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 RÉSUMÉ 
  
 Le Costimulateur Inductible (ICOS) est un récepteur exprimé à la 
surface des cellules T CD4 auxiliaires et T CD8 cytotoxiques. Il fut démontré 
à l’aide de modèles murins de transplantation de moelle osseuse que 
ICOS joue un rôle important dans l’induction de la maladie du greffon 
contre l’hôte aigüe (GVHD). ICOS potentialise deux signaux médiés par le 
récepteur de cellules T (TCR) : l’activation de la phosphoinositide 3-kinase 
(PI3K) ainsi que la mobilisation interne de calcium. En conditions in vitro, 
dans les cellules CD4 et CD8, ICOS réussi à potentialiser le flux de calcium 
médié par le TCR indépendamment de PI3K. La voie de signalisation de 
ICOS impliquée dans la GVHD demeure inconnue. Cependant, en 
utilisant une lignée de souris ‘knock-in’ nommée ICOS-Y181F, dans laquelle 
le cellules T ont sélectivement perdu la capacité d’activer PI3K par 
l’entremise d’ICOS, nous avons démontré que les cellules T peuvent utiliser 
un mécanisme ICOS indépendant de PI3K afin d’induire la GVHD. 
  
 La mobilisation interne du Ca2+ mène à l’activation de NFAT, un 
facteur de transcription clé régulant des gènes comme IFN-γ, qui exprime 
une des cytokines clés impliquées dans la GVHD. Nous émettons comme 
hypothèse que la capacité pathogénique intacte des cellules T ICOS-
Y181F à induire la GVHD, repose sur la signalisation du Ca2+ indépendante 
de PI3K. Le but de mon projet est d’identifier les résidus responsables de 
cette signalisation de Ca2+ médiée par ICOS ainsi que le mécanisme par 
lequel ce récepteur fonctionne. À l’aide de la mutagénèse dirigée, j’ai 
généré des mutants d’ICOS et j’ai analysé par cytométrie en flux leur 
capacité à activer le flux de Ca2+. J’ai ainsi identifié un groupe de lysine 
sur la queue cytoplasmique d’ICOS situé à proximité de la membrane 
comme étant essentiel à la fonction de potentialisation du flux de Ca2+. 
Je fournis également des preuves de l’implication de la kinase Lck, 
membre de la famille de kinases Src, dans la voie de signalisation de ICOS 
médiant la potentialisation du flux de Ca2+. Ainsi, ICOS s’associe à Lck et 
mène à une augmentation de l’activation de PLCγ1, la protéine 
effectrice clé causant la sortie de Ca2+ de la réserve intracellulaire. 
 
 En conclusion, notre étude permet de comprendre davantage une 
des voies de signalisation d’ICOS. L’influx de Ca2+ dans les cellules T 
implique la voie ICOS-Lck-PLCγ1. Une compréhension plus approfondie de 
cette voie de signalisation pourrait s’avérer bénéfique afin d’élaborer de 
nouvelles stratégies menant à la prévention de maladies reliées à ICOS, 
comme la GVHD. 
 
 



	
   IV	
  

ABSTRACT 
 

The Inducible Costimulator (ICOS) is a receptor expressed on 
activated CD4 helper and CD8 cytotoxic T cells. It was previously shown 
that ICOS plays an important role in inducing acute graft versus host 
disease (GVHD) in murine models of allogeneic bone marrow 
transplantation (BMT).  ICOS potentiates TCR-mediated phosphoinositide 
3-kinase (PI3K) activation and intracellular calcium mobilization. In both 
CD4+ and CD8+ T cells, ICOS can potentiate TCR-mediated calcium flux in 
a PI3K-independent manner in vitro. However, the ICOS signal 
transduction pathway involved in GVHD remains unknown. Using a knock-
in strain of mice (termed ICOS-Y181F) in which T cells have selectively lost 
the ability to activate PI3K, we have recently shown that T cells can utilize 
PI3K-independent ICOS signaling pathways to induce GVHD.  

 
The mobilization of intracellular Ca2+ leads to the activation of NFAT, 

a key transcription factor regulating genes such as IFN-γ, one of the key T 
cell cytokines involved in GVHD. Therefore, we hypothesize that the intact 
pathogenic capacity of ICOS-Y181F T cells to induce GVHD relies on ICOS-
dependent, PI3K-independent calcium signaling. My goal is to identify the 
residue(s) responsible for this ICOS-mediated Ca2+ signaling and find the 
mechanism by which the receptor achieves its function. Through site-
directed mutagenesis and flow cytometric analysis of calcium fluxing 
capacities of mutant ICOS proteins, I identified a membrane proximal 
cluster of lysine residues that is essential in inducing ICOS-mediated Ca2+ 
signaling. I also provide evidence for the involvement of the Src family 
kinase Lck in ICOS-mediated Ca2+signaling. ICOS associates with Lck 
molecules, leading to the activation of PLCγ1, the key effector protein 
causing the release of Ca2+ from the intracellular pool.  

 
Taken together, our study is beginning to unravel a complexity in 

ICOS signaling, and implicates the ICOS-Lck-PLCγ1 axis in T cell calcium 
signaling and potentially the induction of GVHD. Further understanding of 
this pathway could prove beneficial in designing new strategies to 
prevent ICOS-related diseases such as GVHD. 
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INTRODUCTION 

1.1 Signal transduction pathways in T cells 

1.1.1 General Overview 

The immune system’s main role in the body is to rid it of invading 

pathogens by mounting a protective immunity. It also serves to prevent 

harm to the host by inducing tolerance to self-tissues. T cells stand as key 

effectors in adaptive immune responses and calibration of their activities is 

a founding concept of the immune response1. T cells also play a large 

part in autoimmune diseases. To acquire specific effector functions, T cells 

must have their T cell receptor (TCR) engaged. This process requires the 

participation of multiple signals coming from the T cell environment. 

Understanding how the various T cell signals integrate to lead to 

appropriate functional outcome and dissecting the basis of T cell 

activation and regulation, can eventually help us to control infections and 

autoimmunity. 

 T cells only recognize foreign antigens that are displayed on the 

surface of the host’s own cells. These antigens are derived from 

components of pathogens that are processed inside the cells; e.g. viruses, 

intracellular bacteria or pathogen products in the extracellular 

environment internalized by endocytosis. T cell activation can be broken 

down in four different stages: cell adhesion, antigen-specific activation, 

costimulation, and cytokine production or cytotoxicity (signaling). 

Adhesion between T cells and antigen presenting cells (APC) requires 

molecules such as integrins and selectins and is essential in coupling the 

cells together before ensuing cellular activation takes place. APCs 

acquire antigens through internalization (by receptor-mediated 
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endocytosis or phagocytosis) or infection and process the antigen-

specific peptides. Next, they display the antigenic peptides on their 

surface in association with major histocompatibility complexes (MHCs) 

class I or class II molecules. These peptide-MHC molecules are to be 

recognized by T lymphocytes through their TCRs. The interaction between 

the MHC and TCR are not sufficient for full T cell responses, as TCR signal 

alone does not lead to sustained expansion and differentiation of T cells. 

To bolster the subsequent pathways, intercellular costimulatory signals are 

required. Costimulation promotes downstream signaling leading to 

proliferation, differentiation and survival of T cells. Cells involved in 

costimulatory signals need to communicate this way to determine if such 

course of actions goes through or terminates. Alongside perpetuating 

these T cell functions, costimulation can also mediate proinflammatory 

signals or generate immune tolerance in the periphery to avoid unwanted 

tissue damage due to staggeringly active proinflammatory effector 

signals2.  

 The T cell program of proliferation and differentiation following MHC 

peptide presentation by APCs is controlled by signaling events that mainly 

take place in immunological synapse. The immunological synapse consists 

of an assembly of supramolecular activation clusters (SMACs) forming a 

ring-like structure3. The central SMAC (cSMAC) is composed of the TCR 

and its associated kinases. It represents the pivotal location where TCR 

signaling events take place. The peripheral SMAC (pSMAC) is composed 

of integrins (like lymphocyte function-associated antigen 1(LFA-1)4) 

stabilizing the interaction between the T cell and the APC and increasing 

the T-cell sensitivity to the antigen5. And lastly, the distal SMAC (dSMAC) 

comprises the molecules excluded from the central signaling center, e.g. 

phosphatases like CD456. 
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 The first signaling molecules activated lead to a branched network 

of signaling cascades surrounding the TCR. A signaling balance exists in 

order to prevent activation of naïve T cells by self-antigens. The signal the 

cell receives must reach an established threshold in order for the cell to be 

activated. Such a strong signal can normally only occur from an 

interaction with an APC presenting a foreign antigen. However, 

autoimmune diseases ensue when a self-reactive T cells are erroneously 

activated. 

 In the recent years, knowledge of the molecules involved in early 

TCR signaling has improved greatly, due in part to advances in super-

resolution microscopy (reviewed7). Also several new approach combine 

different techniques together to create powerful tools allowing better 

understanding of the events of TCR signaling. Coupling of mass 

spectrometry and cytometry created mass cytometry (cyTOF)8 and a 

combination of imaging and flow cytometry saw the conception of 

Imaging flow cytometry9. These novel techniques now allow us to address 

molecular interactions in a dynamic manner. In the following sections, I will 

depict the events happening after the TCR is engaged and what key 

molecules are involved in that process (A schematic representation of 

TCR signaling events relevant to my project is in Figure 1.1, p.11). 

  

1.1.2 Src family kinases 

 Src family kinases (SFKs) are essential in providing the signals 

required for the survival of naïve T cells10. Regulation of SFK functions is 

central to the TCR signaling events. Since the TCR itself has no inherent 

enzymatic activity, it largely depends on the SFKs to trigger signaling after 

initial TCR engagement. SFKs are positively regulated by phosphorylation 
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of an activating tyrosine residue located in their catalytic domain. The 

activating tyrosine stabilizes an open conformation and promotes the full 

kinase activity of the molecule. The negative regulation happens by 

phosphorylation of an opposing tyrosine located in the carboxy-terminal 

domain. This negative phosphorylation is accomplished by the SRC kinase 

Csk11. This leads to a closed conformation of the kinase and an inhibition 

of its kinase activity12-14. Activation of SFKs is achieved by 

autophosphorylation and dephosphorylation is mediated by several 

phosphatases such as CD45 and PTPN2215, 16. 

 

1.1.3 Lck 

 Following TCR engagement, the SFK member lymphocyte-specific 

protein tyrosine kinase (Lck) is the first molecule that becomes activated. 

Lck binds to the cytoplasmic tail of the TCR co-receptors CD4 and CD817. 

The co-receptors target the delivery of Lck into close proximity with its 

target: the TCR CD3 ζ-chains and their immunoreceptor tyrosine-based 

activation motifs (ITAMs)18. In naïve T cells, Lck is constitutively active in 

order to stabilize basal levels of CD3 ζ-chains phosphorylation19.  

 Dynamic segregation of the signaling molecules is apparent as 

some transmembrane phosphatase like CD45 are forced out of the 

immunological synapse, enabling optimal downstream activation. The 

exclusion of CD45 could be either due to its larger size or the binding 

energy of the TCR-peptide-MHC interaction forcing it out20, 21. Abundance 

of Lck at the immunological synapse dictates the phosphorylation of 

subsequent targets: ITAMs, CD3 chains, and the ζ-chain associated 

protein kinase of 70 kDa (ZAP-70).  
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 Recent evidence suggests that clustering in the early events of TCR 

activation is regulated by the conformational states of Lck22. However, the 

level of phosphorylation of Lck is relatively unchanged before and after T 

cell stimulation. Lck molecules are ≈40 % constitutively active23. This 

suggests that the local concentration of Lck rather then their 

phosphorylation state is more likely to direct TCR triggering. 

 

1.1.4 Molecules downstream of Lck 

 Once Lck phosphorylates the Syk-family kinase Zap-70, the latter 

undergoes conformational changes as well24. This leads to the ensuing 

phosphorylation of its target molecule: the key adaptor molecule linker of 

activated T cells (LAT). Another molecule that is phosphorylated by ZAP-70 

that associates with LAT is SLP7625. SLP76 colocalizes and connects with 

PLCγ1 and ITK.   

 The main role of LAT is to colocalize signaling molecules; to form a 

signalosome. LAT gets phosphorylated on several residues. These 

phosphorylated residues act as docking sites for kinases and other 

adaptors. For example, Lat recruits PLCγ1 through its tyrosine 136. LAT 

assures propagation of the TCR-mediated signals in a tightly regulated 

manner. Indeed, LAT-deficiency in Jurkat cells leads to impediment of TCR 

signals26. Also, partial loss-of-function mutation of LAT (Tyr136Phe) accounts 

for LAT-signaling pathology as severe as a total loss of LAT27. The multiple 

phosphorylated sites of LAT eventually lead to the recruitment of 

downstream molecules and adaptors, which then branch to several 

different signaling pathways. One of the consequences of these signaling 
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pathways are the nuclear mobilization of key transcription factors crucial 

for gene expression responsible for T cell differentiation and function. 

 

1.1.5 Fyn 

 Fyn is another SFK crucial for TCR signaling 28. The vast majority of Fyn 

is not constitutively associated with other proteins. Biochemical and 

genetic evidence have shown a partial redundancy between Lck and 

Fyn29. Lck is has now been shown to induce Fyn activation30. Some studies 

have tried to show that in cell lines deficient for Lck, Fyn could replace the 

activity of Lck, but T cell activation was not sustainable31, 32. Fyn may in 

fact be rather more important for T cell anergy33, 34 and may indicate that 

Fyn does not necessarily act downstream of Lck in a given signaling 

pathway. 

 

1.1.6 Ras/Erk 

 The complex formed by PLCγ1 and SLP-76 is one that regulates Ras 

activation35. Ras is a small G protein central to numerous physiological 

conditions. In T cells, the Ras guanine exchange factor (RasGEF) RasGRP1 

is phosphorylated on its tyrosine 184 by diacylglycerol (DAG), a secondary 

messenger generated by PLCγ136. The RasGEFs Sos1 and Sos2 are 

constitutively associated with the adaptor Grb2. They are recruited to the 

membrane where they have basal RasGEF activity via Grb2/LAT 

interactions37. Sos proteins contain an allosteric Ras–GTP binding site.  

When that site is engaged, the RasGEF activity is greatly enhanced38. Ras-

GTP binding to Sos allows the engagement of a positive feedback loop 
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between the two proteins39, 40. When Ras becomes activated, it induces 

multiple downstream pathways, including the Raf/MEK/ERK kinase 

cascade driving both T cell development and their effector functions41, 42. 

The Raf/MEK/Erk pathway can also be activated in a LAT-independent 

manner. It forms a complex with DAPP1, PLCγ1 and PAK143. 

  

1.1.7 Lipid Rafts 

 Plasma membranes of several cell types contain microdomains 

enriched with cholesterol and sphingomyelin, called lipid rafts44. 

Sphingolipids allow ordered assembly beyond regular phospholipid bilayer. 

These rafts can be seen as organized platforms that mobilize in the plane 

of the plasma membrane. Their main function is to segregate molecules 

from one another45. Lipid rafts were initially discovered by their insolubility 

in non-ionic detergents as opposed to other areas of the plasma 

membrane46, 47. This facilitates their isolation from the rest of the 

membrane. In T cells, some molecules involved in TCR signaling are found 

in lipid rafts and disrupting these rafts can abrogate TCR signaling. 

Lipidation of Lck in its membrane anchoring N-terminal motif relocates the 

protein into lipid rafts48. Approximately 25-50% of total Lck molecules co-

purifies with detergent insoluble fractions during lipid raft isolation49. Fyn is 

another molecule shown to be active in lipid rafts50. Some proteins such as 

ZAP-70 and PLCγ151, 52 are only transiently recruited into the lipid rafts. For 

the past two decades, numerous studies have been reported on lipid rafts 

without achieving a full comprehension. Not all studies are in accordance 

with the existence of the lipid rafts as some have questioned the 

approach to identify them53, 54. It’s still up for debate regarding their true 

existence as well as their role in TCR signaling55. 
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1.1.8 Costimulatory receptors 

 T cell co-signaling receptors (a broader concept accommodating 

positive and negative aspects of costimulation) positively or negatively 

modulate signaling pathways induced by TCR triggering. Co-signals 

consist of co-stimulatory and co-inhibitory signals56, 57. The crosstalk 

between co-signaling receptors and their respective ligand takes place in 

the T-APC contact area including the immunological synapse, where they 

influence the T cells for activation or inhibition58. Co-signaling receptors 

are broadly divided into those belonging to the immunoglobulin (Ig) 

superfamily (IgSF), the tumor necrosis factor (TNF) superfamily (TNFSF), and 

signaling lymphocytic activation molecule (SLAM) family. This classification 

is based on their phenotypic and signaling features. The CD28 and CD80 

(B7-1)/CD86 (B7-2) costimulatory pathways represent prototypes of the Ig 

family of co-signaling receptors and ligands. The extended CD28 family 

includes CD28, CTLA-4, PD-1, ICOS, and BTLA.  

 

1.1.9 CD28 and its ligands B7-1/B7-2  

 CD28 has been characterized as a homodimeric costimulatory 

receptor for the TCR complex and is responsible for providing signals 

required for T cell activation. During the very early stages of T-cell 

activation, CD28 is expressed on T cells and is ligated by B7-1/B7-2, which 

are constitutively expressed on dendritic cells (DCs) and inducible in other 

APCs such as B cells and monocytes59-62. CD28 stimulation has been 

shown to increase IL-2 production, promote survival of activated T cells 

and prevent T cell anergy 63. The cytoplasmic tail of CD28 contains three 

signaling motif. The first motif contains an YMNM sequence. It serves as a 

binding site for the SH2-containg proteins (p85, GADS and Grb2). The 



	
   10	
  

second motif contains a PRRP sequence. It interacts with the SH3 domain 

of Itk. The third motif contains a PYAP sequence. It associates with the SH3 

domain of Grb2, GADS, Lck, and filamin-A. The association of Grb2 to the 

motifs YMNM and PYAP is crucial for the recruitment of PKCθ and RASGRP 

to the immunological synapse and its ensuing activation64, 65. The B7-1/B7-

2/CD28 pathway decreases the threshold for T cell activation. 

Subsequently, this results in T cell proliferation, the upregulation of anti-

apoptotic proteins like Bcl-xL, and the increase of IL-2 production66-68.  

 In contrast, B7-1 and B7-2 also deliver a co-inhibitory signal to 

activated T cells through CTLA-4, the CD28 antagonist. The cytoplasmic 

tail of CTLA-4 contains the immunoreceptor tyrosine inhibitory motif (ITIM) 

recruiting SHP-1 and SHP-269, 70. CTLA-4 possesses a higher affinity to B7 

ligands and competes out CD28 for their binding leading to signal-

independent T cell suppression by sequestering the ligands from the APC 

surface71. Contrary to the CD28 pathway, the B7/CTLA-4 pathway 

increases the threshold to reduce T cell activation and ultimately 

terminate it. B7-1 and B7-2 are considered to deliver bidirectional signaling 

critical for the downregulation of T cell response and induction of T cell 

tolerance. 

 Once CD28 is engaged in TCR-mediated signaling, it is thought to 

bind to phosphatidylinositde-3 kinase (PI3K). CD28 brings PI3K to the 

membrane where it will generate phosphatidylinositol (3,4,5)-triphosphate 

(PIP3) and anchor proteins containing pleckstrin homology (PH) domains. 

The catalytic PI3K helps to convert phosphatidylinositol (4,5)-bisphosphate 

(PIP2) into PIP3. The excess of PIP3 is removed by phosphatase and tensin 

homolog (PTEN). PI3K is required to activate Akt, the regulator of many 

downstream targets. PI3K binding alone doesn’t account for all the CD28 

effects.  Indeed, recent data from knock-in mouse models show that it is 
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the PYAP motif that plays most important role in CD28-mediated 

costimulation whereas the contribution of YMNM motif is minimal72. 

Nuclear factors of activated T cells (NFAT), as well as Nuclear Factor 

KappaB (NFκB), play a crucial role in the regulation of gene transcription, 

a function triggered by CD28 stimulation, independently of PI3K. 

	
  

Figure 1.1 Simplified overview of TCR signaling leading to activation of the Ca2+ signaling 
pathway. Once an MHC molecule presents an antigenic peptide and engages the TCR, 
signaling pathways are activated leading to effector functions of the cell. One of the 
downstream signaling events that are activated is the nuclear relocalization of NFAT that 
induces the transcription of several genes, e.g. IL-2 and IFN-Υ. During the recognition of 
antigens by TCR complexes Lck is delivered nearby through association with coreceptors 
(CD4/CD8) and phosphorylates its target molecules: ITAM motifs on CD3 ζ-chains. 
Phosphorylated ITAMS recruit ZAP-70 kinases that activate LAT/GADS/SLP-76 signalosomes. 
Phosphorylated LAT recruits PLCγ1. Activated PLCγ1 generates secondary messengers 
DAG and IP3; IP3 in turn leads to the activation of calcineurin and eventually the nuclear 
relocalization of NFAT. It has been unclear how ICOS achieves potentiation of TCR-
mediated Ca2+ flux and if the activation of PI3K is required in regulation of the 
downstream Ca2+ signaling pathway. 
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1.2 The Inducible Costimulator (ICOS) 

1.2.1 General Description 

 It has almost been 15 years since the Inducible Costimulator (ICOS) 

was discovered73-75. ICOS is a costimulatory receptor of the CD28 family of 

costimulatory receptors and was found to be selectively ‘induced’ on 

activated T cells, hence its given name. It was later discovered that it was 

expressed on T cells in the germinal centers76, 77. ICOS also displayed a 

structural similarity with the prototypical costimulatory receptor CD28. 

However, ICOS binds to its ligand B7-H2, but not other members of B7 

family proteins78. Costimulation of ICOS enhances mainly cytokine 

production but promotes proliferation minimally. Both mice and humans, 

ICOS-deficiency leads to reduced antibody production due to impaired 

germinal center reaction.  We and others have shown that this is due to its 

crucial role in the development of Tfh cells79.  

1.2.2 ICOS Structure 

 Structurally, ICOS is similar to CD28. Both are type I transmembrane 

glycoproteins. The amino acid sequence of ICOS is divided in three 

distinctive sections: a signal peptide, a single IgV-like domain, a 23 amino-

acid transmembrane region and a 35 amino-acid cytoplasmic tail80. The 

whole ICOS sequence is composed of numerous amino acid clusters that 

are conserved through evolution between species. The two conserved 

cysteine residues at position 42 and 109 within the Ig domain are 

supposed to stabilize the Ig fold by forming disulfide bonds. On the surface, 

ICOS assembles as a homodimeric receptor. A conserved cysteine residue 

at position 136 is predicted to help forming the disulfide bridge between 

the homodimeric chains. In mice, ICOS has an apparent relative 
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molecular mass of 47-57 kDa75, 81.  

 

 In mice and humans, the amino-acid sequence of ICOS shares 

closely to 40% of sequence similarity with CD2878, 80; a significant number 

as 26% amino-acid identity is found between CD28 and CTLA-482. The 

human and mouse amino-acid sequences of ICOS share approximately 

70% identity, which is comparable to identity between human and mouse 

CD28 (69%)78. The similarities of sequences between species imply that the 

mechanism of action for ICOS in both mice and humans should be 

conserved, indicating that studies in mouse models are likely reflecting 

what would happen in humans. 

 

1.2.3 ICOS signaling mechanisms and functions 

 ICOS is known to potentiate two TCR-mediated signaling pathways: 

the PI3K pathway83-85 and the Ca2+ pathway85, 86. While ICOS binds PI3K 

directly, the mechanism of Ca2+ mobilization by ICOS remains unclear. At 

first, it was assumed that ICOS-mediated Ca2+ potentiation was an indirect 

result of PI3K activity, as PI3K induces Ca2+ mobilization in T cells87, but our 

lab showed that this function was occurring in a PI3K-independent 

manner79. 

 Similar to CD28’s YMNM motif, the cytoplasmic tail of ICOS contains 

a YMFM motif. Once the tyrosine in the motif is phosphorylated, it can 

recruit the SH2 domain- containing PI3K regulatory subunits p85α and p50α, 

but not Grb283, 88. Compared to CD28, ICOS has a much more potent 

capacity to activate PI3K79, 85. This may be due to a competition for 

binding between PI3K and Grb2 for the p-Tyr motif that happens in CD28 

cytoplasmic tail does not occurring ICOS. ICOS augments T cell effector 

functions, but not through augmenting proliferation of naïve T cells. It is 
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rather through enhancement of Th1 and Th2 cytokine production89-91. 

ICOS also regulates humoral immune responses by enabling germinal 

center T cells to achieve cognate interaction with B cells, providing a 

signal leading to a germinal center reaction and consequently, antibody 

maturation79, 92, 93. In preactivated CD4 T cells, ICOS is constitutively bound 

to PI3K and ICOS ligation further increases PI3K recruitment94. Co-ligation 

of the TCR and ICOS gives rise to a maximal PI3K signaling. It was 

highlighted by imaging and biochemical studies that ICOS is in complex 

with TCR complexes, and ICOS may get recruited into the immunological 

synapses. This supports the view that ICOS probably functions in 

conjunction with the TCR75, 88, 95. Moreover, inactivation of the p110δ 

isoform of PI3K also leads to impaired humoral immunity, reduced 

generation of Tfh cells, and impaired germinal center reaction 96, 97. 

Therefore, ICOS-PI3K signaling axis play critical role to support generation 

of Tfh cells. 

 Although ICOS-mediated Ca2+ flux can take place independently 

of ICOS-mediated PI3K activation, the molecular mechanisms and its 

biological significance were not known at the beginning of this project 

(depicted in Figure 1.1, p.11).  

 

1.2.4 Regulation of Expression 

 ICOS is expressed at low levels on naïve T cells and is significantly 

upregulated after TCR and CD28 costimulation78, 80. Fyn and Erk can 

regulate ICOS expression at the transcriptional level after T cell 

activation98. Fyn activates calcineurin, which in turn dephosphorylates 

NFATc2 and induces its nuclear translocation99. In the nucleus, NFATc2 

and Erk bind independently to the Icos promoter and activate its 
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transcription.  

 

 ICOS is expressed on Tfh cells, Th1, Th2, Tregs, Th17 and unpolarized 

activated CD4 T cells (Th0)100. Recent studies have shown that ICOS is 

regulated differently depending on the T cell subsets. In Th1 cells, the 

master regulator of Th1 cells, T-bet, binds to the Icos promoter and 

synergizes with NFATc2 to upregulate ICOS transcription. In Th2 cells, 

NFATc2 also binds to the ICOS promoter, but it is GATA-3 that operates via 

an Icos 3’UTR elements101. This proves relevant as Th2 cells express higher 

levels of ICOS than do Th1 cells83. 

 

1.2.5 B7-H2 (ICOSL or CD275) 

 B7-H2 is a co-stimulatory ligand that only binds ICOS on the T cell 

surface73, 78, 102. B7-H2 is detected on the surface of APCs including B cells, 

DCs, and macrophages and a subset of CD3 T cells, but as well on non-

hematopoietic cells such as endothelial cells and some epithelial cells103, 

104. B7-H2 mRNA is constitutively expressed in several non-hematopoietic 

tissues like the liver, kidney, testes and lung74, 105. Anatomically, B7-H2 is 

expressed in areas where B cell are present like the lymph nodes and the 

spleen76. It was recently discovered that human B7-H2, but not mouse B7-

H2, also binds to CD28 and CTLA-4. Thus, ICOS, CD28 and CTLA-4 may 

compete for a similar binding site on human B7-H2106. The questions 

regarding the physiologic role of the B7-H2 interaction with CD28 and 

CTLA-4 in vivo remain unresolved. 
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1.2.6 Disease relevance 

 ICOS defect in humans has been reported to cause common 

variable immunodeficiency (CVID), a disease characterized by a severe 

reduction in class-switched antibodies, a failure to mount specific 

antibody responses to vaccination or natural infection and 

hypogammaglobulinemia and recurrent bacterial infections93, 107, 108. 

Consistently, mice with ICOS or ICOSL deficiencies also have severe 

defects in Tfh cell generation and GC reactions92, 109-113. On the contrary, 

mice with increased surface expression levels of ICOS have increased Tfh 

cell numbers and are prone to autoimmunity114, 115. ICOS was found highly 

expressed on activated CD4+ T cells in patients with autoimmune 

conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus 

(SLE), and inflammatory bowel disease116-118. ICOS-deficient mice were 

noted to have reduced total IgG and anti-dsDNA production119. ICOS-L 

blockade of a mouse cardiac allograft model was shown to enhance 

cardiac graft survival where CD28 costimulation was absent and while 

CD8 T cells, CTLA-4, and the STAT-6 pathway were functionally active120. 

 Recent studies published in collaboration with our lab showed that 

ICOS plays an important role in inducing acute graft-versus-host disease 

(GVHD) in murine models of allogeneic bone marrow transplant (BMT)121. 

Furthermore, using the ICOS-Y181F mouse strain, we showed that this 

contribution was mediated by PI3K-independent mechanisms122. However, 

the mechanism by which ICOS triggers the onset of the disease remains 

unknown. GVHD is a major complication following allogenic 

hematopoietic stem cell transplantation, in which the grafted cells 

recognizes allogeneic antigens on host tissue cells leading to subsequent 

inflammation and tissue damage. Standard treatments are 1-2 mg/day of 

prednisone with continued administration of calcineurin inhibitor for 
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steroid sparing. However, the general prognosis remains weak123. Several 

players are hinted as being potentially involved in the acute manifestation 

of the disease, with TGF-β124, T regulatory cells (Tregs)125 and Th1/Th2/Th17 

cytokine126-128 having potential roles. It becomes apparent that further 

research on the pathophysiology of GVHD may facilitate the 

establishment of novel strategies leading to prevention and cure of this 

disease. With the promising results observed with ICOS122 and the 

favourable effects of blocking Ca2+ signaling in standard treatments, 

understanding in depth how ICOS-mediated Ca2+ signaling functions 

might prove beneficial in preventing GVHD.  

 

1.3 Calcium signaling pathway in T cells 

1.3.1 General overview 

 A rapid increase in intracellular Ca2+ concentration is crucial for 

T cell activation and modulation of TCR signal intensity129, 130. A remarkable 

variety of Ca2+ signals in T cells, ranging from infrequent spikes to sustained 

oscillations and plateaus, derived from the interactions of multiple Ca2+ 

sources and sinks in the cell. By depleting the stores prolonged Ca2+ influx 

is triggered through calcium release activated calcium channels (CRAC) 

in the plasma membrane. The range and dynamics of Ca2+ signals are 

shaped by the action of several intertwining mechanisms. These different 

events include potassium (K+) channels and membrane potentials, 

mitochondria that buffer Ca2+ preventing the activation of CRAC 

channels and plasma membrane Ca2+-ATPase (PMCA). 

 The initial steps of TCR-mediated calcium signaling are well 

established129. As previously described, upon TCR engagement, SFKs is 
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activated, resulting in the phosphorylation of, amongst other CD3 

modules, the ζ chain of the TCR complex. This leads to the recruitment 

and activation of ZAP70, and then LAT. Tyrosine- phosphorylated LAT then 

recruits several SH2-containing proteins, including PLC-γ1.  

 

1.3.2 PLCγ1 

 Upon activation, PLCγ1 interacts with the phosphorylated 

tyrosine 136 of LAT. Stabilization of this interaction by the adaptors GADS 

(that bind LAT p–Y175 and p-Y195) and SLP-76 allows phosphorylation of 

PLCγ1 on residues critical for its activation37. Once activated, PLCγ1 

cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two 

distinct secondary messengers: inositol 1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG).  

 DAG activates RasGRP1 by either directly binding its C1 domain 

of RasGRP1 or indirectly by activating novel protein kinase C (PKC) 

isoforms (notably PKCθ). RasGRP1 is phosphorylated at the tyrosine 184 

and its RasGEF activity is increased. PKCθ along with calmodulin 

and calcium/calmodulin-dependent protein kinase-2 (CalmK2) regulates 

the phosphorylation state of the inhibitor of kappa light polypeptide gene 

enhancer in B-Cells (IkB) kinase (IκK) complex through direct and indirect 

interactions. Activated IκK induces phosphorylation and degradation of 

IkB, and nuclear factor-kappaB (NF-κB) can be released from IkB and 

translocate into the nucleus.  

 The other second messenger IP3 travels through the cytoplasm 

and induces the release of intracellular Ca2+ by binding to the IP3 

receptor located on the outer membrane of the endoplasmic reticulum 
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(ER). Ca2+ activates the phosphatase calcineurin, which dephosphorylates 

the transcription factor nuclear factor of activated T cells (NFAT) in the 

cytoplasm. This induces the translocation of NFAT to the nucleus and the 

transcription of a large array of genes such as IL-2 and IFN-γ. The 

relationship between PLCγ1 and ICOS, as well as the role of ICOS-

mediated Ca2+ flux potentiation has yet to be fully examined (depicted in 

Figure 1.2 along with a summary of TCR-mediated Ca2+ signaling, p.20).  

 

CRAC Channels 

 In T lymphocytes, CRAC channels constitute the only pathway for 

Ca2+ entry following TCR engagement. Their function is essentially to drive 

the program of gene expression that underlies T-cell activation by 

antigen.  Prolonged Ca2+ entry through CRAC channels is essential to 

activate transcription factors such as NFAT initiating many of the changes 

in gene expression131. Abrogated signaling through CRAC channels results 

in a lethal severe combined immunodeficiency (SCID) syndrome in 

human patients, characterized by defective T-cell activation and 

proliferation132, 133. Studies have established that CRAC channels are the 

primary Ca2+-influx pathway that is activated upon TCR engagement in T 

cells and their essential role in T-cell function and human health133-135. 

Since the discovery of CRAC channels no mechanism had been 

proposed to explain how their function is regulated. In the last few years, 

the first molecular components of this pathway have been identified. The 

first one is the ER Ca2+ sensor, the stromal interaction molecule 1 (STIM1)136, 

137. The second one is Orai1, a pore-forming subunit of the CRAC 

channel138, 139. Recent work shows that CRAC channels are activated in a 

complex fashion that involves co-clustering of STIM1 in junctional ER near 
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the plasma membrane140, 141. They align to face opposite to Orai1 

molecules. These studies reveal an abundance of sites where 

Ca2+ signaling might be controlled to modulate the activity of T cells 

during the immune response. To balance the concentration of Ca2+ inside 

the cells, PMCAs provide the dominant mechanism though which 

clearance of the ions occurs142, 143. At the beginning of this project, there 

was no information as to where ICOS fits in these general Ca2+ signaling 

pathways in T cells.   

 

Figure 1.2: Overview of Ca2+ signaling pathways in T cells. IP3 releases Ca2+ from the ER. 
Depletion of the intracellular Ca2+ stores activates plasma membrane CRAC channels. 
Ca2+ depletion is detected by Ca2+ sensor STIM1 on the ER membrane. It then associates 
with the CRAC channels (purple dashed line). Ca2+ entering the cell activates the 
K+/Ca2+ channels and upregulates PMCA activity. Calcineurin is activated and it leads to 
dephosphorylation of NFAT allowing its translocation into the nucleus. Mitochondria take 
up Ca2+ near the CRAC channels to prevent their auto-inactivation by negative 
feedback-loop, redistributing it elsewhere in the cell. The route by which ICOS achieves 
its function in mediating Ca2+-flux needs to be investigated (green dashed lines).  
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MATERIALS AND METHODS 

Mice 

C57BL/6 mice (WT) were purchased from Jackson Laboratory (Bar Harbor, 

ME, USA). ICOS-KO (Icos-/-) or ICOS-YF knock-in (Icosyf/yf) mouse strains 

were previously described79, 111. FYN-KO (Fyn-/-) mice were provided by Dr. 

A. Veillette (IRCM, Montreal, QC, Canada) and were previously 

described34, 145. All the mice were in C57BL/6 background (minimum N10) 

and were housed in the IRCM Animal Facility under specific pathogen-

free conditions. Animal experiments were performed according to animal 

use protocols approved by the IRCM Animal Care Committee. 

 

Antibodies and cytokines 

  For T cell stimulation, the following functional grade purified Armenian 

hamster anti-mouse antibodies were used: antibodies against ICOS (mAb 

C398.4A), CD3 (145.2C11) and CD28 (37.51)(eBioscience). For flow 

cytometry, the following Armenian hamster anti-mouse antibodies were 

used: PE-conjugated anti-ICOS (mAb 15F9), biotinylated anti-ICOS (mAb 

C398.4A), biotinylated anti-CD3ε (mAb 145.2C11), biotinylated anti-CD28 

(mAb 37.51)(eBioscience). Goat anti-Armenian hamster IgG (Jackson 

Immunoresearch) or avidin (Calbiochem) were used to crosslink primary 

antibodies. For immunoblots, the following antibodies were used: goat 

anti-mouse ICOS (Santa Cruz, sc-5748), rabbit anti-mouse PLCγ1 (Santa 

Cruz, sc-81), mouse anti-human/mouse GAPDH (Santa Cruz, sc-32233), 

mouse anti-human/mouse pTyr (4G10; Millipore), rabbit anti-mouse pY505-

Lck (Cell Signaling, 2751P), rabbit anti-mouse pY783-PLCγ1 (Cell Signaling, 
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2821S).  HRP-conjugated goat anti-rabbit or sheep anti-mouse secondary 

antibodies were purchased from BioRad. Rabbit antisera against mouse 

Lck, Fyn or ZAP-70 were kind gifts from Dr. A. Veillette (IRCM, Montreal, QC, 

Canada). Recombinant IL-2 was purchased from Peprotech. 

 

Reagents 

The PLCγ1 inhibitor U73122 and its non-specific analog U73343 were from 

Calbiochem. Hexadimethrine bromide (polybrene), sucrose, calcium 

chloride, magnesium chloride, EGTA, Brij58, methylcyclodextrin and n-

Dodecyl β-D-maltoside were purchased from Sigma. Nonidet p-40 was 

purchased from Calbiochem. 

 

In vitro CD4 T cells isolation, activation and restimulation 

CD4 T cells were isolated from splenocytes and superficial lymph nodes 

(popliteal, axillary, inguinal and submandibular) using Mouse CD4 T cell 

Enrichment KitTM (EasySep) according to the manufacturer’s instructions.  T 

cells were cultured in RPMI1640 medium supplemented with 10 % FBS, 300 

mg/ml glutamine, 1 Unit/ml penicillin, 1 µg/ml streptomycin, 55 mM β-

mercaptoethanol and 10 mM HEPES. Purified CD4 T cells were activated 

by culturing with plate-bound anti-CD3 (3 µg/mL) and soluble anti-CD28 

(2 µg/mL) for 2 days and were subsequently expanded in media 

containing 100 U/mL IL-2 (Peprotech) for 3 days. For restimulation 

experiments, CD4 T cell blasts were harvested and incubated for 1 min at 

room temperature with primary antibodies: anti-CD3 (1 µg/mL) alone or 

anti-CD3 (1 µg/mL) plus anti-ICOS (2 µg/mL). Immediately after addition of 
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anti-hamster IgG (20 µg/mL) for crosslinking, the cells were transferred to a 

water bath at 37 °C and incubated for 1–5 min depending on 

experimental settings. 

 

Jurkat cells 

Jurkat, JCam1 (Lck-deficient Jurkat), P116 (ZAP70-deficienct Jurkat), and 

their reconstituted counterpart cell lines were generous gifts from Dr. A. 

Weiss (UCSF, San-Francisco, CA, USA). Jgamma1 (PLCγ1-deficient Jurkat) 

and its reconstituted counterpart cell lines were purchased from ATCC, All 

Jurkat-derived cell lines were cultured according to ATCC guidelines in 

RPMI1640 medium supplemented with 10 % FBS, 300 mg/ml glutamine, 1 

Unit/ml penicillin, 1 µg/ml streptomycin, 55 mM β-mercaptoethanol and 10 

mM HEPES. For reconstituted cell lines P116_WT and Jgamma1_WT 

geneticin (G418) (Sigma) was added (2 mg/ml) to maintain the ectopic 

expression of the reconstituted genes.  The Jurkat-Eco (Jurkat derivative 

expressing ecotropic receptor) cell line was obtained from Dr. Linda Penn 

(OCI, Toronto, Canada).  

 

Ca2+ flux 

For Indo-1 loading, CD4+ T blasts (1 X 107 cells/ml) were incubated for 30 

min with Indo-1 AM (Life Technologies) in Ca2+ buffer (HBSS buffer 

supplemented with 0.1 % BSA, 1 mM CaCl2 and 1 mM MgCl2). After 

washing, cells were stained with anti-ICOS-PE (15F9). For stimulation, Indo-1 

loaded ICOS stained cells (1 X 106 cells in 50 μl) were incubated for 1 min 

at room temperature with biotinylated antibodies: 0.2 μg/ml of anti-CD3 
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+/- 2 μg/ml anti-ICOS. When needed, EGTA was added to the media to 

chelate Ca2+ ions (at a concentration of 2.5 mM).  After diluting in 500 μl 

of total Ca2+ buffer, cells were run in LSR II flow cytometer (BD). After 

recording baseline for 30 sec, avidin (28 µg/ml) was added and the 

mobilization of intracellular Ca2+ was monitored by measuring FL4/FL5 ratio. 

Equal loading of Indo-1 was confirmed by releasing intracellular Ca2+ by 

ionomycin (Sigma-Aldrich, 1 µg/ml). The same procedure was performed 

for Jurkat cells, except that the stimulation was achieved with biotinylated 

anti-ICOS antibody without anti-TCR antibody.  

 

Immunoprecipitation and immunoblot analysis 

Restimulation was stopped by adding ice-cold Ca2+ buffer with 10 % FBS, 1 

mM Na3VO4, 1 mM EDTA pH 8.0. Cells were lysed in NP-40 lysis buffer (1 % 

NP-40 in 10 mM Tris pH 7.5, 5 mM Na4P2O7, 100 µM Na3VO4, 5 mM NaF, 150 

mM NaCl, 1 mM PMSF and protease inhibitor cocktail (Sigma)) or digitonin 

lysis buffer (the same recipe with 1 % Digitonin instead of NP-40) for 20 min 

on ice. Cell debris was removed by centrifugation at 16,000 x g for 10 min 

at 4 °C and the cleared lysates were collected. For immunoprecipitation, 

the cleared lysates were incubated for 1 hour on ice after addition of 

indicated antibodies (2 µg/ml). Immune complexes were recovered with 

protein A beads (Pierce) (1 hour on rocker at 4 C) and then washed in NP-

40 lysis buffer (two times in 1 ml).  Cleared lysates or immunoprecipitates 

were boiled in SDS-PAGE sample buffer. The samples were run on 8 % (for 

PLCγ1) or 12 % (all other proteins) SDS-PAGE gels and transferred to 

Amersham Hyperfilm ECL nitrocellulose membranes (GE Healthcare). 

Blocking was performed in either 5 % fat-free skim milk powder (Lck, ZAP-

70, Fyn and ICOS) or 5 % BSA (PLCγ1, pY783-PLCγ1, pY394-Lck, pY505-Lck, 
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GAPDH), both in TBST. Detection was achieved with Amersham ECL PlusTM 

Western Blotting Detection Reagents (GE Healthcare), membranes were 

revealed using ChemiDocTM MP Imaging System (BioRad) and protein 

bands were quantified using the Image LabTM software (BioRad).  

 

Plasmid construction and cell transfection  

Mutant ICOS constructs were generated by site-directed mutagenesis 

using the GeneArt Site-Directed Mutagenesis System (Invitrogen) 

according to the manufacturer’s instructions with modifications: Platinium 

Pfx® high capacity DNA polymerase (Life technology) was used instead of 

Accuprime Pfx®  and 50mM MgSO4 and 10mM dNTPs were added to the 

PCR mixture for each mutagenesis reaction as normally these 

components are present in the Accuprime Pfx® reaction mix. . Methylation 

of the template DNA was accomplished in a 37°C water bath prior to 

mutagenesis PCR reaction. Primers are detailed in Appendix (Table 1, 

p.67). Template DNA used was pBMN_ICOS_IRES_GFP plasmid. ICOS 

mutant constructs were expressed in ICOS KO CD4 T cells or Jurkat-Eco 

(ICOS negative) cells through retroviral transduction146. In case of Jurkat 

and their derivatives, endofectin-mediated lentiviral transduction method 

was used according to the manufacturer’s instructions to express murine 

ICOS (Ex-Mm07236-Lv81; Genecopoeia). 
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 Sucrose density gradient and lipid raft isolation 

Stimulated cells were lysed in Brij 58 Lysis Buffer (1 % Brij 58, 25 mM Tris [pH 

7.6], 150 mM NaCl, 5 mM EDTA, 1mM Na3VO4, protease/ phosphatase 

inhibitor mix) for 30 min on ice. Lysate was mixed in 1:1 ratio of 80% Sucrose 

(in Brij 58 lysis buffer) and poured in polyallomer centrifuge tubes 

(Beckman Coulter). Column was assembled with subsequent layers of 40 

%, 30 % and 5 % sucrose/lysis buffer. Columns were spun at 39, 000 rpm for 

20 hours with a SW 41 Ti rotor (Beckman Coulter). 1 ml fractions were 

collected and 1 % maltoside was added to each tube to solubilize 

proteins. A portion of the fractions were then boiled with sample buffer 

and analyzed by immunoblot. 
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RESULTS 

Four membrane proximal residues in the cytoplasmic tail of 

ICOS are sufficient for Ca2+ flux 

 I sought to determine the residues in the cytoplasmic tail of ICOS 

responsible for the potentiation of TCR-mediated Ca2+ release in a PI3K-

independent way.  To this end, I generated a series of ICOS mutants 

through site-directed mutagenesis on ICOS-Y181F backbone cDNA in a 

retroviral vector (pBMN-IRES-GFP). The murine ICOS cytoplasmic tail has 

several evolutionarily conserved regions as shown in Figure 3.1A (p.31). In 

order to delineate the minimal segment of the ICOS tail required for Ca2+ 

flux, I first made truncation mutants by introducing stop codons right after 

Ala185 or Tyr170 (Figure 3.1B, p.31). Once these mutants were generated, I 

expressed them in either Jurkat-Eco cells, which are known to be negative 

for the expression of ICOS88, 147, or in activated primary CD4 T cells isolated 

from ICOS-KO mice. I then tested the ability of these ICOS mutants to 

induce Ca2+ flux. Importantly, I found that ICOS was able to induce Ca2+ 

flux upon ligation without co-ligation with TCR in Jurkat-Eco cells.  This is in 

sharp contrast with CD4 T cells in which ICOS can only potentiate TCR-

mediated Ca2+ flux but cannot function by itself (Figure 3.1C; first panel, 

p.31).  This “autonomous” nature of ICOS-mediated Ca2+ flux in Jurkat-Eco 

cells facilitated biochemical and genetic analyses that can be limited or 

impossible in primary T cells. Through this approach, I found that the 

membrane distal clusters beyond Ala-185 were dispensable for ICOS-

autonomous Ca2+ flux in Jurkat cells as well as potentiation of TCR-

mediated Ca2+ flux in primary CD4 T cells (Figure 3.1C; third panel, p.31). 

Remarkably, when most of the cytoplasmic tail was truncated except the 

four membrane proximal residues, ICOS still maintained its Ca2+ fluxing 
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capacities in both cell types (Figure 3.1C; fourth panel, p.31). Therefore, I 

conclude that the membrane proximal cluster KKKY in the cytoplasmic tail 

of ICOS is sufficient to induce Ca2+ flux. 
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Figure 3.1: Mapping the minimal segment of ICOS cytoplasmic tail sufficient for Ca2+ flux. 
(A) Schematic representation of the transmembrane and cytoplasmic sequence of ICOS 
in multiple species. Evolutionarily conserved regions are highlighted in black. (B) 
Schematic representation of ICOS mutants (C) Autonomous calcium fluxing capacities 
(Jurkat-Eco) or potentiation of TCR-mediated calcium flux by ICOS mutants.  Data shown 
are representative of two independent experiments. 
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The triple lysine motif is necessary for Ca2+ fluxing capacity of 

ICOS 

 To determine whether or not the KKKY motif is essential in mediating 

the Ca2+ fluxing ability of ICOS, I mutated the single tyrosine or the triple 

lysine residues in the ICOS-Y181F context sequence (Figure 3.2A, p.33). 

When the tyrosine at position 170 was mutated to phenylalanine, I 

observed a striking decrease in Ca2+ flux in Jurkat-Eco cells as well as in 

primary CD4 T cells  (Figure 3.2B; second panel, p.33). Similar results were 

obtained when Tyr170 was mutated to alanine (data not shown).  

Mutation of the triple lysine residues  (KKK167-169AAA_Y181F) led to 

substantial reduction of cell surface ICOS level compared to the 

Y170F_Y181F mutant (Figure 3.2C, p.33). In order to overcome these 

differential expression levels, I took a dual staining strategy: a non-agonist 

staining antibody (clone 15F9-PE) to gate on cells expressing similar levels 

of ICOS mutants and an agonist antibody (C398.4A-biotin) to stimulate the 

cells with avidin-mediated crosslinking.  In both cell types, Ca2+ fluxing 

ability of ICOS was completely abrogated when the triple lysine residues 

were changed to alanine (Figure 3.2B; third panel, p.33). I conclude that 

the triple lysine residues are crucial for ICOS-mediated Ca2+ mobilization 

as well as maintaining ICOS on the cell surface. The tyrosine residue at 

position 170 is also involved in Ca2+ mobilization but its contribution to cell 

surface expression of ICOS is minimal.  
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Figure 3.2: Membrane proximal motif KKKY is crucial for ICOS-mediated Ca2+ flux. (A) 
Representation of ICOS tail mutants in the context of full length ICOS-Y181F. (B) Jurkat-Eco 
cells and preactivated ICOS KO CD4 T cells were transduced by retroviral vectors 
encoding indicated ICOS mutant constructs. Both cell types were then examined for 
their ICOS-Ca2+ signaling capacities. (C) Transduced cells were stained with anti-ICOS-PE 
to access surface levels. Data shown are representative of two independent experiments. 
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Interruption of the triple lysine stretch affects Ca2+ flux initiation 

 In order to find ICOS mutants that selectively lose Ca2+ fluxing ability 

without affecting surface expression level, I carried out individual alanine 

mutations of the triple lysine residues in the ICOS-Y181F backbone  (Figure 

3.3A, p.35). These single lysine mutations did not affect the surface 

expression of ICOS on the surface (data not shown). However, the 

mutation of a single lysine residue did not lead to an abrogation of the 

signal. Nonetheless, there were clear delays in the initiation of Ca2+ flux  

(Figure 3.3B, p.35). The delay was biggest when the middle lysine residue 

(K168) was targeted and the impacts of changing the flanking lysine 

residues (K167 or K169) were smaller. These results suggest that an 

uninterrupted stretch of positive charges can be important for ICOS to 

induce Ca2+ flux. It remains to be seen if mutations of the lysine residues for 

a similar stretch of positive residues, such as three arginine residues, would 

occasion the receptor function to become ineffective or keep it intact. 
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Figure 3.3: Single mutations in the membrane proximal triple lysine cluster of ICOS lead to 
delayed Ca2+ initiation. (A) Representation of single lysine ICOS mutants in the context of 
ICOS-Y181F. (B) Jurkat-Eco cells were transduced by retroviral vectors expressing indicated 
ICOS mutants and were examined for their ICOS-Ca2+ signaling capacities.  
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ICOS induces intracellular Ca2+ release from the intracellular 

pool 

 ICOS could be involved in TCR-mediated Ca2+ flux possibly through 

the release of the intracellular pool of Ca2+ from the ER or in the later 

stages by interacting with plasma membrane CRAC channels. I tested if 

ICOS can induce calcium release from the intracellular pool by analyzing 

Ca2+ flux capacities of ICOS-Y181F expressed in Jurkat-Eco cells in the 

presence or absence of Ca2+ chelator ethylene glycol tetraacetic acid 

(EGTA) in the buffer. I observed that despite the deprivation of 

extracellular Ca2+, the initial Ca2+ release peak was maintained (Figure 

3.4A, p.37). Consistent with this, I have preliminary data showing that when 

the cells are treated with U73122, an inhibitor of PLCγ1148, 149, ICOS-

mediated Ca2+ induction is compromised in comparison with treatment 

with U73343, an inactive analog of the inhibitor (Figure 3.4B, p.37). In this 

setting, cell viability was reduced, as the concentration of the inhibitor 

might have been higher than optimal for Jurkat-Eco cells 150.  Although it 

needs to be further substantiated, these results suggest that ICOS is 

involved in the earlier events of intracellular Ca2+ release in T cells possibly 

through PLCγ1.     
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Figure 3.4: ICOS is involved in the release of intracellular Ca2+. Jurkat-Eco ICOS_Y181F cells 
were examined for their ICOS-Ca2+ signaling capacities (A) in the presence of Ca2+ 
chelator EGTA, or (B) after treatment with PLCγ1 inhibitor U73122 or it’s inactive analog 
U73343. Data shown are representative of two independent experiments. 
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Ca2+ flux was completely abrogated (Figure 3.5A, p.39). I then 

investigated the potential involvements of Fyn and Lck in ICOS-mediated 

Ca2+ flux. I tested the fluxing abilities of primary CD4 T cells isolated from 

Fyn-/- mice compared to those from WT littermates. I found that Fyn-

deficient T cells had largely intact ICOS-mediated potentiation of TCR-

mediated Ca2+ flux (Figure 3.5B, p.39). Next, I examined the specific 

contribution of Lck using Lck-deficient Jurkat cell line JCam1 and its 

reconstituted derivative JCam1_Lck151 (Figure 3.5C, p.39).  After expressing 

murine ICOS in these cells through endofectin-mediated lentiviral 

transduction, I analyzed their Ca2+ flux capacities. In these preliminary 

experiments, I observed a total abrogation of Ca2+ flux in JCam1 cells 

whereas JCam1_Lck cell had an intact Ca2+ flux (Figure 3.5D, p.39).  

Based on these, I conclude that ICOS-mediated Ca2+ flux depend on the 

Src family kinase Lck whereas Fyn is dispensable. 
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Figure 3.5: ICOS mediates its Ca2+ flux function through Src family kinases. (A) Jurkat 
ICOS_Y181F cells were examined for their ICOS-Ca2+ signaling capacities after treatment 
with Src family kinases inhibitor PP2. (B) Preactivated CD4 T cells were prepared from WT 
or Fyn-KO mice and were examined for their ICOS-Ca2+ signaling capacities. (C) Western 
Blot depicting complete loss of specific proteins in respectively depleted Jurkat mutants 
and their reconstituted counterparts. (D) JCam1 and JCam1_Lck cells were given ICOS- 
Y181F expressing plasmids by retroviral transduction and were then examined for their 
ICOS-Ca2+ signaling capacities. Data shown are representative of four independent 
experiments. 
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Following stimulation, ICOS associates with Lck and ZAP70 and 

increases activation of PLCγ1 

 In an effort to understand the mechanism by which ICOS interacts 

with Lck and PLCγ1 during Ca2+ flux potentiation, I performed in-depth 

biochemical analysis of different TCR signaling components following 

stimulation of the cells. I stimulated activated primary WT CD4 T cells with 

anti-CD3 without or with anti-ICOS and prepared cell lysates to analyze 

protein interactions and phosphorylation status. First, to see whether ICOS 

was associated with known TCR proximal kinases, I lysed the stimulated 

cells with a mild detergent digitonin to maximize the recovery of protein 

complexes. After immunoprecipitation of ICOS, I noticed that without 

costimulation the co-receptor was already associated with significant 

levels of Lck and some ZAP-70 molecules (Figure 3.6A, p.41). Remarkably, 

after costimulation the abundance of Lck molecules increased by 60 % 

and ZAP-70 by 80 %. To specifically look at Lck phosphorylation status13, 152, 

I immunoprecipitated Lck directly following lysis in NP-40 lysis buffer. No 

significant differences were detected for either Tyr505 (Lck inhibitory 

tyrosine) or Tyr394 (Lck activating tyrosine)(Figure 3.6A, p.41). Total tyrosine 

phosphorylation (p-Tyr) didn’t show any differences as well ruling out 

potential changes at other sites on the protein. PLCγ1 is known to be 

activated through phosphorylation of Tyr793. By immunoprecipitating 

PLCγ1, I aimed to look at whether or not after stimulation, ICOS 

augmented PLCγ1 activation through the phosphorylation of Tyr793153, 154. 

Strikingly, costimulation of ICOS significantly increased PLCγ1 activation 

compared to TCR stimulation alone (Figure 3.6B, p.41). Thus, ICOS 

associates with Lck and ZAP-70 and increases PLCγ1 activation in the 

context of CD4 T cell costimulation. 
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Figure 3.6: ICOS associates with Lck and ZAP-70 and increases PLCγ1 activation. (A) 
Western Blot revealing the effect of ICOS costimulation on the association of Src family 
kinases with ICOS and changes in their activation status. (B) Western Blot portraying 
changes in PLCγ1 phosphorylation status upon ICOS costimulation. 

 

 

ICOS does not relocalize into lipid rafts upon stimulation 
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costimulatory receptor CD28, translocate into lipid rafts following 
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was present in those lipid rafts and that Lck was recruited to the area 
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β-cyclodextrin (MCD), a compound forming inclusion complexes with 

cholesterol, therefore disrupting the lipid rafts159. The ability of ICOS-Y181F 

expressing Jurkat-Eco cells to induce Ca2+ flux through ICOS was 

significantly compromised by MCD in a dose-dependent manner (Figure 

3.7A, p.43). Next I tried to determine if ICOS was indeed relocalizing into 

the membrane lipid rafts. For this purpose I isolated lipid rafts by sucrose 

density from Jurkat-Eco cells expressing ICOS-Y181F following stimulation to 

trigger autonomous Ca2+ flux induction. The fractionation method was first 

confirmed in unstimulated cells by blotting the different fractions of the 

gradient for Fyn, which is known to be mostly present in lipid rafts157, 

160(Figure 3.7B, p.43). Then, following ICOS stimulation, I isolated and 

pooled the raft-containing fractions along with the soluble fractions and 

blotted each of them for the presence of ICOS, to judge whether or not 

ICOS relocalized after stimulation. I observed no relocalization of ICOS into 

lipid rafts after stimulation (Figure 3.7C, p.43). Therefore, I found no 

evidence that ICOS relocalizes into lipid rafts upon ligation and the 

impact of MCD on ICOS-mediated Ca2+ flux is probably due to a general 

toxic effect caused by disturbance in membrane structure. 
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Figure 3.7: ICOS doesn’t relocalize into lipid rafts upon stimulation  (A) Jurkat ICOS_Y181F 
cells were examined for their ICOS-Ca2+ signaling capacities after treatment with the 
indicated doses of methyl-β-cyclodextrin (MCD). (B) Jurkat ICOS_Y181F cell lysate was 
fractionated by ultracentrifugation on a sucrose gradient. Collected fractions were then 
analyzed by Western Blot to confirm isolation of lipid raft fractionations. (C) Jurkat 
ICOS_Y181F cells were stimulated with α-ICOS, lysed and fractions representing lipid rafts 
and soluble fractions were pooled.  ICOS was immunoprecipitated from these pools and 
the IP products were quantified by Western blot.   
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DISCUSSION  

 As discussed in the opening chapter, ICOS potentiates TCR-

mediated PI3K activation and intracellular calcium mobilization. Our 

group previously showed that the ICOS-Y181F mutation selectively 

abrogated the capacity of ICOS to recruit PI3K but still led to TCR-

mediated Ca2+ flux potentiation79.  In collaboration with Dr. Yu’s group, we 

also demonstrated that ICOS plays an important role in inducing acute 

GVHD in murine models through PI3K-independent manner121 122. However, 

at this point, the ICOS signal transduction pathway(s) involved in GVHD 

remain unknown.  We hypothesized that the intact pathogenic capacity 

of ICOS-Y181F T cells to induce GVHD relies on ICOS-mediated calcium 

signaling. Our initial goals were to identify the residue(s) responsible for this 

ICOS-mediated Ca2+ signaling and find the mechanism by which the 

receptor achieves this function. Through site-directed mutagenesis and 

flow cytometric analysis of calcium fluxing capacities of mutant ICOS 

proteins, I sought to identify the cytoplasmic residues essential for ICOS-

mediated Ca2+ signaling. 

 In the early stages of this study, I realized that ICOS, when 

transduced in Jurkat-Eco cells, enacted its Ca2+ flux function 

independently of TCR co-ligation. In primary CD4 T cells, this feature 

remained unachievable as ICOS depends on TCR stimulation. The 

“autonomous” nature of ICOS-mediated Ca2+ flux in Jurkat-Eco cells 

facilitated biochemical and genetic analyses that can be either limited or 

impossible in primary T cells.  Specifically, targeted disruption of genes 

encoding Lck, ZAP-70, or PLCγ1 in mice leads to defects in T cell 

development161, 162.  However, Jurkat mutants lacking these components 

proved to be viable with defects in TCR signaling.  163-165. It is important to 

note that every time a mutant form of ICOS was expressed in either system 
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(Jurkat or primary CD4+ T cells), Ca2+ flux patterns were congruent 

suggesting these two systems use the same biochemical signaling 

mechanisms. Also, all the mutants tested never displayed an ICOS 

autonomous Ca2+ flux phenotype in primary CD4+ T cells. Although the 

lack of autonomous Ca2+ fluxing capacity by ICOS in primary T cells 

presumably prevent inappropriate activation of autoreactive T cells, it 

remains elusive how this can be achieved at molecular level.  In primary T 

cells, ICOS could be repressed until initial TCR-mediated signal(s) lift the 

repression mechanism. In Jurkat cells, ICOS could be circumventing the 

initial requirements to lift this repression due to the increase amount of Itk 

and its chronically elevated activity166. Indeed, Itk is known to interact with 

Fyn in the early stages of TCR signaling167. It is possible that the 

abundance of Itk could lead to a bypass of TCR-mediated ICOS licensing, 

allowing it to directly potentiate, or in this case induce, Ca2+ flux. It is still 

unclear if ICOS directly utilizes the TCR machinery in Jurkat-Eco cells or if it 

uses an alternative mechanism. One simple way to investigate this 

hypothesis would be by looking at Ca2+ flux capacity of ICOS in Jurkat 

cells lacking the TCR ζ chain. It should help us unfold the reasons behind 

ICOS autonomous Ca2+ flux induction in Jurkat cells. 

 For the identification of the cytoplasmic cluster(s) of residues 

essential in inducing ICOS-mediated Ca2+ signaling, I examined the 

evolutionary conserved clusters in the cytoplasmic tail of ICOS. ICOS 

possesses three conserved clusters in its cytoplasmic tail: the KKKY cluster 

spanning positions 167 to 170, the SVHDPN from positions 173 to 178 and 

the AVNTNKK cluster from positions 186 to 192. Triple lysine motifs have 

been documented as having various applications for different protein 

functions. One of them is for extracellular matrix adhesion by peripheral 

blood T cells with cyclophilins (cyclosporine A-binding proteins)168 that 

contain the KKK motif as a binding site for glycosaminoglycans (GAGs). In 
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this protein, the lys-lys-lys cluster forms a binding site for GAGs in 

association with another cluster in the protein’s sequence169. A triple lysine 

cluster also represents a positively charged binding site. Negatively 

charged triple glutamic acid clusters (EEE) are known binding sites present 

in calmodulin170, 171. Common posttranslational modifications of lysine, e.g. 

methylation of the ε-amino group NH3+, as it occurs in calmodulin, allows 

for participation in hydrogen bonding and as a general base in catalysis. 

The co-receptor CTLA-4, also bears a lysine rich motif essential to interact 

with the enzyme PP2A172-174. PP2A is essential to control cell signaling by 

timely inactivation of kinase signaling cascades. Although there is no 

evidence for direct binding of PP2A and calmodulin to ICOS in our mass-

spectrometry-based screening experiments these examples of Lys cluster 

in protein-protein interaction suggest its role in signal transduction.  The 

second conserved cluster SVHDPN contains a SXXD motif that is a well 

known consensus phosphorylation site for the serine/threonine selective 

protein kinase Casein kinase 2 (CK2)175. CK2 is a pleiotropic protein kinase 

known to be targeting several different substrates176. CK2 is notably 

implicated in cell signaling and proliferation177, 178. CK2 is already 

recognized as being implicated in Ca2+ signaling in T cells through 

association with CD45179. The D2 domain of CD45 contains four CK2 

phosphorylation sites and is implicated in the regulation of the 

calcium/NFAT T cell activation pathway180. And finally, TXK motifs are 

consensus phosphorylation sites for protein kinase C (PKC). PKC are 

activated by increases of DAG and Ca2+181. PKC activation leads to 

downstream NFAT and NFκB activation182. These three key consensus sites 

present in the cytoplasmic tail sequence of ICOS possibly relate to 

signaling molecules closely or remotely involved in the signaling pathways 

downstream of TCR triggering. I predicted that the key-signaling motif of 

ICOS-mediated Ca2+ flux to be one of these three clusters. My data 
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indicated that the ICOS mutants targeting the SVHDPN and AVNTNKK 

conserved regions still maintaining ICOS Ca2+ flux abilities (data not 

shown; primer sequences in Table 1; -Appendix Table 1, p.67). Results from 

truncated ICOS mutants  (A185-Stop, Y170-Stop) are consistent with these 

data (depicted in Figure1C, p.31). The data from Y170-Stop mutant 

indicate that the membrane proximal KKKY region is sufficient for ICOS-

mediated Ca2+ flux.  Furthermore, mutating the KKKY region to alanine 

residues in the full-length context led to total abrogation of the Ca2+ 

fluxing capacities of ICOS, an effect not observed for the other conserved 

clusters of the cytoplasmic tail. Therefore, I identified a membrane 

proximal cluster of lysine residues both sufficient and necessary for ICOS-

mediated Ca2+ flux.  

Importantly, this KKK cluster is also important to maintain ICOS on 

the T cell surface as triple Ala mutation drastically reduces cell surface 

ICOS level.  This dual function of KKK cluster was not easily separable.  

However, the fact that single Ala mutation can delay Ca2+ flux with 

minimal impact on cell surface levels imply that mediators of Ca2+ flux 

may rely on the triple lysine residues more heavily than those involved in 

ensuring ICOS on the cell surface.  It remains as a challenge to identify a 

mutant ICOS that selective loses the ability to flux Ca2+ while maintaining 

normal ICOS surface level.  A systematic combinatorial mutagenesis 

approach in which two residues of the three lysine residues in the KKK 

cluster are replaced by alanine or glutamic acid residues may prove 

fruitful.     

 It is puzzling how ICOS is licensed by TCR signaling to potentiate 

Ca2+ flux in primary T cells.  One tempting hypothesis is that the highly 

positive KKK cluster of the cytoplasmic tail of ICOS is normally bound to the 

negatively charged membrane through ionic interactions preventing its 
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function, a phenomenon reported for TCR CD3 chains183. A local influx of 

Ca2+ near the TCR may release ICOS tails from the membrane so that it 

can activate downstream signaling cascade.  To test this, I added 

strontium ions (Sr2+) in the buffer used to carry out our Ca2+ flux 

experiments. I proceeded with Ca2+ flux analysis of primary WT CD4 T cells 

treated with that modified buffer (Figure S1; Appendix, p.68). Under these 

conditions, ICOS was still unable to achieve autonomous ICOS-mediated 

Ca2+ flux in primary cells. Thus, it remains to be seen what is mediating the 

repression of ICOS-Ca2+ pathway in the absence of TCR signaling in 

primary T cells. Another tantalizing hypothesis would be that mechanism 

mediating ICOS licensing would be the same mechanism observed for the 

lysine rich motif in CTLA-4. In the case of CTLA-4, the key signaling kinases 

involved downstream are binding this lysine repeat site leading to 

modifications of the phosphorylation state of a tyrosine residue located 

upstream of its the cytoplasmic tail172-174.  In ICOS, a tyrosine residue 

follows the lysine rich repeat. It is fair to suggest that this tyrosine residue 

could be involved in TCR-mediated ICOS licensing. 

 I provided preliminary evidence for the involvement of the Src 

family kinase Lck as the potential key signaling molecule downstream of 

the initial events triggering ICOS-mediated Ca2+ flux. Jurkat mutants 

lacking Lck (JCam1) were unable to induce Ca2+ flux by ICOS stimulation 

while their reconstituted counterparts were (JCam1_Lck). Jurkat mutant 

experiments need to be revisited as the preliminary ones involving 

lentivirus-mediated transduction of Jurkat cells led to reduced cell viability. 

This made impossible the rendition of analysis through kinetics as too few 

cells were responding to the signals. A new approach through 

electroporation gave better results and should be able to provide 

conclusive data. Supplemental experiments were performed to further 

demonstrate the crucial role of Lck in this process. Lck is known to be 
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constitutively active in T cells and its maintenance relies on the HSP90-

CDC37 chaperone complex23, 184, 185. Tanespimycin (17-AAG) is an analog 

of geldanamycin, a proven HSP90 inhibitor186, 187. I treated the cells with 

this compound in order to test the effects on ICOS-mediated Ca2+ flux. In 

my experimental settings, the compound’s efficiency wasn’t optimal, but 

even with ~30% reduction of activated Lck I still observed a delay in Ca2+ 

flux initiation (Figure S2; Appendix, p.68). Altogether, these data strongly 

correlate in showing that Lck is crucial in carrying out ICOS signal 

downstream to mediated Ca2+ flux induction.  I also found no evidence 

that ICOS relocalizes into lipid rafts upon ligation. Therefore the potential 

interaction with Lck is probably not occurring in lipid rafts. Next aim is to 

define signaling components downstream of Lck.  A logical extension is to 

perform Ca2+ flux assays using Jurkat mutants lacking ZAP-70 and PLCγ1. I 

predict the outcome to be consistent with the results obtained from Lck-

mutant Jurkat cells. 

 I showed that ICOS stimulation led to the elevated activation of 

PLCγ1 and that the release of Ca2+ originated from the intracellular pool. 

Whether it is directly involved in the release from the ER through the IP3 

receptor remains to be proven. Another possibility is that it could involve 

mitochondria since they are known to be involved in Ca2+ signaling188, but 

since their involvement concerns the regulation of CRAC channels rather 

than the release from the ER, it is unlikely that ICOS governs their 

activation. The results on PLCγ1 activation were shown in an ICOS-WT 

context. The next step is to confirm it in an ICOS-Y181F context and 

determine if mutations that affect Ca2+ flux also compromise or disrupt Lck 

association and PLCγ1 activation. 

 I still don’t know what role ICOS might play downstream of PLCγ1. 

Downstream of the Ca2+ signaling pathway, NFAT is relocalized to the 
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nucleus after activation. The activation of AKT by PI3K can lead to an 

inhibition of the GSK3β kinase189, 190. In the recent years, GSK3β has been 

showed to mediate NFAT phosphorylation in the nucleus leading to its 

nuclear export and therefore, its inactivation191. This allows the cell to 

dictate the occupancy time of transcription factors inside the nucleus192. 

Although, we have shown that ICOS-PI3K pathway is dispensable for early 

Ca2+ flux, where we measure the release of Ca2+ from the intracellular 

pool, later signaling events might require the involvement of PI3K. This can 

be relevant to distinct behavior of CD4 vs. CD8 T cell subsets in GVHD122. 

Whereas CD8 T cells can induce GVHD independently of ICOS-PI3K 

pathway, CD4 T cells seem dependent on PI3K to set off the disease 

symptoms. One possible explanation can be that in CD4 T cells, NFAT 

nuclear retention could be achieved through PI3K-mediated GSK3β 

suppression. Thus, in the absence of ICOS-PI3K activation pathway, ICOS 

can induce initial Ca2+ flux but NFAT may not be able to stay in the 

nucleus long enough due to insufficient suppression of NFAT export 

mechanism.  In this scenario, CD8 T cells may not need to operate ICOS-

PI3K pathway to maintain NFAT nuclear residence.  It is interesting to see if 

CD8 T cells rely on other kinases such as DYRK1A and DYRK2 rather than 

GSK3β to achieve NFAT nuclear export193.  

 To fully understand the dynamics of costimulation in TCR-mediated 

Ca2+ flux, one cannot underestimate to highly probable involvement of 

CD28194. I have preliminary data showing that ICOS and CD28 act 

synergistically to further potentiate TCR-mediated Ca2+ flux (Figure S3; 

Appendix, p.69). Since the concentrations of anti-ICOS Ab I used in these 

experiments are already saturated, this synergy between ICOS and CD28, 

which goes beyond each receptor’s costimulatory capacities, might 

indicate that the two costimulatory molecules activate distinct pathways 

to accomplish their functions.  Further work is required to test this idea and 
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understand the potential collaboration of these to costimulatory receptors 

in T cell biology. 
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SUMMARY 
  

While most studies involving ICOS in GVHD have confirmed its 

critical role in the disease onset, it is yet to be described how it works.  

 

During the course of my Master’s study, I identified the membrane 

proximal cluster of lysine residues as essential in inducing ICOS-mediated 

Ca2+ signaling. Furthermore, I provided evidence for the involvement of 

the Src family kinase Lck in ICOS-mediated Ca2+signaling. With the added 

insight of preliminary results, I propose a model in which ICOS utilizes Lck-

ZAP70-PLCγ1 signaling axis to potentiate TCR-mediated Ca2+ flux and 

possibly PI3K-independent pathogenic function of T cells in GVHD.   

 

Thus, my study is beginning to unravel a complexity in ICOS-induced 

calcium signaling. Further understanding of this pathway could prove 

beneficial in designing new strategies to prevent ICOS-related diseases 

such as GVHD.  
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APPENDIX 

Table 1: List of primers used for site-directed mutagenesis  

A185-Stop TTCATGTTCATGGCGTAATAGGCAGTCAACACAAAC 

Y170-Stop TCAAAAAAGAAATACTAATGAGGATCCAGTGTGCAT 

Y170F_Y181F TTTTCAAAAAAGAAATTCGGATCCAGTGTGCAT 

KKK167-169AAA 
_Y181F 

ATCATCTGGTTTTCAGCGGCGGCGTACGGATCCAGTGTG 

K167A_Y181F ATCATCTGGTTTTCAGCAAAGAAATACGGATAA 

K168A_Y181F ATCTGGTTTTCAAAAGCAAAATACTAATGAGGA 

K169A_Y181F TGGTTTTCAAAAAAGGCATACTAATGAGGATCC 

K167A_ K168A 
_Y181F 

ATCATCTGGTTTTCAGCAGCAAAATACGGATCCAGTGTG 

K167A_ K169A 
_Y181F 

ATCATCTGGTTTTCAGCAAAGGCATACGGATCCAGTGTG 

K168A_ K169A 
_Y181F 

ATCATCTGGTTTTCAAAAGCAGCATACGGATCCAGTGTG 

K167E_ K168E 
_Y181F 

ATCATCTGGTTTTCAGAAGAAAAATACGGATCCAGTGTG 

K167E_ K169E 
_Y181F 

ATCATCTGGTTTTCAGAAAAGGAATACGGATCCAGTGTG 

K168E_ K169E 
_Y181F 

ATCATCTGGTTTTCAAAAGAAGAATACGGATCCAGTGTG 

DPN176-178AAA 
_Y181F 

GGATCCAGTGTGCATGCAGCAGCGAGTGAATTCATGTTC 

S173A_ DPN176-

178AAA _Y181F 
AAGAAATACGGATCCGCAGTGCATGCAGCAGCG 

T189A_Y181F ATGGCGGCAGTCAACGCAAACAAAAAGTCTAGA 

K191A_ K192A 
_Y181F 

GCAGTCAACACAAACGCAGCATCTAGACTTGCAGGT 

IWF163-165VAL 
_Y181F 

GGATGCATACTTATCGTGGCGCTGTCAAAAAAGAAATAC 

Sense primer sequences are listed (5’-3’). Orange–highlighted bases represent the 
mutation in the target sequence.  
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Figure S1: Addition of Sr2+ is not sufficient to allow autonomous ICOS-mediated Ca2+ flux in 
primary CD4+ T cells. Preactivated CD4 T cells were prepared from WT mice and were 
then examined for their autonomous ICOS-Ca2+ signaling capacities after addition of Sr2+ 
in the media during Indo-1 loading and stimulation processes. 

 

 

 

 

  

Figure S2: Inhibition of HSP90 by Tanespimycin treatment leads to delayed ICOS-
mediated Ca2+ flux initiation. (A) Western Blot illustrating the effect of 17-AAG on the 
phosphorylation status of Lck after a 3-hour treatment on Jurkat ICOS-Y181F cells. (B) Cells 
were examined for their ICOS-Ca2+ signaling capacities with or without a 17-AGG 
treatment. 
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Figure S3: ICOS and CD28 act synergistically to further potentiate TCR-mediated Ca2+ flux. 
Preactivated CD4 T cells were prepared from WT mice and were examined for their TCR-
Ca2+ signaling capacities in combination with costimulatory signals coming from either 
ICOS and CD28 or both. 
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