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Résumé 

L’apurinic/apyrimidic endonuclease 1 (APE1) est une protéine multifonctionnelle qui 

joue un rôle important dans la voie de réparation de l’ADN par excision de base. Elle sert 

également de coactivateur de transcription et est aussi impliquée dans le métabolisme de 

l’ARN et la régulation redox. APE1 peut cliver les sites AP ainsi que retirer des groupements, 

sur des extrémités 3’ créées suite à des bris simple brin, qui bloquent les autres enzymes de 

réparation, permettant de poursuivre la réparation de l’ADN, puisqu’elle possède plusieurs 

activités de réparation de l’ADN comme une activité phosphodiestérase 3’ et une activité 

exonucléase 3’→5’. Les cellules de mammifères ayant subi un knockdown d’APE1 présentent 

une grande sensibilité face à de nombreux agents génotoxiques. APE1 ne possède qu’une 

seule cystéine située au 65
e
 acide aminé. Celle-ci est nécessaire pour maintenir l’état de 

réduction de nombreux activateurs de transcription tels que p53, NF-κB, AP-1, c-Jun at c-Fos. 

Ainsi, elle se retrouve impliquée dans la régulation de l’expression génique. APE1 passe 

également à travers au moins 4 types de modifications post-traductionnelles : l’acétylation, la 

désacétylation, la phosphorylation et l’ubiquitylation. La façon dont APE1 est recrutée pour 

accomplir ses différentes fonctions biologiques demeure un mystère, bien que cela puisse être 

relié à sa capacité d’interaction avec de multiples partenaires différents. Sous des conditions 

de croissance normales, il a été démontré qu’APE1 interagit avec de nombreux partenaires 

impliqués dans de multiples fonctions. Nous émettons l’hypothèse que l’état d’oxydation 

d’APE1 est ce qui contrôle les partenaires avec lesquels la protéine interagira, lui permettant 

d’accomplir des fonctions précises. Dans cette étude nous démontrons que le peroxyde 

d’hydrogène altère le réseau d’interactions d’APE1. Un nouveau partenaire d’interaction 

d’APE1, Prdx1, un membre de la famille des peroxirédoxines responsable de récupérer le 
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peroxyde d’hydrogène, est caractérisé. Nous démontrons qu’un knockdown de Prdx1 

n’affecte pas l’activité de réparation de l’ADN d’APE1, mais altère sa détection et sa 

distribution cellulaire à l’intérieur des cellules HepG2 conduisant à une induction accrue de 

l’interleukine 8 (IL-8). L’IL8 est une chimiokine impliquée dans le stress cellulaire en 

conditions physiologiques et en cas de stress oxydatif. Il a été démontré que l’induction de 

l’IL-8 est dépendante d’APE1 indiquant que Prdx1 pourrait réguler l’activité 

transcriptionnelle d’APE1. 

Il a été découvert que Prdx1 est impliquée dans la régulation redox suite à une réponse 

initiée par le peroxyde d’hydrogène. Ce dernier possède un rôle important comme molécule 

de signalisation dans de nombreux processus biologiques. Nous montrons que Prdx1 est 

nécessaire pour réduire APE1 dans le cytoplasme en réponse à la présence de H2O2. En 

présence de Prdx1, la fraction d’APE1 présent dans le cytoplasme est réduite suite à une 

exposition au peroxyde d’hydrogène, et Prdx1 est hyperoxydé suite à l’interaction entre les 

deux molécules. Cela suggère que le signal, que produit le peroxyde d’hydrogène, sur APE1 

passe par Prdx1. Un knockdown d’APE1 diminue la conversion de la forme dimérique de 

Prdx1 vers la forme monomérique. Cette observation implique qu’APE1 pourrait être 

impliquée dans la régulation de l’activité catalytique de Prdx1 en accélérant son 

hyperoxydation.  

 

Mots-clés : APE1, Prdx1, IL-8, peroxyde d’hydrogène, signalisation cellulaire 
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Abstract 

Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein, which play 

important roles in base excision repair (BER) pathway and serve as transcriptional co-

activator. APE1 is also involved in RNA metabolism and redox regulation. APE1 can cleave 

abasic sites and process 3’-blocking termini into 3’-OH for DNA repair replication as it 

posseses several DNA repair activities including AP endonuclease, 3’-phosphodiesterase and 

3’ to 5’-exonuclease.  Mammalian cells knockdown for APE1 are very sensitive to various 

DNA damaging agents.  APE1 has a unique cysteine C65, which is required to maintain the 

reduced state of several transcriptional activators such as p53, NF-кB, AP-1, c-Jun, and c-Fos  

and therefore is involved in the regulation of gene expression.  APE1 also undergoes at least 

four types of post-translational modifications that include acetylation, deacetylation, 

phosphorylation and ubiquitylation.  How APE1 is being recruited to execute the various 

biological functions remains a challenge, although this could be directly related to its ability 

to interact with multiple different partners.  Under normal growth conditions, APE1 has been 

shown to interact with a number of proteins that are involved in various functions.  We 

propose that the oxidative state of APE1 governs its interacting partners thereby allowing the 

protein to perform specific functions. In this study we find that APE1 interactome alters in 

response to hydrogen peroxide. One novel APE1 interacting partner Prdx1, a member of the 

peroxiredoxin family that can scavenge hydrogen peroxide is characterized. We demonstrate 

that knockdown of Prdx1 did not impair APE1 DNA repair activity, but alters APE1 detection, 

and subcellular distribution in HepG2 cells leading to the induction of interleukin 8 (IL-8).  

IL-8 is a pro-inflammatory chemokine involved in cellular stress, under physiological and 
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oxidative stress conditions. It has been shown that the induction of IL-8 is dependent on 

APE1 indicating Prdx1 may regulate APE1 transcriptional activity.   

Prdx1 has been discovered to be involved in the redox regulation of cell signaling 

initiated by hydrogen peroxide, which has important roles as a signaling molecule in the 

regulation of a variety of biological processes.  Prdx1 exists as a dimer in the cells and we 

show that Prdx1 is required to reduce APE1 in the cytoplasm in response to H2O2.  During 

this process, the dimeric form of Prdx1 is converted to the oxidized monomeric form.  

Interestingly, the H2O2-induced conversion of Prdx1 to the monomeric form is dependent 

upon the presence of APE1.  These observations imply that there is a tight regulatory network 

existing between APE1 and Prdx1.   

 

Keywords: APE1, Prdx1, IL-8, hydrogen  peroxide, cell signaling 
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1. General Introduction 

1.1 ROS and antioxidants  

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) represent the most 

abundant free radicals in living organisms. Free radicals are highly reactive molecules with 

one or more unpaired electrons. ROS includes many forms of oxygen radicals such as 

hydroxyl radical (
•
OH), peroxyl (RO2

•
), superoxide radical (O2

•
), singlet oxygen (O2) and 

alkoxyl (RO
•
) and certain nonradicals such as ozone (O3), hypochlorous acid (HOCl), 

peroxynitrite (ONOO
−
), and hydrogen peroxide (H2O2), but these can be easily converted into 

radicals. RNS also is consisted of  various molecules, for example, nitric oxide radical (NO
•
), 

peroxynitrite (ONOO−), nitrogen dioxide radical (NO2
•
), other derivatives from the reactions 

between NO
• 
and ROS (O2

•
, RO

•
 and RO2

•
) (1). Besides unusual circumstances such as high 

energy exposure (ionising radiation, ultraviolet light) and toxic chemicals exposure, in vivo 

free radicals are generated generally via enzymatically mediated or non-enzymatically 

mediated electron transfer reactions. Cellular superoxide generation can occur in several 

different subcellular compartmentalization including mitochondria, endoplasmic reticulum, 

lysosomes, microsomes and peroxysomes. Under physiological circumstances the majority of 

free radicals are from the electron leakage in electron transport chains to molecular oxygen, 

which produces superoxide, in the mitochondria and endoplasmic reticulum (2). Hydroxyl 

radicals are highly reactive with a half-life of less than 1 ns in aqueous solution. So once 

produced in vivo they react locally and immediately. They can be generated in different ways. 

Ionizing radiation triggers the decomposition of H2O, leading to formation of •OH and 

hydrogen atoms. Photolytic decomposition of alkylhydroperoxides also can produce •OH. 
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Hydroxyl radicals generated in vivo mostly arise from the metal catalyzed breakup of 

hydrogen peroxide (2). For instance, the Fenton reaction also can decompose hydrogen 

peroxide in Fe
2+

-dependent manner (3). Activated NAD(P)H oxidase can take NAD(P)H from 

the cytoplasm and transfer electrons to O2 to generate superoxide on the inner and outer 

surface of  the plasma membrane through the reaction: 2O
2
 + NAD(P)H → 2O2

•−
+ NADP

+ 
+ 

H
+
 (4, 5). Peroxyl  radical (ROO•) production is prevalent as well in every facets of life as 

high-energy species, which can be generated chemically, physically or enzymatically by 

various ways, with a reduction potential from +0.77 to +1.44 V, depending on the R group (6). 

Nitric oxide, a gaseous radical produced by macrophages, reacts with superoxide to form 

peroxynitrite (7). 

While cells produce diverse ROS, there are antioxidant systems to defend cells from 

deleterious effects caused by ROS. These antioxidants belong to two classes: one contains 

several organic substances comprising vitamins C, E and A (β-carotene derivatives), selenium 

(a mineral), and carotenoids (CAR) (7-9); the other class consists of enzymes that include 

superoxide dismutase (SOD), catalase, glutathione peroxidase, thioredoxin, peroxiredoxin 

(10-13). The former class can directly or indirectly donate protons to ROS to convert them 

into less reactive species; the latter can scavenge ROS by catalyzing the reactions relevant to 

ROS and pro-oxidants to nontoxic substances to mitigate the elevation of ROS. It has been 

recently reported that noncanonical antioxidants such as 17-beta-estradiol and vitamin K also 

can prevent neuronal death induced by ROS (14, 15). Sulfiredoxin can reduce cysteine-

sulfinic acid as a specific phosphotransferase and a thioltransferase that formed in the 

peroxiredoxins PRDX1, PRDX2, PRDX3 and PRDX4 upon exposure to oxidants, but not in 

the case of  PRDX5 or PRDX6 (16). Sulfiredoxin contributes to antioxidation because it can 
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catalyze the reduction in a multi-step process via the reaction: Peroxiredoxin-(S-hydroxy-S-

oxocysteine) + ATP+2R-SH=peroxiredoxin-(S-hydroxycysteine)+ADP+ phosphate + R-S-S-

R (16-

18).

 

 Figure 1 Endogenous sources of reactive oxygen species (ROS)  [modified from (19)]  

Overall, no matter what efforts antioxidants and reductases do to control ROS 

production, ROS production seems to be an inevitable event of life because they are natural 

concomitant products of metabolite while they are also deleterious mediators of cellular stress 

response at the same time.  It is noteworthy that ROS also serve as second messengers to 

trigger and/or regulate important cellular signaling pathways (20). If we assume ROS as 
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“fires” in the cells and antioxidation system as “firefighters”, these “firefighters” are 

unfortunately never able to extinguish these “fires”, what they can do is just to keep the fires 

at manageable level. 

1.1.1 Peroxiredoxin 1 and its functions  

 

Peroxiredoxins (Prdxs) are a family of peroxidases with a small (22–27 kDa) molecular 

weight. six isoforms are found in mammalian. They all can catalyze peroxide reduction of 

H2O2, and peroxynitrite. Peroxiredoxin1 (Prdx1) is a typical 2-cysteine peroxiredoxin . As a 

peroxidase, Prdx1 N-terminal Cys
52

 is oxidized by H2O2 to cysteine-sulfenic acid (Cys
52

-SOH) 

and reacts with Cys
173

-SH of the other molecule to produce an intermolecular disulfide (head 

to tail dimer). Given the fact that thiol (Cys–SH) group, even at a neutral pH, to the thiolate 

anion (Cys–S
–
), which is more readily oxidized to sulfenic acid (Cys–SOH) than is Cys–SH, 

so Prdx1 is a compulsory dimer in vivo (21, 22). Prdx1 dimer can only be reduced by 

thioredoxin (Trx), but not by GSH or glutaredoxin. Thus, the reducing equivalents stem from 

NADPH via thioredoxin reductase (TrxR) and Trx (11). Nevertheless, more and more studies 

show Prdx1 is more than just a peroxidase. Myc boxII is critically important for 

transformation and transcriptional activity. Prdx1binds to Myc boxII  and causes a broad but 

selective loss of c-Myc target gene regulation (23) and the inhibitory effect of Prdx1 on Myc 

was highlighted by the evidence that c-Myc activates in  Prdx1
-/-

MEFs (24). Prdx1 is also 

shown to interact with the androgen receptor (AR), enhancing its transactivation independent 

of Prdx1 peroxidase activity (25). Prdx1 associates with nuclear factor NF-кB and both 

proteins are bound together to the cyclooxygenase (COX)-2 upstream promoter region in ER- 

but not in ER+ breast cancer cells via its chaperon function (26). All these suggest Prdx1 

could regulate gene expression by interacting with transcription factors regardless of its 
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peroxidase activity. In addition Prdx1 can bind to DNA and RNA (27), its implication to 

maintain genomic stability were supported by the observations that Prdx1 deficiency brings 

more inclination to cancer (28) and human Prdx1 can prevent  genomic instability in its 

orthologue Tsa1 depleted Saccharomyces cerevisiae  (29). 

1.2 DNA integrity is very important 

Genomic deoxyribonucleic acid (DNA) is the genetic material that carries the 

information needed to constitute all the components of a living cell.  Generally, genetic 

information can transfer to messenger ribonucleic acids (mRNA) by transcription and 

subsequently produce proteins. Given the diversity of protein function, one important event is 

the coordination of many proteins to verify the genome by checkpoint mechanisms to 

guarantee DNA replication fidelity before mitosis.  So maintenance of genomic integrity is 

the essential and pivotal event for cells.   

1.3 DNA damage  

The cellular genome is always confronted with many kinds of insults from endogenous 

as well as exogenous sources, such as reactive free radical species, ultraviolet (UV), ionizing 

radiation (IR), and chemical DNA-damaging agents. These insults could cause various DNA 

lesions on the sugar backbone or bases of DNA directly or indirectly.  These lesions include 

DNA double strand breaks (DSB), single strand breaks (SSB), apurinic/apyrimidinic (AP) 

sites, also called abasic sites, and damages to bases including oxidation, alkylation and 

deamination products.  

1.3.1 DNA Base Damages 

Base damages are referred to a large collection of damages occurring to the bases of 

DNA (Fig.2), e.g. 8-oxoguanine, O
6
-methylguanine, thymine glycols, and other oxidized, 
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alkylated, deaminated or fragmented bases in DNA. Most damages are oxidation, methylation, 

depurination and deamination of the base. These damages can be generated by reactive 

oxygen/nitrogen species or by ionizing radiation. RNS such as nitric oxide radicals (NO
•
), 

peroxynitrite (ONOO−), nitrogen dioxide radicals (NO2
•
), N2O3 and HNO2, are potential 

mutagenic agents reacting with the bases of DNA and lead to nitrosation, nitration, and 

deamination  of DNA bases (30). DNA cytosine methylation also accounts for the regulation 

of gene expression and carcinogenesis (31-33). ROS often convert guanine to 8-

hydroxyguanine (34) and are also able to affect the enzyme-catalysed methylation of adjacent 

cytosines (33), thus suggesting a possible link between methylation profile and oxidative 

DNA damage. 

ROS (ONOO−, •OH, O2•, RO• and RO2•) can cause many kinds of DNA base damages 

in different ways. •OH is exquisitely toxic and reactive. The high reactivity of •OH often 

randomly abstracts carbon-bound hydrogen atoms, e.g. from the sugar moeity. •OH reacts 

with guanine and generates 8-oxo-7, 8-dihydro-2-deoxyguanosine (8-oxo-dG) and 2, 6-

diamino-5-formamido-4-hydroxypyrimidine (FAPy-G) (35, 36). Adenine likewise reacts with 

•OH, although this reaction occurs rarely in DNA damage (37). In cooperation with the Fe(III) 

or Fe(III)–EDTA complex, endogenous reductants such as ascorbate, GSH, NADH, can make 

damages on all types of nucleotides with a slight preference for guanine (38). Specifically, 

NADH reacts with Fe (III)–EDTA and H2O2 to generate •OH by which guanine is oxidized to 

8-oxo-dG (39). Contrary to high reactivity of hydroxyl radicals, H2O2 cannot react with the 

bases of DNA at all (40, 41). 8-hydroxyguanine (8-OHG) is the most frequent DNA base 

lesion, therefore it is measured as a “biomarker” for oxidative DNA damage and even some 
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diseases including cancer and aging  that can be performed using patients’ DNA and urine by 

High Performance Liquid Chromatography (HPLC)-Tandem Mass Spectrometry (37, 42-44).   

As one of the powerful agents ultraviolet radiation (UVR) (mainly UV-B:280–315 nm) 

also gives rise to a variety of mutagenic and cytotoxic DNA base lesions such as cyclobutane-

pyrimidine dimers (CPDs), 6-4 pyrimidine pyrimidone photoproducts (6-4PPs), and their 

Dewar valence isomers (Figure 3) (45-50). 

Chemically-induced base adducts are either large polycyclic hydrocarbons, bulky 

adducts or simple alkyl adducts induced by alkylating agents. Chemotherapeutic drugs, 

including cisplatin, nitrogen mustard, mitomycin C, psoralen, and adriamycin, can form base 

adducts, and the challenge for chemotherapy is to discover drugs that can damage DNA but 

cannot provoke DNA repair or checkpoint responses in tumor cells. 
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Figure 2 The structures of the products of ROS attack on DNA [modified from (51)]  

 

Figure 3 Base damages induced by UV   adapted from (48) 
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1.3.2 AP sites 

AP sites (apurinic/apyrimidinic site) also called abasic sites are locations without a 

purine or a pyrimidine base in DNA/RNA. Normally the bases are attached to the sugar 

backbone of DNA/RNA by N-glycosylic bonds. Compared to the phosphodiester bonds, N-

glycosylic bonds appear to be more labile. AP sites can be created by spontaneous 

depurination and hydrolysis of the N-glycosylic bond. In addition, AP sites also exist as 

intermediates during base excision repair processing. Damaged DNA bases such as N7-

methylguanine (N7-meG), 8-oxo-7,8-dihydroguanine(8-oxoG), 5,6-dihydroxy-5,6-

dihydrothymine (Tg) and inappropriate bases such as uracil incorporated in DNA after 

replication or repair  can be removed by specific DNA N-glycosylases leaving AP sites. It has 

been estimated that more than 10,000 bases turn over per mammalian cell every day, and if 

these lesions are not repaired they can generate mutations which over time can accumulate 

and inactivate the function of any gene (52, 53). 

1.3.3 DNA Backbone Damages 

Backbone damages here are referred to the “nick” occurring on sugar-phosphate 

backbone including single- and double-strand DNA breaks. ROS actually not only damage the 

bases of DNA, but also damage the sugar backbone of DNA, which usually leaves a fragment 

of the sugar at break sites such as 3`-phosphoglycolate. These lesions are well documented to 

be produced by ionizing radiation as well as by chemotherapeutic drugs such as bleomycin 

(54). In addition, ROS can also produce double-strand breaks and these are highly toxic 

lesions as they can lead to gene deletion, insertion and rearrangement in the genome.  

However, there are normal double strand breaks that occur in the cells and these are important 
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intermediates to promote meiosis, mating type switching (in yeast), V(D)J and 

immunoglobulin class switch recombination (CSR) (55, 56). 

1.3.4 Cross-links DNA damage 

Crosslinking of DNA includes intrastrand crosslinks, interstrand crosslinks and DNA-

protein crosslinks. They occur either exogenously or endogenously. Actually most chemicals 

bring in several kinds of DNA damages through different mechanisms. For   example, these 

agents including cisplatin, nitrogen mustard, mitomycin D, and psoralen not only damage 

DNA via ROS production, but also form interstrand/intrastrand cross-links  and even DNA-

protein cross-links. The reaction of the aldehyde form of abasic sites with proteins may also 

create DNA-protein cross-links (57). DNA replication is stalled by crosslinks, which can 

result in replication arrest and cell death if the crosslink is not repaired. 

1.4 Consequences of DNA damages and diseases 

It is widely speculated that DNA damages can cause cancers, neurodegeneration and 

even hereditary genetic diseases such as Ataxia-oculomotor apraxia 1 and Spinocerebellar 

ataxia with axonal neuropathy 1 (SCAN1) (1, 58-60). So DNA damages can affect many 

aspects of cell which may result in more than one consequences (Figure 4).  

Once there are DNA damages and they are not repaired, the DNA replication fork 

usually stalls in order to give time to sense and repair the damages. If DNA polymerase 

bypass a modified base or an AP site, this often leads to the misincorporation of bases (61-63), 

although DNA polymerases have proofreading activity (64). For example, 8-oxoguanine can 

mismatch with adenine during replication, which finally could result in G: C to T: A 

transversion mutations. Sometimes abasic lesions can cause frameshifts, which can change the 

coding sequence of proteins (65, 66).  DNA lesions impair transcription too. RNA polymerase 
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stops at the lesion site once DNA lesions occur in the transcribed strand, which creates a 

target for proteins that can bind to RNA polymerase in RNA elongation. This can trigger 

DNA damage response (DDR) (67). DNA damage response is a cascade of signal 

transduction pathways triggered by DNA damages and replication stress, which is a conserved 

and multifaceted sensory network aiming mainly at DNA repair and the facilitation of DNA 

replication. DDR can spare time for DNA repair by controlling cell cycle progression (68). 

These DDR are controlled by two pathways involving the ataxia telangiectasia and Rad3-

related (ATR) and Ataxia telangiectasia mutated (ATM) kinases (69). 

In mammalian cells, DNA damage activates p53 through ATM, which then either 

causes cell cycle arrest by the induction of  a major inhibitor of the Cyclin-dependent kinases 

(CdKs) p21, or promotes apoptosis (70). Moreover, Chk1 and Chk2, the two serine/threonine 

kinases can relay signalling from ATR/ATM to downstream proteins including Cdc25 by 

phosphorylation in response to DNA damage. The activation of Chk1 and Chk2 inhibits a 

dual specificity phosphatase, Cdc25, which ensures the arrest of the cell cycle in response to 

DNA damage (71). Chk1 is the primary effector of normal S phase and the intra-S phase 

DNA damage checkpoint as well as G2/M checkpoint in response to ionizing radiation while 

Chk2 plays a major role in the S phase checkpoint (72). While Claspin is critical for turning 

on the cellular response to DNA damage and replication stress, Claspin degradation turns off 

the checkpoint response through the ubiquitin proteasome pathway in ATR-Claspin-Chk1 

pathway (73, 74) 
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Figure 4  DNA damages cause many consequences 

 

1.5 DNA repair mechanisms 

As previously mentioned, the maintenance of genomic integrity and fidelity is vital for 

normal cell life. DNA damages or lesions can cause many consequences, for instances, cell 

arrest, collapsed DNA replication/transcription, tumorigenesis or apoptosis. So once DNA 

damages happen, cells use several ways to repair DNA lesions thereby to maintain genomic 

integrity and fidelity.  The following DNA repair mechanisms exist:  homologous 

recombination (HR), non-homologous end joining repair (NHEJ), mismatch repair (MMR), 

nucleotide excision repair (NER) and base excision repair (BER). Actually each repair 

mechanism is a multi-step process from DNA lesion recognition to the disassembly of repair 

machinery involving in many proteins (Table1). 
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Table 1 The key genes of DNA damage repair pathways 

DNA repair mechanism               proteins 

Mismatch repair (MMR) 

 

 

Homologous repair (HR) 

 

 

 

Nonhomologous end-joining (NHEJ) 

 

 

Nucleotide excision repair (NER) 

 

 

 

Base excision repair (BER) 

EXO1, HMBG1, LIG1, MLH1, MLH3, MSH2, MSH3, 

MSH6, PCNA, PMS1, PMS2, POLd, RFC, RPA 

 

ATM, ATR, BLM, BRCA1, EME1, EXO1 FANCD/BRCA2, 

FANCF, FANCM, FANCN, GEN1, MRE11, NBS1, Rad50, 

Rad51, Rad52, Rad54, RecQ4, RPA, WRN, XRCC2, XRCC3 

 

ARTEMIS, ATM, ATR, DNA-PKcs, Ku70, Ku80, LIG4, 

POL4, XRCC4 

 

CEN2, CSA, CSB, CUL4A, DDB1, DDB2/XPE, ERCC1, 

ERCC4/XPF, HR23B,LIG1, LIG3, POL D/E, RPA, TFIIH, 

XPA, XPC, XPG, XRCC1 

 

APE1, APE2, APTX, DNA2, FEN1, LIG1,LIG3, MBD4, 

MPG, MUTYH, NEIL1, NEIL2, NEIL3, NTHL1, SMUG1, 

TDG, TDP1, UNG, XRCC1, NUDT1, OGG1, PARP1, 

PARP2, PNKP, POLB, POLG 

 

1.5.1 Homologous recombination 

As mentioned above, double-strand breaks are produced by reactive oxygen species, 

ionizing radiation, and chemicals that generate reactive oxygen species. In addition, double-

strand breaks are resulted from V (D) J recombination, immunoglobulin class switching 

processes and meiosis. Double-strand breaks are repaired either by homologous 

recombination (HR) or nonhomologous end-joining (NHEJ) mechanisms (101–105) (56, 75). 

Homologous recombination works in a stepwise manner: strand invasion, branch 

migration, and Holliday junction formation. Strand invasion and branch migration is initiated 

by RAD51 in eukaryotes (76).  Once DSBs occur, phosphorylated ATM recruits 

RAD50/MRE11/NBS1 complex to the site, which has 5’–3’ exonuclease activity and  can 

process the 5’- termini to create a 3’-single strand tail for the subsequent strand invasion into 

homologous sequences of a sister chromatid (77). With the help of RPA, RAD51 forms a 
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nucleoprotein filament onto the single stranded DNA and which may be stimulated by 

RAD52. RAD51 can exchange the single strand DNA with the same sequence from a double-

stranded DNA molecule with the aid of RAD54, a chromatin remodeling protein. Cohesins 

that facilitate proper positioning of the sister chromatids probably help in identifying a 

homologous sequence. After identification of the homologous sequence, DNA polymerases 

use the intact double-stranded DNA as a template to copy the sequence and then the joint 

molecule forming Holliday junctions which is resolved by the structure-specific 

endonucleases, resolvases (78, 79). The MUS81/MMS4 heterodimer also can resolve the 

Holliday junctions or their topologically equivalents (80, 81).  Homologous recombination is 

an exquisitely cooperative process involving large numbers of proteins, including the BRCA1 

and BRCA2 proteins. BRCA2 may directly or indirectly affect nuclear translocation of 

RAD51. 

1.5.2 Non-homologous end joining repair (NHEJ) 

Although homologous recombination is regarded as an efficient “error-free” repair 

mechanism for DSB, it may potentially lead to homozygosity for recessive mutations. In 

addition, it may sometimes be difficult to find homologous sequences in the complex genome, 

especially in G1 phase cells that only have homologous chromosomes. So non-homologous 

end joining repair (NHEJ) works as an alternative way to repair DSB too. In eukaryotes, the 

KU70/80 heterodimer loading to the two ends of a double-strand break is followed by the 

DNA-PKcs binding. Afterwards the DNA ligase4-XRCC4 heterodimer seals the double 

strand break, in some cases even if the two ends are from different chromosomes leading to a 

deleterious event (78, 79, 82, 83).  End joining sometimes may gain or lose a few nucleotides 

when annealing is accompanied with internal microhomology alignment before sealing gaps 
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and thus leading to mutations. Although end joining does not require homologous sequences 

as template, homologous recombination (HR) and nonhomologous end-joining (NHEJ) 

mechanisms share the functions of the RAD50/MRE11/NBS1 complex (84). 

1.5.3 Mismatch repair 

Mismatch repair (MMR) is a highly conserved biological pathway from human MMR to 

prototypical E. coli MMR based on the similarities of substrate specificity, bidirectionality, 

and nick-directed strand specificity(85).  Mammalian MMR evolved a large set of the E. coli 

MutS and MutL homologs. hMSH2/6 form heterodimers hMutSα that  recognize mismatches 

and single-base loops whereas hMSH2/3 dimers (hMutSβ) distinguish insertion/deletion loops. 

hMutL-like proteins hMLH1/hPMS2(hMutLα) and hMLH1/hPMS1 (hMutLβ) heterodimeric 

complexes interact with MSH complexes and replication factors. The proximity of the 

replication machinery may discriminate the strand to be repaired. Numerous proteins 

including polδ/ε, RPA, PCNA, RFC, exonuclease 1, and endonuclease FEN1 are required to 

excise the new strand past the mismatch and resynthesize. MMR components also play roles 

in NER and recombination. Crystallographic studies have unveiled that a MutS dimer senses 

the structural instability of a heteroduplex by twisting the DNA at the mismatch site (86). 

However, similar DNA damage caused by alkylating agents and intercalators, may cause 

MutS to trigger erroneous or futile MMR. Intact MMR thus confers sensitivity, whereas 

tumours may become resistant to chemotherapy, therefore this presents a challenge to 

therapeutic strategies (87) 

1.5.4 Nucleotide excision repair 

Nucleotide excision repair (NER) is the main repair mechanism to remove bulky DNA 

lesions caused by UV-radiation or chemicals, or by protein conjugated to DNA. Global 
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genome NER (GG-NER) and transcription-coupled repair (TCR) consist of two NER 

subpathways. The two NER subpathways have partly different substrate specificities: the 

former removes distorting lesions in  the whole genome, and  the latter glanced through 

damages that result in RNA elongation stalling (67). A multisubunit enzyme complex known 

as “excision nuclease” can cleave the damaged strand on both sides of the lesion (88-90).  

Briefly, nucleotide excision repair is carried out using the following steps: (a) damage 

recognition, (b) removal of lesions by dual incisions bracketing the lesion to release a 24–32-

nt oligomer containing the lesion in eukaryotes, (d) re-filling the resulting gap by DNA repair 

synthesis, and (e) ligation. In TCR, the blockage of RNA polymerase by the lesions seems to 

be a requirement to trigger TCR. At least two TCR-specific factors, CSB and CSA are needed 

to displace the stalled polymerase to expose the lesion. GG-NER and TCR may share the 

subsequent procedures(91). About 30 base pairs of DNA around the damage are unwound by 

the XPB and XPD helicases of the multi-subunit transcription factor TFIIH. XPA probably 

checks abnormal backbone structure again to further confirm the presence of injury, and 

aborts NER if damages are absent. The single-stranded-binding protein RPA (replication 

protein A) binds to the undamaged strands to stabilize the open intermediate. The 

endonuclease duo of the NER team, XPG and ERCC1/XPF, respectively cleave the damaged 

strand from 3’ and 5’ of the lesion to remove the lesion by generating a 24–32-base 

oligonucleotide gap containing the injury. DNA polymerase then synthesizes new DNA to fill 

the gap which is followed by DNA ligase to seal it and mark the completion of NER.  At least 

25 or more proteins are involved in NER. It seems that the NER machinery assembles in a 

step-wise fashion in in vivo studies. The entire complex disassembles again after finishing a 

single repair (which maybe takes a few minutes). NER is a predominant and essential DNA 
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repair mechanism, so NER deficiency can cause many diseases such as Xeroderma  

Pigmentosum (XP), cockayne syndrome (CS), trichothiodystrophy and photosensitivity (92).    

1.5.5 Base excision repair 

DNA glycosylase cleaves the damaged base to form an abasic (AP) site in DNA, which 

initiates base excision repair (Figure 5).  Spontaneous AP sites can also be regarded as a direct 

damage product. There are various DNA glycosylases that recognize different base lesions 

respectively, for instances, uracil-DNA glycosylase (UDG) recognizes uracil, methyl- purine 

glycosylase (MPG) can recognize alkylated purines, 8-oxoguanine glycosylase (OGG1) 

recognizes 8-oxoG and FapyG. Some DNA glycosylases are monofunctional (e.g. UDG, 

MPG) that only catalyze the hydrolytic removal of the base so as to form an apurinic/ 

apyrimidinic (AP) site, whereas others (e.g. OGG, NTH, HNEL1-3) are bifunctional enzymes 

that not only cleave off the base but also catalyze a subsequent AP lyase reaction. The AP 

lyase reaction generates a 5’-phosphomonoester and a 3’-unsaturated sugar phosphate residue. 

After the lyase reaction, AP Endonuclease cleaves the 3’-sugar residue to create a 3’-OH end 

and form a gap that is filled by DNA polymerase, and the resulting nick is ligated. If the 

glycosylase has no lyase activity, the 5’ incision of the AP site is initiated by APE1 in 

mammalian cells, then DNA polymerase β (DNA Polβ) fills in the 1-nucleotide gap and 

simultaneously removes the abasic sugar by its dRP lyase activity (93), which is followed by 

ligation with DNA ligase III in cooperation with XRCC1. This is so-called the short-patch 

base excision repair. In long-patch base excision repair, APE1 nicks the 5’ phosphodiester 

bond to the AP site leaving a 3’-OH, and then DNA Pol δ/ε, PCNA, and replication factor C 

(RFC) work together to replace 2-10 nucleotides by DNA synthesis while the old oligomer 

forms a flap which will be removed by FEN1 endonuclease. The resulting nick is finally 
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ligated by DNA ligase1 (94, 95). Polβ can also participate  in a long-patch base excision 

repair mechanism (96).  

 

 

 
 

Figure 5 Base excision repair mechanisms in mammalian cells [modified from(97)] 

1.6 APE1 and its functions  

APE1/Ref-1 (also called APEX1, HAP1or Ref-1 and here referred to as APE1) was first 

cloned as a DNA repair enzyme in 1991 (98) and characterized as a redox protein in 1992 

(99). Human APE1 has 318 amino acids and is consisted of three putative functionally 

isolated domains (Fig. 6): (1) N-terminus (33–35AA) involved in protein–protein interaction 

and the modulation of its RNA-binding activity (100) and catalytic activity on abasic DNA 

(101); the redox domain (35-127AA); and (3) the DNA repair domain (161-318AA). APE1 

has been found to be a multifunctional protein that not only possesses both DNA repair and 

transcriptional regulatory activities, but also plays pleiotropic roles in the cellular response to 
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oxidative stress(102) (Fig. 6). Recently APE1 also has been proposed to be involved in RNA 

metabolism (100). 

 

Figure 6 APE1 is a multifunctional protein[modified from (103)] 

1.6.1 DNA repair activity of APE1 

APE1 is the mammalian ortholog of Escherichia coli Xth (Exo III) which is a member 

of DNA repair enzymes family that consists of three bacterial AP endonucleases (ExoA 

protein of Streptococcus pneumonias, exonuclease III of Escherichia coli and Tte AP enzyme 

of Thermoanaerobacter tengcongensis ), and Rrpl protein of Drosophila melanogaster. In 

living organisms from bacteria to humans, it has been found up to 100,000 spontaneous 

lesions/cell/day can occur, 10,000 of which are attributed to depurination and 

depyrimidination to form AP sites.  Base excision repair (BER) is the pivotal DNA repair 
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pathway that can repair these AP sites (97, 104, 105).  In mammalian BER, the AP 

endonuclease, APE1 can nick the 5’-phosphodiester bond of the AP site to generate a single 

DNA strand  break resulting in 3’-hydroxyl and deoxy-ribose-5’-phosphate (5’-dRp) termini. 

In addition, APE1 also can generate a 3’-hydroxyl terminus in different situations: APE1 can 

remove 3’-phospho α, β-unsaturated aldehyde through its 3’-5’exonuclease activity after 

glycosylases or radiation made DNA strand breaks (106). APE1 can also eliminate a 3’- 

terminal phosphate through its 3’ phosphatase activity that is left by glycosylases such as 

NEIL1 and NEIL2 (107). Therefore, APE1 is the key enzyme to process 3’-blocking groups 

into 3’-OH that is used as a primer for DNA synthesis during BER. 

1.6.2 Redox-dependent transcriptional activator  

As mentioned above, cells produce ROS via various ways either endogenously or 

exogenously. ROS production can change cellular and extracellular redox states, which have 

been shown to be involved in cellular signal changes. Proteins with cysteine residues, may act 

as redox sensitive switches, thereby triggering a variety of ROS mediated cellular signaling 

given that they possess reversible reactions between oxidation and reduction. Recently, there 

are more and more experimental evidence that suggests that redox states can regulate gene 

expression through direct modulation of transcription factor activity. To date, several 

transcription factors have been demonstrated as targets of redox regulation. APE1 has been 

found to stimulate the DNA binding activity of several transcription factors such as AP-1 (99), 

NF-κB (108), Myb (109), Egr-1 (110), p53 (111), hypoxia inducible factor-1 (HIF-1) (112) 

and Pax proteins (113). It is proposed that APE1 serves as redox dependent transcriptional 

coactivator through controlling the redox state of the critical cysteine residues that are located 

either in the DNA-binding domains or within regulatory regions of the transcription factor 
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itself. Cys65 of APE1 can reduce oxidized cysteines of transcription factors to maintain their 

reduced states thereby providing a redox-dependent gene regulation mechanism. 

Recently it has been found that APE1 has a novel redox chaperone activity, which 

means APE1 may not only regulate various transcription factors by direct reduction but also 

by facilitating the third resultants (e.g. GSH and thioredoxin) to reduce transcription factors. 

The redox-chaperone activity seems to be carried out by direct interactions between APE1 

and the target transcription factor, and require lower concentrations of APE1 as does its redox 

activity (114).  In all, the redox and the redox-chaperone activities of APE1 seem very 

important, and probably protect the cell from the genotoxic insults due to increased ROS 

concentration. However, the exact mechanisms in vivo still remain elusive, particularly in 

response to a specific stimulus. 

1.6.3 Transcriptional repressor activity of APE1  

While APE1 can indirectly regulate gene expression by controlling the redox states of 

many other transcription factors, it can also bind to the negative calcium responsive elements 

such as nCaRE-A and nCaRE-B in the promoter of various genes including the human 

parathyroid hormone (PTH) gene, rennin.  APE1 is a component of a trans-acting complex 

(115-117) formed by Ku70/80, heterogeneous ribonucleoprotein-L (hnRNPL) and p300 (118). 

So this can mitigate gene expression by negative feedback regulation.  

1.6.4 APE1 is involved in RNA metabolism 

Compared with its DNA repair activity and transcription activity, much less is known 

about its roles in RNA process. Actually as early as in 1995 Barzilay et al (119) discovered 

that APE1 has RNase H-activity specific to RNA-DNA hybrid although APE1 produces 

different products compared with exonuclease III. APE1 binds with relatively low affinity to 
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intact single- and double-stranded nucleic acid substrates (RNA and DNA) but does not 

exhibit general nuclease activity against them.  In addition, it has been reported that APE1 

also can cleave AP sites in single-stranded (ss) DNA at a rate approximately 20-fold less than 

that against AP sites in ds DNA, suggesting that  APE1 plays roles in DNA N-glycosylase 

initiated BER in ssDNA perhaps during replication and/or transcription (103, 120). Moreover, 

APE1 was discovered to be able to cleave AP-site-containing single-stranded RNA in vitro, 

which implies APE1 can endonucleolytically destroy detrimental cellular AP-RNA molecules 

(121). Another evidence is that APE1 is competent to regulate c-myc mRNA turnover by 

endonucleolytic cleavage of the coding region determinant (CRD) of c-myc mRNA. The 

endoribonuclease activity may share the same active sites with the AP-DNA endonuclease 

activity based on the fact that E96A and H309N mutants of APE1 lose their endoribonuclease 

activity. It is known that RNA is more susceptible to ROS which explains why oxidized RNA 

molecules are present in huge amounts in brains from Alzheimer patients. Taken together, this 

supports the speculations that APE1 is presumably involved in RNA metabolism, RNA decay 

or RNA quality control pathways (122) although more studies are needed to understand this 

mechanism of action. 

1.7 Modulation of APE1 different functions 

APE1 has so many functions, which raises a question: How does it manage them? Three 

different mechanisms may switch on/off and fine-tune different APE1 activities: (1) increase 

in APE1’s protein level after transcriptional activation; (2) translocation of APE1 from the 

cytoplasm to the nucleus; and (3) modulation of APE1 function by post-translational 

modification (PTM). To date, at least six different kinds of PTMs have been described for 

APE1 that occurred in vivo: acetylation (118, 123), phosphorylation (124, 125), ubiquitination 
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(126), S-nitrosation (127), proteolytic cleavage of the N-terminal 33 amino acids (128) and 

reversible reduction-oxidation. PTM can change APE1 activity distinctly. Lys6 and Lys7 of 

APE1 are acetylated by the transcriptional co-activator p300 and acetylated Lys6 and Lys7 

enhance the binding of APE1 to nCaRE, thereby stabilize the loading of the APE1-HADCs 

complex on the PTH promoter (118). APE1 indeed can be phosphorylated by the 

serine/threonine casein kinases (CK) I and II and protein kinase C.  Although phosphorylation 

by CKII completely abolished APE1 DNA repair activity, phosphorylation by CKI and 

protein kinase C (PKC) did not affect the ability of APE/Ref-1 to act at AP sites in DNA(124).  

There is an increasing body of evidence to support that many proteins carry out their 

biological roles as a component of a complex rather than as a single isolated protein. So an 

effective way to understand the roles of one protein is unveiling the constituents of the protein 

complex. Therefore, along with PTMs, the interactome of APE1 could change according to a 

specific biological function. The whole picture about the interactome of APE1 is not yet clear 

although around 30 proteins were discovered to interact with APE1 with different approaches 

(103). The frequently used approaches were proteomics combined with a protein with a small 

tag such as Flag, HA and V5 although one tag easily brought in nonspecific binding to the 

antibody used for immunoprecipitation.  Moreover, the existing interactions were mainly 

obtained under normal culture conditions, while it deserves more efforts to decipher APE1 

interactome as well after specific challenge, such as oxidative stress. Thus, in this study we 

employed a more stringent approach to investigate the APE1 interactome after hydrogen 

peroxide treatment. The N-terminus of APE1 was tagged with Flag and HA, which facilitates 

tandem sequential immunoprecipitation that was used to ensure the binding specificity.  The 
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subsequent chapters describe our effort to understand the role of one of the partners Prdx1 

with APE1.   
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Hypothesis and rationale: We propose that under the oxidative condition APE1 

governs its interacting partners thereby allowing the protein to perform specific functions.  

Some partners may be involved in DNA repair, energy metabolism, transcriptional regulation 

and RNA metabolism.   

Objectives: To isolate and characterize the specific partners that interact with APE1 

when cells are treated with oxidants, hydrogen peroxide is used in this study. We expect to 

provide a comprehensive understanding of the versatile functions of APE1 by exploring the 

regulatory roles between APE1 and its interacting proteins. 
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Peroxiredoxin 1 sequesters the DNA repair and redox factor APE1 from activating 

interleukin-8 expression 

Zhiqiang Wang, El Bachir Affar, Janos G. Filep, Dindial Ramotar 

 

Abstract 

APE1 is an essential protein that possesses several DNA repair activities and functions in the 

base-excision repair (BER) pathway.  It has the ability to incise abasic sites on the DNA, 

remove blocked 3΄-termini at DNA single strand breaks, as well as possesses a 3’ to 5’-

exonuclaese activity.  More recently, it has been shown to directly incise oxidized base 

lesions.  Mammalian cells knockdown for APE1 are very sensitive to various DNA damaging 

agents.  Besides its role in DNA repair, APE1 also plays a role in transcriptional regulation.  It 

has a unique cysteine C65, which is required to maintain the reduced state of several 

transcriptional activators such as p53, NFkappa-B, AP-1, c-Jun, and c-Fos.  APE1 also 

undergoes at least four types of post-translational modifications that include acetylation, 

deacetylation, phosphorylation and ubiquitylation.  How APE1 is being recruited to execute 

the various biological functions remains a challenge, although this could be directly related to 

its ability to interact with multiple different partners.  Under normal growth conditions, APE1 

has been shown to interact with a number of proteins that are involved in various functions.  

We propose that the oxidative state of APE1 governs its interacting partners thereby allowing 

the protein to perform specific functions.  We show that APE1 interacts with a novel partner 

Prdx1, a member of the peroxiredoxin family that prevents oxidative damage to proteins.  In 
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addition, we show that knockdown of Prdx1 alters APE1 structure and transcriptional activity 

in HepG2 cells leading to the up-regulation of IL-8, a chemokine involved in cellular stress.   

 

Introduction 

Apurinic/apyrimidinic endonuclease1/redox factor-1 (APE1/Ref-1) is a multifunctional 

protein involved in base excision DNA repair (BER) and transcriptional regulation of gene 

expression. In mammalian cells, as a key enzyme in BER, APE1 can hydrolyze the 5’- 

phosphodiester bond of the AP site to generate a single DNA strand break with 3’-hydroxyl, 

which is required for DNA repair replication.  In addition, APE1 can process 3’-phospho α,β-

unsaturated aldehydes (106) and 3’ terminal phosphates (129) into 3’-hydroxyls through its 

3’–5’ exonuclease activity   and  3’-phosphatase activity respectively to facilitate DNA repair 

replication (130). Besides its DNA repair activity, APE1 also play transcriptional roles 

directly or indirectly. APE1 can form a complex with Ku70/80, heterogeneous 

ribonucleoprotein-L (hnRNPL) and p300 and bind to the negative calcium responsive 

elements to suppress gene expression, such as that of the human parathyroid hormone (PTH) 

gene (118). APE1 can influence DNA binding activity of various transcription factors such as 

AP-1 (99) , NF-κB (108), Myb (109), Egr-1 (110), p53 (111), hypoxia inducible factor-1 (112) 

and Pax proteins (113) via its redox residue Cysteine 65. Thus, APE1 can reactivate these 

transcription factors by exerting its redox function. APE1 also was reported to be involved in 

RNA metabolism (100, 131). 

APE1 overexpression was often observed in several human tumors e.g. cervical, 

prostate, and epithelial ovarian cancers, leading to increased  tumor resistance towards anti-

neoplastic drugs, especially towards alkylating agents (130).  Therefore, APE1 is regarded as 
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a potential target for anti-tumor chemotherapy and prognostic outcome.  APE1 is an essential 

protein and mice deleted for the APE1 gene die early during embryogenesis.  In order for 

APE1 to execute its role in DNA repair and gene regulation, there must be regulatory 

mechanisms that switch on/off  and fine-tune the different APE1 activities and these include 

(1) increase in APE1’s protein level after transcriptional activation, (2) translocation of APE1 

from the cytoplasm to the nucleus and (3) modulation of APE1 by post-translational 

modification (PTMs) that include at least six different kinds of PTMs detected in vivo such as 

acetylation (118, 123), phosphorylation (124, 125), ubiquitylation (126), S-nitrosation (127), 

proteolytic cleavage of the N-terminal 33 amino acid domain (128) and reversible reduction-

oxidation.  Besides these mechanisms, APE1 is known to exist in complexes with other 

proteins and thus modulation of these proteins within the interactome could influence APE1 

function. 

The whole picture about interactome of APE1 is not yet clear although around 30 

proteins were discovered to interact with APE1 using different approaches (103). The 

frequently used approaches were proteomics combined with a protein with a small tag such as 

Flag and HA although any single tag easily brought in nonspecific binding to the antibody 

used for immunoprecipitation.  Moreover, the existing interactions were mainly obtained 

under normal culture conditions, while it deserves more efforts to decipher APE1 interactome 

after specific challenges as well, such as oxidative stress. 

In this study, we employed a more stringent approach to investigate the APE1 

interactome after hydrogen peroxide treatment. The N-terminus of APE1 was tagged with 

Flag and HA, which facilitated tandem sequential immunoprecipitation that was used to 

ensure the binding specificity. We demonstrated that the APE1 interactome changed in 
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response to hydrogen peroxide treatment. In addition, we found peroxiredoxin1 (PRDX1) 

interacted with APE1 under normal conditions either in the nucleus or cytosol, and that 

hydrogen peroxide treatment disrupted this interaction in the nucleus but not in the cytosol. 

PRDX1 knockdown amplified the detection of APE1 in the nucleus and this is associated with 

the upregulation of the proinflammatory interleukin, IL-8.  APE1 knockdown abolished the 

induction of IL-8 in the Prdx1 deficient cells, suggesting that Prdx1 opposes APE1 role in the 

regulation of IL-8.  

 

Materials and methods 

Cells culture: 

Human HeLa and HepG2 (hepatocellular cells) cells were kindly provided by Dr.Elliot 

Drobetsky (University of Montreal). HeLaS were kindly gifted by El Bachir Affar (University 

of Montreal). 293T, HeLa and HepG2 were cultured in Dulbecco's Modified Eagle 

Medium(DMEM) (Wisent Inc.) complemented with 10% of fetal bovine serum (FBS) 

(Wisent Inc.) and 100U/ml penicillin, and 0.1 mg/ml streptomycin. Cells were incubated at 

37°C and 5% CO2. In large scale culture HeLaS were cultured in MEM media complemented 

with 10% fetal bovine serum (FBS) (Wisent Inc.) and 100U/ml penicillin, and 0.1 mg/ml 

streptomycin. 

Antibodies and reagents 

APE1 rabbit mAb(cat# 2851-1, Epitomics), pAb anti-APE1 antibody(NB100-101,Novus 

Biologicals), mAb anti-peroxiredoxin1 antibody(NBP1-95676, Novus Biologicals), Prdx1 

rabbit Ab(#8732S,cell signalling),goat anti-mouse IgG pAb(HRP conjugate)(cat#ADI-SAB-

100,Enzo), goat anti-rabbit IgG pAb(HRP conjugate)(Cat#ADI-SAB-300-J,Enzo),mouse-anti-
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human Thioredoxin1(Cat#559969,BD pharmingen),goat anti-rabbit IgG-CFL647(sc-362292 

Santa Cruz Biotechnology), MitoTracker Red CMXRos(Cat# M-7512,life technology). 

Amico Ultra(0.5ml,10K,cat#UFC501024,24PK,Millipore) 

 

Plasmid constructs 

pOZ-FH-N contains a Kozak sequence, an initiation methionine, and FLAG and HAtags. 

pOZN-APE1 were constructed by firstly amplifying human APE1 from K562 cell cDNA by 

PCR with the primers APE1-Xho1-F1(5’-

CGTTCGTACTCGAGATGCCGAAGCGTGGGAAAAAG-3') and APE1-Not1-R1(5’-

CTTTTCCTTTTGCGGCCGCTCACAGTGCTAGGTATAGGG-3’), and then subcloned into 

pOZ-FH-N after Xhol and Notl digested them. 

To knockdown Prdx1, several constructs were made based on the MSCV-LTRmiR30-PIG 

(LMP) vector (Thermo Scientific) following the Manufacturer's instructions. They are 

respectively named as prdx1C1-2, prdx1C2-1, prdx1C3-1 and prdx1C4-1, all of them were 

sequenced for confirmation. The hairpin shRNA templates are as following, sense and 

antisense sequences were underscored. 

C1(HP_7670)TGCTGTTGACAGTGAGCGACCAGATGGTCAGTTTAAAGATTAGTGAA

GCCACAGATGTAATCTTTAAACTGACCATCTGGCTGCCTACTGCCTCGGA 

C2(HP_647595)TGCTGTTGACAGTGAGCGACCAGATGGTCAGTTTAAAGATTAGTG

AAGCCACAGATGTAATCTTTAAACTGACCATCTGGCTGCCTACTGCCTCGGA 

C3(HP_142580)TGCTGTTGACAGTGAGCGACCTGTCTGACTACAAAGGAAATAGTG

AAGCCACAGATGTATTTCCTTTGTAGTCAGACAGGCTGCCTACTGCCTCGGA 
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C4(HP_820446)TGCTGTTGACAGTGAGCGACCTGTCTGACTACAAAGGAAATAGTG

AAGCCACAGATGTATTTCCTTTGTAGTCAGACAGGCTGCCTACTGCCTCGGA 

To knockdown APE1, two constructs were made based on vector RNAi-Ready pSIREN-

RetroQ-ZsGreen (Clontech Laboratories, Inc.) following the Manufacturer's instructions: 

pSIREN shAPE1 1-1 and pSIREN shAPE1 2-1. Oligos APE1-shRNA-UP1and APE1-

shRNA-DWN1 are used for pSIREN shAPE1 1-1 targeting 5’-

TGACAAAGAGGCAGCAGGA-3’ in APE1; oligos APE1-shRNA-UP2 and APE1-shRNA-

DWN2 are used for pSIREN shAPE1 2-1 targeting 5’-GTCTGGTACGACTGGAGTACC-3’. 

Oligo sequences are as following:  

APE1-shRNA-UP1:  

5'-gatccGTGACAAAGAGGCAGCAGGATTCAAGAGATCCTGCTGCCTCTTTGTCATTTTTTg-3' 

APE1-shRNA-DWN1:  

5'-aattcAAAAAATGACAAAGAGGCAGCAGGATCTCTTGAATCCTGCTGCCTCTTTGTCACg-3' 

APE1-shRNA-UP2:  

5'-gatccGTCTGGTACGACTGGAGTACCTTCAAGAGAGGTACTCCAGTCGTACCAGACTTTTTTg-3' 

APE1-shRNA-DWN2:  

5'-aattcAAAAAAGTCTGGTACGACTGGAGTACCTCTCTTGAAGGTACTCCAGTCGTACCAGACg-3' 

pOZN-prdx1 were constructed by firstly amplifying human Prdx1from K562 cell cDNA by 

PCR with the primers pOZN-FH-prdx1F(5’-

GCCGGAGGACTCGAGatgtcttcaggaaatgctaaaattggg-3’)  and POZN-FH-prdx1R(5’-
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TCAGTCACGATGCGGCCGCtcacttctgcttggagaaatattcttt-3’) and then subcloned into pOZ-

FH-N after  Xhol and Notl digestion. 

Retrovirus preparation and infection 

293T cells were plated in 10cm tissue cell culture plates day prior to transfection at 70 % 

confluence. After 1 day retroviral vectors were cotransfected with pVSV-G and pCL-Eco 

retrovirus packaging vector using Calcium phosphate transfection method. Supernatants were 

collected 36-48 h after transfection, filtered through a 0.45 μm filter and used directly to 

infect target cell lines.  

To infect HeLaS, HeLa or HepG2 cells, cells were plated into 10cm tissue cell culture 

plates 1day prior to infection at the 35% confluence. After 1 day the old media were removed 

and replaced with viral supernatants/fresh media mixture (1:1) supplemented with 0.4μg/ml 

Polybrene
®
 (Sigma-Aldrich). 24h after infection, the viral media was removed and cells were 

washed at least twice with 1xPBS and fresh media was added. Cells were subjected to 

selection 48h after infection. 

Cell proliferation assay 

To determine the average rate of population doublings, HepG2 LMP (empty vector) and 

HepG2 C1-2(prdx1 knockdown) were plated into 10cm-diameter petri dishes in duplicate at 

1.6Χ10
6 

cells/dish. After indicated intervals, cells were trypsized and counted by cell counter 

(Invitrogen). The numbers were converted into population doublings according to the 

following formula: [log (No. of cells counted)-log (No. of cell plated)]/log(2)(132). 

HepG2 LMP and HepG2 C1-2(prdx1 knockdown) were plated in 6cm diameter plates at 

8X10
5
cells/plate one day before treatment. Cells were treated by at the H2O2 of indicated 

concentration into complete DMEM media. Cells were cultured for another 10 days and then 
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were trypsinized and countered by a Countess® Automated Cell Counter (Life Technologies).  

The data was normalized to the untreated group and finally was represented as percentage. 

Each group was set up as replicates. 

Purification of APE1 complex from HeLaS cells 

A stable HeLa S cell line that expresses a cDNA encoding wild-type human APE1 with N-

terminal FLAG and HA tags was generated by retroviral transduction by using the procedure 

described by Nakatani and Ogryzko (2003). Nuclear extracts were prepared from 10 L of 

these cells as follows. The cells were washed twice with cold 1 x PBS, resuspended in 

hypotonic buffer [20mM Hepes (K+), pH7.6, 10mM KCl, 1.5mM MgCl2, 0.2mM PMSF, 

0.5mM benzamidine, and 1 µg/mL each of leupeptin, aprotinin, and pepstatin], and incubated 

on ice for 10 min. The cells were then disrupted with approximately 10 strokes of a Wheaton 

Dounce homogenizer (B pestle) on ice. The nuclei were pelleted for 5 min at 4˚C in a clinical 

centrifuge and washed once with the same volume of hypotonic buffer as pellets, then 

resuspended in extraction buffer [20mM Hepes (K+), pH7.6, 0.42M KCl, 1.5mM MgCl2, 

0.2mM EDTA, 25% (v/v) glycerol, 0.2mM PMSF, 0.5mM benzamidine, and 1µg/mL each of 

leupeptin, aprotinin, and pepstatin], and sonicated for 2 min on ice. Insoluble material was 

pelleted for 15 min at 13,000 rpm in a Sorvall SS-34 rotor at 4˚C, and the soluble extract was 

dialyzed overnight against dialysis buffer [20 mM Hepes (K+), pH 7.6, 100mM KCl, 1.5mM 

MgCl2, 0.2mM EDTA, 0.2mM PMSF, 0.5mM benzamidine, and 1 µg/mL each of leupeptin, 

aprotinin, and pepstatin]. The extract was subjected to centrifugation for 15 min at 13,000 rpm 

in a Sorvall SS-34 rotor at 4˚C to remove insoluble material, and then used for 

immunoaffinity purification of the APE1 complex. To prepare the cytoskeleton fraction, KCl 

concentration were adjusted to 100 mM KCl and insoluble material was pelleted for 15 min at 
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13,000 rpm in a Sorvall SS-34 rotor at 4˚C. The supernatants were used for immunoaffinity 

purification of the APE1 complex. 

The immunoaffinity purification of APE1 was performed by sequential anti-FLAG and 

anti-HA immunoaffinity purification steps by using methods similar to those previously 

described (Nakatani and Ogryzko 2003). Nuclear extracts were combined with 200 µL of 

FLAG (M2) resin (Sigma) and incubated overnight at 4˚C. The beads were pelleted and 

washed twice in batch with wash buffer [20mM Hepes (K+), pH 7.6, 100mM KCl, 5mM 

MgCl2, 0.2mM EDTA, 0.05% (v/v)NP-40, 10% (v/v) glycerol, 0.2mM PMSF, 0.5mM 

benzamidine, and 1 µg/mL each of leupeptin, aprotinin, and pepstatin]. The beads were then 

transferred to a 1.5 mL column (Bio-Rad) and washed with 10 mL of wash buffer. Bound 

proteins were eluted by three successive 1 h incubations of the beads with 200 µL (for each 

incubation) of FLAG Elution buffer [Wash buffer plus 0.36 mg/mL FLAG peptide (Bio-

basic)]. The FLAG eluates were pooled, combined with 100 µL of HA resin, and incubated 

overnight at 4˚C. The resin was then washed washed in 1.5 mL column (Bio-Rad) with 10 mL 

of Wash buffer. Bound proteins were eluted by three successive 1 h incubations of the beads 

with 200 µL (for each incubation) of HA elution buffer [Wash buffer plus 0.2 mg/mL HA 

peptide (Bio-basic)]. The HA elutes were pooled and concentrated into 100μl by 20% (w/v) 

trichloroacetic acid precipitation, and an aliquot (10 µL) was analyzed by SDS-

polyacrylamide gel electrophoresis and silver staining. Some bands and the remaining eluents 

were identified by the Taplin Biological Mass Spectrometry Facility of Harvard Medicial 

School. 

 

Co-immunoprecipitation of APE1 and Prdx1 from HeLaS cell extracts 
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pOZN and pOZN-APE1 expressing HeLaS cells from a 10 cm plate were washed twice in 1 x 

PBS, resuspended in 500 μL Lysis buffer [20 mM Hepes (K+), pH 7.6, 0.3 M KCl, 1.5 mM 

MgCl2, 0.2 mM EDTA, 0.3% (v/v) NP-40, 0.2 mM PMSF, 0.5mM benzamidine, and 1 μg/mL 

each of leupeptin, aprotinin, and pepstatin], and sonicated for 2 seconds. Insoluble material 

was pelleted 15 min at 13,000 rpm in a microcentrifuge, and the soluble extract was diluted 

with 1ml of Lysis buffer with 10% (v/v) glycerol but lacking KCl and NP-40. Insoluble 

material was pelleted, and the soluble lysate was added 30μl of FLAG (M2) resin (Sigma) 

after 50 μL aliquots were taken for input, following incubation for 4 h at 4°C, The beads were 

pelleted and washed with 3 x 1 mL of Wash buffer [20 mM Hepes (K+), pH 7.6, 0.1M KCl, 

1.5 mM MgCl2, 0.2 mM EDTA, 0.01% (v/v) NP-40,10%(v/v) glycerol, 0.2mM PMSF, 

0.5mM benzamidine, and 1μg/mL each of leupeptin, aprotinin, and pepstatin]. Bound proteins 

were eluted by Elution buffer[ 10mM Tris pH 7.9, 10mM EDTA, 1%SDS], and the beads 

were pelleted at 2000RPM for 1mins. The supernatants were added sample buffer for SDS-

polyacrylamide gel electrophoresis and western blot analysis. 

 

Gel filtration 

If two proteins interact, they are assumed to co-elute in the size-excluding columns. Fast 

protein liquid chromatography(FPLC) ÄKTA purifier 10/100 system were used. 0.5ml of 

samples were loaded onto superose
TM

 6  column , buffer A [20 mM Hepes (K+), pH 7.6, 100 

mM KCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.2 mM PMSF, 0.5 mM benzamidine, and 1 

µg/mL each of leupeptin, aprotinin, and pepstatin] were degased and pumped at flow rate of  

0.25 ml/min. All eluents were collected at 0.5 ml/fractions. Each fraction was concentrated by 

Amicon Ultra before western blot. 
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AP endonuclease activity assay 

The synthetic oligonucleotides used in this study are shown as following:  

U
21 

G  

5’-GCTGCATGCCTGCAGGTCGAUTCTAGAGGATCCCGGGTACCT-3’ 

3’-CGACGTACGGACGTCCAGCTGAGATCTCCTAGGGCCCATGGA-5’ 

They were purchased from Integrated DNA Technologies (IDT). The upper-strand 

oligonucleotides (100 ng) were radiolabelled as previously described (133) at the 5’ ends with 

50 μCi of [γ-
32

P]ATP (6000 Ci/mmol; Perkin Elmer) using T4 polynucleotide kinase 

(Promega). The labelled oligonucleotides were ethanol-precipitated to remove enzyme and 

unincorporated ATP, and gel-purified, prior to annealing with an equimolar concentration of a 

complementary strand of DNA. The upper strand of 42-bp oligonucleotides bear a uracil (U) 

residue at position 21 opposite a guanine residue to form two different double-strand DNA 

substrates U
21 

G after annealing with bottom strand. They were used to measure AP 

endonuclease activity of APE1 in Buffer A (10 mM Hepes pH 7.5, 10 mM KCl, 2 mM MgCl2, 

0.2 mM DTT, 0.2 ug/ml BSA, 0.01% Triton-100). Before that U
21 

G needs UDG to create AP 

site. UDG treatment was carried out at 37
 o
C for10 mins followed by heating 90

o
C for 2 mins 

to inactivate UDG. 50 ng proteins of each sample were mixed with 100 pmol substrates U
21 

G 

in buffer A respectively. Then they were incubated at 37
 o
C for 10 mins, which was followed 

the incubation of 90
o
C for 2 mins to stop the reaction. The reaction products were separated 

on 10% (w/v) polyacrylamide/7 M urea gels and visualized by autoradiography. 

 

Immunofluorescence assay 
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Normally the sterile cover slips were placed in 24 well plates and the cells were plated on the 

cover slips 1 day prior to treatment, After the required treatment on day2, cells were washed 

with 1X PBS rapidly, and fixed for 30 min with 4% PFA containing 0.1% TritonX 100. Then 

samples were washed three times with PBS, each for 5 min, and incubated with the 1
st
 

antibody in PBS containing 5% FBS (fetal bovine serum) room temperature for 1h or 

overnight at 4°C. Next samples were washed with PBS three times for 5 min with gentle 

shaking and incubated with 2
nd

 antibody in PBS containing 5% FBS for 0.5h at 37°C in dark, 

which is followed by three times washes 5 min/each with PBS. 20-30μl of mount media is 

dropped on clean glass slides. The cover slips with the cells were mounted facing down on the 

glass slides. Excess liquid is removed with filter paper. Finally the cover slips were sealed 

with polish nail. The pictures were taken by Carl Zeiss Microscopy. 

 

IL-8 quantification by ELISA  

Human IL-8 ELISA set (Cat.No.555244, BD Biosciences) were used to quantify IL-8 in 

culture supernatants following the instructions. Briefly 100 μl  diluted Capture Ab is  added to 

each well of 96-well plates and incubated overnight at 4 °C followed by 3X 300 μl washes; 

block plates: 200 μl Assay Diluent is added  to each well and incubated 1 h at room 

temperature (RT) followed by 3X 300 μl washes; next 100 μl standard or samples are added  

to each well and incubated 2 h at RT followed by  5X 300 μl washes; 100 μl Working 

Detector(Detection Ab+SAv-HRP) is added to each well and incubated 1 h RT followed by  

7X 300 μl washes; 100 μl Substrate Solution is added to each well and incubated 30 mins at 

RT in dark; add 50 μl Stop Solution is added to each well and the  plate is read at 450 nm 

within 30 mins with correction at 570 nm. All samples were set as duplicates. 



39 
 

 

Results 

Expression and purification of APE1 complex from HeLaS cells. 

Previous study used a single tag to explore APE1 interacting partners from total cell extracts. 

In this work we examined for the partners under more stringent purification conditions by 

employing two affinity purification tags.  In addition, we used this approach to determine 

whether the APE1 interactome would be influenced upon exposing cells to oxidative stress.  

We created stable HeLaS cell lines expressing a N-terminal FLAG-HA tagged APE1 from the 

pOZ vector (Fig.1A) (referred herein as FH-APE1) (134).  The ectopic expression of FH-

APE1 in HeLaS was validated by Western blot probed with three different antibodies, anti-

APE1, anti-HA and anti-FLAG (Fig.1B).  The pOZ vector expressed FH-APE1 with the 

expected molecular weight of 39 kDa and to nearly the same level as the endogenous APE1 

(37 kDa).   

We used this expression system to examine the proteins associated with FH-APE1 

derived from nuclear and cytosolic extracts of the HeLaS cells.  The FH-APE1 complex from 

nuclear extracts was purified by tandem immunoprecipitation using anti-FLAG and -HA 

resins.  The final HA elutions were concentrated by trichloroacetic acid (TCA) and an aliquot 

analyzed by SDS-PAGE that was stained with silver (Fig.2A).  Instead of isolating individual 

bands from the SDS-PAGE, the entire HA eluate was subjected to mass spectrometry in order 

to identify all the proteins.  HA eluate from nuclear extract carrying the pOZ empty vector 

was used as a control.  This approach identified only five proteins (APE1, LMNA, NPM1, 

PRDX1 and RPS19) from the nuclear fraction and each protein was considered a hit after 

setting a limit for three unique peptides (Fig.2B and supple Table S1).  Amongst these 
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proteins only NPM1 was previously reported to interact with APE1 using a single affinity 

purification (100). LMNA, PRDX1 and RPS19 were found for the first time to be part of the 

APE1 complex. 

The same approach was used to identify FH-APE1 complex in the cytosol.  FH-APE1 

was found to interact with 14 proteins (Fig.2E and supple Table S1) and of these proteins, 

four (Prdx1, PDIA6, Prdx2, Prdx3) played a direct role in mitigating oxidative stress (135-138) 

(Supple Table S1).  In fact, the STRING database of known and predicted protein interactions 

suggested a connection between HSP90AB1 and APE1 on the basis that HSP90AB1 interacts 

with some of the same proteins found to interact with FH-APE1 (Fig. 2E) (139).  These 

findings suggest that APE1 forms distinct complexes in the nucleus and the cytoplasm and it 

appears that in the cytosol APE1 forms complexes with proteins that are involved in oxidative 

stress responses. 

 

APE1 interactome changes upon treatment with H2O2 

From the above data, we suggest that APE1 interaction with its partners could be influenced 

by oxidative stress.  Since previous studies did not examine whether APE1 interactome could 

be altered by oxidative stress, we treated cells with the chemical oxidant hydrogen peroxide 

(H2O2) and analyzed for the proteins associated with APE1.  Upon treatment with H2O2 (1 

mM for 1 h) at a concentration that has minimal effects on cell viability, the nuclear APE1 

interacting partners disappeared for the exception of LMNA. We performed the same analysis 

for the APE1 interacting partners in the cytosol and found that APE1 existed in complex with 

at least 25 proteins (Fig 2D).  The treatment did not interfere with the interaction of some of 

the proteins with APE1 as compared to the interactome that co-existed under normal 
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conditions, but other interactions were lost and new ones appeared (Supple Table S1).  

Importantly, H2O2 treatment preserved the interaction of APE1 with proteins involved in 

oxidative stress responses such as Prdx1, PDIA6, as well as gained an interaction with Prdx6.  

These data suggest that APE1 interaction with its partners can be regulated by oxidative stress.   

 

Validation of interaction between APE1 and Prdx1  

Under normal conditions, Prdx1 was the only common partner that existed with APE1 in 

either the nucleus or the cytosol.  Prdx1 has been documented to function as an antioxidant 

that scavenges H2O2. Recent studies demonstrated that mice deficient in Prdx1 caused tissue 

specific loss of heterozygosity implying that this enzyme may be involved in maintaining 

genomic stability(140). APE1 is a key enzyme for base excision repair pathway. The 

interaction between APE1 and Prdx1 has been found by mass spectrometry as mentioned 

above. So we went further to look into whether Prdx1 affect the function of APE1. To test 

whether APE1 and Prdx1 indeed belong to a complex, we carried out co-immunoprecipitation 

experiments with anti-FLAG resin and using total protein extracts derived from HeLaS cells 

carrying either the empty pOZ vector as control or pOZN-APE1 under conditions where the 

cells were untreated or treated with 1 mM H2O2 for 1h. The anti-FLAG antibodies pull down 

Prdx1 from total extracts expressing FH-APE1 but not from extracts carrying the empty 

vector.  The co-immunoprecipitation of Prdx1 with FH-APE1 was not affected when the cells 

were treated with H2O2 (Fig.3A), consistent with the mass spectrometry data.   

We conducted the reciprocal experiment by using FH-tagged Prdx1 expressed from the 

pOZ vector in the HeLa cells.  The anti-FLAG resin was capable of pulling down APE1 from 

total cell extracts expressing the FH-Prdx1, but not from extract derived from cells carrying 
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only the empty pOZ vector (Fig.3B).  To further validate the interaction between APE1 and 

Prdx1, we used gel filtration and analyzed the elution profile of both proteins.  The analysis 

revealed that Prdx1 co-eluted with APE1 using either nuclear (Fig.3C and E) or cytosolic 

(Fig.3G and I) extracts prepared from HeLa cells that were grown under normal condition.  

However, if the cells were first treated with H2O2 and the cytosolic and nuclear extracts 

examined for the co-elution of Prdx1 and APE1, only the cytosolic extract showed the co-

elution of Prdx1 and APE1 (Fig.3H and J .).  In the case of the nuclear extract, the Prdx1 

protein could not be recovered in any of fractions (Fig.3D and F ). Taken together, these data 

suggest that Prdx1 interacts with APE1 in both the cytosol and the nucleus under normal 

condition, and that oxidative stress caused by H2O2 treatment may disrupt the nuclear 

interaction. 

 

Prdx1 knockdown did not affect APE1 protein abundance 

To explore the role of Prdx1 on APE1 function, we knocked down Prdx1 in two different cell 

lines HeLa cell and HepG2 by using via a retroviral system to express shRNA against Prdx1.  

The shRNA-Prdx1 or shRNA LMP control vector transfected cells were selected for one 

week in the presence of puromycin (0.5 ug/ml), harvested and examined for Prdx1 levels by 

Western blot analysis using anti-Prdx1 monoclonal antibody (Fig. 4A).  All four shRNA that 

targeted different regions of Prdx1 decreased the level of the protein in HeLa cells, as 

compared to the control LMP vector.  One of these, shRNA-Prdx1 C1-2 was chosen for the 

rest of the studies and as shown in Fig. 4B it also diminished the protein level in HepG2 cells.  

Although Prdx1 level was decreased by the shRNAs, the level of APE1 remained unchanged 

as determined by Western blot probed with anti-APE1 monoclonal antibody, indicating that 
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Prdx1 is not involved in regulating the expression level of APE1. It is noteworthy that the 

Prdx1 knockdown cells displayed higher oxidative stress environment as judged by 

MitoTracker analysis. MitoTracker Red CMXRos is a red-fluorescent dye that stains 

mitochondria in live cells and its accumulation is dependent upon membrane potential. We 

stained HeLa LMP and HeLa C1-2 with MitoTracker Red CMXRos and found that Prdx1 

knockdown HeLa C1-2 had stronger fluorescence compared to HeLa LMP control, which 

suggested that Prdx1 knockdown caused more mitochondrial oxidation (Fig.5C). 

 

Prdx1 knockdown enhances APE1 detection in the nucleus  

Because Prdx1 was found associated with APE1 in both the cytosol and the nucleus, we 

checked whether Prdx1 knockdown would alter APE1 cellular distribution.  We performed 

indirect immunofluorescence using two different antibodies against APE1 and found that 

APE1 detection by monoclonal antibody was much more intense in the shRNA-Prdx1 HeLa 

cells, as opposed to the control cells carrying the empty LMP vector (Fig. 5A).  APE1 

detection was even more intense using the anti-APE1 polyclonal antibody and independent of 

whether the experiment was conducted in HeLa (Fig. 5B). Under H2O2 treatment conditions 

whereby Prdx1 was no longer co-eluting with APE1, APE1 was again more intensely stained 

by anti-APE1 antibody.  To test the possibility of translocation of APE1 in response to H2O2, 

we fractionized Prdx1 knockdown HepG2 and control cell after exposure to H2O2. Western 

analysis revealed APE1 indeed translocate into nucleus from cytosol in Prdx1 knockdown 

cells and H2O2 treatment even exacerbates the translocation (Fig.6A). Since the total amount 

of APE1 in cells did not change (Fig. 4A) and the translocation of APE1 between the 

cytosolic or the nuclear extracts cannot suffice to account for the different 
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immunofluorescence signals, we raised the possibility that Prdx1 may prevent both the 

monoclonal and polyclonal antibodies from properly recognizing APE1.  While this 

interpretation is consistent with Prdx1 forming a complex with APE1, it also suggests that 

Prdx1 could perform a regulatory role in controlling APE1 function.   

 

Prdx1 knockdown did not significantly affect APE1 AP endonuclease activity 

Prdx1 exists in the nucleus, but the majority of the protein is localized to the cytosol of 

cells(136).  Prdx1 binds to chromatin in a genome-wide manner with a slight enrichment in 

coding regions in Plasmodium falciparum(27, 141).  Prdx1 deficiency causes more oxidative 

DNA damages (24). APE1 is the key enzyme for base excision repair that can repair oxidative 

DNA damages.  So we postulate that Prdx1 deficiency would impair the AP endonuclease 

activity of APE1. To test this hypothesis, we used a 42-mer double stranded oligonucleotide 

substrate containing a single uracil at position 21 that generates a 20-mer product when 

cleaved.  Cytosolic or nuclear extracts prepared from HepG2 cells did not show any 

significant differences in the AP endonuclease activity between the control or when Prdx1 

level was diminished by the shRNA-PRDX1 (Fig.6B-C).  Moreover, the shRNA-Prdx1 

knockdown cells were no more sensitive nor showed a proliferation defect when treated with 

H2O2 as compared to the cells carrying the LMP vector (Fig.7A-B).  Thus, Prdx1 does not 

seem to govern the role of APE1 in DNA repair.   

 

Prdx1 downregulation stimulates IL-8 expression and depends on APE1  

A recent study documented that specific inhibition of the redox activity of APE1 by the 

inhibitor E3330 blocks TNF-α induced activation of the proinflammatory chemokine 
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Interleukin-8 (IL-8) in HepG2 cells (142). In fact, IL-8 can be regulated at the transcriptional 

level by several factors including NF-kB when cells encounter different stimuli such as 

chemical and environmental stresses (143).  Since APE1 can influence NF-kB function, we 

checked whether disrupting Prdx1 interaction with APE1 would alter IL-8 production in the 

HepG2 cells.   

When Prdx1 level was diminished, IL-8 secretion was stimulated by nearly 4-fold after 

24 h of seeding the cells and analyzing the media, as compared to the control cells carrying 

the empty vector.  Treatment of the cells with increasing H2O2 for 24h further elevated the 

secretion of IL-8 in the Prdx1 knockdown cells by another fold, but only slightly in the 

control cells.  These observations indicate that Prdx1 suppresses IL-8 production in the 

HepG2 cells and that its inactivation by H2O2 could also stimulate IL-8 level.    

We next tested if the stimulation of IL-8 production in the PRDX1 knockdown cells 

would depend on APE1 functional level.  As such, we first designed a system using the 

pSIREN-Zs-Green vector to knockdown APE1 in the HepG2 cells and then used the resulting 

clone shAPE1-1 (Fig. 8B) to downregulate PRDX1 using  a different vector LMP (Fig. 8C, 

lane 2 and 4).  In the HepG2 cells, the shRNA against APE1 downregulated APE1 level by 

60 % and the shRNA against PRDX1 downregulated PRDX1 by 80%, as compared to the 

vector controls (Fig. 8B-C).   APE1 knockdown did not interfere with the basal level of IL-8 

production, but prevented the stimulated amount caused by PRDX1 downregulation (Fig.8D).  

We interpret these data to indicate that Prdx1 may perform a function to sequester APE1 from 

turning on the transcription of stress response genes (Fig.8E). 
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Discussion  

In this study, we compared APE1 the interactome under physiological condition and hydrogen 

peroxide treatment with more stringent tandem immunoprecipitation combined with mass 

spectrometry in nucleus and cytosol, respectively. In the nucleus, under physiological 

condition we found NPM1, RPS19, LMNA and PRDX1 interacted with APE1, given their 

functions on chromatin and RNA processing ( see Table S1), these suggested APE1 may 

regulate genomic stability and gene expression, particularly ribosomal RNA maturation 

through these proteins although only  the role of NPM1-APE1 interaction on rRNA quality 

control was characterized (100). Hydrogen peroxide treatment disrupted the interaction 

between NPM1, RPS19, PRDX1 and APE1. Given the fact that oxidative stress induced 

specific changes in gene expression in hydrogen peroxide-treated lens cells (144), it can be 

inferred that disrupting the interaction of these proteins may play roles in gene expression.  

These data imply APE1 could change its interactome to govern gene expression. APE1 

mainly distributes in nucleus, but it also exists in cytosol and mitochondria. The mechanism 

by which APE1 regulates oxidative status and confers resistance to stress is not clearly 

understood. The interactome analysis of cytosolic APE1 revealed that APE1 gained 

interaction with a set of proteins including CPS1, P4HB, EEF1A2, HSP90AA1, TRAP1, 

PKM2, HSPB1, HSPA8 and PRDX6, in response to H2O2 treatment. These genes are 

involved in important life events from metabolism, antioxidation, translation to energy 

regeneration. Of note, TRAP1, a mitochondrial chaperone with antioxidant and antiapoptotic 

functions, promotes neoplastic growth by inhibiting succinate dehydrogenase (145).  PKM2 is 

critical for aerobic glycolysis and tumor growth in response to rapamycin (146, 147).  
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Carbamoyl phosphate synthetase 1 (CPS1), is an enzyme catalyzing the initial step of the urea 

cycle for ammonia detoxification and disposal (148). Prolyl 4-hydroxylase is essential for 

viability and morphogenesis in Caenorhabditis elegans (149, 150).  PHGDH alters glucose 

metabolism and catalyses the first step in the serine biosynthesis pathway to promote 

tumorigenesis(151, 152). Thus it is plausible that cytosolic APE1 harnesses those proteins to 

mobilize cells to adapt to stress for survival, although the influences on those proteins by 

APE1 remain to be validated.   

We found APE1 interacted with Prdx1 in the nucleus as well as in the cytosol under 

physiological condition, whereas H2O2 treatment disrupted the interaction in the nucleus, but 

not in the cytosol. Prdx1 is an important antioxidant to scavenge H2O2. During catalysis, the 

peroxidatic cysteine (CP-SH) is oxidized to a sulfenic acid (CP-SOH), which then reacts with 

the resolving cysteine (CR-SH from the other subunit of the dimer) to form a disulfide, which 

can be reduced by thioredoxin or another enzyme (153). Oxidation of cysteine impairs the 

DNA binding ability of transcription factors (99, 114). We tested if Prdx1 knockdown 

affected APE1 DNA repair activity by measuring APE1 endonuclease activity.  Unexpectedly 

Prdx1 knockdown did not significantly decrease its AP endonuclease activity compared to 

normal cells, but slightly increase AP endonuclease.  H2O2 treatment indeed diminished AP 

endonuclease in Prdx1 knockdown and normal cell similarly. This may be attributed to S-

glutathionylation of APE1(154).  As to the fact that Prdx1 knockout cells have more oxidative 

DNA damages than wild type, this could be attributed to more ROS production by virtue of 

Prdx1 knockout, instead of compromised APE1 DNA repair activity. 

In our study, we showed there was more APE1 immunofluorescence staining signals in 

the nucleus of Prdx1 knockdown cell than in normal cells.  Although we also found the 
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translocation of APE1 from cytosol to nucleus in Prdx1 knockdown HepG2 cells and normal 

HepG2 cells under H2O2 stimulation, it seemed that translocation cannot account for the 

difference in immunofluorescence staining, suggesting a new mechanism to increase 

accessibility of APE1. One possibility is that Prdx1 may unblock anti-APE1 epitopes making 

APE1 accessible for detection.   

Interleukin-8 (IL-8) is a proinflammatory CXC chemokine. In healthy tissues, IL-8 is 

hardly detectable, but it is rapidly induced by 10- to 100-fold in response to proinflammatory 

cytokines such as tumor necrosis factor or IL-1, bacterial or viral products, and cellular stress 

(143).  We found that Prdx1 knockdown in HepG2 cells produced four times IL-8 as much as 

normal HepG2 within 24h. Prdx1 knockdown HepG2 increased IL-8 secretion by a much 

bigger margin than in normal HepG2 cell in response to H2O2.   Increased expression of IL-8 

and/or its receptors has been found in endothelial cells, cancer cells, infiltrating neutrophils, 

and tumor-associated macrophages, which implied that IL-8 may implicate the tumor 

microenvironment, angiogenesis, metastasis and tumorigenicity as a significant regulatory 

factor(155). In addition, secreted IL-8 can activate multiple transcription factors including 

NF-кB, HIF-1, AP-1, signal transducers and activators of transcription 3 (STAT3) and β-

catenin (155). It remains elusive whether APE1 is recruited to the IL-8 promoter turn it on 

which then goes out and activate more transcription factor for oxidative stress such as NF-kB. 

PRDX1 promoter hypermethylation and reduced expression were frequently detected in 

oligodendroglial tumours and secondary glioblastomas (156). In addition the importance of 

Prdx1 was also highlighted by the fact that Prdx1 deficient mice are viable and fertile but 

prematurely die and age owing to the development beginning at about 9 months of severe 

haemolytic anaemia and several malignant cancers (28). Taken together, it seems Prdx1 
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inactivation, IL-8 induction and activation of transcription factors form a positive feedback 

cycle that drive tumorigenesis. Prdx1 could be one target for oxidative carcinogens such as 

hydrogen peroxide. We demonstrate that IL-8 induction is dependent on APE1 in response to 

hydrogen peroxide in this study, which is consistent with a previous report that Ref-1 

suppression inhibited TNF-alpha-stimulated IL-8 expression (157). This suggests Prdx1 

regulates gene expression through the transcription co-activator APE1.  

In summary, our study provides new insights into how Prdx1 regulates APE1 mediated 

gene expression and Prdx1 deficiency promotes tumorigenesis and inflammation. It is useful 

to understand the relationship between oxidation and tumorigenesis in order to optimize anti-

cancer therapeutics strategies. 
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Legends  

 

Figure 1. FH-APE1 is stably expressed in HeLaS cells. A, schematics of FH-APE1 

construct in which  LTR is used as promoter and IL2Rα is used for selection. B, Western blot 

validated ectopic FH-APE1 expression. HeLaS cell were infected with retroviruses containing 

empty vector pOZ or pOZN-FH-APE1 respectively, then were subjected to three rounds of 

selection by anti-IL2Rα magnetic beads and positive cells were expanded. Afterwards total 

cell extracts were analyzed by western blot probed with monoclonal anti-APE1, anti-FLAG 

and anti-HA respectively. 

 

Figure 2. APE1 complex purification and interactome in response to H2O2. APE1 

complex purification from nuclear(A) and cytosol(C). HeLaS cells expressing FH-APE1 were 

treated with or without 1mM H2O2 for 1h, HeLaS cells containing empty vector pOZ were 

treated with 1mM as negative control for subsequent immunoprecipitation. After treatment, 

cells were harvested and fractionized into nuclear and cytosol. Each fraction was subjected to 

tandem immunoprecipitation with anti-FLAG resins followed by anti-HA resins. APE1 

complex were finally eluted by HA peptides and separated in 4%-12% gradient SDS-PAGE 

which followed by silver staining. Pooled eluents were subjected to mass spectrometry to 

identify all the proteins composed of the APE1 complex. The proteins interactome were 

visualized by searching STRING software, a database of known and predicted protein 

interactions. B, APE1 nuclear interactome under normal condition.  D, APE1 cytosolic 

interactome from H2O2 treated HeLaS cytosol. E, APE1 cytosolic interactome from untreated 
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HeLaS cytosol. F, differences between panel D and E, which indicated changes of APE1 

cytosolic interactome in response to H2O2. 

 

Figure 3. Validation of APE1-Prdx1 interaction. A, FH-APE1 pulled down Prdx1 during 

immunoprecipitation. HeLaS cells expressing FH-APE1 were treated with or without 1mM 

H2O2 for 1h, HeLaS cells containing empty vector pOZ were treated with 1mM as negative 

control for immunoprecipitation. After treatment, cells were harvested and total cell extracts 

were subjected to immunoprecipitation with anti-FLAG resins. Eluents were separated by 

10% SDS-PAGE and probed with monoclonal anti-Prdx1. B, FH-Prdx1pulled down APE1 

during immunoprecipitation. HeLa cells expressing FH-Prdx1 were subjected to 

immunoprecipitation with anti-FLAG resins. Eluents were separated by 10% SDS-PAGE and 

probed with monoclonal anti-APE1. pOZN empty was used as negative control. C-J, Co-

elution assay by fast protein liquid chromatography (FPLC). HeLa cells were treated with and 

without 1mM H2O2, then harvested and fractionized into nuclear and cytosol. Each fraction 

was loaded on superose
TM

 6  column eluted with buffer A at flow rate of  0.25ml/min. All 

eluents were collected at 0.5ml/fractions. Each eluent fraction was concentrated by Amicon 

Ultra and analyzed by western blot probed with monoclonal anti-APE1 and monoclonal anti-

Prdx1. 

 

Figure 4. Prdx1 knockdown in HeLa and HepG2 cells. Several different Prdx1 shRNA 

(C1-2, C2-1, C3-1, and C4-1) and empty vector LMP (negative control) were packaged into 

reroviruses and HeLa cells (A) and HepG2 cells (B) were infected by viruses. After 1 week 
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selection by 0.5 μg/ml puromycin, cells were analyzed by western blot to confirm knockdown 

effects. 

 

Figure 5. Prdx1 knockdown facilitates APE1 detection in nucleus and increases 

mitochondria membrane potential. HeLa LMP and Prdx1 knockdown C1-2 cells were 

stained by monoclonal (A) and polyclonal anti-APE1 (B), respectively. (C) MitoTracker Red 

CMXRos staining.  

 

Figure 6. Prdx1 knockdown causes APE1 translocation from cytosol into nucleus but did 

not impair endonuclease activity. (A) Prdx1 knockdown HepG2 and control cells were 

treated with or without 2mM H2O2 for 1.5h; cytosol and nuclear extracts were fractionated 

and subjected to western blot analysis, in which the same blot was probed with anti-

APE1,anti-Prdx1 and anti-β-actin sequentially. HeLa LMP and HeLa C1-2 were treated with 

or without 1mM H2O2 for 1h. HepG2 LMP and HepG2 C1-2 were treated with or without 

2mM H2O2 for 1h.  After treatment, cells were harvested and fractionized into nuclear and 

cytosol. Then APE1 endonuclease activity was measured in all samples with U
21

G substrates 

described in Materials and Methods (B). This is representative of three independent 

experiments. (C) The graph showed the relative APE1 endonuclease activity of each samples 

after quantification by the Multigauge image quantification software.  

Figure 7. Prdx1 knockdown did not significantly affect cell survival and proliferation (A) 

doubling time curve of HepG2 LMP and HepG2 C1-2. To determine the average rate of 

population doublings, HepG2 LMP (empty vector) and HepG2 C1-2(Prdx1 knockdown) were 

plated into 10cm diameter petri dishes in duplicate at 1.6Χ10
6
cells/dish. After indicated 
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intervals (0, 3, 6, 9 day), cells were trypsinized and counted by Countess® Automated Cell 

Counter (Life Technologies). The numbers were converted into population doublings 

according to the following formula: [log (No. of cells counted)-log (No. of cell plated)]/log 

(2). The plot was doublings time versus time. (B) Proliferation assay of HepG2 LMP and C1-

2 under different doses of H2O2 treatment. HepG2 LMP and HepG2 C1-2(Prdx1 knockdown) 

were plated in 3cm diameter plates at 8X10
5
cells/plate one day before treatment. Cells were 

treated by putting H2O2 of indicated concentration into complete DMEM media. Cells were 

cultured for 9 days and then were trysinized and counted by Countess® Automated Cell 

Counter (Life Technologies). The data was normalized to untreated group and finally was 

represented as percentages. Each group was set up replicates. 

 

Figure 8. (A) IL-8 induction in Prdx1 knockdown HepG2 cells at 24h after different doses of 

H2O2 treatment. HepG2 LMP (control) and C1-2(Prdx1 KD) were plated in 96-well plate at 

15000 cells/ well in duplicates.   Cells/well were treated with 200ul complete DMEM with 

10% FBS containing H2O2 at indicated doses. 24 h after treatment, the supernatants were 

collected for ELISA. (B-C) Prdx1/APE1 double knockdown in HepG2. HepG2 were infected 

with indicated virus, pSIREN shAPE1 1-1 and control shLuc. 72h after infection, cells were 

sorted and expanded. 2 weeks after, HepG2 were collected for western blot, which confirmed 

APE1 knockdown in HepG2 cell.APE1 knockdown HepG2 cell and its control shLuc HepG2 

were infected with viruses containing shPrdx1C1-2 or its control LMP. After selection by 

1ug/ml puromycin for 1 week, cells were analyzed by western blot to confirm APE1 

knockdown and Prdx1 knockdown. (D) IL-8 induction ablated in Prdx1/APE1 knockdown 

HepG2 cells at 24h after normal condition and 100μM H2O2 treatment. HepG2 LMP (control) 
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and C1-2(Prdx1 KD) were plated in 96-well plate at 30000 cells/well in duplicates.  Cells/well 

were treated with 200ul complete DMEM containing 100μM H2O2. 24 h after treatment, 

supernatants were collected for ELISA. (E) Working model. Prdx1 in the nuclear can prevent 

APE1 from activating IL-8. Prdx1 deficiency can free APE1 to activate IL-8. 
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D  APE1 interactome from H2O2 treated HeLaS cytosol 
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E APE1 interactome from untreated HeLaS cytosol 

 

 

F Changes of  cytosolic APE1 interactome   in response to H2O2 

 Figure 2  
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Table S 1 

 Proteins interacting with APE1 in cytosol under normal condition 

Protein name  functions 

APEX 

nuclease 1  

Repairs oxidative DNA damages in vitro. May have a role in protection 

against cell lethality and suppression of mutations. Removes the blocking 

groups from the 3'-termini of the DNA strand breaks generated by 

ionizing radiations and bleomycin (318 aa) 

VIM  

vimentin 

Vimentins are class-III intermediate filaments found in various non-

epithelial cells, especially mesenchymal cells (466 aa) 

ACTA2  

actin, alpha 2 

smooth muscle, aorta; Actins are highly conserved proteins that are 

involved in various types of cell motility and are ubiquitously expressed 

in all eukaryotic cells (By similarity) (377 aa) 

ANXA1  

annexin A1 

Calcium/phospholipid-binding protein which promotes membrane fusion 

and is involved in exocytosis. This protein regulates phospholipase A2 

activity. It seems to bind from two to four calcium ions with high affinity 

(346 aa) 

PRDX1  

peroxiredoxin 

1 

Involved in redox regulation of the cell. Reduces peroxides with reducing 

equivalents provided through the thioredoxin system but not from 

glutaredoxin. May play an important role in eliminating peroxides 

generated during metabolism. Might participate in the signaling cascades 

of growth factors and tumor necrosis factor-alpha by regulating the 

intracellular concentrations of H2O2. Reduces an intramolecular disulfide 

bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic 

motor neuron differentiation (By similarity) (199 aa) 

ARF1  

ADP-

ribosylation 

factor 1 

GTP-binding protein that functions as an allosteric activator of the cholera 

toxin catalytic subunit, an ADP- ribosyltransferase. Involved in protein 

trafficking among different compartments. Modulates vesicle budding and 

uncoating within the Golgi complex. Deactivation induces the 

redistribution of the entire Golgi complex to the endoplasmic reticulum, 

suggesting a crucial role in protein trafficking. In its GTP-bound form, its 

triggers the association with coat proteins with the Golgi membrane. The 

hydrolysis of ARF1-bound GTP, which is mediated by ARFGAPs(181 aa) 

PDIA6  

protein 

disulfide 

isomerase 

family A, 

member 6 

May function as a chaperone that inhibits aggregation of misfolded 

proteins. Plays a role in platelet aggregation and activation by agonists 

such as convulxin, collagen and thrombin 

PRDX3  

peroxiredoxin 

3 

Involved in redox regulation of the cell. Protects radical-sensitive 

enzymes from oxidative damage by a radical- generating system. Acts 

synergistically with MAP3K13 to regulate the activation of NF-kappa-B 

in the cytosol (256 aa) 
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HSP90B1  

heat shock 

protein 90kDa 

beta (Grp94), 

member 1 

heat shock protein 90kDa beta (Grp94), member 1; Molecular chaperone 

that functions in the processing and transport of secreted proteins. 

Functions in endoplasmic reticulum associated degradation (ERAD). Has 

ATPase activity (803 aa) 

PRDX2  

peroxiredoxin 

2 

Involved in redox regulation of the cell. Reduces peroxides with reducing 

equivalents provided through the thioredoxin system. It is not able to 

receive electrons from glutaredoxin. May play an important role in 

eliminating peroxides generated during metabolism. Might participate in 

the signaling cascades of growth factors and tumor necrosis factor-alpha 

by regulating the intracellular concentrations of H2O2 (198 aa) 

HSPA5  

heat shock 

70kDa protein 

5 

 Probably plays a role in facilitating the assembly of multimeric protein 

complexes inside the ER (654 aa) 

HSP90AB1  

heat shock 

protein 90kDa 

alpha 

(cytosolic) 

class B member 1; Molecular chaperone. Has ATPase activity (724 aa) 

HSPD1  

heat shock 

60kDa protein 

1 (chaperonin) 

Implicated in mitochondrial protein import and macromolecular assembly. 

May facilitate the correct folding of imported proteins. May also prevent 

misfolding and promote the refolding and proper assembly of unfolded 

polypeptides generated under stress conditions in the mitochondrial 

matrix (573 aa) 

ACTB  

actin, beta 

Actins are highly conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all eukaryotic cells (By 

similarity) (375 aa) 

ACTBL2  

actin, beta-like 

2 

Actins are highly conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all eukaryotic cells (By 

similarity) (376 aa) 

 Proteins interacting with APE1 in cytosol under hydrogen peroxide 

treatment 

EEF1A2  

eukaryotic 

translation 

elongation 

factor 1 alpha 

2 

This protein promotes the GTP-dependent binding of aminoacyl-tRNA to 

the A-site of ribosomes during protein biosynthesis (463 aa) 

VIM  vimentin class-III intermediate filaments found in various non-epithelial cells, 

especially mesenchymal cells (466 aa) 

ACTA2  

actin, alpha 2 

smooth muscle, aorta; Actins are highly conserved proteins that are 

involved in various types of cell motility and are ubiquitously expressed 

in all eukaryotic cells (By similarity) (377 aa) 

HSPA8  Chaperone. Isoform 2 may function as an endogenous inhibitory regulator 
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heat shock 

70kDa protein 

8 

of HSC70 by competing the co-chaperones (646 aa) 

TRAP1  

TNF receptor-

associated 

protein 1 

Chaperone that expresses an ATPase activity (704 aa) 

HSPB1  

heat shock 

27kDa protein 

1 

Involved in stress resistance and actin organization (205 aa) 

PRDX1  

peroxiredoxin 

1 

Involved in redox regulation of the cell. Reduces peroxides with reducing 

equivalents provided through the thioredoxin system but not from 

glutaredoxin. May play an important role in eliminating peroxides 

generated during metabolism. Might participate in the signaling cascades 

of growth factors and tumor necrosis factor-alpha by regulating the 

intracellular concentrations of H2O2. Reduces an intramolecular disulfide 

bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic 

motor neuron differentiation (By similarity) (199 aa) 

PDIA6  

protein 

disulfide 

isomerase 

family A 

member 6  

May function as a chaperone that inhibits aggregation of misfolded 

proteins. Plays a role in platelet aggregation and activation by agonists 

such as convulxin, collagen and thrombin 

HSP90B1  

heat shock 

protein 90kDa 

beta (Grp94), 

member 1 

Molecular chaperone that functions in the processing and transport of 

secreted proteins. Functions in endoplasmic reticulum associated 

degradation (ERAD). Has ATPase activity (803 aa) 

TUBA1C  

tubulin, alpha 

1c 

Tubulin is the major constituent of microtubules. It binds two moles of 

GTP, one at an exchangeable site on the beta chain and one at a non-

exchangeable site on the alpha-chain (By similarity) (449 aa) 

PKM2  

pyruvate 

kinase 

Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from 

phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates 

POU5F1-mediated transcriptional activation. Plays a general role in 

caspase independent cell death of tumor cells. The ratio betwween the 

highly active tetrameric form and nearly inactive dimeric form determines 

whether glucose carbons are channeled to biosynthetic processes or used 

for glycolytic ATP production. The transition between the 2 forms 

contributes to the control of glycolysis and is important for tumor cell 

proliferat (531 aa) 

HSPA5  

heat shock 

70kDa protein 

Probably plays a role in facilitating the assembly of multimeric protein 

complexes inside the ER (654 aa) 
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5 

HSP90AB1  

heat shock 

protein 90kDa 

alpha 

(cytosolic) 

Molecular chaperone. Has ATPase activity (724 aa) 

P4HB  

prolyl 4-

hydroxylase, 

beta 

polypeptide 

This multifunctional protein catalyzes the formation, breakage and 

rearrangement of disulfide bonds. At the cell surface, seems to act as a 

reductase that cleaves disulfide bonds of proteins attached to the cell. May 

therefore cause structural modifications of exofacial proteins. Inside the 

cell, seems to form/rearrange disulfide bonds of nascent proteins. At high 

concentrations, functions as a chaperone that inhibits aggregation of 

misfolded proteins. At low concentrations, facilitates aggregation (anti-

chaperone activity).  (508 aa) 

EEF1A1  

eukaryotic 

translation 

elongation 

factor 1 alpha-

like 7 

This protein promotes the GTP-dependent binding of aminoacyl-tRNA to 

the A-site of ribosomes during protein biosynthesis (By similarity) (462 

aa 

HSP90AA1  

heat shock 

protein 90kDa 

alpha 

(cytosolic) 

class A member 1; Molecular chaperone. Has ATPase activity (By 

similarity) (854 aa) 

HSPD1  

heat shock 

60kDa protein 

1 (chaperonin) 

Implicated in mitochondrial protein import and macromolecular assembly. 

May facilitate the correct folding of imported proteins. May also prevent 

misfolding and promote the refolding and proper assembly of unfolded 

polypeptides generated under stress conditions in the mitochondrial 

matrix (573 aa) 

TUBB2C  

tubulin, beta 

2C 

Tubulin is the major constituent of microtubules. It binds two moles of 

GTP, one at an exchangeable site on the beta chain and one at a non-

exchangeable site on the alpha-chain (By similarity) (445 aa) 

PRDX6  

peroxiredoxin 

6 

Involved in redox regulation of the cell. Can reduce H2O2 and short chain 

organic, fatty acid, and phospholipid hydroperoxides. May play a role in 

the regulation of phospholipid turnover as well as in protection against 

oxidative injury (224 aa) 

ACTB  

actin, beta 

Actins are highly conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all eukaryotic cells (By 

similarity) (375 aa) 

PHGDH phosphoglycerate dehydrogenase (533 aa) 

CPS1  

carbamoyl-

phosphate 

synthetase 1 

mitochondrial; Involved in the urea cycle of ureotelic animals where the 

enzyme plays an important role in removing excess ammonia from the 

cell (1506 aa) 
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ACTBL2  

actin, beta-like 

2 

Actins are highly conserved proteins that are involved in various types of 

cell motility and are ubiquitously expressed in all eukaryotic cells (By 

similarity) (376 aa) 

 Proteins interacting with APE1 in nucleus under normal condition 

RPS19  

ribosomal 

protein S19 

Required for pre-rRNA processing and maturation of 40S ribosomal 

subunits (145 aa) 

ACTA2  

actin, alpha 2 

smooth muscle, aorta; Actins are highly conserved proteins that are 

involved in various types of cell motility and are ubiquitously expressed 

in all eukaryotic cells (By similarity) (377 aa) 

PRDX1  

peroxiredoxin 

1 

Involved in redox regulation of the cell. Reduces peroxides with reducing 

equivalents provided through the thioredoxin system but not from 

glutaredoxin. May play an important role in eliminating peroxides 

generated during metabolism. Might participate in the signaling cascades 

of growth factors and tumor necrosis factor-alpha by regulating the 

intracellular concentrations of H2O2. Reduces an intramolecular disulfide 

bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic 

motor neuron differentiation (By similarity) (199 aa) 

NPM1  

nucleophosmin 

Involved in diverse cellular processes such as ribosome biogenesis, 

centrosome duplication, protein chaperoning, histone assembly, cell 

proliferation, and regulation of tumor suppressors TP53/p53 and ARF. 

Binds ribosome presumably to drive ribosome nuclear export. Associated 

with nucleolar ribonucleoprotein structures and bind single-stranded 

nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4 

(294 aa) 

LMNA  

lamin A/C 

Lamins are components of the nuclear lamina, a fibrous layer on the 

nucleoplasmic side of the inner nuclear membrane, which is thought to 

provide a framework for the nuclear envelope and may also interact with 

chromatin. Lamin A and C are present in equal amounts in the lamina of 

mammals (664 aa) 

 Proteins interacting with APE1 in nucleus under  H2O2 treatment 

LMNA  

lamin A/C 

Lamins are components of the nuclear lamina, a fibrous layer on the 

nucleoplasmic side of the inner nuclear membrane, which is thought to 

provide a framework for the nuclear envelope and may also interact with 

chromatin. Lamin A and C are present in equal amounts in the lamina of 

mammals (664 aa) 
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APE1 promotes H2O2 mediated signal transduction by 

stimulating Prdx1 hyperoxidation 

                           

Zhiqiang Wang, Dindial Ramotar 

Abstract 

Reactive oxygen species (ROS) such as H2O2 are regarded as the inevitable but unwanted by-

product of oxidative metabolism or respiration in cells.  H2O2 is discovered to act as a second 

messenger in regulation of fundamental processes.  Peroxiredoxin 1 (Prdx1) has been shown 

to play a role in detoxifying H2O2 and more recently we have found that it can interact with 

the redox and DNA repair protein APE1.  However, the functional interplay between Prdx1 

and APE1 interaction has not been resolved.  Herein, we show that Prdx1 is required to 

reduce cytosolic APE1 while APE1 facilitates the conversion of dimeric Prdx1 to the 

monomeric form in response to H2O2. In the absence of APE1, H2O2-induced conversion of 

Prdx1 is blocked, suggesting APE1 initiates the conversion and consequently becomes 

reduced.  We provide a model to explain these events in response to H2O2  
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Introduction 

Reactive oxygen species (ROS) such as H2O2 are regarded as the inevitable but unwanted by-

product of oxidative metabolism or respiration in cells.  ROS are also produced when cells are 

exposed to ionizing radiation, ultraviolet light and toxic chemicals.  Cells can use H2O2 as a 

second messenger molecule to initiate transcriptional responses to mitigate damages or 

maintain the redox homeostasis in the cells (158, 159), as exemplified by the observation in 

fungi, following exposure to H2O2, whereby an AP-1-like transcription factor promotes 

expression of ROS defense and DNA repair enzymes. In pathogenic fungi, this is a vital 

response to ROS triggered by the host immune cells (160, 161). In mammalian cells, ROS can 

regulate transcription factor activity by changing redox status of specific cysteine that usually 

locates in DNA-binding domain of the transcription factor.  For instances, NF-кB and AP-1 

require reducing status for DNA binding in vitro, in contrary in vivo they are activated by 

ROS-inducing reagents such as H2O2, bleomycin and ionization (162). Hence, H2O2 signals 

are implicated in regulation of fundamental processes, including cell division, differentiation, 

migration, and death.   

Peroxiredoxin 1 (Prdx1) is a member of 2-Cysteine peroxiredoxins (Prxs) consisting of 

four isoforms (Prdx1-4) in mammalian cells, which are highly abundant peroxidase enzymes 

that play important roles in responses to H2O2.  Prdxs execute their protective role as 

antioxidants in cells through their peroxidase activity, whereby H2O2 is broken down and 

scavenged.  Prdx1 can also play essential roles in maintaining genome stability, protecting 

against cancer and promoting longevity (28). In addition, Prdx1 has chaperone and signaling 

activities (163). In the cytosol of mammalian cells, the Prdx1 appears to be involved in the 
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redox regulation of cell signaling and differentiation by regulating the levels of H2O2 (164-

166). However, in many cases, the H2O2-sensing/-signaling mechanisms are poorly defined, 

particularly in mammalian cells with an abundance of antioxidants. Therefore, understanding 

how H2O2 targets signaling proteins in cells rich in Prdxs draws a considerable interest (167). 

APE1 was identified as an essential base excision repair (BER) enzyme that repairs 

oxidative DNA damages resulting from oxidative stress such as ionizing radiation. In addition 

to its role in repairing DNA lesions, APE1 can perform another function by enhancing the 

DNA binding activities of the AP-1 family of transcription factors via a redox-dependent 

mechanism (109, 168), which is mediated by reducing a conserved cysteine residue located at 

the DNA-binding domains of c-Fos and c-Jun (169). It can also modulate the activities of 

other classes of transcription factors that regulate cell growth, differentiation, survival, and 

death including NF-kB, p53, Egr-1, c-Myb, HLF, and Pax-8 (103, 170). Therefore APE1 is 

speculated to influence multiple cancer survival mechanisms, including growth, proliferation, 

metastasis, angiogenesis, and stress responses by its reduction-oxidation activity (171). In our 

previous study, we found APE1 to interact with Prdx1. Although the DNA repair and 

transcription factor reducing properties of APE1 are well known, other fundamental 

mechanisms via which it may regulate redox cell signaling, and influence cell fate are yet to 

be elucidated. 

Herein, we report that Prdx1 exists in a dimeric form which is converted to the 

monomeric form in response to H2O2. We further show that APE1 is required to facilitate this 

conversion and that during this process APE1 becomes reduced. 
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Materials and Methods  

Cell culture 

Human HeLa and HepG2 (liver hepatocellular cells) cell line were kindly provided by 

Dr.Elliot Drobetsky (University of Montreal).293T, HeLa and HepG2 were cultured in 

Dulbecco's Modified Eagle Medium(DMEM) (Wisent Inc.) complemented with 10% of fetal 

bovine serum (FBS) (Wisent Inc.) and 100U/ml penicillin, and 0.1 mg/ml streptomycin. Cells 

were incubated at 37°C and 5% CO2.  

Antibodies and reagents 

APE1 rabbit mAb(cat# 2851-1, Epitomics), pAb anti-APE1 antibody(NB100-101,Novus 

Biologicals), mAb anti-peroxiredoxin1 antibody(NBP1-95676, Novus Biologicals), Prdx1 

rabbit Ab(#8732S,cell signalling),goat anti-mouse IgG pAb(HRP conjugate)(cat#ADI-SAB-

100,Enzo), goat anti-rabbit IgG pAb(HRP conjugate)(Cat#ADI-SAB-300-J,Enzo),mouse-anti-

human Thioredoxin1(Cat#559969,BD pharmingen), Iodoacetic acid(IAA,sigma) hydrogen 

peroxide (sigma) 

Plasmid constructs 

pOZ-FH-N contains a Kozak sequence, an initiation methionine, and FLAG and HA tags. 

pOZN-Prdx1 were constructed by firstly amplifying human Prdx1from K562 cell cDNA by 

PCR with the primers pOZN-FH-Prdx1F( 5’-GCCGGAGGACTCGAGatgtcttcag gaaatgctaa 

aattggg-3’) and POZN-FH-Prdx1R(5’-

TCAGTCACGATGCGGCCGCtcacttctgcttggagaaatattcttt-3’), and then subcloned into pOZ-

FH-N after  Xhol and Notl digestion. 

To knockdown Prdx1, shRNA Prdx1 C1-2 was constructed based on MSCV-

LTRmiR30-PIG (LMP) vector (Thermo Scientific) following the Manufacturer’s instructions. 



75 
 

It was sequenced for confirmation before usage. The hairpin shRNA template is as following, 

sense and antisense sequences were underscored. 

C1(HP_7670)TGCTGTTGACAGTGAGCGACCAGATGGTCAGTTTAAAGATTAGTGAA

GCCACAGATGTAATCTTTAAACTGACCATCTGGCTGCCTACTGCCTCGGA 

To knockdown APE1, pSIREN shAPE1 1-1 was constructed using vector RNAi-Ready 

pSIREN-RetroQ-ZsGreen (Clontech Laboratories, Inc.) following the Manufacturer’s 

instructions: pSIREN shAPE1 1-1 Oligos APE1-shRNA-UP1and APE1-shRNA-DWN1 are 

used for pSIREN shAPE1 1-1 targeting 5’-TGACAAAGAGGCAGCAGGA-3’ in APE1; 

Oligos sequences are as following:  

APE1-shRNA-UP1:  

5'-GATCCGTGACAAAGAGGCAGCAGGATTCAAGAGATCCTGCTGCCTCTTTGTCATTTTTTG-3' 

APE1-shRNA-DWN1:  

5'-AATTCAAAAAATGACAAAGAGGCAGCAGGATCTCTTGAATCCTGCTGCCTCTTTGTCACG-3' 

Thioredoxin1 knockdown was achieved by transient transfection of shTRX11-259 gifted by 

Dr. Priyamvada Rai from University of Miami. 

Retrovirus preparation and infection 

293T cells were plated in 10cm tissue cell culture plates day prior to transfection at 70 % 

confluence. Next day retroviral vectors were cotransfected with pVSV-G and pCL-Eco 

retrovirus packaging vector using Calcium phosphate transfection method. Supernatants were 

collected 36-48 h after transfection, filtered through a 0.45 μm filter and used directly to 

infect target cell lines.  

To infect HeLa, HeLaS or HepG2 cells, cells were plated into 10cm tissue cell culture 

plates day prior to infection at 35% confluence. Next day the old media was removed and 
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replaced with viral supernatants/fresh media mixture (1:1) supplemented with 0.4μg/ml 

Polybrene
®
 (Sigma-Aldrich). 24h after infection, the viral media were removed and cells were 

washed at least twice with 1xPBS and added fresh media. Cells were subjected to selection 

48h after infection. 

Redox western blot 

For 6-well plates, cells were washed once with 2ml 1XPBS rapidly and lysed into 350μl 

RIPA buffer (150 mM sodium chloride, 1.0% NP-40, 0.5% sodium deoxycholate, 0.5% SDS, 

50mM Tris, pH 8.0) including 10-20mM IAA( iodoacetic acid) and protease inhibitor 

cocktails. Each sample was subject to 10s sonication at 30% magnitude and spun down for 

5mins at maximum speeds to remove debris.  Proteins were quantified and mixed with non-

reducing Laemlli Buffer (5X) [Bromophenol blue (0.25%), Glycerol (50%), SDS (10%), Tris-

Cl (0.3 M, pH 6.8)] before loading onto SDS-PAGE gel. The following procedures are the 

same as regular western blot. 

Purification of thiol-trapped Prdx1 from HeLa cell extracts 

pOZN and pOZN-Prdx1 expressing HeLa cells from a 15 cm plate were treated with or 

without 1mM H2O2 for 0.5h. Afterwards cells were harvested by trypsin-EDTA and washed 

twice in 1 x PBS, resuspended in 1ml Lysis buffer [20 mM Hepes (K+), pH 7.6, 0.3 M KCl, 

1.5 mM MgCl2, 0.2 mM EDTA, 0.3% (v/v) NP-40, 50mM iodocetic acids, 0.2 mM PMSF, 

0.5mM benzamidine, and 1 μg/mL each of leupeptin, aprotinin, and pepstatin], and sonicated 

for 10sec. Samples were incubated at 50 Celsius degree for 0.5h.  Insoluble material was 

pelleted 15 min at 13,000 rpm in a microcentrifuge, and the soluble extract was dialyzed 

overnight against 4L of Dialysis buffer [20 mM Hepes (K+), pH 7.6, 100mM KCl, 1.5mM 

MgCl2, 0.2mM EDTA, 0.2mM PMSF, 0.5mM benzamidine, and 1 µg/mL each of leupeptin, 
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aprotinin, and pepstatin]. Insoluble material was pelleted, and the soluble lysate was added 

30μl of FLAG (M2) resin (Sigma) after 50 μL aliquots were taken for input, following 

incubation for 4 h at 4°C, The beads were pelleted and washed with 3 x 1 mL of Wash buffer 

[20 mM Hepes (K+), pH 7.6, 0.1M KCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.01% (v/v) NP-

40,10%(v/v) glycerol, 0.2mM PMSF, 0.5mM benzamidine, and 1μg/mL each of leupeptin, 

aprotinin, and pepstatin]. Bound proteins were eluted by Elution buffer [10mM Tris pH 7.9, 

10mM EDTA, 1%SDS], and the beads were pelleted at 2000RPM for 1mins. The 

supernatants were mixed with non-reducing loading buffer for SDS-polyacrylamide gel 

electrophoresis, silver staining and western blot analysis. Prdx1 dimer and monomer were cut 

for mass spectrometry (IRIC, University of Montreal). Before mass spectrometry, samples 

were reduced by DTT that was followed by chloroacetamide to alkylate the free cysteines. 

 

Results 

Sublethal H2O2 converts Prdx1 from dimer to monomer in dose/time-dependent manner  

To test the effect of H2O2 on Prdx1 in vivo, we used 2 mM H2O2 containing complete DMEM 

media to treat HepG2 cells for different times (0 to 120 mins). Non-reducing western blots 

showed that Prdx1 existed as a dimer under normal condition while H2O2 treatment converts 

dimeric Prdx1 into the monomeric form in a time-dependent manner (Fig.1A). Cleavage of 

Caspase-3 and PARP-1 by caspases is considered to be a hallmark of apoptosis (172, 173). To 

monitor for this event in our cells, so we probed the same samples with anti-PARP-1 and 

caspase-3 in western blot, in which we found neither protein was cleaved (Fig.1A).  This 

suggests that the treatment conditions were not lethal. Next we used different doses of H2O2 

to treat HeLa and HepG2 cells for 1.5h. After treatment cells were fractionated into cytosol 
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and nuclear extracts. Non-reducing western blot analysis showed the conversion of Prdx1 

driven by H2O2 occurred in both cytosol and nuclear extracts of HeLa and HepG2 cells in 

dose-dependent manner (Fig.1B-C). In addition, it also showed cytosolic Prdx1 was converted 

into monomers at a more rapid rate than that found in nuclear extracts. The rate of conversion 

differed between HeLa and HepG2 cells, which may be attributed to different tolerance of 

various cell lines to stress. 

Given that Prdx1 is a member of peroxiredoxin family consisting of six mammalian 

isoforms and these proteins show striking amino acid sequence similarities (174), to exclude 

other isoforms, we cloned Prdx1 cDNA into pOZ-FH-N to make pOZN-FH-Prdx1 construct.  

We expressed pOZN-FH-Prdx1 in HeLa by retroviral system (Fig.2A). pOZN-FH-Prdx1 

expressing HeLa and its empty vector control pOZN were treated with or without 1 mM H2O2 

for 1.5h. After treatment we immunoprecipitated FH-Prdx1 from cytosolic extracts with anti-

FLAG resin, the eluents of which was subject to non-reducing western blot probed with anti-

HA (Fig.2B). The result showed ectopic FH-Prdx1 converted from dimer to monomer after 

1mM H2O2  treatment for 1.5h although a few of Prdx1 monomer appeared in untreated HeLa 

cells expressing pOZN-FH-Prdx1, which could be resulted from stress during the cell 

fractionation process. Thus, the ectopic Prdx1 behaved the same as endogenous Prdx1 in 

response to H2O2 treatment. Taken together, the results suggest that sublethal doses of H2O2 

can convert Prdx1 from dimer to monomer in a time-dependent manner. 

Conversion of Prdx1 from dimer to monomer is ascribed to C52/173 hyperoxidation by 

H2O2 

To accurately determine which cysteine is responsible to form Prdx1 dimer, we mutated 4 

cysteine of Prdx1 into alanines individually and in combination (C52A, C71A, C83A, C173A, 
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C52/173A) and expressed them in HeLa cells using retroviral system.  Except for C71A, all 

other Prdx1 mutants and wild type (wt Prdx1) expressed very well. Redox western blot 

analysis showed that C52/173A completely abolished dimer formation while C52A and 

C173A still formed dimers but less than wild type, which suggested that the Prdx1 dimer is 

formed by C52/173 disulfide bond and C52A or C173A single mutation impaired their ability 

to form dimers with endogenous Prdx1 (Fig.3). 1mM H2O2/1h treatment caused wild-type 

Prdx1 conversion from dimer to monomer that resembles C52/173A (Fig.3), which implied 

H2O2 oxidized C52/173 residues into hyperoxidation status such as sulfenic acid (Cys–SOH) 

or sulfinic acid (Cys–SO2H).  

For further confirmation, we purified Prdx1 dimer and momoner via immunoprecipitation 

with anti-FLAG resins followed by non-reducing SDS-PAGE after iodoacetic acids (IAA) 

was used to trap free thiols in samples (Fig.4A-B). After treatment, the IAA-treated samples 

were reacted with DTT to prevent the reduced sulfenic/sulfenic groups from reconverting into 

thiols, and were subsequently treated with chloracetamide to alkylate the free cysteines prior 

to mass spectrometry analysis. Therefore, in mass spectrum iodoacetic acid can produce 

carboxymethyl (+58) modification while chloroacetamide produces carbamidomethyl (+57) 

modification. The results showed Prdx1 dimer were carboxymethylated on cysteine 83 

whereas all cysteines underwent carbamidomethyl (+57) modification in Prdx1 monomers. 

This indicates Prdx1 monomer is hyperoxidized. Given the fact that human peroxiredoxin I 

inactivates during catalysis as the result of the oxidation of the catalytic site cysteine to 

cysteine-sulfinic acid(175), our observation that Prdx1 converts from dimer to monomer after 

H2O2 treatment is consistent with Prdx1 undergoing a redox catalytic function. 

Cytosolic APE1 reduction requires Prdx1 and is coupled with Prdx1 hyperoxidation 
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Prdx1 is an important antioxidant for H2O2 scavenger. We found Prdx1 interacted with APE1 

in our previous study. To determine if Prdx1 prevents APE1 from being oxidized by H2O2, we 

created Prdx1 knockdown HepG2 cells, namely HepG2 C1-2 (Fig.5A). Prdx1 knockdown 

HepG2 C1-2 cells and its empty vector control HepG2 LMP were treated with and without 

2m MH2O2 for 1.5h. After treatment, cells were collected and fractionized into cytosol and 

nuclear extract, which were then subjected to non-reducing SDS-PAGE. Redox western 

analysis showed cytosolic APE1 of HepG2 LMP to have a slower mobility corresponding to 

the reduced form of APE1 following H2O2 treatment, but which did not occur in the Prdx1 

knockdown HepG2 C1-2 cells.  In addition, it seems that APE1 in the nucleus did not change 

significantly in response to the same treatment and remained in the reduced state (Fig.5B). 

Under these conditions, Prdx1 was converted from the dimer to the monomer and became 

hyperoxidized (Fig.5C).  We speculate that Prdx1 reduces cytosolic APE1 and Prdx1 becomes 

hyperoxidized.  

Thioredoxin 1 is required for Prdx1 hyperoxidation in response to H2O2 

Prdx1 is a typical 2-Cys and an obligate dimer.  During catalysis, the peroxidatic cysteine (CP-

SH) is oxidized to a sulfenic acid (CP-SOH), which then reacts with the resolving cysteine 

(CR-SH from the other subunit of the dimer) to form a disulfide, which is in turn can be 

reduced by thioredoxin or other enzymes (153). We down-regulated thioredoxin 1 by 

transiently transfecting 293T cells with plasmid shTRX1 1-259 and found that the conversion 

of Prdx1 dimer into monomer was diminished in response to H2O2 in thioredoxin 1 

knockdown cells compared to empty vector control (Fig.6C). This observation indicates that 

thioredoxin 1 is required to efficiently reduced the disulfide bridge of Prdx1 dimer, which is 
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consistent with in vitro study (175).  This finding further implies our observation that Prdx1 

converts from dimer to monomer after H2O2 treatment is a consequence of Prdx1 catalysis 

APE1 mediated Prdx1 hyperoxidation independent of APE1 Cys65 residue in response 

to H2O2 

Except for its AP endonuclease activity, APE1 also possesses redox function with its cysteine 

65 residue(102). To explore the possibility that APE1 is involved in the Prdx1 catalysis 

process, we knockdowned APE1 in HepG2 and 293T cells.  APE1 knockdown significantly 

diminished Prdx1 hyperoxidation in both cell lines compared to control cells (Fig.6B-C). This 

finding suggests APE1 mediates  Prdx1 hyperoxidation.  To investigate whether cysteine 65 

of APE1 plays roles in Prdx1 conversion, we used 100 μM of E3330, APE1 redox specific 

inhibitor (176, 177) to pre-treat HepG2 for 24h. After pre-treatment, HepG2 were treated with 

2mM H2O2 for 30 mins. We found that although E3330 treatment caused APE1 alteration 

compared to non-treatment (Fig.7A). E3330 did not alter the conversion of Prdx1 (Fig.7B), 

which indicated cysteine 65 of APE1 may not contribute to the conversion of Prdx1 in 

response to H2O2.  Overexpression of APE1C65A mutant did not alter Prdx1 conversion as 

well after H2O2 treatment (Fig.7C), which is consistent with the finding from E3330 inhibition 

experiment. Both experiments indicate that APE1 plays roles in Prdx1 hyperoxidation 

independent of APE1 Cys65 residue in response to H2O2.  So it is inferred that APE1 

mediated Prdx1 hyperoxidation independent of APE1 Cys65 residue in response to H2O2. It is 

possible that the redox chaperon function of APE1 may be important in the conversion of 

Prdx1 dimer to monomer in response to H2O2. 
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Discussion 

Mammalian cells produce H2O2 to mediate diverse physiological responses such as cell 

proliferation, differentiation, and migration. This has implicated cellular “redox” signaling in 

regulating normal processes as well as  disease progression, including angiogenesis, oxidative 

stress and aging, and cancer (159).  Many mammalian cell types can produce H2O2 in 

response to stimulation for example by growth factors (PDGF, EGF), chemical oxidants and 

ionizing irradiation (166, 178). H2O2 is a distinct messenger molecule because it acts not by 

binding to ligands/effectors directly, but instead acts by oxidizing critical cysteine residues of 

its target proteins, for instances, the inhibition of protein-tyrosine phosphatases (PTPs), the 

tumor suppressor PTEN (phosphatase and tensin homolog) and peroxiredoxin I (175, 179). 

Peroxiredoxin 1 is one of peroxiredoxin family comprised of six isoform that catalyze 

peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite as antioxidants. How 

H2O2 modulates cell signaling through oxidizing Prdx1 is not clear. However, in our previous 

study, we found that APE1 interacts with Prdx1. So the question how APE1 regulate Prdx1 

mediated cell response to H2O2 is of great interest.  

Besides its DNA repair function, APE1 serves as a redox coactivator of many 

transcription factors, including the early growth response protein-1 (Egr-1), nuclear factor-kB 

(NF-kB), p53, hypoxia-inducible factor (HIF-1a), CREB, AP-1 to regulate gene expression 

(130).  So APE1 is regarded as a multifunctional protein.  In this study, we found in the 

cytoplasm of normal cell that almost all APE1 is reduced in response to H2O2 but not if Prdx1 

is knockdown in the cells. This indicates APE1 reduction requires Prdx1 that is accompanied 

with Prdx1 hyperoxidation and APE1 may be one substrate of Prdx1 in vivo. Although this is 

found mainly in cytosol, given the translocation from cytosol to nucleus of APE1 when cells 
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are exposed to oxidative stresses, it seems logical that H2O2 transduces signalling to APE1 via 

Prdx1 to propagate its effects. This is also consistent with the finding that inducible AP-1 

DNA binding activity in response to IR is triggered by cytoplasmic factor. Immunodepletion 

of Ref-1 from nuclear extracts showed inhibition of inducible AP-1 DNA binding activity in 

response to IR (180).  Moreover, our finding also recapitulate what happens to yeast 

Schizosaccharomyces pombe, the thioredoxin peroxidase activity of the 2-Cys Prx, Tpx1, is 

required for the H2O2-induced activation of the AP-1-like transcription factor Pap1. 

Accordingly, hyperoxidation of Tpx1 actually prevents Pap1 activation (181).  

It is noteworthy that we also find APE1 regulate H2O2-Prdx1 signalling transduction, 

which is demonstrated by the experiment that APE1 knockdown prevent Prdx1 conversion 

from dimer to monomer and consequently hyperoxidized in response to H2O2. This further 

implies that APE1 may be a substrate of Prdx1 and central target of H2O2 mediated signalling 

transduction.  However, we cannot exclude the possibility that APE1 acts as redox chaperon 

(114), because overexpression of APE1 C65A mutant, assumed redox inactivation, does not 

impair the process after exposure to H2O2. We find TRX1 knockdown also prevent Prdx1 

conversion from dimer to monomer and consequent hyperoxidation in response to H2O2, 

which implicates the involvement of TRX1 in this process. In S. pombe Prxs can promote 

H2O2 signaling by stimulating the oxidation of thioredoxin. Thioredoxin provides the 

electrons that reduce Prxs as part of their catalytic cycle. Tpx1 disulfides are the major 

substrate for the single cytoplasmic thioredoxin, Trx1. Coupling of the peroxidase activity of 

2-Cys Prx to thioredoxin provides a mechanism for the H2O2-dependent regulation of multiple 

thioredoxin substrates (181). Therefore we think this mechanism is conserved in mammalian 

cells based on our observation. For decades, it has been demonstrated that exposure to IR and 
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other oxidants immediately results in an elevated NADPH pools caused by stimulating 

glucose metabolism through the pentose cycle (182).  NADPH act as a cofactor for reductive 

biosynthetic pathways and is essential for oxidative defense, since it replenishes the 

glutaredoxin and thioredoxin systems (183). APE1 promotes H2O2 mediated signalling by 

accelerating Prdx1 hyperoxidation, which is coupled with accelerating NADPH usage.  So it 

seems plausible to infer that APE1 indirectly mobilize and harness the anti-oxidant defence 

and coordinate oxidation homeostasis, H2O2 mediated signalling and transcription regulation. 
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Legends:  

 

Figure 1 Prdx1 converted from dimer to monomer after exposure to H2O2. (A) HepG2 

cells were treated with 2mM H2O2 for indicated time. After treatment cells were lysed into 

10mM IAA containing RIPA buffer. Samples were quantified and subjected to western blot 

analysis probed with anti-Prdx1 (upper), anti-PARP1 (middle) and anti-caspase3 (bottom), 

respectively.  HeLa cells (B) and HepG2 cells(C) were treated with indicated dose of H2O2 

for 1.5h. Afterwards cells were typsinized and washed once with 0.1mM IAA-containing PBS.  

Cytosol and nuclear fractionation was done with IAA (0.1mM) containing hypotonic buffer. 

All samples were quantified by Bradford and adjusted to same concentration, then separated 

in non-reducing SDS-PAGE and blotted with anti-Prdx1.    

Figure 2 Ectopic Prdx1 converted from dimer to monomer after exposure to H2O2. (A) 

The expression of pOZN-prdx1 in HeLa cells. (B) HeLa cells that express  pOZN or  pOZN-

prdx1 were  treated  with  or without  H2O2 (1mM)  for 1.5h, cells were  harvested and 

suspend in IAA containing  hypotonic  buffer. HeLa cytosolic extract were prepared in 50mM 

IAA containing hypotonic buffer, then dialysed and spun down at 13000RPM for 10mins.  

Then IP were done with anti-Flag, Elute of IP were separated on non-reducing SDS-PAGE, 

probed with anti-HA. 

Figure 3 cysteine 52/173 residue is responsible for Prdx1 dimer. HeLa cells were infected 

with Prdx1 wild type (wt) and its mutants, after two rounds of anti-IL2Rα selection, cell were 

treated with and without 1mM H2O2 for 1h. After treatment, cells were lysed into 10mM IAA-
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containing RIPA buffer. Samples were quantified and separated on non-reducing 10%SDS-

PAGE gel. The blot were probed with anti-HA and beta-actin antibodies. 

Figure 4 Purification of thiol-trapped Prdx1 from HeLa cell extracts. pOZN-Prdx1 

expressing HeLa cell were treated with or without 1mM H2O2 for 0.5h.The procedure is 

detailed as Materials and Method. Eluents were separated in the same non-reducing 12% 

gradient SDS-PAGE gel in duplicate. One part was for western blot probed with anti-Prdx1 

(A); another part was for silver staining (B). 

Figure 5 Cytosolic APE1 reduction required Prdx1 and coupled with Prdx1 

hyperoxidation. (A) Prdx1 knockdown in HepG2, which was validated by western blot 

probed with anti-Prdx1 and beta-actin antibodies. (B-C) Prdx1 knockdown HepG2 C1-2 and 

empty vector control HepG2 LMP were treated with 2mM H2O2 for 1.5h. After treatment 

cells were fractionized into cytosol and nuclear extracts. Samples were quantified and 

separated on non-reducing 10%SDS-PAGE gel. The blots were probed with anti-APE1 (B) 

and anti-Prdx1(C) antibodies. 

Figure 6 APE1 and TRX1 knockdown prevent Prdx1 conversion from dimer to 

monomer. (A) APE1 was knockdowned by shAPE11-1 and shAPE12-1 in HepG2, which 

were validated by western blot probed with anti-APE1 and anti-β-actin. (B) APE1 knockdown 

HepG2 and HepG2 shLuc (control) were treated with and without 2mM H2O2 for 0.5h, then 

lysed into 10mM IAA containing RIPA and separated on 10% non-reducing SDS-PAGE, the 

same blot was probed with mono-anti Prdx1 Ab and β-actin, respectively. (C) 293T cells were 

plated in 6-well plate 1 day prior to transfection. One day after cells were transfected with 1ug 

of each indicated DNA using lipofactamine
2000

. 4 days after transfection, cells were treated 
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with or without 1mM H2O2 for 0.5h in complete media, and removed the media after 

treatment. Cells were lysed into 10mM IAA containing RIPA buffer. Protein was quantified 

and then separated on 10% non-reducing SDS-PAGE. The same blot was probed with anti-

Prdx1 and anti-actin sequentially. 

Figure 7 E3330 and APE1 C65A mutant overexpression cannot affect Prdx1 conversion 

from dimer to monomer after exposure to H2O2. HepG2 was treated with or without 

100μM E3330 or DMSO (control) for 24h.  After pre-treatment, cells were treated with or 

without 2mM H2O2 for 30min. Then cells were scraped into 1mM EDTA-PBS, and then 

lysed into 10mM IAA containing RIPA buffer.   Sample were quantified and adjusted to same 

concentration before separating on non-reducing 10%SDS-PAGE. The blots were probed with 

anti-APE1 (A) and anti-Prdx1 (B); β-actin was as loading control. (C) 293T was plated in 6-

well plate 1 day prior to transfection. Next day cells were transfected with 1ug of each 

indicated DNA using lipofactamine. 3 days after transfection, cells were treated 3ml complete 

media with or without 1mM H2O2 for 0.5h in complete media, and removed the media after 

treatment. Cells were lysed into 10mM IAA containing RIPA buffer. Protein was quantified 

and then separated on 10% non-reducing SDS-PAGE. The same blot was probed with anti-

Prdx1 and anti-actin sequentially. 

Figure 8 Proposed work model. Prdx1 is inactivated in response to H2O2 by hyperoxidizing 

C52/173 residue, which could be reversed by thioredoxin1/ sulfiredoxin1. APE1 become via 

Prdx1. APE1 may be one substrate of Prdx1. Therefore H2O2 signals are transduced into 

APE1. APE1 as a central target of H2O2 signals reversely harness the rate of transduction.  
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Figures: 
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4. Conclusion 

To conclude, in this study we find that oxidative stress alters APE1 interactome using 

immunoprecipitation combined with mass spectrometry analyses.  For instances, it seems that 

H2O2 disrupt the interaction between APE1 and other proteins including NPM1, PRDX1 and 

RPS19 in the nucleus, while in cytosol APE1 loss some interacting partners and gain new 

ones in response to H2O2. As discussed in manuscript 1, these genes are involved in important 

life events from metabolism, antioxidation, translation to energy regeneration. These findings 

support our hypotheses that APE1 could play specific role by changing its interacting partners, 

and thus participates in multiple biological functions besides DNA repair and gene regulation. 

The APE1 knockout is lethal to mice (184), although the axact nature of this lethality is not 

known.  However, this could be explained by its interaction with multiple partners and thus 

the loss of APE1 would lead to a combination of various phenotypes.  Current studies in other 

laboratories are developing inhibitors to block APE1 DNA repair functions in order to 

specifically sensitize tumor cells that are already defective in at least one other DNA repair 

pathway besides BER.  The goal of this approach is to spare normal tissues and cells from the 

lethality of genotoxic chemotherapeutic drugs, while targeting the tumors.  We believed that it 

is also relevant to target sites of APE1 that specifically interact with proteins that could alter 

biological functions in tumor cells.   

We validate APE1-Prdx1 interaction by IP and FPLC in cytosol and nuclear fractions 

under physiological condition and these two proteins maintain interaction in the cytosol 

despite treatment with H2O2, unlike the situation in the nucleus.  Prdx1 knockdown neither 

affect APE1 abundance nor its AP endonuclease activity, but Prdx1 knockdown facilitates 

APE1 detection in the nucleus by immunofluorescence assay. Although Prdx1 knockdown 
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indeed causes translocation of a fraction of APE1 from the cytosol into the nucleus, this 

amount of translocated protein cannot entirely explain the enhanced immunofluorescence 

detection of APE1 in the nucleus. We think that APE1, in the absence of Prdx1, is more 

accessible to the anti-APE1 antibodies and thus facilitate APE1 detection.  Given that Prdx1 

can bind to DNA and RNA (27, 141), it is possible that Prdx1 knockdown could simple cause 

remodeling of the chromatin and facilitate APE1 exposure to the antibody, although we have 

no evidence to support this possibility.  In addition, we find that Prdx1 knockdown up-

regulate IL-8 secretion under physiological condition and further enhanced by the oxidative 

stress caused by H2O2.  Since the APE1 knockdown abrogates IL-8 induction, we propose that 

Prdx1-APE1 interaction in nucleus may suppress IL-8 expression.  IL-8 is a pro-inflammatory 

CXC chemokine. It is well documented that overexpression of IL-8 by tumor cells, often 

elicited in response to chemotherapeutic interventions or environmental stresses such as 

hypoxia. Our finding that Prdx1 knockdown induces IL-8, may suggest that the cells use a 

backup mechanism to maintain a defense against oxidative stress as IL-8 induction leading to 

the stimulation of NF-kB involved in protecting cells against oxidative stress.  This might 

therefore explain why Prdx1 knockdown cells in our studies are not sensitive to H2O2.  The 

increased synthesis and secretion of IL-8 from tumor cells has wider significance to the tumor 

microenvironment and metastasis given the characterized expression of CXCR1 and CXCR2 

receptors on cancer cells, endothelial cells, and neutrophils/tumor associated macrophages, 

which underpin the significance of this chemokine in promoting the malignant progression of 

cancer (155). Although IL-8 can promote cell invasion, migration, proliferation and survival 

of cancer cells through autocrine signaling pathway, tumor-associated macrophages secreted 

additional growth factors elicited by IL-8 will be a further impetus for cell proliferation and 
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cancer cell invasion at the tumor site.  This could partly account for the cancer predisposition 

of Prdx1 knockout mice and why APE1 would be a potential anticancer target as it would 

block the expression of IL-8. 

     In addition, we observed that sublethal dose of H2O2 acts as a signal to trigger the 

conversion of the dimeric form of Prdx1 into the monomeric form and this exists in the 

reduced state.  The monomeric reduced form of Prdx1 then serves to reduce the oxidized 

APE1 into its reduced state and during this process the monomeric Prdx1 finally becomes 

oxidized.  In the cells, knockdown of APE1 prevents the conversion of the dimeric form of 

Prdx1 into the monomer.  We postulate that APE1 could regulate the conversion of dimeric 

Prdx1 into the monomeric form by one of the following mechanisms.  First, APE1 could 

upregulate Trx1 to convert Prdx1 dimer to the monomer.  Second, APE1 is the actual 

substrate and thus in its absence this will block the forward reaction.  A third possibility is 

that APE1 could serve as a redox chaperone in order to promote the conversion of the dimeric 

Prdx1 to the monomer.  Future studies will be required to investigate the role of APE1 in 

triggering the molecular changes induced by Prdx1 in response to H2O2.  Our finding 

indicates APE1 may contribute to redox homeostasis by promoting inactivation of Prdx1 by 

hyperoxidation.  It has been demonstrated that in Schizosaccharomyces pombe treated with 

H2O2, the peroxredoxin Tpx1, an orthologue of mammalian Prdx1, is a major substrate for 

thioredoxin in the fission yeast and thus competitively inhibits thioredoxin-mediated 

reduction of other oxidized proteins.   Hyperoxidation of Tpx1 is critical to allow thioredoxin 

to act on other substrates ensuring repair of oxidized proteins and cell survival following 

exposure to toxic levels of H2O2 (185). Therefore, inactivation of the thioredoxin peroxidase 

activity of Prdx1 is important to maintain thioredoxin activity and cell viability under 
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oxidative stress conditions. Given the fact that H2O2 is implicated in cellular “redox” 

signaling in regulating normal processes and disease progression, including angiogenesis, 

oxidative stress and aging, and cancer (159)  and the inactivation of peroxiredoxin 1 allows 

localized H2O2 accumulation for cell signaling (186), it seems APE1 promoting Prdx1 

inactivation is beneficial to cells under oxidative stress. At the same time, during Prdx1 

catalysis, APE1 becomes reduced, which may be used for maintaining the active state of 

important transcription factors, and thereby contributing to anti-oxidation and survival. 
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Abstract 

We previously isolated from a Caenorhabditis elegans cDNA library, designed for 

two-hybrid screening, a gene encoding the DNA repair enzyme APN-1 using cross-specie 

complementation analysis of the Saccharomyces cerevisiae apn1∆ apn2∆ tpp1∆ triple mutant 

deficient in the ability to repair several types of DNA lesions including apurinic/apyrimidinc 

(AP) sites.  We subsequently purified the APN-1 from this yeast mutant and demonstrated 

that it possesses four distinct DNA repair activities.  However, following the re-annotation of 

the C. elegans genome we discovered that the functionally active APN-1 encoded by the 

cDNA from the library lacked 108 amino acid residues from the N-terminal.  We therefore 

synthesized the entire C. elegans apn-1 gene encoding the full-length APN-1 and created 

several N-terminal deletion mutants lacking either 63, 83 or 118 amino acid residues.  The 

full-length APN-1, APN-1 (1-63Δ) and APN-1 (1-83Δ), but not APN-1 (1-118Δ) were stably 

expressed in the yeast triple mutant and cleaved the AP site substrate.  However, only the full-

length APN-1 rescued the yeast mutant from the genotoxicity caused by methyl methane 

sulfonate, a DNA damaging agent that creates AP sites in the genome.  The full-length APN-1 

was localized to the yeast nucleus, while APN-1 (1-63Δ) and APN-1 (1-83Δ) retained a 

cytoplasmic distribution.  Our data suggest that the N-terminal region has no direct role in the 

DNA repair functions of APN-1 other than to target the protein to the nucleus and possibly to 

maintain its stability.  Thus, the truncated APN-1, isolated from the two-hybrid library, ability 

to complement the yeast triple mutant depends on the engineered SV40 nuclear localization 

signal.   
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Keywords: Keywords: AP endonuclease, DNA repair, nuclear localization signal, cross-

specie complementation, C. elegans, yeast 

1. Introduction 

Caenorhabditis elegans APN-1 is a member of the endonuclease IV (Endo IV) family 

of DNA repair enzymes referred to as apurinic/apyrimidinic (AP) endonucleases/3'-

diesterases and includes, for example, Saccharomyces cerevisiae Apn1 and Escherichia coli 

Endo IV [1].  These proteins possess at least four enzymatic activities (i) AP endonuclease 

that cleaves the DNA backbone 5' to an AP site producing a 3'-hydroxyl group and a 5'-

deoxyribose phosphate [1,2], (ii) 3'-diesterase that removes a multitude of 3'-blocking groups 

such as 3'-phosphate present at DNA single strand breaks [2,3], (iii) 3'- to 5'-exonuclease 

capable of removing a few nucleotides at nicked DNA to create a gap, [3,4], and (iv) 

nucleotide incision repair activity that recognizes and removes certain oxidized bases by 

making an incision immediately 5' to the damaged base to create a 3'-hydroxyl group [5,6].  

The members of the Endo IV family perform a role in the base-excision DNA repair pathway 

to eliminate specific types of mutagenic DNA lesions that would otherwise compromise 

genomic integrity [1].   

We have shown that RNAi knockdown of the C. elegans apn-1 gene caused the 

animals to accumulate 5-fold higher levels of spontaneous mutations [7].  The downregulation 

of the apn-1 gene also sensitized C. elegans to DNA damaging agents such as methyl 

methane sulonate (MMS), which indirectly creates AP site lesions as a result of the removal 

of alkylated bases by DNA glycosylases [7].  Interestingly, these apn-1 knockdown animals 

showed a delay in the progression of single cell embryo which has been ascribed to a defect in 

processing endogenous DNA lesions [7].  It is unlikely that the endogenous lesions are due to 
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the accumulation of AP sites or single strand breaks with blocked 3'-termini, as C. elegans 

embryos are proficient at processing these lesions due to the conservation of another highly 

active AP endonuclease/3'-diesterase, EXO-3, that belongs to the EXO III  family of 

apurinic/apyrimidinic (AP) endonucleases/3'-diesterases [8,9].  As such, we postulated that 

APN-1 might be required to perform a distinct repair function that is uncommon to EXO-3 

[7].   

Although the C. elegans apn-1 gene was identified and the predicted protein shares 

high identity with the Endo IV family members, the APN-1 enzyme could not be purified and 

functionally characterized from C. elegans because the expression level of APN-1 is 

extremely low and the protein was highly susceptible to proteolysis [9].  As such, we took 

advantage of the yeast heterologous model system to express and functionally characterized 

the C. elegans APN-1 [10,11].  This was achieved by the isolation of a plasmid, pGAL4-

SV40(NLS)-apn-1, from a library containing C. elegans genes designed for two-hybrid 

screening in S. cerevisiae, which rescued the DNA repair defects of a yeast mutant strain 

YW778 ( ) lacking Apn1, as well as two additional enzymes Apn2 (a 

member of the EXO III family) and Tpp1 (possessing a 3'-phosphodiesterase activity) that are 

involved in processing similar DNA lesions as Apn1 [12,13].  This yeast mutant YW778 

exhibits exquisite sensitivities to various DNA damaging agents including MMS and 

hydrogen peroxide that produce AP sites and creates strand breaks terminated with 3'-

phosphate, respectively [14].  The plasmid pGAL4-SV40(NLS)-apn-1 harboured the essential 

portion of the apn-1 gene encoding a functional polypeptide that shared throughout its entire 

length 44 and 41 % identity at the amino acid level with E. coli endo IV and S. cerevisiae 

Apn1, respectively  [15].  Subsequent analysis of the re-annotated C. elegans database 
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revealed that the cDNA harboured by the rescue plasmid was missing the N-terminal portion 

of the apn-1 gene encoding residues 1 to 108.  Thus, on the basis of the C. elegans database 

information and DNA sequence analysis, the complementing plasmid pGAL4-SV40(NLS)-

apn-1 carried only the portion of the apn-1 gene encoding residues 109 to 396 of the APN-1 

protein.  

We have established that the functional region of APN-1, which rescued the DNA 

repair defects of strain YW778, was located within residues 119 to 396 [16].  This finding 

strongly suggests that the N-terminal portion of the full-length APN-1 is unlikely to play a 

role in DNA repair.  As such, this finding incites the question what is the purpose of the long 

N-terminal, that is, residues 1 to 118 of APN-1.  Analysis of the missing portion of APN-1 

from the plasmid pGAL4-SV40(NLS)-apn-1, that is, residues 1 to 108, for specific motifs 

revealed two segments that resemble nuclear localization signals (NLS), suggesting that the 

putative extended N-terminal may serve to at least target the protein to the nucleus in C. 

elegans.  We have shown that APN-1 (119-396) carrying the SV40 NLS can rescue the DNA 

repair defects of strain YW778 [16].  However, this functional complementation does not 

occur if APN-1 (119-396) lacks the SV40 NLS [16].  This observation strongly suggests that 

the N-terminal portion of APN-1 could be involved in targeting the protein to the nucleus.  

Herein, we provide evidence that the full-length APN-1 (1-396) can confer MMS resistance to 

the yeast mutant YW778, but not if it is lacking the first 1-63 amino acid residues. This APN-

1 (1-63Δ) variant retained full AP endonuclease activity, but lacked the ability to enter the 

nucleus and instead showed a cytoplasmic distribution as compared to the full-length APN-1.   
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2. Materials and Methods 

2.1  Yeast and bacterial strains   

  Saccharomyces cerevisiae laboratory strain YW778 (apn1∆::HIS3 apn2∆::KanMX4 

tpp1∆::MET15) was generously provided by Dr. Tom Wilson (Ann Arbor, Michigan) and 

maintained on YPD agar and supplemented with adenine (20 μg/ml).  Escherichia coli 

laboratory strain DH5α (used for amplification of plasmids) was maintained on Luria Broth 

(LB) agar. 

2.2 Plasmid Construction 

  The full-length C. elegans apn-1 cDNA gene encoding the entire open reading frame 

was synthesized and cloned into the vector pUC57 (Biobasic, Canada).  This synthesized 

cDNA was fully sequenced and completely matched the sequence of the C. elegans genome. 

The full-length apn-1 gene and three N-terminal deletions were amplified by PCR from the 

plasmid and cloned by gap-repair into the pYES2.0-GFP vector with the following primers: 

PYES-GFP-CeAPN1-FL-F1:5’-GCTGCTGGGATTACACATGGCATGGATGAACTATA 

CAAAGAATTCATG GCTAACAAAAAAGTAACA-3’;  

PYES-GFP-CeAPN1(Δ:1-63Nt)-F1:5’-GCTGCTGGGATTACACATGGCATGGA 

TGAACTATACAAAGAATTCGAAACATTAACTGAAGAAAA-3’;  

PYES-GFP-CeAPN1(Δ:1-83Nt)-F1:5’-GCTGCTGGGATTACACATGGCATGGATGAACT 

ATACAAAGAATTCAACAAACCGAAAAAAACAAG-3’;  

PYES-GFP-CeAPN1(Δ:1-118Nt)-F1: 5’- GCTGCTGGGATTACACATGGCATGGATGAA 
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CTATACAAAGAATTCATGTTGG GATTCCACGTGAG-3’;  

PYES-GFP-CeAPN1-R1 5’- GGGACCTAGACTTCAGGTTGTCTAACTCCTTCCTTTTCG 

GTTAGAGCGTTATCTTTTATCCATATTGT-3’ as previously described [8,17]. 

2.3 Extraction of Proteins, SDS-PAGE and Western Blot  

 These preparations and analyses were performed as previously described [8].  Briefly, 

cells were grown overnight in selective media lacking uracil, subcultured the next day and 

allowed to grow exponentially for an additional 4 h.  Cells were harvested and stored at -80 

o
C overnight before preparation of the total protein extract using a bead beater.  Total protein 

extracts were analyzed on SDS-PAGE followed by Western blot analysis using anti-GFP 

monoclonal antibody (Sigma) at a dilution of 1:2000 and anti-mouse secondary antibodies at a 

dilution of 1:2000.   

2.4 Preparation of oligonucleotide AP site substrate and AP endonuclease assay  

  A synthetic 42-base pair 5'-end [
32

P]-labeled oligonucleotide with a uracil at position 21 

d(GCTGCATGCCTGCAGGTCGAUUTCTAGAG GATCCCGGGTACCT) and 

complementary strand containing G opposite to U 

d(CGACGTACGGACGTCCAGCTGGAGATCTCCTAGGG CCCATGGA) was prepared as 

previously described [9,18].  The uracil in the double-stranded DNA substrate was removed 

by uracil DNA glycosylase to create the resulting AP site [9,18].    

   The in vitro AP endonuclease assay was performed as previously described [19].  

Briefly, 50 ng of the AP site substrate was incubated with the indicated amount of total 

protein extracts at 37ºC for 20 min in a final volume of 12.5 µl. Reactions were stopped with 

5 µl formamide loading buffer (76% formamide, 0.3% bromophenol blue, 0.3% xylene 
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cyanole, 10 mM EDTA), and heated at 65ºC for 3-5 min.  The reaction product was separated 

on denaturing 10% polyacrylamide-7 M urea gel, exposed to a Fugi FLA-3000 Phosphor 

Screen and analyzed using Image Gauge V3.12 software.     

 

2.5 Fluorescent microscopy 

  Cells were grown to a density of 2  10
8
 cells/ml and processed for fluorescent 

microscopy as previously described [20,21].  Briefly, expression of the GFP-APN-1 fusion 

proteins were induced for 4 h by addition of 0.5% galactose in the media, fixed in 1% 

formaldehyde, washed 4 times and resuspended in PBS.  Cellular localization and nuclear 

staining were observed using 3 l of cells in mounting media containing DAPI and mounted 

on microscope slides for fluorescent microscopy.  Cells were photographed at 100 times 

magnification by imaging camera (Retiga GX 32-002TB-303) attached to a Leica DMRE 

immunofluorescent microscope and images were processed by the MacIntosh OpenLab 

program. 

 

2.6 Spot test analysis 

  This assay was performed as previously described [17]  
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3. Results 

3.1 C. elegans APN-1 lacking the N-terminal 118 amino acid residues is unstable—To 

address the role of the extended N-terminal of C. elegans APN-1, we synthesized the full 

length cDNA of the apn-1 gene encoding the entire open reading frame from amino acids 

residues 1 to 396.  This was necessary, as we could not isolate the entire full-length cDNA 

from total mRNA derived from the worms harvested from different stages of its life cycle.  In 

addition, the C. elegans library created for two-hybrid screening in yeast also did not contain 

the full-length cDNA [15].  The synthesized full-length apn-1 cDNA was gap-repaired into 

the multicopy yeast expression plasmid pYES-GFP to create the fusion gene GFP-apn-1 such 

that its expression could be driven by the galactose-inducible promoter GAL1 [21].  We 

generated the N-terminal GFP-APN-1 fusion in order to monitor its expression and 

localization in the cell by epifluoresecent microscopy as yeast anti-APN1 and anti-Endo IV 

antibodies against the yeast Apn1 and E. coli Endo IV, respectively, have very weak cross-

reactivity towards C. elegans APN-1 and therefore are not useful for indirect 

immunofluorescence analysis.  In a similar manner, we created by gap repair various N-

terminal deletion of the apn-1 gene to create the following three fusion constructs pGFP-

APN-1(1-63Δ), pGFP-APN-1(1-83Δ) and pGFP-APN-1(1-118Δ).  The GFP-APN-1(1-63Δ) 

was created to eliminate the first putative NLS, the GFP-APN-1(1-83Δ) to retain the 

minimum sequences for a second putative NLS and the GFP-APN-1 (1-118Δ) to remove the 

entire N-terminal extension that shared no sequence homology with other members of the 

Endo IV family (Fig. 1).  In addition to these GFP-tagged plasmid constructs, we also 

engineered an identical plasmid to express the entire full-length APN-1 without the GFP tag 
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to be used as control to monitor if GFP would interfere with APN-1 functional role in DNA 

repair.   

 The four plasmids carrying the full length APN-1 and the three N-terminal deletions 

fused to the C-terminal of GFP were introduced into the yeast strain YW778 lacking the DNA 

repair activities Apn1, Apn2 and Tpp1, required to process, e.g., MMS-induced AP sites.  

Total protein extracts were prepared from strain YW778 carrying the various APN-1 

constructs and analyzed by Western blot using anti-GFP monoclonal antibody.  Because the 

GAL1 promoter is leaky and the APN-1 constructs were engineered in a backbone that 

retained multicopies, there was no need to induce the expression level of the GFP-APN-1 and 

its derivatives with galactose.  The plasmids pGFP-APN-1, pGFP-APN-1(1-63Δ) and pGFP-

APN-1(1-83Δ) all expressed the expected size of the fusion proteins 73, 65, and 62 kDa (Fig. 

2A), and distinctly resolved by 8 % SDS-PAGE (Fig. 2B).  The expression level of GFP-

APN-1(1-63Δ) and GFP-APN-1(1-83Δ) appeared to be higher than the full length GFP-APN-

1 (Fig. 2A).  The plasmid pGFP-APN-1(1-118Δ) did not express any detectable level of the 

GFP-APN-1(1-118Δ) fusion protein (Fig. 2A).  The control plasmid pGFP carrying only GFP 

expressed the expected 26 kDa protein (Fig. 2A).  Since the full-length APN-1 and its two N-

terminal deletions APN-1(1-63Δ) and APN-1(1-83Δ) showed no major degradation product 

and that APN-1(1-118Δ) cannot be detected, it would suggest that residues 83 to 118 may 

play a role in stabilizing the protein in yeast.  This is consistent with our previous findings 

that the GST-APN-1(1-118Δ) fusion is unstable unless it contains the SV40 NLS [16].  

 

3.2 Amino acid residues 1 to 63 are involved in targeting APN-1 to the nucleus of 

yeast cells—We next monitored the localization of the GFP-APN-1 and the three N-terminal 
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deletions within strain YW778 using epifluorescent microscope.  The GFP-APN-1 was found 

primarily in the nucleus of strain YW778 and coincided with staining of the nuclear DNA 

(Fig. 3).  Removal of residues 1 to 63 blocked targeting of APN-1 to the nucleus and as a 

result the GFP-APN-1(1-63Δ) protein was distributed in the cytoplasm (Fig. 3).  Similarly, 

removal of residues 1 to 83 also caused APN-1 to be localized to the cytoplasm (Fig. 3).  In 

contrast, APN-1 lacking residues 1 to 118 was compartmentalized in the cytoplasm possibly 

in the vacuole and thus might provide an explanation for its lack of detection following 

extract preparation and Western blot analysis (Fig. 3 and 2A).  These observations suggest 

that the N-terminal region, spanning residues 1 to 63, harbours a NLS that targets APN-1 into 

yeast nucleus.  The findings also indicate that the NLS is likely conserved as it has the ability 

to function in a heterologous system.  Moreover, residues 83-118 are important to prevent the 

protein from losing its stability.  

3.3 APN-1(1-63Δ) and APN-1(1-83Δ) are active in processing AP site lesions—We 

checked if removing the N-terminal residues of APN-1 would interfere with its ability to 

process DNA lesions.  Total protein extracts were prepared from strain YW778 expressing the 

native APN-1 and the three N-terminal deletions and examined for the ability to cleave an AP 

site substrate.  The substrate is a 42-mer double-stranded oligonucleotide with a single 

synthetic AP site at position 21 and upon incision by AP endonuclease activity generates a 20-

mer product [9].  Total protein extracts obtained from strain YW778 carrying either the APN-

1(1-63Δ) or APN-1(1-83Δ) were proficient in cleaving the AP site substrate and to the same 

extend as the extract derived from YW778 carrying the full-length APN-1 (Fig. 4, lanes 7-9 

and 10-12 vs. 4-6).  Extracts from the YW778 harbouring the APN-1(1-118Δ) did not cleave 

the substrate (Fig. 4, lanes 13-15).  We conclude that the N-terminal extension of APN-1 
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encompassing residues 1 to 83 has no direct role in processing DNA lesions, and that the 

inability of APN-1(1-118Δ) to process the DNA substrate is largely a result of its instability 

(Fig. 2A).    

3.4 Targeting APN-1 to the nucleus is essential for rescuing the DNA repair defects 

of strain YW778—We examined whether APN-1 lacking the various N-terminal segments 

would retain the ability to rescue strain YW778 from the sensitivity of MMS.  In this 

experiment, exponentially growing cultures of strain YW778 carrying the indicated plasmid 

were serially diluted and spotted onto solid minimal media plates without and with MMS 

(Fig. 5).  While full-length GFP-APN-1 fully rescued the MMS sensitivity of strain YW778, 

none of the N-terminal deletion variants APN-1(1-63Δ), APN-1(1-83Δ) or APN-1(1-118Δ) 

retained the ability to complement the defect (Fig. 5).  Although APN-1(1-63Δ) appeared to 

be expressed more than the full-length APN-1 (Fig. 2A), it still cannot enter the nucleus to 

rescue strain YW778 from the genotoxicity caused by MMS, suggesting that the N-terminal 

amino acid residues from 1 to 63 harbour a conserved and efficient NLS that can target APN-

1 into the nucleus of yeast cells.  Attachment of the SV40 NLS to replace residues 1 to 118 of 

APN-1 generated a functional NLS-APN-1(1-118Δ) protein that rescued the MMS sensitivity 

of strain YW778 (Fig. 5).  Thus, targeting the APN-1(1-118Δ) protein to the nucleus 

maintains its stability and allows it to rescue the MMS sensitivity of strain YW778.  Our data 

would also imply that the N-terminal portion of APN-1, that is, residues 1-118, performs no 

direct role in DNA repair.  We note that tagging the native APN-1 on the N-terminal with 

either GFP or GST did not alter the protein ability to perform its role in processing DNA 

lesions in vivo, as the untagged native APN-1 rescued strain YW778 from MMS toxicity to 

the same extent as GFP-APN-1. 
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4 Discussion   

 In this study, we investigated the functional role associated with the long extended N-

terminal, encompassing residues 1 to 118, of C. elegans APN-1.  Because we have previously 

showed that expression of APN-1 lacking the N-terminal extension, but carrying a SV40 NLS 

can complement the DNA repair defects of the yeast strain YW778 [15,16], we reasoned that 

the entire N-terminal extension could be similarly tested in this well-studied and powerful 

heterologous yeast model system [10,22].  We provide evidence that within amino acid 

residues 1 to 63 there must be an essential stretch that constitutes an efficient NLS.  We have 

not defined the exact sequence required for the NLS function, but it is likely to be within this 

basic stretch of residues RKLKQKLTPLKIKKGRGK which would be distinct from the S. 

cerevisiae Apn1 NLS (KKRKTKK) or the SV40 NLS (KKKRK) [23].  We have not tested 

further whether residues RKLKQKLTPLKIKKGRGK can function as an independent NLS or 

whether it acts as a bipartite NLS requiring two basic stretches of residues in order to 

constitute a functional NLS as in the case of yeast Apn1 [23].  In fact, residues 

84
KPKKTRKTSGETIAQKKSR

102
 contain sequences that resemble NLS.  However, this 

stretch alone cannot target APN-1 to the nucleus, as the APN-1(1-83Δ) variant remains 

predominantly in the cytosol.  Thus, a combination of the basic amino acid stretches could 

constitute the functional NLS.  It is noteworthy that despite the variation in the amino acid 

residues amongst the NLS from various species, it would appear that the NLS binding protein 

must be flexible to recognize diverse sequence context.  

 Our second observation relates to the stability of the APN-1(1-83Δ) versus APN-1(1-

118Δ).  While APN-1(1-83Δ) can be detected readily and retained a cytosolic distribution, 

APN-1 (1-118Δ) was undetectable in the extract by Western blot analysis and in the cell 
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appears to form aggregates presumably in the vacuoles (Fig. 3).  We reasoned from this 

observation that residues 83 to 118 must play an important role in the stabilization of the 

protein.  This region has a putative NLS sequence and it could likely compete for binding to 

the karyopherins, which may prevent APN-1(1-83Δ) from being targeted to the vacuoles for 

degradation [20].   

 

5. Conclusions 

We have shown that the long N-terminal extension of C. elegans APN-1 possesses at 

least one functional domain, which is involved in targeting the protein to the nucleus.  There 

is no evidence that this N-terminal plays a direct role in DNA repair.  Our data also reveal that 

the recognition apparatus for NLS in yeast is capable of recognizing variation in the 

sequences that mark protein for the nucleus. 
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Legends 

Figure 1. Schematic representation of the full-length C. elegans APN-1 with its N-

terminal deletion mutants and the region of homology shared by S. cerevisiae Apn1 and 

E. coli endo IV.  The vertical black bars in the N-terminal of C. elegans APN-1 are amino 

acid stretches that are putative nuclear localization signal (NLS).  The vertical bars in the C-

terminal of S. cerevisiae Apn1 constitute a bipartite NLS.  The highlighted amino acid 

residues (bold underlined) indicate the location of the putative NLS within the N-terminal 

region of C. elegans APN-1.   

Figure 2.  Expression levels of APN-1 and its N-terminal deletion mutants as GFP fusion 

protein in yeast cells.  A and C)  Western blot analysis.  The plasmids designed to express 

the indication GFP fusion APN-1 were introduced into strain YW778 and total extracts were 

prepared and analyzed by 12 % SDS-PAGE followed by Western blot analysis probed with 

anti-GFP monoclonal antibody.  Panel A, Lanes 1, 3, 5, 7 and 9 and lanes 2, 4, 6, 8 and 10 

contained 100 and 40 µg of total protein extracts, respectively.  Panel C, lanes 1, 2 and 3 

contained 60 µg of total protein extracts.  B) Ponsceau staining of the membranes for panel A.  

D) Coomassie staining of the duplicate SDS-PAGE for panel C. Panels B and D were used for 

monitoring the amount of total protein extracts loaded.  

Figure 3. Fluorescent microscopy showing the cellular distribution of GFP-APN-1 and 

its N-terminal deletions.  Exponentially growing cultures of strain WY778 carrying the 

indicated plasmids were fixed and images captured by a Leica DMRE immunofluorescent 
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microscope and images were processed by the MacIntosh OpenLab program. The location of 

the nucleus was determined by staining the nuclear DNA with DAPI.  

 Figure 4. Cleavage of the AP site DNA substrate by APN-1 and the N-terminal deletion 

mutants.  Increasing amounts of total extracts from Fig. 2 were incubated with the 5'-end 

[
32

P]-labeled 42-mer AP site substrate for 20 min. The 20-mer product was detected by 

electrophoresis in denaturing 10 % (w/v) polyacrylamide gels (7 M Urea), exposed to a Fugi 

FLA-3000 Phosphor Screen and analyzed using Image Gauge V3.12 software. Lanes 4-6, 7-9, 

10-12 and 13-15 each set of lanes contained 1000, 100 and 10 ng of total protein extracts.   

   

Figure 5.  MMS resistance of strain YW778 harboring plasmids carrying either APN-1 

or its N-terminal deletion mutants without or with SV40-NLS.  Exponentially growing 

cultures were serially diluted and spotted onto solid selective media without and with 0.015 

mmol of methyl methane sulfonate (MMS).  Picture was taken after two days of incubation at 

30
o
C. 
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Appendix B 
 

 

The following is a paper reprint published in the journal DNA repair. 

Functional variants of human APE1 rescue the DNA repair 

defects of the yeast AP endonuclease/3’-diesterase-deficient strain 

 

 



145 
 

 



146 
 

 



147 
 

 



148 
 

 



149 
 

 



150 
 

 



151 
 

 



152 
 

 



153 
 

 



154 
 

 



155 
 

 



156 
 

 



157 
 

 



158 
 

 


