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Abstract (French) 

La prise de décision est un processus computationnel fondamental dans de nombreux aspects du 

comportement animal. Le modèle le plus souvent rencontré dans les études portant sur la prise de 

décision est appelé modèle de diffusion. Depuis longtemps, il explique une grande variété de données 

comportementales et neurophysiologiques dans ce domaine. Cependant, un autre modèle, le modèle 

d’urgence, explique tout aussi bien ces mêmes données et ce de façon parcimonieuse et davantage 

encrée sur la théorie. Dans ce travail, nous aborderons tout d’abord les origines et le développement 

du modèle de diffusion et nous verrons comment il a été établi en tant que cadre de travail pour 

l’interprétation de la plupart des données expérimentales liées à la prise de décision. Ce faisant, nous 

relèveront ses points forts afin de le comparer ensuite de manière objective et rigoureuse à des 

modèles alternatifs. Nous réexaminerons un nombre d’assomptions implicites et explicites faites par 

ce modèle et nous mettrons alors l’accent sur certains de ses défauts.  Cette analyse servira de cadre 

à notre introduction et notre discussion du modèle d’urgence.  Enfin, nous présenterons une 

expérience dont la  méthodologie permet de dissocier les deux modèles, et dont les résultats 

illustrent les limites empiriques et théoriques du modèle de diffusion et démontrent en revanche 

clairement la validité du modèle d'urgence. Nous terminerons en discutant l'apport potentiel du 

modèle d'urgence pour l'étude de certaines pathologies cérébrales, en mettant l'accent sur de 

nouvelles perspectives de recherche. 

 

 

Mots-clés: Prise de décision; modèle de diffusion; Modèle d’intégration; Modèle d’urgence; 

Discrimination perceptuelle; Compromis vitesse/précision; Mouvement aléatoire de points; 

Echantillonnage séquentiel; Test d’hypothèses; Temps de réponse; Comparaison de modèles; Neuro-

économie; Taux de récompense 
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Abstract (English) 

Decision-making is a computational process of fundamental importance to many aspects of animal 

behavior. The prevailing model in the experimental study of decision-making is the drift-diffusion 

model, which has a long history and accounts for a broad range of behavioral and neurophysiological 

data. However, an alternative model – called the urgency-gating model – has been offered which can 

account equally well for much of the same data in a more parsimonious and theoretically-sound 

manner. In what follows, we will first trace the origins and development of the DDM, as well as give a 

brief overview of the manner in which it has supplied an explanatory framework for a large number 

of behavioral and physiological studies in the domain of decision-making. In so doing, we will attempt 

to build a strong and clear case for its strengths so that it can be fairly and rigorously compared to 

potential alternative models. We will then re-examine a number of the implicit and explicit 

theoretical assumptions made by the drift-diffusion model, as well as highlight some of its empirical 

shortcomings. This analysis will serve as the contextual backdrop for our introduction and discussion 

of the urgency-gating model. Finally, we present a novel experiment, the methodological design of 

which uniquely affords a decisive empirical dissociation of the models, the results of which illustrate 

the empirical and theoretical shortcomings of the drift-diffusion model and instead offer clear 

support for the urgency-gating model. We finish by discussing the potential for the urgency gating 

model to shed light on a number of clinical disorders, highlighting a number of future directions for 

research. 

 

 

 

Key words: Decision-making, Drift-diffusion model, Integration model, Urgency-gating model, 
Perceptual discriminations, Speed-accuracy trade-off, Random-dot motion, Sequential sampling, 
Hypothesis-testing, Response time, Model comparison, Neuroeconomics, Reward rate 
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Introduction 

Writ large, “decision-making” can be abstractly described as an effortful, resource-intensive 

deliberation between competing options. By this formulation, decision-making is an essential feature 

of animal behavior and cognition, as animals must by necessity be able to acquire information about 

the environment and apply the information obtained therefrom to produce adaptive behaviors 

through which they can acquire the various resources they require for survival and propogation. To 

this end, animals are equipped with a brain that must accomplish this general task through sole 

reference to the information supplied to it by its sensory systems. As such, “adaptive behavior” 

necessarily entails the generation of- and deliberation amongst competing hypotheses both within 

and across multiple levels of the nervous system’s processes effectively mediating between sensory 

input, cognition, and motor output. Moreover, the brain must do so in real-time, and on the basis of a 

finite set of inherently probabilistic cues extracted from its diverse suite of sensory mechanisms. In 

this sense, then, “decision-making” is not only relevant to the complex cognitive processes connoted 

by its everyday meaning, but in fact comprises a fundamental computational process that is essential 

to the brain’s general operations (Gold & Shadlen, 2001; 2002; Bogacz et al., 2006; Yang & Shadlen, 

2007). 

The origins of decision models: the sequential sampling test 

Importantly, the general process of employing probabilistic information to deliberate between 

multiple hypotheses is a problem that is not specific to animal cognition. In fact, the basic framework 

of hypothesis-testing can be formulated on purely mathematical grounds as a formal statistical 

problem (Gold & Shadlen, 2001; Bogacz, 2007). While the initial impetus for its mathematical 

formalization was provided by cryptographic efforts on the part of the Allies during World War II (for 

review see Gold & Shadlen, 2002), its core premises were subsequently adapted into a domain-

general statistical process shortly following the end of the war efforts. The resulting general 

formulation of hypothesis-testing involves three essential components (c.f. Good, 1979). 

Firstly, the bearing of each “sample” on each of the hypotheses under consideration must be 

discretely quantified. In statistical terms, this amounts to defining a set of hypotheses, each of which 

implies a set of expectations about what kind of samples would be likely given that each hypothesis 
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were true. This allows for any given sample to be assigned a discrete probabilistic value according to 

how strongly it supports each of the hypotheses under consideration. Secondly, for any decision in 

which the informational content of a single sample is not sufficient to conclusively distinguish 

between the hypotheses (i.e. most decisions), a method is required by which individual samples can 

be combined to yield a quantitative measure of the total information presently available. This aspect 

of the hypothesis-testing procedure exploits a proven mathematical principle which states that 

multiple, statistically independent pieces of probabilistic information can be summated to produce a 

joint estimate of probability that is greater than any of its individual constituent parts (Pierce, 1878). 

This allows for multiple independent samples to yield a corresponding decrease in the uncertainty 

associated with two hypotheses for as long as more samples are acquired. Thirdly, a criterion must be 

set according to which either more samples are collected, or the decision is terminated in favor of 

one of the given hypotheses. 

Together, these three features comprise the process of sequential analysis, in which the overall 

weight of evidence bearing on the hypotheses under consideration is updated given each new piece 

of evidence until sufficient information has been acquired to choose between one of two hypotheses 

at a desired level of confidence. Adapting this process from the domain of cryptography to a general 

statistical test resulted in the sequential sampling procedure (see Wald, 1945; Barnard, 1946; Wald, 

1947; Wald & Wolfowitz, 1948; Lehmann, 1959) encompassing both a recursive sampling process as 

well as a “stopping rule,” or desired evidence criterion, which determines the point at which sampling 

is terminated and a corresponding hypothesis is chosen. 

The addition of the “stopping rule” is crucial for two reasons. Firstly, it places a bound on the 

sampling procedure, which could otherwise be carried out indefinitely; this allows for a decision 

between hypotheses to be formally ended so that other, subsequent decisions can be made on the 

basis of the first decision’s outcome (Gold & Shadlen, 2000; 2002). Secondly, this stopping rule not 

only determines how many sampling iterations will be required, but also specifies the level of 

accuracy of the ensuing decision (Busemeyer & Townsend, 1993). 

This abstract, domain-general process provides an appropriate conceptual framework for studying 

animal behavior, as animals must base their actions on a finite set of inferences about their 

environment, and accordingly must choose the actions that are the most likely to lead to the 

acquisition of their motivational needs (c.f. DeGroot, 1970). Thus, applying this conceptual framework 
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to animal behavior entails the following set of assumptions: (1) information is acquired in sequential 

fashion through the body’s extended range of sensory systems; (2) this information is interpreted 

with respect to a subset of potential reward-pursuit behaviors that are currently afforded by the 

environment, thereby providing “evidence” for- or against certain “hypotheses” representing specific 

courses of action; (3) this evidence is “accumulated” over the course of the deliberation process, 

resulting in a gradual decrease in the uncertainty associated with the potential actions under 

consideration which is proportionate to the total amount of accumulated evidence; (4) the 

deliberation ends when uncertainty has been reduced to a certain level corresponding to the desired 

accuracy of the decision, at which point the action entailed by the winning “hypothesis” is initiated. 

This conceptual framework enabled the formulation of empirical tests following the insight that the 

“length” of the sequential sampling procedure – as represented by the number of sampling iterations 

entailed by any particular instantiation of the test – is analogous to the amount of time used by an 

animal to make a decision on the basis of a given set of observations (Stone, 1960). Re-casting this 

abstract framework for hypothesis-testing into an explicitly temporal domain has two major 

consequences. Firstly, the quality of the evidence obtained will have a direct impact on how quickly 

the decision is made, such that more informative samples will cause the uncertainty to decrease at a 

faster rate (Ratcliff, 1978). Secondly, the stringency of the decision criterion will also determine how 

long a decision takes, with more accurate decisions requiring more sampling time (Busemeyer & 

Townsend, 1993; Gold & Shadlen, 2002; Bogacz et al., 2006). 

Consequently, a trade-off necessarily arises between the speed of a decision and its accuracy 

(Swensson, 1972; Pachella, 1974; Wickelgren, 1977; Bogacz et al., 2006; Balci et al., 2011), and in this 

respect the sequential sampling framework conforms to a long-known principle governing action-

based decisions (Woodworth, 1899; Garret, 1922; Hick, 1952). How this trade-off is managed is of no 

small consequence to real-world decision-makers, who must balance between maximizing both their 

total opportunities for reward (i.e. the total number of decisions they can make within a given period 

of time, as determined by the speed of their decisions) and their likelihood of successfully obtaining a 

reward from a given decision (i.e. the success or accuracy of their decisions; see Cisek et al., 2009; 

Balci et al., 2011; Thura et al., 2012). Thus, for any given environment, decision criteria that are less 

stringent will lead to faster but less accurate decisions, and criteria that are more stringent will lead 
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to slower but more accurate decisions (Ratcliff, 1978; Gold & Shadlen, 2002; Bogacz, 2007; Balci et al., 

2012). 

The basic drift-diffusion model 

The sequential sampling framework served as the foundation for a number of early decision models 

which treat decisions as an iterative process during which a single variable tracks the cumulative 

evidence for favoring one hypothesis relative to another as increasing numbers of samples are 

obtained; sampling is continued until the total amount of accumulated information meets the 

decision criterion, at which point the decision process is terminated and a corresponding action is 

undertaken (Ratcliff, 1978; Mazurek et al., 2003). Any such model can be said to constitute a discrete 

analogue of a sequential sampling procedure, and therefore posits a set of broad mutual 

dependencies between evidence quality, decision criteria, and the amount of time required for a 

decision to be made. The basic foundational model is depicted in schematic form in figure 1. 

 

 

Figure 1: the “basic” drift-diffusion model. Light and dark red traces represent the 

model’s response to stronger and weaker evidence, respectively (captured by the 

drift-rate variable A in formula #1). The point at which each trace crosses the 

threshold determines the timing of the response. Response time (RT) is thus jointly 

determined by both the evidence strength (A) and the value of the threshold (±z). 
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We will refer to the basic, schematic model illustrated in figure 1 as the basic drift-diffusion model 

(DDM), which can be defined by the following equation: 

dx = Adt, x(0) = 0    (1) 

As illustrated in figure 1, the process encompassed by equation #1 above can be schematically 

conceptualized as unfolding within a two-dimensional decision space. One of its dimensions is 

symmetrically delineated by the decision bounds (±z). These are analogous to the “stopping rule” in 

the sequential sampling test, and therefore represent the quantity of evidence required to terminate 

the decision process in favor of each of the two hypotheses under consideration (NB: while these 

“decision bounds” are given different names among various models, for the sake of terminological 

consistency we will hereafter refer to these as the decision thresholds). A decision formally begins 

with the initialization of a decision variable (dx) at a starting value of zero; this value – together with 

the symmetry of the decision bounds (±z) – reflects the assumption that both hypotheses are 

considered to be equally likely prior to the acquisition of any samples. The variable (x) denotes the 

difference between the evidence supporting the two opposing hypotheses at any given time (t). The 

decision variable dx is continuously updated as the decision process unfolds, and thus at any given 

time reflects the sum of all previously-accumulated evidence. Adt represents the increase in x during 

dt: A therefore determines the drift rate of the decision variable over the course of the decision 

process, and is analogous to the “quality” of the evidence used as input to the model (i.e. higher 

values of A amount to a faster rate of change in the decision variable dx, and therefore lead to faster 

decisions).  

As the evidence grows in favor of one hypothesis, support for the opposing choice necessarily 

dimishes; the evolution of dx over time as more samples are acquired subsequently resembles a 

diffusion process between the two bounds (the feature after which the model was eventually named; 

see Ratcliff, 1978). A decision is made when the decision variable dx crosses either of the two 

thresholds ±z, and the time of crossing is the response time (RT). Speed–accuracy trade-offs arise in 

the model as a direct result of the threshold setting (±z), such that lower thresholds lead to faster- 

but less accurate decisions, whereas higher thresholds lead to slower- but more accurate decisions 

(Domenech & Dreher, 2010; Forstmann et al., 2010; Balci et al., 2011). 
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The “basic” DDM: a brief experimental history 

The mutual dependencies among decision factors entailed by the sequential sampling framework 

provided a set of tractable experimental hypotheses regarding the effects of evidence quality on the 

timing of decisions, and thereby laid the groundwork for experimental investigations of decision-

making behavior. Empirical testing of the basic DDM model typically involved presenting subjects with 

a binary decision between two mutually-exclusive options, resulting in a class of task paradigms which 

came to be known as two-alternative forced-choice (TAFC) tasks (Schall, 2001; Gold & Shadlen, 2002). 

While many TAFC tasks were developed across a wide range of psychological domains (see Green & 

Luce, 1973; Ratcliff, 1978; Gronlund & Ratcliff, 1989; Ratcliff & McKoon, 1989; 1995; Wagenmakers et 

al., 2004; 2008), the nascent field of decision-making research ultimately converged on a number of 

psychophysical tasks, a handful of which today constitute the dominant experimental paradigms for 

most decision-making research. Early psychophysical tasks included judgments of dot separation, 

luminance discriminations, numerosity judgement, and binary color discriminations (Ratcliff & 

Rouder, 1998; Ratcliff et al., 1999; Rouder, 2000); however, the random-dot motion (RDM) task has 

come to be one of the prevailing and most ubiquitous experimental tasks for investigating the 

foundations of the decision-making process. In large part this is because it allows for the precise 

experimental definition of each relevant task factor, thereby facilitating the empirical quantification 

of changes in choice behavior engendered by manipulations to any of the discrete decision variables 

(Parker & Newsome, 1998). 

The random-dot motion task 

The RDM task is named after its stimulus, which consists of an image sequence showing a group of 

moving dots. Upon each frame, a fraction of these dots are selected to be re-drawn along a vector 

corresponding to the location of one of several peripheral targets, and the rest of the dots are moved 

randomly (Britten et al., 1993). The nature of this stimulus allows for the precise quantification and 

manipulation of “evidence strength,” expressable as the percentage of dots comprising its coherent 

motion signal. The relevance of this motion signal to the choice targets is easily learned, as the 

direction of the coherent motion signal corresponds to the location of the peripheral targets which 

are used by the subject to report the decision outcome. The strength of this signal then corresponds 

to “evidence strength” in a straightforward way, as a greater degree of motion coherence is more 

easily detectable, and is thereby analogous to higher-quality “samples” (Drugowitsch et al., 2012). 
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The RDM task yields two behavioral measures; the overt time of response corresponds to the 

duration of the cognitive procees underlying the decision, and accuracy rates (in the form of 

percentage of correct responses) allow for the inference of the value of the decision variable at the 

time of decision. 

In its original formulation, the RDM task typically employed coherent motion signals that were 

constant, in that they maintained a single value throughout the entire duration of a given trial (Britten 

et al., 1993; Cisek et al., 2009); however, some subsequent studies have adapted this task to 

incorporate a changing-evidence signal, in which the evidence strength is varied throughout the 

course of a trial (e.g. Huk & Shadlen, 2005; Kiani et al., 2008; Tsetsos et al., 2012). This is most 

commonly accomplished via the insertion of motion “pulses” within trials, during which the motion 

signal is altered for a brief period (typically 100-200ms; see Roitman & Shadlen, 2002; Huk & Shadlen, 

2005; Wong et al., 2007; Kiani et al., 2008; Thura et al., 2012). Despite the fact that these pulses are 

not consciously perceivable, they nonetheless have been shown to yield detectable effects on subject 

behavior; adding motion pulses tends to engender faster response times, whereas subtracting motion 

prolongs the decision duration, consistent with the predictions of the basic DDM (Roitman & Shadlen, 

2002; Tsetsos et al., 2012). However, while motion pulses have been the most common way of 

varying the evidence presented in the RDM task over time, other studies have used more dynamic 

forms of changing evidence (Cisek et al., 2009; Thura et al., 2012; 2014), and we will discuss these in 

greater detail in later sections. 

Importantly, because all the relevant task variables in the RDM can be precisely quantified, it allows 

for experimenters to manipulate individual variables and explain their impact on the subject’s overall 

behavior from within the basic framework of the DDM. For example, adjusting the motion coherence 

present in any given trial is equivalent to setting the drift-rate parameter (A; see equation #1); thus, 

the DDM predicts that for a given evidence strength, accuracy ought to improve as viewing time is 

increased, because the decision variable will be able to accumulate a greater number of samples, 

therefore resulting in more accurate decisions. Conversely, for any given amount of stimulus viewing 

time, the drift rate (A) will determine the final value of the decision variable, with greater values of 

(A) corresponding to more accurate decisions. Thus, accuracy in fixed-viewing-duration tasks ought to 

be directly related to the evidence strength (i.e. motion coherence) on any given trial (see figure 1). 
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Indeed, decision-making research is replete with behavioral studies that have extensively 

corroborated these predictions not only through the use of the RDM task (e.g. Britten et al., 1992; 

1993; Gold & Shadlen, 2000; Roitman & Shadlen, 2002; Mazurek et al., 2003; Ditterich et al., 2003; 

2006b; Ratcliff & Smith, 2004; Huk & Shadlen, 2005; Palmer, Huk & Shadlen, 2005; Bogacz et al., 

2006; Kiani et al., 2008; Drugowitsch et al., 2012) but also through a variety of other psychophysical 

and cognitive tasks (Stone, 1960; Laming, 1968; Green & Luce, 1973; Pachella, 1974; Link, 1975; Link 

& Heath, 1975; Wickelgren, 1977; Ratcliff, 1978; Luce, 1986; Gronlund & Ratcliff, 1989; Ratcliff & 

McKoon, 1989; Link, 1992; Carpenter & Williams, 1995; Hanes & Schall, 1996; Schall & Thompson, 

1999; Reddi et al., 2003; Wagenmakers et al., 2004; 2008; Smith & McKenzie, 2011). Thus, the early 

success of the DDM arose from its ability to attribute particular changes in overt measures of 

behavioral performance to manipulations of specific model parameters, and this ability has come to 

represent the benchmark test for all decision models in general. This overarching framework for 

evaluating decision models been referred to as the principle of “selective influence” (see Rae, 

Heathcote et al., 2014), by which a model is considered successful to the extent that it can capture an 

overt difference in behavior induced by a given experimental manipulation with a simple parametric 

change. 

Ultimately, the employment of the basic DDM framework enabled the earliest decision-making 

researchers to amass a large body of behavioral data that subsequently guided the development of 

increasingly sophisticated sequential-sampling based models. Consequently, the first several decades 

of decision-making research led to a number of mechanistic additions to the basic DDM, several of 

which became universally adopted. We will discuss three of these in particular in what follows. 

Model convergences 

Originally, the mechanistic simplicity of the “basic” model outlined above consistenty led to major 

inaccuracies in its predictions. Chief among these was its fundamental inability to reproduce the 

variable distributions of response times commonly obtained in real animal subjects, who do not 

respond in exactly the same way to otherwise identical trials (Busemeyer & Townsend, 1993). 

Furthermore, the model was also unable to account for how erroneous decisions could arise – a 

major shortcoming, especially in light of the fact that subjects rarely attain perfect accuracy even for 

very easy discriminations (McElree & Dosher, 1989; Ratcliff, 1978; Reed, 1973; Usher & McClelland, 

2001). Such problems were not unique to the basic DDM family of models, but also plagued a number 
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of other early models, such as signal-detection-theory models (Green & Swets, 1966) and stage theory 

models (Sternberg, 1969; for historical overviews see Townsend & Ashby, 1983 and Busemeyer & 

Townsend, 1993); however, the DDM ultimately superceded these other model classes when it fixed 

these shortcomings with the addition of a small number of features, to which we now turn. 

Noise 

The first – and most important – revision to the basic DDM was the addition of random variability in 

the model’s mechanisms. This addition was motivated not only by ubiquitous findings of variable RT 

distributions in behavioral data (Pachella, 1974; Link & Heath, 1975; Wickelgren, 1977; Ratcliff, 1978; 

Ratcliff & Smith, 2004), but was further grounded in the assumption that subjects cannot perfectly 

calibrate their decision-making parameters to exactly the same state across otherwise identical trials 

(see Ratcliff & Smith, 2004). This assumption was also plausible on biological grounds, as inherent 

variability arising at multiple levels of the nervous system would manifest as minor variations in 

decision behavior to otherwise identical stimulus input (Gold & Shadlen, 2001; 2002; Mazurek et al., 

2003). 

While noise could be implemented in any number of ways, the most common solution took the form 

of adding random variability to each “sample” fed to the model (Bogacz et al., 2006; Balci et al., 

2011), thereby producing minor variations in the decision variable’s threshold-crossing time 

(Busemeyer & Townsend, 1993; Ratcliff, 2001). Adding noise to the models in this way allowed them 

to generate orderly, regular distributions of response times (Ratcliff & Smith, 2004; Bogacz et al., 

2006). In fact, adding this single mechanism to previous, more rudimentary models was often enough 

to fix them considerably (Ratcliff & Smith, 2004; Bogacz et al., 2006; Bogacz, 2007). Ultimately, the 

role of noise in modeling the decision process is so crucial that its inclusion or omission is by itself 

often enough to make the difference between a model successfully accounting for data and its 

complete failure to do so (c.f. Van Zandt & Ratcliff, 1995). 

Biases 

However, there remained a few consistent discrepancies that were not fully redressed by the addition 

of sampling noise alone. For example, it was consistently observed that response-time distributions 

for correct trials differed significantly from those for error trials (Laming, 1968; Ratcliff, 1985; Ratcliff 

et al., 1999). This was eventually fixed by adding an additional source of variability to the decision 
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variable’s initial value, such that noise-driven fluctuations during evidence accumulation were more 

likely to result in erroneous responses when the decision variable’s initial value had been biased 

slightly in favor of the incorrect choice (Laming, 1968; Luce, 1986; Ratcliff, 1978; 1981; Vickers, 1988). 

However, while the earliest implementations of these starting-point biases were implemented purely 

as noise, later models made such variability a freely-varying parameter in the model whereby the 

decision process could incorporate various “intentional,” “systematic” biases in choice behavior that 

were sometimes observed in decision tasks (Smith, 1994; Van Zandt & Ratcliff, 1995; Ratcliff & 

Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999). This allowed for the basic DDM to effectively 

incorporate a broader range of latent cognitive processes related to choice preference, expected 

value, differences in choice costs, etc. (see Busemeyer & Townsend, 1993), thereby extending the 

ecological validity of the schematic model. 

Non-decision delays 

Lastly, given the prominence of response times as a core empirical measure for most tasks, obtaining 

accurate measurements thereof was obviously of crucial methodological importance (c.f. Pachella, 

1974). While most early empirical studies employed cued-response tasks (Stone, 1960; Laming, 1968; 

Link, 1975; Link & Heath, 1975; Ratcliff, 1978; Kiani et al., 2008) in which the decision time was 

dictated by the experimenter, the increasingly widespread use of free-response paradigms (Luce, 

1986; Link, 1992; Carpenter and Williams, 1995; Roitman and Shadlen, 2002; Mazurek et al.., 2003;  

Ratcliff and Smith, 2004; Lo and Wang, 2006) led to refinements in empirical measures of decision 

time. Because subjects in free-response conditions could respond while the stimulus was still being 

presented, the overt measure of their response time would necessarily be contaminated by a number 

of covert sensory- and motor-related delays – which if uncompensated for would lead to over-

estimations of the subjects’ “true” decision time (Pachella, 1974; Ratcliff & Tuerlinckx, 2002). Most 

tasks began to include obligatory estimations of subjects’ mean reaction time, which could 

subsequently be subtracted from their overt response times to yield a more veridical estimate of the 

duration of the underlying decision process (Luce, 1986; Balci et al., 2012). 

The “pure” DDM 

Subsequent to the solution of these modeling discrepancies, the “basic” DDM was updated to include 

the above three features, and consequently became the dominant decision model on which most 
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models are based. Having thus reviewed the motivations behind these fairly ubiquitous model 

additions, we now re-introduce the relatively simple version of the DDM defined previously with a 

richer, more elaborate version which has served as the de facto standard model to the present day. 

 

 

 

 

 

Figure 2: the “pure” drift-diffusion model. The pink and yellow arrows 

indicate sensory and motor delays (respectively) – which when subtracted 

from the overt response time (RT) yield an estimation of the “true” decision 

time (DT) spent accumulating evidence to threshold. As before, the average 

time taken for the decision process is determined both by the threshold 

setting (±z) and the average quality of the evidence (A, dotted blue line); 

however, for any given decision, small noise-driven offsets in the value of 

the evidence input will cause slight variations in the overall decision time, 

yielding a stereotypical distribution of response times (light red distribution, 

top). Offsets in the initial value of x (variable b in formula #2; not pictured 

above) provide a further means of changing response time by making one 

hypothesis more or less likely at the onset of the decision process. 
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Adding the features discussed above to the “basic” DDM defined by formula #1 yields the following 

first-order stochastic differential equation, which we will subsequently refer to as the “pure” DDM: 

dx = Adt + σdW, x(t0) = b         (2) 

As in the previous formula, the decision variable dx effectively implements a random walk between 

two symmetric decision thresholds, and the rate at which this decision variable “drifts” between 

them is determined by the magnitude of the evidence values drawn from the distribution A. 

However, in this model, each sample drawn from A is assumed to contain an unknown amount of 

noise, supplied in the above formula by the term dW, which represents white noise drawn from a 

Gaussian distribution with a mean of 0 and a variance of σ2dt (c.f. Balci et al., 2012). Furthermore, the 

decision variable is assigned an intial value of b; this value can be freely adjusted to implement an 

initial bias in the decision process such that a positive value of b makes the positive threshold a priori 

more likely to be chosen by decreasing the distance between the starting point of evidence 

accumulation and the positive threshold (and vice versa for negative values). Lastly, while the decision 

time (DT) in this formulation is identified with the time of first crossing of the decision variable across 

one of the decision bounds (±z), the model yields an additional time measure – the response time (RT) 

– which is the sum of the decision time and the sum of non-decision-related latencies t0 reflecting the 

contribution of various sensory encoding- and motor execution delays to the observed time of a 

subject’s response. Subtracting an estimate of these non-decision delays from the overt response 

times observed during experimention thus yields a more precise estimate of the underlying cognitive 

decision process (Balci et al., 2012). 

The specific implementation of noise in this “pure” DDM results in each sample having a small, 

random offset (either positive or negative) from its “true” value. However, while this adds a degree of 

uncertainty to the value of each sample, the assumption of a normal distribution of noise with a 

mean of 0 means that adding multiple noisy samples together over time will tend to cause the noise 

component to cancel out, leaving a veridical estimate of the underlying signal. Because the DDM 

effectively adds multiple independent samples together over time, this very process of successive 

sample integration provides the model with an intrinsic means for counteracting the distorting 

influence of noise (Ratcliff & Rouder, 1998; Bogacz et al., 2006; Bogacz, 2007; Balci et al., 2011). 

Consequently, in this version of the DDM “…the relative contribution of noise to the decision variable 
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diminishes as the number of samples accumulated increases, thereby decreasing the likelihood for 

noise-driven errors to arise as decision thresholds are increased, and thereby reinforcing the 

relationship between decision threshold and accuracy already latent in the basic DDM” (Bogacz et al., 

2006). This cancellation of noise via the addition – or integration – of multiple samples over time has 

explicitly served as a further theoretical argument in favor of the pure DDM, because the coupling of 

this implementation of noise with the integrative process of sequential sample summation endows 

the model with all the benefits of intra-trial variability in the stochastic decision process while 

simultaneously providing a concrete mechanism by which much of its potential distorting effects can 

be canceled out (Bogacz, 2007). The mechanisms of this model therefore not only effectively provide 

some protection against noise, but further allow the model to account for speed-accuracy trade-offs 

better than the noiseless, “basic” version of the DDM (Laming, 1968; Ratcliff et al., 1999; Mazurek et 

al., 2003; Bogacz et al., 2006; Bogacz, 2007). 

The “pure” DDM: a brief experimental overview 

The “pure” DDM has been successfully applied to all manner of tasks across a number of distinct 

psychological domains, wherein it successfully predicts and explains the influence of various task 

manipulations involving evidence strength and viewing time on overall decision behavior (Stone, 

1960; Laming, 1968; Vickers, 1970; Link, 1975; Link & Health, 1975; Ratcliff, 1978; Luce, 1986; Hanes 

& Schall, 1996; Schall & Thompson, 1999; Ratcliff & Rouder, 2000; Schall, 2001; Shadlen & Newsome, 

2001; Gold & Shadlen, 2002; Ratcliff, Thapar, & McKoon, 2003; Ratcliff, Gomez, & McKoon, 2004; 

Smith & Ratcliff, 2004). In other words, it accurately describes and replicates discrete changes in 

decision behavior by uniting the various latent cognitive factors into a singular mechanistic 

framework that explains and predicts their interactions on overall decision behavior. Moreover, its 

ability to do so conforms to the previously-stated principle of “selective influence,” by which a model 

is evaluated according to the extent that it can successfully describe empirically meaningful changes 

in behavior in terms of manipulations of a small number of the model’s relevant parameters. 

Due to its foundations in the sequential sampling framework it also describes speed-accuracy trade-

offs, which are intrinsic to the model and arise as a straightforward consequence of the mechanisms 

it encompasses. Furthermore, the DDM’s mathematical tractability supplies it with a further 

advantage, in that a mathematically optimal set of parameters for the DDM can be objectively 

derived for any given task setting, which will produce the greatest average reward rate for any task, 
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provided that the distribution of trial difficulties are specified (Ratcliff & Smith, 2004; Bogacz et al., 

2006; Bogacz, 2007; Simen et al., 2009). This aspect of the DDM has allowed for the empirical 

demonstration and quantification of optimality in natural animal behavior. Such demonstrations are 

typically founded on the assumption that in most experimental settings as well as in real-world 

environments, animals are motivated to achieve the highest possible reward rate over time (as 

opposed to optimizing their decision process on an individual-trial basis; see Cisek et al., 2009; Balci et 

al., 2011; Thura et al., 2012). Thus, sequential sampling models – and, by extension, the “pure” DDM 

derived therefrom – can therefore provide discrete mathematical solutions to speed-accuracy trade-

off-related phenomena that are a typical feature of cognitive tasks in general (Swensson, 1972; 

Wickelgren, 1977; Luce, 1986; for overview see Balci et al., 2011). 

Model divergences 

In presenting the “pure” DDM above, it bears mentioning that the sequential sampling framework 

from which this model was developed has ultimately given rise to a large number of derivative 

models, among which there are almost as many specific mechanistic differences as there are 

individual models. This diverse plurality of models can in part be attributed to the fact that the 

sequential sampling framework was originally developed from outside the context of any particular 

domain of application, therefore leaving many of its finer implementational details unspecified; in 

other words, its basic mathematical formulation does not greatly constrain the particular ways in 

which its essential dynamics may be implemented. While the “pure” DDM – or integration model – 

shown above is currently the prevailing, dominant model in the field, it is nonetheless only the most 

prominent member within a diverse family of models which all have their theoretical roots in the 

sequential sampling framework. 

Nonetheless, even where individual sequential-sampling-based models differ in subtle ways, in 

general they tend to agree on substantive questions of interpretation (Donkin, Brown, Heathcote & 

Wagenmakers, 2011). In fact, most models can be mathematically incorporated into the DDM, even 

when they differ significantly in the dynamics they afford. This has been demonstrated 

mathematically in a number of large-scale model-comparison studies (see Ratcliff & Smith, 2004; 

Bogacz et al., 2006; Bogacz, 2007). Accordingly, the “pure” DDM can be considered a fair 

representative for the many closely-related models that have their common roots in the sequential 

sampling framework (c.f. Cisek et al., 2009). 
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The ultimate test for any model is how well it can constrain and explain the actual physiological 

implementation of the decision process as it occurs in the brain (Platt & Glimcher, 1999; Gold & 

Shadlen, 2002; Purcell et al., 2010; Turner et al., 2013). Where models make identical or similar 

predictions, but differ in their mechanistic implementations, the most sensible recourse for deciding 

between them is to assess their individual mechanisms in terms of their biological plausibility. 

In this light, the convergence of many models on a limited range of essential features provides a set 

of concrete and empirically well-established proscriptive hypotheses regarding what sorts of decision-

making mechanisms may exist in the brain (Ratcliff & McKoon, 1995; Gold & Shadlen, 2002; 

Churchland et al., 2008). Specifically, these ought to include functionally-analogous neural 

implementations of several major decision factors including 1) sensory evidence signals; 2) the 

encoding of accumulated integrated evidence, and 3) decision thresholds. Finding evidence for similar 

mechanistic processes in the brain would therefore constitute further proof that sequential-sampling 

models are the appropriate framework for studying natural decision-making behavior. In what 

follows, we briefly outline the body of physiological evidence that has emerged as a result of the 

DDM’s considerable history of empirical success. 

 

Physiology 

The convergence of multiple models on the limited range of essential features encapsulated in the 

extended DDM model presented above can be considered to provide a set of relatively concrete and 

empirically-corroborated tentative hypotheses regarding what sorts of decision-making mechanisms 

may exist in the brain (Gold & Shadlen, 2002; Bogacz, 2007). However, given the mathematical 

complexity of many of the operations involved in the models, it is unlikely that real-world decision-

makers are actually computing precise probability estimates, integrating samples perfectly, etc. (Cisek 

et al., 2009; Rae, Heathcote et al., 2014). Instead, the models are taken as representing the “essential 

dynamic properties” (c.f. Tuckwell, 1988) of the decision process, and the specific mathematical 

computations implied by such models are otherwise assumed to be realized in approximated form by 

the underlying neural system (Busemeyer & Townsend, 1993). Therefore, the mathematical 

descriptions and procedures suggested by the DDM and related sequential-sampling-based models 

are taken only as a general framework whose dynamic properties and individual mechanisms neural 
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computations can plausibly be fitted to approximate, and any neurobiological theory of decision-

making will have to be constrained by the types of computational mechanisms that are actually 

achievable by biological neural networks. Accordingly, the search for neural implementations ought 

to entail looking for plausible, neurally-realizable approximations of the essential dynamic properties 

exhibited in abstract form by the models themselves (c.f. Tuckwell, 1988; Busemeyer & Townsend, 

1993). 

Neural evidence mechanisms 

The extensive use of psychophysically-oriented experimental paradigms in decision-making research 

meant that the well-characterized anatomical localization of much of the brain’s sensory-processing 

hierarchies could be exploited to constrain potential areas of interest, given the provisional 

assumption that the evidence signals relevant to a given decision ought to be at least in part supplied 

by sensory areas whose functional profiles correspond to the discriminations entailed by a given task. 

In fact, the RDM task was itself originally developed from a simple noisy motion-detection task meant 

to elucidate the functional properties of extrastriate visual cortical area V5/MT (Morgan & Ward, 

1980; Seigel & Anderson, 1986), and was subsequently taken up by Newsome & Paré (1988) who 

adapted it to its current form for the purposes of providing direct proof for its role in supplying the 

evidence during perceptual decisions in the RDM task. To date, a wide array of subsequent single-cell 

recording studies have now yielded substantial evidence that the firing rates of direction-selective 

cells in area MT during a random-dot motion task are linearly correlated with the relative strength of 

the coherent motion in the stimulus, and that this activity can be “read-out” to predict the accuracy 

of a subject’s decision (Newsome et al., 1989; Britten et al., 1992; Britten et al., 1993; Britten et al., 

1996; Shadlen et al., 1996). Moreover, its role in the decision process has been further demonstrated 

by both focal chemical inactivation (Newsome & Paré, 1988) and electrical microstimulation (Salzman 

et al., 1990; 1992; Salzman & Newsome, 1994; Ditterich et al., 2003) of MT cells, such that 

manipulations of neuronal activity in this region can effectively delay or hasten the ensuing 

behavioral response. The ability for manipulations of MT activity to influence the decision process 

suggests a directly causal role for area MT in supplying evidence for decisions relying on motion-

based stimulus cues such as the RDM, in a manner that is mechanistically analogous to the evidence 

signal posited by the DDM (specifically, its activity essentially appears to encode the drift-rate 

variable (A) from formula #2 above; see Ratcliff & Smith, 2004; Bogacz et al., 2006; Balci et al., 2011). 
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Furthermore, the general role of supplying evidence for a perceptual discrimination appears to 

generalize beyond the specific functional contributions of area MT to a RDM task. A number of other 

studies have located similar evidence-coding activity during other tasks, supplied by different sensory 

processing areas whose respective functional profiles correspond to the nature of the perceptual 

discrimination being tested; these have included cortical areas related to somatosensory (Salinas et 

al., 2000; Romo & Salinas, 2003; Houweling & Brecht, 2008; Hernández et al., 2010), auditory (Sally & 

Kelly, 1988; Kaiser et al., 2007; Yang et al., 2008; Jaramillo & Zador, 2011; Bizley et al., 2013; 

Znamenskiy & Zador, 2013), olfactory (Uchida & Mainen, 2003; Uchida et al., 2006) and non-motion-

related visual processing (Heekeren et al., 2004; 2008; Yang & Maunsell, 2004; Kosai et al., 2014). 

Thus, taken together, this extensive body of studies has demonstrated a neural implementation of 

evidence signals derived from sensory input that provide a quantitatively-graded signal compatible 

with the putative role of evidence signals in the decision process as posited by the DDM. 

 Neural evidence accumulation mechanisms 

The evidence-coding signals provided by the cortical regions identified above appear to represent the 

current evidence, but do not perform the accumulative functions otherwise crucial to the DDM’s 

essential dynamics; thus, such signals had to be found elsewhere. As before, the search for evidence-

accumulating functions was guided by a number of provisional hypotheses afforded by the 

experimental history of the DDM. In the case of most of the experimental tasks employed in decision-

making studies, subjects are already aware of the mapping between the relevant stimulus dimensions 

and the specific motor responses used to report the decision outcome (Gold & Shadlen, 2000; Yang & 

Shadlen, 2007). For example, the “motion evidence” for a RDM task is not evidence about “motion 

direction” in an abstract sense, but rather is evidence for the specific behavioral response used to 

report the decision and thereby obtain a reward (Platt & Glimcher, 1999; Gold & Shadlen, 2000; 2002; 

Yang & Shadlen, 2007). Consequently, this insight motivated the adoption of the provisional 

physiological hypothesis that evidence accumulation may take place in high-level motor command 

structures responsible for issuing the behavioral response required by a given task (Platt & Glimcher, 

1999; Gold & Shadlen, 2000). 

This prediction has been borne out by a wide range of studies which have yielded extensive evidence 

for such mechanisms among a diverse range of cortical and extracortical sites. In the superior 

colliculus (SC), for example, a number of experimental studies featuring tasks in which a subject’s 
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decision is reported with a saccade have revealed that the relative activity of collicular neurons 

strongly covaries with both the probability and magnitude of a reward associated with the cell’s 

spatial target over the course of the decision period (Basso & Wurtz, 1998; see Ratcliff, Cherian & 

Seagreaves, 2003 for overview). Other studies have revealed a number of suggestive correlations 

between the build-up of activity in individual collicular neurons and both the likelihood (Dorris & 

Munoz, 1998; Dorris et al., 2000) as well as the latency (Basso & Wurtz, 1998; Everling et al., 1999; 

Dorris et al., 2000) of an ensuing saccade into the response field of the recorded cells. Finally, the 

baseline activity levels of these collicular cell populations at the time of a decision’s onset appear to 

reflect a predisposition to choose a target in the corresponding space of the visual field (Horwitz & 

Newsome, 1999; 2001), consistent with the biasing mechanisms featured in the “pure” DDM defined 

in equation #2. Collectively, these studies provide compelling support for the hypothesis that the 

superior colliculus serves as a physiological site for bridging the accumulation of decision evidence 

with the principal behavioral output of that decision (i.e. a saccade), which is itself consistent with the 

well-established functional role of the SC in coordinating and executing oculomotor behaviors (Basso 

& Wurtz, 1998; Dorris & Munoz, 1998; Everling et al., 1999). 

Physiological assays of other cortical regions have furnished further support for this overarching 

neural hypothesis. For example, the well-characterized functional role of the frontal eye fields (FEF) in 

coordinating and initiating eye movements motivated a series of studies using the RDM task to 

establish a direct correspondence between neural activity in FEF cells and the development of an 

ongoing decision. These studies ultimately showed that direction-selective cells in this region appear 

to implement the accumulation of information during a RDM task, with neural activity building up as 

a function of both motion strength and viewing time (Gold & Shadlen, 2000; Ding & Gold, 2012), 

consistent with the dynamics of the decision variable in a DDM model (for an analogous example of 

such neural activity recordings from Roitman & Shadlen’s (2002) study of area LIP see figure 3, 

below). 

Finally, similar findings have also been obtained in the lateral intraparietal area (LIP), another cortical 

area with an empirically well-substantiated role in the spatial coordination of oculomotor behavior 

(see Platt & Glimcher, 1999; Roitman & Shadlen, 2002). Here, once again, a number of physiological 

assays have revealed the effective neural implementation of a developing decision via single-cell 

recordings in this area (Gnadt & Anderson, 1988; Hanes & Schall, 1996; Platt & Glimcher, 1997; Colby 
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& Goldberg, 1999; Platt & Glimcher, 1999; Shadlen & Newsome, 2001; Roitman & Shadlen, 2002; 

Leon & Shadlen, 2003; Dorris & Glimcher, 2004; Sugrue, Corrado & Newsome, 2004; Hanks, Ditterich 

& Shadlen, 2006; Ipata et al., 2006; Yang & Shadlen, 2007). Further consistent with corresponding 

studies of other brain areas mentioned previously, area LIP also exhibits quantitatively-graded 

decision-related buildup of activity whose rate of growth is commensurate with the strength of the 

evidence both for tasks in which the evidence input is continuous (as in an RDM task; see see Roitman 

& Shadlen, 2002; Ratcliff, Cherian & Segraves, 2003; Smith & Ratcliff, 2004; Gold & Shadlen, 2007; 

Kiani, Hanks & Shadlen, 2008) as well as when the evidence arrives in discrete units over time (Yang & 

Shadlen, 2007). Additionally, further single-unit recording studies of cellular activity in LIP have led to 

the suggestion that the encoding of accumulated evidence appears to take place in probabilistic units 

of log-likelihood, which is further consonant with the general framework of sequential sampling at 

large (see Wald, 1947; Gold & Shadlen, 2002; Yang & Shadlen, 2007). In other words, the 

qualitatively-graded activity of LIP cells appears to reflect the brain’s ability to extract and accumulate 

probabilistic evidence from sensory information over time (Yang & Shadlen, 2007). 

Finally, physiological recording in area LIP has established that the temporal profile of decision-

related activity in this region is consistent with the hypothesis that LIP is in direct receipt of input 

from a number of extrastriatal visual areas known to play a role in the types of psychophysical 

discriminations commonly featured in decision tasks (see Roitman & Shadlen, 2002; Shadlen & 

Newsome, 2001; Hanks, Ditterich & Shadlen, 2006; Huk & Shadlen, 2005; Yang & Shadlen, 2007; and 

references therein). For example, Kiani, Hanks & Shadlen (2008) used an RDM task to show that the 

total latency between the time of stimulus onset and LIP responses falls within a window of ~210-

260ms, which suggests a delay between LIP and its putative motion-related evidence input from MT 

that is only approximately ~100ms (Britten et al.., 1996; Bair et al.., 2002; Roitman and Shadlen, 2002; 

Osborne et al.., 2004; Huk and Shadlen, 2005). Conversely, this suite of temporal relationships 

between LIP and the cortical sensory areas which presumably provide it with its fundamental input is 

further consonant with anatomical studies that suggest that sensory areas including MT/V5 and V4 

are anatomically well-poised to supply feedforward input to areas encoding the total accumulated 

evidence, such as FEF and LIP. This has been demonstrated in explicit anatomical terms by a number 

of physiological studies documenting reciprocal cortico-cortical connections across a range of visual 

sensory and parietally-situated motor control centers, including those between LIP and MT & V4 

(Blatt, Anderson & Stoner, 1990) as well as between MT and both LIP and FEF (Ungerleider & 
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Desimone, 1986). Thus, LIP in particular appears to be a central hub in decision-making activity, which 

together with a diverse set of cortical sensory-processing areas appear to constitute a widely-

distributed network for decision-making. 

However, it must be noted that LIP’s role in decision-making is not wholly accounted for; for instance, 

it has been shown that LIP activity can exhibit responses to a number of extended factors which can 

not themselves be definitively attributed to evidence-related processing, such as target value (Platt & 

Glimcher, 1999; Sugrue et al., 2004), reward expectation (Sugrue, Corrado & Newsome, 2004; Dorris 

& Glimcher, 2004), or even the mere passage of time (Ditterich, 2006a; Beck et al., 2008; Churchland 

et al., 2008; Hanks et al., 2011; Standage et al.., 2011). Ultimately, however, such findings are not 

themselves inconsistent with the general role of area LIP in evidence accumulation presented here; in 

fact, these influences may all be indicative of a more general role for LIP in coordinating behavior in 

response to a wide variety of task-relevant variables (Rao, 2010). However, we will return to the topic 

of non-evidence-dependent activity in LIP in later sections, and will for now merely note that its wider 

functional profile has not been entirely determined. 

Neural threshold mechanisms 

Lastly, while empirical evidence has been presented for the neurobiological implementation of 

evidence estimation and accumulation in a number of brain regions, the implementation of a decision 

threshold remains to be established. The DDM posits that the threshold is set at a constant level, and 

that the crossing of this threshold by the decision variable determines the timing of the ensuing 

response. This therefore suggests that demonstrating the existence of analogous neural decision 

thresholds would require measuring neuronal activity while a decision was completed, and analysing 

this activity to see whether decision times could be predicted on the basis of the decision variable 

having reached a common activity level across multiple trials. Importantly, however, most behavioral 

tasks studied in laboratory experiments have been fixed-duration studies (Rieke et al., 1997; Parker & 

Newsome, 1998); thus, when the stimulus viewing duration is controlled by the experimenter, the 

true decision time is covert, thereby prohibiting a precise estimation of the subjects’ actual decision 

time (Britten et al. 1993; Shadlen & Newsome 2001; Parker et al. 2002; DeAngelis & Newsome 2004; 

Krug 2004; Krug et al. 2004; Uka & DeAngelis 2004). Therefore, the use of free-response tasks was 

empirically necessary to identify neural mechanisms analogous to the threshold mechanisms 

suggested by the DDM (see Kiani, Hanks & Shadlen, 2008). 
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Figure 3: Evidence-accumulation and thresholding processes in area LIP. 

Responses of LIP neurons during a random dot-motion discrimination task, from 

Roitman & Shadlen (2002). Left: alignment of neural activity on stimulus onset 

reveals that the rate of neural activity build-up diverges as a function of the 

evidence strength. Right: alignment of neural activity on saccade onset reveals that 

the oculomotor response is initiated when LIP activity reaches a fixed common level 

of activity corresponding to the threshold in the DDM. 

 
To date, the clearest demonstration of direct neural mechanisms of thresholding comes from a 

physiological study of area LIP by Roitman & Shadlen (2002), who recorded single-cell activity rates 

over the course of a decision in a RDM task. The free-response nature of this task enabled the 

researchers to directly investigate what happens in these neural populations at the time when 

accumulation stops and an overt behavioral response is initiated. They found that aligning neural 

activity on the estimated time of decision onset revealed that the transition from gathering sensory 

evidence to acting on this information appeared to occur at the moment at which accumulative 
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neural activity in area LIP reached a fixed, absolute level that was consistent across trials (see figure 

3). Additionally, the threshold at which the build-up of neuronal activity terminated and triggered an 

outcome-reporting movement was identical for both correct and incorrect trials, therefore indicating 

that these LIP neurons do not reflect the objective direction of the stimulus motion, but rather 

indicate the subjects’ belief about the decision evidence (Roitman & Shadlen, 2002; Yang & Shadlen, 

2007). 

A series of subsequent studies have also corroborated the finding of absolute neural activity 

thresholds during decision-making, the crossing of which predicts both the ultimate choice and the 

timing of the subject’s behavioral report (Ratcliff, Cherian & Segraves, 2003; Mazurek et al., 2003; 

Kiani et al., 2008; Ding & Gold, 2012). Taken together, these studies have collectively shown that LIP 

activity can be consistently seen to rise toward a common firing-rate threshold that is independent of 

a specific trial’s motion coherence as well as the ensuing decision time. The fact that the final firing 

rate value was common across all conditions suggests that the threshold is constant, with variations 

in decision timing being due to corresponding differences in the underlying factors governing the rate 

at which this activity builds up, at least part of which would be evidence-related (Roitman & Shadlen, 

2002; Mazurek et al., 2003; Kiani et al., 2008). 

Summary: physiology 

In general, the studies reviewed in the foregoing would appear to confirm the neural implementation 

of evidence signals, evidence accumulation, and thresholding mechanisms as posited by the DDM.  

More recently, the anatomical and functional details of the emerging neurobiological scheme has led 

to the suggestion that decision processes take place on a level of neural organization that effectively 

links sensory, cognitive and motor processes within a common domain, thereby facilitating the rapid 

conversion of sensory information into behavior in real-time, consistent with the ecological demands 

of real-world behavior (Gold & Shadlen, 2000; Cisek, 2007). 

Ultimately, the emergent functionality of these many individual neural mechanisms strongly conform 

to the mechanistic predictions made by the DDM, and therefore have typically been interpreted as 

evidence for a more-or-less direct (if approximate) neurobiological implementation of the decision 

process as outlined in mathematical abstraction by the sequential sampling framework at large (Gold 

& Shadlen, 2002). More broadly, these findings appear to substantiate the notion that animal 



30 

 

behavior is broadly analogous to hypothesis-testing, for which evidence is accumulated over time and 

summated to provide an informed (but still inherently probabilistic) estimate of the state of the 

world, and therefore by extension the best course of action that the environment currently affords 

(Gold & Shadlen, 2002; Bogacz et al., 2006). 

The current state of the sequential sampling framework 

As we noted earlier, a number of crucial mechanistic additions were made to the “basic” DDM 

(equation #1) in order for it to successfully capture a number of common features in behavioral data. 

While these mechanisms were universally adopted (and led to the highly successful “pure” DDM; 

equation #2), many divergent and increasingly-complex models continued to be developed over time. 

Problematically, however, the progressive diversification and mechanistic embellishment of the ever-

growing family of sequential-sampling-based models has been accompanied by a corresponding 

tendency for the ensuing models to become capable of mutual “mimicry,” by which any sufficiently 

complex model can match the output of any other by mere virtue of the fact that its mechanistic 

complexity ensures that a set of parameters can almost always be found which will reproduce the 

output of a competing model (see Bogacz, 2007; Tsetsos et al., 2011; 2012; Rae, Heathcote et al., 

2014). Thus, as models become more complex they necessarily become more flexible in their ability 

to fit data – but it cannot therefore be concluded that such a model necessarily represents the best or 

most parsimonious explanatory framework for the observed phenomena. Instead, an alternative 

evaluative framework is required to resolve disputes between models without recourse to the 

models’ abilities to reproduce the predictions of another. 

On this point, several recent studies have presented data that resists explanation by the DDM (Usher 

& McClelland, 2001; Cisek et al., 2009; Thura et al., 2012; Tsetsos et al., 2012). While adherents of the 

DDM have sucessfully addressed a few of these challenges with parametric modifications (see Ratcliff 

& Smith, 2004; Bogacz et al., 2006; Bogacz, 2007; Kiani et al., 2008), many of these empirical 

challenges remain outstanding. Despite these suggestive demonstrations of the DDM’s potential 

shortcomings, however, these studies have generally not considerably undermined the DDM’s status 

as the prevailing model. In fact, the DDM has been continued to be acknowledged as the de facto 

model even by modelers with personal allegiances to alternative models (see Usher & McClelleand, 

2001; Wang, 2002; Wong & Wang, 2008; Cisek et al., 2009; Balci et al., 2011; Thura et al., 2012; 

Tsetsos et al., 2012). 
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Thus, the persistence of the DDM in the face of such empirical challenges serves to highlight a 

broader potential problem with the reigning methodology of decision research; that is, it could be 

argued (and has been: see Rae, Heathcote et al., 2014) that the ability of the DDM to replicate the 

output of models that otherwise differ substantially in their dynamics may have unintentionally 

precluded the search for alternative (and potentially more parsimonious) models by obscuring the 

theoretical utility of such alternatives behind a strategy of continued parametric revisions. Instead, to 

prevent over-commitment to a singular, increasingly-mechanistically-embellished model, the core 

assumptions on which models are built must be continually questioned to clear the ground for 

potential alternatives. Accordingly, we proceed along these lines by revisiting and reconsidering some 

of the core assumptions underlying the DDM in its current form to see if there may be just cause to 

resume the search for models that deviate substantially from the essential framework of the DDM 

which, because of the DDM’s status as the default paradigm, would not otherwise be searched for. 

 

Revisiting the foundational assumptions of the DDM 

Assumption #1: sequential sampling is required for simple perceptual judgments 

The core functionality of the DDM rests on the assumption that a single sample is rarely sufficient to 

make an informed decision; thus, it relies on the integration of multiple samples over time to exploit 

the intrinsic relationship by which decision accuracy can be increased by accumulating additional 

samples, and this mechanism is directly responsible for the model’s output of a decision variable that 

grows over time. Taking the logic of the DDM to its natural conclusion, then, would lead to the 

straightforward prediction that decision accuracy ought to increase monotonically for as long as 

sampling is continued. That is, even a particularly difficult perceptual discrimination, if given enough 

time, ought to eventually reach near-perfect levels of accuracy. Problematically, however, this 

prediction is not borne out in the extensive body of data on perceptual discrimination tasks. Instead, 

it has been consistently observed that success rates tend to asymptote after a certain amount of 

viewing time, even when additional sampling time is provided (Wickelgren, 1977; Shadlen & 

Newsome, 2001; Usher & McClelland, 2001; Roitman & Shadlen, 2002; Huk & Shadlen, 2005; Kiani et 

al., 2008). For example, when Roitman & Shadlen (2002) controlled their subjects’ viewing time 

during an RDM task, they found that accuracy rates tended to asymptote fairly rapidly, even for 
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difficult trials in which additional viewing time should have been of significant benefit to the subject. 

While this appears to occur in all trials regardless of difficulty, the amount of time it takes for 

accuracy to stabilize at a consistent final level appears to be dependent on the strength of the 

evidence in a given trial; very strong evidence leads to near-instant saturation of accuracy rates, 

whereas relatively difficult discriminations appear to lead to asymptoting accuracty rates after 

between 800ms (Roitman & Shadlen, 2002; Kiani, Hanks & Shadlen, 2008) and 1000ms (Usher & 

McClelland, 2001; Tsetsos et al., 2012). 

However, the above studies all employed RDM tasks, which therefore leave open the possibility that 

this phenomenon could be task-specific. However, a number of studies using different behavioral 

tasks have also yielded data suggesting that decisions tend to be made on the basis of information 

arriving in a window of time which is often substantially shorter than the full length of the decision 

process itself (Cook & Maunsell, 2002; Ludwig et al., 2005; Luna et al., 2005; Ghose, 2006; Uchida et 

al., 2006; Yang et al., 2008; Kuruppath et al., 2014; but see also Burr & Santoro, 2001). Together, 

these studies would appear to argue against a traditional conceptualization of integration as a 

decision-making mechanism, and instead seem to suggest that there is some limit to the utility of 

extended sampling that instead motivates subjects to base decisions on only a subset of the total 

information presented to them. In other words, the apparent mechanisms purportedly implementing 

evidence integration may actually be serving a different purpose. 

Two resolutions to these observations have been previously proposed. On one hand, adherents to the 

DDM family of models have proposed that the decision process is cognitively taxing, and that subjects 

therefore simply allot a limited amount of time to the formulation of a decision. Consequently, they 

argue that the saturation of accuracy rates can be explained by an early truncation of the decision 

process such that subjects are satisfied with a given level of performance for a given difficulty; 

accordingly, they claim that subjects integrate samples until they reach the desired threshold, and 

simply ignore all further information (Kiani et al., 2008). 

If this were true, then it would follow that manipulations of evidence within a trial should only be 

effective in changing subjects’ behavior if these changes occur early in the trial, i.e. while the animal is 

still integrating evidence. In other words, decision-makers ought to exhibit primacy biases, such that 

early decision information should matter more than later information. Indeed, such primacy biases 

have been shown by several studies (Huk & Shadlen, 2005; Kiani et al., 2008). However, other studies 
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have shown that it is possible to obtain both primacy- and recency biases, in which subjects appear to 

base their decisions on a limited range of stimulus information that is either early or late 

(respectively) within a given trial (Usher & McClelland, 2001; Huk & Shadlen, 2005; Tsetsos et al., 

2012). Thus the DDM’s “early decision truncation” account cannot explain how these different 

patterns emerge, thereby motivating the search for an alternative explanation. Instead, the authors 

of the aforementioned studies have proposed a variety of alternative models that feature novel 

mechanisms such as “leak” (see Usher & McClelland, 2001), which they believe to account for the 

variety of temporal biases observed in their experimental tasks. However, while these models can be 

parameterized to account for the emergence of these different temporal bias patterns (Usher & 

McClelland, 2001; Tsetsos et al., 2012), these models do not motivate these mechanistic additions 

ecologically, nor do they explain how such parameters relate to subjects’ performance under varying 

conditions. In other words, these models represent mechanistic embellishments to the DDM that, 

while sufficient to replicate behavioral data, are not for this reason necessary. 

However, a third explanation for the saturation of accuracy rates may be found by examining the 

latent assumptions of the sequential sampling framework itself. Recall that the primary feature 

linking the DDM with the sequential sampling framework – and which constitutes its central 

explanatory mechanism – is its the ability to reduce uncertainty by exploitating the addititive 

properties of probabilistic cues (Pierce, 1878; Wald & Wolfowitz, 1948). However, the utility of a 

sequential sampling test – and therefore, the DDM – is predicated entirely on the assumption that 

such samples are statistically independent, i.e. that they do not contain any overlap in the information 

that they provide. 

While this assumption has occasionally been explicitly acknowledged during empirical evaluation of 

the DDM (for examples see Bogacz et al., 2006 and Kiani, Hanks & Shadlen, 2008), it remains at least 

an implicit assumption in all sequential-sampling-based models, and is not a demonstrated fact. 

Meanwhile, this assumption of sample independence has strong consequences for the dynamics of 

sequential-sampling models and therefore merits close investigation, because it is only under this 

assumption that a decision can increase in accuracy indefinitely as more samples are acquired. 

This assumption only recently began to attract attention and re-examination after several decades of 

having been taken for granted. Recently, a series of studies (Cisek et al., 2009; Thura et al., 2012) 

have proposed that any task in which the evidence is held constant will eventually result in 
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diminishing returns on the information provided by successive samples. Their logic was predicated on 

a Bayesian analysis of mutual information, which states that as samples are repeatedly drawn from an 

underlying distribution, the information content of each sample will be increasingly predicted by the 

prior samples. In other words: later samples contribute less novel information to the growing body of 

information. In this case, collecting samples over time will progressively leave less novel information 

to be uniquely provided by subsequent samples, and the net informational yield from combining 

them together will therefore eventually be less than their sum. The precise time course of the 

diminishing returns on information will be inversely related to the degree of mutual information 

contained in the samples: the more they overlap in information content, the fewer samples will need 

to be collected before they cease being informative – in all cases, however, the earliest samples will 

tend to convey substantially more information than later ones. This overall principle can also be 

phrased in an alternative way: only novel information can cause an integrated sum to increase in size. 

The consequences of this on the output of a model founded on the sequential sampling framework 

are non-trivial. For example, the accuracy of a perceptual discrimination about a a static, unchanging 

visual stimulus without noise would not be expected to benefit from an extended sampling period 

because all of the information pertinent to the required decision is fully present at the moment it is 

presented; and indeed, such discriminations are often extremely rapid and do not improve 

substantially over time (see Uchida et al., 2006; Stanford et al., 2010; Zariwala et al., 2013; Kuruppath 

et al., 2014). By contrast, a task like the RDM presents a less extreme case; because the coherent 

motion signal is embedded in noisy, random dot fluctuations, multiple visual samples will still be 

required to correctly discern the noise from the veridical signal, and one would expect extended 

viewing times to yield corresponding increases in accuracy for this reason. Importantly, however, if 

the motion coherence value is constant throughout a given trial, there will remain some degree of 

mutual information across samples, and the benefit of acquiring further samples will therefore 

decrease over time to the point where additional samples incur no attendant benefit to accuracy. 

Mechanistically, the consequence of this for an integration-based model is that the growth rate of the 

decision variable will necessarily decrease over time as successive samples become increasingly 

informationally redundant (c.f. Thura et al., 2012), and will eventually stabilize at an asymptote value 

once most of the novel information has been collected. In other words, integration cannot improve 

decision accuracy indefinitely because the integrated sum only increases in response to novel 

information. 



35 

 

Consequently, re-considering the types of tasks typically used in decision-making research along 

information-theoretic grounds can provide a straightforward explanation for the consistent trend for 

accuracy in constant-evidence tasks to saturate over time: because most of the extant work in 

perceptual decision-making has employed tasks in which evidence strength remains constant over the 

duration of an individual trial (e.g. Ratcliff, 1978; Shadlen & Newsome, 2001; Roitman & Shadlen, 

2002; Ratcliff & Smith, 2004; Bogacz et al., 2006), these tasks will necessarily lead to diminishing 

returns on the ability of prolonged stimulus viewing durations to improve accuracy. Indeed, precisely 

this phenomenon has been observed in a wide range of experimental tasks (see above); moreover, 

such a scenario is also likely to obtain in many – if not most – real-world environments, in which 

animals sample a finite set of stimuli before making a decision (see Uchida & Mainen, 2003; Uchida et 

al., 2006; Thura et al., 2012; Zawala et al., 2013; Kuruppath et al., 2014). 

In itself, this discrepancy between real-world behavior and the theoretical rationale of integration-

based models presents a problem for the DDM’s theoretical account of decision-making behavior – 

but only because of the DDM’s reliance on integration to bring the decision variable to threshold. 

Otherwise, the existence of mutual information between samples need not itself present a damning 

problem for any neural implementation of the decision process; we will propose one such solution in 

the following section. Nonetheless, the issue of mutual information and its mechanistic consequences 

for the DDM remains a salient theoretical weakness in its general explanatory framework. 

Furthermore, it has additional consequences for the dynamics of the DDM, to which we now turn. 

Assumption #2: threshold settings are constant 

In the above, we argued that mutual informational content shared amongst successive samples 

would appear to preclude the possibility that integrating evidence can improve decision accuracy 

indefinitely. Rather, information-theoretic considerations of the signal properties of the stimuli used 

in many of the more common experimental decision-making tasks would suggest that the usefulness 

of linear integration should have a clear (and mathematically specifiable) limit. However, in addition 

to manifesting in the saturation of accuracy rates over short time scales, the tendency for repeated 

sampling to yield diminishing informational returns causes problems for any model in which the 

threshold is constant, because for any evidence accumulation function that asymptotes over time 

there will necessarily exist a set of static threshold parameters that this integrated amount will never 

be able to reach. Conversely, setting the threshold at a value that the evidence will be able to reach 
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would appear to require knowing ahead of time the strength of the evidence one is likely to obtain in 

a given environmental setting – an assumption which is difficult to motivate, especially in real-world 

settings where similar “trials” are typically not encounted serially in sets of several hundred at a time 

as they often are in experimental tasks. 

To be fair, a static parameterization of the “stopping rule” is the most straightforward interpretation 

of the sequential sampling procedure’s framework, and the constancy of the threshold parameter 

may therefore have quite naturally been implicitly assumed during the translation of the sequential 

sampling framework into discrete decision models like the DDM. Thus, the traditionally widespread 

assumption of static thresholds may again simply be a reflection of the implementational openness of 

the sequential-sampling framework. However, alternative implementations of the decision threshold 

have been proposed in the past; in fact, the possibility of a dropping decision criterion was suggested 

as early as 1988, when Busemeyer & Rappoport demonstrated the superiority of a DDM with a 

dropping threshold criterion through the use of memory-search and other cognitive (i.e. non-

perceptual decision) tasks. However, their tasks differed substantially in format from those typically 

used in contemporary decision-making studies, therefore leaving open the question of whether or 

not such a mechanism may be of benefit to the DDM’s ability to explain the types of perceptual 

discrimination tasks typically employed in decision-making studies. 

Nonetheless, despite its early historical appearance, this mechanistic revision has generally not been 

seriously considered by many of the strongest proponents of the DDM. Curiously, however, it should 

be noted that the assumption of static decision thresholds has occasionally been explicitly made 

solely for the purposes of parametric convenience. Parameterizing the DDM (or similar models) to 

implement a time-dependent decision threshold would have necessitated multiple additional 

parameters – and these parametric embellishments were occasionally viewed by some modelers as 

detracting from the mechanistic elegance (as well as the mathematical tractability) of the models (c.f. 

Ratcliff & Smith, 2004). A further – and more recent – example of this can be found in the broad 

model-comparison study of Bogacz et al. (2006), who, despite having acknowledged the possibility of 

a dropping criterion, nonetheless chose not to include this feature in their model comparisons for 

considerations of mathematical tractibility. 

Accordingly, several contemporary studies have since demonstrated that loosening the (often merely 

implicit) theoretical and mechanistic commitments to fixed decision criteria yields models that in 
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many cases provide more accurate fits to behavioral data. For example, Drugowitsch et al. (2012) 

point out that a decision threshold that drops over time is a relatively simple – and ecologically 

plausible –  way that a real animal could effectively manage the fact that the evidence quality of a 

given environment is unknown. Thus, when the distribution of decision difficulties includes very 

difficult discriminations, it can be advantageous to terminate difficult discriminations earlier so that 

the decision-maker can move on to potentially easier decisions. Thus, dropping the decision threshold 

over time effectively counteracts the rising time cost of accumulating evidence under conditions of 

high ambiguity, and therefore would enable a decision-maker to achieve a higher average reward rate 

by truncating difficult decisions early. Moreover, Drugowitsch et al. (2012) further substantiated this 

argument by incorporating a dropping threshold into previous models in which the thresholds were 

held constant, and demonstrated that doing so could improve their ability to fit behavioral data, 

which it did specifically by eliminating large numbers of very long response times which had formally 

caused the tails of model-predicted RT distributions to be “too heavy” (c.f. Laming, 1968; see 

Drugowitsch, 2012). In other words, older models consistently overestimated the length of difficult 

decisions, and adding a dropping threshold effectively fixed these inaccuracies (Laming, 1968; 

Drugowitsch, 2012; Liu & Watanabe, 2012). Thus, because adding a dropping decision criterion to a 

model improves its ability to replicate real behavioral data, this constitutes evidence that real animals 

implement some sort of dropping-threshold mechanism. Findings such as these are further supported 

by mathematical considerations of reward-rate optimization, in which it has been shown that in all 

cases so far studied, models with dropping thresholds regularly outperform those with static 

thresholds (Ditterich, 2006a; Cisek et al., 2009; Balci et al., 2011; Liu & Watanabe, 2012; Thura et al., 

2012; Standage et al., 2014). 

Superficially, the notion of a dropping threshold might appear to contradict the physiological findings 

we reviewed earlier in which stable, absolute thresholds of neural activity were observed to directly 

predict the effective end of a deliberation process and the subsequent issuing of the corresponding 

behavioral report. There is, however, a straightforward and neurally-plausible mechanistic alternative 

to the otherwise strict definition of a constant neural threshold that itself is otherwise 

implementationally and dynamically equivalent to a dropping threshold; namely, the addition of a 

time-dependent signal that grows over time, which would then be continuously added to the 

representation of the accumulated evidence. Such a signal would effectively implement a dropping 

threshold by decreasing the absolute difference  between the neural activity threshold and the 
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Figure 4: Constant vs. dropping decision thresholds. Top: schematic depiction of a 

standard integration model’s response to continuous input of statistically 

independent samples. Middle: integration model response to samples containing 

some mutual information. Only novel information contributes to the accumulation 

of evidence; as samples become less informative, the integration process saturates. 

Thus the model will never produce a response for any threshold that is set higher 

than the value at which the accumulated evidence asymptotes. Bottom: 

implementing a threshold that drops over time guarantees that the model will 

eventually produce a response for any given amount of evidence. 
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current sum of the accumulated evidence. Furthermore, because it provides an alternative means to 

bring an evidence signal to threshold, implementing such a mechanism would free a model from 

relying on the assumption of statistically independent samples, instead allowing for the replacement 

of an integration mechanism with a more theoretically-plausible alternative. Therefore, this 

mechanistic revision to the extant decision-making frameworks represents a plausible avenue along 

which an alternative model could supercede the DDM’s explanatory framework. 

Assumption #3: integration is required for noise compensation 

The previous two arguments have been offered with the aims of questioning and potentially 

loosening some of the now deeply-entrenched core assumptions made by the reigning decision 

models in the field of decision-making. These arguments have specifically targeted the assumptions 

typically used to explain the purportedly well-established utility of sample integration as the primary 

mechanism by which animals make decisions on the basis of uncertain information. However, there 

remains yet another major functional aspect of the sequential sampling framework for which any 

alternative model must propose a functionally-equivalent replacement; namely, the role of an 

integration mechanism in compensating for noise. Without this function, the decision-making 

system’s functionality would be significantly impaired, and any purported alternative to a sequential-

sampling-based model must there offer an alternative means for achieving this essential function. 

Fortunately, while the mechanism of integration is indeed a viable means of noise-control within the 

assumptions of the DDM’s essential framework, it is not the sole mechanism by which this could be 

achieved. For example, the influence of network-level noise could be counteracted equally well by 

subjecting incoming evidence signals to a low-pass filter. Given an appropriate implementation (i.e. 

with an appropriate filter cutoff frequency), such a mechanism could minimize the impact of high-

frequency variations in the evidence signal derived from sensory estimates while retaining much of 

the original, veridical input signal driven by the external stimulus. Moreover, such a filtering function 

is well within the computational repertoire of biological neurons (Abeles, 1991; Fourcaud-Trocmé et 

al., 2003; Rivlin-Etzion et al., 2008) and is therefore at least superficially plausible in the context of a 

putative biological implementation of the decision process. 

In the formulation of the DDM provided in formula #2, noise in the decision process is presumed to 

arise from inherent variabilities in the firing rates of the neurons implementing the decision model at 
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multiple levels of processing. For example, the evidence signal putatively supplied by area MT (as 

discussed above) is presumably itself the result of the computational process by which MT extracts 

individual motion components from a wider set of visual sensory data. Furthermore, some versions of 

the DDM family of models also assume that noise arises due to the inability of neurons to maintain a 

stable, consistent representation of decision factors, and these may manifest as noise in the decision 

variable’s starting point, the threshold value, or the developing decision variable. 

However, it is relatively well-known that the brain typically does not represent discrete elements of 

its processing on a single-neuron level; instead, representational functions appear to be distributed 

across large and highly-correlated populations of neuronal activity. Consequently, if we assume that 

the discrete decision factors (represented by the individual terms in the models’ mathematical 

formulations as per formulas #1 and #2) are distributed among large populations of neurons, variance 

on the neuronal level, when aggregated, will generally tend to be self-canceling. Thus, “noise” would 

not arise in the system as a consequence of representation or transmission across networks, but 

would instead emerge principally as a result of the moment-to-moment computations underlying the 

extraction of the relevant stimulus dimension from the sensory signal. If noise arises principally as a 

consequence of the derivation of evidence state estimates – for example in the form of high-

frequency fluctuations in MT’s estimate of the current state of the evidence – this type of noise can 

be effectively canceled out simply by applying a low-pass filter in any “downstream” network to 

which it feeds its signal as input. 

Thus the mathematically-grounded noise-cancellation properties of the integration process, while 

itself a sufficient solution to certain types of normally-distributed noise, is not itself the sole means by 

which this essential function may be implemented. This, in principle, opens the possibility for 

alternative models which are not themselves based on the linear integration of individual noisy 

samples over time. This therefore further loosens decision models from their traditional a priori 

commitment to integration as an intrinsically necessary mechanism for decision-making. 

Assumption #4: environments are generally stable 

Having covered a few potential mechanistic issues with the DDM, we now turn to its broader 

dynamical properties. The DDM’s dynamics rely on a unitary decision variable which retains the 

influence of all prior samples, and therefore the state of the decision network can only be changed by 
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adding additional samples to this running estimate of the total prior evidence. Consequently, in the 

event of a sudden change in the sensory evidence, an integration-based mechanism cannot reflect 

the new state of the stimulus until it has “un-integrated” the previously accumulated evidence. This is 

a non-trivial drawback in the context of real-world behavior, where the environment may change 

suddenly and unpredictably. 

Admittedly, such a circumstance is not often encountered in most of the extant empirical work, as the 

majority of experiments involve tasks in which the evidence within a given trial is always held 

constant. Moreover, even for the comparatively few experimental studies in which the evidence can 

change within a trial (see Huk & Shadlen, 2005; Brown et al., 2005; Wong et al., 2007; Kiani, Hanks & 

Shadlen, 2008; Tsetsos, Usher & McClelland, 2011; Tsetsos, Gao, McClelland & Usher, 2012), the 

stimuli generally change only in magnitude, and do not feature qualitative, wholesale reversals in the 

evidence. Nonetheless, such a circumstance is likely to be relevant to many real-world decisions 

(Trimmer et al., 2008; Chittka et al., 2009), and therefore ought to be considered when evaluating the 

strengths and weaknesses of proposed models. 

Assumption #5: sample commutativity 

As it is featured in the DDM, integration consists a continuous arithmetic addition of the 

informational content of each sample to the running sum of evidence; and because integration is an 

additive process, it is subject to the mathematical law of commutativity whereby the outcome of the 

integration process should not be sensitive to the order of operations. Consequently, the DDM 

predicts that the precise order – or timing – of samples should not matter, so long as they occur at 

some point prior to the effective time of decision (Busemeyer & Townsend, 1993). 

While this prediction should hold for any decision, it is especially pertinent in experiments featuring 

tasks in which the evidence is allowed to change within the course of a given trial. The most common 

experimental case of this can be found in the numerous RDM task studies in which transient motion 

“pulses” are added during the course of a trial (Huk & Shadlen, 2005; Wong et al., 2007; Kiani et al., 

2008; Thura et al., 2012; Tsetsos et al., 2012). In keeping with the logic of the sequential sampling 

framework, this transient increase in evidence strength – even if only brief – increases the total sum 

of information presented to the subject and therefore ought to cause the integrated sum to reach the 

threshold faster, thereby resulting in faster response times. 



42 

 

 

Figure 5: Sample commutativity in the DDM. Because integration merely sums up 

multiple evidence samples over time, the outcome of the decision ought to be 

insensitive to the order of the samples that produced it. Here, the response of an 

integration model to two different motion “pulses” in a random dot-motion task are 

schematically depicted (red and blue lines). Despite differences in timing, both pulses 

will cause the threshold to be reached faster, and therefore will lead to decision times 

that are faster than they would be for a trial without a pulse (dashed lines). 

 

Consequently, the DDM would predict that the exact time of the pulse’s occurrence within a trial 

should not have major consequences for its ability to affect response time: as long as this pulse is 

presented prior to the decision time, it should therefore cause the decision variable to reach a given 

threshold sooner than if the trial had not contained a pulse (see figure 5, dashed line). However, this 

prediction of the DDM is once again not borne out by extant behavioral data; a considerable number 

of RDM studies featuring motion pulses have revealed that there are often significant interactions 

between the timing of a pulse within a given trial and its ability to consistently affect subjects’ 

reaction times. 

As mentioned previously, several experiments have demonstrated that the decisions made by a 

subject may be disproportionately determined by evidence presented either early or late in the trial 

(i.e. primacy and recency biases, respectively; see Tsetsos et al., 2012). Moreover, these biases have 

been shown to be susceptible to experimental manipulations by which they can be attenuated or 

even reversed within an individual subject (Usher & McClelland, 2001; Tsetsos et al., 2012). For 
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example, Tsetsos et al. (2012) presented subjects with an identical cued-response RDM task with 

pulses in two separate conditions which varied in “time pressure.” In the “high time pressure” 

condition, subjects also had only a small window of time in which to report their decision, and 

stimulus viewing times were drawn from an inverse exponential distribution such that very short 

trials were substantially more common than long trials. In the “low time pressure” condition, trial 

lengths were drawn from a uniform distribution, and the response window was lengthened. In both 

conditions, brief “pulses” of added motion coherence were randomly added during the trial. 

However, in both conditions the stimulus would vanish unexpectedly after a randomly determined 

viewing time, therefore motivating the hypothesis that subjects ought to privilege early information 

in both conditions. Instead, Tsetsos et al. (2012) found that the degree to which the task context 

exerted time pressure on the subjects was often sufficient to cause reversals from primacy-  to 

recency biases, such that the effect of the pulses on their subjects’ behavior was dependent on both 

their relative timing within a trial as well as the degree of time pressure placed on the decision. 

This finding cannot be explained by the DDM, and the authors instead accounted for these findings 

with a leaky competing accumulator (LCA) model which can be parameterized to account for the suite 

of time dependency biases obtained in their task. However, the LCA model also does not itself specify 

why these parameters should change in response to the manipulations in the task. Thus while the LCA 

model can accurately capture these trends in the subjects’ behavior, the lack of a clearly-delineated 

relationship between these particular model parameters and the manipulation of “time pressure” in 

their task represents a conspicuous blind spot in the theoretical motivation of this model. In short, a 

model which could replicate this data while also providing an explanation for this overall 

phenomenon would be theoretically superior. 

Summary 

At this point, we have outlined a number of problematic issues with the DDM’s overall account of the 

extant empirical data that, in spite of its widespread acceptance, still await definitive empirical 

resolutions. In what follows we present an alternative model, and show that not only can it offer an 

equally plausible theoretical account of much of the data that has been already successfully 

addressed by the DDM, but also that it can overcome many of the potentially problematic issues we 

have outlined in the foregoing discussion. 
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Introducing the urgency-gating model 

In all of the models discussed so far, the reigning theoretical assumption has been that the brain 

arrives at a decision specifically by integrating evidence in favor of competing choices until reaching a 

fixed threshold. However, models based on this framework suffer from a number of subtle but non-

trivial issues regarding a number of their theoretical assumptions and mechanistic implications. Thus 

we will now sketch out the alternative model we are proposing, which we call the urgency-gating 

model (UGM), before giving a formal mathematical definition. Along the way we will show that the 

UGM can account for most of the extant behavioral data equally as well as the DDM, but without 

suffering from the theoretical shortcomings identified in the previous section. We will then briefly re-

visit the physiological data to offer an alternative, UGM-based interpretation of the extant 

neurobiological findings before going on to discuss issues pertaining to the theoretical differentiation 

of the UGM from the DDM. 

Defining the model 

The most salient mechanistic departure the UGM makes from the previous models is that it dispenses 

with the assumption that the primary essential mechanism governing the formation of a decision is 

the temporal integration of multiple discrete evidence samples over time. Instead, it posits that 

evidence is represented in the form of a quantitatively-graded signal representing only the current 

state of the decision-relevant evidence. It further posits that this real-time evidence signal is 

effectively protected against the influence of noise by being subjected to a low-pass filter which 

eliminates high-frequency fluctuations in the derivation of the estimate of the evidence signal while 

preserving any persistent underlying signal in the sensory input. This low-pass-filtered evidence-

tracking signal is then combined with a separate, independent time-varying urgency signal that grows 

over time at a rate commensurate with the urgency to respond. This “urgency” signal also effectively 

implements a decision threshold that drops over time by decreasing the difference in activity 

between the developing decision variable and the effective neural threshold. Variability in response 

times arises by introducing inter-trial variations in the rate at which the urgency signal rises over the 

course of a given decision. Importantly, the urgency signal links the dynamics of the model with task 

factors relevant to “time pressure,” and thereby supplies the model with a clear and empirically-

tractable means of interpreting a variety of time-dependent influences on decisions. 
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Figure 6: Components of the urgency-gating model. A) Example of a 

simple step input with- and without an early increase in evidence 

(“pulse”) 1000ms in length, during which the signal strength is doubled 

before returning to the constant baseline level. Black lines represent 

the underlying motion signal in each condition, whereas the grey traces 

portray the resulting sensory input which is subject to noise (SNR = 

4:1). B) The same evidence signal depicted in (a), passed through a low-

pass filter with a time constant of 250ms. Black lines depict the filter’s 

response to a pure signal without noise, as per the black traces in (1a); 

grey lines show the filter’s response to the same noisy signal depicted 

in (1a). C) An independent “urgency” signal that increases over the 

course of a decision. The urgency signal’s mean slope (black line) can 

vary across tasks, enabling different decision-making strategies for 

different contexts. Additionally, the urgency signal slope is itself subject 

to inter-trial variations (grey lines) which generate variability in 

decision times even for identical trials within a given task context. D) 

The combined result of the filtered evidence (b) and urgency signal (c), 

resulting in rise-to-threshold neural activity. The dashed grey lines 

depict two different threshold settings. In a trial featuring an early 

“pulse” of increased evidence strength, neural activity will increase at a 

rate faster than the baseline, constant-evidence condition; however, 

after evidence returns to its original baseline value after pulse offset, 

the neural activity will re-equilibrate at a level corresponding to the 

baseline evidence strength. It is in this sense that the UGM’s dynamics 

are said to be determined primarily by the “current” (or at least 

“recent”) state of the evidence (contrast this with the DDM’s response 

to a motion pulse, in which the effect of a pulse is retained indefinitely, 

as depicted above in figure 5). Consequently, this model predicts an 

effect of early evidence on decision time only for a certain time 

window following early evidence: decisions made sufficiently later will 

no longer show an effect and will be indistinguishable from RTs from 

trials in which the evidence was held constant at the final evidence 

value. The length of the time window for early evidence’s efficacy is 

effectively determined by the time constant of the filter (i.e. the leak 

parameter), as well as the particular slope of the urgency signal within 

a given trial. Thus, when the threshold is crossed relatively early, this 

pulse will effectively decrease response time; however, when the 

threshold is crossed sufficiently later after the pulse offset, the effects 

of this early pulse will no longer be seen, and RTs will be similar to trials 

in which no pulse pulse was ever presented. 
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A schematic depiction of the model’s dynamics is illustrated in figure 6 above, and can be specified in 

mathematical form by the following equation:  

xi(t) = g • Ei(t) • u(t)      (3) 

In this formulation, the decision variable (x) at time (t) assumes a value determined by the evidence 

signal consisting of the current evidence (E) at time (t), multiplied by a gain factor (g); this evidence is 

then combined with a separate, independent urgency signal (u), whose value at time (t) is determined 

by the subjects’ growing urgency to end the decision and execute a response. Beyond the discrete 

specifications afforded by the mathematical formula itself are number of assumptions about the 

derivation of several of the model’s parameters, which therefore play a critical role in the resulting 

dynamics. The value assumed by the urgency signal – and the rate at which it increases over time – is 

proposed to reflect the temporal features of the task. Under conditions of high time pressure – or 

high urgency – the decision variable xi(t) will, for any given evidence value, increase at a faster rate 

than under conditions of lower urgency. This has important consequences for the dynamics of the 

model in several ways. Firstly – and most straightforwardly –  for any given value of the evidence 

signal, the the average response time will change in a manner directly proportional to the rate of the 

urgency signal’s growth (i.e. higher urgency signal slopes will yield faster decisions). Conversely, for 

any given rate of urgency signal growth, stronger evidence will yield faster response times than 

weaker evidence. Secondly, because the urgency signal shapes the effective decision threshold, the 

function of controlling the speed-accuracy trade-off – provided by the static threshold setting in the 

DDM –  is now effectively assigned to the urgency signal. Thus, in broad outline, the UGM predicts a 

set of mutual dependencies among decision factors that correspond to those posited by the 

sequential sampling framework (see figures 1 & 2). 

Dynamical features of the UGM 

While the principal departure of the UGM is its abandonment of evidence integration, a similarly 

crucial feature is its de-coupling of the evidence signal (g x E(t)) from the urgency signal (u(t)) – which, 

as we will now discuss, is the core structural characteristic that endows it with its particular dynamics 

which are crucial to its explanatory flexibility. Firstly, the addition of an urgency signal to the evidence 

signal effectively frees the model from the consequences of sample redundancy discussed previously. 
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In the UGM, even very weak evidence will eventually cross the threshold because the urgency signal 

will continue to grow even in the absence of additional novel evidence. Furthermore, the rising 

urgency signal effectively implements a decision threshold that drops over time, thereby prohibiting 

the indefinite stalling of the decision process due to diminishing returns on evidence. 

Secondly, the UGM implements an alternative means of noise control, by employing a low-pass filter. 

This neurally-plausible signal-filtration scheme (Abeles, 1991; Fourcaud-Trocmé et al., 2003; Rivlin-

Etzion et al., 2008) allows for persistent correlations in sensory input to serve as evidence input to the 

model while nonetheless minimizing the impact of high-frequency fluctuations in the ongoing 

derivation of the evidence from uncorrelated noisy sensory input. Admittedly, this functionality is 

predicated on the assumption that an appropriate filter frequency cutoff value can be found that will 

reliably discern between noise-driven errors in the derivation of the evidence signal and genuine 

changes in the underlying decision evidence. However, this parameterization issue can be considered 

relatively trivial, given that the time course of the evidence presented in most experimental tasks 

differs from the typical mean firing rate of a cortical sensory neuron by at least an order of magnitude 

(e.g. see experimental methodology and neural data from Kiani et al., 2008), thereby permitting a 

large range of filter frequency cutoff values that will effectively differentiate between endogenous 

processing noise and the underlying signal embedded in the stimulus. 

However, the particular properties of this filter can still have an effect on the UGM’s overall 

dynamics, because the settings of this filter determine how quickly the evidence signal can achieve a 

stable, equilibrated response to changes in sensory input. Specifically, this is related to the time 

constant of the filter, which is mathematically defined as the amount of time required for the filter to 

respond to a step input by reaching (1–(1/e)) – approximately 63% – of its final (i.e. asymptotic) value. 

In simpler terms, the time constant is a quantification of the delay between a change in the sensory 

input and a corresponding change in the evidence signal. In figure 6, the raw sensory input to the low-

pass filter is illustrated in figure 6a, and the corresponding response of a filter with a 250ms time 

constant is depicted in figure 6b. The UGM’s output can, under some conditions, be qualitatively 

sensitive to this parameter, as the time constant of the filter determines how long changes in the 

evidence signal persist, and therefore determines the effective time window for evidence 

manipulations to affect response time. 
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Thirdly, the dynamics of the UGM permit rapid “turn-around” times when dealing with lively and 

unpredictable stimuli which would otherwise cause superfluous delays in the dynamics of the DDM. 

This is the combined result of two factors: firstly, because the (unsigned) value of the urgency signal 

will continue to rise throughout a trial, the effective decision threshold for all decision options will 

drop over time. Secondly, the evidence signal will quickly reflect the new state of the evidence after a 

short delay imposed by the filter’s time constant, after which it will be combined with the growing 

urgency signal. Together, these will result in fast transition in the resulting decision variable from 

favoring the prior target to the new one (see figure 7 below). 

Finally, the de-coupling of evidence factors with the time-dependent parameters in the UGM presents 

a concrete and theoretically-tractable avenue for accounting for some of the time-dependent 

phenomena observed in several of the studies briefly outlined in the foregoing discussion. We will 

return to this topic in greater detail when presenting our experimental data. Before we motivate and 

present our main experiment, we first wish to ground the model by briefly revisiting the diverse suite 

of neurophysiological findings previously discussed from the perspective of the DDM framework. 

 

  
 

 

Figure 7: Model turn-around times. Schematic 

response of the two model classes to a simple step 

input with a qualitative change in evidence. Top: early 

evidence favors option B, before switching to 

supporting option A with equal strength after a short 

time. Middle: the response of the DDM, which 

integrates evidence over time. The DDM is slow to 

reflect the reversal in the evidence because it must first 

cancel out the previous evidence; thus it does not 

begin to support the opposing choice before re-

integrating evidence until the decision variable (f(E)) 

has returned to its starting value, at which point it 

essentially re-starts the decision process anew. Bottom: 

the response of the UGM to a simple step input. 

Because the evidence is tracked in real-time, the model 

can quickly respond to changes in evidence (i.e. novel 

information).
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Re-visiting physiology 

While much of the physiological work we discussed previously was both guided by and intepreted in 

light of the framework supplied by DDM, its results are not for this reason restricted from being 

explained by alternative models. In fact, the UGM is itself equally consonant with much of what is 

currently known about the physiology of decision-making. 

Evidence signals 

As previously discussed, a large number of neurophysiological assays uncovered apparent neural 

correlates of an “evidence signal” that conforms to the functional expectations as outlined by the 

DDM. In general, these signals: (1) can be observed to originate in specific sensory areas in a manner 

that corresponds straightforwardly to the informational demands of a given decision task; (2) appear 

to encode an approximately real-time estimate of the current evidence bearing on a decision, as 

indicated by momentary sensory input; (3) represent evidence in the form of population-wide neural 

activity levels in a manner proportionately and quantitatively commensurate with the strength of the 

evidence; and (4) transmit the resulting evidence signal to a number of cortical and subcortical sites 

that accumulate this evidence for the purposes of preparing and executing the ensuing behaviors. 

While many of the studies that supplied this physiological account of evidence signals were explicitly 

motivated by the framework of the DDM, the functional role assigned to them in the UGM is 

essentially identical and therefore calls for no major revisions to their neurophysiological 

interpretation. In the UGM these first-order evidence signals do not themselves perform any 

accumulative function, but merely reflect the current evidence by converging on a level of activity 

that is quantitatively commensurate with the strength of the evidence indicated by sensory input. 

Thus, all the evidence-signal-related physiological findings reviewed above can apply in largely the 

same way to the framework of the UGM, with the sole exception of noise control.  However, while 

the precise biological substrate of the filter mechanism is not currently known, the UGM’s dynamics 

do not strongly depend on its architectural localization in the overall decision network architecture. 

For example, in the case of motion evidence in the context of an RDM task, the UGM’s essential 

dynamics do not strongly depend on whether this low-pass filter is implemented within area MT 

itself, or if filtration is instead performed elsewhere. Thus it does not place any strong a priori 

constraints on the neural realization of the filter itself. 
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Accumulating and thresholding 

While the DDM and the UGM do not assign substantially divergent functional roles to the evidence 

signal or its biological implementation, they differ significantly in how the evidence signal estimates 

supplied by sensory processing areas are subsequently processed to compute the decision variable. 

Instead of accounting for the growth of the decision variable by the sequential addition of evidence 

samples over time, the UGM posits that a sensory estimate of the current state of evidence is 

combined with an independent urgency signal. Because this urgency signal increases in strength over 

time, the result will resemble an accumulation of neural activity even for cases in which the evidence 

remains constant throughout the decision. While the mechanistic differences between the DDM and 

the UGM are by no means trivial, this dynamical overlap means that the framework of the UGM is 

compatible with much of the physiological findings pertaining to evidence accumulation in areas 

including FEF, LIP and SC discussed above, regardless of whether such information arrives 

continuously (Platt & Glimcher, 1997; Colby & Goldberg, 1999; Gold & Shadlen, 2000; Roitman & 

Shadlen, 2002) or in discrete steps (Yang & Shadlen, 2007). 

While the DDM and UGM can both account for the general build-up of decision-related neural 

activity, the two models could in principle be differentiated by further examining the composition of 

the resulting output signal encoding the decision variable. Specifically, if the changes in this signal 

over time are due to the integration of multiple samples over time then its activity should be driven 

almost exclusively by evidence-related factors. In contrast, if it could be demonstrated that at least 

part of this neural build-up is due to time-dependent factors in a manner that is otherwise 

functionally independent of evidence, then this would constitute distinct proof in favor of the UGM. 

In fact, a number of prior studies – themselves predating and therefore not specifically motivated by 

the UGM framework – have provided some evidence that a significant portion of the rising neural 

activity typically associated with the integration of evidence over time is not driven by evidence, but 

instead encodes the mere passage of time itself (Janssen & Shadlen, 2005; Ditterich, 2006b; Beck et 

al., 2008; Churchland et al.., 2008; Cisek et al.., 2009; Hanks et al., 2011; Standage et al.., 2011; 

Drugowitsch et al.., 2012; Standage et al.., 2013; Standage et al., 2014). For example, 

neurophysiological assays of LIP activity have revealed that firing rates for neurons encoding the 

spatial locations of potential targets can be seen to exhibit a time-dependent increase in activity over 

the course of a trial, and that the rate at which it increases remains consistent even across multiple 
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values of motion coherence strength in an RDM task, suggesting that it is functionally independent of 

evidence (Leon & Shadlen, 2003; Rao 2010: see also figure #9 in Drugowitsch et al., 2012). 

Furthermore, this time-varying signal has been shown to affect all LIP neurons in a similar manner, 

regardless of the response field of the individual cells (ibid), which further suggests its functional 

independence from task factors related to evidence. Exactly such a time-dependent signal is central 

to the framework proposed by the UGM, and the demonstration of such signals in a functionally well-

characterized decision-related area like LIP thus constitutes suggestive proof in favor of the UGM. In 

fact, this signal has been labeled an “urgency signal” by a number of researchers (Reddi & Carpenter, 

2000; Reddi et al., 2003; Churchland et al., 2008; Drugowitsch et al., 2012). 

Moreover, the addition of a growing, time-varying signal to the evidence-accumulation process 

decreases the difference between the decision variable and the effective neural threshold over time, 

and therefore effectively implements a dropping threshold. This makes the UGM consistent with 

previous studies demonstrating that the addition of a dropping threshold improves the predictions of 

prior integration-based models featuring static threshold parameters (Drugowitsch et al., 2012; Liu & 

Watanabe, 2012). Furthermore, it makes the UGM physiologically consistent with the numerous 

observations of “hard-coded” neural activity thresholds observed in studies of decision-related neural 

activity in the LIP (Roitman & Shadlen, 2002; Mazurek et al., 2003; Ratcliff, Cherian & Segraves, 2003; 

Kiani et al., 2008). 

While the provenance of such an urgency signal is not yet known, the observation that it appears to 

act as a time-dependent gain that is applied across the full range of outcomes in a given task has been 

taken as suggestive evidence that it may be a domain-general signal that itself originates in 

subcortical networks and which is commonly projected to many diverse cortical areas. Some 

theoretical speculations have been offered, and suggested candidates for such a subcortical 

implementation have included the locus coeruleus (see Bogacz et al., 2006 and references therein) 

and the globus pallidus (see Desmurget & Turner, 2010). Again, however, the lack of a precise 

anatomical localization of the urgency signal does not itself pose any specific problems regarding the 

re-interpretation of the physiological findings reviewed so far from the perspective of the UGM. 
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Output variability in the UGM: intra- vs. inter-trial noise 

In most real-world environments – and indeed in many experimental tasks as well – the quality of the 

evidence available for a decision are typically beyond the control of decision-makers themselves. 

Instead, they must adapt their decision-making behavior in response to the amount of information 

available in a given environment – and one of the main purposes for any decision model is to provide 

a set of tractable mechanisms and parameters by which adaptive decision control can be described. 

In the DDM, controlling the speed-accuracy trade-off is done by specifying a threshold value, and 

variability in response times arises due to intra-trial fluctuations in the noise afflicting the evidence 

input. In the UGM this is accomplished by setting both the mean and standard deviation of the 

urgency signal’s rise (see figure 6 above). The former provides the primary means of control over the 

speed-accuracy trade-off, while the latter enables the model to generate orderly distributions of 

response times by varying the slope of the urgency signal across trials. This change from an intra-trial 

to an inter-trial source of variability is motivated by a series of mathematical analyses performed by 

Carpenter & Williams (1995), who demonstrated that variability in human response times in a given 

task are most parsimoniously explained by inter-trial variabilies, themselves perhaps caused by larger-

scale temporal fluctuations in arousal or attention across large numbers of trials. Conversely, they 

also showed that neurally-plausible forms of intra-trial noise, such as that posited by the DDM, is 

unlikely to contribute substantially to the timing of decisions on a behaviorally-appreciable level (c.f. 

Cisek et al., 2009). Consequently, the UGM employs inter-trial variability in the slope of the urgency 

signal to inject the model with a source of variability that is both neurally-plausible and whose effects 

on the model’s output is consistent with extant behavioral data. In summary, the UGM’s functional 

architecture allows for essentially all of the physiological findings discussed in the foregoing to be 

interpreted equally as well from within the UGM’s mechanistic framework. 

Experimental differentiation of the models 

Importantly, the DDM and the UGM make identical predictions under any condition in which the 

evidence presented on a given trial is held constant. This overlap in the model’s respective dynamics 

renders much of the extant empirical work agnostic on the matter of which model is superior, as the 

majority of experimental investigations undertaken in the past few decades have predominantly 

featured tasks in which the evidence is held constant on a within-trial basis. Consequently, there have 
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been only a small number of studies so far whose methodologies afforded strong conclusions 

regarding the differentiation of the DDM and the UGM. 

Cisek et al. (2009) explicitly sought to differentiate the DDM from the UGM by using a novel 

experimental task in which the evidence changes continuously over the duration of each trial. In their 

“tokens” task, subjects were presented with a central target which contained 15 tokens, each of 

which was randomly distributed to one of two peripheral targets every 200ms; the subjects’ task was 

to predict which of the two targets would contain more tokens by the end of the trial.  The 

formulation of this task allowed for the “success probability” associated with each of the two targets 

to be explicitly mathematically defined at any given point in the trial (i.e. as a function of the number 

of targets presently contained within a given target vs. the number of tokens remaining to be 

distributed), yielding a value between 0 and 1 indicating the current probability of success for that 

target. Subjects were free to respond at any time, and were able to save time by choosing one of the 

targets as soon as they felt sufficiently confident in their response. Once the choice was reported (by 

moving a cursor to the corresponding target), the remaining tokens were distributed more quickly to 

their final targets, and feedback was given. Importantly, however, completing this task required 

achieving a certain number of correct responses, and thereby entailed a trade-off between 

maximizing accuracy and minimizing the time spent across trials. 

While the distribution of tokens in most trials was randomly determined, a subset of “bias” trials 

(10%) were given to explicitly test the dynamics of the decision process. In such trials, the first six 

token movements favored one target, causing the success probability for that target to be high 

relatively early in the trial. If no immediate choice was made, this initial “bias” would then be 

canceled out with the next few tokens moving to the opposite target, thereby making the success 

probability associated with each target equal. Importantly, the DDM and the UGM make different 

predictions for the timing of decisions made after the early bias. Because the DDM relies on 

integration of evidence over time, it retains a “memory” of previous evidence that should cause 

faster decisions on trials in which the early evidence favored the chosen target compared to trials in 

which the bias favored the opposite target. The UGM, however, only uses the current state of the 

evidence, and therefore the dynamics of an urgency-gating model should not be sensitive to early 

biases for decisions made later; thus the UGM predicts no difference in decision timing between the 

two bias types for trials in which the decision was made later than 1200ms in the trial. 
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Figure 8: The “tokens” task (from Cisek et al., 2009). A) Top: After placing the cursor in the central target at the 

beginning of the trial, the “tokens” appear, all of which are contained in the central target. Second row: Every 

200ms, one of the tokens jumps to one of the two peripheral targets. Third row: The subject makes a choice 

during the trial by moving the cursor to the appropriate target. Bottom: The remaining tokens are distributed 

more quickly to the targets and feedback is given by changing the color of the chosen target. B) profiles of 

“success probability” for the correct target in “bias-for” and “bias-against” trials, in black and grey traces, 

respectively. C) Distribution of decision times for a single subject for all trials in which the decision was made 

after the cancellation of the early bias (after 6 token movements). “Bias-for” and “bias-against” trials depicted 

with black outline and grey fill, respectively. The difference between the mean decision time for each trial type 

is not statistically significant. D) Average decision times for all individual subjects in “bias-for” and “bias-against” 

trials; none of the subjects exhibited significant differences in mean decision time across trial types. The finding 

of no significant differences between the bias types speaks against an integration-based model, but can be 

accounted for by the urgency-gating model. 
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Indeed, as can be seen in figures 8c & 8d, the data obtained by Cisek et al. (2009) bears out the 

predictions of the UGM, in that no significant differences in decision timing were found. However, 

some concerns remained regarding how generalizable these findings were to decision-making in 

general. Firstly, the tokens task does not involve a noisy stimulus, making performance on this task 

less reliant on integration than most of the perceptual discrimination tasks commonly used in 

decision-making research. Secondly, because tokens remained in their targets over the entire 

duration of the trial, the state of the evidence was continuously indicated by the task display, 

therefore further reducing the task’s reliance on integration mechanisms to store and accumulate 

evidence information over time. Thirdly, the task involved making an inference about the future state 

of the stimulus, which may therefore have involved cognitive processes beyond those typically 

involved in most common forms of decision-making tasks. For these reasons, it could be argued that 

the findings of Cisek et al. (2009) were purely task-dependent and therefore do not directly speak to 

the pertinent issues address by integration-based models. 

A follow-up study by Thura et al. (2012) sought to redress these potential shortcomings by adapting 

the logic of the tokens task to a RDM format. In their study, the motion coherence of the random dot 

display changed over time in discrete “coherence steps,” analogous to the token movements in the 

Cisek et al.’s task. Here, the RDM stimulus was initialized with a coherence value of 0; after 225ms, 

3% of the dots would begin moving towards the left or the right. Every 225ms thereafter, another 3% 

of the dots would begin moving in either the same or the opposite direction. Subjects were tested 

under two conditions. In one, they had to anticipate which of the two targets would correspond to 

the stronger of the two motion signals by the trial’s end; in the second condition, they merely had to 

report the current state of the stimulus at the time of their decision. Again, subjects were allowed to 

respond at any time, at which point the allocation of motion strength corresponding to the “token 

movements” would accelerate, thereby implicitly providing a trade-off between accuracy and speed. 

Thura et al. also included identical “bias” trials in their RDM adaptation of the tokens task (see figure 

8b), therefore allowing a similar differentiation between the DDM and the UGM to that undertaken 

by Cisek et al. (2009). Once again, they found that early biases in the motion signal did not affect the 

timing of decisions made after the bias period, contrary to the predictions of integration-based 

models like the DDM. 
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Together, these studies provide exclusive empirical support for the UGM, as they were the first 

studies to directly test a case in which the DDM and the UGM make explicitly divergent predictions. 

However, despite Thura et al.’s (2012) use of the RDM paradigm, some concerns have still remained 

about the potential for the findings to have been due to some novel aspect of the task design. 

Therefore, we sought to design an experiment which would more strongly dissociate between the 

models, using an experimental paradigm that was maximally similar to those used in previous work 

(RDM pulse study citations). To this end, we presented subjects with a common form of the RDM task 

in which within-trial changes in the evidence strength are provided by inserting brief motion “pulses” 

during which the strength of the motion coherence briefly doubles in strength. While both the DDM 

and the UGM predict that enhancing the evidence in this way should affect response times, the 

UGM’s dynamics diverge from those of the DDM in that the UGM predicts that the efficacy of such a 

pulse should be strongly dependent on the timing of the pulse relative to the ensuing decision – 

thereby presenting a clear empirical avenue for decisively dissociating the models. 

 

 

Main experiment 

The logic of our experimental design is illustrated in Figure 9 below. As in a typical random-dot 

motion discrimination (RDM) task, subjects are presented with a coherent motion stimulus that is 

constant across time and are asked to respond as soon as they detect the direction of motion. 

Unknown to the subjects, in some trials there is a brief (100ms) increase of motion coherence that 

occurs at different times after motion onset. If decisions are made using a perfect integrator (figures 

9a & 9b), then early motion pulses should briefly increase the rate of integration and result in 

decisions that are faster (red) than those made in no-pulse trials (black). In contrast, pulses that 

appear late in the trial (blue) will have no effect if the decision bound is low (figure 9a), because they 

occur after the decision has already been made. If the decision bound is high, then both early and late 

pulses will have similar effects (figure 9b). In other words, as subjects slow down their decision policy, 

the time window in which pulses have an effect on reaction times is predicted to expand, but early 

pulses will always be at least as effective as late pulses because there is no leak. 
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Figure 9: The logic of the current experiment. Schematic of predicted effects of motion 

pulses assuming the drift-diffusion (DDM) versus the urgency-gating (UGM) models. A) Here, 

following the DDM, we assume a perfect integrator of motion signals with a fixed bound that 

is set to a low value, to emphasize speed in a “fast” task context. As a result, early motion 

pulses (red lines) will result in significantly shorter reaction times (RTs) than in no-pulse trials 

(black dotted lines), but late motion pulses (blue) will have no effect because they occur 

after the decision bound has already been reached. Schematic reaction time distributions 

are shown on the x-axis. B) In a “slow” task context, the bound is set to a higher value, and 

as a result both early and late pulses cause a reduction of RTs as compared to no-pulse trials. 

C) Here, following the UGM, we assume that the motion signal is low-pass filtered and 

combined with a growing urgency that is steep, to emphasize speed in the “fast” task 

context. As in A, early pulses have an effect but late pulses occur too late to reduce the RT. 

D) In the “slow” task context, the urgency is shallower, and so late pulses now significantly 

reduce the RT. However, in contrast to panel B above, early pulses no longer reduce RTs 

because their effect has leaked away by the time the threshold is crossed. 
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In contrast, if the integration mechanism is replaced with a low-pass filter and combined with an 

urgency signal, then early pulses will have a stronger effect than late pulses in conditions where 

urgency is steep (figure 9c), but the reverse will be true when urgency is shallow (figure 9d). This is 

because the information provided by early pulses will have leaked away by the time the decision 

bound is crossed. Consequently, as subjects slow down, the time window in which pulses are 

effective is predicted to shift, and late pulses will become more effective than early pulses. 

Our approach for testing these predictions is to present subjects with an identical set of no-pulse and 

pulse trials in two different contexts, one in which they are motivated to respond quickly and one in 

which they are motivated to slow down; the resulting differences in response times between the no-

pulse trials and each of the pulse conditions should, in principle, reveal the underlying dynamics of 

the decision process and thereby strongly distinguish between the two models. 

Methods 

Subjects and apparatus 

Thirty-two right-handed participants (17 female) with normal- or corrected-to-normal vision provided 

written consent and were naïve to the purpose of our experimental task. Participants were seated in 

front of a large digitizing tablet placed at arm-level for recording subject movements (125Hz sample 

rate @ .013 cm accuracy). Stimuli, targets and feedback were projected by an LCD monitor onto a 

half-silvered mirror positioned 16cm above and parallel to the digitizer surface, and thus appeared to 

float on the plane of the digitizing tablet. The subjects’ task was to report the direction of motion of 

the RDM stimulus by completing planar reaching movements using a handheld cordless stylus 

embedded within a vertical plastic handle toward one of two targets whose locations corresponded 

to the potential motion directions. The task and data collection was programmed in LabView, stored 

in a database (Microsoft SQL Server 2005), and analyzed using custom Matlab scripts. 

Behavioral task 

Each trial began when subjects moved the cursor into a small circular target (1cm in diameter) near 

the center of a white display. After 500ms, two circular targets (3cm in diameter) appeared 6cm to 

each side of the stimulus display area, separated by 180°. After another 300ms, 200 black dots 

appeared in a borderless circular area (3cm diameter) in the center of the display, between the two 



59 

 

targets. Each of the dots was re-drawn in a new location 2 pixels away from its previous location on 

each frame (60Hz). Most of the dot displacements were random, but a small subset of the dots was 

re-drawn along a vector corresponding to the location of one of the two targets. While the individual 

dots assigned to the coherently-moving subset changed from frame to frame, the resulting percept 

was a consistent motion signal whose direction subjects could reliably and accurately report, with a 

degree of difficulty inversely related to the percentage of coherently-moving dots (Newsome, Britten 

& Movshon, 1989; Kim & Shadlen, 1999). 

Subjects were given up to 3000ms to report the direction of the coherent motion by moving from the 

initial start target to one of the two choice targets, and were free to respond at any time. Movements 

had to be completed in less than 1000ms, and had to land within the chosen target circle. The motion 

stimulus continued up until the point at which the cursor crossed a target circle’s border. The cursor 

had to remain within the chosen target for 500ms, at which point the outline of the target turned 

green or red to indicate a correct or incorrect choice, respectively. After a brief inter-trial interval of 

500ms, all on-screen objects disappeared except for the starting target, and a new trial began. 

In the analyses reported here, response times for each trial were obtained post hoc by determining 

the precise moment at which the cursor’s velocity began to increase from a point of rest within the 

start target. However, an ad hoc estimate of RT based on the time at which the cursor exited the 

boundary of the start target was used to obtain session-specific estimates of subjects’ mean reaction 

times; these were then used to provide on-line feedback during the experimental sessions. 

Before each session began, we presented the subject with 40 very easy motion-discrimination trials in 

which the motion coherence was 50%, and instructed them to respond as rapidly as possible. The 

average RT estimated from these trials was then stored as a session-specific estimate of a “non-

decision delay” comprising both sensory and motor delays (mean=475ms, std=103ms). For versions of 

our task in which the motion signal changed directions within a trial (see below), we subtracted this 

estimated mean reaction-time from the ad-hoc estimated RT to determine the state of the motion 

signal at the estimated time that subjects made their decision (see “VMD” trial section below). 

Importantly, these initial 40 trials were the only ones for which subjects were ever provided with 

explicit instructions about how quickly to respond. For the main experimental task, subjects were 

informed of the 3-second time limit but were told that they could make their decision whenever they 

liked, though in fact most of our subjects very rarely took more than 1800ms to make their decision. 
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Subjects completed two different kinds of session: “blocked” or “interleaved”. “Blocked” sessions 

consisted entirely of trials with a single, common baseline motion coherence value of 3%, starting 

from the onset of the RDM stimulus. We refer to these as “constant-motion discrimination” (CMD) 

trials. In 40% of such trials there were no additional changes to the stimulus, and we refer to these as 

“no-pulse” trials. The remaining 60% of the CMD trials contained brief motion “pulses” during which 

the coherence of the motion stimulus was doubled (to 6%) for 100ms. These pulses could occur 100, 

200, 400 or 1600ms following stimulus onset. We refer collectively to such trials as “pulse” trials. Such 

brief coherence manipulations have been repeatedly shown to affect response timing in RDM tasks 

(Huk & Shadlen, 2005; Wong et al., 2007), even though they were not consciously detectable by our 

subjects, as confirmed by post-experiment interview, consistent with similar studies (Kiani, Hanks & 

Shadlen, 2008). Thus, as far as the subjects were aware, the motion coherence for all CMD trials was 

constant throughout each trial, regardless of whether a pulse was or was not actually shown. 

 “Interleaved” sessions consisted of a mix of trial types. Twenty percent of the trials in these sessions 

were CMD trials, including both pulse- and no-pulse trials, identical in every respect to those in the 

blocked sessions. These CMD trials were randomly interleaved among “variable-motion 

discrimination” (VMD) trials, which comprised the remaining 80% of the interleaved session. 

Analogous to the “token movements in Cisek et al. (2009), these trials began with a net motion 

coherence of 0, and was adjusted either up or down in 3% steps every 200ms (sometimes reversing 

the direction of motion). Of the VMD trials, 60% were random, such that each motion coherence 

change was given an independent and equal probability of favoring each of the two possible targets. 

The remaining VMD trials were divided amongst a number of pre-generated trial types meant to 

further test the predictions of the two models, specifically with regards to how long the dynamics of 

each model are affected by biases in prior evidence. 

The pre-generated VMD trials came in six types: “easy,” “ambiguous,” and four “bias” trial types: 

“bias-for,” “bias-against,” “bias up-down” and “bias down-up.” “Easy” trials were defined as trials in 

which at least four of the first five motion changes favored the same target, and in which no 

subsequent changes in the motion signal brought the net motion favoring that target below 9%. 

“Ambiguous” trials were those in which the motion signal did not strongly favor either target 

(coherence<=6%) until at least 1200ms into the trial. “Bias” trials were trials in which the motion 

signal initialy grew strongly in favor of one target (9%) before returning to 0%, after which the motion 
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either grew strongly back in favor of the initial target (“bias-for”; BF) or reversed toward the opposite 

target than that indicated by the initial motion signal bias (“bias-against”; BA). Some subjects were 

also presented with shorter bias trials in which the initial motion signal returned only to 3.2% before 

diverging towards one of the two targets. We called these “bias-updown” (UD) and “bias-downup” 

(DU), where “up" refers to the target indicated by the motion signal after the bias period ended. 

These “bias” trials types are each depicted below in figure 10. 

 

 

Figure 10: VMD “bias” trial types. Top: “6-step” biases. In 
these trials, the first three coherence steps are made either 
towards- or away from the correct target, after which the 
next three coherence steps bring the total coherent motion 
back to 0%. In both cases, all- or most of the subsequent 
coherence steps are made towards the correct target, 
resulting in an “easy” VMD trial after the initial bias period 
has ended (returned to 0%). Bottom: “5-step” biases. Same 
as in the 6-step biases, but such that the “end” of the bias 
corresponds to a motion coherence value of 3% towards 
the correct target, after which the remainer of the trial 
resembles an “easy” VMD trial. The DDM predicts that early 
biases should influence decision times even when 
responses are made after the end of the bias period 
(vertical dashed lines in figures). In contrast, the UGM 
predicts that the influence of early biases on decision time 
should diminish rapidly after the end of the bias; decisions 
made later should therefore not be significantly faster or 
slower on account of the preceding bias. 

 

Each session consisted of an identical, pseudorandom, predefined sequence for each task condition 

that was the same for all subjects. Subjects had to achieve a total of 560 correct trials to complete 

one “blocked” session, or 500 to complete an “interleaved” session. Correct trials were always 

defined with respect to whether the net direction of the motion signal indicated the chosen target at 

the time of the decision. This was straightforward for CMD trials in which the motion signal always 

favors one of the two targets. However, because the motion signal in VMD trials could sometimes 

indicate opposing targets over the course of a single trial, we determined decision accuracy for these 

trials by subtracting each subjects’ estimated mean reaction time from the approximate time of the 
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start of the movement with which they reported their decision. The trial was counted as correct if the 

motion signal at this time indicated the chosen target, even if the signal had changed directions later. 

In general, however, trials in which the computed decision time occurred within 200ms of a 

qualitative reversal in the stimulus only comprised a small minority of total trials (<3%), and so are 

not likely to have qualitatively distorted the overall results even if some of these calculations were 

inaccurate with respect to the subject’s intended choice. 

Both session types required approximately 50 minutes on average to complete, depending on an 

individual subjects’ speed and accuracy on that day. Importantly, however, subjects were paid the 

same amount per session ($20 CAD) regardless of how long it took for them to reach the quota of 

correct trials. Thus, while we otherwise provided no explicit penalty for wrong answers, the structure 

of the task nonetheless implicitly motivated subjects to find a policy that maximizes reward rate for 

each experimental session. 

Crucially, our two session types differed with respect to the value of stimulus observation time. In 

blocked sessions, the average success rate was not appreciably improved with long observation times 

because the motion in CMD trials is nearly constant. In contrast, because the interleaved sessions are 

dominated by VMD trials, in which the motion can be much stronger later in time, there is an 

advantage in slowing down one’s decision policy so that decisions can be made on the basis of 

stronger evidence. Thus, we expected our subjects to make slower decisions in CMD trials during the 

interleaved sessions than in the same trials during the blocked sessions, because they should adopt a 

slower policy in the interleaved sessions (increase their decision bound, or decrease their urgency 

signal). We initially ran 27 subjects on 3 sessions each (1 blocked, 2 interleaved, together yielding 

1,560 correct individual trials per subject), allowing across-subject analyses. Next, to obtain enough 

data to perform analyses on a within-subject basis, we ran an additional 5 subjects for 10+ sessions 

each (range=10-20, mean = 13.8, yielding ~5,200-10,300 correct individual trials per subject). 

If our manipulation of decision policy between the two session types was effective, then we should be 

able to discriminate between the DDM and UGM by comparing trials in which evidence is identical 

and only the effective decision policy differs (see figure 9). If early pulses have an effect on reaction 

times that is always at least as strong as late pulses, then this would support a pure integration model 

such as the DDM. If, instead, early pulses lose their efficacy in the interleaved session while late 
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pulses become more effective, then this would support an urgency-gating model in which evidence is 

not integrated over time, but instead low-pass filtered with a highly leaky integrator. 

Modeling 

We simulated the low-pass filtering of sensory information using a first-order linear differential 

equation 

gEx
dt
dx +−=τ

    (4) 

where τ = 166ms is the time constant and g = .04 is the gain. The evidence E is set to 1 to simulate 3% 

coherent motion and increased to 1.8 for 100ms to simulate the motion pulse. The resulting variable 

x(t) is then combined with an urgency signal as 

)()()( tUtxty ⋅=     (5) 

where U(t) is the urgency signal that rises from zero with a slope that varies from trial to trial 

according to a normal distribution with mean u and standard deviation s. When the variable y(t) 

reached a threshold of T = 2000, the decision was made, and a non-decision delay t0 (300ms in our 

simulations) was added to yield a reaction time. The remaining parameters were estimated from the 

data. To simulate each of the conditions (blocked and interleaved), we picked values of u and s that 

produced the best fit to the mean and standard deviation of the RT distribution from 3% coherence 

no-pulse CMD trials in each condition. We then used the same parameter settings when simulating 

pulse trials. 

Results 
Effects of sessions 

First, we determined whether our manipulation of decision policy succeeded. We did this by 

comparing RTs for identical no-pulse CMD trials across the two conditions. Mean RTs (± s.e.m.) of 

individual subjects are shown in figure 11a for constant-evidence, 3% motion coherence trials in both 

the “blocked” (x-axis) and “interleaved” (y-axis) conditions. All individual data points lie above the 

unity line, indicating that the mean RTs for CMD trials were slower when interleaved among VMD 

trials than when blocked together (p<10-40). Cumulative RT distributions for the same no-pulse CMD 

trials for the 5 subjects who completed the greatest number of experimental sessions (figures 11b & 
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11c) show both a clear rightward displacement along the x-axis – indicating later RTs in general – as 

well as a decreased slope in the interleaved condition – indicating an increased range of reaction 

times. Importantly, this main effect holds across all of our subjects in spite of the otherwise large 

inter-subject variability in overall speed. In other words, while some subjects tended to be 

significantly faster than others, all of them individually slowed down considerably during the 

interleaved sessions, in which delaying decision times tends to yield a benefit to accuracy. This 

behavior emerged despite the fact that no explicit instructions were ever provided to the subjects 

regarding the timing of their decisions. 

The strength and consistency of this result across all of our subjects thus strongly supports the 

effectiveness of our contextual manipulation on subjects’ decision-making behavior. Moreover, 

because these differences obtain in no-pulse CMD trials which were otherwise identical, the most 

parsimonious interpretation of this effect is that it is the result of a slowed decision policy for the 

interleaved sessions relative to the blocked sessions. In the framework of the DDM, this corresponds 

to increasing the decision bound in interleaved sessions, and in the framework of the UGM, to 

decreasing the slope of the urgency signal (as per figure 9 above). 

Effects of pulses 

Our next step was to analyze the effects of pulses in each task context to distinguish between the 

specific predictions of each model under conditions of changing evidence (figure 9). Similar to the 

above, this analysis also focused exclusively on CMD trials (no-pulse and pulse) which were identical 

in each session type. Note that because nearly all decisions were made before 1800ms in either 

session type, the 1600ms pulse timing did not yield enough data to warrant a meaningful analysis and 

these trials were therefore excluded from subsequent analyses. 

Figure 12a shows the cumulative RT distributions from blocked (top) and interleaved (bottom) 

sessions for the subject who performed the largest number of sessions (“JM”; nsessions=20, 

ntrials=12,900). Like all subjects, JM’s mean RT for no-pulse, constant-evidence trials (black trace) is 

significantly faster when these appeared in the blocked condition than the interleaved condition 

(median no-pulse RT, blocked = 726ms; median no-pulse RT, interleaved = 1,165ms; see figure insets). 

In the blocked condition,  the earliest two pulse timings (100ms and 200ms;  red and magenta traces,  
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Figure 11: Reaction times for “no-pulse” trials in the blocked and interleaved conditions. Top: Mean 

RTs (in ms) of individual subjects in no-pulse trials during the blocked (x-axis) versus the interleaved (y-

axis) conditions. Crosses show the standard error of the mean, and colors are used to indicate those 

subjects who performed a very large number of trials. The dotted rectangle shows the subjects that 

were grouped together for pooled analyses. Bottom left: Cumulative RT distributions in no-pulse trials 

during the blocked condition, for the 5 subjects who performed >10 sessions (same colors as in top 

figure). Bottom right: Cumulative RT distributions of the same subjects in no-pulse trials during the 

interleaved condition. In all cases, RTs are significantly shorter in the blocked condition (p<10-40). 
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Figure 12: Cumulative response time distributions for pulse- and no-pulse trials. Comparison of 

reaction time effects of pulses in CMD trials. A. Cumulative RT distributions for no-pulse (black), 

100ms pulse (red), 200ms pulse (magenta), and 400ms pulse (green) of subject JM during the 

blocked condition (top) and during the interleaved condition (bottom). Insets show the 

corresponding median RTs (with 95% confidence intervals) and asterisks indicate significant 

differences (p-values in main text). B. Cumulative RT distributions for the group of subjects indicated 

in Figure 11, top. Same format as A. C. Cumulative RT distributions produced by the urgency-gating 

model. Same format as A and B. 
 

 

respectively) significantly sped up response time (p<10-11 and <10-5, respectively), presumably 

because the enhanced evidence strength during the pulses brought the decision-making activity to 

threshold faster than if evidence had merely remained at the same level throughout. Meanwhile, 

pulses 400ms were not significantly effective (p=0.21), presumably because these tended to occur 

after the point at which JM had already made his decision. 
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In contrast, when JM was completing an interleaved session, his reaction times were slower for all 

pulse trials than when these same trials were presented in the blocked condition (see median RTs in 

figure insets). Moreover, the specific pulse timings that were effective in enhancing his response time 

were different than those which were effective in the blocked condition. Pulses at 400ms now 

significantly speeded up RTs (p=0.03), in contrast to the blocked condition in which these pulses had 

no effect (p=0.21). Most importantly, the RT distributions for trials with early pulses (100ms & 

200ms), were no longer statistically distinguishable from no-pulse trials (p=0.75 and 0.98, 

respectively). 

A similar – though not identical – pattern obtained for other subjects as well. For example, for our 

subject with the second-largest number of sessions (“VC”, nsessions=16, ntrials=9,957), only the 200ms 

pulse was significant in affecting mean RT in the blocked condition (p=0.016 in the blocked condition, 

p=0.27 in the interleaved condition), whereas only the 400ms pulse was effective in the interleaved 

condition (p=0.38 in the blocked condition, p=0.001 in the interleaved condition). Similar trends were 

also observed across most of our subjects, though we did not have enough trials for these trends to 

reach significance on the level of individual subjects. However, four out of five of our 10+ session 

subjects showed statistically significant patterns in their data that are qualitatively consistent with the 

results shown in figure 12a and 12b, insofar as the efficacy of individual pulse timings was observed 

to change across our two task conditions according to the predictions of the UGM as depicted in 

figure 9. The fifth subjects’ RTs were extremely slow in both session types, and did not appear to be 

influenced by any pulses in either condition, which in itself is consistent with a high leak parameter. In 

other words, if his mean response time in the blocked condition was already slow enough that the 

effects of early pulses had fully leaked away by the time his decision was made, then these same 

pulses would remain ineffective as his decisions were further slowed down during the interleaved 

condition. In general, then, while some individual subjects exhibited different patterns of pulse 

efficacy, their unique results are nonetheless qualitatively consistent with the UGM’s predictions. 

As can be seen in figure 11a, our subjects varied greatly in terms of their average RTs within both of 

our two task conditions. This considerable range of inter-subject variability  meant that pooling RT 

data across subjects could obscure otherwise meaningful effects of our experimental manipulations 

in two possible ways. 
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Firstly, consider the total variability in the overall RT distribution of an individual subject relative to 

the magnitude of the significant pulse effects (as per figure 12a). Such relatively subtle – though 

nonetheless significant – effects would become increasingly difficult to detect as the total range of 

RTs under consideration increases. Given the large degree of inter-subject variability in mean RT 

under otherwise identical conditions (see figure 11a), pooling the data from all of our subjects 

together would therefore greatly expand the total range of RTs, thereby making any meaningful 

effects of the pulses more difficult to detect – even for a “best-case” scenario in which a given pulse 

timing was significant to the same degree within each of our individual subjects. 

Importantly, however, the UGM predicts that the efficacy of a given pulse timing ought to depend 

directly on an individual subject’s mean RT (see figure 9). Meanwhile, the considerable variability in 

mean RT across our subjects (figure 11a) entails that the effects of a given pulse in a given task 

condition may vary across subjects; thus the “best-case scenario” mentioned above is unlikely to 

obtain, especially if the data conforms to the UGM’s predictions. Consequently, pooling together data 

from all subjects could therefore not only obscure any consistent, identical effects across subjects (as 

per above), but could also in fact actively cancel out any significant effects that might be unique to 

specific individual subjects. Because such within-subject effects are directly pertinent to our 

experimental hypotheses, pooling together all RT data indiscriminately would therefore be 

inappropriate for the purposes of arbitrating between the predictions of the DDM and the UGM. 

For these reasons, we instead pooled subjects into distinct subgroups on the basis of the similarity of 

their mean RTs in the blocked condition. The rationale behind this approach to sub-grouping is that 

according to the logic of both models, similarities among subjects’ mean RTs are likely to be a 

reflection of a more fundamental similarity regarding their effective threshold settings. Thus, given 

similar threshold settings, we would expect the impact of our motion pulses to be similar across such 

subjects. This parametric similarity thus allows us to analyze larger subsets of data in a manner that 

remains sensitive to our fundamental experimental hypotheses (see figure 9). Such a subset is 

indicated in Figure 11a, and the pooled RT distributions appear in Figure 12b. Accordingly, the 

cumulative RT distributions from this subject group strongly resemble those of the individual subject 

shown in figure 12a, whose data were included in this subgroup. For this subject group, only the 

200ms pulse is effective across both task conditions (p<10-8 in the blocked condition, p=0.002 in the 

interleaved condition); the 100ms pulses were effective only in the blocked sessions (p<10-15 in the 
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blocked condition, p=0.052 in the interleaved condition), in which RTs are much faster on average, 

and the 400ms pulses were only effective in the interleaved sessions, in which RTs are slower (p=0.21 

in the blocked condition, p<10-4 in the interleaved condition). Thus, the data from this subgroup of 

subjects with relatively fast response times agrees with the UGM-based interpretation described 

above, and therefore further contradicts the predictions of the DDM. 

Modeling results 

Figure 12c shows the RT distributions produced by the urgency-gating model with a 166ms time 

constant (see methods). For the group of subjects shown in Figure 11a, the non-decision delay t0 was 

estimated as 300ms. The urgency signal settings were context-dependent: for modeling the fast 

decision policy in the “blocked” condition, U=eN(μ, σ) where N is a normal distribution with μ=.7 and 

σ=.15; for the slower decision policy in the “interleaved” condition, μ=-0.425 and σ=.25. These 

parameters were chosen so that the RT distributions produced by the model for the no-pulse trials 

resembled those from no-pulse trials of the fast subjects (figure 12b, black). Pulses were then added 

to the input signal and their effects analysed in the same manner as the behavioral data. As predicted 

by the UGM, the earliest two pulses were more effective for the fast policy (figure 12c, top) while the 

latter two were effective in the slow policy (figure 12c, bottom). 

Effects of bias trials 

Finally, we analyzed our subjects’ RTs for “bias” VMD trials to see what influence large, early 5- and 6- 

step biases in evidence have on relatively late decisions. In figure 13 below we show cumulative 

response time distributions only for trials in which our subjects made a (correct) decision after the 

initial bias period ended (see figure 10). 

In the case of the 6-step bias trials (“bias-for” and “bias-against”), RT distributions were practically 

identical (K-S test, p<.00023) – a finding that is in close agreement with previous data from both Cisek 

et al. (2009) and Thura et al. (2012) showing a lack of effect of similar early biases in evidence on later 

response times. Like these prior findings, the present results argue strongly against integration-based 

models, which predict that the effects of such early biases in evidence ought to have a lasting effect 

on RTs even when decisions are made substantially later after the bias has ended. In contrast, the 

UGM’s emphasis on current evidence entails the prediction that the effects of these biases should 
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diminish relatively quickly, which is precisely what we observed for VMD trials featuring 6-step biases 

(figure 13, left). 

However, in bias trials consisting of only 5 steps (“bias up-down” and “bias down-up”), RTs for trials 

with biases that initially favored the correct target are actually slower than RTs for trials in which the 

early bias favored the incorrect target (K-S test, p<10-19). Again, an integration-based model – in 

which the effects of early evidence ought to persist throughout the decision process – would predict 

that an early bias against the correct choice ought to cause later decisions than those for trials in 

which the early bias favored the correct choice. Instead, our data shows the opposite; a finding which 

indicates that the DDM’s predictions with respect to these bias trials are incorrect. As before, 

however, the UGM predicts no- or little effect when decisions are made after the bias has ended. 

Given that RTs for these 5-step biases were found to differ quite significantly (figure 13, right), our 

data from these trial types cannot be said to directly support the UGM’s predictions. This finding is 

surprising, and cannot be readily accounted for by the UGM in its present form. We will return to 

possible explanations for this effect in the discussion section below; nonetheless, at present, this data 

can at least be said to speak strongly against integration-based models which would otherwise make 

a strong opposite prediction. 
 
 

 
 

Figure 13: Cumulative response time distributions for paired bias trials. All 
subjects, correct trials only. See figure 10 for trial definitions. Left: 6-step bias 
patterns show no difference in RT (K-S test, p<.00023), inconsistent with the DDM’s 
predictions, but in line with the predictions of a UGM. Right: Responses to 5-step 
bias patterns were slower when the initial bias was in favor of the chosen target (K-
S test, p<10-19). While this result is not predicted by either model, this particular 
pattern of results is directly opposite to those predicted by the DDM. 
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Discussion 

The main result of our study is that when subjects slow down their decision policy, the effect of early 

pulses becomes weaker than the effect of later pulses (figure 12). While the specific pattern of pulse 

efficacy in our two task conditions varied across subjects, the earliest pulse timings consistently lost 

their efficacy as subjects slowed down. This result is important because it cannot be reproduced by 

the DDM, or indeed any model whose central mechanisms involve the integration of the motion 

signal over time; such models will always predict that early pulses will be at least as effective as late 

pulses in reducing reaction times, because an integrator retains all input until decision time. 

In contrast, the UGM explains this finding by positing that the motion signal is low-pass filtered and 

brought to threshold through combination with an independent urgency signal that controls the 

decision timing policy; thus, after a pulse, neural activity related to evidence increases briefly but 

returns to the baseline “no-pulse” level only a short time later. A motion pulse therefore hastens the 

response time on a given trial only if the decision is made after the pulse has caused a corresponding 

increase in the evidence signal, but before the effect of the pulse has leaked away – otherwise, the RT 

will not differ from a no-pulse trial (see figure 9). In other words, the UGM makes the qualitative 

prediction that the efficacy of a given motion pulse will depend on its timing with respect to the time 

of decision. By extension, any systematic change in the average timing of decisions will change which 

pulse timings enhance RT. This is precisely what we observed: as subjects adjusted their average 

speed of decision from one session type to the next, the effects of pulses became strongly dependent 

on average response time, such that the effects of early pulses had time to leak away when decisions 

were made relatively late. Such early-pulse trials – presented in a context of slower average decision 

time – yielded RT distributions that were indistinguishable from no-pulse trials, despite the fact that 

these same pulse timings were effective in sessions in which decisions tended to be made faster. Our 

results would therefore appear to argue unambiguously against integration-based models, and 

instead support the UGM. 

There is, however, one possible objection to our interpretation of the findings presented here. 

Because the motion signal during VMD trials in the interleaved sessions began at zero – and therefore 

did not grow much in strength until several steps into the trial – it could be argued that our subjects 

had merely learned to delay the onset of evidence integration for the first few hundred milliseconds 
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during the VMD sessions. Employing such a strategy would have spared our subjects the effort of 

integrating what would otherwise tend to be a relatively uninformative stimulus, when they could 

instead simply wait to integrate any signals at all until a point in the trial when the motion signal is 

likely to be stronger (and therefore easier to discriminate).  If true, this would cause them to show no 

effects of the earliest pulse timings (e.g. the 100- and 200ms pulses) in the interleaved CMD trials, 

because these pulses would have already ended before the subjects actually began integrating 

evidence. Correspondingly, if the onset of integration was delayed by 200-300ms, the 400ms pulse 

would effectively become a 100ms pulse, which would explain why such pulses suddenly became 

effective in the VMD sessions. Moreover, this would not only explain the shifts in pulse efficacies 

obtained in the VMD condition, but also the slower RT distributions for all VMD trials in general. 

If our subjects really were simply ignoring the earliest portion of the evidence in VMD trials, however, 

then any VMD trials in which our subjects made very early decisions would not be based on evidence, 

and therefore ought to have yielded success rates at close to chance levels. To examine this 

possibility, therefore, we analyzed the success probability for all VMD trials in which our five subjects 

with the most sessions made their decision within the first two simulated “token” steps (DT <400ms). 

This analysis revealed that such decisions were correct 79.67% of the time, thereby indicating that 

this early information was not, in fact, ignored. This makes further sense considering our baseline 

coherence value for CMD sessions was 3%, which is equivalent to a single coherence step in the VMD 

trials. Thus while it was generally true that the evidence tended to improve over the course of VMD 

trials – thus motivating the changes in decision policy shown in figure 11 – it does not necessarily 

follow that the early portions of these trials are completely uninformative; in fact they are just as 

informative as a regular CMD trial after only 200ms. Thus it makes sense that our subjects would not 

have simply ignored this information altogether. 

In sum, the differences we obtained in the efficacy of our various pulse timings as our subjects’ 

decision policies were manipulated across sessions strongly support the UGM (see figure 9). 

Furthermore, the mechanisms of the UGM, and the manner in which its dynamics respond to various 

forms of time-related factors can reveal several important features of the brain’s implementation of 

the decision process, to which we now turn. 
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Current evidence vs. total weight of evidence 

First and foremost, this finding directly contradicts the main predictions of integration-based models 

like the DDM and instead strongly suggests that decisions are driven by the current (or at least recent) 

state of the evidence, and not the total weight of all prior evidence. In this respect, the current 

findings are in agreement with a number of prior studies demonstrating that decisions tend to be 

made on the basis of information arriving from a rather narrow window of time (Cook & Maunsell, 

2002; Gold & Shadlen, 2003; Ludwig et al., 2005; Luna et al., 2005; Ghose, 2006; Uchida et al., 2006; 

Yang et al., 2008; Stanford et al., 2010; Zariwala et al., 2013; Kuruppath et al., 2014). 

This conclusion is further corroborated by our findings regarding the “bias” VMD trials. As previously 

observed (Cisek et al., 2009; Thura et al., 2012), early biases in evidence do not appear to have a 

lasting effect on decisions (or at least, not in the manner predicted by integration-based models). In 

the case of 6-step biases, for example, there appears to be no effect on response times for decisions 

made after the end of the bias period (see figure 13, left). This closely mirrors our pulse data from the 

CMD trials (see figure 12) in that the effects of early pulses were seen to leak away quite rapidly after 

the offset of a pulse: in other words, such biases can be thought of simply as substantially larger 

“pulses,” whose effects on the developing decision thus leak away over time in a manner similar to 

the smaller pulses we inserted into CMD trials. Such a lack of an effect makes sense in light of the 

UGM, because the evidence signal will quickly adapt to the offset of the bias after a short delay 

imposed by the settings of the low-pass filter. This is precisely what appears to have occurred in our 

6-step bias trials. 

Our results from the 5-step biases (figure 13, right), however, are more difficult to interpret. An 

integration-based model would predict faster responses for early biases in favor of the chosen target, 

and slower responses for biases opposing it: instead, our data shows the direct opposite. While this 

nonetheless directly contradicts the DDM’s explicit predictions, the UGM itself cannot offer a 

straightforward explanation of why decisions would be slower following early evidence that favors 

the chosen target. One potentially relevant factor may concern the fact that the 5-step biases, unlike 

the 6-step biases, do not return to a state of 0% coherence. However, neither the DDM nor the UGM 

offer any concrete mechanistic explanation for the apparently rather strong ramifications of such a 

difference on the ensuing RT distributions. However, another possible explanation could be offered 

on the basis of the pattern of evidence change in each trial type: in the “down-up” bias trials, all 
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motion changes after the first two coherence steps are continuously towards the same target; 

whereas in the “up-down” trials, the initial bias is interrupted by two contrary motion changes. Again, 

the mechanistic framework of the DDM does not appear to offer any straightforward account of why 

such a difference would have the dramatic effect on RTs that we observed in the present experiment. 

However, given that the UGM’s dynamics effectively emphasize novel information, the introduction 

of the brief qualitative change in the development of the motion signal unique to the “up-down” bias 

trials could play a role in slowing down the ensuing reaction times, as this brief reversal could be 

interpreted as important novel information, which the UGM would necessarily be sensitive to. While 

at present we cannot offer any conclusive explanation, the data we obtained in this regard could 

serve as a potential avenue for further experimentation. In any case, however, the lack of an effect of 

early biases in the 6-step bias trials remains a salient finding against integration-based models, as 

these models make the strong prediction that the effect of such early- and dramatic biases should be 

retained over the course of the decision process. 

In general, the UGM’s reliance on only the current evidence makes sense not only with respect to the 

experimental data reviewed here, but also makes ecological sense when considering the assumptions 

made by integration-based models. Such models, like the DDM, operate as stated solely on the 

assumption that each sensory sample is fully statistically independent from those that preceded it 

(Bogacz 2006; Rao 2010; Thura, 2012). However, in any constant-evidence task, repeatedly sampling 

the stimulus means that each additional sample is increasingly redundant, providing progressively less 

novel information over time (c.f. Thura et al., 2012). Thus, it instead makes more sense to accumulate 

information only to the extent that it is genuinely novel. This provides the main rationale for the fast 

evidence-tracking mechanism employed by the UGM – namely, a low-pass filtered signal which 

quickly adjusts to represent the current state of the sensory evidence while ignoring fluctuations at 

frequencies above the range at which the signal of interest is likely to change. This mechanism not 

only ensures that only novel information is accumulated, but also enables faster transitions between 

decision options under conditions in which evidence can change. A perfect integrator would be slow 

to reflect such changes, as it would have to first “undo” the previously-integrated sum for the initial 

choice before it could begin to accumulate evidence in favor of the new choice. An urgency-gating 

model, in contrast, could respond to the new choice after only a brief delay determined by the time-

constant of its low-pass filter (see figures 6a, 6b, and figure 7). This dynamical feature of the UGM is 

directly exemplified by the lack of lingering effects of early biases discussed above, and is further 
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revealed by the dynamics of the evidence manipulations we performed in our main experiment. 

Moreover, beyond its direct ramifications for the present experiment, this feature is likely to be 

germane to natural, ecologically-situated behaviors taking place in unpredictable environments, in 

which the relevant decision factors are not known ahead of time to the same degree as they are 

under experimental conditions. 

One potential alternative to the UGM’s account of these results could involve the addition of a “leak” 

parameter to the DDM, such that early manipulations of evidence eventually leak away over time. 

Indeed, just such a proposal has been suggested by a number of previous studies, and has led to a 

sub-class of integration-based model called the leaky competing accumulator model (Usher & 

McClelland, 2001). This model has been successfully employed in the past to account for a number of 

previous findings in which the effects of changing evidence were observed to be time-dependent in a 

manner similar to our present experiment (see Usher & McClelland, 2001; Tsetsos et al., 2012; Ossmy 

et al., 2013). 

However, it is unlikely that such models could by themselves account for our present data. In our 

subjects the effects of pulses appear to “leak” away within only a few hundred milliseconds (see 

figure 12); this would entail a leak parameter so large as to severely inhibit the ability for any 

integration-based model to successfully accumulate weak evidence to a decision threshold. In fact, 

adding such a leak would effectively turn such a model into a low-pass filter with a rather short time 

constant (~200ms). Consequently, this leak parameter would have to be compensated for with the 

addition of a dropping threshold so that decisions made on the basis of relatively weak evidence (as 

they are in our task) would not continue indefinitely. Importantly, this is essentially what the UGM is 

proposing; moreover, whereas introducing this feature to an integration-based model would require 

the addition of several new parameters to the DDM, the same dynamics emerge from the UGM in a 

more parsimonious manner. 

The importance of filtering noisy input signals 

Since its original formulation, the UGM has been explicitly challenged in a number of recent studies, 

often involving its treatment of noise (Churchland et al., 2011; Winkel et al., 2014). Dealing with noise 

is particularly important in the RDM task, in which the stimulus is inherently very noisy. Integrator 

models deal with noise by adding together successive samples on the assumption that the noise 
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components of the input will cancel each other out over time, leaving an estimate of the underlying 

signal (Ratcliff, 2001). On the surface, the UGM may appear susceptible to random, noise-driven 

fluctuations because it privileges recent information (as claimed by Winkel et al., 2014). However, 

because the UGM includes a low-pass filter, it is just as effective as an integrator at dealing with 

noise: the time constant of the filter jointly determines both the frequency of input fluctuations 

which will be screened out as noise, as well as the amount of time required for the evidence signal to 

respond to a genuine change in the underlying stimulus. Indeed, for input signal components above 

the filter cutoff frequency, a low-pass filter and an integrator are mathematically equivalent (for 

mathematical proof see Thura et al, 2012, pages 7 & 16, and equations therein). 

Two recent studies have attempted to criticize the UGM on noise-related grounds. Churchland et al. 

(2011) suggested that the UGM cannot explain correlations in neural activity during motion 

discrimination tasks, but these authors neglected to include the low-pass filter that is an essential 

component of the urgency-gating model. More recently, Winkel et al. (2014) showed that in a 

particular RDM task with pulses, early changes in evidence appeared to have an influence on decision 

time in human subjects, even for decisions made substantially later (>1000ms). They then attempted 

to replicate this behavioral data with both the DDM and the UGM, and claimed that the UGM was 

unable to account for these effects, whereas the DDM was able to reproduce the qualitative trends in 

the data. However, their implementation of the UGM, like that of Churchland et al. (2012), also 

lacked a low-pass filter, which is critically necessary to the UGM’s dynamics and without which it 

cannot work. A fair comparison of the UGM and the DDM, however, must allow both models to retain 

their capacity to deal with such noise. Consequently, we successfully replicated their data with a UGM 

that included a low-pass filter, thereby demonstrating that the UGM can, in fact, provide a qualitative 

fit to their data (Carland, Thura, Cisek, in review). Crucially, even when the UGM matched their data, 

it did not do so by causing early evidence to persist for as long as Winkel et al. claimed; rather, the 

means of the RT distributions shifted slightly due to the early evidence causing slightly more early 

decisions – similar to the effects of pulses in our present experiment – and therefore this early 

evidence affected only a subset of the response times. This finding thus demonstrated a crucial 

methodological point that is of critical importance when comparing models: dynamical differences 

among models cannot be fully appreciated without a fine-grained analysis of response time 

distributions. Simply comparing mean response times can lead to erroneous conclusions, such as 
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Winkel et al.’s conclusion that early evidence impacts the timing of decisions over an extended period 

of time. 

Ultimately, the challenges made to the UGM so far have involved implementations thereof which 

have been mechanistically incomplete, and therefore have not served as fair comparisons. However, 

when implemented correctly, the UGM can account for most of the extant data equally as well as the 

DDM. Thus, while the DDM has a long history, most of the data used to support it can be used equally 

as well to support the UGM, as they make identical predictions under conditions of constant evidence 

(Cisek et al., 2009; Thura et al., 2012; see also figure 9). The converse, however, is not the case: much 

of the extant experimental work in which evidence has been allowed to change within a given trial 

has yielded data that has been consistently problematic for the DDM in non-trivial ways. 

Furthermore, even when the DDM has successfully addressed these studies, it typically has done so 

by adding further parameters, rather than making substantial mechanistic revisions to its basic 

framework. This approach is problematic because it can be continued indefinitely – with apparent 

empirical success – but merely for the trivial reason that additional model parameters necessarily 

enrich the dynamics of a model (Rae, Heathcote et al., 2014). 

Urgency, time pressure and reward rate 

The manipulation of time pressure in our task relied on our subjects’ ability to implicity adjust their 

decision policy to adapt to the evidence available in each task context. In the “blocked” condition, 

there was no benefit to prolonging decisions, and our subjects consistently appeared to adopt a 

strategy of hastening their decisions by responding as soon as they could detect the motion signal. In 

contrast, in the “interleaved” condition the quality of the sensory evidence tended to increase over 

time, and our subjects implicitly adapted to this context by making significantly slower decisions, 

thereby capitalizing on the benefit to decision accuracy that they could obtain by delaying their 

decisions until the evidence was less ambiguous. 

This ability of our subjects to tailor their decision policy to each task context speaks to the broader 

notion of behavioral optimization. Many studies have demonstrated that decision-makers are acutely 

sensitive to the reward contingencies of experimental tasks, and that they frequently converge on 

decision policies that are near-optimal after only a relatively short learning period (see Bogacz et al., 

2006; Balci et al., 2012). While the precise mathematical derivation of optimal decision policies is a 
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computationally demanding problem that is likely beyond the capacities of most human subjects 

under normal conditions (and almost certainly beyond those of non-human subjects), the ability for 

decision models to capture behaviorally-meaningful changes in decision policy with only a few 

parametric changes suggests that the ability of decision-makers to converge on near-optimal policies 

may be the result of the fact that the speed-accuracy trade-offs intrinsic to ecological behaviors can 

be effectively managed with only a small number of relevant parameters, thereby constraining the 

problem space to a limited number of dimensions. 

The use of a singular “urgency” signal to control the timing of decisions thus provides a unitary means 

for a decision-maker to adapt their decision policy to maximize reward rate. That is, the two 

parameters governing the urgency signal’s dynamics (i.e. the mean and standard deviation of the 

urgency signal’s slope) control the average timing of the decision both by weighting the evidence 

more strongly over time as well as controlling the rate at which the effective decision threshold 

drops, thereby preventing the unneccessary loss of time during difficult decisions. This singular 

control mechanism is thus an effective means by which an animal may regulate many diverse aspects 

of its decision strategy. Relatedly, while advocates of integration-based models have previously made 

a number of claims regarding the optimality of the DDM, many such demonstrations have – either 

implicitly or explicitly – evaluated these models only under the assumption that thresholds remain 

constant throughout a decision period (Ratcliff & Smith, 2004; Bogacz et al., 2006; Simen et al., 2009). 

While the DDM can indeed achieve greater reward rates than any other integration-based model, its 

optimality has only been demonstrated under the assumption of static thresholds. A number of 

subsequent studies that have directly compared a number of constant- and dropping-threshold 

models have revealed that in all cases, models in which the thresholds drop over time always 

outperform static-threshold models (Balci et al., 2012; Thura et al., 2012). Accordingly, the role of 

urgency in controlling the timing of behavior directly implements a dropping threshold in the decision 

process, thereby enabling a decision-maker to adapt their decision policy to maximize reward rate in 

a manner consistent with mathematical analyses of optimal behavior. 

Our use of two distinct decision contexts to manipulate the “time pressure” in our task is also 

consonant with previous work by Balci et al. (2012), who demonstrated that subjects typically adjust 

their decision policy on a “sessional” basis by converging on a single set of parameters that optimize 

behavior with respect to the overall distribution of trial difficulties encountered in a given setting. 
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However, while Balci et al. demonstrated this in the context of a constant-evidence task, our current 

results demonstrate that this principle applies to the more ecologically-relevant case of changing-

evidence tasks. Moreover, we induced these adaptive changes in our subjects’ decision policies not 

by simply changing the strength of the evidence, but also by changing the value of stimulus 

observation time, such that extra observation time in the “blocked” condition represented only a 

time cost, whereas additional observation time in the “interleaved” sessions was valuable as it could 

lead to improved decision accuracy. Consequently, these two experimental contexts presented our 

subjects with unique speed-accuracy trade-offs that mandated the use of different decision policies 

to maximize the rate of reward acquisition throughout the experimental session. 

The explicit link between the UGM’s urgency signal and the timing parameters of a task also afford a 

clear means for interpreting a variety of prior findings. For example, the systematic transitions in 

efficacy between early and late pulses across our two experimental conditions are analogous to the 

primacy and recency biases observed during a similar RDM task by a number of previous studies 

(Usher & McClelland, 2001; Huk & Shadlen, 2005; Kiani et al., 2008; Tsetsos et al., 2012). In these 

studies, each of these biases could be obtained within individual subjects, and the transition between 

these biases appeared to be caused by manipulating the “time pressure” involved in the performance 

of the task (Tsetsos et al., 2012). The authors of these studies explained these effects by 

parameterizing a DDM-influenced model to incorporate a “leak” of accumulated evidence over time, 

with the value of this leak parameter being allowed to vary freely when modeling the behavioral data 

from each task condition: however, the precise relationship between “time pressure” and “leak” in 

these authors’ accounts was neither ecologically- nor physiologically motivated. In contrast, the 

UGM’s explicit link between time-pressure and the rate at which the urgency signal rises over time 

provides a more complete theoretical framework for accounting for the emergence of such biases: 

when time pressure is high, the urgency signal will rise more quickly, causing early pulses to be more 

likely to reach the decision threshold, with later pulses tending to occur too late to cause an effect. 

Conversely, when time pressure is low, the effect of early pulses will leak away by the time most 

decisions are made, whereas late pulses will now tend to become effective as they fall closer in time 

to the time of decision. Given that Tsetsos et al. (2012) explicitly used “time pressure” to elicit these 

various biases (albeit in a different manner than in our task), the framework offered by the UGM 

provides a straightforward explanation for the emergence of these biases in a manner that does not 

simply rely on adding yet more parameters to an increasingly-complex integration model. Moreover, 
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the model can itself specify and predict the effects of time-related task factors on behavioral 

performance, rather than merely accounting for them in a post hoc manner. 

The wider significance of the UGM 

So far we have reviewed a number of discrete, empirically-demonstrated shortcomings of the DDM as 

well as identified some broader, potentially problematic theoretical issues with the DDM, with the 

aims of loosening the otherwise implicit commitment to the DDM as the essential decision model. In 

its place we offer the UGM, a mechanistically simple model which nonetheless can account for much 

of the behavioral and physiological data equally as well as the DDM, but which is not itself beholden 

to several of the problematic foundational assumptions inherited from the sequential sampling 

framework. However, while we have focused on discrete comparisons between the DDM and UGM 

with regards to their theoretical rationale, parameterization, and their ability to account for 

behavioral data, the UGM also offers additional potential benefits to the field beyond merely serving 

as an alternative model of decision behavior during TAFC perceptual discrimination tasks. 

Accordingly, we now turn to a discussion of the broader significance of the UGM, and its potential 

implications beyond the simple, traditional forms of decision-making research described thus far. 

Urgency signals and reward rate maximization: beyond RT 

As mentioned previously, one of the important strengths of the UGM lies in its potential to account 

for how real-world decision-makers can rapidly achieve optimal (or near-optimal) decision strategies 

for maximizing the rate of reward acquisition across a diverse range of environments and contexts. 

The mechanistic centrality of the urgency signal in governing the ensuing temporal dynamics of 

decisions, together with its parametric simplicity, means that the search space for optimal decision 

parameters can be essentially pre-constrained to two variables: one specifying the mean slope of the 

urgency signal, and a second governing its variability with respect to this mean across multiple 

decisions or trials. This parametric elegance provides the UGM with the flexibility required to find 

decision policies which can maximize the rate of reward across a number of different decision 

contexts and settings. 

Traditionally, measures of behavioral optimization have focused exclusively on the timing of the 

decision process, such that a decision policy is considered optimal if it can be shown to produce 

decision times whose durations are appropriate for achieving the best possible average rate of 
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reward over large sets of trials (Ratcliff & Smith, 2004; Bogacz et al., 2006; Simen et al., 2009; Balci et 

al., 2012). However, decisions in both experimental and real-world settings typically entail the 

selection of a behavior by which such rewards are acquired – and non-decision factors such as the 

speed, accuracy, and energetic costs of movements may therefore have a direct impact on reward 

rate independently of the length of the deliberation process itself. For this reason, it could be argued 

that the optimization of reward rate involves not only the fine-tuning of those decision parameters 

explicitly featured in the DDM and UGM themselves (see above equations), but also may involve the 

parameterization of non-decision processes, such as those related to motor execution. 

A relatively simple example in support of such an argument comes from an early study by Ljungberg 

et al. (1992), who showed that a monkey’s reaching movements to collect food rewards were 

executed more quickly when such rewards were made continuously available. When these same 

rewards were available only according to a schedule of fixed intervals, the monkey’s movements 

tended to be made significantly more slowly, i.e. at a default speed more typical of the monkey’s 

general behavior when not performing a task under time pressure. This relationship between reward 

availability and movement speed was originally interpreted as arising due to the fact that when 

rewards are plentiful, slower movements would reduce the overall rate of reward, whereas the cost 

of making faster – but more effortful – movements is justified by the potential gains. Therefore, 

movements should be made more quickly under such conditions so as to acquire more rewards in a 

shorter period of time. In other words, when the potential reward rate was high, the relative cost of 

moving quickly was sufficiently counterbalanced by the availability of reward, and movement speed 

was increased accordingly.  In contrast, when rewards were available at a limited and fixed rate, the 

ultimate rate of reward was not significantly affected by motor speed (being essentially 

predetermined by the reward schedule alone), and the monkey could therefore collect the maximum 

possible reward while still conserving effort by making unhurried movements. Consequently, the 

selection of movement speed appears to represent the outcome of a process by which reward rate is 

optimized by maximizing reward intake while simultaneously minimizing the cost (in effort and/or 

energy) of the required actions. 

While Ljungberg et al.’s (1992) study did not involve a perceptual decision component per se, this 

early finding linking movement speed to reward rate has been expanded upon by a number of 

additional studies operating under the general rationale that the most fundamental purpose of motor 
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behavior is to place an animal in a more rewarding state (c.f. Choi et al., 2014). These subsequent 

studies have extensively catalogued the ways in which various motor factors can contribute 

substantially to the optimization of decision-making behavior (see Segraves et al., 1987; Snyder et al, 

2002; van Donkelaar et al, 2004; Churchland et al, 2006; Xu-Wilson et al., 2009; Opris et al, 2011; 

Salinas et al, 2014), and together provide substantial empirical justification for considering motor-

behavioral factors when assessing the overall optimality of real-world decision behavior. 

Pursuant to this broadened perspective on behavioral optimization, some recent evidence suggests 

that “urgency” may play a direct causal role in governing the speed with which movements are made, 

thereby providing a discrete mechanism by which the relationship between reward rate and motor 

control may be understood from within a single unified framework. For example, Thura, Cos, Trung & 

Cisek (2014) have recently shown that the speed of the arm-reaching movement with which a 

monkey reports the outcome of a decision appears to increase as a direct function of elapsed time, 

such that movements following trials in which the decision was made late tend to be faster than 

those same movements used to report the outcome of a relatively faster (earlier) decision. These 

observations were interpreted as evidence that the additional deliberation time spent producing later 

decisions can be (at least partially) offset by increasing the speed of the movement used to report 

that decision’s outcome. Such a means of counteracting the cost of time therefore serves as an 

additional means of enhancing reward rate in a manner which is nonetheless separate from the 

parameterization of the decision process in itself. 

Additionally, Thura et al.’s (2014) experimental procedure also featured two distinct task blocks: a 

“fast” block, in which inter-trial intervals were relatively short, and a “slow” block in which they 

tended to be longer. Accordingly, the available reward rate in the fast block was higher than that in 

the slow block. Thus, similar to our present experiment, these two task contexts entailed parametric 

adjustments to the urgency signal across conditions in order to achieve the optimal reward rate 

within each task block. Importantly, when comparing movement speeds across these two conditions, 

Thura et al. observed that the absolute range of the variability in movement speed corresponded to 

the inferred urgency parameters appropriate to each condition, such that arm movements were 

faster overall in the fast block than they were during the slow block (ibid). Furthermore, comparisons 

of movement speeds across similar trials within task blocks indicated that the motor parameters 

governing movement speed grow steadily over the course of a given decision, similar to the manner 
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in which the urgency signal itself is posited to rise over time to control the weighting of evidence. 

Additionally, the velocity of saccadic movements were also significantly faster during the fast blocks 

relative to the slow blocks, despite the fact that oculomotor movements are controlled by separate 

motor networks that are independent from those governing arm movements (Bahill et al., 1975; 

Raybourn & Keller, 1977; Scudder et al., 2002). Thus, movement speed across multiple behavioral 

domains appears to track the state of the urgency signal not only within a given trial, but also across 

different decision contexts. 

Importantly, these consistent, inverse relationships between decision timing and movement duration 

emerged in the absence of any explicit instructions regarding movement speed, but instead were 

elicited solely by the changes in reward rate caused by the manipulation of inter-trial intervals across 

task blocks. Consequently, the observed changes in both decision timing and movement speed can be 

safely interpreted as having arisen in response to the implicit manipulations of reward rate. In 

general, then, these results suggest that monkeys are compensating for the effect of longer decision 

times on reward rate by producing faster and more effortful movements. In this respect, Thura et al.’s 

findings are in agreement with additional findings from a study by Salinas et al. (2014), who observed 

similar modulation of oculomotor behaviors during a speed-accuracy trade-off task in which faster 

movements were employed to effectively counteract the time cost of lengthier decisions. Although 

Salinas et al. did not use a UGM to explain their results, their model included a time-dependent signal 

analogous to the urgency signal of the UGM, and their results are therefore highly compatible with 

the notion of an urgency-like mechanism for relating reward rate maximization to motor control. 

Ultimately, the observation that these decision-related and non-decision motor parameters appear to 

vary together raises the possibilty that these effects may both be reflections of a common control 

parameter. For this reason, Thura et al. concluded that reward rate optimization appears to involve 

“…a global, context-dependent arousal that influences the oculomotor as well as the arm motor 

system” (Thura et al. 2014, p11) – a function that they ascribe to the urgency mechanism in the UGM. 

Importantly, the evidence for global control signals modulating both decision-making and motor 

behavior supplied by the findings discussed above are further complemented by a host of other 

studies on the topic of “motor motivation” (c.f. Mazzoni et al., 2007) which have extensively 

documented similar links between reward rate and various underlying parameters of motor control 

(see Takikawa et al., 2002; Watanabe & Hikosaka, 2005; Bendiksby & Platt, 2006; Harris & Wolpert, 
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2006; Milstein & Dorris, 2007; Niv et al., 2007; Pasquereau et al, 2007; Shadmehr, 2010; Shadmehr et 

al., 2010; Turner & Desmurget, 2010; Guitart-Masip et al, 2011; Dayan, 2012; Haith et al., 2012; 

Salamone et al, 2012; Tachibana & Hikosaka, 2012; Choi et al, 2014). These studies suggest that the 

selection of motor speed bears a systematic relationship to reward rate, and, taken together, provide 

substantial support for the possibility that animals may employ a single underlying mechanism to 

simultaneously adjust both the speed of their decisions as well as the motor behaviors by which their 

outcomes are reported. The practical outcome of such a control scheme would be a single, unitary 

mechanism for negotiating the trade-offs between speed and accuracy (or speed and behavioral 

effort) arising within both the decision process as well as within the specific motor domains through 

which these decisions’ outcomes are effectively expressed. 

Together, then, this extended body of research would in turn point toward the possibility that 

“urgency” – or something mechanistically very similar – may serve a broad and crucial role in the 

wider functional economy of the brain. Notably, however, the extended family of integration-based 

models do not feature any mechanism(s) by which the mutual dependencies among decision time, 

reward rate and movement speed could be easily accounted for. Ultimately, then, this growing body 

of empirical support for the functional coupling between motor parameters and reward rate 

maximization not only represents a novel avenue for decision research, but is also one which the 

UGM is uniquely suited to explain. 

Potential physiological origins of the urgency signal 

Given the provisional evidence for this broadened functional role of the urgency signal, a salient 

outstanding question remains regarding the potential origin of this signal. Relatedly, a considerable 

number of physiological studies have demonstrated time-dependent build-up of neural activity in a 

wide array of cortical areas across a number of diverse tasks (see Leon and Shadlen 2003; Janssen and 

Shadlen 2005; Maimon & Assad 2006; Renoult et al., 2006; Churchland et al. 2008; Lebedev et al., 

2008; Mita et al., 2009; Casini & Vidal, 2011; Hanks et al. 2011; Heitz & Schall, 2012). One possible 

explanation for these physiological observations is that “urgency” may simply be a local feature 

common within many otherwise independent cortical networks subserving decision-related 

processing. The observation of “urgency-like” build-up in these regions could therefore be interpreted 

as a straightforward consequence of a cortical region’s engagement in the functional demands of a 

particular task, without therefore necessarily indicating a common source or function. 
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However, another possibility is that these consistent observations of “urgency-like” activity could be 

indicative of a singular control signal that is broadcast widely throughout the brain, whose functional 

purpose would be to coordinate multiple aspects of behavior simultaneously. With regards to this 

possibility, several key features of the basal ganglia’s (BG’s) broader connective and functional profile 

would recommend it as a candidate source for such a signal. Firstly, the observation of common 

patterns of activity across a variety of cortical sites would fit well with the BG’s widespread and 

reciprocal anatomical connectivity with a broad range of cortical networks (Graybiel et al., 1994; Niv 

et al., 2007; Gurney et al., 2001a; 2001b; Forstmann et al., 2010). The well-known functional 

contibutions of the basal ganglia to motor control – especially in regards to its regulation of the 

speed- and size of movements (Kori et al., 1995; Hikosaka et al., 2000; Sato & Hikosaka, 2002; Niv et 

al, 2007; Turner & Desmurget, 2010; Opris et al., 2011; Tachibana & Hikosaka, 2012) would further 

argue for its candidacy in this regard. Additionally, a number of BG structures have been directly 

implicated in behavioral adjustments involving the management of speed-accuracy trade-offs 

observed during a number of tasks (Lo & Wang, 2006; Bogacz & Gurney, 2007; Forstmann et al., 2008; 

van Veen et al., 2008; Domenech & Dreher, 2010; Forstmann et al., 2010; Humphries et al., 2012; 

Nagano-Saito et al., 2012; Ding & Gold, 2013) – a functional link which is further consistent with the 

BG’s empirically-established role in modulating behavior in accordance with the reinforcement 

contingencies of a given task (Graybiel et al., 1994; Barto, 1995; Schultz et al., 1997; Kawagoe et al., 

1998; Doya, 2000; Sato & Hikosaka, 2002; Tobler et al., 2005; Daw & Doya, 2006; Kable & Glimcher, 

2007; Kobayashi & Schultz, 2008; Turner & Desmurget, 2010; Hayden et al., 2011; Opris et al., 2011; 

Jimura et al., 2013). Finally, a long history of findings regarding the centrality of dopaminergic activity 

in the regulation of reward-driven behavior (Kori et al., 1995; Niv et al., 2007; Pine et al., 2010; Turner 

& Desmurget, 2010; Burke & Tobler, 2011; Opris et al., 2011; Humphries et al., 2012; Hsiao & Lo, 

2013) is strongly suggestive of BG involvement in linking various aspects of reward processing with 

overt expressions of behavior. Taken together, then, these various anatomical and functional aspects 

of the BG make them highly plausible as a likely neurobiological origin of a unitary signal that is 

broadcast widely across the brain. 

Urgency and delay-discounting 

The putative functional generality of urgency signals – along with their possible origin in the basal 

ganglia – entail a number of suggestive implications for understanding a variety of clinical disorders. 
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One such avenue of potential research has been identified in a series of recent studies by Shadmehr 

and colleagues, who have investigated the links between reward-rate maximization and motor 

control from the perspective of temporal discounting (see Xu-Wilson et al., 2009; Shadmehr, 2010; 

Shadmehr et al., 2010; Haith et al., 2012; Choi et al., 2014). Temporal discounting is a well-studied 

and seemingly ubiquitous feature of animal behavior across both human and non-human species 

(Myerson & Green, 1995; Kacelnik, 1997; Navarick, 2004; Schweighofer et al., 2006; Kobayashi & 

Schultz, 2008; Shapiro et al., 2008; Hwang et al., 2009; Jimura et al., 2009; Green et al., 2010), 

according to which animals assign progressively less subjective value to a reward as its receipt is 

delayed further into the future (Millar & Navarick, 1984; Navarick, 2004; Schweighofer et al., 2006; 

Haith et al., 2012). Importantly, human individuals are known to vary considerably in the rate at 

which they devalue a given reward over time (Green et al., 1981; Frederick et al., 2002; Green & 

Myerson, 2004; Navarick, 2004; McClure et al., 2007); furthermore, these individual differences in 

delay-discounting policy are remarkably stable over extended periods of time (Ebert & Prelec, 2007; 

Kirby, 2009), suggesting that individual variations in temporal discounting functions are reflective of a 

discrete underlying personality trait dimension (Metcalfe & Mischel, 1999; Frederick et al., 2002; 

Rachlin, 2006; Van den Burgh et al., 2008; Zauberman et al., 2009; Peters & Büchel, 2011). Relatedly, 

a substantial body of psychometric research places individual differences in temporal discounting 

(alternatively “time preference” or “temporal orientation”: see Frederick et al., 2002, and Steinberg 

et al., 2009) within a broader constellation of personality traits related to general impulsivity 

(Kacelnik, 1997; Metcalfe & Mischel, 1999; Reynolds, 2006; Madden & Bickel, 2010; Pine et al., 2010; 

Sharp et al., 2012), which has in turn been implicated as a latent risk factor for a variety of clinical 

outcomes related to ADHD and addiction as well as to a wider array of problematic risk-seeking and 

externalizing (i.e. antisocial) behaviors (Kirby et al., 1999; Dallery & Raiff, 2007; MacKillop & Kahler, 

2009; Moore & Cusens, 2010; Bickel et al., 2011; Peters & Büchel, 2011; Sharp et al., 2012; Koffarnus 

et al., 2013; McClure & Bickel, 2014). The interrelationships among these traits – and their relevance 

to clinical outcomes – are theorized to arise as a consequence of a suite of subtler latent deficits in 

accurately assessing future outcomes in general (Kacelnik, 1997; Reynolds, 2006; Steinberg et al., 

2009; Madden & Bickel, 2010; Bickel et al., 2011; Koffarnus et al., 2013; Story et al., 2014). 

In pursuit of these potential connections to clinical issues, Shadmehr and colleagues exploited the 

fundamental logic of temporal discounting with the objective of developing decision-making 

paradigms that could yield discrete behavioral measurements of a subject’s underlying temporal 



87 

 

discounting function (Shadmehr, 2010; Haith et al., 2012; Choi et al., 2014). Specifically building upon 

the substantial body of previous decision-making studies establishing the causal relationship between 

reward rate and movement speed, they reasoned that differences in temporal discounting policy 

ought to affect subjective estimates of reward rate, which in turn may manifest as overt changes in 

movement speed in response to experimental manipulations of reward rate (Shadmehr, 2010; 

Shadmehr et al., 2010; Shadmehr & Mussa-Ivaldi, 2012). For example, consider a hypothetical two-

block task design in which subjects acquire rewards of uniform size in response to correct choices 

between two targets, which they report with saccadic eye movements. Further suppose that in the 

first task block, rewards are acquired immediately, with no delay; in the second block, subjects then 

perform the same task in which these same rewards are now acquired after a uniform delay that is 

consistent across all trials. The general framework of delay-discounting leads to the straightforward 

prediction that the delayed rewards will be assigned less subjective value than when these same 

rewards are obtained immediately; thus the reward rate for any given subject will necessarily be 

lower in the second block relative to the first. However, if subjects differ in the rate at which they 

discount rewards over time, the relative magnitude of this change in reward rate across the two task 

blocks will be perceived as being larger by a subject who discounts rewards more rapidly than it will 

by a subject who discounts them more slowly – even if the actual change in reward rate is objectively 

the same in both cases. Consequently, if movement speed is a direct function of reward rate, it 

follows that a subject who discounts rewards steeply should exhibit a more pronounced change in 

movement velocity across the two task blocks in comparison to a subject who discounts less steeply 

(Shadmehr & Mussa-Ivaldi, 2012). Based on this reasoning, Shadmehr et al. hypothesized that it 

should be possible, in principle, to compare and quantify the discounting functions of individual 

subjects by measuring the changes in the speed of their movements in response to experimental 

manipulations of reward rate over the course of a simple decision task. 

This was essentially the hypothesis tested by Choi et al. (2014), who found that the resulting 

behavioral measures of movement speed could indeed serve as a valid and reliable behavioral metric 

for an individual’s rate of temporal discounting, such that greater changes in movement speed in 

response to a given manipulation of reward rate are indicative of steeper underlying discounting 

functions. Intriguingly, the authors also obtained significant correlations between these behavioral 

measures and a number of traditional psychometric assessments of trait impulsivity that they 

administered to their subjects (Choi et al., 2014). Thus, in light of the aforementioned relationships 
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between temporal discounting and impulsivity on one hand, and between impulsivity and clinical risk 

status on the other, the correlations Choi et al. (2014) obtained between their behavioral measures of 

temporal discounting and traditional personality measures of impulsivity are highly suggestive of the 

latent clinical utility of such decision tasks as proximal measures of temporal discounting function. 

Such tasks might be of genuine clinical significance not only because of their potential to discretely 

quantify temporal discounting policies Shadmehr & Mussa-Ivaldi, 2012; Choi et al., 2014), but also 

because such indirect behavioral indices of temporal discounting may also avoid many of the 

methodological pitfalls otherwise inherent in the self-reported nature of the questionnaire-based 

batteries typically used to assess underlying trait impulsivity (see Navarick, 2004). 

Urgency in the aetiology of Parkinson’s disorder 

The potential clinical ramifications of contemporary decision-making research are not limited only to 

impulsivity, but may in fact have the potential to be extended towards our understanding of 

neuropathologies such as Parkinson’s disease (PD). Once again, this potential is grounded in the 

explicit mechanistic links made between reward rate and movement speed in the urgency-gating 

framework. For example, Mazzoni et al. (2007) administered a simple arm-reaching task to both 

healthy subjects and PD patients, who were asked to complete a required number of accurate 

reaching movements to variously-sized targets without visual feedback while maintaining the speed 

of their movements within a certain prespecified range. While the PD patient group as a whole 

required more attempts on average to complete the required number of correct movements, analysis 

of their movement kinematics revealed that they were in fact capable of making movements with 

speed and accuracy comparable to that of healthy controls. Instead, their true deficits appeared to 

reflect an inability to reliably select appropriate parameters from among their extended repertoire of 

motor commands, with the ultimate result that they require more attempts to succesfully complete a 

given reaching movement according to a given set of parametric specification. Furthermore, these 

impairments were observed to become more pronounced as the biomechanical costs of the required 

movements increased (ibid), suggesting that the underlying motor-parameter-selection mechanisms 

themselves were related to the subjects’ assessment of the relative rewards and/or costs of the 

movements to be made. 

Mazzoni et al. (2007) thus ultimately concluded that the pathophysiological slowing of movement 

typically observed in advanced stages of Parkinson’s disease may not involve straightforward deficits 
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in motor control, as previously thought (Pendt et al., 2011). Instead, the underlying deficit in 

Parkinsonian bradykinesia may consist of impairments in the ability to accurately estimate the 

relative cost of a given movement, with PD patients tending to implicitly over-estimate the cost of a 

given movement – a tendency that becomes more pronounced as the objective costs of a movement 

increase. This, in turn, would decrease the subjective value assigned to any given action, which by 

extension will result in a distorted estimate of the overall reward rate within any given task. The 

effects of these underlying deficits in reward valuation may therefore manifest as disturbances in 

overt motor behavior indirectly via their distal effects on an underlying, implicit “motor motivation” 

system. 

Notably, given that Mazzoni et al.’s (2007) mechanistic explanation of these deficits is predicated on 

an explicit functional relationship between reward- and motor control networks, their account is 

strongly reminiscent of the role of urgency signals described above. The possibility that movement 

disorders may actually be distal reflections of “urgency-like” mechanisms originating in the basal 

ganglia enjoys further plausiblity given that the BG are widely considered to be the primary locus of of 

PD pathophysiology. This conclusion is further supported by a number of closely-related studies 

noting similar relationships between motor control and various aspects dopaminergic transmission 

among the BG (Niv et al., 2007; Pine et al., 2010; Maia & Frank, 2011; Pendt et al., 2011; Haith et al., 

2012), as well as being consonant with the wider role of the BG in relating reward contingenies to 

motor behavior (Graybiel et al., 1994; Schultz et al., 1997; Daw & Doya, 2006; Kobayashi & Schultz, 

2008; van Veen et al., 2008; Turner & Desmurget, 2010; Hayden et al., 2011; Opris et al., 2011; 

Humphries et al., 2012; Hsiao & Lo, 2013). Consequently, such studies are steadily building up 

empirical support for the idea that the underlying aetiologies of both Parkinson’s disorder as well as 

of individual clinical risk factors such as impulsivity may find a common origin in “urgency”-related 

dysfunction – albeit with differing symptomatic manifestations. 

 

Conclusion 

The present experiment was meant to explicitly test the predictions of the DDM and the UGM for a 

unique experimental task within which the two models’ predictions diverge – and its results in this 

regard argue decisively in favor of the UGM. This result is important because while most prior 
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decision-making research has been guided by a broadly consensual commitment to integration-based 

models, the results of most such empirical work could be accounted for more-or-less equally by both 

integration-based and urgency-gating models. The majority of the extant behavioral and physiologal 

data accumulated over the preceding decades of decision-making research, therefore, cannot be said 

to have permitted strong conclusions regarding the superiority of either model. 

Nonetheless, popular support for integration models has remained unjustifiably strong in spite of 

both the lack of exclusive empirical support for such models, as well as the considerable number of 

substantive theoretical and empirical criticisms that can be made of them. For these reasons, 

contemporary work employing novel variants of traditional decision-making paradigms that are 

capable of differentiating between integration-based and alternative models will be of continuing 

importance to the development of the field, as they may stimulate the development of newer and 

more complete models by loosening the entrenched (and increasingly untenable) comittment to 

integration-based models as the default explanatory framework in contemporaty decision-making 

research. 

Strictly speaking, our experiment was not the first such study to argue against the DDM: a number of 

recent studies have also presented data that strongly resist easy explanation by integration-based 

models (Usher & McClelland, 2001; Cisek et al., 2009; Thura et al., 2012; Tsetsos et al., 2012). 

However, while such studies are of note for this reason alone, the alternative models they have been 

used to support can nonetheless be argued to fall short on the basis that their mechanistic revisions 

to the DDM are neither ecologically well-motivated, nor sufficient to overcome many of the 

theoretical shortcomings inherent in the sequential sampling framework identified in the foregoing 

discussion. Neither is the present experiment the first to offer decisive empirical support explicitly for 

the UGM: a number of prior studies have previously shown data that are exclusively consistent with 

an urgency-gating framework (Cisek et al., 2009; Thura et al., 2012; Thura et al., 2014). However, 

these studies have been questioned on the basis of their methodological departure from more 

traditional forms of perceptual decision tasks, and their results can therefore be potentially dismissed 

as being task-specific (see Thura et al., 2012, p1-2). The present experiment is, however, the first 

study to date to yield relatively unambiguous and exclusive support for the UGM using a decision task 

which was designed to be as similar as possible to those used extensively in the past to support 

integration models. Its results therefore cannot be easily dismissed as task-dependent, and in this 
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respect futher reinforce the conclusions of prior studies whose results similarly appear to support the 

UGM (Cisek et al., 2009; Thura et al., 2012; Thura et al., 2014). The present work also further 

reinforces the broader array of studies which have provided direct evidence against the DDM and its 

closely-related models (Usher & McClelland, 2001; Cisek et al., 2009; Thura et al., 2012; Tsetsos et al., 

2012), but also further extend such studies by offering a single, ecologically-motivated framework by 

which the mutual influences among reward rate, movement speed, and the various parameters 

governing decision timing can be systematically accounted for by their effects on a common control 

mechanism of broad functional scope. 

This unified framework can in turn generate novel predictions not only for decision-making research, 

but also offers a number of relatively concrete and empirically-tractable inroads for addressing a 

number of broader phenomena of significant clinical interest, as outlined in the preceding discussion. 

Thus the urgency-gating model may ultimately provide a theoretical impetus to integrate empirical 

efforts from within the domain of perceptual discrimination tasks to larger issues of potentially broad 

clinical relevance. The most immediate way in which the UGM might do so is by guiding the 

adaptation of simple, traditional decision-making tasks into relatively straightforward and valid 

alternative diagnostic measures, thereby enhancing the methodological repertoire available to 

clinicians in regards to the psychometric measurement and/or risk-assessment of various populations. 

This makes the UGM a promising foundation for future research: moreover, this unique theoretical 

potential is specific to the UGM, and therefore further distinguishes it from integration models like 

the DDM. Thus, at its most general, the development and empirical refinement of novel decision-

making models like the UGM may ultimately serve to situate the field of decision-making within a 

wider psychological and neurobiological purview. 
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