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RÉSUMÉ       

La dérégulation de la formation et l'intégrité des vaisseaux sanguins peut conduire à un état 

pathologique tel qu’observé dans de nombreuses maladies ischémiques telles que: la 

croissance de tumeur solide, l’arthrite rhumatoïde, le psoriasis, les rétinopathies et 

l'athérosclérose. Par conséquent, la possibilité de moduler l'angiogenèse régionale chez les 

patients souffrant d'ischémie est cliniquement pertinente. Un élément clé dans l'induction de 

l'angiogenèse pathologique est une inflammation qui précède et accompagne la formation des 

nouveaux vaisseaux. Ce phénomène est démontré par l'augmentation de la perméabilité 

vasculaire et le recrutement de monocytes/ macrophages et cellules polynucléaires 

(neutrophiles). En collaboration avec d'autres groupes, nous avons montré que différents 

facteurs de croissance tels que le facteur de croissance endothélial vasculaire et les 

angiopoïétines peuvent non seulement promouvoir l'angiogenèse mais aussi induire diverses 

étapes connexes au processus de la réaction inflammatoire, y compris la synthèse et la 

libération des médiateurs inflammatoires et la migration des neutrophiles. Les objectifs de 

notre étude étaient d'adresser si le vascular endothelial growth factor (VEGF) et les 

angiopoïétines (Ang1 et Ang2) sont capables de promouvoir la formation des nouveaux 

vaisseaux sanguins au fil du temps et d'identifier la présence de différentes cellules 

inflammatoires dans ce processus. Des éponges d'alcool polyvinylique stérilisées et imbibées 

de Matrigel appauvri en facteur de croissance (contenant PBS, VEGF, Ang1 ou Ang2 (200 

ng/200 µl)) ont été insérées sous la peau de souris C57/Bl6 anesthésiées. Les éponges ont 

ensuite été retirées aux jours 4, 7, 14 ou 21 après la procédure pour des analyses histologiques, 

immunohistologiques et cytométriques. La formation des nouveaux vaisseaux a été validée par 

la coloration au Trichrome de Masson et des analyses histologiques et immunohistologiques 

contre les cellules endothéliales (anti-CD31). De plus, la maturation des vaisseaux a été 

démontrée par la coloration séquentielle contre les cellules endothéliales (anti-CD31) et 

musculaires lisses (anti-alpha-actine). Nous avons effectué la même procédure pour 

caractériser le recrutement de neutrophiles (anti-MPO), et de macrophages (anti-F4/80). Afin 

de mieux délimiter la présence de différents sous-ensembles de leucocytes recrutés dans les 

éponges, nous avons utilisé une technique de cytométrie en flux sur des préparations de 

cellules isolées à partir de ces éponges. Nous avons observé que le VEGF et les angiopoïétines 



 

iv 
 

favorisent le recrutement de cellules endothéliales et la formation de nouveaux vaisseaux plus 

rapidement qu’en présence de PBS. Une fois formé au jour 7, ces nouveaux vaisseaux restent 

stables en nombre, et ne subissent pas une réorganisation importante de leur surface. Ces 

vaisseaux maturent grâce au recrutement et au recouvrement par les cellules musculaires lisses 

des néovaisseaux. En outre, le micro-environnement angiogénique est composé de cellules 

inflammatoires, principalement de neutrophiles, macrophages et quelques cellules de type B et 

T. Donc, le VEGF, l’Ang1 et l’Ang2 induisent séparément la formation et la stabilisation de 

nouveaux vaisseaux sanguins, ainsi que le recrutement de cellules inflammatoires avec des 

puissances différentes et une action temps-dépendante dans un modèle d’éponge/Matrigel.       

 

Mots-clés: VEGF, angiopoïétines, angiogenèse, maturation, inflammation, neutrophiles, 
macrophages 
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SUMMARY 
 

A deregulation in blood vessel formation and integrity can lead to a pathological state as seen 

in many ischemic diseases such as tumor growth, rheumatoid arthritis, psoriasis, retinopathies 

and atherosclerosis. Therefore, the possibility to modulate regional angiogenesis in patients 

suffering from ischemia is clinically relevant. One key feature in the induction of pathological 

angiogenesis is that inflammation precedes and accompanies the formation of neovessels as 

evidenced by increased vascular permeability and the recruitment of monocytes/macrophages 

and neutrophils. Along with other groups, we have previously shown that selected growth 

factors, namely vascular endothelial growth factor (VEGF) and angiopoietins (Ang1 and 

Ang2) can not only promote angiogenesis but can also induce inflammatory responses, 

including the synthesis/release of inflammatory mediators and neutrophil migration. The 

objectives of our study were to address how VEGF and angiopoietins are capable of 

promoting the formation of neovessels over time and to identify the presence of different 

inflammatory cells in this event. Sterilized polyvinyl alcohol (PVA) sponges soaked in growth 

factor-depleted Matrigel containing PBS, VEGF, Ang1 or Ang2 (200 ng/200 µl) were 

subcutaneously inserted into anesthetized C57/Bl6 mice. The sponges were then removed at 

day 4, 7, 14 or 21 post-procedure for histological, immunohistological (IHC) and flow 

cytometric analyses. The formation of neovessels was validated by Masson’s Trichrome 

staining and by IHC against endothelial cells (anti-CD31) and its maturation was elucidated by 

sequential IHC staining against endothelial cells and smooth muscle cells (anti-alpha-actin). 

Likewise, we performed IHC to characterize the recruitment of neutrophils (anti-MPO), and 

macrophages (anti-F4/80). To better delineate the presence of different leukocyte subsets 

recruited in the sponges, we utilized multicolor flow cytometry procedure on single cell 

preparation from the sponges. We observed that both VEGF and angiopoietins favors the 

recruitment of endothelial cells and the formation of new vessels more rapidly as compared to 

PBS. Once formed by day 7, these neovessels remain stable in number, do not undergo 

reorganization in their cross sectional area and mature through the recruitment and 

ensheathing of smooth muscle cells. In addition, the angiogenic micro-environment is 

comprised of inflammatory cells, mainly neutrophils, macrophages, and sparsly T and B cells. 

Hence, VEGF, Ang1 and Ang2 individually promote the formation and stabilisation of 
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neovessels and the venue of inflammatory cells with different potency in a temporal dependant 

manner in a sponge/Matrigel model. 

 

Key words: VEGF, angiopoietins, angiogenesis, maturation, inflammation, neutrophils, 
macrophages 
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1.0 INTRODUCTION 

 

The endothelium of the vascular system is a disseminated organ forming a physical barrier 

between the vessel lumen and the extracellular space. It is comprised of quiescent endothelial 

cells (ECs) interconnected by junctional proteins and ensheathed by perivascular cells (e.g. 

pericytes and vascular smooth muscle cells (SMCs); Figure 1). ECs play a pivotal role in 

maintaining tissue homeostasis, which includes  the controlling of vasomotor tone and cellular 

and molecular trafficking across quiescent cells, and in the maintenance of blood fluidity and 

vascular permeability [1] . In addition, ECs have been shown to participate as key players in 

tissue vascularization following injury in a process termed angiogenesis. They are also 

implicated in physiological inflammatory response where their surface adhesion glycoprotein 

(glycocalyx) expression allows transendothelial migration of blood cells and plasma proteins 

to the site of infection or injury [2]. Thus, the endothelium is not merely a static physical 

barrier but indeed an active cell system.  

 

Apart from its various functions, ECs show remarkable heterogeneity in structure, time 

and space allowing the endothelium to mold itself based on the needs of the underlying tissue. 

In fact, the phenotype of ECs can differ between different organs, between different segments 

of a vascular loop and yet between adjacent cells in the same organ. Thus, the constant 

response of the endothelium to an array of agonists and environmental challenges can lead to, 

under certain circumstances, a perturbed state and contribute to the development of numerous 

vascular diseases involving angiogenesis (reviewed in [1]). 
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Figure 1: Anatomy of blood vessels. Blood vessels of the vascular network are comprised of 

three concentric layers (tunics). The inner layer called tunica intima is composed of 

endothelial cells and a thin layer of supporting connective tissue. The middle muscular and/or 

elastic layer, termed tunica media, is comprised of perivascular cells (pericytes and smooth 

muscle cells). Finally, the outer layer is comprised of fibrous connective tissue and is called 

tunica adventitia. (Adapted from http://www.siumed.edu/~dking2/crr/cvguide.htm Copyright 

© 2005, Board of Trustees, Southern Illinois University)  

 

1.1 Angiogenesis 

 

1.1.1 Origin and mechanism of blood vessel formation  

 

The cardiovascular system, comprised of the heart and the circulatory system (the network of 

blood vessels), is the first functional system to develop in vertebrate embryo [3]. The luminal 

surface of the circulatory system is comprised of ECs derived from the mesoderm germ layer 

during development. Precisely, hemangioblasts in the yolk sac differentiate from mesodermal 

endothelium 

internal elastic lamina 

smooth muscle cells 

external elastic lamina 

connective tissue 

Tunica intima 

Tunica media 

Tunica adventitia 
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progenitor cells giving rise to hematopoietic stem cells and angioblasts. Angioblasts in turn 

proliferates, migrates and differentiates into ECs assembling the primitive de novo vascular 

plexus of veins and arteries – a process termed vasculogenesis. Subsequent sprouting ensures 

expansion of the vascular network of larger vessels ramifying into smaller ones, known as 

angiogenesis (Figure 2). The latter is a tightly regulated process that occurs throughout life, 

from utero to old age, ensuring adequate oxygen and nutrient supply to all body cells. 

 

Classic angiogenesis, or sprouting angiogenesis is a multistep process as detailed by Dr. 

Folkman in 1971 [4]. Overall, the steps in angiogenesis include enzymatic degradation of 

capillary basement membrane, EC proliferation, directed migration of ECs, EC tube formation 

and perivascular cell stabilization [5]. In fact, ECs are equipped with oxygen sensor for the 

maintenance of vascular homeostasis. Hence, local hypoxia due to poor tissue perfusion is 

detected by these sensors and initiates the angiogenic process. Firstly, the perivascular cells 

covering the pre-existing vessel detach from the basement membrane by metalloproteinase 

(MMP)-mediated proteolytic degradation. This loosens the EC junctions and dilates the 

nascent vessel. Simultaneously, the release of growth factors and inflammatory cytokines by 

ECs and inflammatory cells increases the permeability of EC layer causing the plasma 

proteins to extravasate and lay down a provisional extracellular matrix scaffold. Next, the 

proteases that are present at the angiogenic site remodel the extracellular matrix into an angio-

competent milieu. One EC, known as the tip cell, is selected to lead the tip towards the 

angiogenic signal. The neighbors of the tip cell become stalk cells, which divide to elongate 

the stalk and establish the lumen. Interestingly, the tip cells are equipped with filopodia to 

sense environmental cues while the stalk cells release molecules to convey spatial information 
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Angioblast Endothelial cell

Hemangioblast 

Angiogenesis
  

Mesoderm 

  

 

Hematopoietic stem cells

Vasculogenesis

about their position to their neighbors. Finally, the newly formed vessels become functional, 

mature and stable through the ensheathing of perivascular cells, entering a quiescent state. 

Once functional, occlusions in arteries can cause a pressure difference in the arterioles. This 

calls for the growth of collateral arteries or “natural bypass” from pre-existing arterio-

arteriolar anastomoses to overcome the shear forces in a process termed arteriogenesis [6]. 

Although, angiogenesis remains a necessity under physiological circumstances, this complex 

process involving multiple factors and exerting specific activities at different phases, becomes 

a culprit under numerous pathological conditions.  

 

 

 

 

 

 

 

 

 

Figure 2: Schematic overview of vasculogenesis and angiogenesis. Extraembryonic 

mesoderm, located in the blood islands of the yolk sac, differentiates into hemangioblast 

giving rise to angioblast and hematopoietic stem cell lineages. Following the commitment to 

EC lineage, angioblasts gather and rearrange to form capillary-like tubes forming the primary 

circulatory network, termed vasculogenesis. Angiogenesis is the formation of neovessels from 

preexisting vessels which occurs both during embryogenesis and during an organism’s life. 
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1.1.2 Physiological angiogenesis  

 

In vertebrate development, angiogenesis plays a pivotal role in nourishing the growing organs 

with oxygen and in providing instructive trophic signals to promote organ morphogenesis [7]. 

Though angiogenesis continues to contribute to organ and somatic growth after birth, most 

blood vessels remain in a quiescent state as of adulthood. In fact, EC turnover in healthy adults 

is remarkably low. It is only reactivated under certain conditions namely during wound 

healing, intense physical activity and menstrual cycle. 

 

In wound healing, a natural restorative response to tissue injury, angiogenesis takes 

place during the proliferative phase where it provides the necessary nutrients to sustain the 

newly formed tissue [8]. Likewise, during prolonged physical exercises, the increased oxygen 

demand in skeletal muscles is compensated in the long-term through the formation of new 

blood vessels [9]. Finally, physiological angiogenesis is fundamental to the female 

reproductive system (ovaries, uterus) and it is the only organ in adult humans which undergoes 

a regular cycle of growth and regression of blood vessels. Indeed, during the menstrual cycle, 

angiogenesis generally takes place in the growing corpus luteum and the endometrium. When 

fertilization does not occur, the endometrial lining is shed along with the newly formed blood 

vessels. However, upon fertilization, the placenta takes over the angiogenic process sustaining 

the developing embryo throughout pregnancy [10].  
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1.1.3 Pathological angiogenesis 

 

Angiogenesis is a tightly regulated process that requires the maintenance of a balance between 

pro-angiogenic (stimulatory) and anti-angiogenic (inhibitory) factors. A perturbation in this 

equilibrium can result in either excessive angiogenesis or insufficient angiogenesis leading to 

a pathological state [11]. Numerous disorders have been associated with excessive 

angiogenesis including solid tumor, psoriasis, rheumatoid arthritis, retinopathy and 

atherosclerosis. High fat diet has also been demonstrated to promote angiogenesis in adipose 

tissue which in turn stimulates adipogenesis, the generation of adipocytes; hence, creating a 

vicious cycle [12, 13]. Alternately, other disorders have been identified for abnormal vessel 

regression and maturation such as purpura, scleroderma and nephropathy. Moreover, local loss 

of blood supply in patients results in tissue ischemia leading to death or disability.  

 

Presently, several medications have been identified to inhibit angiogenesis [14-16] but 

efforts to therapeutically generate new blood vessels have not been as successful. Therefore, 

understanding the molecular mechanism of angiogenesis is crucial for the development of 

therapeutic strategies to combat these inflammatory, malignant and ischemic disorders.  

 

1.2 Regulation of angiogenesis 

 

Over the years, a plethora of endogenous mediators, including growth factors (vascular 

endothelial growth factor (VEGF), transforming growth factor (TGF)-α and -β, fibroblast 

growth factor (FGF), epidermal growth factor (EGF) and angiopoietins), matrix 
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metalloproteinases (e.g. MMP-2, MMP-7, MMP-9 and MMP-12), cytokines (e.g. tumor 

necrosis factor; TNF-α), chemokines (interleukins; IL-8), and integrins (e.g. α1β1, α2β1, α4β1, 

α5β1, αvβ5 and αvβ3) have been discovered to regulate angiogenesis. Among these angiogenic 

factors, VEGF and angiopoietins are well-established to exhibit both distinct and overlapping 

expression patterns that collaborate to regulate the different stages of physiological 

angiogenesis. The following sections will summarize the properties and functions of these 

growth factors and their places in the angiogenic process.  

 

1.2.1 Vascular endothelial growth factor (VEGF) 

 

In 1989, VEGF (initially identified as vascular permeability factor (VPF) [17]) was  isolated 

and identified [18] as a potent, diffusible and EC-specific mitogen. Its discovery arose the 

hypothesis that it may possess a significant role in the regulation of physiological and 

pathological growth of blood vessels [18-20]. Indeed, it is presently well-established that 

VEGF is the most potent, versatile and ubiquitous vascular growth factor known to date.  

 

The VEGF family is comprised of seven members: VEGF-A, VEGF-B, VEGF-C, 

VEGF-D, VEGF-E, VEGF-F, and placenta growth factor (PlGF) all containing a highly 

preserved VEGF homology domain. VEGF-A, being the first one to be identified is a 

homodimeric glycoprotein of approximately 45 kDa [18]. In healthy adults, the VEGF-A 

mRNA is highly expressed in lung, kidney, heart and adrenal gland and marginally expressed 

in liver, spleen and gastric mucosa [21]. It is also expressed by cultured SMCs [22], 

macrophages [23] and ECs [24]. At the cellular level, VEGF-A functions as a major paracrine 
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regulator of the angiogenic response, which modulates EC proliferation, migration, sprouting 

and survival [25].  

 

The human gene coding for VEGF-A is localized on chromosome 6p21.3 [26] and 

consists of eight exons separated by seven introns [27, 28]. Alternative exon splicing of this 

gene results in the generation of four major isoforms: VEGF-A121, VEGF-A165, VEGF-A189 

and VEGF-A206 [27, 28] (Figure 3). Other less frequent splice variants such as VEGF-A145 

[29], VEGF-A183 [30], VEGF-A162 [31] and VEGF-A165b [32] have also been reported. Exons 1 

to 5 are conserved in all isoforms. The splice variation among the isoforms depends on the 

presence or absence of exon 6 and 7 which encode distinct heparin binding domains. The 

acidic polypeptide, VEGF-A121, lacking both exons 6 and 7 does not bind to heparin and is 

highly diffusible [33, 34]. The highly basic variants, VEGF189 and VEGF206 contain both exon 

6 and exon 7 and bind heparin with high affinity [33]; hence they are completely sequestered 

in the extracellular matrix. VEGF165 being the predominant isoform [33] lacks exon 6 but 

contains exon 7 in its coding sequence. It is only moderately diffusible while a significant 

amount of it remains bound to the cell surface of the extracellular matrix [35].  The difference 

in the diffusibility of these splice variants create a gradient of VEGF expression that is 

responsible for guiding and shaping the vascular network during angiogenesis.  

 

Although structurally similar to VEGF-A, the other members of the VEGF family with 

their splice variants is differentially expressed in many cell types and display different 

biological activities. For example, PlGF in adults is a master switch in pathological 

angiogenesis. It is predominantly expressed in the placenta, heart and lungs [36]. Indeed, mice 
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lacking PlGF gene are phenotypically inert but show impaired angiogenesis, plasma 

extravasation and collateral growth during ischemia, inflammation, wound healing and cancer 

[37]. In contrast, PlGF overexpressed transgenic mice produce increased vascularization, 

inflammation and vascular permeability in the skin [38, 39]. VEGF-B is abundantly expressed 

in adult myocardium, skeletal muscle and pancreas [40]. Its expression is also observed in 

developing heart, brown fat, muscle and spinal cord during mouse embryogenesis. VEGF-B is 

postulated to be involved in controlling VEGF-A bioavailability; its exact function however, is 

unknown [21]. The expression of VEGF-C is exclusive in regions of developing lymphatic 

vessels and in lymph nodes [42, 43]; hence, its function is associated with the lymphatic 

system during development. In adult tissues however, VEGF-C is expressed in heart, placenta, 

ovary, small intestine and thyroid gland [21]. VEGF-D is largely identified in the lung and 

skin during embryogenesis [44] and in the lung, heart, skeletal muscle, colon and small 

intestine in adults. In humans, expression of VEGF-D is used as a prognostic marker for 

lymphatic metastasis [45]. Lastly, the VEGF-E isoform is encoded by Orf virus and is 

involved in inducing pathological angiogenesis in virus-infected lesions [46]. The later splice 

variant does not have a mammalian homologue. 

 

The VEGF isoforms stimulate various cellular responses by binding to VEGF receptors. 

VEGF receptors belong to class V receptor tyrosine kinases (RTK) and is comprised of 

VEGFR-1 (also known as Flt-1; 180kDa), VEGFR-2 (also known as KDR or Flk-1; 200-

230kDa) and VEGFR-3 (also known as Flt-4; 195kDa). Each receptor is constructed of seven 

immunoglobulin-like domains in the extracellular domain, a single transmembrane domain 

and a consensus tyrosine kinase sequence containing intracellular domain [47]. The signaling 
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by VEGF receptors is initiated upon the binding of a covalently linked VEGF dimer to the 

extracellular receptor domain. This interaction promotes receptor homo- and 

heterodimerization (VEGFR-1 with VEGFR-2 and VEGFR-2 with VEGFR-3) followed by 

kinase activation and autophosphorylation of specific tyrosine residues located in the 

intracellular juxtamembrane domain, the kinase insert domain, and the carboxylic tail of the 

receptor [48]. Subsequently, a variety of signaling molecules interact at specific sites of the 

VEGF receptor dimers to activate distinct downstream cellular pathways [49].  

 

Among the three receptors, VEGFR-2 is considered to be the major mediator of many 

physiological effects of VEGF-A on ECs. It is expressed on vascular ECs, lymphatic cells, 

megakaryocytes and haematopoietic stem cells [50] and binds VEGF-A, the processed form of 

VEGF-C and VEGF-D, and VEGF-E. VEGFR-2 signaling is modulated through co-receptors 

termed heparin sulfated proteoglycans, which also interact with several isoforms of VEGF 

[51]. In fact, neuropilin-1 (NRP-1), one such modulator, is the primary co-receptor of VEGF-

A/VEGFR-2 ligand/receptor complex [52]. Although, this putative receptor was previously 

identified to bind collapsin/semaphorin family mediating neuronal guidance, it is now evident 

that NRP-1 can also amplify the effectiveness of VEGF-A/VEGFR-2 signal transduction [53]. 

NRP-1 is highly expressed in vascular ECs and its presence in these cells promotes VEGFR-2 

phosphorylation and activation. Indeed, our laboratory has demonstrated that NRP-1 enhances 

VEGF-A/VEGFR-2-mediated EC migration and proliferation, and platelet activating factor 

(PAF) synthesis, a pro-inflammatory molecule [54].  
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Figure 3: Schematic representation of predominant isoforms of VEGF-A in humans. The 

different exon (indicated with numbers) compositions as a result of alternative splicing gives 

rise to the various isoforms of VEGF-A. Exons 1 to 5 are conserved in all VEGF-A splice 

variants. Exon 3 is implicated in the homodimerization of VEGF-A and in its interaction with 

VEGFR-1 while exon 4 is required for the binding of VEGF-A onto VEGFR-2. Exons 6 and 7 

are both involved in binding heparin. Exon 7 additionally links VEGF-A onto their co-receptor 

neuropilin-1 (NRP-1). Finally, exon 8b is present only on inhibitory isoforms of VEGF-A. 

(Adapted from Fearnley, G.W. et al. 2013 [41]) 

 

1.2.1.1 VEGF in angiogenesis 

 

VEGF-A (here after referred to VEGF) has been revealed to induce angiogenesis in a variety 

of in vivo and in vitro models. Knockout mice containing one allele of VEGF exhibit a number 

of development anomalies such as defective vascularization in several organs and reduced 
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nucleated red blood cell number within the blood islands in the yolk sac [55]. Consequently, 

these mice die within the first few days of development. Yet more, partial inhibition of VEGF 

using inducible gene targeting in early postnatal life leads to stunted body growth and 

impaired organ development leading to death in mice [56]. Similarly in adults, VEGF elicits 

pronounced angiogenesis in various in vivo models including the rabbit cornea [57], the 

primate iris [58] and the Matrigel plug in mice [59]. Concomitantly, in vitro studies revealed 

the ability of VEGF to promote the growth of vascular ECs derived from arteries, veins and 

lymphatics [18, 19, 60-64].  

 

It is now evident that VEGF regulates and orchestrates the angiogenic cascade (EC 

proliferation, survival, migration and permeability) through activated VEGFR-2 post-receptor 

signaling pathways. The binding of VEGF-A to VEGFR-2 results in the autophosphorylation 

of the following tyrosine residues in the intracellular domain of the receptor: Tyr951 and 

Tyr996 (located in the kinase domain), Tyr1054 and Tyr1059 (located in the kinase domain), 

and Tyr1175 and Tyr1214 (located in the C-terminal tail) (Figure 4). Phosphorylation of 

Tyr951 and Tyr1175 creates a binding site for VEGFR-associated protein (VRAP), and Sck 

[65] and PLCγ1 [66], respectively, which subsequently activate Raf via protein kinase C (PKC) 

in a Ras-independent manner [67]. This in turn induces the activation of the extracellular 

regulated kinase (ERK) pathway (p42/44 mitogen activated protein kinase (MAPK)) leading 

to gene transcription required for EC proliferation. VEGFR-2 also activates phosphoinositide 

3-kinase (PI3K), which results in an increase of lipid phosphatidylinositol (3,4,5)P3 (PIP3), 

conducting the activation of protein kinase B (Akt/PKB) and small GTP-binding protein, Rac. 

The Akt/PKB pathway, 1) promotes EC survival by inhibiting pro-apoptotic factors such as B-
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cell lymphoma-2 associated death promoter homologue (BAD) and caspase-9 [68], and 2) 

increases vascular permeability and cellular migration through the activation of endothelial 

nitric oxide synthase (eNOS) [69, 70]. Rac [71], on the other hand, along with other adapter 

proteins including p38MAPK [72] and focal kinase (FAK) with its substrate paxillin [73] have 

been demonstrated to promote cellular migration. In addition, the activation of VEGFR-2 on 

ECs promotes the production of PAF by ECs, which apart from its role during inflammation 

(involved in promoting the rolling and adhesion of leukocytes) also potentiate the migration of 

cultured ECs and increase vascular permeability [54]. Although the exact mechanism is not 

known, Src family members interact with activated VEGFR-2 and induce vascular 

permeability in mice [74].  

In addition to its vast activities on the endothelium via VEGFR-2, VEGF is also 

responsible for guiding and shaping of the vascular tree during the angiogenic process [75-77]. 

It does so through the differential spatial distribution of VEGF isoforms in the extracellular 

space which creates a gradient of VEGF expression. Such gradient is crucial for selecting the 

tip cells and the stalk cells during the sprouting of nascent blood vessels. This patterning is 

controlled at the level of transcription, isoform splicing and cell surface retention. For 

instance, the splice variants that bind heparin remain on the cell surface or in the extracellular 

matrix, while the splice variants lacking retention motif diffuse away from the surface. 

Furthermore, the transcriptional level of VEGF determines the site of sprouting. For instance, 

tip cell formation and sprouting only occurs at regions of highest VEGF concentration via the 

induction of gene expression of the NOTCH signaling pathway ligand Delta-like ligand 4 

(Dll4) [78, 79]. Dll4 expression is restricted to developing arteries and at the tip of vascular 
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sprouts [80, 81] and it is almost never expressed on the neighboring stalk cells. Together, the 

differential expression of Dll4 mediated by VEGF gradient favors the appropriate formation of 

filopodia, sprouting and branching of nascent vessels creating functional blood vessels at the 

end of an angiogenic response. 

 

1.2.2 Angiopoietins 

 

Angiopoietins, identified in mid 1990s, are a novel class of angiogenic growth factors that 

exert a crucial regulatory role in the maintenance of vascular integrity and quiescence. In fact, 

the different cellular functions of angiopoietins (responsible for the assembling and 

disassembling of the EC lining of blood vessels) in concert with VEGF coordinate precise 

morphogenic events in angiogenesis. 

 

1.2.2.1 Structure, localization and function of Ang1 and Ang2 

 

The angiopoietin protein family is comprised of four members, Ang1, Ang2, Ang3 and Ang4 

(Figure 5), all of which having a size of about 500 amino acids [83-85]. Structurally, the 

angiopoietins are composed of two domains: a fibrinogen-like C-terminal domain and an 

alpha-helical rich coiled-coil N-terminal domain [86]. The receptor binding sequence located  

in the fibrinogen-like domain of these growth factors enables their binding to the receptor 

tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 

(Tie2) while the coiled-coil motif promotes angiopoietin oligomerisation, a prerequisite for 

Tie2 receptor activation [86].  
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The human gene coding for Ang1 and Ang2, the predominant isoforms, is localized on 

chromosome 8q22 and 8q23, respectively [87, 88]. Alternative exon splicing of the Ang1 gene 

results in the generation of four isoforms: Ang1-1.5 kb (the prototypic form), Ang1-1.3 kb, 

Ang1-0.9 kb and Ang1-0.7 kb [89]. The Ang1 splice variants, Ang1-1.3 kb, Ang1-0.9 kb and 

Ang1-0.7 kb, bind Tie2 with similar potency but do not activate Tie2 signaling. Instead, they 

serve as a dominant negative regulator of the full length Ang1 (Ang1-1.5 kb) activity, which 

both binds and activates Tie2 [89]. Similarly, alternative exon splicing of the Ang2 gene gives 

rise to a splice variant of 443 amino acids (Ang2443) [90]. It lacks part of its coiled-coil motif 

and as a consequence renders it incapable of inducing Tie2 autophosphorylation upon its 

binding. Ang2443 nonetheless, pre-occupies the angiopoietin binding site on Tie2 and prevents 

the binding of the full length Ang1 and Ang2 to their receptor; hence, sequestering Tie2 

activation [90]. Recently, an additional isoform of Ang2 (Ang22B) with a partial truncated 

amino terminal coiled-coil domain has also been identified in chicken as a result of 5’ intron 

alternative splicing [91]. 

 

In adults, Ang1 is constitutively expressed in pericytes, SMCs and fibroblasts [83]. Its 

expression in these cells enables them to regulate the adjacent endothelium through a 

paracrine interaction. In addition, Ang1 expression has also been noted in neuronal cells [92] 

and in some types of tumor cells [92, 93]. During embryonic development however, Ang1 

expression is temporal dependent. It is first expressed in the myocardium and later in 

mesenchymal cells surrounding the developing vessels [84, 94, 95]. Recently, our laboratory 

discovered the expression of Ang1 in the cytoplasm of neutrophils [96]. In contrast, 

presynthesized Ang2 is almost exclusively stored within the storage granules of ECs termed  
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Figure 4: Schematic representation of the intracellular pathways activated through 

VEGFR-2. Upon the activation of VEGFR-2 receptors on ECs, adopter proteins including 

VEGFR-associated protein (VRAP), Sck and PLC-γ bind specific tyrosine residues on the 

receptors via their SH2 domain. Their binding in turn phosphorylates and activates the 

aforementioned adaptor proteins. Activation of PLC-γ induces the second messengers, DAG 

and IP3. While DAG activates PKC, IP3 induces the release of Ca2+ and in turn act on the 

endoplasmic reticulum. In addition, other proteins are also activated by VEGFR-2 such as Src, 

PI3K, FAK and p38MAPK. Together, these signaling pathways promote EC migration, 

proliferation, survival and vascular permeability. (Adapted from Cross, M.J. et al. 2003 [82]) 
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Weibel-Palade bodies (WPB) that allows the rapid release of Ang2 in response to various 

stimuli [97]. The release of Ang2 by activated ECs operates as a built-in autocrine switch, 

which promotes the transition of the quiescent endothelium to an activated state. For instance, 

under physiological conditions, Ang2 is only strongly upregulated in regions undergoing 

vascular remodeling such as during the menstrual cycle and wound healing [98]. Their 

expression is also elevated in tumor cells [99-101] and in ECs of tumor blood vessels [93, 102, 

103]. Furthermore, marginal level of Ang2 expression has been detected in Kaposi’s sarcoma 

cells [104] and in Muller cells of the retina [105].  

 

Although the well-characterized ligands, Ang1 and Ang2, bind their receptor Tie2 at the 

same site with similar affinities, Ang2 was originally identified as a competitive antagonist of 

Ang1/Tie2 ligand/receptor signaling axis in ECs [97, 106-111]. It is now apparent that the 

biology of Ang2 is less straight-forward; it can behave both, as an agonist or as an antagonist 

of Tie2 signaling depending on the concentration and the spatial-temporal context it is in. 

Indeed, Ang2 can activate Tie2 receptor on ECs promoting its migration, survival and 

capillary tube formation at high concentration [112] or after prolonged incubation [113]. 

Interestingly, recent studies in our laboratory have identified other agonistic activities of 

Ang2/Tie2 complex both on ECs (e.g. promotes PAF synthesis, P-selectin translocation, 

neutrophil adhesion) and on neutrophils (e.g. promotes PAF synthesis, CD11b/CD18 integrin 

activation and its migration) following a short incubation and at same concentration as Ang1 

[115-118]. We have observed that neutrophils treated with either Ang1 or Ang2 alone for 7.5 

minutes promotes PAF synthesis at a concentration of 10-9 M [115]. Nonetheless, on normal 

vascular endothelium, Ang2 acts as a Tie2 antagonist to destabilize the endothelium and 
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empowers the initiation of the angiogenic response [95, 119-121]. Ang1 on the other hand, is 

an agonistic ligand of the Tie2 receptor where its binding to Tie2 contributes to blood vessel 

maturation and stability. In addition to the same agonistic effects exerted by Ang2 on ECs and 

neutrophils, Ang1 also promotes the survival of ECs and neutrophils, inhibits VEGF-mediated 

adhesion molecule (intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion 

molecule-1 (VCAM-1) and E-selectin) increase on ECs and promotes the synthesis of IL-8 

and IL-1β [122, 123]. In fact, the group of Yu, X. et al identified a short loop within the 

angiopoietin fibrinogen domain, which may potentially confer the differential agonistic and 

antagonistic properties of these biologically important molecules [124]. 

 

1.2.2.2 Structure, localization and function of Ang3 and Ang4 

 

In 1999, Valenzuela et al. reported the existence of Ang3 and Ang4, inter-species 

homologues found in mice and humans, respectively [85]. These orthologues, sharing 65% 

amino acid homology, are found at the same gene locus in mice and humans [85]. Similar to 

Ang1 and Ang2, the protein structure of Ang3 and Ang4 contains an N-terminal coiled-coil 

domain and a C-terminal fibrinogen domain. Both Ang3 and Ang4 are predominately 

synthesized as dimers connected by disulfide bonds, which resemble the native structure of 

Ang2 [83, 85]. Although, much less is known about them till this date, the expression of Ang3 

has been identified to be distributed in multiple tissues in mice while the expression of Ang4 

has been identified to be restricted to the lungs in humans [85]. However, the expression of 

Ang4 can be significantly increased in response to hypoxia and to various growth factors [125, 
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126]. Likewise, Ang3 expression in rats has also been demonstrated to be enhanced in lungs, 

brain and heart in response to hypoxia [127].  

 

Ang3 and Ang4 exert similar activities upon their binding to Tie2 receptor [128]. 

Initially, Ang3 was characterized as an antagonist of Tie2 based on the observation that it, 

when expressed in a chimeric form, inhibited the activity of Ang1 in humans [85]. However, 

an in vivo study using murine corneal micropocket assay revealed that these orthologs (Ang3 

and Ang4) both have the capacity to induce angiogenesis [128]; hence, classifying them as 

Tie2 receptor agonists [85]. In fact, it is now accepted that the action of Ang3 is context-

dependent which can act both as an agonist and as an antagonist while Ang4 is an agonistic 

ligand of Tie2. 

 

1.2.2.3  Structure, localization and regulation of Tie receptors 

 

In the early 1990s, a novel class of RTK, termed Tie receptors, was identified consisting of 

two members, Tie1 (135 kDa) and Tie2 (150 kDa) [129-131]. These receptors of ≈1100 amino 

acids consist of an extracellular, transmembrane and an intracellular/cytoplasmic domain and 

are expressed on both vascular and lymphatic EC surface. The extracellular amino-terminal 

domain of Tie receptors is comprised of three EGF-like cysteine rich repeats, two 

immunoglobulin-like domains flanking the EGF-like repeats and three fibronectin-type III 

repeats. The intracellular portion of Tie receptors contains two highly conserved tyrosine 

kinase domains with 76% sequence homology that allows the activation of various 

downstream effectors following its autophoshorylation [129-133]. Although structurally 
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similar, the extracellular portions of these receptors demonstrate numerous differences 

(sequence homology of 33%) [133]. 

 

During the early stages of development, Tie1 is expressed in differentiating angioblasts 

of the head mesenchyme, in the splanchnopleura (a layer of embryonic cells lining the walls of 

the visceral organs formed by the association of mesoderm and endoderm), dorsal aorta and in 

migrating ECs of the developing heart [134]. In adults, Tie1 expression is predominantly 

observed on EC surface along with Tie2 [135]. While the angiopoietins have been identified 

as the ligands of Tie2 receptor, Tie1 remains as an orphan receptor. Nonetheless, Tie1 has 

been demonstrated to modulate Tie2 mediated signaling through intracellular heterotypic 

interaction [135]. Tie1 on its own does not activate downstream intracellular signaling. In 

agreement with this notion, Tie1 undergoes proteolytic cleavage in presence of VEGF and 

inflammatory cytokines (e.g. TNF-α) releasing its soluble extracellular domain. This portion 

of the receptor then binds Tie2 forming the Tie1:Tie2 complex and thereby modulates the 

downstream signaling pathways [136, 137]. Yet, Kontos et al. recently identified the existence 

of a chimeric form of Tie1, c-fms-Tie1, which upon ligand stimulation results in Tie1 

autophosphorylation and activation of downstream P13K/Akt pathway similar to Tie2; thus, 

suggesting that Tie1 receptors may potentially exert biological activities under certain 

circumstances [138].  

 

Tie2 receptors are expressed in embryonic and adult endothelium [139], haemopoietic 

endothelial progenitors [129], lens epithelial cells [130], leukemia cells [131, 132, 140], 

eosinophils [141] and in circulating human neutrophils [117, 118]. In addition, Tie2 positive  
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Figure 5: Schematic representation of angiopoietins and their isoforms. The angiopoietin 

superfamily consisting of Ang1, Ang2, Ang3 and Ang4 are structurally related with a coiled-

coil domain and a fibrinogen domain. Four splice variants of Ang1 have been identified; 

Ang1-1.5 kB (the full length), Ang1-1.3 kB, Ang1-0.9 kB and Ang1-0.7 kB. Ang2 on the 

other hand are found in their full form or as Ang2443 lacking part of its coiled-coil domain. 

Ang2B is a splice variant observed in chicken. Ang3 and Ang4 are inter-species homologues 

found in mice and humans, respectively. (Adapted from Jones, N. et al. 2001 [114]) 

 

subpopulation of monocytes, termed Tie2-expressing monocytes (TEM), has been identified to 

exist in concert with tumor-associated macrophages during tumor formation [142]. The 

expression of Tie2 is induced by hypoxia and pro-inflammatory mediators (e.g. TNF-α and 

IL-1β) [143] and is noted to be highly upregulated in tumoral angiogenesis [139, 144, 145]. 

Activation of Tie2 receptor follows the same basic steps as all other RTKs (e.g. VEGFRs).  

The binding of Ang1 per se to Tie2 with a binding constant of ≈3 nM leads to receptor 
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dimerization followed by rapid activation of the cytoplasmic kinase domain through 

autophosphorylation of specific tyrosine residues, which subsequently activates intracellular 

signaling pathways [139, 146].  

 

1.2.2.4 Ang1 and Ang2 in developmental angiogenesis: genetic evidence  

 

Over the years, numerous studies utilizing transgenic mouse models have provided concrete 

evidence that the angiopoietin/Tie signalling pathway is essential for vessel remodelling and 

stabilisation during angiogenesis. Indeed, conventional knockout of Ang1 (Ang1-/-) in mice 

resulted in the formation of dilated vasculature lacking complexity (reduced numbers of small 

vessel formation and diminished branching) [94]. The nascent blood vessels were prone to 

ruptures as they were constructed with fewer ECs and failed to anchor onto the extracellular 

matrix [94]. As a result, Ang1-/- mice died very early during embryogenesis. Conversely, 

transgenic mice overexpressing Ang1 in the skin produced large vessels (presumably 

capillaries) with marked improvement in vascular integrity; the newly formed vessels were 

ensheathed by pericytes [147, 148]. Moreover, as mice deficient of Tie2 receptor (Tie2-/-) 

produced similar phenotype as Ang1-/- mice, it is now well-established that Ang1 is an 

agonistic ligand of Tie2 [149-152].  Furthermore, double-transgenic mice overexpressing both 

Ang1 and VEGF in the skin of mice did not only produce highly structured vessels in greater 

numbers and diameter but the vessels were covered by pericytes and SMCs, and lacked 

leakiness and permeability which were absent in mice expressing VEGF alone [153]. 

Together, these results concluded that VEGF and Ang1 regulates angiogenesis at distinct 
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levels where VEGF induces vessel sprouting and growth while Ang1 through Tie2 mediates 

remodelling and maturation of newly formed blood vessels. 

 

Ang2, being the antagonistic member of the angiopoietin family at the receptor level 

(under certain conditions) during angiogenesis also behaves to counteract Ang1 activity in 

transgenic mice models. For instance, mice overexpressing Ang2 were embryonic lethal and 

possessed similar phenotypes as mice deficient in Ang1 or Tie2 expression [84]. In agreement 

with these observations, Ang2 was demonstrated to disrupt the interaction between EC 

monolayer and SMCs in culture [154]. Ang2-null mice in contrast, were born normal but 

developed chylous ascites (an accumulation of milky chyle in the peritoneal cavity as a result 

of lymphatic disruption [155]) within the first few days postnatal. In fact, depending on the 

genetic background of the mice, Ang2-deficient mice died within the first 14 days of their life 

or developed normally to adulthood but with persistent vascular defects (such as impaired 

responses to inflammatory challenges). Hence, it was concluded that the release of Ang2 by 

ECs induces vascular regression. 

 

The effects of the angiopoietins are not solely limited to the vascular system. It is now 

evident that the angiopoietins also have redundant roles in lymphatic vascular development 

through a process termed lymphangiogenesis [95]. The lymphatic vascular system is the 

body’s second vascular system that is involved in the maintenance of normal tissue fluid 

homeostasis, immune surveillance, and absorption of fatty acids and lipid soluble vitamins in 

the gut. Although, very little is known about the role of Ang1 during lymphangiogenesis, mice 

overexpressing Ang1 has been shown to induce the formation of large lymphatic vessels in 
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increased numbers [156] either directly via Tie2 [157] or indirectly via VEGF-C/VEGFR3 

[156]; Ang1 induces lymphatic vessel enlargement, sprouting and proliferation. Interestingly, 

Ang2 has been demonstrated to play a crucial role in keeping the lymphatic vessels under a 

quiescent state. For instance, Ang2 null mice have been shown to develop severe lymphatic 

defects [95], but minor blood vessel defects. The vessels formed in these mice failed to 

remodel or form a structured network and did not support the ensheathing of SMCs. Thus, 

Ang2 acts as an agonist on lymphatic vessels but also as an antagonist on blood vessels [95, 

158].  

 

1.2.2.5 Ang1 and Ang2 on the endothelium 

 

While both Ang1 and Ang2 bind to the same site in the extracellular domain of Tie2, only 

Ang1 was initially characterized as the principal ligand of Tie2 receptor. Yet, it is now evident 

that Ang1 and Ang2 can multimerize prior to their binding onto Tie2, which promotes Tie2 

receptor dimerization and subsequently activates the autophosphorylation of adjacent tyrosine 

residues on the carboxyl terminal of the receptor [159, 160]. The activation of Tie2 by Ang1 

promotes vessel survival, migration and reorganization, inhibits vascular leakage and 

suppresses inflammatory gene expression.   

 

Autophosphorylation of the tyrosine kinase domain on Tie2 receptor leads to the 

phosphorylation of p85 subunit of PI3K, which activates Akt and in turn phosphorylates and 

inhibits the forkhead transcription factor, FKHR, in ECs. FKHR in the endothelium is 

responsible for inducing EC apoptosis through the phosphorylation and inactivation of pro-



 

25 
 

apoptotic factors including BAD and pro-caspase-9 [114, 161-164]. It also promotes the 

expression of genes involved in vascular destabilization and remodeling such as Ang2 [114, 

161-163, 165]. Thus, the inhibitory effect of Ang1 on FKHR prevents EC apoptosis and 

vascular destabilization. In addition, Akt activation leads to an increased expression of 

survivin, a classical inhibitor of apoptosis, and promotes cell survival [166, 167]. Along with 

its anti-apoptotic and stabilization effects, the PI3K/Akt signaling pathway promotes blood 

vessel maturation. It maintains vascular quiescence by enhancing the interaction between 

perivascular cells and the endothelium which thereby suppresses inflammatory phenotypes. 

Concurrently, the NF-κB pathway is inhibited upon the activation of Tie2 by Ang1 through 

A20-binding inhibitor of NF-κB activation-2 (ABIN-2) which simultaneously exerts 

protective effect on the endothelium by preventing EC apoptosis [168, 169]. Ang2 on the other 

hand, antagonize the anti-apoptotic effect of Ang1. It induces EC apoptosis leading to the 

regression of the vasculature through the recruitment of macrophages. 

  

 Furthermore, Ang1 signaling stimulates Tie2-dependent EC migration via the adaptor 

protein Dok-R [170, 171]. The recruitment of Dok-R to the activated Tie2 receptor (p-

Tyr1107) requires both the phosphotyrosine binding (PTB) and pleckstrin homology domains 

located on the adaptor protein. Phosphorylated Dok-R then creates interaction site for Nck and 

the serine kinase, p21-activating kinase (Pak), leading to the activation of EC migration and 

the reorganization of the cytoskeleton [146]. In addition, the activation of Tie2 on ECs induces 

the phosphorylation of focal adhesion kinase (FAK) which leads to the phosphorylation and 

activation of paxilline and p42/44 MAPK (ERK) [172]. Their activation in turn contributes to 

EC migration. In fact, blocking Tie2 activation inhibits ERK mediated Ang1 activation of EC 
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migration [173]. Other mediators including the adaptor protein ShcA, the GTPases RhoA and 

Rac1, growth factor receptor bound-2 (Grb2), Grb-7, p85 subunit of PI3K, eNOS and SH2 

domain containing phosphatase (SHP2) are also recruited to Tie2 in ECs which have been 

identified to exert an important role not only in promoting EC migration but also in promoting 

EC proliferation and differentiation in the presence of Ang1 [146, 170, 174, 175]. SHP2 in 

particular additionally functions as a negative regulator of Tie2 phosphorylation [170, 176].  

 

Ang1 also plays an important role in the reorganization of ECs into tubule-like 

structures.  In fact, Ang1-stimulated reorganization of cultured ECs into tubules and their 

invasion into 3D matrices is Tie2-dependent [177]. Reorganization of ECs was not observed in 

ECs lacking Tie2 but was rescued by Tie2 activating antibody in the rat aortic ring assay 

[178]. Furthermore, the use of inhibitors and dominant-negative constructs has indicated a 

number of signaling intermediates involved in Ang1 induced reorganization of endothelium 

and motility including PI3K, SchA, focal adhesion kinase, and endothelial NO synthase [172, 

179-181]. Consistent with such remodeling effects, Ang1 stimulates the production of 

proteases, including plasmin and matrix metalloproteases, which decrease the EC-substratum 

interaction allowing the ECs to reshape the vessel lumen [182]. Ang2 has also been 

demonstrated to promote vascular remodeling by inducing an inflammatory response [183]. 

Such response activates the endothelium and thereby increases vascular permeability and 

renders the endothelium susceptible to inflammatory cytokine. In fact, long-term incubation of 

EC by Ang2 activates PI3K/Akt pathway, which promotes EC survival, sprouting and 

migration [184].   
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Ang1 regulates EC-cell and cell-matrix interactions through which it is well-known to 

exert anti-inflammatory biological activities. The intercellular expression of VE-cadherins on 

ECs forms a complex, which can be broken by VEGF, decreasing vascular permeability. This 

effect can in fact be antagonized by Ang1. It is mediated through the translocation of Tie2 to EC 

surface in response to Ang1, which subsequently interact with Tie1 and activate the signaling 

pathways reducing vascular permeability. Similarly, Ang1, under inflammatory conditions is 

capable of reducing vascular permeability. It promotes a tight interaction between adhesion 

molecules at EC junctions (PECAM-1 and VE-cadherins).  

 

It is well established that Ang1 exerts its function during the later phase of angiogenesis 

in promoting vessel maturation [147, 185]. However, few studies demonstrate that Ang1 can 

also promote EC chemotaxis [186] and induce EC sprouting under appropriate conditions 

[177, 186, 187]. The mitogenic effect of Ang1 on the other hand remains controversial. While 

Kanda, S et al. demonstrated that Ang1 can induce EC proliferation [188], several other 

groups have shown otherwise, that Ang1 has few or no mitogenic activity on EC [177, 186, 

189]. 

 

1.2.2.6 The role of Ang1 and Ang2 in angiogenesis 

 

The angiopoietin/Tie2 signaling axis is a key interaction during sprouting angiogenesis, which 

regulates the transition of ECs from a quiescent state to an activated state. In fact, the 

constitutive expression of Ang1 in adult perivascular cells covering the vasculature functions 

as a default pathway to maintain the quiescence resting state of the endothelium. It does so by 
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clustering with homotypic Tie2 complexes present at inter-EC-cell junctions and initiating 

signaling pathways promoting cell-cell adhesion, anti-permeability and cell survival. 

Interestingly, Ang1 does not only protect and seal the endothelium but also limits the 

endothelium from being activated by exogenous cytokines. For instance, Ang1 has been 

shown under certain experimental conditions to inhibit VEGF-induced blood vessel formation 

and adhesion molecule expression in order to avoid vascular homeostasis perturbation [119, 

190].  
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Figure 6: Schematic representation of the intracellular pathways activated through Tie2. 

The binding of Ang1 and Ang2 onto Tie2 induces the dimerization and autophosphorylation 

of the receptor. Phosphorylated tyrosine activates the PI3K pathway which subsequently 

activates Akt and RhoA/Rac1 implicated in cellular migration. FAK and eNOS also activated 

by PI3K leads to vessel sprouting. In addition, the pro-survival activity of angiopoietins is 

mediated by the p42/44 MAPK which is activated by both PI3K and Grb2/Ras/Raf pathways. 

Finally, the anti-inflammatory activity of Ang1 is mediated through the inhibiton of NFκB. 

(Adapted from Brindle, N.P. et al. 2006 [197]) 
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This state is however antagonized by Ang2 in vessels undergoing angiogenesis. While 

almost undetectable in quiescent vasculature, Ang2 expression is dramatically upregulated at 

the transcriptional level and stored in the Weibel-Palade bodies by the pro-angiogenic stimuli 

including growth factors (e.g. FGF-2 and VEGF), cytokines (e.g. TNF) and environmental 

cues (hypoxia, high glucose levels and superoxides)  [92, 109, 191-193]. They are then rapidly 

released in response to phorbal esters, thrombin and histamine leading to the destabilization of 

the quiescent endothelium (loosening of the attachment between ECs and perivascular cells) 

[84]. The unstable endothelium facilitates the infiltration of proteases, cytokines and 

angiogenic myeloid cells, which consequently primes the vasculature to respond to numerous 

exogenous stimuli for a robust angiogenic response in presence of VEGF [194, 195]. 

Interestingly, in absence of VEGF, high Ang2 levels lead to vessel regression and not to 

destabilization as it occurs during the menstrual cycle. Hence, Ang2 functions as a built-in 

switch controlling the transition of the resting quiescent endothelium towards the activated 

responsive endothelium. Indeed, it is the Ang1:Ang2 ratio which determines the functional 

status of the vasculature [196]. In resting state, a vasculature remains quiescent as the 

Ang1:Ang2 ratio is in favor of Ang1. Following EC activation, this ratio is locally shifted in 

favor of Ang2. The ECs of unstable vessels may die in the absence of VEGF or migrate and 

proliferate, initiating the angiogenic cascade in presence of VEGF. Pericytes use the 

developing sprouts as migration guidance cues and cover the newly formed vessel [198, 199]. 

Subsequently, the endothelium switches back to the quiescent state in the absence of 

additional stimulus.    
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1.3 Inflammation 

 

Inflammation or an inflammatory response is a natural defensive reaction in response to 

tissue damage caused by micro-organisms, noxious stimuli, nutritive deficiency and pro-

inflammatory mediators (secreted by apoptotic, necrotic and damaged cells). The maintenance 

of tissue integrity is vital to human health as we are continuously exposed to such molecular 

threats. Under physiological conditions, the inflammatory response is tightly regulated by 

soluble proteins (cytokines, chemokines and growth factors) that create an interactive network 

between inflammatory cells and vascular ECs within the affected site. The clinical 

manifestation of such complex system of chemical cues and cell interactions include rubor 

(redness), calore (heat), dolore (pain), tumor (swelling) and functio laesa (loss of function). 

When inflammation is not properly regulated, the balance between pro- and anti-inflammatory 

molecules is shifted away from the initiation of the healing process and towards the 

occurrence of persisting inflammation. In fact, inflammation is classified as either acute or 

chronic. 

 

An inflammatory response to any cellular insult begins acutely, that is, it occurs rapidly 

and is of short duration (within few days). Regardless of the nature of the initial trigger, the 

series of events involved in acute inflammation can be categorized into different phases. 

Firstly, a variety of chemical mediators cause local microvessel dilation at the site of injury to 

increase blood flow (causing erythema and heat release). These mediators equally increase 

local vessel permeability in order to allow the recruitment of proteins and leukocytes (e.g. 

neutrophils and monocytes/macrophages) to the site of infection (causing swelling of the 
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tissue or edema). In concert, mast cells, platelets, ECs, dendritic cells (DCs), macrophages and 

other tissue resident cells also release chemoattractants to recruit neutrophils to the affected 

area. The latter takes place via local biosynthetic changes of adhesion molecules in ECs 

allowing the transmigration of neutrophils from the circulation to the site of action. Monocytes 

follow later, and once in the tissue they undergo anatomical and functional changes that 

transform them into macrophages. These leukocytes (neutrophils and macrophages) then 

destroy invading microbes and clear cellular debris through the process of phagocytosis. 

Finally, the local acute inflammatory response, in the absence of further inflammatory stimuli, 

is ceased with tissue repair.  

 

If the stimulus persists, inflammation can last days, months or even years and is said to 

be chronic. In fact, chronic inflammation is abnormal and does not benefit the body. It is 

primarily mediated by monocytes/macrophages, lymphocytes and plasmocytes through the 

enhanced production of proteolytic enzymes, reactive oxygen species, MMPs, serine proteases 

and growth factors and is characterized by increased fibroblast proliferation, collagen 

deposition, fibrosis and angiogenesis. Yet, the inflammatory and morphological profiles of 

chronic inflammation differ significantly depending on the nature of the initial trigger. 

Nonetheless, persistent aggressive stimuli in chronic inflammation leads to a pathological state 

as observed in rheumatoid arthritis, atherosclerosis, ischemia and solid tumors [200, 201]. 
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1.3.1 Regulation of inflammation 

As briefly mentioned above, neutrophils and monocytes/macrophages play a crucial role in 

coordinating the inflammatory response (reviewed in [202]). They arise in a process termed 

myelopoiesis and are of haematopoietic pluripotent stem cell origin. These stem cells in the 

bone marrow give rise to myeloid (neutrophils, basophils, eosinophils, monocytes/ 

macrophages and DCs) and lymphoid lineages (T cells, B cells, DCs, and natural killer (NK) 

cells). Following tissue injury or infection, an “emergency myelopoiesis” takes place in 

humans, which generates large pools of neutrophils and monocytes in the bone marrow 

beyond the normal requirement of a healthy person. 

1.3.1.1 Polymorphonuclear leukocytes (PMNs) 

Morphologically, neutrophils are classified as PMNs and granulocytes together with 

basophils and eosinophils due to their multi-lobulated nucleus and the presence of specific 

granules in the cytoplasm. These leukocytes can be histologically distinguished based on the 

staining capacity of their granules to different dyes. While basophil granulocytes are stained 

by basic dyes, eosinophil and neutrophil granulocytes are stained by acidic and neutral dyes, 

respectively. Basophils are the least numerous of the granulocytes and account for about 0.01-

0.3% of circulating leukocytes. They are involved in mediating hypersensitivity reactions (e.g. 

allergic reactions) of the immune system. Specifically, when activated, basophils release 

histamine (a pro-inflammatory mediator) and other enzymes that lead to a vast array of 

allergic symptoms. Eosinophils on the other hand account for 2-4% of circulating leukocytes 
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and are the major participant in the development of allergic inflammation. They also function 

as cytotoxic effector cells against parasitic infections [203]. Lastly, neutrophils, the well-

studied leukocyte, function as the body’s primary line of defense against invading pathogens 

(e.g. bacteria) in order to safeguard the body from infections. 

 

Neutrophils represent about 50-70% of total leukocytes and are the most abundant 

inflammatory cell in the blood circulation. In humans, the neutrophil count represents 

approximately 100-700 million cells/100 mL of blood with a daily production of 0.8-1.6 x 109 

neutrophils/kg of body mass. Such ample production of neutrophils is required in order to 

maintain a constant neutrophil concentration in the blood as their half-life is relatively short 

(10-24 hours) [204]. However, under an inflammatory state, the number of neutrophils 

increases significantly with an increased life span as they are one of the first responders to 

tissue injury and infection. This is made possible as neutrophils under steady state belong to 

one of two pools in the circulation; the circulating pool, which consists of neutrophils that are 

freely circulating or the marginated pool, which consists of neutrophils that are bound to the 

endothelium of small vessels [205]. Upon an inflammatory response, the marginated pool of 

neutrophils, serving as a reserve, is quickly mobilized to the circulating pool increasing the 

concentration of neutrophils in the blood.  

 

In healthy adults, circulating neutrophils exist in a resting state in order to protect the 

host tissue from damage by accidental release of neutrophil toxic intracellular contents. The 

resting neutrophils become activated via a two-stage process. First, they become primed by 

agents such as bacterial products and cytokines or chemokines (e.g. granulocyte-macrophage 
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colony-stimulating factor (GM-CSF), TNF-α, IL-8 and IFN-γ) [206] and then they get 

mobilized to the site of infection or inflammation where they encounter activating signals to 

trigger bacterial killing.  

 

 The migration of neutrophils from the circulation across the endothelium (also referred 

to as neutrophil extravasation) to the site of inflammation can be divided into three stages: 

rolling, firm adhesion and transmigration [207]. Neutrophil extravasation occurs mainly in the 

post-capillary venules as the low haemodynamic shear force in these regions along with the 

expression of selectins on neutrophils facilitate the tethering of the neutrophils onto the 

activated endothelium. This slows down the flow of neutrophils and enables it to move in a 

position close to the endothelium and away from the central blood stream. The selectin 

adhesion family is comprised of L-selectin, P-selectin and E-selectin. L-selectin is 

constitutively expressed on neutrophils and they bind the immunoglobulin superfamily 

proteins glyCAM and MadCAM on ECs. This mediates weak constitutive neutrophil-

endothelium interaction under normal conditions. However, the expression of L-selectin is 

significantly increased during inflammation following P-selectin translocation to the 

endothelium. P-selectin is normally stored in the Weibel Palade body of ECs and is rapidly 

translocated to the cell surface following the release of an inflammatory stimulus such as 

histamine, thrombin or phorbol esters [208-210]. The primary ligand of P-selectin is P-selectin 

glycoprotein ligand-1 (PSGL-1) which is constitutively expressed on all leukocytes. The 

binding of P-selectin to PSGL-1 activates the p42/44 MAPK and induces the release of IL-8 

by leukocytes, which recruits more leukocytes [211, 212].  Finally, E-selectin has only been 

shown to be expressed on activated ECs upon the inflammatory stimulus lipopolysaccharide 
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(LPS), TNF-α and IL-1β [213]. It binds ESL-1 found on leukocyte cell surface. Together the 

expression of selectins along with their ligands contributes to the rolling of neutrophils along 

the endothelium and favors the transient attachment of the neutrophils onto the endothelium 

for a firm binding. Furthermore, the rolling of neutrophils induces the release of pro-

inflammatory mediators such as IL-8 and PAF which directly activates another class of 

adhesion proteins, the β2 integrins immunoglobulin superfamily. Integrins are usually 

expressed in a low-affinity binding state until cellular stimulation. The activation of β2 

integrins leads to a conformational change increasing their affinity to their ligands, ICAM-1 

and ICAM-2, on ECs. Indeed, ICAM-1 is constitutively expressed in marginal amounts on EC 

surface but its expression is increased significantly upon pro-inflammatory stimuli while 

ICAM-2 is constitutively expressed on EC surface. In fact, it is the β2 integrins with ICAM-1 

or ICAM-2 interaction that is responsible for the firm adhesion of the leukocytes onto the 

endothelium and the transmigration of the neutrophils into the extracellular environment. They 

do so by passing through the junctions between neighboring ECs while interacting with 

surface ligands expressed on ECs (e.g. platelet endothelial-cell adhesion molecule-1 (PECAM-

1)).  

 

Once the neutrophils have left the circulation and passed through the endothelium, they 

migrate towards the inflamed tissue along a chemotactic gradient. At the site of infection, the 

primed neutrophils actively synthesize and secrete cytokines, chemokines, leukotrienes and 

prostaglandins to recruit other leukocytes. In particular, activated neutrophils have been 

reported to synthesize IL-8, IL-1, IL-1ra, IL-6, IL-12, TGF-β and TNF-α [214] where many of 

these have been shown to have the potential to activate both  neutrophils and other 
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inflammatory/immune cells including monocytes, macrophages, NK cells, lymphocytes and 

immature DCs [216]. 

 

Furthermore, neutrophil granules contain a multitude of antimicrobial and cytotoxic 

substances that get released to destroy the invading microorganism. In fact, neutrophils 

possess three different types of granules: azurophil granules, specific granules and gelatinase 

granules [217]. The azurophil granules are characterized by their content of hydrolytic and 

bacterial proteins such as elastase, bacteriacidal permeability-increasing proteins, defensins 

and myeloperoxidase (MPO). MPO in particular, is a peroxidase enzyme which produces 

hypochlorous acid (HOCl) form hydrogen peroxide (H2O2) during the neutrophil’s respiratory 

burst (the rapid release of reactive oxygen species from neutrophils). This phenomenon aids 

the degradation of internalized particle of bacteria in neutrophils. Similarly, the specific 

granules are characterized by the presence of lactoferine and the gelatinase granules contain 

high concentration of gelatinase. Although, neutrophil granulation shows heterogeneity, they 

all contain lysozymes and high cytotoxic potentials. Furthermore, since these granules get 

exocytosed during degranulation, the membrane of granules fuses with the plasma membrane 

and furnish the cell with new receptors and other functional proteins. One such example is the 

β2 integrin found in neutrophils, which get incorporated into the plasma membrane by such 

mechanism during the extravasation of neutrophils [218].  



 

38 
 

 

Figure 7: Steps in leukocyte infiltration. Upon stimulus by pro-inflammatory mediators, 

ECs become activated producing different classes of adhesion molecules such as the selectins 

and the immunoglobulin superfamily proteins both on neutrophils and on ECs. This in turn 

allows the neutrophils to interact with the endothelium in a transient manner facilitating its 

rolling. Following firm adhesion of the neutrophils onto the ECs mediated by integrins further 

allows the transmigration of the neutrophils along the chemoattractant gradient created in the 

extracellular space. (Adapted from Kreiglstein, C.F. et al. 2001 [215]) 

 

1.3.1.2 Mononuclear phagocytes 

 

Unlike neutrophils, the mononuclear phagocytic system consisting primarily of monocytes, 

macrophages and DCs exhibit extensive heterogeneity with respect to morphology, 

biochemistry, surface antigen expression, secretory products and functions. Together, these 
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cells constitute ≈5-10% of total blood leukocytes in humans. Monocytes, which are in fact the 

precursor of macrophages and DCs, get released into the bloodstream during development 

where they circulate for several days before entering peripheral tissues. Once out of the 

circulation, monocytes give rise to a variety of tissue resident macrophages and to specialized 

cells (e.g. DCs) throughout the body. Functionally, although monocytes are involved in 

mediating host antimicrobial defence [219], their primary role is to replenish the pool of tissue 

resident macrophages and DCs both in steady state and during an inflammatory response. In 

fact, monocytes have been demonstrated to be implicated in many inflammatory diseases, 

including atherosclerosis [220].  

 

        Macrophages are tissue resident phagocytic cells present in both lymphoid and 

nonlymphoid organs. They are immune effector cells that exhibit essential roles in maintaining 

steady state tissue homeostasis via the clearance of cellular debris (subsequent to an 

inflammatory response per se) and apoptotic cells [221]. In addition to their central roles, 

tissue resident macrophages also fulfill tissue specific functions through their manifestation as 

Kupffer cells (in the liver), microglia (in central nervous system), Langerhans cells (in the 

epidermis and dermis of the skin), osteoclasts (in the bone), alveolar macrophages (in lungs), 

and splenic marginal zone and metallophilic macrophages (in the spleen) in different tissue 

types. Moreover, like other effector cells, macrophages can belong to various phenotypic 

subsets depending on their microenvironment or the stimuli they are exposed to. In fact, two 

distinct states of polarized activation for macrophages have been proposed: the classically 

activated (M1) macrophages and the alternately activated (M2) macrophages [222]. M1 

macrophages with pro-inflammatory cytokine profile (expressing TNF-α, IL-1, IL-6, IL-12 
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and IL-23) arise following stimulation with IFN-γ alone or in concert with bacterial moieties, 

such as LPS or TNF-α [223]. This subset of macrophages also increases their concentration of 

superoxide anions, oxygen radicals and nitrogen radicals in order to promote their killing 

activities [224, 225]. In contrast, M2 macrophages with anti-inflammatory cytokine profile are 

polarized by distinct stimuli and can be subdivided into M2a (expressing IL-10, TGF-β and 

IL-1ra), M2b (expressing IL-1, IL-6, IL-10 and TNF-α), and M2c (expressing IL-10 and TGF-

β) macrophages. M2a macrophages are stimulated by IL-4 or IL-13, while M2b macrophages 

are induced by LPS or IL-1ra and M2c macrophages by IL-10 or TGF-β. All M2 macrophage 

subsets express scavenger receptors (SRs), mannose receptors (MRs), and IL-10, which allows 

them to participate in parasitic clearance, tissue remodelling, immune modulation, and tumor 

progression [225]. 

 

These differentially polarized macrophages also express different chemokines. For 

instance, M1 macrophages express chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10 

and CXCL5 which ultimately promote the recruitment of immune cells and improve their 

capacity to kill intracellular pathogens [226]. In contrast, M2 macrophages downregulate 

CXCL9, CXCL10 and CXCL5 chemokines expression [227, 228]. M2a macrophages promote 

the expression of chemokine (C-C motif) ligand 24 (CCL24), CCL17 and CCL22 which 

specifically bind chemokine (C-C motif) receptor 3 (CCR3) and CCR4 and accelerate the 

recruitment of eosinophils, basophils and T-cells. Similarly, M2b macrophages secrete CCL1 

which upon its binding to CCR1 promotes the infiltration of eosinophils and different subsets 

of T-cells. Finally, M2c macrophages promote the accumulation of eosinophils and T-cells 

through the secretion of CXCL13, CCL16 and CCL18 combined with CXCR5, CCR1 and 
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CCR8. All in all, the recruitment of eosinophils and T cells (Th2 cells, regulatory T-cells, and 

naïve T-cells) through the secretion of numerous chemokines induce the initiation of the 

immune response (reviewed in [229]).  

 

Besides their heterogeneity and plasticity, macrophages overall, are crucial to tissue 

defense during inflammation where their function (cytotoxic, phagocytic and secretory) is 

determined by the physiological environment.  Firstly, macrophages are well-known for their 

scavenging role in the clearance of micro-organisms, foreign particles and altered-self 

materials (apoptotic cells, senescence erythrocytes and inflammatory products) during 

inflammation [230]. This activity which subsequently relies on phagocytosis and intracellular 

degradation is essential for tissue maintenance, defense and repair. Moreover, upon microbial 

ingestion a microbicidal function is usually involved.  

 

Phagocytosis, a highly selective process, involves recognition and engulfment of micro-

organisms and cellular debris. Recognition of such materials during infection, inflammation 

and wound repair requires specific interaction between surface proteins (ligands) to be 

ingested and the plasma membrane (phagocytic receptors) of macrophages. In fact, there are at 

least three different types of phagocytic receptors involved in the recognition of the particles, 

including Fc IgG receptors, complement phagocytosis receptors and lectin receptors [231]. In 

addition, the pro-inflammatory mediators found at the site of inflammation further stimulate 

phagocytosis for an efficient ingestion but also limits the tissue destructive processes 

accompanying phagocytosis.  
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Following phagocytosis, a variety of hydrolytic and proteolytic enzymes initiates 

intracellular degradation of the ingested particles. In fact, the predominant hydrolase enzymes 

that exert potent digestive capacity in activated macrophages are acid phosphatase (AP) and 

tartrate-resistant acid phosphatase (TRAP). Moreover, in microbial infection, the sequestered 

microbe in the macrophages is exposed to oxygen radicals, nutritive deprivation, low pH, and 

digestive enzymes. Such harsh conditions lead to the disruption of their cellular structure 

resulting in the death and degradation of the invading pathogen. Free radicals such as reactive 

oxygen intermediates (hydroxyl radicals and hydrogen peroxide) and reactive nitrogen (nitric 

oxide (NO)) intermediates are also involved in attacking pathogens that are susceptible to 

oxidizing agents [232]. Lastly, an oxygen-independent killing mechanism has been identified 

in activated macrophages which rely solely on defensins. Defensins are a class of anti-

pathogenic peptides which orchestrate the formation of ion-permeable cannels in bacterial cell 

membrane [233]. Such release in turn leads to the shutdown of cellular functions of the 

pathogen.  

 

In addition to their phagocytic function, activated macrophages are traditional antigen 

presenting cells (APCs) that mediates cytotoxic activities. In fact, macrophages increase 

surface expression of major histocompatibility class II (MHCII) proteins which are key 

molecules that display foreign antigens to T-lymphocytes [234]. This cross talk between 

macrophages and T-lymphocytes in turn initiates the specific immune response. MHCII 

proteins are also expressed on the surface membrane of B-cells, Langerhans cells and DCs. 

However, dendritic cells are the most efficient antigen presenting cell type to activate T-

lymphocytes. They are 100-fold more potent than macrophages as APCs [235, 236]. Antigen 
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presentation by macrophages involves a series of events. Foreign antigens are internalized by 

phagocytosis and usually undergo intracellular processing, after which the antigenic fragment 

is displayed with the MHCII molecules on the surface of macrophages. The expression of such 

antigens is recognized by specific T-lymphocytes and initiates the immune response involving 

active killer cells. It is important to note that expression of MHCII on macrophages is 

transitory; activated macrophages expressing MHCII eventually loses its antigen presenting 

capabilities. Interestingly, the ratio of class II molecule-positive to negative macrophages 

varies widely between different tissues. For example, peritoneal macrophages and spleen 

white pulp macrophages are mainly negative, whereas spleen red pulp macrophages are 

predominantly positive [237].  

 

Finally, macrophages elucidate potent secretory functions. They secrete a multitude of 

mediators ranging in biological activities from the induction of cell growth to cell death. These 

mediators themselves can possess multiple functions or can join together to mediate a single 

activity. Macrophages are a major source of many cytokines involved in inflammation, 

haematopoiesis, angiogenesis (discussed latter) and many other homeostatic processes. Few 

examples of the cytokines released by activates macrophages include interleukins, interferons, 

TGF-β and TNF-α and TNF-β [238]. Many of these cytokines are involved in the recruitment 

of other leukocytes to the site of injury. 
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1.4 Angiogenesis and inflammation 

 

Considerable evidences up to date suggest that angiogenesis and inflammation are not 

independent events as was initially thought but are codependent processes involving common 

molecular mechanisms [239]. In fact, inflammation has been identified to be crucial in the 

initiation and the accompaniment of angiogenesis in numerous pathological circumstances. 

Supporting this notion, the exhaustingly studied pro-angiogenic growth factors (VEGF, Ang1 

and Ang2) have been shown to exert inflammatory properties while the vice versa is also true 

for the inflammatory cells (neutrophils and monocytes/macrophages).  

 

At the molecular level, oxygen tension in response to systemic stimuli or local tissue 

injury leads to the loosening of the endothelial monolayer driven by excess VEGF, NO and 

other cellular mediators; a hallmark of inflammation [240]. This increased vascular 

permeability permits the plasma components and inflammatory cells (e.g neutrophils and 

monocytes/macrophages) to exit the bloodstream into the extracellular space, initiating the 

acute inflammatory response. Resulting inflammation yields a microenvironment comprising 

of numerous growth factors, proteases and cytokines that subsequently induce the angiogenic 

cascade either directly and/or indirectly leading to the creation of a highly vascularized 

granulation tissue. Under normal physiology, the homeostatic control is restored upon the 

resolution of the inflammatory response and the regression of the newly formed vasculature. 

However, in the absence of vascular regression, positive feedback mechanisms operating 

between the blood vessels and the inflammatory infiltrate sustain the new vasculature and 

further impair the inflammatory response. Such is the case in a number of chronic 
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inflammatory disorders with distinct etiopathogenic origin including atherosclerosis, psoriasis, 

rheumatoid arthritis, Crohn’s disease, diabetes and cancer. Recently, the previously 

established non-inflammatory disorders such as osteoarthritis and obesity have also been 

displayed to involve inflammation and angiogenesis in an exacerbated manner [241]. 

 

 1.4.1 The paradox of angiogenic growth factors in inflammation 

 

1.4.1.1  VEGF 

 

VEGF, when secreted locally, is a potent and powerful vascular permeabilizing agent 

that allows the escape of solute rich fluid and leukocytes from the circulation into the 

extravascular space; a hallmark of inflammation [242, 243]. In any event, vascular 

permeability is a characteristic property of the vessel wall and depends on a number of 

variables such as physical properties of the fluid or cell being transported (size and charge), 

gradient between compartments (pressure and concentration) and the mode of transportation 

(channels or vesicles). Nonetheless, ECs in response to VEGF undergo marked structural and 

molecular changes that increase the permeability of the vasculature.  

 

One of the first structural changes that takes place soon after VEGF administration is the 

formation of a cluster of linked caveolar vesicles through ECs that join to link the vascular 

luminal and abluminal surfaces [244]. Such structure, termed vesicular vacuolar organelles 

(VVOs), creates a passageway for the movement of fluid and cells across the vessel wall. 

Similar to these processes, transcellular gaps (running close to but not at the EC junction) and 
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intercellular gaps (at the cell junction) have also been identified to be created in frogs’ and 

rats’ vessels in response to VEGF [245]. Although, it is not known whether these latter 

processes are VVOs or whether they are entirely a separate structure, it is evident together 

with other in vivo and in vitro studies that VEGF administration promotes the formation of 

fenestrea (large holes) in EC barrier promoting vascular leakage of inflammatory cells [246].  

 

Furthermore, VEGF also affects the integrity of the endothelium through junctional 

changes [247]. Upon VEGF stimulation, tight junctions and adherens junctions between 

adjacent ECs are disturbed, leading to the loosening of the cell-cell contacts between ECs. 

Consequently, the micro-sized gaps created between ECs permit the extravasation of 

leukocytes across the vasculature [245]. In concert, VEGF induces EC expression and 

translocation of adhesion molecules (P-selectin, E-selectin, ICAM-1 and VCAM-1) to further 

favor the recruitment and activation of leukocytes onto the endothelium. The recruited 

leukocytes subsequently, release PAF in the interstitial fluid, which acts both in an autocrine 

and paracrine manner on ECs to trigger the inflammatory cascade. 

 

1.4.1.2  Angiopoietins 

 

ECs that line blood vessels form a physical barrier that separates the vessel lumen from 

the extracellular space. As previously mentioned, increased permeability of such EC barrier is 

a hallmark of inflammation. Interestingly, apart from being a potent angiogenic factor, Ang1 

has been shown to also behave as an anti-inflammatory mediator on ECs by sealing the 

endothelium against vascular leakage. In fact, a study using transgenic mice overexpressing 
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Ang1 protected the blood vessels against vascular leakage when challenged with inflammatory 

agents [248]; suggesting that Ang1 exerts anti-inflammatory properties.  

 

Over the years, various groups have tested the role of Ang1 in different models of 

inflammation both in vivo and in vitro. It is now well-established that the anti-inflammatory 

actions of Ang1 include the suppression of vascular leakage, the downregulation of EC 

adhesion molecule expression and the inhibition of leukocyte adhesion and transmigration 

across the endothelium. Bringing up some experimental evidences, Ang1 significantly reduces 

the permeability of human umbilical vein EC (HUVEC) in culture when induced with 

thrombin or VEGF [249, 250]. Furthermore, Ang1 reduces TNF-α induced leukocyte 

transmigration on EC surface, downregulates the expression of E-selectins on EC surface, 

decreases vascular endothelial cadherin and PECAM-1 basal level phosphorylation and 

inhibits VEGF induced adhesion molecule expression (e.g. ICAM-1 and VCAM-1) on the 

endothelium [190, 251]. While the signaling mechanism involved in the anti-inflammatory 

actions of Ang1 remains undetermined, PI3K and NFκB pathways have been shown to be 

involved in the regulation of Ang1 mediated inflammatory gene expression [190, 252].  

 

Although, substantial evidences show that Ang1 mediates anti-inflammatory effects on 

ECs, other studies have shown contradictory findings and argue that Ang1 mediates pro-

inflammatory responses. In fact, both Ang1 and Ang2 exert pro-inflammatory functions on 

ECs with similar potency. Consistently, angiopoietins can prolong EC survival; however, the 

effect of Ang2 on neutrophil viability depends on the experimental conditions [106, 112, 162, 

167, 253, 254]. While some groups argue that the prolonged survival of ECs in presence of 



 

48 
 

Ang2 is established via the PI3K pathway [112, 253], others believe that it does so through its 

pro-apoptotic activity on ECs. The pro-survival effect of Ang2 may be mediated through VE-

cadherins [120] or through the activation of apoptotic factors [254].  Furthermore, our 

laboratory has demonstrated that the angiopoietins induce endothelial synthesis of PAF [115] 

and the translocation of P-selectins [116, 117]. Increased expression of P-selectins recruits 

neutrophils and facilitate their transmigration into the tissue. Moreover, Ang1 and Ang2 

potentiate the pro-inflammatory effect of cytokines and growth factors on the endothelium. 

For instance, Ang2 in presence of TNF-α favor the adhesion of leukocytes onto ECs [255]. 

Furthermore, when combined with VEGF in a murine model, Ang1 promotes the formation of 

blood vessels large numbers with a greater diameter while when Ang2 is combined with 

VEGF, the vessels are longer in length [119]. 

 

Moreover, Ang2 triggers an inflammatory response by activating the endothelium and 

inducing vascular permeability [256]. This was further supported by experiments studying 

inflammation in Ang2-deficient mice [255]. The mice in this study were unable to elicit an 

acute inflammatory response following intraperitoneal injection of thioglycolate or 

Staphylococcus aureus. Detailed mechanistic analyses revealed that the Ang2-deficient mice 

were not capable of expressing cytokine-inducible adhesion molecules on their luminal cell 

surface after inflammatory activation. Hence, Ang2 does not affect EC adhesion molecule 

expression directly. Instead, it primes the quiescent endothelium to control the responsiveness 

to inflammatory cytokines [255, 257].  
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Angiopoietins also exert pro-inflammatory activities on neutrophils. Our laboratory 

noted that both Ang1 and Ang2 individually exert similar capacity to promote neutrophil 

adhesion [116, 117]. However, when combined together, Ang1 and Ang2 possessed an 

additive effect on neutrophil adhesion but no difference in P-selectin translocation [117]. As 

neutrophil adhesion requires the translocation of P-selectins, these observations suggested that 

the angiopoietins might directly act on neutrophils. Indeed, we demonstrated for the first time 

the expression of Tie2 receptors on neutrophils [117]. Along with other groups, we have 

subsequently demonstrated that Ang1 and Ang2 exert various pro-inflammatory activities on 

neutrophils [117, 258, 259]. For example, they induce PAF synthesis and CD11b/CD18 (β2-

integrin) activation [117]. The latter is an adhesion molecule that involved in linking the 

neutrophils onto the endothelium. The angiopoietins can also directly induce the migration of 

neutrophils and potentiate the effect of IL-8 on neutrophil migration [213]. 

 

1.4.2 The paradox of inflammatory cells in angiogenesis 

 

1.4.2.1 Neutrophils 

 

Neutrophils have traditionally been thought to provide the first line of defense of the 

innate immune system by phagocytizing invading microorganisms. Recent evidence however 

demonstrates that neutrophils play important role in physiological angiogenesis. For instance, 

during the proliferative stage of the menstrual cycle, neutrophils liberate VEGF that mediates 

the growth and proliferation of the endometrial tissue [260]. This observation was further 

supported in a murine study where depletion of mice neutrophil using anti-Gr1 antibody 
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inhibited the proliferation of ECs in the endometrium as compared to control mice [261]. 

Other in vivo models of angiogenesis revealed the requirement of neutrophils in 

neovascularization in other tissues. For instance, Gr1 mediated neutrophil depletion in C57 

black mice implanted with Matrigel containing CXCL1 or IL-8, the most potent chemotactic 

factors of neutrophils, produced a significant reduction in blood vessel formation in the skin 

[262]. Similarly, neutrophil depletion in Swiss Webster mice implanted with slow releasing 

pellets of pro-angiogenic factor, FGF-2, into the corneas inhibited the angiogenic process 

[263].  

 

Importantly, human biopsies of solid tumor (e.g colon adenocarninoma, 

bronchioloalveolar carcinoma, myxofibrosarcoma, gastric sarcoma and melanoma) displayed 

massive infiltration of neutrophils. Moreover, a high positive correlation between elevated 

numbers of neutrophil and increased intra-tumoral microvessel density was detected in 

patients with high grade malignant tumor [264-267] and correlating with poor prognosis [268]. 

Thus, neutrophils are also implicated in pathological angiogenesis. This initial observation 

was tested using the chick embryo chorioallantoic membrane (CAM) assay implanted with 

pro-angiogenic factors FGF2, VEGF or HT1080 tumor cells for ten days.  The results showed 

a fourfold increase in heterophil (the chicken analogue of neutrophil) infiltration at the studied 

region in presence of the angiogenic factors and tumor cells as compared to no treatment 

control [269]. Yet, treating the implants with an anti-inflammatory cortisone disrupting 

inflammation significantly reduced the number of heterophils recruited and the formation of 

novel vessels [269]. Although the exact mechanism through which tumor associated 

neutrophils mediate or modulate angiogenesis has not been fully elucidated, several 
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hypotheses have been raised to explain this mechanism. Some suggest that the release of 

MMPs, in particular MMP-9, by neutrophils induce proteolysis of the ECM liberating 

angiogenic factors such as VEGF and FGF2 [270]. Once released, these factors act upon 

nearby ECs to prompt vascularization. Others suggest that the activated neutrophils can 

directly secrete a multitude of soluble pro-angiogenic factors such as VEGF that may 

influence the angiogenic switch within tumors stimulating EC migration, proliferation and 

differentiation. Finally, it is also believed that neutrophils may even stimulate angiogenesis 

through intimate cell-to-cell interactions with ECs [271].  

1.4.2.2  Monocytes and macrophages 

Monocytes/macrophages infiltration is often preceded and accompanied during in vivo 

angiogenesis as observed in tissue repair, remodeling and tumor growth. Indeed, the 

abolishment of monocytes drastically reduces angiogenesis in wound healing [272] while 

chemoattractant-mediated stimulation of monocyte recruitment promotes angiogenesis and the 

formation of collateral vessels [273]. It is suggested that the increased neovascularization in 

atherosclerotic plaques is due to the accumulation of monocytes/macrophages [274]. 

Furthermore, macrophages play a pivotal role in tumor angiogenesis through the production of 

myriad of potent angiogenic cytokines and growth factors (e.g. VEGF, TGF-α and –β, FGF, 

EGF, angiopoietins and IL-8) and secretion of ECM degrading enzyme (e.g MMP-2, MMP-7, 

MMP-9 and MMP-12) [275, 276]. A positive correlation between macrophage infiltration and 

angiogenesis was observed in human gliomas, which were inversely proportional with 

prognosis. Detailed studies identified that M2 phenotypic macrophages were involved in 
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tumor angiogenesis. These macrophages were termed tumor associated macrophages (TAMs) 

[277]. Indeed, Bingle and his colleagues demonstrated that the presence of TAMs within a 

solid tumor contributes to the immediate initiation of angiogenesis; in the absence of TAMs 

tumor angiogenesis is delayed [278]. 

 

Based on these observations, subsequent studies examined the mechanism by which 

macrophages promote the formation of new vessels. It is now evident that macrophages are 

able to stimulate all phases of angiogenesis through their secretory products [275]. Firstly, 

macrophages require activation in order for it to become angiogenic [279]. This phenotype is 

achieved when exposed to low oxygen concentration, under wound-like concentrations of 

lactate, pyruvate or hydrogen ions or in response to cytokines (PAF) and monocytic 

chemotactic proteins. As the induction of angiogenesis requires dissolution of the capillary 

basement membrane enabling the release of soluble growth factors, macrophages have been 

identified to release proteases to fulfill this requirement. Indeed, macrophages release 

metalloproteinases (e.g. collagenase), serine proteases (e.g. t-PA and u-PA) and monokines 

(e.g. TGF-B, PDGF and IL-6), which together change the composition of the ECM and 

modify the responsiveness on the ECs to the different growth factors [280-282]. Along with 

these pro-angiogenic effects of macrophages, the released factors, other than proteases, are 

also involved in promoting the migration and proliferation of ECs [275]. Hence, macrophages 

provide cytokines for the initiation and maintenance of the angiogenic process.  
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1.5 Angiogenic model 

One of the important technical problems faced by researchers studying angiogenesis is the 

inability to use an appropriate method for assessing angiogenesis as a whole. As angiogenesis 

involves numerous steps (e.g. EC migration, proliferation, differentiation and structural 

rearrangement) and encompasses various cell types including ECs, mural cells (pericytes and 

SMCs), the complexity of such process makes it a challenge in putting together a model 

encompassing all of these aspects of vascular formation. In fact, most of the available 

angiogenic assays only target the individual steps of angiogenesis [283]. Hence, an ideal assay 

would be one that is reliable, technically straightforward, easy to quantify and physiologically 

relevant (looks at the overall effect of a tested factor on the formation of new vessels).  

 

Currently, a variety of in vitro and in vivo assays are being used in studying 

angiogenesis, each of which having strengths and weaknesses. In vitro methods, including 

cellular (proliferation, migration, tube formation) and organotypic (aortic ring) assays, are 

valuable in providing initial information but require multiple tests to obtain concluding 

interpretation [284]. In vivo methods on the other hand, are generally more difficult to quantify 

and time consuming to perform (Table I), but are essential in studying the complex vascular 

response as no in vitro models can fully achieve this response [285].  

 

In 1988, Fajardo et al. described a new assay using polyvinyl alcohol sponges containing 

angiogenic factors and/or antagonists [286].  These sponges were subcutaneously introduced 

in the animal through a small, dorsal incision for the evaluation of host-derived blood vessel 

penetration and/or other cell infiltration. Presently, this angiogenic sponge model has been 
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modified in order to enable the introduction of live cells (e.g. tumor cells or inflammatory 

cells) into the center of the sponge. Once harvested, the sponge discs can be fixed, sectioned 

and stained. Histological examination of sponge sections showed increased neovascularization 

and distinctive cellular infiltration at the edges, including fibroblasts, ECs and leukocytes 

[287]. Hence, polyvinyl alcohol sponges provide a pro-inflammatory environment. A major 

disadvantage in inserting the sponges alone in mice is that it promotes fibrosis around the 

sponge as a foreign body response [288]. 

 

Recently, the Matrigel plug assay became the method of choice for many angiogenesis 

based studies. Matrigel is a laminin-rich mixture of basement membrane components isolated 

from Engelbreth-Holm-Swarm mouse tumor, which provides a suitable pro-angiogenic 

environment [288]. It was initially used to investigate capillary tube formation in vitro.  

Matrigel in liquid form at 4oC is mixed with test cells or angiogenic factors and is 

subcutaneously injected into mice. Once in the host, Matrigel solidifies and forms a gel plug. 

The trapping of the growth factor in the Matrigel allows the slow release of the tested factor. 

These plugs in mice can be retrieved at different time points post-administration and examined 

histologically to determine the extent of neovessel formation. Quantification of the vessels in 

histologic sections may be tedious but accurate. In addition, measurement of the amount of 

hemoglobin content in the plug as the method of quantification is also widely used. However, 

the latter approach of quantification may be misleading as the blood content in the Matrigel 

plug may come from other sources during the retrieval of the plug [288]. 
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In our laboratory, we have combined the Matrigel plug assay and the polyvinyl alcohol 

sponge angiogenesis system in order to create an in vivo system that provides both an 

angiogenic and a pro-inflammatory environment. This model, a novel variant of the existing 

sponge/Matrigel model is technically simple and does not induce non-specific immune 

response leading to fibrotic encapsulation of the implanted matrix. 
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Models Advantages Disadvantages 

Corneal micropocket • Used in rabbits, rats, and 
     mice                         
• Newly formed vessels are 

easily identified 
• Permits non-invasive 

observations and long-
term monitoring 

• Quantitative 
 

• Atypical angiogenesis 
• Expensive 
• Ethically questionable 
• Technically difficult, 

especially in mouse eye 
• Not a suitable technique to 

study tumor angiogenesis 
• Non-specific inflammatory 

response 
Chick chorioallantoic 
membrane (CAM) 
assay 

• Technically simple 
• Inexpensive 
• Permits non-invasive 

observation 
• Sprouting angiogenesis 

• Visualization of the new 
vessels is difficult 

• Embryonic 
• Non-specific inflammatory 

reactions 
Sponge/matrix 
implant 

• Technically simple 
• Inexpensive 
• Can be used for time 

course experiments 
• Suitable for tumor 

angiogenic studies 
• Quantitative 

• Time consuming 
• Encapsulated by 

granulation tissue 
• The composition of the 

sponges may make inter-
experimental comparisons 
difficult 

• The tested factor may be 
retained in the sponge 

• Animals must be 
monitored 

Matrigel plug • Technically simple 
• Quantitative 
• Does not induce non-

specific inflammatory 
response 

• Difficult to make uniform 
3D plugs 

• Analysis is tedious and 
time consuming 

• Expensive 
Zebrafish • Using whole animal 

• Technically simple 
• Allows gene analysis of 

vessel development 
• Quantitative 
• Fast assay 

• Embryonic 
• Non-mammalian 
• Expensive 

 

Table I: Advantages and disadvantages of the major in vivo angiogenesis assay. (Adapted 

from Norrby, K. et al. 2006 [288]) 
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1.6 Project reasoning and purpose 

 

Angiogenesis is a fundamental process in which multiple factors exert specific activities at 

different phases [289]. The early stage of this process is strictly dependent on VEGF which is 

well-documented for its ability to promote the growth and sprouting of ECs derived from 

arteries, veins and lymphatics [18, 19, 60-64]. In fact, invasion of ECs and formation of 

capillary like structure by VEGF into collagen gel has been reported in the past [64, 290]. 

Furthermore, VEGF elicits strong angiogenic and mitogenic responses in a variety of in vivo 

models including the chick chorioallantoic membrane [19, 62], the rabbit cornea [57], the 

matrigel plug in mice [58, 291], the primate iris and many others. However, in pre-clinical and 

clinical testing, VEGF-induced angiogenesis lacked vascular basement membrane and α-

smooth muscle actin-cbpositive pericytes leading to the regression of the newly formed 

vessels with time. Indeed, the presence of VEGF in the late phase of angiogenesis was 

observed to be not only obsolete but also detrimental for vessel functionality and pericyte 

regeneration [292, 293]. The discovery of angiopoietins opened a new era in the research of 

therapeutic angiogenesis. Among the regulators of vessel maturation, Ang1 is essential during 

the latter phase of angiogenesis where it supports EC survival and maintains the integrity of 

the endothelium. In contrast, Ang2, almost exclusively produced by ECs promotes blood 

vessel destabilization and regression in the absence of survival factors (e.g. VEGF and FGF-

2). Recently, biopsy observations of different pathologies have shown that inflammation 

precedes and accompanies pathological angiogenesis. Moreover, a panel of experts analyzed 

numerous clinical trial reports in coronary angiogenesis and argued that inflammation is much 

more important in inducing angiogenesis than tissue ischemia [294]. Consistent with these 
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reports, our laboratory has identified the inflammatory properties of VEGF, Ang1 and Ang2, 

suggesting that the inflammatory response is a crucial event in angiogenesis. However, 

inflammation was regarded as a confounding factor in the search for angiogenic models. Thus, 

we hypothesized that an establishment of a murine model that is both angiogenic and pro-

inflammatory would provide a suitable environment for the formation of functional vessels 

mediated by selected growth factors. The purpose of this project is to: 1) elucidate the 

individual capacity of VEGF, Ang1 and Ang2 to promote blood vessel formation in a spatio-

temporal dependent manner, 2) examine whether this model allows maturation of the newly 

formed vessels in presence of the growth factors, and 3) identify the presence of different 

inflammatory cells accompanying the angiogenic process, in a timely and sequential study. 
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ABSTRACT  

 

A key feature in the induction of pathological angiogenesis is that inflammation precedes and 

accompanies the formation of neovessels as evidenced by increased vascular permeability and 

the recruitment of inflammatory cells.  Previously, we and other groups have shown that 

selected growth factors, namely vascular endothelial growth factor (VEGF) and angiopoietins 

(Ang1 and Ang2) do not only promote angiogenesis but can also induce inflammatory 

response.  Herein, given a pro-inflammatory environment, we addressed the individual 

capacity of VEGF and angiopoietins to promote the formation of mature neovessels and to 

identify the different types of inflammatory cells accompanying the angiogenic process over 

time. Sterilized polyvinyl alcohol (PVA) sponges soaked in growth factor-depleted Matrigel 

mixed with PBS, VEGF, Ang1 or Ang2 (200 ng/200 μl) were subcutaneously inserted into 

anesthetized mice. Sponges were removed at day 4, 7, 14 or 21 post-procedure for 

histological, immunohistological (IHC) and flow cytometry analyses. As compared to PBS-

treated sponges, the three growth factors promoted the recruitment of inflammatory cells, 

mainly neutrophils and macrophages, and to a lesser extent, T- and B-cells.  In addition, they 

were more potent and more rapid in the recruitment of endothelial cells (ECs) and in the 

formation and maturation (ensheating of smooth muscle cells around ECs) of neovessels. 

Thus, the autocrine/paracrine interaction among the different inflammatory cells in 

combination with VEGF, Ang1 or Ang2 provides a suitable microenvironment for the 

formation and maturation of blood vessels.  
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INTRODUCTION 

 

The ramification of novel blood vessels from pre-existing vascular network, termed 

angiogenesis, is a coordinated sequence of cellular events consisting of sprouting, endothelial 

cell (EC) proliferation, directed migration of ECs, EC tube formation and perivascular 

stabilization [Carmeliet and Jain, 2011]. Such multistep process is tightly regulated through 

the maintenance of a balance between soluble pro-angiogenic (stimulatory) and anti-

angiogenic (inhibitory) factors [Liekens et al., 2001; Noonan et al., 2008]. A local perturbation 

of this equilibrium can result in either excessive or insufficient angiogenesis leading to a 

variety of diseases. With the identification of several pro-angiogenic molecules, potential 

therapeutic interference with vessel formation is being studied as promising tool for clinical 

applications [Griffioen and Molema, 2000]. For instance, while therapeutic inhibition of 

angiogenesis may be beneficial in diseases associated to excessive neovessel growth (e.g. solid 

tumor, rheumatoid arthritis, diabetic retinopathy, atherosclerosis and psoriasis) [Hanahan and 

Folkman, 1996], stimulation of angiogenesis may be beneficial in conditions associated with 

insufficient formation of new vasculature (e.g. tissue damage after reperfusion of ischemic 

tissue and cardiac failure) [de Muinck and Simons, 2004].  

 

Vascular endothelial growth factor (VEGF) is a well-studied growth factor that 

effectively promotes neovessel sprouting and growth in the initial phase of angiogenesis 

[Carmeliet and Jain, 2011; de Muinck and Simons, 2004]. Upon discovery, its high angiogenic 

potential arose the hypothesis that VEGF monotherapy may be sufficient to promote 

therapeutic angiogenesis. However, in both pre-clinical and clinical testing, although VEGF 
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monotherapy was successful in promoting the formation of blood vessels, they lacked vascular 

basement membrane and/or the ensheathing of α-smooth muscle actin (α-SMA)-positive 

pericytes and smooth muscle cells (SMCs), leading to the regression of newly formed vessels 

[de Muinck and Simons, 2004; Dor et al., 2002; Henry et al., 2003]. Thus, VEGF-orientated 

clinical trials did not support the expected beneficial outcome in patients [Simons et al., 2000; 

Stewart et al., 2009]. The discovery of a novel class of EC-specific ligands termed 

angiopoietins (Ang1 and Ang2) showed their capacity through the activation of Tie2 receptor 

to modulate the maturation and stabilization of newly formed vessels.  For instance, while 

Ang1 in the late phase of angiogenesis plays an important role in promoting vascular 

maturation and contributing to enhance the integrity of EC barrier, Ang2 is identified to have 

the capacity to destabilize pre-existing vessels prior to VEGF-induced angiogenesis [Davis et 

al., 1996; Maisonpierre et al., 1997; Thurston et al., 2000]. Furthermore, Ang1 has also been 

demonstrated to have the capacity to promote in vivo angiogenesis and both Ang1 and Ang2 

have the potential to increase EC migration and sprouting under certain experimental 

conditions [Mochizuki et al., 2002; Teichert-Kuliszewska et al., 2001]. Nonetheless, the 

angiopoietins themselves exert low mitogenic or proliferative activity on ECs [Davis et al., 

1996], suggesting that VEGF and angiopoietins exhibit distinct and overlapping expression 

patterns which collaborate to regulate the different stages of physiological angiogenesis.  

Hence, a single pro-angiogenic factor may not be sufficient and effective in orchestrating all 

stages of the angiogenic process and a combination of pro-angiogenic mediators (e.g. growth 

factors with cytokines) may be required in the formation of stable blood vessels. In agreement 

with such premise, the emerging relationship between leukocyte infiltration and angiogenesis 

attracted a lot of attention over the last years. 
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Proliferating tissue in rheumatoid arthritis, psoriasis and solid tumors per se, contains an 

abundance of inflammatory cells (neutrophils, monocytes/macrophages and dendritic cells) 

that promote pathological angiogenesis either directly and/or indirectly leading to the creation 

of a highly vascularized granulation tissue [Costa et al., 2007]. The angiogenic events, in these 

pathologies, further support the inflammatory response, creating a vicious cycle. In accordance 

with these observations, clinical trial reports referring to coronary angiogenesis suggested that 

inflammation is an important stimulus in the induction of the angiogenic cascade [Simons et 

al., 2000] and very little angiogenesis takes place in the absence of inflammation [Jones et al., 

1999]. We, in parallel with other groups, have demonstrated that VEGF and angiopoietins, in 

addition to being angiogenic factors, are also potent inflammatory regulators; once again 

indicating the necessity of inflammation in the accompaniment of angiogenesis [Dumas et al., 

2012; Maliba et al., 2008; Neagoe et al., 2009; Neagoe et al., 2012].  During the last years, we 

have shown that Ang1 and Ang2, acting on Tie2 receptor, are capable of promoting the 

synthesis of platelet activating factor (PAF), a potent pro-inflammatory mediator, in both ECs 

and neutrophils.  Upon its synthesis, PAF promotes neutrophil upregulation of β2-integrin 

complex (CD11b/CD18) contributing to neutrophil adhesion and their migration onto 

activated ECs [Lemieux et al., 2005; Maliba et al., 2006].  In addition, we have reported the 

capacity of Ang1 to promote the synthesis and release of IL-1 and IL-8 [Dumas et al., 2012; 

Haddad and Sirois, 2014] which are both involved during inflammation and angiogenesis 

[Qazi et al., 2011; Voronov et al., 2007]. Nonetheless, the exact link between inflammation 

and angiogenesis such as the type and the temporal role of the recruited inflammatory cells 

during angiogenesis remains unanswered.  
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Various in vivo models using biomaterials (e.g. polyvinyl alcohol sponges) and/or 

Matrigel have been used extensively to analyze the angiogenic capacity of growth factors, 

cytokines, chemokines and non-protein mediators in a number of different hosts [Norrby, 

2006]. Yet, many of these studies either did not look at the maturation of blood vessels, a 

crucial event in the stabilisation of nascent blood vessels, or the newly formed vessels were 

identified to be immature (lacking the ensheathing of SMCs). Hence, in the current study, we 

utilized a novel variant of the sponge/Matrigel angiogenic model such that the pro-

inflammatory sponges were pre-incubated in growth factor depleted Matrigel containing the 

tested growth factor prior to subcutaneous implantation into wild type mice in order to 1) 

assess the individual pro-angiogenic capacity of VEGF, Ang1 and Ang2 to promote the 

formation and the maturation of neovessels, and 2) to identify the different inflammatory cells 

accompanying angiogenesis in a spatio-temporal manner.  
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MATERIAL & METHODS 

 

Mice 

 

C57BL/6 and BALB/c mice, 10-11 weeks old, were purchased from Charles River 

Laboratories (Montréal, Canada) and CD115gfp/+and Zbtb46gfp/+ mice were purchased from 

Jackson laboratories (Bar Harbor, ME). All animal experiments were approved by the ethical 

animal care committees of the Montreal Heart Institute and Institut de Recherches Cliniques 

de Montréal. 

 

Sponge preparation and implantation 

 

Sterilized polyvinyl alcohol (PVA) sponges (6 mm diameter x 2 mm width) were soaked in 

200 μl of growth factor depleted Matrigel (BD Biosciences, Mississauga, Canada) containing 

PBS or 200 ng of VEGF (PeproTech, Rocky Hill, NJ), Ang1 or Ang2 (R&D Systems, 

Minneapolis, MN) for 20 minutes at 4oC. Subsequently, the sponges were incubated for 20 

minutes at 37oC prior to implantation. Under anesthesia with 2% isoflurane USP, two sponges 

treated with the same growth factors were inserted subcutaneously through two 1 cm 

orthogonal incisions in the dorsa of the animals. The incisions were then clipped for closure, 

and the mice were subcutaneously injected with an analgesic agent (0.1 ml of Anaphen; 1 

mg/ml). The mice were sacrificed under anaesthesia at day 4, 7, 14 or 21 post-procedure. 
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Histology and immunohistochemistry analyses 

 

The harvested sponge implants were fixed in 10% formalin PBS-buffered solution, embedded 

into paraffin blocks and sectioned sagittally (6 μm-thick).  The sections were stained with 

Masson’s trichrome reagent for a global overview of cellular invasion in the implants. 

Immunohistological stainings were performed using the avidin-biotin complex for the 

validation of angiogenesis and inflammatory cells infiltration as previously described 

[Lemieux et al., 2005; Marchand et al., 2002]. The primary antisera used in this study were: 

ECs specific goat anti-mouse CD31 (Santa Cruz Biotechnology Inc, CA), SMCs specific 

mouse anti-mouse α-SMA (Sigma-Aldrich, Steinheim, Germany; clone 1A4), neutrophils 

specific rabbit anti-mouse myeloperoxydase (MPO) (Thermo Scientific, Rockford, IL) and 

macrophages specific rat anti-mouse F4/80 (Biolegend, San Diego, CA; clone BM8). 

 

To assess the maturation of neovessels, a sequential double immunohistochemistry 

(IHC) staining was performed. The sponge sections underwent first round of IHC using the 

primary antisera anti-CD31 and host specific biotinylated secondary antibody. Peroxidase was 

developed by the DAB substrate.  The tissues underwent a second round of IHC protocol with 

the primary antisera anti-α-SMA and host specific biotinylated secondary antibody. Alpha(α)-

SMA expression was detected in turquoise using Vina green chromogen (Biocare Medical Inc, 

Concord, CA). 
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Microscopy and quantification 

 

Images were collected using a brightfield microscope and were analysed using Image-Pro Plus 

software.  Images of selected regions of highest positive signal were acquired under 200x 

magnification of each stained section (endothelial cells, neutrophils, macrophages and smooth 

muscle cells). These selected regions were then quantified using the color segmentation 

method. Thresholds were empirically set to select pixels by analysing a test set of 10 images 

per batch of staining. The selected pixels represented the expression of the stained cell. These 

empirically determined thresholds were recorded in a macro and were applied to all images 

that were analysed. The number of pixels counted by the macro was recorded in mm2. The 

Matrigel area was measured using Image Pro’s calibrated area measurement tool in mm2. The 

percent occupancy of studied cells in the Matrigel from each sponge was calculated by taking 

the mean of: (area of counted pixels (mm2)/area of Matrigel (mm2)) x 100 of five randomly 

selected images per sponge. The mean microvessel density was expressed as the absolute 

number of microvessels counted/area of Matrigel (mm2).  The cross-sectional area occupied 

by these blood vessels was also simultaneously measured. The vessel maturation index was 

measured as: ((number of α-SMA-positive vessels/number of CD31-positive vessels) x 100).  

 

Sponge single cell preparation and flow cytometry analysis 

 

Single cell suspensions were isolated from sponges and spleen as previously described [Choi 

et al., 2011]. Briefly, the sponges and corresponding spleens were isolated from C57BL/6 

mice, minced and incubated for 60 min at 37oC in an enzyme mixture. Following the blockage 
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of Fc receptors using culture supernatant of 2.4G2 hybdridoma, the cells were stained with 

fluorophore-conjugated antibodies. The stained cells were acquired using LSR Fortessa 

(Becton Dickinson, Mississauga, Canada) and were analyzed using FlowJo (Tree Star Inc., 

Ashland, OR). The monoclonal antibodies used in both flow cytometry analysis and FACS 

were anti-mouse CD45, CD64, CD3, CD19, Ly6G (clone: 1A8), MHCII, CD11c and 

corresponding isotype controls were purchased from BioLegend.  

 

Analysis of phagocytosis 

 

Sponge and splenic CD45+CD11c+MHCII+ cells isolated from C57BL/6 mice were incubated 

with 0.00134% of 0.50 µm Fluoresbrite® YG Microspheres (Polysciences, Inc., Warrington, 

PA) for 30 min at 37oC. The cells were then labeled with monoclonal antibodies against 

CD45, CD11c, MHCII and CD19 and analyzed by flow cytometry. 

 

Mixed leukocyte reactions  

 

Sponge and splenic CD45+ cells were FACS (Beckman Coulter MoFlo, Mississauga, Canada) 

sorted into CD11c+MHCII+ cell population and CD11c-MHCII-Ly6G+ neutrophils from 

C57BL/6 mice. For proliferative analysis, splenic T-cells were isolated from BALB/c mice by 

excluding B220+, F4/80+, CD49b+, I-Ab+ cells using anti-rat IgG Dynabeads (Invitrogen, 

Burlington, Canada).  These allogenic T-cells were subsequently labeled with 

carboxyfluorescein diacetate-succinimidyl ester (CFSE) and were combined with isolated 

stimulator cells (splenic CD11c+MHCII+ cells, sponge CD11c+MHCII+ cells and neutrophils; 
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stimulator: T-cell ratio of 1:10) in microtest wells at 5,000 of stimulator to 50,000 T-

cells/well. Four days later, T-cell proliferation was evaluated by CFSE dilution in flow 

cytometry. 

 

Statistical analyses  

 

Results are presented as the mean ± SEM and all comparisons were made between each 

conditions at corresponding days by analysis of variance (ANOVA) followed by a Bonferroni 

t-test. Differences were considered significant at p-values less than 0.05.  
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RESULTS 

 

VEGF and angiopoietins promote blood vessel formation 

 

Previous studies have demonstrated that VEGF and angiopoietins play precise, 

complementary and coordinated roles in angiogenesis.  In the present study, we wanted to 

assess the individual pro-angiogenic activities of VEGF and angiopoietins in a novel variant of 

the sponge/Matrigel angiogenic model.  To monitor vascularization and to examine the 

angiogenic microenvironment in the sponges, we performed histological analysis using 

Masson’s trichrome staining of the sponges at different time points from day 4 to day 21.  

Sponges containing PBS followed the time-course of the host foreign body response in terms 

of cellular infiltration and neovessels formation (Figure 1A and C).  In contrast, sponges 

loaded with VEGF, Ang1 or Ang2 (200 ng/200 μl) elicited a robust invasion of various cell 

types into the Matrigel giving rise to a highly vascularized matrix by day 7 (Figure 1B, D-F).  

 

Based on endothelial cell-specific CD31 IHC detection (Figure 2A; upper left insert), 

for a more comprehensive analysis, sponges containing PBS, VEGF, Ang1 or Ang2 showed 

marginal amount of EC recruitment by day 4 (Figure 2A).  However, in the presence of any 

one of the tested growth factors, this effect became significant by day 7 and 14 with an 

increase of ≈3-5 fold as compared to PBS-treated sponges. At day 21, the percentage of CD31 

expression in PBS-treated sponges became comparable to VEGF and Ang2 treated sponges, 

whereas Ang1 continuously maintained its capacity to recruit ECs.  These recruited ECs took 

their neovessel structure (lumen formation) by day 7 in presence of VEGF, Ang1 or Ang2 
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(Figure 2B).  Once formed by day 7, the microvessel density remained stable, ranging from 50 

to 70 vessels/mm2 of Matrigel.  Although delayed in time, the microvessel density under PBS-

treatment became comparable (≈50 vessels/mm2 of Matrigel) to the growth factor-treated 

sponges by day 14 (Figure 2B).  Finally, in presence of Ang2 the average cross-sectional area 

occupied by the neovessels formed by day 14 to 21 (>250 μm2) was greater than the area of 

vessels formed in presence of VEGF or Ang1 (≈150-225 μm2). However, under PBS 

treatment, the primary vessels formed by day 14, were smaller (≈100 μm2) but underwent 

remodeling and nearly doubled by day 21 (Figure 2C).  

 

VEGF and angiopoietins promote blood vessel maturation 

 

Vessel maturation is critical in angiogenesis, as the stability of an induced vasculature is 

dependent on the mural cell association to prevent vessel regression [Bergers and Song, 2005].  

We thus, wanted to elucidate the temporal sequel of VEGF and angiopoietins mediated 

maturation of neovessels given a pro-inflammatory environment. The recruitment of SMCs 

was detected based on α-SMA protein expression by day 7 in all tested conditions (Figure 

3A).  Yet, treatment with VEGF and angiopoietins individually triggered a more rapid and 

pronounced recruitment of SMCs, producing a ≈10-12-fold increase as compared to PBS-

treated group.  By day 14, the number of SMCs detected under growth factor stimulation 

plateaued, while the venue of SMCs under PBS-treatment caught up yet remaining ≈2.5-3-fold 

lower to what was mediated by VEGF and the angiopoietins.  We also observed that by day 

21, the area covered by SMCs in presence of VEGF or Ang1 was maintained whereas it 

partially declined under PBS or Ang2 treatment (Figure 3A).  
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To assess whether the SMCs remained sparse into the Matrigel and/or associated with 

neovessels, we performed double IHC staining against CD31 and α-SMA proteins.  We 

observed a common inflection point by day 7 in presence of the different growth factors, 

favoring the formation of neovessels, the migration of SMCs and the surrounding of SMCs 

around the neovessels as compared to PBS-treated sponges (Figure 3B).  Sponges harvested at 

day 4 under all of the tested treatments only supported the recruitment of ECs and not of 

SMCs (Figure 3A). By day 14 and 21, the maturing blood vessels were covered with multiple 

layers of SMCs for all conditions (Figure 3B).  However, although the number of neovessels 

surrounded by at least a single layer of SMCs by day 7 was ≈60-70% and reached up to 80% 

by day 14 or 21 under growth factor treatments, it plateaued to about 40% by day 14 in PBS-

treated sponges (Figure 3C).   

 

VEGF and angiopoietins mediated angiogenesis is accompanied by inflammatory cells  

 

Inflammatory cells, namely neutrophils and monocytes/macrophages participate in the 

angiogenic process through the secretion of pro- and anti-inflammatory cytokines by 

controlling EC activation, migration and proliferation [El Awad et al., 2000; Lingen, 2001; 

Voronov et al., 2003]. Using anti-MPO antibody (Figure 4A; upper right insert), we observed 

significant recruitment of neutrophils by day 7 in presence of VEGF, which peaked by day 14 

covering about ≈2% of total surface area, and then faded away by day 21. In addition, VEGF 

was more potent as compared to the angiopoietins to promote the recruitment of neutrophils 

by day 14. Ang2 showed a significant peak (≈1%) in neutrophil recruitment by day 7 and its 

potency decreased gradually over time.  On the other hand, Ang1 showed a mild effect on 
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neutrophil recruitment as compared to PBS-treated sponges (Figure 4A).  We looked at the 

recruitment of monocytes/macrophages based on F4/80 selective protein detection (Figure 4B; 

upper right insert). The three growth factors individually tended to have a peak recruitment of 

macrophages by day 14, which was massive and significant under VEGF treatment (≈1%) as 

compared to PBS and angipoietins-treated animals (Figure 4B).  

 

Characterization of inflammatory and immune cells in sponges by FACS analyses 

 

To delineate the different leukocyte subsets recruited in the sponges, we utilized multicolor 

flow cytometry procedure on single cell preparation from sponges.  CD45+ leukocytes in the 

sponges were primarily comprised of CD11c+MHCII+ cells, CD11c-MHCII-Ly6G+ cells 

(neutrophils), CD11c-MHCII-CD3+ cells (T-cells) and CD11c-MHCII+CD19+ cells (B-cells) 

(Figure 5A).  The fate of CD11c+MHCII+ cells at this point remained to be investigated.  

Previous studies demonstrated that dentritic cells (DCs) constitutively express the 

hematopoietic markers CD45, CD11c and MHCII in lymphoid tissues such as spleen and 

lymph nodes. Nonetheless, this marker expression profile on its own is not sufficient to define 

classical DCs (cDCs) in nonlymphoid tissues.  In fact, high and similar levels of CD11c and 

MHCII expression have been observed in both cDCs and in macrophages [Gautier et al., 

2012].  Thus, we performed marker analyses, genetic and functional studies to specifically 

identify the CD11c+MHCII+ cell population in the sponges as cDCs and/or macrophages.  

Recently, Zbtb46 was identified as a selectively expressed transcription factor by cDCs but not 

by monocytes, macrophages and other lymphoid and myeloid lineages (e.g. neutrophils, T-

cells and B-cells) [Satpathy et al., 2012]. Therefore, we harvested sponge cells from Zbtb46+/+ 
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(WT) and Zbtb46gfp/+ mice and analyzed for GFP expression. As anticipated, CD45+ cell 

population containing splenic DCs were GFP+ while neutrophils recruited in the sponges were 

devoid of GFP expression.  In contrast to splenic DCs, CD11c+MHCII+ cell population 

isolated from the sponges lacked expression of GFP (Figure 5B).  Next, FACS-sorted 

CD11c+MHCII+ cells from sponges and spleens along with neutrophils were tested for their 

ability to stimulate allogenic T-cells. Only splenic DCs were strong stimulators of T-cell 

proliferation (Figure 5C). T-cells alone, neutrophils from sponges and spleen and 

CD11c+MHCII+ cells from sponges did not induce allogenic T-cell proliferation. These results 

confirm that CD11c+MHCII+ cells in the sponges do not possess DCs functional 

characteristics. 

 

In contrast, CD11c+MHCII+ cells from PBS, VEGF, Ang1 and Ang2-treated sponges 

were positive for F4/80 marker while the neutrophils from the corresponding sponges were 

negative (Figure 6A). Although in the past, F4/80 served as a reliable marker of macrophages, 

additional analysis of a panel of surface markers is now required to define macrophage 

population. Recently, the surface marker CD64 expression was identified as a reliable marker 

of mature tissue macrophages [Gautier et al., 2012]. Interestingly, in our study, we observed 

that the CD11c+MHCII+ cells isolated from the sponges were all CD64+. Moreover, they also 

expressed CD68 and CD206, two additional markers of macrophages [Gautier et al., 2012] 

(Figure 6B). To test whether the CD11c+MHCII+ cells recruited in the sponges had the 

phagocytic activity of macrophages, we analyzed their phagocytic capacity by flow cytometry. 

Neutrophils from the sponges took up 0-2 beads/cell while all sponge MHCII+CD11c+ cells 

were highly phagocytic (>3 beads uptake/cell). B-cells isolated from the sponges served as our 
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negative control and it provided no phagocytic activity (Figure 6C).  To further confirm these 

isolated cells from the sponges as macrophages, we used transgenic CD115gfp/+ mice, which 

express MCSF-1R, a receptor for macrophage-colony stimulating factor [Sasmono et al., 

2007].  Indeed, the CD11c+MHCII+ cells isolated from the sponges implanted in CD115gfp/+ 

mice were GFP positive. However, B-cells (negative control) from the transgenic CD115gfp/+ 

and WT mice were GFP negative (Figure 6D). Taken together, these results demonstrate that 

the MHCII+CD11c+ cells present in the sponges are macrophages and not DCs.  
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DISCUSSION 

 

Compelling studies have demonstrated the direct participation of neutrophils and 

monocytes/macrophages in the induction of inflammatory response prior to the initiation of 

pathological angiogenesis. Indeed, the release of pro-inflammatory cytokines and growth 

factors provides a suited autocrine/paracrine milieu to fully support blood vessels formation 

[Aplin et al., 2006; Gong and Koh, 2010; Lin et al., 2006; Schruefer et al., 2005]. As we have 

previously illustrated the pro-inflammatory activities of VEGF and angiopoietins, we were led 

to address their capacity to promote inflammatory response associated to in vivo angiogenesis. 

In the present study, we utilized a novel variant of the murine sponge/Matrigel angiogenic 

assay to evaluate the sequel of host-derived blood vessel formation and inflammatory cell 

infiltration into the sponges. Herein, we demonstrate that VEGF, Ang1 and Ang2 individually 

are highly potent and efficacious in recruiting ECs, SMCs and inflammatory cells (mainly 

neutrophils and macrophages, and sparsely T- and B-cells).  More importantly, these tested 

growth factors given individually were not only capable to favor the formation of neovessels 

but also their maturation as observed by the coordinated ensheating of SMCs around the 

neovessels and the presence of circulating red blood cells in the vessel lumen. Hence, this 

study suggests the potential contribution of both inflammatory cells and angiogenic growth 

factors to fully support blood vessel formation and their maturation. 

 

Recent efforts in clinical trials focus on localized therapy for restoring blood flow in 

ischemic regions as tissue loss in these patients was localized [Simons et al., 2000]. While 

growth factor therapy remained a gold standard for the induction of local therapeutic 
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angiogenesis, translating this concept into an effective and safe therapy for patients became a 

challenge. Presently, bio-material based approaches is being successfully utilized in animal 

models to study the capacity of growth factors, cytokines/chemokines and nonprotein 

mediators to promote blood vessel formation [Andrade et al., 1997] . One such method is the 

subcutaneous implantation of PVA sponges in mice, which promotes a robust infiltration of 

inflammatory cells, providing a pro-inflammatory environment, and giving rise to a highly 

vascularized sponge matrix. However, due to continuous inflammation, these newly formed 

vessels were postulated to be fragile, permeable and dilated with no indication of neovessel 

maturation (lack of SMCs ensheathing) [Andrade et al., 1997]. A major disadvantage of such 

matrix implantation is that it induces non-specific inflammatory host response and thus limits 

to acute studies [Staton et al., 2009]. Later, the Matrigel plug assay became the widely used 

model for studies involving in vivo testing for angiogenesis, as it provides a natural 

environment for the formation of neovessels without inducing non-specific immune response 

[Staton et al., 2009]. Yet, although Matrigel injection containing VEGF in mice successfully 

promoted the formation of neovessels, the model did not lead to the maturation of the newly 

formed vessels [Tengood et al., 2010]. As inflammation is an important stimulus for the 

induction of new vessel growth, we hypothesized that the combination of both these 

approaches might fulfill the required environment to favor the formation and maturation of 

neovessels. The classical sponge/Matrigel model, encompassing both the sponge model and 

the Matrigel assay, requires the subcutaneous injection of Matrigel containing the protein of 

interest, 20-30 minutes prior to the surgical introduction of PVA sponges [Akhtar et al., 2002; 

Norrby, 2006]. This method has been identified to provide variable amount of test compound 

within the implants and to trigger the fibrotic encapsulation of the sponges [Norrby, 2006]. In 
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our variation of the sponge/Matrigel model, we have soaked PVA sponges into Matrigel 

containing the tested growth factors prior to the surgical implantation. We observed that our 

technique was simple, less time consuming, that each sponge implant contained equal volume 

of the tested growth factors and it did not induce non-specific immune response.  

 

We observed an early onset of EC migration in the sponges within the first 4 days and 

a significant number of blood vessel formation by day 7 under VEGF or angiopoietin 

stimulation, thus, challenging the classical role of angiopoietins in angiogenesis. Interestingly, 

the amount of ECs migrated into the sponges kept increasing up to day 14 or 21, while the 

number of blood vessels once formed by day 7 remained stable, suggesting that the model 

itself exerts a restrain on the maximal capacity of blood vessel formation even in presence of 

free ECs. Our data is in line with previous studies reporting the pro-angiogenic and mitogenic 

activities of VEGF in various in vivo models including the chick chorioallantoic membrane 

[Plouet et al., 1989], the rabbit cornea [Phillips et al., 1994] and the primate iris [Tolentino et 

al., 1996].  However, the capacity of angiopoietins to initiate the angiogenic cascade remains 

controversial. For instance, while some in vivo reports demonstrated that Ang1 alone is unable 

to induce angiogenesis but can potentiate VEGF mediated angiogenic response [Asahara et al., 

1998; Chae et al., 2000], others showed that Ang1 can promote a robust neovascularization in 

Matrigel implants [Babaei et al., 2003]. The implication of Ang2 in angiogenesis is tied with 

VEGF where it promotes destabilization of pre-existing blood vessels in the absence of VEGF 

[Holash et al., 1999; Lobov et al., 2002]. Yet, other studies reported that Ang2 alone can 

induce vascular remodeling and angiogenesis in absence of VEGF [Kim et al., 2000b; 

Mochizuki et al., 2002]. Our study illustrates that the pro-inflammatory environment itself is 
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sufficient to initiate the angiogenic cascade and the addition of the tested growth factors 

further allows this effect to be more potent and efficient.  

 

Interestingly, we also observed the venue and the ensheathing of SMCs around 

neovessels by day 7 in presence of the tested growth factors. Indeed, all three growth factors 

promoted the maturation of blood vessels with equal potency. Although, our result is 

consistent with the stabilizing effect of Ang1 on vascular endothelium, it is also in 

contradiction with the proposed role for VEGF and Ang2 during angiogenesis. In fact, VEGF 

and angiopoietins are incapable of directly activating SMCs. Yet, they can promote the 

activation of ECs and support the migration of inflammatory cells (e.g. macrophages and 

neutrophils) which can promote the release of various growth factors and cytokines (e.g. FGF, 

VEGF, Ang1, interleukins (IL-1β, IL-8 and -10) and CXCL1) [Dinarello, 2009; Gaudry et al., 

1997; Neagoe et al., 2009; Noonan et al., 2008]. Ang2 in particular, has been shown to possess 

pro-inflammatory characteristics on both ECs and neutrophils [Fiedler and Augustin, 2006; 

Fiedler et al., 2006; Kim and Koh, 2011; Lemieux et al., 2005]. In addition, neutrophils and 

macrophages can equally trigger the release of numerous metalloproteinases, neutrophil 

elastase and reactive oxygen species (ROS), which can facilitate extracellular matrix 

degradation, favoring the migration and proliferation of ECs and SMCs (reviewed in [van 

Hinsbergh et al., 2006]). In addition, the presence of neutrophils and macrophages in the 

sponges at day 7 during the recruitment of SMCs may initiate a paracrine compensation 

pathway in order to trigger the maturation event. Interestingly, from the histological sections, 

we observed that the newly formed vessels in presence of VEGF, Ang1 or Ang2 were 

“functional” based on the presence red blood cells in the neovessels and that they appeared to 
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be non-leaky. Vascular permeability study must be conducted in order to confirm this later 

statement. However, since not all the neovessels formed in the sponges are necessarily 

matured at any given time, it is thus, not possible to confirm the absence of vascular leakiness.  

Furthermore, we also observed that the blood vessels once formed undergo no or marginal 

diameter remodeling. Ang1 in the past has been identified to play an important role in the 

reorganization of EC into tubule-like structures during angiogenesis by stimulating the 

production of proteases. Plasmin and matrix metalloproteases, examples of such proteases, 

decrease the EC-substratum interaction allowing the ECs to reshape the vessel lumen [Kim et 

al., 2000a]. However, in our study, upon the formation of neovessels by day 7 (with growth 

factors), we did not observe additional remodeling over time. This may be due to the rapid 

maturation of the newly formed vessels taking place simultaneous to blood vessel formation 

which may prevent further unrestricted enlargement of the growing vessels [Hoeben et al., 

2004]. As for the PBS-treated sponges, the delayed recruitment of SMCs may explain the 

slight remodeling of the area of occupancy that took place between day 14 and 21.  Together, 

VEGF, Ang1 and Ang2 alone are capable of mediating the maturation process in the presence 

of a pro-inflammatory environment suggesting that inflammation plays a major role in the 

angiogenic process.  

 

This notion is further strengthened as observed under various pathological conditions. 

For instance, suppression of inflammatory response by genetic abnormalities, 

pathophysiological processes, or pharmacotherapy produce adverse effects in the ability of the 

host to induce new vessel growth [Jones et al., 1999]; hence inflammation, once considered to 

be a homeostatic response protecting the body from invading pathogens, is now been shown to 
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function as a critical stimulus for neovessel growth. Neutrophils being the most abundant 

leukocyte in the circulation have been demonstrated to play important roles during 

pathological angiogenesis. Although, the exact mechanism through which tumor associated 

neutrophils mediate or modulate angiogenesis has not been fully elucidated, the importance of 

neutrophils in tumor angiogenesis has been noted from human biopsies [Nozawa et al., 2006; 

Van den Steen et al., 2000]. Similarly, increased macrophage infiltration in various types of 

cancer correlates positively with vascularity, tumor stage and malignancy [Chen et al., 2003; 

Torisu et al., 2000]. Once again the exact function of the macrophages in the tumor 

environment remains a nuance. 

 

Likewise, although we did not study the exact roles of inflammatory cells in 

angiogenesis, we observed the presence of neutrophils, macrophages, and sparsely T- and B-

cells, in the tissue section by IHC and/or flow cytometry. Surprisingly, the presence of 

neutrophils, expected to be one of the first cells recruited at the site of inflammation, was still 

observed at latter time points raising the question whether we have continuous recruitment of 

neutrophils in sponges or if they have been differentiated to other cell types. Recently, it was 

suggested that neutrophils could differentiate into neutrophil-DC hybrids with DC-like 

properties in the setting of experimentally induced inflammatory lesions in mice [Geng et al., 

2013; Matsushima et al., 2013]. DCs are professional antigen presenting cells, which reside in 

peripheral tissues in an immature state. Upon microbial contact and stimulation by 

inflammatory cytokines, it possesses a unique ability to induce both primary and secondary T- 

and B-cell responses. It is now clear that DCs express a wide array of pro- and anti-

inflammatory mediators that mediate a significant role in those pathophysiological settings 
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characterized by DC activation and angiogenesis [Sozzani et al., 2007]. Thus, we hypothesized 

that neutrophils may differentiate into neutrophil-DC hybrids in our system. However, 

CD11c+MHCII+ cells, which we initially thought to be DCs, turned out to be neither DCs nor 

neutrophil-DC hybrid cells. These cells 1) did not express DC-lineage transcriptional factor 

Zbtb46 and 2) did not stimulate allogenic T-cells in MLR assay. Instead, they expressed 

macrophage specific markers including F4/80, CD68, CD206 and CD115/mCSF1R and were 

highly phagocytic. Hence, our sponge/Matrigel model, apart from B and T-cells, contains two 

major inflammatory cell populations: neutrophils and macrophages. 

 

In summary, our murine sponge/Matrigel model in presence of the pro-angiogenic 

growth factors (VEGF, Ang1 or Ang2) allowed the formation of new vessels and more 

importantly, it led to their maturation. Moreover, the recruitment of inflammatory cells in the 

Matrigel by the provided growth factors further accelerated these processes with greater 

potency. Thus, such pro-inflammatory/angiogenic model along with the growth factors may 

provide a suited autocrine/paracrine environment capable of triggering and supporting the 

formation and maturation of neovessels, illustrating the necessity of inflammation in the 

creation of mature blood vessels.  Further studies will be needed through selected depletion of 

neutrophils and monocytes/macrophages to delineate the role of these cells in such angiogenic 

model.  
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FIGURE LEGENDS 

Figure 1. Pro-angiogenic and inflammatory activities of VEGF and angiopoietins in 

mice. The images illustrate representative scans (A and B) and representative histological 

sections (Masson’s trichrome staining, 400X magnification) of PVA sponges soaked in growth 

factor depleted Matrigel containing PBS, VEGF, Ang1 or Ang2 (200 ng/200 μl) harvested at 

day 7 (C-F). Treatment with VEGF, Ang1 or Ang2 promoted a marked recruitment of 

numerous inflammatory cells, endothelial cells and mural cells in the region of Matrigel within 

the sponges and the formation of neovessels (black arrow) containing circulating red blood 

cells (star), indicative of functional blood vessels (B, D-F). Neovessel formation from 

endothelial cells (lumen formation) lacking circulating red blood cells was also observed 

(white arrow). In contrast, PBS treated sponges showed less cellular accumulation and no 

blood vessel formation by day 7 (A and C).  

Figure 2. Effect of VEGF and angiopoietins on angiogenesis in a time-dependent manner. 

PVA sponges soaked in growth factor depleted Matrigel containing PBS, VEGF, Ang1 or 

Ang2 (200 ng/200 μl) were removed from the animals at day 4, 7, 14 or 21. Subsequently, 

IHC staining against endothelial cell specific CD31 protein was performed in order to assess 

the recruitment of endothelial cells (IHC insert; 1000X; A), microvessel density (B) and the 

average cross-sectional area occupied by the vessels (C) in the Matrigel. Data are represented 

as mean ± SEM of  4 to 10 independent experiments per condition.  *p< 0.05, **p< 0.01, *** 

p< 0.001 as compared to PBS-treatment at corresponding days, N/D: not detectable. 
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Figure 3. VEGF and angiopoietins mediated SMC migration and neovascular 

maturation in the sponges. PVA sponges soaked in growth factor depleted Matrigel 

containing PBS, VEGF, Ang1 or Ang2 (200 ng/200 μl) were removed from the animals at day 

4, 7, 14 or 21. Subsequently, IHC staining against α-SMA was performed in order to assess 

the venue of SMCs (A). The 4 panels represent immunohistogical snapshots illustrating the 

temporal evolution of mature blood vessels in the sponges in presence of the studied growth 

factors (Ang1) at days 4, 7, 14 and 21.  Endothelial cells were stained with anti-CD31 (brown 

staining; thin arrow) and SMCs were stained with anti-α-SMA (turquoise staining; thick 

arrow) (1000X magnification). The neovessels were not only ensheathed by SMCs but also 

contained red blood cells (star) (B). The percentage of mature blood vessels was quantified as 

the number of neovessels surrounded by SMCs over the total number of blood vessels (C). 

Data are represented as mean ± SEM of 4 to 10 independent experiments per condition.  *p< 

0.05, **p< 0.01, *** p< 0.001 as compared to PBS-treatment at corresponding days, N/D: not 

detectable. 

 

Figure 4. Identification of VEGF and angiopoietins mediated inflammatory cells influx in 

the sponges. Neutrophil (A) and macrophage (B) accumulation in the sponge implants were 

measured as MPO (IHC insert; 1000X; A) and F4/80 (IHC insert; 1000X; B) expression, 

respectively, in the Matrigel region of the sponges. VEGF, Ang1 and Ang2 mediated 

inflammatory cells (neutrophil and macrophage) recruitment was temporal-dependent with 

different potency. Data are represented as mean ± SEM of 4 to 10 independent experiments 

per condition.  *p< 0.05, **p< 0.01, *** p< 0.001 as compared to PBS-treatment, §§p< 0.01 as 

compared to VEGF-treatment at corresponding days, N/D: not detectable. 
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Figure 5. CD11c+MHCII+ cells recruited in the sponges do not possess DC-

characteristics. Single cell suspensions from sponges harvested from C57BL/6 mice were 

examined for surface expression of indicated markers. The data illustrates the expression 

profile of CD11c and MHCII, CD3 (T-cells), CD19 (B-cells) and Ly6G (neutrophils) within 

CD45+ gated cell population (A). Representative histogram of GFP expression of 

CD11c+MHCII+ cells in spleen (n=2), VEGF-treated sponges and neutrophils (n=4) harvested 

from Zbtb46+/+ (WT) and Zbtb46gfp/+ mice (B). FACS purified CD11c+MHCII+ cells isolated 

from sponges (treated with VEGF or Ang1) and spleens along with neutrophils retrieved from 

C57BL/6 mice were co-cultured with T-cells purified from BALB/c mice (CD3+CFSE-labled 

T-cells) in MLR. CFSE levels were analyzed four days later. Proliferation of allogenic T-cells 

results in a reduction of CFSE fluorescence intensity (n=4; C). 

 

Figure 6. CD11c+MHCII+ cells recruited in the sponges are classical and non-classical 

macrophages. The images illustrate representative histogram (n=2-4 independent experiments 

per condition) for F4/80 expression of CD11c+MHCII+ cells and CD11c-MHCII- Ly6G+ 

neutrophils isolated from sponges pretreated with PBS, VEGF, Ang1 or Ang2 (A). 

CD11c+MHCII+ CD64+ cells were stained for the intracellular markers CD68 and CD206 (B). 

Single cell suspensions isolated from VEGF treated sponge were bathed with 0.5 µm YG 

microspheres for 30 min at 37oC and the uptake of these microspheres (phagocytosis) were 

analysed by flow cytometry (C). B-cells, neutrophils and CD11c+MHCII+ cells isolated from 

VEGF treated sponges harvested from CD115gfp/+ and WT mice were analysed for GFP 

expression (D). 
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FIGURE 6 
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3.0 DISCUSSION 

  

In an effort to elucidate the individual capacity of VEGF and angiopoietins to mediate 

angiogenesis and to identify the different inflammatory cells accompanying this process, we 

developed a novel variant of the murine sponge/Matrigel model. Firstly, we demonstrated that 

the tested growth factors (VEGF, Ang1 and Ang2) alone are highly potent and rapid in 

inducing the formation of mature and “functional” (presence of circulating red blood cells in 

the neovascular lumen) blood vessels. Moreover, the angiogenic process mediated by the three 

growth factors was primarily accompanied by the inflammatory leukocytes neutrophils and 

macrophages in a temporal-dependent manner. Marginal levels of lymphocytes were also 

detected in our study. Together, our findings reveal that VEGF, Ang1 and Ang2 individually, 

are not only capable of recruiting inflammatory cells and mediating the angiogenic process 

(EC proliferation and migration, and neovessel formation), but are also efficient in promoting 

the maturation of the neovessels; thus challenging the classical view of these growth factors 

having co-ordinated and complimentary roles in angiogenesis.   

 

3.1 Suitability of the sponge/Matrigel model for angiogenic study 

 

Recent efforts in clinical trials focus on localized therapy for restoring blood flow in ischemic 

regions as tissue loss in these patients are highly localized [294, 295]. Few of such attempts 

included the delivery of exogenous angiogenic factors through gene therapy and biochemical 

agents at the site of ischemia to promote angiogenesis [296-298]. Although, these methods 

initially produced therapeutic benefits, it however had limitations and produced no or negative 
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effects at later time point. While growth factor therapy remains a gold standard for the 

induction of local therapeutic angiogenesis, translating this concept into an effective and safe 

therapy for patients remains a challenge.  

 

Presently, bio-material based approaches is being successfully utilized in animal models to 

study the capacity of cytokines, growth factors, chemokines and nonprotein mediators to 

promote blood vessel formation and inflammatory cells recruitment [296-298]. One such 

example is the subcutaneous implantation of polyvinyl alcohol (PVA) sponges in mice. This 

model has been shown to promote a robust invasion of inflammatory cells from the dermis 

into the sponge (providing a pro-inflammatory environment) and give rise to a highly 

vascularized sponge tissue [299]. However, a study using these PVA sponges postulated that 

the newly formed vessels in the sponges were fragile, permeable and dilated due to continuous 

inflammation in the angiogenic tissue; there was no indication of neovessel maturation (e.g. 

the presence of SMCs surrounding the newly formed vessels) [296].  A major disadvantage of 

such matrix implantation is that it induces non-specific inflammatory host response; hence, it 

limits to acute studies [283]. Later, the Matrigel plug (gelatinous protein mix) assay became 

the widely used model for studies involving in vivo testing for angiogenesis.  The advantage of 

this model is that the growth factor depleted Matrigel provides a natural environment for the 

formation of neovessels without inducing non-specific immune response [300]. In fact, 

subcutaneous injection of this biologically inert substance containing VEGF in animal models 

successfully promoted the formation of neovessels but did not lead to their maturation, a 

crucial event in the stabilization of nascent blood vessels [59, 301]. 



 

103 
 

In the present study, we combined both the PVA sponge model and the Matrigel plug 

assay in order to put forth a pro-inflammatory and angiogenic environment as we reasoned 

that inflammation (to some extent) might be an important stimulus for the creation of mature 

blood vessels. In our variation of the sponge/Matrigel model, we soaked the PVA sponges in 

growth-factor depleted Matrigel containing the tested growth factor prior to implantation; the 

sponges were completely coated with the mixture of Matrigel containing VEGF, Ang1 or 

Ang2.  The only source of pro-angiogenic stimulus in our model came from the growth factors 

that we provided. As this approach mimicked the physiological environment, the Matrigel 

encapsulated sponges did not provoke non-specific immune response in our animals with time. 

In fact, the sponges remained intact with minimal fibrous covering. 

 

Technique-wise, our model was very simple, easy to manipulate and less time-

consuming as compared to other variants of the sponge/Matrigel assays. Furthermore, in 

contrast to Matrigel plugs, post-retrieval processing of the sponges for IHC and cellular 

quantification were very straightforward. Moreover, for the first time, we were able to confirm 

our findings using flow cytometric analysis of the sponges which allowed us to test numerous 

cell-specific markers simultaneously. Previous studies in the literature using the Matrigel 

and/or PVA sponge models usually performed histological techniques as their method of 

analysis.  
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3.2 Inflammatory cells potentiate the pro-angiogenic activities of VEGF and 

angiopoietins 

Although, we did not study the exact roles of neutrophils and macrophages in angiogenesis, 

our experiments demonstrate that the presence of these leukocytes in our model enhances the 

pro-angiogenic activities of VEGF, Ang1 and Ang2 in the formation of mature blood vessels. 

Indeed, we have shown that VEGF, Ang1 and Ang2 individually are potent and rapid in 

inducing the recruitment of ECs and the formation of neovessels (lumen formation) as 

compared to PBS. Based on the literature, while the pro-angiogenic and mitogenic activities of 

VEGF have been demonstrated in various in vivo models [19, 57-59, 62], the capacity of 

angiopoietins to initiate the angiogenic cascade remains controversial. For instance, some in 

vivo reports demonstrate that Ang1 alone is unable to induce angiogenesis but can potentiate 

VEGF mediated angiogenic response [119, 302, 303] while other experiments show that Ang1 

can in fact promote a robust neovascularization in Matrigel implants [59, 181, 304]. On the 

other hand, the implication of Ang2 in angiogenesis is normally tied with VEGF where it 

promotes destabilization of pre-existing blood vessels in the presence of VEGF [120, 305]. 

Notably, a recent study has demonstrated that Ang2 alone can induce vascular remodeling and 

angiogenesis in the absence of VEGF [112, 113, 306, 307]. Nonetheless, the expression of 

both VEGFRs and Tie2 on ECs along with the release of various growth factors, cytokines 

(e.g. FGF, VEGF, Ang1, IL-1β and -10), chemokines (IL-8) and CXCL1 (cytokine belonging 

to CXC chemokine family)) by neutrophils and macrophages may explain the capacity of 

exogenous VEGF and angiopoietins to trigger the angiogenic cascade in our model [96, 308-

310]. In addition, the aforementioned leukocytes also release numerous metalloproteinases, 
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neutrophil elastase and reactive oxygen species which may function to degrade the 

extracellular space thereby facilitate the migration of ECs and SMCs. Consistent with our 

assumption, compelling studies do suggest that the recruitment of neutrophils and 

monocytes/macrophages during blood vessels formation release a variety of pro-inflammatory 

cytokines and growth factors to provide a suited autocrine and paracrine milieu to fully 

support this process. In fact, depletion of circulating neutrophils by anti-Gr1 therapy during 

the early stages of pancreatic carcinogenesis in mice significantly reduced the number of 

dysplastic islets that were undergoing angiogenesis [311]. Similarly, depletion of neutrophils 

with intraperitoneal injection of RB6-8C5 antibody inhibited corneal angiogenesis with 

reduced the protein levels of VEGF, macrophage inflammatory protein (MIP)-α and MIP-2 in 

mice [312]. As for the macrophages, its depletion in tumors has been shown to reduce tumor 

angiogenesis [313, 314]. All in all, although the pro-inflammatory environment provided by 

our model was sufficient to trigger the angiogenic cascade, the presence of the growth factors 

and the growth factor mediated recruitment of inflammatory cells enhanced this activity both 

in terms of potency and efficacy. 

 

Interestingly, the number of blood vessels in our model once formed by day 7 did not 

significantly fluctuate in the growth factor treated sponges even in presence of free ECs. 

Either the potency of the growth factors may have declined with time or the sponge/Matrigel 

model itself may have exerted a restrain on the maximal capacity of blood vessel formation. 

This phenomenon is clinically beneficial, as we do not want to produce an excessive number 

of blood vessels at the region of ischemia when translating this approach to bedside.  
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Furthermore, numerous experiments up to date have shown that VEGF on its own is 

insufficient to complete angiogenesis [315]. The promising early angiogenic actions mediated 

by VEGF do not progress to produce the maturation events. Maturation of nascent vessels 

requires the recruitment of pericytes and SMCs that ensheath the vessels providing structural 

stabilization [316]. This is mediated by ECs that release platelet-derived growth factor-B 

(PDGF-B) attracting and stimulating the proliferation of PDGF-Rβ-expressing pericytes [317]. 

VEGF, in the maturation event, has been demonstrated to suppress PDGF-Rβ signaling in 

SMCs through the formation of PDGF-Rβ and activated VEGFR-2 complex [318]. In contrast 

to these findings, our results show that mice in presence of VEGF containing sponges induce 

SMC migration and promote maturation of the newly formed vessels. In fact, the maturation 

process occurred in parallel with the formation of blood vessels. The same effect was observed 

in sponges treated with Ang1 and Ang2. Although, this is consistent to the stabilizing effect of 

Ang1 on vascular endothelium, our results however, contradicts the proposed role of Ang2 in 

angiogenesis where it has been shown to destabilize pre-existing vessels. Ang1 expressed by 

perivascular and mural cells is capable through a paracrine activity of inducing the expression 

of heparin binding epidermal growth factor (HB-EGF) by ECs to stimulate SMCs migration 

[319, 320].  Similarly, Ang2 has been shown to be released by ECs and to possess pro-

inflammatory characteristics on both ECs and neutrophils [117, 196, 255, 321]. Technically, 

based on previous studies, only Ang1 should be capable of promoting the maturation of blood 

vessels and not VEGF and Ang2. Yet, we observed that all three growth factors individually 

promoted the maturation of blood vessels with equal potency. Hence, the presence of 

neutrophils and macrophages initiates a paracrine compensation pathway in order to trigger 

the maturation events. A possible explanation could be due to the release of numerous MMPs 
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by neutrophils which may result in the degradation of ECM enabling SMCs to proliferate and 

migrate towards the nascent vessels. In addition, monocytes and macrophages have been 

demonstrated to release HB-EGF inducing the proliferation of SMCs [322], hence, this may be 

triggering the maturation event. 

 

The newly formed blood vessels in presence of VEGF, Ang1 and Ang2 were 

“functional” as the blood vessels contained red blood cells in them and appeared to be non-

leaky based on histological observations. Confirmation of vessel functionality requires the 

testing for vascular permeability. As the neovessels formed in the sponges are not all mature at 

a given time, it is thus not possible to confirm the absence of vascular leakiness. Furthermore, 

we also observed that the blood vessels once formed undergo no or marginal diameter 

remodeling.  This may be due to the rapid ensheathing of SMCs around the newly formed 

vessels, which prevents further unrestricted enlargement of the growing vessels [21].   

 

Bringing back the past experiments described in the previous section; our results 

suggest that the recruitment of inflammatory cells is crucial for the maturation of blood vessels 

as VEGF containing Matrigel plug assays (lacking inflammatory stimulus) were not successful 

in stabilizing the newly formed vessels [59, 301]. Yet, the autocrine/paracrine inflammatory 

response during angiogenesis must be controlled. For instance, the subcutaneous implantation 

of sponges, which provided a pro-inflammatory environment, was unsuccessful in creating 

mature blood vessels as it caused the encapsulation of the sponges by granulation tissue [296]. 

In the present study however, the recruitment of neutrophils and macrophages was temporal 

dependent where their presence declined by day 21 suggesting that their recruitment was 
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function-oriented. Hence, although inflammation (the recruitment of inflammatory cells) is an 

important stimulus for accompanying angiogenesis, persistent inflammation may be 

detrimental for the formation of functional vessels as the high nutritive demand of the 

inflammatory cells must be overcome by the creation of more vessels. In fact, human 

neutrophils have been demonstrated to express several DC markers when cultured with 

different combination of cytokines. For instance, the expression of DC markers, MHC II, 

CD40, CD86, CD1a, CD1b, and CD1c, were observed on neutrophil-committed precursors 

isolated from leukemia patients when cultured with GM-CSF, IL-4, and TNF-α [323]. 

Furthermore, similar results were obtained from neutrophils isolated from healthy individuals 

[324-327]. In mice, neutrophils isolated from chronic colitis lesions express MHC II and 

CD86 and have the capacity to present peptide antigen to CD4 T cells [328]. The presence of 

neutrophils at later time points in our study arose the questions whether we have continues 

recruitment of neutrophils in the sponges in presence of the growth factors or whether the 

initial recruitment of neutrophils transdifferentiate into DCs possessing neutrophil markers. 

Although, at first, we observed the presence of DC marker profile of CD11C+MHCII+ in the 

sponges containing the tested growth factors, careful marker analyses, genetic and functional 

studies demonstrated that that these double positive cells are macrophages and not from DC. 

Taken together, these results suggest that the neutrophils present in the sponges at later time 

point are not neutrophil-DC hybrid as they did not possess DC functionality but are 

continuously recruited by the growth factors which may be required for aiding the angiogenic 

process.  
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Finally, using flow cytometry we identified marginal levels of T- and B-cells in the 

sponges containing the tested growth factors. T- and B-cells are the key cellular players of the 

adaptive immune response. There are two broad classes of such response, the antibody 

response and the cell-mediated immune response, which are carried out by B-cells and T-cells, 

respectively. In antibody response, plasma B-cells, a subset of B-cells, are activated to secrete 

antibodies in the bloodstream which recognize specific foreign antigen. The binding of the 

antibody to the antigen inactivates viruses and microbial toxins. It is also responsible for 

immunological memory via memory B-cells, another subset of B-cells, such that when the 

host is exposed to the same pathogen again, these memory cells will quickly eliminate the 

pathogen. In cell-mediated immune response on the other hand, T cells react directly against 

foreign antigen that is presented on the surface of host cells or on antigen presenting cells 

mainly DCs and eliminate the infected cell. As our study at this point eliminates the presence 

of DCs in the sponges, it is difficult to reason that the angiogenic process in our model has 

promoted the recruitment of T- and B-cells. Yet, T- and B-cells are abundantly present in the 

bloodstream of mice; hence, this may explain why we observed the presence of T- and B-cells 

in the sponges using flow cytometry.  

 

3.3 Future perspective 

 

As the predominant inflammatory cells recruited in the sponge/Matrigel model are neutrophils 

and macrophages, further studies will be needed through the selected depletion of neutrophils 

and monocytes/macrophages to delineate the role of these cells in the angiogenic process. This 

will allow us to understand whether inflammation, or specifically the presence of neutrophils 
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and/or macrophages, is the missing puzzle that is required for the formation of mature blood 

vessels.  

Currently, various methods have been made available to deplete neutrophils and 

monocytes from the circulation. For instance, neutrophil depletion may be attained through the 

injection of monoclonal anti-Ly6G (clone 1A8) antibody (500 μg/injection) every 48 hours in 

C57/Bl6 mice starting a day prior to the implantation of the sponges. This antibody has been 

shown to be effective in promoting selective depletion of circulating neutrophils [329-331]. 

Corresponding IgG isotype injection must be utilized as a control. Next, as for the role of 

macrophages, the convential approach to deplete monocytes and macrophages was either by 

clodronate liposomes or by antibodies against CSF1R but neither approach is specific for these 

cells [332, 333]. Recently, a transgenic mouse strain combining the macrophage colony-

stimulating factor receptor gene (Csf1r) and lysozyme gene (Lyz2) (LysmCre x Csf1rLsL-DTR) is 

made available that provides a complete loss of peripheral blood monocytes within 24 hours 

post-injection of 100 ng of diphteria toxin. For prolonged monocyte depletion, this injection 

can be repeated every 48 hours [334]. Thus this mouse strain can be utilized to implant our 

sponges in order to observe any changes in the absence of monocytes/macrophages.  

As macrophages have been demonstrated to be key regulators of angiogenesis, it 

would be very interesting to examine the phenotype of the macrophages, whether they are M1 

and/or M2 macrophages, recruited in our sponge/Matrigel model. Based on our results, we 

postulate that the recruitment of macrophages during the initial stages of angiogenesis may be 

of M1 phenotype which can then repolarize to M2 phenotype due to local microenvironmental 
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changes. Hence, such study may explain why we observed a temporal-dependent recruitment 

of macrophages in the sponges. In fact, previous studies have demonstrated that the 

phenotypes of macrophages are unstable and can change overtime. We can address this 

postulation by performing marker analysis that are specific to M1 and M2 macrophages on 

FACS-purified monocytes/macrophages from the sponges.  
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4.0 CONCLUSION 

 

In summary, this study demonstrates that the sponge/Matrigel model together with the tested 

growth factors (VEGF, Ang1 and Ang2) provides a well-suited autocrine/paracrine 

environment to trigger and support the formation of mature blood vessels. In addition, the 

recruitment of inflammatory cells by these growth factors in a temporal-dependent manner 

further accelerates these processes with a greater potency. Thus, these two classes of pro-

angiogenic growth factors can individually orchestrate angiogenesis with the companion of 

inflammation when provided a suitable platform.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 
 

5.0 BIBIOGRAPHY 

 

1. Aird, W.C., Endothelial cell heterogeneity. Cold Spring Harbor perspectives in 
medicine, 2012. 2(1): p. a006429. 

2. Simionescu, N., M. Simionescu, and G.E. Palade, Differentiated microdomains on the 
luminal surface of the capillary endothelium. I. Preferential distribution of anionic 
sites. The Journal of cell biology, 1981. 90(3): p. 605-13. 

3. Ribatti, D., Genetic and epigenetic mechanisms in the early development of the 
vascular system. Journal of anatomy, 2006. 208(2): p. 139-52. 

4. Folkman, J., Tumor angiogenesis. Advances in cancer research, 1985. 43: p. 175-203. 
5. Carmeliet, P. and R.K. Jain, Molecular mechanisms and clinical applications of 

angiogenesis. Nature, 2011. 473(7347): p. 298-307. 
6. Heil, M. and W. Schaper, Cellular mechanisms of arteriogenesis. EXS, 2005(94): p. 

181-91. 
7. Coultas, L., K. Chawengsaksophak, and J. Rossant, Endothelial cells and VEGF in 

vascular development. Nature, 2005. 438(7070): p. 937-45. 
8. Nissen, N.N., et al., Vascular endothelial growth factor mediates angiogenic activity 

during the proliferative phase of wound healing. The American journal of pathology, 
1998. 152(6): p. 1445-52. 

9. Booth, F.W. and D.B. Thomason, Molecular and cellular adaptation of muscle in 
response to exercise: perspectives of various models. Physiological reviews, 1991. 
71(2): p. 541-85. 

10. Shimizu, T., et al., Angiogenesis and microvasculature in the female reproductive 
organs: physiological and pathological implications. Current pharmaceutical design, 
2012. 18(3): p. 303-9. 

11. Carmeliet, P., Manipulating angiogenesis in medicine. Journal of internal medicine, 
2004. 255(5): p. 538-61. 

12. Li, J., et al., Gene expression profile of rat adipose tissue at the onset of high-fat-diet 
obesity. American journal of physiology. Endocrinology and metabolism, 2002. 
282(6): p. E1334-41. 

13. Rupnick, M.A., et al., Adipose tissue mass can be regulated through the vasculature. 
Proceedings of the National Academy of Sciences of the United States of America, 
2002. 99(16): p. 10730-5. 

14. O'Reilly, M.S., et al., Angiostatin: a novel angiogenesis inhibitor that mediates the 
suppression of metastases by a Lewis lung carcinoma. Cell, 1994. 79(2): p. 315-28. 

15. O'Reilly, M.S., et al., Endostatin: an endogenous inhibitor of angiogenesis and tumor 
growth. Cell, 1997. 88(2): p. 277-85. 

16. Kendall, R.L. and K.A. Thomas, Inhibition of vascular endothelial cell growth factor 
activity by an endogenously encoded soluble receptor. Proceedings of the National 
Academy of Sciences of the United States of America, 1993. 90(22): p. 10705-9. 

17. Senger, D.R., et al., Tumor cells secrete a vascular permeability factor that promotes 
accumulation of ascites fluid. Science, 1983. 219(4587): p. 983-5.  



 

114 
 

18. Ferrara, N. and W.J. Henzel, Pituitary follicular cells secrete a novel heparin-binding 
growth factor specific for vascular endothelial cells. Biochemical and biophysical 
research communications, 1989. 161(2): p. 851-8. 

19. Leung, D.W., et al., Vascular endothelial growth factor is a secreted angiogenic 
mitogen. Science, 1989. 246(4935): p. 1306-9. 

20. Ferrara, N., et al., The vascular endothelial growth factor family of polypeptides. 
Journal of cellular biochemistry, 1991. 47(3): p. 211-8. 

21. Hoeben, A., et al., Vascular endothelial growth factor and angiogenesis. 
Pharmacological reviews, 2004. 56(4): p. 549-80. 

22. Williams, B., et al., Angiotensin II increases vascular permeability factor gene 
expression by human vascular smooth muscle cells. Hypertension, 1995. 25(5): p. 913-
7. 

23. Berse, B., et al., Vascular permeability factor (vascular endothelial growth factor) 
gene is expressed differentially in normal tissues, macrophages, and tumors. 
Molecular biology of the cell, 1992. 3(2): p. 211-20. 

24. Namiki, A., et al., Hypoxia induces vascular endothelial growth factor in cultured 
human endothelial cells. The Journal of biological chemistry, 1995. 270(52): p. 31189-
95. 

25. Freeman, M.R., et al., Peripheral blood T lymphocytes and lymphocytes infiltrating 
human cancers express vascular endothelial growth factor: a potential role for T cells 
in angiogenesis. Cancer research, 1995. 55(18): p. 4140-5. 

26. Vincenti, V., et al., Assignment of the vascular endothelial growth factor gene to 
human chromosome 6p21.3. Circulation, 1996. 93(8): p. 1493-5. 

27. Houck, K.A., et al., The vascular endothelial growth factor family: identification of a 
fourth molecular species and characterization of alternative splicing of RNA. 
Molecular Endocrinology, 1991. 5(12): p. 1806-14. 

28. Tischer, E., et al., The human gene for vascular endothelial growth factor. Multiple 
protein forms are encoded through alternative exon splicing. The Journal of biological 
chemistry, 1991. 266(18): p. 11947-54. 

29. Poltorak, Z., et al., VEGF145, a secreted vascular endothelial growth factor isoform 
that binds to extracellular matrix. J Biol Chem, 1997. 272(11): p. 7151-8. 

30. Jingjing, L., et al., Human Muller cells express VEGF183, a novel spliced variant of 
vascular endothelial growth factor. Invest Ophthalmol Vis Sci, 1999. 40(3): p. 752-9. 

31. Lange, T., et al., VEGF162, a new heparin-binding vascular endothelial growth factor 
splice form that is expressed in transformed human cells. J Biol Chem, 2003. 278(19): 
p. 17164-9. 

32. Bates, D.O., et al., VEGF165b, an inhibitory splice variant of vascular endothelial 
growth factor, is down-regulated in renal cell carcinoma. Cancer Res, 2002. 62(14): p. 
4123-31. 

33. Houck, K.A., et al., Dual regulation of vascular endothelial growth factor 
bioavailability by genetic and proteolytic mechanisms. The Journal of biological 
chemistry, 1992. 267(36): p. 26031-7. 

34. Ortega, N., H. Hutchings, and J. Plouet, Signal relays in the VEGF system. Front 
Biosci, 1999. 4: p. D141-52. 

35. Park, J.E., G.A. Keller, and N. Ferrara, The vascular endothelial growth factor (VEGF) 
isoforms: differential deposition into the subepithelial extracellular matrix and 



 

115 
 

bioactivity of extracellular matrix-bound VEGF. Molecular biology of the cell, 1993. 
4(12): p. 1317-26. 

36. Persico, M.G., V. Vincenti, and T. DiPalma, Structure, expression and receptor-
binding properties of placenta growth factor (PlGF). Current topics in microbiology 
and immunology, 1999. 237: p. 31-40. 

37. Carmeliet, P., et al., Synergism between vascular endothelial growth factor and 
placental growth factor contributes to angiogenesis and plasma extravasation in 
pathological conditions. Nature medicine, 2001. 7(5): p. 575-83. 

38. Odorisio, T., et al., Mice overexpressing placenta growth factor exhibit increased 
vascularization and vessel permeability. Journal of cell science, 2002. 115(Pt 12): p. 
2559-67. 

39. Oura, H., et al., A critical role of placental growth factor in the induction of 
inflammation and edema formation. Blood, 2003. 101(2): p. 560-7. 

40. Olofsson, B., et al., Current biology of VEGF-B and VEGF-C. Current opinion in 
biotechnology, 1999. 10(6): p. 528-35. 

41. Fearnley GW, S.G., Harrison MA, Wheatcroft SB, Tomlinson DC, Ponnambalam S. , 
Vascular endothelial growth factor-A regulation of blood vessel sprouting in health 
and disease. OA Biochemistry, 2013(1(1)). 

42. Karkkainen, M.J., et al., Vascular endothelial growth factor C is required for sprouting 
of the first lymphatic vessels from embryonic veins. Nature immunology, 2004. 5(1): p. 
74-80. 

43. Kukk, E., et al., VEGF-C receptor binding and pattern of expression with VEGFR-3 
suggests a role in lymphatic vascular development. Development, 1996. 122(12): p. 
3829-37. 

44. Farnebo, F., F. Piehl, and J. Lagercrantz, Restricted expression pattern of vegf-d in the 
adult and fetal mouse: high expression in the embryonic lung. Biochemical and 
biophysical research communications, 1999. 257(3): p. 891-4. 

45. He, Y., T. Karpanen, and K. Alitalo, Role of lymphangiogenic factors in tumor 
metastasis. Biochimica et biophysica acta, 2004. 1654(1): p. 3-12. 

46. Ogawa, S., et al., A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 
VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity 
without heparin-binding domain. The Journal of biological chemistry, 1998. 273(47): 
p. 31273-82. 

47. Ortega, N., H. Hutchings, and J. Plouet, Signal relays in the VEGF system. Frontiers in 
bioscience : a journal and virtual library, 1999. 4: p. D141-52. 

48. Stuttfeld, E. and K. Ballmer-Hofer, Structure and function of VEGF receptors. IUBMB 
life, 2009. 61(9): p. 915-22. 

49. Schlessinger, J. and M.A. Lemmon, SH2 and PTB domains in tyrosine kinase 
signaling. Science's STKE : signal transduction knowledge environment, 2003. 
2003(191): p. RE12. 

50. Katoh, O., et al., Expression of the vascular endothelial growth factor (VEGF) 
receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic 
cell death caused by ionizing radiation. Cancer research, 1995. 55(23): p. 5687-92. 

51. Gitay-Goren, H., et al., The binding of vascular endothelial growth factor to its 
receptors is dependent on cell surface-associated heparin-like molecules. The Journal 
of biological chemistry, 1992. 267(9): p. 6093-8. 



 

116 
 

52. Soker, S., et al., Neuropilin-1 is expressed by endothelial and tumor cells as an 
isoform-specific receptor for vascular endothelial growth factor. Cell, 1998. 92(6): p. 
735-45. 

53. Neufeld, G., et al., The neuropilins: multifunctional semaphorin and VEGF receptors 
that modulate axon guidance and angiogenesis. Trends in cardiovascular medicine, 
2002. 12(1): p. 13-9. 

54. Bernatchez, P.N., et al., Relative effects of VEGF-A and VEGF-C on endothelial cell 
proliferation, migration and PAF synthesis: Role of neuropilin-1. Journal of cellular 
biochemistry, 2002. 85(3): p. 629-39. 

55. Carmeliet, P., et al., Abnormal blood vessel development and lethality in embryos 
lacking a single VEGF allele. Nature, 1996. 380(6573): p. 435-9. 

56. Gerber, H.P., et al., VEGF is required for growth and survival in neonatal mice. 
Development, 1999. 126(6): p. 1149-59. 

57. Phillips, G.D., et al., Vascular endothelial growth factor (rhVEGF165) stimulates 
direct angiogenesis in the rabbit cornea. In vivo, 1994. 8(6): p. 961-5. 

58. Tolentino, M.J., et al., Vascular endothelial growth factor is sufficient to produce iris 
neovascularization and neovascular glaucoma in a nonhuman primate. Archives of 
ophthalmology, 1996. 114(8): p. 964-70. 

59. Marchand, G.S., et al., Blockade of in vivo VEGF-mediated angiogenesis by antisense 
gene therapy: role of Flk-1 and Flt-1 receptors. American journal of physiology. Heart 
and circulatory physiology, 2002. 282(1): p. H194-204. 

60. Connolly, D.T., et al., Tumor vascular permeability factor stimulates endothelial cell 
growth and angiogenesis. The Journal of clinical investigation, 1989. 84(5): p. 1470-8. 

61. Keck, P.J., et al., Vascular permeability factor, an endothelial cell mitogen related to 
PDGF. Science, 1989. 246(4935): p. 1309-12. 

62. Plouet, J., J. Schilling, and D. Gospodarowicz, Isolation and characterization of a 
newly identified endothelial cell mitogen produced by AtT-20 cells. The EMBO 
journal, 1989. 8(12): p. 3801-6. 

63. Conn, G., et al., Amino acid and cDNA sequences of a vascular endothelial cell 
mitogen that is homologous to platelet-derived growth factor. Proceedings of the 
National Academy of Sciences of the United States of America, 1990. 87(7): p. 2628-
32. 

64. Pepper, M.S., et al., In vitro angiogenic and proteolytic properties of bovine lymphatic 
endothelial cells. Experimental cell research, 1994. 210(2): p. 298-305. 

65. Warner, A.J., et al., The Shc-related adaptor protein, Sck, forms a complex with the 
vascular-endothelial-growth-factor receptor KDR in transfected cells. The 
Biochemical journal, 2000. 347(Pt 2): p. 501-9. 

66. Takahashi, T., et al., A single autophosphorylation site on KDR/Flk-1 is essential for 
VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular 
endothelial cells. The EMBO journal, 2001. 20(11): p. 2768-78. 

67. Takahashi, T., H. Ueno, and M. Shibuya, VEGF activates protein kinase C-dependent, 
but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary 
endothelial cells. Oncogene, 1999. 18(13): p. 2221-30. 

68. Gerber, H.P., et al., Vascular endothelial growth factor regulates endothelial cell 
survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. 



 

117 
 

Requirement for Flk-1/KDR activation. The Journal of biological chemistry, 1998. 
273(46): p. 30336-43. 

69. Fulton, D., et al., Regulation of endothelium-derived nitric oxide production by the 
protein kinase Akt. Nature, 1999. 399(6736): p. 597-601. 

70. Dimmeler, S., et al., Activation of nitric oxide synthase in endothelial cells by Akt-
dependent phosphorylation. Nature, 1999. 399(6736): p. 601-5. 

71. Eriksson, A., et al., Small GTP-binding protein Rac is an essential mediator of 
vascular endothelial growth factor-induced endothelial fenestrations and vascular 
permeability. Circulation, 2003. 107(11): p. 1532-8. 

72. Rousseau, S., et al., p38 MAP kinase activation by vascular endothelial growth factor 
mediates actin reorganization and cell migration in human endothelial cells. 
Oncogene, 1997. 15(18): p. 2169-77. 

73. Qi, J.H. and L. Claesson-Welsh, VEGF-induced activation of phosphoinositide 3-
kinase is dependent on focal adhesion kinase. Experimental cell research, 2001. 
263(1): p. 173-82. 

74. Eliceiri, B.P., et al., Selective requirement for Src kinases during VEGF-induced 
angiogenesis and vascular permeability. Molecular cell, 1999. 4(6): p. 915-24. 

75. Zachary, A.A., R.A. Montgomery, and M.S. Leffell, Factors associated with and 
predictive of persistence of donor-specific antibody after treatment with 
plasmapheresis and intravenous immunoglobulin. Human immunology, 2005. 66(4): p. 
364-70. 

76. Rousseau, S., F. Houle, and J. Huot, Integrating the VEGF signals leading to actin-
based motility in vascular endothelial cells. Trends in cardiovascular medicine, 2000. 
10(8): p. 321-7. 

77. Lamalice, L., F. Houle, and J. Huot, Phosphorylation of Tyr1214 within VEGFR-2 
triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation 
and endothelial cell migration in response to VEGF. The Journal of biological 
chemistry, 2006. 281(45): p. 34009-20. 

78. Lobov, I.B., et al., Delta-like ligand 4 (Dll4) is induced by VEGF as a negative 
regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences 
of the United States of America, 2007. 104(9): p. 3219-24. 

79. Liu, Z.J., et al., Regulation of Notch1 and Dll4 by vascular endothelial growth factor 
in arterial endothelial cells: implications for modulating arteriogenesis and 
angiogenesis. Molecular and cellular biology, 2003. 23(1): p. 14-25. 

80. Shutter, J.R., et al., Dll4, a novel Notch ligand expressed in arterial endothelium. 
Genes & development, 2000. 14(11): p. 1313-8. 

81. Claxton, S. and M. Fruttiger, Periodic Delta-like 4 expression in developing retinal 
arteries. Gene expression patterns : GEP, 2004. 5(1): p. 123-7. 

82. Cross, M.J., et al., VEGF-receptor signal transduction. Trends in biochemical 
sciences, 2003. 28(9): p. 488-94. 

83. Davis, S., et al., Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by 
secretion-trap expression cloning. Cell, 1996. 87(7): p. 1161-9. 

84. Maisonpierre, P.C., et al., Angiopoietin-2, a natural antagonist for Tie2 that disrupts in 
vivo angiogenesis. Science, 1997. 277(5322): p. 55-60. 



 

118 
 

85. Valenzuela, D.M., et al., Angiopoietins 3 and 4: diverging gene counterparts in mice 
and humans. Proceedings of the National Academy of Sciences of the United States of 
America, 1999. 96(5): p. 1904-9. 

86. Procopio, W.N., et al., Angiopoietin-1 and -2 coiled coil domains mediate distinct 
homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. 
The Journal of biological chemistry, 1999. 274(42): p. 30196-201. 

87. Grosios, K., et al., Assignment of ANGPT4, ANGPT1, and ANGPT2 encoding 
angiopoietins 4, 1 and 2 to human chromosome bands 20p13, 8q22.3-->q23 and 
8p23.1, respectively, by in situ hybridization and radiation hybrid mapping. 
Cytogenetics and cell genetics, 1999. 84(1-2): p. 118-20. 

88. Cheung, A.H., R.J. Stewart, and P.A. Marsden, Endothelial Tie2/Tek ligands 
angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2): regional localization of the 
human genes to 8q22.3-q23 and 8p23. Genomics, 1998. 48(3): p. 389-91. 

89. Huang, Y.Q., J.J. Li, and S. Karpatkin, Identification of a family of alternatively 
spliced mRNA species of angiopoietin-1. Blood, 2000. 95(6): p. 1993-9. 

90. Kim, I., et al., Characterization and expression of a novel alternatively spliced human 
angiopoietin-2. The Journal of biological chemistry, 2000. 275(24): p. 18550-6. 

91. Mezquita, J., et al., Characterization of a novel form of angiopoietin-2 (Ang-2B) and 
expression of VEGF and angiopoietin-2 during chicken testicular development and 
regression. Biochemical and biophysical research communications, 1999. 260(2): p. 
492-8. 

92. Stratmann, A., W. Risau, and K.H. Plate, Cell type-specific expression of angiopoietin-
1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. The American 
journal of pathology, 1998. 153(5): p. 1459-66. 

93. Zagzag, D., et al., In situ expression of angiopoietins in astrocytomas identifies 
angiopoietin-2 as an early marker of tumor angiogenesis. Experimental neurology, 
1999. 159(2): p. 391-400. 

94. Suri, C., et al., Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during 
embryonic angiogenesis. Cell, 1996. 87(7): p. 1171-80. 

95. Gale, N.W., et al., Angiopoietin-2 is required for postnatal angiogenesis and lymphatic 
patterning, and only the latter role is rescued by Angiopoietin-1. Developmental cell, 
2002. 3(3): p. 411-23. 

96. Neagoe, P.E., et al., Expression and release of angiopoietin-1 from human neutrophils: 
intracellular mechanisms. Growth factors, 2009. 27(6): p. 335-44. 

97. Fiedler, U., et al., The Tie-2 ligand angiopoietin-2 is stored in and rapidly released 
upon stimulation from endothelial cell Weibel-Palade bodies. Blood, 2004. 103(11): p. 
4150-6. 

98. Goede, V., et al., Analysis of blood vessel maturation processes during cyclic ovarian 
angiogenesis. Laboratory investigation; a journal of technical methods and pathology, 
1998. 78(11): p. 1385-94. 

99. Koga, K., et al., Expression of angiopoietin-2 in human glioma cells and its role for 
angiogenesis. Cancer research, 2001. 61(16): p. 6248-54. 

100. Tanaka, S., et al., Biologic significance of angiopoietin-2 expression in human 
hepatocellular carcinoma. The Journal of clinical investigation, 1999. 103(3): p. 341-
5. 



 

119 
 

101. Torimura, T., et al., Overexpression of angiopoietin-1 and angiopoietin-2 in 
hepatocellular carcinoma. Journal of hepatology, 2004. 40(5): p. 799-807. 

102. Oliner, J., et al., Suppression of angiogenesis and tumor growth by selective inhibition 
of angiopoietin-2. Cancer cell, 2004. 6(5): p. 507-16. 

103. Zhang, L., et al., Tumor-derived vascular endothelial growth factor up-regulates 
angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting 
angiogenesis in ovarian cancer. Cancer research, 2003. 63(12): p. 3403-12. 

104. Brown, L.F., et al., Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi's 
sarcoma and cutaneous angiosarcoma. The American journal of pathology, 2000. 
156(6): p. 2179-83. 

105. Hackett, S.F., et al., Angiopoietin 2 expression in the retina: upregulation during 
physiologic and pathologic neovascularization. Journal of cellular physiology, 2000. 
184(3): p. 275-84. 

106. Cohen, B., et al., Leptin induces angiopoietin-2 expression in adipose tissues. The 
Journal of biological chemistry, 2001. 276(11): p. 7697-700. 

107. Hammes, H.P., et al., Angiopoietin-2 causes pericyte dropout in the normal retina: 
evidence for involvement in diabetic retinopathy. Diabetes, 2004. 53(4): p. 1104-10. 

108. Kim, I., et al., Tumor necrosis factor-alpha upregulates angiopoietin-2 in human 
umbilical vein endothelial cells. Biochemical and biophysical research 
communications, 2000. 269(2): p. 361-5. 

109. Oh, H., et al., Hypoxia and vascular endothelial growth factor selectively up-regulate 
angiopoietin-2 in bovine microvascular endothelial cells. The Journal of biological 
chemistry, 1999. 274(22): p. 15732-9. 

110. Parikh, S.M., et al., Excess circulating angiopoietin-2 may contribute to pulmonary 
vascular leak in sepsis in humans. PLoS medicine, 2006. 3(3): p. e46. 

111. Sfiligoi, C., et al., Angiopoietin-2 expression in breast cancer correlates with lymph 
node invasion and short survival. International journal of cancer. Journal international 
du cancer, 2003. 103(4): p. 466-74. 

112. Kim, I., et al., Angiopoietin-2 at high concentration can enhance endothelial cell 
survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. 
Oncogene, 2000. 19(39): p. 4549-52. 

113. Teichert-Kuliszewska, K., et al., Biological action of angiopoietin-2 in a fibrin matrix 
model of angiogenesis is associated with activation of Tie2. Cardiovascular research, 
2001. 49(3): p. 659-70. 

114. Jones, N., et al., Tie receptors: new modulators of angiogenic and lymphangiogenic 
responses. Nature reviews. Molecular cell biology, 2001. 2(4): p. 257-67. 

115. Maliba, R., et al., Angiopoietins-1 and -2 are both capable of mediating endothelial 
PAF synthesis: intracellular signalling pathways. Cellular Signalling, 2006. 18(11): p. 
1947-57. 

116. Maliba, R., et al., Angiopoietin-mediated endothelial P-selectin translocation: cell 
signaling mechanisms. Journal of leukocyte biology, 2008. 83(2): p. 352-60. 

117. Lemieux, C., et al., Angiopoietins can directly activate endothelial cells and 
neutrophils to promote proinflammatory responses. Blood, 2005. 105(4): p. 1523-30. 

118. Brkovic, A., et al., Angiopoietin chemotactic activities on neutrophils are regulated by 
PI-3K activation. Journal of leukocyte biology, 2007. 81(4): p. 1093-101. 



 

120 
 

119. Asahara, T., et al., Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate 
VEGF-induced postnatal neovascularization. Circulation research, 1998. 83(3): p. 233-
40. 

120. Lobov, I.B., P.C. Brooks, and R.A. Lang, Angiopoietin-2 displays VEGF-dependent 
modulation of capillary structure and endothelial cell survival in vivo. Proceedings of 
the National Academy of Sciences of the United States of America, 2002. 99(17): p. 
11205-10. 

121. Visconti, R.P., C.D. Richardson, and T.N. Sato, Orchestration of angiogenesis and 
arteriovenous contribution by angiopoietins and vascular endothelial growth factor 
(VEGF). Proceedings of the National Academy of Sciences of the United States of 
America, 2002. 99(12): p. 8219-24. 

122. Dumas, E., et al., Angiopoietin-1 but not angiopoietin-2 promotes neutrophil viability: 
Role of interleukin-8 and platelet-activating factor. Biochimica et biophysica acta, 
2012. 1823(2): p. 358-67. 

123. Haddad, L.E. and M.G. Sirois, Angiopoietin-1 upregulates de novo expression of IL-
1beta and Il1-Ra, and the exclusive release of Il1-Ra from human neutrophils. PloS 
one, 2014. 9(2): p. e88980. 

124. Yu, X., et al., Structural basis for angiopoietin-1-mediated signaling initiation. 
Proceedings of the National Academy of Sciences of the United States of America, 
2013. 110(18): p. 7205-10. 

125. Lund, E.L., et al., Differential regulation of VEGF, HIF1alpha and angiopoietin-1, -2 
and -4 by hypoxia and ionizing radiation in human glioblastoma. International journal 
of cancer. Journal international du cancer, 2004. 108(6): p. 833-8. 

126. Yamakawa, M., et al., Hypoxia-inducible factor-1 mediates activation of cultured 
vascular endothelial cells by inducing multiple angiogenic factors. Circulation 
research, 2003. 93(7): p. 664-73. 

127. Abdulmalek, K., et al., Differential expression of Tie-2 receptors and angiopoietins in 
response to in vivo hypoxia in rats. American journal of physiology. Lung cellular and 
molecular physiology, 2001. 281(3): p. L582-90. 

128. Lee, H.J., et al., Biological characterization of angiopoietin-3 and angiopoietin-4. 
FASEB journal : official publication of the Federation of American Societies for 
Experimental Biology, 2004. 18(11): p. 1200-8. 

129. Dumont, D.J., et al., tek, a novel tyrosine kinase gene located on mouse chromosome 4, 
is expressed in endothelial cells and their presumptive precursors. Oncogene, 1992. 
7(8): p. 1471-80. 

130. Maisonpierre, P.C., et al., Distinct rat genes with related profiles of expression define a 
TIE receptor tyrosine kinase family. Oncogene, 1993. 8(6): p. 1631-7. 

131. Partanen, J., et al., A novel endothelial cell surface receptor tyrosine kinase with 
extracellular epidermal growth factor homology domains. Molecular and cellular 
biology, 1992. 12(4): p. 1698-707. 

132. Sato, T.N., et al., Tie-1 and tie-2 define another class of putative receptor tyrosine 
kinase genes expressed in early embryonic vascular system. Proceedings of the 
National Academy of Sciences of the United States of America, 1993. 90(20): p. 9355-
8. 



 

121 
 

133. Schnurch, H. and W. Risau, Expression of tie-2, a member of a novel family of 
receptor tyrosine kinases, in the endothelial cell lineage. Development, 1993. 119(3): 
p. 957-68. 

134. Korhonen, J., et al., The mouse tie receptor tyrosine kinase gene: expression during 
embryonic angiogenesis. Oncogene, 1994. 9(2): p. 395-403. 

135. Marron, M.B., et al., Evidence for heterotypic interaction between the receptor 
tyrosine kinases TIE-1 and TIE-2. The Journal of biological chemistry, 2000. 275(50): 
p. 39741-6. 

136. Tsiamis, A.C., et al., Vascular endothelial growth factor modulates the Tie-2:Tie-1 
receptor complex. Microvascular research, 2002. 63(2): p. 149-58. 

137. Yabkowitz, R., et al., Inflammatory cytokines and vascular endothelial growth factor 
stimulate the release of soluble tie receptor from human endothelial cells via 
metalloprotease activation. Blood, 1999. 93(6): p. 1969-79. 

138. Kontos, C.D., et al., The endothelial receptor tyrosine kinase Tie1 activates 
phosphatidylinositol 3-kinase and Akt to inhibit apoptosis. Molecular and cellular 
biology, 2002. 22(6): p. 1704-13. 

139. Wong, A.L., et al., Tie2 expression and phosphorylation in angiogenic and quiescent 
adult tissues. Circulation research, 1997. 81(4): p. 567-74. 

140. Muller, A., et al., Expression of angiopoietin-1 and its receptor TEK in hematopoietic 
cells from patients with myeloid leukemia. Leukemia research, 2002. 26(2): p. 163-8. 

141. Feistritzer, C., et al., Expression and function of the angiopoietin receptor Tie-2 in 
human eosinophils. The Journal of allergy and clinical immunology, 2004. 114(5): p. 
1077-84. 

142. De Palma, M., et al., Tie2 identifies a hematopoietic lineage of proangiogenic 
monocytes required for tumor vessel formation and a mesenchymal population of 
pericyte progenitors. Cancer cell, 2005. 8(3): p. 211-26. 

143. Willam, C., et al., Tie2 receptor expression is stimulated by hypoxia and 
proinflammatory cytokines in human endothelial cells. Circulation research, 2000. 
87(5): p. 370-7. 

144. Peters, K.G., et al., Expression of Tie2/Tek in breast tumour vasculature provides a 
new marker for evaluation of tumour angiogenesis. British journal of cancer, 1998. 
77(1): p. 51-6. 

145. Takahama, M., et al., Enhanced expression of Tie2, its ligand angiopoietin-1, vascular 
endothelial growth factor, and CD31 in human non-small cell lung carcinomas. 
Clinical cancer research : an official journal of the American Association for Cancer 
Research, 1999. 5(9): p. 2506-10. 

146. Jones, N. and D.J. Dumont, The Tek/Tie2 receptor signals through a novel Dok-related 
docking protein, Dok-R. Oncogene, 1998. 17(9): p. 1097-108. 

147. Thurston, G., et al., Leakage-resistant blood vessels in mice transgenically 
overexpressing angiopoietin-1. Science, 1999. 286(5449): p. 2511-4. 

148. Suri, C., et al., Increased vascularization in mice overexpressing angiopoietin-1. 
Science, 1998. 282(5388): p. 468-71. 

149. Dumont, D.J., et al., Dominant-negative and targeted null mutations in the endothelial 
receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. 
Genes & development, 1994. 8(16): p. 1897-909. 



 

122 
 

150. Sato, T.N., et al., Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in 
blood vessel formation. Nature, 1995. 376(6535): p. 70-4. 

151. Patan, S., TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic 
angiogenesis by the mechanism of intussusceptive microvascular growth. 
Microvascular research, 1998. 56(1): p. 1-21. 

152. Puri, M.C., et al., Interaction of the TEK and TIE receptor tyrosine kinases during 
cardiovascular development. Development, 1999. 126(20): p. 4569-80. 

153. Thurston, G., Complementary actions of VEGF and angiopoietin-1 on blood vessel 
growth and leakage. Journal of anatomy, 2002. 200(6): p. 575-80. 

154. Scharpfenecker, M., et al., The Tie-2 ligand angiopoietin-2 destabilizes quiescent 
endothelium through an internal autocrine loop mechanism. Journal of cell science, 
2005. 118(Pt 4): p. 771-80. 

155. Talluri, S.K., et al., Chylous ascites. North American journal of medical sciences, 
2011. 3(9): p. 438-40. 

156. Tammela, T., et al., Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. 
Blood, 2005. 105(12): p. 4642-8. 

157. Morisada, T., et al., Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel 
formation. Blood, 2005. 105(12): p. 4649-56. 

158. Shimoda, H., et al., Abnormal recruitment of periendothelial cells to lymphatic 
capillaries in digestive organs of angiopoietin-2-deficient mice. Cell and tissue 
research, 2007. 328(2): p. 329-37. 

159. Kim, K.T., et al., Oligomerization and multimerization are critical for angiopoietin-1 
to bind and phosphorylate Tie2. The Journal of biological chemistry, 2005. 280(20): p. 
20126-31. 

160. Barton, W.A., et al., Crystal structures of the Tie2 receptor ectodomain and the 
angiopoietin-2-Tie2 complex. Nature structural & molecular biology, 2006. 13(6): p. 
524-32. 

161. Hodous, B.L., et al., Evolution of a highly selective and potent 2-(pyridin-2-yl)-1,3,5-
triazine Tie-2 kinase inhibitor. Journal of Medicinal Chemistry, 2007. 50(4): p. 611-26. 

162. Kim, I., et al., Angiopoietin-1 regulates endothelial cell survival through the 
phosphatidylinositol 3'-Kinase/Akt signal transduction pathway. Circulation research, 
2000. 86(1): p. 24-9. 

163. Semones, M., et al., Pyridinylimidazole inhibitors of Tie2 kinase. Bioorganic & 
medicinal chemistry letters, 2007. 17(17): p. 4756-60. 

164. Cardone, M.H., et al., Regulation of cell death protease caspase-9 by phosphorylation. 
Science, 1998. 282(5392): p. 1318-21. 

165. Dumont, D.J., et al., The endothelial-specific receptor tyrosine kinase, tek, is a member 
of a new subfamily of receptors. Oncogene, 1993. 8(5): p. 1293-301. 

166. Harfouche, R., et al., Mechanisms which mediate the antiapoptotic effects of 
angiopoietin-1 on endothelial cells. Microvascular research, 2002. 64(1): p. 135-47. 

167. Papapetropoulos, A., et al., Angiopoietin-1 inhibits endothelial cell apoptosis via the 
Akt/survivin pathway. The Journal of biological chemistry, 2000. 275(13): p. 9102-5. 

168. Jeon, B.H., et al., Tie-ing the antiinflammatory effect of angiopoietin-1 to inhibition of 
NF-kappaB. Circulation research, 2003. 92(6): p. 586-8. 



123 

169. Hughes, D.P., M.B. Marron, and N.P. Brindle, The antiinflammatory endothelial 
tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. 
Circulation research, 2003. 92(6): p. 630-6. 

170. Jones, N., et al., A unique autophosphorylation site on Tie2/Tek mediates Dok-R 
phosphotyrosine binding domain binding and function. Molecular and cellular biology, 
2003. 23(8): p. 2658-68. 

171. Master, Z., et al., Dok-R plays a pivotal role in angiopoietin-1-dependent cell 
migration through recruitment and activation of Pak. The EMBO journal, 2001. 
20(21): p. 5919-28. 

172. Kim, I., et al., Angiopoietin-1 induces endothelial cell sprouting through the activation 
of focal adhesion kinase and plasmin secretion. Circulation research, 2000. 86(9): p. 
952-9. 

173. Tournaire, R., et al., A short synthetic peptide inhibits signal transduction, migration 
and angiogenesis mediated by Tie2 receptor. EMBO reports, 2004. 5(3): p. 262-7. 

174. Jones, N., et al., Identification of Tek/Tie2 binding partners. Binding to a 
multifunctional docking site mediates cell survival and migration. The Journal of 
biological chemistry, 1999. 274(43): p. 30896-905. 

175. Huang, L., et al., GRB2 and SH-PTP2: potentially important endothelial signaling 
molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene, 1995. 
11(10): p. 2097-103. 

176. Kontos, C.D., et al., Tyrosine 1101 of Tie2 is the major site of association of p85 and is 
required for activation of phosphatidylinositol 3-kinase and Akt. Molecular and 
cellular biology, 1998. 18(7): p. 4131-40. 

177. Koblizek, T.I., et al., Angiopoietin-1 induces sprouting angiogenesis in vitro. Current 
biology : CB, 1998. 8(9): p. 529-32. 

178. Hansbury, M.J., et al., Production and characterization of a Tie2 agonist monoclonal 
antibody. Angiogenesis, 2001. 4(1): p. 29-36. 

179. Chen, J.X., et al., HSP90 and Akt modulate Ang-1-induced angiogenesis via NO in 
coronary artery endothelium. Journal of applied physiology, 2004. 96(2): p. 612-20. 

180. Audero, E., et al., Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and 
regulates migration and sprouting but not survival of endothelial cells. The Journal of 
biological chemistry, 2004. 279(13): p. 13224-33. 

181. Babaei, S., et al., Angiogenic actions of angiopoietin-1 require endothelium-derived 
nitric oxide. The American journal of pathology, 2003. 162(6): p. 1927-36. 

182. Asahara, T., et al., Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate 
VEGF-induced postnatal neovascularization. Circ Res, 1998. 83(3): p. 233-40. 

183. Kim, I., et al., Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to 
endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res, 
2001. 89(6): p. 477-9. 

184. Yuan, H.T., et al., Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in 
the endothelium. Molecular and cellular biology, 2009. 29(8): p. 2011-22. 

185. Cho, C.H., et al., COMP-Ang1: a designed angiopoietin-1 variant with nonleaky 
angiogenic activity. Proceedings of the National Academy of Sciences of the United 
States of America, 2004. 101(15): p. 5547-52. 



124 

186. Witzenbichler, B., et al., Chemotactic properties of angiopoietin-1 and -2, ligands for 
the endothelial-specific receptor tyrosine kinase Tie2. The Journal of biological 
chemistry, 1998. 273(29): p. 18514-21. 

187. Hayes, A.J., et al., Angiopoietin-1 and its receptor Tie-2 participate in the regulation 
of capillary-like tubule formation and survival of endothelial cells. Microvascular 
research, 1999. 58(3): p. 224-37. 

188. Kanda, S., et al., Angiopoietin 1 is mitogenic for cultured endothelial cells. Cancer 
research, 2005. 65(15): p. 6820-7. 

189. Fujikawa, K., et al., Role of PI 3-kinase in angiopoietin-1-mediated migration and 
attachment-dependent survival of endothelial cells. Experimental cell research, 1999. 
253(2): p. 663-72. 

190. Kim, I., et al., Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to 
endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circulation 
research, 2001. 89(6): p. 477-9. 

191. Hegen, A., et al., Expression of angiopoietin-2 in endothelial cells is controlled by 
positive and negative regulatory promoter elements. Arteriosclerosis, thrombosis, and 
vascular biology, 2004. 24(10): p. 1803-9. 

192. Huang, Y.Q., et al., Thrombin induces increased expression and secretion of 
angiopoietin-2 from human umbilical vein endothelial cells. Blood, 2002. 99(5): p. 
1646-50. 

193. Mandriota, S.J. and M.S. Pepper, Regulation of angiopoietin-2 mRNA levels in bovine 
microvascular endothelial cells by cytokines and hypoxia. Circulation research, 1998. 
83(8): p. 852-9. 

194. Fiedler, U., et al., Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a 
crucial role in the induction of inflammation. Nat Med, 2006. 12(2): p. 235-9. 

195. Pfaff, D., U. Fiedler, and H.G. Augustin, Emerging roles of the Angiopoietin-Tie and 
the ephrin-Eph systems as regulators of cell trafficking. J Leukoc Biol, 2006. 80(4): p. 
719-26. 

196. Fiedler, U. and H.G. Augustin, Angiopoietins: a link between angiogenesis and 
inflammation. Trends in immunology, 2006. 27(12): p. 552-8. 

197. Brindle, N.P., P. Saharinen, and K. Alitalo, Signaling and functions of angiopoietin-1 
in vascular protection. Circulation research, 2006. 98(8): p. 1014-23. 

198. Nicosia, R.F. and S. Villaschi, Rat aortic smooth muscle cells become pericytes during 
angiogenesis in vitro. Laboratory investigation; a journal of technical methods and 
pathology, 1995. 73(5): p. 658-66. 

199. Hashizume, H. and T. Ushiki, Three-dimensional cytoarchitecture of angiogenic blood 
vessels in a gelatin sheet implanted in the rat skeletal muscular layers. Archives of 
histology and cytology, 2002. 65(4): p. 347-57. 

200. Takahara, K., et al., Autocrine/paracrine role of the angiopoietin-1 and -2/Tie2 system 
in cell proliferation and chemotaxis of cultured fibroblastic synoviocytes in rheumatoid 
arthritis. Human pathology, 2004. 35(2): p. 150-8. 

201. Folkman, J., Tumor angiogenesis: therapeutic implications. The New England journal 
of medicine, 1971. 285(21): p. 1182-6. 

202. Medzhitov, R., Origin and physiological roles of inflammation. Nature, 2008. 
454(7203): p. 428-35. 



 

125 
 

203. Driss, V., et al., [Eosinophil: a new effector of innate immunity?]. Medecine sciences : 
M/S, 2010. 26(6-7): p. 621-6. 

204. Kennedy, A.D. and F.R. DeLeo, Neutrophil apoptosis and the resolution of infection. 
Immunologic research, 2009. 43(1-3): p. 25-61. 

205. Athens, J.W., et al., Leukokinetic studies. IV. The total blood, circulating and marginal 
granulocyte pools and the granulocyte turnover rate in normal subjects. The Journal of 
clinical investigation, 1961. 40: p. 989-95. 

206. Hallett, M.B. and D. Lloyds, Neutrophil priming: the cellular signals that say 'amber' 
but not 'green'. Immunology today, 1995. 16(6): p. 264-8. 

207. Woodfin, A., M.B. Voisin, and S. Nourshargh, Recent developments and complexities 
in neutrophil transmigration. Current opinion in hematology, 2010. 17(1): p. 9-17. 

208. Bonfanti, R., et al., PADGEM (GMP140) is a component of Weibel-Palade bodies of 
human endothelial cells. Blood, 1989. 73(5): p. 1109-12. 

209. Hattori, R., et al., Complement proteins C5b-9 induce secretion of high molecular 
weight multimers of endothelial von Willebrand factor and translocation of granule 
membrane protein GMP-140 to the cell surface. The Journal of biological chemistry, 
1989. 264(15): p. 9053-60. 

210. Hattori, R., et al., Stimulated secretion of endothelial von Willebrand factor is 
accompanied by rapid redistribution to the cell surface of the intracellular granule 
membrane protein GMP-140. The Journal of biological chemistry, 1989. 264(14): p. 
7768-71. 

211. Hentzen, E., et al., Hydrodynamic shear and tethering through E-selectin signals 
phosphorylation of p38 MAP kinase and adhesion of human neutrophils. Annals of 
biomedical engineering, 2002. 30(8): p. 987-1001. 

212. Simon, S.I., et al., Neutrophil tethering on E-selectin activates beta 2 integrin binding 
to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. 
Journal of immunology, 2000. 164(8): p. 4348-58. 

213. Yao, L., et al., Divergent inducible expression of P-selectin and E-selectin in mice and 
primates. Blood, 1999. 94(11): p. 3820-8. 

214. Cassatella, M.A., The production of cytokines by polymorphonuclear neutrophils. 
Immunology today, 1995. 16(1): p. 21-6. 

215. Krieglstein, C.F. and D.N. Granger, Adhesion molecules and their role in vascular 
disease. American Journal of Hypertension, 2001. 14(6 Pt 2): p. 44S-54S. 

216. Scapini, P., et al., The neutrophil as a cellular source of chemokines. Immunological 
reviews, 2000. 177: p. 195-203. 

217. Borregaard, N. and J.B. Cowland, Granules of the human neutrophilic 
polymorphonuclear leukocyte. Blood, 1997. 89(10): p. 3503-21. 

218. Borregaard, N., O.E. Sorensen, and K. Theilgaard-Monch, Neutrophil granules: a 
library of innate immunity proteins. Trends in immunology, 2007. 28(8): p. 340-5. 

219. Serbina, N.V., et al., Monocyte-mediated defense against microbial pathogens. Annual 
review of immunology, 2008. 26: p. 421-52. 

220. Woollard, K.J. and F. Geissmann, Monocytes in atherosclerosis: subsets and functions. 
Nature reviews. Cardiology, 2010. 7(2): p. 77-86. 

221. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. 
Nature reviews. Immunology, 2008. 8(12): p. 958-69. 



 

126 
 

222. Murray, P.J. and T.A. Wynn, Obstacles and opportunities for understanding 
macrophage polarization. Journal of leukocyte biology, 2011. 89(4): p. 557-63. 

223. Mantovani, A., et al., Macrophage polarization: tumor-associated macrophages as a 
paradigm for polarized M2 mononuclear phagocytes. Trends in immunology, 2002. 
23(11): p. 549-55. 

224. Fairweather, D. and D. Cihakova, Alternatively activated macrophages in infection and 
autoimmunity. Journal of autoimmunity, 2009. 33(3-4): p. 222-30. 

225. Sindrilaru, A., et al., An unrestrained proinflammatory M1 macrophage population 
induced by iron impairs wound healing in humans and mice. The Journal of clinical 
investigation, 2011. 121(3): p. 985-97. 

226. Mantovani, A., et al., The chemokine system in diverse forms of macrophage activation 
and polarization. Trends in immunology, 2004. 25(12): p. 677-86. 

227. Li, Q. and I.M. Verma, NF-kappaB regulation in the immune system. Nature reviews. 
Immunology, 2002. 2(10): p. 725-34. 

228. Hu, X., et al., Inhibition of IFN-gamma signaling by glucocorticoids. Journal of 
immunology, 2003. 170(9): p. 4833-9. 

229. Hao, N.B., et al., Macrophages in tumor microenvironments and the progression of 
tumors. Clinical & developmental immunology, 2012. 2012: p. 948098. 

230. Peiser, L. and S. Gordon, The function of scavenger receptors expressed by 
macrophages and their role in the regulation of inflammation. Microbes and infection / 
Institut Pasteur, 2001. 3(2): p. 149-59. 

231. Aderem, A. and D.M. Underhill, Mechanisms of phagocytosis in macrophages. Annual 
review of immunology, 1999. 17: p. 593-623. 

232. Haidaris, C.G. and P.F. Bonventre, A role for oxygen-dependent mechanisms in killing 
of Leishmania donovani tissue forms by activated macrophages. Journal of 
immunology, 1982. 129(2): p. 850-5. 

233. Haynes, R.J., P.J. Tighe, and H.S. Dua, Antimicrobial defensin peptides of the human 
ocular surface. The British journal of ophthalmology, 1999. 83(6): p. 737-41. 

234. Baumgart, M., et al., Differential expression of major histocompatibility complex class 
II genes on murine macrophages associated with T cell cytokine profile and 
protective/suppressive effects. Proceedings of the National Academy of Sciences of the 
United States of America, 1998. 95(12): p. 6936-40. 

235. Steinman, R.M., The dendritic cell system and its role in immunogenicity. Annual 
review of immunology, 1991. 9: p. 271-96. 

236. Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. 
Nature, 1998. 392(6673): p. 245-52. 

237. Gordon, S. and P.R. Taylor, Monocyte and macrophage heterogeneity. Nature reviews. 
Immunology, 2005. 5(12): p. 953-64. 

238. Cavaillon, J.M., Cytokines and macrophages. Biomedicine & pharmacotherapy = 
Biomedecine & pharmacotherapie, 1994. 48(10): p. 445-53. 

239. Jackson, J.R., et al., The codependence of angiogenesis and chronic inflammation. 
FASEB journal : official publication of the Federation of American Societies for 
Experimental Biology, 1997. 11(6): p. 457-65. 

240. Imhof, B.A. and M. Aurrand-Lions, Angiogenesis and inflammation face off. Nature 
medicine, 2006. 12(2): p. 171-2. 



 

127 
 

241. Costa, C., J. Incio, and R. Soares, Angiogenesis and chronic inflammation: cause or 
consequence? Angiogenesis, 2007. 10(3): p. 149-66. 

242. Glass, C.A., S.J. Harper, and D.O. Bates, The anti-angiogenic VEGF isoform 
VEGF165b transiently increases hydraulic conductivity, probably through VEGF 
receptor 1 in vivo. The Journal of physiology, 2006. 572(Pt 1): p. 243-57. 

243. Yang, R., et al., Effects of vascular endothelial growth factor on hemodynamics and 
cardiac performance. Journal of cardiovascular pharmacology, 1996. 27(6): p. 838-44. 

244. Feng, D., et al., Vesiculo-vacuolar organelles and the regulation of venule 
permeability to macromolecules by vascular permeability factor, histamine, and 
serotonin. The Journal of experimental medicine, 1996. 183(5): p. 1981-6. 

245. Michel, C.C. and C.R. Neal, Openings through endothelial cells associated with 
increased microvascular permeability. Microcirculation, 1999. 6(1): p. 45-54. 

246. Bates, D.O. and S.J. Harper, Regulation of vascular permeability by vascular 
endothelial growth factors. Vascular pharmacology, 2002. 39(4-5): p. 225-37. 

247. Weis, S., et al., Src blockade stabilizes a Flk/cadherin complex, reducing edema and 
tissue injury following myocardial infarction. The Journal of clinical investigation, 
2004. 113(6): p. 885-94. 

248. Thurston, G., et al., Angiopoietin-1 protects the adult vasculature against plasma 
leakage. Nature medicine, 2000. 6(4): p. 460-3. 

249. Gamble, J.R., et al., Angiopoietin-1 is an antipermeability and anti-inflammatory agent 
in vitro and targets cell junctions. Circulation research, 2000. 87(7): p. 603-7. 

250. Satchell, S.C., K.L. Anderson, and P.W. Mathieson, Angiopoietin 1 and vascular 
endothelial growth factor modulate human glomerular endothelial cell barrier 
properties. Journal of the American Society of Nephrology : JASN, 2004. 15(3): p. 
566-74. 

251. Pizurki, L., et al., Angiopoietin-1 inhibits endothelial permeability, neutrophil 
adherence and IL-8 production. British journal of pharmacology, 2003. 139(2): p. 329-
36. 

252. Kim, I., et al., Angiopoietin-1 negatively regulates expression and activity of tissue 
factor in endothelial cells. FASEB journal : official publication of the Federation of 
American Societies for Experimental Biology, 2002. 16(1): p. 126-8. 

253. Harfouche, R. and S.N. Hussain, Signaling and regulation of endothelial cell survival 
by angiopoietin-2. American journal of physiology. Heart and circulatory physiology, 
2006. 291(4): p. H1635-45. 

254. Nag, S., et al., Increased angiopoietin2 expression is associated with endothelial 
apoptosis and blood-brain barrier breakdown. Laboratory investigation; a journal of 
technical methods and pathology, 2005. 85(10): p. 1189-98. 

255. Fiedler, U., et al., Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a 
crucial role in the induction of inflammation. Nature medicine, 2006. 12(2): p. 235-9. 

256. Roviezzo, F., et al., Angiopoietin-2 causes inflammation in vivo by promoting vascular 
leakage. The Journal of pharmacology and experimental therapeutics, 2005. 314(2): p. 
738-44. 

257. Pfaff, D., U. Fiedler, and H.G. Augustin, Emerging roles of the Angiopoietin-Tie and 
the ephrin-Eph systems as regulators of cell trafficking. Journal of leukocyte biology, 
2006. 80(4): p. 719-26. 



128 

258. Sturn, D.H., et al., Angiopoietin affects neutrophil migration. Microcirculation, 2005. 
12(5): p. 393-403. 

259. DeBusk, L.M., et al., Tie2 receptor tyrosine kinase, a major mediator of tumor 
necrosis factor alpha-induced angiogenesis in rheumatoid arthritis. Arthritis and 
rheumatism, 2003. 48(9): p. 2461-71. 

260. Mueller, M.D., et al., Neutrophils infiltrating the endometrium express vascular 
endothelial growth factor: potential role in endometrial angiogenesis. Fertility and 
sterility, 2000. 74(1): p. 107-12. 

261. Heryanto, B., J.E. Girling, and P.A. Rogers, Intravascular neutrophils partially 
mediate the endometrial endothelial cell proliferative response to oestrogen in 
ovariectomised mice. Reproduction, 2004. 127(5): p. 613-20. 

262. Benelli, R., et al., Neutrophils as a key cellular target for angiostatin: implications for 
regulation of angiogenesis and inflammation. FASEB journal : official publication of 
the Federation of American Societies for Experimental Biology, 2002. 16(2): p. 267-9. 

263. Shaw, J.P., et al., Polymorphonuclear neutrophils promote rFGF-2-induced 
angiogenesis in vivo. The Journal of surgical research, 2003. 109(1): p. 37-42. 

264. Nielsen, B.S., et al., 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils 
and macrophages but not in malignant epithelial cells in human colon cancer. 
International journal of cancer. Journal international du cancer, 1996. 65(1): p. 57-62. 

265. Mentzel, T., et al., The association between tumour progression and vascularity in 
myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv : an 
international journal of pathology, 2001. 438(1): p. 13-22. 

266. Eck, M., et al., Pleiotropic effects of CXC chemokines in gastric carcinoma: 
differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of 
gastric carcinoma. Clinical and experimental immunology, 2003. 134(3): p. 508-15. 

267. Mhawech-Fauceglia, P., et al., The source of APRIL up-regulation in human solid 
tumor lesions. Journal of leukocyte biology, 2006. 80(4): p. 697-704. 

268. Bellocq, A., et al., Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by 
tumor-derived interleukin-8 and relation to clinical outcome. The American journal of 
pathology, 1998. 152(1): p. 83-92. 

269. Zijlstra, A., et al., Proangiogenic role of neutrophil-like inflammatory heterophils 
during neovascularization induced by growth factors and human tumor cells. Blood, 
2006. 107(1): p. 317-27. 

270. Coussens, L.M. and Z. Werb, Matrix metalloproteinases and the development of 
cancer. Chemistry & biology, 1996. 3(11): p. 895-904. 

271. Yasuda, M., et al., Differential roles of ICAM-1 and E-selectin in polymorphonuclear 
leukocyte-induced angiogenesis. American journal of physiology. Cell physiology, 
2002. 282(4): p. C917-25. 

272. DiPietro, L.A. and P.J. Polverini, Role of the macrophage in the positive and negative 
regulation of wound neovascularization. Behring Institute Mitteilungen, 1993(92): p. 
238-47. 

273. Arras, M., et al., Monocyte activation in angiogenesis and collateral growth in the 
rabbit hindlimb. The Journal of clinical investigation, 1998. 101(1): p. 40-50. 

274. Ross, R., Atherosclerosis is an inflammatory disease. American heart journal, 1999. 
138(5 Pt 2): p. S419-20. 



 

129 
 

275. Sunderkotter, C., et al., Macrophages and angiogenesis. Journal of leukocyte biology, 
1994. 55(3): p. 410-22. 

276. Levine, H.A., B.D. Sleeman, and M. Nilsen-Hamilton, A mathematical model for the 
roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of 
protease inhibitors in preventing angiogenesis. Mathematical biosciences, 2000. 
168(1): p. 77-115. 

277. Biswas, S.K., et al., A distinct and unique transcriptional program expressed by tumor-
associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 
activation). Blood, 2006. 107(5): p. 2112-22. 

278. Bingle, L., N.J. Brown, and C.E. Lewis, The role of tumour-associated macrophages 
in tumour progression: implications for new anticancer therapies. The Journal of 
pathology, 2002. 196(3): p. 254-65. 

279. Steinman, R.M., Cytokines amplify the function of accessory cells. Immunology letters, 
1988. 17(3): p. 197-202. 

280. Nathan, C.F., Secretory products of macrophages. The Journal of clinical 
investigation, 1987. 79(2): p. 319-26. 

281. Klimetzek, V. and C. Sorg, Lymphokine-induced secretion of plasminogen activator by 
murine macrophages. European journal of immunology, 1977. 7(3): p. 185-7. 

282. Nathan, C. and M. Sporn, Cytokines in context. The Journal of cell biology, 1991. 
113(5): p. 981-6. 

283. Staton, C.A., M.W. Reed, and N.J. Brown, A critical analysis of current in vitro and in 
vivo angiogenesis assays. International journal of experimental pathology, 2009. 90(3): 
p. 195-221. 

284. Sharkey, A.M., et al., Vascular endothelial growth factor expression in human 
endometrium is regulated by hypoxia. The Journal of clinical endocrinology and 
metabolism, 2000. 85(1): p. 402-9. 

285. AlMalki, W.H., et al., Assessment methods for angiogenesis and current approaches 
for its quantification. Indian journal of pharmacology, 2014. 46(3): p. 251-6. 

286. Fajardo, L.F., et al., The disc angiogenesis system. Laboratory investigation; a journal 
of technical methods and pathology, 1988. 58(6): p. 718-24. 

287. Cimpean, A.M., D. Ribatti, and M. Raica, A brief history of angiogenesis assays. The 
International journal of developmental biology, 2011. 55(4-5): p. 377-82. 

288. Norrby, K., In vivo models of angiogenesis. Journal of cellular and molecular 
medicine, 2006. 10(3): p. 588-612. 

289. Gavard, J., V. Patel, and J.S. Gutkind, Angiopoietin-1 prevents VEGF-induced 
endothelial permeability by sequestering Src through mDia. Developmental cell, 2008. 
14(1): p. 25-36. 

290. Pepper, M.S., et al., Potent synergism between vascular endothelial growth factor and 
basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical 
and biophysical research communications, 1992. 189(2): p. 824-31. 

291. Mesri, E.A., H.J. Federoff, and M. Brownlee, Expression of vascular endothelial 
growth factor from a defective herpes simplex virus type 1 amplicon vector induces 
angiogenesis in mice. Circulation research, 1995. 76(2): p. 161-7. 

292. Shyu, K.G., H. Chang, and J.M. Isner, Synergistic effect of angiopoietin-1 and 
vascular endothelial growth factor on neoangiogenesis in hypercholesterolemic rabbit 
model with acute hindlimb ischemia. Life sciences, 2003. 73(5): p. 563-79. 



 

130 
 

293. Zhou, Y.F., et al., Effects of gene delivery on collateral development in chronic 
hypoperfusion: diverse effects of angiopoietin-1 versus vascular endothelial growth 
factor. Journal of the American College of Cardiology, 2004. 44(4): p. 897-903. 

294. Simons, M., et al., Clinical trials in coronary angiogenesis: issues, problems, 
consensus: An expert panel summary. Circulation, 2000. 102(11): p. E73-86. 

295. Rissanen, T.T., I. Vajanto, and S. Yla-Herttuala, Gene therapy for therapeutic 
angiogenesis in critically ischaemic lower limb - on the way to the clinic. European 
journal of clinical investigation, 2001. 31(8): p. 651-66. 

296. Andrade, S.P., et al., Sponge-induced angiogenesis in mice and the pharmacological 
reactivity of the neovasculature quantitated by a fluorimetric method. Microvascular 
research, 1997. 54(3): p. 253-61. 

297. Andrade, S.P., et al., Effects of platelet activating factor (PAF) and other 
vasoconstrictors on a model of angiogenesis in the mouse. International journal of 
experimental pathology, 1992. 73(4): p. 503-13. 

298. Ford, H.R., et al., Characterization of wound cytokines in the sponge matrix model. 
Archives of surgery, 1989. 124(12): p. 1422-8. 

299. Sullivan, K.M., et al., Fibulin-5 functions as an endogenous angiogenesis inhibitor. 
Laboratory investigation; a journal of technical methods and pathology, 2007. 87(8): p. 
818-27. 

300. Staton, C.A., M.W. Reed, and N.J. Brown, A critical analysis of current in vitro and in 
vivo angiogenesis assays. Int J Exp Pathol, 2009. 90(3): p. 195-221. 

301. Tengood, J.E., et al., Sequential delivery of vascular endothelial growth factor and 
sphingosine 1-phosphate for angiogenesis. Biomaterials, 2010. 31(30): p. 7805-12. 

302. Chae, J.K., et al., Coadministration of angiopoietin-1 and vascular endothelial growth 
factor enhances collateral vascularization. Arteriosclerosis, thrombosis, and vascular 
biology, 2000. 20(12): p. 2573-8. 

303. Zhu, W.H., A. MacIntyre, and R.F. Nicosia, Regulation of angiogenesis by vascular 
endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal 
patterns of intracellular signaling correlate with induction of angiogenic sprouting. 
The American journal of pathology, 2002. 161(3): p. 823-30. 

304. Marchand, G.S., et al., American journal of physiology. Heart and circulatory 
physiology, 2002. 282(1): p. H194-204. 

305. Holash, J., et al., Vessel cooption, regression, and growth in tumors mediated by 
angiopoietins and VEGF. Science, 1999. 284(5422): p. 1994-8. 

306. Mochizuki, Y., et al., Angiopoietin 2 stimulates migration and tube-like structure 
formation of murine brain capillary endothelial cells through c-Fes and c-Fyn. Journal 
of cell science, 2002. 115(Pt 1): p. 175-83. 

307. Eggert, A., et al., High-level expression of angiogenic factors is associated with 
advanced tumor stage in human neuroblastomas. Clinical cancer research : an official 
journal of the American Association for Cancer Research, 2000. 6(5): p. 1900-8. 

308. Gaudry, M., et al., Intracellular pool of vascular endothelial growth factor in human 
neutrophils. Blood, 1997. 90(10): p. 4153-61. 

309. Noonan, D.M., et al., Inflammation, inflammatory cells and angiogenesis: decisions 
and indecisions. Cancer metastasis reviews, 2008. 27(1): p. 31-40. 

310. Dinarello, C.A., Immunological and inflammatory functions of the interleukin-1 family. 
Annual review of immunology, 2009. 27: p. 519-50. 



 

131 
 

311. Nozawa, H., C. Chiu, and D. Hanahan, Infiltrating neutrophils mediate the initial 
angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the 
National Academy of Sciences of the United States of America, 2006. 103(33): p. 
12493-8. 

312. Gong, Y. and D.R. Koh, Neutrophils promote inflammatory angiogenesis via release 
of preformed VEGF in an in vivo corneal model. Cell and tissue research, 2010. 
339(2): p. 437-48. 

313. Lin, E.Y., et al., Macrophages regulate the angiogenic switch in a mouse model of 
breast cancer. Cancer research, 2006. 66(23): p. 11238-46. 

314. Kimura, Y.N., et al., Inflammatory stimuli from macrophages and cancer cells 
synergistically promote tumor growth and angiogenesis. Cancer science, 2007. 98(12): 
p. 2009-18. 

315. Engler, D.A., Use of vascular endothelial growth factor for therapeutic angiogenesis. 
Circulation, 1996. 94(7): p. 1496-8. 

316. Jain, R.K., Molecular regulation of vessel maturation. Nature medicine, 2003. 9(6): p. 
685-93. 

317. Hellstrom, M., et al., Lack of pericytes leads to endothelial hyperplasia and abnormal 
vascular morphogenesis. The Journal of cell biology, 2001. 153(3): p. 543-53. 

318. Greenberg, J.I., et al., A role for VEGF as a negative regulator of pericyte function and 
vessel maturation. Nature, 2008. 456(7223): p. 809-13. 

319. Iivanainen, E., et al., Angiopoietin-regulated recruitment of vascular smooth muscle 
cells by endothelial-derived heparin binding EGF-like growth factor. FASEB journal : 
official publication of the Federation of American Societies for Experimental Biology, 
2003. 17(12): p. 1609-21. 

320. Armulik, A., A. Abramsson, and C. Betsholtz, Endothelial/pericyte interactions. 
Circulation research, 2005. 97(6): p. 512-23. 

321. Kim, H. and G.Y. Koh, Ang2, the instigator of inflammation. Blood, 2011. 118(18): p. 
4767-8. 

322. Miyagawa, J., et al., Localization of heparin-binding EGF-like growth factor in the 
smooth muscle cells and macrophages of human atherosclerotic plaques. The Journal 
of clinical investigation, 1995. 95(1): p. 404-11. 

323. Oehler, L., et al., Neutrophil granulocyte-committed cells can be driven to acquire 
dendritic cell characteristics. The Journal of experimental medicine, 1998. 187(7): p. 
1019-28. 

324. Iking-Konert, C., et al., Transdifferentiation of polymorphonuclear neutrophils: 
acquisition of CD83 and other functional characteristics of dendritic cells. Journal of 
molecular medicine, 2001. 79(8): p. 464-74. 

325. Fanger, N.A., et al., Activation of human T cells by major histocompatability complex 
class II expressing neutrophils: proliferation in the presence of superantigen, but not 
tetanus toxoid. Blood, 1997. 89(11): p. 4128-35. 

326. Iking-Konert, C., et al., Up-regulation of the dendritic cell marker CD83 on 
polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial 
infections and chronic inflammatory disease. Clinical and experimental immunology, 
2002. 130(3): p. 501-8. 

327. Pliyev, B.K., et al., Extracellular acidosis promotes neutrophil transdifferentiation to 
MHC class II-expressing cells. Cellular immunology, 2011. 271(2): p. 214-8. 



 

132 
 

328. Ostanin, D.V., et al., Acquisition of antigen-presenting functions by neutrophils 
isolated from mice with chronic colitis. Journal of immunology, 2012. 188(3): p. 1491-
502. 

329. Wozniak, K.L., J.K. Kolls, and F.L. Wormley, Jr., Depletion of neutrophils in a 
protective model of pulmonary cryptococcosis results in increased IL-17A production 
by gammadelta T cells. BMC Immunol, 2012. 13: p. 65. 

330. Daley, J.M., et al., Use of Ly6G-specific monoclonal antibody to deplete neutrophils in 
mice. Journal of leukocyte biology, 2008. 83(1): p. 64-70. 

331. Soehnlein, O., et al., Neutrophil secretion products pave the way for inflammatory 
monocytes. Blood, 2008. 112(4): p. 1461-71. 

332. MacDonald, K.P., et al., An antibody against the colony-stimulating factor 1 receptor 
depletes the resident subset of monocytes and tissue- and tumor-associated 
macrophages but does not inhibit inflammation. Blood, 2010. 116(19): p. 3955-63. 

333. Chow, A., B.D. Brown, and M. Merad, Studying the mononuclear phagocyte system in 
the molecular age. Nat Rev Immunol, 2011. 11(11): p. 788-98. 

334. Schreiber, H.A., et al., Intestinal monocytes and macrophages are required for T cell 
polarization in response to Citrobacter rodentium. J Exp Med, 2013. 210(10): p. 2025-
39. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

133 
 

6.0 APPENDIX 1: Authorization, permission and the published manuscript in the 

Journal of Cellular Biochemistry  

 

 

 

 

 

 













VEGF and Angiopoietins Promote Inflammatory Cell
Recruitment and Mature Blood Vessel Formation in
Murine Sponge/Matrigel Model
Tharsika Sinnathamby,1,2 JinTae Yun,3,4 Marie-Élaine Clavet-Lanthier,1

Cheolho Cheong,3,4,5 and Martin G. Sirois1,2*
1Research Center, Montreal Heart Institute, Montréal, Canada
2Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Canada
3Laboratory of Cellular Physiology and Immunology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal,
Canada

4Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
5Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal,
Canada

ABSTRACT
A key feature in the induction of pathological angiogenesis is that inflammation precedes and accompanies the formation of neovessels as
evidenced by increased vascular permeability and the recruitment of inflammatory cells. Previously, we and other groups have shown that
selected growth factors, namely vascular endothelial growth factor (VEGF) and angiopoietins (Ang1 and Ang2) do not only promote
angiogenesis, but can also induce inflammatory response. Herein, given a pro-inflammatory environment, we addressed the individual
capacity of VEGF and angiopoietins to promote the formation of mature neovessels and to identify the different types of inflammatory cells
accompanying the angiogenic process over time. Sterilized polyvinyl alcohol (PVA) sponges soaked in growth factor-depleted Matrigel mixed
with PBS, VEGF, Ang1, or Ang2 (200 ng/200ml) were subcutaneously inserted into anesthetizedmice. Sponges were removed at day 4, 7, 14, or
21 post-procedure for histological, immunohistological (IHC), and flow cytometry analyses. As compared to PBS-treated sponges, the three
growth factors promoted the recruitment of inflammatory cells, mainly neutrophils and macrophages, and to a lesser extent, T- and B-cells. In
addition, theyweremore potent andmore rapid in the recruitment of endothelial cells (ECs) and in the formation andmaturation (ensheating of
smooth muscle cells around ECs) of neovessels. Thus, the autocrine/paracrine interaction among the different inflammatory cells in
combination with VEGF, Ang1, or Ang2 provides a suitable microenvironment for the formation and maturation of blood vessels. J. Cell.
Biochem. 116: 45–57, 2015. © 2014 Wiley Periodicals, Inc.
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The ramification of novel blood vessels from pre-existing
vascular network, termed angiogenesis, is a coordinated

sequence of cellular events consisting of sprouting, endothelial
cell (EC) proliferation, directed migration of ECs, EC tube formation,
and perivascular stabilization [Carmeliet and Jain, 2011]. Such
multistep process is tightly regulated through the maintenance of a
balance between soluble pro-angiogenic (stimulatory) and anti-

angiogenic (inhibitory) factors [Liekens et al., 2001; Noonan
et al., 2008]. A local perturbation of this equilibrium can result in
either excessive or insufficient angiogenesis leading to a variety of
diseases. With the identification of several pro-angiogenic mole-
cules, potential therapeutic interference with vessel formation is
being studied as promising tool for clinical applications [Griffioen
and Molema, 2000]. For instance, while therapeutic inhibition of
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angiogenesis may be beneficial in diseases associated to excessive
neovessel growth (e.g., solid tumor, rheumatoid arthritis, diabetic
retinopathy, atherosclerosis, and psoriasis) [Hanahan and Folk-
man, 1996], stimulation of angiogenesis may be beneficial in
conditions associatedwith insufficient formation of new vasculature
(e.g., tissue damage after reperfusion of ischemic tissue and cardiac
failure) [de Muinck and Simons, 2004].

Vascular endothelial growth factor (VEGF) is a well-studied
growth factor that effectively promotes neovessel sprouting and
growth in the initial phase of angiogenesis [de Muinck and
Simons, 2004; Carmeliet and Jain, 2011]. Upon discovery, its high
angiogenic potential arose the hypothesis that VEGF monotherapy
may be sufficient to promote therapeutic angiogenesis. However,
in both pre-clinical and clinical testing, although VEGF mono-
therapy was successful in promoting the formation of blood
vessels, they lacked vascular basement membrane and/or the
ensheathing of a-smooth muscle actin (a-SMA)-positive pericytes
and smooth muscle cells (SMCs), leading to the regression of newly
formed vessels [Dor et al., 2002; Henry et al., 2003; de Muinck and
Simons, 2004]. Thus, VEGF-orientated clinical trials did not
support the expected beneficial outcome in patients [Simons et al.,
2000; Stewart et al., 2009]. The discovery of a novel class of EC-
specific ligands termed angiopoietins (Ang1 and Ang2) showed
their capacity through the activation of Tie2 receptor to modulate
the maturation and stabilization of newly formed vessels. For
instance, while Ang1 in the late phase of angiogenesis plays an
important role in promoting vascular maturation and contributing
to enhance the integrity of EC barrier, Ang2 is identified to have
the capacity to destabilize pre-existing vessels prior to VEGF-
induced angiogenesis [Davis et al., 1996; Maisonpierre et al., 1997;
Thurston et al., 2000]. Furthermore, Ang1 has also been
demonstrated to have the capacity to promote in vivo angiogenesis
and both Ang1 and Ang2 have the potential to increase EC
migration and sprouting under certain experimental conditions
[Mochizuki et al., 2002; Teichert-Kuliszewska et al., 2001].
Nonetheless, the angiopoietins themselves exert low mitogenic
or proliferative activity on ECs [Davis et al., 1996], suggesting
that VEGF and angiopoietins exhibit distinct and overlapping
expression patterns which collaborate to regulate the different
stages of physiological angiogenesis. Hence, a single pro-angiogenic
factormay not be sufficient and effective in orchestrating all stages of
the angiogenic process and a combination of pro-angiogenic
mediators (e.g., growth factors with cytokines) may be required in
the formation of stable blood vessels. In agreementwith such premise,
the emerging relationship between leukocyte infiltration and angio-
genesis attracted a lot of attention over the last years.

Proliferating tissue in rheumatoid arthritis, psoriasis, and solid
tumors per se, contains an abundance of inflammatory cells
(neutrophils, monocytes/macrophages, and dendritic cells) that
promote pathological angiogenesis either directly and/or indirectly
leading to the creation of a highly vascularized granulation tissue
[Costa et al., 2007]. The angiogenic events, in these pathologies,
further support the inflammatory response, creating a vicious cycle.
In accordance with these observations, clinical trial reports referring
to coronary angiogenesis suggested that inflammation is an
important stimulus in the induction of the angiogenic cascade

[Simons et al., 2000] and very little angiogenesis takes place in the
absence of inflammation [Jones et al., 1999]. We, in parallel with
other groups, have demonstrated that VEGF and angiopoietins, in
addition to being angiogenic factors, are also potent inflammatory
regulators; once again indicating the necessity of inflammation in
the accompaniment of angiogenesis [Maliba et al., 2008; Neagoe
et al., 2009; Dumas et al., 2012; Neagoe et al., 2012]. During the last
years, we have shown that Ang1 and Ang2, acting on Tie2 receptor,
are capable of promoting the synthesis of platelet activating factor
(PAF), a potent pro-inflammatory mediator, in both ECs and
neutrophils. Upon its synthesis, PAF promotes neutrophil upregu-
lation of b2-integrin complex (CD11b/CD18) contributing to
neutrophil adhesion and their migration onto activated ECs
[Lemieux et al., 2005; Maliba et al., 2006]. In addition, we have
reported the capacity of Ang1 to promote the synthesis and release of
IL-1 and IL-8 [Dumas et al., 2012; Haddad and Sirois, 2014] which
are both involved during inflammation and angiogenesis [Voronov
et al., 2007; Qazi et al., 2011]. Nonetheless, the exact link between
inflammation and angiogenesis such as the type and the temporal
role of the recruited inflammatory cells during angiogenesis remains
unanswered.

Various in vivo models using biomaterials (e.g., polyvinyl alcohol
sponges) and/or Matrigel have been used extensively to analyze the
angiogenic capacity of growth factors, cytokines, chemokines, and
non-proteinmediators in a number of different hosts [Norrby, 2006].
Yet, many of these studies either did not look at the maturation of
blood vessels, a crucial event in the stabilization of nascent blood
vessels, or the newly formed vessels were identified to be immature
(lacking the ensheathing of SMCs). Hence, in the current study, we
utilized a novel variant of the sponge/Matrigel angiogenic model
such that the pro-inflammatory sponges were pre-incubated in
growth factor depleted Matrigel containing the tested growth factor
prior to subcutaneous implantation into wild type mice in order to:
(1) assess the individual pro-angiogenic capacity of VEGF, Ang1,
and Ang2 to promote the formation and the maturation of
neovessels; and (2) to identify the different inflammatory cells
accompanying angiogenesis in a spatio-temporal manner.

MATERIALS AND METHODS

MICE
C57BL/6 and BALB/c mice, 10–11 weeks old, were purchased from
Charles River Laboratories (Montréal, Canada), CD115gfp/+, and
Zbtb46gfp/+ mice were purchased from Jackson Laboratories (Bar
Harbor, ME). All animal experiments were approved by the ethical
animal care committees of the Montreal Heart Institute and Institut
de Recherches Cliniques de Montréal.

SPONGE PREPARATION AND IMPLANTATION
Sterilized polyvinyl alcohol (PVA) sponges (6mm diameter �2mm
width) were soaked in 200ml of growth factor depleted Matrigel (BD
Biosciences, Mississauga, Canada) containing PBS or 200 ng of
VEGF (PeproTech, Rocky Hill, NJ), Ang1, or Ang2 (R&D Systems,
Minneapolis, MN) for 20min at 4°C. Subsequently, the sponges
were incubated for 20min at 37°C prior to implantation. Under
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anesthesia with 2% isoflurane USP, two sponges treated with the
same growth factors were inserted subcutaneously through two
1 cm orthogonal incisions in the dorsa of the animals. The
incisions were then clipped for closure, and the mice were
subcutaneously injected with an analgesic agent (0.1ml of
Anaphen; 1mg/ml). The mice were sacrificed under anaesthesia
at day 4, 7, 14, or 21 post-procedure.

HISTOLOGY AND IMMUNOHISTOCHEMISTRY ANALYSES
The harvested sponge implants were fixed in 10% formalin PBS-
buffered solution, embedded into paraffin blocks and sectioned
sagittally (6mm thick). The sections were stained with Masson’s
trichrome reagent for a global overview of cellular invasion in the
implants. Immunohistological stainings were performed using the
avidin-biotin complex for the validation of angiogenesis and
inflammatory cells infiltration as previously described [Marchand
et al., 2002; Lemieux et al., 2005]. The primary antisera used in this
study were: ECs specific goat anti-mouse CD31 (Santa Cruz
Biotechnology Inc., CA), SMCs specific mouse anti-mouse a-SMA
(Sigma–Aldrich, Steinheim, Germany; clone 1A4), neutrophils
specific rabbit anti-mouse myeloperoxydase (MPO) (Thermo Scien-
tific, Rockford, IL), and macrophages specific rat anti-mouse F4/80
(BioLegend, San Diego, CA; clone BM8).

To assess the maturation of neovessels, a sequential double
immunohistochemistry (IHC) staining was performed. The sponge
sections underwent first round of IHC using the primary antisera
anti-CD31 and host specific biotinylated secondary antibody.
Peroxidase was developed by the DAB substrate. The tissues
underwent a second round of IHC protocol with the primary antisera
anti-a-SMA and host specific biotinylated secondary antibody.
a-SMA expression was detected in turquoise using Vina green
chromogen (Biocare Medical Inc., Concord, CA).

MICROSCOPY AND QUANTIFICATION
Images were collected using a brightfield microscope and were
analyzed using Image-Pro Plus software. Images of selected
regions of highest positive signal were acquired under 200�
magnification of each stained section (endothelial cells, neutro-
phils, macrophages, and smooth muscle cells). These selected
regions were then quantified using the color segmentation method.
Thresholds were empirically set to select pixels by analyzing a test
set of 10 images per batch of staining. The selected pixels
represented the expression of the stained cell. These empirically
determined thresholds were recorded in a macro and were applied
to all images that were analyzed. The number of pixels counted by
the macro was recorded in mm2. The Matrigel area was measured
using Image Pro’s calibrated area measurement tool in mm2. The
percent occupancy of studied cells in the Matrigel from each
sponge was calculated by taking the mean of: (area of counted
pixels (mm2)/area of Matrigel (mm2))� 100 of five randomly
selected images per sponge. The mean microvessel density was
expressed as the absolute number of microvessels counted/area of
Matrigel (mm2). The cross-sectional area occupied by these blood
vessels was also simultaneously measured. The vessel maturation
index was measured as: ((number of a-SMA-positive vessels/
number of CD31-positive vessels)� 100).

SPONGE SINGLE CELL PREPARATION AND FLOW CYTOMETRY
ANALYSIS
Single cell suspensions were isolated from sponges and spleen as
previously described [Choi et al., 2011]. Briefly, the sponges and
corresponding spleens were isolated from C57BL/6mice, minced and
incubated for 60min at 37°C in an enzyme mixture. Following the
blockage of Fc receptors using culture supernatant of 2.4G2
hybridoma, the cells were stained with fluorophore-conjugated
antibodies. The stained cells were acquired using LSR Fortessa
(Becton Dickinson, Mississauga, Canada) and were analyzed using
FlowJo (Tree Star Inc., Ashland, OR). The monoclonal antibodies
used in both flow cytometry analysis and FACS were anti-mouse
CD45, CD64, CD3, CD19, Ly6G (clone: 1A8), MHCII, CD11c, and
corresponding isotype controls were purchased from BioLegend.

ANALYSIS OF PHAGOCYTOSIS
Sponge and splenic CD45þCD11cþMHCIIþ cells isolated from
C57BL/6 mice, were incubated with 0.00134% of 0.50mm
Fluoresbrite1 YG Microspheres (Polysciences, Inc., Warrington,
PA) for 30min at 37°C. The cells were then labeled with monoclonal
antibodies against CD45, CD11c, MHCII, and CD19 and analyzed by
flow cytometry.

MIXED LEUKOCYTE REACTIONS
Sponge and splenic CD45þ cells were FACS (Beckman Coulter
MoFlo, Mississauga, Canada) sorted into CD11cþMHCIIþ cell
population and CD11c�MHCII�Ly6Gþ neutrophils from C57BL/6
mice. For proliferative analysis, splenic T-cells were isolated from
BALB/c mice by excluding B220þ, F4/80þ, CD49bþ, and I-Abþ cells
using anti-rat IgG Dynabeads (Invitrogen, Burlington, Canada).
These allogenic T-cells were subsequently labeled with carboxy-
fluorescein diacetate-succinimidyl ester (CFSE) and were combined
with isolated stimulator cells (splenic CD11cþMHCIIþ cells, sponge
CD11cþMHCIIþ cells, and neutrophils; stimulator: T-cell ratio of
1:10) in microtest wells at 5,000 of stimulator to 50,000 T-cells/well.
Four days later, T-cell proliferation was evaluated by CFSE dilution
in flow cytometry.

STATISTICAL ANALYSIS
Results are presented as the mean� SEM and all comparisons were
made between each conditions at corresponding days by analysis of
variance (ANOVA) followed by a Bonferroni t-test. Differences were
considered significant at P-values less than 0.05.

RESULTS

VEGF AND ANGIOPOIETINS PROMOTE BLOOD VESSEL FORMATION
Previous studies have demonstrated that VEGF and angiopoietins
play precise, complementary, and coordinated roles in angiogenesis.
In the present study, we wanted to assess the individual pro-
angiogenic activities of VEGF and angiopoietins in a novel variant of
the sponge/Matrigel angiogenic model. To monitor vascularization
and to examine the angiogenicmicroenvironment in the sponges, we
performed histological analysis using Masson’s trichrome staining
of the sponges at different time points from day 4 to day 21. Sponges
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containing PBS followed the time-course of the host foreign body
response in terms of cellular infiltration and neovessels formation
(Fig. 1A and C). In contrast, sponges loaded with VEGF, Ang1, or
Ang2 (200 ng/200ml) elicited a robust invasion of various cell types
into the Matrigel giving rise to a highly vascularized matrix by day 7
(Fig. 1B and D–F).

Based on endothelial cell-specific CD31 IHC detection (Fig. 2A;
upper left insert), for a more comprehensive analysis, sponges
containing PBS, VEGF, Ang1, or Ang2 showed marginal amount of

EC recruitment by day 4 (Fig. 2A). However, in the presence of any
one of the tested growth factors, this effect became significant by day
7 and 14 with an increase of �3–5 fold as compared to PBS-treated
sponges. At day 21, the percentage of CD31 expression in PBS-
treated sponges became comparable to VEGF and Ang2 treated
sponges, whereas Ang1 continuously maintained its capacity to
recruit ECs. These recruited ECs took their neovessel structure (lumen
formation) by day 7 in presence of VEGF, Ang1, or Ang2 (Fig. 2B).
Once formed by day 7, the microvessel density remained stable,

Fig. 1. Pro-angiogenic and inflammatory activities of VEGF and angiopoietins in mice. The images illustrate representative scans (A and B) and representative histological
sections (Masson’s trichrome staining, 400� magnification) of PVA sponges soaked in growth factor depleted Matrigel containing PBS, VEGF, Ang1, or Ang2 (200 ng/200ml)
harvested at day 7 (C–F). Treatment with VEGF, Ang1, or Ang2 promoted a marked recruitment of numerous inflammatory cells, endothelial cells, and mural cells in the region of
Matrigel within the sponges and the formation of neovessels (black arrow) containing circulating red blood cells (star), indicative of functional blood vessels (B and D–F).
Neovessel formation from endothelial cells (lumen formation) lacking circulating red blood cells was also observed (white arrow). In contrast, PBS treated sponges showed less
cellular accumulation and no blood vessel formation by day 7 (A and C).
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ranging from 50 to 70 vessels/mm2 of Matrigel. Although delayed in
time, the microvessel density under PBS-treatment became com-
parable (�50 vessels/mm2 of Matrigel) to the growth factor-treated
sponges by day 14 (Fig. 2B). Finally, in presence of Ang2 the average

cross-sectional area occupied by the neovessels formed by day 14 to
21 (>250mm2) was greater than the area of vessels formed in
presence of VEGF or Ang1 (�150–225mm2). However, under PBS
treatment, the primary vessels formed by day 14, were smaller

Fig. 2. Effect of VEGF and angiopoietins on angiogenesis in a time-dependent manner. PVA sponges soaked in growth factor depleted Matrigel containing PBS, VEGF, Ang1, or
Ang2 (200 ng/200ml) were removed from the animals at day 4, 7, 14, or 21. Subsequently, IHC staining against endothelial cell specific CD31 protein was performed in order to
assess the recruitment of endothelial cells (IHC insert; 1000�; A), microvessel density (B) and the average cross-sectional area occupied by the vessels (C) in theMatrigel. Data are
represented as mean� SEM of 4 to 10 independent experiments per condition. *P< 0.05, **P< 0.01, and ***P< 0.001 as compared to PBS-treatment at corresponding days, N/D:
not detectable.
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(�100mm2) but underwent remodeling and nearly doubled by day
21 (Fig. 2C).

VEGF AND ANGIOPOIETINS PROMOTE BLOOD VESSEL MATURATION
Vessel maturation is critical in angiogenesis, as the stability of an
induced vasculature is dependent on the mural cell association to
prevent vessel regression [Bergers and Song, 2005]. We thus, wanted
to elucidate the temporal sequel of VEGF and angiopoietinsmediated
maturation of neovessels given a pro-inflammatory environment.
The recruitment of SMCs was detected based on a-SMA protein
expression by day 7 in all tested conditions (Fig. 3A). Yet, treatment
with VEGF and angiopoietins individually triggered a more rapid
and pronounced recruitment of SMCs, producing a �10–12-fold
increase as compared to PBS-treated group. By day 14, the number of
SMCs detected under growth factor stimulation plateaued, while the
venue of SMCs under PBS treatment caught up yet remaining�2.5–
3-fold lower to what was mediated by VEGF and the angiopoietins.
We also observed that by day 21, the area covered by SMCs in
presence of VEGF or Ang1 was maintained whereas it partially
declined under PBS or Ang2 treatment (Fig.3A).

To assess whether the SMCs remained sparse into the Matrigel
and/or associated with neovessels, we performed double IHC
staining against CD31 and a-SMA proteins. We observed a common
inflection point by day 7 in presence of the different growth factors,
favoring the formation of neovessels, themigration of SMCs, and the

surrounding of SMCs around the neovessels as compared to PBS-
treated sponges (Fig.3B). Sponges harvested at day 4 under all of the
tested treatments only supported the recruitment of ECs and not of
SMCs (Fig.3A). By day 14 and 21, the maturing blood vessels were
covered with multiple layers of SMCs for all conditions (Fig.3B).
However, although the number of neovessels surrounded by at least
a single layer of SMCs by day 7was�60–70% and reached up to 80%
by day 14 or 21 under growth factor treatments, it plateaued to about
40% by day 14 in PBS-treated sponges (Fig.3C).

VEGF AND ANGIOPOIETINS MEDIATED ANGIOGENESIS IS
ACCOMPANIED BY INFLAMMATORY CELLS
Inflammatory cells, namely neutrophils and monocytes/macro-
phages participate in the angiogenic process through the secretion of
pro- and anti-inflammatory cytokines by controlling EC activation,
migration, and proliferation [El et al., 2000; Lingen, 2001; Voronov
et al., 2003]. Using anti-MPO antibody (Fig. 4A; upper right insert),
we observed significant recruitment of neutrophils by day 7 in
presence of VEGF, which peaked by day 14 covering about �2% of
total surface area, and then faded away by day 21. In addition, VEGF
was more potent as compared to the angiopoietins to promote the
recruitment of neutrophils by day 14. Ang2 showed a significant
peak (�1%) in neutrophil recruitment by day 7 and its potency
decreased gradually over time. On the other hand, Ang1 showed a
mild effect on neutrophil recruitment as compared to PBS-treated

Fig. 3. VEGF and angiopoietins mediated SMC migration and neovascular maturation in the sponges. PVA sponges soaked in growth factor depleted Matrigel containing PBS,
VEGF, Ang1, or Ang2 (200 ng/200ml) were removed from the animals at day 4, 7, 14, or 21. Subsequently, IHC staining againsta-SMAwas performed in order to assess the venue
of SMCs (A). The 4 panels represent immunohistogical snapshots illustrating the temporal evolution of mature blood vessels in the sponges in presence of the studied growth
factors (Ang1) at days 4, 7, 14, and 21. Endothelial cells were stained with anti-CD31 (brown staining; thin arrow) and SMCs were stained with anti-a-SMA (turquoise staining;
thick arrow) (1000�magnification). The neovessels were not only ensheathed by SMCs, but also contained red blood cells (star) (B). The percentage of mature blood vessels was
quantified as the number of neovessels surrounded by SMCs over the total number of blood vessels (C). Data are represented as mean� SEM of 4 to 10 independent experiments
per condition. *P< 0.05, **P< 0.01, and ***P< 0.001 as compared to PBS-treatment at corresponding days, N/D: not detectable.
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sponges (Fig. 4A). We looked at the recruitment of monocytes/
macrophages based on F4/80 selective protein detection (Fig. 4B;
upper right insert). The three growth factors individually tended to
have a peak recruitment of macrophages by day 14, which was
massive and significant under VEGF treatment (�1%) as compared
to PBS and angiopoietins-treated animals (Fig. 4B).

CHARACTERIZATION OF INFLAMMATORY AND IMMUNE CELLS IN
SPONGES BY FACS ANALYSES
To delineate the different leukocyte subsets recruited in the sponges,
we utilized multicolor flow cytometry procedure on single cell
preparation from sponges. CD45þ leukocytes in the sponges were
primarily comprised of CD11cþMHCIIþ cells, CD11c�MHCII�Ly6Gþ

cells (neutrophils), CD11c�MHCII�CD3þ cells (T-cells), and
CD11c�MHCIIþCD19þ cells (B-cells) (Fig. 5A). The fate of

CD11cþMHCIIþ cells at this point remained to be investigated.
Previous studies demonstrated that dentritic cells (DCs) constitu-
tively express the hematopoietic markers CD45, CD11c, and MHCII
in lymphoid tissues such as spleen and lymph nodes. Nonetheless,
this marker expression profile on its own is not sufficient to define
classical DCs (cDCs) in nonlymphoid tissues. In fact, high and similar
levels of CD11c and MHCII expression have been observed in both
cDCs and in macrophages [Gautier et al., 2012]. Thus, we performed
marker analyses, genetic, and functional studies to specifically
identify the CD11cþMHCIIþ cell population in the sponges as cDCs
and/ormacrophages. Recently,Zbtb46was identified as a selectively
expressed transcription factor by cDCs but not by monocytes,
macrophages and other lymphoid and myeloid lineages (e.g.,
neutrophils, T-cells and B-cells) [Satpathy et al., 2012]. Therefore,
we harvested sponge cells from Zbtb46+/+ (WT) and Zbtb46gfp/+mice

Fig. 4. Identification of VEGF and angiopoietins mediated inflammatory cells influx in the sponges. Neutrophil (A) and macrophage (B) accumulation in the sponge implants
were measured as MPO (IHC insert; 1000�; A) and F4/80 (IHC insert; 1000X; B) expression, respectively, in the Matrigel region of the sponges. VEGF, Ang1, and Ang2 mediated
inflammatory cells (neutrophil and macrophage) recruitment was temporal-dependent with different potency. Data are represented as mean� SEM of 4 to 10 independent
experiments per condition. *P< 0.05, **P< 0.01, and ***P< 0.001 as compared to PBS-treatment, §§P< 0.01 as compared to VEGF-treatment at corresponding days, N/D: not
detectable.
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Fig. 5. CD11cþMHCIIþ cells recruited in the sponges do not possess DC-characteristics. Single cell suspensions from sponges harvested from C57BL/6 mice were examined for
surface expression of indicatedmarkers. Thedata illustrates the expression profile of CD11c andMHCII, CD3 (T-cells), CD19 (B-cells), and Ly6G (neutrophils)within CD45þ gated cell
population (A). Representative histogram of GFP expression of CD11cþMHCIIþ cells in spleen (n¼ 2), VEGF-treated sponges and neutrophils (n¼ 4) harvested from Zbtb46+/+ (WT)
andZbtb46gfp/+mice (B). FACSpurifiedCD11cþMHCIIþ cells isolated fromsponges (treatedwithVEGForAng1) and spleensalongwithneutrophils retrieved fromC57BL/6micewere
co-cultured with T-cells purified from BALB/c mice (CD3þCFSE-labled T-cells) in MLR. CFSE levels were analyzed four days later. Proliferation of allogenic T-cells results in a
reduction of CFSE fluorescence intensity (n¼ 4; C).
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and analyzed for GFP expression. As anticipated, CD45þ cell
population containing splenic DCs were GFPþ while neutrophils
recruited in the sponges were devoid of GFP expression. In contrast
to splenic DCs, CD11cþMHCIIþ cell population isolated from the
sponges lacked expression of GFP (Fig. 5B). Next, FACS-sorted
CD11cþMHCIIþ cells from sponges and spleens along with
neutrophils were tested for their ability to stimulate allogenic
T-cells.Only splenicDCswere strong stimulators ofT-cell proliferation

(Fig. 5C). T-cells alone, neutrophils from sponges and spleen and
CD11cþMHCIIþ cells from sponges did not induce allogenic T-cell
proliferation. These results confirm that CD11cþMHCIIþ cells in the
sponges do not possess DCs functional characteristics.

In contrast, CD11cþMHCIIþ cells from PBS, VEGF, Ang1, and
Ang2-treated sponges were positive for F4/80 marker while the
neutrophils from the corresponding sponges were negative (Fig. 6A).
Although in the past, F4/80 served as a reliable marker of

Fig. 6. CD11cþMHCIIþ cells recruited in the sponges are classical and non-classical macrophages. The images illustrate representative histogram (n¼ 2–4 independent
experiments per condition) for F4/80 expression of CD11cþMHCIIþ cells and CD11c�MHCII� Ly6Gþ neutrophils isolated from sponges pretreated with PBS, VEGF, Ang1, or Ang2
(A). CD11cþMHCIIþ CD64þ cells were stained for the intracellular markers CD68 and CD206 (B). Single cell suspensions isolated from VEGF treated sponge were bathed with
0.5mm YG microspheres for 30min at 37°C and the uptake of these microspheres (phagocytosis) were analysed by flow cytometry (C). B-cells, neutrophils, and CD11cþMHCIIþ

cells isolated from VEGF treated sponges harvested from CD115gfp/+ and WT mice were analysed for GFP expression (D).
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macrophages, additional analysis of a panel of surface markers is
now required to definemacrophage population. Recently, the surface
marker CD64 expression was identified as a reliable marker of
mature tissue macrophages [Gautier et al., 2012]. Interestingly, in
our study, we observed that the CD11cþMHCIIþ cells isolated from
the sponges were all CD64þ. Moreover, they also expressed CD68
and CD206, two additional markers of macrophages [Gautier et al.,
2012] (Fig. 6B). To test whether the CD11cþMHCIIþ cells recruited in
the sponges had the phagocytic activity of macrophages, we
analyzed their phagocytic capacity by flow cytometry. Neutrophils
from the sponges took up 0–2 beads/cell while all sponge
MHCIIþCD11cþ cells were highly phagocytic (>3 beads uptake/
cell). B-cells isolated from the sponges served as our negative control
and it provided no phagocytic activity (Fig. 6C). To further confirm
these isolated cells from the sponges as macrophages, we used
transgenic CD115gfp/+ mice, which express MCSF-1R, a receptor for
macrophage-colony stimulating factor [Sasmono et al., 2007].
Indeed, the CD11cþMHCIIþ cells isolated from the sponges
implanted in CD115gfp/+ mice were GFP positive. However, B-cells
(negative control) from the transgenic CD115gfp/+ andWTmice were
GFP negative (Fig. 6D). Taken together, these results demonstrate
that the MHCIIþCD11cþ cells present in the sponges are macro-
phages and not DCs.

DISCUSSION

Compelling studies have demonstrated the direct participation of
neutrophils and monocytes/macrophages in the induction of
inflammatory response prior to the initiation of pathological
angiogenesis. Indeed, the release of pro-inflammatory cytokines
and growth factors provides a suited autocrine/paracrine milieu to
fully support blood vessels formation [Schruefer et al., 2005; Aplin
et al., 2006; Lin et al., 2006; Gong and Koh, 2010]. As we have
previously illustrated the pro-inflammatory activities of VEGF and
angiopoietins, we were led to address their capacity to promote
inflammatory response associated to in vivo angiogenesis. In the
present study, we utilized a novel variant of the murine sponge/
Matrigel angiogenic assay to evaluate the sequel of host-derived
blood vessel formation and inflammatory cell infiltration into the
sponges. Herein, we demonstrate that VEGF, Ang1, and Ang2
individually are highly potent and efficacious in recruiting ECs,
SMCs, and inflammatory cells (mainly neutrophils and macro-
phages, and sparsely T- and B-cells). More importantly, these tested
growth factors given individually were not only capable to favor the
formation of neovessels but also their maturation as observed by the
coordinated ensheating of SMCs around the neovessels and the
presence of circulating red blood cells in the vessel lumen. Hence,
this study suggests the potential contribution of both inflammatory
cells and angiogenic growth factors to fully support blood vessel
formation and their maturation.

Recent efforts in clinical trials focus on localized therapy for
restoring blood flow in ischemic regions as tissue loss in these
patients was localized [Simons et al., 2000]. While growth factor
therapy remained a gold standard for the induction of local
therapeutic angiogenesis, translating this concept into an effective

and safe therapy for patients became a challenge. Presently, bio-
material based approaches is being successfully utilized in animal
models to study the capacity of growth factors, cytokines/chemo-
kines, and nonprotein mediators to promote blood vessel formation
[Andrade et al., 1997]. One such method is the subcutaneous
implantation of PVA sponges in mice, which promotes a robust
infiltration of inflammatory cells, providing a pro-inflammatory
environment, and giving rise to a highly vascularized spongematrix.
However, due to continuous inflammation, these newly formed
vessels were postulated to be fragile, permeable, and dilated with no
indication of neovessel maturation (lack of SMCs ensheathing)
[Andrade et al., 1997]. A major disadvantage of such matrix
implantation is that it induces non-specific inflammatory host
response and thus limits to acute studies [Staton et al., 2009]. Later,
the Matrigel plug assay became the widely used model for studies
involving in vivo testing for angiogenesis, as it provides a natural
environment for the formation of neovessels without inducing non-
specific immune response [Staton et al., 2009]. Yet, although
Matrigel injection containing VEGF in mice successfully promoted
the formation of neovessels, themodel did not lead to thematuration
of the newly formed vessels [Tengood et al., 2010]. As inflammation
is an important stimulus for the induction of new vessel growth, we
hypothesized that the combination of both these approaches might
fulfill the required environment to favor the formation and
maturation of neovessels. The classical sponge/Matrigel model,
encompassing both the sponge model and the Matrigel assay,
requires the subcutaneous injection of Matrigel containing the
protein of interest, 20–30min prior to the surgical introduction of
PVA sponges [Akhtar et al., 2002; Norrby, 2006]. This method has
been identified to provide variable amount of test compound within
the implants and to trigger the fibrotic encapsulation of the sponges
[Norrby, 2006]. In our variation of the sponge/Matrigel model, we
have soaked PVA sponges intoMatrigel containing the tested growth
factors prior to the surgical implantation. We observed that our
technique was simple, less time consuming, that each sponge
implant contained equal volume of the tested growth factors and it
did not induce non-specific immune response.

We observed an early onset of EC migration in the sponges within
thefirst 4 days and a significant number of blood vessel formation by
day 7 under VEGF or angiopoietin stimulation, thus, challenging the
classical role of angiopoietins in angiogenesis. Interestingly, the
amount of ECs migrated into the sponges kept increasing up to day
14 or 21, while the number of blood vessels once formed by day 7
remained stable, suggesting that the model itself exerts a restrain on
the maximal capacity of blood vessel formation even in presence of
free ECs. Our data is in line with previous studies reporting the pro-
angiogenic and mitogenic activities of VEGF in various in vivo
models including the chick chorioallantoic membrane [Plouet et al.,
1989], the rabbit cornea [Phillips et al., 1994], and the primate iris
[Tolentino et al., 1996]. However, the capacity of angiopoietins to
initiate the angiogenic cascade remains controversial. For instance,
while some in vivo reports demonstrated that Ang1 alone is unable
to induce angiogenesis but can potentiate VEGF mediated
angiogenic response [Asahara et al., 1998; Chae et al., 2000], others
showed that Ang1 can promote a robust neovascularization in
Matrigel implants [Babaei et al., 2003]. The implication of Ang2 in
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angiogenesis is tied with VEGF where it promotes destabilization of
pre-existing blood vessels in the absence of VEGF [Holash et al.,
1999; Lobov et al., 2002]. Yet, other studies reported that Ang2 alone
can induce vascular remodeling and angiogenesis in absence of
VEGF [Kim et al., 2000b;Mochizuki et al., 2002]. Our study illustrates
that the pro-inflammatory environment itself is sufficient to initiate
the angiogenic cascade and the addition of the tested growth factors
further allows this effect to be more potent and efficient.

Interestingly, we also observed the venue and the ensheathing of
SMCs around neovessels by day 7 in presence of the tested growth
factors. Indeed, all three growth factors promoted the maturation of
blood vessels with equal potency. Although, our result is consistent
with the stabilizing effect of Ang1 on vascular endothelium, it is also
in contradiction with the proposed role for VEGF and Ang2 during
angiogenesis. In fact, VEGF and angiopoietins are incapable of
directly activating SMCs. Yet, they can promote the activation of ECs
and support the migration of inflammatory cells (e.g., macrophages
and neutrophils) which can promote the release of various growth
factors and cytokines (e.g., FGF, VEGF, Ang1, interleukins [IL-1b, IL-
8 and -10], and CXCL1) [Gaudry et al., 1997; Noonan et al., 2008;
Dinarello, 2009; Neagoe et al., 2009]. Ang2 in particular, has been
shown to possess pro-inflammatory characteristics on both ECs and
neutrophils [Lemieux et al., 2005; Fiedler and Augustin, 2006;
Fiedler et al., 2006; Kim and Koh, 2011]. In addition, neutrophils and
macrophages can equally trigger the release of numerous metal-
loproteinases, neutrophil elastase, and reactive oxygen species
(ROS), which can facilitate extracellular matrix degradation,
favoring the migration and proliferation of ECs and SMCs (reviewed
in [van Hinsbergh et al., 2006]). In addition, the presence of
neutrophils and macrophages in the sponges at day 7 during the
recruitment of SMCsmay initiate a paracrine compensation pathway
in order to trigger the maturation event. Interestingly, from the
histological sections, we observed that the newly formed vessels in
presence of VEGF, Ang1, or Ang2 were “functional” based on the
presence red blood cells in the neovessels and that they appeared to
be non-leaky. Vascular permeability study must be conducted in
order to confirm this later statement. However, as not all the
neovessels formed in the sponges are necessarily matured at any
given time, it is thus, not possible to confirm the absence of vascular
leakiness. Furthermore, we also observed that the blood vessels once
formed undergo no or marginal diameter remodeling. Ang1 in the
past has been identified to play an important role in the
reorganization of EC into tubule-like structures during angiogenesis
by stimulating the production of proteases. Plasmin and matrix
metalloproteases, examples of such proteases, decrease the EC-
substratum interaction allowing the ECs to reshape the vessel lumen
[Kim et al., 2000a]. However, in our study, upon the formation of
neovessels by day 7 (with growth factors), we did not observe
additional remodeling over time. This may be due to the rapid
maturation of the newly formed vessels taking place simultaneous to
blood vessel formation which may prevent further unrestricted
enlargement of the growing vessels [Hoeben et al., 2004]. As for the
PBS-treated sponges, the delayed recruitment of SMCs may explain
the slight remodeling of the area of occupancy that took place
between day 14 and 21. Together, VEGF, Ang1, and Ang2 alone are
capable of mediating thematuration process in the presence of a pro-

inflammatory environment suggesting that inflammation plays a
major role in the angiogenic process.

This notion is further strengthened as observed under various
pathological conditions. For instance, suppression of inflammatory
response by genetic abnormalities, pathophysiological processes, or
pharmacotherapy produce adverse effects in the ability of the host to
induce new vessel growth [Jones et al., 1999]; hence inflammation,
once considered to be a homeostatic response protecting the body
from invading pathogens, is now been shown to function as a critical
stimulus for neovessel growth. Neutrophils being the most abundant
leukocyte in the circulation have been demonstrated to play
important roles during pathological angiogenesis. Although, the
exact mechanism through which tumor associated neutrophils
mediate or modulate angiogenesis has not been fully elucidated, the
importance of neutrophils in tumor angiogenesis has been noted
from human biopsies [Van den Steen et al., 2000; Nozawa et al.,
2006]. Similarly, increased macrophage infiltration in various types
of cancer correlates positively with vascularity, tumor stage and
malignancy [Torisu et al., 2000; Chen et al., 2003]. Once again the
exact function of the macrophages in the tumor environment
remains a nuance.

Likewise, although we did not study the exact roles of
inflammatory cells in angiogenesis, we observed the presence of
neutrophils, macrophages, and sparsely T- and B-cells, in the tissue
section by IHC and/or flow cytometry. Surprisingly, the presence of
neutrophils, expected to be one of thefirst cells recruited at the site of
inflammation, was still observed at latter time points raising the
question whether we have continuous recruitment of neutrophils in
sponges or if they have been differentiated to other cell types.
Recently, it was suggested that neutrophils could differentiate into
neutrophil-DC hybrids with DC-like properties in the setting of
experimentally induced inflammatory lesions in mice [Geng et al.,
2013; Matsushima et al., 2013]. DCs are professional antigen
presenting cells, which reside in peripheral tissues in an immature
state. Upon microbial contact and stimulation by inflammatory
cytokines, it possesses a unique ability to induce both primary and
secondary T- and B-cell responses. It is now clear that DCs express a
wide array of pro- and anti-inflammatory mediators that mediate a
significant role in those pathophysiological settings characterized by
DC activation and angiogenesis [Sozzani et al., 2007]. Thus, we
hypothesized that neutrophils may differentiate into neutrophil-DC
hybrids in our system. However, CD11cþMHCIIþ cells, which we
initially thought to be DCs, turned out to be neither DCs nor
neutrophil-DC hybrid cells. These cells: (1) did not express DC-
lineage transcriptional factor Zbtb46; and (2) did not stimulate
allogenic T-cells in MLR assay. Instead, they expressed macrophage
specificmarkers including F4/80, CD68, CD206, and CD115/mCSF1R
and were highly phagocytic. Hence, our sponge/Matrigel model,
apart from T- and B-cells, contains two major inflammatory cell
populations: neutrophils and macrophages.

In summary, ourmurine sponge/Matrigel model in presence of the
pro-angiogenic growth factors (VEGF, Ang1, or Ang2) allowed the
formation of new vessels and more importantly, it led to their
maturation. Moreover, the recruitment of inflammatory cells in the
Matrigel by the provided growth factors further accelerated these
processes with greater potency. Thus, such pro-inflammatory/
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angiogenic model along with the growth factors may provide a
suited autocrine/paracrine environment capable of triggering and
supporting the formation and maturation of neovessels, illustrating
the necessity of inflammation in the creation of mature blood
vessels. Further studies will be needed through selected depletion of
neutrophils and monocytes/macrophages to delineate the role of
these cells in such angiogenic model.
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