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RÉSUMÉ

Dans ce mémoire, nous nous pencherons tout particulièrement sur une primitive cryp-

tographique connue sous le nom de partage de secret. Nous explorerons autant le do-

maine classique que le domaine quantique de ces primitives, couronnant notre étude

par la présentation d’un nouveau protocole de partage de secret quantique nécessitant

un nombre minimal de parts quantiques c.-à-d. une seule part quantique par participant.

L’ouverture de notre étude se fera par la présentation dans le chapitre préliminaire d’un

survol des notions mathématiques sous-jacentes à la théorie de l’information quantique

ayant pour but primaire d’établir la notation utilisée dans ce manuscrit, ainsi que la

présentation d’un précis des propriétés mathématique de l’état de Greenberger-Horne-

Zeilinger (GHZ) fréquemment utilisé dans les domaines quantiques de la cryptographie

et des jeux de la communication. Mais, comme nous l’avons mentionné plus haut, c’est

le domaine cryptographique qui restera le point focal de cette étude. Dans le second

chapitre, nous nous intéresserons à la théorie des codes correcteurs d’erreurs classiques

et quantiques qui seront à leur tour d’extrême importances lors de l’introduction de la

théorie quantique du partage de secret dans le chapitre suivant.

Dans la première partie du troisième chapitre, nous nous concentrerons sur le do-

maine classique du partage de secret en présentant un cadre théorique général portant

sur la construction de ces primitives illustrant tout au long les concepts introduits par

des exemples présentés pour leurs intérêts autant historiques que pédagogiques. Ceci

préparera le chemin pour notre exposé sur la théorie quantique du partage de secret qui

sera le focus de la seconde partie de ce même chapitre. Nous présenterons alors les

théorèmes et définitions les plus généraux connus à date portant sur la construction de

ces primitives en portant un intérêt particulier au partage quantique à seuil. Nous mon-

trerons le lien étroit entre la théorie quantique des codes correcteurs d’erreurs et celle du

partage de secret. Ce lien est si étroit que l’on considère les codes correcteurs d’erreurs

quantiques étaient de plus proches analogues aux partages de secrets quantiques que ne

leur étaient les codes de partage de secrets classiques. Finalement, nous présenterons un

de nos trois résultats parus dans [13]; un protocole sécuritaire et minimal de partage de
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secret quantique a seuil (les deux autres résultats dont nous traiterons pas ici portent sur

la complexité de la communication et sur la simulation classique de l’état de GHZ).

Mots clefs: Cryptographie, théorie de l’information quantique, codes correcteurs

d’erreurs, corrections d’erreurs quantiques, partage de secret classique, partage de

secrets quantiques à seuil.



ABSTRACT

In this thesis, we will focus on a cryptographic primitive known as secret sharing. We

will explore both the classical and quantum domains of such schemes culminating our

study by presenting a new protocol for sharing a quantum secret using the minimal num-

ber of possible quantum shares i.e. one single quantum share per participant. We will

start our study by presenting in the preliminary chapter, a brief mathematical survey of

quantum information theory (QIT) which has for goal primarily to establish the nota-

tion used throughout the manuscript as well as presenting a précis of the mathematical

properties of the Greenberger-Horne-Zeilinger (GHZ)-state, which is used thoroughly in

cryptography and in communication games. But as we mentioned above, our main focus

will be on cryptography. In chapter two, we will pay a close attention to classical and

quantum error corrections codes (QECC) since they will become of extreme importance

when we introduce quantum secret sharing schemes in the following chapter. In the

first part of chapter three, we will focus on classical secret shearing, presenting a general

framework for such a primitive all the while illustrating the abstract concepts with exam-

ples presented both for their historical and analytical relevance. This first part (chapters

one and two) will pave the way for our exposition of the theory of Quantum Secret Shar-

ing (QSS), which will be the focus of the second part of chapter three. We will present

then the most general theorems and definitions known to date for the construction of such

primitives putting emphasis on the special case of quantum threshold schemes. We will

show how quantum error correction codes are related to QSS schemes and show how this

relation leads to a very solid correspondence to the point that QECC’s are closer ana-

logues to QSS schemes than are the classical secret sharing primitives. Finally, we will

present one of the three results we have in [13] in particular, a secure minimal quantum

threshold protocol (the other two results deal with communication complexity and the

classical simulation of the GHZ-state).

Keywords: Cryptography, quantum information theory, error correction codes,

quantum error correction, classical secret sharing, quantum secret sharing, quan-

tum threshold schemes.
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NOTATION

C Field of complex numbers.

|α| Modulus of the complex number α ∈ C.

Fq Finite field of q-elements.

Fn
q n-dimensional vector space with entries in the finite field Fq.

Z2 Ring of integers modulo 2.

≡2 Congruence equivalence modulo 2.

H Hilbert space.

H ∗ Dual Hilbert space.

H 2 Two dimensional Hilbert space.

H A Hilbert space associated with system A.

C Code space.

C⊥ Code space perpendicular to C.

Ô Quantum-mechanical operator as designated in the physics literature.

E† Hermitian conjugate of E.

ET Transpose of E.

[A,B] Commutator of two operators (matrices) A and B.

{A,B} Anti-commutator of two operators (matrices) A and B.

|ψ〉 Ket vector.

〈ψ| Bra vector dual to the ket vector.

〈ψ|ϕ〉 Inner product between the vectors |ψ〉 and |ϕ〉.

|ψ〉⊗ |ϕ〉 Tensor product of the vectors |ψ〉 and |ϕ〉.

|ψ〉〈ϕ| Outer product of the vectors |ψ〉 and |ϕ〉.

ρA Density matrix associated with system A.

Tr Trace function.



xiii

TrA Partial trace on subsystem A.

[n,k,d] Classical error correcting code with parameters n, k, and d.

[[n,k,d]] Quantum error correcting code with parameters n, k, and d.

G n Pauli group of n-qubits.

(k,n) Classical threshold secret sharing scheme.

((k,n)) Quantum threshold secret sharing scheme.

D The dealer or the person of authority in a given protocol.

S Set of all possible shares.

K Set of all possible keys.

Pn Set of n players.

Pi The i th-player.

Γ Access structure of a given secret sharing scheme.

Γ0 Minimal access structure associated with Γ.

Π(x) Parity of the integer x.

∈R Picked uniformly at random in . . . .
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PREFACE

When the Greek words κρυπτ óσ ”Kryptós” (hidden) and γράϕειν ”gráphein” (to

write) are put together appropriately they give us the new word cryptography, which

in the old days was seen as the art of writing down important information in a secret

or hidden way. When the subject was put on a firm mathematical foundation by Shan-

non [60], it passed from an art to a science. The subject now rests on important axioms

or mathematical assumptions like the existence of one-way functions2 to formally prove

or disprove the security of cryptographic protocols.

Quantum cryptography, on the other hand, is the study of cryptography when the

laws of quantum mechanics are taken into account. At first glance, one would wonder

what does the world of microscopic physics have to do with computer science or any of

its branches? In science (at least the way theoretical physics has evolved in the twentieth

century), when one is looking for a link between apparently different subjects, one has

to pay close attention to the most fundamental objects in the theory. In our case, the fun-

damental entity in computer science and in cryptography in particular is information. It

is the key to unlock the mysterious connection between the physical world and the world

of computer science. Once information is viewed as a physical system, we are ready to

go beyond classical computer science and apply the framework of quantum mechanics

to information theory. One then passes from a bit of information to a qubit (i.e. to a

quantum bit). So quantum cryptography is not the quantization of the classical theory

of cryptography, but is the application of quantum principles to cryptography. As we

will see in the preliminary chapter, the quantum world differs drastically in its philoso-

phy from our "everyday" classical concepts and constitutes in itself a new paradigm à la

Thomas Kuhn (c.f. [40]).

Quantum secret sharing, as we will explore in Chapter 3, is the quantum general-

ization of classical secret sharing. Briefly speaking, those are cryptographic primitives

that involve a certain number of participants who try to reconstruct a given classical or

2Those are functions that can easily be computed but very hard (in the sense of complexity theory) to
invert.
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quantum secret in such a way that individually they cannot learn any useful (or in the

most interesting case any) information (at all) about that secret, but need the coalition

of authorized sets of players to be able to do so. The everyday example would be the

simultaneous usage of two keys to open a safe in a bank by the client and a sub-manager

or by two high-profile generals wanting to launch a missile when they are issued the

order. It is our task in the next few chapters to put on a firm mathematical ground the

theory of quantum secret sharing starting from its classical counterpart and the theories

of classical and quantum error correcting codes.



CHAPTER 1

THE QUANTUM EXPRESS

We begin our exposition with an express overview of Quantum Information Theory with

two objectives in mind, the first is to establish notation and the second to introduce the

reader to the major core results and mathematical machinery that will be extensively

used in the text.

In the classical world of information theory, the unit of information is said to be the

bit, coined for binary digit. For example, we express the length of a number by how

many bits it contains (for example: 3 has two bits corresponding to its binary expansion

11 while 17 has five bits corresponding to 10001 in its binary notation). Very often, we

will be interested in the number of bits required to achieve a certain task; for example

the number of bits that need to be communicated between two or more parties in the

computation of a given function; this is a simple example of communication complexity

(c.f. [41] for a survey of classical communication complexity and [16, 17] and [9] for

good surveys of the quantum aspects of the subject).

In the quantum world of information theory, in analogy with the classical notion of

bits, we coin the word quantum bits or qubits to describe the quantum unit of informa-

tion. To distinguish the quantum world from the classical one we use a special notation.

For example1 the "quantum" digit 3 is represented as |11〉 in its binary expansion and we

thus say that it is represented by two qubits and write |3〉 ≡ |11〉. While |17〉 would be

represented by |10001〉 and thus by five qubits.

Very briefly, after the 1920’s quantum revolution [8, 58] in our understanding of the

microcosm, it became clear that we were being exposed to new ideas that were totally

alien to our classical way of thinking. Just a few years earlier, Einstein’s 1905 special

theory of relativity (SR) [27] and his 1915 general theory of relativity (GR) [28] rev-

olutionized the way we think about space and time. In particular we had to give up

the notion that time is absolute and accept that space and time are weaved together in

1This notation is known as the Dirac notation and will be explained in the text shortly.
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an eternal or finite fabric (depending on whether the Universe is open or closed, respec-

tively) called spacetime, which in turn is itself a dynamical entity ever evolving. Einstein

taught us in SR as well that an observer may measure two different lengths, times, and

speeds depending on whether he is still or in motion; that twins who travel in space

may age differently if one of them was accelerating through spacetime, while in GR we

were taught that matter tells spacetime how to curve and in return spacetime tells matter

how to move. Thus, we see that depending on one’s reference frame, measurements are

indeed relative.

Although those notions came as a shock to the scientific community, nothing pre-

pared them for the Quantum Mechanical (QM) revolution. Just the fact of "observing"

the system under study becomes crucial in its future dynamical evolution as well as cru-

cial to what we measure. Although in small steps, we see the beginning of a pattern, ob-

servers start to enter science in different but crucial ways. From a passive observer who

(observes) "measures" with a stick a length, with a clock a time and with a speedometer

a speed, to an active observer who (in the Copenhagen interpretation of QM) collapses

the wavefunction of the system just by observing (measuring) it, and therefore the sys-

tem settles down in one of its eigenstates. What we observe (the physical trait) is the

eigenvalue of that eigenstate.

We will shortly discuss the postulates of quantum mechanics that explain those

notions, but in order to do so we first need to introduce the mathematical machinery

(i.e. the language before the poetry).

1.1 The Mathematical Machinery of Quantum Information Theory

A qubit lives in H 2 where by H 2 we mean the two-dimensional Hilbert space and

in using Paul Dirac’s bra 〈.| ket |.〉 notation we may write a general qubit as:

|Ψ〉= α|0〉+β |1〉, with |α|2 + |β |2 = 1, (1.1)

where the set {|0〉, |1〉} is called the computational basis and α, β ∈ C are called the

amplitudes.
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Notation 1.1. |α|2 = αα∗ = α∗α is the modulus of the complex number α , where α∗

denotes its complex conjugate.

In matrix form the qubit is a (2×1)-matrix i.e. a column vector. The basis therefore

are written as:

|0〉=

 1

0

 , |1〉=

 0

1

 .

The general qubit in Eq.(1.1) is then given by :

|Ψ〉= α

 1

0

+β

 0

1

 =

 α

β


Let H be a Hilbert space and H ∗ be the dual space endowed with a multiplication law

of the form

(c,ξ ) = c∗ ξ

A very useful operation on vector spaces (where the Hilbert space is just an example) is

the inner product, which we define next.

Definition 1.2. The inner product is a bilinear form (duality)

〈 · | ·〉 : H ∗⊗H → C.

The symbol ⊗ is called the Cartesian product and is studied in more detail in Nota-

tion1.10 bellow.

Definition 1.3. The dual (or complex conjugate) of the vector |ψ〉 ∈H is denoted by

〈ψ| ∈H ∗ and in forming the inner product between them we get the square of the

length of the vector. If it is properly normalized we call it a unit vector.

Let |ψ〉 be as in Eq.(1.1) with α , β ∈C, the inner product known also as the dot product

is given by:

〈ψ|ψ〉= (α∗〈0|+β
∗〈1|)(α|0〉+β |1〉) = |α|2 + |β |2 = 1,
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which is the requirement that the vector be normalized to unity and |α|2 + |β |2 = 1 ex-

presses this normalization condition. To arrive at the above condition, we have used

the distributive law of the inner product as well as the fact that |0〉 and |1〉 are mutually

orthonormal (i.e are orthogonal and of unit norm).

Definition 1.4. A quantum register (of n qubits) lives in H 2⊗H 2⊗·· ·H 2 = H ⊗n
2

(we write H 2n for H ⊗n
2 ) and is of the form

|Θ〉=
2n−1

∑
i=0

αi|i〉, with
2n−1

∑
i=0
|αi|2 = 1.

We now present some important notions borrowed from linear algebra concerning

special kinds of matrices that are needed to describe the allowed operations used to ma-

nipulate qubits. A more detailed exposition on linear transformations and their relation

to matrices and more subtle properties are presented in Appendix I.

We start with the notion of a Hermitian matrix:

Definition 1.5. A matrix M : Cn→ Cn is said to be Hermitian if it satisfies:

M† = M,

where the Hermitian conjugate M† of M : Cn→ Cn is defined by

〈x|M|y〉= 〈M†x| y〉= 〈y|M†|x〉∗,

with |x〉, |y〉 arbitrary vectors in Cn.

In other words, M† is the conjugate transpose of M.

Definition 1.6. Any quantum operation is reversible, linear and preserves the norm.

Thus a quantum operation is valid if and only if it is unitary i.e. an operator V̂ satisfying

V̂ V̂ † = Î = V̂ †V̂ .
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Definition 1.7. The set of (n× n)-unitary matrices is a group called the unitary group

denoted by U(n). If in addition the matrices are unimodular i.e. of unit determinant,

then the group is called the special unitary group and is denoted by SU(n).

Notation 1.8. From now on we will adopt the notation widely spread in the computer

science literature and omit writing a "ĥat" on the quantum operator as is usually the

custom in physics.

Examples of unitary operators are:

• Negation

N =

 0 1

1 0

 . (1.2)

• Control-NOT gate

CNOT =

 I2×2 0

0 N2×2

 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (1.3)

where I2×2 denotes the two by two identity matrix and N2×2 the two by two nega-

tion operator introduced above.

• Hadamard Transform

H =
1√
2

 1 1

1 −1

 , (1.4)

and we explicitly display the action of the Hadamard transform on the computa-
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tional basis |0〉 and |1〉:

H|0〉= 1√
2
(|0〉+ |1〉) = |+〉, (1.5)

H|1〉= 1√
2
(|0〉− |1〉) = |−〉, (1.6)

where {|±〉} is known as the Hadamard basis.

The action of the n-fold Hadamard transform on an n-dimensional qubit living in

a 2n-dimensional Hilbert space is given by:

Hn|x〉= 1√
2n ∑y∈{0,1}n (−1)x·y|y〉,

where x · y denotes the dot product between the two vectors x · y≡ (x1y1 + x2y2 +

· · ·+ xnyn) mod 2.

• Phase-Shift

Sθ =

 1 0

0 eiθ

 (1.7)

with action on the computational basis given by:

Sθ |0〉= |0〉

Sθ |1〉= eiθ |1〉.

We denote by T the operator with θ = π

2 i.e. T = Sθ=π/2 =

 1 0

0 i

 .

• The Pauli Matrices

I =

 1 0

0 1

 , X =

 0 1

1 0

 , (1.8)
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Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 . (1.9)

We include the identity operator among the Pauli operators for completeness.

An important property that those matrices have is seen through their commutation

and anticommutation relations, respectively:

[X ,Y ] = iZ, [Y,Z] = iX , [Z,X ] = iY where [A,B] = AB−BA,

{X ,Y}= {Y,Z}= {Z,X}= 0 where {A,B}= AB+BA.

X |0〉= |1〉, X |1〉= |0〉.

Z|0〉= |0〉, Z|1〉=−|1〉.

Remark 1.9. We note that in the theory of Quantum Error Corrections (QEC)

(about which we will have more to say later) the Identity operator represents the

"occurrence" of no error, the X operator is known as a bit flip (we can see that

it takes a |0〉 to |1〉 and vise versa), the Z operator is known as a phase-flip (it

flips the phase of the qubit if it is in the 1 state), and given that Y = iXZ it is a

combination of both, a phase flip followed by a bit flip.

We see as well that the Hadamard transform (in the single qubit case) is given by:

H =
1√
2
(X +Z) (1.10)

with HXH = Z, HY H =−Y , HZH = X .

Notation 1.10. Tensor Product

A useful operation is known as the Kronecker product or the tensor product de-

noted by ⊗, which acts as follows on the general qubit |Ψ〉 = α|0〉+β |1〉 when
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tensored with another qubit |Λ〉= γ|0〉+δ |1〉:

|Ψ〉⊗ |Ψ〉=

 α

β

 ⊗
 γ

δ

 =


α

 γ

δ


β

 γ

δ



 =


αγ

αδ

βγ

βδ

 .

We note that its action is to enlarge the space. What this means physically is that

it describes the coupling of two qubits into one 2-qubit state.

This process could be extended to d-dimensions and we then talk about a qudit.

When α = 1 and β = 0, hence |Ψ〉= |0〉, we have

|0〉⊗ |0〉= |00〉=

 1

0

 ⊗
 1

0

 =


1

0

0

0

 .

When we expand the space of the system by appending (i.e. tensoring) |0 · · ·0〉 to

the right of a quantum state |Ψ〉, we call those extra dimensional |0〉’s ancillary

qubits and they represent working space.

i N .B. We will usually write |ϕ〉|ψ〉 as a shorthand for |ϕ〉 ⊗ |ψ〉 and even

|00 · · ·0︸ ︷︷ ︸
n times

〉 for |0〉⊗ |0〉⊗ · · ·⊗ |0〉︸ ︷︷ ︸
n times

≡ |0n〉 omitting the ⊗-symbol.

Remark 1.11. The Kronecker or tensor product has some important properties

that facilitates complex calculations.

Let A be an (m×n) matrix, B a (p×q) matrix, C an (n×r) matrix and D a (q×s)

matrix:

1. (A⊗B)(C⊗D) = (AC)⊗ (BD).

2. A⊗ (B+C) = A⊗B+A⊗C.
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3. (A⊗B)† = A†⊗B†.

4. (A⊗B)−1 = A−1⊗B−1.

Now let A be an (m×m) matrix and B an (n×n) matrix:

1. Tr(A⊗B) = (Tr A)(Tr B).

2. det(A⊗B) = (det A)n(det B)m.

Where Tr and det denote respectively the trace and the determinant of the given

matrix.

We mentioned above the computational basis |0〉 and |1〉. We now introduce the

EPR-basis named after Einstein, Podolsky and Rosen [29]:

Definition 1.12. EPR Basis or Bell Basis

Consider the circuit

E =CNOT (H⊗ I) = H •
��������

(1.11)

We have:

E|00〉= 1√
2
(|00〉+ |11〉)≡ |ϕ+〉, E|10〉= 1√

2
(|00〉− |11〉)≡ |ϕ−〉,

E|01〉= 1√
2
(|01〉+ |10〉)≡ |ψ+〉, E|11〉= 1√

2
(|01〉− |10〉)≡ |ψ−〉.

The set {|ϕ+〉,|ϕ−〉,|ψ+〉,|ψ−〉} constitutes the Bell basis.

The circuit above thus serves to create entanglement; a property we now define.

Definition 1.13. Let {|i〉A} and {| j〉B} be fixed bases for the Hilbert spaces H A

and H B, respectively. Consider the most general state on H A⊗H B

|ψAB〉= ∑
i, j

αi j|i〉A⊗| j〉B.
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If one can write the coefficients αi j = αA
i αB

j , then the quantum state is termed

separable and we can thus write |ψAB〉= |ψA〉⊗ |ψB〉= ∑i αA
i |i〉A⊗∑ j αB

j | j〉B.
Otherwise, the state is called an entangled state of which the Bell-states (bases)

represent a perfect example.

i N .B. Any Bell state can be transformed into another by applying the appro-

priate unitary transformation to the first qubit.

|ϕ+〉= I2|ϕ+〉, |ψ+〉= (N⊗ I)|ϕ+〉, |ϕ−〉= (Z⊗ I)|ϕ+〉, |ψ−〉= (ZN⊗ I)|ϕ+〉,

where by In or I⊗n we mean the n-times tensor product of the identity operator (i.e.

In ≡ I⊗ I⊗·· ·⊗ I︸ ︷︷ ︸
n−times

≡ In); this notation applies equally well to any operator.

Before delving into some of the important results and theorems of Quantum Informa-

tion Theory (QIT) let us step back and take a brief look at the underlying physical theory.

We give an overview of the postulates of quantum mechanics à la Nielsen and Chuang

[50]. We present the so-called Copenhagen interpretation of quantum mechanics [8].

1.1.1 The Postulates of Quantum Mechanics

• (Postulate I) At a fixed time t0, the state of an isolated physical system is com-

pletely described by a normalized wave vector |Ψ(t0)〉 living in the Hilbert space

H .

That is to say that in quantum mechanics every physically realizable state of a

system is described by a state function Ψ that contains all the accessible physical

information.

Now suppose |ψ1〉 and |ψ2〉 are two orthogonal physical states of the system.

Then, their linear superposition c1|ψ1〉+ c2|ψ2〉 with ci ∈ C (and proper normal-

ization) is also an allowed state of the system. This property is known as the

superposition principle. It is at the core of quantum mechanics (QM) and has no

classical counterpart. In the classical world, a bit could be either 0 or 1 but in QM
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the qubit can be in a superposition of those, i.e. in a new state that is both of them

at the same time without being neither of them individually until a measurement

is made.

• (Postulate II) To any given physical observable (i.e. a trait or property) "a" is

associated a Hermitian operator A that acts on the Hilbert space H such that

when a measurement of "a" is made on the physical system, we obtain one of the

eigenvalues λi of A. Mathematically we write an eigenvalue equation

A |λi〉= λi |λi〉. (1.12)

Let λ1 and λ2 be two eigenvalues of A and suppose the system is in a superposition

c1|λ1〉+c2|λ2〉. If a measurement of the trait "a" is made, the system undergoes an

instantaneous reduction to one of the two eigenstates |λ1〉 or |λ2〉 with probability

of occurrence

p1 =
|c1|2√
|c1|2 + |c2|2

and p2 =
|c2|2√
|c1|2 + |c2|2

respectively.

This is known in the literature as the collapse of the wavefunction, and the com-

plex coefficients ci are called the probability amplitudes.

Definition 1.14. Let "a" be a given physical observable with its unitary repre-

sentation A and a given state |ψi〉 ∈ H with probability of occurrence pi, the

expectation value of "a" is defined as

〈A〉=
N

∑
i=1

pi〈ψi|A|ψi〉, (1.13)

where N is the number of available states (to the observer) which are assumed to

be properly normalized.

• (Postulate II′) We may reformulate Postulate II above in the language of pro-
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jective measurements. We denote by {Pi}n−1
i=0 , where each Pi = |i〉〈i|, the set of

quantum measurements satisfying the following properties:

If the state of the system is |ψ〉 before the act of observation, which we equivo-

cate with measurement, then the probability that outcome i occurs is given by the

expectation value of Pi:

〈ψ|P†
i Pi|ψ〉= 〈ψ|i〉〈i|ψ〉= |〈ψ|i〉|2 = pi,

and the sate of the system immediately after the measurement is

Pi|ψ〉√
〈ψ|P†

i Pi|ψ〉
.

The projection operators Pi satisfy the completeness relation

∑
i

P†
i Pi = I. (1.14)

In the case of qubits (i.e. when n = 2), the set of possible measurements in the

computational basis is given by {P0,P1} where P0 = |0〉〈0| and P1 = |1〉〈1|.
For example, if the system was in the state |ψ〉= c1|0〉+c2|1〉, then the probability

p0 of the system to be found in the state |0〉 (i.e. to measure the outcome zero) is

given by:

〈ψ|P†
0 P0|ψ〉= 〈ψ|0〉〈0|ψ〉= |c1|2.

Immediately after the measurement the system is collapsed onto

P0|ψ〉√
〈ψ|P0|ψ〉

=
c1|0〉√
|c1|2

= eiθ |0〉,

where we have written the complex number c1 as raeiθ .

In quantum mechanics, we cannot distinguish between eiθ |0〉 and eiγ |0〉. Global

phase factors are irrelevant. This is because in the Hilbert space the entities we

are dealing with are not exactly vectors but rather objects called rays (these are



13

equivalence classes of vectors that differ by multiplication by a nonzero complex

number). On the other hand, an expression like 1√
2
(|0〉+ |1〉) is clearly different

from 1√
2
(|0〉−|1〉) (i.e. relative phase factors in state superpositions are physically

relevant).

• (Postulate III) In non relativistic quantum mechanics, the time evolution of a

given closed physical system is governed by the Schrödinger equation [58]

ih̄
∂ |ψ〉

∂ t
= H |ψ〉, (1.15)

where |ψ〉 = |ψ(~x, t)〉 i.e. the wavefunction is both a function of position ~x and

time parameter t. H is the Hamiltonian of the system, a Hermitian operator whose

eigenvalues (in the matrix representation of quantum mechanics) are the possible

energy levels of the system.

In the Heisenberg picture [35] the states are time independent and evolve under

the action of unitary operators U(t) such that if the state of the system was |ψ〉
just before the evolution it is U(t)|ψ〉 immediately after. In Quantum Information

Theory there is no explicit notion of time evolution (unless we consider physical

realizations of quantum computers and we are back in the Hamiltonian formalism)

so we mimic time evolution by comparing a state before the action of a given

quantum gate and after. We read the time evolution by looking at a quantum circuit

evolving from left to right i.e. from an input state to an output state.

1.1.2 The Density Matrix

We have described above in postulate I the state of a physical system by a normalized

state vector |Ψ〉 ∈H , but what if the state of the quantum system is not completely

known? This is the general situation, and more often than not, we do not know what

|Ψ〉 is. Only in very restricted scenarios do we know the entire wave function. So we

describe our ignorance of the entire state by the density matrix formalism.
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Definition 1.15. Let {ψ j} form a normalized but not necessarily an orthogonal basis in

H N (i.e 〈ψ j|ψ j〉 = 1) and let Ω j = {p j}N
j=1 be a probability distribution with p j ≥ 0

for every j such that ∑ j p j = 1, and suppose a quantum system is in state |ψ j〉 with

probability of occurrence p j, then the density matrix for the system can be expressed as

ρ = ∑
j

p j|ψ j〉〈ψ j| (1.16)

and is equivalent to the following conditions

1. tr(ρ) = 1 (i.e. ρ is of unit trace)

For assume {ek} to be an orthonormal basis of H then

tr(ρ) = ∑
k
〈ek|ρ|ek〉 = ∑

j
∑
k
〈ek|p j|ψ j〉〈ψ j|ek〉︸ ︷︷ ︸

δ jk

= ∑
j

p j ∑
k

δ
2
jk︸ ︷︷ ︸

=1

= ∑
k

pk = 1.

where δ jk is the Kronecker operator defined as:

δ jk =

 1 if j = k

0 if j 6= k.

2. ρ is a positive semi-definite operator.

That is

〈ϕ|ρ|ϕ〉= ∑
j

p j〈ϕ|ψ j〉〈ψ j|ϕ〉= ∑
j

p j|〈ψ j|ϕ〉|2 ≥ 0

for all states ϕ〉.

A few remarks are in order about the density matrix formalism.

Remark 1.16. (Pure and Mixed States)
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¬ A physical system given by the density matrix ρ as in Equation 1.16 is known as

a mixed state while if all the p j’s except one are zero we call this a pure state i.e. the

density matrix reduces to ρ = |ψ〉〈ψ|.

• A state ρ is pure if and only if ρ2 = ρ .

• A state ρ is pure if and only if Trρ2 = 1.

Given a mixed state ρ and a bipartite system H = H A⊗H B:

• A state ρ is called uncorrelated if it can be written as ρ = ρA⊗ρB.

• It is called separable if it can be written as ρ = ∑i piρA,i⊗ρB,i, where 0≤ pi ≤ 1

and ∑i pi = 1 and it is called entangled if ρ does not admit such a decomposition

(c.f. definition 1.13 as well).

­ In view of the above, we note that the mean value or expectation value of an

observable A (c.f. Equation 1.13) can be written in terms of the density matrix ρ as

〈A〉= Tr(ρA). (1.17)

® The temporal evolution of the density matrix is given by the Liouville-Von Neu-

mann equation

ih̄
d
dt

ρ = [H ,ρ],

where H is the Hamiltonian of the system and [. , .] denotes the commutator i.e.

[H ,ρ] = H ρ−ρH .

Two important concepts in dealing with density matrices and composite systems are

the partial trace and the state purification that we define respectively:

Definition 1.17. Let H = H A⊗H B be a Hilbert space of a bipartite system (A and

B) and let ρ be a density operator acting on the total Hilbert space H .

We define the partial trace of ρ over H B as an operator that acts on H A as follows

ρA = TrBρ ≡∑
j
(I⊗〈 j|)ρ(I⊗| j〉), (1.18)
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where {| j〉} is an orthonormal basis. This defines ρA uniquely, regardless of the choice

of the orthogonal basis.

Thus ρA describes Alice’s2 partial knowledge of the full system. For example imag-

ine we do not have access to system B (the natural situation in physics is the inside of a

black hole) so we trace out that system (i.e. in the black hole context, we get ride of its

unaccessible degrees of freedom).

More often than not, the physical system will be described by a mixed state density

matrix. The following procedure defines what we call state purification, which is a

procedure to transform a given general mixed state into a pure state.

Definition 1.18. Let ρA = ∑ j p j|ψ j〉〈ψ j| be a general density matrix on Hilbert space

H A. We introduce a second Hilbert space H B such that3 |H A|= |H B| and a normal-

ized state vector

|Ψ〉= ∑
j

√
p j|ψ j〉⊗ |ϕ j〉, (1.19)

where {|ϕ j〉} is an orthonormal basis for H B. This state vector |Ψ〉 is the purification

of ρA.

It is easy to verify that Equation (1.19) leads to the desired result. Consider the pure

density matrix ρ = |Ψ〉〈Ψ|.
We look at the partial trace (c.f. Def. 1.18) of ρ over system B

TrBρ = TrB|Ψ〉〈Ψ| = ∑
i, j,k

( I⊗〈ϕi| )
√

p j pk |ψ j〉 |ϕ j〉〈ψk|〈ϕk| ( I⊗|ϕi〉 )

= ∑
j

p j|ψ j〉〈ψ j|= ρA. (1.20)

One of the driving theorems in QIT is the no-cloning theorem [66] which is a pure

consequence of the linearity of quantum mechanics4.
2Alice will be properly introduced shortly.
3In general there is no direct connection between the number of pure states that enter a mixture and

the dimension of the Hilbert space.
4This would not be totally true if we consider measurements as well.
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Theorem 1.19. (Quantum No-Cloning Theorem) There does not exist any unitary op-

erator U such that

U |ψ〉|0〉= |ψ〉|ψ〉, ∀ |ψ〉 ∈H .

Proof. Assume such an operator U exists, and that |ψ〉 and |ϕ〉 are two distinct and

non-orthogonal states the operator U is to copy. Then, we must have that

U |ψ〉|0〉 = |ψ〉|ψ〉,

U |ϕ〉|0〉 = |ϕ〉|ϕ〉 and we get:

〈ψ|ϕ〉 = (〈ψ|⊗ 〈0|)I(|ϕ〉⊗ |0〉)

= (〈ψ|⊗ 〈0|)U†U︸︷︷︸
I

(|ϕ〉⊗ |0〉) = (〈ψ|⊗ 〈ψ|)(|ϕ〉⊗ |ϕ〉) = |〈ψ|ϕ〉|2.

Therefore, we reach a contradiction and such a copying operator does not exist.

In the last line of the proof, we used the fact that U was a unitary operator. Another way

to prove the theorem is to use the linearity of quantum mechanics in the following way:

Let |Ψ〉= α|0〉+β |1〉 be an arbitrary quantum state that we wish to clone so that α 6= 0

and β 6= 0.

U |Ψ〉|0〉=U (α|0〉+β |1〉) |0〉 = (α|0〉+β |1〉)(α|0〉+β |1〉)

= α
2|00〉+β

2|11〉+αβ |0〉|1〉+βα|1〉|0〉︸ ︷︷ ︸
cross terms

.(1.21)

But, from the linearity of quantum mechanics we also have that:

U |Ψ〉|0〉= αU |0〉|0〉+βU |1〉|0〉= α|00〉+β |11〉. (1.22)

Comparing the two Equations (1.21) and (1.22) we see that we arrive at a contradiction

due to the extra cross term in Equ.(1.21) because α 6= 0 and β 6= 0.

Hence, such a U does not exist, and therefore an unknown arbitrary quantum state can

not be cloned.

i N .B. It is important to understand that the no cloning theorem applies to un-
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known arbitrary states like the one in Eq.(1.1). While sets of entangled states (like

those forming the Bell basis), although arbitrary in the sense that one can pick any of

the four Bell basis with equal probability, can nevertheless be cloned on account of them

being mutually orthogonal. The loophole is that the theorem does not apply if the states

to be cloned are limited to |0〉 and |1〉 (or any set of mutually orthogonal states).

We present briefly some of the most important quantum protocols that will be used

later in the text and are by now standard tools in QIT, and in doing so we introduce our

first two famous cryptographic characters, Alice and Bob, who usually want to accom-

plish some given task.

• Teleportation: [6] This is the most important quantum protocol and the most fa-

mous of them all not only for its science fictional appeal but also for its power as

to demonstrate what quantum protocols can achieve.

– Alice wants to send Bob who is far away (even on astronomical distances) an

unknown quantum state |Ψ〉 = α|0〉+β |1〉 by just sharing an EPR pair and

Local Operations and Classical Communication (LOCC).

– Say they share the state |ϕ+〉= 1√
2
(|00〉+ |11〉).

– A calculation shows that their joint state is:

|Ψ〉|ϕ+〉= 1
2
( |ϕ+〉|Ψ〉+ |ψ+〉(N|Ψ〉)+ |ϕ−〉(Z|Ψ〉)+ |ψ−〉(NZ|Ψ〉) ),

where N is the negation operator Eq.(1.2), and Z the phase-flip operator

Eq.(1.9) introduced above.

– Alice applies E† to her shares (where E† is the reverse operator of E defined

in Eq.(1.11) on page 9):

(E†⊗ I)|Ψ〉|ϕ+〉= 1
2
( |00〉|Ψ〉+ |01〉(N|Ψ〉)+ |10〉(Z|Ψ〉)+ |11〉(NZ|Ψ〉) ).

– Alice measures her qubits (and thus gets 2 classical bits of information) and
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sends her result to Bob who knows now what operator to apply to his share

of the former EPR-pair so as to reconstruct the unknown state |Ψ〉.

Conclusion: 1ebit +2bits≥ 1qubit.

where by ebit which stands for an entangled qubit, we mean an EPR-pair.

• Dense Coding: This serves to transmit 2 bits of information using only 1 qubit

and 1 ebit.

– Alice and Bob share a Bell state say |ϕ−〉.

– Alice chooses one of the Bell states.

– Alice acts on her qubit with an appropriate unitary transformation to trans-

form it into her desired Bell state.

– Alice sends Bob her qubit.

– Bob applies E† learning thus which Bell state he has, where E was defined

in Eq.(1.11) above.

Conclusion: 1ebit +1qubit ≥ 2bits.

1.1.3 The mathematics of the GHZ state

In this section we describe some of the important mathematical properties of the

GHZ state, as it is one of the pillars of our main result on quantum secret sharing and is

used extensively in the protocol we introduce in Section 3.3.2 of Chapter III.

Daniel M. Greenberger, Michael A. Horne and Anton Zeilinger introcuded the GHZ

state in [33] as a way of proving that quantum mechanics was not local realistic (c.f. as
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well Bell’s Theorem [4]). The n-party version of the GHZ state is given by

|Φn
+〉=

1√
2

n︷ ︸︸ ︷
|00 . . .0〉+ 1√

2

n︷ ︸︸ ︷
|11 . . .1〉= 1√

2
|0n〉+ 1√

2
|1n〉 . (1.23)

As the most frequently used multi-party entangled state, the GHZ state has appeared

in applications such as nonlocality [46], communication complexity [18] and multi-party

cryptography [10] (as we will see in chapter 3 when we discuss quantum secret sharing).

Besides |Φn
+〉 in Eq.(1.23) we define

|Φn
−〉 ≡

1√
2

n︷ ︸︸ ︷
|00 . . .0〉− 1√

2

n︷ ︸︸ ︷
|11 . . .1〉= 1√

2
|0n〉− 1√

2
|1n〉 . (1.24)

We mentioned above how the Hadamard transform acts on an arbitrary vector state

H⊗n|x〉= 1√
2n

2n−1

∑
y=0

(−1)x·y|y〉. (1.25)

Now, define the parity P(x) to be

P(x)≡ x · y|y=(1,1,··· ,1) = (x1 1+ x2 1+ · · ·+ xn 1) mod 2 = x1 + x2 + · · ·+ xn mod 2.

H⊗n|Φn
+〉 =

1√
2

H⊗n(|00 . . .0〉+ |11 . . .1〉)

=
1√
2
(H⊗n|00 . . .0〉+H⊗n|11 . . .1〉)

=
1√
2

(
1√
2n

2n−1

∑
y=0

(−1)0n·y|y〉+ 1√
2n

2n−1

∑
y=0

(−1)1n·y|y〉

)

=
1√

2n+1

(
2n−1

∑
y=0
|y〉+

2n−1

∑
y=0

(−1)P(y)|y〉

)

=
1√

2n+1

2n−1

∑
y=0

(
1+(−1)P(y))|y〉

)
=

1√
2n−1

2n−1

∑
y=0 s.t.
P(y)=0

|y〉. (1.26)
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Similarly, the action of the n-Hadamard transform on |Φn
−〉 is given by:

H⊗n|Φn
−〉=

1√
2n−1

2n−1

∑
y=0 s.t.
P(y)=1

|y〉. (1.27)

For completeness, we give the effect of the phase-shift operator introduced in Eq (1.7)

above on |Φn
+〉 and |Φn

−〉:

(I2k−1⊗Sθ ⊗ I2n−k) |Φn
+〉=

1√
2

(
|00 . . .0〉+ eiθ |11 . . .1〉

)
, (1.28)

(Sθ1⊗·· ·⊗Sθn)|Φ
n
+〉=(Sθ1+···+θn⊗I2n−1)|Φn

+〉=
1√
2

(
|00 . . .0〉+ ei(θ1+···+θn)|11 . . .1〉

)
.

In particular we see that for θ = π

(Sπ ⊗ I2n−1)|Φn
+〉= |Φn

−〉. (1.29)

Combining the last few results

H⊗n(Sθ1⊗·· ·⊗Sθn)|Φ
n
+〉 =

1√
2n+1

2n−1

∑
y=0

(
1+ ei∑θ j(−1)P(y)

)
|y〉

=


1√

2n−1 ∑P(y)=0 |y〉 if ∑θ j = kπ with k even

1√
2n−1 ∑P(y)=1 |y〉 if ∑θ j = kπ with k odd.

(1.30)

This concludes our exposé of the preliminary chapter in which we have presented

briefly the machinery of quantum information theory and the underlying postulates of

quantum mechanics together with an express overview of the mathematics of the GHZ

state.



CHAPTER 2

QUANTUM ERROR CORRECTION CODES

In this chapter, we explore the classical and quantum domains of coding theory, and

various constructions pertinent to classical and quantum error correcting codes. The

need for those topics will become apparent when we discuss quantum secret sharing

schemes, where we will see how they are closely related to quantum error corrections1.

For completeness, we have included an appendix on Linear Algebra (c.f. appendix I),

which reviews some of the nomenclature and basic facts met in chapter one and in the

subsequent sections.

2.1 From Classical Linear Codes to Quantum Error Correction

In discussing classical error correction which as we will see has a direct generaliza-

tion in the quantum world, we will need a quick review of coding theory in its simplest

form. That is in what follows unless explicitly stated we will concentrate on classical

linear codes following J. Preskill’s lecture notes on QIT [56].

Definition 2.1. A code C of length n is a set of q-nary vectors of length n, called code-

words. When q = 2 we talk about binary vectors and C becomes a binary code.

In the special case in which k bits are encoded in a binary string of length n, we

designate from among the 2n strings, a subset containing 2k strings (i.e. a k-bit message

is encoded by selecting one of those 2k-words).

Let F2 denote the field of two elements {0,1} defined by the operations in Table 2.1.

F2 is also the ring of integers modulo 2, that is Z2.

Definition 2.2. In a binary linear code the codewords form a k-dimensional closed linear

subspace C of the binary vector space Fn
2, where Fn is the n-dimensional vector space

with entries in the field F.
1Mainly we will see that all quantum secret sharing schemes are quantum error correcting codes while

the converse is not true.
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Table 2.I: Addition and Multiplication Tables of the Binary Field F2.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

That is, in a binary linear code, we have that the XOR function2 of two codewords

is another codeword in the subspace and therefore we say that the code is additive. In

addition we have that the code C satisfies that for any α ∈ F2 and c ∈ C, αc ∈ C.

The space C of the code is spanned by a basis of k vectors {c1,c2, ...,ck} so that an

arbitrary codeword may be expressed as a linear combination of those basis vectors

c(α1, · · · ,αk) = ∑
i

αi ci,

where each αi ∈ {0,1} and addition is modulo two.

Thus we say that the vector~c of length n encodes the k-bit message α = (α1, · · · ,αk) via

the k basis vectors c1, · · · ,ck, which may be assembled in a (k×n)-matrix G.

Definition 2.3. The matrix G formed by the basis vectors ci is called the generator matrix

of the code C and is of dimension (k×n)

G =


c1

c2
...

ck

 , (2.1)

and in matrix notation:

c(α) = α G (we say that the matrix G acts on the left to encode α). (2.2)

Alternatively, the k-dimensional code subspace of Fn
2 can be characterized by speci-

2Recall that the XOR function is just addition of vectors over the field F2 so in this context, we use the
XOR-function, addition modulo 2 and the ⊕ operator interchangeably.
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fying (n− k) linear constraints.

Definition 2.4. Thus we can define an (n− k)×n-matrix H such that3

H cT = 0, ∀~c ∈ C. (2.3)

H is called the parity check matrix of the code C.

From this definition and Eq.(I.6) of Appendix I we see that the rows of H are (n−k)

linearly independent vectors and therefore C is the code space of vectors orthogonal to

all those (n− k) vectors.

Definition 2.5. In this context, Orthogonality in Z2 is defined as follows: ∀ ~x,~y ∈ C

where~x = (x1,x2, · · · ,xn) and~y = (y1,y2, · · · ,yn) we have that:

~x ·~y =
n

∑
i=1

xiyi mod 2 = 0. (2.4)

Example 2.6. Let~c1 = (0,1,1,0,1,0,1) and~c2 = (1,1,1,0,0,1,0). Their inner product

is

~c1 ·~c2 = (0 ·1⊕1 ·1⊕1 ·1⊕0 ·0⊕1 ·0⊕0 ·1⊕1 ·0) = 2≡ 0 mod 2,

and therefore c1 and c2 are orthogonal in Z2.

Remark 2.7. We also have that the rows of G are orthogonal to those of H

H GT = 0 (2.5)

Let ~e be the n-component vector that characterizes the occurrence of an error in a

given n-bit string.

The 1’s in~e mark the locations where errors occur.

Therefore when afflicted with~e, the n-bit string~c becomes~c→~c+~e.

3When we show explicitly~c as the vector notation of the codeword c we really want to think of it as a
vector in the code space; while if we write it as simply c, we think of it in terms of matrices (in that case a
raw matrix in the code C i.e.~c = cT ).
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Definition 2.8. Some errors can be detected by applying the parity check matrix H to

the corrupted vector

H(c+ e)T = HeT (where we have used Eq.(2.3)).

HeT is known as the error syndrome.

We not in passing that when we do not explicitly show the vector arrow on a math-

ematical quantity, we have passed from the vector notation to the matrix form of the

equation.

A few remarks are in order. Let E denote the set of errors {ei} that we wish to

correct. Error recovery is possible in principal if and only if all the errors ei have distinct

error syndromes.

Only then can we flip back the bit via

c+ e→ (c+ e)+ e = c+(e+ e) = c.

(Recall that the arithmetic is done modulo two.)

We run into trouble when He1 = He2 for e1 6= e2, since there is no way to distinguish

between those errors. We can mistake e1 for e2 and vice versa

c+ e1→ (c+ e1)+ e2 = c+(e1 + e2)︸ ︷︷ ︸
∈ C

6= c.

What really happens is that the information contents of the original codeword is altered.

We start with the codeword c and end up with another valid codeword c′ (i.e. in the code

subspace C) but different from c.

Definition 2.9. The distance d(C) of a code C is defined as the minimum distance be-

tween two distinct codewords.

In a linear code C, the Hamming weight is the number of non-zero entries of a given

codeword c ∈ C denoted by wt(c). While the Hamming distance dH is the number of
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1’s present in the codeword c which is equal to the Hamming weight of the difference.

In the case of a binary code, the hamming distance is equal to the Hamming weight of

the sum.

More formally, the distance is the minimum weight of~y such that

∃~x,~x′ ∈ C and~x+~y =~x′.

That is for a binary vector c with p 1’s we say that it has a Hamming weight wt(c) = p

and that the Hamming distance between two codewords c1 and c2 is dH(c1,c2) =wt(c1+

c2).

In example 2.6 above the wt(c1) = wt(c2) = 4 we have that the Hamming distance

between the two codewords c1 and c2 is

dH(c1,c2) = wt(c1 + c2) = wt(1,0,0,0,1,1,1) = 4.

iN .B. A single bit-flip error generates a bit string whose Hamming distance dif-

fers by 1 from the original codeword. Furthermore, if we are dealing with binary vectors,

for a code C with minimum distance d, any of those vectors is within Hamming distance

t = bd−1
2 c of at most one codeword.

Definition 2.10. The support of a vector c, denoted by supp(c), is the set of coordinates

of c where the corresponding entry is not 0, i.e.

supp(v) = {i : ci 6= 0}.

Back to our example 2.6 above, for the given codewords c1 and c2 we have that

supp(c1) = {2,3,5,7} while supp(c2) = {1,2,3,6}.
Finally, we are in a position to introduce the notion of classical error correcting codes.

Definition 2.11. A linear code with length n, dimension k, and minimum distance d =
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2t +1 is called an [n,k,d] code and can correct t errors or detect (without correcting) 2t

errors.

Notation 2.12. The general notation convention for a classical error correcting code is

(n,K,d) where n is the number of physical bits, K = 2k is the number of encoded bits

and d is the distance. In definition 2.11 we used the notation [n,k,d], which is usually

reserved for a Linear Error Correcting Code (LECC).

From now on, we will only consider binary codes unless explicitly stated.

We will also need the notion of the dual of a code C which is imperative for most con-

structions of classical and quantum codes.

Definition 2.13. The dual code C⊥ of a code C is the set of vectors orthogonal to all

codewords, that is

C⊥ = {v ∈ Fn
2 : v · c = 0,∀ c ∈ C.}

The best way to understand the dual code C⊥ is by looking at the relationship be-

tween the check matrix H and the generator matrix G of the code C.

Recall that the (k× n) generator matrix G and the (n− k)× n parity check matrix H

satisfy

H GT = 0 for the code C. (2.6)

Taking the transpose of the above equation we get

(H GT )T = G HT = 0.

So now HT can be seen as the generator matrix, while G as the parity check matrix of

an (n− k)-dimensional code which we denoted by C⊥ and called the dual code of C.

Thus C⊥ is the orthogonal complement of C in Fn
2.

Definition 2.14. A vector is self-orthogonal if it has even weight.

So it is possible for C∩C⊥ 6= /0.
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Definition 2.15. Self-dual codes: A code contains its dual if all its codewords have even

weight and are mutually orthogonal. If n = 2k, it is possible to have C = C⊥, in which

case C is said to be self-dual.

We also have the following important lemma relating a code and its dual.

Lemma 2.16. C and C⊥ are related in the following useful way:

∑
c∈C

(−1)v·c =


2k if c ∈ C⊥

0 if c /∈ C⊥.

(2.7)

The zero part of the above relation follows from the fact that given two strings c and

w of length k

∑
c∈{0,1}k

(−1)c·w = 0, w 6= 0.

If the vector~c is an encoding of α (c.f. Eq.(2.2)), we have that c = αG and we get:

∑
c∈C

(−1)v·c = ∑
c∈C

(−1)v·αG = ∑
α∈{0,1}k

(−1)α·vG = 0,∀ vG 6= 0.

Since G, the generator matrix of C is the parity check matrix for C⊥ the sum vanishes

whenever c /∈ C⊥.

Several classical bounds are known for the given n, k, d parameters forming an

[n,k,d]-error correcting code, but here we only give the Singleton bound and the Ham-

ming bound [43]:

Theorem 2.17. A classical [n,k,d] linear error correcting code satisfies the Singleton

bound, given by

d−1≤ n− k. (2.8)

Codes that satisfy the Singleton bound with equality are called Maximum Distance

Separable or MDS codes for short. Those codes have special properties among the most
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important ones is that if C is an MDS-code so is its dual C⊥.

We also give the classical Hamming bound, which has a direct quantum analog:

Theorem 2.18. The Hamming bound for a classical linear q-nary code [n,k,d]q of

distance d satisfies the following inequality

k ≤ n− logq

 t

∑
i=0

 n

i

 (q−1)i

 , (2.9)

where t = bd−1
2 c is the maximum number of errors that can be corrected by the given

code.

In particular for a binary error correcting code of distance d = 3, [n,k,3]2 the Ham-

ming bound simplifies to

k ≤ n− lg(n+1), (2.10)

where lg is the base-two logarithm function.

2.1.1 Notions in Quantum Error Correction Codes

In what follows, we will introduce enough nomenclature and tools to be able to

connect QECC to QSS schemes.

Classically, in the case of a binary code, the only possible type of error that can occur is

a bit flip, i.e. a 0→ 1 and vise versa. The simplest classical error correcting code that

can handle this problem is the repetition code:

0 −→ 000
ma jority←− 010

1 −→ 111
ma jority←− 101

where we use the majority function i.e. if two of the bits are 0 then we flip the non-zero

1 back to 0 (since it is more probable that one bit was erroneously flipped rather than

two). The same goes for the value 1 bit as well.
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Now, a natural question to ask is: can we use the same technique quantum mechan-

ically? Unfortunately, due to the No-Cloning theorem, we cannot do so; for we cannot

copy non-orthogonal states (i.e. completely unknown states). Furthermore, how can we

look at the quantum state in order to compute the majority (or parity)? For we know that

any measurement or information gain about a quantum system disturbs the state in a non

reversible way.

The first thing to note is that quantum mechanically, besides a bit flip, which is the

same as applying the X Pauli operator to the qubit, we can have a phase flip as well.

The latter is the same as applying the Z operator to the qubit. Furthermore, we can have

both a phase flip and bit flip happening at the same time, which is the same as applying

the Y operator to the qubit (c.f. remark 1.9 above). So, apart from taking into account

the No-Cloning theorem and the measurement problem, we have to be able to correct

for X , Z and Y -errors. Theorem 2.19 and remark 2.20 bellow illustrate the most general

single-qubit error that can occur.

As we will see subsequently, the main idea in quantum error correction is to deter-

mine which bit is different without knowing its value.

Let |0〉=
n︷ ︸︸ ︷

|00 · · ·0〉 and |1〉=
n︷ ︸︸ ︷

|11 · · ·1〉 denote the encoded states or logical states. For

simplicity, we will focus on the three-qubit error correcting code with n = 3, which is the

quantum analogue of the repetition code. We note in passing that the quantum circuit in

|ψ〉 • •
|0〉 �������� |ψ〉L = α|0〉+β |1〉

|0〉 ��������


(2.11)

Figure 2.1: Encoding of the Quantum State Into the Logical State .

Fig. 2.1 allows us to prepare a 3-GHZ state4 as well. But in the context of QEC-codes,

the state|ψ〉L is called the logical qubit, while each individual qubit constituting it is

known as the physical qubit. Furthermore, using the same terminology as in classical

4Actually, it prepares a generalized version of the GHZ-state, unless α = β = 1√
2
.
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coding theory, we will call the set:

C = {α|000〉+β |111〉 |α,β ∈ C, |α|2 + |β |2 = 1}

the code and each member of C a codeword.

iN .B. It is important to note that the state |ψ〉 itself is not triplicated, only the

basis states are triplicated. Hence, we are in no way violating the no-cloning theorem

|ψ〉L 6= (α|0〉+β |1〉)⊗3 ,

unless α = 0 or β = 0. Now the protocol goes as follows:

(Transmission) Say Alice encodes the state |ψ〉 as shown above into |ψ〉L and sends

the logical state to Bob through a quantum channel susceptible to noise. Let p denote

the probability that a bit flip occurs due to that noisy quantum channel. We assume

that p is sufficiently small so that not many such errors occur during the transmission.

Clearly the state |ψ〉L will thus be transmitted with no error with a probability pno error =

(1− p)3 while the probability of having only one error (say on the 1st, 2nd or 3rd qubit)

is p1 error = 3p(1− p)2. On the other hand, the probabilities of having two and three

errors occurring (all bits are flipped) is given by p2 errors = 3p2(1− p) and pall f lip = p3,

respectively.

(Error Syndrome Detection and Correction) In order to detect any bit flip error,

we need to look but not see, i.e. we need to locate the error without measuring the value

of the qubit. To do so, we use the following quantum circuit (Fig. 2.12 on page 32)

which is the quantum analogue of the classical error syndrome introduced in definition

2.8.

In order to correct for errors, Bob needs to prepare ancillary qubits in the state |00〉
as seen in Fig. 2.1.1. He then applies four CNOT gates (c.f. Eq.(1.3)) with the control

bits being the encoded qubits and the target bits being his ancillary qubits.

Assuming that only bit-flip errors have occurred, let |x1x2x3〉 be a basis vector Bob has

received and let |.〉A and |.〉B be the final states of the first and second ancillary qubits
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•
α|0〉+β |1〉 • •

•

|0〉 �������� ��������
NM





A

00 No error; 01 error on 3rd qubit

|0〉 �������� ��������
NM





B

10 1st qubit; 11 error on 2nd qubit

 
Figure 2.2: Error Syndrome Measurement.

respectively. Then the effect of the Error Syndrome circuit is to leave the final ancillary

qubits in the respective states:

|x1⊕ x2〉A and |x2⊕ x3〉B.

So we see that depending on which qubit was flipped (if any), the outcome of the

error syndrome when measured will be as displayed in Table 2.II bellow.

Just to illustrate the above discussion, let’s say Bob received the following state

|ψ〉e1 = α|010〉+β |101〉.

He applies the Error syndrome circuit (Fig.2.1.1) and thus is left with the following

global state

|ψ〉Bob = α|01011〉+β |10111〉= |ψ〉e1⊗|11〉.

Table 2.II: Error Syndrome Measurement and Bit Flip Correction.

Error syndrome Operator needed for Correction
(00) I No errors occurred
(01) X3 Error on 3rd qubit
(10) X1 Error on 1st qubit
(11) X2 Error on 2nd qubit
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Now, Bob measures the ancillary qubits and finds the classical bits {11} and thus he

knows that an error occurred on the 2nd qubit, so he applies:

X2 = (I⊗X⊗ I)(α|010〉+β |101〉) = α|000〉+β |111〉= |ψ〉L.
√

What if instead Bob receives the following state

|ψ〉e2 = α|101〉+β |010〉 ?

If he applies the error syndrome circuit, he now has the global state:

|ψ〉Bob = α|10111〉+β |01011〉= |ψ〉e2⊗|11〉.

And thus if Bob measures the ancillary qubits he ends up again with the classical bits

{11}. He will erroneously conclude that the error occurred on the 2nd-qubit and when

he applies X2 as above he ends up instead with

α|111〉+β |000〉= N|ψ〉L 6= |ψ〉L.

Thus Bob ends up with the negation of the state instead of the desired state itself.

The way out of this is to look at the probabilities of occurrence of the above states so

as to be able to recognize which state is which. For the state |ψ〉e1 the probability is

given by pe1 = p(1− p)2 since only one bit flip occurred; while that of |ψ〉e2 is given by

pe2 = p2(1− p).

To put numbers in, if the probability of an error to occur is p = 0.1 then pe1 = 0.081

while pe2 = 0.009 i.e. pe1 = 9pe2 . Furthermore, the probability that one or two errors

to occur equals 0.972 while that of two or three errors to occur is 0.28. Therefore the

probability of N|ψ〉L to occur is about 35 times less likely than that of |ψ〉L.

What about phase flip errors?

We noted above, in discussing the Hadamard transform in Eq.(1.4) and Eq.(1.10), that
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the X and Z operators are related via:

HXH = Z and HZH = X .

Furthermore, let |±〉= 1√
2
(|0〉±|1〉) (the Hadamard basis introduced in Eq.(1.5) above).

We have that the action of the Z and X operators on the Hadamard basis is given by

Z|+〉= |−〉 and Z|−〉= |+〉, (2.12)

X |+〉= |+〉 and X |−〉=−|−〉. (2.13)

This suggests that the Z operator is to the Hadamard basis what the X operator is to the

computational basis. This means that the two errors, bit flip and phase flip, are related via

the Hadamard transform and thus their correction is also related. This gives us grounds

to suggest the encoding of

|ψ〉= α|0〉+β |1〉 Ẽ−→ ˜|ψ〉L = α|+++〉+β |−−−〉= α|+〉+β |−〉.

|ψ〉 • • H

|0〉 �������� H ˜|ψ〉L = α|+〉+β |−〉

|0〉 �������� H


(2.14)

Figure 2.3: Ẽ: The Encoding Circuit for the Phase Shift Error.

The error syndrome quantum circuit gets a slight modification as well with the intro-

duction of single Hadamard gates on the first three quantum wires. The procedure for

error detection and correction remains identical as in the bit-flip case, with the Z operator

replacing the X operator in the previous discussion. For completness we show the circuit
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H • H

α|+〉+β |−〉 H • • H

H • H

|0〉 �������� ��������
NM





A

00 Apply I; 01 apply Z3

|0〉 �������� ��������
NM





B

10 apply Z1; 11 apply Z2




Figure 2.4: Error Syndrome Measurement and Correction for Z-Errors.

The previous discussion applies to either a bit flip or a phase flip. To be able to correct

for both errors at once, the nine-qubit code introduced by Peter Shor [61] comes to the

rescue by using both codes at once.5 We do not explain it here because it is not the most

efficient single-error correcting code, nonetheless, it still achieves its goal. Since X and

Z error corrections are independent the code can correct one of each such as Y = iXZ.

What about correcting all single qubit errors?

Theorem 2.19. If a quantum error correcting code corrects errors A and B, it also

corrects αA+βB.

Remark 2.20. We note that the most general one qubit-error that can occur can be

written as a linear combination of the Pauli matrices i.e.

αI +βX + γY +δZ. (2.15)

i Any QECC correcting single qubit errors X, Y and Z (plus the Identity) corrects every

single-qubit error; and therefore correcting all t-qubit X, Y and Z-errors on t-qubits

(+I) corrects all t-qubits errors.

The last remark becomes more transparent if recast in the language of the the Pauli

group G n which we now define:
5We give in example 2.24 bellow the list of all the Pauli operators that enables us to determine the error

syndrome. For a detailed description of the original nine qubit code that does not employ the language of
Pauli operators c.f. [61].
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Definition 2.21. (The Pauli Group G n) We define the Pauli group G n on n qubits to be

generated by I, X, Y and Z on individual qubits. Then G n consists of all tensor products

of up to n operators I, X, Y and Z including the overall phases {±i,±1}. (The phases are

included to respect the closure property of the group, otherwise we would have tensor

products that would not be in the group.)

Properties:

• Any M ∈ G n satisfies M2 =±M.

• If M,N ∈ G n, either MN = NM or MN =−NM. That is, for every pair M and N

of the Pauli group, either they commute or anticommute.

Definition 2.22. The weight of a Pauli operator M ∈ G n is the number of non identity

tensor factors in M or, equivalently, the number of qubits on which M acts as the non-

identity operator.

For example, M = Z⊗Z⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I has weight equal to 2, while N =

I⊗ I⊗ I⊗X⊗X⊗X⊗X⊗X⊗X has weight equal to 6.

iN .B. The weight-t Pauli errors form a basis for all t-qubit errors.

A few remarks are in order before we delve deeper into the machinery of QECC.

Remark 2.23. We will work in the Hadamard basis defined in Eq.(1.5) and therefore the

X operators and Z operators exchange roles, i.e. now X will correct a phase-flip error

while Z will correct a bit-flip error.

• In the classical repetition code, a correctly encoded state 000 or 111 has the prop-

erty that the first two bits have even parity as well as the second and the third.

A state with an error on the first and second bits (or second and third) will show

an odd parity. Thus, we say that a codeword (i.e. one without error) is a (+1)-

eigenvector of Z⊗Z⊗ I and a state with an error on the first and second qubits is

a (−1)-eigenstate of Z⊗Z⊗ I.



37

• Similarly, for the 3-qubit phase error correcting code, a codeword has eigenvalue

of (+1) for X⊗X⊗ I whereas an eigenvalue of (−1) for X⊗X⊗ I if a phase error

occurred on the first two qubits.

– Thus measuring Z⊗Z detects bit flip (i.e. X) errors, while measuring X⊗X

detects phase flip (i.e. (Z)) errors.

– The error syndrome is formed by measuring enough operators to determine

the location of the errors.

Example 2.24. We mentioned above Shor’s nine-qubit code [61] we give here the list of

all Pauli’s operators that enable us to determine the error syndrome.

M1 = Z⊗Z⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I; M5 = I⊗ I⊗ I⊗ I⊗ I⊗ I⊗Z⊗Z⊗ I

M2 = I⊗Z⊗Z⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I; M6 = I⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I⊗Z⊗Z

M3 = I⊗ I⊗Z⊗Z⊗ I⊗ I⊗ I⊗ I⊗ I; M7 = X⊗X⊗X⊗X⊗X⊗X⊗ I⊗ I⊗ I

M4 = I⊗ I⊗ I⊗ I⊗Z⊗Z⊗ I⊗ I⊗ I; M8 = I⊗ I⊗ I⊗X⊗X⊗X⊗X⊗X⊗X .

The {M1, · · ·M8} form a group called the Stabilizer of the code. The group here con-

sists of all the Mi Pauli operators with special properties that we give in the following

definition. This deserves a section of its own.

2.1.2 The Stabilizer Code Formalism

Definition 2.25. Let T be a subspace of an n-qubit Hilbert space.

Define a set:

S(T ) = {M ∈ G n : M|ψ〉= |ψ〉,∀|ψ〉 ∈ T}. (2.16)

S(T ) is called the stabilizer of T with the following properties:

Properties of The Stabilizer Code
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1. S(T ) is a group: M, N ∈ S(T )⇒ MN|ψ〉 = M|ψ〉 = |ψ〉, (i.e. if M and N are

in the group so is M group operator N where the group operator here is matrix

multiplication).

2. S(T ) is an Abelian group6:

M,N ∈ S(T )⇒MN|ψ〉= |ψ〉= NM|ψ〉 ⇒ [M,N]|ψ〉= 0,∀ |ψ〉 ∈ T .

iRecall that in quantum mechanics, operators that do not commute can not be

measured simultaneously.

3. −I /∈ S(T ), since −I|ψ〉=−|ψ〉 6= |ψ〉 (i.e. has (−1) as eigenvalue).

4. From (1)+ (2)+ (3) above⇒ |S(T )| = 2r where r is the number of generators7

M1, · · · ,Mr and thus a general element can be written as Ma1
1 Ma2

2 · · ·Mar
r where

ai ∈ {0,1}.

Definition 2.26. Given an Abelian group S of Pauli operators, define a code space

T (S) = {|ψ〉 : M|ψ〉= |ψ〉,∀M∈ S}. Then, T (S) encodes k-logical qubits in n-physical

qubits when S has n− k generators and has dimension |T (S)|= 2n−k.

Remark 2.27. We note in passing that we refer to either S or T (S) as the stabilizer

code, where S is an Abelian subgroup of G n. Other names for the stabilizer code are:

symplectic code, or additive or additive GF(4).

Definition 2.28. Let S be a stabilizer and T (S) the corresponding quantum error cor-

recting code. We define the Normalizer

N(S) = {P ∈ G n : MP = PM,∀M ∈ S}. (2.17)

The following theorem relates the normalizer to the stabilizer and to error correcting

criteria.

Theorem 2.29. Let S be a stabilizer code with r-generators on n-qubits. Then:

6Recall that the M’s and N’s are tensor products of Pauli matrices.
7C.f. definition 2.26.
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1. dim T (S) = |T (S)|= 2n−r (where the number of encoded qubits = k = n− r).

2. Let N(S) = S⊥ = {P ∈ G n : PM = MP, ∀M ∈ S}, then S can detect errors outside

N(S)\S.

Remark 2.30. We make some important remarks on the previous theorem 2.29.

• (Remark on (1) in the theorem): Every time we add a Pauli operator, we divide

the space by two (since we have (±1)-eigenvalues). We continue on doing so till

we have exhausted all the r generators i.e. we have divided the space by 2r (c.f.

item (4) in definition (2.25) above) and therefore the dimension of the stabilizer

|T (S)|= 2n

2r = 2n−r.

• (Remark on (2) in the theorem): Informally, N(S) is the set of all Pauli operators

that commute with everything in the stabilizer. We sketch a proof of (2) since it will

illustrate how the entire machinery is related to formal quantum error correction.

Proof. Suppose M ∈ S and P ∈ G n where P is an error that occurred. Therefore,

P anticommutes with all elements of S i.e. {P,M}= 0 for all M ∈ S.

We thus have that M (P|ψ〉) =−PM|ψ〉=−P|ψ〉.
⇒ P|ψ〉 is an eigenvector of M with eigenvalue {−1}.
Suppose P ∈ G n, [P,M] = 0, ∀M ∈ S ⇔ P ∈ N(S) (by definition of N(S)).

Then for all M ∈ S, M (P|ψ〉) = PM|ψ〉 = P|ψ〉 ⇒ P|ψ〉 is an eigenvector of M

with eigenvalue {+1}.
Therefore P|ψ〉 ∈ S(T ) (i.e. P|ψ〉 is a valid codeword).

We conclude that P is an undetectable error except if P|ψ〉= |ψ〉, ∀ |ψ〉 ∈ T (S)⇔
P ∈ S.

Therefore we need to mod N(S) by those P’s in S that are undetectable errors or

are even valid codewords.

(Conclusion:)

i Given the eigenvalue of an operator M ∈ S (the stabilizer), one can detect errors E

that anticommute with M ∈ S and therefore, the code T (S) detects errors that are not in
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N(S)\S.

ii Just as classical codewords vanish under the action of the parity check matrix (c.f.

definition 2.4 and Eq.(2.3)), elements of the quantum code are fixed (or stabilized) by

each stabilizer.

Definition 2.31. Let S be the stabilizer and T (S) the corresponding quantum error cor-

recting code. The distance d of T (S) is defined to be the weight (c.f. definition 2.22) of

the smallest Pauli operator M in N(S)\S.

Remark 2.32. A stabilizer code of distance d, corrects b(d−1)/2c-errors. Thus to

correct t-errors, we need the distance d = 2t +1.

In this context, we have the following definition of error syndrome.

Definition 2.33. The error syndrome (E.S.) of the stabilizer code, is the list of eigenval-

ues of the generators of S. In general, for a stabilizer code the error syndrome of F ∈ G n

is given by an r-bit binary vector~e such that:

ei =


0, if [E,F ] = 0

1, if {E,F}= 0.

(2.18)

The Syndrome(EF)=Syndrome(E)+Syndrome(F) (in binary).

If however, the Syndrome(E) =Syndrome(F)⇔ Syndrome(EF) =⊕2 0⇔ EF ∈ N(S)

(i.e. we cannot distinguish between E and F.) More precisely, E and F have the same

E.S. if and only if E†F is in N(S) and thus, E and F commute with the same set of

generators of S.

i If E†F /∈ N(S), the E.S. can distinguish between them.

Z The code corrects errors for which E†F /∈ N(S)\S for all possible pairs of error

(E,F).

i N .B. If there exist some errors in S that keep the codewords fixed, then we say

that the QECC is degenerate.
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We are finally in a position to state the most general conditions for quantum error

correction, which are given by the following theorem:

Theorem 2.34. Suppose E is a linear space of errors acting on the Hilbert spaceH and

let C be a subspace of H . Denote the encoded basis states by {|ψi〉} ∈C, and the basis

errors by {Ea} (with all the {Ea|ψi〉}mutually orthogonal). Let Sa = {Ea|ψ1〉,Ea|ψ2〉, · · ·}
denote the measure subspaces.

Given a map Sa −→H L that takes Ea|ψi〉 7−→ |ψi〉, the following are equivalent:

1. {|ψi〉} forms a basis for a QECC correcting E (or the Span(E )).

2. 〈ψi|E†
a Eb|ψ j〉= Λabδi j,

where Λab is a Hermitian matrix independent of both i and j.

3. The subspace C of H forms a quantum error-correcting code correcting errors E

if and only if

〈ψ|E†E|ψ〉= Λ(E). (2.19)

for all E ∈ E . The function Λ(E) is independent of the state |ψ〉.

Proof. We sketch the idea behind the proof.

• (­⇐⇒¬) Diagonalize the matrix Λab by choosing a different basis {Fa} for E .

• (¬⇐⇒®) Here we use the recovery condition from the main theorem of [49].

Let U be the recovery map such that

U (E|ψ〉) = a|ψ〉|anc1〉; U (E|ϕ〉) = b|ϕ〉|anc2〉,

⇒UE (|ψ〉+ |ϕ〉) = c(|ψ〉+ |ϕ〉) |anc3〉= a|ψ〉|anc1〉+b|ϕ〉|anc2〉.

We find that 〈ψ|E†E|ψ〉= |a|2 = |b|2 = 〈ϕ|E†E|ϕ〉.

• (®⇐⇒­) Consider E = Ea±Eb; Ea± iEb. We compute 〈ψi|E†
a Eb|ψi〉= Λab for

all encoding |ψ〉 while choosing for |ψ〉= |ψi〉± |ψ j〉;|ψi〉± i|ψ j〉 and we get ­.
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We comment on the meaning of the above theorem in the following remark.

Remark 2.35. We recast the equivalent conditions of the theorem using E = E†
a Eb where

E now is any operator acting on 2t qubits:

• ­ is replaced by ·.

· For any orthonormal basis {|ψ〉} ∈ C,

〈ψi|E|ψ j〉= 0, (i 6= j), (2.20)

〈ψi|E|ψi〉= Λ(E), for all operators E acting on E . (2.21)

What Eq.(·.2.20) says is that in correcting errors, we will never confuse two dif-

ferent basis vectors. While Eq.(·.2.21) says that learning about the error can

not give us any information whatsoever about which of the basis states we have.

This knowledge would constitute a measurement, which in turn would collapse

the superposition of basis vectors and thus would disturb the original state. As a

consequence, this will prevent us from learning about the error in the first place

and thus we spiral down into a tautological logic. This will be a very crucial point

when we prove some of the most important theorems in quantum secret sharing.

• ® is replaced by ¸.

¸ For any properly normalized codeword |ψ〉 ∈ C, and all E acting on E

〈ψ|E|ψ〉= Λ(E). (2.22)

What Eq.(¸.2.22) says is that protecting the state against errors (or noise) is the

same as preventing the environment from extracting any information about that

state. Here one can think of the environment as representing any set that is not

allowed to look at the state; a set known as an unauthorized set in secret sharing

nomenclature.
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In terms of density matrices, for a non-degenerate code of distance d, and codeword |ψ〉,
choosing any t qubits in the block has the property that if we trace over the remaining

(n− t) qubits we obtain

ρt = Trn−t |ψ〉〈ψ|=
I
2t , (2.23)

That is, we get the totally mixed density matrix, which is again to say that in a

d = (t+1)-code, we cannot aquire any information about the encoded data by observing

any t-qubits in the block (ρt ∝ a constant matrix independent of the codeword).

We now give the formal definition of a quantum error correction code.

Definition 2.36. An ((n,K,d)) is a QECC encoding a K-dimensional subspace into n

physical qubits with distance d, which for Stabilizer codes is an [[n,k,d]]-quantum error

correcting code with K = 2k.

We can now recast definition 2.31 in light of theorem (2.34) and summarize the

essence of quantum error correction in the following corollary.

Definition 2.37. The distance of a QECC is defined as the minimum-weight Pauli oper-

ator P for which

〈ψi|P|ψ j〉 6= Λ(P)δi j.

Corollary 2.38. An [[n,k,d]]-QECC:

¶ of distance 2t +1 will correct t qubit errors (i.e. if Q = Q1⊗·· ·Qn where Qi : H i→
H ′

i acts as a quantum channel, then Q acts as the identity on n− t qubits and may do

anything on t qubits).

· of distance d will correct (d−1)-qubit erasure errors (those are the errors that occur

at known locations, that is the quantum channel Q now produces an extra register that

tells us which t-qubits were affected).

We commented above (c.f. iN .B. after def. 2.33) on the degeneracy of a QECC.

Here we state explicitly when this degeneracy occurs.
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Definition 2.39. A QECC is degenerate for a set of linearly independent sets of errors E

if the Hermitian matrix Λab (in theorem2.34) does not have maximum rank (i.e. not all

the columns are linearly independent). Moreover, it is degenerate if it is degenerate for

E ={P ∈Pn : wt(P)< t,d = 2t +1}.

i N .B. a non-degenerate code takes linearly independent errors to linearly inde-

pendent states, but this is no longer true if the code is degenerate.

Remark 2.40. In a non-degenerate stabilizer code, the distance d = min(weight) in

N(S). Otherwise, we need to look at the minimum weight in N(S)\S to get the distance

of the stabilizer code.

2.2 The Making of Quantum Codes

We briefly give some constructions of important quantum codes since both quantum

error correction and quantum secret sharing are quantum codes after all.

2.2.1 Hamming Codes and Calderbank-Shor-Stean (CSS)-Codes

Let r denote the length of the vectors in the code C. The classical linear code [n,k,d]

has a generator matrix G (c.f. Eq.2.1) of n = 2r− 1-linearly independent columns and

k = n− r-raws (encoded bits).

Example 2.41. [7,4,3]-Hamming Code

We take r = 3 here for the sake of the discussion and to simplify the constructions.

We will build a 3-Error Correcting Code (ECC). Therefore, n = 23− 1 = 7; k = n−
r = 7− 3 = 4; with d = 3 and therefore defines a [7,4,3]-code that can thus correct

t = bd−1
2 c= 1-error. The parity check matrix H (c.f. definition2.4) is given by:

H =


1 1 1 1 0 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1

 , (2.24)
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While G has to satisfy HGT = 0 (i.e. we need 4-raws perpendicular to the 3-raws in H)

and thus

G =


1 1 1 1 1 1 1

1 1 1 1 0 0 0

1 0 1 0 1 0 1

1 1 0 0 1 1 0

 , (2.25)

In general, whenever the codes are linear (which is the only case we have considered

here) we can convert from a classical code to a stabilizer code by converting:

The Parity check matrix −→ Stabilizer; that is the raws of H −→ generators of the code

space S.

Example 2.42. [7,4,3]-Hamming Code−→ [[7,1,3]]- quantum Code

For example to convert the [7,4,3]-classical code above into a quantum code S we do

the following:

• To correct one bit flip, convert the 1’s in H to−→ Z’s, and the 0’s to I in the quantum

code S.

H in Equation (2.24) is converted to:

Z Z Z Z I I I

Z Z I I Z Z I

Z I Z I Z I Z

C1. (2.26)

• To correct one phase shift error, convert the 1’s in H to−→ X’s, and the 0’s to I.

Once again, H in Equation (2.24) is converted to:

X X X X I I I

X X I I X X I

X I X I X I X

C2. (2.27)
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If we put the two codes thus formed C1 and C2 we can correct a bit flip and a phase flip

error. The quantum code we get is now

(n− k2)− raws


X X X X I I I

X X I I X X I

X I X I X I X

C2

(n− k1)− raws


Z Z Z Z I I I

Z Z I I Z Z I

Z I Z I Z I Z

C1.


[[7,1,3]]−quantum code. (2.28)

2.2.1.1 CSS-Codes

Let C1 be a classical linear code as defined in the previous section with an (n−k1)×n

-parity check matrix H1, and let C2 be a subspace of C1 with (n− k2)×n-parity check

matrix H2 (with k2 < k1).

Let the first (n− k1)-rows of H2 coincide with those of H1. Thus each word in C2 is

contained in C1 since there is an additional (k1− k2)-linearly independent rows and we

write C2 ⊂ C1.

Codewords in C2 obey the following linear constraint: The sub-code C2 defines an

equivalence relation in C1 in the following sense:

Definition 2.43. We say that u,v ∈C1 are equivalent (u≡ v) if and only if there exists a

codeword w ∈ C2 such that u = v+w.

The equivalence classes are the cosets of C2 in C1.

Next, we form a stabilizer code from those two codes as described in Example 2.42

above.

Thus if C1 is an [n,k1,d1]-code and C2 is an [n,k2,d2]-code then the CSS-code is given

by

[[n,n− (n− k1)− (n− k2),d]] = [[n,k1 + k2−n,d]], with d ≥min(d1,d2). (2.29)

In our previous Example2.42 we had [[n,k1 + k2−n,d]] = [[7,4+4−7,3]] = [[7,1,3]]-
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quantum (stabilizer) code as we mentioned above.

The following theorem gives us a basis of vector states for a well specified CSS-code.

Theorem 2.44. Let C1 and C2 be [n,k1,d1] and [n,k2,d2] classical linear codes, such

that C2 ⊂C1 and that both C1 and C⊥2 correct t-errors. Then for every coset leader u of

C1\C2 the quantum states given by

|u+C2〉=
1
|C2| ∑

v∈C2

|u+ v〉, (2.30)

form a basis for the staibilizer code [[n,k1− k2,d]], with d = min(d1,d2) which is able

to correct t-errors. This code is called Claderbank-Shor-Stean code of C1 over C2.

Binary CSS codes are just a subclass of the more general class of stabilizer codes.

2.2.2 Important Bounds on Quantum Codes

We mentioned above that Shor’s nine-qubit code [61] was not not the most effective

single error correcting code. So natural questions to ask are: How much better can

we do? What constraints are there on the number of encoded bits needed to correct a

given error? In this subsection we give some of the most important quantum bounds that

should shed some light on those questions.

2.2.2.1 The Quantum Hamming Bound

Consider an [[n,k,d]]-quantum code with distance d = 2t + 1. Suppose this code is

non degenerate (c.f. definition 2.39).

On any given qubit, there are three possible linearly independent errors (X ,Y or Z).

Thus there are

3l

 n

l

 = 3l n!
l!(n− l)!

,
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distinct errors in l-qubits out of a block of n-qubits. the total number of ways to have at

most t-errors in those n-qubits is given by:

t

∑
l=0

3l

 n

l

 .

If there are k-encoded qubits , then there are 2k-linearly independent codewords while

there are 2n-orthogonal states in a Hilbert space describing n-qubits. The Hilbert space

spanning those 2n-states has to be large enough to encompass the total number of possi-

ble errors of weight up to t taking into account the 2k- linearly independent codewords.

So we arrive at:

2k
t

∑
l=0

3l

 n

l

≤ 2n.

Rearranging terms we finally get the Quantum Hamming Bound

t

∑
l=0

3l

 n

l

≤ 2n−k. (2.31)

For a code encoding a single qubit k = 1 and correcting a single error t = 1 we get

from the Hamming bound 1+ 3n ≤ 2n−1 which is valid for n ≥ 5. Saturation of the

bound gives us a [[5,1,3]]-quantum code correcting a single error and of distance d = 3.

This reduction in the number of qubits required for QECC was due to DiVencenzo and

Shor [26]. From the above bound n = 5 is the optimal number to correct all types of

single-qubit errors.

2.2.2.2 The No-Cloning Bound and the Quantum Singleton Bound

We focussed in the previous paragraph on non-degenerate codes and derived the

quantum Hamming bound and found that n = 5 was saturating this bound. Now what

if non-degenerate codes were able to give us a lower bound on n say n = 4. If this was

the case we would be able to have a [[4,1,3]]-quantum code correcting a single bit error.

But a code that can correct t errors at arbitrary location can correct 2t-errors at known
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locations (c.f. Corollary 2.38). Then this would allow us to use this [[4,1,3]]-QECC

to encode a single qubit into one block of four and split this block into two sub-blocks

each containing two qubits. If we append |00〉 to each of the sub-blocks, the original

block would have been replicated twice. Moreover since we can correct 2t errors whose

location we know, we can thus use this procedure to correct for errors in each block and

recover the original quantum state. Thus we would end up with two faithful copies of

the original quantum state which would clearly violate the no-cloning theorem 1.19.

Generalizing the above reasoning, for an [[n,k,d]]- quantum error code correcting

d−1 = t-errors we get the no-cloning bound

n > 2(d−1) (2.32)

The factor of 2 is reminiscent of not violating the no-cloning theorem. Therefore whether

the code is degenerate or not, n = 5 is the best we can do.

An improvement on the no-cloning bound Eq.(2.32) above is the quantum singleton

bound which we give without proof (c.f. Preskill for a detailed proof based on the

subadditivity of the Von Neumann entropy)

n− k ≥ 2(d−1). (2.33)

2.3 Summary

We gave a quick yet thorough review of classical and quantum error correcting codes.

We saw that quantum and classical codes are in many respects similar. In classical coding

theory, logical codes of k-bits are encoded into codewords of n > k-bits. Those n-bits are

chosen among a larger set of 2n-possible words of n-bits in such a way that an alteration

to at most t-bits of those (due to noise or any source of error) can be recovered. Thus

this specific set of codewords form an [n,k, t]-code which encodes k-bits into n-bits and

corrects at most t-bits. The repetition code is the simplest example of such codes, where

we have k = 1, n = 3 and t = 1 giving us a [3,1,1]-classical code. On the other hand,

in quantum error corrections, the main problem is to find a suitable set of 2k-quantum
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codewords of n-qubits such that quantum information can be protected from interactions

with the environment which usually leads to the corruption of the quantum data. Those

quantum-codewords form a [[n,k,d]]-quantum error correcting code which corrects up

to d−1 errors where d is the distance of the code.



CHAPTER 3

FROM CLASSICAL TO QUANTUM SECRET SHARING

In this chapter, we will explore a domain of cryptography that is (in my opinion) one of

the most elegant subjects in this discipline, namely secret sharing, which was introduced

independently in 1979 by Blakley [7] and Shamir [59] as a way to solve the problem of

secure key distribution among several parties. The beauty of this branch of cryptography

emanates not only from its practical use, but especially from relating diverse subjects

from different branches of mathematics and computer science, from graph theory to

coding theory and error correction codes, from geometric constructions to algebraic ones

and beyond.

3.1 The Classical World

In this section we start by exploring the classical domain of secret sharing and in

doing so we will need to review some known concepts, definitions and various construc-

tions pertinent to classical secret sharing protocols. These constructions will pave the

way for the quantum domain, which as we will see is quite different from its classical

counterpart and will be the subject of the next section.

3.1.1 Classical Secret Sharing

Imagine a bank manager who is going abroad and would like to delegate his secret

combination (to the vault) to his sub managers (say there are n of them), in such a way

that not trusting individually anyone in particular he would like that at least k of them

(with k ≤ n) be present at any given time when the secret combination is to be used.

Those k sub-managers have to cooperate all together to reconstruct the secret while any

k−1 of them get absolutely no information about the secret. This is known as a (k,n)-

threshold scheme, which is an example of the more general problem known as secret

sharing. It was first solved in 1979 by Blakley [7] and independently by Shamir [59],
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who showed how to reconstruct the secret in what became known as (k,n)-threshold

secret sharing schemes, i.e. k shares are needed out of n to reconstruct the secret while

k−1 shares get no information at all about the secret.

Before delving into formal constructions and theorems, let us look at the simplest

secret (splitting) scenario.

Problem 3.1. Secret Splitting1: a two-party case

Consider the case where we have a message M, represented as an integer2, that we

would like to split between two people, say Alice and Bob in such a way that neither of

them alone can reconstruct the message M, but together they can.

Solution

Give Alice a random uniformly picked integer r and give Bob M− r.

To reconstruct the secret, Alice and Bob simply add their pieces together.

N .B. One has to do all the arithmetics modulo a large integer p where we assume that

the integers are uniformly picked (i.e. with a probability of 1
p each).

Problem 3.2. Secret Splitting: a generalization

We consider the generalization of the previous problem (3.1) where we now want to split

the secret S among n participants, in such a way that all of them collaborate to recon-

struct S, while any coalition of n−1 participants get no useful information whatsoever

about the secret.

Solution

Choose n−1 random integers r1,r2, · · · ,rn−1 and give them to n−1 of the participants,

while give the remaining person S−∑
n−1
i=1 ri(mod p).

Clearly, to reconstruct the secret S all of the n-participants need to collaborate; they just

need to add up their shares, while n−1 of them will get no information at all about the

secret given that each share is randomly picked, the nth participant will be left with a

random number as well.
1Secret splitting refers to an (n,n) threshold scheme, where absolutely all shares are needed to recon-

struct the secret.
2All the arithmetic is modular.
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i N .B. The previous two problems are special cases of a (k,n)-threshold scheme

with k = n i.e. an (n,n)-threshold scheme.

We move on now to Shamir and Blakley’s solutions to the (k,n) threshold scheme prob-

lem.

Example 3.3. Blakely and Shamir in: Tales from the Cryptogram

We are back again with the bank manager and his crypt (or vault) and we would like to

examine how Blakley and Shamir resolved the given puzzle of secret reconstruction. We

will present Shamir’s solution first since it is more transparent than Blakley’s approach.

The latter will be more appreciated once we have seen Shamir’s at work.

• Shamir’s Approach [59]

In our tail from the crypt, the manager wants to share his secret combination to

the crypt with specific subsets of his employees. In formal secret sharing scenarios

the manager is known as the dealer D and the set of employees is known as the

set of players or participants P . The protocol goes as follows:

– (Share construction) The dealer D splits the secret S into shares Si (or shad-

ows as they are also known) by picking randomly a k−1-degree polynomial

where all arithmetics is done in3 GF(p).

q(x)≡ a0 +a1x+a2x2 + · · ·ak−1xk−1 mod p,

where a0 = S. Now, set y1 = q(1),y2 = q(2), · · · ,yn = q(n).

Here yi ≡ q(i) mod p is understood4.

– (Share Distribution) The dealer D gives out the pair (i,yi) to each player

Pi.

N .B. The prime p is known to all but the polynomial q(x) is kept secret.

– (Secret Reconstruction) Now, suppose k participants get together and share

their pairs in order to recover the secret S. This can always be done because
3We take p to be a large prime number so that GF(p)' Zp.
4 What we have done here, is to pick distinct integers x1, · · · ,xn all mod p, that without loss of gener-

ality we have set to 1,2, · · · ,n as a reasonable choice.
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there exists a unique (k− 1)-degree polynomial going through any given k

points. We present two elegant efficient ways for doing this:

∗ (Linear System Approach)

Given those k points (x1,y1), · · · ,(xk,yk), we want to reconstruct the

k−1-degree polynomial q(x), keeping in mind that S = a0 and

yi ≡ a0 +a1xi + · · ·+akxk−1
i mod p.

Thus, we have a linear system of k-equations that we can cast in matrix

form
1 x1 · · · xk−1

1

1 x2 · · · xk−1
2

...
... . . . ...

1 xk · · · xk−1
k




a0

a1
...

ak

≡


y1

y2
...

yk


This matrix (call it V ) is known as a Vandermonde matrix.

It has a unique solution provided its determinant is non-zero (mod p).

One can show that the determinant is given by

detV = ∏
1≤i< j≤k

(xi− x j)

We see that the determinant is zero when two of the xi’s coincide

(modulo p). Thus the system has a unique solution as long as they are

distinct (here the primality of p plays a major role to ensure this).

∗ (Lagrange Interpolation Method)

An alternative approach is to use the Lagrange interpolation method to

reconstruct the polynomial q(x) (and hence the secret message) given

that we know k of its values (xk,yk).

Recall that the coefficients a1, · · · ,ak−1 are randomly chosen from a

uniform distribution over the integers in the range [0, p).
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Let li(x)≡
k

∏
j=1, j 6=i

x− x j

xi− x j
mod p. (3.1)

The Lagrange interpolation polynomial is defined as

P(x) =
k

∑
i=1

yili(x), (3.2)

satisfying the requirement that P(xl) := yl ∀ 1≤ l ≤ k.

For example when x = x1 we get

P(x1) = y1l1(x1)+ y2l2(x1)+ · · · ≡ y1 ·1+ y2 ·0+ ...≡ y1 mod p.

To reconstruct the secret message all one has to do is to evaluate

P(x)|x=0, and thus we get

S = P(0)≡
k

∑
i=1

yi

k

∏
j=1, j 6=i

−x j

xi− x j
mod p. (3.3)

6

-

@
@

@
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@
@
@

@
@
@

@
@@

St
S1 = (x1,y1)tq(x1) = y1 ................................

x1

S2ty2 ................................
x2

tSn = (xn,q(xn))

Figure 3.1: Shamir’s Secret Sharing Scheme.

i N .B. As can be seen in fig.(3.1), even with the lack of a single share

(point), the secret can still be any equiprobable value in [0, p).

• Blakley’s Approach [7]

The idea behind Blakley’s (k,n) threshold secret sharing scheme (also known as a
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vector scheme) is to use hyperplane geometry to hide and reconstruct the secret.

In this scenario, the secret is a point in k-dimensional hyperspace (over a finite

field) and the n shares are affine hyperplanes that pass through this point (i.e.

each share is the equation of a (k− 1)-dimensional hyperplane that includes the

point). To reconstruct the secret, k players come together to solve the system of

equations (i.e. the intersection of those hyperplanes is the desired secret (point)).

– (Share construction) The dealer D picks a secret S = s0 that he will want

coalitions of k participants to be able to recover while any k−1 of them get

no information about it.

- D chooses at random a large prime p > s0 and integers s1,s2, · · · ,sk−1

(where again all arithmetic is done modulo p)5, and thus defines a point

Q = (s0,s1,s2 · · · ,sk−1) in k-dimensional space.

- The secret will be taken to be the first coordinate of Q.

- Now, the dealer D chooses at random (k−1)-independent coefficients

a(i)0 ,a(i)1 , · · · ,a(i)k−2( mod p), f or each 1≤ i≤ n, while setting

y(i) = sk−1−
k−2

∑
j=0

a(i)j s j mod p.

– (Share Distribution) The dealer D gives out securely the following hyper-

plane (labeled by i) to the corresponding participant Pi

xk−1 =
k−2

∑
j=0

a(i)j x j + y(i) mod p,

where the yi’s, 0≤ i≤ k−1, are free variables.

– (Secret Reconstruction) To reconstruct the secret (i.e. to find the given point

Q), k of the Pi’s (in our scenario sub-managers) pool together their shares.

These shares represent k distinct hyperplane equations and thus a linear sys-

5We work again in GF(p).
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tem of equations that we cast in matrix form:
a(1)0 a(1)1 · · · −1

a(2)0 a(2)1 · · · −1
...

... . . . ...

a(k)0 a(k)1 · · · −1




s0

s1
...

sk−1

≡

−y(1)

−y(2)
...

−y(k)


As long as the determinant of this matrix is non zero, (i.e. as long as the

columns a linearly independent or non-zero) the matrix can be inverted (all

done modulo p) and thus recover the point Q and in particular its first coor-

dinate s0 = S which is our sought out secret.

As in Shamir’s scheme, if less than k participants try to recover the secret, even

k−1 of them, they will be left out with an equiprobable possibility of intersection

points. Since there would be a hyperplane equation missing that is needed to

determine uniquely the given point Q and thus in our tail, the k−1 sub-managers

would get no information at all about the secret s0.

We start by exploring some formal definitions of the classical domain of secret shar-

ing schemes, in particular to introduce nomenclature and important notions that carry

over to the quantum realm. We strongly emphasize the fact that classical constructions

do not carry over automatically to the construction of quantum secret sharing schemes.

The quantum world imposes strong conditions on the allowed schemes as we will discuss

shortly.

3.1.2 Formal Definitions and Constructions

We start by defining formally which sets and subsets of players are allowed to recon-

struct the secret and which are not.

Let P = {Pi : 1 ≤ i ≤ n} be the set of players; and S the share set (i.e. the set of all

possible shares). To avoid confusion with the set of possible shares, and for historical

reasons, we will use K to denote the set of all possible secrets, because originally secret
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sharing schemes where introduced to solve the problem of securely sharing secret keys

Ki.

Definition 3.4. A set Γ of subsets of P is called monotone if

(
A ∈ Γ and A⊆ A′

)
⇒ A′ ∈ Γ.

That is, Γ is closed upward.

Definition 3.5. An access structure Γ, where Γ is monotone, is a set of subsets of P ,

which is to say that Γ ⊆ 2P . Elements of Γ are those subsets of players that should

be able to reconstruct the secret and are thus called authorized sets. Those subsets that

cannot recover the secret are called unauthorized sets.

Note that Γ has to be monotone for this notion to make sense (see definition 3.4).

Definition 3.6. A Secret Sharing Scheme (SSS) is a protocol that enables a dealer D to

distribute a secret S among a set of players P such that only specific groups of people

can reconstruct the secret (the authorized sets).

A secret sharing scheme is completely characterized by its access structure Γ.

i N .B. Because Γ is monotone, any superset A′ of any authorized set A in Γ is

itself an authorized set of players, since the additional players in A′\A can be ignored in

the secret reconstruction. This brings us to the following practical definition:

Definition 3.7. An access structure Γ is completely defined by its minimal set Γ0 where

A ∈ Γ0 if each proper subset of A is not in Γ:

Γ = {A⊆P : B⊆ A,A ∈ Γ0}.

Γ is then called the closure of Γ0 and we write Γ = cl(Γ0), while Γ0 is also known as the

basis of Γ.

iN .B. Usually, only the minimal sets of an access structure are given.
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Definition 3.8. A secret sharing scheme with corresponding access structure Γ is called

perfect if every subset of players in Γ can recover the secret with absolute certainty while

every set not in Γ gets no information whatsoever about the secret through collective

knowledge of their shares.

Remark 3.9. In a perfect secret sharing scheme either the secret is revealed or it is

completely hidden.

We introduced above an example of a special class of secret sharing schemes, the

(k,n) threshold scheme via Shamir and Blakley’s constructions as well as the more spe-

cial case of secret splitting scheme when k = n i.e. the (n,n)-scheme. We now give the

formal definition of a threshold scheme.

Definition 3.10. A (k,n) threshold scheme, with 1 ≤ k ≤ n, is a secret sharing scheme

with corresponding access structure

Γ = {A⊆P : |A| ≥ k}. (3.4)

3.1.2.1 A General Model

We present a general model for secret sharing scheme due to Brickell and Stinson

[12]. Let F represent the set of distribution rules (see below), P the set of participants,

K the set of all possible secrets and S the set of all possible shares.

Definition 3.11. A distribution rule is a function

f : P ∪{D}→K ∪S ,

satisfying f (D) ∈K , and f (Pi) ∈S for 1 ≤ i ≤ n, where D is the dealer (the trusted

authority).

The distribution rule represents one of the possible ways to distribute the shares to

the participants. For example f (D) is the secret being shared while f (Pi) is the share

given to Pi.
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Notation 3.12. Let F be as above, and for a given K ∈K , we denote by F K the set:

F K = { f ∈F : f (D) = K}.

When the dealer D wishes to share a secret K ∈K , he will chose randomly a distri-

bution rule f ∈F K and use it to distribute the secret K.

Please note that the set F K is public knowledge and there is no need to hide it. Also,

this model is completely general and can be used to study any given construction in se-

cret sharing. It can be appropriately modified to be used in the quantum setting and is

construction independent.

The following definition gives conditions as to when a set of distribution rules for a given

scheme realizes a specified access structure Γ.

Definition 3.13. General setting definition

Given an access structure Γ and a set of distribution rules F , we introduce the following

two properties:

• (*) Let A ∈ Γ, and suppose, f ,g ∈ F . If f (Pi) = g(Pi) for all Pi ∈ A, then

f (D) = g(D).

• (**) Let A /∈ Γ and suppose f : A→S . Then there exists a non negative integer

λ ( f ,A), such that for all K ∈K ,

|{g ∈F K : g(Pi) = f (Pi), ∀ Pi ∈ A}|= λ ( f ,A).

Theorem 3.14. [12] Given a collection of distribution rules F that satisfy conditions

(*) and (**) of definition (3.13); then F is a perfect secret sharing scheme realizing the

access structure Γ.

Note that the share of a participant refers specifically to the information the dealer

D sends in private to the participant.
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Remark 3.15. What property (*) says is that the shares given to an authorized subset

uniquely determines the secret.

Remark 3.16. Property (**) says that the shares given to an unauthorized subset give

no information about the secret. This is because given an assignment of shares f (where

f : A→S ) to an unauthorized set A, the conditional probability distribution on K is

the same as the a priori probability distribution on K . That is if pK is the probability

distribution over K and that for every K ∈ K , D chooses uniformly a distribution

rule fK ∈ F K (i.e. each with probability 1
|F K |

), then when the participants of an

unauthorized subset A /∈ Γ get their shares together (which is represented by f : A→S )

to reconstruct the secret and compute the conditional probability distribution pK (K| f )
one finds that pK = pK (K| f ).
This situation is very similar to the concept of perfect secrecy and the name perfect

secret sharing scheme is thus justified.

Theorem 3.17. [38] Any monotone access structure can be realized by a perfect secret

sharing scheme.

Before we show how this general model can be used to construct a given scheme,

we give one more important definition, that of the information rate of a secret sharing

scheme, which enables us to measure its efficiency.

Definition 3.18. [12] Given the model introduced in definition (3.13), suppose F is a

set of distribution rules for a secret sharing scheme. For 1 ≤ i ≤ n, we define the set of

all possible shares that player Pi might receive

S i = { f (Pi) : f ∈F}.

where clearly S i ⊆S . Once again, let K denote the set of all possible secrets with

|K | < ∞. We can thus think of K ∈K (on account of the finiteness of the set K ) as

being represented (without loss of generality) by a bit-string of length log2 |K | via an

appropriate binary encoding. Similarly, we can think of the share that Pi receives as
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containing log2 |S i|-bits of information.

Thus we can define the individual information rate denoted by τi for Pi as

τi ≡
log2 |K |
log2 |S i|

, (3.5)

while the information rate of the scheme is denoted by τ and is defined as

τ = max{τi : 1≤ i≤ n}.

Thus τi is the ratio between the length in the number of bits of a share and that of the

secret.

Lemma 3.19. Suppose F is the set of distribution rules for a perfect secret sharing

scheme realizing an access structure Γ. Then in any given scheme, τ ≤ 1.

Proof. Let A ∈ Γ0 (c.f. def.(3.7)) and let Pi ∈ A. By A|Pi we mean the player Pi deleted

from the set A, i.e. A|Pi ≡ A\{Pi}.
Choose any distribution rule g ∈F , and let g⊥ denote the restriction of g to A|Pi .

By definition of Γ0, A|Pi /∈ Γ. Therefore, there exists a non negative integer λ (g⊥,A|Pi)

satisfying condition (**) of definition (3.13).

Furthermore, for each K ∈K , and for all Pj ∈ A|Pi , there is a distribution rule g⊥K ∈F K

such that g⊥K (Pj) = g⊥(Pj). By property (*) in definition (3.13), g⊥K (Pi) 6= g⊥K′(Pi) if

K 6= K′.

Hence, |S i| ≥ |K |, and thus τ ≤ 1.

Remark 3.20. Practically speaking, for a secret sharing scheme to be of value, we do not

want to distribute too much secret information (i.e. too many shares versus the length of

the secret itself). We thus want the information rate τ to be as close as possible to unity.

Definition 3.21. A secret sharing scheme with information rate τ = 1 is termed ideal on

behalf of τ = 1 being the optimal situation.
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A general access structure that can be realized as an ideal secret sharing scheme

is said to be ideal itself. In this general case, no restrictions on the dimension of the

secret is imposed. This being said, not every access structure can be realized with unit

information rate. One of the important problems in secret sharing is to determine, given

a (monotone) access structure, whether or not there exists an ideal secret sharing scheme.

As promised, we now give a very elegant construction termed the vector space con-

struction, due to Brickell [11], that illustrates perfectly the general construction outlined

above and is an example of an ideal secret sharing scheme.

3.1.2.2 The Vector Space Construction (Brickell ’89 [11])

Let Γ be an access structure, K the set of all possible secrets and S i the set of all

possible shares that the player Pi might get.

Notation 3.22. By GF(q)d we denote the vector space of all d-tuples over the Galois

field GF(q), where d ≥ 2 and q is taken to be a prime, thus giving us the isomorphism

GF(q)' Zq.

Note also, that by 〈v1, · · · ,vi〉 (for some i) we will denote the subspace spanned by the

vectors vi. This establishes what we mean by the notation 〈· · · 〉 as it appears subse-

quently.

Suppose there exists a function ϕ : P ∪{D}→ GF(q)d, satisfying

ϕ(D) ∈ 〈ϕ(Pi) : Pi ∈ A〉 ⇔ A ∈ Γ. (3.6)

That is the vector ϕ(D) can be expressed as a linear combination of the vectors in the

set {ϕ(Pi) : Pi ∈ A} if and only if A is an authorized subset of Γ.

We construct an ideal secret sharing scheme with K = S i = GF(q),1≤ i≤ n.

Distribution Rules of the Scheme

For every vector~a = (a1,a2, · · · ,ad) ∈ GF(q)d we define a distribution rule f~a where

f~a = ~a ·ϕ(x),︸ ︷︷ ︸
Inner product in GF(q).

∀ x ∈P ∪{D}. (3.7)
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Theorem 3.23. Suppose ϕ satisfies the condition in Eq.(3.6) above, then the collection

of distribution rules F = { f~a :~a ∈ GF(q)d} is an ideal secret sharing scheme realizing

the access structure Γ.

Proof. Suppose K ∈K is the secret that we want to reconstruct.

If A is an authorized subset of Γ, then the participants in A should be able to compute K.

Since A is authorized, we have that ϕ(D) ∈ 〈ϕ(Pi) : Pi ∈ A〉 therefore, we can write

ϕ(D) = ∑
{i:Pi∈A}

ciϕ(Pi), with each ci ∈ GF(q). (3.8)

Let si ∈S i denote the share given to player Pi, and let~a be an arbitrary (unknown to Pi)

vector chosen by the dealer D . Then si =~a ·ϕ(Pi).

Now since K =~a ·ϕ(D) we get:

~a ·ϕ(D) = ~a · ∑
{i:Pi∈A}

ciϕ(Pi) = ∑
{i:Pi∈A}

ci~a ·ϕ(Pi)

= K = ∑
{i:Pi∈A}

cisi, (3.9)

and therefore condition (*) of definition (3.13) holds.

Now, if A /∈ Γ i.e. A is an unauthorized set, let m denotes the dimension of the subspace

∆i = {ϕ(Pi) : Pi ∈ A}. Again, let D choose uniformly at random a secret K ∈K and

consider the system of equations

ϕ(Pi) ·~a = si, (∀ Pi ∈ A) and ϕ(D) ·~a = K.

The solution space of this system has dimension d−m− 1 and is thus independent of

the secret K. Therefore no {Pi} ∈ A /∈ Γ can get any information about the secret.

We now give an illustration of the above construction revisiting Shamir’s protocol

introduced earlier in Example (3.3) but recast in the vector space construction formalism.

Example 3.24. (Shamir’s (k,n)-threshold scheme revisited)

Let d = k, with each vector~a ∈GF(q)k and let ϕ(Pi) = (1,xi,x2
i , · · · ,x

k−1
i ) ∀ 1≤ i≤ n,
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where each xi is the x-coordinate given to the participant Pi such that si = K+∑
k−1
j=1 a jx

j
i .

Let ϕ(D) = (1,0, · · · ,0), with as distribution rules f~a =~a · ϕ(x), ∀ x ∈ GF(q)d ,

where the vector~a = (a0,a1, · · · ,ak−1) is arbitrary and picked by the dealer D .

We verify that we are getting the correct distribution rules:

ϕ(D) ·~a = (1,0, · · · ,0) · (a0,a1, · · · ,ak−1)

= a0 mod q = K,
√

which is the secret to be shared among the players.

D computes each share si

si = ~a ·ϕ(Pi),

= (a0,a1,a2, · · · ,ak−1) · (1,xi,x2
i , · · · ,xk−1

i ) mod q,

= a0 +a1xi +a2x2
i + · · ·+ak−1xk−1

i mod q, ∀ 1≤ i≤ n.

So each player Pi is given as his/her share (xi,si)≡ (i,si) where we have chosen without

loss of generality each xi = i as we did above in example(3.3).

To solve the system of equations, k participants come together with their shares handy

and may use one of the two methods outlined in example(3.3) either the Lagrange in-

terpolation method or the linear system approach. Here we make use of the Lagrange

interpolation method to reconstruct the secret K.

From Eqs.(3.3 ,3.2)

k

∑
j=1

si j ∏
1≤k<n,

j 6=k

−xik
xi j − xik

∣∣∣
xi=i

=
k

∑
j=1

si j ∏
1≤k<n,

j 6=k

−ik
i j− ik︸ ︷︷ ︸

` j(0)≡` 0
j

mod p, ∀ 1≤ j ≤ n,

=
k

∑
j=1

` 0
j si j

= K.
√

(3.10)
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Where in the vector space construction we can identify the c j ≡ ` 0
j as is required in

Eq.(3.9) to reconstruct the secret K.

3.2 Quantum Secret Sharing

Leaving the classical world behind, we start our exploration of the quantum domain

of secret sharing. We mentioned already in the introduction to this chapter that classical

constructions of secret sharing schemes do not carry over automatically into the quan-

tum domain. The main restriction on quantum secret sharing schemes emanates from

the no-cloning theorem 1.19. Informally, this is because if we had no further restric-

tions on which authorized sets can reconstruct the secret, we would be able to clone the

unknown (secret) state and thus violate one of this fundamental theorem of QIT. When

we discussed quantum error corrections in Chapter 2, the same reasoning led us to the

quantum no-cloning bound Eq.(2.32).

Quantum Secret Sharing (QSS) schemes generalize in two possible ways the classical

ones. We use a quantum state to (a) share either a secret quantum state or to (b) share a

classical secret. An advantage of the latter over classical secret sharing schemes is that

sometimes the size of the shares can be half that of the size of the secret, whereas we

have shown in the general construction scheme in the classical case that the information

rate τ is at best unity (c.f. lemma (3.19)). On the other hand, if one shares a secret

quantum state, the results of lemma (3.19) still hold in the quantum scenario.

One of the first attempts at generalizing classical secret sharing to the quantum do-

main was that of Hillery, Bužek and Berthiaume [36]. Although we will not be concerned

with eavesdroppers (the way they did), by definition of threshold schemes, we will be

concerned with coalitions of players who try to recover the secret. Those sets are known

as unauthorized sets. These adversaries do exist in the classical world, but take on a new

flavour in the quantum domain, in view of the quantum no cloning theorem.

i N .B. From the start we should point that the two settings are very different in

their philosophies, classically one wants to recover a sequence of bits while quantum

mechanically one wants to bring back a physical particle in the correct state.
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3.2.1 Properties of Quantum Secret Sharing Schemes

In our exploration of quantum secret sharing, we will often be concerned with a

special class of schemes, mainly Quantum Threshold Schemes (QTS). When we state a

theorem without specifying that it is a threshold scheme, we mean that the result holds

for the more general case (i.e. for more general access structures than those obeying a

threshold scheme).

We start with the definition of a quantum threshold secret sharing scheme, which

parallels that of the classical case (c.f def. 3.10).

Notation 3.25. By ((k,n)) we denote a quantum threshold scheme (with a set of double

parentheses) in contrast to the classical threshold scheme (with single parentesis) (k,n).

Definition 3.26. We define a ((k,n)) threshold scheme to be a method to encode and

divide a secret quantum state among n participants such that k of them, pooling their

quantum shares together, can reconstruct the unknown quantum state, while k−1 play-

ers get no information whatsoever about the unknown quantum state (i.e. the secret).

A general quantum secret sharing scheme is completely characterized by its access struc-

ture Γ (c.f. def. 3.5).

Remark 3.27. The fact that k−1 of the players get no information about the secret state

is equivalent to saying that their reduced density matrix is independent of the value of the

secret. We can already draw a parallel with QECC and especially the discussion follow-

ing Eq.(2.23). In both cases, the needed useful information about the qubits is missing.

In QECC, the missing qubits prevent us from correcting the error and thus reconstruct

the original state, while in QSS the missing shares prevent the k− 1 participants from

reconstructing the secret.

Before delving into formal definitions and theorems, we start with an example to

illustrate the philosophy behind secret state reconstruction in QSS. We will consider a

((2,3)) threshold scheme, where the secret state is a qutrit, a three-dimensional quantum

state to be shared among three players in such a way that any two of them combining
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their quantum shares can reconstruct the secret state, but the secret remains completely

unknown to anyone holding only one share.

Example 3.28. ((2,3))-Quantum Threshold Scheme

We illustrate the different aspects of the definition 3.26.

w(Encoding)

Since quantum secret sharing is a quantum code, the dealer D needs to encode the secret

state into a bigger space, the coding space, and to do so he uses the following operation:

Let U2,3 be an isometry (i.e. a map that preserves the distance between vectors) such

that

U2,3(α|0〉+β |1〉+ γ|2〉) =
α√

3
(|000〉+ |111〉+ |222〉)+ β√

3
(|012〉+ |120〉+ |201〉)+

γ√
3
(|021〉+ |102〉+ |210〉), (3.11)

where all α ,β and γ ∈C are subject to the normalization condition |α|2+ |β |2+ |γ|2 = 1.

H Share Distribution

Each share is a qutrit and the dealer D gives one share to each player.

A Secret Reconstruction

To recover the secret state, any two players can add together their shares ( mod 3). Say

for example that players P2 and P3 want to recover the secret. P2 adds his share to P3

and then P3 adds the resulting share to P2; this is done trit by trit and thus they are left

in the following global state:

1√
3
(|00〉1,3 + |12〉1,3 + |21〉1,3)( α|0〉2 +β |1〉2 + γ|2〉2 ) ,

and thus player P2 has the secret quantum state.

Since the isometry U2,3 preserves the cyclic permutation symmetry of the qutrits, the

reconstruction procedure for any other pairs of players is similar to the one detailed

above.

On the other hand, if only one player tries to recover the secret state, one finds that his
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density matrix (tracing out the shares of the other two players) is in the totally mixed

state, and therefore he has no information whatsoever about the original state.

iN .B. Recall in our discussion of QECC that we had recourse to the error syn-

drome to be able to correct for an unknown error without ever measuring the state itself,

otherwise we would have collapsed it irreversibly. Here we are faced with the same dif-

ficulty: we should be careful not to measure individually the shares while reconstructing

the secret. Otherwise, we would lose all possible superpositions and fail to recover the

original state.

In the above ((2,3))-scheme, if we disregard the third input dimension, we have

readily constructed a ((2,3))-quantum secret sharing scheme that can share a secret qubit

state, while each share still remains a qutrit. On the other hand, we cannot have at the

same time a scheme that shares a secret which is a qubit while the shares remain qubits

as well, since we would have constructed a quantum error correction scheme capable of

recovering from one erasure in which the qubit to be transmitted is encoded into three

qubits, which was shown not to exist in [32].

We can arrive at the same conclusion by applying the no-cloning bound Eq.(2.32)

with d−1= 2 (since this is an [[n= 3,k = 1,d = 3]]-QECC) and thus get n> 4 excluding

the n = 3 case; while by the proof of the no-cloning bound above the n = 4 case was

already excluded. We thus see the tight connections between the machinery of quantum

error corrections and quantum secret sharing, which once again although elegant, is

not surprising given that both are quantum codes and must respect the same quantum

constraints and bounds (c.f. the section 2.2.2).

Furthermore, if we trace over a share in ((2,3)) we get a ((2,2))-QSS scheme (that is

the set of all the players taken together is the only authorized set while just one missing

player would invalidate the state reconstruction procedure). This turns out to be a special

case of a more general theorem [24]:

Theorem 3.29. From any ((k,n)) threshold scheme with n > k, a ((k,n−1)) threshold

scheme can be constructed by discarding one share.

We saw in the classical case, that a (k,n) threshold scheme exists for every value of
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n≥ k. However, this does not hold in the quantum world, due to the quantum no-cloning

theorem [25, 66] which leads us to the following theorem [24].

Theorem 3.30. If n≥ 2k then no ((k,n)) threshold scheme exists.

Proof. Assume a ((k,n)) threshold scheme exists with n≥ 2k. We will show that we thus

could bypass the no-cloning theorem and xerox the unknown quantum state as follows:

First, we would apply the ((k,n)) scheme to the secret state to produce n shares. Then,

we could take two disjoint sets of k shares, and reconstruct two independent copies of

the original state. This procedure clearly contradicts the no-cloning theorem 1.19.

We next make the distinction between pure and mixed states quantum secret sharing

(QSS) schemes, before looking at the QECC/QSS schemes correspondence.

Definition 3.31. In a pure state scheme the system of all the shares taken together is in

a pure state for every encoding of a pure state of the secret. When the encoding of a pure

state of the system results in a mixed state, the scheme is termed mixed state scheme.

Remark 3.32. If one measures the efficiency of a quantum secret sharing scheme in

terms of the number of shares per participant, then we need the implicit condition that

each share is of the same size of that of the secret.

Surprisingly, mixed state schemes can achieve better performance (in terms of share

size) than pure state schemes, as we shall soon discover.

3.2.2 The QSS/QECC Correspondence and its Consequences

Classically, one can always associate an error correcting code to a perfect secret shar-

ing scheme; though determining the access structure of the associated scheme can be a

very difficult task. On the other hand, quantum mechanically this transition from quan-

tum error correcting codes to quantum secret sharing schemes is not so straightforward

since the no cloning theorem has to be respected and puts constraints on the allowed

access structures.



71

In this subsection we explicitly reformulate the quantum error correction schemes in

terms of the secret sharing nomenclature (and/or vice versa), which enables us to readily

prove some important theorems on quantum secret sharing schemes.

Let the set of n players be denoted by P and let f : |ψ〉 7−→ |φ〉 be the encoding of the

states |ψ〉 onto codewords |φ〉.

1. Recall that an authorized subset A ∈ Γ of players is the collection of those players

who can recover the secret encoded quantum state. We first reformulate this con-

dition in terms of correcting erasure errors:

In order for a set A of players to be able to reconstruct the state, the overall encod-

ing f must have the property that it can correct for the erasure of the qubits held

by the players not in A.

That is to say, A ∈ Γ is an authorized set if the encoding f corrects erasure errors

for the shares held by the complement {P1, · · ·Pn}\A of A.

2. Let ρ denote the density matrix of the codewords |φ〉. That is, ρ is a description

of the global state of shares distributed to the players Pi in P . Now, we recall that

a set of players B /∈ Γ who cannot (and is not allowed to) reconstruct the secret

state is termed unauthorized set. In QECC those subsets of players should have no

information about the original encoded states, which translates as follows in terms

of their density matrix.

The density matrix ρB associated with any subset B /∈ Γ is independent of the

encoded state |φ〉; for if this were not true, then players in B would be able to gain

information about |φ〉 by making an appropriate measurement that would (at least)

partially distinguish ρB(|φ〉) from ρB(|ϕ〉) for some pair of states |φ〉 and |ϕ〉 with

different density matrices ρB.

3. Next, we make use of the reformulated QECC conditions (c.f. remark 2.35) to

prove the following lemma. In Corollary 3.35 below, we give a similar proof

using the no-cloning theorem to show how both techniques are complementary.

Lemma 3.33. For a pure state quantum secret sharing scheme (c.f. def. 3.31), a

set B is unauthorized if and only if its complement Bc is an authorized set.
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Proof. Let A and B be complementary sets. A is an authorized set if and only

if the encoding f can correct erasure errors on B, which by the QECC condition

(in density matrix form) is equivalent to saying that Tr(ρE) is independent of the

encoded state |φ〉 for all operators E acting on B.

Now, since E acts only on the set B, we have that Tr(ρE) = TrB(ρBE) and by a

proper choice of basis for E (for example E = | j〉〈k|) ,we find that TrB(ρBE) is

independent of |φ〉 for all E if and only if ρB is itself independent of |φ〉 for all E.

This is precisely the definition given in part (2) of an unauthorized set.

Which is also to say that 〈φ |E|φ〉= Λ(E) is independent of |φ〉 exactly the QECC

condition in Eq.(2.22).

Thus A is authorized if and only if B is unauthorized.

We finally recast all that we have said above in the following theorem (slightly reformu-

lated), which first appeared in [24].

Theorem 3.34. Let C be a subspace of a Hilbert space H that can be written as tensor

product of the Hilbert spaces of various coordinates. Let f : |ψ〉 7−→ |φ〉 be an encoding

with C as its image. Then f is a pure state quantum secret sharing scheme if and only if

〈φ |E|φ〉= Λ(E) (3.12)

(i.e. independent of |φ〉) whenever E is any operator acting on the complement of an

authorized set or when E is any operator acting on an unauthorized set.

Proof. The discussion of (1), (2) and the proof of (3) readily yields the stated theorem.

A natural corollary of theorem 3.34, which shows how special pure state schemes are

in the sense that they are only possible for a highly restricted class of access structures,

is the following [31]:

Corollary 3.35. In a pure state quantum secret sharing scheme, every authorized set is

precisely the complement of an unauthorized set (and vice-versa).
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Proof. If the complement B of an authorized set A was also an authorized set, we could

thus create two identical and independent copies of the secret state precisely violating the

quantum no-cloning theorem. Therefore the complement of an authorized set is always

an unauthorized set.

On the other hand by the proof of Lemma 3.33, if 〈φ |E|φ〉= Λ(E) holds, we can correct

erasures on B and therefore reconstruct the secret on the complement of B i.e. on A

which is an authorized set. Therefore, the complement of an unauthorized set is always

an authorized set.

We also note the following terminology:

Definition 3.36. A quantum access structure Γ is called maximal if the authorized and

unauthorized sets are complements of each other.

Furthermore, in the more specific case of threshold schemes, we can derive an ex-

act equation relating the threshold number of shares to the total number of participants

provided the encoding gives rise to a pure quantum threshold scheme:

Corollary 3.37. Any ((k,n)) pure state threshold scheme satisfies n = 2k−1.

Proof. Once again, let the set of n players be denoted by P and let A and B be com-

plementary sets. Assume that A contains t players. Therefore |B| = n− t. Since A is

authorized if and only if B is unauthorized (by Cor.3.35), we must have that t ≥ k if

and only if n− t ≤ k− 1. For t = k we get that n− k ≤ k− 1, which is rearranged to

n≤ 2k−1. On the other hand, for t = k−1, we get n−k+1 > k−1, or n > 2k−2. For

those two inequalities to be simultaneously valid, it must be that n = 2k−1. These are

the only allowed values for a pure state quantum threshold secret sharing scheme.

iN .B. We note therefore that in a pure quantum threshold scheme ((k,n)), the

number of players n must be odd and that its access structure Γ must be maximal. This

last corollary does not apply to mixed state schemes. We will see later (c.f. Corol-

lary 3.39 and Theorem 3.42) that one can construct ((k,n)) threshold schemes with

n < 2k−1.
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In [24] it is remarked that indeed this QECC/QSS correspondence is further enhanced

via the following theorem, which is a generalization of the fact that the five-qubit quan-

tum code proposed in [20, 30], mainly the [[5,1,3]]-stabilizer code, yields readily a

((3,5))-quantum threshold scheme since it corrects any two erasure errors6 enabling

the secret to be reconstructed from any three given shares; while from two or less shares

no information whatsoever can be extracted about the original data.

Theorem 3.38. If a quantum code with codewords of length 2k−1 corrects k−1 erasure

errors which for stabilizer codes (c.f. section 2.1.2) is a [[2k− 1,1,k]]q code, where

q is the dimensionality of each coordinate and of the encoded state, then it is also a

((k,2k−1)) threshold scheme.

Proof. First suppose we start with a set A of k shares. This set precisely excludes k−1

shares and by the properties of stabilizer codes we know that this code corrects k− 1

erasure errors and thus the secret can be reconstructed from those k shares held by A and

is therefore an authorized set.

On the other hand given a set B of k−1 shares, this subset excludes precisely k shares,

from which we know the secret can be reconstructed. Now assume we can gain some

information about the secret by observing the k−1 shares in B. Since this is the quantum

world, we know that any gain of information about a state instantaneously collapses it

and thus there is no way we can recover the secret from those k shares (since they are

now disturbed) and thus we run into a contradiction.

Combining Theorem 3.29 with Theorem 3.38 above, we get the following corollary

Corollary 3.39. From a [[2k− 1,1,k]]q code, a ((k,n)) threshold scheme can be con-

structed for any n < 2k.

For example, as already mentioned above, from the five-qubit code [[5,1,3]], we get

a ((3,5))-quantum threshold scheme and by applying the corollary above a ((3,4)) and

((3,3)) threshold schemes can be obtained by discarding shares.

6Recall that an erasure error is a general error on a known coordinate such that a quantum error-
correcting code of distance d can correct d−1 erasure errors or b(d−1)/2c general errors.
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On the other hand, in Example 3.28 as a consequence of Theorem 3.38, we have

that the ((2,3))-quantum threshold scheme is a [[3,1,2]]3-quantum error correcting sta-

bilizer code of length 3 correcting one erasure error with dimension q = 3, i.e. a qutrit

as described in the example.

Remark 3.40. In some sense, every quantum secret sharing scheme is an error correct-

ing code but unfortunately the reverse is not true as we will first see in the following

example. We deffer to the end of this chapter for the possibility of overcoming this limi-

tation (c.f. Corollary 3.54).

Example 3.41. Is the [[4,1,2]]-QECC a ((3,4))-QTS ?

Consider the following four qubit-encoding which corrects one erasure error [32, 65]:

V3,4 : α|0〉+β |1〉 7−→ 1
2

α(|0000〉+ |1111〉)+ 1
2

β (|0011〉+ |1100〉)≡ |Λ〉. (3.13)

We know from Corollary 3.37 that this cannot be a ((3,4)) QTS because 4 6= 2×3−1;

let us see where it fails.

w(Encoding)

The dealer D uses the map V3,4 to encode the secret state |ΨS〉= α|0〉+β |1〉 as shown

above to get |Λ〉, with the promise that |α|2 + |β |2 = 1.

H (Share Distribution)

Then D gives each Player Pi (1≤ i≤ 4) a quantum share from |Λ〉 (keeping in mind that

each share is a qubit).

A (Secret Reconstruction)

To recover the secret state |ΨS〉 three players out of four need to cooperate. For example:

• The two players P4 and P3 cooperate such that P4 adds his share to P3 mod 2:

|Λ〉 7−→ 1
2

α(|0000〉+ |1101〉)+ 1
2

β (|0001〉+ |1100〉)≡ |Λ4,3〉

.
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• Next, P2 and P4 cooperate, such that P2 adds her share to P4:

|Λ4,3〉 7−→
1
2

α(|0000〉+ |1100〉)+ 1
2

β (|0001〉+ |1101〉)≡ |Λ2,4〉.

Grouping together the shares:

|Λ2,4〉=
1
2
(|000〉+ |110〉)(α|0〉4 +β |1〉4)︸ ︷︷ ︸

|ΨS〉

.

Thus we see that player P4 has the secret state and therefore the [[4,1,2]]-quantum error

correcting code looks like a ((3,4)) secret sharing threshold scheme.
�

That would be the end of the story if we forgot that QTS must be perfect secret

sharing schemes. We want to make sure that no information leaks to less than three

players. To check for this possibility we compute the reduced density matrix on any two

players, say (without loss of generality) for example of players P1 and P3.

ρ13 =
1
2
|α|2(|00〉〈00|+ |11〉〈11|)+ 1

2
|β |2(|01〉〈01|+ |10〉〈10|).

In view of the result, we conclude that if the two players cooperate, their density ma-

trix depends on α and β and thus can get statistical information about their relative

values. Already if they measure their qubits they can differentiate the secret α from β

just by announcing if they get the same {{00},{11}} or different results {{10},{01}}
respectively.

For completeness, if we compute the reduced density matrix for just one player say

P1 we get

ρ1 =
1
2
(|α|2(|0〉〈0|+ |1〉〈1|)+ 1

2
|β |2(|0〉〈0|+ |1〉〈1|) = I

2
,

and therefore the reduced density matrix depends neither on α nor on β ; i.e. no single

player gets any information about the secret as should have been the case with two

players as well.

This was an example of a quantum code that is an error correcting code but not a
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perfect ((k,n)) secret sharing scheme, since information about the secret is leaked out to

less than k cooperating players. We will not consider such imperfect schemes from now

on.

Finally, we give the reciprocal of Theorem 3.30, which first appeared in [24] where

the authors gave a constructive proof using a class of quantum polynomial codes sim-

ilar to those defined by Aharonov and Ben-Or in [1]. The authors gave a construction

for such a code whenever m < 2k where m is the length parameter of the code and of

(quantum polynomial) degree k−1. They showed how the encoded data can always be

recovered from any set of k of its m coordinates. Thus, they constructed an [[m,1,k]]-

quantum code for the specific case of m = 2k− 1 and by applying Corollary 3.39 they

obtained the desired ((k,n))- threshold scheme when n = m.

Theorem 3.42. [24] If n < 2k, then a ((k,n))-threshold scheme exists. Moreover, the

dimension of each share can be bounded from above by 2max(2k−1,s), where s is the

dimension of the quantum secret.

Although we have said that pure quantum secret sharing schemes are a special case,

they still play a fundamental role in the general theory of QSS as we will see in the

following section by presenting more properties of general access structures and a gen-

eralization of Theorem 3.29 which was given for the special case of threshold schemes.

3.2.3 A Closer Look at General Access Structures

In this section, we are concerned with constructing general access structures and to

do so we take a small step back and look once again at the classical world. In classical

secret sharing, any monotone access structure (c.f. Definition 3.4) can be described by

concatenating threshold schemes [31]. The concatenation is done in the following way:

the shares of one scheme is used as the secret to be shared by the other scheme. We give

an example to illustrate the idea and by the same token review some ideas from classical

schemes.
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Example 3.43. Consider the set of players P4 = {P1,P2,P3,P4} and the following ac-

cess structure7 Γ = {{P1,P2,P3},{P1,P4}}. For this purpose, we are going to use a

(5,7)-classical threshold scheme. The dealer D has a total of seven shares to distribute

among P4 and any subset of Γ having five (or more) of those shares will be able to

reconstruct S . In order to realize the first authorized set (call it A), we give three shares

to player P1, and one share each to players P2 and P3. In order to realize the second

authorized set B = {P1,P4}, we give P1 three shares but this time two shares to P4.

iN .B. When the number of shares given to each player is not identical we call such a

scheme asymmetric.

For more general schemes, the technique known as "concatenation" can be used. We

illustrate this technique with the same access structure Γ above to share a secret S .

¬ First construct a (1,2) threshold scheme for S (note that such a scheme is trivial).

Let the shares be s1 and s2.

­ Next, we construct a (3,3) threshold scheme for s1 and give one share to each player

in A = {P1,P2,P3}.
® Repeat the same for the subset B i.e. share s2 as a secret among P1 and P4.

In this way we have created a secret sharing scheme for Γ by concatenating threshold

schemes as described above.

An important lesson from the above example is the way we concatenate the schemes

to get another scheme. In [31] Gottesman gives an explanation why this technique works.

The main idea is actually borrowed from a very important classical construction [5]:

The Monotone Circuit Construction [38] reviewed in [64]. As the name implies it is a

construction that readily respects the main property common to classical and quantum

secret sharing schemes, namely monotonicity (c.f. Definition 3.4) but some care needs

to be taken in generalizing the construction to the quantum domain.

Any access structure can be written in a disjunctive normal form, which is the OR of

7We emphasize that the secret sharing protocol is completely determined by its access structure Γ and
although in this example we have only four players we do not want to realize an arbitrary four-player SSS,
but we want to realize the access structure given above and that is why we need a (5,7)-threshold scheme
instead of say a trivial (4,4) scheme (giving each player a single share) which would be a 4-player scheme
but would not realize the associated Γ.
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a list of authorized sets. For our example above, with the access structure Γ and the two

authorized subsets A and B, the normal form realizing Γ is (P1 AND P2 AND P3) OR

(P1 AND P4), where we see the importance of the share holder P1 for the success of the

scheme. We note that the AND gate corresponds to (t, t) threshold schemes, with t = 3

for "P1 AND P2 AND P3" and t = 2 for "P1 AND P4". We also note that the AND gate

corresponds to a (2,2) threshold scheme. This is true of the AND gate in (P1 AND P4)

but not those in (P1 AND P2 AND P3) having one authorized set P1 AND P4, while the

OR gate corresponds to a (1,2) threshold scheme since all the variables in the predicate

are fulfilled i.e. either the authorized subset A OR B can reconstruct the secret. This

is thus done by concatenating the appropriate set of threshold schemes. This technique

would not work directly in the quantum domain because the QTS that would be needed

to implement the OR gate doe snot exist.

Before discussing the quantum analog of the previous example, we need the follow-

ing theorem, which first appeared in [31]. The theorem helps a great deal in generalizing

pure state secret sharing schemes and shows the important role they play in QSS con-

structions. Here, we give the proof that D. Gottesman gave in [31] while the access

structure for the corresponding pure state scheme was given by A. Smith [62] using the

Monotone Span Program construction (MSP for short), which we will sketch very briefly

in the next section.

Theorem 3.44. Every mixed state QSS scheme can be described as a pure state QSS

scheme by discarding one share.

Proof. [31] Let S be the Hilbert space of the secret and let V be a superoperator

mapping S to density operators on H . If the encoding is a mixed state encoding we

can purify it by adding an extra share. Denote the space corresponding to the extra share

by E . The superoperator V can thus be extended to a unitary mapping S 7−→H ⊗E .

Purifying the scheme will not turn authorized sets into unauthorized sets or vise versa.

Once again we use the QSS/QECC correspondance in what follows:

Consider a set U containing the extra share E we look at its complement Uc (such

that E /∈Uc). If Uc is an authorized set then we can correct for erasure errors on U and
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condition 2.22 and its consequence Equation 2.23 hold and thus we can get no informa-

tion whatsoever about the secret from U . On the other hand, if Uc is an unauthorized set,

we can correct erasure on its complement and thus reconstruct the unknown state from

just U and therefore U is an authorized set. To recover the original mixed state scheme

we just need to discard the extra share E .

This theorem generalizes Theorem 3.29 for threshold schemes. It is one of the cor-

nerstones of quantum secret sharing theory since any theorem or statement about QSS

can now be proved by just giving the proof for the purification of the scheme if the latter

is mixed. Working with pure state schemes is far more elegant than with mixed states

since one has powerful tools and techniques not available for the latter.

For example the quantum information theoretical approach to quantum secret shar-

ing [48] and to quantum error correcting codes [21] relies extensively on the purification

technique to compute the entropy of a secret and thus the mutual information between

the secret state and its reference system or the amount of information that a given set of

players can gain from their coalition (c.f. [57] for detailed calculations in that direction).

The following theorem asserts that we can concatenate quantum schemes to get a new

one which is also a valid secret sharing scheme. The proof given by Gottesman in [31]

follows closely that of Theorem 3.44 given above using the QECC/QSS correspondence

together with the property of monotonicity of a larger set which has as one of its subsets

an authorized set.

Theorem 3.45. If S 1 and S 2 are quantum secret sharing schemes, then the scheme

formed by expanding each share in S 1 as the secret of S 2 is also a secret sharing

scheme.

The theorem tells us how to concatenate the schemes and thus we are finally ready

to revisit the quantum version of Example 3.43.

Example 3.46. ((2,3))-Concatenated Quantum Schemes

The construction we described in Example 3.43 fails when we consider its quantum

counterpart because the no-cloning theorem prevents us from having a valid ((1,2))
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secret sharing scheme i.e. the OR gate cannot be used in the quantum version of con-

catenating schemes as we had already observed. To overcome this difficulty, Gottesman

suggests in [31] to replace the OR gate by the majority function; i.e. replacing the (1,2)-

classical scheme by an ((r,2r−1)) quantum scheme where r is the number of authorized

sets in the access structure one wants to construct. That is, r of the quantum shares will

be those of the desired access structure while the remaining r− 1-quantum shares will

be those forming another access structure much simpler to construct.

For the access structure of Example 3.43 Γ = {A1,A2} where A1 = {P1,P2,P3} and

A2 = {P1,P4} with secret S , we first note that because of the monotonic property of

threshold schemes, adding an extra share to an authorized set will not alter its capa-

bility to reconstruct the secret while we have to be cautious in doing so to respect the

quantum nocloning theorem.

We construct a ((2,3))-quantum concatenated scheme as follows:

Let the secret we want to share be S and denote the shares of the ((2,3))-quantum

threshold scheme by s1, s2 and s3.

¶ First, we construct a maximal access structure (c.f. Definition 3.36) for Γ above by

recalling that the complements of the authorized sets namely {P4} and {P2,P3} or any

of their subsets, should not be added to the new access structure we are trying to con-

struct. This leaves us with two subsets A3 = {P2,P4} and A4 = {P3,P4}. Thus the new

access structure is now given by Γ′ = {{P1,P2,P3},{P1,P4},{P2,P4},{P3,P4}} which is

maximal.

· Now, as in the classical case, let s1 be the secret we will share via a ((3,3))-QTS for

the players in the subset A1 and s2 the secret for the ((2,2))-QTS for those in A2.

¸ We note that Γ ⊂ Γ′ and assume that a scheme for such a maximal access structure

exists8. Then we can share s3 using this scheme for Γ′ and by Theorem 3.45, we would

have completed our construction of a quantum concatenated schemes.

8If it does not exist, this technique does not work.
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This scheme is summarized by the following equation [31]

((2,3))− scheme


((3,3)) : P1, P2, P3

((2,2)) : P1, P4

Γ′

(3.14)

The scheme is read as follows: The three rows represent the shares of the ((2,3))-

scheme. The first two rows are threshold schemes, while the last row is the maximal

access structure Γ′. Any two rows (out of three) is sufficient to reconstruct the secret S .

Here for example, player P1 gets a share from each row while player P4 would get only

two, one from the second row and one from the third.

Example 3.46 above is a special case of the general ((r,2r− 1))-quantum scheme.

In [31] Gottesman gives the recursive construction in the general case, which itself is a

proof for the following core theorem involving quantum secret sharing schemes that in

some sense summarizes all the properties and theorems we have presented so far:

Theorem 3.47. A quantum secret sharing scheme exists for an access structure Γ if and

only if Γ is monotone and satisfies the quantum no-cloning theorem. Furthermore, for

any maximal quantum access structure, a pure state scheme exists.

3.2.3.1 Monotone Span Program (MSP)

As we mentioned earlier, the construction of an access structure for the pure state

scheme of Theorem 3.44 was given in [62] using the Monotone Span Program:

Definition 3.48. A monotone span program (MSP) over a set P is a triple (K,M,ψ)

where K is a finite field, M is a d×e matrix over K and ψ : {1, . . . ,d}→ P is a surjective

function which (effectively) labels each row of M by a member of P.

The idea behind using MSP to construct QTS is to be able to relate QTS to CSS codes

(c.f. Section 2.2.1.1). One starts by constructing a matrix from a CSS code that is needed

for the MSP construction. Then this matrix is used to show that a CSS code over two

classical MDS codes with parameters [[2k−1,k,k]]q and [[2k−1,k−1,k+1]]q (c.f. the
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construction of Theorem 2.44) can be interpreted as a ((k,2k−1)) QTS. Finally, one can

prove that a ((k,2k−1)) QTS made from the MSP construction can be translated into a

[[2k− 1,1,k]]q quantum MDS code thus relating the MSP construction to Gottesman’s

theorem cited above. The details of the construction can be found in the original paper

by A. Smith [62] and an information theoretical approach to the MSP construction could

be found in [57].

3.3 Quantum Secret Sharing Without Quantum Channels

Up to know, we never questioned what kind of resources were needed for construct-

ing quantum threshold schemes. Since we still do not have a scalable quantum computer,

we need to be as economic as possible in our quantum devices. It is still far from trivial

to be able to manipulate a large number of qubits as would require the implementation

of any given quantum algorithm.

Here since we are mainly concerned with quantum secret sharing protocols, we look

at what we have presented so far to guide us to solve this quantum economical question.

For example, the recursive construction of a ((r,2r−1))-general secret sharing scheme

as demonstrated in Example 3.46 is far from being efficient. We see this first, because

we need a plethora of quantum shares when constructing the maximal access structure

Γ′. Second, the threshold schemes in the first and second rows of Equation 3.14 depend

on the details of the schemes themselves and unless those schemes are efficient, the

entire procedure becomes exceedingly needy in quantum shares. Of course, the best

way to save on our quantum computer is to use as few quantum shares as possible, and

in doing so we also save on the quantum channels that are needed between the users to

reconstruct the secret. We therefore save on the technology and on the number of qubits

that are needed to be under control to implement such an important scheme as secret

sharing.

In this section, we present a protocol that we first introduced in [13] that resolves this

issue of needing a plethora of quantum shares per player. In fact our protocol is maxi-

mally efficient in the sense that it requires one quantum share per player. This quantum
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share is the one given to each player by the dealer D . So in an n-player protocol we only

need a total of n quantum shares to implement it. Therefore, we only need one quantum

channel9 between the dealer D and each player Pi (where 1 ≤ i ≤ n). The reconstruc-

tion procedure between players can be achieved with purely classical communication

between the players, although the resulting reconstructed state is quantum.

What we have described so far sounds like quantum teleportation (c.f. the prelimi-

nary section). Thus why can’t we trivially use quantum teleportation [6] to share our

given secret quantum state? Indeed in [3], using quantum teleportation, it was shown

how to construct a ((2,2))-quantum threshold scheme which can be straightforwardly

generalized to ((n,n))-QTS. The problem with the construction is twofolds:

1. The construction in [3] gives a non-perfect threshold scheme. That is, although the

n players can reconstruct the quantum secret perfectly, it is not true that coalitions

of less than n players get no information about the secret. In fact it was shown

in [57] using information theoretical tools that indeed this was the case and thus

concluded that the protocol was a non perfect quantum threshold scheme. The

same problem was encountered earlier in Example 3.41, which prevented us from

triumphantly say that: “every quantum error correcting code is also a quantum

secret sharing scheme”. The example was introduced mainly to refute this kind of

non-perfect threshold schemes.

2. The construction uses quadratically more quantum shares than our protocol. We

state this as a theorem and give the proof [13]:

Theorem 3.49. In a one-qubit teleportation-based ((n,n))-secret sharing scheme, n2−n
2

shared |Ψ−〉 states are necessary and sufficient for the reconstruction of the secret.

Moreover, if we add the requirement that each share of the encoded state (in the dis-

tribution phase of the protocol) consists of one qubit, the total number of qubits required

for the teleportation-based scheme is n2.

Proof. As usual, let D be the dealer and let P be the total set of participants. Since each

participant Pi ∈P (with 1 ≤ i ≤ n) is the potential receiver of the secret state, each Pi

9That is only one use of the quantum channel.
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must be linked to every other participant by at least one disjoint path consisting of |Ψ−〉
states. In other words, if we see the participants as vertices vi, and the shared EPR-pairs

(i.e. entanglement) as edges ei j, thus forming what is known as a Kn EPR-graph, we have

that each vertex vi must have degree d(vi) ≥ n− 1. Counting the degree at each vertex

yields a lower bound of n(n− 1)/2 for the total number of edges. Since the complete

EPR-graph Kn, satisfies our criteria, we have the desired result.

Finally, since the dealer D gives each participant Pi one qubit as a share, we have thus a

total of n+2
1
2
(n2−n)︸ ︷︷ ︸

edges

= n2 qubits required for this teleportation-based scenario.

Clearly, to overcome the problems mentioned above, we need a protocol that pre-

serves secrecy, respects the threshold structure of the QSS-scheme and uses only one

quantum share per player. Before presenting our protocol, which respects those charac-

teristics, we need an important tool know as quantum encryption first introduced in [2].

3.3.1 Quantum Encryption of Qubits

The encryption scheme of qubits works as follows: Suppose we have an n-qubit

quantum state |Ψ〉 and a random sequence of 2n classical bits. We associate to each qubit

a pair of classical bits a qubit that determines which transformation σ ∈ {I,X ,Y,Z} is

to be applied to the respective qubit. If the pair is {00}, the identity I is applied to the

qubit; if {01}, X is applied; if {10}, Y is applied and finally if the pair is {11} we apply

Z. Clearly if σ is chosen uniformly at random in the set, the resulting quantum state |Ψ′〉
is completely mixture i.e.

ρ|Ψ′〉 =
1
4
(
I|Ψ′〉〈Ψ′|I +X |Ψ′〉〈Ψ′|X +Y |Ψ′〉〈Ψ′|Y +Z|Ψ′〉〈Ψ′|Z

)
=

1
2

I,

i.e. the totally mixed state for any given |Ψ′〉.
However, with the knowledge of the classical 2n-bit sequence, the sequence of op-

erators that was applied to |Ψ〉 is known therefore the process can be reversed and the

state |Ψ〉 recovered.

iN .B. Thus, classical data can be used to encrypt quantum data.
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We will also need the following definition:

Definition 3.50. Informally, by a Local Operation and Classical Communication (LOCC)

measurement we mean one that can be implemented by two (or more) parties using only

local quantum operations and classical communication.

3.3.2 Protocol for Quantum Secret Sharing with LOCC

We finally present our ((n,n))-threshold Quantum Secret Sharing with Classical Re-

construction (QSS-CR) protocol (c.f. Figure 3.2 for a diagrammatic representation). In

the first and most crucial step, we will use a partial encryption as opposed to the full

encryption presented above, but the idea remains identical.

Suppose the dealer D wishes to share the quantum secret state |Ψ〉 = α|0〉+ β |1〉
among a set P of n participants (with the usual normalization condition |α|2+ |β |2 = 1).

1. (Partial encryption)

The dealer chooses uniformly at random x ∈ {0,1}.
¬ If x = 0, he does nothing (i.e. applies the identity) to |Ψ〉 for this step.

­ If x = 1, he applies the negation transformation, N (c.f. Equation 1.2).

Let the resulting state be |Ψ′〉= α ′|0〉+β ′|1〉 .

2. w(Encoding)

The dealer encodes |Ψ′〉 into an n-qubit state by creating n−1 pseudo-copies; the

resulting state is a GHZ-state mainly:

|Ψ′′〉= α
′|0n〉+β

′|1n〉 (3.15)

3. H (Share Distribution)

The dealer D picks uniformly at random a bit string x′ = x1x2 . . .xn such that⊕n
i=1 xi = x (i.e s.t. the parity Π(x′)= x) and gives each player Pi a share consisting

of a classical bit xi and of a qubit |·〉i from |Ψ′′〉.
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4. A (Secret Reconstruction)

The players decide who will receive the secret; say that they agree on player 1.

Then they do the following:

• Player i (i= 2,3, . . . ,n) applies the Hadamard transform H (c.f. Equation 1.4)

to his qubit.

• Player i (i = 2,3, . . . ,n) measures his qubit in the computational basis.

Let the outcome be yi. This value, along with xi is sent to P1.

• Player 1 computes y =
⊕n

i=2 yi.

If y = 0, he does nothing. If y = 1, he applies Z to his qubit:

Z =

 1 0

0 −1

 . (3.16)

• Player 1 computes x =
⊕n

i=1 xi.

¬ If x = 0, he does nothing.

­ If x = 1, he applies N to his qubit.

The result is the reconstructed secret.
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Figure 3.2: The QSS-Protocol with Classical Reconstruction.
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3.3.2.1 Correctness and Privacy

We now show using the mathematical properties of the GHZ-state introduced in Sec-

tion 1.1.3 that our QSS-CR protocol produces the correct output (Theorem 3.51) and that

it is secure against collusion of less than n players (Theorem 3.52).

Theorem 3.51. At the end of the QSS-CR protocol, the intended recipient has the initial

quantum state |Ψ〉.

Proof. After the execution of the Partial Encryption, the Encoding and Share Distribu-

tion steps of the protocol, the n players decide who will receive the secret state. Say they

agree (without loss of generality) on the nth player Pn. We follow the steps of the Secret

Reconstruction phase.

After the Encoding step, the state of the n shares is:

|Ψ′′〉= α
′|0n〉+β

′|1n〉 (3.17)

Let P denote the set of all players. Now all Pi ∈P (for 1 ≤ i ≤ n− 1) apply to their

shares the Hadamard transform:

|Ψ〉P = (Hn−1⊗ I)|Ψ′′〉 = α
′Hn−1 |00 . . .0〉︸ ︷︷ ︸

n−1

|0〉n +β
′Hn−1 |11 . . .1〉︸ ︷︷ ︸

n−1

|1〉n,

=
α ′√

N

N−1

∑
y=0
|y〉|0〉n +

β ′√
N

N−1

∑
y=0

(−1)P(y)|y〉|1〉n,

=
1√
N

N−1

∑
y=0
|y〉⊗ (α ′|0〉n +(−1)P(y)

β
′|1〉n), (3.18)

where P(y) = y1 + y2 + . . .yn−1, N = 2n−1 and we made use of the properties of the

Hadamard transformed GHZ-state Equation 1.26 (appropriately modified).

Let |Ψ(y)〉 denote the state:

|Ψ(y)〉 ≡ α
′|0〉+(−1)P(y)

β
′|1〉. (3.19)
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We compute the density matrix of the system |Ψ〉P .

ρP =
1
N

N−1

∑
y=0

N−1

∑
y′=0
|y〉〈y′|⊗ |Ψ(y)〉n〈Ψ(y′)|. (3.20)

Now players Pi (i = 1,2, . . . ,n−1) measure their qubits in the computational basis (i.e.

we trace over those shares).

ρPn =
N−1

∑
k=0

(〈k|⊗ I) ρP (|k〉⊗ I),

=
1
N

N−1

∑
k=0

N−1

∑
y=0

N−1

∑
y′=0

(〈k|⊗ I) |y〉〈y′|⊗ |Ψ(y)〉n〈Ψ(y′)| (|k〉⊗ I),

=
1
N

N−1

∑
k=0

N−1

∑
y=0

N−1

∑
y′=0
〈k|y〉︸︷︷︸

δk,y

|Ψ(y)〉n〈Ψ(y′)| 〈y′|k〉︸ ︷︷ ︸
δk,y′

,

=
1
N

N−1

∑
y=0
|Ψ(y)〉n〈Ψ(y)|. (3.21)

Let the result of player Pi’s measurement of his qubit be yi. Each Pi now sends the couple

(xi,yi) to player Pn where xi is the bit received from the dealer D subject to the partial

encryption condition x =
⊕n

i=1 xi.

Now, since Pn has received all the yi’s he can compute P(y) = y1+y2+ . . .+yn−1, which

appears in |Ψ(y)〉n and therefore the sum in Equation 3.21 evaluates to N|Ψ(y)〉n〈Ψ(y)|
for the given P(y) i.e.

ρPn = |Ψ(y)〉n〈Ψ(y)|. (3.22)

Expanding Equation 3.22

ρPn = |α ′|2|0〉〈0|+(−1)P(y) (
α
′
β
′∗|0〉〈1|+β

′
α
′∗|1〉〈0|

)
+ |β ′|2|1〉〈1|

=

 |α ′|2 (−1)P(y)α ′β ′∗

(−1)P(y)β ′α ′∗ |β ′|2

 (3.23)
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Since player Pn has all the yi’s he computes P(y).

If P(y) = 0, he has readily the (partially encrypted) secret state:

ρ
Final
Pn

= I ρ
(0)
Pn

I =

 |α ′|2 α ′β ′∗

β ′α ′∗ |β ′|2


= |Ψ′〉〈Ψ′|. (3.24)

While if P(y) = 1 he applies the Z operator to his qubit to recover the original state

ρ
Final
Pn

= Z ρ
(1)
Pn

Z =

 1 0

0 −1

 |α ′|2 −α ′β ′∗

−β ′α ′∗ |β ′|2

 1 0

0 −1


= |Ψ′〉〈Ψ′|, (3.25)

where ρ0
Pn

and ρ1
Pn

denote ρPn evaluated at P(y) = 0 and P(y) = 1 respectively.

Since Pn also has all the xi’s he can now compute x =
⊕n

i=1 xi and now decrypt his

state via

(
α
′,β ′
)
=


(α,β ) if x = 0, i.e. he does nothing,

(β ,α) if x = 1, i.e. he applies N.

(3.26)

Theorem 3.52. In the QSS-CR protocol, any subset of k < n players can get no infor-

mation whatsoever about the initial state |Ψ〉.

Proof. We assume that players P1,P2, . . . ,Pn−1 pool their quantum shares together as

well as their classical bits xi in an attempt to recover the original state. We now show

that their joint state is independent of the initial secret state |Ψ〉.
Taking into account the partial encryption of the original state, and denoting by

Π(x′) ∈ {0,1} the parity of x′ = x1x2 · · ·xn subject to the condition x =
⊕n

i=1 xi we have
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that the total density matrix of the system that the dealer D now holds is given by:

ρ
Full
D = ∑

x∈{0,1}n

|x〉〈x|⊗NΠ(x′)|Ψ〉〈Ψ|NΠ(x′),

=
1
2

ρ|Ψ〉+
1
2

ρN|Ψ〉. (3.27)

Recall that after encoding and share distribution the density matrix of the n players

was again given by

ρP =
1
N

N−1

∑
y=0

N−1

∑
y′=0
|y〉〈y′|⊗ |Ψ(y)〉n〈Ψ(y′)|. (3.28)

with |Ψ(y)〉 ≡ α ′|0〉+(−1)P(y)β ′|1〉. Combining equations (3.27) and (3.28) we thus

have that the full density matrix of the P-set is given by

ρ
Full
P =

1
2N

N−1

∑
y=0

N−1

∑
y′=0
|y〉〈y′|⊗

(
|Ψ(y)〉n〈Ψ(y′)|+N|Ψ(y)〉n〈Ψ(y′)|N

)
︸ ︷︷ ︸

ρFull
Pn

. (3.29)

In matrix form:

ρ
Full
Pn

=

 |α ′|2 (−1)P(y′)α ′β ′∗

(−1)P(y)β ′α ′∗ (−1)P(y)+P(y′)|β ′|2

 +

 |β ′|2 (−1)P(y′)β ′α ′∗

(−1)P(y)α ′β ′∗ (−1)P(y)+P(y′)|α ′|2


=

 |α ′|2 + |β ′|2 (−1)P(y′) (α ′β ′∗+β ′α ′∗)

(−1)P(y) (β ′α ′∗+α ′β ′∗) (−1)P(y)+P(y′) (|β ′|2 + |α ′|2)
 .

This can be simplified on account of the normalization condition |α ′|2 + |β ′|2 = 1 and

(−1)P(y)+P(y′) = 1( mod 2) to:

ρ
Full
Pn

=

 1 (−1)P(y′) 2ℜ(α ′β ′∗)

(−1)P(y) 2ℜ(α ′β ′∗) 1

 . (3.30)

Where ℜ(α ′β ′∗) denotes the real part of the expression.
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We trace over the share of Pn since we have no access to it on account of the n− 1

players trying to recover the secret state without Pn’s collaboration. In matrix form this

reduces to:

ρ
Full
P\Pn

=
1

2N

N−1

∑
y=0

N−1

∑
y′=0
|y〉〈y′|⊗


(

1 0
)

ρ
Full
Pn

 1

0


︸ ︷︷ ︸

1

+
(

0 1
)

ρ
Full
Pn

 0

1


︸ ︷︷ ︸

1


=

1
N

N−1

∑
y=0

N−1

∑
y′=0
|y〉〈y′|. (3.31)

Therefore, we see that the density matrix of the (n−1) players is completely independent

of the secret state |Ψ〉.

Remark 3.53. We thus note that the Partial Encryption step saves the day since the

classical bits x1,x2, . . . ,xn−1 are uniformly distributed over all possible combinations

and thus being independent of all the other steps in the protocol, reveal nothing about x,

itself leaving Pn’s qubit in the totally mixed state. And thus the set P\Pn is left with a

uniform combination of all possible y ∈ {0,1}n−1.

Going back to remark 3.40 at the end of Section 3.2.2, on one hand, we mentioned

that all quantum secret sharing schemes were quantum error correction codes but that

the reverse was not necessary true. We gave an example of such a case (cf. Ex.3.41).

On the other hand, we also mentioned the possibility of overcoming such a limitation

i.e. transforming a quantum error correcting code that at first sight was not a perfect

quantum secret sharing schemes into one. The following corollary to remark 3.53 shows

how we can go about doing this:

Corollary 3.54. The [[4,1,2]]-QECC of Example 3.41 can be turned into a perfect

((3,4))-QTS provided we partially encrypt the state prior to encoding.

Proof. As in Example 3.41, let the state we want to encode be |ψ〉= α|0〉+β |1〉. After
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partial encryption we have the state |ψ〉 7→ |ψ ′〉= α ′|0〉+β ′|1〉 with

(
α
′,β ′
)
=


(α,β ) if x = 0,

(β ,α) if x = 1,

(3.32)

where the variable x was picked uniformly at random in {0,1} by the dealer D .

Since this encryption holds independently of any arbitrary unitary transformation the

collaborating unauthorized players decide to apply to their shares, it will prevent them

from getting any useful statistical information about α and/or β .

In order to recover the original state, the players proceed as in Example 3.41, while the

encryption variable x could be shared using a classical threshold scheme such as Shamir

or Blakley’s (c.f. Example 3.3 above).

In particular, in this example any set of two or less players would get no such statistical

information as is required by a perfect QSS. Therefore, only the intended authorized

sets will be able to recover the original state and we are left with a perfect ((3,4))-QSS

scheme.

3.4 Summary

In this core chapter, we presented the classical and quantum theories of secret shar-

ing schemes, emphasizing the most important properties, constructions and theorems

that are known in the literature. We also gave classical and quantum examples to sup-

port and solidify the theoretical ideas introduced throughout the text. The major lines of

the chapter consisted on linking quantum error correcting codes (presented in chapter 2)

with quantum secret sharing.

Our major contribution to QSS was the presentation of a perfect ((n,n)) quantum thresh-

old scheme with LOCC that minimized the number of quantum shares needed to recon-

struct the quantum secret state. We were able to reduce the number of quantum shares

to a single one per player putting our protocol within reach of an experimental imple-

mentation. The robustness of our resulting perfect scheme rested on the use of a partial
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quantum encryption step prior to the encoding of the secret state. This crucial step pre-

vented any leakage of statistical information about the secret state to unauthorized sets

of players. We used the same technique (c.f. Corollary 3.54) to show that it was possible

to convert a QECC code to a perfect QSS schemes which without the partial encryption

step was given in [24] as an example of the statement that “All quantum secret sharing

schemes are quantum error correcting codes but that the reverse is not necessary true”.



CONCLUSION AND FUTURE WORK

We have seen throughout this thesis the interplay between quantum error corrections and

quantum secret sharing protocols, especially at the quantum level. Based on these obser-

vations, we presented in chapter 2 a glimpse at the theory of classical and quantum error

correction codes, while we discussed the theory of classical and quantum secret sharing

in chapter 3. One of our goals was to draw parallels between those two complementary

domains and in doing so we were able to present formal proofs of general theorems in

the theory of quantum secret sharing using first principles of the theory of quantum error

correction.

We have seen how the GHZ state gives rise to an elegant and efficient quantum secret

sharing protocol with purely classical communication during the reconstruction phase.

Because we have significantly lowered the quantum memory requirements, our protocol

may be within reach of experimental implementations. At the end of the chapter we

discussed as well the possibility of transforming quantum error correcting codes into

perfect quantum secret sharing schemes.

Throughout our discussion of secret sharing, we only focused on perfect schemes

(c.f. Definition 3.8) considering non perfect ones as being shortcomings of the protocols.

For example the ((n,n))-quantum secret threshold scheme based on teleportation [3] was

shown in [57] to leak information to non authorized sets of players and thus was non

secure. Once again partial encryption as discussed in our quantum protocol comes to

the rescue. It suffices to partially encrypt the secret quantum state prior to encoding to

turn the protocol into a perfect scheme. Apart from this security question, the efficiency

of this teleportation based protocol was questionable. It required n quantum shares per

player for a total of n2 qushares; while in our protocol we only needed a single quantum

share per participant for a total of n qushares [13], which as stated above is of great

practical interest. Here we coined the term qushare for quantum share.

Other interesting schemes that we did not discuss in this thesis consider sharing a

classical secret (as opposed to a quantum secret state) using quantum schemes (i.e. us-

ing quantum information to securely share a classical secret) [31, 39]. In [44] the authors
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tried to present a unified framework for quantum secret sharing using graph states [34]

by having simultaneously a secure and an efficient scheme (i.e. using only n qushares).

They partially succeed in their task. They were able to securely present a threshold

scheme in the case of sharing a classical secret, but when the secret to be shared was a

quantum state, their threshold scheme suffered from the same problem as the teleporta-

tion based protocol. They did not get a perfect threshold scheme and as a consequence

unauthorized sets were able to get relevant statistical information about the secret. They

pointed out this limitation in [45]. Thus, our protocol remains the only efficient and

secure ((n,n))-quantum threshold scheme with classical reconstruction phase.

Finally, we mention a very promising and interesting approach to quantum secret

sharing, which makes use of the theory of Matroids [51, 52] to link pure CSS-codes

(c.f. Section 2.2.1.1) to quantum secret sharing schemes. This approach appears to work

provided the secret being shared is classical [53–55], while it fails in the case of sharing

a quantum state. The main aim of this approach is to develop efficient quantum secret

sharing schemes given that classically, the most efficient schemes have been induced by

matroids.

Although a lot of work has been done in the theory of quantum secret sharing, there

are a few swampy roads relating the classical theory to its quantum counterpart (c.f.

Figure 3.3 below). Shedding light on those swamps might give us very interesting links

between matroids, graph states, CSS-codes and MSP-approaches in the context of Quan-

tum Information Theory.
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The figure below depicts the road from classical to quantum secret sharing. It shows

also the links between quantum error corrections and the theory of secret sharing. The

dotted (blue) arrows show that the quantum counterpart was built from the classical

concept in question. While the double headed arrows show the possibility of moving

from one domain to the other. The important question mark in the middle of the diagram

points to a very interesting open question: “Are Ideal schemes and matroids related to

Monotone Span Programs as applied to quantum secret sharing and if so what are the

more general consequence of such a correspondence?”

Figure 3.3: The Swampy Road.
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Appendix I

A Presto of Linear Algebra

In this appendix we review some basic facts in linear algebra that are used in the main

text. The material follows closely both [42] and [47].

Definition I.1. A linear transformation T : V → W (where V and W are vector spaces)

is a rule that assigns to each vector~v ∈V a unique vector T (~v) in W such that:

• (i) T (~u+~v) = T (~u)+T (~v), ∀~u,~v ∈V , and

• (ii) T (c~u) = c T (~u), ∀~u ∈V and c a scalar.

Definition I.2. The kernel (or null space) of a linear transformation T : V → W is the

set of all vectors~u such that T (~u) =~0, ~0 ∈ W.

Definition I.3. The range of a linear transformation T : V → W is the set of all vectors

~w ∈ W of the form T (~u) for some~u in V .

We now relate (n× n)-matrices to linear transformations: Consider a linear map

M : Cn → Cn and fix an arbitrary orthonormal basis {êk}. Let ~v = ∑
n
k=1 vkêk (i.e. we

represent the vector~v by its local coordinates with each vi ∈ C). Linearity of the map M

implies that M~v = ∑k vk Mêk. Therefore the action of the map M on an arbitrary vector

is well determined provided its action on the basis vectors is given. Since (Mêk) ∈ Cn,

we can expand it as

Mêk = ∑
j

ê j M jk. (I.1)

Taking the inner (or dot) product between Equation I.1 and êi we get:

êi ·Mêk = ∑
j

êi · ê j︸ ︷︷ ︸
δi j

M jk = Mik. (I.2)
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Equation I.2 describes the matrix element of M given an orthonormal basis {êk}.

Casting the above in terms of Dirac’s bra-ket notation:

Mik = 〈ei|M|ek〉. (I.3)

We thus get:

M = ∑
i,k

Mik|ei〉〈ek|, (I.4)

which can easily be checked by multiplying M left and right by the completeness relation

I = ∑
n
i=1 |ei〉〈ei| as follow,

M = I M I = ∑
i,k
|ei〉〈ei|M|ek〉〈ek|= ∑

i,k
Mik|ei〉〈ek|. (I.5)

Definition I.4. A linear map M : Cn→ Cn is called a linear operator if

M(c1|x〉+ c2|y〉) = c1M|x〉+ c2M|y〉

holds for arbitrary |x〉,|y〉 ∈ Cn and ci ∈ C.

Definition I.5. The rank of a matrix A is the number of linearly independent columns

(or, equivalently, rows) and we write rank(A) to denote it.

Remark I.6. If the linear transformation T arises from a matrix transformation say

T (~x) = A~x for some matrix A and vector~x ∈ V , then

ker(T ) = Range(T ) = Null(A) =Col(A),

where Col(A) is the set of the columns of the matrix A.

iN .B. In this case, if A is an (m×n)-matrix we also have that

Null(A)+ rank(A) = n. (I.6)
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Definition I.7. Consider a set of vectors {~v1,~v2, · · · ,~vp} in V ; we write Span{~v1,~v2, · · · ,~vp}
for the set of all vectors that can be written as a linear combination of the {~vi}p

i=1.

Definition I.8. A mapping T : Rn → Rm is said to be onto Rm if each vector~b ∈ Rm

is the image of at least one ~x ∈ Rn or equivalently ∀~b ∈ Rm there exists at least one

solution to T (~x) =~b.

Definition I.9. T is said to be 1 : 1 (one to one) if for each~b ∈ Rm, T (~x) =~b has either

a unique solution or none at all.

Theorem I.10. (Relation between fundamental subspaces of an (n×m)-matrix A)

Let A be an (n×m)-matrix. Then the orthogonal complement of the row space of A is

the null-space of A, and the orthogonal complement of the column space of A is the null

space of AT (where AT denotes the transpose of A and the row space of A (denoted by

Row(A)) is the set of all rows of the matrix A):

(Row(A))⊥ = Null(A) and (Col(A))⊥ = Null(AT ). (I.7)

This ends our brief exposition and reminder of some of the most pertinent concepts

of linear algebra in quantum information theory.
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