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ABSTRACT 

 

Vascular aging is characterized by changes in the endothelium. Common 

cardiovascular risk factors, including obesity and hypertension, predispose the 

endothelium to increased oxidative stress, leading to endothelial dysfunction 

commonly characterized by diminished nitric oxide bioavailability. Although 

endothelial function can be a major determinant of cardiovascular risk prediction in 

patients, individual testing is still limited in clinical settings and thus there is 

increasing scientific interest in finding better biomarkers.  

Angiopoietin like-2 (angptl2), a recently identified protein, is a pro-

inflammatory and pro-oxidative protein involved in chronic inflammatory disorders 

ranging from obesity to atherosclerosis. As inflammation and increased oxidative 

stress are established underlying mechanisms by which endothelial dysfunction 

occurs, this work focuses on the role of angptl2 in endothelial dysfunction, a topic 

that is largely unexplored. Specifically, this work aims to 1) determine the acute 

effects of angptl2 on endothelial function, 2) characterize endothelial function and 

contribution of different endothelium-derived relaxing factors in various vascular 

beds in a newly generated angptl2 knock-down (KD) mouse model, and 3) examine 

whether the lack of angptl2 expression protects against endothelial dysfunction 

induced by either a high-fat diet (HFD) or angiotensin II (angII) infusion in mice. 

In the first study, we show that a recombinant angptl2 acutely evokes 

endothelial dysfunction in the femoral artery isolated from wild-type (WT) mice, 

likely due to increased production of reactive oxygen species. Also in the femoral 

artery, angptl2 KD mice display better endothelial function compared to WT, which 

may be a result of greater prostacyclin contribution to vasodilation. After a 3-month 

HFD, the main respective endothelium-derived relaxing factors in the femoral and 

mesenteric arteries are preserved in angptl2 KD mice only, which was associated 

with a better metabolic profile, such as lower total cholesterol-to-high-density 

lipoprotein and low-density-to-high-density lipoprotein ratios compared to WT mice. 

After a HFD, KD mice have less triglyceride accumulation in the liver and smaller 

adipocytes in their mesenteric and epididymal white adipose tissues compared to WT 
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mice, while inflammatory gene expressions in adipose tissues increase in WT mice 

only.  

In the second study, we reveal that the lack of angptl2 in KD mice results in 

greater nitric oxide production compared to WT mice in their isolated cerebral 

arteries. Chronic infusion of pro-inflammatory and pro-oxidative angII results in 

cerebral endothelial dysfunction only in WT mice, which is acutely ameliorated with 

either N-acetylcysteine, apocynin, or indomethacin, suggesting increased reactive 

oxygen species, likely derived from the NADPH oxidases 1/2, and increased 

cyclooxygenase-derived endothelium-derived contracting factors. In contrast, 

apocynin reduces cerebral dilation in angII-treated KD mice, suggesting recruitment 

of a potential compensatory dilatory NADPH oxidase pathway. 

These studies are the first to explore angptl2 contribution to endothelial 

dysfunction in different vascular beds, and strongly suggest that angptl2 can directly 

impair endothelial function by its pro-inflammatory and pro-oxidative properties. 

Translating this to the clinical setting, expression levels of angptl2 may be an 

indicator of endothelial function, and lowering angptl2 levels could become a 

potential therapeutic approach in the treatment of chronic inflammatory disorders 

including cardiovascular diseases. 

 
Keywords: Angiopoietin like-2 (angptl2), endothelium-derived relaxing factors, 

obesity, angiotensin II, NADPH oxidase, reactive oxygen species. 
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RÉSUMÉ 

 

Le vieillissement vasculaire est caractérisé par une dysfonction de 

l’endothélium. De nombreux facteurs de risque cardiovasculaire tels que l’obésité et 

l’hypertension prédisposent l’endothélium à un stress oxydant élevé  aboutissant à 

une dysfonction endothéliale, celle-ci étant communément accompagnée d’une 

diminution de la biodisponibilité du monoxyde d’azote. Bien que la fonction 

endothéliale soit un déterminant majeur de la prédiction du risque cardiovasculaire 

des patients, son évaluation individuelle reste très limitée. En conséquence, il existe 

un intérêt scientifique grandissant pour la recherche de meilleurs biomarqueurs.  

L’Angiopoiétine like-2 (angptl2), une protéine identifiée récemment, joue un 

rôle pro-inflammatoire et pro-oxydant dans plusieurs désordres causés par une 

inflammation chronique allant de l’obésité à l’athérosclérose. L’inflammation et un 

stress oxydant accru ont été établis comme des mécanismes sous-jacents à 

l’apparition d’une dysfonction endothéliale, c’est pourquoi ce travail met l’accent sur 

le rôle de l’angptl2 dans la dysfonction endothéliale. Plus précisément, ce travail vise 

à: 1) déterminer les effets aigus de l’angptl2 sur la fonction endothéliale, 2) 

caractériser la fonction endothéliale et la contribution des différents facteurs 

relaxants dérivés de l'endothélium (EDRF) dans plusieurs lits vasculaires, et ce, dans 

un modèle de souris réprimant l’expression de l’angptl2 (knock-down, KD), et 3) 

examiner si l'absence d'expression angptl2 protège contre la dysfonction endothéliale 

induite par un régime riche en graisses (HFD) ou par perfusion d'angiotensine II 

(angII) chez la souris.  

Dans la première étude, l’incubation aigue avec de l’angptl2 recombinante 

induit une dysfonction endothéliale dans les artères fémorales isolées de souris de 

type sauvage (WT), probablement en raison d’une production accrue d'espèces 

réactives oxygénées. Les artères fémorales de souris angptl2 KD présentent une 

meilleure fonction endothéliale en comparaison aux souris WT, vraisemblablement 

par une plus grande contribution de la prostacycline dans la vasodilatation. Après 3 

mois d’une diète HFD, les principaux EDRF respectifs des artères fémorales et 

mésentériques sont conservés uniquement dans les souris angptl2 KD. Cette 
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préservation est associée à un meilleur profil métabolique, une moindre accumulation 

de triglycérides dans le foie et des adipocytes de plus petite taille. De plus, 

l’expression de gènes inflammatoires dans ces tissus adipeux n’est augmentée que 

chez les souris WT.  

Dans la seconde étude, l’absence d’angptl2 résulte en une production accrue 

de monoxyde d’azote dans les artères cérébrales isolées par rapport à celles des 

souris WT. La perfusion chronique d’angII provoque, seulement chez les souris WT, 

une dysfonction endothéliale cérébrale probablement par le biais d’une augmentation 

de la production d’espèces réactives oxygénées, probablement dérivé des NADPH 

oxydase 1 et 2, ainsi que l'augmentation des facteurs constricteurs dérivés de 

l’endothélium issus de la cyclo-oxygénase. En revanche, l’apocynine réduit la 

dilatation cérébrale chez les souris KD traitées à l’angII, ce qui suggère le 

recrutement potentiel d’une voie de signalisation compensatoire impliquant les 

NADPH oxydases et qui aurait un effet vaso-dilatateur.  

Ces études suggèrent fortement que l’angptl2 peut avoir un impact direct sur 

la fonction endothéliale par ses propriétés pro-inflammatoire et pro-oxydante. Dans 

une optique d’application à la pratique clinique, les niveaux sanguins d’angptl2 

pourraient être un bon indicateur de la fonction endothéliale.  

 
 

Mots-clés Angiopoietin like-2 (angptl2), facteurs relaxant dérivés de l’endothélium, 

obésité, angiotensine II, NADPH oxydase, espèces réactives de l’oxygène. 
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1. Introduction 
 

“It has been said that one is as old as one’s arteries. In view of the supreme 

importance of endothelium in arterial function, I should like to modify... this 

statement by saying that one is as old as one’s endothelium.” 

– Rudolf Altschul, 1954 

 

Stated 6 decades ago, at a time when the endothelium was simply considered a 

passive cell-lining in the vasculature, this visionary statement clearly captures the 

relevance of endothelial health in the aging process. Indeed, endothelial cells (ECs) are 

known for their capabilities to secrete a wide spectrum of anti-atherosclerotic substances, 

as well as a balance of relaxing and contracting factors under physiological conditions 

(Sessa 1994; Moncada 1997; Feletou and Vanhoutte 2007; Feletou et al. 2011). However, 

under pathological conditions, where cardiovascular risk factors are present, persistent 

oxidative stress and endothelial dysfunction occur where ECs lose their protective role 

and become pro-atherosclerotic (Feletou and Vanhoutte 2006). Despite ample evidence 

demonstrating strong associations among cardiovascular risks, endothelial dysfunction 

and cardiovascular disease (CVD) (Feletou and Vanhoutte 2006), CVD remains one of 

the leading causes of death in Canada, and costs the Canadian economy more than $20.9 

billion per year (Conference Board of Canada, 2010). The greatest and most established 

cardiovascular risk factor is metabolic syndrome (Katzmarzyk and Janssen 2004), which 

is characterized by obesity, often caused by sedentariness and excess energy intake, 

dyslipidemia, insulin resistance or glucose intolerance, a pro-inflammatory and pro-

thrombotic state, as well as hypertension (Grundy et al. 2004). 

Over the past years, it has become strikingly clear that endothelial dysfunction 

can occur in early childhood and silently progress through age (Deanfield et al. 2007), 

and recent findings have shown potentials in lowering later cardiovascular events with 

lifetime risk management and reduction in risk factors starting at an earlier stage (Ulrich 

et al. 2000; Cohen et al. 2006). Nonetheless, studies that focus on the clinical impact of 

endothelial dysfunction concentrate heavily on patient cohorts presented with established 

CVD (Deanfield et al. 2007). Even though endothelial function testing in patients have 
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shown enormous benefits in understanding the development of endothelial dysfunction 

and ultimately CVD, it is still not yet suitable for individual screening (Deanfield et al. 

2007). Undoubtedly, the endothelium is a dynamic organ and its regulation is vascular 

district-specific with varying results in different vascular beds (Shimokawa et al. 1996; 

Urakami-Harasawa et al. 1997). Thus, a greater and more comprehensive understanding 

of its regulation is clearly warranted. 

In this introductory section, the physiology and pathophysiology of the 

endothelium will first be discussed, followed by an introduction to a relatively new 

family of proteins, the “angiopoietin like-proteins”, emphasizing on one in particular, 

angiopoietin like-2 (angptl2). How this protein is involved in regulating endothelial 

function, specifically in pathological settings, will be the focus of this work.  
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Chapter 1: The Endothelium 
 

1.1. The endothelium – its function and dysfunction 
The endothelium, consisting of a single layer of cells lining the interior surface of 

blood and lymphatic vessels, amount to roughly 1014 cells in the vasculature (Cines et al. 

1998), and has been intensely studied since the discovery of nitric oxide (NO) as a 

vasodilating agent that is produced by ECs (Furchgott and Zawadzki 1980; Palmer et al. 

1987).  Indeed, vascular ECs play an extremely important role in maintaining 

cardiovascular homeostasis besides merely acting as a physical barrier between the lumen 

and vessel wall.  It secretes a wide spectrum of mediators that can regulate cellular 

adhesion and permeability, vessel wall inflammation, smooth muscle cell proliferation, 

angiogenesis, and vascular tone (Sessa 1994; Moncada 1997).  One of the most important 

features of the endothelium is its capacity to affect vascular tone by producing a balance 

of vasorelaxing and vasoconstricting factors (Luscher et al. 1989; Deanfield et al. 2007).  

Among them include NO (Furchgott and Zawadzki 1980), prostacyclin (PGI2) (Moncada 

and Vane 1978), and endothelium-derived hyperpolarizing factor (EDHF) (Komori and 

Vanhoutte 1990; Garland et al. 1995), collectively called endothelium-derived-relaxing 

factors (EDRFs), which contribute to vasodilation, as well as endothelin-1 (ET-1) 

(Pernow et al. 2012), thromboxane (TXA2) (Feletou and Vanhoutte 2006), superoxide 

anion (O2
-!) (Katusic and Vanhoutte 1989), collectively called endothelium-derived-

contracting factors (EDCFs), which contribute to vasoconstriction, as depicted in Figure 

1. Under the physiological state, endothelial nitric oxide synthase (eNOS)-generated NO 

mainly determines vascular tone (Sessa 1994; Moncada 1997), and is the major 

contributor of a quiescent state of the vascular wall by inhibition of inflammation and 

adhesion (Bath et al. 1991), cell proliferation (Yang et al. 1994), thrombosis (Ignarro 

1989), and limits mitochondrial oxidative phosphorylation (Moncada and Erusalimsky 

2002).     
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Figure 1. Proposed mechanisms of endothelium-derived relaxation and contraction in the 
smooth muscle cell by various known EDRFs and EDCFs. Abbreviations: EDRF: 
endothelium-derived relaxing factor; EDCF: endothelium-derived contracting factor; AA: 
arachidonic acid; eNOS: endothelial nitric oxide synthase; O2

-!: superoxide; SOD: 
superoxide dismutase; KCa: calcium-activated potassium channels; K+: potassium ion; 
NOX: nicotinamide adenine dinucleotide phosphate oxidase; COX: cyclo-oxygenase; 
PGI2: prostacyclin; TXA2: thromboxane A2; ACE: angiotensin converting enzyme; 
AngII: angiotensin II; ECE: endothelin-1 converting enzyme; ET-1: endothelin-1. 
 

1.1.1. Endothelium-derived relaxing factors (EDRFs) 
With the knowledge that the endothelium serves as a regulator of vascular tone, 

research has begun to focus on its mechanisms.  The endothelium responds to both 

physical (such as shear stress and flow (Davies 1995)) and chemical (such as 
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acetylcholine (ACh) and bradykinin (Groves et al. 1995; Drexler 1999)) stimuli.  The 

following sections will highlight the most studied EDRFs and their respective 

mechanisms leading to vasodilation. 

 

1.1.1.1. Nitric oxide (NO) 
First discovered by Furchgott and Zawadzki and an EDRF (Furchgott and 

Zawadzki 1980), this endothelium-dependent relaxing factor was identified as NO 

(Palmer et al. 1987), and was first documented to derive from vascular ECs from the 

conversion of L-arginine (Palmer et al. 1988).  The contribution of NO to vasodilation is 

well recognized, largely in conduit arteries such as the aorta, but also extends to all types 

of blood vessels (Forstermann et al. 1994).  The generation of NO, whether basal or 

stimulated, is dependent on the endothelial, constitutively-expressed enzyme eNOS, a 

dimeric, bi-domain enzyme with a C-terminal reductase domain and N-terminal oxidase 

domain. eNOS is responsible for the conversion of L-arginine into NO through a two-

step, 5-electron-oxidation process in the presence of cofactors including 

tetrahydrobiopterin (BH4) (Abu-Soud et al. 1994; Forstermann and Munzel 2006). 

Subsequent to its generation, NO diffuses from the endothelium to the vascular smooth 

muscle cells (VSMC), where it activates guanylate cyclase (GC), leading to cyclic 

guanosine monophosphate (cGMP)-mediated vasodilation (Deanfield et al. 2007), as 

shown in Figure 2.  NO has an extremely short half-life ranging from 3 to 5 seconds 

(Ignarro 1989), and is readily degraded by O2
-! (Gryglewski et al. 1986) and oxidized 

into nitrite and nitrate (Hibbs et al. 1988).  Physiologically, a potent stimulator of NO 

generation is shear stress through a non-receptor-dependent mechanisms (Rubanyi et al. 

1986; Corson et al. 1996), and pharmacologically, a number of agonists have been found 

able to stimulate NO generation including ACh and bradykinin, both of which bind to 

their respective receptor, which lead to subsequent downstream vasodilatory pathways 

(Doyle and Duling 1997).   

 

1.1.1.1.1. Regulation of eNOS activity and its downstream pathways 
 There are 4 distinct isoforms of NOS – neuronal (nNOS), inducible (iNOS), 

endothelial (eNOS) (Forstermann et al. 1993), and red blood cell NOS (Jubelin and 
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Gierman 1996). As eNOS is the dominant NOS isoform expressed in the vasculature that 

produces NO under physiological conditions, it will be the primary focus of this chapter. 

The activity and expression of eNOS are tightly regulated both transcriptionally (Wang 

and Marsden 1995) and translationally (Sase and Michel 1997). Post-translationally and 

in its inactive form, eNOS is bound to inhibitory protein caveolin-1 and localized at 

caveolae in the cell membrane (Lisanti et al. 1994). Stimulation such as receptor-

mediated rise in intracellular calcium has been shown to activate eNOS by disrupting the 

protein-protein interaction between eNOS and caveolin-1 (Brouet et al. 2001), thus 

increasing NO production.  

 There are two main branches of eNOS activation – calcium-dependent and 

calcium-independent activation, as shown in Figure 2. Classical agonists such as ACh act 

via G-protein-coupled receptors (GPCRs) to generate intracellular rise in calcium, which 

then binds to calmodulin and together bind to eNOS, resulting in its activation (Busse and 

Fleming 1995). In the other case, independently of calcium, stimuli such as shear stress 

(Ayajiki et al. 1996) and insulin (Zeng and Quon 1996) activate phosphatidylinositol 3-

kinase (PI3K) and protein kinase B (Akt), which then phosphorylate and activate eNOS 

(Harris et al. 2001). This PI3K/Akt signaling pathway downstream of insulin stimulation 

is, interestingly, shared with insulin-dependent glucose transporter type 4 (GLUT-4)-

mediated glucose uptake (Hsueh and Law 1999), which will gain importance in settings 

of insulin resistance and associated dysfunctions.  

Subsequently, the activated eNOS generates NO, as described in section 1.1.1.1., 

which diffuses into VSMC and activates GC by binding to its heme group at the iron 

(Lowenstein et al. 1994). Activation of GC leads to its synthesis of cGMP from GTP, 

which in turn activates cGMP-dependent protein kinase G (Carvajal et al. 2000), 

initiating a cascade of phosphorylation reactions resulting in physiological effects such as 

lowering intracellular calcium in VSMC and ultimately leading to vasorelaxation (Francis 

and Corbin 1994; Lohmann et al. 1997), as shown in Figure 2.   
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Figure 2. Calcium-dependent and –independent activation of eNOS to produce NO for 
smooth muscle cell relaxation. Abbreviations: ACh: acetylcholine; O2: oxygen;  NADPH: 
nicotinamide adenine dinucleotide phosphate; Cav-1: caveolin-1; eNOS: endothelial 
nitric oxide synthase; NO: nitric oxide; PI3K: phosphatidylinositol 3-kinase; Akt: protein 
kinase B; Ca2+: calcium; CaM: calmodulin; HSP90: heat shock protein 90; BH4: 
tetrahydrobiopterin; GC: guanylate cyclase; cGMP: cyclic guanosine monophospate: 
PKG: protein kinase G. 
 

1.1.1.1.2. Vascular protection and anti-oxidative effects of NO 
 Besides its ability to act as a vasodilating agent, vascular NO possesses many 

other physiological properties.  Importantly, NO has anti-platelet (Radomski and 

Moncada 1993), anti-adhesive (Bath et al. 1991), anti-proliferative (Yang et al. 1994) and 

anti-inflammatory (Bath et al. 1991) effects, and these properties become extremely 

important in settings of atherogenesis. For example, NO can potently inhibit aggregation 

of platelets and leukocytes onto the vessel wall. It does so by interfering with the 
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adhesive bonding between the leukocyte adhesion molecule and the endothelium surface, 

which is an early event of atherogenesis (Forstermann et al. 1994). In addition, it has 

been reported that NO could suppress DNA synthesis, mitogenesis, as well as 

proliferation of VSMC (Forstermann et al. 1994). 

 As mentioned, interactions between vascular signaling such as that of NO and 

oxidants such as superoxide are well documented. NO is best known for its ability to 

impair oxidation of free fatty acids (FFA), phosphatidylcholine and low-density 

lipoprotein (LDL) particles. NO induces endothelial ferritin formation (Recalcati et al. 

1998), which then can reduce oxidative damage by preventing superoxide generations as 

ferritin binds free iron ions (Balla et al. 1992). Mechanistically, NO induces expression 

of heme oxygenase-1 (HO-1), which can then increase formation of bilirubin and carbon 

monoxide (Maines 1997), which in turn can scavenge superoxide and activate soluble GC 

(sGC), respectively (Stocker et al. 1987). NO has also been documented to induce 

extracellular superoxide dismutase both in vitro and in vivo in VSMC (Fukai et al. 2000). 

As a result, NO is able to decrease both superoxide and peroxynitrite levels in the vessel 

wall.   

 

1.1.1.2. Prostaglandins (PGs) 
Synthesized mainly from fatty acid (FA) arachidonic acid (AA) derived from the 

cell membrane released by phospholipase A2, PGs were discovered before NO was 

identified as an endothelium-derived vasoactive substance (Moncada et al. 1976).  AAs 

are then metabolized by different enzymes – prostaglandin H synthases (PGH synthases, 

or more commonly cyclo-oxygenases COX-1 or -2) (Vane et al. 1998), lipoxygenases, or 

cytochrome P450 (Morrow et al. 1990).  COX-1 and -2 are the first and also rate-limiting 

enzymes to process PGs, and give rise to prostaglandin G2 (PGG2), which is reduced into 

short-lived prostaglandin H2 (PGH2).  The fate of PGH2, in turn, depends on the actions 

of PG synthases – prostaglandin D2 synthase (PGDS), prostaglandin E2 synthase (PGES), 

prostaglandin F2α synthase (PGFS), prostaglandin I2 synthase (PGIS) and thromboxane 

synthase (TXS), which form the five main PGs – prostaglandin D2 (PGD2), prostaglandin 

E2 (PGE2), prostaglandin F2α (PGF2α), prostaglandin I2 (PGI2), and thromboxane A2 
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(TXA2), respectively. A schematic representation of AA metabolism is shown in Figure 

3.   

 
 

 
 

Figure 3. A schematic representation of AA metabolism. AA is first derived from cell 
membrane phospholipids by PLA2, which is metabolized by COX-1 and COX-2 into 
PGG2, and is then reduced into PGH2. Subsequently, PGH2 is further metabolized by 
different PG synthases into distinct prostanoids. Abbreviation: PLA2: phospholipase A2; 
COX-1/2: cyclo-oxygenase 1/2; PGG2: prostaglandin G2; PGH2: prostaglandin H2; PGI2: 
prostaglandin I2; PGE2: prostaglandin E2; PGD2: prostaglandin D2; PGF2α: prostaglandin 
F2α; TXA2: thromboxane A2; PGIS: prostaglandin I2 synthase; PGES: prostaglandin E2 
synthase; PGDS: prostaglandin D2 synthase; PGFS: prostaglandin F2α synthase; TXS: 
thromboxane A2 synthase; prostaglandin I2 receptor: IP; prostaglandin E2 receptor: EP; 
prostaglandin D2 receptor: DP; prostaglandin F2α receptor: FP; thromboxane A2 receptor: 
TP. 
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PGI2, derived from PGI2 synthase (Hara et al. 1994), is typically described as an 

endothelium-derived vasodilator, as it can bind to and stimulate its receptor, the IP 

receptor, to activate adenylate cyclase and increase intracellular cAMP concentration and 

produce smooth muscle relaxation (Wise and Jones 1996). PGI2 synthase is highly 

expressed in ECs (Tang and Vanhoutte 2008) and to a lesser degree also in VSMC (Wu 

and Liou 2005). Furthermore, vasodilation by PGI2 has been accompanied by 

hyperpolarization of adjacent VSMC, which may involve potassium channels (Corriu et 

al. 2001). Of note, plasma concentrations of PGI2 in human has been observed to peak at 

infancy and decrease throughout life (Kaapa et al. 1982). Hence, PGI2 is usually not the 

main vasodilator in most vascular beds (Shimokawa et al. 1996); however, its 

vasodilatory role could become important in the face of decreased NO bioavailability, for 

instance, PGI2 may compensate for the loss of NO in hypertensive patients (Bulut et al. 

2003). 

 

1.1.1.2.1. Other physiological roles of PGI2 
In most arterial beds, many believed that the synthesis of PGI2 and downstream 

responses were not altered under pathological settings. A prime example was showcased 

by the intact PGI2 vasodilating system in the coronary resistance arteries of 

atherosclerotic mice, despite damages in NO-dependent dilations (Godecke et al. 2002). 

However, this is not always the case, as shown in the abrogated PGI2-dependent 

vasodilation in the aorta of aldosterone-treated normotensive and hypertensive rats 

(Blanco-Rivero et al. 2005). Importantly and in addition to its vasodilating features, PGI2 

is characterized by its powerful anti-coagulant and anti-adhesive properties (Moncada 

and Vane 1978). This was highlighted by the unexpected results coming from colorectal 

adenoma patients presented with adverse cardiovascular effects of rofecoxib, 

trademarked as Vioxx (Merck and Co.) (Bresalier et al. 2005), ultimately leading to its 

withdrawal from the market. This could be partly explained by its inhibition of protective 

PGI2 synthesis, in spite of reduced TXA2 synthesis (Griffoni et al. 2007). Indeed, PGI2 is 

the most potent endogenous inhibitor of platelet aggregation (Bunting et al. 1976; 

Moncada et al. 1976). It can also act in a paracrine or endocrine manner to affect 

functions of other cells types via specific GPCRs (Negishi et al. 1995) or nuclear 
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receptors such as the peroxisomal proliferator-activated receptors (PPARs) (Forman et al. 

1997), as well as regulate physiological events such as angiogenesis (Spisni et al. 1992) 

and apoptosis (Li et al. 2004). 

 

1.1.1.3. Endothelium-derived hyperpolarizing factor (EDHF) 
The most recently discovered group of EDRF has been broadly termed 

endothelium-derived hyperpolarizing factor (EDHF), with its first evidence reported in 

1988 (Chen et al. 1988; Feletou and Vanhoutte 1988). By definition, EDHF is a 

substance or an electrical signal that is released from the endothelium and is able to 

hyperpolarize VSMC resulting in relaxation (Fleming 2000; Feletou and Vanhoutte 

2007). Its contribution to vasodilation is found in the greatest levels in small arteries such 

as the resistance arteries (Shimokawa et al. 1996; Urakami-Harasawa et al. 1997; Luksha 

et al. 2009).  Ongoing debates have accumulated over the recent years surrounding topics 

on the variable nature of EDHFs and their variable mechanisms of actions.  Initially, 

EDHF referred to any relaxing factor that is neither NO nor PGI2, but over the past 

decade, a number of possible candidates have been uncovered: epoxyeicosatrienoic acids 

(Rubanyi and Vanhoutte 1987), hydrogen peroxide (H2O2) (Beny and von der Weid 

1991; Matoba et al. 2000), K+ ions (Edwards et al. 1998), C-type natriuretic peptide 

(Chauhan et al. 2004), as well as contact-mediated mechanisms (Rummery and Hill 

2004). Although the contribution by EDHF to vasodilation is limited in large 

conductance arteries under healthy conditions, it has been documented that EDHF can 

compensate for loss of NO bioavailability in disease states (Csanyi et al. 2012).  

The basic mechanism of EDHF release and action can be separated into two 

stages. The first stage involves the pathways that take place in the endothelium: an 

increase in intracellular Ca2+, K+ efflux upon activation of Ca2+-dependent K+ channel, 

followed by hyperpolerization and generation of the EDHF that diffuses through 

myoendothelial gap junctions (McGuire et al. 2001; Busse et al. 2002). The second stage 

involves those taking place in the VSMC: EDHF activating K+ channels and leading to 

endothelium-dependent hyperpolarization, followed by closure of voltage-gated Ca2+ 

channels and lastly, relaxation of the VSMC (Busse et al. 2002; McGuire et al. 2001). 
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1.1.1.3.1. Relevance of H2O2 in cerebral vasculature 
While in most vascular beds eNOS-derived NO predominantly contributes to 

vasodilation including flow-mediated dilation (FMD) (Davies 1995), both NO (Iadecola 

1992; White et al. 1998) and EDHF (Fujii et al. 1991) have been found involved in this 

mechanism. In particular, one of the EDHFs, namely H2O2, has been demonstrated to 

cause vasodilation in the cerebral vasculature from mice (Wei and Kontos 1990; Fraile et 

al. 1994; Wei et al. 1996; Iida and Katusic 2000; Drouin and Thorin 2009). Importantly, 

we previously demonstrated that H2O2-mediated cerebral vasodilation was inhibited by 

an sGC inhibitor, suggesting that H2O2 shared a similar downstream vasodilatory 

pathway with NO (Drouin et al. 2007). H2O2, although not a free radical itself, is the 

product of various superoxide dismutases (SOD), including copper- and zinc-containing 

SOD (Cu/ZnSOD) (Morikawa et al. 2003).  In contrast to highly reactive reactive oxygen 

species (ROS) such as O2
-!, H2O2 is readily diffusible and is relatively stable. Most 

importantly, it does not react with NO to produce peroxynitrite (Pacher et al. 2007). 

Consistent with data from human coronary (Liu et al. 2011) and rat skeletal (Sindler et al. 

2009) arterioles, H2O2 contributes to vasodilation of cerebral arteries in vitro (Fraile et al. 

1994; Iida and Katusic 2000), with strong evidence pointing towards potassium channels 

mediating its effects (Iida and Katusic 2000; Paravicini et al. 2004; Sobey et al. 1997), 

which leads to hyperpolarization and vasodilation (Sobey et al. 1997). Indeed, in rat 

cerebral arterioles, H2O2 caused vasodilation via activation of calcium-dependent 

potassium channels (Sobey et al. 1997), and in cat cerebral arterioles, H2O2 activated 

ATP-sensitive potassium channels (Wei et al. 1996). Exogenous H2O2 and ACh-induced 

H2O2 production may also activate sGC in mouse cerebral arteries (Drouin et al. 2007), 

resulting in elevated cGMP levels that may cause hyperpolarization and subsequently 

relaxation (Nelson et al. 1990). Interestingly, cerebral arterial dilation to H2O2 can also 

stimulate AA release from VSMC via phospholipase A2 activation (Rao et al. 1995), and 

this was confirmed by sensitivity of H2O2-dependent cerebral arteriolar dilation to 

indomethacin (Iida and Katusic 2000), a non-specific COX inhibitor, in addition to H2O2-

mediated cAMP increase (Iida and Katusic 2000). Consistent with this, topical 

application of H2O2 onto piglet cerebral arterioles increased formation of 6-

ketoprostaglandin F1α, thromboxane B2, and PGE2 (Leffler et al. 1990). Elevated cAMP 
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in the VSMC may cause relaxation by activating potassium channels to induce 

hyperpolarization and decrease calcium influx (Nelson et al. 1990). Collectively, these 

findings suggest that H2O2 may also cause dilation indirectly via the COX-mediated 

vasodilatory pathway. Proposed mechanisms of H2O2-mediated vasodilation are 

summarized in Figure 4. Moreover, vasodilatory effects of H2O2 have been documented 

in studies using different vasoactive stimuli – AA (Kontos et al. 1984), bradykinin 

(Kontos et al. 1984; Yang et al. 1991; Sobey et al. 1997), ACh (Drouin et al. 2007), as 

well as flow (Drouin and Thorin 2009).  

The sources of H2O2 have been primarily reported from the dismutation of O2
-!, 

and also directly from various enzymes, such as lipooxygenases, xanthine oxidase and 

NADPH oxidase (Haas et al. 1994; Cai 2005). Importantly, the recent provocative 

proposal that eNOS may be involved as a source of H2O2 in cerebral arteries (Drouin and 

Thorin 2009; Drouin et al. 2007), associated with evidence showing eNOS-dependent 

H2O2-mediated dilation (Zembowicz et al. 1993; Bharadwaj and Prasad 1995; Cai et al. 

2003) have shed light on the relationship between eNOS, the main generator of NO, and 

H2O2, in the cerebral vascular tone regulation. 
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Figure 4. Proposed mechanisms of H2O2 production in the cerebral arteries and its 
downstream effects on the VSMC to cause vasorelaxation. Abbreviations: NOX: 
nicotinamide adenine dinucleotide phosphate oxidase; COX: cyclo-oxygenase; eNOS: 
endothelial nitric oxide synthase; ETC: electron transport chain; O2

-!: superoxide; Cu/Zn 
SOD: copper- and zinc-containing superoxide dismutase; H2O2: hydrogen peroxide; Gpx: 
glutathione peroxidase; H2O: water; O2: oxygen; sGC: soluble guanylate cyclase; GTP: 
guanosine tri-phosphate; cGMP: cyclic guanosine monophosphate; PLA2: phospholipase 
A2; cAMP: cyclic adenosine monophosphate; KATP: ATP-sensitive potassium channel; 
KCa: calcium-dependent potassium channel; CaV: voltage-gated calcium channel. 
 

1.1.1.3.2. The role of eNOS in generating H2O2 

The enzyme eNOS, under physiological conditions, is known for its ability to 

produce NO in its coupled state (Forstermann and Munzel 2006). However, in conditions 

where oxidative stress is abundant or cofactors are limited, eNOS is uncoupled resulting 

in lower NO generation but greater superoxide production (Forstermann and Munzel 

2006; Vasquez-Vivar et al. 1998). In the presence of enzymes capable of reducing 
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superoxide such as SOD, dismutation reaction of superoxide can take place to result in 

H2O2 generation (Cai 2005).  

 The involvement of eNOS in H2O2 generation was confirmed in pressurized 

mouse cerebral arteries. In a seminal study by Drouin et al. using young and healthy 

C57Bl/6 mice, ACh-mediated cerebral vasodilation was abolished by eNOS inhibitor 

Nω-nitro-L-arginine (LNNA), catalase, SOD inhibitor diethyldithiocarbamate (DETC) 

but not by NO inhibitor pyruvate (Drouin et al. 2007). It was demonstrated that eNOS 

was, although uncoupled, physiologically producing H2O2 in these cerebral arteries in 

response to ACh (Drouin et al. 2007). The “uncoupled” state of eNOS to produce H2O2 

was proposed to be physiological as H2O2 generation was not detected in eNOS KO mice 

and was not due to low BH4 levels (Drouin et al. 2007), conditions where pathological 

eNOS uncoupling is commonly observed (Forstermann and Munzel 2006; Vasquez-Vivar 

et al. 1998). On the other hand, excess BH4 induced both NO and H2O2 production 

(Drouin et al. 2007). In addition, eNOS-derived H2O2 activated sGC (Drouin et al. 2007), 

suggesting a shared vasodilatory pathway with NO, as previously proposed by others 

(Iesaki et al. 1999). Most likely, SOD was involved to dismutate superoxide into H2O2 as 

Also, cerebral arteriole ACh-mediated dilation impairment was previously reported in 

heterozygous manganese SOD (MnSOD)+/- mice (Faraci et al. 2006).  

In addition to ACh, it was reported that FMD in mouse cerebral arteries also 

involved eNOS to produce H2O2 (Drouin and Thorin 2009). In this study where cerebral 

arterioles isolated from young and healthy C57Bl/6 mice were used, FMD activated 

eNOS in an Akt-dependent manner that was associated with H2O2 production (Drouin 

and Thorin 2009). Accordingly, the dilation driven by H2O2 was prevented by eNOS 

inhibition and H2O2 scavengers, but not by NO scavengers (Drouin and Thorin 2009), 

strongly implying eNOS involvement in FMD mediated by H2O2.  

Although superoxide generated from eNOS has traditionally been viewed as a 

pathological state (Vasquez-Vivar et al. 1998; Yang et al. 2009), these recent studies, 

especially ones examining smaller cerebral arterioles (Drouin and Thorin 2009; Drouin et 

al. 2007), have provided examples that the unstable superoxide can be converted into 

H2O2 by SOD and that eNOS can potentially regulate vascular tone through H2O2 

production. 



 37 

 

1.1.1.4. Heterogeneity in EDRF contribution to vasodilation 
Relaxation of blood vessels dependent on the endothelium is the results of various 

agents such as ACh and bradykinin, or physical stimulus such as shear stress. Not only 

does the nature of the stimulus determine the specific EDRF responsible for the resulting 

signaling events, contribution by various EDRF to dilation of arteries also heavily relies 

on the specific arterial bed. As a general rule, larger conductance arteries usually utilize 

NO to a greater degree than other EDRFs, while smaller resistance arteries depend on 

EDHF more preferentially (Shimokawa et al. 1996; Urakami-Harasawa et al. 1997). For 

instance, the aorta, a conductance artery, mainly utilizes NO for dilation (Shimokawa et 

al. 1996) whereas smaller resistance arteries typically rely on EDHF (Shimokawa et al. 

1996; Urakami-Harasawa et al. 1997), as illustrated by the key role of H2O2 in small 

cerebral arteries (Drouin et al. 2007; Drouin and Thorin 2009). The contribution of PGI2, 

on the other hand, usually does not play major roles regardless of vessel size (Shimokawa 

et al. 1996). This is summarized in Figure 5.  
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Figure 5. EDRF heterogeneity in arteries of varying sizes. NO is the main contributor to 
vasodilation in larger conductance artery whereas its role decreases as artery size 
decreases, and EDHF gains important roles in the small artery. Abbreviations: eNOS: 
endothelial nitric oxide synthase; iNOS: inducible nitric oxide synthase; nNOS: neuronal 
nitric oxide synthase; NO: nitric oxide; sGC: soluble guanylate cyclase; GTP: guanosine 
tri-phosphate; cGMP: cyclic guanosine monophosphate; Cu/ZnSOD: copper- and zinc-
containing superoxide dismutase; O2

-!: superoxide; H2O2: hydrogen peroxide; EDHF: 
endothelium-derived hyperpolarizing factor. 
 
Adapted with the permission from the Rockefeller University Press: J Exp Med. Takaki 
A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, 
Yanagihara N,  Shimokawa H. Crucial role of nitric oxide synthases system in 
endothelium-dependent hyperpolarization in mice. J Exp Med. 205, 2053-2063. 
Copyright (2008). 

 

However, the study of EDRF contribution to vasodilation is further complicated 

by their heterogeneity among different species and genders. Studies using different 

animal models have provided ample evidence demonstrating this rich diversity of 

vasodilatory pathways. For instance, FMD in porcine coronary arterioles exclusively 

depends on NO, demonstrated by complete abolishment of FMD by NOS inhibitors (Kuo 
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et al. 1991), while FMD is mainly mediated by PGI2 in cremaster muscle arterioles in rats 

(Koller et al. 1995). In the guinea pig coronary arterioles, NO is the main vasodilator 

(Kelm and Schrader 1990; Kostic and Schrader 1992; Miura and Gutterman 1998), 

whereas in the same vascular bed in human, both NO and EDHF participate in 

vasodilation (Stork and Cocks 1994; Miura and Gutterman 1998; Miura et al. 1999), and 

in the rat, it is completely mediated by an EDHF (Fulton et al. 1995), whereas it is 

mediated by both NO and PGI2 in the rabbit (Lamontagne et al. 1992). Furthermore, an 

evolution of vasodilators used in various stages of development has been observed in 

both animals and human. For example, in the vertebral artery, contribution of PGI2 to 

ACh-mediated dilation is present at infancy but diminishes while NO takes over in 

adulthood (Charpie et al. 1994). As another example, endogenous H2O2 contributes to 

skeletal arteriole vasodilation in juvenile rats but not in weaning rats (Samora et al. 

2008). Taken together, the study of endothelium-dependent dilator mechanisms is 

complex – usually not only one vasodilator is involved, and different EDRFs can interact 

and/or compensate for each other. Hence, the endothelium is a dynamic organ with 

heterogeneous responses depending on different factors. 

 

1.1.1.4.1. Interactions between different vasodilator pathways 
 In addition to the diversity of endothelium-dependent vasodilatory mechanisms, 

there are complex interactions between EDRFs. It has been proposed that COX and NOS 

enzymes influence each another, such that inhibition of either system could enhance the 

role of the other (Ichihara et al. 1998), while COX-2-derived vasodilators were observed 

to compensate for NO in renal arteries when NOS was acutely inhibited (Beierwaltes 

2002).  A more recent study reported a direct binding interaction between iNOS and 

COX-2 that facilitates NO S-nitrosylation and activation of COX-2 (Kim et al. 2005). 

Interactions between NO and cAMP, a downstream mediator in the COX pathway to 

mediate vasodilation, have also been reported (Zhang and Hintze 2001). Indeed, the study 

by Zhang and Hintze suggests that cAMP can activate protein kinase A, which in turn, 

through a PI3K-dependent pathway, phosphorylates eNOS by Akt (Zhang and Hintze 

2001). Once again, there are complicated interactions among different vasodilatory 

pathways even within the same arterial bed in the same species.  



 40 

In conclusion, the endothelium is capable of secreting different EDRFs, namely 

NO, PGI2, and EDHF in response to both mechanical and chemical stimuli in context-

dependent manners which is also dependent on vascular bed and vessel size, with 

complex interactions among them. With that, we will now focus on the other main group 

of endothelial mediators – the EDCFs. 

  

1.1.2. Endothelium-derived contracting factors (EDCFs) 
The endothelium, besides mediating relaxation, also plays a vital role to mediate 

vasocontraction to maintain vascular tone. Endothelium-dependent contractions are 

induced by both physical (such as pressure, stretch, and flow) and chemical (such as 

cytokines) stimuli (Luscher et al. 1992) and in response, the endothelium releases 

EDCFs. Endothelium-dependent contractions have been demonstrated in different 

vascular beds – aorta (Luscher and Vanhoutte 1986), carotid arteries (Traupe et al. 2002), 

cerebral arterioles (Mayhan 1992), femoral arteries (Shi et al. 2007) and many more. 

Particularly, in disease states such as hypertension, effects of EDCFs become more 

prominent as they may counteract actions of EDRFs to increase vascular tone. Many 

EDCFs have been identified and characterized, and will be briefly outlined below.  

 

1.1.2.1. Prostanoids 
Derived from COX-1 and -2 enzymes, prostanoids including endoperoxides 

(Auch-Schwelk et al. 1990), PGI2 (Rapoport and Williams 1996) and thromboxane A2 

(Shirahase et al. 1988), have all been proposed to be EDCFs. Endoperoxides are 

immediate products of COX enzymes, which are then spontaneously or enzymatically 

converted into downstream prostanoids such as PGI2, prostaglandin D2 and E2 (Bos et al. 

2004), but are also vasoconstrictors themselves (Ito et al. 1991).  

 PGI2, which was previously mentioned as one of the EDRFs, can also act as a 

vasoconstrictor at high doses (Levy 1980; Williams et al. 1994) through activation of the 

TP receptors. This usually occurs in pathological states such as hypertension, where there 

are dysfunctions in the main IP receptor (Rapoport and Williams 1996). 

 Lastly, TXA2 is the major COX-derived vasoconstrictor resulting from the 

thromboxane synthase-catalyzed reaction from endoperoxides (Moncada and Vane 1978) 
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and acts mainly on TP receptors (Figure 3), resulting in elevated calcium levels through 

calcium entry in VSMC, leading to contraction (Berridge and Irvine 1984; Shenker et al. 

1991). The role of TXA2 becomes increasingly important both in aging (Drouin et al. 

2011) and dyslipidemia (Gendron and Thorin 2007) in mouse cerebral arteries, as well as 

during atherosclerosis in mouse renal arteries (Gendron and Thorin 2007). In mouse 

cerebral arteries, increased TXA2 production was reported to limit eNOS activity (Drouin 

et al. 2011), which was partly restored when the mice were given preventive polyphenol 

catechin treatment (Drouin et al. 2011). In mouse renal arteries, TXA2 production was 

augmented in the presence of dyslipidemia, and was associated with a change in the 

redox environment (Gendron and Thorin 2007). 

 

1.1.2.2. Endothelin-1 (ET-1) 
Isolation of the 21-amino acid protein endothelin was first reported in 1988 

(Yanagisawa et al. 1988) and include 3 main isoforms – ET-1, ET-2, and ET-3 (Inoue et 

al. 1989). ET-1, which is the predominant isoform expressed in the vasculature and 

released by ECs, potently vasoconstricts both in vitro and in vivo (Hickey et al. 1985; 

Yanagisawa et al. 1988; Miller et al. 1989), and will be the main focus herein. Through 

activation of two receptor subtypes – ETA (localized in VSMC only) and ETB (localized 

in EC and VSMC), ET-1 exerts its vascular actions to result in phospholipase C (PLC) 

activation, increased cytosolic calcium and myosin kinase phosphorylation for smooth 

muscle contraction and ultimately vasoconstriction (Seo et al. 1994). In ECs, ET-1 

activation of ETB would increase intracellular calcium leading to eNOS activation and 

dilation (Tsukahara et al. 1994), whereas stimulation of ETB receptors in VSMC would 

cause vasoconstriction (Haynes et al. 1995). Therefore, receptor localization and the 

balance between ETA and ETB receptors would ultimately determine the net effects of 

ET-1. ET-1 can, in healthy human beings, cause increases in mean arterial blood 

pressure, reduction in heart rate, cardiac output and stroke volume (Weitzberg et al. 

1993), suggesting involvement of this peptide to regulate vascular homeostasis. 
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1.1.2.3. Angiotensin II (AngII) 

AngII is a peptide hormone well known to cause vasoconstriction, and in the long 

run, to cause increased blood pressure. AngII is considered the main final mediator of the 

renin-angiotensin system (RAS), where renin is a protease released by the 

juxtaglomerular cells of the kidney. Renin functions to cleave angiotensinogen, which is 

a glycoprotein released in the blood mainly from the liver, converting it into angiotensin I 

(angI) (Skeggs et al. 1954), which is then subsequently converted into angII (Skeggs et 

al. 1956b) by angiotensin converting enzyme (ACE) (Skeggs et al. 1956a). AngII then 

acts as the effector molecule by stimulating two possible receptor subtypes – the angII 

receptor type 1 (AT1R) (Murphy et al. 1991; Sasaki et al. 1991) and angII receptor type 2 

(AT2R) (Chiu et al. 1989; Whitebread et al. 1989; Mukoyama et al. 1993). Besides 

merely acting as a vasoconstrictor, angII plays a pivotal role in the maintenance of 

cardiovascular homeostasis, while it is also implicated in many CVDs (Higuchi et al. 

2007), which will be discussed later. 

It is well established that the AT1R and AT2R subtypes, although sharing 34% 

sequence homology, are distinct in their expression patterns and functions (Lemarie and 

Schiffrin 2010). While the AT1R is ubiquitously expressed in the cardiovascular system, 

the AT2R is found highly expressed during fetal development and its expression is 

reduced rapidly after birth (Henrion et al. 2001). Furthermore, binding of angII to these 

receptors results in distinct signaling pathways and cellular responses (Lemarie and 

Schiffrin 2010). For instance, downstream signaling pathways of AT1 include 

vasoconstriction, superoxide production, cell proliferation and hypertrophy, whereas 

those of AT2 include vasodilation, growth inhibition and NO production (Lemarie and 

Schiffrin 2010). Importantly, pathological effects of angII have mainly been attributed to 

angII binding to the AT1R (Mehta and Griendling 2007; Lemarie and Schiffrin 2010).  

The AT1R can be further categorized into the A and B subtype (Inagami et al. 

1994), which share 96% homology as well as ligand binding and downstream signaling 

mechanisms. It is now clear that angII binding to AT1R leads to downstream effects that 

are also time-dependent. Within seconds, angII can activate PLC (Griendling et al. 1986), 

generating inositol phosphate and calcium mobilization (Brock et al. 1985), leading to 
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vasoconstriction. In the scale of minutes, angII can stimulate mitogen-activated protein 

kinase (MAPK) activity (Morrell et al. 1999) and in hours, the Janus kinase (JAK) signal 

transducers and activators of transcription (STAT) pathway (Marrero et al. 1995). 

Downstream transduction pathway of the AT1R is also cell type- and tissue-specific, 

such as hypertrophy and vasoconstriction in the VSMC, and sodium re-absorption in the 

kidneys (Lemarie and Schiffrin 2010).  

The signaling transduction pathway of angII through the AT1R is tightly 

regulated. Besides the classic regulating mechanisms such as receptor transcription 

(Lassegue et al. 1995), phosphorylation (Kai et al. 1994) and receptor desensitization 

after angII binding (Sasamura et al. 1994), and heterodimerization with other receptors 

(AbdAlla et al. 2000), additional proteins have been identified to regulate the local 

sensitivity of the receptor to angII by modifying receptor surface expression via its 

recycling (Daviet et al. 1999; Lopez-Ilasaca et al. 2003; Tsurumi et al. 2006). In 

particular, the cytoplasmic C-terminal of the AT1R may interact with specific AT1R-

associated proteins, such as angptl2 (Guo et al. 2003, Guo et al. 2001), which can 

ultimately determine receptor efficacy and function, and will be discussed in detail later 

(section 1.3.2.4.). 

 

1.1.2.4. Superoxide 
Superoxide is generated from molecular oxygen by various sources, such as the 

COX enzymes, xanthine oxidases, and NOX enzymes (Cai and Harrison 2000), can give 

rise to multiple ROS and reactive nitrogen species (Faraci 2006), and can act as an EDCF 

(Katusic and Vanhoutte 1989). Superoxide is most reactive with NO, with NO reacting 

three times as quickly with superoxide to form peroxynitrite than with SOD (Faraci 

2005). Loss of NO function to vasodilate is the main consequence of its inactivation by 

superoxide. Interestingly, however, effects of superoxide have been suggested to be 

biphasic, as demonstrated in basilar cerebral arterioles from rabbits, with low 

concentration resulting in relaxation but high concentration resulting in contraction 

(Didion and Faraci 2002). Furthermore, superoxide is capable of directly contracting 

vascular smooth muscle in cerebral arteries independent of the endothelium (Tosaka et al. 

2002).  
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Taken together, the single-cell-layer endothelium plays a vital role in regulating 

vascular tone by secreting both EDRFs and EDCFs in response to multiple stimuli. To 

achieve vascular homeostasis, the endothelium maintains the balance between 

vasodilation and vasoconstriction, prevention and stimulation of VSMC proliferation and 

migration, inhibition and promotion of platelet adhesion and aggregation, as well as 

between thrombogenesis and fibrinolysis (Davignon and Ganz 2004). When this balance 

is tipped, endothelial dysfunction occurs. 

 

1.1.3. Endothelial dysfunction 
Endothelial dysfunction has long been regarded as the primary first step in the 

cascade leading up to coronary events. In the past, the term “endothelial dysfunction” has 

been used to refer to altered anti-coagulant and anti-inflammatory features of the 

endothelium and vascular remodeling (Feletou and Vanhoutte 2006). The term 

“endothelial dysfunction”, in recent literature, broadly describes impaired endothelium-

dependent relaxation (Winquist et al. 1984; Lockette et al. 1986), and represents a switch 

from the quiescent phenotype of the endothelium to activation of a molecular machinery 

that produces chemokines, cytokines, as well as adhesion molecules, which ultimately 

leads to an inflammatory state (Deanfield et al. 2007).  Under this pathological state, 

ROS can uncouple eNOS and lead to superoxide generation (Forstermann and Munzel 

2006). Loss of NO bioavailability is the hallmark of endothelial dysfunction, which 

ultimately contributes to CVD pathogenesis. Indeed, all major cardiovascular risk factors 

in human including hypercholesterolemia, hypertension, and smoking, have been found 

associated with endothelial dysfunction (Cai and Harrison 2000). Also in this state, there 

is typically imbalance of EDRFs and EDCFs, in favor of the EDCFs, as it is commonly 

observed in patients with CVD. 

The term “endothelial dysfunction” is rather a broad terminology, and in fact is 

quite heterogeneous in nature depending on multiple factors. In the following sections, 

endothelial dysfunction and its mechanisms in different pathological states will be 

introduced and compared. 
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1.1.3.1. Alteration of the NO pathway contributing to endothelial 

dysfunction 
The balance between the synthesis and degradation of NO determines its 

bioavailability. While the biosynthesis of NO is mostly due to activity of eNOS, its 

inactivation can be caused by reactions with various molecules. Most importantly, NO is 

inactivated by superoxide at an extremely rapid rate, 6.7 x 109 mol/L-1 ! s-1 (Thomson et 

al. 1995), which is approximately three times faster than the dismutation of superoxide 

by SOD. Endothelial dysfunction generally describes the loss of NO bioavailability, 

which can be caused by a myriad of factors and pathological states. 

Obvious factors that could result in decreased NO bioavailability include 

decreased eNOS expression (Wilcox et al. 1997), limited substrates or cofactors for 

eNOS (Pou et al. 1992), possible alterations in the signaling pathways that activate eNOS 

(Shimokawa et al. 1991), as well as decreased VSMC sensitivity to NO (Drexler 1997). 

Most importantly, and for the scope of the current work, is the degradation or 

deactivation of NO by ROS (Cai and Harrison 2000).  

Although it may seem paradoxical, one of the first studies using 

hypercholesterolemic rabbit aorta, which displayed impaired endothelium-dependent 

vasorelaxation, showed augmented production of NO upon stimulation by ACh, 

implicating functional eNOS activation and the pathways leading up to it (Minor et al. 

1990). These results generated the speculation that although NO was normally produced 

in the hypercholesterolemic state, it was being oxidized to become nitrogen oxides, 

namely nitrites and nitrates. Indeed, when cholesterol-fed rabbits were treated with 

polyethylene-glycolated-SOD, which was able to reduce superoxide, endothelium-

dependent vasorelaxation was improved (Mugge et al. 1991), supporting the notion that 

decreased NO bioavailability was a direct consequence of increased superoxide. In line 

with this, in vitro studies using purified eNOS have also demonstrated that the enzyme, 

besides mainly participating in NO production, can potentially produce superoxide (Xia 

et al. 1998). Besides decreased eNOS function, up-regulation and increased activity of 

another isoform of NOS, namely the iNOS, has been reported to be associated with 

endothelial dysfunction in diabetic rats (Nagareddy et al. 2005) and mice (Gunnett et al. 

2003), hypothyroid rats (Virdis et al. 2009), and lipopolysaccharide-treated mice 
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(Chauhan et al. 2003). Related to this, iNOS was involved in age-related ROS production 

in the rat aorta (Oudot et al. 2006), and was found induced by low-grade vascular 

inflammation (Busse and Mulsch 1990; Kessler et al. 1997). Indeed, it has been 

demonstrated that iNOS generates superoxide at its reductase domain (Xia et al. 1998), 

which may simultaneously react with NO to form peroxynitrite (Beckman et al. 1990).  

Decreased NO bioavailability is also associated with other pathologies, with 

majority of which involving chronic inflammation, such as insulin resistance and 

diabetes, obesity, hypertension, atherosclerosis and many more (Lockette et al. 1986; 

Durante et al. 1988). Before further detailing these pathological states, ROS and their 

sources will first be described.  

 

1.1.3.2. Oxidative stress: reactive oxygen species (ROS) 
 For over half a century, many have focused on the topic of ROS and scientists 

have long suspected that ROS are key players in the aging process and the pathogenesis 

of age-related diseases. ROS are oxygen-derived small molecules produced by all aerobic 

cells, including all vascular cell types – endothelial, vascular smooth muscle, and 

adventitial cells. They are typically generated by a cascade of reactions starting with 

superoxide, and this occurs within the mitochondria (Balaban et al. 2005), peroxisomes 

via cytochrome P-450 (Gonzalez 2005), and through other cellular activities (Mueller et 

al. 2005). Under pathological vascular settings, the most important players in the 

generation of ROS include mitochondria, COX, xanthine oxidase, uncoupled eNOS, and 

NADPH oxidase (Paravicini and Touyz 2008). ROS include oxygen radicals such as 

superoxide, hydroxyl, and peroxyl as well as non-radicals such as H2O2. The observation 

of ROS involvement in the aging process was first documented in 1956 by Denham 

Harman (Harman 1956), which gave rise to the “free radical theory of aging”. It was 

observed that there was a relationship between life cycle length and metabolic rates and 

that irradiation of living organisms caused aging, mutations, and cancer by production of 

superoxide and hydroxyl molecules (Harman 1956). Harman proposed that the free 

oxygen radicals produced are the cause of damage and aging of a cell over time (Harman 

1956). Despite early wide acceptance of ROS being involved in cellular aging, ROS was 
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also recognized to have beneficial effects, in particular its role in innate immunity 

(Matsuzawa et al. 2005), and as important signaling molecules (Ray et al. 2012).  

Under conditions of oxidative stress, there is an imbalance between pro- and anti-

oxidative activities, resulting in high levels of ROS, which typically activates pathways 

of inflammation, proliferation, angiogenesis, apoptosis, and more (Alfadda and Sallam 

2012; Ray et al. 2012). Ultimately, these pathways pre-set the stage for vascular 

remodeling and endothelial dysfunction, as mentioned earlier, which then prime the 

system into pathological settings of a multitude of diseases including heart failure, 

atherosclerosis, hypertension, obesity, diabetes, and so on (Virdis et al. 2004; Harrison et 

al. 2006; Nistala et al. 2009).   

Of the aforementioned enzymes responsible in ROS generation, xanthine oxidase 

has mostly been implicated in the context of cardiac diseases and only a few studies have 

proposed its role in endothelial dysfunction (Suzuki et al. 1998; Mervaala et al. 2001), 

hence only the uncoupled eNOS, mitochondrial enzymes, COX and Nox enzymes will be 

further discussed. 

 

1.1.3.2.1.The uncoupled eNOS 
Numerous studies have reported that the function of eNOS is altered in disease 

states such as diabetes, and transforms from a NO-producing enzyme to a superoxide-

producing enzyme (Yang et al. 2009). While all four isoforms of NOS - eNOS, nNOS, 

iNOS and red blood cell NOS, can be uncoupled, eNOS is a particularly important 

generator of ROS, when uncoupled, within the vasculature since eNOS is the most 

abundant form present and is responsible for the majority of vascular NO produced 

(Forstermann et al. 1994). eNOS is a cytochrome p450 reductase-like enzyme facilitating 

and catalyzing electron transport from NADPH to a heme group, and requires two 

molecules of BH4 to transfer electrons to L-arginine to form NO (Abu-Soud et al. 1994; 

Forstermann and Munzel 2006). This flow of electrons within eNOS is tightly regulated. 

When it is disturbed, however, the ferrous dioxygen complex becomes dissociated, 

resulting in superoxide generation instead of NO, which is also referred to “uncoupling” 

(Forstermann and Munzel 2006) – that is, uncoupling of NADPH oxidation and NO 

synthesis resulting in oxygen being the terminal electron acceptor instead of L-arginine 
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(Wever et al. 1997). Under normal circumstances, the functional eNOS is present as a 

dimer and BH4 can preserve its dimerization (Cai et al. 2005). The eNOS is uncoupled 

when there is limited amount of co-factors such as L-arginine and BH4 (Vasquez-Vivar et 

al. 1998). Failure of eNOS to dimerize results in greater monomer-to-dimer ratio and 

superoxide formation (Landmesser et al. 2003).  

Uncoupling of eNOS has been observed in both in vitro (Pritchard et al. 1995) 

and in vivo (Cosentino and Luscher 1998) models of CVDs, as well as in patients with 

cardiovascular risk factors such as smoking (Heitzer et al. 2000) and 

hypercholesterolemia (Stroes et al. 1997). Supplementation with vitamin C has been 

shown to stabilize (Heller et al. 2001) and increase BH4 production (Huang et al. 2000), 

thus correcting eNOS uncoupling and minimizing its superoxide production (Schmidt and 

Alp 2007).   

 

1.1.3.2.2. Mitochondrial ROS 
 The mitochondria generate a significant amount of ROS by nature of its 

respiratory function in order to metabolize nutrients. Through ATP production, ROS 

formation is a byproduct (Murphy 2009). The mitochondrial transport chain consists of 

complexes I through IV, which are all capable of producing superoxide that is rapidly 

converted into H2O2, with only complex III being able to generate ROS in the 

intermembrane space (Turrens 2003). In addition, dysfunction of complexes II and IV 

was shown to result in electron leak leading to ROS generation (Shen 2010). 

Physiologically, there exists a tight regulation of the mitochondrial redox balance through 

mechanisms such as the dismutation of superoxide by MnSOD and conversion into H2O2 

(Balaban et al. 2005; Murphy 2009), and endogenous uncoupling by uncoupling proteins 

(Zamzami et al. 1995), which involves limitation of free radicals by mitochondrial 

membrane transporters, the uncoupling protein 1, 2, and 3 (UCP1, UCP2, UCP3) 

(Rousset et al. 2004). On the other hand, factors such as hyperpolarization of the 

mitochondria can trigger superoxide formation by complex III (Zamzami et al. 1995). 

There is evidence of association between mitochondrial dysfunction and insulin 

resistance (Stump et al. 2003). Moreover, endothelial dysfunction induced by 

hyperglycemia could be reversed when ROS production from mitochondria was blocked 
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(Nishikawa et al. 2000), altogether suggesting involvement of ROS generated by the 

mitochondria in the development of endothelial dysfunction. 

 

1.1.3.2.3. NADPH oxidases – focus on Nox1, Nox2, and Nox4 
NADPH oxidases, or Nox, are ROS generators that transfer electrons across 

biological membranes with oxygen being the electron acceptor and superoxide being the 

product of this reaction (Bedard and Krause 2007). The main function of NADPH 

oxidases is ROS generation (Lambeth 2004; Wingler et al. 2011). Nox 1, 2, 4 and 5 are 

expressed in the endothelium but Nox5 is absent in rodents (Drummond and Sobey 

2014). Therefore, the focus of this section will be Nox isoforms 1, 2, and 4.  

Historically, before the identification of the Nox enzymes, early observations of a 

respiratory burst in phagocytes were first made (MacLeod 1943), reporting that the 

phagocyte respiratory burst depended on glucose metabolism and required energy (Sbarra 

and Karnovsky 1959), and giving superoxide as an initial product (Babior et al. 1973). In 

the Nox terminology, gp91phox, a catalytic subunit of the phagocyte NADPH oxidase first 

cloned by Royer-Pokora et al. (Royer-Pokora et al. 1986) and Teahan et al. (Teahan et al. 

1987), is called Nox2. Besides this catalytic subunit, the phagocyte enzyme also consists 

of a transmembrane stabilizer protein p22phox (Dinauer et al. 1987; Parkos et al. 1988), 

cytosolic subunits p47phox, p67phox (Nunoi et al. 1988; Volpp et al. 1988), and p40phox 

(Wientjes et al. 1993). Altogether in the Nox family, there are, so far, seven described 

Nox isoforms, two organizer subunits (p47phox and NOXO1), two activator subunits 

(p67phox and NOXO1), DUOX1 and DUOX2 (Bedard and Krause 2007), as shown in 

Figure 6 below. 
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Figure 6. Activation of Nox isoforms. Although they have similar structures and 
function, different Nox isoforms require different subunits and have different 
mechanisms of actions. From top left to bottom right: 1) Nox1 requires p22phox, NOXO1 
and Rac. 2) Nox2 requires p22phox, p47phox, p67phox, Rac, and possibly p40phox. 3) Nox3 
requires p22phox and NOXO1. 4) Nox4 requires p22phox and possibly Rac. 5 and 6) Nox5 
and DUOX1/2 do not require any subunits, but are activated by Ca2+.  
 
Reprinted with the permission of The American Physiological Society: Physiol Rev. 
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: 
physiology and pathophysiology. Physiol Rev. 87, 245-313. Copyright (2007). 
 
 

All members of the Nox family are transmembrane proteins responsible for the 

reduction of oxygen to superoxide via electron transport across cell membranes. 

Conserved structural properties common to all Nox enzymes include an NADPH-binding 

site, a flavin adenine dinucleotide (FAD)-binding region, 6 transmembrane domains, and 

4 heme-binding histidines (Bedard and Krause 2007).  

Exact mechanisms of superoxide generation by the Nox enzymes are not clearly 

established. Extensive research has focused on the role of Nox2, which is the prototype 

NADPH oxidase. Structurally, it has been predicted to have between 4 to 6 

transmembrane domains (Segal et al. 1992; Henderson et al. 1995), with both the -NH2 
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and -COOH termini facing the cytoplasm except for DUOX1/2 (Burritt et al. 2003; Paclet 

et al. 2004), as shown in Figure 6. Nox2 is constitutively associated with p22phox 

(Groemping and Rittinger 2005), and all Nox enzymes but Nox5 and DUOX1/2 seem to 

require p22phox (Ambasta et al. 2004; Kawahara et al. 2005; Bedard and Krause 2007). 

Presently, it is believed that phosphorylation of p47phox leads to a conformational change, 

which allows for its interaction with p22phox (Groemping et al. 2003; Capone et al. 2010), 

and that its phosphorylation is the key rate-limiting step. Indeed, the kinetics of p47phox 

parallel that of NADPH oxidase activation (Rotrosen and Leto 1990). Nox enzymes 

respond to a number of stimuli, including various growth factors, cytokines, mechanical 

forces, metabolic factors, as well as GPCR-coupled agonists including bradykinin, ET-1, 

and angII (Lassegue and Clempus 2003). 

Another important isoform, Nox1, has recently gained attention in the field of 

hypertension as improvement of vasodilation in response to ACh and blunted vasopressor 

effects of angII in Nox1-deficient mice were reported (Matsuno et al. 2005; Gavazzi et 

al. 2006). Consistent with this, overexpression of Nox1 in VSMC of mice showed more 

pronounced aortic vascular hypertrophy and hypertension when infused with angII 

(Dikalova et al. 2005). The cloning and ROS-generating properties of Nox1 were first 

described in 1999 (Suh et al. 1999), and it has been shown that Nox1 constitutively 

produces low levels of superoxide anion (Dutta and Rittinger 2010). 

 Up until now, Nox1 and Nox2 have been the only isoforms consistently found 

associated with endothelial dysfunction (Jung et al. 2004; Matsuno et al. 2005; Gavazzi 

et al. 2006) and it is generally believed that while the Nox1 and Nox2 homologue 

generate superoxide anions, which then lead to vascular dysfunction, Nox4 mainly 

produces H2O2 (Montezano et al. 2011). Notably, patients who had a rare genetic loss of 

Nox2 were presented with greater NO-, flow- and endothelium-dependent vasodilation, 

as well as increased NO levels in platelets (Violi et al. 2009). Furthermore, these patients 

did not develop endothelial dysfunction after ischemia-reperfusion (Loukogeorgakis et al. 

2010). These two compelling studies in human subjects strongly support studies in 

animals, and suggest a link between Nox2 and its superoxide producing function with 

endothelial dysfunction. Copious work has shown the consequences of increased 

superoxide anions, which is diminishing levels of NO, via interaction to produce 
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peroxynitrites (Beckman and Koppenol 1996; Takac et al. 2011). As such, these highly 

reactive peroxynitrites are able to oxidize cysteines and BH4, which is an essential 

cofactor for eNOS. Since Nox4 predominately produces H2O2, which is not capable to 

react with NO and scavenge it, this particular isoform has been recently proposed to be 

beneficial (Schroder et al. 2012; Drummond and Sobey 2014).   

 
1.1.3.2.4. Generation of ROS by COX 
 In earlier sections, the roles of COX-1 and -2 in ECs were discussed in the context 

of vasodilator and vasoconstrictor production, where they catalyze the synthesis of PGI2 

or TXA2 via PGG2 (Figure 3). Along with prostanoids, these enzymes are also capable of 

generating ROS (Rosenblum 1987; Katusic 1996; Niwa et al. 2001; Yang et al. 2002), 

which can be inhibited by anti-inflammatory drugs (Simon 1996). Whereas COX-1 has 

been suggested to provide homeostatic functions (Dubois et al. 1998), COX-2 has been 

primarily associated with pathophysiological states such as inflammation (Seibert and 

Masferrer 1994). Increased COX-2 expression was found in inflamed joint tissues 

(Anderson et al. 1996) and its induction was detected in human osteoarthritis-affected 

cartilage (Amin et al. 1997) and synovial tissues of rheumatoid arthritis patients (Kang et 

al. 1996). Selective inhibition of COX-2, on the other hand, has been shown to reduce 

endothelial dysfunction in patients with peripheral artery disease and hypertension 

(Florez et al. 2009) and reduce atherosclerotic lesions in atherosclerotic mice (Burleigh et 

al. 2005). In line with this, our laboratory observed increased TXA2-dependent free 

radical production via COX before the onset of endothelial dysfunction in mouse renal 

arteries, which led to decreased EDHF-dependent dilation (Gendron and Thorin 2007). 

Mechanistically, there is evidence that COX-2 produces ROS (Katusic 1996) as it 

uses molecular oxygen to generate ROS as an intermediate (Marnett 2000). In human 

ECs subjected to high glucose, COX-2 expression was up-regulated via increased PKC 

pathway activation, which was associated with increased ROS production (Cosentino et 

al. 2003).  

In summary, the possible sources of oxidative stress leading to endothelial 

dysfunction are the uncoupled eNOS, mitochondria, the Nox, and the COX enzymes. 
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1.1.4. Adaptation of EDRFs to endothelial dysfunction 
Whereas there seems to be dynamic sources of oxidative stress that contribute to 

endothelial dysfunction, the diversity of EDRFs in blood vessels allows the endothelium 

to compensate for the loss of NO (Durand and Gutterman 2013), which is the hallmark of 

endothelial dysfunction. It is clear that EDRFs are capable of interacting with one another 

(Beierwaltes 2002; Ichihara et al. 1998; Zhang and Hintze 2001), as presented earlier. 

Various reports have shown compensatory as well as redundant mechanisms in mediating 

endothelial responses (Lamping et al. 2000; Bulut et al. 2003; Bagi 2009; Goto et al. 

2012), and strongly suggest that complex interactions among various vasodilating 

pathways in fact act to preserve endothelial function when challenged with risk factors. 

For instance, when the normal mechanisms are down-regulated in face of a disease state, 

another overlapping mechanism could be up-regulated to maintain function near normal, 

at least up to a certain point in time.  A classic example is seen in the eNOS knock-out 

(KO) mice, where eNOS-derived NO is absent, there is compensation by other 

vasodilators such as PGI2 in coronary arteries (Lamping et al. 2000). Different NOS can 

also compensate for the loss of eNOS function. Indeed, another study by Kelly et al. 

showed that in small coronary arteries isolated from eNOS KO mice, NO production is 

shifted to nNOS (Kelly et al. 1996). Likewise, in atherosclerotic patients (Wilcox et al. 

1997) and hypertensive rats (Boulanger et al. 1998), up-regulation of nNOS may 

represent a compensatory mechanism in the face of decreased NO production from 

eNOS. In essential hypertensive patients, COX-2-derived prostaglandins partly 

compensated for the decreased NO bioavailability to vasodilate (Bulut et al. 2003). In 

healthy settings, where NO is the predominant vasodilator, NO inhibits production of 

EDHF but during pathological settings, such as in hypertension, diminished NO up-

regulates EDHF contribution to vasodilation (Goto et al. 2012). On the other hand, severe 

hypercholesterolemic mice exhibited preserved EDHF-mediated vasodilation to ACh in 

the cremaster muscle resistance arteriole even though NO-mediated vasodilation was 

attenuated (Wolfle and de Wit 2005). Innate endothelial function of human subjects may 

also pre-determine compensations in vasodilatory pathways. For example, FMD was 

impaired in sedentary subjects following acute exercise-induced hypertension whereas 
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FMD was preserved in athletic subjects, but was shifted from NO to H2O2 (Phillips et al. 

2009), revealing complex response systems to compensate for NO loss. 

 

1.1.5. Involvement of vasoconstrictors in endothelial dysfunction 
Although endothelial dysfunction is primarily concerned with impaired 

production and bioavailability of the main vasodilators, an additional important alteration 

associated with endothelial dysfunction is increased production of vasoconstrictors, such 

as ET-1, angII, and COX-derived prostanoids. 

 

1.1.5.1. Role of ET-1 in endothelial dysfunction 
As a potent vasoconstrictor, ET-1 has been implicated in endothelial dysfunction 

associated with CVDs. For instance, ET-1 levels were found elevated in patients with 

pulmonary arterial hypertension (Giaid et al. 1993), while there was a more pronounced 

forearm vasoconstriction in response to ET-1 in patients with atherosclerosis compared to 

control (Bohm et al. 2002). Increased contractile responsiveness to ET-1 (Donato et al. 

2005) as well as elevated plasma ET-1 levels (Maeda et al. 2003) associated with aging 

and endothelial dysfunction were also reported, suggesting involvement of this 

vasoactive peptide in pathological settings. Indirectly, ET-1 can further augment 

vasoconstriction by also inducing generation of TXA2 (Taddei and Vanhoutte 1993). 

With the knowledge that the ETB receptor activation in VSMC leads to vasoconstriction 

(Haynes et al. 1995), the evidence of increased ETB receptor expression in atherosclerotic 

arteries in human (Iwasa et al. 1999) provides one of the explanations of altered ET-1 

effects on vascular reactivity, which ultimately leads to endothelial dysfunction.  

 

1.1.5.2. AngII and its signaling transduction pathways in endothelial 

dysfunction 

With more than a century of research on the RAS, involvement of angII in the 

pathophysiology of CVDs is now widely accepted. Much of what is known about angII 

effects on the vasculature comes from studies on VSMC. AngII-stimulated AT1Rs in 

VSMC induced rapid protein tyrosine phosphorylation, leading to growth promoting 
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signal including MAPK/extracellular signal-regulated kinase (ERK) action. AngII is able 

to activate a number of tyrosine kinase receptors, such as platelet-derived growth factor 

(Heeneman et al. 2000) and epidermal growth factor receptors (Eguchi et al. 2003; Lin 

and Freeman 2003), via cross-talk with the AT1R. AngII-stimulated AT1Rs, through 

nicotinamide adenine dinucleotide (NADH)/NADPH oxidase-dependent pathway, have 

also been shown to produce ROS as second messengers (Griendling et al. 1997). 

Knowledge on angII/AT1R signaling mechanisms in ECs is limited, but there is evidence 

suggesting that endothelial dysfunction is induced through inhibition of NO function 

(Millatt et al. 1999; Yan et al. 2003), and will be extensively discussed in the context of 

the cerebrovasculature in a later section (1.1.6.2.2.). AngII also induced ET-1 mRNA 

expression in ECs via activating ROS-sensitive ERK (Hsu et al. 2004), suggesting 

synergistic interactions between the two vasoconstrictors. In human umbilical vein 

endothelial cells (HUVECs), it has been shown that angII signaling via AT1R inhibited 

insulin-induced NO production by increasing phosphorylation of insulin receptor 

substrate 1 (IRS-1) (Andreozzi et al. 2004), while another study reported that in 

HUVECs, angII induced nuclear factor kappa B (NFκB)-dependent transcriptional up-

regulation of adhesion molecules intracellular adhesion molecule (ICAM)-1 and vascular 

cell adhesion molecule (VCAM)-1, which involved ROS and p38 MAPK activation 

(Costanzo et al. 2003). Taken together, angII is strongly implicated in CVD settings, and 

exerts its deleterious actions through other receptors besides the AT1R (summarized in 

Figure 7). 
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Figure 7. Proposed mechanisms by which angII stimulation of AT1R in the endothelium 
leads to endothelial dysfunction. Abbreviations: AngII: angiotensin II; AT1: angiotensin 
II receptor type 1; ERK: extracellular signal-regulated kinase; ET-1: endothelin-1; 
VSMC: vascular smooth muscle cell; NOX: nicotinamide adenine dinucleotide phosphate 
oxidase; ROS: reactive oxygen species; NFκB: nuclear factor kappa B; ICAM-1: 
intracellular adhesion molecule-1; VCAM-1: vascular cell adhesion molecule-1; eNOS: 
endothelial nitric oxide synthase; NO: nitric oxide; ONOO-: peroxynitrite. 
 

1.1.5.3. COX pathway alteration 
Another aspect of endothelial dysfunction involves the COX-mediated pathways. 

Under physiological circumstances, COX enzymes participate in regulating vascular tone 

by producing both vasorelaxant PGI2 and vasoconstrictor TXA2, which are in tight 

balance, and bind to their respective receptors to initiate downstream reactions.  
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 However, during aging or pathological states, this tight balance is shifted from 

PGI2- to TXA2-production. The enzyme responsible for PGI2 synthesis, PGI2 synthase 

(Hara et al. 1994), is one of the most sensitive enzymes inactivated by even extremely 

low concentrations of peroxynitrites (Zou et al. 2002). In agreement with this, in ECs 

exposed to high glucose, PGI2 synthase was inactivated by tyrosine nitration (Cosentino 

et al. 2003), which has been a proposed mechanism of its inactivation by peroxynitrite 

(Zou et al. 2002). It has also been reported that the vasodilatory function of PGI2 is 

reduced during aging in human (Schrage et al. 2007) as well as in rodents (Woodman et 

al. 2003; Liu et al. 2012), likely due to impaired function of its receptor, the IP receptor 

(Rapoport and Williams 1996). On the other hand, production of COX-derived 

vasoconstrictors was associated with aging (Drouin et al. 2011), dyslipidemia (Gendron 

and Thorin 2007), and hypertension (Taddei et al. 1997). Impaired endothelial function 

could, indeed, be improved by TP-receptor antagonists (Rodriguez-Manas et al. 2009). 

TP receptors, as mentioned earlier, are normally the main receptors for TXA2 but can also 

be stimulated by high concentration of PGI2 (Levy 1980; Williams et al. 1994). 

Conversely, paradoxical vasoconstriction resulting from PGI2 has been reported, likely 

due to an up-regulation of TP receptor and its activation, compromising PGI2 binding to 

IP receptor and their downstream vasodilatory pathways (Liu et al. 2012). In line with 

this, ROS was also reported to enhance TP receptor stability post-transcriptionally 

(Valentin et al. 2004), supporting the notion that PGI2 can act as a vasoconstrictor under 

pathological circumstances. 

 Additionally, there have been reported interactions between NO and peroxynitrite 

activities with that of COX (Upmacis et al. 2006). For example, while peroxynitrite 

resulting from NO could interact with the heme in the catalytic domain of COX, forming 

an unstable FeIII-ONOO intermediate, which in turn could activate COX (Tsai et al. 

1992), it was also shown that nitration of specific tyrosine residues of COX could result 

in its inactivation (Goodwin et al. 1998). Furthermore, specific interactions between 

iNOS and COX-2 have been reported (Kim et al. 2005). In a macrophage cell line, iNOS 

was co-immunoprecipitated with COX-2, and iNOS-derived NO, by proximity, could 

nitrosylate COX-2, resulting in its activation (Kim et al. 2005). This could be important 

in settings of atherosclerosis, where there is increased expression of iNOS and COX-2 in 



 58 

atherosclerotic lesions, and that production of respective NO and prostanoids lead to 

peroxynitrite production and acceleration of the inflammatory cascade (Baker et al. 

1999). Altogether, these interactions add complexity and synergism between the two 

different pathways. 

 

1.1.6. Pathologies associated with endothelial dysfunction 
Endothelial dysfunction is a multifaceted vascular disorder that has been 

associated with a wide spectrum of diseases such as obesity and diabetes (Beckman et al. 

2002; Xu and Zou 2009), hypertension (Puddu et al. 2000), heart failure (Landmesser et 

al. 2002), atherosclerosis (Beckman et al. 2002; Davignon and Ganz 2004), and coronary 

syndrome (Fichtlscherer et al. 2004). In the following section, endothelial dysfunction in 

the context of obesity and insulin resistance, as well as hypertension, will be discussed, as 

these are the main pathologies studied in this thesis.  

 

1.1.6.1. Obesity, insulin resistance and endothelial dysfunction 
Obesity is one of the main forces that accelerate vascular aging, and is a major 

risk factor of premature cardiovascular, peripheral vascular, as well as cerebrovascular 

diseases (Chudek and Wiecek 2006). Endothelial dysfunction is a prominent feature of 

obesity. Over the past decades, the prevalence of obesity in both adults and children in 

developed countries has dramatically risen. Obesity is currently classified as having a 

body mass index (BMI) of greater than 30 kg/m2 in human. There is an emerging concept 

of obesity being a state of chronic inflammation (Lumeng and Saltiel 2011). 

Inflammation is the combination of responses to harmful stimuli, whereby the system 

tries to return itself to the normal baseline. In obesity, the inflammatory response 

involves the classic recruitment of leukocytes to inflamed tissues, in this case the adipose 

tissues, increasing systemic circulatory inflammatory cytokines (Hotamisligil et al. 1995) 

as well as acute phase proteins such as C-reactive protein, and fibrosis of tissues (Spencer 

et al. 2010).  

This chronic low-grade inflammatory state in adipose tissues can also directly 

promote systemic insulin resistance (Neels and Olefsky 2006). Furthermore, obesity does 

not only involve dysfunction in adipose tissues, but also affects other organs. In obesity 
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and insulin resistance, endothelial dysfunction is a prominent feature (Xu and Zou 2009). 

Accumulating evidence shows that insulin resistance leads to endothelial dysfunction, 

that endothelial dysfunction can in turn contribute to insulin resistance, and that the 

combination of the two act synergistically to accelerate the aging process (Kim et al. 

2006; Hadi and Suwaidi 2007; Avogaro et al. 2013). Metabolic abnormalities typically 

arise when energy intake outbalances energy expenditure, resulting in increasing 

accumulation of body fat compared to lean mass, which has important consequences – 

resistance of insulin action to stimulate glucose transport in skeletal muscle is among one 

of the primary major condition and precedes the development of type 2 diabetes 

(Cavaghan et al. 2000; Kim et al. 2008).  

Insulin mainly targets its metabolic effects on the liver, adipose tissues, and 

skeletal muscle (Potenza et al. 2009). In the liver and skeletal muscle, insulin increases 

glycogen synthesis (Saltiel and Kahn 2001). In adipocytes, insulin promotes triglyceride 

(TG) synthesis and its deposition (Saltiel and Kahn 2001). Insulin can promote glucose 

uptake and oxidation (Klip et al. 1993), which in turn is required for the generation of 

ATP. Other than its metabolic functions, insulin can also contribute to NO-dependent 

vasodilation in the endothelium (Dimmeler et al. 1999; Laakso et al. 1990), thereby 

increasing blood blow. Indeed, the presence of insulin receptors have been documented in 

ECs (Zeng and Quon 1996) and the effect of insulin on NO release has been a proposed 

pathway to increase glucose uptake in the skeletal muscle (Steinberg et al. 1996). As 

previously mentioned, stimulation of glucose uptake by insulin and activation of eNOS 

for NO generation share the PI3K/Akt signaling pathway (Hsueh and Law 1999). In 

healthy mice with normal insulin signaling, insulin-mediated vasodilation appeared to be 

dependent on both the endothelium and NO (Wheatcroft et al. 2004). Moreover, 

hyperinsulinemia actually increased eNOS expression and NO production in mice with 

intact insulin signaling, suggesting that insulin, in the presence of intact and normal 

signaling, has beneficial effects on endothelial function (Wheatcroft et al. 2003). This 

vasodilatory effect, however, was blunted in insulin resistance states (Laakso et al. 1992) 

and indeed, ACh in the coronary circulation of diabetic patients paradoxically caused 

vasoconstriction instead of vasodilation (Nitenberg et al. 1993). One of the possible 

mechanisms could be due to low levels of BH4 and defects of the antioxidant defenses, 



 60 

leading to excessive superoxide production, deactivating NO (Shinozaki et al. 2001). 

Accordingly, accumulating evidence has demonstrated that insulin resistance can 

influence endothelial function by disturbing vasorelaxing effects from one or more of the 

3 main EDRFs (Du et al. 2001; Bolego et al. 2006; Murphy et al. 2007), thereby 

disrupting the balance between vasodilation and vasoconstriction.  

Insulin resistance and endothelial dysfunction are directly linked. Multiple reports 

have repeatedly shown reduced NO bioavailability that results from insulin resistance 

(Kim et al. 2006), most likely due to, but not limited to, damages caused by 

hyperglycemia and increased FFA (Tripathy et al. 2003). The PGI2 synthase was found 

inactivated in obese Zucker rats and in insulin resistant mice induced by a high-fat diet 

(HFD) (Du et al. 2001). ECs isolated from diabetic patients have decreased expressions 

of COX-2 and eNOS, as well as lower PGI2 production (Bolego et al. 2006). Notably, 

elevated ROS levels are the initial source of endothelial dysfunction in this pro-

inflammatory setting, which disrupts the function of all 3 main EDRFs (Shi and 

Vanhoutte 2009). A crucial and recognized producer of ROS in obesity and insulin 

resistance is the chronically inflamed adipocyte (Xu et al. 2003).   

 

1.1.6.1.1. The adipocyte and its emerging importance in regulating 

endothelial function 
            Historically, adipose tissues have been considered merely a site for excess energy 

storage. Work in the past decade has revealed that adipocytes are capable of controlling 

glucose and lipid homeostasis under both physiological and pathological conditions 

(Guilherme et al. 2008). They have high capacities for expansion and increase in cell 

number. Insulin stimulates glucose uptake in the fed states, to yield glycerol-3-phosphate 

for FA esterificaiton and produce TG and de novo FA, as well as direct esterification of 

incoming FA by adipocyte lipoprotein lipase (LPL) (Saltiel and Kahn 2001; Goldberg et 

al. 2009).  

Besides their classic role to sequester lipids as adipose TG stores, adipocytes can 

act as endocrine cells and are able to secrete adipokines. They include leptin, adiponectin, 

monocyte chemotactic protein (MCP)-1, and tumour necrosis factor α (TNFα) that are 

able to regulate insulin sensitivity in the periphery (Guilherme et al. 2008), as well as 
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metabolic, endocrine and immune functions (Walker et al. 2007). In recent years, angptl2 

has also emerged as an adipokine that regulates insulin sensitivity (Oike and Tabata 

2009; Tabata et al. 2009), which will be discussed in a later section (1.3.3.3.). It is clear 

now that many of these adipokines act on ECs and influence their function, and that many 

of these adipokines have been linked to pathogenesis of obesity-related diseases 

including atherosclerosis (Chudek and Wiecek 2006; Horio et al. 2014). 

 

1.1.6.1.2. Dyslipidemia in obesity and endothelial dysfunction 
One aspect of obesity is the disruption of the plasma lipoprotein system, which 

gives the concept of the term “dyslipidemia”. To a significant extent, the changes in lipid 

profiles seen in obesity give rise to the increase in cardiovascular risks (Castelli 1998). In 

human, the dyslipidemia phenotype is typically characterized by increased TG, decreased 

high-density lipoprotein (HDL), increased total cholesterol and LDL shifting into small 

dense LDL (Franssen et al. 2008). In patients with or without coronary artery disease 

(CAD), hypercholesterolemia was an independent predictor for endothelial dysfunction 

(Creager et al. 1990; Drexler and Zeiher 1991), while it has been shown that serum total- 

and LDL-cholesterol were inversely correlated with endothelial function (Seiler et al. 

1993). A main consequence of high LDL levels, due to its capacities to become oxidized, 

is the initial process of atherosclerosis (Sobenin et al. 1996).  

 

1.1.6.2. The renin-angiotensin system (RAS) and angII 
Closely related to obesity is the activation of the sympathetic nervous system and 

there is a well-established relationship between obesity and hypertension, or high blood 

pressure, where the regulation of vascular tone is affected (Kotsis et al. 2010). Apart 

from NO being the major regulator of vascular tone, the autocrine and paracrine systems 

shared by ECs and VSMCs, one of which is the RAS, are also involved in maintaining 

this homeostasis. Physiologically, the main product of RAS, angII, co-ordinates the 

signaling cascade to regulate renal function, fluid and electrolyte balance, as well as 

blood pressure (Ferrario 2006). Along with evolutionary development, the RAS has also 

become involved with a continuum of pathologies, one of which is vascular diseases such 

as hypertension, where RAS is over-stimulated resulting in increased angII production. In 
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turn, the over-production of angII can exert deleterious effects by causing vascular injury, 

increasing oxidative stress, stimulating VSMC proliferation and growth (Ibrahim 2006), 

and promoting thrombosis (Brown et al. 1998). Importantly, elevated angII raises blood 

pressure by increased vasoconstriction and sympathetic nervous stimulation and thus, 

angII is heavily involved in the pathophysiology of hypertension. 

 

1.1.6.2.1. Hypertension and its implications 
Hypertension is currently defined as having ≥140 mmHg and/or ≥90 mmHg for 

systolic and diastolic blood pressure, respectively, or being on medication that controls 

blood pressure (Go et al. 2013). In chronic hypertension, both functional and structural 

changes occur in the vasculature, leading to overall increased peripheral resistance 

(Touyz 2003). Functional changes include enhanced vasoconstriction as well as 

decreased vasodilation, whereas structural changes mainly involves increased resistance 

arteries lumen narrowing (Touyz 2003), reduced diameter and increased media thickness, 

also known as vascular remodeling. Indeed, in the aorta of hypertensive rats, ACh-

induced and endothelium-dependent relaxations were impaired, which have been found 

associated with increased COX-derived contractile prostanoid generation (Luscher and 

Vanhoutte 1986) and the subsequent activation of TP receptors (Gluais et al. 2005), as 

well as elevated ROS production and subsequent NO scavenging (Grunfeld et al. 1995; 

Beswick et al. 2001; Wind et al. 2010) (summarized in Figure 8).  
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Figure 8. ACh-induced and endothelium-dependent effects in normotensive and 
hypertensive rat aorta. Left: endothelium-dependent relaxation in the aorta of the 
normotensive rat. Right: endothelium-dependent relaxation in the aorta are impaired in 
the hypertensive rat aorta. Abbreviations: ACh: acetylcholine; eNOS: endothelial nitric 
oxide synthase; NO: nitric oxde; sGC: soluble guanylate cyclase; GTP: guanosine tri-
phosphate; cGMP: cyclic guanosine monophosphate; AC: adenylyl cyclase; cAMP: 
cyclic adenosine monophosphate; COX: cyclo-oxygenase; PGH2: prostaglandin H2; 
PGIS: prostacyclin synthase; PGI2: prostacyclin; TP: thromboxane A2 receptor; IP: 
prostacyclin receptor; Ca2+: calcium; ROS: reactive oxygen species. 

 
 

Another major consequence of hypertension is altered cerebrovascular regulation 

leading to increased risks of dementia and stroke (Lawes et al. 2004), with hypertension 

responsible for 62% of cerebrovascular diseases (Lawes et al. 2006). Several agents are 

well-studied in the state of hypertension, including ET-1 (Schiffrin 1999), aldosterone 

(El-Gharbawy et al. 2001) and norepinephrine (Goldstein 1981), but for the purpose of 

this work, only angII impact on the cerebrovasculature is majorly discussed.   
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1.1.6.2.2. AngII and its effects on the cerebrovasculature 
The cerebral circulation is responsible for an adequate blood supply for the brain, 

an organ that has minimal storage of energy sources. Hence, it is a supremely specialized 

vascular bed that responds to a range of external and internal conditions, yet is able to 

maintain constant blood flow (Faraci and Heistad 1998). The brain, which weighs 

relatively little compared to the whole body, utilizes 20% of total body oxygen 

consumption (Floyd and Carney 1992), yet it is not enriched in anti-oxidant defense 

systems evidenced by its low catalase activities (Marklund et al. 1982). Furthermore, as 

cerebral blood vessels have greater capacities to generate NOX-derived ROS compared 

to systemic vessels (Miller et al. 2005), they are highly susceptible to inflammation and 

oxidative stress (Faraci and Lentz 2004; Chrissobolis et al. 2011). Hypertension induces 

inflammation within the cerebral vasculature and in this context, angII seems to play an 

integral role (De Silva and Faraci 2013). In spontaneously hypertensive rats, there is 

increased expression of ICAM-1 (Ando et al. 2004), which could be partly reversed with 

AT1R antagonist treatment (Ando et al. 2004), suggesting involvement of angII in 

ICAM-1 up-regulation.  

Another major consequence of angII exposure to the vasculature is increased ROS 

generation. In cerebral arteries of mice and rats, acute exposure to angII could increase 

ROS production (Kazama et al. 2004; Miller et al. 2005). Chronic exposure to angII also 

elevated cerebrovascular ROS levels (Chrissobolis et al. 2012). To date, most evidence 

points towards Nox2 as the primary source of ROS when stimulated by angII in the 

cerebral vasculature (Girouard et al. 2006; Girouard et al. 2007). In turn, ROS can 

modulate vascular tone by multiple mechanisms including scavenging of NO by O2
-!, 

reducing its bioavailability and resulting in peroxynitrite formation, which leads to 

oxidation of protein and thiol, in addition to tyrosine nitration (Gavazzi et al. 2007). 

Interestingly, both exogenous and endogenous H2O2 were reported to dilate cerebral 

arteries (Faraci and Sobey 1998), and the generation of H2O2 in chronic hypertension was 

associated with elevated Nox4 expression (Paravicini et al. 2004), which may be 

beneficial in the face of decreased NO bioavailability, as in the context of hypertension. 

AngII is also suggested to be an important player in inward remodeling, a 

reduction in vessel size, in cerebral arterioles (Faraci 2011) as angII-independent 
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hypertension does not cause inward remodeling (Baumbach et al. 2003). Moreover, Nox2 

may be involved in mediating this process as Nox2-deficient mice were protected against 

cerebral arteriole inward remodeling induced by angII (Chan and Baumbach 2013).  

In summary, obesity and elevated plasma angII levels are among some of the 

well-established cardiovascular risk factors that contribute to increased vasculature ROS 

production and inflammation, the two main drivers for endothelial dysfunction, which is 

the obligatory first step towards cardiovascular events, as depicted in Figure 9. Therefore, 

targeting endothelial dysfunction seems like a potential therapeutic strategy in patients 

with CVD. However, despite considerable evidence supporting the notion that the 

inflammatory cascade is the main culprit behind endothelial dysfunction, the exact 

mechanisms causing this dysfunction remain elusive and CVD is still the leading cause of 

death in North America. Thus, greater therapeutic targets are clearly warranted. In the 

upcoming chapters, the angptl proteins, a recently identified family of proteins, will be 

introduced, followed by an in-depth introduction of one particular family member, 

angptl2, which is known for its pro-inflammatory properties in general (Kadomatsu et al. 

2014), and its pro-inflammatory capacities in the adipocytes (Tabata et al. 2009) and in 

the ECs (Horio et al. 2014; Farhat et al. 2013).  
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Figure 9. ROS is one of the links between cardiovascular risk factors and CVD. Obesity 
and elevated angII are among some of the greatest known cardiovascular risk factors, 
which lead to increased ROS production, which is a common feature in CVDs.  
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Chapter 2: Angiopoietin-like proteins 
 The protein of interest in this thesis, i.e. angptl2, belongs to a greater family of 

proteins, called angiopoietin-like protein (angptl), was first cloned in 1999 (Kim et al. 

1999a), and are structurally similar to the angiopoietins. There are, to date, a total of 8 

angptls in this family of proteins (Table 1), and although they share certain degrees of 

homology among them, their roles seem to differ in biology. This chapter will briefly 

highlight the different angptls in both physiology and pathophysiology. Greater detail of 

angptl2 will be provided in the following chapter.  

 

Table 1. Summary of angptl proteins and their current known functions 

Gene Other names Tissue expression Angiogenesis Effect on 
lipoproteins 

Expansion 
of HSC 

Angptl1 
ARP1, ANG3, 
AngY, ANGPT3, 
angioarrestin 

Adrenal gland, placenta, 
thyroid gland, heart, 
small intestine, liver, 
muscle 

Pro/anti No report No report 

Angptl2 ARP2, HARP 
ARAP-1 

Heart, vessels, small 
intestine, spleen, 
stomach, adipose tissue, 
liver 

Pro No report Yes 

Angptl3 ANGPT5 Liver (exclusively) Pro HDL"; 
TG# Yes 

Angptl4 

ARP4, NL2, 
pp1158, HFARP, 
FIAF, PGAR, 
HARP 

Liver (highest), 
pericardium, adipose 
tissue, others (adrenal 
glands, lung, pancreas, 
placenta) 

Pro/anti 
HDL"; 
TG#  
 

No report 

Angptl5 None 

Adipose tissue 
(highest), bronchus, 
epididymis, vena cava, 
heart 

No report No report Yes 

Angptl6 ARP3, ARP5, 
AGF Liver Pro No report No report 

Angptl7 CDT6, AngX Cornea (exclusively) No report No report Yes 

Angptl8 Lipasin, 
betatrophin, TD26 Liver, adipose tissue No report TG" No report 
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1.2.1. The Angiopoietin-like protein family 

A family of secreted and circulating protein, collectively called the angptl, was 

initially cloned in 1999 by Kim et al. (Kim et al. 1999a). They are called “angiopoietin-

like” due to their structural similarities shared with angiopoietins, as they possess a 

similar N-terminal helical coiled-coil domain, a short linker region, and a C-terminal 

globular fibrionogen-like domain (Kim et al. 1999a), as illustrated in Figure 10. Despite 

that, however, angptls do not bind to tie-1 or tie-2 receptors like angiopoietins-1 and -2 

(Oike and Tabata 2009). Whereas angiopoietin-1 and -2 are involved mainly in mediating 

angiogenic and hematopoietic effects, some angptls mediate angiogenesis and 

hematopoietic stem cell expansion (Table 1), while others also play various roles in a 

wide spectrum of physiological and pathological mechanisms. To date, 8 members of this 

protein family have been discovered and all of them, except for angptl8 (Quagliarini et al. 

2012), possess the coiled-coil N-terminus and a fibrinogen-like C-terminus (Kim et al. 

1999a). While the coiled-coil domain may serve as its protein secretion purpose, the 

fibrinogen-like domain suggests its ability to bind a receptor. Since the cloning of the 

first angptl protein, much work has been completed to understand their roles and 

underlying molecular mechanisms. Although they share similarities in their structures, 

each angptl protein is distinct in their physiological and pathological roles. A brief history 

of the discovery of the angptl protein will first be introduced, followed by involvement 

and biological roles played by each angptl protein member in physiological settings and 

different diseases. 

 

 
Figure 10. Schematic protein structure of an angptl protein. Orange region depicts a 
hydrophobic signaling peptide sequence; green coils depict the two coiled-coil domains; 
blue region depicts the predicted fibrinogen-like domain. 
 
Adapted and reprinted with the permission from Elsevier: Biochem Biophys Res 
Commun. Dhanabal M, Jeffers M, LaRochelle WJ,  Lichenstein HS. Angioarrestin: a 
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unique angiopoietin-related protein with anti-angiogenic properties. Biochem Biophys 
Res Commun. 333, 308-315. Copyright (2005). License number: 3453380425828 
 

1.2.2. History at a glance: identification and characterization of 

angiopoietin-like proteins 
The discovery of the first angptl protein was made in 1999 (Kim et al. 1999a) by 

homology-based PCR to isolate a cDNA, which encoded a novel 491-amino acid protein 

from human adult heart, as shown in Figure 11. Owing to the structural homologies of 

29% and 26% with angiopoiein-1 and -2, respectively, this new protein was initially 

named angiopoietin-3 (Kim et al. 1999a). Concurrently, the group of Yancopoulos was 

also successful in cloning two members in this family with opposing functions, which 

also shared homologies with angiopoietin-1 and -2, and called them angiopoietin-3, and -

4 (Valenzuela et al. 1999). Subsequently, the name for angiopoietin-3 was replaced by 

Dr. Koh and his team with angiopoietin-related protein (ARP)1, or angiopoietin-like 1 

(angptl1). Not long after, another protein that shared 59% of homology with angptl1, was 

identified and was named angptl2 (Kim et al. 1999b). Expression of another angptl, 

angptl3, was first found in the human liver (Conklin et al. 1999), while the closely-rated 

angptl4 was identified in the year of 2000 by three separate groups (Kersten et al. 2000; 

Kim et al. 2000; Yoon et al. 2000), in the liver and adipose tissues. Angptl5 was then 

identified in the adult human heart in 2003 (Zeng et al. 2003), angptl6 in the liver, 

platelets and mast cells (Oike et al. 2003), angptl7 by using the technique of comparative 

integromics in 2007 (Katoh and Katoh 2006), and finally angptl8 in the liver and adipose 

tissues in 2012 (Quagliarini et al. 2012).  

In terms of conformation, angptl proteins conserve 4 out of 6 cysteines found in 

angiopoietins (Oike et al. 2004a), which are meant for intermolecular linkages by 

disulfide bonds as in angiopoietins, and may explain inability of angptl proteins to bind to 

tie-1 or tie-2 (Oike et al. 2004b). Similar to angiopoietins, at their C-terminus is a 

fibrinogen-like domain, which suggests their potential to bind to specific receptors (Hato 

et al. 2008). The N-terminus is a highly hydrophobic region in angptl proteins, suggestive 

of their ability for secretion (Hato et al. 2008). Indeed, angptls 2,3,4, and 6 have been 

detected in the circulation (Farhat et al. 2013; Ge et al. 2004; Kim et al. 2000; Kim et al. 
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1999b; Oike et al. 2005; Ono et al. 2003; Shimizugawa et al. 2002; Tabata et al. 2009), 

suggesting their possible endocrinic roles. In accordance to this, angptl vector 

transfection in cells resulted in secretion of the protein in the supernatants (Kim et al. 

1999b; Ito et al. 2003). Angptl proteins also possess glycosylation consensus sites (Kim 

et al. 1999b), which are likely required for the biological activities (Farhat et al. 2014). In 

the next section, diverse roles of angptl proteins will be discussed including both their 

physiological and pathological roles. 
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Figure 11. Alignment of the amino acid sequences and evolutionary relationships 
between angptl2 and its relatives, human angptl1, angiopoietin-1 and -2, demonstrating 
their homology. The conserved cysteines among them are shaded. 
 
Reprinted with the permission from the Journal of Biological Chemistry: It is the policy 
of the American Society for Biochemistry and Molecular Biology to allow reuse of any 
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material published in its journals (the Journal of Biological Chemistry, Molecular and 
Cellular Proteomics and the Journal of Lipid Research) in a thesis or dissertation at no 
cost and with no explicit permission needed. 
 
Kim I, Moon SO, Koh KN, Kim H, Uhm CS, Kwak HJ, Kim NG, Koh GY. Molecular 
cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-
related protein induces endothelial cell sprouting. J Biol Chem. 274, 26523-26528. 
Copyright (1999). 
 

1.2.3. Physiological roles of angiopoietin-like proteins 

 

1.2.3.1. Angiopoietin-like proteins in angiogenesis 
 Due to similarities in their structural properties shared between angptl proteins 

and the angiopoietins, the first effort was made to investigate whether angptl proteins 

were involved in the process of angiogenesis, or in other words the formation of new 

blood vessels from pre-existing ones (Folkman 1971). It has been reported that angptls 1, 

2, 3, 4 and 6 participate in regulating angiogenesis (Hato et al. 2008) (Table 1).  

In 1999, at the time of discovery of the angptl proteins, Kim et al. made the first 

observations that angptl1 and angptl2 weakly stimulated in vitro sprouting of ECs (Kim 

et al. 1999a; Kim et al. 1999b). Subsequently, with the generation of transgenic mice that 

express angptl1 or angptl2 under the control of a K14 keratinocyte-specific promoter, 

Tabata et al. showed that the K14-angptl2 mice displayed significantly greater number of 

blood vessels in the dermis (Tabata et al. 2009). K14-angptl1 mice, on the other hand, did 

not significantly differ from wild-type (WT) mice, suggesting minimal role of angptl1 in 

promoting angiogenesis (Table 1). This finding was in contrast with another study, where 

treatment with recombinant angptl1 in ECs inhibited their angiogenic properties, 

including tube formation and adhesion (Dhanabal et al. 2002), suggesting an anti-

angiogenic effect of angptl1 (Table 1). Dhanabal et al. proposed that angptl1 and angptl2 

could act in context-dependent manners, depending on interactions with unknown 

receptors (Dhanabal et al. 2002). 

Angptl3 was reported to be a pro-angiogenic factor (Table 1), as it induced blood 

vessel formation in a rat corneal assay (Camenisch et al. 2002), and that its fibrinogen-

like domain is sufficient to induce angiogenesis on its own (Camenisch et al. 2002). In 
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this report, investigators also reported that recombinant angptl3 bound to α5β1 integrin 

but not to tie-1 or tie-2, and induced Akt phosphorylation, MAPK activation, and focal 

adhesion kinase (Camenisch et al. 2002). 

Interestingly, angptl4 has been reported as both pro- and anti-angiogenic (Ito et al. 

2003; Le Jan et al. 2003) (Table 1). As transcription of angptl4 was induced by hypoxia 

(Le Jan et al. 2003), it may have a biological role in angiogenesis. Indeed, independent 

laboratories showed that angptl4 could act as an anti-angiogenic factor (Kim et al. 2000; 

Cazes et al. 2006; Wang et al. 2013a). For instance, recombinant angptl4 exerted 

protective effects on ECs against apoptosis in an endocrinic manner (Kim et al. 2000), 

and by using a hind-limb ischemic mouse model, Cases et al. showed that angptl4 mRNA 

was upregulated (Cazes et al. 2006). Overexpression of angptl4 also protected ECs 

against lipopolysaccharide-induced vascular permeability and thus increasing cell 

viability (Wang et al. 2013a). It was shown that in a graft of Chinese hamster ovary cells 

that expressed angptl4, there was a strong pro-angiogenic response that was insensitive to 

inhibitors of vascular endothelial growth factor (VEGF) (Le Jan et al. 2003). Angptl4 

mRNA was also found in hypoxic environments such as that in ischemic tissues in renal 

carcinoma tumor cells (Le Jan et al. 2003). In contrast, recombinant angptl4 in both 

corneal neovascularization and Miles permeability assays inhibited VEGF-induced 

neovascularization and vascular leakiness, suggesting anti-angiogenic properties (Ito et 

al. 2003). In the same study, K14-angptl4 transgenic mice did not show increased 

neovascularization in their skin tissues (Ito et al. 2003). Finally, in accordance with the 

anti-angiogenic effects of angptl4, tumor angiogenesis was blunted in the skin of K14-

angptl4 mice with tumor transplantation (Ito et al. 2003).  

Another angptl protein, angptl6, was also reported to have pro-angiogenic effects 

(Oike et al. 2003; Oike et al. 2004a; Urano et al. 2008; Okazaki et al. 2012) (Table 1). In 

mouse skin, targeted overexpression of angptl6 resulted in induction of angiogenesis and 

epidermal hyperplasia, and also showed significantly enhanced cutaneous wound healing 

in the tissue repair process compared to WT mice (Oike et al. 2003). Using the same 

mouse model, the same group further reported that angptl6 promoted angiogenesis 

independently of other angiogenic factors, such as VEGF and angiopoietin-1 (Oike et al. 

2004a). In the same study, recombinant angptl6 also exerted chemo-attractive effects on 
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ECs in the Matrigel plug and corneal pocket assays (Oike et al. 2004a). It was also 

reported by Dr. Oike’s group that an intramuscular injection of an adenovirus expressing 

angptl6 into the ischemic limb could enhance blood flow in a mouse hind-limb ischemic 

model through induction of angiogenesis and arteriogenesis (Urano et al. 2008). This was 

likely due to increased eNOS signaling and NO production as angptl6 did not have any 

effects in eNOS KO mice (Urano et al. 2008). Furthermore, exposing HUVECs to 

angptl6 led to activation of the ERK1/2-eNOS signaling pathway (Urano et al. 2008). 

Very recently, Okazaki et al. reported that angptl6 also accelerated the tissue repair 

process induced by acute or chronic UV-B irradiation by promoting angiogenesis 

(Okazaki et al. 2012), again confirming the pro-angiogenic role of angptl6. 

In summary, out of the angptl protein family, angptls 1, 2, 3, 4 and 6 are likely 

important players in regulating angiogenesis, with angptls 1 and 4 having both pro- and 

anti-angiogenic effects, while angptls 2, 3, and 6 most likely are pro-angiogenic. 

 

1.2.3.2. Angiopoietin-like proteins in lipid metabolism 
 In the literature, the roles of angptls 3, 4 and 6 have been mainly focused around 

maintaining metabolic homeostasis, independent of their angiogenic effects (Hato et al. 

2008). In addition, the recently identified angptl8 has also been implicated in lipid 

metabolism by regulating angptl3 (Wang et al. 2013b). 

Both angptl3 and angptl4 can be cleaved by proprotein convertases (Chomel et al. 

2009; Essalmani et al. 2013), although their activities do not require cleavages. 

Expression of angptl3 is limited to the liver (Koishi et al. 2002) and is active mainly in 

the fed state (Ge et al. 2005; Mattijssen and Kersten 2012). It has been reported that a 

truncated angptl3 containing only the coiled-coil domain was sufficient to regulate 

metabolism (Ono et al. 2003). On the other hand, angptl4 expression is found in liver, 

adipose tissues (Kim et al. 2000), and skeletal muscle (Staiger et al. 2009), and is 

regulated by feeding and fasting (Kersten et al. 2000; Yoon et al. 2000). It was reported 

that adipose tissue secretes the full-length angptl4, whereas the liver secretes the 

truncated form (Mandard et al. 2004).  

The link between angptl3 and lipid metabolism was first reported by Koishi et al. 

by positional cloning to map a genetic defect in the angptl3 gene in the KK/San mice 



 75 

(Koishi et al. 2002), which is a mutant strain of KK obese mice with lower plasma non-

esterified fatty acid (NEFA) and TG levels. Furthermore, angptl3 has been established as 

a hepatocyte-derived circulating factor in regulation of lipid metabolism (Shimamura et 

al. 2003). It directly targets adipocytes, activates lipolysis (Kersten et al. 2000; 

Shimamura et al. 2003), binds to and inhibits LPL activity thereby decreasing clearance 

of very low density lipoprotein (VLDL) TG and thus increasing FFA and glycerol release 

from adipocytes (Ono et al. 2003; Jin et al. 2007).  

LPL is a key enzyme that is responsible for the metabolism of TG-enriched 

lipoproteins (Eisenberg 1984), and is anchored to endothelial surfaces of peripheral 

tissues (Beigneux et al. 2007). In turn, its function to uptake TG is governed by 

nutritional status (Wang and Eckel 2009). For instance, LPL activity is reduced in 

adipose tissue but increased in heart and skeletal muscle during fasting, which directs TG 

to oxidation in muscle cells. On the other hand, LPL activity is enhanced in adipose 

tissues but reduced in muscle during the fed state, which directs TG for storage in adipose 

tissues (Kuwajima et al. 1988). 

Accordingly, angptl3-deficient mice had lower levels of plasma lipids (Koishi et 

al. 2002; Fujimoto et al. 2006), TG, cholesterol and FFA (Shimamura et al. 2003), which 

was found associated with higher heparin-releasable LPL activity (Koster et al. 2005). In 

these angptl3-deficient mice, Shimamura et al. also observed lower plasma levels of HDL 

and HDL phospholipid, which were increased by adenoviral treatment with angptl3 

(Shimamura et al. 2007), suggesting a metabolic role of angptl3 in regulating HDL 

cholesterol (Table 1). Mechanistically, angptl3 could inhibit also the activity of 

endothelial lipase (Shimamura et al. 2007), which hydrolyzes HDL phospholipid, thereby 

decreasing HDL levels (McCoy et al. 2002). It was also shown that angptl3 is a direct 

target of liver X receptor (Inaba et al. 2003), a nuclear receptor that activates 

transcription of several lipid metabolic genes (Lu et al. 2001). In human, loss-of-function 

of angptl3 was associated with familial combined hypolipidemia (Musunuru et al. 2010), 

characterized by much lower cholesterol and TG levels than normal, but these patients 

may also suffer from symptoms such as malnutrition. Nonetheless, the findings that an 

angptl3 mutation is linked to hypolipidemia underscores a potential strategy, such as 

decreasing angptl3 activities, for lowering cholesterol in human (Musunuru et al. 2010). 



 76 

The evidence that agonists of lipid-sensing PPARs upregulated angptl4 

expression provided initial clues that angptl4 was involved in lipid metabolism (Mandard 

et al. 2004). Indeed, overexpression of angptl4 in mice resulted in a 50% reduction in 

adipose tissue weight, increased TG, FFA, glycerol, total cholesterol, and HDL in the 

plasma (Mandard et al. 2006) (Table 1). Angptl4, similar to angptl3, has been shown to 

be a potent inhibitor of LPL (Yau et al. 2009; Zhu et al. 2012). Structurally, angptl4 

could bind to LPL with its coiled-coil domain, thereby converting the active dimers into 

inactive monomers (Sukonina et al. 2006; Yau et al. 2009). By this mechanism, angptl4 

has been reported to suppress NEFA release and their uptake by adjacent tissues such as 

adipose tissue and skeletal muscle (Yoshida et al. 2002), and circulating TG clearance 

(Yau et al. 2009) (Table 1). More recently, there is data suggesting that plasma NEFA 

could raise plasma angptl4 in human (Jonker et al. 2013). Moreover, Jonker et al. 

reported that in human, there was a positive correlation between angptl4 and NEFA 

concentrations but a negative correlation in TG concentrations (Jonker et al. 2013). 

Interestingly, insulin was demonstrated to decrease circulating angptl4 and its expression 

in adipose tissues only in young and healthy subjects, an effect that was blunted in older 

and diabetic subjects (Ruge et al. 2012). Regulation of angptl4 by insulin was further 

shown to be both dependent (Jonker et al. 2013) and independent (Mizutani et al. 2012; 

van Raalte et al. 2012) on NEFA in mouse and human, respectively. Taken together, 

there is evidence suggesting that angptl4 acts as a signal from adipocytes, skeletal 

muscles and other tissues to govern adiposity by decreasing lipid storage and increasing 

fat mobilization.  

There is also evidence indicating that angptl4 levels could be up-regulated by 

fasting (Kersten et al. 2009) and recent data also suggested that angptl4 can regulate food 

intake and energy expenditure (Kim et al. 2010), as deletion of angptl4 in mice resulted 

in increased body weight and reduced energy expenditure, while central administration of 

angptl4 increased energy expenditure and suppressed food intake and weight gain (Kim 

et al. 2010).  

Angptl6 was detected in the systemic circulation and was predominantly secreted 

from the liver (Oike et al. 2005). In this study by Oike et al., more than 80% of mice 

deficient of angptl6 died around embryonic day 13 seemingly due to cardiovascular 
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defects, while the remaining surviving mice showed marked obesity characterized by 

increased fat mass and adipocyte size, insulin resistance, lipid accumulation in both the 

skeletal muscle and liver, with reduced energy expenditure compared to WT littermates 

(Oike et al. 2005). The increased fat mass was linked to decreased energy expenditure 

that was unrelated to food intake (Oike et al. 2005). On the other hand, mice with 

targeted angptl6 activation were resistant to the detrimental effects of a HFD including 

obesity and insulin resistance, which was associated with increased energy expenditure 

and decreased fat mass (Oike et al. 2005). In addition, overexpression of angptl6 in the 

liver resulted in higher circulating angptl6 and a significantly lower body weight (Oike et 

al. 2005). As plasma TG levels were not influenced by angptl6 overexpression or 

depletion, angptl6 may not be involved in inhibiting LPL activity, unlike angptls 3 and 4 

(Oike et al. 2005). It remains to be determined whether angptl6 has a direct effect on 

insulin, cholesterol, and FA levels (Oike et al. 2005). Taken together, this study suggests 

that angptl6 may regulate energy metabolism, at least in mice, and could play a role in 

antagonizing the effects of a HFD by increasing energy expenditure (Oike et al. 2005).  

The putative roles of angptls 3, 4, and 6 in regulating metabolism are summarized 

in Figure 12. 
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Figure 12. Summary of the different roles of angptls 3, 4, and 6 in maintaining metabolic 
homeostasis. Angptl3 is mainly derived from the liver and targets adipocytes in an 
endocrinic manner to inhibit LPL activity, thus promoting lipolysis. Angptl4 is derived 
from both the liver and adipocytes and targets both hepatocytes and adipocytes as an 
endocrine or paracrine to inhibit gluconeogenesis and stimulate lipolysis, respectively. 
Angptl4 also enhances insulin sensitivity. Angptl6 is derived from the liver and promotes 
fat burning and energy expenditure in peripheral tissues. Abbreviations: LXR: liver X 
receptor; RXR: retinoid X receptor; PPAR: peroxisome proliferator-activated receptor; 
LPL: lipoprotein lipase; FFA: free fatty acid. 
 
Reprinted with the permission from Elsevier: Trends Mol Med. Oike Y, Akao M, Kubota 
Y, Suda T. Angiopoietin-like proteins: potential new targets for metabolic syndrome 
therapy. Trends Mol Med. 11, 473-479. Copyright (2005). 
 

Lastly, the newly identified angptl protein, angptl8, was also reported to play a 

major role in TG trafficking (Wang et al. 2013b), while its expression was found highly 

induced during adipocyte differentiation (Ren et al. 2012). Expression of angptl8 was 

found highly abundant in the liver and adipose tissues, and was up-regulated by feeding 

but suppressed by fasting (Quagliarini et al. 2012; Ren et al. 2012; Zhang 2012). The N-
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terminal of angptl8 possesses a domain that is homologous to angptl3’s N-terminal 

domain that is responsible for blood lipid regulation, as well as a domain that is 

homologous to angptl4’s N-terminal domain that is responsible for LPL binding (Zhang 

2012), suggesting the potential role of angptl8 to regulate lipid metabolism. Indeed, it has 

been shown that an adenovirus-mediated overexpression of angptl8 increased plasma TG 

levels in mice and recombinant angptl8 could inhibit LPL activity (Zhang 2012). 

Interestingly, co-expression of angptl8 and angptl3 resulted in more than a 10-fold 

increase in plasma TG levels (Quagliarini et al. 2012), and that the two proteins can be 

co-immunoprecipitated in mouse plasma and cell media (Quagliarini et al. 2012), 

strongly suggesting interactions and synergistic activities between the two proteins. 

Furthermore, the study by Wang et al. reported angptl8 as a key mediator of TG-FA 

trafficking in the fed state (Wang et al. 2013b), as disruption of angptl8 resulted in 

pronounced reduction in plasma TG levels in fed, but not fasted animals (Wang et al. 

2013b). This was reflected by the significantly reduced VLDL secretion, increased 

intravascular LPL activity and chylomicron-TG clearance in these angptl8 KO mice 

(Wang et al. 2013b), as well as abolished VLDL-FA uptake into adipose tissues in fed 

KO mice, suggesting a role of angptl8 in replenishment of TG stores in adipose tissue in 

the fed state.  

Collectively, of all the angptl proteins, angptls 3, 4, 6 and 8 seem to be involved 

in lipid metabolism. 

 

1.2.3.3. Angiopoietin-like proteins in glucose metabolism 
In addition to being involved in lipid metabolism, angptls 4, 6, and 8 have also 

been reported to regulate glucose metabolism. Regarding angptl4, there have been 

controversial findings – while supplementing recombinant angptl4 in hepatocyte 

supernatants suppressed glucose production (Xu et al. 2005) and reduced hyperglycemia 

in diabetic mice (Xu et al. 2005), overexpression of angptl4 in the liver did not result in 

any effects on glucose metabolism (Koster et al. 2005), but even worse glucose tolerance 

when angptl4 was overexpressed in the adipose tissue (Mandard et al. 2006). This 

deleterious effect of angptl4 on glucose metabolism was further supported by data 
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demonstrating a decrease in insulin-mediated glucose clearance (Lichtenstein et al. 

2007).   

Angptl6, on the other hand, has been reported to exert a beneficial role on glucose 

homeostasis in the liver (Kitazawa et al. 2007). In this study, Kitazawa et al. showed that 

angptl6 suppressed glucose production in a dose-dependent manner in vitro, which was 

associated with decreased transcriptional and translational expression of glucose-6-

phosphatase (Kitazawa et al. 2007), a key gluconeogenic enzyme. Mechanistically, 

results suggested that angptl6 reduced transcriptional activity of forkhead box class O1 

(FoxO1), a key transcription factor for glucose-6-phosphate, which led to activation of 

the PI3K/Akt signaling pathway in hepatocytes (Kitazawa et al. 2007). 

The newly recognized angptl8 has recently been suggested to contribute to 

glucose homeostasis (Yi et al. 2013). In this study, hepatic overexpression of angptl8 

promoted pancreatic β-cell proliferation and increased insulin secretion (Yi et al. 2013). 

However, disruption of angptl8 in a mouse model did not lead to changes in glucose 

homeostasis or insulin levels (Wang et al. 2013b).  

Taken together, angptls 4, 6 and 8 may be involved in glucose metabolism, which 

may partly explain their roles in the pathogenesis of insulin resistance. Owing to their 

global metabolic properties, angptl proteins have been implicated in a number of 

pathologies that contribute to cardiovascular risk factors, namely dyslipidemia, obesity, 

and insulin resistance.  

 

1.2.4. Contribution of angptl proteins to cardiovascular risk factors 

 

1.2.4.1 Angiopoietin-like proteins in dyslipidemia 
The findings that angptl proteins function to modulate lipid metabolism suggest 

that they are potentially involved in dyslipidemia, a state where blood lipids are 

abnormally elevated. Since both angptls 3 and 4 are involved in regulation of lipid 

storage and breakdown (Hato et al. 2008), it is without surprise to find studies showing 

angptls 3 and 4 involvement in dyslipidemia both in mice (Koishi et al. 2002; Inukai et 

al. 2004; Desai et al. 2007; Adachi et al. 2011) and in human (Shoji et al. 2009; Pisciotta 
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et al. 2012). On the other hand, two studies on human genetic variants concerning the 

role of angptl6 in dyslipidemia have also been published (Legry et al. 2009; Romeo et al. 

2009). This section will focus on angptl proteins in dyslipidemia, except for angptl2, 

which will be covered in the next chapter. 

The very first evidence that shed light on the roles of angptl proteins in 

dyslipidemia came from the study in mice by Shimizugawa et al. in 2002 (Shimizugawa 

et al. 2002). In this study, an adenoviral injection of angptl3 or a recombinant angptl3 

protein into a mutant mouse strain characterized by its low plasma lipid levels resulted in 

marked increase in plasma lipid levels, including plasma total cholesterol, NEFAs, and 

TG levels (Shimizugawa et al. 2002). Overexpression of angptl3 in these mutant mice 

further elicited a significant increase in TG-enriched VLDL (Shimizugawa et al. 2002), a 

typical profile in dyslipidemia. The authors of this study concluded that the effects of 

angptl3 on VLDL were due to its ability to inhibit LPL activity, and thus inhibiting 

VLDL TG clearance (Shimizugawa et al. 2002). Consistent with this, the study by Ando 

et al. showed that mice with a mutant recessive gene encoding for angptl3 exhibited 

significant reductions in VLDL levels (Ando et al. 2003). Furthermore, in hyperlipidemic 

apolipoprotien E (ApoE) KO mice with this recessive mutation in the angptl3 gene 

showed a marked reduction of VLDL TG, VLDL, as well as plasma apolipoprotein 

(ApoB) levels compared to ApoE KO mice (Ando et al. 2003), which was attributed to 

enhanced lipid metabolism by increased LPL and hepatic lipase activities (Ando et al. 

2003). Interestingly, in ApoE KO mice, the beneficial effects on dyslipidemia of an 8-

week treatment with a xanthone compound, which has been found to have anti-oxidative 

effects (Jiang et al. 2003), were associated with down-regulated hepatic expressions of 

angptl3 mRNA and protein (Xiao et al. 2008), along with increased LPL mRNA 

expression (Xiao et al. 2008). Together, these studies suggest that low levels of angptl3 

expression would be protective against dyslipidemia via increased lipid metabolism.  

In human uremic dyslipidemia that is characterized by elevated TG-rich 

lipoproteins and low HDL levels, Shoji et al. found that high plasma angptl3 

concentrations were associated with the disease (Shoji et al. 2009). Furthermore, in these 

uremic dyslipidemic subjects, angptl3 levels were inversely correlated with TG or 
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cholesterol ratios to both LDL and HDL, strongly suggesting angptl3 involvement in the 

pathogenesis of uremic dyslipidemia (Shoji et al. 2009).  

The closely related angptl protein, angptl4, has also been implicated in 

dyslipidemia. The ability of angpt4 to suppress LPL activity in vitro first suggested the 

mechanism by which it could induce hyperlipidemia in vivo (Yoshida et al. 2002). Other 

studies using the adenoviral- (Ge et al. 2004; Xu et al. 2005) or transgene- (Koster et al. 

2005) mediated overexpression of angptl4 in the liver reported marked TG increase. 

Moreover, transgenic mice mildly overexpressing angptl4 in peripheral tissues showed a 

50% reduction in adipose tissue weight, which was associated with increased FA 

oxidation, increased uncoupling in fat, and greater plasma levels of TG, FFA, glycerol, 

total cholesterol and HDL (Mandard et al. 2006). Consistent with this, angptl4 KO mice 

had a 65 to 90% lower fasting TG as well as total cholesterol levels, accompanied by 

lower plasma VLDL and increased LPL activity (Backhed et al. 2004; Koster et al. 

2005). The study by Desai et al. reported lipid-lowering effects of an anti-angptl4 

antibody in C57Bl6/J, dyslipidemic ApoE KO, low-density lipoprotein receptor (LDLr) 

KO, and diabetic (db/db) mice (Desai et al. 2007). This was associated with increased 

VLDL clearance and decreased VLDL production (Desai et al. 2007). In line with this, in 

LDLr and angptl4 double KO mice, fasting total cholesterol, LDL, HDL, and TG levels 

were lower compared to LDLr single KO mice (Adachi et al. 2011). In addition, diabetic 

angptl4 KO mice showed improved fasting and post-prandial hypertriglyceridemia 

(Adachi et al. 2011). Notably, population-based sequencing uncovered associations 

between a variant (E40K) in the angptl4 gene and markedly lower plasma levels of TG 

and higher HDL levels (Romeo et al. 2007). These results were confirmed by other 

studies in human (Talmud et al. 2008; Nettleton et al. 2009). Also in human, angptl4 has 

been implicated in dyslipidemia, where a change in angptl4 in the plasma positively 

correlated with the change in NEFA (Jonker et al. 2013). Altogether, these studies 

indicate that disturbances in angptl4 signaling are involved in dyslipidemia, and highly 

suggest angptl4 as a potential therapeutic target. Similarly to angptl3, low levels of 

angptl4 expression would be protective against dyslipidemia. 

Angptl6, a more recently identified hepatokine (Hato et al. 2008), also showed 

therapeutic implications in dyslipidemia. Serum angptl6 has been found significantly 
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greater in human with metabolic syndrome when compared with healthy controls 

(Namkung et al. 2011). Furthermore, subjects with high waist circumference or low HDL 

levels were also reported to have significantly increased serum angptl6 levels (Namkung 

et al. 2011). On the contrary, angptl6 null mice were presented with marked obesity that 

was associated with lower energy expenditure and insulin resistance (Oike et al. 2005), 

which will be discussed further in the next section.  

Lastly, mice deficient of angptl8 revealed slower weight gain than WT mice, 

which was due to reduced adipose tissue accretion (Wang et al. 2013b). Specifically, 

post-prandial TG delivery was blunted in these angptl8 KO mice, which failed to 

replenish TG stores in their adipose tissues (Wang et al. 2013b). This study suggests that 

partial inhibition of angptl8 may be beneficial in combating dyslipidemia.  

In summary, angptls 3, 4, 6 and 8 may be potential therapeutic targets in the 

treatment of dyslipidemia, a common feature of atherosclerosis.   

 

1.2.4.2. Angiopoeitin-like proteins in obesity and insulin resistance 
As angptl proteins play major roles in dyslipidemia, they are undoubtedly key 

players in obesity and insulin resistance. Most recent studies have focused on angptls 2, 

3, 4, 6 and 8 in these pathological states.  

Several studies have shown increased hepatic angptl3 expression as well as its 

circulating levels in leptin resistance and insulin resistance (Inukai et al. 2004; 

Shimamura et al. 2004). Levels of angptl3 mRNA and protein were found increased by 

about 2.2-fold in the liver of streptozotocin diabetic mice, which was reversed by insulin 

administration (Inukai et al. 2004). Similarly, hepatic angptl3 protein mRNA expressions 

were also greater than 3.0-fold in db/db mice compared to age-matched littermates 

(Inukai et al. 2004). In diabetic leptin-resistant and -deficent mice, angptl3 expression 

and its plasma levels were increased in comparison to control mice (Shimamura et al. 

2004), which was associated with changes in plasma TG and FFA (Shimamura et al. 

2004). Treatment with leptin or insulin in hepatocytes, on the other hand, decreased 

angptl3 expression (Shimamura et al. 2004). Together, these results suggest that in 

diabetes and insulin resistance, high expression of angptl3 in the leptin- or insulin-

resistant state most likely involves the induction of hypertriglyceridemia and 
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hyperfattyacidemia. Therefore, abnormalities in angptl3 function may be involved in 

insulin resistance and related obesity. 

Unlike angptl3, the role of angptl4 on obesity and insulin resistance has not been 

consistent. With the knowledge that agonists of PPARα and PPARγ also induce angptl4 

expression levels (Mandard et al. 2004), overexpression of angptl4 in mice that led to 

hyperlipidemia and liver steatosis (Xu et al. 2005) seemed paradoxical. Moreover, mice 

that mildly overexpress angptl4, as mentioned earlier, had elevated plasma TG, FFA, 

glycerol, total cholesterol and HDL levels (Mandard et al. 2006). Thus, angptl4 is likely 

not an effector of PPAR agonists’ beneficial effects on lipid metabolism. Nonetheless, the 

study by Xu et al. implied a beneficial role of angptl4 on glucose metabolism (Xu et al. 

2005): indeed, treatment with angptl4 in db/db mice led to improved glucose tolerance 

and hyperinsulinemia, and patients with type 2 diabetes have substantially lower plasma 

angptl4 levels compared to obese subjects without diabetes (Xu et al. 2005). This was 

further strengthened by Koster et al., demonstrating significantly lower plasma angptl4 

levels in patients with type 2 diabetes compared to healthy volunteers (Koster et al. 

2005). Taken together, angptl4 may exert different effects on glucose and lipid 

metabolism, but its beneficial role in maintaining glucose homeostasis could be a 

potential target for treatment of diabetes. Contrarily, another study showed that microbial 

suppression of intestinal angptl4 in mice led to increased adiposity, suggesting that high 

angptl4 levels may promote leanness (Backhed et al. 2004). In summary, angptl4 has 

multiple metabolic effects, and further investigations are necessary to decipher out its 

role in obesity-related metabolic disorders. 

Similar to angptl4, the role of angptl6 in obesity and insulin resistance has been 

inconsistent in recent literature. Whereas angptl6 was initially found to be able to 

“antagonize” obesity (Oike et al. 2005), which was also supported by recently published 

data showing its positive effects on resting metabolic rate in human (Mirzaei et al. 2011), 

another recent study reported elevated circulating levels of angptl6 in obese or diabetic 

human subjects (Ebert et al. 2009). In the study by Oike et al., angptl6-deficient mice 

showed marked obesity through decreased energy expenditure and insulin resistance 

(Oike et al. 2005). Contrarily, transgenic mice with overexpressed angptl6 driven by the 

CAG promoter were lean and had greater energy expenditure (Oike et al. 2005). In 
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parallel, adenoviral overexpression of angptl6 in the liver of diet-induced obese mice 

caused amelioration in obesity and insulin resistance (Oike et al. 2005), suggesting a 

counteracting effect of angptl6 on obesity. However, the study by Ebert et al. raised the 

possible phenomenon of “angptl6 resistance”, which occurs in the state of obesity or 

diabetes (Kadomatsu et al. 2011). It was proposed that in physiological settings, where 

angptl6 levels are optimal, normal hepatic production of angptl6 may be effective in 

counteracting weight gain as well as promoting insulin sensitivity (Kadomatsu et al. 

2011). However, this effect of angptl6 may be attenuated in obesity (Kadomatsu et al. 

2011), leading to “angptl6 resistance”. Highly relevant to obesity and insulin resistance, a 

potential role of angptl6 in endothelial dysfunction has recently been proposed by a 

Finnish group (Tuuri et al. 2013). Preliminary results from this group demonstrated that 

during the second trimester in relatively overweight pregnant women, angptl6 levels were 

higher in those who developed subsequent pregnancy-induced hypertension, although 

endothelial function was not tested (Tuuri et al. 2013). Collectively, angptl6 may have an 

anti-obesity effect, but additional studies are definitely needed to clarify how its 

expression is regulated, and to identify its receptor, so that its underlying signaling 

mechanisms can be further defined. 

As mentioned earlier, since the recently identified angptl8 plays a significant role 

in TG trafficking (Wang et al. 2013b), disruption in its expression or signaling is 

expected to result in metabolic abnormalities. Serum levels of angptl8 were found higher 

in overweight and obese human subjects in comparison to lean subjects, and were 

positively correlated to BMI and glucose levels (Fu et al. 2014). This may be partially 

explained by the function of angptl8 to inhibit LPL and suppress TG clearance and 

increase serum TG (Zhang 2012), yet there was no correlation between fasting angptl8 

levels and TG (Fu et al. 2014). Nonetheless, other studies have consistently shown 

evidence regarding the role of angptl8 in obesity: angptl8 transcript levels were around 8-

fold higher in adipose tissue in obese (ob/ob) compared to WT mice (Ren et al. 2012), 

angptl8 KO mice displayed lower serum TG levels (Wang et al. 2013b), and 

overexpression of angptl8 resulted in dramatically elevated TG levels (Quagliarini et al. 

2012; Zhang 2012), a hallmark of obesity (Miller et al. 2011). Interestingly, it was 

proposed that glucose could regulate angptl8 expression (Fu et al. 2014), as the human 
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angptl8 promoter has an almost perfect carbohydrate responsive element binding protein 

(ChREBP) binding site (Fu et al. 2014), which is consistent with findings that ChREBP 

indeed bound to the angptl8 promoter in hepatic Hep G2 cells (Jeong et al. 2011). Taken 

together, the recently identified angptl8 is likely a hepatokine that is involved in the 

pathogenesis of obesity and diabetes.  

 

1.2.5. Angiopoietin-like proteins in endothelial dysfunction and 

atherosclerosis 
With the knowledge that angptl proteins are key players in regulating 

angiogenesis, lipid and glucose metabolism, and that they are heavily implicated in 

dyslipidemia, obesity, and insulin resistance, one may expect that this protein family 

profoundly contributes to endothelial dysfunction and atherogenesis. Surprisingly, only a 

few studies have focused on angptl proteins in atherogenesis, while almost next to none 

have mentioned the role of angptls in endothelial dysfunction.  

Due to angptl3’s function in regulating lipid metabolism, ApoE KO mice with a 

mutant recessive angptl3 also exhibited less severe plaque development (Ando et al. 

2003), which showed the first evidence of the link between angptl3 and atherosclerosis. 

In addition, Camenisch et al. demonstrated direct effects of angptl3 on vascular ECs by 

binding with integrin α5β3, thus modulating cell adhesion and migration (Camenisch et 

al. 2002). The study by Korstanje et al. in 2004 further linked murine atherosclerosis 

susceptibility to the angptl3 gene (Korstanje et al. 2004) and also found a strong 

association between single nucleotide polymorphisms in the angptl3 gene and 

atherosclerotic lesions in human (Korstanje et al. 2004). In parallel, plasma angptl3 levels 

were also positively correlated with carotid artery and femoral artery intima-media 

thickness in healthy human subjects, which was independent of other classical risk 

factors such as age, blood pressure, blood glucose and lipid levels (Hatsuda et al. 2007). 

Thus, angptl3 may be associated with EC adhesion, arterial wall thickness, as well as the 

development of atherosclerosis.  

With the development of a new angptl4 ELISA assay (Stejskal et al. 2008), the 

study by Stejskal et al. reported correlations between plasma angptl4 levels and 

characteristics of metabolic syndrome, and provided the initial hypothesis that angptl4 
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could be a predictor of accelerated atherosclerosis (Stejskal et al. 2008). By a microarray 

analysis, Katano and Yamada demonstrated that angptl4 expression was significantly 

elevated in severely calcified carotid plaques (Katano and Yamada 2013). The recent 

generation of the LDLr/angptl4 double KO mouse showed decreased cholesterol and TG 

levels in comparison to LDLr single KO mice (Adachi et al. 2011), which typically 

develop premature spontaneous atherosclerosis characterized by increased plasma TG-

rich lipoprotein remnants (Kolovou et al. 2011). In another similar study, ApoE/angptl4 

double KO mice also displayed improved lipid profiles compared to ApoE single KO 

mice (Adachi et al. 2009). Notably, macrophages isolated form angptl4 KO mice showed 

suppressed ability for foam cell formation (Adachi et al. 2009), and may partly explain 

the effects of angptl4 absence on reducing atherosclerotic lesion size (Adachi et al. 

2009). However, another recent study using the atherosclerosis-prone E3L mouse model 

contrarily showed that angptl4 suppressed foam cell formation, hence reducing 

atherosclerosis development, which was independent of changes in plasma cholesterol 

and TG (Georgiadi et al. 2013). In this study, authors found decreased uptake of oxidized 

LDL in macrophages by angptl4 (Georgiadi et al. 2013), most likely through its ability to 

inhibit LPL (Zhu et al. 2012). The discrepancies among these studies in mice could be 

attributed to the different atherosclerotic mouse model used, as the LDLr and ApoE KO 

mice develop significantly more severe atherosclerotic lesions compared to the E3L 

mouse model (van Vlijmen et al. 1994). 

Prospective studies in human population also generated conflicting results. 

Whereas the prospective, population-based Atherosclerosis Risk in Communities Study 

reported associations between the common E40K loss-of-function variant in the angptl4 

gene and lower genetic risks for developing coronary heart disease (Folsom et al. 2008), 

another study showed associations between the same common E40K variant and 

increased coronary heart disease risks (Talmud et al. 2008), and a more recent study 

reported no association between the E40K variant and coronary heart disease risks 

(Smart-Halajko et al. 2010).  

Angptl6 may also be involved in atherosclerosis (Zhang et al. 2006b). In porcine 

ECs, in vitro studies showed that a recombinant angptl6 was able to potently support cell 

adhesion and migration mediated through integrin binding (Zhang et al. 2006a), which is 
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an important process in the inflammatory signaling cascade in ECs (Ley et al. 2007). 

Related to this, angptl6 may also be involved in endothelial dysfunction, as a study in 

Caucasian pregnant women reported for the first time that serum levels of angptl6 were 

higher in women with preeclampsia compared to healthy controls (Stepan et al. 2009), 

which suggested a link between angptl6 and endothelial dysfunction since preeclampsia 

is a complication in pregnancy characterized by hypertension and endothelial dysfunction 

(Sibai et al. 2005). Another recent Finnish study extended this potential link between 

angptl6 and endothelial dysfunction (Tuuri et al. 2013), as mentioned earlier. In this 

study, serum angptl6 levels were found higher in pregnant women who later developed 

pregnancy-induced hypertension (Tuuri et al. 2013). Although endothelial function was 

not directly measured (Tuuri et al. 2013), hypertension is implicated in endothelial 

dysfunction, as introduced in section 1.1.6.2. Interestingly, angptl6 has been shown to 

promote angiogenesis (Oike et al. 2004a) and blood flow via activation of the ERK1/2-

eNOS-NO pathway (Urano et al. 2008), which may suggest its beneficial effects on 

endothelial function. Thus, further investigations are clearly warranted to understand the 

role of angptl6 in regulating endothelial function.  

In summary, most studies have focused on the role of angptls 3 and 4 in the 

development of atherosclerosis due to their important functions in regulating lipoprotein 

metabolism, but findings were not always consistent. Whether angptls 3, 4, and 6 can 

regulate endothelial function, however, is still largely unknown. Therefore, whether 

inhibiting angptl proteins could become useful in preventing CVD including 

atherosclerosis remains to be elucidated. 
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Chapter 3: Angiopoietin-like-2 
 In the final introductory chapter, I will focus on angptl2, which is well known for 

its function in regulating metabolism as well as its pro-inflammatory role. Most of the 

literature regarding angptl2, interestingly, has come from Dr. Oike’s group from Japan, 

with only a few other studies originating from other laboratories including our own. I will 

discuss both the physiological and pathological roles of angptl2, which will then lead me 

to the main question – does angptl2 play a role in regulating endothelial function? 

 

1.3.1. Angptl2 – a pro-inflammatory mediator 
 Cloned 15 years ago by Kim et al. (Kim et al. 1999b), angptl2 is now known for 

its pro-inflammatory properties (Aoi et al. 2011; Aoi et al. 2014; Farhat et al. 2013; 

Horio et al. 2014; Ogata et al. 2012; Tazume et al. 2012). Accordingly, angptl2 has been 

studied in a number of pathologies, ranging from insulin resistance (Tabata et al. 2009) to 

tumour growth (Aoi et al. 2011; Aoi et al. 2014; Endo et al. 2014). Angptl2 is a protein 

of 493 amino acids with a molecular weight of 57 kDa. It can also be glycosylated at 64 

kDa (Kim et al., 1999b), and is a circulating protein (Kadomatsu, Tabata, and Oike 2011; 

Kim et al. 1999b; Tabata et al. 2009).  

Similar to the other angptl proteins, angptl2 possesses an N-terminal coiled-coil 

domain and a C-terminal fibrinogen-like domain (Kim et al. 1999b; Tabata et al. 2009), 

as depicted in Figure 10. However, there is limited information about the specific roles of 

these domains, other than the fact that the helical domain at the N-terminus may be 

required for oligomerization and maximal activity (Broxmeyer et al. 2011), and that the 

fibrinogen-like domain may be necessary for receptor binding (Kubota et al. 2005). Of 

note, the recent findings that the coiled-coil domain of angptl2 significantly enhanced 

hematopoietic stem cell expansion and survival (Broxmeyer et al. 2011) may begin to 

unfold the specific role of the coiled-coil domain. Very recently, it was proposed that 

angptl2 could be cleaved into fragments by the tolloid-like 1 (TLL1) protease in vitro at 

the coiled-coil domain and fibrinogen-like domain linker region (Odagiri et al. 2014). In 

this study using a cancer cell line, the cleaved form of angptl2 was unable to enhance 

tumour progression, unlike the full form of angptl2 (Odagiri et al. 2014). 
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As mentioned, angptl2 has been found in the circulation and expression of angptl2 

has been abundantly found in skeletal muscle, heart, intestine, stomach, uterus, and 

adipose tissues (Kim et al. 1999b). In human, the physiological circulating level of 

angptl2 ranges from approximately 1.0 to 3.0 ng/ml (Kim et al. 1999b; Tabata et al. 

2009; Kadomatsu et al. 2011), as measured in normal-weight, healthy volunteers, which 

was also confirmed with data from our own laboratory (Farhat et al. 2013), and is similar 

between male and female (Tabata et al. 2009; Usui et al. 2013). Work from our 

laboratory showed that gene expression of angptl2 in isolated ECs from atherosclerotic 

chronic smokers, compared to age-matched non-smokers was 4-fold higher (Farhat et al. 

2008), which prompted us to study the role of angptl2 in the pathogenesis of 

atherosclerosis. To this end, our laboratory has since generated a recombinant form of 

human angptl2 (Farhat et al. 2013; Farhat et al. 2014), as well as a knock-down (KD) 

mouse model (Yu et al. 2014).  

 During the last decade, a number of other studies from different laboratories have 

been published regarding the pro-inflammatory role played by angptl2 in contexts of 

various inflammatory diseases. Expression of angptl2 has been found induced by obesity-

associated pathological conditions including hypoxia, endoplasmic reticulum (ER) stress 

(Tabata et al. 2009), and a pro-inflammatory environment (Aoi et al. 2014; Farhat et al. 

2013). Unfortunately, a clear known receptor for angptl2 has not been found, making it 

the greatest hinder in the field of angptl2 research. Until recently, a few potential 

candidate receptors that could bind to angptl2 have been proposed – the first one was the 

integrin α5β1 in adipocytes and ECs (Horio et al. 2014; Tabata et al. 2009). In the study 

published in 2009, Tabata et al. reasoned that the highly homologous fibrinogen-like 

domain in the angptl2 protein may, similar to fibrinogen (Herrick et al. 1999), act as a 

ligand for integrins (Tabata et al. 2009). Indeed, a neutralizing antibody for integrin α5β1 

blocked effects of angptl2 (Tabata et al. 2009), suggesting angptl2 interacting with 

integrin α5β1. Additionally, the Toll-like receptor (TLR4) in ECs and monocytes (Oike 

and Tabata 2009) was also a proposed receptor, as the fibrinogen-like domain in angptl2 

and fibrinogen can act as intrinsic TLR4 ligands (Oike and Tabata 2009). However, no 

direct evidence, such as binding assays, has ever shown TLR4 or integrin directly binding 
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to angptl2. Moreover, we were unable to detect integrin α5β1 mRNA expression in native 

aortic ECs treated with or without a recombinant angptl2 (Farhat et al 2013). 

Recent reports demonstrated that the immune inhibitory receptor leukocyte 

immunoglobulin-like receptor B2 (LILRB2) in human (Zheng et al. 2012; Deng et al. 

2014) and the paired immunoglobulin-like receptor (PIRB) in mouse can bind to angptl2, 

in addition to angptls1, 5, and 7, in hematopoietic cells (Zheng et al. 2012), as shown by 

co-immunoprecipitation and surface plasmon resonance studies (Zheng et al. 2012). 

Moreover, angptl2 was shown by flow cytometry to bind to LILRB2 with high affinity 

(Zheng et al. 2012). However, they still are not receptors that exclusively bind to angptl 

proteins, since LILRB2 and PIRB also bind other ligands (Shiroishi et al. 2003; Atwal et 

al. 2008). Furthermore, minimal LILRB2 mRNA expression in human coronary artery 

ECs (Horio et al. 2014) and mesenchymal cells (Odagiri et al. 2014) was reported, 

although both cells are able to secrete angptl2 (Farhat et al. 2013; Odagiri et al. 2014). As 

a result, a specific antagonist of the angptl2 receptor is still not yet available. Despite this 

shortcoming, studies on angptl2 have made tremendous progress using techniques to 

knock-down the protein with antisense (Kubota et al. 2005), siRNA or miRNA (Toyono 

et al. 2013; Odagiri et al. 2014; Richardson et al. 2014), the genetically modified angptl2 

KO mice (Tabata et al. 2009), the angptl2 KD mice generated by our laboratory (Yu et 

al. 2014), as well as cell-specific KO or knock-in mice (Horio et al. 2014).  

 

1.3.2. Angptl2 – a pro-oxidative mediator 
With the different tools used to study angptl2, a recent study documented the role 

of angptl2 as a pro-oxidative mediator (Aoi et al. 2014). In a chemically-induced skin 

squamous cell carcinoma mouse model, Aoi et al. reported that mice overexpressing 

angptl2 in skin epithelial cells showed greater oxidative stress by quantifying lipid 

peroxidation product in mouse skin tissues (Aoi et al. 2014). Moreover, treatment with 

N-acetyl cysteine in drinking water reduced ROS levels in the skin of these mice, which 

was also associated with significantly attenuated incidence of papillomas (Aoi et al. 

2014). In addition to this, preliminary data from our laboratory showed that in ECs, acute 

treatment with a recombinant angptl2 protein induced massive ROS production (Farhat et 

al. unpublished data), suggesting a pro-oxidative role of angptl2. 
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In the following few sections, physiological roles of angptl2 are first described, 

followed by evidence of angptl2 participation in inflammation and oxidative stress 

outlined as categorized by different pathologies. 

 

1.3.3. Physiological roles of angptl2 
Most recent studies have primarily focused on angptl2 participation in disease 

settings where its levels are in excess and where angptl2 acts as a pro-inflammatory 

mediator (Kadomatsu et al. 2014). Nonetheless, the inflammatory cascade is not involved 

strictly in disease settings but also in tissue homeostasis as protection against tissue 

damage (Medzhitov 2008). Thus, pro-inflammatory angptl2 can also take part in 

physiological settings.  

 

1.3.3.1. Angptl2 in physiological angiogenesis 
As the name implies, angptl2, being part of the angptl family, has properties 

similar to that of angiopoietins, proteins known for their angiogenic features (Tsigkos et 

al. 2003). Indeed, at the time of its initial cloning, angptl2 was shown to be pro-

angiogenic by inducing EC sprouting (Kim et al. 1999b) (Table 1), which was further 

confirmed by our laboratory (Farhat et al. 2014), and also when the transgenic mice over-

expressing angptl2 controlled by the keratinocyte-specific promoter K14 showed 

increased blood vessel growth in the skin (Hato et al. 2008). In line with this, knocking 

down angptl2 in zebrafish with antisense resulted in defective sprouting in ECs due to 

increased apoptosis (Kubota et al. 2005), suggesting a pro-angiogenic role of angptl2. 

However, globally knocking out angptl2, as in the angptl2 KO mouse model (Tabata et 

al. 2009), did not result in abnormal vascular development (Tabata et al. 2009). 

Interestingly, it was also shown that angptl2 cooperates with highly homologous angptl1 

to exert anti-apoptotic effects, and that the two may even share complementary functions 

in vascular development (Kubota et al. 2005). Besides angiogenesis, another recent study 

demonstrated a potential role of angptl2 in the regulation of vasculogenesis (Richardson 

et al. 2014), a process of blood vessel formation via de novo production of ECs 

(Pardanaud et al. 1989). Indeed, knock-down of angptl2 by siRNA treatment in 

endothelial colony forming cell attenuated 36% of cell migration, but without much 
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effects on cell proliferation or apoptosis (Richardson et al. 2014). Moreover, the 

angiogenic role of angptl2 has been reported in bovine oestrous cycle maintenance 

(Mitko et al. 2008) and chick embryonic development (Niki et al. 2009), whereas its 

hematopoietic role has been reported in hematopoietic stem cell expansion ex vivo 

(Zhang et al. 2006a; Zheng et al. 2012; Akhter et al. 2013). Of course, angiogenesis is 

not strictly physiological, as pathological angiogenesis is an integral player in tumour 

growth (Folkman 1971), but the role of angptl2 in patholgocial angiogenesis will be 

discussed in a later section. Taken together, there is substantial evidence supporting the 

angiogenic involvement of angptl2 in physiological settings. 

 

1.3.3.2. Angptl2 in tissue repair and remodeling 
In aging, tissue repair and remodeling is important for the repair of damage 

caused by external and internal stresses and maintenance of tissue homeostasis 

(Medzhitov 2008). Normal angptl2 signaling has been demonstrated in tissue repair (Kim 

et al. 1999b; Kubota et al. 2005; Tabata et al. 2009). The role of angptl2 in tissue repair 

mechanisms has been demonstrated in zebrafish, which are characteristic for their tissue 

regeneration capacities (Akimenko et al. 2003). In studying embryogenesis in this model, 

angptl2 expression was first detected in yolk sac extension, spinal cord and branchial 

arches, and then subsequently expressed in liver primordium and pectoral fin buds 

(Kubota et al. 2005). In addition, angptl2 expression was induced in adult fin 

regeneration (Kubota et al. 2005). Notably, metalloproteinases (MMPs) were also 

expressed during blastema in fin regeneration of zebrafish (Bai et al. 2005), and angptl2 

has recently been shown to induce MMP expressions and activities (Odagiri et al. 2014; 

Tazume et al. 2012). The recently published work linking angptl2 and MMPs reported 

that angptl2 signaling led to extracellular matrix (ECM) remodeling by increasing 

expressions and activities of MMPs via activation of p38 MAPK mediated by integrin 

α5β1 (Odagiri et al. 2014). Relevant to this, angptl2 has been implicated in adipose tissue 

modeling (Tabata et al. 2009). Modest tissue remodeling is important in obesity, as least 

in its first stages when adipose tissues remodel to cope with excess lipids (Sun et al. 

2011), which is a physiological response. Adipose tissue remodeling includes adipocyte 

hypertrophy, adipogenesis, angiogenesis, as well as ECM remodeling (Sun et al. 2011). 
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In obese mice, Tabata et al. reported abundant circulating and visceral adipose tissue 

angptl2 mRNA (Tabata et al. 2009). Transgenic mice overexpressing angptl2 in adipose 

tissue, although not obese, showed vascular inflammation and inflammatory macrophage 

infiltration (Tabata et al. 2009). Conversely, angptl2-deficient mice fed a HFD displayed 

fewer macrophage infiltration (Tabata et al. 2009). Altogether, this study suggests 

involvement of angptl2 in promoting adipose tissue remodeling in order to store excess 

energy, at least in early phases of obesity. This is summarized in Figure 13.  

Collectively, there is evidence showing angptl2 contribution to tissue repair and 

remodeling, but more work is necessary to decipher out the exact mechanisms by which 

angptl2 promotes them, especially in human.  

 

 
Figure 13. The role of angptl2 in physiological and pathological adipose tissue 
remodeling. In mild obesity, physiological adipose tissue remodeling involves increased 
angptl2 production from adipocytes promoting MMP activation, thus inducing adipose 
tissue remodeling, which leads to adipogenesis and adipocyte hypertrophy to store excess 
energy. In severe obesity, pathological adipose tissue remodeling involves excess angptl2 
production, which leads to vascular inflammation and macrophage infiltration into 
adipocytes. 
 
Reprinted with the permission from Elsevier: Trends Endocrinol Metab. Kadomatsu T, 
Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and 
pathophysiology. Trends Endocrinol Metab. 25, 245-254. Copyright (2014). 
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1.3.3.3. Angptl2 as a circadian gene 
Circadian rhythmicity is exhibited by a number of physiological processes such as 

metabolism (Bass and Takahashi 2010) and is tightly regulated in most cells by a set of 

important genes, including the circadian locomotor output cycles kaput (CLOCK) and the 

brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) 

genes (Ukai and Ueda 2010). Disruption of the circadian clock, on the other hand, has 

been linked to the pathophysiogenesis of a number of diseases, such as sleep disorders, 

metabolic syndrome, and CVDs (Takahashi et al. 2008). Interesting insights on angptl2 

acting as a circadian gene were reported in one study in 2011, where Kitazawa et al. first 

showed differential mRNA expression of angptl2 in epididymal adipose tissue dependent 

on the circadian rhythm in mice, with peak expression levels at times of active feeding, 

with induction of the angptl2 promoter activity by CLOCK and BMAL1 (Kitazawa et al. 

2011), which was also confirmed by Kadomatsu et al. in various mouse tissues and 

synchronized human osteosarcoma cells (Kadomatsu et al. 2013). Rhythmic expression 

of angptl2 may therefore imply that the disruption of its circadian regulation can lead to 

lifestyle-related diseases (Kadomatsu et al. 2013). For example, chronic constitutive 

expression of angptl2, as in transgenic mice continuously expression angptl2 in adipose 

(Tabata et al. 2009) or skin tissue (Aoi et al. 2011), is associated with adipose and skin 

tissue inflammation, respectively (Aoi et al. 2011; Tabata et al. 2009). In addition, serum 

angptl2 also showed circadian expression (Kitazawa et al. 2011). Taken together, angptl2 

is a circadian gene, and disruptions of its regulation may lead to diseases. 

 

1.3.3.4. Angptl2 in AT1R recycling 
Another physiological and important role of angptl2 is its involvement in the 

trafficking and recycling of the AT1R in the cytosol (Guo et al. 2001; Guo et al. 2003; 

Guo et al. 2006), linking angptl2 with angII signaling and part of the RAS. Because of 

this particular role, angptl2 has also been called angiotensin II receptor-associated protein 

1 (ARAP1) by other teams (Guo et al. 2001; Guo et al. 2003; Guo et al. 2006; Doblinger 

et al. 2012; Mederle et al. 2013). Angptl2 was found localized with AT1R in the mouse 

kidney vasculature, and down-regulation of angptl2 was accompanied by slight reduction 

in AT1R expression in cultured mesangial cells (Doblinger et al. 2012). In the same 
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study, it was shown that renal angptl2 expression was suppressed by angII in a dose-

dependent manner, suggesting angII regulation of renal angptl2 expression (Doblinger et 

al. 2012). Overexpression of angptl2 in the renal proximal tubule of mice resulted in salt-

sensitive increase in blood pressure, which was reversed by ACE inhibitor perindopril or 

AT1R antogonist losartan (Guo et al. 2006). Interestingly, global angptl2 KO mice are 

normotensive (Mederle et al. 2013), suggestive of compensatory mechanisms in the 

systemic vasopressor systems to maintain blood pressure (Mederle et al. 2013). However, 

there is no direct evidence currently showing angptl2 regulation of blood pressure and 

further investigations are necessary to clarify this role. Mechanistically, both in vivo and 

in vitro studies have shown that angptl2 acts as a positive modulator of vascular AT1R by 

binding to the receptor’s intracellular C-terminal region, which plays a crucial role for 

receptor internalization, desensitization, and phosphorylation, thereby facilitating its 

recycling to the plasma membrane (Guo et al. 2003; Guo et al. 2001).  

Collectively, angptl2 exhibits physiological roles such as angiogenesis, tissue 

repair and remodeling, as well as AT1R recycling.  

 

1.3.4. Pathological roles of angptl2 
Just like most other proteins, there exists a tightly regulated level of angptl2 to 

maintain cell homeostasis (Kadomatsu et al. 2014).  However, when there is excess 

activation of angptl2, homeostasis is disrupted, leading to chronic inflammation and 

tissue damages (Kadomatsu et al. 2014). In the following section, pathological roles of 

angptl2 will be discussed. 

 

1.3.4.1. Angptl2 in rheumatoid arthritis  
Rheumatoid arthritis, a chronic inflammatory disorder, is characterized by 

synovitis and ultimately, destruction of the joints (Firestein 2003). During rheumatoid 

arthritis, there is recruitment of activated B and T lymphocytes, monocytes and 

macrophages, plasma cells, as well as mast cells to the joint, to act as sources of 

inflammatory cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6), and TNFα 

(Brennan and McInnes 2008). Importantly, abundant gene and protein expression of 

angptl2 was found in synoviocytes of patients with rheumatoid arthritis (Okada et al. 
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2010). Likewise, angptl2 levels in synovial fluid was higher in patients with rheumatoid 

arthritis than those with osteoarthritis, a form of arthritis with lesser degree of 

inflammation, without differences in serum levels of angptl2 between the two groups 

(Okada et al. 2010). Further analysis by immunofluorescent staining indicated that 

angptl2 was produced by fibroblast- and macrophage-like synoviocytes in the rheumatoid 

arthritis synovium (Okada et al. 2010). Angptl2 also promoted chemotaxis of both 

monocytes and ECs in rheumatoid arthritis fluid, which may be associated to its signaling 

through integrins (Okada et al. 2010). In conjunction, angptl2 may also mediate 

angiogenesis, as described previously (Kim et al. 1999b; Kubota et al. 2005), resulting in 

the common feature of vascular inflammation in rheumatoid arthritis. Collectively, 

angptl2 plays a potential role in the pathogenesis of rheumatoid arthritis by mediating 

inflammatory vascular remodeling and macrophage recruitment to the joints. 

 

1.3.4.2. Angptl2 in cancer 
With chronic inflammation emerging as a key player in cancer development, and 

that ER stress and hypoxia are common in cancer progression and metastasis (Bi et al. 

2005), angptl2 has been implicated in several cancer cell types, including breast cancer 

(Endo et al. 2014), lung cancer (Endo et al. 2012; Sasaki et al. 2012), sarcoma (Teicher 

2012) and osteosarcoma (Odagiri et al. 2014), leukemia (Zheng et al. 2012),  skin cancer 

(Aoi et al. 2011; Aoi et al. 2014), and very recently, hepatic cancer (Gao et al. 2014). 

In breast cancer patients, increased serum levels of angptl2 was able to reflect 

clinical progression of disease, and could potentially be a biomarker for breast cancer 

metastasis (Endo et al. 2014). Furthermore, expression of angptl2 was found in 

correlation with carcinogenesis frequency in a mouse model (Aoi et al. 2011). In this 

study, Aoi et al. found that angptl2 expression in mouse skin tissues was positively 

correlated to a chronic inflammatory status as well as ROS levels, and was more 

susceptible to carcinogenesis (Aoi et al. 2011). The authors concluded that angptl2 

‘primed’ the microenvironment into a pro-inflammatory one that becomes more 

susceptible to DNA damage and genomic instability (Aoi et al. 2011). This is illustrated 

in Figure 14. These authors also demonstrated that, by promoting epithelial-to-

mesenchymal transition via activation of the tumour growth factor (TGF)-β-Smad 
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pathway, and lymphoangiogenesis, angptl2 increased metastasis to lymph nodes as well 

as distant secondary organs (Aoi et al. 2011). Chronic inflammation in the skin tissues of 

transgenic mice overexpressing angptl2 also showed infiltration by inflammatory cells 

such as activated macrophages and neutrophils (Aoi et al. 2011), and was speculated as 

the source of ROS, which is able to inactivate DNA repair enzymes (Colotta et al. 2009). 

Subsequent to this study, angptl2 involvement in cancer development was further 

strengthened by studies in human lung tumour tissues – its expression in lung tumour 

tissues from cancer patients was significantly higher that that found in non-tumour lung 

tissues from the same cancer patients (Endo et al. 2012). Additionally, continuous anti-

oxidant N-acetylcysteine (NAC) treatment in an angptl2-induced chemically-induced 

squamous cell carcinoma model attenuated inflammation as well as ROS accumulation 

(Aoi et al. 2014), further emphasizing the pro-inflammatory role of angptl2. In 

osteosarcoma cell lines, it was suggested that angptl2 was acting through integrins α5β1, 

p38 MAPK and MMP-9 to increase metastasis (Odagiri et al. 2014), and that 

demethylation of the gene promoter region of angptl2 was associated with increased 

angptl2 expression (Odagiri et al. 2014). In the same study by Odagiri et al., it was 

additionally reported that a cleaved form of angptl2 resulting from TLL1 protease 

cleavage did not enhance tumour metastasis in vitro in osteosarcoma cell lines, and only 

the full-length angptl2 was capable in promoting tumour progression (Odagiri et al. 

2014). It was additionally proposed by the authors that the lack of TLL1 in cancer cells 

may explain the deleterious effect of angptl2 (Odagiri et al. 2014). 
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Figure 14. Proposed mechanism linking angptl2 and carcinogenesis. Physiological 
secretion of angptl2 contributes to tissue homeostasis maintenance. Chronic stresses such 
as aging can increase production of angptl2 and result in chronic inflammation, which 
can induce oxidative stress and genomic instability, ultimately increasing susceptibility to 
carcinogenesis. 
 
Reprinted with the permission from Elsevier: Trends Endocrinol Metab. Kadomatsu T, 
Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and 
pathophysiology. Trends Endocrinol Metab. 25, 245-254. Copyright (2014). 
 
 

Interestingly, data from another group showed angptl2 as a putative tumour 

suppressor in ovarian cancer (Kikuchi et al. 2008). By genome-wide analysis of an 

ovarian cancer cell line, Kikuchi et al. identified a novel homozygous loss of angptl2 

(9q33.3), which was absent in normal epithelial cells (Kikuchi et al. 2008), suggesting 

angptl2’s anti-tumour effects. Indeed, restoring angptl2 expression or adding angptl2 in 

cell medium inhibited ovarian cell growth, while knocking down angptl2 had the 

opposite effect (Kikuchi et al. 2008). Of note, the lack of angptl2 immunoreactivity in 

cancer cells correlated with poorer survival in the early stages of disease, while the 
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opposite was true for advanced stages of disease (Kikuchi et al. 2008), suggesting 

angptl2 could act in a stage-dependent manner. However, the mechanism that regulates 

angptl2 silencing in these ovarian cells, leading to its inactivation, remains unknown 

(Kikuchi et al. 2008). 

In the context of pathological angiogenesis seen in cancer settings (Folkman 

1971), angptl2 seems to also play a crucial role. A microarray analysis of resistant tumour 

cells in response to anti-VEGF therapy unexpectedly showed angptl2 as a potential pro-

angiogenic candidate that may be involved in tumour refractoriness to anti-VEGF therapy 

(Crawford et al. 2009). Consistent with this, in chemically induced carcinogenesis and 

xenograft tumour mouse models, both angptl2-deficient mice and angptl2-KD tumour 

cells showed lower levels of tumour angiogenesis (Aoi et al. 2011). In contrast, 

overexpression of angptl2 in mice resulted in augmented tumour angiogenesis (Aoi et al. 

2011). Lastly, and as mentioned before, angptl2 was found to bind to LILRB2, allowing 

it to promote leukemia development by supporting ex vivo expansion of haematopoietic 

stem cells (Zheng et al. 2012).  

Taken together, most studies have proposed angptl2 as a likely player in cancer 

pathophysiology including tumour angiogenesis, with the exception of the study by 

Kikuchi et al. (Kikuchi et al. 2008), suggesting angptl2 as a potential therapeutic target in 

cancer treatment.   

 

1.3.4.3. Angptl2 in obesity and insulin resistance 
It is now clear that obesity is considered a chronic inflammatory disorder 

(Lumeng and Saltiel 2011), where adipocytes and macrophages could act as sources of 

pro-inflammatory cytokines (Kanda et al. 2006). Evidence of angptl2 involvement in 

obesity and associated insulin resistance was first demonstrated in 2009 (Tabata et al. 

2009), proposing angptl2 as an adipokine, or adipocyte-derived cytokine (Ouchi et al. 

2011), for the first time. In this seminal report, angptl2 was shown to be produced by 

adipocytes, where it is abundantly expressed, and particularly in visceral adipose tissues 

(Tabata et al. 2009). Much like in cancer cells, angptl2 expression and production were 

increased by ER stress and hypoxia in obesity (Tabata et al. 2009). In human, serum 

levels of angptl2 positively correlated with inflammatory states and insulin resistance 
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levels (Tabata et al. 2009), and was also associated with type 2 diabetes development 

(Doi et al. 2012). In line with this, both gene and protein expressions of angptl2 in 

glomeruli from renal biopsies was up-regulated in diabetic patients compared to control 

(Sun et al. 2007). On the other hand, anti-diabetic treatment with pioglitazone in type 2 

diabetic and obese patients for 3 months (Tabata et al. 2009) or weight reduction in 

overweight but non-diabetic men (Muramoto et al. 2011) resulted in lower circulating 

angptl2 levels. In comparing WT and angptl2 KO mice fed a HFD for 8 weeks, it was 

shown that whereas WT mice developed systemic insulin resistance as examined by 

glucose and insulin tolerance tests, KO mice only developed mild resistance, as reflected 

by greater insulin sensitivity in both the skeletal muscle and liver (Tabata et al. 2009). 

Moreover, they gained significantly less weight compared to the WT mice, and expressed 

lower adipocytokines and macrophage markers in adipose tissues (Tabata et al. 2009). On 

the contrary, overexpressing angptl2 in adipose tissues in mice promoted local 

inflammation in the adipose tissue as there were increased gene expressions of 

inflammatory cytokines such as IL-6 and TNFα; these mice also developed systemic 

insulin resistance and displayed glucose intolerance and insulin resistance, as reflected by 

blunted insulin signaling in both skeletal muscle and liver, without significant weight 

differences compared to WT mice (Tabata et al. 2009).  

In cultured ECs, angptl2 acted on α5β1 integrins (Tabata et al. 2009), which are 

known to activate inflammatory gene expressions via the NFκB pathway (Klein et al. 

2002). Indeed, angptl2 stimulated NFκB nuclear translocation and inhibitor of kappa B 

(IκB) degradation, induced expression of adhesion molecules and promoted monocyte 

migration (Tabata et al. 2009). Taken together, this study suggests that adipocyte-derived 

angptl2 acts as an inflammatory mediator by promoting vascular remodeling and 

macrophage recruitment into adipose tissue, thereby playing a key role in insulin 

resistance and the pathogenesis of diabetes, as illustrated in Figure 13 previously.  

Of note, another group showing that angptl2 is a circadian gene, as mentioned 

before, suggested the contrary (Kitazawa et al. 2011). Angptl2 was reduced in diabetic 

db/db mice and HFD-fed mice at feeding time, and administration of a recombinant 

angptl2 improved insulin sensitivity, lowered levels of glucose, TG and FFA in these 

mice, suggesting an anti-diabetic role of angptl2 (Kitazawa et al. 2011). To date, this has 
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been the only study associating angptl2 with anti-diabetic properties and it was proposed 

that angptl2 is involved in the progression of diabetes (Kitazawa et al. 2011), rather than 

its pathogenesis (Tabata et al. 2009). Using 3T3-L1 cells of adipocytes, it was found that 

angptl2 expression was highest during prematurity of cells and diminished in fully mature 

adipoctyes, suggesting its role in regulating adipocyte differentiation (Kitazawa et al. 

2011). Moreover, knocking down the angptl2 gene using siRNA disrupted insulin 

signaling via de-activation of the Akt downstream pathway, specifically by increasing 

expression of tribbles homolog 3 (Trib3) (Kitazawa et al. 2011), an inhibitory protein of 

Akt activation (Du et al. 2003). Discrepancies on the role of angptl2 on insulin sensitivity 

between these studies may be due to different mouse models used, HFD-induced insulin 

resistance (Tabata et al. 2009) and the db/db mouse model (Kitazawa et al. 2011). Each 

model represents distinct disease state, as a HFD would induce insulin resistance as the 

mice develop, while db/db mice establish severe insulin resistance at 8 weeks of age 

(Kitazawa et al. 2011). It was proposed that angptl2 could play divergent roles in 

different stages in the pathogenesis of diabetes (Kitazawa et al. 2011). 

In cultured, fully matured 3T3-L1 adipocytes, Zheng et al. found evidence that 

exogenous addition of TNFα induced angptl2 expression, likely through activation of 

transcription factor FoxO1 (Zheng et al. 2011), whose signaling is associated with 

production of pro-inflammatory cytokine IL-1β via NFκB (Su et al. 2009). On the other 

hand, insulin suppressed angptl2 gene expression, which was impaired by PI3K inhibitor 

(Zheng et al. 2011). Altogether, these data indicate that under a pro-inflammatory or 

insulin-resistance environment, where FoxO1 activity is increased, expression of its 

target gene angptl2 is up-regulated, suggesting a potential role of angptl2 in obesity-

induced inflammation and insulin resistance. 

In another obesity-related chronic inflammatory disorder, such as chronic kidney 

disease, evidence of angptl2 implication was found. In a general Japanese population, 

elevated serum levels of angptl2 was associated with the likelihood of chronic kidney 

disease after adjusting for known cardiovascular risk factors and events (Usui et al. 

2013). However, whether angptl2 could directly impair kidney function remains to be 

elucidated (Usui et al. 2013). Angptl2 levels were also higher in microvascular lesions of 

diabetic glomerulopathy (Sun et al. 2007). Similarly, serum angptl2 levels also 
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independently correlated with albumin-to-creatinine ratio in diabetic patients (Li et al. 

2013), and could be used to identify diabetic patients with nephropathy in early phase (Li 

et al. 2013). Consistent with this, the Hisayama Study also reported a positive correlation 

between serum angptl2 and the development of type 2 diabetes in a general Japanese 

population of 2164 individuals ranging from 40 to 79 year-old followed up for 7 years 

(Doi et al. 2012), suggesting angptl2 as an independent risk factor for diabetes (Doi et al. 

2012). Collectively, there is accumulating evidence further supporting the involvement of 

angptl2 as a causal factor in diabetes. 

In summary, it seems that most studies support the role of angptl2 in regulating 

insulin sensitivity, and that high levels of angptl2 could predict the development of 

insulin resistance and diabetes. Therefore, lowering levels of angptl2 could be a potential 

strategy against obesity-mediated insulin resistance and diabetes. 

 

1.3.4.4. Angptl2 in vascular remodeling 
In view of obesity being a worldwide pandemic (Flier 2004) and is closely linked 

to CVDs (Castelli 1998), some investigators have turned their interests to adipose tissue 

biology. As already mentioned, adipocytes dynamically secrete bioactive factors, also 

known as adipokines, including pro- and anti-inflammatory adipokines, in response to the 

environment (Guilherme et al. 2008). Besides visceral adipose tissues secreting these 

adipokines (Guilherme et al. 2008), perivascular adipose tissues that surround the outer 

layer of arterial vessels also do the same (Meijer et al. 2011). There are recent studies 

suggesting that an imbalance of perivascular adipocyte pro- and anti-inflammatory 

adipokine production can result in vascular remodeling that is associated with CVDs 

(Iacobellis et al. 2008; Takaoka et al. 2009). In a recent study, angptl2 expression in 

human perivascular adipose tissue was reported (Tian et al. 2013), which was positively 

correlated to adiponectin, an anti-inflammatory adipokine, in non-coronary heart disease 

patients (Tian et al. 2013), but also positively correlated to TNFα in coronary heart 

disease patients (Tian et al. 2013). This suggests that angptl2 cooperates with pro-

inflammatory TNFα and prevents the anti-inflammatory activity of adiponectin (Tian et 

al. 2013). In the same study, angptl2-deficient mice that underwent an endovascular wire 

injury in the femoral artery showed attenuated vascular neointimal thickening compared 
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to WT littermates (Tian et al. 2013). Perivascular adipose tissue-derived angptl2 up-

regulated expressions of genes involved in inflammation and ECM degradation, 

including TNFα and MCP-1 (Tian et al. 2013). There was also increased MMP-2 activity 

in the vascular tissue of mice transplanted with visceral adipose tissue of transgenic mice 

overexpressing angptl2 (Tian et al. 2013). Interestingly, angptl2 expression in 

perivascular adipose tissues of atherosclerosis-prone and hypercholesterolemic ApoE KO 

mouse was significant greater than that in WT mice (Tian et al. 2013), and angptl2 

expression was also increased with age (Tian et al. 2013). Altogether, coronary risk 

factors including aging and hypercholesterolemia could increase perivascular adipose 

tissue angptl2 expression, which could in turn contribute to vascular remodeling (Tian et 

al. 2013). 

 

1.3.4.5. Angptl2 in inflammatory tissue disorders 
A recent study by Nakamura et al. showed that angptl2 expression was abundant 

in hypertrophied ligamentum flavum tissue fibroblasts (Nakamura et al. 2014). 

Ligamentum flavum hypertrophy is an inflammatory disorder that results in lumbar 

spinal canal narrowing as there is mechanical compression of the nerve root (Beamer et 

al. 1973; Sairyo et al. 2007). In the study by Nakamura et al., in vitro experiments in a 

chamber attached to a stretching apparatus using fibroblasts isolated from patients 

undergoing lumbar surgery demonstrated that angptl2 expression in hypertrophied 

fibroblasts was induced by mechanical stretching via activation of calcineurin/nuclear 

factor of activated T cell (NFAT) pathways (Nakamura et al. 2014), and correlated with 

that of TGF-β1 (Nakamura et al. 2014). The mRNA of TGF-β1 receptors also increased 

following angptl2 treatment in fibroblasts (Nakamura et al. 2014). Most likely, 

mechanical stretching stress could, via activating mechanosenstive ion channels and 

increasing intracellular Ca2+, activate the calcineurin/NFAT pathways, which have been 

reported to induce angptl2 expression in tumour cells (Endo et al. 2012). Nakamura et al. 

speculated that when the level of mechanical loading is physiological, optimal amounts 

of angptl2 acts as a tissue remodeling factor to maintain homeostasis; however, when the 

level of mechanical loading becomes pathological, as in patients with lumbar spinal canal 

stenosis, excess angptl2 would promote irreversible pathological remodeling and 
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degeneration in ligamentum flavum tissues, leading to hypertrophy (Nakamura et al. 

2014).  

Angptl2 has also been implicated in another inflammatory tissue disorder, namely 

dermatomyositis (Ogata et al. 2012), an autoimmune disease characterized by chronic 

skin and muscle tissues inflammation that lead to skin eruption and muscle weakness 

(Callen 2000). Abundant gene and protein expression of angptl2 were reported in skin 

eruptions of patients presented with dermatomyositis, along with evidence that angptl2 

was derived from skin cells, likely as a result of hypoxia and ER stress, and activates the 

NFκB inflammatory cascade through the integrin α5β1, as an autocine or paracrine 

(Ogata et al. 2012).  

In summary, angptl2 expression is associated with inflammatory tissue diseases, 

as demonstrated in ligamentum flavum hypertrophy (Nakamura et al. 2014) and 

dermatomyositis (Ogata et al. 2012), suggesting angptl2 as a potential target in treatment 

against these disorders. 

 
1.3.4.6. Angptl2 in abdominal aortic aneurysm (AAA) development 

In 2012, the first evidence of angptl2 involvement in AAA development was 

demonstrated by Dr. Oike’s group (Tazume et al. 2012). Clinically, AAA is diagnosed as 

either ≥1.5 times increase in aortic diameter when compared to a normal adjacent aorta, 

or a presented aneurysm with ≥30 mm diameter (Schermerhorn 2009). AAA is a chronic 

inflammatory disease, and is typically characterized by infiltrating inflammatory cells 

including T-cells, B-cells, macrophages, as well as mast cells (Ocana et al. 2003).  

In the first part of this particular study, aortic aneurismal lesion tissues from 

patients presented with AAA were first examined. The major findings of this study were 

that, indeed, angptl2 was expressed within aortic aneurismal walls of AAA patients, that 

angptl2 expression was primarily localized at the medial layer of aneurysmal lesions and 

was co-localized with cells expression CD68, a macrophage marker, but not with those 

expressing CD20, CD3, or CD15 (Tazume et al. 2012). CD20, CD3, and CD15 are 

markers for B cells (Ernst et al. 2005), T cells (van Dongen et al. 1988), and neutrophils 

(Larsen et al. 1990), respectively. This suggests that angptl2 is primarily produced within 

infiltrating macrophages and not within B or T lymphocytes and neutrophils (Tazume et 
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al. 2012). In the second part of the study, mice genetically lacking angptl2 (KO) were 

used to determine association of angptl2 with chronic inflammation in CaCl2-induced 

AAA. Male 10- to 12-week-old WT or KO mice underwent peri-aortic application of 

CaCl2 for 28 days, after which mice were sacrificed for experiments. Furthermore, using 

the CaCl2-induced AAA mouse model, abundant expression of angptl2 was found at the 

medial layer of aortic aneurysm in mice with AAA, but not in sham-operated, control 

mice (Tazume et al. 2012). As well, pattern of angptl2 expression was similar to that of 

Mac2 (Tazume et al. 2012), also a macrophage marker. In angptl2 KO mice, AAA 

development was attenuated, accompanied with less mRNA expressions of TNFα, IL-1β, 

and IL-6 compared to CaCl2-treated WT mice (Tazume et al. 2012). However, the 

amount of infiltrating macrophages in the lesions between KO and WT mice were similar 

(Tazume et al. 2012), suggesting macrophage-derived angptl2 contributed to AAA 

development. Authors concluded that macrophage-derived angptl2 could increase 

inflammatory cytokine production and aorta ECM degradation (Tazume et al. 2012).  

 

1.3.4.7. Angptl2 in atherogenesis 
A direct role of angptl2 in atherogenesis was first documented in 2013 by our 

laboratory (Farhat et al. 2013). With a previous report showing a 4-fold increase in 

angptl2 mRNA levels from ECs isolated from arteries of active smokers with CAD 

versus non-smoking CAD subjects (Farhat et al. 2008), and that plasma levels of angptl2 

were greater in Japanese patients with CAD versus control healthy subjects (Tabata et al. 

2009), the role of angptl2 and the underlying mechanisms were determined in the setting 

of atherogenesis (Farhat et al. 2013). Besides merely being a lipid storage disease, 

atherosclerosis actually is also a chronic inflammatory disorder (Libby et al. 2002). In 

our study, plasma levels of angptl2 in WT mice was positively correlated with age, which 

was exacerbated in severely dyslipidemic LDLr-/-; hApoB+/+ mice (Farhat et al. 2013). In 

these mice where atherosclerosis develops spontaneously (Sanan et al. 1998), angptl2 

protein expression in atherosclerotic plaque of the aorta increased with age and 

progression of disease, which correlated with that of F4/80, a marker of macrophages 

(Farhat et al. 2013). Acute exogenous stimulation by recombinant angptl2 on native 

LDLr-/-; hApoB+/+ mouse endothelium potently up-regulated expression of ICAM-1 and 
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P-selectin and induced leukocyte adhesion, paralleled with increased adhesion molecule 

expression (Farhat et al. 2013). Additionally, angptl2 was secreted by ECs and was 

bound to VSMC (Farhat et al. 2013). Interestingly, chronic administration of recombinant 

angptl2 in young pre-atherosclerotic mice for 4 weeks increased circulating cholesterol 

levels in addition to plaque formation by 10-fold (Farhat et al. 2013), showing for the 

first time, links among lipid handling, atherogenesis, and angptl2. Taken together, 

angptl2 acts as a pro-inflammatory factor that participates in various early steps of 

atherogenesis, by activating ICAM-1 and P-selectin, priming an inflammatory vascular 

endothelium, thereby promoting leukocyte adhesion onto the endothelium (Farhat et al. 

2013). 

The involvement of angptl2 in atherogenesis was further supported by a 

subsequent Japanese report showing that in another atherosclerotic mouse model, the 

ApoE KO mouse, angptl2 protein levels in aortic tissues were similarly and positively 

correlated with atherosclerosis severity (Horio et al. 2014), and that angptl2 was 

expressed in both ECs and infiltrating macrophages in human tissues (Horio et al. 2014). 

The authors demonstrated that angptl2 activated pro-inflammatory NFκB signaling in 

ECs, which then increased monocyte and macrophage chemotaxis (Horio et al. 2014). 

Conversely, angptl2 deficiency in double-KO of ApoE and angptl2 in mice resulted in 

significantly smaller atherosclerotic lesions than single ApoE KO littermates, while 

expressions of pro-inflammatory markers, such as VCAM-1, E-selectin, TNFα, IL-6, IL-

1β, were lower compared to littermates (Horio et al. 2014). Furthermore, exogenous 

stimulation by angptl2 resulted in increased mRNA expressions of VCAM-1, ICAM-1, 

and E-selectin, as well as activation of the integrin α5β1/NFκB inflammatory cascade in 

human coronary artery ECs, and increased IκB degradation (Horio et al. 2014). 

Collectively, the two studies (Farhat et al. 2013; Horio et al. 2014) show consistent 

evidence supporting the pro-inflammatory primary role of angptl2 in the pathogenesis of 

athersclerosis. 

 

1.3.4.8. Angptl2 in endothelial dysfunction 
As endothelial dysfunction is an early indicator of atherosclerosis (Celermajer et 

al. 1992; Bonetti et al. 2003), a few investigators have questioned whether angptl2 was 
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involved in regulating endothelial function in their studies (Horio et al. 2014; Tabata et 

al. 2009). In the study by Tabata et al., as previously described, obesity induced angptl2 

expression in adipocytes, which was proposed to contribute to vascular inflammation as 

well as monocyte migration, as summarized in Figure 15.  

Although endothelial function was not directly tested in this study, in vitro 

demonstration that recombinant angptl2 in cultured ECs stimulated nuclear translocation 

of NFκB and degradation of IκB via integrin α5β1 and Rac1 activation provided the clues 

that angptl2 was directly involved in endothelial inflammation (Tabata et al. 2009). 

Previous reports have shown that Rac1, a G-protein in the Rho family involved in cell 

migration and adhesion (Bar-Sagi and Hall 2000; Burridge and Wennerberg 2004), can 

activate NFκB (Sulciner et al. 1996; Perona et al. 1997). NFκB activation, in turn, has 

been proposed to play a critical pro-inflammatory and pro-oxidant role in the suppression 

of endothelial-dependent dilation in aging (de Winther et al. 2005; Csiszar et al. 2008). 

Therefore, angptl2 stimulation of NFκB nuclear translocation via Rac1 activation in ECs 

may suggest one of a downstream pathway by which angptl2 may regulate endothelial 

function.  

 



 109 

 
Figure 15. A proposed model of adipocyte-derived angptl2 contribution to inflammation, 
insulin resistance, and vascular dysfunctions. With weight gain and obesity, adipocyte 
size increases and oxygen supply decreases from surrounding blood vessels, which 
results in hypoxia and ER stress. This is also caused by an increase in long chain 
saturated fatty acid (LCSFA) within adipocytes. Together, they contribute in the 
induction of angptl2 expression. In turn, excess angptl2 causes vascular inflammation 
while circulating monocytes attach to the inflamed endothelium. Angptl2 also promotes 
monocyte migration into adipocytes, which in turn augment local inflammation and 
worsens systemic insulin resistance.   
 
Reprinted with the permission from Elsevier: Cell Metab. Tabata M, Kadomatsu T, 
Fukuhara S, Miyata K, Ito Y, Endo M, Urano T, Zhu HJ, Tsukano H, Tazume H, Kaikita 
K, Miyashita K, Iwawaki T, Shimabukuro M, Sakaguchi K, Ito T, Nakagata N, Yamada 
T, Katagiri H, Kasuga M, Ando Y, Ogawa H, Mochizuki N, Itoh H, Suda T, Oike Y. 
Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-
related systemic insulin resistance. Cell Metab. 10, 178-188. Copyright (2009). 
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In the same study, Tabata et al. reported improved insulin signaling in peripheral 

tissues including the skeletal muscle in HFD-fed angptl2 KO compared to HFD-fed WT 

mice, as reflected by significantly increased tyrosine phosphorylation of the insulin 

receptor β and serine phosphorylation of Akt (Tabata et al. 2009). As insulin, besides 

mediating glucose uptake in the skeletal muscle, is also able to induce endothelial-

dependent and NO-mediated vasodilation (Laakso et al. 1990; Dimmeler et al. 1999; 

Wheatcroft et al. 2003), high angptl2 expression, as in HFD-fed WT mice (Tabata et al. 

2009), may lead to blunted insulin-mediated endothelial-dependent dilation. Thus, by 

extrapolation, there may be a possible link between angptl2 and endothelial dysfunction.    

Another piece of indirect evidence proposing a link between angptl2 and 

endothelial dysfunction was presented by our laboratory (Farhat et al. 2013). In this study 

focusing on the role of angptl2 in atherogenesis, it was first demonstrated that acute 

stimulation with recombinant angptl2 induced leukocyte adhesion in native ECs isolated 

from atherosclerotic dyslipidemic mice but not WT mice (Farhat et al 2013). Chronic 

infusion of recombinant angptl2 in these mice for 4 weeks increased gene expressions of 

inflammatory TNFα and IL-6 in freshly isolated aortic ECs (Farhat et al. 2013). In 

addition, it was shown that angptl2 was mainly produced by ECs and not VSMCs (Farhat 

et al. 2013). Again, endothelial function was not directly assessed in this study, but there 

has been strong evidence tying inflammation and endothelial dysfunction together (Faraci 

2005; Forstermann and Munzel 2006; Harrison et al. 2006; Rask-Madsen and King 

2007). Thus, the pro-inflammatory role of angptl2 in ECs could potentially contribute to 

endothelial dysfunction.  

Evidence directly linking angptl2 and endothelial dysfunction was presented by 

Horio et al. recently (Horio et al. 2014). Transgenic mice expressing endothelial angptl2 

driven by the tie-2 promoter exhibited endothelial dysfunction possibly as a result of 

decreased NO production (Horio et al. 2014). This was demonstrated by diminished 

ACh-mediated vasodilation in the aorta in the transgenic compared to WT mice, which 

was associated with lower levels of phosphorylated eNOS (Ser1177) relative to total 

eNOS (Horio et al. 2014). On the other hand, HFD-fed angptl2 deficient mice showed 

less severe endothelial dysfunction in the aorta than WT mice, which was associated with 
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higher levels of phosphorylated eNOS (Ser1177) relative to total eNOS (Horio et al. 

2014), suggesting a role of angptl2 in endothelial function regulation, at least in the aorta.  

Taken together, a few studies have indirectly examined the role of angptl2 in the 

regulation of endothelial function, but to date, only 1 study has directly shown angptl2 

involvement in endothelial dysfunction in the aorta (Horio et al. 2014). Coupled with 

findings that angptl2 is produced by ECs (Farhat et al. 2013), it is highly possible that 

this pro-inflammatory protein could contribute to endothelial dysfunction, which may 

extend to other vascular beds besides the aorta, and is the main question of the work 

herein.  

 

1.3.5. Reported molecular pathways associated with angptl2 
 The recently identified angptl2 is truly a protein with diverse roles both 

physiologically and pathophysiologically (Kadomatsu et al. 2014), and some of the 

molecular pathways that are associated with angptl2 have been reported.  

Angptl2 binds to integrin α5β1 and activates NFκB nuclear translocation and IκB 

degradation (Tabata et al. 2009), which leads to NFκB-mediated gene expression of 

inflammatory cytokines such as TNFα and IL-6 in ECs (Tabata et al. 2009; Horio et al. 

2014), keratinocytes (Ogata et al. 2012), synoviocytes (Okada et al. 2010), adipocytes 

(Tabata et al. 2009), as well as cancer cells (Odagiri et al. 2014). This particular NFκB-

dependent pathway has also been demonstrated in ECs to induce expressions of ICAM-1 

and VCAM-1 following stimulation with angptl2 (Tabata et al. 2009; Horio et al. 2014), 

which are known adhesion molecules involved in monocyte adhesion (Libby et al. 2002), 

suggesting angptl2 involvement in atherogenesis (Farhat et al. 2013; Horio et al. 2014). 

In aortic aneurysms, angptl2 increased MMP-9 expression in wall tissues and contributed 

to ECM degradation (Tazume et al. 2012), which was likely mediated by the NFκB 

signaling cascade as well (Tazume et al. 2012), as NFκB has been reported regulate 

MMP-9 transcription (Bond et al. 1998). 

Angptl2 also induces oxidative stress in the setting of carcinogenesis in skin 

tissues (Aoi et al. 2014). Likely, angptl2 activates the NFκB pro-inflammatory signaling 

pathway to activate infiltrated macrophages and neutrophils (Aoi et al. 2014), which act 

as sources of ROS (Klaunig and Kamendulis 2004). In turn, ROS may promote 
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phosphorylation of transcription factors c-Jun and activated transcription factor 2 (ATF2) 

leading to increased target gene expression (Klaunig et al. 2011), including inflammatory 

genes such as IL-6 (Reimold et al. 2001) as well as angptl2 (Endo et al. 2012), 

suggesting a possible regulatory mechanism of angptl2 transcription (Aoi et al. 2014). 

As well in cancer settings, angptl2 was reported to activate the TGFβ-Smad 

pathway (Aoi et al. 2011), which has been shown to play a critical role in promoting 

epithelial-to-mesenchymal transition (Massague 2008; Ikushima and Miyazono 2010). In 

particular, angptl2 overexpression was associated with increased gene expressions of 

TGFβ1, TGFβ2, and their respective receptors, as well as increased phosphorylation of 

their effector, Smad2 in squamous cell carcinoma (Aoi et al. 2011). Activation of the 

same TGFβ-Smad pathway by angptl2 was also reported in fibroblasts, which likely 

contributed to hypertrophy in ligamentum flavum and up-regulation of collagen 

expression, accelerating lumbar spinal canal stenosis development (Nakamura et al. 

2014).  

Angptl2 was reported to possess anti-apoptotic activities through the PI3K/Akt 

pathway in ECs (Kubota et al. 2005). Stimulation with angptl2 in HUVECs led to 

phosphorylation of ERK1/2 and Akt but no effects on p38 MAPK and JNK (Kubota et al. 

2005). On the other hand, knocking down angptl2 with siRNA in adipocytes inhibited 

insulin-mediated phosphorylation of Akt, FoxO1 and AS160 (Kitazawa et al. 2011), 

again suggesting angptl2 regulation of Akt activity. Additionally, angptl2 siRNA 

treatment increased mRNA expression of Trib3 (Kitazawa et al. 2011), a specific Akt 

inhibitory protein (Du et al. 2003).  

 Taken together, inflammation, pathological tissue remodeling, and oxidative 

stress are likely results of molecular pathways downstream of angptl2. In most cases, 

NFκB seems to be the transcription factor with a key role regulating target proteins 

downstream of angptl2 in various cell types.  

 

1.3.6. Reported mechanisms regulating angptl2 transcription and 

expression 
The regulation of angptl2 transcription and expression has been investigated in a 

few recent studies, some of which will be briefly discussed here. In in vitro settings, Lee 
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et al., using murine 3T3-L1 pre- and differentiated adipocytes, as well as macrophages, 

reported that TGF-β1, a multifunctional cytokine, induced angptl2 expression (Lee et al. 

2013). Using sequence analysis, the authors found a functional Smad binding element in 

the angptl2 promoter region (Lee et al. 2013). Furthermore, regulation of angptl2 by 

TGF-β1 depended specifically on the Smad3 protein, a member of the Smad protein 

family and downstream of the TGF-β1 transduction pathway (Lee et al. 2013). Of note, 

angptl2 promoted epithelial-to-mesenchymal transition in cancer cells (Aoi et al. 2011) 

and ligamentum flavum tissue degeneration in fibroblasts (Nakamura et al. 2014) via the 

activation of the same TGFβ-Smad pathway, which may suggest feedback mechanisms 

between angptl2 and the TGFβ-Smad signaling pathway. 

In another study, TNFα induced angptl2 expression in fully matured 3T3-L1 

adipocytes likely through activation of transcription factor FoxO1 (Zheng et al. 2011). 

Interestingly, in vitro DNA-binding and in vivo chromatin immunoprecipitation assays 

showed a site in the angptl2 promoter for FoxO1 direct binding (Zheng et al. 2011). On 

the other hand, insulin seemed to suppress angptl2 gene expression (Zheng et al. 2011), 

which is in accordance with the findings that insulin inhibits FoxO1 (Nakae et al. 2002). 

Besides insulin, it was reported that inflammatory cytokines including TNFα and 

interferon γ (IFNγ) also suppressed angptl2 gene expression in cultured mesangial cells 

(Mederle et al. 2013). This was opposite of what was found in adipoctyes (Zheng et al. 

2011), and may be attributed to the different cell types used. 

In addition, an ATF/CREB site was also found in the angptl2 promoter region in 

cancer cells (Endo et al. 2012), which was proposed to be a binding site for the ATF2/c-

Jun complex in enhancing NFAT-dependent angptl2 induction (Endo et al. 2012). The 

NFAT nuclear factors have been implicated in the pathogenesis of tumour (Mancini and 

Toker 2009) and further supporting this, NFAT induction of angptl2 was also observed in 

ECs (Horio et al. 2014) and ligamentum flavum fibroblasts (Nakamura et al. 2014). 

Consistent with these findings, the ATF/CREB binding proteins and/or calcineurin/NFAT 

pathway have been associated with advanced tumour development (van Dam and 

Castellazzi 2001; Mancini and Toker 2009). In the same study by Endo et al., a putative 

binding site for NFκB in the angptl2 promoter region in cancer cells was also reported 

(Endo et al. 2012), which may again suggest feedback mechanisms between NFκB and 
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angptl2, with NFκB promoting angptl2 transcription while angptl2 induces the NFκB 

pathway, as previously reported (Tabata et al. 2009; Horio et al. 2014). 

Another reported regulatory mechanism of angptl2 transcription is the circadian 

regulation by the CLOCK and BMAL1 genes, which regulate angptl2 promoter activities 

(Kadomatsu et al. 2013), and disruption of its circadian expression was proposed to lead 

to diseases (Kitazawa et al. 2011). Besides this, other stresses, such as UV light (Aoi et 

al. 2011; Ogata et al. 2012; Aoi et al. 2014), ER stress and hypoxia (Tabata et al. 2009; 

Endo et al. 2012), a HFD (Tabata et al. 2009), smoking (Farhat et al. 2008), oxidative 

stress (Aoi et al. 2011) and mechanical stress (Nakamura et al. 2014) have all been 

reported to induce angptl2 expression in different cell types.  

In summary, expression of angptl2 is regulated by a number of signaling 

pathways and conditions, most of which involve inflammation. A schematic 

representation of some of the known pathways that induce angptl2, and ones that are 

induced by angptl2, is shown in Figure 16. 
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Figure 16. Schematic representation of a selection of reported pathways that induce 
angptl2 expression and the pathways that are in turn induced by angptl2. The potential 
links between angptl2 and endothelial dysfunction are questioned. 
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2. Research Overview 
The endothelium, although consists of only a simple monolayer of cells, is critical 

in the maintenance of vascular homeostasis through secretion of multiple mediators. As 

the endothelium is optimally situated at the interface of circulating blood and the vascular 

vessel wall, it can respond to a vast spectrum of stimuli, either physical or chemical, and 

regulate permeability, vascular tone, inflammation and cellular adhesion, and VSMC 

proliferation. Also because of its geographical location, the endothelium is easily 

subjected to external stress stimuli resulting in increased oxidative stress and 

inflammation, leading to endothelial dysfunction, an obligatory first step towards CVD. 

With increasing biological age, vascular aging concurrently takes place, whereby the 

function of the endothelium declines, as reflected by decreased NO bioavailability and 

alteration of vasodilatory pathways (Thorin and Thorin-Trescases 2009). This process 

can be accelerated in the presence of risk factors such as obesity and related dyslipidemia 

and metabolic disorders, hypertension, and smoking, which further favor oxidative stress 

production and endothelial dysfunction. Initially at early manifestation when dysfunction 

is still reversible, the endothelium is able to adapt and maintain vascular tone; however, 

at a certain point, the damage becomes irreversible and CVD occurs. Thus, endothelial 

function can be a clinical biomarker to identify patients at risk of future CVD. Despite 

that, however, the benefits of individual endothelial function measurement still do not 

outweigh the costs and there still needs to be better biomarkers to distinguish endothelial 

dysfunction at an early, reversible stage. 

The recently identified pro-inflammatory and pro-oxidative angptl2 has been 

implicated in a number of chronic inflammatory disorders (Kadomatsu et al. 2014) and 

its circulating levels have been positively correlated to increased CVD risks (Tabata et al. 

2009; Doi et al. 2012; Usui et al. 2013). As there is only one recent study providing 

direct evidence that increased angptl2 could result in endothelial dysfunction associated 

with lower eNOS function, better characterization of angptl2 function in regulating 

endothelial function as a result of various EDRFs is clearly warranted. The general 

purpose of this work is, therefore, to determine the effect of angptl2 in endothelial 

function, and, whether angptl2 knock-down could protect against premature vasculature 

aging induced by various risk factors in a mouse model. 
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2.1. Study #1: Does angptl2 knock-down protect against obesity-induced 

endothelial dysfunction?  
 

2.1.1. Background 
Obesity, often caused by excess caloric intake, is a well established cardiovascular 

risk factor that contributes majorly to endothelial dysfunction (Xu and Zou 2009). In 

2009, Dr. Oike’s group identified adipocyte-derived angptl2 as a key inflammatory 

mediator underlying the pathogenesis of obesity-induced insulin resistance (Tabata et al. 

2009). Consistent with this, our laboratory also recently reported that EC-derived angptl2 

exerted pro-inflammatory effects in mediating atherogenesis in mice, as well as 

heightened circulating angptl2 levels in CAD patients (Farhat et al. 2013). Altogether, 

previous findings suggest that high angptl2 expression could lead to endothelial 

dysfunction. 

 

2.1.2. Hypothesis 
The knock-down of angptl2 could protect against obesity-induced endothelial 

dysfunction in mice. 

 

2.1.3. Specific aims 
1) To determine the acute effects of exogenous recombinant angptl2 protein on 

endothelial function in the femoral artery isolated from mice. 

2) To generate a global angptl2 KD mouse and to characterize its endothelial 

function by dissecting out contribution of various EDRFs to ACh-induced 

vasodilation in the femoral artery, compared to WT littermates. 

3) To compare and evaluate endothelial function in different vascular beds, 

namely the small resistance mesenteric artery and the larger conductance 

femoral artery, in KD and WT mice fed with a 3-month HFD or regular chow. 

4) To evaluate the metabolic profile, their inflammatory and metabolic gene 

expressions in the liver, skeletal muscle, and adipose tissues from these mice 

treated with a HFD. 
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2.2. Study #2: Does angptl2 knock-down protect against angII-induced 

endothelial dysfunction? 
 

2.2.1. Background 
Given the pro-inflammatory and pro-oxidative role of angptl2 (Kadomatsu et al. 

2014), and the data generated from the first study, it is clear that angptl2 is involved in 

the regulation of endothelial function. Little is known, however, if angptl2 could have an 

impact on the cerebral vascular endothelium. Cerebral arteries are classified as resistance 

arteries and are highly sensitive to oxidative stress (Chrissobolis et al. 2011). 

 

2.2.2. Hypothesis 
Knock-down of angptl2 could protect against pro-inflammatory and pro-oxidative 

effects of angII and thus angII-induced endothelial dysfunction in the cerebral artery. 

 

2.2.3. Specific aims 
1) To evaluate and compare cerebral endothelial function and the relative 

contribution of EDRFs between WT and angptl2 KD mice. 

2) To evaluate and compare cerebral endothelial function between WT and KD mice 

with or without a chronic infusion of angII. 

3) To determine the pathways involved in angII-induced endothelial dysfunction in 

these mice. 
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3. Articles 
 

3.1. Article 1 
Title: Lack of angiopoietin-like-2 expression limits the metabolic stress induced by a 

high-fat diet and maintains endothelial function in mice. 

 

This article was accepted for publication on the 9th of June, 2014 and published in the 

Journal of American Heart Association on the 15th of August, 2014. 

 

3.1.1. Contribution of co-authors 
Carol Yu: Conceived, designed and performed the experiments, analyzed the data, 

interpreted the results, prepared the figures, wrote the manuscript and approved the final 

version of the manuscript. 

Xiaoyan Luo: Performed the experiments (mesenteric arteries), interpreted the results, 

prepared the figures and approved the final version of the manuscript. 

Nada Farhat: Generated the angptl2 knock-down mouse model, prepared the 

recombinant angptl2 protein and approved the final version of the manuscript. 

Caroline Daneault: Measured mouse liver TG levels and approved the final version of 

the manuscript. 

Natacha Duquette: Performed the tail-cuff experiments in mice and approved the final 

version of the manuscript.  

Cécile Martel: Prepared the recombinant angptl2 protein, measured LPL activities in 

mouse liver, edited the manuscript and approved the final version of the manuscript. 

Jean Lambert: Performed statistical analysis of data and approved the final version of 

the manuscript. 

Nathalie Thorin-Trescases:  Conceived and designed the experiments, interpreted the 

results, edited the manuscript and approved the final version of the manuscript. 

Christine Des Rosiers: Provided expertise in the metabolic aspect of the study and 

approved the final version of the manuscript. 

Eric Thorin: Conceived and designed the experiments, analyzed the data, interpreted the 

results, edited the manuscript and approved the final version of the manuscript. 
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Lack of Angiopoietin-Like-2 Expression Limits the Metabolic Stress
Induced by a High-Fat Diet and Maintains Endothelial Function in Mice
Carol Yu, MSc; Xiaoyan Luo, MSc; Nada Farhat, PhD;* Caroline Daneault, MSc; Natacha Duquette, BSc; C!ecile Martel, PhD;
Jean Lambert, PhD; Nathalie Thorin-Trescases, PhD; Christine Des Rosiers, PhD; !Eric Thorin, PhD

Background-—Angiopoietin-like-2 (angptl2) is produced by several cell types including endothelial cells, adipocytes and
macrophages, and contributes to the inflammatory process in cardiovascular diseases. We hypothesized that angptl2 impairs
endothelial function, and that lowering angptl2 levels protects the endothelium against high-fat diet (HFD)-induced fat
accumulation and hypercholesterolemia.

Methods and Results-—Acute recombinant angptl2 reduced (P<0.05) acetylcholine-mediated vasodilation of isolated wild-type
(WT) mouse femoral artery, an effect reversed (P<0.05) by the antioxidant N-acetylcysteine. Accordingly, in angptl2 knockdown
(KD) mice, ACh-mediated endothelium-dependent vasodilation was greater (P<0.05) than in WT mice. In arteries from KD mice,
prostacyclin contributed to the overall dilation unlike in WT mice. After a 3-month HFD, overall vasodilation was not altered, but
dissecting out the endothelial intrinsic pathways revealed that NO production was reduced in arteries isolated from HFD-fed WT
mice (P<0.05), while NO release was maintained in KD mice. Similarly, endothelium-derived hyperpolarizing factor (EDHF) was
preserved in mesenteric arteries from HFD-fed KD mice but not in those from WT mice. Finally, the HFD increased (P<0.05) total
cholesterol–to–high-density lipoprotein ratios, low-density lipoprotein–to–high-density lipoprotein ratios, and leptin levels in WT
mice only, while glycemia remained similar in the 2 strains. KD mice displayed less triglyceride accumulation in the liver (P<0.05
versus WT), and adipocyte diameters in mesenteric and epididymal white adipose tissues were smaller (P<0.05) in KD than in WT
fed an HFD, while inflammatory gene expression increased (P<0.05) in the fat of WT mice only.

Conclusions-—Lack of angptl2 expression limits the metabolic stress induced by an HFD and maintains endothelial function in
mice. ( J Am Heart Assoc. 2014;3:e001024 doi: 10.1161/JAHA.114.001024)

Key Words: adipokines • endothelium-derived relaxing factors • inflammation • isolated arteries

D ietary imbalance is well known to cause obesity favoring
with time, the development of insulin resistance,

dyslipidemia, diabetes and ultimately atherosclerosis.1

Altered levels of cholesterol, especially high low-density
lipoprotein (LDL)–to–high-density lipoprotein (HDL) ratios, as
well as heightened insulin levels in diabetes, promote

inflammation and endothelial dysfunction, which are at the
root of atherogenesis.2 Recently, a member of the angiopoie-
tin-like (angptl) family, angiopoietin-like-2 (angptl2), has
been identified as 1 of the key inflammatory mediators that
regulate obesity-related insulin sensitivity,3 dyslipidemia, and
atherogenesis.4,5 Angptl2 seems to play a major pro-inflam-
matory role in a variety of pathologies, including atheroscle-
rosis,4,5 diabetes,6 abdominal aortic aneurysm,7 neointimal
hyperplasia,8 rheumatoid arthritis,9 dermatomyositis,10 and
even tumor progression.11 Increased angptl2 expression has
been reported in endothelial cells from chronic atherosclerotic
smokers,12 while its circulating level correlates with adipos-
ity,3 C-reactive protein levels,3 and tumor necrosis factor
(TNF)a levels.8 Little is known, however, about the role of
angptl2 in lipid profiling and endothelial function. It was
suggested that angptl2 replenishment could restore insulin
sensitivity and improve lipid levels with decreased serum
triglycerides (TGs) and free fatty acids (FFAs) in genetically
diabetic (db/db) mice13; in contrast, another study in
overweight subjects revealed lower circulating angptl2 levels
with lifestyle intervention in association with changes in TG
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metabolism.14 Our recent study, which used infusion of
recombinant angptl2 in preatherosclerotic young mice, further
increased cholesterol and LDL in the plasma,4 suggesting
deleterious effects of angptl2 on lipid profiling. In contrast, no
changes in lipid profiles of angptl2 knockout mice fed a high-
fat diet (HFD) compared with wild-type (WT) mice were
reported.3,5 Taken together, there are discrepancies in recent
literature regarding the role of angptl2 in lipid handling. In
terms of endothelial function, a recent study demonstrated
that endothelium-specific overexpression of angptl2 in mice
led to vasodilatory dysfunction and vascular inflammation.5 In
the same study, it was also shown that in angptl2-deficient
mice, HFD-induced endothelial dysfunction was ameliorated in
the aorta, which was associated with greater expression
levels of phospho–endothelial nitric oxide synthase (eNOS)
compared with WT mice.5 With the knowledge that endothelial
cells express and produce angptl24,5,12 and that the endo-
thelium is a dynamic and complex organ, with diverse
phenotypes depending on vascular beds, it is important to
better characterize the role of angptl2 in regulating endothe-
lial function.

Healthy vascular function involves the balance of endo-
thelium-derived relaxing factors (EDRFs) and contracting
factors, while imbalance of these contributes to endothelial
dysfunction. There are 3 major EDRFs—nitric oxide (NO),15

prostacyclin (PGI2),
16 and endothelium-derived hyperpolariz-

ing factor (EDHF).17 In conductance arteries, NO is the main
EDRF, while in resistance arteries, the main contributor to
dilation is EDHF.18 Reduced endothelium-dependent vasodi-
lation due to impairment of 1 of these EDRFs contributes to
endothelial dysfunction,19,20 which can ultimately lead to
cardiovascular disease. We and others reported, however,
that the expression of the EDHF pathway compensated for the
decreased NO- and PGI2-dependent vasodilatory contribution
in femoral arteries from dyslipidemic mice21 and carotid
arteries from rabbits22 but then deteriorated with age. In
eNOS!/! mice, the loss of NO during acetylcholine (ACh)-
and flow-mediated vasodilation is compensated by the
expression of EDHF,23,24 while the contribution of PGI2 is
increased.25 Additional compensatory pathways such as
increased contribution of dilatory H2O2 have also been
reported in coronary arteries from patients with coronary
artery disease, which may eventually contribute to the
endothelial dysfunction associated with metabolic stress.18

The vascular endothelium is therefore plastic and adapts to
the metabolic environment up to a decompensation phase
revealing its irreversible damage and dysfunction. Based on
the pro-inflammatory4,5 and pro-oxidative26 properties of
angptl2, we hypothesized that angptl2 modulates endothelial
function and that lowering angptl2 levels protects the
endothelium against HFD-induced fat accumulation and
hypercholesterolemia.

To test our hypothesis, we examined EDRF contribution
and lipid handling using our newly generated angptl2 knock-
down (KD) mice, fed either a regular diet (RD) or an HFD, an
established method to induce adiposity, metabolic stress, and
endothelial dysfunction.27 Our results suggest that lowering
angptl2 is beneficial for the vascular endothelium by main-
taining its respective EDRF contribution in conductance and
resistance arteries, in addition to a more favorable lipid profile
in KD mice fed an HFD. To the best of our knowledge, this is
the first report of the impact of angptl2 in the contribution of
the various EDRFs and their resistance against a stress
induced by an HFD.

Materials and Methods

Animals
All animal experiments were performed in accordance with
the “Guide for the Care and Use of Experimental Animals of
the Canadian Council on Animal Care” and the “Guide for the
Care and Use of Laboratory Animals” of the US National
Institutes of Health (NIH Publication No. 85-23, revised 1996)
and was approved by the Montreal Heart Institute Ethics
Committee (ET 2010-62-1). Generation of the angptl2 KD
mouse model was achieved through a microinjection of a
construct generated via retroviral gene trap vectors (devel-
oped at Texas A&M Institute for Genomic Medicine) per-
formed in C57Bl/6J mice (Figure 1A) purchased from The
Jackson Laboratory. A b-geo cassette was inserted between
bp 5305 and 5390 of the angptl2 gene. KD mice were
subsequently bred at the Institute for Research in Immunology
and Cancer (Montreal, Quebec, Canada). All mice used in this
study were genotyped by PCR analysis of genomic DNA
isolated from ear clips to select both KD and WT animals (see
Table 1 for primer sequences). Negligible levels of angptl2
mRNA and protein levels were confirmed in various tissues
(Figure 1B and 1C). In characterizing fasting plasma profile
and endothelial function in mice at 3 to 4 months of age,
angptl2+/+ littermates were used as WT and no significant
differences were observed between angptl2+/+ littermates
and C57Bl/6J WT mice. Subsequently, WT mice purchased
from The Jackson Laboratory were used for the diet study.
Male mice were used for all experiments. Mice were fed ad
libitum either a regular diet (RD, 2018; Harlan Teklad
Laboratories) or a high-fat diet (HFD, TD.88137; Harlan
Teklad Laboratories), starting at 3 months until 6 months of
age. Mice were kept under standard conditions (24°C; 12:12-
hour light/dark cycle), and during the 3 months of diet
treatment, blood pressure and heart rate were recorded
weekly by using tail-cuff plethysmography (Kent Scientific
Corporation), after training to limit stress, as previously
described.28 Mice were fasted 16 hours before sacrifice for
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experiments by using terminal anesthesia (44 mg/kg keta-
mine and 2.2 mg/kg xylazine). Plasma and tissues (liver,
adipose tissues, heart, soleus muscle) were collected and
kept at !80°C, while the femoral artery and mesenteric
arterial bed were harvested and placed in ice-cold physiolog-
ical saline solution (pH 7.4, in mmol/L: NaCl 119, KCl 4.7,
KH2PO4 1.18, MgSO4 1.17, NaHCO3 24.9, CaCl2 1.6, EDTA
0.023, and glucose 10) for endothelial function studies.21,29

Liver and adipose tissue samples were immediately fixed
in formaldehyde and paraffin embedded for subsequent

hematoxylin-eosin (H&E) staining. A segment of the femoral
artery was immediately embedded in OCT for subsequent
dihydroethidium (DHE, D7008; Sigma Aldrich) staining.

Plasma Parameters
Plasma lipid profile (total cholesterol, LDL cholesterol, HDL
cholesterol), glucose, and TG levels were measured at the
Biochemistry Laboratory of the Montreal Heart Institute
(Montreal, Quebec, Canada). Adiponectin (MRP300; R&D
Systems), leptin (90030; Crystal Chem), FFAs (K612-100;
BioVision), fasting insulin (80-INSMSU-E01; Alpco Diagnos-
tics), and angptl2 (sE91919Mu; Uscn Life Science Inc) were
quantified by using ELISA kits according to the manufacturers’
protocol.

Western Blots
Proteins isolated from mouse tissues (heart, soleus muscle,
and lung) in lysis buffer (50 mmol/L Tris-HCl, pH 7.45,
5 mmol/L EDTA, 10 mmol/L EGTA, 1% v/v Triton) were
subjected to SDS-PAGE followed by Western blotting to detect
angptl2 (1:200, AF2084; R&D Systems).

Endothelial Function of the Femoral Artery
According to Pressurized Arteriography
Segments of 2 to 3 mm of the left or right gracilis artery
were dissected in ice-cold physiological saline solution;
surrounding fat and tissues were removed, after which the
segment was cannulated at both ends (average internal
diameter=283"3 lm; 165 segments) and pressurized at
80 mm Hg under no-flow conditions in a pressurized arteri-
ograph (Living Systems Instrumentation) as described previ-
ously.21 The artery segment was aerated with 12% O2/5%
CO2/83% N2 and equilibrated at 37°C for 45 minutes before
the addition of phenylephrine (PE, 1 to 3 lmol/L) to obtain
preconstriction of 30% to 50% of maximal diameter and single
cumulative concentration-response curves to ACh (1 nmol/L
to 30 lmol/L). The acute effects (1 hour) of angptl2-
Glutathione S-transferase (GST) (50 nmol/L) on ACh-induced
dilation, combined or not with the antioxidant N-acetylcyste-
ine (NAC; 10 lmol/L), were assessed and compared with
exposure to an equivalent aliquot of the last dialysis bath used
for purification of the recombinant protein (Tris-buffered
Saline EDTA [TBSE]; 50 mmol/L Tris-base, 150 mmol/L NaCl,
1 mmol/L EDTA). Recombinant angptl2-GST protein was
produced as detailed previously.4 For other studies of
endothelial function, Nx-nitro-L-arginine (LNNA, 100 lmol/
L), indomethacin (Indo, 10 lmol/L), or the combination of
both drugs was placed in the bath throughout equilibration
and experiment, to inhibit NOS or cyclooxygenase or to reveal

Heart 
Muscle 

Lung 

WT KD

A

B

C

Figure 1. A, Schematic representation showing insertion
of a promoterless trapping b-geo cassette of 6500 bp in
size into the mouse angptl2 locus, downstream of exon 1;
top and bottom representation show angptl2 wild-type (WT)
and knock-down (KD) scheme, respectively. B, Verification
of angptl2 knock-down in various mouse tissues by qPCR
analysis; white adipose tissue (WAT), brown adipose tissue
(BAT); n=3 to 4. C, Verification of angptl2 knock-down in
various mouse tissues by Western blot. qPCR indicates
quantitative polymerase chain reaction.
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EDHF, respectively. To study vascular smooth muscle cell
function, the endothelium was removed by passing an air
bubble through the lumen of the artery and confirmed by loss
of response to ACh. After incubation, PE (0.1 nmol/L to
30 lmol/L) was used to preconstrict the artery, followed by
single cumulative concentration-response curves to sodium
nitroprusside (0.1 nmol/L to 30 lmol/L).

Fluorescence Studies
Isolated femoral artery segments of 2 mm from 6-month-old
WT or angptl2 KD mice fed with either an RD or HFD were
incubated in oxygenated physiological saline solution at 37°C
along with 10 lmol/L 4,5-diaminoflorescein diacetate (DAF-
2, a fluorescent dye for NO detection30) with or without LNNA
(100 lmol/L) for 30 minutes, after which the artery segment
was washed 3 times with physiological saline solution,
preconstricted with 3 lmol/L PE, and dilated with 1 lmol/
L ACh. During the experiment, changes in fluorescence

intensities reflecting NO production during vasodilation were
measured, as previously described.30

Oxidative Stress Quantification in the Femoral
Artery
Frozen femoral artery segments in OCT were cut into 7-lm-
thick sections, and sections were double stained with
5 lmol/L DHE and 2 lmol/L To-Pro-3 (T3605; Molecular
Probes), as previously described.31 DHE fluorescence was
visualized by using confocal microscopy (Zeiss LSM 510; Carl
Zeiss; objective 920) in which DHE was excited with the
HeNe laser at 543 nm and resulting emitted light was
collected between 565 and 615 nm, while acquisition settings
were kept constant for all samples. ImageJ (National Institutes
of Health) software was used to analyze DHE fluorescence
intensities based on this equation: I=Σ I/A, where I is the
DHE-fluorescence intensity, Σ I is the summation of To-Pro-3
nuclei stain intensities, and A is the total area of the nuclei.

Table 1. Primer Sequences Used in Quantitative RT-PCR

Gene Forward Sequence (50 to 30) Reverse Sequence (50 to 30)

Angplt2 GATCCAGAGTGACCAGAATC TCTCAGGCTTCACCAGGTAG

Angptl2 V76 CTTGCAAAATGGCGTTACTTAAGC CCAATAAACCCTCTTGCAGTTGC

TNFa TGATCCGCGACGTGGAACTGG CGACGTGGGCTACAGGCTTGTCA

IL-6 CCATAGCTACCTGGAGTACATGA GTCCTTAGCCACTCCTTCTGTGA

TGFb ATTCCTGGCGTTACCTTGG CCTGTATTCCGTCTCCTTGG

LPL GGCTCTGCCTGAGTTGTAGAA TCACTCGGATCCTCTCGATGA

Adiponectin GTCAGTGGATCTGACGACACCAA ATGCCTGCCATCCAACCTG

Leptin CAGGATCAATGACATTTCACACAC CTGGTCCATCTTGGACAAACTC

Cyclophilin A CCGATGACGAGCCCTTGG GCCGCCAGTGCCATTATG

HSL GGCACAGACCTCTAAATCCC CCGCTCTCCAGTTGAACC

SREBP1c GAACAGACACTGGCCGAGATG GAGGCCAGAGAAGCAGAAGAGAAG

SREBP2 GTTCTGGAGACCATGGAG AAACAAATCAGGGAACTCTC

Angptl3 AGCACCAAGAACTACTCCCC ATAAACGGCAGAGCAGTCGG

Angptl4 TCCGTGGGGACCTTAACTGT GTAGCGGCCCTTCCATGTTT

Citrate synthase GCCAGTGCTTCTTCCACGAAT CATGCCACCGTACATCATGTC

Cyp7a1 AACGATACACTCTCCACCTTTG CTGCTTTCATTGCTTCAGGG

PPARa CTATTCGGCTGAAGCTGGTGTA CAGGTCGTGTTCACAGGTAAGA

HMG-CoA reductase AGTACATTCTGGGTATTGCTGG ACTCGCTCTAGAAAGGTCAATC

CD36 GGCCAAGCTATTGCGACATGA CAGATCCGAACACAGCGTAGA

FXR TGGAGAACTCAAAATGACTCAGG CTTTTGTAGCACATCAAGCAGG

Sirtuin-1 ATCCAGCTCAGGTGGAGGAAT TTGACCGATGGACTCCTCACT

PPARc CCTGAAGCTCCAAGAATACC GGTTCTTCATGAGGCCTGTT

FXR indicates farnesoid X receptor; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme-A; HSL, hormone-sensitive lipase; LPL, lipoprotein lipase; PPAR, peroxisome proliferator-activated
receptor; SREBP, sterol regulatory element binding protein; TGF, transforming growth factor; TNF, tumor necrosis factor; IL, interleukin.
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Endothelial Function of Mesenteric Arteries
According to Wire Myography
Mesenteric arteries (third-order branches) were dissected in
ice-cold physiological saline solution. Segments of 2 mm in
length were mounted on 20-lm tungsten wires in microvessel
myographs (IMF, University of Vermont, Burlington) as previ-
ously described.29 Mesenteric segments were first equili-
brated for 30 to 45 minutes; then, their contractility was
tested with a KCl–physiological saline solution (40 mmol/L),
followed by 2 washout periods. They were further incubated for
30 to 45 minutes with or without LNNA (100 lmol/L), then
preconstricted with a half-maximal effective concentration
dose of thromboxane A2 analog U46619 (0.1 to 10 nmol/L),
followed by dose-response curves to ACh (0.1 nmol/L to
3 lmol/L). To study vascular smooth muscle cell function, we
mechanically removed the endothelium by gentle rubbing with
human hair and confirmed the removal by the loss of response
to ACh. After incubation, single cumulative concentration-
response curves to PE (0.1 nmol/L to 3 lmol/L), followed by
single cumulative concentration-response curves to sodium
nitroprusside (0.1 nmol/L to 30 lmol/L), were performed.

Quantification of TGs in Mouse Livers
FFAs from the liver were quantified as previously reported32,33

including tissue lipid extraction34 and separation into TG and
phospholipid classes by using an aminoisopropyl column
(Varian).35 FFAs were trans-methylated according to a modified
protocol previously described by Lepage and Roy.36 Gas
chromatography–mass spectometry was operated in chemical
ionization mode using ammonia as the reagent gas and was
internally validated. FFAs were identified according to their
retention time and m/z ratio; concentrations were determined
by using calibration curves with internal and external standards.

Adipocyte Size Analysis
Isolated epididymal and mesenteric adipose tissues embedded
in paraffin sections for H&E staining were visualized by using
light microscopy, and ImageJ was used to measure the mean
diameter of 30 to 50 adipocytes. The average of 3 separate
images was used to calculate mean adipocyte diameter.

Real-Time Quantitative Polymerase Chain
Reaction
Total RNA was extracted from various tissues using the
RNeasy mini-kit (Qiagen Canada) according to the manufac-
turer’s protocol. Reverse transcription reaction (100 ng) was
performed as previously described4,37 using the Moloney
murine leukemia virus reverse transcriptase (200 U; Invitro-

gen). Quantitative polymerase chain reaction (qPCR) was
performed using the EvaGreen qPCR Mastermix (Mastermix-
LR; Applied Biological Materials Inc). Primers of target genes
were designed using the Clone Manager software (Table 1).
The DDCT method was used for analysis of relative gene
expression using cyclophilin A as the housekeeping gene. For
each pair of primers used, its optimal concentration, cDNA
template concentration, and annealing temperature were
optimized by performing standard curves that yielded efficien-
cies of 100!10%.

Statistical Analysis
Results are presented as mean!SEM, and n indicates number
of mice. EC50 is the half-maximum effective concentration for
each concentration-response curve, estimated by using Graph
Pad Prism 5.0 software according to the variable slope
sigmoidal dose-response curve formula:

Y ¼ Bottomþ ð½Top& Bottom'Þ=ð1þ 10½log EC50&x'

) HillslopeÞ

where bottom is the Y value at the bottom plateau, top is the
Y value at the top plateau, and Hillslope describes the
steepness of the curve. Emax is the maximal ACh-induced
dilation at the maximal dose tested. Normality tests were first
performed for all groups using the d’Agostino–Pearson
omnibus test. If sample sizes were normally distributed,
parametric tests were performed: the unpaired Student t test
was used to compare 2 groups and the 2-way ANOVA
followed by Bonferroni posttest were performed for compar-
ison of more than 2 groups. When groups did not follow a
Gaussian distribution, nonparametric tests were performed:
the Mann–Whitney U test was used to compare 2 groups and
the Kruskal–Wallis test followed by the Dunn’s posttest were
used for comparison of more than 2 groups. When “n” was
too low to test for normality, the z-score method (Y–mean/
SD) was used for each individual datum (Y) followed by
normality test using the d’Agostino–Pearson test. If the
transformed data sets followed a normal distribution, para-
metric tests were used; if data sets did not follow a normal
distribution, nonparametric tests were used. In all cases,
P<0.05 was considered statistically significant.

Results

Acute Addition of Angptl2 Led to Impaired
Endothelial Function in the Femoral Artery, Which
Was Reversed by Addition of the Antioxidant NAC
The effect of an acute addition of angptl2 on endothelial
function in the femoral artery was first investigated.
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ACh-induced vasodilation in 3- to 4-month-old WT mice was
significantly reduced after acute addition of 50 nmol/L
angptl2-GST (Emax [%]: TBSE=99!1 and angptl2=80!7,
P<0.05, n=4 to 5), as shown in Figure 2. Because angptl2
has been demonstrated to have pro-oxidative properties in
cancer cells,26 we next asked whether an antioxidant could
reverse the detrimental effects of angptl2 on endothelial
function. Indeed, endothelial dysfunction caused by the acute
angptl2 addition was completely reversed by NAC (10 lmol/
L; Emax [%]: angptl2=80!7 and angptl2+NAC=98!1, P<0.05,
n=4 to 5) with no overall effects by NAC alone without angptl2
addition (Emax [%]: TBSE=99!1 and TBSE+NAC=95!3, n=4 to
5). These data suggest that angptl2 induces deleterious
effects on endothelial function, at least partially via its
pro-oxidative properties.

Phenotype of Angptl2 KD Mice
To further study the pathophysiological role of angptl2, we
generated an angptl2 KD mouse model. Angptl2 KD mice
were born alive following a Mendelian pattern and were
grossly comparable to WT littermates. Verification of angptl2
depletion was determined by quantification by qPCR and
Western blot (Figure 1B and 1C). Young mice from 3 to
4 months of age showed similar fasting plasma parameters,
with higher (P=0.04; n=13) insulin levels in KD mice (Table 2)
but with normal glucose and insulin tolerance (data not

shown). Surprisingly, KD mice (n=28) showed significantly
slower heart rate compared with WT mice (n=24) at this age,
while systolic and diastolic blood pressures were similar for
the 2 strains (Table 3).

Angptl2 KD Mice Had Better Endothelial Function
in the Femoral Artery as Measured by
Vasodilation to ACh
Mice from 3 to 4 months of age were used to study vascular
endothelial function in the femoral artery (Figure 3). Under
control conditions (Figure 3A), the maximal dilation to ACh
resulting from the combination of NO, PGI2, and EDHF was
slightly greater in KD (n=8) than in WT mice (n=7), as shown
by the higher Emax and a tendency for a higher sensitivity
indicated by their EC50 values (P=0.06, Table 4). Inhibition of

Figure 2. Vascular reactivity of pressurized femoral arteries
measured by ACh-mediated dilation in 3- to 4-month-old WT (n=4
to 5) with addition of Tris-buffered saline EDTA (control) or angptl2-
Glutathion S-transferase (50 nmol/L) with or without antioxidant
NAC (10 lmol/L). The z-score method followed by the d’Agostino–
Pearson omnibus test was used to test normality of data sets, after
which the 1-way ANOVA followed by the Bonferonni posttest
were used. *P<0.05 vs control; †P<0.05 vs + NAC. ACh indicates
acetylcholine; Angptl2, angiopoietin-like-2; GST, Glutathion
S-transferase; NAC, N-acetylcysteine; TBSE, Tris-buffered saline
EDTA; WT, wild-type.

Table 2. Parameters of Fasting Plasma in 3- to 4-Month-Old
WT and Angptl2 KD Mice

WT KD

Weight, g 24.7!0.4 (10) 23.4!1.1 (8)

Glucose, mmol/L 10.7!1.4 (10) 13.4!0.9 (8)

Triglycerides, mmol/L 0.63!0.09 (10) 0.52!0.06 (8)

Adiponectin, lg/mL 7.3!0.2 (8) 7.4!0.4 (7)

Leptin, ng/mL 6.3!2.2 (8) 5.7!0.9 (8)

FFAs, mmol/L 0.55!0.05 (10) 0.51!0.06 (8)

Cholesterol—total, mmol/L 2.85!0.17 (10) 2.78!0.17 (8)

Cholesterol—HDL, mmol/L 2.65!0.13 (10) 2.60!0.13 (8)

Cholesterol—LDL, mmol/L 0.12!0.02 (6) 0.15!0.03 (5)

Cholesterol―total/HDL 1.08!0.01 (10) 1.06!0.01 (8)

LDL/HDL 0.04!0.01 (6) 0.05!0.01 (5)

Insulin, ng/mL 0.18!0.04 (13) 0.29!0.04 (13)‡

Data presented as mean!SEM of (n) mice. The Mann–Whitney U test was used. FFA
indicates free fatty acid; HDL, high-density lipoprotein; KD, knockdown; LDL, low-density
lipoprotein; WT, wild-type.
‡P<0.05 vs WT.

Table 3. Measurements of Heart Rate and Blood Pressures
by Tail-Cuff Plethysmography in 3- to 4-Month-Old WT and
Angptl2 KD Male Mice

WT KD

Heart rate, bpm 680!9 (24) 640!11 (28)‡

Systolic blood pressure, mm Hg 153!3 (24) 155!3 (28)

Diastolic blood pressure, mm Hg 122!3 (24) 119!3 (28)

Data presented as mean!SEM of (n) mice. Data sets were tested for normality using
the d’Agostino–Pearson normality test and the unpaired Student t test was used.
KD indicates knockdown; WT, wild-type.
‡P<0.05 vs WT.

DOI: 10.1161/JAHA.114.001024 Journal of the American Heart Association 6

Angptl2 in Endothelial Function and Metabolism Yu et al
O
R
IG

IN
A
L
R
E
SE

A
R
C
H

 at Institut de Cardiologie de Montreal on November 11, 2014http://jaha.ahajournals.org/Downloaded from 

http://jaha.ahajournals.org/
Carol Yu
126



NOS by LNNA reduced this response in arteries isolated from
WT littermates and KD mice (Figure 3B and 3C, Table 4),
while inhibition of cyclooxygenase with Indo had no impact on
ACh-induced vasodilation (Figure 3B and 3C, Table 4). In the
presence of LNNA and Indo, combined activities of NO and
PGI2 are abolished, revealing that of EDHF38,39; these
experimental conditions revealed a lower EDHF contribution
in KD mice (Figure 3B and 3C). In WT littermates, compared
with LNNA alone, where both PGI2 and EDHF are present,
incubation with LNNA and Indo, where only EDHF is present,
did not result in additional effects (Figure 3B, Table 4),
suggesting that PGI2 per se played no role in ACh-mediated
dilation in WT littermates. In contrast, in KD mice, Emax

decreased significantly in the presence of LNNA combined

with Indo (Figure 3C, Table 4), suggesting that PGI2 contrib-
uted significantly to ACh-induced femoral artery dilation in KD
mice but not WT littermates in the absence of NO. As there
are interactions and compensations among the 3 main
EDRFs40 under each individual experimental condition, PGI2
contribution to vasodilation could only be revealed following
NO inhibition in KD mice. Overall, these results suggest that
angptl2 KD results in better endothelial function, which was
associated with greater contribution of PGI2 and less EDHF to
vasodilation, at least in young and healthy mice.

Endothelial Function in the Femoral Artery Was
Preserved in KD Mice Fed an HFD
At 6 months of age, when fed an RD, the sensitivity to ACh
under no-drug control condition was, as similarly observed at
3 to 4 months of age, slightly greater in femoral arteries from
KD (n=13) compared with WT (n=10) mice, as indicated by a
shift to the left of the dose-response curve (Figure 4A and 4B)
and by the higher EC50 values (Table 5). The efficacies (Emax)
were identical in both strains (Figure 4, Table 5). For both KD
and WT mice fed an RD diet, addition of LNNA to inhibit NOS
significantly decreased Emax and EC50 values similarly (Fig-
ure 4, Table 5), suggesting that NO contributed equally for
both strains of mice. When fed an HFD (n=9 to 10), both
strains of mice displayed similar global responses to ACh,
while LNNA significantly decreased the sensitivity of ACh-
mediated dilation compared with no-drug condition in KD
mice only. In WT mice, LNNA no longer had a significant
inhibition on dilation, suggestive of a lower eNOS activity in
WT mice fed an HFD. In KD mice, however, LNNA-sensitive
ACh-mediated dilations were similar under either diet,
suggesting that NO-dependent dilation sensitive to LNNA

Table 4. Efficacy (Emax) and Sensitivity (EC50) to
Acetylcholine in Femoral Arteries Isolated From 3- to
4-Month-Old WT and Angptl2 KD Male Mice

WT KD

Emax (%) EC50 Emax (%) EC50

Control 93!2 (7) 6.8!0.2 (7) 98!1 (8)‡ 7.2!0.1 (8)

+LNNA 69!8 (7)§ 6.3!0.2 (7) 85!3 (8)§ 6.4!0.1 (8)§

+Indo 90!3 (7) 7.0!0.2 (7) 97!1 (8)‡ 7.2!0.1 (8)

+LNNA
+Indo

77!10 (7) 6.4!0.1(7) 53!9 (8)§k 6.2!0.2 (8)§

Vessels were preconstricted to 30% to 50% of maximal diameter with phenylephrine (1 to
3 lmol/L). Emax are expressed as the percentage of the maximal diameter. Data
presented as mean!SEM of (n) mice. The z-score method followed by the d’Agostino–
Pearson omnibus test was used to test normality of data sets, after which the unpaired
Student t test (‡) and the 1-way ANOVA followed by the Bonferonni posttest were used
(§ and k). KD indicates knockdown; WT, wild-type; LNNA, Nx-nitro-L-arginine; Indo,
indomethacin.
‡P<0.05 vs WT; §P<0.05 vs control; kP<0.05 vs +LNNA.

A B C

Figure 3. Vascular reactivity as measured by ACh-mediated dilation in femoral arteries of WT (n=7) and angptl2 KD (n=8) mice at 3 to
4 months of age in no-drug control condition (A) and in the presence of LNNA (100 lmol/L), indomethacin (Indo, 10 lmol/L), or their
combination in arteries isolated from WT mice (B) and KD mice (C). The z-score method followed by the d’Agostino–Pearson omnibus test was
used to test normality of data sets, after which the unpaired Student t test (A) and the 1-way ANOVA followed by the Bonferonni posttest were
used (B and C). ‡P<0.05 vs WT; §P<0.05 vs control; ||P<0.05 vs +LNNA. ACh indicates acetylcholine; KD, knockdown; LNNA, Nx-nitro-L-
arginine; WT, wild-type.
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WT KDA

C

B

Figure 4. Vascular reactivity as measured by ACh-mediated dilation in femoral arteries under no-drug
control condition and with LNNA of 6-month-old (A) WT (n=7 to 10) and (B) angptl2 KD (n=9 to 13) mice fed
an RD or HFD. The Kruskal–Wallis test followed by the Dunn’s posttest were used for data sets not normally
distributed. §P<0.05 vs control. C, Production of NO was measured by loading femoral arteries with DAF-2
with average increases in fluorescence intensities during addition of 10 lmol/L ACh (n=6). The z-score
method followed by the d’Agostino–Pearson omnibus test was used to test normality of data sets, after
which the 2-way ANOVA followed by the Bonferonni posttest were used. ‡P<0.05 vs WT; hP<0.05 vs RD.
ACh indicates acetylcholine; DAF-2, 4,5-diaminoflorescein diacetate; HFD, high-fat diet; KD, knockdown;
LNNA, Nx-nitro-L-arginine; NO, nitric oxide; RD, regular diet; WT, wild-type.

Table 5. Efficacy (Emax) and Sensitivity (EC50) to Acetylcholine in Femoral Arteries Isolated From 6-Month-Old WT and Angptl2 KD
Male Mice Fed a Regular (RD) or High-Fat Diet (HFD)

WT+RD WT+HFD KD+RD KD+HFD

Emax (%) EC50 Emax (%) EC50 Emax (%) EC50 Emax (%) EC50

Control 98!1 (10) 6.7!0.1 (10) 98!1 (9) 6.7!0.1 (9) 97!1 (13) 7.0!0.1 (13)‡ 96!1 (10) 6.9!0.1 (10)

+LNNA 78!6 (9)§ 5.9!0.1 (9)§ 88!4 (7) 6.3!0.1 (7) 80!5 (12)§ 6.2!0.1 (12)§ 87!5 (9) 6.2!0.1 (9)§

+Indo 92!6 (10) 6.8!0.2 (10) 96!2 (8) 6.8!0.1 (8) 97!1 (13) 6.9!0.1 (13) 96!1 (10) 7.0!0.1 (10)

+LNNA+Indo 74!7 (10)§ 5.9!0.1 (10)§ 81!7 (8) 6.2!0.1 (8)§ 65!7 (13)§ 5.9!0.2 (13)§ 74!6 (9) 6.2!0.1 (9)§

Vessels were preconstricted to 30% to 50% of maximal diameter with phenylephrine (1 to 3 lmol/L). Emax are expressed as the percentage of the maximal diameter. Data presented as
mean!SEM of (n) mice. The Kruskal–Wallis test followed by the Dunn’s posttest were used. KD indicates knockdown; WT, wild-type; LNNA, Nx-nitro-L-arginine; Indo, indomethacin.
‡P<0.05 vs WT+RD; §P<0.05 vs control (within respective groups).
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was preserved in KD mice. To further confirm preservation of
NO in HFD-fed angptl2 KD mice compared with WT mice, we
loaded femoral arteries with a fluorescent dye specific for NO
production, DAF-2, as previously described.30 In agreement
with our functional data, a 3-month HFD significantly reduced
ACh-induced changes in NO-associated fluorescence only in
WT (n=6), while it was preserved in angptl2 KD mice (n=6)
(Figure 4C). Artery preincubation with Indo alone or in
combination with LNNA to reveal contribution of EDHF did
not show differences in ACh-mediated dilation across groups
(Table 5). Previously observed contribution of PGI2 in KD
mice was lost at 6 months of age under either diet regimen
(Table 5). Furthermore, while vasoconstriction to PE was
slightly but significantly greater in HFD-fed WT mice compared
with all other groups of mice (Figure 5A), endothelium-
independent dilation to sodium nitroprusside was similar
across all groups of mice (Figure 5B). Taken together, these
data suggest that in angptl2 KD mice treated with an HFD,
eNOS-derived NO production is preserved in the femoral
arteries.

In our experimental models, the HFD did not change DHE
staining, a marker of oxidative stress, in femoral arteries from
both strains of mice (Figure 6).

An HFD Recruited a Compensatory NO Pathway
in the Mesenteric Arteries of WT, Which Was
Absent in KD mice
In mesenteric arteries, global endothelial function measured
by ACh-mediated vasorelaxation was similar for the 2 strains
of mice (Figure 7A). After an HFD, global endothelial function
remained similar as well (Figure 7B). Interestingly, decipher-
ing out contribution of NO using LNNA showed that under the
RD regimen, there was no significant functional consequence
of inhibiting NO with LNNA in WT mice (n=6; Figure 7C),
confirming, as reported previously,41 that in these mesenteric

resistance arteries, EDHF is most likely the main vasodilator.
When fed an HFD, however, LNNA significantly reduced
ACh-induced relaxation (Figure 7D, Table 6) in WT mice (n=6),

A B

Figure 5. Vascular smooth muscle cell function was assessed in femoral arteries from WT and angptl2
KD mice, by (A) vasoconstriction to phenylephrine (PE), and (B) dilation to sodium nitroprusside (SNP) in
the absence of the endothelium. Data are mean!SEM of n=4 to 6 mice, and compared using the Mann–
Whitney U test. hP<0.05 vs RD. KD indicates knockdown; RD, regular diet; WT, wild-type.

WT KD 

RD 

HFD 

A 

B 

Figure 6. A, DHE staining in femoral arteries of WT and KD
mice fed an RD or HFD, and (B) quantifications of DHE
intensities in femoral arteries; n=3 to 5. DHE indicates
dihydroethidium; HFD, high-fat diet; KD, knockdown; RD, regular
diet; WT, wild-type.
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suggesting a decrease in EDHF-mediated relaxation but
compensated by NO. In contrast, LNNA (n=8) unexpectedly
reduced ACh-induced relaxation in angptl2 KD mice fed an RD
(Figure 7E, Table 6), suggesting that both NO and EDHF
contribute to the relaxation. The effect of LNNA (n=5) was,
however, absent in KD mice fed an HFD (Figure 7F, Table 6),
suggesting that the contribution of EDHF was preserved in

mesenteric arteries of KD mice. Of note, in both strains, Indo
did not modify ACh-induced relaxation (data not shown).
Unlike in the femoral artery, vasoconstriction to PE was
similar among all groups of mice (Figure 8A); furthermore,
endothelium-independent relaxation to sodium nitroprusside
was not different between groups (Figure 8B). Combined,
these data suggest that in mesenteric arteries from angptl2

A B 

C D 

E F 

WT WT

KD KD

Control Control 

Figure 7. ACh-mediated relaxation in mesenteric arteries of 6-month-old mice fed an (A) RD, (B) HFD
under no-drug control condition and with LNNA in WT (n=6) fed an (C) RD or (D) HFD, and in KD (n=6 to 10)
fed an (E) RD or (F) HFD. The z-score method followed by the d’Agostino–Pearson omnibus test was used to
test normality of data sets, after which the 2-way ANOVA followed by the Bonferonni posttest were used.
§P<0.05 vs control. ACh indicates acetylcholine; HFD, high-fat diet; KD, knockdown; LNNA, Nx-nitro-L-
arginine; RD, regular diet; WT, wild-type.
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KD mice treated with an HFD, the EDHF contribution is
preserved, while in WT mice NO compensates for the reduced
contribution of EDHF.

KD Mice Had a Better Lipid Profile Than WT Mice
Fed an HFD
We examined the phenotypic profiles of WT and KD mice after
a 3-month RD or HFD diet treatment (Table 7). Similar to mice
3 to 4 months of age, 6-month-old KD mice fed the RD had
similar body weight compared with age-matched WT. After
being fed the HFD for 3 months, both WT and KD mice
significantly gained weight but KD mice weighed less than WT
mice (Table 7). During the 3-month diet treatment, food
intake was also similar in the 2 strains of mice fed either diet
(data not shown). However, after the HFD, circulating leptin
level rose significantly only in WT mice, while fasting plasma
glucose, TGs, adiponectin, FFAs, and cholesterol (HDL, total
cholesterol) were similar for the 2 strains (Table 7). Although
total cholesterol and HDL levels increased in WT and KD mice
after HFD, LDL levels increased only in WT, but not in KD
mice, so that total cholesterol-to-HDL and LDL-to-HDL ratios
increased significantly only in WT mice (Table 7). Fasting
insulin in WT mice significantly elevated after HFD, while they

were not different between strains. In addition, serum angptl2
was higher in WT mice fed an HFD compared with RD
(149!18 versus 77!7 ng/mL, n=3 to 4, P=0.057, Mann–
Whitney U test). These results indicate that after exposure to
an HFD, the lipid profile was better in angptl2 KD compared
with WT mice.

KD Mice Had Similar Blood Pressures as WT Mice
but a Lower Resting Heart Rate
While systolic and diastolic blood pressures did not differ
between 2 strains of mice and were not affected by the HFD
(Table 8), the previously mentioned lower basal heart rate in
KD mice at 3 months of age (Table 3) was maintained (n=7 to
10) at 6 months of age for the RD-fed group (Table 8).

Lower Liver TG Levels and Prevention of
Upregulation of TNFa Gene Expression in KD
Mice Fed an HFD
Because we observed a better lipid profile on an HFD
treatment in KD mice, we examined the phenotype of the
liver, a major organ involved in lipid handling. Liver sections of
KD mice (n=4) fed an HFD showed less lipid droplet

Table 6. Efficacy (Emax) and Sensitivity (EC50) to Acetylcholine in Mesenteric Arteries Isolated From 6-Month-Old WT and angptl2
KD Male Mice Fed a Regular (RD) or High-Fat Diet (HFD)

WT+RD WT+HFD KD+RD KD+HFD

Emax (%) EC50 Emax (%) EC50 Emax (%) EC50 Emax (%) EC50

Control 78!10 (6) 7.3!0.1 (6) 80!8 (6) 7.6!0.2 (6) 81!4 (10) 7.5!0.3 (8) 74!7 (6) 7.2!0.2 (5)

+LNNA 70!12 (6) 7.0!0.3 (3) 42!7 (6)§ 7.4!0.3 (6) 56!10 (8)§ 7.4!0.4 (7) 60!12 (5) 8.1!0.4 (5)

Vessels were preconstricted with thromboxane A2 analog U46619 (0.1 to 10 lmol/L). Emax values are expressed as the percentage of the maximal diameter. Data presented as
mean!SEM of (n) mice. The z-score method followed by the d’Agostino–Pearson omnibus test was used to test normality of data sets, after which the 2-way ANOVA followed by the
Bonferonni posttest were used. KD indicates knockdown; WT, wild-type; LNNA, Nx-nitro-L-arginine.
§P<0.05 vs control (within respective groups).
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Figure 8. Vascular smooth muscle cell function was assessed in mesenteric arteries from WT and
angptl2 KD mice, by (A) vasoconstriction to phenylephrine (PE) and (B) dilation to sodium nitroprusside
(SNP) in the absence of the endothelium. Data are mean!SEM of n=4 to 6 mice. KD indicates
knockdown; WT, wild-type.
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accumulation compared with WT mice (n=5) fed an HFD
(Figure 9A). This was associated with significantly lower levels
of liver TGs measured with the use of HPLC in KD mice (n=4)
fed an HFD compared with WT mice (n=5) (Figure 9B).
Phospholipid levels remained similar among all groups (data
not shown). Expressions of hepatic genes were examined
using qPCR (Figure 9C through 9F): notably, hepatic angptl2
gene expression was significantly greater after HFD in the WT
mice (n=7; Figure 9C). In terms of inflammatory markers,
TNFa mRNA levels significantly increased in HFD-fed WT mice
(n=7) but did not change in KD mice (n=6; Figure 9D), while
transforming growth factor-b increased similarly after HFD
(Figure 9E) and interleukin-6 gene expression was unchanged
and similar between the 2 strains (Figure 9F). The expression
of essential genes coding for proteins involved in the
regulation of lipid metabolism was not different between

groups (Figure 10). Collectively, these data suggest that an
HFD promoted inflammation that was associated with
increased TG levels in the liver of WT mice, which was less
severe in angptl2 KD mice.

Smaller Adipocyte Size in Fat Depots and
Prevention of Inflammatory Gene Expression in
Epididymal White Adipose Tissue of HFD-fed KD
Mice
Efficiency of fat storage in adipose tissue is highly related to
lipid profiling.42 Under basal conditions when fed an RD,
adipocyte cell size as measured by cell diameter (lm) in
mesenteric white adipose tissue (mWAT) (Figure 11A and
11B) and epididymal WAT (eWAT) (Figure 11C and 11D) was
similar between the 2 strains (n=3 to 6). Remarkably, when

Table 7. Parameters of Fasting Plasma in 6-Month-Old WT and Angptl2 KD Mice Fed a Regular Diet (RD) or a 3-Month High-Fat
Diet (HFD)

WT KD

RD HFD RD HFD

Weight, g 26.3!0.9 (10) 33.1!1.4 (9)h 24.2!0.5 (13) 29.0!1.6 (11)‡h

Glucose, mmol/L 17.0!1.1 (10) 17.4!1.7 (9) 13.5!1.1 (12) 17.1!1.5 (11)

Triglycerides, mmol/L 0.45!0.04 (10) 0.49!0.05 (9) 0.41!0.03 (12) 0.49!0.03 (11)

Adiponectin, lg/mL 8.5!0.4 (5) 10.1!0.3 (5) 9.7!1.1 (5) 8.5!0.7 (5)

Leptin, ng/mL 2.1!0.7 (5) 20.2!2.1 (5)h 2.3!0.5 (5) 7.5!2.3 (5)

FFA, mmol/L 0.39!0.05 (7) 0.50!0.05 (5) 0.39!0.03 (7) 0.44!0.06 (7)

Cholesterol—total, mmol/L 2.7!0.1 (10) 3.9!0.2 (9)h 2.7!0.2 (12) 3.9!0.3 (11)h

Cholesterol—HDL, mmol/L 2.5!0.1 (10) 3.3!0.1 (9)h 2.4!0.2 (12) 3.5!0.2 (11)h

Cholesterol—LDL, mmol/L 0.15!0.02 (9) 0.41!0.11 (8)h 0.13!0.01 (12) 0.25!0.05 (11)

Cholesterol—total/HDL 1.07!0.02 (10) 1.17!0.03 (9)h 1.12!0.02 (12) 1.12!0.01 (11)

LDL/HDL 0.06!0.01 (9) 0.12!0.03 (8)h 0.06!0.01 (11) 0.08!0.02 (11)

Insulin, ng/mL 0.10!0.02 (9) 0.27!0.03 (9)h 0.14!0.02 (12) 0.30!0.08 (10)

Data presented as mean!SEM of (n) mice. The Kruskal–Wallis test followed by the Dunn’s posttest were used for data sets not normally distributed; 2-way ANOVA followed by the
Bonferroni posttest was used to compare normally distributed data sets. FFA indicates free fatty acid; HDL, high-density lipoprotein; KD, knockdown; LDL, low-density lipoprotein; WT, wild-
type.
hP<0.05 vs RD (within the same strain); ‡P<0.05 vs WT (within the same treatment).

Table 8. Measurements of Heart Rate and Blood Pressures by Tail-Cuff Plethysmography in 6-Month-Old WT and angptl2 KD Mice
Fed a Regular Diet (RD) or a 3-Month High-Fat Diet (HFD)

WT KD

RD HFD RD HFD

Heart rate, bpm 719!16 (10) 760!11 (6) 624!29 (7)‡ 713!18 (8)

Systolic blood pressure, mm Hg 145!6 (10) 146!5 (6) 146!2 (7) 153!5 (8)

Diastolic blood pressure, mm Hg 111!7 (10) 116!6 (6) 113!3 (7) 123!5 (8)

Data presented as mean!SEM of (n) mice. The Mann–Whitney U test was used. KD indicates knockdown; WT, wild-type.
‡P<0.05 vs WT.
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fed an HFD, adipocytes in mWAT and eWAT both significantly
increased in size only in WT (n=5) (Figure 11A through 11D).
Analysis by qPCR in eWAT (Figure 11E through 11J) revealed
that unlike in the liver, angptl2 mRNA levels did not change

after an HFD in WT mice (n=7; Figure 11E). Lipoprotein lipase
(LPL) mRNA expression, although not different between RD
and HFD for both strains, was significantly lower in HFD-fed
KD compared with WT mice (n=7; Figure 11F). Analysis of LPL
activity, however, revealed no differences between the strains
(data not shown). Interestingly, expressions of adiponectin
mRNA decreased significantly after an HFD in WT (n=7) but
remained unchanged in KD mice (n=7; Figure 11G), while
leptin mRNA significantly increased only in eWAT of WT mice
(n=7; Figure 11H) and corresponded to a similar pattern
found in plasma leptin levels (Table 7). Similarly, proinflam-
matory gene markers transforming growth factor-b and TNFa
gene expressions were significantly increased in HFD-fed WT
mice (n=7), but not in KD mice (Figure 11I and 11J). In eWAT,
expression of essential genes coding for proteins involved in
the regulation of lipid metabolism was not different between
groups (Figure 12). Altogether, these data suggest that the
inflammation induced by the metabolic stress of an HFD is
prevented in adipocytes of angptl2 KD mice.

Discussion
The novel findings in this study are that KD of angptl2 results
in (1) better femoral endothelial function via NO/PGI2
recruitment in young mice, (2) preserved endothelial dilatory
function after HFD associated with maintained NO release in
the femoral artery (a conductance artery) and EDHF contri-
bution in the mesenteric artery (a resistance artery), (3) a
better lipid profile when exposed to the metabolic challenge
of an HFD, and (4) a lower inflammatory status of the liver and
eWAT. To the best of our knowledge, this is the first report of
the impact of angptl2 in the contribution of the various EDRF
and their resistance against a stress induced by an HFD.

In the first part of the study, we tested the acute effects of
angptl2 on endothelial function. We found that acute addition
of angptl2-GST significantly reduced vasodilation in femoral
arteries from WT mice, an effect that was reversed with the
addition of antioxidant NAC, implicating the pro-oxidative role
of angptl2 on deteriorating endothelial function, at least
acutely. The endothelium, and ultimately vascular function,
is highly sensitive to increased oxidative stress, with NO
bioavailability and EDHF activity being major targets.43 This is
the first demonstration of the prooxidative effect of angptl2
on vascular cells and is in accordance with the recent report
by Aoi et al that used cancer cells.26

The next logical step was to then examine the role of
angptl2 in regulating endothelial function chronically. In
characterizing the endothelial function in femoral arteries in
which NO is the main EDRF, we found that, in addition to NO,
PGI2 unexpectedly contributed to the vasodilation in young
healthy KD mice, which may reflect a remodeling of the EDRF
induced by angptl2 KD. It is known that NO and PGI2

B

RD 

HFD 

WT KDA 

C D 

F E 

Figure 9. A, H&E-stained liver sections (scale bar=100 lm) and
(B) quantification of triglyceride (TG) content in liver of 6-month-old
WT and angptl2 KD mice fed a regular diet (RD) or a 3-month high-
fat diet (HFD); n=4 to 5. C through F, Quantitative RT-PCR of
mRNAs encoding for angptl2 and various inflammatory markers
in liver of WT or angptl2 KD mice fed an RD or HFD; n=6 to 7. The
z-score method followed by the d’Agostino–Pearson omnibus test
was used to test normality of data sets, after which the 2-way
ANOVA followed by the Bonferonni posttest were used. ‡P<0.05 vs
WT; hP<0.05 vs RD. KD indicates knockdown; RT-PCR, real-time
quantitative polymerase chain reaction; TGF, transforming growth
factor; WT, wild-type.
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produced by the endothelium play a protective and
antiproliferative role as potent inhibitor of platelet function
and vasorelaxant.44 In addition, our data reveal that the

contribution of EDHF is greater in femoral arteries isolated
from young WT mice compared with KD mice. We previously
reported that with age, the contribution of EDHF increases,

B A C 

E D F 

H G I 

K J L 

Figure 10. A through L, Expression of genes coding for proteins involved in lipid metabolism regulation in the liver by qPCR; n=6 to 7. Data
sets were tested for normality using the z-score method and the d’Agostino–Pearson omnibus test, after which 2-way ANOVA followed by the
Bonferroni posttest was used. All except I passed the normality test, where the Krustal–Wallis followed by Dunn’s posttest were used. ‡P<0.05
vs WT; hP<0.05 vs RD. FXR indicates farnesoid X receptor; HFD, high-fat diet; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme-A; HSL,
hormone-sensitive lipase; KD, knockdown; LPL, lipoprotein lipase; PPAR, peroxisome proliferator-activated receptor; qPCR, quantitative
polymerase chain reaction; RD, regular diet; SREBP, sterol regulatory element binding protein.
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Figure 11. A, Hematoxylin-eosin–stained mesenteric white adipose tissue (mWAT) in different groups (scale
bar=100 lm) and (B) quantification of adipocyte size of diameter measurements (average of 3 quantifying
analyses was used per animal) in mWAT; n=3 to 5. C, Hematoxylin-eosin–stained epididymal WAT (eWAT) in
different groups (scale bar=100 lm) and (D) quantification of adipocyte diameters in eWAT; n=3 to 6. E
through J, Gene expression analysis by qPCR in eWAT of WT and KD mice fed an RD or HFD; n=6 to 7. The z-
score method followed by the d’Agostino–Pearson omnibus test was used to test normality of data sets, after
which the 2-way ANOVA followed by the Bonferonni posttest were used, except in E, where the Kruskal–Wallis
followed by Dunn’s posttest were used as it did not pass normality test. ‡P<0.05 vs WT; hP<0.05 vs RD. HFD
indicates high-fat diet; KD, knockdown; qPCR, quantitative polymerase chain reaction; RD, regular diet; WT,
wild-type.
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compensating for the decline in eNOS activity and/or NO
bioavailability.21 The current results, therefore, suggest that
the lack of angptl2 expression may protect endothelial
function by influencing the relative contribution of the 3 main
EDRFs—NO, PGI2, and EDHF.

In the second part of the study, we compared the effects of
an HFD on endothelial function between WT and KD mice. The
current observations are in line with recently reported results
demonstrating HFD-fed angptl2 knockout mice with attenu-
ated endothelial dysfunction in isolated descending thoracic
aortas,5 while endothelial cell–derived angptl2 contributed to
eNOS inactivation.5 In the current work, we also reveal the

preservation of NO-mediated vasodilation in HFD-fed KD, but
not WT mice, as confirmed by monitoring ACh-induced NO
release using DAF-2 in femoral arteries. These results
complement what has been recently found in aortas of HFD-
fed angptl2 knockout mice, where levels of phospho-eNOS
was higher than in WT mice.5 However, the exact mechanism
by which NO-mediated dilation is maintained remains
unknown. Repeatedly, literature has demonstrated endothelial
dysfunction characterized by decreased NO bioavailability due
to increased oxidative stress.18,45 Because we observed
complete rescue of endothelial function with NAC after an
acute addition of angptl2, we asked if lower oxidative stress

A B 

C D 

E F 

Figure 12. A through F, Expression of genes coding for proteins involved in lipid metabolism regulation in
the eWAT by qPCR; n=6 to 7. Data sets were tested for normality using the z-score method and the
d’Agostino–Pearson omnibus test, after which 2-way ANOVA followed by Bonferroni’s posttest were used.
‡P<0.05 vs WT; hP<0.05 vs RD. eWAT indicates epididymal white adipose tissue; HSL, hormone-sensitive
lipase; KD, knockdown; PPAR, peroxisome proliferator-activated receptor; qPCR, quantitative polymerase
chain reaction; RD, regular diet; WT, wild-type.
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levels in HFD-fed KD mice could explain our functional data
regarding NO. In the present study, however, oxidative stress
evaluated by DHE staining did not reveal differences in the
femoral artery. Presumably, a 3-month HFD was not as strong
a stress on the femoral artery compared with an acute
addition of a pharmacological dose of angptl2 directly in the
vessel bath. In addition, it was noted that an HFD increased
efficacy to PE in denuded femoral arteries from WT, as has
been observed by others,46 but not in KD mice. Despite that
difference, low doses of PE were used depending on individual
arteries to preconstrict the arteries at 30% to 50% maximal
diameter, suggesting that the observed differences in vascular
function were not due to different efficacies to PE.

Because the vasodilatory function of the endothelium
displays high heterogeneity among various vascular beds,
where responses and adaptation to stress also show great
diversity, we examined, in parallel, endothelial function in
mesenteric resistance arteries. After an RD, 6-month-old mice
did not show differences in global endothelial function. In the
mesenteric resistance arteries, it has been reported that the
main vasodilator is EDHF,47 which is in accordance with the
current results in WT mice where relaxations were insensitive
to NOS inhibition. In contrast, inhibiting NOS with LNNA
significantly reduced ACh-induced relaxation in RD-fed ang-
ptl2 KD mice, suggesting that both EDHF and NO synergis-
tically contributed to relaxation. This could reflect an impact
of knocking down angptl2 on EDRF signaling in mesenteric
arteries, similar to the remodeling of EDRF observed in
femoral arteries from young KD mice in which PGI2 synergizes
with the main EDRF NO.

In mesenteric arteries from WT mice fed an HFD, the
contribution of EDHF to the relaxation was significantly
reduced but compensated by NO. We previously showed that
EDHF was a factor sensitive to mild dyslipidemia-associated
oxidative stress21; therefore, it is possible that in WT mice
challenged by a 3-month HFD, the NOS systems compensates
for this impaired EDHF activity at the early stage of obesity. In
KD mice fed an HFD, however, LNNA no longer reduced ACh-
induced relaxation of isolated mesenteric arteries, suggesting
that the EDHF component was preserved. Altogether, in
normal WT mice, our results demonstrate that regardless of
the arterial bed, the main EDRF is sensitive to the metabolic
stress induced by an HFD, and it is efficiently compensated
for by a secondary EDRF, maintaining global endothelial
function. In the long term, as in aging and chronic obesity,
however, adaptive mechanisms may become overwhelmed,
leading to permanent endothelial dysfunction, the primary
step toward atherosclerosis. With low angptl2 levels, as in the
KD mice, the endothelium is more resistant to the stress
induced by the HFD, maintaining the functionality of the
respective main EDRF. By extrapolation, lowering angptl2 may
delay endothelial dysfunction.

We further characterized the impact of knocking down
angptl2 on the metabolic stress induced by an HFD. In 2
recent studies focusing on insulin resistance and athero-
sclerosis, authors did not report differences between the
lipid profiles of HFD-fed WT and angptl2 knockout mice.3,5

Although we previously reported that infusion of purified
recombinant angptl2 in young 3-month-old severely dyslip-
idemic (LDLR!/!;hApoB+/+) mice further increased LDL
cholesterol levels and accelerated atherogenesis,4 we did
not expect the difference in lipid handling between KD and
WT mice fed an HFD reported in the present study. Indeed,
after a 3-month HFD, total cholesterol-to-HDL and LDL-to-
HDL ratios remained unchanged in KD mice, which is in
stark contrast with the expected increase in cholesterol
levels3 and with that measured in WT mice. The favorable
lipid profile of KD mice fed an HFD was associated with
significantly lower levels of TG in the liver, which is in
accordance with the results of Tabata et al.3 In addition, we
found that KD mice exhibited a smaller degree of adipocyte
hypertrophy in both eWAT and mWAT. There were lower
levels of TNFa and transforming growth factor-b mRNA in
eWAT from HFD-fed KD mice, likely a consequence of
reduced fat accumulation associated with the lack of
expression of angptl2,3 suggesting lower levels of inflamma-
tion in adipose tissues of KD mice. In line with this, it has
been shown that impaired excess fat storage in adipocytes
is closely linked to ectopic fat deposition,48 as observed in
the increased hepatic lipid accumulation in HFD-fed WT but
not in KD mice. Unlike Tabata et al,3 however, we did not
observe lower fasting insulin levels in KD mice. Discrepan-
cies may be explained by the modality of genetic inactivation
used, being a knockout and ours a KD model. Taken
together, the more favorable lipid profile, lower fat accumu-
lation, and proinflammatory gene expression may explain
why the endothelium-dependent dilatory function of arteries
isolated from KD mice was insensitive to the HFD in contrast
to arteries from WT mice.

An unexpected finding in this study was that angptl2 KD
mice had lower basal heart rate than WT mice, which was
consistent from 3 to 6 months of age. With the HFD, heart
rate increased in KD mice but still tended to be lower than
that in WT mice. This observation may contribute as well to
the better endothelial function in KD mice. Indeed, studies in
the middle-aged and elderly have shown that an elevated
resting heart rate correlated with subclinical inflammation49

and lowering basal heart rate in atherosclerosis-prone mice in
different studies delayed endothelial dysfunction associated
with reduced oxidative stress.50,51 The beneficial effects of a
lower heart rate on the endothelium is suggested to be a
combination of sustained shear stress and lower cyclic
mechanical stress, resulting in reduced damage to the
endothelium.52

DOI: 10.1161/JAHA.114.001024 Journal of the American Heart Association 17

Angptl2 in Endothelial Function and Metabolism Yu et al
O
R
IG

IN
A
L
R
E
SE

A
R
C
H

 at Institut de Cardiologie de Montreal on November 11, 2014http://jaha.ahajournals.org/Downloaded from 

http://jaha.ahajournals.org/
Carol Yu
137



Heart rate, blood pressure, and energy expenditure have
been shown to be regulated by leptin through central
coactivation of the sympathetic nervous system and renin-
angiotensin system (see review in Mark [53]). In our
experimental models, leptin levels did not increase in the
blood of KD mice fed an HFD. Therefore, a lack of increase in
leptin during HFD in KD mice could participate in limiting the
observed changes in heart rate and metabolic phenotype.
Despite contrasting leptin levels, food intake during the 3-
month diet treatment was not significantly different between
the 2 strains of mice. Interestingly, a recent study reported a
possible link between adipocyte-derived adiponectin, which
shares established interactions with leptin in settings of
obesity,54 and angptl2.8 In the current study, however, plasma
levels of adiponectin were similar among all groups of mice.
Taken together, angptl2 may interact with leptin pathways,
but this hypothesis needs to be further tested.

To conclude, accumulating reports are starting to highlight
the importance of angptl2 involvement in a plethora of
pathologies ranging from obesity and cancer to atheroscle-
rosis in the most recent reports.4,5,11 A common phenomenon
underlying the aforementioned pathologies is the presence of
an inflammatory environment. Inflammation in the endothe-
lium favors homeostatic imbalances between vasodilators and
vasoconstrictors, ultimately leading to endothelial dysfunc-
tion. Our data reveal better endothelial function in the arteries
of angptl2 KD mice with preserved NO-mediated dilation in
femoral arteries and preserved EDHF-dilation in mesenteric
arteries against a 3-month HFD-induced hypercholesterolemia
and fat accumulation in the liver and adipose tissues. Because
targeting endothelial dysfunction is a rational therapeutic
approach in treating patients with cardiovascular disease,55

further understanding the role of angptl2 in endothelial
dysfunction associated with increased inflammation may
reveal a new possible target to treatment and prevention of
a range of cardiovascular disorders.
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Yu C, Luo X, Duquette N, Thorin-Trescases N, Thorin E.
Knockdown of angiopoietin like-2 protects against angiotensin II-
induced cerebral endothelial dysfunction in mice. Am J Physiol Heart
Circ Physiol 308: H000–H000, 2015. First published December 15,
2014; doi:10.1152/ajpheart.00278.2014.—Angiopoietin like-2 (ang-
ptl2) is a circulating pro-inflammatory and pro-oxidative protein, but
its role in regulating cerebral endothelial function remains unknown.
We hypothesized that in mice knockdown (KD) of angptl2, cerebral
endothelial function would be protected against ANG II-induced
damage. Subcutaneous infusion of ANG II (200 ng·kg!1·min!1, n "
15) or saline (n " 15) was performed in 20-wk-old angptl2 KD mice
and wild-type (WT) littermates for 14 days. In saline-treated KD and
WT mice, the amplitude and the sensitivity of ACh-induced dilations
of isolated cerebral arteries were similar. However, while endothelial
nitric oxide (NO) synthase (eNOS)-derived O2

!/H2O2 contributed to
dilation in WT mice, eNOS-derived NO (P # 0.05) was involved in
KD mice. ANG II induced cerebral endothelial dysfunction only in
WT mice (P # 0.05), which was reversed (P # 0.05) by either
N-acetyl-L-cysteine, apocynin, gp91ds-tat, or indomethacin, suggest-
ing the contribution of reactive oxygen species from Nox2 and
Cox-derived contractile factors. In KD mice treated with ANG II,
endothelial function was preserved, likely via Nox-derived H2O2,
sensitive to apocynin and PEG-catalase (P # 0.05), but not to
gp91ds-tat. In the aorta, relaxation similarly and essentially depended
on NO; endothelial function was maintained after ANG II infusion in
all groups, but apocynin significantly reduced aortic relaxation in KD
mice (P # 0.05). Protein expression levels of Nox1/2 in cerebral
arteries were similar among all groups, but that of Nox4 was greater
(P # 0.05) in saline-treated KD mice. In conclusion, knockdown of
angptl2 may be protective against ANG II-induced cerebral endothe-
lial dysfunction; it favors the production of NO, likely increasing
endothelial cell resistance to stress, and permits the expression of an
alternative vasodilatory Nox pathway.

angiopoietin like-2; endothelium; cerebral arteries; nitric oxide; NA-
DPH oxidases

CARDIOVASCULAR DISEASES, INCLUDING stroke, affect more than
50% of the world population today and remain an unre-
solved clinical issue. Inflammation and oxidative stress
synergize to promote endothelial damage, thereby chronically
driving atherogenesis (13, 14). Importantly, the cerebral vas-
cular endothelium is highly sensitive to this deleterious envi-
ronment (8, 11). Reactive oxygen species (ROS) are signaling
molecules generated by the electron transport chain (35) and
are by-products of enzymes including the NADPH oxidases
(18), xanthine oxidases, and uncoupled endothelial nitric oxide
(NO) synthase (eNOS) (19, 28). In parallel, they trigger an

innate anti-oxidative system to prevent their potential harmful
effects (26, 29). When this system is overwhelmed, however,
endothelial damages occur and dysfunction develops, which
are the first steps toward atherogenesis.

Recently, a protein identified as angiopoietin like-protein 2
(angptl2), a member of the greater angiopoietin-like family and
derived from various cell types including adipocytes (31) and
endothelial cells (12), has been implicated in a number of
chronic inflammatory disorders such as insulin resistance (31),
atherosclerosis (12), and tumor progression (1, 34). On the
other hand, upregulation of angptl2 gene expression, among
other genes, was recently reported in the aged brain of both rats
and human, contributing to poststroke angiogenesis (5). Infor-
mation of angptl2 involvement in regulating endothelial func-
tion, however, is limited. Endothelial cell-derived angptl2
promoted aortic endothelial dysfunction in tie2-angptl2 trans-
genic mice, as evidenced by lower ACh-mediated aortic relax-
ations and lower expression of phospho-eNOS (20). Accord-
ingly, in angptl2!/! mice, endothelial function and eNOS
phosphorylation were preserved against a severe high-fat diet
(20). In line with this, we also observed protection against
high-fat diet-induced endothelial dysfunction in angptl2
knockdown (KD) mice, through preservation of NO-mediated
dilations in the femoral artery (40). There is no report on
cerebral endothelial function, and the specific impact of ang-
ptl2 on the regulation of endothelial-derived relaxing factors
(EDRFs) is only emerging (40). Through its pro-inflammatory
(12, 31) and its pro-oxidative effects (2), we hypothesized that
angptl2 contributes to cerebral endothelial dysfunction and the
modulation of the EDRFs and that knockdown of angptl2
would increase endothelial cell stress resistance in mouse
arteries. To test this hypothesis, we induced endothelial stress
by chronic (14 days) infusion of a low dose of ANG II in
angptl2 KD mice. We found that knockdown of angptl2 ex-
pression was associated with greater NO-dependent dilation,
prevented ANG II-induced endothelial dysfunction, and in-
duced an apocynin- and PEG-catalase-sensitive dilatory path-
way, suggesting that angptl2 knockdown protects cerebral
endothelial function and activates an alternative Nox dilatory
pathway in the presence of ANG II, ultimately reinforcing
endothelial stress resistance.

METHODS

Animals. All angptl2 KD and wild-type (WT) littermates used in
this study were from our colony and were genotyped as previously
described (40). Only male mice were used. Mice were kept under
standard conditions (24°C; 12-h:12-h light/dark cycle) and were fed
ad libitum with regular chow. Mice were euthanized by exsanguina-
tion under terminal anaesthesia (44 mg/kg ketamine and 2.2 mg/kg
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xylazine ip). All animal experiments were performed in accordance
with the Guide for the Care and Use of Experimental Animals of the
Canadian Council on Animal Care and the Guide for the Care and
Use of Laboratory Animals of the US National Institutes of Health
(NIH Publication No. 85-23, revised 1996) and was approved by the
Montreal Heart Institute Ethics Committee (ET No. 2010-62-1).

Chronic infusion of ANG II. For ANG II studies, male mice at 20
to 22 wk of age were subcutaneously implanted with an osmotic
mini-pump (Alzet 1002; Cupertino, CA) prepared with either saline or
200 ng·kg!1·min!1 of ANG II (Abcam; ab120183) for 14 days. At
this low dose, ANG II is pro-inflammatory and pro-oxidative, but does
not induce changes in blood pressure (6), and therefore promotes
endothelial dysfunction independently of its pressor effects. Mice
were anesthetized and maintained throughout the procedure by inha-
lation of isoflurane (1–3% mixed with 97% O2). For 3 wk before
subcutaneous implantation, mice were trained by tail-cuff plethys-
mography (Kent Scientific, Torrington, CT) with baseline recording
and during the 14 days of subcutaneous treatment, blood pressure
(systolic, diastolic, and mean arterial pressures) and heart rate were
noninvasively recorded on days 5, 10, 12, and 14 as previously
described (3). For reference, blood pressure was also assessed under
anesthesia by both Millar catheter and tail-cuff. After euthanasia,
blood was drawn from mice by cardiac puncture at terminal anesthesia
and plasma was subsequently collected. Mice were weighed, and
weights of their hearts and tibia length recorded. The brain was
removed from the cranial cavity, and the cerebral artery (posterior
cerebral artery) was harvested. The brain was then snap frozen in
liquid N2 and subsequently kept at !80°C. Posterior cerebral arteries
and aorta were harvested and placed in ice-cold physiological saline
solution [PSS; pH 7.4; (in mmol/l) 119 NaCl, 4.7 KCl, 1.18 KH2PO4,
1.17 MgSO4, 24.9 NaHCO3, 1.6 CaCl2, 0.023 EDTA, and 10 glucose]
for in vitro endothelial function studies.

Plasma parameters. Glucose, triglyceride, and cholesterol (total,
c-LDL, c-HDL) levels were measured by the Biochemistry Labora-
tory at the Montreal Heart Institute (Montreal, QC, Canada).

Endothelial function of cerebral arteries by pressurized arteriography.
Segments of 2 to 3 mm of the posterior cerebral artery were dissected
out in ice-cold PSS and cannulated at both ends in a pressurized
arteriograph (Living Systems Instrumentation, St. Alban, VT) at 60
mmHg as previously described (10). The artery segment was equili-
brated for 45 min, allowing for myogenic tone to develop. Then, a
single dose of phenylephrine (PE; 1 to 10 "mol/l) to reach 30% to
50% of maximal diameter was added. A single cumulative concen-
tration-response curve to ACh (0.1 nmol/l to 30 "mol/l) was obtained.
To inhibit NOS, NO, cyclooxygenase (COX) enzymes, H2O2 produc-
tion, mitochondrial O2

! production, to nonspecifically inhibit Nox
enzymes, or to specifically inhibit Nox2, N#-nitro-L-arginine (L-NNA;
100 "mol/l), 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-ox-
ide (PTIO; 100 "mol/l), indomethacin (Indo; 10 "mol/l), PEG-
catalase (100 U/ml), mito-TEMPO (5 "mol/l), apocynin (10 "mol/l),
or gp91ds-tat (1 "mol/l; AnaSpec, Fremont, CA) were added, respec-
tively, in the bath during equilibration (30–45 min) and during the
experiment. To eliminate oxidative stress, the antioxidant N-acetyl-L-

cysteine (NAC; 10 "mol/l) was added (37). Of note, we compared
endothelial function in mice with and without subcutaneous saline-
infused pump implantation and found no significant differences (data
not shown), and we verified that NAC has no effect per se on vascular
tone (data not shown). During equilibration and experiment, the artery
segment was maintained at 37°C and aerated with 12%O2-5%CO2-
83%N2, generating an in vitro pO2 of 150 mmHg, similar to mouse
blood pO2 (10). Dilation to sodium nitroprusside (SNP; 0.1 nmol/l to
30 "mol/l) was also recorded. For vasoconstriction studies, cerebral
artery was equilibrated for 45 min before a single cumulative con-
centration-response curve to ANG II (0.1 nmol/l to 3 "mol/l) was
obtained.

Fluorescence studies. Isolated mouse cerebral arteries were pres-
surized at 60 mmHg and incubated in oxygenated PSS at 37°C with
either 5 "mol/l of 5-(and-6)-chloromethyl-2=,7=-dichlorodihydrofluo-
rescein diacetate acetyl ester (DCF-DA; a fluorescent dye-based free
radical sensor; Molecular Probes) or 10 "mol/l of 4,5-diaminofluo-
rescein diacetate (DAF-2; a fluorescent dye for NO detection; Cal-
biochem) with or without any inhibitors-PEG-catalase (100 U/ml) or
L-NNA (100 "mol/l) to block H2O2 and NO production, respectively,
for 30 min, after which vessels were washed three times with PSS,
preconstricted with PE and dilated with 1 "mol/l ACh. We previously
reported that in young healthy mice, ACh-induced cerebrovascular
dilation was associated with a rise in DCF-DA fluorescence, a signal
that was abolished by L-NNA, PEG-catalase, pyruvate (a H2O2 scav-
enger), or DETC (a SOD inhibitor that increases O2

!), but not by
PTIO (a NO scavenger), demonstrating the specificity of DCF-DA for
H2O2 in our experimental conditions (10). On the other hand, we also
reported that in the presence of excess levels of BH4, the cofactor of
eNOS, ACh-induced dilation was associated with a rise in DAF-2, a
signal that was abolished by L-NNA or PTIO, but insensitive to
catalase, demonstrating the specificity of DAF-2 for NO (10). There-
fore, in our experimental conditions, DCF-DA detects H2O2 and
DAF-2 detects NO. Parallel changes in cerebral arterial diameter and
H2O2-fluorescence or NO-fluorescence intensities were recorded dur-
ing the experiment, as described previously (10).

Table 1. Hemodynamic parameters of 6-month-old WT and angptl2 KD mice treated with chronic subcutaneous infusion of
saline or ANG II for 14 days

Baseline Day 5 Day 14

WT KD

WT KD WT KD

Saline ANG II Saline ANG II Saline ANG II Saline ANG II

Blood pressure, mmHg
Systolic 138 $ 4 (10) 148 $ 4 (10) 132 $ 5 (4) 132 $ 8 (6) 138 $ 7 (6) 140 $ 11 (4) 124 $ 6 (4) 134 $ 8 (6) 146 $ 8 (6) 143 $ 19 (4)
Diastolic 109 $ 4 (10) 116 $ 4 (10) 102 $ 3 (4) 104 $ 7 (6) 107 $ 7 (6) 107 $ 11 (4) 97 $ 7 (4) 109 $ 6 (6) 115 $ 8 (6) 109 $ 17 (4)

Heart rate, beats/min 587 $ 18 (10) 632 $ 13 (10) 558 $ 37 (4) 612 $ 33 (6) 654 $ 44 (6) 611 $ 23 (4) 616 $ 25 (4) 631 $ 27 (6) 632 $ 26 (6) 578 $ 32 (4)

Values are means $ SE of (n) mice. WT, wild-type mice; KD, knockdown mice treated with saline or ANG II for 14 days.

Table 2. Baseline blood pressure measured in anesthetized
WT and KD mice by tail-cuff plethysmography and by Millar
catheter

WT KD

Tail-cuff (under anesthesia)
Blood pressure, mmHg

Systolic 110 $ 2 (9) 110 $ 4 (7)
Diastolic 79 $ 2 (9) 81 $ 4 (7)

Millar (under anesthesia)
Blood pressure, mmHg

Systolic 99 $ 1 (7) 99 $ 2 (7)
Diastolic 64 $ 1 (7) 67 $ 1 (7)

Values are means $ SE of (n) mice.
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Structural measurements of cerebral arteries. Passive pressure-
diameter measurements were conducted by the pressurized arterio-
graph in Ca2!-free PSS and 10 "mol/l SNP. Increments of intralu-
minal pressure of the cerebral artery (20 to 160 mmHg, with a first 20
mmHg step followed by 20-mmHg steps), were recorded to reveal
lumen diameter and outer diameter, to calculate structural properties
of the cerebral artery. Arterial wall thickness, lumen diameter, and
wall-to-lumen ratio were presented at 60 mmHg only to represent
structural properties at physiological conditions of the cerebral artery.

Endothelial function of aorta by wire myography. Thoracic aortic
rings of 2 mm were mounted on 20 "m tungsten wires in microvessel
myographs (IMF; University of Vermont, Burlington, VT) as de-
scribed previously (32). An optimal basal tension of 1.5 g was
determined for vessels while no differences in basal tension were
observed among groups (data not shown). The mounted aortic ring
was equilibrated for 30 to 45 min, after which the contractility of each
arterial ring was determined by a 40 mmol/l KCl-PSS solution,
followed by two washout periods, after which vessels were allowed to
further incubate for 30 to 45 min in the absence of any drugs, or in the
presence of L-NNA (100 "mol/l), indomethacin (10 "mol/l), apoc-
ynin (10 "mol/l), or NAC (10 "mol/l). Aortic segments were then
preconstricted with a half-maximal effective concentration (EC50)
dose of thromboxane A2 analog 9,11-dideoxy-11#, 9#-epoxy-
methano-prostaglandin F2# (U46619, 0.1 nmol/l to 10 "mol/l), fol-
lowed by relaxation curves to ACh (0.1 nmol/l to 30 "mol/l) or SNP
(0.1 nmol/l to 30 "mol/l). During equilibration and experiment, aortic
segment was aerated with 12%O2-5%CO2-83%N2 at 37°C.

Cerebral vessels isolation and protein analysis by Western blot.
Whole brain vessels were isolated from the brain as described previ-
ously (3, 9, 24), and 25 "g of proteins in a discontinuous Laemmli
buffer were loaded and separated on 10% acrylamide SDS-PAGE
gels, transferred onto nitrocellulose membranes, and probed with
antibodies against COX-1 (160109; Cayman, Ann Arbor, MI), COX-2
(160106; Cayman), phospho-eNOS (9571; Cell Signalling, Danvers,
MA), eNOS (ab66127; Abcam, Cambridge, UK), Nox1 (PA5-27967;
ThermoFisher Scientific, Rockford, IL), Nox2 (ab43801; Abcam),
Nox4 (NB110-58849; Novus Biologicals, Littleton, CO), and #-actin
(A5228; Sigma-Aldrich, St. Louis, MO). Membranes were then
probed with respective anti-rabbit (GARGG-500; Peninsula Labora-

tories, St. Helens, UK) or anti-mouse (715-007-003; Jackson Immu-
noResearch, West Grove, PA) secondary antibodies at a dilution
factor of 1:10,000.

Statistical analysis. All data presented are means $ SE; n is the
number of mice. EC50 is the half-maximum effective concentration as
estimated by the GraphPad Prism 5.0 software for each dose-response
curve, based on the variable slope sigmoidal dose-response curve
formula: Y % Bottom ! ((Top & Bottom)/(1 ! 10ˆ(logEC50 &
x)*Hillslope)), where “bottom” is the value for Y at the plateau
bottom, “top” is value for Y at plateau top, and “hillslope” describes
the steepness of the dose-response curve. Emax is taken at the maximal
ACh dose (30 "mol/l) to induce dilation. For all experiments, the
unpaired student’s t-test or 2-way ANOVA followed by Bonferroni
post-tests were performed as needed.

RESULTS

Similar hemodynamic parameters in both WT and angptl2
KD mice. Before treatment with ANG II, WT and KD mice
showed similar blood pressures and heart rates, assessed by
tail-cuff in conscious mice (Table 1) and by tail-cuff and Millar
in anesthetized mice (Table 2). Chronic infusion of ANG II for
14 days did not affect the hemodynamic parameters in both
WT and KD mice, confirming the low, sub-pressor dose of
ANG II (Table 1). Chronic infusion of ANG II did not change
heart weight-to-tibia length ratios in either WT or KD mice
compared with respective saline-treated animals; however,
KD mice had significantly lower body weights (Table 3), in
line with literature showing lighter body weights in angptl2-
deficient mice (31), and smaller tibia length compared with
WT mice with similar heart weights, resulting in significantly
higher heart weight-to-mouse weight and heart weight-to-tibia
length, respectively, in ANG II-treated KD compared with WT
mice (Table 3).

Similar plasma parameters between WT and angptl2 KD
mice. Interestingly, nonfasting glucose level was significantly
lower in ANG II-treated KD compared with WT mice. Besides

Table 3. Morphological parameters of 6-month-old WT and KD mice infused with either saline or a low dose of ANG II

WT KD

Saline ANG II Saline ANG II

Mouse weight, g 32.7 $ 0.8 (15) 34.2 $ 0.8 (18) 28.3 $ 1.1* (15) 28.9 $ 0.5* (16)
Heart weight, mg 128 $ 4 (11) 133 $ 4 (12) 132 $ 9 (9) 135 $ 6 (12)
Tibia length, mm 22.1 $ 0.2 (11) 22.5 $ 02 (12) 20.5 $ 0.1* (9) 20.3 $ 0.1* (12)
Heart weight/tibia length 5.8 $ 0.2 (11) 5.9 $ 0.1 (12) 6.4 $ 0.5 (9) 6.7 $ 0.3*(12)
Heart weight/mouse weight 4.0 $ 0.1 (11) 4.0 $ 0.1 (12) 4.6 $ 0.4 (9) 4.8 $ 0.2* (12)

Values are means $ SE of (n) mice. *P ' 0.05 vs. WT.

Table 4. Nonfasting plasma parameters of 6-month-old WT and KD mice infused with either saline or a low dose of ANG II

WT KD

Saline ANG II Saline ANG II

Glucose, mmol/l 19.2 $ 1.4 (5) 18.2 $ 0.8 (5) 16.4 $ 1.8 (5) 12.9 $ 0.7* (5)
Triglyceride, mmol/l 0.8 $ 0.2 (5) 0.6 $ 0.1 (5) 1.1 $ 0.2 (5) 0.8 $ 0.1 (5)
Cholesterol

Total, mmol/l 3.5 $ 0.2 (5) 3.1 $ 0.3 (5) 3.1 $ 0.3 (5) 3.0 $ 0.3 (5)
HDL, mmol/l 3.0 $ 0.1 (5) 2.6 $ 0.2 (5) 2.6 $ 0.2 (5) 2.5 $ 0.3 (5)
LDL, mmol/l 0.14 $ 0.04 (5) 0.23 $ 0.03 (5) 0.18 $ 0.08 (5) 0.15 $ 0.02 (5)
Total/HDL 1.14 $ 0.03 (5) 1.20 $ 0.01 (5) 1.20 $ 0.05 (5) 1.21 $ 0.05 (5)

LDL/HDL 0.05 $ 0.01 (5) 0.09 $ 0.01 (5) 0.07 $ 0.02 (5) 0.07 $ 0.01 (5)

Values are means $ SE of (n) mice. *P ' 0.05 vs. WT.
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that, levels of triglycerides, LDL, and HDL cholesterols re-
mained similar among all groups (Table 4).

Myogenic tone was similar between WT and KD mice. The
level of myogenic tone in isolated pressurized cerebral arteries
from WT and KD mice was low, similar between strains and
unaffected by ANG II treatment, but significantly increased by
the NOS inhibitor L-NNA (Table 5). This is in accordance with
our previous study (10), where we showed that in young
healthy C57Bl6 mice, spontaneous myogenic tone that devel-
oped in cerebral arteries was low, but increased in the presence

of L-NNA or the NO scavenger PTIO, suggesting that dilatory
eNOS-derived NO is produced and counteracts the myogenic
tone. The net result is a low level of myogenic tone.

Cerebral vasodilation was preferentially driven by H2O2 in
WT mice and by NO in angptl2 KD mice. In the control
settings, after saline infusion for 14 days in WT and KD mice,
cerebrovascular endothelial function was comparable between
both strains of mice (Fig. 1, A and B), as represented by the
same efficacies (Emax) and sensitivity (EC50) of ACh to dilate
(Table 6). When L-NNA was used to inhibit the NOS enzyme,

Table 5. Spontaneous myogenic tone developed in isolated pressurized cerebral arteries from WT and KD mice infused with
either saline or a low dose of ANG II

WT KD

Saline ANG II Saline ANG II

Control, % 4.9 ! 3.3 (10) 6.0 ! 2.2 (11) 11.7 ! 5.3 (7) 7.4 ! 2.9 (12)
" L-NNA, % 24.0 ! 9.2* (4) 35.1 ! 9.2* (5) 33.8 ! 2.5* (4) 29.1 ! 10.7* (4)

Values are means ! SE of (n) mice. *P # 0.05 vs. control. L-NNA, N$-nitro-L-arginine.

Fig. 1. ACh-mediated endothelium-dependent
vasodilation with or without incubation with either
N-acetyl-L-cysteine (NAC; 10 %mol/l), 2-phenyl-
4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide
(PTIO; 100 %mol/l), PEG-catalase (PEG-cat; 100
U/ml), or N$-nitro-L-arginine (L-NNA; 100 %mol/l)
in pressurized cerebral arteries of 6-mo-old wild-
type (WT; A) and knockdown (KD; B) mice subcu-
taneously infused with a saline solution (n & 4–10).
To assess nitric oxide (NO) and H2O2 production,
pressurized cerebral arteries from 6-mo-old WT
mice were loaded with 4,5-diaminofluorescein di-
acetate (DAF-2; n & 4 – 6; C) and 5-(and-6)-
chloromethyl-2=,7=-dichlorodihydrofluorescein di-
acetate acetyl ester (DCF-DA; n & 5 to 6; D),
respectively, in the absence or presence of L-NNA
or PEG-catalase. Average increases in fluorescence
intensities are shown during addition of 10 %mol/l
ACh. *P # 0.05 vs. WT; ‡P # 0.05 vs. no drug
control (Ctrl). E: schematic dilatory pathways in-
volved in ACh-induced dilation in cerebral arteries
from WT and angptl2 KD mice. EC, endothelial
cell; VSMC, vascular smooth muscle cell; AU,
arbitrary units.
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response to ACh was significantly blunted in both strains of
mice (Fig. 1 and Table 6), suggesting that endothelium-depen-
dent dilatory responses in both WT and KD mice relied on
eNOS activation. However, with the use of PTIO, a scavenger
of NO, vasodilation in response to ACh was significantly
blunted in KD mice, but not affected in WT mice, suggesting
a role of eNOS-derived NO in KD mice only (Fig. 1, A and B;
and Table 6). In addition, PEG-catalase significantly reduced
ACh-mediated dilation in cerebral arteries from WT mice, but
not from KD mice, suggesting a role of eNOS-derived H2O2 in
WT only (Fig. 1, A and B; and Table 6). We indeed previously
reported the physiological uncoupling of eNOS in cerebral
arteries from WT mice, in which eNOS-derived H2O2 is the
main EDRF (10). NAC, an antioxidant known to scavenge free
radicals (30), also reduced the vasodilation induced by ACh in
WT mice, but not in KD mice, suggesting that eNOS likely
produces O2

! as the intermediate to more stable H2O2 (Fig. 1,
A and B; and Table 6). Altogether, these results suggest that
eNOS-derived O2

!/H2O2 contributed to vasodilation in cere-
bral arteries from WT mice and that, in contrast, eNOS-derived
NO was preferentially involved in cerebral artery dilation of
KD mice.

The fact that L-NNA almost completely abolished ACh-
induced dilation in both WT and KD mice suggests that eNOS
is the major source of O2

!/H2O2 and NO, respectively. To
further confirm our pharmacological data in WT and KD mice,
NO and H2O2 production during ACh-induced dilation was
assessed by incorporating the fluorescent ROS-reactive dyes,
DAF-2 (10) and DCF-DA (7, 10), respectively (Fig. 1, C and
D), in pressurized cerebral arteries of 6-mo-old WT and KD
mice. Vasodilations to ACh resulted in significantly greater
increase in NO-DAF-2 fluorescence intensities in KD com-
pared with WT mice, a signal that was sensitive to NOS
inhibitor L-NNA (Fig. 1C). In contrast, vasodilation by ACh
resulted in significantly smaller increase in H2O2-DCF-DA
fluorescence intensities in cerebral arteries of KD mice, which
was sensitive to PEG-catalase (Fig. 1D). These data confirm
that endothelium-dependent dilations of cerebral arteries were
mainly driven by eNOS-derived NO in KD mice and by
eNOS-derived H2O2 in WT mice (Fig. 1E).

To compare the downstream effects of NO on vasodilation
between WT and KD mice, we tested cerebral vasodilation

induced by SNP, an endothelial-independent NO donor, and
found that it was similar across all groups of mice (data not
shown). This suggests that endothelial function, but not vas-
cular smooth muscle function, is modified by the knockdown
of angptl2.

Infusion of a sub-pressor dose of ANG II induced cerebral
endothelial dysfunction in WT but not in angptl2 KD mice.
Next, we investigated the effects of a sub-pressor dose of ANG
II known to induce oxidative stress and inflammation in the
cerebrovasculature (6, 38). As shown in Fig. 2 and Table 6,
after a 14-day ANG II treatment, WT mice showed, as ex-
pected, significantly impaired vasodilation to ACh compared
with that of saline-treated control WT mice, whereas cerebral
endothelial function was fully preserved in ANG II-treated KD
mice compared with saline-treated control KD mice.

Endothelial dysfunction in ANG II-treated WT mice was
reversed in the presence of NAC (P " 0.05), but not of
Mito-TEMPO (Fig. 3A and Table 6), suggesting that ANG
II-induced endothelial dysfunction was due to increased oxi-
dative stress independent of the mitrochondria. PEG-catalase
and L-NNA did not affect endothelial dysfunction induced by
ANG II (Fig. 3A and Table 6), suggesting that ANG II-induced
oxidative stress blunted eNOS function. In contrast, endothelial
dysfunction in ANG II-treated WT mice was reversed by both
apocynin and gp91ds-tat (P " 0.05; Fig. 3B and Table 6), a

Table 6. Efficacy (Emax) and sensitivity (EC50) to ACh-mediated dilatation in pressurized cerebral arteries of WT
and angptl2 KD mice treated with saline in control condition and a sub-pressor dose of ANG II, with or without presence
of various inhibitors

WT # Saline WT # ANG II KD # Saline KD # ANG II

Emax, % EC50 Emax, % EC50 Emax, % EC50 Emax, % EC50

Control 44 $ 6 (10) 7.5 $ 0.4 (10) 16 $ 2*(15) 7.1 $ 0.3 (15) 45 $ 5 (10) 7.6 $ 0.2 (10) 45 $ 4† (17) 8.0 $ 0.2† (18)
# L-NNA 16 $ 5‡ (4) 7.1 $ 0.6 (4) 13 $ 3 (5) 6.2 $ 0.3 (5) 6 $ 3‡ (5) 6.3 $ 1.3‡ (4) 16 $ 14‡ (3) 5.7 $ 0.8‡ (3)
# PTIO 42 $ 7 (5) 8.0 $ 0.3 (5) ND ND 14 $ 3‡ (6) 8.0 $ 0.6 (6) ND ND
# NAC 24 $ 6‡ (6) 7.7 $ 0.5 (6) 39 $ 5‡ (7) 8.3 $ 0.2‡ (7) 37 $ 4 (5) 7.6 $ 0.4 (5) 42 $ 7 (7) 8.0 $ 0.3 (7)
# Mito-TEMPO ND ND 14 $ 4 (4) 7.4 $ 0.5 (4) ND ND 45 $ 5 (5) 7.4 $ 0.1 (5)
# PEG-Catalase 20 $ 5‡ (5) 7.6 $ 0.5 (5) 21 $ 6 (4) 6.7 $ 0.5 (4) 45 $ 2 (5) 8.3 $ 0.1 (5) 21 $ 2‡§ (5) 7.3 $ 0.2 (5)
# Apocynin 58 $ 7 (6) 7.9 $ 0.3 (6) 29 $ 5‡* (7) 8.0 $ 0.3 (7) 49 $ 13 (8) 8.0 $ 0.2 (8) 24 $ 5‡ (7) 7.4 $ 0.3 (7)
# gp91ds-tat ND ND 37 $ 6‡ (4) 7.4 $ 0.3 (4) ND ND 38 $ 6 (6) 7.8 $ 0.2 (6)
# Indo 53 $ 8 (8) 7.4 $ 0.2 (8) 41 $ 8‡ (7) 7.7 $ 0.5 (7) 43 $ 7 (7) 8.5 $ 0.1 (7) 48 $ 9 (7) 7.6 $ 0.5 (7)

Values are means $ SE of (n) mice. NAC, N-acetyl-L-cysteine; Indo, indomethacin; PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide; ND, not
determined. Two-way ANOVA with Bonferreoni post-test: *P " 0.05 vs. WT # Saline; †P " 0.05 vs. WT # ANG II; ‡P " 0.05 vs. control; §P " 0.05 vs.
KD # Saline.

Fig. 2. ACh-mediated endothelium-dependent cerebral vasodilation in WT and
angptl2 KD mice treated with either saline or ANG II (n % 10–16). *P " 0.05
vs. WT # saline; †P " 0.05 vs. WT # ANG II.
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nonspecific inhibitor of Nox and a specific Nox2 inhibitor,
respectively, suggesting that ANG II-induced superoxide gen-
eration from Nox2. The difference between saline-treated and
ANG II-treated WT mice is the activation of Nox2, likely
producing in another cellular compartment large amounts of
superoxide that is not converted to dilatory H2O2 (insensitive
to the effect of PEG-catalase), thus creating a pro-oxidative
deleterious environment. Accordingly, indomethacin also re-
versed endothelial dysfunction in ANG II-treated WT mice
(P ! 0.05; Fig. 3C and Table 6), suggesting possible detri-
mental effects of COX-derived contractile EDCF such as
thromboxane A2. Indeed, COX produces both dilatory (pros-
tacyclin) and contractile (thromboxane A2) factors, but in the
presence of ROS, prostacyclin synthase can be nitrosylated
and inactivated (41). In turn, this reveals the contractile
component of COX activity, sensitive to indomethacin.
Altogether, these data suggest that in cerebral arteries from
WT mice, ANG II induced superoxide generation from
Nox2, which in turn favored EDCF production and endo-
thelial dysfunction (Fig. 3D).

In KD mice, ANG II did not induce cerebral endothelial
dysfunction (Fig. 2). NAC or Mito-TEMPO, as expected, did
not counteract the vasodilating effects of ACh in these mice
(Fig. 4A and Table 6), whereas L-NNA reduced (P ! 0.01)
vascular sensitivity to ACh (Table 6), suggesting preserved
eNOS function in ANG II-treated KD mice. However, PEG-

catalase also significantly reduced ACh-induced dilation (Fig.
4A and Table 6), suggesting the involvement of H2O2 as a
dilatory pathway in ANG II-treated KD mice that was not
observed in saline-treated KD mice. Apocynin also signifi-
cantly decreased the efficacy of ACh to vasodilate (P ! 0.05),
as depicted in Fig. 4B and Table 6, whereas the Nox2 inhibitor
gp91ds-tat was ineffective. Therefore, the combined contribu-
tion of eNOS-derived NO and Nox-derived H2O2 likely pre-
served the dilatory response of cerebral arteries from ANG
II-treated KD mice. Indomethacin did not affect the response to
ACh, suggesting that neither prostacyclin nor thromboxane A2

significantly regulates tone (Fig. 4C and Table 6). Thus these
data support the involvement of H2O2 as a complementary
dilatory pathway in cerebral arteries from ANG II-treated KD
mice (Fig. 4D), but not ANG II-treated WT mice.

Of note, vasoconstriction of cerebral arteries in response
to acute addition of ANG II in the experimental bath was
similar between WT and KD mice (data not shown). In
addition, response to SNP in ANG II-infused mice was not
different among all the groups (data not shown). Meanwhile,
structural properties of cerebral arteries, such as arterial
lumen diameter and wall thickness, among different treat-
ment groups of mice of both strains remained similar:
arteries from WT mice were structurally similar to those
from KD mice (Fig. 5).

Fig. 3. ACh-mediated endothelium-dependent cerebral vasodilation in ANG II-treated WT mice, with or without incubation with NAC (n " 6 to 7), Mito-TEMPO
(n " 4), or PEG-catalase (n " 5) (A); apocynin (n " 6 to 7) or gp91ds-tat (n " 5) (B); or indomethacin (Indo; n " 7; C). ‡P ! 0.05 vs. control condition. D:
schematic dilatory pathways involved in ANG II-treated WT mice. PGIS, prostacyclin synthase; PGI2, prostacyclin; TXAS, thromboxane synthase; TXA2,
thromboxane A2; ROS, reactive oxygen species.
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Endothelial function in the aorta remained unchanged after
ANG II infusion, but recruited prostacyclin in angptl2 KD
mice. Aortic endothelial function was similar between saline-
treated WT and KD mice (Fig. 6, A and B, and Table 7). In
contrast with resistance cerebral arteries, aorta of saline-treated
WT and KD mice both relied similarly on NO to relax (Fig. 6,
A and B, and Table 7), as L-NNA significantly reduced ACh-
mediated relaxation (Fig. 6, A and B), while the antioxidant
NAC had no effect (Fig. 6, C and D). Although we observed
significant detrimental effects of a chronic sub-pressor dose of
ANG II in the cerebral arteries of WT mice, aortic endothelial
function after ANG II infusion was unaffected (Fig. 6, A and B,
and Table 7). Unexpectedly, apocynin inhibited dilation in both
saline- and ANG II-treated WT mice (Fig. 6E and Table 7). On
the other hand, and as observed in cerebral arteries, apocynin
was only effective in inhibiting relaxation in ANG II-treated,
but not saline-treated, KD mice (Fig. 6F and Table 7), sug-
gesting again that Nox also contributed to the vasorelaxation in
these ANG II-treated KD mice. Furthermore, only in angptl2
KD mice treated with ANG II, indomethacin, a COX inhibitor,
significantly reduced efficacy of ACh-induced response (Fig. 6,
G and H, and Table 7), suggesting possible recruitment of
prostacyclin to mediate vasodilation. Aortic relaxations to SNP
were similar across all groups (data not shown).

Protein expression of Nox4 in cerebral vessels was greater in
control KD mice, whereas Nox1 and Nox2 expressions were
the same among all groups. Because we observed different

responses to various inhibitors in the cerebral endothelial
function studies, we further investigated protein expression of
several enzymes involved in either vasodilation or ROS gen-
eration (Fig. 7). Isolation of cerebral vessels proteins revealed
that although basal expression levels of Nox1 and Nox2 were
similar across all groups of mice, basal Nox4 protein expres-
sion was greater in KD mice treated with saline only (Fig. 7).
In addition, the ratio of phospho-eNOS to total eNOS expres-
sions, COX-1, and -2 levels were also similar across all groups
(Fig. 7).

DISCUSSION

Our report is the first to suggest that in cerebral arteries,
knockdown of angptl2 switches eNOS activity from an O2

!/
H2O2 to NO producing enzyme and that this confers, at least
partly, endothelial cell resistance to the stress imposed by ANG
II. We also show that knockdown of angptl2 likely modifies the
intracellular contribution of the Nox pathway, i.e., Nox-derived
H2O2 (sensitive to apocynin and PEG-catalase) in cerebral
arteries from ANG II-treated angptl2 KD mice, versus Nox-
derived O2

! (sensitive to apocynin and gp91ds-tat) in ANG
II-treated WT mice. Altogether, these data strongly suggest
that knockdown of angptl2 protects the endothelium through
remodelling of the EDRFs and the recruitment of an additive
dilatory Nox pathway, leading to preserved cerebral endothe-
lial function under ANG II stimulation.

Fig. 4. ACh-mediated endothelium-dependent cerebral vasodilation in ANG II-treated angptl2 KD mice, with or without incubation with NAC (n " 5–7),
Mito-TEMPO (n " 5), or PEG-catalase (n " 5) (A); apocynin (n " 7 to 8) or gp91ds-tat (n " 5) (B); or indomethacin (n " 7; C). ‡P # 0.05 vs. control condition.
D: schematic dilatory pathways involved in ANG II-treated angptl2 KD mice. COX, cyclooxygenase; eNOS, endothelial NO synthase.
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The loss of NO-dependent relaxation, anti-adhesion, and
anti-aggregant activities is the main criteria defining endothe-
lial dysfunction. In two recent reports, it was shown that
angptl2 promoted endothelial dysfunction in a pro-atherogenic
environment, decreased relaxation and expression of phospho-
eNOS (20), increased leukocytes adhesion, and ultimately
accelerated atherogenesis (12). Our demonstration that knock-
down of angptl2 favors NO-dependent dilation in cerebral
arteries therefore suggests that angptl2 plays a role in reducing
endothelial cell stress resistance. Indeed, endothelium-depen-
dent dilation of isolated cerebral arteries from angptl2 KD mice
was sensitive to the NO scavenger PTIO and associated with
a greater amount of eNOS-derived NO production in re-
sponse to ACh. This is in contrast with WT mice, whose
cerebral vasodilation has been shown by us to depend mainly
on eNOS-derived H2O2 (10). We indeed previously demon-
strated that in cerebral arteries isolated from young and healthy
mice, eNOS was physiologically uncoupled and that H2O2

derived from eNOS activity was an EDRF in these arteries
(10). This uncoupling of eNOS was not due to low levels of the
cofactor BH4 and did not favor the monomer configuration of
eNOS, both conditions observed during pathological eNOS
uncoupling (10). In addition, we previously demonstrated that
this eNOS-derived H2O2-dependent response was absent in
cerebral arteries from eNOS!/! mice and was also absent in
peripheral arteries such as gracilis arteries, showing that this
apparent eNOS uncoupling was specific to the cerebrovascu-
lature (10). The finding that cerebral endothelial function in
KD was mainly driven by NO suggests that knockdown of
angptl2 protects the cerebral endothelium. Moreover, the im-
pact of knocking down angptl2 specifically affected endothelial
function as direct stimulation of the NO pathway using SNP in
smooth muscle cell led to similar dilatory response in both
strains.

ANG II, at a sub-pressor dose, is known to impose low-
grade inflammation and oxidative stress, leading to endothelial

dysfunction (6). We previously reported that ANG II stimu-
lated free radical production in isolated mouse resistance ar-
teries, as well as COX activity (22). Therefore, protective or
reversible effects by NAC and indomethacin were expected
and reflect a global disruption of the redox regulation by ANG
II. In cerebral arteries from WT mice, ANG II produced
endothelial dysfunction that was dependent on the combined
effects of oxidative stress and the Nox systems (6, 36), as well
as the COX systems, since the addition of either the antioxidant
NAC, apocynin, gp91ds-tat, or indomethacin reversed this
dysfunction. Thus, in cerebral arteries from WT mice, ANG II
induced superoxide generation from Nox2, which in turn
favored EDCF production and endothelial dysfunction. We
speculated that in angptl2 KD mice, the cerebral endothelium
would be less sensitive to ANG II-dependent stress because of
the augmented NO production. Our results support this hypoth-
esis, since there was complete prevention of ANG II-induced
endothelial dysfunction in cerebral arteries from angptl2 KD
mice. It is important to stress that ANG II induced a reversible
cerebral endothelial dysfunction, as shown by the normalized
dilatory response in the presence of antioxidant NAC, indo-
methacin, and apocynin in WT mice. It has been reported that
angptl2 was involved in plasma membrane recycling of type 1
angiotensin II receptor (AT1R) (15–17, 34) and that, in isolated
perfused kidneys, renal vascular resistance in response to ANG
II was lower in angptl2 knock-out mice (25). We observed, in
contrast, that vasoconstriction to ANG II was similar in both
WT and KD mice. This suggests that it is unlikely that angptl2
directly interacts with the smooth muscle cell ANG II/AT1R
pathway, at least in cerebral arteries.

Apocynin, a nonspecific Nox inhibitor (27), generated op-
posite responses to ACh-dependent dilation: whereas in ANG
II-treated WT mice, apocynin expectedly restored a normal
endothelial function (36), it reduced ACh-dependent dilation of
cerebral arteries isolated from ANG II-treated KD mice. The
more specific Nox2 inhibitor gp91ds-tat was also able to
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Fig. 5. A chronic sub-pressor dose of ANG II for 14
days did not have significant effects on structural
properties of cerebral arteries pressurized at 60
mmHg, represented by lumen diameter (A), external
diameter (B), wall thickness (C), and wall-to-lumen
ratio (D); n " 6–12.

H8 CEREBRAL ENDOTHELIAL FUNCTION IN angptl2!/! MICE

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00278.2014 • www.ajpheart.org

tapraid4/zh4-ahea/zh4-ahea/zh400515/zh41402d15z xppws S"5 1/5/15 10:37 MS: H-00278-2014 Ini: 03/BYF/DH

Carol Yu
148



reverse endothelial dysfunction in ANG II-treated WT, without
any effects in KD mice. Altogether, this supports a paradigm
that angptl2 regulates the Nox pathway. Because Nox1 and
Nox2 produce superoxide and Nox4 produces dilatory H2O2

(23), it is possible that knockdown of angptl2 leads to a shift
from Nox1/2 to Nox4. This is supported by the lack of effect

of NAC in ANG II-treated KD mice, an antioxidant capable of
scavenging eNOS- or Nox2-derived O2

! but not Nox4-derived
H2O2. In addition, the beneficial effect of Nox2 inhibitor
gp91ds-tat in ANG II-treated WT mice only and the inhibitory
effect of PEG-catalase in ANG II-treated KD mice only con-
firm the contribution of Nox2-derived O2

! in WT mice and the

Fig. 6. ACh-mediated endothelium-dependent vasodilation in the aorta of saline or ANG II-treated 6-mo-old WT and angptl2 KD mice with or without incubation
with either L-NNA (100 "mol/l, n # 4–7; A and B), NAC (10 "mol/l, n # 4–7; C and D), apocynin (10 "mol/l, n # 5–9; E and F), or indomethacin (10 "mol/l,
n # 3–7; G and H). ‡P $ 0.05 vs. no drug control; §P $ 0.05 vs. KD % saline.
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contribution of Nox4-derived H2O2 in KD mice. We evaluated
basal protein expressions of the main Nox enzymes responsible
for generating ROS: Nox1, Nox2, and Nox4. However, they
were similar among all groups and were unchanged after the

infusion of ANG II at a sub-pressor dose, with the exception
that Nox4 was expressed at a higher levels in angptl2 KD mice
treated with saline. Collectively, protein expressions of the
Nox isoforms failed to explain the effects of apocynin and

Table 7. Efficacy (Emax) and sensitivity (EC50) to ACh-mediated relaxation of the aorta of WT and angptl2 KD mice treated
with saline in control condition and a sub-pressor dose of ANG II, with or without presence of various inhibitors

WT ! Saline WT ! ANG II KD ! Saline KD ! ANG II

Emax, % EC50 Emax, % EC50 Emax, % EC50 Emax, % EC50

Control 87 " 3 (9) 7.0 " 0.1 (10) 80 " 4 (10) 6.9 " 0.1 (10) 86 " 3 (9) 7.1 " 0.1 (10) 78 " 2 (10) 7.2 " 0.2 (11)
! L-NNA 53 " 15‡ (5) NM 34 " 9‡ (7) NM 39 " 15‡ (4) NM 52 " 13‡ (7) NM
! NAC 93 " 3 (5) 7.1 " 0.1 (5) 80 " 8 (7) 7.2 " 0.1 (7) 94 " 3 (4) 7.0 " 0.5 (5) 83 " 5 (6) 7.7 " 1.0 (7)
! Apocynin 63 " 5‡ (10) 6.7 " 0.1 (11) 62 " 6 (7) 6.1 " 0.3‡ (7) 73 " 4 (9) 6.7 " 0.1 (10) 53 " 3‡§ (6) 5.7 " 0.3‡§ (6)
! Indo 87 " 5 (5) 7.3 " 0.1 (6) 73 " 10 (7) 7.0 " 0.3 (7) 86 " 7 (4) 6.0 " 0.5 (3) 33 " 16‡§ (6) 7.0 " 0.3 (3)

Values are means " SE of (n) mice. NM, not measurable. Two-way ANOVA with Bonferreoni posttest: ‡P # 0.05 vs. control; §P # 0.05 vs. KD ! Saline.
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gp91ds-tat to affect cerebral endothelial function in KD mice
treated with ANG II. Intriguingly, apocynin has been shown to
prevent the translocation of the cytosolic component p47phox
to Nox in endothelial cells (21), so that Nox isoform expres-
sions alone in these mice may not reflect functional differences
observed in cerebral arteries. To our knowledge, however, our
study is the first to propose a link between Nox and angptl2.

Because of the heterogeneity of endothelial function in the
vasculature, we studied in parallel the response of the endo-
thelium in the aorta. Under control conditions, both WT and
KD mice similarly depended on NO to relax, as shown by
parallel inhibition of ACh-mediated dilation by L-NNA and by
the lack of inhibitory effect of NAC. Most recently, another
group similarly found comparable aortic endothelial function
between angptl2 knock-out and WT mice when fed a normal
chow (20). In contrast, when mice were exposed to a high-fat
diet, endothelial dysfunction induced by the diet was lower in
angptl2 knock-out mice than in WT mice, and this protection
was associated with a lower eNOS deactivation (20). In our
study, endothelial function in the aorta was not affected by
ANG II, in either WT or angptl2 KD mice. The fact that the
aortic endothelium mostly produces NO in both strains of
mice, unlike that of cerebral arteries isolated from WT mice,
could explain its greater resistance against the stress induced
by ANG II. Apocynin surprisingly reduced ACh-induced re-
laxation of aorta from WT mice, whether or not treated with
ANG II, implicating a differential contribution of Nox in the
regulation of vascular tone between cerebral resistance and
peripheral conductance arteries from WT mice. Such strong
differences are expected based on the important heterogeneity
of the endothelium in the vasculature, especially when one
considers the unique features of the cerebral circulation (33)
and the complexity of the Nox signaling pathways (4). Impor-
tantly, the significant inhibitory effect of apocynin in ANG
II-treated angptl2 KD mice implies the likely contribution of
Nox as a compensatory dilatory pathway when angptl2 is
knocked-down. Therefore, as a general feature, we propose
that the regulation of the Nox pathways is a target of angptl2
in the endothelium. Nonetheless, ANG II led to a compensa-
tory response of the aortic endothelium, as the nonselective
COX inhibitor indomethacin significantly reduced maximal
dilation in the aorta of angptl2 KD mice only, indicating
possible recruitment of prostacyclin-dependent vasorelaxation,
which was not observed in WT littermates. This could be one
of the beneficial effects of knocking-down levels of angptl2,
since prostacyclin is known for its vascular protective proper-
ties.

One of the main limitations of the present study involves
recognized deficiencies of the fluoroprobes used, especially
DCF-DA. It has been reported that DCF could by itself reduce
oxygen and cause production of superoxide at a high rate
constant (39), and, therefore, may not be fully specific for
H2O2. Our group, however, has previously reported that in
young and healthy mice, similar to those used in the present
study, ACh-induced cerebral vasodilation was associated with
a rise in DCF-DA fluorescence, which was sensitive to L-NNA,
PEG-catalase, and H2O2 scavenger pyruvate, as well as super-
oxide dismutase inhibitor DETC, but not to NO scavenger
PTIO (10), thus demonstrating the greater relative specificity
of DCF-DA to H2O2 versus NO or its derived reactive nitrogen
species.

In conclusion, our results suggest that the knockdown of
angptl2 in mice is able to preserve endothelial integrity when
challenged with a sub-pressor dose of ANG II. Possible mech-
anisms may involve different contributions of EDRFs, since
there is greater dependence on NO in angptl2 KD mice com-
pared with WT mice that favor O2

!/H2O2 in cerebral vasodi-
lation. In the aorta, knockdown of angptl2 may contribute to
recruitment of vasodilating effects of prostacyclin. In addition,
knockdown of angptl2 may be associated with beneficial ef-
fects of a Nox, likely Nox4, an isoform that predominantly
produces dilatory H2O2. Taken together, preventing the dem-
onstrated rise of angptl2 through age (20) and atherosclerosis
(12, 20) may emerge as a new therapeutic concept to increase
endothelial cell stress resistance and delay atherogenesis.
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4. Discussion 
 Angptl2, a protein first identified merely 15 years ago (Kim et al. 1999b), has 

since been extensively studied in the context of many pathologies ranging from 

rheumatoid arthritis (Okada et al. 2010) and insulin resistance (Tabata et al. 2009) to 

various CVD (Tazume et al. 2012; Farhat et al. 2013; Horio et al. 2014) and even 

cancer (Aoi et al. 2011; Endo et al. 2012; Aoi et al. 2014; Endo et al. 2014; Gao et al. 

2014; Odagiri et al. 2014), summarized in Figure 17. Despite its implication in a 

myriad of chronic inflammatory diseases, normal levels of angptl2 seem to have 

physiological effects such as in tissue repair (Kubota et al. 2005; Tabata et al. 2009) 

and angiogenesis (Kim et al. 1999b). Truly, angptl2 plays diverse roles in many 

different physiological and pathological environments (Kadomatsu et al. 2014), with 

compelling evidence supporting the pro-inflammatory role of angptl2, especially when 

in excess (Tabata et al. 2009; Aoi et al. 2011; Endo et al. 2012; Farhat et al. 2013; 

Horio et al. 2014; Odagiri et al. 2014). Inflammation has been known to be the 

underlying mechanism in many disease settings and it is highly implicated in the 

context of endothelial dysfunction (Libby et al. 2002), yet the pro-inflammatory role 

of angptl2 in ECs, endothelial function and its impact on the various EDRFs remains 

largely unexplored and has only been directly examined in one recent study (Horio et 

al. 2014). 

The two studies presented in this work emphasized the role of angptl2 on 

regulating endothelial function. Since it is now known that different EDRFs participate 

in the maintenance of vascular tone in different vascular beds, we examined 

endothelial function in the large conductance arteries such as the aorta and the 

medium-sized femoral artery, as well as small resistance arteries such as the 

mesenteric arteries and cerebral arterioles. Owing to the technologies of recombinant 

protein production (Farhat et al. 2013; Farhat et al. 2014) as well as specific global 

gene knock-down in mice (Yu et al. 2014), the study of angptl2 in the regulation of 

endothelial function was possible, and unfolded angptl2 implication in endothelial 

dysfunction.  In addition, using various vascular beds where different EDRFs 

contribute to endothelial-dependent dilation, it allowed us to study for the first time, 

the impact of angptl2 on different EDRFs. In this discussion chapter, some unresolved 
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issues will be discussed, alongside limitations of the presented work and potential 

future work to address unanswered questions.  

 

 
Figure 17. Exponentially growing scientific interests in angptl2 in physiology and 
pathophysiology. 
  

4.1. Linking it all together: how does angptl2 mechanistically mediate 

endothelial dysfunction? 
In the first study presented in this thesis, a recombinant angptl2 was used to 

investigate its acute effect on endothelial function measured by ACh-mediated 

vasodilation in the WT mouse femoral artery, where NO is the main EDRF. 

Incubation with recombinant angptl2 over the course of experiment indeed led to 

reduced ACh-mediated vasodilation. This observation led to the conclusion that 
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angptl2 had a direct deleterious effect on endothelial function. Most likely, at least in 

the femoral artery, angptl2 acutely exerted pro-oxidative effects directly on the 

endothelium, as the anti-oxidant NAC was able to acutely and completely reverse the 

effects of angptl2. The unresolved question is by which molecular pathway angptl2 

was able to alter endothelial function? How was NAC able to suppress this 

dysfunction?  

It was reported that in coronary ECs, angptl2 activated the NFκB pro-

inflammatory cascade through activation of Rac1, a small Rho GTPase (Tabata et al. 

2009), which subsequently inactivated eNOS activity (Horio et al. 2014). Rac1, 

besides its established role in innate immunity (Arbibe et al. 2000), is also linked to 

inflammation and ROS production (Sanlioglu et al. 2001; Cheng et al. 2006; Bedard 

and Krause 2007; Montezano and Touyz 2012). In particular, it was found to activate 

NFκB (Perona et al. 1997; Sanlioglu et al. 2001; Utsugi et al. 2006). In turn, NFκB 

has been linked to suppression of endothelial-dependent vasodilation in aging (de 

Winther et al. 2005; Csiszar et al. 2008). Therefore, this could be a potential molecular 

pathway by which angptl2 suppresses endothelial function in our studies, but this 

hypothesis will have to be tested. For now, there is preliminary data from our 

laboratory demonstrating that the recombinant angptl2 protein promotes massive and 

instantaneous ROS production in cultured human EC (Farhat et al. unpublished data). 

ROS, such as superoxide, as introduced in the introduction (section 1.1.4.1.), can 

directly decrease NO bioavailability (Mugge et al. 1991). Therefore, angptl2 likely 

induced ROS production in ECs, which then scavenged available NO, leading to 

endothelial dysfunction. Of interest, one of the many vascular protective properties of 

NO is the inhibition of NFκB activation (Peng et al. 1995; Matthews et al. 1996; 

Spiecker et al. 1997). Hence, it is also possible that angptl2 can participate in a feed-

forward loop in ECs where it induces ROS production resulting in decreased NO 

bioavailability, which then loses the function to inhibit NFκB activation, while angptl2 

continues to activate NFκB to promote inflammation, resulting in a vicious circle. 

Meanwhile, the acute reversing effects of NAC on attenuated ACh-mediated 

vasodilation can also support this hypothesis, as NAC is able to inhibit ROS (Sun 

2010) by scavenging free radicals (Aruoma et al. 1989) or acting as a precursor for 
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intracellular cysteine and glutathione by acting as a thiol donor (Zafarullah et al. 

2003), and has also been reported to inhibit the effects of NFκB through suppression 

of IκB degradation (Oka et al. 2000).   

Interestingly, Rac1 is also an essential activator of Nox1 (Cheng et al. 2006) 

and Nox2 (Bedard and Krause 2007; Montezano and Touyz 2012), which both 

produce O2
-! known to decrease NO bioavailability (Forstermann and Munzel 2006), 

but Rac1 is not an activator of Nox4 (Bedard and Krause 2007; Montezano et al. 2011; 

Montezano and Touyz 2012), which produces vasodilatory H2O2 (Schroder et al. 

2012). As observed in the second study, chronic treatment with angII for 14 days may 

have resulted in greater production of Nox2-derived superoxide in WT versus angptl2 

KD mice, in which Nox4-derived vasodilatory H2O2 may have gained importance. It 

remains to be elucidated whether or not angII could induce angptl2 expression and 

signaling through Rac1 in WT but not in angptl2 KD mice, which could further 

activate Nox1 and Nox2 to produce superoxide, ultimately leading to endothelial 

dysfunction.  

Besides the integrin α5β1, TLR4 in ECs and monocytes has also been proposed 

to serve as a potential receptor for angptl2 (Oike and Tabata 2009). A main 

consequence of TLR4 signaling is pro-inflammatory cytokine induction (O'Neill et al. 

2013). As such, TLR4 is known to recognize bacterial endotoxin lipopolysaccharide, 

leading to downstream activation of transcription factors, one of which is NFκB 

(O'Neill et al. 2013). This is particularly of interest in the context of endothelial 

dysfunction. Indeed, in a mouse model of obesity and diabetes, db/db mice with an 

additional mutation in TLR4 were protected from hypercholesterolemia, 

hyperglycemia and hypertension, and displayed preserved ACh-mediated 

vasorelaxation in the aorta and mesenteric artery, which was associated with normal 

eNOS phosphorylation levels (Liang et al. 2013). In line with this, TLR4 has been 

shown to contribute to early stages of atherogenesis in ApoE KO mice (Higashimori et 

al. 2011), and expression of TLR4 was also augmented in ECs and macrophages in 

human atherosclerotic lesions (Edfeldt et al. 2002). However, TLR4 is not considered 

to be a specific receptor for angptl2 and thus, we did not measure TLR4 expressions in 
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our studies. Their role in angptl2 regulation on endothelial function remains to be 

elucidated.  

Taken together, the previously reported angptl2-α5β1-Rac1-NFκB (Tabata et 

al. 2009), as well as the hypothetical angptl2-TLR4 signaling pathways may provide 

insights for us to explain some of the observations regarding endothelial dysfunction 

induced by angptl2 and the beneficial effects of angptl2 knock-down.  

 

4.2. Can angptl2 lower endothelial cell stress resistance? 
Angptl2 may be pro-oxidative (Aoi et al. 2011; Aoi et al. 2014), which is also 

supported by our observation that NAC prevented angptl2-induced endothelial 

dysfunction and our preliminary data that recombinant angptl2 induced ROS 

production in ECs (Farhat et al. unpublished data), but on the other side of the coin, 

could angptl2 also interfere with the innate anti-oxidant defense mechanism in ECs? 

With ROS being constantly generated over the course of life in the cells, as 

well as from the external environment, there is constant detoxification and elimination 

of these endogenous and exogenous oxidants by intricate anti-oxidant systems such as 

glutathione peroxidase, SOD, and catalase. In EC, these systems determine stress 

resistance against oxidative stress and NO function (Ungvari et al. 2010). A 

consequence of endothelial stress is a decline in both endothelial defense mechanisms 

and eNOS function, leading to a decrease in NO bioavailability (Brandes et al. 2005), 

as well as induction of compensatory vasodilatory pathways, as we observed 

previously in mice (Gendron and Thorin 2007; Gendron et al. 2010; Gendron et al. 

2012). Pro-inflammatory and pro-oxidative angptl2 could, therefore, promote the 

cascade leading to endothelial stress.  

In terms of the anti-oxidant defense systems, initial increased ROS has been 

reported to up-regulate the anti-oxidant defense mechanisms (Ungvari et al. 2010). 

Intriguingly, preliminary data from our laboratory demonstrates that acute addition of 

recombinant angptl2 in cultured EC for a short duration of 10 minutes up-regulates the 

nuclear protein expression of the transcription factor erythroid 2-related factor 2 

(Nrf2), while 24-hour exposure significantly reduces it (Farhat et al. unpublished 

data). Nrf2 has emerged as a regulator of oxidative stress (Motohashi and Yamamoto 
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2004; Kensler et al. 2007; Ma and He 2012). Indeed, Nrf2 KO mice are significantly 

more susceptible to chemical toxicity and pathological conditions linked to oxidative 

stress (Kensler et al. 2007; Ma and He 2012). Under basal conditions, Nrf2 is 

suppressed by ubiquitination-proteasomal degradation mediated by Kelch-like 

erythroid cell-derived protein with cap ‘n’ collar homology-associated protein 1 

(Keap1) (Taguchi et al. 2011). On the other hand, Nrf2 can be activated by shear stress 

(Hosoya et al. 2005; Dai et al. 2007) and dietary anti-oxidants (Thimmulappa et al. 

2002) resulting in its stabilization and nuclear translocation. The activated Nrf2 can 

then induce anti-oxidant defense genes such as HO-1 (Chen et al. 2006). We found 

that chronic recombinant angptl2 treatment in ECs decreased HO-1 gene expression 

over 24 hours, which was associated with the lower nuclear expression of Nrf2 and 

increased expression of Keap1 at the same time-point (Farhat et al. unpublished data). 

In addition to its inhibitory effect on Nrf2, angptl2 could also affect other anti-oxidant 

defense systems, such as glutathione peroxidase, SOD, and catalase, but this remains 

to be demonstrated. 

In the first study, we reported that with a 3-month HFD, there were attenuated 

vasodilations mediated by NO and EDHF in the femoral and mesenteric artery, 

respectively, isolated from the WT mice. In contrast, these vasodilatory pathways in 

the same vascular beds were preserved in the angptl2 KD mice, thus suggesting that 

low angptl2 levels may protect the endothelium and prevent the contribution of 

compensatory EDRFs in stressed vascular beds. This indirectly suggests that low 

angptl2 levels protect EC stress resistance. Does it preserve the anti-oxidant defense 

systems against increasing ROS and oxidative stress? This hypothesis can be 

supported by data gathered from the second study comparing endothelial function in 

cerebral arterioles, highly sensitive to oxidative stress, isolated from WT and angptl2 

KD mice: in 6-month-old mice, NO production was significantly greater in cerebral 

arterioles of KD compared to WT mice, which produced greater levels of H2O2, as 

previously described by our laboratory (Drouin et al. 2007; Drouin and Thorin 2009). 

This observation may suggest enhanced stress resistance or lower oxidative stress in 

cerebral arterioles isolated from KD mice, leading to eNOS coupling and no 

production of endothelial eNOS-derived H2O2 in KD mice. Furthermore, angII 



 159 

treatment for 14 days induced endothelial dysfunction in WT, but not in KD mice, 

again suggesting greater EC stress resistance against the deleterious effects of pro-

inflammatory and pro-oxidative angII on endothelial function. This could most likely 

be explained by the lower oxidative stress in angptl2 KD mice after angII treatment, as 

addition of NAC restored vasodilation only in WT mice.  

Taken together, the potential deleterious effects of angptl2 on the anti-oxidant 

defense system, therefore, may partially explain the preserved endothelial function in 

cerebral arterioles from angptl2 KD mice after 14 days, as well as the preservation of 

NO- and EDHF-mediated vasodilation in the femoral and mesenteric artery from KD 

mice after 3 months of HFD feeding. Analysis of Nrf2 nuclear expression, as well as 

HO-1 expression and other anti-oxidant defense systems in ECs isolated from these 

mice, will be necessary to support this hypothesis. 

 

4.3. Could angptl2 also contribute to endothelial dysfunction via its 

role in AT1R recycling? 
In the second study, low levels of angptl2 expression in angptl2 KD mice 

resulted in preservation of cerebral endothelial function when chronically challenged 

with angII. As explained earlier, this outcome may be in part due to lower oxidative 

stress in KD mice and greater EC stress resistance to angII. A less recognized role of 

angptl2, as introduced in sections 1.3.2.3 and 1.3.2.4., is its ability to promote 

recycling of the AT1R to the plasma membrane, prolonging its activity (Guo et al. 

2001; Guo et al. 2003; Guo et al. 2006). Indeed, mice that overexpressed angptl2 in 

the kidney developed hypertension associated with over-activation of the intrarenal 

RAS (Guo et al. 2006). Could it be possible that the lack of angptl2 in KD mice 

contributed to preserved endothelial function after angII infusion via lower AT1R 

recycling? 

In the vasculature, AT1R is predominantly expressed in VSMCs, but its 

expression can also be detected in ECs (Ramkhelawon et al. 2009; Saavedra 2012), 

and its endothelial expression has been associated with up-regulation of adhesion 

molecules such as VCAM-1 and P-selectin (Soehnlein et al. 2005). Importantly, its 

increased expression and activation, both in ECs (Ramkhelawon et al. 2009) and 
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VSMCs (Lyle and Griendling 2006), have been implicated in inflammation and 

increased ROS production, ultimately leading to endothelial dysfunction. In line with 

this, a major angII/AT1R downstream signaling target is the Nox enzymes (Nguyen 

Dinh Cat et al. 2013), and activity of Nox2 to produce O2
-! appears to be more 

important in smaller resistance arteries (Griendling et al. 1994; Ushio-Fukai et al. 

1996). In turn, ROS could regulate AT1R recycling, as reported recently (Nishida et 

al. 2011). In contrast, NO has been shown to reduce expression of endothelial AT1R 

(Ramkhelawon et al. 2009). Therefore, decreased NO bioavailability could, on top of 

impairing vascular function, also exacerbate effects of AT1R stimulation by angII, 

resulting in a feed-forward system. Accordingly, blockade of AT1R in the cerebral 

vasculature protected cerebral blood flow during stroke and decreased cerebral 

vascular inflammation (Saavedra 2011). Taken together, the potential role of angptl2 

in mediating AT1R recycling intracellularly (Guo et al. 2001; Guo et al. 2003; Guo et 

al. 2006), and exacerbating angII effects could be one of the reasons why endothelial 

dysfunction developed in angII-treated WT mice, but not in angptl2 KD mice. Clearly, 

much work must be completed, such as determining AT1R protein expression and its 

turnover rate in vascular cells, in order to validate this hypothesis. 

 

4.4. Could protection against high-fat diet-induced metabolic 

dysfunction in angptl2 KD mice be a consequence of blunted 

angiogenesis? 
One of the initial consequence of excess caloric intake is the increased energy 

storage in adipocytes, which are encircled and nourished by a network of capillaries 

(Cao 2007). Along with the development of obesity, the vasculature surrounding the 

growing adipose tissue is now recognized to go through angiogenesis, which can also 

modulate adipogenesis (Rupnick et al. 2002; Fukumura et al. 2003; Cao 2007). Much 

like in pathological cancer settings, angiogenic vessels contribute to adipogenesis by 

supplying 1) oxygen and nutrients (Cao 2007), 2) growth factors and cytokines (Cao 

2007), 3) circulating stem cells for differentiation (Crossno et al. 2006), and 4) 

infiltrating monocytes and neutrophils to adipocytes (Cao 2007; Powell 2007). In our 

first study, a HFD significantly increased body mass in WT mice, but to a lesser extent 
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in angptl2 KD mice, accompanied by smaller adipocyte size in both the mesenteric 

and epididymal white adipose tissues. In addition, we observed a worse lipid profile in 

WT compared to KD mice after a HFD. Since angptl2 can be derived from adipocytes 

(Tabata et al. 2009) and ECs (Farhat et al. 2013), could the overall protective effects 

of low angptl2 levels, as in the angptl2 KD mice, be a consequence of decreased 

angiogenesis in the adipose tissue? In fact, angptl2 has been initially reported to be a 

pro-angiogenic factor by inducing EC sprouting in HUVECs (Kim et al. 1999b). The 

pro-angiogenic features of angptl2 were confirmed (Farhat et al. 2014) and further 

supported by studies in hematopoietic stem cells (Broxmeyer et al. 2011) and 

zebrafish (Kubota et al. 2005). Therefore, there may possibly be slower blood vessel 

growth in the adipose tissues of angptl2 KD mice. In contrast to our hypothesis, the 

study by Tabata et al. using transgenic mice constitutively expressing angptl2 in the 

skin or adipose tissue developed vascular inflammation but not angiogenesis, as 

CD31, a marker of ECs (van Mourik et al. 1985), did not vary between WT and 

transgenic mice, and did not show improved hypoxia in adipose tissues after a HFD 

(Tabata et al. 2009). However, in contrast to our studies, adipocyte size did not seem 

to differ between the two strains of mice (Tabata et al. 2009). Undoubtedly, further 

investigations are necessary to determine whether angiogenic abilities in the adipose 

tissue vasculature were different between WT and KD mice, with or without the HFD 

treatment.  

Related to angiogenesis and adipogenesis, expression levels of some 

adipokines such as leptin and adiponectin can also influence adipose mass (Friedman 

and Halaas 1998; Yamauchi et al. 2003). Interestingly, we observed that epididymal 

white adipose tissue in WT mice displayed lower adiponectin but greater leptin gene 

expressions after a HFD, while they did not change significantly after a HFD in 

angptl2 KD mice. The differential changes in gene expressions of these adipokines 

may perhaps explain the possible smaller adipocyte sizes observed in angptl2 KD 

mice. Adiponectin levels in the blood have been inversely correlated with BMI and 

have an overall negative effect in adipogenesis (Arita et al. 1999). Adiponectin is 

produced by adipocytes and has also been reported to inhibit EC proliferation, 

migration, and survival (Brakenhielm et al. 2004). On the other hand, leptin is 
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primarily produced by adipocytes and while its circulating levels positively correlate 

with size of fat depots (Harris 2014), it has also been reported to promote angiogenesis 

in HUVECs and porcine aortic ECs (Bouloumie et al. 1998). Importantly and related 

to the first study, after a HFD, 1) expression of angptl2 increased in WT mice, and 2) 

expression and plasma levels of leptin in KD mice were significantly lower than that 

in the WT mice, which may suggest a link between angptl2 and leptin in the context of 

angiogenesis. It is noteworthy to point out that expansion in adipose tissues, as seen in 

obesity, is associated with insulin resistance (Yki-Jarvinen 2005) and greater 

cholesterol synthesis and lower cholesterol absorption (Gylling and Miettinen 1997). 

Thus, the lack of angptl2 in KD mice could have partly contributed to the better lipid 

profile via decreased angiogenesis and adiposity, although it has been shown that 

angptl2 did not inhibit LPL (Miida and Hirayama 2010; Mattijssen and Kersten 2012). 

To date, no studies have directly shown an effect of angptl2 on lipid metabolism 

despite the fact that adipocytes could be the main source of angptl2 (Tabata et al. 

2009). Only the recent studies from our laboratory has reported that chronic 

administration of recombinant angptl2 in pre-atherosclerotic and dyslipidemic mice 

further augmented the LDL and total cholesterol levels (Farhat et al. 2013), and that 

angptl2 KD mice fed a HFD displayed a better lipid profile (Yu et al. 2014). With the 

previous knowledge that other angptl proteins, such as angptls 3 and 4, as described in 

section 1.2.4.1., play a role in the regulation of lipid storage and breakdown (Hato et 

al. 2008), it would be worthwhile to determine if angptl2 has any direct effects on 

lipid metabolism.   

Overall, there is evidence of angptl2 participation in promoting angiogenesis 

(Kim et al. 1999b; Kubota et al. 2005; Broxmeyer et al. 2011), which is the process 

required for the expansion of adipose tissues in the face of increased energy intake and 

obesity (Cao 2007). The findings of reduced adipocyte sizes and better lipid profile in 

angptl2 KD compared to WT mice challenged with a HFD, therefore, may be partially 

explained by the lower angiogenic properties in the adipose tissues from angptl2 KD 

mice. 
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4.5. Is there a functional consequence of the cleaved angptl2 protein 

on adipocytes or ECs? 
In studying metastasis of osteosarcoma cells, Odagiri et al. found that the 

TLL1 protease could cleave angptl2 extracellularly at the linker region between the 

coiled-coil domain and fibrionogen-like domain into fragments, giving rise to a 

smaller angptl2 form at around 35 kD, which was then inactive to enhance tumour 

metastasis unlike the full form of angptl2 (Odagiri et al. 2014). This is not the first 

study demonstrating cleavage of an angptl protein, as previous papers have shown that 

both angptls 3 and 4 were cleaved into an N-terminal coiled-coil domain fragment and 

a C-terminal fibrinogen-like domain fragment (Ono et al. 2003; Ge et al. 2004). 

Moreover, the cleaved coiled-coil domain fragment alone was enough to mediate lipid 

metabolic effects (Ono et al. 2003; Ge et al. 2004). Interestingly, the tolloid-like gene 

was reported as a candidate gene in adipocyte differentiation (Burton and McGehee 

2004), and consistent with this, a retroviral expression of TLL1 in 3T3-L1 pre-

adipocytes inhibited adipocyte differentiation (Chao et al. 2008). Of note, angptl2 

mRNA expression in differentiating adipocytes increased in a time-dependent manner 

in vitro (Tabata et al. 2009), which may reflect TLL1 activity and may thus indirectly 

suggest a potential biological function of the smaller angptl2 form. Furthermore, TLL1 

was found expressed in embryonic ECs (Brunskill and Potter 2010), and its expression 

in the heart was crucial in normal heart development in mice (Clark et al. 1999). To 

date, the vascular existence and function of the cleaved angptl2 are unknown, and it 

remains to be elucidated whether this shorter angptl2 form exerts any biological 

effects in adipocytes or ECs. 

 

4.6. Lowering levels of angptl2: is that the solution? But how? 
With a growing body of evidence supporting the pro-inflammatory and pro-

oxidative role of angptl2 (Kadomatsu et al. 2014), along with the current data 

presented in this thesis indicating angptl2 involvement in mediating endothelial 

dysfunction, it appears that lowering angptl2 expression levels or inhibiting its 

downstream signaling pathway could be beneficial for patients with chronic 

inflammatory disorders such as obesity or hypertension. Although the receptors 



 164 

integrin α5β1 (Tabata et al. 2009), LILRB2 (Zheng et al. 2012), or TLR4 (Oike and 

Tabata 2009) have all been proposed to act as receptors for angptl2, it is still not clear 

that these are the actual receptors for angptl2, and in what specific cell and context are 

they expressed and function as the angptl2 receptor. For the time being, an antagonist 

for angptl2 is not yet available and it seems that lowering angptl2 levels is the only 

feasible solution in the clinical setting. Only two studies have reported plasma angptl2 

lowering: 1) anti-diabetic treatment in patients using pioglitazone decreased plasma 

angptl2 (Tabata et al. 2009) and 2) lifestyle intervention combining physical training 

and nutritional counseling for 3 months successfully decreased body weight and 

circulating angptl2, and improved metabolic parameters in overweight, but otherwise 

healthy Japanese men (Muramoto et al. 2011). 

The topics surrounding the benefits gained from physical exercise has attracted 

insurmountable attention in the field of cardiovascular research. From increased shear 

stress-induced NO production (Green et al. 2004) to restoration of bone marrow-

derived circulating progenitor cells (Linke et al. 2008), physical exercise has been 

consistently demonstrated to exert beneficial impacts on vascular function. In rats, 

lower intrinsic aerobic exercise capacity could predict a high cardiovascular risk score, 

which was associated with lower NO production and endothelial dysfunction in the 

carotid artery (Wisloff et al. 2005). In human, endothelial dysfunction is a predictor 

for CVD progression and cardiovascular event rates, independent of other 

cardiovascular risk factors (Schachinger et al. 2000), while exercise could augment 

endothelial function through increasing NO production and limiting NO inactivation 

(Green et al. 2004; Higashi and Yoshizumi 2004). The demonstration that circulating 

angptl2 levels were elevated in patients with diabetes (Tabata et al. 2009; Doi et al. 

2012), in concert with the recent finding that angptl2 levels could be lowered by 

lifestyle intervention in overweight but otherwise healthy subjects (Muramoto et al. 

2011), suggest that physical exercise could also reduce circulating angptl2 in CAD 

patients and improve their endothelial function. Indeed, preliminary data from an 

ongoing project of our laboratory gathered from CAD patients (n=33) undergoing a 

12-week exercise intervention program show that physical exercise lowers plasma 

angptl2 levels and improves pulmonary capacities reflected by greater VO2max, which 
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negatively correlates with plasma angptl2 levels (Yu et al. 2014). Moreover, lower 

angptl2 levels are associated with better endothelial function measured in the forearm 

of these patients (Yu et al. 2014). Thus, physical training lowers circulating angptl2 

levels and low angptl2 levels may be predictive of good pulmonary fitness and 

endothelial function. 

How lowering angptl2 levels by physical exercise can contribute to greater 

endothelial function may perhaps be multi-factorial. First, as exercise reduces 

adiposity (Levin and Dunn-Meynell 2004; Johnson et al. 2009) and angptl2 can be 

produced and released from adipocytes (Tabata et al. 2009), exercise-induced adipose 

tissue mass reduction should reduce angptl2 production and circulating levels. Second, 

as angptl2 is pro-inflammatory and pro-oxidative (Kadomatsu et al. 2014), low 

circulating angptl2 levels can lead to lower ROS production in ECs, thus greater NO 

bioavailability and preserved functional vasodilatory pathways in various vascular 

beds, as we have observed in the two studies with angptl2 KD mice. Third, physical 

exercise is able to reduce EC senescence and oxidative stress (Gielen et al. 2010; 

Corbi et al. 2012), which may be linked to lower angptl2 levels as we have previously 

shown high expression of angptl2 in senescent ECs from active CAD smokers (Farhat 

et al. 2008). Fourth, physical exercise may increase anti-oxidant enzyme activity in 

ECs (Gielen et al. 2010). In parallel, our unpublished data suggests that chronic 

angptl2 stimulation in ECs may have deleterious effects in the stress resistance 

systems, particularly the Nrf2 regulatory pathway (Farhat et al. unpublished data). 

Therefore, physical exercise and low angptl2 levels may synergistically improve EC 

stress resistance. Fifth, physical exercise has been well established to have favorable 

effects on plasma cholesterol and LDL levels (Lira et al. 2012). From our own present 

findings, a reduction in cholesterol and LDL levels in HFD-treated angptl2 KD mice 

may be attributable to low angptl2 levels. This may, in turn, lead to lesser effects from 

oxidized LDL in ECs leading to its dysfunction. Sixth, long-term exercise training is 

linked to sustained heart rate reduction (Fujimoto et al. 2010), and a low resting heart 

rate is known to be cardio-protective (Cook et al. 2006; Fox et al. 2008). Interestingly, 

our young angptl2 KD mice displayed lower basal heart rate compared to WT 

littermates. Hence, there may be a link between the benefits of exercise training in 



 166 

heart rate reduction and that of lower angptl2, leading to greater endothelial function. 

Lastly, exercise has been proposed to protect vascular function by stimulating the 

sympathetic nervous system and increasing release of epinephrine (Pott et al. 1996; 

Zouhal et al. 2008), which has been demonstrated to stimulate eNOS activity in 

cultured ECs (Kou and Michel 2007). In a recent study, serum angptl2 levels 

negatively correlated with epinephrine levels in metabolically healthy but obese 

women (Meng et al. 2013). Furthermore, epinephrine treatment in adipocytes lowered 

angptl2 gene expression (Meng et al. 2013). Therefore, there may be a possible link 

between exercise, increase in epinephrine, and reduction of angptl2 levels, which may 

synergistically contribute to the maintenance of vascular function. 

In summary, findings from the recent Japanese study (Muramoto et al. 2011) 

along with our preliminary data suggesting a link between lower circulating angptl2 

levels and improved endothelial function in trained CAD patients, provide evidence 

that a reduction in circulating angptl2 levels may be beneficial on vascular function. 

As there are no angptl2 antagonists available, the non-pharmacological approach of 

physical activity provides a way to lower circulating angptl2 levels. 

 

4.7. Limitations of the studies 
These are the first two studies that 1) characterized a newly generated angptl2 

KD mouse model and 2) evaluated and compared endothelial function in both conduit 

and resistance arteries between KD and WT mice challenged with either a HFD or 

angII infusion. There are undoubtedly limitations in both studies presented in this 

thesis, which will be discussed here.  

In the first study, we used the recombinant protein produced from the 

laboratory (Farhat et al. 2013; Farhat et al. 2014) to test the acute effects of angptl2 on 

endothelial function measured by ACh-induced vasodilation in isolated femoral artery 

of WT mice. We chose to use a concentration of 50 nM for this particular study 

despite the fact that at a higher concentration of 100 nM previously used to stimulate 

EC in culture or freshly isolated from mouse aorta, we reported dose-dependent ROS 

production (Farhat et al. unpublished data) and inflammatory effects of angptl2 

(Farhat et al. 2013). In addition, the study by Tabata et al. showed maximal effects of 



 167 

a recombinant angptl2 protein produced by their laboratory at the concentration of 

around 100 nM (Tabata et al. 2009). We believed that 50 nM was closer to the EC50 to 

stimulate ROS production in our in vitro settings. In human, physiological circulating 

angptl2 concentration has been reported to be 1.0 to 3.0 ng/ml (Farhat et al. 2013; Kim 

et al. 1999b; Tabata et al. 2009; Kadomatsu et al. 2011), and according to our latest 

ELISA angptl2 measurements in CAD patients, plasma angptl2 can be as high as 20 

ng/ml (Yu et al. 2014). Therefore, the concentration of 50 nM that we used in our 

experiments is equivalent to around 100-fold of that in CAD patients, and represents a 

pharmacological dose. Thus, in the future, it will be crucial to also test the effects of 

angptl2 at lower ranges of concentration. For the time being, however, a major 

limiting factor is the quantity of purified angptl2 recombinant protein that is being 

produced by the laboratory, since it is an extremely time-consuming process with 

relatively low yield (Farhat et al. 2014).  

In studying endothelial function in both studies, we isolated arteries from 

animals and discarded surrounding tissues in the preparation, which included the 

perivascular adipose tissues, and could be a limitation. Indeed, accumulating evidence 

shows that the perivascular adipose tissues in fact contribute to the production of 

adipokines (Rajsheker et al. 2010; Verhagen and Visseren 2011), which in turn could 

alter endothelial function (Gao et al. 2007; Payne et al. 2010; Lee et al. 2014). 

Notably, a recent study reported secretion of angptl2, which is also considered an 

adipokine (Tabata et al. 2009), from perivascular adipose tissue (Tian et al. 2013), 

which took part in the acceleration of vascular inflammation and neointimal 

hyperplasia after an endovascular injury (Tian et al. 2013). Thus, there are probably 

cross-talks between angptl2 secreted from the perivascular adipose tissue and the 

vascular endothelium, likely exerting its pro-inflammatory an pro-oxidative effects. In 

our preparations, exclusion of perivascular adipose tissue from WT mice could have 

led to underestimation of angptl2 impact on endothelial function that was observed in 

HFD- or angII-treated mice. Inclusion of perivascular adipose tissue from artery 

preparation could, therefore, most likely reflect a more physiological setting and give 

greater insights on angptl2 regulation of endothelial function. 
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Another major limitation of the studies is that in most of the data interpretation 

in our vascular reactivity studies, we attempted to dissect out contribution of each 

EDRF by using various inhibitors. By ways of deduction, we determined contribution 

of NO (using NOS inhibitor LNNA), PGI2 (using COX inhibitor indomethacin), and 

EDHF (combining LNNA and indomethamin to reveal non-NO and non-PGI2-

mediated relaxation), to global endothelial function measured by ACh-mediated 

vasodilation. Nonetheless, it is imperative to point out that there are cross-talks 

between vasodilatory pathways, and compensation from the recruitment of other 

EDRFs when another one is being pharmacologically inhibited, as introduced (section 

1.1.1.4.1.). It is therefore difficult to assess the exact relative contribution of each 

EDRF. On the other hand, we did not examine the effects of other EDCFs in our 

vascular reactivity studies besides TXA2. As noted in the introduction (section 1.1.2.), 

EDCFs including TXA2 and ET-1 play major roles in mediating endothelial 

dysfunction, in addition to decreased EDRF function or production. For example, as 

we used indomethacin in the first study to inhibit COX activities of the femoral artery, 

we did not observe any changes to endothelial function in both WT and angptl2 KD 

mice, suggesting that COX-derived TXA2 did not majorly participate in our 

experimental settings. Nonetheless, more specific inhibitors, such as furegrelate to 

specifically inhibit TXA2 synthase, should be used in order to determine participation 

of other EDCFs. In addition, I believe that if we treated these mice with a more 

extreme challenge, such as a longer time-period than 3 months for HFD feeding, or a 

combination of a HFD and a high fructose diet, we would begin to see the effects of 

EDCFs on endothelial dysfunction. For the current studies, the arteries are still able to 

compensate for the loss in NO bioavailability that we observed in the first study, as 

global endothelial function in WT mice fed a HFD did not have any significant 

alterations, but only the relative contribution of EDRFs differed compared with KD 

mice. Also, in the second study, cerebral endothelial dysfunction in angII-treated WT 

mice was reversible, as acute addition of NAC, indomethacin, or apocynin was able to 

reverse this dysfunction.  

Despite these shortcomings, I believe that the present studies reveal an 

important role of angptl2 in mediating endothelial dysfunction in clinically relevant 
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pathological settings. Although these changes may seem minimal, such as recruitment 

of an alternative EDRF to vasodilate in various vascular beds, I believe that the impact 

of angptl2 would be amplified with increasing age and cardiovascular risks.  
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5. Conclusion and Perspectives 
It is no longer questionable, since its identification 15 years ago (Kim et al. 

1999b), that angptl2 is a multifaceted protein that participates in a plethora of 

physiological and pathophysiological processes. While optimal levels of angptl2 

expression seem necessary in maintaining homeostasis in different cell systems, there 

is convincing data from ourselves and others demonstrating that the up-regulation of 

its expression resulting in excess angptl2 is implicated in various chronic 

inflammatory disorders. Despite the knowledge that inflammation plays a pivotal role 

in driving endothelial dysfunction, which is typically defined by a decrease in NO 

bioavailability, no studies have ever shown a direct link between angptl2 and 

endothelial dysfunction until very recently (Horio et al. 2014), but this aspect of the 

study was limited to NO-mediated vasorelaxation in the mouse aorta only.   

The two studies included in this thesis focused on angptl2 contribution to 

endothelial dysfunction that extends beyond the prototypical NO as the main EDRF 

and also considered other vascular beds of varying vessel sizes. We are the first to 

show that 1) angptl2 acutely evokes endothelial dysfunction most likely by increasing 

ROS production, 2) the lack of angptl2 in mice potentially increases EC stress 

resistance, and 3) protects against endothelial dysfunction induced by either a HFD or 

angII. Although the question of how angptl2 exactly mediates its pro-inflammatory 

and pro-oxidative effects on endothelial function remains to be elucidated, this work 

nonetheless provides the first clues to this bigger puzzle. 

In the future, it will be imperative to verify our findings in another mouse 

model, for instance an EC-specific KO or KD, as well as a transgenic mouse model 

overexpressing angptl2 globally or EC-specifically, to better distinguish the role of 

EC-derived angptl2 on regulating endothelial function and EC stress resistance. Other 

means to measure endothelial function should be used, such as the laser Doppler 

imaging technique, which allows for in vivo measurements. Besides ACh that was 

used in the current work, other stimuli of vasodilation should also be tested, such as 

shear stress, which represents a better physiological scenario. 

As the important question of its receptor remains unresolved, antagonists of 

angptl2 are still not yet available. Fortunately, physical exercise may hold the key to 
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the reduction of circulating angptl2, as demonstrated in obese (Muramoto et al. 2011) 

and CAD (Yu et al. 2014) patients, which also correlated with improved pulmonary 

fitness after physical training. With CVD on the rise today, there is an overwhelming 

need for better prognostic indicators of endothelial dysfunction, an obligatory primary 

first step towards atherosclerosis. Based on current findings from our laboratory and 

others, angptl2 may reveal itself as a novel predictive biomarker in determining 

cardiovascular risks in the clinical setting, and lowering its expression in disease 

settings may be a promising therapeutic avenue. 
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