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Sommaire

Dans cette thése, nous proposons des tests d’hypothéses fondés sur des simulations
applicables 2 des systemes d’équations linéaires multiples. Nous considérons successivement
les régressions empilées, les équations apparamment non-reliées (le modéle SURE) et les
systémes d’équations simultanées. Dans ces modeles, les méthodes de test sont pour la
plupart limitées aux procédures asymptotiques dont la performance sur des échantillons finis
peut étre arbitrairement mauvaise. En effet, les problémes associés aux tests conventionels
dans le contexte multivarié sont maintenant bien connus. Des études théoriques et pratiques
monirent qu’il y a de sérieux problemes de distorsion de niveau provenant d'une part du
nombre élevé de paramétres dans les grands sysiemes et d’autre part des conditions
d’identifiabilité.

Les essais que nous présentons ici proposent des méthodes alternatives de test basées
sur des simulations, visant a résoudre les problémes de contrfle de niveau sur des
échantilions finis. L’approche utilisée pour obtenir ces tests requiert 1'exécution de trois
techniques complémentaires: un test conservateur basé sur des bornes pivotales, un test
simulé libéral s’apparentant au bootstrap, et (lorsque requis) un test de Monte Carlo exact
randomisés. Les développements récents de 1'informatique permettent maintenant d’exécuter
ces procédures a faible colt malgré les difficultés lies au grand nombre de parametres de
nuisance.

Le premier essai est axé sur le modéle de référence: le modele linéaire multivarié.
Nous considérons en premier lieu le cas des hypothéses uniformes lin€aires et nous
généralisons au cadre non-gaussien des résultats classiques pour les modeles d’analyse de
variance multivariée. Afin de traiter les hypothéses linéaires ou non-linéaires plus générales,

nous dérivons une borne pivotale sur la distribution du critere du quotient de vraisemblance.
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Nous en déduisons la validité de 1a procédure de tests décrits ¢i-haut. Ensuite, nous
généralisons les résultats au contexte des régressions apparemment non-reliées. Des
expériences de Monte Carlo sont effectuées pour illustrer les principaux résultats obtenus,
Nos simulations confirment le manque de fiabilité des procédures asymptotiques usuelles et
des ajustements de type Bartlett. En revanche, les tests que nous proposons contrélent
parfaitement le niveau et ont une excellente puissance. Nous illustrons les tests proposés sur
les données de Fischer (1993) portant sur un modele de détermination de la croissance
économique.

Dans le deuxiéme essai, nous considérons I’hypothése de diagonalité de la matrice
de covariance des erreurs dans le contexte SURE. Nous démontrons que les statistiques du
quotient de vraisemblance et du multiplicateur de Lagrange sont pivotales. Par conséquent.
on peut facilement calculer des points critiques exacts par la méthode de Monte Carlo. Nous
suggérons également un test de Monte Carlo exact basé sur un critére de quasi-maximum de
vraisemblance (QLR) calculé i partir des estimés des moindres carrés ordinaires. Nos
simulations montrent la supériorité des tests QLR simulés, un résultat ues intéressant du point
vue pratique. Nous illustrons I'utilité des diverses procédures de test par des applications au
modele de croissance spécifié dans le premier chapitre.

Dans le chapitre trois, nous nous plagons dans le contexte des €quations simultanées
et considérons des tests portant sur les parametres structuraux. En premier lieu, nous
exprimons I’hypothese nulle en fonction des parametres de la forme réduite. Nous nous
retrouvons ainsi dans une situation ol nous pouvons metire en ceuvre les diverses stratégies
de test proposées dans le chapitre premier. En particulier, nous dérivons une borne pivotale
sur la distribution du critere LR pour des contraintes croisées genérales et des hypothéses
lin¢aires concernant une équation structurelle. Nous présentons aussi une généralisation aux
cadre multivarié¢ du test proposé par Anderson et Rubin (Annals of Mathematical statistics,

1949). Nous évaluons la performance des diverses statistiques de test en présence de



probléme d'indentification. Nos simulations montrent que la statistique de Wald usuelle est
fondamentalement erronnée et ne peut étre améliorée par Monte Carlo. Par contre, les
résultats concernant la statistique LR illustrent le manque de fiabilité¢ du bootstrap usuel et

la validité du test de Monte Carlo maximisé.



Résumé

Nous étudions dans cette thése divers tests d’hypotheéses possiblement non-linéaires,
concernant les parametes d’un modele linéaire 2 équations multiples. En particulier, nous
considérons: (1) les modeles linéaires multivariés (MLR), (2) les systemes d’'équations
apparemment non-reliées (SURE), et (3) les systemes d’équations simultanées (SE).
Rappelons que le systtme SURE se réduit & un modele lin€aire multivarié avec des
contraintes d’exclusion sur les coefficients de régression. Par ailleurs, le modéle a équations
simultanées écrit sous forme réduite peut étre vu comme un systéme de régressions empilées.

Ces problémes de test sont évidemment classiques; de fait, les méthodes de test
usuelles sont applicables mais leur principales propriétés sont asymptotiques. Alors que des
tests exacts existent pour un nombre de cas particuliers intéressants, ce fait est souvent
négligé par les analystes qui appliquent généralement des procédures asymptotiques. A cel
égard, nous commencons par un survol rapide des résultats exacts disponibles pour des
hypothéses spécifiques dans le cas des trois modeles considérés. Nous nous intéressons
particuliérement au cas ol 1’hypothese s’écrit sous forme de contraintes uniformes linéaires
sur la matrice des coefficients de régression. Dans ce dernier cas, nous généralisons au cadre
non-gaussien des résultats distributionnels classiques apparus dans la litérature statistique
portant sur 1'analyse de variance multiple [voir Anderson (1984, chapitres 8 et 13) et Rao
(1974, chapitre 8)].

Bien que les hypotheéses uniformes linéaires sont fréquentes dans la pratique
économétrique [voir Stewart (1995)], il est clair qu’elles sont fort restrictives. Pour des
hypothéses générales linéaires ou non-linéaires, les distributions exactes des diverses
statistiques de test usuelles dépendent de paramétres de nuisance inconnus. Le probleme

fondamental est alors de calculer les points critiques pertinents tels que 1’on puisse contrdler
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le niveau des tests sur des échantillons finis. Dans un contexte multivarié, c’est rarement le
cas. En effe, de nombreuses expériences de simulation suggerent que les erreurs de type 1
associées aux tests standards peuvent considérablement dépasser le niveau affiché. A ce sujet,
nous citons dans ce texte un ensemble de résultats portant sur la performance des tests
multivariés, apparus dans la litérature sur: (1) I’homogénéité et la symétrie dans les systémes
d’équations de demande, (2) I'efficacité des marchés financiers, (4) les tests d’indépendance,
et (4) les régressions instrumentales fondées sur des instruments faibles. Nos simulations
permettent aussi d'illustrer le manque de fiabilité des tests habituellement employés en
pratique.

L’importance des distorsions de niveau dans le contexte des équations simultanées
a €t¢ soulignée récemment par un résultat de Dufour (1996) qui montre que les statistiques
fondées sur des estimateurs instrumentaux ne peuvent étre bornées et par conséquent, les
niveaux des tests correspondants peuvent dévier arbitrairement des niveaux nominaux. De
plus, les techniques de correction de niveau usuelles (e.g., le bootstrap) ne peuvent résoudre
ce probleme. Un test valide devrait étre fondé sur une statistique uniformément bornable, i.c.
dont la distribution sous I'hypothése nulle admet une borne qui ne dépend pas de parametres
de nuisance [voir Lehmann (1986, chapitre 3)]. Dans les cas qui nous concernent, nous
démontrons que la statistique du quotient de vraisemblance (LR) satisfait cette derniére
propriété. Pour ce faire, nous dérivons une borne pivotale sur la distribution du critére LR,
Cette borne est construite A partir de la statistique de test portant sur des contraintes
uniformes linéaires qui constituent un cas particulier de I'hypothése a tester. Nous
généralisons ainsi au cadre multivarié le résultat de Dufour (1989) pour le modele linéaire
a une équation. Il est important de noter que: (1) les résultats démontrés permetient des
erreurs non-gaussiennes, et (2) la statistique bornante est facile  simuler ce qui rend les
bornes faciles a utiliser. Par conséquent, nous observons que les méthodes fondées sur une

borne pertinente combinées & des techniques de Monte Carlo peuvent aisément fournir des
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tests valides basés sur la vraisemblance.

En effet, étant donné les progres de I'informatique récents, les méthodes de correction
de niveau basées sur des simulations (e.g., le bootstrap) apparaisent de fagon naturelle dans
le contexte multivarié. Sur cette question, nous passons en revue les divers résultats portant
sur I’application du bootstrap dans les modeles a équations multiples. Nous constatons que
la technique du bootstrap usuelle n’offre pas de solution satisfaisante au probleéme du contréle
de niveau des tests sur des échantillons finis. Pour cette raison, nous proposons des méthodes

différentes basées sur les techniques de Monte Carlo introduites par Dwass (1957) et Barnard

(1957). Dufour (1995) fournit une discussion détaillée des tests de Monte Carlo en présence

/

de paramétres de nuisance. En effet, ces méthodes sont applicables en présence de parametres
de nuisance, mais il est nécessaire de considérer des critéres de test uniformément bornables.
Les procédures de Monte Carlo s’apparentent au bootstrap. Cependant, contrairement a ce
dernier, les tests de Monte Carlo tiennent compte explicitement du nombre de replications
aboutissant ainsi 2 un test exact randomisé. En effet, le nombre de réplications peut étre assez
petit (e.g., un minimum de 19 replications est requis pour un test de niveau 5%). Par ailleurs,
des points critiques libéraux sont aisément déterminés a partir des statistiques de test simulces
évaluées en fonction d’estimateurs convergents des parameétres de nuisance. En pratique.
I’application des tests de Monte Carlo exacts conduit & maximiser les p-values sur I’espace
des paramétres de nuisance pertinents. Afin de mener numériquement la maximisation, £ous
exploitons 1’algorithme d’optimisation globale "simulated annealing" propos¢ par Corona et
al (1987) et Goffe et Ferrier (1994). Nous déduisons alors une procédure en plusieurs €étapes
qui peut étre appliquée dans I’ordre suivant:

(1) effectuer le test A borne; si ce dernier rejette, la procédure conclut en faveur d'un rejet
de I'hypoth&se nulle;

(2) sinon, on obtient le point critique simulé libéral; si I'hypothese est acceptée, la procédure

accepte I’hypothése nulle;
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(3) en poursuivant la démarche, on peut par la suite calculer la p-value maximale e décider
de rejetter I’hypothése nulle si cette derniére est inférieure au seuil de signification désiré.
Nous appliquons cette stratégie A divers problemes de tests dans le contexte des trois modales
multivariés spécifiés plus-haut.

Dans le premier chapitre, nous considérons le modele MLR de référence. Nous
examinons d’abord des hypothéses uniformes linéaires pour lesquelles nous présentons des
statistiques pivotales qui fournissent des tests exacts. Nous en déduisons le résuliat
distributionnel de base portant sur le critére LR qui permettra de dériver les bornes pivotales
pour des hypotheses générales linéaires ou non-linéaires. Nous vérifions par Monte Carlo 1a
validit¢ des procédures proposées. De plus, nous démontrons que la correction de Barleti
proposée par Attfield (1995) ne corrige pas le niveau du test LR dans le contexte des grands
systémes. Par la suite, nous considérons les contraintes générales sur les coefficients des
modeles MLR et SURE. Nous évaluons la taille et la puissance des tests proposés au moyen
d’expériences de Monte Carlo. En particulier, nous constatons que: (1) les tests de Monte
Carlo libéraux fondés sur des estimateurs convergents des parametres de nuisance corrigent
le niveau, et (2) la borne est concl%ne dans une grande proportion de cas. Nous ilustrons
les tests proposés a I’aide de données d¢ja utilisées par Fischer (1993) portant sur un modaie
de détermination de la croissance économique.

Dans le chapitre deux, nous nous intéressons toujours au modéle SURE et
considerons 1'hypothése de diagonalité de la matrice de covariance des erreurs. Pour ce
probléme, nous démontrons que la statistique LR et la statistique du multiplicateur de
Lagrange (LM) sont pivotales quelque soit le nombre d’équations constituant le systeme. Ce
résultat n’a été établi a cette date que dans le cas de deux équations [voir Kariya (1981a,b)].
Un test exact peut donc étre effectué par la méthode de Monte Carlo appliquée aux criteres
LR ou LM. Nous suggérons également un test de Monte Carlo exact basé sur un critére de

quasi-maximum de vraisemblance (QLR) calcuié 2 partir des estimés des moindres carrés



ordinaires (MCO). Par ailleurs, nous généralisons au cadre de plusieurs €quations un test
d’indépendance exact proposé par Harvey et Phillips (1982). Nous comparons entre elles les
méthodes de tests proposées. Nos résultats indiquent que les tests QLR simulés utilisant les
estimateurs MCO sont généralement meilleurs que les autres tests disponibles. Ainsi, sur le
plan du calcul il est fort peu utile d’obtenir le maximum de vraisemblance. Nous illustrons
1'utilité des diverses procédures de test par des applications au modele de croissance spécifi¢
dans le chapitre précédent.

Dans le chapitre trois, nous nous plagons dans le contexte des équations simultanées
et considérons des tests portant sur les parametres structuraux. Afin de développer un cadre
d’analyse, nous exprimons 1’hypothese nulle en fonction des parametres de la forme réduite.
On peut noter ici que des hypotheses linéaires sur les parametres structuraux impliquent des
restrictions non-linéaires sur les coefficents de la forme réduite. Une fois de plus, nous nous
retrouvons dans une situation ob nous pouvons utiliser les divers résultats distributionels
établis dans le chapitre premier. En particulier, nous soulignons V'existence d’'une borne
pivotale sur la distribution du critere LR. Nous explicitons les caratéristiques de cette borne
en premier lieu pour des hypothéses genérales et ensuite pour des hypothéses spécifiques
intéressantes, notamment des contraintes linéaires sur les coefficients d’une équation
structurelle. Nous présentons aussi un test de type systéme qui peut éwre interprété comme
une généralisation & un cadre multivarié du test proposé par Anderson et Rubin (1949). A cet
égard, soulignons que la performance des tests Anderson-Rubin a été étudiée dans plusieurs
contextes par Dufour et Jasiak (1996). Nous évaluons la performance des diverses statistiques
de test en présence de probleme d'indentification. En particulier, nous vérifions par des
expériences de simulation que la statistique de Wald usuelle sur-rejette considérablement et
ne peut ére améliorée par Monte Carlo. De fait, nous démontrons numériquement que le
maximum de l1a p-value associée au test de Wald sur 1'espace des parametres de nuisance est

toujours un, de sorte qu’un point critique utile ne peut étre obtenu. De méme, nous constatons
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que la statistique LR ne peut étre corrigée par un bootstrap usuel, alors que la procédure de
Monte Carlo maximisée controle parfaitement le niveau du test. Ces propriétés tiennent méme
si les parametres impliqués sont presque non-identifiables.

Finalement, le dernier chapitre conclut le rapport et présente une discussion critique

de nos résultats.
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Chapter 1

Simulation Based
Finite and Large Sample Inference Methods
in Multiple Equation Regression Models

Abstract

In the context of multivariate regression (MLR) and seemingly unrelated regression (SURE)
models it is well known that commonly employed asymptotic test criteria are seriously biased
towards overrejection. In this paper, we propose finite and large sample likelihood based test
procedures for possibly non-linear hypotheses on the coefficients of MR and SURE systems.
Two complementary approaches are described. First, we derive general nuisance-parameter
free bounds on the distribution of standard likelihood ratio criteria. Even though it may be
difficult to compute these bounds analytically, they can be easily obtained by simulation.
Second, we propose a number of Monte Carlo tests which can be run whenever the bounds
are not conclusive and develop an extension of the bootstrap method to statistics whose
asymptotic distributions involve nuisance parameters. They include, in particular, quasi-
likelihood ratio criteria based on non-maximum-likelihood estimators. Illustrative Monte
Carlo experiments show that: (i) the bound provides conclusive results in a large proportion
of cases, and (ii) the randomized procedures correct all the usual size distortions in such
contexts. We also present an extension of standard tests of uniform linear hypotheses in MLR
contexts to non-Gaussian error distributions; in fact, the normality assumption is not
necessary for most of the results we obtain. Practical implementations of both procedures is
relatively straightforward. The methods proposed are applied to data used in Fischer (1993)

to analyze the macroeconomic determinants of growth,



1. Introduction

Testing the validity of restrictions on the coefficients of a multivariate linear regression
(MLR) model is a common issue which arises in statistics and econometrics. Extensive
discussion of this problem can be found in the statistics literature on multivariate analysis of
variance (MANOVA) and the econometric literature on seemingly unrelated regressions
(SURE). The MLR model can be viewed as a special case of the SURE model where the
regressor matrices for the different equations are the same. Conversely, the SURE
specification may be viewed as a special case of the MLR mode] constrained by various
exclusion restrictions on the different equations.

In the MLR framework, several finite sample procedures have been proposed for
testing linear restrictions. These include, in particular, tests based on the likelihood ratio (LR)
criterion [Wilks (1932), Bartlett (1547)), the Lawley-Hotelling (LH) trace criterion [Lawley
(1938), Bartlett (1939), Hotelling (1947, 1951)], the Bartlett-Nanda-Pillai (BNP) trace
criterion [Bartlett (1939), Nanda (1950), Pillai (1955)] and the Maximum Root (MR) criterion
[Roy (1953)]. The literature concerning the moments, Laplace transforms and exact densities
of these statistics is vast; see, for example, Rao (1973, chapter 8), Anderson (1984, chapters
8 and 13) and Kariya (1985). Yet the use of these methods is limited to very specitic
problems: tests of uniform mixed linear hypotheses [Bernt and Savin (1977)]. Examples of
uniform mixed linear constraints include: (i) the case where the same transformations of the
regression coefficients are set to given values, within or across equations, and (2) the
hypothesis that a single parameter equals zero, Further, in most instances, exact distributional
results are difficult to exploit and approximate distributions are suggested. Thus far less
restrictive testing problems have not apparently been considered from a finite sample
perspective, with perhaps the notable exception of the Hashimoto and Ohtani’s (1990) exact
test for general linear restrictions. This procedure is similar to Jayatissa’s (1977) test for

equality of regression coefficients in two linear regressions with unequal error variances.



16

However, the authors recognize that as with Jayatissa’s procedure, the test involves
complicated computations and has low power. Further, the test relies on a non-unique
decomposition of the OLS residuals. These observations suggest that the test may be of
limited practical interest.

In connection with the SURE model, the standard literature on hypothesis tests is
asymptotic, see, for example, Srivastava and Giles (1987). Very few analytical finite sample
results are available. A rare exception is provided by Harvey and Phillips (1982, Section 3)
who derived independence tests between the disturbances of an equation and those of the
other equations of a SURE model. The tests involve conventional F-statistics and are based
on the residuals obtained from regressing each dependent variable on all independent
variables of the system. Of course this problem is a very specific one. In a different vein,
Phillips (1985) derived the exact distribution of a two-stage SURE estimator using a
fractional matrix calculus. However, the analytical expressions obtained are very complex
and, more importantly, involve unknown nuisance parameters, namely the elements of the
error covariance matrix. The latter fact makes the application of Phillips’ distributional results
to practical hypothesis testing problems difficult.

Asymptotic Wald, Lagrange multiplier and likelihood ratio tests are available and
commonly employed in econometric applications of the MLR model; see for example, Berndt
and Savin (1977), Evans and Savin (1982), Breusch (1979), Gouriéroux, Monfort and Renault
(1993, 1995) or Stewart (1995a,b). It has been shown however that in finite samples, these
asymptotic criteria are seriously biased towards overrejection when the number of equations
relative to the sample size is moderate to large. Well known examples include Laitinen
(1978), Meisner (1979), Bera et al (1981) and Theil and Fiebig (1985) in the context of
homogeneity and symmetry testing in demand systems. Further evidence is reported in
relation to multivariate tests of the CAPM; see for example Stambaugh (1982), Jobson and

Korkie (1982), Amsler and Schmidt (1985) and Mackinlay (1987). These and other references
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are discussed in Stewart (1995b).

It is clear that standard asymptotic approximations are quite unsatisfactory in this
context. Attempts to improve those include in particular (i) Bartlett-type corrections, and (ii)
simulation-based methods. Basically, Bartlett corrections involve rescaling the test statistic
by a suitable constant obtained such that the mean of the scaled statistic equals that of the
approximating distribution to a given order [Bartlett (1937), Lawley (1956), Rothenberg
(1984), Barndorff-Nielsen and Blaesid ( 1986)]. Formulae explicitly directed towards systems
of equations are given in Attfield (1995). Overall, the correction factors require cumulants
and joint cumulants of first and second order derivatives of the log likelihood function, and
cannot, outside a small class of problems, be implemented as easily as might be expected.
Furthermore, simulation studies [e.g. Ohtani and Toyoda (1985), Frydenberg and Jensen
(1989), Hollas (1991), Rocke (1989), Wong (1989, 1991) and Gonzalo and Pitarkis (1994)]
suggest that in many instances Bartlett adjustments are not as effective as expected. A more
simple correction factor is proposed by Italianer (1985) yet the procedure is rather heuristic
and has little theoretical background.

In connection with simulation-based tests, the bootstrap method [see Hall (1988),
Beran (1988) or Hall and Horowitz(1996)] was suggested to obtain size corrected critical
points. Jeong and Maddala (1993) and Vinod (1993) provide a comprehensive survey of
econometric applications of the bootsrap; regarding MLR models, several Monte Carlo and/or
empirical studies are discussed most of which report the efficacy of the procedure [e.g.
Williams (1986), Rocke (1989), Rayner (1990a, 1990b), Eakin et al. (1990), Affleck-Graves
et al. (1990), Martin (1990), Atkinson et al (1992) and Rilstone et al (1993)]. Although long
recognized as a proper alternative to standard asymptotic theory, the bootstrap has only
asymptotic justification when the null distributions of the test statistics involve nuisance
parameters, hence the finite sample validity of resulting inference remains to be established.

This point should be born in mind while interpreting results on the usefulness of the
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bootstrap. In a different vein, several randomized tests have been suggested in the MLR
literature for particular test problems and are referred to under the name of Monte Carlo tests,
examples being Theil, Shonkwiler and Taylor (1985), Theil, Taylor and Shonkwiler (1986),
Taylor, Shonkwiler and Theil (1986) and Theil and Fiebig (1985). However, these authors
do not supply neither asymptotic nor finite sample theoretical results.

In this paper, we propose finite sample likelihood based tests for possibly non-linear
hypotheses on the coefficients of seemingly unrelated regressions. We discuss two approaches
that can be applied on their own or sequentially, namely: (i) a conservative bounds test, and
(ii) Monte Carlo tests. Practical implementation of both procedures is basically
straightforward. The methods we propose are best motivated by the propositions in Dufour
(1996) relating to likelihood based inference in MLR settings: using an argument similar to
the one in Dufour (1989) for a univariate regression, it is shown that LR statistics have null
distributions which are boundedly pivotal, i.e. which admit nuisance-parameter-free bounds.
Even though it may be difficult to compute analytically these bounds, they can easily be
obtained by simulation. Here, we explicit and apply this result in the context of MLR and
SURE systems. The implications for hypothesis testing are two-fold. First, the finite sample
bounds on the LR criterion easily yield conservative tests. Second, bootstrap techniques can
lead to tests with correct levels.

To be more specific, we give at this point a preliminary discussion of the propcsed
conservative bound with regards to SURE systems. First, we reconsider the testing problem
within the framework of an appropriate MLR model, namely the MLR setup of which the
model on hand is a restricted form. Secondly, we introduce, in the relevant MLR framework,
a uniform linear hypothesis that is a special case of the general restrictions in the null. The
intuition behind this suggestion follows from the fact that exact nuisance-parameter free
critical values for the LR criterion are available when the null is uniform linear within a

MLR. Indeed, it turns out that the LR criterion for testing the suggested uniform linear
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hypothesis conveniently bounds the LR statistic for testing the general constraints.

In addition, we propose alternative Monte Carlo tests [see Dwass (1957), Barnard
(1963), Jockel (1986) or Dufour (1995)] that can be run whenever the bounds tests are not
conclusive. We consider (i) an asymptotically valid procedure that may be interpreted as a
parametric bootstrap, and (ii) a method which is exact for any sample size, following Dufour
(1995). While the normality assumption underlies the motivation for the statistics we
consider, this is not necessary for most of the resulis obtained. In fact, we discuss an
extension of standard tests of uniform linear hypotheses in MLR contexts to non-Gaussian
distributions. Further, in situations where maximum likelihood (ML) methods may be
computationaly expensive, we introduce LR-type test criteria based on non-ML estimators.
In particular, we consider two-stage statistics or estimators at any step of the process by
which the likelihood is maximized iteratively. We emphasize that Monte Carlo and bounds
tests should be viewed as complementary rather than alternative procedures.

The paper is organized as follows. Section 2 develops the notation and definitions.
Section 3 discusses the known distributional results pertaining to the test criteria in the
context of the MLR model and provides an extension of standard tests of uniform linear
hypothesis to non-gaussian distributions. Section 4 presents test statistics for general linear
hypotheses with respect to the MLR model and establishes bounds on the significance points
for these statistics. We also discuss how to apply the results to non-linear and inequality
restrictions. The generalization to the SURE is discussed in Section 5. Simulation results are
reported in Section 6. Section 7 provides empirical illustrations of the various tests and

Section 8§ concludes.

2. The general framework
In this Section we introduce the models and notations 0 be used in the paper. The first

model we consider is the MLR model. Then, we focus our attention on the SURE model,
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which can be viewed as a special case of the MLR model obtained by imposing different

exclusion restrictions on the different equations of a MLR model.

2.1. The multivariate linear regression model
The MLR model can be expressed as follows:
2.1) Y=XB+ U,

where y = r,, .., Y] is an (np) matrix of observations on p dependent variables, X is

an (n,k) full-column rank matrix of fixed regressors, B = [Bl, . Bp] is a (k,p) matrix
- . : ~ ~ ol iy

of unknown coefficients and [/ = w,, ., Ul=1[U,.. Ul isan (np) matrix of

random disturbances with covariance matrix T where det(T) # 0. We also assume that the

TOWS U;/ ,i=1,..,n, of U satisfy the following distributional assumptions:

(228 O, =JW,,i=1,.,n.
where the vector w = vee(W, , ..., W) has a known distribution and j is an unknown,
non-singular matrix; for further reference, let W = [w,, .., Wn]/ = UG’ , where

G = g-!. In particular, this condition will be satisfied when

(220) W, ~NO,L),i=1,.,n.

in which case the covariance matrix of 0‘ is JJ' = (G'G)"!. Analternative representation
of the model is

23 v, =XB+U , i=1.,p.

$

where y is a vector of n observations on a dependent variable. By writing (2.2) as

Y, X 0.0 Bl U,

Y. . U
2.4) o] OX 0 By U

bypd 00 .X !.ﬁpj _Up_

the model may be expressed in compact form



(25)  y= I®X) b+ u .

where  y = yec(y) , b = vec(B) , and u = vec(U) - The least squares estimate of B is
26) B =xxy .

and the corresponding residual matrix is

@7h  U=Y-XB=MY=MU.

where M =71 - X X’X)' X’ . In this model, it is well known that under (2.2b) the
maximum likelihood (ML) estimators of the parameters reduce to B and £ =00/n .

Thus the maximum of the likelihood function over the unrestricted parameter space is

2.8  max L = - omy - 2 - 2.
B.Y 2 2 2
To derive the distributions of the relevant test statistics, we shall exploit the following
decomposition of the sum of squared errors matrix [J'( :
29 00 = U'MU =G (WUGHYMWUG) G = G W MW Gy .

where the matrix g has a distribution which does not involve nuisance parameters.

2.2 The seemingly unrelated regression model

Let us now consider the following p equations regression model:

(210) ¥y =XB +U , i=1,.,p

where X is a (n.k) full-column rank matrix of fixed TEgressors
and U, U, .., U, satisfy the same distributional assumptions as in (2.2). This mode] is

known as the SURE model. Let

o - ) S o
Y, X 0.0 B, U,
Y 0 X .0 | B U.
@1 y=] P xe - 2 N S R I
7, | [0 0. x, | B, | U, |
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Then an alternative compact representation of the model is

(212) y=XB +u .

In this case, B is (k*,1) with k" = zp: k, - The likelihood function associated with (2.12)
) i=1

is:

@13 1= -Iwmam - Zin(Eh - 2 0 - XBIET @16 - XP)

which is usually maximized using iterative numerical procedures. To develop finite sample
tests for the SURE model, we will find useful to explicate the relation between SURE and
MLR models. Let )'(', ,i=1,..,p, denotethe matrix of observations on the explanatory
variables excluded from the i-th equation. Further, define Z as any full column
rank (p, k) matrix which spans the same space as X, X, o s Xp] ,and J, j—‘ selection
mam‘ées sﬁgh that

Q14 zy =X , 2l =X ,i=1,.,p.

Then the SURE model (2.10) may be written as

215 ¥y =ZJB +ZJB +U , i=1,..,p .

with the restriction

2.16) B=0.

where B, is the vector of coefficients which do not appear in the equation for Y and
RN YN N S

To simplify notation, we will rewrite the unrestricted MLR (2.15) as

218) ¥y, =ZB + U ,i=1..,p

where B, isa(k 1) vector which includes all the elements of B, and Bl (though possibly
not in the same order). The latter may also be written in the more compact form

(2.19) y=(1p®Z)B+u,

where f§ is the (pky,l) vector

2200 B=(B . B, B



3. Hypothesis testing in the Multivariate Linear Regression model

In this Section we shall review known finite sample distributional results pertaining to
various criteria for testing a general linear hypothesis in the context of the MLR model (2.1),
and provide some extensions that will allow analogous tests to be performed in a large set
of models with non-gaussian errors. Finite sample procedures are available only for the case
where the constraints take the special uniform linear (UL) form Hy RBC =D where R
is a known (r,k) matrix of rank r < k, C is a known (p,c) matrix of rank ¢ < p, and D is a
known (r,c) matrix. We will first study the problem H,: Rp, = d.,i=1,..,p that
corresponds to C = /,. The exposition of this special case will be simplified and likewise, H,,
has traditionally been the subject of multivariate analysis of variance; see Rao (1973, chapter
8), Anderson (1984, chapter 8) or Kariya (1985). In this context, the most commonly used
criteria are:

(a) the likelihood ratio (ILR) or the Wilks (¢) criteria [Wilks (1932), Bartlett (1947)];

(b) the Lawley-Hotelling (LH) trace criterion [Lawley (1938), Bartlett (1939), Hotelling
(1947, 1951)];

(¢) the Bartlett-Nanda-Pillai (BNP) criterion [Bartlett (1939), Nanda (1950), Pillai (1955)]:
(d) the Maximum Root (MR) criterion [Roy (1953)].

All these test criteria are functions of the roots m ., m , m_ of the equation
4

R
~ ) oA

@D 00 -m0/U, =0

where [/0’ U, and U'U are respectively the constrained and unconstrained sum of squared
error matrices. For convenience, the roots are reordered so that mz..zm . In particular,
we have:

(320 LR= —piny) , o

1]
3
[

l-
GamLlH= & 1.

) m
=1 '




(3.2¢) BNP = g(l-ml) :
i=1

(32d) MR = Maximum ™ |

1<i<p m

The hypothesis is rejected when LR is suitably small or when LH, BNP or MR are suitably
large. Note that the criteria LH and BNP can be interpreted as Wald and Lagrange multiplier
test statistics, respectively. For details of the relationship, see Berndt and Savin (1977),
Breusch (1979) or Stewart (1995a).

In Section 2, we saw that {J'{J can be expressed as )0 = G 'W/MW' (G
which depends on E gn]y through G. Similarly, 00’ (‘/0 can be expressed as
(33 0/0,= 6w MW GY
where M, =1- XX xx - R/(R(X/X)‘IR/)'IR ) (X’X)"'x’. These observations
yield the following basic result which allows one to derive finite sample tests based on the

above criteria.

Theorem 3.1 Under (2.1), (2.2a) and H, the vector (m,, my, .., mp)/ of the roots
of (3.1) is distributed like the vector of the corresponding roots of

(3.4) IWMW - mW’MOWI =0,

where M is defined as in (2:?), M, as in (3.3), W is defined in (2.2(5), and the roois are

put in descending order in both cases

PROOF: Let M, be defined as in (3.3) in the context of the constrained model. Then

U0 =G"WMW(GY .,
0/0, =G W M, WG -
Consequently, the determinantal equation (3.1) can bz expressed as:

IGT W MWGY -mG' WM WG| =0,



[0
th

hence |G||W'M W - m W' M, W||(G™)'| =0 and
(3.5) WMW-mW M W =0 .
Since the rows of Ware ;7 ~ N (0, 1p ) , the roots of equation (3.5) have distributions

which does not involve . Q.E.D

The above result implies that the joint distribution of (m,

9 eee o

m) does not
depend on the regression coefficients nor does it involve nuisance parameters. Hence the test
criteria obtained as functions of the roots are pivotal under the null and yield exact inference
given assumption (2.2a). Although Theorem 3.1 is not explicitly stated by Anderson (1984)
or Rao (1973), it is implicit in their demonstrations. Since an explicit proof of Theorem 3.1
is mot apparently available, we supply one in the Appendix. On the basis of the above, the

distribution of the Wilks g criterion can be readily established.

Corollary 3.2 Under (2.1), (2.2a) and H, Wilks® ¢ statistic for testing H. is
distributed like the product of the roots of IWMW - mW'M,W| =0 , where M is
defined as in (2.4), M, as in(3.3)and w is defined in (2.2a).

It may be useful, for simulation purposes, to restate Theorem (3.2) as follows.

Corollary 3.3 Under (2.1), (2.2a) and H,,, Wilks’ o suatistic for testing H,, is distributed
like | WMW I/ | W’MOW | » where M is defined as in (2.4), M, as in (3.3), and W is
defined in (2.2a).

Note that the above characterization of the exact distribution do not require the normality
assumption. Eventually, when the normality hypothesis (2.2b) holds, the distribution of the

Wilks criterion, as stated in Theorem 3.4 below, is well known [Anderson (1984)].
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Theorem 3.4 Under (2.1), (2.2a) and Hy,, Wilks’ ¢ stanstic for testing H, is distributed
like the product of p independent beta variables with parameters ( (n-ry-p + )/2, 1/2 )

i =1,..,p where ryis the rank of the regressor matrix and r is the rank of the matrix R.

For non-Gaussian errors [i.e. when W, follows a known distribution which differs
from the N(Q, Ip) distribution], the null distribution of Wilks’ statistic cannot be assessed
analytically. However, the above results can be used to obtain randomized or Monte Carlo
tests that are applicable given the general distributional assumption (2.2a). Such procedures
were originally suggested by Dwass (1957) and Bamnard (1963). In the following, we briefly
outline the methodology involved as it applies to the present context; for a more detailed
discussion, see Dufour (1995), Dufour and Kiviet (1994, 1996) and Kiviet and Dufour
(1996).

Let T, denote the observed test statistic T, where T is the adopted test criterion, for
instance LR, as defined in (3.2a). By Monte Carlo methods and for a given number N of
replications, generate 7} ,j=1,.,N independent realizations of the statstic in
question, under the null, given a consisient estimator of the error covariance matrix.
Specifically, we consider several choices for the error covariance estimates, based on
restricted and unrestricted OLS coefficient estimates. While the level of the test is controlled
irrespective of the number of replications, the statistic typically performs better in terms of

power the larger the number of replications. Define R/(N) as the rank

of T when T, , .., T,

choose C () 10 be a positive real number such that

, ., T, are ranked in non-decreasing order (j = |

y ey N) :
For g<a<1,
(3.6) Cfa) =1-(INa]/N)+(1/N)

where J[x] is the largest integer less than or equal to x. Then the test’s critical region

corresponds to

37 RM[Nz2Cfa) -



The latter critical value is exact given the assumptions of Theorems 3.1.

We now turn to the uniform mixed linear hypotheses H,. A reparametrization of
model (2.1) establishes the main distributional results for this problem. Indeed, it is worth
noting that the maximum likelihood estimators [MLE] subject to H, may simply be obtained
by maximizing the likelihood associated with:

(38) ¥ =XB +U .

where Y =YC, B, =BCand U, = UC with covariance C'SC ., Subject to RB. =D .
The resulting Wilks test statistic will satisfy the assumptions of Theorem 3.1-3.4. Hence the
finite sample results established above also hold in the general uniform mixed linear case.

For certain values of r and ¢ and normal errors, the null distribution of the Wilks

criterion reduces to the F distribution. For instances, if min(r, ¢) < 2, then

_ cplr -
(3.9) 1-¢7 pt - 22 ~ F(rc,pt -2)),

gl re
where
_ n-k=(r-c+1) _ re-2 o L (P-)[(r*+c?-5) ,  if rl+c?-5 > 0
p=———=, A —=, 1= . .
2 4 1, otherwise

Further, the special case , = 1 leads to the Houelling T* criterion which is a monotone
functionof ¢ Ifr>2 and ¢ > 2, then the distributional result (3.9) holds asymptotically
[Rao 1973, chapter §]. Stewart (1995b) provides an extensive discussion of these special F
tests.

In Section 6.1, we report simulations on Monte Carlo tests based on the above finite
sample theory. For a proof of Theorem 3.4 and a review of asymptotic results pertaining to
the criteria (3.2a-3.2d), the reader may consult Anderson (1984, chapter &) or Rao (1971,
chapter 8]. Finally, recall that not all linear hypotheses can be expressed as in Hg; we discuss

other linear hypotheses in the following Section.



4. General linear hypotheses in the multivariate linear model

In this Section, we introduce a preliminary result relating to general hypothesis tests in MLR
contexts. The issues we raise are of interest for their own sake and have a crucial bearing on
hypothesis testing in the SURE framework. We consider the general case of g* independent
restrictions on the coefficients of model (2.5) of the form

1) H, :RbeA, .

where  Rank(R”) = q°, A, is a non-empty subset of R¢* . This characterization of the
hypothesis includes linear restrictions, both within and across equations and allows for non-
linear or inequality constraints. We adopt the LR testing procedure. Recognising the difficulty
of obtaining exact critical values, we derive exact bounds on the null distribution of the LR
statistic. Throughout this Section, we suppose that 3 is not subject to restrictions, other
than being in the class of positive definite symmetric matrices. We center our attention on

the statistic
(4.2) A" = a ,

where 201 . $ maximize the log-likelihood function associated with (2.5) imposing and
ignoring the restrictions in H, . The hypothesis is rejected when A*® is suitably large. The
LR statistic for testing H, is nln(A") - As extensively discussed earlier, standard tests
carried out on the basis of the above statistic will only have asymptotic validity. Indeed, it
may be shown that the null distribution of A* depends on the error covariance matrix h)
[Breusch (1980)]. Here we emphasize that I is the only intervening nuisance parameter; as
demonstrated in Breusch (1980), the null distributions of LR, Lagrange multiplier and Wald
statistics in generalized linear models are invariant with respect to regression coefficients.
Consequently, we proceed to derive finite sample, nuisance-parameter free bounds on the null

distribution of A* . To do this, we shall extend the methodology proposed in Dufour (1989)



in the context of single equation linear models.

Consider the MLR model (2.5) and let L(H,) denote the unrestricted maximum of
the associated likelihood function. In the Gaussian model, L(H ) is expressed by (2.8).
Further, suppose we can find another set of restrictions of the form RBC = D, thatare
UL in the notation of Section 3 and may be obtained as a special case of the restrictions in
H,,. Then a hypothesis involving such UL restrictions would be nested within H,,. Formally,
we have H, c H, > where
(4.3) H,:RBC =D, H, :Rbe A, -
Now define L(H) ,i=1,2 .t be the maximum of the log-likelihood function under H,,.

Given the normality assumption (2.2b), L(H) ,i=1,2 can be expressed as

(4.4 V= - =P =12,
) LH) 5 In(27m) 2ln(lﬁml) = =12

provided 201 maximizes the likelihood under H, - Then it is straightforward to see that
4.5) LiH,) < LH,) < LH,) -

Applying (4.4) to (4.5) gives

(4.6) AT S A

where

@7 A=

In addition, the null distribution of A may be obtained in finite samples following the
results in Section 3. Most importantly, the null distribution does not depend on the error
covariance matrix. Thus, it can be used to obtain critical values for A* . Indeed, (4.7)
implies that, under the null,

(4.8) PIA"2x] £ P[A 2x] , Vx,

where p [ A’ 2 x ] does not depend on the nuisance parameter Z. Under (2.2b) the null
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distribution of A’ involves the product of p independent beta variables with degrees of
freedom that depend on data, parameter and restriction counts and thus may easily be
obtained by simulation. Let Y.(.) be such that

49 PIY, ., v, v)2¥. (0, vy, v)]=a , 0sas],

1

where Y(v, . vy, V) is distributed like the product of the inverse of v, independent beta
variables with parameters ( (v, =y, + D)2, v/2),i=1,.,v, . Then (4.8) may be
rewritten as

(4100 PIA 2¥ (n-k,p.H]1Sa , 0Sa<1,

where g = min(r, ¢) , r = rank(R) , ¢ = rank(C) . Consequently, the critical value 0
defined by

@1 o =¥ (n-k,p, @

is conservative at level . Of course, one should seek the smallest critical bound possible.
This would mean expressing R so that § is as small as possible. We proceed next to state

our main conclusion for the normal model.

Theorem 4.1 Consider the MLR model (2.5) under (2.2b). Let A* be the statisiic
defined by (4.2) for testing R*b e A, where R*is a (g", k) full column rank matrix
and A, is a non-empty subset of Ri' . Further, consider restrictions of the form

RBC = D that satisfy R*b e A, - Then, under the null, for all 0 < @ < 1
PLA 2Y (n-k,p,§) 1S a where g=min(rc) , r=rank(R),c = T@xC)
and Y(.) is defined by (4.9).

At this point, it is worth noting that normality, {e. hypothesis (2.2b) by no way
constitutes a necessary assumption in this case. Indeed, the critical values of the bounding
statistic may still be determined by simulation under the general assumption (2.2a). Inequality

(4.7) results from the properties of maximum likelihood estimation irrespective of the
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LFS]

likelihood density function. For the purpose of generality, we restate next our main result for

model (2.5) given the distributional assumption (2.2a).

Theorem 4.2 Consider the MLR model (2.5) under (2.2a). Let  A*  be the Wilks
statistic defined by (4.2) for testing R*p ¢ A, where R* is a (¢",k) Jull column rank
marix and A, Banon-emplysubsetof Re . Further, consider resimictions of the form  RRC =D
that satisfy R°b e A, With § = min(r,c) , r = rank(R) , ¢ = rank(C). Let Al be the
Wilks  criterion for testing the latter restrictions. Then under the null.
PlLA 2 M(a)]<a forall 0<as1 ,where A (a) is determined such that
PIAZMN@]=ao-

Clearly, the above results hold when the hypothesis is linear of the form g*p = 3, -
In addition, the fact that the null distribution of the LR statistic can be bounded (in a non
trivial way) as in Theorem 4.1 and Corollary 4.2 implies that simulation based techniques
may be used to obtain valid inference based on the statistic in (4.2) when the bounds test is
not conclusive. Dufour (1995) presents the large and finite sample theory underlying Monte
Carlo tests in the presence of nuisance parameters. The methodology involved is basically
as described in the previous Section. However, since the null distribution of A* is not
generally free of nuisance parameters, the critical region defined in (3.6) is not provably
exact. To obtain an exact critical region, the p-value associated with (3.6) ought to be
maximized with respect to the elements of the error covariance matrix £. Whenever the last
step involving the numerical optimization of the randomized p-value is not carried out, the
method just outlined is closely related to a parametric bootstrap. Indeed, as demonstrated in
Dufour (1995), the critical region defined by (3.6) has the correct level under asymplotic
considerations whenever the asymptotic distribution of the randomized statistic depends

continuously on the intervening nuisance parameters. This property clearly holds in this case
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since the LR statistic is asymptotically pivotal. Furthermore, we must observe that the critical
region defined in (3.6) may be viewed as exact in a liberal sense, l.e. if the test based on the
latter critical region fails to reject, we can be sure that the exact test involving the maximum
p-value is not significant at level o.. We emphasize the fact that the proposed randomized test
can be implemented in complementarity with the above defined bounds tests. If the
conservative test rejects the null then the LR test is most certainly significant. These issues
will be taken up further in Section 7, in the framework of a Monte Carlo experiment. We
next employ a well known example from the finance literature to illustrate how the above
results may be used.

A fundamental problem in financial economics involves testing the mean-variance
efficiency of a candidate benchmark portfolio. Let Rﬂ ,R,,j=1,.,N,k=1,.,K
be security returns for period 1, 1= 1, ..., T. The hypothesis of interest is that some portfolio
of the K security subset is efficient with respect to the total set of N+X securities. Ifitis

multivariate regression

K
(4.12) =t Y Burg*te »Ji=1,..,N,t=1,.,T:
k=1
where ry = Rjt -R,,r, =R, - R, - The hypothesis of efficiency implies that the
intercepts o are jointly equal to zero, Le.
(4.13) aj:O’jzl,...,N.
A well known example of (1.1) is the capital asset pricing model (CAPM)
414) R -Ry=a,+B Ry -Ry)+e ,j=1,...,N,t=1,.,T"
where R,, are the returns on the market benchmark. Gibbons, Ross and Shanken [GRS]

(1989) show that a transformation of the LR criterion to test (4.13) has an exact F

distribution given normality of asset returns. Mackinlay (1987) proposes a similar statistic in

XN
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the context of a single beta CAPM. Specifically, GRS suggest the following test statistic;
a/&-1
“15) o-_T&S &

where g is the vector of intercept OLS estimates, § = £ T)T-K-1) is the unbiased
esimator of ¥ 7 = (,Tl s s FK)/ is the vector of time series means for
ry=(ry s ey ,-n)’ , and A isthe sample covariance matrix for r, . Under (4.13), Q has

the Hotelling T°(N, T-K-1) distribution or alternatively,

(4.16) _Q_(T-Lfil ~ F (N, T-K-N) .

N (T-K-1)
Let A, denote the statistic defined by (4.2) in this context. It can be shown [see, for
example Stewart (1995b)] that A, is related to the GRS criterion as follows:
4.17) A -1=Q/(T-K-1) .
The econometric analysis is more complicated when the zero beta intercept is unknown and
must be inferred using the return data [see, for example Gibbons (1982)]. In this case, the

excess-return MLR becomes

K
(4.18) Igt-y=aj+k§l Bjk(Rh—7)+e. y J=1,.., N, t=1,..,T,
where y is the unknown zero-beta intercept. Under the hypothesis of mean-variance
efficiency, there exists a scalar y such that the vector of ¢ is equal to zero. This implies

the following non-linear constraint on the raw-return MLR

K
(4.19) Rjr=aj+k):1 BuRy+e , j=1,..,N ,t=1,.,T,



K
(420) aj:y[l-—k§lﬁjk],j:l,...,N.

Suppose that we wish to test (4.20) and let A* denote the associated statistic from (4.2).
Exact tests for this specific problem have been studied by Shanken (1986) and more recently
by Stewart (1995b). In what follows, we show that the exact procedures in question may be
obtained as an application of our general methodology.

Shanken (1986) employs the statistic Q(y) . where, in the context of (1.8)

Te&y) S” &)
1+@®-y A7 R - y1p

@2 Q) =

where § = ARGMIN Q(y) , &(y) =é - y(i, - B‘x) , @ is the vector of intercept
estimates, ﬁ is Ythe (N.K) matrix of OLS beta estimates, $§ is the unbiased estimate of
X, R = (ﬁl e, EK)/ is the vector of time series means for R = (R, , ..., Ry)' , A 18
the sample covariance matrix for R, and 4y denotes a vector of J 1’s. Shanken shows that
(i) the LR statistic for testing (4.20) is a transformation of W), (ii) g is the constrained
maximum likelihood estimator of Y, and (iii) the null distribution of Q(y) may be
bounded by the Hotelli}zg TY(N, T-K-1) distribution. Turning to our proposed bound on the
statistic A* , we suggest to consider the statistic A, associated with the special case of
(4.20) where ¥ is any known constant. By (4.16), (4.17) and using (4.5), this naturally Jeads
to the use of conservative critical points involving the F (N, T-K-N) distribution. This is

the same result obtained by Shanken (1986) and Stewart (1995b).

5. Hypothesis testing in the Seemingly Unrelated Regressions model
This section considers testing hypotheses about the parameters of the SURE model. Indeed,
the results for the MLR model furnish interesting applications for systems inference in SURE

model. We begin by deriving, along the lines of the previous Section, a conservative bound
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on the distribution of the LR statistic for testing arbitrary hypotheses. We then deal with
general linear hypotheses. Bounds tests and the Monte Carlo approach are combined to
develop exact inference techniques.

Consider first the problem of testing in the context of model (2.12) the general
hypothesis
(51)  Hy:C'B ed;
where rank(C*) = ve » A, iS a non-empty subset of R'S . In terms of the MLR model
(2.19) which includes (2.12) as a special case, the restrictions in H, may be stated as
(52)  H, :CP e,
where rgnk(C) = v 0 Ag is a non-empty subset of R and C is expressed so that it
incorporates the SURE restrictions (2.16). The usual LR tests of H, are based on the
restricted and unrestricted estimators of the error covariance matrix. Let us denote
by 201 and £ the maximum likelihood estimators of T associated with (2.19) respectively

imposing and ignoring the restrictions j

o1 - Further, let )‘3“ be the maximum likelihood

estimators of X under the SURE restrictions (2.16). In this case, the usual LR statistic is a
monotonic transformation of

(5.3) A = li{”' .

|2

Hl

For the purpose of deriving the conservative bound, we introduce another LR based statistic,

namely

(5.4) AT = 2
£

As it stands, testing H,, based on the LR criterion (5.4) is exactly the type of problem
discussed in Section 4. Here, one simply needs to consider a UL hypothesis, hereafter

denoted by Hy, such that H,cH, The associated LR statistic is
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1%,
2]

(5.5) Al

¢

’

provided }‘302 maximizes the log likelihood under Hy, - As established in Section 3, the
exact null distribution of A: is nuisance-parameter-free and may be easily simulated.
Conformably with the notation in Section 4, let LHY ,i=1,2 be the maximum of the
likelihood function under H, . Further, let LH),i=1,2 refer to the maximum of the
log likelihood under (2.16) and the unrestricted maximum, respectively. Hence, the following
inequality holds under the general distributional assumption (2.2a):

(5.6)  LH,) < LH,) < LH,) < LH,) -

Consequently, it is straightforward to show that

G AsA <Al

The critical bound may be accordingly obtained from the null distribution of A as
described in Section 4. To facilitate the analysis, we shall, in the following, provide an

illustrative example.

Example 5.1  In the three equations SURE model with Gaussian errors

(5.8) Y, = on * BIIXI * U1

1
Y, = By + BuX, + U
Y, =B, *+ BX, + U, >
consider testing H, [3” = Bzz = [333 . In terms of the corresponding MLR model
(5.9) Y, = B * BuX, + BpX, + BuXs + U
Yy = B+ BuX, + BuX, + BuX, + U
Yo= By + ByX, + ByX, + BuX, + U,
the problem implies testing the simultaneous hypothesis H, : B, =B, = B,

and B, =B =B, =By = B,y =B, =0 - In order to use the above results on the

conservative bound, we need to construct a set of UL restrictions in the sense of Section 3
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that satisfy the hypothesis in question. It is easy to see that the constraints setting the
coefficients pv ,i,j=1,..,3 tospecific values do serve the purpose. All that remains
is to calculate Wilks’ statistic conforming with (5.3) and use the critical value defined by
(4.11) as a conservative cut-off point.

Having presented our basic result in terms of arbitrary hypotheses, let us now take
up the special case of linear constraints in the context of the SURE model (2.12). We wish
to treat linear restrictions both within and across equation i.e. restrictions of the form
(5.100 CcB =38 .
where rank(C*) = v; - The MLR model (2.19) reduces to (2.12) when the restrictions
(2.16) are imposed. Accordingly, we often refer to the equivalent problem of testing, in the
MLR setup (2.19), a set of independent linear constraints of the form
G =3,
where rank(C) = v, and C is formulated so that it incorporates (2.16). Several relevant
test criteria have been suggested in the SURE literature [see, for example, Srivastava and
Giles (1987, chapter 10)]. Among those, we cite the LR statistic as expressed in (5.3) and the

following well-known Wald-type statistic, defined in the notation of (2.12) and (5.10) as:

v eb - &) [efxst @ x) e (cop - 8g)
vo O -xp)(sT®L) b - xB)

(5.12) ¢ =

where vi=np -k, § is a consistent estimator of the error covariance matrix and f is
the feasible generalized least squares estimate (FGLS) of [

(5.13) B = [x(s"®)x"]'x"(s7'®L)y -

Under the null, VGT has an asymptotic distribution that is chi-square with vo degrees of
freedom. Theil (1971, chapter 6) advises that the F distribution better captures the finite
sample properties of the statistic in (5.12). Yet this claim is not supported by neither

«analytical nor simulation evidence. Although there are many possible choices for S, two ways
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of constructing consistent estimates are common, each of which relies on residuals obtained
beginning with OLS. )’;’he first approach involves so-called "restricted residuals” [Srivastava
and Giles (1987, chapter 2)], i.e. the least-squares residuals for model (2.19) restricted by the
SURE constraints (2.16). Clearly, these correspond to the OLS residuals from the regression
(2.12). With this replacement for S, 6 coincides with the two-step Zellner (1962) estimator.
Iterative FGLS estimators may be substituted for Q and § in the formulae for the Wald
critedon./ﬂlncidentally, ML estimation may be implemented through iterating to desired
convergence the FGLS estimators cited above. In relation, see Srivastava and Giles (1987,
chapter 5). Hereafter, we denote the statistic in (5.12) based on the two-step parameter
estimates 1, » 10 which we refer by mwo-step Wald statistic. The criterion (5.12) obtained
with iterative estimates we denote T, and call it the iterative Wald statistic.

We also introduce another class of LR-type statistics justified on the basis of
computational cost as opposed to those relying on full ML estimation. More specifically,
let £§9 =0, 1 denote the iterative estimators of T imposing (5.11) and (2.16)

i1 2

respectively, at the j-th step of the iteration process. Define the statistic

)
(5.14) A, = %o :

by

where the superscript j refers to the number of iterations involved in the derivation of the
error covariance estimates and may assume any value ranging from zero to the maximum
required for convergence.

Proceeding as outlined in the previous Section, randomized critical points may be
obtained for all the above suggested test criteria. It is evident that statistics resting on
estimators necessitating fewer iterations have a broader scope of applicability in the context
of Monte Carlo methods. We next present the basic result underlying the asymptotic validity

of the bootstrap method for LR type statistics based on consistent restricted and unrestricted
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parameter estimates that do not necessarily maximise the likelihood. Whereas the null
distribution of the LR criterion is asymptotically pivotal, the limiting null distribution of such
statistics may depend on nuisance parameters. As demonstrated in Dufour (1995), it is

sufficient that the limiting distribution satisfy the following property.

Proposition 5.1 Consider the MLR model (2.19). Let Am be the LR-type statistic

defined by (5.14) for testing C'B = 8, where  rank(C*y = v; and (C* incorporates
the SURE restrictions (2.16) against the SURE specification. Then the asymptotic null

distribution of the statistic depends continuously on the error covariance matrix.

The latter proposition derives from the following well known result: the above
defined two-step and iterative estimators have the same asymptotic distribution as the MLE;
see, for example Srivastava et al. (1987, chapters S and 10). Then, under standard regularity

conditions, the quasi-LR statistics follow usual limiting chi-square distributions.

6. A simulation study
This Section reports an investigation, by simulation, of the performance of the various
proposed statistics in the context of SURE and SEM models. All the experiments were

conducted using Gauss-386i VM version 3.1 and each was based on 1000 replications.

6.1 MLR model with uniform linear hypothesis
To give an idea of the value of randomized tests, a Monte Carlo simulation experiment was
conducted for the MLR model with the same restrictions on each equation. The assumed

model was
m
S Yv='3;o+k2.:1 Buku *+ ¥y, 1=1,..,m , j=1,.,m,
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where n refers to the sample size and m to the number of equations in the system. The

restrictions tested were of the form

The model illustrates the problem of homogeneity testing in demand systems as noted
in Section 1. Attfield (1995) considers the model for m = 2 regarding the Bartlett adjusted
LR test. Here, we reexamined the example to provide evidence that the randomized
procedures do control test sizes in instances where the Bartlett correction fails to reduce the
bias, particularly in larger systems. Indeed, the experiment was carried out for 5, 7 and 8
equations models. The sample sizes were set to 20, 25, 40, 50 and 100. The matrices of fixed
regressors were independently drawn from the normal distribution with means (65, 35, 45,
45, 35, 55, 45, 50) and standard deviations (.5, .6, .2, .3, .6, 4, .3, .2). The errors were
generated as NID(0,X) , with £ = GG’ and G randomly drawn from the normal
distribution. The regression coefficients are reported in Table 1a. The LR and adjusted LR
statistics were calculated and denoted A and Af/¢ Where the Bartlett correction ¢ was derived

following Attfield (1995, Section 3.3) as:

(6.3) c¢= 1+7n , for m

5

1+9n , for m=7

1+10/n , for m=8 -
For the LR and adjusted LR criteria, the percentage of the 1000 replications greater than the
5% critical chi-square values were evaluated. Further, the finite sample critical points were
obtained by simulation following the lines of Section 3 and the percentage of replications
greater than the randomized cut-off points were calculated. As emphasized in Section 3, the

null distribution of the LR statistic is nuisance-parameter free in this case hence the critical

points obtained by simulation are exact. The results are summarized in Table 1b.
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The experiment has three main conclusions. First, the results on the LR test conform
to the well documented fact in this context namely of severe overrejection. Indeed, for m =
8 and n = 20, 25 the empirical sizes were observed to be 75.3 and 47.6% respectively.
Second, the results on the adjusted LR imply that the Bartlett correction, though providing
some improvement, does not correct the bias in larger systems. For m = § and n = 20, 25 the
empirical sizes after the correction remained at 49.3 and 24.0%. In contrast, we finally show
that the randomized testing procedure corrects the levels in all cases examined.

We have also conducted another experiment to investigate the accuracy of the
asymptotic F test (3.9) where r > 2 and ¢ > 2. Several choices for the number of equations
(p), the number of regressors (k), r and ¢ were considered. The regressors and the error
covariance matrices were selected as described above. In all cases the regression coefficients
and the matrices R and C were drawn at random. The results are reported in Table 8.c. We
observe that the asymptotic Chi-square approximation is extremely poor; the asymptotic F
test performs relatively better but size correction is still needed. The Monte Carlo test

achieves size control.

6.2 MLR model with cross-equation restrictions

Considering the same MLR model as in (6.1) with m = 3, 5, we also studied tests of the
following hypothesis:

(6.4) By=PBy, J=2 . ,madp =0, ek, j, k=1,.,m.
The coefficients for this example are presented in Table 2a. For each Monte Carlo trial, the
LR and the conservative bound were calculated as in (4.2) and (4.8), and the observed
significance was computed using the asymptotic distribution and the randomized critical
region (3.6) as outlined in Section 4, for a nominal significance level of 5%. In addition, the
power of the tests was investigated by simulating the model under alternative values for the

regression parameter of the first equation, namely B, in both systems. For the purpose
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of power comparisons, the sizes of the asymptotic tests were locally corrected, i.e. an
independent simulation was conducted for the same parameter choices as the initial
experiment to determine empirical 5% cut-off points. The randomized tests were applied with
20 and 100 replications. To generate the independent realizations of the randomized criteria,
we experimented with several consistent estimates of the error covariance matrix relying on
restricted and unrestricted OLS coefficient estimates. Since the results were insensitive to
choice of consistent estimator for X, we report only the results based on restricted estimates.
Tables 2b to 2d summarize our findings. An apparent implication is that the conservative
bound provides conclusive results in a large proportion of cases. Further, the parametric
bootstrap provides substantial improvement for inferences over the conventional asymptotic
techniques. Indeed, the randomized procedure corrects the test size with no substantial power
loss. Increasing the number of equations does not have a great effect on the relative

performance of the methods proposed.

6.3 Monte Carlo evidence: the SURE model
Two Gaussian SURE models, modelled after Example 4.1, were used for the study. Systems
involving three equations and five equations were considered to which we will refer as the
3EQ and the 5EQ models, respectively. Each equation includes an intercept term and one
fixed regressor. The regressors were independently drawn from the normal distribution with
means (65, 35, 45, 45, 35) and standard deviations (.5, .6, .2, .3, .6). The sample size was
set to 25. The error covariance matrices were also randomly drawn as in Section 6.1. The
regression parameters were (12 ,.1,.8,.1, -1.1,.1) for the 3EQ model and
a2,.1,.8,.1,-11,.1,19,.1,-2,.1) forthe5EQ case. Clearly, the results
are invariant to the true values of the regression coefficients. The restrictions were as
in Hy Example 4.1, i.e. involve testing the equality of the equations’ regression

coefficients, apart from the intercepts. We experimented with the following
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statistcs: A | A®, 1., 1, and A,,j=0,1,3 as defined by (5.3), (5.4), (5.12) and
(5.14) respectively. The conservative bound was evaluated based on the statistic in (5.5).
Further, criteria inspired by those suggested in Theil et al (1985) were also studied. For the

3EQ, we considered:

©3 gy = 1By - Byl + By - Byl

By = 1By - Bal + 1By - By

B = 1By - Bl + By - Byl -
In the SEQ case, the following were selected among the many possible choices
©6) gy = By = Bl + 1By = Bagl + 1855 - Busl + By - Bl
B33 = Basl + 1Bas - Bssl + |Bss - By,
Bas = Bss + [Bss - Byyl + By, - Bl
Bss = Bul *+ 1By - Bl + 1By - Byl
Bss = [Bss = Buil + 1By = Bl + (B = Byl + By - Bl

For each trial, the various statistics were calculated and the observed significance was

+
+

Bey = ,ﬁzz - 633’

+
+

Hsz = Iﬁss - Bul

+
+

Hsqg = lau - 655'

+
+

computed using the asymptotic distribution and the randomized cut-off points (3.6), for a
nominal significance level of 5%. Though we did not analytically establish the asymptotic
distribution of the criteria A(f) » We assessed their asymptotic significance using the chi-
square reference distribution for the usual LR statistic. In addition, the power of the various
tests was investigated by simulating the model under alternative values for the regression
parameter of the first equation, namely B,; »inboth 3EQ and SEQ systems. For the purpose
of power comparisons, the sizes of the asymptotic tests were locally corrected as explained
in Section 7.2. The randomized tests were applied with 20 and 100 replications. Several
consistent estimates of the error covariance matrix relying on restricted and unrestricted OLS
and two-step GLS coefficient estimates were considered. As in the general MLR case, the
results were insensitive to choice of consistent estimator for ¥, hence we report only the

results based on restricted GLS estimates in Table 3 to Table 7b. Although the Monte Carlo
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experiments are conditional on the selected design and the values of the covariance matrices,
our resulis show the following:

(nH The asymptotic criteria have an upward bias in size; as can be seen in Table
3, rejection of the null is repeatedly many times more than what it should be. The bias clearly
worsens in the SEQ example. Across the cases examined, the Wald-type statistics give larger
sizes when referred to the chi-square distribution. Although the F approximation seems to
correct the problem in the 3EQ model, it clearly fails to do so in the SEQ case.

(2) The conservative statistic was found to be well behaved. Power gains are
possible in other test problems where a tighter critical bound is available. Indeed, we have
observed reasonable power even if we have experimented with the worst scenario, in the
sense that bounding test statistics correspond to a null hypothesis which fixes the values of
all regression coefficients (except the intercept). This illustrates the value of the conservative
test as a tool to be used in conjunction with Monte Carlo methods and not necessarily as an
alternative to those methods. As emphasized earlier, the bounds procedure is computationaly
inexpensive and exact. In addition, whenever the bounds test rejects, inference may be made
without further appeal to randomized tests.

(3) There is no indication of overrejection for all randomized tests considered.
While the critical values used, conditional on the particular choice of consistent estimator for
the error covariance matrix, are only asymptotically justified, the procedure was remarkably
effective in correcting the bias. Whether this conclusion would carry to quite larger systems
is indeed an open question. In this regard, note that available simulation evidence on the
SURE model, specifically the experiment in Rocke (1989) on large systems is limited to
three-equations at best.

4) The Monte Carlo tests performed noticeably well in terms of power in all
instances, even when the number of replications was as low as 20. We emphasize that the

size-corrected asymptotic tests are unavailable in practical testing situations since the local
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correction it entails requires that T be known. The statistic with the best power properties
across the alternatives examined was the randomized LR.

(5 While they did exhibit adequate sizes, the statistics inspired by Theil et al
(1985) did not fare well in terms of power. For the 3EQ model, the performance was
dramatically poor for By, and p,, but less so in the case of TH Even then, as compared
to the randomized LR, the performance is less than satisfactory.

(6) Simulation evidence does not favour the randomized usual LR tests over
those based on Av) typically involving fewer iterations, although we are uncertain as to
the asymptotic equivalence of both procedures. This observation has an important bearing on
empirical practice. The simplicity of the method based on A(/) has much to recommend
it for larger models in which statistics requiring full MLE may be quite expensive to

randomize.

6.4 Non-linear hypotheses

To conclude this section, we report the following studies that treat non-linear hypotheses.
First, an experiment was modeled after the MLR system (4.19) under the null hypothesis
(4.20) with N = 40, T = 60 and K = 1. Random emors were generated
as NID(0,X), with £=GG’ and G drawn from the normal distribution. The coefficients were
also drawn at random from the normal distribution with mean zero and variance 16; the
parameter y was set to .009. To derive the LR statistic, the constrained MLE was
numerically computed according to Shanken (1986). Empirical rejections were calculated
using the asymptotic x*(N-1) distribution, the Monte Carlo cut-off points and
the @N, T-K-N) bound. For a nominal level of 5%, the observed size of the asymptotic
test was 89.5%. As was the case with linear hypotheses, the asymptotic tests severely
overreject. In contrast, the MC and bounds test had the correct sizes, .047 and .038

respectively.
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Secondly, another experiment was set up based on the following SURE system
©7)  y=8+aX+p, X, i=1, .., N t=1,..,T:
where N = 7 and T = 25. The regressor denoted X™ is common to all equations. The null
hypothesis was
(68) Hya, =vyB, i=1, .. ,N y unknown
The parameters and regressors and random errors were generated as just described. Denote
the stacked coefficient vector 8. For this experiment, we consider a quasi-LR (QLR) test
derived as follows. The unconstrained estimate of B, say f ., is the two-step Zellner FGLS
estimator. The constrained estimate of 4 is evaluated so as to minimize the following
quadratic form
(69 §= ARGMIN [w(), w(Y) = R,BYR,, COV(B) R\["R,B) -
where R(Y)= (Im ® o1 ‘Y]) . The restricted and unrestricted residuals are obtained
conformably and yield a QLR statistic. We have also examined a Wald-type criterion
computed as w(4) . The conventional x*(N-1) asymptotic critical value was adopted. The
observed empirical sizes of the Wald and QLR statistics were 32% and 24.6% respectively,
whereas the levels of the Monte Carlo Wald and QLR statistic (7.7% and 2.6% respectively)

are adequate.

7. Applications

In this Section, we present an empirical application that illustrates the results presented in this
paper. Fischer (1993) presents panel regressions to examine the effect of macroeconomic
factors on growth, specifically GDP growth, the rate of capital accumulation, productivity
growth (measured by the Solow residuals) and the labor force growth. Four determinants of
growth are specified: the inflation rate (INFLT), the ratio of budget surplus to GDP (SRPLS),
the terms of trade (TTRD) and the black market premium on foreign exchange (EXPM).

Regional dummies are included but observed not to affect conclusions. A random coefficient
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unbalanced panel regression model is fitted using a data set on a large sample of countries.
Here, we center our attention on the multiple regressions (17), (23) and (29) that include all
four explanatory variables, i.e. we consider the sample of countries on which data is available
on all variables. We estimate the system of growth equations when we cannot rule out the
possibility that random disturbances are contemporaneously correlated across countries, within
three geographical regions’. We also test the equality of coefficients across countries, a
maintained hypothesis given the panel regressions. We apply and compare both the results
of the usual asymptotic tests and the Monte Carlo techniques discussed in this paper.
Furthermore, we provide the empirical rejection percentages associated with the asymptotic
statistic, using the simulation experiment required to perform the Monte Carlo tests. Since
we consider a balanced data set for the SURE systems, we actually use a smaller sample than
in Fischer’s analysis; for illustrative purposes, we reestimate the latter regressions based on
our subsample. We report two Monte Carlo p-values, depending on the parameter values
adopted for the simulation. As was emphasized earlier, consistent estimates that satisfy the
null in question are needed. It is natural for the problem on hand to chose the restricted
SURE estimates, imposing the null overall the estimated parameters. We also use SURE
estimates constraining only the coefficients that are explicitly restricted in the null. The p-
values thus generated we denote respectively MC1 and MC2. The findings are summarized
in Tables 9-17.

First of all, it is noteworthy that, in accordance with the findings in Section 6, the
empirical rejections of asymptotic tests by far exceed the 5% nominal levels, and in many
cases are as high as 60%. Note that asymptotic bias is more serious for tests based on MLE.
Correspondingly, we observe that the exact tests typically reverse the results of standard

asymptotic tests in that they do not yield the strong rejections that asymptotic tests do.

! Africa (Ghana, Ivory Coast, Kenya, Malawi, Morocco. Zambia: 1977-88), South America (Mexico,
Argentina, Chili, Colombia, Ecuador, Paraguay: 1973-88) and Asia (India, Indonesia, Korea, Pakistan,
Thailand: 1978-87).



48

Further, in many instances where asymptotic tests show very strong significance, the p-values
calculated on the basis of the Monte Carlo tests are greater than o, so that the exact tests do
not reject.” This issue proves to be particularly important when spurious significance
supports coefficients whose signs contradict macroeconomic expectations. Indeed, this is a
situation in which asymptotic arguments are very misleading, even if the asymptotic p-values
are substantially less than a. Second, we find that asymptotic r-tests based on two-step
estimators do not lead to the same decisions as those based on MLE estimates. In contrast,
no conflict arises if significance is assessed using the MC method. Indeed, this is exactly

what the simulation experiment would lead one to expect.

7.1 Parameter significance’

INFLT " SRPLS " TTRD " EXPM
GDP
GLS | MLE " GLS | MLE " GLS | MLE " GLS | MLE
AFRICA 025 | .021 " 1857 | 113 " -018 | .021 | -.004 | .004
S-AMER. -.059" | -.085 " 253" | 274 " J07 | 1017 | -0517 | -.034
ASIA -205" | -.445 " 646 | .694° I 126" | .074° || 038 | 074

Asympiotic 5% significance is indicated by the subscript "*"; the bold characters imply the coefficients are significant at 5% usimg MC tests

The result of the asymptotic tests associated with GLS estimates is that in the South
American countries, all macroeconomic factors decisively affect GDP growth: inflation and
exchange premiums adversely affect growth while higher budget surplus are associated with
higher growth, adverse changes in terms of trade reduce GDP growth. The Panel regression

estimates lead to the same conclusions, but the numerical value of all SURE estimates except

2 The Monte Carlo tests reported may be interpreted as liberal exact tests, in the sense that failure to
reject on the part of any of the criteria is compelling.

* In the following discussion, unless differently stated, the significance level is set a 5%.
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the budget surplus coefficient are higher. Relying on Monte Carlo tests, we find that the
budget surplus and the exchange premium lose their significance. In the African countries,
all SURE estimates are numerically lower than the panel regression estimates; the coefficients
on the budget surplus and exchange premium have the expected sign and the asymptotic 1-
statistic is significant only in the case of the budget surplus variable. However the exact tests
indicate that none of the coefficients are significantly different from zero. In the asian
countries, all coefficients except the coefficient on inflation are numerically higher than
Fischer’s panel regressions; all coefficients except the coefficient on the black market
exchange premium have the anticipated sign. However, the latter coefficient and the budget
surplus coefficient are not significantly different from zero. Using exact test, we find that all
coefficients are not significantly different from zero.

We now turn to MLE-based tests for the GDP growth regressions. We first observe
that for the South-American region, iterating the SURE estimates has no effect on coefficient
signs nor significance; the coefficients on inflation and the budget surplus are numerically
larger. Regarding Africa, we find that maximum likelihood estimation reverses the signs of
coefficients on the terms of trade and the exchange premium; all estimates are however not
significantly different from zero. Iteration preserves the signs in the regressions on Asian
countries; the coefficients are numerically larger with the exception of the terms of trade
factor. The asymptotic r-test is significant for all parameter estimates except the coefficiznt
on the exchange premium; yet the Monte Carlo p-values are larger than 5%. It is of interest
to note that the alternative asymptotic tests lead to conflicting decisions regarding the
significance of the coefficient on the budget surplus in the context of Africa. In contrast, the
Monte Carlo tests produce similar results whether the underlying estimates are the two-step
GLS or are iterated to convergence. In summary, it appears that only inflation and the terms
of trade affect GDP growth, and the effect is only noted in the South American countries.

Next, we examine the capital accumulation regressions.




INFLT “ SRPLS " TTRD Jf EXPM

Capital
GLS | MLE " GLS MLE " GLS MLE “ GLS MLE

AFRICA Ir004 039" |1 -034 |.119" || -018 |-016 -074" | -.014°
S-AMER. || -.041" | -.058" [| -.060" | -.092° || .014" | .014’ -.052" | -.071°
ASIA 094" | -.072" || .091 149 " 017 004 007 -.004

Asymptotic 5% significance is indicated by the subscript "*”; the bold charscters imply the coefficients are significant at 5% using MC tests

In the South American countries, asymptotic tests based on GLS estimates imply that,
in accordance with the results relating to panel regressions, inflation and black market
exchange premiums decisively reduce the growth rate of capital; the numerical value of all
coefficients except the coefficient on terms of trade are larger in the SURE regressions. The
coefficient on the budget surplus variable is negative, contrary to what is typically presumed.
However, while appearing strongly significant using standard t-tests, the latter coefficient and
the coefficient on the terms of trade variable are not significant, based on Monte Carlo tests.
In the African countries, the SURE estimates are numerically larger than the panel regression
estimates, except for the case of inflation; all estimates except the exchange premium
coefficient do not have the expected sign. The asymptotic 7-statistic is significant only in the
case of the exchange premium variable; however the exact tests indicate that none of the
coefficients are significantly different from zero. In the Asian countries, all coefficients are
numerically larger than the Panel estimates. The asymptotic p-values suggest that inflation
significantly affects capital accumulation; yet the coefficient on inflation is (surprisingly)
positive. The latter coefficient loses its significance in the exact test.

We see again that maximum likelihood produces the same results in terms of
parameter signs and significance in the South-American context; all coefficients except the
coefficient on the terms of trade are numerically larger. However, for the African region, we
observe that the maximum likelihood and the two-step estimators of the coefficient on the

budget surplus have opposite signs; although the sign reversal agrees with Macro-economic
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expectations, the associated Monte Carlo t-statistic is not significant. We also find that al]
MLE-based asymptotic tests are significant. Hence, the usual asymptotic arguments would
imply that inflation and adverse changes in the terms of trade are favourable to the growth
of capital. Interpreting the Monte Carlo tests, the latter effects are found to be insignificant.
with respect to Asia, we see that MLE have the anticipated signs, which was not the case
given GLS estimation. The coefficients on inflation and the budget surplus are asymptotically
different from zero but the Monte Carlo tests are not significant. As was noted earlier, the
alternative asymptotic tests associated with either GLS or MLE lead to conflicting decisions
regarding the significance of the coefficient on the budget surplus in the context of Asia and
all parameter estimates except the coefficient on the exchange premium with respect 1o
Africa. In contrast, all Monte Carlo tests yield the same inference,

To recapitulate, Monte Carlo tests imply that only inflation and the exchange
premium affect the growth of capital, and the effect is only observed in the South American

countries. Next, we analyze the productivity growth SURE equations.

INFLT SRPLS " TTRD ]L EXPM
Froductivity GLS | MLE |f GLS | MLE " GLS | MLE ,LGLS MLE
AFRICA juzs 080" || .286" | .092 Wl -.024 -014"
S-AMER. 1#036’ -.052‘1 317 | 357 " 103" -.009°
ASIA -.263" | -.845° " 537" | -.010 " .103° 268

Asympiotic 5% significance is indicated by the subscript ***; the bold charscters imply the cocfficients are significant at 5% usmng MC tests

In the South American case, asymptotic r-tests lead to the same conclusions as in
Fischer (1993): the coefficient on the black market exchange premium is not significantly
different from zero, inflation is significantly negatively correlated with the rate of
productivity growth, increases in the budget surplus and favourable changes in terms of trade

are associated with higher productivity growth; the SURE estimates are numerically larger
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than the panel estimates. On the basis of the Monte Carlo tests, we find that the coefficient
on the budget surplus loses its strong significance and the coefficient on inflation is no longer
significant. In the Asian countries, all SURE estimates except the coefficient of the exchange
premium are numerically higher than the panel estimates and the signs conform to
expectations. All macroeconomic factors except the exchange premium variable appear
significant, interpreting asymptotic p-values. The exact tests indicate that theses coefficients
are not significantly different from zero. Turning to the African countries, we observe that
all SURE estimates except the budget surplus coefficient are numerically lower than the panel
estimates and not significant; but the coefficients on the budget surplus loses its significance
in the exact tests. Again, it appears that iteration has no effect on parameter signs and
significance in the South-American context. The coefficients on inflation and the budget
deficit are numerically larger than the two-step estimates. The MLE of the coefficient of the
terms of trade in the context of Africa has the expected sign, however, iteration to
convergence produces negative estimates for the coefficients on the budget surplus and the
terms of trade for the Asian region. Relying on asymptotic GLS or MLE-based tests produces
conflicting inference regarding all the coefficient in the African case and all except the
coefficient on the terms of trade for the Asian countries. The Monte Carlo MLE-based
significance tests fail to reject except for the coefficient on the terms of trade in the context
of South-America, as was the case with the GLS-based tests.

In summary, it appears that only the terms of trade affect productivity growth, and

the effect is only noted in the South American countries.

7.2 Testing Equality of regression coefficients
The asymptotic tests strongly suggest that unconstrained SURE regressions are mostly called
for: the Wald tests are significant for all the coefficients in all growth equation relating to

Africa; the same is true of South America, with the exception of the coefficients on the
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surplus variable in the GDP and productivity growth equations, and the coefficient on the
terms of trade in the capital accumulation equation. Relatively fewer rejections are noted in
the Asian countries: the test js significant for the terms of trade variable in the GDP growth
equation, for the inflation and the exchange premium variable in the capital accumulation
regression and for all the coefficients except the coefficient on the budget surplus variable
in the productivity growth equation.

Turning to the Monte Carlo tests, we observe that in some cases, there is conflict
among the alternative tests. For instance, consider, in the context of the GDP and capital
growth regressions the hypothesis that inflation coefficients are equal across African
countries; the Wald statistic rejects the null (the p-value is 4%) while the quasi-LR aceepts,
If we instead test the hypothesis that the coefficients on the budget surplus variable are equal
across the African countries in the context of the productivity growth regressions, we find
that the quasi-LR criterion suggests rejection at 4% but the Wald statistic is not significant.
The same occurs when testing the hypothesis that the coefficients of the inflation, budget
surplus and terms of trade variables are equal across the capital accumulation equations for
Asia. It is natural, in cases where conflict among criteria arises, to assess the comparative
power of the tests involved; in our case however, the simulation experiments suggest that no
one test has a definitive power advantage. For the purpose of resolving the conflict, we reject
the null at 5% if at least one of the two alternative tests is significant at 2.5%. Upon applying
the latter rule, we find statistical evidence to reject the null in the context of the capital
accumulation regressions accumulation: the test is significant for the coefficients of inflation
in all regions and the coefficients on the budget surplus and the terms of trade in the Asian
countries.

To conclude, we estimate the capital growth regressions relaxing the hypothesis of
equality of coefficients when required. In the following, we briefly summarize the

implications of Monte Carlo tests on parameter significance. The results are reported in Table
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17. Within the African countries, the coefficient on inflation is significantly different from
zero in Cote d'lvoire, Malawi and Morocco. The coefficient has the anticipated sign only in
Malawi. In the South American regressions, the coefficient on inflation is significant for
Mexico, argentina and Ecuador and has the expected sign. As for Asia, the coefficient on

inflation is significant in the case of Korea but is positive.

8. Conclusion

In this paper we have shown that the LR test on the coefficients of the MLR model
is boundedly pivotal under the null. The bounds we have derived under general, possibly
non-linear hypotheses are finite sample exact and may easily be obtained by simulation. In
view of this, we have combined the approach of bounds test and Monte Carlo tests to provide
p-values for tests statistics that are more accurate than those based on asymptotic
approximations. The basic results were stated in terms of arbitrary hypotheses in MLR
contexts, We have also focused on special cases, namely uniform and general linear
hypotheses and have extended the methodology to the SURE framework. We have reported
the results of an extensive Monte Carlo experiment that covered uniform linear, cross-
equation and non-linear restrictions in MLR and SURE models. The feasibility of the test
strategy was also illustrated with an empirical application. We have found that standard
asymptotic tests exhibit serious errors in level, particularly in larger systems; usual size
correction techniques (e.g. the Bartlett adjustment) may fail. in contrast, the various tests we

have proposed displayed excellent size and power properties.
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Table 1a. Coefficients for the MLR simulation experiment, the uniform linear bypothesis

5 EQ B, (-2.1,9,-.1,3,1.8)
8, (8,8,.1,.5,-5,2.1)
B, (-1.1,0,-5,2,1,.5
8, (1.9,7,3,3,1.8,-.1
8, (~2,1.5,9,-2,7.1)
7 EQ 8, (-2.1,9,-1,3,1.8,2,.4)
8, (8,8,.1,5,-5,2.1,.1,.5)
8, (-1.1,0,-5,2,1,.5,.1,.5)
B, (19,7,3,3,1.8,-.1,0,.6)'
8, (-~2,15,9,-2,7,1,2,4)
B, : (-1.8,2,.1,2,3,4,1.6,-1)’
B, (1,1,-152,.1,1.5,-.1,1.5)
m
8 EQ 8, (-2,1,9,-.1,3,0,1.8,.2,.4)
8, (8,8,.1,5,0,-5,2.1,.1,5)
8, (-1.1,0,-5,2,1,0,.5,.1,.5)
8, (1.9,7,0,3,3,1.8,-.1,0,.6)°
8, (-2,15,9,0,-2,7,.1,2,4)
B, (-1.82,.1,2,0,3,4,1.6,-1)’
8, (1,1,-1.5,2,.1,1.5,0,-.1,1.5)
8, (-5,-25,1.5,2.5,-1.5,1.5,.6,1.5,0)°

Table 1b. Empirical levels of various test criteria: the MLR model with uniform linear restrictions

l 7 EQ l 8 EQ

2 [t [ 15
.563 322 047 753 493 .046
383 .182 .036 476 .240 .042
.189 .088 051 223 117 051
155 .078 .050 190 .088 053
.071 .050 041 094 .065 .049

Note: LR, LR,y and LRy refer (o the LR, the Bartlett-adjusted and the randomized LR cRtena respectvely.




Table 2a. Coefficients for the MLR simulation experiment with cross-equation restrictions

S EQ B, (1.2,.1,0,0)
8, (.8,0,.1,0)
8, (-1.1,0,0,.1y

7EQ 8, (1.2,.1,0,0,0,0y
B, (.8,0,.1,0,0,0y
8, (-1.1,0,0,.1,0,0
8, (1.9,0,0,0,.1,0
8, (-2,0,0,0,0,.1)

Table 2b. Empirical levels of various LR-based tests of cross-equation restrictions in the MLR model

" 3EQ l 5 EQ
LR (Asymptotic cut-off point) 122 310
LR (Randomized cut-off point) .055 " .044
LR (Bound) .036 " 028

Note: for definitions, reler 10 (4.2) ang (3.7).

Table 2c. Powers of Monte Carlo tests of cross-equation restrictions in the MLR model with three equations.

20 replications

100 replications

Table 2d. Powers of Monte Carlo tests of cross-equation restrictions in the MLR model with five equations.

8,,=.3 B,=.5 8,=7 B,=9 | B,=1 " B,=3 8,=.5 8,=7 | 8,=9 | 8,=1

LR, .140 .522 918 .895 1.00 140 522 918 .995 1.00

LR, 137 468 .849 587 991 135 539 912 995 1.00

LR, L.O95 404 799 963 .987 099 441 .861 .986 999
Tmmmons, see (4.2) and (4.7); L‘Rjﬂ refers to the infeasible Jocally corrected asymptotic test.

20 Replications

I 100 Replications

= B,=.1 8,=.5 B,=.7 B, =9 8,,=1

LR, o " 128 515 .904 995 1.00 128 515 904 995 1.0
LR, " 138 467 .837 967 1.00 137 .537 904 994 1.0
LRyoums l 120 | 427 | 792 | 958 | 995 " 110 | a8 | 877 | 990 1.0
NGte. For definitions, see (4.2) and (4.7); LR, refers o (be infeasible Tocally corrected asymptotic test.



Table 3. Empirical levels of various asympiotic criteria: the SURE mode]

57

" 3 EQ ,

S EQ

QLR (2 Iterations)

Wald,., . (Chi-square) 130
Wald,., . (F) 121
Wald,,, (Chi-square) 254
Wald,,, (F) 242
LR 143
QLR (0 Iterations) 077
QLR,,, (1 Iteration) 131

.143

Note: For aefmmons, see (5.3),(3.4), (5.12)and (5.13).

Table 4a. Empirical levels of various Monte Carlo and bounds test: the SURE model

3EQ 5 EQ

Wald,, .049 .047
Wald,,, 047 049
LR, 047 043
QLR (0 Iterations) .045 .052
QLR (1 Tteration) 048 .052
QLR (2 Iterations) .047 .044
LRy i .036 029
Hs) .058 -

Hy, 051 -

Hjs .055 -

T - .027
s - 026
[T - 025
e, - 011
u* - 025

Rotee. For definitions, see (

S3) (5.4),(312Y, (5.19), (6.5) and (8.6).



Table 5. Powers of size comected asymptotic tests for the SURE model

|

L (53). 5.12), (5.13), (6.3) and (8.0).

Table 6a. Powers of the bounds tests for the SURE model with three equations

3 EQ SEQ
B,=3 | By=5 | B,=7 | B,=9 | 8,=1 ]LB,.:.s B,=5 | 8,=7 | B,=9 | 8,=1.1
Weews 192 647 939 993 999 200 703 961 994 .999
War || 264 | 787 | 984 [100 |100 f| 317 | 918 |10 1.0 1.0
LR, "__281 .806 .985 1.00 1.00 331 913 .999 1.0 1.0
Rote: For delimitions. see 53

20 replications

l 100 replications

By=3 | By=5 | B,,=7 | B,=9 | B,=1 B,=9 | B,=1.0
P, .065 .383 791 .963 .987 077 434 858 986 999
J ) 171 324 A7 034 .013 .204 372 127 .014 001
Ps .030 .021 .008 0.00 0.00 .022 .007 .003 0.00 0.00
Da 134 272 .030 .003 0.00 .697 .187 .012 0.00 0.00
Note: p, refers to the empirical probability that the optima] and conservative tests reject, p, refers to the

probability that the tests fail to reject, p, measures the probability that the optimal test rejects and the conservative
test fails to reject and p; measures the probability that the conservative test rejects and the optimal test fails to
reject. The null hypothesis corresponds to 8,,= .1.

Table 6b. Powers of Monte Carlo tests for the SURE mode! with three equations

20 replications " 100 replications

8,3 (% 8,7 8,9 8,<1.0 " =3 b5 8,7 8,=9 £,=1.0
Weors 185 | .579 | .884 974 .986 .202 .640 .934 890 .998
Wie 225 | 704 | 958 .997 1.00 .260 774 .985 1.00 1.00
LR, 236 | 707 | .962 997 1.00 .262 779 .985 1.00 1.00
QLR 227 | 689 | .950 .993 .988 256 762 977 997 .999
QLR 238 | 709 | 961 .997 1.00 .259 776 986 1.00 1.00
QLR 236 | 707 | 962 997 1.00 .262 776 985 1.00 1.00
LRy oomp 095 | 404 | 799 963 .987 .099 441 .861 .986 .999
Hs, 076 | 108 | 148 216 259 064 108 165 219 .268
Hs, 197 | 552 ) .869 974 .992 210 641 935 .995 998
Hss .093 | 183 | 307 432 .489 .088 184 328 .503 .601

Note: For definitions, see (3.3), (3.4), (3.12), (5.14) and (8.5).



Table 7a. Powers of Monte Carlo tests for the SURE mode! with five equations

20 replications

|

100 replications

B,=3 | B,=5 | 8,=7 | B,,=9 | B,=1.1 " By=3 | B,=5 | B,,=7 | B;;=9 | B,,=1.1
Weors 162 619 918 982 998 " .186 684 .946 .990 .999
Wye .265 .832 991 .999 1.00 .297 .903 1.0 1.00 1.00
LR, " .286 .841 .999 999 1.00 328 .908 .998 1.00 1.00
QLR " .265 .806 971 .998 1.00 316 .864 983 .999 1.00
QLR ,, " .290 .849 .988 .998 1.00 334 .900 .997 1.00 1.00
QLR,,, " 287 .842 991 999 1.00 331 .908 .997 1.00 1.00
LRy " 120 427 792 958 995 " 110 484 877 .990 1.00
Hs, " .029 034 .038 .041 .048 " .032 .036 .039 041 .044
Hs, " .031 036 .039 042 .045 .031 .034 .038 .040 041
Has " .042 .085 154 .258 359 .035 .077 152 .241 397
sy " .023 071 159 .289 456 .025 .067 175 302 512
Hss " .031 .050 071 118 170 " .033 .056 .092 128 180
NGt For definitions, see (5.33,°(5.4), (5.12), (3.14) and (6.6).

Table 7.b Powers of bounds tests for the SURE model with five equations

20 replications

B,=5
2 .082 416 792 958 .995 ‘" .075 474 877 .990 1.00
P: .249 .497 207 042 005 256 .439 122 .010 0.00
D .038 on 0.00 0.00 0.00 .035 .010 0.00 0.00 0.00
D4 631 .076 .001 0.00 0.00 634 .077 .001 0.00 0.00
Note: for definitions, reier {0 1able &.a.



Table 8.a: MLR model, NON-LINEAR hypothesis: Asymptotic, Monte Carlo and bounds tests

LR {Asymptotic cut-off point) " 857
LR (Randomized cut-off point) 037
LR (Bound) 047

Table 8.b: SURE model, NON-LINEAR bypothesis: Asymptotic and Monte Carlo tests

jL Quasi-LR Wald

Asymptotic cut-off point 320 .246

Monte Carlo cut-off point 024 .077

Table 8.c: MLR model, Rao’s asymptotic F test

p k r c LR,, F,, LRy
13 12 12 13 1.00 .108 .052
13 12 12 13 1.00 .198 047
11 12 12 11 1.00 .096 .054
12 12 12 12 1.00 114 048
12 13 13 12 1.00 225 .038
Nole: for delirutions, reler to (3.2) and (38).



Table 9.a: GDP GROWTH
(GHANA, IVORY COAST, KENYA, MALAWI, MOROCCO, ZAMBIA, 1977-88)

61

Country variable Coef. t-ratio p-Asy p-MC1 | %R- P-MC2 | %R-
MC1 MC2
Ghana INFLT -.036 -1.153 2867 .51 .23 .52 27
SRPLS -.046 -1.399 .2045 .43 .30 39 .28
TTRD -018 -.464 6566 77 .24 .76 .23
EXPM -.032 -2.417 .0463 .20 .28 .19 .29
Cote INFLT .388 3.093 .0175 .08 19 .08 .20
D’Ivoire
SRPLS .626 3.936 .0056 .06 .25 .07 .28
TTIRD -331 -4.847 .0019 .03 33 .02 35
EXPM 453 2.942 0217 .10 .18 .11 .23
Kenya INFLT -211 -1.504 1762 32 .23 39 .26
SRPLS .682 1.950 .0922 22 21 .22 .21
TTRD -.020 -.425 .6836 75 .25 .74 .24
EXPM -.057 -.909 3938 .48 .20 .50 .23
Malawi INFLT -.402 -6.728 .0001 .01 .18 .01 .29
SRPLS .669 8.896 .0003 .01 .20 .01 .29
TTRD -.043 -1.270 2446 .51 34 .54 33
EXPM -.004 -.175 .8660 .89 .27 .88 .27
Morocco INFLT .623 1.690 .1348 .44 .38 47 .38
SRPLS .941 2.290 .0558 .26 33 .23 .33
TTRD -.169 -718 4959 .65 25 .67 .25
EXPM .099 512 .6246 .83 .25 .82 25
Zambia INFLT .248 -1.727 .2647 44 .24 .42 .24
SRPLS -.100 1.212 7792 .88 .21 91 21
TTRD -.099 -1.272 .2440 .45 30 .48 .30
EXPM -.002 -062 9522 .98 .28 .94 .28
All INFLT .025 .893 372 .70 32 .70 32
SRPLS 185 2.01 .044 .23 .23 .24 .24
TTRD -.018 -.66 .508 76 31 .76 31
EXPM -.004 -.61 .55 77 .35 5 36




Table 9.b: CAPITAL GROWTH
(GHANA, IVORY COAST, KENYA, MALAWI, MOROCCO, ZAMBIA, 1977-88)

Country variable | Coef. t-ratio p-ASY | P-MC1 | %R-MCI P-MC2 | %R-MC2
Ghana INFLT -.005 -.236 .8204 .90 .24 .89 .23
SRPLS 179 1.203 .2681 .48 .28 46 .30
TTRD 030 1.492 1795 34 .28 .36 .27
EXPM -.001 -.154 .8820 .95 .31 .96 31
Cote INFLT 1.095 13.108 | .0000 01 .16 .01 .24
D' lvoire SRPLS .202 1.953 0918 .29 .28 .29 .28
TTRD -.163 -3.612 .0086 .08 31 .09 31
EXPM 416 3952 0055 02 .24 .02 .20
Kenya INFLT .141 1.066 3220 .55 .24 .53 .26
SRPLS -424 -1.194 2715 .48 .21 .52 22
TIRD -.023 -472 6510 72 .25 .70 .25
EXPM -.084 -1.168 2812 .49 21 .47 21
Malawi INFLT -.191 -2.159 0677 19 .20 .24 .26
SRPLS 339 3328 0126 .05 .23 .07 .31
TTRD -.088 -2.039 .0809 .26 27 .28 30
EXPM .145 4.737 .0021 .03 .24 .01 .27
Morocco INFLT 286 1.748 1240 34 .33 46 37
SRPLS -.750 -4.096 .0046 .08 34 .05 32
TTRD .092 923 .3865 .59 .26 .58 .27
EXPM -218 -2.508 .0405 .18 .28 .20 32
Zambia INFLT -.027 -3.319 .0128 .1 .23 .1 .24
SRPLS -078 -1.467 1859 33 21 .45 .28
TTRD -.067 -2.216 0623 .13 15 .20 .27
EXPM .008 1.719 1293 32 .27 32 .28
All INFLT .004 248 .804 .90 .23 91 23
SRPLS -.034 -792 A3 .69 .37 73 33
TTRD -018 -1.87 061 42 41 43 .38
EXPM -074 2.2 026 .21 25 .24 .26




Table 9.c: PRODUCTIVITY GROWTH
(GHANA, IVORY COAST, KENYA. MALAWI, MOROCCO, ZAMBIA, 1977-88)

Country variable | Coef. t-ratio p-ASY | p-MC1 { %R-MCI p-MC2Z | %R-
MC2
Ghana INFLT -.054 -1.602 1531 .36 .26 37 .29
SRPLS -958 -2.920 .0223 .16 .28 16 .25
TTRD -.028 -722 4939 .67 .19 .67 21
EXPM -.041 -3.109 0171 12 27 .14 30
Cote INFLT -.039 -347 7385 79 .18 77 18
D’Ivoire
SRPLS .555 3.926 .0057 .07 .25 .06 .30
TIRD -.262 -4.310 .0035 05 37 04 34
EXPM .247 1.748 1176 22 .18 .28 .23
Kenya INFLT -.187 -1.798 1152 .26 .24 .30 .27
SRPLS .659 2.491 0416 .09 .23 13 21
TTRD .008 .209 .8404 .85 25 .85 .25
EXPM -.084 -1.696 1337 29 21 .28 .20
Malawi INFLT -316 -4.236 .0039 .02 21 .03 .33
SRPLS 523 5.356 0011 02 25 02 30
TTRD .001 .019 9856 .99 .30 1.0 .25
EXPM -.092 -3.109 0171 .10 19 10 26
Morocco INFLT 577 1.904 0986 .29 .28 35 31
SRPLS 1.357 3.997 .00052 | .03 .33 .03 .30
TTRD -.198 -1.038 3340 .56 25 .52 .28
EXPM 168 1.064 3225 .60 27 .60 27
Zambia INFLT 303 1.397 2051 .39 .28 .39 .29
SRPLS .024 -.064 .9505 97 .30 99 30
TTRD -.138 -1.697 1335 35 .29 32 .25
EXPM -.00004 | -.001 9992 1.0 32 1.0 31
All INFLT .025 13 476 .79 30 79 30
SRPLS .286 3.14 0017 .08 22 07 .28
TIRD -.024 -91 363 72 .30 1 .29
EXPM -.004 -39 693 .78 .28 .81 27




Table 10.a: GDP GROWTH
(MEXICO, ARGENTINA, CHILI, COLOMBIA, ECUADOR, PARAGUAY, 1973-88)

Country variable | Coef. t-ratio p-ASY | p-MC1 | %R-MCI | p-MC2 | %R-MC2
Mexico INFLT -075 -.1745 1117 31 .23 .40 .30
SRPLS 331 2.019 0711 17 .16 17 18
TTRD .209 4.948 0006 .03 19 .03 .20
EXPM -.153 -1.403 1909 A3 .24 43 .28
Argentina | INFLT -011 -539 6014 .70 .23 .70 .22
SRPLS 334 1.422 1855 .30 .15 32 .14
TTRD 109 1.391 1945 41 .24 43 .24
EXPM 018 .849 4158 61 .26 .64 .26
Chili INFLT -.043 -1.807 .1009 .33 .29 .34 .28
SRPLS 386 2.072 0650 .28 .30 .29 29
TIRD .244 4375 0014 04 .25 .05 .20
EXPM -.631 -3.907 | .0029 .05 .29 .05 26
Colombia | INFLT .257 -1.429 1835 44 32 .46 34
SRPLS .164 1 3411 .52 18 52 19
TIRD .020 537 .6028 71 .29 .73 .28
EXPM -.191 -1.987 .0750 25 .26 .23 .23
Ecuador INFLT -427 -3.730 .0039 .03 22 05 .24
SRPLS 532 2483 .0324 15 25 17 .26
TTRD .082 1.927 .0828 23 .20 .25 .24
EXPM -071 -1.857 0930 .22 .18 21 19
Paraguay INFLT 137 1.057 3155 .45 .20 .47 .22
SRPLS 797 1.716 1170 21 13 .20 16
TTRD 123 3927 0028 .03 19 .03 18
EXPM -121 -3.501 0057 .05 17 .03 .19
All INFLT -.059 -4.83 .000 .01 24 02 .22
SRPLS .253 2.85 004 .13 32 .14 34
TTRD 107 553 .000 .01 24 .01 25
EXPM -.051 -2.9 .003 12 .25 .10 .23




Table 10.b: CAPITAL GROWTH

(MEXICO, ARGENTINA, CHIL], COLOMBIA, ECUADOR, PARAGUAY, 1973-88)

Country variable | Coef. t-ratio p-ASY | p-MCl { %R-MCI p-MC2 | %R-MC2
Mexico INFLT -111 -6.630 .0001 .01 .20 .01 .23
SRPLS =212 -3.177 0099 .06 17 .06 .20
TIRD .021 1.275 2311 .34 .19 37 .20
EXPM -.034 -.799 4428 .61 .16 .61 17
Argentina | INFLT -.031 -2.472 | .0330 17 .23 .15 24
SRPLS .200 1.378 .1982 .26 10 .33 13
TIRD .076 1.591 .1427 32 .24 32 .23
EXPM -.010 -737 4778 .59 17 .61 17
Chiti INFLT -.010 -1.276 .2309 4] .20 44 .22
SRPLS .019 317 1576 .83 21 .82 .20
TTRD -.024 -1.264 .2350 45 .27 43 .23
EXPM -.087 -1.454 1766 .34 .21 .38 .20
Colombia | INFLT -.089 -2.338 0415 22 27 .29 30
SRPLS -.124 -3.363 .0072 02 .14 02 15
TTRD .013 1.676 1247 22 .19 .22 19
EXPM -.072 -3.337 .0075 .03 .10 08 11
Ecuador INFLT -214 -4.132 .0020 .02 .20 .05 24
SRPLS -.051 -524 6120 .80 .18 .80 .18
TITRD .029 1.557 .1505 27 .18 .29 19
EXPM -.040 -2.229 .0499 14 .19 15 19
Paraguay INFLT -330 -4.305 0016 .02 .23 .01 .24
SRPLS 932 3.408 .0067 .03 17 .04 17
TTRD .006 324 7528 .87 17 .88 .20
EXPM -.091 -3.918 .0029 .03 .20 .05 22
All INFLT -.041 -10.4 .000 .01 .22 01 21
SRPLS -.060 -2.6 .010 .15 32 .16 34
TTRD 014 3.08 .002 17 .28 17 .29
EXPM -.052 -9.54 .000 .01 .27 .01 .22




Table 10.c: PRODUCTIVITY GROWTH
(MEXICO, ARGENTINA, CHILI, COLOMBIA, ECUADOR, PARAGUAY, 1973-88)
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Country variable | Coef. t-ratio p-ASY | p-MCI | %R-MC1 p-MC2 | %R-MC2
Mezxico INFLT -.037 -.809 4374 .62 .25 .63 31
SRPLS 387 2224 .0503 12 17 13 15
TTRD 194 4.237 0017 .03 .21 .03 .22
EXPM -.082 -.706 4961 .68 .24 .68 .27
Argentina | INFLT -.002 -.099 9228 .96 29 .96 .29
SRPLS 325 1.297 .2238 .38 17 .38 .21
TIRD .059 .063 .5038 .65 .26 .64 .24
EXPM .013 .589 .5689 .68 .24 .68 24
Chili INFLT -.040 -1.631 1340 37 .28 .36 .30
SRPLS .346 1.812 .1000 34 32 .34 .28
TIRD 251 4.401 .0013 04 .21 .05 .24
EXPM -.623 -3.799 .0035 .06 .27 05 .25
Colombia | INFLT -.224 -1.227 .2480 47 33 .48 31
SRPLS 252 1.520 1594 .35 .16 .30 .22
TTRD .015 .408 6922 .81 .32 .82 32
EXPM -.143 -1.475 1709 .40 24 41 23
Ecuador INFLT -342 -3.093 0114 .10 .24 .09 .25
SRPLS .604 2.898 .0159 1 .25 12 .25
TIRD .063 1516 .1605 32 .21 .34 22
EXPM -.057 -1.541 1544 .27 .18 .31 16
Paraguay | INFLT .263 2219 .0508 .16 .18 .18 22
SRPLS .291 692 5050 .55 .16 .55 .15
TIRD 116 4.040 0024 .01 .21 .02 .18
EXPM -.080 -2.560 .0284 11 19 .13 .19
All INFLT -.036 -3.1 .002 12 .23 .09 .24
SRPLS 317 38 .0001 .07 33 .06 .35
TTRD .103 5.67 .000 .01 .22 .01 .24
EXPM -.031 -1.8 .061 .28 .26 27 .25




Table 11.2: GDP GROWTH
(INDIA, INDONESIA, KOREA, PAKISTAN, THAILAND, 1978-87)
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Country variable | Coef. t-ratio p-ASY | p-MCI { %R-MCl | p-MC2 | %R-MC2
India INFLT 103 323 7595 .86 .23 .86 .23
SRPLS =377 -.602 .5733 .70 31 .69 33
TTRD 077 817 4511 .68 .38 .67 41
EXPM 012 .062 9526 97 37 .97 37
Idonesia INFLT -1.276 -.2038 .0971 31 33 32 37
SRPLS 577 .597 .5766 76 .39 .76 41
TTRD .308 1.956 1079 .33 34 .36 37
EXPM -373 -1.163 2974 .59 .36 .58 .36
Korea INFLT -.004 -.025 .9809 .99 .28 99 .28
SRPLS 670 1.254 .1880 .39 .30 .49 .35
TTRD .837 5.100 .0038 .04 31 .05 35
EXPM .038 .508 .6330 .80 32 .85 32
Pakistan INFLT -.173 -.284 .7877 .92 .30 .50 .28
SRPLS 1.231 1.185 .2894 .50 .26 .49 .29
TTIRD 016 192 .8554 .94 .21 91 .23
EXPM -.075 -.868 4252 .59 .25 .63 .26
Thailand INFLT 225 1.417 2156 42 .33 47 .30
SRPLS 031 .023 .9823 .98 .29 .98 .30
TTRD 169 1.494 1954 .39 .25 35 .25
EXPM .333 1.303 .2492 45 .26 .48 .26
All INFLT -.205 -2.45 .014 .16 .28 .16 24
SRPLS .646 2.66 077 .18 33 .23 .39
TTRD 126 3.63 0003 13 .36 .13 35
EXPM .038 77 4420 .70 .35 71 .35




Table 11.b: CAPITAL GROWTH

(INDIA, INDONESIA, KOREA, PAKISTAN, THAILAND, 1978-87)
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Country variable | Coef. t-ratio p-ASY | p-MCl | %R-MC1 p-MC2 | %R-MC2
India INFLT -.004 -.096 9273 .92 .27 .93 .25
SRPLS -.042 -.563 5976 71 72 73 .27
TTRD .008 728 .4995 iy 12 73 .30
EXPM -.003 -.153 .8847 .94 .92 .93 32
Indonesia | INFLT .086 414 6961 .82 .85 .86 .33
SRPLS .002 .009 9929 1.0 .99 1.0 35
TTRD .062 1.386 .2243 36 .44 45 31
EXPM -.249 -2.364 .0645 24 .26 27 .33
Korea INFLT 152 1.640 .1620 .39 .36 37 36
SRPLS 590 1.8%2 17N .29 32 .33 32
TTRD -.013 -.123 9066 .89 .94 .95 .22
EXPM 146 2.664 0447 .21 .21 .22 32
Pakistan INFLT -.133 -1.733 1437 31 .35 .36 .25
SRPLS 147 1.238 2706 47 45 .46 .26
TIRD .001 144 8911 92 .91 .92 .25
EXPM -.022 -2.163 .0829 .29 .29 30 33
Thailand INFLT 177 2392 .0622 22 .23 .24 .29
SRPLS 325 1.907 .1148 34 .23 .24 .21
TIRD .002 .549 .6064 .78 .76 77 .30
EXPM -.088 -1.360 2318 .34 36 37 25
All INFLT .094 2.46 .0138 29 .34 .27 30
SRPLS 091 1.09 276 .56 .30 .60 35
TTRD 017 1.31 1915 .51 .38 55 .39
EXPM 0007 .034 8725 .97 .37 .98 38




Table 11.c: PRODUCTIVITY GROWTH
(INDIA, INDONESIA, KOREA, PAKISTAN, THAILAND, 1978-87)
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Country variable | Coef. t-ratio p-ASY | p-MC! | %R-MC1 p-MC2 | %R-
McC2
India INFLT 031 113 9143 .99 .23 .99 23
SRPLS -.479 -.843 4376 64 .27 .59 31
TTRD .080 .935 3926 .67 .38 .67 .39
EXPM -.059 -.339 7487 .87 .31 .89 32
Indonesia | INFLT -1.056 -1.835 1259 .40 .38 .40 32
SRPLS 966 1.113 3163 .55 .38 .56 .39
TTRD 150 1.040 3462 .55 34 .54 .33
EXPM -380 -1.275 .2585 .55 37 .57 37
Korea INFLT -.184 -1.121 3131 .55 .28 .55 36
SRPLS 322 .640 .5503 .70 .36 77 .35
TTRD .069 3.792 0127 A1 36 .09 31
EXPM .031 .385 7159 .83 .31 .82 .30
Pakistan INFLT -.131 -919 .8581 .97 .26 .95 .26
SRPLS .784 684 5246 7 30 .69 35
TTRD -.119 -1:121 3132 .59 31 59 .35
EXPM -127 -1.140 .3060 47 .29 .54 32
Thailand INFLT 144 1.149 3025 .48 25 .53 .24
SRPLS .145 .283 .7889 .88 19 .86 .28
TTRD 100 1.075 3316 57 32 .54 .29
EXPM .606 2.240 0519 .13 25 .21 .20
All INFLT -.263 -33 .001 .08 25 .06 .27
SRPLS .537 2.13 .033 .21 25 27 32
TTRD 103 2.54 011 .24 37 24 .37
EXPM .033 .624 .533 .79 .27 79 27
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Table 122 MLE (GHANA, IVORY COAST, KENYA, MALAWI, MOROCCO, ZAMBIA, 1977-88)

variable | Coef. t-ratio p-Asy | p-MCI %R-MC1 P-MC2 | %R-MC2
GDP INFLT .021 944 345 .81 .66 .82 .65
Growth

SRPLS 113 1.4] 158 .81 .69 .76 .67

TTRD 0212 942 345 .85 73 .86 .73

EXPM .004 .78 438 .85 .70 .87 .70
Capital INFLT 039 12.34 000 .09 .67 15 .59
Growth

SRPLS 119 16.45 000 .09 .79 .10 .62

TTRD -.016 -10.7 000 17 65 15 .65

EXPM -.014 -19.2 .000 .09 12 .07 .68
Productivity | INFLT .080 3.40 0007 .79 .61 44 .68
Growth

SRPLS 092 1.09 .288 17 .63 77 .64

TIRD 056 2.57 .010 .57 .66 .62 72

EXPM 014 2.47 .013 .58 .61 .55 .63

Table 13: MLE (MEXICO, ARGENTINA, CHILI, COLOMBIA, ECUADOR, PARAGUAY: 1973-88)

variable Coef. t-ratio | p-ASY p-MCl1 %R-MC1 p-MC2 %R-MC2
GDP INFLT -.085 95 .000 .03 41 .02
Growth

SRPLS 274 4.09 000 .04 47 .18 .46

TITRD 101 6.2 000 .04 .40 .03 42

EXPM -.034 -2.5 .012 .36 .52 .34 .48
Capital INFLT -.058 -18.1 .000 01 .38 .01 .43
Growth

SRPLS -.092 -5.32 .000 .08 41 .09 46

TTRD .014 4.54 .000 .09 37 .08 .38

EXPM 071 -14.3 .000 .02 34 .01 37
productivit | INFLT -.052 -5.34 .000 .08 .40 .07 .46
g}rowth SRPLS 357 5.02 000 .10 .38 12 .50

TTRD .093 5.7 000 .03 37 .04 .40

EXPM -.009 -.61 543 .84 47 .85 .45
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Table 14: MLE (INDIA, INDONESIA, KOREA, PAKISTAN, THAILAND: 1978-87)

variable Coef. t-ratio | p-ASY p-MC1 %R-MC1 p-MC2 T%R-MC2
GDP INFLT -.445 -5.62 000 35 .70 45 .70
Growth

SRPLS .694 2.99 .014 52 .70 .60 .76

TTRD 074 23 037 73 72 .68 72

EXPM .074 1.8 .090 .67 .66 72 71
Capital INFLT -.072 -3.95 .000 58 72 .57 .70
Growth

SRPLS .149 6.254 .000 43 74 44 .73

TTRD .004 1.52 150 .82 .76 .80 .86

EXPM -.004 -1.1 .290 .85 .70 .88 77
Productivity | INFLT -.845 -19.9 .000 .14 .63 15 .69
Growth

SRPLS -.010 -.09 .93 .97 75 .96 .76

TTRD -.058 -3.05 .009 .65 73 .67 5

EXPM .268 11.56 .000 .19 .66 .25 72

Table 15. Panel regression estimates

GDP GROWTH ]L CAPITAL ACCUMULATION
INFLT SRPLS TIRD EXPM ]I INFLT SRPLS TTRD EXPM
Coef. -.033 273 .074 -.016 -.028 .025 .015 -.020
t-Stat -3.41 4.03 3.62 -2.24 -2.95 40 .96 -3.05
p-val .001 .000 .000 026 " .003 .693 338 .003

Table 15 cont. Panel regression estimates

PRODUCTIVITY GROWTH
INFLT SRPLS TTRD EXPM

Coef. -.025 275 .064 -.011

t-Stat -1.97 3.26 334 -1.29

p-val " 051 001 001 1




Table 16. Testing equality of SURE coefficients
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INFLT SRPLS TIRD BPm

GDP: AFRICA Productivity: AFRICA
Wi 51.2 174 | 186 | 106 198 | 359 | 156 | 483 153 |1 326 | 7.16 | 836
Pusr 000 | .004 | .002 | .059 000 | .000 | .000 | .000 009 1 .000 | 209 | .137
Pucr " .05 44 .37 .55 .01 17 .39 .05 35 .13 .60 .55
FoRuwc: 50 .58 .63 .53 .58 .60 .55 .57 .45 .59 47 41
Pucs .05 .38 .44 .62 .02 .10 .39 .09 55 .19 7 .67
%R .67 .59 .63 57 48 .58 .57 .59 .67 .68 .48 .53
QLR 323 124 1 969 | 516 )| 292 | 240 | 158 | 212 354 | 543 | -27 -14
Puc) .14 .47 .58 .60 12 .21 .38 29 .06 .03 .95 .86
P-c:—" .15 .40 .56 .67 14 .20 33 27 13 .04 98 .93
_—" GDP: South America " Capital: South America Productivity: South America
Wi I 198 | 3.05 165 | 333 479 | 258 | 6.41 135 1.56 | 1.81 11.6 | 39.7
Pasy l .001 693 | .005 | .000 | .000 | .000 | 268 | .019 002 | 874 | .041 | .000
Puc: l 40 .94 .38 .09 .01 .05 72 27 41 97 41 .02
FRycs l .57 46 54 .38 .43 .38 .59 .52 .47 .43
Pucr I 34 .96 36 .05 78 .31 .35 .99 44 .03
FRucr " .61 47 .53 .38 .49 .39 .63 53 47 .58
QLR " 115 | 2.01 551 267 | 6.13 | 3.43 105 | .65 398 | 316
Puc: " 55 .86 .68 .08 .63 .58 61 .93 .47 04
Pecs " .47 .84 .70 .06 .65 .64 .47 .92 .50 .05
__JI GDP: ASIA : Asia Productivity: Asia
Wad l 630 | 259 | 286 593 | 416 | 157 658 | 2.18 | 103 | 4.44
Pasr I 178 | .630 | .000 205 | 385 | .003 016 | 703 | .036 | .350
Paecy 79 .92 19 717 .89 41 79 .96 .65 91
FRec .64 .60 .68 .65 .67 .64 .68 .61 65 .67
Puc: .83 .93 .26 78 .93 45 .82 .95 .62 .93
FoRocr 62 .65 73 .62 .62 .68 .66 .64 .62 .68
QLR 19.7 .94 26.8 63.0 |1 69.1 | 47.1 202 )1 -3.0 { T16 | 476
Pucy .29 70 .20 .01 .01 .07 30 .84 .19 47
Py 39 .78 .24 02 02 .10 .38 .88 19 49




Table 17a. CAPITAL GROWTH: UNCONSTRAINED ESTIMATES

(GHANA, TVORY COAST, KENYA, MALAWI, MOROCCO, ZAMBIA: 1977-88)

Country variable | Coef. t-ratio p-ASY | P-MCl | %R-MC1 P-MC2 | %R-MC2
Ghana INFLT -.012 -.883 3870 .58 .23 .63 .28
SRPLS .009 413 .6839 i 28 79 .30
TIRD -.020 -4.959 0001 .07 .33 .07 34
EXPM -.008 -4.289 0003 .09 33 .09 .36
Cote INFLT .885 7.711 .000 01 21 01 19
Drivoire SRPLS .009 413 .6839 77 .28 79 .30
TTRD -.020 -4.95% .0001 .07 33 .07 34
EXPM -.008 -4.289 .0003 .09 .33 .09 .36
Kenya INFLT 041 448 6584 19 .20 79 21
SRPLS .009 413 .6839 7 .28 79 .30
TTRD -.020 -4.959 .0001 .07 33 .07 .34
EXPM -.008 -4.289 .0003 .09 .33 .09 .36
Malawi INFLT -.360 -6.05 000 02 19 .01 .24
SRPLS .009 413 .6839 1 .28 79 30
TTRD -.020 -4.959 0001 07 .33 .07 .34
EXPM -.008 -4.289 .0003 .09 33 .09 36
Morocco INFLT .592 4341 .0003 .05 .30 .02 .31
SRPLS .009 413 .6839 71 .28 79 .33
TTRD -.020 -4.959 .0001 .07 .33 .07 .34
EXPM -.008 -4.289 .0003 .09 .33 .09 .36
Zambia INFLT -018 -1.365 1862 .34 .16 45 .20
SRPLS .009 413 .6839 17 .28 79 .33
TIRD -.020 -4.959 0001 .07 .33 .07 34
EXPM -.008 -4.289 .0003 09 .33 .09 36




Table 17b. CAPITAL GROWTH: UNCONSTRAINED ESTIMATES
(MEXICO, ARGENTINA, CHILI, COLOMBIA, ECUADOR, PARAGUAY: 1973-88)
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Country variable | Coef. t-ratio p-ASY | p-MCi1 | %R-MC1 p-MC2 | %R-MC2
Mexico INFLT -1039 | -11.015 .0000 .01 .20 .01 .16
SRPLS -.043 -1.430 1652 .40 .26 .36 .25
TTRD .009 1.254 2214 .55 38 54 .36
EXPM -.029 -2.927 .0072 .03 17 04 .20
Argentina | INFLT -.0408 | -3.058 .0053 .06 .23 .06 .18
SRPLS -.043 -1.430 1652 .40 .26 36 .25
TTRD .009 1.254 2214 .55 .38 .54 .36
EXPM -.029 -2.921 .0072 .03 17 .04 .20
Chili INFLT -.011 -2.047 .0513 41 .20 21 21
SRPLS -.043 -1.430 1652 .40 .26 .36 .25
TTRD .009 1.254 2214 .55 38 .54 .36
EXPM -.029 -2.927 .0072 .03 17 .04 .20
Colombia | INFLT -.059 -1.364 1846 44 .33 42 30
SRPLS -.043 -1.430 1652 .40 .26 36 .25
TTRD .009 1.254 2214 .55 .38 54 .36
EXPM -.029 -2.927 0072 .03 17 .04 .20
Ecuador INFLT -.186 -4.112 .0084 02 .19 .01 17
SRPLS -.043 -1.430 1652 40 .26 36 .25
TTRD .009 1.254 2214 55 .38 .54 .36
EXPM -029 -2.927 .0072 .03 17 04 .20
Paraguay | INFLT -.2203 | -1.975 .0594 21 .20 .24 .23
SRPLS -.043 -1.430 1652 .40 .26 36 .25
TTRD .009 1.254 2214 .55 38 .54 36
EXPM -.029 -2.927 .0072 .03 17 .04 .20




Table 17¢c. CAPITAL GROWTH: UNCONSTRAINED ESTIMATES
(INDIA, INDONESIA, KOREA, PAKISTAN, THAILAND: 1978-87)

Country variable | Coef. t-ratio p-ASY | p-MCl | %R-MC1 p-MC2 | %R-MC2
India INFLT -.0012 -.0380 .9705 R 18 .96 17
SRPLS -.0458 -772 4599 .58 .14 .57 .19
TTRD .0092 1.318 2199 74 .98 62 32
EXPM -.0140 -1.524 1617 .41 31 .37 .30
Indonesia | INFLT 3923 1.788 .1073 .40 34 .43 .35
SRPLS -.1631 521 .6148 .81 .33 79 .36
TTRD .0484 .900 3917 .62 .27 .61 .26
EXPM -0140 -1.524 1617 41 31 37 .30
Korea INFLT 3254 3.343 .0086 01 23 .01 .29
SRPLS 1.051 2.941 .0165 14 36 13 36
TTRD .2029 1.799 1050 35 .30 .29 .26
EXPM -.0140 -1.524 1617 41 .31 37 .30
Pakistan INFLT -.1763 -2.357 .0428 13 .19 .18 .24
SRPLS 2201 1.744 1152 17 13 35 27
TTRD .001 120 9070 .92 13 .93 13
EXPM -.0140 -1.524 1617 41 31 37 .30
Thailand INFLT .1455 2.134 0616 .24 27 .26 .26
SRPLS 3676 1.884 0922 34 .36 24 44
TIRD -.0287 -.802 4429 .69 .26 73 .28
EXPM -.0140 -1.524 1617 41 31 37 30
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Chapter 2

Monte Carlo tests

for contemporaneous correlation

of disturbances

in multi-equation regression models

Abstract

This paper proposes finite sample procedures for testing the SURE specification in multi-
equation regression models. We apply the technique of Monte Carlo (MC) tests [Dwass
(1957), Bamard (1963)] 10 obtain exact tests based on standard LR and LM zero correlation
tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares
(FGLS). We show that the latter statistics are pivotal under the null, which provides a basic
motivation for applying randomized tests. Furthermore, we extend the exact independence
test proposed by Harvey and Phillips (1982) to the multi-equation framework. The properties
of the proposed tests are studied in a Monte Carlo experiment which shows that standard
asymptotic LR and LM tests exhibit important size distortions. By contrast, MC tests achieve
complete size control and display good power. Moreover, QLR MC tests performed best in
terms of power, a result of interest from the point of view of simulation-based tests. The tests
are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of

growth.
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1. Introduction

Multi-equation models which use both cross-section and time series data are common
in econometric studies. These include, in particular, the seemingly unrelated regressions
(SURE) model, first considered by Zellner (1962). The SURE specification is expressed as
a set of linear regressions where the disturbances in the different equations are correlated. The
non-diagonality of the error covariance matrix usually entails that individual equation
estimates are sub-optimal; hence, generalized least squares (GLS) estimation which exploits
the correlations across equations may improve inference. However, the implementation of
GLS requires estimating the error covariance from the data. Further the cross-equation
dependence must be taken into account when testing cross-equation parameter restrictions.
As it is well known, the feasible generalized least squares (FGLS) estimators need not be
more efficient than ordinary least squares (OLS); see Srivastava and Giles (1987, chapter 2).
Indeed, the closer the error covariance comes to being spherical, the more likely it is OLS
estimates will be superior. This has extensively been discussed in the SURE literature; see,
for example, Zellner (1962, 1963), Mehta and Swamy (1976), Kmenta and Gilbert (1963),
Revankar (1974, 1976), Kunitomo (1977), Kariya (1981c), and Srivastava and Dwivedi
(1979). In this sense, choosing between GLS and OLS estimation in the SURE model
corresponds to the problem of testing for sphericity of the error covariance matrix.

This paper studies and proposes finite sample tests for independence against
contemporaneous correlation of disturbances in a multi-equation SURE model. We use for
that purpose the likelihood ratio (LR) and Lagrange multiplier (LM) test criteria; we also
introduce quasi-LR (QLR) statistics based on FGLS estimates. These statistics have rather
complicated null distributions. So to obtain finite sample tests, we shall exploit the technique
of Monte Carlo (MC) tests [see Dwass (1957), Barnard (1963), Birnbaum (1974) and Dufour
(1995)] which allows one to obtain provably exact randomized tests in finite samples using

very small numbers of MC replications of the original test statistic under the null hypothesis.
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Independence tests in multivariate models have been discussed in both the
econometric and statistical literature. Breusch and Pagan (1980) provide an LM test for the
diagonality of the error covariance matrix. Kariya (1981a) derives locally best invariant tests
in a two-equation framework. Shiba and Tsurumi (1988) proposed Wald, LR, LM and
Bayesian tests for the hypothesis that the error covariance is block-diagonal. Related results
are also available in Kariya (1981b), Kariya et al (1984), and Cameron and Trivedi (1993).
Except for one special case, these test procedures are only justified by asymptotic arguments.
/ The exception is Harvey and Phillips (1982, section 3) who proposed exact independence
tests between the errors of an equation and those of the other equations of the system. These
tests (called EFT) involve conventional F statistics for testing whether the (estimated)

residuals added to each equation have zero coefficients. EFT tests may be applied in the
context of general diagonality tests; for example, one may assess in mm' whether the
disturbances in each equation are independent of the disturbances in all other equations. Such
a sequence of tests however raises the problem of taking into account the dependence
between multiple tests, a problem not solved by Harvey and Phillips (1982).

A major problem in the multi-equation context comes from the fact that relevant null
distributions are either difficult to derive or too complicated to use in practice. This is true
even in the case of identical regressor matrices. Hence the applicable procedures rely heavily
On asymptotic approximations whose accuracy can be quite poor. This is evident from the
Monte Carlo results reported in Harvey and Phillips (1982) and Shiba and Tsurumi (1988),
among others. In any case, it is widely acknowledged by now that standard multivariate LR-
based asymptotic tests are unreliable in finite samples, in the sense that test sizes deviate
from the nominal significance levels; see Dufour and Khalaf (19964, b) for related simulation
evidence. On the other hand, most reported studies suggest that LM independence tests have
correct sizes. However, for the multi-equation cases examined here, LM asymptotic tests also

exhibit size distortions.
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The first step towards a finite sample exact test procedure involves deriving nuisance-
parameter-free null distributions. In the context of independence tests, invariance results are
known given two univariate or multivariate regression equations [Kariya (1981a, b), Kariya
et al. (1984)]. The problem of nuisance parameters is yet unresolved in models involving
more than two regression equations. Here, we show that the LR, LM and QLR independence
test statistics are pivotal under the null, for multi-equation SURE systems. Though the proof
of this result is not complex, it does not appear to be known in the literature. Of course,
existing work in this area has typically focused on deriving p-values analytically. By contrast,
the approach taken in this article does not require extracting exact distributions; we obtain
provably exact p-values by using the technique of MC tests originally proposed by Dwass
(1957), Barnard (1963). Note also that the normality assumption is not a prerequisite of the
tests proposed here. For further references regarding MC tests, see Dufour and Kiviet (1994),
Edgington (1980), Foutz (1980), Jockel (1986) and Mariott (1979). Monte Carlo evidence on
the performance of the various tests is also presented. The results show that while the
asymptotic LR and LM tests seriously overreject, the MC versions of these tests achieve
perfect size control and have good power.

The outline of this study is as follows. In Section 2, we present the framework and
the independence test criteria; we next describe the MC test procedures. In Section 3, we
report the Monte Carlo results. In Section 4, we apply the tests to data used by Fischer

(1993) to analyze the macroeconomic determinants of growth.

2. Framework and test statistics
2.1 Model and standard estimators
Consider the seemingly unrelated regression model

2. Yy =XB, +u,i=1,.,p:

where Y, is a vector of n observations on a dependent variable, X, a (n, k) matrix of
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observations on k, explanatory variables, p, @ vector of k, coefficients, and u, a\vector
of nrandom disturbances. When X, = xj , i,j=1,. ,p Wwehaveamultivariate linear

regression model (MLR). The system may be rewritten in the form

(2.2) y=XB +u >
where
Y,] x, .. ] u,] B,]
Y X .. u p
y = ? ’ X = : ’ u= 2 ’ B = 2 ’
YR L’ v XP. .uP. BP.

so that X has dimension (nk, k), y and u each have dimension (np, 1) and 8 has dimension
P
(k1), with g = ¥ k, - We also suppose that
i=1
23 Ew) =0, Ewu)=od,, i,j=1,..,p"
hence E(uu’) = T®I , where T = [ OU] ; we also set o, = 0,2 . The coefficients of
the regression equations can be estimated by several methods of which the most well known
are: (i) OLS applied to each equation, (i) two-step FGLS, (iii) iterative FGLS (IFGLS), and

(iv) maximum likelihood (ML). Denote the OLS estimator by

Q4 B =B, B L B=XX)XY, ,i=1,.,p.

ry

An associated estimate 3§ for the error covariance matrix can be obtained from COLS
residuals:
R -1 .
25 4, =Y -XB, =My, .M =1 -XXX)'X, ,i=1,.,p-
The two-step FGLS estimate based on any consistent estimate S of T, is given by
(2:6)  PBpgs = X(SI®HX)IXI(S@L)y -

If the disturbances are normally distributed, then the log-likelihood is

QD g-= -—2"2 In@2r) - -;1 Inqz|) - %(y - XPY(E®L)(y - XP) -
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The ML estimators satisfy the following normal equations

28)  X(ET®Xp = X'E'®L)y . £ = 0Oy

where O =@, .., &), @ =Y -XB, i=1,..,p, end P =By, .. B
Iterative procedures are typically applied to obtain the ML estimates. Suppose $£© is an
initial estimate of y . Using (2.8), we can solve for a first estimate of B

29 B9 = (XE%) X XE"R) Yy

from which an estimate of u may be obtained

(2100 @™ =y - xp@ .

This residual leads to an estimator §® of » and another estimate p. Thus, the
estimators at the jth iteration take the form

@10 f% = ' E%0) X1 X(ERL) Yy . £P = @ T

where 7% is as in (2.8) , with g“ﬂ =y - X, Q‘U") . Iterating this procedure to
convergence yields ML estimates [Oberhofer and Kmenta (1974)]. With this

notation, §© corresponds to Bros + While B and £ denote the estimates achieved

after J iterations.

2.2 Independence test statistics
Given the setup described above, consider the problem of testing H, the hypothesis

that y is diagonal. Some notation we use throughout is first listed. Let D, (d) represent

a diagonal matrix of dimension N, with (d,, ... , dy) along the diagonal. H, may then be
expressed as
(212) H: Z = Dp(o,z) , for some vector (o, , .., op)’ .

Further, we will frequently refer to the standardized disturbances and the standardized
residuals which we denote respectively

C1) ws=(w,.,w ), w=uje,,i=1,. ,p,

/

@14 w0 = (W, w2y, w0 =%, i1, ., p j=0,. .J



&9
In addiuon, Iet
R [ N P
We also use an alternative notation in the case of OLS estimators. Specifically,
let %, , % and Q correspond to w? , w® and Q. Note the vector w has a known
distribution if the null is true.

The LR statistic for testing H, is a monotonic transformation of

@16) 4 = PO
£

The asymptotic null distribution of In(A) is x2 (&0':_1)) . We also consider
2

(2.17) N:M ,J=0,1,..,J.

£
Confirming with the notation set above, A© refers 1o the QLR statistic based on OLS

estimates and AY corresponds to the LR criterion. The LM criterion is

) p il 4y
(2]8) IM = n E Z rv- , fy = WJ-/—-E ’
i=2 j=1 CHERMCHD

and has the same limiting null distribution as the LR statistic [see Breusch and Pagan
(1980)]. On the other hand, a finite sample exact independence test was developed by Harvey

and Phillips (1980); their procedure is applicable where the null hypothesis has the form

of 0
0 Z,

Specifically, they propose the following statistic:
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(2.20)  EFT = !
Vi=Gy,..,4), M =I- X, (xx)'x,

which follows an F distribution with -1, n-k,-p+1) degrees of freedom under H,,.
The EFT statistic may be obtained as the usual F statistic for testing whether the coefficients
on ;71 are zero in the regressijon of y, on X, and ;71, As it stands, the EFT test is restricted
to hypotheses of the form (2.19); in fact, the problem of testing (2.12) is not addressed at all
in Harvey and Phillips (1982). Here, we Suggest an extension to the multi-equation
framework. Specifically, we propose to examine, in turn, whether u, is independent
of Wy, ., ”p)’ or u, is independent of W, .., p) and so on so forth, a maximum
of (p-1) tests would be involved. Critical points from the relevant F-distribution may be
obtained by using Boole-Bonferroni inequality. For example, the significance levels may be
B0 o) = qf2, @, = /29, ..., 2 = 6/(2P79), @, , = a/(2P"%). Harvey and Phillips
report that individual EFT tests have good power. Whether the proposed sequential EFT tests
would fair well is an open question. It appears likely that the problems associated with
sequential inference will become worse as the dimension of the error covariance matrix

increases,

2.3 Exact distributional results

We proceed next to examine the finite sample distributions of the above defined LM, LR and
QLR criteria. In particular, we show that the associated null distributions are nuisance
parameter free. To do this, we first rewrite the statistics in terms of the vector of standardized

residuals. Indeed, by simple manipulations we find that

p i-1 WA
22) M=n % z;,;,,uz / m‘j/ 5
=2 j=1 (w, ) (WJ )



P 9]
e

) ) ) IIw
(222)  A®- oo ) oD Pyto) | st , 0<j<J.

‘Dp(ot_l)] lﬁq I'Dp(oxd)] Iﬁ(/)l

Under the null, the distribution of W, = M, w,

, i =1, . ,p isnuisance parameter free.
It follows that the null distribution of the LM statistic is pivotal. Further, this would also
imply that A has a pivotal null distribution.
We next examine the IFGLS standardized residual vector w9, j=1,.. ,J . LetYrefer
to the stacked vector (0’1/01)/ s s )0 p)y . Then §©@ may be rewritten as:
223) pO - [x’( 0Oz @ )"x]"x’( a0 @r )y
= X201 @ @1 " (2L )X] X (2RI ®1) (2581 )y
= D,(o,) [X'( &° @I, )"x]"x’( 89 ®r )y .
It follows that
Q24) %= My, ¥ = My w + M= 1, - X [X@° @n)'x]" x(@® ey .
The same holds true if we consider further iterations. Formally, we have
Q25) %0 = Myw, j=1,.,7,
where My=1,-X (X/(QU'D ®1n)'lx)'l x(Qv"» ®1h)'1 . The implications of this is that
iterations beyond the first round give rise to pivotal statistics under the null provided (@ is

pivotal (which is typically the case).

2.4 Exact Monte Carlo p-values
The fact that the LM, LR and QLR statistics have nuisance parameter free null distributions
entails that MC tests are easily applicable. In the following, we summarize the basic
methodology involved, as it applies to the present context; for a more elaborate discussion
of MC tests, see Dufour (1995).

Denote T, the observed test statistic T, the associated critical region of size & may
be expressed as GTy) s a where G(.) is the "p-value” function. By Monte Carlo methods,

, Ty, Nowrank 7, s = 0, 1, .., N, in

generate N independent realizations T,=(T,, ..



non-decreasing order and obtain BTy where

NG (x) + 1

(2.26) Bpx) = NI

y Oy ==~ E L (T, -0, [()=1ifxed.

1
N ;- 0,ifxe4

The randomized critical region Py<a has the same level as the critical

region G(Ty) < a - Indeed, it is shown in Dufour (1995) that

227) P [BT) s a] < .@_}%N_li)_l ,

where [(z) is the largest integer less than or equal to z.

3. Monte Carlo experiments

In order to assess the performance of the various procedures discussed above, a set of Monte
Carlo experiments were conducted for a five equation model (p = 5) with five explanatory
variables including a constant term per equation. Three regressors are common to all
€quations. Hence, nine distinct regressors were used in the experiments and were generated
using a multivariate normal distribution. The set of regressors were kept constant for all
replications. The disturbances were generated from multivariate normal distributions. Several
choices for the error covariance were considered and are listed in Table 1. The matrix
labelled Z, as well as the regression coefficients are from the empirical example we discuss
in the next section. The other matrices were obtained by dividing certain elements of the
Cholesky decomposition of z, by appropriate constants to decrease the covariance terms.
Of course, the parameters under the null were obtained by setting the non-diagonal elements
of L, tozero. The number of trials for the MC tests was set to 19 and 99 (N = 19, 99). The
number of overall replications was 1000. All experiments were performed with Gauss

386iVM, version 3.2.13. The results presented in Table 2 consider for four tests:
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LM, A, A" | A and EFT. In what follows, we report our main findings.

(1) The asymptotic tests consistently overreject. Indeed, the empirical sizes are substantially
larger than the nominal 5%. This is in accordance with well documented results on LR-based
multivariate tests. On the other hand, our conclusions with respect to the LM test are not in
agreement with available Monte Carlo evidence. The LM independence test was as yet found
to work well. Here we show that it does not always work well in larger systems. In contrast,
all MC tests achieve size control.

(2) The size corrected tests perform quite well. The power of all four MC tests are
comparable to each other, although the LR-type tests seem rather superior. The EFT test
shows relatively lower power, as would be expected.

(3) Iterating SURE estimators to convergence is clearly not worthwhile, in the sense of
improving the power of the associated LR test. In fact, in some cases, iterations resulted in
slight power losses. Furthermore, our results give very favourable support to the OLS based

QLR. This issue is particularly pertinent in the context of simulation-based tests.

4. Empirical illustration

For illustrative purposes, we consider data analyzed in Fischer (1993) which contains several
series of macroeconomic aggregates observed yearly for a large panel of countries. The
dependent variables of interest are: GDP growth, capital accumulation, productivity growth
(measured by Solow residuals) and the labor force growth. The following determinants of
growth are considered: the inflation rate, the ratio of budget surplus to GDP, the terms of
trade, and the black market premium on the exchange rate. Fischer focuses on explaining the
determinants of growth. The econometric specification consists of an unbalanced panel model,
imposing contemporaneously uncorrelated disturbances. Here, we shall test the latter
specification. Attention is restricted to the multiple regressions (17), (23), (29) and (35) that

include all four explanatory variables. The choice of countries was motivated by the
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availability of observations on all included variables. We consider:
(i) the South-American region: Mexico, Argentina, Chili, Colombia, Ecuador and
Paraguay (1973-1987)
(ii) the African region: Ghana, C6te D’Ivoire, Kenya, Malawi, Morocco and Zambia
(1977-88)
(iii) the Asian region: Korea, Pakistan, Thailand, India, Indonesia (1978-87).

To be more specific, we consider, in each region, the following four SURE systems:

AGDP, = By + By INFLAT, + B5, TRMTRD, + B3 SRPLS, + BS EXCM, + ul .
ACPTL, = By + By, INFLAT, + By, TRMTRD, + BX SRPLS, + pX EXCM, + u} .
Bo + By, INFLAT, + By, TRMTRD, + B SRPLS, + p. EXCM, + u}
Bo + By, INFLAT, + By, TRMIRD, + B} SRPLS, + Bk EXCM, « u® .

APRDCT,
ALABOR,

where AGDP,, ACPTLu, APRDCT“, A LABORB, INFLAT,, TRMTRD,, SRPLS, and EXCM,
refer respectively to GDP growth, capital accumulation, productivity growth, labor force
growth, inflation, terms of trade, the ratio of budget surplus to GDP and the black market
premium on the exchange rate, in country / and year 7.

In all cases, we compute LM, QLR and LR tests, relying on OLS and two-step
Zellner estimates respectively. We also calculate the generalized Harvey-Phillips test (EFT)
described in Section 2.2. We use the following notation. The statistic EFT ; tests whether the
disturbances of the ith equation (associated with the jth country) are independent of the errors
of the subsequent equations. Of course, the ordering of countries may affect the outcome of
the test, given the rule devised to deal with the associated multiple tests. For practical
purposes, we have considered the countries in alphabetical order within every region. We

obtained the following results.



9s
GDP growth
The hypothesis of independence was consistently rejected by all tests in the case of Africa:
the asymptotic tests are strongly significant, whereas the MC tests are significant at 10%. In
contrast all tests were not significant (at 10%) for the South-American countries. Turning to
the Asian region, we observe that the EFT test rejects at 5%; the LM asymptotic and Monte
Carlo tests are not significant (at 10%); the QLR asymptotic test is significant at 10%:
however, the MC QLR is not significant (the p-value = .47). Similar evidence is noted for

the LR test: while the asymptotic test is strongly significant, the MC tests does not reject.

Capital growth

All tests reject independence for the South-american region: the asymptotic LM test rejects
at 5%, the other asymptotic tests are very strongly significant. Yet the MC and the EFT test
are significant only at 10%. In the case of Africa, it is worth mentioning that although the
asymptotic LM test is not significant at 10%, the MC LM test has a p-value of .026; the EFT
and MC LR-based tests do not reject (p-values are greater than 10%), although the
asymptotic counterpart show very small p-values. Finally, in the case of the Asian region,
both asymptotic and MC tests strongly reject independence; the EFT test is only significant

at 10%. However, both conventional and MC LM tests are not significant.

Productivity growth

All tests fail to reject independence for the South-american region. The same holds true for
MC tests relating to the Asian region, except that the asymptotic LR criterion is very strongly
significant. In connection with Africa, all except the EFT tests are significant. As was often
the case, the asymptotic tests have much smaller p-values; the OLS-based tests reject only

at 10%.
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Labor force growth

The independence hypothesis is consistently rejected at 5% in the African countries; the EFT
test is the exception and is only significant at 10%. In contrast, the only significant exact test
in the case of South america that is significant is the LR Monte Carlo test; the OLS-based
MC test and the EFT test have significance levels that exceed 10%, while all asymptotic tests
are significant. With regards to Asia, we note the familiar evidence regarding LR-based tests:
asymptotic is strongly significant while the MC tests fail to reject at levels higher than 10%.

The EFT test is significant at 5%.

5. Conclusion

In this paper, we have proposed simulation-based procedures to derive exact p-values for
standard LR and LM independence tests in the context of SURE models. We have also
proposed alternative OLS and IFGLS-based QLR criteria. In multi-equation models,
conventional independence tests only have an asymptotic justification. The reason for the lack
of popularity of finite sample procedures is clearly the intractable nature of available
distributional results. Here, we have considered an alternative and considerably more
straightforward approach to independence tests. We have shown that LR and LM statistics
are pivotal under the null, which implies that exact critical values can be obtained easily by
MC techniques.

The feasibility of the approach suggested was illustrated through both a simulation
experiment and an empirical application. The results show that asymptotic tests are indeed
highly unreliable; in contrast, MC tests achieve size control and have good power. We
emphasize that OLS-based MC QLR tests performed extremely well. This aspect is important
particularly in larger systems, since test procedures based on iterative estimators are typically

more expensive from the point of view of MC tests.



Table 1. Empirical sizes of LM and Quasi-LR independence tests
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n=25 n=50 n=100
k,

QLR s M QLR s LM QLR s M
Asy MC | Asy | MC Asy | MC | Asy MC Asy MC | Asy MC
5 193 040 1 105 | 045 15 | .057 | .081 .057 .070 040 | 062 .037
6 .198 046 | 122 | 052 115 1 .055 | .082 050 .071 .046 | 054 .036
7 .307 050 | .172 ) .057 137 | 061 | .108 .057 .069 .050 | .054 .037
8 322 048 | 200 | .054 150 057 | 106 .050 .080 .048 | .069 .045
9 413 049 1 263 | .052 158 | .048 [ .107 .046 .087 049 1 .073 .038
10 478 055 | 336 | .058 184 | .050 | .139 052 .091 055 | 071 .040
I 536 038 | 353 | .049 190 | 054 | .146 .056 092 038 | 076 .036
12 .601 040 | 432 | 045 210 | .048 | .150 .049 .096 .040 | .079 .041
13 .650 057 | 505 | .043 230 | .47 | 179 .040 .109 .057 | .088 .037
14 725 059 1 577 | .051 236 | .042 | .185 .048 115 059 | 095 .036
15 816 052 1 684 | 064 271 ) 045 | 213 .055 120 052 1 .109 .047

Table 2. Empirical rejections of various independence tests (n=25)
TEST z, (Hy z, z, z, z,
MC reps=20
MC reps MC reps MC reps MC reps

ASY MC 20 100 20 100 20 100 20 100
LM .105 045 .998 1.0 911 .954 704 .794 444 .500
QLR ¢ 193 .040 1.0 1.0 947 971 744 .820 438 494
QLR . .260 .040 1.0 1.0 959 979 750 .825 429 .504
LR 267 047 1.0 1.0 961 .980 746 .824 428 494

EFT .049 1.0 .896 .687 316




Table 3. Independence tests: GDP growth SURE systems

98

South America Africa Asia
EFT, 7927 1613 0215
EFT EFT, 7470 4964 3113
EFT, .8810 9137 4277
EFT, .8647 0058 3873
EFT; 9290 .6005 -
LM ASY 9425 .0466 4384
MC 977 .081° 611
QLR ¢ ASY 9242 .010 .0872
MC 981 .062° 470
LR ASY 4374 .0000 .000
MC 978 .082° 412
Table 4. Independence tests: Capital growth SURE systems
South America Africa Asia
EFT, 1592 .2503 3399
EFT EFT, .2249 .0854 6323
EFT, 0111 .3004 0069
EFT, 7156 .1422 6355
EFT, 7679 7581 -
LM ASY .0350 .1023 .2449
MC 061" .026° 367
QLR s ASY .0058 0049 .0000
MC 096’ 132 .0027
LR ASY .0000 .0000 .0000
MC 053" .249 0017




Table 5. Independence tests: Productivity growth SURE systems
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South America Africa Asia
EFT, 9765 1312 .5003
EFT EFT, .8294 3912 5421
EFT, .6037 3738 .8683
EFT, 9442 0519 .2284
EFT, 6962 .8069 -
LM ASY 9913 0356 .5070
MC .998 .061° .698
QLRg s ASY 9891 0012 .0658
MC .997 074 415
LR ASY 7929 .0000 .0000
MC .998 .016™ 266
Table 6. Independence tests: Labor force growth SURE systems
South America Africa Asia
EFT, 4051 0734 0153
EFT EFT, .2594 .1201 5698
EFT, 5535 0085 2187
EFT, .0580 .0897 .2661
EFT, 0799 .4900 -
LM ASY 0686 0007 .3040
MC 103 .004™ 457
QLR ASY .0108 .0000 .0063
MC 126 006™ .140
LR ASY .0000 .0000 .0000
MC .020™ .0047 194




Table 7. The covariance matrices (non-redundant elements)

used in the Monte carlo experiment

z

0.0007773 6.616e-06 -1.082¢-05 0.0003573 -0.0001443
0.0024550 0.0001923 -0.0010390 -0.0006195
0.0002950 1.747e-05 0.0002829

0.0007560 0.0004105

0.0006790

z,

0.0007773 1.654e-06 -1.353¢-06 3.969¢-05 -1.804¢-05
0.0024550 2.405e-05 -0.0001737 -7.732e-05
0.0002800 2.427e-05 5.417e-05

0.0001276 2.495e-05

4.863e-05

Z,

0.0007773 3.308e-06 -3.607e-06 8.931¢-05 -3.608¢-05
0.0024550 9.618e-05 -0.0003471 -0.0001238
0.0002836 3.804¢-05 0.0001051

0.0001800 7.966e-05

0.0001029

z,

0.0007773 8.271e-07 -1.803e-06 0.0001786 -2.062¢-05
0.0024550 2.138e-05 -0.0002083 -0.0002061
0.0002800 1.513e-05 3.485¢-05

0.0001707 2.421e-05

5.630e-05

100
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Chapter 3

Simulation Based
Finite and Large Sample Inference Methods
in Simultaneous Equations

Abstract

In the context of multivariate regression (MLR) and simultaneous equations (SE), it is well
known that commonly employed asymptotic test criteria are seriously biased towards
overrejection. In this paper, we propose finite and large sample likelihood based test
procedures for possibly nonlinear hypotheses on the coefficients of SE systems. We discuss
a number of Monte Carlo tests and develop an extension of the bootstrap method to statistics
whose asymptotic distributions involve nuisance parameters. The latter involves maximizing
a randomized p-value function over the relevant nuisance parameter space. This is done
numerically by using a simulated annealing algorithm. Illustrative Monte Carlo experiments
show that: (i) bootstraping standard instrumental variable (IV) based criteria fails to achieve
size control, especially (but not exclusively) under near non-identification conditions, and (i)
the tests based on IV estimates do not appear to be boundedly pivotal and so no size-

correction may be feasible. By contrast, LR tests work well in the experiments performed.



1. Introduction
Econometricians are often confronted with technical difficulties arising from simultaneity
when testing parameter restrictions in systems of equations. With few exceptions, the
distributions of standard test statistics are known only asymptotically due to feedback from
the dependent variables to the explanatory variables. There will obviously be approximation
errors when the asymptotic results are applied to samples of moderate size as is frequently
the case in simultaneous equations (SE) applications. Although long recognized as a serious
issue in statistical inference, finite sample validity has not received the attention it deserves
in such contexts. Indeed, tests of parameter significance have almost invariably been based
on asymptotic procedures.

Exact procedures have been proposed only for a few highly special cases. Early in
the development of econometric theory relating to the SE model, Haavelmo ( 1947)
constructed exact confidence regions for OLS reduced form parameter estimates and
corresponding structural parameter estimates. Bartlett (1948) and Anderson and Rubin (1949)
proposed exact F-tests for specific classes of hypothesis in the context of a structural equation
along with corresponding confidence sets. For a different (although related) problem,
Maddala (1974) and Dufour and Jasiak (1996) have described finite sample single-equation
procedures which can be viewed as extensions of the latter procedures. Some exact
specification tests have also been suggested for SE. In particular, Durbin (1957) proposed a
bounds test against serial correlation in SE and, more recently, Harvey and Phillips (1980,
1981a, 1981b, 1989) have suggested tests against serial correlation, heteroscedasticity and
structural change in a single structural equation. In both cases, the tests are based on residuals
from a regression of the estimated endogenous part of an equation on all exogenous variables.
An exact F-test involving reduced form residuals was proposed by Dufour (1987, Section 3)
for the hypothesis of independence between the full vector of stochastic explanatory variables
and the disturbance term of a structural equation. This procedure generalizes earlier tests
suggested by Wu (1973, T, statistic) and Hausman (1978, eq. 2.23). From a different
standpoint, the finite sample distributions of commonly used estimators and test statistics

have also received attention in the literature. For a review of the main findings in this area,
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the reader may consult Phillips (1983) and Taylor (1983). It is clear from these results that
the exact distributions in most cases depend on nuisance parameters. Except for special
hypotheses, no work seems presently available that resolves the problem of nuisance
parameters in finite samples.

Because of the computational complexity of maximum likelihood methods in SE
models, statistical inference has generally been based on instrumental variable (IV) methods.
The problems associated with asymptotically valid tests in IV regressions are discussed in
Dufour (1996). In particular, it is shown that usual t-type tests, based on common IV
estimators, such as two-stage least squares, have significance levels that may deviate
arbitrarily from their nominal levels since it is not possible to bound the null distributions of
the relevant test statistics to obtain valid inférence. This results from identification concerns
and is related to the so-called "weak instruments” problem; see, e.g. Nelson and Startz
(1990a, 1990b), Buse (1992), Maddala and Jeong (1992), Angrist and Krueger (1994), Staiger
and Stock (1994), Bound, Jaeger and Baker (1995), Hall, Rudebusch and Wilcox (1996),
Cragg and Donald (1996), and Wang and Zivot (1996). For further results relevant to the
issue of non-identification, see also Sargan (1983), Phillips (1984, 1985, 1989), Hillier
(1990), Choi and Phillips (1992), McManus,r Nankervis and Savin (1994)].

With the declining cost of computing, a natural alternative to traditional inference are
simulation-based methods such a.érbootstrapping; for reviews, see Efron (1982), Efron and
Tibshirani (1993), Hall (1992), Jeong and Maddala (1993), Vinod (1993), and Hall and
Horowitz (1996). These surveys suggest that bootstrapping can provide more reliable
inference for many problems. In connection with the SE model, examples in which the
bootstrap outperforms conventional asymptotics include: Friedman and Peters (1984a), Green
et al (1987), Hu et al (1986).7 Korajczyck (1985) and Dagget and Friedman (1985). Others
however, find that the method leads to little improvement, e. 8. Friedman and Peters (1984b),
Park (1985) and Beran and Srivastavé (1985). Clearly, there appears to be a conflict in the
conclusions regarding the effectiveness of ther bootstrap in SE contexts. In fact, it is well
known that bootstrapping may fail to achieve size control when the asymptotic distribution

of the underlying test statistic involves nuisance parameters [see Athreya (1987), Basawa et
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al. (1991), Sriram (1994) and Davidson and MacKinnon (1996)].

This paper addresses these issues and considers alternative Monte Carlo MO)
procedures [Dwass (1957), Barnard (1963), Bimbaum (1974)] for statistical inference in the
SE model. In Dufour (1995) the literature on MC tests is reviewed and extensions to
nuisance-parameter-dependent statistics are discussed. A randomized procedure termed
maximized Monte Carlo MMC) method is specifically proposed which yields provably exact
tests, provided the underlying statistics are boundedly pivotal, i.e. admit nuisance-parameter-
free bounds. Here we consider analogous procedures based on a likelihood framework.
Indeed, we show that randomization cannot improve the performance of IV-based tests; given
the severity of the problem in the presence of identification difficulties, the case is made here
for LR tests rather than IV-based tests. Note that MC tests are closely related to parametric
bootstrap tests [see Efron and Tibshirani (1993, Chapter 16), Hall (1992), Hall and Horowitz
(1996)], with however a fundamental difference: in MC tests, the number of replications used
is explicitly taken into account and can be very small, so that theoretically exact randomized
tests can be obtained. For further references regarding MC tests, see Dufour and Kiviet
(1994), Edgington (1980), Foutz (1980), Jockel (1986) and Marriott (1979).

The practical application of LR-based randomized tests is, however, subject 10 an
important consideration: reduced-form tests often involve non-linear hypotheses implied by
the structure; in connection, see Bekker and Djikstra (1990) or Byron (1974). Systems tests
for nonlinear hypothesis are examined in Dufour and Khalaf (1996), primarily in the context
of the multivariate linear regression (MLR) model. The approach used to obtain the tests
involves the application of two techniques: bounds tests [similar to those suggested in Dufour
(1989, 1990)] and (when required) randomized tests. The relationship between the MLR and
the SE model is readily seen: when all the predetermined variables of a SE system are strictly
exogenous, the reduced form is equivalent to a (restricted) MLR system. Here we extend the
results in Dufour and Khalaf (1996) to the SE context. After showing how a relevant exact
bound can be derived, we use the latter to obtain a conservative test. Next, MMC tests are
proposed that can be run whenever the bounds are not conclusive. A multi-equation

Anderson-Rubin-type test is also proposed.
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We undertake to explore specifically the identification issue in the context of a small
simulation experiment. We provide Monte Carlo evidence showing that standard bootstrap
methods are unsatisfactory when Wald or quasi-LR statistics are based on IV estimators.
More precisely, our main findings are: (i) MC methods based on randomization procedures
where unknown parameters are replaced by estimators do not achieve size control, and (ii)
MMC p-values for IV-based test are always one; in other words, it i does not appear
possible to find a non trivial bound on the rejection probabilities, so that standard asymptotic
and bootstrap procedures are deemed to fail when applied to such statistics. In contrast, LR-
based MMC tests allow one to control the level of the procedure. MMC p-values are
computed using a simulated annealing (SA) optimization algorithm,; for a description of the
latter, see Corona et al. (1987) or Goffe and Ferrier (1994).

The paper is organized as follows. Section 2 develops the notation and definitions.
Section 3 reviews distributional results from the MLR model, in so far as they are relevant
to SE. Section 4 presents test statistics for general hypotheses in the SE framework. Linear
hypotheses in the single-equation set-up are considered as a special case. Simulation results

are reported in Section 5. Section 6 concludes the paper.

2. Framework

We consider a system of p simultaneous equations of the form

2.1 YB+ XTI =U .

where y = b, » . »)‘,,] is an (n,p) Matrix of observations on p endogenous

variables, X is an (pk%) Mmatrix of fixed (or strictly exogenous) variables and
U=y, , H,J =[U,, .., U"]’ is a matrix of random disturbances. The coefficient

matrix B is assumed to be invertible. The equations in (2.1) give the structural form of the

model. Premultiplying both sides by B-! leads to the reduced form

(2.2) Y=X11+V,., O=-TB!,

or equivalently

(23)  y = (1P®X) TV

where y = vee(Y), = vec(Il), v = vec(V) and vV =1{v , .., vi=1[v,,. ., V) is
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the matrix of reduced form disturbances. Further, we suppose the rows U, .., Ul ofU

satisfy the following distributional assumptions:

(2.4a) U=d,,t=1,. ,n,

where the vector y, = vec(w,, ... , w,) has a known distribution and J is an unknown

nonsingular matrix. In particular, this condition will be satisfied when

(2.4b) w,~NO,I),2=1,.. ,n.

More generally, when U, has finite second moments, its covariance matrix will be
Var(U) = JJ/ = Q and the covariance matrix of V, will be Var(V) = (B)'QB! = 3.

Note that the system’s unrestricted reduced form (URF) is an MLR model.

A key feature of SE models is the imposition of identification conditions on the
structural coefficients. Usually, these conditions are formulated in terms of zero restrictions
on B and I'. Inaddition, a normalization constraint is imposed on the endogenous variables
coefficients; this is usually achieved by setting the diagonal elements of B equal to one. We
can rewrite model (2.1), given exclusion and normalization restrictions as
@3y =¥B + Xy tu, i=1.,p,
where Y, and X, are (n, m) and (n, k) matrices which respectively contain  the
observations on the included endogenous and exogenous variables of the model. If more than
m; variables are excluded from the i-th equation, this equation is said to be over-identified.

Many problems are formulated in terms of limited-information (LI) models,
comprised by a particular structural equation and the reduced form associated with the
included right-hand side endogenous variables such as
26)  y, =YB + Xy, +u =28 + u

Y, =Xunn +X2An7.. + Voo
where z‘ = [y‘ , x“] s 5‘ = (5" , Y;)/ and Xz refers to the excluded €X0genous

variables. The associated LI reduced form is

n, Il
@7 [}‘f Y"] = XI1, - [v'. Vi]’ m = Ll IJ cmy =B vy, oy = ILp, -
. TL,

The necessary and sufficient condition for identification follows from the
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relation n, = LB, : B, is recoverable if and only if

28)  rank(@,) = m, -

3. Hypothesis tests in the multivariate linear regression
In this section, we review some important distributional results pertaining to LR test criteria
in reduced form contexts. We consider general restrictions on ¢ independent linear
transformations of g the coefficient vector of model (2.3):
Bl H, :Rnea .
where R is a (¢°, kp) matrix such that rank(R) = ¢” and A, iS a non-empty subset
of Re . This characterization of the hypothesis includes linear restrictions, both within and
across equations, and allows for nonlinear as well as inequality constraints. Here, the theory
and test procedures detailed in Dufour and Khalaf (1996) are directly applicable. The
following exposition will focus on the main issues that are useful for our present purpose.
The LR criterion to test H,, is nin(A), where
B2 A= L, VE)
with £ and £ being the restricted and unrestricted ML estimators of ¥ in (2.3). In the
statistics literature, A-! is often called the Wilks criterion. As argued in Dufour and Khalaf
(1996), the null distribution of A depends on nuisance parameters, yet it is boundedly
pivotal. To see the point, consider restrictions of the form
(33 HyQNC =D,
such that H, < Hy, , where Q is a (g, k) matrix of rank ¢ and C is a (p, ¢) matrix of rank
c. Linear restrictions that decompose into the latter specific form are called uniform linear
(UL) in the MLR literature. Let Af(g, c) be the reciprocal of the Wilks criterion for testing
the latter restrictions. Then the distribution of A is bounded by the distribution
of Af(g, c¢) - Specifically, in Dufour and Khalaf (1996) it is shown that:
(i) the null distribution of the LR statistic for uniform linear hypothesis involves no
nuisance parameters and may easily be obtained by simulation;
(ii) under the null, P[A 2 (g, o)) < @ forall 0 < o < 1, where AS(g, ¢) 1S
determined such that P[A<(q, ¢) 2 Ai(q, ¢)] = .
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The underlying distributional conditions, namely of the (2.4a) form, are appreciably Jess
restrictive than those of traditional multivariate analysis of variance which require normal
errors. Results that correspond to these can be derived in a similar way for the SURE model.
The exact critical bound can be obtained by rewriting the test problem in terms of the MLR
model of which the SURE system under consideration is a restricted form; see Dufour and
Khalaf (1996, section 5) for details.

The fact that the null distribution of the LR statistic can be bounded (in a non trivial
way) entails that simulation based techniques (such as Monte Carlo tests) may be effective
in this context. In Dufour (1995) the finite and large sample theory underlying Monte Carlo
tests in the presence of nuisance parameters is discussed. The methodology involved may be
summarized as follows.

Let T, denote the observed test statistic T, Suppose its null distribution depends
on the unknown parameter g Using Monte Carlo methods, generate i.id
realizations T, .., Ty of 7, under the null, given eﬂ a consistent estimator of the
intervening nuisance parameters, and a specified number N of replications.

Rank T, ,J =1, .., N innon-decreasing order and obtain BTy where

NGy +1 1 ¥ .
(34) = — G = 1l - , =1 , €A .
P N +1 M) Ni‘::l wsli =) 1@ 0, f; ; ¢ A

Then the test’s critical region corresponds to

GBS pTysa ,0sasl.

Dufour (1995) gives general conditions under which the latter critical region has the correct

level asymptotically, i.e. in order to have

(3.6) Lim {P{ﬁN(Tolén)sa}—P[pN(Tole)sa]}=O,

n = o

for 0 < a <1 and plim@) = 6.

n—ce

The method just outlined is closely related to a parametric bootstrap, with however a
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fundamental difference. In MC tests, the number of replications used is explicitly taken into
account and can be very small, so that theoretically exact randomized tests can be obtained;
the fact that the procedure is randomized plays a crucial role in determining the size of the
test. Here, to obtain an exact critical region, the p-value associated with (3.5) ought to be
maximized with respect to the elements of the intervening nuisance parameters. Specifically,
we have:
Gn P GS“P [PMTol0) ] < @ SM,OSGSI’

€ M, N +1
where [[x] is the largest integer less than or equal to x and M, refers to the nuisance
parameter space under the null.

In practical applications of exact MC tests, a global optimization procedure is needed
to obtain the maximal randomized p-value in (3.7). One such procedure, originally proposed
by Corona et al. (1987) and later modified by Goffe et al. (1994) is the simulated annealing
(SA) algorithm. SA starts from an initial point, say 9, , and sweeps the parameter space at
random. An uphill step is always accepted while a downhill step may be accepted: the
decision is made using the Metropolis criterion. The direction of all moves is determined by
probabilistic criteria. As it progresses, SA constantly adjusts the step length so that downhill
moves are less and less likely to be accepted. In this manner, the algorithm escapes local
optima and gradually converges towards the most probable area for optimizing. SA is robust
with respect to non-quadratic and even non-continuous surfaces and typically escapes local
optima. The procedure is known not to depend on starting values. Most importantly, SA
readily handles problems involving a fairly large number of parameters. These procedures are

applied in the context of the Monte Carlo experiment reported in Section 5.

4. Hypothesis tests in the simultaneous equation model

This section discusses tests on structural parameters in SE models. We first take up LR tests
of arbitrary hypotheses based on reduced forms. We then focus on specific procedures such
as (i) tests of linear constraints on the coefficients of a single structural equation, and (iii) a

generalization of the Anderson-Rubin test to the multi-equation context. Exact simulation-
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based bounds on the null distribution of LR statistics are first deri ved; in an important special
case, we also obtain conservative bounds based on the Fisher distribution. Alternative
randomized LR tests are next considered. For completeness, we also discuss Wald and quasi-

LR IV-based tests. However, a case is made here for LR rather than I'V-based criteria.

4.1 General hypotheses on structural coefficients based on reduced Jorms

Consider the problem of testing arbitrary restrictions on the structural parameters of the
possibly over-identified model (2.1). Given the transformation that takes the structural system
into its reduced form (2.3), namely ] = -I'B-!, the constraints in question imply nonlinear
restrictions on the reduced form parameters. In general, the induced restrictions on g may
be expressed as

41)  H,:Rne A,

where 1 = yvec(IT), r = rank(R) and A, is a non-empy subset of R’

As it stands, the problem of testing the constraints on structural parameters using the
reduced form is exactly the kind of problems discussed in Section 3. Indeed, after expressing
the structural restrictions as nonlinear reduced form restrictions, the multivariate procedures
given previously are applicable even in case of identification problems. A sound test strategy
would be to perform the bounds tests first and, on failure to reject, to apply randomized tests.
The methodology can be summarized as follows:

(1) consider the URF and derive the relevant reduced-form restrictions including the

exclusion and normalization restrictions implied by the structure;

(2) compute the ratio of the determinant of the maximum likelihood estimates (MLE)

of x, imposing and ignoring the restrictions considered;

(3) use the bound Ai(g, ¢) defined in Section 3 as a conservative cut-off point;

(4) whenever the bound is not conclusive, use the MC p-value underlying (3.7).
The tests may be applied in a full information, sub-system or single-equation set-ups. Finally,
a word about the single-equation tests. As pointed out by Pagan (1979), the LI model
involves a triangular system in which case MLE can be derived applying iterated SURE
(ITSURE) techniques; on this issue, see also Lahiri and Schmidt (1978). From the practical
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point of view, ITSURE have a computational advantage over general nonlinear constrained

ML algorithms.

4.2 General linear hypotheses in the limited information context
To illustrate how the above results may be used, we consider here the problem of testing
linear restrictions in a LI framework. For exposition simplicity, we shall restrict attention to
hypotheses that set several structural coefficients to specific values. More precisely, we
consider in turn hypotheses of the form:
“42)  H:p, =p°.
(4.3)  Hy B, = B
where B, = (a; , ﬂ;)/ and B, is (my, , 1), and
(4.4) Hy By, = B% v Yy T Y(I)Zi ’
Where = (viy , Y1)’ &nd vy, is (ky , 1).
When the model is identified, (4.2) corresponds to the following restrictions
45 mp’=m,
Or equivalently,

n, I
(4.6) [O u Hy

I

-p‘

1
o/ =0

where 0(”) denotes a zero (s,j) matrix. Let f}o and ¥ be the error covariance LIML
eéstimates imposing and ignoring (4.5), where the latter corresponds to the unrestricted
reduced form. Further, let f;u denote the LIML error covariance estimate imposing the
exclusion restrictions implied by the structure. Conformably with the notation set above,
define
@GN Ay = (Bl 12y
(48 Ak-k, 1) =[5,/ |B] -
Following the arguments of Section 3, we see that the distribution of A, is bounded by the
distribution of A=k, , 1) -

The LI LR statistic (LR,;) may be obtained as nin(A,) . Whereas n[ln(A, ) has

a xl’(m‘) asympLotjcdistn‘buu’ononlyunderidentiﬁcatjonassumptions, nlln(A(k-k, , 1))]
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is asymptotically distributed as Xz(k‘k;) whether the rank condition holds or not. The
asymptotic distribution of the LI LR statistic is thus bounded by a x2(k-k D distribution
independently of the conditions for identification. This result was derived under local-to-zero
asymptotics in Nelson et al (1996) and Wang and Zivot (1996) for the special case
where B, is scalar. Furthermore, exact bounds based on the F(k-k, n-k) distribution may
| also be derived for this problem if the normality assumption (2.4b) holds. Indeed, as pointed
out in Stewart (1995),
49 glAq,) - 11/ (r-k) - F(g, n-k)
where A¢(g, 1) is the reciprocal of the Wilks statistics for testing uniform linear restrictions
of the form QIIC =D, rank(Q) = q, rank(C) =c =1 .

The important thing to note regarding the latter bound is that it relates to the well
known Anderson-Rubin (AR) statistic. Bartlett (1948) and Anderson and Rubin (1949)
suggested an exact test that can be applied only if the null takes the (4.2) form. The idea
behind the test is quite simple. Define = y, - yiﬁf . Under the null, the model can be
written as = XN, +u . On the other hand, if the hypothesis is not true, y, Will be a
linear function of all the exogenous variables. Thus, the null may be assessed by the F test

.

that the coefficient of the "excluded” regressors is zero in the regression of y; on all the
exogenous variables. It is straightforward to show using the results on UL hypotheses in
Dufour and Khalaf (1996) and Stewart (1995) that the AR statistic associated
with Hy B,= gf corresponds to a monotonic transformation of the LI LR criterion for

testing the UL hypothesis nﬁp? = m, against an unrestricted alternative.
Let us now consider the hypothesis (4.3). On partitioning o, = @, ,0,]
and I, = L, , I,] conformably with g = (p; , pl) the corresponding reduced

form restrictions may be expressed as

my Oy Moy

Ty Iy Iy

‘B?t =0 .

-B,,
Let A, be the reciprocal of the Wilks statistic for testing (4.10) against the restrictions

(4.10) [O(k-k‘, K I(,‘_w]

implied by the structure. The nonlinearities in connection with (4.10) stem from the fact
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that B, is unknown. However, the special case of (4.10) that corresponds to specific
(unknown) values of B., takes the UL form. Let Aﬁ(k-—k, , 1) the reciprocal of the Wilks
statistic for testing these UL restrictions against an unrestricted alternative. Then conservative
bounds for A, can be obtained form the statistic ACk-k, , 1) or the F(k-k, , n-k) when

applicable. Similar results hold under (4.4). In this case, the implied reduced form constraints

are 1 0

Ty Oy Iy 0 0

(4.11) [O(k-(k‘.@,k‘—ku) ’ I(k-(k,-k,))] Ty ]Izu ]Izm ‘Bu = 1Y 12
-B,,

Thus, conservative bounds for the associated A, can be obtained from the
statistic A‘((k—(k,—km)) , 1) corresponding to the special case of (4.11) where B, is known,
or the F((k“(kx’ku)) , n—k) when applicable, as previously shown,

In closing this section, we review the well-known IV analogue of the Wald test for
the hypothesis RS, =1, where rank(R) = q. Such tests have usually been derived for cases
in which the maximum likelihood estimation is thought, on grounds of computational cost,
to be impractical. For instance, consider the two-stage least squares (2SLS) estimator
@12) 8, = [ZP®'P)'PZ) ZP@'P)IPY,
where P is the following matrix of instruments P= X, , X(X’X)"X’Y‘]. Application of the
Wald principle yields the following criterion
413) ¢ = lz (r-R8)YI[R (ZP®P'PZ)" R (r-RS,)
where *

4.14) 2 = % (% -28)(y -28)

Under usual regularity conditions and imposing identification, T, is distributed like
a y%(q) variable. Despite the widespread recognition of the need for caution in the
application of IV-based tests, the standard econometric software packages typically implement
I'V-based Wald tests. In particular, the r-tests on individual parameters are routinely computed
in the context of 2SLS or 3SLS procedures. Unfortunately, the Monte Carlo experiments we
report in Section S confirm that 1V-based tests realize computational savings at the risk of

very poor performance.
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4.3 A multi-equation Anderson-Rubin type test

The AR test has recently received renewed interest. See, for example, Revankar and Mallela
(1972), Maddala (1974), Staiger and Stock (1994), Dufour and Jasiak (1996), Nelson et al
(1996) and Wang and Zivot (1996). However, as it stands, the AR test ignores any
restrictions relating to equations other than the ith. Here, we discuss an extension to the
multiple equation framework.

Consider, in the context of (2.5) hypotheses of the form

(4.15) H; B
Now define y-

Li}

B, i=1,..,p -
[y .., }’; ] »where y' = y, - yﬁf’ , i=1,..,p -Underthenull,

the system of equations corresponds to the SURE model

@16) ' =Xy, +u, i=1,..,p

whereas under the alternative the relevant specification is the MLR model including all the
exogenous variables. Thus the problem reduces to testing the underlying SURE exclusion
restrictions. Since the test involves the coefficients of different regressors within a MLR
model, an exact critical value is not available. Nevertheless, the tests described in Section 3
are applicable and lead to valid inference. In addition, the test can be readily extended to
accommodate additional constraints on the exogenous variables coefficients. Maddala (1974)
treats the single equation case. Specifically, consider hypothesis of the form

(4.17) B, = Bzov Yii = 'Y?n ’

where Y, is a subset of ¥y, - Partition the matrix X, accordingly and let

@I8) ¥ =y =Y - X\ ¥y, i=1,..p -

Then the restricted model becomes the SURE system

@19y =Xy, tu, =1 . p o

and the test may be carried out as above. Note that the tests are also applicable in a sub-
system framework. However, as with the single equation AR test, the requirement is that all
structural coefficients pertaining to the right-hand-side endogenous variables be specified

under the null.
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5. A simulation study
This section reports an investigation, by simulation, of the performance of the various
proposed test procedures. All the experiments were conducted using Gauss-386i VM version

3.2 and each was based on 1000 replications.

5.1 Monte Carlo design

The experiments were based on the LI model (2.6). The system involves three endogenous
variables (p = 3) and k = 3,4,5 and 6 exogenous variables. The different models are denoted
(Dt @) corresponding to k£ = 3 to 6. In all cases, the structural equation includes only one
exogenous variable, the constant regressor. To simplify the exposition, we henceforth drop
the subscript i when referring to the equation under consideration. The restrictions tested were
of the form

D Hy p= g0

where g = B, , 32)/‘ The sample sizes were set to n = 25 and n = 100 (the latter in
certain cases only). The exogenous regressors were independently drawn from the normal
distribution, with means zero and unit variances. These were drawn only once. The errors

were generated according to a multinormal distribution with mean zero and covariance

1 95 -.95

(5.2) X = 95 1 -1.91

-95 -191 12
The other coefficients were

o
63 y, =1, B, =10, B, = -15, o =Q15,2), 0, = ,
0(&-3 2)

with ’
(5.4a) T1i = 21 , or (54b) 11 = 2 1999 ,

12 1999 2

and 0( » is a zero (s,j) matrix. The identification problem becomes more serious as the
th

determinant of H;HQ gets closer to zero. In view of this, we also consider:

4 399

S5 499
399 4

(5.5 ﬁ-_-[ 3 .299]’
4

. (55b) | =
299 3

}, (5.5¢) ﬁ=[
499
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(5.50) ﬁ___[.z .199}

. (5.5¢) ﬂ:['l 099}
199

(5.5 ﬂ={
099

009 .01

The Wald and LR statistics were calculated as defined in Section 4 and denoted W and LR,
In each case, we report the probability of Type 1 error for asymptotic (ASY), Monte Carlo
(MC), maximized Monte Carlo (MMC) and bounds (BND) procedures. The standard
asymptotic y%(1) critical value was adopted. The MC and MMC critical points were
obtained by simulation following the lines of Section 3; the Tsionas (1995) SA algorithm was
implemented to obtain the maximal p-values. The randomized tests were applied with N =
19 replications. Recall that MC p-values require consistent estimates of the intervening
nuisance parameters. Here we use restricted 2SLS estimates in the case of the Wald test and

the LIML estimates for the LR tests. Tables 1-3 summarize our findings.

5.2 Results

Although the Monte Carlo experiments were conditional on the selected design, our results
show the following.

(1) Identification problems severely distort the sizes of standard asymptotic tests. While the
evidence of size distortions is notable even in identified models, the problem is far more
severe in near-unidentified situations. The results for the Wald test are especially striking:
empirical sizes exceeding 80 and 90% were observed! More importantly, increasing the
sample size does not correct the problem. This result substantiates so-called "weak
instruments” effects. The asymptotic LR behaves more smoothly in the sense that size
distortions are not as severe; still some form of size correction is most certainly called for.
(2) The performance of a standard bootstrap is disappointing. For both LR and Wald criteria,
the empirical sizes of MC tests exceed 5% in most instances, even in identified models. In
particular, bootstrap Wald tests fail completely in near-unidentified conditions.

(3) Whether the rank condition for identification is imposed or not, more serous size
distortions are observed in over-identified systems. This holds true for asymptotic and
bootstrap procedures. While the problems associated with the Wald tests conform to general

expectations, the failure of the traditional bootstrap LR test is worth emphasizing.

.01 009}
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(4) In all cases, the Wald tests maximal randomized p-values are always one. Another Monte
Carlo experiment (not reported here) confirms similar results in the context of a quasi-LR
statistic based on derived 2SLS reduced form estimates.

(5) The bounds tests and the MMC tests achieve size control in all cases. The strategy of
resorting to MMC when the bounds test is not conclusive would certainly pay off, for the
critical bound is easier to compute. However, it is worth noting that although the MMC are
thought to be computationally burdensome, the SA maximization routine was observed to
converge quite rapidly irrespective of the number of intervening nuisance parameters.’

The above findings mean that 2SLS-based tests are inappropriate in the weak
instrument case and cannot be corrected by bootstraping. Much more reliable tests will be
obtained by applying the proposed LR-based procedures. The usual arguments on
computational inconveniences should not be overemphasized. With the increasing availability
of more powerful computers and improved software packages, there is less incentive to prefer

a procedure on the grounds of execution ease.

6. Conclusion

The serious inadequacy of standard asymptotic tests in finite samples is widely observed in
the SE context. Here, we have proposed alternative, simulation-based procedures and
demonstrated their feasibility in an extensive Monte Carlo experiment. Particular attention
was given to the identification problem. By exploiting MC methods and using these in
combination with bounds procedures, we have constructed provably exact tests for arbitrary,
possibly nonlinear hypotheses on the systems coefficients. We have also investigated the
ability of the conventional bootstrap to provide more reliable inference in finite samples. The
simulation results show that the latter completely fails when the simulated statistic is 1'V-
based. In the case of the LR criteria, although the bootstrap did reduce the error in level, it

did not achieve size control. In contrast, MC LR tests perfectly controlled levels. The exact

! The average recorded time-to-convergence using a Pentium 135 was approximately 3 minutes for
all models reported in Tables 1 and 2.
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randomized procedures are computer intensive: however, with modern computer facilities,

computational costs are longer a hinderance.

¢



Table 1. Empirical sizes of various asymptotic and Monte Carlo tests

replications,

i 21 1.999
12 999 2
L.
LR WALD WALD
ASY l 057 .048 .055 .023
Model (1)
m=25 | MC 049 044 060 023
MMC .016 .000" .025 000
BND | 006 : 011 :
ASY " 075 .086 142 .082
Model (2) ,
=25 || MC 053 058 071 053
MMC 017 .000° 027 .000"
BND 007 - .013 -
ASY 102 110 200 126
Model (3)
[n = 25] MC .059 068 079 .059
MMC 006 .000" .015 .000°
BND [ .003 - 013 -
ASY 149 142 223 147
Model (4)
m=25 | MC 068 085 090 073
MMC 012 .000° 024 000"
BND 001 - .011 -
ASY .097 .081 210 116
Model (4) |
(n = 100) MC 053 061 064 .051
MMC 001 .000" .020 000
BND 000 - .009
Note: The subscript (*) indicates that the NMNC p-value is one throughout the 1000

o
[ 3]
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Table 2. Empirical sizes of various asymptotic and Monte Carlo tests

Near-unidentified conditions (n = 25)

replications.

I Model (4)
LR WALD

064 226

038 102

001 000°
000 .

051 264

T4 399 MC 014 066 030 115

e [.399 4 J MMC || 002 000° 001 000"
BND 000 . 000 .

asy | o7 156 041 345

T3 299 Mc | .o 080 026 140

= [.299 3 } MMC || 002 000" 000 000"
om0 oo 1. oo |

ASY || 009 245 031 532

T2 199 MC | 010 105 020 210

e [.199 2 ] MMC || 001 000" 000 000"

oo oo |- o

ASY 006 507 032 823

CT1 099 MC 012 212 019 444

o= {099 1 } MMC 000 000" 000 000"
BND || .00 . 000 .

ASY || .oz 889 090 993

o1 009 MC | 013 579 026 823

) {009 ,01} MMC 001 000 004 000"
BND 000 - 000 .

Note: The subscapt (*) indicates that the MMC p-value is one throughout the I



Table 3. Empirical sizes of Wald-type tests
Near-unidentified conditions (n = 100)

124

Model (4) Wald test, Model (4) Wald test, n=100
n=100
ASY .143 ASY 227
. S 499 . .
o= MC 070 = 1 0% MC .106
499 5 099 1
MMC | .000° MMC .000"
ASY .162 ASY 581
. 4 399 . 1 .099
o= MC .074 = MC 212
399 4 099 1
MMC | .000° MMC .000°
ASY 191 ASY .989
- 3 209 _ .01 .009
II-= MC .083 = MC .700
299 3 009 .01
MMC | .000" MMC 000

Note. The subscript (%)

replications.

indicates that the

p-value is one throughout the 1
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Conclusion générale

Les méthodes d’inférence basées sur des simulations ont connu ces dernieres années un
développement important. Ceci est dii en grande partie aux progres actuels de I'informatique.
Les stratégies de tests simulés décrites dans les chapitres précédents ont pour objectif de
contrdler les erreurs de premiére espéce sur des échantillons finis, Ce probléme revét une
importance considérable dans le cadre multivarié car les tests couramment utilisés sont fondés
sur des arguments asymptotiques et sont généralement sujets & des distorsions de niveau
importantes. De plus, les distributions exactes des statistiques intervenant dans les procédures
usuelles sont compliquées et dépendent de parametres inconnus. Mais avec I’application des
tests de Monte Carlo, ces probleémes sont pratiquement résolus. Or ces mémodes‘:;cmrérmr
effectives lorsqu’on a spécifié un critere de test dont la distribution sous I’hypothése nulle
admet une borne qui ne dépend pas de parametres de nuisance. La contribution fondamentale
de ce rapport est de démontrer cette propri€té dans le cas du critere LR sous des hypothéses
générales, linéaires ou non-linfaires portant sur les coefficients d’un modele linéaire
multivarié. Nous en déduisons (i) un test & bornes, et (ii) 1a validité des procédures Monte
Carlo fondées sur la vraisemblance. Sur le plan de la facilité de calcul, le test 4 bornes est
particulierement utile; nous suggérons donc une stratégie de test par étapes qui consisie &
recourir aux procédures de Monte Carlo lorsque la borne n’est pas concluante,

Les résultats de nombreuses expériences suggerent que les procédures proposées
contrélent effectivement le niveau et ont une bonne puissance. Par ailleurs, nous vérifions
qu’il suffit d’un faible nombre de simulations pour obtenir des résultats trés satisfaisants. Ce
type de propriété rend les méthodes de tests simulés appliquées au quotient de vraissemblance
fort prometteuses. En revanche, nous démontrons pour le cas des équations simulatnées, que

I'application mécanique de tests utilisant des variables instrumentales (e.g. les statistiques de
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Student fournies par les logiciels usuels) peut entrainer de sérieuses erreurs. Ce résultat
provient des problémes qui se rattachent a I’identification. Nos simulations permettent aussi
de souligner le manque de fiabilité du bootstrap dans le contexte des équations simultanées.
La popularité des tests usuels basés sur des régressions instrumentales pourrait €tre
attributée au fait que les procédures alternatives fondées sur la vraisemblance sont plus
lourdes a appliquer. Certes, les tests du quotient de vraisemblance simulé que nous proposons
dans cette thése sont intensives en temps de calcul. Mais avec les progres rapides de
I'informatique, I'exécution de ces méthodes est considérablement simplifiée. D'ailleurs, tout
compte fait, nous soulignons que les colits de calcul ne sont que le prix a payer pour une

inférence valide.
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