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Abstract 

 
Tachykinin and opioid peptides play a central role in pain transmission, modulation and 

inhibition. The treatment of pain is very important in medicine and many studies using NK1 

receptor antagonists failed to show significant analgesic effects in humans. Recent investigations 

suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for 

normal pain sensation. The analysis of opioid peptides in Tac1-/- spinal cord tissues offers a great 

opportunity to verify the influence of the tachykinin system on specific opioid peptides. The 

objectives of this study were to develop a HPLC–MS/MRM assay to quantify targeted peptides in 

spinal cord tissues. Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system 

is hampered and therefore affect significantly the pain modulatory pathways. Targeted 

neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass 

spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1-/- 

spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p < 0.0001). No 

significant concentration differences were observed in mouse Tac1-/- spinal cords for Met-Enk 

and CGRP. The analysis of Tac1-/- mouse spinal cords revealed noteworthy decreases of EM-2, 

Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the 

endogenous pain-relieving mechanisms. These observations may have insightful impact on future 

analgesic drug developments and therapeutic strategies. 
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1. Introduction 
 
The sensation of pain produced by a noxious stimulus is not always consistent and depends on 

multiple factors influencing the neurophysiology of pain transmission. The nervous system has 

developed very complex mechanisms that control the way noxious sensory information is 

perceived by the organism [Basbaum et al., 2009]. It has been shown that considerable 

modulation of sensory information happens in the dorsal horn of the spinal cord [Honore et al., 

2000, Levine et al., 1993]. There are various molecular events contributing to the transmission of 

the sensory information during the first synapse and several key neuropeptides were identified 

including tachykinin and opioid peptides [Kuner 2010, Mika et al. 2011, Felippotti et al. 2012].  

Neuropeptides are either neurotransmitters or neuromodulators at various levels in the central 

nervous system and play a fundamental role in pain transmission [Levine et al., 1993; Seybold, 

2009]. Recent studies described the central role of tachykinin and opioid related peptides 

[Pailleux et al., 2013; Felippotti et al., 2012; Ferland et al., 2011; Mika et al., 2011]. Many 

members of the tachykinin family (e.g. Substance P) are mostly pro-nociceptive neuropeptides 

and have been known to play an essential role in central sensitization leading to hyperalgesia and 

allodynia [Lecci et al., 2000]. Opioid peptides (i.e. endomorphins, enkephalins and dynorphins) 

have potent analgesic effects in the central nervous system (CNS) and play an important role in 

endogenous pain inhibition [Machelska, 2007, Wahlert et al. 2013, Bali et al., 2014]. They are 

interacting with µ, κ and δ opioid receptors expressed widely in the brain and in the spinal cord 

[Carr and Lovering, 2000; Stanojevic et al., 2008]. Tachykinin and opioid neuropeptides were 

extensively studied in the spinal cord, since they are major players in the synaptic processing of 

pain-related signals but research has been limited by several shortcomings inherent to in vivo 

neuropeptide studies. 
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Recently, it has been suggested that endogenous endomorphin-2 (EM-2) play an important role in 

the early stage of pain sensation, transmission, and modulation [Fichna et al., 2007; Greco et al., 

2008, Wang et al., 2013]. Immunohistochemistry and Immunocytochemistry analyses shown that 

endomorphins are largely distributed in the CNS. Endomorphins are abundant in areas such as the 

stria terminalis, the periaqueductal gray, the locus coeruleus, the parabrachial nucleus, and the 

nucleus of the solitary tract, but there are noteworthy distinctions in the neuroanatomical 

localization of these peptides [Pierce and Wessendorf, 2000]. Endomorphin-2 (EM-2) is 

primarily found in the spinal cord and lower brainstem [Martin-Schild et al., 1999; Pierce and 

Wessendorf, 2000]. It is largely observed in the hypothalamus, the nucleus of the solitary tract, 

the substantia gelatinosa of the medulla and the spinal cord dorsal horn. The participation of EM-

2 in the modulation of pain transmission is important since EM-2 decreases excitability of 

postsynaptic receptors such as neurokinin 1 receptor (NK1) [Fichna et al., 2007]. Moreover, the 

interaction of EM-2 with µ-opioid receptors is key to the modulation of the pain transmission 

[Wu et al., 2015]. It regulates the release of dynorphin A (Dyn A) by stimulation of the 

descending dynorphinergic neurons resulting in the liberation of Dyn A. Thus, the interaction of 

Dyn A and κ-opioid receptors located on the presynaptic membrane inhibit the release of 

pronociceptive neuropeptides including Substance P (SP) [Fichna et al., 2007; Zachariou and 

Goldstein, 1997].  

Substance P is reported to play a critical role in nociceptive transmission in the CNS [Pailleux et 

al., 2013 Gao and Peet, 1999]. Substance P is a pronociceptive peptide and agonist of NK1 

located in the lamina I of the spinal cord [Teodoro et al., 2013; Yu et al., 1999]. Substance P is 

primarily synthesized in neurons and has a widespread distribution in both the central and 

peripheral nervous systems. More specifically, a significant proportion of primary afferent 
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neurons located in the dorsal root ganglia express high levels of SP and it is transported to both, 

the peripheral and central terminals. The expression of SP and NK1 correlates with intensity, 

frequency, and duration of pain [Sluka et al., 1997]. Agonists of NK1 receptors provoke a 

sustained slow depolarization that significantly contributes to the development of secondary 

hyperalgesia [Levine et al., 1993; Baumbauer et al., 2009; Dickenson, 1995]. Neuropeptides are 

derived from larger protein precursors recognized as proneuropeptides. The tachykinin precursor 

1 gene (Tac1) encodes the protachykinin-1 protein containing the sequence of four tachykinin 

peptides, including SP [Basbaum et al., 1999]. The protachykinin-1 protein is cleaved by the 

action of specific proteases into active neuropeptides by post-translational proteolytic processing 

during axonal transport [Hook et al., 2008]. Interestingly, depolarization of a neuron containing 

proneuropeptides stimulates proprotein convertases processing, which occurs within synaptic 

vesicles in the presynaptic terminal [Yakovleva et al. 2006]. The stimulation of proprotein 

convertases processing will result in the liberation of higher concentration of neuropeptides into 

the intersynaptic space. Thus proprotein convertases are currently explored as a potential drug 

targets with the premise of partially inhibiting the release of pronociceptive peptides such as SP 

[Vivoli et al., 2012]. Tac1-/- mice showed significant decrease of nociceptive pain responses to 

moderate to intense stimuli [Cao et al., 1998]. Conversely, Tac1-/- mice exhibited similar behavior 

following light or non-painful stimuli [Zimmer et al., 1998]. It is believe that pain perception is 

necessary to trigger the release of endomorphins. Endomorphin-2 is co-expressed with SP and 

both are found in dense core vesicles located in spinal cord primary afferent terminals suggesting 

concomitance release of excitatory and inhibitory neuropeptides [Sanderson et al., 2004; Wu et 

al., 2015]. Thus, we believe that Tac1-/- mice may also exhibit a significant deficit of inhibitory 

neuropeptides, including EM-2 and Dyn A. The objectives of this study were initially to develop 

and validate a HPLC–MS/MRM assay to quantify targeted peptides in spinal cord tissues. 
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Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system is hampered and 

therefore affect significantly the pain modulatory pathways. This is an important consideration if 

new medicines are developed to specifically impede the release of SP.  

 

2. Materials and Methods 

2.1 Chemicals and reagents 

Endomorphin 2 (EM-2), Leu-enkephalin (Leu-Enk), Met-enkephalin (Met-Enk), Dynorphin A 

(Dyn A), Substance P (SP) and Calcitonin gene related peptide (CGRP) were purchased from 

Phoenix Pharmaceuticals (Belmont, CA, USA). Deuterium labeled analogue peptides were 

synthesized (CanPeptide, Inc., Pointe-Claire, QC, Canada) and used as internal standards. 

Acetonitrile was purchased from Fisher Scientific (NJ, USA) and trifluoroacetic acid (TFA) was 

obtained from BDH Laboratory supplies (Poole, England, UK). Hexane and formic acid (FA) 

were purchased from Sigma-Aldrich (Saint-Louis, MO, USA). Standard solutions were prepared 

in 0.25% TFA solution as described previously [Beaudry et al., 2009]. 

2.2 Sample Preparation 

Spinal cord tissues (n=6 per genotypes) from male wild type (C57BL/6J) and male Tac1-/- mice 

(product # 004103) were obtained from The Jackson Laboratory (Bar Harbor, Maine, USA) and 

kept frozen at -80 °C until analysis. All mice were 8 weeks old at time of tissues collection. The 

animals from both groups were euthanized with an overdose of isoflurane followed by a 

transection of the cervical spine. A flush of saline was performed within the spinal canal to 

collect the spinal cord lumbar enlargement. Tissue sample was snap-frozen in cold hexane (-

60 °C) and stored immediately at - 80 °C pending analyses. The study protocol was approved by 

the Institutional Animal Care and Use Committee of the Faculty of Veterinary Medicine of the 
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Université de Montréal and it was performed in accordance with the guidelines of the Canadian 

Council on Animal Care. 

As we described previously [Beaudry, 2010], tissue processing is an important step in preserving 

neuropeptides from in situ degradation. Mouse tissues were weighed accurately and homogenized 

using a tissue tearor following the addition of 0.25 % TFA solution at a ratio of 1:5 (w/v) 

resulting in a pH < 3. At this pH, residual enzymatic activity is considerably reduced and peptides 

are stable under these conditions. The samples were sonicated for 20 min and 150 µL of the 

homogenate were mixed with 150 µL of acetonitrile to precipitate high molecular weight proteins. 

The samples were vortexed and centrifuged at 12,000 g for 10 min and 150 µL of the supernatant 

were transferred into an injection vial then spiked with 150 µL of the internal standard solution. 

Vials were capped and vortexed vigorously prior to analysis. All samples were analyzed in 

triplicates. 

2.3 Instrumentation 

The HPLC-MS/MS system included a Thermo Accela autosampler, a Thermo Accela pump and a 

Thermo LTQ-XL Linear Ion Trap Mass Spectrometer (San Jose, CA, USA). Linear ion trap 

instruments typically have unit mass resolution throughout the mass range. The instrument was 

calibrated and the resolution was set at 0.5-0.7 Da at full width at half maximum (FWHM). Data 

were acquired and analyzed with Xcalibur 2.2 (San Jose, CA, USA), and regression analyses 

were performed with PRISM (version 6.0d) GraphPad software (La Jolla, CA, USA) using 

nonlinear curve-fitting module with an estimation of the goodness of fit. The calibration lines 

were constructed from the peak-area ratios of targeted neuropeptides and corresponding 

deuterated labeled peptides used as internal standards.  
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2.4 Bioanalytical methods 

The chromatography was achieved using a gradient mobile phase along with a microbore column 

Thermo Biobasic C8 100 × 1 mm, with a particle size of 5 µm. The initial mobile phase condition 

consisted of acetonitrile and water (both fortified with 0.1% of formic acid) at a ratio of 5:95. 

From 0 to 1 min, the ratio was maintained at 5:95. From 1 to 12 min, a linear gradient was 

applied up to a ratio of 60:40 and maintained for 3 min. The mobile phase composition ratio was 

reverted at the initial conditions and the column was allowed to re-equilibrate for 15 min for a 

total run time of 30 min. The flow rate was fixed at 75 µL/min and 2 µL of sample were injected 

using full loop mode. All targeted neuropeptides and deuterium labeled peptides eluted between 

8.0 to 11.0 min. The mass spectrometer was coupled with the HPLC system using a 

pneumatically assisted electrospray ion source (ESI). The sheath gas was set to 25 units and the 

ESI electrode was set to 4000 V in positive mode. The capillary temperature was set at 300°C 

and the ion transfer tube voltage to 46 V. All scan events were acquired with a 100 ms maximum 

injection time. An activation q = 0.25 and activation time of 30 ms were used for all targeted 

peptides. The mass spectrometer operated for quantitative analyses in full scan MS/MS and the 

quantification was based on specific post-processing MRM extracted ion chromatograms. 

Specific analysis details are presented in Table 1. Two specific production ions were used to 

generate post acquisition MRM extracted ion chromatograms for quantification purposes. The 

method used an isotope dilution mass spectrometry (IDMS) strategy for the quantification of the 

targeted peptides. Due to synthesis yield issues related to label CGRP, a 37 amino acids peptide, 

deuterated SP was used as an internal standard for CGRP quantification along with the CGRP 

reference standard. The precision and accuracy was evaluated using dilution ratios of spinal cord 

homogenates with a solution of deuterium labeled peptide (i.e. 1:4, 1:2, 1:1, 2:1, 4:1). The labeled 



 9 

peptides were used at a constant concentration of 50 pmol/mL. Absolute peptide quantification 

was performed using peak-area ratio of light (unlabeled) and heavy (labeled) isotope.  

2.5 Statistical analysis 

All data were analyzed using Student's t-test to compare mean WT and Tac1-/- mouse values. 

Significance was set a priori to p < 0.05. The statistical analyses were performed using PRISM 

(version 6.0d). 

3. Results 

3.1 Mass spectrometry 

Full-scan and product ion mass spectra for all peptides and internal standards were obtained in 

positive ion mode. The full-scan electrospray mass spectrum of targeted peptides displayed the 

formation of characteristic pseudo molecular ions [M+nH]n+ and the fragment ions observed in 

MS/MS spectra were annotated based on the Roepstorff and Fohlman nomenclature [Roepstorff 

and Fohlman, 1984]. Details on MS parameters and MRM transitions are reported in Table 1. 

Full-scan and product ion mass spectra are necessary to identify and characterize each 

neuropeptide. The full-scan electrospray mass spectra of targeted neuropeptides showed a base 

peak pseudo molecular ions at m/z 572.2 (1+) for EM-2 and 577.3 (1+) for d5-EM-2; 556.2 (1+) 

for Leu-Enk and 561.3 (1+) for d5-Leu-Enk; 574.2 (1+) for Met-Enk and 579.3 (2+) for d5-Met-

Enk; 716.4 (3+) for Dyn A and 718.1 (3+) for d5-Dyn A; 674.4 (2+) for SP and 677.0 (2+) for d5-

SP; 952 (4+) for CGRP. Figure 1 presents product ion spectra (MS/MS) for targeted 

neuropeptides obtained and typical a, b, y and z positive ion fragments were observed. The 

observed collision-induced dissociation spectra were all compatible with the neuropeptide 

sequences. Additionally, we selected and optimized two of the most abundant and specific 
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product ions for each neuropeptide to generate post acquisition MRM extracted ion 

chromatograms to obtain the best sensitivity, selectivity and reproducibility. Furthermore, 

selected MRM transitions were monitored for extracted tissues and compared with reference 

materials. The overlay MRM extracted ion chromatograms display in Figure 2 demonstrate a 

good concordance between peptide reference standards and endogenous peptides observed in 

extracted tissues.  

3.2 Analytical performance 

The choice of analytical strategy is important in order to improve the precision and the accuracy 

of the data measurements, and consequently enhance the sensitivity of the assay. As 

demonstrated in a prior publication [Pailleux and Beaudry, 2012], normalization with stable 

isotope labeled internal standards provided the best approach for sample normalization and can 

be used for the absolute and relative quantification of peptides. Targeted neuropeptides were 

labeled on phenylalanine (d5), glycine (d2) and/or leucine (d3) residues by incorporation of 

deuterium atoms. The instrument response linearity was tested using peak area ratio of targeted 

neuropeptides with corresponding deuterium labeled peptides. The linearity response was tested 

with dilution ratios (i.e Light/Heavy ratios) of spinal cord homogenates with a solution of 

deuterium labeled peptides at 1:4, 1:2, 1:1, 2:1, 4:1 to test the precision and accuracy of the 

isotopic dilution technique. Correlation assessments between measured peak area ratios and 

nominal dilution ratios were performed. As illustrated in Figure 3, the correlations were excellent 

(R2 = 0.9909 to 0.9994). The precision (%CV) was comprised between 2.0% and 14.1% and the 

accuracy (%NOM) was contained between 86.6% and 111.4% for all targeted neuropeptides. 

Accordingly, the analytical method provided adequate figures of merit for targeted peptide 

analysis performed during this study. 
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3.3 LC-MS/MS analysis of mouse spinal cords 

Following the analysis of EM-2, Dyn A, Leu-Enk, Met-Enk and CGRP in mouse spinal cords 

significantly altered concentrations were observed between Tac1-/- and WT groups for specific 

opioid peptides. Peptide concentrations were determined by IDMS and statistical comparisons 

between both groups were performed. As illustrated in Figure 4, EM-2, Leu-Enk and Dyn A were 

significantly down-regulated in Tac1-/- spinal cord tissues. EM-2 concentrations were 15.3% 

lower (p < 0.05), Leu-Enk were 20.7% lower (p < 0.05) and Dyn A concentrations were 62.3% 

lower (p < 0.0001) in Tac1-/- mice. However, concentrations for Met-Enk and CGRP were not 

statistically different. Also, as expected, SP was not detected in Tac1-/-. These results clearly 

demonstrated that Tac1-/- mice exhibited significantly inferior EM-2, Leu-Enk and Dyn A 

concentrations in the spinal cord. 

 

4. Discussion 

Noxious sensory information is perceived by the nervous system following a cascade of complex 

physiological and biochemical processes [Basbaum, 1999; Basbaum et al., 2009]. Considerable 

deciphering and modulation of sensory information occurs in the spinal cord as it is relayed by 

peripheral sensory neurons [Moreira et al., 2009; Honore et al., 2000]. As discussed previously, 

neuropeptides are either neurotransmitters or neuromodulators at various levels in the CNS and 

play a fundamental role in pain transmission [Levine et al., 1993; Seybold, 2009]. Numerous 

neuropeptides were depicted, principally, tackykinin and opioid related peptides [Felippotti et al., 

2012; Ferland et al., 2011; Mika et al., 2011; Bali et al., 2014]. Members of the tachykinin family 

are generally pronociceptive neuropeptides and have been known to play an important role in 
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central sensitization leading to hyperalgesia and allodynia [Lecci et al., 2000]. Opioid peptides 

(i.e. endomorphins and enkephalins) have potent analgesic effects in the CNS and play an 

essential role in endogenous pain inhibition [Machelska, 2007; Wang et al., 2013]. As illustrated 

in Figure 4, Tac1-/- mice showed a significant decrease of EM-2 and Leu-Enk concentrations in 

the spinal cord, but more importantly, an almost 3 fold decrease of Dyn A concentration. 

Interestingly, we have not observed any difference in CGRP concentration despite being 

coexpressed with SP. Likewise, we did not observed any significant differences for Met-Enk.   

Endomorphin-2 is an endogenous opioid broadly distributed in the central nervous system 

playing an important role in the earliest stage of pain sensation, transmission and modulation. 

Additionally, the expression of EM-2 is closely linked with the expression of pronociceptive 

peptides (i.e. SP, CGRP) [Martin-Schild et al., 1999; Sanderson et al., 2004; Wang et al., 2013; 

Wu et al., 2015]. It has been demonstrated that EM-2 is co-localized with SP in large core dense 

vesicles (LCDV) present in primary afferent terminals suggesting concomitance release of 

excitatory and inhibitory neurotransmitters into the intersynaptic space. This may suggest that 

noxious stimulus evoke EM-2 release and regulate nociceptive processing by presynaptic and 

postsynaptic inhibitory actions [Sanderson et al., 2004]. Also, it is believe that pain perception is 

necessary to trigger the release of EM-2 into the intersynaptic space acting on opioid receptors 

[Williams, et al., 1999]. The nociceptive response of Tac1-/- mice is somehow hampered and 

could explain the lower EM-2 concentration found in the spinal cords.  

Following nociceptive stimuli, SP is released from central terminal fibers into intersynaptic space 

and activates the NK1 receptor located at the postsynaptic membrane. SP induced Ca2+ 

mobilization is highly correlated with NK1 receptor activation, induction and internalization in 

the dorsal horn [Sahbaie et al., 2012]. The Ca2+ influx and NK1 internalization induces an 
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increase of the expression of δ and µ-opioid receptors but not κ-opioid receptor [Aimone and 

Yaksh 1989, Yaksh 1988]. The activation of δ and µ-opioid receptors mediate analgesic effects. It 

has been demonstrated that EM-2 has an affinity and selectivity for µ-opioid receptors [Zadina et 

al., 1997; Wu et al., 2015]. Therefore, the significant decrease of EM-2 concentration in the 

spinal cord of Tac1-/- mice may have an impact on the endogenous pain-relieving mechanisms.   

Also, protachykinin precursors of SP and δ-opioid receptors are co-localized in the LCDV and 

trafficking of δ-opioid receptors depends mainly on its interaction with SP domain of the 

protachykinin precursor [Guan et al., 2005]. The direct interaction between protachykinins and δ-

opioid receptors is responsible for sorting δ-opioid receptors into LCDV, inducing stimulus 

surface insertion of δ-opioid receptors [Ueda et al., 1995; Zachariou and Goldstein, 1996]. 

However, SP is not considered to be a ligand for δ-opioid receptors, which is activated by 

endogenous opioid peptides such as Leu-Enk and Met-Enk. As previously established, Leu-Enk 

is principally localized in the spinal cord and Met-Enk in the brain [Anupama et al., 2009]. 

Proenkephalin encode both Leu-Enk and Met-Enk but prodynorphin, the precursor of Dyn A, has 

two copies of Leu-Enk encoded in its primary sequence. Moreover, the N-terminal sequence of 

Dyn A encodes specifically Leu-Enk. Proteolytic processing of prodynorphin and Dyn A can lead 

to the formation of Leu-Enk contributing to the observed endogenous levels. Proprotein 

convertase 1/3 and 2 can cleave Dyn A to form Dyn A1-7 and basic amino acid residues can be 

removed by the action of carboxypeptidase E (CPE) to form Leu-Enk [Hook et al., 2008]. As 

shown in Figure 4, the concentration of Dyn A is severely reduced in Tac1-/- mouse spinal cords. 

This result may explain the reason we observed a decrease concentration of Leu-Enk and not for 

Met-Enk. The interaction of EM-2 with µ-opioid receptors located on the interneurons in the 

dorsal horn play a central role in the release of Dyn A [Iadarola et al., 1988, Dubner and Ruda 
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1992, Bian et al., 1999, Malan et al., 2000, Bao et al., 2003; Bali et al. 2014; Wu et al., 2015]. 

The combined interaction of EM-2 with µ opioid receptors and Dyn A with κ-opioid receptors 

inhibits the release of SP, therefore contributing to alleviate pain [Li et al., 1998, Wang et al., 

2000, Sanderson et al., 2004; Zadina et al., 1997; Przewlocka et al., 1999]. Morphine is a µ-

opioid receptor agonist and it has been recently demonstrated that tolerance to morphine is not 

observed in Tac1-/- mice [Guan et al., 2005]. Tolerance and addiction are intimately related to µ-

opioid receptors expression in the brain and spinal cord [Contet et al., 2004] and these results 

suggest impaired µ-opioid receptor activities in Tac1-/- mice. Dynorphin A release might be 

significantly reduced since it is intimately related with the interaction of EM-2 and µ-opioid 

receptors located on the interneurons.  

The Tac1-/- mice presented similar pain sensitivity compared with WT mice using mild thermal 

pain models, supporting the hypothesis that SP may not play an important role in the sensitivity 

to low and moderate pain. However, our results suggest that the absence of SP appears to have an 

impact on the endogenous pain-relieving mechanisms. This is important information since 

impairment of the endogenous opioid system, may have a significant impact on patients suffering 

of persistent low to moderate pain and on their well-being. The development of NK1 receptor 

antagonists did not produce clear analgesic effect for a variety of pain states during clinical trials 

[Hill, 2000]. The intimacy between the tachykinin and opioid systems may explain the lack of 

clinical efficacy of NK1 receptor antagonists. Additionally, new strategies targeting the 

processing of protachykinins are being developed [Vivoli et al., 2012; Yongye et al., 2013], but 

may face similar limitations particularly for chronic treatments.  
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5. Conclusion 

Tachykinin and opioid neuropeptides play a central role in pain transmission, modulation and 

inhibition. The treatment of pain is very important in medicine and studies using NK1 receptor 

antagonists failed to show significant analgesic effects in humans (e.g. post-operative and 

osteoarthritis pain, diabetic neuropathy and migraine). Thus, recent investigations suggest that 

both pronociceptive tachykinin system (SP-NK1) and the analgesic opioid system are important 

for normal pain sensation. The analysis of Tac1-/- mouse spinal cords revealed noteworthy 

decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant 

impact on the endogenous pain-relieving mechanisms. These observations may have insightful 

impact on future analgesic drug developments and therapeutic strategies.  
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Table 1. Summary of peptide quantification parameters used for HPLC-MS/MS analysis and post 
processing MRM 
 

Peptides Sequences Precursor ions Product ions Collision energy 
(%) 

EM-2 YPFF-NH2 572.2 (z = 1) 408.3 (b3) 

392.2 (z3) 

30 

(d5 )EM-2  YPFF(d5)-NH2 577.3 (z = 1) 408.3 (b3) 

397.2 (z3) 

30 

Leu-Enk YGGFL 556.2 (z = 1) 425.2 (b4) 

397.3 (a4) 

30 

(d5 )Leu-Enk YGGF(d5)L 561.3 (z = 1) 430.2 (b4) 

402.2 (a4) 

30 

Met-Enk YGGFM 574.2 (z = 1) 425.2 (b4) 

397.3 (a4) 

30 

(d5 )Met-Enk YGGF(d5)M 579.3 (z = 1) 430.2 (b4) 

402.2 (a4) 

30 

Dyn A YGGFLRRIRPKLKWDNQ 716.4 (z = 3) 944.3 (b15
2+) 

629.8 (b15
3+) 

30 

(d5 )Dyn A YGGF(d5) LRRIRPKLKWDNQ 718.1 (z = 3) 946.6 (b15
2+) 

631.4 (b15
3+) 

30 

SP RPKPQQFFGLM-NH2 674.4 (z = 2) 600.4 (b10
2+) 

254.0 (b2) 

30 

(d5 )SP RPKPQQFFG(d2)L(d3) M-NH2 677.0 (z = 2) 602.9 (b10
2+) 

254.0 (b2) 

30 

CGRP SCNTATCVTH RLAGLLSRSG 
GVVKDNFVPT NVGSEAF-NH2 

952.0 (z = 4) 1214.4 (b36
3+) 

962.6 (b28
3+) 

30 
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Figures legends 

 
Figure 1. Product ion spectra (MS2) of EM-2 (A), Leu-Enk (B), Met-Enk (C), Dyn A (D), SP (E) 
and CGRP (F). 

Figure 2. Analysis of targeted peptides in mouse spinal cord tissues. EM-2 overlay MRM 
extracted ion chromatograms of a reference (black) and a spinal cord tissue (red) (A). Leu-Enk 
overlay MRM extracted ion chromatograms of a reference (black) and a spinal cord tissue (red) 
(B). Met-Enk overlay MRM extracted ion chromatograms of a reference (black) and a spinal cord 
tissue (red) (C). Dyn A overlay MRM extracted ion chromatograms of a reference (black) and a 
spinal cord tissue (red) (D). SP overlay MRM extracted ion chromatograms of a reference (black) 
and a spinal cord tissue (red) (E). CGRP overlay MRM extracted ion chromatograms of a 
reference (black) and a spinal cord tissue (red). 

Figure 3. Calibration curve for targeted peptides. The peak area ratio between endogenous 
peptides and deuterium labeled peptides are display against five specific dilution ratios (e.g. 1:4, 
1:2. 1:1, 2:1 and 4:1). Deuterium labeled peptides were used at a constant concentration of 50 
pmol/mL.   

Figure 4. Histograms of neuropeptide concentrations observed in WT (n = 6) and Tac1-/- (n = 6) 
mouse spinal cords (Mean ± SE). Peptide concentrations were determined using an isotope ratio 
mass spectrometry method. Concentrations observed in WT and Tac1-/- mouse spinal cords for 
EM-2 (A), Leu-Enk (B), Met-Enk (C), Dyn A (D) and CGRP (E) respectively.  
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