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RÉSUMÉ 

De par sa présence dans tous les vaisseaux sanguins, l'endothélium joue un rôle clef dans le 

processus d’hémostase, tant par sa libération de facteurs anticoagulants que par ses changements 

protéiques qui permettent à l’organisme de déclencher la réparation tissulaire. La fonction 

anticoagulante de l’endothélium peut être mise en défaut en cas d’atteinte de son intégrité, 

entrainant la formation de thrombus, le rejet précoce de greffes ou encore l’induction de 

l’athérosclérose. L’intégrité de l’endothélium est donc capitale pour la prévention de nombreuses 

maladies cardiovasculaires. 

Chez l’adulte, les cellules endothéliales (CE), normalement quiescentes, sont rapidement activées 

en cas d’hypoxie ou d’inflammation, leur permettant ainsi d’amorcer le processus angiogénique 

comme suit: Tout d’abord, l’induction de l’hyperperméabilité vasculaire permet l’extravasation 

des protéines plasmatiques. Ensuite, la dégradation de la lame basale par des métalloprotéases 

permet aux CE de se détacher, de proliférer, de migrer et de s’organiser pour former l’ébauche du 

futur vaisseau. La dernière étape consiste en la maturation du vaisseau, c’est-à-dire son 

recouvrement par des cellules murales, telles que les cellules musculaires lisses et les péricytes. 

Ces processus sont régulés par de nombreux facteurs angiogéniques tels que les membres de la 

famille Notch, du vascular endothelial growth factor (VEGF), du fibroblast growth factor (FGF), 

des angiopoïétines, et des matrix metalloproteases (MMP). L’angiogenèse pathologique, soit une 

insuffisance ou un excès de vascularisation, est impliquée dans les blessures chroniques, les 

accidents cardiovasculaires, les pathologies coronariennes artérielles, les pathologies tumorales, 

l’arthrite rhumatoïde, la rétinopathie diabétique, l’athérosclérose, le psoriasis et l’asthme. Ces 

pathologies sont souvent issues d’une dérégulation de l’activité endothéliale, fréquemment 

observée conjointement à l’expression continue de molécules d’adhésion leucocytaires, à 

l’augmentation de la perméabilité vasculaire, et aux anomalies de la vasoréactivité. L’activation 

non-contrôlée de l’endothélium entraîne ainsi une inflammation chronique et la formation de 

structures vasculaires anarchiques. 

Les premiers leucocytes à répondre à l’appel inflammatoire sont les neutrophiles. Equippées 

d’une panoplie de produits antibactériens puissants mais aussi  

nocifs pour les tissus qui les entourent, ces cellules polylobées participent à chaque étape du 

processus inflammatoire, depuis l’induction de l’hyperperméabilité vasculaire jusqu’à la 

résolution. En effet, grâce à leurs récepteurs, les neutrophiles détectent et interprètent les signaux 
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biochimiques présents dans la circulation et à la surface de l’endothélium, et libèrent aussi leurs 

propres médiateurs tels le VEGF, les MMP, et l’interleukine-8 (IL-8), dont les effets sont à la 

fois paracrines et autocrines. Existent-ils d’autres modulateurs typiques de la fonction 

endothéliale capables d’influencer le comportement des neutrophiles? En effet, notre laboratoire 

a démontré que chez l’humain, une stimulation directe aux angiopoïétines incitait les 

neutrophiles à adhérer aux CE, à migrer, à synthétiser et à relâcher l’IL-8, voire même à vivre 

plus longtemps. La présence du récepteur des angiopoïétines, Tie2, à la surface des neutrophiles 

laisse présager que la famille possèderait d’autres fonctions leucocytaires encore non-identifiées. 

Par ailleurs, dans un modèle classique de l’angiogenèse in vivo (matrigel), nous avons observé 

que sous l’effet du FGF1 et 2, les ébauches des nouveaux vaisseaux étaient parfois 

accompagnées d’une infiltration de cellules granulocytaires.  

Ainsi, en partant de ces observations, l’objectif de nos études (présentées ci-après) était 

d’approfondir nos connaissances sur la relation entre neutrophiles et facteurs angiogéniques, 

notamment les FGF et les angiopoïétines. Par tests in vitro, nous avons confirmé que les 

neutrophiles humains exprimaient plusieurs récepteurs du FGF (FGFR1-4) d’une façon 

hétérogène, et qu’ils migraient vers un gradient des ligands FGF1 et 2. Par ailleurs, nous nous 

sommes intéressés aux voies de signalisation inflammatoires activées par les ligands FGF1, 

FGF2, Ang1 et Ang2. Grâce à une stratégie génique ciblant 84 gènes inflammatoires, nous avons 

identifié plusieurs cibles d’intérêt touchées par Ang1, dont certains membres de la famille de 

l’IL-1, alors qu’aucun des gènes testés n’avait changé de façon significative sous l’effet des FGF 

ou d’Ang2. Suite à des cinétiques approfondies, nous avons démontré qu’Ang1 stimulait la 

transcription de l’ARN messager de l’IL-1β, et augmentait simultanément la quantité de protéine 

immature (pro-IL-1β; inactive) et clivée (IL-1β « mature »; active). En parallèle, Ang1 

augmentait la sécrétion de l’antagoniste naturel de l’IL-1β, l’IL-1RA, sans pour autant stimuler 

la relâche de l’IL-1β. A l’instar des endotoxines bactériennes dont les effets liés à l’IL-1 

dépendaient de la kinase p38, ceux d’Ang1 découlaient presque entièrement des voies de 

signalisation du p42/44.  

 

Mots clés: angiogenèse, inflammation, neutrophiles, FGF, angiopoïétines, interleukine-1 
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ABSTRACT 

Endothelial cells (ECs) form a monolayer that lines the inside of all blood vessels; thus, as the 

first barrier that separates blood elements from all things that fall beyond the blood vessel, ECs 

are strategically placed to play a central role in many essential physiological processes. While it 

is found mostly in a quiescent state in adult organisms, the endothelium retains a high level of 

plasticity that allows it to react to stimulus and dynamically control the passage of blood 

components to and from the bloodstream. For instance, upon detecting an activating angiogenic 

signal, ECs forgo their quiescence and undergo biochemical and structural changes necessary for 

the initiation of angiogenesis. Thus, activated ECs down-regulate their own expression of 

junctional molecules and secrete proteins to digest the extracellular matrix (ECM), thereby giving 

them the space to proliferate and migrate. Relaxing endothelial junctions also increases 

permeability, opening up the doorway for leukocyte infiltration. These cells can then modulate 

angiogenesis via their own set of mediators. Though the instigating stimuli may differ, the 

biochemical sequence of events that initiates angiogenesis is also common to the inflammatory 

response. In the latter case, changes in EC biochemistry include the release of chemotactic agents 

and expression of surface adhesion molecules, increasing the efficiency of leukocyte infiltration, 

particularly those of the myeloid lineage. Evidently, because angiogenesis and inflammation can 

be initiated by the same sequence of events, they will inevitably share effector molecules.  

Of the recruited leukocytes, neutrophils are generally the first responders at the site of 

inflammation, contributing mediators that propagate and eventually resolve inflammation. We 

and other groups have shown that endothelial modulators such as angiogenic growth factors exert 

a direct action on neutrophil activity independently of the presence of the endothelium. In 

particular, our laboratory has shown that members of the angiopoietin family and their receptor 

Tie2 are expressed by neutrophils and are capable of activating neutrophil intracellular signalling 

pathways that impact their survival, adhesion, migration, and protein production. The ability of 

angiopoietins to directly engage neutrophils illustrates an intimate link between angiogenesis and 

inflammation, and provides an explanation for why vascular pathologies are often accompanied 

by an exacerbated inflammatory response.  

In the studies presented herein, we sought to expand our understanding of the relationship 

between angiogenic growth factors and neutrophil behavior. In a pilot experiment using in vivo 

subcutaneous matrigel plugs, short-term treatment with fibroblast growth factors (FGF) 1 and 2 
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resulted in significant neovascularization; interestingly, the tissues surrounding the matrigel plug 

showed an increase in polymorphonuclear cell infiltration. Encouraged by the paucity of 

information in the literature regarding FGF-neutrophil interaction, we looked at the expression of 

FGF receptors (FGFRs) on neutrophils from different human donors, as well as the ability of 

FGFs to induce neutrophil chemotaxis. We demonstrated that the expression of FGFR was 

strongly dependent on genetic background: Overall, FGFR2 showed the highest incidence as a 

neutrophil cell-surface receptor, but none of the receptors were universally or uniformly 

expressed. Despite the genetic factor, neutrophils migrated in response to both FGF1 and FGF2 

in vitro, suggesting that other neutrophil adaptors may be engaging FGFs.  

Given the shared ability of FGFs and angiopoietins (Ang) to induce neutrophil migration, we 

performed a wide-scale RNA assay to determine which genes were being engaged by the main 

ligands of both families.  While none of FGF1, FGF2 or Ang2 had a strong effect on the 84 

inflammatory cytokine genes tested (FGFs - unpublished data, 2011), at least two target genes 

belonging to the interleukin-1 (IL-1) family were significantly upregulated following Ang1 

treatment. Further analysis showed that Ang1 not only stimulates gene transcription, but also 

translation and processing of the precursor of IL-1β (pro-IL-1β), and both precursor and mature 

proteins accumulate in the cell simultaneously. Interestingly, although no IL-1β is secreted from 

neutrophils after Ang1 or endotoxin (LPS) treatment, substantial quantities of the naturally 

occurring IL-1β antagonist (IL-1RA) are released, thereby tipping the balance in favor of 

inhibiting IL-1β activity. Finally, the activities of Ang1 on IL-1β and IL-1RA production and/or 

release are largely mediated by p42/44 MAPK; in contrast, the effects of LPS are driven by 

recruitment of p38.  

  

Keywords: angiogenesis, inflammation, neutrophils, FGF, angiopoietins, interleukin-1 
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1.0 INTRODUCTION  
 

1.1 Angiogenesis: Fundamentals  
 

In mammalian organisms, receiving adequate blood supply through a functional network 

of blood vessels is arguably the most important determinant of organ survival. Because blood 

perfusion is directly proportional to the amount of oxygen and nutrients a tissue receives, the 

delivery system must retain a degree of plasticity, such that it can continuously expand or regress 

in accordance with blood demand. The dependence of the mammalian organism on timely blood 

vessel development and remodelling is demonstrable very early in life: In humans for instance, 

during the second week following implantation of the developing zygote, the outer layer of the 

implanted blastocyst (the chorionic sac) projects finger-like structures called chorionic villi into 

the endometrial lining of the uterus. These villi release chorionic gonadotropin, a hormone that 

controls maternal progesterone secretion in the ovaries. In turn, progesterone insures that 

maternal vessels grow and extend from the uterus towards the villi. Failure to adequately develop 

and maintain these vascular connections is unforgiving; indeed, in the case of faulty vascular 

structure formation in the decidua, spontaneous abortion – and thus loss of embryo – is the most 

likely outcome.  

 

1.1.1 Terminology 
There are two distinct mechanisms for the formation of vascular structures in vertebrates. While 

vasculogenesis describes the migration and assembly of mesoderm-derived endothelial precursor 

cells (the angioblasts) and their organization into primitive networks, angiogenesis refers to the 

formation of new blood vessels (neovascularization) from pre-existing structures, through the 

proliferation and rearrangement of local vessel wall elements (endothelial and mural cells). Both 

processes play a critical role in embryo development and are often intertwined throughout 

gestation. In humans, vasculogenesis is evident in the fourth week of zygotic development; a fetal 

circulatory loop is established de novo, with the emergence of a beating heart and the major 

embryonic vessels – the dorsal aorta and an intra- and extra-embryonic (blood islands in the yolk 

sac) vascular plexus (1). By the end of the fourth week, embryonic blood vessels extend from the 

fetus, likely through vasculogenesis (rather than protrusion of embryonic vessels into the placenta 
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by angiogenesis), through the umbilical cord and into the chorionic villi, where they meet 

maternal blood vessels that have developed, through angiogenesis, out of the decidua basalis of 

the endometrium (review (2)) (Figure 1, p.2). The zone where embryonic and maternal vessels 

meet constitutes the placenta, where nutrients and waste are exchanged via diffusion. If the fetal 

or maternal portions of the placenta are deficient, i.e. if the placental relationship is not 

successfully established, fetal growth can be severely impaired.  

 Because of its role in establishing the initial vascular scaffold, vasculogenesis was 

perceived as strictly an embryonic process. However, recent evidence suggests that bone marrow-

derived committed (i.e. lineage restricted) progenitor cells, often termed endothelial progenitor 

cells (EPCs), which give rise to endothelial progeny are present in the adult (4) and retain their 

vasculogenic potential (5). Thus, neovascularization in the adult may not only involve “classical” 

angiogenic processes (i.e. proliferation/rearrangement of local vessel wall elements) as was 

previously thought, but also the work of circulating EPCs.  

Figure 1: Schematic of human term placenta.  

The extensive development and maintenance of new blood vessels in the fetal chorionic plate and the 
maternal decidua basalis is essential to life. Reproduced with permission from PNAS: Sood et al, 2006 
(3).  
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While the distinction between vasculogenesis and angiogenesis remains ill-defined and 

must be reconsidered as new discoveries in the field of vascular biology emerge (review (6)), for 

the purpose of this study, we define angiogenesis as the formation of new blood vessels of any 

size (encompassing arterio and venogenesis) and using any mechanism (including endothelial cell 

rearrangement and sheer stress) from a pre-existing structure. Under this definition, we 

distinguish two main mechanisms of angiogenesis thought to occur in virtually all tissues and 

organs, referred to as sprouting and splitting (intussusceptive) angiogenesis. This section will 

outline the sequential steps of vessel branching under normal physiological conditions, before 

delving into the molecular players involved. 

 

1.1.2 Basic vessel structure and quiescence 
Vessel lumens are lined by a single layer of endothelial cells (ECs) that are tightly connected by 

junctional molecules such as vascular endothelial cadherins (VE-cadherin) and claudins. The 

monolayer of ECs is ensheathed in a “sleeve” made of basement membrane and covered by mural 

cells (vascular smooth muscle cells and pericytes). In a quiescent state, ECs and pericytes 

produce elements of the basement membrane and maintain it. Furthermore, pericytes suppress EC 

proliferation and secrete pro-survival signals such as angiopoietin-1 (Ang1), fibroblast growth 

factors (FGFs), vascular endothelial growth factors (VEGFs) and Notch to help protect the 

endothelium from insult.   

 

1.1.3 Sprouting angiogenesis 
This type of angiogenesis is characterized by the selection of a “sprout”, or an EC guide that 

directs the re-arrangement of surrounding ECs. When a quiescent vessel detects an angiogenic 

signal (hypoxic conditions, tumor-induced, tissue injury etc.), ECs and surrounding support cells 

release vessel-destabilizing factors such as Ang2 and VEGF that concomitantly loosen up the 

endothelium at the spot where the sprout is to form (Figure 2, p.5): Ang2 promotes the 

detachment of pericytes and proteolytic cleavage of the basement membrane by matrix 

metalloproteases (MMPs). In parallel, VEGF relaxes endothelial junctions, increasing vascular 

permeability and allowing for extravasation of plasma elements (such as fibrinogen and 

fibronectin); these elements then lay down a provisional extracellular matrix (ECM) scaffold 

towards which ECs will migrate. Proteases in the surrounding milieu degrade ECM components, 
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thereby liberating trapped angiogenic factors such as VEGF and FGF; this step establishes new 

signalling gradients that will serve to stimulate and guide the sprout. To prevent endothelial 

migration en masse towards the angiogenic signal, one endothelial cell - the tip cell - is chosen 

over all the others to lead the sprout, a selection that is made through a complex and timely 

interplay between VEGF, neuropilin and Notch signals. The remaining cells assume an auxiliary 

role as stalk cells that proliferate and form the stalk and the lumen of the new vessel, driven by 

FGFs, Notch and placental growth factor (PlGF) among others. Before it can be functional, the 

vessel must undergo a maturation step and the destabilizing signals have to be removed: MMPs 

are inhibited by tissue inhibitors of metalloproteases (TIMPs) and plasminogen activator 

inhibitor-1 (PAI-1), allowing for the deposition of a basement membrane again; at the same time, 

stabilizing signals such as platelet-derived growth factor B (PDGF-B), Ang1, transforming 

growth factor-β (TGF-β), ephrin-B2 and Notch stimulate pericyte recruitment and adhesion, as 

well as tightening of endothelial junctions to allow for optimal perfusion in the new vessel 

(review (7)).  
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Figure 2: Molecular basis of 
sprouting angiogenesis. 
a) Following stimulus, the quiescent 
vessel dilates and an endothelial cell 
(EC) guide, the “tip cell”, is selected 
(DLL4; JAGGED1) to ensure 
branch formation. Tip-cell 
formation requires degradation of 
the basement membrane (BM), 
pericyte detachment and loosening 
of EC junctions. Increased 
permeability permits extravasation 
of plasma proteins (ex: fibrinogen 
and fibronectin) to deposit a 
provisional matrix layer, and 
proteases remodel pre-existing 
interstitial matrix, all enabling EC 
migration. For simplicity, only the 
BM between ECs and pericytes is 
depicted, but in reality, pericytes 
and ECs are both embedded in BM. 
b) Tip cells navigate in response to 
guidance signals (ex: semaphorins 
and ephrins) and adhere to the ECM 
(via integrins) to migrate. Stalk cells 
proliferate, elongate and form a 
lumen, and sprouts fuse to establish 
a perfused neovessel. Proliferating 
stalk cells attract pericytes and 
deposit BMs to become stabilized. 
Recruited myeloid cells (ex: subsets 
of macrophages, monocytes) can 
produce pro-angiogenic factors or 
proteolytically liberate factors from 
the ECM. c) After fusion of 
neighbouring branches allowing 
perfusion, the neovessel resumes 
quiescence by promoting a phalanx 
phenotype, re-establishment of 
junctions, deposition of BM, 
maturation of pericytes and 
production of vascular maintenance 
signals. Other factors promote 
transendothelial lipid transport.  
Reproduced with permission from 
Macmillan Publishers Ltd: 
Carmeliet et al, 2011 (7). 
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1.1.4 Splitting angiogenesis 

In intussusceptive angiogenesis, also called splitting angiogenesis, the vessel wall extends into 

the lumen, forming transluminal tissue “pillars” that subsequently fuse and divide a single vessel 

into two (8-10). This type of angiogenesis mostly creates new capillaries where capillaries have 

already been formed, either by sprouting angiogenesis or vasculogenesis. It is also of great 

importance in “pruning” existing vessels, i.e. in remodeling the branching patterns of vascular 

beds (11, 12). The advantage of this mechanism is that blood vessels are formed more rapidly and 

in a metabolically more efficient manner, since there is no need for immediate EC proliferation, 

basement membrane degradation, or invasion of the surrounding tissue (review (13)). While the 

driving factors for intussusception remain poorly understood, altering blood flow by clamping 

leads to an increase in the number of tissue pillars and to immediate changes in vessel branching, 

suggesting that blood flow and blood pressure are driving intussusceptive forces (14). 

Furthermore, factors that mediate sprouting angiogenesis are also likely implicated. Indeed, Ang1 

is a good example: in knockout mice for the ligand or for its receptor Tie2, similar vascular 

remodeling defects are observed, whereby the vasculature remains primitive in appearance and 

fails to undergo adequate branching (Figure 3, p.7) (15, 16). Importantly, in the Ang1 knockout 

study, the authors note that the defects in vascular morphology are not due to a lack of ECs, as 

the number of cells is comparable between Ang1-/- and control mice (15). Instead, the study 

points out that vessels of Ang1-/- mice lack both “periendothelial cell” (i.e. pericytes) coverage 

and “tissue folds” (i.e. tissue pillars), which the authors propose are “responsible for vessel 

branching”. Finally, Thurston et al have also shown that in mice, overexpression of Ang1 alone 

or co-expression of Ang1 and VEGF leads to the presence of abundant “small holes” in the 

capillary plexus (17), which is suggestive of increased intussusception. 
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Figure 3: Vascular defects in 
Ang1-deficient embryos. 

Whole-mount PECAM staining in 
the forebrain (A and B), head 
region (E and F), eye (G and H), 
umbilical and primitive gut (I and 
J), intersomitic region (K and L), 
and yolk sac (M and N) of Ang1-/- 
embryos.  
The dilated appearance of vessels 
in the forebrain is confirmed by 
sections (C and D). Arrowhead in 
(A) indicates syncitial vessels in 
contrast to the finer vascular 
network seen in (B); arrowhead in 
(F) indicates large vessels whose 
counterparts are much smaller in 
size in Ang1-/- embryos (E); arrow 
in (F) indicates highly branched 
and meandering intermediate-size 
vessels typically not seen in Ang1-/- 
embryos (E); arrowheads in (L) 
indicate intersomitic vessels that 
have regressed in Ang1-/- embryos 
of this age (K). 
Perhaps the most striking example 
of a remodeling deficit is seen in 
the yolk sac vasculature (M and N), 
which is similar to deficits seen in 
Tie2-deficient embryos (16); in 
both cases, it appears as if 
remodeling of the initially 
homogeneous capillary network to 
form both large and small vessels 
does not occur.  

Reproduced with permission 
from Elsevier: Adapted from 
Suri et al, 1996 (15).  
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1.2 The vascular endothelial growth factor (VEGF) family  
 

As the name suggests, the vascular endothelial growth factor (VEGF) family is 

extensively involved in regulating vascular development. With five growth factors (VEGF-A-D; 

placental growth factor (PlGF)), three receptors (VEGFR1-3), and various splicing products with 

properties distinct from those of their originators, the VEGF family plays a fundamental role in 

the initiation of fetal vasculogenesis and adult angiogenesis. The importance of this family is 

evidenced by the exhaustive list of genetic studies targeting its members, ranging from complete 

gene deletions to smaller modifications, and generally resulting in major vascular impairments or 

embryonic lethality (Table I, p.14). In addition to possessing unique features, VEGFs may also 

have overlapping characteristics and functions with angiogenic factors from other families; thus, 

the VEGF family is a good starting point for understanding the molecular mechanisms of 

angiogenesis.  

 

1.2.1 VEGF members 
VEGF-A. VEGF-A (sometimes referred to simply as “VEGF”) was first discovered from its 

capacity to induce rapid vascular permeability (accordingly, it was called “vascular permeability 

factor”) (18, 19), with 50,000 times more potency than histamine (20). VEGF-A is critical for 

embryonic vascular development. Indeed, both complete and partial deletions of VEGF-A in 

mice (Vegfa−/− and Vegfa+/−, respectively) lead to embryonic lethality, with severe impairments in 

the initial assembly of the vasculature (21, 22). VEGF-A is also critical for organ vascular 

development during embryogenesis, and as an impressive body of literature shows, is essential in 

post-embryonic angiogenesis.  

VEGF-A exerts a range of functions on different cell types in physiological and 

pathological conditions, including leukocytes, neurons, epithelial cells and tumors. In particular, 

the ligand directly and potently modulates EC behavior, promoting survival, differentiation, 

proliferation and migration (23). Overexpression of VEGF-A (splicing variant VEGF164; see 

below) in mouse ear, heart, and skin promotes vessel (capillaries and lymph vessels) proliferation 

and enlargement, but also results in a leaky vasculature, myocardial thinning and the skin shows 

a persistent and chronic inflammatory response (24) from increased fluid accumulation in tissues 

and infiltration of leukocytes. These observations suggest that while VEGF-A is necessary for the 
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initiation of both the embryonic capillary plexus and adult angiogenesis, it requires additional 

assistance from other mediators to achieve vessel maturation, pruning, and homeostasis, steps 

that are essential for the establishment of a fully functional vascular system (17, 25).  

VEGF-A has four main isoforms derived from alternative splicing of exons 6-7 and that 

have different affinities for heparan sulfate proteoglycans (HSPGs) and ECM components (26). 

Based on their number of amino acids after signal sequence cleavage, the isoforms are labelled 

VEGF121, VEGF165, VEGF189 and VEGF206
1 (27, 28). The higher the amino acid count, the 

greater the affinity to HSPGs: Indeed, VEGF165 has intermediate properties in terms of heparin 

affinity (29), while VEGF189 and VEGF206 are almost completely bound to the cell surface or the 

ECM (30). In contrast, VEGF121 lacks heparin-binding properties and is freely diffusible (30).  

The importance of HSPG affinity was demonstrated in several murine genetic 

manipulations where only one VEGF isoform is expressed. In mice exclusively expressing 

VEGF120 (Vegf120/120), angiogenesis defects are most noticeable in the heart (where VEGF120 is 

normally only 5% of total VEGF-A), with lower myocardial capillary density and impaired 

vessel branching into the innermost tissues of the heart (the endomyocardium), compared to 

normal VEGF-expressing controls (31). Retinal angiogenesis in Vegf120/120 mice is also severely 

impaired, with defects in venous development and profound impairments in arterial growth (32). 

Interestingly, Vegf120/120 mice show lowered Tie2, Ang1, VE-cadherin and VEGF-C levels. Mice 

expressing only VEGF188 (Vegf188/188) exhibit skeletal defects, decreased vascularization 

surrounding joint cartilage (epiphyseal vascularization), decreased retinal capillary pruning and 

while venular outgrowth is normal, arterioles are significantly underdeveloped2 (33, 34). These 

results indicate that VEGF120 or VEGF188 alone are insufficient for normal angiogenesis. In 

contrast, Vegf164/164 mice develop normally, are healthy and have normal retinal angiogenesis 

(34).   

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

1 Mouse VEGF-A isoforms have one less amino acid than their human counterparts (thus, VEGF120, VEGF164, 
VEGF188, and VEGF205). 
2 Although VEGF isoform-specific signalling cannot be excluded, an argument in support of VEGF diffusion 
properties is provided by the observation that mice expressing either VEGF164 or VEGF120, in addition to VEGF188 
(Vegf164/188 and Vegf120/188 mice, respectively), show no evidence of defects in epiphyseal vascularization (Maes et al, 
2004). 
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Other VEGF members. VEGF-B, VEGF-C, VEGF-D and PlGF have temporal and spatial 

restrictions on their functions. VEGF-B has limited angiogenic activity in certain tissues such as 

the heart, and mitotic activity on neuronal tissue; loss of VEGF-B does not affect vascular 

development (35). As for VEGF-C and VEGF-D, their involvement in embryonic vascular 

development appears to be species-dependent: In xenopus tadpoles and zebrafish, both isoforms 

affect embryonic blood vessel formation (36, 37). In contrast, knockout mice for VEGF-C, 

VEGF-D, or both at the same time (Vegfc−/−; Vegfd−/−), exhibit normal embryonic vascular 

development (38-40). That being said, the absence of VEGF-C is lethal to mice later in 

embryogenesis (E15.5), as the lymphatic system fails to develop and Vegfc−/− mice die before 

birth due to fluid accumulation in tissues (39, 40). Vegfd knockout mice have only a subtle defect 

in lymphatic phenotype, involving a decrease in the abundance of lymphatic vessels in the lungs, 

suggesting that VEGF-D is functionally redundant with VEGF-C in the stimulation of 

developmental lymphangiogenesis (41). Interestingly, though VEGFR3 mediates the effect of 

both ligands, Vegfc−/− / Vegfd−/− double-knockout mice do not phenocopy the severe 

cardiovascular defects observed in Vegfr3−/− embryos, suggesting the possible existence of a third 

VEGFR3 ligand or a ligand-independent mechanism regulating blood vessel formation.  

Finally, PlGF appears to be dispensable for vascular development, and its role is restricted 

to pathological conditions (42). Binding of PlGF to VEGFR1 modulates the angiogenic response 

to VEGF, but not to FGF2; this is possibly achieved through displacing VEGF from VEGFR1 

and making it more available to bind and activate VEGFR2. 

 

1.2.2 VEGF Receptors (VEGFRs) 
Nomenclature. As receptor tyrosine kinases (RTK), VEGFRs belong to the same superfamily as 

PDGF and FGF receptors. The structure of the three VEGFRs (VEGFR1-3) is similar to other 

RTKs, with an extracellular portion comprised of Immunoglobulin-like domains, a single trans-

membrane domain, a tyrosine kinase domain and a C-terminal tail. In humans, additional receptor 

variants are generated by alternative splicing or proteolytic cleavage, giving rise to secreted 

forms of VEGFR1-2 (sVEGFR1-2), and a C-terminal truncated VEGFR3 (23).   

 

Properties. VEGFRs have different binding properties depending on the ligand; once bound, they 

are capable of forming both homodimers and heterodimers (23). The dimerization drives 
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autophosphorylation of the receptors at various intracellular tyrosine residues and the subsequent 

recruitment of a broad array of second messengers. Inactivation of the receptors occurs through 

dephosphorylation of tyrosine residues by phosphatases, and likely by internalization and 

degradation by either the proteasome or the lysosomal pathways. The fate of activated VEGFRs, 

especially after internalization, remains to be elucidated.  

 

Activity of VEGFR1. VEGFR1 binds to VEGF-A, VEGF-B and PlGF. Vegfr1 null mice perish in 

utero at day E8.5-9, and exhibit an overgrowth of ECs. An interesting feature of VEGFR1 is that 

its level of tyrosine phosphorylation in response to VEGF-A is so low that it can only be readily 

detected in transfected models overexpressing VEGFR1. It would even appear that the tyrosine 

kinase (TK) domain of VEGFR1 is not necessary to its activity, as the selective deletion of the 

TK domain (ligand-binding and anchoring domains intact) (Vegfr1(TK)−/−) does not seem to alter 

development or angiogenesis in mice (43). Interestingly, removal of both the TK and the 

transmembrane domains of VEGFR1 results in early embryonic lethality for 50% of the mice, 

owing to vascular malformations, while the remaining 50% develop normally (44). Finally, while 

the TK domain is dispensable for vascular development, Vegfr1(TK)−/− mice exhibit major 

defects in macrophage/monocyte recruitment in response to VEGF-A and PlGF (43), implying 

that in these cells, ligand-bound VEGFR1 has the capability of transducing downstream signals. 

In vascular biology, because signal transduction through VEGFR1 is apparently not necessary, 

VEGFR1 is postulated to act as a “trap” for VEGF, and may thus alter VEGFR2 activity by 

influencing VEGF availability3. 

 

Activity of VEGFR2. On the other hand, the role of VEGFR2 in vascular development is more 

pronounced (Table I, p.14). VEGFR2-deficient mice (Vegfr2−/−) die early in utero; however, 

what is particularly interesting about these embryos is that they do not even develop a primitive 

vascular network, as blood island formation is impaired and vasculogenesis halted. These mice 

are also severely deficient in their hematopoietic progenitor count.  

In mammals, VEGFR2 naturally binds a single ligand, VEGF-A. After proteolytic 

processing, human VEGF-C and -D can also bind to VEGFR2, but this happens with lower 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

3 Activity of VEGFR1/VEGFR2 heterodimers compared to homodimers remains to be elucidated.  
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affinity than binding to VEGFR3 (23). Unlike VEGFR1, phosphorylation of stimulated VEGFR2 

is readily detectable in intact cell models, and a single mutation in a specific tyrosine 

phosphorylation site (Tyr1173 in mice; Tyr1175 in humans) leads to a similar phenotype to 

Vegfr2−/−, i.e. where vasculogenesis and hematopoiesis are severely impaired (45). This receptor 

is responsible for mediating the majority of VEGF-A’s effects on the vascular system and 

particularly on ECs, including stimulating permeability, EC proliferation, migration, and 

sprouting (23). After receptor dimerization and autophosphorylation, several downstream 

signalling transducers can be recruited, involving Akt, p38 mitogen-activated protein kinase 

(MAPK), Src, focal adhesion kinase (FAK)/paxilin, Ras, protein kinase C (PKC), p42/44 MAPK 

and phospholipase C (PLC)-γ among others. However, only a limited group of src homology 2 

(SH2)-domain-containing molecules has been shown to bind directly to the phosphor-tyrosine 

(pTyr) residues of VEGFR2. These include PLC-γ and adaptor proteins Shb and Sck, all three of 

which bind pTyr1175 mentioned above, and VEGFR-associated protein (VRAP) that binds 

pTyr591 (pTyr949 in mice). Meanwhile, activation of PI3K and Src occurs indirectly via adaptor 

proteins Shb and likely VRAP, respectively (46). 

 

Activity of VEGFR3. This receptor binds to VEGF-C and D, and is important for 

lymphangiogenesis and lymph EC development and function. During early embryonic 

development, VEGFR3 is necessary for the formation of the blood vasculature, and is widely 

expressed on ECs of blood vessels; progressively, expression becomes restricted, fisrt to the 

venous endothelium before lymphatic vessels emerge and then to the endothelium of lymphatic 

vessels (41, 47, 48).  

Vegfr3−/− knockout mice die early in utero (at E9.5-10.5, before the emergence of the 

lymphatic system), due to defective remodeling and maturation of blood vessels into larger 

vessels (49). The involvement of VEGFR3 in lymphangiogenesis is derived from studies using 

conditional knockouts and demonstrating that declining levels of functional receptor in the 

embryo do not impact development of the vasculature; rather, they impair lymphatic vessel 

development and function: the less VEGFR3, the more severe the impact on lymphangiogenesis. 

Finally, VEGFR3 activity is modulated by co-receptors such as neuropilin-2 (expressed in 

venous and lymphatic vessels) and by heterodimerizing with VEGFR2 in lymphatic ECs, 

resulting in a modified pattern of VEGFR3 phosphorylation and differential downstream 
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signalling (50).  

 

Co-receptors: Neuropilins. Neuropilins are transmembrane glycoproteins involved in axonal 

guidance in vertebrates during the development of the nervous system. They have relatively small 

cytoplasmic domains with no catalytic activity, and are receptors for a class of axonal guidance 

proteins known as the semaphorins. Neuropilins are also co-receptors to VEGFs. Just like 

HSPGs, neuropilins impact the stability of the VEGF-VEGFR signalling complex at the cell-

surface. For instance, the human VEGF-A gene consists of nine alternatively spliced exons that 

regulate interactions with HSPGs and neuropilins. Thus, VEGF121 lacks the HSPG- and 

neuropilin-binding domains while VEGFA189, includes both and is therefore retained in the 

vicinity of the cell-surface.  

Neuropilins are expressed in several cell types. In particular, Neuropilin-1 is present in 

arteries, whereas the related neuropilin-2 is expressed in venous and lymphatic vessels. Although 

neuropilins lack an intrinsic catalytic domain, upon binding to semaphorins, they are capable of 

relaying signals from the cell membrane through association with the plexin family of 

transmembrane proteins (51). It is currently unknown whether VEGF binding to neuropilins 

could lead to a similar engagement of plexins, or whether neuropilins could transduce VEGF 

signalling through alternate mechanisms independently of VEGFRs.  
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Table I: VEGF and Receptor function by gene targeting 

Genotype Phenotype of mouse 
Vegfa+/- Lethal at embryonic day E11-12, defective vascular development 
Vegfa-/- Generated by aggregation of embryonic stem cells with tetraploid embryos, more 

severe defects in vascular development than heterozygote, embryonic lethal 
E9.5-10.5. 

Vegfa120/120 50% die shortly after birth owing to bleeding in multiple organs and the 
remaining mice die before postnatal day 14 owing to cardiac failure. Impaired 
myocardial angiogenesis, ischemic cardiomyopathy, skeletal defects, and defects 
in vascular outgrowth and patterning in the retina. 

Vegfa164/164 Viable, healthy.  
Vegfa188/188 Impaired retinal arterial development, dwarfism, defective epiphyseal 

vascularization, impaired development of growth plates and secondary 
ossification centers, knee-joint dysplasia. 

Vegfb-/- Reduced heart size, dysfunctional coronary vasculature, and impaired recovery 
from cardiac ischemia. 

Human VEGF-C 
overexpression  

Hyperplasia of lymphatic vessels. 

Vegfc-/- Prenatal death owing to edema, lack of lymphatic vessels. 
Vegfc+/- Cutaneous lymphatic hypoplasia, lymphedema. 

Vegfd-/- Normal development, slight reduction of lymphatic vessels adjacent to lung 
bronchiole. 

Plgf-/- Impaired angiogenesis during ischemia, inflammation, wound healing and 
cancer. 

Vegfr1-/- Embryonic lethal E8.5-9.0, increased hemangioblast commitment, vascular 
disorganization owing to endothelial-cell overgrowth. 

Vegfr1(TK)-/- Normal development, VEGF-induced macrophage migration suppressed, 
decreased tumor angiogenesis. 

Vegfr1(TM-TK)-/- 50% of mice die during embryonic development, owing to vascular defects. 
Vegfr2-/- Embryonic lethal E8.5-9.5, defective blood-island formation and vasculogenesis. 

Vegfr3-/- Embryonic lethal before formation of lymphatics owing to cardiovascular failure. 
Embryos show vascular remodeling defects and pericardial fluid accumulation. 

Human VEGFR3 
overexpression 

Inhibition of fetal lymphangiogenesis, regression of lymphatic vessels, 
lymphedema. 

Neuropilin-1-/- Embryonic lethal, defective neural patterning, vascular regression. 
Neuropilin-1 
overexpression 

Cardiovascular defects, heart malformation, excess blood-vessel formation, 
dilated blood vessels, hemorrhage, anomalies in nervous system and limbs. 

Neuropilin-2-/- 
40% show perinatal death close to birth. Survivors are smaller than littermates. 
Defects in neuronal patterning, severe reduction of small lymphatic vessels and 
capillaries. 

Neuropilin-1 and 2 double 
KO Embryonic lethal E8.5, defective vascular development. 

 
Adapted with permission from Macmillan Publishers Ltd: Olsson et al, 2006 (23). 
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 1.3 Beyond VEGF: The fibroblast growth factor (FGF) family 
 

A substantial body of evidence exists outlining the importance of the fibroblast growth 

factor (FGF) family in controlling multiple developmental processes throughout embryogenesis, 

from mesoderm patterning to major organogenesis (Table II, p.26). FGFs also wield multiple 

effects in the adult organism, with a significant contribution to physiological processes such as 

angiogenesis and wound healing. On the flipside, because FGF signalling affects multiple cell 

types and regulates tissue survival, growth, migration and neovascularization – processes that are 

essential for tumor development –, the family is an ideal target for cooption by cancer cells. 

Indeed, numerous studies in humans and murine models have confirmed the oncogenic potential 

of FGFs: For instance, Fgf19 transgenic mice overexpressing FGF19 in skeletal muscle develop 

liver tumors (52); additionally, studies have reported that gain-of-function mutations or single-

nucleotide polymorphisms in FGF receptors (FGFRs) in both mice and humans are associated 

with multiple cancers types ((53-56) among others; and review (57)). In particular, there is strong 

correlation between FGFR2 anomalies and breast (58) and gastric cancers (59).  

 

1.3.1 FGF members 
Nomenclature. All FGFs are small (20-30 kDa) secreted glycoproteins, with similar core regions 

made of 120-130 amino acids arranged in 12 antiparallel β-strands (β1-12) and flanked by amino 

(N) and carboxy (C) terminals. Most sequence differences that confer specific FGF biological 

properties are found within the N and C tails. Based on nomenclature, the FGF family comprises 

23 members, of which only 18 are FGFR ligands. Indeed, four of the 23 members (FGF11-14) 

lack several key FGFR-binding residues and thus do not bind or activate FGFRs, despite a 

remarkably high sequence homology with other members of the FGF family and a high affinity 

for heparin (60). For that reason, they are generally not considered canonical FGFs and are often 

referred to as FGF homologous factors 1-4 (FHF1-FHF4)4. Finally, FGF15 is only found in mice 

and is the ortholog of human FGF19.   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

4 Additionally, the carboxyl terminus of FHFs folds against the rest of the ligand in a way that blocks many FGFR-
binding residues from interacting with FGFRs. 
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The 18 FGF members are divided into six subfamilies based on sequence homology and 

phylogeny (Figure 4, p.16), grouped as follows:  

1. FGF1 and FGF2;  

2. FGF4, FGF5 and FGF6;  

3. FGF3, FGF7, FGF10 and 

FGF22;  

4. FGF8, FGF17 and FGF18;  

5. FGF9, FGF16 and FGF20;  

6. FGF19, FGF21 and FGF23.  

 

Binding to HSPGs. Similarly to the 

VEGF family, varying affinities of 

FGFs for HSPGs impacts both the 

bioavailability and the function of 

the FGF ligands. The binding site for 

HSPGs is located within the FGF 

core, at β1- β2 as well as in parts of 

the region spanning β10 and β12. 

Directed mutagenesis of the HSPG-

binding sites of two FGF members 

belonging to the same subfamily, FGF7 and FGF10, converted FGF10 into FGF7 with respect to 

diffusion characteristics and morphogenetic activity. The study suggests that differences in the 

affinity to HSPGs not only defines whether an FGF ligand acts in an endocrine or paracrine 

manner, but also affects the biological characteristics of FGFs within the same subfamily (62).  

The first five subfamilies of FGFs have a distinctive heparin-binding site that forms a 

contiguous and positively charged surface. In contrast, the HSPG-binding site of the FGF19 

subfamily contains ridges formed by the β1- β2 and β10-β12 that sterically hinder binding of 

HSPGs to the FGF core (this allows them to diffuse freely; see below). Finally, HSPGs were 

shown to simultaneously bind the ligand and the receptor, each heparin oligosaccharide 

interacting with one ligand and both receptor monomers within the dimer (63). This trivalent 

interaction strengthens both ligand-receptor and receptor-receptor protein contacts.  

Figure 4: Human FGF subfamily distribution 
according to phylogeny.  

Twenty-two FGFs are illustrated, including FGF11-14. Branch 
lengths are proportional to the evolutionary distance between 
each gene. FGF19 is a human ortholog of mouse FGF15. 
FGF11/FHF1 subfamily is shown for reference. From Itoh et 
al, 2007 (61). 



17 
 

Endocrine ligands. Because of a high binding affinity to HSPGs, members of the first five FGF 

subfamilies are retained in the ECM or in close proximity to the cell surface where they exert 

their effects; thus, they function as paracrine ligands. On the other hand, the FGF19 subfamily 

was recently shown to act in an endocrine manner (64), enabled by poor binding to HSPGs and 

an ensuing capacity to diffuse from the production site into the circulation (on the flipside, the 

low affinity for HSPGs also reduces FGF-FGFR binding strength, stability and duration). 

Interestingly, the endocrine function of this subfamily is dependent on the presence of klotho 

proteins (α or β) in target tissues, which increase ligand-binding affinity by binding both 

endocrine FGFs and their corresponding receptors ((65); (review (66)). 

 

1.3.2 FGF Receptors (FGFRs) 
FGFs carry out their biological functions through four highly conserved heparin-binding tyrosine 

kinase receptors (FGFR1-4) and their multiple isoforms. Upon ligand binding, FGFRs dimerize, 

and a conformational shift allows for transphosphorylation of the intracellular kinase domains 

(the activation loop) of each monomer, as well as the phosphorylation of tyrosine (Tyr) residues 

in the C tail, the kinase insert and the juxtamembrane domain of the receptor itself. Receptor 

pTyr residues function as docking sites for adaptor proteins, including FGFR substrate 2 (FRS2) 

– a protein largely specific to FGFRs – and PLCγ, that activate Ras, MAP Kinases (p42/44, p38 

etc.), PKC, Akt, Jun and signal transducer and activator of transcription (STAT) signalling, 

among others (66) (Figure 5, p.18). 

 

Structure. Mammalian FGFR genes encode receptors consisting of three extracellular 

immunoglobulin-like domains (Ig I-III / D1-3), a single-pass transmembrane (TM) domain, and a 

cytoplasmic split tyrosine kinase (TK) domain (Figure 5, p.18). A feature of the FGFRs is a 

serine-rich sequence in the linker region between Ig-I and Ig-II, called the acid box (A).  FGFs 

interact with both Ig-II and Ig-III domains of an FGFR monomer, with the Ig-III interactions 

primarily responsible for ligand-binding specificity; meanwhile, heparin binds to the first half of 

Ig-II (68, 69).  
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Several FGFR isoforms exist (Figure 6, p.19): In normal tissues, FGFRs express all three 

Ig domains and are referred to as FGFR-α. Exon skipping completely removes the Ig-I domain 

and/or the acid box, giving rise to a “short” FGFR isoform called FGFR-β that has different 

ligand affinities (70). This alternative splicing event results in higher ligand and heparin affinity 

(69, 71), and is tied to tumour transformation into a malignant and invasive phenotype, 

Figure 5: FGF2-FGFR1c-heparin crystal structure and signalling targets.  

Structure of a dimerized FGFR bound to FGF (orange) and Heparin (HS). Structurally unresolved regions are 
shown as grey lines. N- and C-terminal lobes of the kinase domain are in green and red, respectively. The two 
major targets, PLCγ and FRS2α, are shown. HS, heparan sulphate; IP3, inositol-1,4,5-trisphosphate; PH, 
pleckstrin homology domain; PIP2, phosphatidylinositol-4,5- bisphosphate; PKC, protein kinase C; PTB, 
phosphotyrosine binding domain; PTK, protein tyrosine kinase; SH, Src homology domain. Reproduced 
with permission from Macmillan Publishers Ltd: Beenken et al, 2009 (66, 67). 
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suggesting that Ig-I normally plays an autoinhibitory role in FGFR signalling. Additional splicing 

events in the second half of the Ig-III domain of FGFR1-3, specifically in exons 8 and 9, generate 

two other isoforms called IIIb/ “b” (where exon 9 is skipped) and IIIc/ “c” (where exon 8 is 

skipped). This brings the total to seven receptors with unique ligand-binding specificity and 

tissue localizations. For instance, FGFRb isoforms are generally expressed in epithelial cells, 

whereas FGFRc isoforms are present in mesenchymal cells. As for differential ligand binding 

capabilities, this is reflected in the ability of FGF2 to only activate IIIc forms of FGFRs (72); 

meanwhile, distinct residues within the N-terminal of FGF1 enables it to bind and activate all 

receptors and their splice variants, warranting its designation as “universal ligand” (73, 74).   

Figure 6: mRNA structure of FGFR monomers.  

FGFRs are composed of up to three extracellular Ig-like domains that determine their binding properties 
to members of the FGF family. A) FGFRs can be expressed either as a long form (FGFR-α) containing all 
three Ig domains or as a shorter form lacking Ig-I (FGFR-β). B) Alternative splicing exons 8–9 of the Ig-
III domain of FGFR-α or β generates isoforms referred to as “IIIb” (spliced exon 9) or “IIIc” (spliced 
exon 8) that exert different FGF-binding preferences. SP: Signal peptide; A: Acid box; TM: 
Transmembrane domain; TK: Tyrosine Kinase domain. From Haddad et al, 2011 (77). 
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A fifth receptor, FGFR5/FGFRL1, has 50% sequence homology with FGFRs and can 

bind certain FGFs and heparin with high affinity; however, this receptor lacks the hallmark 

intracellular split kinase domain. In cultured cell models, FGFR5 is found mostly in soluble form 

containing all three Ig domains. Interestingly, cleavage of FGFR5 in both human and murine 

models occurrs at similar regions, if not the same sites. FGFR5 is thought to act as an FGF decoy 

receptor, sequestering FGFs and limiting their ability to activate signal-transducing FGFRs. This 

is supported by the observation that introducing FGFR5 mRNA in Xenopus embryos (75) results 

in a phenotype that mimics the overexpression of a truncated dominant-negative FGFR1 (76). 

 

Mechanism of dimerization. There are two proposed models for FGFR dimerization. The 

prevailing model is referred to as “symmetrical” (vs. the “asymmetric”5 model (78)), and is 

derived from the crytal structures of FGF2-FGFR1c, FGF1-FGFR2c and FGF10-FGFR2b. This 

model postulates that when FGFRs dimerize, they form a positively charged canyon where 

heparin can bind. Each FGF ligand is bivalent and each receptor is trivalent with respect to 

protein-protein interactions (63) (Figure 5, p.18 & Figure 7, p.22): One FGF ligand binds 

between the Ig-II (D2) and Ig-III (D3) regions of one FGFR, forming a 1-1 FGF-FGFR 

monomeric complex.  That same ligand has a distinct secondary interaction site with the Ig-II 

domain on the adjacent FGF-FGFR monomer, thereby promoting the formation of a 2-2 FGF-

FGFR dimer. Indeed, mutations in the FGF10 secondary site that do not impact FGF10 tertiary 

structure, binding to receptor monomer, or to heparin, still decrease FGF10 activation of FGFR2b 

due to impaired dimerization (63). Furthermore, the crystal structure of the FGF10-FGFR2b 

dimer complex shows that direct FGFR2b-FGFR2b protein contacts (a hydrophobic interaction 

and a hydrogen bond at Ala172 and Ser220, respectively) occur at the bottom of the Ig-II 

domains (Figure 7, p.22). Replacing Ala172 with Phe results in increased hydrophobic 

interactions and lessens the need for heparin for dimerization. Accordingly, this more stable 

FGFR2 dimer leads to a gain-of-function (63). The orientation of the Ig-III domain is governed 

by a proline residue (Pro253) in the linker region between Ig-II and Ig-III; in the symmetric 

model, this proline adopts a trans conformation (63, 79).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

5 In the “asymmetric” model, FGF-FGFR halves are held together only by heparin (Pellegrini et al, 2000). The 
biological relevance of this model was refuted in (Ibrahimi et al, 2005). 
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In the crystal structure of 2-2 FGF2-FGFR1c, two heparin molecules are bound in the 

canyon (Figure 5, p.18 & Figure 7, p.22). Each heparin oligosaccharide interacts with one ligand 

and both receptors in the dimer, thus promoting FGFR dimerization by augmenting FGF-FGFR 

binding at primary and secondary interaction sites, as well as by stabilizing receptor-receptor 

contacts. In the absence of heparin, a series of sulfate ions bind into the canyon and have been 

proposed to mimic the sulfate moieties of heparin. 
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Figure 7: FGF2-FGFR1c-heparin 
crystal structure (Part I).  
A) Ribbon diagram of the FGF2-FGFR1c-
heparin crystal structure in two views 
related by a 90° rotation about the 
horizontal axis. D2: green; FGF: orange; 
First half of D3: blue; Alternative splicing 
region of D3: purple. Two heparin 
molecules are observed binding in the 
canyon. Trans prolines maintain the dimer 
in a symmetrical fashion. B) Surface 
illustration showing the positive canyon 
and the multiple contact sites between 
receptor, ligand and heparin. Reproduced 
with permission from Elsevier: 
Mohammadi et al, 2005 (66, 67). 

 

A 
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1.3.3 FGF1 subfamily signalling 
Targeted gene disruption studies have provided much insight into the function of FGFs (Table II, 

p.26). While a complete review of the physiological and pathological functions of each and every 

member of the FGF family would be beyond the scope of this document, attention will be given 

to two prototypical members of the family, FGF1 and FGF2.  

As knockout mice for FGF1, FGF2, or both at the same time are viable and fertile and 

Fgf1–/– mice even appear to be completely normal, the physiological roles of FGF1 and FGF2 are 

still unclear.  

FGF2 is a very potent inducer of angiogenesis, and its expression is potentiated by 

hypoxia6 (80) and hemodynamic stress. In an in vitro collagen gel assay, FGF2 was shown to be 

twice as potent as VEGF in stimulating EC organization into capillary-like structures (81). In 

vivo, exogenous FGF2 stimulates proliferation of ECs (82), smooth muscle cells (83), 

macrophages and fibroblasts, thereby promoting the development of large vessels with adventitia. 

FGF2 also promotes migration of ECs, has anti-apoptotic properties (84), regulates EC 

production of proteases such as plasminogen activator and MMPs (85), has vasodilation 

capabilities through the release of nitric oxide (86) and promotes cell differentiation  and 

maturation (87, 88).  

FGF2 was also shown to improve myocardial circulation post-infarct by increasing vessel 

density in several animal models including rabbits, dogs and pigs (89-91). Because promoting 

revascularization has obvious therapeutic applications, the potential of FGF2 in coronary and 

peripheral vascular diseases in humans became of interest and was explored in several clinical 

trials: In a Phase I unblinded and uncontrolled trial with patients with severe ischemic heart 

disease, a single bolus of FGF2 was shown to be safe (92, 93) and reduced the size of ischemic 

regions in the myocardium, improved treadmill performance, reduced the frequency of angina 

and increased myocardial perfusion (92, 94). However, in the Phase III FGF Initiating 

RevaScularization Trial (FIRST) (a multicenter, randomized, double-blind, placebo-controlled 

trial) a single intracoronary infusion of FGF2 did not improve exercise tolerance or myocardial 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

6 As described by Conte et al: “Hypoxia is a major pathophysiological trigger of angiogenesis. In solid tumours, the 
angiogenic switch responsible for tumor development is induced by hypoxia. In cardiovascular diseases, ischemia 
corresponds to a shortage of the blood supply, resulting in tissue damage because of the lack of oxygen and 
nutrients.” 
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perfusion despite a trend, early in the study, towards symptomatic improvement (95). Using a 

different approach with a more direct FGF2 delivery system, the long-term benefits of FGF2 

administration were tested in a separate Phase I double-blind randomized and placebo-controlled 

study. This method, deemed safe (96), required open-chest delivery and introduced heparin beads 

containing adsorbed FGF2 implanted over the ischemic myocardium of patients. The early 

promising results found in this trial were maintained over the course of 3 years of follow-up (97), 

making it one of the few examples of a sustainable long-term positive response to FGF2 (review 

(66)).  

The potential benefits of FGF1 and FGF2 in peripheral revascularization were also tested. 

In separate Phase I and/or II studies, patients suffering from peripheral artery diseases (critical 

limb ischemia or claudication) received a naked plasmid DNA encoding FGF1 or an intra-arterial 

FGF2 injection, and both delivery systems were deemed safe and efficacious (98, 99). 

Improvement compared to placebo was observed in both cases, as FGF1 treatment lead to 

significantly reduced pain and risk of major amputation (100), while FGF2 improved calf blood-

flow (99). However, in larger phase III trials (TAMARIS (101) and TRAFFIC (102), 

respectively), neither FGF1 nor FGF2 demonstrated any sustainable significant benefits. 

Other possible physiological roles for the FGF1 subfamily include inflammation: One or 

both of these ligands can be up-regulated in the pericardial fluid of patients with cardiac ischemia 

(103), as well as in inflammatory disorders such as asthma7 (104) (review (105)), bowel 

syndrome, Crohn’s disease, ulcerative colitis (106) and rheumatoid arthritis (107). Diseased 

glomeruli from patients with Proliferative Lupus Nephritis, an inflammatory disorder that results 

in renal damage, show an increase in infiltrating macrophages and T lymphocytes expressing 

FGF1 and FGFR1, which are also actively synthesized during the development of pulmonary 

fibrosis (108). FGF2 also modulates leukocyte infiltration, a hallmark of inflammation, by 

enhancing the expression of endothelial adhesion molecules ICAM-1/2 (109, 110) and E-selectin 

(111), and leukocyte chemoattractants such as monocyte chemoattractant protein-1 (MCP-1) 

(112-114).  Several reports have suggested that FGF1 and FGF2 are secreted by, and may act as 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

7“Asthma is caused by an inappropriate inflammatory response toward usually innocuous inhaled substances, and is 
characterized by recurrent but normally reversible respiratory symptoms. These episodic symptoms occur as a result 
of airway obstruction, secondary to inflammation and excessive airway narrowing that develop following each 
exposure to the offending substance” (Bosse et al, 2008). 
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immunoregulators of, infiltrating neutrophils, monocytes, macrophages and T lymphocytes, often 

in tandem with powerful inflammatory cytokines (108, 112, 115, 116).  Indeed, FGF2 enhances 

the effect of TNF-α (109, 113) and IFN-γ (113) on monocytes, T cells, and neutrophils 

recruitment to inflamed dermal sites, and increases respiratory burst induction and H2O2 

production by neutrophils (110, 113). Interestingly, a recent study showed that FGF2 and IL-1 

precursors may share a common secretory pathway; the inflammatory enzyme caspase-1, the 

main culprit in the activation of IL-1β, has the ability to regulate FGF2 secretion, particularly in 

stress situations such as during wound healing (117), providing a direct link between the 

inflammasome complex and FGF2 function.  

Based on the observations that VEGF overexpression results in leaky, immature, and 

unstable vessels, while FGF alone is unable to sustain vascularization, it is evident that a single 

growth factor family is not sufficient to sustain functional neovascularization. Along similar 

lines, targeting one family exclusively may not provide the desired therapeutic benefit. 
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Table II: FGF and Receptor function by gene targeting 

Member Phenotype of KO mouse Physiological role 
FGF1 Viable (118);  

Normal 
Relevance not established 
Role in angiogenesis; adipogenesis 

FGF2 Viable;  
Mild vascular defects characterized by 
decreased vascular smooth muscle 
contractility, delayed wound healing 
hematopoietic deficiencies, low blood 
pressure and thrombocytosis (119) 

Relevance not established 
Role in angiogenesis; vascular tone; 
inflammation (asthma) 
Mitogen for articular chondrocytes 
(120) 

FGF1 + 
FGF2 

Viable;  
Same phenotype as FGF2-/- mice (118) 

-  

FGF3 Viable;  
Inner ear agenesis in humans 

Inner ear development 

FGF4 Embryonic lethal (E4.5); 
Defects in trophoblastic proliferation 

Cardiac valve leaflet formation; Limb 
development 

FGF5 Viable;  
Abnormal hair growth 

Hair growth cycle regulation 

FGF6 Viable;  
Defective muscle regeneration 

Myogenesis 

FGF7 Viable;  
Matted hair; reduced nephron branching in 
kidney 

Branching morphogenesis 

FGF8 Embryonic lethal (E8) Brain, eye, ear and limb development 
FGF9 Postnatal death (PD0); 

Gender reversal  
Lung hypoplasia 

Gonadal development  
Organogenesis 

FGF10 PD0; 
Failed limb and lung development 

Branching morphogenesis 

FGF16 Strain-dependent survival (121) (viable: 
(122); lethal (E11.5): (123)) 
 

Unclear; effects on heart development, 
cardiomyocyte proliferation (122, 123) 

FGF17 Viable (124); 
Abnormal brain development 

Late cerebellar development (124) 

FGF18 PD0; 
Delayed long-bone ossification 

Bone development 
Chondrocyte and cartilage development 
(120) 

FGF19 Embryonic lethal (E13.5 – PD21); 
Increased bile acid pool 

Bile acid homeostasis 
Lipolysis 
Gall bladder filling 

FGF20 Viable; 
Deafness (125) 

Inner ear development; differentiation of 
cells in the lateral cochlear compartment 
(outer hair and supporting cells) within 
the organ of Corti (125) 

FGF21 Viable;  
Late postnatal weight gain (week 14) (126) 

Fasting response 
Glucose homeostasis 
Lipolysis and lipogenesis 

FGF22 Viable, fertile, no obvious abnormalities (127) Unknown 
FGF23 Lethal at postnatal week 4 -13; 

Hyperphosphatemia 
Hypoglycemia 
Immature sexual organs 

Phosphate homeostasis 
Vitamin D homeostasis 

FGFR1 Embryonic lethal, soon after implantation 
(128) 

Limb initiation, development, cell 
survival, autopod formation and digit 
patterning (129) 
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FGFR2 Embryonic lethal, soon after implantation 
(130) 

Adrenal cortex development 
Bone development, osteoblast 
differentiation, cranial ossification(131) 

FGFR3 Viable; 
Skeletal defects, severe kyphosis 
(“hunchback”), softening of bones 
(osteomalacia) at 4 months 
Deafness (132, 133) 

Development and maintenance of 
growth plate cartilage (134) 

FGFR4 Viable;  
Features of metabolic syndrome, 
hyperlipidemia, glucose intolerance, and 
insulin resistance, in addition to 
hypercholesterolemia 

Lipid and glucose homeostasis (135) 
Bile acid homeostasis, gall bladder 
filling (136) 

FGFR5/ 
FGFRL1 

Normal embryonic development until term; 
but then PD0 (137) from respiratory defects 
(hypoplastic diaphragm); 
Skeletal alterations, craniofacial dysplasia 
Heart valve defects 
Embryonic Anemia 
Failure to develop functional metanephric 
kidneys (138) 

Inhibition of FGF signalling;  
Myogenesis (diaphragm muscle) 
Heart, bone, kidney development 

 
Where no reference is indicated, adapted with permission from Macmillan Publishers Ltd: Beenken et 
al., 2009 (66). 
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1.4 The Angiopoietin (Ang) family 
 

In a healthy adult organism, most vessels are found in a stable quiescent state that they 

only relinquish in the presence of an activating signal. Under an angiogenic stimulus for instance, 

activated ECs alter the biochemical balance surrounding them; thus, they modify their own 

expression of junctional proteins such that intracellular connections are loosened, and they 

secrete destabilizing agents that degrade the basement membrane and promote the dissociation of 

mural support cells. After the new vessel is established, activating signals must be removed to 

ensure a return to EC quiescence and homeostasis. This step is called the resolution phase (139) 

(see 1.1 Angiogenesis: Fundamentals). The loss of endothelium quiescence is a hallmark of 

another physiological process, inflammation (see 1.5 Inflammation). The sequence of events 

here is similar to the angiogenic cascade in that it involves biochemical changes, shedding of EC 

tight junctions and induction of permeability. Additionally, depending on their activation status, 

ECs can alter their cell-surface adhesion molecules, enabling them to capture leukocytes from the 

circulation and to assist in leukocyte transmigration to sites of injury.  

Thus, the endothelium must retain a high level of plasticity to be able to dynamically 

respond to physiological stimuli. Evidently, control of the endothelial quiescence-activation 

switch is an attractive target for developing tumors. As well, deregulation of endothelial 

quiescence is prevalent in a range of inflammatory diseases and vasculopathies, highlighting the 

need for a robust control mechanism that regulates the timing and duration of endothelial 

activation. Based on a body of evidence from the last two decades, the angiopoietin-Tie system 

has emerged as a strong candidate for controlling this switch (reviewed in (140)). 

 

1.4.1 The family 
Early transgenic mice studies, and multiple publications since then, have revealed two striking 

observations regarding the angiopoietin family: First, it is largely specific to the vascular system, 

being mainly expressed by or acting on cell types that are directly involved in neovascularization. 

Second, the loss of any of its members early in development is generally lethal (Table III, p.45). 

  

 A distinction is made between the angiopoietin (Ang) and the very similar angiopoietin-

like (ANGPTL) families based on the ability of the former and inability of the latter to bind and 
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activate Tie receptors. In humans, there are three ligands for the Tie receptors, termed the 

angiopoietins (Ang1, 2 and 4). In mice, there are also three Ang proteins (Ang1-3), with Ang3 

commonly considered the ortholog of human Ang4 despite having diverging sequences, functions 

and tissue distributions (141). An effort to identify more ligands through sequence homology lead 

to the discovery of seven proteins, called angiopoietin-like (ANGPTL1-7), that are structurally 

related to Ang but are not “classical” angiopoietins in that they do not bind Tie receptors (141) 

(Figure 8, p.29). No specific receptors for the ANGPTL family have been identified thus far.  

The angiopoietin family has both agonist and antagonist members within its ranks, best 

illustrated by the relationship between Ang1 

and Ang2 in the context of Tie2 activation.  

In effect, Ang1 is considered a “traditional” 

agonist of Tie2, inducing receptor 

phosphorylation (143, 144), Tie2-mediated 

recruitment of downstream signalling 

effector molecules (145-147) and promotion 

of various biological outcomes (discussed 

later), most of which can be competitively 

antagonized by Ang2 (148). The latter 

ligand, however, is far from being a simple 

antagonist, as it has been shown that in 

certain vascular beds and with some cell 

types, Ang2 can actually activate Tie2 in a 

similar fashion to Ang1 (145, 149-152). 

Finally, Ang3 and Ang4 appear to be 

agonists for the ECs originating from their respective species only (153); however, studies on the 

distinct role and activities of either ligand are limited. 

 

1.4.2 Tie receptors 
1.4.2.1 Properties 

The acronym “Tie” stands for tyrosine kinase with immunoglobulin (Ig) and epidermal growth 

factor (EGF) homology domains. The Tie receptors were originally identified as orphan 

Figure 8: Phylogenetic tree of Ang and ANGPTL 
families in humans. 

Both families of proteins share structural similarities. 
However, ANGPTLs do not bind or activate Tie. 
ANGPTLs are commonly considered to be orphan ligands. 
Reproduced with permission from AACR: Tan et al, 
2012 (142). 
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receptors, following a search in the 1990’s to identify protein tyrosine kinases expressed by ECs. 

A few years later, Ang1 was discovered as an activating ligand for Tie2, followed by the rest of 

the angiopoietins. To date, Tie1 still remains an orphan receptor without any specific ligands.  

 

Nomenclature. Going from the N-terminal to the cell surface (Figure 9, p.31), the extracellular 

portion of Tie receptors consists of two Ig-like domains, three EGF-like domains, another Ig-like 

domain and three fibronectin type III-like repeats. The transmembrane domain is followed by a 

catalytic C-terminal tyrosine kinase domain. Tie1 and Tie2 have an overall similar protein 

structure, with about 76 and 30% homology in their intracellular and extracellular domains, 

respectively. Binding of angiopoietins to Tie2 occurs at the second extracellular Ig-like domain 

of the receptor; interestingly, unlike VEGFRs and FGFRs, binding of Tie2 to its ligands does not 

lead to any significant conformational change compared to the unbound receptor (154).  

At the cell surface, Tie2 can be found in an uncomplexed form or heterodimerized with 

Tie1, the Tie1-Tie2 heterodimers being kept together via electrostatic interactions between the 

extracellular portions (ectodomains) of the receptors (155). Upon ligand binding, Tie2-Tie1 

heterodimers generally dissociate, allowing for Tie2 homodimer clustering (155), Tie2 

autophosphorylation and initiation of signalling. Studies have shown that Tie1 phosphorylation in 

Tie2-Tie1 heterodimers can also occur in response to Ang1, but this happens in trans and is 

dependent on the presence of a functional Tie2 (156, 157).  

 

Expression. As a testament to their importance in vascular biology, and similarly to the 

VEGFRs, Tie receptors are highly specific to vascular endothelium: Both Tie receptors are 

mostly expressed in vascular ECs during embryogenesis (158, 159), and while the expression 

pattern is more restricted in adult tissues, both receptors continue to be predominantly found at 

the level of the endothelium (160). Indeed, Tie2 is homogenously expressed in the endothelium 

of quiescent and angiogenically active arteries, veins, and capillaries of all adult tissues, and Tie1 

expression is significantly restricted to vascular bifurcations and branching points (161). The 

significance of this patterning remains to be clarified. Interestingly, Tie2 is also expressed on 

various innate immune cells, notably of the myeloid lineage (145, 151, 162, 163), suggesting a 

possible role for the Ang-Tie family in leukocyte-driven angiogenesis and inflammation.   
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Ligand binding. A close comparison of the Ang1-Tie2 and Ang2-Tie2 crystal structures recently 

revealed that both Ang1 and Ang2 bind to Tie2 in a very similar manner (Figure 10, p.32), 

underlining the fact that altered ligand presentation cannot account for the distinct biological 

activities of the two ligands. Rather, ligand function appears to be controlled by a small stretch of 

residues close to the Tie2-ligand binding interface (located within the β6-β7 loop of Ang1 and 

Ang2) and near the area where Tie2 and Tie1 interact (154), suggesting a possible role for Tie1 in 

controlling Ang signalling. In support of this theory, although Tie1 does not bind angiopoietins 

directly, its heterodimerization with Tie2 hinders the access of Ang1 – but not of Ang2 – to Tie2 

Figure 9: The molecular structure of Tie receptors and Ang ligands. 

A) The N-terminal extracellular region of Tie receptors consists of two Ig-like domains, three epidermal 
growth factor (EGF)-like domains flanked by another Ig-like domain, followed by three fibronectin type III 
domains. Ang bind to the Ig-2 domain. The C-terminal contains a split tyrosine kinase domain. The binding 
of Ang to Tie-2 is mediated by a fibrinogen-like domain (FReD). B) Ang bind to Tie-2 receptor as 
multimers. Clustering of receptor molecules brings their kinase domains into close proximity allowing 
phosphorylation of each other in trans and resulting into receptor activation and the initiation of 
downstream signal transduction. Reproduced with permission from Elsevier: Fagiani et al., 2013 (140). 
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(164), and reduces both basal (155) and Ang1-driven Tie2 phosphorylation (and therefore 

activity) (165).  

 

Signal transduction. Binding of Ang1 to Tie2 stimulates a number of intracellular signalling 

pathways, including PI3K/Akt, eNOS, MAPKs and Dok-R/Nck/Pak pathways (144, 166). 

Additionally, activated Tie2 recruits ABIN-2, a suppressor of NFκB activity with anti-apoptotic 

activities on ECs (147, 167). Ang1 preferentially binds uncomplexed Tie2: Upon Ang1 (but not 

Ang2) binding, Tie2-Tie1 heterodimers dissociate allowing for Tie2 clustering (155), auto-

phosphorylation at five tyrosine residues within the Tie2 intracellular kinase domain that serve as 

docking sites for SH2-containing signalling effectors (144), and initiation of signalling (144, 

168). On the other hand, it seems that Ang2 has no particular preference in binding Tie2 in either 

homo or heterodimers, as the ligand’s weak activation of Tie2 and its ability to antagonize Ang1 

are not affected by the presence of Tie1 (164). Thus, since Ang1 binds and activates Tie2 

preferentially in the absence of Tie1, the stabilizing actions of Ang1 on the endothelium are 

diminished with higher levels of Tie1. In support of this, the ratio of Tie1 to Tie2 increases at 

Figure 10: Crystal 
structures of Ang-Receptor 
binding domain (RBD). 
 (A) The refined model of 
Ang1-RBD with the individual 
subdomains shown in different 
colors (A domain, red; B 
domain, cyan; P domain, 
yellow). The black sphere 
represents the bound calcium 
atom. (B) Close-up view of the 
Ca2+-binding site. (C) Structure 
of the previously determined 
Ang2-RBD colored as in A. (D) 
Structural alignment in coil 
representation of the Ang1-
RBD (shown in red) and the 
Ang2-RBD (shown in blue). 
The superimposition shows the 
high similarities in the tertiary 
structures of both ligands. 
Reproduced with permission 
from PNAS: Yu et al, 2013 
(154). 
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sites of active neovascularization during embryonic development (169) as well as in hypoxic 

conditions or upon VEGF stimulation in the adult (170). 

 

Ectodomain cleavage. The ratios of Ang1:Ang2 and Tie1:Tie2 are important determinants of the 

state of activation of the endothelium. There is an additional layer of control of Ang-Tie activity, 

found at the structural level of the receptors themselves. Once exposed at the cell-surface, both 

Tie1 and Tie2 can undergo proteolytic cleavage that removes the ectodomain of the receptors, 

targeting the truncated receptors for internalization and proteasomal degradation. As mentioned 

above (Ligand Binding), loss of Tie1 ectodomain would increase Ang1 signalling. In contrast, 

loss of Tie2 ectodomain would suppress Ang1 signalling by two routes, first through the loss of 

the ligand-binding domain and second, through the sequestration of Ang1 by the released 

fragment. 

Ectodomain cleavage of Tie1 generates a 45 kDa cell-associated fragment of the receptor, 

comprising of transmembrane and intracellular domains (171). Similarly, Tie2 ectodomain 

cleavage results in the formation of a 55 kDa cell-associated fragment (171), and in the 

appearance of a soluble fragment approximately 75–85 kDa in size (172). Though the resulting 

truncated receptors are similar in size, Tie1 and Tie2 ectodomain sheddings can significantly 

differ in their temporal dynamics: For instance, while VEGF and PMA induce Tie1 cleavage 

within minutes, it takes several hours before any sign of Tie2 cleavage is detected (171). The 

direct physiological impact of this is the acute enhancement of Ang1 signaling through Tie2. 

Thus, Tie1 cleavage provides the system with a rapid way to adapt to new angiogenic 

requirements and to acute changes in the biochemical environment. 

 

1.4.2.2 Tie-mediated biological activities 

Mutagenesis studies have underlined that Tie expression is critical in the later stages of 

embryonic vascular development (Table III, p.45). Null embryos for one or both receptors show 

that neither receptor is required for early vasculogenesis, as angioblast differentiation and 

formation of the primitive plexus do occur; however, in Tie1 null embryos, vessels lose their 

integrity, leading to widespread edema, hemorrhage and finally to death between E13.5 and 

E14.5 (173). Tie2 null embryos have an even more severe phenotype, as embryonic death starts 

earlier at E9.5 to E12.5 (16, 174). Though they advance through the early steps of cardiovascular 
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development, Tie2 null embryos exhibit a poorly organized capillary plexus with impaired vessel 

branching, fewer ECs and an important lack of supporting mural cells, as well as impairments in 

hematopoiesis and development of the endocardium. Finally, double knockouts for both Tie1 and 

Tie2 are similar in phenotype to Tie2-null embryos, but some defects are more severe and the 

onset of fatality is even earlier (occurring at E9.5- 10.5) (175). Thus, while both receptors appear 

dispensable to the early assembly of the vasculature or to defining hematopoietic lineages in the 

embryo, they are essential at later stages of embryonic angiogenesis (176), for heart development, 

and for post-natal hematopoiesis (177). 

 

1.4.3 Tie2 ligands 
1.4.3.1 Properties  

Nomenclature. Angiopoietins (Ang) are secreted glycoproteins, with a signal peptide, an N-

terminal superclustering domain (SCD), a central coiled-coil domain (CCD), a short 20-residue 

linker sequence followed by a C-terminal fibrinogen-related domain (FreD) containing three sub-

domains, A, B and P. The P-domain mediates interaction of Ang to Tie2, and to other FReD-

containing proteins (such as fibrinogen) (Figure 9, p.31). The genes coding human Ang1 and 

Ang2 are found on chromosome 8, giving rise to proteins containing 498 and 496 amino acid 

residues, respectively, with 60% sequence homology. Monomeric Ang proteins have a molecular 

weight of approximately 64-70 kDa in non-reducing conditions (and ~ 57 kDa in reducing 

conditions) (178). However, all family members exist primarily as oligomers assembled through 

the coiled-coil domain of the proteins, forming trimers, tetramers, and pentamers. Moreover, in 

solution, half of Ang1 and less than 10% of Ang2 exist as higher order multimers (several 

oligomers together) brought together by the N-terminal superclustering motifs. Oligomerization 

is essential for Ang1 function, as the ligand needs to be in a tetrameric form at the very least to 

bind and activate Tie2 (179, 180). Finally, directed mutagenesis demonstrated that three critical 

residues (residues 463-465 in Ang1 and 461-463 in Ang2) within the angiopoietin β6-β7 loop in 

the fibrinogen domain appear to be necessary to confer ligand biological activity. Swapping these 

residues in Ang2 for those of Ang1 allows the mutant Ang2 to disrupt the pre-existent Tie1/Tie2 

complex on the cell surface and phosphorylate Akt in a comparable manner to native Ang1. 

Similarly, replacing the three residues in Ang1 with those of Ang2 leads to the loss of Ang1 

agonistic properties (154). 
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Expression pattern. Ang1 is produced and secreted primarily by perivascular cells, with a very 

low expression in ECs (cell lysates taken from sub-confluent HUVECs contained over 8-fold 

more Ang2 than Ang1). In contrast, Ang2 is constitutively expressed by ECs where it is kept 

stored in specific storage granules, known as Weibel–Palade bodies (WPBs)8, along with other 

presynthesized molecules such as P-selectin, IL-8 and endothelin-1 (181). In response to multiple 

endothelial modulators such as thrombin, histamine and serotonin, ECs release the content of 

WPBs within seconds to minutes, suggesting that this is the first step in the switch from an 

endothelial quiescent state to an active one. Interestingly, leukocytes also express differential 

levels of Ang1 and Ang2: circulating non-activated monocytes contain comparable high levels of 

both Ang1 and Ang2 and appear to be the only peripheral blood mononuclear cells to express and 

readily secrete angiopoietins (182). Meanwhile, neutrophils express and store Ang1 but not 

Ang2, and the physiological conditions necessary for the release of Ang1 remain unknown (183).  

 

1.4.3.2 Cellular effects and signalling of Ang1  

Murine studies with angiopoietin-null embryos have shown that, similarly to the receptors, Ang 

ligands are not required for the initial formation of the vasculature during embryogenesis, but are 

instead essential for vessel maturation, stability and remodeling.  

Ang1-deficient mice die between E11.5-12.5, with a comparable phenotype to Tie2 

deficiency: although the vasculature has formed, it displays decreased complexity with dilated 

vessels, diminished branching, and reduced numbers of small vessels. Additionally, blood vessels 

have fewer ECs, and exhibit poor association of ECs with basement membrane and with 

perivascular cells, suggesting a possible role for Ang1 in promoting endothelial proliferation or 

survival9 and vessel integrity. In a mouse model overexpressing Ang1 in skin, vessel diameter 

enlargement and an increase in EC numbers and coverage by pericytes provide additional 

evidence that Ang1 is involved in EC proliferation, survival and vessel maturation (184). In 

parallel, in support of its role in maintaining vessel integrity/quiescence, Ang1 counters the 

hyperpermeability observed following VEGF administration: While overexpressing VEGF-A 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

8 The primary constituent of WPBs is von-Willebrand factor (vWF), which exists under multiple processed forms. 
9 It is possible that there are fewer ECs because they die from poor attachment to ECM components, rather than from 
a lack of pro-survival/pro-proliferation stimulus in the absence of Ang1.  
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alone in mice results in leaky hyperpermeable vessels that sustain a chronic inflammatory 

response, co-overexpression with Ang1 gives rise to vessels that are stable and resistant to 

leakage (17).   

Aside from the above-noted genetic manipulations, an exhaustive review of the literature 

for the specific cellular functions of Ang1 reveals a high level of context-dependency, largely 

influenced by the intrinsic properties of both the cellular model10 and the angiopoietins 

themselves. The most significant effects generally attributed to Ang1 are highlighted below. 

 

Apoptosis. The most consistently reported cellular effect of Ang1 is its ability to inhibit apoptosis 

under a range of conditions and in a variety of cell models, the majority of which is of endothelial 

lineage (albeit of various origins). The ligand suppresses apoptosis in human umbilical vein ECs 

(HUVECs) (146, 147, 185), bovine aortic and microvascular ECs (186), bovine mesenteric vein 

and arterial ECs (152), porcine retinal ECs (187), porcine pulmonary arterial ECs (185), mouse 

cortical neurons11 (188), mouse skeletal and cardiac myocytes (188), and in isolated human 

neutrophils in which Ang1 reduces both apoptosis and necrosis (189). The anti-apoptotic effect of 

Ang1 on ECs appears to ultimately involve PI3K pathway (146, 147, 186). In neutrophils, the 

intracellular mechanisms that mediate the survival effects of Ang1 remain to be elucidated; 

however, because IL-8 production appears to be necessary (189), it is possible that p42/44 – 

which mediates IL-8 production in neutrophils (190) – participates in this process.  

It is unclear to what extent Tie2 is involved in Ang1’s pro-survival effects. Some groups 

did not test the requirement for Tie2 directly via blocking antibodies, but concluded it is involved 

because of an increase in the phosphorylation of downstream signalling effectors after 

stimulation with Ang1 (187). Others have shown that a soluble Tie2-Fc fusion can block the 

effects of Ang1 on HUVEC survival, at a 2-µg/mL concentration corresponding to a 5-fold Molar 

excess12 over Ang1 concentration (146). In neutrophils, despite lower expression of Tie2 than in 

HUVECs, it takes significantly more blocking antibodies (up to 20 µg/mL) to inhibit only one 

component of Ang1-induced pro-survival effects, as the blockade impacts neutrophil necrosis but 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

10 This includes the sensitivity to angiopoietins, the overall properties of the vascular bed from which the cell model 
originates, the experimental conditions, and finally, interpretational bias.	
  
11 Ang1 protects neurons from apoptotic but not from necrotic stress. 
12 The reported KD value of Ang1 for Tie2 is about 3 nM  - calculated as 173 ng/mL when the molecular weight of 
Ang1 is 57.7 kDa (Hori et al, 2004). 
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not apoptosis (189). The ability of Ang1 to promote survival of mouse cortical neurons (188) just 

as well as cardiac myocytes (188) also casts doubt as to the involvement of Tie2: while mice 

neurons express Tie2, myocytes do not, leaving the possibility that Ang1-induced myocyte 

survival may be mediated by other molecules – possibly by integrins (see 1.4.6 Integrins) (188, 

191).  

 

Proliferation. Ang1 has been reported to have no (143, 192), weak (152) or significant impact on 

EC growth (193). The varying response to Ang1 may be due to different EC types. For instance, 

arterial, venous or lymphatic bovine ECs (bmVECs, bmAECs, and bmLECs, respectively) from 

the same mesenteric vascular bed respond very differently to an in vitro administration of human 

Ang113, whereby there is no proliferative response in bmVECs, a weak response in bmAECs, and 

a slightly higher response in bmLECs compared to bmAECs (152). In all three EC cell types, 

Ang1 only weakly increases Tie2 and Erk1/2 phosphorylation (albeit at a higher phosphorylation 

rate in bmLECs), which might explain why the proliferative response is so weak.   

 

Migration. As previously covered (see 1.1 Angiogenesis: Fundamentals), cell motility is a 

fundamental part of neovascularization that occurs at various stages of the process, and impacts 

multiple cell types (7). Briefly, at the level of the endothelium, EC migration encompasses three 

components: First, a single EC is selected to migrate ahead of the pack to produce a sprout, 

which is essential for guiding and coordinating the movement of the remaining ECs (sprouting). 

Stalk ECs then move and re-arrange to form the stem of the new vessel (tube-like arrangement). 

Finally, additional migration of ECs occurs to prune the new vessel structure (remodelling). Cell 

migration also describes the movement and recruitment of perivascular cells to the new vessel 

during the maturation step. Thus, because cellular motility is multifaceted, the ability of Ang1 to 

promote it will undoubtedly be cell model-dependent. 

Although early studies showed that Ang1 had no effect on EC motility (143, 194), most 

subsequent reports indicate otherwise. In vitro, Ang1 stimulates migration of HUVECs (192) and 

all three bovine mesenteric EC types (bmVEC, bmAEC and bmLEC) (152), and promotes EC 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

13 The authors make the assumption that bovine and human Tie2 would both be activated in a similar fashion by 
human angiopoietins, based on 95% receptor sequence homology and conserved residues at the Ang-binding site.  
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tubule-like structure formation on collagen/matrigel matrices (195-197). Besides altering EC 

cytoskeletal properties, Ang1 likely facilitates EC motility by stimulating the secretion of 

proteinases, such as MMP3 and MMP9 precursors, and inhibiting the secretion of tissue inhibitor 

of metalloproteinase (TIMP)-2 (197), all of which contribute to the degradation of the basement 

membrane. Finally, Ang1 actively contributes to the maturation process by promoting the 

recruitment and migration of pericytes to the newly-formed vessel, demonstrable both in vitro 

with the matrigel invasion assay (196), and in vivo in a mouse hindlimb ischemia model (195).  

Finally, in addition to promoting endothelial migration, Ang1 can promote motility of 

other non-endothelial cell types. The involvement of Tie2 in this regard does not appear 

mandatory. In effect, Ang1 induces the migration of Tie2-positive rat aortic smooth muscle cells 

and rat dorsal ganglia (thereby promoting neurite outgrowth) (198, 199), Tie2-negative 

fibroblasts (200), and Tie2-positive (151, 201) and negative (163) phagocytic leukocytes, 

including neutrophils (145), eosinophils (162), monocytes and macrophages  (163). 

 

1.4.3.3 Cellular effects and signalling of Ang2 

Unlike their Ang1 and Tie2 null counterparts, Ang2 null mice all survive in utero to full term, 

and even appear normal at birth. However, postnatal, the severity of the Ang2-/- genotype 

increases depending on the genetic background of the mice (Table III, p.45): While the vast 

majority of 129/J mice die in the first 14 days after birth as a consequence of severe lymphatic 

dysfunction (from chylous ascites14 and edema) (149), C57BL/6 mice develop only transient 

postnatal chylous ascites and their postnatal mortality is less than 10% (202). The 129/J Ang2-/- 

model was useful in showing that Ang2 is dispensable for embryonic vascular development but is 

required for post-natal remodelling, especially noticeable in the retina and the lymphatic system. 

Indeed, major defects in retinal arborisation of these mice after birth are caused by the retina’s 

failure to initiate vascular regression (149). Moreover, as per the vasculature, Ang2 is not 

requisite for the establishment of the embryonic lymphatic system but is required for proper 

lymphatic patterning and normal functioning shortly after birth.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

14 Chylous ascites is a disorder that arises when lymphatic drainage is impaired, resulting in the accumulation of 
chyle, a milky-like fluid rich in lymph and triglycerides, in the peritoneal cavity.  
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In the mid-1990s, after the discovery of Ang1, Maisonpierre et al used homology 

screening and identified a second Tie2 ligand, Ang2; this important study ultimately resulted in 

labeling the ligand as a natural antagonist of Ang1 (148). First, using both human and bovine 

endothelial-derived cell lines, the group observed that Ang2 fails to induce Tie2 phosphorylation, 

even at supra-physiological15 concentrations (1250 ng/mL) (“supra” in relation to basal 

circulating levels of Ang2, found here (203, 204)). Instead, Ang2 competitively blocks Ang1-

driven phosphorylation of Tie2 when used at a concentration of 4 to 8-fold molar excess. In 

contrast, in a non-EC cell model using NIH 3T3 fibroblasts with ectopically expressed Tie2, 

Ang2 is equivalent to Ang1 in inducing Tie2 phosphorylation. These results prompted two 

possible explanations: Ang2 is a general agonist, but ECs contain signalling molecules that can 

discriminate between the angiopoietins and selectively prevent Ang2 from activating Tie2. 

Alternatively, Ang2 is an antagonist in an EC context, but not in other cell types.  

The group of Maisonpierre et al also looked at the temporal expression patterns of Ang1 

and Ang2, observing that Ang1 appears earlier than Ang2, at E9-11, and is found most 

prominently in the heart myocardium surrounding the endocardium (143). Later in development, 

circa E12.5-13, Ang1 becomes much more widely distributed, especially in mesenchymal tissues 

surrounding the vasculature (143). In contrast, Ang2 is not expressed in mice in developing heart 

or around any other vascular beds at early embryonic stages E9-10.5 (148). Later in development, 

at E12.5, both Ang2 and Ang1 are found associated with the embryonic vasculature, with Ang1 

showing wide diffusion in mesenchyme tissues surrounding vessels, and Ang2 expression being 

punctate and restricted to cells in the lumen of vessels (143, 148). On the other hand, in the adult 

rat, Ang2 is localized to sites of active vascular remodeling; for instance, in the female 

reproductive tract (ovary), Ang2 is either strongly co-expressed with VEGF leading the vessel 

sprout, or present alone at the site of vessel regression (in atretic follicles) (148). Meanwhile, 

Ang1 expression appears to follow vessel formation, suggesting that Ang1 plays a later role than 

VEGF. This expression pattern led to the proposal of a model in which Ang2, by antagonizing 

Ang1, destabilizes the endothelium and prepares it for the robust pro-angiogenic action of VEGF. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

15 Physiological concentrations of circulating Ang2 are not often mentioned or measured in clinical experiments. 
Based on two studies from the literature, in healthy volunteers (n=6-29), baseline (“control”) blood levels of Ang2 
were circa 0.5 ± 0.20 ng/mL and those of Ang1 were circa 67 ± 20.7 ng/mL. These levels were significantly higher 
in critically ill patients, with Ang2 levels increasing over 40-fold in the cohort afflicted with septic shock (Kumpers 
et al, 2008; Kumpers et al, 2009).  
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In accordance, in the absence of another pro-angiogenic stimulus, Ang2 alone leads to vessel 

regression (148, 205). 

Further to the above, and keeping in mind the time at which Ang1 is expressed in 

embryos, Maisonpierre et al injected an Ang2-containing vector with Tie2 transcriptional 

elements (this construct would direct Ang2 into all vascular structures where Tie2 is normally 

expressed) into developing mice embryos with the expectation that, if Ang2 were an antagonist, 

such a treatment would phenocopy Tie2 and Ang1 knockout mice. In effect, these transgenic 

Ang2-overexpressing embryos die in utero at E9.5-10.5, even earlier than either Ang1-/- or Tie2-/- 

embryos (Table III, p.45).  Sections and analyses performed at E9 revealed several defects in the 

vasculature – including vessel discontinuities, poor association of ECs to the basement membrane 

and collapse of the endocardial lining of the heart – that are highly reminiscent of defects 

observed in Ang1/Tie2-deficient mice. However, the phenotype of these Ang2 transgenic mice is 

more severe, especially in the extent of vascular discontinuities, possibly due to the timing and 

spread of Ang2 expression (and how that relates to Tie2/Ang1 expression), the cellular context or 

varying VEGF and/or FGF gradients in the developing vasculature. 

  

1.4.3.4 Ang2 and the endothelium 

While the role of Ang1 as an EC agonist is not contested, there is little consensus for the true 

function of Ang2 in endothelial biology. The general belief is that Ang2 does not exert a direct 

stimulatory role on ECs, but instead simply antagonizes Ang1, thereby annulling Tie2 activity 

and its associated quiescence-promoting effects and allowing the endothelium to be more 

responsive to activating stimuli. This dogma generally holds in vascular EC biology, but fails in 

the context of the endothelium of the lymphatic system (149, 152): In effect, in 129/J mice 

lacking Ang2, replacing the gene locus of Ang2 with that of the agonist Ang1 (thereby generating 

Ang2Ang1/Ang1 mice) rescues the lymphatic defects, but not the angiogenic ones, suggesting that 

Ang1 and Ang2 can interchangeably act as agonists in lymphatic tissue (149).  

Though the above suggests some functional redundancy with Ang1, Ang2 can drive 

distinct cellular events that could be regarded as agonistic or antagonistic, depending on the 

context. Lymphatic system aside, in peripheral vascular biology, Ang2 competitively antagonizes 

binding of Ang1 to Tie2 in in vitro binding studies (206) and functional assays (164, 207), as 

well as in vivo (208). Meanwhile, many conflicting reports – sometimes even when performed in 
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the same cell models – have reported that Ang2 exerts no (148, 152, 209), weak (152, 206), or 

strong (206, 210-212) agonistic activity, assessed by looking at Tie2 phosphorylation and certain 

changes in EC behavior under various conditions of Ang2 exposure. As outlined below, there are 

multiple parameters that can alter EC response to Ang2, compounding the difficulty of 

determining its true function.  

 

Ang2 origin. There is evidence that the origin of Ang2, whether it is produced endogenously or is 

administered as a recombinant exogenous product, has a significant impact on the activities of the 

ligand. Indeed, it is reported that at physiological concentrations, exogenous Ang2 does not lead 

to Tie2 phosphorylation or to anti-apoptotic effects (209). In contrast, the endogenous form of the 

ligand seems to stimulate both. By eliminating the endogenous production of Ang2 in HUVECs 

via siRNA, basal phosphorylation of Tie2 and the downstream effector protein Akt is reduced, 

implying that naturally produced Ang2 is responsible for phosphorylating and activating both 

proteins. Targeting endogenous Ang2 via siRNA also leads to an increase in caspase-3 and 

caspase-9 activity, proteins that generally stimulate apoptotic activity, implying that endogenous 

Ang2 can work as a pro-survival factor (206). Interestingly, when FOXO1 gene is overexpressed 

in both HUVECs and bovine lung microvascular ECs, it promotes the secretion of relatively low 

doses of Ang2 (circa 30 ng/mL); however, this quantity of Ang2 is sufficient and responsible for 

phosphorylating Tie2 and Akt and for promoting EC survival, as anti-Ang2 antibody treatment 

blocks all three effects (210).  

 

Effect of dosage. The concentration of Ang2 appears to play a role in determing the extent of its 

agonistic properties, which may skew interpretrations as to the ligand’s “true” function. Indeed, a 

high concentration of exogenous Ang2 (800 ng/mL) (209) can mirror the effects of a low dose of 

Ang1 (200 ng/mL) (146) with regards to Tie2/PI3K phosphorylation and the induction of 

endothelial survival. Meanwhile, lower doses of Ang2 (50 - 400 ng/mL) are either ineffective 

(209) or have weak activity (206).   

 

Time is of the essence. In addition to concentration, the duration of exposure to Ang2 is at times 

a determinant of activity. For instance, despite high concentrations of the ligand, it takes a 

prolonged exposure of bovine mesenteric venous and arterial cells to Ang2 (800 ng/mL) to attain 
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detectable Tie2 phosphorylation, though detection remains weak (152). This is in contrast to an 

equivalent dose of Ang1, whereby a short-term exposure is sufficient to promote not only Tie2 

and Erk1/2 phosphorylation, but also cell survival and migration. In a human EC model 

(HUVECs), a brief exposure to Ang2 also fails to phosphorylate Tie2; however, extending the 

duration of exposure to Ang2 leads to an increase in Tie2 phosphorylation and extensive 

capillary-like tube formation in a 3D fibrin matrix, in a similar fashion to Ang1 and VEGF (212).  

 

EC origin. Inter- and intra- species differences and the intrinsic properties of ECs (vascular bed, 

availability of downstream signalling effectors) generate differential responses to Ang2, similarly 

to their behaviour with Ang1. For instance, in humans, Ang2 promotes marked endothelial 

progenitor cell (EPCs) migration but fails to induce migration of HUVECs (213) or 

microvascular ECs (HMECs) (192), suggesting that terminally-differentiated ECs respond 

differently to Ang2 than do their progenitors. Species differences are evident even when using a 

high concentration of Ang2: In mouse brain capillary ECs, a markedly high dose of Ang2 (2 

µg/mL) leads to phosphorylation of Tie2 and cellular migration (211). In HUVECs, Ang2 (800 

ng/mL) also promotes Tie2 and Akt phosphorylation (209). In contrast, the ligand is only weakly 

capable of phosphorylating Tie2 in bovine mesenteric venous and arterial cells, and fails to 

promote survival, migration (152, 192) or Erk1/2 phosphorylation in the bovine cell lines (152). 

Similarly, while Ang2 promotes a rapid and sustained synthesis of platelet-activating factor 

(PAF) in BAECs, it fails to do so in HUVECs (214). Finally, highlighting the impact of different 

vascular beds from the same species on EC responsiveness, Ang2 fails to phosphorylate Tie2 or 

p42/44 in mesenteric venous and arterial cells lines, but is highly effective at inducing Tie2, 

p42/44, p38 and Akt phosphorylation in BAECs (214).  

 

In vivo. As illustrated above, the in vitro component of Ang2 strongly suggests context-

dependent agonistic/antagonistic activities. There is some evidence in vivo to suggest that Ang2 

adopts the role of an agonist in vascular biology: For instance, an intravenous injection of Ang2 

results in Tie2 and Akt phosphorylation in extracts from the heart taken at 15-30 minutes post-

treatment, albeit with slightly less potency than an Ang1 injection (210). Although it is possible 

that these effects are due to an unidentified secondary mediator released in response to Ang2, the 
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fact that Tie2 and Akt phosphorylation occurs so rapidly makes a good argument for direct 

Ang2–Tie2 interaction.  

There is also indication that the timing of Ang2 expression may alter the physiological 

response to the ligand: In a study where Ang2 is overexpressed in the retina of transgenic mice, 

the expectation was that the excess of Ang2 alone would lead to capillary regression in the 

developing eye. Instead, these mice actually display a 46% increase in vascular density of the 

capillary network at day 10 after birth and a reduction in pericyte coverage, compared to wild 

type littermates (215). Similarly, in rats, a transcorneal injection of Ang2 (10 ng) at 5 days after 

birth (before the normal onset of pupillary membrane regression) produces a rapid dose-

dependent increase in the diameter of capillaries, an effect that involves direct changes in EC 

morphology rather than pericyte recruitment (216). In stark contrast, Ang2 alone fails to promote 

neovascularization in an in vivo model of angiogenesis (the mouse corneal micropocket assay) 

(217) or to induce EC junction re-arrangement (218).  

 

Collaboration with VEGF. Several groups have reported that VEGFs and the angiopoietins, 

particularly VEGF and Ang2, play synergistic and complementary roles in vascular development. 

Based on spatio-temporal expression patterns of angiogenic factors in the adult rat, Maisonpierre 

et al postulated that the ability of Ang2 to antagonize Ang1-Tie2 signalling destabilizes the 

endothelium and sensitizes it to the sprout-inducing action of VEGF, in the absence of which 

vessels recede. Thus, Ang2 can promote two seemingly opposing vascular activities, but the 

determination of which path to take – growth or regression – is decided by the biochemical 

environment, notably by potent angiogenic factors such as VEGF. In support of this, in aged 

corpora lutei and in follicular atresia16, two physiological states in which surrounding vessels 

naturally undergo extensive regression, Ang2 mRNA is uniformly present in large amounts while 

VEGF mRNA is scarce (148). The impact of the Ang2/VEGF collaboration on vessel 

development has been demonstrated more directly in rodent models of ocular vascularization: In 

the mouse corneal micropocket assay, Ang2 strongly potentiates the action of VEGF on 

neovascularization (217). Perhaps more convincingly, in the absence of endogenous Ang2, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

16 Condition in which large vesicular follicles fail to ovulate and the surrounding vessels in the theca interna recede 
as the follicle regresses.  
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knockout mice (Ang2-/-) are unable to initiate ocular (hyaloid) vessel regression and instead 

develop major vascular defects in the eye shortly after birth (149). On the other hand, in the 

absence of endogenous VEGF, Ang2 was shown to promote EC death and vascular regression 

(216).  

The collaboration between VEGFs and angiopoietins appears to extend to pathological 

conditions. It has been previously shown (219) that a subset of tumors develops the ability to 

hijack host vessels to support its growth, thereby forming initially well-vascularized masses. 

Perhaps as a host defence mechanism, the coopted vasculature does not immediately undergo 

angiogenesis to support the tumor but instead undergoes substantial regression, resulting in a 

secondarily avascular tumor and massive tumor cell loss. Ultimately, however, the remaining 

tumor is rescued by robust angiogenesis at the tumor margin. The pattern of VEGF and Ang2 

expression as the tumor cycles between regression and angiogenesis is highly indicative of 

synchronized activity between the two growth factors. In effect, in several models of rat and 

human brain tumors (glioblastoma), there is a marked induction of Ang2 expression in coopted 

vessels (but not in surrounding normal tissues) before VEGF expression is induced, which is 

thought to mark these vessels for regression (219). As blood supply becomes inadequate for the 

growing tumor and forces it into a hypoxic state, a significant induction of VEGF expression is 

observed in conjunction with Ang2, coinciding with robust angiogenesis in the tumor periphery 

(205, 219). Thus, in tumors, Ang2 and VEGF appear to reprise the roles played during vascular 

remodeling, making co-blockade an appealing target for anti-cancer therapies (7).   
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Table III: Angiopoietin and Receptor function by gene targeting 

Family member Phenotype of KO mouse Physiological role 
Ang1-/- Embryonic lethal [E.11.5 – 

12.5] (15) 
Severe heart and vascular 
defects, poorly formed vascular 
network, defects in branching. 
Poor association of ECs with 
basement membrane and 
perivascular cells, especially in 
the endocardium.  

Vessel remodeling, maturation: 
increases coverage by perivascular 
cells, anti-permeability action 
 
EC survival and proliferation (17) 

Ang1 overexpression 
(dermis) 

Dramatic increase in diameter 
of dermal vessels, but not in 
number (140).  

Ang2-/- Strain-dependent lethality:  
- 129/J: Normal at birth, 90% 
lethality by PD14 (149) 
- C57Bl/6: normal at birth, less 
than 10% lethality into 
adulthood (C57Bl/6) (202). 
  
129/J: Major defects in post-
natal retinal vessel remodeling; 
in lymphatic vasculature, 
profound lack of central lacteals 
(capillaries that absorb dietary 
fats) in intestinal villi, poor 
association of lymphatic 
perivascular cells to ECs.  
Impaired inflammatory 
response (C57Bl/6) (202, 218). 

Remodeling of blood and lymphatic 
vessels 
 
Sensitizes the endothelium (in 
angiogenesis and inflammation) to 
action of endothelial modulators. In 
the absence of VEGF, causes vessel 
regression (148). 
 
Tie2 agonist in the lymphatic system 
and Tie2 antagonist in the retinal 
vasculature (149) 
 

Ang2 overexpression  Embryonic lethal [E9.5-10.5]  
“Moth-like” discontinuous 
vasculature 
Poor association of endothelial 
cells in the heart with basement 
membrane; endocardial lining 
collapse (148). 

Tie1-/- Embryonic lethal [E13.5-14.5] 
Loss of vessel integrity, 
widespread edema and 
hemorrhage (173). 
Lymphatic vascular 
abnormalities (220). 

Support for later stages of 
angiogenesis and EC proliferation 
(176). 
Negative regulation of Ang1 activity 
(164). 
Lymphatic vessel development (220). 

Tie2-/- Embryonic lethal [E9.5-12.5] 
Vasculature does not develop 
beyond capillary plexus 
Impaired vessel remodeling, 
hematopoiesis and heart 
development (174). 

Blood and lymphatic vascular 
maintenance, remodeling 
 

Tie1 and Tie2 double KO Embryonic lethal [E9.5- 10.5]  
Similar but more severe defects 
than Tie2-/- (175). 

Adult angiogenesis 
Formation of microvasculature 
during late organogenesis 
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1.4.4 Angiopoietins in inflammation 
Because angiopoietins are involved in dictating endothelial activation, the family will almost 

inevitably impact other physiological processes where endothelium participation is required. 

While the process of inflammation is discussed in greater detail in 1.5 Inflammation, it can be 

easily understood how Ang1, through its ability to promote homeostasis and inhibit permeability 

and vascular leakage, would have an indirect role in inhibiting inflammation (thus functioning as 

an “anti-inflammatory” agent). In parallel, because it can antagonize Ang1 function and enable 

the action of factors such as VEGF, Ang2 may exhibit certain pro-inflammatory 

activities.  However, just as their agonist/antagonist relationship is neither black nor white, the 

role of angiopoietins in inflammation paints a far more complex picture, one that can be 

independent from the ligands’ endothelial activities. Indeed, angiopoietins have been shown to 

directly activate leukocytes in the absence of the endothelium or of any other tissues ((151), 

among others). A literature review of the role of Ang-Tie2 in inflammation showcases the 

polyvalence of this family, leaving many unanswered questions, and strongly cautioning the 

reader against committing the angiopoietins to a pro- or anti-inflammatory classification.   

 

1.4.4.1 Inflammatory action of Ang1 

Endothelial tight junctions, which are composed of small trans-membrane proteins such as 

occludins, claudins, and junctional adhesion molecules (JAMs), are an important determinant of 

vessel permeability. For instance, blood-brain-barrier (BBB) capillaries are composed of ECs that 

are particularly tight – more so than anywhere else in the peripheral vasculature – to prevent the 

majority of blood elements from reaching the brain. Conversely, postcapillary venules express 

lower levels of tight junctions and are therefore more sensitive to permeability factors and 

leukocyte transmigration (221).  

 

Anti-inflammatory. Ang1 was shown to influence the organization of EC junctions and in doing 

so, can counteract some elements of EC function that are conducive to the initiation and 

development of an inflammatory process: For instance, in vitro, Ang1 prevents the action of 

VEGF, thrombin, bradykinin and histamine (140) on increasing permeability of ECs from the 

peripheral vascular system, and the ligand directly enhances mRNA expression of tight junctions 

(occludins) in brain capillary ECs (180). In mouse skin in vivo, co-overexpression of VEGF and 
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Ang1 shows an additive effect on angiogenesis but unlike VEGF overexpression alone, the 

combination results in leakage-resistant vessels with little inflammation (17). In other mouse 

models, Ang1 downregulates pulmonary inflammation by limiting granulocyte infiltration and 

Ang2 and cytokine production in murine lungs subjected to ventilator-induced injuries (222), and 

also attenuates inflammation in LPS-induced injuries (223). Interestingly, in apparent contrast 

with the protective effects of Ang1 in LPS-challenged animals, Ang1 does not prevent alveolar-

capillary permeability, pulmonary edema (i.e. vascular leakage) or impaired gas exchange in the 

ventilation model (222). Going on the assumption that LPS-induced plasma leakage primarily 

involves ECs while mechanical stretch destabilizes both alveolar-epithelial and capillary-

endothelial barriers, the authors propose that the reason for this discrepancy is that Ang1 

treatment only modulates endothelial inflammation.  

Additionally, Ang1 inhibits the early steps of the cascade that leads to leukocyte 

infiltration in inflamed tissues, as follows: First, Ang1 limits the ability of inflammatory agents to 

increase leukocyte attraction; for instance, Ang1 inhibits the ability of thrombin to stimulate EC 

release of potent leukocyte chemoattractant IL-8 (224). Ang1 also reduces the capability of 

leukocytes to adhere to the endothelium activated by VEGF, TNF-α and thrombin, by altering the 

expression of endothelial E-selectin and adhesion molecules that belong to the immunoglobulin 

family (ICAM-1 and VCAM-1), proteins that respectively ensure the rolling and firm adhesion of 

leukocytes onto the endothelium (225, 226). Thus, by sealing the vasculature and attenuating the 

expression of endothelial surface adhesion molecules that recruit inflammatory leukocytes, Ang1 

exerts a protective anti-inflammatory effect.  

 

Pro-inflammatory. On the other hand, Ang1 exerts certain pro-inflammatory activities on ECs, 

which in some cases appear to directly contradict the observations noted above: In cultured 

bovine aortic ECs (BAECs) but not in HUVECs, Ang1 promotes endothelial synthesis of PAF 

(214), a phospholipid that acts as trigger and amplifier of inflammatory and thrombotic cascades 

(227). Additionally, in vitro, Ang1 increases the translocation to the surface of ECs of P-selectin, 

a protein that mediates the rolling of leukocytes onto the endothelium; in accordance, neutrophil 

adhesion onto EC monolayers is thus increased (151). Ang1 even appears to relax endothelial 

tight junctions in the airway capillaries of mice (228), thereby facilitating the process of 

leukocyte transmigration. Not only that, but in this same model, overexpression of Ang1, acting 
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via Tie2, induces a phenotype change in capillaries that renders them more amenable to leukocyte 

transmigration: in effect, Ang1 leads to remodeling of these capillaries into a postcapillary venule 

phenotype17 expressing ICAM-1, P-selectin and EphB4, which are typical lineage markers of 

venous ECs (228). These studies underline the ability of Ang1 to exert differential and at-times 

opposing activities depending on the choice of experimental parameters.  

 

1.4.4.2 Inflammatory action of Ang2 

Unlike the 129/J Ang2-/- model, the high survival rate of C57BL/6 Ang2-/- mice allowed for a 

more exhaustive look at the impact of Ang2 deficiency on specific tissues. Ang2 appears to 

control the responsiveness of the endothelium to acute inflammatory stimuli, but shows no direct 

stimulatory effect by itself. Looking at vascular permeability in vivo, Ang2 null mice (Ang2-/-) 

show a significantly attenuated response to the hyperpermeability-inducing action of histamine, 

bradykinin and VEGF (218). Additionally, these mice exhibit a decreased inflammatory response 

to infection compared to normal littermates, with significantly less neutrophil infiltration in the 

peritoneal cavity in the first hours of exposure to thioglycollate or S. aureus. However, in a long-

term (36 h.) lung infection experiment with Streptococcus pneumonia, wild type and Ang2-

deficient mice show no difference in their ability to mount an inflammatory reaction (202). These 

observations are indirect evidence that Ang2 can transiently modulate endothelial junctional 

properties.  

Beyond EC junctions, there is conflicting information about the role of the ligand in 

modulating expression of EC adhesion molecules, and thus, of leukocyte adherence and/or 

transmigration. In acute conditions, Ang2 increases EC surface expression of P-selectin and 

neutrophil capture by EC monolayers (151). However, in Ang2-/- mice, rolling of leukocytes in 

response to TNF-α is normal, but then firm adhesion is impaired (202), suggesting that Ang2 may 

only affect Ig-type adhesion molecules. On the other hand, while Ang2 alone increases neutrophil 

adhesion onto ECs in vitro (151), it can only promote monocyte adhesion in the presence of sub-

saturating concentrations of TNF-α (202). Taken together, these observations suggest that Ang2 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

17 As outlined in 1.4.4.1 Inflammatory action of Ang1, postcapillary venules are the preferred site for leukocytes to 
transmigrate because they express fewer junctional proteins.  
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may modulate a leukocyte-specific subset of adhesion molecules, but it is more likely that it plays 

a permissive role that prepares the endothelium for the action of other inflammatory cytokines.  

 

1.4.5 Angiopoietins and myeloid biology  
Recent studies in transgenic mice demonstrated that the majority of adult blood cells derive from 

a Tie2+ hematopoietic precursor (229), and Tie2 continues to be expressed downstream in 

multiple lineages and by the majority of the progeny, including by myeloid progenitors (229). 

The presence of functional Ang-Tie signalling mechanisms in myeloid cells and the 

corresponding biological significance are explored in more detail below.  

 

1.4.5.1 Neutrophils 

When our laboratory first discovered that Ang1 could stimulate P-selectin translocation to the 

endothelial cell-surface, we wondered whether the resulting increase in this adhesion molecule 

would have a direct impact on leukocyte capture and adhesion.  In effect, when freshly isolated 

and untreated human neutrophils were added in vitro to EC monolayers stimulated with as low as 

picomolar concentrations of Ang1 or Ang2, they adhered more efficiently than to untreated 

control ECs. Interestingly, when both ligands were co-administered, we observed a 

supplementary increase in neutrophil adhesion without any additional P-selectin translocation. 

This observation raised two plausible explanations: First, that angiopoietins could impact the 

expression of other unidentified EC adhesion molecules, thereby assisting P-selectin in capturing 

and anchoring neutrophils onto the EC surface. Alternatively, that angiopoietins could directly 

interact with neutrophils to induce their “adhesive state”, for example by promoting the 

expression of neutrophil-specific adhesion molecules18. While we did not discount the first 

possibility given the well-documented effects of Ang1 on the endothelium, we explored the latter 

hypothesis and discovered that the angiopoietin signal-transducing receptor, Tie2, was expressed 

on the neutrophil cell-surface (151). This was confirmed shortly thereafter by an independent 

group (230).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

18 Leukocyte-specific adhesion molecules and the process of leukocyte recruitment, rolling and adhesion are 
coverered in greater detail in 1.4.6 Integrins and 1.5.3 Leukocyte recruitment. 
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Interestingly, Ang-Tie signalling exhibits certain distinguishing properties in neutrophils 

vs. ECs: First, Tie1 is not expressed on neutrophils (151), indicating that the mechanisms for 

negatively regulating angiopoietin activity may be different than in ECs. Second, the agonist-

antagonist relationship between the two ligands is even less clear than in ECs. In fact, Ang1 and 

Ang2 exhibit a fair degree of overlap in function with human neutrophils tested in vitro: Both 

ligands are equipotent in sensitizing neutrophils and increasing their migration towards an IL-8 

gradient, their adhesion onto EC monolayers, and their synthesis of PAF. Finally, the two ligands 

are both capable of recruiting the PI3K pathway and promoting Akt phosphorylation in 

neutrophils (151). That being said, certain neutrophil responses in vitro are unique to Ang1; for 

instance, the ligand extends neutrophil lifespan (189) and induces IL-8 de novo synthesis and 

secretion, whereas Ang2 fails to fulfill either of those tasks (190). Whether the exclusive Ang1 

activities result in pro- or anti-inflammatory responses (an increase in neutrophil viability means 

a delay in neutrophil degranulation and/or a slow consistent release of pro-inflammatory mediator 

content; IL-8 is an inflammatory cytokine) or even pro-angiogenic effects (neutrophils release 

large amounts of MMPs that degrade EC basement membrane and IL-8 is a pro-angiogenic 

factor) will likely be dependent on surrounding biochemical gradients and the state of 

responsiveness of the endothelium.  

Finally, a particularly interesting observation is that in all our neutrophil experiments, the 

addition of Ang2 to an equivalent dose of Ang1 does not antagonize the action of the latter 

ligand, as would have been expected from a competitive, and seemingly equipotent, antagonist. 

This further suggests differential Ang-Tie signalling properties in myeloid biology compared to 

ECs.  

 

1.4.5.2 Eosinophils 

These granulocytes constitute the bulk of cell infiltrates during infectious diseases, and are 

important mediators during allergic reactions and in the pathogenesis of asthma. Similarly to 

neutrophils, eosinophil migration into sites of inflammation/infection is under tight cytokine 

control, generally driven by CXCL type of cytokines.   

Only one study has looked at the impact of angiopoietin/Tie2 signalling on eosinophil 

behavior, demonstrating the presence of a functional Tie2 receptor on the cell-surface of isolated 

human circulating eosinophils (162). Of the two angiopoietins, only an Ang1 gradient was shown 
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to promote in vitro eosinophil chemotaxis; this migration towards Ang1 was impaired by the 

addition of blocking-Tie2 antibodies but also by incubation with Ang2, suggesting that Tie2 

mediates Ang1-induced chemotaxis, and that Ang2 retains its antagonistic action in this context. 

Finally, chemotaxis towards Ang1 was mediated by PI3K, partially by Src, with no contribution 

from PKC. The study did not look at the expression of Tie1, or the specific contributions of other 

signalling pathways such as Erk1/2 or p38 MAPK. 

 
1.4.5.3 Monocytes/Macrophages 

The general understanding of monocyte biology is that these myeloid cells can be subdivided into 

two main groups: A short-lived “inflammatory” subset constituting the majority of monocytes 

and that homes to inflamed tissues, and a longer-living “resident” subset, that shows a preference 

for non-inflamed environments (231, 232). The progeny of monocytes mirrors this subdivision, 

with cells differentiating into pro-inflammatory M1 (classically activated) or tissue 

repair/immunosuppressive M2 (alternatively activated) macrophages, a process referred to as 

macrophage polarization. M1/M2 phenotypic and functional characteristics are plastic, and are 

determined by the biochemical environment available to mononuclear cells during differentiation. 

Monocytes contain high levels of both Ang1 and Ang2, but appear to selectively secrete 

only Ang1 upon contact with confluent ECs in vitro (182). This action induces EC survival-

related signalling and suggests a possible role for Ang-Tie and monocyte-EC interaction in re-

establishing homeostasis in inflammatory or ischemic conditions.    

Investigation into the expression of Tie2 in human peripheral blood (PB) identified a 

small subset of Tie2-expressing monocytes (TEMs), comprised within the less abundant 

“resident” population, constituting 2-7% of PB mononuclear cells (PBMCs) in healthy donors 

(233). The Tie2 receptor on TEMs is functional, as Ang2 exerts an agonistic chemotactic effect 

on human TEMs in vitro in a dose and Tie2-dependent manner, but has no such effect on 

inflammatory monocytes (233). The impact of Ang1 in this context was not tested. In 

accordance, in transgenic mice overexpressing Ang2 in ECs only, prolonged expression of Ang2 

(> 6 months) leads to a marked increase in leukocyte infiltration into several organs. The majority 

of the leukocyte infiltrate is made up of cells of the myeloid lineage, particularly of monocytes. 

Interestingly, the frequency of Tie2-positive cells is not increased in these transgenic mice during 

inflammation (peritonitis) (234).  
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Remarkably, TEMs preferentially home to tumors in both mice (235) and humans (233), 

compared to a near absence in non-neoplastic tissues19. The response to Ang2 in vitro provides a 

possible homing mechanism for tumors to selectively recruit TEMs.  

TEMs appear to be endowed with a marked pro-angiogenic capability, providing a possible 

explanation for their preponderance in tumors: Using a gene targeting strategy that selectively 

eliminates TEMs, De Palma et al showed that tumor growth in mice was stunted; conversely, in a 

tumor transplantation model, injection of TEMs lead to an increase in tumor neovascularization 

(233, 235). These observations prompted the authors to suggest that TEMs represent a circulating 

reservoir of cells committed to a proangiogenic function. However, Ang-Tie2 signalling in the 

progeny of monocytes does not seem to be particularly pro-angiogenic. First, there is no 

relationship between Tie expression and macrophage classification induced in vitro, as both M1 

and M2 subtypes expressed Tie2 and Tie1; rather, Tie expression was dependent on the 

polarizing cytokine, as it was observed to occur to various levels following both M1 (IFN-γ; GM-

CSF)- and M2 (M-CSF; IL-10; IL-4)-inducing cytokine stimulation (236).  

Neither angiopoietin is capable of changing Tie expression levels or of driving 

macrophage polarization, indicating that Ang-Tie signalling alone is insufficient to drive an 

expression feedback loop or to promote differentiation. Furthermore, Ang1 and Ang2 alone are 

weak inducers of macrophage gene expression, independently of macrophage polarization 

conditions. Indeed, treatment with Ang1 and Ang2 alone had a marginal effect on the expression 

of 84 angiogenic genes (angiogenic growth factors and inhibitors) in both M1 and M2 

macrophages. 

Similarly to mRNA, macrophage cytokine protein production shows no particular trend 

with Ang stimulation but is more a function of the polarizing conditions: For instance, in M2 

macrophages polarized by IL-10, both Ang1 and Ang2 induce a trend towards inhibiting anti-

angiogenic thrombospondin (TSP)-2, fail at inducing IL-6, and only Ang1 is capable of 

promoting IL-10 production. In M1 macrophages polarized by interferon (IFN)-γ, Ang1 only 

promotes IL-6 (but not TSP-2 or IL-10 production) whereas Ang2 has no effect. Finally, both 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

19 Tumor samples show a marked increase in TEM presence compared to surrounding normal tissues. However, in 
the blood, there seems to be no difference in number of circulating TEMs vs. healthy controls: Limited data from 7 
cancer patients indicates that the incidence of TEMs in the blood of these patients (mean: 4.9% ± 3.0% of PBMCs) is 
not significantly different than in healthy donors (mean: 3.3% ± 1.5%)  (Venneri et al, 2007). 
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angiopoietins cooperate with TNF-α in a highly overlapping manner to induce protein production 

of pro-inflammatory cytokines and chemokines, including IL-8, CCL-3, CCL-7, and IL-12B 

independently of macrophage polarization conditions (236). Taken together, these results indicate 

that Ang-Tie signalling in monocytes/macrophages is not restricted to cells with an angiogenic 

phenotype.  

 

1.4.6 Integrins 
Properties. Integrins are heterodimeric transmembrane cell adhesion proteins that are a crucial, 

yet often overlooked, component of cell signalling. They are ubiquitously expressed at the cell-

surface and function as “receptors” for elements of the ECM such as collagens, fibronectin, 

fibrinogen and laminins, attaching the cell’s cytoskeleton to the matrix. Integrins also have 

“counter-receptors” on other cells that facilitate cell-cell rather than cell-matrix interactions 

(review (237)).  

Control of ECM-integrin signalling is bidirectional (238): matrix elements binding to 

integrin can activate intracellular signalling pathways that communicate the character and status 

of the bound matrix (outside-in stimulation). Alternatively, the cell can enhance or inhibit its own 

integrin activity, likely via phosphorylation, thereby controlling its cell-cell and cell-matrix 

interactions (inside-out stimulation). For instance, weak binding of a T lymphocyte to an antigen 

triggers intracellular signalling inside the T cell that activates its β2 integrins, consequently 

promoting stronger adhesion. Return of integrins to an inactive state allows the T cell to 

disengage (239).   

Although they have no intrinsic kinase activity, integrins can activate both distinct 

downstream signalling mechanisms and influence signalling from conventional growth factor 

receptors.  For instance, in cultured ECs, integrin adhesion to fibronectin potentiates the effect of 

growth factor on MAP kinase signalling (240). In addition, many types of cell cultures will not 

grow or proliferate in response to extracellular growth factors in the absence of integrin binding 

to ECM elements (241). 

An integrin molecule is composed of two non-covalently associated transmembrane 

glycoprotein subunits called α and β. In humans, there are 9 types of β and 24 types of α in 

addition to a number of splicing variants, generating a wide range of human integrin 

heterodimers. One cell can express several types of integrin. For instance, endothelial cells 
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express at least 7 different types of integrins (α1β1, α2β1, α3β1, α5β1, α6β1, αvβ3, and αvβ5) at 

varying times (242). The same integrin molecule can have different ligand-binding properties 

depending on the cell type where it is expressed, suggesting intrinsic cell-specific factors that 

interact with integrins and differentiate between ligands.  

While β1 subunits are found on almost all vertebrate cells (α5β1 binds fibronectin; α6β1 is a 

laminin), the β2 (CD18) subunits are expressed exclusively on the surface of lymphoid and 

myeloid blood cells (243, 244), where they mainly mediate cell-cell interactions via binding to 

Ig-type adhesion proteins/counter-receptors. A genetic defect wherein white blood cells lack the 

entire family of β2 subunits (leukocyte adhesion deficiency) exists in humans who suffer repeated 

bacterial infections. Finally, the β3 integrins are found on a variety of cells, including platelets; a 

genetic deficiency in β3 integrins leads to excessive bleeding (Glanzmann's disease). 

 

Binding to growth factors. While other angiogenic growth factors including VEGF165 and FGF2 

are capable of regulating integrin expression on endothelial cells (245-247), the relationship 

between integrins and Ang-Tie signalling is not fully resolved. Ang1 and Ang2 do not contain an 

RGD motif or any known integrin-binding site, and to the best of our knowledge, no crystal 

structure of either angiopoietins or Tie2 has been resolved showing binding to integrin moieties. 

However, there is a body of evidence in the literature that suggests collaboration between 

Ang/Tie and integrins (notably the β1, β3 and β5 integrin heterodimers). For instance, Tie2 and 

α5β1 interact constitutively: when lysates from untreated ECs cultured on native ECM in vitro are 

immunoprecipitated with different integrins (of the β1 and β3 variety), Tie2 only co-

immunoprecipitates with α5β1 (whereas VEGFR2 is not detected in α5β1 immunoprecipitates). As 

well, Tie2 appears to co-localize with α5β1 in unstimulated ECs in vivo (248). 

Interestingly, treatment with angiopoietins can alter the ability of Tie2 to complex with 

different types of integrins: Ang1 appears to engage α5β1 in EC migration assays, and α5β1, α2β1 

and αvβ3 in adhesion assays in vitro, in the presence of Tie2 (248) or independently of the 

receptor (191, 200, 249). In the chick chorioallantoic membrane (CAM) assay20 (250, 251), 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

20 The chick embryo CAM is an extraembryonic membrane, mediating gas and nutrient exchanges until hatching. 
Since the CAM has a dense capillary network, it has been commonly used as in vivo model to assess the angiogenic 
potential of mediators and various cell preparations, including tumor specimens (Ribatti et al, 2008). Briefly 
(methodology reviewed in Deryugina et al, 2008), fertilized chicken eggs are incubated at 37°C as soon as 
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blockade of either of α5β1 or αvβ3 inhibits Ang1-induced angiogenesis, with α5β1 blockade 

showing the greatest inhibitory effect (248). Finally, while monomeric Ang1 binds Tie2 very 

weakly and fails to phosphorylate it, it binds α5β1 with a similarly low affinity (249) that is 

nevertheless capable of activating integrin-linked kinase (ILK) (178), a major regulator of β1- and 

β3-generated signalling (252). This activation is independent of Tie2 (178).  

There is also evidence that Ang2 engages similar integrins as Ang1 upon binding to ECs 

(200, 253), with certain unique properties in activating integrin-mediated signalling. In HUVECs 

in vitro, of the two angiopoietins, only Ang2 stimulation induces complex formation between 

Tie2 and αvβ3 integrin and recruits focal adhesion kinase (FAK); subsequently, Ang2 stimulation 

leads to integrin internalization and ubiquitinylation, targeting it for lysosomal degradation (253). 

Additionally, under shear, Ang2 engages β2-integrins in human monocytes to promote their 

adhesion to ICAM-1 and VCAM-1, whereas Ang1 shows no such effect; this Ang2 function is 

completely abrogated by anti-β2 treatment and only partially by anti- αL (CD11a) and αM 

(CD11b), implying that other α subunits may contribute to this effect (234).  

The above suggests that integrins can mediate certain angiopoietin activities, at times 

independently of Tie2, providing an attractive explanation for why the blockade of Tie2 does not 

always abolish angiopoietin signalling. Indeed, in a rat neuronal cell line that does not express 

Tie2, Ang1 promotes cell survival and neurite outgrowth in a Tie2-independent, β1-integrin-

dependent manner (254). In human neutrophils, blockade of Tie2 inhibits only some aspects of 

the in vitro functions of angiopoietins, but not all: For instance, the receptor is necessary for the 

chemotaxis of neutrophils towards a gradient of Ang1 or Ang2 (145), as well as for adhesion 

driven by the combination of Ang1 and Ang2, but not when either ligand is used alone (151). 

Additionally, Tie2 blockade abrogates Ang1’s anti-necrotic effects, but has little influence over 

its anti-apoptotic properties (189). While the contribution of integrins has not been evaluated, 

given their abundance at the surface of neutrophils and the ability of angiopoietins to recruit them 

to elicit variable responses in other cell models, it is possible that they could be involved in 

mediating some of the aforementioned activities. However, the relative affinities between 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

embryogenesis begins. Angiogenic materials are generally introduced over the CAM after day 7-10 of embryonic 
growth, either in-shell through a window cut in the egg shell, or ex ovo on the CAM of embryos grown in sterilized 
weigh boats. Angiogenesis occurs after 72-96 hours, at which point evaluation of the extent of vascularization can be 
made.   
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angiopoietins/Tie receptors and integrins, the role and contribution of the individual integrin 

subunits to signalling in different cellular contexts, and the nature of the interaction of integrins 

with monomeric vs. multimeric angiopoietins at both the endothelial and neutrophil cell-surface 

remain to be elucidated. 
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1.5 Inflammation 
 

Inflammation is a physiological response to cellular injury, and may be initiated by 

physical (trauma, burn etc.) or chemical (toxins) agents, infections (microbial, viral and/or the 

immunological response to them), or necrotic tissue. Regardless of the initiating agent, the 

inflammatory process involves a multitude of cell types working closely together on either side of 

the endothelium, in a predictable sequence of cellular and biochemical events. These are: 

coagulation, vasodilation, increase in blood flow and vascular permeability, fluid accumulation, 

leukocyte recruitment, formation of granulation tissue and finally, tissue repair.  

Phenotypically, inflammation classically manifests itself as redness, heat, swelling and 

pain. In reality, these symptoms represent a complex interplay of vascular, cellular, and 

neurological events that aim at removing infectious agents, re-establishing hemostasis and 

ultimately at restoring vessel integrity. The inflammatory orchestra is composed of platelets, 

neutrophils, mast cells, monocytes, endothelial cells and fibroblasts. The conductor is an intricate 

network of temporally and spatially regulated expression of cytokines. An inflammatory response 

is meant to be transient (“acute”); thus, the activities of its key regulators must be tightly 

controlled to avoid excessive tissue damage and spillover to normal tissue. Failure to downgrade 

the response and to dissolve the instigating signals turns the inflammatory process into a chronic 

pathological condition (255). The sequential steps of inflammation are covered in more details 

below.  

 

1.5.1 Initiation 
Coagulation. When tissue trauma or microbial invasion cause damage to the endothelial lining of 

a blood vessel, contact of the blood with cells that are not usually exposed to blood (the sub-

endothelial surface) leads to a rapid activation and aggregation of platelets at the site of injury, 

first to plug off the leak and contain blood loss, then to support complex coagulation cascades 

(molecules on the surface of platelets are required for many of the reactions) and ultimately, to 

restore the integrity of the vessel (256). With the support of activated platelets, exposure of sub-

endothelial tissue elements such as collagen, vWF and tissue factor (TF) to plasma components 

(Factor VII) activates coagulation cascades that lead to deposition of fibrinogen and maturation 

into fibrin strands, and establishing a scaffold that strengthens the platelet clot and traps platelets 
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and leukocytes. Platelets that are trapped in this fibrin 3-D scaffold also release leukocyte 

chemoattractants, permeability factors and growth factors that precipitate the inflammatory 

response, but also support the process of wound healing (255, 257).  
 

1.5.2 Propagation 
Vascular response. Disturbances in the cellular environment surrounding the site of injury causes 

all neighbouring tissues, including endothelial and connective tissues, leukocytes, platelets and 

mast cells, to release products. In particular, engagement of the coagulation process stimulates 

local ECs to secrete pro-inflammatory cytokines, such as TNF-α and IL-1, which further activate 

endothelial and vascular support cells in a paracrine manner (255). The action of secreted 

permeability factors (NO, VEGF, serotonin, PAF, histamine, leukotrienes, etc.) causes changes in 

endothelial cytoskeletal and junctional molecules such that cells can contract, increasing 

permeability and enabling outpouring of protein-rich fluid/plasma into the inflamed tissue. The 

motion of fluid brings along serum proteins, including components of the complement system 

and antibodies, necessary for the elimination of infectious agents.  
 

1.5.3 Leukocyte recruitment 
In addition to allowing plasma movement, ECs facilitate the localization, capturing and 

infiltration of circulating blood leukocytes into the injured tissue by displaying specific subsets of 

adhesion molecules that they normally would not express. ECs also secrete a special type of 

mediators that recruit leukocytes, called “chemoattractants”. Tissue infiltration by circulating 

leukocytes is a three-step process involving rolling on the endothelium, firm adhesion, and 

transmigration across the endothelial barrier (258) (Figure 11, p.61). Four superfamilies of 

adhesion molecules are involved in mediating these events: (1) integrins, (2) immunoglobulin-

like proteins known as intercellular adhesion molecule (ICAM) 1 and 2, and vascular cell 

adhesion molecule (VCAM), (3) the selectins (L-, P- and E- selectin) and (4) mucin-like selectin 

ligands (PSGL-1, CD34, gly-CAM etc.). L-selectin is constitutively and exclusively expressed on 

leukocytes and binds to certain sulfated sialomucins that may be attached to several different 

endothelial plasma membrane proteins or proteoglycans (including CD34, MadCAM-1, and gly-

CAM-1). On the other hand, E-selectin is exclusive for endothelial cells (ECs). P-selectin is 

found in the membrane of secretory storage granules in platelets (i.e., α granules) and endothelial 
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cells (i.e., Weible-Palade bodies). In general, stable microvessels do not express the arrangement 

of ligands necessary for recognition by L-selectin, nor do they show basal expression of E-

selectin. However, when activated by TNF-α and IL-1, ECs synthesize and display E-selectin, 

endothelial ligands for L-selectin, and P-selectin translocation occurs to the EC surface (review 

(259)).  

At the same time, chemotactic signals are released and sensed by circulating leukocytes 

that begin their migration towards the site of injury. As cells circulating in the blood are subject 

to blood pressure and shear, their velocity must be reduced before they can be effectively 

captured by the endothelium. This is where the selectins and their counter-receptors come in, 

ensuring the tethering and rolling of leukocytes on the endothelial surface. Once at the site of the 

highest chemoattractant gradient, leukocytes cease their rolling and adhere more strongly by 

engaging integrins (inside-out/outside-in activation, see 1.4.6 Integrins) and binding to 

endothelial receptors (ICAMs). Subsequently, integrins collaborate with ICAMs and platelet 

endothelial cell adhesion molecule (PECAM)-1 to facilitate the process of leukocyte 

transmigration (diapedesis) across the endothelial monolayer.  

 

Chemotaxis. The initial step of leukocyte recruitment involves directing the leukocyte to where it 

is needed, and guiding it along the blood vessel to the specific site of injury where it eventually 

needs to cross. Chemoattractants are the “homing” molecules for leukocytes that express the 

appropriate counter-receptor. When a sufficient chemoattractant gradient is detected, leukocytes 

migrate towards it in a process called “chemotaxis”. Numerous molecules have the potential to 

attract leukocytes, including transforming growth factor β (TGFβ), N-formyl-methionyl-leucyl-

phenylalanine (fMLP), leucotriene B4 (LTB4) and the complement fragment C5a, which are 

capable of attracting and activating multiple leukocyte types (260-262).  

 

Chemokines. The recent identification and characterization of a large family of related 

chemoattractant proteins, called “chemokines”21, has shed additional light on the process of 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

21 A distinction is sometimes made between the terms “cytokine” and “chemokine”. While both are generally small 
proteins, a cytokine’s role is to modify intracellular pathways and signalling, impacting cellular response. On the 
other hand, a chemokine primarily functions as a chemoattractant for specific leukocytes. Some cytokines, such as 
IL-8, are also chemokines.  
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chemotaxis. Chemokines are a large superfamily of highly homologous small peptides, 

comprising at least 46 ligands that bind to 18 functional G-protein-coupled receptors and two 

decoy or scavenger receptors (264). Thus, multiple chemokine ligands can bind to the same 

receptor. The two main chemokine superfamilies are named according to the arrangement of the 

first two cysteine residues near the amino terminus: In the CC family, the two cysteines are 

adjacent, whereas in the CXC family there is one amino acid between them. Adding an L or an R 

at the end of the name indicates that the chemokine is a ligand (CCL/CXCL) or a receptor 

(CCR/CXCR), respectively. Members of the CXC family, particularly CXCL8 (IL-8), typically 

recruit neutrophils, whereas the CC chemokines such as CCL2 (monocyte chemotactic peptide 

(MCP)-1), CCL5 (regulated on activation normal T cell expressed and secreted; RANTES) and 

CCL3 / CCL4 (macrophage inflammatory peptides (MIP)-1α and -1β), preferentially attract 

mononuclear cells (255).  

 

Chemotactic hierarchy. As leukocytes travel through the vast vasculature and encounter different 

chemotactic signals from various microenvironments, it is unclear how they prioritize in terms of 

which signal to respond to. For instance, during a bacterial infection, multiple chemoattractants 

can be released from the bacteria themselves (LPS, formylated proteins) but also from nearby 

activated macrophages and endothelial cells (IL-1β, IL-8, PAF, TNF-α). These multiple sources 

of chemoattractants result in a complex milieu of opposing chemoattractant gradients, and 

therefore leukocytes must have the ability to selectively ignore certain chemotactic cues and 

“prioritize” those that will guide them to the site of infection. There is evidence that human and 

mouse neutrophils respond to such guidance signals in a “hierarchical manner”22 (265), preferring 

to migrate towards formylated peptides and activated complement fragments (C5a) over 

“intermediate” chemokines such as IL-8 (266-268). Recently, chemotactic hierarchy was 

demonstrated to occur in vivo: in a model of necrotic foci, the gradient of CXCL2/MIP-2 was 

consistently observed to abruptly end approximately 100 to 150 µm proximal to the border of 

necrotic tissue, and yet neutrophils still migrated directly into the area of cell death. Thus, 

neutrophils were rapidly migrating away from high concentrations of CXCR2 ligands and 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

22 By necessity, in the setting of multiple chemoattractants, the neutrophils must prioritize, favouring end target 
chemoattractants (e.g., formylated peptides and C5a) emanating from the site of infection over intermediary 
endogenous ones (e.g., IL-8 and LTB4) encountered en route to sites of infection. (Heit et al, 2002)  
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towards the necrotic centre, suggesting that a “necrotactic” stimulus (perhaps a formyl-peptide 

receptor ligand) was hierarchically overriding CXCR2 signalling (269, 270). 

 

Rolling/adhesion characteristics. Once rolling leukocytes have encountered and responded to a 

sufficiently high chemotactic gradient, they begin to exit the vasculature and migrate into the 

adjacent tissue. This transendothelial migration (TEM) is enabled by engagement of selectins and 

then of integrins (Figure 11, p.61). Thus, the expression pattern of adhesion molecules is an 

Figure 11: Sequential engagement of adhesion molecules in sepsis. 

There are three types of selectin molecules: L-selectin (CD62L), E-selectin (CD62E), and P-selectin 
(CD62P). L-Selectin is constitutive and binds to certain sulfated or sialylated endothelial proteins or 
proteoglycans. E-selectin is inducible and binds carbohydrate ligands related to sialylated LewisX or 
LewisA moieties on leukocytes. P-selectin is stored in endothelial storage vesicles and binds to glycans and 
sulphated sialomucins displayed on leukocyte P-selectin glycoprotein ligand-1 (PSGL-1). Under the activity 
of inflammatory mediators, ECs display E-selectin, P-selectin, and the arrangement of ligands necessary for 
binding L-selectin, as well as the integrin receptors (ICAM). Leukocytes attach weakly and roll over the 
endothelium via selectins, then adhere more firmly via integrins. Transmigration is mediated via PECAM-1 
and integrin activity. Reproduced with kind permission from Springer Science and Business Media: 
Opal et al, 2008 (263); text adapted from Pober et al, 2001 (259). 
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important determinant of leukocyte emigration and is controlled by both intrinsic and extrinsic 

factors. For instance, circulating leukocytes preferentially migrate in post-capillary venules, even 

in conditions where shear stress is made equivalent to arterioles/venules and where blood flow is 

reversed, suggesting the existence of specific cell-surface characteristics. In accordance, P-

selectin and VCAM-1 expression are most abundant on post-capillary venules compared to large 

vessels, arterioles or capillaries23. Additionally, extrinsic factors control adhesion molecule 

expression: for example, microvessels constitutively express CD34 protein, but L-selectin ligands 

are usually not present; they can be synthesized and displayed following TNF-α or IL-1 treatment 

(review (259)). 

 

Diapedesis. The mode of leukocyte crossing the endothelial barrier (TEM) has been a question of 

much debate for over four decades (271), with the reigning theory being that leukocytes traverse 

through gaps between adjacent cells (Figure 11, p.61), usually where cell junctions are found 

(“paracellular”) (272). However, an early morphological study of leukocyte infiltration revealed 

that a significant amount of leukocytes seemed to transmigrate without disrupting the EC 

junctions; rather they migrated through an endothelial cell (“transcellular”) (273). Due to the 

technical challenges of capturing transcellular migration experimental settings, and precipitated 

by the discovery of junctional proteins and observations that blockade of junctional constituents 

resulted in inhibition of leukocyte migration, the theory of “transcellular” migration fell out of 

favour for many years (274-276). Recently, advances in electron microscopy and computer 

remodelling showed that leukocytes, specifically neutrophils, could migrate through a 

transcellular pore, passing cleanly through the cytoplasm of the EC in proximity to but at a site 

distinct from EC junctions (260, 277, 278). However, it is entirely possible that different vascular 

beds and/or inflammatory conditions may alter the method by which leukocytes migrate.  

 

Phagocytosis. Once recruited to the inflammatory foci, the major role of leukocytes is the rapid 

recognition and elimination of pathogens and cell debris that may have penetrated the epithelial 

barriers, normally the first level of host defense. The first wave of leukocytes, the neutrophils, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

23 Postcapillary venules also express less junctional molecules thereby facilitating the action of permeability factors 
and allowing greater access for transmigrating leukocytes (see 1.4.4 Angiopoietins in inflammation).  
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will begin microbial elimination by phagocytosis (279), where microbial organisms are engulfed 

and destroyed via neutrophil-derived reactive oxygen species, proteolytic enzymes, and 

antimicrobials from cytoplasmic granules (259, 261). As the neutrophils are clearing the area, 

neighboring tissue resident macrophages and circulating monocytes converge to the site. 

Monocytes are recruited and infiltrate to inflamed foci via similar mechanisms to neutrophils 

(262); upon their arrival in the tissue, they mature into macrophages and rapidly engage in the 

clearance of pathogens, tissue debris and dead cells, including apoptotic neutrophils (280). 

Phagocytosis is dependent on leukocytes recognizing the pathogen or the antigen it presents; 

there are two main mechanisms to achieve this, either directly via pattern-recognition receptors, 

or via complement/opsonins (review (279). The latter mechanism is better characterized (281): 

Opsonins bind to bacterial antigens and enable them to be recognized by leukocyte receptors that 

trigger phagocytosis; more specifically, opsonins can be two kinds, antibodies (IgG) or 

complement fragments that enable antigen recognition by Fc or C3 receptors, respectively. FcγR-

mediated phagocytosis of IgG-opsonized particles relies on the formation of pseudopod 

extensions for engulfment, whereas C3 receptor-mediated phagocytosis does not (281). 

Phagocyting leukocytes contain cytoplasmic “compartments”24 that store microbicidal products 

and enzymes; once a pathogen is engulfed, these compartments fuse with the phagocytic vacuole 

and release their product into it. Macrophages not only phagocytose pathogens and dead cells, but 

they participate in coordinating the adaptive immune response through antigen presentation. 

 

1.5.4 Resolution 
Clearance. The clearance of the offending stimuli, cellular debris and recruited cells from the 

inflammatory site marks the beginning of the final stage of inflammation, called the resolution 

phase (282). Resolution is an active process that alters the cytokine and cellular environment in 

favor of an anti-inflammatory phenotype. Mediators such as glucocorticoids or cytokines such as 

IL-4, TGFβ and IL-1RA dampen the activity and release of additional inflammatory mediators. 

IL-4 inhibits further recruitment of neutrophils via suppression of neutrophil IL-8 production and 

induces differentiation of T lymphocytes into T-cell helper type 2 (TH2) lymphocytes, which 

secrete further macrophage inhibitory cytokines, primarily IL-10 and IL-13 (255).  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

24 These compartments are the granules and the lysosomes, found in neutrophils and macrophages, respectively.   
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Granulocyte apoptosis is an essential component of resolution, as it effectively prevents 

further pathogen movement (270, 283). Apoptotic neutrophils are ingested by tissue resident and 

recruited macrophages, a process that presents multiple benefits: Besides providing a second 

insurance that the pathogen is destroyed, this process prevents apoptotic neutrophils from 

progressing to a necrotic state and the potential for bystander tissue damage. Additionally, 

macrophages that uptake an apoptotic neutrophil switch to a tissue repair and anti-inflammatory 

phenotype (called “M2”), thereby preventing further macrophage activation (284).  

 

Granulation tissue. As mentioned earlier, clot formation is an immediate response that provides 

a quick and temporary remedy for blood leakage. The final solution requires repairing the tissue, 

generating a “granulation” tissue that includes inflammatory cells, fibroblasts, myofibroblasts and 

matrix tissue, in addition to growing vessels. Components of the initial clot and surrounding 

leukocytes are essential in this process: Along with platelets trapped in the fibrin structure, M2 

macrophages release angiogenic growth and regulatory factors including platelet-derived growth 

factor (PDGF), fibroblast growth factors (FGFs), VEGF and TGFβ, which coordinate several 

cellular events necessary for the reparative phase. Non-apoptotic neutrophils also have the 

potential to contribute to tissue repair, as they store VEGF (270, 285) and Ang1 (183) but the 

conditions for their release in vivo and in inflammatory settings are still unknown. Thus, 

neighboring fibroblasts are recruited by FGF, PDGF and TGFβ signals and they upregulate their 

surface expression of integrins in the presence of inflammatory mediators, enabling them to 

recognize, bind to, and migrate over the fibrin components of the initial clot. These fibroblasts 

proliferate (process called “fibroplasia”) and lay down a provisional matrix consisting mainly of 

collagen. By the end of the first week, fibroblasts are the main cells in the wound (286). Later 

this fibroblast-derived provisional matrix is replaced with an ECM that more closely resembles 

that found in non-injured tissue. Simultaneously with fibroplasia, angiogenic signals promote 

endothelial cell (EC) migration, proliferation, and formation of new vessel structures. Similarly 

to fibroblasts, ECs are drawn into the wound area by fibronectin, migrate in response to 

inflammatory mediators and chemotactic agents, and grow under the stimulation of angiogenic 

growth factors and hypoxia. As capillary loops appear, they have the appearance of small 

granules, giving the tissue its name of granulation tissue (287, 288). 
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Healing. The final step in wound healing involves tissue remodeling, during which the 

granulation tissue is gradually replaced and reshaped by a less vascular and less cellular scar 

tissue. Excess ECM and cellular components are degraded and/or removed, a process that may 

take months or years after granulation tissue is resolved. Unfortunately, while remodeled tissue is 

functional, it is generally not as good as the original.  

 

 

1.5.5 Inflammatory myeloid leukocytes  
1.5.5.1 Neutrophils   

The arrival of neutrophils at the site of injury symbolizes the early stages of an inflammatory 

response. Neutrophils are usually the first responders among immune cells at the site of vessel 

damage, often arriving within minutes of trauma. These phagocytic cells, often termed 

“inflammatory leukocytes”, account for 50-70% of the white blood cell count in the adult human 

(vs. up to 30% in mice). Thus, based on their propensity alone, appreciating the immune 

component of inflammation requires a comprehensive understanding of the neutrophil and its 

functions. Because the previously described processes of leukocyte recruitment and chemotaxis 

were largely drawn from observations of neutrophil biological behavior, they will not be 

addressed again here. Instead, this section will focus on key characteristics of neutrophil biology, 

laying the groundwork for the two novel studies presented in this document.  

Neutrophils are equipped with an impressive arsenal of biological weaponry that enables 

them to effectively destroy most25 invading pathogens they encounter. Some of these weapons are 

pre-stored pools of antimicrobials, but neutrophils exiting the bone marrow retain their ability to 

transcribe and translate additional proteins as needed, and in response to environmental cues. 

Together with eosinophils and basophils, neutrophils form the granulocyte family of white blood 

cells, a family whose hallmark is a lobulated nucleus and the presence of “granules”, which are 

unique storage structures for the variety of mediators and antimicrobial products. 

Lifespan. Neutrophils were traditionally seen as short-lived cells, with lifespans <24 hours and 

an estimated half-life of 8 hours (289); however, a study (that is often overlooked) challenged 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

25 Some pathogens have developed mechanisms to resist neutrophil phagocytosis. See text in Lean, mean, killing 
machines. 
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this concept through a novel in vivo labeling technique that showed that circulating human 

neutrophils actually live significantly longer, with an average lifespan of 5.4 days and a half-life 

of 3.8 days. Interestingly, the same technique used in mice showed that the average half-life of 

circulating mouse neutrophils was 12.5 hours, corresponding to an expected lifespan of 0.75 days 

(290). This revised in vivo survival rate is substantially different from that of isolated neutrophils 

used in ex vivo manipulations: Indeed, after isolation from peripheral blood of healthy human 

volunteers, 90% of unstimulated neutrophils have undergone apoptosis by 24 hours (189). These 

differences have important implications for studies focusing on elucidating neutrophil biology 

and their role in diseased states. First, the data highlights that murine and human neutrophil half-

lives are very different, warranting caution when extrapolating data to humans. Second, the stark 

difference in lifespan begs the question as to the real relevance of ex vivo studies. Finally, the 

novel concept that neutrophils have relatively long estimated circulatory lives suggests a more 

complex involvement in immunity and inflammation. 

Granules. Neutrophils develop continuously out of the bone marrow under the action of 

granulocyte colony stimulating factor (G-CSF) (291), and their entrance into circulation is tightly 

controlled. As granulocyte precursors (myeloblasts) mature to neutrophils, they synthesize 

proteins that are sorted into different granules. Granules are classified into three types based on 

the cargo: azurophilic (primary) granules, which contain myeloperoxidase (MPO), specific 

(secondary) granules which contain lactoferrin, and gelatinase (tertiary) granules which contain 

MMP9 (aka Gelatinase B). Primary and secondary granules can be further subdivided according 

to their particular content. Granules are produced continuously throughout a neutrophil’s lifespan 

and their content depends on the transcriptional cues inside and outside the neutrophil. Thus, as 

the neutrophil matures and intracellular conditions change, so do granular loads, resulting in 

multiple granule species with overlapping cargoes. Neutrophils also carry secretory vesicles that 

are formed during the final stages of neutrophil maturation by endocytosis, thereby incorporating 

cytoplasmic elements. The existence of multiple types of granules can be explained by the fact 

that some of the proteins cannot co-exist in the innate form: for example, neutrophil elastase 

digests neutrophil gelatinase-associated lipocalin (NGAL)-164 (261). Additionally, granules have 

different propensity for mobilization, likely to correspond with the different stages in neutrophil 

activation. Secretory vesicles are the first and easiest to mobilize; upon appropriate activation, 

they rapidly translocate to the cytoplasmic membrane where they fuse with the cell-surface and 
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expose adhesion proteins such as β2 integrins (292). As activation progresses, neutrophils 

mobilize gelatinase and specific granules, and their azurophilic granules are the last to be 

deployed. 

 

Lean, mean, killing machines. Neutrophils eliminate their targets through a multitude of 

mechanisms (detailed review in (282)) (Figure 12, p.68). Besides direct phagocytosis in which 

pathogens are encapsulated and degraded (via reactive oxygen species26 or granule fusing to the 

phagosome), neutrophils can “degranulate”, i.e. the granules fuse to the plasma membrane and 

release their antimicrobial content to the extracellular milieu. Neutrophils can also eject 

neutrophil extracellular traps (NETs) made of DNA and to which are attached histones, proteins 

and granular enzymes: Briefly, (a) azurophilic and specific granules can fuse to either the 

cytoplasmic membrane, releasing their products to the outside, or to the phagosome, dumping 

their antimicrobials directly into the engulfed pathogen. When these granules fuse, they also 

release components of the NADPH oxidase machinery that assemble on the cytoplasmic or the 

phagosomal membrane and initiate the reactive oxygen species (ROS) cascade, reducing 

molecular oxygen to superoxide. Many downstream reactions can occur following superoxide, as 

it is a powerful antimicrobial. (b) As for phagocytosis, it is the major mechanism to remove dead 

cells and pathogens (279). After engulfment, the nascent phagosome requires substantial 

maturation before it becomes effectively lethal to the pathogen. Phagosome maturation in 

neutrophils involves fusing of granules to the phagosomal surface and emptying of antimicrobial 

content. Simultaneously, NADPH oxidase assembly on the phagosomal membrane leads to ROS 

production. (c) Neutrophils can also undergo NETosis, an active form of cell death that leads to 

release of decondensed chromatin that traps microbes and exposes them to high gradients of 

granular and cytoplasmic products. The process is not well understood, but the ROS pathway 

appears to be required.  

Some pathogens have developed strategies to survive inside the hostile neutrophil phagosomal 

environment (summarized in (282)): For instance, Staphylococcus aureus expresses a 

polysaccharide capsule that has antiphagocytic properties. Helicobacter pylori and Francisella 

tularensis can disrupt one or more stages of the NADPH oxidase cascade, from targeting of the 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

26 Neutrophil production of reactive oxygen species is a process called “oxidative burst”.  
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NADPH oxidase to the phagosome to preventing the triggering of the oxidative burst and 

inhibiting ROS production. Finally, other pathogens, such as Salmonella typhimurium and 

Streptococcus pyogenes, can efficiently block granule fusion with the phagosome. 

 

Cytokine production. Neutrophils are an impressive source of cytokines, conferring them with 

the ability to intrinsically modulate their own activity and that of neighbouring cells. Ex vivo, and 

under a range of conditions, neutrophils have been shown to produce proteases, reactive oxygen 

species (26, 27), and granular content. Compared with other inflammatory leukocytes (such as 

mononuclear cells), neutrophils typically produce lower amounts of cytokines per cell, but they 

are so abundant at inflammatory sites that their contribution to total cytokine levels cannot be 

dismissed. Interestingly, there is little consensus (293) with regards to the list of mediators that 

neutrophils can produce, as these tend to vary with experimental conditions (population purity, 

detection method, species, type of activation inducers etc.). Thanks to advances in detection 

methods, this question has recently been revisited. The cytokines released by neutrophils are 

often synthesized de novo, but they also contain pre-formed pools of mediators that they can 

Figure 12: Neutrophil killing mechanisms. 

Neutrophil can destroy pathogens by ingestion or targeting outside the cell. All three methods involve 
deployment of granular content. Reproduced with permission from Macmillan Publishers Ltd: 
Kolaczkowska et al, 2013 (261).  
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secrete even in the absence of stimulation. When activated, neutrophils undergo a transcriptional 

burst that results in the synthesis and/or secretion of signalling molecules at various levels, 

including secretion of IL-8, IL-1 receptor antagonist (IL-1RA), TNF-α, MIP-1β, MIP-1α (CCL3), 

growth-related oncogene (GRO)-α, and macrophage colony-stimulating factor (M-CSF) (293-

295)). On the other hand, neutrophils did not secrete any IL-1β, IL-6, IL-10, IL-12 and GM-CSF. 

Although these studies are performed at single time-points and do not measure intracellular 

cytokine production, their importance is in their revelation that neutrophils can contribute both 

pro- and anti-inflammatory mediators. 

 

1.5.5.2 Monocytes/Macrophages 

The interaction of neutrophils with other immune cells is quite complex. At least between 

neutrophils and their mononucleated blood relatives, the cross talk appears to be circular. 

Monocytes and tissue resident macrophages are generally the first cells to detect danger signals 

and the cytokines they produce in response serve to summon large numbers of neutrophils to the 

inflammatory site. Neutrophils then recruit monocytes via classical monocyte chemoattractants, 

such as CC chemokines CCL2, CCL3, CCL19, and CCL20, and via granule mediators, including 

LL-37, azurocidin (HBP/CAP37), and CG (reviewed in (282)). Monocyte recruitment is also 

facilitated by the changes to the endothelium used to accommodate neutrophil recruitment, such 

as upregulation of endothelial adhesion factors, increase of transendothelial permeability and 

enhancement of production of chemoattractants by other cell types.  

In addition to monocytes, nearby tissue monocyte-derived macrophages, which are 

distributed ubiquitously, converge on the scene. Newly recruited monocytes also mature into 

macrophages once in the inflammatory tissue, and quickly begin clearance of damaged tissues, 

microorganisms and dying neutrophils. Thus, neutrophil-mononucleated cell cooperation is 

extremely important in the resolution of inflammation and initiation of tissue repair: Once 

neutrophils have executed their antimicrobial agenda, they die via a spontaneous apoptosis 

program that preserves the integrity of their membrane and prevents the leaking of noxious 

agents. Phagocytosis of apoptotic neutrophils also reprograms macrophages to adopt an anti-

inflammatory phenotype: Indeed, ingestion of apoptotic cells by macrophages drives the 

production of the anti-inflammatory cytokines tumor growth factor (TGF)-β and IL-10 (296), 

which as we have previously seen (see 1.4 Angiopoietins), drives macrophage polarization to an 
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immune-suppressive and tissue repair phenotype (M2). Thus, the benefits of apoptotic 

neutrophils are three-fold: First, it acts as insurance that cytotoxic microbes are eliminated from 

the system in a controlled manner, even if the neutrophil attached to them is dead. Second, it 

ensures that neutrophil content is kept from damaging surrounding tissues. Finally, apoptotic 

neutrophils stimulate macrophages into a pro-resolution phenotype, restricting further 

propagation of the inflammatory response.  

 

1.5.6 Remarks 
The inflammatory process involves an intricate network of cells and mediators that must work 

under tight control and regulation to eliminate microbes with as little damage to the host as 

possible. As the first line of immune defense against invaders, neutrophils have developed 

capabilities that make them the pre-eminent pathogen exterminators of the system. In addition to 

this important role, neutrophils also network with many other cells involved in the inflammatory 

response, including vascular and immune cells, thereby helping in the propagation and eventually 

in the resolution of inflammation. It is therefore not surprising that deregulation of neutrophil 

function can have harmful consequences, leading to inflammatory and auto-immune diseases 

(reviewed in (282)). Many challenges remain in understanding neutrophil function, especially 

because much of our current knowledge is based on observations in mice when there are definite 

species differences that cannot be ignored.  

As we have seen thus far, human neutrophils express typically-angiogenic growth factor 

receptors, VEGFR-1 (297) and Tie2 (151). What is the significance of this, and how does a 

neutrophil roaming the bloodstream avoid being accidentally activated and launching an 

inflammatory cascade at sites of active angiogenesis? Is there specialization among neutrophils, 

much like monocytes? Could neutrophils undergo a switch from a default inflammatory cell to an 

angiogenic phenotype, like macrophage polarization into M2?  How does the neutrophil 

phenotype change in diseased conditions? There is strong evidence that cytokine production is 

time and stimulus-dependent. What are a neutrophil’s cytokine and growth factor production 

capability and the conditions under which different cytokines are deployed? Because 

inflammation sees multiple cytokine networks that overlap in time, how exactly do neutrophils 

“prioritize”? Answering these questions is key to understanding neutrophil function in 

physiological and diseased conditions.  
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2.0 RESEARCH THEMES 
 

At the onset of inflammation, neutrophils are the first inflammatory cells to respond to the 

site of infection. Sequential molecular and cellular events allow for neutrophils to exit the 

bloodstream via the endothelial barrier, infiltrate the tissue and neutralize the infection. Once the 

threat is effectively eliminated, neutrophils actively participate in dampening the inflammatory 

response, either by modifying the cytokine environment in favor of resolution and tissue repair, 

or by undergoing spontaneous apoptosis. All of these events require active participation by the 

endothelium and the final endgame is to re-establish homeostasis. Additionally, before vessel 

integrity and blood flow are adequately rehabilitated, the new cellular infiltrates and surrounding 

tissues are going to be in a hypoxic state. The system remedies this problem by forging new 

blood vessel routes via angiogenesis, which increases blood flow, oxygen and nutrient supply to 

immune cells, thereby favoring additional immune cell activation and recruitment. Thus, 

angiogenesis and inflammation can and do occur conjointly. Because they overlap, these two 

processes will inevitably share cellular players that exert a level of flexibility allowing them to 

adapt their function depending on the cytokine environment available to them. This is perhaps 

best exemplified by the M2 macrophage, with its ability to switch from an M1 (inflammatory) to 

an M2 (tissue repair) phenotype when inflammation is almost over, or the Tie2-expressing 

monocytes (TEMs) that can promote angiogenesis in favorable environments (tumors). Evidence 

suggests that neutrophils have the potential to behave in the same manner as their mononucleated 

cousins: In effect, neutrophils express receptors for tumor necrosis factor (TNF)-α (17), 

Interleukin (IL)-8 (6), vascular endothelial growth factor (VEGF) (9, 89), platelet activating 

factor (PAF) (78) and angiopoietins (53). Thus, the purpose of both studies presented herein was 

to characterize the ability of angiogenic factors to modulate neutrophil biological responses or in 

other words, the changes in neutrophil biochemistry in the presence of angiogenic modulators.  

                           

Article #1 – FGFs and neutrophils 
Cells of hematopoietic origin were shown to express functional FGFRs (2), and infiltrating 

macrophages and T lymphocytes from diseased glomeruli of patients with proliferative lupus 

nephritis exhibit FGFR1 at their surface. Given that our group and others have previously shown 

that neutrophils express functional receptors of at least two families of potent angiogenic factors 
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(VEGFR-1 and Tie2), we wished to determine if human neutrophils expressed FGF receptors by 

biochemical and cytological analyses, and if so, to determine the functionality of the identified 

receptor(s). We also addressed the ability of FGF1 and FGF2 to induce neutrophil chemotaxis in 

vitro. 

 

Article #2 – Angiopoietins and neutrophils 
Despite their purported stabilization/destabilization antagonism, we showed that both Ang1 and 

Ang2 had an equal ability to induce a pro-inflammatory response from endothelial cells (ECs) in 

vitro, promoting P-selectin translocation to the cell-surface and PAF synthesis. The existence of a 

functional Tie2 on the surface of neutrophils suggests that angiopoietins may exert modulatory 

functions on inflammatory leukocytes as well. Indeed, we previously showed that Ang1 and 

Ang2 promoted chemotaxis of human neutrophils in vitro, and primed neutrophils to migrate 

towards an IL-8 gradient. More recently, we demonstrated that Ang1 increased human neutrophil 

lifespan ex vivo, and induced de novo synthesis and release of IL-8. Although pro-inflammatory 

in nature, the significance of these events in vivo is currently unknown. The purpose of this study 

was to elucidate the ability of angiopoietins to activate human neutrophils at a biochemical level, 

especially given the propensity of these cells to transcribe and translate mediators under different 

stimuli.  Targets of angiopoietin stimulation in human neutrophils would then be further 

characterized.   
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2.1 Article #1 
Haddad, L. E., L. B. Khzam, F. Hajjar, Y. Merhi, and M. G. Sirois. 2011. Characterization of 

FGF receptor expression in human neutrophils and their contribution to chemotaxis. American 

journal of physiology Cell physiology 301: C1036-1045. 
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2.1.1 Abstract 
Several members of the fibroblast growth factor (FGF) family are potent endothelial cell (EC) 

mitogens and angiogenic factors, and their activities can be mediated by four tyrosine kinase 

receptors (FGFR1–4). In addition, FGFs can induce the release of inflammatory mediators by 

ECs and the expression of adhesion molecules at their surface, thereby favoring the recruitment 

and transvascular migration of inflammatory cells such as neutrophils. Neither the expression nor 

the biological activities that could be mediated by FGFRs have been investigated in human 

neutrophils. By biochemical and cytological analyses, we observed that purified circulating 

human neutrophils from healthy individuals expressed varying levels of FGFRs in their cytosol 

and at their cytoplasmic membrane. FGFR2 was identified as the sole cell surface receptor, with 

FGFR1 and -4 localizing in the cytosol and FGFR3 being undetectable. We assessed the capacity 

of FGF1 and FGF2 to induce neutrophil chemotaxis in a modified Boyden microchamber and 

observed that they increase neutrophil transmigration at 10−10 and 10−9 M and by 1.77- and 

2.34-fold, respectively, as compared with PBS-treated cells. Treatment with a selective anti-

FGFR2 antibody reduced FGF1-mediated chemotaxis by 75% and abrogated the effect of FGF2, 

while the blockade of FGFR1 and -4 partially inhibited (15–40%) FGF-chemotactic activities. In 

summary, our data are the first to report the expression of FGF receptors in human neutrophils, 

with FGF1 and FGF2 promoting neutrophil chemotaxis mainly through FGFR2 activation. 

Key Words: neutrophil • FGF • inflammation• FGFR • cell migration 
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2.1.2 Introduction 

Inflammation is an essential component of host defense against harmful stimuli, involving a 

complex interplay between vascular tissues and blood leukocytes. Leukocyte recruitment to sites 

of inflammation occurs via a series of molecular and cellular events, beginning with the tethering 

and rolling of leukocytes on the endothelium lining blood vessels, followed by firm arrest, 

diapedesis, and finally leading to extravasation into the vascular wall (Muller 2003).  These 

cellular responses are accompanied by changes in the expression of effector molecules such as 

surface adhesion proteins, receptors and mediators secreted by the endothelium and recognized 

by neutrophils (Springer 1994).  Therefore, the efficacy of neutrophils in reaching infected 

tissues is dependent on recognizing and responding to alterations of endothelial functions.  

Interestingly, many of the mediators that neutrophils respond to are also extensively involved in 

angiogenesis, a phenomenon that leads to the formation of new blood vessels from pre-existing 

vasculature. Factors such as vascular endothelial growth factor (VEGF), angiopoietins (Ang1, 

Ang2), interleukins (IL)-1, -6 and -8, all of which are extensively involved at different stages of 

angiogenesis, have been shown to modulate neutrophil survival, degranulation, respiratory burst, 

adhesion and chemotaxis (Coxon, Rieu et al. 1996, Rollin, Lemieux et al. 2004, Maliba, Lapointe 

et al. 2006, Brkovic, Pelletier et al. 2007, Neagoe, Brkovic et al. 2009).  

Another set of potent angiogenic modulators, the family of fibroblast growth factors 

(FGFs), is also involved in the inflammatory process, but the contribution of specific FGFs to 

different stages of inflammation remains to be elucidated.  Evidence of the involvement of FGFs 

in inflammation comes from observations that the two most studied members of the family, 

FGF1 and FGF2, are up-regulated in inflammatory disorders such as bowel syndrome, Crohn’s 

disease, ulcerative colitis (Kanazawa, Tsunoda et al. 2001) and rheumatoid arthritis (Byrd, Zhao 

et al. 1996).  Other reports have suggested that FGF1 and FGF2 are secreted by and may act as 

immunoregulators of infiltrating neutrophils, monocytes, macrophages and T lymphocytes, often 

in tandem with powerful inflammatory cytokines (Barrios, Pardo et al. 1997, Byrd, Ballard et al. 

1999, Ohsaka, Takagi et al. 2001).  The notion that FGF2 alters neutrophil behavior secondary to 

the activation of endothelial cells (ECs) rather than through direct interaction is supported by 

evidence that FGF2 enhances EC surface-expression of adhesion molecules ICAM-1/2 

(Zittermann and Issekutz 2006), E-selectin (Paludan 2000) and monocyte chemoattractant 

protein-1 (MCP-1) (Takagi, Takahashi et al. 2000, Ohsaka, Takagi et al. 2001, Yamashita, 
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Yonemitsu et al. 2002) prior to neutrophil rolling and adhesion.  Although one study showed that 

FGF2 primes neutrophil respiratory burst and increases their surface expression of integrins 

CD11b/CD18 (Takagi, Takahashi et al. 2000), the effects of direct FGF stimulation, especially 

those of FGF1, on neutrophil biological activities remain largely unexplored.  

In general, the effects of FGFs, of which there are 23 members, are mediated by binding 

to four high-affinity tyrosine kinase receptors (FGFR1-4) and their splice variants (Jaye, 

Schlessinger et al. 1992).  The diversity in FGF signalling is due, in part, to different FGF/FGFR 

combinations.  Additionally, alternative splicing in the FGFR immunoglobulin (Ig)-like domains 

generates additional receptor isoforms with novel ligand affinities.  Finally, effector cells will 

usually express different heparan-sulfates at their surface, which are responsible for stabilizing 

FGF/FGFR complexes and enhancing FGFR downstream signalling (Vainikka, Partanen et al. 

1992, Cotton, O'Bryan et al. 2008).  

Although it has been shown that cells of hematopoietic origin express functional FGFRs 

(Allouche, Bayard et al. 1995), no information has been reported regarding the receptors that 

mediate the effects of FGF1 and FGF2 on neutrophils.  Therefore, the aim of the following study 

was to determine whether neutrophils expressed FGFRs and if so, to characterize the contribution 

of the identified FGFRs to the effects of FGF1 and FGF2 on neutrophil chemotaxis.  
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2.1.3 Materials and Methods 

2.1.3.1 Neutrophil purification 

Venous blood was obtained from healthy donors free from medication for at least 10 days prior to 

the experiments and in accordance with the guidelines of the Montreal Heart Institute’s ethical 

committee.  Neutrophils were isolated using Ficoll-Hypaque gradient, as described previously 

(Theoret, Bienvenu et al. 2001, Rollin, Lemieux et al. 2004, Neagoe, Brkovic et al. 2009), and 

resuspended in RPMI medium (Lonza, Allendale, NJ, USA) supplemented with 25 mM Hepes 

(N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid) and 1% penicillin/ streptomycin. Ninety-

eight (98) percent of the isolated cells were polymorphonuclear cells, as determined with a 

Coulter counter, and viability was found to be greater than 98%, as assessed by Trypan blue dye 

exclusion assay.  

 

2.1.3.2 FGF receptor identification by RT-qPCR analyses 

Total RNAs were obtained from freshly isolated human neutrophils (107 cells) by using the 

RNeasy extraction kit (Qiagen, Mississauga, ON, Canada).  Total RNAs (100 ng) was reverse 

transcribed using random hexamers and the Moloney murine leukemia virus (MMLV) reverse 

transcriptase (Invitrogen, Burlington, ON, Canada) as described by the manufacturer.  Reactions 

were performed on a MX3500P (Stratagene, La Jolla, CA) using 10 ng of cDNAs, Syber Green 

(Invitrogen) and 300 nM of the primers (table below) for each receptor.  cDNAs were submitted 

to 45 cycles of amplification (temperatures for annealing: 60°C; dissociation: 55°C) and gave 

single peaks for each product.  

Reverse transcriptase polymerase chain reaction (RT-qPCR) products were purified on a 2% 

acrylamide gel, quantified using QIAquick Gel Extraction Kit (Qiagen) and sequenced (Genome 

Quebec Innovation Centre, McGill University, Montreal, QC, Canada).  The concentration of the 

purified products was measured by nanodrop and eluted amplicons used in another set of RT-

qPCR reactions as serial dilutions to generate standard curves for each set of oligonucleotides.  

The number of copy was calculated using the following formula: number of copies = (amount 

(ng) * 6.022x1023) / (length (bp) * 1x109 * 650 (g/mole of bp). Standard curves of cDNA copies 

were generated by RT-PCR and used to determine the number of mRNA copies for each 

receptor. 
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Receptor Forward oligonucleotide Reverse oligonucleotide 

FGFR1 (all variants) CTACAAGGTCCGTTATGCCAC TGCTACCCAGGGCCACTGTTTTG 
FGFR2 (all variants)  
IIIb 
IIIc 
α 
β (same reverse) 

AAGCCCAAGGAGGCGGTCAC 
GATAAATAGTTCCAATGCAGAAGTGCT 
AGATTGAGGTTCTCTATATTCGGAATG 
CTCTCAACCAGAAGTGTACGTGGCTGC 
CCACATTAGAGCCAGAAGGAGCACC 
CCACATTAGAGCCAGAAGATGCCA 

CAGGAACACGGTTAATGTCA 
TGCCCTATATAATTGGAGACCTTACA 
CTGTCAACCATGCAGAGTGAAAG 
GACATTCACCATGAAGYACCAAG 
GCTGGTTTCGTACCTTGTAGCCTCC 

FGFR3 (all variants) TACTGTGCCACTTCAGTGTGC ATCCGCTCGGGCCGTGTCCAGTAA 
FGFR4 (all variants) CCAGCGCATGGAGAAGAAAC ACCACGCTCTCCATCACGAGAC 

 

2.1.3.3. Immunohistochemistry (IHC) 

Freshly isolated human neutrophils (1.2 x 108 cells) were centrifuged and the pellet was fixed in 

10% PBS-buffered formalin overnight, dehydrated in a graded series of ethanol solutions and 

xylene, and embedded in paraffin.  Six (6) µm–thick sections were rehydrated, blocked in 10% 

normal goat serum (NGS), and incubated overnight with rabbit polyclonal anti–human FGFR1-4 

IgG or normal rabbit IgG (1:200 dilution; Santa Cruz Biotechnology, Santa Cruz, CA).  

Following a 30-minute incubation with the secondary antibody (goat anti-rabbit IgG, 1% NGS), 

sections were rinsed 3 times in Tris buffer, and incubated in Vectastain ABC alkaline 

phosphatase solution (Vector laboratories, Burlington, ON, Canada) and revealed with the Vector 

black alkaline phosphatase substrate solution for 30 minutes each as recommended by the 

manufacturer.  Slices were rinsed, immerged in methyl green (10 minutes, 60°C), dehydrated, 

mounted with resinous medium, and examined with a light microscope under 40x and 100x 

magnification.  No cross-reactivity was observed between FGFR1-4 antibodies.  

 

2.1.3.4. Confocal microscopy  

Neutrophils were isolated as aforementioned, led to adhere on glass coverslips precoated with 

poly-L-lysine (BD BioCoat; Becton Dickinson, Mississauga, ON, Canada) or 1 hour and fixed 

with a 2% paraformaldehyde solution.  Nonspecific binding of primary antibodies was prevented 

by preincubating fixed neutrophils with 10% serum from the species used to raise secondary 

antibodies.  Neutrophils were exposed to mouse monoclonal anti-human FGFR1-4 IgG (R&D 

Systems, Minneapolis, MN) and to a secondary goat anti-mouse antibody coupled to the Cy3-

fluorochrome (Invitrogen).  No cross-reactivity was observed between FGFR1-4 antibodies.  

Neutrophil preparations were mounted using DABCO (1,4-diazabicyclo-2-2-2-octane)/glycerol 

(1:1) solution and glass coverslip.  Stained neutrophils were observed by confocal microscopy 
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(Zeiss Axiovert 100 M microscope equipped with a 63x/1.4 Plan-Apochromat oil objective lens; 

Zeiss, Oberkochen, Germany; and adapted with an LSM 510 confocal system).  Images were 

recorded with LSM 510 software (Zeiss) and exported in tagged-image file format (TIFF).   

 

2.1.3.5 Flow Cytometry (FACS) 

Neutrophils (107 cells/mL) were rinsed and resuspended in RPMI, and mouse IgG (150 µg/mL) 

was added for 30 minutes to prevent nonspecific binding via FcRs.  Neutrophils were 

centrifuged, rinsed, resuspended in PBS-BSA (106 cells/mL, 1% BSA), and incubated with PE-

Conjugated mouse monoclonal anti-human FGFR1-4 IgG (25 or 50 µg/mL, R&D Systems), or 

with control PE-conjugated mouse monoclonal IgG1 (50 µg/mL, R&D Systems) for 30 minutes 

at room temperature.  Cells were rinsed and fixed with 2% paraformaldehyde.  Flow cytometric 

analysis (105 events) was performed using a FACScan (Becton Dickinson, San Jose, CA, USA). 

 

2.1.3.6 Neutrophil migration 

In vitro chemotactic assays were performed in a 48-well modified Boyden chamber apparatus 

(Neuro Probe Inc., Gaithersburg, MD) as described (Lemieux, Maliba et al. 2005, Brkovic, 

Pelletier et al. 2007).  Briefly, The bottom wells were loaded with RPMI containing PBS, IL-8 

(25 nM), FGF1 (10-14 - 10-8 M) or FGF2 (10-14 - 10-8 M) to a final volume of 27 µl. The top wells 

were loaded with neutrophils (106 cells/mL; 50 µl from a RPMI suspension).  The two sections 

(top and bottom wells) were separated by a porous 3-µm polycarbonate membrane filter.  The 

modified Boyden chamber apparatus was incubated at 37°C for 1 hour in a humidified incubator 

in the presence of 5% CO2.  At the end of the incubation period, the upper part of the modified 

Boyden chamber (upper wells) was removed, and the upper side of the membrane was wiped 

carefully with the rubber scraper provided by the manufacturer.  The polycarbonate membrane 

was fixed in methanol, colored with the Kwik-Diff staining solution kit (Thermo Shandon, 

Pittsburgh, PA), mounted on a glass slide, and examined with a light microscope under 40X 

magnification.  The number of cells in five random fields was counted, and the results were 

expressed as relative neutrophil migration (number of cells from tested group/number of cells 

from corresponding control vehicles).   

In another set of experiments, neutrophils were pre-treated with 0.1 µg/mL of blocking 

anti-FGFR1, FGFR2 or FGFR4 antibodies (R&D Systems, Minneapolis, MN) or with an isotype-
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matched control IgG for 30 minutes prior to a 1-hour migration towards PBS, IL-8 (25 nM), 

FGF1 (10-9 M) or FGF2 (10-9 M).  In the latter experiment, maximal effect was set to 100% and 

corresponds to the number of IgG-pretreated neutrophils migrating towards FGF1 or FGF2. The 

migration of neutrophils pretreated with FGFR antibodies was expressed as a percentage of the 

maximum FGF-induced response in absence of FGFR antibodies.  

 

2.1.3.7 Statistical analysis 

Data are presented as mean ± SEM.  Statistical comparisons were made by student t-test or by a 

one-way analysis of variance (ANOVA), followed by Tukey post-hoc where applicable using 

GraphPad Prism (Mac version 5.0b).  Differences were considered significant at P values less 

than .05.  
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2.1.4 Results 

2.1.4.1 Neutrophil expression of FGFR mRNA 

Using neutrophils isolated from venous blood of 22 healthy volunteers, we determined the 

mRNA expression of FGF receptors (1 to 4; FGFR1-4), as described in materials and methods.  

Neutrophils expressed an average of 4.72 x 105 copies of total FGFR mRNA, irrespective of the 

subtypes.  FGFR2 mRNA had the highest level of expression (3.10 ± 0.67 x105 mRNA copies) 

followed by FGFR4 (1.07 ± 0.24 x105 copies) and FGFR1 (0.6 ± 0.12 x105 copies), whereas 

FGFR3 mRNA level was undetectable (Figure 1A).  As the levels of total FGFR mRNA copies 

varied between individuals, we represented the distribution of each of FGFR1-4 mRNA per 

donor.  We arbitrarily separated the donors into low (< 4 x105 copies; 11/22 donors) and high 

expressers (>4 x105 copies; 11/22 donors) (Figure 1B); regardless of which group the donors 

belonged to, FGFR2 represented the highest proportion of total FGFR mRNA, corresponding to 

51.0 ± 9.5 and 67.9 ± 5.1% of the total FGFR mRNA for low and high expressers (Figure 1C).  

 

2.1.4.2 Neutrophil expression and localization of FGFR proteins 

Independently of the above mRNA analyses, neutrophils from 16 different donors were examined 

for FGFR1-4 protein expression and localization by conventional immunohistochemistry (IHC).  

Due to variations in staining intensities and the number of cells that were marked between 

different donors, we distinguished four staining patterns (Figure 2A-E) to which we attributed 

qualitative scores: score 0 (background staining; Figure 2A), score 1 (faint but detectable staining 

in some cells; Figure 2E), score 2 (high staining in some cells; Figure 2B) or score 3 (high 

staining in most cells; Figure 2C).  The staining scores for each donor, along with the means of 

the scores for comparative purposes, are presented in Table 1.  FGFR1 staining showed high 

staining on a small subset of the neutrophils for most donors (Figure 2B).  The majority of donors 

scored high for FGFR2, with a much larger fraction of neutrophils intensely stained (Figure 2C).  

FGFR3 and FGFR4 expression fell between scores 0 and 1 as most donors showed either very 

faint staining in a minor population of neutrophils or no detection at all (Figure 2D and E).  We 

also observed differences in the localization of the staining, especially between FGFR2 and 

FGFR1 (and to a lesser extent FGFR4), as shown by the boxed in magnified images in Figure 2.  

When viewed at 100X magnification, neutrophils stained for FGFR2 showed a distinct darker 

coloration at the cytoplasmic periphery, unlike FGFR1 or FGFR4, which showed a rather diffuse 
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intracellular staining pattern.  These observations suggest that FGFR2 is the only neutrophil cell-

surface receptor, whereas FGFR1 and FGFR4 are cytosol-bound.  

Data obtained from flow cytometry analyses reflected the same variability in expression 

levels of FGFR1-4 from one donor to another.  By confocal microscopy, we determined whether 

the receptors were localized intracellularly or at the cell-surface.  We observed that FGFR1 and 

FGFR4 staining was peri-nuclear and diffused across the cytosol of the neutrophils, whereas 

FGFR2 staining was mainly confined to a thin strip in close proximity to the cell surface.  Once 

again, FGFR3 detection was similar to the non-specific IgG background (Figure 3).  

 

2.1.4.3 Characterization of FGFR2 

FGF receptors share the same basic protein structure, which is characterized by up to three 

extracellular immunoglobulin (Ig) domains (denoted by Ig-I, -II, or -III).  These Ig domains 

define the affinity and responsiveness of FGFRs for different FGF ligands (Miki, Bottaro et al. 

1992, Hanneken 2001, Cotton, O'Bryan et al. 2008).  In normal tissues, FGFRs express all three 

Ig domains and are referred to as ‘FGFR-α’ (Figure 4A). The loss of Ig-I, gives rise to ‘short’ 

forms of FGFRs called ‘FGFR-β’, correlating with transformation to a malignant phenotype and 

invasiveness (Yamaguchi, Saya et al. 1994, Karajannis, Vincent et al. 2006).  FGFR-β forms are 

thus found in cancerous cell lines, having a thousand-fold higher affinity to FGF1 but not for 

FGF2. The complexity of the FGFR family is increased by alternative splicing in exons 8-10 of 

Ig-III domain, generating FGFR-IIIb and FGFR-IIIc isoforms (Figure 4B). These splicing events 

confer additional ligand binding properties to FGFRs (Turner and Grose 2010).   

Because we identified FGFR2 as the only cell-surface receptor, we further characterized 

the expression of its different isoforms.  We looked at the FGFR2 mRNA transcript, first to 

establish whether all three Ig domains were coded, and second to determine which of exons IIIb 

or IIIc in Ig-III were spliced.  As per our previous experiments, we performed RT-qPCR analyses 

and determined that FGFR2α is nearly the exclusive isoform (Figure 4C).  We then quantified the 

mRNA of both FGFR2α-IIIb and FGFR2α-IIIc subtypes and observed that in neutrophils, 

FGFR2 mRNA was primarily FGFR2α-IIIc.  

 

2.1.4.4 In vitro FGF1 and FGF2 - mediated chemotaxis 
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Previous studies reported that FGF2 modulates the recruitment of polymorphonuclear cells, 

monocytes, and T cells in vivo (Zittermann and Issekutz 2006, Zittermann and Issekutz 2006).  

However, the possibility that FGFs could be direct stimulators of leukocyte recruitment was not 

addressed.  To this end, we used a modified Boyden microchamber model and observed that both 

FGF1 and FGF2 were capable of mediating neutrophil chemotaxis at picomolar concentrations.  

In addition, treatment with FGF1 or FGF2 (10-14 - 10-8 M) induced a bell-shape activity on the 

number of migrating neutrophils as compared to control PBS-treated cells.  The maximal effect 

was achieved at 10-10 M for FGF1 and 10-9 M for FGF2, corresponding to 1.77 and 2.34 fold 

increase over PBS-induced migration, respectively.  The positive control IL-8 (25 nM) increased 

migration by 2.72 (± 0.22) folds compared to control PBS-treated neutrophils (Figure 5A).  

In another set of experiments, we assessed the contribution of FGFR1, FGFR2 and 

FGFR4 to FGF-mediated chemotaxis.  Neutrophils were pre-treated with blocking monoclonal 

antibodies against FGF receptors (FGFR1, -2 and -4) or with a control isotype-matched IgG (0.1 

µg/mL) for 30 minutes prior to stimulation with PBS, IL-8 (25 nM), FGF1 or FGF2 (10-9 M).  

We observed that the effects of FGF1 on neutrophil chemotaxis were suppressed by 75.2% with 

the selective anti-FGFR2 antibody and partially reduced with the anti-FGFR1 or anti-FGFR4 by 

39.6 and 31.9% respectively.  FGF2-induced neutrophil migration was almost completely 

abrogated by treatment with the anti-FGFR2 antibody (96% reduction), whereas anti-FGFR1 and 

FGFR4 antibodies reduced migration by 28.9% and 14.6% respectively (Figure 5B).  In contrast, 

basal and IL-8-induced neutrophil migration was unaffected in presence of anti-FGFR antibodies 

(data not shown). 
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2.1.5 Discussion 
In the current study, we demonstrate that circulating neutrophils isolated from the blood of 

healthy individuals express varying levels of FGFR1, -2 and -4 mRNA, with FGFR2 mRNA 

showing the most consistent and highest level of expression.  At the protein level, donors showed 

a heterogeneous expression of FGF receptors.  We identified FGFR2 as the most expressed and 

unique neutrophil cell-surface receptor, whereas FGFR1 and FGFR4 appeared to be cytosol-

bound.  Neither the mRNA nor the protein for FGFR3 was significantly detectable.  In addition, 

we observed that FGF1 and FGF2 were capable of stimulating neutrophil migration under in vitro 

conditions, mainly through FGFR2 activation.  

FGF1 and FGF2 are potent heparin-binding pro-angiogenic growth factors that exert their 

biological functions through the activation of high affinity tyrosine kinase receptors (FGFRs), 

heparan-sulfate proteoglycans (HSPGs) and integrins expressed on the surface of effector cells 

(Forsten-Williams, Chua et al. 2005).  Although the presence of FGFRs on human neutrophils 

has not been reported, these leukocytes from a biological standpoint seem naturally well 

equipped to respond to FGF stimulation.  Firstly, neutrophils express integrins as well as HSPGs, 

accessory co-receptors that facilitate dimerisation of tyrosine kinase receptors and amplify the 

signalling triggered by HSPG-binding growth factors such as FGFs.  Secondly, neutrophils 

present at their surface the receptors for at least two other families of angiogenic growth factors 

with similar properties to FGFs.  Indeed, neutrophils were shown to express VEGFR-1 and Tie2 

receptors, which are namely responsible for VEGF and angiopoietins (Ang)-mediated neutrophil 

chemotaxis, respectively (Ancelin, Chollet-Martin et al. 2004, Lemieux, Maliba et al. 2005).  

 

2.1.5.1 Detection and localization of FGF receptors on human neutrophils 

The initial objective of our study was to determine whether neutrophils expressed FGF receptors.  

Quantitative RT-PCR analyses showed a trend among individuals to express more mRNA for 

FGFR2 than any of the other FGF receptor subtypes.  FGFR1 and FGFR4 mRNA were also 

detectable with a generally lower number of copies, whereas FGFR3 was minimally or not 

detected.  Owing to the fact that the presence of the mRNA does not always coincide with the 

expression of its corresponding protein, we examined FGFR protein expression by 

immunostaining and confocal microscopy.  FGFR2 was detected on a large subset of neutrophils 

for many of the donors, with a staining pattern to the cell-surface membrane.  FGFR1 and FGFR4 
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showed a less intense but uniformly diffused staining across the cytoplasm of a small fraction of 

neutrophils, suggesting that if these receptors were indeed cytoplasmic, they were not confined to 

specific subcellular fractions or to vesicles.  FGFR3 protein detection was absent to very low, 

accordingly to its corresponding mRNA levels. 

 

2.1.5.2 Characterization of FGFR2 

The specificity of the FGF-neutrophil interaction is determined, not only on the basis of which 

FGFR is expressed at the cell surface, but also by the subtype and isoform of the surface-

receptor.  Most mammalian FGFRs exist as the FGFR-α isoform, which consists of three 

extracellular immunoglobulin-like domains (Ig I-III).  The lack of Ig-I, which gives rise to short 

forms of FGFR called ‘β’, leads to a thousand-fold increase in FGF1 responsiveness and an 

important reduction in FGF2 affinity.  FGFs interact with the Ig-II and Ig-III domains, with the 

Ig-III interactions primarily responsible for ligand-binding specificity.  Alternative splicing of 

exons 8 and 9 in the Ig-III domain gives rise to 'IIIb' and 'IIIc' variants for FGFR1, -2 and -3, thus 

generating seven possible FGFR subtypes at the cell surface that bind a specific subset of FGFs.  

FGF1 is capable of activating all seven FGFRs.  In contrast, FGF2 only binds the IIIc forms of 

FGFRs (Dionne, Crumley et al. 1990, Dell and Williams 1992, Jaye, Schlessinger et al. 1992, 

Cheon, LaRochelle et al. 1994, Ibrahimi, Zhang et al. 2004, Ibrahimi, Zhang et al. 2004, 

Mohammadi, Olsen et al. 2005, Cotton, O'Bryan et al. 2008).  Using qPCR analysis, we 

confirmed that nearly all the FGFR2 mRNA from human neutrophils comprises all three Ig 

domains, coding for the α-isoform.  Furthermore, the majority of the FGFR2 mRNA contains 

exon 9 in the second part of Ig-III domain, which would thereby generate IIIc isoforms.  The 

presence of FGFR2α-IIIc isoform on the cell surface of human neutrophils would allow them to 

interact with FGF1, FGF2, FGF-4, and FGF-6 but not with FGF-3, FGF-7 or FGF10 (Bottaro, 

Rubin et al. 1990, Dell and Williams 1992, Miki, Bottaro et al. 1992).  Given the role of FGFs in 

angiogenesis, this finding could potentially have important physiological implications; indeed, in 

cases such as following a cerebral stroke or cardiac ischemia, where an increase in angiogenesis 

is desired to improve reperfusion while maintaining a minimal influx of inflammatory cells, the 

choice of FGF ligand could become critical.  

Our data regarding FGFR1-4 protein expression and localization are in agreement with 

previous studies reporting the presence of soluble cytosolic forms for FGF receptors in blood and 
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different cell types (Root and Shipley 2000, Hanneken 2001).  The function of the cytoplasmic 

FGFRs can only be speculative at the moment, but we did consider the possibility that FGF2 

could induce the translocation of its own receptors from the cytosol of the neutrophils to the cell 

surface.  However, when neutrophils were treated with FGF2 for up to 24 hours, FGFR1-4 

detection was not significantly increased, as measured by flow cytometry (data not shown).  

Nevertheless, this observation does not exclude the possibility that FGFR1-4 translocation could 

be induced by other more potent inflammatory mediators such as IL-8, TNF-α or bacterial 

lipopolysacharide (LPS), all of which can promote protein translocation to the surface of 

neutrophils (Csernok, Ernst et al. 1994, Rollin, Lemieux et al. 2004).  It is possible that the 

soluble forms of FGFR1 and -4 are proteolytically cleaved by matrix metalloproteases (MMPs) 

inside the cell before they reach the cytoplasmic membrane, especially since neutrophils 

synthesize, store and release large amounts of MMP-2 (Cuadrado, Ortega et al. 2008) and MMP-

9 (Sopata and Dancewicz 1974, Hibbs, Hasty et al. 1985). This proteolysis can occur in different 

locations within the cell, especially since MMPs have been shown to cleave substrates in nuclear, 

mitochondrial, cytoplasmic and vesicular compartments, including the intracellular cytoskeletal 

matrix (Cauwe and Opdenakker).  Furthermore, the presence of FGF2 in the cytoplasm of 

neutrophils has been reported (Pazgal, Zimra et al. 2002), which raises the possibility that FGF2 

could have undetermined intracellular functions and could be sequestered by soluble FGFR 

proteins. Further experimentation will be required before a functional role for these cytoplasmic 

receptors can be ascertained. 

 

2.1.5.3 FGF1 and FGF2 - mediated chemotaxis 

Numerous angiogenic factors have been shown to modulate leukocyte behavior under 

inflammatory condition.  For instance, VEGF has been reported to promote several chronic 

inflammatory disorders (Dvorak, Detmar et al. 1995, Lee 2005, Tammela, Enholm et al. 2005, 

Roy, Bhardwaj et al. 2006, Yla-Herttuala, Rissanen et al. 2007, Mac Gabhann and Popel 2008, 

Scaldaferri, Vetrano et al. 2009). It has been shown that FGF2 can modulate the interaction of 

leukocytes with ECs in vitro (Byrd, Zhao et al. 1996, Wempe, Lindner et al. 1997, Zittermann 

and Issekutz 2006), secondary to the stimulation of adhesion molecule expression on ECs. We 

addressed the capacity of FGF1 and FGF2 to directly modulate neutrophil chemotaxis in an EC-

free environment by using a modified boyden microchamber model. We observed that both FGF1 
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and FGF2 were capable of stimulating neutrophil recruitment, albeit with different potencies.  

These effects were almost completely abrogated with blocking anti-FGFR2 antibodies, and only 

partially blocked by anti-FGFR1 and FGFR4 antibodies, suggesting that most of the chemotactic 

activities of FGFs are mediated by FGFR2 activation.  

In summary, our results demonstrate for the first time the exclusive expression of FGFR2 

at the surface of human neutrophils.  The predominance of the FGFR2α-IIIc isoform suggests 

that neutrophils respond to only a specific subset of FGF ligands.  Accordingly, we observed that 

FGF1 and FGF2, both of which bind strongly to FGFR2α-IIIc, act as chemotactic agents for the 

recruitment of neutrophils in vitro, mainly through direct interaction and activation of FGFR2. 

Consequently, this study delineates a key inflammatory role for FGF1 and FGF2 and supports the 

possibility of additional functions for FGF/FGFR complex in modulating polymorphonuclear 

leukocyte pro-inflammatory activities.  

.  
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2.1.8 Figure Legends 
Figure 1: Fibroblast growth factor (FGF) receptor (FGFR) 1–4 mRNA expression in human 

neutrophils. Circulating neutrophils isolated from 22 healthy individuals were profiled for 

FGFR1–4 mRNA expression. A: number of FGFR1–4 mRNA copies as well as means ± SE are 

presented. Donors are the same across columns, with each symbol per column corresponding to a 

single donor. B: distribution of FGFR1–4 mRNA copies per donor is illustrated. Each column 

represents a single donor, and the peak of the columns corresponds to the total number of FGFR 

copies. Donors were divided into low (<4 × 105 total FGFR mRNA copies) and high (>4 × 105 

total FGFR mRNA copies) expressers. C: distribution of each FGFR1–4 mRNA illustrated in B 

is expressed as a percentage of total FGFR mRNA per individual. Dotted lines indicate the 

average FGFR2 percentage observed in low or high expressers. 

Figure 2: Expression and localization of FGFR1–4 proteins by immunohistochemistry (IHC). 

Human neutrophils mounted in paraffin were stained with specific anti-human FGFR1–4 IgG 

antibodies. Representative IHC staining images for each receptor are illustrated as follows: 

control IgG (A), FGFR1 (B), FGFR2 (C), FGFR3 (D), and FGFR4 (E). The magnified (×100) 

boxes in the images were chosen from their corresponding fields (black arrows) and show the 

distinct localization patterns for each receptor. 

Figure 3: Localization of FGFR1–4 by confocal microscopy. Human neutrophils were stained 

with specific anti-human FGFR1–4 antibodies and a secondary Cy3-coupled antibody. Labeled 

neutrophils were viewed under confocal microscope to assess the protein localization of FGFR1–

4. Columns, left to right, correspond to images of neutrophils taken from random fields: phase 

contrast showing membrane integrity, specific FGFR staining (secondary antibody coupled to 

Cy3 dye), and nuclear counterstaining (To-pro). The three-dimensional reconstructions of 

confocal Z-stack images (last column) correspond to neutrophils chosen at random from the 

larger associated fields. 

Figure 4: FGFR2 subtype and isoform expression in human neutrophils. FGFRs are composed 

of up to three extracellular Ig-like domains that determine their binding properties to members of 

the FGF family. A: FGFRs can be expressed either as a long form (FGFR-α) containing all three 

Ig domains or as a shorter form lacking Ig-I (FGFR-β). B: alternative splicing in exons 8–9 of the 

Ig-III domain generates isoforms referred to as “IIIb” (spliced exon 9) or “IIIc” (spliced exon 8) 
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that exert different FGF-binding preferences. C: mRNA was isolated from the neutrophils of at 

least 7 healthy donors and assessed for FGFR2α and -β subtypes as well as IIIb-IIIc isoforms by 

quantitative (q)PCR analyses. The number of mRNA copies and means ± SE are shown, with 

each symbol per column representing a single donor. 

Figure 5: Effect of FGF1 and FGF2 on neutrophil chemotaxis. A: untreated human neutrophils 

were set to migrate in a modified Boyden microchamber toward PBS, IL-8 (25 nM, positive 

control), or increasing concentrations of FGF1 or FGF2 (10−14 to 10−8 M). Cells from 5 random 

fields were counted, and migration is expressed relative to control-PBS. B: neutrophils were 

pretreated with 0.1 µg/mL of specific blocking antibodies for FGFR1, -2, or -4 or an isotype-

matched IgG and then set to migrate toward PBS, IL-8, FGF1, or FGF2 (10−9 M). Migration of 

IgG-treated neutrophils toward FGF1 or FGF2 was set as the maximal effect (100%), and the 

migration of FGFR-pretreated neutrophils toward FGF1 or FGF2 is expressed as a percentage of 

the maximal effect. Results are presented as means ± SE for at least six independent experiments. 

*P < 0.05, **P < 0.01, and ***P < 0.001 as compared with control-PBS (A) or FGF1/FGF2 (B).  
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Table 1: Immunohistochemistry scores for FGFR1-4 expression 

Neutrophils from 16 donors were assessed for the presence and localization of FGFR1-4 proteins 

by immunohistochemistry. Qualitative scores were attributed per individual for each receptor as 

follows: IgG background staining (score 0), faint but detectable staining in some cells (score 1), 

high staining in some cells (score 2), and high staining in most cells (score 3). Means ± SE for 

each receptor are shown in the bottom row. 

Donors FGFR1 FGFR2 FGFR3 FGFR4 

1 2 3 1 2 

2 3 1 0 1 

3 1 3 0 0 

4 0 0 0 0 

5 1 3 0 2 

6 3 3 1 2 

7 1 2 0 1 

8 0 2 0 1 

9 2 2 0 0 

10 2 2 0 1 

11 3 2 0 1 

12 1 2 0 1 

13 0 2 1 0 

14 1 2 1 0 

15 1 1 1 0 

16 2 2 1 1 

Mean 1.43 2 0.37 0.81 

SEM 0.36 0.50 0.09 0.20 
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Figure 1:  FGFR1–4 mRNA expression in human neutrophils 
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Figure 2: FGFR1–4 proteins by immunohistochemistry (IHC) 
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Figure 3: FGFR1–4 by confocal microscopy 
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Figure 4: FGFR2 subtype and isoform expression 
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Figure 5: Chemotactic effect of FGF1 and FGF2  
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2.2 Article #2 
Haddad, L.E. and M.G. Sirois, 2014. Angiopoietin-1 upregulates de novo expression of IL-1β 

and Il1-Ra, and the exclusive release of Il1-Ra from human neutrophils. PLoS One, 2014. 9(2): p. 

e88980. 
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2.2.1 Abstract 
The expression of the angiopoietin (Ang) receptor, Tie2, on both endothelial and inflammatory 

cells supports the idea that Ang signalling may play a fundamental role in initiating and 

maintaining the inflammatory response. We have previously shown that Ang1 and/or Ang2 alter 

the innate immune response by enhancing human neutrophil survival, chemotaxis and production 

of inflammatory cytokine interleukin-8 (IL-8) in vitro.  Thus, we hypothesized that Ang1 and 

Ang2 could modulate other inflammatory signals in neutrophils, a possibility we explored 

through a gene-based assay looking at changes in the mRNA expression of 84 inflammatory 

cytokines and their receptors.  We observed that Ang1 (10-8 M), but not Ang2, increased mRNA 

expression of prominent pro-inflammatory cytokine IL-1β and its natural antagonist IL-1RA, by 

up to 32.6- and 10.0-fold respectively, compared to PBS-control.  The effects of Ang1 extended 

to the proteins, as Ang1 increased intracellular levels of precursor and mature IL-1β, and 

extracellular levels of IL-1RA proteins, by up to 4.2-, 5.0- and 4.4-fold respectively, compared to 

PBS-control.  Interestingly, Ang1 failed at inducing IL-1β protein release or at increasing 

intracellular IL-1RA, but the ratio of IL-1RA to mature IL-1β remained above 100-fold molar 

excess inside and outside the cells.  The above-noted effects of Ang1 were mediated by MAP 

kinases, whereby inhibiting MEK1/2 lead to up to 70% effect reduction, whereas the blockade of 

p38MAPK activity doubled Ang1’s effect.  These findings suggest that Ang1 selectively alters 

the balance of neutrophil-derived inflammatory cytokines, favoring the blockade of IL-1 activity, 

a consideration for future therapies of inflammatory diseases.  
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2.2.2 Introduction 
Inflammation is characterized by a sequence of events that involve activation of the endothelium, 

release of endothelial mediators, vascular remodeling to allow for increased permeability and 

blood flow, and leukocyte – especially neutrophil – recruitment and infiltration into inflamed 

tissues.  Because acute inflammation and angiogenesis can be triggered by the same molecular 

events, it is not surprising that most molecules that alter permeability, such as vascular 

endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α and nitric oxide (NO), are 

potent pro-angiogenic factors (review; (Arroyo and Iruela-Arispe 2010)).  

Angiopoietins (Ang) are a family of angiogenic growth factors that play a major role in 

modulating vascular integrity and maturation. While the expression of the Ang receptor Tie2 on 

both endothelial and inflammatory cells (Feistritzer, Mosheimer et al. 2004, Lemieux, Maliba et 

al. 2005, Ahmad, Cudmore et al. 2010) suggests a potential involvement in inflammation, a 

literature review of the specific contributions of the primary family members, Ang1 and Ang2, 

reveals a dichotomy of pro- and anti-inflammatory properties that is often influenced by the 

presence of other inflammatory mediators. From an anti-inflammatory perspective, Ang1 

counteracts some components of the activity of pro-inflammatory factors on endothelial cells 

(ECs), inhibiting increases in EC permeability induced by VEGF, thrombin, bradykinin and 

histamine in vitro (Gamble, Drew et al. 2000, Pizurki, Zhou et al. 2003, Oubaha and Gratton 

2009). Additionally, Ang1 downregulates the release of chemokine IL-8 by ECs (Pizurki, Zhou et 

al. 2003), and inhibits adherence and transmigration of neutrophils across EC monolayers 

stimulated with VEGF, TNF-α and thrombin (Gamble, Drew et al. 2000, Kim, Oh et al. 2002, 

Pizurki, Zhou et al. 2003), likely through altering the expression of endothelial E-selectin and 

intracellular/vascular cell adhesion molecules (ICAM-1/VCAM-1) (Gamble, Drew et al. 2000, 

Kim, Moon et al. 2001). In mouse skin in vivo, co-overexpression of VEGF and Ang1 shows an 

additive effect on angiogenesis but results in leakage-resistant vessels with little inflammation 

(Thurston, Rudge et al. 2000). In stark contrast, Ang1 exerts certain pro-inflammatory activities: 

Ang1 increases endothelial P-selectin translocation, a protein that mediates the rolling of 

leukocytes onto the endothelium under inflammatory conditions(Maliba, Brkovic et al. 2008). 

Ang1 alone also has the ability to directly impact leukocyte behavior, stimulating neutrophil IL-8 

synthesis and release(Neagoe, Dumas et al. 2011), and acting in a Tie2-dependent manner to 

recruit neutrophils and eosinophils, to increase neutrophil lifespan, and to promote neutrophil 
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adhesion onto extracellular matrix (Dumas, Martel et al. , Feistritzer, Mosheimer et al. 2004, 

Lemieux, Maliba et al. 2005, Sturn, Feistritzer et al. 2005, Brkovic, Pelletier et al. 2007). The 

contribution of Ang2 to acute inflammation is even less defined, with some evidence of pro-

inflammatory properties such as enhancing TNF-α-dependent adhesion of leukocytes to EC 

monolayers, as well as TNF-α-induced expression of ICAM-1 and VCAM-1 (Fiedler, Reiss et al. 

2006).  Ang2 alone also promotes a transient endothelial P-selectin translocation and its effects 

on neutrophil adhesion and chemoattraction are Tie2-dependent and similar to those of Ang1 

(Lemieux, Maliba et al. 2005, Sturn, Feistritzer et al. 2005); however, unlike Ang1, Ang2 fails to 

promote neutrophil IL-8 synthesis and/or release, to increase neutrophil survival, or to counteract 

the effects of Ang1 on the aforementioned processes (Dumas, Martel et al. , Neagoe, Dumas et 

al.).  Thus, the distinct contributions of Ang1 and Ang2 to acute inflammation remain to be 

clearly delineated.  

Neutrophils are generally the first responders at sites of inflammation.  They contribute 

substantially to inflammation through their ability to produce proteases, reactive oxygen species 

(Cassatella 1995, Ely, Seeds et al. 1995), and to a lesser extent, cytokines including interleukin 

(IL)-6, TNF-α and IL-1 receptor antagonist (IL-1RA) (Kuhns, Young et al. 1998, Lapinet, 

Scapini et al. 2000, Jablonska, Kiluk et al. 2001, Xing and Remick 2003, Riedemann, Guo et al. 

2004).  Building on our recent findings that Ang1 promotes significant IL-8 production in human 

neutrophils in vitro in a time-dependent manner (Neagoe, Dumas et al.), we broadened our 

investigation to 84 other pro-inflammatory cytokines and their receptors, and looked at changes 

in their mRNA expression following angiopoietins stimulation. The first part of this study 

identified three related targets, all belonging to the IL-1 family of inflammatory cytokines, IL-1α, 

IL-1β, and IL-1RA, as well as a number of other potential interests unrelated to the IL-1 family. 

The second part of this study focused on identifying the kinetics and mechanisms that mediate 

the effects of Ang1 on IL-1 family members in neutrophils.   
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2.2.3 Materials and Methods 

2.2.3.1 Neutrophil purification 

The study was conducted in accordance with the Declaration of Helsinki and approved by the 

Montreal Heart Institute’s ethical committee (Montreal, QC, Canada; ethics No. ICM #01-406).  

All of the subjects provided written informed consent to the experimental protocol before 

participating in the study.  Venous blood was obtained from healthy donors free from medication 

for at least 10 days prior to the experiments.  Venous blood was obtained by drawing 100 mL (4 

x 25 mL) of blood using a 21G needle into 30 mL syringes prefilled with 5 mL of Anticoagulant 

Citrate Dextrose Solution USP (ACD) Formula A (Baxter Healthcare; Deerfield, IL). The blood 

was then transferred into 4 x 50 mL tubes and spun for 15 min at 200g at room temperature. 

Following the centrifugation, the platelet rich plasma (PRP) was removed from the top layer and 

20 mL of a 4% Dextran solution (138 mM NaCl, 5 mM KCl, 0.34 mM Na2HPO4, 0.4 mM 

KH2PO4, 4.2 mM NaHCO3, 5.6 mM Glucose, 10 mM HEPES, 12.9 mM Sodium Citrate and 

250 mM Dextran; pH 7.4) was added per tube.  The tubes were gently mixed and red blood cells 

were left to sediment for 45 minutes at room temperature.  The upper layer containing the white 

blood cells was collected and gently deposed on a 12.5 mL layer of Ficoll-Paque Plus (GE 

Healthcare; Baie d’Urfé, QC, Canada) in 50 mL tubes and spun for 28 minutes at 400g and at 

room temperature (Theoret, Bienvenu et al. 2001, Rollin, Lemieux et al. 2004, Neagoe, Brkovic 

et al. 2009). Following this centrifugation, the monocytes and lymphocytes were separated from 

the neutrophils by Ficoll gradient.  The reminiscent red blood cells and neutrophils were found in 

the pellet.  In order to eliminate the red blood cells from the neutrophils, we used a water lysis 

procedure by which we added 20 mL of distilled water over the neutrophils and red blood cells 

pellet and mix gently for 20 seconds, followed by the quick addition of 20 mL of HBSS 2X 

solution while continuing mixing, for a final concentration of HBSS 1X (pH 7.4).  Neutrophils 

were then spun for 10 minutes at 200g and at room temperature.  The pellet was then resuspended 

in RPMI 1640 medium with Corning Glutagro (Mediatech, Manassas, VA) supplemented with 25 

mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) and 1% 

penicillin/streptomycin. Contamination of isolated neutrophil suspension with peripheral blood 

mononuclear cells was less than 0.1% as determined by morphological analysis and flow 

cytometry, and viability was found to be greater than 98%, as assessed by Trypan blue dye 

exclusion assay.  
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2.2.3.2 RNA studies 

Two RT-qPCR -based techniques were used.  The first of these is a gene-based screening 

method; more specifically, real time quantitative polymerase chain reaction (RT-qPCR) arrays 

were used to identify targets of angiopoietins stimulation in inflammation.  The second method 

was used to confirm array results and to expand mRNA expression kinetics.  Recombinant 

human Ang1 and Ang2 were obtained from R&D Systems (Minneapolis, MN) and bacterial 

lipopolysaccharide (LPS) from Sigma-Aldrich (St Louis, MO). 

 

RT-qPCR array analyses: Neutrophils (107 cells/mL; 1 mL) from at least three independent 

donors were treated with PBS, Ang1 (10-8 M) or Ang2 (10-8 M) for 90 minutes prior to DNAse 

treatment and total RNA extraction with the RNeasy extraction kit (Qiagen, Mississauga, ON, 

Canada).  RNA samples were evaluated for integrity using a Bioanalyzer 2000 system (Genome 

Quebec Innovation Centre, McGill University, Montréal, QC, Canada); when all three samples 

(PBS, Ang1 and Ang2) from the same donor showed an mRNA integrity above 8.5, they were 

selected for use in arrays. RNA integrity between selected samples differed by less than 0.5. 

Following isolation, 2 µg of RNA were processed with RT2 First Strand Kit (SA Biosciences, 

Frederick, MD) according to manufacturer’s instructions.  Quantitative PCR analyses of 

chemokines and receptors were assessed with the Chemokines & Receptors PCR Array (SA 

Biosciences), RT2 SYBR® Green qPCR master mix (SA Biosciences) and a Stratagene 

Mx3500p qPCR System (Stratagene, La Jolla, CA).  PCR array data were analyzed by the RT2 

Profiler PCR Array Data Analysis program, available through SA Biosciences’ web portal and 

based on the ΔΔCt method with four different housekeeping genes.  Data were normalized to 4 

housekeeping genes (B2M, HPRT1, RPL13A and GAPDH) and represented in a volcano plot of 

fold change in expression of each gene (compared to PBS-control) against its p-value.  

 

RT-qPCR kinetics: Total RNAs (100 ng) from PBS, LPS (1 µg/mL), Ang1 (10-9 and 10-8 M) or 

Ang2 (10-9 and 10-8 M)-treated neutrophils were extracted as mentioned above and reverse 

transcribed using random hexamers and the Moloney murine leukemia virus (MMLV) reverse 

transcriptase (Invitrogen, Burlington, ON, Canada) according to manufacturer’s instructions.  

Reactions were carried out on a MX3500P (Stratagene) using 10 ng of cDNAs, Syber Green 

(Invitrogen) and 300 nM of specific primers as follows (5’ to 3’): • IL-1α forward (Fwd) 
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TGACCTGGAGGCCATCGCCAA; reverse (Rev) GCAGCAGCCGTGAGGTACTGA, • IL-1β 

Fwd ACGCTCCGGGACTCACAGCA; Rev TGAGGCCCAAGGCCACAGGT, • IL-1RA Fwd 

GATGTGGTACCCATTGAGCCTCATGC; Rev ACTGGTGGTGGGGCCACTGT.  cDNAs 

were submitted to 40 cycles of amplification (temperatures for annealing: 60°C; dissociation: 

55°C) and gave single peaks for each product. RT-qPCR products were purified on a 2% 

acrylamide gel, quantified using QIAquick Gel Extraction Kit (Qiagen) and sequenced.  Gene 

expression was normalized using β-microglobulin as the housekeeping gene and results were 

expressed relative to calibrator T0 (gene expression at time of isolation) or to the control-PBS at 

each time point. 

In another set of experiments, neutrophils were pretreated with inhibitors of p38 MAP 

kinase (SB203580; 10 µM), MEK1/2 (U0126; 20 µM), Akt (Triciribine; 5 µM), DMSO (vehicle) 

or PBS for 30 minutes prior to a 1-hour stimulation with PBS, LPS (1 µg/mL), Ang1 (10-10 - 10-8 

M) or Ang2 (10-10 - 10-8 M).  Total RNAs were then extracted and submitted to RT-qPCR 

analyses as aforementioned.  

 

2.2.3.3 Quantification of cytokines by ELISA 

Purified neutrophils (107 cells/mL; 1 mL) were incubated in RPMI and treated with PBS, LPS (1 

µg/mL) Ang1 (10-10 - 10-8 M) or Ang2 (10-10 - 10-8 M) for up to 24 hours at 37°C and 5% CO2.  

Upon the incubation period, neutrophils were centrifuged at 900 g for 6 minutes and supernatants 

collected and stored at -80°C.  The centrifuged cells were then lysed in ice-cold 1% Triton-RPMI 

solution containing a cocktail of protease inhibitors.  The complete kinetics of synthesis and 

release of IL-1α, IL-1β and IL-1RA as well as those for pro-IL-1β were evaluated from cell-

lysates and supernatants respectively, using Quantikine (pro-IL-1β; R&D Systems) or Duoset 

ELISA development kits (IL-1α, 1β, 1RA; R&D Systems) and in accordance with manufacturer’s 

instructions.  

  In another set of experiments, neutrophils were pretreated with DMSO-soluble inhibitors 

of p38 MAPK (SB203580; 1 and 10 µM), MEK1/2 (U0126; 2 and 20 µM), Akt (Triciribine; 1 

and 5 µM), DMSO or PBS for 30 minutes prior to a 2-hour stimulation with PBS, LPS, Ang1 or 

Ang2.  Final DMSO concentration in reaction volumes did not exceed 0.2%.  Upon agonist 

stimulation, supernatants and lysates were collected and the concentrations of cytokines assessed 

by ELISA.  
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2.2.3.4 IL-1β maturation 

IL-1β is synthesized in the cytoplasm as a 31-kDa precursor pro-protein (pro-IL-1β) that is 

cleaved to its mature 17-kDa form by IL-1β-converting enzyme (ICE; also known as caspase-1).  

Neutrophils (107 cells/mL; 1mL) treated with PBS, LPS (1 µg/mL), Ang1 (10-10 - 10-8 M) or 

Ang2 (10-10 - 10-8 M) for up to 6 hours were assessed for caspase-1 activity using the Caspase-1 

Fluorometric Assay (R&D Systems).  Upon each incubation period, neutrophils were centrifuged 

at 900 g for 6 minutes and the supernatants were gently discarded.  Cells were then lysed with 

250 µl of lysis buffer (provided by the manufacturer) and protein concentrations were determined 

with the BCA protein assay.  The enzymatic reaction for caspase-1 activity was carried out in a 

96-well flat bottom microplate using 50 µl (150 µg) of total protein and the caspase-1 fluorogenic 

substrate WEHD-AFC.  The plates were incubated at 37°C for 2 hours and read on a fluorescent 

microplate reader (excitation 400 nm, emission 505 nm).   

In previous studies, Perregaux et al. reported that the potassium ionophore, nigericin is 

capable of inducing efficient cleavage and release of newly synthesized IL-1β from LPS-treated 

macrophages (Perregaux, Barberia et al. 1992, Perregaux and Gabel 1994).  We tested this 

hypothesis in 4 sets of neutrophils (107 cells/mL; 1 mL), each set treated with PBS, LPS (1 

µg/mL), Ang1 (10-8 M) or Ang2 (10-8 M), for 2 hours at 37°C and 5% CO2 to induce maximal 

accumulation of pro-IL-1β.  Upon the first incubation period, neutrophils were centrifuged at 900 

g for 6 minutes.  Lysates and supernatants were immediately collected from one set; for the 

remaining three sets, supernatants were carefully removed and replaced with RPMI containing 

vehicle (DMSO + ethanol), Cycloheximide (CHX; 10 µg/mL; + ethanol) to halt new protein 

synthesis, or CHX and the potassium-proton ionophore nigericin (N; 20 µM) for a further 45 

minutes treatment (37°C and 5% CO2).  Upon this second incubation period, the three sets were 

centrifuged at 900 g for 6 minutes, and supernatants and lysates were collected and assayed for 

pro-IL-1β and IL-1β concentrations by ELISA, as previously described.  CHX was dissolved in 

DMSO to a final DMSO concentration that did not exceed 0.1%.  Nigericin was dissolved in 

ethanol to a final ethanol concentration that did not exceed 0.05%.  

 

2.2.3.5 Statistical analyses 
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Results are presented as the mean ± SEM of independent experiments performed on the 

neutrophils of at least three independent donors. Comparisons were made by one-way analysis of 

variance (ANOVA) followed by a Dunnett or tukey post-hoc test where applicable, using 

GraphPad Prism (Mac version). Differences were considered significant at p values <0.05.  
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2.2.4 Results 
2.2.4.1 Expression of inflammatory cytokines and their receptors 

We have recently reported that Ang1 (10-8 M) promotes the synthesis and release of the 

inflammatory cytokine IL-8 from neutrophils within 60 minutes and peaking within 2 hours of 

stimulation, whereas Ang2 has no such effect (Neagoe, Dumas et al.).  Extending these 

observations, we assessed the potential of angiopoietins to modulate the expression of 84 

inflammatory cytokines in neutrophils.  Neutrophils were treated with PBS (control vehicle), 

Ang1 or Ang2 (10-8 M; 90 minutes), and total mRNAs were extracted for RT-qPCR array 

analyses. For follow-up experiments, we selected genes with a nominal P-value <0.05 and a 

change in expression level ≥ 4-fold (Figure 1A and B). 

Based on the above criteria, most genes that were assayed did not fluctuate significantly 

following treatment with either angiopoietins (see Tables 1 and 2 for a list of all genes and their 

p-value).  However, Ang1, but not Ang2, significantly upregulated the expression of 3 genes 

belonging to the IL-1 family (Figure 1A): IL-1α (49.65-fold increase; p<0.001), IL-1β (17.23-

fold increase; p<0.01) and the endogenous antagonist IL-1RA (8.85-fold increase; p<0.01) as 

compared to PBS-treated cells.  Neither other members of the IL-1 family nor the biologically 

active receptor IL-1R1 varied significantly under our experimental conditions (Table 1). 

Under less stringent statistical parameters (p≈0.05 and gene modulation ≥ 2-fold change), 

qPCR arrays identified three potentially interesting targets of Ang1 treatment: IL-8/CXCL8, 

Lymphotoxin Beta (LTB) and C-C chemokine receptor type 1 (CCR1) (Table 1 and Figure 1A).  

In parallel, Ang2 showed a tendency to up-regulate IL-8 receptor B (IL-8RB)/CXCR2 (Table 2 

and Figure 1B).  The significance of these potential targets will be covered briefly in the 

discussion. 

 

2.2.4.2 Effect of angiopoietins on the mRNA expression of IL-1α, IL-1β and IL-1RA 

Given the strong response of neutrophils in up-regulating IL-1 expression, and the importance of 

the latter family in initiating and modulating the inflammatory response, we sought to confirm 

and expand on the above using custom primers for IL-1α, IL-1β and IL-RA.  Kinetics were 

performed by treating neutrophils with PBS, Ang1 (10-10 - 10-8 M), Ang2 (10-10 - 10-8 M) or LPS 

(1 µg/mL; positive control), for up to 6 hours before mRNA extraction.  Given that lower 

concentrations of angiopoietins (10-10 and 10-9 M) had no significant effect on mRNA expression 
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compared to PBS-control, only the highest concentration of the angiopoietins (10-8 M) is 

represented in the graphs throughout the study. Additionally, because maximal Ang2 (10-8 M) 

had no significant effect compared to PBS-control, only Ang1 (10-8 M) is discussed below.  

IL-1β mRNA was abundantly expressed in neutrophils, with a cycle threshold (Ct)< 25 at 

the time of isolation (T0), and basal (PBS) IL-1β mRNA did not significantly change over time. 

Treatment with Ang1 (10-8 M) induced a rapid increase in IL-1β mRNA expression within an 

hour of stimulation, with 32.6-fold increase compared to PBS-treated cells, after which 

expression progressively returned to basal values (Figure 2A).  Levels of IL-1RA mRNA were 

also abundant in neutrophils, with a Ct< 25 at T0.  Similarly to the potent positive control LPS, 

Ang1 promoted a significant increase in IL-1RA mRNA expression as early as 1 hour after 

stimulation, with 3.3-fold expression increase over PBS-control and reaching up to 9.8-fold at 6 

hours (Figure 2B). Finally, regardless of treatment, IL-1α mRNA levels were hardly detectable in 

neutrophils (Table 3), with a Ct> 42 at T0.  Subsequent basal and treated Ct values remained 

above 35 throughout the 6-hour time-period indicating that IL-1α mRNA is barely, if at all, 

expressed in neutrophils.   

 

2.2.4.3 Kinetics of protein synthesis and release 

Building on the mRNA kinetics studies, we assessed basal expression and de novo protein 

synthesis and release for all three IL-1 family members following angiopoietin treatment.  

Kinetics studies were extended to a 24-hour period; at each time point, using the same lysates 

and/or supernatants, the concentrations of IL-1α, IL-1β or IL-1RA protein were simultaneously 

evaluated by ELISA.  For the same reasons as per the mRNA section, only the highest 

concentration of Ang1 (10-8 M) is discussed below.  

Intracellular levels of IL-1β in neutrophils (107 cells/mL) were almost undetectable at T0 

(Figure 3A).  Basal IL-1β protein levels in PBS-treated neutrophils fluctuated over time, starting 

with 2.1 pg/mL at 30 minutes, reaching a peak of 37.7 pg/mL at 6 hours and declining to 4.7 

pg/mL at 24 hours.  Ang1 (10-8 M) treatment lead to a steady increase in IL-1β synthesis 

throughout the first 6 hours of stimulation, going from 16.4 pg/mL at 1 hour, up to 68.1 pg/mL at 

6 hours, and then stabilizing between 12 and 24 hours at a value below 22 pg/mL.  

Several studies performed on macrophages and monocytes in vitro reported that LPS and 

other mediators are capable of promoting IL-1β protein synthesis but fail to induce IL-1β release 
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(Arend, Smith et al. 1991, Perregaux, Barberia et al. 1992, Perregaux and Gabel 1994, Ferrari, 

Pizzirani et al. 2006, Arend, Palmer et al. 2008).  Our current study shows that circulating human 

neutrophils behave in much of the same manner; indeed, under all conditions tested, no IL-1β 

was detected in the supernatants (Table 3), suggesting that the decreases in intracellular IL-1β 

levels over time were not due to its release.  

Unlike IL-1β, intracellular levels of IL-1RA were substantial at T0, with detection at 11 

350 pg/mL (Figure 3B). We observed a short drop in intracellular IL-1RA in the first 30 minutes 

of stimulation, with levels fluctuating between 7 130 – 7 800 pg/mL regardless of treatment.  For 

the remainder of the time-course, variations in intracellular IL-1RA levels were not statistically 

significant between treatments (Figure 3B), averaging between 7500 pg/mL to up to 16 400 

pg/mL. In another stark contrast to IL-1β, we observed that neutrophils constitutively release IL-

1RA: At T0, we detected 629.1 pg/mL of extracellular IL-1RA in the supernatants (Figure 3C). 

Detection of extracellular IL-1RA under basal conditions continued throughout the entire time-

course and corresponded to about 2-10% of total IL-1RA cellular content.  Similarly to LPS, 

Ang1 promoted a statistically significant increase in IL-1RA release as early as 2 hours following 

stimulation, with 844.6 pg/mL IL-1RA released (vs. 468.2 pg/mL for PBS), after which detection 

values climbed to a peak of 1 379.3 pg/mL at 4 hours (vs. 498.8 pg/mL for PBS) (Figure 3C). 

Finally, IL-1α protein was not detected in neutrophil cell lysates or in their corresponding 

supernatants at T0 or throughout the time-course under basal conditions or angiopoietin 

stimulation (Table 3). 

 

2.2.4.4 Is IL-1β a product of de novo synthesis or maturation?  

IL-1β is synthesized in the cytoplasm as an inactive 31-kDa-precursor protein (pro-IL-1β) before 

being cleaved to its mature 17-kDa form (Netea, Simon et al. 2010).  Thus, we looked at the 

modulation of precursor pro-IL-1β levels in human neutrophils, and performed an initial 

assessment of the possible mechanisms governing pro-IL-1β cleavage. For the same reasons as 

per the mature protein, only the highest concentration of Ang1 (10-8 M) is discussed below.  

De novo synthesis: As per the mature protein, intracellular levels of pro-IL-1β in human 

neutrophils were almost undetectable at T0 (Figure 4).  We observed an increase in pro-IL-1β 

levels under basal (PBS) conditions, reaching as much as 35.1 pg/mL at 2 hours, but 

subsequently declining to less than 10.0 pg/mL at 24 hours.  Treatment with Ang1 (10-8 M) 
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promoted a substantial increase in pro-IL-1β synthesis starting at 1 hour, with detection reaching 

a peak of 147.6 pg/mL at 2 hours, and then declining to 16.0 pg/mL at 24 hours, compared to 

PBS.  Irrespective of the treatment, we did not detect pro-IL-1β proteins in the supernatant of 

neutrophils (Table 3), consistent with reports that pro-IL-1β is not released from cells (Arend, 

Smith et al. 1991, Hogquist, Unanue et al. 1991, Chin and Kostura 1993, Arend, Palmer et al. 

2008, Netea, Simon et al. 2010).  

Maturation of pro-IL-1β has been attributed primarily to the activation of caspase-1; 

however, separate studies reported that the processing of IL-1β might actually occur via a 

caspase-1-independent mechanism, through enzymes such as serine proteases Cathepsin G, 

Neutrophil Elastase, and Proteinase-3 (Mayer-Barber, Barber et al. , Young, Thompson et al. 

2004, Greten, Arkan et al. 2007, Guma, Ronacher et al. 2009).  Using a fluorometric method, we 

assessed the activity of caspase-1 in human neutrophils treated with PBS, angiopoietins and LPS 

(1 µg/mL) for up to 6 hours. We did not detect any basal caspase-1 activity beyond threshold, and 

little to no changes following agonist stimulation (data not shown).   

 

2.2.4.5 Induction of pro-IL-1β maturation and IL-1β release 

Studies have reported that the mechanisms leading to the maturation and effective release of IL-

1β depend on the subset of leukocytes being investigated.  While monocytes readily release IL-1β 

under LPS treatment (Perregaux, Laliberte et al. 1996, Solle, Labasi et al. 2001), macrophages 

require a depletion of intracellular potassium induced by ionophores such as nigericin before 

efficient IL-1β maturation and subsequent release (Perregaux, Barberia et al. 1992, Perregaux and 

Gabel 1994). Because the mechanisms governing IL-1β maturation and release have never been 

reported in neutrophils, and given that even LPS failed at promoting IL-1β release, we tested the 

requirement for a secondary stimulus to drive neutrophil processing of pro-IL-1β and release of 

the mature protein.  

 

Neutrophils were divided into four sets (Figure 5; Sets 1-4) and were treated with agonists 

for 2 hours, a time when most of the new pro-IL-1β has already accumulated under Ang1 (refer 

to Figure 4).  Upon this first incubation period, supernatants and cell lysates from Set 1 were 

collected. For Sets 2-4, supernatants were replaced with new media containing vehicles (DMSO 

+ ethanol) or nigericin (N; in ethanol) for an additional 45 minutes as described in Materials and 
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Methods.  In order to eliminate the contribution of de novo synthesis to possible changes in levels 

of mature IL-1β (i.e. to confirm that any new IL-1β is a result of processing of the accumulated 

pro-IL-1β), a protein translation inhibitor, cycloheximide (CHX; in DMSO) was added during 

this step.  To preserve sample comparability, supernatants from Sets 2-4 were supplemented with 

either DMSO or ethanol, as required.   

Data from Sets 1 (Figure 5A and B) were used to establish the baseline of protein 

kinetics, and were comparable to what we had observed in our previous experiments for all the 

conditions tested.  For pro-IL-1β (Figure 5A), neither the addition of vehicles (Set 2, left panel) 

nor CHX alone (Set 3, left panel) affected the synthesis of pro-IL-1β.  Upon addition of nigericin 

(Set 4, left panel), we observed a near complete loss of detection of intracellular pro-IL-1β, in 

comparison to Set 3.  This loss was not due to the release of pro-IL-1β, since the pro-protein in its 

native form was not detected in any of the corresponding extracellular fractions (Figure 5A, right 

panel).  

Based on these observations, we hypothesized that nigericin may have indeed induced the 

processing of pro-IL-1β into IL-1β, as was reported to happen in macrophages (Perregaux, 

Barberia et al. 1992, Perregaux and Gabel 1994).  However, the concomitant evaluation of IL-1β 

levels indicated that this was not the case (Figure 5B): While the addition of nigericin (Set 4, left 

panel) almost completely depleted intracellular IL-1β content compared to neutrophils from Set 

3, most of the IL-1β was recovered in the extracellular fraction of nigericin-treated neutrophils 

(Set 4, right panel).  In fact, the amount of IL-1β recovered extracellularly from nigericin-treated 

neutrophils (Set 4, right panel) nearly matched what had accumulated inside the cells prior to 

nigericin treatment (Set 3, left panel).  Thus, potassium depletion did not promote maturation of 

pro-IL-1β into IL-1β in human neutrophils, but only the selective exteriorization of IL-1β.  

 

2.2.4.6 Intracellular mechanisms of IL-1 family synthesis and release 

Previous studies reported that the biological activities of angiopoietins can be mediated by PI-

3K/Akt, p38 MAPK, and p42/44 MAPK pathways as a function of the cellular activities being 

solicited (Kim, Kim et al. 2000, Kim, Kim et al. 2000, Harfouche, Gratton et al. 2003, Brkovic, 

Pelletier et al. 2007, Maliba, Brkovic et al. 2008).  Thus, we wanted to delineate the signalling 

pathway(s) involved in mediating the effects of the angiopoietins on synthesis and/or secretion of 

IL-1 family members in human neutrophils.  Neutrophils were pretreated with inhibitors of 
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p42/44 MAPK Kinase - MEK1/2 - (U0126; (U0)), p38 MAPK (SB203580; (SB)) or Akt 

(Triciribine; (T)) for 30 minutes prior to agonist challenge, as previously described (Neagoe, 

Dumas et al. , Cuenda, Rouse et al. 1995, Favata, Horiuchi et al. 1998, Sun, Ramnath et al. 2009).  

Inhibitor-pretreated neutrophils were then compared to their vehicle (DMSO; D) counterparts.  

 

mRNA changes: Because most of the inducible IL-1 mRNA was synthesized within the first 

hour of Ang1 treatment, we looked at the effects of the inhibitors on mRNA expression after 1 

hour of agonist stimulation.  Ang2 (10-10 – 10-8 M) and lower concentrations of Ang1 (10-10 – 10-9 

M) yielded similar results as PBS-control under all conditions tested; thus, only the highest 

concentration of Ang1 (10-8 M) is discussed below. 

Basal levels of IL-1β mRNA were not affected by either pretreatment with DMSO 

(vehicle) or with inhibitors (data not shown).  Addition of the p38 MAPK inhibitor (SB) 

significantly increased the effect of Ang1 (10-8 M) on IL-1β mRNA expression, from 22.4- 

(Ang1-D) to 44.8-fold (Ang1-SB) expression (Figure 6A). MEK1/2 inhibition (U0) had the 

opposing effect, leading to a decrease from 22.4- to 7.8-fold (Ang1-U0) expression, 

corresponding to a 68% inhibition of Ang1 activity.  The Akt inhibitor (T) had no significant 

effect on the activities of Ang1.  Interestingly, none of the inhibitors significantly impacted the 

effects of LPS on IL-1β mRNA expression (Figure 6A).  

As for IL-1RA mRNA expression, only MEK1/2 blockade had a mild, but statistically 

insignificant, decreasing effect on Ang1 treatment (Figure 6B).  On the other hand, the blockade 

of p38 MAPK activity significantly reduced the effect of LPS, from 5.9- (LPS-D) to 2.8-fold 

(LPS-SB) expression, corresponding to a 63% inhibition.  The blockade of MEK1/2 or Akt 

pathways had no significant effects on the activities of LPS (Figure 6B).   

 

Protein changes: The immediate impact of the aforementioned mRNA changes on the 

corresponding protein levels was assessed at 2 hours of agonist stimulation, coinciding with the 

time at which protein synthesis rate was also at its maximum.  For the same reasons as per the 

mRNA experiments, only the highest concentration of Ang1 (10-8 M) is discussed below.  

Basal (PBS) protein levels were not affected by the addition of DMSO or any of the inhibitors 

(Figure 7A-D).  While p38 MAPK inhibition significantly increased Ang1-induced pro-IL-1β 

synthesis by 79%, from 38.5 pg/mL (Ang1-D) to 64.3 pg/mL (Ang1-SB), blockade of MEK1/2 
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lead to a 60% inhibition, with pro-IL-1β protein levels decreasing from 38.5 pg/mL (Ang1-D) to 

19.2 pg/mL (Ang1-U0) (Figure 7A).  As for LPS, blockade of p38 MAPK lead to an important 

80% inhibition of pro-IL-1β protein expression, as levels dropped from 262.1 pg/mL (LPS-D) to 

55.9 pg/mL (LPS-SB), despite similar treatment having no effect at the mRNA level. Blockade of 

MEK1/2 or Akt had no effect on LPS-driven pro-IL-1β levels (Figure 7A).  

The inhibition pattern for mature IL-1β mimicked that of pro-IL-1β for both Ang1 and 

LPS (Figure 7B).  Blockade of p38 MAPK increased Ang1-driven IL-1β protein levels by 86%, 

as levels jumped from 17.3 pg/mL (Ang1-D) to 29.9 pg/mL (Ang1-SB).  Blockade of MEK1/2 

lead to a 68% inhibition, as IL-1β levels decreased from 17.3 pg/mL (Ang1-D) to 7.1 pg/mL 

(Ang1-SB).  In the case of LPS, as per the precursor protein, mature IL-1β levels were deeply 

affected by the blockade of p38 MAPK, witnessing a 77% effect inhibition as levels dropped 

from 219.2 pg/mL (LPS-D) to 52.0 pg/mL (LPS-SB).  Surprisingly, the blockade of MEK1/2 

activity had a partial but significant effect on IL-1β protein, corresponding to 24% inhibition, as 

levels went from 219.2 pg/mL (LPS-D) to 166.9 pg/mL (LPS-U0). For both Ang1 and LPS, the 

Akt pathway did not modulate IL-1β levels significantly.  It should be noted that no pro- or 

mature IL-1β proteins were detected in the extracellular fraction, regardless of treatment (data not 

shown).  

Intracellular IL-1RA protein levels were maintained between 13-18 ng/mL across 

treatments, with only a very slight increase and decrease in Ang1 and LPS-driven levels, 

respectively, following p38 MAPK inhibition (Figure 7C). The lack of effect on the intracellular 

stores of IL-1RA protein following p38 MAPK blockade is noteworthy in the case of LPS, 

especially given the 63% drop in the corresponding mRNA; this implies that the cell holds IL-

1RA mRNA in large excesses, and actually utilizes less than 40% of the total mRNA quantity it 

produces to convert into protein. However, the impact of inhibitors was immediately noticeable 

at the level of the release of IL-1RA (Figure 7D), suggesting that the cell prioritizes having a 

constant pool of intracellular IL-1RA and will modify the amount released in response to 

different conditions.  First, under Ang1, the dynamics of p38 MAPK-MEK1/2 mediation differed 

from those of IL-1β, in that only the blockade of MEK1/2 had a significant impact, equivalent to 

65% inhibition, on extracellular IL-1RA levels, as levels dropped from 963.4 pg/mL (Ang1-D) to 

542.5 pg/mL (Ang1-U0).  Meanwhile, the blockade of p38 MAPK had no important impact on 

Ang1-mediated IL-1RA release (Ang1-SB), in line with the apparent lack in p38 MAPK 
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contribution at the mRNA and the intracellular protein levels.  For LPS, both the blockade of p38 

MAPK and MEK1/2 exerted a negative effect on IL-1RA release: inhibition of p38 MAPK lead 

to a marked 75% inhibition, with levels dropping from 1 471.9 pg/mL (LPS-D) to 749.3 pg/mL 

(LPS-SB).  Furthermore, blockade of MEK1/2 resulted in a marked 41% inhibition, with levels 

decreasing to 952.4 pg/mL (LPS-U0).  Finally, for both Ang1 and LPS, the Akt pathway did not 

modulate IL-1RA release significantly.  
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2.2.5 Discussion 
Vessel destabilization, increase in permeability and leukocyte infiltration are hallmarks of both 

inflammation and angiogenesis. Under normal physiological conditions, these processes undergo 

a natural resolution or removal of inciting signals, a critical step in preventing disorganized 

vascular network formation and a sustained inflammatory reaction.  During the resolution step, 

changes in the microenvironment through local mediators produced lead to an active “push-back” 

of infiltrating neutrophils, and serve to limit the activity of destabilizers such as VEGF, nitric 

oxide (NO) and Ang2 while increasing stabilizing elements such as Ang1 (resolution reviewed in 

(Fagiani and Christofori 2013);(Serhan, Brain et al. 2007)).  A previous study suggested that 

neutrophils might actually contribute to the resolution of inflammation based on their ability to 

produce endogenous anti-inflammatory mediators but little pro-inflammatory cytokines (Xing 

and Remick 2003).  The present study supports those findings, as we show that during a 24-hour 

lifespan, neutrophils constitutively release endogenous anti-inflammatory mediator IL-1RA from 

a pool of stored protein that is continuously replenished, but no IL-1 agonists are produced or 

secreted.  While we observed that Ang1 and LPS “prime” neutrophils to synthesize IL-1β de 

novo, in the absence of other signals, both precursor and mature IL-1β stores are retained within 

the intracellular compartment and are degraded over time.  Additionally, the intracellular spikes 

in IL-1β levels were accompanied by parallel increases in the release of IL-1RA. Thus, we 

propose that neutrophils from healthy individuals naturally and intrinsically curtail the activity of 

IL-1 agonists, and “put the brakes” on the propagation of IL-1 mediated inflammation.  

Of the 11 members of the IL-1 family of ligands, IL-1α and IL-1β are two major agonists 

with a demonstrated role in inflammation, angiogenesis, and hematopoiesis (Dinarello 2009). 

Both agonists bind to and activate IL-1 Receptor Type 1 (IL-1R1), and their activity is 

competitively antagonized by the endogenous IL-1RA. IL-1α and IL-1β are synthesized as 

precursor proteins; however, while IL-1α is active in both the precursor and the mature form 

upon release, IL-1β requires cleavage for activation and subsequent secretion.  The importance of 

tight control over IL-1 production/processing is underlined by a number of serious inflammatory 

diseases, termed “autoinflammatory” (reviewed in (Dinarello 2011)), that are closely correlated 

with deregulation in bioactive IL-1β secretion, and where the use of recombinant IL-1RA 

(anakinra) has clear therapeutic benefits.  Details on the processing of IL-1β and its release are 

still unclear, but several groups have pointed to mechanistic cell-dependent differences.  In 
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monocytes, the IL-1β processing enzyme, caspase-1, is constitutively active, and mature IL-1β is 

released in large quantities (1 500 pg/mL) upon stimulation with LPS (Perregaux, Laliberte et al. 

1996, Solle, Labasi et al. 2001) at a rate that is less than 20% of the total precursor pool 

(Dinarello 2011).  For macrophages, an LPS challenge is insufficient; a second intracellular 

potassium (K+)-depleting stimulus is required to trigger the assembly of a complex called the 

inflammasome, the subsequent activation of caspase-1, and the processing and release of IL-1β 

(Perregaux, Laliberte et al. 1996, Brough, Le Feuvre et al. 2002, Dinarello 2009, Netea, Nold-

Petry et al. 2009). Based on our current data, we show that processing of pro-IL-1β in neutrophils 

is neither contingent on caspase-1 activation, nor on K+ depletion. Strictly speaking, K+ 

emptying did lead to mature IL-1β being detected outside the cells; however, these levels were 

the result of a simple externalization of already-accumulated mature IL-1β, with no active role 

per se for K+ depletion in the maturation step.  These results provide evidence that IL-1β 

maturation in human neutrophils is distinct from the release process, and could be mediated by a 

mechanism other than caspase-1, as suggested by Greten et al. (Greten, Arkan et al. 2007), or K+ 

efflux. The contribution of other components of the inflammasome to IL-1β processing in 

neutrophils, however improbable, should be considered and further explored.  

 

2.2.5.1 Intracellular mechanisms  

Several studies have suggested that p38 MAPK regulates the synthesis and release of cytokines 

by many types of blood cells. For example, inhibition of the p38 MAPK pathway in monocytes, 

macrophages and neutrophils blocked LPS-induced protein transcription (including that of IL-

1β), translation and subsequent cytokine release (Lee, Laydon et al. 1994, Lee and Young 1996, 

Baldassare, Bi et al. 1999, Carter, Monick et al. 1999, Alvarez, Fuxman Bass et al. 2006).  

In general, the p38 MAPK pathway responds weakly to growth signals and is 

preferentially recruited by pro-inflammatory cytokines, whereas p42/44 MAPKs have been 

shown to be strongly activated by growth factors and growth-promoting hormones.  Such is the 

case for Ang1 in mediating IL-8 de novo synthesis in neutrophils, a process that occurs through a 

p42/44 MAPK-dependent mechanism, and independently of p38 MAPK or Akt activity (56).  

Along the same lines, the present study suggests that p42/44 MAPK mediates most of the effects 

of Ang1 on IL-1 production in neutrophils.  However, IL-1RA regulation appears to be less 

stringent than that of IL-1β: while antagonist de novo synthesis is not affected by any inhibition, 



123 
 

and the release of IL-1RA is mostly regulated by a single signal transduction pathway (p42/44 

MAPK), control of agonist production is two-fold involving not only p42/44 MAPK, but also p38 

MAPK that exerts a negative regulatory role on the entirety of the IL-1β de novo synthesis 

process.  The negative regulation exerted by p38 MAPK over the IL-1β synthesis process is 

likely a second insurance that IL-1β production remains tightly controlled when one of the two 

kinase pathways is unavailable, such as in the presence of a stronger pro-inflammatory signal. 

A look into the downstream signalling governing the effects of LPS on IL-1 highlights 

differences that could be attributed to the potency of the inflammatory signal.  According to our 

data, none of the studied pathways played a role in LPS-mediated IL-1β transcription, which is 

especially surprising for p38 MAPK given its similar role in macrophage cell lines (Baldassare, 

Bi et al. 1999).  However, p38 MAPK impacted both IL-1β translation and processing, as the 

precursor and the mature proteins were significantly down-regulated with p38 MAPK blockade. 

LPS also recruited p42/44 MAPK for IL-1β maturation, and both kinase pathways had a 

significant contribution to IL-1RA release. Thus, in the context of neutrophil IL-1 production, the 

recruitment of downstream signalling effectors is stimulus-dependent. Finally, because 

neutrophils maintained their constitutive synthesis of IL-1RA at the same level despite the 

inhibitors, it is likely that other signal transduction effectors mediate this process.  

 

2.2.5.2 Other potential targets of angiopoietin stimulation 

qPCR arrays identified four additional potential targets of angiopoietin stimulation whose genetic 

changes could be rendered significant with more exhaustive kinetics studies: IL-8, CCR1 and 

Lymphotoxin B (LTB) for Ang1, and IL-8RB for Ang2.  For instance, providing validation that 

the above targets might be significant is a recent finding that, when stimulated with Ang1 for 2 or 

more hours, neutrophils increased their IL-8 de novo synthesis (Neagoe, Dumas et al.), an effect 

that did not extend to Ang2. Lu P et al. demonstrated that IL-1α and IL-1β induced the 

production of a CCR1 ligand, CCL3, from human hepatomas (Lu, Nakamoto et al. 2003); while 

neither CCL3 nor any of the other CCR1 ligands (CCL4/MIP-1β and CCL5/RANTES) were 

affected by Ang1 treatment, it is possible that increases in IL-1β could drive CCR1 expression, 

increasing neutrophil responsiveness to surrounding tissue-derived corresponding ligands.  As for 

Ang2, we have previously shown that it has similar agonistic capacity to Ang1 in mediating PAF 

synthesis, CD11b/CD18 activation and chemotaxis in neutrophils (Lemieux, Maliba et al. 2005, 
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Brkovic, Pelletier et al. 2007), but this is the first time we report that Ang2 may modulate protein 

transcription.  While the cross-talk between angiopoietins and the aforementioned proteins 

remains to be elucidated, the involvement of CCL3/CCR1 and IL-8RB in neutrophil migration 

could offer additional insight into the mechanisms governing differences in Ang1 and Ang2-

driven neutrophil chemotaxis.    

In conclusion, the identification of several inflammatory targets of angiopoietin 

stimulation provides further evidence of the implication of angiopoietins in acute inflammation.  

We showed that Ang1, a blocker of vessel permeability, induces transcription, translation and 

maturation of one pro-inflammatory IL-1 agonist, IL-1β. Perhaps to counter the damaging 

activities of IL-1β in the presence of a potential release signal, or perhaps to initiate resolution or 

to push back any additional neutrophil infiltration, neutrophils upregulate their release of IL-1RA 

in response to both Ang1 and the more potent pro-inflammatory signal LPS, as was observed 

under TNF-α treatment (Langereis, Oudijk et al. 2011).  These initial observations shed light on 

the complex interplay of inflammatory cells and mediators at the final stages of angiogenesis and 

acute inflammation, and provide a possible role for Ang1 in attenuating IL-1–related pathologies.  
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2.2.8 Figure Legends 

Figure 1: Expression of inflammatory cytokines and their receptors in neutrophils. Circulating 

neutrophils isolated from 6 different donors were treated with PBS, Ang1 (10-8 M) (A) or Ang2 

(10-8 M) (B) for 90 minutes prior to RNA isolation.  Data are expressed in a Volcano plot, as fold 

change in gene expression (x-axis) compared to PBS-treated cells; values outside the dotted 

vertical lines indicate significant fold increases (positive values) or fold decreases (negative 

values).  Values below the dashed horizontal line (p<0.05) underline statistical significance (y-

axis).  Each circle corresponds to the fold-expression of a single gene.  

Figure 2: Kinetics of mRNA expression of IL-1β and IL-1RA. Primers were designed to 

quantify changes in the mRNA levels of IL-1β (A) and IL-1RA (B), following treatment with 

PBS, angiopoietins (10-10 - 10-8 M) or LPS (1 µg/mL), for up to 6 hours.  For each time point, 

basal (PBS) mRNA expression is set to unitary value, and the data are presented as fold change 

compared to its corresponding PBS.  For angiopoietins, only values resulting from treatment with 

the highest concentration (10-8 M) are shown.  Data are represented as the means ± SEM of at 

least three independent experiments. *p<0.05, **p<0.01, ***p<0.001 vs. PSB-control (Dunnett’s 

test).   

Figure 3: Kinetics of IL-1β and IL-1RA protein expression. Neutrophils were treated with PBS, 

angiopoietins (10-10 - 10-8 M) or LPS (1 µg/mL), for up to 24 hours.  Intracellular IL-1β (A), IL-

1RA (B) and extracellular IL-1RA (C) were quantified by ELISA.  For angiopoietins, only values 

resulting from treatment with the highest concentration (10-8 M) are shown.  No IL-1β was 

detected extracellularly.  Data are represented as the means ± SEM of at least three independent 

experiments. *p<0.05, **p<0.01, *** p<0.001 vs. PSB-control (Dunnett’s test). 

Figure 4: Kinetics of pro-IL-1β protein expression. Neutrophils were treated with PBS, 

angiopoietins (10-10 - 10-8 M) or LPS (1 µg/mL), for up to 24 hours.  Only intracellular levels of 

pro-IL-1β were detectable, as no pro-IL-1β was detected in the supernatants at any time points 

and under any of the conditions tested.  For angiopoietins, only values resulting from treatment 

with the highest concentration (10-8 M) are shown.  Data are represented as the means ± SEM of 

at least three independent experiments. *p< 0.05, **p< 0.01, *** p< 0.001 vs. PSB-control 

(Dunnett’s test) 
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Figure 5: Effect of potassium depletion on IL-1β release.  Neutrophils were treated with PBS, 

angiopoietins (10-10 - 10-8 M) or LPS (1 µg/mL), for two hours, followed by an additional 45-

minute treatment with potassium ionophore nigericin, CHX, or appropriate vehicles.  Changes in 

intracellular (left panels) and extracellular (right panels) levels of pro-IL-1β (A) and IL-1β (B) 

before and after ionophore addition were quantified by ELISA.  CHX: Cycloheximide. N: 

Nigericin. Vehicles: DMSO, ethanol.  Data are represented as the means ± SEM of at least three 

independent experiments.  *p< 0.05, **p< 0.01, *** p< 0.001 vs. PSB-control (Dunnett’s test). 

Figure 6: Effect of downstream signalling inhibitors on IL-1β and IL-1RA mRNA expression. 

Neutrophils were pretreated with inhibitors of Akt (Triciribine; 5 µM), p38 MAPK (SB203580; 

10 µM), and p42/44 MAPKK (U0126; 20 µM), vehicle-DMSO (0.2%) or PBS for 30 minutes 

prior to a 1-hour agonist challenge.  Total mRNA was used in RT-qPCR for assessment of 

mRNA expression of IL-1β (A) and IL-1RA (B).  Data are presented as mean ± SEM of at least 

three independent experiments. *p< 0.05, **p< 0.01, *** p< 0.001 vs. PSB-control within each 

set (Dunnett’s test); §p< 0.05, §§p< 0.01 vs. corresponding agonist-DMSO (Tukey test).  

Figure 7: Effect of downstream signalling inhibitors on IL-1β and IL-1RA protein synthesis 

and release. Neutrophils were pretreated with inhibitors of Akt (Triciribine; 5 µM), p38 MAPK 

(SB203580; 10 µM), and p42/44 MAPKK (U0126; 20 µM), vehicle-DMSO (0.2%) or PBS for 30 

minutes prior to a 2-hour agonist challenge.  Concentrations of intracellular pro-IL-1β (A), IL-1β 

(B), IL-1RA (C) and released IL-1RA (D) were quantified by ELISA.  Data are represented as 

mean ± SEM of at least three independent experiments.  *p< 0.05, **p< 0.01, *** p< 0.001 vs. 

PSB-control within each set (Dunnett’s test); §p< 0.05, §§p< 0.01 and §§§p< 0.001 vs. 

corresponding agonist-DMSO (Tukey test). 
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Table 1: List of inflammatory mediators and changes with Ang1. 

Human neutrophils from at least 3 different individuals were treated with PBS, Ang1 or Ang2 

(Table 2) at 10-8 M for 90 minutes.  RT-qPCR array analyses were performed to assess expression 

change of 84 genes involved in the inflammatory response.  Each gene from angiopoietin-treated 

neutrophils was compared to PBS-treated neutrophils and the data expressed as fold change. 

Negative and positive values denote a decrease and increase in mRNA expression, respectively.  

Differences were considered significant at Fold ≥ 4 and p<0.05. House keeping genes are denoted 

by an asterisk (*). Members of the IL-1 family that satisfied both requirements were considered 

significantly upregulated by Ang1, and are shaded in grey. 

 

  

 Genes Fold P Genes Fold P Genes Fold P Genes Fold P 

ABCF1 2.58 0.36 CCL4 1.12 0.31 CXCL14 -1.16 0.16 IL1F9 -1.18 0.05 
BCL6 1.83 0.37 CCL5 -1.29 0.26 CXCL2 1.51 0.60 IL-1R1 2.04 0.56 

C3 -1.26 0.56 CCL7 -1.78 0.53 CXCL3 1.51 0.44 IL-1RA 8.85 0.001 
C4A -1.04 0.54 CCL8 -1.16 0.13 CXCL5 -1.22 0.77 IL22 -1.32 0.68 
C5 -1.16 0.32 CCR1 3.33 0.04 CXCL6 1.73 0.43 IL5 -1.16 0.75 

CCL1 -1.16 0.41 CCR2 -1.47 0.29 CXCL9 -1.16 0.90 IL5RA -1.34 0.97 
CCL11 -3.05 0.66 CCR3 4.19 0.56 CARD18 -1.16 0.32 IL8 2.11 0.04 
CCL13 -2.47 0.56 CCR4 -1.16 0.54 IFNA2 1.11 0.22 IL8RA 1.23 0.89 
CCL15 -1.16 0.56 CCR5 1.02 0.16 IL10 -1.30 0.56 IL8RB 2.72 0.23 
CCL16 -1.16 0.84 CCR6 -1.28 0.81 IL10RA 1.19 0.56 IL9 -1.30 0.96 
CCL17 -1.09 0.50 CCR7 1.01 0.50 IL10RB 4.05 0.56 IL9R -1.19 0.42 
CCL18 -1.16 0.82 CCR8 -1.43 0.30 IL13 -2.05 0.42 LTA -1.42 0.46 
CCL19 1.73 0.36 CCR9 -1.16 0.49 IL13RA1 1.29 0.40 LTB 1.95 0.000 
CCL2 2.59 0.34 CEBPB 1.07 0.31 IL17C -2.33 0.35 LTB4R 1.17 0.44 

CCL20 3.13 0.48 CRP -1.32 0.27 IL-1α 49.65 0.000 MIF -1.07 0.23 
CCL21 -2.48 0.49 CX3CR1 1.33 0.94 IL-1β 17.24 0.004 SCYE1 -1.01 0.87 
CCL23 1.67 0.00 CXCL1 2.01 0.96 IL1F10 -1.16 0.96 SPP1 1.39 0.88 
CCL24 -1.27 0.02 CXCL10 -1.09 0.99 IL1F5 -1.14 0.96 TNF 1.19 0.04 
CCL25 -1.17 0.56 CXCL11 -1.16 0.53 IL1F6 -1.16 0.96 CD40LG -1.16 0.63 
CCL26 -1.99 0.57 CXCL12 -1.98 0.90 IL1F7 1.58 0.64 TOLLIP 1.82 0.74 
CCL3 -1.10 0.56 CXCL13 -1.67 0.56 IL1F8 -1.76 0.96 XCR1 -1.50 0.43 

B2M* 1.24 0.56 HPRT1* 1.07 0.47 RPL13A* -1.34 0.40 GAPDH* 1.01 0.04 
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Table 2: List of inflammatory mediators and changes with Ang2.  

As per Table 1, each gene from Ang2-treated neutrophils was compared to its counterpart from 

PBS-treated neutrophils and the data expressed as fold-change. Although genes such as CCL7, 

CCL11, CCL13, CCL24 and IL10RB showed substantial fold-change differences between Ang2 

and PBS, statistical significance denoted by the p-value was far from 0.05. Because of its fold-

regulation and a p-value close to 0.05, IL-8RB is a promising target.  

  

Genes Fold P Genes Fold P Genes Fold P Genes Fold P 

ABCF1 1.48 0.39 CCL4 2.19 0.21 CXCL14 -1.63 0.44 IL1F9 -1.45 0.73 
BCL6 1.23 0.64 CCL5 1.04 0.76 CXCL2 3.39 0.34 IL-1R1 1.10 0.68 

C3 1.73 0.39 CCL7 -4.43 0.13 CXCL3 1.09 0.91 IL-1RA 1.16 0.95 
C4A -1.09 0.75 CCL8 -1.34 0.62 CXCL5 -3.15 0.34 IL22 -3.17 0.27 
C5 -1.16 0.64 CCR1 -1.13 0.64 CXCL6 1.71 0.29 IL5 -1.54 0.40 

CCL1 -1.56 0.45 CCR2 1.65 0.43 CXCL9 1.51 0.45 IL5RA -2.30 0.55 
CCL11 -8.00 0.17 CCR3 3.52 0.22 CARD18 -1.47 0.62 IL8 3.21 0.11 
CCL13 -12.29 0.24 CCR4 -1.02 0.91 IFNA2 1.06 0.64 IL8RA 2.21 0.46 
CCL15 -1.56 0.45 CCR5 -1.31 0.42 IL10 -2.64 0.26 IL8RB 13.48 0.07 
CCL16 -1.68 0.45 CCR6 -1.05 0.75 IL10RA 1.12 0.90 IL9 -1.68 0.29 
CCL17 -1.24 0.30 CCR7 2.39 0.18 IL10RB 5.03 0.17 IL9R -1.96 0.12 
CCL18 -1.79 0.44 CCR8 -1.80 0.43 IL13 -3.76 0.30 LTA -1.90 0.27 
CCL19 -1.40 0.86 CCR9 -1.22 0.53 IL13RA1 1.70 0.17 LTB -1.74 0.39 
CCL2 -1.99 0.38 CEBPB -1.51 0.45 IL17C -2.46 0.64 LTB4R 1.82 0.30 

CCL20 1.91 0.40 CRP -1.91 0.67 IL-1α 3.63 0.32 MIF -2.01 0.75 
CCL21 -2.29 0.35 CX3CR1 -1.23 0.75 IL-1β 2.44 0.31 SCYE1 1.07 0.73 
CCL23 1.03 0.94 CXCL1 -1.84 0.64 IL1F10 -1.83 0.44 SPP1 1.55 0.41 
CCL24 -4.98 0.17 CXCL10 -1.03 0.96 IL1F5 -1.61 0.23 TNF -2.69 0.49 
CCL25 -1.12 0.83 CXCL11 -1.51 0.44 IL1F6 -1.83 0.44 CD40LG -1.02 0.60 
CCL26 -3.40 0.48 CXCL12 -3.68 0.36 IL1F7 -1.97 0.56 TOLLIP 1.57 0.39 
CCL3 1.03 0.86 CXCL13 -3.13 0.45 IL1F8 -1.89 0.29 XCR1 -2.64 0.46 
B2M* 1.05 0.74 HPRT1* -1.22 0.94 RPL13A* -1.34 0.93 GAPDH* 1.56 0.21 
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Table 3: IL-1α, β and RA mRNA and protein changes with Ang1. 

T0 represents content at the time of isolation and reflects the state of circulating human 

neutrophils in healthy individuals; intracellular and extracellular content are assessed after 

stimulation with Angiopoietin-1 (Ang1); S: stimulated; N.D.: not detectable.  Unstimulated 

neutrophils do not express or store pools of IL-1α mRNA, and that is not altered by the addition 

of Ang1.  Neutrophils hold large pools of IL-1β mRNA, but Ang1 signal is required for 

translation. Finally, neutrophils constitutively express and release IL-1RA.  

 

 

  

Genes mRNA 
                         Protein 

         T0          Intracellular (S)  Extracellular (S) 

IL-1α N.D. N.D N.D N.D 

IL-1β 

Pro-IL-1β 

+ 
+ 

N.D 
N.D 

+ 
+ 

N.D 
N.D 

IL-1RA + + + + 
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Figure 1: Changes in expression of inflammatory cytokines after Ang  
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Figure 2: Kinetics of mRNA expression of IL-1β and IL-1RA 
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Figure 3 (A): Intracellular IL-1β protein expression 

 

 

  



139 
 

Figure 3 (B-C): IL-1RA protein expression and release  
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Figure 4: Kinetics of pro-IL-1β protein expression 
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Figure 5: Effect of potassium depletion on IL-1β release 
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Figure 6: Signalling involed in IL-1 mRNA expression 
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Figure 7 (A-B): Signalling involed in IL-1β protein 
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Figure 7 (C-D): Signalling involed in IL-1RA protein 
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3.0 DISCUSSION  
 

3.1 Angiogenesis and inflammation: an intricate bond  
 

The intimate relationship between blood vessel formation and hematopoietic cell activity 

is demonstrable early in development and continues throughout life. As this document has 

attempted to emphasize, the endothelium actively and reactively participates in modulating 

angiogenic, hemostatic, immune and inflammatory reactions. In each case, a complex network of 

mediators expressed in a specific spatio-temporal manner coordinates the collaboration between 

different cellular stakeholders (298). The process of angiogenesis is initiated with EC activation, 

following which activated ECs undergo junctional and adhesion protein rearrangement (see 1.1 

Angiogenesis: Fundamentals). The subsequent loosening of tight junctions and degradation of 

basement membrane enable the flow of plasma components, and allow the cells to detach and 

migrate. During inflammation, a change in the reactivity of the endothelium must occur before 

blood leukocytes can be effectively recruited to the site of infection (see 1.5 Inflammation). 

Indeed, at the onset of the process, both neutrophils and endothelium actively adopt new surface 

adhesion molecules that initiate a series of cellular and molecular events, ultimately leading to 

leukocyte capture, rolling and transmigration towards the injurious signal (299). In order to 

successfully respond to infection, circulating neutrophils must be capable of:  1) sensing stimuli, 

prioritizing one signal over all others, and migrating towards that reigning signal and 2) retaining 

a high level of adaptability, such that they can adjust their response in accordance with changes in 

the biochemical environment (established by mediators released from the inflamed endothelium 

itself, and by other activated cells).  An adequate vasculature and a reciprocal endothelium-

leukocyte interaction are therefore key to an effective inflammatory response.  

Because inflammation and angiogenesis share a large common cellular denominator – the 

endothelium – and are initiated by a similar chain of events, it is not surprising to find overlap in 

the mediators that are involved: Indeed, angiogenesis often accompanies chronic inflammation, 

which suggests that the biochemical environment present during inflammation is also conducive 

for neovascularization. The sharing of resources is best exemplified in the host response to 

endothelial injury, a process that simultaneously engages hemostatic, angiogenic and 

inflammatory mechanisms. In this particular case, modulators such as VEGF, FGF and 
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angiopoietins, and cellular actors such as ECs, platelets and leukocytes, are involved in every step 

of the process, effectively integrating angiogenesis with local inflammatory cues. Finally, many 

inflammatory mediators, such as IL-6, IL-8 and prostaglandins have direct or indirect angiogenic 

activities. Likewise, many angiogenic mediators, such as VEGF and NO, influence facets of 

inflammation. Thus, the polyvalence of the cells and mediators involved makes categorizing 

them as strictly “angiogenic” or exclusively “inflammatory” a gross oversimplification of two 

very complex and interrelated processes.  

 The work presented herein adds to the evidence linking angiogenesis to inflammation, as 

we have shown that a subset of neutrophils are equipped to detect, and indeed are responsive to, 

two prototypical families of angiogenic growth factors, the FGFs and angiopoietins. More 

specifically, the first study showed that in healthy individuals, a certain number of neutrophils 

express one or more FGF receptors (FGFRs), either at the cytosolic level or at the cell surface. A 

larger proportion of neutrophils express a single surface-FGFR, FGFR2, which mediates the 

chemotactic response of neutrophils to the ligands FGF1 and FGF2. Our second study is even 

more conclusive in terms of bridging the gap between angiogenesis and inflammation. Indeed, 

we have shown that acute exposure of neutrophils to Ang1 results in intracellular biochemical 

changes, wherein the neutrophil engages pathways leading to inflammatory gene production. 

Specifically, Ang1 leads to an intracellular accumulation of one of the most potent pro-

inflammatory mediators, IL-1β. At the same time, Ang1 modifies the extracellular environment 

surrounding the neutrophil by substantially increasing the release of IL-1β’s natural antagonist, 

IL-1RA. Interestingly, while Ang1 tips the balance in favour of blocking IL-1β activity, its 

activities closely mirror those of the potent pro-inflammatory mediator, LPS. Thus, the ability of 

angiogenic factors to modulate the activity of the largest cellular component of innate immunity 

raises a few fundamental questions: Why would these typically inflammatory cells express 

angiogenic receptors in the first place? Are there subsets of neutrophils fated for specific 

functions, much like a fraction of monocytes and their polarized progenitors? Because of 

substantial species differences discussed previously (see 1.5 Inflammation), the following 

discussion will focus on a review of human studies where possible.  

 

3.1.1 Neutrophils: heterogeneous and plastic 
3.1.1.1 Rationale for neutrophils expressing angiogenic molecules 
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Why would neutrophils express angiogenic modulators, including growth factor receptors? Just 

as their myeloid cousins have a proven track record in modulating angiogenesis, there is 

increasing evidence for direct and indirect neutrophil engagement in this process. In effect, 

neutrophils have the ability to modulate the angiogenic process during the tissue repair phase that 

concludes the inflammatory response, by initiating their own programmed cell death and inciting 

macrophages that engulf them to switch from an inflammatory (M1) to a restorative and anti-

inflammatory phenotype (M2) (284). The fact that human neutrophils express functional FGFRs 

along with other angiogenic growth factor receptors, and store and/or produce substantial 

quantities of pro-angiogenic effector molecules such as VEGF-A (300), Ang1 (183), IL-8 (190, 

293) and MMP-927 (301) within their granules, supports a direct and likely active role for these 

leukocytes in angiogenesis and tissue remodelling. Interestingly, neutrophils are the only cells in 

the body capable of releasing MMP-9 free of its endogenous inhibitor, the tissue inhibitor of 

metalloproteinases (TIMP) (301), giving them the ability to directly deliver an immediately 

effective dose of MMP-9. However, because the above molecules fulfill other functions in the 

body28, an argument can be made that their presence in neutrophils does not necessarily mean 

that they will be used in an angiogenic setting; it is possible that stimulation of vessel growth 

could simply be a by-product rather than a primary objective for their release. That being said, a 

direct proangiogenic role for neutrophils has been proposed through in vivo studies: in three 

separate models of angiogenesis (a corneal injury model, a transplantation of pancreatic islets 

into muscle model, and tumor growth model), neutrophil depletion impairs tissue remodeling, 

revascularization, and tumor growth, respectively (302-304). 

 

As a counter-measure for hypoxia. On the other hand, it is entirely possible that neutrophils 

carry an angiogenic payload to facilitate their activity as they fulfill their primary function (i.e. 

response to inflammation): more blood vessels implies increased blood flow and nutrient supply, 

meaning a greater number of neutrophils are able to flood into the foci of inflammation and they 

now have multiple entry points to the infectious site. Additionally, sites of acute inflammation are 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

27 The role of MMP-9 in angiogenesis is through its ability to digest ECM, thereby releasing other matrix-bound 
growth factors (VEGFs, FGFs etc.) and allowing for migration of ECs during tube formation.   
28 For instance, VEGF and MMP-9 could be used to de-stabilize intracellular junctions and to degrade the basement 
membrane, respectively, thereby allowing for leukocyte extravasation and migration to the site of injury. IL-8, FGF 
and Ang1 could be deployed as chemotactic agents.  
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often associated with low oxygen (O2) availability, placing the surrounding tissues and the 

masses of recruited cellular infiltrates under the strain of hypoxia. This initiates multiple 

processes that are aimed at normalizing blood flow (angiogenesis, for instance) and reducing 

energy expenditure (engaging the anaerobic pathway).  

In mammalian organisms, oxygen sensing is a universal cellular event, achieved primarily 

via the hypoxia inducible factors (HIFs), whose activity is regulated by their α subunits (HIF-1α 

and HIF-2α) (305). HIFs are major regulators of genes involved in maintaining homeostasis. 

Ubiquitously expressed HIF-1 enables anaerobic metabolism, as it decreases mitochondrial 

oxygen consumption while inducing the expression of enzymes and glucose transporters that help 

cells efficiently produce energy in hypoxic environments (306, 307). Tissue-specific HIF-2 

stimulates erythropoiesis and cell survival, likely through the inhibition of p53 (308, 309).  

Myeloid response and activity is deeply impacted by O2 conditions. As these leukocytes 

migrate from the circulation to sites of inflammation, they have to adapt to functioning in oxygen 

conditions that are much lower than what is normally available to them in the circulatory system. 

Both HIF-1α and HIF-2α accumulate in hypoxic human macrophages (310, 311) and neutrophils 

(312, 313), as well as in the tissue-associated macrophages (TAMs) of various human cancers 

(311). In response to hypoxia and HIF-2α activation, human macrophages have the ability to 

increase the transcription of their own proangiogenic genes, such as VEGF, IL-8, PDGF and 

ANGPTL4 (314). Moreover, HIF-1α has been shown to mediate hypoxia-induced neutrophil 

survival (315) and is vital in the regulation of myeloid/neutrophil aggregation, motility and 

bacterial clearing (316), establishing a direct link between hypoxia and neutrophil activity. While 

the impact of hypoxia on neutrophil angiogenic gene/protein expression is unexplored, it is 

possible that neutrophils may have retained their angiogenic capabilities as a means to counter 

low O2 availability; thus, once hypoxia is detected, neutrophils can aid in the provision of signals 

necessary for the induction of new blood vessel formation. 

 

As a result of genetic inheritance. Considering that neutrophils share common angiogenic traits 

with their myeloid cousins, a third explanation is that neutrophils may have simply retained 

angiogenic surface markers (VEGFR, FGFR, Tie2 etc.) through evolution, by differentiating 

from a precursor that expressed them. This theory is possible given that neutrophils and 

endothelial cells are believed to originate from a common precursor, if we go back to the very 
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beginning of their phylogenic lineages: During early mouse embryogenesis, circa E7.5, 

hematopoietic cells (HPCs) (precursors to all myeloid cells, erythrocytes and platelets, among 

others) and EC precursors appear in the blood islands of the yolk sac almost simultaneously, 

deriving from mesoderm and forming structures in which primitive erythrocytes are surrounded 

by a layer of angioblasts that give rise to differentiated ECs. The close temporal and spatial 

relationship between the appearance of the first blood cells and the endothelial scaffold suggests 

that both cell types may have evolved from the same precursor, or that one could have given rise 

to the other.  

The possible lineage relationship between vascular cells and HPCs is explained in detail 

in (317). Regardless of the mechanisms leading to the initial phylogenetic split, the two lineages 

appear to be heavily influenced by the same angiogenic growth factor families (and their 

receptors), including VEGF (318), FGF (319) and Ang/Tie2 (16). Additionally, although adult 

HPCs have low VEGFR2 expression (320), they retain certain endothelial markers (321) such as 

Tie2, CD3429 and possibly FGFRs, the latter having been detected on the surface of long-term 

(LT) repopulating murine hematopoietic stem cells (322). Thus, as the progeny of HPCs, 

neutrophils may have inherited similar surface endothelial markers. However, because there are 

multiple developmental stages between HPCs and neutrophils, angiogenic markers on the cell-

surface of intermediate progenitor cells (myeloblasts, metamyelocytes etc.) in the bone marrow 

would have to be explored in order to support this theory.  

 

3.1.1.2 Neutrophil plasticity  

Are there subsets of neutrophils, such that some would be destined to become inflammatory 

while others are angiogenic and/or immunosuppressive, much like the divisions in M1/M2 

Macrophages? The possible existence of neutrophil subsets provides an attractive explanation for 

a) why some neutrophils carry a complex angiogenic payload, including growth factors and their 

receptors, while others do not (Article #1) and b) why these traditionally inflammatory 

leukocytes would produce anti-inflammatory mediators (Article #2). Indication of neutrophil 

subdivisions based on phenotypic markers exists in mice (304, 323), but such evidence is very 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

29 Human HPCs express CD34 marker whereas mice do not. 
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scarce in humans (324), owing to the difficulty of identifying surface markers exclusively 

specific to human neutrophils and tracking the fate of neutrophils in vivo.  

The possibility that neutrophil subsets exist implies that not all neutrophils are born equal. 

Adding to this complexity is the observation that neutrophils are capable of altering their 

phenotypes, shedding or acquiring different surface markers to adapt to the biochemical 

environment surrounding them. Contrary to monocytes and macrophages, neutrophils had long 

been considered a terminally differentiated and relatively homogeneous cell population. 

However, in a human study where systemic inflammation is induced by intravenous endotoxin 

(LPS) injection, there are two populations of neutrophils distinguished by the level of expression 

of surface marker CD16 and functionality (325): One population is made of band-like immature 

neutrophils expressing low CD16 (CD16dim), which is rapidly mobilized from the bone marrow 

and displays decreased receptor expression, respiratory burst and interaction with bacteria; this is 

in stark contrast to the CD16bright counterparts. Interestingly, after endotoxin treatment, a group of 

neutrophils splits from within the CD16bright population and reduces its CD62L expression. The 

new CD16brightCD62Ldim subset fulfills an immuno-suppressive function by subduing human T 

cell proliferation (324). Thus, neutrophils display a great level of plasticity and modify their 

phenotype in response to a wide range of physiological and pathological cues. Whether this 

variability is because of maturity levels or because of the existence of subtypes is unclear.  

Based on published and unpublished observations from our laboratory, we conclude that 

there are definite inter- and intra-individual differences in neutrophil characteristics, whether 

relating to protein expression or to functionality. This is in line with recent assessments 

highlighting neutrophil heterogeneity, elegantly summarized in (326). For instance, we have 

noted variability in neutrophil FGFR expression between donors, as well as within the neutrophil 

population from the same donor (77), whereby only a fraction of the neutrophils will express one 

or more FGFRs. Similarly, other groups have reported that the expression of surface 

molecules/receptors such as CD117 (a ligand for PECAM-1), ICAM-1, CXCR4 and CXCR2, is 

limited to a subset of human neutrophils (summarized in (326)).  
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Additionally, we and other groups have observed that same-donor neutrophils assayed at 

different times may exhibit different basal and agonist-induced cytokine production capability30, 

which suggests variations in the neutrophils’ ability to detect (based on different level of receptor 

expression?) or to respond (based on different levels of protein pools or components of the 

protein production machinery?) to stimulus. In effect, the heterogeneity of neutrophil cytokine 

production has been conclusively demonstrated in vitro, with a novel technique that allows 

visualizing and specifically counting cytokine-producing cells within a larger neutrophil 

population; in this assay, only a portion of the granulocytes released MIP-1β (9.7%), IL-8 

(16.7%) and TNF-α (< 3%) in response to LPS (295).  

The heterogeneity in protein expression also appears to extend to functionality. The group 

that discovered neutrophil NET formation as a bactericidal mechanism also observed that, while 

the majority of neutrophils in circulation had the potential to make NETs, only a fraction (10-

30%) of them actually underwent NETosis (327). This implies that there are mechanisms to 

regulate which neutrophils start a program that culminates in NET formation. Another example is 

the fact that only a small subset (<25%) of neutrophils stores Olfactomedin 4 in specific granules, 

which is a glycoprotein that inhibits the activation of several granular proteases (including 

cathepsin C & G, neutrophil elastase, and proteinase 3 (PR3)), potentially negatively affecting the 

bacterial killing ability of this subset.  

Aside from these intrinsic differences in neutrophil biology, neutrophils display a great 

level of plasticity in modifying their phenotype in response to a wide range of biochemical cues 

(both in physiological and pathological conditions). For instance, expression of adhesion 

molecules, chemokine receptors, and proteases change according to which stage of the 

recruitment process the neutrophil is at (see 1.5 Inflammation and review in (326)). Because 

only a portion of circulating granulocytes are recruited and eventually transmigrate, there must be 

selection mechanisms that regulate which neutrophils engage in those functions out of the entire 

pool of available cells.  

Just as other myeloid cells are capable of phenotype changes under different 

environmental circumstances, a neutrophil also appears capable of switching to another 

phenotype after certain functions are completed. A number of studies have shown that 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

30 Generally, the impact of baseline variability between donors is diluted with the inclusion of additional donors.   
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neutrophils have the ability to undergo reverse transendothelial migration (rTEM), describing the 

movement of neutrophils in and out of the transmigration pore or, more rarely, from the 

subendothelial space back into the vascular lumen (328-330). Interestingly, Buckley et al 

reported that human neutrophils that underwent rTEM display distinct changes in phenotype 

compared to naïve circulating neutrophils, characterized with a loss of chemokine receptors 

CXCR1 and CXCR2 and a higher expression of ICAM-1 (ICAM-1highCXCR1low), increased 

rigidity, a significantly lower tendency to transmigrate again, increased oxidative burst, and 

decreased susceptibility to undergo apoptosis (330). Thus, rTEM generates a new subset of 

neutrophils that are returned to the circulation and though unlikely to re-enter tissues at secondary 

sites of inflammation, might become adherent or physically trapped in microvessels where they 

could generate powerful oxidative burst.  

 

3.2 Perspectives 
 

Pursuant to our two studies, many unanswered questions remain. The following section will 

attempt to highlight some of the most interesting venues raised by each article.  

3.2.1 Unresolved issues - Article #1 
As way of reminder, we showed that purified circulating human neutrophils from healthy 

individuals express varying levels of FGFRs in their cytosol and at their cytoplasmic membrane.  

We determined that FGFR2 is the sole cell-surface receptor, while FGFR1 and FGFR4 localize in 

the cytosol. Human neutrophils do not express any FGFR3. Furthermore, neutrophil FGFRs are 

active, as FGFR2 (and to a lesser extent FGFR4) mediates FGF1 and FGF2 – induced neutrophil 

chemotaxis. Based on the results of this study, we propose the following topics for future 

investigations:  

 

Characterizing FGFRs. This would involve determining what function, if any, cytoplasmic 

FGFRs fulfill, as well as assessing whether FGFs or other inflammatory mediators could induce 

receptor translocation from the cytoplasm to the cell-surface. The choice of inflammatory 

mediators would have to be reflective of the cellular environment during the acute phase of 

inflammation, and would include IL-8, TNF-α and LPS, all of which have been shown to 

promote protein translocation to the surface of neutrophils (331, 332). This could also provide 
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insight into the mechanisms governing the possible interaction between FGF and other 

inflammatory mediators in the context of neutrophil biology.  

 

Neutrophil adhesion and migration.  Besides FGFRs, neutrophils are known to express integrins 

and HSPGs, both of which are co-receptors for FGFs. This suggests that neutrophils possess the 

necessary tools to capture FGFs and stabilize interactions at the cell-surface, potentially resulting 

in changes in neutrophil biological responses. In pilot experiments aimed at exploring the roles of 

FGFs beyond chemotaxis, we observed that direct FGF1 or FGF2 stimulation has little impact on 

human neutrophil viability in vitro (Haddad et al, personal communications, 2011). However, 

FGFs may still impact other processes, such as neutrophil adhesion and migration across EC 

monolayers in vitro.  

 

Expression of inflammatory genes. Using the same techniques and qPCR arrays outlined in 

Article #2, we obtained preliminary data showing that FGF1 and FGF2 may be capable of 

upregulating the mRNA expression of certain members of the CC and CXC families of 

chemokines (n=2) by human neutrophils (Haddad et al, personal communications, 2011). For 

instance, FGF1 shows a tendency to increase CCL17, CCL 25, CCL26, and CXCL13 four-fold, 

whereas FGF2 shows an over two-fold increase in CXCL14. While the parameters and conditions 

for these experiments require additional fine-tuning, the initial results warrant further 

consideration.  

 

3.2.2 Unresolved issues - Article #2  
The observed effect of Ang1 on human neutrophil gene expression showcases the duality of this 

mediator, inasmuch as it demonstrates a role in both angiogenesis and acute inflammation. As a 

brief summary, we showed that of the two angiopoietins, only Ang1 leads to a significant 

induction of mRNA expression of IL-1 family members, particularly of the potent pro-

inflammatory agonist IL-1β and its natural endogenous antagonist, IL-1RA. We then confirmed 

that Ang1 stimulates de novo protein synthesis of the precursor form of IL-1β (pro-IL-1β), which, 

upon maturing into IL-1β, remains trapped inside the cell. In parallel, Ang1 augments the release 

of IL-1RA, perhaps as a mechanism to counteract the potentially damaging effects if IL-1β is 

liberated. Interestingly, Ang1 closely mirrors the action of the bacterial endotoxin LPS with 
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regards to IL-1 production (albeit with less potency), in that LPS also increases de novo synthesis 

of IL-1β and stimulates the release of IL-1RA, but fails to induce IL-1β secretion. These 

observations clearly illustrate the potential of Ang1 to significantly contribute to the acute 

inflammatory process.  

 

3.2.2.1 Importance of IL-1  

The ligands. The IL-1 family is arguably one of the best examples of the role of cytokines in 

inflammation and the need for tight control mechanisms. Unlike any other family of cytokines, 

this one comprises both very potent pro-inflammatory mediators as well as the intrinsic ability to 

shut them down (Table IV, p.154).  The IL-1 system includes an interesting array of at least 21 

distinct molecules encompassing receptors, co-receptors, ligands, and endogenous antagonists 

(Tables IV&V, p.154-155, adapted from (333)). Notably, the two prototypical IL-1 agonists, IL-

1α and β (jointly referred to as IL-1 in early studies), and their endogenously-occurring 

antagonist IL-1RA have been thoroughly studied in vitro and in vivo in both health and disease 

states.  

Table IV: List of IL-1 ligands and properties 

Ligand  Alternative name Property 
IL-1F1 IL-1α Agonist 
IL-1F2 IL-1β Agonist 
IL-1F3 IL-1RA Receptor Antagonist 
IL-1F4 IL-18; IFN-γ-inducing factor Agonist 
IL-1F5 FIL1δ Anti-inflammatory 
IL-1F6 FIL-1ε Agonist 
IL-1F7 IL-1H4, IL-18Rβ, IL-1ζ Anti-inflammatory 
IL-1F8 IL-1H2 Agonist 
IL-1F9 IL-1ε Agonist 
IL-1F10 IL-1Hy2 Receptor antagonist (?) 
IL-1F11 IL-33 Agonist 
IL-18BP  Anti-inflammatory 
Adapted from Dinarello et al, 2009 (333). 

The intimate relationship between IL-1 and inflammation is perhaps best illustrated with IL-1β, 

as there is an entire subgroup of chronic inflammatory disorders, termed “auto-inflammatory”, 

that is specifically responsive to IL-1β blockade, suggesting that increased IL-1β activity is the 

main culprit in these conditions’ pathological progression. In recent years, IL-1β blockade 
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through the use of Anakinra, the generic name for a non-glycosylated recombinant of human IL-

1RA, has become the standard therapy for patients with various systemic and local inflammatory 

diseases, including systemic-onset juvenile idiopathic arthritis (334) and refractory adult Still’s 

disease (335), and for the management of the symptoms of rheumatoid arthritis (336). 

 

The receptors. The IL-1 receptor family is as fascinatingly diverse as its ligands, with ten known 

members and a few that remain orphan receptors (Table V, p.155). Similarly to the ligands, 

members of the IL-1 receptors contain activators and suppressors of inflammation. For example, 

the IL-1 receptor type II (IL-1RII), which exists both in a membrane-bound and a soluble form, 

has a very high affinity for mature and precursor IL-1β and serves the function of a decoy 

receptor that prevents IL-1 from binding to and activating IL-1RI. Another example is the single 

Ig IL-1 receptor-related (SIGIRR), a negative regulator of IL-1α, IL-1β and some Toll-like 

receptor (TLR) agonists. 

Table V: IL-1 Receptors and Accessory proteins 

Receptor  Alternative name Ligands 
IL-1RI CD121a IL-1α, IL-1β, IL-1RA 

 
IL-1RII CD121b IL-1β, pro-IL-1β, weak IL-1α 
IL-1RAcP 
 

IL-1R3 / IL-1RAP Co-receptor for IL-1RI, IL-1RII, 
IL-1Rrp-2 and Fit-1 

Fit-1/ IL-33Rα IL-1R4 IL-33 
IL-18Rα IL-1R5 IL-18, IL-1F7 
IL-18Rβ IL-1R7/IL-1RAcPL Co-receptor for IL-18Rα 
IL-1Rrp-2 IL-1R6 IL-1F5, IL-1F6, IL-1F8, IL-1F9 
TIGIRR*-2/IL-1RAPL IL-1R8 Unknown 
TIGIRR-1 IL-1R9 Unknown 
SIGIRR** TIR8 Unknown 
* Three immunoglobulin Interleukin-1 receptor-related; ** single Ig IL-1 receptor-related. 
Adapted from Dinarello et al, 2009 (333).  

Signal transduction. Upon binding to IL-1α or to IL-1β, IL-1R1 and the accessory co-receptor 

IL-1RAcP (IL-1R3) heterodimerize and activate downstream signal transduction. The IL-1R1/IL-

1RAcP interaction becomes a scaffold for a signalling complex comprised of myeloid 

differentiation factor 88 (MyD88), IL-1 receptor-associated kinases (IRAK) and TNF-receptor 

associated factor 6 (TRAF-6), resulting in the activation of NFκB and mitogen-activated protein 

kinases (MAPKs) (337). The cytoplasmic portions of IL-1RI and IL-1RAcP contain a similar 
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domain found in each TLR, termed the “TIR domain”, necessary for signal transduction. IL-1RII 

lacks this TIR domain (IL-1RII activity reviewed in (338)) and is therefore incapable of 

transducing signals despite being able to engage IL-1RAcP31 after binding IL-1 (339, 340). 

Although IL-1RI is constitutively expressed in most cells, expression of IL-1RAcP is not. Cells 

expressing IL-1RI but deficient in IL-1RAcP can bind IL-1α and IL-1RA normally, but see a 

70% reduction in IL-1β ligation. More importantly, in the absence of IL-1RAcP, no biological 

response is transduced regardless of binding to IL-1α or IL-1β (341). 

 

3.2.2.2 Neutrophil release IL-1RA in response to LPS 

Neutrophils have been reported to transcribe and translate both IL-1β and IL-1RA when 

stimulated with a number of cytokines and growth factors (342-345).  Why would the typically 

pro-inflammatory neutrophils exclusively release substantial quantities of the anti-inflammatory 

IL-1RA despite the presence of bacterial product (LPS)?  

As we have previously seen, there is a vital need for tight control over the inflammation 

process, in order to prevent unnecessary tissue damage and developing chronic inflammatory 

diseases. There is increasing evidence that neutrophils participate in dampening the immune 

response and facilitating tissue repair during the resolution phase of inflammation. This emerging 

concept is supported by observations that upon stimulation of their TLRs, murine neutrophils fail 

to produce IL-12 p40, IL-1β, IL-6, or CXCL1. Interestingly, systemic endotoxin treatment in 

mice results in the recruitment of neutrophils that secrete high amounts of the anti-inflammatory 

cytokine IL-10, in contrast to macrophages and monocytes. This study also demonstrated that the 

activity of neutrophils depends on the duration of exposure to the bacterial pathogen:  in the acute 

phase of infection, it appears that the pro- and anti-inflammatory effects of neutrophils even out 

and therefore do not influence mycobacterial load. In conditions of prolonged chronic infection, 

neutrophil depletion is actually beneficial to the host, as it promotes inflammation and decreases 

the mycobacterial burden, suggesting a surprising role for neutrophils in suppressing 

inflammation and allowing for the persistence of a high mycobacterial burden during infection 

(346).  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

31 Soluble IL-1RII (sIL-1RII) can bind IL-1 and bind sIL-1RAcP, a product of IL-1RAcP alternative splicing, 
increasing the affinity of IL-1RII for IL-1 by 100-fold. Current evidence, however, does not support an interaction 
between IL-1, sIL-1RII and full-length IL-1RAcP (reviewed by Peters et al, 2012). 
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These results from mice appear to be mirrored in human studies, as several groups have 

demonstrated that the cytokine profile of human neutrophils stimulated with LPS is 

predominantly anti-inflammatory (293, 295, 347). Additionally, there are reports that human 

neutrophils in co-cultures with T cells can inhibit the latter populations’ production of cytokines 

(IFN-γ, TNF-α, IL-2 and IL-4) (348) and stunt its proliferation, albeit independently of neutrophil 

IL-10 or TGF-β production (324). Accordingly, advanced cancer patients display impaired T-cell 

function (349), correlated with the presence of activated granulocytes that produce hydrogen 

peroxide (348). If the theorem that the continued presence/activation of neutrophils negatively 

modulates adaptive immunity responses, this would also explain why granulocyte colony 

stimulating factor (G-CSF), a stimulant that increases the maturation and mobilization of 

neutrophils into the circulation from the bone marrow, is reported to have beneficial effects on 

patients suffering severe infections, without worsening inflammation (350, 351). 

 

3.2.2.3 Neutrophils release IL-1RA in response to Ang1 

While the argument that neutrophils restrain the propagation of inflammation in conditions of 

bacterial infections (in vitro, mimicked by prolonged exposure to LPS) can be made, why would 

they emit substantial quantities of anti-inflammatory IL-1RA in the presence of a much milder 

and non-infectious agent like Ang1?  

An answer to that question comes from taking an intrinsic look at the role of Ang1 in 

angiogenesis. As we have previously seen (in 1.5 Inflammation), Ang/Tie2 signalling is 

intimately involved in the angiogenic process, with Ang1 initiating a return to homeostasis and 

stabilizing the new vessels. Two thoughts emerge from this process: First, angiogenesis utilizes 

many mediators that are also common to inflammation, such as VEGF, Ang1, Ang2 and IL-8. 

Because of their demonstrated chemotactic effects on neutrophils ((151), among others), these 

mediators have the ability to “accidentally” recruit neutrophils to sites of neovascularization, 

where they could potentially inflict damage on the newly formed and vulnerable vessels. Second, 

maintaining vessel integrity and establishing homeostasis means actively dampening or pushing 

back signals that activate the endothelium or that could damage the new vessel (such as noxious 

neutrophil content). Thus, at sites of “pure” (read: independent of inflammation) 

neovascularization, Ang1 would be fulfilling its role of stabilizer by stimulating the release of IL-

1RA from the neutrophils that are unintentionally recruited. In doing so, Ang1 ensures that 
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neutrophils are not accidentally activated where they do not need to be. In inflammatory 

conditions, because IL-1 is a leukocyte chemoattractant and stimulant as well as strong promoter 

of endothelial activation, the action of Ang1 on IL-1RA release could potentially serve a dual 

function critical to the initiation of the resolution phase (and the full engagement of tissue repair): 

to dampen IL-1-induced endothelial activation and associated cellular responses, and to actively 

push back neutrophils out of the foci of inflammation. This fits well with the role of Ang1 in 

maintaining EC quiescence and a non-permissive, un-activated phenotype. 

 

3.2.2.4 The origin of IL-1β  

In our studies, we observed a time-dependent accumulation of the IL-1β precursor, pro-IL-1β, 

almost simultaneously as the mature form. Because the agonists Ang1 and LPS augmented the 

quantity of IL-1β mRNA transcripts, the appearance of pro-IL-1β is not shocking and can be 

explained by the induction of IL-1β mRNA translation machinery. However, where did the 

simultaneous IL-1β come from?  

During the execution of the IL-1 experiments described in Article #2, and subsequently 

during the publication process of said article, we and our reviewers raised the question of 

possible peripheral blood mononuclear cell (PBMC) contamination, which can skew the results 

of cytokine production even at concentrations as low as 0.5% of the population (1% 

contamination is sufficient for detection of IL-1β in supernatants, as reported in (293)). The 

possibility of contamination would be especially important for IL-1β synthesis and/or secretion, 

as IL-1β production by human neutrophils is highly contested ((293), among others). However, 

our isolation conditions result in a neutrophil population with less than 0.1% PBMC 

contamination, as determined by morphological analysis and flow cytometry. Additionally, 

monocytes and macrophages release substantial amounts of IL-1β into the medium (295), but we 

did not detect extracellular IL-1β in any of our assays. This provides strong evidence that PBMC 

contribution to our results is highly unlikely.   

Another possibility is the reported ability of human neutrophils in culture to internalize 

IL-1β rapidly via IL-1RII (352), with 50–60% of IL-1β internalized within 1 h at 37°C. 

According to this study, IL-1β internalization reaches a plateau after 1 hour - suggestive of a state 

of equilibrium in which further uptake of IL-1 is balanced by release of intact and/or degraded 

IL-1 back into the medium. Assuming that the 0.1% PBMC contamination in our population is 
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capable of producing enough IL-1β, the reported ability of neutrophils to ‘scavenge’ and 

endocytose this PBMC-released IL-1β could explain the accumulation of mature IL-1β measured 

in neutrophil cell lysates. To discount this possibility, we will utilize IL-1β concentrations from 

our data and what is available in the literature:  From Shroder et al, PBMCs (106 cells/mL) 

release around 600 pg/mL of intact IL-1β in 4 hours in response to 250 ng of LPS, corresponding 

to ~ 6 pg/mL for 104 cells (293). In our study, our neutrophil culture (107 cells/mL) showed an 

intracellular accumulation of ~ 300 pg/mL of IL-1β in response to 1 µg LPS. A 0.1% 

contamination of the neutrophil population would correspond to 104 PBMCs, which would 

theoretically produce ~ 6 pg/mL of IL-1β into the medium. Assuming that IL-1β uptake by 

neutrophils is 50-60%, this means that we should detect ~ 3 pg/mL (50% of 6 pg/mL) of IL-1β in 

our lysates. While it is true that we used saturating concentrations of LPS, the fact that we 

detected one hundred times the amount of IL-1β and there was absolutely no release (ref the 

equilibrium described by (352)) makes endocytosis of PBMC-derived IL-1β an unlikely 

explanation of the data.  

Thus, the mechanisms and players involved in pro-IL-1β conversion to IL-1β in human 

neutrophils remain unclear. At this stage, it is too early to discount the involvement of caspase-1, 

or other elements of the inflammasome, and additional studies would have to be carried out 

before reaching a firm conclusion.  

 

3.2.2.5 Other issues 

Ang1, ECs and IL-1. Surprisingly, a survey of the literature revealed that the impact of Ang1 on 

EC production of IL-1 has never been explored. Given the reported ability of ECs to synthesize 

IL-1 ligands (353, 354), it is very possible that Ang1 could promote the expression of one or 

more of the IL-1 family members from ECs. At the very least, Ang1 could induce IL-1RA from 

ECs, given the ligand’s propensity to stimulate endothelial quiescence. This is definitely a venue 

worth exploring. 

 

IL-1R expression on neutrophils. Assessment of leukocyte expression of IL-1Rs dates back to 

the mid 1980’s-1990, and identified the inactive IL-1RII as natively expressed on neutrophils, B-

lymphocytes, monocytes and macrophages (355-357). A more recent assessment using modern 

detection techniques (western blot, flow cytometry, ELISA) confirmed that IL-1RI is only 
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weakly expressed on purified human neutrophils and monocytes, with higher detectable levels of 

soluble IL-1RI and IL-1RII (358). Unfortunately, in this study, surface IL-1RII was not assessed.  

Neutrophil IL-1R1 appears to be active, as in vitro stimulation with IL-1 induces the 

transcription of CCL3, CCL4, CCL20, CXCL2 and NFκB1; this effect can be blocked by pre-

treatment with IL-1RA. To the best of our knowledge, there appears to be no evaluation of IL-

1R3 expression or IL-1RI and R3 heterodimerization in a highly purified population of 

neutrophils.  

Based on our experiments, IL-1RI mRNA appears to be unaffected by short-term 

treatment with Ang1; however, we did not evaluate IL-1RII mRNA or the protein expression of 

any of the IL-1 receptors (particularly IL-1RI, IL-1RII, and IL-1R3) in their long or spliced 

forms. This would be another venue worth looking into.   

 

qPCR array and other interesting targets. As highlighted in Article #2, our qPCR array data has 

generated other potentially interesting venues for future exploration. For instance, lymphotoxin 

(LT)-α and -β (LTβ is also known as tumor necrosis factor C), two related cytokines belonging to 

the TNF superfamily, are essential in the development of lymphoid organs and the differentiation 

and maturation of several types of immune cells, including T cells, dendritic cells and natural 

killer cells (359). Thus, LTs play a significant role in both innate and adaptive immune processes 

(review (360)). In mice, engaging the LTαβ (an LTα and LTβ heterodimer) pathway can 

potentially activate lymphocyte-organizing chemokines such as CXCL13, CCL19 and CCL21 

genes (361). In effect, LT signalling appears to play an important role in inducing the expression 

of chemokines and adhesion molecules that are crucial for the recruitment and migration of 

immune cells to sites of infection. The fact that Ang1 shows a tendency to increase LTβ could be 

significant, and may reshape our assessment of the anti-inflammatory role played by this ligand. 

The involvement of LT in modulating immune responses may also be a consideration in utilizing 

Ang1 as an anti-cancer therapy.  

Beyond exploring the rest of the potential targets induced by Ang1, what would happen 

with longer exposure to Ang1/Ang2? Would the expression of some chemotactic 

receptors/ligands change? Evidence suggests that the answer is yes. Chronic inflammation and 

continual exposure of neutrophils to cytokine stimulation may alter their protein expression, by 

inducing the expression of receptors that have normally been attributed to monocyte 
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function/recruitment (such CCR2 and CCR1) (362). Interestingly, it takes a short-term exposure 

to Ang1 to upregulate the gene expression of at least one of those receptors, CCR1, by 3.3-fold. 

If this mRNA increase translates into CCR1 protein expression and presentation to the cell-

surface, it would provide evidence that Ang1 can alter leukocyte recruitment profiles, and may 

influence reactivity of neutrophils to ligands that are not traditionally attributed to neutrophil 

recruitment, such as RANTES (CCL5), MCP-1 (CCL2) and other CCR1 ligands. 

 

3.3 Final remarks 
 

Because the circulation provides them with extensive access to various tissues and organs 

throughout the body, myeloid cells are well disposed to act as angiogenic and inflammatory 

sentinels, adjusting the release of their content as is required for them to carry out their functions, 

and in accordance with biochemical cues. Thus, myeloid signalling via FGFR, VEGFR and Tie2 

integrates angiogenesis and inflammation, and highlights the high level of plasticity required of 

these leukocytes in carrying their functions.   

Our observation that human neutrophils are heterogeneous in their expression of FGFRs 

prompted us to look at their ability to respond to the prototypical FGF family members, FGF1 

and FGF2. While both factors were capable of inducing neutrophil chemotaxis at high doses, 

their effects on short-term inflammatory gene expression were limited (Haddad et al, personal 

communications, 2011). This is reminiscent of the effects of Ang2 on specific neutrophil 

responses, whereby the ligand can promote human neutrophil chemotaxis (151) but fails to 

induce any significant change in inflammatory gene expression (190, 363).   

In other myeloid cells such as macrophages, Tie2 ligands are described as neutral (non-

inflammatory) permissive agents, whereby they promote “a state” of activation (“priming”) rather 

than exerting a direct activating role themselves (236).  However, neutrophils present certain 

particularities in their Tie2 signalling (such as the absence of Tie1, a lack of antagonism by 

Ang2, and a wider expression of Tie2 compared to the very small subset of TEMs), which 

suggests that they could respond differently to angiopoietins compared to their myeloid cousins.  

In effect, our data provides evidence that Ang1 is not simply a neutral co-stimulator that readies 

the neutrophil for the actions of a stronger stimulus, but the ligand is capable of significantly 

impacting neutrophil gene and protein levels, as well as modifying neutrophil biological 
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behaviour in the absence of other stimuli.  That being said, we also recognize that Ang1 does 

exert a “priming” effect in the context of IL-1β, causing the latter protein to accumulate 

intracellularly; this could serve to prepare the cells for the eventuality that a yet-to-be-identified 

second stimulus, or even a set of required conditions, could cause the release of IL-1β. 

Additionally, the Ang1-induced changes in neutrophil gene and protein expression may manifest 

differently in the presence of other mediators, as observed for macrophages under a variety of 

polarizing conditions.  

 

3.3.1 Therapeutic applications 
Though the role of a neutrophil in acute inflammation is well documented, many 

questions remain regarding this leukocyte’s biology, particularly during the performance of its 

duties in an environment where multiple processes and competing signals are taking place 

simultaneously. Our studies are a good reminder that in the mammalian organism, physiological 

phenomena rarely occur in isolation; rather, they are the fruit of intricately intertwined and 

complex networks of tissues, cells and mediators.  

By studying the links between angiogenic growth factors and neutrophils, we continue to 

expand our understanding of the correlation between the phenomena that they drive, specifically 

between angiogenesis and acute inflammation. Why is this important in the therapeutic realm? 

Because there is a world of difference between theory and the achieved therapeutic outcome, as 

most clinical trials tend to demonstrate. For instance, theory dictates that since both processes 

rely on endothelial activation, compounds that block the angiogenic cascade would theoretically 

also subdue the inflammatory process, and vice versa. However, this paradigm is not true in the 

case of VEGF and retinal angiogenesis: If VEGF-induced inflammation is a trigger for 

pathological angiogenesis (364), then why is it that when Bevacizumab (Avastin) is used to stunt 

the latter in ocular disease32(365, 366), severe acute ocular inflammation occurs (367, 368)?  

 

As we have seen in much detail in 1.4 The Angiopoietin family, there is a body of 

conflicting data on the role of the angiopoietin-Tie signalling pathway in endothelial survival, 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

32 Avastin is a recombinant anti-VEGF antibody used in the treatment of ocular disorders where blood vessel growth 
is the underlying cause of the pathology, such as macular degeneration (wet variety) (Avery, Pieramici et al, 2006) 
and proliferative diabetic retinopathy (Avery, Pearlman et al, 2006). 
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vessel growth, and vascular maturation. The dichotomies in the reported actions of Ang in 

angiogenesis make it very difficult to determine therapeutic applications, let alone to predict 

clinical benefit. Cancer is the perfect example (review (369)): Upregulation of Ang1 has been 

strongly correlated with tumor malignancy in multiple cancer types, including gliomas, non-small 

cell lung carcinoma (370), and in ovarian (371), breast (372), and gastric (373) cancers. 

Furthermore, overexpression of Ang1 in human in vitro cell models of cervical cancer (HeLa) 

and glioblastoma (U87, U373 and U343) has been reported to increase tumor growth (see review 

(369)). In surprising contrast, overexpression of Ang1 in cell models of human breast (MCF-7) 

and colon (HT29) tumors, and squamous carcinoma (A431) has been reported to show significant 

antitumor effect. Overexpression of Ang1 in cell models of human breast (MCF-7), colon 

(HT29), and skin (A431) cancers has been reported to show significant antitumor effect. It is 

possible that the tumor-inhibiting effect of Ang1 is related to its anti-inflammatory actions, but 

this theory is difficult to reconcile with the contradictory findings. In parallel, the role of Ang2 in 

tumor development is similarly controversial: While overexpression of Ang2 delays tumor 

growth in lung and mammary carcinomas, it enhances angiogenesis and tumor malignancy in 

hepatomas, gliomas, and colorectal and gastric carcinomas (see review (369)).  

In a scenario where the Dr. Jekyll and Mr. Hyde behaviour of angiopoietins is understood 

and controlled, there would be clear benefits, such as containing cancer growth by concurrently 

minimizing inflammation and tumor vascularization. In other cases, we can envisage strategies 

that take advantage of the pro-angiogenic and anti-inflammatory properties of Ang1. For 

instance, in brain ischemia, loss or diminishment of blood perfusion to parts of the brain tissue 

initiates a cascade that rapidly leads to excitotoxicity, tissue damage and inflammation (374). 

Reperfusion of the affected ischemic tissue is critical for restoring normal function; however, it 

can paradoxically result in secondary damage, called ischemia/reperfusion (I/R) injury (374), 

caused by biochemical imbalances (excess reactive oxygen species) and infiltration of innate 

immunity blood cells that release damaging cytokines, particularly IL-1β (375), which exacerbate 

tissue injury. In such pathologies, enhancing neovascularization while limiting secondary 

inflammation is the most desirable therapeutic outcome. To date, over one hundred drugs have 

been tested for the treatment of acute brain ischemia, yet rt-PA remains the only agent shown to 

improve stroke outcome in clinical trials (374, 376). Even then, rt-PA benefits are severely 

limited by the small therapeutic window within which rt-PA must be used (< 3 hours) and the 
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risks of I/R injuries. Thus, finding mediators that are simultaneously pro-angiogenic yet anti-

inflammatory may provide a more optimal treatment of brain stroke.   
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Haddad LE, Bou Khzam L, Hajjar F, Merhi Y, Sirois MG.
Characterization of FGF receptor expression in human neutrophils
and their contribution to chemotaxis. Am J Physiol Cell Physiol
301: C1036 –C1045, 2011. First published July 27, 2011;
doi:10.1152/ajpcell.00215.2011.—Several members of the fibro-
blast growth factor (FGF) family are potent endothelial cell (EC)
mitogens and angiogenic factors, and their activities can be medi-
ated by four tyrosine kinase receptors (FGFR1– 4). In addition,
FGFs can induce the release of inflammatory mediators by ECs and
the expression of adhesion molecules at their surface, thereby
favoring the recruitment and transvascular migration of inflamma-
tory cells such as neutrophils. Neither the expression nor the
biological activities that could be mediated by FGFRs have been
investigated in human neutrophils. By biochemical and cytological
analyses, we observed that purified circulating human neutrophils
from healthy individuals expressed varying levels of FGFRs in
their cytosol and at their cytoplasmic membrane. FGFR-2 was
identified as the sole cell surface receptor, with FGFR-1 and -4
localizing in the cytosol and FGFR-3 being undetectable. We
assessed the capacity of FGF-1 and FGF-2 to induce neutrophil
chemotaxis in a modified Boyden microchamber and observed that
they increase neutrophil transmigration at 10�10 and 10�9 M and
by 1.77- and 2.34-fold, respectively, as compared with PBS-treated
cells. Treatment with a selective anti-FGFR-2 antibody reduced
FGF-1-mediated chemotaxis by 75% and abrogated the effect of
FGF-2, while the blockade of FGFR-1 and -4 partially inhibited
(15– 40%) FGF-chemotactic activities. In summary, our data are
the first to report the expression of FGF receptors in human
neutrophils, with FGF-1 and FGF-2 promoting neutrophil che-
motaxis mainly through FGFR-2 activation.

inflammation; fibroblast growth factor receptor; cell migration

INFLAMMATION IS AN ESSENTIAL component of host defense
against harmful stimuli, involving a complex interplay between
vascular tissues and blood leukocytes. Leukocyte recruitment
to sites of inflammation occurs via a series of molecular and
cellular events, beginning with the tethering and rolling of
leukocytes on the endothelium lining blood vessels, followed
by firm arrest, diapedesis, and finally leading to extravasation
into the vascular wall (31). These cellular responses are ac-
companied by changes in the expression of effector molecules
such as surface adhesion proteins, receptors and mediators
secreted by the endothelium and recognized by neutrophils
(41). Therefore, the efficacy of neutrophils in reaching infected
tissues is dependent on recognizing and responding to altera-
tions of endothelial functions. Interestingly, many of the me-

diators that neutrophils respond to are also extensively in-
volved in angiogenesis, a phenomenon that leads to the forma-
tion of new blood vessels from preexisting vasculature. Factors
such as vascular endothelial growth factor (VEGF), angiopoi-
etins (Ang1, Ang2), and interleukins (IL)-1, -6, and -8, all of
which are extensively involved at different stages of angiogen-
esis, have been shown to modulate neutrophil survival, degran-
ulation, respiratory burst, adhesion, and chemotaxis (5, 11, 28,
32, 36).

Another set of potent angiogenic modulators, the family of
fibroblast growth factors (FGFs), is also involved in the in-
flammatory process, but the contribution of specific FGFs to
different stages of inflammation remains to be elucidated.
Evidence of the involvement of FGFs in inflammation comes
from observations that the two most studied members of the
family, FGF-1 and FGF-2, are upregulated in inflammatory
disorders such as bowel syndrome, Crohn’s disease, ulcerative
colitis (23), and rheumatoid arthritis (6). Other reports have
suggested that FGF-1 and FGF-2 are secreted by and may act
as immunoregulators of infiltrating neutrophils, monocytes,
macrophages, and T lymphocytes, often in tandem with pow-
erful inflammatory cytokines (3, 7, 33). The notion that FGF-2
alters neutrophil behavior secondary to the activation of endo-
thelial cells (ECs) rather than through direct interaction is
supported by evidence that FGF-2 enhances EC surface ex-
pression of adhesion molecules ICAM-1/2 (51), E-selectin
(34), and monocyte chemoattractant protein-1 (33, 42, 49)
before neutrophil rolling and adhesion. Although one study
showed that FGF-2 primes neutrophil respiratory burst and
increases their surface expression of integrins CD11b/CD18
(42), the effects of direct FGF stimulation, especially those of
FGF-1, on neutrophil biological activities remain largely un-
explored.

In general, the effects of FGFs, of which there are 23
members, are mediated by binding to four high-affinity
tyrosine kinase receptors (FGFR1– 4) and their splice vari-
ants (22). The diversity in FGF signaling is due, in part, to
different FGF/FGFR combinations. Additionally, alterna-
tive splicing in the FGFR immunoglobulin (Ig)-like domains
generates additional receptor isoforms with novel ligand
affinities. Finally, effector cells will usually express differ-
ent heparan-sulfates at their surface, which are responsible
for stabilizing FGF/FGFR complexes and enhancing FGFR
downstream signaling (10, 46).

Although it has been shown that cells of hematopoietic
origin express functional FGFRs (1), no information has been
reported regarding the receptors that mediate the effects of
FGF-1 and FGF-2 in neutrophils. Therefore, the aim of the
present study was to determine whether neutrophils expressed
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FGFRs and if so, to characterize the contribution of the
identified FGFRs to the effects of FGF-1 and FGF-2 on
neutrophil chemotaxis.

MATERIALS AND METHODS

Neutrophil purification. Venous blood samples were obtained from
healthy donors free from medication for at least 10 days before the
start of the experiments. The study has been approved by the human
ethical committee of the Montreal Heart Institute, and all subjects
provided written informed consent. Neutrophils were isolated using
Ficoll-Hypaque gradient, as described previously (32, 36, 44), and
resuspended in RPMI medium (Lonza, Allendale, NJ) supplemented
with 25 mM HEPES (N-2-hydroxyethylpiperazine-N=-2-ethanesul-
fonic acid) and 1% penicillin-streptomycin. Ninety-eight (98) percent
of the isolated cells were polymorphonuclear cells, as determined with
a Coulter counter, and viability was found to be �98%, as assessed by
Trypan blue dye exclusion assay.

FGF receptor identification by quantitative RT-PCR analyses.
Total RNAs were obtained from freshly isolated human neutrophils
(107 cells) by using the RNeasy extraction kit (Qiagen, Mississauga,
ON, Canada). Total RNAs (100 ng) was reverse transcribed using
random hexamers and the Moloney murine leukemia virus (MMLV)
reverse transcriptase (Invitrogen, Burlington, ON, Canada) as de-
scribed by the manufacturer. Reactions were performed on a
MX3500P (Stratagene, La Jolla, CA) using 10 ng of cDNAs, Syber
Green (Invitrogen), and 300 nM of the primers (Table 1) for each
receptor. cDNAs were submitted to 45 cycles of amplification (tem-
peratures for annealing: 60°C; dissociation: 55°C) and gave single
peaks for each product.

Reverse transcriptase polymerase chain reaction [quantitative RT-
PCR (RT-qPCR)] products were purified on a 2% acrylamide gel,
quantified using QIAquick Gel Extraction Kit (Qiagen), and se-
quenced (Genome Quebec Innovation Centre, McGill University,
Montreal, QC, Canada). The concentration of the purified products
was measured using a NanoDrop spectrophotometer, and eluted am-
plicons were used in another set of RT-qPCR reactions as serial
dilutions to generate standard curves for each set of oligonucleotides.
The number of copies was calculated using the following formula:
number of copies � [amount (ng) � 6.022 � 1023]/[length (bp) �
1 � 109 � 650 (g/mol of bp)]. Standard curves of cDNA copies were
generated by RT-qPCR and used to determine the number of mRNA
copies for each receptor.

Immunohistochemistry. Freshly isolated human neutrophils (1.2 �
108 cells) were centrifuged, and the pellet was fixed in 10% PBS-
buffered formalin overnight, dehydrated in a graded series of ethanol
solutions and xylene, and embedded in paraffin. Sections 6 �m thick
were rehydrated, blocked in 10% normal goat serum (NGS), and
incubated overnight with rabbit polyclonal anti-human FGFR1–4 IgG
or normal rabbit IgG (1:200 dilution; Santa Cruz Biotechnology,
Santa Cruz, CA). Following a 30-min incubation with the secondary
antibody (goat anti-rabbit IgG, 1% NGS), sections were rinsed three

times in Tris buffer and incubated in Vectastain ABC alkaline phos-
phatase solution (Vector, Burlington, ON, Canada) and revealed with
the Vector black alkaline phosphatase substrate solution for 30 min
each as recommended by the manufacturer. Slices were rinsed, im-
merged in methyl green (10 min, 60°C), dehydrated, mounted with
resinous medium, and examined with a light microscope under �400
and �1,000 magnification. No cross-reactivity was observed between
FGFR1–4 antibodies.

Confocal microscopy. Neutrophils were isolated as aforemen-
tioned, allowed to adhere on glass coverslips precoated with poly-L-
lysine (BD BioCoat; Becton Dickinson, Mississauga, ON, Canada) for
1 h, and fixed with a 2% paraformaldehyde solution. Nonspecific
binding of primary antibodies was prevented by preincubating fixed
neutrophils with 10% serum from the species used to raise secondary
antibodies. Neutrophils were exposed to mouse monoclonal anti-
human FGFR1–4 IgG (R&D Systems, Minneapolis, MN) and to a
secondary goat anti-mouse antibody coupled to the Cy3-fluorochrome
(Invitrogen). No cross-reactivity was observed between FGFR1–4
antibodies. Neutrophil preparations were mounted using DABCO
(1,4-diazabicyclo-2–2-2-octane)/glycerol (1:1) solution and glass cov-
erslip. Stained neutrophils were observed by confocal microscopy
[Zeiss Axiovert 100 M microscope equipped with a �63/1.4 Plan-
Apochromat oil objective lens (Zeiss, Oberkochen, Germany) and
adapted with an LSM 510 confocal system]. Images were recorded
with LSM 510 software (Zeiss) and exported in tagged-image file
format (TIFF).

Flow cytometry (FACS). Neutrophils (107 cells/ml) were rinsed and
resuspended in RPMI, and mouse IgG (150 �g/ml) was added for 30
min to prevent nonspecific binding via Fc receptors. Neutrophils were
centrifuged, rinsed, resuspended in PBS-BSA (106 cells/ml, 1%
BSA), and incubated with phycoerythrin (PE)-conjugated mouse
monoclonal anti-human FGFR1–4 IgG (25 or 50 �g/ml, R&D Sys-
tems), or with control PE-conjugated mouse monoclonal IgG1 (50
�g/ml, R&D Systems) for 30 min at room temperature. Cells were
rinsed and fixed with 2% paraformaldehyde. Flow cytometric analysis
(105 events) was performed using a FACScan (Becton Dickinson, San
Jose, CA).

Neutrophil migration. In vitro chemotactic assays were performed
in a 48-well modified Boyden chamber apparatus (Neuro Probe,
Gaithersburg, MD) as previously described (5, 26). Briefly, the
bottom wells were loaded with RPMI containing PBS, IL-8 (25 nM),
FGF-1 (10�14 to 10�8 M), or FGF-2 (10�14 to 10�8 M) to a final
volume of 27 �l. The top wells were loaded with neutrophils (106

cells/ml; 50 �l from a RPMI suspension). The top and bottom wells
were separated by a porous polycarbonate membrane filter (3-�m
pore size). The modified Boyden chamber apparatus was incubated at
37°C for 1 h in a humidified incubator in the presence of 5% CO2. At
the end of the incubation period, the upper part of the modified
Boyden chamber (upper wells) was removed, and the upper side of the
polycarbonate membrane was wiped carefully with the rubber scraper
provided by the manufacturer. The polycarbonate membrane was

Table 1. FGF receptor primer sequences

Receptor Forward Oligonucleotide Reverse Oligonucleotide

FGFR-1 (all variants) CTACAAGGTCCGTTATGCCAC TGCTACCCAGGGCCACTGTTTTG
FGFR-2 (all variants) AAGCCCAAGGAGGCGGTCAC CAGGAACACGGTTAATGTCA
FGFR-2-IIIb GATAAATAGTTCCAATGCAGAAGTGCT TGCCCTATATAATTGGAGACCTTACA
FGFR-2-IIIc AGATTGAGGTTCTCTATATTCGGAATG CTGTCAACCATGCAGAGTGAAAG
FGFR-� CTCTCAACCAGAAGTGTACGTGGCTGC GACATTCACCATGAAGTACCAAG
FGFR-� (same reverse) CCACATTAGAGCCAGAAGGAGCACC

CCACATTAGAGCCAGAAGATGCCA
GCTGGTTTCGTACCTTGTAGCCTCC

FGFR-3 (all variants) TACTGTGCCACTTCAGTGTGC ATCCGCTCGGGCCGTGTCCAGTAA
FGFR-4 (all variants) CCAGCGCATGGAGAAGAAAC ACCACGCTCTCCATCACGAGAC

FGFR, fibroblast growth factor receptor.

C1037FGFR EXPRESSION IN HUMAN NEUTROPHILS

AJP-Cell Physiol • VOL 301 • NOVEMBER 2011 • www.ajpcell.org



fixed in methanol, colored with the Kwik-Diff staining solution kit
(Thermo Shandon, Pittsburgh, PA), mounted on a glass slide, and
examined with a light microscope under �40 magnification. The
number of cells in five random fields was counted, and the results are
expressed as relative neutrophil migration (number of cells from
tested group/number of cells from corresponding control vehicles).

In another set of experiments, neutrophils were pretreated with 0.1
�g/ml of blocking anti-FGFR-1, FGFR-2, or FGFR-4 antibodies
(R&D Systems) or with an isotype-matched control IgG for 30 min
before a 1-h migration toward PBS, IL-8 (25 nM), FGF-1 (10�9 M),
or FGF-2 (10�9 M). In the latter experiment, maximal effect was set
to 100% and corresponds to the number of IgG-pretreated neutrophils
migrating toward FGF-1 or FGF-2. The migration of neutrophils
pretreated with FGFR antibodies was expressed as a percentage of the
maximum FGF-induced response in absence of FGFR antibodies.

Statistical analysis. Data are presented as means � SE. Statistical
comparisons were made by Student’s t-test or by a one-way analysis
of variance, followed by Tukey post hoc where applicable using
GraphPad Prism (Mac version 5.0b). Differences were considered
significant at P 	 0.05.

RESULTS

Neutrophil expression of FGFR mRNA. Using neutrophils
isolated from venous blood samples of 22 healthy volunteers,
we determined the mRNA expression of FGF receptors (1 to 4;
FGFR1–4), as described in MATERIALS AND METHODS. Neutro-
phils expressed an average of 4.72 � 105 copies of total FGFR
mRNA, irrespective of the subtypes. FGFR-2 mRNA had the
highest level of expression (3.10 � 0.67 � 105 mRNA copies)
followed by FGFR-4 (1.07 � 0.24 � 105 copies) and FGFR-1
(0.6 � 0.12 � 105 copies), whereas FGFR-3 mRNA level was
undetectable (Fig. 1A). As the levels of total FGFR mRNA
copies varied between individuals, we represented the distri-
bution of each of FGFR1–4 mRNA per donor. We arbitrarily
separated the donors into low (	4 � 105 copies; 11/22 donors)
and high expressers (�4 � 105 copies; 11/22 donors) (Fig.
1B); regardless of which group the donors belonged to,
FGFR-2 represented the highest proportion of total FGFR
mRNA, corresponding to 51.0 � 9.5% and 67.9 � 5.1% of the
total FGFR mRNA for low and high expressers (Fig. 1C).

Neutrophil expression and localization of FGFR proteins.
Independently of the above mRNA analyses, neutrophils from
16 different donors were examined for FGFR1–4 protein
expression and localization by conventional immunohisto-
chemistry (IHC). Because of the variations in staining intensi-
ties and the number of cells that were marked between different
donors, we distinguished four staining patterns (Fig. 2, A–E) to
which we attributed qualitative scores: score 0 (background
staining; Fig. 2A), score 1 (faint but detectable staining in some
cells; Fig. 2E), score 2 (high staining in some cells; Fig. 2B),
or score 3 (high staining in most cells; Fig. 2C). The staining
scores for each donor, along with the means of the scores for
comparative purposes, are presented in Table 2. FGFR-1 stain-
ing showed high staining on a small subset of the neutrophils
for most donors (Fig. 2B). The majority of donors scored high
for FGFR-2, with a much larger fraction of neutrophils in-
tensely stained (Fig. 2C). FGFR-3 and FGFR-4 expression fell
between scores 0 and 1 as most donors showed either very faint
staining in a minor population of neutrophils or no detection at
all (Fig. 2, D and E). We also observed differences in the
localization of the staining, especially between FGFR-2 and
FGFR-1 (and to a lesser extent FGFR-4), as shown by the

boxed, magnified images in Fig. 2. When viewed at �1,000
magnification, neutrophils stained for FGFR-2 showed a dis-
tinct darker coloration at the cytoplasmic periphery, unlike
FGFR-1 or FGFR-4, which showed a rather diffuse intracellu-
lar staining pattern. These observations suggest that FGFR-2 is
the only neutrophil cell surface receptor, whereas FGFR-1 and
FGFR-4 show a cytosolic localization.

Data obtained from flow cytometry analyses reflected the
same variability in expression levels of FGFR1– 4 from one
donor to another. By confocal microscopy, we determined
whether the receptors were localized intracellularly or at the
cell surface. We observed that FGFR-1 and FGFR-4 staining
was perinuclear and diffused across the cytosol of the
neutrophils, whereas FGFR-2 staining was mainly confined
to a thin strip in close proximity to the cell surface. Once
again, FGFR-3 detection was similar to the nonspecific IgG
background (Fig. 3).

Characterization of FGFR-2. FGF receptors share the same
basic protein structure, which is characterized by up to three
extracellular Ig domains (denoted by Ig-I, -II, or -III). These Ig
domains define the affinity and responsiveness of FGFRs for
different FGF ligands (10, 18, 29). In normal tissues, FGFRs
express all three Ig domains and are referred to as “FGFR-�”
(Fig. 4A). The loss of Ig-I gives rise to “short” forms of FGFRs
called “FGFR-�,” correlating with transformation to a malig-
nant phenotype and invasiveness (24, 48). FGFR-� forms are
thus found in cancerous cell lines, having a 1,000-fold higher
affinity to FGF-1 but not for FGF-2. The complexity of the
FGFR family is increased by alternative splicing in exons 9 or
8 of Ig-III domain, generating FGFR-IIIb and FGFR-IIIc
isoforms, respectively (Fig. 4B). These splicing events confer
additional ligand-binding properties to FGFRs (45).

Because we identified FGFR-2 as the only cell surface
receptor, we further characterized the expression of its differ-
ent isoforms. We looked at the FGFR-2 mRNA transcript, first
to establish whether all three Ig domains were coded, and
second to determine which of exons IIIb or IIIc in Ig-III were
spliced. As per our previous experiments, we performed RT-
qPCR analyses and determined that FGFR-2� is nearly the
exclusive isoform (Fig. 4C). We then quantified the mRNA of
both FGFR-2�-IIIb and FGFR-2�-IIIc subtypes and observed
that, in neutrophils, FGFR-2 mRNA was primarily FGFR-2�-
IIIc.

In vitro FGF-1 and FGF-2-mediated chemotaxis. Previous
studies reported that FGF-2 modulates the recruitment of
polymorphonuclear cells, monocytes, and T cells in vivo (51,
52). However, the possibility that FGFs could be direct stim-
ulators of leukocyte recruitment was not addressed. To this
end, we used a modified Boyden microchamber model and
observed that both FGF-1 and FGF-2 were capable of mediat-
ing neutrophil chemotaxis at picomolar concentrations. In
addition, treatment with FGF-1 or FGF-2 (10�14 to 10�8 M)
induced a bell-shape response on the number of migrating
neutrophils as compared with control PBS-treated cells. The
maximal effect was achieved at 10�10 M for FGF-1 and 10�9

M for FGF-2, corresponding to 1.77- and 2.34-fold increase
over PBS-mediated neutrophil migration, respectively. The
positive control IL-8 (25 nM) increased migration by 2.72-fold
as compared with control PBS-treated neutrophils (Fig. 5A).

In another set of experiments, we assessed the contribution
of FGFR-1, FGFR-2 and FGFR-4 to FGF-mediated che-
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motaxis. Neutrophils were pretreated with blocking monoclo-
nal antibodies against FGF receptors (FGFR-1, -2, and -4) or
with a control isotype-matched IgG (0.1 �g/ml) for 30 min
before stimulation with PBS, IL-8 (25 nM), FGF-1, or FGF-2
(10�9 M). We observed that the effects of FGF-1 on neutrophil

chemotaxis were suppressed by 75.2% with the selective anti-
FGFR-2 antibody and partially reduced with the anti-FGFR-1
or anti-FGFR-4 by 39.6% and 31.9%, respectively. FGF-2-
induced neutrophil migration was almost completely abrogated
by treatment with the anti-FGFR-2 antibody (96% reduction),

Fig. 1. Fibroblast growth factor (FGF) receptor
(FGFR) 1–4 mRNA expression in human neu-
trophils. Circulating neutrophils isolated from 22
healthy individuals were profiled for FGFR1–4
mRNA expression. A: number of FGFR1–4
mRNA copies as well as means � SE are pre-
sented. Donors are the same across columns,
with each symbol per column corresponding to a
single donor. B: distribution of FGFR1–4
mRNA copies per donor is illustrated. Each
column represents a single donor, and the peak
of the columns corresponds to the total number
of FGFR copies. Donors were divided into low
(	4 � 105 total FGFR mRNA copies) and high
(�4 � 105 total FGFR mRNA copies) express-
ers. C: distribution of each FGFR1–4 mRNA
illustrated in B is expressed as a percentage of
total FGFR mRNA per individual. Dotted lines
indicate the average FGFR-2 percentage ob-
served in low or high expressers.
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whereas anti-FGFR-1 and FGFR-4 antibodies reduced migra-
tion by 28.9% and 14.6%, respectively (Fig. 5B). In contrast,
basal and IL-8-induced neutrophil migration was unaffected in
the presence of anti-FGFR antibodies (data not shown).

DISCUSSION

In the current study, we demonstrate that circulating neutro-
phils isolated from the blood of healthy individuals express

varying levels of FGFR-1, -2, and -4 mRNA, with FGFR-2
mRNA showing the most consistent and highest level of
expression. At the protein level, donors showed a heteroge-
neous expression of FGF receptors. We identified FGFR-2 as
the most expressed and unique neutrophil cell surface receptor,
whereas FGFR-1 and FGFR-4 appeared to be cytosol bound.
Neither the mRNA nor the protein for FGFR-3 was signifi-
cantly detectable. In addition, we observed that FGF-1 and
FGF-2 were capable of stimulating neutrophil migration under
in vitro conditions, mainly through FGFR-2 activation.

FGF-1 and FGF-2 are potent heparin-binding proangiogenic
growth factors that exert their biological functions through the
activation of high affinity tyrosine kinase receptors (FGFRs),
heparan-sulfate proteoglycans (HSPGs) and integrins ex-
pressed on the surface of effector cells (17). Although the
presence of FGFRs on human neutrophils has not been re-
ported, these leukocytes from a biological standpoint seem
naturally well equipped to respond to FGF stimulation. First,
neutrophils express integrins as well as HSPGs, accessory
coreceptors that facilitate dimerization of tyrosine kinase re-
ceptors and amplify the signaling triggered by HSPG-binding
growth factors such as FGFs. Second, neutrophils present at
their surface the receptors for at least two other families of
angiogenic growth factors with similar properties to FGFs.
Indeed, neutrophils were shown to express VEGF receptor-1
and Tie2, which are responsible for VEGF and Ang-mediated
neutrophil chemotaxis, respectively (2, 26).

Detection and localization of FGF receptors in human
neutrophils. The initial objective of our study was to determine
whether neutrophils expressed FGF receptors. Quantitative
RT-PCR analyses showed a trend among individuals to express
more mRNA for FGFR-2 than any of the other FGF receptor

Fig. 2. Expression and localization of FGFR1–4 proteins by immunohistochemistry (IHC). Human neutrophils mounted in paraffin were stained with specific
anti-human FGFR1–4 IgG antibodies. Representative IHC staining images for each receptor are illustrated as follows: control IgG (A), FGFR-1 (B), FGFR-2
(C), FGFR-3 (D), and FGFR-4 (E). The magnified (�100) boxes in the images were chosen from their corresponding fields (black arrows) and show the distinct
localization patterns for each receptor.

Table 2. Immunohistochemistry scores for
FGFR1-4 expression

Donor FGFR-1 FGFR-2 FGFR-3 FGFR-4

1 2 3 1 2
2 3 1 0 1
3 1 3 0 0
4 0 0 0 0
5 1 3 0 2
6 3 3 1 2
7 1 2 0 1
8 0 2 0 1
9 2 2 0 0

10 2 2 0 1
11 3 2 0 1
12 1 2 0 1
13 0 2 1 0
14 1 2 1 0
15 1 1 1 0
16 2 2 1 1

Means � SE 1.43 � 0.36 2 � 0.50 0.37 � 0.09 0.81 � 0.20

Neutrophils from 16 donors were assessed for the presence and localization
of FGFR1-4 proteins by immunohistochemistry. Qualitative scores were at-
tributed per individual for each receptor as follows: IgG background staining
(score 0), faint but detectable staining in some cells (score 1), high staining in
some cells (score 2), and high staining in most cells (score 3). Means � SE for
each receptor are shown in the bottom row.
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subtypes. FGFR-1 and FGFR-4 mRNA were also detectable
with a generally lower number of copies, whereas FGFR-3 was
minimally or not detected. Owing to the fact that the presence
of the mRNA does not always coincide with the expression of
its corresponding protein, we examined FGFR protein expression
by immunostaining and confocal microscopy. FGFR-2 was de-
tected on a large subset of neutrophils for many of the donors,

with a staining pattern to the cell surface membrane. FGFR-1 and
FGFR-4 showed a less intense but uniformly diffused staining
across the cytoplasm of a small fraction of neutrophils, suggesting
that if these receptors were indeed cytoplasmic, they were not
confined to specific subcellular fractions or to vesicles. FGFR-3
protein detection was absent to very low, in accordance with its
corresponding mRNA levels.

Fig. 3. Localization of FGFR1–4 by confocal microscopy. Human neutrophils were stained with specific anti-human FGFR1–4 antibodies and a secondary
Cy3-coupled antibody. Labeled neutrophils were viewed under confocal microscope to assess the protein localization of FGFR1–4. Columns, left to right,
correspond to images of neutrophils taken from random fields: phase contrast showing membrane integrity, specific FGFR staining (secondary antibody coupled
to Cy3 dye), and nuclear counterstaining (To-pro). The three-dimensional reconstructions of confocal Z-stack images (last column) correspond to neutrophils
chosen at random from the larger associated fields.
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Characterization of FGFR-2. The specificity of the FGF-
neutrophil interaction is determined not only on the basis of
which FGFR is expressed at the cell surface, but also by the
subtype and isoform of the surface receptor. Most mammalian
FGFRs exist as the FGFR-� isoform, which consists of three
extracellular immunoglobulin-like domains (Ig I–III). The lack
of Ig-I, which gives rise to short forms of FGFR called “�,”
leads to a 1,000-fold increase in FGF-1 responsiveness and an
important reduction in FGF-2 affinity. FGFs interact with the
Ig-II and Ig-III domains, with the Ig-III interactions primarily
responsible for ligand-binding specificity. Alternative splicing
of exons 9 and 8 in the Ig-III domain gives rise to “IIIb” and
“IIIc” variants for FGFR-1, -2, and -3, thus generating seven
possible FGFR subtypes at the cell surface that bind a specific
subset of FGFs. FGF-1 is capable of activating all seven
FGFRs. In contrast, FGF-2 only binds the IIIc forms of FGFRs
(9, 10, 14, 15, 20–22, 30). Using qPCR analysis, we confirmed
that nearly all the FGFR-2 mRNA from human neutrophils
comprises all three Ig domains, coding for the �-isoform.
Furthermore, the majority of the FGFR-2 mRNA contains exon
9 in the second part of Ig-III domain, which would thereby
generate IIIc isoforms. The presence of FGFR-2�-IIIc isoform
on the cell surface of human neutrophils would allow them to
interact with FGF-1, FGF-2, FGF-4, and FGF-6 but not with
FGF-3, FGF-7, or FGF-10 (4, 14, 29). Given the role of FGFs
in angiogenesis, this finding could potentially have important
physiological implications; indeed, in cases such as following

a cerebral stroke or cardiac ischemia, where an increase in
angiogenesis is desired to improve reperfusion while maintain-
ing a minimal influx of inflammatory cells, the choice of FGF
ligand could become critical.

Our data regarding FGFR1–4 protein expression and local-
ization are in agreement with previous studies reporting the
presence of soluble cytosolic forms for FGF receptors in blood
and different cell types (18, 37). The function of the cytoplas-
mic FGFRs can only be speculative at the moment, but we did
consider the possibility that FGF-2 could induce the translo-
cation of its own receptors from the cytosol of the neutrophils
to the cell surface. However, when neutrophils were treated
with FGF-2 for up to 24 h, FGFR1–4 detection was not
significantly increased, as measured by flow cytometry (data
not shown). Nevertheless, this observation does not exclude the
possibility that FGFR1–4 translocation could be induced by
other more potent inflammatory mediators such as IL-8,
TNF-�, or bacterial lipopolysaccharide (LPS), all of which can
promote protein translocation to the surface of neutrophils (12,
36). It is possible that the soluble forms of FGFR-1 and -4 are
proteolytically cleaved by matrix metalloproteases (MMPs)
inside the cell before they reach the cytoplasmic membrane,
especially since neutrophils synthesize, store, and release large
amounts of MMP-2 (13) and MMP-9 (19, 40). This proteolysis
can occur in different locations within the cell, especially since
MMPs have been shown to cleave substrates in nuclear, mito-
chondrial, cytoplasmic, and vesicular compartments, including

Fig. 4. FGFR-2 subtype and isoform expression
in human neutrophils. FGFRs are composed of
up to three extracellular Ig-like domains that
determine their binding properties to members
of the FGF family. A: FGFRs can be expressed
either as a long form (FGFR-�) containing all
three Ig domains or as a shorter form lacking
Ig-I (FGFR-�). B: alternative splicing in exons
8–9 of the Ig-III domain generates isoforms
referred to as “IIIb” (spliced exon 9) or “IIIc”
(spliced exon 8) that exert different FGF-bind-
ing preferences. C: mRNA was isolated from
the neutrophils of at least 7 healthy donors and
assessed for FGFR-2� and -� subtypes as well
as IIIb-IIIc isoforms by quantitative (q)PCR
analyses. The number of mRNA copies and
means � SE are shown, with each symbol per
column representing a single donor.
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the intracellular cytoskeletal matrix (8). Furthermore, the pres-
ence of FGF-2 in the cytoplasm of neutrophils has been
reported (35), which raises the possibility that FGF-2 could
have undetermined intracellular functions and could be seques-
tered by soluble FGFR proteins. Further experimentation will
be required before a functional role for these cytoplasmic
receptors can be ascertained.

FGF-1 and FGF-2-mediated chemotaxis. Numerous angio-
genic factors have been shown to modulate leukocyte behavior
under inflammatory conditions. For instance, VEGF has been
reported to promote several chronic inflammatory disorders
(16, 25, 27, 38, 39, 43, 50). It has been shown that FGF-2 can
modulate the interaction of leukocytes with ECs in vitro (6, 47,
51), secondary to the stimulation of adhesion molecule expres-
sion on ECs. We addressed the capacity of FGF-1 and FGF-2
to directly modulate neutrophil chemotaxis in an EC-free
environment by using a modified Boyden microchamber
model. We observed that both FGF-1 and FGF-2 were capable
of stimulating neutrophil recruitment, albeit with different
potencies. These effects were almost completely abrogated
with blocking anti-FGFR-2 antibodies, and only partially

blocked by anti-FGFR-1 and FGFR-4 antibodies, suggesting
that most of the chemotactic activities of FGFs are mediated by
FGFR-2 activation.

In summary, our results demonstrate for the first time the
exclusive expression of FGFR-2 at the surface of human
neutrophils. The predominance of the FGFR-2�-IIIc iso-
form suggests that neutrophils respond to only a specific
subset of FGF ligands. Accordingly, we observed that
FGF-1 and FGF-2, both of which bind strongly to FGFR-
2�-IIIc, act as chemotactic agents for the recruitment of
neutrophils in vitro, mainly through direct interaction and
activation of FGFR-2. Consequently, this study delineates a
key inflammatory role for FGF-1 and FGF-2 and supports
the possibility of additional functions for FGF/FGFR com-
plex in modulating polymorphonuclear leukocyte proin-
flammatory activities.
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Abstract

The expression of the angiopoietin (Ang) receptor, Tie2, on both endothelial and inflammatory cells supports the idea that
Ang signaling may play a fundamental role in initiating and maintaining the inflammatory response. We have previously
shown that Ang1 and/or Ang2 alter the innate immune response by enhancing human neutrophil survival, chemotaxis and
production of inflammatory cytokine interleukin-8 (IL-8) in vitro. Thus, we hypothesized that Ang1 and Ang2 could
modulate other inflammatory signals in neutrophils, a possibility we explored through a gene-based assay looking at
changes in the mRNA expression of 84 inflammatory cytokines and their receptors. We observed that Ang1 (1028 M), but
not Ang2, increased mRNA expression of prominent pro-inflammatory cytokine IL-1b and its natural antagonist IL-1RA, by
up to 32.6- and 10.0-fold respectively, compared to PBS-control. The effects of Ang1 extended to the proteins, as Ang1
increased intracellular levels of precursor and mature IL-1b, and extracellular levels of IL-1RA proteins, by up to 4.2-, 5.0- and
4.4-fold respectively, compared to PBS-control. Interestingly, Ang1 failed at inducing IL-1b protein release or at increasing
intracellular IL-1RA, but the ratio of IL-1RA to mature IL-1b remained above 100-fold molar excess inside and outside the
cells. The above-noted effects of Ang1 were mediated by MAP kinases, whereby inhibiting MEK1/2 lead to up to 70% effect
reduction, whereas the blockade of p38MAPK activity doubled Ang1’s effect. These findings suggest that Ang1 selectively
alters the balance of neutrophil-derived inflammatory cytokines, favoring the blockade of IL-1 activity, a consideration for
future therapies of inflammatory diseases.
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Introduction

Inflammation is characterized by a sequence of events that

involve activation of the endothelium, release of endothelial

mediators, vascular remodeling to allow for increased permeability

and blood flow, and leukocyte – especially neutrophil –

recruitment and infiltration into inflamed tissues. Because acute

inflammation and angiogenesis can be triggered by the same

molecular events, it is not surprising that most molecules that alter

permeability, such as vascular endothelial growth factor (VEGF),

tumor necrosis factor (TNF)-a and nitric oxide (NO), are potent

pro-angiogenic factors (review; [1]).

Angiopoietins (Ang) are a family of angiogenic growth factors

that play a major role in modulating vascular integrity and

maturation. While the expression of the Ang receptor Tie2 on

both endothelial and inflammatory cells [2–4] suggests a potential

involvement in inflammation, a literature review of the specific

contributions of the primary family members, Ang1 and Ang2,

reveals a dichotomy of pro- and anti-inflammatory properties that

is often influenced by the presence of other inflammatory

mediators. From an anti-inflammatory perspective, Ang1 coun-

teracts some components of the activity of pro-inflammatory

factors on endothelial cells (ECs), inhibiting increases in EC

permeability induced by VEGF, thrombin, bradykinin and

histamine in vitro [5–7]. Additionally, Ang1 downregulates the

release of chemokine IL-8 by ECs [6], and inhibits adherence and

transmigration of neutrophils across EC monolayers stimulated

with VEGF, TNF-a and thrombin [5,6,8], likely through altering

the expression of endothelial E-selectin and intracellular/vascular

cell adhesion molecules (ICAM-1/VCAM-1) [5,9]. In mouse skin

in vivo, co-overexpression of VEGF and Ang1 shows an additive

effect on angiogenesis but results in leakage-resistant vessels with

little inflammation [10]. In stark contrast, Ang1 exerts certain pro-

inflammatory activities: Ang1 through Tie2 activation increases

endothelial P-selectin translocation, a protein that mediates the

rolling of leukocytes onto the endothelium under inflammatory

conditions[11]. Ang1 has also the ability to directly impact

leukocyte behavior, stimulating neutrophil IL-8 synthesis and

release [12], and acting in a Tie2-dependent manner to recruit

neutrophils and eosinophils, to increase neutrophil lifespan, and to

promote neutrophil adhesion onto extracellular matrix [3,4,13–

15]. The contribution of Ang2 to acute inflammation is even less

defined, with some evidence of pro-inflammatory properties such

as enhancing TNF-a-dependent adhesion of leukocytes to EC

monolayers, as well as TNF-a-induced expression of ICAM-1 and

VCAM-1 [16]. Ang2 alone also promotes a transient endothelial
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P-selectin translocation and its effects on neutrophil adhesion and

chemoattraction are Tie2-dependent and similar to those of Ang1

[4,15]; however, unlike Ang1, Ang2 fails to promote neutrophil

IL-8 synthesis and/or release, to increase neutrophil survival, or to

counteract the effects of Ang1 on the aforementioned processes

[12,13]. Thus, the distinct contributions of Ang1 and Ang2 to

acute inflammation remain to be clearly delineated. Neutrophils

are generally the first responders at sites of inflammation. They

contribute substantially to inflammation through their ability to

produce proteases, reactive oxygen species [17,18], and to a lesser

extent, cytokines including interleukin (IL)-6, TNF-a and IL-1

receptor antagonist (IL-1RA) [19–23]. Building on our recent

findings that Ang1 promotes significant IL-8 production in human

neutrophils in vitro in a time-dependent manner [12], we

broadened our investigation to 84 other pro-inflammatory

cytokines and their receptors, and looked at changes in their

mRNA expression following angiopoietins stimulation. The first

part of this study identified three related targets, all belonging to

the IL-1 family of inflammatory cytokines, IL-1a, IL-1b, and IL-

1RA, as well as a number of other potential interests unrelated to

the IL-1 family. The second part of this study focused on

identifying the kinetics and mechanisms that mediate the effects of

Ang1 on IL-1 family members in neutrophils.

Materials and Methods

Neutrophil purification
The study was conducted in accordance with the Declaration of

Helsinki and approved by the Montreal Heart Institute’s ethical

committee (Montreal, QC, Canada; ethics No. ICM #01-406).

All of the subjects provided written informed consent to the

experimental protocol before participating in the study. Venous

blood was obtained from healthy donors free from medication for

at least 10 days prior to the experiments. Venous blood was

obtained by drawing 100 ml (4625 ml) of blood using a 21G

needle into 30 ml syringes prefilled with 5 ml of Anticoagulant

Citrate Dextrose Solution USP (ACD) Formula A (Baxter

Healthcare; Deerfield, IL). The blood was then transferred into

4650 ml tubes and spun for 15 min at 200 g at room

temperature. Following the centrifugation, the platelet rich plasma

(PRP) was removed from the top layer and 20 ml of a 4% Dextran

solution (138 mM NaCl, 5 mM KCl, 0.34 mM Na2HPO4,

0.4 mM KH2PO4, 4.2 mM NaHCO3, 5.6 mM Glucose, 10 mM

HEPES, 12.9 mM Sodium Citrate and 250 mM Dextran; pH 7.4)

was added per tube. The tubes were gently mixed and red blood

cells were left to sediment for 45 minutes at room temperature.

The upper layer containing the white blood cells was collected and

gently deposed on a 12.5 ml layer of Ficoll-Paque Plus (GE

Healthcare; Baie d’Urfé, QC, Canada) in 50 ml tubes and spun

for 28 minutes at 400 g and at room temperature [24–26].

Following this centrifugation, the monocytes and lymphocytes

were separated from the neutrophils by Ficoll gradient. The

reminiscent red blood cells and neutrophils were found in the

pellet. In order to eliminate the red blood cells from the

neutrophils, we used a water lysis procedure by which we added

20 ml of distilled water over the neutrophils and red blood cells

pellet and mix gently for 20 seconds, followed by the quick

addition of 20 ml of HBSS 2X solution while continuing mixing,

for a final concentration of HBSS 1X (pH 7.4). Neutrophils were

then spun for 10 minutes at 200 g and at room temperature. The

pellet was then resuspended in RPMI 1640 medium with Corning

Glutagro (Mediatech, Manassas, VA) supplemented with 25 mM

HEPES (N-2-hydroxyethylpiperazine-N9-2-ethanesulfonic acid)

and 1% penicillin/streptomycin. Contamination of isolated

neutrophil suspension with peripheral blood mononuclear cells

was less than 0.1% as determined by morphological analysis and

flow cytometry, and viability was found to be greater than 98%, as

assessed by Trypan blue dye exclusion assay.

RNA studies
Two RT-qPCR -based techniques were used. The first of these

is a gene-based screening method; more specifically, real time

quantitative polymerase chain reaction (RT-qPCR) arrays were

used to identify targets of angiopoietins stimulation in inflamma-

tion. The second method was used to confirm array results and to

expand mRNA expression kinetics. Recombinant human Ang1

and Ang2 were obtained from R&D Systems (Minneapolis, MN)

and bacterial lipopolysaccharide (LPS) from Sigma-Aldrich (St

Louis, MO).

RT-qPCR array analyses. Neutrophils (107 cells/ml; 1 ml)

from at least three independent donors were treated with PBS,

Ang1 (1028 M) or Ang2 (1028 M) for 90 minutes prior to DNAse

treatment and total RNA extraction with the RNeasy extraction

kit (Qiagen, Mississauga, ON, Canada). RNA samples were

evaluated for integrity using a Bioanalyzer 2000 system (Genome

Quebec Innovation Centre, McGill University, Montréal, QC,

Canada); when all three samples (PBS, Ang1 and Ang2) from the

same donor showed an mRNA integrity above 8.5, they were

selected for use in arrays. RNA integrity between selected samples

differed by less than 0.5. Following isolation, 2 mg of RNA were

processed with RT2 First Strand Kit (SA Biosciences, Frederick,

MD) according to manufacturer’s instructions. Quantitative PCR

analyses of chemokines and receptors were assessed with the

Chemokines & Receptors PCR Array (SA Biosciences), RT2

SYBRH Green qPCR master mix (SA Biosciences) and a

Stratagene Mx3500p qPCR System (Stratagene, La Jolla, CA).

PCR array data were analyzed by the RT2 Profiler PCR Array

Data Analysis program, available through SA Biosciences’ web

portal and based on the DDCt method with four different

housekeeping genes. Data were normalized to 4 housekeeping

genes (B2M, HPRT1, RPL13A and GAPDH) and represented in

a volcano plot of fold change in expression of each gene (compared

to PBS-control) against its p-value.

RT-qPCR kinetics. Total RNAs (100 ng) from PBS, LPS

(1 mg/ml), Ang1 (1029 and 1028 M) or Ang2 (1029 and 1028 M)-

treated neutrophils were extracted as mentioned above and

reverse transcribed using random hexamers and the Moloney

murine leukemia virus (MMLV) reverse transcriptase (Invitrogen,

Burlington, ON, Canada) according to manufacturer’s instruc-

tions. Reactions were carried out on a MX3500P (Stratagene)

using 10 ng of cDNAs, Syber Green (Invitrogen) and 300 nM of

specific primers as follows (59 to 39): N IL-1a forward (Fwd)

TGACCTGGAGGCCATCGCCAA; reverse (Rev) GCAG-

CAGCCGTGAGGTACTGA, N IL-1b Fwd ACGCTCCGG-

GACTCACAGCA; Rev TGAGGCCCAAGGCCACAGGT, N
IL-1RA Fwd GATGTGGTACCCATTGAGCCTCATGC; Rev

ACTGGTGGTGGGGCCACTGT. cDNAs were submitted to

40 cycles of amplification (temperatures for annealing: 60uC;

dissociation: 55uC) and gave single peaks for each product. RT-

qPCR products were purified on a 2% acrylamide gel, quantified

using QIAquick Gel Extraction Kit (Qiagen) and sequenced. Gene

expression was normalized using b-microglobulin as the house-

keeping gene and results were expressed relative to calibrator T0

(gene expression at time of isolation) or to the control-PBS at each

time point.

In another set of experiments, neutrophils were pretreated with

inhibitors of p38 MAP kinase (SB203580; 10 mM), MEK1/2

(U0126; 20 mM), Akt (Triciribine; 5 mM), DMSO (vehicle) or PBS
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for 30 minutes prior to a 1-hour stimulation with PBS, LPS (1 mg/

ml), Ang1 (10210–1028 M) or Ang2 (10210–1028 M). Total RNAs

were then extracted and submitted to RT-qPCR analyses as

aforementioned.

Quantification of cytokines by ELISA
Purified neutrophils (107 cells/ml; 1 ml) were incubated in

RPMI and treated with PBS, LPS (1 mg/ml) Ang1 (10210–

1028 M) or Ang2 (10210–1028 M) for up to 24 hours at 37uC and

5% CO2. Upon the incubation period, neutrophils were centri-

fuged at 900 g for 6 minutes and supernatants collected and stored

at 280uC. The centrifuged cells were then lysed in ice-cold 1%

Triton-RPMI solution containing a cocktail of protease inhibitors.

The complete kinetics of synthesis and release of IL-1a, IL-1b and

IL-1RA as well as those for pro-IL-1b were evaluated from cell-

lysates and supernatants respectively, using Quantikine (pro-IL-1b;

R&D Systems) or Duoset ELISA development kits (IL-1a, 1b,

1RA; R&D Systems) and in accordance with manufacturer’s

instructions.

In another set of experiments, neutrophils were pretreated with

DMSO-soluble inhibitors of p38 MAPK (SB203580; 1 and

10 mM), MEK1/2 (U0126; 2 and 20 mM), Akt (Triciribine; 1

and 5 mM), DMSO or PBS for 30 minutes prior to a 2-hour

stimulation with PBS, LPS, Ang1 or Ang2. Final DMSO

concentration in reaction volumes did not exceed 0.2%. Upon

agonist stimulation, supernatants and lysates were collected and

the concentrations of cytokines assessed by ELISA.

IL-1b maturation
IL-1b is synthesized in the cytoplasm as a 31-kDa precursor

pro-protein (pro-IL-1b) that is cleaved to its mature 17-kDa form

by IL-1b-converting enzyme (ICE; also known as caspase-1).

Neutrophils (107 cells/ml; 1 ml) treated with PBS, LPS (1 mg/ml),

Ang1 (10210–1028 M) or Ang2 (10210–1028 M) for up to 6 hours

were assessed for caspase-1 activity using the Caspase-1 Fluoro-

metric Assay (R&D Systems). Upon each incubation period,

neutrophils were centrifuged at 900 g for 6 minutes and the

supernatants were gently discarded. Cells were then lysed with

250 ml of lysis buffer (provided by the manufacturer) and protein

concentrations were determined with the BCA protein assay. The

enzymatic reaction for caspase-1 activity was carried out in a 96-

well flat bottom microplate using 50 ml (150 mg) of total protein

and the caspase-1 fluorogenic substrate WEHD-AFC. The plates

were incubated at 37uC for 2 hours and read on a fluorescent

microplate reader (excitation 400 nm, emission 505 nm).

In previous studies, Perregaux et al. reported that the potassium

ionophore, nigericin is capable of inducing efficient cleavage and

release of newly synthesized IL-1b from LPS-treated macrophages

[27,28]. We tested this hypothesis in 4 sets of neutrophils

(107 cells/ml; 1 ml), each set treated with PBS, LPS (1 mg/ml),

Ang1 (1028 M) or Ang2 (1028 M), for 2 hours at 37uC and 5%

CO2 to induce maximal accumulation of pro-IL-1b. Upon the first

incubation period, neutrophils were centrifuged at 900 g for 6

minutes. Lysates and supernatants were immediately collected

from one set; for the remaining three sets, supernatants were

carefully removed and replaced with RPMI containing vehicle

(DMSO + ethanol), Cycloheximide (CHX; 10 mg/ml; + ethanol)

to halt new protein synthesis, or CHX and the potassium-proton

ionophore nigericin (N; 20 mM) for a further 45 minutes treatment

(37uC and 5% CO2). Upon this second incubation period, the

three sets were centrifuged at 900 g for 6 minutes, and

supernatants and lysates were collected and assayed for pro-IL-

1b and IL-1b concentrations by ELISA, as previously described.

CHX was dissolved in DMSO to a final DMSO concentration

that did not exceed 0.1%. Nigericin was dissolved in ethanol to a

final ethanol concentration that did not exceed 0.05%.

Statistical analyses
Results are presented as the mean 6 SEM of independent

experiments performed on neutrophils of at least three indepen-

dent donors. Statistical comparisons were made by one-way

analysis of variance (ANOVA) followed by a Dunnett or Tukey

post-hoc test where applicable using GraphPad Prism (Mac

version 5.0b). Differences were considered significant at p values

less than 0.05.

Results

Expression of inflammatory cytokines and their receptors
We have recently reported that Ang1 (1028 M) promotes the

synthesis and release of the inflammatory cytokine IL-8 from

neutrophils within 60 minutes and peaking within 2 hours of

stimulation, whereas Ang2 has no such effect [12]. Extending

these observations, we assessed the potential of angiopoietins to

modulate the expression of 84 inflammatory cytokines in

neutrophils. Neutrophils were treated with PBS (control vehicle),

Ang1 or Ang2 (1028 M; 90 minutes), and total mRNAs were

extracted for RT-qPCR array analyses. For follow-up experi-

ments, we selected genes with a nominal p-value ,0.05 and a

change in expression level $ 4-fold (Figure 1A and B).

Based on the above criteria, most genes that were assayed did

not fluctuate significantly following treatment with either angio-

poietins (see Tables 1 and 2 for a list of all genes and their p-value).

However, Ang1, but not Ang2, significantly upregulated the

expression of 3 genes belonging to the IL-1 family (Figure 1A): IL-

1a (49.65-fold increase; p,0.001), IL-1b (17.23-fold increase;

p,0.01) and the endogenous antagonist IL-1RA (8.85-fold

increase; p,0.01) as compared to PBS-treated cells. Neither other

members of the IL-1 family nor the biologically active receptor IL-

1R1 varied significantly under our experimental conditions

(Table 1).

Under less stringent statistical parameters (p<0.05 and gene

modulation $ 2-fold change), qPCR arrays identified three

potentially interesting targets of Ang1 treatment: IL-8/CXCL8,

Lymphotoxin Beta (LTB) and C-C chemokine receptor type 1

(CCR1) (Table 1 and Figure 1A). In parallel, Ang2 showed a

tendency to up-regulate IL-8 receptor B (IL-8RB)/CXCR2

(Table 2 and Figure 1B). The significance of these potential

targets will be covered briefly in the discussion.

Effect of angiopoietins on the mRNA expression of IL-1a,
IL-1b and IL-1RA

Given the strong response of neutrophils in up-regulating IL-1

expression, and the importance of the latter family in initiating and

modulating the inflammatory response, we sought to confirm and

expand on the above using custom primers for IL-1a, IL-1b and

IL-RA. Kinetics were performed by treating neutrophils with PBS,

Ang1 (10210–1028 M), Ang2 (10210–1028 M) or LPS (1 mg/ml;

positive control), for up to 6 hours before mRNA extraction.

Given that lower concentrations of angiopoietins (10210–1029 M)

had no significant effect on mRNA expression compared to PBS-

control, only the highest concentration of the angiopoietins

(1028 M) is represented in the graphs throughout the study.

Additionally, because maximal Ang2 (1028 M) had no significant

effect compared to PBS-control, only Ang1 (1028 M) is discussed

below.

IL-1b mRNA was abundantly expressed in neutrophils, with a

cycle threshold (Ct),25 at the time of isolation (T0), and basal
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(PBS) IL-1b mRNA did not significantly change over time.

Treatment with Ang1 (1028 M) induced a rapid increase in IL-1b
mRNA expression within an hour of stimulation, with 32.6-fold

increase compared to PBS-treated cells, after which expression

progressively returned to basal values (Figure 2A). Levels of IL-

1RA mRNA were also abundant in neutrophils, with a Ct,25 at

T0. Similarly to the potent positive control LPS, Ang1 promoted a

significant increase in IL-1RA mRNA expression as early as

1 hour after stimulation, with 3.3-fold expression increase over

PBS-control and reaching up to 9.8-fold at 6 hours (Figure 2B).

Finally, regardless of treatment, IL-1a mRNA levels were hardly

detectable in neutrophils (Table 3), with a Ct.42 at T0.

Subsequent basal and treated Ct values remained above 35

throughout the 6-hour time-period indicating that IL-1a mRNA is

barely, if at all, expressed in neutrophils.

Kinetics of protein synthesis and release
Building on the mRNA kinetics studies, we assessed basal

expression and de novo protein synthesis and release for all three IL-

1 family members following angiopoietin treatment. Kinetics

studies were extended to a 24-hour period; at each time point,

using the same lysates and/or supernatants, the concentrations of

IL-1a, IL-1b or IL-1RA protein were simultaneously evaluated by

ELISA. For the same reasons as per the mRNA section, only the

highest concentration of Ang1 (1028 M) is discussed below.

Intracellular levels of IL-1b in neutrophils (107 cells/ml) were

almost undetectable at T0 (Figure 3A). Basal IL-1b protein levels

in PBS-treated neutrophils fluctuated over time, starting with

2.1 pg/ml at 30 minutes, reaching a peak of 37.7 pg/ml at

6 hours and declining to 4.7 pg/ml at 24 hours. Ang1 (1028 M)

treatment lead to a steady increase in IL-1b synthesis throughout

the first 6 hours of stimulation, going from 16.4 pg/ml at 1 hour,

up to 68.1 pg/ml at 6 hours, and then stabilizing between 12 and

24 hours at a value below 22 pg/ml.

Several studies performed on macrophages and monocytes in

vitro reported that LPS and other mediators are capable of

promoting IL-1b protein synthesis but fail to induce IL-1b release

[27–31]. Our current study shows that circulating human

Table 1. Expression change of inflammatory cytokines and their receptors following Ang1 treatment.

Genes Fold P Genes Fold P Genes Fold P Genes Fold P

ABCF1 2.58 0.36 CCL4 1.12 0.31 CXCL14 21.16 0.16 IL1F9 21.18 0.05

BCL6 1.83 0.37 CCL5 21.29 0.26 CXCL2 1.51 0.60 IL-1R1 2.04 0.56

C3 21.26 0.56 CCL7 21.78 0.53 CXCL3 1.51 0.44 IL-1RA 8.85 0.001

C4A 21.04 0.54 CCL8 21.16 0.13 CXCL5 21.22 0.77 IL22 21.32 0.68

C5 21.16 0.32 CCR1 3.33 0.04 CXCL6 1.73 0.43 IL5 21.16 0.75

CCL1 21.16 0.41 CCR2 21.47 0.29 CXCL9 21.16 0.90 IL5RA 21.34 0.97

CCL11 23.05 0.66 CCR3 4.19 0.56 CARD18 21.16 0.32 IL8 2.11 0.04

CCL13 22.47 0.56 CCR4 21.16 0.54 IFNA2 1.11 0.22 IL8RA 1.23 0.89

CCL15 21.16 0.56 CCR5 1.02 0.16 IL10 21.30 0.56 IL8RB 2.72 0.23

CCL16 21.16 0.84 CCR6 21.28 0.81 IL10RA 1.19 0.56 IL9 21.30 0.96

CCL17 21.09 0.50 CCR7 1.01 0.50 IL10RB 4.05 0.56 IL9R 21.19 0.42

CCL18 21.16 0.82 CCR8 21.43 0.30 IL13 22.05 0.42 LTA 21.42 0.46

CCL19 1.73 0.36 CCR9 21.16 0.49 IL13RA1 1.29 0.40 LTB 1.95 0.0001

CCL2 2.59 0.34 CEBPB 1.07 0.31 IL17C 22.33 0.35 LTB4R 1.17 0.44

CCL20 3.13 0.48 CRP 21.32 0.27 IL-1a 49.65 0.000008 MIF 21.07 0.23

CCL21 22.48 0.49 CX3CR1 1.33 0.94 IL-1b 17.24 0.004 SCYE1 21.01 0.87

CCL23 1.67 0.00 CXCL1 2.01 0.96 IL1F10 21.16 0.96 SPP1 1.39 0.88

CCL24 21.27 0.02 CXCL10 21.09 0.99 IL1F5 21.14 0.96 TNF 1.19 0.04

CCL25 21.17 0.56 CXCL11 21.16 0.53 IL1F6 21.16 0.96 CD40LG 21.16 0.63

CCL26 21.99 0.57 CXCL12 21.98 0.90 IL1F7 1.58 0.64 TOLLIP 1.82 0.74

CCL3 21.10 0.56 CXCL13 21.67 0.56 IL1F8 21.76 0.96 XCR1 21.50 0.43

B2M* 1.24 0.56 HPRT1* 1.07 0.47 RPL13A* 21.34 0.40 GAPDH* 1.01 0.04

Human neutrophils from at least 3 different individuals were treated with PBS, Ang1 or Ang2 (Table 2) at 1028 M for 90 minutes. RT-qPCR array analyses were performed
to assess expression change of 84 genes involved in the inflammatory response. Each gene from angiopoietin-treated neutrophils was compared to PBS-treated
neutrophils and the data expressed as fold change. Negative and positive values denote a decrease and increase in mRNA expression, respectively. Differences were
considered significant at Fold $ 4 and p,0.05. Housekeeping genes are denoted by an asterisk (*). Members of the IL-1 family that satisfied both requirements were
considered significantly upregulated by Ang1, and are shaded in grey.
doi:10.1371/journal.pone.0088980.t001

Figure 1. Expression of inflammatory cytokines and their receptors in neutrophils. Circulating neutrophils isolated from 6 different donors
were treated with PBS, Ang1 (1028 M) (A) or Ang2 (1028 M) (B) for 90 minutes prior to RNA isolation. Data are expressed in a Volcano plot, as fold
change in gene expression (x-axis) compared to PBS-treated cells; values outside the dotted vertical lines indicate significant fold increases (positive
values) or fold decreases (negative values). Values below the dashed horizontal line (p,0.05) underline statistical significance (y-axis). Each circle
corresponds to the fold-expression of a single gene.
doi:10.1371/journal.pone.0088980.g001
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neutrophils behave in much of the same manner; indeed, under all

conditions tested, no IL-1b was detected in the supernatants

(Table 3), suggesting that the decreases in intracellular IL-1b levels

over time were not due to its release.

Unlike IL-1b, intracellular levels of IL-1RA were substantial at

T0, with detection at 11 350 pg/ml (Figure 3B). We observed a

short drop in intracellular IL-1RA in the first 30 minutes of

stimulation, with levels fluctuating between 7 130–7 800 pg/ml

regardless of treatment. For the remainder of the time-course,

variations in intracellular IL-1RA levels were not statistically

significant between treatments (Figure 3B), averaging between

7500 pg/ml to up to 16 400 pg/ml. In another stark contrast to

IL-1b, we observed that neutrophils constitutively release IL-1RA:

At T0, we detected 629.1 pg/ml of extracellular IL-1RA in the

supernatants (Figure 3C). Detection of extracellular IL-1RA under

basal conditions continued throughout the entire time-course and

corresponded to about 2–10% of total IL-1RA cellular content.

Similarly to LPS, Ang1 promoted a statistically significant increase

in IL-1RA release as early as 2 hours following stimulation, with

844.6 pg/ml IL-1RA released (vs. 468.2 pg/ml for PBS), after

which detection values climbed to a peak of 1 379.3 pg/ml at

4 hours (vs. 498.8 pg/ml for PBS) (Figure 3C). Finally, IL-1a
protein was not detected in neutrophil cell lysates or in their

corresponding supernatants at T0 or throughout the time-course

under basal conditions or angiopoietin stimulation (Table 3).

Is IL-1b a product of de novo synthesis or maturation
from pre-existing pools of precursor?

IL-1b is synthesized in the cytoplasm as an inactive 31-kDa-

precursor protein (pro-IL-1b) before being cleaved to its mature

17-kDa form [32]. Thus, we looked at the modulation of precursor

pro-IL-1b levels in human neutrophils, and performed an initial

assessment of the possible mechanisms governing pro-IL-1b
cleavage. For the same reasons as per the mature protein, only

the highest concentration of Ang1 (1028 M) is discussed below.

De novo synthesis. As per the mature protein, intracellular

levels of pro-IL-1b in human neutrophils were almost undetectable

at T0 (Figure 4). We observed an increase in pro-IL-1b levels

under basal (PBS) conditions, reaching as much as 35.1 pg/ml at

2 hours, but subsequently declining to less than 10.0 pg/ml at

24 hours. Treatment with Ang1 (1028 M) promoted a substantial

increase in pro-IL-1b synthesis starting at 1 hour, with detection

reaching a peak of 147.6 pg/ml at 2 hours, and then declining to

16.0 pg/ml at 24 hours, compared to PBS. Irrespective of the

treatment, we did not detect pro-IL-1b proteins in the supernatant

of neutrophils (Table 3), consistent with reports that pro-IL-1b is

not released from cells [29,30,32-34].

Maturation of pro-IL-1b has been attributed primarily to the

activation of caspase-1; however, independent studies reported

that the processing of IL-1b might actually occur via a caspase-1-

independent mechanism, through enzymes such as serine prote-

ases Cathepsin G, Neutrophil Elastase and Proteinase-3 [35–38].

Using a fluorometric method, we assessed the activity of caspase-1

in human neutrophils treated with PBS, angiopoietins and LPS

Table 2. Expression change of inflammatory cytokines and their receptors following Ang2 treatment.

Genes Fold P Genes Fold P Genes Fold P Genes Fold P

ABCF1 1.48 0.39 CCL4 2.19 0.21 CXCL14 21.63 0.44 IL1F9 21.45 0.73

BCL6 1.23 0.64 CCL5 1.04 0.76 CXCL2 3.39 0.34 IL-1R1 1.10 0.68

C3 1.73 0.39 CCL7 24.43 0.13 CXCL3 1.09 0.91 IL-1RA 1.16 0.95

C4A 21.09 0.75 CCL8 21.34 0.62 CXCL5 23.15 0.34 IL22 23.17 0.27

C5 21.16 0.64 CCR1 21.13 0.64 CXCL6 1.71 0.29 IL5 21.54 0.40

CCL1 21.56 0.45 CCR2 1.65 0.43 CXCL9 1.51 0.45 IL5RA 22.30 0.55

CCL11 28.00 0.17 CCR3 3.52 0.22 CARD18 21.47 0.62 IL8 3.21 0.11

CCL13 212.29 0.24 CCR4 21.02 0.91 IFNA2 1.06 0.64 IL8RA 2.21 0.46

CCL15 21.56 0.45 CCR5 21.31 0.42 IL10 22.64 0.26 IL8RB 13.48 0.07

CCL16 21.68 0.45 CCR6 21.05 0.75 IL10RA 1.12 0.90 IL9 21.68 0.29

CCL17 21.24 0.30 CCR7 2.39 0.18 IL10RB 5.03 0.17 IL9R 21.96 0.12

CCL18 21.79 0.44 CCR8 21.80 0.43 IL13 23.76 0.30 LTA 21.90 0.27

CCL19 21.40 0.86 CCR9 21.22 0.53 IL13RA1 1.70 0.17 LTB 21.74 0.39

CCL2 21.99 0.38 CEBPB 21.51 0.45 IL17C 22.46 0.64 LTB4R 1.82 0.30

CCL20 1.91 0.40 CRP 21.91 0.67 IL-1a 3.63 0.32 MIF 22.01 0.75

CCL21 22.29 0.35 CX3CR1 21.23 0.75 IL-1b 2.44 0.31 SCYE1 1.07 0.73

CCL23 1.03 0.94 CXCL1 21.84 0.64 IL1F10 21.83 0.44 SPP1 1.55 0.41

CCL24 24.98 0.17 CXCL10 21.03 0.96 IL1F5 21.61 0.23 TNF 22.69 0.49

CCL25 21.12 0.83 CXCL11 21.51 0.44 IL1F6 21.83 0.44 CD40LG 21.02 0.60

CCL26 23.40 0.48 CXCL12 23.68 0.36 IL1F7 21.97 0.56 TOLLIP 1.57 0.39

CCL3 1.03 0.86 CXCL13 23.13 0.45 IL1F8 21.89 0.29 XCR1 22.64 0.46

B2M* 1.05 0.74 HPRT1* 21.22 0.94 RPL13A* 21.34 0.93 GAPDH* 1.56 0.21

As per Table 1, each gene from Ang2-treated neutrophils was compared to its counterpart from PBS-treated neutrophils and the data expressed as fold-change.
Although genes such as CCL7, CCL11, CCL13, CCL24 and IL10RB showed substantial fold-change differences between Ang2 and PBS, statistical significance denoted by
the p-value was far from 0.05. Because of its fold-regulation and a p-value close to 0.05, IL-8RB is a promising target. Housekeeping genes are denoted by an asterisk (*).
doi:10.1371/journal.pone.0088980.t002
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Figure 2. Kinetics of mRNA expression of IL-1b and IL-1RA. Primers were designed to quantify changes in the mRNA levels of IL-1b (A) and IL-
1RA (B), following treatment with PBS, angiopoietins (1028 M) or LPS (1 mg/ml), for up to 6 hours. For each time point, basal (PBS) mRNA expression
is set to unitary value, and the data are presented as fold change compared to its corresponding PBS. For angiopoietins, only values resulting from
treatment with the highest concentration (1028 M) are shown. Data are represented as the means 6 SEM of at least three independent experiments.
*p,0.05, **p,0.01, ***p,0.001 vs. PBS-control (Dunnett’s test).
doi:10.1371/journal.pone.0088980.g002
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(1 mg/ml) for up to 6 hours. We did not detect any basal caspase-1

activity beyond threshold, and little to no changes following

agonist stimulation (data not shown).

Induction of pro-IL-1b maturation and IL-1b release
Studies have reported that the mechanisms leading to the

maturation and effective release of IL-1b depend on the subset of

leukocytes being investigated. While monocytes readily release IL-

1b under LPS treatment [39,40], macrophages require a depletion

of intracellular potassium induced by ionophores such as nigericin

before efficient IL-1b maturation and subsequent release [27,28].

Because the mechanisms governing IL-1b maturation and release

have never been reported in neutrophils, and given that even LPS

failed at promoting IL-1b release, we tested the requirement for a

secondary stimulus to drive neutrophil processing of pro-IL-1b
and release of the mature protein.

Neutrophils were divided into four sets (Figure 5; Sets 1-4) and

were treated with agonists for 2 hours, a time when most of the

new pro-IL-1b has already accumulated under Ang1 (refer to

Figure 4). Upon this first incubation period, supernatants and cell

lysates from Set 1 were collected. For Sets 2-4, supernatants were

replaced with new media containing vehicles (DMSO + ethanol)

or nigericin (N; in ethanol) for an additional 45 minutes as

described in Materials and Methods. In order to eliminate the

contribution of de novo synthesis to possible changes in levels of

mature IL-1b (i.e. to confirm that any new IL-1b is a result of

processing of the accumulated pro-IL-1b), a protein translation

inhibitor, cycloheximide (CHX; in DMSO) was added during this

step. To preserve sample comparability, supernatants from Sets 2-

4 were supplemented with either DMSO or ethanol, as required.

Data from Sets 1 (Figure 5A and B) were used to establish the

baseline of protein kinetics, and were comparable to what we had

observed in our previous experiments for all the conditions tested.

For pro-IL-1b (Figure 5A), neither the addition of vehicles (Set 2,

left panel) nor CHX alone (Set 3, left panel) affected the synthesis

of pro-IL-1b. Upon addition of nigericin (Set 4, left panel), we

observed a near complete loss of detection of intracellular pro-IL-

1b, in comparison to Set 3. This loss was not due to the release of

pro-IL-1b, since the pro-protein in its native form was not detected

in any of the corresponding extracellular fractions (Figure 5A,

right panel).

Based on these observations, we hypothesized that nigericin

may have indeed induced the processing of pro-IL-1b into IL-1b,

as was reported to happen in macrophages [27,28]. However, the

concomitant evaluation of IL-1b levels indicated that this was not

the case (Figure 5B): While the addition of nigericin (Set 4, left

panel) almost completely depleted intracellular IL-1b content

compared to neutrophils from Set 3, most of the IL-1b was

recovered in the extracellular fraction of nigericin-treated neutro-

phils (Set 4, right panel). In fact, the amount of IL-1b recovered

extracellularly from nigericin-treated neutrophils (Set 4, right

panel) nearly matched what had accumulated inside the cells prior

to nigericin treatment (Set 3, left panel). Thus, potassium depletion

did not promote maturation of pro-IL-1b into IL-1b in human

neutrophils, but only the selective exteriorization of IL-1b.

Intracellular mechanisms of IL-1 family synthesis and
release

Previous studies reported that the biological activities of

angiopoietins can be mediated by PI-3K/Akt, p38 MAPK, and

p42/44 MAPK pathways as a function of the cellular activities

being solicited [11,14,41–43]. Thus, we wanted to delineate the

signaling pathway(s) involved in mediating the effects of the

angiopoietins on synthesis and/or secretion of IL-1 family

members in human neutrophils. Neutrophils were pretreated with

inhibitors of p42/44 MAPK Kinase - MEK1/2 - (U0126; (U0)),

p38 MAPK (SB203580; (SB)) or Akt (Triciribine; (T)) for 30

minutes prior to agonist challenge, as previously described [12,44–

46]. Inhibitor-pretreated neutrophils were then compared to their

vehicle (DMSO; D) counterparts.

mRNA changes. Because most of the inducible IL-1 mRNA

was synthesized within the first hour of Ang1 treatment, we looked

at the effects of the inhibitors on mRNA expression after 1 hour of

agonist stimulation. Ang2 (10210–1028 M) and lower concentra-

tions of Ang1 (10210–1029 M) yielded similar results as PBS-

control under all conditions tested; thus, only the highest

concentration of Ang1 (1028 M) is discussed below.

Basal levels of IL-1b mRNA were not affected by either

pretreatment with DMSO (vehicle) or with inhibitors (data not

shown). Addition of the p38 MAPK inhibitor (SB) significantly

increased the effect of Ang1 (1028 M) on IL-1b mRNA

expression, from 22.4- (Ang1-D) to 44.8-fold (Ang1-SB) expression

(Figure 6A). MEK1/2 inhibition (U0) had the opposing effect,

leading to a decrease from 22.4- to 7.8-fold (Ang1-U0) expression,

corresponding to a 68% inhibition of Ang1 activity. The Akt

inhibitor (T) had no significant effect on the activities of Ang1.

Interestingly, none of the inhibitors significantly impacted the

effects of LPS on IL-1b mRNA expression (Figure 6A).

As for IL-1RA mRNA expression, only MEK1/2 blockade

provided a trend (not significantly) to decrease Ang1 effect

(Figure 6B). On the other hand, the blockade of p38 MAPK

activity significantly reduced the effect of LPS, from 5.9- (LPS-D)

to 2.8-fold (LPS-SB) expression, corresponding to a 63%

inhibition. The blockade of MEK1/2 or Akt pathways had no

significant effects on the activities of LPS (Figure 6B).

Protein changes. The immediate impact of the aforemen-

tioned mRNA changes on the corresponding protein levels was

assessed at 2 hours of agonist stimulation, coinciding with the time

at which protein synthesis rate was also at its maximum. For the

same reasons as per the mRNA experiments, only the highest

concentration of Ang1 (1028 M) is discussed below.

Basal (PBS) protein levels were not affected by the addition of

DMSO or any of the inhibitors (Figure 7A–D). While p38 MAPK

inhibition significantly increased Ang1-induced pro-IL-1b synthe-

sis by 79%, from 38.5 pg/ml (Ang1-D) to 64.3 pg/ml (Ang1-SB),

blockade of MEK1/2 lead to a 60% inhibition, with pro-IL-1b
protein levels decreasing from 38.5 pg/ml (Ang1-D) to 19.2 pg/ml

(Ang1-U0) (Figure 7A). As for LPS, blockade of p38 MAPK lead

Table 3. IL-1 mRNA and protein expression in freshly isolated
and Ang1-stimulated neutrophils.

Genes mRNA Protein

T0 Intracellular (S) Extracellular (S)

IL-1a N.D. N.D N.D N.D

IL-1b + N.D + N.D

Pro-IL-1b + N.D + N.D

IL-1RA + + + +

T0 represents content at the time of isolation and reflects the state of circulating
human neutrophils in healthy individuals; intracellular and extracellular content
are assessed after stimulation with Angiopoietin-1 (Ang1); S: stimulated; N.D.:
not detectable. Unstimulated neutrophils do not express or store pools of IL-1a
mRNA, and that is not altered by the addition of Ang1. Neutrophils hold large
pools of IL-1b mRNA, but Ang1 signal is required for translation. Finally,
neutrophils constitutively express and release IL-1RA.
doi:10.1371/journal.pone.0088980.t003
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to a marked inhibition by 80% of pro-IL-1b protein expression, as

levels dropped from 262.1 pg/ml (LPS-D) to 55.9 pg/ml (LPS-

SB), despite similar treatment having no effect at the mRNA level.

Blockade of MEK1/2 or Akt had no effect on LPS-driven pro-IL-

1b levels (Figure 7A).

The inhibition pattern for mature IL-1b mimicked that of pro-

IL-1b for both Ang1 and LPS (Figure 7B). Blockade of p38 MAPK

increased Ang1-driven IL-1b protein levels by 86%, as levels

jumped from 17.3 pg/ml (Ang1-D) to 29.9 pg/ml (Ang1-SB).

Blockade of MEK1/2 lead to a 68% inhibition, as IL-1b levels

decreased from 17.3 pg/ml (Ang1-D) to 7.1 pg/ml (Ang1-SB). In

the case of LPS, as per the precursor protein, mature IL-1b levels

were deeply affected by the blockade of p38 MAPK, witnessing a

77% effect inhibition as levels dropped from 219.2 pg/ml (LPS-D)

to 52.0 pg/ml (LPS-SB). Surprisingly, the blockade of MEK1/2

activity had a partial but significant effect on IL-1b protein,

corresponding to 24% inhibition, as levels went from 219.2 pg/ml

(LPS-D) to 166.9 pg/ml (LPS-U0). For both Ang1 and LPS, the

Akt pathway did not modulate IL-1b levels significantly. It should

be noted that no pro- or mature IL-1b proteins were detected in

the extracellular fraction, regardless of treatment (data not shown).

Intracellular IL-1RA protein levels were maintained between

13–18 ng/ml across treatments, with only a very slight increase

and decrease in Ang1 and LPS-driven levels respectively, following

p38 MAPK inhibition (Figure 7C). The lack of effect on the

intracellular stores of IL-1RA protein following p38 MAPK

blockade is noteworthy in the case of LPS, especially given the

63% reduction in the corresponding mRNA; these data demon-

strate that the cell holds IL-1RA mRNA in large excess, and

actually utilizes less than 40% of the total mRNA quantity it

produces to convert into protein. However, the impact of

inhibitors was immediately noticeable at the level of the release

of IL-1RA (Figure 7D), suggesting that the neutrophil prioritizes of

a having a constant pool of intracellular IL-1RA and will modify

the amount released in response to different conditions. First,

under Ang1, the dynamics of p38 MAPK-MEK1/2 mediation

differed from those of IL-1b, in that only the blockade of MEK1/2

had a significant impact, equivalent to 65% inhibition, on

extracellular IL-1RA levels, as levels dropped from 963.4 pg/ml

(Ang1-D) to 542.5 pg/ml (Ang1-U0). Meanwhile, the blockade of

p38 MAPK had no important impact on Ang1-mediated IL-1RA

release (Ang1-SB), in line with the apparent lack in p38 MAPK

contribution at the mRNA and the intracellular protein levels. For

LPS, both the blockade of p38 MAPK and MEK1/2 exerted a

negative effect on IL-1RA release: inhibition of p38 MAPK lead to

a marked 75% inhibition, with levels dropping from 1 471.9 pg/

ml (LPS-D) to 749.3 pg/ml (LPS-SB). Furthermore, blockade of

MEK1/2 resulted in a marked 41% inhibition, with levels

decreasing to 952.4 pg/ml (LPS-U0). Finally, for both Ang1 and

LPS, the Akt pathway did not modulate IL-1RA release

significantly.

Figure 4. Kinetics of pro-IL-1b protein expression. Neutrophils were treated with PBS, angiopoietins (1028 M) or LPS (1 mg/ml), for up to
24 hours. Only intracellular levels of pro-IL-1b were detectable, as no pro-IL-1b was detected in the supernatants at any time points and under any of
the conditions tested. For angiopoietins, only values resulting from treatment with the highest concentration (1028 M) are shown. Data are
represented as the means 6 SEM of at least three independent experiments. *p,0.05, **p,0.01, *** p,0.001 vs. PBS-control (Dunnett’s test).
doi:10.1371/journal.pone.0088980.g004

Figure 3. Kinetics of IL-1b and IL-1RA protein expression. Neutrophils were treated with PBS, angiopoietins (1028 M) or LPS (1 mg/ml), for up
to 24 hours. Intracellular IL-1b (A), IL-1RA (B) and extracellular IL-1RA (C) were quantified by ELISA. For angiopoietins, only values resulting from
treatment with the highest concentration (1028 M) are shown. No IL-1b was detected extracellularly. Data are represented as the means 6 SEM of at
least three independent experiments. *p,0.05, **p,0.01, *** p,0.001 vs. PBS-control (Dunnett’s test).
doi:10.1371/journal.pone.0088980.g003
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Discussion

Vessel destabilization, increase in permeability and leukocyte

infiltration are hallmarks of both inflammation and angiogenesis.

Under normal physiological conditions, these processes undergo a

natural resolution or removal of inciting signals, a critical step in

preventing disorganized vascular network formation and a

sustained inflammatory reaction. During the resolution step,

changes in the microenvironment through local mediators

produced lead to an active ‘‘push-back’’ of infiltrating neutrophils,

and serve to limit the activity of destabilizers such as VEGF, nitric

Figure 5. Effect of potassium depletion on IL-1b release. Neutrophils were treated with PBS, angiopoietins (1028 M) or LPS (1 mg/ml), for two
hours, followed by an additional 45-minute treatment with potassium ionophore nigericin, CHX, or appropriate vehicles. Changes in intracellular (left
panels) and extracellular (right panels) levels of pro-IL-1b (A) and IL-1b (B) before and after ionophore addition were quantified by ELISA. CHX:
Cycloheximide. N: Nigericin. Vehicles: DMSO, ethanol. Data are represented as the means 6 SEM of at least three independent experiments. *p,0.05,
**p,0.01, *** p,0.001 vs. PBS-control (Dunnett’s test).
doi:10.1371/journal.pone.0088980.g005
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Figure 6. Effect of downstream signaling inhibitors on IL-1b and IL-1RA mRNA expression. Neutrophils were pretreated with inhibitors of
Akt (Triciribine; 5 mM), p38 MAPK (SB203580; 10 mM), and p42/44 MAPKK (U0126; 20 mM), vehicle-DMSO (0.2%) or PBS for 30 minutes prior to a 1-hour
agonist challenge. Total mRNA was used in RT-qPCR for assessment of mRNA expression of IL-1b (A) and IL-1RA (B). Data are presented as mean 6
SEM of at least three independent experiments. *p,0.05, **p,0.01, *** p,0.001 vs. PBS-control within each set (Dunnett’s test); 1p,0.05, 11p,0.01
vs corresponding agonist-DMSO (Tukey’s test).
doi:10.1371/journal.pone.0088980.g006
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oxide (NO) and Ang2 while increasing stabilizing elements such as

Ang1 (resolution reviewed in [47];[48]). A previous study

suggested that neutrophils might actually contribute to the

resolution of inflammation based on their ability to produce

endogenous anti-inflammatory mediators but little pro-inflamma-

tory cytokines [23]. The present study supports those findings, as

we show that during a 24-hour lifespan, neutrophils constitutively

release endogenous anti-inflammatory mediator IL-1RA from a

pool of stored protein that is continuously replenished, but no IL-1

agonists are produced or secreted. While we observed that Ang1

and LPS ‘‘prime’’ neutrophils to synthesize IL-1b de novo, in the

absence of other signals, both precursor and mature IL-1b stores

are retained within the intracellular compartment and are

degraded over time. Additionally, the intracellular spikes in IL-

1b levels were accompanied by parallel increases in the release of

IL-1RA. Thus, we propose that neutrophils from healthy

individuals naturally and intrinsically curtail the activity of IL-1

agonists, and ‘‘put the brakes’’ on the propagation of IL-1

mediated inflammation.

Of the 11 members of the IL-1 family of ligands, IL-1a and IL-

1b are two major agonists with a demonstrated role in

inflammation, angiogenesis, and hematopoiesis [49]. Both agonists

bind to and activate IL-1 Receptor Type 1 (IL-1R1), and their

activity is competitively antagonized by the endogenous IL-1RA.

IL-1a and IL-1b are synthesized as precursor proteins; however,

while IL-1a is active in both the precursor and the mature form

upon release, IL-1b requires cleavage for activation and subse-

quent secretion. The importance of tight control over IL-1

production/processing is underlined by a number of serious

inflammatory diseases, termed ‘‘autoinflammatory’’ (reviewed in

[50]), that are closely correlated with deregulation in bioactive IL-

1b secretion, and where the use of recombinant IL-1RA (anakinra)

has clear therapeutic benefits. Details on the processing of IL-1b
and its release are still unclear, but several groups have pointed to

mechanistic cell-dependent differences. In monocytes, the IL-1b
processing enzyme, caspase-1, is constitutively active, and mature

IL-1b is released in large quantities (1 500 pg/ml) upon

stimulation with LPS [39,40] at a rate that is less than 20% of

the total precursor pool [50]. For macrophages, an LPS challenge

is insufficient; a second intracellular potassium (K+)-depleting

stimulus is required to trigger the assembly of a complex called the

inflammasome, the subsequent activation of caspase-1, and the

processing and release of IL-1b [40,49,51,52]. Based on our

current data, we show that processing of pro-IL-1b in neutrophils

is neither contingent on caspase-1 activation, nor on K+ depletion.

Strictly speaking, K+ emptying did lead to mature IL-1b being

detected outside the cells; however, these levels were the result of a

simple externalization of already-accumulated mature IL-1b, with

no active role per se for K+ depletion in the maturation step. These

results provide evidence that IL-1b maturation in human

neutrophils is distinct from the release process, and could be

mediated by a mechanism other than caspase-1, as suggested by

Greten et al. [36], or K+ efflux. The contribution of other

Figure 7. Effect of downstream signaling inhibitors on IL-1b
and IL-1RA protein synthesis and release. Neutrophils were
pretreated with inhibitors of Akt (Triciribine; 5 mM), p38 MAPK
(SB203580; 10 mM), and p42/44 MAPKK (U0126; 20 mM), vehicle-DMSO
(0.2%) or PBS for 30 minutes prior to a 2-hour agonist challenge.
Concentrations of intracellular pro-IL-1b (A), IL-1b (B), IL-1RA (C) and
released IL-1RA (D) were quantified by ELISA. Data are represented as
mean 6 SEM of at least three independent experiments. *p,0.05,
**p,0.01, *** p,0.001 vs. PBS-control within each set (Dunnett’s test);
1p,0.05, 11p,0.01 and 111p,0.001 vs corresponding agonist-DMSO
(Tukey’s test).
doi:10.1371/journal.pone.0088980.g007
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components of the inflammasome to IL-1b processing in

neutrophils, however improbable, should be considered and

further explored.

Intracellular mechanisms
Several studies have suggested that p38 MAPK regulates the

synthesis and release of cytokines by many types of blood cells. For

example, inhibition of the p38 MAPK pathway in monocytes,

macrophages and neutrophils blocked LPS-induced protein

transcription (including that of IL-1b), translation and subsequent

cytokine release [53–57].

In general, the p38 MAPK pathway responds weakly to growth

signals and is preferentially recruited by pro-inflammatory

cytokines, whereas p42/44 MAPKs have been shown to be

strongly activated by growth factors and growth-promoting

hormones. Such is the case for Ang1 in mediating IL-8 de novo

synthesis in neutrophils, a process that occurs through a p42/44

MAPK-dependent mechanism, and independently of p38 MAPK

or Akt activity (56). Along the same lines, the present study

suggests that p42/44 MAPK mediates most of the effects of Ang1

on IL-1 production in neutrophils. However, IL-1RA regulation

appears to be less stringent than that of IL-1b: while antagonist de

novo synthesis is not affected by any inhibition, and the release of

IL-1RA is mostly regulated by a single signal transduction

pathway (p42/44 MAPK), control of agonist production is two-

fold involving not only p42/44 MAPK, but also p38 MAPK that

exerts a negative regulatory role on the entirety of the IL-1b de novo

synthesis process. The negative regulation exerted by p38 MAPK

over the IL-1b synthesis process is likely a second insurance that

IL-1b production remains tightly controlled when one of the two

kinase pathways is unavailable, such as in the presence of a

stronger pro-inflammatory signal.

A look into the downstream signaling governing the effects of

LPS on IL-1 highlights differences that could be attributed to the

potency of the inflammatory signal. According to our data, none of

the studied pathways played a role in LPS-mediated IL-1b
transcription, which is especially surprising for p38 MAPK given

its similar role in macrophage cell lines [56]. However, p38

MAPK impacted both IL-1b translation and processing, as the

precursor and the mature proteins were significantly down-

regulated with p38 MAPK blockade. LPS also recruited p42/44

MAPK for IL-1b maturation, and both kinase pathways had a

significant contribution to IL-1RA release. Thus, in the context of

neutrophil IL-1 production, the recruitment of downstream

signaling effectors is stimulus-dependent. Finally, because neutro-

phils maintained their constitutive synthesis of IL-1RA at the same

level despite the inhibitors, it is likely that other signal transduction

effectors mediate this process.

Other potential targets of angiopoietin stimulation
qPCR arrays identified four additional potential targets of

angiopoietin stimulation whose genetic changes could be rendered

significant with more exhaustive kinetics studies: IL-8, CCR1 and

Lymphotoxin B (LTB) for Ang1, and IL-8RB for Ang2. For

instance, providing validation that the above targets might be

significant is a recent finding that, when stimulated with Ang1 for

2 or more hours, neutrophils increased their IL-8 de novo

synthesis[12], an effect that did not extend to Ang2. Lu P et al.

demonstrated that IL-1a and IL-1b induced the production of a

CCR1 ligand, CCL3, from human hepatomas [58]; while neither

CCL3 nor any of the other CCR1 ligands (CCL4/MIP-1b and

CCL5/RANTES) were affected by Ang1 treatment, it is possible

that increases in IL-1b could drive CCR1 expression, increasing

neutrophil responsiveness to surrounding tissue-derived corre-

sponding ligands. As for Ang2, we have previously shown that it

has similar agonistic capacity to Ang1 in mediating PAF synthesis,

CD11b/CD18 activation and chemotaxis in neutrophils [4,14],

but this is the first time we report that Ang2 may modulate protein

transcription. While the cross-talk between angiopoietins and the

aforementioned proteins remains to be elucidated, the involve-

ment of CCL3/CCR1 and IL-8RB in neutrophil migration could

offer additional insight into the mechanisms governing differences

in Ang1 and Ang2-driven neutrophil chemotaxis.

In conclusion, the identification of several inflammatory targets

of angiopoietin stimulation provides further evidence of the

implication of angiopoietins in acute inflammation. We showed

that Ang1, a blocker of vessel permeability, induces transcription,

translation and maturation of one pro-inflammatory IL-1 agonist,

IL-1b. Perhaps to counter the damaging activities of IL-1b in the

presence of a potential release signal, or perhaps to initiate

resolution or to push back any additional neutrophil infiltration,

neutrophils upregulate their release of IL-1RA in response to both

Ang1 and the more potent pro-inflammatory signal LPS, as well as

observed under TNF-a treatment [59]. These initial observations

shed light on the complex interplay of inflammatory cells and

mediators at the final stages of angiogenesis and acute inflamma-

tion, and provide a possible role for Ang1 in attenuating IL-1–

related pathologies.
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