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Résumé 

Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En 

particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite 

par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information 

sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du 

cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des 

connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique 

et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces 

modifications de la connectivité synaptique peuvent induire la réorganisation de la carte 

corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. 

Cette réorganisation est connue sous le nom de  plasticité corticale. Elle est particulièrement 

active durant la période de développement, mais elle s’observe aussi chez l’adulte, par 

exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans 

de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important 

pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du 

sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la 

plasticité corticale.  

L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité 

corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal 

et de définir les effets sur l’amélioration de la perception sensorielle. 

Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections 

intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal 

(neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels 

évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le 

couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté 

individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA 

avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une 

stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des 
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récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis 

que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces 

résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette 

facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les 

récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à 

long-terme, évènement physiologique lié à l’apprentissage. 

L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de 

l’information visuelle résultait non seulement en une modification de l’activité corticale mais 

aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats 

adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus 

visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. 

L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et 

cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le 

stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de 

l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du 

télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation 

visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des 

neurones pyramidaux et des interneurones GABAergiques a été montrée par 

l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système 

cholinergique améliore les performances visuelles pour l’orientation et ce probablement par 

l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. 

Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la 

perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation 

visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections 

intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les 

récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les 

récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet 

excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur 

est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement 
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visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est 

contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. 

Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut 

améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes 

d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de 

potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En 

particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le 

ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration 

cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement 

d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la 

modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques 

situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales.  

La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un 

effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle 

et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations 

visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la 

perception. Cette amélioration est corrélée à une amplification de l’activité neuronale 

démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une 

différence entre l’activité des neurones glutamatergiques et GABAergiques dans les 

différentes couches corticales. L’injection pharmacologique pendant la stimulation 

visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent 

amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation 

GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des 

mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures 

connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions 

visuelles lors d’un déficit ou d’amplifier la fonction cognitive. 

Mots-clés : électrophysiologie, système cholinergique, amélioration cognitive, plasticité 

corticale, récepteur nicotinique, récepteur muscarinique, apprentissage perceptuel, cortex 

visuelle  
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Abstract 

Sensory cortex is an essential area where sensory perception occurs. Especially visual cortex 

processes visual information transmitted from the retina through the thalamus. By different 

neuronal activation the information is segregated and sent to diverse visual area for 

interpretation. Neurons are the basic unit that transform sensory information into 

electrophysiological signal, transfer to the cortex and integrate it. Connection between neurons 

can be modulated depending on the persistent presynaptic activity inducing either a long-term 

increase or decrease of the post-synaptic activity. Modification in synaptic strength can affect 

large area and induce reorganization of cortical map (i.e. cortical plasticity) which changes the 

representation of the visual stimulus and its weight in visual processing. Cortical plasticity can 

occur during juvenile while forming developmental connection or in adult while acquiring 

novel information (i.e. learning). The neurotransmitter ACh is involved in many cognitive 

functions, such as learning or attention and it was demonstrated that lesioning or blocking 

cholinergic system diminishes cortical plasticity. It was shown that nicotinic, M1 subtype and 

M2 subtype muscarinic receptors are the major cholinergic receptors abundant in the cortex 

and implicated during cortical plasticity induction.  

In a first part, I analyzed visual evoked potentials (VEPs) in V1 of rats during a 4-8h period 

after coupling visual stimulation to an intracortical injection of ACh agonist carbachol or 

stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we 

individually injected muscarinic, nicotinic, α7, and NMDA receptor antagonists just before 

carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation 

significantly increased VEP amplitude for long-term. Pre-inhibition of muscarinic, nicotinic 

and NMDA receptor completely abolished this long-term enhancement, while α7 inhibition 

induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating 

visual stimuli responsiveness which involves nicotinic and muscarinic receptors with an 

interaction of NMDA transmission in the visual cortex. These mechanisms were similar to 

long-term potentiation, a neurobiological mechanism of learning. 
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In a second step, I evaluate whether cholinergic modulation of visual neurons results in 

cortical activity and visual perception changes. Awake adult rats were exposed repetitively for 

two weeks to an orientation-specific grating with coupling visual stimulation to an electrical 

stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze 

before and after coupling visual/cholinergic stimulation was increased. The increase in visual 

acuity was not observed when visual or basal forebrain stimulation was performed separately 

nor when cholinergic fibers were selectively lesioned prior to the visual stimulation. There 

was a long-lasting increase in cortical reactivity of the primary visual cortex shown by c-Fos 

immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate 

that when coupled with visual training, the cholinergic system improves visual performance 

for the trained orientation probably through enhancement of attentional processes and cortical 

plasticity in V1 related to the ratio of excitatory/inhibitory inputs. 

Finally, I also investigated the different pharmacological mechanisms involved in the visual 

enhancement. Pre- and post-pairing visual/cholinergic stimulation VEP were compared with 

selective administered agonist/antagonist during the pairing. Awaken adult rats were exposed 

during 10 minutes per day for 1 week to an orientation specific grating with an electrical 

stimulation of the basal forebrain. Intracortical injection of different pharmacological agents 

during pairing demonstrated that nicotinic and M1 muscarinic receptors are used to amplify 

cortical response while M2 muscarinic receptor suppresses GABAergic neurons to disinhibit 

excitatory neurons. Infusion of GABAergic antagonist supported that inhibitory system is 

crucial to induce cortical plasticity. These findings demonstrate that visual training coupled 

with the cholinergic stimulation enhances the cortical plasticity mediated by nicotinic, M1 and 

M2 muscarinic receptors, which the latter induces a disinhibition by suppressing GABAergic 

neuron. 

The cholinergic system is a potent neuromodulatory system. Boosting this system during 

perceptual learning robustly enhances the sensory perception. Especially, pairing a cholinergic 

activation with a visual stimulation increases the signal-to-noise ratio, cue detection ability in 

the primary visual cortex. This cholinergic enhancement increases the strength of 

thalamocortical afferent to facilitate the treatment of a novel stimulus while decreasing the 
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cortico-cortical signaling to minimize recurrent or top-down modulation. This is mediated by 

different cholinergic receptor subtypes located in both glutamatergic and GABAergic neurons 

of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked 

to attentional processes, long-term potentiation and modulation of the excitatory/inhibitory 

balance.  

The present thesis shows that electrical stimulation of the basal forebrain has similar effect 

with cholinergic agonist release and pairing visual/cholinergic stimulation induces cortical 

plasticity. Repetitive pairing of visual/cholinergic increases visual discrimination capacity and 

enhances perceptual ability. This enhancement is followed by an augmentation of neuronal 

activity demonstrated by c-Fos immunohistochemistry. Immunoreactivity also shows 

difference in glutamatergic and GABAergic neurons activities between layers. 

Pharmacological injection during visual/cholinergic pairing suggests that nicotinic and M1 

muscarinic receptor can amplify excitatory response while M2 receptor controls GABAergic 

activation. Altogether cholinergic system activated during visual process induces cortical 

plasticity and can enhance perceptual ability. Further understanding of this training has the 

potential to accelerate visual recovery or boost cognitive function.  

Keywords: electrophysiology, cholinergic system, cognitive enhancement, cortical plasticity, 

nicotinic receptors, muscarinic receptors, perceptual learning, visual cortex 
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I.1 Prologue 

Pablo Picasso once said “If only we could pull out our brain and paint using only our 

eyes.” Although nowadays it is a common sense that without the brain we could not see 

anything, the famous painter probably wanted to describe the world without brain’s 

interpretation. As matter of fact, like a computer that transform electrical signal (e.g. from 

keyboard) into a letter, the brain interprets the outer information that is transferred from 

sensory organs so that our body could understand it. Sometimes the information is saved to be 

retrieved whenever needed or it could permanently affect the whole system. Based on previous 

and novel data, the process that our body understands the environment through the brain, we 

call it “perception”. For a living organism perception is critical to survive since based on the 

information it could make a decision and hence avoid dangerous situation. 

The improvement of perception is nominated as perceptual learning since it appears 

only after repetitive training. This enhancement could occur through life time and recently it 

was observed that it is possible to accelerate the process by specific training. This study will 

be focused on the function and mechanism of the brain to increase its perceptual ability by 

presenting relevant concepts.  

I.2 Introduction to the cortical function 

I.2.1 Sensory perception 

Perception of sensory information is analyzed in a hierarchical manner. Different 

organs convey different types of information and each sensory modality reaches different 
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cortical areas according to their specificity. The first cortical area where sensory signals are 

entered is called the primary sensory cortex. Fingers (somatosensory cortex), eyes (visual), 

ears (auditory) and nose (olfactory) send signals to their own primary cortex. As the raw 

information is transferred from lower to higher sensory cortex, it is segregated based on its 

property (e.g. shape for visual or frequency for auditory) with more precision (Kandel et al., 

2013).  

Compared to sensory cortices, associative areas process and integrate the information. 

For example in primate, the ventral intraparietal area in the parietal lobe receives input from 

visual, somatosensory and auditory senses (Avillac et al., 2005). Also the frontal lobe is 

suggested to have the ability of planning (Shallice and Burgess, 1991) or motivation (Eslinger 

and Damasio, 1985). Memory retrieval could occur during the perception by limbic system 

such as hippocampus and influence the interpretation of the stimulus. Cortical area which 

receives sensory information from primary sensory cortex and is involved in cognitive 

function (e.g. attention, learning or planning), it is called higher order sensory area. 

The process of sensory perception is bidirectional and changeable. The flow of 

information from periphery to lower sensory cortex and to higher cortical area is called 

bottom-up. The reverse action from higher area modulating the response of lower area is 

called top-down. Top-down effect could influence the selectivity of stimulus in lower cortical 

area and facilitate the perception of a specific target. Bottom-up and top-down effect occur 

simultaneously and experience could refine the process. Repetitive exposures to similar 

environment reduce the process time by strengthening the cortical connection and increase the 

acuity by expanding the cortical area that treat the information. All those ameliorations of 



 

 

4 

perception is achieved through perceptual learning. Perceptual learning can influence in global, 

which means it affects both bottom-up and top-down process from neuronal to systematic 

change. To understand better how the brain perceive the world, it will be necessary to look 

into the function of its basic unit; the neuron. 

I.2.2 Neurons 

I.2.2.1 Neurons anatomy 

Neuron is the basic unit of the brain composed of cell bodies (soma), axon and dendrite 

which transmit information through electrical and chemical signals. The neuron receives outer 

signal through their dendrites and transfer it to neighboring neuron by the axon (Figure I.1). 

The junctions between two neurons are called synapses. Generally synapses are established 

between axons to a dendrite, to another axons or a cell body. Sensory information is 

transported under form of electrical signal and at the end of the axon it is transferred by 

releasing chemical molecules (neurotransmitters) from presynaptic neuron delivered by the 

synaptic vesicles. At the dendritic membrane of neuron receiving neurotransmitters 

(postsynaptic neuron) there are proteins (receptors) which bind specifically the released 

neurotransmitters. Receptor, when coupled with ligand-gated channel, opens the ion gate to 

transfer the electrical signal to the soma. 

There are numerous ways to classify neurons (e.g. shape, size, discharge pattern, or 

function) but probably the simplest way is its action on postsynaptic neurons. Neuron that 

release neurotransmitters permitting positive ion (Na
+
, Ca

2+
) entrance is called excitatory (e.g. 

glutamate). Neuron that release neurotransmitters permitting negative ion (Cl
-
) (e.g. GABA: γ- 
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Figure I.1. Structure of a neuron.  

The neuron is composed by a soma (cell body), axon and dendrite. Myelin sheath is a 

phospholipid layer surrounding axon in most of the neurons, although some short projecting or 

interneurons do not have myelin. Adapted from http://wikimedia.org 
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 amino-butyric-acid) admission is called inhibitory  and is generally released by interneuron 

although spiny stellate cell in sensory cortex is glutamatergic (Kandel et al., 2013). Pyramidal 

neuron is excitatory neuron that has long axons to send information from one cortical area to 

another and in contrast interneuron has short axons to locally process signals (Rockland and 

Lund, 1982).   

I.2.2.2 Single Neuronal activity 

In general, neurons communicate each other through synaptic transmission which 

evokes action potential. During the rest state, the extracellular fluid contains excessive positive 

ion and maintains -75mV of difference (resting potential) between the extracellular and 

intracellular compartment. This membrane potential is maintained by ionic pump which are 

constantly pumping out Na+ and intruding K+ ions. Binding of an excitatory neurotransmitter 

induces conformational change of ionic channel and allows positive ions to enter within the 

neuron and initiates action potential. An action potential is generally composed of three 

sequences of events. (1) A depolarization of membrane causes entrance of Na+ through 

voltage-gated-channel. (2) A repolarization, when the inward Na+ induces an outward of K+ 

current to repolarize the membrane. (3) And hyperpolarization state by overwhelmed entrance 

of K+ before voltage-gated K+ channels shut (Hille, 2001). To measure such electro-potential 

activation Huxley and Hodgkin used voltage clamp where an intracellular electrode measured 

transmembrane voltage while a current electrode maintained the cell at a constant voltage 

(Hodgkin and Huxley, 1952). The action potential is said to be all-or-none signal since either 

it occurs fully independent of the amount of stimulating current or it does not occur at all. 
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This change of polarity on the membrane by depolarization propagates along the axon 

until the axon terminal. When the action potential reaches axon terminal or en passant 

varicosities it opens the voltage-sensitive calcium channels in the presynaptic membrane. This 

triggers synaptic vesicles filled with neurotransmitter to migrate to the synaptic cleft and 

release their content (Rusakov, 2006, Suudhof, 2008).  

Neuronal activation can also be measured extracellularly. Compared to intracellular 

method which inserts electrode through the cell membrane, extracellular recording places 

electrode close to the neuron. By inserting close enough so that a single trans-membrane 

current (associated with an action potential) dominates the signal, it is possible to isolate the 

neuronal activity. Although compared to intracellular method (e.g. voltage clamp or patch 

clamp) this cannot provide information about postsynaptic potentials. Extracellular method 

can detect neuronal activation without cell damage and for longer period (Boulton et al., 1990). 

For example, Hubel and Wiesel showed by this method how single unit activities respond to 

very specific aspects of a visual stimulus (Hubel and Wiesel, 1965).  

I.2.2.3 Neuronal activity (Multiple neurons)  

The sensation of an external stimulus generally induces a simultaneous activation of a 

massive number of neurons. Multiple neuronal activations (i.e. multi-unit activities) can be 

measured either by inserting multiple electrodes or by enlarging electrode tip. With a large tip 

electrode it is possible to record the sum of multiple action potentials in the range of 50-

350μm (Legatt et al., 1980, Gray et al., 1995).  

Another method to measure multiple actions potential is the use of local field potentials 

(LFP). LFP is obtained by recording signals using extracellular low impedance microelectrode 
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inserted in the cortex. This signal is then filtered at ~300 Hz. With such filtering the action 

potential near the electrode which activates at high frequency range has less contribution to 

LFP signal. Compared to the action potentials which are visible only for adjacent electrodes, 

the synaptic events may be recorded in a distant area through the extracellular space. 

Moreover, since LFP records multiple activities on a large range, it is less attenuated with a 

small positional change of the electrode compared to single-unit activity recording. The LFP 

also differs from electroencephalogram which is recorded at the surface of the scalp or 

electrocorticogram which is recorded from the surface of the brain. LFP is believed to 

represent the synchronized input such as the synaptic current within 0.5-3 mm from the 

electrode tip (Juergens et al., 1999)(but see also (Katzner et al., 2009)). Despite its utility, 

physiological origin of LFP is still incompletely understood. Many attempts were made to 

understand its source although the current view is that synchronized synaptic currents on 

cortical pyramidal neurons generate LFPs (Niedermeyer and Lopes da Silva, 2005, Nunez and 

Srinivasan, 2006). In sum, LFP is useful to record synchronized synaptic events in a large area. 

I.2.3 The visual system 

Among sensory systems, the visual system is probably the most studied and well 

determined. Vision is provided through highly complex and organized interconnected 

processes among various parts of the brain. Although this mechanism is still not completely 

revealed and differs from species to species the visual function in primate is introduced to 

accommodate a better comprehension and comparison. 
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I.2.3.1 Primate visual system 

Neurons in sensory system have their own receptive field (RF), an area of space where 

stimulation will cause the firing of that neuron. Light projected in the RF triggers activation of 

two different classes of photoreceptor in the retina: the rods which are sensitive to light’s 

intensity and the cones sensitive to the wavelength of the afferent light which allow color 

vision. In order to reach the photoreceptors the light must go through different layers in the 

retina: ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, 

and outer nuclear layer (Fig I.2). The visual information adapted by the photoreceptors is 

transformed into electrical signals, delivered to the bipolar cells and to the retinal ganglion 

cells. The axons from the retinal ganglion cells project to the optic chiasm where they are 

distributed to major subcortical targets: the superior colliculus, the pretectum and the Lateral 

Geniculate Nucleus (LGN). The visual information from the retina reaching LGN via optic 

nerves and optic tracts, are transferred via the optical radiations mainly to the cortex in the 

occipital lobe, called the primary visual cortex (V1). To the other hand, information is 

received by the superior colliculus and the pretectum which have an essential role in visual 

ability by controlling saccade movement and pupillary reflexes (Kandel et al., 2013). 

The visual signals are normally processed in two pathways: the dorsal and the ventral 

pathways. The dorsal pathway begins in the retina with ganglion cells of M type (M for 

Magnus, meaning large because of the large RF of these cells). These cells respond transiently 

to sustained illumination. M cell projections going through magnocellular layers (I and II) of 

LGN reach the layer IV in the V1. Layer IV is divided into three sublayers nominated IV A, 

IV B, and IV C. Layer IV C is itself subdivided into IV Cα and IV Cβ, and axons in  
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Figure I.2. Anatomy of the retina 

Photoreceptors (rod and cone) are situated in the deep layer. Light must pass through ganglion 

cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer and outer nuclear 

layer to reach photoreceptors. (See text for details) 

 

NEUROSCIENCE, Third Edition © 2004 Sinauer Associates, Inc 
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 magnocellular layers of LGN project into IV Cα (Fig I.3) (Callaway, 1998, Nassi and 

Callaway, 2009). The majority of neurons in the layer IV are spiny stellate cells. Their axons 

transfer information to the dendrites of the pyramidal cells in layers IV B and III, which are 

excitatory and use glutamate as their neurotransmitters. Pyramidal neuron projections in V1 

reach the dorsal area of brain, the middle temporal area (also referred area V5) and extend to 

the posterior parietal cortex. Neurons in this area are relatively insensitive to color or to 

stationary objects (Corbetta et al., 1991).  

For the ventral pathway, P cells (for parvus meaning small) in the retina send visual 

response to parvocellular layers in LGN (3 to 6) that project to layer IV Cβ and IV A of V1. 

This information is sent to V4 that is linked with the inferior temporal cortex where neurons 

are sensitive to the outline of images or orientation, color and shape. It is suggested that dorsal 

pathway is related with “where” objects are, and ventral pathway with “what” the objects are 

(Mishkin et al., 1983). Several studies suggest that each system is specialized for different 

visual functions (Zeki, 1978, DeYoe and Van Essen, 1988, Livingstone and Hubel, 1988, Zeki 

and Shipp, 1988). The visual information transferred in different area is used differently i.e. 

visuospatial recognition for dorsal pathway and recognition of complex objects for ventral 

pathway (Fig I.4).  

Between layers of LGN there is koniocellular cell (K cell) located in koniocellular layer (Fig 

I.3). Koniocellular layers of LGN receive projection from bistratified retinal ganglion cells. It 

seems that koniocellular layer supplement the color information by transmitting to the blobs in 

layer II/III of V1 (Hendry and Yoshioka, 1994). 
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Figure I.3. Visual projection from the retina to the thalamus and visual cortex (V1) 

The retinal ganglion cells, midget, parasol and bistratified remain separate through LGN and 

into V1.  Parvocellular layers of the LGN receive projection from midget cells and project 

onto layer IV Cβ of V1 (red). Magnocellular layers of the LGN receive projection from 

parasol cells and project onto layer IV Cα of V1 (yellow). Koniocellular layers of the LGN 

receive projection from bistratified cells and project to the cytochrome oxidase-expressing 

batches (or blobs) of layer II/III (blue). See text for details (Abbreviations: LGN, lateral 

geniculate nucleus; V1, primary visual cortex) (Nassi and Callaway, 2009). 

 

Reprinted by permission from Macmillan Publishers Ltd: Nature neuroscience reviews (Nassi 

and Callaway) ©  2009 
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Figure I.4 Connections between visual cortical areas. 

The visual areas are organized into two pathways: a ventral pathway that is important for 

object recognition heading toward temporal lobe, and a dorsal pathway important for spatial 

vision leading to the parietal lobe.  
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In the primate’s visual cortex, specific features of the organization of V1 are 

orientation columns, blobs and ocular dominance columns. Tangential penetrations with 

microelectrodes, neurons in the same orientation column usually respond to same oriented 

light bars (Hubel and Wiesel, 1968). Each column contains cells in layer IVC and permits 

cortical cells to produce linear RF properties from the information generated by cells of LGN. 

Blobs, mostly situated in layer II and III, respond to different color stimuli but have no 

preferred orientation. Transferring monocular visual information optic nerves cross each other 

in optic chiasm and most of them (~60%) reach contralateral visual cortex. In the result 

according to their input source those two separate tracts compose ocular dominance columns.  

I.2.3.2 Rodents visual system 

Comparing to primate, the rat’s visual system has some distinctive features. First, 

laterally placed eyes provide a large panoramic visual field with a small binocular overlap. 

Moreover only a small proportion (~5%) of retinal ganglion cells project ipsilaterally. 

Secondly, the rat photoreceptors are different from those of primate. Not only has the density 

of cone in rat retina appeared to be lesser than other mammals but also the photoreceptor 

cones had shown to be sensitive at ultraviolet light (Jacobs et al., 1991).  

Although in the rat system the visual pathway also includes LGN, superior colliculus 

and pretectum, our main interest is on LGN afferent pathway, so the physiological description 

in the present section will be focused on the structure of LGN. Precisely, the retinal ganglion 

inputs reach the dorsal area of LGN (dLGN). Despite the lack of lamination in dLGN of the 

rat, many studies have discriminated different regions in the distribution of cells of different 

sizes, in the composition of afferent axons and different patterns of degeneration after lesions 
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(Martin, 1986, Land, 1987, Reese, 1988). According to Reese (1988) discerning caudodorsally 

located nucleus as “outer shell” and “inner core” for ventromedial located nucleus, regions of 

dLGN were observed to be innervated by different classes of retinal ganglion cells. Variety in 

the regional distribution of inputs signifies that different cell types within dLGN are located in 

different broad regions. Cells in the outer shell mostly project to V1 and to cortical area Oc2L 

(occipital cortex; cytoarchitectonic area 18a). Even though the homology between Oc2L with 

V2 region of primate is still controversial.  

In the visual cortex, most of the innervation from dLGN reaches the layer IV of V1. 

But dLGN projections were also observed in lower layer III and layer VI. It was observed that 

geniculocortical axons form asymmetrical synapses in layer IV (sparsely spined stellate cells, 

spiny nonpyramidal cells with perikarya and dendritic spines of pyramidal cells) and the lower 

part of layer III (dendritic spines of basal dendrites of pyramidal cells) (Peters et al., 1976, 

Peters and Feldman, 1976, 1977, Feldman and Peters, 1978). Prominent projection from layer 

IV cells exists in a precise manner to lower layers II/III while weaker projection extends 

laterally and diffusely in layer II/III. There are also a vertical projection toward the layers V 

and VI. The vertical intracortical connections convey the information to layers above and 

below to provide RF properties such as binocularity (Gilbert, 1983).  

Pyramidal neurons in the layer V receive projections from the layer II/III and from the 

layer VI. Whereas the lower layer V make clustered projections in a diffuse manner to the 

layer I, the bottom of the layers II/III, and the top of the layer IV and V. Finally, neurons in the 

layer VI make clustered projections to the boarder of layer III and IV. Additional projections 
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were also observed from the layer VI to the boarder of layer V and VI and layer I/II 

(Burkhalter, 1989). 

Nonpyramidal neurons, which are about 15% of the entire neuronal population in rat’s 

visual cortex, are GABAergic. Three major families of GABAergic neurons are distinguished 

according to their immunoreractivity: parvalbumin (PV), calretinin (CR), and somatostatin 

(SOM). The PV-immunoreactive neurons are present in all layers except the layer I and 

constitute about 51% of GABAergic neurons. The SOM-immunoreactive neurons are also 

absent in the layer I but mainly located in the infragranular layers V and VI. Finally, the CR 

coexpressing neurons account for 17% of GABAergic neurons and they are abundant in the 

layer I (Gonchar and Burkhalter, 1997). The function of GABAergic neurons during visual 

stimulation will be discussed further. 

Although the rodent functional organization is similar to that of primate, in the rat’s 

visual cortex there is no evidence of orientation column (Girman et al., 1999). However, most 

neurons show a sharp adjusted selectivity about the direction of stimuli presented with a 

tendency for horizontal stimuli (Burne et al., 1984, Girman et al., 1999). This implies a 

distinctive mechanism for neurons in the visual cortex of the rat toward orientation selectivity. 

 

I.3 Plasticity in the brain 

In one of the episode of Sherlock Holmes, in a scene he said “I consider that a man’s 

brain originally is like a little empty attic, … It is a mistake to think that that little room has 

elastic walls and can distend to any extent.”. Sherlock Holmes was probably the greatest 
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detective character of the century, but obviously, he was not aware of plasticity of the brain. 

Plasticity is the ability of the brain to adapt to environmental change by reorganizing its neural 

circuits. Plasticity permits the brain to expand its capacity, to optimize its function or even to 

delete unused connection. It is estimated that instead of changing genetic code, as was chosen 

during evolution, our physiological system chose to change brain network to adapt to the 

environment. For this reason, plasticity is considered to occur as a result of long and 

continuous mechanism instead of spontaneous changes. Two kinds of plasticity are presented 

in this study: synaptic plasticity and cortical plasticity. 

I.3.1 Synaptic plasticity 

Synaptic plasticity is the ability of a synapse between presynaptic and postsynaptic 

neurons to modify its strength by changing the efficacy of receptor response and/or changing 

postsynaptic transduction. Earlier works in laboratories such as the one of Eric Kandel in 

aplysia had revealed part of the molecular mechanisms for synaptic plasticity (Castellucci et 

al., 1978).  

Plasticity at the presynaptic level is likely to be a result of Ca2+ influx that activate 

calcium/calmodulin-dependent protein kinases II (CaMKII). These kinases phosphorylate 

synaptic vesicle associated proteins, synapsin and detach them from cytoskeleton. Direct 

entrance through voltage-gated Ca2+ channels or modulation of presynaptic K+ channels can 

both induce an increase of intracellular Ca2+. This facilitation can occur autonomously by a 

homosynaptical transmitter release from the terminal itself or heterosynaptically by a 

modulatory neuron at axo-axonic synapses. 
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Figure I.5. Synapse and action potential.  

(A) Resting potential. Neurotransmitters are synthesized at nerve terminals and transported to 

the synaptic cleft by vesicles. Outer membrane of neuron is positively charged due to the 

sodium and calcium ion. (B) Synaptic transmission. The action potential is propagated through 

synapse and delivered to next cell. When ionic channel is opened those ions enter in the 

neuron and convert the polarity. This signal is transmitted through the cell. 
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The most common mechanism of postsynaptic plasticity results from the direct 

phosphorylation of an ionotropic receptor by serine/threonine or tyrosine protein kinases. 

Typically when modification of existing synaptic proteins, mostly protein kinases (i.e. PKA, 

PKC), is involved, it alters the synaptic function (Shi et al., 1999). However a second long 

lasting mechanism which is triggered by protein phosphorylation depends on second 

messenger neurotransmitters and involves changes in the levels of key protein as well as gene 

transcription (Kaang et al., 1993). This second mechanism provides the mechanism for long-

lasting memory storage. 

I.3.1.1 Hebbian rule 

Among many models of synaptic plasticity that were introduced, Hebbian rule is 

summarized as “Cells that fire together, wire together”. Synaptic plasticity that follows 

Hebbian theory (or Hebbian plasticity) is induced by a continuous activation of presynaptic 

neuron stimulating postsynaptic cell. The repetitive and simultaneous activation increases the 

synaptic efficacy in the hippocampus. Representative aspects of Hebbian plasticity are long-

term potentiation (LTP) and long-term depression (LTD).  

I.3.1.1.a LTP 

Discovered in the rabbit hippocampus (Andersen et al., 1966), LTP is the long-lasting 

enhancement of connection. Postsynaptic neuron shows a persistent increase in synaptic 

strength after high frequency stimulation of a chemical synapse. Since LTP and long-term 

memory possess common features it has been suggested as the most attractive candidate for 

cellular mechanism for learning. 
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LTP is usually induced with presynaptic tetanic stimulation (100 Hz during 1 sec) 

followed by an increase of excitatory postsynaptic potential (EPSP) lasting more than an hour 

(Fig I.6)(Huang and Kandel, 1994). Non-tetanic stimulation causes release of glutamate in 

presynaptic axon terminal which binds to AMPA (α-amino-3-hydroxy-5-methylisoxazole-4- 

propionic acid) receptors embedded in the postsynaptic membrane. Glutamate binding causes 

EPSP and can results in depolarization. However, when repetitive stimuli at high frequency 

are given to the presynaptic fiber this can cause prolonged EPSP in postsynaptic cell. The 

expression of stronger EPSP will remove magnesium ion blocking NMDA (N-methyl-D-

aspartate) receptors and allow calcium influx during glutamate binding. The rise of Ca2+ 

triggers the activation of several protein kinase enzymes, such as CaMKII, protein kinase C 

(PKC) and cAMP-dependent protein kinase A (PKA) (Sweatt, 1999). 

I.3.1.1.b LTD   

As the name imply, LTD shows a depression of EPSP after a prolonged presynaptic 

stimulation with low frequency (0.5-10 Hz) (Dudek and Bear, 1992). Comparable with LTP, 

induction of LTD through low frequency stimulation (LFS) could be blocked by NMDAR 

antagonists (Lee et al., 1998, Kamal et al., 1999).  

LTD is correlated with dephosphorylation of an AMPAR subunit (GluR1) containing 

serine 831 and 845. Serine 831 in GluR1 can be phosphorylated by CaMKII and PKC while 

serine 845 is phosphorylated by PKA. The latter has higher basal phosphorylation rate than 

former. Compared to LTP which is induced by phosphorylation of the CaMKII-PKC site LTD 

is induced by dephosphorylation of the PKA site (Barria et al., 1997a, Lee et al., 2000). 
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Reversing the LTD process by phosphorylation of PKA complements that dephosphorylation 

of AMPAR is necessary for LTD in hippocampal CA1. 

Besides the phosphorylation regulation, several lines of evidence suggest that AMPAR 

expression in the postsynaptic membrane is subject to mechanism in LTD; (1) Prior saturation 

of LTD yields the AMPARs at the synapse and insensitive to inhibitors of NSF-GluR2 

interaction (Luthi et al., 1999). (2) A low-frequency presynaptic stimulation induced an 

NMDAR dependent depression of miniature excitatory postsynaptic current amplitude and a 

decrease of GluR1 expressed in surface (Carroll et al., 1999). Altogether these results suggest 

that AMPAR internalization is an intermediate mechanism for LTD. It was proposed that 

another subtype of AMPAR GluR2 binds with N-ethylmaleimide-sensitive factor (NSF), 

which is an important protein during membrane fusion events (Nishimune et al., 1998). 

Blocking this operation causes the process of rapid internalization of receptors and decrease of 

AMPAR currents. Since LFS had no effect after receptor internalization, it is estimated that 

LTD requires the pool of NSF-regulated AMPARs (Luscher et al., 1999, Luthi et al., 1999). 

Recently another form of Hebbian synaptic plasticity theory is introduced: spike-

timing dependent plasticity (STDP). This theory highlights the precise timing of firing 

between presynaptic and postsynaptic neurons. Since the depolarization is followed by a 

hyperpolarization due to K+ efflux, it is obvious that neuronal activation at the same moment 

could not induce synaptic plasticity. The precise timing of the perisomatic inhibition alter the 

backpropagation which is critical in STDP (Dan and Poo, 2004). Two connected neurons 

stimulated with varying interval confirmed the importance of precise timing to induce Hebbian 

plasticity (Caporale and Dan, 2008). 
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I.3.1.2 Homeostatic plasticity 

Homeostatic plasticity refers to the compensatory mechanism of neuron to maintain its 

normal electrical activity. It is suggested that this self-adjustment is required to balance 

Hebbian plasticity. For instance, chronic neuronal firing could induce continuous LTP and 

quickly saturating plasticity. Instead of reaching an extreme level, the receptors are 

desensitized and the stability of network activity is preserved. On the other side, when a 

prolonged sensory deprivation occurs (e.g. light-deprivation or damage by stroke) the 

sensitivity of the synapses is increased to maintain the overall activity.  

Homeostatic plasticity was observed in the rat’s pyramidal neuron in the visual cortex 

after a blockade of GABAergic synapses to increase neuronal activity. Turrigiano et al. 

observed that such stimulation results in decrease of excitatory postsynaptic currents by down-

regulating postsynaptic glutamate receptors (Turrigiano et al., 1998). Comparatively, the 

injection of TTX that decreases the neuronal activity induced (1) an increase of the intrinsic 

excitability (Gibson et al., 2006), (2) a spontaneous activity enhancement via synaptic 

plasticity (Maffei and Turrigiano, 2008), or (3) an up-regulation of presynaptic Ca2+ influx 

(Zhao et al., 2011). Homeostatic plasticity can occur either by modulating ion channel 

expression (intrinsic homeostasis) or by modulating the synaptic input (synaptic homeostasis). 

During the development of the postnatal visual cortex, for example, dark rearing reduces the 

ratio of NMDAR subunits NR2A/NR2B (Quinlan et al., 1999). Compared to NR2A the NR2B 

which subunit remains open longer and reduces the thresholds for LTP and LTD probably by 

facilitating Ca2+ influx (Erreger et al., 2005). On the other hand, blocking the excitatory 

synaptic transmission for several days increases the synapse size and thereby enhances the 

exocytosis rate of synaptic vesicles (Murthy et al., 2001). In sum, homeostatic plasticity is a 
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balance mechanism to maintain electrophysiological homeostasis in synapse allowing neuron 

to be modified by a strong activity exceeding the threshold.  

I.3.2 Cortical plasticity 

While synaptic plasticity occurs between two neurons, the cortical plasticity refers to 

the changes occurring in the organization of the cortex according to the experience. Brain 

activity transferring from a given function to a different location which results from a normal 

experience or a brain damage is the remarkable consequence of cortical plasticity. The cortical 

plasticity involves changes in multiple neuronal connections that are represented by 

alternation of broad range cortical response. 

There are many similarities between synaptic plasticity and cortical plasticity. For 

example when a rat whisker of postnatal day 12-14 is stimulated it expresses recombinant 

AMPAR subunit GluR1 into synapses of the somatosensory cortex (Takahashi et al., 2003). In 

the visual cortex, similarly with LTD, monocular deprivation shows alternation in the GluR1 

phosphorylation level (Heynen and Bear, 2001). An LTP is also induced in V1 after tetanic 

stimulation in the LGN (Heynen and Bear, 2001). The cortical plasticity is also shown to be 

NMDAR dependent. The inhibition of NMDAR in developing visual cortex blocks the effects 

of monocular deprivation suggesting a crucial role of NMDAR (Bear et al., 1990). 

Involvement of NMDAR implies that Ca2+ dependent enzymes are implicated in cortical 

plasticity. Indeed, similarly with synaptic plasticity PKA (Beaver et al., 2001), extracellular-

signal-regulated kinase (ERK (Di Cristo et al., 2001)) and αCaMKII (Taha et al., 2002) are 

active during cortical plasticity process. The role of those kinases are to phosphorylate 

substrates like synapsin (Hosaka et al., 1999), AMPAR (Barria et al., 1997a, Barria et al., 
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1997b, Benke et al., 1998), GABAR (Brandon et al., 2003), or actin (Matus, 2000). Those 

molecules are used in synaptic transmission, neuronal excitability and morphological 

stabilization. 

Changes in synaptic molecules can activate transcription factor, such as CREB (cAMP 

response element binding) (Liao et al., 2002). CREB protein that binds to a specific DNA 

sequence called cAMP response elements (CRE) is also involved in LTP (Martin and Kandel, 

1996). Starting by the postsynaptic receptor activation, the production of a second messenger 

such as cAMP or Ca2+ activates in turn the protein kinase which then induces CREB protein 

to bind to a CRE region. With successive binding of CREB-binding protein, CREB regulates 

other transcription factors such as c-fos, c-jun or egr-1 (Boutillier et al., 1992, Masquilier and 

Sassone-Corsi, 1992). Gene transcription synthesizes new proteins, a process critical for both 

ocular dominance plasticity (Taha et al., 2002) and long-term changes in synaptic strength 

(Silva et al., 1998). 

Although cortical and synaptic plasticity share numerous common aspects there is no 

direct evidence that they are correlated. For example, some essential molecules that are used in 

synaptic plasticity (e.g. BDNF or type 2 metabotropic glutamate receptor) were shown to be 

unnecessary to induce a shift in ocular dominance (Bartoletti et al., 2002, Renger et al., 2002). 

Moreover, the continuous induction of LTP in synapse fails to render in cortical plasticity 

(Hensch, 2003). 

Although many models of cortical plasticity in V1 were proposed, two classes of 

cortical plasticity are well documented: ocular dominance shift and lesion-induced plasticity.  
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Figure I.6 Comparison of LTP in hippocampus and LTP in V1. 

(A) Schematic illustration showing extracellular recording and tetanic stimulation on the Sch 

projection to CA1 (Top). Tetanus stimulation (a brief, high-frequency train of electrical 

stimuli) induces an enhanced synaptic response for many hours (i.e. LTP) (Bottom). (Neves et 

al., 2008)(B) Schematic illustration showing the position of stimulating electrode in the LGN 

and recording electrode in V1 (Top). TBS in the LGN evoked LTP of FPs in V1. After 30 

minutes of baseline recording, application of TBS to the LGN elicits LTP of FPs in the V1 

(Bottom). (Abbreviations: Sch, Schaffer-commissural; TBS, theta-burst stimulation; LGN, 

lateral geniculate nucleus; V1, primary visual cortex; FP, field potential) 
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Different models of cortical plasticity which are neurotransmitter-dependent and learning-

induced plasticity will be introduced later. 

 I.3.2.1 Cortical plasticity in juvenile: ocular dominance shift during critical period 

Few decades ago when the neocortex was considered unmodifiable, Hubel and Wiesel 

had demonstrated that during development and before the critical period, ocular dominance 

(OD) columns in V1 were highly plastic (Wiesel and Hubel, 1963).  Exclusively, monocular 

vision during the critical period results in an expansion of the columns serving the open eye 

and the columns that were responding to the deprived eye becomes reduced in size and 

afferent connectivity. Following this result of Hubel and Wiesel, the cortical plasticity had 

been shown to occur in the somatosensory cortex (Van der Loos and Woolsey, 1973), the 

auditory cortex (Moore, 1985) and in diverse experimental and natural conditions.  

It is suggested that GABAergic system is essential for the initiation of critical period. 

In mice with genetically deprived GABA-synthesizing enzyme (glutamic acid decarboxylase: 

GAD65), the critical period was delayed until treatment with the GABAA receptor agonist 

diazepam (Hensch et al., 1998, Fagiolini and Hensch, 2000). Also overexpression of brain-

derived neurotropic factor (BDNF) shows a premature onset of the critical period. This is 

probably because BDNF promotes the maturation of GABAergic system in the visual cortex 

(Hanover et al., 1999, Huang et al., 1999). 

On the other hand, recent study suggests that inhibitory system maturation closes the 

critical period. It was found that the disruption of the perineuronal nets can re-induce OD 

plasticity during adulthood (Carulli et al., 2010). This extracellular matrix (ECM) structure is 

known to surround densely the PV interneurons (Carulli et al., 2006). Also, it was 
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demonstrated that restoration of deprived eye vision or OD plasticity in adult rat can be 

induced by a reduction of GABAergic inhibition (Baroncelli et al., 2010, Harauzov et al., 

2010). Those studies suggest that inhibitory system maturation affects the potential of OD 

plasticity. 

Among theories about how inhibitory innervation can regulate plasticity of excitatory 

connections (e.g. glutamate and AMPAR), one convincing mechanism is by altering STDP. 

Parvalbumin (PV) expressing GABAergic interneurons innervate excitatory neurons and other 

interneurons on the soma and dendrites. Such connection allows PV neurons to modulate 

backpropagation (Tsubokawa and Ross, 1996) which is crucial for STDP. Indeed, increased 

perisomatic inhibition can disrupt STDP while blocking it facilitates (Pouille and Scanziani, 

2001). In a broader range, PV interneurons can form groups of 30-50 cells and synchronize 

their activations through gap junctions (Galarreta and Hestrin, 1999, 2002). Such coordination 

alters the firing timing of excitatory neurons and hence PV interneurons can control large sets 

of excitatory neurons. This functioning also supplies the underlying mechanism of gamma-

band oscillations (30-90 Hz) (Tamas et al., 2000). The gamma-band oscillation is suggested to 

be involved in sensory input processing and reflects the synchronized neural activity (Cardin 

et al., 2009). Overall excitatory system is affected by inhibitory input via STDP and PV 

interneurons create network to organize coherent firing of neurons in the visual cortex. 

In summary, the initiation or the closure of critical period is affected by GABAergic 

system. It seems that the maturation of the GABAergic system regulate the cortical plasticity. 

The regulation on excitatory synapse is achieved through STDP rule and PV interneurons 
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network can synchronize neuronal firing. Long-term alternation of synaptic strength can shift 

OD response.  

I.3.2.2 Cortical plasticity in adult: lesion-induced plasticity 

Under normal conditions in the adult primary sensory cortex, the gross structure of 

neurons and their circuitry cannot be modified dramatically (Grutzendler et al., 2002, 

Trachtenberg et al., 2002). However, following a partial retinal lesions structural plasticity was 

found in the adult primary visual cortex (Darian-Smith and Gilbert, 1994, 1995). A binocular 

lesion at the retinal level produces a silenced region in the corresponding retinotopic zone (the 

lesion projection zone: LPZ). During restoration, neurons in the LPZ recover their sensitivities 

to visual input from the undamaged retinal regions surrounding LPZ (Darian-Smith and 

Gilbert, 1995, Eysel et al., 1999).  

Reorganization of the cortical topography was proposed to explain the changes in RF 

properties, circuitry and molecular mechanism during restoration. It was shown with fMRI 

that reorganization of V1 retinotopic map occurs after a partial damage of the input fibers 

caused by macular degeneration (Baker et al., 2005) or stroke (Dilks et al., 2007). 

Rearrangement of cortical map is mediated by the long-range horizontal connections 

(Rockland and Lund, 1982). Normally, these connections are used for propagation of 

information and to integrate information of large area on the visual field (Albright and Stoner, 

2002). Such a stimuli placed outside of RF can still influence neuronal response by the global 

context (Hubel and Wiesel, 1965, Crist et al., 2001). Strengthening of these horizontal 

connections enables neurons surrounding LPZ to innervate lesion-affected neurons and 

thereby shifting RFs.  
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It is documented that cortical reorganization in LPZ is accompanied by growth or 

degradation of synaptic branches. With the use of in vivo two-photon imaging Yamahachi et al. 

observed that the horizontal axons in V1 rapidly sprout their branches while removing older 

connections (Yamahachi et al., 2009). Also, retinal lesions induce an upregulation in the rate 

of turnover of dendritic spines (Keck et al., 2011) which is considered to be a sign of cortical 

plasticity. These changes of connections are observed both in excitatory and inhibitory system 

(Keck et al., 2011, Marik et al., 2014) probably to balance inputs in reorganizing cortex 

(Priebe and Ferster, 2012). Altogether those studies indicate that sprouting and pruning of 

synaptic branches is the underlying mechanism of the remapping of cortical topography 

following retinal lesions. 

The cortical map reorganization after a partial retinal lesion opens the possibility that 

the cortical plasticity could also occur in mature cortex. However, the distinction in properties 

and connections should be made from that of juvenile cortex (e.g. OD plasticity). The nature 

of the cortical plasticity after lesion is similar with the mechanism of experience-dependent 

plasticity in adulthood. Especially, it was proposed that cortical plasticity during perceptual 

learning is mediated by strengthening horizontal connections and change of cortical 

topography (Recanzone et al., 1992, Ramalingam et al., 2013). It is possible that both changes 

use the same cortical circuits (Gilbert and Li, 2012). 

I.4 Cholinergic system 

The cholinergic system is widely distributed in the cortex and carries out the complex 

function with region specific manner. The two main intrinsic systems in the cortex are 

glutamatergic and GABAergic systems which have excitatory and inhibitory action, 
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respectively (DeFelipe et al., 2002). Compared to those two transmitters which roles are 

mainly to transfer information, other transmitters such as acetylcholine, norepinephrine, 

serotonin, dopamine, histamine, or adenosine have modulatory effect and arise from neurons 

located outside of the cortex. A single modulator may be coupled to diverse postsynaptic 

receptors and produce distinct postsynaptic effect and hence launching different second 

messenger cascade (McCormick, 1992). Such functional diversities allowed neuromodulator 

to be involved during control of cortical state (e.g. arousal, attention, slow-wave sleep, etc) 

and its network (McCormick, 1992, Briand et al., 2007). Among various neuromodulator, 

recently acetylcholine (ACh) attracted high interest for its implication in attention and learning 

(Sarter et al., 2005).   

I.4.1 Cholinergic pathways in the brain 

Cholinergic forebrain innervations are divided into six distribution pathways; Ch1-Ch6 

(Mesulam et al., 1983). Cholinergic nuclei from the medial septum (Ch1), the vertical and 

horizontal limb of the diagonal band (Ch2 and Ch3), project to the hippocampus and 

prefrontal and occipital cortex, the nucleus basalis of Meynert (Ch4) project to the entire 

cerebral cortex, and the cholinergic neurons in the pedunculopontine tegmental nucleus (Ch5) 

and laterodorsal tegmental nucleus (Ch6) project to superior colliculus, thalamus, basal 

forebrain and substantia nigra. According to their activating agonist cholinergic receptors are 

categorized as muscarinic (activated by muscarine) and nicotinic (activated by nicotine) 

receptors. 
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I.4.2 Nicotinic system 

Nicotinic cholinergic receptors (nAChR) are ionotropic and are found both in 

peripheral and central nervous system (PNS and CNS). It is assumed that neuronal nAChR 

structure is pentameric and composed of two subunit types generally 2α subunits for 3β 

subunits. However diversity of nicotinic receptors through various combinations between 

subunits (nine α: α2 to α10, three β: β2 to β4, 1728 possible receptors) (Steinlein, 1998) allows 

difference in their selectivity for and sensitivity to nicotinic agonists and antagonists which 

results in a difference in the permeability of their cationic channel (Changeux et al., 1998). 

Activation of the nicotinic receptors opens Na+, K+ and Ca2+ channels. Comparing to muscle 

nAChRs which are more permeable to Na+ ion, neuronal nAChR are highly permeable to 

Ca2+. A general consent is that neuronal nAChRs are located in a presynaptic element 

(Wonnacott, 1997, Dani, 2001) to modulate neurotransmitter, for example glutamate 

(Radcliffe and Dani, 1998). The Ca2+ permeability of nAChR influences intracellular Ca2+ 

dependent mechanisms and may act on synaptic plasticity (McGehee, 2002). In the central 

nervous system, α4β2 and α7 are dominant subtypes of nAChR. Those receptors possess some 

distinct properties. While α4β2 excites neuron by increasing sodium and potassium 

permeability α7 acts through calcium channel. In the hippocampus, α4β2 and α7 are both 

widely distributed but it is observed that α4β2 is dominantly involved in the modulation of 

GABAergic inhibition to the human cerebral cortical interneurons compared to α7 (Alkondon 

et al., 2000). Furthermore, it is known that injection of nicotine enhance the attention in 

human and rodents (Levin et al., 1998, Mirza and Stolerman, 1998). Deletion of α7 nicotinic  



 

 

32 

 

Figure I.7. Rat cholinergic central pathway.  

Among all the nuclei of the basal forebrain, the horizontal limb of the diagonal band of Broca 

(hdb) and the substantia innominata is the principal source of the cholinergic innervation of  

the occipital cortex (Gaykema et al., 1990, Zaborszky et al., 1999, Laplante et al., 2005). 

Abbreviation; ms: medial septum, vdb: vertical diagonal band of broca, hdb: horizontal 

diagonal band of Broca, bas: nucleus basalis, si: substantia innominata, ppt: pedunculopontine 

tegmentum, ldt: laterodorsal tegmentum (Woolf, 1991) 
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receptor showed impairing of attention in a 5-choice serial reaction-time task (Hoyle et al., 

2006). 

I.4.3 Muscarinic system 

 Muscarinic receptors are known to be metabotropic. Hammer et al distinguished strong 

pirenzepine affinity receptors as M1 and intermediate or low affinity receptors as M2 

(Hammer et al., 1980). Later on five types of subunit genes are characterized from m1 to m5 

and their expression types are named M1 to M5. The family of M1 receptors comprising M1, 

M3 and M5, depolarize via G-protein (Gq/11) leading to closure of K+ channels by the 

phosphoinositol pathway (Nathanson, 2000). On the contrary the M2-like receptors (M2 and 

M4) inhibit voltage-gated Ca2+ channel by deactivating adenylate cyclase via G-protein (Gi) 

(Egan and North, 1986).  

A preliminary study demonstrated that M1 subtype is widely spread in all cortical layers while 

M2 and M4 are less abundant (Levey et al., 1991). A stimulation of postsynaptic muscarinic 

receptors induces a neuron depolarization by inhibiting K+ efflux, usually Ca2+ independent 

(McCormick and Prince, 1985). M2/M4 receptors are traditionally considered to be situated at 

presynaptic area for an autoreceptor as a negative feedback implication (Douglas et al., 2001).  

I.4.4 Cholinergic modulation of cortical plasticity 

 It has been proposed that modulation in receptive field properties contribute to the 

memory coding of a stimulus referring its importance (Weinberger, 2003). A study 

demonstrating that basal forebrain cholinergic lesions inhibit the learning process but not the 

performance suggests that cholinergic activity is required to mediate learning associated 

expansion and retuning of cortical receptive fields (Conner et al., 2003).  
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The relation between vision and ACh has yet many undiscovered mysteries. Direct 

application of ACh to visual cortex modifies neuronal responses showing an increase of the 

spontaneous activity, facilitation of the evoked responses, or suppression of the evoked 

responses. It has been demonstrated that visual response can be enhanced by stimulating the 

mesencephalic reticular nuclei (Singer 1977) which is presumed to be an action of arousal 

state or attention. Another observation is that during sensory stimulation, ACh is released in 

the sensory cortex (Inglis and Fibiger, 1995, Kilgard and Merzenich, 1998, Verdier and Dykes, 

2001, Laplante et al., 2005). As mentioned previously, when kitten cortex has impaired 

innervation of the cholinergic basal forebrain and the dorsal noradrenaline bundle, its ocular 

dominance shift was blocked despite a monocular eyelid suture (Bear and Singer, 1986). 

Following experiments by blocking muscarinic but not the nicotinic receptors, and muscarinic 

M1 but not M2, demonstrated that it can prevent the ocular dominance shift in kitten visual 

cortex (Gu and Singer, 1989, 1993). Studies using selective cholinergic immunolesion by 

cholinergic toxin 192 IgG saporin confirmed that M1 and M2 lesioned juvenile mouse the 

synaptic plasticity was severely affected (Kuczewski et al., 2005). These studies indicate that 

muscarinic M1 receptors may have a critical role during cortical plasticity.  

 Cholinergic modulation effect is also shown in orientation dominance column shift. In 

normal condition, neurons do not alternate its preferred orientation simply by continual 

exposure to another. However, when this repetitive visual stimulus of sub-optimal orientation 

is paired with the application of ACh, the responses of neurons become stronger at the expense 

of diminishing response to the previous optimal orientation and remained long lasting (Greuel 

et al., 1988).  
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Cortical plasticity induced by ACh is also found in different location. For example, in 

rodent somatosensory cortex unilateral removal of a digit (e.g. a whisker) followed by 

neighboring digit stimulation results an expansion of the adjacent digit responding neurons. 

However, with cholinergic deficiency caused by basal forebrain damage no propagation of 

receptive field was observed (Juliano et al., 1991). In addition, a stimulation of basal forebrain 

paired with whisker showed a long-term enhanced somatosensory response (Verdier and 

Dykes, 2001). Additionally in the auditory cortex, combining the nucleus basalis stimulation 

and a tone emission induced changes of receptive field (Ma and Suga, 2005). On the contrary, 

this effect was not observed when muscarinic receptors were blocked with an antagonist 

(Miasnikov et al., 2001).  

Although the exact mechanism of how ACh application can induce an increase of the 

cortical response still request a lot of studies, two possible pathways can be estimated. First, 

ACh could directly interfere with intracellular second messenger. It has been shown that M1 

receptors stimulation leads to an increase of inositol 1, 4, 5-triphosphate (Hamilton and 

Nathanson, 2001) and this change results in augmentation of intracellular Ca2+ level 

(Yamamoto et al., 2000) which will promote the plasticity in the visual cortex (Kato et al., 

2000). This pre-increased Ca2+ level can activate intracellular protein kinases (Hamilton and 

Nathanson, 2001) which may facilitate responses induced by NMDA receptor (Aramakis et al., 

1999). Second possibility, the cholinergic contribution is to reduce membrane K+ conductance. 

The activation of muscarinic receptor increasing the depolarization of the cortical pyramidal 

cells associated with NMDA receptor-gated conductance is possible (Kirkwood et al., 1999). 

This effect will facilitate depolarization in response to visual input which is transmitted 

through glutamatergic neurons. With a direct contact in visual cortex, ACh can regulate 
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GABAergic neuronal inhibition (Xiang et al., 1998, Erisir et al., 2001). Since GABAergic 

interneurons have crucial role in cortical plasticity (Fagiolini and Hensch, 2000), ACh can 

influence modification threshold of cortical plasticity. 

I.5 Objectives of the study 

Sensory cortex is an essential area where perception initiates. Sensory information is 

transmitted by neurons and persistent activity of presynaptic neuron modulates the connection 

between neurons. Such long-term modification can result in learning which involves 

reorganization of cortical map (i.e. cortical plasticity) and amelioration of behavioral 

performance. The neurotransmitter ACh is implicated in many cognitive function, such as 

learning or attention, and it was demonstrated that lesioning or blocking cholinergic system 

diminishes cortical plasticity. It was shown that nAChR, M1 mAChR and M2 mAChR are 

implicated in cortical plasticity induction.  

Despite the cholinergic function is well documented, it still remains to discover the 

pharmacological mechanism how ACh induces cortical plasticity. Recent studies confirm that 

cholinergic activation during visual process can trigger cortical plasticity. Including my 

laboratory colleague, many researchers investigated the role of M1, M2 mAChR as well as 

nAChR during cortical plasticity but at the moment I started this study, such functioning was 

not revealed. Furthermore, the cognitive effect after cholinergic-dependent cortical plasticity is 

still not clearly understood.  

For these reasons, we investigated the effect of cortical plasticity induced by the 

cholinergic stimulation in the V1. We focused on the cholinergic effect on 
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electrophysiological response and its association with behavioral change. We used the visual 

acuity assessment task newly developed by Prusky and colleagues to evaluate the 

improvement of visual perception of the rats. Electrophysiology was chosen over other 

methods due to its excellent temporal resolution. This method allowed me to observe the 

instant effect of cholinergic stimulation and synchronized neuronal activities. 

Immunocytochemistry was used to determine the neuronal activation pattern in the different 

cortical layers and the chemical nature of neurons involved in these processes. 

In order to induce cortical plasticity and behavioral change we developed a novel 

method, visual training. Visual training consists of repetitive simultaneous stimulations in the 

cholinergic system and visual system in an awake rat. This setup was designed to boost 

cholinergic system activation and evaluate its effect. 

 

The research investigated the following objectives: 

(Objective 1) To evaluate whether visual stimulation paired with HDB stimulation (VS/HDB) 

induce cortical plasticity, showed by long-term enhancement of cortical response. I compared 

electrophysiological response of V1 to visual stimulation before and after pairing. (Chapter 2) 

(Objective 2) To determine whether HDB electrical stimulation has similar effect to ACh 

within V1. To assess this question I injected an ACh analog, carbachol, and compared its 

effect on cortical response with basal forebrain (HDB) electrical stimulation. (Chapter 2) 



 

 

38 

 (Objective 3) To analyze whether repetitive VS/HDB pairing improves behavioral 

performance similar to perceptual learning would do. I used the visual water maze and 

measure rats’ visual acuity. (Chapter 3) 

(Objective 4) To examine the effect of VS/HDB pairing on excitatory and inhibitory neuron, I 

used immunohistochemistry double staining method (pyramidal/c-fos and parvalbumin or 

calretinin/c-fos) and compared the ratio of neuronal activation. (Chapter 3) 

(Objective 5) To determine what mechanism contributes to VS/HDB pairing, I injected 

different kinds of pharmacological agents during repetitive VS/HDB pairing. Amplitude of 

electrophysiological response was measured before and after pairing. (Chapter 4) 

(Objective 6) To discuss whether cholinergic activation during visual stimulation can boost 

visual perception. I introduced critical studies showing relation between cholinergic system 

and perceptual learning. 

Each following chapter described the articles published or submitted to answer those questions.  
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Abstract 

Acetylcholine (ACh) contributes to learning processes by modulating cortical plasticity in 

terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, 

it is not known if ACh induces long term effects within the primary visual cortex (V1) that 

could sustain visual learning mechanisms. In the present study we analyzed visual evoked 

potentials (VEPs) in V1 of rats during a 4-8h period after coupling visual stimulation to an 

intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the 

action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine), 

nicotinic (mecamylamine), α7 (methyllycaconitine), and NMDA (CPP) receptor antagonists 

before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation 

significantly increased VEP amplitude (56%) during a 6h period. Pre-treatment with 

scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, 

while α7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh 

in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which 

involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the 

visual cortex.  
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Introduction 

Modulation of visual responses in the primary visual area (V1) by acetylcholine (ACh) 

contributes to visual attention (Herrero et al., 2008) and learning (Dotigny et al., 2008). In V1, 

ACh augments cortical plasticity in terms of intensity of neuronal activity (Brocher et al., 

1992, Gil et al., 1997, Kimura et al., 1999, Rodriguez et al., 2004, Kuczewski et al., 2005, 

Zinke et al., 2006, Dotigny et al., 2008), preferred responses of visual neurons (Roberts et al., 

2005, Zinke et al., 2006), receptive field properties (Greuel et al., 1988, Zinke et al., 2006) and 

performance in visual learning in the visual water maze (Dotigny et al., 2008).  Neuronal 

effects of ACh vary from activation to inhibition (McCormick and Prince, 1985, Zinke et al., 

2006) depending on the type of muscarinic or nicotinic cholinergic receptors (mAChR and 

nAChR) activated and location. Overall, the majority of anatomical and physiological data in 

V1 to date suggests that ACh primarily enhances thalamocortical inputs through the α4β2 

nAChR located on the thalamocortical fibres and M1 mAChRs on glutamatergic cells of layer 

IV (Gil et al., 1997, Sarter et al., 2005, Zinke et al., 2006). Alternatively, ACh has been shown 

to decrease the strength of corticocortical input through M2 and M4 mAChRs located on 

corticocortical fibres (Gil et al., 1997, Mrzljak et al., 1998). ACh interaction with GABAergic 

interneurons through α7 nAChRs (Christophe et al., 2002, Albuquerque et al., 2009) also 

contributes to the modulation of sensory responses. The rapid desensitization and high calcium 

permeability properties of α7 nAChRs could also play a key role in cortical synaptic plasticity, 

although this action has not been investigated in V1 (Metherate, 2004, Levy et al., 2006). 

 

Long-term modification of cortical responsiveness such as long-term potentiation (LTP) or 

depression (LTD) has been proposed as a necessary correlate of learning. The cholinergic 
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system has been shown to enhance long-term activation in certain cortical areas (Greuel et al., 

1988, Rodriguez et al., 2004). Repetitive pairing of cholinergic and auditory stimulation over a 

period of two weeks results in long-term cortical map reorganization (Kilgard and Merzenich, 

1998). Furthermore, pairing cholinergic activation with somatosensory stimulation (Verdier 

and Dykes, 2001) induces a long-term (≥ 1 h) increase of cortical electrophysiological 

responses. The involvement of ACh in pure LTP or LTD mechanisms, which involves NMDA 

receptors (NMDAR), has also been demonstrated in the hippocampus and cortex, including 

V1. Electrophysiologically induced LTP (Heynen and Bear, 2001, Dringenberg et al., 2007) or 

LTD (Kirkwood et al., 1999, McCoy and McMahon, 2007) in V1 or V1 slices (Brocher et al., 

1992) is dependent on cholinergic component. Moreover, LTP and LTD are diminished in V1 

of M2/M4 and M1/M3 double knock out mice, respectively (Origlia et al., 2006). This further 

indicates a role of ACh in cortical synaptic plasticity through an integrated action of different 

mAChR subtypes.  

 

These data suggest that ACh may contribute to cortical LTP in V1, similar to other cortical 

areas (Kilgard and Merzenich, 1998, Verdier and Dykes, 2001). The present study was 

designed to test the hypothesis that pairing of external stimuli with cholinergic activation 

induces a long-term enhancement of integrated cortical responsiveness in V1. For this 

purpose, visual evoked field potentials (VEP) were measured over the course of 4-8 h in V1 

after a transient pairing of patterned visual stimulation with local administration of the ACh 

analog carbachol (CCh) or electrical stimulation of the cholinergic projections to V1. In an 

attempt to clarify the underlying mechanisms and a possible link with classical LTP 

mechanisms, the involvement of mAChRs, nAChRs or NMDARs in these responses were 
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tested using scopolamine (a non-selective mAChR antagonist), mecamylamine (non-selective 

nicotinic receptors antagonist), or -3-(2-carboxypiperazin-4-yl)-propyl-L-phosphonic acid 

(CPP, NMDAR antagonist). Moreover, the specific role of α7R was tested using 

methyllycaconitine (MLA, a α7 nAChR selective antagonist) to evaluate the influence of this 

receptor which has recently been recognized for its involvement in cortical plasticity 

(Metherate, 2004, Albuquerque et al., 2009). 
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Materials and methods 

Animal preparation 

Adult Long-Evans rats (n = 60, 250-300g) were obtained from Charles River Canada (St-

Constant, Quebec, Canada) and maintained in a 12 h light/dark cycle with free access of food 

during both  the pre- and post-implantation period. Two sets of experiments were performed to 

evaluate the long-term effects of cholinergic activation paired with visual stimulation on 

VEPs, i.e. the effects sustained more than 1 h following transient cholinergic stimulation. 

First, CCh intracortical (i.c.) injections (n = 10) were compared to vehicle injections (n = 11) 

in order to establish the effects of cholinergic activation on VEPs in V1. To verify the extent 

of the long-term effects of CCh, 3 animals were tested for an 8 h period. To verify that CCh 

intracortical infusion mimicked the activation of cholinergic basalo-cortical projections, an 

electrical stimulation (Vaucher et al., 1997) of the V1 projecting cholinergic neurons from the 

horizontal limb of the diagonal band of Broca (HDB) was performed on another set of animals 

(n = 4).  Second, CCh was used to elucidate the receptors involved in this process. For this 

purpose 5 different groups in which the following antagonists were injected 1 h prior to CCh 

were examined: scopolamine (Sco+CCh, n = 4), mecamylamine (MEC+CCh, n = 5), 

MLA+CCh (n = 6), CPP+CCh (n = 6) and the control group, aCSF+CCh (n = 8). 

Complementary experiments to better evaluate the involvement of muscarinic receptors 

included a group of scopolamine i.p. injection 30 min before CCh (Sco i.p.+CCh, n = 5) or 

simultaneously with CCh (CCh+Sco i.p., n = 2, control group). The antagonistic effect of 

scopolamine occurs 30 min after it is injected i.p. and persists for around 120 min(Pfister et 

al., 1994). These two groups corresponded to inhibition of brain mAChR at the time of or just 

following CCh injection, respectively. Guidelines set out by the Canadian Council for the 
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Protection of Animals were followed for all procedures and approved by the local Animal 

Care Committee, “Comité de Déontologie de l’Expérimentation sur les Animaux” at the 

University of Montreal.  

 

Surgery 

Animals were anaesthetized with isoflurane (induction 5%, maintain 1.5%) and placed in a 

stereotaxic apparatus. Throughout the experiment, the rectal temperature was maintained at 

37°C using a thermostatically controlled heating pad (FHC, Bowdoinham, ME, USA). A 

dental drill was used to make a hole (3.0 mm diameter) in the skull above the left visual 

cortex. A tungsten electrode (conductance < 0.8 MΩ; FHC, Bowdoinham, ME) along with an 

electrode guide (polyurethane tubing) was then inserted in V1 (mm from Bregma: AP -7.5, 

ML +4.0, DV -0.5 from dura mater surface) and tested for VEP response. The electrode was 

removed but the electrode guide was left in place at the surface of the skull. A push-pull 

cannula guide (Plastics1, Roanoke, VA) was placed adjacent to the electrode tip (mm from 

Bregma: AP -7.5, ML +3.6, DV -0.7 mm, 30° angle from verticality) (Fig. 1). The stimulating 

tungsten electrode denuded at each tip was implanted in the HDB ipsilateral to the recording 

cortical site (mm from Bregma: AP -0.3, L +2.0, DV -9.0). Two nylon screws (Small parts, 

Miami Lakes, FL, USA) were screwed into the skull, then the guides and the HDB implanted 

electrode were secured with dental cement. After suturing the incised skin, local anaesthesia 

(xylocaine 2%, Astra Zeneca, Mississauga, Canada) was topically administered to the wound 

and animals were returned to their cages. 
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Drug infusion 

All drugs were obtained from Sigma Chemical Co and dissolved in a freshly made artificial 

cerebrospinal fluid (aCSF: NaCl, 1.0 M; NaHCO3, 0.5 M; KCl, 1.47 M; MgSO4, 1.25 M; 

KH2PO4, 0.25 M; C6H12O6, 0.01 M; CaCl2, 1.73 M pH 7.4). Drugs (CCh, 5 mM; scopolamine, 

3 µM; mecamylamine, 10 µM; CPP, 20 µM; MLA, 50 nM) or vehicle (aCSF) were injected 

once intracortically (i.c., 1 µl/min, 10 min, simultaneously to one session of VEP recording) 

using an injection pump (Harvard Apparatus, Holliston, MA, USA). The push-pull cannula 

allowed for excess fluids at the injection site to be discarded and limited the accumulation of 

the drug within the cortex. Intraperitoneal injection of scopolamine (i.p., 10 mg/kg) 

simultaneously or 30 min prior CCh injection was also performed to compare i.p and i.c. 

injection regimens and match previous experiments (Laplante et al., 2005, Dringenberg et al., 

2007). 

 

HDB electrical stimulation 

Electrical stimulation was performed over 10 min period using pulses (100 Hz, 0.5 ms, 50 μA, 

1 sec on/1 sec off) generated (Pulsemaster A300, WPI, Sarasota, FL) and delivered through an 

isolation unit (WPI 365, WPI, Sarasota, FL)(Vaucher et al., 1997). 

 

Visual stimulation paradigm 

VEPs were elicited by a patterned visual stimulation provided by trains of sinusoidal gratings 

displayed on a computer screen in the dark. The computer monitor (30x25 cm, Titanium; 

luminance 21 cd/m
2
; Apple Computer Inc., Cupertino, CA, USA) was placed parallel to the 

midline of the rat at a distance of 30 cm (Girman et al., 1999, Porciatti et al., 1999).  Trains 

(100 ms on/ 30 sec off, 10 min) of horizontal sinusoidal grating (contrast 100%, 0.12 
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cycle/deg) were produced by Vpixx software (v 8.5; Sentinel Medical Research Corp., 

Quebec, Canada). Selected orientation and spatial frequency of the grating were based on 

previous studies (Girman et al., 1999, Porciatti et al., 1999, Laplante et al., 2005). Between 

each grating and during the rest period, the computer screen displayed a neutral grey stimulus 

with the same mean luminance as the gratings.  

 

Visual evoked potentials recording procedure  

Two days after implantation, rats were placed in the stereotaxic frame under anaesthesia 

(isoflurane, 1.5%) for VEP recording. The polyurethane tubing (electrode guide) was 

removed, leaving a hole through the dental cement over V1 through which the electrode was 

inserted. The electrode was placed 0.5 mm below the dura mater. The penetration of the 

electrode through the dura mater was identified by the 50% reduction of the mean amplitude 

of the noise signal without visual stimulation monitored by the audio monitor (AM10, Grass 

Technologies, Astro-Med, West Warwick, RI, USA) and data acquisition program. The 

cannula was also inserted within the cortex through the implanted guide. VEPs were 

calculated by averaging 20 electrical responses of extracellular field potentials over the 10 min 

stimulation period (trains of 100 msec visual stimuli, 0.03 Hz, Fig. 1). Evoked responses were 

amplified (5000X) and filtered at 3 Hz ~ 1 kHz (Grass Inc, West Warwick, RI, USA) and 

collected with the data acquisition system MP100 and Acknowledge software (v 3.8; Biopac 

system Inc, Goleta, CA, USA). The amplitude (difference between negative peak and positive 

peak) and latency (time spent between the artefact of stimulation and the first negative peak) 

of the VEPs were calculated using this software. 

 



 

 

49 

Figure 1 

 

 

 

Figure II.1. Design of the experiment.  

(A) Schematic diagram illustrating the chronic implantation of the recoding electrode in V1 

and the push-pull cannula guide as well as the lateral stimulation of the retina with a horizontal 

grating displayed on a computer screen. The push-pull cannula guide and the recording 

electrode guide were implanted in visual cortex 2 days before VEP recording. (B) Visual 

stimulation. Rats were stimulated by displaying trains of sinusoidal horizontal grating (100 ms, 

0.033 Hz, contrast 100%) for 8 cycles. Each cycle consisted of 10 min visual stimulation every 

30 min. The VEP was obtained by averaging the 20 single electrophysiological signals evoked 

by the 20 presentations of the grating during the stimulation period. (C) Histology of the 

injection and recording sites. Schematic coronal section at the site of recording and cresyl 

violet-stained coronal section showing electrolytic lesion indicating position of electrode tip 

(arrow) and location of the infusion cannula (arrow head). Electrode and cannula tips are 

adjacent. 
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Repetitions of VEP recording were performed every 30 minutes during a 4 h period (Fig. 1). 

To verify the extent of the long-term effects of CCh, 3 additional animals were tested for an 

additional 4 h period with the same frequency of VEP recording (sixteen repetitions of VEP 

recording per animal). Sequence of drug injections were as follows: 1) two baseline VEPs 

were obtained; 2) then antagonists were injected during the next VEP recording session; 3) 

then one further VEP was recorded to verify that antagonists or vehicle had no effect by 

themselves on VEP amplitude; 4) then CCh was injected during the next VEP recording and 

VEP were recorded for 4 additional periods.  

 

Histology 

At the end of the experiment, an electrolytic lesion was performed to verify the recording site. 

The animal was then sacrificed by the administration of pentobarbital (30 mg/kg i.p.), the 

brain was removed, frozen at -50ºC in isopentane, and sectioned at 20 µm through the visual 

cortex using a cryostat (Microm, ESBE, Markham, ON). The sections were then stained with 

cresyl violet and electrode placement verified.  

 

Statistical analysis 

All quantitative data and the significance of difference in the amplitude of the VEPs between 

each group and each time point were tested by a mixed model ANOVA with a repetitive factor 

(time) and a non-repetitive factor (group). The mixed model ANOVA was used for the 2 sets 

of experiments, i.e. 4 groups (control, CCh, HDB stimulation, Sco(i.p.) +CCh), or 5 groups 

(mec+CCh, MLA+CCh, CPP+CCh, Sco+CCh and aCSF+CCh). In case of a significant (P< 

0.05) interaction between these factors, a one-way ANOVA followed by the post-hoc LSD test 
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was performed for each time point in order to evaluate drug effects. The same analytical 

method was applied for the latency. All statistical analyses were carried out with SPSS 16.0 

for Windows XP (SPSS Inc., Chicago, IL, USA) with a significance level of p < 0.05. 
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Results  

Cholinergic stimulation induces a long-term increase of VEP amplitude  

In our experimental conditions, the VEP was recorded as a wave composed of a negative peak 

followed by a positive deviation (Fig. 2) corresponding to electrophysiological signals 

recorded in cortical layer IV (Verdier and Dykes, 2001) . Mean amplitude difference between 

negative and positive peaks of the baseline VEP recorded was 0.965 ± 0.08mV. The amplitude 

(F(7,70) = 1.915,  p = 0.080) and the latency (F(7,70) = 1.275,  p = 0.113) of the VEP in the 

control animals did not change during the extent of the recording session (eight stimulations, 4 

h, Fig. 2 and Table 1).   

 

The mixed model ANOVA revealed a significant interaction of time and group in the 

amplitude (F(21,182) = 10.505, p < 0.001) between the control group and CCh injected, 

scopolamine injected (i.p.) and HDB stimulated group. One-way ANOVA at each time point 

revealed that a single injection of the cholinergic agent CCh paired with visual stimulation 

after stabilisation of the VEP (at t = 60 min), induced an increase (range 27-56%) in VEP 

amplitude that lasted for the whole period of stimulation (4 h) (LSD test, p < 0.0001 compared 

to sham animals, Fig. 2). In the animals tested for a longer period of time (8 h), the enhanced 

effects were sustained for 6 h after which (remaining 2 h) there was variability amongst rats, 

probably due to the long-term isoflurane anaesthesia. The electrical stimulation of HDB paired 

with visual stimulation induced a long-term amplitude elevation of VEP (Fig. 2; Table 1), 

which was maintained during the whole period of time and was as great as CCh induced VEPs 

(compared to control group, p < 0.001). There was no difference between the amplitude of 
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Figure 2 

 

 

Figure II.2. Effects of cholinergic system activation through pharmacological injection and 

electrical stimulation paired with visual stimuli at different time points.  

(A) Representative wave of the VEP recorded before (grey line) and after (black line) CCh 

injection or HDB stimulation. The recorded wave was composed of a negative peak followed 

by a positive deviation representative of layer 4 field potentials trace. (B) Long-term effect on 

VEP amplitude of CCh infused in V1 (open square) or of HDB stimulation (triangle). After 2 

periods of baseline recording (0 and 30 min), application of CCh or HDB stimulation 

(indicated by arrow) produces an increase of VEP amplitude observed for several hours after 

CCh infusion or HDB stimulation.  Error bars indicate the SD values. 
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Table1.  

 

 

Table II.1 Amplitude of VEP normalized after CCh injection or HDB stimulation and drug 

treatment. 

Values are expressed in mean ± SD. For the first set of experiment (cholinergic enhancement) 

CCh infusion and HDB stimulation were administrated at t=60min. For pharmacological 

treatment, antagonists were injected at t=60min followed by CCh at t=120min.  

*:  p<0.05, compared to control, ANOVA and LSD post-hoc 

#: p<0.05, compared to aCSF+CCh, ANOVA and LSD post-hoc 

Amplitude (%) 0 min 30 min 60 min 90 min 120 min 150 min 180 min 210 min 

               Cholinergic enhancement 

Control  100 99 ± 11 86 ± 19 91 ± 17 83 ± 29 84 ± 15 94 ± 12 92 ± 11 

Carbachol (CCh)  100 101 ± 11 127 ± 39* 151 ± 41* 142 ± 32* 144 ± 12* 156 ± 21* 149 ± 16* 

HDB stimulation 100 95 ± 04 154 ± 03* 144 ± 03* 140 ± 21* 159 ± 02* 126 ± 19* 147 ± 22* 

Sco (i.p.) + CCh 100 90 ± 14 54 ± 02* 89 ± 14 78 ± 15 86 ± 19 95 ± 18 114 ± 08 

CCh + Sco (i.p.) 100 95 ± 08 130 ± 45* 182 ± 40* 165 ± 17* 148 ± 24* 162 ± 04* 153 ± 25* 

              Pharmacological treatment 

aCSF+CCh 100 95 ± 15 105 ± 13 92 ± 12 115 ± 18 122 ± 14 130 ± 18 112 ± 13 

Sco (i.c.) + CCh 100 78 ± 26 108 ± 34 93 ± 24 64 ± 05# 72 ± 16# 84 ± 29# 85 ± 22# 

Mec + CCh 100 99 ± 10 115 ± 10 101 ± 10 77 ± 21# 97 ± 08# 90 ± 09# 91 ± 11# 

MLA + CCh 100 102 ± 06 94 ± 07 83 ± 15 152 ± 29# 100 ± 22# 86 ± 06# 131 ± 08# 

CPP + CCh 100 106 ± 22 91 ± 08 111 ± 16 88 ± 14# 108 ± 18 100 ± 12# 81 ± 15# 
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VEPs induced by the CCh as compared to stimulation of HDB. Latency of VEP across the 

groups did not differ (Table 2, mixed model ANOVA, F(21,182) = 1.429, p = 0.143).  

 

Effects of muscarinic, nicotinic and NMDA receptor inhibition on the amplitude enhancement 

of the VEPs  

The injection of inhibitors before the induction of CCh enhancement effect showed a 

significant interaction in amplitude between time and injected drugs (F(28,168) = 7.979, p < 

0.001) but not in the latency (F(28,168) = 1.105, p = 0.338). The amplitude of the basal VEPs 

(before infusion of CCh) was not affected by muscarinic (one-way ANOVA, p = 0.726), 

nicotinic (p = 0.236) and NMDA receptor inhibition (p = 0.115) during this administration nor 

30 minutes after compared to the aCSF injected group.  This suggests that none of the drugs 

injected contributed significantly to the baseline electrophysiological response to visual 

stimulation before CCh injection. Scopolamine (p < 0.001), mecamylamine (p = 0.024) and 

CPP (p = 0.046) pre-treatment prevented the CCh-induced long-term enhancement of the 

amplitude of the VEPs (Fig. 3, Table 1). MLA showed fluctuating results (compared to the 

aCSF group values), that is, an increased VEP amplitude during CCh infusion (p = 0.003) and 

2h after CCh infusion (p = 0.02), but a decreased amplitude in between these two time points. 

The latency was unchanged for each group (Table 2, p = 0.086). VEP amplitude was however 

reduced (up to 32% decrease compared to control) at t=120min when CCh was infused in the 

scopolamine group (p = 0.028 i.c. and p = 0.048 i.p).  Moreover, there was no effect of 

scopolamine (i.p.) when it was injected simultaneously with CCh (Table 1), suggesting that 

mAChRs do not contribute directly to the enhanced VEPs of CCh.  
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Figure 3 

 

Figure II.3. VEP amplitude changes after pharmacological infusion of different drugs in the 

V1 with aCSF+CCh injected animals as control group.  

Effects of scopolamine (B, Sco+CCh), CPP (C, CPP+CCh), mecamylamine (D, Mec+CCh) or 

MLA (E, MLA+CCh) infusion prior to CCh administration are shown. The long term 

enhancement of VEP amplitude is abolished in an identical manner by scopolamine, CPP and 

mecamylamine, suggesting that mAChR and nAChR could act upstream of NMDAR 

intracellular pathways. Drug infusion time points are indicated by black arrows. 
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Table2.  

Latency (ms) 0 min 30 min 60 min 90 min 120 min 150 min 180 min 210 min 

           Cholinergic enhancement 

Control  36±3 35±3 37±3 35±4 35±2 33±4 34±3 35±4 
Carbachol (CCh) 37±3 37±2 36±4 34±3 29±3 26±5 31±3 31±3 
HDB stimulation  35±4 32±2 33±3 33±3 35±3 33±4 36±1 35±3 
Sco (i.p.) + CCh 37±1 41±1 40±2 40±2 35±4 38±3 39±5 37±2 
CCh + Sco (i.p.) 38±1 38±3 35±1 33±1 33±1 35±5 33±3 36±1 

           Pharmacological treatment 

aCSF + CCh  38±2 37±4 35±4 33±3 36±3 32±3 32±3 35±2 
Sco(i.c.)+CCh  38±5 37±2 41±1 39±3 43±5 40±6 44±5 39±6 
Mec + CCh  39±1 38±3 38±2 37±6 46±3 45±4 30±4 38±4 
MLA + CCh  40±2 41±4 39±2 37±4 36±4 37±3 39±3 37±2 
CPP + CCh 39±3 36±4 36±2 34±3 38±2 38±5 31±4 30±6 

 

 

Table II.2. Latency of VEP after CCh injection or HDB stimulation and drug treatment. 

 

Values are expressed in mean ± SD of ms after the stimulation artefact. There was no effect of 

the treatment on latency. 
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Discussion 

The principal objective of this study was to pharmacologically analyze the long-term effect of 

transient pairing of visual stimulation with cholinergic activation on cortical neuronal 

functioning. This was achieved by measuring changes in evoked potentials in V1 as a function 

of time. The results showed a long-term enhancement in the amplitude of the VEPs for at least 

6 h when the cholinergic system was stimulated either from the cortex or the basal forebrain. 

This effect was mediated by different types of receptors, i.e. mAChRs and nAChRs as well as 

NMDARs but not α7 nAChRs. It is concluded that cholinergic agents induced LTP-like events 

in the cortex by triggering intracellular NMDAR pathways in glutamatergic cells.  We discuss 

below the role of the cholinergic system in modulating cortical response to visual stimulation, 

its possible intracellular pathways and its relation to attention and learning processes.  

 

Acetylcholine modulates cortical responses in adult visual cortex 

The results presented here demonstrate that a single synchronization between visual 

stimulation and cholinergic activation by CCh or electrical stimulation of the HDB was 

sufficient to induce a persistent increase of VEP amplitude lasting for several hours. Similar 

results were obtained by combining CCh injection and direct dorsal lateral geniculate nucleus 

tetanic stimulation in an LTP paradigm (Dringenberg et al., 2007) , and electrical basal 

forebrain stimulation combined with tactile stimulation (Verdier and Dykes, 2001, Penschuck 

et al., 2002, Alenda and Nunez, 2007). As well, these results corroborate data obtained in cats, 

showing a long lasting response synchronization (Rodriguez et al., 2004) or receptive field 

modification(Greuel et al., 1988) of cortical visual cells after co-application of cholinergic 

agonists and light stimuli. These results confirm in vivo that long-term effects of visual 
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stimulation are dependent on cholinergic activation. Interestingly, there was no spontaneous 

enhancement of VEPs amplitude in control conditions. This suggests that the low frequency 

visual stimulation in our experimental conditions did not increase ACh extracellular levels 

enough for inducing long-term effects in the control conditions. In agreement with this, it has 

been shown that visual stimulation with low frequency (0.067 Hz) checkerboards does not 

induce cortical long-term changes (Clapp et al., 2006). High frequency (9 Hz) stimulation does 

induce long-term changes in an effect termed sensory LTP (Clapp et al., 2006), suggesting 

different neurobiological mechanisms involved in high and low frequency sensory stimulation.  

 

Involvement of NMDA receptors 

The cessation of CCh-induced long-term enhancement of cortical response to visual 

stimulation during NMDAR inhibition supports the involvement of an interaction between 

cholinergic stimulation and NMDAR transmission (Sur et al., 2003, Yamazaki et al., 2005, Li 

et al., 2007). The long-term enhancement of VEP reported here is similar to LTP mechanisms 

whereby synaptic strength is increased by the opening of NMDAR which launches Ca
2
+ 

influx followed by an upregulation of glutamatergic receptors (Yoshimura et al., 2003). LTP 

occurrence is accompanied by an amplification of VEP (Heynen and Bear, 2001), suggesting 

that the changes seen in the present study could reflect LTP.  

The involvement of NMDAR is implicated in plasticity in the juvenile and adult visual cortex 

(Quinlan et al., 1999, Sawtell et al., 2003) suggesting that NMDAR is a key factor in the 

plasticity induced by thalamocortical inputs. Although the occurrence of LTP peaks during the 

development period and drastically drops in the adult cortex, our results indicates that LTP-
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like mechanisms could participate in cortical plasticity in adult rats similar to what is reported 

in cat (Creutzfeldt and Heggelund, 1975) and mouse (Sawtell et al., 2003). Our results further 

implicate that these mechanisms are dependent on cholinergic mechanisms. 

 

Involvement of muscarinic receptors 

Given that mAChRs are widely expressed in the visual cortex - the predominant postsynaptic 

mAChR being M1 subtype and the presynaptic mAChR being M2 (Levey et al., 1991) - and 

that M1 and M3 receptors are involved in hippocampal LTP (Colgin et al., 2003), it was 

expected that inhibition of these receptors would abolish long-term enhancement of VEP. The 

present results of scopolamine administration verified this hypothesis since no long-term 

changes in VEP amplitude were seen after scopolamine infusion prior to CCh. This effect was 

robust and stable. Interestingly, i.p. infusion of scopolamine prior to CCh led to the same 

results as cortical infusion confirming that scopolamine i.p. could act at a local cortical target 

(Laplante et al., 2005, Dringenberg et al., 2007, Miasnikov et al., 2008). However, three 

findings suggest that mAChRs are involved in the induction of pathways generating long-term 

enhancement of electrophysiological responses, acting as a trigger mechanism rather than 

directly enhancing the ongoing neuronal excitability. First, the VEP amplitude was 

significantly decreased compared to baseline at the time of CCh infusion under scopolamine 

conditions which suggests that CCh may have a depressing effect during mAChRs 

antagonism. This effect might be mediated by nAChRs (Oldford and Castro-Alamancos, 2003, 

Levy et al., 2006), which could inhibit glutamatergic neurons  through 1) activation of α4β2 or 

α7 nAChRs  located on GABAergic neurons (Albuquerque et al., 2009) or 2) disinhibition of 

inhibitory interneurons by blocking of M2 mAChR expressed by the GABAergic interneurons 
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(Erisir et al., 2001, Salgado et al., 2007). Second, when mAChRs were fully inhibited 

secondary to CCh action (simultaneous scopolamine i.p. injection and CCh i.c. injection 

group, see methods), the enhanced long-term effects of CCh were not affected. This result 

suggests that mAChR activation is required for priming long-term enhancement of VEP but 

not directly for enhancing neuronal activity that contributes to the increase in amplitude of 

subsequent VEPs. This result contrasts with a recent study showing impairment of auditory 

memory when scopolamine was administered immediately after the cholinergic-paired 

training of the animal (Miasnikov et al., 2008). However, the electrical cortical responses were 

not recorded in this study, making it difficult to compare with our results. Finally, there was 

no significant difference between the effect of CPP and the one of i.c. scopolamine in terms of 

VEP amplitude. This might indicate an all-or-none effect on VEP enhancement, suggesting 

common intracellular pathways leading to LTP.  

We propose that activation of mAChRs interact with intracellular NMDAR pathways to 

induce cholinergic-induced long-term effects on VEPs. It has been shown that M1 and M3 

interact with NMDAR pathways in the hippocampus by elevating intracellular Ca
2+

 level and 

thereby enhancing the AMPA receptor currents (Markram and Segal, 1990). Post-synaptic 

mAChRs on pyramidal or spiny stellate cells are able to induce PKC or AKT (Sur et al., 2003, 

Li et al., 2007), which could be a mechanism of such intracellular interaction. Moreover, in 

vitro induction of LTP in V1 slices is impaired in M2/M4 mAChRs double knock-out mice 

(Origlia et al., 2006) , suggesting that inhibition of M2/M4 mAChRs impaired LTP. 

Alternatively, the long-term enhancement of VEP could result from an increase in VEP 

amplitude most likely due to the number and nature of cells involved or a change in the 

balance between LTP/LTD mechanisms induced. In this case, the inhibition of the different 
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subtypes of mAChRs located on different cell types (GABA interneurons, pyramidal or spiny 

stellate cells) could result in a decreased number of excitatory cells activated by the paired 

visual stimulation and CCh infusion.  

 

Involvement of nicotinic receptors 

Mecamylamine, a non-selective nAChRs antagonist, and MLA a selective α7 nAChR 

antagonist, were used to investigate the potential involvement of nAChRs in the long-term 

enhancement of VEPs. The α7 subtype of nAChRs is considered a key participant in cortical 

plasticity (Albuquerque et al., 2009), but its potential role in the visual cortex has not been 

elucidated. Mecamylamine, but not MLA, showed an impairment of long-term increases of 

VEP. Results obtained with mecamylamine treatment were expected since it has been shown 

that its administration abolished LTP induced by tetanic stimulation of the dorsal geniculate 

nucleus in V1 (Dringenberg et al., 2007, McCoy and McMahon, 2007) and in V1 slice 

preparation (Brocher et al., 1992). These results have also been observed in sound-evoked 

cortical response in the auditory cortex (Kawai et al., 2007).  Mecamylamine inhibits both 

α4β2 and α7 nAChRs that are located on thalamocortical terminals and cortical GABAergic 

neurons (Christophe et al., 2002, Disney et al., 2007, Albuquerque et al., 2009). Activation of 

nAChRs located on the thalamocortical afferents increase thalamic input (Gil et al., 1997).  

Inhibition of these receptors should result in the reduction of incoming signals from the 

thalamus which is in agreement with the abolishment of VEP amplitude enhancement under 

mecamylamine conditions in the current study. Inhibition of nAChRs located on the 

GABAergic cells may not be sufficient to explain these results since inhibition of these 

receptors should also result in reducing the inhibitory drive within the intracortical network, 
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thereby lowering the threshold for eliciting a cortical response (Gil et al., 1997, Metherate, 

2004, Zinke et al., 2006). In addition, it has been shown that mecamylamine could transiently 

inhibit the NMDAR in vitro at the concentration used in the present study (Papke et al., 2001). 

It is possible that the blockade of CCh-induced long-term effect on VEPs by mecamylamine in 

our study could result from an inhibition of the NMDAR located on the glutamatergic cells. 

 

α7 nAChRs have been proposed to participate in cortical plasticity by activating silent AMPA 

receptors on glutamatergic neurons in the somatosensory cortex (Metherate, 2004). The 

blockade of α7 nAChRs in the present study did not consistently abolished the long-term 

enhancement of VEP induced by concomitant thalamocortical and cholinergic activation. The 

amplitude of the VEP response under MLA condition fluctuated, showing strong increases or 

decreases depending on the time point. This effect could be explained by an inactivation of 

GABAergic interneurons rather than glutamatergic cells during the α7 nAChRs blockade. 

Activation of α7 nAChRs of layer 1 interneurons has been shown to mediate disinhibition of 

cortical networks (Christophe et al., 2002), which can result in increased VEP response. 

Consequently, inactivation of these receptors could generate decreases in VEP amplitude, 

whereas, increases in VEP amplitude could be induced by inhibition of GABAergic cells from 

layer 4. Such blockade of α7 nAChRs has been shown to induce LTP in the hippocampus (Ge 

and Dani, 2005, Wang et al., 2006) due to their location on inhibitory interneurons (Yamazaki 

et al., 2005). 
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Functional implication of the cholinergic modulation of visual cortex 

The permissive role by ACh shown here suggests that ACh is a key factor in experience-

dependent plasticity allowing cholinergic enhanced stimuli to take over stimuli not associated 

with cholinergic reinforcement and modifying both cortical processing and representation of 

these stimuli. Our results bridge studies showing the role of the cholinergic system in selective 

attention (cholinergic reinforcement of visual stimuli) in V1 (Herrero et al., 2008) and visual 

learning (long-term modification of synaptic responses and connections in V1)(Ahissar and 

Hochstein, 1993, Sarter et al., 2005, Dotigny et al., 2008). Our results imply that the 

cholinergic reinforcement of visual stimuli 1) would be provided by the adequately-timed 

cortical release of ACh from the basal forebrain terminals (Laplante et al., 2005, Miasnikov et 

al., 2008) and 2) would be sufficient for visual learning (Miasnikov et al., 2008). These 

implications are further supported by previous work that ACh is released in cortex during 

numerous learning paradigms (Sarter et al., 2005, Miasnikov et al., 2008), or visual 

stimulation (Laplante et al., 2005, Origlia et al., 2008). This release might be induced by 

sensory feed-forward influxes (Laplante et al., 2005) or by top-down control, in which ACh 

mediates top-down attention mechanisms (Ahissar and Hochstein, 1993, Herrero et al., 2008) 

elicited by higher cognitive areas through basal forebrain activation (Golmayo et al., 2003, 

Sarter et al., 2005).  This interplay between stimulus driven and top-down input to modulate 

neuronal activity has been addressed by computational neurosciences (Roelfsema and van 

Ooyen, 2005). In the computational model, the authors suggest that a reinforcement signal 

combined by an attention feedback signal, called attention-gated reinforcement learning, could 

model the cortical integration and mapping of sensory stimuli. The long-term mechanisms 

involving NMDAR and probably LTP pathways shown in the present study, suggest a 
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modification of synaptic functioning by the cholinergic system, which would give a 

neurobiological basis to this attention-gated reinforcement learning. It would also suggest that 

attention and visual stimuli elicit ACh release in V1, which modifies synaptic functioning by 

eliciting LTP-like mechanisms at an early level of cortical processing.  
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Abstract 

The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role 

in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term 

responses of visual neurons to specific stimuli. The present study evaluates whether this 

cholinergic modulation of visual neurons results in cortical activity and visual perception 

changes. Awake adult rats were exposed repetitively for two weeks to an orientation-specific 

grating with or without coupling this visual stimulation to an electrical stimulation of the basal 

forebrain.  The visual acuity, as measured using a visual water maze before and after the 

exposure to the orientation-specific grating, was increased in the group of trained rats with 

simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not 

observed when visual training or basal forebrain stimulation were performed separately nor 

when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual 

evoked potentials show a long-lasting increase in cortical reactivity of the primary visual 

cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both 

pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with 

visual training, the cholinergic system improves visual performance for the trained orientation 

probably through enhancement of attentional processes and cortical plasticity in V1 related to 

the ratio of excitatory/inhibitory inputs.  This study opens the possibility of establishing 

efficient rehabilitation strategies for facilitating visual capacity. 
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Abbreviations:  

BF basal forebrain  

V1 primary visual cortex  

ACh acetylcholine 

nAChR nicotinic receptors  

mAChR muscarinic receptors  

LTP long-term potentiation 

VEP visual evoked potentials 

HDB horizontal limb of the diagonal band of Broca 

CPD cycle per degree 

VS visually stimulated rats 

ChAT choline acetyltransferase 

PV  parvalbumin 

CR  calretinin 

RBPC  rat brain pyramidal cell marker 

E/I excitation/inhibition ratio 
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Introduction 

Improving visual capacity through visual training is a promising treatment for visual 

impairment in adults. Visual training results in acquired experience-dependent plasticity that 

involves attentional mechanisms and cortical plasticity related to perceptual learning (Ahissar 

and Hochstein, 1993, Seitz and Watanabe, 2005, Sabel et al., 2011). Visual training is 

relatively long and results in small increments of visual function. Since the basal forebrain 

(BF) cholinergic afferents in the primary visual cortex (V1) play a key role in visual attention 

(Herrero et al., 2008) and cortical plasticity (Bear and Singer, 1986, Greuel et al., 1988, Kang 

and Vaucher, 2009), it is most probable that activation of these cholinergic afferents could 

potentiate visual training effects and results in improvement of visual capacity in adults. 

Acetylcholine (ACh) facilitates the processing of novel/relevant stimuli by the modulation of 

the efficiency of thalamo-cortical and cortico-cortical inputs in V1. First, glutamatergic 

transmission of thalamo-cortical synapses is facilitated by the nicotinic receptors (nAChR) 

(Gil et al., 1997). Second, glutamatergic transmission of cortico-cortical connections is 

inhibited by the muscarinic receptors (mAChR) (Gu, 2003, Roberts et al., 2005, Amar et al., 

2010). This reduces both feedback control from higher cortical areas and lateral spread of 

activation (Kimura et al., 1999, Silver et al., 2008, Kosovicheva et al., 2012). This muscarinic 

effect might also be mediated via GABAergic interneurons in V1 (Zinke et al., 2006, Amar et 

al., 2010, Disney et al., 2012). Consequently, feed-forward processing of specific stimuli is 

prioritized and more efficient under cholinergic activation (Newman et al., 2012). In addition, 

cholinergic activation elicits long-term increase in V1 neuronal responses when transiently 

associated with visual stimulation (Kuczewski et al., 2005, Dringenberg et al., 2007, Kang and 

Vaucher, 2009). These effects associated with long-term potentiation (LTP)-like mechanisms 
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and synaptic plasticity, result in cortical plasticity and learning (Rokem and Silver, 2010). 

Finally, it has been shown that ACh is involved in cortical plasticity through its ability to 

control the balance between excitatory and inhibitory transmission in V1 (Lucas-Meunier et 

al., 2009, Amar et al., 2010) and the regulation of the plasticity brake, lynx1 (Morishita et al., 

2010). Together, these results suggest that the cholinergic system induces a long-lasting 

enhancement in the efficacy of processing selected visual stimuli. 

   

To determine if the activation of the cholinergic system could result in improvement of visual 

perception, a 14-day visual training to a weak visual stimulus was coupled with electrical 

stimulation of the BF in awake adult rats. A 30º sine-wave grating was selected as the visual 

stimulus because it elicits a moderate electrophysiological response in V1 (Girman et al., 

1999). The enhancement of the visual acuity to this specific orientation was tested using the 

visual water maze (Prusky et al., 2000, Dotigny et al., 2008). Long-term cortical 

responsiveness for this stimulus was measured by in-vivo field potential recordings in V1. 

Changes in the activation pattern of the visual cortex were quantified by counting the number 

and layer specificity of activated neurons immunoreactive for c-Fos. Finally, the 

neurochemical nature of these activated neurons was identified to investigate whether 

excitatory (i.e., glutamatergic) or inhibitory (i.e., GABAergic) neurons were involved in this 

response. Our data suggest that repetitive concomitant stimulation of the visual and 

cholinergic systems, a paradigm that could be used for vision recovery strategies, induced a 

persistent upregulation of cortical responses in V1 leading to improved visual performance. 
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Materials and Methods 

Animal preparation 

Adult Long-Evans rats (n=84, 200-225 g) were obtained from Charles River Canada (St-

Constant, Quebec, Canada) and were maintained in a 12-h light/dark normal daylight cycle 

with ad libitum access to food and water. The guidelines set by the Canadian Council for the 

Protection of Animals were followed for all procedures and approved by the local Animal 

Care Committee, “Comité de Déontologie de l’Expérimentation sur les Animaux” at the 

University of Montreal (protocol # 10-133). All efforts were made to minimize suffering and 

the number of animals used for these experiments.  

 

Experimental design 

Awake rats were repetitively exposed to a visual/ stimulus (this procedure is called “visual 

training” for sake of simplicity) coupled or not with BF stimulation. The parameters assessed 

after the visual training were the visual acuity of the rat, visual evoked potentials (VEP) and 

V1 neuronal activity. Each experiment had seven components: a procedural learning of the 

visual discrimination test, a pre-training visual acuity behavioral test, electrode 

implantation/lesion of cholinergic fibers, a visual/sham training that was either coupled or 

uncoupled to BF stimulation, a post-training visual acuity behavioral test, VEP recordings, and 

perfusion/immunostaining (Fig. 1A). BF stimulation was performed in the horizontal limb of 

the diagonal band of Broca (HDB) because this nucleus provides the majority of the 

cholinergic innervation of V1 (Gaykema et al., 1990, Laplante et al., 2005). The behavioral 

test consisted of measuring the visual acuity of the rat for a 30º, 150º or 0º sine-wave grating 

compared with a gray screen using the visual water maze (Prusky et al., 2000, Dotigny et al., 
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2008). The visual/sham training lasted for 14 days and consisted of presenting the rat with 

equal luminance images of a 30º orientation, 0.12 cycle per degree (CPD) sine-wave grating or 

the gray screen (control animals) for 10 min/day. We assumed and tested (see results section) 

that the visual acuity for a 30º orientation is not optimal and could be improved by training 

whereas detection of 0.12 CPD is optimal and discrimination performance could not be 

increased at this spatial frequency. Thus, only one feature of the stimulus (orientation) was 

tested for its potency to improve perception after training. After the pre-training behavioral 

test and electrode implantation, the rats were divided randomly into eight groups (Fig. 1B): 

control (CTL, n=7), sham training/no HDB stimulation; VS (n=9), 30º sine-wave grating 

presentation training/no HDB stimulation; HDB (n=8), sham training/HDB stimulation; 

VS/HDB (n=8), 30º visual training/HDB stimulation; VS/HDB/SAP (n=4), 30º visual 

training/HDB stimulation/192-IgG saporin injection in HDB prior to training; 

VS/HDB/SAPV1 (n=6), 30º visual training/HDB stimulation/192-IgG saporin injection in V1 

prior to training; and VS/HDB/Sco (n=4), 30º visual training/HDB stimulation/scopolamine 

i.p. injection during the post-training behavioral test; VS/HDB/150 (n=7), 30º visual 

training/HDB stimulation but pre- and post-training visual acuity test made using a 150º 

orientation- equivalent in terms of salience and efficacy to 30º; VS/HDB/0 (n=4), 0º visual 

training/HDB stimulation and post-training visual acuity test made using a 0º orientation (see 

Fig. 1). The two latter groups were aimed at evaluating the orientation specificity of the 

perceptual changes. Additional VS/HDB (n=4), VS/HDB/SAPV1 (n=6) and CTL (n=5) rats 

were tested for VEP using a high spatial frequency paradigm (see below).  
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Figure 1 

 

 

Figure III.1. Timeline of the experimental procedure and stimulus parameter for the different groups.  

A) The visual acuity was measured using a visual water maze (upper left schematic). The pre-

training value of visual acuity was taken after 6 days of procedural learning before 14 days of 

visual/sham training in the presence or absence of pairing with HDB stimulation. Visual/sham 

training was provided 10 min/day for 14 days to awake rats restrained in front of 3 screens 

(photograph). Electrode implantation and 192-IgG-saporin injections occurred at day 8, and 

scopolamine was injected in the VS/HDB/Sco group 30 min before the post-training acuity 

test. Post-training visual acuity was measured after training (d24), and then VEPs were 

recorded. B) To delineate the function of cholinergic activation during visual stimulation, six 

paradigms were administered, depending on the experimental group: CTL, sham training/no 

HDB stimulation; VS, visual training (sine-wave grating presentation training)/no HDB 

stimulation; HDB, sham training/HDB stimulation; VS/HDB, visual training/HDB 

stimulation. VS/HDB regimen was also administered in VS/HDB/SAP and VS/HDB/Sco. 

Additional groups (VS/HDB/150 and VS/HDB/0) were added to determine whether the 

training was orientation specific. 
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Visual water maze testing 

In order to test the visual acuity and the discrimination ability, the rats were trained and tested 

in a two alternative forced choice visual discrimination water maze task (Fig. 2A) (Prusky et 

al., 2000, Dotigny et al., 2008). The task consisted of two visual stimuli; a sine-wave grating 

and a gray screen. The animal learn to associate a sine-wave grating (0.12 CPD, 90% contrast) 

with a positive stimulus (submerged platform) and the equiluminance gray screen to the 

absence of the positive stimulus. Given the larger number of cells in V1 with a preference for 

a 0º orientation compared to a 30º orientation stimulus (Girman et al., 1999), pilot experiments 

were performed to determine whether visual acuity was better at discriminating a horizontal 

(0º) grating from a gray screen compared to discriminating an oblique grating (30º) from a 

gray screen. This was tested in additional groups of rats (n= 6 / group).  All the other rats 

(except VS/HDB/150) were tested for their ability to discriminate a 30º orientation sine-wave 

grating from a gray screen during the pre- and post-training periods. The orientation noted as 

0º corresponds to the horizontal bar and the angle increases counterclockwise to 90º as 

represented by the vertical bar.  

 

As described previously, behavioral analysis consisted of procedural learning and visual acuity 

testing (Prusky et al., 2000, Dotigny et al., 2008). During the visual acuity test, the spatial 

frequency of the stimulus (from 0.12–0.9 CPD) was increased between blocks of trials until 

the ability to distinguish the grating from gray screen was equal to 70% performance. The 

highest spatial frequency achieved consistently was recorded as the acuity threshold. Using the 

spatial frequency where 70% performance was last achieved is a reliable and effective method 

of quantifying the visual acuity of our animals. Even though, it may slightly underestimate 
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their acuity compared to the frequency expected by chance (50%) because the performance 

declined rapidly at the threshold (Prusky et al., 2000, Dotigny et al., 2008). Beyond the 

threshold of detectability of the grating, the percentage of success was occasionally under 50 

%. This was due to the interruption of some trials because some rats stay in the middle of the 

water maze, instead of selecting one arm. For that purpose, the performance values below the 

chance level were considered not reliable and do not reflect any visual discrimination ability. 

A more detailed explanation about each phase may be found in our previously published study 

(Dotigny et al., 2008). Using these criterions (Prusky et al., 2000), the testing phase can be 

completed in 2–3 days (40 trials/days). The visual acuity was defined as the highest spatial 

frequency value the rat succeeded in discriminating. 

 

Electrode implantation and lesion surgery 

After the pre-training test, animals were unilaterally implanted with electrodes for subsequent 

electrical stimulation of the HDB and VEP recording, and 192-IgG saporin (SAP) injection 

was performed for cholinergic neuron specific lesions in the appropriate group. Animals were 

anesthetized with isoflurane (induction 5%, maintain 3%) and placed in a stereotaxic 

apparatus. Throughout the experiment, the rectal temperature was maintained at 37ºC using a 

thermostatically controlled heating pad (FHC, Bowdoinham, ME, USA). A dental drill was 

used to make 2 holes (2 mm in diameter) in the skull above the left visual cortex and adjacent 

to Bregma to access V1 and HDB, respectively. An electrode guide (polyurethane tubing) was 

inserted above V1 (mm from Bregma: AP -7.5, ML +4.0, DV 0). A tungsten-stimulating 

electrode denuded at each tip was implanted in the HDB ipsilateral to the cortical recording 

site (mm from Bregma: AP -0.3, L +2.0, DV -9.0). In the case of the cholinergic system lesion 
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groups, the animals received an unilateral intracerebral injection (0.5 µl) of 192-IgG saporin 

(Advanced Targeting System, San Diego, CA, USA; 0.075 µg/µl) at the location where the 

stimulating electrode was implanted (HDB) or into V1 (mm from Bregma: AP -7.5, ML +4.0, 

DV -0.5). Two stainless steel screws (Small parts, Miami Lakes, FL, USA) were installed in 

the skull, the guides and the HDB implanted electrode were secured with dental cement. After 

suturing the incised skin, local anesthesia (xylocaine 2%, Astra Zeneca, Mississauga, Canada) 

was topically administered to the wound, and the animals were returned to their cages. An 

anti-inflammation agent, carprofen (Rimadyl, 5 mg/kg), was injected s.c. The recording site 

was identified by electrical lesion after the last VEP recording and confirmed by cresyl violet 

staining of fixed brain sections. The location of the sites where the electrodes were implanted, 

was identified in coronal sections using a Leica DMR microscope and the rat brain atlas. The 

lesion of the cholinergic fibers was evaluated by choline acetyltransferase (ChAT) 

immunostaining (see below) on coronal brain sections. 

 

Pairing visual/sham training with HDB electrical stimulation 

The visual/sham training paradigm was designed to examine whether the selective orientation 

response could be modified through visual training of a specific pattern and/or through 

cholinergic neuron stimulation. The stimulus was either a sine-wave grating (0.12 

cycle/degree, orientation 30º, phase converting at 1 Hz) for the VS, VS/HDB, VS/HDB/SAP 

and VS/HDB/Sco groups or a gray screen for the CTL and HDB groups. During daily training, 

awake rats were restrained for 10 min a day for 14 days with their heads fixed in a frame 

surrounded by two lateral monitors and an additional monitor facing the rat 21 cm away from 

its eyes (Fig. 1). The visual stimulus was generated using Vpixx software (v 2.79, VPixx 
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technologies Inc., Saint-Bruno, Quebec, Canada) and displayed on three monitors (LG, 

luminance 37 cd/m2). Training was performed daily at the same time in the morning for each 

rat.  

 

HDB electrical stimulation 

The electrical stimulation started at the beginning of the visual stimulation period and was 

delivered over the 10 min (train of pulses 100 Hz, 0.5 ms, 50 μA, 1 sec on/1 sec off, 

Pulsemaster A300, WPI, Sarasota, FL) through an isolation unit (WPI 365, WPI, Sarasota, 

FL). This paradigm of electrical stimulation in the HDB has been designed to activate 

cholinergic system preferentially to GABAergic system (Vaucher et al., 1997, Kang and 

Vaucher, 2009). 

 

VEP recording procedure  

VEPs were recorded to assess the effect of visual/sham training and unilateral HDB 

stimulation on field potential cortical responses in the hemisphere ipsilateral to HDB 

stimulation. Two days after the last session of the behavioral test, the rats were placed in the 

dark in the stereotaxic frame under anesthesia (isoflurane, induction 5%, maintenance 1.5%). 

The polyurethane tubing (electrode guide) was removed, leaving a hole in the dental cement 

over V1. The recording electrode was placed 0.5 mm below the dura. Visual stimuli were 

displayed on a computer monitor (30x25 cm, Titanium; luminance 21 cd/m2; Apple Computer 

Inc., Cupertino, CA, USA) placed 30 cm in front of the rat (left eye closed) and centered on 

the animal’s midline (Girman et al., 1999). As described previously (Laplante et al., 2005, 

Kang and Vaucher, 2009), VEPs were calculated by averaging 20 electrical responses of 

extracellular field potentials elicited by visual stimuli (oblique sine-wave gratings, orientation 
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30º, contrast 90%, 0.12 cycle/deg, 100 msec, 0.03 Hz) or gray screen (0 CPD, baseline signal) 

recorded over 300ms. The signal-to-baseline ratio was obtained by dividing the amplitude 

(difference between the negative peak and the positive peak) of the VEPs (signal) by the 

amplitude of the baseline signal (baseline). In additional groups of rats, the evoked responses 

were elicited by high spatial frequency sine-wave gratings (orientation 30º, contrast 90%, 0.7 

CPD). Between each grating, the computer screen displayed a neutral gray stimulus with the 

same mean luminance. Evoked responses were amplified (5,000X), filtered at 3 Hz ~ 1 kHz 

(Grass Inc, West Warwick, RI, USA) and collected with the MP100 data acquisition system 

and Acknowledge software (v 3.8; Biopac system Inc., Goleta, CA, USA). A further 10 min 

period of visual stimulation was performed to obtain adequate c-Fos expression for 

immunolabelling. Rats were restrained in the dark for 30 minutes before perfusion. 

 

Immunohistochemistry  

The animals were deeply anesthetized with pentobarbital (54 mg/kg body weight i.p.) and 

perfused transcardially with 4% paraformaldehyde at room temperature. The brains were 

collected and post-fixed for 2 h in fresh fixative then stored in 0.1 M phosphate buffer (PBS, 

pH 7.4) overnight. The brains were sliced into 35-m sections using a vibratome (Leica 

microsystems). The brain sections at the level of the visual cortex/superior colliculus were 

used for c-Fos staining (mm from Bregma, AP -7.3 ± 0.5) (Paxinos and Watson, 1995). The 

sections were collected serially in 24-well plates and labeled accordingly to the antero-

posterior level.  
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Two consecutive sections for each rat were selected according to anatomical features 

(apparition of the subiculum) and sections were pre-incubated for 20 min at room temperature 

in phosphate buffer (PBS, 0.1 M, pH 7.4) containing 0.3% hydrogen peroxide, followed by 30 

min in PBS containing 0.25% triton X-100 and 0.2% gelatin. The sections were incubated 

overnight at room temperature with rabbit-anti-c-Fos primary antibody (1:10000, Oncogene 

Research Products, San Diego, CA, USA) in PBS-triton-0.2% gelatin. This was followed by a 

2 h incubation in donkey-anti-rabbit secondary antibody (1:500, Jackson ImmunoResearch, 

Westgrove, PN, USA) and then for 1 hr in the avidin-biotin complex (ABC Elite kit, Vector 

laboratories, Burlingame, CA, USA). After each incubation step, rinses were carried out in 

PBS containing 0.25% triton. A peroxidase-substrate-kit Vector SG (Vector laboratories) was 

used to visualize the reaction product during a standardized period of 5 minutes. Sections were 

then mounted onto slides, dehydrated and coverslipped with permount. Quantitative 

examination of c-Fos immunoreactivity allowed a comparison of the different layers of the 

contralateral hemisphere with the stimulated eye in VS/HDB and HDB animals. Visualization 

of the cholinergic fibers loss was performed on coronal sections using ChAT (1:500, 

Chemicon, Temecula, CA, USA) as described above (Dotigny et al., 2008). 

 

Double immunostaining 

 In order to determine the cell-specificity of the c-Fos immunoreactive cortical cells, we 

performed a double immunocytochemical study to examine whether c-Fos was expressed 

within (1) GABA cells labeled for parvalbumin (PV) and calretinin (CR), markers that covers 

the labeling of most GABA interneurons of the rat cortex (Gonchar and Burkhalter, 2003), or 

(2) glutamatergic neurons using rat brain pyramidal cell marker (RBPC), a marker of the 
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pyramidal cells.  The antibodies were used at the following dilution: parvalbumin (1:10000, 

made in mouse, Sigma, Saint-Louis, MS, USA), Calretinin (1:5000, made in mouse, 

Chemicon, Temecula, CA, USA), RBPC (rat brain pyramidal cell antigen; 1:1000, made in 

mouse, Swant, Bellizona, Switzerland). Vibratome sections from the visual cortex were 

processed with the same protocol as that used for c-Fos immunostaining. Sections were first 

incubated in the anti-c-Fos antibody and revealed with Vector SG then sequentially incubated 

overnight in the other primary antibody and revealed with DAB (Vector laboratories). The 

number of GABA or glutamatergic cells expressing c-Fos was counted in the stimulated 

hemisphere according to the layer (layer II/III, layer IV and layer V/VI) in the monocular part 

of V1. The proportion of the double-labeled cells over total c-Fos cells, total GABA or total 

glutamatergic cells was also evaluated. Total number of cells counted over 7 animals in the 

VS/HDB and HDB stimulated group is shown in parentheses PV-CR (339), RBPC (2526), c-

Fos (6607). The balance between excitation and inhibition system (E/I ratio; number of c-Fos-

RBPC neurons/ number of c-Fos-PV-CR neurons) was calculated for each animal and 

averaged. 

Statistical analysis 

Pre-training and post-training visual acuity values were compared within each group using a 

paired Student’s t-test. A non-parametric Wilcoxon test was performed for group which has 

less than 6 subjects (VS/HDB/Sco, VS/HDB/SAP, and VS/HDB/0). Between-group 

comparisons were computed using a one-way ANOVA followed by a post-hoc LSD test for 

visual acuity and VEPs. For immunostaining data and E/I ratio analysis, layer-specific 

comparisons were carried out using the Mann-Whitney U test. All statistical analyses were 
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carried out with SPSS 17.0 for Windows XP (SPSS Inc., Chicago, IL, USA) at a significance 

level of p < 0.05. 
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Results 

 

Pairing visual training with HDB activation in awake rats increases visual discrimination 

performance in a water maze task 

To evaluate the effect of pairing visual training with BF activation, visual acuity (the spatial 

frequency threshold value for discriminating a sine-wave grating from a gray screen) was 

measured using the visual water maze task before and after the training period (Fig. 1, 2). The 

procedure of the visual water task was learned prior to visual training, such that post-training 

visual discrimination task tested changes in visual discrimination rather than procedural 

learning. Following the results of Girman et al., (1999), we hypothesized the rat’s visual acuity 

for the selected stimulus (30º) could be enhanced by training, since 0º but not 30º is the 

optimal orientation for eliciting the maximal cortical response in naïve rats (Girman et al., 

1999). In agreement with the level of cortical response, the visual acuity for a 30º orientation 

sine-wave grating (0.70 ± 0.01 CPD) was lower than for a 0º orientation sine-wave grating 

(0.87 ± 0.02 CPD, paired Student’s t-test, P < 0.001) in naïve rats (Fig. 2B). Moreover, a 

ceiling effect of the visual performance at the optimal stimulation was demonstrated, since 

visual acuity at 0º orientation was not improved after training to a 0º sine-wave grating (pre-

training 0.86 ± 0.03 CPD, post-training 0.85 ± 0.03 CPD; P = 0.87, VS/HDB/0) (Fig. 2B).  

 

The daily pairing visual training to 30º orientation 0.12 CPD sine-wave grating with HDB 

stimulation induced a significant increase in visual acuity measured with the 30º sine-wave 

grating (VS/HDB group, 0.89 ± 0.01 CPD; VS/HDB/Sco group, 0.89 ± 0.01 CPD) compared 

with pre-training values (0.71 ± 0.02, paired t-test, P < 0.001, Fig. 2B). This post-training  
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Figure 2 

Figure III.2. Measurement of visual acuity in the different groups pre- and post- training.  

A) Schematic representation of the visual water maze, (adapted from Prusky et al., 2000). B) 

30°, 0°, 150° visual acuity measured after training with 30° stimulus and 0° visual acuity 

measured after training with 0° stimulus (right histogram). The pre-training (open symbols) 

visual acuity for a 30° sine-wave grating was lower than acuity for a 0° stimulus, but both 

values were identical after training in the VS/HDB group. Visual acuity for 150° or visual 

acuity for 0° was not changed after training with 30° stimulus. C) Pre- and post-training (filled 

symbols) values of the visual discrimination threshold for each group. Note that only the 

VS/HDB and VS/HDB/Sco groups showed better discrimination ability after visual training. 

D) Success rates (percentage of correct trials) for each group in response to each spatial 

frequency presented. Note that in the CTL, VS, HDB and VS/HDB/SAPV1 groups, the 

success rate after 0.75 CPD was not statistically different for pre- (open square) and post-

training experiments (filled square). By contrast, in the VS/HDB and VS/HDB/Sco groups, the 

success rate significantly increased (see text for details) after training. (*, pre-post paired t-

test, p<0.05; ‡, pre-post Wilcoxon test, p<0.05). E) Success rates for the discrimination of a 

sine-wave grating (150°, upper panel and 0°, lower panel) pre- and post-training with 30° 

stimulus. No statistical increase of visual acuity was found in both groups, suggesting that the 

improvement of visual acuity does not transfer to other orientations. Error bars represent ± 

s.e.m (Lack of error bars is because all rats at that point have same success rate). 
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visual acuity value (0.89 ± 0.01 CPD) reached the ceiling value, as measured with the 0º sine-

wave grating in naïve animals (0.87 ± 0.02 CPD, t-test, P = 0.316, Fig. 2B), suggesting that 

V1 neuronal response to the 30º orientation improved to an extent equivalent to V1 response 

to the most efficient stimulus (0º). Visual acuity was not affected by sham treatment, by VS or 

HDB training alone (Fig. 2C, D). Intergroup comparisons showed that post-training visual 

acuity was greater in the VS/HDB and VS/HDB/Sco groups compared with any other group 

(one-way ANOVA, F[7,51] = 23.986, P < 0.001 both). As the visual discrimination of a 0.12 

CPD grating is optimal and at the ceiling level, we did not observe any improvement of the 

success rate between groups in pre- vs post-training values at this spatial frequency (Fig. 2D). 

Thus, the behavioral outcome of the training, as tested with the visual water task, resulted in a 

shift of the discrimination threshold of the 30º sine-wave grating to high spatial frequency (0.7 

to 0.89 CPD). Histological examination confirmed that all the stimulation sites were localized 

within HDB (Fig. 3). 

 

Pairing visual training with HDB activation in awake rats is specific for cholinergic 

projections from HDB to V1  

Injection of 192-IgG saporin in the HDB (VS/HDB/SAP, pre-post training Wilcoxon, P = 

0.431) or in the V1 (VS/HDB/SAPV1, paired t-test, P = 0.771) prior to VS/HDB training 

significantly destroyed the cholinergic fibers in V1 (Fig. 4) and attenuated the enhancement of 

visual acuity for the trained stimulus (0.71±0.03 and 0.67±0.03 CPD, respectively) (Fig. 2C, 

D). The use of mAChR antagonist scopolamine during the post-training testing period 

(VS/HDB/Sco group) did not impair animal performance for the trained stimulus (ANOVA, 

post-hoc LSD, P = 0.929, Fig. 2C, D), indicating that improved visual acuity resulted from 

changes acquired during the training period, rather than from enhanced muscarinic  
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Figure 3 

 

Figure III.3. Localization of the electrode implantation sites on coronal sections of the HDB. 

 Implanted electrode sites were localized following electrolytic lesion and examination on 

cresyl violet stained sections. The sites are drawn on the corresponding diagram from the rat 

brain atlas (Paxinos and Watson, 1995). HDB, horizontal diagonal band of Broca; LV, lateral 

ventricle; MCPO, magnocellular preoptic nucleus; SI, substantia innominate; VLPO, 

ventrolateral preoptic nucleus. 
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Figure 4 

 

Figure III.4. Microphotographs of ChAT immunolabelling in V1.  

A, B) effect of unilateral 192-IgG-saporin injection in HDB on the ipsilateral (A) or 

contralateral (B) cholinergic innervation in V1. C, D) effect of unilateral 192-IgG-saporin 

injection in V1 on the ipsilateral (C) or contralateral (D) cholinergic innervation in V1. Strong 

loss of cholinergic fibers (A, C) was observed in V1 of the injected hemisphere compared to 

non-injected hemisphere (B, D). Scale bar = 50 µm. 
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transmission during the test – although nAChR involvement has not been tested. Therefore, 

these experiments suggest that the effect of repetitive stimulation of the HDB is mainly 

mediated by the cholinergic neurons projecting to V1 and contribute to the enhancement of 

visual acuity.  

 

Improvement of visual discrimination performance for a 30º grating by pairing visual training 

with HDB activation in awake rats does not occur at the expense of – or transfer to other 

orientations 

Additional post-training visual acuity testing using a 0º orientation pattern in the VS/HDB rats 

was performed to determine whether the improvement of visual discrimination for a 30º 

orientation pattern was transferred to or did occur at the expense of the response for the 0º 

orientation. The performance for the 0º orientation was not altered by the daily visual training 

to 30º orientation 0.12 CPD sine-wave grating paired with HDB stimulation (0.873 ± 0.02 

CPD vs 0.87 ± 0.02 CPD, paired t-test, P = 0.9, Fig. 2B). This suggests the 0º orientation 

selectivity of the V1 cells was preserved. This also suggests that visual discrimination 

performance improvement elicited by the VS/HDB training does not transfer to other 

orientations (Fig. 2B, see above). To avoid bias due to a ceiling effect at the 0º orientation, the 

visual performance for a stimulus with properties similar to 30º, i.e. symmetrical, was tested in 

VS/HDB/150 group. The visual acuity value for 150º (0.69 ± 0.02 CPD) was equivalent to the 

one for 30º (0.70 ± 0.01 CPD) in naïve animals. The performance for the 150º orientation was 

not altered by the daily visual training to the 30º orientation 0.12 CPD sine-wave grating 

paired with HDB stimulation in VS/HDB/150 animals (0.69 ± 0.02 vs 0.71 ± 0.03 CPD, P = 

0.289, Fig. 2B). Thus, improvement in visual discrimination was orientation selective. This is 

consistent with previous studies showing that increased cortical response for a specific 
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orientation has not been proved transferable to another orientation (Fiorentini and Berardi, 

1980, Cooke and Bear, 2010, 2012).  

 

Pairing visual training with HDB activation in awake rats increases the amplitude of visual 

evoked potentials in V1 

To determine whether the change in visual acuity correlated with a modification in cortical 

processing, VEPs were recorded in V1 after the training period. The signal-to-baseline ratio of 

averaged cortical responses to the presentation of the trained stimulus (sine-wave grating, 30º, 

0.12 CPD) was significantly greater in the VS/HDB group compared with the CTL group 

(one-way ANOVA, F[4,22]=3.977, P = 0.02), the VS group (P = 0.04) or the HDB group (P = 

0.048), but was not significantly different when compared with the VS/HDB/Sco group (P = 

0.368) (Fig. 5). We further examined in independent experiments whether the repetitive 

VS/HDB pairing with a 30º, 0.12 CPD stimuli would also enhance cortical reactivity at the 

higher spatial frequency (0.7 CPD). The VEP amplitude for a 30°, 0.7 CPD stimulus was 

greater in VS/HDB group compared to the control (VS/HDB 2.37 ± 0.26 vs control 1.22 ± 

0.15, one-way ANOVA, F[2,14]=7.010, P = 0.003) or VS/HDB/SAPV1 (1.7 ± 0.2, P = 0.042). 

This result indicates that the VS/HDB training effect was possibly transferred to higher spatial 

frequency than 0.12 CPD.  

 

Pairing visual training with HDB activation in awake rats increases c-Fos immunoreactivity 

in V1 

The number of c-Fos immunoreactive neurons was significantly increased in all cortical layers 

of the stimulated hemisphere of VS/HDB animals (Table 1) compared with the contralateral 

hemisphere, which did not show c-Fos immunoreactivity. This increase was consistently  
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Figure 5 

 

Figure III.5. VEP recording in the different groups after the training.  

Amplitude of the VEP recorded during presentation of the 30º-0.12CPD (A) or 30º-0.7CPD (B) 

sine-wave grating.  Neuronal activation was greater in VS/HDB and VS/HDB/Sco groups 

compared to other groups. (*, ANOVA post-hoc LSD, P < 0.05, error bars represent ± SEM). 

C) Representative traces of VEP recordings of CTL, VS, HDB and VS/HDB groups are shown. 
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Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table III.1 Number and nature of activated neurons in monocular area of the activated visual 

cortex. 

 

Values are number of cells/mm2 expressed as mean ± s.e.m. Numbers in brackets are total 

number of cell counted. Numbers in parentheses are the percentage of activated neurons (c-

Fos-RBPC/RBPC or c-Fos-PV-CR/PV-CR ratio x 100). 
a
, P < 0.05, compared to V1M HDB counterparts, Mann-Withney 

 

 

Cortical 

area 

c-Fos c-Fos-RBPC c-Fos-PV-CR  

[6607] [309] [126] 

V1  HDB      

Layers II/III 129.0 ± 21.0  5.0 ± 2.8 (3.8%) 2.2 ± 1.2 (31.2%) 

Layer IV 100.0 ± 10.2  3.3 ± 1.5 (2.6%) 1.7 ± 0.7 (8.5%) 

Layers V/VI 110.0 ± 15.4 14.7 ± 2.8 (8.5%) 2.0 ± 0.3 (22.1%) 

V1  VS/HDB     

Layers II/III 194.8 ± 29.3 32.5 ± 15.1
 

a
 

(25.1%) 4.4 ± 1.5 (41.3%
 
) 

 Layer IV 201.2 ± 27.7 
a
 

19.9 ± 8.6
 a
 (12.3%) 8.7 ± 2.0

 a
 (53.1%

 
) 

Layers V/VI 127.1 ± 22.9 13.7 ± 4.1
 

(10.5%) 5.7 ± 1.4 
a
 (41.1%) 
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observed in all of the VS/HDB rats. As previously shown (Dotigny et al., 2008), VS animals 

exhibited c-Fos labeling in layer IV (thalamus recipient) of the stimulated hemisphere but not 

in the other cortical layers or the non-stimulated contralateral hemisphere (data not shown). 

Consistently, c-Fos labeling in the layer IV was stronger in VS/HDB animals compared to 

HDB animals (Mann-Whitney, P = 0.016). Interestingly, as the c-Fos immunoreactivity 

experiment was performed one week after the last HDB stimulation session (allowing time for 

behavioral and electrophysiological testing), these results demonstrate that neuronal reactivity 

in V1 following these training conditions is long-lasting (at least for one week). It has to be 

noted that only half (4) of animals of the HDB group expressed c-Fos labeling in V1, showing 

variable labeling in this group. This suggests HDB stimulation enhanced visually-induced c-

Fos expression one week after the last HDB stimulation only when the stimulus was paired 

with sensory stimulus. 

 

Pairing visual training with HDB activation in awake rats activates both GABAergic and 

glutamatergic neurons in V1 

A subpopulation of both pyramidal and GABAergic cells were immunoreactive for c-Fos, i.e. 

activated, in V1 of VS/HDB animals (Fig. 6A). No c-Fos labeling was detected in control 

animals (data not shown). The percentage of activated GABAergic and pyramidal cells related 

to total number of GABAergic and pyramidal cells, respectively, was elevated in all cortical 

layers of V1 VS/HDB animals (41-53% and 11-25%, respectively), suggesting the 

involvement of both inhibitory and excitatory cortical microcircuits in the training effect 

(Table 1). There were significantly more PV-CR or RBPC neurons immunoreactive for c-Fos 

in layer IV of VS/HDB animals compared to HDB (Mann-Whitney, P = 0.027 and 0.002, 

respectively). In addition, there were significantly more RBPC neurons immunoreactive for c- 
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Figure 6 

 

Figure III.6. Neurochemical phenotype of activated c-Fos neurons in V1.   

A-F) Microphotographs (40x) of coronal brain sections, double-immunostained (arrow heads) 

for c-Fos (Vector SG, bluish-gray) and either GABAergic (DAB, brown, upper panel) or 

pyramidal (DAB, brown, lower panel) neurons (mm from Bregma, AP -7.3). A,C, E) c-Fos-

PV-CR neurons in layers II/III (A), IV(C), or V/VI (E) of V1, and B, D, F) c-Fos-RBPC (rat 

brain pyramidal cell antigen) neurons in layers II/III (B), IV (D), or V/VI (F). The histograms 

in G) show the mean ± s.e.m of the excitation/inhibition (E/I) ratio – number of c-Fos- RBPC 

cells / number of c-Fos-PV-CR cells calculated for each rat in VS/HDB group compared to 

HDB group (taken as a control). Note the E/I ratio was significantly lower in layer V/VI of 

VS/HDB rats compared to HDB rats, reflecting a greater proportion of GABAergic–cFos 

activated neurons.  Scale bar 50 µm 
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Fos in layer II/III (P = 0.049) and more PV-CR neurons immunoreactive for c-Fos in layer 

V/VI (P = 0.038) of VS/HDB animals compared to HDB group. This suggests an effect of 

VS/HDB training on pyramidal neuron activation, consistently with the flow of cortical 

activation from the thalamo-cortical recipient layer to superficial cortical layers. 

 

The E/I ratio (average of the ratio of number of c-Fos-RBPC neurons / number of c-Fos-PV-

CR neurons) was significantly lower in the layers V/VI of VS/HDB stimulated animals (1.92 

± 0.38) compared to HDB stimulated animals (7.72 ± 0.68, Mann-Whitney, P = 0.034, Fig. 

6B). It was not significantly different in layer II/III or IV in VS/HDB compared to HDB group 

(Mann-Whitney, P = 0.248, P = 1.000, respectively) although there was a non-significant 

increase of E/I ratio in the layers II/III in VS/HDB. 
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Discussion 

 

The present study demonstrates that repetitive pairing of a specific visual stimulation with 

stimulation of HDB cholinergic neurons in awake rats resulted in a selective increase of the 

visual acuity of the rats. The improvement was selective for the stimulus orientation which 

was initially non-optimal for eliciting the maximal visual acuity but reached a level of optimal 

detectability after the training. More precisely, the perception of the trained orientation was 

improved as shown by a shift of the discrimination threshold to higher spatial frequency, 

which suggests a transfer of the training effects to a higher spatial frequency than trained. The 

behavioral improvement was related to a long-term increase in neuronal activity in V1 as 

recorded by VEP and c-Fos labeling and to a change in the balance of excitatory/inhibitory 

activity. These results support a role for the cholinergic system in attention and perceptual 

learning, i.e. acquired experience-dependent plasticity, in V1. Moreover, it suggests that use of 

cholinergic enhanced visual training in the context of visual rehabilitation could improve 

visual recovery compared to visual training alone. 

 

VS/HDB activation induces perceptual improvement due to cholinergic activity  

This study shows better visual performance of the rats when VS was coupled with HDB 

stimulation. Although the effects of electrical HDB stimulation could not be attributed solely 

to the activation of cholinergic neurons, there is considerable evidence suggesting the 

plasticity observed in this study mainly results from ACh release. First, the HDB electrical 

stimulation paradigm has been designed to mimic the electrical properties of BF cholinergic 

cells rather than GABAergic neurons (see Kang and Vaucher, 2009). Second, improvement in 
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visual acuity and cortical reactivity is completely abolished by specific lesion of the 

cholinergic cells of the BF or cholinergic fibers in V1. This is in agreement with previous 

studies (Kocharyan et al., 2008).  

 

VS/HDB activation induces long-term changes in V1 related to perceptual learning and 

attention 

The present results show orientation specific perceptual improvement when VS was coupled 

with HDB stimulation. Improved visual acuity for the 30º orientation was long-lasting, 

orientation selective, and preserved the initial visual acuity for the optimal stimulus (0º 

orientation). The visual acuity for an untrained orientation (0º or 150º) was not affected. 

Perceptual improvement was associated with stronger long-term V1 reactivity, as shown by 

increased VEP amplitude and c-Fos expression. These features are similar to perceptual 

learning resulting from repetitive exposition to a specific stimulus, i.e orientation selective 

(Fiorentini and Berardi, 1980, Schoups et al., 2001) long-term change of perceptual capacity 

(Recanzone et al., 1993, Gilbert et al., 2001, Reed et al., 2011, Cooke and Bear, 2012) or 

performance in a learning task (Andersen et al., 2010, Sale et al., 2011) accompanied by 

cortical plasticity (Ahissar and Hochstein, 1993, Fahle, 2004). Moreover, our results showing 

discrete and selective, but not global, changes in stimuli processing are in agreement with 

improvement of visual capacity relative to perceptual learning (Fiorentini and Berardi, 1980, 

Gilbert et al., 2001, Li et al., 2004), although the present paradigm is not a pure perceptual 

learning task. In support of this, it has already been shown that 5-day training with a similar 

oblique, 0.12 CPD sine-wave grating in rodents is able to induce perceptual learning specific 

for this trained stimulus (Frenkel et al., 2006, Cooke and Bear, 2010), as measured with VEP 

recording. It is also possible that VS/HDB training reduced the load of attention required to 
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detect the 30º orientation, thus facilitating the cortical response to higher spatial frequency. 

This suggests that our paradigm induced not only perceptual learning-like effect for the 30º 

orientation grating, but also improved detectability of the pattern at higher spatial frequency, 

transfer which might be the contribution of the cholinergic activation.  

 

This increase of salience of the 30º orientation pattern resulting in increased visual acuity, is 

likely due to reinforcement of the cortical microcircuitry by cholinergic HDB projections to 

V1 through mechanisms related to attention, cortical plasticity (NMDAR dependent-LTP) and 

perceptual learning (Vidnyanszky and Sohn, 2005, Roelfsema et al., 2010). Attentional 

processes are strongly regulated by ACh (Sarter et al., 2005), including visual attention. 

Scopolamine reduces spike firing induced by attentional demand in V1 (Herrero et al., 2008). 

Thus, in the present study, the cholinergic system might enhance attentional processes in V1 

and consequently cortical reactivity. This effect most likely takes place during the VS/HDB 

training period, since scopolamine administration during the post-training task has no 

influence on rat performance – it is possible that nicotinic mechanisms could be involved 

during the post-training task (Bhattacharyya et al., 2012, Disney et al., 2012), which would 

probably be negligible since no significant ACh release increase is expected during this 

period. Consequently, the post-training performance of the rats is improved due to induction 

of long-term mechanisms during the training, i.e. learning. Accordingly, learning processes are 

blocked by cholinergic lesions or by antagonizing the cholinergic system pharmacologically 

(Conner et al., 2003), including in V1 (Dotigny et al., 2008).  In addition, ACh provides long-

term modulation of the electrophysiological properties of V1 neurons as well as LTP (Origlia 

et al., 2006, Dringenberg et al., 2007, Goard and Dan, 2009, Kang and Vaucher, 2009).  
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Therefore, ACh release during the training paradigm probably induced persistent change in the 

efficacy of the microcircuitry neurotransmission. This is evidenced here by the widespread 

overexpression of c-Fos in response to visual stimulation measured 5 days after the last HDB 

stimulation, which is not seen in sham or VS animals. At a cellular level, this long-term effect 

could be related to cortical LTP, i.e., increase in synaptic strength of recipient neurons initially 

elicited by heterosynaptic stimulation from both HDB and glutamatergic fibers. Accordingly, 

c-Fos expression is actually an index of LTP (Kaczmarek and Chaudhuri, 1997, Dotigny et al., 

2008). It is therefore likely that repetitive HDB stimulation elicits a change in synaptic 

strength, only when the visual neurons are activated, similarly to what occurs during 

perceptual learning. Supporting this, VS or HDB stimulation alone does not result in 

performance improvement, and passive exposure to diverse sensory stimuli does not result in 

cortical map plasticity (Bao et al., 2001). It would have been expected that VS would also 

induce a slight improvement of visual acuity because it has been shown to induce perceptual 

learning (Sasaki et al., 2010) as well as spontaneous release of ACh in V1 (Laplante et al., 

2005) . This was not seen in the training set-up tested in the present study probably because 1) 

the training period was too short, 2) it did not require attention demand or 3) VS-increased 

ACh extracellular concentration was too low. Usually, longer training periods and enhanced 

attention during perceptual learning tasks are necessary to elicit perception improvement. It 

also appears that spontaneous VS-increased ACh extracellular concentration in VS group was 

too low to induce enhanced performance. In contradistinction, the strong ACh release induced 

by HDB stimulation during the VS/HDB training might have induced attention-like and LTP-

like mechanisms necessary for visual learning. This is in agreement with previous studies 

suggesting ACh has dose-dependent effects in the neocortex (Oldford and Castro-Alamancos, 
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2003, Deco and Thiele, 2011, Disney et al., 2012). It is also possible that VS/HDB-released 

ACh might allow a transfer to higher spatial frequencies by reducing the receptive field of V1 

cells (Roberts et al., 2005) which would not be seen in classic perceptual learning tasks. 

Together, this suggests ACh might accelerate the process of spontaneous visual learning by 

maximizing the transfer of information for the thalamo-cortical afferent as attention would do 

and by changing the sensitivity of V1 neurons (Ahissar and Hochstein, 1993, Gilbert et al., 

2001, Roelfsema et al., 2010) which results in memory traces.  

 

 

Changes in responsiveness induced by cholinergic system activation implicates excitatory-

inhibitory system  

The present study demonstrates changes of excitatory and inhibitory drive against visually 

trained stimulus (30º, 0,12 CPD) with layer specificity. This result sheds some light on the 

mechanism of visual performance improvement of the rat. The cholinergic enhancement of 

feedforward drive might arise from nAChR activation of thalamocortical fibers in layer IV 

(Gil et al., 1997); from M1 mAChR excitation of glutamatergic neurons in layer II/III and 

layer IV by facilitating postsynaptic NMDAR opening (Calabresi et al., 1998, Gu, 2003); from 

disinhibition of intracortical network through M2 mAChR or nAChR receptors located on 

GABAergic cells (Salgado et al., 2007, Soma et al., 2012) or perisomatic GABAergic 

terminals (Kruglikov and Rudy, 2008); from disinhibition of feedback cortical control by 

mAChR located on corticocortical fibers (Gil et al., 1997, Oldford and Castro-Alamancos, 

2003); and most likely from a combination of both these processes (Fig. 7). ACh may thus 

serve to maximize transfer of visual information from the periphery to the cortex by 

suppressing the dominant intracortical pathway (Oldford and Castro-Alamancos, 2003). After  
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Figure 7 

Figure III.7. Schematic representation of the effects after VS  

(A) and VS/HDB (B) training on cortical processing of a 30º orientation stimulus. 

Thalamocortical inputs (light blue fibers) conveying 30º (left) and 0º (right) orientation 

provide selective bottom-up excitation of layer IV neurons transmitted to layer II/III neurons, 

then layer V and to higher visual area (FF, feed-forward connections; FB, feed-back 

connections). Excitatory influences are shown in blue. The larger size of the pyramidal 

neurons, the stronger neuronal activity. The darker the zone of glutamatergic activation (ovals), 

the stronger enhancement of the response. Acetylcholine modulation of the neuronal activity 

during the training is represented by the intensity of the yellow background. This modulation 

is mediated through muscarinic and nicotinic receptors located on different neuronal elements 

including glutamatergic and GABAergic neurons (not shown, see discussion for more details). 

A) Cortical processing for the 30º orientation grating after 2-week VS training is not strong 

enough to provide behavioral or VEP enhancement. 0º orientation processing is not affected. B) 

Cortical processing for the 30º orientation grating is significantly enhanced after VS/HDB 

training but 0º orientation processing is not affected. Note that the input from the thalamus is 

similar in VS training but the feedforward propagation is not increased  nor reinforced. 
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14 days of training, there was an increase in activated GABAergic neurons relative to 

activated pyramidal neurons in layer V (reduced E/I ratio in VS/HDB trained group compared 

to HDB group) and an increase in activated pyramidal neurons relative to GABAergic neurons 

in layer II/III (increased E/I ratio in VS/HDB trained group compared to HDB group). These 

results suggest that pairing cholinergic fibers and visual stimulation modulate the activation of 

excitatory and inhibitory drive with layer specificity. The higher proportion of activated 

excitatory cells in layer II/III induced by VS/HDB might be due to stronger excitatory drive 

arising from the layer IV stimulated by VS and reinforced by HDB stimulation and from 

disinhibition of the GABAergic microcircuits through activation of nAChR in layer I neurons 

(Christophe et al., 2002). This increased number of activated layer II/III neurons most likely 

does not result from a spreading of the thalamic influx to adjacent layer IV neurons since ACh 

is presumed to reduce lateral spread of information. This is however related to visual 

stimulation since the E/I ratio is decreased compared to HDB stimulated animals. This result is 

in agreement with previous studies showing cholinergic facilitation of the thalamo-cortical 

connections and an increase in the firing capacity of layer II/III (Soma et al., 2012, Thiele et 

al., 2012), although a recent article show suppression mechanisms elicited by the mAChRs 

(Disney et al., 2012). The influence of the cholinergic system on the inhibitory drive of layer 

V is consistent with previous studies (Lucas-Meunier et al., 2009) and might be due to 

enhanced GABAergic activity. Reduced number of activated pyramidal cells in layer V might 

also result from less specific neuronal activation in layer II/III leading to a reduction of the 

number of upstream activated neurons.  As E/I balance change has been suggested to 

participate in cortical plasticity (Gandhi et al., 2008, Lucas-Meunier et al., 2009, Yazaki-
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Sugiyama et al., 2009, Morishita et al., 2010), the present change might contribute to 

facilitating cortical reorganization and increasing visual processing to a 30º sine-wave grating.  

 

The improvement in discrimination ability may be attributed to an increase in the number or 

efficacy of neurons responsive to the 30º orientation. A previous study with VEP and single 

unit recording revealed that such modulation of orientation appeared not due to change of 

neurons’ preferred orientation but rather to a shift in the orientation index, a relative measure 

between preferred and orthogonal orientation (Frenkel et al., 2006). According to the 

modulatory role of the cholinergic system and the absence of enhanced visual acuity in HDB 

groups, it could be suggested that the cholinergic activation does not change the properties of 

the cortical cells but reinforce the activity of cells responsive to the 30º orientation. 

Consequently, VS/cholinergic stimulation results in a change in vertical spread of 

thalamocortical activation, where a bottom-up excitation of layer IV is transmitted from layer 

II/III neurons and then to higher visual areas (Callaway, 2004), as shown by the c-Fos results. 

This is consistent with a recent proposal suggesting that sensory discrimination learning 

occurs through cortical processing using the most efficient neuronal circuitry rather than 

permanent wiring changes resulting in changes of selective properties of neurons (Kilgard and 

Merzenich, 1998, Reed et al., 2011). However, it is unclear whether lateral spreading is 

enhanced. According to previous studies, high extracellular levels of ACh reduce the lateral 

spreading of the thalamocortical activation, allowing finer control of the processing of a 

specific stimulus (Kimura et al., 1999, Silver et al., 2008, Kosovicheva et al., 2012). The 

improved selectivity for the 30º, but not the 0º or 150º orientation, as well as the excitation of 
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PV cells (most probably intralaminar basket cells) (Runyan et al., 2010) is consistent with a 

lack of excitation in neighboring cells with different preferred orientation selectivity.  

 

Conclusion 

This study demonstrated that visual training associated with cholinergic transmission builds 

strong ‘memory traces’ that result in cortical plasticity in the visual cortex and increased visual 

perception. These transient mechanisms might be related to attention and induce long-lasting 

changes in neuronal reactivity. Stimulation of BF afferents during visual training may induce 

an imbalance in excitatory-inhibitory systems by temporally tuning firing rate and 

subsequently releasing from a cortical plasticity ‘brake’ in V1 in the adult. The demonstration 

of the long-lasting enhancement of perceptual capacities and cortical efficiency following 

repetitive, coupled cholinergic and visual activation in awake rats provides hope to develop 

efficient rehabilitation strategies to improve plasticity in cortical areas with impaired sensory 

input and thus facilitate visual recovery. 
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Abstract 

Repetitive visual training paired with activation of the cholinergic system that projects to the 

visual cortex induces an enhancement of the processing of the specific trained visual pattern. 

In the present study, we investigated whether nicotinic (nAChR) and muscarinic (mAChR) 

acetylcholine receptors and GABAergic receptors contribute to this long-term effect. Awake 

adult rats were exposed to an orientation-specific grating paired with an electrical stimulation 

of the basal forebrain for 10 minutes per day for 1 week. During these sessions of visual 

training, nAChR, mAChR, GABAA receptor (GABAAR) antagonists or a GABAAR agonist 

were locally injected in the cortex. Pre- and post-training cortical visual evoked potential 

(VEPs) in the primary visual cortex (V1) were recorded to measure changes in visual acuity. 

The VEP recordings revealed a long-term increase of the cortical activity of V1 following the 

coupled visual/cholinergic stimulation, but this increase was blocked when nAChR, M1 

subtype mAChR or GABAAR antagonists were administered. The injection of an M2 mAChR 

subtype antagonist or GABAAR agonist decreased the cortical responses to below the control 

VEPs. These findings demonstrate that visual training coupled with cholinergic stimulation 

improved perceptual ability by enhancing cortical plasticity in V1. This enhancement is 

mediated by nAChRs, M1 mAChRs and M2 mAChRs; the latter receptor induces a 

disinhibition by suppressing GABAergic drive.  
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Introduction 

The cholinergic fibers projecting from the basal forebrain to the primary visual cortex 

contribute to modulate the integration of visual stimuli. It has been shown that repetitive 

cholinergic stimulation paired with visual stimulation induces increases in the visual acuity of 

the rats (Dotigny et al., 2008, Kang et al., 2013) and long-term improvements in the visual 

ability of humans (Furey et al., 2000, Bentley et al., 2004, Rokem and Silver, 2010). Boosting 

visual cortex functioning during rehabilitation paradigms via cholinergic enhancement might 

thus help individuals with cognitive or sensory deficits to better recover their sensory abilities 

and performance (Kang et al., 2014a). 

 

The neuronal effect of acetylcholine (ACh) on the visual cortex differs depending on receptor 

subtypes involvement and the location of the receptors (Gil et al., 1997, Ji et al., 2001, Soma 

et al., 2013a, Groleau et al., 2014). For example, the acute effects of ACh have been shown to 

increase the thalamocortical signal in layer IV of V1 through nicotinic cholinergic receptor 

(nAChR)-mediated presynaptic mechanisms (Gil et al., 1997, Disney et al., 2007) and through 

M1 subtype muscarinic cholinergic receptors (M1 mAChR) that are located on the 

postsynaptic pyramidal neurons (Mrzljak et al., 1993, Gulledge et al., 2009). The cholinergic 

system also modulates inhibitory drive by activating GABAergic interneurons (Kocharyan et 

al., 2008) through nAChRs (Lucas-Meunier et al., 2009, Alitto and Dan, 2012) and M1 

mAChRs (Salgado et al., 2007) or by suppressing GABA release through the M2 muscarinic 

cholinergic receptor (M2 mAChR) (Salgado et al., 2007, Nunez et al., 2012). Basal forebrain 

stimulation (Goard and Dan, 2009, Bhattacharyya et al., 2013) or the intracerebral injection of 

cholinergic agonists (Rodriguez et al., 2004) also produced gamma oscillations that reflected 
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the rhythmic firing of a large number of cortical cells. All of these mechanisms might be 

related to attention, cortical plasticity and perceptual learning, which respectively improve 

neuronal responses, neuronal communication and behavioral performance. Therefore, 

understanding the neuropharmacological mechanisms of the enhancement of visual processing 

enhancement by ACh might aid the identification of appropriate pharmacological targets for 

achieving selective effects that boost perceptual learning and visual performance. 

 

Based on these data, the present study was designed to investigate the involvement of the 

different cholinergic receptor subtypes and the GABAergic system in the cholinergic-

dependent enhancement of perceptual ability. The interaction between the cholinergic and the 

GABAergic systems was specifically investigated because the activation of GABAergic 

interneurons during sensory processing also induces oscillations in the gamma range (30-90 

Hz) (Cardin et al., 2009). Moreover, the involvements of both acetylcholine and GABA in the 

structural and functional cortical plasticity that allow connectivity changes in perceptual 

learning processes have been demonstrated (Harauzov et al., 2010, Chattopadhyaya and 

Cristo, 2012, Lozada et al., 2012, Kang et al., 2013). Daily pairing of visual stimulation with 

basal forebrain stimulation (VS/HDB) was performed over one week with the simultaneous 

intracortical infusion of agonists of nAChRs (mecamylamine), M1 mAChRs (pirenzepine), 

M2 mAChRs (AF-DX116), GABAARs (picrotoxin) or a GABAAR agonist (muscimol). The 

effect of these treatments on visual acuity, cortical activity and neuronal synchronization were 

measured by comparing the visual evoked potential (VEP) responses in V1 to various spatial 

frequencies before and after VS/HDB training. Double immunohistochemistry was performed 

to visualize the relation between M2 mAChRs and parvalbumin (PV) expressing GABAergic 
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neurons in the rat. Parvalbumin (PV) is expressed in GABAergic neurons (Gonchar and 

Burkhalter, 1997) which participates in the processing of the visual information, cortical 

plasticity (Kuhlman et al., 2013) and learning (Donato et al., 2013). The results revealed an 

increase in the cortical response following repetitive VS/HDB stimulation that was mediated 

by nAChRs, M1 mAChRs and cortical microcircuit disinhibition via M2 mAChRs. Moreover, 

time-frequency analyses revealed an increase in neuronal synchronization in the gamma band 

following the VS/HDB training. 
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Materials and Methods 

Animal preparation 

Adult Long-Evans rats (n = 51, 200-225 g) were obtained from Charles River Canada (St-

Constant, Quebec, Canada) and were maintained in a 12-h light/dark normal daylight cycle 

with ad libitum access to food and water. The guidelines set by the Canadian Council for the 

Protection of Animals were followed for all procedures and approved by the local Animal 

Care Committee, “Comité de Déontologie de l’Expérimentation sur les Animaux” at the 

Université de Montréal (protocol # 12-172). All efforts were made to minimize suffering and 

the number of animals used for these experiments. 

Experimental design 

Recording and injection guide were implanted in the rat V1 prior to VEP recording (day 1). 

Pre-training VEPs were recorded (day 5) followed by 7 days of visual training (day 7-14). 

This result was compared to post-training VEPs (day 16) (Fig. 1A). After post-training, 

recorded rats were euthanized with an overdose of pentobarbiturate injection and perfused 

with paraformaldehyde 4%.  

Implantation surgery 

In order to record VEPs an electrode guide was implanted unilaterally in the horizontal limb of 

the diagonal band of Broca (HDB). For pharmacological injections, a push-pull cannula guide 

was implanted in the primary visual area ipsilaterally to the HDB stimulation electrode. 

Animals were first anesthetized with isoflurane (induction 5%, maintain 3%) and placed in a 

stereotaxic apparatus. Throughout the experiment, the rectal temperature was maintained at 

37ºC using a thermostatically controlled heating pad (FHC, Bowdoinham, ME, USA).  
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Figure IV.1 . Design of the experimental procedure. 

 

Figure 1. A) Timeline of the different experimental steps. The pre-training visual cortical 

responses to visual stimulation were recorded 4 days (d5) after the implantation of the 

electrodes and guide cannulas. Visual training was provided for 10 min/day for 7 days (d7-

d14) and followed by the recording of the post-training VEPs (d16) (see text for details). B) 

Schematic diagram illustrating the chronic implantation of the recording electrode and the 

push-pull guide cannula in V1. The stimulating electrode was implanted in the HDB. C) 

Schematic representation of the areas of pharmacological agent injection and 

electrophysiological recording.  
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A dental drill was used to make 2 holes in the skull above the left visual cortex and adjacent to 

Bregma to access V1 and HDB, respectively. The electrode guide (polyurethane tubing) was 

placed above V1 (mm from Bregma: AP -7.5, ML +4.0, DV 0) and a push-pull cannula guide 

(Plastics1, Roanoke, VA) was inserted adjacent to the electrode guide (from Bregma: AP -7.5, 

ML +3.6, DV -0.7 mm, 30° angle from verticality). A tungsten-stimulating electrode denuded 

at each end was implanted in the HDB ipsilateral to the cortical recording site (mm from 

Bregma: AP -0.3, L +2.0, DV -9.0). The guides and the HDB implanted electrode were 

secured with dental cement, and two stainless steel screws (Small parts, Miami Lakes, FL, 

USA) were installed at the skull surface to hold the dental cement (Fig. 1B). After suturing the 

incised skin, local anesthesia (xylocaine 2%, Astra Zeneca, Mississauga, Canada) was 

topically administered to the wound, and the animals were returned to their cages. 

Prophylactically an anti-inflammation agent, carprofen (Rimadyl, 5 mg/kg s.c.), was 

administered to the animal. The recording site was identified by an electrolytic lesion made 

after the last VEP recording and then the electrode placement was confirmed by Cresyl violet 

staining of the fixed brain sections using a Leica DMR microscope and the rat brain atlas 

(Paxinos and Watson, 1995). This observation confirmed that the stimulating electrode was 

implanted in HDB and recording electrode was implanted in V1, respectively. We also 

verified by injecting Chicago sky blue through the push-pull cannula prior to the perfusion of 

the rat that the recording electrode in V1 was within the volume of vehicle infusion (Fig. 1C).  

VEP recording procedure 

The LFP recording method was chosen to observe cortical modification (Frenkel et al., 2006, 

Kang and Vaucher, 2009). VEPs were recorded ipsilaterally to HDB stimulation, as previously 

described (Kang and Vaucher, 2009, Kang et al., 2013). For VEP recording, the animal were  
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Table 1. Experimental groups 

Name Treatment N 

CTL sham exposure/no HDB stimulation 8 

VS/HDB X° sine-wave grating presentation/HDB stimulation/saline injection 7 

VS/HDB/PTX visual exposure/HDB stimulation/picrotoxin injection 7 

VS/HDB/muscimol visual exposure/HDB stimulation/muscimol injection 9 

VS/HDB/PZP visual exposure/HDB stimulation/pirenzepine injection 8 

VS/HDB/AFDX visual exposure/HDB stimulation/AFDX-116 injection 6 

VS/HDB/MEC visual exposure/HDB stimulation/mecamylamine injection 6 
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anesthetized (isoflurane, induction 5%, maintenance 1.5%) then placed in a stereotaxic 

apparatus and kept in the dark. The electrode guide was removed, leaving a hole in the dental 

cement over V1 where the recording electrode was inserted 0.5 mm below the dura. Visual 

stimuli were displayed on a computer monitor placed 30 cm at the right side parallel to the 

animal’s midline (left eye closed) and centered on the eye. As described previously (Kang and 

Vaucher, 2009), the visual stimulation consisted of a sine-wave grating with a 90 % contrast, 

phase converting at 0.25 Hz or of a baseline control gray screen of 0 cycle per degree (CPD) 

(Morishita et al., 2010). The electrical signal was recorded for 1500 ms. To avoid an 

orientation specific bias and verify that the cortical enhancement is not restricted to a specific 

orientation, we compared the VEP for 3 different orientations (X°: 30°, 45°, 60°) (Cooke and 

Bear, 2010; Frenkel et al., 2006). Based on the number of neurons responding (Girman et al., 

1999), orientations which were shown to evoke a weak response (i.e. 30, 45 and 60, called 

unoptimal orientation) were selected as X. Since there is a ceiling effect (no improvement of 

visual acuity possible) for an optimal orientation (Kang et al., 2013) we excluded those 

orientations (0°: horizontal and 90°: vertical). We tested whether the signal (180° phase shift) 

to baseline (grey screen) ratio varies among orientations or differs at specific spatial 

frequency. Nine different spatial frequencies (0, 0.08, 0.12, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0 CPD) of 

X° and X+90° orientation were presented in a pseudo-random manner. The same orientation 

(i.e. X°) with 0.12 CPD spatial frequency stimulus was used during visual training (7 days of 

visual/cholinergic stimulation pairing) and recording of VEP. Evoked responses were 

amplified (5,000X), filtered at 3 Hz ~ 1 kHz (Grass Inc, West Warwick, RI, USA) and 

collected with the MP100 data acquisition system and Acknowledge software (v 3.8; Biopac 

system Inc., Goleta, CA, USA). 
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VEP analysis 

Mean amplitude (signal-to-baseline) of VEPs was calculated by measuring electrical responses 

of extracellular field potentials elicited by the visual stimuli presentation. Each analysis was 

performed between 0-500 ms after the stimulus onset. The signal-to-baseline ratio was 

measured  

                          
                                     

                  
      

and averaged for each orientation and spatial frequency. Signal amplitude was obtained by 

measuring the difference between the negative peak and the positive peak of the VEPs. 

Baseline was the mean response of 40 averaged cortical responses while showing grey screen.  

Time-frequency analysis 

To examine the evolution of VEP phase over time, a short-time Fourier transform spectrogram 

function was used in Matlab (Mathworks, Nattick, MA, USA). Power spectral density (PSD) 

matrix was obtained by                   where k is a real-valued scalar defined as 

  
 

  ∑         
   

 

w(n) was 200, a rectangular window with 100 samples overlap and Fs was the sampling frequency 

which in this study was 2000 samples/s signal. The frequency resolution and time resolution was 1 Hz 

and 50 ms respectively. PSD between 30-90 Hz, which corresponds to gamma band, was summed and 

its expression was analyzed over 500 ms with a time window of 50 ms. 

Drug infusion 

All drugs were obtained from Sigma Chemical Co and dissolved in a saline solution. 

Muscimol (GABA agonist: 200 μM), Picrotoxin (GABA antagonist: 100 μM) (Kaur et al. 

(2004), Pirenzepine (M1 mAChR antagonist: 100 μM) (Sanz et al., 1997), AF-DX 116 (M2 
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mAChR antagonist: 8 nM) (Douglas et al., 2002), mecamylamine (nAChR antagonist: 10 μM) 

(Kang and Vaucher, 2009) or vehicle (saline) were freshly prepared and perfused 

intracortically (i.c., 1 µl/min, 10 min, simultaneously to visual training) using an injection 

pump (PHD, Harvard Apparatus, Holliston, MA, USA). The push-pull cannula allowed for 

excess fluids at the injection site to be discarded and limited the accumulation of the drug 

within the cortex (Figure 1B).  

Repetitive visual/cholinergic stimulation pairing  

The visual training paradigm was designed to examine whether the selective orientation 

response could be modified through visual training of a specific pattern and/or through 

cholinergic neuron stimulation. The stimulus was either a gray screen for the control group or 

a sine-wave grating (0.12 cycle/degree, orientation Xº, phase converting at 1 Hz) for other 

groups. Depending on the pharmacological agent injected during visual training rats were 

divided into seven groups:  (Table 1). During daily training, the animals were restrained for 10 

min a day for 7 days. The animals were awake with their heads fixed in a frame surrounded by 

three monitors (2 laterals and 1 frontal) placed at 21 cm away from their eyes (Fig. 1A). The 

visual stimulus was generated using VPixx software (v 2.79, VPixx technologies Inc., Saint-

Bruno, Quebec, Canada) and displayed on the three monitors (LG, luminance 37 cd/m2). This 

training was performed daily at the same time in the morning for each rat while infusing drugs 

through push-pull cannula. 

HDB electrical stimulation 

The electrical stimulation started at the beginning of the visual stimulation period and was 

delivered for 10 min (train of pulses 100 Hz, 0.5 ms, 50 μA, 1 sec on/1 sec off, Pulsemaster 

A300, WPI, Sarasota, FL) through a current source (WPI 365, WPI, Sarasota, FL). This 
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paradigm of electrical stimulation in the HDB is known to activate cholinergic system 

preferentially to GABAergic system. 

Immunohistochemistry 

The animals were deeply anesthetized with pentobarbital (54 mg/kg body weight i.p.) and 

perfused transcardially with 4% paraformaldehyde at room temperature. The brains were 

collected and post-fixed for 2 h in fresh fixative then stored in 0.1 M saline phosphate buffer 

(pH 7.4) overnight. The brains were sliced into 35 μm sections using a vibratome (Leica 

microsystems). The brain sections at the level of the visual cortex were used for double 

immuno-staining (mm from Bregma, AP -7.3 ± 0.5)(Paxinos and Watson, 1995). The sections 

were collected serially in 24-well plates and labeled accordingly to the antero-posterior level. 

The section were incubated overnight in rabbit-anti- PV (1:5000, Sigma, Saint-Louis, MS, 

USA) or rat-antiM2 mAChR (1:500, Millipore #MAB367). PV was revealed using an Alexa 

donkey anti-rabbit 488 (Molecular Probes, Eugene, OR, USA) econdary antibody and  M2 

mAChR with a donkey anti-rat (Jackson ImmunoResearch, West Grove, PA) antibody 

coupled with the Streptavidin rhodamine (Jackson).  

Confocal microscopy 

The fluorescent specimens were visualized using Leica TCS SP2 confocal laser-scanning 

microscope. Images were acquired using a 40x or 100x oil-immersion objective and were 

scanned at a 1024x1024 pixel resolution. The stack images were taken sequentially to avoid 

“bleed-through” effect. Images were captured and exported using Leica LCS software (v. 

2.61). Offline processing was done with the ImageJ software (v. 1.48, NIH, USA).  
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Statistical analysis 

Pre-training and post-training VEPs were compared within each group using a paired 

Student’s t-test. The difference in the amplitude of the VEPs and PSD of time-frequency 

analysis between each group was tested by one-way ANOVA followed by post-hoc Dunnett 

test. All statistical analyses were carried out with SPSS 19.0 for Windows 7 (SPSS Inc., 

Chicago, IL, USA) at a significance level of p < 0.05. 
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Results 

Equivalent VEPs between non-optimal orientations 

To avoid an orientation-specific bias (Frenkel et al., 2006, Cooke and Bear, 2010), 3 different 

orientations (30°, 45°, and 60°, termed X°) were used for VEP recording. There were no 

differences in VEP amplitude in response to contrast reversion for any of these three selected 

orientations (Fig. 2A); thus, the individual VEP data were further pooled together into an X° 

orientation group. Moreover, there were also no significant differences in the VEP amplitudes 

for the X+90° stimuli (i.e., 120°, 135° and 150°; data not shown) that were used to test the 

orientation selectivity of the enhanced responses to the trained stimuli. These values were also 

further pooled together for the X+90° orientation group.  

 

Increase in VEP amplitude following VS/HDB stimulation pairing 

The optimal VEP responses in the pre-training recordings were obtained for repetitive 0.08 

and 0.12 CPD (151–386 % greater than the baseline amplitudes; Fig. 2A, C). The VEP 

responses were not significantly different from the baseline level at > 0.7 CPD (2–55 % 

greater than the baseline amplitudes), which thus represents the visual acuity threshold in 

normal conditions. There were no post- vs. pre- sham-training changes in VEP amplitude in 

the CTL group for any of the spatial frequencies studied (Fig. 2B, C). However, the VEP 

response to X° was significantly increased (250–602 % greater than baseline) in the repetitive 

VS/HDB stimulation group in the post- vs. pre-training tests (86.5 – 392.5 %, paired t-test, p = 

0.026; Fig. 2D), and the post-training responses of this group were also greater than those of 

the CTL group (135.0 – 399.8 %, one-way ANOVA, F [6, 50] = 9.156, post-hoc Dunnett’s 

test, p = 0.049). This increase in VEP amplitude in the VS/HDB group was not only observed  
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Figure IV.2 Effects of repetitive VS/HDB stimulation on VEP amplitudes.  

 

 

 

Figure 2. A) Basal VEPs (signal-to-baseline ratios) in response to 30°, 45° and 60° stimuli 

orientation recorded prior to any experimental procedure. There were no differences in VEP 

amplitudes between the orientations, which were subsequently pooled into the X° and X+90° 

groups. B) Representative VEP signal traces in response to a 0.12 CPD grating for the control, 

pre- and post-training VS/HDB groups. Note that the visual cortical response increased after 

the VS/HDB training. C) VEP amplitudes from the CTL (sham training) animals in response 

to different orientations and spatial frequencies. There were no significant differences between 

the pre- and post-training values. D) VEP amplitudes in the repetitive VS/HDB stimulation 

(training) animals in response to different orientations and spatial frequencies. 

Visual/cholinergic training induced increases in VEP amplitudes in response to the exposure 

of stimulus (0.12 CPD) and higher spatial frequency stimuli (0.3-0.8 CPD). This enhancement 

was also transferred to the un-exposed orientation (X+90°; *, pre-post paired t-test, p < 0.05). 

The error bars represent ± the s.e.m.  



 

 

122 

for the trained spatial frequency (0.12 cpd) but also for higher spatial frequencies (0.3, 0.5, 0.7 

and 0.8 CPD) compared to pre-training results (Fig. 2D, paired t-test, p = 0.021, p = 0.02, p = 

0.021 and p = 0.016, respectively) or the CTL group (Fig. 3A, one-way ANOVA, p = 0.009, p 

< 0.001, p = 0.023 and p = 0.016, respectively). These results are indicative of an increase in 

V1 responses to the exposed stimulus and a transfer of this enhancement to higher spatial 

frequencies following repetitive VS/HDB stimulation. We also observed that the VS/HDB 

stimulation effect was transferred to other orientations (i.e., X+90°; Fig. 2D). The increase was 

significant compared to the pre-training result (0.12 CPD, paired t-test, p = 0.038). The 

transfer also occurred at high spatial frequencies from 0.3 to 0.8 CPD (p = 0.013, p = 0.005, p 

= 0.044, and p = 0.016). 

 

The VS/HDB stimulation effect is mediated by nAChR and mAChR action on the 

GABAergic system 

To evaluate the different pharmacological players in the effect of VS/HDB stimulation in V1, 

we locally administered different agonists and antagonists of the cholinergic and GABAergic 

receptors into V1. To varying extents, all of these drugs blocked the enhancement of the VEP 

ratio that was induced by the repetitive VS/HDB stimulation. 

Blockade of nAChRs (mecamylamine: VS/HDB/MEC) or M1 mAChRs (pirenzepine: 

VS/HDB/PZP) during each VS/HDB stimulation period disrupted the VEP amplitude 

enhancement for the trained spatial frequency such that these VEP amplitudes were not 

significantly different from the control level (ANOVA, post-hoc Dunnett’s, compared to CTL, 

p = 0.985, p = 0.965, respectively) (Fig. 3). These findings suggest that nAChR and M1 

mAChR stimulation probably mediate the effect of the cholinergic system on enhancing the 

VEP response to the trained stimulus in a long-term manner. The disruption of the  



 

 

123 

Figure IV.3 Changes in VEP amplitudes following pharmacological modulation during 

visual/cholinergic stimulation. 

 

 

 

 

Figure 3. The histograms represent the VEP signal-to-baseline percentages for the different 

groups for the trained spatial frequency of 0.12 CPD. Note that the VEP amplitude 

enhancement following the visual/cholinergic training was blocked by PTX, PZP or MEC 

injection, while muscimol and AF-DX 116 decreased the VEP amplitudes. (†, p < 0.05, 

significantly different from control group, one-way ANOVA). The error bars represent ± the 

s.e.m. (Abbreviations; MEC: mecamylamine; PZP: pirenzepine; AFDX: AF-DX 116; PTX: 

picrotoxin) 
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enhancement of the VEP amplitude by nAChR or M1 mAChR antagonists was also observed 

for all of the tested spatial frequencies (˃0.8 CPD). Antagonism of the M2 mAChR (AF-

DX116) during each VS/HDB stimulation period not only disrupted the VEP amplitude 

enhancement for the trained spatial frequency but also significantly reduced the VEP 

amplitude compared to the basal level (CTL group; one-way ANOVA, post-hoc Dunnett’s test 

compared to CTL, p = 0.032; Fig. 3). This reduction was also significant compared to the 

result prior to the administration of the drug (paired t-test, p = 0.011). These results suggest 

that the M2 mAChR likely mediates the effect of the cholinergic system on the enhancement 

of the response to the trained stimulus in a long-term manner and also contributes to the 

cortical response to the trained stimulus itself.  

We further injected GABAergic agonists and antagonists to examine whether GABAergic 

neurons were involved in the VEP enhancement due to VS/HDB. Muscimol (a GABAAR 

agonist, VS/HDB/Muscimol group) injection during each VS/HDB stimulation period 

produced results that were similar to those of AF-DX116 injection (Fig. 3); i.e., not only was 

the VEP amplitude enhancement for the trained spatial frequency disrupted, but there was also 

a significant reduction in VEP amplitude compared to the basal level (CTL group, post-hoc Dunnett’s test, 

p = 0.003). GABAAR activation also decreased the cortical response compared to the pre-training 

level (paired t-test, p = 0.003). The decrease in VEP was apparent only around the trained 

stimulus (i.e., at 0.08 and 0.12 CPD). In contrast, GABAAR inhibition via picrotoxin injection 

(VS/HDB/PTX) blocked the VEP enhancement such that the VEP response was not 

significantly different from the control level (paired t-test, p = 0.343).   
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Figure IV.4 Microphotographs of parvalbumin and M2 mAChR double-immunostaining of 

coronal brain sections.  

 

 

 

  

 

 

Figure 4. Fluorescent images were observed under a 40x (A-C) and 100x (D-F) magnification. 

Most of parvalbumin positive neurons or varicosities (magenta; A and D) were double-

immunostained (arrows) with M2 mAChR (green; B and E), whereas some M2 mAChR 

neurons did not co-express parvalbumin (arrowheads). The scale bar is 50 μm. 
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The presence of M2 mAChRs on GABAergic neurons 

Double-label immunofluorescence of PV and M2 mAChR revealed that M2 mAChRs were 

expressed on the surface of most of the PV-positive neurons and some PV varicosities in V1 

(Fig. 4), as already shown in the primate (Disney et al., 2006, Disney and Aoki, 2008). M2 

mAChRs positive neurons were occasionally expressed by some PV-negative cells. M2 

mAChRs have been shown to reduce GABA release, which suggests the possibility that the 

AF-DX116 effect might occur via disinhibition of GABAergic interneurons. 

 

Gamma band cortical oscillations increase following repetitive VS/HDB stimulation  

To evaluate the frequency changes in the cortical response to the visual stimulation, we 

performed a time-frequency analysis utilizing a short-time Fourier transformation of the VEP 

results (50 ms time window) and compared the power spectral densities (PSDs). Because 

significant differences in the PSDs were not observed across the spatial frequencies (data not 

shown), the data were pooled together, and only the orientations were analyzed in relation to 

time. The spectral analyses of the VEP results revealed that, 2 days after the repetitive 

VS/HDB stimulation, the neuronal activation in the gamma band frequency began to increase 

at 100 ms after the stimulus onset (one-way ANOVA, F [6, 53] = 2.052, post-hoc Dunnett’s 

test, p= 0.032, compared to CTL) and remained significantly different until 400 ms after the 

stimulus presentation (Fig. 5B, C). This effect was abolished by each of the drugs, which is 

suggestive of a combined action of ACh and GABA. These results suggest that the 

enhancement of the cortical response after VS/HDB pairing was correlated with an increase of 

neuronal synchronization in the gamma band frequency. 
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Figure IV.5 Time-frequency VEP analyses.  

 

 

 

 

 

 

Figure 5. A) Representative comparison of the power spectral densities (PSDs) of the pre- and 

post-training VEPs from the VS/HDB group as analyzed with the short-time Fourier 

transformation. The gamma band oscillation (30-90 Hz) gradually increased and reached a 

plateau 150-200 ms after stimulus onset (square on the figure). B) Comparison of the PSDs in 

the 150-200 ms time window after the stimulus presentation. Only the VS/HDB group 

exhibited an increase in gamma band oscillations (†, one-way ANOVA, p < 0.05). 
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Discussion 

The purposes of the present study were to (1) examine the long-term effects of pairing visual 

stimulation with electrical HDB stimulation (VS/HDB) on visual efficacy as measured with 

VEP responses and (2) to determine the neurotransmitters that are involved in this potentiation 

effect. Our results revealed that repetitive VS/HDB stimulation induced an increase in VEP 

amplitude that was sustained across subsequent visual stimulations. This increase was 

disrupted when nAChR, M1 mAChR or GABAAR antagonists were simultaneously applied in 

the VS/HDB stimulation regimen. Moreover, M2 mAChR antagonists and GABAAR agonists 

not only prevented VEP potentiation but also decreased VEP amplitudes compared to the 

control levels. Together, these results suggest that pairing visual stimulation with HDB 

stimulation can boost the V1 response to subsequent visual stimuli. This effect was mediated 

by M2 mAChRs via the disinhibition of excitatory cells and by nAChRs and M1 mAChRs via 

the facilitation of excitatory inputs. 

Repetitive VS/HDB stimulation increases sensitivity to visual stimuli  

We analyzed whether the visual training might enhance visual acuity as indicated by larger 

responses to high spatial frequencies as measured by VEP recording. The increased 

amplitudes of the VEPs in response to 0.12-0.7 CPD stimuli observed in the present study are 

indicative of enhanced visual acuity, although visual acuity was not directly behaviorally 

measured. These results agree with those of one of our previous studies that showed that 

repetitive VS/HDB stimulation induces an increase in visual discrimination capacity that is not 

restricted to the trained stimulus but extends to higher spatial frequency stimuli (Kang et al., 

2013). Furthermore, the improvement in visual discrimination shown in this previous study 

was correlated with an increase in VEP amplitudes (Kang et al., 2013; Pearson’s correlation, 
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R=0.725, p=0.001). It is probable that cholinergic stimulation during visual training improves 

stimulus sensitivity (Wesnes et al., 1983, Froemke et al., 2013) or cortical plasticity (Morishita 

et al., 2010). For example, the deletion of the lynx1 gene, which produces Lynx1 that prevents 

cortical plasticity via nAChR inhibition, reverses the loss of visual acuity in mice that are 

raised in monocular deprivation. Although direct evidence relating VEPs to perceptibility is 

needed, the increase in the electrophysiological response shown here might reflect an 

increased number of synchronized neurons during visual processing (Niedermeyer and Lopes 

da Silva, 2005, Nunez and Srinivasan, 2006). Overall, the cortical modifications that result 

from visual training might increase stimulus sensitivity, facilitate discrimination and increase 

the perceptibility of visual stimuli.  

The second main result of the present study revealed that repetitive VS/HDB stimulation 

induces a long-term increase in the V1 neuronal response to subsequent visual stimuli because 

the VEP recordings were performed 2 days after the repetitive stimulation paradigm was 

stopped. Several recent studies have demonstrated that pairing cholinergic and sensory 

stimulation can induce perceptual learning (Rokem and Silver, 2010, Bhattacharyya et al., 

2013, Froemke et al., 2013, Kang et al., 2013), and these results are comparable to the results 

presented here. Other studies have also showed that repetitive visual stimulation can increase 

long-term electrophysiological responses after perceptual learning induction in other 

modalities (Frenkel et al., 2006, Cooke and Bear, 2010). Together, these studies and the 

current results suggest that repetitive VS/HDB stimulation can improve perceptual abilities by 

eliciting long-term increases in the cortical responses to subsequent visual stimuli.  

The increases in gamma band oscillations shown in the present study suggest that the VEP 

enhancement effect is correlated with synchronized neuronal activity. It has been suggested 
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that oscillation in the gamma frequency reflects cognitive activities such as the processing of 

sensory input (Cardin et al., 2009) or attention (Fries, 2009). Previous studies have also 

demonstrated that cholinergic stimulation can increase gamma band activity (Rodriguez et al., 

2004, Pafundo et al., 2013) in a manner that is correlated with the enhancement of visual 

encoding (Goard and Dan, 2009) or contrast sensitivity (Bhattacharyya et al., 2013). In the 

present study, we observed that only the pairing of visual and cholinergic stimulation 

increased gamma band activity and the VEPs. This finding suggests that VS/HDB pairing 

promotes long-term synchronization of neuronal activities and amplifies visual information for 

transfer to higher cortical areas. 

Although structural perceptual learning tasks should stricto sensu be selective to the trained 

attributes, we did measure a transfer of the VS/HDB stimulation effect to the untrained 

orientation (i.e., X+90°). Some studies have reported that ACh release increase neurons’ 

orientation selectivities (Sillito and Kemp, 1983, Murphy and Sillito, 1991), and other studies 

have shown that the cholinergic effect results in a decrease in orientation selectivity (Muller 

and Singer, 1989, Zinke et al., 2006, Bhattacharyya et al., 2013). It can be deciphered that 

ACh release-dependent amplification of VEPs might be transferred to other neurons with 

different orientation preferences through attentional priming (Anton-Erxleben and Carrasco, 

2013). The cholinergic action on GABAergic neurons (Disney et al., 2012, Nunez et al., 2012, 

Kang et al., 2013, Yang et al., 2014), which is essential for orientation tuning (Atallah et al., 

2012, Lee et al., 2014), might also be the reason for transfer. It is possible that visual training 

induces synaptic changes that enhance sensitivity to visual information without being 

orientation-specific. 
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Pharmacological mechanisms involved in repetitive VS/HDB stimulation  

The similar reductions of the VEPs by GABAAR activation and M2 mAChR inhibition 

observed in the present study suggest that M2 mAChR activation might reduce GABAergic 

drive. This putative role is supported by the anatomical co-localization of M2 mAChRs with 

GABA neurons found here and in previous studies (Disney et al., 2006). VS/HDB stimulation 

thus disinhibits excitatory neurons via the M2 mAChR-mediated inhibition of GABAergic 

neurons as already suggested (Salgado et al., 2007, Nunez et al., 2012). Alternatively, 

excitatory AChRs are expressed at the cell surface of GABAergic neurons (e.g., M1 mAChR: 

Salgado et al. (2007) or nAChR: Ji et al. (2001), Alitto and Dan (2012)), which could explain 

the reductions in VEP amplitudes to below control levels following the blockade of M2 

mAChRs. This process might have resulted to changes to the weights of cholinergic inputs to 

the GABAergic neurons in favor of an excitatory effect. Surprisingly, GABAAR inhibition did 

not induce a significant increase in VEP amplitudes. This lack of effect could be related to the 

involvement of a reduction of GABAergic function in plasticity in the adult V1 (Harauzov et 

al., 2010). Given that neuronal activities are increase during VS/HDB pairing (Kang and 

Vaucher, 2009), it is possible that GABAAR inhibition elevates the lateral competition 

between excitatory neurons or up-regulates the baseline activity, which masks VEP 

enhancement.  

The injection of a nAChR antagonist abolished the VS/HDB training effect, which is 

consistent with the findings of a previous study (Kang and Vaucher, 2009). It has been shown 

that nAChRs regulate glutamate release in the sensory cortex (Lambe et al., 2003, Metherate 

and Hsieh, 2003, Konradsson-Geuken et al., 2009). Because nAChRs are primarily found in 

the presynaptic thalamocortical afferents in layer 4 (Gil et al., 1997, Disney et al., 2007), this 
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regulation could be a priming event that enhances the effect of repetitive VS/HDB stimulation. 

Because the activation of nAChRs has been proposed to be crucial for the induction of the 

recovery of visual acuity (Morishita et al., 2010), the increase in thalamocortical responses 

mediated by nAChRs might also be essential for the perceptual learning that is induced by 

VS/HDB stimulation.  

Similar to nAChRs, the antagonism of M1 mAChRs blocked the effects of VS/HDB training. 

Compared to nAChRs, M1 mAChRs are widely distributed in V1 (Lucas-Meunier et al., 

2009), and their functions vary depending on location (Gil et al., 1997). Although we cannot 

determine the exact actions of M1 mAChRs, they might act through a post-synaptic activation 

that would emphasize feedforward transmission (Gulledge et al., 2009) or through a pre-

synaptic reduction of inhibitory lateral connections that would decrease the lateral spread of 

thalamocortical inputs (Kimura et al., 1999) and prevent competition between feedforward 

excitations. Moreover, it has been demonstrated that the deletion of the M1 mAChR gene 

increases the receptive fields of V1 neurons (Groleau et al., 2014); i.e., the overlapping areas 

between neurons thus decrease the efficacy of feedforward connections due to competition. 

Despite this technical limitation, it is likely that pre-synaptic M1 mAChRs focus 

thalamocortical inputs and promote the transmission of visual training effects by increasing 

the feedforward response at the post-synaptic level.  

 

In summary, ACh and glutamate release during repetitive VS/HDB stimulation enhance 

feedforward processing through (i) nAChRs, increasing thalamocortical transmission; (ii) M1 

mAChRs, resulting in a restriction of lateral spread); and (iii) M2 mAChRs, which may 

disinhibit neighboring neurons and enhance cortical activity during visual processing via the 
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inhibition of GABAergic drive. Visual function is amplified by the synchronized neuronal 

activity in the gamma band that is induced by VS/HDB pairing. Repetitive VS/HDB 

stimulation is a novel method that can improve visual capacity by facilitating perceptual 

learning.  
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Abstract 

 

The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical 

plasticity, attention and learning. In this review, we propose that the cellular effects of 

acetylcholine in the primary visual cortex during the processing of visual inputs might induce 

perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of 

cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection 

ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement 

would increase the strength of thalamocortical afferents to facilitate the treatment of a novel 

stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down 

modulation. This balance would be mediated by different cholinergic receptor subtypes that 

are located on both glutamatergic and GABAergic neurons of the different cortical layers. The 

mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term 

potentiation and modulation of the excitatory/inhibitory balance. Recently, it was found that 

boosting the cholinergic system during visual training robustly enhances sensory perception in 

a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory 

stimulation over a long period of time induces long-term changes in the processing of trained 

stimuli that might improve perceptual ability. Various non-invasive approaches to the 

activation of the cholinergic neurons have strong potential to improve visual perception.  

 

 

Keywords: attention, cholinergic system, cognitive enhancement, cortical plasticity, nicotinic 

receptors, muscarinic receptors, perceptual learning, visual cortex. 
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INTRODUCTION 

 

Boosting the brain’s functioning during rehabilitation paradigms might help individuals with 

cognitive or sensory deficits to better recover their abilities. In this review, we will examine 

how the cholinergic system might help in this regard by specifically focusing on visual 

function. Recent knowledge about the cellular and functional organization of the primary 

visual cortex (V1) is particularly interesting for the deciphering of the neurobiological 

mechanisms of perceptual learning and its modulation by the cholinergic system. V1 is the 

first cortical step of the integration of complex visual stimuli and is decisive in the selection of 

specific stimuli from the visual field. This process further orients processing in higher 

cognitive cortical areas involved in elaboration of fine visual conscious perception. Thus, 

cholinergic modulation of visual processing in V1 would have strong effects on the fine-

tuning of perception and the acquisition of memory traces. 

 

Perceptual learning is the long-term improvement of the ability to detect or discriminate 

specific sensory stimuli without interfering with or diminishing other skills that results from 

training over a sustained period of time (Fahle and Poggio, 2002, Fahle, 2009, Roelfsema et 

al., 2010). In vision, improvements in the discrimination of specific attributes of a stimulus, 

such as its orientation (Ramachandran and Braddick, 1973, Fiorentini and Berardi, 1980, 

Mayer, 1983), contrast (Hua et al., 2010) or vernier acuity (McKee and Westheimer, 1978), 

have been demonstrated using such paradigms. Increases in visual capacity should go together 

with increases in the numbers of neurons that encode the trained stimulus in the V1 and the 

expansions of the cortical maps that represent the stimulus (Kilgard and Merzenich, 1998). 

The signal-to-noise ratio is usually increased. The connectivity between neurons and 
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efficiency of the neuronal transmission, i.e. the strength of the input they transmit as well as 

the short processing time, should also be increased. Changes in dendritic spines number, 

morphology and synaptic plasticity (i.e., long-lasting modifications of the strength of the post-

synaptic electrical signal) have also been demonstrated during perceptual learning (Gilbert and 

Li, 2012). However, it should be assumed that the neurons involved in perceptual learning 

increase the amount of information that they carry while preserving their primary selective 

response properties (Gilbert et al., 2001). Perceptual learning is also facilitated either by 

attention (Ahissar and Hochstein, 1993) or reinforcement by reward expectation (Seitz et al., 

2009); both of these process enhance neuronal transmission efficiency.  

 

Perceptual learning or increased cortical processing of specific stimuli is generally achieved 

with repetitive training. It has been recently suggested that it can also be boosted by 

neuromodulation and extrinsic control of the cerebral neuromodulatory systems by electrical 

or pharmacological means. The cholinergic system, which uses acetylcholine (ACh) as a 

neurotransmitter, is particularly relevant because it widely innervates V1 and alters the 

efficiency of neurons. The injection of ACh or its analogs into V1 has been shown to increase 

neuronal responses and trigger synaptic plasticity (Gu, 2003) and cortical plasticity (Bear and 

Singer, 1986). More specifically, the administration of ACh during visual processing increases 

thalamocortical input while reducing intracortical recurrence (Gil et al., 1997, Disney et al., 

2007, Soma et al., 2013a) and thus enhances specific stimulus processing and output. This 

diversity of the actions of ACh is due to the ubiquitous localization of both ionotropic 

nicotinic receptors (nAChRs) and metabotropic muscarinic receptors (mAChRs) in V1 (Levey 

et al., 1991, Disney et al., 2006, Amar et al., 2010), which are involved in the facilitation of 
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cortical activity and synchronized cortical activity. In addition to the direct and acute effects of 

ACh, an increasing number of studies have recently shown that repetitive cholinergic 

activation of the visual cortex has also the ability to enhance visual perception. The repetitive 

pairing of ACh release with exposure to a visual stimulus improves several visual capacities, 

such as contrast sensitivity (Mayer, 1983, Hua et al., 2010), motion detection (Rokem and 

Silver, 2010), working memory (Furey et al., 2000, Bentley et al., 2004), texture 

discrimination (Beer et al., 2013) and visual acuity (Kang et al., 2013) in both humans and 

animals. Many animal studies have also demonstrated the involvement of the cholinergic 

system in perceptual learning in different sensory modalities, including olfaction (Wilson et 

al., 2004) and audition (Bakin and Weinberger, 1996). These improvements suggest that 

paired visual and cholinergic stimulation induces perceptual learning possibly via synaptic and 

cortical modifications linked to attention mechanisms (Herrero et al., 2008) or reward 

expectation (Chubykin et al., 2013) and cortical plasticity.  The repetition of such pairings 

would result in a more efficient processing and increased automaticity of visual stimuli. This 

could be related to reduced strength of connectivity between attention regions and V1 

(Ricciardi et al., 2013) and a role of ACh in perceptual inference and repetition suppression 

(Moran et al., 2013).  

 

Our research hypothesis proposes that cholinergic effects in V1 contribute to perceptual 

learning and can thus be used to voluntarily develop one’s brain capacity and aid the 

restoration of visual function. In the present review, we will discuss how ACh might improve 

perceptual capacities, particularly during repetitive stimulation paired with visual stimulation, 

which are related to its roles in the long-term enhancement of cortical responsiveness and  
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Figure V.1 Hypothesis of the effect of the cholinergic system on visual perception.   

Figure 1. Increase of perceptual capacity (perceptual learning) can be obtained by naturally or 

artificially activating the cholinergic system during sensory training. This perceptual learning 

might be achieved by long-term facilitation of cortical responses and/or change of the 

excitatory/inhibitory balance. (A) Representation of the improvement of visual perception in 

the rat by pairing the presentation of a specific sinusoidal grating coupled to cholinergic 

system activation (represented by injection of acetylcholine, ACh)  (B) Long-term 

enhancement (LTE) of the cortical responses by acetylcholine (upper path) share common 

features with classical long-term potentiation (LTP, lower path): visual stimulation of 

presynaptic input evokes small responses (represented by a resulting small VEP signal 

waveform) in post-synaptic neurons. If paired to cholinergic activation, the presynaptic 

stimulation induces a long-term enhancement of neuronal responses (upper path, represented 

by an increased VEP signal waveform). This mechanism is similar to LTP where theta-burst 

stimulation (100 Hz) in lateral geniculate nucleus induces an increase of postsynaptic 

potentiation in the cortex (lower path). VEP signals are imaginary waveform to compare 

neuronal response magnitude, as recorded in our previous experiments. (C) Cortical plasticity 

induced by ACh could also result from a change in excitatory and inhibitory balance by 

changing the strength of the excitatory synapse over inhibitory synapses, resulting in long-

term modification of cortical responses.   
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cortical plasticity (Fig. 1). Specifically, we will first discuss the diverse effects of ACh on V1 

neuron function and connectivity and relate these effects to the background theory of the 

cholinergic modulation of neural mechanisms and brain function. To assess these neuronal 

mechanisms, we will primarily discuss studies that have been performed in rodents and non-

human primates (for more information about cholinergic effects on human cognition, see 

Drevets et al. (2008), Bentley et al. (2011)).  

 

 

ORGANIZATION OF THE CHOLINERGIC SYSTEM IN V1 

 

Cholinergic fibers are distributed throughout the cortical layers of V1 (Lysakowski et al., 

1989, Avendano et al., 1996, Mechawar et al., 2000), which suggests that ACh might affect 

every step of visual processing (Fig. 2A).  

Local effect of the cholinergic fibers 

The cholinergic system influences the local network by diffuse transmission rather than by 

synaptic transmission (Descarries et al., 1997, Yamasaki et al., 2010). This property is related 

to the fact that ACh is released from the varicosities that are distributed along the cholinergic 

axons and that these varicosities show only rare synaptic organizations at the ultrastructural 

level (Umbriaco et al., 1994, Vaucher and Hamel, 1995, Mechawar et al., 2000). However, the 

modulation of the cortex by ACh is not widespread and is primarily selective and adapted to 

the local microfunction due to the differential distribution of varicosities along the cholinergic 

axons (Zhang et al., 2011) and the differential distribution of the cholinergic receptor subtypes 

on different neuronal targets. Moreover, ACh release might be triggered by local neuronal 

activity to induce locally restricted rather than generalized action of the cholinergic system 

(Laplante et al., 2005).  
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Figure V.2 Schematic representation of the primary visual cortex (V1) and its cholinergic 

modulation on cortical processing. 

 

 

Figure 2. (A) Thalamocortical afferent (light blue fibers) from lateral geniculate nucleus 

conveying stimulus information reach spiny stellate neuron in the layer IV. The input is 

transferred to the layer II/III, then layer V and to higher visual area. The cholinergic activation 

modulates the visual processing in virtually all the levels of V1 connectivity by nicotinic 

(green cylinder) and muscarinic (7 transmembrane domains molecules) receptors. B) Cortical 

processing after VS/HDB training. The cortical processing for the trained stimulus is 

significantly enhanced after VS/HDB training but un-trained stimulus processing is not 

affected. Note that the input from the thalamus is similar but the feedforward propagation is 

increased. Excitatory influences are shown in blue arrows. The strength of the response 

enhancement is represented by the contrast of the arrow. Layer VI and horizontal connections 

are omitted for clarity. 
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The variety of the cholinergic receptors and their distributions convey subtype-specific 

functions (Thiele, 2013, Groleau et al., 2014). In V1, AChRs exhibit differential subtype 

densities across the cortical layers (I-VI)  on both excitatory (Gulledge et al., 2009, Thiele, 

2013) and inhibitory neurons (Hashimoto et al., 1994). The distinct actions of cholinergic 

receptors can be related to differences in the conductances of the ionotropic receptor nAChRs 

for Na
+
, K

+
 (α4β2) and Ca

2+ 
(α7) (Rang, 2003) and in the intracellular pathways of the different 

subtypes of the G-protein coupled mAChRs. Amongst the five mAChR subtypes identified, 

the M1, M3 and M5 mAChRs are coupled with Gq/11 proteins, which activate 

phospholipase C and lead to increases in intracellular Ca
2+

 and the M2 and M4 mAChRs are 

bound with Gi protein that inhibits adenylyl cyclase, which leads to a decrease in cAMP, the 

inhibition of voltage-gated Ca
2+

 channels and an increased K
+
 efflux (Caulfield and Birdsall, 

1998, Wess, 2003). In addition, M1 promotes the opening of NMDARs and induces LTP in 

the hippocampus (Buchanan et al., 2010, Giessel and Sabatini, 2010) .  

 

Cholinergic fibers activation in V1 

Stimulation of the cholinergic system in V1 can be achieved via the administration of ACh 

analogs (e.g., carbachol), cholinergic receptor agonists (e.g., nicotine and selective mAChR 

drugs) or cholinesterase inhibitors or through electrical or optogenetic stimulation of the 

cholinergic neurons that project to V1. The cholinergic neurons that project to V1 are located 

in the basal forebrain (BF), particularly the ventral pallidum, substantia innominata and the 

horizontal limb of the diagonal band of Broca (HDB) (Gaykema et al., 1990, Laplante et al., 

2005). Although the nucleus basalis magnocellularis is the main cholinergic nucleus of the BF 

which innervates the cortical mantle, it projects only weakly to V1 (Luiten et al., 1987, 
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Vaucher and Hamel, 1995); nevertheless, some studies report that the stimulation of this 

nucleus might induce functional changes in the visual cortex (Goard and Dan, 2009, Pinto et 

al., 2013). Moreover, although there are GABAergic neurons in the BF, many studies have 

confirmed that the effects of BF stimulation are identical to those of intracerebral injections of 

ACh agonists and are primarily mediated by the cholinergic fibers (Dauphin et al., 1991, Ma 

and Suga, 2005, Dringenberg et al., 2007, Kocharyan et al., 2008, Kang and Vaucher, 2009). 

There are also intrinsic cholinergic neurons that represent only 10-15% of the total cortical 

innervation (Eckenstein et al., 1988, Chedotal et al., 1994), and the involvement of these 

neurons in cortical processing remains unclear.  

 

 

ACETYLCHOLINE MODULATES THE FLOW OF VISUAL INFORMATION IN V1 

 

The efficiencies of the cortical inputs and outputs are altered by the different cholinergic 

receptors in both the glutamatergic and GABAergic systems according to the cortical layer, 

neuron and receptor subtype reached by ACh (Fig. 2).  V1 integrates visual information via 

different pathways that include the following: the feedforward thalamocortical pathways, V1 

intracortical connectivities, and the feedback influence from higher cortical areas (Fig. 3). The 

visual information arriving to layer IV of V1 from the lateral geniculate nucleus (LGN) is 

considered to be the dominant thalamocortical visual pathway. In contrast, the intracortical 

pathway might arise from neighboring neurons, local recurrent axons or more broadly from 

horizontal networks. The cholinergic system induces facilitation, suppression or does not 

affect the visual cells. Direct local effects of ACh might be opposed to the indirect effects of 

ACh due to neuronal interactions across layers. The general picture of the cholinergic 

influence on V1 is that the response to a stimulus is increased by cholinergic modulation in the  
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Figure V.3 Neuronal connectivity within the primary visual cortex (V1). 

 

 

 

 

 

 

 

 

 

 

Figure 3. Neurons from V1 receive thalamocortical (in blue) and corticocortical inputs 

originating from upper cortical areas (feedback control, in brown). The thalamocortical 

information is integrated within V1 and further transmitted to upper cortical areas 

(feedforward transmission). The activation of neurons might enhance activation or inhibition 

of neighboring neuron by the horizontal connections or through the local inhibitory 

interneurons. Recurrent connections auto-regulates neuronal activity (see text for more 

details). Excitatory effect is expressed as green color and inhibitory effect as red.   
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thalamocortical pathway while the intracortical influence is suppressed. The cholinergic 

influence described in the following paragraph represents the acute effects in V1 that can 

participate in attention and trigger perceptual learning. The effects of the cholinergic system 

on long-range corticocortical relationships are also of interest but are beyond the scope of this 

review. 

 

Cholinergic modulation of thalamocortical inputs 

Cortical responses to sensory stimuli transmitted by the LGN are amplified during learning 

and experience-dependent plasticity to emphasize relevant information (Sarter et al., 2005, 

Wang et al., 2013). These thalamic afferents are of prime relevance because they define the 

receptive fields and other properties of V1 neurons. Complex information is extracted 

according to its properties (e.g., orientation) via projections to different columns (in primates) 

or specific cells (in rodents). Cholinergic activation in this layer induces a general increase in 

responsiveness regardless of the features of the visual stimuli (e.g., orientation; Disney et al., 

2012), which allows the cortex to respond reliably to weak stimulation (Disney et al., 2007). 

ACh increases the thalamocortical input through presynaptic nAChRs on the thalamocortical 

fibers (Gil et al., 1997, Disney et al., 2007) (Fig. 2A, 4). The M1 mAChR also amplifies the 

spiny stellate cell/pyramidal cell response through a postsynaptic intracellular pathway (Gu, 

2003), but inhibition through the M4 mAChR has also been observed on spiny neurons in the 

somatosensory cortex (Eggermann and Feldmeyer, 2009). Interestingly, the cholinergic 

facilitation of thalamocortical inputs in sensory cortex slices is ACh-concentration dependent. 

High doses of ACh enhance the thalamocortical afferents both in vitro and in computational 

models (Hasselmo, 2006, Deco and Thiele, 2011). Together, these results indicate that, under 
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conditions of high levels of ACh release, the enhancement of the thalamocortical inputs in 

layer IV facilitates the transmission of sensory information and induces experience-dependent 

plasticity (e.g., learning). 

 

Cholinergic modulation of intracortical interactions 

In addition to the enhancement of thalamocortical inputs, ACh might modulate intracortical 

connectivity either by suppressing lateral inhibition (Kimura and Baughman, 1997, Metherate 

et al., 2005, Metherate, 2011) or suppressing the spread of the excitation of thalamic inputs 

(Kimura et al., 1999, Silver et al., 2008). The presynaptic mAChRs that are located on the 

glutamatergic fibers induce a suppression of the intracortical neurons (Gil et al., 1997), 

although the inhibition of GABAergic terminals induces a disinhibition of the pyramidal cells 

(Ji and Dani, 2000, Christophe et al., 2002, Seeger et al., 2004, Salgado et al., 2007). 

Intracortical connectivity modulates the response intensity and the output of V1 neurons (Fig. 

3). The lateral connections also synchronize the firing of similar neuronal populations (Gilbert 

and Wiesel, 1989, Lien and Scanziani, 2013), which allows for lateral correlation between 

neurons with similar orientation preferences during typical perceptual learning tasks (e.g., the 

Vernier acuity test) (Ramalingam et al., 2013). The differential action of ACh on lateral 

connections might simultaneously enhance specific modules of the same orientation (lateral 

correlation) while depressing adjacent irrelevant modules (McGuire et al., 1991, Stettler et al., 

2002). A recent study using optogenetics showed that inhibition of the intracortical excitatory 

neurons leads to a receptive field reduction (Li et al., 2013), and this finding is consistent with 

the effect of ACh release in V1 (Roberts et al., 2005, Zinke et al., 2006) and the increases in 

the population receptive fields of M1/M3 mAChR knock-out mice (Groleau et al., 2014). 
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Furthermore, an ACh esterase inhibitor reduces surround suppression in a perceptual study in 

humans (Kosovicheva et al., 2012), which could be  indicative of a weakening of lateral 

connections. Hasselmo (2006) proposed that high ACh levels suppress the magnitude of 

feedback excitation, whereas low ACh levels result in weaker afferent input to the cortex. 

Similarly, Deco and Thiele (2011) also proposed that high ACh levels decrease the 

intracortical interactions and that low ACh increase these interactions. The hypothesis of these 

authors was confirmed in an in vitro study that showed that the enhancement of the recurrent 

cortical activity in low-dose ACh conditions was independent of the thalamocortical input 

(Wester and Contreras, 2013). Together, these results suggest that during intense ACh release, 

the intracortical connections are inhibited, which relieves the sensory cortices from recurrent 

connections. However, in low concentration ACh situations, the lateral connections might 

amplify the thalamocortical activity amongst similarly tuned neurons.  

 

These effects have primarily been recorded within layer II/III; however, in layers I, V and VI, 

which are primarily involved in feedback mechanisms, ACh might also influence feedforward 

processing by interacting with neurons in layers IV and II/III (De Pasquale and Sherman, 

2012). Layer I neurons are densely innervated by the cholinergic projections (Vaucher and 

Hamel, 1995, Mechawar et al., 2000). It has been shown that inhibitory actions mediated by 

AChRs can suppress layer II/III (Zinke et al., 2006, Alitto and Dan, 2012, Soma et al., 2013b) 

and layer V pyramidal neuron activity (Lucas-Meunier et al., 2009, Amar et al., 2010) and can 

also inhibit the cortical GABAergic network and thus result in the disinhibition of the majority 

of the cortical layers (Christophe et al., 2002). It has been observed that local ACh application 

primarily suppresses the activity of layer VI neurons (Disney et al., 2012), which can alter the 
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activation of all of the layers of V1 in a linear manner via the intracortical pathway (Olsen et 

al., 2012) and alter the activation of the thalamocortical fibers (Cudeiro and Sillito, 2006, 

Sillito et al., 2006). Cholinergic action might thus disinhibit the activities of other layers by 

suppressing layer VI. Topical injections of ACh into layer V produce the predominant effect 

of facilitation of the regular and fast-spiking cells (Soma et al., 2013b), although local ACh 

activation seems to decrease excitatory drive through presynaptic M1 mAChRs (Kimura and 

Baughman, 1997) and to increase inhibitory drive through M3 mAChRs (Amar et al., 2010). 

Similarly, an increase in the activation of GABAergic neurons activation in layer V has been 

observed following repetitive BF/visual pairing (Kang et al., 2013). Layer V pyramidal 

neurons send dense projections to the superior colliculus and diverse thalamic nuclei that are 

involved in focused attention.  

 

Finally, ACh can promote the co-activation of different cortical areas and layers which might 

be an efficient method for the selection of visual information via a summation of the 

temporally coincident presynaptic spikes (Fries et al., 2007). It has been shown that visually 

driven gamma power is differentially distributed across the layers of V1 (Xing et al., 2012) 

and that gamma oscillations can be induced by cholinergic stimulation (Rodriguez et al., 2004, 

Bhattacharyya et al., 2013).  

 

In conclusion, basal forebrain stimulation that facilitates the release of ACh in multiple layers 

of V1 might act in diverse manners and results in the enhancement of visual stimulus-driven 

responses. The pre-amplified responses of layer IV are filtered out by GABAergic neurons of 

layer II/III to transfer task-relevant information to higher visual cortical areas. The activated 
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synaptic connections can be modulated by layers V and VI or by the feedback mechanism of 

layer I. Differential responses across layers might be integrated by the synchronization of their 

activities in the gamma-band to facilitate visual processes.  

 

 

CELLULAR EFFECTS OF ACETYLCHOLINE IN V1-RELATED ATTENTION  

 

Most of these cellular mechanisms contribute to attentional mechanisms in V1. Attention 

increases the cortical response to stimuli (i.e., the signal) while lowering interference from the 

background (i.e., the noise). Several animal studies have described deficits of attention 

following cholinergic lesions or injections of cholinergic antagonists (Voytko et al., 1994, 

McGaughy and Sarter, 1998, 1999) and ACh has been shown to be involved in attention in V1 

(Herrero et al., 2008). However, ACh release promotes rather than initiates attention (Reed et 

al., 2011). Because ACh-mediated attention and perceptual learning have crucial effects on 

each other, the role of ACh during visual attention is delineated in the following section to 

better understand how ACh enhances cortical functioning.  

 

Cholinergic involvement in bottom-up and top-down attention 

ACh has been suggested to control the balance between bottom-up and top-down processing 

through attentional mechanisms (Yu and Dayan, 2002, Sarter et al., 2005, Yu and Dayan, 

2005). This influence is mediated by pre-synaptic thalamocortical nAChRs (Gil et al., 1997, 

Disney et al., 2007). Attention that is prompted by the properties of a stimulus, i.e., the 

saliency of the stimulus relative to the background, is said to be bottom-up attention, whereas 

attention that is prompted by the voluntary direction of focus toward a specific stimulus is 

defined as top-down attention. Although it can be difficult to separate bottom-up and top-
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down attentional control (Ansorge et al., 2010, Egeth et al., 2010, Eimer and Kiss, 2010, 

Theeuwes, 2010), some studies have shown that cholinergic activity influences bottom-up 

attention. The effect of ACh on bottom-up attention might occur not only in V1 but also in 

early processing areas such as the thalamus. For example, the direct injection of 192-IgG 

saporin into the BF causes a complete loss of cholinergic projections to the neocortex but 

causes restricted fiber lesions when injected into V1. The injection of 192-IgG saporin into the 

BF but not V1 affects performance in the sustained attention task (McGaughy and Sarter, 

1998, 1999). In addition, compared to controls and ex-smokers, human smokers have been 

shown to exhibit increased subcortical activity during an attentional task (Nestor et al., 2011). 

These data indicate that attentional dysfunction following cholinergic lesions might be due to 

the disruption of detection processes that are independent of V1. However, there is no direct 

evidence of cholinergic enhancement effect in bottom-up attention in human studies (Rokem 

et al., 2010). In contrast, there is a growing body of evidence showing that ACh is involved in 

top-down attention. Direct effects of ACh on attention in the visual cortex have been measured 

(Herrero et al., 2008, Bauer et al., 2012). Specifically, Herrero and colleagues provided direct 

evidence that ACh in V1 enhances the cortical response to an attentional demand (Herrero et 

al., 2008). It has also been shown that lesions to the cholinergic system impair attention 

performance and increase neuronal activity in the PFC upon the presentation of distractors 

(which trigger top-down attention) (Gill et al., 2000). Taken together, these results indicate 

that ACh can facilitate task-relevant learning in V1 by promoting attentional states in both top-

down and bottom-up manners. 

Cholinergic modulation of response gain 
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Response gain modulation by ACh has frequently been observed (Disney et al., 2007, 

Aggelopoulos et al., 2011, Bhattacharyya et al., 2013, Soma et al., 2013a) and follows the gain 

control model at least in terms of the contrast-response function. Increasing thalamocortical 

pathway input in a context-independent manner while context-dependent intracortical 

suppression occurs might facilitate the transmission of information related to novel stimuli. In 

V1, context-dependent (i.e., increases in the maximal response) and independent (i.e., 

increases in the baseline response) gain control due to cholinergic effects have both been 

observed (80% and 20%, respectively) without any laminar bias (Soma et al., 2013b). These 

findings could be related to the optimization of the gain of supragranular pyramidal cells 

controlled by ACh which could result in the detection of novel stimuli and hence perceptual 

learning (Moran et al., 2013). Interestingly, gain modulation was proposed as function that 

underlies of attentional control (Keitel et al., 2013) and network connectivity (Haider and 

McCormick, 2009). The high gain that results from the amplification of the responses of 

excited neurons is similar to attention processes (Servan-Schreiber et al., 1990, Eldar et al., 

2013) and hence facilitates learning. Taken together, these results suggest that ACh might 

assist in visual perceptual learning via modulation of cortical responses through gain control in 

both stimulus-dependent and -independent manners.  

 

 

CELLULAR EFFECTS OF ACETYLCHOLINE IN V1 IN RELATION TO 

CORTICAL PLASTICITY  

 

Learning and perceptual learning are sustained by cortical plasticity which triggers anatomical 

reorganization of the cortical connectivity. The cholinergic system plays also a key role in 

cortical plasticity. For example, the blockade of cholinergic activation via cholinergic 

antagonists or cholinergic fiber lesions results in robust impairment of learning in rats (Conner 
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et al., 2003, Dotigny et al., 2008) and ocular dominance plasticity in kittens (Bear and Singer, 

1986). In acute preparations, cholinergic pairing is also involved in plasticity as observed in 

the cat auditory cortex; the application of ACh during acoustic processing alters the receptive 

fields of single neurons in a tone-specific manner (Metherate and Weinberger, 1990). The 

pairing of cholinergic and auditory stimulation also leads to the reorganization of the cortical 

map (Kilgard and Merzenich, 1998); i.e., an enlargement of the representation of the 

specifically trained frequency. Cholinergic pairing with sensory stimulation also induces long-

lasting effects on cortical responsiveness observed in both the visual cortex (Dringenberg et 

al., 2007, Kang et al., 2013) and the somatosensory cortex (Verdier and Dykes, 2001). Cortical 

plasticity is essential for the occurrence of perceptual learning (for review see Fahle (2009), 

although not systematic, cholinergic-sensory paired activation would thus facilitate the 

induction of perceptual learning in the sensory cortices (Reed et al., 2011).  

 

Cholinergic modulation of long-term cortical responsiveness 

At the neuronal level, ACh has been shown to contribute to cortical plasticity through both the 

acute and long-term modulation of synaptic responses (Sato et al., 1987, Soma et al., 2012). 

The impairment of learning by cholinergic antagonists is similar to the effect of blocking 

cortical plasticity mechanisms and long-term potentiation (LTP) with NMDA 

receptor (NMDAR) antagonists (Morris et al., 1986, Artola and Singer, 1987, Cooke and Bear, 

2010). In most situations, LTP in the visual cortex induced by high theta-burst stimulation 

(100 Hz) (Heynen and Bear, 2001, Dringenberg et al., 2007) has been found to be NMDAR-

dependent. Interestingly, cholinergic system-induced cortical plasticity has also been found to 

be NMDAR-dependent (Verdier and Dykes, 2001, Dringenberg et al., 2007, Kang and 
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Vaucher, 2009) but independent of theta-burst stimulation (Kirkwood et al., 1999)(Fig. 1B). 

Previous studies in hippocampal slices have shown that NMDAR opening during LTP 

induction is facilitated by mAChR activation (Buchanan et al., 2010) and administration of 

ACh to pyramidal neurons (Shinoe et al., 2005). Additionally, NMDAR-dependent long-term 

facilitation of synaptic responses is associated with ACh release in V1, and LTP is impaired in 

the visual cortices of mAChR knock-out mice (Origlia et al., 2006).  

 

Cholinergic modulation of the excitation-inhibition balance 

Another contribution of the cholinergic system to cortical plasticity mechanisms in V1 is the 

alteration of the excitatory and inhibitory (E-I) balance (Fig. 1C). The excitatory and 

inhibitory synaptic inputs tend to equilibrate during maturation to optimally tune the neurons 

according to sensory experiences (Hensch et al., 1998, Sun et al., 2010) during the critical 

period; i.e., the post-natal time window during which mammals visual cortices are highly 

plastic that terminates with the maturation of the neurons. It has been proposed that disrupting 

the E-I balance can re-open the critical period after maturation (Hensch, 2004). 

Neuromodulation can also disrupt the E-I balance and contribute to cortical plasticity. Recent 

studies have also demonstrated numerous examples of cortical plasticity that are modified by 

the inhibitory system (Hensch, 2005). The onset of the critical period is accelerated by 

GABAA inhibitory receptor activation (Fagiolini and Hensch, 2000, Iwai et al., 2003). 

Conversely, it is also possible to re-induce plasticity after the critical period by reducing the 

inhibitory drive via the injection of GABAA receptor antagonists (Harauzov et al., 2010). As 

the inhibitory system is strongly modulated by the cholinergic system through the protein 

Lynx1 (Takesian and Hensch, 2013), which acts as a brake on nAChR-dependent plasticity 
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(Morishita et al., 2010), by nAChRs (Christophe et al., 2002, Arroyo et al., 2012), or by 

mAChRs (Salgado et al., 2007), cholinergic activation might modulate the E-I balance and 

facilitate cortical plasticity  in adults that would promote perceptual learning. An interaction 

between the cholinergic and GABAergic systems has been shown to occur following BF 

stimulation that increases the activation of PV+ (Christophe et al., 2002) neurons through 

mAChRs (Dotigny et al., 2008, Alitto and Dan, 2012). Interestingly, Alitto and Dan used an 

optogenetic method to show that the nAChRs on vasoactive intestinal peptide-positive (VIP+) 

neurons and layer I neurons can inhibit excitatory and PV+ neurons (Christophe et al., 2002). 

 

The cholinergic modulation of V1 thus promotes cortical plasticity through LTP-like long-

term enhancement of synaptic responses to subsequent presentations of a visual stimulus and 

through control of the excitatory-inhibitory balance that regulate the strength of cortical output 

and internal connectivity. The cortical plasticity induced by cholinergic stimulation could 

transfer the acute cholinergic effect into long-term scale to produce visual precision. 

 

  

REPETITIVE CHOLINERGIC STIMULATION TRIGGERS PERCEPTUAL 

LEARNING  

 

In summary, acute effects of cholinergic activation might amplify the thalamocortical response 

that promotes the transmission of sensory inputs. Intensive release of ACh might also inhibit 

intracortical interactions and relieve the internal brake on processing in the sensory cortices. 

Simultaneously, neurons with similar tuning characteristics (e.g., orientation) are co-activated 

via lateral connections to enhance the transfer of visual information. This cholinergic 

alternation might contribute to gain control modulation in both stimulus-dependent or and -

independent manners and prioritize the processing of selected visual stimuli; this process 
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might be linked to attention and is the first step of perceptual learning. The cholinergic 

activation also induces the NMDAR-dependent LTP-like long-term enhancement (i.e., cortical 

plasticity) and relief of the brakes on plasticity by altering the E-I balance. The repetitive 

coupling of visual and cholinergic stimulation results in reinforcement of all of these acute 

mechanisms and generates gamma-band synchronization. This would result in the 

consolidation of the synaptic strengths of new and existing neuronal connections, facilitation 

of the processing of certain thalamocortical inputs while suppressing others. It has been shown 

that increases in the cortical responses by expanding the number of neurons to a stimulation 

(via increases in the strength of the connections) would improve perceptual capacity (Anton-

Erxleben and Carrasco, 2013). The repetitive cholinergic-visual stimulation would also 

increase the efficiency and automaticity of these selected pathways. These processes 

contribute to perceptual learning.  

 

Repetitive cholinergic stimulation promotes long-term potentiation 

As mentioned above, ACh can induce NMDAR-dependent long-term modifications of 

postsynaptic glutamatergic neurons which are related to memory formation. The opening of 

the NMDAR launches a second messenger cascade and guides the expression of synaptic 

glutamate receptors (Regehr and Tank, 1990, Zhong et al., 2006) but also activates 

autoregulated kinases that confer a persistent improved response of the neuron to the stimulus. 

Immunohistochemistry for the c-Fos, which is an immediate early gene and also a 

transcription factor for synaptogenesis genes, has revealed that c-Fos is increased in layer II/III 

pyramidal neurons following a repetitive BF/visual stimulation (Kang et al., 2013), which may 

be indicative of the formation of new synapses and LTP mechanisms. Repetitive pairing of the 
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cholinergic and visual stimulation also induces morphological reorganization, i.e. increase in 

the numbers of cholinergic varicosities in the proximity of the neurons that are sensitive to the 

orientation of the stimulus (Zhang et al., 2011). This increased number of cholinergic inputs, 

along with postsynaptic mechanisms, would increase and consolidate the response of the 

activated neurons to ameliorate its long-term efficiency. Thus repetitive cholinergic 

stimulation might enhance the encoding of the memory and morphological modifications. 

 

Repetitive cholinergic stimulation promotes stimulus selection and amplification 

We suggest that selection of decisive inputs is controlled by the cholinergic system and 

contributes to the specific enhancement of a particular stimulus in perceptual learning. 

Modulation of the orientation selectivity of the neurons provides a great example of the 

possible improvement of perceptual sensitivity. Training of the rat to a preferred or a non-

preferred orientation might increase the cortical response for this orientation (Cooke and Bear, 

2010) (Fig. 4). These mechanisms are facilitated by repetitive cholinergic activation, which 

improve orientation discrimination of human or rats (Rokem and Silver, 2010, Kang et al., 

2013). Repetitive cholinergic stimulation coupled with a certain orientation stimulus might 

favor the discrimination of this stimulus by two different cellular mechanisms (Fig. 4). First, 

ACh can harmonize the activation of the whole dendritic tree of layer II/III neurons to 

preserve their orientation selectivity and confer responsiveness to new orientation - the 

dendrites of the layer II/III neurons receive inputs randomly over all of their branches, some of 

which are selective for the neurons’ un-preferred orientations (Jia et al., 2010). Second, the 

cholinergic system can enhance orientation discrimination through its interaction with the 

GABAergic system which assists in the sharpening (Isaacson and Scanziani, 2011) of the 
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convergent input in the layer II/III neurons (Nassi and Callaway, 2009) but also filters out 

task-relevant information during perceptual learning (Roberts and Thiele, 2008). Parvalbumin-

positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons are particularly 

involved in orientation tuning in V1 (Atallah et al., 2012, Wilson et al., 2012). It has been 

shown that the specific activation of PV+ neurons in V1 improves orientation discrimination 

abilities in awake rats during perceptual learning (Lee et al., 2012) and repetitive coupling of 

ACh to visual stimulation activates the V1 GABAergic neurons (Dotigny et al., 2008, Kang et 

al., 2013).  

 

Thus repetitive cholinergic pairing to sensory training enhances the cortical response to trained 

feature of the sensory stimulus that increases the influence of the feedforward afferent.  

 

Repetitive cholinergic stimulation promotes perceptual learning related to attention, reward 

expectation and connectivity  

Repetitive cholinergic stimulation first promotes attentional mechanisms that are necessary to 

perceptual learning (Ahissar and Hochstein, 1993, Schoups et al., 2001, Li et al., 2004, Mukai 

et al., 2007). These attentional processes might be also related to synchronization in the 

gamma band (30-90 Hz) (Fries et al., 2008) induced by repetitive cholinergic stimulation 

which has been proposed to facilitate the transfer of the visual information to higher visual 
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 Figure V.4 Summary of the effect of acetylcholine on neuronal transmission of the visual inputs.   

Figure 4. The varicose cholinergic fiber (black fiber with swellings) can act on excitatory input (blue 

axon), neighboring GABAergic inhibitory input (red axon) and on V1 neurons (green dendrite). 

Excitatory/inhibitory influences are represented by red and green dots, respectively. Cholinergic 

activation (ACh+, right panel) is represented by black dots. The cortical response to the stimulus is 

represented by a VEP signal waveform  which changes are elicited by increased numbers of neurons 

responding to the trained stimulus or increased neurons efficiency (A) Response of the V1 neuron after 

a training with  preferred stimulus coupled to cholinergic activation (right panel, ACh+) or without 

(left panel, control). The cortical response to this stimulus is increased (high VEP signal waveform in 

right panel compared to small VEP signal waveform in left panel). In presence of cholinergic 

activation the inhibitory influence is reduced by M2 muscarinic receptors, the postsynaptic excitatory 

influence is increased by M1 muscarinic receptors located on the postsynaptic neuron and nicotinic 

receptors located on the thalamocortical fiber and a long-term effect is triggered by NMDA receptor 

activation, compared to normal condition (control, left panel). In a normal visual process (control) local 

or recurrent inhibition via GABAergic interneuron (in red) blocks the development to a long-term 

modification. (B) Response of the V1 neuron after a training with non-preferred stimulus coupled to 

cholinergic activation (right panel, ACh+) or without (left panel, control). The neuronal response to 

this stimulus is increased (small VEP signal waveform in right panel compared to flat VEP signal 

waveform in left panel).  In normal condition (control, left panel), non-preferred orientation stimulus 

does not evoke activation in postsynaptic neurons in V1. Weak thalamocortical innervation is 

suppressed by GABAergic inhibition and hence fails to transmit to postsynaptic neuron. Acetylcholine 

can amplify the weak presynaptic input (ACh+) by nicotinic receptors and activates postsynaptic 

neuron through M1 muscarinic receptor. GABAergic inhibition is suppressed by M2 muscarinic 

receptor and NMDA receptor opening occurs leading to long-term modification.  
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areas. ACh can also promote task-irrelevant perceptual learning that occurs in the absence of 

conscious effort (Skrandies and Fahle, 1994, Watanabe et al., 2002, Gutnisky et al., 2009). 

Compared to task-relevant learning, which utilizes focused attention as reinforcement, studies 

of task-irrelevant learning have suggested that reward serves as the reinforcement signal (Seitz 

et al., 2009, Chubykin et al., 2013). During task-irrelevant learning, the response to a feature 

on which attention was not directed can also be enhanced (Watanabe et al., 2001, Giordano et 

al., 2009, Gutnisky et al., 2009). Interestingly, rewards can affect the visual response in V1 

(Shuler and Bear, 2006), and the cholinergic system can influence reward timing expectancy 

(Chubykin et al., 2013).  To reconcile studies showing a role of attention in perceptual 

learning or not, Roelfsema proposed that the attentional feedback signal related to the 

cholinergic system that enhances the plasticity of task-relevant features in the visual cortex 

also causes the inhibition of task-irrelevant features so that their plasticity is switched off 

(Roelfsema et al., 2010).  

 

To a cognitive point of view, by modulating synaptic transmission in V1 and modifying the 

cortical dynamics, ACh can also participates in the perceptual inference to increase the 

strength of the representation of trained stimuli and reduce the sensory noise (Yu and Dayan, 

2002) and induce sensory precision (Moran et al., 2013). It might suppress the top-down 

sources in the balance between top-down and bottom-up information integration in V1 (Yu 

and Dayan, 2005). This is in agreement with a recent study demonstrating that the cholinergic 

enhancement reduces the connectivity strength between cortical regions involved in attention 

and V1 (Ricciardi et al., 2013) and reduce the activity in frontoparietal regions (Furey et al., 

2008). This suggests an increased neural efficiency in the processing of the trained stimulus 
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that leads to an improved perceptual task performance (Ricciardi et al., 2013) linked to an 

automation of the cortical processing and a reduction of the attentional load required to 

process the trained stimulus (Furey, 2011) . 

 

Together, the findings from recent work using different techniques suggests that cholinergic 

pairing induces perceptual learning via different mechanisms that include the following: 1) the 

use of the layer II/III GABAergic system to filter the pre-amplified response from layer IV; 2) 

NMDAR-dependent modification at the postsynaptic level to induce long-term augmentations 

of individual neurons, and an increase in the numbers of cholinergic varicosities to facilitate 

ACh release and 3) changes in the efficiency of the connectivity between cortical areas and 

bottom-up and top-down control.  

 

 

CLINICAL PERSPECTIVES OF CHOLINERGIC MODULATION OF BRAIN`S 

FUNCTION 

 

Similar with experimental data, some clinical studies have demonstrated that enhancing 

cholinergic system improves perception (Furey et al., 2000, Bentley et al., 2004, Wilson et al., 

2004, Rokem and Silver, 2010, Beer et al., 2013, Ricciardi et al., 2013). Clinically, a method 

to enhance cholinergic function might involve the use of acetylcholine esterase inhibitors, 

such as physostigmine, galantamine, rivastigmine or donepezil. Nicotine is also a well-known 

molecule that enhances cognitive function. These drugs are currently used to the treatment of 

Alzheimer’s disease or diverse dementia. Orally administered nicotine or smoking improve 

attentional performance (Nestor et al., 2011, Newhouse et al., 2011), learning (Riekkinen and 

Riekkinen, 1997, Olausson et al., 2004), attention (Thiel et al., 2005, Nestor et al., 2011) and 
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memory consolidation (Beer et al., 2013) through the activation of nAChRs. Increases in ACh 

action due to the administration of acetylcholinesterase inhibitors or direct mAChRs agonists 

alleviate cognitive deficits in Alzheimer’s disease (Cummings, 2003), Parkinson’s disease 

(Fagerstrom et al., 1994, Holmes et al., 2011) and schizophrenia patients (Shekhar et al., 

2008). An α7 nAChR agonist is also used as a cognitive enhancer in patients with 

schizophrenia (Freedman, 2013) and Alzheimer’s disease (Hilt et al., 2009). As shown in an 

fMRI study, cholinergic action potentiates communication efficiency between cortical areas 

(Wylie et al., 2012).  The use of these drugs in cholinergically healthy subjects might also be 

beneficial for enhancing cognitive function (Buchanan et al., 2008, Demeter and Sarter, 2013). 

 

Some pharmacological approaches have been developed to increase the perceptual learning in 

healthy humans. Performance improvements following the use of donepezil during a motion 

direction discrimination task have confirmed that systemic blockade of acetylcholine esterase 

can induce perceptual learning (Rokem and Silver, 2010, 2013). Cholinergic amplifications 

paired with sensory stimulations might also be a promising approach to accelerating visual 

recovery following lesions to the retina or the optical nerve. If the neuronal mechanisms that 

occur during perceptual learning and after retinal lesions are similar (Gilbert and Li, 2012) 

(i.e., they both involve changes in the responsiveness of cortical neurons to inputs from 

outside the neurons’ preferred receptive fields (Darian-Smith and Gilbert, 1994)), then ACh 

might also aid to boost structural and functional plasticity of the visual cortex to recover from 

losses of retinal input.   
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CONCLUSION 

In this review, we proposed that the neuromodulator ACh, which is known for its involvement 

in attention and learning, might participate in and promote perceptual learning. We proposed 

that, via the inhibition of intracortical feedback, ACh can render V1 more sensitive to 

incoming thalamocortical information and enhance sensory performance. During visual 

processing, ACh acts on different layers to amplify the encoding of weak stimuli by 

strengthening synaptic connectivity, which leads to behavioral improvements. Furthermore, 

ACh might not only facilitate task-relevant perceptual learning via attention but also facilitate 

task-irrelevant learning via reward reinforcement. However, much remains to be uncovered 

regarding whether the cholinergic system has the potential to be used as a key mechanism for 

improving the function of the brain and speeding rehabilitation. Specifically, because 

perceptual learning occurs easily under conditions of attentional control, the development of a 

method to improve one’s brain capacity through improved attention and cholinergic 

stimulation is very attractive. 
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CHAPTER VI: General Discussion 
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In the present thesis, we studied the role of the cholinergic system in rat’s V1 during 

cognitive function by behavioral, electrophysiological and neuro-pharmacological methods. 

Through electrophysiological study we observed that 10 minutes of cholinergic system 

activation paired with visual stimulation induces a long-term increase of cortical response. 

Similar with LTP this enhancement is NMDAR dependent. When the pairing continued for 14 

days, we observed that it can induce an improvement of behavioral task (i.e. visual 

discrimination capacity in the water maze) by facilitating perceptual learning. Intracortical 

injection of different pharmacological agents during pairing demonstrated that nAChR and M1 

mAChR are able to amplify cortical response while M2 mAChR suppresses GABAergic 

neurons to disinhibit excitatory neurons. Infusion of GABAergic antagonist supported that 

inhibitory system is crucial to induce cortical plasticity. Altogether these results open the 

possibility to induce perceptual learning in V1 to enhance cortical activity. 

 

Technical aspect: Cortical response measurement by 

electrophysiological method 

In order to analyze the modification of the cortical response, we measured the 

extracellular field potential by the electrophysiological method (Chapter 2, 3, and 4). Since 

most of the study was to observe a long-term effect, we applied field potential (FP) recording. 

FP recording is useful to observe a large area up to 0.5 mm ((Mitzdorf, 1985, Katzner et al., 

2009, Xing et al., 2012) but see also Kajikawa and Schroeder (2011) asserting 3 mm). During 

a chronic experiment it is unlikely to record the same neuron every time. And compared to 

intracellular recording or single unit activity depending mainly on single neuron FP rely less 
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on one cell. Although the source of FP is not perfectly clear it is suggested that FPs are 

generated by cortical neurons synchronizing their synaptic currents (Niedermeyer and Lopes 

da Silva, 2005, Nunez and Srinivasan, 2006).  

Although FP recording is a powerful method to observe the change of cortical response 

in a large scale it has some limitations. First, as mentioned above the generator of FPs is not 

yet clarified. Many models were suggested but not proven (Nunez and Srinivasan, 2006, 

Pettersen and Einevoll, 2008, Bedard and Destexhe, 2009). Second, the exact area recorded by 

FPs also varies depending on the model from few hundreds of microns up to 3 mm (Mitzdorf, 

1985, Katzner et al., 2009, Xing et al., 2009, Kajikawa and Schroeder, 2011). Lastly, 

recording during an anesthetized state may affect certain visual properties of neurons in V1. 

Especially, since the FP recording in this study was performed under isoflurane anesthetized 

rat, the inhibitory system was more activated than awake state (Larsen et al., 1998). Single 

neuron recording revealed that optimal responses to orientation are affected by isoflurane 

(Villeneuve and Casanova, 2003). It is possible that isoflurane effect on individual neuron also 

influenced FP results. 

Despite those weaknesses, abundant studies use FPs to measure cortical response 

change in sensory cortex (Verdier and Dykes, 2001, Frenkel et al., 2006, Dringenberg et al., 

2007, Katzner et al., 2009, Cooke and Bear, 2010, Morishita et al., 2010, Bhattacharyya et al., 

2013). It is probably because FP is more stable (less affected by slight difference of electrode 

position), and can quickly measure a large number of neurons. During FP recording, high 

frequency responses are filtered out. Such filtering reduces the influence of nearest neuron 

activating at high frequency rate. Since FP is little affected by the property of adjacent neuron, 
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consequently slight change of electrode has little effect on electrophysiological values. I also 

examined the relation between visual discrimination capacity and electrophysiological 

response and observed that they were highly correlated (Kang et al., 2013, Kang et al., 2014b). 

The technical properties of FP are supplemented by another study measuring visual acuity of 

the mouse by FP result (Morishita et al., 2010). These studies validate that 

electrophysiological FP recording can be used to measure cortical response change and visual 

acuity. 

For the FP analysis, I applied the method and the visual stimulation paradigm (during 

electrophysiology recording) that was previously used in the literature for other sensory 

modalities (Verdier and Dykes, 2001, Morishita et al., 2010). I calculated the amplitude of 

electrophysiological response to visual stimulation by subtracting the negative peak potential 

from the positive peak potential (Kang and Vaucher, 2009, Kang et al., 2013, Kang et al., 

2014b). The visual evoked potential (VEP) was obtained by measuring 20 amplitudes and 

averaging those values (except for Chapter 4 where 40 amplitudes were measured for each 

VEP) as used by Verdier and Dykes (2001). In contrast to the noise signal which occurred 

randomly, since the event-related potential is evoked almost at the same time after stimulus 

onset, this method could reduce the noise effect. Contrast reversion of visual stimulus was also 

used as visual stimulus to measure visual acuity (Morishita et al., 2010). Averaging and 

contrast reversion methods allowed us to measure cortical response and evaluate visual 

capacity by FP recording. 

In sum, despite the not perfectly clear source of FP, due to its stability and large range 

recording FP was used as a method to measure cortical plasticity. I used contrast reversion of 
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sinusoidal grating pattern as visual stimulus and analyzed FP results with peak-to-peak 

difference averaging. 

VI.1 Discussion of the objective 1: Does the visual stimulation 

paired with HDB stimulation (VS/HDB) induce cortical plasticity?  

Stimulation in the HDB during visual stimulus presentation increased VEP amplitude. 

The injection of ACh has been shown to modulate pyramidal neuron’s response (Shinoe et al., 

2005, Zinke et al., 2006), facilitate synaptic plasticity (Kirkwood et al., 1999) or affect ocular 

dominance plasticity (Gu and Singer, 1989, Morishita et al., 2010). In contrast, cholinergic 

fiber depletion suppresses cortical map reorganization (Conner et al., 2003, Ramanathan et al., 

2009) and cholinergic antagonist blocks ocular dominance plasticity (Bear and Singer, 1986, 

Gu and Singer, 1993). Since an increase of cortical response after LTP induction in V1 is 

observed (Heynen and Bear, 2001, Clapp et al., 2006) it is possible that cholinergic activation 

facilitate the cortical plasticity in V1. Altogether electrical or pharmacological stimulation of 

the cholinergic system changes neuronal connectivity probably by inducing cortical plasticity 

represented by an increase of VEP.  

The cholinergic stimulation-induced VEP increase is NMDAR dependent (Kang and 

Vaucher, 2009) which is consistent with other studies (Verdier and Dykes, 2001, Dringenberg 

et al., 2007). An increase of cortical response was also observed after theta burst stimulation 

(100 Hz) to the thalamocortical input (Heynen and Bear, 2001). Theta burst stimulation 

evoked an LTP like augmentation which was also NMDAR dependent. The opening of 

NMDAR will launch Ca2+ influx and an up-regulation of glutamatergic receptors (Yoshimura 
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et al., 2003). Activation of NMDAR inducing the expression of glutamatergic receptor on 

synapse or facilitating synaptogenesis can strengthen the neuronal connectivity, hence 

increasing cortical response. The implication of NMDAR suggests that VS/HDB pairing 

follow similar mechanism with LTP and thus cortical plasticity is induced. 

The visual training also increases neuronal synchronization in gamma band (Kang et 

al., 2014b). The gamma oscillation can represent synaptic and cortical plasticity (Paik and 

Glaser, 2010, Headley and Weinberger, 2011, Shao et al., 2013) Oscillation in gamma 

frequency is suggested to reflect cognitive activity such as sensory perception (Cardin et al., 

2009) and attention (Fries, 2009). Previous studies have demonstrated that cholinergic 

stimulation could increase gamma band activity (Rodriguez et al., 2004, Pafundo et al., 2013) 

and this can enhance visual encoding (Goard and Dan, 2009) or contrast sensitivity 

(Bhattacharyya et al., 2013). Gamma-band oscillation is probably reflecting coherent firing of 

large numbers of cells. Neuron, by synchronizing its activity timing with other neurons can 

affect spike-time dependent plasticity and thus, cortical response. Synchronized activity of 

large numbers of neurons can give rise to macroscopic oscillations and can be another cortical 

mechanism to increase its cortical response after VS/HDB pairing.   

Overall, cholinergic activation can induce cortical plasticity (Gu, 2003). Infusion of 

cholinergic agonist and stimulation in the cholinergic system increase VEP via NMDAR 

dependent mechanism. Synchronized activity between large numbers of neurons after 

cholinergic stimulation can also enhance cortical plasticity. All these results suggest that 

cholinergic activation through agonist administration or electrical stimulation in the basal 

forebrain during visual stimulation induces an NMDAR dependent cortical plasticity.  
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VI.2 Discussion of the objective 2: Does HDB stimulation have a 

similar effect to ACh in V1? 

In this research, I focused on the role of cholinergic system during cognitive function. 

Since the basal forebrain is the major cortical region that distributes cholinergic fibers in the 

sensory cortex, I examined whether electric stimulation in basal forebrain results in similar 

effect with cholinergic agonist injection. HDB stimulation with visual stimulus projection 

during 10 minutes (visual training) increased VEP in V1 lasting for several hours suggesting 

that cortical plasticity occurred. Similar result with ACh agonist carbachol injection supports 

that electric stimulation of basal forebrain resembles with ACh release effect in V1. 

VI.2.1 Pairing visual and basal forebrain stimulation 

Since ACh modulates the neuronal response (Ji and Dani, 2000, Metherate, 2004, Thiel 

et al., 2005, Zinke et al., 2006, Soma et al., 2012) I induced cholinergic system activation in 

V1 and observed its cortical effect. In order to analyze the cholinergic effect during visual 

process, I developed a novel method of visual training. This visual training consists of 

simultaneous stimulation in the cholinergic system and the visual system in an awake or 

anesthetized rat. This was performed by stimulating the basal forebrain or intracortical 

infusion of ACh agonist carbachol. During the training the rat was restrained in front of 3 

monitors showing visual stimulus (sinusoidal grating, 0.12 CPD, contrast reversion, 1 Hz). 

The experimental paradigm was originally created by Kilgard and Merzenich to observe the 

auditory cortical map reorganization after training (Kilgard and Merzenich, 1998). As 

mentioned above (Chapter I) since ACh is involved in multiple cortical functions this setup 
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was designed to affect cognitive abilities (e.g. attention or learning) during process of visual 

information.  

VI.2.2 The basal forebrain stimulation has similar effect to ACh release 

I found that electrical stimulation in the basal forebrain (HDB) has similar effect to 

carbachol injection. A previous study in the laboratory showed that V1 stimulation by showing 

sinusoidal grating pattern on an anesthetized rat promotes ACh release in V1 (Laplante et al., 

2005). Since this study also demonstrated that the cholinergic fibers releasing ACh originate 

from the HDB, I applied an electrical stimulation paradigm (Vaucher et al., 1997) in HDB to 

enhance ACh release in V1 during visual training. The HDB stimulation or carbachol infusion 

induced an increase of VEP which last for several hours (Kang and Vaucher, 2009). ACh 

release in the visual cortex facilitates cortical plasticity (Gu, 2003) and thus, easily modified 

by novel information upcoming from thalamocortical afferent (Aggelopoulos et al., 2011). 

This method is used in other cortical area such as auditory (Kilgard and Merzenich, 1998, 

Froemke et al., 2007) and sensory cortex (Verdier and Dykes, 2001). I estimated that basal 

forebrain stimulation or ACh release could both induce cortical reorganization and/or long-

term enhancement of cortical response.  

Moreover, injection of cholinergic antagonist or cholinergic fiber lesion by 192-IgG 

saporin blocked the VEP enhancement effect (Kang and Vaucher, 2009, Kang et al., 2013). 

This implies that the stimulation in the HDB boost the cortical response via cholinergic system 

in the sensory cortex. This confirms that the increase in cortical response by electrical 

stimulation in the basal forebrain follows the similar mechanism as cholinergic agonist 

application.  
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Although many evidences support that ACh can induce cortical plasticity, there are 

many other factors that can also induce cortical plasticity. Mostly neuromodulators system, 

such as serotonergic (Ji and Suga, 2007), adrenergic (Bear and Singer, 1986, Salgado et al., 

2011), GABAergic (Hensch et al., 1998, Harauzov et al., 2010) or dopaminergic system (Goto 

and Grace, 2005) has the potential to promote cortical plasticity. Indeed, it was found 

GABAergic and dopaminergic neurons fibres are closely located in the basal forebrain or in 

the prefrontal cortex (Zhang et al., 2010, Yang et al., 2014). Adrenergic system also have an 

effect on cholinergic afferent (Berntson et al., 2003). Interaction between these systems needs 

to be determined to clearly understand the cortical plasticity induction mechanism.  

Altogether, electrical stimulation of the HDB seems to have a similar effect with 

cholinergic agent injection. This proposes that cortical plasticity mechanism HDB stimulation 

is mediated by cholinergic system activation. However, interaction with different 

neuromodulators needs to be carefully verified to delineate the exact function. 

 

VI.3 Discussion of the objective 3: Does a repetitive VS/HDB 

pairing improve behavioral performance similar to perceptual 

learning?  

The present results show orientation specific perceptual improvement when VS was 

paired with HDB stimulation (Kang et al., 2013). Continuous pairing during 14 days improves 

rats’ visual discrimination capacity in the water maze. These findings demonstrate that when 

coupled with visual training, the cholinergic system improves visual performance for the 
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trained orientation probably through cortical plasticity in V1 related to the ratio of 

excitatory/inhibitory inputs.   

VI.3.1 Measuring visual discrimination capacity in the water maze 

I applied the Prusky’s water maze (Prusky et al., 2000) to evaluate the behavioral 

change after visual training (Kang et al., 2013). The task of the rat was to discriminate 

between a grey screen and sinusoidal grating pattern. The spatial frequency of grating pattern 

is increased gradually after each session until rat fails to discriminate. During one session, the 

rat has to make seven successful discriminations out of ten trials and the last succeeded spatial 

frequency was considered as its visual acuity. Originally, Prusky et al., used optimal stimulus 

(Girman et al., 1999) such as vertical or horizontal grating pattern. Since we observed that 

these stimulus has a ceiling effect after visual training we used an oblique (30°) stimulus 

(Kang et al., 2013).  

During the training on an awake rat, head movement of the rat could disrupt the 

enhancement effect of visual training. Rat body was restricted to a frame surrounded by three 

computer monitors but because of ethical reason its head was not completely restricted. It is 

possible that the visual system was not properly stimulated compared to the rat with head 

fixed. Indeed, in the water maze task (Kang et al., 2013), I observed some odd results e.g. 3 

rats (among 13 rats) that received visual training failed to improve their visual capacity. 

Despite these problems, most of the rats remained calm during visual training and received 

visual training head fixed toward the screen. We overcame these weaknesses by increasing the 

number of subjects.  
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Although it has limitations, Prusky’s water maze is an excellent tool to evaluate the rat 

visual capacity at the level of the visual cortex. Recognizing the visual stimulus (perception 

and attention), associating with escape platform (memory) and swims toward it (decision 

making) demands cognitive process. Task success rate of the rat can be easily measured. Rat’s 

success rate in the water maze is high with easy task (low spatial frequency) but decreased 

markedly at the visual acuity threshold. Furthermore, compared to other behavioral method, 

the water maze uses a negative reward (i.e. water) which segregates the dopamine and 

cholinergic effect. It was shown that reward triggers the dopaminergic system. Both dopamine 

and cholinergic systems are closely related in the prefrontal cortex (Zhang et al., 2010, Zhang 

et al., 2011). Since the purpose of this study was to examine the cholinergic function the water 

maze was an optimal method.  

 

VI.3.2 VS/HDB stimulation induced perceptual learning related to cortical 

plasticity 

I have shown that increase of perceptual ability occurred after repetitive visual training 

(Kang et al., 2013). Improved visual ability for the trained orientation (i.e. 30°) was long-

lasting, orientation selective, and preserved the initial visual acuity for the optimal stimulus (0° 

orientation). Since recognition of stimulus demands perception, the amelioration of visual 

capacity can be considered as perceptual learning. Its effect was abolished when cholinergic 

fibres were lesioned with 192-IgG saporin. Numerous studies confirm that repetitive training 

induces perceptual learning (Crist et al., 1997, Crist et al., 2001, Cooke and Bear, 2010, Hua et 

al., 2010) and visual/cholinergic stimulation can facilitate it (Rokem and Silver, 2010, 
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Froemke et al., 2013). As discussed above, pairing cholinergic and visual stimulation induces 

cortical plasticity represented by increase of VEP. Therefore, I suggest that VS/HDB 

stimulation facilitates perceptual learning by cortical plasticity mechanism. 

Increase of visual acuity signifies that there was a transfer to untrained stimuli (i.e. 

higher spatial frequencies than trained stimulus). Rats that were trained with 0.12 CPD 

stimulus showed better discrimination capacity in 0.7, 0.75, 0.8, and 0.88 CPD. Such 

behavioral amelioration is followed by an increase of VEP in both trained (0.12 CPD) and 

high spatial frequency stimulus (i.e. 0.7 CPD; Kang et al. (2013)). This indicates that there 

was a transfer of perceptual learning to untrained stimulus. Although specificity is a hallmark 

of perceptual learning transfer can occur when there is identical element between tasks (Golcu 

and Gilbert, 2009). It is estimated that the transfer of perceptual learning to higher spatial 

frequency stimulus was due to its common orientation (i.e. 30°) between stimuli. 

I found that cholinergic stimulation facilitates perceptual learning; however, ACh is 

also implicated in different brain states, such as wakefulness, arousal or attention (Sarter and 

Bruno, 2000, Harris and Thiele, 2011). It was shown that ACh has an important role in 

controlling cortical state (Buzsaki et al., 1988, Harris and Thiele, 2011). Generally, cortical 

state can affect sensory responses due to synchronized neuronal activity in a specific 

frequency range (e.g. gamma band during attention, (Fries et al., 2007)). Gamma oscillation 

power increases after repetitive VS/HDB pairing (Kang et al., 2014b) or after cholinergic 

activation (Rodriguez et al., 2004, Bhattacharyya et al., 2012). It is possible that cholinergic 

stimulation during visual training shifts the cortex into an attentive state and increased visual 

acuity.  Since mAChR has been shown to be essential for top-down modulation during spatial 
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attention, I cannot exclude the possibility that increased visual acuity is due to increased 

attention after visual training.    

VI.4 Discussion of the objective 4: Does repetitive VS/HDB pairing 

increase neuronal activity? 

The increase of perception may be due to increased neuronal activity and this can be 

analyzed by immunohistochemistry method. I observed that VS/HDB pairing induced an 

increase of c-fos. I also observed that the immunoreactivity of both pyramidal and GABAergic 

interneuron were increased for long-term in V1. 

VI.4.1 Increase of neuronal activity shown by c-fos immunoreactivity 

To observe the change of neuronal activity, I analyzed c-fos immunoreactivity. There 

was an increase in the number of activated neurons in all cortical layers of V1 (Kang et al., 

2013). The c-fos, is an immediate early gene, its expression is indicative of neuronal activity 

(Kaczmarek and Chaudhuri, 1997, Laplante et al., 2005, Dotigny et al., 2008). Such 

augmentation is consistent with the increase of zif-268, another immediate early gene, after 

induction of LTP in V1 by stimulating in the thalamocortical input (Heynen and Bear, 2001). 

There was also an increase of c-fos activity in prefrontal cortex as well as the number of 

varicosities after VS/HDB pairing (Zhang et al., 2011). Increase number of c-fos 

immunoreactive neurons implies that the cortical plasticity after VS/HDB pairing increase the 

total of activated neurons (Kaczmarek and Chaudhuri, 1997). Such results also suggest that 

enhancement of VEP and perception is correlated with the number of neurons implicated. It is 

possible that the cortical plasticity represented by an increase of VEP and perception may be 
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due to change of neuronal network (Gilbert et al., 2001). The strengthening of connectivity 

between neurons can promote neuronal activation with a weak pre-synaptic stimulation. 

Therefore, the increased reactivity of c-fos probably indicates an augmentation of activated 

neurons during visual training that results in increase of VEP and perception. Such 

enhancement can be caused by strengthening of connection within neuronal network.  

VI.4.2 Excitatory/inhibitory ratio is modulated differently between layers by 

visual training 

To compare the rate of excitatory and inhibitory neurons activated we performed 

double immunostaining with either c-fos/pyramidal (rat brain pyramidal cell antigen) or c-

fos/GABAergic (parvalbumin and calretinin) cells. There was an increase of excitatory 

neurons double stained in the layers II/III and IV. Comparatively, inhibitory neurons show 

increased activities in the layers V/VI and IV. Increase of excitation in the layers II/III is 

probably due to the augmentation of the layer IV spiny stellate neurons activity which receive 

thalamocortical inputs (Nassi and Callaway, 2009). This result is in agreement with previous 

studies showing facilitation of thalamocortical afferents and increase of firing capacity in the 

layers II/III (Soma et al., 2012, Thiele et al., 2012). On the other hand, the influence of 

cholinergic system on the inhibitory system of layer V might be due to enhanced GABAergic 

activity (Lucas-Meunier et al., 2009). As the ratio between excitatory and inhibitory drive has 

been suggested to participate in cortical plasticity (Gandhi et al., 2008, Yazaki-Sugiyama et al., 

2009, Morishita et al., 2010), the alternation of excitatory or inhibitory expression between 

layers might be the influence of cholinergic modulation after repetitive visual training. 
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VI.5 Discussion of the objective 5: What is the pharmacological 

mechanism of visual training? 

To determine the mechanism of visual training, I injected different pharmacological 

agents during repetitive VS/HDB pairing and compared its electrophysiological response. The 

VEP show a long-term increase in V1 but not when nAChR, M1 subtype mAChR or 

GABAAR was blocked. Comparatively, M2 subtype mAChR antagonist or GABAAR agonist 

injection decreased the VEP. These findings demonstrate that visual training coupled with the 

cholinergic stimulation enhances cortical plasticity in V1. This enhancement is mediated by 

nAChR, M1 mAChR and M2 mAChR, which the latter may induce a disinhibition by 

inhibiting GABAergic neuron. 

VI.5.1 VS/HDB stimulation induced cortical response enhancement 

transfers to untrained stimulus 

Enhancement of cortical response after visual training was also observed in untrained 

orientation and spatial frequency (Kang et al., 2014b). Rats that were trained in X° (chosen 

between 30°, 45° or 60°), 0.12 CPD stimulus shows increase of VEP at not only X° and high 

spatial frequency stimulus but also at X+90° stimulus. This is in contrast with studies showing 

perceptual learning is not transferable to different orientation (Sagi, 2011). Such transfer can 

be explained by 1) cholinergic effect: In contrast of some studies ACh release increases 

neuron’s orientation selectivity (Sillito and Kemp, 1983, Murphy and Sillito, 1991) there are 

other studies reporting decrease of selectivity (Muller and Singer, 1989, Zinke et al., 2006, 

Bhattacharyya et al., 2013). It is possible that visual training induces cortical plasticity and 



 

 

178 

augments the response of visual system. Orientation selectivity may be acquired later during 

water maze by a top-down modulation (Schummers et al., 2005) or by locomotive state 

(Polack et al., 2013). Since the possibility of mAChR involvement was excluded by 

scopolamine injection, nAChR can induce an orientation specific effect during water maze 

task. Another possible answer is that 2) water maze learning before visual training causes 

stimulus selectivity. Taking into account that rodents are not visual animals, the learning 

process in the water maze can increase visual sensitivity before the actual training. 

Interestingly, it was suggested that during object recognition process the expectation of the 

object can create a set of filter (Ullman, 2007). Such filter can decrease the interference by 

suppressing activation of unexpected stimuli while increasing selectivity for expected one. For 

example in this research, rat that has learned to detect a specific orientation stimulus (Kang et 

al., 2013) its V1 may possess a selectivity and thus filtering out other orientation. 

Comparatively, rat which did not learn the water maze task may lack of orientation specificity 

and thus cortical response enhancement was transferred. Notably, it could be unreasonable to 

argue that visual training alone can induce perceptual learning.  

Overall, the paired stimulation in the HDB and visual system seems to increase cortical 

response in long-term rendering the cortex more vulnerable to novel stimuli, hence facilitates 

learning process. It is likely that 1) learning prior to visual training influences the visual 

sensitivity of the rat, or it is also possible that 2) behavioral performance after visual training 

affects the modulation properties through nAChR or through top-down control. 
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VI.5.2 Presynaptic enhancement and disinhibition by nAChR 

Injection of nAChR antagonist blocking VEP enhancement effect (Kang and Vaucher, 

2009, Kang et al., 2014b) demonstrates that it has an essential role for visual training. Since 

nAChR inhibition can affect behavioral performance its effect was not tested in the water 

maze task (Kang et al., 2013). However, our electrophysiological results and numerous studies 

show that nAChR is crucial to increase cortical response (Verdier and Dykes, 2001, Disney et 

al., 2007, Lucas-Meunier et al., 2009, Morishita et al., 2010). The action of nAChR to enhance 

visual cortical response probably occurs in layer IV of V1 through presynaptic thalamocortical 

afferent. Considering that layer IV is the first cortical region receiving thalamocortical 

feedforward input, it is possible that nAChR has a crucial role to initiate the VEP enhancement.   

Unlike mecamylamine which blocks both α4β2 and α7 subtype of nAChR (Christophe 

et al., 2002, Disney et al., 2007, Albuquerque et al., 2009) methyllycaconitine blocks only α7 

and fails to completely abolish VEP enhancement (Kang and Vaucher, 2009). Activation of α7 

of layer 1 GABAergic interneurons has been shown to mediate disinhibition of cortical 

networks (Christophe et al., 2002, Alitto and Dan, 2012), which can increase VEP response. 

Consequently, inactivation of GABAR could decreases VEP amplitude while an increase of 

VEP amplitude could be induced by inhibition of GABAergic cells from layer 4. Such 

blockade of α7 has been shown to induce LTP in the hippocampus (Ge and Dani, 2005, Wang 

et al., 2006) due to their location on inhibitory interneurons (Yamazaki et al., 2005). Although 

the α7 subtype of nAChRs is considered a key participant in cortical plasticity (Albuquerque 

et al., 2009), its role in the visual cortex has not been clearly elucidated (Chapter 2). The α4β2 

subtype is also found on GABAergic neuron (Alkondon et al., 2000) but it was suggested that 
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its main role in sensory cortex is to alter thalamocortical transmission (Lambe et al., 2003). In 

sum, nAChR can act both on excitatory and inhibitory neurons. Disinhibition by activating 

layer I interneurons or amplifying by layer IV thalamocortical input can be both the 

underlying mechanism of VEP enhancement. 

VI.5.3 Postsynaptic amplification by M1 and presynaptic disinhibition by 

M2 mAChR 

Given that mAChRs are widely found in V1 – the predominant postsynaptic mAChR 

being M1 subtype and the presynaptic mAChR being M2 (Levey et al., 1991) – it was 

expected that inhibition of these receptors express different results. Blocking mAChRs during 

visual/cholinergic stimulation or M1 mAChR during repetitive visual training both abolished 

the VEP enhancement (Chapter 2, 4). On the other hand, M2 mAChR inhibition reduces the 

VEP amplitude suggesting that it has a disinhibition effect. These results indicate a 

postsynaptic amplification by M1 mAChR and presynaptic disinhibition by M2 mAChR. 

The M1 mAChR increases the postsynaptic signal on excitatory neuron to enhance 

VEP during visual/cholinergic stimulation. Although the function of M1 mAChR varies 

according to its location (Gil et al., 1997), under our stimulation paradigm the role of M1 

seems to be amplifying visual response (Gulledge et al., 2009, Kang et al., 2014b). Double-

immunostaining revealed that more excitatory neurons are activated in the layers II/III after 

repetitive VS/HDB pairing indicating that synaptic amplification occurred (Kang et al., 2013). 

Since M1 is involved during LTP induction in hippocampus (Colgin et al., 2003) it can have 

similar function in layers II/III of V1. The activation of M1 mAChR most likely elevates 

intracellular Ca
2+

 level followed by synaptic plasticity mechanism. The M1 mAChR is mostly 
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found in the layers II/III and VI while M2 is densely labeled in layer IV or at the border of 

layers V/VI (Levey et al., 1991, Mrzljak et al., 1993, Hohmann et al., 1995, Tigges et al., 

1997)(but see also Amar et al., 2010 which shows high elevation of M2 in layer II). It is likely 

that the enhancement effect of M1 mAChR inducing LTP occurs in the layer II/III of V1. 

The M2 mAChR decreases inhibitory drive and hence, increases pyramidal activation 

during visual training. Present study demonstrates that inhibition of M2 mAChR resembles 

with GABAergic activation effect and M2 mAChR exists on GABAergic neuron (Kang et al., 

2014b). This result is in agreement with other study showing by confocal microscopy and 

electrophysiological methods that M2 mAChR can inhibit GABAergic neuron (Disney et al., 

2006, Salgado et al., 2007). Suppression of GABAergic neuron decreases stimulus selectivity 

(Wilson et al., 2012) and disinhibited neurons may respond to an un-preferred stimulus 

increasing cortical response (Frenkel et al., 2006, Zinke et al., 2006). Activation of adjacent 

neuron may increase horizontal inhibition between cells. However, since GABAergic neuron 

has an essential role for cortical oscillation (Muthukumaraswamy et al., 2009), controlling the 

spike timing can synchronize neuronal activity (Kang et al., 2014b) and prevent the 

competition between pyramidal neuron. Interestingly, it was proposed that mAChR suppress 

the lateral spread of feedforward activation (Kimura 1999, Silver 2008). It is possible that 

under high concentration of ACh lateral spread is blocked by M2 but low ACh enable the 

propagation through M1 mAChR (Wester and Contreras, 2013). Altogether, M2 mAChR 

disinhibits neighboring neuron to respond to an un-preferred stimulus and enhances cortical 

response at a low ACh dose. The competition between neurons can be avoided by 

synchronizing the neuronal activity. 
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Overall, it is possible that thalamocortical input increases its glutamate release by 

nAChR activation to spiny stellate neuron in layer IV, which in turn, is disinhibited by M2 

mAChR activity on GABAergic neuron. This enhanced response can be amplified again 

during transferring to the layer II/III pyramidal neuron. Increase of cortical response is also 

due to the activation of adjacent neurons which its stimulus selectivity is lowered by 

disinhibition. Competition between neurons can be prevented by forming neuronal ensemble 

and synchronizing their activities. Repetitive augmentation of cortical response can induce 

change in synaptic connection and network, thus cortical plasticity.  

VI.5.4 Long-term effect of cholinergic stimulation 

In this Ph.D. study, since I evaluated the long-term response of cholinergic stimulation, 

it is necessary to distinguish the mechanism between during and after VS/HDB pairing. For 

example, compared to acute application which by blocking M2 mAChR or GABAR increases 

neuron’s response (Egan and North, 1986, Salgado et al., 2007, Katzner et al., 2011), long-

term application decreases or disrupts VEP enhancement (Kang et al., 2014b). During visual 

training (i.e. acute effect), it is probable that cholinergic stimulation follows the mechanism 

mentioned above: post-synaptic M1 mAChR increases thalamocortical afferent which is 

amplified by presynaptic nAChR, while M2 mAChR inhibits GABAergic drive. However, it is 

important to note that visual acuity or VEP were measured without cholinergic stimulation but 

still show enhancement (Kang et al., 2013, Kang et al., 2014b). It is reasonable to estimate that 

continuous acute cholinergic stimulation induces a distinct long-term modification mechanism. 

Although I cannot exclude the possibility that persistent cholinergic activation increase the 
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affinity of cholinergic receptors, it is more likely that the cortical response enhancement effect 

is due to modulation of neuronal connections (Ahissar et al., 1998). 

Continuous cholinergic activity can strengthen neuronal connectivity. Since synaptic 

plasticity mechanism includes both short term effect (e.g. expression of AMPAR; (Takahashi 

et al., 2003, Anggono and Huganir, 2012)) and long term effect (e.g. synaptogenesis;  (Kleim 

et al., 2004)), it is probable that short-term effect precedes long-term effect and modify 

synaptic strength. It was proposed that after perceptual learning occurs with specific 

orientation, it increases the overall number of responding neurons without changing neurons’ 

preferred orientation (Frenkel et al., 2006). According to Hebbian rule, neurons that fire 

together their neuronal connections can be strengthened (Ahissar et al., 1998). Enhancement 

of neuronal response by cholinergic stimulation can increase layer IV neuron’s connectivity 

with layer II/III neuron which has different orientation preference (Jia et al., 2010). Such 

strengthening can evoke the neuron to respond to an unpreferred stimulus. However, this 

modification does not affect the genuine property of layer II/III neuron (e.g. receptive field 

size, orientation preference) since the optimal connection from feedforward neuron is 

unchanged. This speculation is supported by studies showing that perceptual learning does not 

affect pre-learned capacity (Ahissar and Hochstein, 1997, Crist et al., 1997). I also observed 

that the visual acuity of an optimal orientation (i.e. vertical) was not changed even after an 

augmentation of unoptimal orientation (30°) visual acuity (Kang et al., 2013). Altogether, I 

can estimate that neuronal connections are strengthened and thus preserve their amplified 

activities after visual training. 
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Persistent activation during perceptual learning can also prompt synchronized neuronal 

activities (Beierlein et al., 2000) by enhancing lateral connections with similar property neuron 

(McGuire et al., 1991, Ramalingam et al., 2013). Cortical oscillation, controlled by 

GABAergic network (Galarreta and Hestrin, 2002), can affect cortical response without 

cholinergic stimulation after repetitive VS/HDB pairing. Overall, neuronal connection 

strengthening or synchronized neurons’ activities can be the underlying mechanism to increase 

visual capacity in long-term.  
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VI.6 Future perspective 

VI.6.1 Cortical function enhancement 

The present thesis studied the effect of cholinergic system during process of visual 

information. It was demonstrated that cholinergic activation during visual stimulation induces 

cortical plasticity. Continuous pairing of the stimulation improves perception by increasing 

visual sensitivity. It was estimated that it is mediated by thalamocortical afferent amplification 

through presynaptic nAChR and postsynaptic M1 mAChR, while M2 mAChR disinhibit 

GABAergic neuron. Although some properties of cholinergic stimulation induced cortical 

plasticity are revealed, it remains to clarify its cognitive effect. For instance, since the 

electrophysiology recording was performed in anesthetized animal the cholinergic influence 

on attention could not be tested. Moreover, we were not able to distinguish the cognitive effect 

between perception and attention in behavioral test. Examination on the effect of attention can 

be the next step. Sustained attention task in a sound-attenuated chamber is normally used to 

examine the effect of attention (St Peters et al., 2011). Measuring VEP in an awake or 

behaving animal can also fulfill the purpose. 

Understanding the exact laminar mechanism can be another future perspective. I 

speculate some arguments based on immunoreactivity results but it should be noted that 

immunohistochemistry analysis is not an online method. The exact neuronal activation time in 

different layers during VS/HDB pairing or the modulation effect after VS/HDB can be 

assessed by current source density analysis or polytrode recording (Goard and Dan, 2009). 

Moreover, these techniques combined with injection of pharmacological agents, the exact 

laminar mechanisms of VS/HDB pairing can be explained. 
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Isolating cholinergic function from GABAergic interference can be also expected. 

Cholinergic and GABAergic neurons are closely located in the HDB (Yang et al., 2014). 

Although I attempted to delineate the function of cholinergic system during VS/HDB pairing 

by cholinergic fiber lesions or antagonist injection, it is still debatable about the implication of 

GABAergic neuron. Recently, with the development of optogenetics activating specific types 

of neuron in the implanted area is possible (Deisseroth, 2010). Cholinergic fiber stimulation 

by optogenetic method instead of electrode implantation can help to better delineate the 

function of cholinergic system. Altogether, examining more cognitive effect (e.g. attention), 

determining laminar mechanism, or isolating cholinergic system activation can be proposed as 

an extension of the present research. 

VI.6.2 Visual restoration by perceptual learning mechanism 

Beyond the scientific meaning of understanding the brain function, a cholinergic 

amplification paired with a sensory stimulation could also be a promising method to accelerate 

the visual recovery after lesion in the retina or in optical nerve. In adult, lesions of the retina or 

the optic nerve create a silencing zone in the corresponding retinotopic region in V1 called the 

lesion projection zone. After lesions, recovery occurs and neurons within lesion projection 

zone restore responsiveness to visual information from unharmed retinal areas surrounding the 

lesioned region (Sabel et al., 2011). Such restoration is mediated by cortical reorganization. 

Following lesions, long-range horizontal connections are strengthened and drive surrounding 

neuronal activity within the lesion projection zone to spiking levels (Yamahachi et al., 2009). 

Therefore, shifting RFs outside of the retinal lesion locations is induced. Similar with 

restoration long-range horizontal connections are used during perception. For example, in 
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contour recognition, neurons extend their RFs via these connections and integrate inputs from 

larger areas (Gilbert and Wiesel, 1989, Darian-Smith and Gilbert, 1994). Long-range 

horizontal connection, which normally connects between neurons with similar stimulus 

preference, can be strengthened by perceptual learning (Gilbert and Wiesel, 1989, Lien and 

Scanziani, 2013). These connections augment the sensitivity of neurons by supporting its 

activation with weak stimulus (FIGURE VI.1). Since VS/HDB pairing facilitates perceptual 

learning the similarities between perceptual learning and restoration imply that VS/HDB 

training can accelerate visual rehabilitation. 

It is to note that more experimental researches are needed to exactly understand the 

process of pairing cholinergic and visual system activation. Cognitive effect, laminar 

mechanism or isolating cholinergic activation is one of the assignments left to be fulfilled. By 

clarifying its function, it is possible that the visual training is used to enhance cortical function 

or to accelerate visual recovery.  

VI.7 Conclusion 

This research shows the neuromodulatory role of cholinergic system inducing cortical 

plasticity. Cholinergic system activation paired with visual stimulus can lead to perceptual 

learning and may facilitate visual recovery in V1. Brain is the organ responsible for cognition 

and mind. Compared to the extreme complexity of the brain, understanding the functional 

mechanism of cholinergic system in V1 might be equal to finding a piece of puzzle. However, 

by matching the pieces one by one we can eventually assemble and see the grand picture. 

Further knowledge will help to access the remedy of various cognitive diseases such as 
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Alzheimer, dementia or Parkinson’s. I hope that my study can be used as a cornerstone of a 

brighter future. 
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Figure VI.1. Hypothetical mechanism of perceptual learning and visual recovery.   

A) During normal visual process, neurons in V1 have weak activation to the stimulus outside 

of its receptive field (RF: red circle) (left panel). After perceptual learning neurons can extend 

the RF (dashed red circle) and integrate information (right panel). Such change can increase 

the information carried to higher visual area or activate horizontally connected neuron to send 

higher visual area, consequently increasing perception. B) After a retinal lesion, neurons in 

lesion projecting zone (LPZ) fail to transmit feedforward signals (left panel). During visual 

recovery neurons in LPZ regain signals by surrounding neurons and transmit to higher visual 

area (right panel). 
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