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Résumé 

La compréhension de processus biologiques complexes requiert des approches 

expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies 

génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte 

de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but 

d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces 

connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction 

de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de 

telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons 

développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des 

interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la 

validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un 

dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de 

fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les 

protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des 

membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres 

techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous 

avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un 

interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce 

jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes 

non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons 
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étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement 

impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous 

avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une 

grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage 

lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en 

la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données 

dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces 

cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions 

fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques 

lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus 

pour leur implication dans le métabolisme des lipides.  Une altération du phénotype lipidique a 

également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait 

pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus 

qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des 

fonctions des gènes et une plateforme lipidomique  innovatrice à haut débit , constitue un ajout 

important aux méthodologies existantes en biologie systémique. Les développements en 

méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de 

nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les 

mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein 

d’organismes plus complexes. 

Mots-clés: Interaction protéine-protéine, complémentation de fragments protéiques, protéine 

membranaire, métabolisme des lipides high-throughput screen, lipidomics, apprentissage 

automatique, prédiction de la fonction d’un gene, visualisation analytique, criblage à haut débit 
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Abstract 

Understanding complex biological processes requires sophisticated experimental and 

computational approaches. The advances in functional genomics strategies provide powerful 

tools for collecting diverse types of information on interconnectivity of genes, proteins and 

small molecules for studying organizational principles of cellular networks. Integration of that 

knowledge into a systems biology framework enables prediction of novel functions of 

uncharacterized genes. For performing such predictions on a genome-wide scale in the yeast 

Saccharomyces cerevisiae, we have developed a novel strategy that combines high-throughput 

interactomics screen for protein-protein interactions, in silico gene function prediction, and 

validation of predictions with high-throughput lipidomics. We started by performing a large-

scale screen for protein-protein interactions using a protein-fragment complementation assay. 

The method allowed to monitor interactions in vivo between proteins expressed from their 

natural promoters. Furthermore, the method did not suffer from bias against membrane 

interactions comparing to established genome-wide techniques for detecting protein 

interactions. As a result, we detected many novel interactions and increased coverage of an 

interactome of lipid homeostasis that has not been yet comprehensively explored. Next, we 

applied a machine learning algorithm to identify eight previously uncharacterized genes with a 

potential role in lipid metabolism. Finally, we investigated whether these genes and a set of 

distinct transcriptional regulators, not implicated previously with lipids, have a role in lipid 

homeostasis. For that purpose, we analyzed lipidome of deletion mutants of the selected genes. 

In order to probe a large number of strains, we have developed a high-throughput platform for 
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high-content lipidomic screening of yeast mutant libraries that consists of high-resolution 

Orbitrap mass spectrometry and a dedicated data processing framework to support lipid 

phenotyping across hundreds of Saccharomyces cerevisiae mutants. Lipidomics experiments 

confirmed functional predictions by demonstrating differences of the lipid metabolic 

phenotypes of deletion mutants lacking YBR141C and YJR015W genes predicted to be involved 

in lipid metabolism. An altered lipid phenotype was also observed for a deletion mutant of the 

transcription factor KAR4 that has not been linked previously with lipid metabolism. These 

results demonstrate that a workflow that integrates the acquisition of novel molecular 

interactions, computational gene function prediction and novel high-throughput shotgun 

lipidomics platform is a valuable contribution to an arsenal of methods for systems biology. The 

developments of functional genomic methods and lipidomics technologies provide means to 

study biological networks of higher eukaryotes, including mammals. Therefore, the presented 

workflow has a potential to find its applications in more complex organisms.  

 

Keywords: Protein-protein interactions, protein-fragment complementation assays, high-

throughput screen, membrane proteins, lipid metabolism, lipidomics, machine learning, gene 

function prediction, visual analytics. 
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method is always spelled out in the text as principal component analysis. 



 

 

1 

Chapter 1 : Introduction 

              Biological activity of the cell is orchestrated through the coordinated action of 

thousands of molecules. The coordination implies the assembly of large complexes consisting 

of smaller components, passing signals from one component to another, synchronization of 

events, and adaptation of cellular systems to perturbations. Recent developments in 

experimental technologies provide unprecedented opportunities to monitor the state of 

thousands of molecules and interactions between them at different time and conditions. Data 

generated by such large-scale screens stimulate development of computational methods for data 

integration and interpretation. Every new dataset provides observations for improving models 

of cellular processes and discovering new components and functions. The understanding of 

biological principles based on these data is a cyclic process. New data help to generate novel 

insights and hypotheses that can be validated and refined based on results of further experiments. 

The present thesis describes one of such cycles. First, we developed a novel methodology for 

screening interactions between proteins. Next, using computational analyses, we identified 

connections between proteins that suggested novel functions related to lipid metabolism for 

uncharacterized proteins. Finally, we conducted the second experimental screen to monitor 

changes in lipid composition due to inactivation of the predicted proteins to test proposed 

hypotheses about involvement in lipid metabolism and provided further details related to the 

discovered functions.  In the introduction chapter, we present our model system, i.e. yeast. We 

describe experimental techniques for elucidating complex cellular networks and highlight 

advantages of our method for detecting protein-protein interactions. Further, we introduce 
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visualization and computational methods that are commonly used for network analyses, and we 

emphasize developments related to the function prediction. Finally, recent advances in 

metabolomics, lipidomics and its applications in yeast are reviewed. We conclude the 

introduction with setting the goal of the study presented in the thesis. 

1.1. Yeast as a model system 

To understand a complex system, one needs to study its smaller components. The cell is 

the smallest unit of life that is able to reproduce independently. In this thesis, we use yeast to 

study cellular networks. The benefit of yeast is not limited to baking, brewing and wine making. 

Yeast is an excellent model system to study cellular processes because of the following factors: 

fast growth (doubling time is about 90 minutes, in comparison, human HeLa cells double in 

about 24 hours); ease of handling in the lab; availability of powerful strategies for genetic 

manipulation; and finally, complex cellular organization similar to cells of higher eukaryotes, 

such as humans. The most popular species of yeast, Saccharomyces cerevisiae, also known as 

baker’s or budding yeast, was the source for the first sequenced eukaryotic genome completed 

in 1996 [1] (strain S288C). The study identified 5885 potential protein-encoding genes 

organized in 16 chromosomes. Because only 4% of the genes in Saccharomyces cerevisiae 

contain introns, the effect of alternative splicing is negligible. Thus, the number of proteins in 

the budding yeast is about the same as the number of the protein-encoding genes.  About 31% 

of the yeast genes were found to have homologs in mammals [2] and for a number of disease-

causing genes in humans corresponding yeast counterparts were identified [3].  
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1.2. Genetic manipulation of yeast 

Success of genetic manipulation strategies is based on efficient transformation methods 

for introducing exogenous DNA into the yeast cells, the integration of a foreign DNA into 

specific regions of the genome, and the availability of the selectable markers for detecting the 

integration events.  

The first reports of genetic transformation of Saccharomyces cerevisiae appeared in 1960 

and currently standardized transformation protocols have been developed based on 

spheroplasting, electroporation, agitation with glass beads, or addition of lithium acetate, single-

stranded carrier DNA and polyethylene glycol [4]. The latter method is the most commonly 

used because of the highest efficiency of the transformation [5]. Details about mechanisms 

causing the uptake of a foreign DNA are still poorly understood, and conditions of 

transformation protocols have been optimized empirically. The yeast cell can be transformed if 

incubated only with polyethylene glycol and DNA. It has been suggested that polyethylene 

glycol increases membrane permeability. The transformation rate is increased by heat shock and 

lithium acetate in intact cells, but not in cells with a disrupted cell wall. Therefore, it is likely 

that heat shock and lithium acetate help DNA to pass through the cell wall [6]. Double and 

single stranded DNA sticks to the cell wall. The addition of carrier DNA could saturate the DNA 

binding cites allowing the vector DNA that carry genetic material for manipulation to pass 

through the cell wall. It has been proposed that single stranded DNA further increases the 

transformation rate because it does not compete with the double-stranded vector DNA and binds 

more efficiently to the cell wall [4].  
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 The transformations are performed with vectors that carry an engineered the yeast DNA 

construct with modified gene sequence and sequences coding for selectable markers. The 

transformation with vector DNA leads to incorporation of the construct sequence into a specific 

locus of the yeast genome [7]. The process relies on the yeast mechanisms for homologous 

recombination, which is a conserved process with a particular importance in repairing DNA 

double-strand breaks [8]. The insertion of an exogenous DNA sequence is driven by short 

sequences (30-50 bases) flanking the construct sequence that are homologous to the targeted 

region. The endogenous genomic sequence between the homologous regions is replaced with 

the sequence of the construct. Thus, the method is suited for gene modification by inserting 

particular sequences as well as for gene disruption by partly or completely deleting gene 

sequences [9].  

Clones in which targeted DNA was successfully incorporated into the chromosomal 

DNA are selected based on the activity of a marker gene introduced with the construct. The 

functioning selectable marker allows cells to grow in the presence of an antibiotic (antibiotic 

resistance markers) [10] or in the absence of an indispensable compound, such as an amino acid, 

that cannot be synthetized by the original strain (auxotrophic markers) [11].  

Yeast strains that were used in this thesis are based on the popular laboratory strain 

S288C that was sequenced in 1996 [1]. BY4741 strain is a MATa mating type, and BY4742 is 

a MATα mating type. Both strains are auxotrophic for histidine, leucine and uracil. In addition, 

BY4741 is auxotrophic for methionine, and BY4742 is auxotrophic for lysine, which allows 

mating type specific selection [11].  
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Figure 1-1. Number of PubMed citations of “omics” technologies per year. 

Numbers of citations for each term per year is extracted with PubMed trend available at: 

http://dan.corlan.net/medline-trend.html  
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1.3. Functional genomics studies in yeast 

Functional genomics is a discipline that attempts to study genes, proteins, small 

molecules and the interactions between them on a large scale. It combines the experimental 

high-throughput technologies and bioinformatics methods for data integration. Different types 

of function genomics studies performed in yeast are discussed below. Data presented in this 

thesis are generated using protein-protein interaction screen and lipidomics. Therefore, these 

technologies are discussed in detail. The level of development of each particular functional 

genomics field can be compared based on analysis of a number of PubMed citations per year. 

The trends plotted in Figure 1-1 show that protein-protein interactions and lipidomics fields are 

relatively new comparing to genomics and proteomics.  

1.3.1. Gene expression and protein abundance 

The earliest studies that took advantage of the availability of the whole genome sequence 

for conducting experiments on a genome-wide scale measured gene expression levels. The 

pioneering work that studied gene expression in the exponential growth phase and the diauxic 

shift defined the term “transcriptome” as a collection of gene identifiers and their expression 

levels in a population of cells [12]. Shortly after, changes of gene expression levels were studied 

during the cell cycle [13], sporulation [14] and stress response [15]. These are just a few 

examples of early studies that stimulated the development of technologies that were further 

applied to investigate transcriptome in other conditions in various organisms. Previous vast 

knowledge of yeast biochemistry made yeast an important validation test bed for development 
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of novel experimental high-throughput methods, such as DNA microarrays [16], and statistical 

methods for data analysis, such as hierarchical clustering and heat map visualizations [17]. 

Collectively, these efforts provided data on transcriptional regulation of the yeast genome in 

thousands of conditions. A dedicated resource for storing and retrieving yeast expression data 

combined results from over 2400 experimental conditions, which can be mined by an efficient 

data search algorithm for visualization of expression patterns of genes of interest and retrieving 

potentially related genes based on similarity of the expression profiles [18].   

Gene transcription is not the only process that defines cellular abundance of proteins. 

Regulation of translation, post-translational protein modifications and degradation of proteins 

need to be considered for making accurate assumptions regarding protein levels at a given time 

in the cell. Therefore, dedicated methods for probing protein abundance are needed. Protein 

quantification in yeast has been performed by two-dimensional gel electrophoresis [19], 

quantitative western blot analyses of high-affinity epitopes [20] and flow cytometry of green 

fluorescent protein [21] fused with a collection of the yeast proteins, and more recently, mass 

spectrometry based analyses [22][23]. Comparison of the results of proteomics and 

transcriptomics studies have demonstrated that there is a significant correlation between mRNA 

and protein concentrations, but the estimated correspondence of mRNA expression and protein 

abundance in yeast is in the range between 30% and 90% [24]. Thus, proteomics measurements 

are important for understanding processes related to protein homeostasis that follow gene 

transcription. Measuring protein abundances is experimentally more challenging. Widely 

available gene expression data are commonly used as an estimate of cellular quantities of 
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corresponding proteins. Despite the differences in protein and gene expression, the latter 

provides highly accurate indication of whether a protein is present in the cell [25].        

1.3.2. Collection of single gene deletion mutants 

The genome-wide experimental strategies that followed early studies of gene expression 

used the sequence information and the genome transformation methods to systematically perturb 

or alter the yeast genes. The first study of that kind investigated phenotypes produced by a nearly 

complete collection of single gene deletion mutants [26,27]. A surprising outcome of the studies 

was the observation that most of deletion mutants did not show any growth defects. Only 18% 

of genes were found to be essential for growth on rich glucose medium. These data provided 

first hints about robustness and adaptation of an organism to perturbations of its individual 

components. A logical conclusion regarding the non-essential genes was that their role might 

be more important for surviving in specific conditions and resistance to particular perturbations. 

The essentiality of genes was further tested in numerous studies that investigated fitness of the 

gene deletion mutants under different growth conditions and in the presence of various drugs 

(comprehensively reviewed in [28]). The strategy helped to identify gene functions based on its 

response to specific perturbations. For example, screens with DNA damaging agents allowed to 

find genes required for maintaining the integrity of the genome [29][30]; modulation of the 

phosphatidylinositol metabolic pathway with wortmannin helped to establish novel pathway 

functions [31]. On the other hand, mechanism of action of drugs can be proposed based on the 

types of gene deletion mutants that are sensitive to the chemical compounds [32]. Using optical 

microscopy, additional cellular morphological phenotypes can be identified, such as shape, size 
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and aggregation tendency [27], which provide further data for inferring functions of the deleted 

genes.     

1.3.3. Protein localization studies 

The important feature of the genetic modification of yeasts by homologous 

recombination is the ability to insert sequences at desired locations. This strategy was employed 

to study cellular localization of the yeast proteins whose genes were tagged with a sequence of 

green fluorescent protein at C terminus. 4156 tagged strains expressed fusions with green 

fluorescent protein that could be observed by fluorescence microscopy [33]. Proteins were 

classified into 22 distinct subcellular localization categories, such as cytoplasm, nucleus and 

mitochondrion. 70% of proteins covered by the study did not have previously any localization 

information.  Another study employed confocal laser scanning microscopy to investigate with 

high-resolution localization of lipid metabolic proteins. Increased resolution of the method 

allowed to gain insight into suborganellar organization of lipid biosynthetic pathways and 

visualize proteins localized to endoplasmic reticulum membrane, membrane extensions from 

the nuclear envelope and lipid droplets [34]. It will be discussed below that these observations 

are particularly important in the context of the current thesis, because they link lipid metabolism 

with membrane proteins. Next level of resolution for localization studies is achieved by 

employing isolation of cellular suborganelles and analysis of the protein content by mass-

spectrometry. Investigation of protein content of lipid droplets is one example of such analyses 

[35]. Lipid droplets are particles that store cellular reservoirs of non-polar lipids used as energy 

sources and as membrane building blocks. Mass spectrometry analysis of protein content of the 
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particles revealed that they contain enzymes involved in fatty acid and ergosterol metabolism 

demonstrating that lipid droplets are essential for the lipid synthesis in addition to the role in 

lipid storage. Important extension to the mass spectrometry analysis of protein content of 

cellular components was the development of methodology for isolating protein complexes. As 

described below, applications using this strategy provided the most information on protein-

protein interactions in yeast.       

1.3.4. Studies of molecular interactions 

Functional genomics strategies described above investigate a collection of states of 

individual components of the yeast cells, such as location or concentration of a given protein or 

phenotype produced by deletion of a gene. An important aspect of regulation of cellular 

processes is the coordinated communication between the cellular components that can be 

viewed as networks of molecular interactions. Biological networks are collections of 

associations between molecules that can be represented as graphs for computational data 

analysis and visualizations. The nodes of such networks are molecules (proteins, genes, 

metabolites) and edges are relationships between the nodes (protein-protein interactions, 

phosphorylation events, correlation between concentrations). Different types of experimental 

methodologies for capturing biological networks are described below. 

Regulation of gene expression is mediated by transcription factors, proteins that bind to 

DNA sequence of their target genes and activate or repress the transcription. Large-scale 

identification of binding sites of transcription factors is enabled by chromatin 

immunoprecipitation followed by DNA sequencing or experiments with genomic microarrays 



 

 

11 

[36–38]. Experimentally defined binding sites of transcription factors can be used for predicting 

target genes based on determined binding sites specificities and promoter sequence analysis. 

Combination of knowledge about transcription factor bindings and data from gene expression 

analysis allow to identify factors that cause particular gene expression patterns [39]. 

Functional activity of a protein can be efficiently regulated by phosphorylation events, 

which lead to activation/deactivation of a protein function. This type of regulation is particularly 

important when a quick response to stimuli is needed. Phosphorylation events can be captured 

by variety of methods including mass spectrometry, kinase activity assays and western blot. Up 

to date, over 20 000 phosphorylation sites in yeast have been experimentally verified by high 

throughput mass spectrometry proteomics studies and small-scale experiments [40]. 

Analysis of gene essentiality in yeast demonstrated that individual deletion of most yeast 

genes does not result in growth defects [27]. However, when a pair of deletions is introduced it 

can enhance or reduce growth. Pair-wise relationships between deletion mutants are studied by 

accurate quantification of colony sizes or fitness of the mutants [41,42]. These data are 

assembled into gene interaction networks. Similarity of genetic interaction patterns between 

genes suggests that they might be involved in a common cellular process. 

Recently, a novel large-scale approach has been developed for identification of protein-

lipid interactions [43]. Authors have examined interactions between almost 200 proteins that 

have known lipid-binding domains and lipid enzymatic activities with lipid molecules from 

major lipid classes. Over 500 detected interactions provide another level of information for 

studying molecular networks.  
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1.4. Strategies for mapping protein-protein interaction networks   

The focus of our study are networks of protein-protein interactions. An association of 

proteins into complexes of various sizes and interactions with other proteins for passing cellular 

signals define their functions. A collection of all protein-protein interactions forms an 

interactome of the cell that has been intensively studied for the last 15 years. Analysis of the 

interaction network can reveal functions of novel genes based on the connections with other 

proteins with established functional roles. The success of the protein function prediction is 

dependent on the coverage and accuracy of the interactome. At the time when we set our goal 

to contribute to the protein-protein interaction network mapping, reported experimental 

strategies for genome-wide analysis of the yeast interactome relied on two methods: yeast two-

hybrid (Y2H) and tandem affinity purification coupled to mass spectrometry (TAP-MS). These 

methods and the method that we chose for novel genome-wide interaction screen, i.e. protein-

fragment complementation assays (PCA)1, are described below, followed by an overview of 

large-scale documented applications of the techniques.   

1.4.1. Yeast two-hybrid 

The yeast two-hybrid method was developed as a genetic system for detecting protein-

protein interactions in vivo. In contrast to traditional biochemical methods such as crosslinking, 

                                                 

1 An abbreviation for an experimental protein-fragment complementation assays (PCA) is the same as for a 

mathematical method, called principal component analysis. In order to avoid confusion, abbreviation PCA in this 

thesis is only used in relation to protein-fragment complementation assay. The name of the mathematical method 

is always spelled out in the text as principal component analysis. 
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co-immunoprecipitation and co-fractionation by chromatography, Y2H does not require any 

protein purification or isolation [44]. Therefore, Y2H can be efficiently adopted for conducting 

large-scale experiments [45].  Y2H is based on the activity of the transcriptional factor GAL4 

(the most common option, however, applications with other transcription factors also exist) that 

consists of a DNA binding domain and an activating domain. Two hybrid proteins are then 

constructed: a protein “X” with the binding domain and a protein “Y” with the activating 

domain. If two proteins “X” and “Y” interact in the nucleus, they bring into proximity the GAL4 

domains and enable transcription of GAL4 controlled genes, which products are used as 

reporters for the interaction. The advantage of Y2H is the ability to detect potentially direct 

protein-protein interactions. It should be noted that in vitro experiments with purified proteins 

are needed for confirming that an interaction is truly direct. Interactions that are detected by 

cell-based assays could be mediated by other protein, DNA and RNA molecules. Nevertheless, 

interactions detected by Y2H are commonly described as binary. This term implies that the 

method used for detecting an interaction tested a pair of proteins as opposed to a protein complex 

co-membership minimizing the chance for presence of intermediates. Another attractive feature 

of the method is the ability to use cell-based survival assays for detecting interactions. Thus, 

protein purification, extraction and identification steps are avoided. These factors define the 

cost-effectiveness and scalability of Y2H and explain why it is the most widely used method for 

both small and large-scale studies [46]. Early genome-wide screens for protein interactions in 

yeast have been suspected to contain a large number of false positive interactions [47]. However, 

recent developments of the method that control artifacts related to spontaneous auto-activation 

of the reporters, contamination by several plasmids, genetic mutations and effects of 
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overexpression of tested proteins significantly improved the reliability of the technique [48]. 

The main limitation of Y2H is the fact that interactions are detected in the nucleus of 

Saccharomyces cerevisiae. Thus, non-nuclear proteins are not tested in their natural context that 

may lead to false positive and false negative results. Proteins are directed into nucleus by nuclear 

localization signal attached to binding and activating domains of the GAL4. Regardless of the 

presence of the nuclear localization signal, for some proteins, such as transmembrane proteins, 

it would be difficult or impossible to enter the nucleus. Therefore, Y2H results are biased against 

interactions involving this type of proteins.  Finally, the fusion of proteins with GAL4 domains 

are expressed from plasmids, which disconnects interaction events from the physiological 

regulatory mechanisms.       

1.4.2. Tandem affinity purification coupled to mass spectrometry 

TAP-MS (tandem affinity purification coupled to mass spectrometry) is an alternative 

strategy that is suited for monitoring protein-protein associations under near-physiological 

conditions. The strategy is based on the extraction and purification of proteins that are physically 

associated with a tagged bait protein followed by the identification of purified proteins by mass 

spectrometry [49][50]. Because of the efficient methods for tagging bait proteins, scalable 

purification procedures and increased availability of mass spectrometers, TAP-MS method 

rapidly gained popularity for studying protein complexes. The advantage of the method is the 

untargeted identification of protein complex composition. Binary methods for detecting 

interactions require preparation of corresponding protein fusions for all pairs of proteins that 

need to be tested. In the case of TAP-MS, experiments with a few tagged baits can reveal 
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composition of large complexes. In yeast tag can be introduced by homologous recombination, 

so tagged proteins remain under the regulation of the native promoters, which is a clear 

advantage for investigating dynamics of protein associations under different conditions in the 

nearly intact physiological context.  

Strictly speaking, the method does not identify protein interactions. It detects collections 

of associated proteins that are assigned to protein complexes based on co-purification frequency 

and clustering analyses [51]. In the context of TAP-MS method, an interaction between two 

proteins means that these proteins belong to the same complex. Thus, for a pair of proteins from 

a macromolecular complex the method does not provide an answer of whether there is a physical 

contact between the two. TAP-MS experiments are associated with a technical challenge related 

to nonspecific binding of proteins to the tag or solid matrix used for immobilization of a ligand 

that require careful control experiments [52]. Furthermore, TAP-MS experiments are repeated 

with several baits for retrieving components of the same complexes multiple times. Processing 

of co-purification data with sophisticated statistical algorithms minimizes the influence of the 

contaminants on the determination of complex composition [51].          

1.4.3. Protein-fragment complementation assays  

To increase the coverage of the yeast interactome, we have conducted a genome-wide 

screen utilizing a technique that combines strengths of Y2H and TAP-MS approaches.  Protein-

fragment complementation assays (PCA) can be conducted in vivo as a survival cell-based assay 

like Y2H screens, without the need for mass spectrometers. Similarly to TAP-MS, PCA is based 

on protein tagging that can be performed in yeast by homologous recombination to introduce 
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desired sequence to the targeted genes. Thus, tested gene products remain under control of their 

natural promoters. Tagging from the C-termini keeps the N-termini localization signal intact. 

Therefore, tagged proteins can follow their physiological localization path. The PCA strategy is 

based on a simple idea that a reporter protein can be dissected into two fragments. These 

fragments can be fused with proteins which ability to interact is being tested [53]. When two 

proteins interact, they bring into proximity the reporter fragments and allow them to fold into a 

normal three-dimensional structure and regain the reporter function. PCA strategy can be 

employed with variety of functional reporters, such as fluorescent proteins for microscopy 

assays and reporter enzymes that can be used for survival selection assays [54]. PCA detects 

direct or near-direct binary interactions between proteins. The detected interactions may be 

mediated by other molecules. However, the length of linkers that connect interacting proteins 

with the reported fragments defines how far two proteins can be apart from each other to allow 

fragment refolding. The large-scale screen described in Chapter 2 [55], relied on a survival 

selection assay based on a dihydrofolate reductase (DHFR) PCA [56]. The screening strategy 

employs yeast strain with inhibited endogenous DHFR activity that is not able to grow in the 

presence of methotrexate, a drug that inactivates cellular proliferation. Methotrexate-resistant 

DHFR mutant is used as a reporter. Yeast strain that expresses a pair of interacting proteins 

fused with fragments of methotrexate-resistant DHFR can proliferate in the presence of 

methotrexate when an interaction leads to refolding of the reporter fragments into a functional 

methotrexate-resistant DHFR reporter.  
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1.4.4. Large-scale studies of protein-protein interactions in yeast 

We started setting up the genome-wide protein-protein interaction screen by DHFR PCA 

when the yeast interactome coverage was limited with few published reports describing 

technological developments for conducting large-scale protein interactions screens. Two studies 

presented large-scale Y2H screens in 2000 and 2001 and two studies published results of TAP-

MS screens in 2002. The first Y2H study [57] reported 957 interactions between 1004 proteins 

and the second study [58] reported in total 4549 interactions between 3278 proteins. However, 

a smaller number of interactions from the second study was confirmed two (1533 interactions) 

or three times (841 interactions). The later set of interactions (core data) is considered more 

reliable and interactions that were not confirmed multiple times are commonly excluded from 

data analyses. The two TAP-MS studies reported data on complex membership of about 25% 

of the yeast proteins each [59,60]. One of the most intriguing observations that came from 

comparative analysis of the results was that the majority of interactions reported by each study 

were novel [47,61]. It has been proposed that the poor overlap between the studies is due to the 

large number of potential false-positive interactions in the early screens and method specific 

biases or preferences for certain types of interactions. Based on the results of these studies it 

was estimated that the yeast interactome contains from 16 000 to 26 000 interactions [62].  

Therefore, it was evident that none of the screens reached saturation in covering the interactome. 

An alternative screen with a novel technique would significantly contribute to the interaction 

network mapping.  Prior to publication of results of our DHFR PCA screen, several large-scale 

interaction studies were published [63–65] that were extensively compared with our data as 
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described in Chapter 2. For consistency, it should be noted that after the publication of our 

results two more studies have been published presenting a comprehensive map of binary Y2H 

[66] and membrane interactions [67]. However, these recent results were not part of our 

computational analyses.   

1.5. Yeast metabolomics and lipidomics 

1.5.1. Metabolomics 

In the previous sections, methods for elucidating biological networks of molecular 

interactions were discussed. The investigation of networks followed the path starting from genes 

(carriers of inherited information), to proteins (performers of particular cellular functions), to 

cellular phenotypes (collections of observable characteristics defined by combination of cellular 

functions). Metabolic state of a system is a novel type of information that recently received 

substantial attention. Small molecule metabolites are important cellular constituents that are 

metabolized by proteins and contribute to the cellular homeostasis. The amount of currently 

available information about genes and proteins on a genome-wide scale is wider than what we 

know about metabolites. This is mainly related to analytical challenges associated with 

monitoring abundances of small models. Moreover, the absence of a blue print for metabolites, 

such as genome sequence for proteins, makes the discovery of new bioactive molecules a much 

slower process than modern genome sequencing.  The advances in chromatographic techniques, 

such as gas and liquid chromatography, nuclear magnetic resonance spectroscopy and mass 

spectrometry have been instrumental for commencing investigation of the cellular metabolome 
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- the full collection of metabolites of the cell [68]. Metabolomics is a corresponding field of 

research that focuses on identification and quantification of all cellular metabolites that can be 

classified into the following major classes: amino acids, nucleotides, toxins, vitamins, sugars 

and lipids. Comparing to 4 bases that define genome and 20 amino acids that are used to build 

proteins, metabolome is more complex in terms of diversity of chemical structures it comprises. 

This leads to emergence of metabolomics sub-disciplines, such as lipidomics, glycomics and 

peptidomics, that study particular types of metabolites [69]. The division is associated with 

physiochemical properties of molecules of particular types, as for example, lipidomics focused 

on lipids, which are generally hydrophobic compounds soluble in organic solvents.  

In contrast to many functional genomics strategies discussed above that were first 

developed and tested in yeast before finding their applications in other organisms, the 

development of metabolomics is not originating from yeast research. In fact, there has been a 

tremendous development of metabolomics applications in plants because of the rich source of 

metabolites and potential scientific and applied applications [70]. Because of implications of 

metabolites into various diseases [71] and the promising potential of metabolic biomarkers in 

early disease diagnostics [72], metabolomics studies of human samples greatly outnumber 

attempts to scrutiny metabolome of simple eukaryotic model systems. Nevertheless, a number 

of elegant studies were performed in Saccharomyces cerevisiae that paved the way for 

integration of metabolomics into the yeast systems biology framework.    

The first proof of concept metabolomics study in yeast investigated metabolic 

phenotypes of deletion mutants that did not show any growth defect in glucose-limited aerobic 
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and anaerobic conditions [73]. Authors proposed that despite the absence of an observable 

growth phenotype, destitution of metabolites in the mutants could be adjusted to compensate for 

the effect of the mutation and maintain the normal growth rate. Measurements of metabolites 

by enzymatic assays and high-resolution 1H-NMR spectroscopy demonstrated that deletion of 

PFK26 and PFK27 genes that encode 6-phosphofructo-2-kinase (6PF-2-K; EC 2.7.1.105), 

which catalyzes the conversion of fructose-6-phosphate into fructose-2,6-bisphosphate, resulted 

in distinct metabolic phenotypes comparing to the reference strain.  Moreover, if the function of 

only one of the genes were known, the function of the second gene would be suggested based 

on the observed similarity of metabolic signatures of the two mutants. A follow-up study 

performed by the same group further developed the technology to enable high-throughput 

metabolomics screens [74]. Authors performed metabolic analysis of extracellular metabolites 

of about 20 gene deletion mutants from a broad range of metabolic categories. Measurement of 

extracellular metabolites (metabolic footprinting) was performed as alternative to determination 

of intracellular levels (metabolic fingerprinting) because it allows to avoid complications 

associated with a rapid turnover, quenching and extraction of metabolites. Unlike, quantitative 

metabolic profiling that focuses on quantification of all measured metabolites, the method 

compared raw mass spectra to identify differences between strains and experimental conditions 

that can be further investigated with higher accuracy. The method was not sufficiently sensitive 

to identify unknown peaks in the metabolic footprint. However, it could detect differences 

between the mutants and group together deletion strains of genes with common function, e.g. 

amino acid metabolism. The short running time of 2 minutes per sample makes the method 

attractive for a rapid systematic search for mutants with perturbed metabolism. Alternative 
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metabolic profiling methods with higher resolution have been developed for relative or absolute 

quantification of metabolites by 1H-NMR spectroscopy [75,76] and mass spectrometry [77–80]. 

These early works centered on the development of technologies for quantification of 50-100 

molecules from various metabolic classes and demonstrated their performance on metabolic 

differences induced by selected growth conditions or few mutations. Data generated by these 

efforts stimulated development of computational methods for integrating metabolomics with 

transcriptomics [81,82] and the genome-scale yeast metabolic models [83]. 

The first genome-wide metabolomics study in Saccharomyces cerevisiae assessed amino 

acid levels in 5000 single-gene deletion mutants [84]. Researchers who performed the study, 

argued that metabolomics methods based on chromatography, mass spectrometry and nuclear 

magnetic resonance studies are time intensive limiting their accessibility for screening for 

thousands of samples. Alternatively, amino acids were analyzed starting from fluorescent 

derivatization of cell extracts, separation by capillary electrophoresis and detection by laser-

induced fluorescence. Analysis of one sample took about 8 minutes allowing to conduct the 

whole screen in 2 months. Around 700 gene deletion mutants showed at least eightfold change 

comparing to the reference strain in at least one amino acid. The findings suggest that various 

factors influence amino acid levels, such as vacuolar structure and mitochondrial activity. In 

line with previous studies, authors demonstrated that similarity of metabolic profile help to 

propose gene functions to previously uncharacterized genes. The yeast metabolome has not been 

covered yet at this scale by mass spectrometry methods.  However, recent studies demonstrate 

increasing feasibility of experiments employing mass spectrometry by providing data for 
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hundreds of samples related to metabolome dynamics in various conditions [85] and genetic 

factors of metabolome variability [86]. 

1.5.2. Lipidomics 

Metabolomics approaches measure a range of diverse metabolites, such as amino acids, 

nucleic bases, vitamins, sugars and metabolic precursors. As discussed earlier, in-depth analysis 

of specific metabolites requires dedicated analytical platforms. Lipids are the focus of 

lipidomics. The diversity of lipids define their involvement in many key biological processes, 

such as membrane homeostasis, energy storage and signaling [87]. That is the reason why 

eukaryotes have dedicated hundreds of genes to maintenance of lipid homeostasis.  This makes 

lipidomics an attractive tool for functional genomics studies of a broad range of cellular 

processes. Current advances in the yeast lipidomics are summarized below and a novel 

lipidomics approach for discovery of lipid related genes is presented in Chapter 3.  

Similarly to other “omics” technologies, the advancements in lipidomics can be viewed 

as a two-step process. First, analytical methods are developed and optimized to increase speed, 

coverage and quantification accuracy of lipid species detection. Next, the established platforms 

are applied for answering biological questions. The classical methods for studying lipids relied 

on radioactive and fluorescent labeling of lipids and separation by high performance liquid 

chromatography and thin-layer chromatography. Gas chromatography followed by mass 

spectrometry is a common method for analysis of fatty acid content of chromatographically 

separated lipid classes. However, these methods can be tedious and time consuming, and they 

are not sensitive enough to distinguish between various lipid species with a similar molecular 
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mass. A breakthrough in lipidomics is associated with a new generation of methods that take 

advantage of increased sensitivity and resolution of mass spectrometry combined with the 

development in tandem mass spectrometry, soft ionization techniques that don’t cause lipid 

fragmentation (matrix-assisted laser desorption/ionization and electrospray ionization (ESI)) 

and faster liquid chromatography methods that require lower sample volumes [88,89]. NMR 

spectroscopy has been also applied for determining structures of purified lipids and investigation 

of the structure and dynamics of lipid membranes. However, higher sensitivity of mass 

spectrometry-based methods make them much more common in lipidomic applications.  

One of the early studies that applied mass spectrometry lipidomics in the yeast 

Saccharomyces cerevisiae utilized nanoelectrospray ionization tandem mass spectrometry to 

investigate membrane phospholipid composition of distinct cellular compartments [90]. It has 

been known that distribution of lipid classes is not uniform among the cellular compartments 

with examples of membrane specific classes, such as cardiolipin for the inner mitochondrial 

membrane, and sterol and sphingolipids for the plasma membrane. By utilizing tandem mass 

spectrometry lipid molecular species, i.e. lipid head group that defines the lipid class and the 

precise acyl chain substituent of a lipid, could be detected. A clear difference between acyl chain 

composition within phospholipid classes was observed in different membranes providing 

evidence that membrane lipid composition is regulated at the molecular species level. A later 

study demonstrated for the first time functional differences between two pathways of 

phosphatidylcholine synthesis [91]. This major lipid class of the eukaryotic membranes is 

synthesized either via the methylation of phosphatidylethanolamine or via the CDP-choline 

route. By blocking one of the pathways, phosphatidylcholine synthesis was forced to go through 
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one of the routes. As a result, distinct profiles of molecular lipid species were observed with a 

greater molecular diversity of phospholipids attributed to the CDP-choline route. These 

pioneering studies highlighted a new level of complexity of lipid regulation that can be 

investigated by the modern mass spectrometry methods. The technology was rapidly adopted 

by several research groups that collected lipidomics data for refining the current knowledge of 

lipid metabolism in yeast (for a comprehensive review see [92,93]). The technology was further 

improved for analyzing diverse lipid classes in a single experiment. Several methods for a rapid 

and comprehensive coverage of the yeast lipidome by mass spectrometry have been recently 

published [94–97].  Electron spray ionization followed by high resolution mass spectrometry 

was utilized as a rapid method for detecting lipid species from the major yeast lipid classes 

(glycerophospholipids, free fatty acids, triacylglycerides and sphingolipids) [94,95]. In this 

approach, that is termed as shotgun lipidomics, lipid extracts are directly infused into a mass 

spectrometer avoiding the time consuming chromatographic separation, which shortens the 

running time of the MS analysis to 5 to 10 minutes. An alternative protocol that optimized lipid 

extraction procedures and solvent composition, and employed tandem mass spectrometry 

(MS/MS) experiments quantified 250 lipid species from 21 lipid classes [96].  It was also 

demonstrated that an increased coverage of lipid classes and minor lipid species could be 

achieved by coupling liquid chromatography with ESI-MS. An introduction of a 30 minutes 

separation step allowed to profile simultaneously in a simple MS experiment  

glycerophospholipids, sphingolipids, waxes, sterols and mono-, di- as well as triacylglycerides 

[97]. The availability of tools for a fast and comprehensive analysis of the yeast lipidome 

empowered lipidomics studies that could investigate a greater number of lipids in more 
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conditions and mutants. The recent applications of the methods include investigation of the lipid 

composition of lipid rafts [98], influence of variety of growth conditions on dynamic properties 

of the lipidome [99], and relation of mitochondrial membrane lipidome to the yeast longevity 

[100]. However, there were no previous reports of attempts to analyze lipidomes of hundreds of 

yeast samples similarly to the above-mentioned functional genomics studies. Thus, to the best 

of our knowledge, the lipidomics screen described in Chapter 3 is the first step towards a large-

scale identification of the lipidomic phenotypes in yeast.         

 

1.6. Informatics and mathematics concepts related to yeast 

functional genomics studies  

1.6.1. Hypothesis testing and statistical significance 

Generation of new hypotheses based on available data and conducting experiments for 

confirming them is a crucial process in biological sciences. A common hypothesis tested by 

biologists is whether there are differences between certain properties of biological systems, such 

as phenotypic characteristics between different types of cells and changes in gene expression, 

protein and metabolite levels due to perturbation. Statistical tests evaluate whether there is a 

difference between observations that is unlikely due to chance or experimental error. We briefly 

summarize below conceptual basics of statistical testing. Details about calculations and 

additional methods can be found, for example, in the following references: [101,102]. In case, 

when a number of samples is low, graphical plots of measurements with error bars are employed 
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to evaluate uncertainty associated with a measurement. In Chapter 3 of the thesis, we use such 

representation to display an average of two values with an error bar displaying two originally 

measured values (Figures 3-6 – 3-8). Alternatively, error bars can display standard deviation or 

confidence intervals. When a large number of samples is available, that is typical in high-

throughput experiments, statistical significance of a result can be computationally tested.  In 

that case, research hypothesis, i.e. a prediction made by a researcher, is reformulated with two 

statistical hypotheses: the null hypothesis (H0 in mathematical notation) that states that there is 

no difference between observations and the alternative hypothesis (H1) that states that there is a 

difference. Statistical testing is employed to calculate a test statistics. A value of a test statistics 

is compared to a theoretical distribution of all possible values that test statistics could have if an 

experiment was repeated an infinite number of times using the same number of samples. Critical 

values of test statistics that are unlikely to be observed if the null hypothesis is correct can be 

found in special statistical tables. Comparison of observed test statistics with these critical 

values indicate whether a result of a study is statistically significant. In scientific practice, it is 

common to call a result statistically significant if a likelihood of obtaining such a result by 

chance is not higher than 5%. A likelihood is indicated by a p-value, therefore for a statistically 

significant result the following notation is used: p  <= 0.05. Methods for calculating test statistics 

and p-values are dependent on data distribution and can be parametric or non-parametric. 

Parametric methods, such as a popular Student’s t-test rely on assumption that experimental 

outcomes are independent from one another and come from a normal distribution. If the 

assumptions are met, a p-value can be calculated based on a magnitude of differences between 

mean values of experimental outcomes detected in different conditions and a standard deviation 
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of the measurement of the outcome. Non-parametric methods are developed for evaluation of 

statistical significance when data are not normally distributed. In that case, a non-parametric 

analogue of a t-test is Wilcoxon rank-sum test. The test statistics is calculated based on ranks 

rather than original values and compares medians of groups of observations instead of the 

means. This test is more robust to presence of outliers in the data than the parametric counterpart. 

However, it might yield less significant results than the t-test, i.e. has less statistical power, when 

applied on data that are normally distributed. Therefore, it is important to investigate whether 

assumptions associated with a particular test are met before performing statistical analyses.  In 

Chapter 2, we used Wilcoxon rank-sum test for comparing protein abundances of different 

protein sets. The non-parametric test was selected because distribution of protein abundances 

was skewed and could not be approximated by normal distribution (Figure 2-4).   

A special type of testing is applied when a particular property of a complex biological 

system is investigated. Because a property is an integral observable parameter of a system, it 

comes with only one value. However, one can set up a simulation experiment, in which this 

parameter is compared to a large number of values calculated for random systems. If a real 

observed value is not random, it will be rarely found in the simulated outcomes. In Chapter 2, 

we calculate z-score to express how different a particular value is from a mean of simulated 

values expressed in numbers of standard deviations (Figures 2-12, 2-13): 

 z-score = (x - µ)/σ, 
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where x is an observed characteristic of a system, µ and σ are mean and standard deviation of 

corresponding simulated values. These scores can be converted into p-values using appropriate 

statistical tables.      

1.6.2. Correlation methods 

Large-scale functional genomics screens are often driven by analytical technologies that 

make it possible to observe novel types of relationships between cellular components.  

Therefore, instead of looking for predefined differences and their statistical significance, these 

results need to be explored by alternative methods developed for detection of patterns in the 

data when there is no a priori assumptions about data structure. One of such methods is a 

correlation analysis that assigns a score for a pair of variables. The higher the score - the higher 

the similarity. Same as for statistical significance tests, there are parametric (Pearson) and non-

parametric (Spearman) methods for performing the correlation analysis [102]. These two 

methods are the most widely used. Pearson correlation measures an extent of a linear 

relationship between normally distributed variables.  It is important to test for data normality 

and detect a presence of outliers in the data, because Pearson correlation is sensitive to outliers 

like other parametric methods. When variables are not normally distributed or when there is a 

deviation from linearity in the relationship between these variables, it is more appropriate to 

calculate calculating Spearman correlation. Spearman method is based on ranks and does not 

rely on normality assumption. It detects a monotonic relationship between variables that does 

not have to be linear.  
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Recently, a unified correlation approach, called maximal information coefficient, has 

been proposed [103]. The same method can be applied to identify different types of relationships 

between variables, such as linear, exponential and periodic.  The maximal information 

coefficient is able to score similarly different types of relationships. Thus, it does not favor a 

particular association type. This feature is particularly valuable for exploration of datasets when 

there is no prior knowledge about dependencies between variables.      

1.6.3. Clustering analyses  

Clustering is a set of methods for multivariate data analyses that group objects in the 

dataset based on similarity of their properties. Unlike pair-wise correlation analyses, clustering 

identifies larger sets of similar objects. For example, clustering was used to identify genes that 

are similarly expressed under certain conditions [17] ; sets of interconnected proteins that 

potentially are functionally related [104]; and groups of gene deletion mutants that affect cellular 

metabolite concentrations in a similar way [84].  

Hierarchical clustering is one of the most widely used clustering methods in biology 

[17]. It does not alter the original dataset but groups similar objects together. The result has the 

same complexity as the original dataset. The clustering procedure begins by calculating pair-

wise similarity measurements between dataset objects by correlation analyses or other methods, 

such as Euclidian distance, which unlike correlation scores take a magnitude of differences 

between variables into account. This step is followed by reordering of the dataset objects moving 

closely related entities next to each other. The results are visualized with tree dendograms and 

heat maps (section 1.6.6.2 Matrix-based representation) that can be used for visual identification 
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of modules and clusters. The method only rearranges the variables in the dataset so all 

relationships are kept accessible and can be visually explored.  

Partitioning methods reduce dataset complexity and extract closely related modules or 

clusters of objects that can be represented as separate entities. This is a particularly popular 

method for detecting protein complexes in the protein interaction data.  Various methods exist 

for performing such tasks [105], including algorithms that automatically cut dendogram trees 

produced by hierarchical clustering [106] . Rigorous performance comparison of the clustering 

methods [107,108] favors Marcov clustering algorithm in terms of its ability to reconstruct 

known protein complexes and tolerance to noise in the data. The Marcov clustering algorithm 

was recently applied in a number of studies aimed at consolidating the repertoire of protein 

complexes based on interaction data from multiple sources [109,110]. A disadvantage of the 

method is inability to assign proteins to multiple clusters. Recently, a ClusterOne algorithm has 

been reported that overcomes this limitation and has a comparable accuracy to Marcov 

clustering procedure [111]  .   

1.6.4. Filtering and quality evaluation of datasets of protein interactions  

Protein-protein interactions are detected by complex experimental procedures that first 

generate raw experimental data (section 1.4. Strategies for mapping protein-protein interaction 

networks) that are processed and filtered for assigning interactions between particular proteins. 

Y2H studies are based on survival assays in which an interaction between two proteins results 

in a cell growth or altered cellular phenotype (e.g. blue colony color os strains grown with X-

gal due to activation of  beta-galactosidase expression). The screens were performed in an array 
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format in which every pair of tested proteins is known [57], and in a pooled setting [57,58], in 

which a stain with a particular protein fused with a Y2H DNA-binding domain is mixed with 

many strains caring a counterpart protein fused with a Y2H activation domain. In both setting, 

a cell growth indicates an occurrence of an interaction. When stains are arrayed, the positions 

of strains corresponding to each test protein pair are known. Therefore, an interaction can be 

unambiguously assigned based on a cellular phenotype. In a pooled setting, the identification of 

interacting proteins is based on sequencing of genes associated with binding and activating 

domains from the selected strains. In the Y2H large-scale screens, interactions are filtered based 

on frequency of occurrence in replicated array experiments or frequency of identification of an 

interaction by sequencing. A common conclusion drawn from the evaluation of filtered results 

is that the interactions confirmed multiple times are much more reliable than single 

observations.           

Frequency based filtering can be even more effective for analysis of TAP-MS results. 

The TAP-MS methodology detects protein composition of sets of co-purified proteins. 

Therefore, same protein pairs could be co-purified multiple times, which increases a confidence 

that they truly belong to the same protein complex. In early large-scale TAP-MS screens, the 

filtering was based on a simple calculation of co-occurrence frequency and exclusion of proteins 

that were detected in a large number of purifications [59,60]. In later studies, more sophisticated 

statistical methods were employed for performing data filtering.  Gavin et al. presented a ‘socio-

affinity’ index that evaluates a partnership tendency of pairs of proteins [64]. The index is based 

on a ratio of how often two proteins are co-purified together and their expected co-occurrence. 

Partnership scoring is more specific and keeps protein pairs with good socio-affinity index even 



 

 

32 

if one of the proteins is observed with a high frequency. Scores based on occurrence of an 

individual protein would have filtered out such interactions. It was observed that interactions 

with a higher socio-affinity index are more reproducible. Consequently, social-affinity index 

cut-off value for producing a filtered dataset was selected based on the reproducibility of the 

interactions in the screen.  

First studies aimed at the evaluation of results of large-scale protein-protein interaction 

screens, suggested that the important parameters of data quality evaluation are coverage and 

accuracy [47]. These parameters can be determined by comparing a large-scale interaction 

dataset with a ‘gold-standard’ reference set of validated interactions. Coverage is defined as a 

fraction of reference set interactions covered by the experiment and accuracy is a fraction of 

observed interactions confirmed by the reference set. Considering interactions observed in 

several datasets lead to the increase of data accuracy. However, such filtering decreases the 

coverage. Therefore, optimal filtering parameters should be selected to achieve a reasonable 

compromise between a comprehensive coverage and an adequate accuracy of the reported data.       

 In studies described above, the filtering procedures were performed with empirically 

selected cut-offs followed by quality evaluation of the filtered datasets. More recent TAP-MS 

studies integrated filtering based on interaction frequency with reference sets of validated 

interactions for selecting filtering parameters optimized for accuracy and coverage of the filtered 

datasets [51,65].   

In section 2.4.3, we describe a filtering strategy of the DHFR PCA screen that  combines 

recent developments for processing Y2H and TAP-MS data. The proposed algorithm relies on 
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identification of protein interactions based on analysis of colony sizes of a survival assay, which 

is similar to Y2H processing, in combination with optimization of filtering parameters based on 

the data coverage and accuracy inspired by TAP-MS screens.   

1.6.5. Methods for interpretation of interaction networks 

General principles and concepts for studying protein-protein interaction networks are 

summarized below with a focus on topics related to the current thesis explored in Chapter 3, i.e. 

protein-protein interaction based function prediction of unknown genes and experimental 

validation of such predictions.    

1.6.5.1. General properties of interaction networks 

Large-scale methods for detecting protein-protein interaction networks as well as other 

methods for collecting genome-wide observations are often referred to as top-down approaches. 

Such approaches do not test particular hypotheses from the start, but aim at cataloging and 

summarizing observations. These observations collectively contribute to a network of protein 

or gene associations, in which nodes correspond to genes and/or proteins and edges correspond 

to their interactions. A network of interactions provides a basis for future studies aimed at 

interpretation of biological importance of observed network patterns and properties.  

Similarly, computational top-down methods study general properties of networks as a 

whole. Learning network properties is an important step in devising general organizational 

principles of associations between thousands of biological molecules and constructing a network 

model with reduced complexity. Importance of certain repeated patterns of the network or 
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characteristics that are different from those expected from a random network can be tested 

experimentally or computationally. Network properties provide a basis of comparative analysis 

between biological networks and knowledge transfer between extensively studied networks 

from model organisms to other organisms with limited available experimental data. 

Furthermore, a comparison of network properties helps to avoid a direct comparison of complex 

networks that is computationally intractable [112]. The main network properties, i.e. “degree 

distribution”, “network diameter”, “clustering coefficient”, and “betweenness” [113], are 

described below.  

Degree is a property of a network node. It is equal to a number of direct connections 

with other nodes. Degree distribution is a characteristic of a network. It is the distribution of 

degrees of all nodes. In mathematical terms, degree distribution is denoted as P(k) and 

corresponds to a probability that any randomly chosen node has degree k. It has been 

demonstrated that different types of biological networks, such as protein-protein interactions, 

transcription factor binding sites, metabolic and genetic, have degree distribution significantly 

different from the corresponding property of a random network, reviewed in [112,114,115]. 

Degree distribution of these networks is scale-free that follows a “power law” distribution, 

(𝑘) ∝ 𝑘−𝛾 , in contrast to Poisson degree distribution characteristic to random networks. Such 

non-random network property of degree distribution shows that in biological networks there is 

a small number of highly connected nodes with high degrees termed “hubs” with the majority 

of nodes having a small number of connections. The possible advantage of such organization is 

that network is less sensitive to perturbation, thus is more robust, because inactivation of a 

random connection between nonhub nodes has less impact on the scale-free network structure 
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comparing to random network. Analyses of hub nodes that are important for scale-free topology 

demonstrate that they tend to be more essential and more conserved than nonhub nodes 

[116,117]. These findings provide evidence that inferred network properties have biologically 

important interpretation.     

“Small world” property is another non-random characteristic of biological networks. 

Small world networks have a small network diameter, which is defined as a maximum distance 

between two network nodes. A small diameter indicates that any two nodes can be connected 

with a relatively short path, which in the signaling networks facilitates information flow and 

optimizes metabolite transfer in networks of metabolic reactions [118].   

Clustering coefficient is a percentage of existing connections of a node to its neighboring 

nodes to a total number of possible connections. In networks with high clustering coefficient if 

node A is connected to node B and node B is connected to C, then there is a higher probability 

that A and C are also connected. High clustering coefficient is another indicator of a small world 

network.   

  The importance of a node to information flow though network can be assessed with 

betweenness measure, which is equal to a number of shortest paths from the whole network that 

pass through that node or edge. Proteins with high betweenness but low connectivity a (low 

degree) were found to be abundant in the yeast protein-protein interaction network suggesting 

that they play a role of connectors between network modules. Similarly to hubs, such proteins 

also appeared to be essential with higher probability than proteins that did not possess high 

betweenness and low connectivity features [119].              
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It’s been argued whether scale-free topology of protein-protein interaction networks 

could be an artifact related to incompleteness of evaluated interactome [120] and whether better 

estimations of network topology might exist [114,121]. Nevertheless, pioneering studies of 

networks and their organization principles reveal topological patterns very distinct from random 

networks. Understanding of general network properties will continue to mature with acquisition 

of more accurate and more complete data about biological networks.   

1.6.5.2. Subnetworks and modules 

Although the ultimate goal is to understand how cell or organism functions as a whole, 

system complexity requires breaking networks into smaller parts for detailed investigation of 

their functions, such as subnetworks and modules described below. 

1.6.5.2.1. Subnetworks 

A division of network can be dictated by a specific scientific question and reflect a 

functional subnetwork of a particular cellular process. An example of such investigation is a 

recent study by Gong et al, which provides an atlas of chaperone-protein interactions in 

Saccharomyces cerevisiae [122]. Authors performed investigation of protein-protein 

interactions of the 63 known yeast chaperons that allowed to: identify functionally promiscuous 

chaperones and chaperones that are functionally specific; find properties of interacting proteins 

that are associated with increased number of encountered chaperones (e.g. protein length and 

proximity to nucleus); and reveal the presence of multi-component chaperone modules. Other 

examples of subnetworks investigations include functional dissection of complexes involved in 

yeast chromosome biology [123] and a small ubiquitin-related modifier system [124]. The 
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investigation of subnetwork brings to light details about molecular communications that are 

hidden in studies of global network properties. The common motives of subnetwork analysis 

are: a) identification of partnership between members within a particular process; b) observation 

of links that connect the subnetwork with other cellular pathways and processes; and c) 

application of various network clustering techniques to identify network modules, i.e. densely 

interconnected network subgraphs with limited connectivity with the rest of the network.   

1.6.5.2.2. Modules 

Network modules are of great interest as they provide a hint about organization of the 

cellular machinery from protein association data. Such modules correspond to protein 

complexes, i.e. proteasome and DNA/RNA polymerases, or consist of proteins that cooperate 

for performing a common cellular task. Analysis of early data on protein-protein interaction 

networks demonstrated that members of network modules tend to share the same functional 

annotation [104]. However, modules are rarely consisting of only known members with defined 

function. They also comprise members with distinct functions or proteins with unknown 

function. Based on an assumption that members of the same module may be important for 

performing the same cellular task, an unknown protein could be suspected to perform the same 

function as the majority of the members of the module. Therefore, studying content of the 

network modules and associations between genes and proteins in general has a potential for 

identifying novel protein functions.   
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1.6.5.3. Protein function prediction  

1.6.5.3.1. Computational methods for function prediction 

Function assignment to an uncharacterized gene or protein based on function of its 

interacting partner is known as guilt-by-association concept. Even in extensively studied model 

organism Saccharomyces cerevisiae hundreds of genes comprising up to one third of the yeast 

genome have not been associated with any cellular function or process [125]. In a complex 

organism such as mammals, there are more genes with unknown function than genes with some 

level of characterization. Therefore, an opportunity to elucidate protein function is a highly 

influential factor for inspiring experimental and computational studies of cellular networks. 

 Recently, efficient computational methods were developed for automated function 

prediction based on networks of protein associations and annotation ontologies of characterized 

proteins. Networks analyzed by these methods are not limited to protein or genetic networks 

and can comprise other types of data, such as co-localization or co-expression [126–128]. 

Generally, predictions are based on propagation of functional annotations of known network 

nodes to other nodes through network connections. Function assignment is rarely unambiguous, 

thus prediction methods generate a score value that indicates how likely the suggested function 

is.  Two types of approaches can be distinguished in function prediction methods: module 

assisted and direct annotation schemes.  

Module assisted approaches find first network modules with various clustering 

techniques, such as commonly used hierarchical clustering [104] and Markov clustering 

algorithm [129]. Once a module is identified, a function is assigned to all members of the module 
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based on the function of the majority of members or based on enrichment based on 

hypergeometric distribution P-value can be used to identify a functional overrepresentation in 

the module. The distribution is based on probability that out of  m nodes in the module at least 

k are annotated with a specific function given that there are totally n nodes in the network and f 

of which are annotation with that function and is calculated as:  

                          𝑝 =  ∑
(

𝑓
𝑖
)(

𝑛−𝑓
𝑚−𝑖

)

( 𝑛
𝑚)

𝑚
𝑖=𝑘    , 

where: n is the total number of nodes, m is the total number of nodes in a module, f is 

the total number of nodes with a specific annotation, k is the number of nodes in a module with 

a specific annotation, and (
𝑎

𝑏
) is a binomial coefficient.  

Direct approaches assign a function to a protein based on its network connections and 

known function of interacting partners. In the simplest form, a protein with most of neighbors 

with a specific function can be suspected to have that function. Such logic is called a neighbor 

counting [130]. An extension of the method called naïve Bayes label propagation can use edge 

weights instead of counting interactions. Edge weights correspond to a likelihood that two 

proteins participate in the same process based on the particular evidence about their connection. 

Both methods only take into account direct neighborhood of the node. Network diffusion 

methods are designed to propagate information through network and allowing effective usage 

of functional knowledge about interactions that are several steps away [131,132].    
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1.6.5.3.2. Experimental validation of functional predictions 

 Accuracy of large-scale association datasets as well as performance of prediction 

algorithms is routinely evaluated based on the ability to recapture known biological phenomena. 

However, experimental confirmation of potential novel findings is required in order to translate 

intriguing observations into biological facts. Recently, a number of studies have been performed 

for defining the molecular mechanism of fatty acid chain length control by membrane-imbedded 

elongase complexes [133], characterization of conserved Orm proteins as regulators of 

sphingolipid biosynthesis [134] and linking the GDP/GTP exchange factor Rom2p to the 

regulation of sphingolipid metabolism [135]. These studies are examples of biochemical 

validation of defined novel functions based on connection patterns with known members of lipid 

metabolism observed in the yeast gene-gene interaction network.  

The confirmation of novel hypotheses with classical genetics and biochemical tools will 

remain a much slower process than the generation of such hypotheses. Thus, high-throughput 

technologies are needed to enable a more rapid confirmation of computational predictions. 

Several studies have successfully combined function prediction methods with an experimental 

confirmation for tens of genes simultaneously. Hess et al. identified 100 proteins related to 

mitochondrial biogenesis in Saccharomyces cerevisiae [136]. Network for prediction was 

constructed from diverse genomic data sources and a list of 106 genes known to be involved in 

mitochondrial biogenesis was used as a query for retrieving genes likely to have a similar 

function. Top scoring genes were experimentally validated by measuring the rate of generation 

of cells with respiratory dysfunctional mitochondria (petite cells) [137] and growth rates in 
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respiratory and fermentative conditions. Deletion mutants lacking genes important for 

mitochondrial function demonstrated higher rates of petite cells formation comparing to wild 

type yeast and slower growth rates under respiratory condition. In another study, whole-animal 

Caenorhabditis elegans microarray data were used to predict tissue-specific gene expression 

confirmed with promoter-GFP constructs [138].  

1.6.6. Methods for network visualization 

Visualization of results is an important aspect of data analysis that helps researchers to 

organize information, find unexpected patterns, predict and propose new hypotheses that could 

explain the observations. Communicating results visually in a clear and simple manner becomes 

more and more challenging because the amount of data points and heterogeneity of the data 

produced by “omics” experiments are rapidly increasing [115]. We review below two main 

visualization methods and discuss directions for further improvements of graphical tools.   

1.6.6.1. Graphs of nodes and edges 

Graph of nodes connected with edges is the main method for visualizing networks of 

molecular interactions [139]. The main challenge of the graph representation is how to handle 

thousands of interactions between thousands of molecules, which is a typical scale of high-

throughput experiments in yeast (in higher eukaryotes, these numbers are one to two orders of 

magnitude higher).  Such network complexity unavoidably leads to the overlap between edges, 

which makes it difficult to follow connection paths between nodes and observe meaningful 

connectivity patterns. Dedicated network layout algorithms have been developed to address this 
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problem and produce more informative graph visualizations by arranging network nodes in such 

a way that the overlap between edges is minimized [140,141]. For larger networks, clustering 

of interaction data can be performed before visualization to group together tightly connected 

components [107,142]. Graphs can be further simplified by combining in one node all clustered 

nodes of genes/proteins and using edges for showing connections between distinct clusters 

instead of visualizing all individual interactions [110]. These methods largely improve 

visualization clarity. However, they do not fully escape the problem of the overlap. There is still 

a need for further development of graphical methods especially for large networks.  

Because of the popularity of the graph representation, a variety of software packages 

exist for representing networks as graphs, many of which are specifically dedicated to 

visualization of biological data, (for a comprehensive review of such software packages see 

reference [139]). At present, Cytoscape [143] is one of the most popular graph visualization 

tools in biological sciences. In addition to visualization, Cytoscape provides connectivity to 

major databases for extracting and annotating network data making it a handy data management 

tool. The modular architecture of Cytoscape that allows creation of plugins for extending a 

standard set of functionalities further increases popularity of the software.     

1.6.6.2. Matrix-based representation 

The main alternative to graphs of nodes and edges is a matrix-based representation of 

networks [144,145]. Matrix rows and columns correspond to genes and proteins of the network 

and corresponding matrix elements hold information on interaction. In a text format, such a 

matrix represents a table were numeric value of a matrix element indicates the relationship  
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between a particular row and column (1 – interaction, 0 – no interaction) (Figure 1-2A). In a 

graphical format commonly referred to as “heat map”, the relationship between entities in rows 

and columns is indicated by a color of a corresponding matrix element (for example, red – 

interaction, black – no interaction) (Figure 1-2B). The matrix-based heat map representation is 

not limited to the interaction network. It has gained its popularity in biological sciences as a tool 

for visualizing genome wide expression profiles [17]. In this highly cited work with almost 14 

000 citations recorded in Google Scholar, Eisen et al. placed genes into rows and experimental 

conditions into columns and used colors and color intensities to denote gene expression changes. 

Furthermore, the genes were grouped prior to visualization by hierarchical clustering that 

allowed to identify groups of coordinated genes [17]. The same workflow was used in multiple 

publications for displaying interaction networks and revealing modules of closely connected 

proteins [51,104,146]. The advantage of the heat map presentation over the graph of nodes and 

edges is the absence of the overlap between matrix elements that code interactions.    

Figure 1-2. Matrix-based network representation. 

(A) In the text format, the relationships between rows and columns are coded by a number. (B) 

In the graphical format, the same relationships are visualized with different colors. 
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The heat map representation of interaction data is less common with only a few dedicated 

software packages available [17,147] that still lack the level of sophistication reached by the 

graph visualization software. An important functionality that is missing in the existing heat map 

software is the ability to compare several datasets in one figure. Such feature would be highly 

desirable because it would allow to compare visually results from different interaction screens 

as well as different types of molecular associations between the same nodes (e.g. physical and 

genetic interactions). In Chapter 4, we present an improved heat map representation method that 

we have developed for the matrix-based visualization of superimposed datasets. The method 

was implemented as a platform independent software package that was used for visualization of 

results presented in Chapter 2 (Figures 2-8, 2-12 and 2-13). 

1.6.7. Interpretation of metabolic data 

The second type of data that we analyze in the thesis, in addition to protein interactions, 

are metabolite abundances. In contrast to interactomics, that provides information about 

connections between cellular components, lipidomics and metabolomics quantifies abundances 

of small molecules that are products of enzymatic reactions not reflected in a genomic blueprint. 

Below, we discuss methods for interpretation of the metabolomics data.  

1.6.7.1. Comparison of metabolite abundances 

As described above, the first step of interactomics analysis is clustering that reveals 

organizational principles of interaction networks. In metabolomics, the first step is comparison 

of metabolite concentrations between different strains or growth conditions. Abundances of 
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metabolites measured are evaluated based on methods described in section 1.6.1. Hypothesis 

testing and statistical significance. Comparison of metabolite abundances are summarized in 

tables that contain the information about a magnitude of differences between concentrations of 

metabolites and statistical significance of the differences.  

1.6.7.2. Pathway analyses  

Results of statistical analyses of metabolic abundances contain information on changes 

associated with single molecules. In order to enable investigation of how the whole metabolic 

system is changing in response to perturbation, a metabolic pathway map is needed. Unlike 

proteins that are encoded in a genome, metabolites are products of enzymatic reactions. Methods 

of analytical chemistry for detecting small molecules and biochemical characterization of 

enzymatic activities that modulate their concentrations are as important for metabolomics as 

genome sequencing efforts for genomics and proteomics. Results of metabolic studies are 

represented in pathway databases that connect metabolites through enzymatic reactions.  One 

of the most developed resources for storing biochemical information is Kyoto Encyclopedia of 

Genes and Genomes (KEGG, http://www.genome.jp/kegg/ or http://www.kegg.jp/) [148]. 

KEGG is populated by biochemical pathways that are manually created by experts in the field 

of biochemistry and metabolism. The information is stored in a computer readable format, which 

supports development of bioinformatics tools that help visualizing organism specific pathway 

maps and projecting metabolic changes onto the pathway diagrams [149,150].  

The development of genome-scale metabolic models is aimed at combining the 

information about different pathways into a unified computational framework [151]. Such 

http://www.genome.jp/kegg/
http://www.kegg.jp/


 

 

46 

representation allows to study an influence and interconnectivity of diverse metabolic pathways. 

Furthermore, the ability to incorporation kinetic and metabolite abundance information with 

metabolic models using  dedicated computational tools facilitates mathematical modeling of 

metabolic systems [152].    

1.6.8. Yeast databases  

Sophisticated databases for storing biochemical information significantly contributed to 

the success of functional genomic screens and computation analyses of yeast Saccharomyces 

cerevisiae.  These resources contain vast data collected for yeast and reflect tremendous efforts 

made by teams of bioinformaticians and biological curators for presenting the information in a 

format suitable for computations. The most important resources are discussed below.  

 Saccharomyces Genome Database (SGD) is one of the oldest sources of manually 

curated and high-throughput information collected from peer-reviewed literature 

(http://www.yeastgenome.org/) [153]. The resource contributes to standardization of yeast gene 

and protein name nomenclature, systematic curation of diverse sources of information, e.g. gene 

annotations, genomics, proteomics, interactomics, and development of computational tools for 

data retrieval and analysis. A unique feature of SGD is the information coverage and 

connectivity with other yeast related resources.  This makes SGD a comprehensive solution that 

will guide a researcher to a dedicated resource based on the type of requested data.  

 The MIPS Comprehensive Yeast Genome Database (CYGD) is one of the most 

accessed  databases for collecting manually curated information about validated protein 

complexes used for evaluating quality of high-throughput protein-protein interaction datasets ( 

http://www.yeastgenome.org/
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http://mips.helmholtz-muenchen.de/genre/proj/yeast/) [154]. It should be noted, that despite 

an important role the resource had in pioneering interaction studies, its development has been 

discontinued. Therefore, other sources should be consulted for updated information on validated 

protein complexes, for example a catalogue created by Pu et al. [109].   

Biological General Repository for Interaction Datasets (BIOGRID) is a database of 

protein-protein and gene-gene interactions (http://thebiogrid.org/) [155]. The database collects 

data for other organisms than yeast. The resource has a high quality of deposited information 

and is frequently updated. BIOGRID served as a template for a database of protein 

phosphorylation (PhosphoGRID http://www.phosphogrid.org/) [40]. 

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a well trusted resource of 

biochemical pathway maps that cover metabolic and signaling pathways (http://www.kegg.jp/) 

[148].  

Gene Ontology Consortium (GO) is a source of standardized gene ontology 

information (http://www.geneontology.org/) [156]. GO provides consistent descriptions of gene 

products in different databases based on structured controlled vocabularies (ontologies). The 

structure of the ontology enables computational analysis of protein location, biological 

processes and molecular functions.  

Because of the diversity of yeast data types, many more databases exist.  A yearly update 

about resources dedicated to yeast and other organisms are published in a special database issue 

of Nucleic Acids Research journal (http://nar.oxfordjournals.org/) [157].    

http://mips.helmholtz-muenchen.de/genre/proj/yeast/
http://thebiogrid.org/
http://www.phosphogrid.org/
http://www.kegg.jp/
http://www.geneontology.org/
http://nar.oxfordjournals.org/
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1.7. Rationale of the study 

Despite the significant progress in understanding yeast biology powered by the genome 

sequencing project and functional genomics studies, functions of many yeast genes are still 

unknown. When we started our investigation, 30% of the yeast genes were not linked to any 

biological process or molecular function [125]. Because some genes are multifunctional  [158], 

we might expect that alternative functionalities can be discovered for annotated genes as well. 

The identification of gene functions can be facilitated by analysis of genome-wide networks of 

molecular interactions based on associations of unknown genes with characterized partners 

[126]. However, the coverage of the yeast interaction network is still limited. 

 In this thesis, we sought to search for novel gene functions in yeast on a large scale. To 

achieve this, we set a goal to increase the coverage on the yeast interactome by performing a 

genome-wide screen for protein-protein interactions (Chapter 2). We employed PCA for 

discovering interactions between certain types of proteins that were not sufficiently sampled by 

existing methods. For mining the results of the screen, we wished to develop a visualization 

method for interactive comparison of large datasets with minimized overlap between the edges. 

We hoped that the visual network analysis would help to identify unique interactions not covered 

in previous studies (Chapter 4) and in combination with function prediction algorithms would 

link uncharacterized genes with established cellular processes. Finally, we aimed at developing 

a complementary screening approach for enabling validation of the predicted functions on a 

large scale (Chapter 3). 
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Chapter 2 : An in vivo map of the yeast protein interactome 

2.1. Contribution to the published work 

Results presented in this chapter were published in the following paper: Tarassov, K.*, 

Messier, V.*, Landry, C. R.*, Radinovic, S.*, Serna Molina, M. M., Shames, I., Malitskaya, Y., 

Vogel, J., Bussey, H., Michnick, S. W. (2008). An in vivo map of the yeast protein interactome. 

Science (New York, N.Y.), 320(5882), 1465–70. [55] DOI:10.1126/science.1153878. * These 

authors contributed equally).  

Conducting a project of such scale required an expertise of several researches for 

optimization of the screening procedures, development of robotic automation protocols, 

performing necessary control experiments and analyzing the results. My contribution to the 

study was dedicated to the development of programming, computational and data analysis 

methods for performing the PCA based high-throughput screen and publishing the results. R.S., 

S.M.M.M., S.I, M.Y. developed the experimental procedures for performing the high-

throughput screen, R.S. developed the robotics and high-density cell culturing.  L.C.R, M.V. 

and M.S.W. described biological examples of autophagy and bud neck network organization 

based on network clustering results performed by T.K. M.V. contributed to high-throughput 

experiments and conducted control experiments for spontaneous refolding, tested PCA 

reversibility and analyzed how mapping of RNA polymerase II complex corresponded to 

distance constrain introduced by DHFR PCA. L.C.R. performed the analyses for figure 3 B, C 

and D, 5B, S7 and S8, and created final versions of other figures (1, 2, 3A, 4) for which T.K. 
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performed the analyses and contributed with graphics. B.H. helped plan the research and edited 

the manuscript. V.J. helped with the biological examples presented in the paper and edited the 

manuscript. L.C.R. and M.S.W. drafted the manuscript with contributions from M.V. and T.K. 

M.S.S. formulated the original idea of the screen using PCA technique, contributed to data 

analyses and writing the manuscript.  

In the published paper, to comply with the limits on number of words and figures allowed 

for papers in Science, computational methods were described only briefly and more details went 

into the Supplementary Methods. In this chapter, I present the work from the computational and 

data mining perspective. I briefly describe experimental methods for DHFR PCA screen (section 

2.4.1 Experimental set-up) and focus in detail on data analysis methods that I have developed 

and applied for converting experimental results of a survival assay into an interaction network 

suitable for computational analyses (sections 2.4.2 to 2.5.5). In section 2.6, I discuss the novelty 

of the results and findings that inspired the follow-up investigation described in Chapter 3. 

Figures 2-1 to 2.13 presented in the chapter are from the published article reproduced with 

permission from the publisher.   

2.2. Abstract 

The cellular homeostasis is shaped by complex networks of molecular interactions and 

regulatory events. The understanding of the cell functions requires systems-level approaches 

capable of measuring thousands of cellular events at a time. For increasing the coverage of the 

interactome of yeast, Saccharomyces cerevisiae, we have performed a systematic screen for 

protein-protein interactions. We have developed a high-throughput version of a protein-
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fragment complementation assay that allowed to detect in vivo interactions between 

endogenously expressed proteins on a genome-wide scale. We identified 2770 interactions 

between 1124 proteins, the majority of which were novel. The method covered particularly well 

interactions between membrane and lipid related proteins, which play a key role in such 

processes as energy storage and signaling.  

2.3. Introduction 

The investigation of networks of different types of molecular interactions is a promising 

approach for understanding cellular architecture. The availability of the yeast genome sequence 

led to development of powerful genome-wide strategies for studying transcript and protein 

abundances, protein localization and phenotypes of gene deletion mutants (section 1.3. 

Functional genomics studies in yeast). Recent studies, that utilized Y2H and TAP-MS methods, 

demonstrated that protein-protein interactions could be studied on a large-scale as well.  

However, these methods are associated with a number of limitations, such as detection of 

interactions in the unnatural environment or requirement of expensive analytical equipment 

(section 1.4. Strategies for mapping protein-protein interaction networks). The PCA is capable 

of detecting protein-protein interactions between proteins expressed from their natural 

promoters in the physiological environment. Furthermore, interactions could be observed in vivo 

by a scalable survival assay (section 1.4.3. Protein-fragment complementation assays). These 

advantages make the PCA method an attractive alternative to Y2H and TAP-MS methods for 

conducting genome-wide studies of protein-protein interactions. Moreover, the published works 
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covered only a fraction of the yeast interactome. Thus, a large-scale screen by an alternative 

PCA method would contribute to the elucidation of protein-protein interaction network.     

2.4. Results 

2.4.1. Experimental set-up 

The systematic genome-wide screen for protein-protein interactions in yeast was 

developed as a survival assay based on inhibition of dihydrofolate reductase activity (Figure 2-

1). Dihydrofolate reductase (DHFR) enzyme catalyzes conversion of dihydrofolic acid to 

tetrahydrofolic acid, which is an important intermediate in de novo synthesis of nucleic and 

amino acids. DHFR is found in all organisms and encoded in yeast by DFR1 gene. Inhibition of 

DHFR by methotrexate impairs cell growth making yeast inviable on minimal media similarly 

to deletion mutant of DFR1 which is auxotrophic for dTMP, adenine, histidine and methionine 

[159]. 

To enable PCA screen in yeast, a double mutant of murine dihydrofolate reductase 

(mDHFR) was developed in our laboratory, in which catalytic activity was preserved, but 

sensitivity to methotrexate was reduced by 10000-fold relative to the native yeast protein [160].  

mDHFR protein-complementation assay (DHFR PCA) uses two split fragments of the mutant 

mDHFR F[1,2] and F[3] that are fused to a pair of proteins. Interaction between two proteins 

brings the fragments into proximity causing reconstitution of the mDHFR activity allowing cells 

to grow in the presence of methotrexate.  
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Figure 2-1. In vivo PCA screen of the yeast protein-protein interaction network. 

Strategy for high-density array screening of the yeast protein-protein interaction network by 

DHFR PCA. Both positive [green circles (MATa/α, CDC19 fused to DHFR fragment [1,2] 

(CDC19-F[1,2]), and MCK1 fused to DHFR fragment. DOI:10.1126/science.1153878. 
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For successful protein-protein interaction screening, the assay should have high 

sensitivity and should be devoid of biases that can be introduced if physiological 

association/disassociation of interacting proteins is impaired because of trapped reconstituted 

fragments that are unable to unfold when interaction of linked proteins is disrupted. Experiments 

with DHFR PCA in mammalian and bacterial cells demonstrated a high sensitivity of the assay 

with potential to detect from 25 to 100 copies of complexes of interacting proteins with 

reconstituted DHFR fragments per cell [161,162].   

Reversibility of the DHFR PCA was tested in yeast by an in vitro binding assay using 

resin-immobilized cAMP. In this assay, subunits of yeast serine/threonine complex Bcy1 and 

Tpk2 were fused with mDHFR fragments. After cAMP induced disruption of the Bcy1/Tpk2 

complex, Bcy1 remained bound to cAMP resin while Tpk2 was found in the unbound fraction, 

which demonstrated that refolding of the DHFR fragments is reversible. For enabling genome-

wide screening for protein-protein interactions using DHFR PCA, we developed a high-

throughput platform that employs tagging of the yeast genes with the reporter fragments in 

MATa and MATα strains, growth of the haploid mutants expressing proteins fused with 

fragments, mating of the haploid strains, methotrexate selection for strains with reconstituted 

DHFR activity and quantification of colony intensities (Figure 2-2). We attempted to tag with 

both fragments each of the of the 5756 consensus yeast genes based on annotations from 

Saccharomyces Genome Database (SGD) [153]. We created gene specific homologous 

recombination cassettes with sequences of the fragments and fragment specific antibiotic 

resistance cassettes. Recombinant DHFR PCA cassettes with fragment F[1,2] were transformed 

into MATa strain, and cassettes with fragment F[3] were transformed into MATα strain.  
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Figure 2-2. Experimental set-up of a large-scale PCA screen of the yeast protein-protein 

interaction network. 

Experimental strategy for single bait versus prey array screening of the yeast protein-protein 

interactions by DHFR PCA. DOI:10.1126/science.1153878. 
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Success of the recombination was tested by PCR using open reading frame (ORF) 

specific diagnostic primers from a region of 100 to 1,000 base pairs downstream of each ORF 

and a common primer within the terminator sequence of the antibiotic resistance marker.We 

verified correctness of the recombination by comparing sizes of the PCR products with expected 

calculated values. This analysis confirmed that 4326 (75%) ORFs with the DHFR F[1,2] 

fragment in MATa and 4804 (83%) ORFs with the DHFR F[3] fragment in MATα strains were 

transformed correctly (Table S1*). The screening was performed on solid-phase medium by 

crossing a printed array of MATα strains containing all ORF-DHFR F[3] fusions, which we 

called “preys”, with individually grown MATa strains containing ORF-DHFR F[1,2] fusions, 

which we called “bait”, one at a time.   

We optimized mating (temperature and incubation time) and selection (amount of 

methotrexate) conditions by performing a screening of a subset of 380 bait and prey strains that 

were proteins known to interact based on manually curated information collected from CYGD 

MIPS database [154], a well trusted repository commonly used for benchmarking protein-

protein interactions [51]. From the range of temperatures, incubation times and methotrexate 

concentrations we selected parameters that maximized the number of known interactions 

detected by DHFR PCA, i.e. true-positive results, while minimizing background growth of the 

colonies that leads to the false-positive results.  

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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For conducting the optimized screen, the prey array was generated with very high-

density using a robotic pin-tool with capacity of 6144 colonies per plate. Such density allowed 

us to fit the entire collection of prey strains onto a single plate and include  replicates of positive 

and negative controls for monitoring the quality of cell transfer and the selection process. As 

positive controls, we used 24 replicates of MATa/ MATα diploid strains with DHFR PCA 

fusions with known interacting proteins Mck1p and Cdc19p. As negative controls, we used 24 

replicates of fusions with a pair of proteins Cln3p and Cdc19p whose interaction was never 

observed; hence, such diploid is inviable in the presence of methotrexate. The control strains 

were positioned in cross-shaped patterns to cover areas of the whole array (Figure 2-1). The 

haploid MATα prey was replicated from the master array and mated with each bait MATa strain 

individually. The diploids were grown on solid-phase minimal medium in the presence of 

methotrexate.  

In total, mating of 3247 bait strains was performed successfully allowing to test for 

interaction over 15 million protein pairs. Protein interactions were detected by novel image 

analysis and statistical algorithms developed for processing the photographs of the selection 

plates, quantification of colony sizes of the diploid strains and calculation of cut-off values that 

determined whether an interaction has occurred.   

2.4.2. Automated image analysis 

Previous high-throughput screens of protein-protein interactions in yeast relied on mass 

spectrometric analyses to determine which proteins belong to the same complexes of interacting 

subunits [64,65] or sequencing of the selected colonies [57,58]. Our survival-based assay 
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required application of an image analysis method that quantified colony sizes of diploid strains. 

Similar strategy was employed in an array version of Y2H screen performed by Uetz et al. [57] 

and in screens for genetic interactions [32,41,163]. However, to the best of our knowledge, none 

of the previous screens were performed in such density as ours with maximal capacity of 6144 

colonies pined onto a standard microtiter-sized plate (the array presented by Uetz et al. 

comprised 16 plates with 384 strains per plate [57]; arrays of Tong et al. [163] and Parsons et 

al. [32] consisted of 384 clones per plate in duplicate resulting in 768 colonies per plate). While 

such design allowed us to increase considerably the throughput and cost efficiency of the screen, 

it introduced processing challenges that could not be handled by existing image analysis routines 

available in popular image processing software, such as ImageJ [164] or NIHimage [165]. High 

density greatly decreased the distance between colonies, thus colony positions had to be 

determined with very high precision to allow correct identification of each particular colony. In 

addition, each plate contained a different number of colonies that survived the selection pressure 

and empty spots had to be assigned correctly to diploids that did not survive. Furthermore, 

because of limited space between the colonies, some diploids in which interaction was detected, 

grew over their expected boundaries and overlapped with neighboring colonies. In order to 

overcome these challenges, we developed image analysis routines implemented in MATLAB 

Image Processing Toolbox (Figure 2-3).  

For the accurate determination of colony centers, we created a software interface for 

semi-automated grid positioning. Initial coordinates were input by a user who pointed with a 

computer mouse at centers of the first (top-left plate corner) and the last (bottom-right plate 

corner) colonies on the plate. Based on these data, the program rotated and scaled the pictures 
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to position each row and column of colonies on a straight line, thus minimizing the effect of 

variation in plating or picture rotation during image acquisition. Manual input was required only 

for the first plate and plates whose calculated colony center coordinates after adjustment were 

deviating considerably from coordinates from the previous plate.  In such case, the program 

asked again for manual definition of edge coordinates for setting new scaling and rotation 

parameters. In order to facilitate verification of the alignment, an image of a grid with 96 

columns and 64 rows was superimposed with the plate image. Manual inspection of these 

images was performed to correct the alignment; reject 44 plates because colony growth was 

detected in the empty positions, suggesting that there was a misalignment of the grid during 

pinning or cross-contamination; and exclude colonies positioned too close to the plastic plate 

edges from further analysis. Furthermore, we implemented automatic checking of the grid 

alignment based on 24 positive and 24 negative control strains arranged in X-patterns across the 

plates. In the case of correct alignment, all positions that corresponded to positive controls 

contained large colonies, while all positions that corresponded to negative controls showed 

limited or no growth (Figure 2-1.).   

Aligned images were enhanced by standard MATLAB Image Processing Toolbox 

functions to correct for nonuniform illumination and remove artifacts: bubbles, gel scratches, 

traces of the pinning tool, and plate edges. For identification of individual colonies, we applied 

a popular Otsu’s automatic thresholding method [166], which is well suited for discriminating 

between highly contrasted objects such as colonies of growing yeast and gel of the medium. The 

method is based on the assumption that the picture can be represented with two types of pixels: 

foreground, which correspond to colonies, and pixels of the background. The algorithm selects 
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an optimal intensity threshold that best separates those two classes assigning all pixels above 

the threshold value to the foreground (pixel value = 1) and below threshold to the background 

(pixel value = 0). Such binary image was used to define a colony as a cluster of connected 

foreground pixels. Coordinates of the colony from the binary image were used for calculating 

the sum of the pixel intensities from the original image as a measure of a colony size. Next, we 

determined coordinates of colony centers by adopting an algorithm for spot detection based on 

percentiles of intensity [167] for handling high-density arrays. The algorithm is based on the 

observation that pixel intensities at colony centers have higher values. Algorithm processed one 

row and column of pixels at a time and stored values of 75th percentile of pixel intensities in an 

array. Next, intersection of rows and columns with highest 75th percentile values was used to 

determine position of centers of the arrayed colonies, which served for assigning each colony to 

the corresponding bait-prey pair. In the case with no overlap, these steps were sufficient to 

quantify colony sizes. However, algorithm improvements were necessary for deconvoluting 

images of fused colonies. A dedicated processing step identified such colonies by searching for 

single connected foreground objects that contained multiple centers within their boundaries. 

Colony deconovolution falls under a general category of tasks of image processing referred to 

as segmentation, i.e. separation of objects from one another. The watershed transform [168,169] 

is a common method applied for solving this task and is a default segmentation method in 

MATLAB Image Processing Toolbox. In topography, watersheds are ridges, like hills and 

mountains, that separate areas of convergence of surface waters called catchment basins. In 

image processing, a grey scale image can be considered as a surface, in which grey scale 

intensity defines the altitude of an object. In the case of the plate images from the protein-protein 
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interaction screen, colonies were brighter and were placed higher than darker background. The 

watershed transform worked best with grey scale images for segmenting most of the overlapping 

colonies. However, pixel intensity values of colonies from overexposed images and large 

overlapping colonies were not sufficiently different. In such case, a strategy for segmentation 

of binary images was applied. Because pixels in binary image has only two values, 1 for 

foreground and 0 for background, there is not enough information for building a surface plot 

based on intensity. The surface of objects on binary images can be created by applying distance 

transform [170,171] that assigns for each pixels a value equal to distance (in pixels) to the 

nearest pixel that corresponds to the background. As a result, pixels at centers of the objects 

receive the highest values that descend towards the edges. The fact that colonies have circular 

shapes allowed to further improve the algorithm by combining distance transform with the 

Circular Hough transform [172], a method that detects circular shapes. The Circular Hough 

transform is a voting procedure that assigns higher scores to pixels at centers of objects in which 

a circle can be fitted.  By superimposing the distance transform results with local maximum of 

the Circular Hough transform, we created a surface with higher altitude difference between 

centers and edges of the colonies. The watershed transform performed on superimposed images 

segmented the colonies more accurately than if applied on surfaces produced by the distance 

transform or the Circular Hough transform alone. At the final processing step, pixels lying on 

the identified boundaries between overlapping colonies were set to 0 on the original binary 

image and steps for quantifying non-overlapping colonies were repeated as described above. As 

a result, we obtained a matrix of colony intensities with rows corresponding to bait strains and 

columns corresponding to prey strains.     
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Figure 2-3. Automated extraction of colony intensities on plates. 

The DHFR PCA results were inferred from the growth of diploid colonies on plates containing 

methotrexate. Images of the plates were taken after a 90-hour growth period with a 4.0 Mega 

pixel camera (Powershot A520, Canon). Plate images were saved in JPG format at a resolution 

of 180 dpi and a size of 2,272 × 1,704 pixels. In order to extract the intensity of the colonies, 

we used available image recognition routines available in the MATLAB image analysis toolbox 

and we modified parameters for it to be able to differentiate colonies that are in proximity to 

each other. The quality of the position of the grid and the recognition algorithm was examined 

through visual inspection of all plates. DOI:10.1126/science.1153878. 
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2.4.3. Data filtering 

Evaluation of results of the image analysis revealed two issues that had to be considered 

to avoid false-positive results. The first issue is related to possibly non-specific interactions 

caused by experimental biases, and the second is how to discriminate colonies that grew because 

of an interaction from the background growth. 

2.4.3.1. Detection of non-specific interactions  

In our screen, certain proteins interacted with a very high number of other proteins (up 

to few hundreds). Importantly, some of these proteins were identified as promiscuous proteins 

involved in many non-specific interactions by earlier TAP-MS screens [59,64,65].  

Reproducibility of such interactions and their clearly higher signal comparing to the background 

noise, suggested that they are not artifacts of the processing routines, but arise from biases of 

the experimental technique. For PCA, such patterns of interactions could be observed if certain 

proteins would attract complementary PCA fragment regardless of what protein is attached to 

it. To test for such possibility, we performed control experiments screening for all strains against 

fragments F[1,2] and F[3] alone or with attached peptide linker sequence not fused to any 

protein. We also checked for spontaneous complementation of the individual fragments. As 

expected, there was no interaction between fragments alone. However, we identified 344 

proteins (Table S2*) that interacted with complementary fragments with or without linker 

peptides not attached to any proteins.   

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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Figure 2-4. Distribution of protein abundance. 

The distribution of protein abundance for cells grown on the same (SC, SD + glucose (from 

[21])) medium used in the DHFR PCA screen of the entire proteome (black), proteins of 

the DHFR PCA network (blue) and proteins interaction with the control fragments 

(yellow).  

DOI:10.1126/science.1153878.  

Figure 2-5. Distribution of colony intensities on plates. 

Raw intensities prior to filtering. Black lines represent the intensity distributions on 

individual plates. The blue line represents the distribution of colony intensities across 

the entire experiment. The red and green lines represent the intensity distribution of the 

negative and positive controls respectively. The second panel shows the distribution of 

colony intensities above 10 000 to illustrate the growth of the methotrexate resistant 

diploid strains 

DOI:10.1126/science.1153878. 
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Thus, any interaction detected in the screen involving one of such proteins could be unspecific. 

We excluded such interactions from the final filtered network, but reported them as 

supplementary data (Table S4*). Promiscuous proteins in our screen were enriched for ribosomal 

and ribosome associated proteins (P < 2x10-65) and were more abundant than the proteome on 

average (median log10(abundance in SD medium) = 3.27 vs 2.28 for the proteome, Wilcoxon 

rank-sum test: P < 2.2x10-16; Figure 2-4). Similarly, ribosomal  proteins, high-abundance 

proteins and a few other proteins, such as Cdc19p, Eno2p, Tef2p and Tef3p, were identified as 

promiscuous proteins by TAP-MS screens [65]. 

2.4.3.2. Interaction signal vs. background noise 

During the large-scale screen we used a relatively long time for growing diploid strains 

in the presence of methotrexate allowing cells to grow for 96 hours at 30°C before taking the 

plate pictures. These conditions were selected to increase the true-positive detection rate based 

on the control experiments with known interactions described above. Longer incubation time 

increased the chances of observing weak and transient interactions and interactions that involve 

low-abundance proteins. However, 96 hours incubation led to observable background colony 

growth on most of the plates. We describe below statistical procedures implemented to 

discriminate between the signal and the background.   

First, we evaluated distribution of colony intensities in the entire screen after exclusion 

of signal from the strains with promiscuous proteins (Figure 2-5). The distribution was bimodal 

with the first distribution peak at around 4 000-5 000 counts and the second distribution peak at 

around 40 000 counts. Importantly, the medians of negative (5 192 counts) and positive (38 361 
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counts) controls overlapped with centers of the first and the second distribution respectively. 

This observation made us conclude that the first distribution corresponded to background colony 

growth and the second distribution originated from strains that survived methotrexate selection 

due to the interaction. A minimum overlap between the two distributions was around 20 000 

counts, so we selected that value as a starting point for optimizing the selection of thresholds 

for inferring protein-protein interactions. With the total colony intensity threshold, we sought to 

define a minimum size for a colony to consider that an interaction has occurred. However, a 

plate-to-plate variation is a common phenomenon in high-throughput screens. Applying one 

threshold for processing thousands of plates is not optimal for separation of signal over noise 

[173].  We noticed that on some plates all colonies grew better or worse than on average in the 

screen. For plates with better growth, an intensity cutoff of 20 000 counts would select more 

false-positives, while on plates with generally poor growth, values slightly higher than 20 000 

counts would correspond to the best interactions on such plates, rejection of which would lead 

to false-negative results. 

To standardize the intensities and adjust for the plate-to-plate variation, we applied 

within-plate z-score transformation. For each colony, z-score was calculated as: 

    z-scorei.j = (Ii,j - µj))/σj, 

where Ii,j is intensity of a colony i on plate j, µj is an average intensity on plate j, and σj is a 

standard deviation of intensity values on plate j.  

Next, we selected optimal intensity and z-score thresholds that led to detection of 

maximum number of true-positive interactions, while minimized number of detected false-
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positive interactions (Figure 2-6.). A gold-standard positive reference set of known interactions 

was selected from CYGD MIPS [154], the same data source we used for optimizing 

experimental conditions as described above and that was used for benchmarking protein-protein 

interactions quality in previous large-scale experimental and in silico studies [51,174]. From 11 

005 interactions among 1 236 proteins we selected a positive reference list of 503 interactions 

that could be potentially detected in our screen. We judged that an interaction could be detected 

if corresponding baits and preys were present in our collection, and for each protein, there was 

an interaction signal with at least one other protein, suggesting that the DHFR-ORFs constructs 

were expressed correctly. As a set of negative examples, i.e. interactions that most likely don’t 

occur, we have selected pairs of proteins that belong to complexes present in separated cellular 

compartments or demonstrate anticorrelated patterns of gene expression as described by Collins 

et al. [51] (266 858 of interactions 6 377 of which could be potentially detected in our screen).  

For optimization of the intensity and z-score thresholds, we applied an iterative process, 

in which for a pair of intensity (from 20 000 to 35 000 counts) and z-score (from 2 to 3.5) values 

a positive predictive value (PPV) was calculated as a ratio of number of true-positive 

interactions (interactions from the positive reference set) divided by the sum of true-positive 

and false-positive interactions (interactions from the negative reference set) (Figure 2-6 A).  

Based on the plot of intensities, z-scores and PPV values, we set the intensity threshold equal to 

23 000 counts and the z-score equal to 2.4. With these thresholds, our screen achieved a PPV 

value of 97.7% that is comparable in precision to other large-scale as well as high-quality small-

scale protein interaction studies (Figure 2-6 B, Figure 2-7). To this end, after applying intensity 

and z-score thresholds and filtering out interactions involving 344 promiscuous proteins, we 
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detected 5 672 interactions at PPV score of 97.7%. However, we noticed that more than half of 

these interactions involved one of 83 highly connected proteins with repetitive interaction 

patterns similar to experimentally detected promiscuous proteins. Because of ambiguity of such 

connections, we decided to present these interactions as supplementary network (Table S4*). 

We marked with type 1 interactions that involved eight strains that consistently demonstrated 

higher growth pattern than other MATα stains. Type 2 denoted interactions involving 23 

proteins with a very similar interactions pattern as the 344 promiscuous proteins. Finally, with 

type 3 we marked 1 830 interactions mediated by 53 proteins that showed distinct, but still very 

repetitive interaction pattern.  

 

 

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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Figure 2-6. Quality assessment of DHFP- protein-protein interaction network. 

(A) PPV score as a function of raw colony intensity and z-score (relative colony intensity on 

plates). This score represents the ratio of the number of true positive interactions over the sum 

of the true positive and false positive interactions predicted from the reference sets. 

(B) The ratio of true positives to false positives in the DHFR PCA network compared with other 

large-scale data sets [51,57,58,64,65,189]. The achieved PPV is indicated above the bars. 

DOI:10.1126/science.1153878. 
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Figure 2-7. True Positives and True Negatives in PCA and other studies. 

The curve represents the total number of true positive interactions and the total number of false 

positive interactions as a function of the score thresholds for defining protein-protein 

interactions in the DHFR PCA screen (ROC curve). Values for published datasets are shown as 

well as values of the final DHFR PCA networks. Sources for the other networks are described 

in the Materials and Methods Section. DOI:10.1126/science.1153878. 
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2.4.3.3. Final filtered network 

After removal of spurious interactions with promiscuous proteins, our final filtered 

dataset consisted of 2770 unique interactions among 1124 endogenously expressed proteins with 

PPV value of 98.2% (Table S4*). In that dataset, we counted 3 false-positive and 163 true-

positive interactions from the gold-standard dataset as compared to 2.7 true-positive and 33.8 

false-positive interactions calculated for a randomly constructed network with the same number 

of interactions and proteins (randomization was repeated 10 000 times).  Thus, it is unlikely that 

our PPV value is due to chance. After removal of high-abundance promiscuous proteins, the 

abundance of the remaining final network members was not significantly different from the 

average yeast proteome abundance [the median log10(protein abundance) = 2.32 versus 2.28; 

Wilcoxon rank-sum test, P= 0.19] (Figure 2-4), which reflects the high sensitivity of the DHFR 

PCA assay.  

2.4.4. Hierarchical clustering of the yeast in vivo protein-protein interaction 

network 

We identified from the literature three main graphical techniques that were utilized for 

visualization of results of previous large-scale studies: graph representation of nodes that 

correspond to individual proteins connected with edges if two proteins interact [64,66]; graphs 

with nodes that correspond to clusters of proteins or protein complexes connected by interaction 

edges [59,65,110]; and heat map representation of hierarchical clustering results [51]. For 

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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presenting an overview of global network organization of the network of DHFR PCA 

interactions, we utilized the heat map presentation because, in our opinion, it is better suited for 

browsing large networks. Heat maps avoid the overlap between edges by placing proteins into 

rows and columns of a rectangular table marking an interaction with a colored square in the 

corresponding row/column position. In contrast, visualization of large networks as graphs with 

many nodes leads to overlap between edges, which makes it difficult to follow the connection.  

Dividing proteins into modules prior to building graphs helps to avoid clutter but, unlike TAP-

MS methods, PCA detects pairwise interactions and not clusters of proteins. Thus, a priory we 

don’t aim at fitting our results into complexes. 

Unsupervised hierarchical clustering of 2770 DHFR PCA interactions grouped proteins 

into tightly interconnected clusters positioned along the diagonal of the heat map (Figure 2-8).  

Connections between clusters were positioned as off-diagonal elements. Careful examination of 

members of identified clusters revealed that many of them corresponded to known complexes 

with crystallographically or biochemically defined composition. Importantly, identification of 

known complexes in our network suggests that new modules or module members can be used 

with confidence to investigate novel aspects of the organization of cellular machines. 

We used heat map representation for displaying enrichment/depletion with interactions 

between proteins annotated with specific Gene Ontology (GO) [156] terms related to Cellular 

Compartment (CC), Molecular Function (MF) and Biological Progress (BP) (Figures 2-12, 2-

13). We further developed the heat map representation method and placed different information 

above and below the main heat map diagonal. Thus, for a pair of groups of proteins we could 
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display on the same figure the number of interactions between the groups and information about 

how different this number was from random expectation. The method and the software that we 

developed for such visualization is discussed in detail in Chapter 4. Based on these heat maps, 

we investigated, which of the interactions we detected corresponded to known links of the yeast 

protein network, and which were novel connections.  
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Figure 2-8. The DHFR PCA network is modular and interconnected. 

Clustering of the DHFR PCA network reveals numerous known complexes, within which 

the substructure represents known subunits. Proteins that have interaction patterns similar 

to those of other proteins and that interact together are grouped along the diagonal. 

DOI:10.1126/science.1153878. 
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2.5. Discussion 

In the following sections, we discuss the high-quality filtered DHFR PCA network 

consisting of 2770 unique interactions among 1124 proteins. We focus on comparison of the 

DHFR PCA interactions with previous publications and describe the novel interactome subspace 

covered by the method.  

2.5.1. Overlap with previous studies 

Evaluation of the overlap between previous large-scale protein-protein interaction 

studies demonstrated that only a limited number of interactions were in common between 

different datasets [47,175]. Such low overlap may be explained by differences between 

experimental technologies, biases against interactions between specific types of proteins and 

high error rates. While all of these reasons contribute to the discrepancies between the dataset, 

we noticed that the overlap and coverage are routinely calculated in a sub-optimal way leading 

to pessimistic results. Numbers reported previously are based on the assumption that screens 

reached genome-wide coverage of the interactome. However, none of the large-scale protein-

protein interaction screens, including ours, probed successfully for all possible interactions, 

even if this was the aim at the start of the study. In our screen, we attempted to tag all undubious 

ORFs in yeast with DHFR fragments; however, we confirmed by PCR 75% of recombinants in 

MATa and 83% of MATα strains. Because none of the screens tested for all possible 

interactions, we decided to take into account the actual number of common interactions that 

could have been detected in different studies.  
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Figure 2-9. Overlap of the DHFR PCA network with other large-scale experiments. 

(A) Most DHFR PCA protein-protein interactions are new, since they score 0 within the 

distribution of the number of times a known interaction has been independently deposited in 

major protein-protein interaction repositories. Examples of interactions are shown above the 

bars. (B) The overlap of the DHFR PCA network is substantially increased when only the 

interactions that could be discovered are considered, i.e. only identified successful baits and 

preys are considered. Bars indicate the number of protein-protein interactions that could have 

been discovered by PCA. In red is the number of interactions that were discovered. Percentages 

indicate the percentage of interactions that were discovered by PCA out of the total possible. 

DOI:10.1126/science.1153878. 
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Figure 2-10. Comparison of normalized and non-normalized calculations of the overlap 

between datasets.  
The overlap is calculated for the DHFR PCA network with other large-scale experiments. On 

the left is the overlap between the different networks. On the right are the same overlaps, but 

only for those interactions that could have been detected in both experiments; i.e. cases in which 

the interactions were tested for in both experiments. DOI:10.1126/science.1153878. 
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We note here, that while preparing our work for publication, another group independently 

presented a similar approach [61].  Analysis of the overlap normalized by coverage 

demonstrated that DHFR PCA confirmed between 16% and 41% of interactions detected by 

earlier screens (Figure 2-9B, Figure 2-10). These numbers are considerably higher comparing 

to 1%-8% of overlap calculated without this normalization. Higher overlap of DHFR PCA with 

Y2H studies and lower overlap with TAP-MS methods may be explained by the fact that PCA 

and Y2H are detecting pairwise interactions, while TAP-MS based techniques detect complexes 

of proteins and assign an interaction for pairs of proteins discovered in the same complexes that 

don’t necessary interact directly. This leads to a higher number of interactions between same 

complex members that can be detected by TAP-MS comparing to PCA and Y2H. Pairwise 

interactions detected by DHFR PCA provide complementary information to complex 

membership about connections within and between complexes. Our analysis of DHFR PCA 

protein-protein interactions mapped onto protein complexes divided interactions into the 

following types: interactions within complexes, interactions between complexes, or interactions 

with one or both proteins not assigned to any complex (Figure 2-11). As a protein complex 

scaffold we selected a gold-standard set of CYGD [154] complexes and an assembly of 

complexes derived by clustering of consolidated TAP-MS studies performed prior to our screen 

[110]. About 10% of interactions that we detected were between members of the same complex 

and about 15% of interactions were connecting distinct complexes. Such intra-complex 

connections may contribute to coordination between biological processes mediated by distinct 

protein complexes.  
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Figure 2-11. PCA protein-protein interactions versus protein complexes. 

Comparison of the PCA network with databases of curated protein complexes (MIPS) and 

inferred from computational analysis of TAP-MS (15) allows classification of four types of PCA 

interactions: in which both proteins are found within a complex (type 1), are inferred to be in 

two separate complexes (type 2), one protein is in a complex and the other is not in the network 

(type 3), or both are absent from the network (type 4). Columns of numbers indicate the number 

of PCA protein-protein interactions observed for each data set and each category.  

DOI:10.1126/science.1153878. 



 

 

80 

In order to verify that these connections are not due to noise in the data, we calculated semantic 

similarity scores of GO annotations related to Cellular Compartments (CC), Biological 

Processes (BP) and Molecular Functions (MF).  For all categories the average semantic 

similarity scores calculated for pairs of interacting proteins were significantly higher than what 

is expected by chance (CC:3.44 versus 1.64, P < 10−100; BP: 3.48 versus 1.51, P < 10−80; MF: 

3.53 versus 2.3, P < 10−10). This analysis demonstrated that DHFR PCA protein-protein 

interactions tend to connect functionally related proteins. Importantly, semantic similarity 

scores calculated for TAP-MS complexes were higher than DHFR PCA protein-protein 

interactions scores. This again can be explained by the fact that TAP-MS methods detected 

complexes of proteins that collectively are closely related to specific cellular tasks. Assignment 

of pair-wise interactions between all co-complexed proteins could further increase the score by 

increasing number of pairs of proteins sharing a similar annotation. Lower semantic similarity 

scores of DHFR PCA protein-protein interactions shows that our technique captures remote 

interactions possibly responsible for coordination of a cross-talk between cellular machines. For 

example, we see a connection between two distinct complexes the CCR4 and the RNA-splicing 

complex both involved in the RNA metabolic process mediated by an interaction between 

Dhh1p and Lsm4p. Similar example is the connection between subunits of the serine-threonine 

phosphoprotein phosphatase and SNF1 complex, both involved in the regulation of metabolic 

carbohydrate processes mediated by an interaction between Reg1p and Snf1p (Table S7*).    

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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2.5.2. Novel interaction 

Most of the interactions from DHFR PCA network involved one or both proteins not 

assigned to any complex, thus covering interacting space not explored previously. The results 

were confirmed by contrasting DHFR PCA results against all available protein-protein 

interaction data from public databases, not limited to TAP-MS protein complexes, and including 

results of small-scale experiments (Figure 2.9A). This analysis confirmed that the majority of 

interactions (~80%) that we detected were novel. This is not surprising because our interactions 

were detected in vivo by a technique with different properties than Y2H and TAP-MS and 

executed in a different medium.  

 About 300 of the novel interactions involved proteins with an uncharacterized 

functional role. Such connections provide an opportunity to propose a potential function for 

uncharacterized proteins based on functional roles of their interacting partners. Function 

prediction based on this type of interaction will be the focus of the next chapter (Chapter 3) of 

this thesis.  

2.5.3. Enrichment of interactions with membrane proteins 

In the previous section, we demonstrated that the majority of novel interactions were 

among proteins that are not assigned to any protein complex based on analysis of previous 

protein-protein interaction studies. Therefore, we suspect that DHFR PCA technique has the 

advantage of detecting interactions between certain types of proteins that were underrepresented 
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in results of previous studies. To find such overrepresented proteins, we performed enrichment 

analysis of GO annotations for cellular compartments.  We have observed that our network is 

highly enriched for proteins associated with membranes (corresponding GO terms: organelle 

membranes (P < 10−12), endomembrane system (P < 10−12), membrane part (P < 10−9)) and other 

compartments such as proteasome regulatory particles (P < 10−8), the nucleolus (P < 10−7), and 

the cell cortex (P < 10−7)] (Figure 2-12, Table S5*). In contrast, results of Y2H and TAP-MS are 

biased against membrane proteins [63,174]. Y2H assays could be depleted of membrane protein 

interactions because they require that the two proteins get into the nucleus. The aqueous nuclear 

environment may lead to aggregation or misfolding of the membrane proteins. Furthermore, 

directing a membrane protein into the nucleus could be a problem. In TAP-MS, purification 

steps and the requirement to isolate a protein from lipid bilayer can cause bias. We showed, for 

example, that in the dataset of Collins et al. proteins associated with membrane related GO terms 

are significantly underrepresented, i.e. they appear in the dataset less frequently than would be 

expected by chance (Table S6*). The fact that in multiple organisms about one third of genome 

code for proteins associated with membranes [176] illustrates the diversity and importance of 

cellular functions that these proteins carry out. Therefore, it is of great importance to develop 

methodologies capable of capturing interactions with membrane proteins and the DHFR PCA 

network is a significant step in that direction. Prior to our screen, two studies were published 

dedicated to large-scale identification of membrane protein-protein interactions: 1) Miller et al. 

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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[63] using the split-ubiquitin assay, and 2) Xia et al. [174], using computational prediction. A 

few years after publication of our results, another large-scale experimental study of membrane 

interactions was published [67], but it was not considered in our analysis described below 

because these results were not available at the time of calculations. Because of the bias against 

membrane interactions, the gold-standard CYGD catalogue of protein complexes used for 

evaluating the quality of our network has a limited coverage of membrane interactions (only 1% 

of the total number of interactions). Therefore, we performed additional analyses to evaluate the 

quality of the membrane protein-protein interactions. The main reason for false-positive 

interactions could be the stabilizing effect of the membrane on protein localization causing 

recombination of DHFR fragments attached to a pair of proteins in the vicinity that don’t 

physically interact. Such bias, could be reflected in the higher number of connections (network 

degree) demonstrated by membrane proteins comparing to the rest of the proteome. 
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Figure 2-12. Interactions are enriched within Cellular Compartments Gene Ontology 

categories. 
The DHFR PCA network covers several classes of protein function, location, and biological 

process. The colors above the diagonal represent positive and negative deviations from the 

expected number of interactions between two cell compartments. A positive z score indicates a 

larger number of interactions within or between two categories as compared with a random 

network. A negative z score indicates a smaller number of interactions than expected. A z score 

of 2 or –2 corresponds to a P value of 0.05, and a z score of 5 or –5 to a P value of 5 × 10−7. 

Values below–5 and above 5 were given these minimal and maximal values. Entries below the 

diagonal indicate the observed numbers of interactions on a log10 scale. 

DOI:10.1126/science.1153878. 
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Consequently, we would expect a poor overlap of such unspecific interactions with 

previous studies of membrane protein-protein interactions. Our analysis of the DHFR PCA 

network demonstrated that this was not the case. The degree of membrane proteins was only 

slightly higher than the average network degree (2.8 vs 2.5). The overlap with previous studies 

was significantly higher than what would be expected by chance. From 662 interactions 

involving 232 putative membrane proteins in our final network, 51 were predicted by in silico 

analysis [174] versus 5 expected by chance (10 000 randomizations, P  <  10-94) and 27 

interactions were confirmed by split-ubiquitin assays [63] versus 1.9 expected by chance (10000 

randomizations, P < 10-75). Finally, the semantic similarity scores for Molecular Function and 

Biological Process calculated for pairs of interacting membrane proteins were significantly 

higher than in a random network (MF: 3.89, MF random: 2.84, P <10-18; BP: 2.86 , BP random: 

2.15, P < 10-15).  

Taken together, these results demonstrated that membrane protein-protein interactions 

are likely to be as specific as the rest of the interactome and provide valuable information on 

cellular processes associated with membranes.   

2.5.4. Enrichment of interactions between compartments and processes 

We further investigated distribution of GO terms associated with compartments, 

biological processes and molecular functions in DFHR PCA interactions (Figure 2-12, Figure 

2-13).  Even though we observed a strong compartmentalization of interactions (preferential 

interaction within the group) between certain categories;  
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Figure 2-13. Interactions are enriched within Biological Process and Molecular Function 

Gene Ontology categories.  
The DHFR PCA network covers several classes of protein function, location and biological 

process. The colors above the diagonal represent positive and negative deviations from the 

expected number of interaction between two categories, Biological Process or Molecular 

function. A positive z-score indicates a larger number of interactions within or between two 

categories compared to a random network. A negative z-score indicates a smaller number of 

interactions than expected. A z-score of 2 or -2 corresponds to a P-value of 0.05 and a z-score 

of 5 or -5 to a P-value of 5×10-7. Values below -5 and above 5 were given these minimal and 

maximal values. z-scores were calculated by generating 10,000 random networks. Entries below 

the diagonal indicate the observed number of interactions on a log10 scale. 

DOI:10.1126/science.1153878. 
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for example, for nuclear and nucleolar proteins, most of DHFR PCA interactions connected 

distinct categories of proteins (BP: 64%, CC:56%, and MF:63%). In contrast, for TAP-MS these 

numbers were lower [58, 46, and 57% in the study of Krogan et al. [65] and 51, 49, and 58% in 

the study of Gavin et al. [64]. These results are consistent with the observation described above, 

that interactions from TAP-MS studies have higher semantic similarity scores. Many cross-

compartment connections that we observe originate from protein categories that are better 

covered by DHFR PCA and reflect the natural exchange of proteins between the endoplasmic 

reticulum, Golgi, mitochondrial envelope, and vacuolar proteins or coordination during cell 

division through interactions between the bud and bud neck with the cell cortex, cytoskeleton, 

plasma membrane, and sites of polarized growth.  

2.5.5. Enrichment of lipid related protein interactions 

 Similarly, we observed interactions between various processes associated with cellular 

compartments underrepresented in TAP-MS data. In particular, we have observed enrichment 

in DHFR PCA network with protein interactions  involved in lipid metabolism that are 

frequently membrane bound [34] (about 64% of lipid metabolic proteins are annotated as 

membrane proteins based on GO annotation) and are consequently underrepresented in TAP-

MS data (Table S6*). The network derived by Collins et al. [51] contained only 14 proteins (with 

29 interactions) annotated with term “lipid metabolism” while 65 proteins with such annotation 

were expected to be present in a random network of the same size (P < 10-14). In our network 

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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we detect interactions with 85 such proteins while 45 were expected by chance (P < 10-11).  

DHFR PCA interactions link lipid metabolic process with transport, protein modification 

processes and cellular homeostasis (Figure 2-13). Intriguingly, DHFR PCA network is enriched 

for interactions between proteins involved in lipid metabolism and proteins with an unknown 

biological function. An example of such interaction network is shown in Figure 2-14.  Two 

proteins with unknown function Pst2p and Rfs1p were found in a middle of a large cluster of 

lipid related proteins. For the majority of the proteins from that cluster there is an evidence for 

plasma membrane localization. Eight proteins are transporters, five of which are known to 

transport lipids (Hnm1p, Itr1p, Osh6p, Osh7p, Vps4p). Three proteins (Tcb1p, Tcb2p, Tcb3p) 

regulate phosphatidylinositol-4-phosphate, which is required for recruiting effector proteins to 

specific membrane sites including OSH family of lipid transporters [177]. Both proteins with 

the unknown function Pst2p and Rfs1p belong to the same family of flavodoxin-like folded 

proteins. In DHFR PCA network these proteins demonstrated very similar interaction pattern 

and were placed, by unsupervised hierarchical clustering, next to each other. Thus, it is unlikely 

that cluster membership of these proteins is a random occurrence. Flavodoxins are electron 

transport proteins with the ability to bind to flavin mononucleotide cofactor that determines their 

redox activity. Although, flavodoxins are bacterial proteins [178], flavodoxins-like folded 

proteins have been characterized in higher eukaryotes [179]. Their function in yeast is linked to 

the regulation of gene expression of metabolic pathways and stress response [180]. Pst2p and 

Rfs1p together with another protein from the cluster Slm1p were found in lipid rafts [181], 

membrane microdomains enriched for signaling lipids such as sphingolipids and 

phosphoinositides [182] involved in trafficking, signaling, and regulation of the biosynthetic 



 

 

89 

and the endocytic pathways [183]. Intriguingly, phosphatidylinositides have been implicated in 

similar functions [184]. The cluster from Figure 2-14 contains phosphatidylinositol-4-phosphate 

regulators (Tcb1-3). Rfs1p has been shown to interact with phosphatidylinositol 3,5-

bisphosphate involved in signaling and trafficking [185]. Recent studies suggest that OSH 

proteins found in the cluster also contribute to regulation of phosphatidylinositides as well as 

sphingolipid pathways [186]. Observed interconnectivity of the cluster members through 

association with lipid rafts, lipid-protein and protein-protein interactions may reflect a complex 

architecture of a novel regulatory mechanism. Understanding the role of the cluster components 

in this mechanism requires extensive biochemical studies. However, our protein-protein 

interaction data contributed new potential components of the system that have to be taken into 

account. 
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Figure 2-14. Network cluster linking proteins with unknown function with lipid related proteins.  
Heat map representation of connections between proteins with known functions related to lipid 
homeostasis and uncharacterized proteins Rfs1p and Pst2p.  
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2.6. Conclusions 

We conducted the first large-scale screen for protein-protein interactions based on PCA 

strategy. To perform the screen, we developed robotic workflow that enabled to pin colonies 

with unprecedented density. A novel image analysis routine was developed for converting 

pictures of plates of the yeast colonies into digital format suitable for computation analysis of 

protein-protein interactions. Using statistical methods for discriminating between signal and 

noise, we selected a high-confidence set of interactions with quality comparable to previous 

large and small-scale datasets.       

 DHFR PCA screen was performed by different technique and in different conditions 

than previous protein-protein interaction studies. 2770 unique interactions were identified, the 

majority of which were novel. Furthermore, additional interactions were reported as 

supplementary data available for further evaluation. We have demonstrated that the DHFR PCA 

screen detects interactions between proteins with more distinct functional roles comparing to 

TAP-MS approaches. We observed that DHFR PCA network is particularly enriched for 

interactions involving membrane proteins that were depleted in previous systematic studies. 

Extended coverage of the new interaction space allows to gain new insights into such important 

processes as lipid metabolism and homeostasis. Links that we discovered with uncharacterized 

proteins provide data for discovering novel gene functions based on the network analysis.  

  Taken together, novel reported interactions contribute to the knowledge about the yeast 

network connectivity that combined with other available data help formulating novel biological 

hypotheses about cellular functions and network properties. 
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2.7. Materials and Methods 

2.7.1. Data acquisition and image analysis 

Plate images of diploid MATa/MATα array plates grown on methotrexate for 96 hours 

were taken with a 4.0 Mega pixel camera (Powershot A520, Canon). Plate images were saved 

in JPG format at a resolution of 180 dpi and a size of 2,272 x1,704 pixels. Next, all of the 3,301 

plates (3,247 plates for the 3,247 different baits, 48 repeated plates and 6 plates for the control 

experiments) were manually inspected during the image analysis step and positions too close to 

the plastic edges of the plate and therefore uninterpretable were eliminated by setting the 

intensities of the first and the last colonies on the first row of the array to 0. At this stage we 

eliminated 44 plates from the final analysis because they displayed growth of colonies at empty 

positions, likely resulting from grid misalignment or contamination.  

Images were processed with an algorithm implemented in the Image Processing Toolbox 

for MATLAB (The MathWorks, Natick, Massachusetts) and consisted of the following steps:  

1) Images were corrected for non-uniform illumination as described in 

(http://www.mathworks.se/help/images/examples/correcting-nonuniform-illumination.html)  

2) Small objects that correspond to gel background, bubbles, plate edges or other anomalies 

were removed using the imopen function with the disk morphological structuring excluding 

elements of a radius smaller than 2 pixels (radius of 4 pixels was used on plate edges).  

3) Images were converted into binary format using the im2bw function with a threshold 

calculated by the graythresh function. In this format, pixels that correspond to colonies were set 

http://www.mathworks.se/help/images/examples/correcting-nonuniform-illumination.html
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to 1 and background pixels to 0. Thus, connected components of binary images with pixel values 

equal to 1 (calculated with bwlabel and regionprops functions) corresponded to colonies. 

4) Watershed transform was performed with watershed function. As a result of the watershed 

transform, pixels that lie on the border between objects were identified. These border pixels 

were set to zero on the original binary image, thus separating overlapping colonies and step 3 

was repeated in order to analyze separated colonies.  

The additional steps described below were performed if: the size of a connected region 

identified in step 3 was larger than expected for a single colony (on average 400 pixels); a 

connected region could not be matched to a position on the array due to fusion of several 

colonies. 

5) Extraction of a rectangular subpart of an original image that fully contains a connected region 

that is suspected to contain fused colonies,  

6)  Superimposition of distance transform (bwdist function) with local maximum of Circular 

Hough transform (circle_hough function available at MATLAB File Exchange) for further 

improving the detection of circular colonies.  

7) Repeat watershed transform.  

8) In cases where a number of objects that were separated using steps 4 to 5 was different from 

the number of possible centers detected by the Circular Hough transform, we performed a 

watershed transform on the original grey scale image. 
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2.7.2. Statistical analyses 

Calculations were performed in MATLAB and R software packages. Custom Java codes 

were used to query out protein-protein interaction data and data from public repositories and for 

generation of random networks.   

Positive and negative datasets for optimizing DHFR PCA thresholds and benchmarking 

the network quality were obtained from the following sources: 

A gold-standard positive reference set - CYGD catalogue of protein complexes extracted 

from MIPS database on 18th of May, 2006 (ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/ 

complexcat_data_18052006). 

A gold-standard negative reference set - A set of negative reference protein-protein 

interactions obtained from Collins et al. [51]. It contains proteins that belong to distinct protein 

complexes from separated cellular compartments or proteins that show anticorrelated expression 

patterns, which suggests that they are not present in the cell at the same time.   

2.7.3. Network randomizations 

To evaluate statistical significance of properties of the DHFR PCA network, we 

compared them to a network with randomly assigned interactions. The random network had a 

similar structure as the DHFR PCA network. It contained the same proteins and the same 

number of interactions per protein as the DHFR PCA network. To further match the random 

network to the structure of the experimental network it contained only interactions that could be 

potentially detected in the DHFR PCA screen. The statistical significance of differences 

ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/ complexcat_data_18052006
ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/ complexcat_data_18052006
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between experimental network parameters and the random counterparts was calculated based 

on z-scores that compared these values converted to p-values. 

2.7.4. Analysis of protein abundance  

Data for the analysis of protein abundances in yeast were obtained from a high-

throughput flow cytometry study of a library of GFP-tagged yeast strains [21]. We selected 

protein abundance measures collected from yeast grown in the same media as the DHFR PCA 

screen (synthetic complete medium).   

Non-parametric wilcoxon rank-sum test was used for evaluating statistical significance 

of the differences between protein abundances of compared groups of proteins.   

2.7.5. Analysis of Gene Ontology enrichment  

GO enrichment analysis was used to evaluate whether a number of proteins of a 

particular type in a set of proteins was higher or lower than what is expected by random chance. 

Proteins were assigned to a particular type based on GO terms related to molecular function, 

biological process and cellular compartment.  

2.7.5.1. GO enrichment of sets of proteins 

To find over or under-represented types of proteins in selected sets of, GO enrichment 

was calculated using GOstat R library [187]. We selected conditional hypergeometric algorithm 

for the calculations. The algorithm takes into account hierarchical organization of GO terms 

structure and computes the significance of a GO term based on its neighborhood. The method 
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is reported to perform better comparing to a simple hypergeometric test because it limits the 

redundancies in the results. 

2.7.5.2. GO enrichment of interactions between pairs of terms 

For GO enrichment analysis of the protein interaction, the following procedure was 

applied. The terms were extracted from GO slim map downloaded from SGD (February 17th. 

2007). Enrichment was calculated for every pair of annotation terms from the biological process, 

cellular compartment and molecular function categories. We calculated a number of interactions 

that are detected between proteins associated with a specific pair of GO terms. This number was 

compared to the corresponding number calculated for a random network. Randomization was 

repeated 10 000 times. The number of interactions between proteins associated with a specific 

pair of terms was calculated for each randomization, and a z-score was derived by comparison 

of the number of interactions detected by DHFR PCA screen with 10 000 numbers calculated 

from random networks. The z-score for a pair of terms i and j is calculates as: 

z-scorei.j = (Ni,j - µ(Nrand)i.j))/σ(Nrand)i,j, 

where Ni,j is the number of interactions between a pair of terms i and j in the DHFR PCA 

network, µ(Nrand)i.j is the average number of interactions between the terms calculated for the 

random networks and σ(Nrand)i,j  is the standard deviation of the interactions values for the 

random networks. High z-score values correspond to pairs of terms enriched for interactions 

comparing to random chance. Low negative z-score values correspond to pairs of terms depleted 

of interactions.  
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2.7.5.3. Semantic similarity scores 

For evaluating functional relationship between pairs of proteins that do not share the 

same annotation, we calculated GO semantic similarity score [188]. The score searches the 

annotation hierarchy for parent (more general) terms that are common for a pair of proteins. If 

the parent is close in the hierarchy to the more specific terms characterizing the proteins, it 

indicates closer functional relationship, and the score is higher. To obtain the statistical 

significance of the results, we compared DHFR PCA semantic similarity scores with the 

corresponding scores calculated for random networks generated as described above.  

2.7.6. Datasets compared with DHFP PCA results 

We analyzed how many times each interaction from the DHFR network had been 

previously reported in Figure 2.9.  For the calculations, we extracted physical interactions from 

the following databases: BIOGRID (www.thebiogrid.org/, version 2.0.29), mips-MPact 

(http://mips.gsf.de/genre/proj/mpact, version 18052006) and DIP (http://dip.doembi. 

ucla.edu/, June 2007). We separately considered the combined TAP-MS data from [51] 

(interaction set with Purification Enrichment score equal or above 3.19 as defined in [51]), as it 

overlaps considerably with what has been deposited in Biogrid by [64] and [65]. We considered 

only one citation for an interaction reported in Collins et al. [51], even if it had been reported in 

one or both original studies. We excluded interactions that were not associated with any 

publications by the PUBMED IDs. Each PUBMED ID we treated as an independent evidence 

for an interaction.    

http://dip.doembi/
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2.7.7. Overlap with previous large-scale studies 

Reference datasets and criteria for normalization for the overlap calculations presented 

in figures 2-9 and 2-10 are described below:  

1) CYGD catalogue of manually annotated complexes [154]. Downloaded from 

ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/complexcat_data_18052006. Complexes 

detected by large-scale experiments were filtered out from this file and interactions were 

assigned between all proteins that belong to the same complex. An interaction is considered to 

be possible if both interacting partners are present in the CYGD catalogue.  

2) Krogan et al. [65]. The core dataset was obtained from supplementary table 7, that lists 

successfully identified baits and preys obtained from supplementary tables 2 and 3. An 

interaction is considered to be possible only if one of the proteins is present in the baits list and 

another is in the preys list. We don’t consider a co-occurrence of both proteins in the prey list 

since the core dataset of this study contained only bait-prey pairs.  

3) Gavin et al. [64]. The network of interactions was obtained as deposited in Biogrid. This 

study used a statistical framework for deriving a high confidence set of interactions that makes 

possible interactions between two prey proteins. Therefore for normalization, we considered an 

interaction to be possible if for a pair of interaction partners, a bait-prey or prey-prey pair exists 

in the raw purification data (downloaded from http://yeast-complexes.embl.de).  

ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/complexcat_data_18052006
http://yeast-complexes.embl.de/
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4) Collins et al. [51]. We used high confidence data with a PE score cutoff of 3.19. 

Normalization was performed as described above for Gavin et al. using a combination of both 

Krogan and Gavin raw datasets.  

5), Ito et al., Uetz et al. [57,58,189]. Interactions detected by yeast two-hybrid assays. Interaction 

is considered possible if one of the interacting partners is among proteins that showed an 

interaction when tagged with a binding domain and another is among proteins that showed 

interactions when tagged with an activation domain.  

6), Miller et al. [63]. Interactions tested using the split-ubiquitin reporter. The data were 

extracted from supplementary Table 1. An interaction is considered possible if a corresponding 

pair of Cub-PLV and NubG ORF is present in the dataset. 

2.7.8. Clustering of high confidence interactions 

Hierarchical average linkage agglomerative clustering was performed as described in 

[104]. Clustering was based on the association matrix that takes into account indirect 

interactions between the proteins mediated by a common partner.  Association values the two 

proteins were calculated as 1/d2, where d is the shortest path in the network between these 

proteins. Thus, association values ranged from 0 (non-interaction) and 1 (direct interaction). 

Self associations were marked as 1 for the clustering purposes regardless of whether a 

heteromeric interaction was observed by DHFR PCA. Clustering was performed with Cluster 

3.0 software C++ libraries. (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm). 

Data were visualized with iVici software [190] described in Chapter 4. For the clarity of the 

visualization of the large clustered DHFR PCA network, only direct interactions are shown on 

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
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a complete map (Figure 2-8).  On the insets, direct interactions are bright red, while indirect 

interactions (2 or 3 links between two protein) are shown as two consecutively darker shades of 

red, respectively. Results of the clustering are available as a Supplementary File S1* from the 

original publication.  

 

  

                                                 

* http://www.sciencemag.org/content/suppl/2008/05/08/1153878.DC1/1153878s_tables.zip 
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Chapter 3 : High-content screening of yeast mutant 

libraries by shotgun lipidomics 

3.1. Contribution to the published work 

Chapter 3 was published as an article in Molecular Biosystems journal: Tarasov K, 

Stefanko A, Casanovas A, Surma M, Berzina Z, Hannibal-Bach HK, Ekroos K, Ejsing CS 

(2014) High-content screening of yeast mutant libraries by shotgun lipidomics. Mol Biosyst. 

2014 Mar 31. [Epub ahead of print] 

T.K. and E.C.S formulated the idea, designed experiments and wrote the paper. T.K. 

performed gene function predictions, set up a computational platform for raw data processing, 

preformed quality controls and analyzed the data. S.A. and H.B.H.K. performed the first round 

screening. S.M.A. contributed to set up of 96 format cell cultures and extractions. C.A. and 

H.B.H.K. performed the liquid culture experiments for the growth profile and second round 

screen. S.A., S.M.A. and E.K. commented on the manuscript. 
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3.2. Abstract 

To identify proteins with a functional role in lipid metabolism and homeostasis we 

designed a high-throughput platform for high-content lipidomic screening of yeast mutant 

libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated 

direct infusion nanoelectrospray ionization, high-resolution Orbitrap mass spectrometry, and a 

dedicated data processing framework to support lipid phenotyping across hundreds of 

Saccharomyces cerevisiae mutants. Our novel approach revealed that absence of genes with 

unknown function YBR141C and YJR015W, and the transcription factor KAR4 precipitated 

distinct lipid metabolic phenotypes. These results demonstrate that the high-throughput shotgun 

lipidomics platform is a valid and complementary proxy for high-content screening of yeast 

mutant libraries. 

3.3. Introduction 

 The lipidome of eukaryotic cells consists of several hundreds to thousands of molecular 

lipid species that constitute membranes, store metabolic energy and function as signalling 

molecules[89,191]. The structural heterogeneity of lipids is defined by a metabolic network of 

enzymes and regulatory factors that synthesize distinct lipid species by assembling or 

disassembling a multitude of available hydrocarbon residues and polar head groups. Lipid 

species can be divided into several categories based on their chemical structures [192]. The most 

abundant lipid categories in eukaryotic cells include glycerophospholipids, sphingolipids, 
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glycerolipids and sterol lipids, which mediate distinct molecular functions. Notably, several 

metabolic transitions interlink glycerophospholipid, sphingolipid, glycerolipid and sterol 

metabolism such that perturbations are prone to induce lipidome-wide ripple effects and prompt 

compensatory responses to sustain lipid homeostasis [96]. Compromising the lipid metabolic 

network is known to cause dysfunctional lipid homeostasis and cellular lipotoxicity that 

precipitate disorders such as obesity, atherosclerosis and neurodegeneration [193]. Importantly, 

the regulatory mechanisms that govern global lipid metabolism and relay physiological signals 

to sustain lipid homeostasis are largely unknown. 

 Genetic and biochemical studies using the yeast Saccharomyces cerevisiae have been 

instrumental to elucidating the blueprint of lipid metabolism and defining the physiological 

functions of lipids [194,195]. Early efforts have pinned lipid metabolism to the framework of 

global metabolism as illustrated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway resource [196]. Moreover, genetic and biochemical approaches combined with 

molecular biology have paved the way to cloning and functional characterization of key 

enzymes in the human lipid metabolic network [194]. The functional regulation of lipid 

metabolism depends in part on a transcriptional circuitry that sets the cellular concentration of 

lipid enzymes and accessory regulatory factors depending on physiological requirements. The 

circuitry in S. cerevisiae includes the transcriptional regulators Opi1p, Ino2p, Ino4p and Zap1p 

that control the expression level of a subset of proteins required for glycerophospholipid 

metabolism [197]. In addition, the circuitry also includes the regulators Mga2p and Spt23p, 

which are involved in controlling the expression of the fatty acid desaturase OLE1 [198]. 

Notably, regulatory mechanisms controlling most of enzymes in the lipid metabolic network are 
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still poorly understood. Intriguingly, this raises the question of how the expression levels of 

enzymes involved in, for example, sphingolipid and sterol lipid metabolism are controlled. 

 Functional genomics strategies including gene-gene [41,42] and protein-protein 

interactions assays [51,55,63] can be powerful approaches for identifying regulatory factors in 

lipid metabolism. Recently, epistatic miniarray profiling has been instrumental for defining the 

molecular mechanisms of how fatty acid chain length is determined by conserved membrane-

imbedded elongase complexes [133], how conserved Orm proteins interact with the serine 

palmitoyltransferase to control sphingolipid biosynthesis [134] and linking the GDP/GTP 

exchange factor Rom2p to the regulation of sphingolipid metabolism [135]. These findings were 

prompted by high-content datasets showing particular genes interacting with known constituents 

of the lipid metabolic network. Notably, such interactions can also be observed in other types 

of publically available resource data. For example, the yeast protein interactome displays an 

overrepresentation of interactions between genes involved in lipid metabolism and genes with 

other cellular functions [55]. Thus, public repositories of gene and protein interaction data 

combined with function prediction algorithms can be a potential resource for shortlisting 

genes/proteins with a putative functional role in lipid metabolism [199]. Importantly, several 

studies have successfully combined function prediction methods with experimental 

confirmation to elucidate the molecular mechanisms of mitochondrial biogenesis in yeast [136] 

and tissue-specific regulation patterns in worm [138]. The success of these studies demonstrates 

that mining resource data and integrating lipidomic analysis can be an avenue for identifying 

novel lipid enzyme activities and regulators of global lipid metabolism. 
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 Shotgun lipidomics is a relatively novel “omics” tool that affords comprehensive and 

quantitative profiling of cellular lipids. The efficacy of the technology has been documented in 

numerous studies of biological membrane organization, lipid-protein interactions and the 

regulation of lipid metabolism [134,200–203]. Shotgun lipidomics implies that lipid extracts of 

cells are directly infused into a mass spectrometer without up-front time-consuming liquid 

chromatographic separation thereby shortening the time required for analysis, and that 

identification of lipid species relies on accurately determined masses and/or tandem mass 

spectra acquired from corresponding lipid species [89,204]. Shotgun lipidomics enables 

extensive lipidome characterization by combining analyses of the same lipid extract in positive 

and negative ion mode, and by implementing data processing routines to merge, normalize and 

visualize lipidomic datasets [205]. In addition, more recent shotgun lipidomics technology based 

on high-resolution Orbitrap mass spectrometry and automated direct infusion nanoelectrospray 

ionization offer high-throughput capabilities with high sensitivity, broad dynamic quantification 

range and extensive lipidome coverage spanning lipid species molar abundances over 3 to 4 

orders of magnitude [96,99,206]. Notably, these analytical hallmarks are ideally suited for 

exploratory lipidome analysis in yeast and provide a mean to screen libraries of mutant strains 

to identify regulatory modules in global lipid metabolism. 

 Here we describe a high-throughput platform for high-content lipidomic screening of 

yeast mutant libraries that utilizes culturing and lipid extraction in 96-well format, automated 

direct infusion nanoelectrospray ionization, high-mass resolution Orbitrap mass spectrometry 

and a dedicated data processing framework to support systematic monitoring of lipid species 

across hundreds of yeast strains. To catalog lipid phenotypes, we made use of ‘robust principal 
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component analysis’ and a quantitative scoring system that we term SoamD (sum of absolute 

mol% difference). As a test bed, we employed the platform to array a shortlist of deletion 

mutants of distinct transcriptional regulators and genes with unknown function predicted to play 

a role in lipid metabolism. Our novel approach revealed that absence of genes with previously 

unknown function YBR141C and YJR015W, and the transcription factor KAR4 precipitates 

distinct lipid metabolic phenotypes. These results show that combining functional genomics 

workflows and high-content lipidomic profiling can be a powerful proxy for identifying 

regulators of global lipid metabolism. 

3.4. Materials and methods  

3.4.1. Chemicals and lipid standards 

Synthetic lipid standards were purchased from Avanti Polar Lipids and Larodan Fine 

Chemicals. Chemicals, growth media and solvents were purchased from Sigma–Aldrich, 

Rathburn Chemicals, MP Biomedicals and BD Biosciences. 

3.4.2. Yeast strains 

In this study we used S. cerevisiae reference strain BY4742 (MATα his3Δ1 leu2Δ0 

lys2Δ0 ura3Δ0) and the congenic deletion mutants listed in Supplementary table 11. All strains 

were obtained from EUROSCARF. Mutant strains without genes encoding transcriptional 

                                                 

1 http://www.rsc.org/suppdata/mb/c3/c3mb70599d/c3mb70599d2.txt 
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regulators were shortlisted based on gene ontology (GO) annotation in the Saccharomyces 

Genome Database (SGD) [153].  

3.4.3. Prediction of uncharacterized genes with potential function in lipid 

metabolism.  

A list of genes known to be implicated in lipid metabolism (query list of lipid-related 

genes) was compiled based on automated extraction of gene names with GO annotation ‘lipid 

metabolism’ or ‘lipid binding’ in the SGD, and thorough manual annotation based on literature 

(Supplementary table 21). To predict uncharacterized genes with potential function in lipid 

metabolism we used the query list of lipid-related genes and the GeneMANIA function 

prediction algorithm [207]. Based on available protein-protein interaction data from 

BioGRID[155], the GeneMANIA function prediction algorithm was requested to output the 50 

most related genes to the genes on the lipid-related query list (Supplementary table 32). From 

the 50 top scoring genes we selected 8 genes that were annotated with “biological process 

unknown”, and shortlisted the corresponding deletion mutants for first round lipidomic 

screening. 

                                                 

1 http://www.rsc.org/suppdata/mb/c3/c3mb70599d/c3mb70599d3.txt 

2 http://www.rsc.org/suppdata/mb/c3/c3mb70599d/c3mb70599d4.txt 
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3.4.4. First round screening: 96-well plate culturing 

Yeast strains were plated and cultured at 30˚C for 24 hours in 0.3 ml 96-well plates 

(Eppendorf AG) on an agar-based solid synthetic complete medium containing 2% glucose and 

supplemented with 100 µM inositol and 100 µM choline. In addition to shortlisted deletion 

mutants each 96-well plate contained three replicates of the control strains BY4742 and elo2Δ. 

Yeast cells were harvested by resuspension in 100 µl 155 mM ammonium acetate (average yield 

1.5-2.0 OD600 units), transferred to 2 ml 96-well plates (Eppendorf AG) and stored at -80˚C until 

lipid extraction.  

3.4.5. Lipid extraction in 96-well plates at 4˚C 

The yeast cell suspensions (100 µl) in 2 ml 96-well plates were added glass beads (425-

600 µm, Sigma–Aldrich) and subjected to cell disruption for 120 min at 1400 rpm and 4°C on 

a ThermoMixer (Eppendorf AG)(This high-throughput oriented cell lysis procedure was 

benchmarked against conventional glass bead lysis [96] by showing no differences in lipid 

profile (data not shown)). Cell lysates (70 µl) were transferred into a new 2 ml 

polytetrafluoroethylene 96-well plate (Radleys Discovery Technologies) and subjected to 

single-step lipid extraction in the 96-well plate. Samples were extracted by adding 250 µl 

chloroform/methanol (2:1, V/V) and mixing on a ThermoMixer for 120 min. The lower organic 

phase was collected by transferring 47 µl into two separate 150 µl 96-well plates (Eppendorf 

AG) that were subsequently subjected to vacuum evaporation.  
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3.4.6. Mass spectrometric lipid analysis and data processing for 96-well plate 

cultures 

Lipid extracts in 96-well plates were dissolved in 20 µl 7.5 mM ammonium acetate in 

chloroform/methanol/propanol (1:2:4, V/V/V) for positive ion mode mass analysis, and 20 µl 

0.0075% methylamine in methanol/chloroform (1:5, V/V) for negative ion mode analysis. The 

96-well plates were covered with aluminum sealing tape to avoid sample evaporation. Samples 

were analyzed by direct infusion on a LTQ Orbitrap XL mass spectrometer (Thermo Fisher 

Scientific) equipped with a robotic TriVersa NanoMate ion source (Advion Biosciences) as 

previously described [96,99]. Positive ion mode analysis was performed using multiplexed FT 

MS with scan ranges m/z 220-530 (monitoring lysophosphatidylcholine (LPC) and 

lysophosphatidylethanolamine (LPE) species) and m/z 500-1200 (monitoring 

phosphatidylcholine (PC),  phosphatidylethanolamine (PE), diacylglycerol (DAG), 

triacylglycerol (TAG), sterol ester (SE) and ceramide (Cer) species). Negative ion mode 

analysis was performed using multiplexed FT MS with scan ranges m/z 200-605 (monitoring 

lysophosphatidic acid (LPA), lysophosphatidylserine (LPS) and lysophosphatidylinositol (LPI) 

species) and m/z 505-1400 (monitoring phosphatidylinositol (PI), phosphatidic acid (PA), 

phosphatidylserine (PS), and inositol-phosphoceramide (IPC) species). The total time of FT MS 

analysis was 3 min per polarity per sample. All FT MS spectra were acquired in profile mode 

using a target mass resolution of 100,000, isolation waveforms enabled, automatic gain control 

at 1e6, max injection time at 250 ms and acquisition of 2 µscans. Lipid species were identified, 

quantified and visualized using ALEX software [205], SAS software (SAS Institute Inc.) and 
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Tableau Desktop software (Tableau Software), respectively. Lipid species were annotated 

according to their sum composition [99]. Lipid species abundance was monitored by intensity 

profiling using the proxy intensity% (I%) calculated as the intensity of a given lipid species 

divided by the sum of intensities of all monitored lipid species in a given ion mode (i.e. positive 

or negative). A quality control procedure having two filters was implemented: i) strains with 

less than 70% of the average number of detected lipid species in at least one ion mode were 

rejected, ii) strains with less than 15% of the average total lipid intensity in at least one ion mode 

were rejected. 

3.4.7. Classification of mutant strains into growth phase categories 

The lipidomes of mutant strains surviving the quality control procedure were classified 

according to growth phase. To this end, the BY4742 reference strain was cultured in liquid 

medium as described below in the section ‘Second round screening: Liquid culturing’. Samples 

were collected for BY4742 cells in exponential phase (0.8-3.2 OD600 units/ml) and stationary 

phase (4-4.5 OD600 units/ml) determined using a growth curve. These samples were subjected 

to two-step lipid extraction as described below, and lipidomic analysis using intensity profiling 

I% as described in the previous section. To classify mutant strains according to growth phase 

we performed average linkage agglomerative hierarchical clustering on I% values of lipid 

species and lipid classes that were the most different between the growth phases (i.e. sum of I% 

of lipid species belonging to TAG, PC, DAG, PI, PS, PE and PA lipid classes, and the sum of 

I% of PC, PI, PS, PE, PA and DAG species with carbon index up to 32, and equal or greater 
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than 34). Analysis was performed in Cluster 3.0 software [208]. Results were visualized as a 

clustering heat map using I% standardized as Z-scores (Figure 3-3A). 

3.4.8. Identification of mutants strains with perturbed lipid phenotypes 

Deletion mutants with perturbed lipid phenotypes were identified using robust principal 

component analysis. This analysis was performed separately for mutant strains classified as 

either in exponential or stationary phase. I% values were used for the analysis. Missing values 

were substituted with zero. Calculations were performed in R software using PcaHubert function 

from the rrcov package for robust multivariate analysis [209,210]. Variables were scaled to have 

unit variance using median absolute deviation function. The number of principal components 

was selected based on scree-plots and was set to 4 for strains in stationary phase and to 3 for 

strains in exponential phase. PcaHubert function calculated orthogonal distance scores for each 

strains and the orthogonal distance cut-off value which was used to define the hit strains with 

perturbed lipid phenotypes. These strains were subjected to second round screening. 

3.4.9. Second round screening: Liquid culturing  

Liquid culture experiments of candidate mutant strains with perturbed lipid phenotypes 

and reference strains were performed at 30˚C with synthetic complete medium containing 2% 

glucose and supplemented with 100 µM inositol and 100 µM choline. The yeast strains were 

precultured for 24 hours, diluted to 0.2 OD600 units/ml and cultured for another 24 hours until 

collection of samples in the stationary phase (4.0-4.5 OD600 units/ml). Cells were washed in 155 

mM ammonium acetate and stored at -80˚C until lipid extraction.  
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3.4.10. Lipid extraction at 4˚C of samples obtained by liquid culturing 

Samples from liquid cultures were subjected to two-step lipid extraction as previously 

described [96]. Briefly, yeast were resuspended in 1 ml 155 mM ammonium acetate and 

disrupted using glass bead lysis. Aliquots of cell lysates were diluted to 0.4 OD600 units in 200 

µl and mixed with 17 µl of internal lipid standard mixture containing cholesterol-D7, CE 19:0, 

TAG 17:1/17:1/17:1, DAG 19:0/19:0, LPA O-16:0, PA 17:0/14:1, LPS 17:1, PS 17:0/20:4, LPE 

O-16:0, PE O-20:0/O-20:0, LPC O-17:0, PC 18:3/18:3, LPI 17:1, PI 17:0/14:1, PG 17:0/14:1, 

CL 14:0/14:0/14:0/14:0, Cer 18:1;2/17:0;0, IPC 18:0;2/26:0;0, MIPC 18:0;2/26:0;0 and 

M(IP)2C 18:0;2/26:0;0. Samples were extracted with 990 µl chloroform/methanol (15:1 V/V) 

for 2 hours. The lower organic 15:1-phase was collected and subjected to vacuum evaporation. 

The remaining aqueous phase was re-extracted with 990 µl chloroform/methanol (2:1 V/V) for 

1 hour. The lower organic 2:1-phase was collected and subjected to vacuum evaporation. 

3.4.11. Mass spectrometric lipid analysis and data processing for samples 

obtained by liquid culturing 

The 15:1- and 2:1-phase lipid extracts were dissolved in 100 µl chloroform/methanol 

(1:2, V/V) and analysed by direct infusion on a LTQ Orbitrap XL instrument equipped with the 

robotic TriVersa NanoMate ion source as previously described [96,99]. Sterols were analyzed 

after chemical sulfation of the 15:1 phase extract [202]. The molar amount of lipid species were 

determined using the spiked-in internal standards and converted to mol% as previously 

described [96,99].  For each strain, two technical replicates of a single lipid extract were 

analysed.  
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3.4.12. SoamD calculation 

A SoamD (sum of absolute mol% difference) score was calculated for each deletion 

mutant subjected to second round screening. SoamD was calculated as:  

SoamD𝑖 = ∑ abs(mol%𝑖,𝑗 − mol%𝐵𝑌4742,𝑗
𝑁

𝑗=1
), 

where N is the number of lipids, mol%i,j is the mol% value of lipid j in deletion mutant i and 

mol%BY4742,j is the mol% value of lipid j in the reference strain BY4742. The score is only 

applicable to experiments performed with spike-in of internal standards.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

115 

 

 

Figure 3-1. Protein-protein interaction network of lipid metabolism and function.  
(A) Protein-protein interaction network of proteins known or predicted to be involved in lipid 

homeostasis. Interaction data was retrieved from BioGRID, predictions are made by the 

GeneMANIA algorithm. Interactions between known and predicted proteins are arranged using 

average linkage agglomerative hierarchical clustering. Interactions between known members of 

lipid metabolism are shown in red; interactions between proteins predicted to be involved in lipid 

metabolism in blue. Detailed interaction network around predicted proteins Yjr015wp (B), 

Yor097cp (C) and Ybr141cp (D) are shown. DOI: 10.1039/c3mb70599d. 
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3.5. Results and discussion 

3.5.1. A high-throughput platform for lipid phenotyping  

To establish a resource for identifying proteins with potential function in lipid 

homeostasis we developed a high-throughput lipidomics platform for quantitative high-content 

screening of yeast mutant libraries. First, we compiled a deletion library in 96-well format 

covering 178 strains divided into three groups: Group A) 168 deletion mutants of genes 

encoding transcriptional regulators; group B) 8 deletion mutants of genes encoding proteins with 

unknown function and predicted to be involved in lipid homeostasis; and group C) control 

strains including the BY4742 reference and the elo2Δ mutant with defective fatty acid elongase 

activity [211] (Supplementary table 11). The group A strains were shortlisted based on GO 

annotations related to transcriptional activity. The group B strains were selected from an 

interaction network enriched for proteins involved in lipid metabolism and function (Figure 3-

1). This network was compiled using the GeneMANIA function prediction algorithm [207] that 

queried available protein-protein interaction data in the BioGRID database [155] using a query 

list of lipid-related genes (Supplementary table 22). Selected candidate proteins were all 

annotated as ‘biological process unknown’ in SGD [153] (Supplementary table 33). 

                                                 

1 http://www.rsc.org/suppdata/mb/c3/c3mb70599d/c3mb70599d2.txt 

2 http://www.rsc.org/suppdata/mb/c3/c3mb70599d/c3mb70599d3.txt 

3 http://www.rsc.org/suppdata/mb/c3/c3mb70599d/c3mb70599d4.txt 
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 A key feature of high-throughput lipidomic screening is the ability to identify mutants 

with pronounced differences in lipid composition compared to reference strains or the average 

of the library. Differences in lipid composition are most accurately determined by absolute 

quantification of lipid species where the intensities of detected endogenous lipid species are 

normalized to the intensities and amounts of appropriate internal standards [96,98,99,201,212]. 

The concentration of lipid species can be expressed as the molar abundance of lipid species 

relative to all monitored lipid species (i.e. mol%). Notably, absolute quantification on a 

lipidome-wide level requires spiking samples with ~25 synthetic internal lipid standards, some 

of which are expensive or require cumbersome approaches to purify. Moreover, the workflow 

requires a dedicated two-step lipid extraction procedure that is difficult to execute in 96-well 

plate format. Thus, executing a lipidomic screening across hundreds of yeast strains utilizing 

absolute quantification on a lipidome-wide level is a challenging undertaking. To combat these 

technical and economical drawbacks we designed the screening platform to include two rounds 

of screening. A first round screening was designed for rapid lipid profiling across all shortlisted 

strains in the deletion library while the second round of screening was designed for 

comprehensive lipidome quantification in deletion mutants with perturbed lipid phenotypes 

identified in the first round screening.  

 For the first round screening, we devised and validated a lipidomic proxy supported by 

the comprehensive lipidome coverage obtained by high-resolution Orbitrap mass analysis. 

Lipidomic profiling in positive ion mode allows sensitive analysis of PC, LPC, PE, LPE, DAG, 

TAG, SE and Cer species. In addition, negative ion mode analysis allows monitoring of PI, LPI, 

PA, LPA, PS, LPS and IPC species. As such, the acquisition of spectral data for the same sample 
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in both positive and negative ion mode allows monitoring of lipid species abundance by intensity 

profiling using the proxy ”Intensity%” (I%) calculated as the intensity of a given lipid species 

divided by the sum of all monitored lipid intensities monitored within a given ion mode (i.e. 

positive or negative).  

 To benchmark the proxy for lipidomic screening, we compared the abundance of lipid 

species monitored by I% and mol% (Figure 3-2A). To this end, we performed a comprehensive 

lipidomic analysis of nine yeast strains using the workflow for absolute quantification of lipid 

species as applied for the second round screening and in general for comparative lipidomic 

analysis [96,99]. The abundances of endogenous lipid species from the same strain were 

expressed as both mol% (using internal standard information) and I% as outlined above. Our 

analysis demonstrated a linear correlation between the absolute abundance of lipid species and 

the lipid levels monitored by I%. Importantly, we observed that lipid species with high absolute 

mol% values displayed high I% values, and vice versa, lipid species with low mol% values 

displayed low I% values. Based on this result, we concluded that I% is a valid proxy for 

assessing the abundance of lipid species and mapping differences in lipid composition by high-

throughput lipidomic screening. We note that identified mutants with perturbed lipid 

composition based on I% should be further investigated using the second round screening 

approach as this uses the more accurate absolute quantification on a lipidome-wide level. In 

addition, the second round screening should be performed since the first round lipidomic 

screening approach does not support quantification of free sterols as these analytes require 

additional chemical derivatization for quantification [96,99].  



 

 

119 

 

Figure 3-2. Validation of the shotgun lipidomic screening platform. 

(A) Correlation between I% and mol%. A lipidomics experiment of 9 yeast strains (used for the 

second round screening, see Fig. 4) was executed using appropriate internal standards to allow 

absolute quantification of lipid species (expressed as mol%). The same dataset was used for 

intensity profiling (expressed as I%). Lines correspond to linear correlation between mol% and 

I% values for endogenous lipid species of the same class. Average R2 value is 0.94. (B) Quality 

control plot with criteria for rejecting poor quality samples. Strains with less than 70% of the 

average number of detected lipid species and/or less than 15% of the average total intensity were 

excluded from subsequent analysis. Only negative mode data are shown. Positive mode data 

were filtered in the same way (data not shown). (C) Average intra-plate coefficient of variation. 

(D) Average inter-plate coefficient of variation. Inter-plate coefficient of variation reflects 

technical, within plate, plate-to-plate and biological variation of replicated measurements. 

DOI: 10.1039/c3mb70599d. 
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3.5.2. Lipid profiling and data filtering for first round screening 

All 178 strains in the shortlisted deletion library were subjected to the first round 

screening. Strains were cultured on synthetic complete solid medium in 96-well format for 24 

hours in accordance with metabolomic studies [84,213]. Cells were harvested, subjected to cell 

lysis and single-step lipid extraction in 96-well format followed by shotgun lipidomic analysis 

using a robotic nanoelectrospray device and a high-resolution Orbitrap mass spectrometer 

[96,206,214]. The first round screening afforded comprehensive lipidomic analysis of 96 

samples in approx. 12 hours. Detected lipid species were identified using ALEX software [205].  

 Next, we performed a quality control procedure to ensure the reliability of lipidome data 

across the 178 input strains. First, we introduced a filter to reject all strains featuring i) less than 

70% of the average number of detected lipid species and ii) less than 15% of the average total 

lipid intensity (Figure 3-2B). Using this approach, we passed 128 strains having on average 120 

detected lipid species. We note that rejected strains were due to technical issues (e.g. poor ion 

spray) and poor growth.  

 To assess the precision of the lipidome data we evaluated the reproducibility of I% using 

biological replicates of the control strains BY4742 (n=8) and elo2Δ (n=7) distributed over three 

96-well plates, and grown and analyzed together with shortlisted deletion mutants. The 

coefficient of variation (CV) for each lipid species detected in these control strains was 

determined (Figure 3-2C,D). The average inter-plate CV of I% for lipid species was 30%. In 

comparison, the average intra-plate CV of I% was 24%. In addition, we observed a linear 



 

 

121 

correlation between I% in biological replicates of the control strains (Pearson correlation R-

square ≥ 0.973 p-value < 0.0001). We note that the CV values were determined for biological 

replicates of control strains grown for a fixed time rather than until the strains reached definite 

cell amount. Hence, one can expect variation in the growth of individual strains which 

contributes to the relatively high CV values. We note that the applied culturing strategy is 

commonly used for large-scale metabolomics screening [74,84]. Importantly, for the 

identification of mutant strains with altered lipid phenotypes we employed a multivariate 

method (described below) that differentiates mutant strains based on the composite of all lipid 

species I% values rather than the difference between I% values of single lipid species. 

Furthermore, the multivariate method differentiates lipid profiles across all surveyed strains 

instead of referencing only the control BY4742 strain. Using this approach minimizes the 

seemingly adverse impact of the relatively high CV values. Importantly, this approach 

successfully identified all replicates of the control mutant strain elo2Δ (i.e. no false negative 

identifications of elo2Δ) as having a perturbed lipid profile (Figure 3-4A). We note that the lipid 

phenotype of elo2Δ is only modestly different from BY4742 as compared to elo3Δ [96]. 

Moreover, the approach did not identify any of the replicates of the control BY4742 strain to 

display altered lipidome composition (i.e. no false positive identifications of BY4742). Based 

on these results we conclude that the first round lipidomic screening approach is a valid tool for 

surveying the lipid profile across hundreds of yeast strains.  
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3.5.3. Classification of deletion strains into growth phases  

Yeast employ different lipid metabolic programs during exponential growth and 

stationary phase, which can result in false-positive identification of lipid phenotypes [99]. 

Notably, the yeast lipidome features high levels of glycerophospholipids during exponential 

growth which become offset by predominately TAG species and an increase in the chain length 

of fatty acid moieties in the stationary phase. In order to support accurate identification of 

mutants harbouring defects in lipid metabolism and not differences related to growth phase, we 

executed the first round screening using 24 hours of culturing in order to allow ample time for 

all shortlisted deletion strains to enter the stationary phase. Moreover, we executed a parallel 

lipidomic analysis of exponential and stationary BY4742 cells cultured in liquid medium. 

Combining these two datasets and average linkage agglomerative hierarchical clustering 

allowed us to group lipid profiles of mutants from the deletion library into two clusters 

corresponding to cells in exponential phase or stationary phase based on lipid class composition 

and species profile (Figure 3-3A). As expected, the majority of the deletion mutants (n=116) 

displayed lipid profiles corresponding to stationary phase having high levels of TAG species 

and glycerophospholipid species with longer chain fatty acid moieties as compared to 

exponential phase cells (Figure 3-3B). In comparison, only a few strains (n=12) displayed a 

lipidome composition similar to cells in exponential phase. Having delineated the growth-

dependent effects, we subsequently surveyed each group of strains separately for altered lipid 

metabolic phenotypes using multivariate analysis as outlined below. 
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Figure 3-3. Classification of strains into groups based on growth phase. 
(A) Hierarchical clustering heat map of deletion mutants classified as stationary or exponential 

phase based on lipid features of stationary and exponential phase in BY4742. (B) Comparison 

of lipid features characteristic for exponential (blue) and stationary (orange) phase. Average I% 

values for classified strains are shown on the right. Average I% values for BY4742 in 

exponential (n=3) and stationary phase (n=4) are shown on the left. The average I% values for 

BY4742 in exponential and stationary phase were obtained from a culture in synthetic complete 

liquid medium. DOI: 10.1039/c3mb70599d. 
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3.5.4. Identification of deletion strains with perturbed lipid phenotype 

It has been demonstrated by recent genomics screening that identification of mutant 

strains with altered phenotypic traits can be efficiently achieved by referencing the whole 

collection of analyzed strains rather than comparison to a control strain [41,42,55]. The 

advantage of such an approach is the possibility to use a higher number of strains for better 

estimation of technical and biological variation. Consequently, mutants with pronounced 

phenotypic traits can be identified more accurately. Here we applied a similar strategy for 

identification of deletion mutants with perturbed lipid phenotypes that is based on “robust 

principal component analysis” [215]. Conventional principal component analysis can be an 

effective tool to identify key lipid features in multivariate lipidomic datasets [206]. However, 

its efficacy can easily be hampered by outlying samples and lipid species. In contrast, the robust 

variant overcomes the limitation of sensitivity toward outliers by replacing the covariance 

matrix used for conventional principal component analysis with a robust covariance estimation 

[216]. Consequently, the robust principal component analysis is better suited for identifying 

pronounced phenotypic alterations in deletion mutants rather than differences caused by 

technical and biological variation The robust principal component analysis reduces data 

dimensionality by computing principal components that explain a maximum amount of 

observed lipid phenotypic differences across all surveyed strains, and produces a diagnostic plot 

that classifies strains according to the magnitude and the similarities of lipid phenotypes (Figure 

3-4A). Strains that display a common pattern of changes, but exhibit higher differences yield a 

higher score distance on the x-axis of the diagnostic plot. Strains that display uncommon 

differences that cannot be explained by the principal components receive high orthogonal 
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distance scores displayed on y-axis of the plot. Effectively, this approach allowed us to identify 

11 mutant strains having higher orthogonal distances as compared to the majority of the 

surveyed strains, and thus, potentially harbouring altered lipid phenotypes (Figure 3-4A). The 

identified strains were all part of the stationary phase group (Figure 3-3A) and represent ~9% 

of all shortlisted strains in the deletion library. From the 11 identified candidates, 9 strains were 

deletion mutants of transcriptional regulators (cha4Δ, kar4Δ, met31Δ, mga2Δ, rrn10Δ, rsf2Δ, 

sir1Δ, sut2Δ, ume6Δ) and 2 were deletion mutants of genes encoding proteins predicted to play 

a role in lipid homeostasis (yjr015wΔ, ybr141cΔ). 

In addition, the robust principal component analysis identified all replicates of the 

control mutant elo2Δ. We note that replicates of BY4742 have relatively high score distances. 

This attribute can potentially be linked to the fact that the BY4742 strain is devoid of the 

kanamycin resistance cassette (present in deletion strains and potentially able to affect cellular 

fitness [217] or that BY4742 has not been subject to the same genetic selection as the mutant 

strains. Importantly, the orthogonal distance score for BY4742 replicates was not high and 

thereby illustrating no major lipidomic differences compared to the majority of the deletion 

mutants. 

A prominent hit of the first round screening was the transcriptional regulator MGA2 

(Figure 3-4A). Mga2p is an endoplasmic reticulum membrane protein involved in the regulation 

of OLE1 transcription [198]. Ole1p is the only fatty acid desaturase in S. cerevisiae and is 

therefore essential for the synthesis of monounsaturated fatty acids [218].  
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Figure 3-4. Identification of lipid phenotypes by robust principal component analysis.  
(A) Diagnostic plot. The score distance corresponds to the similarity of deletion mutants based 

on the principal component model. High score distance values correspond to scores that are 

different from majority of strains but demonstrate a typical pattern of changes.  The orthogonal 

distance is a measure of how distinct a lipid phenotype is compared to the majority of strains. 

High orthogonal distance values indicate that a particular lipid composition cannot be explained 

by the model. Strains with major differences in lipid composition were identified as having 

orthogonal distance values above the cut-off (corresponds approximately to 97.5% quintile of 

the Gaussian distribution). (B) Spectral verification of the mga2Δ lipid phenotype. Positive ion 

mode FT MS spectrum of mga2Δ and BY4742. DOI: 10.1039/c3mb70599d. 
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Deletion of the MGA2 gene reduces the expression of Ole1p which results in lower levels 

of the monounsaturated fatty acids C16:1 and C18:1 [219]. Consequently, the mga2Δ strain 

synthesizes elevated amounts of lipids having fewer double bonds as compared to the control 

strain BY4742 (Figure 3-4B). Notably, the first round screening showed that mga2Δ synthesizes 

primarily TAG species with a total of two double bonds and elevated levels of PC species having 

a single double bond (e.g. PC 32:1). Based on the ability to identify known constituents of the 

lipid metabolic network (i.e. mga2Δ and elo2Δ), we conclude that the first round lipidomic 

screening is a valid tool for identification of mutant strains with perturbed lipid phenotypic traits. 

We noted that deletion mutants for transcription factors involved in lipid metabolism Ino2p and 

Ino4p did not cause pronounced changes in lipid composition because the growth medium was 

supplemented with inositol and choline, which alleviates the phenotype of these deletions. The 

strain devoid of the transcriptional regulator Opi1p was excluded during the quality control 

procedure.  

3.5.5. Second round screening of deletion strains with lipid phenotypes 

In order to further substantiate the lipid phenotypes of identified strains, we executed a 

second round of lipidomic screening using the accurate and comprehensive workflow for 

absolute quantification of lipid species [96,99]. To this end, we performed an extensive lipidome 

analysis of 7 deletion mutants, control strains elo2Δ and gup1Δ, and the reference strain BY4742 

(Supplementary table 41). The strains were cultured in synthetic complete liquid medium for 24 

                                                 

1 http://www.rsc.org/suppdata/mb/c3/c3mb70599d/c3mb70599d5.txt 
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hours to allow cells to enter the stationary phase. Quantitative lipidomic analysis was performed 

using spike-in of internal standards and included the quantification of ergosterol and inositol-

containing sphingolipids which were not monitored in the first round screening. To rank the 

lipid metabolic phenotypes we made use of a scoring algorithm that calculates the sum of 

absolute mol% difference relative to BY4742 (SoamD). This score was applied to rank the 

mutant strains according to the magnitude of the differences in lipid species and lipid class 

composition as compared to the reference strain BY4742 (Figure 3-5). Using this approach we 

observed that the mutant elo2Δ harboured the most pronounced differences in global lipid 

composition followed by ybr141cΔ, kar4Δ and yjr015wΔ. The lipid phenotypes of ybr141cΔ, 

kar4Δ and yjr015wΔ will be discussed below.  
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Figure 3-5. Scoring of lipid phenotypes. 

Score values represent the sum of absolute differences (SoamD) in mol% lipid class (A) or 

species (B) as compared to BY4742. Data represent mean of two values from two separate 

injections of one biological replicate. DOI: 10.1039/c3mb70599d. 
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3.5.6. YJR015W has a plausible role in GPI-anchor synthesis 

Yjr015wp is a protein of unknown function that localizes to the ER [33]. It is predicted 

to have 6 transmembrane domains and function as a membrane transporter [220]. The interaction 

landscape of YJR015W shows a direct interaction with key enzymes in fatty acid elongation and 

sphingolipid metabolism IFA38 and SUR4, and two enzymes involved in 

glycosylphosphatidylinositol (GPI) anchor synthesis GPI16 and GUP1 (Figure 3-6A). All four 

interactors are transmembrane proteins that localize to the ER [133,221]. Ifa38p and Sur4p are 

components of the elongase complex that synthesizes C26:0 fatty acid for Cer synthesis and 

remodeling of GPI-anchors via the O-acyl-transferase Gup1p. Gpi16p is a subunit of the 

transamidase complex that adds GPI-anchors to newly synthesized proteins. Notably, GPI-

anchored proteins in S. cerevisiae comprise either a glycerophospholipid PI species or a 

sphingolipid IPC species. In addition, YJR015W also interacts with enzymes responsible for N-

linked glycosylation and machinery involved in ER to Golgi vesicle transport (Figure. 3-6A). 

Taken together, these interactions support the notion that Yjr015wp is potentially involved GPI-

anchor synthesis. Based on this prediction we included gup1Δ as a control strain in the 

comparative lipidomic analysis. 

 The lipid phenotype of yjr015wΔ revealed a distinct set of perturbed sphingolipid 

features (Figure 3-6B,C). The yjr015wΔ lipidome showed increased levels of 46:0;4 

sphingolipid species being offset by a reduction in 44:0;5 sphingolipid species. The 46:0;4 

species correspond to a sphingolipid composed of a C20 phytosphingosine and an amide-linked 

hydroxylated C26:0 fatty acid moiety [96,222]. In comparison, the 44:0;5 species correspond to 
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sphingolipid having a C18 phytosphingosine and a C26:0 fatty acid moiety with two hydroxyl 

groups. The hydroxylase that inserts the second hydroxyl group onto the C26 fatty acid moiety 

as well as the position on the fatty acid chain and the molecular function of the produced 

sphingolipid molecule are unknown [223,224]. It is unlikely that the sphingolipid phenotype of 

yjr015wΔ is attributed to a reduced activity of the fatty acid elongation complex because 

inactivation of the interactor Sur4p would shorten the fatty acid chain length of sphingolipids 

[96,211]. Instead, the perturbation of sphingolipid hydroxylation profile could be due to reduced 

activity of the unknown hydroxylase or selective utilization of IPC 44:0;5 species for 

remodeling of GPI-anchors. Interestingly, inactivation of GPI-anchor remodeling in the gup1Δ 

mutants coincide with a reduction in IPC 44:0;5 (termed IPC-D in thin-layer chromatographic 

analysis) and increased incorporation of a base resistant anchor lipid with chromatographic 

properties similar to IPC 44:0;5 [225]. In addition, it has been observed that GPI-anchor proteins 

in gup1Δ cells comprised lower levels of IPC 44:0;4. Taken together, these data support the 

observed reduction in all sphingolipid 44:0;5 species and elevated levels of 46:0;4 species in the 

yjr015wΔ lipidome (Figure 3-6B). Our analysis showed that the yjr015wΔ lipidome partially 

phenocopied the gup1Δ lipidome with respect to the top 10 decreasing lipid species (Figure 3-

6B,D). In both mutant strains, the 44:0;5 sphingolipid species were among the most reduced 

lipid species. In contrast, the observed top 10 increased lipid species were only partially 

conserved in the two mutant strains. As for the lipid class phenotype we also observed a strong 

similarity between the yjr015wΔ and gup1Δ lipidome. Based on the distinct lipid phenotype of 

yjr015wΔ, its similarity to the gup1Δ lipidome and the interaction landscape of YJR015W we 

propose that Yjr015wp might play a functional role in modulation of GPI-anchor synthesis. 
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Figure 3-6. Interaction network and lipid phenotype of yjr015wΔ. 

(A) Physical and genetic interactions with YJR015W from BioGIRD. Groups of genes with 

significantly enriched GO terms related to biological processes are highlighted (grey nodes). 

White nodes are genes with no significant enrichment in biological process GO terms. (B) Top 

10 increased and decreased lipid species of yjr015wΔ compared to BY4742. (C) Top 10 

increased and decreased lipid classes of yjr015wΔ compared to BY4742. (D) Top 10 increased 

and decreased lipid species of gup1Δ compared to BY4742. (E) Top 10 increased and decreased 

lipid classes of gup1Δ compared to BY4742. Labels correspond to percentage difference 

calculated as (mol% mutant – mol% BY4742) / (mol% BY4742). Data display the average of 

two independent analyses of a lipid extract of one biological replicate. Grey bars report the 

difference between the replicate data. DOI: 10.1039/c3mb70599d. 
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We note that in order to reveal the exact role of YJR015W an additional study of the yjr015wΔ 

strain and the Yjr015w protein is required. 

3.5.7. Ybr141cp – a putative methyltransferase involved in sterol lipid 

metabolism  

YBR141C encodes a putative methyltransferase that localizes to the nucleolus [33]. A 

recent bioinformatic study of yeast methyltransferases predicted Ybr141cp to contain a 

Rossmann-like catalytic domain similar to the sterol methyltransferase Erg6p that converts 

zymosterol to fecosterol in the ergosterol biosynthetic pathway [226]. The catalytic Rossmann-

like domain spans methyltransferases with diverse substrate specificities including sterols, 

proteins, RNA and other small molecules. As such, Ybr141cp was predicted to use rRNA or 

tRNA as substrate [226], albeit this has not been experimentally verified. In addition, a number 

of proteins devoid of methyltransferase activity and featuring the Rossmann-like domain have 

been identified. These proteins include the transcription factor Kar4p and the mitochondrial 

RNA polymerase specificity factor Mtf1p [226,227]. The interaction network of YBR141C 

shows a link to lipid metabolism via a physical interaction with Vps74p (Figure 3-1), a 

phosphoinositide-binding protein involved in localizing glycosyltransferases in the Golgi [57].  

 The lipid phenotype of ybr141cΔ showed a pronounced increase of ergosterol esters 

offset by a reduction of ergosterol (Figure 3-7A,B). In addition, the ybr141cΔ lipidome showed 

a concomitant increase in TAG levels and a reduction in all membrane glycerophospholipids. 

The reason for this distinct lipid phenotype is at the present time unclear given the limited 

information about YBR141C function. Interestingly, a similar perturbation of sterol esters and  
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Figure 3-7. Lipid phenotype of ybr141cΔ. 

(A) Lipid species mol% differences compared to BY4742. (B) Lipid class mol% 

differences compared to BY4742. Labels correspond to percentage difference calculated 

as (mol% mutant – mol% BY4742)/(mol% BY4742). Data display the average of two 

independent analyses of a lipid extract of one biological replicate. Grey bars report the 

difference between the replicate data. DOI: 10.1039/c3mb70599d. 
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free sterol levels were observed when inactivating ERG6[228]. Moreover, chemical genomic 

data shows that YBR141C has a co-fitness interaction with the major sterol acyl-transferase 

ARE2 [229]. Although the information about YBR141C function is limited, our results provide 

a framework for testing the functional role of Ybr141cp in sterol metabolism. 

3.5.8. Kar4p – a transcription factor linked to nuclear membrane dynamics  

KAR4 encodes a transcription factor required for nuclear fusion during yeast mating and 

possibly other functions during vegetative growth [230–233]. Kar4p exists as two isoforms; a 

constitutive 38.5 kD protein (Kar4p-long) that predominates during vegetative growth and a 

35.5 kD protein (Kar4p-short) that is induced during mating [232]. During the mating process, 

Kar4p-short acts together with the transcription factor Ste12p to induce the expression of KAR3 

and CIK1 that encode a motor protein complex required for congression of nuclei prior to 

nuclear membrane fusion [231,233]. During vegetative growth, Kar4p-long expression is up-

regulated in the G1 phase of the cell cycle and implicated in constitutive expression of more than 

50 genes [231,233]. The kar4Δ deletion mutant displays a slow growth phenotype attributed to 

a short G1 pause during vegetative growth, and a pronounced defect in nuclear congression 

during mating that phenocopies the absence of KAR3 and CIK1 [230].  

 Given the functional role of Kar4p in nuclear fusion, it is plausible that Kar4p is also 

involved in regulating nuclear membrane dynamics during the cell cycle. Notably, perturbing 
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lipid metabolism has previously been shown to compromise nuclear membrane growth and 

function [234]. Deletion of the PA phosphatase Pah1p and components of its regulatory complex 

Nem1p-Spo7p reduces PA to DAG conversion and causes nuclear membrane expansion 

[235,236]. In addition, overexpression of the nuclear/ER-localized DAG kinase Dgk1p 

phenocopies the Pah1p deficiency [237] indicating that regulation of the composition of DAG, 

PA and other glycerophospholipids is important for nuclear membrane dynamics. Conversely, 

deletion of integral nuclear membrane-ER proteins Brr6 and Apq12 precipitate defects in 

nuclear pore complex assembly, sterol metabolism and lipid droplet morphology [238].  

 The lipid phenotype of kar4Δ showed a pronounced increase in DAG and SE species 

being offset by a reduction in primarily PE species and ergosterol (Figure 3-8). Interestingly, 

this lipid phenotype is reminiscent of the lipid compositions associated with nuclear membrane 

defects observed in the previous studies. The elevated DAG levels and reduction in PE levels 

are similar to the effects of overexpressing Pah1p [239], whereas the increased levels of SE and 

reduced levels of ergosterol resemble effects of defective nuclear membrane growth in the 

pah1Δ deletion mutant [240]. This apparent combination of perturbed lipid features indicates 

that inactivation of Kar4p potentially fails to prompt an inhibition of Pah1p activity, which in 

turn channels PA into DAG production instead of synthesis of PE and other 

glycerophospholipids for membrane expansion. The accumulation of SE could be a secondary 

effect of kar4Δ cells trying to synchronize the rate of ergosterol biosynthesis and secretory 

vesicle flow under the reduced vegetative growth rate. We here note that the exact function of 

Kar4p action during vegetative growth requires further characterization of the kar4Δ strain and 

Kar4 protein. 
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Figure 3-8. Lipid phenotype of kar4Δ.  

(A) Lipid species mol% differences compared to BY4742. (B) Lipid class mol% differences 

compared to BY4741. Labels correspond to percentage difference calculated as (mol% mutant 

– mol% BY4742)/(mol% BY4742). Data display the average of two independent analyses of a 

lipid extract of one biological replicate. Grey bars report the difference between the replicate 

data. DOI: 10.1039/c3mb70599d. 
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3.6. Conclusion 

Existing high throughput screening methodologies for identification of proteins with a function 

in lipid metabolism provide only limited phenotypic information. Epistatic miniarray profiling 

and protein-protein interactions assays are based on monitoring growth fitness (i.e. colony size) 

which allows mapping functionally related genes and proteins, respectively [41,42,55]. 

Alternatively, microscopy-based screening can be used for identifying mutant strains 

with perturbed lipid droplet dynamics based on altered lipid droplet size and morphology 

[241,242]. In contrast, detailed assessment of cellular lipid composition demands dedicated 

methods such as mass spectrometry-based lipidomics. Several groups have recently reported 

workflows for lipidomics analysis in yeast, but their application has so far been limited to 

characterisation of only few mutant strains or a reference strain grown at different conditions 

[96,97,99,243].  

 In the current study, we designed a platform for high-content lipidomic screening of 

yeast mutant libraries. We combined culturing and lipid extraction in 96-well format, automated 

direct infusion nanoelectrospray ionization, high-resolution Orbitrap mass spectrometry and a 

novel data processing framework to support lipid phenotyping across hundreds of S. cerevisiae 

mutants. The screening platform was designed to include two rounds of screening. A first round 

screening was executed for rapid lipid profiling across all shortlisted strains in the deletion 

library while a second round of screening was conducted for more comprehensive lipidome 

quantification of deletion mutants with perturbed lipid phenotypes identified in the first round 

screening. To our knowledge, this is the first assessment of lipidomic phenotypes across 
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hundreds of mutants in a single screen. Notably, our platform extends the palette of analytical 

techniques available for functional genomics studies aimed at uncovering proteins with 

previously unknown function in lipid metabolism and regulators of global lipid homeostasis. 

The technology affords a multidimensional survey of physiological lipid parameters that helps 

explore uncharacterized proteins and propose valuable hypothesis for mechanistic biochemical 

follow-up experiments. Our case study of a library covering deletion mutants of genes with 

predicted function in lipid metabolism and transcriptional regulators revealed three poorly 

characterized genes that precipitate distinct lipid metabolic phenotypes upon deletion. In 

conclusion, the high-throughput lipidomic screening platform described herein is a valid and 

complementary tool for high-content analysis of yeast mutant libraries. 
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Chapter 4 : iVici: Interrelational Visualization and 

Correlation Interface 

4.1. Contribution to the published work 

The method presented in this chapter was published in the following paper: Tarassov K, 

Michnick SW, iVici: Interrelational Visualization and Correlation Interface. Genome Biology. 

2005;6(13):R115. Epub 2005 Dec 30 [190]. doi:10.1186/gb-2005-6-13-r115.  

M.S.W. and T.K. formulated the original idea. T.K. developed a software 

implementation of the method and analyzed data that illustrate the applications of the method. 

M.S.W and T.K. wrote the manuscript.    

The paper had been published before completion of the screens presented in this thesis. 

Therefore, datasets from other studies were used for illustrating the advantage of the method. 

To correct this, I wrote an original Chapter 4 to demonstrate the application of the method on 

the data from the thesis. 

4.2. Abstract 

We have developed a novel visualization method, iVici, for interactive browsing and 

comparison of large datasets. The method is an extension of the heat map plot and is suitable 

for analysis of any types of data that can be represented as two-dimensional matrices, e.g. 

networks of interactions between genes and proteins and correlation networks. To demonstrate 
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the utility of iVici, we compared interaction networks mapped by different methods and 

identified interactions unique to a particular dataset.    

4.2. Introduction 

The functional genomic methods capture diverse molecular information in different 

organisms. The common question of integrative data analyses is how different dataset generated 

by various methods in distinct organisms correlate with each other. Powerful software 

applications exist for representing networks as graphs. However, because of the overlap between 

edges, it is difficult to navigate large networks represented as graphs. Therefore, alternative 

visualization methods, such as heat map representation of networks, have been developed that 

minimize the overlap between network edges (section 1.6.6. Methods for network visualization).   

The traditional heat map tools display one data matrix at a time [17,147] using intensity 

of one or two colors to visualize numeric values of matrix elements. The datasets which contain 

only positive or only negative values are displayed with one color, whereas, datasets containing 

both positive and negative values are visualized with two-color schemes with a dedicated color 

for values above (e.g. red) and below zero (e.g. green).  Below, we present two improvements 

to the method that we have introduced for superimposition of two datasets on the same figure: 

a) in the case of symmetric matrices, we display values from different datasets below and above 

the main matrix diagonal; and b) we extend the number of colors that can be selected for 

visualization.   
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4.3. Results  

4.3.1. Two datasets within symmetric matrices   

Many types of relationships can be displayed with heat maps of symmetric matrices. For 

example, networks of pairwise protein-protein interactions (such as the one presented in Figure 

2-8 in Chapter 2) are displayed as squares with a full set of proteins from the dataset placed into 

rows and columns. The order of the rows and columns is kept identical by sorting protein names 

alphabetically or ordering by hierarchical clustering performed in two dimensions [104]. In such 

setting, the same interaction between proteins i and j is displayed twice: in the element in row i 

and column j and in the element in row j and column i (Figure 2-8). Another example of 

symmetric matrices is presented in Chapter 2 (sections 2.5.3 and 2.5.4) in analysis of interaction 

enrichment between various GO annotation terms.   

We used the symmetry property of the map to introduce the first improvement to the 

heat maps by fitting two datasets into triangles below and above the main matrix diagonal. Thus, 

instead of duplicated information, elements i,j and j,i represent different aspect of a relationship 

between a pair of objects i and j. Our method allowed us to display on the same plot information 

on amount of interactions that were detected between pairs of GO terms (lower triangle) and the 

difference of this number from what is expected by chance (upper triangle) (Figures 2.12 and 

2.13). Combining these two metrics is important for appreciating the significance of the results. 

In the case, where the number of detected interactions is large, it may suggest that interactions 

between two terms are favored in the network. However, when many proteins are annotated 
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with these terms similarly large numbers of interactions   could be discovered also in a network 

with randomly assigned interactions. Figure 2-12 contains an example of such phenomenon, in 

which large number of interactions in DHFR PCA network between proteins in cytoplasm 

(column 7) and nucleus (row 19) is depicted by a bright yellow color in the lower triangle. 

However, this number is lower than what would be expected by chance as indicated by a bright 

blue color (that corresponds to depletion of interactions) in row 7 column 19.           

4.3.2. Extended color-schemes for comparing datasets 

The second improvement that we have introduced to the heat map method was the 

extended number of colors that can be used. Instead of at maximally two colors available in the 

traditional method, we make use of up to seven colors to visualize the overlap and discrepancies 

between two datasets. Our implementation allows to select pairs of colors for each of the datasets 

that are compared. Additionally, separate colors can be selected to show overlapping values. In 

Figure 4-1, we present a zoomed region of the complete DHFR PCA heat map from Figure 2-

8. The lower triangle bellow the main matrix diagonal shows interactions from DHFR PCA 

network, and the upper triangle above the main matrix diagonal depicts interactions between the 

same proteins detected by other studies extracted from the BIOGRID database. Interactions that 

are only observed by PCA are colored in red. The interactions that are not detected by PCA, but 

observed in other studies are colored in green. Yellow is used to show PCA interactions 

confirmed by other methods. 
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Figure 4-1. Screenshot of iVici interface with PCA network. 

Network is based on interdictions from DHFRP PCA network ordered by hierarchical clustering 

(lower triangle). Upper triangle shows interactions between the same proteins detected by other 

methods (all available data on physical protein interactions downloaded from the BIOGRID 

database).  
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4.3.3. Software implementation 

We have developed a platform-independent software called iVici (iVici: Interrelational 

Visualization and Correlation Interface) that is capable of presenting the improved heat maps 

discussed above. We have programmed a stand-alone software instead of providing an extension 

to popular Cytoscape and R systems, because Cytoscape facilitates network visualization 

presented as graphs and not as heat maps, while R does not provide capabilities for development 

of interactive user interfaces. The software was coded in Java version 1.4. It runs on all major 

desktop operating systems that support Java. iVici allows to configure links to up to four 

different databases for getting information on network nodes. The exploration of large heat maps 

is facilitated by a dedicated navigation pane, which shows the full network. A movable rectangle 

in the navigation pane allows to choose a zoomed region for displaying in the main application 

window. We set up a dedicated website (http://michnick.bcm.umontreal.ca/resources.html) 

where iVici software, example datasets and documentation are available for download.  

4.4. Discussion 

We have selected four clusters to demonstrate how the heat map with superimposed 

colors and datasets can be used to intuitively browse and compare large networks for evaluating 

reproducibility and novelty of the results. Clusters in Figure 4-1 exhibit a different degree of the 

overlap. The interactions between members of two clusters that correspond to Elongator 

complex [244,245] and Processome complex [246,247] are in agreement between PCA 
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technique and other studies. There is a good overlap between the datasets describing interactions 

of Ccr4-Not complex with ubiquitination and deadenylation enzymatic activities that regulates 

gene expression and its coordination between the nucleus and the cytoplasm [248,249]. In this 

example, DHFR PCA network contains new interactions (shown in red) that has not been 

previously reported. The novel interactions link Ccr4-Not complex with paralogous RNA-

binding proteins Whi3p and Whi4p. WHI3 has been implicated in regulation of the cell cycle 

progression based on observation of unusual small-cell phenotype of a whi3Δ deletion mutant. 

Deletion of WHI4 does not cause a strong phenotype alone. However, double deletion mutation 

whi3Δ whi4Δ results in even smaller cells than single whi3Δ deletion. These results suggest that 

WHI3 is partially redundant with WHI4, but is less important [250]. Our network supports the 

view that WHI4 might have a similar function to WHI3 because of common interaction partners 

detected for Whi4p and Whip3. Whi3p binds to mRNA of Cln3p [251], a key activator of the 

cell cycle entry, and acts as a cellular retention factor for Cdc28p [252], cyclin-dependent 

protein kinase that regulates the cell cycle. Cln3p acts as an activator of Cdc28p that promotes 

the G1 to S phase transition. Newly discovered interactions suggest association between Cln3p-

Cdc28p cell cycle regulation complex, Whi3p and the Ccr4-Not complex. The mechanism by 

which Whi3 affects translation of Cln3 after binding to its mRNA is unknown. Based on the 

DFHR PCA interactions, it has been hypothesized that Whi3p bound to mRNA of Cln3p might 

recruit Ccr4-Not complex that would promote degradation of the Cln3p mRNA by increasing 

the rate of deadenylation of the poly(A) tail, which is the initial step of the mRNA turnover 

[253].  
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The last example in Figure 4.1 displays a cluster of lipid related transporters with the 

majority of interactions discovered only in DHFR PCA network (discussed in more details in 

section 2.5.5.).   

Visualization of non-symmetric datasets that cannot be fit into the same square would 

still benefit from the extended color-scheme. In this case, only one dataset at a time is displayed; 

however, overlapping values would be selectively colored based on the information contained 

in the second dataset.         

4.4. Conclusion 

Here we have presented an extension of the traditional heat map visualization method 

for comparison of various datasets. We have provided examples on the use of the method for 

analysis of relationships between proteins that belong to various GO annotations terms and 

investigation of the overlap between interactions detected by distinct methods. Similarly, the 

method can be used for analysis of network dynamics by comparing interactions observed in 

different conditions; and comparison of heterogeneous data, such as genetic and physical 

interactions. Because of the absence of the overlap between connected nodes, relationships 

between groups of nodes can be easily explored even in very large datasets. In addition to 

grouping of proteins by hierarchical clustering for discovering interconnected modules, ordering 

can be done, for example, by cellular locations of proteins, positions of genes on chromosomes 

and functional annotations. To promote the application of the method, we have provided a 

platform-independent software implementation of the method (iVici) available at no charge. 
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Finally, iVici is not limited to visualization of interaction networks and can be used for 

comparative analysis of any type of information that can be represented in the matrix format.  
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Chapter 5 : Analysis of Lipid Experiments (ALEX): A 

Software Framework for Analysis of High-Resolution 

Shotgun Lipidomics Data 

 

5.1. Contribution to the published work 

Chapter 5 was published as an article in PlosOne journal: Husen P*, Tarasov K*, 

Katafiasz M, Sokol E, Vogt J, Baumgart J, Nitsch R, Ekroos K, Ejsing CS (2013) Analysis of 

Lipid Experiments (ALEX): A Software Framework for Analysis of High-Resolution Shotgun 

Lipidomics Data. PLoS One 8: e79736 (* These authors contributed equally to this work) 

Chapter 5 describes software framework that was initially developed to support the high-

throughput lipidomics screen presented in Chapter 3. For the publication, the framework was 

extended further for handling a broader range of lipidomics applications. My contribution to this 

work consisted of development of a software module for automated extraction of the raw data 

from files generated by mass spectrometer and modular design of the software implemented 

with visual programming and visual analytics technologies.     
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5.2. Abstract 

Global lipidomics analysis across large sample sizes produces high-content datasets that 

require dedicated software tools supporting lipid identification and quantification, efficient data 

management and lipidome visualization. Here we present a novel software-based platform for 

streamlined data processing, management and visualization of shotgun lipidomics data acquired 

using high-resolution Orbitrap mass spectrometry. The platform features the ALEX framework 

designed for automated identification and export of lipid species intensity directly from 

proprietary mass spectral data files, and an auxiliary workflow using database exploration tools 

for integration of sample information, computation of lipid abundance and lipidome 

visualization. A key feature of the platform is the organization of lipidomics data in ”database 

table format” which provides the user with an unsurpassed flexibility for rapid lipidome 

navigation using selected features within the dataset. To demonstrate the efficacy of the 

platform, we present a comparative neurolipidomics study of cerebellum, hippocampus and 

somatosensory barrel cortex (S1BF) from wildtype and knockout mice devoid of the putative 

lipid phosphate phosphatase PRG-1 (plasticity related gene-1). The presented framework is 

generic, extendable to processing and integration of other lipidomic data structures, can be 

interfaced with post-processing protocols supporting statistical testing and multivariate analysis, 

and can serve as an avenue for disseminating lipidomics data within the scientific community. 

The ALEX software is available at www.msLipidomics.info. 
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5.3. Introduction 

The lipidome of eukaryotic cells comprises hundreds to thousands of molecular lipid 

species that constitute and functionalize biomembranes, store metabolic energy in lipid droplets 

and function as signaling molecules that control cell and organism physiology [89,191,254]. A 

key tenet of contemporary mass spectrometry-based lipidomics methodology revolves around 

the identification and quantification of lipid species on a lipidome-wide scale 

[96,99,202,212,255]. As such, shotgun lipidomics has emerged as a powerful tool for global 

lipidome analysis that complements mechanistic studies of lipid metabolism, lipid homeostasis 

and membrane biology [134,200,201,256,257]. The efficacy of shotgun lipidomics stems from 

its relative technical simplicity where hundreds of lipid species in sample extracts can be 

quantitatively monitored at high throughput using direct infusion nanoelectrospray ionization 

combined with high-resolution Fourier transform mass spectrometry (FT MS) or/and tandem 

mass spectrometry (MS/MS) [89,204]. Notably, lipidomics analysis on a global scale generates 

large amounts of (spectral) data that requires software routines for automated lipid identification 

and quantification, and additional data management for subsequent lipidome visualization and 

bioinformatics analysis. 

Extensive lipidome characterization by shotgun lipidomics can be achieved by executing 

a systematic program of mass spectrometric analyses of sample extracts in positive and negative 

ion mode, and by incorporating chemical derivatization procedures to specifically monitor 

poorly ionizing lipid molecules such as cholesterol [96,99,202,212]. Executing such an 

analytical program generates several mass spectral data files per sample that must be queried 
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for lipid identification, and combined into a single dataset for lipidome quantification and 

visualization. Numerous software tools have been developed for the identification of lipids: 

LipidQA[258], LIMSA[259], FAAT[260], lipID[261], LipidSearch[262], LipidView[263], 

LipidInspector[264] and LipidXplorer[265]. These tools cover a broad range of applications 

spanning dedicated lipid identification for only certain instrumentations and specific mass 

analysis routines (MS and MS/MS) to cross-platform software featuring user-specified 

commands querying spectral data in the open-source .mzXML format. Identified lipid species 

are typically annotated by a shorthand nomenclature corresponding to the information detail of 

the mass spectrometric analysis [266,267]. The detection of lipid species by FT MS analysis or 

by MS/MS analysis for lipid class-specific fragment ions (e.g. m/z 184.0733 for 

phosphatidylcholine (PC) species) supports only “sum composition” annotation (e.g. PC 34:1). 

In comparison, annotation by the more detailed “molecular composition” (e.g. PC 16:0-18:1) 

requires MS/MS analysis and detection of structure-specific fragment ions [268]. To support the 

cataloging of lipid species, the LIPID MAPS Consortium recently developed the 

“Comprehensive Classification System for Lipids” which outlines an informatics framework for 

lipidomics [192,269]. Using a classification system enables the design of lipid databases where 

each lipid species is listed together with a range of accessory lipid features such as lipid category 

(e.g. glycerophospholipid, sphingolipid, glycerolipid, sterol lipid), lipid class, structural 

attributes (e.g. number of double bonds, fatty acid chain length), chemical formula, mono-

isotopic mass and isotope information. These accessory lipid features can be incorporated into 

lipidomic data processing routines using database-orientated exploration tools to support 

computations and visualization of distinct lipidome hallmarks. Notably, none of the currently 
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available software tools comprise streamlined processing routines that integrate lipid intensity 

data, the accessory lipid features and a full catalog of sample information. 

Here we present a platform for processing, management and visualization of high-

content shotgun lipidomics datasets acquired using high-resolution Orbitrap mass spectrometry. 

The platform features a novel software framework termed ALEX (Analysis of Lipid 

Experiments) that supports automated identification and export of lipid species intensity directly 

from proprietary mass spectral data files and the integration of accessory lipid features and 

sample information into a single output structured in “database table format”. This design 

supports swift data processing and lipidome visualization across large sample sizes using an 

auxiliary workflow powered by the database exploration tools: Orange [270] and Tableau 

Software. To demonstrate the efficacy of the platform, we present a comparative 

neurolipidomics analysis of cerebellum, hippocampus and S1BF from wild-type and knockout 

mice devoid of the PRG-1 gene encoding a putative lipid phosphate phosphatase [271]. 

5.4. Materials and Methods 

5.4.1. Chemicals and lipid standards 

Chemicals, solvents and synthetic lipid standards were purchased from Sigma-Aldrich, 

Rathburn Chemicals, Avanti Polar Lipids and Larodan Fine Chemicals AB. 
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5.4.2. Mouse brain tissue sampling 

Animal experiments were conducted in strict accordance with German law (in 

congruence with 86/609/EEC) for the use of laboratory animals and approved by the local 

animal welfare committee at the Johannes Gutenberg University Mainz. Male C57Bl/6 wild-

type and PRG-1 knockout mice [271] were euthanized by an intraperitoneal injection of 

ketamine at an overdose. Subsequently, the mice were perfused intracardially with 4°C 155 mM 

ammonium acetate, and the cerebellum, hippocampus and S1BF were dissected. The tissues 

were immediately frozen on dry ice and stored at -80°C until further processing. 

5.4.3. Lipid extraction 

Brain tissues were homogenized in 155 mM ammonium acetate and analyzed for total 

protein concentration using BCA Protein Assay Kit (Thermo Scientific). Aliquots of tissue 

homogenates corresponding to 10 µg of total protein were subjected to lipid extraction executed 

at 4°C as previously described [212]. Briefly, the tissue homogenates were spiked with 10 μl of 

internal mixture (providing a total spike of 54 pmol CE 19:0, 35 pmol TAG 17:1/17:1/17:1, 35 

pmol DAG 19:0/19:0, 26 pmol LPA O-16:0, 35 pmol PA 17:0/14:1, 25 pmol LPS 17:1, 13 pmol 

PS 17:0/20:4, 50 pmol PE O-20:0/O-20:0, 30 pmol LPC O-17:0, 137 pmol PC 18:3/18:3, 35 

pmol PI 17:0/20:4, 30 pmol PG 17:0/17:0, 55 pmol Cer 18:1;2/17:0;0, 69 pmol SM 

18:1;2/17:0;0, 49 pmol HexCer 18:1;2/12:0;0, 28 pmol SHexCer 18:1;2/12:0;0) and diluted to 

200 μl using 155 mM ammonium acetate. Samples were subsequently added 990 µl 

chloroform/methanol (10:1, v/v) and vigorously mixed for 2 h. The lower organic phase was 

collected (10:1-phase lipid extract). The remaining aqueous phase was re-extracted with 990 µl 
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of chloroform/methanol (2:1, v/v) for 1 h and the lower organic phase was collected (2:1-phase 

lipid extract). The collected lower organic phases were vacuum evaporated. 

5.4.4. Shotgun lipidomics analysis 

Lipid extracts were dissolved in 60 μl of chloroform/methanol (1:2, v/v) and subjected 

to mass spectrometric analysis using an LTQ Orbitrap XL instrument (Thermo Fisher Scientific) 

equipped with a TriVersa NanoMate (Advion Biosciences) as previously described [96,212]. 

The 10:1-phase lipid extracts were analyzed by positive ion mode multiplexed FT MS analysis 

with scan ranges m/z 280-580 (monitoring lysophosphatidylcholine (LPC) and 

lysophosphatidylethanolamine (LPE) species) and m/z 500-1200 (monitoring sphingomyelin 

(SM), ceramide (Cer), diacylglycerol (DAG), PC, ether-linked PC (PC O-), 

phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (PE O-) and 

triacylglycerol (TAG) species). The 2:1-phase lipid extracts were analyzed by negative ion 

mode multiplexed FT MS analysis with scan ranges m/z 370-660 (monitoring lysophosphatidic 

acid (LPA), lysophosphatidylserine (LPS) and lysophosphatidylinositol (LPI) species) 

and m/z550-1700 (monitoring phosphatidic acid (PA), phosphatidylserine (PS), 

phosphatidylinositol (PI), phosphatidylglycerol (PG) and sulfatide (SHexCer) species). All FT 

MS spectra were acquired in profile mode using a target mass resolution of 100,000 (fwhm), 

activation of isolation waveforms, automatic gain control at 1e6, max injection time at 250 ms 

and acquisition of 2 µscans. 
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5.4.5. Annotation of lipid species 

Glycerophospholipid and glycerolipid species were annotated using sum composition: 

<lipid class><total number of C in the fatty acid moieties>:<total number of double bonds in 

the fatty acid moieties> (e.g. PI 34:1). Sphingolipid species were annotated as <lipid 

class><total number of C in the long-chain base and fatty acid moiety>:< total number of double 

bonds in the long-chain base and fatty acid moiety>;< total number of OH groups in the long-

chain base and fatty acid moiety> (e.g. SM 36:1;2) [99,212]. 

5.4.6. ALEX software 

The individual parts of the ALEX software were programmed using several 

programming languages, libraries and software frameworks. The ALEX lipid database is 

implemented using the library based SQLite database engine. The ALEX target list generator is 

written in C++ and uses the Qt framework for its user interface. The ALEX converter, ALEX 

extractor and ALEX unifier are written in Python 2.7 and make use of the Python packages 

PySide, NumPy and SciPy. Furthermore, the ALEX converter uses the package comtypes to 

interface with the MSFileReader library version 2.2 (Thermo Scientific), which must be 

installed. Finally, the standalone ALEX lipid calculator is written in common lisp and uses the 

GTK+ framework for its user interface, while the online version is written in PHP. The ALEX 

software is available at http://mslipidomics.info/software along with installation instructions. A 

sample dataset is also available for testing local installations of the software. 

http://mslipidomics.info/software
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5.4.7. Data processing and visualization 

Computation of molar abundance (fmol) of lipid species [263] was performed using open 

source software Orange 2.6 (www.orange.biolab.si) [270]. The Orange workflow is provided as 

part of the sample dataset available at http://mslipidomics.info | software. In addition, the 

Orange output with lipidomics data is available as Data S11. Visualization and calculation of 

mol% values were performed using commercially available Tableau Software 

(www.tableausoftware.com). Lipidomic data in Tableau file format is available as Data S22 and 

can be navigated using the freeware Tableau Reader 

(http://www.tableausoftware.com/products/reader). 

5.5. Results and Discussion 

5.5.1 Input: high-resolution shotgun lipidomics data 

Shotgun lipidomics platforms based on high-resolution Orbitrap mass spectrometry and 

automated nanoelectrospray ionization support high throughput analysis with high sensitivity, 

specificity and extensive lipidome coverage [96,99,206,212]. The extensive lipidome coverage 

is generated by combined analyses of sample extracts in negative and positive ion mode, and by 

implementing chemical derivatization procedures to monitor low abundant or poorly ionizing 

lipid species [272–274]. In order to maximize the sensitivity of Orbitrap mass analysis, we 

                                                 

1 http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0079736.s001 

2 http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0079736.s002 

http://www.orange.biolab.si/
http://www.tableausoftware.com/products/reader
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0079736.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0079736.s002
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typically record two multiplexed FT MS scans covering a low m/z range and high m/z range 

(e.g. +FT MS m/z 280-580 and +FT MS m/z 500-1200). Each FT MS scan is recorded in profile 

mode with a target mass resolution of 100,000. The rationale for this multiplexed FT MS 

analysis is that the instrument injects a user-specified quantum of ions into the Orbitrap for mass 

analysis (defined by the automated gain control). Hence, multiplexing two or more scan ranges 

allows separate quanta of ions within specific m/z ranges to be analyzed sequentially in the 

Orbitrap and yields better ion statistics as compared to injecting all ions at the same time when 

monitoring a wider m/z range (e.g. +FT MS m/z 200-1200)[275]. We note that the boundaries 

of the scan ranges should be chosen to cover specific lipid classes and respective internal 

standards. For example, the scan range +FT MS m/z 280-580 is used for monitoring LPC and 

LPE species whereas +FT MS m/z 500-1200 analysis is used for monitoring Cer, SM, HexCer, 

PC, PC O-, PE, PE O-, DAG and TAG species. The total time of analysis is typically set to 3 

min. Within this time we record 25 low m/z and 25 high m/z range FT MS spectra. Likewise, 

negative ion mode analysis is also executed using multiplexed FT MS acquisitions to monitor 

negatively charged glycerophospholipid and SHexCer species (see Material and Methods). 

Consequently, this lipidomics approach generates four distinct mass spectral datasets per sample 

(two per polarity) that need to be queried for lipid identification and export of lipid species 

intensity. We note that this lipidomics approach is designed for high throughput-oriented studies 

and supports annotation of lipid species by sum composition nomenclature (e.g. PC 34:1). 

Characterization of molecular lipid species (e.g. PC 16:1-18:0) requires implementation of time-

consuming MS/MS analysis and lipid identification by dedicated software such as LipidXplorer 

[265]. 
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5.5.2. Design of the ALEX software framework 

The ALEX software framework was designed for processing of shotgun lipidomics 

datasets obtained by multiplexed high-resolution FT MS. The rationales for the design were: i) 

that ALEX should support lipidomic studies with large sample sets for which a multitude of 

multiplexed FT MS acquisitions have been acquired; and ii) that the output format of ALEX 

should be compatible with an auxiliary workflow that supports robust data processing including 

computation of molar abundances of lipid species across numerous lipid classes, integration of 

sample information, implementation of data quality control procedures and rapid lipidome 

visualization. To this end, we designed the ALEX software framework to utilize distinct 

modules that identify lipid species from proprietary .RAW spectral file format, incorporate 

accessory lipid features stored in a lipid database and output lipidomic data in “database table 

format” (Figure 5-1, Data S11). In this format, the lipidomic data is stored in tabulator or comma 

separated text files structured as database tables with a separate row for each data point. Each 

row separately contains fields (also termed attributes) reporting for example the originating 

sample (.RAW file name), the lipid species, adduct information, intensity, peak area, m/z values 

and accessory lipid features derived from the lipid database.  

 

                                                 

1 http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0079736.s001 

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0079736.s001
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 Figure 5-1. Figure 1. Overview of the ALEX software framework and auxiliary workflow. 
The ALEX framework comprises six core modules (grey colored boxes). The function of each 
module is explained in the Results and Discussion section. The output of the ALEX framework 
includes a data file with identified lipid species, intensities and accessory lipid features across 
all processed samples and FT MS scan ranges. The ALEX output is organized in database table 
format that can be accessed and processed by the auxiliary workflow using Orange and 
Tableau software. The auxiliary workflow is designed to integrate sample information, 
compute lipid molar abundance, implement quality control procedures and visualize lipidome 
data. 
doi:10.1371/journal.pone.0079736.g001 
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Importantly, this relational database format provides a robust way to manage large datasets 

programmatically and avoids the need for error-prone manual alignment of data with lists of 

accessory features and quantification information. We note that the output of most contemporary 

lipidomics software tools utilizes a “spreadsheet” format where samples/injections are arranged 

in the columns and lipid species in the rows of a table of with either intensities or peak areas. 

This “spreadsheet” format is adequate for processing and visualizing simple lipidomic datasets 

using tools such as Microsoft Excel, but becomes exceedingly cumbersome if sample sets 

include more than 10 samples and monitor more than 200 lipid species across different FT MS 

scan ranges. 

 The ALEX software framework consists of six core modules (Figure 1): i) the ALEX 

lipid database featuring a comprehensive range of lipid species and accessory lipid features used 

for lipid identification, data processing and management; ii) the ALEX lipid calculator which 

supports manual interpretation of mass spectra; iii) the ALEX converter which converts mass 

spectrometric data in proprietary .RAW format into averaged spectral peak lists in text file 

format; iv) the ALEX target list generator which queries the ALEX lipid database to compile 

target lists used for lipid species identification; v) the ALEX extractor which uses the target lists 

to identify lipid species and export corresponding intensities from spectral peak lists; and vi) the 

ALEX unifier that merges the multiple ALEX extractor outputs containing lipid species data 

from different FT MS scan ranges into a single data file. Further information about the function 

of the ALEX modules and the auxiliary workflow is outlined in the subsequent sections. 
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5.5.3. ALEX lipid database 

To support identification of lipid species we constructed the ALEX lipid database. 

Currently, the database covers more than 20,000 lipid species from more than 85 lipid classes. 

Each lipid species in the database is annotated by sum composition and contains a range of 

accessory lipid features denoting its chemical formula, mono-isotopic mass, adduction in 

positive and negative ion mode, lipid category, lipid class, and the total number of C atoms, 

double bonds and hydroxyl group in fatty acid and long chain base moieties (termed C index, 

db index and OH index, respectively). The ALEX lipid database is available as a collection of 

text files and as a binary SQLite database queried by the ALEX lipid calculator and the ALEX 

target list generator, respectively (outlined in the next sections). The text version also serves as 

the source for the binary version (compiled by a supporting Python program) and can be edited 

by the user. To support the editing of the database, a template Microsoft Excel file can be used 

to assist the enumeration and calculation of the chemical formula and mass for each species, 

such that catalogs of entire lipid classes can readily be added. We note that the accessory lipid 

features serve as important attributes in the final ALEX output that facilitate data processing 

and lipidome visualization. 

5.5.4. ALEX lipid calculator 

The ALEX lipid calculator was designed to complement manual inspection of FT MS 

spectra when using proprietary Xcalibur software (Figure 5-2). The calculator is available as 

executable program and as an online application at www.mslipidomics.info/lipid-calc. Both 

versions of the ALEX lipid calculator support querying m/z values of specific lipid species and 

http://www.mslipidomics.info/lipid-calc
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searching the lipid database for candidate lipid species that match a measured m/z value within 

a user-specified tolerance window. Since the accuracy of lipid identification can be hampered 

by drifts of the FT MS calibration we also implemented an option to specify an m/z offset while 

querying the lipid database. To accurately specify the calibration offset requires that the user 

knows the identity of at least one well-characterized “lock mass” ion that can be used for 

estimating them/z offset (Figure 5-2). An option to minimize potential problems with FT MS 

calibration drifts is to apply online lock mass calibration during sample acquisition [276]. 

However, the online lock mass calibration eliminates the lock mass ion(s) from the recorded FT 

MS spectra using waveforms that might concomitantly eliminate lipid ions having similar m/z. 

An alternative strategy is to apply an offline lock mass adjustment as implemented in the ALEX 

extractor (outlined below). 

5.5.5. ALEX converter 

A prerequisite for automated lipid identification and export of intensity is that the mass 

spectrometric data in proprietary .RAW format are made accessible for querying. To this end, 

we designed the ALEX converter to interface with the proprietary dynamic-link library 

MSFileReader. The MSFileReader supports export of all scan information within .RAW files 

including single and averaged spectral peak lists in either centroid or profile mode format. The 

ALEX converter was designed to export individual spectral peak lists in profile mode format, 

to average peak lists for specific FT MS scan ranges and to save these averaged peak lists in .txt 

format. 
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Figure 5-2. The ALEX lipid calculator. 
(A) Representative positive ion mode FT MS spectrum of a 10:1-phase lipid extract of 

hippocampus from a PRG-1 knockout mouse. Note that the detection of selected lock mass ions 

tris(ditert-butylphenyl) phosphate (chemical background, [M+NH4]
+, calculated m/z 680.48022, 

measured m/z 680.47945, m/z offset = -0.00077) and TAG 17:1/17:1/17:1 (internal standard 

(IS), [M+NH4]
+, calculated m/z 860.77017, measuredm/z 860.76889 and m/z offset = -0.00128). 

The FT MS calibration offset is estimated as the average of the m/z offset for both lock mass 

ions, i.e. the FT MS calibration offset = -0.0010. (B) Screenshot of the ALEX lipid calculator 

showing information for endogenous lipid species PC 32:0 while applying the FT MS 

calibration offset = -0.0010. Note that the measured m/z of PC 32:0 is 734.56872 and that the 

calculated m/z adjusted for the calibration offset is 734.56843 which yield a m/z difference of 

0.00029 corresponding to a mass error of 0.4 ppm. Without applying lock mass adjustment the 

mass error would be 1 ppm. 

doi:10.1371/journal.pone.0079736.g002 
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The ALEX converter output consists of a directory with separate folders named 

according to each FT MS scan range containing corresponding .txt files named according to the 

originating .RAW files (i.e. the ALEX converter does not merge overlapping FT MS scan 

ranges). Output files in these FT MS scan range-dependent folders are queried by the ALEX 

extractor (outlined below). The rationales for this design were i) that no available software 

supports export of multiplexed FT MS data in profile mode format; and ii) that a simple output 

text format reporting averaged peak list data allows users to easily review data as in contrast to 

accessing data in stored in the encrypted .mzXML format. 

5.5.6. ALEX target list generator 

Lipid identification by the ALEX software framework is based on matching intensity 

data in the exported peak lists with lipid species information derived from the ALEX lipid 

database. Important for the design of the identification routine was the ability to accurately 

identify lipid species, and furthermore to support integration of accessory lipid features and 

subsequent data management for a multitude of lipid species monitored by various FT MS scan 

ranges across large sample sets. To this end, the ALEX framework was designed to perform a 

targeted identification of lipid species and export intensity by querying spectral peak lists using 

target lists with lipid species and respective m/z values. Two modules execute this routine: (i) 

the ALEX target list generator (Figure 5-3A) which compiles target lists by querying the ALEX 

lipid database, and (ii) the ALEX extractor which uses the target lists to identify and extract 

lipid species intensity (outlined in the next section). We note that a distinct target list with 

appropriate lipid species should be manually compiled for each FT MS scan range.  
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Figure 5-3. Screenshots of the ALEX target list generator and ALEX extractor. 

(A) The ALEX target list generator allows users to select lipid classes and species to be 

identified using criteria such as lipid class, adduction, C index, db index and OH index. 

Individual lipid species including internal standards can also be selected. The ALEX target list 

generator output is a .txt file with a shortlist of selected lipid species, respective m/z values and 

accessory lipid features. The ALEX target list generator also supports inclusion of isotope 

information that can be used for deisotoping and isotope correction [20] by applying algorithms 

within the auxiliary workflow. (B) The ALEX extractor identifies lipid species, exports intensity 

data and incorporates accessory lipid features. As input the ALEX extractor requires the location 

of spectral peak lists generated by the ALEX converter, a target list compiled by the ALEX 

target list generator and a location to deposit output files. The ALEX extractor features options 

to specify anm/z tolerance window for lipid identification, to apply a constant m/z offset to 

correct lipid searches for a constant FT MS calibration offset or to apply a lock mass adjustment 

routine that automatically corrects lipid searches for drifts in FT MS calibration. The automated 

lock mass adjustment routine requires specification of well-characterized and ubiquitous lock 

mass ions in order to estimate the FT MS calibration offset. 

doi:10.1371/journal.pone.0079736.g003 
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In addition to listing lipid species and respective m/z values, the target lists also include 

the accessory lipid features derived from the ALEX lipid database. Importantly, these accessory 

lipid features are incorporated into the final output, and used for processing and visualization 

by the auxiliary workflow. 

 

5.5.7. ALEX extractor and ALEX unifier 

The ALEX extractor identifies lipid species and exports intensities by querying the 

averaged peak lists produced by the ALEX converter (Figure 5-3B). As input the ALEX 

extractor requires the folder location containing averaged peak lists, an appropriate target list 

(i.e. specific for the FT MS scan range) to query the peak lists and a destination folder to deposit 

output text files. Notably, the ALEX extractor also requires an m/z tolerance window to identify 

lipid species. This m/z tolerance window is dependent on instrumental mass resolution and 

typically set to ±0.0020 amu when processing FT MS data acquired with a target resolution at 

100,000. To export lipid species intensity the ALEX extractor selects the maximum intensity 

value within the specified tolerance window and reports the corresponding m/z bin value. As 

mentioned above, the FT MS calibration can drift during the sample analysis and depending on 

the time of analysis can yield either a constant calibration offset or a progressively changing 

offset (see Figure 5-4A). In order to monitor and adjust lipid searches for potential calibration 

drifts, we incorporated a novel feature in the ALEX extractor termed “lock mass adjustment”. 

Lock mass adjustment serves to correct the m/z values of targeted lipid species for calibration 

drifts and thereby support more accurate lipid identification. This lock mass adjustment can be 
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specified as a constant m/z offset and applied across all samples being processed. Alternatively, 

the ALEX extractor features an in-build automatic lock mass adjustment routine that calculates 

m/z calibration offsets for each sample based on selected lock mass ions (Figure 5-4A). The 

calculation of calibration offset uses a three-point quadratic interpolation for estimating the 

centroid  m/z values of lock mass ions. We note that the automatic lock mass adjustment requires 

selection of well-characterized and ubiquitous ions as lock masses. For example, by positive ion 

mode FT MS analysis we always detect both the chemical background ion tris(ditert-

butylphenyl) phosphate and the internal standard TAG 17:1/17:1/17:1 (Figure 5-2). Using these 

ions as lock masses enables estimation of the FT MS calibration offset for individual samples 

and correcting lipid searches by adjusting the m/z values of targeted lipid species for each 

sample. As exemplified in Figure 5-2, using these lock mass ions allows identification of 

endogenous lipid species with a mass error of 0.4 ppm instead of 1 ppm when ignoring the FT 

MS calibration offset. Hence, this automated lock mass adjustment routine serves to improve 

the accuracy of lipid species identification despite drifts in FT MS calibration. 

The ALEX extractor outputs, for each FT MS scan range, several comma-separated 

value (.csv) files with lipid species intensity data and calculated lock mass adjustments for all 

processed samples. Notably, the lipid species intensity output is organized in database table 

format and includes attributes that track the originating .RAW file name, lipid species intensity 

and peak area, measured m/z, calculated m/z, the difference between measured and 

calculated m/z, and all the accessory lipid features included on the target list. We note that these 

sample attributes facilitate subsequent processing and visualization, and implementation of 

quality control procedures. In order to merge lipid species data from different FT MS ranges, 
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we devised the ALEX unifier to concatenate selected .csv output files into one final .csv file 

which contains the union of all data and an additional column with an index, “rangeID”, that 

tracks the FT MS scan range of the input .csv files. This output format supports further data 

processing including computation of lipid abundance by the auxiliary workflow using open-

source Orange [270] and Tableau Software. 

5.5.8. Application of the ALEX software framework 

In order to demonstrate the efficacy of the ALEX software framework and describe the 

auxiliary workflow, we here present a neurolipidomic pilot study. Three brain tissues; 

cerebellum, hippocampus and S1BF from two control mice and two mice devoid of the PRG-1 

gene were subjected to shotgun lipidomics analysis. Homogenates of the tissues (12 samples in 

total) and two blank samples were spiked with defined amounts of internal lipid standards and 

subjected to 2-step lipid extraction [212]. The apolar (10:1-) and polar (2:1-phase) lipid extracts 

were analyzed by multiplexed FT MS analysis in positive and negative ion mode, respectively. 

Each sample extract was analyzed twice (technical replicates). In total, this analysis produced 

56 .RAW files (14 samples analyzed twice per polarity). 

First, the ALEX converter was used to convert .RAW files to spectral peak lists (Figure 

5-1). This processing produced a total of 112 peak list files (56 .RAW files, two FT MS scan 

ranges per polarity). The peak list files were automatically organized into 4 folders named 

according to polarity and scan range: +FTMS m/z 280-580, +FTMS m/z 500-1200, -

FTMS m/z 370-660, and -FTMS m/z 550-1700 (each folder having 28 peak list files).  
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Figure 5-4. Quality control analysis. 

(A) Monitoring of lock mass offset and lock mass ion intensity as function of sample injection. 

Notice that the lock mass and internal standard TAG 17:1/17:1/17:1 is not detected in injection 

07 and 08. Manual inspection of FT MS spectra revealed that the particular sample had not been 

spiked with internal standards. (B) Assessing the specificity of the PI species profile and 

intensity across all samples from wild-type mice and the negative control blank samples. Note 

that in the negative control blank sample (red) a low abundant background ion is detected and 

falsely identified as PI 40:3. Dubious lipid species can be removed using background subtraction 

and filtering during subsequent processing in Orange. 

doi:10.1371/journal.pone.0079736.g004 
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Next, target lists with lipid species for each of the four FT MS m/z ranges were generated using 

the ALEX target list generator (See Materials and Methods for details). These target lists were 

subsequently used by the ALEX extractor to identify lipid species and export corresponding 

intensities from the peak list files. In addition, the processing by the ALEX extractor was 

performed using lock mass ions for each FT MS m/z range in order to monitor and correct 

searches for FT MS calibration drifts (Figure 5-4A). Finally, the ALEX unifier was applied to 

merge the four ALEX extractor output files into single output files reporting all identified lipid 

species, intensities and accessory lipid features, and lock mass information and calculated FT 

MS calibration offsets. 

As a first step in the auxiliary workflow we performed a quality control of the 

neurolipidomics dataset (Figure 5-1). To this end, we accessed the lock mass information using 

Tableau Software and displayed the estimated FT MS calibration offsets as function of sample 

injection. This quality control showed that the calibration offset was not constant across all 

samples (Figure 5-4) and thus highlighting the efficacy of the automatic lock mass adjustment. 

Importantly, for one sample we observed no intensity of the selected lock mass ion TAG 

17:1/17:1/17:1. By manual inspection of the .RAW data, we concluded that the investigator in 

charge had failed to spike internal lipid standards into the particular sample. Consequently, this 

quality control demonstrated that the particular sample (cerebellum from a knockout mouse) 

could not be used for computing the molar amount of lipid species. As an additional quality 

control procedure we also accessed the output file with lipid species intensity data using Tableau 

Software, and displayed both the absolute intensity and intensity profile of monitored lipid 
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species within lipid classes for all samples analyzed (Figure 5-4B). This analysis showed that a 

low abundant ion in the blank samples was falsely identified as PI 40:3. Due to the low intensity 

of this ion and its presence in the blank samples we concluded that this ion represents a chemical 

background ion. To minimize bias from falsely identified background ions one can implement 

a background subtraction during the subsequent computation of molar lipid abundance using 

the Orange software. Moreover, it is recommendable to perform additional tandem mass 

analysis to assess the identity of dubious identification. 

5.5.9. Outlining the auxiliary workflow 

In order to compute molar abundance (e.g. fmol) of lipid species we made use of the 

database exploration tool and open-source software Orange [270]. The molar abundance of lipid 

species is easily computed via a sequence of processing steps (depicted in Figure 5-5). Step (1); 

the lipid species intensity data generated by the ALEX framework is specified as input (icon 

(a)) and merged with a second input specifying sample information (e.g. tissue type, genetic 

information, name of mice; icon (b)). Step (2); an intensity filter is implemented in order to 

remove intensities below a user-specified threshold if deemed necessary. Step (3); a third input 

specifying the spiked amount of internal standards is incorporated (icon (c)). Step (4); a new 

attribute is defined by specifying the intensities of internal standards. This attribute is used in 

step (6) for computing the molar abundance. Step (5); internal standards and corresponding 

intensities are defined for the subsequent calculation of molar lipid abundances. Step (6); an 

equation using the attributes lipid species intensity, internal standard intensity and spiked 

amount of internal standard is applied for calculating the molar lipid abundance [263]. Step (7); 
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processed data is saved as a .csv output file (in database table format) that can be accessed for 

computation of mol% and lipidome visualization by Tableau Software. We here note that the 

Orange schema produced an output file of the neurolipidomics analysis featuring 997 targeted 

lipid species with accessory information across 56 sample injections producing a data matrix 

with a total of 1,050,504 data points (Data S11). Notably, managing and processing a dataset of 

this magnitude is poorly suited for Microsoft Excel and highlights the benefits of managing the 

data using a database exploration tools. 

 To support rapid and efficient visualization of large lipidome datasets, we integrated 

Tableau Software as part of the auxiliary workflow. Tableau Software can be dynamically linked 

to the Orange output files such that any potential modifications within the data processing 

procedure can be visualized simply by updating the Orange output file and the link to Tableau. 

Notably, the Tableau software includes a feature that easily allows calculation and display of 

“mol% of lipid species” normalized to any given set of attributes and accessory lipid features in 

the input file. As such, the user can rapidly display the “mol% of all monitored PE species” 

(Figure 5-6C) or “mol% of all monitored glycerophospholipid species” (Figure 5-6D). We note, 

that calculation of such data formats would require implementation of additional processing 

steps within Orange (and equally in Microsoft Excel) in order to calculate and output such data 

values.  

 

                                                 

1 http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0079736.s001 



 

 

175 

 

 

 

 

Figure 5-5. Outline of the auxiliary workflow used for lipidome data processing. 

(A) A sequence of processing steps executed by the Orange software is used to compute the 

molar abundance of lipid species. The processing routine utilizes three input files: (a) the output 

file generated by the ALEX framework specifying lipid intensities, (b) a text file specifying 

sample information, and (c) a text file specifying internal standards and molar spike amounts. 

Seven processing steps are executed in order to compute the molar abundances of lipid species 

for all samples. The data processing generates an output file in database table format featuring 

the molar abundances of lipid species, originating intensity data, all accessory lipid features and 

all sample information. (B) Lipid class composition of cerebellum, hippocampus and S1BF from 

wild-type and PRG-1 knockout mice as automatically calculated and displayed using Tableau 

Software. 

doi:10.1371/journal.pone.0079736.g005 
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We also note that these accessory lipid features provided by the ALEX framework, and 

consequently the information content in database table format, facilitates lipidome visualization 

by Tableau software. 

5.5.10. Application of the auxiliary workflow 

To illustrate the efficacy of the auxiliary workflow we here present the results of the 

neurolipidomic pilot study. First, we assessed the lipid class composition of the three mouse 

brain tissues from wild-type and PRG-1 knockout mice (Figure 5-5B). The lipid class 

composition of brain tissues was primarily comprised of PC, PE, PE O-, PS, PI, SM and HexCer 

lipids. In addition, the analysis also showed a low abundance of Cer, SHexCer, CE and TAG 

species (Figure 5-5B). This result corroborates previous reports on brain lipid composition 

[277–279]. Notably, comparing the lipid class composition of the brain tissues did not show any 

pronounced differences between the wild-type and PRG-1 knockout mice. Moreover, the 

analysis also did not show any major difference in lipid class composition between the three 

brain tissues. To further interrogate the lipidome data, we explored alternative display formats 

including lipid category composition (e.g. glycerophospholipids, sphingolipids and 

glycerolipids, Figure 5-6A), lipid species composition within a defined lipid class (e.g. PE 

species, Figure 5-6C), lipid species composition across a defined lipid category (e.g. all 

glycerophospholipids, Figure 5-6D) and db index within a defined lipid class (e.g. LPS, Figure 

5-6B). Using the various modes of lipidome visualization, we observed that each of the three 

mouse brain tissues featured specific signatures of lipid species. Specifically, we observed that 

the composition of PE species was different between all three tissues; the hippocampus 
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comprised a relatively high level of PE 38:4, the S1BF contained relatively high levels of PE 

40:6, and the cerebellum contained a relatively high level of PE 40:6 and minor but 

systematically higher levels of PE 34:1, PE 36:1 and PE 36:2 as compared to the two other 

tissues. These distinct lipidome hallmarks could also be observed when assessing the collective 

lipid species composition across all glycerophospholipids (Figure 5-6D) albeit with a less 

pronounced differences as compared to only PE species. The specific lipid compositions of the 

three brain tissues were further interrogated by visualizing the distribution of double bonds 

within the fatty acid moieties of LPS species. 

This visualization revealed that the S1BF comprised relatively high levels of LPS species 

with 0 double bonds (primarily attributed LPS 18:0) being offset by lower levels of LPS species 

having 6 double bonds (attributed LPS 22:6). In comparison, the cerebellum showed a 

characteristic distribution of LPS species with higher levels of species with 1 double bond as 

compared to the two other tissues. The LPS composition of the hippocampus comprised a double 

bond distribution intermediate of the S1BF and the cerebellum. We note that the lipidome 

visualization did not reveal any pronounced differences in lipid species composition between 

any of the tissues from wild-type and PRG-1 knockout mice. This observation is furthermore 

substantiated by results of principal component analysis (data not shown). 
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Figure 5-6. Lipidome visualization using different display formats. 
(A) mol% lipid category. Notice that the y-axis is logarithmic. Data is displayed as the 

average of the two technical replicates per sample. (B) mol% of db index of LPS species. 

Note that histogram include plot for both technical replicates. (C) mol% of PE species. 

Data is displayed as the average of the two technical replicates per sample. (D) mol% of 

all GPL species. Data is displayed as the average of the two technical replicates per 

sample. Notice that data for only one sample of cerebellum from knockout mice is 

available due to lack of spiked internal standards as outline in the section “Application 

of the ALEX software framework”. This neurolipidomics dataset is available as 

supporting information (Data S2). 

doi:10.1371/journal.pone.0079736.g006 
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5.6. Conclusions 

Here we presented a platform for streamlined processing, computation and visualization 

of high-content lipidomics datasets acquired using high-resolution Orbitrap mass spectrometry. 

The platform features a novel routine for querying proprietary spectral data that supports 

identification and quantification of lipid species, execution of quality control routines and rapid 

visualization of lipidome data. The platform utilizes three software modules: the ALEX 

framework that accesses and queries mass spectral data, the visual programming tool Orange 

that integrates sample information and computes molar lipid abundances, and the visual 

analytical tool Tableau Software for lipidome visualization. A key asset of the framework is the 

storage of lipidome data in “database table format” that enables using a multitude of data 

attributes for robust data processing and visualization. To demonstrate the efficacy of the 

platform, we presented a comparative neurolipidomic pilot study of mouse cerebellum, 

hippocampus and S1BF from wild-type and PRG-1 knockout mice [271]. The analysis 

demonstrated a distinct lipid species signature for each of the three brain tissues, but failed to 

ascertain any pronounced perturbations of lipid composition in mice devoid of the PRG-1 gene. 

This observation can potentially be explained by the localized expression of PRG-1 in the 

postsynaptic density of glutamatergic synapses. Regional differences in the lipidome 

composition induced by PRG-1 deficiency might potentially be concealed by the complexity of 

the macroscopic brain tissues investigated herein. We note that the ALEX framework can easily 

be adapted for processing of high-resolution shotgun lipidomics data acquired by any type of 

instrumentation (e.g. LTQ FT, Q Exactive, Orbitrap Fusion, solariX) provided spectral peak 
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lists are stored in .txt file format. Moreover, the Orange processing procedure and Tableau 

visualization can be extended to include various filters for improved lipid identification, to 

calculate molar abundance of lipid species per unit of sample material (e.g. pmol lipid/µg 

protein), to perform statistical testing or multivariate analysis, and to integrate and support 

processing and visualization of lipidome data acquired by MS/MS analysis. Notably, the 

auxiliary workflow can also be adapted to use other database-orientated exploration tools than 

Orange and Tableau software. Finally, we argue that storage of lipidomics data in database table 

format can be a future avenue for data dissemination since it enables investigators to easily 

access, inspect and apply such resource data. 
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Chapter 6 : Discussion and Conclusion 

In the concluding chapter, we summarize the results of the study and propose directions 

for future research. We start the discussion with a focus on three main components of the work: 

protein-protein interaction network, high-throughput lipidomics and data visualization. Next, 

we discuss how the presented technologies combined together into a unified framework   

contribute to the functional prediction strategies. Finally, we formulate biological questions that 

can be addressed in future studies.  

6.1. Contribution of DHFR PCA screen to the yeast interactome 

mapping 

In a review article about pioneering genomics studies, Patrick Brown and David Botstein 

wrote: “Exploring the genome and the natural world with DNA microarrays Exploration means 

looking around, observing, describing and mapping undiscovered territory, not testing theories 

or models. The goal is to discover things we neither knew or expected, and to see relationships 

and connections among the elements, whether previously suspected or not. It follows that this 

process is not driven by hypothesis and should be as model-independent as possible. We should 

use the unprecedented experimental opportunities that the genome sequences provide to take a 

fresh, comprehensive and open- minded look at every question in biology. If we succeed, we 

can expect that many of the new models that emerge will defy conventional wisdom.”[16] 

 This view can be generalized to all types of genome-wide studies. Therefore, the 

systematic screen for protein-protein interactions was motivated by the aim to increase the 
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coverage of the yeast interactome and expose certain types of interactions better than previous 

approaches. We hypothesized that apart from bringing new insights on network organization, 

novel data would provide the means to assign functions for uncharacterized genes.  

 The success of our study can be measured by the fact that DHFR PCA screen extended 

the repertoire of the yeast protein-protein interactions by 2770 interactions detected with high 

confidence, 80% of which were novel. The detected number of interactions is higher comparing 

to the range between 843 and 1985 filtered interactions reported by previous systematic binary 

interactions screens [57,58,63,66]. Combined TAP-MS protein-protein interaction  network 

[51]  contains 9 074 interactions. However, as mentioned above, TAP-MS based methods assign 

interactions between co-completed proteins that do not necessary interact directly leading to 

higher number of reported interactions [51] comparing to binary methods.    

Intriguingly, most of interactions detected by each screening attempt were novel and 

reported error rates were low, indicating that noise is not the reason for the limited overlap 

between the datasets. It was argued that presented quality evaluation methods may be fitted to 

highlight advantages of the particular techniques challenging a uniform comparison of the error 

rates [66,280]. However, a general evaluation method that is based on comparison of accuracy 

of gene function predictions performed on each large-scale dataset confirms comparable high 

quality of the interaction networks [281]. Therefore, it is unlikely that limited overlap between 

protein-protein interaction datasets is solely due to experimental errors. Instead, some 

techniques cover particular network subspaces of interactions better than others do, which is 

caused by fundamental differences between techniques for protein-protein interaction detection 
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techniques. It was demonstrated, for example, that Y2H and TAP-MS screens detected a higher 

proportion of interactions happening in the nucleus, but contained only limited information 

about membrane interactions [280,282].   

The advantage of the DHFR PCA strategy is better coverage of interactions that involve 

membrane proteins comparing to systematic Y2H and TAP-MS screens. At the same time, 

DHFR PCA screen is different from screens developed specifically for capturing membrane 

binary protein interactions by Y2H [63] and membrane protein complexes by mass spectrometry 

[67]. DHFR PCA detects interactions between different types of proteins not limited to 

membrane interactions. Therefore, our network contains longer paths of connected proteins that 

link membranes with various cellular compartments detected in the same experiment. Analysis 

of such paths will be useful for modeling of signal transduction pathways that pass signals from 

membrane to nucleus [283][284]. The unique coverage of interactions between transmembrane 

proteins provides new data to study membrane related processes, such as cellular transport and 

lipid metabolism. Finally, over 300 interactions that were observed included uncharacterized 

proteins providing new data for computation function prediction.     

Together with other recent screens for protein interactions, our study provided a 

significant contribution to mapping the yeast interactome. Combined analysis of the datasets 

estimated that the total number of protein interactions in yeast is higher than it was thought when 

we started our study. The estimation performed in 2003 reported the range of 16 000 to 26 000 

interactions [62], while the analysis made in 2010 predicted that the number would be at least 
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36 000 [285].  Therefore, the mapping of the protein network in yeast has not been completed 

yet.    

6.2. Normalized evaluation of the overlap between interaction 

datasets. 

Early evaluations of the protein-protein interaction datasets raised concerns about a small 

overlap between them, which could be due to high false-positive and false-negative rates 

associated with protein-protein interaction detection by high-throughput technologies [47,286]. 

Previous evaluations scored datasets based on the coverage of the whole interactome. However, 

none of the reported methods tested all possible interactions. Each protein-protein interaction 

method required mutant libraries generated by genetic manipulations the efficiency of which is 

not constant through the genome leading to failures in tagging certain genes. Furthermore, 

engineered protein fusions might have an impact on the protein function and strain viability. 

Consequently, each method tested only a portion of all possible interactions.  

To consider these factors, we devised a novel method for evaluating the overlap between 

interactions normalized by interactome coverage (section 2.5.1. Overlap with previous studies).  

When the number of potential protein-protein interactions that were actually tested by various 

methods was taken into account, the percentages of confirmed interactions were higher than 

previously reported. Results of this analysis increase credibility of the data generated by high-

throughput screens.   
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6.3. High-throughput lipidomics  

Lipidomics platform presented in Chapter 3 is one of the first attempts towards high-

throughput studies of hundreds of metabolites in yeast. Comparing to the previous lipidomics 

studies our screen covered a larger number of mutants (128 strains passed the stringent quality 

control procedures). Our screen was not as comprehensive as the genome-wide profiling of 

amino acids [84], but measured more molecule in each strain (120 lipid species on average). For 

reducing the costs and the running time of the experiments, we introduced a first round screen 

for relative semi-quantitative lipid measurements without addition of internal standards. Hits 

identified in the first round were further characterized by a second absolute-quantification 

round. In contrast to the previous two-round procedures that compared raw mass spectra in the 

first round [94], our method in the first round resolved lipid identities and provided semi-

quantitative values of lipid species abundances. Results of the first round screen provide the 

largest published collection of lipid profiles available so far in yeast.   

There are some differences in growth rates of the yeast deletion mutants that has to be 

taken into account during experiments and data analysis. Good control over growth rates is 

achieved using chemostat cultivation [243]. However, the costly equipment is not easily 

accessible. Therefore, it is common to grow all strains for the fixed time in the metabolomics 

experiments for increasing the throughput. To deal with growth differences, we relied on 

multivariate statistics. Strains were first classified into groups corresponding to stationary and 

exponential growth stages by hierarchical clustering. Next, for each group of strains robust 

principle component analysis built a model based on common variation between the strains 
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identifying mutants with the most unusual lipid phenotypes that are unlikely caused by growth 

differences or other systematic factors. To the best of our knowledge, this is the first report of 

application of multivariate statistical methods for minimizing the effect of growth in the yeast 

metabolomic studies.        

6.4. Function prediction with experimental confirmation 

The presented strategy for searching for novel gene functions is the first systematic 

attempt to find novel players in lipid homeostasis in yeast. Results of our screen for protein-

protein interactions together with recent studies of membrane interactions significantly 

increased the coverage of the lipid related subspace of the yeast interactome. This collection of 

data provides  unique opportunity for investigation of organizational principles of lipid 

homeostasis mediated by protein interactions. A few points should be considered for protein 

interaction network analyses. The comprehensive network of interactions is a combination of 

datasets obtained under different conditions by various methods. The collection of interaction 

is a static representation of snapshots of highly dynamic and condition dependent interactome. 

Thus, collectively interactomics datasets provide an evidence that an interaction can happen at 

a specific time, location or condition [48]. Finally, even if an interaction between certain 

proteins undoubtedly happens in the cell, it does not necessary carry a specific biological 

function [287]. For example, protein interactions could result from mega-assemblies of proteins 

in intracellular bodies with unclear functional role [288,289]. Furthermore, some interactions 

may be attributed to evolutionary noise, i.e. interactions that do exist in vivo, but have not been 

selected by evolution to carry a specific function [290]. The complexity of the network makes 
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interpretation of the results of protein-protein interaction screens extremely challenging, even 

in an ideal case, in which every interaction is true and functionally meaningful.  

 Automated function prediction methods provide means for network mining for 

generation of novel hypothesis [199]. The accuracy of the prediction methods are evaluated by 

computational cross-validation with genes with known function. Thus, the predicted novel gene 

functions are probable; however, experimental validation is still required for turning a 

hypothesis into a biological fact. Modern algorithms for functional prediction are highly 

efficient and provide hundreds of potential candidate genes in a matter of minutes [207]. This 

gave rise to the development of experimental strategies for large-scale validation of novel 

functions (discussed in section 1.6.5.3.2. Experimental Validation of Functional Predictions).  

We present the first application of lipidomics as a tool for systematic validation of a 

large number of predictions of novel lipid functions. Comparing to previously reported 

systematic validation strategies, lipidomics provides high-content data on abundances of 

hundreds of lipid species for further refining the role of the predicted genes. We note that there 

are some examples of application of lipidomics for defining gene functions proposed based on 

network associations [134]. However, in these examples, a small number of tested candidates 

were selected individually by reviewing results of clustering analyses. In our strategy, the 

predictions are made automatically, and the high-throughput version of the lipidomics platform 

is capable of testing hundreds of predictions in a single screen.   

A large number of genes is involved in lipid homeostasis in yeast, i.e. about 200 genes 

are linked to lipid metabolism and another 300 genes to lipid related processes, such as transport 
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and regulation. Moreover, a variety of important mechanisms involves lipids (building 

membranes, energy storage and signal transduction). Thus, our strategy can be applied for 

investigation of a broad range of cellular processes. 

6.5. Systems for visual programming and visual analytics 

The development of software packages and tools for analysis and visualization of 

multidimensional “omics” data is an actively growing field [139]. Despite the fact, that many 

powerful interactive tools exist there is still a number of challenges yet to be resolved.  One of 

the main challenges for scientific software development is to sustain the rapid pace of evolution 

of experimental and bioinformatics techniques. Due to time consuming programming labor 

associated with development of visualization systems there is a considerable lag between 

acquisitions of novel experimental data and visualization of results. Moreover, biochemical labs 

producing novel high-throughput datasets do not necessary have programming expertise, thus 

have to rely on collaborations with experts form the software development domain. 

Effectiveness of data analysis and visualization can be greatly improved with the help of 

visual programming and visual analytics systems that were employed for supporting lipidomic 

screen presented in Chapter 5.            

There is always a substantial amount of routine processing when dealing with scientific 

data. The amount of routine work is even higher when a starting point of analysis is raw 

experimental data. Before data are ready for scientific interpretation, experimental signals 

(colony intensities or chromatographic peaks) should be converted into numbers (colony sizes, 
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metabolite concentrations), data quality evaluated and filtering steps performed. Novel types of 

data require development of novel processing algorithms and changes at each step will have an 

effect on the final data. Visual programming systems combine independent data analysis tasks 

into executable visual workflows. Advantages of such implementation include transparency of 

the data processing steps, possibility to change particular steps without reprogramming other 

components of the system and accessibility of system modifications to researchers without 

programming expertise. In addition, the visual data processing workflows can be easily shared 

with scientific peers.  

In their book, James J. Thomas and Kristin A. Cook define visual analytics as follows: 

“Visual analytics is the science of analytical reasoning facilitated by interactive visual 

interfaces. People use visual analytics tools and techniques to synthesize information and derive 

insight from massive, dynamic, ambiguous, and often conflicting data; detect the expected and 

discover the unexpected; provide timely, defensible, and understandable assessments; and 

communicate assessment effectively for action.”[291] Visual analytics is generic field not 

specifically developed for biosciences. However, the description “massive, dynamic, 

ambiguous, and often conflicting“ fits biological data very well, so the implementation of visual 

analytics approaches for biosciences is highly beneficial. iVici software described in Chapter 4 

contributes to the development of the visual analytics field with an interactive framework for 

heat map comparison. On one hand, existing software for heat map analysis that have interactive 

features do not support comparison of multiple datasets. On the other, graphical manipulation 

software that can be used for manual combination of heat maps on a single graph lack the 

automation and interactive features. In Chapter 5, we adopted modern software for visual 
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analytics, such as Tableau Software and Spotfire, in which similar functionalities can be 

implemented. These systems produce interactive visualizations with simple drag and drop 

functionality without the need for programming.  These visualization systems are becoming 

widely popular in pharmaceutical [292], internet and financial industries [293]. However, there 

are few examples of applications of such systems in other areas of research, including 

bioinformatics and biochemistry. The highly customizable visual analytics systems present 

information in a hierarchical manner with interactive links for navigation between layers of 

information starting from top level overviews to single bits of data. Diversity of available 

templates and graph types provide an opportunity to create appealing sets of visual 

representations that are best suited for particular datasets, instead of relying on preprogrammed 

visualization solutions with fixed functionality. 

  Furthermore, visualizations can be distributed as interactive graphs between scientific 

collaborators or as supplementary materials for scientific publications. Adding interactivity to 

visualizations that accompany scientific publications is particularly attractive because readers 

will have a chance to browse the data beyond precompiled statistical tables and figures selected 

by the authors.  

6.6. Future directions 

6.6.1. Towards dynamics of protein-protein interactions 

As described above, the network of protein-protein interactions that can be extracted 

from public databases is a collection of static interactome snapshots studied under different 
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physiological conditions. However, investigating the dynamics of networks related to 

environmental, developmental or disease related changes is important for understanding 

fundamental principles of complex behavior and co-operation of biological processes.  

Computational modeling of network dynamics relies on superimposition of static 

protein-protein interaction network scaffolds with dynamic data, such as gene expression. As a 

result, dynamic maps of complexes and interactions between proteins that are expressed in the 

cell at a given time or under particular condition can be produced [294,295]. Large-scale screens 

for protein-protein interactions increase the interactome coverage and provide novel data for the 

modeling of a broader range of processes. Most importantly, the development of experimental 

technologies for protein-protein interaction mapping reduces the costs and increases the 

throughput of the screens making the experimental investigation of protein-protein interaction 

dynamics more accessible. Both TAP-MS and Y2H have been applied to capture protein-protein 

interactions in different conditions [296].    

High-throughput PCA methodology extends the toolset for studying dynamics of the 

interactome. Arrayed collection of tagged strains built for DHFR PCA screen can be grown 

under different conditions. Furthermore, the collection can be effectively reengineered for 

performing screens with other reporter fragments. In Chapter 2, we used homologous 

recombination to introduce a DNA sequence coding for a linker and DHFR fragments. This 

process required the design of a very large number of oligonucleotide sequences specific to each 

particular gene, and specific diagnostic primers for verifying correct insertion of the targeted 

sequences. The costly effort generated a collection of the majority of the yeast open reading 
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frames fused with the linkers and DHFR fragments at C termini. The collection can be further 

modified with universal primers homologous to the fusion sequence that would fit each of the 

strains. These technological developments empowered the recent PCA based studies of the 

protein-protein interaction dynamics in yeast that monitored changes of the canonical Protein 

Kinase A pathway caused by various stimuli [297] and the modulation of the yeast interactome 

in response to DNA damage [298].   

Future applications, in which methods for studying dynamic protein-protein interactions 

could be particularly useful, include investigation of mechanisms of cellular compensatory 

mechanisms and understanding of the phenomena of gene multifunctionality.  

Observing the reaction of a system in response to perturbation is a fundamental principle 

of scientific discovery. However, robustness of biological networks and compensatory 

mechanisms make it difficult to study certain processes, such as cellular metabolism [299]. 

Common strategies in yeast include investigation of mRNA expression, protein abundance, 

growth pattern and, recently, metabolomics analyses of deletion of over-expression mutants of 

genes of interest.  However, deletion of only a limited number of genes leads to observable 

phenotypes [27]. We described above the application of complementary functional genomic 

tools to study effects of silent mutations (section 1.5.1. Metabolomics). We gave an example of 

a metabolomics study that demonstrated changes of metabolite concentrations in deletion 

mutants lacking certain metabolic enzymes that didn’t show observable growth defects [73].    

Similarly, investigation of rewiring of the protein-protein interaction network due to mutation 

or external perturbation may be a feasible strategy to study compensatory mechanisms.  
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A family of oxysterol binding proteins OSBPs is an intriguing target for studding 

multifunctionality. The family is present in eukaryotes from yeast to human and its members 

are implicated in variety of cellular processes such as metabolism of sterols and sphingomyelins, 

regulation of neutral lipid metabolism, signaling and transport [300].  In yeast, there are 7 

members of this family and none of deletion mutants of the corresponding genes shows a 

significant growth defect. However, the deletion of all 7 genes is lethal [213]. Thus, any single 

member of the mutlifunctional family is dispensable, but together they carry an essential 

function. Despite the functional overlap each of OSBPs interacts with a specific set of proteins 

in yeast. An experiment in which protein-protein interactions will be recorded in mutants 

lacking each of the OSBP genes may provide an insight on the functional compensation 

manifested by formation of novel interactions involving remaining OSBPs as well as properties 

specific to particular OSBPs.     

6.6.2. Database of reference lipidomic profiles  

Lipidomics is an emerging technique with a growing number of applications.  . However, 

it will take a few years before it reaches the same level of maturation as genomics and 

proteomics. Comparison of mutant lipid profiles performed in Chapter 3, suggests essential 

directions for further developments. It is crucial to gain more details about dynamics of lipid 

profiles related to growth and biological variation. This will increase confidence of lipidomics 

data interpretation and identification of lipid profile changes caused by specific mutations and 

not related to growth. There is a switch in lipid metabolism program from exponential to 

stationary phase [195]. It is mediated by Opi1p repressor that is released from nuclear/ER 



 

 

194 

membrane and enters nucleus in stationary phase. Interaction of Opi1p with Ino2p attenuates 

the transcription from promoters of several phospholipid synthesis genes that contain an 

inositol-responsive cis-acting element, which leads to increase of phosphatidylinositol and 

decrease of phosphatidate. Vegetative growth is also associated with a rapid turnover of 

triacylglycerol, which is used to release lipid precursors for building membranes. Whereas, in 

stationary phase triacylglycerol is accumulated of as part of the yeast energy storage mechanism 

which can be quickly turned into membrane when cells start growing again [301]. However, no 

detailed description of growth related changes in various lipid species is available.  

Analysis of the lipidomics data of deletion libraries, described in Chapter 3, 

demonstrated that in addition to very pronounced differences in lipid profiles between 

exponential and stationary growth states, there is a systematic variation between mutant strains 

within the same growth state. Most notably these changes affect the PC/TAG ratio and saturation 

degree and chain length of fatty acids. There is an indication that these changes are related to 

growth rate of a strain, but not to specific effect of a gene deletion on lipid metabolism. Robust 

principle component analysis captured over 80% of common variation between analyzed strains 

and identified gene deletions with lipid phenotypes that do not follow the common pattern. 

However, better understanding of the phenomena is important for improving our knowledge 

about lipid metabolism in general and increasing sensitivity of the lipidomic screens in 

particular. We have planned a future study of growth effect on lipidome in wild type yeast. 

Several hundred lipid species will be measured from 0 to 48 hours with 1 to 4 hours intervals 

complemented with growth curves based on optical density. The data will serve as a reference 

for future experiments with mutant strains, which will be analyzed in a similar way. Comparison 
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of normal and mutant lipid growth profiles will help to identify specific lipid changes that are 

due to mutation. Furthermore, it will reveal mutations that have more pronounced effects in 

either exponential or stationary growth state, which will not be apparent by analysis of one state 

alone. In gene expression, normalization to levels of housekeeping genes is routinely used for 

quantification. Results of growth lipid profiling will be used to evaluate whether similar method 

can be applied in lipidomic data processing.     

Furthermore, the reference profiles for deletion strains of known lipid enzymes at the 

high resolution of lipid species has not been systematically recorded. Creation of such reference 

database would be helpful for the interpretation of mutant lipid phenotypes of genes not 

previously implicated into lipid homeostasis. The reference database will also help to refine 

current metabolic pathways maps. In comprehensive metabolic databases, such as KEGG, lipid 

metabolism is resolved to the level of lipid classes. The mass-spectrometry based lipidomics 

will bring another layer of details related to lipid metabolic pathways.      

6.6.3. Investigation of special organization of lipid metabolic machinery 

 The modular organization of networks reflects fundamental mechanisms of performance 

optimization and regulation of activity of cellular machines. In the context of metabolism, 

protein interactions between enzymes contribute to formation of metabolic channels [302].  

Metabolic channels resemble assembly lines in which metabolites are passed from one enzyme 

to another leading to optimization of the metabolic flux. A systematic analysis of protein-protein 

interaction networks from Escherichia coli and Saccharomyces cerevisiae demonstrated that 

enzymes involved in neighboring metabolic reactions interact with each other more frequently 
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[303,304]. It was shown that numerous pairs of enzymes connected with a protein-protein 

interaction were known examples of metabolic channeling, thus suggesting that identified novel 

pairs of connected enzymes are potential candidates to study channeling phenomenon. Another 

study [305] revealed topological equivalences of protein-protein interactions and the metabolic 

pathway networks based on comparison of global topological network properties. These results 

imply possible contribution of evolved protein interactions into optimization of efficiency of 

metabolic processes. Moreover, this study led to an intriguing observation that in addition to 

interacting enzymes, non-metabolic mediator proteins may have an impact on modularity of 

enzymatic associations because their presence in the protein-protein interaction network 

shortens the distance between enzymes.  

Recently, the role of non-metabolic proteins was evaluated in more detail [306]. Pérez-

Bercoff and co-workers analyzed indirect connections between enzymatic pairs (i.e. connection 

though a common non-metabolic protein partner) in protein-protein interaction networks of 

Esherichia coli, yeast and humans and found evidence that in all three species indirect 

connection between enzymes are much more frequent than expected by chance.  Furthermore, 

reactions catalyzed by enzymes connected with mediator proteins were shown to have a higher 

metabolic flux by computational analysis. Thus, direct interactions between enzymes and 

indirect associations through mediator proteins contribute to efficient organization of metabolic 

machinery.  

Protein-protein interaction data generated in Chapter 2 in combination with 

methodology presented in Chapter 3 can be used to experimentally validate results from 
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computational analyses described above. One can identify proteins that potentially contribute to 

channeling and investigate whether deletion mutation will affect the metabolic efficiency of a 

cell.            

6.6.4. Correlation analysis of lipid concentrations with network constraints 

 Homeostasis of small molecules including lipids is dependent on coordination between 

metabolic, signaling and transport events that are not captured by oversimplified pathway maps. 

The ability to measure thousands of metabolites by MS techniques resulted in development of 

methods that investigate metabolite-metabolite correlations [307]. Strong correlations between 

certain metabolites could indicate unknown regulatory and metabolic relationships. Such 

correlations can be studied within wild type strains at different time points or compared with 

changes in correlation structure due to perturbation. Overlaying data on known metabolic 

pathways will reveal links that are potentially novel. These will correspond to correlated 

metabolites that are not connected with reactions on pathway maps. Possible hypotheses about 

mechanisms of such relationships can be searched in protein-protein interaction networks by 

investigating proteins that connect correlated metabolic processes.       

6.6.5. Function prediction: from yeast to human 

Experimental work of this thesis was performed in yeast. This is an excellent model 

organism because it can be easily grown and genetically modified to allow a multitude of trial 

and error experiments. On the other hand, yeast is complex enough to learn how novel strategies 

can be applied to study higher eukaryotes. Yeast gene function predictions efforts have a 
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potential to reveal conserved cellular mechanisms. Moreover, genome-wide approaches are not 

limited to yeast. Examples of applications of functional genomics strategies include studies of 

obesity, diabetes and cardiovascular diseases [308,309]. At present, a wealth of experimentally 

determined and computationally predicted protein interactions in human are available in public 

databases [310]. In future, we expect a rapid growth of data coming due to such efforts as Human 

Interactome Project [311], which will provide a rich source of information for network modeling 

of disease [310,312,313]. In the meantime, lipidomics approaches are being developed for 

effective quantification of lipids from various human cell lines and tissue types [314]. Lipids 

play the major role in such diseases as Alzheimer’s, diabetes and atherosclerosis. Integration of 

multiple layers of information that covers protein interactions maps and metabolic states is 

important for providing an adequate picture of complex cellular processes and disease 

mechanisms. Therefore, a tempting direction for continuation of the work presented in this thesis 

is the development of a similar strategy for studying higher eukaryotes, including humans.    

6.7. Conclusion  

We presented a strategy for identification of novel gene functions related to lipid 

metabolism by integration of interactomics and lipidomics. We began by setting up an 

interactomics screen for mapping protein-protein interactions by applying PCA on a large scale 

for the first time. The screen revealed 2770 protein-protein interactions the majority of which 

were novel. For performing the screen, we created high-density stain arrays that exceeded the 

capacity of similar arrays reported previously. To analyze the data of the survival assay 

performed in high density, we developed a dedicated image analysis software, capable of 
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identifying colony positions with high precision and deconvoluting overlapping colonies. Novel 

interactions, that were reported, connected proteins with distinct functional roles presenting data 

on cross-functional communication, increased the coverage of the interactome subspace related 

to membrane and lipid homeostasis, and linked proteins with the unknown function.  Next, we 

employed an automated machine learning approach that identified several genes with previously 

unknown function that are likely to play a role in lipid homeostasis.  Finally, we developed a 

high-throughput lipidomics platform for measuring lipidomes of a large number of strains that 

we used for verifying the predictions of novel lipid functions. For building the platform, we took 

the advantage of batch strain culturing, lipid extraction in 96-well format, automated direct 

infusion nanoelectrospray ionization, high-mass resolution Orbitrap mass spectrometry and a 

dedicated multivariate data processing framework. Integration of interaction network analysis 

with lipidomics data allowed to link to lipid homeostasis two genes with unknown function 

YBR141C and YJR015W, and a transcription factor KAR4 that has not been linked previously 

with lipid metabolism. High-content lipidomics results provided further details about the genes 

of interest linking them to GPI-anchor synthesis, sterol lipid metabolism and nuclear membrane 

dynamics correspondingly. The presented strategy is the first systematic attempt for predicting 

and validating novel lipid related functions. Moreover, experimental and computational 

methodologies that we developed for conducting each of the screens, contribute to advancing 

the relatively new fields of interactomics and lipidomics. 

In contrast to classical biochemical approaches, our study has not begun with a specific 

hypothesis about a particular biological question. Instead, it has been driven by an idea that 
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integration of new “omics” data could reveal novel biological insights, which could be further 

tested experimentally.   

The presented study is a data driven process that relies on unbiased, model-independent 

exploration of experimental results. Such exploration led to identification of hints about novel 

gene functions suggested by the network structure of the interactome. The observations could 

be further refined by examining another layer of phenotypic information. Lipidomics data 

provided additional means for formulating specific hypotheses about functions of several genes, 

which could be the subject for future biochemical studies.  
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