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Sommaire

La these étudie le comportement d’agents économiques liés par un accord de
coopération. La méthode utilisée est basée sur la théorie des jeux et la théorie des
contrats. Par la signature d’un contrat, ’adhésion 3 une norme sociale ou une ins-
titution, les agents expriment leur volonté d’améliorer leur situation économique
par une meilleure allocation des ressources. Ils définissent les régles du jeu dans
lequel ils vont interagir par la suite. Ces régles influencent leur comportement et,

en bout de course, ’équilibre économique.

Le premier essai analyse 1'organisation des activités de recherche et dévelop-
pement (R&D). Une innovation peut étre soit produite & I'interne, soit achetée
_ al'externe par la firme qui 'utilise. Nous caractérisons le choix contractuel opti-
mal en abordant les aspects de renégociation et de collusion entre les différentes

parties.

Le second essai porte sur les accords informels de partage de risque au sein
de la famille élargie dans les pays en voie de développement. De tels accords
sont respectés sans qu'ils n’aient de reconnaissance juridique. Nous proposons un
mécanisme de sanction sociale qui explique comment et pourquoi les plus riches
subventionnent les plus pauvres. Nous analysons I’impact de ce mécanisme sur la,

forme de l'accord.

Le troisiéme essai étudie les accords de partage d’un fleuve entre riverains.
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Nous caractérisons ’allocation optimale de ’eau. Nous identifions la distribution
stable et équitable du surplus généré par une exploitation optimale du fleuve.
Nous discutons ensuite de la mise en pratique de cette distribution dans différents

environnements institutionnels.



Résumé

Le premier chapitre analyse dans les conditions pour lesquelles les activités de
R&D devraient étre produites par une unité de recherche indépendante ou par
I'entreprise qui utilise I'innovation. Les deux types d’organisation sont courantes.
Par exemple, de grandes firmes pharmaceutiques ont leur propre département de
recherche. Elles signent également des alliances technologiques avec les entreprises

de biotechnologies afin de développer des innovations.

La production d’une innovation met en relation deux agents : une unité de re-
cherche et une firme qui utilise la nouvelle technologie ou vend le nouveau produit.
L’unité de recherche détient une information privée sur les propriétés de I’innova-
tion : le colit de son développement, les performances de la nouvelle technologie
ou la profitabilité du nouveau produit. La R&D est organisée dans deux types
de structures. Dans une structure intégrée, 1’entreprise qui utilise I'innovation ou
vend le nouveau produit finance et dirige les activités de recherche et développe-
ment. L’unité de recherche est alors une division de cette firme. La recherche se
fait & I'interne. Dans une structure indépendante, I’entreprise achéte 'innovation
a I'unité de recherche. Le financement de la recherche se fait par une tierce partie,
le partenaire financier. La gestion de la recherche et développement est déléguée

a 'unité de recherche. La recherche se fait & I’externe.

La seule présence d’une asymétrie d’information ne permet pas de différencier

les deux structures. La différence apparait lorsque les agents peuvent renégocier
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le contrat ou former une collusion. Dans la structure intégrée, les parties ont un
intérét commun a renégocier le contrat une fois que I'information est communi-
quée par 'unité de recherche & la direction. Dans la structure indépendante, la
renégociation est écartée en délégant la prise de décision & la partie informée.
Par contre, comme cette structure regroupe trois agents. L'unité de recherche
contracte successivement avec un partenaire financier puis avec la firme qui utilise
I'innovation. Une collusion entre deux agents au dépend d’un autre est donc en-
visageable. L’unité de recherche et la firme ont un intérét commun de manipuler

I'information transmise au partenaire financier.

Renégociation et collusion diminuent P'efficacité de I’organisation. Leur impact
sur chacune des structures dépend des caractéristiques de la technologie. Nous
montrons que la structure intégrée domine lorsqu’une innovation plus cofiteuse
a développer est aussi une technologie moins performante ou un produit moins
profitable. La structure indépendante domine dans le cas contraire. Nous discutons
ensuite de I'implication du résultat pour certaines industries. En particulier, notre
modele prédit que les innovations auront tendance & étre produites & I'interne dans
I'industrie pharmaceutique et 4 'externe dans I'industrie des télécommunications

et de 'informatique.

Le second chapitre porte sur les accords informels de partage de risque au sein
de la famille élargie africaine. Ce systéme informel d’assurance sociale bénéficie
a tout individu riscophobe. Une particularité intéressante de ce systéme est qu’il
subsiste sans cadre légal. Un individu riche qui ne verse pas son di & la famille
ne sera aucunement inquiété par la justice. Qu’est-ce qui le motive & prendre 4 sa

charge ses parents les plus pauvres ?

La solidarité familiale africaine est modélisée comme une norme sociale. Cest
un contrat implicite imposé ex ante par 'autorité de la communauté pour amé-

liorer le bien-étre de tous. Son exécution est rendue possible ex post grace a un
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mécanisme de sanction mutuelle basé sur le statut social. Tout individu qui ne se
conforme pas a la norme social est sanctionné par les membres de la communauté
qui la respectent. Cette sanction prend la forme d’une perte de statut social. Elle
est d’autant plus intense qu’une proportion importante de la communauté suit la

norme.

Nous supposons que chaque individu détient une information privée : la valeur
qu’il affecte & son statut social. Certains agents accordent davantage d’importance
a leur place dans la société que d’autres. La perte de statut social a un effet
dissuasif sur un agent lorsque I'importance qu’il accorde & son statut social est
suffisamment élevée. Les individus qui accordent peu de valeur & 'opinion des

autres préféreront ne pas obéir a la norme.

Les agents souhaiteraient s’assurer complétement contre les aléas de leur re-
venu. Mais une telle norme requiére un transfert élevé. Nombreux sont alors ceux
qui, parmi les riches, ne vont pas respecter une norme trop exigeante. La défection
de ces non-conformistes est coiiteuse. Elle diminue la performance de la norme.
La meilleure norme sociale maximise le partage de risque tout en minimisant la

défection.

Nous montrons que la norme sociale est pratiquée dans un équilibre de Nash.
La pleine assurance n’est possible seulement si tout le monde obéit 3 cette norme.
Dans le cas contraire, la désobéissance ex post & la norme limite le partage de
risque. Il peut méme y avoir de la défection & I’équilibre. La norme apparait alors

comme un optimum de second rang contraint par la capacité de sanction mutuelle.

Les agents qui ne respectent pas la norme 3 1’équilibre de Nash bénéficient de
I'assurance mutuelle informelle sans en subir les cofits. La norme sociale tolére
parfois la présence de ces passagers clandestins. Nous montrons qu’on ne peut
exclure les non-conformistes en leur laissant ex ante le libre choix d’adhérer ou

non a la norme : il existe un équilibre parfait en sous-jeu avec une adhésion
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unanime & la norme ex ante et de la défection ex post.

Dans ce contexte, nous discutons de V'effet et de I’efficacité des politiques éco-
nomiques. Une redistribution publique des revenus n’est pas nécessairement plus
performante que la norme sociale pour partager le risque. Une telle politique gé-
nere ses propres cotits qui doivent étre comparés aux coiits de la défection a la
norme. Elle est néfaste a I’économie lorsqu’elle se substitue & une norme sociale

“plus performante pour atteindre un méme objectif.

Le troisieme chapitre porte sur le partage d’un fleuve entre riverains en situa-
tion de pénurie d’eau. Nous introduisons un modele général qui s’applique au cas

des fleuves internationaux.

Un fleuve est une ressource natur‘elle exploitée par plusieurs usagers. Sa par-
ticularité réside au fait que ’eau est inégalement distribuée le long du fleuve et
qu’elle ne peut étre transférée que de 'amont vers Vaval. Les usagers situés le
long du fleuve extraient ’eau pour leur consommation personnelle. Ils s’échangent
également un autre bien, la monnaie. Le modele peut également étre interprété

en terme de pollution de 'eau.

L’exploitation en libre accés du fleuve est inefficace parce que les usagers situés
en amont consomment trop d’eau. Les agents ont tous & gagner & redéfinir un
mode de gestion du fleuve par un accord de coopération. Un tel accord spécifie

une allocation de I’eau et un schéma de transferts entre agents.

Dans une premiére partie, nous identifions I’allocation optimale de I’eau. Nous
n’obtenons pas toujours le résultat classique de ’exploitation optimale en propriété
commune d’une ressource naturelle, 4 savoir, ’égalité des bénéfices marginaux des
usagers. En effet, la rareté locale de I’eau peut contraindre sa répartition. Lorsqu’il
y a trop peu d’eau en amont, cette égalité n’est pas réalisable car on ne peut faire
remonter ’eau vers la source. Dans ce cas, les bénéfices marginaux des riverains

sont égaux entre les contraintes de rareté. Mais entre deux contraintes, le bénéfice
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marginal diminue de ’amont vers 1’aval.

Dans une deuxieéme partie, nous analysons les transferts de monnaie entre
agents. Afin que 'accord de coopération soit accepté par tous, le schéma de trans-
ferts doit répondre & deux critéres. Premierement, il doit étre tel que toute coa-
lition d’agents préfere joindre I’accord de coopération global plutdt que de faire

bande & part. Deuxiémement, il doit étre pergu comme équitable.

Comme & tout schéma de transferts correépond un partage du bien-étre de I’ex-
ploitation du fleuve, ’analyse des transferts peut se faire en terme de distribution
du bien-étre. Nous caractérisons le bien-étre que peut se garantir une coalition
arbitraire d’agents. Nous imposons une premiére contrainte sur la distribution
de bien-étre : elle doit assurer & tout groupe d’agents au moins ce qu’il peut se

garantir. Autrement dit, elle doit appartenir au noyau du jeu.

Le jeu étant convexe, son noyau est composé de 1’enveloppe convexe des vec-
teurs de contributions marginales. Nous introduisons un principe d’équité qui
réduit le choix des distributions de bien-étre. Une distribution de bien-étre est
considérée comme équitable lorsqu’aucun groupe d’agents n’obtient plus Que ce
qu'’il aurait en I’absence des autres. Nous montrons qu’il n’existe qu’une seule dis-
tribution de bien-étre qui soit & la fois stable (au sens ot elle appartient au noyau)
et équitable : la distribution incrémentale aval. Elle assigne & chaque agent sa,

contribution marginale & la coalition composée de ses prédécesseurs sur le fleuve.

Nous discutons ensuite de la décentralisation et de 'implémentation de la dis-
tribution de bien-étre incrémentale aval. Une taxe Pigouvienne améne les usagers
a extraire I’allocation optimale de ’eau. En reversant le montant collecté par un
schéma de subventions forfaitaires, on établit la stabilité et I’équité. Nous mon-
trons que, donner un droit de propriété a chaque agent sur la part de la ressource
qu’il contrdle ne permet pas de converger vers la distribution de bien-étre incré-

mentale aval dans une équilibre de marché concurrentiel. Enfin, nous proposons



des regles de négociation qui permettent d’obtenir la distribution de bien-étre dési-
rée dans un équilibre parfait en sous-jeu. Ces régles donnent la priorité aux agents
situés en aval. Elles pourraient étres incluses dans une institution de gestion d’un

fleuve international.
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Introduction Générale

Les agents économiques, consommateurs ou firmes, interagissent dans des en-
vironnements complexes. Ils coordonnent leurs actions dans un cadre spécifié par
un contrat dans le but d’améliorer leur bien-étre. Par exemple, les activités de
production sont organisées par une multitude de contrats de financement, d’im-
partition, de travail et de vente. Chaque agent détient une partie de 'information
sur 'économie. Chaque joueur choisit parmi un ensemble de stratégies selon ses

propres objectifs.

Le modele de design de mécanisme & la Myerson (1979) donne un cadre d’ana-
lyse général & la théorie des contrats. Un mécanisme définit les régles du jeu dans
lequel les agents vont interagir. Il est proposé par une autorité centrale, le prin-
cipal. Il est ensuite accepté ou rejeté par les agents. Son exécution est supervisée
par le principal. En ce sens, il peut étre interprété comme un contrat. Le mo-
dele de Myerson suppose que chaque agent détient une information privée sur
ses préférences. Elle peut étre utilisée & des fins stratégiques par les agents lors
de I'exécution du contrat. Pour le principal, tout le probleéme réside 3 identifier le
mécanisme qui maximise le bien-étre de cette économie tout en prenant en compte

cette asymétrie d’information.

Dans ce modele, il est facile de caractériser le mécanisme optimal. D’aprés le
principe de la révélation, on peut, sans perte de généralité, se limiter aux méca-

nismes directs révélateurs. Un mécanisme est direct s’il exige que chaque agent



communique son information privé. Il est révélateur lorsque les agents sont incités
3 dire la vérité. Le mécanisme optimal est le meilleur mécanisme direct révéla-
teur. Il maximise le bien-étre sous la contrainte qu’il soit unanimement accepté et
qu’il amene les agents a révéler de leur propre fait leur information. Le design de

mécanisme a été appliquée & une multitude de problémes économiques.

Le modéle de Myerson repose sur des hypotheéses fortes. Premiérement, au
cours du jeu, les agents ne peuvent, & aucun moment, renégocier les termes du
contrat, et ce, méme s’ils ont un intérét mutuel & le faire. Deuxi®émement, ils ne
peuvent communiquer entre eux. Aucun groupe d’agent ne peut écrire son propre
contrat, ni coordonner la divulgation de 'information. Troisiémement, tous les
agents respectent les termes du contrats lors de son application. Aucun agent ne

peut rompre sa relation avec ses partenaires.
D’un point de vue théorique, la thése relache certaines de ces hypothéses.

Le premier chapitre autorise la renégociation d’un contrat avant son exécution
ainsi que la collusion entre agents lors de la divulgation de 'information. II analyse

la question de I'organisation optimale des activités de recherche et développement.

La production d’une innovation met en relation deux agents : une unité de re-
cherche et une firme qui utilise la nouvelle technologie ou vend le nouveau produit.
L’unité de recherche détient une information privé sur les propriétés de I'innova-
tion : le colit de son développement, les performances de la nouvelle technologie
ou la profitabilité du nouveau produit. La R&D est organisée dans deux types
de structures. Dans une structure intégrée, I’entreprise qui utilise I'innovation ou
vend le nouveau produit finance et dirige les activités de recherche et développe-
ment. L’unité de recherche est alors une division de cette firme. La recherche se
fait a I'interne. Dans une structure indépendante, 1’entreprise achete I’innovation
a 'unité de recherche. Le financement de la recherche se fait par une tierce partie,

le partenaire financier. La gestion de la recherche et développement est déléguée



a P’unité de recherche. La recherche se fait & ’externe.

Dans cet contexte, la structure intégrée est un “mécanisme direct”. L’unité de
recherche transmet son information & la firme qui décide ensuite de I'importance
du projet de développement. Par contre, la structure indépendante est un “méca-
nisme indirect”. La firme délegue la décision de production & 1'unité de recherche.
L’information est révélée une fois que I'innovation est développée par la taille de

I’unité de production mise en place.

Le principe de la révélation nous dit que tout mécanisme indirect peut é&tre
reproduit par un mécanisme direct. Par conséquent, les deux types de mécanismes
sont équivalents. La question ne se pose donc pas. Ce principe devient caduque

lorsque I’on introduit la renégociation et la collusion.

Cet essai fait apparaitre 1’arbitrage entre communication et délégation dans
une organisation. D’un c6té, une organisation hiérarchique de la production en-
gendre davantage de communication. La direction et la division de la firme ont
alors 'opportunité de renégocier les termes du contrat avant son exécution. Dans
le structure intégrée, les agents vont vouloir renégocier un fois que l'unité de re-
cherche a transmis son information & la firme, avant que la décision soit prise.
D’un autre c6té, en délégant ses activités & plusieurs agents, I’organisation gére
de multiples contrats. Elle s’expose & une collusion entre ses contractants. Dans
la structure indépendante, 'unité de recherche et la firme peuvent s’entendre se-

cretement pour manipuler 'information au dépend du partenaire financier.

Renégociation et collusion réduisent I'efficacité de I’organisation. Elles limitent
'espace des contrats envisageables. Elles ajoutent des contraintes au programme
de maximisation du bien-étre des agents. Nous montrons que Pimportance des
colits d’agence liés & la renégociation et & la collusion dépend de la technologie.
Lorsqu’un innovation plus coiiteuse & développer est aussi une technologie moins

performante ou un produit moins profitable, la renégociation est un moindre mal



par rapport a la collusion. La structure intégrée domine la structure indépendante.
Les activités de recherche et développement seront regroupées au sein d’une méme
firme. Par contre, dans le cas contraire, les coiits d’agence liés & la collusion sont
inférieurs a ceux liés & la renégociation. La structure indépendante domine. L’en-

treprise a plutot intérét & faire affaire avec plusieurs partenaires indépendants.

Dans le second chapitre, nous laissons la possibilité aux agents de renier leurs
engagements. L’hypothése est envisageable dans le cas d’accords informels qui, par
définition, n’ont pas d’existence légale. Leur exécution n’est donc pas controlée
par une administration judiciaire. Il revient aux agents eux-mémes de faire en

sorte que les contractants respectent leurs engagements.

La question est particuliérement pertinente pour les accords de partage de
risques tels qu’observés en Afrique. Ce type de contrat implique qu’un individu
ayant un revenu élevé le partage avec ses parents les plus pauvres. Tout agent risco-
phobe adhére volontiers & un tel contrat d’assurance mutuelle avant de connaitre
son revenu. Mais ensuite, quel est 'incitation pour un riche de partager son re-
venu ? Un transfert de la part d’un individu égoiste ayant un revenu élevé garanti
n’est motivé que par une menace de sanction venant de ses pairs. Une punition

doit dissuader I’agent de renier ses engagements.

Dans cet essai, le partage de risque informel au sein de la famille élargie afri-
caine est modélisé comme une norme sociale. C’est un contrat implicite imposé
par l'autorité de la communauté. L’objectif du principal est la maximisation du
bien-étre des agents. L’exécution du contrat est ensuite assurée par les agents
eux-mémes. Les agents font pression pour que chaque membre de la famille élar-

gie respecte la norme sociale.

Le mécanisme de sanction mutuelle est basé sur le statut social. Nous sup-
posons que chaque agent valorise 'opinion des autres. Un individu va respecter

ses engagements pour conserver son rang dans la société. Le statut social peut



également étre interprété comme de la culpabilité ou de la honte. Cela peut étre
toute sorte de punition exercée par la communauté comme la perte du droit &

I’héritage ou la sorcellerie.

La punition est supposée avoir un effet limité et hétérogene sur les agents.
Chaque individu a son propre goiit pour son statut social. Cette variable est une
information privée. La menace de sanction a un effet dissuasif sur un agent lorsque
I'importance qu’il accorde & son statut social est suffisamment élevé. Certains

agents, peu soucieux de ’opinion des autres, préféreront ne pas obéir & la norme.

Dans un premier temps, nous montrons qu'il est rationnel pour des agents
égoistes d’obéir & la norme dans un équilibre de Nash. Ainsi, nous justifions la
pratique de transferts venant des riches vers les pauvres. Ensuite, nous caractéri-
sons la norme sociale. Elle apparait comme la solution d’un arbitrage entre partage
de risque ex ante et obéissance & la norme ex post. Idéalement, les agents sou-
haiteraient s’assurer complétement contre les aléas de leur revenu. Mais une telle
norme requiert un transfert élevé de la part des riches. Nombreux sont alors ceux
qui, parmi les riches, ne vont pas respecter une norme trop exigeante. La défection
de ces non-conformistes est coiiteuse. Elle diminue la performance de la norme.
La meilleure norme sociale maximise le partage de risque tout en minimisant la

défection.

Nous montrons que la pleine assurance est possible seulement lorsque tout le
monde obéit & cette norme. Dans le cas contraire, la contrainte de conformité ex
post limite le partage de risque ex ante. Il peut méme y avoir de la défection &
I'équilibre. Les agents qui ne respectent pas la norme bénéficient de 1’assurance
mutuelle informelle sans en subir les coiits. Il est donc parfois optimal de tolérer

la présence de ces passagers clandestins.

Enfin, nous discutons de I'effet et de 'efficacité des politiques économiques.

Une redistribution publique des revenus n’est pas nécessairement plus perfor-



mante que la norme sociale pour partager le risque. Une telle politique génére
ses propres cotits qui doivent étre comparés aux coiits de la défection & la norme.
Elle est néfaste & ’économie lorsqu’elle se substitue alors & une norme sociale plus

performante pour atteindre un méme objectif.

Dans le troisiéme chapitre, nous laissons aux agents la liberté de former des
coalitions. Ils peuvent communiquer entre eux et, ainsi, signer leur propres accords
de coopération. Une coalition d’agents ne va pas souscrire & un contrat global
(incluant tous les agents) si elle peut obtenir mieux pour ses membres. Nous
imposons une contrainte supplémentaire sur le contrat : il doit étre accepté par
toute coalition d’agents. Nous supposons également que les agents ont un souci
d’équité.

Cet essai analyse un jeu simple d’information parfaite. Son originalité tient 3
sa structure. Elle refléte les contraintes physiques de la répartition des ressources
en eau d'un fleuve. Nous supposons que I’eau est inégalement distribuée le long du
fleuve et ne peut étre transférée que de ’amont vers 1’aval. Les agents consomment

I'eau du fleuve et s’échangent un autre bien, la monnaie.

Un accord de coopération spécifie une allocation de I’eau et un schéma de
transferts. L’allocation d’eau qui maximise le bien-étre de tous les agents peut étre
caractérisée indépendamment des transferts. C’est le sujet de la premiére‘ partie.
De toute évidence, les agents ont intérét & mettre en place une allocation optimale
de ’eau. Mais I’adhésion des agents & un tel accord ne sera acquis qu’au prix d’un
choix judicieux de transferts. Le schema de transferts doit répondre & deux critéres.
Premierement, il doit étre tel que toute coalition d’agents préfere joindre ’accord
de coopération globale plutét que de faire bande & part. Deuxiémement, il doit

étre percu comme équitable.

Comme & tout shéma de transferts correspond un partage du bien-étre de I'ex-

ploitation du fleuve, I’analyse des transferts peut se faire en terme de distribution
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du bien-étre. Dans le cadre du jeu coopératif naturellement associé au modele, nous
caractérisons le bien-étre que peut se garantir une coalition arbitraire d’agents.
Nous imposons une premiere contrainte sur la distribution de bien-étre : elle doit
assurer a tout groupe d’agents au moins ce qu’il peut se garantir par lui-méme.

Autrement dit, elle doit appartenir au noyau du jeu, étre stable.

Il se trouve que le jeu est convexe, de sorte que son noyau peut entiérement étre
caractérisé : c’est ’enveloppe convexe des vecteurs de contributions marginales.
Il contient une infinité d’éléments. Afin de raffiner notre choix, nous imposons
un second critere sur les distributions de bien-étre : I’équité. Une distribution de
bien-étre est considérée comme équitable lorsqu’aucun groupe d’agents n’obtient
plus que ce qu’il aurait en ’absence des autres. Nous identifions les distributions
de bien-étre du noyau qui survivent & ce critére. Nous montrons qu’une seule
distribution est & la fois stable et équitable : la distribution incrémentale aval.
Elle assigne a chaque agent sa contribution marginale 3 la coalition composée
de ses prédécesseurs sur le fleuve. Nous discutons ensuite de la décentralisation
de cette allocation par un mécanisme de taxes, par une affectation adéquate des
droits de propriété dans un marché concurrentiel, et de I'implémentation par un

jeu de négociation de la distribution de bien-étre incrémentale aval.

Le thése applique la théorie des jeux & 'organisation industrielle, 1’économie
du développement et I’économie de ’environnement. Elle apporte des réponses
concretes a des probléemes pertinents dans chacun de ces domaines des sciences

économiques.
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Chapitre 1

Organizational design of R&D

activities

Abstract

This essay addresses the question of whether R&D should be carried out by
an independent research unit or be produced in-house by the firm marketing the
innovation. We define two contractual structures. In an independent structure,
the firm that markets the innovation buys it from an independent research unit
which is financed externally. In an integrated structure, the firm that markets
the innovation also carries out and finances research leading to the innovation.
We compare the two structures under the assumption that the research unit has
some private information about the real cost of developing the new product. The
sole presence of asymmetric information is not sufficient to differentiate the two
structures. It is only when players can renegotiate and collude that a difference
emerges. When an innovation costly to develop is also a less drastic technology
or a product less valued by consumers, the integrated structure dominates. The

independent structure dominates in the opposite case.



1.1 Introduction

Research and development activities take place in various organizational forms
depending on who finances, creates, develops, produces and sells the innovation. A
widely observed organizational form is in-house R&D. Innovation is created within
the firm who then uses the new product or the new technology. Researchers-
inventors are subject to an employment contract. The innovation is financed,

managed and owned by the user firm.

Another organizational structure is “external R&D”. Research and develop-
ment activities are conducted by an independent firm whose objective is to create
a new product or a new technology and then develop it with the user firm through
a contractual agreement. Innovation is managed and owned by the independent
research unit firm and financed by its financial partner, for example, a venture

capitalist.

Both organizational structures are observed in many industries. Moreover, the
same firm may employ both organizational forms. For example, consider the phar-
maceutical industry. The innovation user is the drug firm while an independent
research unit is a biotechnology firm. A drug firm like Merck is investing mainly
in in-house R&D although some of its major rivals are outsourcing most of their
research activities. Only 5% or so of Merck’s research spending ends up outside
the firm’s laboratories. For’other top drug companies however, the proportion of
research done independently could reach 80%. Recently, American pharmaceuti-
cal companies moved from in-house R&D to independent R&D by increasing their
research joint venture agreements. These research joint ventures are contractual
agreements for developing, producing and selling a new medicine discovered by a
biotech firm (Lerner and Merges, 1998). In 1994, 117 ventures between drug and

biotechnology firms were signed, 70% more than the previous year.

1“The Economist”, May 13th 1995, pp. 66-67, and May 24th 1997, pp. 59-60.
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This empirical evidence highlights an important question. Why are the two
organizational forms observed 7 If one organization is more efficient than the
other one, the inefficient organizational structure should not be observed in equi-
librium. The objective of this paper is to provide some economic intuition based

on contractual imperfections about the organizational choice of R&D activities.

The economic environment for the research and development activities and
the eventual marketing of the innovation is characterized by two main features :
uncertainty and informational asymmetries. When working on an innovation, a
firm does not know for sure the result of its R&D activities. Research metho-
dologies employed to discover an innovation (what Dosi (1988) calls “technology
trajectories”) can be specified ex ante but their outcome can hardly be perfectly
predicted. For example, in the case of pharmaceutical industries, one favorite
research methodology employed is “combinatorial chemistry” which consists in
using arbitrary chemical reactions to generate millions of randomly shaped mole-
cules. One of the new discovered molecules might just lead to the next drug. The
discovery of a new drug depends on the success of the research process, and its
properties (its safety, efficiency, cost effectiveness of treatment) are never known ex
ante. Research and development are random activities and, therefore, constitute

a risky investment.

Second, the marketing of an innovation is characterized by an asymmetric dis-
tribution of information. The value of an innovation depends on its properties
such as the new technology’s efficiency, the new product’s quality or production.
While this information is difficult to obtain before the innovation is developed,
produced and sold, the research unit may have more information about the cost of
bringing the innovation to the market, that is, when the innovation is transferred
from its creator to its user. For example, in the pharmaceutical industry, coordi-
nation between researcher and factory designers is not easy. Clearly, bringing a

new medicine to the market is not trivial and needs cooperation between agents
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which may not have the same information. A report states that mistakes in the
development process increase costs by 40%2. Asymmetric information motivates
the complexity of research joint venture agreements. Uncertainty and asymmetric
information are two basic features of our model. But before describing our model,

we review some of the relevant literature.

In the management literature, it is argued that in-house R&D may reduce
problems associated with asymmetric information, and that better coordination
between innovators, production and marketing departments is achieved within an
organization. With its own research unit, a firm has the scientific expertise to
evaluate new technologies and new products (Armour and Teece, 1979 ; Lampel,
Miller and Floricel, 1996). This approach assumes that the objective of all units
within the firm is to maximize the organization global profit. This may not be true
if the units behave non cooperatively or opportunistically. A “selfish” research
unit may not behave in accordance with the integrated organization’s own interest.
For example, a research unit may prefer not to reveal the true value (possibly
low) of its discovery if its reward from the innovation does not provide it with
such incentives. Hence, integrating the research unit within the user firm does
not necessary solve the asymmetric information problem. The solution should
be endogenous to the incentives provided by the organizational form, not by the

adoption per se of an organizational form.

An incomplete contract approach to R&D management is developed in Aghion
and Tirole (1994) in, what they call, a first attempt to open the “black box of
innovation”. They suppose that R&D is a random activity. Its success depends
on an initial investment provided by the innovation user C and an effort supplied
by the research unit RU. Since the innovation cannot be described ex ante, the

contract can only specify the allocation of property rights when R&D is produced

24The Economist”, November 9th, 1996.
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in-house. In that case, when R&D is produced in-house, the property right is
allocated ex ante to C. When R&D is carried out by an independent research
unit, RU owns the innovation and bargains ex post with C over licensing fees.
The optimal organizational form of innovation activities depends on the marginal
efficiency of RU’s effort compared with the marginal efficiency of C’s investment,

on the ex ante bargaining power of the two parties and on C’s financial constraint.

Recent papers pointed out that bureaucratic organizations perform poorly
in innovating. In Dearden, Ickes and Samuelson (1990), a centralized structure
has low incentives to adopt new technologies because of the ratchet effect. In
Quian and Xu (1998), a soft budget constraint and an ex ante heavy evaluation
process explain centralized organizations’ failure in innovating. A bureaucracy
makes mistakes by rejecting promising projects and delaying innovations. In-house
R&D produces high cost and ex ante well-specified innovations, but is unable to

subsidize less costly projects with higher uncertainty.

The present paper provides a complete contract approach to the organizational
design of R&D activities. A contract can be written ex ante contingently on
the innovation performance, namely, the development cost, production cost and
market value of the innovation. We define two contractual structures. In an
integrated structure, the innovation is produced in-house by the firm who then
uses or markets it. This firm sets up its own research unit by financing a laboratory
and hiring scientists. The contract signed between the firm and the members
of the research unit is an employment contract. The manager of the firm has
authority over the head of the research unit. He takes the main decisions about the
development, production and marketing process of the innovation after considering
the advice of its research unit. In an independent structure, the research unit is
an independent firm. It is financed by a bank or a venture capitalist. The firm
then sells the innovation to another firm by signing a joint-venture agreement or

a technological alliance. The research unit installs the new process in a factory, or
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tests the new product for specific purposes. The user firm then operates the new
technology, or produces and markets the new product. Transfers are then paid
as prescribed by the financial and joint-venture contracts. The research unit pays

back the bank and receives its share of the joint-venture’s profit.

The two structures are equivalent when the agents can commit not to renego-
tiate and not to collude. In the integrated structure, the user firm insures partially
the research unit against the uncertainty of the research process. The employment
contract gives the research unit incentive to report the true value of the innova-
tion to the manager of the firm. In the independent structure, partial insurance
is provided by the financial partner. The research reveals the true value of the
innovation by installing the new process or testing the new product. Hence, even
under asymmetric information, we show that the two structures yield the same

pay-off to the research unit and to the user firm.

The two structures perform differently when agents cannot commit not to re-
negotiate and not to collude. In the integrated structure, after the research unit
reports the innovation quality but before the head of the firm decides the size
of the development project, agents have incentive to renegotiate the employment
contract. This renegotiation reduces the ex ante efficiency of the integrated struc-
ture. In the independent structure, the research unit contracts successively with
the bank and the user firm. It may be tempted to secretly agree with the user
firm, at the second contracting stage, not to behave as prescribed by the financial
contract. That is, to misreport the size of the development project to the bank
in order to pay the lower return. The collusion between the research unit and the

user firm reduces the ex ante efficiency of the independent structure.

The relative efficiency of the two structures depends on the properties of the
innovation. When an innovation costly to develop is also a less drastic technology

or a product less valued by consumers, that is, when the marginal cost of develo-
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ping the innovation is negatively correlated with its marginal profit, the integrated
structure dominates the independent structure. The independent structure domi-
nates in the opposite case. This paper therefore characterizes some forces which

may explain the choice between external and in-house R&D.

The chapter is organized as follows. Section 1.2 presents the model. Section 1.3
analyses the two organizational structures in the case of symmetric information.
In section 1.4, we introduce asymmetric information when agent can commit not to
renegotiate and not to collude. We allow renegotiation and collusion in section 1.5.
We compare the two strutures performance in section 1.6. Section 1.7 concludes

the paper.

1.2 The model

‘Two agents, a research unit RU and the consumer of the new technology, firm
C, coordinate their activities during the R&D process. At the research period, the
research unit has access to a random research technology to produce an innova-
tion. When investing I in research, RU obtains a high-quality innovation A with
probability p(I) and a low-quality innovation ! (I < h) with probability 1 — p(I).

We suppose p increasing and concave, with p(0) = 0, p'(0) = oo, lim;_p(I) = 1.

The innovation is marketed by firm C. To sell the innovation, RU and C must
operationalize its production. This is the development phase. During that phase,
RU incurs a development cost D(g, a) depending on the scale of project g and on
the innovation quality o. We assume that D is increasing and convex in g and

that total and marginal development costs are decreasing in o :
Dy(g,a) > 0, Dylg,a) >0, D(g,h) < D(q,1), Dy(q,h) < D,(q,1) Vg > 0.

Following the development phase, C can start producing and marketing the pro-

duct. C earns a profit P(q, o). The function P is assumed increasing and concave
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in g at least on [0, 4] with 7 large.
Py(g,a) >0, Pulg,a) <0, V0O< g<q.

This function is general in the way that it includes both process and product inno-
vation. When the innovation is a new technology used by C, the new production
cost depends on the innovation quality while the demand for the product may be
unchanged. When the innovation is a new product marketed by C, the demand
faced by C depends on the innovation quality. We will consider two cases for the

effect of the innovation quality on P :

— Case 1 : Major innovation.
A high quality innovation is less costly to develop and has a higher market

value and/or is less costly to produce than a low quality one. Formally,

P(q’h) >P(Q7l)a PII(%h) >P(1(q7l) V0<q<(7.

— Case 2 : Minor innovation.
A high quality innovation is less costly to develop but has a lower market

value and/or is more costly to produce than a low-quality one. Formally,

P(q,h) < P(q,1), Py(q,h) < Py(q,1) V0 < ¢ <'q.

For an innovation quality o € {l, h}, after investing I, the R&D process gene-

rates a global profit gross of initial investment of
7(q, ) = P(q, @) — D(q, @).

We denote by g}, the production level which maximizes the global profit 7(g, ).
We also denote by I* the investment level which maximizes p(I)7 (g}, h) + (1 —

p(D)r (g, 1) — 1.

It is assumed that g > ¢}, that is, the optimal production for a high-quality

innovation is always higher than for a low quality one.
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RU’s utility V' depends on its income w net of development costs :
V(w,q,0) =v(w - D(q,a)).

We suppose that RU is risk averse, that is, v is increasing and concave (v' > 0,
v" < 0). The consumer firm C is risk neutral. Its utility U is linear in profits net

of any payment w :

U(w,q,a) = P(q,a) — w.

The levels of investment and production depend on the organizational design of
R&D activities. We define two types of organizations. In an integrated structure,
R&D activities are conducted internally within firm C. Firm RU can be seen as
a divison or a department of firm C. The relationship between RU and C can be
modeled as a contract signed at the beginning of the research period between RU
and C. This contract specifies an investment level I and an allocation {wq, ¢o}"_,
contingent on the innovation quality «, where w is a transfer of resources from
C to RU. Firm C then invests and finances I in research, pays its research unit
RU a wage w, and produces g, when the innovation quality is &. The players’

expected utilities are :

~ For RU : E[V (wq, ga, @)|I] = p(I)V(wh,qh, h) + (1 = p(I))V (wi, q,1).

- For C: E[U(Wa, Ga, @)} = I = p(I)U(wh, gn, ) + (1 — p(I))U(wy, g1, 1) — I.

In an independent structure, RU is an autonomous firm, which implies that
it must finance its research activities externally. A financial contract is signed at
the beginning of the research period between RU and a bank or financial partner
F. This contract specifies the investment I provided by F to RU and ex post
repayments {R,}"_, from RU to F contingent on the innovation quality . After
the research period and before the development period, RU sells its innovation to

C who markets it. RU and C negotiate a joint-venture agreement which specifies
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the project size g, and RU’s wage or royalties w, contingent on innovation quality
o. Players’ expected utilities are :
— For F : E[R,|I]—I =p(I)Ry+ (1 —p(I))R; — I.

— For RU : B[V (wa — Ra, g, @) 1] = p(I)V (wh — Ra, gn, b) + (1 — p(I))V (w;, —
Rl,qlal)'

— For C : E[U(Wa, 4o, @) I} = p(D)U(wh, gn, h) + (1 — p(I))U (wy, g, 1)).

The objective of this paper is to study the optimal R&D organizational struc-
ture under various informational and commitment assumptions. We show that
the relative efliciency of the two organizational structures depends on the infor-

mational structure as well as on the players ability to commit. The equilibrium

allocations are characterized for the following cases :

— Symmetric information (Section 3).
— Asymmetric information with full commitment (Section 4).

— Asymmetric information without commitment (Section 5).

In each case, we compare the relative performance of the two structures. In all

games, bargaining power is given to RU and F’s and C’s reservation utilities are

normalized to zero.

1.3 Symmetric information

Before introducing asymmetric information in the model, it is useful to review
the benchmark case where both players have full information about innovation

quality. The full-information allocation corresponds to the first-best allocation.
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1.3.1 The integrated structure

In an integrated structure, RU offers to C a R&D contract which specifies
an allocation {I, {wa,¢a}:_;}. The equilibrium allocation solves the following

maximization program.

max[,{wa,qa}(’::z p(I)V(wh’ Qh, h) + (1 - p(I))V(wla q, l) S/t

P(DU (wh, g, b) + (1 = p(D)U (wi, qi, 1) = I > 0 (RIC)

We assume that firm C cannot default on the contract once it is signed. Its
participation constraint only has to hold in expectation. The solution is charac-

terized by the following relationships :

= Ga = q;u
~ v(w = D(gn, k) = v(w — D(q, 1)),

-I=1TI.

First, the risk-neutral player C provides full insurance to the risk-averse player RU
using ex post wages. Hence, risk sharing is optimal. Second, for each innovation
quality, the production is at the efficient scale ¢%. Third, the marginal benefits
of the R&D investment equal its marginal costs. Investment is therefore efficient.
Player C takes all risk and receives all benefits from a high-quality innovation. It

then invests optimally.

1.3.2 The independent structure

In a independent structure, RU offers a financial contract IZ, {R,}"_,} and

a development contract {w2,¢®}"_;} to F and C, respectively, while RU invests

I financed by the financier F. The equilibrium allocation solves the following
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maximization program.

maX{Ia{meayQa}L:h} p(I)V(wa qh, h’) + (1 - p(I))V(wh qi, l) S/t

p()Ry+ (L —p(I))Ri—I > 0 (IRF)
U(Wa,Gay) > 0 VYa=1h (IRS)

The solution is characterized by the following relationships :

— Qo= q;n

— v(wn — Ry — D(gn, h)) = v(w; — Ry — D(g, 1)),

- P(Qaaa) — Wy :07

-I=1I".
First, as in the integrated structure, RU’s utility is equal in the two states of
nature. The financial agent now provides full insurance to RU using ex post
repayments. Second, for each innovation quality, production is at the efficient
scale. Third, wages are defined by the binding participation constraints of firm

C. Fourth, the initial investment in R&D is efficient since the financier F gets all

the marginal benefit from a high-quality innovation.

It is easy to see that the two structures yield the same outcome. Under sym-
metric information, it is not possible to discriminate between the two structures.

We now introduce asymmetric information.

1.4 Asymmetric Information with full commit-

ment

We now assume that RU has private information about the quality of the

innovation. Under such assumption, the interaction between RU and C in an
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integrated structure proceeds as follows. The research unit negotiates ex ante
a contract with C. The investment level is then determined by C Ex post, RU
communicates (not necessarily truthfully) the results of the research process to
C. Firm C then chooses the production level. In the independent structure, RU
finances externally its investment in research. After innovating, RU develops an

application jointly with C. The application is then brought to the market.

The two structures are distinct in two important features. First, the contrac-
ting stage between RU and C occurs ex ante in the integrated structure and ex
post in the independent structure. In the integrated structure, RU and C ne-
gotiate in a moral-hazard hidden-information environment. In the independent

structure, RU and C play a signalling game3.

Second, the communication process between the informed principal and the
uninformed agent is different. In the integrated organization, the decision right
over production belongs to C. This right cannot be credibly transferred from C
to RU as the rule of law does not govern over such intrafirm transaction. For
example, even if this right was transfered to RU, C could always repossess it
because it has hierarchical authority over RU. In terms of communication, this
amounts to RU sending a direct report, namely the innovation quality, to C. This
information is used by C when it decides how much to produce and sell. This
corresponds formally to a direct mechanism. In the independent organization,
the decision right over production initially belongs to C. Since C and RU are
independent firms, this right can be “sold” from C to RU : the judicial system
can enforce such transaction. Formally, this amounts to RU sending an indirect
message to C and to F by effectively choosing production. No communication
needs to occur between RU and C after the contract is signed. This corresponds

formally to an indirect mechanism. We now characterize the optimal allocation

3See Maskin and Tirole (1992) for a general framework of those game situations with an

informed principal and common values.
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under these two structures.

1.4.1 The integrated structure

In an integrated structure with asymmetric information and commitment,

agents play the following game :

1. In the first stage, RU proposes a research and development contract cgp =

{I,{ws,qa}2_;} to C.
2. In the second stage, C accepts or rejects the contract.
3. In the third stage (if reached), RU observes the innovation quality o.

4. In the fourth stage, the contract is carried out ; that is RU selects a message
& € {l,h} and then the innovation is developed, produced and sold while

transfers are paid as prescribed by the contract.

This game has two important features. First, the environment we have chosen
is one of hidden information : the contract is signed with the two agents’ having
the same information, but production is carried out just after RU has privately
observed the state of nature. Note that the full-information allocation is not an
equilibrium allocation of this game. With this allocation, RU’s dominant strategy
would be to pretend that innovation quality is low, thus reducing its development
cost while maintaining its wage. Expecting this behaviour, C would refuse the

full-information contract if ever offered.

It is easy to show that the equilibrium allocation {I4,{w?,q¢4}"_,} is the

solution to the following maximization problem.
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(Pa) MAXF {wa,ga}t_, pI)V (wn, gn, k) + (1 — p(I))V (w1, @1, 1)) s/t

(DU (wh, gn, b) + (1 = p(D))U(wy, i, 1)) =1 > 0 (IR€)
V(wn,qn, h) > V(w,q,h) (ICh)

Viw,q,l) > V(wn,aq!l) (IC)

v

The equilibrium allocation is RU’s preferred allocation among the set of al-
locations satisfying its incentive-compatibility constraints (IC,) for each state of
nature o € {I, h} and C’s participation or individual rationality constraint (I R°).
In the following proposition, we characterized the solution to the P4 maximization

problem.

Proposition 1. The equilibrium allocation of the integrated structure commit-

ment game satisfies the following relationships.
- ¢ < g, a4 =qh
- wy — D(gi, h) = wf* — D(gf', h) > wi* — D(gf', 1),
- (I ity + UL~ UAY = 1,

where VA and U2 are respectively RU and C equilibrium utility for an innovation

quality o € {l, h}.

Proposition 1 states first that there is underproduction for a low quality inno-
vation and optimal production for a high quality innovation ; second, that the in-
tegrated structure cannot share risk efficiently between the two agents as the wage
difference is constrained by the high-innovation incentive-compatibility constraint ;
third, that investment is determined by the marginal benefit of a high-quality in-

novation shared between the two agents.

This is the usual result in hidden-information games. Under the symmetric-
information optimal allocation, RU has incentives to report a low-quality innova-

tion when it knows that the innovation quality is high. The incentive-compatibility
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constraint for a high-quality innovation is therefore not satisfied. Production for
a low-quality innovation is distorted and the wage difference is increased in order

to satisfy /Cj,. We now study the independent structure with commitment.

1.4.2 The independent structure

In an independent structure with asymmetric information and commitment,

agents play the following game :

1. In the first stage, RU proposes a financial contract cr = {I, {R(ga)}"_,} to
F.

2. In the second stage, F accepts or rejects the contract.
3. In the third stage (if reached), RU observes the innovation quality o.

4. In the fourth stage, RU proposes a development contract cp = {w(qa), 9o }2—;
to C.

5. In the fifth stage, C accepts or rejects the contract.

6. In the sixth stage (if reached), the contract is carried out; that is, RU
implements the production level g4 € {g;, ¢s} with C and it is observed by
F'; the innovation is then developed, produced and sold while transfers are

paid as prescribed by the contract.

The commitment game has two important features. First, while the finan-
cial contract is signed and carried out in a hidden-information environment, the
development contract is negotiated in an adverse-selection environment. Second,
the development project size g5 is observable by all the players, that is, this indi-

rect message is publicly sent to C and F. In other words, it is as if the principal
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can commit to send the same message to the two agents. Note that the full-
information allocation is not an equilibrium allocation of this game : with this
allocation, RU’s dominant strategy would be to pretend that innovation quality
is low thus reducing its development costs while maintaining its wage net of fi-
nancial cost. Expecting this behaviour, C and F would refuse the full-information

contract proposal.

The equilibrium allocation {IZ, { RB(qa), wP(ga), ¢Z}"_,} is the solution to the

following maximization problem.

(PB) maxX7 (r(g),w(ga)ga}t_, PV (w(an) —R(gn), an, B)+(1—p(D)V (w(@)—R(a), @i, 1)) s/t

p()R(gn) + 1 = p(I))R(@) -1 > 0 (IRF)
U(w(gn),gn, ) > 0 (IRf)

Uw(g),a,) > 0 (IRf)

V(w(gn) = R(qn),an, ) > V(w(q) — R(a), @, h) (ICh)
V(w(g) — R(a),a,l) > V(w(gn) — R(gn), an, 1) (ICh)

The equilibrium allocation is RU’s preferred allocations among the set of al-
locations satisfying F’s individual rationality constraint (IRF), RU’s incentive
compatibility constraints (IC,) and C’s individual rationality constraint (IRS)
for each state of nature o € {l,h}. Note that the timing of the game requires
that C’s participation constraint must be satisfied for each state of nature, which
implies that C is unable to share risk with the research unit. F’s participation
constraint, however, must be satisfied only in expectation, and thereby provides

room for explicit insurance.

Since the same message is sent to F and C, incentive-compatibility constraints
are similar to those of the previous integrated structure game. The two incentive-
compatibility constraints provide incentives to reveal its information because RU’s
private information is publicly disclosed. In the following proposition, we charac-

terized the solution to the Pg maximization problem.
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Proposition 2. The equilibrium allocation of the independent structure commit-

ment game satisfies the following relationships :

~@w=a=q,¢=q¢"<q,

- wP(gn) — R%(an) = wi}, wB(q) — RB(q) = wi?,
- IB =IA,

- P(¢Z,0) — wP(qa) =0, Vo € {I, h},

- wP(gn)—R®(gn) - D(¢}, h) = wB (@)~ RB(q)—D(¢f, h) > w®(q)—RE(q)-
D(gP,1).

Proposition 2 states the equivalence between the two structures. Formally,
it shows that the two maximization programs are equivalent. Risk sharing is
provided by the risk-neutral bank via the financial contract. As in the previous
game, truthfull revelation implies underproduction for a low-quality innovation.
As the report is public, incentive-compatibility constraints are similar to those
of the previous game. The financial partner is therefore able to provide partial
insurance to the research unit as the consumer firm did in the integrated-structure
commitment game. RU receives the same transfer from its R&D activity for the
same production level and, therefore, the same utility level as in the integrated
structure for all states of nature. All participation constraints are binding, thus
no rents are allocated to agents. The high-quality innovation benefit is shared
between RU and F in the same way as it was between RU and C in the previous
subsection, which implies the same level of investment. The intuition for the equi-
valence of the two organizational structures is the following. Since informational
reports must be the same to C and F, it is as if these two agents were the same. C
and F can then provide insurance to RU as efficiently in the independent structure

as C can in the integrated structure.
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A

The two structures are equivalent when agents can fully commit to the terms
of the contracts. Hence, asymmetric information only cannot help to explain the
existence of different organizational forms of R&D activities. In the next section,

we characterize and compare the two structures in a no-commitment game.

1.5 Asymmetric information with no commit-

ment

The removal of the commitment assumption introduces the possibility for
players to renegotiate the initial contract and the possibility for a subset of players
to collude to extract rents from a third party. Under our assumptions, renegota-
tion is likely to affect the allocation under the integrated structure, while collusion

becomes a distinct possibility in the independent structure.

There are two potential instances in which players may want to renegotiate
a contract. First, the arrival of information may create some opportunity for
renegotiation. In the integrated structure, players may therefore want to rene-
gotiate immediately after RU observes the state of nature but before it chooses
a message. In that case, renegotiation, called interim renegotiation, would occur
after stage 3 but before stage 4. In the independent structure, RU may want to
renegotiate with F after observing the state of nature between stages 3 and 4. In
a similar environment, Beaudry and Poitevin (1995) point out that allowing for
interim renegotiation does not affect the equilibrium allocation of the game (see
also Holmstrdm and Myerson, 1983 ; Maskin and Tirole, 1992). The reason is
that, before selecting an element in the menu of the outstanding contract, an offer
to renegotiate is simply cheap talk which has no effect on the allocation. Allowing

for interim renegotiation would therefore not change the results.
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Second, the actual selection by RU of an element in the menu of the outstan-
ding contract may also create some opportunity for renegotiation. This is called
ex-post renegotiation. Players could renegotiate after RU has selected an element
in tl.le menu but before actions are actually executed. In the integrated struc-
ture, renegotiation would therefore occur at stage 4 after the message is sent to
firm C but before the innovation is developed and produced. In the independent
structure, information is conveyed to C and F by the actual production of the
innovated good, that is, RU communicates indirectly its information to its part-
ner C through the action it executes. After the production project is developed,
there is no room for renegotiation. Therefore, in the independent structure, the
indirect mechanism is a commitment device not to renegotiate (See Beaudry and
Poitevin, 1994 ; Caillaud, Jullien and Picard, 1995, for a discussion on this issue).

For the above reasons, we restrict ourselves to ex post renegotiation.

In the independent structure, a principal contracts successively with two agents.
The principal may be tempted to secretly agree with the agent at the second
contracting stage, not to behave as prescribed by the first contract. More specifi-
cally, the research unit could secretly agree with firm C not to reveal the level of
production implemented to F. RU could then select the lower financial contract
payment in the menu by lying, with C’s approval, on the innovation quality. The
way such collusion is modelled in our paper is similar to that in Laffont and Mar-
timort (1997). We allow the principal to include a report manipulation function
in the development contract which specifies the message sent to F for each level
of production. To make the analysis interesting, we therefore have to assume that

F cannot observe the production level.
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1.5.1 The integrated structure

In an integrated structure, when agents cannot commit, they play the following

game :

1. In the first stage, RU proposes a research and development contract cgp =

{I,{wq,qa}"_;} to C.
2. In the second stage, C accepts or rejects the contract.
3. In the third stage (if reached), RU observes the innovation quality c.

4. In the fourth stage, the contract is carried out; that is, RU selects a message
a € {l,h}.

(a) RU proposes a contract ¢, = (w, q).

(b) C accepts or rejects the contract offer. If it is rejected, the contract
crp remains the outstanding contract. If ¢, is accepted, it becomes the
outstanding contract. The innovation is then developed, produced, and

sold while transfers are paid as prescribed by the outstanding contract.

We characterize the equilibrium allocations that are not renegotiated along
the equilibrium path, namely, renegotiation-proof allocations. There are alloca-
tions that can be supported by equilibrium strategies that do not involve any

renegotiation along the equilibrium path.

Clearly, the integrated structure equilibrium allocation {I4, {wZ, ¢4}*_,} deri-
ved in the previous section is not renegotiation-proof. Suppose that the innovation
is drastic and that oo = h. Consider the following actions in stages 4 and 4.a: RU
selects the report o = ! and then offers the renegotiation allocation (w, q) with
q = qj),, where gj, = argmax {P(q,!)—D(q,h)}, and w = P(gp,, )= [P(gft, 1) —w).

C always accepts this renegotiation offer. Compared to the status quo, its utility
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is the same if it believes that the innovation quality is ! and higher if it believes
that the innovation quality is h. Therefore, C accepts this renegotiation offer for

any beliefs. RU utility would then be :

V(w,q,1) = v(wy — D(gi', h) + P(g}, 1) — D(g}y, h) — m(gf', 1)).

This utility is higher than that obtained without renegotiating. Hence, the

equilibrium allocation of the previous section is not renegotiation-proof.

A renegotiation-proof allocation must satisfy the following inequalities.*
V(wh, qn, h) > maxg, g {V(w,q,h) s/t
U(w,q,h) > U(wg, g4, h)
Ulw,g,1) 2 U(wg,q4,0)} Ya=1h  (RFf)
V(wi, qi, 1) > max(, g {V(w,q,1) s/t
U(w,q,h) > U(wé, g4, h)

Ulw,q,1) > U(ws,qd,)}Va=1,h  (RP})

These constraints are more stringent than the usual incentive-compatibility

constraints, and therefore, they represent generalized incentive-compatibility constraints

that incorporate the possibility of ex post renegotiation. Each constraint RP&
implies that, given a status-quo position (wgs,qs), C only accepts those renego-
tiation offers that increase its utility regardless of its beliefs. They are called
surely-acceptable renegotiation offers. Suppose that constraint RP¢ is satisfied at
a status-quo position (wf,¢4). For any offer that RU prefers to (w2, ¢2), there
exists a belief for C such that it is worse off under the new offer than under the
status-quo position. When assigned with this belief, C simply rejects the offer of
RU. If an allocation satisfies these constraints, it is not possible for RU to increase
its utility by selecting a message & € {/,h} and then offer a surely-acceptable re-
negotiation. It is in this sense that the renegotiation-proof constraints represent

generalized incentive-compatibility constraints.

4This is shown formally in Beaudy and Poitevin (1995).
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In Proposition 3, we characterize one such allocation as an equilibrium alloca-

tion, namely, the allocation that yields RU the highest expected utility.

Proposition 3. The allocation {I4, {wZ,q2}:_,} that solves the following mazi-

«? [

mization problem is an equilibrium allocation.

(Pr) max (,,g,30_y PV (wh,y gn, h) + (1 = p(1))V (wy, @i, 1) s/t
p(I)U(wha qh, h) + (1 et p(I))U(wl, qi, l) —7I=0

V(wh, qn, h) > maxg, o {V(w, g, h) s/t
U(w,q,h) > U(wg, a5, h)
Ulw,q,0) 2 U(wg, 4,0} Va=1,h  (RP)
V(wi, @i, 1) > max(y, o {V(w,q,1) s/t
U(w,q,h) > U(wg, g4, h)
U(w,q,l) 2 U(wg,q4,0)} Va =1,k (RP?)
Proposition 4. The solution to the Pg mazimization problem satisfies the follo-

wing relationships :

- For major innovations,
A_ A
% = 9 =49,

wi?_D(q;‘wh):wlA_D(ql*ah).'_P(qfh’l)—D(Q;h,h)_[P(ql*)l)_D(ql*ah)]'

— For minor innovations,
A_ ,x A *
9, =4y, g < a

wy — D(g;, h) = wit — D(gf*, h) + 7 (g}, h) — 7 (gft, h).

VA-—VA
- PN (gt + U~ U} = L.

With commitment, underproduction was chosen by RU in equilibrium in order
to satisfy the incentive-compatibility constraints without taking too much risk.
The effect of renegotiation is to limit the amount of underproduction, thereby

C

imposing more risk on RU. When the innovation is major, no distortion in q; can
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be used ex ante to induce truth-telling. In the other case, some underproduction
for the low-quality innovation is renegotiation-proof. It therefore arises to mitigate

the risk allocated to RU.

In all cases, the more stringent renegotiation-proof constraint is RP}, that is,
when the innovation quality is high and RU announces a low-quality innovation.
In order to satisfy the binding renegociation-proof constraint, the research unit
takes on more risk by increasing the wage gap. Finally, investment is defined by
the usual first-order condition and depends on risk sharing. We now move to the

independent structure game.

1.5.2 The independent structure

In an independent structure, when agents can collude, they play the following

game :

1. In the first stage, RU proposes a financial contract cg = {I, { Rin(g.) }2} to
F.

2. In the second stage, F accepts or rejects the contract.
3. In the third stage (if reached), RU observes the innovation quality c.

4. In the fourth stage, RU proposes to C a development contract

cp = {w(¢a), ey ™(¢a)}r; which includes a secret manipulation report

function m(q,).
5. In the fifth stage, C accepts or rejects the contract.

6. In the sixth stage (if reached), the contract is carried out : RU implements

the production level g5 and the corresponding report m(qs) is sent to F; the
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innovation is then developed, produced and sold while transfers are paid as

prescribed by the contract.

We model collusion between RU and C as a secret report manipulation func- -

tion :
m(gs) : {q,an} — {I,h}.

This function defines a report m(gs) for each level of production gz. For an in-
direct message qs € {q,qn} selected by RU, C and RU secretly agree to report
the message m(gs) to F. This collusive agreement allows RU to report, possi-
bly, different direct and indirect messages m(gs) and g4 to F and C respectively.
Moreover, using the report manipulation function, RU can coordinate its com-
munication activity with C. Even if C is asked by F to report the innovation
quality or production level implemented, the development contract tells C to act

as prescribed by the report manipulation function.

Clearly, the equilibrium allocation with commitment is not an equilibrium of
this game. Assume that oo = h. If RU proposes the collusion agreement mB(q,) =
! for all ¢, € {qi, qn}, that is, to report a low-quality innovation to F regardless of
the indirect message g5, then RU’s ex post utility is v(r (g}, h) — RF). Since RP >
RE, RU’s payoff is increased when RU and C secretly agree to report m(gs) = !
when a = h. Hence, this allocation is not robust to a collusive agreement between
RU and C, that is, it is not collusion-proof. Expecting the collusion, F would

refuse to sign this contract.

In order to find the equilibrium allocation, we proceed by backward induc-
tion. We first consider the development-contracting “subgame” starting at stage
3. We provide necessary and sufficient conditions for a development contract to
be an equilibrium of this subgame for any given financial contract. We derive the

equilibrium financial contract offered in stage 1.
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Lemma 1. For a given financial contract {I,{R(g,)}"_,}, an allocation
{w®(qa), g8, mB(a)}r_, is an equilibrium allocation of the development-contracting
subgame if and only if it solves the following mazimization problem.

(Pop) maX(y(g,) gamiga)yt, PV (W(a) = Ringan)s ans b)) + (1 = p(I))V (w(qr) —
Roay ai,l) s/t

U(w(gr),gn,h) > 0 (IRF)
Ulw(g) @!) > 0 (IRf)
V(w(gn) — m(qh) k) 2 V(w(@) = Bmg),ah)  (ICh)
V(w(a) = By, 1) 2 V(w(gn) — Bimggy), i, 1) (ICh)

The effect of the report manipulation is captured in the incentive-compatibility
constraints. They state that RU proposes a secret report agreement that provides
it incentives to reveal its information to player C. In Lemma 2, we characterize

the equilibrium allocation of this subgame.

Lemma 2. For any financial contract {I,{ R }2_,}, the equilibrium develop-

ment allocation of the contracting subgame satisfies the following relationships :

- P(¢8,a) — w, =0, Yo € {I,h}.

- For major innovations,

B g of = a if m(q¢,1) = P(qy, b)) — D(g;, 1)
» Yh —
q; otherwise

with g§ > g}, such that 7(q},1) = P(q8,h)) — D(q7,1);

— For minor innovations,
P Y if  w(a;, k) 2 P(g},1) - D(qf, h)
9% =, 4 =

g’ otherwise
with ¢f < qf such that (g}, h) = P(¢f,1) — D(¢f, h);

- mP(.) is such that m®(q,) = argming{R,}, V4a € {q, an}.
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Equilibrium wages are still defined by C’s ex post binding participation constraints.
In order to satisfy the incentive-compatibility constraints, overproduction occur
for the high-quality innovation. The agents RU and C secretly agree to report
to F the innovation quality associated with the‘lower repayment. Note that the
development contract does not depend on the given financial contract. We now

solve for the equilibrium of the whole.

Proposition 5. The equilibrium financial contract is such that :

- RB=RP =15,

- P/ (I%) o = 1.

The main consequence of collusion is that F cannot provide any insurance since
financial repayments are the same in each state of nature. This financial contract
can therefore be interpreted as a debt contract in which the initial amount lent IB
must be paid back at the end of the R&D process. Since RU takes all the research
risk, investment is therefore determined by the incremental value of a high-quality
innovation compared to low-quality one. Since the equilibrium financial contract
is a debt contract, no information needs to be revealed to F. The development
contract is therefore negotiated in a two-agent signalling environment. C’s indi-
vidual rationality constraints are binding. When the binding incentive constraint
is that for a low (high) quality innovation, RU may overproduce (underproduces)
when innovation quality is high (low) in order to satisfy this constraint. In the next
section, we endogenize the organizational choice of R&D activities by comparing

the performance of the two structures.
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1.6 Performance of the two structures without

commitment

Suppose now that the organizational choice of R&D activities is endogenized.
RU’s decision as to whether produce an innovation in an integrated structure or
in an independent structure depends on its expected utility under each structure.
To make the comparison simple, we introduce the following assumption on the

innovation profit.

Assumption 1. There ezists A € (0, ”(q*’h)tD(q*’h) such that P(q,l) = AP(q, h),
P(ql h) ,
Vg € [0,q).

It says first that that low-quality innovation profit is a linear transformation
of the high-quality innovation profit. This characterization gives us a simple
interpretation of so-called innovation drasticity. A major innovation is represented
by A < 1, while a minor innovation is the case A > 1. When A = 1, the innovation
quality does not effect the profit. Such an innovation is called neutral. Second, the
gap between marginal profits in case of minor innovation should not be too high.
This condition guarantees that production is not distroted in equilibrium for minor
innovations. Note that the upper bound on X depends on optimal productions.
However, as long as ¢ < g, this upper bound exceeds 1 and therefore a minor

innovation is allowed. ®

Proposition 6. For major (minor) innovations, the integrated (independent) struc-

ture dominates. For a neutral innovation, both structures are equivalents.

Proposition 6 states that, the choice of structure depends on the technology.

The intuition of this result can be given in terms of the effects of contractual

SNote that assumption 1 is used only to prove that the independent structure dominates for

minor innovations such that A is “not too high”.
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imperfections of the extent of risk sharing provided to RU. Agency costs come
from the fact that the contract is used to insure RU against the risk of innovation.
The achievement of this goal conflicts with asymmetric information and non-
commitment. To understand the result, it is useful to assess the relative impact
of these factors on risk-sharing. Suppose first that C’s revenues are independent
of the quality of innovation (A = 1 in the example). As shown in the proposition,
both organizational structures are equivalent. Collusion and renegotiation have

the same effects on the extent of risk-sharing as all risk is shifted to firm RU.

Now suppose that a low-quality innovation generates slightty higher marginal
revenues than a high-quality one (A > 1). In the independent structure, this
improves risk sharing as the difference between V}, and Vj shrinks. This difference
shrinks since increasing A increases the profitability of the low-quality innovation.
Since firm C gets its reservation value in each state and financing is achieved
through debt, firm RU gets all benefits from such increase, thus incfeasing its
expected payoff and improving risk-sharing. In the integrated structure, increasing
A makes the renegotiation-proof constraint less stringent and therefore allows for
some distortions in ¢; to improve risk-sharing. But this implies that RU cannot
appropriate the whole surplus generated by the increase in A\. The independent

structure then domiates the integrated structure.

Now suppose that a low-quality innovation generates slightly lower marginal
revenues than a high-quality one (A < 1). In the independent structure, this
worseur risk sharing as the difference between V}, and V] increases. It increases
since decreasing A decreases the profitability of the low-quality innovation. As
in the previous case, firm RU supports the full loss from such decrease, thus
reducing its expected payoff and suffering more risk. In the integrated structure,
risk-sharing is unaffected as all increase in risk is supported by firm C. Firm
RU, however, still supports the full loss in the profitability of the low-quality

innovation. The integrated structure then dominates the independent structure.
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The difference between the two cases stems from the effect of technology on
the amount of risk in the venture. From a situation where there is no revenue risk
(A = 1), increasing A reduces the total risk, that is, the risk of P(q,a) — D(g, a).
In the independent structure, RU supports all risk. It can therefore gain from
the increase in revenue as well as from the reduction in risk. The independent
structure is then optimal. When ) is decreased, the opposite holds. Total risk is
increased. In the independent structure, RU support all this extra risk while also

losing from the loss in revenue. The integrated structure is then optimal.

This result has a testable implication. The innovation must be major (minor)
for in-house (independent) R&D. For instance, consider the R&D process in the
pharmaceutical industry described in the introduction. Development activities
consist in testing the new drug. The development process starts from toxicology
analyses and goes through clinical trials on animals, human volunteers and then
patients (small samples and then large samples). The molecule must be patented
before entering in the trial process. The patent-protection lasts twenty years
and the trial process can take several years.® Saving time during the development
phase is therefore particularly important. Every day saved on trial is an extra day
of patent-protection saved. The trial period of an innovation costly to develop is
long and therefore lowers its patent-protection and, finally, the gross profit of the
pharmaceutical compagny. This corresponds to the case of major innovation. QOur

model predicts that the R&D activities are more efficiently organized in-house.

For a technological innovation, it is often the case that when the cost to install
a new technology is high, the saving on production cost is high. Consider the
information-technology industry. Suppose that a firm can reduce its costs by
using a more efficient communication network. A new telecommunication network

is costly to install but can treat a lot of information very quickly. An improvement

8The Economist, February 21st, 1998, Tapon and Calsby (1996).
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of the existing network is cheap to install but it is usually less efficient. In this
case, the innovation is minor. Another example is the computer industry. When
a new version of an existing software or system is adopted by a firm, the costs
incurred by the research unit (mostly the training of the user firm’s employers) is
low. When the software or the system is very different, and therefore needs more
training, the saving on production costs could be very high. Again innovation
is minor. In these two cases, our model predict that the innovation should be

produced by an independent firm.

These two examples seem to fit with stylized facts. Most research in the
pharmaceutical industry tends to be produced in-house. And most research in
information technology seems to be produced by independent firms. Our model
rests its explanation of these facts on different contractual imperfections. Integra-
ted firms tend to be inefficient because it is easy to deviate from an initial plan,
which we model as renegotiation here. Independent firms incur agency costs when
seeking external financing, which we model as collusion here. We believe that a
different formulation for these agency costs would still yield a tradeoff between
the two structures, albeit maybe different. The advantage of our modelling as-
sumptions is that it yields a definitive tradeoff which seems to broadly fit some

stylized facts.

1.7 Conclusion

This essay studies the optimal structure of R&D activities in a model with a
random research process, asymmetric information about its outcome and hetero-
geneity in agents’ attitude toward risk. We prove that, while the two structures
are equivalent in a full-commitment world, a tradeoff emerges when players are

allowed to renegotiate and collude. In the integrated structure, RU has incentives
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to renegotiate after the report is made. It has to take more risk by proposing
ex-post efficient production levels and by increasing the wage difference. In the
independent structure, RU is tempted to secretly agree with C to manipulate the
message sent to F. The financial contract must then be a debt contract, and F
cannot provide any insurance to RU. However, RU can mitigate the risk taken by

distorting the production level.

We find that the integrated structure dominates the independent struture when
the marginal cost of developing the innovation is negatively correlated with its
marginal revenue, that is, when an innovation which is cheap to develop creates
a more drastic process innovation or a product innovation with a higher market
value. The independent structure performs better than the integrated structure
in the opposite case. This result provides a testable implication of our model. Our
approach explains how the organizational structure of R&D activities depends on

the technological properties of innovations for each industry.



Chapitre 2

Income-sharing within extended

families as a social norm

Abstract

In this essay, african income-sharing within extended families is modeled as
a social norm implemented by the community authority and then mutually en-
forced by agents through individuals’ heterogeneous valuation of social status.
It is explained how norm obedience could be observed in a Nash equilibrium.
Full income-sharing is implemented if and only if there is full obedience to this
norm. Otherwise, the norm solves a trade-off between risk-sharing and mutual
enforcement. Partial risk-sharing is achieved and some norm disobedience arise in
equilibrium as a second best. This approach helps to understand the effects and

efficiency of public policy in developing countries.

40
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“Quicongue a été au chomage en Afrique
sait 6 quel point la fameuse solidarité
africaine sert surtout o dilater

I’égo social de parents fortunés”

Axelle Kabou
“Et si I’Afrique refusait le développement ?”

Editions 'Harmattan, Paris, 1991.

2.1 Introduction

In Sub-Saharian Africa, rich family members provide to the basic needs of their
poor relatives. They protect against income shortfall, disease, or unemployment.
Mutual assistance arrangements allow people to share risk in an informal way.
All risk averse agents benefit ex ante from a behavior that smoothes their future
consumption. But ex post, an agent with a high secure revenue has to share his
income even if he does not ever benefit from the mutual assistance arrangement.

How come this agent has incentives to fulfill his duties ?

This paper proposes a mutual enforcement mechanism which explains the prac-
tice of an ex post income-sharing within an enlarged family. This mechanism is
based on the agents’ valuation of “reputation” d la Akerlof (1980). Reputation
can be interpreted as social status, popularity, esteem, shame or guilt. Because
they care about others opinion, agents may conform to an income-sharing social
norm. This mechanism is limited by peer pressure capacity. Therefore some fa-
mily members would prefer to disobey the norm even if they are punished by their

relatives.

The income-sharing norm is endogenized as an informal rule implemented by
elders, the traditional community authority. Parents are assumed altruistic with

their children. The elders’ objective is to maximize the norm obedients’ expected
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utility by sharing risk via ex post transfers. Optimally, elders want their children
to share fully their income. However, full income sharing may be too demanding
and may induce too much norm disobedience. The full income-sharing norm will
be implemented by elders if and only if everyone obey it. Otherwise, the norm
solves a trade-off between risk sharing and ex post enforcement. Partial income-
sharing with some norm desobedience may be implemented as a second best. In
other words, it may be ex ante efficient to design a norm that will not be fulfilled

by some family members.

Nonconformists benefit from the informal insurance without paying the cost.
They are subsidized by norm obedients and reduce the norm efficiency. They
cannot be excluded by letting them decide ex ante not to enter into the mutual
insurance network : There exists a subgame perfect equilibrium where all agents,

conformists and nonconformists, adhere ex ante to the income-sharing agreement.

A redistributive policy does not necessary perform better than the income-
sharing norm because of high administrative costs in LDCs. These costs should be
compared with the proportion of nonconformity to the equivalent income-sharing
norm. When they are sufficiently low, a redistributive policy supplemented by the

income-sharing norm increases agents’expected utility.

The current chapter proceeds as follow. Section 2.2 motivates our approach.
Section 2.3 describes the model. Section 2.4 analyzes income-sharing norm prac-
tice in equilibrium. Section 2.5 endogenizes the norm as an informal institution.
Section 2.6 analyses income-sharing as an informal contract. Section 2.7 gives
some comparative static properties. Section 2.8 discusses norm efficiency and

public policy. Section 2.9 concludes the paper.
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2.2 Motivation

Two explanations for self-enforcement have been proposed. The first vone is
altruism. If an agent cares about his relative’s utility, he gets vicarious satisfaction
from increasing his relative’s consumption by giving him a private transfer (see
e.g. Dearden and Ravallion (1988)). Although altruism might be relevant to
motivate transfers between parents and children, strong altruistic links between

cousins can less easily explain the importance of inter-vivos transfers.

The second motive is given by the repeated game literature. Income-sharing
is interpreted as a cooperative equilibrium of an infinitely repeated game where
risk averse agents earn a random revenue at each period. Agent’s self-interest
remain into the mutual insurance arrangement by making transfers as long as
he expects to benefit from it. This “reciprocity without commitment” has been
described in LDC’s by Fafchamps (1992) and formalized by Coate and Ravallion
(1993) ; Ligon, Thomas and Worral (1997). However, reciprocity does not explain
why agents with a relative secure revenue subsidize poor relatives with low future

opportunities.

This kind of behavior is often observed in African societies. Indeed, Fafchamps
(1995) points out that people suffering from incurable disease, physical or mental
handicap, are not excluded from the mutual assistance network. Mahieu (1990)
finds that most of Abidjan university employees give high private transfers to their
family. Lucas and Stark (1985) observe that migrant remittances are not generally
paid back. They argue that private transfer from Botswana migrants may be mo-
tivated by a “social asset” such as the relationship with family and friends. Even
if inter-vivos transfers should be partly motivated by a combination of altruism
and reciprocity, empirical evidence suggests that they also arise because people

want to conform to an informal rule publicly known as welfare improving.
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Platteau (1996, 1997) observes that, first, able men have refused promotion
because the material benefit may not compensate their relative claim. Second,
an individual”s unshared capital accumulation would be generally disapproved by
the community.! People would not disregard individual saving and investment
if agents were altruistic or if saving behavior constitutes a rational outcome of
the repeated contract. They disapprove a person who does not fulfill his duty
by keeping her temperary monetary gain. As a consequence, money received
from public aid or from a credit program is often partly misappropriated from
the financed activity to be redistributed within the community.? Furthermore,
a credit program can be rejected by a community because of inconsistency with

sharing obligations (see Lewis, 1978 ; Ghatak and Guinnane, 1998).

The anthropological literature points out that human’s behavior is strongly
influenced by informal rules in African traditional societies (e.g. Guyer, 1981).
These rules are designed and enforced within the traditional organization, the
extended family or lineage. This organization is composed by households which
descent from a common ancestor. They recognize the authority of some particu-
lar elders. Community leaders define informal rules like the income-sharing norm.
Hence, households are not the unique economic decision unit, but rather only a
subset of an often quite large extended family. Therefore, as argued in Grimard
(1997), Mahieu (1990), Gastellu (1980), the household’s behavior should be ana-
lyzed in conjunction with its kinship group. Whereas these rules are not legally

stated, the whole community enforces it.

The enforcement of a social norm requires at least three elements. First,

Platteau reports the case of a prosperous fisherman who was disapproved by the community
for arresting children of poor families who seized a few fish from his stock oiled up on the beach

in Senegal.
?For instance, Ndione (1992) reports that, in a credit project in the suburb of Dakar, 22.6%

of the total amount of loan was investing in “social assets” rather than in the project it was

earmarked for.
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community members have to be informed : They must know that agent X failed
to obey to the rule. They must be able to punish norm disobedient. Third, the
penalty mechanism must be credible : People should have incentives ex-post to

punish norm disobedient.

The diffusion of the information about members’ behavior concerning informal
rules occurs during frequent visits and meetings between relatives. Traditional ce-
remonies like baptisms, weddings, funerals, religious events, gives the agents the
opportunity to advertise the gifts.> There is a “common knowledge norm” about
the gift that must be done contingently on the donor’s and the recipient kinship
and fortune.* The “Griots” advertises people’s behavior by singing the donor’s
praises (Azam, 1995). This facts are evidences that, contrary to the altruism ap-

proach, the diffusion of information about transfers within the community matter.

An agent may accept to reduce its consumption by sharing its income because
he may come to desire esteem from its relatives.5. Penalties are applied via social
status or reputation. This good is produced and allocated by the community
members. A person’s capacity to lower other agents’social status depends on
his conformity to the norm. In equilibrium, norm obedients keep their social

status and punish norm desobedients by reducing their social status. The person’s

3Lund and Fafchamps (1997) finds that rituals have a larger impact on private transfers in

rural Philippines than unemployment or crop shocks.
4For instance, a poor Senegalese woman interviewed by Ndione (1992) sets out her transfer

behavior (my translation) : “I benefit from the network established by my family.[...] I am often
invited to ceremonies, weddings, baptism, funerals and I always make a gift to my host. My
partner gives me always twice the gift when he have to make his gift back. The value of the
gift and the timing of the payment depend on the quality of the relationship. When it is a close
relative, I can delay the payment. [...] when I need money, I visit my relations. But it do not

happen often because my relatives do not wait until there are in demand. It is how you recognize '

real relatives.”
SNote that this approach is closely related to altruism : It is assumed that that a person

cares about someone else’s opinion about him (or her) rather than someone else’s feelings.
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reputation is therefore affected not only by his conformity to the norm, but also by
community members’attitude with regard to the norm. The more people conform

to the norm, the higher is the loss of social status for norm desobedients.

The idea that an agent satisfaction is influenced by other persons’ opinion
about his behavior goes back to earlier economist’s debates on agent utility concept.
Bentham in 1789, cited by Becker (1974), mentioned about 15 basic kinds of plea-
sures and pains, among others “the pleasures... of being on good term with him or
them”. Becker (1974) formalized this concept by including “basics wants or com-
modities” in an agent utility function. These “goods” are produced with others
agents actions such as their consumption’s choices or their opinion. Indirectly, the
agent’s satisfaction about “basics wants or commodities” are influenced by other

agents’ actions.

Akerlof (1980) has used Becker’s generalized utility function in his theory of
social custom. He assumes that a person’s utility is affected by his reputation
within his community. Deviations from social customs are punished by loss of re-
putation. The reputation loss depends on other agents’ obedience to the custom.
Akerlof shows how stable inefficient customs are sustainable in LDCs’ labor mar-
kets. My approach is based on Akerlof’s concepts and applied to income-sharing.®
As in Akerlof, the agent individual utility is affected by his reputation within the
community. This reputation depends on others’ behavior. However, there are at
least two important differences between Akerlof’s analysis and this paper. First, I

introduce heterogeneity in the agent’s reputation valuation. Hence, we could have

®Recently, Akerlof’s model has been applied in several economic contexts. Corneo and Jeanne
(1997) explores conformity to consumers’ behavior when the private value of a good depends on
other consumers’ purchases. Lindbeck, Nyberg and Weibull (1997) assumes that people suffer
from a disutility of not working by an amount decreasing with economic equilibrium unemploy-
ment. Other papers (Kandel and Lazear, 1992, Rob and Zemsky, 1997) model workers’peer

pressure and mutual monitoring within firms.
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partial obedience to social custom in equilibrium. Second, I explain not only social
custom persistence but also how and why a norm came into being. Consequently,

the social custom is efficient in equilibrium.

The enforcement mechanism has several alternative interpretation. First, it
could be emotions such as guilt or shame. These feelings could be modeled as
utility losses that depends on other agents’ morality in regard to the norm (Kan-
del and Lazear, 1992, Elster, 1998). The larger is the fraction of the population
adhering to the norm, the more intensely it is felt by the individual. Shame is
a social sanction involved by conformists. It is external pressure that requires
observability. Guilt is internal pressure increasing with the proportion of norm
obedience. Second, the penalty might be a material loss controlled by the commu-
nity. The nonconformists could be excluded from common-pool resources (land,
forest, fisheries, water). They could loose their inheritance (Hoddinott, 1994). In
many African rural societies, the property right of land is allocated by the vil-
lage council (e.g. Schmitz, 1993) which might disinherit norm desobedients. The
probability of being disinherited should depend on the level of norm conformity
within the community. Third, as argued by Platteau (1996), witchcraft could be

a form of social justice.

The norm requires not only that agents share their income but also that they
punish norm desobedients. Such behavior is rational ex post even if sanctioning
is costly as long as norm obedience and mutual punishment are decided simulta-

neously. The set up fits with Elster’s definition of a social norm (Elster, 1989) :

“When there is a norm to do X, there is usually a “meta-norm” to sanction
people who fail to do X, perhaps even a morm to sanction people who fail to
sanction people who fail to do X. As long as the cost of expressing disapproval is

less than the cost of receiving disapproval for not expressing it, it is one’s rational

self-interest to express it.”
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In the case of income-sharing, a poor asks for transfer and disapproves of those
who do not give. A rich who shares his income wants the other rich to give in order
to reduce his individual transfer. He exerts pressure to induce his rich relatives
to share their income. Consequently, both poor and rich norm conformists have

ex-post incentives to punish nonconformists.

The income-sharing norm is endogenized as an informal redistribution rule
implemented by elders. This assumption is based on the traditional gerontocratic
nature of African societies. In those oral based societies, rules and agreements are
not formally written. They remain in the most experienced people’s memory, the
old generation members. Elders define unwritten rules and judge agent behavioral
conformity to these rules. Indeed, the oral tradition of African societies implies

its gerontocratic nature (e.g. Koulibaly, 1997).

This assumption is not restrictive. Since the norm is the best informal risk-
sharing arrangement, it could endogenize by making alternative assumptions.
First, it should be implemented in any democratic community. Suppose that
the norm is proposed the community authority. It will be unanimously accepted
by all members. Second, it could emerge from an evolutionary process. We now

introduce the model.

2.3 The model

Consider an overlapping generation economy where agents live two periods.
Each generation interacts with the preceding generation at the first period and
with the following generation at the second period. An extended family or a
community is composed by a continuum of individuals. Each individual utility
U(C,R,0) = u(C) + 0R is a function of consumption C, reputation R and an

agent’s characteristic @ which represents the agent’s taste for his reputation. The
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parameter 6 balances the individual preferences for consumption and the social
preferences for community judgement : Agents with an higher (lower) 8 are more
(less) affected by their relatives opinion. This taste for reputation may be in-
terpreted as the physical or psychological distance from the agent’s family. It is
privately observed by agents. All agents are equally risk averse : u is increasing
and concave (u' > 0 and u” < 0). The agent’s taste for reputation 8 is distributed
within the extended family in © = [g, 8] at each generation according to a publicy

known cumulative F. The cumulative first and second derivatives are respecti-

vely denoted f and f’. The following assumption is made on @’s distribution” :

F16) > L.

An agent’s income is drawn from an i.i.d. random walk y. With probability p,
an agent earns a wage from a formal job or an output from a production activity :
y = 9. He is considered as “rich”. Otherwise, he is “poor” and he has only access

to an informal job where y = y. There is a (possibly large) gap between § and Y

(7> y).

An income-sharing norm affects both consumption and social status. Formally,
it defines the transfer o that must be given by a rich to the poor contingent on the
economic environment and a punishment mechanism which affects individual’s
social status. A rich has to transfer « to his poor relatives and thus consume
C' = gy—a. A poor receives the transfer ¢ if he practices the income-sharing norm
and consume C = y 4+ 4. The transfer is the same for all the rich and therefore o
does not depend on the agents’ own taste for reputation 6. The conformity to the
income-sharing norm affects individual’s social status : if an individual follows

the social norm, he does not suffer from a loss of reputation. His reputation is

If @ is interpreted as the physical or psychological distance from family, it is natural to
suppose that, if the family core location is normalised at § = 8, the proportion of the family
members decreases with the distance between 6 and 8. This assumption is also satisfied for

uniform distributions. It is made for technical convenience.
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therefore normalized to 0. Otherwise, he is punished by his relatives who obey
the norm. Let r be one agent punishment capacity. The total reputation loses
depends on this fixed individual sanction r and on the equilibrium proportion
of norm obedient. It is assumed that the extended family or the community is
large enough so that the ex post proportion of rich and poor can be correctly
approximated by, respectively, p and 1 — p; and that 6 is ex post distributed
according to F' in © among the rich population. Agents ex post utility is now

derived.

A poor agent receives a positive transfer § and does not suffer from a loss of

reputation. His self-interest is to follow the norm. His ex post utility is :
U(y,0,0) = u(y +9)

Let us denote u the proportion of the rich family members who practice the

income-sharing norm.?

An agent who obeys (disobeys) the income-sharing norm when he is rich will
be referred to a conformist (nonconformist). A rich conformist consumes § — «

and does not suffer from a loss of social status. His utility is :
U - ,0,0) =u(y — a).

An nonconformist consumes all his income . He is sanctioned by the conformists,

that is, his 1 — p poor relatives and the pu rich conformists. His reputation® is

8If 4 = 0, no transfers are given and the income-sharing norm is therefore not implemented.
9The model is consistent with a bequest motive to remit. When the social sanction is disin-

heritance, 0r is interpreted as the agent 8’s value of his bequest (6 represents the surface of land
and r, the future profit from land per unit of surface). Assume that agent is conformist, he gets
the bequest with probability 1. Otherwise, the probability of receiving the future bequest is a
function of the community’s opinion. The agent 6 expects to have his bequest with a probability
given by the proportion of nonconformists, 1 — [1 — p+ up], and nothing otherwise. His expected
valuation of bequest is (1 —[1 —p+ up])ér. It is straightforward to show that this interpretation

gives an equivalent analysis of the income-sharing norm.
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—(1 = p+ pp)r. His utility is :
UG, —(1 —p+pu)r,0) =u(@) — (1 — p+ pu)r.

The family budget constraint states that the total gift (1 — p)d received by the
poor is shared between conformists. For y # 0, transfers given (a) and received

(6) must satisfy the following constraint :

ppa = (1 - p)é. (2.1)

We now introduce the sequence of actions in the model. Each agent plays the

following game :

1. He observes his type 6 and he learns the social norm o from the last gene-

ration.
2. He observes his random income y € {y, 7}.

(a) He is rich (y = ) with probability p.

(b) He is poor (y = y) with probability 1 — p.
3. He chooses between :

(a) being conformist (sharing income and punishing nonconformists)

(b) being nonconformist.
4. He gets his pay-off.
5. He designs and teaches a new norm « to the next generation.
An individual has to make the following choices. First, after observing his

income, he chooses to be conformist or nonconformist. Then, he designs the next

generation norm. The second action, the norm design, is not affected by the
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first action, agents conformity behavior. Hence, one agent decision regarding the
next generation norm design does not depend on his conformity to the current
norm. Therefore, we can derive the population norm obedience for a given trans-
fer o (section 2.4) before endogenizing the next generation income-sharing norm

(section 2.5).

2.4 The practice of an income-sharing norm

Given the other agents’ behavior, an agent decides to be conformist if his
utility is higher. Because there is a continuum of agents in this economy, a single
player weight is nil. Therefore, one agent strategy does not affect significantly
the equilibrium proportion of conformists. Hence, for each agent, the other rich
players strategy is captured by the proportion of rich conformists ¢. We now
derive the Nash equilibrium of this game defined by a proportion of conformists

p* such that, given the other’s behavior p*, each individual maximizes his utility.

Suppose that all agents in the economy are expecting a proportion of rich

conformists p. A rich person of type 6 decides to be a conformist if and only if :
U(ﬂ - a,0, 9) > U(g, —[1 =D +p,U,]T', 9)

This condition can be rewritten :

u(g) — u(g - a)
O v

An individual obeys the code of behavior if his taste for reputation is bigger than
what he gains in utility from consuming all his income per unit of reputation loss.
We can now characterize the critical agent or taste 8 such that all rich individuals
with a higher taste choose to conform to the norm and those with lower taste

choose not to. Before doing that, we need to introduce new notation. Let uz be
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the minimum proportion of conformists that convinces the § =  type agent to
obey the norm :

u(§ — @) = u(§) — [1 — p + puglr.
It is assumed that the sanction by the poor alone does not induce the higher 6 type

agent to be a conformist and therefore pz > 0. Let ug be the minimum proportion

of conformists which convince the § = 8 type agent to follow the norm :

u(f — @) = u(f) — 8[1 — p+ puglr.

Hence, we have :
wy) —u(@-o) 1-p

7

@

Orp p’
” _u@-u@-o) 1-p
¢ frp p

Since 8 > 8, then pz < pg. Note that uy does not exist if agent § does not obey

the norm for py=1:
u(y — o) <u(y) -1 -p+plr

That is if the community enforcement capacity is lower than r defined as :

T<£=U(ﬂ)—z(ﬂ—a)_

In this case, we define pg = 0.

The taste 6 of the agent indifferent between obeying and disobeying the norm

is :

0 if B> e

6(w) = oM if py> >y - (22
0 if  w<ug

The function @ characterizes the rich best reply for a common expected pro-

portion of rich conformists u. If y is higher than g, then all the rich decide to
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be conformist. If p is lower than ug, then they all choose to be nonconformist.
For p: pg > p > pg, the best reply for the rich with a reputation taste higher
than @() is to be conformist. For those with a reputation taste lower than 10}
the best strategy is to be nonconformist. It is shown in the Appendix that the
function @(u) is decreasing and convex in (4, ttg]- This function is illustrated in
Figure 1 when py does not exist, that is 7 < r, and in Figure 2 otherwise by the

plain line.

It is easy to derive the proportion of conformists for a given indifferent agent .
Since f is the density of agents’ taste for reputation # within the rich population

share, the proportion of rich conformists for a critical taste @ is :

u(f) = /;f(O)dﬂ,

which can be rewritten :
p=1-F(). (2.3)

The relation (2.3) between  and @ is represented by the dotted line in figures 1
and 2 for a taste @ uniformly distributed in ©.

The Nash equilibrium is defined by a proportion of rich conformists p* such
that, given the others’ behavior y*, each individual maximizes his utility. In other
words, at p*, each agent plays his best reply to other agent strategies which are
represented by p*. Nash equilibrium is computed using equations (2.2) and (2.3).
The rich best reply A(u) stated in (2.1) defines the critical taste 8 for a proportion
of rich conformists u. Equation (2.2) yields the proportion of rich conformist p
for each critical taste 6. In equilibrium, the rich best reply function evaluated at
p* equalizes the equilibrium proportion of conformists. The equilibrium p* of this

game is defined by :
w=1-F@(w),
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which can be summarized by :

1 if w2
W= 1= FOESEER) if pg >t > gy (24)
0 if <

Mathematically, an equilibrium is a fixed point of the right-hand side of (2.4).
This function gives the best reply proportion of conformists for each proportion of
conformists. Since this function is an increasing continuous function of s mapping
the unit interval [0, 1] into itself, there exists at least one equilibrium proportion
of conformists. In fact, the equilibrium % where no rich follow the norm (u3 = 0)
always exists. Depending on the economic environment, and specifically on the
enforcement capacity r, there may be two more equilibria y} and p%. In figures 1
and 2, equilibrium points are located where the two curves are intersecting. There
is one equilibrium p} with a high proportion of conformists and one equilibrium
¢35 with a low proportion of conformists. If r > r, then the enforcement capacity
is high enough to make uj = 1 : There exists an equilibrium where all the rich

conform to the norm. Otherwise, some rich will disobey the norm in equilibrium.

We can identify two main features from Figures 1 and 2. First, positive trans-
fers from the rich to the poor can be observed in a Nash equilibrium. Second,
conformity to the norm can co-exist with some nonconformity. This result is ex-
plained by the agent’s heterogeneous taste for reputation. Since some agents are
less affected by their reputation, individuals are not equal with respect of the
income-sharing norm enforcement. Consequently, nonconformists have higher ex

post pay-offs than conformists.

Multiplicity of equilibrium raises the problem of equilibrium selection. One
may ask which norm practice is expected to be observed from a given income-
sharing norm in a given economic environment. I argue that, because {5 1S uns-

table, we can naturally eliminate this equilibrium from the set of plausible equili-
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bria. In the model, the stability concept could be interpreted as follows. Assume
that a Nash equilibrium is reached by the following tatonnement or learning pro-
cess. Starting from an initial common expected proportion of rich conformists pq,
agents choose their best strategy. Then, given the best reply proportion of confor-
mists, they readjust their behavior and decide whether to remain conformist or
not until they reach a Nash equilibrium. If yy # p} then norm practice converges
toward one of the stable equilibria. More precisely, if ug < u3, the learning process
converges toward u3 and otherwise it converges toward u}. Moreover, u} is not
robust to a local perturbation induced by a subset of agents of positive mesure
deviations. Suppose that a measurable subset of agents deviates from the Nash
equilibrium p; and that they readjust their behavior by playing the same titon-
nement process starting from the out of equilibrium norm conformity. Only one
of the two stables equilibrium, u} or u}, would be reached, not u5. There are two
only stable equilibrium, one, u}, with a high proportion of conformists (possibly
full obedience to the norm), the other, u3, with no practice of the income-sharing

norm. We now endogenize the income-sharing norm.

2.5 The income-sharing norm design

The income-sharing norm is designed by the preceding generation and then
taught to the next generation. It is assumed that agents are equally altruistic for
their children. When designing a norm, an elder’s objective is to maximize the
expected utility from future norm obedience. Formally, elders choose the transfer
given'® a which maximizes the sum of the next generation conformists’ expected
utility discounted by the altruism factor. However, each generation defines a new
norm and this decision is not affected by the current norm or its conformity. The

elders’ influence is therefore bounded to the next generation. Hence, the elders’

'ONote that they can equivalently define the corresponding transfer received .
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objective is reduced to the next generation expected utility.!!

When implementing an income-sharing norm, elders expect to reach the cor-
responding equilibrium 4*. For a given «, a conformist’s ex ante expected utility

is :

app* )
1—p”
Since 3 is unstable and there is no norm practice at ), elders naturally expected

U(0) = pu(g — a) + (1 — p)u(y +

to reach the equilibrium pi. Therefore, the expected equilibrium is a stable strictly
positive equilibrium p* = p}. Formally, the following property is satisfied for local

stable!? interior equilibrium p* :
FOW))E (") < 1.

The transfer is defined contingently on economic environment parameters. The
amount given o depends on the rich’ s aid capacity g, on the needs of the poor
Y, the proportion of rich, the agent’s preferences and punishment capacity : o =

a(¥,y,p,7). An income-sharing norm is full income-sharing defined by :

*  F

_ p_ | ppa
J—« g+1_p
F g_y
= o = —4g—.
B

The income-sharing transfer solves the following maximization program :

"' The model can be extended by allowing for intergeneration example effects. That is, let
what a generation does influence what the next generation feels its duty is. Individuals which
descent from nonconformists would not learn about the income-sharing norm. Indeed, they
would be excluded from the mutual insurance system. The proportion of conformist should

therefore decrease. However, it could be compensated by the population growth.
1When considering the dynamic tatonnement process pt = 1= F(B(u_1)), the equilibrium

. . o d
p* is locally stable if @f—:;lu* <1
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Mazapu(f — o)+ (1-p)u(y + 9‘1{%) subject to

1 of B >
pr= ) - PSR if > pr >
0 f <

Propositions 1 and 2 characterize the solution o* of this maximization problem .

Proposition 1. Full income-sharing is implemented if and only if there is full

obedience to the full income-sharing norm.

This proposition identifies two features. First, first best risk-sharing can be
reached by an income-sharing norm if mutual enforcement capacity is high enough
(r > u(§) — u(E[y])). That means that punishment r must be high enough to
induce all agents to share all their income. Second, full income-sharing as the best
income-sharing norm is not robust to some agent disobedience. When there is too
much heterogeneity in agents’ taste for reputation, the income-sharing norm fails
to reach the first best. If some family member disobeys to a full income-sharing

norm, a conformist’s expected utility is maximized with partial income-sharing.
13

Proposition 2. If full income-sharing is not implementable, then o* is defined

by :
! * * *du* (- *
u'(y+ )" +a Tl =¥ (@ - oY),
87
I 10w) ey o
th @ — _ N [1-pipulr _ d §* = ¥eu”
VI dor = T et 404 0 = 5

First, Proposition 2 tells us that if there is full obedience (u* = 1) but the
full risk-sharing is not implementable (r < w(y) — u(E[y])), the transfer made
is the higher transfer accepted by the agent which is the less affected by his re-

putation (otherwise, we would have g‘o‘t—: = 0, therefore o* = af). If the best

13This property is an empirical implication of the model : Full income-sharing cannot be

observed with some nonconformity.
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norm implies full obedience, the transfer will be increased as long as every fa-
mily member obeys the norm. Second, the first-order condition characterizes the
trade-off between risk-sharing by ex post income-sharing and incentive to obey the
norm. Remember that the transfer objective is to share risk ex ante by redistri-
buting ex post the revenue. In a full-enforcing world, an optimal risk-sharing rule
equalize individual’s marginal utilities in each state of nature. Here, risk-sharing
is constraint by punishment capacity. The equality between marginal utility in
the two states of nature is bounded by the mutual enforcement constraint. The
income-sharing norm equalizes rich donors’ marginal utility to poor recipients’
marginal utility adjusted by the losses generated by the nonconformist’ s beha-
vior. This term reflects the fact that the utility lost in the good state of nature
does not compensate one to one the utility earned in the bad state of nature. It
is interpreted as follows. If the rich have to give one more unit of consumption,
the poor would receive only y* units for a constant proportion of conformists.
Moreover an increase of oo makes the norm less attractive so that the proportion
of conformists p* decreases (For a stable interior equilibrium, we have %‘;—* < 0).
The transfer recieved is reduced below p*. We now investigate whether nonconfor-
mists can be excluded by letting them decide ex ante not to enter into the mutual

insurance network.

2.6 The income-sharing norm as

an informal contract

Suppose now that agents have ex ante the choice to adhere or not to the norm.
The income-sharing norm can be interpreted as an informal insurance contract
offered by elders to the young. An agent is punished only if he does not respect

the “contract he signed”. If he rejects the contract, on one hand, he does not
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benefit from it if he is poor. But, on an other hand, he is not sanctioned and he
does not have to make the transfer if he is rich. Each agent plays the following

game.

1. He observes his type 6 and he learns the informal insurance contract o from

the last generation.
2. He chooses between :

(a) accepting the contract.

(b) refusing the contract.
3. He observes his random income y € {y, 3}

(a) He is rich (y = ) with probability p.

(b) He is poor (y = y) with probability 1 — p.
4. If he accepted the contract, he chooses between :

(a) being conformist (sharing income and punishing nonconformists)

(b) being nonconformist.
5. He gets his pay-off.

6. He designs and teaches a new informal insurance contract a to the next

generation.

In this new game, I add a new stage where each agent decides to accept or not
to share ex-post his income before observing it. If the agent refuses the informal
mutual assistance arrangement, he gets his random income and quits the game.

A subgame perfect equilibrium of the game is characterized in Proposition 9.

Proposition 3. There ezists a (subgame) perfect equilibrium of the game where

all agents accept the informal insurance contract.
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Proposition 3 states that nonconformists cannot necessarily be self-excluded
from the mutual insurance system. Due to lack of legal enforcement, an agent
adheres to the norm without committing himself to fulfill his duties ex post.
Opportunist behavior could then be observed at the equilibrium. These agents
are free riders since they benefit from the informal contract without paying the
cost. They are subsidized by conformists and reduce the efficiency of the informal

contract.

This result should seem surprising for readers familiar with the mechanism
design literature. The mechanism design approach shows that, by offering a menu
of contract, a private information can be costly revealed (e.g. Fudenberg and
Tirole, 1993, Chap. 7). Here, the unobserved variable is agent’s taste for social
status. The result does not hold because private information is related to the
enforcement of the contract. Suppose that elders offer a menu of transfers given
() and received §(f) contingently on each agent’s taste for reputation 6. All
agent would choose the best risk-sharing arrangement, that is the higher pair
of transfers, whatever his taste for reputation. In other words, nonconformists
would report an high 6, benefit of a high payout & following unsuccessful outcome
without giving anything otherwise. Consequently, a complex menu of contracts is
as efficient as an uniform rule for risk sharing proposes within the community. The
community authority would prefer use the more simple instrument for risk-sharing
proposes. We now study the comparative static properties of the income-sharing

norm.

2.7 Comparative statics

Comparative static properties are derived in the Appendix when agent’s taste

for reputation is uniformly distributed in [1,2]. First, we derive the evolution of
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norm obedience when the transfer « is exogenous fixed and there is partial norm

conformity (u* < 1) :
du*
dr

* * *

d d d
H>O, #20, H

>0 dy dp

<0.

Second, we analyse the evolution of the transfer given o* :

do* do* do* do*
ar >0, —d5>0, @<O, _(E<0

If agents’ enforcement capacity r decreases, norm obedience decreases for o
constant. The transfer o* required must be reduced to minimize loses generated
by nonconformity. Consider now a reduction of the rich’ s income §. Suppose, for
instance, that civil servant wages are reduced by a structural adjustment policy.
For a fix transfer o, norm obedience is less attractive. The private transfer o* is
reduced to give the rich enough incentives to obey to the norm and for better risk
sharing. Consider an increase of y through, for instance, more public aid given to
the poor. For a fixed transfer o, a change in the poor revenue does not affect norm
obedience. However, for better risk-sharing and to increase norm conformity, the

transfer required o* is reduced.

An increase in the proportion of rich p has two effects on the income-sharing
norm. First, the proportion of people who sanctions nonconformists 1 — p + pu*
decreases. The punishment is less dissuasive and norm conformity decreases for
a constant transfer o. In order to makes enough persons obey the norm, the
transfer given o must be reduced. Second, the total pie collected from the rich
increases whereas the number of slices the pie is cut decreases. That is, for the
same transfer received by a poor 4, if norm conformity is constant, the amount
required to the rich is reduced. These two effects decrease the private transfer o*.

We now link income-sharing efficiency with public policy.
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2.8 Public policy

My approach of private transfers should shed light on the debate about the
efficiency of LDCs’ nonmarket institutions. One of the issues is the efficiency
of informal insurance arrangements compared to a public or private insurance
system. For Besley (1995) , informal risk sharing responds to uncertainties in the
legal system, low level of human capital and poor development of infrastructures
facilitating communication. Informal institutions exploit a comparative advantage
in monitoring and enforcement capacity. For Cox and Jimenez (1990), many
social objectives are already being met through private transfers.!* For Arnott
and Stiglitz (1991), informal risk sharing is generally a dysfunctional crowding out
with a formal insurance system. The reason is that informal risk sharing doesn’t

internalize the market imperfection caused by moral hazard.

In this section, I show first that a redistributive policy does not necessary
share risk more efficiency than the income-sharing norm. I provide a sufficient
condition for the implementation of income redistribution. Second, I explain how
a low cost redistributive policy increases the efficiency of the income-sharing norm

and, finally, agents’ expected utility.

Whereas the income-sharing norm is limited by the community enforcement
capacity, public income redistribution can be legally enforced. The government is
able to make all the rich pay an income tax 7 to finance an individual subsidy o
to the poor. Furthermore, public income redistribution pools the risk by sharing
it not only within enlarged family but also between enlarged families. However,
in order to implement it, the government must observe individuals’ income. In

less developed economies, information extraction, monitoring and public fund

14They estimate that if unemployment insurance systems were introduced in the Philippines,
private transfers would fall so much that the intended beneficiaries of the program would hardly

be better off (Cox and Jimenez, 1995).
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administration can be very costly compared to individuals’ income. These costs
are usually represented in regulation theory (Laffont and Tirole, 1993) by the
shadow cost of public funds A : For each dollar given to the poor, the rich have
to be taxed 1+ A dollars (A > 0). The state budget constraint is :

pT
1+

= (1 — p)o.

Using equation 1, it is easy to compare the relative performance of formal and
informal insurance systems. For an equal transfer received by poor o = ¢*, the

rich contribution 7 is lower than o* if :

1-— 1-
——3(1+)\)< *p.
p B*p

A formal insurance system is more efficient that the equivalent income-sharing

norm if :

1-—p*
pr

A<

(2.5)

Public income redistribution shares risk at a lower cost than the income-sharing
norm when administrative costs are lower than the ratio of rich nonconformists
over rich conformists. If this condition is not satisfied, high administrative costs
may offset the benefit of a redistribution policy. When norm obedience is close
to be complete, the implementation of a redistribution policy is justified by very
low public costs or strong inequality between income-sharing networks. The pro-
portion of free riding or nonconformity in the rich population 1 — p* measures the

inefficiency of the income-sharing norm.

Suppose now that a income redistfibution policy is implemented. The compa-
rative static analysis shows that the transfer required by the norm o* decreases.
Therefore, the norm inefficiency 1 — p* decreases when there is partial norm-
obedience. Moredver, in all cases (full or partial norm-obedience), the constraint

in the maximization program of the income-sharing norm design is relaxed. Then,
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if condition (2.5) is satisfied, the conformist’s expected utility, and therefore the
nonconformist’s one, is higher. Finally, we find that public income redistribution
increases the efliciency of the income-sharing norm when administrative cost are
sufficiency low. Otherwise, it may be costly crowding out for risk-sharing within

extended families.

2.9 Conclusion

In this essay, African income-sharing practice is modeled as a social norm
implemented by the old generation and mutually enforced by agents through in-
dividual’s heterogeneous valuation on social status. It is explained how a partial
or full norm-obedience could be observed at the equilibrium. The norm is then
endogenized. It shares fully the risk if and only if there is full obedience to this
norm. Otherwise, it solves a trade-off between risk-sharing and mutual enforce-
ment. We could have partial risk-sharing and some nonconformity in equilibrium
as a second best. Nonconformists cannot be excluded by letting them decide ex
ante not to enter into the mutual insurance system. A redistributive policy may
share risk at a higher cost than the income-sharing norm. Indeed, the effect of
public transfers can be completely offset by changes in private transfers. People
would be worse-off with a public policy that smooth consumption less efficiently
than the norm. But when administrative costs are low, a redistributive policy

supplemented by private transfers increases agents’welfare.

Recent papers on financial institutions in developing countries focus on the
group lending properties to avoid information asymmetries (see Ghatak and Guin-
name, 1998, for a review). Groups are able to monitor and enforce contractual
arrangement because agents know each others and can exert mutual sanctions

more costly than legal sanctions. By lending to groups instead of lending to a



66

single person, a bank can exploit informal rule’s relative advantage on monitoring
and enforcement. A natural extension of our model would be to allow an indivi-
dual’s income to depend on its work effort. When effort is observed by individuals,
the norm could include an effort behavior. This effort level is then implemented
through peer monitoring and mutual enforcement. As in group lending contracts,
the income-sharing norm perform better than an institutional insurance because
of its relative advantage in monitoring. When effort is unobservable, the income-
sharing norm is constraint not only by mutual enforcement capacity but also by
individuals’ incentives on effort. However, contrary to Arnott and Stiglitz (1991),

we may find scope for efficient risk-sharing via ex post income-sharing.
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Chapitre 3

Sharing a river

Abstract

This essay analyzes how to share a river between users in case of water scar-
city. It is assumed that the water flow is unequally distributed along its stream
and that water can only be transferred downstream. We characterize the efficient
water allocation. We analyze stable welfare distributions of the cooperative game.
We show that this game is convex so that its core is the convex hull of the mar-
ginal contribution vectors. We propose a fairness principle. We call “aspiration
welfare” the welfare that could enjoy a group of agent in the absence of the others.
A fair welfare distribution assigns to every group of agent not more than his “as-
piration welfare”. We show that only one core distribution is fair. We discuss its

decentralization and its implementation.

3.1 Introduction

Water is essential for the sustenance of life. Man consumes it for domestic

purposes such as drinking, cooking or washing; for agricultural proposes such

69
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as irrigation. Water is also used for waste disposal. Due to population growth,
industrialization and agricultural expansion ; everywhere today the demand for
fresh water is increasing rapidly while the quality of water is declining. Whereas
planet Earth is still endowed with plenty of fresh water, these resources are badly
distributed. On most of the earth’s surface, water exists in insufficient quantities.

Locally, people share a scarce resource.

It is well-known that a free-access extraction of scarce water is inefficient.
Users divert too much water upstream so that the water is underconsummed
downstream. By an appropriate re-allocation of water, the total surplus of the
river exploitation can be increased. An appropriate distribution of this surplus

can make all riparian better off.

Free waste disposal in rivers is also inefficient. Water has limited assimilative
capacity for the waste. Excessive pollution deteriorate water quality. It rises pro-
duction costs, has an impact on wildlife and affects the river’s recreation benefits.
It should be avoided. The total pollution that can be emitted in the river is boun-
ded.! Under free waste disposal, to much pollution is emitted upstream. By an
appropriate allocation of emissions, the total surplus of the river exploitation for
waste disposal can be increased. An appropriate distribution of this surplus can
make all riparian better off. Such Pareto improving policy for both water quan-
tity and quality requires that riparian cooperate to specify new rules on water

management,.

On more and more rivers, people coordinate water extraction and pollution
(see Dinar and all. (1997) for a survey). Policy makers regulate water management
in rivers by designing taxes and subsidies. They may also sell water rights. An
administration is usually legally entitled to collect taxes or to sell water. The

money collected is refunded to riparians. It is invested in public goods such as

'As argued by Dasgupta (1990), water quality can be view as is a scarce commodity.
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dams or canals. It may be used to cover maintenance costs. It is also redistributed
in subsidies for adoption of water-saving or cleaner technologies. The “Agences de
bassin” in France is an example of such a public administration. In less-developed
countries, informal rules govern water management in irrigation communities.
They are designed and enforced by the community members. Surface water rights
are also exchanged in legal auction. In the so-called “huerta” (irrigation service
area) of Allicante, agents are endowed with volumetric water rights from specific
sources. They purchase and sell water rights in a public auction held every Sunday
morning. The trade are enforced by an executive commission elected by members

(Reidinger, 1994, Ostrom, 1990).

Many of the world’s river basins are shared by two or more countries. In
a United Nations study, international river basins were estimated to comprise
about 47 percent of the world’s continental land area. In Africa, Asia and South
America, this proportion rises to at least 60 percent. Most of the 200 international
rivers are shared by less than 6 countries : 148 are shared by two countries, 30 by
three, 9 by four, and 13 by five or more countries. Many countries rely mostly on
water originating in other countries. The percent of total flow originating outside
of border goes up to 97 for Egypt, 95 for Mauritania, 89 for Netherlands or 34 for
Senegal (Barret, 1994).

To avoid inefficient exploitation of international rivers, several countries have
voluntary agreed to limit their water withdraw (see Barret, 1994, Godona, 1985,
for case studies). The Nile Treaty is an example of an international river-sharing
agreement. Egypt and Sudan agreed to divide Nile water in 1959..2 The treaty
has recently been challenged by other riparian countries, who are interested in

their own shares of Nile water.

2The Nile river is shared by nine countries (Burundi, Congo, Egypt, Kenya, Sudan, Rwanda
and Uganda). Egypt was allocated 55.5 Million Cubic Meters (MCM) of water per year, and
Sudan 55.5 MCM.
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Countries also adhere to international institutions for water-management. For
instance, Mali, Mauritania and Senegal founded the “Organisation pour la mise en
valeur du fleuve Sénégal” (OMVS) to coordinate the management of the Senegal
river. Among other rules, the “principe d’approbation des Etats” states that
a country cannot change the water flow without the consent of all members.
Members voted on a cost-sharing rule and a “water management program” for

the two dams build on the river.

Countries have agreed to share the cost of pollution reduction. The “Conven-
tion on the Protection of the Rhine Against Pollution by Chlorides” is a good
example. The Rhine river passes through four countries, first, Switzerland, then
France and Germany, last, the Netherlands. It suffered from salt pollution emit-
ted by one major polluter : a potash mine in France (40 % of the salt entering the
Rhine). In 1972, the four countries agreed to limit the concentration of chloride
ions at the Dutch frontier. To meet this objective, emissions from the French mine
were to be reduced. The four riparian divided the cost of emission abatement as
follow : France and Germany would each pay 30% of the cost, the Netherlands
would pay 34%, and Switzerland would pay 6%.

When surface waters are shared by sovereign countries, no supra-national au-
thority can impose a cooperative management of water. Countries should agree on
an allocation of water. They may also negotiate a compensation scheme to make
all of them accept the deal. Side-payments between countries define a distribu-
tion of the welfare induced by the cooperative management of water. To be freely
accepted and enforced by riparian States, the distribution of welfare should have
the following properties. First, it should be stable. No group of States should all
increase their gain by signing their own agreement. Second, it should be perceived

as equitable.

In this paper, we address two questions. First, how to share water in a river
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in case of water scarcity. We characterize the Pareto optimal water allocation in
the river. Second, how to share the welfare of an efficient management of water
between agents. We analyze welfare distributions that are stable and fair. The
chapter is organized as follow. We first model the exploitation of a river (section
3.2). Then, we characterize the optimal allocation of water (section 3.3). We find
out the set of stable welfare distributions (section 3.4). We characterize the stable
welfare distributions that is fair (section 3.5). We discuss its decentralization and
its implementation in various economic environments (section 3.6). We conclude

by some remarks.

3.2 The model

A river flows through a number of countries, cities or irrigated corps, henceforth
called agents, whose set is denoted by N = {1,...,n} with n > 2. We identify
agents with their location along the river and number them from upstream to

downstream : ¢ < j means that 7 is upstream j.

The river picks up volume along its course : the flow at its source, e; > 0,
1s increased by the amount e; > 0 between locations s — 1 and i, say at i. A

schematic representation is given in Figure 3.
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Agents are endowed with unbounded quantities of a perfectly divisible good
that will be called money. They value money and the water from the river. Agent
©’s utility from extracting z; units of water and receiving a net money transfer ¢;
is ui(zi, t;) = b;(z;) + t;. We assume b; increasing twice differentiable and strictly

concave, for every i € N :
bi(z) > 0,b}(z) <0, Vz € R*, Vi e N.

Water is essential for agents : Each agent i’s marginal benefit is infinite at zero,
that is b;(0) = 400, Vi € N. When water is consumed for production purposes
(agriculture or industry), b; can be either interpreted as a production function.
We make the harmless convenient assumption that b;(0) = 0 : No water yields no

production or zero utility.

It will be convenient to define the sets of predecessors and followers of agent
i, respectively, by Pi={j € N: j < i} and Fi = {j eEN: j > 1}, and the sets
of his strict predecessors and followers by P% = P4\{i} and F = F\{i}.
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The list (N,e,b), where e = (ey,...,e;) and b = (by,...,b,), constitutes our
river sharing problem. It is one of perfect information : All variables are perfectly

observed by all agents.

An allocation is a vector (z,t) = (21, ..., Zn, b1, ..., tn) € RY x RN satisfying

the feasibility constraints

i€N
> z; < > e for every j € N.
iePj icPj

First, the transfer scheme must be budget balanced. Second, at each level j of
the river, the amount of water consumed by agent j and its predecessors must be
lower than the flow available upstream. This constraint reflects that water stream
e; can only be consumed by ¢ and its followers. Water transportation costs are

assumed prohibitive so that water can only be transferred downstream.

A (welfare) distribution is any vector z = (21, ..., 2,) € R" which is the utility
image of some allocation (z,t) in the sense that z; = u;(x;,¢;) for each agent i. For
every S C N, x5 denotes the projection of z in S, i.e. zg € RS, with (zg); = =;

forie S.

Remark. The model can be make useful to analyze river exploitation for waste
disposal. Suppose that each agent i emits z; to produce consumption. Suppose
also that the river is used for other proposes that requires a relatively clean water
at each level of the river. The river assimilation capacity for waste between agents
¢t — 1 and 1 is represented by e;. Thus, total emissions are bounded by feasibility
constraints at each level i of the river.> We obtain a river sharing problem for

waste emission.

We now analyze the optimal allocation of water in the river.

3For example, the “Convention on the Protection of the Rhine Against Pollution by Chlori-

des” limits the concentration of chloride ions at the Dutch frontier.



76

3.3 The optimal water allocation

An optimal water allocation (z*) maximizes the sum of utilities subject to the
feasibility constraints. It solves the following program :
maxm ZiEN bi (.’L‘l) S/t

ZjePi-T"j < Zjepiej t1=1,...,n

Hy

Due to the strict concavity of each b;, the efficient water allocation z* is unique.
Moreover, z; > 0 for each i because b;(0) = +00. Let y; be the Lagrangian mul-

tiplier associated to the constraint %, for all 4 = 1,...n. The first order conditions

are :
bi(z;) = > u;, VieN (3.1)
JEFi
They can be rewritten as :
Which implies :
b (i) < Bi(a)). (3.3)

Condition (3.3) is a necessary condition for allocation z* to be efficient. It says
that agent 7’s marginal benefit must be higher or equal to the marginal benefit of
his downstream partners j > 3. If it is not the case, by reducing the water allocated
to the upstream user z; and increasing the water allocated to the downstream user

Ti+1, the welfare, i.e. the sum of utilities, can be increased.

When p > 0, then the kth feasibility constraint is binding. Therefore equation
(3.2) yields :

k1 (Ther) < bi(z3)- (3.4)

The marginal benefit of user k is strictly higher than the marginal benefit of

user k + 1. Since feasibility constraint k is binding, agent k withdraws all water
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available at his level in the river stream. The stock of water remaining to k + 1
is therefore ex;;. Denote K = {iy,....,ix}, with 4; < iy < ... < ig the set of
binding constraints in Iy, i.e. K = {i € N|y; > 0}. The results are summarized

in Proposition 1.

Proposition 1. There ezxists a unique partition P(N) of N into consecutive coa-

litions Ny, ..., Nk and positive numbers p;, > ... > p;, such that,
Vk=1,.,K, Vj € N, b;(ac;‘) = LU,

Moreover,

VE=1,.,K, Y zi= ) e,

JEN, JEN

Proposition 1 states that, first, marginal benefits of users located in between
feasibility constraint are equal. Second, marginal benefits of users located between
feasibility constraints decrease by going downstream the river. Third, each coali-

tion i consumes exactly the water it controls; we say that it is self-sustained.

We characterized the efficient allocation of water. That is the unique water
allocation z* that maximizes the total welfare. Certainly, an agreement for river
management should induce agents to consume z*. Now, it should also define
a vector of transfers ¢. The ideal transfer scheme t* should be such that the
cooperative management of the river is self-enforced. The ideal transfer scheme ¢*,
together with the optimal water allocation z*, define a unique welfare distribution
z*, with 2} = u;(x},t}) for every i € N. For the agreement to be self-enforced, the
welfare distribution should be stable and fair. We therefore study stability and

fairness in welfare terms in the two next section.
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3.4 Core stability : lower bounds on welfare

Our first concern is to recommend a welfare distribution that is stable. This
requirement can be made precise by analyzing the cooperative game naturally

associated with the river sharing problem.

Call a group S of agents, or coalition, connected* if k € S whenever i,j € S
and ¢ < k < j. Observe that every coalition S admits a unique coarsest partition

into connected components : denote it S.

By efficiently allocating among its members the water it controls, a connected
coalition T' can guarantee to itself exactly the following secure (or autonomous)
welfare :

o(T) =max ) bi(z:) s/t > z;< ) e VieT. (3.5)
T eT jEPINT jEPINT

The secure welfare of an arbitrary coalition S is obtained by summing the
secure welfares of the connected components of the partition S, i.e.,

0(S) = Y (D), (3.6)

TeS
where v(T) is given by (3.5). Coalition S cannot secure more than (3.6) because
any water left over by one of its connected components cannot be safely guaranteed

for the consumption of any other component. We say that v is the game generated

by the problem (N, e,b).

A (welfare) distribution 2 = (21, ..., 2,) is a core distribution if ¥;cq 2 > v(S)
for every S C N. An allocation that does not generate a core distribution would
be unstable : some coalition could object to it on the basis that it can secure on
its own a higher welfare to all its members. Fortunately, core distributions do

exist in the present context. Indeed, Greenberg and Weber (1993) have shown

40r “consecutive”, “convex”, “without holes”, see Greenberg and Weber (1993).
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that, in such “connected games”, at least one distribution belongs to the core. In
our (simpler) model, we can say more. It turns out that the game v generated
by a river water allocation problem is convez in the sense of Shapley (1971).
Call v(S) — v(S\{7}) agent ¢’s marginal contribution to coalition S. A game is
convex if and only if for every agent %, v(S)—v(S\{¢}) < v(T)—v(T\{:}) whenever
1 € S CT C N.In words, an agent’s marginal contribution to a coalition increases
by expanding the coalition. This means that the larger the coalition that agent i

joins, the larger his marginal contribution.

Proposition 2. The game v generated by the river water allocation problem (N, e, b)

18 convez.

Proposition 2 renders the purely (cooperative) game-theoretic analysis of fhe
river sharing problem rather straightforward. Let us define a random ordering
I = {4,142, ...,n} of the set N. Call vector of marginal contributions corresponding
to the ordering I the vector  defined as z;, = v(4y, ..., i) —v(é1, ..., ix_1), for every
ix € I. Shapley (1971) has shown that the core of a convex game is the convex
hull of the marginal contribution vectors. It implies that a core distribution yields
to agent ¢ at least its marginal contribution to the empty set, that is v(i), and

at most its marginal contribution to the set of all other riparian N\{i}, that is

v(N) = v(3).

Proposition 2 provides an argument in favor of the Shapley value in our pro-
blem.? The Shapley value of a convex game is the barycenter of its core. It assigns
to each agent ¢ an average of his marginal contribution v(S) —v(S\{i}) taken over
all coalitions S C N including the empty set. It can be easily computed by sum-
ming the marginal contribution vectors weighted by the equal probability of the

corresponding ordering, namely 1.

In the next section, we analyze fairness principles proposed in international

50ne may also think of Dutta and Ray’s egalitarian solution (see Dutta and Ray, 1989).
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river disputes and show that they fail to reduce the choice of stable welfare distri-
butions. We then propose an other fairness principles that picks a single welfare

distribution among those included in the core under some cases.

3.5 Fairness

3.5.1 The fairness doctrines proposed in international ri-

ver disputes

Before introducing our fairness principle, let us start by analyzing the fairness
arguments proposed to prevent or resolve disputes within international river ba-

sins. Two extreme and incompatible principles are commonly put forward (see

Godana, 1985 ; Barrett, 1994).

The theory of unlimited territorial sovereignty or the Harmon Doctrine was
first authoritatively stated by Judson Harmon, Attorney-General of the United
States, in a declaration made in 1895 concerning the Rio Grande. According to
this theory, a State has absolute sovereignty over the area of the basin within its
territory. It may freely dispose of water flowing within its borders but cannot
claim the continued free and uninterrupted flow of the water form upper-basin
States. In our model, any agent i is entitled to withdraw e;. A fair welfare
distribution should give him at least b;(e;). By extending the fairness principle to
any group of States, we obtain that the set of welfare distributions is equal to the
core of the cooperative game. Since the game is convex, the core is very large.
The doctrine of absolute territorial sovereignty is therefore unable to restrict the

choice of welfare distributions.
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The theory of unlimited territorial integrity states that the quantity and quality
of water available to a country cannot be altered by another.® The principle could
be interpreted in physical or welfare terms. In physical terms, it awards the right to
agent n to withdraw all water available on the river. Hence, the unique allocation
consistant with this principleis z = (0, ..., 0, ¥;cn €;). Surely, this water allocation
is not efficient. In welfare terms, this theory constraint any welfare distribution
to assign to agent n at least b,() ;e €;). This interpretation is compatible with

efficiency but generally not with stability.”

3.5.2 The aspiration welfare : upper bounds on welfare

In the absence of the other agents, agent i would be able to consume the
full stream of water running through his location, thereby enjoying his aspiration

welfare.

w(i) =bi( ) e).

jEPi
Of course, the welfare distribution (w(1), ..., w(n)) is generally not feasible : 3;cn
w(i) > v(NN) as soon as there are at least two agents with strictly positive marginal
valuations of the water. In Moulin’s (1990) terms, the river water allocation
problem exhibits negative group ezternalities. In such a context, it is natural to

ask that everyone takes up a share of theses externalities ; certainly no one should

6This doctrine espouses the old English common law whereby a lower riparian claims the
right to the continued natural flow of water from the territory of the upper riparians. It has
been put forward by Egypt during the meeting of the Nile Commission of 1925 on the question

of the division of the Nile Waters.
"For example, suppose n = 2, b;(z) = In(z)+1fori=1,2, e; = 3 and ez = 1. A fair welfare

distribution z = (21, 22) assigns to agent 2 at least In(4) + 1 = 2,38. To be stable, it should
assign to agent 1 at least In(3) + 1 = 2,1. Therefore, we should have z; + 2» > 4,48. The
optimal water allocation yields v(1,2) = In(2) +In(2) + 2 = 3, 38. Since 4,48 > v(1, 2), then we

should have z > v(1,2) which contradicts that z is a welfare distribution.
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end up above his aspiration welfare.

This argument generalizes to coalitions in a very natural way. The aspiration
welfare of an arbitrary coalition S is the highest welfare it could achieve in the

absence of N\S. It reads
’U)(S) = mabez(x,) S/t Z Z; S E € Vi € S. (37)
TS ies JEPINS JEPI
We say that a welfare distribution z satisfies the aspiration upper bounds if

Yies 2 < w(S) for every S C N.

Combining these fairness bounds with the stability constraints of Section 4
yields remarkable results in some cases. It turns out that only one welfare distri-
bution passes both tests : It is the downstream incremental distribution 2z* defined

by 2z = v(Pi) — v(P%) for each i € N.

Proposition 3. The downstream incremental distribution z* of the welfare is the

unique core distribution satisfying the aspiration upper bounds.

Proposition 3 identifies the downstream incremental distribution z* as the
unique distribution that is stable and fair. This distribution assigns to every agent
¢ € N his marginal contribution to the coalition composed by its predecessors.
The first agent gets his worse payoff among welfare distributions that belong to
the core. The last agent gets his marginal contribution to the largest coalition of

partners.

Recall that the welfare distribution 2* defines a unique transfer scheme ¢*,
where &} = 2} — b;(x}), for every i € N. Consequently, the unique allocation
compatible with efficiency, stability and fairness is (z*,#*). We now discuss its

decentralization and its implementation.



83

3.6 Decentralization and implementation of the

downstream incremental allocation

3.6.1 Decentralization by public policy

Consider the case of domestic surface waters. Suppose that the whole river
basin belongs within a single country.® Assume that the State is entitled to impose
a tax 7; per unit of water extracted or polluted and a lump-sum transfer o; to
every agent ¢+ € N. Under free-access management of water, agent ¢ consumes
the amount of water that maximize its gain b;(z;) — ;x; + 0;. The first order
condition yields 7; = bj(xf), for every i € N. To induce agent i to divert z¥, the
tax 7; should be equal to bj(x}). To obtain a fair distribution of welfare, agent
¢ should get back a lump sum transfer o; equal to 2} — [b;(z}) — b(z})]. In this
framework, the Pigouvian tax scheme 7 and the lump sum subsidy scheme o,
where 7; = bj(z}) and o; = 2} — [bi(z}) — bi(z})] for every i € N, decentralize
the downstream incremental welfare distribution. When the State sell water to
agents, the tax scheme 7* can be interpreted as the unit price of water located at

i

3.6.2 Decentralization by a competitive market

We now investigate whether, by giving property rights on water and by letting
agents exchange in a competitive market, the downstream incremental allocation
could be implemented. Of course, because few agents trade on this water market,

we could be far from a perfect competitive market. We do not address this issue.

8In several countries, surface waters are legally owned by the State which regulates water
extraction and pollution. Example of such public regulation of river are the French delegated

management by the “Agences de bassin”.
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We just ask if, assuming that agent acts non-strategically, the equilibrium payoffs

could be the downstream incremental welfare distribution.

The Coase Theorem tells us that the equilibrium allocation will be efficient
but not necessarily fair. Indeed, the ez post welfare distribution depends on the
ex ante initial allocation of property rights. Our aim is to endow agents with river
water in such a way that the downstream incremental distribution emerges as the

market-equilibrium payoffs.

Let us first design a market for our model. In the river, water is not an
homogeneous good. Let us set up market for water provided by each tributary
J € N. Each agent 7 is endowed with some water coming from tributary j, say
w;j. Every flow of water e; > 0 is divided between agents ¢ € N such that
2 ien Wi; = €. Denote agent 7’s consumption vector x; = (z;1, ..., Zin ), Where Tij
is the volume of water from tributary j devoted to agent i. Agent i’s consumption
z; is obtain by summing up water coming from each upstream tributary, i.e.
X; = ¥ jepi Tij. Given a price vector p = (py, ..., p,), agent i’s consumption vector
solves the following program :

max bi( Y i) = 3 pi(wis — wij)- (3.8)

JEPI JEN
A market equilibrium is a price vector p® = (pg, ..., p¢) and a consumption matrix
X = [z5;]; jenxn such that each consumption vector x¢ solves (3.8) for each agent
¢ € N and that excess demand is nil on each market, i.e. ©;cn(zf; — €;5) = 0, for

all j € N.

Two straightforward observations simplify the analyzes. First, since agent
¢ cannot consume downstream water, his equilibrium consumption from downs-
tream tributaries is nil if this water is costly. Formally, Vj € F°, Vp¢ such that
p; > 0, z7; = 0. This implies that upstream water is more demanded. Hence,

equilibrium prices decrease by going downstream.? Second, agent i maximizes his

®Indeed, if 31 > j such that 0 < p[ < pj, then z§; = 0, Vi € N. Therefore e; = 0 which
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payoff by purchasing water at the lowest price. As a consequence, agent i pur-
chases water at a price p{ = min{p$,...,p¢}. His equilibrium consumption from
every tributary ! such that pf > p¢ is nil. We conclude that agent 7’s consumption
can be found by solving

maxbi( 3 zij) = pi D_ (T —wy) + Y piwyj.

' jePi JEPI JEFY;

The first order condition is b;(¥ ;e p; xfj) = p;. Put differently, b}(z¢) = p¢. Finally,
a market equilibrium (p¢, X°®) satisfies both b}(z¢) = pf, for every agent i € N and
Y ien(f; — €i;) = 0 on every market j € N. Remark that the equilibrium price

vector that implements the efficient water allocation is p* = (b} (%), ..., ¥, (z})).

The structure of our river allocation problem gives us a natural way to affect
property rights on water. Each agent 7 may ask to own the flow of water e; he
controls.'® He is entitled to divert or sell this amount of water. We claim that this
allocation of property rights implements the downstream incremental allocation
only in the degenerated case of equality between the efficient water allocation and

the natural water flow at each level j € N.

Proposition 3. If agents are endowed with the flow of water they control, a com-
petitive market leads to the downstream incremental distribution if and only if

¥ =e.

Intuitively, the fairness principle implies that an agent cannot use his upstream
position to extract surplus from his downstream partners. By selling his water
surplus downstream, an upstream agent gets more than his aspiration welfare. As

a consequence, the equilibrium outcome is not fair.

contradicts 5 > 0.
10This endowment is consistent with the theory of absolute territorial sovereignty or Harmon

doctrine that gives to a country the control right on the natural flow of water within his territory

e; (see Kilgour and Dinar, 1996, Godana, 1985).
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3.6.3 Implementation by negotiation rules

An institution for river management usually includes negotiation rules. We
propose the following negotiation game that leads to the downstream incremental
distribution. Regroup all agents around the negotiation table. In the first round,
let agent n propose an allocation (z,t) for the whole river. If it is accepted, it
is the allocation implemented. If it is refused by one agent, agent n is excluded
from the negotiation. He gets his reservation utility v(n) = by(e,). The N\{n}
remaining agents go on to the next round. In the second round, it is agent n — 1’s
turn to propose to the remaining agents {1, ...,n — 2} an allocation for the part of
the river they control. This allocation is implemented if unanimously accepted.
If one agent refuses, agent n — 1 is excluded from the negotiation and gets his
reservation payoff v(n — 1) = by_1(en—1). The N\{n — 1,n} remaining agents go
on to the next negotiation round. It is now agent n—2’s turn to offer an allocation
for the part of the river that agents {1,...,n — 2} control. And so forth. At the
last stage of the game, agent 2 makes a final offer to agent 1. If agent 1 refuses,

the negotiation ends.

It is easy to show that the subgame unique perfect equilibrium of this game is
the allocation (z*,t*) yielding the downstream incremental distribution 2*. Pro-
ceed by backward induction. Consider the last stage subgame. Agent 1 accepts
any offer that gives a higher payoff than what he can achieve on his own.!! His
reservation utility is therefore v(1). Agent 2’s dominant strategy is to offer the
(unique) allocation in the part {1,2,} of the river yielding v(1) to agent 1 and
v(1,2) — v(1) to himself. Now, move back to the preceding subgame. Agent 2’s
reservation payoff is v(1,2) —v(1). Agent 3’s best strategy is to offer the allocation
on the river part {1,2,3} that yields v(1) to agent 1, v(1,2) — v(1) to agent 2 and

Notice that we make the usual assumption that an agent accepts an offer if he is indifferent

between accepting and refusing.
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v(1,2,3) — v(1,2) to himself. And so forth. In the first stage, agent n’s dominant
strategy is to make an offer that gives v(Pi) — v(P%) to each agent i, that is
the payoff he can achieve for sure by refusing the offer, and v(N) — v(N\{s}) to
himself. All other agent’s best response is to accept the offer. The downstream

incremental distribution is the subgame perfect equilibrium payoff of the game.

The “grand negotiation game” can be divided into | K| simultaneous “small
negotiation games” between riparian in each part Ni of the river. By applying
similar rules into all negotiation games, we obtain the downstream incremental
distribution as the subgame perfect equilibrium payoff. Consequently, implemen-
ting the downstream incremental distribution does not require that river mana-
gement institutions include all riparian. The same result is obtained by designing
an institution for each part of the river N, € P(N). We now conclude by some

remarks.

3.7 Concluding remarks

This paper is a first attempt to model river sharing. It has natural extensions. -
First, we may consider water non-consumptive uses such as transportation, pro-
duction of hydroelectric power or recreational purposes. In this case, water is also
a public good. The value agents assigns to this good depends on the level water
in the stream. A higher level of water produces more power or allow bigger ships
to sail. This extension can easily be modeled by adding a function of the total
volume of water into agent’s utility. Second, a more realistic assumption should be
to consider single-peaks production functions, i.e. to assume that water’s margi-
nal benefit becomes negative if higher to a maximum level. Last, the model could
be applied to analyze other economic problems. The one-side transferability of a

good makes it usefull to study intergenerational equity and sustainability.



Synthese des résultats

Les contributions principales de la thése sont les suivantes.

Le premier essai analyse I'organisation des activités de recherche et dévelop-
pement (R&D). Une innovation peut &tre soit produite & Iinterne, soit achetée
a lexterne par la firme qui 'utilise. Nous caractérisons le choix contractuel opti-
mal en abordant les aspects de renégociation et de collusion entre les différentes

parties.

Lorsqu’un innovation plus cofiteuse & développer est aussi une technologie
moins performante ou un produit moins profitable, une innovation sera produite
a l'interne. Dans le cas contraire, I'innovation sera acquise 3 I’externe. De fagon
pratique, notre modele prédit que les firmes pharmaceutiques ont intérét & faire
leur propre recherche tandis que dans le secteur des télécommunications et de
I'informatique, les innovations sont produites par des petites firmes spécialisées en

haute technologie.

Le second essai modélise la solidarité familiale africaine comme une norme
sociale de partage de risque. Nous proposons un mécanisme de sanction mutuelle
basé sur le statut social qui justifie pourquoi les plus riches transferent une partie
de leur revenu aux membres de la famille les plus pauvres. Ce mécanisme s’inspire
des comportements décrits par les anthropologues. Nous supposons qu’il a un

impact hétérogene sur les agents.
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Nous montrons que la norme sociale est pratiquée par des agents rationnels
dans un équilibre de Nash. La pleine assurance n’est possible si et seulement si
tout le monde obéit & cette norme. Dans le cas contraire, la désobéissance a la
norme limife le partage de risque. Il peut méme y avoir de la défection & ’équilibre.
Nous établissons une condition pour laquelle une politique publique de redistribu-
tion des revenus est plus efficace pour partager le risque. Une redistribution des
revenus performante accroit 1'efficacité de la norme sociale. Lorsquelle est trop
coiiteuse, elle se substitue & une institution plus performante pour atteindre un

méme objectif.

Le troisieme chapitre porte sur le partage d’un fleuve entre usagers en situation
de pénurie d’eau. Ce modele général s’applique notamment aux bassins hydrogra-

phiques partagés par des pays souverains.

Nous caractérisons l’allocation optimale de ’eau. Nous identifions les modes
de partage du bien-étre de I’exploitation du fleuve qui sont stables et équitables.
Nous montrons que le jeu est convexe de sorte que ’ensemble des distributions
de bien-étre stables est entiérement caractérisé. Nous introduisons un principe
d’équité. Nous montrons qu’une seule distribution de bien-étre est & la fois stable
et équitable. Cette distribution de bien-étre peut étre décentralisée par une taxe
Pigouvienne et des transferts forfaitaires mais pas par un marché concurrentiel
lorsqu’on affecte & chaque agent un droit de propriété sur la part de la ressource
qu'il contréle. Elle peut étre implémentée par une institution spécifiant une régle

de négociation donnant la priorité aux pays situés en aval.



Annexe A

Proofs of chapter 1

A.1 Proof of Proposition 1

Let A€ and po be the multipliers associated with the constraints IRC and IC,,
respectively. The equilibrium allocation {I4{wZ,¢2}"_,} satisfies the following

first order conditions (FOC) :

p(I*)'(wit — D(gf, b)) + (1 = p(I))' (wf — D(gf', 1)) = X

(qh7h) D (qh’h) - X@%(IIIT)[D (Q}“h) D (q}?al)]
Pyat,) - Dolat,) = oo [Dylaf ) — Dylgf, )]

v(wg ~D(gf! ) —v(wf~D(gf 1))
AC

We shall first show, in two steps and by contradiction, that the incentive

constraint for state of nature h is binding, that is, u, > 0.

Step 1 : Proof that only one of the incentive compatibility constraints is bin-

ding.
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Suppose that the two IC constraints are binding, that is p;, > 0 and g > 0 in the
FOC. We have the following relationships :

U(w;? - D(Q}f, h)) = U(wlA - D(QlAa h))

v(w - D(gf',1)) = v(wy — D(gf, 1))
which imply :
wi — wi* = D(gi', h) — D(gf', b)
wy — wi' = D(gy,1) — D(gf', ).
This is true only when ¢f* = ¢!, that is, the equilibrium is pooling. However, it is

a well known result that the solution is screening since the utility functions satisfy

the single crossing property.

Step 2 : Proof of py > .
Suppose that up < g, by the FOC, we have v'(wft — D(gf, h)) — X\ = w — pa.

Hence, under our assumption, v'(wjl — D(gf, )) > X. Then,
v'(wy — D(gi, b)) > p(I*)o'(wit = D(gi, 1)) + (1 = p(I*))v'(wi* — D(gf', 1))

= v'(wy — D(gy', h) > v'(wi* — D(g', 1))

= ’U(wi? - D(q;?a h’)) < U(wlA - D(qlAa l))
This inequality implies that one of the incentive-compatibility constraints is not
satisfied, therefore {I*{wZ, g2}"_,} is not a solution to the maximization problem.
In the third FOC, we have u, > 0 and Dy(q, h) — D,(g,!) < 0 Vg in the right-
hand side, therefore the left-hand side is negative and there is underproduction
for a low-quality innovation. The wage gap is defined by the binding incentive
constraint :

wi —wi = D(g;,h) - D(gf', h).

The first and the last FOCs give us the investment level 14 :

VA - VA
P'(IA){W +Up - Uy =1
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A.2 Proof of Proposition 2

We shall first show by contradiction that C’s individual rationality constraints
are binding in equilibrium hence transfers are defined by this constraints. Then,
we prove the equivalence of the two maximization problems P4 and Pg.
Suppose that 3o € {l,h} such that P(¢?,a) — wB(q,) > 0. If we increase by
the same amount w?(g,) and R®(g,), we could increase investment IZ without
breaking up one of the Pp problem maximization constraints. RU’s expected
utility is increased by this alternative allocation thus the principal would gain by
choosing it. The equilibrium allocation must satisfied P, a)—wB(q,) =0 Vo €
{l,h}. Wages are defined by the RIS constraints Vo € {I,h} : w(gs) = P(qa, ).
We now define a new variable to show that the two maximization problems are

equivalent. Suppose z(ga) = w(ga) — R(qa).

The independent structure commitment game maximization program can be
rewritten as :
(PB) max(y (2(g,),4a12_} BV (2(da), o @) 1] s/t
p(I)(P(gn, b) — z(gn)) + (1 = p(N)(P(a, 1) — z(@r)) > 0 (RIF)
v(z(gn) — Dlgn, 1)) = v(z(@) — D(q, k) (ICh)

v(z(q) — D(a, 1)) > v(z(an) — Dlgn, 1)) (IC)
This is P4 maximization problem.

vV v

A.3 Proof of Proposition 3

In this game, a strategy for RU is represented by ory = {crp, &(crp, @), cr(crp, &, @)},
where cgp is an initial contract offer, &(.) represents RU’s decision rule regar-
ding the choice of a message & and c,(.) is the renegotiation contract offer. The
strategy of player C, o¢ = {d(crp),d,(crp, &, c,)}, represents its decision rules

concerning the acceptance or rejection of the initial contract offer and the rene-
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gotiation contract offer, respectively. The beliefs of C are updated after stage 4.a

and are denoted P(c¢|cgrp, &, c;).

Define (w3, ¢i%) = argmaz(wqV (w,q,0) s/t U(w,q,h) > U(ws, ga, h) and
U(w,q,1) > U(ws,ga,!)}. The following strategies and beliefs support the equili-

brium allocation as a PBE outcome.

.
CrRD = cﬁD = {IA’ {w37q:14 Z:l}

o ) CAY(CRD, a) = argmaxde{l,h}v(wtd, qga, a)
RU = ) ) R _ N )
~ (,w;a, qz;a) Zf V(w;a, q;a, O{) > V(wd7 Ga, a)
Cr (CRDa a, Ol) =
0 otherwise.

1 if E[U(wa, o, a)ll] -I>0
0 otherwise
1 iof Ulw,q,a) > U(waa%na) Va € {lah}

0 otherwise

dc(crp) = {

oc = A

dr (CRD; da C,-) -

0 if  o#0 ond U(w,gh)> Ulwsash)
and U(w,q,1) < U(wa,qa,!)
0 if =0 and &=1

P(hICRD, Q, Cr) = <

| 1 otherwise

P(llCRD, &, C,-) =1- P(hICRD, 6[, Cr)
where d = 1 means acceptance and d = 0, rejection. We shall now argue that

these strategies and beliefs do in fact constitute a PBE.

In stage 4.b, C accepts the new contract offer ¢, if and only if (w, q) is prefer-
red to the initial allocation selected (wa,qs) regardless of its beliefs. Given this
acceptance rule by C, RU can do not better than offer in stage 4.a its preferred
contract among those accepted by C. In stage 2, RU accepts all contract offers
yielding an expected pay-off of 0 given the expected resolution of the game follo-

wing the initial offer. Finally, in stage 1, RU offers its preferred contract among
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those expected to be accepted by C.

These strategies and beliefs imply the following equilibrium path. In stage 1,
RU offers the contract c4;, which is accepted by player 2 in stage 2. In stage
4, for each innovation quality o, RU selects its preferred report 6. In stage 4.a,
it makes no offer. Given that {14, {w4,qA}"_,} satisfies the constraints of the
maximization problem, the contract ¢4, cannot be renegotiated in stage 4.a given
the equilibrium strategy of C. With this strategies along the equilibrium path, it

is clear that the allocation is renegotiation proof.

A.4 Proof of Proposition 4

Denote 7(q, aqa’) the global profit for a gross profit P(g, o) and a development
cost D(g, '), o' # a. Denote g, the production level which maximizes P(q, a)—

D(g,d), o/ # o

Case 1 : We first consider the case of a major innovation. The proof proceed
as follow. First, we show that constraints RP! and RP} are respectively equivalent
to qn € [qf, ¢}] and ¢; € [g], ¢},]. Second, we derive the solution to the constraints
RP{ and RP} maximization problem. Thirst, we prove that ¢ = g; and ¢! = g}
Fourth, we show that RP is not binding so that the wage difference is defined

by RP} constraint. Then we derive the equilibrium allocation.
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The renegotiation proof constraints can be rewritten :

wp, — D(gn, h) > max,g{w — D(g, h) s/t

P(g,h) —w > P(qn, h) — wn

P(g,1) —w > P(gn, 1) — wa} (RP})
wp, — D(gn, h) > max(y,qg{w — D(g, h) s/t

P(q,h) —w > P(g, h) — w,

P(g,1) —w > P(q,1) — w} (RP;)
w; — D(q,1) > max, g{w — D(q,1) s/t

P(g,h) = w > P(gn,h) — wp

P(g,1) —w > P(gn, 1) — wp} (RP})
w; — D(q,1) > max, {w — D(g,l) s/t

P(g,h) —w > P(qi, h) —w,

P(q,l) ~w > P(q,1) — w} (RP/)

— Proof that RP}! and RP} are equivalent to, respectively, g, € [g;,, ¢r] and

a € [a, q4)-

~ Proof that RP/ implies g5, € [g},, ¢;].
Suppose that g, > g;. When a = h, this allocation is not renegotiation-
proof : RU can increase its gain by selecting & = h and offering ¢ = qar
and w = P(g},1) — [P(gs,!)] + wn. This renegotiation offer is accepted
by C for any beliefs and v(w — D(q, h)) = v(ws — D(gn, h) + (g}, 1h) —
7(gn, th)) which is higher than v(ws — D(gs, h)). Therefore, the renego-
tiation proof constraint for a innovation quality o = h and a message

& = h is not satisfied for all g, > g}

Suppose that g, < g};. When o = h, this allocation is not renegotiation-

proof : RU can increase its gain by selecting & = h and offering ¢ = ap,
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and w = P(g}},, h) —[P(gn, h) —wp]. This renegotiation offer is accepted
by C for any beliefs and v(w — D(q, h)) = v(wp, — D(gn, h) + (g}, h) —
7(qn, b)) which is higher than v(w, — D(gs, h)).

Therefore, the renegotiation proof constraint for a innovation quality

« = h and a message & = h is not satisfied for all g, < ;..

— Proof that any allocation such that gy, € [g};,, ¢}] satisfies RP}.
Assume that g, € [g}},, ¢;]. If RU proposes a production renegotiation
offer ¢ < g, then w must be less than P(g, k) — [P(gy, h)] + ws, to be
accepted by C. RU’s utility with an accepted renegotiation offer is at
least v(w — D(q, h)) = v(wn — D(gn, h) + 7(q, h) — m(qn, b)) which is
lower than v(ws, — D(gy, h)).

If RU proposes a production renegotiation offer ¢ > g5 then w must be
less than P(q, ) — [P(qa, ) —ws] to be accepted by C. RU’s utility with
this accepted renegotiation offer is at least v(w — D(q, h)) = v(wy —

D(qn, h) + (g, lh) — 7(gn, ) which is lower than v(wy, — D(gp, h)).

~ By a similar proof, we can show that RP} is equivalent to ¢, € [}, ¢%,)-

— Solntion to the RP! maximization problem.
Let (w],q]) be the renegotiation offer solution to the RP} maximization
problem. We consider two cases : ¢ < ¢, and ¢] > ¢;. Suppose that q <aq,

wj is defined by the following constraint :
wp = P(g], h) = [P(q, h) — wi].
With this offer, RU’s gain is :
wi ~ D(q;, h) = ma(q]) — mal@) + wi — D(g, b),

which is less that w; — D(q;, h). This allocation (w*,¢*) is not a solution
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to RP} problem : RU can be better off if it proposes (wj, q) rather than
(wf, q7)-
Suppose now that ¢] > ¢;, w] is defined by the following constraint :
w; = P(q[,1) = [P(q, 1) — wi].
With this offer, RU’s gain is :
wi — D(qj, h) = =(q], k) — (@, th) +wi — D(qi, h).
We now consider two cases.
1. If ¢ > ¢}y, then
(g7, th) = 7(qi, th) < 0,Vg] > qi.

Hence, the best surely acceptable renegotiation offer is ¢f = ¢; and

w] = w;. The solution to the RP,ZL maximization problem is :
w; — D(ql, h)

In this case, RP} is the usual incentive constraint.

2. If ¢ < gjj,, then the best surely acceptable renegotiation offer is ¢f = ah,
w; = P(gj, 1) — [P(q,!) — wi]. The solution to the RP} maximization
problem is :

(g, th) — m(qu, Lh) +w; — D(q, h).
The constraint RP} can be summarized by :
wp — D(gn, h) > n(q], k) — 7(q, Lh) + w, — D(q, h),

where ¢f = max{q, ¢}, }.
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— Solution to the RP* maximization problem.
By a similar proof, we can show that the constraint RP/* can be summarized
by :
w — D(qi, 1) = m(gp, hl) — m(gn, hl) +wn — D(g, 1),

where ¢}, = min{qs, ¢, }.

— Proof that ¢ff = q; .
Suppose first that g;' < gi;. We prove that, if gf* is increased by € > 0 and wf!
is reduced by § > 0 such that wf! — D(gi}, 1) = (wf—0)— D(gft+¢,1), then all
constraints are satisfied and RU’s utility is higher. With {I4, (w{*, ¢!), (wf*—
4,4 + €)}, the constraints RP}!, RP} and RP} are satisfied and we have :

P(gf + €, h) — (wjt — 8) = w(gf + ¢, hl) — (g, hl) + [P(q, ) — wil].

Since gj; > g, then P(gi + ¢,h) — (wf* — ) > P(gf,h) — wi* and the
constraint IR still holds. Moreover, we have :

(wf = 6) = D(gi' +¢, h) = wil — D(gf, h) + D(g +¢,1) — D(gft, 1) + D(gf* +
e, h) — D(q*, h).

Since (wj —8) — D(gf*+¢, h) > wi—D(gf, h), the constraint RP? is satisfied
and {I4, (wi*, ¢*), (wf — 6,4 +¢)} gives RU a higher expected pay-off than
{14, (w', ¢*), (wit, ¢f*)}. We should have gf! > g}, and therefore g = k-

Suppose that qf < q;. The constraint RP!* can be rewritten as :
wi' = D(gi', 1) > m(gy, bl) — [P(gi, h) — wi].

If g is increased by € > 0 and wi* is reduced by & > 0 such that P(git,h) —
wi = P((g'+¢€), b)— (wii—5), then the constraints IRC, RP, RP] and RP}
are satisfied. Moreover, we show that RU’s utility increases and therefore

RP} is satisfied. We have :

wjy — &+ D((g5 +€), k) = wit + D(gf', h) + m(qf* + €, h) — m (g, h).
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Hence, since 7(gf + €,h) — m(gf’,h) > 0, the constraint RP} holds and
{14, (wit, ¢f*), (wit — 6,qf* + €)} gives RU a higher expected pay-off than

{14, (wi, q*), (wit, ¢ft)}. Therefore, at the equilibrium, ¢f* = g;.

— Proof that ¢f* = ¢}
Suppose first that gf* > g},. We prove that, if gf* is reduced by € > 0 and
wi® is increased by 6 > 0 such that w{® — D(g', h) = (wf* 4+ 8) — D(gf* — ¢, ),
then all constraints are satisfied and RU’s utility is higher. The constraints

RP}, RP} and RP} still hold and we have :
P(gf - &1) = (w' +8) = n(qf" — ¢ 1h) — m(gf", 1h) + [P, 1) — wf].

Since gfy, > ¢f*, then P(gf' —¢, 1) — (wf*+6) > P(qf*,1)—w;* and the constraint
IR still holds. Moreover, we have :

(w' +0) = D(qf* —€,1) = wf* — D(¢", 1)) + D(¢f",1) - D(gf* —¢, 1)+ D(gf*, h) -
D(gf* — ¢, h).

Since (wf* + 6) — D(g* — €,1) > wi* — D(gf},1), the constraint RP" is sa-
tisfied and {I, (w* + 6,¢* — ¢€), (wil,¢")} gives RU a higher pay-off than
{1, (wf', ¢f*), (wi, qi*)}. We should have gi* < g}, and therefore ¢} = gj,.

Suppose that gf* > ¢f. If ¢/* is reduced by ¢ > 0 and wf is increased by § > 0
such that : P(gf*, 1) —wf* = P((¢f*—¢),!)— (wft+6). Then all constraints are
satisfied and wi* + 0+ D((gf* —€), h) = wi+ D(gf*, 1) +7(gf — €, 1) —m (g, 1).
Hence, since 7(gi* —¢,1) —m(gf', 1) > 0, {I4, (w + 6, gf* — €), (wi, ¢i2)} gives
RU a higher expected pay-off than {I*, (w{, ¢), (wi, ¢f')}. Therefore, at

the equilibrium, ¢f* = ¢}.

~ Proof that RP} is not binding and that RP} is binding.
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Clearly, as in Proposition 2, one of the two constraint is binding. Suppose

that the two constraints are binding. Then, we must have :

T(qhi, M) — (i, bl) = w(gs, h) — 7(q}, 1).

However, this case is impossible since cost functions are such that 7(g}, h) —
7 (gih, th) > m(ghy, Bl) — (g7, 1)

Suppose now that RP is binding and that RP} is not binding. Then wf —
D(gs, h) > wf — D(q},1). For ¢ > 0 sufficiently small such that if wf is
increased by — ( and w{! is decreased by (1)’ all constraints can still be
satisfied and RU’s expected utility can be increased. With this alternative
allocation, RU’s expected utility is :

p(D)v(wi — D(g, h) — —=) + (1 = p(I))v(wi' — D(g},1) +

p(D)
Since v is concave, this term is higher than :

p(l)v(wi = D(gi, b)) + (1 = p(D)v(wi* — D(g}, 1)) + €[v' (wf — D(g, h) —

+65) — v/(wf — D(g}, 1) + =55)]

Hence, since € > 0,

p(I)o(wf~D(a3, h)—55)+(1-p(I))u(wf~Dah, ) +1=55) > EIV (wh, g, a)|1].

Therefore, {wg, ¢4 }"_, with RP? binding is not an equilibrium allocation.

Characterization of wages and investment implemented.

Because RP}! is binding, the low technology transfer w; is defined by :
wy = wp — D(gz, h) + D(qf, h) — 7(q}y,, th) + 7 (g}, LR).

We now consider the following reduced program :
maxzu, P(1)0(wn = D(gn, k) + (1 = p(1)o(m(ghy, bl) — (P(g;, h) — wh)) s/t

PP (g, k) = wa) + (1 = p(1))(P(qf,1) = m(gip, hl) + (P(q5, h) — wa) +
D(g;, 1)) (IR°).
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The high technology transfer wy, is defined by IRC. Investment I4 satisfies
the following first order condition :

A ’U(wA"D(qA’h'))_'U(w D(qA7l)) A * _
P U b my+ (s (=Bt + F (@ ) — wit — (P(g},1)

'wz)} L.

Case 2 : We now build a similar proof for a minor innovation.
As above, we can show that RP} and RP} are equivalent to, respectively, g, €
(95, aix] and a € [g5, ¢7].
We can also solve the RP} and RP} maximization programs and rewrite these

two constraints as :
wp — D(qn, h) > 7(gh, h) — n(q, h) + w — D(qi, h) (RP})

wi = Dgi, 1) 2 7(g',1) — 7(qn, 1) + wn — D(gn, 1) (RP)

We now prove that RP" is not binding and RP} is binding. Suppose that
{I{wg,q2}t_} is such that both constraints are binding. We have :

m(gi, h) = m(qi', k) + D(gi!, k) — D(git, 1) = m(g}, 1) — w(qf', 1) + D(gf*, 1) — D(g, 1)
= gk, b) — 7(a.1) = (gt hl) — (gt Ih). |
Since ¢f* < ¢f < g} < gf!, the left-hand term is negative while the right-hand term
is positive. This contradicts the fact that the two constraints are binding.

Suppose now that RP} is binding and RP! is not binding. Then,

wi — Dl(gi's k) = [wft — D, )] = D(gf',1) - D(gf', h) - m(qf, 1) +7(gf, )
= (g, th) — (g}, 1)
This term is strictly positive since g5 € [g},q},]. Therefore, wit — D(g, h) >
wi* — D(gf*,1). As in the proof of Proposition 7, we can show that, for ¢ > 0
sufficiently small such that if wf is increased by = and wy' is decreased by

5(57), all constraints can still be satisfied and RU’s expected utility can be in-

creased. This implies that RP! is not binding and RP}! is binding. Therefore,
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wh — D(gn, h) = ma(g}) — m(@) + wi — D(g, h). IRC binding yields

p(1)(P(gn, h) = wn) + (1 = p(1))(P(q, ) —w) = I = 0.

Using these two preceeding relationships, the integrated structure maximization
program can be rewritten as :

maxy (g1 _} P(Dv ()7 (gn, h)+(1—p(I))7(gi, h)+(1~p(I)) (g, 1) =7 (g, hl)]—
I+ (1 =p(D)v(p()[r(gn, h) — 7(qh, B)] + p(D)m(qr, hl) + (1 = p(1)) (g1, 1) = 1) s/t

a—qg < 0
- <0
=g < 0
G—a < 0

Let the Lagrangian multiplier associated to each constraint be respectively 1, i,

tur, and py. The first order conditions are :

mhad) = kv

mgtl) = w’<qf‘,hl>p(1f;)[%:jl'1—;]/ﬁ')+ﬂ,_ﬂh,
vA_yA
iy + Plaf, h) = P, 1) = 5ibn

We first show that ¢ff = gf. One of the two multipliers fp Or typ must be nil.
Suppose that p, = 0 and g > 0, then gff = ¢;. By first order condition
7'(gft, h) < 0 which contradict that ¢f* = ¢}. Suppose s = 0 and gy > 0, then
a7 = g, > g and we have 7'(g},, h) < 0. By first order condition 7 (git,h) >0
which contradict that gf! = g;. Since yy = 0 and p, = 0, the first order condition
is rewritten as 7'(gs!, h) = 0. Hence g = g;. We now characterize ¢/*. First, note
that since the binding constraint RP} implies that wi! — D(gf, h) = (g}, h) —
7(gf', hl) + w, — D(gf*, 1), then Vi > VA and, since v is concave, V& < V4. We
now prove that the multipliers ; and py,; are nil. Suppose that p; > 0, then yp = 0
and gf* = g;. According to the first order condition, 7' (gi*,1) > 0, which contradict

that ¢/* = ¢f. Suppose that pp > 0, then 1 = 0 and ¢f* = gf,. According to
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the first order condition, 7'(gf!,!) < 0, which contradicts that ¢ = ¢;;- Hence,
af* € (g}, q}) is defined by the following order condition :

(g, W)p(I*) (Vi — Vi*)
EVHI4] '

wl(qlA7 ) =

Finally, C’s utility difference is U2 — U = P(g;, h) —wf* — [P(gf, 1) —wi]. The
binding renegotiation-proof constraint RP} yields wj! —wj! = P(g}, ) — P(qf*, h).
Therefore, Ui — U# = P(q¢f*, h) — P(gf*,1). The last first order condition can be

rewritten as :
VA -vA
E[VAI4]

A _rA _ _

A.5 Proof of Lemma 1

In this game, a strategy for RU is represented by ogy = {cr, cp(cr, @), ga(cr, cp, a)},
where cr and cp are respectly the financial and development contract offers, and
qa represents RU’s decision rule regarding the choice of a message g5. The stra-
tegy of player F, or = {d(cr)}, represents its decision rule concerning the ac-
ceptance or rejection of the financial contract offer. The strategy of player C,
oc = {d(cr,cp)}, represents its decision rule concerning the acceptance or re-
jection of the development contract offer. The beliefs of C are updated and are

denoted P(ca|cr,cp).

The proof of the necessary condition is similar to the proofs of Propositions 1
and 3, and it is therefore omitted. It is also straightforward to show sufficiency

with the following strategies and beliefs.

ORU =

cp(@) = cp = {w”(ga), 42, m” (4a) Yory

Qa(Cg, cga ) = argmaque{q,,qh}V(w(q&) — Rings): 9, @)
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1 iof U(w(ga), 4o, ) > 0 Vo € {l,h}
0 otherwise

gc = dc(CD) = {

1 3 rgmazg, V(w(gs) — R N, qa, ) =h
p(h|CD>:{ oo argmazacunV(wlgs) = Hn, 4 )

0 otherwise

A.6 Proof of Lemma 2

A general proof is made for a major innovation. For the other case, the proof

is similar and it is therefore omitted.

We derive the best wages and productions for each feasible report manipulation
function and then compare RU’s expected utility to find the solution to the Pop
program. Then we characterise the equilibrium development contract for all given
financial contract allocation. We could have the following the equilibrium report

manipulation functions.

= VYga, mP(ga) = 1.
We can now consider the following reduced program :

MAX{1(ga)ga E[V(w(ga) — R, ga, @))|I] s/t

P(qn, h) —w(gn) > 0 (IRY)
P(g,1) — w(g) > 0 (IRF)
w(gn) — D(gn, h) > w(q) — D(q;,h) (ICh)
w(q) — D(@,1) > wlgn) — D(gn,1) (IC))
The solution is :
w®(gn) = P(a, h), w® (@) = P(¢P,1), ¢f = qf,
P = a if (g, 1) = P(g;, h) — D(g;,1) with ¢f such that

otherwsise
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m(g) = P(Q}f,h) D(Qhal)

RU’s expected utility is :
p(Dv(r(g5’, h) = Ri) + (1 — p())v(n (g}, 1) — Ry).
- qu, mB(qa) = h.
This case is symmetric to the first case. We have the same equilibrium wages

and productions. RU’s expected utility is :

p(Dv(m(g5’, h) = Ba) + (1 = p(I))v((gf,1) — Ra).

- mP(qn) = h, mP(q) = 1.

The reduced program to consider is :

MaX(y(g,) g}t _, BV (W(da) = Rim(ga), e @))|1] s/t

P(gn, h) — w(gn) > 0 (IRF)
Pg, 1) —w(@) 20 (IRf)
w(gn) — Rh — D(gn,h) > w(@) ~ Ri — D(q;,h) (ICh)
w(g) — Ry — D(a,1) > w(gn) — Rn — D(gn, 1)  (IC)

To solve this maximization problem, we first show that incentive-compatibility

constraints are binding.

1. Suppose that P(gf, h) — w®(gs) > 0 and P(gP?,1) — wB(q) > 0.
If w?(g,) and wP(q;) are equally increased, the constraints are still sa-
tisfied and RU’s expected utility is increased. This is not an equilibrium

allocation.
2. Suppose that P(g7, h) — w?(gs) > 0 and P(¢f,1) — wB(q) = 0.
Then, there exists 6 > 0 and € > 0 such that § = D(¢? + ¢,1) —
o D(q,1) and P(qf +¢, h) — (w®(gy) +6) > 0. The alternative allocation
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{w®(a), ¢P, wE(q)+0,gP+¢} increases RU’s state h utility and satisfies
the constraints. Individual-rationality constraints are satisfied and it

is easy to verified that IC} constraint is satisfied since :
w?(gn) + 6 — D(gy, +€,1) = wP(qn) — D(gF, 1).

Constraint IC}, is satisfied since RU’s state h utility is increased as

shown below :

D(gy +¢1) = D(gz,1) > D(gy +e,h) — D(gf, h), Vgf > 0.
Hence,
w”(gn) +0 - D(gy +¢ h) > wP(q) ~ D(g', ) + D(g5 +¢,1) — D(qf, 1)

= wB(qh) +6— D(qf +¢€,h) > wB(qh) — D(qP, h).

. Suppose that P(g7,h) — w®(gy) = 0 and P(g?,1) — w®(q) > 0.

Then, there exists § > 0 and € > 0 such that § = D(g?, h) — D(q? —
e, h) and P(gf — ¢, h) — (wB(gy) — &) > 0. The alternative allocation
{w®(q)—0, P —€,wB(gn), ¢P} increases RU’s state [ utility and satisfies
the constraints. Individual rationality constraints are satisfied and it
is easy to verified that IC} constraint is satisfied since w®(g) — 6 —
D(gP — €,1) = wB(q) — D(gP, h). The constraint IC, is satisfied since

RU’s state [ utility is increased as shown below. We have :

D(¢/,1) - D(g” — &,1) > D(gP, h) — D(gP — €, h),¥g? > 0.
Hence,
w?(@) —0~D(g’ - ,1) > wP(q)) — D(gF, 1) + D(¢P, k) — D(¢f ¢, h)

w?(@r) = 6 — D(¢” — ,1) > wB(q) — D(¢P,1).



107

We just proved that equilibrium wages are defined by C’s binding partici-
pation constraint Vo € {l,h} : w(ga) = P(ga, ). We now have to solve the
following reduced program :

maX{q,,¢} PD)v(m(gn, h) — Rp) + (1 = p(I))v(x(q,1) — Ry) s/t

7(gn, ) — Rn > 7(q,lh) — Ry (ICh)
m(q@,l)— R > w(g, M) — Ry (IC)

This program solution depends on repayments allocation {R,}"_,. We iden-

tify three cases.

1. If w(g}, h) — m(g},lh) > Ry — Ry > m(q}, h) — w(q}, ).
Then the incentive-compatibility constraints are not binding and effi-
cient production can be implemented ; g = g}, ¢? = ¢;. RU’s expected

utility is :
p(D)v(n(gy, h) — Ry) + (1 — p(I))v(n(gf, 1) — Ry).

2. If Ry — Ry > (g}, h) — m(q}, Ih).
Then ICj}, is the binding constraint. The low technology production is
distorted ; ¢f = ¢} and ¢P < g} such that : 7(g}, h) — Ry = 7(q},lh) —
R;. RU’s expected utility is :

p(D)v(m(gi, h) = Ba) + (1 = p(D))o(n(qr’, 1) — Ry).

3. If Ry — Ry < m(q}, hl) — (g}, 1).
Then IC; is the binding constraint. The high technology production is
distorted ; ¢ = ¢f and ¢f > g}, such that : m(q) — Ry = mu(q?) - R..
RU’s expected utility is :

p(Dv(n(gy, k) — Ry) + (1 = p(1))v(r(g,1) — Ry). |

~ m(gp) = and m(g) = h.

It is a symmetric case to the previous case.
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The equilibrium. allocation depends on the equilibrium financial contract. For
any assumptions about the equilibrium repayments, we shall show that RU pro-
poses mP(ga) = argmin,{R,} : the equilibrium manipulation report function
prescribes to report the innovation quality corresponding to the minimum repay-
ment. We prove that this report manipulation function is preferred in equilibrium
to the truth-telling report manipulation function. It is straightforward to design a
similar proof which shows that this report manipulation function is also preferred
to the following report manipulation function m(qs) = I, m(q;) = h. This proof

is therefore omitted.

- If Rh > Rl.
We show that the equilibrium report manipulation function is Vo € {I, h}, m(q,) =

[; that is always report a low quality innovation.

1. For R, — R, > (g}, hl) — n (g}, IR).
The best manipulation function is m®(gy) = h and m®(q;) = I (and
not m®8(qa) =1 Vga) if : |
— For Ry — Ry > (g}, h) — (g}, 1h) :
p(Dv(7(gh, h) = Ra)+ (1= p())v(n(gf, 1) — Ri) > p(I)v(w(gf , h) -
R)) + (1= p(D)v(r(¢f,1) - Ry) |
- For Ry — R < n(g}, h) — 7(q}, 1h) :
p(Dv(m(gh, h) = Bn) + (1~ p(I) v (r(gf, 1) = Re) > p(T)v(m(qf, h) -
R) + (1= p())o(n(ef,1) - R)
A necessary condition for one of these inequalities to hold is that :

v(m(g h) — Ra) > v(m(gy, h) — R).
Since Rj, > Ry, this inequality is not satisfied if @ =q. Ifgf =¢f,

we must have :

m(gi, h) > Ry +7(gr, h) — Ry
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Since Ry, — Ry > m(gt, hl) — 7(qf, Ih), it implies :

7(qn, h) > m(gy, h) + w(g;, hl) — 7(q}, ).

For all g, we have 7(q, k) = m(q, hl)—D(q, h)+D(q,1). Since 7(q5,lh) =
7(qf, 1), then 7(g5, h) = 7(g}, 1)+ D(g5, k) ~ D(gf,1). This relationship

and the previous inequality imply :
D(g;,!) — D(gs, k) > D(gi, h) — D(g5, 1),

which is false since ¢ > g;.

2. For Ry, — R; < m(q}, bl) — (g}, 1).
The best report manipulation function is m®(g;) = h and m®(q) = |
and not m3(q,) = [, Vo if :
p(Dv(r (g, k) = Ry) + (1 = p(D))o(n(¢P,1) — Ri) > p(I)v(n(gf, k) -
R)) + (1 = p(I))v(n(g,1) - Ry).

A necessary condition for this inequality to hold is that :
v(n(gp,h) — Ru) > v(r (g3, h) — R)

g 71'((],?, hl)+D(QI?7 )_D(QI?a h)_Rh 2 W(Qf’hl)—l_D(qf’ l)—D(QIf7 h)—Rl

where g7 and gf are defined by w(qf,l) — B, = n(¢B,hl) — R, and
7(qf,l) — Ry = m(g$, M) — R,. Therefore, we have : ‘

D(gy,1) = D(gz, k) > D(g3,h) - D(gf, 1),
which is false since g§ > ¢P when R, > R,.

- If Rh < Rl.
By a similar proof, we can show that the equilibrium report manipulation

function is m®(gy) = m®(q) = h.
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— If R, = Ry, all report manipulation functions solve the program since they

give the same expected utility to RU.

To conclude, we proved that the solution of program P¢p is :
w¥(gn) = Pa7, h), wP (@) = P(¢%,0); ¢f = qf';

a if 7(q7,1) = P(gh, k) — D(g, 1)

gy otherwise

with g such that 7(g},l) = P(qg5,h) — D(q$,1);

m®B(g,) = argming{ Ry}, Vo € {I, h}.

af =

RU’s expected utility is :
p(IP)v(n (g, k) — min{ Ry, Ri}) + (1 — p(I))v(n (g}, 1) — min{ Ry, R;}).

We can write similar proof if a minor innovation. The wages are defined by
C’s binding individual rationality constraints. The investment and the production

level implemented solve the following program :

(Pop2) maxy (o303 Elv(n(ga, @) = D)|I] 5/t

7T(qh7 h’) 2> W(Ql, lh) (ICh)
7T(qla l) > W(Qh, hl) (ICl)
The solution is given by the following relationships :

B q if (¢, h) = P(gi,1) — D(g, h)

B * _
’ql“

9 =4q ]
g’ otherwise

. B_vyvB
with ¢ such that 7 (g}, h) = P(¢,1) — D(¢F, h); P'(I”) glormrimy = 1.

A.7 Proof of Proposition 5

- We shall prove that the financial contract equilibrium must be such that

min{RE} = B,
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Suppose that min,{RE} > IB. F’s expected gain is E[min,{RZ}] - I® > 0.
Since RU can increase his gain by reducing ex post repayments, this allocation
is not a PBE equilibrium. Suppose that min,{RZ} < IZ. F’s expected gain is
E[min,{R2}] — I® < 0. F would prefer to refuse this offer, and RU’s gain is nil
although it can be positive with min,{R2} = I8. As mB(a) = argmin,{RE},
along the equilibrium path, investment equals repayments for each state of nature
a € {l,h}. Hence, Rf = RP = IB. The level of investment I® solves the following

maximization problem.
mIa‘XE[V(wB(qa) - I’ qf? 0‘)|I]

The first order condition is :

Vi — Vi _

—h Lo 1.
E[V,P|IP]

p'(I%)

A.8 Proof of Proposition 6

We first prove the first part of Proposition 6. Suppose that innovation is ma-
jor. The allocation {I4{w2,¢2}"_,} solves the following reduced maximization
problem :

(Pr) max(; y,yn_y B[V (wa, g3, @)|1] 5/t

E[U(wa, g5, @)1} - 1=0 (IR)

wh — D(g;, h) 2 7(giy, Ih) — m(qf', 1h) +wi — D(qf,h) (RP})
We prove first that, when 7(gf, 1) > 7 (g}, hl) (no-distortion case), the independent
structure allocation satisfies the constraints of the P} program without solving it.
Therefore, RU’s expected utility in the independent structure is dominated by the
integrated structure one. Then we show that the independent structure performs

better in the case (g}, 1) > (g}, hl) than otherwise.



112

= Suppose 7(gf, 1) > 7(qf, hl). Let I° = IB, wl = w8 — I and ¢¢ = g8 = ¢*.-
The allocation {I°{w¢, ¢} _,} satisfies C’s individual rationality constraint.

The renegotiation-proof constraint RP} is rewritten as :

gk, h) = (g, Ih),

which is satisfied. However, since the renegotiation-proof constraint RP} is
not satisfied with

{1e{ws, ¢ }h_}, then {I*{we,¢c}r )} # {I*{w?, ¢2}"_,}. Therefore, the
program objective is higher with {74, {wZ, ¢2}!_,} than with {I°, {w¢, ¢¢}._,} :

E[V(wg, g2, )lI*] > B[V (w5, g5, @)I°] = B[V (w®(ga) — I?, 48, ) |I7].

— Suppose 7(qgf,!) < w(g},hl). Since w?(q,) = P(¢?,a), RU’s equilibrium
expected utility in the independent structure can be found by solving :

(Pép) MaX(7 {ga}r_;} E[V(P(¢a, ) = I,qq,)|I]

7r(th) 2 7r((Il,h’l) (ICS)
m(q,l) > 7(gn,lh) (ICF)

Let the allocation {I% {g%}2_,} solves the following program :

max E|V(P(qu, o) —I,q., a)|].
e [V(P(gar @) = I, gas @)|1]

The first order conditions are :

pIY)Vyin'(gf,h) = 0
(1—pI)Vir'(gf,l) = 0
PUYVE -V - EVAIY = 0

Therefore ¢¢ = g2, Yo € {I, h}.
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Clearly, since one of the two incentive compatibility constraints in the P4,

program is binding, we have :

E[V(P(gy,a) = I, ¢, &)|I*] > E[V(P(¢2, 0) — IB, P, )| I7].

Since allocation {I¢,{wd,q%}._,} where w = P(¢*,a) — I¢ satisfies P!
o’ 1ata=h @ a R

without solving it, RU’s expected utility is higher with {I4, {w4, ¢2}._;}
than with {Ida {wga q;}f:z:h} :

E[V(wy, g5, 0)I*] > E[V(P(g}, @) - I, ¢, @)|1%).
Use the two preceeding relationships and obtain :

E[V(wg, 2, e)[I*] > BV (w®(ga) - 17,47, @) |17

We now show that if ¢? > ¢i* and A > 1, then E[V.?|I?] > E[VA|I4]. This

case includes the case ¢f = ¢; which is satisfied by definition under Assumption

1.

RU’s expected utility in the integrated structure is :

EVAIA) = p(I*)v(n(gh, h) + (1 = p(I4)(P(gf,1) — P(gf', b)) — I*) + (1 -
pIA))o(r(at ) — p(T4) (Plaf 1) — Plgf b)) — I4)

RU’s expected utility in the independent structure is E[V.2|I8] = p(1®)v(n (g}, h)—

I%) +

(L= p(I%))v(r(gf,1) - IP).

Now, since v is strictly concave, we have Vz > y, v(z) — v(y) < v'(y)(z — y) and

v(x)

—v(y) > v'(z)(z — y). Hence,

v(m(gh, h)+(1—p(I*))(P(gf, 1) - P(gf, b)) —I4) —v(n(a}, h) ~ I*) < v/ (x(q}, b)) —
I*)(1 = p(I*)(P(gf, 1) — P(gf*, b)),

and,

v(m(gf 1) — I*) — v(n(gf, 1) — p(IA)(P(gf, 1) — P(gf, b)) — I%) > o' (r(q}, 1) —
Dp(I*)(P(gf,1) — P(q*, ).

Since m(gP,1) > m(gf, 1), using the two preceeding relationships, we find that :
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p(I*)v(r(gh, b) — I*) + (1 — p(I*))v(n(aP,1) — I*) > E[VAIY + (P(gf',1) -
P(gf', M)p(I) (1 — p(I*))[W' (7 (gf, 1) = T*) = o' (n (g5, b) — I%)].
Since P(g*,1) > P(gf*, h) and v'(n(gf},1) — I*) > v'(n(q}, h) — I*4), therefore,

p(I*)v(n(gs, h) — I*) + (1 = p(I*))o(n (g, 1) — I*) > E[VAI4.
Since I® solves max; p(I)v(n (g}, h) — I) + (1 — p(I))v(w(gB,1) — I), therefore,
B[V |1%) > p(I*)u(m(gi, h) — I) + (1 = p(I*))o(w(gP, 1) — T*).
Using the two preceeding inequalities, we conclude that E[V.B|IB] > E[VA|I4].

When A = 1 (neutral innovation), then g2 = ¢Z, for every a € {I,h}. In this
case, RU’s expected utility is :
B[V = B[V IP] = p(I®)v(n (g}, h) — I®) + (1 = p(IP))u(x(¢f, 1) — IP).



Annexe B

Proofs of chapter 2

B.1 Convexity
Vi pg > p> pg, 0(p) = ﬂ{%ﬁl. We have :

5 w(g) —u( - a)
Plu)=-» [1 —p+puj*r

é”(ﬂ) =9 2’u(’lj) — u(g — a)

[1—p+pulr

B.2 Proof of proposition 1

We first show that if all agents obey to the full income-sharing norm, it implies
that the full income-sharing norm maximizes conformists’expected utility and
therefore will be implemented. Then we prove that if the full income-sharing
norm is implemented then there will be full obedience to this norm. Suppose
that w(E[y]) > u(g) — r, then all agents conform to a full income-sharing norm
o = (1 - p)(§ — y) in the stable strictly positive equilibrium. Therefore * = 1.

It is straightforward to show that of maximizes agents’ expected utility :

115
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Us(a’) = w(Ely]) > pu(f — &) + (1 - plu(y + F&), Ya* # oF.

Suppose that the best norm is the full income-sharing norm. If some agents
desobey the norm, that is y* < 1, then o* is defined by the following first order

condition (see next proposition) :

T—p )p* + o' ——]
o £(0(u)) =2k
with % = "l lphparlr
do 1= () p e
Then we cannot have equality between the two marginal rates of substitutions :

a* # af.

u,(g + = ul(g - a)’

B.3 Proof of proposition 2

I first show that if everybody obey the norm then the rich agent the less affected
by his reputation is indifferent between obey or not the norm. Thereforez the
best norm can be characterized by the first order condition to the maximization
problem. I then derive this first order condition and verify the second order

condition.

Let ay be the norm which makes the agent the less affected by his reputation

indifferent :

If a* < oy, then :
U%(a*) = p{v'(y+0*) —v' (- a*)} > 0.

Conformists expected utility could be increase with a higher transfer o* until we

reach a* = oy. If o* > oy then p* =1-— F(%) < 1. The following first



117

order condition (FOC) must be satisfied :

UCI(a*) =0
f(O(w) gA)
= p{u'(y+)[p* — a* _ P ] —W/(§— o)} =0.
. 1— f(B(ue))pwies)
o (f—a*
= U+ - ot fH) — T ] = /(- o).
. 1= 70 p R

If o* = ay, this first order condition is satisfied with p* = 1.

I now verify the second order condition (SOC). The FOC can be rewritten :

i (6~’(u’“))a*u’~ G-o)
[1—p+ pu*]r — pf(f(pr))v@=uli—a’)

1—-p+pp*

U (a") = p{u'(y + 8)[u* ~ | -u'(§—a")}.

Since f(p*) = Yi-u@-a’)

(1—p+pu*)r

fOp))orw' (g - o)

U (") = p{u'(y + 6*)[u* ~ |- u(g—a")}

The second derivative is :

U (a*) = p{u(y + 0) 155 (1" + o %) + u/(y + 6*) 2% +

S FO(u) £ (B(n) L (5 — o Yu" (g — a*)D +

FOW) G — o)rlp%e — (FO(?)) + £'(B(u))0(u))) () )y

+ (5 - a")},

where D = (1—p+pu—f (B(u*))f(u"))r and #£) = w02 )optn) (P ulo-e' ).
Since v” < 0, Qfai <0, ﬂc%l > 0 and f(6) + f(6)0 > 0, for every § € © by as-

sumption, we proved that U®"(a) < 0.

B.4 Proof of proposition 3

Suppose that the transfer given is equal to the social norm o* derived in section

2.5. I first show that there is a sugame perfect equilibrium where everybody



118

accept this contract. Consider an agent . Suppose that all his relatives accept
the contract. The stable Nash equilibrium of the subgame of norm conformity
was previously derived. Now, if agent 6 accepts the contract, his expected utility

is :

pu* )

U*(e) = pMaz{u(§ — ), u(g) - 01 — p+ ppIr} + (1 - p)u(y + -

If he refuses, agent 6’s expected utility is :

UR(a*) = pu(y) + (1 - p)u(y).

Since U4(a*) > UC(a*) > U(a*), the best reply for player 6 is to adhere to the
norm for all § in ©. Given this subgame equilibrium, the best informal insurance

contract is a* derived in section 5.

B.5 Comparative static properties

For convenience, we suppose that 6 is uniformly distributed in © = [1,2].

Equation 2.3 can be written as :

1 if w>

pr=9 2 (WEEMER) G > > (B.1)
0 O
The stability condition is 1 — p“u'_;%‘ﬁ > 0.
The FOC can be rewritten as :
1= %
ul +(5* * % u(y—a) T Y *:0

— I first state how equilibrium norm conformity u* react to exogenous para-

meters for a constant transfer o (if « is fixed).
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QL* _ u(g)—u(f—o)

dr  [l-ptpuPr?

dp ' ]

o

(/T

dy

dp* __ _uw(@)-wf-a)q ¢
dp = [1-p+pu*?r (1= p").

[ now turn to income-sharing norm o* adJustment to changing parameters.

do* __ { *ul(y—0*Ju! (g a*)}
dar SOC [1—3p+2pulr?
do* v (y+6*)a*

1 = * y
g W“I,(y — ){[1 T3pt2pp ]r +1}
d;y* = — o5t ”(y+6*)[u + 0" G da*

Since u* + o*%£. > 0 by the first order condition, % < 0.

* * o*u (_y_ 6*)'” (y a*)(3_2l"*)
& = soc{“”(y+5 )l + o] - [T=3p+2pupr? 12

Since p* + o* % da, > > 0and 3 > 2u*, do‘ <0.

Where SOC =Second Order Condition.



Annexe C

Proofs of chapter 3

C.1 Proof of Proposition 2

Let us first introduce notations. Consider an arbitrary coalition T = {t, ..., £}.
Denote 7 the maximization program associated to v(T") and zZ its solution. Call
the sets of binding constraints by K(T) C T and the set of binding constraints
before the last binding constraint t by K%(T) C K(T). Denote f(T) the first bin-
ding constraint and I(T') the last binding constraint before ¢ : f(T) = min K°(T)
and I(T) = max K°(T). The set of binding constraints is written as K(T) =
{f(T),...,U(T), t}. Denote P(T) = {T;}icx(r) the partition of T into self-sustained
- sets Ty = {i + 1,..., 5} for all consecutive 4,j € K(T). The secure welfare of a
connected set T' can be decomposed into the sum of secure welfares of partition

P(T)’s sets :

WT)= 3 (T (1)

i€K(T)
To prove that the game is convex, we need two lemmas.
Lemma 1. For all 5,5,€ N, s <5, if S = {s,...,5} and T = {s + k, .y S} with
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0<k<s5—s, thena! >2F, Vie SNT.

Proof of Lemma 1
It will be sufficient to prove that this is true for k¥ = 1. Consider S = {s, ..., 5}
and T ={s+1,..,5} with 5,5,€ N, s < 3.

First, consider the case 27 = e;. Then (z5,,,...,z5) solves IIr. In this case,
P =zl Vie SNT.
Now, suppose that = < e;. Then (z5,,...,z5) solves :
1T, MaX(z,41,.m5)  Doimsir Di(Ti) S/t
Yjerins\(s)Ti < Ljepins\(s & € — T3 Vi=S\{s}.
Note that, since s ¢ K(S), the set of binding constraints in ITy is equal to K(S).

Since e, — 5 > 0, there is strictly more water at s + 1 to be distributed between
members of coalition T in ITg than in II7. Clearly, any binding constraint in IT§

should be also binding in Ily. Put differently, K(S) C K(T).

Consider the case of one interior binding constraint in IT§, i.e. f(S) exists. The
constraint f(S) is also binding in IIy. Partition T into two subsets FO(f(S))NT
and P(f(S)) NT. It is easy to prove that =¥ = 27, Vi € FO(f(S))NT. Re-
call that, if 23 or 27 is implemented, all water available at f(S) is diverted from
the river. The following water allocations downstream f(S), (¢7)41,.--,Z5) and
(%}(5)41, -+ T ) solve the same following reduced program :

MaX(zf gy 11,025 Ef_:f(s).H bi(x;) s/t

YieringTi < Yjeringej Vi€ G={f(S)+1,..,5}

T

Suppose now that 3i € P(f(S)) N T such that 2§ < zF. Then Je: 27 — 25 >

T_
€ > 0 such that coalition S’s secure welfare can be increased by implementing

T = (23, ..., 2} +€, ..., x5 —¢€). Clearly, since z7 > £5+¢, oy is feasible. Recall that

the first order conditions imply b(z7) > bj(xf). Choose € such that b(z5 +¢) >
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by(z¥ — €). Functions b; and b; strictly concaves imply

b,(xf +e€) — b,(xf) > b;(xf +€)e

and,

bs(z5) — bs(z3 — €) < by(zF — e€)e.

Therefore,

bi(z; + €) + bs(zs — €) > bi(xF) + bs(@d) + [bi(af +€) — b(z5 — €)]e.

Which imply,
bi(z +¢€) + bs(z5 — €) > bi(zf) + bs(x‘g)

The argument is similar for the case of no interior binding constraint, i.e.

K(S) = {5}. End proof of Lemma 1.

Lemma 2. For all 5,5 € N, s <5, ifS={s,..,5} and T = {s,...,5 + k} with
0<k<n-—3 thenz? >z, Vie SNT.

Proof of Lemma 2
It will be sufficient to prove that this is true for ¥ = 1. Consider S = {s, ..., 5}
and T' = {s,...,5+ 1} with 5,5, € N, s < 5. Distinguish two cases.

— Case 1 : § binding in Iy : I(T) = 5. Then 27, = ezy;. The remaining

water allocation (z7, ..., zT) solves IIs. Thus 25 = 27, Vie SNT.

s

— Case 2 : 5 not binding in Il : I(T) < 5. We need first to show that, in
this case, K°(S) = K°(T). Remark that in IIy, coalition S must provide

m§+1 — €341 units of water to agent 5§+ 1. Fix z54; = z7,, and consider the

T

remaining allocation z§ = («7,...,zT). This allocation solves the following

maximization program :



123

maXy, Yies bi(z:) s/t
Iy YierinsTj < Xjerins€j Vi € S\{5},

T
ZjePFmS z; < EjerS €; — (5'3§+1 - €§+1)-

117 differs from IIg only by the last feasibility constraint which is not binding.
Therefore, the set of I17’s binding constraints preceding the last one is equal
to K°(S). This implies I(S) = I(T). Hence, ¥ = 7, Vi € {s,...,l(S)}.
Now, suppose that 3i € {I(S) +1,..., 5} such that ¥ < z7. Then b(z}) >
b;(z]). The first order conditions of Il and I1s imply, respectively, b.(z5) =
bi(x3),¥j € {I(S) +1,...,5} and b(z]) = ¥j(z]),Vj € {UT) +1,..,5}.
Hence,

bi(z3) > bi(zT), V5 € {I(S) + 1, ..., 5} |

S T v/ _
= z; <z;,Vi€{l(S)+1,..,5}

5 5
= fo< Z:vf

J=l(8)+1 J=I(8)+1
However, § binding in IIs yields 7_;s)11 €; = £i—ys)41 25 Using the last
inequality, we obtain E?:z(S) 416 < Ej‘:l(s) +1 xf Which contradicts the

feasibility of z7. End proof of Lemma 2.

We need to prove that, Vie T'C S C N, T and S connected,
v(S) = v(S\{i}) = v(T) — v(T\{3}). (C.2)
We claim that it will be sufficient to prove that, for all i,s € N, i < s,

v(t, oy 8) —v(i+1,..,8) 2 0(i,0, s — 1) —v(E+1,...,5 — 1).
(C.3)

We first prove our claim. Define S = {s, ..., 5} and T = {t,...,}, with s < ¢ and

§ < 1. By excluding an agent 4 from an arbitrary coalition A, we decompose the
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connected set A = {g, ...,a} into two connected subsets AN P°(i) = {a,...,i — 1}

and AN F%(3) = {i+1,...,a}. Equation C.2 may be rewritten as

v(S) = [v(s, ..., i = 1) +v(i+1,..,8)] > v(T) - [vt,...i = 1) +v(i + 1,..., )]
(C.4)

Suppose that (C.3) is true. This implies that, Vk: 0 <k <s+i+1,

v(iy ..y s) —v(i+1,..,8) > v, .., s — k) —v(i+1,...,5 — k).

Rename ¢ = s, s = 5 and s — k = ¢ and rewrite (C.5) as
v(s,...,5) —v(s+1,...,8) 2 v(s,...,1) —v(s+1,..,1)
<= v(s,....5) —v(s,...,t) 2 v(s+1,...,8) —v(s+ 1,..., 1)
=>v(s,...,5) —v(s,...t) 2 v(s+ k,...,5) —v(s+k,..T), Vk: 0<k<i—i.
Choose k =i+ 1 — s and obtain
V(8. 5) —v(s, .., ) 2 0(i+1,..,8) —v(i +1,..., 7). (C.6)
Moreover, (C.3) is equivalent to :
V(iy .y 8) = (s s = 1) 2 0(i+1,...,8) —v(i + 1,...,s — 1).
This implies that, Vk: 0 <k <i+s—1,
v(iy ey 8) = 0(4,0y s = 1) 2 0(i+ k, ...y 8) —v(E + Ky ooy s — 1)
<= (i, 8) —0(i+ K,y 8) 2 0(6, s = 1) —w(i+1,...,5 — 1).
This implies that, VI : 0 <! < s— (i + k), we have :
v(t, .y 8) = V(4,00 s =) 2 0(i+ k.. ) —0(i + Kk, ..., s — I). (C.7)

Rename i =s,s=1%,s~1=14i—1andi+k =t and write (C.7) as

v(s, o) = 0(s, .y = 1) 2 0(t, .y ©) — v(t, .0y i — 1). (C.8)
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We now get the elements (conditions (C.6) and (C.8)) to prove (C.2), VT C
S C N. First show, that (C.2) is true for any S and T" such that S = {s, ..., 5}
and T' = {s, ..., t} with £ < 5. Since v(S\{z}) = v(s, ...,i— 1) +v(i+1,...,,5) and,
v(T'\{3}) = v(s,..,i — 1) + v(t + 1,...,?), then (C.2) leads to
v(s,...,8) —v(i+1,..,5) > v(s,...t) —v(i+1,..,1)

That is (C.6). We now show that (C.2) holds for any T and T’ such that T =
{t,...,t} and T" = {s, ..., %} with s < t. In this case, (C.2) leads to
v(s, ..., t) —v(s, ..., s = 1) > (L, ..., E) —v(E,...,i — 1).
That is (C.8). Finally, we proved that
v(S) = v(S\{i}) = v(T") — v(T"\{3}),
u(T) = v(T'\{z}) > v(T) — v(T\{3}).
Which implies
v(8) —v(S\{i}) 2 vo(T) - v(T\{3}).
We now prove (C.3). Denote A = {4,...,s}, B= {i+1,...,s},C = {i,...,s— 1}
and D = {i +1,...,5 — 1}. We have v(4) = T}_;b;(z}), v(B) = Ti_;; bi(zF),
v(C) = Zj;,} b; (ac]C) and v(D) = E;;% b; (x]D)

Inequality (C.3) can be rewritten as
v(4) —v(B) 2 v(C) - v(D)
< v(4) —v(C) > v(B) —v(D),

Consider the last binding constraint I(S) of each coalition S. We first prove

that (C.3) holds in the cases {(B) = s—1 and I(A) = s — 1. If {(B) = s— 1, then
allocation x§ is such that all water is diverted from the river at s — 1. Therefore

v(B) — v(D) = b,(e;). Condition (C.3) is rewritten as

v(A) — v(C) > by(e,).
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Replace bs(e;) by v(s) and rewritte
v(4) 2 v(C) +v(s),
which holds since v is subadditive. The proof is similar for the case I(4) = s — 1.

Now suppose that [(B) < s — 1 and I(A) < s — 1. First, proceeding as in the
proof of Lemma 2, it is easy to show that K°(B) = K°(D) and K°(A) = K°(C).

Recall that the secure welfare of any coalition can be obtain by summing the
secure welfare of partition P(S)’s sets (see equation (C.1)). K°(B) = K°D)
means that sets of partitions P(B) and P(D) excluding, respectively, B, and
D,_,, are equal. This gives us a simple formulation of the difference between

coalition B’s secure welfare and coalition D’s secure welfare :
v(B) — v(D) = v(Bs) — v(D;s_1).
Symmetrically, K°(4) = K°(C) implies
v(A) — v(C) = v(4;) — v(Cs_y).
Finally, all we need to show is :

v(As) — v(Cs-1) > v(Bs) — v(Ds_1). (C.9)

Note that, as asserted in the proof of Lemma 1, any constraint binding in II4
(other than 7) should be also binding in IT5. In other words, K (4) N B C K(B),
which implies [(A) < {(B). Condition (C.9) is rewritten as follows :

S b - T bED> Y bE)- S bED),

F=UA)+1 i=l(A)+1 j=1(B)+1 i=l(B)+1
J 3 J=l(B) (C.lO)

with {(A) < I(B).

We show that condition (C.10) holds even if, instead of implementing T4, , coa-

lition A; implements an other feasible allocation 7 generally (Pareto) dominated.
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s j=1A4)+1,..,UB),
Tj=4 2§ —(@P -2P) j=1B)+1,.,s—1,
xf j=s

It is easy to verify that this allocation is feasible, i.e. it satisfies I14’s constraints.
All feasibility constraints ¢ € {{(A4) + 1, ...,I(B)} hold since they do in II;. For
1 €{I(B)+1,...,s—1}, we have ¥jepina, Tj = Ljepina, Tf — Limypynr [z — ).
Since x > x , for all j € D,_; by Lemma 2, the last term is positive. Therefore,
since 7§ is feasible, the feasibility constraints i = I(B)+1,...,s — 1 hold. Now,

for the last feasibility constraint s, we have :

s-1 s s—1

5 c B D

2 &= ) w4+ Y - Y oz
JEAs J=l(A)+1 j=l(B)+1 j=l(B)+1

Use the (binding) last feasibility constraint of each program Il¢, I1g and ITp and

obtain :
$ s—1 S s—1
2 E= D) et X - Y ¢
J=l(A)+1 J=l(A)+1 J=l(B)+1 J=l(B)+1

Which simplifies to 33_ 4)41Zj = Xjoya)41 65> i-e. the last constraint s is bin-

ding.

Since allocation # does not, in general, solve II,,, the following condition is

sufficient for (C.10) to hold :

i b;(Z;) — Z bj(zf) > Zs: bi(z]) — sf bj(z}

j=I(A)+1 j=1(A)+1 j=I(B)+1 j=I(B)+1

Which simplifies to

S b L L2 S oheh- 3 b6

J=l(B)+1 j=l(B)+1 j=l(B)+1 j=l(B)+1

c

Denote ¢; = z7 — acjl-’ > 0. The inequality may be rewritten as a function of a:f ,
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a:]C and ¢; :

Y bl i) - 3 bEPrg)s 3 beP) - T bD)

j=l(B)+1 j=U(B)+1 j=I(B)+1 j=l(B)+1

= Z .’I: + €5) — bj(x; 5 > Z x + €;) bj(ij)].
j= l(B)+1 -l(B)+1

A sufficient condition for the above relation to hold is :
bi(f +¢;) — bi(z}) = bi(z] + €;) — bj(z?) Vi € Dy_1.

Since b; is concave, VS € {B, D}, 3] € [V'(xF), 4 (zf + ¢;)] such that b;(zF +
€;) — bj(z7) = AJe;. We need to check AP > AP, Vj € D,_;. This holds true since

b; is concave and x < x , Vi € D,_,.

C.2 Proof of Proposition 3

The proof is divided into three steps.

Step 1 : The downstream incremental distribution z* is a core distribution.
The distribution z* is just the marginal contribution vector corresponding to the
ordering 1, ...,n. That vector is a core distribution because v is convex, as asserted

by Proposition 2.

Step 2 : If a core distribution z satisfies the aspiration upper bounds, then
z = 2%
Key to the proof is the straightforward observation that v(Pi) = w(P3i) for every
¢ € N. Since this is true for ¢ = 1, the core inequalities and the aspiration upper
bounds immediately imply that z; = 2. Next, proceed inductively. Fix j < n
and suppose z; = z; for all i < j. Since v(P(j + 1)) = w(P(j + 1)), the core

constraints and the aspiration upper bounds force Y;cpij11y 2 = v(P(j + 1)),
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hence ;41 = v(P(j + 1)) — Xep(;) z- By the induction hypothesis, Yiepy) % =
Licp(y) % = v(Pj). Therefore, zj11 = v(P(j + 1)) — v(Pj) = 2}, as desired.

Step 3 : z* satisfies the aspiration upper bounds.
Consider an arbitrary connected coalition S and a sub-coalition T C S. Fix the
consumption of members of coalition T to Zr (this allocation is assumed to be
feasible in S, that is 3= jcpinr Z; < Xjepins €, Vi € T.). The welfare that coalition
S can guarantee to itself given that water allocated to a sub-coalition T is fized to
Zr will be called the constraint secure welfare of S given Zp. It is formally defined

in definition 1.

Definition 1. For every arbitrary connected coalition S, for every subset T C S

and every vector It feasible in S, the constraint secure welfare v(S; Zr) is defined

by :

'U(S; LTIT) = max Z bi(IIJi)-l'Z bz(fil) S/t Z .’Ej+ Z fij S Z €; Vi € S\T

T
S\T jes\T €T JEPINS\T  jEPINT FEPINS

Clearly, v(S) > v(S;Zr) for every vector Zr feasible in S. Furthermore,
v(S;z8) = v(9).

We now need the following lemma.

Lemma 3. For every I,k € N, l > k, for every T C Pk C Pl}, for arbitrary

vectors It and Ty, such that T, < Zr < zf!, we get
v(Pl; 27) — v(Pk; 37) > v(Pl; Z1) — v(Pk; Zr).
Proof of Lemma 3 : Denote Z*/ and #'¥/ (with |P5\T| components) the

water allocations solution to the maximization problem associated to, respectively,

v(Pj; Zr) and v(Pj;37), for j = I, k. Call ¢ = #/P* — ZP* for every i € PE\T.

1Since, by definition, Pk and P! are connected, the constrained secure welfare is well-defined

for coalition Pk and PI, for every I,k € N.
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The vector epy\r represents the optimal distribution of extra water available to
members of Pk\T when coalition T consumes Z7. instead of Zr. Clearly, ¢; > 0,
for every i € Pk\T. An adapted version of Lemma 2 tells us that zF* > zF,

Vi € Pk\T. Since b; is strictly concave Vi € Pk\T, then
bi(EFF + &) — b:;(EFF) < i@ + &) — bi(EDY), Vi € PE\T.
Recall that, Vi € Pk\T, 7/P¥ = ¢; + F* and write :
bi(Z7%) — b:(25%) < 0,37 + &) — b:(21Y), Vi € PE\T.
This implies,

> bE) - 0(E < Y BE + e) — (@)

i€Pk\T i€PK\T (©.11)
Add ¥,er[bi(Z;) — b;(Z;)] to both sides of inequality (C.11) and obtain
v(Pk; Z1) — v(Pk;Z1) < Tiepnr bi(E + &) + Ticr bi(T))
~[Ziepna bi(E) + Tier bi(@)]. (C.12)

Add EiEPl\Pk ."i;fl — Z’iEPl\Pk‘ .'izPl to the right-hand side of (012) to get

v(Pk;Zr) = v(Pk;Zr) £ Tiepor bi(E + &) + Tier bi(E) + Tiepnpr b:(EF)
—[Eiepine bi(E") + Tier bi(@:) + Tiepnpr b (it(l)]l 3)

When coalition T' consumes 77, instead of Zr, members of coalition PI\T gets ¢;
extra water at each level i € T. By definition, the optimal distribution of this
amount of water yields v(PI; Z7) to coalition Pl. An other way to allocate this
extra volume of water would be to increase the consumption of every agent i € Pk
by €; and to keep constant the consumption of agents between k and I. Since this
alternative allocation of water is not optimal, then,

Yo @ ea)+ D bE)+ Y bi(E) < (Pl z).

i€EPK\T i€T i€EPI\Pk
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Moreover, by definition,
v(Phzr) = Y. ui@EH+Y @)+ Y b(E).
i€PK\T €T i€PI\Pk

Thus, the right-hand side of inequality (C.13) is lower than v(Pl; z}) — v(Pl; Z7).

Therefore, we get

v(Pk; Z7) — v(Pk; 1) < v(Pl; %) — v(Pl; Tp).
Put differently,

v(Pl; Zr) — v(Pk; 21) < v(Pl; 1) — v(Pk; ZT).
End proof of Lemma 3.

Now, consider an arbitrary coalition S (S may be disconnected). Denote by
minS and maxS, respectly, the first and the last agent in S. Define PS =
PmazS the set of predecessors of coalition S (including members of coalition S).
By definition,

> 2 = S(P)) - v(P%)] (€14
j€s jes
For every j € S, rewrite v(Pj) = v(Pj;mggj\S). Remark that since lemma 2
implies z;’ < zF % for every 1 € PYj, for every j € S, then x;’;j\s is feasible in
P%j. Therefore, v(POj;xﬁgj\S) is defined for every j € S. Moreover, v(P%) >
v(POj;xigj\S) for every j € S. Therefore,
D74 < Y [w(Phszpesg) — v(P%52phn 6] (C.15)

JES JES

Lemma 2 tells us that z75 < ;7 for every ¢ € P%, for every j € S. Using Lemma

3, this implies that, for every j € S,

v(Pj;xgagj\S) — v(P“j;xﬁon\S) > U(Pj;xllzgj\s) - U(Poj;xﬁgj\s).
(C.16)
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Inequalities (C.15) and (C.16) imply,
52 < (P afie) - v(Pi ok o)) (©17)
j€s j€s
Denote £P7 (with |P7\S| components) and #7°/ (with [P°j\S| components) the
solution to the maximization program defined by, respectively, v(Pj;zh3\s) and
v(P°j; 2585 5)- Inequality (C.17) becomes

<SS u@E) - ¥ nEk) (C.18)

jES JES €PINS i€EPINS

= TH<Y Y b a6+ T

Jj€s JE€S iePO%NS Jj€es

(C.19)

The first term of the right-hand side of (C.19) sums b;(%;7) — b;(&F % ) for every
i€ P°%hNS ={i€S:i<j}andfor every j € S. That is for every i such
that i € S and i < j, for every j € S. It is equivalent to sum b;(2[7) — b; (~P 7
for every j such that j € S and j > i, for every i € S. That is for every
je{j€S:j>i}=F%NSG, for every i € S. Therefore, (C.19) reads
<Y Y @) - 6@ + 3 bi(55). (C.20)
Jj€es €S jeF0NS ies
Now, let us define (§;)ics by 9 = ZF + Cjepoing (25 — 2F™) for every i € S. We
first prove that allocation (§;);cs can be consumed by members of coalition S in
the absence of N\S. Fix j € S. We claim that
o< Y e (C.21)
iePjnS lePjnS
That is agents upstream j consume the allocation they control. This condition
implies that (§;)ics can be consumed by members of coalition S upstream j in-
cluding j in the absence of N\S. It is stronger than the j-feasibility constraint
defined in the maximization program associated to w(S) : members of coalition

S uses only the water they control. They do not consume water coming from
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outside coalition S.2 However, members of coalition S should be able to transfer
water from one upstream connected sub-coalition to an other. Let us now prove
our claim. By definition,
S g= Y R Y (@) (C.22)
tePjNS i€EPINS leFOmS

Partition F% NS = (F% NS NPj)U(F%NSNF%) and rewrite (C.22) as

Yierins Ui = TiepinsE' + Tiepins YieroinsnpilElt — Gl
+ ZzEPJﬂS ZleFoannFOJ[~Pl iP l]
Yierins B+ Tiepins Yicroinsnpi[Z — 5P (C.23)
+ Yicpins Tierojns[E — 28, |

The second term in the right-hand side of (C.23) sums P — &P for every [ €
Fo%in(SNPj)={le€ SNPj:1>q}, for every i € PjN S. That is for every
[ such that I € PjN S and | > ¢, for every i € PjN S. It is equivalent to sum
#P°1 — #P" for every i such that i € Pjn S and i < I, for every l € PjNS. That is
foreveryi€ {i€ PjNS:i<1} =PlUN(PjnNS), for every l € PjN S. Hence,
(C.23) becomes

f . ~Pi =Pl _ ~PY
Yierjins¥i = YierjnsTi' + Xiepjns LieponslZit — P
~Pl _ ~PY
+Ei€PjﬂS ZleFOjnS[x' - & ]
POy
Yierins[Ziepins E ' — Tiepoins E C
Pl _ ~PY (C.29)
+ Yiepjns ZleF"jnS[xi -7

By definition of #¥! and ¥ 0’, we have Yicpins &1 + Sicpns 75 = Tiepr € and
Yiepoins IF +E,€pol\s zFs = ZiePOl e;. Moreover, since PI\S = PI\S for every
L €S, then Fiepns 27° = Yiepons 275, Hence, Yicpins 5! — Yiepons 37 = e;.
Finally, equation (C.24) simplifies to :

Y= e+ Y Y [EP -z, (C.25)

iePiNS lePjns t€EPINS e FOinS

2This makes sure that the upstream upper bound holds ‘even in the case of no water coming

from outside coalition S.
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Lemma 2 tells us that 27 > &F! for every 1 € PIN S, for every | € S. Which
holds a fortiori for every i, j,1 € S such that ¢ < j < [. Therefore, equation (C.25)
implies :

Yo < Y e

i€Pjns IePjNS
That is our claim (C.21) for an arbitrary j € S.

Now, since (7;)ies is feasible in S in the absence of N\S, then w(S) >
Sics bi(9;). Put differently,
)2 X bEN+ Y @& (C.26)

€S leFOan

Combine (C.20) and (C.26) to obtain :

w(S) — Ljes zi 2 Yiesibi E + Tieroins(BF' - 5’501)) — b(zF")

— Tieroins[bi(&7) — bi(& )]} (C.27)

All we need to show is that the right-hand side of (C.27) is positive. It will be
convenient to rewrite b;(£F + ¥ poing (EF¢ — EF°1)) — b;(&F%) as

Y @+ ¥ @ - -u@E+ Y @ -

JEFUNS leF%NPINS leF%NPoinS
(C.28)

It is easy to check that this equality is true. Indeed, for j equal to the first
strict follower of ¢ included in S, then F% N P% NS = (). Therefore, we get
bi(ZF + Tiepoinpojns(BF — 1) = b;(&P*). For j equal to the last strict follower
of ¢ included in S, then Pj = PS, hence F% N PjNS = F? N S. Therefore,
we obtain b;(Zf" + Ticpoinpjns (B — 7)) = bi(EF + Tiepoins (&P — ZF)). All
other terms in the sum are matched with their opposite so that this equality holds.

Substitute (C.28) in (C.27) and obtain
w(S) — Ljes 2} >

ZiES ZjeFOinS{bi (5”:31 + ZleFOijnS (jl’l - ~Pol))
~Bi(@" + Tieroinpojns (B! = 5°)) = [u(@) — b(E )]} (C29)
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The right-hand side of (C.29) is positive if, for every i € S, for every j € F%iN S,
we have :

~ P -~ ~ ~Pi ~ ~ p0
bi(ZF + EleFOz’nPjnS(szl - & Ol)) - b:i(zZ + ZlEFOiﬂPOjﬂS(szl - zfh) >

bu(a") = b)), (.30

Put differently,
bi(E7) — bi(E]7) 2

bi (5% : + ZleFOinPOjnS(izPl - 5%1'30!)) - bi(-'izpi + EleFOinPjﬂS(szPl - 57{‘30!))(-0 31)

L pos pi o poi o . 3 e .
Write 3] 7 = #/7 4+ (377 — &%) and 3P + Tieroinpojns (@5 — E07Y) = P +

P P° ~Pj__~P%\ _ ~Pj %Pl_~PO\_ (~P% _~Pj
ElEFOijﬂS( - l)_(xij‘xi J) = i1+2leF0ijnS(xzj —Z; )+( ;=1 7).

Substitute in (C.31) and read :

bi(E7 + @Y — 517)) - bi(3F7) >

~ y ~ ~ ~ 0 y ~ y ~ y -~ ~
b(E+ Y @GP - PN+ @0 -a) - n@ER e Y @R - 2P,
leF%NPINS leF%NPjNS (C.32)

Lemma 2 tells us that if 5 :Ef 7 >0 for every ¢ € S, for every j € FO%NS. Since
b; is strictly concave for every i € S, then (C.32) holds if,‘ for every ¢ € S, for
every j € F%N S,

e S @-a2al

1

leF%NPiNS
=~ Pi ~Pl  ~Pj ~ PYl
= '+ Y #H'2E7+ Y ozl (C.33)
leF%NPjNS leFoiNPjNS
Remark that Yycpoinping 25 = = Yieroinpins Tr Ut x 7 and simplifies (C.33) to

~ Pi ~ ~ PO

i+ Y #> > Fh (C.34)
leFOinPoiNsS leFOiNPjNS

To prove that (C.34) is true, we consider two cases. First, suppose that i = mazS.

Then F'mazS N S = @, therefore (C.34) becomes ZEma2S > 0. Second, suppose

mazS
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that s € S\{mazS}. Define the function f : § — S that associates each agent
k € S to its (strict) follower in S. Formally, for every k € S\{mazS}, f(k) =
min;{i € SN F°}. The first element in F'NPY NS is f(i) and &% > 510 por
all others elements I € FYNPY NS (I # 4), we have 7! > 7] *f®) Therefore, each
term on the left-hand side is higher than the follower term on the right-hand side
(note that, for the last element of F? N P! N S, say k, we have f(k) = j). This
prove that (C.34) holds true.

C.3 Proof of proposition 4

Suppose that each agent i € N is endowed with w;; = 0, Vj # i and w;; =
e;. The unique vector of eqlllilibrium price that decentralizes the efficient water
allocation is p* = (by(z7),...,b),(x})). Agent i’s equilibrium pay-off is b;(z}) —
Y (z})(x; — e;). For the downstream incremental allocation to be the market
equilibrium allocation, the following relationship should hold true for every agent

1in N :
bi(a?) - ¥(a}) (3} — ) = 2. (C.35)

Consider agent 1. Since zf = v(1), that means b;(e1) — by (z}) = b'(z*) (2 — €1).
Since b; is strictly concave, then this holds true only if 3 = e;. In this case,
v(1,2) = v(1) + v(2), therefore 25 = v(2). For n = 2, equation (C.35) becomes
ba(e2) — ba(x3) = b'(x})(z} — ez). Which again implies z3 = e,. And so forth for

1=3,...,n.
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