995] initiated the investigation of the family of
additive methods in the continuous model. These two papers promoted an extensive
exploration of additive methods both in the discrete model and in the continuous
model.

For the sake of convenience as well as by the tradition of the literature, we sep-
arate our discussion into two main parts, namely the homogeneous model and the
heterogeneous model. The later is further classified into two subclasses: the discrete
model and the continuous model. The relation between cost sharing and rationing is

discussed in the homogeneous model.

13The Additivity and Dummy axioms
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3.1 The Homogeneous Good Model and the Rationing Prob-
lem

A homogeneous cost sharing problem is a triple (N, C, q) where N is a finite set
of agents ¢ = 1,...,n, C' is a non-decreasing cost function from R, into R, such that
C(0) =0, and ¢ = (q1,...,¢x) is the demand profile in which agent ; demand ¢; > 0.
A solution to the (cost sharing) problem (N,C,¢) is a vector z = (z1,...,2,,) €
R% specifying a cost share for every agent and such that
Z z;=C (Z gi)-
iEN iEN
A method is a mapping z associating to any problem (N, C, ¢) a solution z(N, C, ¢)
(when N is fixed we often write z(g; C)).
In the following special case where the technology of the joint production exhibits
a constant returns of scale, i.e., the cost function is a linear function, it is obvious
that cost shares should be proportional to individual demands of output. This fol-

lows from Aristotle’s proportionality principle. Now we have the following first axiom:

Constant Returns (CR, also called Separability):
{C(z) = Az for all z > 0} = {z(N,C,q) = Aq} for all N,A > 0,C,and q.

The challenge is when the technology exhibits variable returns of scale, i.e., when
the cost function is not linear. The following two structural axioms on the cost sharing
methods are well-known. Before we present them, we need to define the following
class of cost functions.

Let C be a generic domain of cost functions. In the papers of Moulin and Shenker
[1994], and Moulin [1999], C consists of all cost functions C that can be written as

the difference of two convex functions. Then, it contains all the twice continuously
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differentiable cost functions, as well as the piecewise linear ones. In the following
main theorem 1, the set C is such a domain.

In the literature, we often use the following Additivity axiom:

Additivity (ADD):
z(q; C1 + Cy) = 2(¢q; C1) + 2(q; Cy), for all Cy,C; € C, all q.

This axiom allows to decompose the computation of cost shares whenever the cost
function can be additively decomposed. Many important results in the sequel rely on
Additivity.

The following Distributivity axiom was recently proposed by Moulin and Shenker

[1999].

Distributivity (Dis):
z(q; C1 0 C3) = z(z(q; C2), C1), for all Cy,Cy € C,and all q.

Denote by M(CR, ADD) the class of methods satisfying Constant Returns and
Additivity. Denote by H(CR, ADD, Dis) the class of methods satisfying Constant
Returns, Additivity, and Distributivity.

In order to reveal the structure of these two families of methods, we relate cost
sharing to the well-known rationing problem.

A rationing problem is a triple (N, t,z) where N is a finite set of agents, the
non-negative number ¢ represents the amount of resources to be divided, the vector
z = (21, ..., ,) specifies for each agent i a claim z;, and these numbers are such that

z; > 0 for all 7; 0§t§2xi.
€N
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A solution to the rationing problem is a vector y = (y1, ..., yn), specifying a share

y; for each agent 7 such that

0 <y; <a;for alli;Zyizt.
iEN

A rationing method r associates to each rationing problem (N, ¢, z) a solution
y = r(N,t,z). When N is fixed, we simply write r(¢,z). Call a rationing method r

monotonic if

0<r(t,z) <z, ry(t,z)=tforall t,0 <t <z,
t<t' = r(tz) <r(t,z)forall t,#,0 < t,t' < zp.

Note that a monotonic rationing method defines for all z € RY a monotonic
continuous path ¢ — r(¢,z) from 0 to . Let R be the set of all monotonic rationing
methods.

The rationing problem has a long history (see Rabinovitch [1973] for examples
from the Babylonian Talmud). It has recently received an intensive study from
the axiomatic perspective (see O’Neill [1982], Aumann and Maschler {1985], Young
[1988][1990], Moulin [1987], Chun [1988], Banker [1981], Balinski and Young [1982],
Sprumont [1991]).

Denote by I'; the cost function I';(z) = min{z,t},z > 0. The following important

result links the rationing methods to the cost sharing methods.

Theorem 1 (Moulin [1999]) The following two mappings, from R into M(CR, ADD)
and from M(CR, ADD) into R:

r—z:z(q;C) = /qN C'(t)dr(t,q) for all C € C,q,
0

z—r:r(t,q) = (I, q) for dll t,q,

define a linear isomorphism between R and M(CR, ADD).
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Serial cost sharing has also been characterized by Moulin and Shenker [1994].

Moulin and Shenker [1999] investigated the class H(C R, ADD, Dis). Its structure
was shown to be very complex. Indeed, the construction of the class H(CR, ADD, D:s)
relies on the Partition of the Demand Space induced by the Coverings of the Unit
Simplex in Rﬂ\_’.

Denote by S the unit simplex of Rf_] . A polytope of dimension d, d < n, in S is
the convex hull of d affinely independent elements e, ..., e? of S. An ordered polytope
is a polytope with an ordering of its vertices {e*}, simply denoted as an ordered list
P = {€!,...,e%}. Denote P the set of all ordered polytopes.

Two ordered polytopes P' and P? are said to be adjacent if i) their relative
interiors are disjoint, ii) the set A of their common vertices is non empty, iii) P'NP? =
conv(A) (the intersection of P! and P? is the convex hull of the vertices in A), and
iv) P' and P? induce the same ordering of A. In particular, an ordered polytope
P and any of its faces are adjacent, provided the face inherits the ordering of P. A
face of a polytope is a polytope generated by the subset of the vertices of the original

polytope.

Definition 1 : Ordered Coverings (Moulin and Shenker [1999])

An ordered covering of the simplex S is a set Cs (not necessarily finite) of ordered
polytopes (Cs € P) such that:

i) their union covers S: Uc P = S,

i) if Cs contains P, it contains all the ordered faces of P,

i) any two ordered polytopes in Cs are either disjoint or adjacent.

Note that by definition of adjacency, if two elements of Cs are adjacent, their
intersection is a common face, hence it is in Cs, too. Next, any ordered covering defines

a partition of 5, namely the family {P°} of the relative interiors of its polytopes.
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Correspondingly, the family of cones generated from each polytope in the covering:

{[P°]} is a partition of RY \ 0. See Moulin and Shenker [1999] for details.

Definition 2 The Family H of Cost Sharing Methods (Moulin and Shenker [1999))
To each ordered covering Cs of S, we associate the following cost sharing method. For

any element P = {e',...,e%} of Cs and any vector q in [P] we have:

d
{¢= Z ek, for all k, A\ >0} =
k=1

2(¢;C) = ];[C()\{l,...,k}) — C(A,.4-1y)] - €F (3)

(where As = Y ;e5 A with convention \g = 0).

Remarkably, Moulin and Shenker [1999] showed that the following characterization

result holds:

H(CR, ADD, Dis) = H.

To be precise, in order to show that the family H can be characterized by the
combination of Additivity, Constant Returns, and Distributivity, the following two
choices must be made: either the domain of cost functions is restricted, or a continuity
requirement with respect to variations of the cost functions is added to the three basic

axioms.

The subdomain C* of C is defined as :
C*={C € C|C = C' — C? for some convex functions C*,C? € C}.

The domain C* contains all twice continuously differentiable functions in C, as well as
all the piecewise linear functions. Moreover it is a dense subset of C for the topology

of pointwise convergence (see Moulin and Shenker [1994], p.184).
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Next, a cost sharing method z is continuous (w.r.t. the cost function) if for all ¢ in
RY, z(q; C*) converges to z(gq; C) whenever the sequence {C® s =1,2,...} converges

pointwise to C' (where C® and C are in C).

Theorem 2 (Moulin and Shenker [1999])

a) A cost sharing method = with domain C*, satisfies Separability, Distributivity and
Additivity if and only if it is (the restriction to C* of ) a method in H.

b) A cost sharing method x with domain C, satisfies Separability, Distributivity, Ad-

ditivity and Continuity if and only if it is a method in H.

3.2 The Discrete Heterogeneous Goods Model

The discrete model was first proposed by Moulin [1995). It generalizes the cooperative
(momnotonic) game model by allowing each individual demand to vary in non-negative
integer quantities. The key ingredient in Moulin’s axiomatic generalization of the
Shapley value theory is the Demand Monotonicity axiom.

Formally, the discrete model is defined by a triple (N,q,C) where g is a capacity
vector in {0,1,2,..}"V and C is the set of cost functions C : [0,5] — Ry (non-
decreasing and C(0) = 0).

A (discrete) cost sharing problem is a tuple (g;C) (fixed population) where
q € [0,g] and C € C. The solution concept and cost sharing method are obviously
defined.

It is easy to see that for given N, if the capacity vector is § = (1,...,1), the cost
sharing problem becomes a monotonic cooperative game with transferable utility.

The Additivity and Dummy axioms in Shapley’s paper [1953] were translated

word by word by Moulin [1995] to the discrete cost sharing model as follows:



38
Additivity(ADD):
z(q; C1 + C2) = 2(q; 1) + 2(g; C2),¥Ch, Oy € C, q € {0,7).
Dummy(DUM): For any ¢ € N,
{Cg) — Clgi — 1,qmi) =0 Vg € [0,9] s.t. ¢; > 0} = {zi(q; C) = 0}.

For convenience, denote 3;C(q) = C(q) — C(gi — 1, qn\i)-

Consider the family of cost sharing methods satisfying Additivity and Dummy,
namely the set of additive methods. For simplicity, we fix the demand profile ¢ for a
moment. We will see that the result in the sequel generalizes to variable demands.

The basic elements in the set of additive methods are the following so-called path
generated methods (see Section 1 in Chapter 2 for details).

First, a path is a monotonic mapping P : {0,1,...,¢(N)} — [0, q] with P(0) = 0
and P(q(N)) = ¢, where ¢(N) = ¥ ¢;. Denote P the set of all paths to g.

A path generated method, generated by a path P € P, is a method which charges
each agent the sum of his marginal costs along the path.

Note that the path generated methods satisfy the Additivity and Dummy axioms
(this fact is easy to be checked). In Section 1 of Chapter 2, we will show that any
additive method is a convex combination of the path generated methods.

Moulin [1995] considered the impact of the Demand Monotonicity axiom on the
set of additive methods. He showed that the set of cost sharing methods satisfying
Additivity, Dummy, and Demand Monotonicity is the set of all convex combinations
of fired path methods. A fixed path method is a method generated by a fixed path
(see Moulin [1999] for detail).

Sprumont [1998] used the “informational coherence axiom” to characterize the
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“simple” random order values and the Shapley-Shubik method'4. Sprumont and
Wang [1996] also used the “measurement invariance” to characterize the simple ran-
dom order values. A simple random order value uses the same random order value
for all demand profiles having the same set of active agents (positive demands). For

a complete summary of the discrete model, see Moulin [1999)].

3.3 The Continuous Heterogeneous Goods Model

The continuous model differs from the discrete model only in that the demand
vector is continuously variable. Correspondingly, certain regularity about the cost
functions is assumed, e.g., the cost function C is usually assumed to be twice contin-
uously differentiable.

The continuous model has been discussed by Billera and Heath [1978] [1982] and
Mirman and Tauman [1982]. As we mentioned in the introduction, this literature
mainly focuses on the Aumann-Shapley prices®®.

Friedman and Moulin [1995] discussed three methods, namely the Shapley-Shubik

1“The Shapley-Shubik method applies the Shapley value to the stand-alone cost game a cost
sharing problem generates, i.e.,

“.sl(n —s—1)! .
20 =1 S 0,0 - Cas 0 =L @)
=0 ) S:8SCN\i,|8]=s

13The Aumann-Shapley method (Aumann and Shapley [1974], Billera, Heath and Raanan [1978],
Samet and Tauman [1982]) is defined by the following formula:

g
z;(¢;C) = / 6iC(;1t—Q)dt, i=1,..,n. (5)
0 i
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method, the Aumann-Shapley method, and the Friedman-Moulin Serial Methods!®,
in the family of additive methods based on a representation result (Lemma 1 below).
Friedman and Moulin showed that the Shapley-Shubik method is the unique addi-
tive method satisfying Demand Monotonicity, Scale Invariance and Symmetry, the
Aumann-Shapley method is the unique proportional extension satisfying Scale In-
variance, and the Friedman-Moulin Method is the unique serial extension satisfying
Demand Monotonicity.

Friedman [1998] further showed that the set of additive methods (satisfying dummy
axiom) can be generated by the convex combinations of the path generated methods
(the exact counterpart of the discrete model). Haimanko [1998] also proved the path
generating result in the context of non-atomic theory.

Recently, Sprumont [1998] proposed the Ordinality axiom and characterized the
Shapley-Shubik method by Additivity, Dummy, Ordinality, and Symmetry. He also
proposed and characterized a handful of non-additive methods.

Now, assume that C is the set of all twice continuously differentiable cost functions
on RY. Let ¢ = (q1,...,¢x) € RY be a demand profile for the agents N = {1,...,n}. A
cost sharing problem is a pair (¢; C). A solution of the problem (¢; C) is a vector
(%1,...,Zn) such that Y ;cyzi = C(g). A cost sharing method z is a mapping
associating to each problem (g; (') a solution z(¢;C). The Additivity and Dummy
axioms for the cost sharing methods are similarly defined as in the discrete model.

The following representation lemma is due to Friedman and Moulin (1995).

Lemma 1l Fiz q € RI_IY. Let « be additive and satisfy the dummy aziom. Then, for

16The Friedman-Moulin serial method (Friedman and Moulin [1995]) is defined as:
g
2i(g; C) = / 8:C((te) Ag)dt,i = 1,...,m, (6)
0

where (x Ay) = (min{z1,y1}, ..., min{z,, yn}).
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each 1 € N, there exists a measure u! such that

xl(q, C) = /[0 q} alC(p)d#:](p), fO’f‘ each C ([ C, (7)

where the measure u] has the following property: its projection on any interval (pi, Pl],

0 <pi <pi <gqi, is the Lebesque measure on R.

To introduce the path generated methods, call a mapping v : Ry x RY — RY a
path if i) 7(0;¢) = 0 ii) y(oc0;¢) = ¢ iii) y(¢; ¢) is nondecreasing in ¢. Let I'(N) be
the set of all paths. Given a path 4 € I'(V), define a cost sharing method as the

Rieman-Stieltjes integral:

He:0) = [ aCHE Q)N )i =1,m ®)

Friedman and Moulin [1995] have shown that the above construction is a valid cost
sharing method.
Friedman [1998] pointed out that the following three well-known methods are path

generated:

- 1) Aumann Shapley: v,(¢; ¢) = min[t, 1]g;.

2) Friedman-Moulin Serial Cost: ;(¢; ¢) = minl[t, ¢;].

3) Random order value (incremental stand-alone cost method) with order iy, ..., %, :
7:,;(t; ¢) = min[1, ¢;,(t)]qi; where ¢i(t) =0if ¢t < (k—1)and 1ift > k and (t — k+1)
otherwise.

Note that the Shapley-Shubik method is obtained by averaging the random order
values over all orders. The weighted version of Aumann-Shapley (Mclean and Sharkey
[1996]) is similarly obtained.

Fix N and ¢. Let I'(¢) be the set of all paths to ¢ in ['(V). Let CP(q,n) =
{z,ly € T'(¢)}, the set of path generated methods. Let C'S(g,n) be the set of additive

cost sharing methods satisfying the dummy axiom for fixed ¢ and N.
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Theorem 3 (Friedman [1998], Haimanko [1998]) All additive methods satisfying
dummy are the convexr combinations of path generated methods, i.e., the following
statements are equivalent:

1) z € CS(g,n).

2) There exists a nonnegative measure v on CP(q,n) such that

T = z~dv(7).
e (a) v (7)

This result is the exact counterpart of Theorem 1 in Section 1 of Chapter 2 in the
discrete model. It also establishes an isomorphism between the rationing methods
and the extreme points of the set of all additive methods satisfying dummy. There
are also many applications of this characterization (see Friedman [1998]).

Sprumont [1998] proposed an alternative approach by introducing the “Ordinality
axiom”. The ordinality axiom requires that the cost sharing method be invariant
under all increasing transformations of the measuring units of the goods. Remarkably,
this axiom is flexible enough to allow cost sharing methods satisfying both ordinality
and proportionality, ordinality and the serial property, which are impossible within
the additive cost sharing methods. It is therefore a key to the exploration of non-
additive methods. Interestingly, it can also provide sharper characterization for a
subset of the set of additive methods, namely the simple random order methods (see
Theorem 1 in Section 1 of Chapter 3 for details).

Ordinality is not only a mathematical axiom but also a compelling requirement

when the cost function involves non-physical goods such as services. See Sprumont

[1998] for details.
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3.4 Brief Comments of Axiomatic Cost Sharing

We have seen that Additivity is the backbone of the axiomatic characterizations of
most cost sharing methods studied so far. It played an important role in establishing
the isomorphisms across the three different models (Theorem 1 and Theorem 3 in this
chapter, and Theorem 1 in Section 1 of Chapter 2). When two or more equity axioms
are in conflict under the restriction of additivity, the additivity axiom should be
relaxed first. The ordinality axiom had played an important rule in the exploration
of non-additive methods. Distributivity can also be a key to study non-additive
methods in the homogeneous case.

A typical feature of axiomatic cost sharing is that most axioms are “structural

invariance” axioms. Equity axioms are relatively few.

4 Economic Efficiency and Demand Revelation

Now, we briefly look at the following neglected aspects of cost sharing methods: their
efficiency and incentive-compatibility properties, in an economic environment at large.
We ask what mechanisms (cost sharing methods) generate the correct incentives to
achieve an efficient and fair utilization of the common resources. A general result (see
below) shows that it is impossible to have an incentive-compatible and efficient full
cost allocation mechanism (Groves [1977]).

Consider the following situation. A firm consists of n divisions, ¢ = 1,...,n,
that are, for accounting or control purposes, treated as separate units but are also
connected through some firm-wide decisions. To be concrete, consider a single firm-
wide decision such as the provision of some service that is made available to all
divisions. Two questions confront the firm with respect to this decision. First, the

firm must decide the quantity of the good to provide. Second, it must decide how to
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finance its provision.

A full cost allocation mechanism is one that divides the total cost of providing
the total service fully among the divisions. An optimal decision or efficient decision
for the firm is that given the reported valuation from each division at every level of
provision, the decision maximizes the total net value (minus total cost). We say a full
cost allocation mechanism is incentive compatible if and only if it is always in every
division’s interest to send correct information, regardless of the information sent by
other divisions.

The main result we are going to discuss is that there is no incentive compatible full
cost allocation method if the decision rule specified must also pick optimal decision
when supplied with correct information. Thus, either the full cost feature, incentive
compatibility, or optimality of decisions must be sacrificed. This result comes from
other results in this line. The first of these is due to Groves [1973] that exhibited
a family of incentive-compatible cost allocation rules, but which were not full cost
allocation rules. The other key result, established by Green and Laffont [1977], showed
that any incentive-compatible procedure for making optimal decisions was equivalent
to a member of the family of incentive-compatible cost allocation rules defined by
Groves.

Formally, let ¢ = 0,1,...,n denote n divisions and a center (i = 0) of a firm.
Denote z the center’s decision, and C(z) the total cost of the decision z, which is
common knowledge. Let 7;(2) be the net payoff (valuation) of division 7,7 = 1,...,n,
which is the private information.

Suppose that Ci(:),...,Cy(-) is a full cost allocation mechanism, i.e.,

Xn:C’i(-) = C(z), for all 2. (9)

i=1

The net revenue of division ¢ is 7;(2) — C;(+).
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Let m;(-) denote the ith division’s “reported” net payoff function. If the divisions
do send true net payoff functions, i.e., m;(-) = m;(-) for all 7, then center’s optimal

decision z* would be the solution to the program:
max 21 mi(z) —
=

Define the center’s decision rule z*(m;, ...,my,) for choosing z given any messages

my(+), ..., mp(-) from the divisions by:

z = z*(my,...,my) = argmax y_m;(z) — C(2).
=1
Given the decision rule 2*(-), and the full cost allocation scheme C;(-),7 = 1, ..., n,

each division chooses the best report m;(-) to the center:

max 7;(2(1i/m;)) — Ci(z(m/ms), m/m;) (10)

where m/m; = (M, ..., mi,...,M,), and where C; is allowed to depend directly on all
the message mj,7 = 1,...,n, as well as on the decision z(m).

We say that the full cost allocation scheme (Cy,...,C,) is incentive-compatible if
and only if 7; solves the division’s optimization problem, i.e., if 7;(-) solves (10) for
any m;(),j # ¢.

Theorem 4 (Green and Laffont [1977], Hurwicz [1975], [1981], Walker [1978]) There

is no incentive-compatible full cost efficient allocation scheme. More formally, there

is no decision-cost allocation scheme [z(-),(Ci(-), ..., ca(*))] such that

Y " Ci(z(m),m) = C(z(m)) : full cost allocation (11)

=

1
mi(-) = arg max mi(z(m/my)) = Ci(z(m/my); m/my) (12)
for all m : incentive-compatibility

Z2(Tyy ey Tp) = arg maxzn: mi(z) — C(z) : efficiency (13)

=1
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In particular, the class of mechanisms (i.e., decision rule-cost allocation scheme

pair) (z(-); (C1(+), ..., Cu(+))) defined by Groves is:

n

z(m) = arg maxz:m,-(z) - C(2) (14)
Ci(z(m),m) = — ; m;(z(m)) + C(z(m)) + Ai(m/m.) (15)

where A;(m/m;) is a function of all reports except that of division i : m/m; =
(m1,...,mi—1,Mit1,...,my,). The relevance and interest in this class rest on the fol-

lowing two propositions.

Theorem 5 (Groves [1973]) Any member of the class defined by (14) and (15) above
has the pair of properties that it is incentive-compatible and results in efficient deci-

sions being chosen.

Theorem 6 (Green and Laffont [1977]) Any mechanism (decision rule-cost alloca-
tion scheme pair) that is both incentive-compatible and result in efficient decisions is

equivalent to a member of the class defined by Groves.

These results imply that if we insist on full cost allocation mechanisms (methods),
we must depart from the Groves mechanisms. Almost all the cost sharing methods
we have discussed in our axiomatic cost sharing are not Groves.

A less general but more practical situation is when there is no coordination cen-
ter which collects the information from each individual (division) and picks up the
optimal or efficient quantity of good to provide and enforces the full cost allocation
mechanism. In this case, any cost allocation mechanism (whether or not budget bal-
anced) is a decentralized device and generates a game in which each player choose
his demand strategically. Moulin and Shenker [1996] analyzed and compared two

well-known mechanisms, Marginal Contribution (MC) and Shapley Value (SH), for
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a network model. In that model, a given set of users share the submodular cost'? of
access to a network. How can one share the costs in an incentive-compatible manner?
Moulin and Shenker compared the welfare properties of the above two mechanisms.
They showed that MC is the unique individually rational Clarke-Groves mechanism
and serves the efficient set of users, but in general runs a budget deficit. SH is budget
balanced and coalitional strategy-proof, but does not realizes optimal welfare (not
efficient). Among all budget balanced and coalitionally strategy-proof mechanisms,
SH is characterized by the property that its worst welfare loss is minimal.

Any cost sharing method generates a game in which each agent simultaneously
demands an amount of outputs and the cost of total output demanded is then divided
by the given cost sharing method. A. Watts [1996] discussed the minimum require-
ments that must be placed on a cost sharing mechanism in order to generate a unique
Nash equilibrium (corresponding to the strategy-proofness of the sharing mechanism),
given that each player’s preferences are convex and bi-normal (both the inputs and
the outputs are normal goods). The results were applied to several popular cost shar-
ing mechanisms. Particularly, the average cost sharing mechanism generates a unique
Nash equilibrium if and only if the cost function is increasing, convex and marginal
cost is always strictly greater than average costs, the serial cost sharing mechanism
generates a unique equilibrium if and only if cost is increasing and strictly convex (see
A. Watts [1996]). Moulin [1996] characterized the incremental methods by coalition
strategy-proofness. In his model, each user demands a quantity of a personalized
indivisible good. He showed that if the second derivatives of the cost function are of
constant sign, the sequential stand alone cost sharing method yields a unique strong

equilibrium at every profile of convex preferences in the cost sharing game where each

A cost function C : 2V — R, is called submodular if C(S) + C(T) > C(SNT) + C(SUT) for
all 5,T C N, where N is the set of all users. Equivalently, C is submodular if the marginal cost
C(SUi)— C(S) of adding user i to the set of users S is non-increasing in S.
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user chooses his (her) own demand. The sequential stand alone cost sharing method
shares cost incrementally according to a fixed ordering of the users: the first user al-
ways pays stand alone cost, the second pays the stand alone cost of the first two users
minus that of the first and so on. This equilibrium defines a coalition strategy-proof
social choice function. Under increasing marginal cost and supermodular cost'®, coali-
tion strategy-proofness, characterizes a larger family of cost sharing methods: they
give out one unit at a time while charging marginal cost, with the users taking turns

according to a sequence fixed in advance.

5 Summary

The axiomatic cost sharing literature focuses on the fairness properties of various cost
sharing methods. Various cost sharing methods have been characterized by different
combinations of equity axioms and “structural invariance” axioms. A typical feature
is that most characterization results are centering around the structural invariance
axioms which express the commutativity of cost sharing methods with respect to
certain variations in cost sharing problems.

Additivity is the most important structural invariance axiom, which encompasses
three different models, the homogeneous model, the discrete model, and the con-
tinuous model. It is a decomposition property with respect to cost functions. Dis-
tributivity is a property with respect to the composition of cost functions. Scale
Invariance is with respect to the linear transformation of the measurement units of
the goods. Ordinality generalizes the Scale Invariance by completely dispensing with
any measurement conventions.

An interesting finding is the isomorphism between the set of rationing methods

18The converse of the submodularity, see Moulin and Shenker [1996].
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and the set of additive methods. This conclusion hinges on Additivity. It says that
the set of rationing methods is linearly isomorphic to the set of additive methods
in the homogeneous good model and isomorphic to the extreme points of the set of
additive methods in the heterogeneous goods model. Thus, various methods in three
different models are linked correspondingly.

Most often a single equity axiom or sometimes two at most could pin down a
specific method within a certain family of methods characterized by structural ax-
ioms. For examples, among additive methods, Proportionality and Scale Invarianec
characterize Aumann-Shapley method, and Ordinality and Symmetry characterize
the Shapley-Shubik method.

On the one hand, the structural axioms show us how far we can go. On the other
hand, they demonstrate restrictions. The incompatibility between Proportionality
and Demand Monotonicity, for example, hinges on Additivity. To incorporate these
two equity axioms, we should drop the additivity axiom. This leads us to explore
non-additive methods. Indeed, a few meaningful non-additive methods have been
proposed based on the recent Ordinality axiom (Sprumont [1998]).

Obviously, cost sharing problems are not in isolation but often in economic en-
vironments in which each agent is a rational player and acts strategically (although
we ignore this for simplicity). Indeed, each method generates a cost sharing “game”
in which agents choose their demands strategically. From a more general viewpoint,
the problem can be regarded as a social choice problem in which each agent is en-
dowed with a preference. The overall question will be what cost sharing mechanism
(method) generates an incentive-compatible and efficient utilization of the commonly
shared production facility. This will lead us to the more complex issues of efficiency

and strategy-proofness in mechanism design. This is beyond the scope of this thesis.
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In the following chapters, two different models are discussed separately. Chapter
2 discusses the discrete (heterogeneous) model. Chapter 3 deals with the continuous

(heterogeneous) model.
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Chapter 2 : The Discrete Model
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The Additivity and Dummy Axioms in
the Discrete Cost Sharing Model



Abstract

The paper considers the discrete cost sharing model first studied in Moulin’s
paper [1995]. It shows that the set of additive methods satisfying the dummy
axiom is the set of all convex combinations of the path generated methods.
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1 Introduction

Consider the following cost sharing problem. A production facility is shared by a
finite number of agents ¢ = 1,...,n. Each agent : demands an integer amount ¢; of a
personalized good, and the total production cost expressed by C(qy,...,¢,) must be
equitably divided among the n agents.

This model was first proposed by Moulin [1995]. He generalized the Shapley value
theory to cost sharing by adding the Demand Monotonicity axiom to Shapley’s two
original axioms, Additivity and Dummy. He used this Demand Monotonicity axiom
to characterize the Shapley-Shubik method, among others.

There are two other related models in the literature. The first model (Model 1) is
a special case of the above discrete model. It assumes that all individual demands are
either 0 or 1. This is equivalent to the standard cooperative game model. The second
model (Model 2) assumes that all demands are real numbers. This corresponds to
the well-known Aumann-Shapley pricing model (see the survey by Tauman [1988]).
For both models, there has been a large amount of literature.

We reconsider Moulin’s discrete model (we call Model 3). We focus on two basic
axioms, Additivity and Dummy, and reexamine their implications on the cost sharing
methods. Recall that for Model 1, Weber [1988] showed that the additivity (to be
precise, he uses a stronger axiom called linearity) and dummy axioms characterize the
class of random order values. For Model 2, Friedman and Moulin [1995] provided a
representation formula for all cost sharing methods meeting Additivity and Dummy
axioms. Recently, Friedman [1998] and Haimanko [1998] provided characterizations
in terms of the path generated methods for Model 2. For Model 3, Moulin [1995]
characterized the class of cost sharing methods satisfying Additivity, Dummy and

Demand Monotonicity.
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The main result of this paper is a characterization of the entire class of methods
satisfying the Additivity and Dummy axioms for Model 3. We show that these

cost sharing methods are the convex combinations of the path generated methods

(Theorem 1).

2 The Model and the Axioms

The model is essentially the same model discussed by Moulin [1995]. The only dif-
ference here is that the demand profile is fixed in the discussion. The reader will
immediately see that the model with variable demand profile allows for exactly the
same result.

Denote N = {0,1,2,...}. Let n € N,n > 0 and N = {1,...,n} be the set of agents.
Let ¢ € N" be a demand profile, which is fixed throughout this paper. Denote [0, ¢]
the interval: 0 < ¢ < ¢ in N". A cost function is a mapping C : [0,¢] — R such that
C(0) =0 and C(t) < C(t') if t < t'. The set of all cost functions is denoted by C.
A (cost sharing) problem is a pair (g;C) where C' € C. Since we fixed the demand
profile we simply call C' € C a problem. A (cost sharing) method z is a mapping from
C into R} satisfying the budget balance condition - z;(C) = C(q).

A few more notations will be used. The interval ]0, g means the set [0, ¢]\{0} and
10,9[=[0,¢]\{0,¢}. If t € [0,9] and S C N is a coalition, denote ts the restriction of
t to 5. We write ¢ = (t5,t_s) instead of ¢ = (ts,tn_s) and ¢ instead of {z}. Denote
A(t) = {t € N|t; > 0} the set of active agents at ¢. Let 1° stand for the vector in N™
whose jth component is 1 if j =7 and 0 otherwise. Given a problem C and t; > 0,
we define §,C(t) = C(t) — C(t — 1%).

The paper only considers the cost sharing methods satisfying the following two

axioms: Additivity and Dummy. A method z is additive if 2(C14C3) = z(C1)+2(Cs)
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for any C1,C; € C. It satisfies the dummy axiom if 2;(C') = 0 whenever 8;,C(t) = 0

for every t € [0, ¢] such that ¢; > 0.

3 The Characterization

At first, the Additivity and Dummy axioms imply the following representation result.
It corresponds to I'riedman and Moulin’s [1995] representation lemma for Model 2
and to Weber’s [1988] Theorem 2 for Model 1. The proof of this lemma is in the

Appendix.

Lemma 1 (Representation Lemma) A method z is additive and satisfies the
dummy azxiom if and only if, for each i € A(q),'® there exists a unique mapping
pi [1%,q) = Ry such that
zi(C)= Y pi(t)3C(t) for each C €C,? (16)
t€[1%,q]

and

> > piltis—i) =1 for each t€0,q].% (17)

1€A(Y) 5-i€[t—isg~i]
The collection p = (f:)ica(q) is called the weight system associated with the method
z.

Based on this representation lemma, we further show that any additive method
satisfying the dummy axiom must be a convex combination of the so-called path
generated methods defined below. This alternative characterization is much more
intuitive than the representation lemma. Before we state the main thorem we need

the following important notions, namely a path and a path generated method.

9For i ¢ A(q), z:(C) = 0. They are implied by the budget balance condition.

2°In general, each y; (i € A(q)) depends on q. Since q is fixed in this paper we write y; instead of
p! for each i € A(g).

1 This ensures the budget balance condition.
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Definition 1 A path to q is a mapping P : {0,1,...,q(N)} — [0, q] such that

e For each k € {0,1,...,q(N)}, P(k) is identical to P(k — 1) in all coordinates

but one, say, the ith, for which
Pi(k)=P(k—-1)+1,

where ¢(N) = X n ¢i.

Denote P the set of all paths to q.

Definition 2 A path generated method, generated by a path P € P, is a method

which charges each agent the sum of his marginal costs along the path.

More precisely, let P be a path. The P—path generated method is defined as
follows: if C' is a problem and ¢; > 0, we compute for every ¢; € [1,¢] the unique
integer k =: k(t;) for which P;(k—1) = ¢,—1 and P,(k) = ;, and then charge agent i

2£(C)= Y BC(P(L))2
tiefl,qi]

Note that the path generated methods satisfy the Additivity and Dummy axioms.
And their associated weight systems consist of vectors with components of 0 or 1 only.

Denote C'P the set of all the path generated methods w.r.t. the path set P.
Denote C'SM the set of all t‘he cost sharing methods satisfying the Additivity and
Dummy axioms. Then, CP is a subset of CSM. From Lemma 1, we observe that
each method in C'SM corresponds uniquely to a weight system, which is a vector
in the Euclidean space of dimension 37 ¢;IT;xi(g; + 1). Therefore, the sets CP and

CSM can be thought of as subsets in this vector space. Then, it can be shown that

22This expression should be understood to be zero if ¢; = 0.
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the set CSM is a convex compact set and the set CP is a subset of the set of extreme
points ?* of CSM, ext(CSM), i.e., CP C ext(CSM) (we omit the proof). Therefore,
we conclude that conv(CP) C CSM. ** Our main theorem, given in the following,

states that the converse inclusion, CSM C conv(C P), is also true.

Theorem 1 The cost sharing methods satisfying the Additivity and Dummy azioms

are the convezr combinations of the path generated methods =¥ (P € P), i.e.,
CSM = conv(CP). (18)

The proof of the theorem, i.e., the proof of CSM C conv(C P), relies on several

lemmas.

Lemma 2 Let z be an additive method satisfying the dummy aziom. Let u; (1 € A(q))
be the weight system associated with & (by Lemma 1). Then, for every t €]0, ¢,
> owt)= Y m(t+1) (19)
i€A(g)NA(L) i€A(q)n{ilti<qi}

and

> w(l) =1, (20)

i€A(g)

> uilg)=1. (21)

i€A(g)
This lemma is in Sprumont [1998b]. It follows directly from the representation

lemma by applying it to the following two types of cost functions:
Ci(s)=1 if s>t and 0 otherwise,

C/(s)=1 if s>t and 0 otherwise.

23The definition of extreme point is the following: A point ¢ € A (A is a convex set) is an extreme
point of A if whenever a,b € A, and ¢ = a/2 + b/2, then a=b.
24The notation “conv” refers to the convex hull.
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Note that if we interpret the weights u;(t) (: € A(¢)) at any intermediate node ¢
as flows, then equation (19) says that the incoming flow at ¢ equals the outgoing flow
from ¢. Equations (20) and (21) say respectively that there is one unit of flow coming
out from the “origin” 0, and going into the “sink” g. Therefore, the weight system
associated with a cost sharing method can be regarded as a “flow” running through
a “network”.

Formally, a network is a pair G = (V, E), in which V = VUV U V5, V; = {0}
is the origin, V; = {t|t €]0, ¢[} is the set of the intermediate nodes, and V3 = {¢} is
the sink. To define the set of arcs E, for each t €]0,¢] and each 7 € A(q) such that

t; > 0, let e;(t) be the directed link from ¢ — 1¢ to ¢. Let

E(t) = {ei(t)li € Alq)} (22)
and define
FE = Ute](),q]E'(t).

Let f and c(e) (¢ € E) be non-negative real numbers. Given these numbers, a

feasible flow on G is a set of numbers u(e) (e € E) such that

' f t=0
2 melt+1)) - 3 wet) =1 0 telogl  (23)
i€A(q)n{i|ti<qi} i€A(q)NA(Y) —f t=gq
with capacity constraints
0 <ue) <cle), e€ E. (24)

Our proof of Theorem 1 also relies on the following two lemmas from the integer

programming theory (Garfinkel, R. S. and G. L. Nemhauser [1972]).

Lemma 3 (Garfinkel, R. S. and G. L. Nemhauser [1972], p66-74) The constraint

matriz corresponding to the flow constraints (28) and (24) is totally unimodular®.

%5An integer m x n matrix A is totally unimodular if every square, nonsingular submatrix B of A
has determinant 1 or —1.
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Lemma 4 (Garfinkel, R. S. and G. L. Nemhauser [1972], p66-7{) If A is totally
unimodular, then the extreme points (if any) of S(b) = {z|Az = b,2 > 0} are integer

vectors for any arbitrary integer vector b > 0.

We are now ready to prove that CSM C conv(CP). Let x € CSM. We observe
that the weight system u associated with = is a feasible flow for the numbers c(e) = 1
(e € E) and f = 1. This directly follows from Lemma 2. Indeed, let p(e;(t)) = pi(t)
in the flow constraints (23) and (24). From Lemma 2, the constraints (23) are satisfied
for f =1 and c(e) =1 (e € E). The constraints (24) are satisfied due to Lemma
I’s budget balance condition. In particular, we also observe that the weight systems
associated with the path generated methods correspond to the “unit flows”, namely,
those feasible flows y for which u(e) is zero or one for each e € E. Conversely,
a unit flow p defines a path to ¢ : P = {t € [0,¢]|t = 0 or there exists an 7 €
A(q) s.t. p(ei(t)) = 1} (check that P is indeed a path), which generates a method
zP (Definition 2). Now, consider the set of all feasible flows with c(e) = 1 (e € E)
and f =1 defined by (23) and (24). It is a compact convex set and can be spanned
by its extreme points. However, its extreme points, by lemmas 3 and 4, are integer
vectors, and in our case, vectors with components of zero or one. So these extreme
points are the unit flows. This proves that the weight system p associated with z is
a convex combination of the unit flows. Accordingly, the cost sharing method z is a
convex combination of the path generated methods. This completes our proof of the

theorem. Q.E.D.

Appendix: The Proof of The Representation Lemma

Before the proof, we provide the following two properties implied by the Additivity

Axiom. They will be used in the proof.
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Lemma 5 (Independence of Irrelevant Costs, Moulin [1995]) If z satisfies Additivity,
then Yq € [0,q] , C1,C3 € C,

{Ci(¢') = Ca(q), V¢ € [0, 4]} = 2(g; C1) = z(g; Ca).

Lemma 6 If z satisfies Additivity, then for every fized ¢ € [0,7], operator z(q;-)
extends uniquely to a linear operator on RP, where RP = {C | C : [0,q] = R,C(0) =
0}: D= H?:l(qi + 1) -1

Proof: By the Independence of Irrelevant Costs, we only need to consider C on
[0,¢]. Denote C(g) the restriction of C on [0,q]. Then we see that the set of cost
functions on [0, ¢], i.e., the C(q) can be viewed as a convex cone in R”. We first show

that the additive operator z(g;-) is also a linear operator w.r.t. positive scalars on
the cone C(q).

By Additivity we know that for any positive rational number R
z(¢; RC) = Ra(q; C).

Let r be any positive real number. Let {r,,} be an increasing and {R,,} a decreas-

ing sequence of rational numbers converging toward r. Then for each m = 1,2, ...,
Tm < T < Ry,

and by Additivity and the fact that cost shares are non-negative (called Positivity)

we have

Rnz(q;C) = z(q; RmC)
= z(¢; RmnC —rC +rC)
= 2(¢;rC) + 2(q; (Rm —1)C)

> z(q;rC),
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and
z(qg;rC) = z(q;7C —rpC + 1, C)
= 2(¢;rmC) + 2(g; (r — r)C)
> x(q; rmc)
= rpz(g;C).
Therefore

rm2(g; C) < 2(¢;7C) < Rpz(q; C), m = 1,2, ...

and by taking limit as m — oo we get
z(q;rC) = rz(g; C).

This implies that 2(g; ) is a linear operator on the cone C(¢) w.r.t. positive scalars.
Since RP = C(q) — C(q), we can extend the linear operator z(g;-)(w.r.t. positive
scalars) from C(q) to RP. From this linearity w.r.t. positive scalars on R it follows
that z(g; ) is linear on RP.
The lemma is proved. Q.E.D.
From these two lemmas, we provide a proof of the representation lemma as follows.
The proof is divided into three steps:
Step 1. For each ¢ = 1,...,n, there exists a unique vector +; in R” such that
2i(g;C)=7v+C = Y ~(t)C(t) foreach C €C. (25)
t€]0,q]
This follows from the last lemma and the fact that any linear operator in finite
dimensional space RP is uniquely associated with a vector in RP, with which it can

be expressed as (25).
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Step 2. Further, these vectors 4; (i = 1,...,n) in Step 1 have the following prop-

erties.

> w)=0, (26)

tel(0.9,),(qireL )]

where (0,¢" ;) # 0,
Z 7l(t) = 0’ q: 7& 07 qis

t€[(g{,0~:),(gq}rq—i)]

tE[(qiyO—i)#l]

and

> 7(t) > 0 for each p €]0,q]. (27)

t€[p,q]

These follow from repeatedly applying both Dummy axiom to such cost functions
as 6(0,¢)(*) (80,0 )(p) = 1 iff p > (0,¢.;)) and the Positivity of the cost sharing

method to cost functions like 0p.

Step 3. We deduce the representation formulas. To be specific, consider i = 1.
By Step 1 and 2, we have a unique vector 7; such that
21(g;C) = Y n(t)C(t)
t€]0,q]
and v(t), t €)0, ¢] satisfy the equations in Step 2.
For (0,¢",) # 0, by (26) we have

n(g,q.,) = — > m(t).

te[(01QL1)v((I1 "11‘11_1 )]

Therefore

z1(;C) = Y m)C(t)

t€]0,g]

- ) nCt)+ Y > n(t)C(t)

te[(l 10—1)7(‘11 01 )] qi.] #0 te[(o»ql_l)v(QI vql_l )]
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= ) MOEOEDN > n()C(¢) +

t€[(1,0_1),(q1,0_1)] q'_lz;ﬁO te[(orq’_l):(QI_l:QLl)]
71(41,921)C(q1,41)]

= > nOCH+ X | > nHC() -

tG[(l »O—l)v(QI 01 )] q’_l #0 te[(ovq’_1)v(‘h -1 1‘1'_1 )]

> N ()C (g1, 45,)]-

te[(quf.l),(% —1,(],_1 )]

Denote Q_, =[(0,4",),(q1 — 1,4",)], then

> ) = > nt)C(ar,dy)

teQ_1 tEQ_1
= — > n®C(g,¢-) - C1)]
teQ.;
g1—1
= Z [Z t1+ 1aq/—1) _C(tlhq,—l))]
teQ_, 1—t1
q1-1
= = ) > mCE+1,44)-C(t,44))
1€Q t]=t
q1—-1 #
= =23 mlt,¢L))Cti+1,4.,) = Cltr,¢4))
t1=0 #;=0
1 ti-1
= =2 (>t ¢L))[Ct,¢5) — Clh —1,¢.4)).
t1=1 t;:O

For each t; € [1, ¢1], define

t1—1 q
pi(t,qy) Z 71 (t,95) Z’Yl(t’laq,—l)
=0 [21

Then by applying the condition (26) and the Positivity to the cost function ' : C(t) =

1ift > (t1,¢") or t_y > ¢’, and 0 otherwise, we can show that

/‘l{(tlaqf—l) Z 0’ i € [1’(11]' (28)

So

S Y w0t = Y S Mg )AC(t ). (29)

q{.1¢0 te[(oqu_l)x(qhq’_])] ql_1¢0 t1=1
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For the part

Z "N (t)O(t)’

t€{(1,0-1),(q1,0-1)]

it can be rewritten as

q1
> i (t1,0-1)0C(41,0-1),

t1=1

where

q1
#(t1,0-0) = Y (t),000) 20, ¢ € [1,¢1]

t;:tl

(again by the same reason as (28)).

Now combining the above two parts, the formula (16) for 7 = 1 is obtained. The
very argument is true for any other ¢ € N and so their formulas are similarly obtained.

The uniqueness of the weight systems p follows from the uniqueness of the vectors
v (t=1,..,n).

The budget balance conditions (17) follow immediately by applying (16) to the
cost functions: for each t €]0, q], é:(p) = 1 if p > ¢,0 otherwise.

For the second part of the lemma, it suffices to show that the method defined by
the formulas (16) satisfies the budget balance condition. This follows from the facts
that any cost function can be expressed as a linear combination of the §; (¢ €]0,4])
functions, and the budget balance condition is satisfied for each such function since
it is just the condition (17). The Additivity and Dummy properties are obvious from
the formulas (16).

Summing up, the lemma is proved. Q.E.D.
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Abstract

We discuss the discrete Aumann-Shapley Method (A-S) proposed by H.
Moulin (“On Additive Methods to Share Joint Costs”, Japanese Economic
Review 46 [1995], 303-332). We show that Additivity, Dummy and Propor-
tionality are not sufficient to characterize the A-S method. For the two-agent
case in which one agent’s demand is fixed at one unit, we show that Additivity,
Dummy and Proportionality do characterize the A-S. In general case, we in-
troduce a property called Consistency of Cost Sharing Ratios(CCSR). We use

CCSR together with Additivity, Dummy and Proportionality to characterize
the A-S. '
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1 Introduction

In this paper, we continue to consider additive methods satisfying the dummy axiom
in the discrete cost sharing model. But we focus on a special method in this set,
namely the discrete Aumann-Shapley method first proposed (but not characterized)
by Moulin [1995].

The discrete Aumann-Shapley method is defined as the arithmetic average of all
the path generated methods. Therefore, it occupies a central position in the set of
additive methods satisfying the dummy axiom. Alternatively, it can be defined as the
Shapley value of the “replica game” a cost sharing problem generates. More precisely,
it is computed by associating to each demand profile (g, ..., ¢,) and the cost function
C the stand-alone cost game with 37, ¢; players, where each player is a particular
unit of a particular good. Then the cost share to a particular good is the sum of the
cost shares of all the units of this particular good, which are the Shapley values of
these units.

The discrete Aumann-Shapley method is closely related to the Aumann-Shapley
method in the continuous model. Given the (continuous) cost function C and demand
profile ¢, we cut each individual demand ¢; into K identical demands ¢;/K and
consider each small demand as a separate entity; then we apply the Shapley value to
the stand-alone game among n - K players. When K goes to infinity, this leads to the
Aumann-Shapley method, which is the integral of the marginal costs on the diagonal.

As the continuous Aumann-Shapley method, the discrete Aumann-Shapley method
satisfies the Proportionality property, i.e., it becomes average cost pricing when the
cost function is homogeneous. This method relates to a recent paper by Moulin
[1999b] on the problem of rationing indivisible units among agents with indivisible

claims. There, the proportional random allocation distributes each available unit
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sequentially among unsatisfied claims according to the probability (not the prior-
ity) calculated by the proportions of their unsatisfied claims among all unsatisfied
claims. Note that each rationing method in rationing problem corresponds to a path
generated method in cost sharing problem (see Moulin [1999b]).

What we are interested in here is a characterization of the discrete Aumann-
Shapley method. Recall its continuous counterpart. In the continuous model, the
Aumann-Shapley method is characterized by Additivity, Dummy, Proportionality
and Scale Invariance (Billera and Heath [1982], Mirman and Tauman [1982]). In
the discrete model, we attempt to provide a parallel characterization for the discrete
Aumann-Shapley method.

It turns out that this is a very challenging problem. The difficulty comes from
one of the differences between these two models, namely the fact that the standard
Scale Invariance axiom has no obvious counterpart in the discrete model. It has been
known that all the discrete versions of the scale invariance we have known so far,
such as Moulin’s Ordinality (Moulin [1995]), Measurement Invariance in Sprumont
and Wang [1996] (see the next paper), or Sprumont’s Coherence (Sprumont [1998b])
are too strong to allow the discrete A-S. On the other hand, as we will see in the
following, the axioms of Additivity, Dummy and Proportionality are not sufficient to
characterize the discrete A-S. Therefore, how to characterize the discrete A-S is not
obvious.

We show that for the two-agent case in which one agent’s demand is fixed at
one unit, Additivity, Dummy and Proportionality do characterize the discrete A-
S. In the general case, we introduce a property called Consistency of Cost Sharing
Ratios(CCSR). We use CCSR together with Additivity, Dummy and Proportionality

to characterize the discrete A-S.
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We have to point out that our characterization in the general case (Theorem 2) is
not satisfactory. The reason is that the CCSR is a property imposed on the parameters
of the cost sharing methods rather than the methods themselves. Therefore, it is still
an open question to know what axiom can replace this property.

In a quite different context, Calvo and Santos [1998] provided a characterization of
the discrete A-S by axioms of efficiency and balanced contributions using multichoice
games. However, their approach is not in line of ours, but in the spirit of Hart and

Mas-Colell’s potential approach in cooperative game theory.

2 The Discrete Aumann-Shapley Method

First, let us repeat that the model is the same as in the previous paper, except that
this time we allow the demand vector to vary. To be precise, now a problem is a
pair (¢;C). Given a problem (g;C), a solution is a vector z(g;C) € RY such that
21 2i(q; C) = C(g). Similarly, a cost sharing method z is a mapping associating with

each problem a solution. The Additivity now is read as
2(q;C1+ C2) = 2(g;C1) + 2(¢; C2), Vg €N, C1,C; €C,

and the Dummy is
If 0,C(p) = 0 Vp, then z;(¢;C) = 0.

Now, we introduce the discrete Aumann-Shapley method (Moulin {1995)).

Definition 1 The Aumann-Shapley method 4% recommends the arithmetic average
of the cost shares computed by the path generated methods: for each problem (¢;C)
and 1 € N,
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An explicit formula provided by Moulin [1995] using game-theoretic interpretation,
is as follows:

T A (-

Z; ;O = - 7
(4:6) M9) & Xiti Xt

)C(t), i =1,...,n, (30)

with the notation ¢} = ¢; — t; and A(q) = Q, 9!

grtgal -

Here, we reformulate the formula to conform to the representation lemma (in the
previous paper) as follows.

Let
m@@=ﬁL

q)

and check that the Aumann-Shapley formula can be expressed as

At — 1,1 )M\, (31)

wi(gt)= Y mila)(DAC(2). (32)

t€[0,q]
Apart from Additivity and Dummy, the Aumann-Shapley method satisfies the
Poportionality axiom which is formally stated below. (Note that this is obvious from

its game-theoretic definition (Moulin [1995]).

Definition 2 A cost function is homogeneous if there exists a function ¢: Ry — Ry

such that

Clo) = o), Yae 0,

Definition 3 A cost sharing method has the Proportionality property if it allocates

costs in proportion to demands when the cost function is homogeneous.

Lemma 1 For any given q € [0,7], let u be the weight system of the Aumann-Shapley

method. Then we have

S wlg)) = —@—, foreach 1=1,...,nandt=1,...,qn. (33)
qnN

t'ef0,q]:t, =t
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Proof: By the definition of x in (31), a direct calculation gives the results.
Corollary 1 The Aumann-Shapley method satisfies the Proportionality.

Proof: Suppose that C(q) = c¢(¢n) where ¢ : Ry — Ry. Then 9;C(t) = ¢(tn),t =
1,...,n and therefore for each i = 1,...,n
2i(g;C) = Y w(9)(t)aC(t)

t€[0,q]
aN

= > ditn) D ml9t)

in=1 t'el0,q):ty=tn

This completes the proof. Q.E.D.

Recall the continuous Aumann-Shapley pricing method. It is generated by the

continuous path-the diagonal, as follows,

w0, 0) = [ a0 (Lq)it. (34)

0 qz

(See Aumann and Shapley [1974], Billera, Heath and Raanan [1978], Samet and
Tauman [1982].)

Both the discrete and the continuous Aumann-Shapley methods satisfy Propor-
tionality and do not satisfy the Demand Monotonicity (each agent’s cost share is a

non-decreasing function of his demands, see Moulin [1995]).

3 The Characterization

To simplify the analysis, we first consider the two-agent case.
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In this case the Aumann-Shapley method can be expressed as:
q1'lgd! (ti+t) (qn+qo—t; — to)!
42, C) = 35
$1((I1 12 ) (QI + q2)! te[zqu] tlt,! (QI - tl)!(‘h - t2)! ( )
ty @1 —
- C(t). 36
(t1+t2 Q1+Q2—t1—t2) ®) (36)

Theorem 1 If either g, = 1 or Gy = 1, then z satisfies Additivity, Dummy and

Proportionality if and only if z is the Aumann-Shapley method.

Proof: We only need to check the only if part. It suffices to show that the cost
sharing method which satisfies Additivity, Dummy and Proportionality is unique
under the assumption.

Without loss of generality, assume that ¢, = 1 and consider i = 1. Since z is
Additive and has the Dummy property there exists a vector 1 such that

1l 50) = 30 ma, D()HC(E).

t€[0,(q1,1)]
Consider the following two types of cost functions:

Type 1: Homogeneous

Clp)=b:(p+p), r21

where 6,(z) = 1 if z > r and zero otherwise.
And
Type 2:

60y 0<r <@

where 6,(¢') =1 if ¢’ > ¢q and zero otherwise.

Let r =1 first. Then by Proportionality

1

1;6,) = ,1)(1,0) = .
z1(q1, ) p1(q ) ) o +1




74

And let r; = 1, by Dummy

xl(qla 1;6(7'1,0)) = ,Ul((Ih 1)(1a0) + Nl(qla 1)(1a 1) =1

Therefore

)1
q+1

Repeating these two steps, we can uniquely determine p1(g;,1)(t) for all ¢ €
[0, (g1, 1)].

So z is uniquely determined. The theorem is proved. Q.E.D.

pi(g, (1,1) =1 — pa(gqr,1)(1,0) =1 -

The following example shows that in general Additivity, Dummy and Proportion-
ality are not enough to characterize the Aumann-Shapley method.

Let ¢1 = 2,¢; = 2 be the demands. The Aumann-Shapley method is (for i=1)

21((2,2):C) = %[30(2, 2) + 2C(2,1) + C(2,0) + 2C(1, 0)
~20(0,1) - C(0,2) - 20(1,2)]

But there is another method which also satisfies Additivity, Dummy and Propor-

tionality. It is

2,((2,2);0) = 2[20(2,2) +C(2,1) + C(2,0) + C(1,0)
—C(0,1) = C(0,2) — C(1,2)]

Therefore we have to introduce other axiom(s) in order to characterize the Aumann-
Shapley method.
Let z be a cost sharing method satisfying Additivity and Dummy. Then by the

representation lemma there exist vectors p;,¢ = 1, ...,n such that (16) and (17) hold.

Definition 4 Let z be an additive method satisfying Dummy. Say that x satisfies
Consistency of the Cost Sharing Ratios (CCSR) if the corresponding p; i = 1,...,n

have the following property
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Yq€[0,7], ¢ €[0,g] and t € [0,9] N[0, ¢],

pi(g)(®) _ paild)(@)
pi(q)(t) — pilg)(E) 0

This axiom can be regarded as a consistency property. The coefficients in the
representation of the cost sharing formula may depend on the demand vector ¢ but

the ratios between any two agents should not change as demands change.

Lemma 2 If z satisfies Additivity, Dummy, Proportionality and the CCSR, then

Vg€ [0,q], t €[0,q]
wi(Q)(t) ¢ (38)

Proof: Consider the n = 2 case only. The general case is similar. If ¢; = 1 or
g2 = 1, then we know by Theorem 1 that Additivity, Dummy and Proportionality
imply that z must be the Aumann-Shapley method. It is easy to check that for A-S
(38) holds.

Now assume that ¢; = 2 and ¢, = 2 first. Choose ¢’ = (2,1). By CCSR, Vt € [0, ¢'],
(¢)(®)
(¢)(®)

but from the above argument we already know that

_
2

Therefore
m(g)t) /
=T te an .
D)~ 5 €0
Symmetrically let ¢’ = (1,2). We have
t t

pa(q)(t) — b’
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So only t = (2,2) needs to be checked. But by Proportionality

2 1
p1(9)(2,2)) = 5133
and
2 1
12(9)(2,2)) = 513- 3
Hence,

m@@2) _1/2_2
p2(9)(2,2)) 1/2 2

Therefore for any t € [0, (2,2)],

m(Q@) _ 4
p2(q)(t)  t2

Before jumping to the conclusion, consider one more step forward, i.e., assume

now that ¢ = (3,3). Let ¢’ = (2,2). Then for all ¢ € [0,(2,2)], by the CCSR and the

above result we have
m(@) _ pm(d)t) _t
)t
)

pa(q)(t)  pa(
Similarly by Proportionality for ¢ = (3,3

mlgt) _,_3
p2(g)(t) 3

Now we show for ¢ = (3,2) and ¢t = (2,3). Again consider ¢ = (3,2), ¢’ = (2,2),
q" = (3,1). We have

m(@)t) _ m(d)@) _ ,
pa()@)  pa(g)(t) 2 vt € (0,4,

and
pa(g)(t)  pa(d)(t) tI, Vi € [0,q"].

pa(9)(t) ~ pa(d)(t) 1
So only t = (3,2)(or symmetrically ¢t = (2,3)) needs to check. Again by Propor-

tionality(and the CCSR)
3
mlg)(t) = ¢
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and
p2(q)(t) = -?-

This implies
pmlgt) _3/5 _3
pa(q)(t)  2/5 2

Now it is clear that by induction (we omit the details) we can conclude that for

any ¢ € [0,7] and any t € [0, q] the equation (38) holds. The lemma is proved. Q.E.D.

In general, we have the following theorem.

Theorem 2 There erists a unique cost sharing method which satisfies Additivity,
Dummy, Proportionality and Consistency of the Cost Sharing Ratios. It is the Aumann-
Shapley method.

Proof: Let « be a method satisfying these four axioms. We are going to show that
the coefficients in the representation lemma (Lemma 1 in Section 1 of this chapter)
are uniquely determined.

We know that the total number of unknowns, p;(t), ga(t),t €]0, q], is
a2 +1) + g1 + 1) = 2q192 + 1 + o
The budget balance (equation (17 in Lemma 1 in Section 1) implies that we have

Q1+ 92+ q1q2

independent equations (each corresponds to a different ¢ €]0, g]) for the unknowns.

By lemma 2, in addition, we have

70192

more independent equations(for different ¢ they must be linearly independent between

each other). Therefore totally we have exactly

2192+ 1 + q2
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independent equations and henceforth the unknowns are uniquely determined.
That the Aumann-Shapley method satisfies Additivity, Dummy and the CCSR
is obvious. Proportionality is already known by Corollary 1. The theorem is thus

proved. Q.E.D.
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The Measurement Invariance Axiom in
the Discrete Cost Sharing Model

with Yves Sprumont



Abstract

We propose a measurement invariance axiom on cost sharing methods for
the discrete model. The axiom is a discrete version of the well-known scale
invariance axiom in the continuous cost sharing model. We show that the set
of measurement invariant and additive methods satisfying the dummy axiom
is the set of simple random order values. Consequently, the Shapley-Shubik
method is the only symmetric method in that set.

80
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1 Introduction

Let us continue to consider the discrete cost sharing model. Instead of focusing on
the characterization of the specific discrete Aumann-Shapley method, we try to see
if a discrete version of the Scale Invariance axiom can be defined so that it can play
a same rule in the characterization of the discrete Aumann-Shapley method as the
Scale Invariance in the continuous Aumann-Shapley method. We are interested in this
discrete “scale invariance” not only because of this discrete Aumann-Shapley method
but also because of the fact that it is an interesting as well as a challenging problem
to define a suitable scale invariance axiom in the discrete model. This problem of
finding a proper discrete “scale invariance” axiom becomes even more challenging
when we require that the discrete Aumann-Shapley method satisfy it®.

As a first step, we formulate a very crude version of it, called Measurement Invari-
ance axiom. The idea is to mimic the traditional scale invariance axiom as much as
possible. Since we can not “scale down” an integer vector, we use the following “in-
direct” way. Informally, for a given problem (¢; C') and a given scale vector r >> 0,
use r to split (¢;C) into two problem (r® ¢;C) and (¢;C") (see the next section
for detail). We say a method z satisfies Measurement Invariance axiom if for any
problem (¢; C') and any given scale vector r, the method gives the same solution for
the two derived problems, i.e., z(r @ ¢; C) = z(¢q; C7).

An immediate consequence (Proposition 1) of this axiom is that it forces us to use
the value solution of the stand alone costs game the problem generates. Based on this
result, we provide an alternative characterization of an important family of methods,
namely the set of simple random order methods. The Shapley-Shubik method is the

unique symmetric method in this set, and the Aumann-Shapley method unfortunately

2650 far we have not found such a scale invariance axiom. Maybe we would never be able to .
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is excluded from this set.

By simple random order method we mean a method that uses the same random
order value for the same set of active agents. In the context of cooperative game
theory, Weber [1988] firstly defined the random order values as being the convex
combinations of the incremental values of the stand alone cost game (see the coop-
erative game theory section in Chapter 1). He characterized the set of random order
values by the combination of Additivity and Dummy.

Relevant to this paper is Sprumont [1998b]’s alternative characterization of simple
random order methods by Additivity, Dummy, Demand Monotonicity, and a new
axiom called Coherence. The Coherence axiom is a weaker version of scale invariance
than our Measurement Invariance. It requires that for any given problem and any
given scale vector, there always exists a re-scaled problem (called refined problem)
which gives the same solution as the original problem. Interestingly, the discrete
Aumann-Shapley method still violates this Coherence axiom. See Sprumont [1998b]

and our concluding remarks for more detail.

2 The Measurement Invariance and Simple Ran-
dom Order Values

Given a cost sharing problem (g;C), we associate a cooperative game C, (on the

player set N), called the stand-alone cost game, defined by:

0,(S) = Cl(gs,0), S C N.

Let A(g) be the set of active agents of the problem (¢; C), i.e., A(q) = {¢ € N|¢ > 0}.

Then, with a slight abuse of notation, define a sub-(stand-alone cost) game C, on the
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player set A(q) by:

C,(S) = C(gs,0), for all S C A(q).

Therefore, the set of sub-games are the collections of all games on various subsets of
the grand coalition N.

Then, recall the well-known scale invariance axiom in the traditional cost sharing
problem in which goods are perfectly divisible. It requires that the solution should
not depend on the units in which goods are measured. Samet and Tauman [1982]
characterized the well-known Aumann-Shapley method as the only scale-invariant
additive method prescribing proportional cost shares when the goods enter additively
in the cost function.

However, for the discrete cost sharing model, Moulin [1995] noted that the idea of
scale invariance can no longer be formulized in any obvious way. Therefore, he dis-
pensed entirely with any requirement of invariance to the measurement conventions.
His characterization of the Shapley-Shubik method is hardly comparable with the one
obtained in the divisible framework.

We define a discrete version of the traditional scale invariance axiom in the fol-
lowing. Though seemingly very close to its continuous relative, our requirement turns
out to be much more demanding.

Let r € NV and ¢ € N}'. Define r ® ¢ componentwise by (r ® ¢); = ri¢;. Given a
cost function C, define C™(q) = C(r ® ¢) for each ¢ € N}.

The Measurement Invariance Axiom reads as follows:

For every problem (g¢;C') and every r € NV,

2(¢;C) =2(r@Qg¢;C (39)

It is obvious that this is not exactly what we want for a scale invariance axiom.

We therefore prefer to speak of measurement invariance.
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It is easy to see that the following well-known Shapley-Shubik method satisfies

Measurement Invariance.

Definition 1 The Shapley-Shubik method z°° assigns to each problem (q;C) the

Shapley value of the stand-alone game that it generates:

50 = T (s = Dl(n—s)!

1
SCN:ies n:

(CQ(S) - CQ(S \ 2))’ 1€ N, (40)
where s =| S |.

However, the discrete Aumann-Shapley method in the previous paper does not
satisfy the Measurement Invariance. An example can be found in Sprumont [1998b].
It can also be inferred from our main theorem in the next section.

In fact, we will see that Measurement Invariance not only rules out the discrete
Aumann-Shapley method but also any method using the data beyond the stand-alone
costs.

A method z is called simple if it solves all problems with the same set of active
agents generating a same sub- game in the same way, i.e., z(q; C') = z(¢; C') whenever
A(g) = A(¢') and C, = Cy,.

Clearly, every simple method is measurement-invariant. Conversely, we now prove

the following result.

Proposition 1 Every method which is measurement-invariant and independent of

irrelevant Costs®™ | is simple.

Proof. Let the method z be measurement-invariant and independent of irrelevant

costs. Let (¢; (') and (¢; C') be two problems such that A(q) = A(¢') and Cy = C},.

27See the Appendix in Section 1 of this chapter for this property.
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Denote e the unit vector (e; = 1,7 € N). By measurement invariance,

x(q,C) = x((qA(q)’O)’C)
= 2((qa(g)> e-a()) Qea(q),0); C)

= z((ea),0); ClA@*-4@))

and

2(¢5C") = 2((d4q,0);C")
= 2((gg) €-4(e)) Qea(), 0); C")

= w((eA(q),O);C'(qlA(q)'e—A(q))).

But CUawe-4)(t) = C'(qii(q)’e"‘("))(t) for every demand vector ¢t < (ea(q),0).

Indeed,

Clawe-a)(t) = C((ga) e-a(0) Qtage) t-a(0)))
= C((ga()» e-a(s) Q(t4(),0))
= Clgs,05)(S = A(t) C Alg)
= C,(9)
= o(S)
= C'(¢s,0-5)
= C'((da)» e-a10) Rlta), 0))

= C'((dag) e-at0) Rt a@)s t-a)))
= C'a@e-4@)(4)

Since z is independent of irrelevant costs, therefore,

z(¢;C) = z(¢’; C"),
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proving that z is simple. This completes our proof of the Proposition. Q.E.D.
Let S C N. Without loss of generality, assume that S = {1,2,...,s}. For a given

ordering o of {1,2,...,5}, we define the o-order method z°° as follows:
wgs(q; C) = C(qP(as,i)Ui’O) - C(qP(as,i)’O)v t€Sand0ifi € N \ S’

where P(0®, 1) is the coalition of agents preceding i in the ordering &5.
A S-random order method is a convex combination of the o°-order methods.

When § = N, it is the standard random order method in the sense of Weber [1988)].

Definition 2 A simple random-order method is defined by a collection of the S-
random order methods (S C N ) in the way that, for any problem (¢; C), the S = A(q)-

random order method is applied.

3 The Characterization of Simple Random Order
Methods |

Our main result is the following characterization of the simple random order methods

by Additivity, Dummy and Measurement Invariance.

Theorem 1 The measurement-invariant additive methods satisfying the dummy az-
iom are the simple random order methods. The Shapley-Shubik method is the only

symmetric method in that set.

(Where z is called symmetric if z;(¢;C) = 2;(¢; C) whenever ¢; = ¢; and C is a

symmetric function of ¢ and j’s demands.)

Proof. Let x be a measurement-invariant additive method satisfying the dummy

axiom. Since additivity and dummy imply independence of irrelevant costs (Moulin



87

[1995]), it follows from our Proposition 1 that « is simple. Clearly, a game v (with
v(P) = 0 and the player set S C N) is generated by some cost sharing problem
(with active agent set .S) if and only if it is monotonic (i.e., v(S’) < v(T") whenever
S" € T" C S). In fact, given any cost sharing problem (¢; C), define a cooperative
game C, on the player set A(q) (recall that A(q) is the set of active agents at ¢, it is

a subset of the universal set N.) as follows:
Cy(S) = C(gs,0), for every S C A(q).

It is clear that C; is monotonic.
On the other hand, for any monotonic game v with the player set S (S C N), we
can construct a cost sharing problem (¢; C') which generates the game v. Actually,

let ¢ = (es,0) and define C on N) as follows:

C(ts,t_s) = U(A(tg)), iftg <eg (i.e.,ti <l1l,1€ S)

C(t) nondecreasing, otherwise.

Since z is simple, we can define a collection of values (£5) scN, one for each subclass

of monotonic games on each subset of agents, such that
£9(Cy) = 2:(4;0), i € Alg). (41)

Note that, for each subset S, £° satisfies the additivity and dummy axioms on the
set of monotonic games. This follows directly from the additivity and dummy proper-
ties of z. Moreover, from the linearity of = (shown in the proof of the representation
lemma in the first paper) and the positivity of =, we know that the value £ is also
linear and satisfies Weber’s monotonicity axiom. From Theorem 4 in Weber [1988],
each & (i € ) is a probabilistic (individual) value. From Weber’s Theorem 13, £5 is

a random order value (on the player set S). Therefore, it follows that z is a simple
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random order method. It is easily seen that symmetry pinpoints the Shapley values
to each subclass of the monotonic games induced by the cost sharing problems and it
coincides with the Shapley value for the (enlarged) monotonic games on the univer-
sal set N.?® Therefore, it is the Shapley-Shubik method. The part that the simple
random order methods do satisfy additivity, dummy and measurement invariance is

obvious. This completes our proof. Q.E.D.

4 Concluding Remarks

Besides Measurement Invariance, there have been two alternative scale invariance ax-
ioms proposed for the discrete model. The first is Moulin’s {1995] (discrete) axiom
of ordinality. 1t is the following condition. Fix a cost function C, an agent ¢, and a
demand level ¢ for i. Construct the cost function Cyo by jumping above t9: Co(t) =
C(t)if t; < ¢) and Cy(t) = C(tw\i, ti+1) otherwise. If C is flat at 17, i.e., C(tn;, 12 +
1) = C(tn, 1) for all tyy;, Moulin requires that z(q; Co) = z((gn\irgi + 1); C) for
every demand vector ¢ such that ¢; > ¢? + 1. From our Proposition 1, it is clear that
every measurement-invariant method which is independent of irrelevant costs satisfies
Moulin’s ordinality axiom. On the other hand, ordinal methods (in Moulin’s sense)
which are independent of irrelevant costs need not to be measurement-invariant. Here
is an example. Let n = 2. Define a path system © which associates with each de-
mand vector ¢ € N a path to ¢ in the following way: choose the unique path P which
passes through the points (min{qy, 1}, 0), (min{q¢, 1}, min{g¢s,1}), (¢1, min{gz,1}) and
(¢1,92). Then, define the 7- incremental method by charging each agent the sum of his
marginal costs along the path recommended by the system 7. It is not hard to see that

this method is additive, dummy (therefore independent of irrelevant costs) and sat-

28Let v be a game on S C N. The enlarged game v(we use the same notation without the risk of
confusion) with the player set N is defined by: v(T) = v(T'N S), for each T C N.
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isfies Moulin’s ordinality axiom. But this method is not measurement-invariant. In-
deed, Moulin [1995] noted that there exist ordinal additive methods satisfying dummy
but violating demand monotonicity or cross monotonicity. By our Theorem 1, such
methods can not be measurement-invariant since all simple random order methods
are demand-monotonic and cross-monotonic. Therefore our measurement invariance
axiom is more binding than Moulin’s ordinality axiom.

The second is the Coherence axiom proposed by Sprumont [1998b]. It is based on
the following observation. In a discrete problem where agent ¢ demands ¢; units of
good 7, the relevant cost data are described by a cost function defined on x:{0,1,...,4i},
that is to say, by (g1 +1)(g2 +1)...(¢gn + 1) numbers. The relevant information, there-
fore, gets richer as the demand vector ¢ grows. It means that a cost sharing problem
may be “refined” by adding (or learning) information about costs at “intermediate”
production vectors. A cost sharing method may use this richer information to revise
the cost shares originally decided upon. If the method is coherent, however, there
should exist at least one conceivable refinement of the problem at hand for which the
cost shares remain unchanged. Formally, Given a problem (¢; C') and r € NV, A cost
function C" r-refines C if C"(r @) = C(t) for every t € NY. We say « is Coherent if

for every problem (g;C) and r € NV, there exists a cost function C" which r-refines

C such that

C)=az(r@¢C").

Compare it with our Measurement Invariance axiom, i.e.,

2(q;C") = 2(r Q) ¢;C)

where C"(t) = C(r®t). It is easy to see that these two axioms are very different
(however, it is obvious that they are identical in the continuous model). Coherence is

more like a discrete counterpart of the classical scale invariance axiom. This is not only
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because of its formulation similarity but also the fact that Coherence plays a similar
rule as scale invariance in characterizing the Shaply-Shubik method as demonstrated
in Sprumont’s [1998]. From our Theorem 1, we see that Measurement Invariance
combines Coherence and Demand Monotonicity with regard to the additive methods.
On one hand, there are additive methods which are Coherent but not Measurement
Invariant. Therefore, Measurement Invariance is more binding than Coherence. On
the other hand, interestingly, the discrete Auamnn-Shapley method does not satisfy
Coherence (see Sprumont [1998b]).
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Chapter 3 : The Continuous Model



Ordinal Additive Methods Must Be
Simple Random Order Values

with Yves Sprumont

92



Abstract

We consider the continuous cost sharing model. We provide a characteriza-
tion for the set of simple random order methods by the axioms of Additivity,
Dummy, and Ordinality. Ordinality requires that cost shares be invariant with
essentially all increasing transformations of the measurement scales of the de-
mands.
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1 Introduction

This paper considers the well-studied continuous cost sharing model (Billera et al
[1978] [1982], Samet and Tauman [1982], Tauman [1988], Friedman and Moulin [1995],
and Sprumont [1998]), for which most of the literature, except Friedman and Moulin
[1995] and Sprumont [1998], had focused on the Aumann-Shapley pricing method in
the set of additive methods.

A subset of the set of additive methods, namely the set of simple random order
methods, has been characterized by Additivity, Dummy, and Measurement Invariance
(the third paper in Chapter 2), and alternatively by Additivity, Dummy, Demand
Monotonicity, and Coherence (Sprumont [1998b]), in the discrete model.

We consider the set of simple random order methods in the continuous model. We
provide a characterization of this set by Additivity, Dummy, and Ordinality (Spru-
mont [1998]).

Ordinality requires that cost shares should not depend on the conventions used to
measure the agent’s demands. Formally it says that the cost shares must be invariant
under essentially all increasing transformations of the measuring scales (rather than
just the linear ones as the scale invariance imposes).

Mathematically speaking, this axiom has much bite on cost sharing methods.
However, Sprumont [1998] pointed out that it still allows a lot of flexibility to the
cost sharing methods. In fact, one the one hand, it strengthens the classical Scale
Invariance and therefore is able to sharpen the characterization of the Shapley-Shubik
method. On the other hand, it provides a basic axiom for investigating non-additive
methods.

Apart from being a powerful (mathematical) axiom, Ordinality is also a mean-

ingful and compelling axiom in practical situations where the goods to be measured



95

are non-physical goods, e.g., services. Sprumont [1998] provided two examples in
which the conventions used to measure the agent’s demands should not affect the cost
shares assigned to each agent by a cost sharing method. In his examples he tested
the Aumann-Shapley method to two “ordinally equivalent” (see the next section) cost
functions using different ways of measuring the demands, where a non-linear relation
holds between those two different measurements (rather than the linear relation im-
posed by the classical Scale Invariance). He showed that the Aumann-Shapley method
is not ordinal. In other words, the Aumann-Shapley method depends upon the con-
ventions used to measure the demands. In cases where the goods or the demands to
be measured are quality-oriented, such as the services, labor, efforts, Ordinality is a
meaningful requirement.

In this paper, we show that the Ordinality axiom together with the Additivity and
Dummy axioms characterizes the set of simple random-order values. As a corollary,
the Shapley-Shubik method is the only symmetric ordinal additive method. And
the Demand Monotonicity is implied by the combination of Additivity, Dummy and
Ordinality.

This conclusion implies that the Ordinality axiom when it combines with Addi-
tivity axiom, can be very binding. It forces the methods to use value solutions. This
is to say that if we want to use the “Proportional” solutions or the “Serial” solu-
tions (see Sprumont [1998]) and require them to be “ordinal”, then we must abandon

Additivity. In other words, the non-additive sharing methods should be explored.

2 The Model and the Ordinality Axiom

Let N = {1,...,n} be the set of agents. A demand profile ¢ is a vector in RY.

Let Co(N) be the set of functions C' : RY — R, which are non-decreasing (p <
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g = C(p) < C(qg) for all p,q) and satisfy C(0) = 0. A cost function (for N) is an
element of some generic domain C(N) C Co(N). If the first-order partial derivative
of C' € Co(N) with respect to its sthe argument exists at ¢ € RY, we denote it by
0:C(¢).*. Denote C;(N) the domain of all continuously differentiable functions in
Co(N). A (cost sharing ) problem is a pair (¢;C) where ¢ is a demand vector and
C is a cost function. Given a problem (g;C), a solution of the problem is a vector
(z1,-, %) € RY such that 7 2; = C(q). A cost sharing method ¢ is a mapping
associating each problem (¢; C) a solution z(g¢; C).

We consider the family of methods satisfying the following two well-known axioms:

Additivity and Dummy.

o Additivity

z(q; C1 + C3) = x(¢; C1) + z(q; C2) for each g € Rf and C,C; €C.

¢ Dummy
If 9;C(p) =0, Vp € RY, then z;(¢;C) = 0.

As in the discrete model, the Additivity and Dummy axioms admit the following
representation lemma due to Friedman and Moulin [1995], which will be used in our
proof of Theorem 1. This representation lemma is exactly the continuous counter-
part of the representation lemma in the first paper on the discrete model. It is an

application of the Riesz representation theorem.

Lemma 1l Fiz q € RQ_’. Let z be additive and satisfy the dummy aziom. Then, for

each 1 € N, there ezxists a measure p such that

(g C) = /[0 OO @), for each C €C, (42)

If ¢; = 0, it is understood that 0;C(q) stands for the right-hand derivative.



97

where the measure pf has the following property: its projection on any interval [p;, pt],

0 < p; <pi<gq, is the Lebesque measure on R.

Our central axiom in this paper is the following Ordinality axiom first introduced
by Sprumont [1998]. Fix N and a domain C(N). Let f = (fy,..., f») be a bijection

from R} onto itself. For each cost function C in C(N), define C/ : R? — R, by

CI(t) = C(f(¢)) forall te R".
We call f an ordinal transformation if C(/V) is closed under it, i.e.,
C! € C(N) for all C €C(N).

When C(N) = C;(N), a bijection f is an ordinal transformation if and only if it

is increasing and continuously differentiable.

Definition 1 Two problems (¢;C) and (¢';C') (N is omitted) are called ordinally

equivalent if there exists an ordinal transformation f such that
C'=C7 and q= f(q').

Now, we state our central axiom as follows.

Ordinality (ORD) axiom: If (¢; C) and (¢'; C) are two ordinally equivalent prob-
lems, then z(q; C) = z(¢’; C").

Among the three well-known methods, namely the Shapley-Shubik method, the
Aumann-Shapley method, and the Friedman-Moulin method, only the Shapley- Shu-
bik method satisfies Ordinality.

It is easy to see that the following simple random order methods satisfy Ordinality.

Let S be a subset of N. Without loss, assume S = {i,...,4;} where s = |S|, the
number of elements in 5. Let og be an ordering of the elements in .9, for example,

os = {i1,...,1s}. Denote 7g the set of all possible such orderings.
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A simple incremental method is defined by a set of orderings {os}, one for each

subset S C N such that if for the problem (¢; C), A(q) = S, then

‘(L‘:;w_s(q7c) = C({Zl’ 32.7}) - C({ila""ij—l}), ] = 1, ey 8, (43)

and

zine=5(¢;0) =0, fori ¢ S. (44)

Definition 2 A simple random order method z is defined by a set of probability
distributions {p(7s)}, one for each ws such that for any given problem (q;C), if
A(g) =S, then

zi(q;C) = Y. pos)zi5(¢; 0) (45)

os€ns

(An equivalent definition can be found in Sprumont [1998b].)

Note that a (classical) incremental method is defined for a given ordering of the
elements in the set N. And a random order method (in the sense of Weber [1988]) is
a convex combination of the incremental methods.

From these definitions, clearly, every simple random order method is ordinal. In
the next section, we will prove that, conversely, every ordinal additive method is a

simple random order method.
3 The Characterization Theorem
Our main theorem in this paper is the following characterization result.

Theorem 1 The ordinal additive methods satisfying the dummy aziom are the simple

random order methods. The Shapley-Shubik method is the only symmetric method in

that set.
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Proof: It is easy to check that all the simple random-order methods satisfy addi-
tivity, dummy and ordinality.

Let z be a method satisfying these axioms. The proof that z is a simple random-
order method is provided by modifying the proof of Theorem 1 in Sprumont [1998]
as follows. For completeness, we adapt some parts of the proof in that paper for our
purpose.

Fix ¢ >> 0. We consider the implication of additivity, dummy and ordinality on
the measure pf,i € N in the representation lemma. We will see that it suffices to
consider them on the following class of simple problems.

Fix a nonempty set S C N. Let p = (ps,0_s) € R" and ¢ € R be such that
0 <ps<gsand 0 <e<gq—p;forall i € S. Define the mapping Ceps : RY — Ry
by

Ceps(t) = Z (-1)1T|+1Hi€TCsp¢ (ti)
TCS

where ¢, (t;) = min{1, 2 max{0,¢; — p;}}. It is obvious that C¢,s(0) = 0 and we can
prove that Cg,s is non decreasing (see Sprumont [1998] for a proof).
Unfortunately, Ceps is not quite a cost function because it is not differentiable.

But we can approximate it arbitrarily well by a continuously differentiable function.
Foreacha=1,2,...and t € Ri’, define
T
/capS(t) = Z( )‘ |+1H1 chp( )
TCS

where ¢, (£;) is worth 1(2 max{0, ; —p a0 <t; < pi+%and 1— (2 max{0,e—
ti + p;})'*% otherwise. Check that each C&s is in Ci(N) and that their sequence

converges uniformly on {0, ] to Ceps. Also note that C¢ s(¢) = 1,for each a =1,2,....
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Step 1. For each 2 € S, construct a strictly increasing differentiable mapping f;

such that
fl(O) = Oa
filt) = 1-|-£%l fp<t:<pi+%, -
filg) = 3
And for each : € N\ S, simply let
1
fi(t:) = qitz.

The mapping f = (fi,..., fr) is an ordinal transformation making the problem

(¢; Ceps) ordinally equivalent to

((3es, ems); Creys)

(Indeed, for each i € S, fi(¢;) = 3 and ¢f,(fi(t:)) = ¢&, (¢;) for every t;.) Foralli € N,

€pi

let us define
£H(S) = zi((3es,em\s); Creys)-

Since 9;Cf, s = 0 for all ¢ € N'\ S, Dummy implies that £2(S) =0 foralli € N\ S.
By definition of a cost sharing method Y ;csé#(S) = 1 and 0 < £2(S) < 1 for all
¢ € S. By ordinality

2(q; Cgs) = £°(5). (46)
For fixed S C N and each ¢ € N, the set
{€2(S) |a=1,2,...}
is compact and therefore, there exists a subsequence {a'} C {a} such that
£ () — &(5)

and the following are also true

() = 1,&(S) 2 0,&6(S) =01if i ¢ S,and > &(S) = 1.

€S
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Step 2. Invoking the integral representation lemma (Lemma 1 in this section) we

have

! ]

(5) = mile;Cl)
= [, Casdul, {a} € {a). (47)

Step 3. Define the set

Zi(e,p) = {t € [0,q]|t: € {pi, i + €} }.

Note that for ¢ € S, 9;Ccps does not exist on Z;(e, p) but

1 (Zi(e,p)) = 0,

because the projection of uf on the interval 0 < ¢; < ¢; is the Lebesque measure.

Then

1 !

$(S) = zi(g;CLs)

8,‘05“, dul, {a'} C {a}. 48
/[o,q}\z,.(e,p) Y odud, {a'} C {a} (48)

Taking limit ¢ — co we get

&i(S) = 0iCepsdu (49)

/[O,q}\Zi(em)

Denote
Aile,p, S)={t€[0,¢]lpi<ti<pi+eand t; < pj+eVje S\i},

Bi(e,p,5) = {t € [0,q]lpi < t; < pi + e and t; < p; Vj € S\ i},

Qi(S) = {(gs\i,0-5\i), (¢s,0-95)],2 € S



QRi(e) = UsiiesQi(e, S),1 € S

where

Qi(e,S)={te(0,qllt;j<eifj€ N\ Sandt; > ¢ —eif j € §\i}

and
Ei(e,p) = {t €[0,q]|p; < t: < pi + €}

Then by calculating (49), we have (see Sprumont [1998])

Hiq(Ai(évpa S)) = éz(S)e
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Notice that the right hand side of this equality does not depend on p. Letting S

and p vary, it follows that
w#i(Qi(€)) = ([0, 4]),

and further letting € go to zero we get

pi(Qs) = 1i([0,q]).

Using the same argument as in Sprumont [1998], then we can get the following

equations

S w(Ede,p) NQiT)) = &(S)e.

T:TnS=:
Let
1 (Ei(e,p) N Qi(T)) = vi(T)e

Then we have the linear equations

Y w(T)e=¢(S)e, SCN, iels.

T:TNS=:

That is
Z Fyl 1 )’ SCN, ZGS.

T:TnS=1

(50)

(51)



103

It has the following unique solution

vw(T)= 3 (=1)=0=H0g(S), TCN,ieT. (54)
SO(N-T)u:

(Also note that v;(T') is independent of q.)

In fact,

Yo w(l) = > v(T)

T:TnS=: T:T3:,TC{(N-S)ui

= > 7i(T)

T:T3i,(N-T)uiDS

= YT (yrig(s)

T:T3:(N-T)UiDS SO(N-T)ui
(s=|S|n—t+1=|(N-T)U:|)

= 2 2 (-1)(S)

T8 8'H1!

= ey (520 s

558 t'=s

= &(5) (55)

s'—s

since T (-1~ (52

The uniqueness is guaranteed by the fact that the coefficient matrix of the equa-

) = 0 except s’ = s).

tions has the unit determinant.

Step 4. By letting S = {z} in (53), we get

> %) =1 (56)
T:T3¢
Now we show that {7;(7)} is a probability distribution. We need only show that
Y(T) 2 0.

This relies on the fact that

D G VA O (57)

SO(N-T)ui
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is a cost function. This can be proved by direct checking. We omit the details.

Then by Additivity and hence continuity with respect to the cost functions we

have

a(g; Y. (1)t g

SO(N-T)ui
= lim z(g; Y. (-1)ttoe )

@ = SO(N-T)ui
= lim 3 (-1t (s)

1
@ 0 §5(N-T)ui

= Y (1)tg(s)

SO(N-Tyui
= %(T)

0.

v

Now, from our conclusion on the measure yf, the representation formula (42) boils

down to the following probabilistic values

zi(;C)= Y %u(D)[C(ar,0) - Clgr\i,0)] (58)

T:T3i,TCN
Step 6. In step 5 we showed that z is a group value on the set of the stand- alone

cost games and z is efficient (37 2; = C(q)) since z is a cost sharing method. Now
we show that z is a random order method. We use Weber’s Theorem 13 in Weber
[1988]. For this purpose, we only need to demonstrate that the set of the stand-alone

cost games includes the following simple games:

Forany T #0, T C N,
vp(S)=1if § DT, and 0 otherwise,
op(S) =11 5 2 (#)T, and 0 otherwise.

In fact, for given T' # 0,7 C N, let ¢ = ey be the demand vector. Define a “cost”

function

b(eroma) (@) = 1if ¢’ > (er,0n\s),0 otherwise,



105

and similarly, define
5(5T,0N\T)(Q') =11if ¢ > (er,0ms) and A(q¢') > |T|,0 otherwise.

Then it is easy to see that the “problems” (g;6(er,0,7)) and (q33(eT,ON\T)) generate
the games vr and o7, respectively.

Notice that z is not defined on these two kinds of games since z is not defined
on the above two kinds of “cost” functions. However, we can use an approximation
argument as in the beginning to extend z on these games. Moreover, the linearity of
z guarantees that the extension is unique.

Now, all the requirements of Weber’s Theorem 13 are satisfied and we conclude
that 2 is a random order method.

Step 7. We conclude the proof.

Note that in the above argument we assume that ¢ >> 0. For arbitrary ¢ € RY.
Consider the set A(q) and carry the above argument on this subset. Assign zero value
to the agents not belonging to A(gq). Therefore, = is a simple random-order method.

The Shapley-Shubik is the only symmetric method in the class of simple random-
order methods. Thus, the theorem is proved. Q.E.D

A method satisfies the derﬁand monotonicity axiom if the cost share to any agent
never decreases as he increases his demand and others stay put. Formally, let (¢; C)
and (¢; C) be two problems and let ¢ € N, if ¢; < ¢/ and ¢; = ¢ for all j € N\ 4,
then

zi(g;C) < zi(q'; O).

Corollary 2 If ¢ satisfies Additivity, Dummy and Ordinality, then x satisfies De-

mand Monotonicity.

This follows from Theorem 1 and the fact that every simple random order method

is demand monotonic.



106

A Note on A Local Independence
Axiom in Cost Sharing

with Yves Sprumont



Abstract

This note provides a characterization for a new non-additive method, the
so-called proportionally adjusted marginal pricing method (PAMP) in terms of
a local independence property among others. It is shown that the PAMP is
characterized by the axioms of continuity, local independence, proportionality,
and scale invariance. The local independence axiom is new in cost sharing. It
replaces the traditional additivity axiom and plays an important role in the
characterization.

107
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1 Introduction

This paper studies a new non-additive method called the Proportionally Adjusted
Marginal Pricing method (PAMP) for the continuous model. The PAMP is not
derived by Sprumont’s Ordinality axiom, but instead, is derived by a new axiom
called Local Independence.

Recall the following two independence axioms in the literature. The first is
the Independence of Irrelevant Costs, i.e., z(¢q;C') = z(g; C?) whenever C'(p) =
C*(p),Vp < ¢ (Friedman and Moulin [1995]). The second is the marginality (the cost
share imputed to good ¢ depends only upon the marginal cost function w.r.t. good i
(Young [1985d]). These two axioms, in one way or another, convey an “informational
efficiency” property.

Our Local Independence axiom requires that z(g; C') = z(q; C?) whenever C(q) =
C?(q) and VC(g) = VC%(q). Obviously, Local Independence is a very strong require-
ment. But we will show that this axiom still leaves room for meaningful methods,
among which the following PAMP is an example. Combined with other relevant
axioms (see below) it helps effectively to nail down the PAMP.

Similar “independence of irrelevant alternatives” axioms or properties have been
used in social choice theory (Arrow [1951]), bargaining (Thomson [1996]). The closest
is R. Nagahisa [1991]’s local independence condition in his characterization of the
Walrasian allocation rule. He demonstrated that his local independence condition
has far reaching implications relating to Nash implementation.

The paper is organized as follows. In section 2 we set up the model. In section 3 we
introduce the Local Independence axiom. In section 4 we prove the characterization
theorem. In the last section we demonstrate some properties of the PAMP and it’s

relation to other methods.
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2 The Model

Our model here is slightly different from Sprumont [1998]’s models, where cost func-
tions have bounded derivatives. To be precise, we define our model as follows.

Let N = {1,...,n} be the set of agents (or goods). Denote Co(N) the set of
functions C' : R} — Ry which are non-decreasing and C(0) = 0. Denote 8;,C(-) =
0C[dq; (i = 1,...,n) when C is differentiable and VC(q) = (8,C, ...,8,C). Denote
C1(N) the subset of Co(N), consisting of all continuously differentiable functions
in Co(N) which have VC(q) # 0,Vq € R}. Let Cf(N) be the subset of Cy(N)
which consists of all those cost functions with VC(¢q) >> 0. Let ¢ € R" be a
demand vector for N. Assume that § € R} and § >> ¢. Denote C;(N)(g) the set
of cost functions which are defined and continuously differentiable on [0,7] (the set
{p € R}|0 < p <}). For certain domain C of cost functions, if ¢ € R and C € C,
then call the list (V;¢; C) (or simply (¢;C) if N is fixed) a cost sharing problem.

A cost sharing method z is a mapping which assigns to each problem (¢;C) a

vector z(¢; C) in R% such that
>_=i(q;C) = C(q)-
1

3 Axioms

Except the continuity and the local independence axioms, the following dummy, pro-

portionality and scale invariance are well-known.

¢ Dummy
For a problem (¢; C), if 3;C(-) = 0 for some : € N, then z;(¢; C) = 0.

e Continuity in Demand
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z(q; C) is continuous with respect to g.

Remark: The continuity is usually a property of the characterization. That
is, it is often implied by the combination of the other axioms. However in the

following characterizations it is hardly dispensable.
The following continuity property is stronger than the last one.

Continuity

z(g; C) is continuous in both ¢ and C, and the continuity with C is defined for

the topology on the Banach space C;(N)(g) with the following norm:

ICI = max [C(p)| + max max |8,C(p)].

p€[0:7] i=1,...,n p€[0;g]
Proportionality

If C € Co(NNV) is homogeneous, i.e., there is a mapping ¢ : Ry — R, such that

Clg) = C(}; %), Vg€ Ry,

then

zi(¢;C) = EI(qup(qu), i=1,..,n.
J N

Scale Invariance

Let A € R}, A >> 0, ¢ € R}. Denote A™* = (AT, .., A1) and A\'®q =
(AT'q1, .., A7 '¢gn). Then VA >> 0, ¢ € R",

2(¢;C) =2V @ ¢; CY)
where

Cp) = C(AQ p),Vp.

Now, we introduce our new axiom, i.e., Local Independence.
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e Local Independence

For any C', C? € C,(N) and given ¢ € R, if C'(q) = C*(¢) and VC(q) =
VC?(q), then
2(g;C") = 2(g;C?).

A similar axiom has been used by Nagahisa [1991] to characterize the Walrasian
allocation rule, in which the corresponding social choice function (correspondence as-
sociating subsets of feasible allocations with utility profiles that describe consumer
preferences) is assumed to be locally independent with respect to the preference pro-
file.

Here, since we are in the context of cost sharing our Local Independence axiom is
different from Nagahisa’s axiom. Roughly speaking, this axiom states that the cost
sharing method only requires the information of the cost function around the demand
profile up to a first-order approximation and any other information are irrelevant.
Obviously this is a very restrictive axiom.

Recall the independence of irrelevant costs (IIC) axiom. It has been shown that
additivity and dummy imply IIC (Friedman and Moulin [1995]). This means all the
additive methods (and dummy) satisfy the IIC. A corollary of additivity and dummy
is the marginality property. This is from a representation lemma due to Friedman
and Moulin [1995]. In our search for non-additive methods we do not have the IIC
at prior.

Our local independence (LI) axiom is different from all of them. The LI does not
imply any of them and neither do they imply LI. Indeed, it rules out all the well-
known methods proposed so far. Nevertheless, it is still flexible enough to allow for
other methods in addition to the PAMP (see Section 5). This axiom is information-

efficient in the sense that for the given realized output vector only the total cost and
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the corresponding marginal costs are relevant in the distribution of the costs and
there is no need to know such information at each and every conceivable lower output

level regarding the distribution of the costs at the realized output level.

4 Characterization of the PAMP

We begin our characterization on the domain Cf(N).

Theorem 1 There exists a unique cost sharing method satisfying Continuity in De-
mand, Local Independence, Proportionality and Scale Invariance on the domain Ct(N).

1t is the following so-called Proportionally Adjusted Marginal Pricing method:

oo 009y P o
zi(q; C) = ——ZN ajC(q)qjC(q)’ =1,...,n. (59)

Proof. It is easy to check that the method z defined by (59) satisfies these axioms.
Now we demonstrate that any method Z which satisfies the axioms will coincide with

Z.

By the axiom of Continuity in Demand, it is no loss of generality to assume that
qg>>0.

Consider the subclass of cost functions like:

Clp) = Q_pi)* a>0.
i=1
By Proportionality # coincides with z on this class of functions.

By Scale Invariance, it further coincides with z for every cost function like:
Con(p) := (Z Aip)% Ai>0i=1,..,n, a>0.
=1

For any given cost function C in C{(N) and demand vector ¢ >> 0, we will find

a vector (A; &) where A = (A\f,...,As) >> 0, o > 0 such that

C(q) = Cppe)(q) and VC(q) = VC(ra)(9), (60)
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then by Local Independence Axiom

#(¢; C) = 2(¢; Cpe))-
However Z coincides with z on the problem (g; C(x;q)), therefore
2(¢; Cixey) = 2(; Caie) = 2(q; C)
SO
#(g;C) = 2(¢; C).

Taking into account the argument at the beginning of the proof, we can conclude

that & coincides with z at any problem (¢; C), in other words

82
il
8

Now we find the vector (A; &) which meets the requirement (60). This is equivalent

to the existence of solutions to the following equations:
Q_Aig)* = C(g)
=1
oD Xig) N = 8iC(g) i=1,..,n.

Plugging the first equation into the second group of equations, we get the following

linear equations:
a/\,’ _ 8,~ C(q )
Yi g Clg)

Multiplying each by ¢; respectively and summing up, we get

_ L0009
Clg)

Therefore we have the following simplified linear equations:

;e=1,..,n

0:C(q
)\i"‘—“——a—a——Z/\JqJ,’l—l , N

qJ]l
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Denote
0:C(q)
b= =it =1,..,
Zj:l ajC(Q)‘Ij

Then we have the following homogeneous linear equations:

n.

Z(Siqj/\j = )\i; 1= 1,...,n. (61)

J=1
They can have a nontrivial solution if and only if the coefficient matrix (8;¢; —I) has
a vanishing determinant.

In fact, it is easy to calculate that
[(6igj — DI = (=1)"(61¢1 + - + bxgn — 1) = 0.

To conclude that there exists the vector (positive) (A;a) as required in (60),
reconsider the system of linear equations (61).

It is easy to see that the rank of the coefficient matrix (6;¢; — I) is n — 1 (in
fact, the sub-matrix (6i¢; — I)(n-1)(n—1) has determinant (—1)*"(T7Z] §;¢; — 1) # 0
by assumption). Therefore the solution set of (61) is a one-dimensional line. By

invoking the equation

5 M) = C(g)

=1

and regarding to (61), it is obvious that these A; (¢ = 1,...,n) are unique and positive.
The theorem is proved. Q.E.D.

Now we extend our characterization to the larger domain C;(V) either by intro-
ducing the Dummy axiom or by strengthening the continuity axiom.

First, with the Dummy axiom we have the following characterization.

Theorem 2 The Proportionally Adjusted Marginal Pricing method is the unique cost
sharing method satisfying Dummy, Continuity in Demand, Local Independence, Pro-

portionality and Scale Invariance on the domain Ci(N).



115

Proof. Similarly we need to check that on the domain C;(N) any method i
satisfying the above axioms must coincide with z as in (59). By the theorem 1 we
only need to show that for any cost function C and ¢ , if there exists a i € N such
that 8;C(g) = 0, then z;(¢; C') = 0. In fact, construct a new cost function C' (this is

always possible) which satisfies:
C'(g) = C(q) and VC'(q) = VC(q)

but
ac'()=0. "

i.e., 1 =11s dummy for (¢; C'). Then by Local Independence and Dummy we have
fi'l(Q; C) = Oa

so T coincides with z. This completes the proof. Q.E.D.
Finally, with the stronger Continuity axiom, we have the following characteriza-

tion.

Theorem 3 The Proportionally Adjusted Marginal Pricing method is the unique cost
sharing method satisfying Continuity, Local Independence, Proportionality and Scale

Invariance on the domain C1(N).

Proof. The PAMP is uniquely determined by the Local Independence, Propor-
tionality and Scale Invariance on the subdomain C{'(N). Then by Continuity, it is

uniquely extended to the domain C}(N). The theorem is proved. Q.E.D.

5 The Tightness of the Characterizations

It is always desirable to have a tight axiomatic characterization for the concerned cost

sharing method. An axiomatic characterization is tight if we can not drop anyone
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of the axioms without allowing new solution. Here, we point out that we have not
talked about the tightness of all the previous characterizations simply because almost
all of them are tight (this can be checked). Certainly, tightness is an important issue
in axiomatic cost sharing.

Theorem 1 and 2 are almost tight.

o Dropping Dummy (for theorem 2)
Define « as follows:

If C is homogeneous, let

2i(q;C) = Z"% —C(g), Vi=1,.m.
=143

If C is not homogeneous, then

1 n

2i(¢; C) = a0:C(q) + ~[C(g) — 3 4;0,C(9)]
J=1
if C(q) — 251 4:0;C(q) 2 0;
zi(g; C) = min{}; ¢:0:C(q)}

otherwise, where 3°7_; min{}; ¢;0;C(¢)} = C(q).
It is easy to check that all the other axioms are satisfied by the above method.

e Dropping Continuity in Demand

We have not been able to determine whether or not Continuity in Demand can
be dropped without affecting its conclusion. However we can replace it by the

No Exploitation axiom or the following stronger axiom called Independence of

Null Agents:
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For every problem (¢q; C') and every i € N,
{g: =0} = {2;(¢; C) = zjmilami; Cwvi) V7 € N\ 4},

where Cni(gn\i) = C(gn\i, 0) and z;3y; is the very method = applied to the
problem (gn\s; Civyi)-
The Independence of Null Agents axiom is introduced in Sprumont [1998]. It
says that an agent who demands nothing may safely be ignored: counting him
or not does not affect the cost shares of those with a positive demand. As it is
pointed out by Sprumont [1998], it implies No Exploitation and a limited form
of consistency. A counterpart of this axiom called null player out property was
studied by Derks and Haller {1996] in the cooperative game model.
Dropping Local Independence
The Aumann-Shapley pricing method obviously satisfies all the remaining ax-
ioms in the characterization.
Dropping Proportionality
For any given C and ¢, let N° = {i | 3;C(-) = 0}, N' = N \ N°. Define

For: € N/,

2i050) = 4000+ 1[016) = - 0,
if C(g) — X%, ¢;0;C(q) > 0
2i(¢; C) = min{}; ¢:8:C(q) }
otherwise, where Y7, min{); ¢;0;C(¢)} = C(q),

for i € NO,

z:(¢;C) = 0.
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e Dropping Scale Invariance

For any given C and ¢, let N° = {1 | 8;,C(-) =0}, N’ = N\ N°. Define

qi e
C f N’
1'1'((]; C) = { ZN’ q; (Q) 111 €

0

if otherwise.

Theorem 3 is tight.

¢ Dropping Continuity

For given C, ¢, for each ¢ € N, if C is homogeneous, let

2i(4;C) = =—Cl(0);

n
=1

if not, let
1 n
2i(4:C) = 60:C(9) + ~[C(q) = 3 4;0,C(q)]
j=1

if C(g) — %, 4;0;C(q) 2 05
2i(¢; C) = min{}; ¢:0:C(q)}
otherwise, where Y°"_, min{}; ¢;9,C(q)} = C(q).
o Dropping Local Independence
The Aumann-Shapley pricing method satisfies the other three axioms.

¢ Dropping Proportionality

The following so-called uniform allocation rule (see Sprumont [1991]) satisfies

the other three axioms:

For:=1,...,n,

2:(¢; C) = min{X; ¢:0,C(q)},
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if C(q) — X7-;1 ¢;0;C(q) < 0; otherwise

zi(¢; C) = max{y; :0:C(q)},

where A solves the equation Y;cn min{}; ¢;0;C(q)} = C(q) and p solves the
equation )_;cy max{y; ¢:0;C(q)} = C(q).

e Dropping Scale Invariance
The direct proportional method does satisfy all the other axioms:

zi(q;C) = nqi C(g), i=1,..,n.

j=19;

6 A Few More Properties of the PAMP

Recall the following distributivity axiom introduced by Moulin and Shenker [1999]
(see Section 3.1, Chapter 1).

Distributivity Axiom:

Let €y € Cy(N), C2 € Cy({1}), ¢ € R}. Then

z(¢; Co 0 C1) = z(z(g; C1); C)

where

Cz 0 Ci(p) := C2(Ci(p)), Vp € RY.

It is easy to see that the PAMP method satisfies this distributivity.

To emphasize this axiom, we adapt the interpretation of the distributivity axiom
by Moulin and Shenker [1999] to the following cost sharing problem. To create a
profile of outputs ¢ of the final good, one division must first create an amount z of
some homogeneous intermediate good or service with some associate cost C%(z), and

then another division takes that amount z and creates the amount of output ¢, where
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the amount of intermediate good needed in this second stage of the process is given by
C'(q). The total cost function is then the composition of the two functions: C20C Y(q).
In such a case one could allocate the costs in stages (in other words, vertically), where
the method first allocates the costs in terms of the intermediate good according to
w = ¢(C*)(g). Then, these allocations are used as demands in the second stage
of the input process, with the final cost allocation being given by y = ¢(C?)(w).
Equivalently, one could just apply ¢ to the composed cost y = ¢(C? o C')(q). The
distribitivity axiom requires that the result of this multi-stage allocation process be
identical to that of the single stage. Note that the three well-known methods the
Shapley-Shubik, the Aumann-Shapley and the Friedman-Moulin do not satisfy this
distributivity.

Now look at the following so-called Solidarity property (Sprumont [1998)):

Cost Solidarity: Let C' and C? be two cost functions. Suppose there exists a

mapping r : Ry — R, such that C? = r o C'. Then
2(¢;C") < (g5 C7),

or

2(q;C") = 2(q; C?),
or

z(q; CY) > z(g; C?).

It is easy to check that the PAMP method satisfies the above Solidarity property.

PAMP also satisfies the following Consistency Axiom (Thomson [1996]):

Consistency: z is consistent if for all N, N’ with N’ C N, allq € R}, C € C{(N).
If 2 = z(q; C), we have

zn = z(gnrRe(C)) (62)
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where

ry(C)(ynr) := max{C(yn:, gnnr) — N%:V/ zi(q;C),0}, yn' € RY’

and we assume that r¥,(C)(-) is continuously differentiable at g

Now we will demonstrate that the PAMP is a special case of the Ramsey pricing
(Ramsey [1927], Baumol and Bradford [1970]) when demnad functions exhibit equal
elasiticities.

Let pi(¢:), ¢+ = 1,...,n be the inverse demand functions for goods i = 1,...,n
respectively. Let ¢; = (dgi/q:)(pi/dpi),i = 1,...,n is the demand elasticity of good i
with respect to it’s price p;. Assume that these elasticities are the same (denoted as
€) for all s = 1,...,n. Let C(g) be the cost function of the joint production ¢. Then

total consumer surplus can be defined by

qi
>l / pi(gi)dg; — pi(gi)g] (63)
~ Jo
and firm’s profit by
>_i(gi)g — C(q). (64)
N
Suppose that there is a social planner who sets the production plan ¢ and hence
the prices p;,7 = 1,...,n to maximize the total consumer surplus subject to the zero

profit (budget balance) constraint for the firm. Namely, the social planner solves the

following problem:
gi
max % [" pial)dgl — 3 pilai)a:
q N Y0 N
st Y pi(g)g — Cg) = 0.
N

The first order condition is as follows.

There exists a multiplier A such that

(A = D)pi(gi)gi + Alpi(q:) — 0:C(q)] = 0.



That is

pi(e) —0:C(g) _ 1-Apia)e
pi(¢:) A pila)
1—-A1

A €

Let k:=[(1 — X)/A](1/e), then

pi(¢) — 0:,C(q) = kpi(q:), 1 =1,...,n.
and so
pi(¢:)¢: — 0:C(9) g = kpigi)gs, = 1,...,n.

By budget balance

N
then
>n 0:C(q)g:
k=
C(g)
and
1 Clq)
i(g;) = 0;C = ——0,C(q).
pilas) = 1—3,0:C(q) YO (9)
Therefore
9:C(q)gi
i(:C) =pilgi)gi = =~ —~—C
zi(g; C) = pi(gi)q XTI (9)

This is the PAMP.

122



123

References

[1] Aczel, J. (1966), Function Equations and Their Applications, Academic Press,
New York.

(2] Arrow, K. J. (1951), Social Choice and Individual Values, Wiley, New York.

[3] Aumann, R. J. and M. Maschler (1985), “Game theoretic analysis of a

bankruptcy problem from the Talmud,” Journal of Economic Theory 36: 195-
213.

[4] Aumann, R.J. and L. Shapley (1974), Values of Nonatomic Games, Princeton:

Princeton University Press.

[5] Balinski, M. and H. P. Young (1982), Fair Representation: Meeting the Ideal of

One Man, One Vote, (Yale University Press, New Haven).

[6] Banker, R. (1981), “Equity considerations in traditional full cost allocation prac-
tices: An axiomatic perspective,” in: S. Moriarity, ed., Joint Cost Allocations,

(University of Oklahoma Press, Oklahoma City) 110-130.

[7] Baumol, W. and D. F. Bradford (1970), “Optimal Departures From Marginal
Cost Pricing,” American Economic Review 60, No.3, 265-283.

(8] Billera, L. J., David C. Heath and J. Raanan (1978), “Internal telephone billing
rates: A novel application of non atomic game theory,” Operations Research 26:

956-965.

[9] Billera, L. J.and David C. Heath (1982), “Allocation of Shared Costs: A Set of
Axioms Yielding A Unique Procedure”, Mathematics of Operations Research,

Vol.7, No.1, 32-39.



124

[10] Boiteux, M. (1971), “On the management of public monopolies subject to bud-

getary constraints,” Journal of Economic Theory 3: 219-40.

[11] Calvo, E. and J. C. Santos (1998), “Multichoice Value”, mimeo, Universitat de

Valéncia.

[12] Chun, Y. (1988), “The proportional solution for rights problems,” Mathematical
Social Sciences 15: 231-246.

[13] Derks, J. J. M. and H. H. Haller (1996), “Null Players Out? Values for Games
with Variable Supports,” mimeo, University of Maastricht and Virginia Poly-

technic Institute and State University.

[14] Friedman, E. (1998), “Paths and Consistency in Additive Cost Sharing,” mimeo,

Rutgers University.

[15] Friedman, E. and H. Moulin (1995), “Three Methods to Share Joint Costs or

i

Surplus,” mimeo, Duke University

[16] Garfinkel, R. S. and G. L. Nemhauser (1972), Integer Programming, John Wiley
& Sons.

[17] Gillies, D. B. (1959), “Solutions to general non-zero sum games,” In Contribu-
tions to the Theory of Games IV, Tucker and Luce, eds., Annals of Mathematics
Studies 40: 47-85.

[18] Green, J. and Laffont, J.-J. (1977), “Characterization of satisfactory mechanisms

for the revelation of preferences for public goods,” Econometrica 45: 427-438.

[19] Groves, T. (1973), “Incentives in teams,” Econometrica 41: 617-663.



125

[20] Haimanko, O. (1998), “Partially Symmetric Values,” mimeo, Hebrew University,

Jerusalem.
[21] Hardin, G. (1968), “The Tragedy of the Commons,” Science, 162, 1243-8.

[22] Hart, S. and A. Mas-Colell (1989), “Potential, Value, and Consistency,” Econo-
metrica, 57(3): 589-614.

(23] Hurwicz, L. (1975), “On The Existence of Allocation Systems Whose Manipula-
tive Nash Equilibria are Pareto-optimal,” Paper given at Third World Congress

of the Econometric Society in Toronto.

[24] Hurwicz, L. (1981), “On the incentive problem in the design of non-wasteful
resource allocation systems,” in N. Assorodobraj-kula et al. (Eds) Studies in

Economic Theory and Practice (Amsterdam: North-Holland).

[25] Loehman, E. and A. Whinston (1974), “An axiomatic approach to cost allocation

for public investment,” Public Finance Quarterly 2: 236-51.

[26] Lewis, W. A. (1949), Overhead Costs, London: Allen & Unwin.

[27] Littlechild, S. C. and Thompson, G. F. (1977), “Aircraft landing fees: a game

theory approach,” Bell Journal of Economics 8: 186-204.

[28] McLean, R. and W. Sharkey (1992), “Alternative Methods for Cost Allocation

in Stochastic Service Systems,” mimeo, Rutgers University.

[29] McLean, R. and Sharkey, W. (1996), “Weighted Aumann-Shapley Pricing,” In-

ternational Journal of Game Theory, forthcoming.

[30] Mirman, L. J. and Y. Tauman (1982), “Demand Compatible Equitable Cost

Sharing Prices,” Mathematics of Operations Research, 7, 1:40-56.



126
[31] Moriarty, S. (1981), Joint Cost Allocations, Norman: University of Oklahoma.

(32] Moulin, H. (1987), “Equal or proportional division of a surplus and other meth-

ods,” International Journal of Game Theory 16, 3: 161-186.

[33] Moulin, H., Axioms In Cooperative Decision Making, Cambridge University
Press. 1989.

[34] Moulin, H. (1995), “On Additive Methods to Share Joint Costs,” Japanese Eco-
nomic Review 46, 303-332.

[35] Moulin, H. (1996), “Incremental Cost Sharing: Characterizations by Coalition

Strategy-Proofness,” mimeo.

[36] Moulin, H. (1999), “Axiomatic Cost and Surplus-Sharing,” forthcoming in:
Handbook of Social Choice and Welfare, Arrow, Sen, Suzumura, Eds.

[37] Moulin, H. (1999b), “The Proportional Random Allocation of Indivisible Units,

” mimeo, Rice University.

[38] Moulin, H. and S. Shenker (1992), “Serial Cost Sharing”, Econometrica 60, 1009-
1037.

[39] Moulin, H. and S. Shenker (1994), “Average Cost Pricing versus Serial Cost
Sharing: An Axiomatic Comparison,” Journal of Economic Theory, 64, 1:178-

201.

[40] Moulin, H. and S. Shenker (1996), “Strategyproof Sharing of Submodular Access

Costs: A Tale of Two Mechanisms,” mimeo.

[41] Moulin, H. and S. Shenker (1999), “Distributive and Additive CostSharing of
An Homogeneous Good,” Games and Economic Behavior 27, 2: 299-330.



127

[42] Moulin, H. and A. Watts (1994), “Two Versions of the Tragedy of the Commons,”

mimeo, Duke University.

[43] Myerson, R. B. (1977), “Graphs and Cooperation in Games,” Mathematics of
Operations Research 2:225-229.

[44] Nagahisa, Ryo-Ichi (1991), “A Local Independence Condition for Characteriza-

tion of Walrasian Allocation Rule,” Journal of Economic Theory 54, 106-123.
[45] Nash, J. F. (1950), “The bargaining problem,” Econometrica, 28, 155-62.

[46] O’Neill, B. (1982), “A problem of rights arbitration from the Talmud,” Mathe-

matical Social Sciences 2: 345-371.

[47] Parker, T. (1943), “Allocation of the Tennessee Valley Authority projects,”

Transactions of the American Society of Civil Engineers 108: 174-87.

[48] Rabinovitch, N. (1973), Probability and Statistical inference in Medieval Jewish

Literature, (University of Toronto Press, Toronto).

[49] Ramsey, F. (1927), “A contribution to the theory of taxation,” Economic Journal
37: 47-61.

[50] Ransmeier, J. S. (1942), “The Tennessee Valley Authority: A Case Study in the
Economics of Multiple Purpose Stream Planning,” (Nashville, TN: Vanderbilt

University Press).

[51] Rockafellar, R. T. (1970), Convez Analysis, Princeton: Princeton University

Press.

[52] Roth, A. (1988), The Shapley Value, Cambridge: Cambridge University Press.



[53]

[54]

[55]

[58]

[59]

[60]

[61]

[62]

128

Samet, D. and Y. Tauman (1982), “The Determination of Marginal Cost Prices

under a Set of Axioms,” Econometrica 50, 895-909.

Schmeidler, D. (1969), “The nucleolus of a characteristic function game,” SIAM

Journal on Applied Mathematics 17: 1163-70.

Shapley, L. S. (1953), “A Value for n-Person Games.” In Contributions to the
Theory of Games II. edited by H. W. Kuhn and A. W. Tucker. Annals of Math-
ematics Studies 28:307-17.

Shubik, M. (1962), “Incentives, Decentralized Control, the Assignment of Joint

Costs, and Internal Pricing”, Management Sciences 8, 325-343.

Sobolev, A. I. (1975), “Characterization of the principle of optimality for coop-
erative games through functional equations,” in N. N. Voroby’ev (Ed), Mathe-
matical Methods in the Social Sciences, Vipusk 6, Vilnius, USSR, 92-151.

Sprumont, Y. (1991), “The division problem with single-peaked preferences: A

characterization of the uniform allocation rule,” Econometrica 59, 2: 509-519.

Sprumont, Y. (1998): “Ordinal Cost Sharing,” Journal of Economic Theory 81,
126-162.

Sprumont, Y. (1998b), “Coherent Cost Sharing,” mimeo. University of Montreal.

Sprumont, Y. and YunTong Wang (1996), “A Note on Measurement Invariance

in Discrete Cost Sharing Problems,” mimeo, University of Montreal.

Sprumont, Y. and YunTong Wang (1996), “Ordinal Additive Cost Sharing Must

Be Random Order Values,” mimeo, University of Montreal.



129

[63] Tauman, Y. (1988), “The Aumann-Shapley Prices: A Survey,” in A. Roth (ed.),

The Shapley Value, Cambridge: Cambridge University Press.

[64] Thomson, W. (1996), “Consistent Allocation Rules,” mimeo, University of

Rochester.

[65] Walker, M. (1978), “A note on the characterization of mechanism for the reve-

lation of preferences,” Econometrica 46: 147-152.

[66] Wang, YunTong (1999), “The Additivity and Dummy Axioms in the Discrete
Cost Sharing Model”, Economics Letters, 64, 187-192.

[67] Watts, A. (1996), “On the Uniqueness of Equilibrium in Cournot Oligopoly and

Other Games,” Games and Economic Behavior, 13, 269-285.

[68] Watts, A. (1996), “Uniqueness of Equilibrium in Cost Sharing Games,” Vander-

bilt University.

[69] Weber, R. (1988), “Probabilistic Values for Games,” in A. Roth (ed.), The Shap-

ley Value, Cambridge: Cambridge University Press.

[70] Young, H. P., ed. (1985a), Cost Allocation: Methods, Principles, Applications.
Amsterdam: North-Holland Publishing.

[71] Young, H. P. (1985b), “Monotonicity in Cooperative Games,” International Jour-
nal of Game Theory 13, 65-72.

[72] Young, H. P. (1985c), “Cost allocation,” in Fair Allocation, H. P. Young ed.,
AMS Short Course Lecture Notes, Vol. 33. Providence: American Mathematical

Society.



130

[73] Young, H. P. (1985d), “Producer Incentives in Cost Allocation,” Econometrica
53, 757-765.

[74] Young, H. P. (1988), “Distributive justice in taxation,” Journal of Economic
Theory 48: 321-335.

[75] Young, H. P. (1990), “Progressive taxation and equal sacrifice,” American Eco-

nomic Review 80, 1: 253-266.

[76] Young, H.P. (1994), Equity: in Theory and Practice (Princeton University Press,

Princeton).






