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Résumé

L’objectif de cette thèse est de présenter différentes applications du programme
de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi
que la théorie présentée ici, mènera à une solution générale du problème d’intelli-
gence artificielle, en particulier en ce qui a trait à la nécessité d’efficience. La vision
du calcul conditionnel distribué consiste à accélérer l’évaluation et l’entrâınement
de modèles profonds, ce qui est très différent de l’objectif usuel d’améliorer sa ca-
pacité de généralisation et d’optimisation. Le travail présenté ici a des liens étroits
avec les modèles de type mélange d’experts.

Dans le chapitre 2, nous présentons un nouvel algorithme d’apprentissage pro-
fond qui utilise une forme simple d’apprentissage par renforcement sur un modèle
d’arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité
d’une contrainte d’équilibre pour maintenir la distribution d’exemples aux experts
uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l’entrainement
et l’évaluation sont contraints à être éparse en utilisant un routeur échantillonnant
des experts d’une distribution multinomiale étant donné un exemple.

Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d’une
représentation éparse divisée en segments d’experts. Un modèle de langue à base de
réseau de neurones est construit à partir des transformations éparses entre ces seg-
ments. L’opération éparse par bloc est implémentée pour utilisation sur des cartes
graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour
démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant
des opérations éparses contrôlées par un routeur distinct des experts est entrâıné
sur un ensemble de données d’un milliard de mots. Un nouvel algorithme de parti-
tionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la
couche de sortie d’un modèle de langage, la rendant ainsi beaucoup plus efficiente.

Le travail présenté dans cette thèse est au centre de la vision de calcul condition-
nel distribué émis par Yoshua Bengio. Elle tente d’appliquer la recherche dans le
domaine des mélanges d’experts aux modèles profonds pour améliorer leur vitesse
ainsi que leur capacité d’optimisation. Nous croyons que la théorie et les expériences
de cette thèse sont une étape importante sur la voie du calcul conditionnel distri-
bué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des
systèmes d’experts.

Mots-clés: calcul conditionnel distribué, réseau de neurones, apprentissage pro-
fond, apprentissage supervisé, apprentissage par renforcement, arbres de décisions,
modèle de langage, softmax hierarchique, bloc éparse, mélange d’experts, torch
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Summary

The objective of this paper is to present different applications of the distributed
conditional computation research program. It is hoped that these applications
and the theory presented here will lead to a general solution of the problem of
artificial intelligence, especially with regard to the need for efficiency. The vision
of distributed conditional computation is to accelerate the evaluation and training
of deep models which is very different from the usual objective of improving its
generalization and optimization capacity. The work presented here has close ties
with mixture of experts models.

In Chapter 2, we present a new deep learning algorithm that uses a form of
reinforcement learning on a novel neural network decision tree model. We demon-
strate the need for a balancing constraint to keep the distribution of examples to
experts uniform and to prevent monopolies. To make the calculation efficient, the
training and evaluation are constrained to be sparse by using a gater that samples
experts from a multinomial distribution given examples.

In Chapter 3, we present a new deep model consisting of a sparse representation
divided into segments of experts. A neural network language model is constructed
from blocks of sparse transformations between these expert segments. The block-
sparse operation is implemented for use on graphics cards. Its speed is compared
with two dense operations of the same caliber to demonstrate and measure the
actual efficiency gain that can be obtained. A deep model using these block-sparse
operations controlled by a distinct gater is trained on a dataset of one billion words.
A new algorithm for data partitioning (clustering) is applied to a set of words to
organize the output layer of a language model into a conditional hierarchy, thereby
making it much more efficient.

The work presented in this thesis is central to the vision of distributed condi-
tional computation as issued by Yoshua Bengio. It attempts to apply research in
the area of mixture of experts to deep models to improve their speed and their op-
timization capacity. We believe that the theory and experiments of this thesis are
an important step on the path to distributed conditional computation because it
provides a good framework for the problem, especially concerning competitiveness
inherent to systems of experts.

Keywords: distributed conditional computation, neural network, deep learning,
supervised learning, reinforcement learning, decision tree, language model, hierar-
chical softmax, block-sparse, mixture of experts, torch
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1Machine Learning

Machine Learning (ML) is a vast field emanating from the field of Artificial

Intelligence. It exists at the intersection of many fields including: probability and

statistics, computer science and engineering, calculus, algebra, as well as many

others. Its vastness makes it a difficult and time-consuming field to master. Any

prospecting machine learning scientist must keep up with the many techniques

available, or notwithstanding, learn enough of these to be able to function as a

researcher or scientific programmer. The entire field is joined by a shared approach

to problems, which is to build algorithms that have the ability to learn a desired

behavior from data. The data itself is chosen to represent the target problem.

An alternative approach is to do away with data and use teams of experts to

code a detailed algorithm to solve the particular problem explicitly, which involves

no training of an algorithm using data. Instead, this learning process is abstracted

away into the minds of the experts who produce the algorithm. On the other

hand, the approach of machine learning is to artificially reproduce aspects of bio-

logical learning by implementing synthetic (or artificial) alternatives that can be

algorithmically codified.

Algorithms that learn, or conversely, that can be trained, see the resulting

learned behaviors more difficult to understand. Or at least we cannot understand

them as directly as the more transparent algorithms used in symbolic AI, which of-

ten result in a kind of symbolic explanation. In the case of ML, the result is a kind

of artificial behavior, which consists in reactions or actions that can be observed

directly, while nevertheless having an internal process that cannot always be ob-

served or understood explicitly. This hidden aspect of machine learning stems from

its use of many free parameters, which often consist in real-valued numbers, that

cannot be so easily interpreted or understood as leading to the observed behavior.

The same is true for humans where the processes of the brain or mind cannot be

easily understood as causing or operating the observed behaviors.
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1.1 Types of Learning

To begin to understand ML, we should discern the different types of learning:

– Supervised Learning : roughly speaking, model P (Y |X) ;

– Unsupervised Learning : roughly speaking, model P (X) ;

– Reinforcement Learning : maximize reward R given environment states S

and available actions A.

Supervised learning uses labeled data. It consists of random variables X and

Y , respectively the input and the target, or label. Tasks are often divided into

classification and regression (or prediction). Classification is about predicting one

or many classes Y given inputs X. In other words, Y is a discrete random variable.

Regression on the other hand consists in predicting continuous random variables Y

given inputs X. The supervised learning problem space can often be modeled as a

conditional probability distribution P (Y |X).

Supervised learning problems, by their very nature, presuppose the existence

of labeled data, which isn’t always possible in practice. For unlabeled data, ran-

dom variables X can be modeled through unsupervised learning. Where supervised

learning tries to model causal relationships between inputs and targets, its unsu-

pervised counterpart tries to find hidden structure in the data. Approaches include

clustering, feature extraction, dimensionality reduction and hidden Markov mod-

els. Unsupervised learning can be used to model probability distribution P (X).

This can be done by introducing latent variables H. The problem space is then

modeled as P (X,H) where the objective is to synthesize random variables H where

P (X,H) 6= P (X)P (H). These can be of lower dimensionality than X, therefore

simplifying X through abstractions. The opposite case, where the objective is to

synthesize higher dimensional variables H, can also be sought out using techniques

like denoising auto-encoders (Vincent et al. (2008)).

Reinforcement learning is very different from the above two approaches. In this

scheme, the problem consists in optimizing the interactions of an agent with its

environment states S. The agent can only learn from a very sparse reinforcement

signal that usually takes the form of a reward R following a sequence of states

and actions. The agent’s interactions with its environment are limited to a set of

actions A. The environment is often modeled as a Markov decision process and

we use dynamic programming to learn to optimize the agent behavior to maximize

2



reward.

1.2 Theory of Learning

In each of these algorithms, there are different trainable parameters θ. These are

adapted to solve the problem, i.e. to fit the data (which frames the problem). These

parameters often take the form of a set of tensors. Tensors are multivariate data

like vectors (a 1-dimension tensor), and matrices (a 2-dimension tensor). The same

is true for inputs x and y. For example, images usually take the form of 3D tensors,

where dimensions represent colors (or channels), like red, green and blue (RGB),

and the width and height of the image. Through predefined transformations ŷ =

F (θ, x) on trainable parameters θ, where x is an instance or sample from random

variable X, F is the parameterized transformation, and ŷ is the prediction. Of

course, this particular definition is limited to supervised learning, as it presupposes

labels Y , which is the main concern of this thesis.

To train a transformation F (θ,X) is to search for the optimal values of θ that

minimize the empirical risk:

R̂(Fθ, Dt) =
1

N

∑

x,y∈Dt

L (y, F (θ, x)) (1.1)

where Dt is the training set, N is the number of samples in Dt, and L (y, F (θ, x))

measures the error of the model in its prediction ŷ = F (θ, x) compared to the

target y. Even though the θ, x and y often take the form of multi-dimensional

tensors, this loss must be reduced to a single value (or scalar). This allows the

scientist to measure the progress of learning as the minimization of risk R̂(Fθ, Dt).

Furthermore, if the transformation F is differentiable, it can be used for learning

through gradient descent using the chain rule (or backpropgation). In any case,

the basic learning problem can be reduced to the following:

θ? = argmin
θ

R̂(Fθ, Dt) (1.2)

In laymen terms, the objective is to find the parameters θ? that minimize the

empirical risk over the training set. As we will see later, this does not cover the

3



entirety of the learning tasks, as it does not consider the generalization ability of

the model (or learning agent).

In machine learning, we often divide our data set D into 3 distinct sets:

D = Dt ∪Dv ∪De (1.3)

where Dt, Dv and De are respectively the training, validation and test sets, and D

is sampled from the problem space P (X, Y ). The training set is used for minimizing

the empirical risk by optimizing θ. However, models with a great many degrees

of freedom can over-fit the training set. This can be caused by a θ containing

many variables, or by a transformation F with powerful non-linearities, such as

high-order polynomials.

As is often the case with machine learning problems, the problem space P (Y |X)

cannot be sufficiently sampled, or represented by D. This is either due to the curse

of dimensionality, or to the real-world cost of obtaining enough samples. This leads

to problems of generalization, where the model cannot perform so well on data that

it hasn’t yet learned, i.e. that wasn’t part of Dt.

A common technique to deal with this issue, is to withhold a portion of the

available data D such that it can be used to approximate the expected risk (or

generalization error):

R(θ, F ) = E [L (Y, F (θ,X))] =

∫

X,Y

L (Y, F (θ,X)) p(X, Y )d(X, Y ) (1.4)

Unlike the empirical risk, which is measured over a sample of the problem dis-

tribution, the expected risk is over the true distribution, which is almost always

unknown. The true objective of most supervised learning problems is to minimize

the expected risk. This implies that the transformation Fθ, while being trained to

minimize an empirical risk, must be constrained in such a way that it generalizes

to the entire problem distribution P (X, Y ), which D only approximates.

We monitor the generalization ability of our model Fθ by measuring its risk

(mean loss) over some held-out data (Dv and De). The validation set Dv is used

for cross-validation. We can train several models with different hyper-parameters

controlling various aspects of its learning, such as its capacity and its rate of con-

vergence, and compare their mean loss (or validation error) over the validation set

4



Dv. We can also use the risk over Dv to keep only the version of the model with

the lowest validation error (i.e. early-stopping) — as high capacity models tend to

over-fit Dt after some training iterations. To over-fit is to minimize the empirical

risk at the expense of the expected risk. To under-fit is the opposite.

The test set De is used for evaluation purposes. It shouldn’t be used in any

way that would bias the model in its favor. If we were to use De to perform cross-

validation or early-stopping, then the model would become biased. So we hold-

out De for the purpose of publishing results, comparing different approaches, or

more generally, to provide equal unbiased grounds for evaluating the generalization

ability of different approaches.

1.3 Artificial Neural Networks

Neural Networks are a very popular computational model used for solving com-

plex supervised learning tasks like image classification and language modeling, and

they are the basis of all models used in this thesis. Neural networks are modular

in that they are divided into parameterized layers that can be assembled into a

directed graph. Each layer can further be reduced to small units of computation

called artificial neurons (figure 1.1).

The simplest layer is a linear affine transformation of the form:

y = h(x) = Wx+ b (1.5)

yσ(
∑
i

)

xi

Wi

b

W2

W1

Wni

x2

xi

xni

Figure 1.1: Graphical representation of an Artificial Neuron.
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where b is a nj-element bias vector, x is a ni-element input vector, W is an nj ×ni
weight matrix. In this simplified model, parameters θ = {W, b}. We can use this for

linear regression, which is one of the simplest kind of supervised learning predictors.

1.3.1 Logistic Regression and Gradient Descent

If we wish to bound it between 0 and 1, we can introduce a non-linear transfer

(or activation) function:

y = f(x) = σ(h(x)) (1.6)

where σ is the logistic function:

σ(x) =
1

1 + e−x
(1.7)

and h(x) is a linear transformation:

h(x) = Wx+ b (1.8)

Equation 1.6 is from a family of sigmoidal (S -shaped) functions. It can be used

along with a quadratic loss function for the prediction of multi-dimensional bounded

continuous targets:

Lq(y, ŷ) =
1

nj

nj∑

j=1

(yj − ŷj)2 (1.9)

where y is the target vector, and ŷ = f(x) is the prediction. The empirical risk

function that uses loss Lq is called the mean squared error (MSE). MSE is used for

regression tasks, and can work directly on linear transformation (equation 1.5).

For binary classification we can use the cross-entropy loss function :

Lce(y, ŷ) =

{
− log(ŷj) for y = 1

− log(1− ŷj) for y = 0
(1.10)

Combining equation 1.6 (the transformation F ) with the cross-entropy loss brings

us closer to logistic regression. All that is missing is a learning algorithm. If we

can obtain the gradient of the loss with respect to (w.r.t.) the parameters, we can

6



perform iterative updates of the form:

θ ← θ − η∂Lce(y, ŷ)

∂θ
(1.11)

where η is the learning rate, such that this simple model can be trained iteratively

by stochastic gradient descent (SGD) (algorithm 1).

Algorithm 1 Stochastic Gradient descent algorithm for minimizing loss function
L. Inputs include learning rate η, maximum iterations maxk, and empirical risk
(measured using εt) threshold minε below which training is suspended.

1: function SGD(Dt, θ, η, maxk, minε, L)
2: k ← 0
3: repeat
4: εt ← 0
5: for (x, y) ∈Dt do
6: ŷ ← F (θ, x)
7: εt ← εt + 1

N
L(y, ŷ) . εt approximates empirical risk

8: θ ← θ − η ∂L(y,ŷ)
∂θ

9: end for
10: Shuffle Dt . The shuffling makes it stochastic.
11: k ← k + 1
12: until εt < minε or k = maxk
13: return εt, θ
14: end function
15:

In the particular case of logistic regression, parameter gradients ∂Lce(y,ŷ)
∂θ

can be

obtained by a simple application of the chain rule:

∂Lce
∂θ

=
∂Lce
∂f(x)

∂f(x)

∂h(x)

∂h(x)

∂θ
(1.12)

where the gradient of the cross-entropy loss w.r.t. the output f(x) is:

∂Lce
∂f(x)

=

{
−1
f(x)

for y = 1
1

f(x)−1 for y = 0
(1.13)
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(a) Linear separable (b) Non-linear separable

Figure 1.2: Linearly separable (a), and a non-linearly separable (b) sets. While the first dataset
can be separated by a straight line, the second cannot (it would require a curvy line, or multiple
joined straight lines).

the gradient of the logistic function w.r.t. the affine transformation is h(x):

∂f(x)

∂h(x)
= f(x)(1− f(x)) (1.14)

and the gradient of the affine transformation w.r.t the parameters θ = {W, b}: is

∂h(x)

∂W
= x,

∂h(x)

∂b
= 1 (1.15)

1.3.2 Multi-Layer Perceptron

Logistic regression for binary classification is however not very powerful. In

particular, while it can learn to discriminate linearly separable data, it cannot

do so for non-linearly separable data (see fig 1.2). This is due to the limited

modeling capacity of the transformation F (equation 1.6). In particular, the linear

transformation is limited to generating hyperplanes for dividing the data space

into two regions (2-class discrimination). Even though this is followed by a logistic

function (equation 1.7), this non-linearity only serves to bound the distance between

each input x to the linear transformation’s hyper-plane.

To overcome this limitation, neural networks 1 stack layers — each consisting

of a linear transformation followed by non-linear activation function — to obtain a

1. Artificial neural networks, or neural networks, are also generally known as multi-layer per-
ceptrons (MLP) for its relationship to the original Perceptron (Rosenblatt (1958)).
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non-linear discriminator or predictor F . We have already seen the logistic (or sig-

moid) activation function. There are other alternatives like the hyperbolic tangent

(tanh), which is also sigmoidal yet bounded between -1 and 1:

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
(1.16)

and the rectified linear unit (Glorot et al. (2011)), which outputs (and has a gradient

of) 0 for all non-positive inputs x.

relu(x) = max(0, x) (1.17)

These are placed between linear transformations in order to introduce a non-

linearity to F . Without these activation functions, stacked linear transformations

could be simplified to a single linear transformation, which can only perform linear

discrimination. The actual parameters are still to be found in these linear transfor-

mations. As in logistic regression, these are updated through gradient descent using

the chain rule. We can divide our neural network into modular transformations (or

layers) M :

M(θ, x) = σ(Wx+ b) (1.18)

where σ() is a differentiable activation function, including, but not limited to, any

of the above non-linearities. Since we stack such layers, they can be indexed, along

with their inputs and parameters, by their order ` in the sequence. The chain rule

can then be applied to obtain the gradient of a loss L w.r.t. parameters θ`:

∂L(Fθ(x), y)

∂θ`
=
∂L(Fθ(x), y)

∂M`(x`)

∂M`(x`)

∂θ`
(1.19)

There are however difficulties in applying this method to networks with many layers

(or deep networks). For each layer M` the gradient passes through, a portion of

the information found in the original gradient (w.r.t loss L) is lost. 2

The gradient, by its very nature, is subdivided, aggregated, and non-linearly

2. We hypothesize that this loss is due to two factors: the activation and the linear transforma-
tion. The first is especially prevalent in networks that make use of sigmoidal activation functions
as these tend to generate smaller gradients near the boundaries of the activation function, which
has the effect of dissipating the gradients. As for the linear transformations, the loss is not so
obvious. It occurs in the division of gradients through the incoming weights of an output neuron,
and its converse, the aggregation of such signals from outgoing weights of input neurons.
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scaled at various points in the computation graph. Undergoing a sequence of such

transformations makes the causal relationship between the gradient and the loss

decay as it moves down through the graph. This is even more true since all param-

eters are normally updated concurrently, as opposed to one at a time, which would

be ideal (yet intractable) as the gradient w.r.t. to a parameter doesn’t fully take

into account that the other parameters will be updated as well.

1.3.3 Loss Functions

Neural networks have also been associated with other loss functions, such as the

negative log likelihood (NLL) and the Kullback—Leibler divergence (KL-divergence).

The first is almost exclusively used with the softmax activation function, which dif-

fers from those seen so far in that it does not operate in an element-wise fashion

(each xi computed independently of other xi′) :

softmax(x)i =
exi

ni∑
i′
exi′

(1.20)

where ni is the number of elements in the vector x. Since these are normalized

to sum to one, it amounts to transforming the input x into a valid probability

distribution P (Y |X) over ni categories (or classes).

The NLL loss is similar to cross-entropy (equation 1.10), but is used for multi-

class classification problems (as opposed to just binary classification).

LNLL(y, ŷ) = − logP (y|x) = − log(ŷy) (1.21)

where P (y|x) is the probability of class y (the target class) given input x, as pre-

dicted by the model. Its empirical risk is equivalent to maximum likelihood esti-

mation, where the objective is to maximize the model’s prediction of the likelihood

of target classes given the inputs. In practice, using softmax for the output layer,

the loss amounts to indexing (and negating) the output of the softmax at index

i = y, where y is the target class.

The NLL can also be trivially extended for use with many-class classification

problems. In such problems, the input x is associated to target y, where y is formu-

lated as a vector of probabilities who’s ith element contains the target probability
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of class i : yi = Q(Y=i|x). If we think of the original multi-class NLL in this

way, then target y is a one-hot vector with target class yi (same as original y in

equation 1.21) having a p(Y=y|x) = 1, the remaining elements being zeros, such

that :

LNLL(y, ŷ) = −
ni∑

i

yi log(ŷi) (1.22)

The KL-divergence is different in that it can be used for a wider range of

probability distributions: e.g. for predicting multinomial probabilities as described

in equation 1.22 :

LKL(y, ŷ) =
∑

i

log

(
Q(y|x)

P (y|x)

)
Q(y|x) =

∑

i

log

(
yi
ŷi

)
yi (1.23)

Interestingly, the gradient of both LNLL and LKL w.r.t. ŷi are the same:

∂LKL

∂ŷi
=

∂

∂ŷi
yi (log(yi)− log(ŷi)) =

∂

∂ŷi
yi log(ŷi) =

∂LNLL

∂ŷi
(1.24)

1.3.4 Weight Decay Regularization

When training supervised learning algorithms for the purpose of generalization,

we often need to regularize the training of the model by introducing additional

information in order to solve an ill-posed problem or to prevent overfitting. This

can be accomplished by using techniques such as weight decay or a hard constraint

on the maximum norm of weights. Weight decay is a very popular technique that

involves modifying the loss function to include the L2-norm of the weights:

Ω(θ) = Ω(W1,W2, ...,W`, ...WN`
) =

∑

`

||W ||2 =
∑

`ij

W 2
`ij (1.25)

The regularized empirical risk then becomes:

R̂(Fθ, Dt) =

(
1

N

∑

x,y∈Dt

L (y, F (θ, x))

)
+ λΩ(θ) (1.26)

where λ is a coefficient modulating the importance of the regularization. It is

a hyper-parameter that must be chosen through cross-validation as it affects the

expected risk (equation 1.4). The gradient of the regularization term w.r.t. to
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weight matrix W` is then:
∂λΩ(θ)

∂W`

= λ2W` (1.27)

During training, the effect is to keep the norm of the weight matrix small, such

that the model does not over-fit the training set by using large weights. We will

consider regularization using a hard constraint on the maximum norm of weights

in section 1.4.6.

1.4 Deep Learning

The depth of a neural network is measured by the number of layers between

input and output. Training MLPs with one, two or even three layers isn’t very

difficult. In most cases, the techniques presented in the last section can be applied

to get such a model working. However, in many cases, using three or more layers

isn’t so easy as the limitations of gradient descent become more apparent, such

as poor optimization and generalization (Bengio et al. (2007)) and (Erhan et al.

(2009)). In this section, we explore some techniques used to facilitate the training of

deep neural networks. Most of the techniques presented here are detailed, explained

and consolidated in (Bengio (2012)), (Bengio et al. (2013)) and (Bengio (2009a)).

1.4.1 Activation Function

As discussed in section 1.3, different activation functions can be used to in-

troduce a non-linearity into the network, thereby allowing the modeling of more

complex boundaries. While it was once very popular, the logistic function (equa-

tion 1.7) has some issues. Unlike the tanh function (equation 1.16), although both

are bounded, it can only output positive values.

Both these functions have a weakness in that the gradient resulting from activation

values close to the boundaries are much smaller. This slows down learning and

makes it more difficult for low and high activations to be modified in the opposite

direction, thereby contributing to learning plateaus.

An alternative is to use the rectified linear unit (ReLU) (equation 1.17) (Glorot

et al. (2011)). The gradient of activations below the threshold of zero is simply
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zero, which means that such an activation never receives any gradient signal. As

for the gradient of activations over zero — the linear part —, the gradient is passed

backward as is. For the latter case, the gradient isn’t scaled by any non-linearity.

This part of the activation behaves like a simple linear activation function. This

allows the training value of the gradient signal to be preserved for many more lay-

ers.

Although paradoxical, the ReLU is a non-linear activation function due to all nega-

tive inputs having an output value of zero. In most cases, ReLU learns much faster

than the tanh or logistic functions. A caveat is that it requires that constraints be

put to limit the size of weights or activations since it lacks an upper bound. The

max norm constraint (section 1.4.6) works particularly well in this respect.

1.4.2 Parameter Initialization

All neural networks need to have their parameters initialized before training can

commence. The biases can usually be initialized to zero and so can the weights of

the parameterized output layer. The remaining weights on the other hand are more

tricky. The simplest approach is to initialize weights using small values sampled

from a normal or a uniform distribution.

Another simple technique, useful for layers that use ReLUs ((section 1.4.1), is to

impose a very sparse weight matrix (with many zeros), by initializing only 15 ran-

dom weights for each output neuron by sampling values from a normal distribution

with mean 0 and standard deviation 1 (Martens (2010)). This technique, com-

monly known as sparse initialization (in the Pylearn2 and dp libraries), is the one

that we most often use in practice, as it is simple to implement and is supported

by empirical evidence.

This section wouldn’t be complete without a technique based on the idea that

units with more inputs should have smaller weights. Note that the above sparse

initialization is based on this same principle, except that it initializes less weights.

Scaling by the inverse of the square root of the fan-in (number of input neurons

connected by weights to each output neuron) is a good practice (Orr and Müller

(1998)). (Glorot and Bengio (2010)) use a combination of fan-in and fan-out where
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each weight is sampled from a uniform distribution between −r and r where

r =

√
6

fanin + fanout

(1.28)

is used for tanh activation functions and a variation can be used for the logistic

function.

Pre-Training

A more complicated technique used for initialization is pre-training, where the

initial network is constructed in a layer-wise fashion. Each layer is pre-trained us-

ing the outputs of the last layer (or in the case of the first layer, the inputs x) to

perform unsupervised learning. Learning approaches include using restricted Boltz-

man machines (RBM) (Hinton et al. (2006)) — an energy-based model, denoising

auto-encoders (DAE) (Vincent et al. (2008)) or contractive auto-encoders (CAE)

(Rifai et al. (2011)). These techniques initialize the weights in a region which can

lead to better generalization and which may be less prone to being caught in local

minima. In cases were pre-training doesn’t seem to provide better results than ran-

dom initialization, it rarely yields worse results. While these techniques were more

popular following 2006, they have recently somewhat fallen out of use due in part

to recent developments, such as rectified linear units (section 1.4.1), which reduce

their benefits, and also because the technique is more involved and introduces more

hyper-parameters.

1.4.3 Preprocessing

Training can often benefit from performing some preprocessing on the raw data.

In language modeling, the raw data is often a corpus of texts, where these need

to be tokenized, rare words must be agglomerated into a single placeholder token,

and each token can be translated into a number for reducing the memory footprint.

Bag-of-word approaches have even more preprocessing techniques that can be used

to reduce the importance of frequent tokens (stop-words), such as tf-idf (Jones

(1972)), although neural networks can often learn these heuristics implicitly.

As for datasets that use images as inputs, preprocessing techniques are very dif-
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ferent. Techniques include standardization which involves subtracting the mean

and dividing the standard deviation of each feature. Global contrast normalization

(GCN) optionally subtracts the mean across features and normalizes by either the

vector norm or the standard deviation (across features, for each example) (Coates

et al. (2011)). Zero-Component Analysis (ZCA) whitening (Bell and Sejnowski

(1997)) is a computationally expensive technique used to making the input less

redundant (whitening). The resulting features are less correlated with each other,

and all have the same variance. 3 Local Contrast Normalization (LCN) (Pinto

et al. (2008)) is another rather expensive technique used for performing local and

subtractive normalizations which enforces a kind of local competition between ad-

jacent features in a feature map and between features in the same spatial location

in different feature maps, which is particularly useful for object recognition (Jarrett

et al. (2009)).

Different combinations of preprocessing steps can be used. These should be de-

termined during hyper-optimization as it isn’t always obvious beforehand which

combination works best.

1.4.4 Loss Function and Output Layer

In section 1.3.3, we explored different loss functions such as KL-divergence,

cross-entropy, NLL and the quadratic error (or MSE). Each criterion is particularly

suited for its range of problems which requires experience with different models and

datasets in order to be applied correctly. Even with experience, finding the right

combination of loss function and output layer will often follow some trial and error.

Not all problems can make use of the loss functions presented here, but they can

often make use of variations thereof.

An example would be facial keypoint detection, which requires predicting the coor-

dinate of a number of keypoints given an input image. The initial reflex might be

to use an MSE criterion on linear outputs, or maybe bound these using a logistic

function and scaled targets.

However, this doesn’t work well in practice as it doesn’t correctly capture the spa-

tial localities. An alternative solution is to model the output space as a vectors of

approximately 100 values (a hyper-parameter) for each keypoint’s x and y coordi-

3. see http://ufldl.stanford.edu/wiki/index.php/Whitening for a detailed overview.
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nate. Each target value can be translated to a small (standard deviation of about

1) Gaussian blur centered at the keypoint coordinate. The blur increases the pre-

cision of the new targets as compared to just using a one-hot vector (a vector with

one 1, the rest being zeros). The use of a gaussian blur centered on the target,

which amounts to predicting multinomial probabilities, can be combined with the

KL-divergence criterion to train a softmax output for each keypoint coordinate.

This alternative approach actually works well in practice 4 and is a great example

of the necessity of choosing the right loss function (or criterion) and commensurate

output layer.

1.4.5 Dropout

The technique known as dropout, presented in (Hinton et al. (2012)), immedi-

ately became very popular, particularly in the field of computer vision where its

benefits are more pronounced (Krizhevsky et al. (2012)). Dropout is extremely

simple to implement as it basically involves multiplying samples (0 or 1) from a

binomial distribution to the input of parameterized layers. During training, each

hidden neuron is dropped (set to 0) with a probability of p ≈ 0.5 and the output

of this process (the non-dropped activations) are scaled by 1
(1−p) . During testing,

all neurons are used, and no scaling factor is applied. Empirically, the effects are

a kind of regularization where the binomial noise tends to curtail over-fitting. The

hypothesis presented in the original paper is that it effectively prevents the co-

adaptation of feature detectors (neurons) and performs a kind of model averaging.

The technique is known to work particularly well with ReLU activation functions

(section 1.4.1) and Maxout Network (Goodfellow et al. (2013)).

1.4.6 Max Norm Constraint

The max norm constraint is a suitable replacement for weight decay regulariza-

tion (section 1.3.4). It consist of a hard constraint on the norm of the incoming or

outgoing weight of a neuron presented in (Hinton et al. (2012)) for use with dropout

(section 1.4.5). However, the technique can be used to regularize the weights of

4. see https://github.com/nicholas-leonard/dp/blob/master/doc/facialkeypointstutorial.md
for a concrete implementation used for submitting top 3 entries to the Kaggle Facial Keypoints
Detection challenge.
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any neural network. The constraint acts on the weights tensors of layers following

a parameter update. When the L2-norm of incoming weights of a neuron is greater

than threshold m, these are rescaled to have norm m while the remainder are left

untouched. 5. This is unlike weight decay, were all weights are decayed during each

update. The m value should to be chosen such that it isn’t so big that it has no

effect, and not so small that it leaves no maneuvering room for learning. A good

place to start is around the mean norm of incoming weights during training. In my

experience, a value of 2, 4 or 8 will provide good results. The hyper-parameter m

can of course be fine-tuned for each layer and through hyper-optimization.

1.4.7 Learning Rate Schedule

The learning rate η (equation 1.11) is the most important hyper-parameter as

it controls the size of the gradient descent step. Choose a value too large and the

model will diverge to generate very large errors which may eventually introduce

NaN values throughout the system. Choose a value too small and training will

advance too slowly. High learning rates can help the model get out of local minima

and explore widely different configurations in the parameter space. Lower values

allow training to work out the dents in the model yet make it more prone to getting

stuck in local minima.

This is why it is often a good idea to use the highest possible values (without

diverging) at the beginning of training. Different schedules can be used to achieve

this. These include exponential and linear decays of the learning rate. Our own

experience has however led us to prefer a step schedule where the learning rate

is decayed instantaneously at different points in training (e.g. between specific

epochs). The points at which learning rate is decayed, and the amount of decay

is a hyper-parameter to optimize. The main reason why this approach is preferred

is that the resulting learning curves are more informative. The different errors can

often be seen to instantaneously fall at such points, thereby making the effect of

the decay more clear. And when the decay has no visible effect, we can conclude

that any further reduction will have no or little effect, and that the learning rate

may in fact be too low.

5. The max norm operation is available in optimized C and CUDA code for Torch7 :
https://github.com/torch/torch7/blob/master/doc/maths.md#torch.renorm
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1.4.8 Momentum

Momentum is a technique that involves keeping an exponentially moving aver-

age of parameter gradients and use these for updates instead of the current gradients

themselves (Hinton (1977)):

vt =βvt−1 + (1− β)
∂L

∂θ
(1.29)

θt =θt − ηvt (1.30)

where β is the momentum factor, η is the learning rate and t indexes the current

training iteration. We can think of this as a kind of second-order gradient de-

scent method that can help both accelerate learning and overcome local minima in

stochastic gradient descent (algorithm 1). Many variations of the approach exist,

including task-tailoring the initialization for momentum learning (Sutskever et al.

(2013)), or a accumulating velocity vectors in the directions of persistent reduction

across iterations (Nesterov (1983)). Higher β values should likely be used with

lower η. In any case, both these hyper-parameters tend to interact, thus requiring

that a change in one be accompanied by a complementary shift in the value of the

other.

1.4.9 Convolutional Neural Networks

The earliest successful application of what is now known as deep learning

can likely be attributed to the discovery of convolutional neural networks (CNN)

(Fukushima (1980)) and its application to hand-written character recognition (Le-

Cun et al. (1998)). A parameterized convolution layer is usually divided into three

steps:

1. Convolution

2. Activation

3. Pooling (or sub-sampling)

The first step involves convolving a set of small feature detectors over an input

feature map. If the input is a 3D tensor — an image with several channels (e.g. an

RGB image of dimensions 3× 32× 32) —, each feature detector takes the form of

a 3D tensor, although much smaller (e.g. 3 × 5 × 5). These feature detectors (or
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kernels) are convolved over the image’s height and width dimensions (a 2D convo-

lution). This means that every s pixels, where s is the stride of the convolution,

the kernel is compared to a patch of the same size around the current pixel:

ykl = hkl(x) =
∑

ij∈patch(kl)

Wijxk+i,l+j + bkl (1.31)

where i, j are the coordinate of pixels in the input patch centered on the commen-

surate coordinates k, l of the output feature map. So the parameters of the convo-

lution are reused (or shared) at many positions of the input image. This parameter

sharing does wonders for learning as gradient signals originate from many different

positions in the convolution for each example. Even without this learning advan-

tage, using such feature maps has many statistical advantages as features tend to

be extracted from natural images more easily by first detecting small patterns like

those obtained from Gabor filters (Marčelja (1980), Field (1987)), and detecting

more and more abstract features as more layers of convolutions are stacked.

The activation serves its usual function of introducing a non-linearity into the

network thus providing more modeling capacity (section 1.3.2). For the purpose

of convolutions, ReLUs with dropout tend to work really well (Krizhevsky et al.

(2012)). An expansion on this idea is Maxout networks (Goodfellow et al. (2013))

which have been very successful in image classification tasks using CNNs.

The output of the 2D convolution is a 3D Tensor with a depth that is equal to the

number of kernels used. Height and width on the other hand, when using a stride

s = 1 will remain approximately constant, loosing only a portion due to border

effects, which varies depending on the size of the kernel. This results in very large

output representations where much of the contained information may be redundant

for contiguous pixels. This brings us to the pooling layer whose task it is to reduce

the redundancy and size of the representation. Different pooling techniques can

be used, the most common being max-pooling, which takes the maximum value in

a patch of the convolution output. The width and height of this pooling patch is

another hyper-parameter. Furthermore, the pooling operation is also performed

as a convolution — this time on the output representation — which means that

another stride can be specified. The larger the stride and dimensions of the patch,

the greater the reduction in the representation. Other pooling operations include

averaging, and stochastic pooling (Zeiler and Fergus (2013)), among others.
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Many layers of parameterized convolutions, as presented above, can be stacked

to obtain higher-level feature maps. The output of this process can then be flattened

to a vector of features and fed into an MLP up to the output layer. CNNs of this

form are very successful and have been used to solve a variety a tasks, breaking

many image recognition records.

1.5 Mixture of Experts

A mixture of experts (MOE) is an application of the principle of ”divide and

conquer”. The standard model consists of multiple expert networks and a gater net-

work (Jacobs et al. (1991)), (Nowlan and Hinton (1991)), as illustrated in fig. 1.3a.

The gater takes an input x to generate an output for each of the experts. The

purpose of the gater is to distribute importance g among experts given an input x.

The purpose of experts is to predict y given x (Xu and Amari (2009)). Gater and

experts work together by dividing the problem space into simpler sub-problems for

which the experts are to be made specialists.

The main difficulty in learning MOEs is expressed by the chicken and egg paradox.

In order to train effective experts, the gater must first learn to divide the problem

into simpler sub-problems for the experts to learn to solve. Yet what makes a sub-

problem simple, in the context of gradient descent, is that the experts can solve it

with greater ease than a single generalist that learns to solve all sub-problems as a

singular whole, as in non-MOE models. In laymen terms, the experts and gater are

all co-dependent. This makes it difficult for the gradient descent to find a suitable

division of labor.

One approach to this problem is to separate the training of the gater from that

of the experts. This can be accomplished using Expectation-Maximization (EM)

(Dempster et al. (1977)) in order to divide the learning into two phases that iterate

until convergence (Jordan and Jacobs (1994)). Another approach is to train the

experts Pk(Y |X) on different subsets of the dataset and to train local unsupervised

gaters P (X|E = k) using Gaussian Mixture Models (GMM), which are then used

with Bayes theorem to estimate an ”easier” posterior distribution P (E = k|X) of

the dataset among experts. (Collobert et al. (2003)) iterate this process until con-

vergence and show how this method can be used to create hard parallel mixtures
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Figure 1.3: A mixture of three four-layer experts and a three-layer gater. In b, these 2 layers
are shared among experts, yet separate from the gater.

of experts.

The earliest means by which to train a mixture of experts is through simple back-

propagation. The gater network uses a softmax activation function on its final

layer, thus ensuring that all expert coefficients sum to one:

gk = softmax

(∑

i

wkixi + bk

)
(1.32)

where gk is the relative weight of expert k, xi is the output of the i-th unit of

the previous layer of the gater, bk is the bias of unit k, wki is the strength of the

connection from unit i to unit k. The output of each expert k is multiplied by

the corresponding expert coefficient gk provided by the gater, and the resulting

gater-weighted expert outputs are summed element-wise to get the final network

prediction ŷ. This process of accumulation is illustrated as the diamond MIX in

figure 1.3a), and takes the following form:

hj =
∑

k

ekjgk (1.33)

ekj is the output of unit j of expert k and in the context of classification, it is

calculated as

ekj = softmax

(∑

i

wkijrki + bkj

)
(1.34)
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where rki is the output of the i-th unit of the previous layer of expert k, bkj is the

bias of unit j, wkij is the strength of the connection from unit i to j for expert

k. The usual NLL loss function can be used on the output of the gater-weighted

accumulation of these expert outputs as the result will still sum to one.

A hard mixture of experts is a most promising application of the divide and

conquer principle since it may provide great speedups during both training and

testing (Collobert et al. (2003)). The gater chooses only a subset of all experts to

be propagated through, thus allowing a great number of weights without the usual

implication that this results in a greater strain on processing resources such as GPU

and CPU time. Our primary motivation in focusing our research on mixtures of

experts was this potential efficiency gain.

Variants on MOEs can also be exploited where the first layers are actually

shared by all experts (figure 1.3b), or where each layer has its own dedicated gater

and experts (Eigen et al. (2013)). In the chapter 2, we will explore MOE in the

context of the more general family of conditional models.
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2 Image Classi�cation using
DCC

2.1 Introduction

In the beginnings of the Internet, TCP/IP networks were made out of hubs,

which worked on layer 1 of the OSI model (Braden (1989)). Yet a network hub is

an unsophisticated device in comparison with, for example, a switch. A hub does

not examine or manage any of the traffic that comes through it: any packet enter-

ing any port is rebroadcast on all other ports. A switch processes data at layer 2,

while a router processes it at layer 3 of the OSI model. This makes switches and

routers much smarter than hubs, such that the latter have fallen out of use. The

state of the neural network today is that of a hub: all input signals are broadcast

to all output neurons.

Distributed Conditional Computing (DCC) is analogous to a switch in this metaphor.

The basic idea is to route neural signals to the appropriate neurons, such that each

prediction requires processing but a small fraction of the model’s capacity. In this

thesis, we will attempt to demonstrate the efficiency and effectiveness of DCC. We

first discuss the components of conditional models, provide a concrete implemen-

tation of a training algorithm for image classification using DCC, and conclude by

presenting experimental results.

2.2 Conditional Models

The vision of DCC is where a gater, formed of sparse stochastic output units,

generates a distributed representation of decisions zk that can turn off experts in

combinatorially many ways, thus doing away with large chunks of the computation

associated to these experts. Previous experiments have show that networks can be

trained successfully in spite of such noise and hard non-linearities (Bengio et al.
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(2013)).

Gater G is responsible for choosing experts Ek for the task of processing X into Y .

The purpose of the gater is to provide guidance for the flow of signal propagations

through experts. While that of the experts is to provide the expertise to model the

target data distribution P (Y |X).

2.2.1 Experts: Pieces of the Puzzle

The experts Ek can be anything from a full blown multi-layer perceptron (MLP)

as in section 1.3, to a single-output linear transformation as in equation 1.5.

In this chapter, we define experts Ek(Y |X) as the following function:

yk = σ(xWk + bk) (2.1)

where yk is an output vector of size Nj, x is an input vector of size Ni, Wk is weight

matrix of shape Ni × Nj, bk is a bias vector of size Nj, and σ() is an optional

activation function, like the logistic or hyperbolic tangent functions, etc.

Nj is an important hyper-parameter for it controls the granularity of the gater’s

ability to coordinate the expertise (the set Se of all experts Ek). A small value of

Nj is the equivalent of micro-management, where the gater gets to choose exactly

which individual units to activate in the concatenated output representation:

y = y1 ‖ y2 ‖ · · · ‖ yNk
(2.2)

where ‖ is the concatenation operator. While this ability to micro-manage might

allow the conditional model to optimize a cost function, it may have negative effects

on generalization such that the gater has too much switching capacity. Furthermore,

gater granularity has a cost in terms of the increased complexity of the gating task.

Given a fixed size of NkNj = Nout for vector y, the gater must generate an output of

size Nk = Nout

Nj
, and thus Nk ∝ 1

Nj
. In simpler terms, again for a fixed y bandwidth

Nout, the gater will also have a smaller bandwidth Nk for larger values of the yk

bandwidth Nj. Smaller values of Nk reduce the complexity of the gating problem 1

1. The more classes to discriminate, the harder the multi-class classification problem.
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2.2.2 Gater : A Second Order of Intelligence

A gater G(E|X) is assigned with the task of choosing the optimal combination

of experts for any example x, y sampled from P (X, Y ) such that the empirical risk

R̂(Fθ, Dt) (see equation 1.1) is minimized. We model a prototypical gater as a

multinomial distribution 2, where each class represents an expert. Given x, experts

might be sampled (with or without replacement) from the gater, or we might take

the maximum-a-posteriori (MAP) experts, or we might multiply each probability

zk = G(E = k|X) by the corresponding expert output yk = Ek(Y |X) and pool the

expert outputs element-wise, etc.

The task of gating is not an easy one to learn through backpropagation (BP)

(Rumelhart et al. (2002)), or deep learning (DL) (Bengio (2009b)) approaches. This

is in part because we constrain its probability distribution G(E|X) to be sparse

(sample a small subset of experts), and yet balanced (each expert gets sampled

almost as often). The main difficulty with BP/DL approaches could also reside in

stabilizing P (Y |X) for all k. During training, the nature (or definition) of k expert

distributions

P (Y |X) =
∑

k

G(E=k|X)Ek(Y |X) (2.3)

tend to fluctuate a great deal.

Yet even this simpler problem would prove difficult to solve in practice, for learn-

ing must still be coordinated between gater and experts. Initialized with random

parameters, the conditional model must learn to separate the task P (Y |X) into

specialized sub-components that must be learned by experts Ek(Y |X). Yet at the

same time, the gater must learn how to divide the task into sub-tasks, and how

to assign them to experts given x. Thus we are dealing with a chicken and egg

paradox, where the experts require a fully trained gater to learn (or fit) Ek(Y |X),

and where the gater requires fully trained experts to know how to best distribute

examples to them.

Given the complexity of the task, there is great risk that the model falls prey to

the simplest of solutions, which might be to always choose the same best experts,

or to use all equally to form a kind of model averaging.

2. A bernouilli distribution could also be used, such that each expert is sampled independently,
but previous work (Bengio et al. (2013)) has shown that enforcing a sparsity constraint on these
is not so easy as with a multinomial, where we need only sample experts without replacement
until the desired sparsity is reached.
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The ideal situation is for the gater to choose the optimal configuration of experts

K+ such that the resulting loss L can be minimized over samples x, y. Ideally, a

gater would be sophisticated enough to predict the L of each combination of ex-

perts given x, such that the optimal combination could be chosen. This means that

the gater is a kind of second order intelligence able to predict which combination

of experts will minimize the error. This might be an indication why training a

conditional model using BP doesn’t work as well as one would expect.

During training, the sampling of experts from a gater distribution given x is a form

of competitive learning since only the sampled experts have the opportunity to

learn P (Y |X). The stochastic gater takes on the form of a sampling probability

distribution G(E|X), such that only a subset of experts are sampled given an ex-

ample. Since G(E|X) influences which experts get an opportunity to learn, and

since we would like each expert to have an equal opportunity to learn, as well as

equal utility, the gater must be constrained such that

P (E = k) ≈ 1

Nk

, for 1 ≤ k ≤ Nk (2.4)

where Nk is the number of experts, and P (E) is the sampling frequency of experts

from G(E|X). We call this constraint equanimity.

While the distribution of experts must be equanimous (balanced), the gater must

also sample experts such that their contribution to the error is minimized 3. In

order for our gater to be effective, we need a means of measuring each sampled

expert’s contribution to the error. The gater must then make use of these metrics

to increase the probability of sampling the winning experts 4. But never to the

point that the same experts get sampled for all examples 5. The solution to this

problem implies a constraint on the distribution P (E) to be uniform across E. The

difficulty lies in implementing such a constraint.

One possible implementation involves sampling examples (from the current batch)

for each expert from P (X|E) = P (E|X)P (X)
P (E)

. This hard-constraint on the sampling

3. These two objectives will sometimes pull the training forces in different directions, resulting
in a kind of flux during training.

4. Winning experts: those experts that contributed most to minimizing the cost of the pre-
diction, for a given example.

5. Experts are randomly initialized and the ordering of examples is randomized, such that
some experts will have a random hebbian advantage. They will be quicker to learn P (Y |X), and
if the gater catches-on to this, they will be sampled more often.
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distribution G(E|X) allows each expert an equal opportunity to specialize, for they

are guaranteed a chance at learning at least one example. But a chance to learn

may not be enough. If we would like to guarantee that each expert gets to learn

something from a mini-batch, we need to sample at least two examples for each

expert, such that their contribution to the error can be compared, and the expert

can learn to model the least error-prone example x→ y. 6

2.2.3 Accumulators : Pooling and Concatenation

The output of experts can either be pooled, concatenated or a combination

thereof. Various types of accumulators A∗ exist such as a the weighted mean used

in mixtures of experts (MoE) pooling:

Amoe(z1→Nk
, y1→Nk

) =
∑

k∈K+

f


 zk∑

k′∈K+

zk′
, yk


 (2.5)

where f(α, y) is an element-wise function that scales y according to α, such as

f(α, y) = αy or yα, etc., and a → b is the set of all integer values x ∀ a ≤ x ≤ b.

Pooling may also take the form of a product of experts (PoE):

Apoe(z1→Nk
, y1→Nk

) =
∏

k∈K+

f


 zk∑

k′∈K+

zk′
, yk


 (2.6)

Accumulators may also be stacked, as in Maxout pooling (Goodfellow et al. (2013)).

In this model the gater and the experts are fully integrated. Each dimension of a

layer’s output y, or lane, is represented by its own array of approximately Nk ≈ 5

experts. Each such lane pools its experts using a max pooling accumulator:

Amax(z1→Nk
, y1→Nk

) = max
k

(yk) (2.7)

6. Yet different examples have different losses, so how can we compare expert gradients? A
proposed solution is to divide each example’s gradient amplitude by its sum of gradient amplitudes
such that the relative error is normalized to sum to one. Comparison can then be made between
examples, and the example with the lowest relative gradient amplitude will learn. An thus, each
example and expert gets to learn. We can then train the winning expert by allowing the flow of
gradients backwards to its parameters, while the loser(s) learn nothing. We have not tried this.
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where yk is obtained from eq. 1.5. These units are linear-activated before any

gating can occur, such that no immediate efficiency is gained from the gater 7. In

the framework of our conditional model, the gater and experts of a lane share the

same parameters from eq. 1.5. The gater imposes an output sparsity of 1
Nk

by use

of the heuristic max
k

(). In each lane (set of Nk experts), the only experts that get to

learn are those having maximum output yk for example x. We can thus imagine the

experts as having individual weights of wk = 1 with no bias connecting the output

yk to output y of each lane, such that the gater selects which of these connections

to use. Each output yl for lane l is accumulated through concatenation:

Acat(y1→Nl
) = y1 ‖ y2 ‖ · · · ‖ yNl

(2.8)

where Nl is the number of lanes. This is the second accumulator (over lanes) used

for Maxout pooling.

2.3 Equanimous Sparse Supervised

Reinforcement Learning

In this section, we discuss a concrete training algorithm for DCC aiming to

solve the difficulties encountered with the use of stochastic units, in training condi-

tional models composed of inter-dependent gaters and experts. Recall P (X, Y ) =

P (X)P (Y |X) is our target data distribution. Let Ek(Y |X) be our 1 ≤ k ≤ Nk

expert functions taking the form of eq. 2.1. Let G(E|X) be our gater distribution

taking on the form of an MLP of one or many parametrized non-linearities. Its

output non-linearity is a sigmoid gk = 1
1+e−hk

, where hk is the result of the final

linear transformation of the MLP. These sigmoid activations are then softmaxed:

zk =
exp(gk)

Nk∑
k′

exp(gk′)

(2.9)

7. Although one might argue that efficiency is obtained for the next layer due to the pooling of
expert representations yk. Nevertheless, this type of accumulator doesn’t qualify as conditional
computation as all experts need to be computed for each example.
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to form the probabilities of a multinomial distribution 8. The gater is thus a con-

ditional parametrized multinomial probability distribution. M(Y |X) is our condi-

tional model:

M(Y |X) = A∗
k:1→Nk

[G(E=k|X), Ek(Y |X)] (2.10)

where A∗ is an accumulator from section 2.2.3. Eq. 2.10 has a constraint for sparsity,

and another for equanimity. The first is a sparsity constraint on G(E|X) such that

a majority of experts K−(x) have G(E ∈ K−(x)|X = x) ≈ 0, and very few K+(x)

have G(E ∈ K+(x)|X = x) ≈ 1
ntest

, for x sampled from P (X), where ntest is the

number of desired experts per example for test runs. This constraint allows for

speedups in test-processing, as only a small fraction of top experts are required for

approximating 2.10:

M(Y |X=x) ≈ A∗
k∈K+(x)

[G(E=k|X=x)Ek(Y |X=x)] (2.11)

where K+(x) = argsmax
ntest,k

[G(E=k|X=x)] (2.12)

and where ntest is the quantity of maximum-a-posteriori (MAP) experts used per

example (during testing), and argsmax
n,k

[xk] is a function taking the n arguments k

having the maximum xk.

During training, we sample ntrain > ntest experts per example to allow for stochastic

exploration of Ek(Y |X) for 1 ≤ k ≤ Nk, such that the empirical risk can be

minimized. The sparsity constraint is such that only ntest of ntrain of Nk expert

distributions G(E = k|X = x)Ek(Y |X = x) will be reinforced on example x, y

sampled from P (X, Y ). Reinforcement occurs in both gater and experts. For a

given example, the gater increases the sampling probability of ntest winning experts,

while these same experts learn P (Y |X) through BP/DL.

The gater increases the sampling probability of an expert by targeting the ntest

commensurate sigmoid outputs to one, and the |V −| = ntrain-ntest losers to zero

8. Note that the sigmoid limits the range of outputs allowed for the softmax, which isn’t
optimal.
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using the mean-squared-error criteria 9:

∑
k∈V +

(gk − 1)2 +
∑
k∈V −

(gk − 0)2

|V + ∪ V −|
(2.13)

For a very uniform distribution of Gtrain(E|X), this would cause problems in terms

of the desired sparsity of Gtest(E|X) 10, since the pull towards 1 and the pull towards

0 wouldn’t agree with the desired sparsity. However, we reinforce experts having

the least error for a given example x:

V +(x, y) = argsmin
ntest,k

Ck(x, y) (2.14)

such that Gtrain(E|X=x) is expected to favor V +(x, y) ≈ K+(x) samples. In which

case, we say that experts V +(x, y) monopolize G(E|X=x) for a given x. Therefore,

the sparsity constraint will be respected.

Yet some experts may come to quickly monopolize G(E|X)P (X) such that other

experts will not be given a chance to learn (and catch up), and will see their capac-

ity underutilized. A kind of socialist, egalitarian, balancing, or for lack of better

word, equanimity constraint, is required. This constraint must ensure that each ex-

pert monopolizes an approximately equal share of P (X, Y ), as described in eq. 2.4.

To train our conditional model, we explored different training algorithms which

incorporate these two constraints while minimizing empirical risk.

We found that the most effective way of implementing the equanimity constraint

was by inserting a simple step after the gater softmax and before the multinomial

sampling. 11 It uses a small cache keeping track of the most recent examples seen

to re-normalize the current softmax output y such that the probability of popu-

lar experts is reduced, or conversely, the probability of under-utilized experts is

increased:

This works well in practice as the function can be inserted after any softmax, it

is simple, and does indeed have the desired balancing effect. It can also be easily

backpropagated through by caching some of the intermediate values (please refer

9. Unsampled experts are not reinforced in gater. Note also that the softmax and NLL com-
bination was also explored, offering very similar experimental results.

10. Unless ntest

ntrain
≈ ntest

Nk

11. The code for this has been made available online as its own Torch Module
https://github.com/clementfarabet/lua—nnx/blob/master/Balance.lua
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Algorithm 2 Algorithm for constraining the y = P (E|X) output of a softmax
with Nk categories to have uniform probability P (E) = 1

Nk
. Note that k indexes

categories (in this case, experts), 0 < α ≤ 1 is the weight of the past in the moving
average s (a vector of length Nk). The comments outline what probabilities each
step approximates.

1: function EquanimityContraint(y, α, s)
2: p = s∑

k

sk
. ≈ P (E) =

∑
x

(P (E|X=x)P (X=x))

3: l = y
p

. ≈ P (X|E) = P (E|X)P (X)/P (E)

4: z = l∑
k
lk

. ≈ P (Z|X) = P (X|E)
∑
k

(P (X|E=k)) where P (Z) = 1
Nk

5: s = αs+ (1− α)y
6: return z
7: end function
8:

to source code). The α should be set to a higher value when P (E) seems to remain

unbalanced.

As for the sparsity constraint, sampling without replacement from a multino-

mial distribution with probabilities equal to z (from algorithm 2) is a hard con-

straint which guarantees the desired sparsity. The entire training algorithm can be

summarized as follows:
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Algorithm 3 Algorithm for training conditional model M(Y |X) (equation 2.10)
using sparse approximation (equation 2.12). Arguments include gater G(E|X) and
Nk experts Ek(Y |X) (which are components of M(Y |X)), training set Dt, number
of training samples ntrain and number of reinforced experts ntest. The gater uses the
equanimity constraint as defined in algorithm 2 to draw samples from a multinomial
probability distribution without replacement.

1: procedure ESSRL(G(E|X), Ek(Y |X) ∀ 1 ≤ k ≤ Nk, Dt, ntrain, ntest)
2: repeat
3: Sample example x, y from Dt ≈ P (X, Y )
4: Sample ntrain experts from gater G(E|X=x)
5: for sampled experts Ek do
6: Forward propagate x to obtain likelihood vector ŷk = Ek(Y |X=x)
7: Measure loss Lk(ŷk, y)
8: end for
9: for k ∈ argsmin

ntest,k
Lk(ŷk, y) do . Reinforce ntest winners

10: Increase sampling probability G(E = k|X=x) as per equation 2.13
11: Backpropagate through Ek(Y |X=x)
12: Update Ek(Y |X=x) w.r.t. Lk(ŷk, y)
13: end for
14: until Training converges
15: return z
16: end procedure
17:
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2.3.1 Tree Architecture

The idea of organizing an MLP as a tree and training it through BP/DL was

first described in (Ornstein (1996)). An attempt was made to perform a kind of

unsupervised BP classification, where a decision tree is built iteratively (one layer

at a time). We build on this idea by organizing our conditional model as a tree of

expert arrows and gater nodes, which we call a Neural Decision Tree (NDT). The

input of the tree is near the root while leaf-expert output layers are shared 12, and

fed into a pooling accumulator to get the final prediction ŷ (see fig. 2.1). The tree

is composed of N` layers of (Nk)
` experts each.

We modify algorithm 3) such that each gater-node G`
z(E

`|X, parent(z)) samples

ntrain of its Nk child expert-branches E`
k for each of its input examples, where z

and k index the gaters and experts of layer `. 13. This would allow each example

to consider (ntrain)N` experts for potential reinforcement, where only ntest experts

are reinforced.

During testing, an example is propagated through the tree by taking ntest best

local MAP expert as determined by each gater-node G`
z . For example, a tree

of depth N` = 3 where each parent has Nk = 8 children could choose ntest = 2

experts at each gater-node. Since each gater-node can choose from Nk = 8 experts,

and we have a depth N` = 3, we end up with pow(ntest, N`) = 23 = 8 expert

prediction E3
k(Y |X). This is still much less than the total amount of leaf-experts

pow(Nk, N`) = 83 = 512. This makes sense since at each gater-node, Nk − ntest

expert-branches (and child gater-nodes), and all their dependents are dropped from

the computation graph.

As for accumulation, the different gater predictions G`
z(E

`=k|X=x) can be

combined to obtain the probability of leaf expert predictions EN
k :

G(EN
z =k|X=x) =

∏

k′∈a(k)

G`
z′(E

`=k′|X=x) (2.15)

where N = N` (for clarity), a(k) is the set of all ancestors to expert k and z′ indexes

12. Each leaf-expert outputs a feature vector. Each class is a parameter vector of the same
length shared by all leaf-experts.

13. The combinatorial problem space is small since each layer ` is divided into (Nk)`−1 indepen-
dent gater-decisions involving discriminating ntrain of Nk expert-branches : (Nk)`−1

(
Nk

ntrain

)
<

(
(Nk)

`

Nkntrain

)
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Figure 2.1: Tree Architecture and Training. Green experts are sampled by green gaters. Cyan
experts and gaters are reinforced on winning expert-paths. Class experts (in red) are shared by
all sampled leaf-experts, the results of which are accumulated to generate predictions Ŷ for X.
Each expert has 3 child experts. A gater-wise ntrain = 2 and global ntest = 1 are represented.

the gater responsible for predicting the conditional probability of expert k′. From

expert weights G(EN
z =k|X=x), the expert predictions EN

k are accumulated using

equation 2.5.

We eventually lose more than we gain from adding too many neurons to MLP

layers (Dauphin and Bengio (2013)), which may be an indication that BP loses less

gradient information through sparser weight matrices. Hence, in order to facilitate

deeper learning, and because successive expert-branches will only receive a fraction

of examples thanks to the sparsity and equanimity constraints, successive E`
k will

require less and less capacity:

Nj0 > Nj1 > ... > Nj` > ... > NjN`
(2.16)

where Nj` is the size of expert output representations for layer ` and thus each

expert in a layer has the same such size. While we could divide each node into

two branches to get a binary tree, this would ultimately require more depth for

more breadth. In order to reduce depth, we allow a hyper-parameter to determine

the number of branches per node: Nk ≈ 9. Previous work has demonstrated that

keeping this bellow 10 allows for a good trade-off between depth-related learning
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issues, and discrimination of branches (Ornstein (1996)).

The outputs of the tree are representations yo for each leaf expert-branch, for a total

of No = pow(Nk, N`) leafs. We may be tempted to have each class c of our multi-

class classification problem have its own dedicated weight vector Woc and bias scalar

boc for processing each yo. But this might cause problems in terms of generalization

as experts closest to the leafs could become entirely dedicated to predicting inputs

from a single class. The capacity of such an expert would be wasted as it could

be replaced by a constant that always outputs the same class. In such a case, the

classification is being performed by the gater. This over-specialization behavior

can be seen in the works of (Eigen et al. (2013)).

In order to counter this tendency, we force a common output representation space

for all yo for 1 < o < No by sharing the parameters of the last layer of experts (red

arrows in figure 2.1). The resulting predictions of each expert can then be pooled

with any of the accumulators discussed in section 2.2.3 to generate the prediction

ŷ (figure 2.1), for any class.

2.4 Experimental Analysis

In this section, we present our the results of our experiments in applying the

ESSRL training algorithm (algorithm 3) to an NDT model and the MNIST dataset.

The MNIST dataset consists of 28× 28 gray-scale digit images; 60,000 for training

and 10,000 for testing. The objective is to classify the digit images into their cor-

rect digit class.

2.4.1 Implementation

The NDT model was implemented using Torch. Efficiency was obtained by cre-

ating new sub-set batches for every expert sampled from a gater. In other words,

after sampling from each gater-node in the tree, advanced indexing would be used

create a mini-batch for each expert containing only the necessary examples. Each

expert-local mini-batch would carry around the identity of its examples so that they

35



could be joined at the output of the tree for accumulation. By ensuring that redun-

dant memory copies weren’t performed, the entire propagation of a batch was only

5 times slower than an MLP with the same quantity of layers and which utilized an

equivalent number of multiplication-addition operations. This is understandable as

the efficiency of the matrix-matrix multiplication operation is accelerated by intel-

ligent use of the memory cache. This optimization cannot be performed as well for

the NDT as the mini-batches are split into distinct memory segments, each using

a different weight matrix, such that the effect of these BLAS optimizations aren’t

as pronounced. In any case, the speed w.r.t an MLP utilizing the same quantity of

parameters as that in the NDT will still be much slower given enough sparsity. So

the issue then lies in determining if the NDT can utilize this extra capacity.

2.4.2 Failure Modes

Failure modes are hypothesized circumstances where the model could fail. The

possibility of expert monopolies, where a monopoly (or cartel) forms over a large

portion of the distribution of examples, has already been established. Because

the ESSRL algorithm is based on the principle of competition, where only the

more successful experts get to learn, experts with a head start (due to random

initialization) can learn faster and therefore monopolize the distribution.

In order to diagnose this failure mode, we use a specialization matrix where rows

and columns respectively represent leaf-experts and dataset classes. A portion

of the data set, usually the training set, is propagated through the model using

local-MAP experts at each gater-node. Each variable in the specialization matrix

identifies the count of examples of the commensurate class that ended up using

the commensurate leaf-expert. The classes are used as an indicator of the kind of

specialization occurring in the leafs.

Monopolization

In figure 2.2, we present some example specialization matrices for NDT that,

while providing good generalization performance (≈ 1.3% test classification error

on MNIST), weren’t using all of the capacity available. The fact that performance

of these models is still very high — even though the equanimity constraint and other

exploration techniques like ε-greedy sampling for multinomial —, demonstrates how
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(a) Monopoly on all Examples (b) Monopoly on some Classes

Figure 2.2: Specialization matrices for 5 × 5 = 25 experts (y-axis) and the 10 MNIST classes
(x-axis) using the training set. Two common mixture of expert failure modes are presented. In a
a single expert (row 2) is monopolizing all examples while in b a cartel of experts each monopolize
a sub-set of classes. In both cases, the remaining experts are used for very few examples, and
many of these see little to none.

difficult it is to divide the problem space among experts. The tendency for such

competitive systems is indeed to monopolize, and introducing balancing constraints

to utilize all available capacity is very difficult. Some of the causes may be the poor

initialization of some experts over others, how the gater parameters are initialized

to distribute examples in such a way as to favor some experts over others, and the

nature of the problem space itself. In some cases, the problem space can’t easily

be divided among so many or so little experts.

Over-Specialization

In both specialization matrices presented in figure 2.2, the distribution of ex-

amples to non-monopoly experts is sometimes distributed uniformly where each

class seems to be approximately equally represented in the expert. This indicates

that the expert was deemed to be of some use — after all, the gater-nodes use it

for evaluation —, and that it doesn’t seem to be responsible for discriminating a

subset of all classes. This isn’t necessarily bad, as specialization doesn’t imply each

expert limiting itself to a subset of classes.

Another type of failure mode is for the division of experts to be trivial. This

happens when each leaf-expert is responsible for processing examples for but one

class. This is exemplified in figure 2.3 were the specialization matrix shows each

expert having but one class, even though each class of example can find itself
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Figure 2.3: Specialization matrix for 7×7×7 = 343 experts (y-axis) and the 10 MNIST classes
(x-axis) using the training set. During evaluation, 3 gater-local MAP experts are chosen at each
branch and the 3×3×3 = 27 resulting leaf outputs are accumulated. Training was performed by
sampling 4 experts at each gater-node. Although difficult to see, each leaf-expert is responsible
for processing examples from but one class. This is an example of over-specialization.

in more than one expert. Therefore, it is the gaters which are responsible for

performing the discrimination. This often happens when too many leaf-experts are

used, or the hierarchy has too many levels. Each expert’s discrimination task is

trivial as it could be replaced by a constant one-hot vector. It is interesting to note

that this particular NDT achieved a noteworthy test error of 1.32% on MNIST after

755 epochs of training. Therefore, we can conclude that an over-specialization of

this nature doesn’t necessarily mean that the network is over-fitting. It just means

that our model has too much capacity.

2.4.3 Results

For our actual experiment, we ran hundreds of models using different configura-

tions. All final experiments presented here use a batch size of 128. Each gater-node

is a 2 parameterized layer MLP. The NDT shared a root layer (or trunk) whose

output representation is shared by all later layers in the tree. This is to reduce the
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size of the first layer of expert-branches and the first gater-node. We present the

results in table 2.1. Learning rate is decayed by a factor of 10 after epoch 500 and

700 using a linear decay schedule.

Baselines

For our baselines, we used MLPs of different depth and breadth. We chose

these such that, in a single example propagation, they used approximately the

same quantity of multiply-additions as the NDT. The baseline is trained using the

usual techniques, including max norm regularization, a learning rate schedule (we

choose the one that works best), momentum and tanh activation units (like the

NDT) (section 1.4). We found that, all things being equal, using models with a

depth of 4 worked best, while the NDT has a depth of 4: the trunk layer, 2 levels of

one-layer experts and the final shared layer. Although since the last layer is shared

and very small, we could think of the NDTs presented here as having a dept of 3,

such that an MLP of depth 4 has an advantage.

In table 2.1, we identify baselines using a nomenclature to keep the description

concise. For example, description MLP-4-1024 means a depth of 4 parameterized

layers, and width of 1024 for all hidden representations.

Neural Decision Trees

Thousands of experiments were performed using a variety of hyper-parameters

— the ESSRL-NDT training algorithm has many —. Experiments where divided

into different groups with fixed hyper-parameters. For example, we would choose

the number of experts per node, the depth of the tree, the number of reinforced

and sampled experts per node and explore variations thereof. The best results of

each of the most successful groups of experiments are presented in table 2.1 where

the description also follows a particular nomenclature. Using the first row of the

table as an example, NDT-2-7-3 means that the NDT has 2 layers of experts

(the trunk layer is a given), where each gater-node chooses 3 from 7 possible local-

MAP branch-experts. The e:1024x175x30 means that the representation between

trunk and the first level of experts is 1024, the next representation between first and

second level experts is 175 and the size of the input to the shared output layer is

30. The g:256-20 means that the first level gater-node has a hidden representation
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of size 256 (between the 1024-unit trunk output and its 7 outputs), and the second

level gater-nodes each have a hidden representation of 20 (between the 175-unit

first-level expert output and the 7 outputs).

Description Epoch Valid Test
NDT-2-7-3 e:1024x175x30 g:256-20 463 1.25 1.32
NDT-2-7-2 e:1024x175x30 g:128-15 477 1.29 1.35
NDT-2-5-1 e:1024x146x21 g:256-36 478 1.56 1.36
NDT-2-5-1 e:200x200x200 g:50-50 409 1.55 1.47
MLP-4-1024 601 1.50 1.50
MLP-4-768 323 1.59 1.53

Table 2.1: NDT-ESSRL Experiments

The specialization matrices for the first two rows of NDT results are presented

in figure 2.4 with a description of the training performed. These matrices look

very good as a majority of active leaf-expert process 2 or more classes of examples.

There are very few under-utilized and over-specialized experts, and no example

monopolies. In all cases, the equanimity constraint wasn’t enough as it only af-

fected the sampling of experts and examples (equal opportunity). While this was

necessary to obtain a balanced distribution of examples to experts, we also needed

to apply the same principles for the reinforcement of under-performing experts.

This was implemented by making a small change to the original ESSRL algorithm

(algorithm 3, line 9), where instead of just reinforcing the experts with the least

error for each example, we also reinforce the examples with the least error for

each (sampled) expert. This guarantees that each expert learns a component of

the problem space. We also explored different variations on the original algorithm

where instead of reinforcing the experts and examples with the least error — which

we can think of as a discrete technique —, we reinforce all sampled experts and

examples in inverse proportion to their relative error — which we can think of as

an analogue or continuous technique. The results of both approaches were however

very similar, which is understandable since they tend to have the same effect over

many training examples, especially when the continuous version uses exponential

functions like softmax to weigh the reinforcement signals.

In figure 2.5, we can see the effect of an excellent specialization. Even though

the last 5 experts are rather under-utilized — which means that the last expert-
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(a) NDT-2-7-2 e:1024x175x30 g:128-15 (b) NDT-2-7-3 e:1024x175x30 g:256-20

Figure 2.4: Specialization matrices for 7 × 7 = 49 experts (y-axis) and the 10 MNIST classes
(x-axis) using the training set. During evaluation, a chooses 2 while b chooses 3 gater-local MAP
experts at each branch and the resulting leaf outputs are accumulated. Training was performed by
reinforcing 3 of 4 sampled experts at each sampled gater-node. A majority of active leaf-expert
process 2 or more classes of examples. There are very few under-utilized and over-specialized
experts, and no example monopolies.

branch of the first level of the tree is —, this specialization matrix is near-perfect

as similar classes have clustered together:

– 1,3 and 8;

– 0 and 6;

– 4, 7 and 9; and

– 2 and 8.

This is exactly the kind of natural distribution of examples we are looking for as it

seems best to form experts that can discriminate between similar items, rather than

the simpler alternative. This also indicates that the task requires only a limited

amount of experts — there are only so many clusters —, and its strong links with

the field of cluster analysis.

2.4.4 Conclusion

Although the results presented here are very promising, the fact of the matter is

that these models were very difficult to hyper-optimize. In many cases they become

unstable. We also tried it on other image datasets like CIFAR-10, CIFAR-100 and

NotMNIST to find that it did not work so well in these cases. The tendency of

experts to over-specialize is great. The potential for using expert at the input of

the network seems quite low as the gater would require greater capacity. There
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Figure 2.5: Specialization matrix for 5 × 5 = 25 experts (y-axis) and the 10 MNIST classes
(x-axis) using the test set (row NDT-2-5-1 e:1024x146x21 g:256-36 in table 2.1). During
evaluation, 1 gater-local MAP expert is chosen at each branch such that the last expert output
is used as-is for prediction. Training was performed by reinforcing 2 of 3 experts sampled at each
gater-node. Even though the last 5 experts are rather under-utilized, this specialization matrix
is near-perfect as similar classes have clustered together: 1,3 and 8; 0 and 6; 4, 7 and 9; and 2
and 8, etc.
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are also strong tendencies for gaters to route examples from just one class to leaf-

experts. Although we have tried many different variations, including using different

learning rates, regularization constraints and momentum for the gaters and experts,

we found no clear cut indication that any combination worked best. In the end,

the particular random initialization of the network seems to be the most important

factor. Another difficulty of conditional models is to keep them from becoming pure

ensemble methods, where utilizing more experts during evaluation would seem to

help and the gaters are essentially useless. More tests would be required in this

respect. Of course, using more experts during evaluation often does provide better

results, as is evidenced by table 2.1, where the top performing models use more

local-MAP experts per gater-node. In the next chapter, we will see a completely

different approach which is more combinatorial in nature. In the sense that experts

from later layers aren’t associated to experts in previous layers, as is the case with

trees.
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3 Language Models using
DCC

3.1 One Billion Words Benchmark

For our experiments, we use the one billion words benchmark used for measuring

progress in language models (Chelba et al. (2013)). The dataset contains one billion

words. The task consists in using the previous n words (the context) to predict the

next word (the target word). All sentences are shuffled such that only the words

from the target’s sentence can be used for prediction. The end of the sentence,

identified by token ”</S>”, must also be predicted. To predict the first n words

of a sentence, padding is added. Using sentence ”<S> Nicholas is writing</S>”

as an example, each input -> target word would have the following contexts of 3

words:

1. ”</S> </S> <S>” -> ”Nicholas” ;

2. ”</S> <S> Nicholas” -> ”is” ;

3. ”<S> Nicholas is” -> ”writing” ; and

4. ”Nicholas is writing” -> ”</S>”.

The entire dataset is divided into 100 partitions of equal size. 99 of these are

used for training. The remaining partition is further divided into 50 partitions,

one of which is used for testing, while the remaining 49 are reserved for cross-

validation. All words with less then 3 occurrences in the training set are replaced

with the ”<UNK>” token. This is the same split used in (Chelba et al. (2013)).

This dataset was chosen mainly for its size. We hypothesized that DCC would

do best in an under-fitting regime, which is to say a regime that is very difficult to

over-fit. Our past experience has shown us that conditional models like mixture of

experts have a tendency to over-fit small datasets, which leads to bad generaliza-

tion. We also chose this dataset in order to move away from image datasets that

require convolutions to attain state of the art performance. Images thus require
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that the conditional computations be either integrated into the convolutions, or

limited to the final dense layers.

3.2 Neural Network Language Model

A neural network language model (NNLM) uses a neural network to model

language. There are various approaches to building NNLMs. The first NNLM was

(Yoshua Bengio and Vincent (2001)). (Bengio et al. (2006)) concatenates n context

words embeddings at the input layer to form an input of size n×ni, where ni is the

number of units per word embedding. This input layer takes the form of a lookup

table. We can think of it as a weight matrix W of size Nt × ni where Nt is the

number of words in our vocabulary. In the case of the billion words dataset, we

have approximately 800,000 words. Each word is assigned a single row of weight

matrix W which will serve as its embedding. These can be learned through BP

where the input of the table is a vector x of dimension n where each variable xi

contains the index of the word at position i of the context. These are used to

extract all embeddings of the lookup table that correspond to the context words:

y = Wx1 ‖Wx2 ‖Wx3 ‖ . . . ‖Wxn (3.1)

where ‖ corresponds to the concatenation operator. The gradient can be calculated

as follows:
∂y

∂Wj

=

{
1 for j ∈ x
0 for j /∈ x

(3.2)

which makes this layer efficient for both forward and backward propagation since

only the n context words need to be queried, concatenated and updated.

The resulting concatenation of embeddings can be forwarded through n` pa-

rameterized hidden layers having the following form:

y = σ(Wx+ b) (3.3)

where σ() is the usual element-wise activation function. These are often shallow

networks having no more than 1 or 2 parameterized hidden layers (Schwenk and
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Gauvain (2005)), (Le et al. (2011)).

In its simplest form, the output layer uses a normalizing non-linearity like

softmax:

yi =
exi∑
i′ e

xi′
(3.4)

Its use of the exponential function has a tendency of increasing the weight of the

highest input values, thus forming a kind of soft version of the max function.

By dividing by the sum of the exponential of each variable in the vector x, it

has a normalizing effect in that
∑

i yi = 1, thus making it useful for generating

multinomial probabilities P (Y |X). The forward and backward propagation of this

layer is extremely costly in terms of processing time for large vocabularies. This

inefficiency is due to the normalization which requires calculation of all xi for

1 ≥ i ≥ Nt. Alternatives to using a pure softmax exist, which will be discussed in

the next section.

The empirical risk function of the model is the ubiquitous mean negative log-

likelihood:

RNLL = −
∑

k

log(yk,tk)

Nk

(3.5)

where k indexes examples, Nk is the total number of examples, and tk is the target

word of example k. Finally, yk,tk is the likelihood of word tk for example k, where

yk is the output of the NNLM given example k. To evaluate our NNLMs, we use

perplexity (PPL) as this is the standard metric used in the field natural language

processing (NLP) for language modeling:

RPPL = eRNLL (3.6)

where e is the same logarithm basis as the log in RNLL.

3.3 Output Layer Optimizations

The issue with the last layer, the parameterized softmax, is that it can become

a serious performance bottleneck during both training and evaluation. This is due

to the large output representation, spanning the entire vocabulary of the corpus.
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3.3.1 Prior Work

Various solutions have been proposed to circumvent the issue. All of these

are variants of the original class decomposition idea (Bengio and de MontrÑL’eal

(2002)). Although other similar approaches exist, including importance sampling

(Bengio et al. (2003)) and uniform sampling of ranking criterion (Collobert et al.

(2011)), we chose to focus our attention on the following:

1. hierarchical softmax : Morin and Bengio (2005);

2. hierarchical log-bilinear model : Mnih and Hinton (2009);

3. structured output layer : Le et al. (2011);

4. noise-constrastive estimation : Mnih and Teh (2012);

The first method builds a binary hierarchy of words from expert knowledge like

WordNet (Fellbaum (1998)). Each output word has its own binary representation :

the sequence of binary decisions from the root leading down to the leaf containing

the word in the tree. The paper demonstrates that this method provides a great

speedup : O(log2(Nt)) instead of O(Nt), but at the cost of a small loss in perplexity.

The second approach uses a log-bilinear model (Mnih and Hinton (2007)) com-

bined with an iterative clustering algorithm. The latter consists in training a

hierarchical log-bilinear (HLBL) model, and then applying an EM algorithm to the

resulting word embeddings to perform a top-down (root to leaf) clustering of words.

The resulting binary hierarchy is used to initialize a new HLBL for training, and

so forth and so on. The first HLBL tree is constructed randomly. They demon-

strate a significant reduction in perplexity over the the previous implementations

of hierarchical softmax.

The third approach is similar to the first and second, but differs in how words

are clustered. As opposed to an LBL, they do not use a standard NNLM. They

begin by training a NNLM using a parameterized softmax output layer truncated

to consider only a small subset of the vocabulary. They reduce the dimensionality

of the resulting input word embeddings, and use these to perform a recursive k-

means clustering to generate a hierarchy of words. The recursive clustering divides

a word class (or sub- class) only if the number of words in this class is above an

empirical threshold.

The final approach is completely different in that it only affects training time,

which is also the case for (Collobert et al. (2011)). It approximates the denomina-
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tor of the softmax by sampling it from a unigram distribution. It only leads to a

speedup of about 10 on CPU as compared to the pure softmax solution. This is

mainly due to the cost of sampling from a multinomial distribution. Furthermore,

there is yet to be an open-source GPU implementation. However, the perplex-

ity does seem to suffer very little from this approximation, making it a suitable

alternative to the previous approaches.

Our approach, which we name the SoftMaxTree is very similar to the first three

approaches in that it uses a hierarchical representation of words to accelerate the

process. It also has in common with the third approach the use of a non-binary tree.

However, unlike any of these solutions, we make no use of embeddings, and thus do

not require training an LBL model or a NNLM to obtain these. We instead use a

clustering method that uses the relations between words, which will be detailed in

the next section. We chose this kind of approach over embedding-based clustering

as we already had code for it.

3.3.2 Similarity-Graph Partitioning

Various techniques can be used to perform a hierarchical clustering of words.

The most commonly known is Brown clustering (Brown et al. (1992)) 1. As outlined

in the previous section, some techniques use the word embeddings obtained from

training an NNLM.

Our algorithm is divided into the following phases:

1. Optimize words for set-based queries using b-tree indexes ;

2. Represent each word by a weighted set of related words ;

3. Create a directed graph of word nodes and similarity-weighted arrows ;

4. Cluster words into kL equally sized partitions ; and

5. Recursively cluster partitions into k` equally sized partitions for ` = 1→ L−1

.

Step 1

For step 1, the entire corpus is parsed, tokenized and loaded into a relational

database management system (RDBMS) like PostgreSQL 2. In order to save mem-

1. https://github.com/percyliang/brown-cluster
2. https://github.com/nicholas-leonard/equanimity/tree/0.7/nlp
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ory, we use an SQL table mapping all words to integers. The entire corpus needs

to be parsed twice. Once for mapping each unique words to its own integer keys,

as well as counting the occurrences of each word, and consolidating words with

less then 3 occurrences into the special ”<UNK>” word 3. The second pass stores

each sentence as a PostgreSQL Array of word keys (integers) 4. The advantage of

using an RDBMS is that it provides set-based queries and optimization facilities.

In particular, SQL tables columns can be indexed using b-trees in order to optimize

random access. As we will see below, this will prove invaluable for optimizing our

partitioning algorithm. The first optimization consists in expanding the word key

array of each sentence into a less-memory efficient table indexed by the position of

each word and its key. 5 This new storage representation allows the next step to be

performed with greater processing efficiency — it is otherwise intractable.

Step 2

For step 2, we first measure the inverse document frequency (Jones (1972)) of

each word, where each document is a sentence.

idf(t,D) = log(1 +
N

d ∈ D : t ∈ d
) (3.7)

where t is a word, d is a sentence, N is the number of sentences, and D is the

corpus of all sentences. We do this in order to weigh the relationship of each word

to a sentence using the ubiquitous tf-idf scheme (Salton (1991)):

tfidf(t, d, c,D) = tf(t, c)× idf(t,D) (3.8)

where c is the union of all contexts of a word, tf(t, c) is the number of occurrences

of word t in the word contexts c. In our case, we define a context as the 10 words

preceding a word in the same sentence. We use this definition of a context in order

to match it as closely as possible to the future use of language modeling. The main

advantages of tf-idf are its simplicity and its ability to downscale the importance

of frequent words. Once this is accomplished, we use the table of word positions

3. https://github.com/nicholas-leonard/equanimity/blob/0.7/nlp/parse1.lua
4. https://github.com/nicholas-leonard/equanimity/blob/0.7/nlp/parse2.lua
5. https://github.com/nicholas-leonard/equanimity/blob/0.7/nlp/billion-word-

benchmark.sql
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(see step 1), and the inverse document frequencies to create a table mapping each

unique word to the set of 700 words with the highest tfidf(t, d, c,D). In other words,

each word t will be represented by a set A of up to 700 words t, each weighted by

our measure of tf-idf. 6

Step 3

For step 3, we measure the similarity between all possible combinations of St.

With a vocabulary of 800 000 words, we have an upper bound of 640 000 000 000

similarity measures, which is intractable in terms of persistent storage and memory.

So we limit our graph of similarity to 700 arrows per word, which results in a much

more tractable upper bound of 560 000 000 arrows, or approximately 23 GB of

memory. For our measure of similarity, we use cosine similarity:

sim(A,B) = cos(θ) =
A ·B
‖A‖‖B‖

=

∑
t∈A∪B

At ×Bt

√∑
t∈A

(At)2 ×
√∑

t∈B
(Bt)2

(3.9)

where At and Bt measure tfidf(t, d, cA, D) and tfidf(t, d, cB, D) respectively. The

graph is constructed concurrently using a simple script which can parallelize SQL

queries. 7 Using 8x2.6 GHz Xeon-CPU-cores and index-optimized tables the process

terminates in approximately 20 hours. The resulting table represents a graph of

similarity arrows linking nodes representing unique words. We are now ready to

perform the first level of clustering.

Step 4

We begin step 4 by assigning each of the nK partitions to a set k of approx-

imately nk = 10 words. We thus choose nK = Nt

nk
. The clustering process will

continue to constrain partitions to have approximately the same size nk. This is

intentional as we will require such a balanced partitioning to make efficient use of

the GPU for predictions. The final step of the initialization is to calculate aff(k, t)

6. https://github.com/nicholas-leonard/equanimity/blob/0.7/nlp/word-clustering.sql
7. https://github.com/nicholas-leonard/equanimity/blob/0.7/nlp/parallel sql.py
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measuring the affinity of each word-node t to partition k:

aff(k, t) =
∑

t′∈k:t6=t′
sim(t, t′) (3.10)

Now initialized, the partitioning process can begin. It is very similar in essence

to MajorClust (Stein and Niggemann (1999)) in that it clusters the nodes using

a graph of similarity edges. However, our algorithm differs in that it results in

equally sized groups, which is the discriminating factor between clustering versus

partitioning algorithms. The algorithm begins by randomly selecting a word-node

t from the graph. It then ranks all of its connecting arrows sim(t, t′) by its pull(t, k)

measuring the similarity pull (or attraction) of word-node t to partition k:

pull(t, k) =
∑

t′∈k

sim(t, t′)× aff(k, t′) (3.11)

Before venturing on, we coarsely define den(k) measuring the density of the sub-

graph connecting nodes in partition k:

den(k) =
∑

t∈k

aff(k, t) (3.12)

This measure is very quick to compute for all clusters using SQL.

Initially, sampled word-node t would be assigned to the partition k with the

highest pull(t, k), subject to the constraint :

min
t′

[aff(k, t′)]
nk + 1

nk
>
∑

t′∈k

sim(t, t′) for t′ ∈ k (3.13)

But this would result in an unbalanced distribution. By this we mean a distribution

with few partitions having very high den(k), while the majority of partitions would

have very poor density. To understand this, we can compare this behavior to small

startups (poor partitions) having their best employees (word-nodes) hired by big

corporations (rich partitions) due to the attractiveness of higher salaries (greater

pull(t, k)). A vicious circle naturally develops where the poorest partitions cannot

retain their word-nodes, nor attract better ones, as these are attracted to the richest

(highest den(k)). Two classes of partitions come to exist: the rich and the poor

with no middle ground.
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(a) Equal distribution (b) Unequal distribution

Figure 3.1: Bar graph of den(k) ranked from richest to poorest. Figure a depicts the algorithm
favoring an equal distribution, while b depicts it favoring an unequal distribution. Each line is
identified by its order in the sequence of snapshots. The inequality of the partition densities grows
as a function of time. For this first level (` = 1) of the hierarchy, each partitioning process takes
approximately 48 hours to complete.

Our solution was to assign sampled word-node t to the partition k with the

lowest pull(t, k), subject to the constraint 3.13. This would slow down the in-

evitable growth of inequality. As demonstrated in fig. 3.1, the inequality grows,

but only a small proportion of partitions see their density reduced over time. This

method thus provides us with a balanced partitioning, such that each partition is

guaranteed a minimum utility in terms of density, or conversely, guaranteeing a

partition of similar peers to all word-nodes. Furthermore, where Total density of

the partitioning is simply defined as:

Total density =
∑

k

den(k) (3.14)

. The unequal scheme complete with a total density of 700 after 48 hours, while

the equal scheme does so with a total density of 1500. This demonstrates the

effectiveness of the partitioning approach that favors equality.

Finally, we established a simple scheme to keep the size of partitions constant.

When a sampled word-node is to be transfered to another partition, we continue

the process by attempting to transfer the worst word-nodes from that new partition

to another, and so forth and so on. When no further transfers can be performed, we

send a random word-node from this last partition to the first, thereby closing the

exchange loop and keeping all clusters balanced. The task is parallelized by having
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different processes perform independent exchange loops, thereby accelerating the

process. 8.

Step 5

Step 5 is a recursion in that steps 2 through 4 are repeated using the previous

level of partitions as nodes instead of words. Like word-nodes, each partition-node

k` of level ` is represented by a weighted set of related words. The set of words is the

union of all the word-nodes related to those nodes contained in its partition — we

found that this worked much better then aggregating similarity arrows (for e.g. by

summing their similarity measures) of adjacent partitions to create new similarity

arrows between partitions. The tf-idf is thenceforth measured as if the partitions

were nodes, and so forth and so on. The process is restarted until nK`
≈ nk.

The result of the process is a balanced hierarchy of N` levels, where each level

contains nK`
partitions of size nk having approximately equal den(k), or utility.

For our task we found that an nk ≈ 10 worked best – although with hindsight,

we would have chosen to use nk ≈ 30 subject to constraint nk ≤ 32 for obtaining

greater efficiency from the GPU. When large nk was used we found that the last

levels would result in poorer results. See table 3.1 for example word partitions. You

can see that it does a relatively good job of grouping related words together. Yet

in many sets, one word seems to be out of place. This is due to the item exchange

loops which must terminate by sending a random word to the first partition in the

loop. Near the end of training, these loops are very short, making such out of place

words very common.

8. https://github.com/nicholas-leonard/equanimity/blob/0.7/nlp/cluster.py
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Macvicar,Jackson-Lee,Rainger,MacVicar,Aidoo,Marikar,Feren,Stainback
Tonioli,Tertrais,Sekoli,Gollnisch,Pischiutta,Schiemsky,Saelzer,Metsu
19.44,20.12,13.36,08.57,13.45,15.29,12.01,19.56
Rimasse,Escarra,McGlinsey,Swithenbank,Divoll,Podberesky,Saporta,Gunvalson
Dechy,Kosciusko-Morizet,Pechalat,Dezeure,Djurberg,Tadena,Saugeon
Hixon-Denton,Dreiser,Roethke,Boutrous,DeReese,Simburudali,Karasik,Bikel
6pm,4pm,10am,10pm,5pm,2pm,7pm,3pm,9am
Bardem,Arruabarrena,Saviola,Aguirre,Camunas,Aguirresarobe,Vazquez,Culson
Bourque,Hoksbergen,John-Baptiste,Preval,Umlauft,Rougeau,Syler,Meulensteen
Xiaoling,Xichun,Renbao,Shu-chen,Baoquan,Xinbo,Xianguo,Pengyong
Scaroni,Ugge,Boffetta,Timoni,Nespoli,Micheli,Bandini,Zeppilli
Pouw,Laub,Brulliard,Karlekar,Yurko-Mauro,Immergut,Huttary,Thurig
Monoceros,Scorpius,Cepheus,Serpens,Piscis,Cetus,Puppis,Vulpecula
overdue,drawn-out,haul,stretches,waits,queues,distances,johns
Doumato,Rigby,Smeal,Bimla,Holmes-Norton,Squillari,Bron,Skelhorne
Kospi,Yonhap,Unification,KOSPI,Chosun,mass-circulation,KJ,Kopsi
Venuto,Memmo,Resta,Centa,Matteo,Maggio,Rollo,Sieno
Earnhardt,Meyerrose,Petroskey,Sveum,Steyn,Bumpers,Kildee,Begg-Smith
Harkett,Kirkness,Croucher,Kingscott,Glenton,Drane,Fullarton,Roney
Korolev,Ustyugov,Artyukhin,Drattsev,Artyukin,Dadonov,Rogaev,Chigishev
al-Awlaki,al-Aulaqi,Sadat,el-Sadat,Al-Awlaki,al-Awlaqi,El-Ibrahimi,Gargash
Veasley,Stargell,McCovey,Pelote,Mullins-trained,Galick,McGinest,Limond
Fedotenko,Salei,Pukhov,Chagaev,Amerkhanov,Boidakovs,Ponomariov,Kishmaria
Zak-Cohen,Ostrosky,DeFalco,Osterhout,Fouhy,Hulfish,Halaas,Haroules
Twitterton,DeGuerin,King-Smith,Enberg,Ebersol,Costolo,Cavatt,Cavett
fifth,sixth,seventh,second,third,fourth,eighth,back-to-back

Table 3.1: Level 1 word partitions ranked 10000 in terms of descending den(k)
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3.3.3 SoftMaxTree

Once the word-partitioning process is complete, we can justify its cost by using it

to increase the throughput of our NNLM. The first step in doing so is to implement

a hierarchical softmax module that can be reused throughout our experiments. The

hierarchical softmax, hereby referred to as SoftMaxTree, is defined as a product over

the probability of all nodes in the path to the target word:

P (Y = t|X) = P (Y = t|X, ∀c 3 t)
∏

c3t

P (c|X, ∀c′ 3 c) (3.15)

where t is the target word, X and Y are respectively variable input and outputs,

c is a partition-node. This optimization reduces the algorithmic complexity of

the last layer from O(noNt) to O(no lognk
(Nt)), where no is the size of the output

embedding space, i.e. the size of the input to the parameterized softmax output

layer.

This efficiency gain is however only theoretical. In practice, the gain isn’t as

pronounced due to the difficulty of parallelizing this on GPU. We were however able

to build a very fast CUDA 9 and C 10 implementation, using the Torch7 Collobert

et al. (2011) machine learning library. Both implementations are wrapped by the

same Lua code 11, thereby abstracting away the differences between C and CUDA

for the user. The SoftMaxTree Module is open-source (BSD license) and available

for use with Torch7 in the nnx 12 package.

A benchmark was prepared using the vocabulary hierarchy with Nt ≈ 800000,

nk ≈ 10, or its inverse N` = 6, and no = 50. Two NNLM are compared, one using

the SoftMaxTree, the other a standard parameterized softmax output layer. Both

neural networks have a lookup table using a context size of nx = 5 and an input

embedding space of size ni = 50. The NNLM has a parameterized hidden layer

transforming the input context to the output embedding space. The speedup of

the SoftMaxTree C implementation is approximately 475 compared to the vanilla

NNLM. And the CUDA SoftMaxTree implementation is approximately 1.5 times

the speed of its C counterpart.

9. https://github.com/nicholas-leonard/cunnx/blob/master/SoftMaxTree.cu
10. https://github.com/clementfarabet/lua—nnx/blob/master/generic/SoftMaxTree.c
11. https://github.com/clementfarabet/lua—nnx/blob/master/SoftMaxTree.lua
12. https://github.com/clementfarabet/lua—nnx
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Figure 3.2: Example SoftMaxTree Activation Pattern (in red) for a 3 level tree. The output
embedding (and input to this layer) is on top, the conditional word probabilities P (Y |X,C1, C2)
are on the bottom. All block (empty) leaf neurons need not be computed, thus the efficiency
gain.

With this speedup we are able to quickly train a NNLM on the Billion Words

dataset using nothing but a single consumer-grade GPU 13. We demonstrate this

by training two NNLMs identical in every respect except for the output layer. We

allocate to each the same amount of time on a GPU. The baseline will use an

NVIDIA Titan Black, while the SoftMaxTree will be handicapped by an NVidia

Quadro 4000, a much slower card 2 generations behind the Titan. The hyper-

parameters are nx = 5, ni = no = 128, using the same hierarchy and vocabulary

as above. This time, our model includes two parameterized hidden layers, joined

by nh = 512 hidden neurons. We use a learning rate of 0.1 for both. The results

are presented in figure 3.3. Within the alloted time, the baseline can only reach

a minimum test perplexity of 511, while the SoftMaxTree reaches 292. Another

way of interpreting these results is that it takes a little less than 3 days for the

SoftMaxTree to obtain a lower perplexity than that obtained by the baseline after

16 days.

To understand the potential perplexity that can be reached by an NNLM using

the SoftMaxTree, we train a much larger NNLM having a context of nx = 9,

embeddings of ni = no = 384 and nh = 1024 hidden neurons. The model is trained

for 132 epochs of 10 million iterations each (where each iteration predicts a word),

on an NVIDIA Titan Black GPU over the course of 2 weeks. The model was able

to reach a PPL of 188 on both the validation and test set, and a PPL of 190 on the

training set through cross-validation and early-stopping. This better than one of

13. Note that the original paper uses thousands of CPUs to perform its benchmark.
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Figure 3.3: Learning curves comparing an NNLM one using SoftMaxTrees to a baseline NNLM
using a vanilla softmax output layer. Each point is the minimum test perplexity btained through
cross-validation at the end of each day. The SoftMaxTree was able to complete 82 epochs on a
much slower card in the time it took the baseline to complete 16.

the Interpolated KN 5-gram, 15M n-grams baseline used in the original paper

which reached a PPL of 243 after 300 CPU-hours of training. This however does

not beat Katz 5-gram, 15M n-grams which reached a PPL of 128 after only 300

CPU-hours of training (Chelba et al. (2013)). Since the network wasn’t over-fitting,

adding more parameters could yield better results.

It is possible to argue that the SoftMaxTree, which is a kind of hierarchical

softmax (with N` levels), is an application of distributed conditional computation.

But this is mostly true for training (because it requires the targets). In the case of

measuring perplexity, it happens that it also works for evaluation purposes. But in

the application of predicting, say, the n most likely words following a context x, the

best we can hope for is a kind of tree traversal algorithm (dynamic programming)

to find these optimally.
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3.4 Block-Sparse Mixtures of Experts

The Block-Sparse Mixture of Experts is a model developed for demonstrating

conditional computation in the hidden layers of a neural network. Each hidden

representation is divided into K segments of n neurons. Using the mixture of

experts terminology, each such segment is an expert. Each hidden representation

thus has its own set of experts S`, where ` also indexes the preceding parameterized

layer M`. Segmenting hidden representations into experts implies dividing the

parameter space into blocks. Parameterized layer M` would be divided into N` =

K`−1×K` blocks. If l andm respectively index the input and output representations

of parameterized layer M`, then each block has weight matrix Wlm (each depicted

as an arrow in figure 3.4) and bias vector bm.

As depicted in figure 3.4, this neural network structure forms the experts of

a block-sparse mixture of experts. On the other hand, the gaters, as depicted in

figure 3.5, look like a standard MLP with an output space (a set of output neurons)

for each expert set S`. Actually, each output space O` has a K` units, one for each

expert (or segment) in S`. Both the gater network (figure 3.5) and expert network

(figure 3.4) receive input from the same input space, which we can think of as

consisting of just one expert. In the case of language models, the input space is

the concatenation of context word embeddings. The outputs of both networks are

however totally different.
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Figure 3.4: Block-Sparse Experts architecture. The parameterized layers are sparse by block.
The representations are sparse by segment. Each such segment is depicted here as a rectangular
box of neurons (circles). The input and output representation of the network are dense (they
only have one segment).

3.4.1 BlockSparse Gater

In the previous chapter’s NDT and in (Eigen et al. (2013)) the gaters received

input directly from different layers of representations in the neural network. Here

we consolidate all gaters into a single MLP and share only the lookup table between

gater and experts. This approach, other than being used for implementing standard

mixture of experts models, was chosen for two reasons: speed and consistency.

As outlined in section 3.4.2, the block-sparse operation isn’t as efficient as

a matrix-matrix multiply operation having the same amount of multiplication-

additions, such that any efficiency gain requires very sparse operations. If we were

to attach each gaters directly to its preceding sparse hidden representations (the ex-

pert segments), it would utilize the block-sparse operation and therefore be bound

by the same efficiency constraints. The sparsity of the block-sparse operation used

by the gater would only occur on the inputs of the gater, as opposed to both in-

put and output (doubly sparse) where significant efficiency gains can be expected.

By combining gaters into their own MLP without any block-sparse operations, the

whole network can be more efficient (or faster).
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Figure 3.5: The Gater used with the Block-Sparse Experts. There are 3 output spaces, one for
each of the Block-Sparse Expert hidden representation layers. When turned on, the gater output
neuron will activate the commensurate segment in the expert hidden presentation.

As for the matter of consistency, consolidating gaters into a singular MLP means

that they can more easily coordinate their choices — which is determined by the

last hidden representation. Furthermore, the variable nature of the Block-Sparse

experts Module — where a different set of experts is chosen for each example —,

may not so easily bleed into the gaters themselves as these do not receive inputs

or gradients from any block-sparse operations.

The gater outputs a sparse configuration of experts. By sparse we mean that

approximately 90% of experts are turned off. We implement this by a combination

of two methods: NoisyReLU and LazyKBest, which are detailed below. Each is

implemented as its own Torch7 Module in the open-source cunnx 14 package. They

are applied to the output of gater to obtain fixed-length sparse representations.

NoisyReLU

In (Bengio et al. (2013)), a noisy rectified linear unit (NoisyReLU) is used to

produce sparse outputs :

y = max(0, h+ z) (3.16)

where h is the tensor output an affine transform (equation 1.5) and z is a tensor

of the same size. During training, z elements are sampled from a normal distri-

bution with mean zero and a standard deviation of σ, a hyper-parameter. During

evaluation, z is set to zero. This helps in reviving ReLUs that never have positive

14. https://github.com/nicholas-leonard/cunnx
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h (dead units). While the original paper impose the sparsity constraint by using

an L2-norm constraint that adapts its weight dynamically to maintain a specified

sparsity factor, we change the NoisyReLU equation to more directly control the

sparsity:

y = max(0, h+ z − c) (3.17)

where c is a tensor of thresholds. During training, these are updated such that the

desired level of sparsity u (the per-unit proportion of non-zero activations over Dt)

is maintained. This is accomplished by keeping an exponential moving average û

of the actual proportion of non-zero activations:

ût+1 = λût + (1− λ)I[y>0] (3.18)

where y is the output of the NoisyReLU, Ie is the indicator function that is 1 when

expression e is true, 0 otherwise, t indexes the iteration, and λ is the weight of the

past in the moving average. The resulting ût+1 is thus a number between 0 and 1.

During training, the threshold c is updated as follows:

c = α(û− u) (3.19)

where α is a hyper-parameter. During evaluation, the current value of c is used,

but not updated. Typically, u ≈ 0.1. A C/CUDA NoisyReLU implementation as

a Torch7 Module is available online 15. In our experiments, we found that a σ = 1

and α = 1 worked well and that some noise was often better than no noise. We

also found that large values of λ = 0.99 were necessary to keep the distribution of

examples to experts balanced. As for u, we set it to u = k
K

, where k is the number

of chosen expert-segments in a sparse representation made up of a total of K such

segments.

LazyKBest

While the NoisyReLU implements a sparsity constraint on the gater outputs,

it cannot guarantee an exact level of sparsity for all examples. For reasons of

efficiency and ease of implementation, the Block-Sparse experts interface expects a

fixed number of experts chosen per example, as well as their indices. Therefore, we

15. https://github.com/nicholas-leonard/cunnx/blob/master/NoisyReLU.lua
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follow the NoisyReLU with a LazyKBest Module 16, which is a lazy — yet very fast

— implementation for selecting the k highest output activations of the NoisyReLU

– or any input for that matter. It divides the vector of activations into k segments,

and selects the index and value of highest activation of each such segment, thereby

returning k activations and their indices. Each index corresponds to an expert

segment of the Block-Sparse Module. The LazyKBest module thus guarantees an

exact proportion of active units. The inactive units receive no gradient as if their

activation were zero.

3.4.2 BlockSparse Experts

In (Bengio et al. (2013)), all conditional computation experiments are performed

by masking the unused experts for each example. In effect, no computational

savings were demonstrated as the output of each expert was computed for every

example; the efficiency gains were still only theoretical. For the BlockSparse ex-

periments, all operations were implemented on the GPU to measure the potential

efficiency gains that can be obtained through DCC. To do this, we make use of

the BlockSparse Module which implements a matrix-matrix multiplication which

is sparse by block.

Excluding parameters, the operation requires the following arguments for each

example:

– Input activation tensor x of size ni × kl where ni is the size of each in-

put expert-segment and kl is the number of active input expert-segments

(section 3.4.1);

– Input index vector u of size kl (one index per active input expert-segment);

– Output index vector v of size km (one index per active output expert-

segment);

– Output scale vector g of size km, the ordered output of the gater’s LazyKBest

Module;

For each output expert-segment ym, where m indexes the output of the com-

mensurate gater output, the block-sparse operation takes the following form:

ym = σ(

kl∑

l

Wvmulxl + bvm) (3.20)

16. https://github.com/nicholas-leonard/cunnx/blob/master/LazyKBest.cu
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Figure 3.6: Example Block-Sparse Mixture of Experts activation pattern (in red). This kind of
path would be activated by the gater, which selects which hidden segments to use.

where ul and vm are respectively the l-th and m-th index of the input and output

index vectors, Wvmul is a weight matrix of size nm × nl, and σ is an activation

function (section 1.4.1). In our experiments, we use the tanh activation function.

The block-sparse operation is thus potentially doubly-sparse — sparse input and

output representations —, as only a fraction of input and output expert-segments

need to be considered. When both input and output are sparse, the potential

efficiency gain is greater. For e.g. choosing kl = km = 10 from a total of Kl = Km =

100 expert-segments on each end, each example utilizes only klkm
KlKm

= 100
10000

= 1% of

all expert-blocks.

However, not all block-sparse operations are doubly-sparse. As can be seen in

figure 3.6, the first and last layer of block-sparse operations aren’t doubly-sparse,

and therefore cannot benefit from as large an efficiency gain as the hidden block-

sparse layers. The input and output of the multi-layer Block-Sparse experts are

both dense. All layers use the same underlying implementation of the block-sparse

operation, where dense inputs or outputs are considered to have k = K = 1.
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BlockSparse

The code for the block-sparse operation is implemented as a Torch7 Module

called BlockSparse which is open-source and available on-line 17. The Module was

implemented for GPU-only 18 using two different approaches.

The first makes use of the CUBLAS cublasSgemmBatched sub-program 19,

which is optimized to perform a batch of small matrix-matrix multiplication oper-

ations on GPU. In our case, the input to each such operation is actually the vector

xul (or the gradient of the loss w.r.t. to ym) which is multiplied with a single block

weight matrix. This approach is well suited for small weight matrices, typically

with less than 200× 200 elements.

When the weight matrices have more element than this, the Module utilizes a

different approach involving CUDA streams. These can be used to launch CUDA

kernels asynchronously and concurrently. Each stream is abstracted like a queue

of kernels to execute. Each stream’s kernels are executed sequentially, but the

GPU can process kernels from different streams concurrently (at the same time

using different CUDA-cores). In this case, we use the cublasSgemv operation

to multiply an expert-segment input with an expert-block weight matrix. This

operation is particularly useful for the first block-sparse layer as the dense input

vector, which is the concatenation of the context of word embeddings, is very large.

Both approaches require the use of an additional hand-written kernel for per-

forming reductions like summing the outputs of each expert-block resulting from

different input-segments and adding the biases (forward pass only). The BlockSparse

Module automatically chooses the best approach given the dimensions of the expert-

block weight matrices. Furthermore, the Module can translate dense inputs or

outputs to their equivalent sparse forms for use with the underlying block-sparse

operation.

Benchmarks

A benchmark was performed to compare the block-sparse operation to two

baselines: partial and full dense. The first involves a standard matrix-matrix mul-

tiplication using the same amount of multiplication-additions as the block-sparse

17. https://github.com/nicholas-leonard/cunnx/blob/master/BlockSparse.lua
18. https://github.com/nicholas-leonard/cunnx/blob/master/BlockSparse.cu
19. http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemmbatched
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does. The second is also a matrix-matrix multiplication, but uses the same amount

of multiplication-additions as the BlockSparse has parameters. All benchmarks

include the forward, backward and parameter update operations. Both the partial

and full dense baselines are performed using the Torch7 Linear Module 20. The

baseline is available in the cunnx package’s unit testing script 21.

The partial dense operation is expected to be faster than the BlockSparse as

it can reuse the memory more efficiently by using the GPU’s shared and registered

memory caches. This is because the weight matrix is the same for all examples (rows

in the input matrix), and can thus be cached once and reused for all examples. On

the other hand, the block-sparse operation has a different set of weight matrices

for each example, and thus cannot make such an effective use of memory caching.

As for the full dense operation, we expect it to be slower than the block-sparse

operation given enough sparsity. Since block-sparse only computes transformations

between active input and output expert-segments while the full-dense operation

essentially computes the transformation between all expert-segments, we should

expect a larger proportion of non-active versus active experts to result in a greater

speedup. Of course, the full-dense baseline uses a dense matrix-matrix multiplica-

tion which means that it benefits from the same caching advantage as the partial

dense baseline.

Description FD Speedup PD Slowdown
bs:8 e:384(8)x32-384(8)x32 34.67 4.54
bs:128 e:384(8)x32-384(8)x32 31.47 14.28
bs:512 e:384(8)x32-384(8)x32 24.64 24.21
bs:128 e:192(4)x64-192(4)x64 37.34 11.56
bs:128 e:96(2)x128-96(2)x128 37.52 11.32
bs:128 e:1(1)2048-384(8)x32 20.30 21.54
bs:128 e:768(16)x16-768(16)x16 1.05 21.83
bs:128 e:768(16)x16-768(16)x16 1.17 12.60

Table 3.2: BlockSparse benchmarks of speedup over full dense baseline (FD Speedup column)
and slowdown over partial dense baseline (PD Slowdown column).

For our benchmark, we choose Kl = Km = 384 total expert-segments, kl =

km = 8 expert-segments per example, nm = nl = 32 units per expert-segment, and a

20. https://github.com/torch/nn/blob/master/doc/simple.md#nn.Linear
21. https://github.com/nicholas-leonard/cunnx/blob/master/test/test.lua#L239
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batch size of 128 examples. This is represented as bs:128 e:384(8)x32-364(8)x32

in table 3.2 and all further benchmarks use the same nomenclature. We performed

the benchmark on an NVIDIA Titan Black. The block-sparse gets a speedup of

31.47 over the full-dense baseline, while it is 14.28 times slower than the partial

dense baseline. To be clear, the full dense performs a matrix-matrix multiplication

of an input of size 128 × 12288 by a weight matrix of size 12288 × 12288. The

partial dense performs this for an input of size 128×256 by a weight matrix of size

256× 256.

To confirm that the baselines get an advantage by making effective use of the

cache, we change the batch size to 8. The speedup of the block-sparse over full

dense is now 34.67, while it is now only 4.54 times slower than the partial dense

baseline. If we use a batch size of 512, the speedup and slowdown are 24.64 and

24.21 respectively.

Again with a batch size of 128, if we instead use larger expert-blocks nm =

nl = 64 but keep the same amount of parameters and multiplication-additions by

reducing the number of chosen and total expert-segments: kl = km = 4 and Kl =

Km = 192, we can have a better idea of the efficiency of each individual expert-block

transformation. The speedup and slowdown are now 37.34 and 11.56 respectively.

If we continue in this direction by using nm = nl = 128, kl = km = 2 and Kl =

Km = 96, the speedup and slowdown are now 37.52 and 11.32 respectively. This

indicates that while a speedup can be obtained by increasing the size of experts

while keeping the number of parameters and multiplication-additions equal, these

gains become less significant as the size of experts increase. If instead, we reduce

the size of experts and keep the same amount of parameters and multiplication-

additions by using nm = nl = 16, kl = km = 16 and Kl = Km = 768, the speedup

and slowdown are 20.30 and 21.54 respectively. This is to be expected as the GPU

makes better uses of the resources available when using few large-matrices instead

of a many small ones. Our algorithm would also prefer the latter as the output

spaces of the gater have Km and Kl units, which would be an additional strain on

the capacity of the gater (more experts to discriminate).

Finally, as the input and output BlockSparse layers have a dense input, we will

consider some benchmarks that do not involve a doubly-sparse matrix. First, we

use a nl = 2048, nm = 32, Kl = kl = 1, km = 8 and Km = 384 which simulates the

input layer of a context of size 8 with embeddings of size 256. The speedup and
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slowdown are 1.05 and 21.83 respectively. As expected, the speedup is much less

pronounced while the slowdown is only a little less pronounced as compared to our

initial benchmark. If we perform the same experiment to simulate an output layer

using nl = 32, nm = 256, Km = km = 1, kl = 8 and Kl = 384, we obtain a speedup

and a slowdown of 1.17 and 12.60 respectively. These two benchmarks imply that

a significant speedup will only be obtained in the hidden block-sparse layers, not

in the input and output layers. This is bad news as NNLMs are known to be most

effective with shallow networks (section 3.2). This is also the reason why the gater

receives its input directly from the dense input (the output of the lookup table),

as opposed to receiving it from a sparse representation layer – the gater wouldn’t

be doubly-sparse.

3.4.3 BlockSparse Mixture

The BlockMixture Module 22 is a composite object encapsulating the gater and

the different BlockSparse (expert) layers. It abstracts away many of the intricacies

of forward and backward propagating between BlockSparse experts and the gater.

It expects a dense input and has a dense output. A benchmark was performed

using 4 BlockSparse Modules (or 3 hidden sparse representations). The 3 sparse

representations respectively have k1 = 4, k2 = 8 and k3 = 4, K1 = 128, K2 = 256

and K3 = 128, with n1 = n2 = n3 = 64. The input to the BlockMixture is of size

n0 = 1024 and the output is of size n4 = 256. The batch size is 128. The gater

has one hidden representation of size 256. Since there are 3 sparse representations,

the gater has 3 output spaces of size K1, K2 and K3. We compare the model to

the usual partial and full dense baselines. In this case, the baselines are 4-layer

MLPs using 4 Linear Modules. The baselines do not integrate the capacity of

the gater. The benchmark evaluates the aggregate time of forward, backward and

parameter updates. On an NVIDIA Titan Black GPU, the speedup and slowdown

are respectively 6.01 and 22.21, where the gater uses up 15% of the BlockMixture

computation time. On a lesser NVIDIA Quadro 4000 GPU, the speedup and

slowdown are respectively 13.68 and 16.25 where the gater uses up 7.3% of the

BlockMixture computation time. This is evidence that high-performance cards are

more optimized towards dense matrix-matrix operations, making it even harder for

22. https://github.com/nicholas-leonard/cunnx/blob/master/BlockMixture.lua
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us to obtain a speedup. Nevertheless, the BlockMixture implementation seems to

offer a 6-fold speedup over its dense counterparts.

3.4.4 Results

In this section we present the results of training block-sparse mixture of experts

(BSME) on the Google One Billion Words dataset (section 3.1). Due to the large

size of the dataset, we began experimenting with different hyper-parameter config-

urations of the BlockMixture Module on a small subset (1/30th) of the dataset. We

divided these preliminary experiments into two phases of increasing training time

before moving onto the final phase utilizing the entire dataset with large epochs

and longer training runs.

Phase 1

We used a baseline BlockMixture model with two sparse hidden representations

which we later varied one or two hyper-parameters at a time to get an idea of the

ideal configuration. The 2 sparse representations respectively have k1 = k2 = 8,

K1 = K3 = 224, with n1 = n2 = 32. The NNLM uses a lookup table for the

first layer with an embedding size of ni = 100 and a context size of 5 such that

the BlockMixture receives and input of size n0 = 500. For the output we use a

SoftMaxTree Module (section 3.3.3) with an output embedding size of 100 such

that the output of the BlockMixture is also of size n3 = 100. We used a hard

constraint on the maximum norm of incoming weights of 2 and a batch size of 256

examples. The gater used 2 hidden representations of size 128 such that it was a 3

parameterized layer MLP. By training it for 100 epochs of 200 thousand iterations

(examples) each with a learning rate of 0.1, we obtained a minimum PPL of 1130

on the training set. Note that the test and validation PPL were highly similar,

and no over-fitting was noticed during any of our experiments on the Google One

Billion Words dataset. Each experiment took approximately 6 hours to complete.

We then performed some experiments by keeping either the gater or experts

from learning (a learning rate of 0) and obtained a PPL of 1450 and 2410, re-

spectively. This confirmed that both the experts and gater were indeed working

together to optimize the PPL, and that most of the learning capacity stemmed

from the experts.
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By modifying the baseline BSME to constrain the norm of incoming weights

to be 10 instead of 2, we were able to obtain a PPL of 1030. We found larger

maximum norms to have the same effect. In any case, this constraint is necessary

for the SoftMaxTree module as it tends to result in NaN errors otherwise.

We also modified the baseline BSME gater to use a SoftMax Module, or a Soft-

Max followed by an EquanimityConstraint (algorithm 2), instead of the NoisyReLU

(section 3.4.1). Even though all cases were followed by a LazyKBest Module (sec-

tion 3.4.1), we found that NoisyReLU worked better than the SoftMax in terms of

keeping the distribution of examples to experts balanced, and better than the Soft-

Max followed by an EquanimityConstraint in terms of PPL. In the former case, the

NNLM tended to form a monopoly by utilizing the same set of 8 expert-segments

for both sparse representations. The NoisyReLU on the other hand utilized all

experts to varying degrees, were the 5 most active expert-segments were used on

average 5.43% of the time, and the 5 least active were used 1.56% of the time,

which isn’t too far from the target activation frequency of k
K

= 8
224

= 1
28

= 3.57%.

In any case, a little unbalance is to be expected.

We further modified the baseline to use k1 = k2 = 4, K1 = K2 = 112 and

n1 = n2 = 64, which we know from the benchmarks presented in section 3.4.2 to

have a greater speedup over the baseline. The result was a PPL of 1090, which isn’t

a significant improvement, but combined with the speedup was enough to justify

this configuration for later experiments. It may be that fewer decisions to be made

by the gater (or less expert-segments to discriminate from) may prove to be an

easier task than more experts with less capacity.

Again, starting from the baseline, we increased the number of expert-segments

to K1 = K3 = 448 to evaluate the model’s ability to utilize this extra capacity

and were disappointed by a PPL of 1110. This points to the possibility that the

BSME was unable to make effective use of extra capacity given a fixed budget of

multiplication-additions. Of course, this may have only mean that further training

is required to obtain further reductions in perplexity.

For comparison, we evaluated 2 NNLM using the same lookup table and Soft-

MaxTree dimensions but without the BSME. The first model had a dense hid-

den representation (2 parameterized hidden layers) between the input and output

Modules, while the second used two dense hidden representations. Hidden repre-

sentation sizes were chosen such that the speed (examples per second) of all three
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models was approximately equal. The sizes of representations are 4400 for the first

model, and 1350 for the second. After 100 epochs of the same size, we obtained

PPLs of 1050 and 1400 for the first and second respectively. The NNLM having

the same depth as our baseline BSME model would seem to take much more time

in reaching low PPL while the more shallow NNLM would do so a little faster.

Concerning the hyper-parameters affecting the NoisyReLU we found that a

standard deviation of 1 worked well, and that we needed to increase the weight of

the past in the exponential moving average for smaller batch sizes in order to keep

the distribution of examples to experts balanced. For a batch size of 256, a weight

of the past of 0.99 worked well.

Finally, we also found that using a sparse initialization (section 1.4.2) and a

learning rate of 0.5 worked better. Changing the relative learning rate of experts

versus gater was shown to have little effect other than slowing down the learning

in both cases. Similarly, changing the depth or breadth of the gater had little

effect, resulting in similar PPLs to the baseline model. Therefore we concluded

that smaller capacity gaters could be used, thereby increasing the efficiency of the

model.

Phase 2

During phase 2 of our experimentation, we increased the number of iterations

per epoch to 400 thousand to see how the model would fare with double the amount

of training time — again with 100 epochs. This time our baseline model used the

best hyper-parameter configurations obtained from the previous phase. We used 2

sparse representations with k1 = k2 = 4, K1 = K2 = 112, with n1 = n2 = 64. The

NNLM uses the same configuration of lookup table and SoftMaxTree for the input

and output layer as that used in the previous phase. We used a hard constraint on

the maximum norm of incoming weights of 10 and a batch size of 256 examples.

The gater utilized a single hidden representation of size 128. By training it for 100

epochs of 400 thousand iterations each with a learning rate of 0.5, we obtained a

minimum PPL of 900.

To explore the effect of additional depth on the BMSE model, the number of

sparse representations was increased to 3. We found that with a configuration of

k1 = k2 = k3 = 8, K1 = 224, K2 = 448 and K3 = 224, with n1 = n2 = n3 = 32 and

every other hyper-parameter in the phase 2 baseline being equal, the model was
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able to reach a PPL of 780. This would seem to indicate that the BMSE model

can cope well with added depth.

By using a learning rate of 0.2 instead of 0.5 for the baseline of this phase, we

obtained a PPL of 770, which may indicate that a learning of 0.5 is only useful to

accelerate the first iterations of training.

We also experimented with different batch sizes and found that smaller batch

sizes tended to make the distribution of examples to experts more skewed while

larger ones kept it more balanced.

Final Phase

For our final experiments, we attempted to train different configurations of

BSME NNLMs which were small variations of the best model discovered in the

previous phase. Training was performed using epochs of 10 million iterations each

on the full dataset. Using a context size of 5 and input and output embedding

sizes of ni = no = 128, 3 sparse hidden representations with k1 = k2 = k3 = 8,

K1 = 224, K2 = 448 and K3 = 224, with n1 = n2 = n3 = 32, a batch size of

256, a learning rate of 0.4 which was decayed to 0.2 at epoch 10, 0.1 at epoch 25,

0.05 at epoch 50, and gater with one hidden representation of size 128, we found

that training would plateau at a PPL of approximately 630 on all 3 sets after 80-90

epochs.

For a similar model that differed only in K1 = 112, K2 = 224 and K3 = 112

and in using a gater with 2 hidden representations of size 64, we found that the

training would plateau at a PPL of approximately 820 after 80-90 epochs. In this

model, the distribution of examples to experts was somewhat skewed in the first

sparse representation were the 5 most active expert-segments received an average

of approximately 15% of all examples.

Using the first model presented in this last phase, differing only in its use of a

large input and output embedding size of ni = no = 384 and a large context of size

of 10, the BSME would plateau after 50-60 epochs at a PPL of 990.

We also trained two baseline to compare the BSME to a NNLM of the same

depth. Using 3 dense hidden representations of size 2000, which had approximately

the same speed as the BSME model using an input and output embedding size of

ni = no = 384 and a large context of size of 10, we were able to obtain a PPL

of 480 after 70 epochs. Again the PPL for train, validation and test sets were
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approximately the same.

The second baseline was performed using ni = no = 128, a context size of 5

and 3 dense hidden representations of size 2000. It obtained a PPL of 400 after 70

epochs. Both baselines used the same learning rate schedule as the BSME models.

All experiments in this final phase took 2 weeks to run on different cards. The

BSME and baseline NNLM with large input and output embedding spaces and

context sizes were run on NVIDIA Titan Black GPUs while the remainder were

run on a GTX 480 or Quadro 4000 GPU.

3.4.5 Conclusion

We demonstrated that the potential efficiency gains for a block-sparse mixture

of experts could be obtained as compared to their full-dense alternative. However,

the implementation is always slower than its partial dense alternative due to its

more effective use of caching on the GPU. The speedup of the full BlockMixture

model as compared to the full dense alternative is still only a 6 to 15-fold increase,

depending on the GPU card. While memory caching may be to blame, there

is a possibility that the parallelism of the GPU may not be fully utilized in the

cublasSgemmBatched sub-program, although this is still the best option available

for computing matrix-matrix multiplications for batches of small weight matrices.

Any potentially significant speedup can only be obtained from the hidden block-

sparse operations as they are doubly-sparse. To alleviate this, we may chose to

consider the context of word embedding as a sparse representation where words in

the context can be turned off and on using a gater. Not all previous words are

equally useful in predicting the next word and a gater may be able to discriminate

these such that the first block-sparse layer can also be doubly-sparse.

While an efficiency gain was demonstrated, the training potential of the BSME

model was not. Lack of proper hyper-optimization and time may be the main cause,

as training a single model on such large dataset requires many weeks of training.

We have also constrained ourselves to use small batch sizes in order to stay in a

training regime where the BSME is more efficient and can therefore be compared to

weaker baselines. This may prove to be too difficult a task for DCC as the BSME

seems to be easier to train — in terms of keeping the distribution of examples to

experts balanced — when using larger batch sizes like 512 or 1024. Instead, we
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should endeavor to make the evaluation as fast as possible as it is more likely to

be used in an on-line production environment — which would naturally be more

suited for small batch sizes.

The BSME has a problem with convergence which may be attributed to a variety

of factors which only many experiments would be able to confirm or deny. The fact

of the matter is that its behavior after 500 million iterations is different than after

only 10 million. To explore this regime, we should hyper-optimize a model up to

50 million iterations and begin training different variations of it from that point.

Nevertheless, the NoisyReLU and LazyKBest Modules seem to work well to-

gether for controlling the sparsity and uniformity (or equanimity) of the distribution

of experts to examples and vice-versa. The LazyKBest is also an excellent solution

to controlling the exact sparsity of any distribution as it is implemented as a hard

constraint.

3.5 Closing Remarks

In this thesis, we explored 2 variants of DCC. The first utilized a kind of Rein-

forcement Learning (RL) where experts would compete against each other to win

the right to learn examples by backpropagation (or specialize) and to increase the

gater probability of sampling the expert given the example. The second utilized

a layer-wise block-sparse mixture of experts approach, where experts would still

compete against each other, but less explicitly, as this was more of a side-effect

of the BP learning. While the NDT model was formulated as a tree of experts,

the BSME formed a more general digraph of experts. The digraph offered more

possible combinations of active experts, but wasn’t as successful as its simpler tree

alternative — although they weren’t compared on the same dataset or training

algorithm.

In any case, I believe that simple application of DL/BP approaches to DCC

won’t be enough to make it a successful venture. Conditional models are competi-

tive systems not so different than market economies. They must be kept balanced,

consistent and under control in order to converge to a valid solution. This solu-

tion implies a division of labor, where each expert is specialized in transforming a
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representation into another, such that it forms an important component of a com-

putation graph of such expert transformations. In the context of RL, each example

is a state, and each combination of experts is an action where the gater is an agent

which must choose the correct actions given the state in order to maximize a reward

(or minimize a loss). A more formal application of RL to the problem of DCC may

prove very successful.

The problem of DCC may also be formulated for evolutionary algorithms where

each expert and gater is a gene and each model is composed of a configuration of

such genes. A population of models could be trained in parallel sharing different

parameterized genes where the best models would survive, reproduce and mutate

to form variations on their genes, including using new freshly initialized genes or

other existing genes. This approach may help to find and train better experts as

we have noticed the importance of using a good random initialization for training

conditional models.

One of the most difficult aspects of conditional models is keeping the distribution

of examples to experts (and experts to examples) balanced such that most experts

are useful and don’t get left behind in training. We explore different solutions to

this including an equanimity constraint, reinforcing a fixed amount of examples per

expert, and controlling the activity of a NoisyReLU using an adaptive threshold.

These approaches seem to work well in keeping the experts balanced, although they

may also have a negative effect on training when they are too strong. In any case,

without them, the best experts have a tendency to monopolize examples. This

is a vicious circle in a competitive system as any initial advantage translates to

increased learning (a resource) which translates to a competitive advantage and so

forth and so on.

We also explored different ways of imposing a desired level of sparsity on the

output of the gater. In the ESSRL-NDT model, experts were sampled without re-

placement from a multinomial probability distribution output by the gaters. This

approach allowed for controlling the exact sparsity during both training and eval-

uation. In the BSME model, a simple LazyKBest Module was used to find the k

most active gater outputs, each mapping to an expert.
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Bengio, Y., N. Léonard, and A. Courville (2013, August). Estimating or Propagat-

ing Gradients Through Stochastic Neurons for Conditional Computation. ArXiv

e-prints .
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