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Sommaire

Etant donné que la création récente d’un grand nombre de fonds mutuels et leur
importance comme moyen d’épargne dans I’économie, il semble surprenant que
la gestion actuelle des fonds d’actifs financiers en pratique est presque exclusive-
ment basée sur des modeles financiers statiques comme le modele d’évaluation des
actifs financiers ou des modeéles a facteurs statiques. Ceci implique que tous les
conseils d’investissement basés sur de tels modeéles ne dépendent pas de ’horizon
d’investissment, ce qui ne correspond pas & la composition des portefeuilles ob-

servée en réalité ou des effets d’age sont clairement présents.

Il semble alors important de développer une théorie d’allocation de portefeuille
dynamique qui peut servir comme base pour la mise en oeuvre des systémes de
support pour les décisions des gestionaires de fonds semblables & ceux utilisés
pour la valorisation et la couverture des produits dérivées. Théoriquement, le
probléme de choix de portefeuille dynamique a été étudié dans les années soix-
ante dix par Samuelson et Merton. Le résultat principal de leurs travaux, comparé
a la demande de portefeuille dans un modeéle statique, est que le comportement
optimal de 1’agent est tel que, & part une composante basée sur des primes de
risque instantanées, I'investisseur essaie de se couvrir contre les fluctuations fu-
tures dans I’ensemble des opportunités d’investissement. La caractérisation des
stratégies optimales dans ces modeles est faite par des éléments de la théorie du

contréle optimal, mais peu de travaux ont été éffectués pour la mise en pratique
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de ces résultats. L'une des raisons est que la mise en oeuvre de cette méthode

avec beaucoup de variables d’état (qui est typique pour le choix de portefeuille)
est difficile.

Le présent travail tente de faire des contributions théoriques et pratiques pour
la compréhension approfondie de la gestion de portefeuille dans un contexte dy-
namique. Nous dérivons une décomposition probabiliste de la politique de porte-
feuille qui admet une identification des éléments déterminants de la composition

du portefeuille optimale de P'investisseur.

D’abord nous présentons des résultats sur les stratégies de portefeuille qui
aident a identifier la dépendance de la demande pour les actifs financiers du flux
d’information dans I’économie. En particulier, nous considérons le comportement
optimal d’un investisseur qui a acqui des connaissances anticipatives relative au
flux d’information publique. Nous analysons en détail les types d’information
de l'initié qui permettent de réaliser des possibilités d’arbitrage et dérivons la

stratégie de portefeuille optimale d’un tel investisseur.

Ensuite nous dérivons une méthode pour la solution numérique du probléme
de choix de portefeuille basée sur des simulations de Monte Carlo et de solu-
tion numérique d’équations différentielles stochastiques, comme dans les méthodes

utilisées pour la valorisation des options. Notre méthode est générale et est avan-

tageuse par rapport a la programmation dynamique numérique si le flux d’information

dans I’économie est généré par un grand nombre de variables d’état.

Finalement, nous faisons une analyse d’erreur approfondie de notre méthode
numérique, et dérivons des procedures efficaces au niveau de la vitesse de conver-
gence et de la correction du biais asymptotique de deuxiéme ordre. Notre approche
admet ’analyse d’erreur pour une classe de problémes différents, comme la val-
orisation et la couverture des options, la détermination de la volatilité des actifs

financiers risqués dans un modele d’équilibre général ou ’analyse d’erreur des



processus en temps discret comme approximations de diffusions.



Résumé

La these intitulée “Trois essais sur le comportement optimal dans les marchés
financiers” contient trois articles sur les stratégies de portefeuille optimales des

agents dans des marchés financiers.

Depuis les années soixante dix, les marchés financiers ont connu une révolution
relative aux titres qui y sont échangés. Cette révolution a été causé par la découverte
de la formule de Black and Scholes pour ’évaluation des options. La compréhension
approfondie de la valorisation d’actifs financiers a initié la création de nouveaux
actifs financiers et de nouvelles bourses ol de tels titres sont échangés. Au niveau
théorique, I'importance de ce résultat vient de I'idée de réplication d’un porte-
feuille qui, ajoutée a I'idée d’absence d’arbitrage, est la base de toute valorisation
dans la théorie financiere moderne. Les techniques mathématiques utilisées pour
démontrer ce résultat sont basées sur des solutions d’équations aux dérivées par-
tielles (EDP) et sont alors liées a des résultats probabilistes tels que découverts
dans la célébre formule de Feynman et Kac et du calcul stochastique. Cette in-
novation technique a aidé & démontrer certain résultats dans une plus grande

généralité et a donné naissance a une nouvelle formation d’ingénieur financier.

Vu ces innovations majeurs dans 1’évaluation des produits derivés, il est sur-
prenant que, encore aujourd’hui, ces changements dans la théorie financiére récente
ont eu relativement peu d’'influence sur la gestion de portefeuille optimale dans

un contexte dynamique. Ceci est plus étonant si I’on considére les changements
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majeurs des consommateurs dans leur comportement d’épargne qui est révélé par
la création de nombreux fonds mutuels. Le valeur et le volume de ces fonds mon-
trent 'importance d’une compréhension approfondie de la gestion de portefeuille
optimale. Encore aujourd’hui, les gestionnaires de fonds utilisent des méthodes
moyenne-variance introduites par Markovitz dans les années cinquante. Mais ces
principes de gestion de portefeuille qui portent surtout sur 'idée de diversification
sont fondés sur un modele financier statique avec des préférences de type moyenne-
variance et ne peuvent donc pas apporter des réponses a des questions, telles que
de l'effet de I’horizon d’investissement sur les stratégies optimales. D’autre part,
les gestionnaires de fond donnent des conseils d’investissement qui dépendent du
temps sans s’appuyer sur une base théorique. Ceci est d’autant plus surprenant
que l'idée de réplication et couverture qui est utilisée dans I’évaluation des produits
derivés nécessite des considérations dynamiques et est dans ce sense trés proche
de I'idée de gestion optimale de portefeuille. Une stratégie de portefeuille optimale
réplique la consommation et/ou la richesse terminale optimale de I'investisseur.
Si on connait alors la consommation optimale de I’agent, le probléeme de trouver
une stratégie de portefeuille optimale consiste & trouver une composition d’actifs
financiers qui produise des flux tels que dans tous les scénarios possibles et dans
tous les moments avant ’horizon d’investissement, ’agent a les moyens nécessaires

de financer sa consommation optimale.

Dans un cadre dynamique, la stratégie de portefeuille optimale était décrite
pour la premiere fois par Merton en soixante douze. Il a réalisé qu'une stratégie
de portefeuille optimal contient une partie qui correspond a la demande moyenne-
variance mais aussi une partie de couverture contre les fluctuations futures dans

I’ensemble des possibilités d’investissement.

Dans les trois articles suivants, nous présentons plusieurs extensions du probléeme
de portefeuille. Dans un premier article nous analysons 1’effet d’information an-

ticipative sur la stratégie de portefeuille. Ce papier contient des résultats impor-



viil

tants pour la construction de modeles d’équilibre avec des investisseurs informés.
La généralité des résultats permet aussi d’analyser sous quelles conditions les
marchés financiers sont des mécanismes efficaces pour I’agrégation d’information

dans I’économie et aide & comprendre le comportement d’un initié dans un marché

compétitif.

Dans un deuxiéme article nous présentons une nouvelle méthode de calcul des
stratégies de portefeuille. Cette méthode est basée sur des méthodes purement
probabilistes et est alors avantageuse relativement & la programmation dynamique
standard si le nombre de variables d’état est grand. Nous illustrons notre méthode
avec plusieurs exemples. Notre représentation de la stratégie de portefeuille opti-
male permet aussi de mieux comprendre la structure de la demande de portefeuille
et aide a identifier des cas particuliers pour lesquels il existe des solutions explicites

a la demande d’actifs risqués.

Le dernier article fournit des expressions pour les lois asymptotiques présentées
dans le deuxiéme article. Ces expressions sont importantes pour analysér la précision
de différentes méthodes d’approximation. Ces expressions permettent de constru-
ire des tests asymptotiques et des intervalles de confiance pour les différentes par-
ties du portefeuille optimal. Etant donné un budget de temps de calcul préscrit, les
résultats permettent de planifier une mise en oeuvre efficace de la procédure. Nous
montrons aussi des moyens d’augmenter la vitesse de convergence et dérivons &
partir des loi asymptotiques des procédures de correction de biais du deuxieme

ordre.

Premier article

Dans le premier article intitulée “Insider Information, Arbitrage and Optimal
Portfolio and Consumption Policies”, nous ajoutons des initiés dans le modele

financier introduit par Samuelson (1969) et Merton (1971). Nous montrons que si
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Phorizon d’investissement de ces initiés est postérieur & la dissipation de leur
avantage informationnel, ils ont des possibilités d’arbitrage si et seulement si
leur information est si précise qu’elle contient des événements qui sont de prob-
abilité nulle sachant I'information publique. Pour un horizon d’investissement
plus court ou en I'absence de tels événements, nous dérivons des expressions ex-
plicites pour les politiques de consommation et d’investissement & tous les hori-
zons d’investissement, qui permettent d’analyser comment les politiques de con-
sommation et d’investissement sont affectées par I'information de I'initié. Nous
montrons que les stratégies optimales ne révélent jamais toute I'information et
que l'information d’initié est sans valeur si et seulement si elle est indépendante
de P'information publique. Nous montrons que les possibilités d’arbitrage sont
telles que les initiés peuvent couvrir toutes les politiques de consommation. Par
conséquent, le probleme d’investissement de Merton avec des préférences con-
vexes du type von Neumann-Morgenstern n’a pas de solution pour des horizons
d’investissement qui se terminent aprés la résolution de l'incertitude concernant
le signal. Ce probleme peut étre évité si on ajoute au signal de I'initié un bruit.
Comme dans ce cas les non-initiés n’apprennent jamais le vrai signal, une telle
solution néglige des aspects importants de I'information de I’initié. Pour un initié,
qui a une information additionnelle générée par un signal avec loi discréte, nous
montrons que la valorisation des options mesurables par rapport & I'information
publique n’est pas affectée s’il n’y a pas de possibilités d’arbitrage. Au contraire,
pour un initié avec une information additionelle générée par un signal avec loi

continue, toutes les options sont sans valeur.

Deuxiéeme article

Le deuxieeme article intitulée “A Monte Carlo Method for Optimal Portfolios”

¢tablit des résultats nouveaux sur (i) la structure des portefeuilles optimaux, (ii)



le comportement des termes de couverture et (iii) les méthodes numériques de
simulation en la matiére. Le fondement de notre approche repose sur ’obtention
de formules explicites pour les dérivées de Malliavin de processus de diffusion,
formules qui simplifient leur simulation numérique et facilitent le calcul des com-
posantes de couverture des portefeuilles optimaux. Une de nos procédures utilise
une transformation des processus sous-jacents qui élimine les intégrales stochas-
tiques de la représentation des dérivées de Malliavin et assure l’existence d’une
approximation faible exacte. Cette transformation améliore alors la performance
des méthodes de Monte-Carlo lors de Pimplémentation numérique des politiques
de portefeuille dérivées par des méthodes probabilistes. Notre approche est flexi-
ble et peut étre utilisée méme lorsque la dimension de I’espace des variables d’état
sous-jacentes est grande. Cette méthode est appliquée dans le cadre de modeéles
bivariés et trivariés dans lesquels l'incertitude est décrite par des mouvements de
diffusion pour le prix de marché du risque, le taux d’intérét et les autres facteurs
d'importance. Apres avoir calibré le modéle aux données nous examinons le com-
portement du portefeuille optimal et des composantes de couverture par rapport
aux parametres tels que I’aversion au risque, I’horizon d’investissement, le taux
d’intérét et le prix de risque du marché. Nous démontrons I'importance des de-
mandes de couverture. L’aversion au risque et I’horizon d’investissement émergent
comme des facteurs déterminants qui ont un impact substantiel sur la taille du

portefeuille optimal et sur ses propriétés économiques.

Finalement nous analysons dans un modele avec deux actifs risqués et un actif
sans risque le comportement des différents composantes du portefeuille par rapport
& la corrélation des prix du risque et a la corrélation des rendements des actifs
risqués. Nous montrons qu’un actif risqué est choisi comme couverture contre les
futures fluctuations dans le taux d’intérét. Puis, comme cet actif a une corrélation
positive avec le taux, une telle couverture est atteinte par une position en compte

dans cet actif. Etant donné cette position en compte, ’autre actif est alors utilisé
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comme couverture contre le risque apporté par cette position de couverture. Il
est détenu dans une position & découverte si les rendements sont négativement
corrélés ou en compte si la corrélation des rendements est négative. Les positions
opposées augmentent avec le valeur absolue de la corrélation entre les rendements.
Un comportement similaire est analysé pour la partie couverture contre le risque

représenté par les futures fluctuations du prix du risque.

Troisiéme article

Dans le dernier article intitulée “Asymptotic Properties of Optimal Portfolio
Estimators” nous montrons d’abord comment notre méthode de résolution du
probléme de portfeuille peut étre, en élargissant ’espace des variables d’état,
définit comme un probléme d’estimation de I’espérance d’une fonction du valeur
terminale d’une équation différentielle stochastique comme dans ’évaluation des
options exotiques ou le payoff est dépendant de la trajectoire des actifs sous-
jacents. Ensuite, nous dérivons d’abord les lois asymptotiques pour les variables
d’états avec ou sans transformation qui élimine les intégrales stochastiques, par
des méthodes de convergence faible des processus. Nous montrons que la vitesse de
convergence est déterminé par la partie martingale du processus. Par conséquent,
la vitesse de convergence augmente lorsqu’on simule des variables d’état sous
la transformation qui élimine les intégrales stochastiques. La loi asymptotique
avec transformation est non-centrée et nous obtenons des expressions de I’erreur
d’approximation par calcul de ’espérance de la loi limite. D’autre part, la loi
limite sans transformation est centrée et la partie martingale qui détermine la
vitesse de convergence est en limite equivalente & une variable aléatoire centrée
qui est indépendante des innovations initiales. Par conséquent, ’ordre de conver-
gence de l'espérance de l'erreur est d’ordre supérieur & la convérgence des vari-

ables d’état dans ce cas. Nous dérivons des expressions explicites de I’espérance
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de ’erreur d’approximation comme espérance des variables aléatoires simulables.
Ensuite, nous dérivons des lois asymptotiques pour la procédure jointe: solution
numérique de I'équation différentielle stochastique et simulation de Monte Carlo
pour le calcul des espérances conditionelles. La vitesse de convergence dans ce cas
est la méme pour les deux methodes. Les expressions des lois limites montrent
qu’il existe un biais de deuxiéme ordre qui correspond & l’espérance de I’erreur
d’approximation. Comme nous avons déterminé cette erreur comme espérance
des variables aléatoires simulables, nous pouvons alors dérivé des estimateurs
pour I'espérance d’une fonction de la valeur terminale d’une equation différentielle
stochastique corrigée du biais de deuxiéme ordre. Finalement, nous dérivons des
estimateurs pour les cas ou la valeur initiale de variables d’état doit aussi étre
approximée. Nous montrons que dans ce cas la transformation qui élimine les
intégrales stochastiques est de nouveau préférable car I'avantage au niveau vitesse
de convergence est préservé comme pour les variables d’état. Nous discutons
’application de ces résultats pour des estimateurs de suivant ’évolution du marché

(market timing).
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Chapter 1

Insider Information, Arbitrage
and Optimal Portfolio and

Consumption Policies

1.1 Introduction and Summary

This article extends the standard continuous time financial market model pio-
neered by Samuelson (1969) and Merton (1971) to allow for investors with
anticipative information. Such investors are called insiders, since they can al-
ready tell today whether or not an event unknown to the public will occur at
some date in the future. The effects of insiders on the social efficiency of mech-
anisms for intertemporal risk sharing has been of great concern in the financial
market literature. The traditional models used to address this issue are based on
strong assumptions about the nature of the insider signal and the preferences of
investors. In the classical equilibrium models following Grossman (see the arti-

cles in Grossman (1989)) and the market microstructure literature based on the



market game model of Kyle (1985) it is assumed that insiders have a constant
absolute risk aversion and preferences for terminal wealth only. Insider signals are
restricted to the liquidation value of the risky asset. Since prices of risky assets
are determined endogenously and therefore depends on information, preferences
and beliefs of other market participants such anticipative information might be
rare. Furthermore these models do not allow for investment horizons for which

the uncertainty about the insider signal is resolved given public information.

In this paper we generalize results of Karatzas and Pikovsky (1996a) and show
how in a standard continuous time financial market model, techniques of the
theory of enlargements of filtrations can be used to analyze the effects of arbitrary
insider signals on dynamic portfolio and consumption policies. We illustrate our
approach with an example in which an investor knows already today whether or
not the risky asset stops to pay dividends after a certain time. Such signals could
not been considered previously. For an insider with constant relative risk aversion
we derive an explicit expression for the demand of risky assets which is due to
his/her anticipative information. More generally the techniques introduced in this
paper enable us to analyze how the valuation of contingent claims and optimal
consumption and portfolio policies are affected by the precision of the information
about the true state of nature contained in insider signals and can therefore also

be used for purposes of dynamic risk management.

Since the seminal paper of Harrison and Kreps (1979), it is well-known that the
existence of a probability measure for which prices are martingales is equivalent
to the existence of a viable market model, that is a model where there exists an
optimal trading strategy for some agent with strictly monotonic, continuous and
convex preferences. This is often referred to as the fundamental theorem of asset

pricing '. As shown by Kreps (1981) viability is a stronger requirement than the

1The result of Harrison and Kreps (1979) has been generalized in various directions. See

Dalang, Morton and Willinger (1990) , Back and Pliska (1991), Schachermayer (1994) for models



absence of free lunches. If the market model is viable, there cannot exist strategies
which provide positive gains from trade with positive probability but no initial

investment.

We show that the existence of a viable market model for an investor who al-
ready knows today whether or not an event unknown to the public will occur,
depends crucially on the information about states of nature contained in his/her
anticipative information. We prove that for investment horizons which do not
end before the first moment in time the informational advantage of an insider has
disappeared, there exist always free lunches with vanishing risk but no arbitrage
opportunities 2 whenever the insider’s anticipative information does not contain
zero probability events (atomic insider information). On the other hand if the
insider information is so informative about the state of nature that it contains
events which are not believed to occur given public information (non-atomic in-
sider information), a viable market model exists only if the investment horizon
ends before the uncertainty about the insiders information is resolved. This im-

plies that no viable market model exists for insider whose anticipative information

with discrete trading, Delbaen and Schachermayer (1994) respectively (1998) for general semi-
martingale models and continuous trading and Jouini and Kallal (1995a) and (1995b), Pham
and Touzi (1996) and Wang (1998) for models with constraints on trading strategies. Dybvig
and Huang (1988) and Delbaen, Monat, Schachermayer, Stricker and Schweizer (1997) have
shown that that the absence of arbitrage can be enforced if gains from trade are bounded in the

L? norm.
2As shown by Delbaen and Schachermayer (1995) there is a difference between the absence of

free lunches with vanishing risk and the absence of arbitrage. An investor has free lunches with
vanishing risk whenever there exists a sequence of portfolio policies with associated discounted
gains from trade bounded from below, such that discounted terminal wealth associated with the
sequence of portfolio policies does not converge in probability to the initial wealth. In contrast
a portfolio policy is an arbitrage if associated gains form trade a bounded from below with
probability one and discounted wealth is bigger than initial wealth with positive probability.

See section 1 for precise definitions.



is generated by signals with continuous distributions when the investment horizon
is unrestricted. We show that this problem can be avoided if we add independent
noise to the insider signal. In this case we can always derive optimal portfolio and
consumption strategies. But since in this case uncertainty about the true signal
is never resolved it does not capture an important feature of insider information
in financial markets and resembles more market models with differential informa-
tion 3. Clearly insiders with imperfect anticipative information exist in financial
markets, but it seems less realistic that uncertainty about their private signal is
never resolved given public information. If we add noise to the true signal we
cannot analyze the effects of anticipative information which will be also known
by non-insiders at some future point in time. The introduction of independent
noise allows just do model noisy insider information such that the information

advantage never disappears.

An extension of the fundamental theorem of asset pricing to differential infor-
mation has previously been considered by Duffie and Huang (1986). They show
that in a fully revealing rational expectation equilibrium where better informed
agents do not have free lunches, insiders must fully reveal their information to
guarantee the existence of a viable market model. Our result shows that their
assumption about the existence of absolutely continuous local martingale mea-
sures for better informed agents holds true only if the difference of agents’ flows

of information is atomic when the information advantage can disappear.

We show that the absolutely continuous local martingale measure of an insider
and of a non-insider are identical if restricted to public information. Consequently
contingent claims whose payoff is measurable with respect to public information
must also be valued identically. In contrast, since we show that contingent claims

for insiders with non-atomic anticipative information have no value, option pricing

$This result also explains how Elliott, Geman and Korkie (1997) prevent the existence of ar-

bitrage opportunities for insiders by introducing insider information on incomplete information.



by arbitrage is invariant to atomic but not to non-atomic anticipative information.

To prove the existence of an optimal trading strategy and therefore the ex-
istence of a viable market model for an investor with insider information poses
additional difficulties. If we want to solve Merton’s consumption-investment prob-
lem for such an investor, we face the problem that portfolio policies may depend
on anticipative information. Consequently, if we allow for general continuous time
investment strategies these may not be adapted to the filtration generated by re-
turns of risky assets and therefore gains from trade can no longer be defined as It6
integrals 4, Theréfore, if we want to allow for general trading strategies we first
have to find the representation of the processes relevant for the investment and
consumption decision with respect to the insider’s enlarged flow of information.
If such a representation exists, we can allow for general portfolio policies adapted
to the insider’s filtration and answer questions about the existence of free lunches
simply by checking whether or not local martingale measures exist on the enlarged

flow of information.

Arbitrage opportunities for non-atomic information are such that associated
gains from trade can replicate any desired wealth process with zero cost. There-
fore, an insider who has non-atomic anticipative information does not face any
budget constraint and consequently will attain infinite expected utility®. Con-
sequently no viable model can exist when the insiders investment horizon ends

after his/her private information is completely revealed and insider information is

4One way to deal with this problem would be to use results from anticipative stochastic
calculus and to define gains from trade as Skorohod integrals. The drawback of such an approach
is that the semi-martingale property of wealth which is linked to the absence of free lunches is
completely lost. In discrete time models the definition of gains from trade with anticipative

strategies is still possible but the resulting process will not be a martingale.
5This result for non-atomic insider information therefore explains why Karatzas and Pikovsky

(1996a) find infinite additional logarithmic utility from final wealth in a Gaussian model for

signals corresponding to final states or final prices without noise.



non-atomic.

The solutions of Merton’s consumption-investment problem for insider infor-
mation previously presented in Karatzas and Pikovsky (1996a), Eliott, Geman and
Korkie (1997) as well as Amendinger, Imkeller and Schweizer (1998) are based on
von Neumann-Morgenstern preferences for terminal wealth with logarithmic util-
ity. Since such preferences lead to myopic portfolio policies which can be obtained
by a sequence of one-period optimization problems, they avoid questions about the
existence of hedging portfolio policies which finance optimal cumulative consump-
tion adapted to insider information. For logarithmic preferences we do not have
to be concerned about the perfect replicability of the cumulative consumption.
Since perfect hedging for insider information given as an initial enlargement of a
Brownian filtration is still possible, we are able to solve Merton’s consumption-
investment problem for more general utility functions, independently of whether

preferences are defined over terminal wealth, consumption or both.

All the results in this paper are based on partial equilibrium considerations. We
focus on the consumer’s problem who takes a certain flow of information as given.
In this article we are not asking if this information is actually implementable
in equilibrium. Clearly the insider’s optimal strategies for atomic anticipative
information can always be supported in a fully revealing rational expectation
equilibrium. But since we show that optimal consumption and portfolio policies
do not reveal all anticipative information, a Walrasian auctioneer will not learn
all the insider information from the individual demands. Consequently, such an
equilibrium will not exist without other channels of information transmission.

Such issues will be discussed in more detail in Rindisbacher (1998).

Similarly our results have important consequences for many market microstruc-
ture models. Such models are generally principal-agent models where the principal

is the market maker and the agent is the insider. For the regulation of insider



trading these models imply that the allocative efficiency is improved whenever
a mechanism can be found by which insiders reveal more information as in any
model with adverse selection. Our results about the non-existence of a viable
market model for non-atomic insider information imply that this is not necessar-
ily the case. For such signals full revelation of insider information will lead to
a breakdown of markets for intertemporal risk sharing. In a companion paper
(Rindisbacher (1998) ) we show that this effect more generally known as the Hir-
shleifer (1971) effect in the insurance literature may play an important role if we

want to analyze the social costs of insider trading S.

The paper is organized as follows. In section 1.2 we introduce the models
for public information and derive the representation of the price, endowment and
wealth processes for the insider information. In section 1.3 we analyze whether or
not anticipative information allows for arbitrage opportunities. Then in section 1.4
we consider the pricing of contingent claims for insiders. The results in section 1.4
are necessary for the existence of a solution of Merton’s consumption-investment
problem for an insider. Explicit expression for optimal consumption and portfolio
policies for insiders are presented in section 1.5. In section 1.6 the results are

illustrated with two examples.

In Appendix 1.7 we show in detail how the model relevant for insiders can
be obtained from the “Girsanov approach” to initial enlargements of filtrations.
In Appendix 1.8 we show how random variables measurable with respect to an
enlarged filtration can be represented as product-measurable functions of signals
and states. The two appendices contain all results necessary to solve Merton’s
consumption-investment problem for an insider. Appendix 1.9 contains some def-

initions from Malliavin calculus. Finally we present the proofs of our results in

5We argue that this effect is the source for the findings of Back (1993), that in the presence of
asymmetric information it may be impossible to price options by arbitrage and is not captured

in principal-agent models for insider trading.



Appendix 1.10.

1.2 A Model for Public and Insider Information

A financial market model can be characterized by (2, 71, F, P, C, =) where (Q, F,F, P)

corresponds to a stochastic basis consisting of a state space , possible informa-
tion F, flow of information F and beliefs P. The space C denotes the consumption
space on which a preference ordering > is defined. In this section we first intro-
duce the model for public information and then show how from this we obtain the

model for the insider by initial enlargements of filtrations.

1.2.1 The Model for Public Information

We consider a frictionless market where each investor has the choice between
d dividend paying risky assets and one asset without risk. Possible states of
nature are given as points in a d-dimensional Wiener space Q = C°([0, 1]; R?).
Possible information is given by the Borel o- field F, on €. Investors’ beliefs
are homogeneous and given by the standard Wiener measure P, the measure
for which observed states given as trajectories of the coordinate process W =
(w(?),t € [0,1]) on Q correspond to a d-dimensional Wiener process. The flow of
information F := (F;):¢0,1) available to all investors is defined as the P-completion

of the Wiener filtration, the natural filtration of the coordinate process W.

Given the topology of the state space {2, all processes on the stochastic basis
(Q, F1,F,P) relevant for investors’ decisions are given as Brownian functionals

adapted to the flow of information which is given by the Wiener filtration F.

The only risk free asset B (i.e. the predictable asset of bounded total variation)

is defined as an exponential of a bounded adapted interest rate process r = (ry,t €



[0, 1]) by

B, = exp(/0 rsds) (1.1)

whereas the (P,F)- Doob-Meyer decomposition of the d-dimensional vector of

risky assets P = ((Ptj)j=1,,,_,d;t € [0,1]) is given by
t t
P, + / D,ds = Py +/ diag[P?][bsds + o,dw(s)] (1.2)
0 0

where D = ((D7)=1,.. 4;t € [0,1]) denotes the dividend process. This process is

assumed to be exogenous and given by
t t
D, = D, +/ diag|D?)uP (s, D,)ds +/ diag[D?]vP (s, D,)dw(s). (1.3)
0 0

The other exogenously given process in the economy is the endowment rate process

which satisfies the following stochastic differential equation

e =eo+/0 ,ue(s,es)ds+/0 (v6(s, €5))*dw(s). (1.4)

It follows that if the initial dividend Dj is positive dividends will be always positive
whereas endowments are allowed to be negative. For both equations we assume
that coefficients satisfy global Lipschitz conditions that guarantee existence and
linear growth conditions that are sufficient to get unique solutions 7. Furthermore

we assume that coefficients are differentiable to an appropriate degree.

The coefficients (r,b,0) of the model are assumed to be bounded and F;-
adapted. The volatility coefficient o is assumed to be positive definite P ® X a.e.
on the product space L?([0, 1]x£2) of random functions, where A corresponds to the
Lesbegue measure. Furthermore we assume that b € L'?(R?) and o} € L}2(R?)
for all 4,5 € {1,...,d} where L' corresponds to the domain of the Skorohod

integral which is defined in Appendix 1.98.

"see Nualart (1995) p.99 for example
8The assumptions made about price coefficients are stronger than required to solve the
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An admissible trading strategy for risky assets is a d-dimensional adapted
vector process 7 = ((n7);=1,..4;t € [0,1]) such that 7 € LL2?(R?) where the
subscript denotes the restriction to adapted processes in L'2. To exclude free
lunches from doubling strategies for an investment horizon T € [0, 1] we assume
that optimal strategies are tame®, meaning that the corresponding wealth X7 at

any moment in time ¢ € [0, 7] must be bounded from below

X
> — .
B, 2 K (1.5)

P- a.s. for some K > 0.

"The consumption space is given by C = L}?(R9). We assume that consumption
is absolutely continuous with respect to the Lesbegue measure and can therefore
be written as C; = fOT csds. The wealth process X™¢ = (X"t € [0, 1]) satisfies

the following stochastic differential equation.

t

t t
X7 = ep + / X™r,ds + / (m,)" 0, [Bsdls + duo(s)] — / (cs—e)ds,  (1.6)
0 0

0

where § = (6;;¢ € [0,1]) denotes the market price of risk or conditional Sharpe

ratio, defined by 00, := b, — 1,47;.

Final wealth must be non-negative at the end of the investment horizon for

strategies to be admissible

e
Xr
Brey

> 0. (1.7)

consumption-investment problem for Brownian information F, but enable us to find explicit
expressions for optimal portfolio policies from Malliavin’s calculus. Furthermore, the techniques
presented in this paper to get explicit hedging strategies for contingent claims measurable with
respect to insider information apply to claims H for which Malliavin derivatives exist, that is
H € D! (R?), where D*! denotes the domain of the Malliavin derivative defined in Appendix

1.9.
$Tameness of portfolio policies is necessary to exclude doubling strategies (see Dybvig and

Huang (1988))



11

Preferences > are of the von Neumann-Morgenstern type with an additive

state independent utility function

T
U(T,c,P,F) := EP| /0 u(s, cs)ds| Fo], (1.8)

where the utility function u € C([0,T] x R;;R) is strictly increasing and
strictly concave. It also satisfies the Inada conditions lim,, 8yu(t,c) = 400
and lim¢ 4o Oyu(t,c) = 0. The corresponding absolute risk aversion is given
by A(t,c) := —08;logdou(t,c). The inverse of marginal utility I is defined by
O2u(t,I(t,y)) = y. We require that investment-consumption strategies (7, c) sat-

isfy the condition

EP[/OT u” (¢, ¢)dt| Fo) < o0 (1.9)

where 4~ = —min(0,u). Without this technical condition the consumption-
investment problem is not well posed 0. If (7, c) satisfies the budget constraints
(1.6) as well as conditions (1.5), (1.7) and (1.9) we call F;-adapted (m, ¢) admissible
and write (7, c) € A(P,F, e) meaning that admissibility holds for beliefs P, flow

of information F and endowment process e.

Finally we introduce the following deflator process S = (S;;t € [0, 1]) where

S, i=— /0 rads — /0 (6, dw(s). (1.10)

The corresponding state price density process £(S) = (£(S):;t € [0,1]) can then
be written as a stochastic exponential of the deflator process, that is as the unique

solution of the following stochastic differential equation

E(S) =1+ / tE(S)udS,,.
0

10see Karatzas, Lehocky, Sethi and Shreve (1986) for a discussion.
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1.2.2 The Model for Insider Information

To analyze the effects of anticipative information on consumption and portfolio
policies, we propose a model for the insider given by (Q, F,G,P,C,>), where
his/her flow of information G := (G;)icpo,] is obtained by an initial enlargement
of filtration

Go:= Fer V o(@)], te 0,1, (L.11)

>0
with G' a g-dimensional random vector with law Pg. The random vector G cor-

responds to the signal which, at the beginning of the investment horizon, is only
known by the insider. Signals previously considered in the literature correspond
to terminal states of nature (Karatzas and Pikovsky (1996a) and Elliott, Geman
and Korkie (1997)), terminal values of risky assets (see the articles in Grossman
(1990), Kyle (1989) and Karatzas and Pikovsky (1996a)) or indicators of these
variables (Karatzas and Pikovsky (1996a)). In what follows we allow for any kind

of F1- measurable signals.

To the signal G we can associate the resolution time T := inf{t € [0,1] :
E[1z|F] = 1gVE € G}, meaning that the stopping time Ty designates the first
moment in time at which the information advantage about the signal G that was
known at the beginning (¢ =. 0) has disappeared. Clearly, the signal G is Fr,

measurable.

In Appendix 1.7 we show in detail how we obtain the representation of pro-
cesses on the stochastic basis (2, 71, G, P) relevant for the insider’s investment
decision. The assumptions used to derive these decompositions and the results in

the following sections are as follows

Assumption 1 (“Condition A” Jacod (1980)) There exists a common mea-
sure v on the Borel field Brs such that P{ < v for all t € [0,Tg[ where PY

corresponds to the conditional law of G given the initial filtration F,.
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This assumption basically guarantees the stability of semi-martingales un-
der initial enlargements of filtrations (“Hypothése H” in Jacod (1980)) on the
stochastic interval [0, Tg[. It is necessary since if the insider has a private sig-
nal such that prices with respect to the enlarged flow of information are not any
longer semi-martingales no viable market model exists. As shown by Delbaen
and Schachermayer (1994) the semi-martingale property is necessary for the ab-
sence of free lunches. Our assumptions on the coefficients (r, b, 0) guarantee that
after resolution time all processes relevant for the insider’s investment decisions
are semi-martingale since on [T, 1] as we will see below the insider’s model is

identical to the model for public information.

If “condition A” is satisfied it follows from the Radon-Nikodym theorem that
P¢(dz) = p(w,t, 2)v(dz) for all t € [0,Tg]. For t = 0 we get the unconditional
density of the signal as Radon-Nikodym derivative P¥(dz) = q(z)v(dz), that is
q(z) == p(w,0,2). If such a measure v exists we can with out loss of generality
assume that it corresponds to the unconditional law of the signal v = P;. The
following assumption from Imkeller (1996) guarantees that the contemporaneous
Malliavin derivative used to represent the conditional density process as a non-

negative martingale is well defined.

Assumption 2 The conditional density of the signal p(w,t.2) is such that (i)
p(w, s,2) € LM (R?) as well as (ii) the mapping v — Dip(w, s, z) is left-continuous
i L'(Q) at s € [0,t] and z € RY, for allj € {1,--- ,d}, where Dip(w,t,z) denotes

the Malliavin derivative of the conditional density.

This assumption will be used to derive the drift of the processes relevant for the
insider’s investment decision. Given the conditional density of the signal it allows
to define the process of (w) := limyy 2;({%2. As we explain in Appendix 1.7 this
process is used to derive the (P, G)- Brownian motion W€ given in (1.114). The
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Brownian motion W€ on the insider information is such that dW¢ = dw(t) — afdt

for t € [0, T¢[ and dWE = dw(t) for t € [Tg, 1].

Finally the next assumption is necessary for (P, G)- semi-martingales to exist
up to the moment at which the information advantage of the insider has disap-

peared.

Assumption 3 Signals G are such that

-
/G| Dip(w,,2) lds < oo (1.12)
0 pw,t,2) |2=G(w)

P-a.s. for all j € {1,---,d}, where Dip(w,t,2) denotes the Malliavin derivative

of the conditional density.

Without this assumption price processes for insider information are not semi-
martingales on [0,7¢[. Consequently the insider will have free lunches and no

viable model for such investors exists.

The following theorem uses the results derived in Appendix 1.7 and provides

the market model from the point of view of the insider.

Theorem 1 For insider signals G such that assumption 1, 2 and 8 are satis-
fied, the representation of price, dividend rate and endowment processes on the

stochastic basis relevant for the insider (Q, F1,G,P) is for t € [0,1] as follows.

Risk free assets are given by:

t
B = exp(/ T5ds). (1.13)
0
The prices of risky assets P satisfy:

t t ] tATg
P, + / D,ds = Py + / diag[P?][bs + 0, dWE] + / 0,ads, (1.14)
0 0 0
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where the dividend process D is given by
¢
Dy= Do+ / diag[D]][u" (s, D,)ds + 7" (s, D,)dW?]
0
tA\Tg
+ / vP(s, D,)afds. (1.15)
0
The endowment rate satisfies the following stochastic differential equation
t tATq
e =cot / [1°(5, Da)ds + (v*(s, e,))"dWE] + / (s, e,)"aCds.  (1.16)
0 0

For strategies (,c) € A(G,P,e) such that fOTG |r20,af|ds < +o00 P- a.s. we get

the following discounted wealth process

X;° _ ' (ms)* 0, G ¥ (cs — €5) t"Te (”8)*%“?
B, —eo+/0 B, [(8s + dWT] /o —B ds+/0 B ds,

(1.17)

We see that anticipative information affects the insidef’s view about the indi-
vidual market price of risk, the appreciation rate of the dividend and price pro-
cesses of the risky assets as well as the growth rate of the endowments in a way
which depends on the “contemporaneous elasticity with respect to changes of the
state of nature” (i.e. logarithmic Malliavin derivative) of the signal’s conditional

density.

The anticipative information does not change the quadratic variation of the
processes relevant for the portfolio choice. If we compare the price processes of
insiders and non-insiders we see that they agree on the volatility of the asset prices
but not on their appreciation rates. A priori this seems to be surprising but it
simply stems from the fact that for price processes given as semi-martingales the
quadratic variation is locally already known by non-insiders (i.e. F- predictable).
As a consequence additional information cannot locally reduce the conditional
volatility of the process. Exactly for the same reason the difference in information

lets the price process of a risk free (i.e. predictable) asset unchanged.
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Since the initial information of an insider Go = o(G) is, in contrast to the
public information Fo = {€,0} non trivial, his/her beliefs are not any longer
given by P but by the conditional probabilities P(-|Gy). In Appendix 1.7 we show
that P(-|G) = Pj,_c where P? denotes the conditional Wiener measure which
concentrates its probability mass on {G = z}. The conditional Wiener measure
is obtained from the joint law of the signal and states of nature, defined on the
product space Q2 x R?. Therefore, states relevant for an insider can be described
in form of pairs (w, G) and beliefs take all its probability mass along the diagonal
of the product state space. In what follows this fact will play an important role.
Because of a decoupling property of the insider’s local martingale measure, we
can derive optimal hedging policies first by conditioning on the realization of the
signal. If evaluated at the true signal, these policies will be shown to be optimal

for an insider.

We have already seen that anticipative information does not affect the volatility
coefficient of risky assets. The following corollary gives necessary and sufficient
conditions which guarantee that the drift coefficients of the processes relevant for

the portfolio choice remain unchanged.

Corollary 2 Under the conditions of theorem 1 an insider’s decompositions of
price, dividend and endowment processes on (2, F1,F,P) and (Q, F1,G,P) are
the same if and only if for all ¢t € [0,T¢[ the information generated by the signal

is independent from the common available information.

Filo(G) (1.18)

It follows that information which is independent of the flow of common infor-
mation for given beliefs is irrelevant for the insider’s investment decision since it
does not change his/her wealth process. Then if the events revealed by his/her

side information do not increase knowledge about initial pay-off relevant events,
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the observation of such a signal does not reduce uncertainty concerning states of
nature relevant for his/her consumption and investment decision. Such informa-
tion is therefore simply not taken into account. Insider information only affects
optimal strategies if it helps to get a finer flow of information concerning events the
he cares about. We will call independent signals redundant, meaning that they are
irrelevant for investors’ decisions. The redundahcy of independent signals implies
that consumption and investment strategies are unaffected by idiosyncratic shocks
which are independent from the common flow of information. Consequently, such

shocks will have no impact on equilibrium prices 1.

1.3 Insider Information and Arbitrage

Based on the insider’s model obtained in theorem 1 we now investigate whether
or not an insider has necessarily free lunches. We first define two notions of
free lunches previously considered in the literature: the concept of free lunches
with vanishing risk and the concept of arbitrage opportunities. We also introduce
the concept of conditional arbitrage which seems more appropriate when initial
information is non-trivial as for an insider. Then we explain how we distinguish
between atomic and non-atomic insider information. The next section shows that
dependent on the investment horizon these distinctions matter for an insider. Qur
results illustrate that it is the precision of the anticipative information about the
state of nature which provides an insider with arbitrage opportunities and not the

fact that he has more information than a non-insider alone.

11Gee Rindisbacher (1998) for more on this point.
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1.3.1 Definitions

If assumption 3 is not satisfied, prices of risky assets are not any longer semi-
martingales and as a consequence it follows from results in Delbaen and Schacher-
mayer (1994) that the insider has free lunches with vanishing risk, that is their
NFLVR condition is not satisfied. In our context we can state the NFLVR condi-

tion for an investment horizon T as follows.

Definition 3 The price process of risky assets satisfies the NFLVR condition if

for all sequences of portfolio strategies (7™)nen with associated wealth process such

that

m™.e

T
eoBr

< 400 (1.19)

P-a.s. and positive sequences (0, )nen converging to 1 such that

n
X7
eo By

> On, (1.20)

P- a.s. for allt € [0,T], we have that

e
P - lim Xr

Jim ST =1 (1.21)

Condition (1.19) excludes portfolio policies for which wealth is not defined and the
sequence 6" in (1.20) guarantees that gains from trade are bounded from below
and therefore excludes doubling strategies. As shown in Delbaen and Schacher-
mayer (1994) and also in Back and Pliska (1991) this condition is more restrictive
than the no arbitrage condition. Insiders do not necessarily have arbitrage oppor-
tunities if they have free lunches with vanishing risk. As we will show below the
distinction between free lunches with vanishing risk and arbitrage opportunities

is important for insider information.

In our model we define an arbitrage opportunity as follows
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Definition 4 A tame portfolio policy m with associated wealth process X™¢ such

that

X7r,e
P(—E£->1)=1 1.22
(521 (1.22)
and
X7°
P(eoBT >1)>0 (1.23)

for some T € [0,1] is called an arbitrage.

This basically states that if gains from trade are almost surely believed to be
non-negative but not strictly positive there is no arbitrage. Since convergence in
probability does not imply almost sure convergence a free lunch is not necessarily
an arbitrage. Behind both definitions is the idea that a reasonable model of the
financial market should not allow investors to make positive gains from trade out

of nothing.

The definitions above previously considered in the literature are based on the
assumption that the information of the investor at the beginning of his/her in-
vestment horizon corresponds to the trivial information set (2, ). Since we want
to analyze the flow of information of an insider who has anticipative information

given by o(G) already at the initial date, we need a notion of conditional arbitrage.

Definition 5 A conditionally tame portfolio policy (m such that for all t € [0,1]
we P- a.s. have that P(% > —K|Gy) = 1) with associated wealth process X™*

such that P- a.s.

X7
> = .
P(eoBT > 1|Gy) =1 (1.24)
and for some E € Gy where P(E) >0
P(XT" 5 116 > 0 (1.25)
CoBT 0 '

for some T € [0,1] is called a conditional arbitrage.
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Therefore, for an absence of arbitrage it is necessary that there is no arbitrage
given any event known at the beginning of the investment horizon, whereas for a
conditional arbitrage to exist it is sufficient that gains from trade are believed to
be positive given the initial information. This shows that the absence of arbitrage

is a stronger assumption than the absence of conditional arbitrage.

Proposition 6 For a given flow of information an investor who has a conditional
arbitrage has necessarily an arbitrage, whereas an investor who has an arbitrage

may not have a conditional arbitrage.

This proposition does not compare arbitrage opportunities for insiders and
non-insiders since it assumes that portfolio policies are adapted to the same flow
of information. It implies that it is sufficient to prove the absence of an arbitrage
for the enlarged flow of information to guarantee the existence of a viable model

for the insider.

As shown by Harrison and Kreps (1979) it is necessary for the existence of
a pricing kernel that prices any asset that there is no arbitrage. In what fol-
lows we analyze how this result depends on the flow of information available to
investors. We will show how the informational content of the insider signal deter-
mines whether or not an insider has arbitrage opportunities. It will be important

to distinguish between atomic and non-atomic anticipative information

Definition 7 An investor has atomic insider information if there exists an event
E € Go such that P(E) > 0 and for all F € 0(G) we have that F C E implies
either F = E or F = (. If there does not ezist such an event E we say that the

insider information is non-atomic.

Clearly if there exists a countable partition of the state space which generates

the anticipative information o(G) then there exists a countable number of atoms.
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In contrast an investor who has non-atomic insider information knows whether
or not an event has occurred out of an uncountable number of events. In this
sense atomic insider information is less informative than non-atomic insider infor-
mation. Signals with discrete distributions generate atomic insider information,
whereas signals with continuous distributions generate non-atomic insider infor-
mation. Non-atomic insider information in contrast to atomic insider information
contains events whose occurrence is not believed given public information. This

fact will be crucial for whether or not an insider has an arbitrage opportunity.

1.3.2 Main Result

We now show that the distinction between different concepts of free lunches for
insiders matters. The main result of this section shows how the existence of arbi-
trage opportunities for insiders does depend on the complexity of their anticipative

information.

Theorem 8 Under the assumptions of theorem 1 we have for insider information

which is not independent of the common available flow of information and non-

trivial (0(G) # {Q, 0}) that

1. Any investor who knows the information revealed by G and who has an

investment horizon such that T € [Tg,1] has necessarily free lunches with

vanishing risk.

2. Any investor who knows the information revealed by G has no arbitrage if
and only if either T € [0,Tg[ or T € [Tg,1] and insider information G is

atomic.

As it follows from the proof, the results of the theorem are basically a con-

sequence of the fact that the unconditional law of the signal cannot any longer
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be absolutely continuous with respect to the conditional law of the signal when
the uncertainty about the insider information is resolved. This implies that the
state price density process which depends on the conditional and unconditional
law of the signal is not anymore strictly positive after the realization of the sig-
nal is known to the public. It follows that there can exist at most an absolutely
continuous martingale measure. On the other hand if there is no free lunch with
vanishing risk the density process of the local martingale measure must be strictly
positive 12 and therefore the unconditional law of the signal would be absolutely
continuous with respect to the conditional law after resolution time. Since this is
only possible if the signal is constant there must exist free lunches with vanishing
risk for such investment horizons. Furthermore since if there does not exist any
atoms, the conditional and unconditional laws of the insider signal are even mu-
tually singular, not even an absolutely continuous local martingale measure will
exist when the investment horizon does not end before his/her information advan-
tage has disappeared. In contrast, we show that the equivalence of the conditional
and unconditional law of the signal before the information advantage is lost, also
excludes arbitrage opportunities if the investment horizon ends before the insider

information is fully known by the other investors.

If an insider is only allowed to trade before the resolution time, he cannot
attain arbitrage opportunities. Similarly, if he is not allowed to trade before the
uncertainty about the information contained in his signal is resolved he has no an-
ticipative information and cannot obtain an arbitrage. We show in the proof that a
mean-variance demand for risky assets at the resolution time and zero elsewhere is

an arbitrage if insider information is non-atomic 3. Therefore, if an insider is able

12See also Delbaen and Schachermayer (1995).
13The existence of an absolutely continuous martingale measure depends critically on the

behavior of limr. 1, f]t,T] |65 + oZ(|?ds some ¢ € [0, Te[ under the conditional Wiener measure
P* as it follows from the arguments in Delbaen and Schachermayer (1995) and Levental and

Skorohod (1995) . If the signal is discrete this expression reaches smoothly +o0o whereas
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to realize arbitrage opportunities he can do this with strategies which trade just
immediately before his/her information advantage has disappeared. This implies
that any effective regulation of insider trading must prevent insiders from trade

contingent upon anticipative information on a time span that includes resolution

time.

The fact that for insiders without restrictions on the investment horizon only
absolutely continuous local martingale measures exist, seems problematic from
the point of view of financial innovation. In this case there exist binary options
paying zero dollars or one dollar contingent upon events of the form {G = z}
some z € R? which are known not to occur by the insider only. Such a claim
has no value for insiders but a positive value for non-insiders. There will be an
infinite offer for such claims and consequently infinite profits for insiders issuing
them. But to develop such an argument we must take into account that the
marketing of those claims will necessarily change the distribution of information
in the economy since the claim is written on an event unknown to non-insiders.
This will affect the flow of information and therefore the set of local martingale
measures, for non-insiders in such a way that these claims may have no value for

initial non-insiders as well.

In many market models following the work of Grossman (see the articles in
Grossman (1990) ) it is assumed that the insider’s signal is given by the “true
signal” G° perturbed by some independent noise Z. The following corollary shows

that this prevents arbitrage opportunities for the insider.

for non-atomic signals it jumps to +o0o. In the proof of their main result they use that the
existence of an absolutely but non-equivalent local martingale measure is equivalent to the
NFLVR condition under a probability which restricts its positive mass on events on which we
have absolute continuity. In our model these events are given by {G = z} which are of positive
probability only if the signal is discrete. As a consequence a local martingale measure will only

exist in this case.
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Corollary 9 Under the assumptions of theorem 1 we have for signals G® which

are perturbed by independent noise Z
G=G"+2 (1.26)

that there is no arbitrage opportunity.

As we show in the proof, in the presence of independent noise, the insider’s
information advantage never disappears. From this point of view the result of the
corollary seems surprising. But since the information advantage always exists, the
information contained in the true signal G° is never fully revealed and as a con-
sequence perturbed insider information is less informative than true anticipative
information and does not allow for arbitrage opportunities. This illustrates that
it is not the fact that an insider has more information than the non-insider which
provides him arbitrage opportunities but the precision of the information about

the states of nature contained in his/her signal.

Before we show how theorem 8 explains why Merton’s consumption-investment
problem for insiders’ having non-atomic anticipative information has no solution
we prove that claims adapted to insider information can be replicated without
tracking error. This result is crucial for the existence of a solution to the portfolio
choice problem with “non-myopic” preferences. It guarantees that insiders can

finance any consumption policy adapted to their enlarged flow of information.

1.4 Insider Information and Hedging of Claims

In this section we consider the effects of anticipative information on the valuation
of contingent claims. Since an insider has an enlarged set of admissible portfolio

and consumption strategies he is able to replicate every claim a non-insider can
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synthetize and therefore his/her willingness to pay for a contingent claim is nec-
essarily bounded from above by the highest price at which a non-insider is willing
to buy. We first prove that an investor can replicate any claim measurable with
respect to his/her enlarged information. This is the key result to solve Merton’s
consumption-investment problem in the next section. Then we show that the
valuation of contingent claims by arbitrage is invariant with respect to atomic
insider information. In contrast the implicit price of contingent claims is zero if

anticipative information contains zero probability events given public information.

1.4.1 Claims measurable with respect to Insider Informa-

tion

Since we want to use the results presented in this section to solve Merton’s
consumption-investment problem in a non-Markovian market for an insider we
have to allow for claims whose pay-off at maturity may be uncertain for non-
insiders. From a technical point of view the basic problem is that in contrast to a
Wiener filtration it is not clear whether any (P, G) local martingale can be written
as a stochastic integral with respect to the (P, G)- Brownian motion W¢. If G
does not have the predictable representation property, hedging without tracking
error will not be possible for contingent claims which are measurable with respect
to the enlarged filtration only. As a consequence the martingale techniques used
to solve the consumption-investment problem in a non-Markovian market will not

work for general convex preferences other than logarithmic utility for final wealth.

Karatzas and Pikovsky (1996b) have shown that for enlargements with ran-
dom vectors G such that G = n + f01 g(t)dw(t) where 5 is a random vector in-
dependent of ¥} and g(-) is a deterministic matrix function locally bounded in
the operator norm and such that fol lg(t)||?dt < oo, any local (P,G) martingale

starting at zero can be represented as a stochastic integral with respect to W, It
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follows that Gr- measurable random variables (“contingent claims”) that can be
written as the sum of a random variable which lies in the first Wiener chaos plus a
random variable which is independent of the flow of publicly available information
can be perfectly replicated if markets are complete. We show that this remains

true for initial enlargements and contingent claims that are sufficiently smooth.

The basic idea exploited to hedge a Gr- measurable contingent claim H uses
theorem 22, where we show that claims adapted to insider information can be

written as Bge ® Fr- measurable random function C?(w) given as shown by
Ta
C*(w) = E[H|Fr)(w) + EF| E[D.H|F)oi dt| Fr](w) (1.27)
T

P- a.s.. As a consequence we are able to replicate contingent claims in two steps.
First conditional on the event {G = 2} for some z € R? we get hedging strategies
to hedge C*. The hedging strategies obtained this way are measurable functions
of the realization of the signal. If we evaluate these functions at the true signal
z = G we get hedging strategies for H since the absolutely continuous local
martingale measure of the insider decouples the signal and the states of nature.
The associated minimal cost of the replicating strategies provides the implicit

price of the claim.
Theorem 10 If “condition A”and assumption 2 are satisfied then

1. For any investment horizon T € [0,Tg[ a Gr- measurable contingent claim
H such that £(S)7C* € DV (R?) for all z € RY where C* is given by (1.27)
can be perfectly hedged

XM=Y, PO ae, (1.28)

where Y; = (Y; : t € [0,T]) denotes the value process of the contingent claim
given by

Y, = EQ[%mgt], (1.29)
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and where Q corresponds to the insider’s local martingale measure given by

daQ __4(G) dq
dP?|g,.=¢ (w t,G) dP (7

Corresponding replicating strategies (#, &) are given by

& =e¢ (1.30)
for consumption and
~ 2 g(S)T -
x __ P z _ 1 .
()" = D,E [_S(S)t C*| Filigz=c)0; (1.31)

for portfolio investments.

2. For an investment horizon T € [Tg, 1] the contingent claim has a positive

implicit price if and only if insider information G is atomic.

It follows from the expression for the hedging strategy (1.31) that the fraction
of wealth that has to be invested in each risky asset is given by the contempora-
neous elasticity of the value process (1.28) with respect to changes in the state of
nature multiplied by the inverse of the elasticity of prices with respect to changes

in the state of nature

~

Tt
X7rc

= ((Di[llog P]}j=1,...4)") (D log Yo)*. (1.32)

From lemma 23 and the proof of the theorem we see that the initial price an
investor with an enlarged flow of information is willing to pay for the contingent
claim given by E[£(~ [ (a?)*dWE) 7€ (S)rH|Go) corresponds to the price an in-
vestor who is gambhng upon the event {G = z} is willing to pay E[£(S)C?]
evaluated at 2 = G. Furthermore as we show in the proof a non-insider faces
a tracking error given by f,}b E[D,[E(S)rH|F,)dw(u) even if there are no con-
straints and markets are dynamically complete. This stems from the fact that
the claim considered in the theorem is supposed to be Gr- and not Fr- measur-
able and therefore at maturity non-insiders do not know its actual pay-off with

certainty.
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1.4.2 Claims measurable with respect to Public Informa-

tion

Claims such that even at maturity their pay-off is unknown for common available
information exist whenever there are some non-traded goods in the economy. But
the existence of a market for options with uncertain pay-offs even at maturity
for some investors may be unrealistic. Independently, The results of the previous
theorem have their own interest since they will be used for the solution of the

consumption-investment problem for insiders in the next section.

If insiders’ information is revealed through market prices in equilibrium, con-
tingent claims written on prices will in fact be Gy- and not Fp- measurable. In

this case theorem 10 provides the relevant pricing formulas and hedging strategies.

For contingent claims whose cash flow at maturity is known also for non-

insiders we have the following result:

Theorem 11 In the absence of an arbitrage opportunity an insider and a non-
insiders have the same valuation for a claim H € L*(Q, Fr,P). Its implicit price

18 given by

Yo = E[£(S)rH]. (1.33)

It follows that if the contingent claim is Fr- adapted its pay-off structure does
not depend on the random element the flow of information is sharpened with.
Its value is then the same for investors knowing the random vector G, and for
investors who just have common available information to replicate the contingent
claim. Obviously, replication costs of insiders are not higher than those of non-
insiders since they can replicate the contingent claim by strategies that depend

on the coarser common available flow of information.
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The reason why prices of Fr- measurable contingent claims are unaffected by
insider information follows from the fact that absolutely continuous local mar-
tingale measure Q coincides on Fr for T € [0, T¢f with the equivalent local

martingale measure Q of investors having just public information.

As we have seen in theorem 1 enlargements of filtrations do not affect the
quadratic variation of the prices of risky assets. Consequently the invariance of the
implicit price with respect to insider information is basically just a consequence
of the well-known fact first discovered for the Black and Scholes formula that
option prices do not depend on the drift coefficient of the risky assets. Since as
we have seen initial enlargements of filtrations can be derived from a Girsanov
transformation with respect to a conditional measure this result is not surprising
since Girsanov transformations do not affect the quadratic variation which implies
invariance of the option prices with respect to changes of measures and initial
enlargements of filtrations.The invariance with respect to changes of filtrations
and heterogeneity of equivalent beliefs will disappear if perfect replication of the
claim is impossible or as we have seen if insider information is non-atomic such
that no local martingale measure for the insider will exist. In this case the investor
with insider information may be capable of constructing an investment strategy
with smaller tracking error or with the same tracking error but higher a probability
to replicate the pay-off structure of the claim than the non-insiders. To analyze
such effects we need to relax the assumption that initial available information is

given by a Wiener filtration.

Duffie and Huang (1986) have shown that it is necessary for a fully revealing
rational expectation equilibrium to exist that the hedging costs of agents having
ordered flows of information be the same. Otherwise better informed investors
would have an arbitrage opportunity. Our result shows that if the difference of
flows of information is atomic an insider and a non-insider agree on the implicit

price of the contingent claim, independently of whether or not the insider takes
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into account that his/her information will be fully revealed through equilibrium
prices. It follows that their conclusion, that the advantage of better information
is not such that the costs of hedging are lower for the better informed, but such
that the set of claims that can be replicated is enlarged, does not depend on
the fact that the information about the insider signal is contained in equilibrium
prices. Our analysis shows that it is already a consequence of the fact that the
absolutely continuous local martingale measure of an insider does correspond to

the risk neutral probability of a non-insider on public information.

On the other hand theorem 8 shows that the conclusions of Duffie and Huang
are only valid if the differences in the information flows are atomic or never dis-
appear. Then whenever an insider has non-atomic anticipative information and
an investment horizon which includes the first moment in time his/her insider
information will be known publicly, any contingent claim can be replicated with
zero initial capital, and as a consequence asset prices in a fully revealing rational

expectations equilibrium will necessarily be zero.

1.5 Insider Information, Portfolio and Consump-

tion Policies

In this section we solve Merton’s consumption-investment problem for an investor
with information given by a Wiener filtration and additional information generated
by a Fr,- measurable random vector G. Then we derive explicit expressions for
portfolio policies, which show that the insider’s demand for risky assets can be
decomposed in a part which is dependent on the state price density, another part
which depends on the endowment process and a last part which purely depends
on his/her anticipative information. Finally, we analyze the information about

insider signals contained in optimal strategies.



31
1.5.1 Merton’s Problem for an Insider

Since we have shown in the previous section that smooth claims measurable with
respect to enlarged information can be perfectly hedged we can generalize previous
results of of Karatzas and Pikovsky (1996a), Elliott, Geman and Korkie (1997)
and Amendinger, Imkeller and Schweizer (1998) and allow for more general pref-

erences and for consumption before the final period.

The approach presented here differs from those previously considered by the
choice of a conditional criterion function, that is we maximize expected utility
of consumption conditional on initial information. Furthermore we assume that
insiders do not care about final wealth. Given that initial Wiener filtrations are
trivial this is equivalent to unconditional optimization if there is no side informa-
tion. As it can easily be seen optimal policies for the conditional criterion must be
optimal for the unconditional one. As a consequence the marginal value of wealth

for insiders in our model will be state dependent.

In our model Merton’s consumption investment problem with admissible strate-

gies for an insider (7,c) € A(P,G,e€) can be formulated as follows.

sup E[/ u(v, ¢,)dv|Go). (1.34)
(m,c)e A(P,G,e)

The following assumption is necessary for the existence of a solution.

Assumption 4
X(y,z) < 00 (1.35)

for all z € R? where

q(2)
=57 e, 0609021 PLONED
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Merton’s consumption-investment problem without liquidity constraints in an
economy with future endowments can be interpreted as a problem in an economy
where initial liquid wealth is given by the implicit price of cumulative endow-
ments at the initial date and no future endowments. If there are no arbitrage

opportunities marketed wealth €€ at time zero for an insider is as follows

T

e =eo+E [ =2ds|Go). (1.37)
o Bs

Similarly, for conditional beliefs P* we define the process Y = (Y3t € [0,T))
by

. [TE(S?)
Y’:=EP/ ——= (&% — e,)dv|FY, 1.38
t [ . S(Sz)t( ) | t] ( )
and where the conditional state price density £(S?) is given by
o _ _ ()
E(S%), = @t Z)S(S)t. (1.39)

The process Y* corresponds to the implicit price of optimal net consumption é

for an investor with beliefs given by the conditional Wiener measure.

The following theorem provides the solution of Merton’s consumption-investment
problem for an insider. It shows that for the existence of a viable market model
without any restrictions on the investment horizon it is necessary that insider
information be atomic. The anticipative information affects optimal strategies
through the likelihood ratio between the conditional and unconditional density of
the signal. It follows that an insider will never consume more or less in all states

of nature than a non-insider.

Theorem 12 Under the assumptions of theorem 1 we have the following:

1. An investor with investment horizon T € [T, 1] who has non-atomic insider

information attains ez ante infinite expected utility.



~

33

2. If the insider has only atomic anticipative information or the investment
horizon terminates before the uncertainty about the signal is resolved T €
[0, T, the solution to Merton’s consumption-investment problem is if as-

sumption 4 is satisfied as follows:

The optimal consumption policy is given by:

w,t, G)g(s)t)’ (140)

where g€ corresponds to the marginal value of initial wealth and satisfies:

X(9°,G) = €°. - (1.41)

The optimal portfolio policy is given by:
Ty = 78 (1.42)
where for all z € RY

(#])" = DY (o) " (1.43)

The insider’s optimal wealth Xf' € satisfies

XM =Y PQA ae. (1.44)

For logarithmic utility for final wealth only Amendinger, Imkeller and Schweizer
(1998) show that the existence of a solution to Merton’s problem depends on
the relative entropy between the conditional and unconditional law of the signal.
They show for these particular preferences that a solution exists whenever the rel-
ative entropy is finite. It follows from theorem 8 that if there is an arbitrage the
conditional and unconditional laws of the signal at resolution time are mutually

singular, and consequently the corresponding relative entropy is infinite.
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Since as we have seen in theorem 8 arbitrage opportunities occur just imme-
diately before a resolution time it follows that for investment horizons which end

before there is no arbitrage.

If the investment horizon covers the resolution time it is necessary that all
possible events revealed by the insider information are non-zero probability events.
In this case additional information is not sufficiently fine to realize an arbitrage

and therefore the demand for risky assets is not infinite.

The results of theorem 12 illustrate that even if there exists only an absolutely
continuous but not equivalent local martingale measure, Merton’s consumption-
investment problem still has a solution. The static budget constraint associated

with the dynamic problem with conditional beliefs and investment horizon T can

be written
dP T
P* .
E [l{d—"%lﬁe]oww[}@m /0 E(S)ardt] < €, (1.45)
or equivalently
T
Ellig . coroop /0 E(S)icrdt] < €? (1.46)

since on {%Iﬁ €]0,+oo[} we have that P ~ P. This proves that though

P{& 5, = +00}) > 0 and P*( %'}.T = +o0}) = 0 for T € [Tg, 1] binary op-
tions 1, B 5 =toc) will not add current consumption without violating the budget

constraint 4.

14This seems to contradict results in Dybvig and Willard (1996) . They claim that constraints,
which prevent “empty promises” in states which are not believed to occur given the public
beliefs, are necessary for the existence of a solution to the static consumption-investment problem
associated with the dynamic problem. They assume that there are no future endowments. The
difference with our results arises since they consider the budget constraint under the common
beliefs P, given by E| foT £(8)1c4dt] = eg, which would correspond to the static budget constraint
associated with the dynamic consumption-investment problem only if P ~ P? on Fr for all

T € [0,1). Now suppose there exists a JF;- adapted consumption policy & which satisfies the
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1.5.2 Optimal Portfolio Policies for Insiders

Optimal investment policies of insiders (1.43) in theorem 12 are given as Malliavin
derivative of the respective implicit price of net-consumption of an investor who
“gambles” upon the event {G = z} evaluated at the true realization of the signal.
It follows that if we can find an explicit expression for optimal wealth for an
investor with beliefs given by the conditional Wiener measure P*, we are also
capable to get explicit expressions for the optimal investment policies of an insider
since these are given as instantaneous Malliavin derivatives of “gambler’s” optimal
wealth evaluated at the true signal. This result is similar to the way optimal
investment policies without insider information are obtained in Markov markets
as described by Cowell, Elliott and Kopp (1991) and Benoussan and Elliott
(1995).

Under a Markovian assumption, optimal wealth is given as a function of state
variables and the corresponding optimal portfolio policy is derived with Itd’s rule
from the derivatives of this function. Our setup is non-Markovian and we obtain
optimal portfolio policies from Malliavin derivatives of the optimal wealth with

respect to states of nature. The Wiener processes play in a non-Markovian market

budget constraint for public beliefs and is such that

T T
EP’| /0 u(t,,)dt] > EP| /0 u(t, &) dt).

It follows from Lebesgue’s decomposition

dP
sz I‘FTG 1]

Te s Te T
E| / £(S)idudt] = EP[ E(SNadt] +Bll gy, _yoy [ E(S)iced]
0 Tg 0

that the consumption policies & will also satisfy the budget constraint for the conditional beliefs.
The existence of such a consumption policy contradicts therefore the optimality of é. As a
consequence the value of the static optimization problem with feasible consumption policies
for the public beliefs must be bounded from above by the value of the static problem given
conditional beliefs. This illustrates that in our model non-empty promises constraints will not

be binding.
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the role of prices in the determination of optimal portfolio policies and the “delta,
hedging term” is given as an instantaneous Malliavin derivative of the claim’s
implicit price with respect to the Wiener processes. Malliavin derivatives measure

the “contemporaneous sensitivity” of wealth with respect to changes in states of

natures.

To get explicit expressions for the conditional expectation in the expression for
the optimal wealth process in a non-Markovian setup may be difficult. In this case,
to get more explicit expressions for optimal portfolio policies, we can interchange
the conditional expectation and derivative operator to get representations similar
to those obtained by Karatzas and Ocone (1991) for Brownian filtrations. This

allows us to analyze how investment strategies depend on anticipative information.

The following expression shows that portfolio policies depend on the “sensitiv-
ity” of optimal consumption policies with respect to changes in states of nature

(i.e. Malliavin derivatives).

T G
* BQU(’U, Cy ) A A aZ
(30 =Bl | Foted €€ - e)dolGlAlL (Dt ems
T Byu(v, e¢ . . .
+ B[ ZE — (6 - ) A, D) emotl

T dyu(v, &%)

- [t Wptev)dﬂgt] (147)

The instantaneous “sensitivity” (D,é?);,~¢ is related to an expression similar
t/]|

to the CCAPM equation, then:
D¢} = 0oI(t, °E(S?))§7E(SF)D,S?, (1.48)

where we have used that D,[S?, 5*]; = 0. Since

¥4 z ~Z z 1
OI(t, 7°E(S*))97E(SF) = T4 &) (1.49)
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where A(t, ¢) denotes absolute risk aversion and
D.S; = —(af + 67)*, (1.50)

we see that the conditional Sharpe ratio §+a€ for an insider is proportional to the
“sensitivity” of optimal consumption of an investor who conditions on the event
{G = z} with respect to changes in states of nature, evaluated at the true signal.

The proportionality factor is determined by the insider’s absolute risk aversion.

[A(t, &)(De&})*] 1= = of + .. (1.51)

If we calculate all the Malliavin derivatives of consumption and endowment
rate processes for insiders, we can break down the individual demand for risky
assets into three components: one depending on state price density, another de-
pending on the individual endowment process and a component depending on the

anticipative information.

Proposition 13 Under the assumptions of theorem 12 we have that the insider’s

G

demand for risky assets # = &% can be written as follows

-G _ ~GS , ~GE

70 =70 + w0 47O (1.52)

as long as £(S)r X~* € DV (R?). The demand #%° denotes the demand for risky
assets that depends on the sensitivity of the state price density with respect to

changes in the state of nature, #6F

corresponds to the demand that depends on
the sensitivity of the endowment process with respect to states of nature and 767

describes the demand which depends on the insider signal G.

In what follows we give explicit expressions for the different parts of the de-

mand for risky assets. As we mentioned before optimal policies of an insider can
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be derived as those of an investor who conditions on {G = 2z} for some 2 € R¢.
Such an investor has a financial market model given by Q, F,F,P* C,-). We
see that his/her beliefs correspond to the conditional Wiener measure derived in
Appendix 1.7. The consumption-investment problem of such an investor can be
derived for atomic insider signals on the stochastic basis for non-insiders if we

introduce the state dependent utility function

p(w,t,2)

q(2)

v(t,c,w,2) = u(t, c). (1.53)

The “discount factor” 1’5“1"(’—:3’2 in this representation corresponds to the density

process %I 7 With this utility function it is possible to represent agents with

heterogeneous beliefs on the same stochastic basis.

Corollary 14 The demand 75 in proposition 13 that depends on the state price

density has itself a “myopic” and a “dynamic” component

7S = O™ 4 73S, (1.54)

The “myopic” component given by
R -G G .
7l'tG’S’m = er © (UtUt) l(bt - 1d7"t), (155)

and the “dynamic” component %5 is such that on {z = G}

0 y Cyr ~
AzSd _ Ot IE[/ 27) u )[eu_cZ'{'

O9v(t, &, 2)

1 *
m](u log £(S)u)*du|F),
(1.56)

where the logarithmic Malliavin derivative of the state price density is given by

(D.log £(S)a)* = —[6, + / “(Dyr)ds + / “(DB,) Ouds + dw(s)].  (157)
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The myopic component describes the demand of an insider with logarithmic utility
function. This part depends on the deflator process S. We see that whenever the

state price density is Gaussian the hedging demand is zero.

A similar decomposition exists for the demand that depends on the endow-
ment rate process. The demand depends on the sensitivity of endowment with
respect to states of nature. Since the endowment rate process is given exogenously
and therefore given as a stochastic differential equation we obtain more explicit

expressions for Malliavin derivatives.

Corollary 15 The demand m%F in proposition 13 that depends on the sensitivity
of the endowment rate process with respect to changes in the state of nature is
such that on {G = z} |

T agv(u, étzn %y Z)
t a2v(t, éf; %y Z)
where the Malliavin derivative of the endowment rate process satisfies the diffusion

#2F = — (o) E| (Deeu)* dulF), (1.58)

for the endowment rate process with linearized coefficients.
(Diey)* = 4(t,e;) +

/tu(Dtes)*[(Bzue(s, es))ds + (827%(s, €5))*dw(s)]. (1.59)

Finally we present the part of the demand in the decomposition that deter-
mines how the optimal demand depends on the anticipative information. The
demand which depends on the market price of risk 7% depends on the change of
measure %—‘g which determines the martingale measure of a non-insider. Similarly
we see below that the demand which depends exclusively on insider information

depends on the density process of conditional and unconditional law of the signal.

Corollary 16 The demand 7% in proposition 13 that depends on the insider’s
signal has a “myopic” and a “dynamic” component

~G,I ~G,I,m

s ~G,I.d
Ty =Ty + 7y

, (1.60)
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where the “myopic” component of the demand is given by

AP = X[ (7)o, (1.61)

whereas the “dynamic” component of the demand #%1% is such

T 8yv(u, &, -, 2) . 1 Dp(w,u,z2)
ﬁz,I,d = *)—1 2 yCur 5 Az _ t y Wy d F
TR B d 0 T ) s

(1.62)

We see that only the myopic demand for risky assets ° of the optimal portfolio
policies can be unambiguously signed. The myopic demand for risky assets is
increasing in the conditional spread between risky and risk free assets with respect
to the conditional Wiener measure. The insider increases his/her demand for risky
assets whenever risky assets and the conditional density of the signal are locally

positively correlated.

Since of = 0 for all t € [T, 1] we see that after the resolution the insider’s
strategies only differ from ;- adapted optimal policies trough different optimal

consumption processes.

From the expression for the optimal portfolio policies we can see how different

assumptions can considerably simplify terms.

1. We obtain the demand for risky assets with non-anticipative information by

putting of = 0, which implies 7’ = 0 and v = u.

2. For deterministic coefficients (“Gaussian model”) the Malliavin derivatives
Difs; = 0 and D;ry = 0 and therefore

T Oov(u,é&,-,2) 1
A2

~2,8
e *E[ t a2v(taéf7',z) A(u>cu)

dUlft](O'tO':)_l(bt - ]-d’rt); (163)

and the corresponding part of the demand for insiders in Gaussian models

is found by #5° = (75 )jz=¢- Since the Malliavin derivatives of Gaussian

5By “myopic” we mean the demand of an investor with logarithmic Bernoulli indicator.
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random variables are deterministic, Gaussianity is a strong simplifying as-

sumption.

. Utility functions of the HARA type simplify expressions since these satisfy

by definition A(t,c)~! = (1 — v(t))c + n(t) and as a consequence:

T Byv(u, &, -, 2)
t Bzv(t, éf, *y z)

[ew + v ()& + n(u)](D: log £(8).)* du|F},

w5 = (o) B

whereas in this case,

T 821)(“’ 61247 * z)

ﬁ,z,I,d — 0_* -—1E —
t ( t) [ t az’l](t, Cf,',Z)

lew = (1 = v(w)&; +n(uw)] X

(D log&(~ / (@) dWE)) dul Fi.

0

Corresponding demands for insiders are obtained if these expressions are
evaluated at z = G. The most simple case in this class is logarithmic utility
u(t,c) = h(t)logc since then (A(2, ¢))~! = c and in the above expressions

v=1and n=0.

. If endowments are deterministic e; = e(t) for all ¢ € [0,1] we have that

D,e; = 0 and as a consequence fr't’E =0.

. The simplest expression is obtained if we assume logarithmic utility and

deterministic endowments then in this case we have just myopic demand for
risky assets 7; = 7?;’5 ™4 fr't’[ "™ This case with the additional assumption
of preferences for final wealth was the only one considered in Karatzas and
Pikovsky (1996a), Elliott, Geman and Korkie (1997) as well as Amendinger,
Imkeller and Schweizer (1998) .
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1.5.3 The Value of Insider Information

To rationalize ex-ante the use of additional side information is easy. A finer flow
of information reduces at each moment in time uncertainty about the true state
of nature. Since investors are risk averse they will like this. That they indeed do
can be seen from a comparison of the value functions for a normal investor with

common beliefs and information

T
VP, Fe) = sup K / u(t, ) d], (1.64)
(”7C)GA(P;F)9) 0

with that of an insider

T
VP,Ge) = sup B / u(t, ci)d]. (1.65)
(m,c)e A(P,G,e) 0

Since an insider can always choose his optimal strategies to be just F;- adapted

we must by optimality of his strategies have that
V(P,G,e) — V(P,F,e) > 0. (1.66)
It follows that the left hand side of this inequality can be interpreted as the

individual value of better information.

In section 1.3 we have seen that insiders do not change the representation
of market data on the stochastic basis (2, F1,G,P) which is relevant for their
decisions if and only if their anticipative information is independent of public
information GLF; for all t € [0, T¢[. An equivalent result holds for the individual

value of side information
Proposition 17 Information generated by a random element G that satisfies as-
sumption 1, 2 and § does not have any individual value:

V(P,G,e) =V (P,F,e), (1.67)
if it is independent of the public flow of information

GLF;, forall te[0,Tg]. (1.68)
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Then it is never possible to ex-ante Pareto improve an allocation by allowing
the optimal strategies to depend upon information that cannot be learned from
the common flow of information. For this to happen we would need for at least
one investor a strict inequality between the value functions with and without side

information.

1.5.4 The Informational Content of Insider Portfolio and

Consumption Policies

For many equilibrium results it is crucial to determine whether optimal insider
strategies reveal all private information or not. To show that optimal strategies are
fully revealing it is necessary that the filtration generated by the optimal strategies
correspond to the insider’s flow of information. The following proposition shows
that optimal portfolio and consumption policies are never fully revealing if insider

information is given by initial enlargements of Wiener filtration.

Proposition 18 If the insider information in non-redundant, optimal insider

strategies (1.40) and (1.43) in theorem 12 are never fully revealing, since
G ¢ FEN F° (1.69)

for some t € [0,T).

This result shows that if the insider can only reveal his superior information
through his state contingent investment and consumption demand, rational expec-
tation equilibria in our model will never be fully revealing. A Walrasian auctioneer
or market maker who just obtains the contingent investment demand in the form
of any kind of market orders will never be able to fully infer the information

about the state of nature contained in the investor’s anticipative signals. For a
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fully revealing equilibrium to exist it is necessary that insiders communicate their

information through other channels.

1.6 Two Examples of Insider Information

In this section we consider first an investor who already knows at the beginning of
the investment horizon the time at which a stock stops to pay a dividend. Then
we will derive optimal portfolio strategies for an investor who knows already at
the beginning whether or not a dividend will be paid after a certain time. This

kind of insider information has previously not been considered in the literature.

For simplicity we consider in both examples the following dividend process
- -1
dD; = D,[—2vyD, * dW; — 2v(1 — 2v)D, " dt] with Dy = o, (1.70)

some v > 1 and a > 0.

1.6.1 Non-Atomic Insider Information

Since the solution of this stochastic differential equation is D; = (a — W;)? an
investor who knows at the beginning whether or not the stock does pay a dividend
up to a certain moment in time has anticipative information generated by the
signal G = inf{t : D; = 0}. Since {D; = 0} = {W, = a} the signal G corresponds
to the passage time T, = inf{¢ : W; = a} of the Brownian motion W at a. It is
well known (see Karatzas and Shreve (1987) proposition 8.2 p.96) that the density
of the passage time of a Brownian motion starting at zero T, has the following

density

(1.71)

| 2
PYT, € dz) = _\/_;rﬁ exp{——g;}dz,
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and consequently it follows from the Markovian property of Brownian motion and
the expression for the solution D, that in our context p(w,t,2) =: p(D;(w), 1, 2)
with
1 1
ds d7
5(d, t, 2) = ————— exp{— —————}1,5,, 1.72
Pldh1,2) = = e M (1.72)

and therefore the logarithmic Malliavin derivative is given as follows of(w) =:

&(Dy, t, z) where

~ 1
a(d,t,z) = (—E;"l;-i— Z——t)lz>t, (173)
and consequently
1
1 D
of = (— + & - t)1G>t. (1.74)

D}
If we use this expression in theorem 1 we get the model relevant for an insider
knowing exactly the time of the last dividend payment. By left continuity of o
we P-a.s. have that (@$_)? = +oo and consequently that the wealth process
corresponding to the myopic strategy ;1:?@' = ‘—’f;‘iilkg; the corresponding wealth

exp{— fct af6,ds}
E(— [, afaWs),’

=G
7%e
X, =

(1.75)

converges P-a.s. to ch’e = +00. Clearly such an investor has an arbitrage
opportunity given by #. The arbitrage is due to the fact that the information
which is generated by the signal consists of events {T, = 2z} for some z € R?
and is so precise that it contains events which are not believed to be a possible

occurrence given initial public information E[1(r,-,;] = 0.

1.6.2 Atomic Insider Information

To illustrate the difference between atomic and non-atomic insider information we

consider an insider who knows already at the beginning whether or not the last



C

46

dividend payment will be after a certain time 7*. The signal of such an insider
is therefore G(w) = 1)+ 4oof(Ta(w)). The information revealed by this signal is
equivalent to the information whether or not the minimal dividend rate during
the period [0,T*] is positive. The important difference relative to the previous
example is that the event {G = 2} is of positive probability when z € {0,1}. The
interpretation of this is that the insider signal contains information which was
considered a possible occurrence given initial public information and in this sense
contains less information about the true state of nature. The conditional density

in this case is obtained from

400
p(w,t,2) = / H(Dr(w), £, 7)dzlyeps, (1.76)
which gives p(w, t, 2) =: p(D;(w), t, z) where for t < T*
d% d%
h(d,t,2) = ((20(—=) -1 2(1 - o(——=)1 1.77
p(d7 ,Z) (( (m) )1{1}(2) + ( (\/T*_—t) {0}(z))7 ( )

where @ denotes the cumulative Gaussian distribution with corresponding kernel
¢. Consequently taking Malliavin derivatives we obtain in this case af(w) =:

t
&(Dy(w), t,G) where

=6 ()
&(Dy,t,G) = - —— 1. (1.78)
(0)° - 2(7=)
If we put these expressions into those of theorem 1 we obtain again the model
relevant for an insider who knows whether or not the dividend of a stock is always
positive up to a given date. We see that for states such that the dividend is strictly
positive up to T* the conditional return of the stock is reduced. For states such

that dividends fall to zero for the first time before T* the conditional appreciation

rate of stocks increases.

The events revealed by such a signal are countable and it follows from theorem
8 that there is no arbitrage for insiders whenever there is no arbitrage for non-

insiders in this case. To focus on the portfolio strategies which do just depend on
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the information we assume for simplicity in what follows that the market price of
risk 6; = 0, the spot rate r, = 0 and the endowment rate process e; = 0 all the
time. In such a model non-insiders have in contrast to insiders no demand for
risky assets. Therefore, the only demand for risky assets stems from the insider’s
anticipative information. Furthermore we assume that the utility function is from
the CRRA family u(t,c) = e #logc if the relative risk aversion is one R = 1 and
u(t,c) = e“”‘% else. Using the results of corollary 16 we obtain the myopic part

of the demand for the stock as follows

-6 ¢ (w(t), t, G
FGIm t,rc,cc_oi(_‘_"%ltd*, (1.79)

The myopic part is such that on states for which dividends remain positive up
to T he wants to short the stock. In contrast he wants to hold a long position in
the stock if the dividend falls to zero before T*. Such a behavior is only charac-
teristic for an investor with logarithmic utility. For other non-myopic preferences

we have for ¢ < T* the following additional demand for risky assets

1 1
A —(1=1/R) [T* [+ \ D} —y&
FOId = —L;u/t dv/o c(y,v,G)a(y,v,G)dQ(——i/—;)——:—t—)- (1.80)

where the é(Dy,t,G) corresponds to the optimal consumption policy of the in-
sider given by é(d, t, z) = I(t, g)zzﬁ(’%). An insider who is less risk averse than an
insider with logarithmic preferences will have higher short or long positions than
a myopic insider. In contrast an insider who is more risk averse than a myopic
insider want to hedge their short and long positions. Their net demand in the
two cases cannot be signed. For more general Markovian setups, where explicit
expressions cannot be found, the Monte Carlo techniques presented in Detemple,
Garcia and Rindisbacher (1998) can be extended to study the different compo-
nents of the portfolio strategies in proposition 13. Our example illustrates that

the effects of anticipative information on optimal portfolio policies can depend

on the assumptions about preferences. The decomposition of portfolio policies in
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this paper helps to clarify this dependence on preferences. Similarly, they show
whether or not a conclusion is robust with respect to the probabilistic structure

of the insider signal.
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1.7 Appendix A:The “Girsanov Approach” to

Initial Enlargements of Wiener filtrations

The aim of this appendix is to derive in detail all necessary results to get the semi-
martingale representation of the wealth process on the stochastic basis (2, F,, G, P)
relevant for the choice of consumption and portfolio policies of an insider. In con-
trast to the filtering problem where Stricker’s theorem guarantees that any G
semi-martingale is also a F- semi-martingale, stability of semi-martingales with
respect to enlargements of filtration does not necessarily hold (see Jacod (1979) for
a discussion). The presentation is based on Jacod (1980) , Foellmer and Imkeller
(1993) and Imkeller (1996), but allows for enlargements with respect to random
variables which are measurable with respect to Brownian filtration before the ter-
minal date. We first derive a conditional Wiener measure and find semi-martingale
decompositions for this measure. Corresponding compensators depend on a pa-
rameter which represents the realization of the signal. Using results in Stricker
and Yor (1978) (proposition 2 and théoréme 1) we can always pick a version which
depends measurably on this parameter. We will always consider this version of
such processes in what follows. The general idea behind the “Girsanov approach”
to the enlargements of filtrations is due to Song (1987) . He also shows how the

same idea can be exploited for progressive enlargements of filtrations.

A sufficient condition for the existence of a semi-martingale representation
for initial enlargements (“hypothése H”) is Jacod’s criterion (“condition A”) (see

Jacod (1980) page 15), which in our model can be stated as follows

Assumption 5 (“Condition A”) There exists a common measure v on Br
such that Py < v for all t € [0, Tg[ where PY corresponds to the conditional law
of G given the initial filtration F;.
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Remarks

1. If “condition A” is satisfied we can without loss of generality choose v = Pg.

2. Since for t € [T, 1] the conditional law of the signal corresponds to 1,1 (G(w))
“condition A” cannot be satisfied after resolution time unless G is constant.
Furthermore it follows that if 6(G) does not contain any atom then not
only Pg &« P{ but even PgLPY for t € [Tg,1]. This follows since the
conditional law takes all its positive mass on {G = 2}, a null set of the

unconditional law.

3. Imkeller (1996) has recently given sufficient conditions for which random
variables G € D"?(R?) on Wiener space have conditional laws that are

absolutely continuous with respect to the Lebesgue measure .

We now derive the compensator of a F- martingale on (Q,F;,G,P). As it
was sketched by Jacod (1980) and shown by Foellmer and Imkeller (1993) this
can be done by means of a Girsanov transformation with a conditional (Wiener)
measure. Since this approach provides the key to derive optimal strategies for an

insider we present it in detail.

To understand the link between the conditional and unconditional law with
the Wiener measure and conditional Wiener measure we introduce the joint law

of insider signal G and states of nature W

BxE~ R(B,E); BxEe€F, ®0d(G), (1.81)
where

R(B,E) = E[lg—l(B)lE]. (1.82)

Lemma 19 1. For allt € [0,1] the measure

Py (dz2) w, dz) (1.83)

= ﬁpﬁ,(
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on o(@) corresponds to the conditional law of G given F,
L/ 2. For all t € [0,1] the probability measure
dR
P*(dw) := — 1.84
( ) dPG (d(l), Z) ( 8 )
corresponds to the Wiener measure restricted to {G = z}.
3. For allt € [0,1] we have
dP* dpy
= 1.
7, ) = el (1.85)
P®Pg- ae.
Proof

Since P(E) = R(RY, E), respectively Pg(B) = R(B, 1) it follows that R(-, E) <«
Pg for all E € F;, respectively R(B,-) < P for all B € ¢(G), we have that P¥
respectively P* are both absolutely continuous with respect to P and therefore
by the Radon-Nikodym theorem that P and P* exist and are given as Radon-
Nikodym derivatives of R with respect to P.

Furthermore since

P*(dw)P¢(dz) = dR(dz, dw) = P¥ (dz)P(dw), (1.86)
it follows that (1.85) must hold P ® Pg- a.e..

Q.E.D.

Remarks

1. The conditional Wiener measure P? can be interpreted as beliefs of an in-

vestor “gambling” upon the event {G = z}.
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2. The equality in (1.85) allows to represent processes relevant for decisions
conditional on the event {G = 2} in terms of properties of the signal’s

conditional law only.

3. If “condition A” holds we have for ¢ € [0, T¢[ that

P (dz) = p(w, t, z)v(dz), (1.87)
and consequently that
dP* p(w,t, 2)
w) = , 1.88
dP m( ) q(2) (1.8)

where ¢(z) := p(w, 0, z) corresponds to the density of P with respect to v.

4. Since for t € [Tg,1] we have that Pg & PY and Pg LP¥ if 0(G) is non-
atomic it follows from (1.85) that equivalently P « P* and P*LP on F,
for t € [Tg, 1] if 0(G) is non-atomic.

On Wiener space Imkeller (1996) has recently shown how to get explicit
expressions for the compensator using the Clark-Ocone representation formula.

The following lemma presents his result and summarizes complementary results

from Jacod (1980) .

Lemma 20 If “condition A” and (i) p(w,s,z) € LY?(R?) as well as (ii) the
mapping 1 — D,p(w, 8, 2) is left-continuous in L'(Q) at s € [0,t] and z € R? are
satisfied then we have for t < 7% that

prt2) = 4 ([ (a2) du() (1.89)

where the stopping time 7% is given by

77 .= inf{u € {0,1] : p(w, u, 2) = 0}, (1.90)
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whereas
(& (w))* = %. (1.91)
Furthermore for all t € [0, Tg] we have that p(w,t,G) > 0 P- a.s. and therefore
(of () = [%l] . (1.92)

is well defined for all t € [0, Tg].

Proof

Since under “condition A” P{(dz) = p(w,t, z)v(dz) for t € [0,Tg[ and there-

fore
E[P¥(B)|F, = E| /B p(w,t, 2)v(d2)| F) (1.93)
and by Fubini’s theorem
E| /B p(w,t, 2)(dz)|F)] = /B Elp(w,t, 2)|Fv(dz) (1.94)
But since at the same time
B[P} (B)/7] = P(B) = [ plu.s,2w(d:) (1.95)

we have P(dw) ® v(dz) a.e. that E[p(w,t, 2)|.Fs] = p(w, s, 2) and we have estab-

lished that the conditional density process p(w,t, z) is a non-negative martingale.

Since p(w, s,2) € L"?(R?) we can use the Clark-Ocone formula (see Nualart

(1995) proposition 1.3.5. page 42) to represent the conditional density as

p(w,t,2) = q(z) + / E[D.p(- 1, 2)| F.]dw(v) (1.96)

and since the conditional expectation operator and the Malliavin derivative com-
mute (see Nualart (1995) proposition 1.2.4 page 32) we have for all 7 € [0, v]
that

E[D,p(-t, 2)|F,) = D,E[p(-t, 2)|F,} = D,p(w, v, 2) (1.97)
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Then since D,p(w,v,z) is assumed to be left-continuous lim,t, D,p(w,v,2) =

D,p(w,v, z) exists in L!()) and we can write
t
pw,t,) =0 + [ Dupl v, 2)da(o) (1.98)
0

We clearly have that p(w,t,2) > 0 for t < 72. Suppose that for some t > 7% we
also have that p(w,t,z) > 0. Since the conditional density process is a martingale
and 77 is a F¢- stopping time, we would have that p(w,7%,2) > 0 since by the
optional sampling theorem p(w,7% 2) = E[p(-,t,2)|Fr:], a contradiction since
obviously p(w, 7%, 2) = 0.We therefore have shown that p(w,t,z) > 0 for t < 7°
and p(w,t,z) =0 for t > 7°.

It follows for t < 7% that
t
Dv Yy Uy
pr,2) = a(a) + [ pl0,2) 22 E g (1.99)
0 .
or equivalently that
. Dvp(', v, Z)
w,t,z) = zé'/ ———dw(v 1.100
p( ) Q( ) ( 0 p(. v Z) ( ))t ( )
This establishes (1.91).

To show that for all ¢ € [0, T¢[ we P- a.s. have that p(w,t,G) > 0 is equivalent
to show that P(7¢ = 1) = 1. Clearly for all t € [0, 1]

E[ . p(t2)v(dz)] =1 (1.101)
But since P- a.s.
/qu(w,t, 2)v(dz) = /Rq 15 p(w, t, 2)v(dz) (1.102)
and
E| /R Lesgp(st,20(d2)] = Bl pose] (1.103)

we have established for all ¢ € [0, Tg[ that P(r¢ > t) = 1 and therefore 7¢ = Tg
P- as..
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Q.E.D.

Remarks

1. Since for non-atomic signals we have for ¢t € [Tg,1] that P*LP on F; it
follows for all z € R? that

: +o0o P*- as.
lim &( / (02) du(s)), = (1.104)
e Jo 0 P- as.
whereas for atomic signals
. . 2\ * — 1
lim&( | (@) dulo = 5 (1.105)
P?- as. and
P({lim £( / (02) duw(s))e = +00}) > 0 (1.106)
tTg 0

and therefore P* < P on F, for all ¢ € [0, 1] in this case.

2. For signals which have laws that are absolutely continuous with respect to
the Lebesgue measure Imkeller’s (1996) theorem 5 gives for signals abso-
lutely continuous with respect to the Lebesgue measure sufficient conditions

for which (i) and (ii) are satisfied.

From the law of W given G = 2z we can find the (P?,F)- compensator of the

Wiener process W by a Girsanov transformation. Since

E[£(Jy(e3) dw(s))enr:]

=1 (1.107)

it follows that for t < 7%

W(w)? = wit) — /0 o (w)ds (1.108)
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is a (P*,F)- Wiener process for all z € R?. Furthermore if P*- a.s. we have that

/ aids < +o00 (1.109)
0

then W# can be extended for ¢t > 7% as follows

W(W)? = w(t) — /0 () ds (1.110)

An investor “gambling” upon the event {G = 2} has states of nature given
by WZ. Since an insider can be seen as a “gambler” who knows with certainty
the realization of the event he is “gambling” upon we get states for insiders by
evaluating “gamblers” states at z = G. That WY on [0,T¢[ are indeed the
state of natures for an insider follows from theorem 1 of Foellmer and Imkeller
(1993) . They show that WS corresponds to the (P, G)- decomposition of the
Wiener process W. Since we want to analyze hedging and investment policies for
investment horizons longer than the resolution time of the signal without loosing

the semi-martingale property of processes relevant for insiders’ decisions we have

to assume the following

Assumption 6 Signals G are such that

Tg
/ afds < oo (1.111)
0

P-a.s.
Remarks

1. An example where assumption 6 is satisfied is G = w(T') some T € [0, 1]. In

this case the resolution time is Tg = T and

Te To
/ oSds ;/ log(Te — s)dw(s) (1.112)
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P-a.s. such that
Te
WE = E| : (Te + log(Ts — s))dw(s)|G:] (1.113)
which proves that W is an uniformly integrable (P,G)- martingale. It
follows by arguments similar to those in Jeulin and Yor (1977) that W is
independent of w(T) and that G corresponds for ¢ € [0, T to the filtration
of the Brownian bridge §;(w) := w(t) — £G(w).

2. In the paper of Elliott,Geman and Korkie (1997) (1.111) is satisfied, since
they introduce insider information on incomplete information such that non-
insiders never get to know the signal. Consequently Tz = 1 and since for
their signal “condition A” holds for all ¢ € [0, 1] assumption 6 is satisfied for

any investment horizon in their model.

Theorem 21 If “condition A” and (i) and (ii) of lemma 20 and assumption 6
are satisfied then the process WG = (WE t € [0,1]) given by

tA\Tq
WO (), = wi(t) - / (a5 (w)))*ds (1.114)

is a (P,G)- Wiener process.

Proof

Obviously W€ is G, adapted. Since for all A = A4; x 4, € F, ® o(G) where
s€[0,t) and t < T
E[1LEWE - WE\|G,) = / 14,54, (w, 2)(Wi — W)P?(dw)Pg(dz) (1.115)
QxR

it follows that

E[1,EWS - W76, = /R 14, (2)EP [1,,EY W} ~ W} |F][Pa(dz) (1.116)
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From Girsanov’s theorem we know that W= is a F- Wiener process. It follows

that EF*[W? — WZ|F,] = 0 for s < t and therefore that

E[1 E[WE - WE|G,] =0 (1.117)

The statement that W€ is a (P, G)- Wiener process on [0, Tg[ follows then
from Lévy’s characterization of Brownian motion since the quadratic variation of

W€ is
[(WeYy, We), = d; 4t (1.118)
forall4,j € {1,...,d}.

For t > T we have G, = F; and dW, = dw(t). It follows that W€ corresponds

to a Wiener process starting at — fOT ¢ afds on [Tg,1].

Q.E.D.

Remarks

1. Given the expression for the process W¢ on [0,7¢[ we might from Gir-
sanov’s theorem conclude that the measure determined by the density pro-
cess £(— [(af)*dWE). should correspond to the Wiener measure P and
therefore be constant. Imkeller and Foellmer (1993) have shown that in
fact this density process with respect to the Wiener measure defines a mea-
sure which is not even equivalent to the Wiener measure, a paradox, which
is explained by the fact that E—‘gg corresponds on G; for t € [0,1] to the
Radon-Nikodym derivative of the product measure P ® P with respect to
the joint law R, that is defines a product measure on ¢(G) ® F; which cor-
responds to the Wiener measure only if projected on its second coordinate.
It is this fact which is crucial for whether or not on insider information local

martingale measures exist.
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2. If we compare the process WS and W on [Tg, 1] we see that they have the

same increments but not the same starting point W, — Wg, = [ oSds.

3. Since any Fi- local martingale is given as [ ¢3dw(s) its G;- compensator is

given by fO'ATG ¢:alds as long this integral is finite P- a.s..
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1.8 Appendix B: The Representation of Con-
tingent Claims as Two-Parameter Random

Variables

The results of appendix 1.7 show how using Girsanov transformations the Doob-
Meyer decompositions of (P, F)- local martingales can be obtained on (2, F;, G, P)
in two steps. First conditional on an arbitrary realization of the signal we get
(P?,F)- semi-martingales by a change of measure. Secondly we get desired repre-
sentations for enlarged filtration simply be evaluating this decomposition at the
realization of the signal. This shows that processes on insiders’ stochastic basis
can be interpreted as two-parameter processes, one parameter for the state of
nature and the other for the realization of the signal. We will show how this
can be used to get optimal hedging strategies for insiders. To do this we need to
establish that Gr- measurable (some T < T) contingent claim can be regarded
as Fr ® o(G) measurable mappings from Q x R? to R! some | € N. The next

theorem will show that this is possible for sufficiently smooth signals.

Theorem 22 Under “condition A”, (i) and (i) of lemma 20 and assumption 6

we have for any Gr- measurable random variable H such that H € DY (R?) if

/0 " BIDH|FJafldt < +00 (1.119)
P- a.s. that
H(w) = C%@)(w) (1.120)
where for all z € RY
C*(w) = E[H|Fr](w) + EF’[ /T TG E[D,H|F,]oZdt| Fr)(w) (1.121)

P- a.s..
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In the proof and for other results we need the following lemma.

Lemma 23 For Gr,_- measurable random variables H(w) that can be written
as H(w) = C%“)(w) where C*(w) is Fr,_ ® o(G)- measurable we have under

“condition A” for all t € [0,Tg] that

(E¥'[C*17) .- = EIC°IGY (1.122)
whereas
(BIC e = ELE 2 O HIGH (1123)
Proof

Since 1g(w) = 1g(g)(G(w)) we have for all E € G, that
E[L:E[CYI6,] = Elle(s)(G)CC] (1124)

and since E[1¢(g)(G)C®] = Jowgyxa CF (w)R(dz, dw) that

E[1:E[CY|G,]] = / C* (w)R{dz, dw) (1.125)
G(E)xQ
Then since at the same time
Bl (B (01F]) ol = [ ECVEPol) (129
G(E
and
EP’ [C*|FPa(dz) = / C*(w)R{dz, dw) (1.127)
G(E) G(E)xQ

we have shown (1.122). Then since 1(r<,6; = 1 and for T < 7° by Bayes’ law
EF*[C*|F) = E[;((%Cﬂft] we obtain (1.123) by repeating the same argument
for O (w) = 2&dily 1 O (w).

p(w,T'2)

Q.E.D.
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Proof of theorem 22

By assumption H € D! (R?) and therefore from the Clark-Ocone representa-

tion formula we have since H is Fr,- measurable that

Te

H = E[H] + / E[D, H|F.Jdw(u) (1.128)
0
Since for all dw(t) = dW{ — afdu and H is by assumption Gp- measurable we get
Te

H = E[H|F7] + E| / E[D, H| F.]oSdu|Gr] (1.129)

T

where the second integral is well defined since (1.119) holds. Since from lemma

23 we know that

(E"’ [ /T N E[Dtﬂm]a:dtm]) =E /T e E[D,H|F.JeCdu|Gr]  (1.130)

|z=G

we have established that (1.120) must hold with (1.121).
Q.E.D.

Remarks
1. Since D,H = 0 for t € [T, 1] whenever the contingent claim H is also Fr-
measurable such claims do not depend on the signal.

2. Theorem 22 shows that whenever a claim is only measurable on insider

information, it can be regarded as Fr ® 0(G)- measurable random variable.
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1.9 Appendix C: The Domain of Malliavin’s Deriva-

tive and its Adjoint

The domain L}%(R?) of the Skorohod integral, that is the adjoint operator of the
Malliavin derivative or divergence operator, corresponds to the Hilbert space with

norm
1 1 1
I llpragrey= (E] / W2ds))? + (E| / ds / Dyuy(Duy)dt]) 2 (1.131)
0 0 0

The operator D, in the Hilbert norm above denotes the Malliavin derivative
(or divergence) operator with domain D'?(R?). The domain corresponds to the
Banach space given by the completion of the set of smooth random variables

F € 8§ on (2, F1,P), i.e. random variables of the form
F = f(w(t1),...,w(tm)), some ti,...tn € [0,1], f € CX(R™*9) (1.132)
with respect to the norm
I F lsgi= BLFP)2 o+ (1 Do Ipat) (1.133)

where for smooth random variables F' € & Malliavin derivatives are given by

D,F :;% @(t), - w(tm), t€[0,1] (1.134)

For definitions concerning Malliavin Calculus we refer to Nualart (1995) .
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1.10 Appendix D: Proofs

1.10.1 Proofs of section 1.3
Proof of theorem 1

By assumption 3 the Doob-Meyer decomposition of W on (2, F, G, P) is as shown
in Appendix 1.7 given for ¢ € [0, 1] by

tATq
w(t) = WS + / ofds (1.135)
0

Replacing this in the representation on (Q, F;,F,P) gives the desired result for
prices, dividend rate and endowment rate processes since by assumption corre-
sponding volatility coefficients are bounded and assumption 3 holds. Similarly
the additional condition imposed on portfolio policies gives the decomposition of

wealth.

Q.E.D.

Proof of corollary 2

Clearly if t € [0, T¢[ and F;.Lo(G) we have for all ¢ € [0, T that p(w,t, z) = g(z)
and therefore of = 0. That independence is also necessary follows from the fact
that Malliavin derivatives are zero for all ¢ € [0, T¢[ if and only if p(w, t, 2) lies in
the subspace of the zeroth Wiener chaos and is therefore constant (Nualart (1995)

page 31). It follows that o} = 0 implies that G is independent of F,.

Q.E.D.
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Proof of proposition 6

If we define E := {%;— > 1} and F = {%%;— > 1} we have since P(E) =

E[P(E|G)] and P(F) = E[P(F|Go)] that there is an arbitrage whenever there is

a conditional arbitrage.

It is possible that an arbitrage has an associated gains from trade of the form
a1 some E € Gy where P(E) > 0 and G;- adapted process a. Since on E° gains
from trade are zero there is no arbitrage conditional on E¢. This shows that the

existence of an arbitrage does not imply the existence of a conditional arbitrage.

Q.E.D.
Proof of theorem 8
Since for S& := — [ ryds — [T (85 + o8)*dWE we have that
t
(£(59)B.) exp{— / 16, + al|Pds} = £(25), B2 (1.136)
0

it follows that
1]
{£(28°).B} > 0} = {£(5%):B, > 0} { / 105 + o€ |[?ds < oo} (1.137)
0

Then since £(25¢),B? > 0 if and only if £(S¢),B, > 0 it follows that

{/t 165 + aC||?ds = +00} = {5(/.(03 + a8)*dWwS), = 0} (1.138)

Since the market price of risk on public information is by the assumptions on
the spot rate, the appreciation rates and volatilities of stocks bounded and from
the representation of the density process between the conditional and uncondi-
tional Wiener measure for any ¢ € [0,T¢[ it must hold true that [ [|aS|[2ds <

+00, we have for any admissible sequence of portfolio policies 7" and positive
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sequence (6")en such that f:;: > " for all ¢ € [0, 1] that
X7r,e - (SHB . *
G AT, tATg _ T, 04 fe. Ped
£(8Tr, ~ e = ([ (e — (6, + 09)W
(1.139)

First we consider an investment horizon which ends before resolution time

T < Tg. In this case we have that P#( %‘_I #, €]0,+00[}) = 1 and therefore

B'(£(S}r] = BIE(~ [ 6aW)rBr) (1.140)

But since by the boundedness of the coefficients of price processes for common

information Novikov’s condition

T
E[exp{% /0 16,Pds}] < +o0 (1.141)

is satisfied and therefore it follows by proposition 1.15 p.308 of Revuz and Yor
(1990) that £(S;)B; is an uniformly integrable martingale. But this implies that

E[£(S7)Br) = 1. Consequently since P> ~ P on Fr whenever T < Ty we must
have that

E¥*[£(S*)rBr] =1 (1.142)
or equivalently
E[£(S%)rBr|Go) =1 (1.143)

This shows that the measure dQ := £ (S¢ )BTdez___G is a local martingale measure

for the insider.

Since the left hand side of (1.139) is non-negative and a local martingale, it

must be a super-martingale and therefore

X;’e — 0"Br

EF[E(5)r (L =5

—6"Bp)] <16 (1.144)



67

Consequently it must from Markov’s inequality hold true that for any sequence
of portfolio strategies such that %{?B—: > 6™ and € > 0 that

1

E[S(SG)TBT].{'X"-e_gnBT E

eg—om
such that whenever 6" — 1 for n — +o00 we must since P*({£(S?)rBr > 0}) = 1
have that

(1 -6 (1.145)

e

lim 1>(|X11"B — 1> €Go) = 0 (1.146)

n-—»+00 eoDT

where we have used that égB—'T— — 1 must converge in probability to zero whenever
—{T;O:#T— — 0" By does. It follows thats there are no free lunches with vanishing

risk for an investment horizon shorter than resolution time.

Next we show that it is necessary for NFLVR for an investment horizon T
that P({g(SG)TBT > OHgo) =1. Clearly lfP({g(SG)TBT = 0}Igo) > 0 we must
have that P*({zss),;5; = +00}) > 0 at z = G. But then since the sequence of

mean-variance strategies
ﬁ'? = (Utdr)_l(bt + atatG - ld’rt)(.Xt - 5nBt)1KO,T0[(t) (1147)

are admissible and have an associated wealth process such that
X;‘:’e — 6" By _ g(S)TBT

E(S%)rB = 1.148
(S%)rBr eo—6"Br  £(S)r.Bry, (1.148)
We therefore would have that
X} - 6"Br
P ———= 14
( Py n +00) > 0 (1.149)

which is impossible if for all € > 0 we have that limn_,+°oP(|—)e%3—:| > ¢€) =0,
which must hold true because there is no free lunch with vanishing risk. It follows

that P*({£(S%)rBr = 0}) = 0 whenever NFLVR is satisfied.

Since P « P? on Fr, and therefore P"({f—;}lﬁ = 0}) > 0 and since P ~
G
&(S)1y Br, - P we must have that

P({£(S°)1eBrs = 0}Go) > 0 (1.150)
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and consequently that, whenever an insider has an investment horizon longer than
the resolution time he will also have a free lunch with vanishing risk given by the

sequence of mean-variance strategies given in (1.147).

It remains to be shown that for T > T there is an arbitrage if an only if G,

is non-atomic.

If we put for all n € N 6" = K we obtain for tame portfolios from (1.139) that

XZX;G - KBt/\TG _ g(/( 7'(':03
0

£t =50 X7~ KB,
8

— (6, + af))aw g Jints
(1.151)

Then suppose that G is non-atomic. As we have seen in this case we have

that P* < P on Fr even for T > Tg. Consequently

Pz

EF’ [E(SZ)TBT] = E[l{:—P|rT>0}g(S)TBT] (1.152)

But since P({45 = +oo}) = 0 and that from Novikov’s condition we have already
argued that £(S);Br is an uniformly integrable martingale starting at 1, it follows

that
EF*[£(S*)rBr] =1 (1.153)

Then since by the same argument as before the left hand side of (1.151) is non-
negative local martingale and therefore a super-martingale starting at 1, it must

hold true for any admissible portfolio strategy that

X" _ K
EF[E(S)rBr(Z—— -1)] <1 (1.154)
€y — K

Since £(S)7Br > 0 P- a.s. we must have that P({EXE% > 1}) = 0 in this case.
Since P* < P on Fr for all T € [0, 1] it must therefore also hold true that

e

P(ZZ > 1}i6y) =0 (1.155)
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That is there is no arbitrage for the insider when his anticipative signal is atomic.
Finally if Gy is non-atomic we have that for any that the mean variance strategy

ﬁt = (010:)'1(bt + O'TatG - ].d?"t) (Xt - BtK)l]Tg,Tg] (t) (1156)

has an associated wealth process such that

X7~ KBr _ &(5%)q,-

= 1.157
€y — K g(SG)TG ( )
But since on F7, we have that P?LP and consequently %I P 0 P*- as.
= G
we have at z = G that {T;o—j%@l = 400 P?- a.s. and therefore also that
X3
P >1 =1 1.158
(22> 1191) (1.158)
and therefore 7 is an arbitrage.

Q.E.D.

Proof of corollary 9

For signals G = G° + Z where Z is independent from G° we have that ¢(G) =
o(G°)VVo(Z). And consequently that for t > Tgo that P(G € B|F,) = P(Z €
(B — 2))jz=¢ > 0 for some B € Bgg, such that Tz = 1 P- a.s.. It follows from
theorem 8, that there are no arbitrage opportunities even for non-atomic insider

information.

Q.E.D.
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1.10.2 Proofs of section 1.4
Proof of theorem 10

For the contingent claim H define the tracking error ¢F. ** := (X7 —C?) where
C* is given by (1.121). Then since by assumption £(S)rC* € D! (R%) we have
from the Clark-Ocone formula and the fact that £(S)rC? is Fr- measurable that

£(S)zC* = E[£(S)rC7] + /0 D (8)rC | duo(v) (1.159)
From Ito’s rule it follows that
(- [ (@2 aW:)re($)nC* = Ble(S)r0) +
/ "Dyfe(- | @yaw:)Bes orimLmw; (160

where we have used the commutativity of the conditional expectation and Malli-

avin derivative operator to get that

D,IE(- / (@) dW?),EIE(S)rC*|F]| =
£(- /0'(a:)*dW:nE[Dv[s(S)TCZJm] -

£(- / (@2) dW?), BIE(S)2C¥I F)(a)"

At the same time using again It6’s formula we have that

T .
X5+ [ [ (@) aWE®)(rion ~ X5 B + 2w =
0 0
£ [ @ramneExg +
0

T .
/0 £(- / (02) dW),E(S)u(c — en)dv (1.161)
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From (1.160) and (1.161) we have for (#*, %) such that é* = e, and
) i~ fo 2) W) E[E(S)rC?| Fu]
g, — XFF (0, + a2)* = 1.162
(71'11) g v (9 + ) fo a: *dW:)vS(S)v ( )
and initial wealth
X5 = B[E(S)rC?) (1.163)
that qS” #4% = 0 for all z € R? P- a.s.. Furthermore it follows that
~Z A2 z *sz Tg(S)T
X;® =EF (= Jolos C*|F 1.164
R (G o (1164
or since dP fo ). from Bayes’ law equivalently that
7% ,6% (S)
X; ¢ = E[—2%-C* 1.
Using
D,E(S)r [5(S)T] E(S)T
=D, - 0 1.166
£ )] "), (1.166)
and therefore
Dy[E(~ fo JE[E(S)rBY|F]] E(S)r
= E[D,
- fo vg(S)v ( )
- E| (( )) B*|F,)(6, + o)
we get from (1.162) that
ove iy EO)T
(#})*0r = E[D, 2, C*|Fy) (1.167)

This establishes the results announced for an investor gambling upon the event
{G = z}. If we evaluate (1.160) and (1.161) at z = G we get for (#,¢) = (#€, &%)
and X7 = XS'G’EG that ¢m>¢ = 0 P- a.s. and from (1.167) we get (1.31). Finally
if we apply lemma 23 to (1.165) we get since there is no tracking error the value

of the claim given by (1.28)
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Finally if T > T and the signal reveals an event such that B # 0 but
Pg(B) = 0 there is an arbitrage opportunity such as we have seen in theorem
8 that gains from trade at T are unbounded with probability one. Such an

insider can therefore replicate any contingent claim at zero cost.

Q.E.D.

Proof of theorem 11

Proof

To establish the equivalence of implicit prices of insiders and outsiders it is
sufficient to show that Q = Q on Fr. Since for all E € Fr
dP  dQ

2 — wPemP* hadn ]
Q(E) = EF¢[EF" (15 P77, P m” (1.168)
and
p:r, AP dQ _ iig
E [lEsz Ifr?lfrl =E[1g P Ifr] (1.169)
we have that
Q(E) = EP¢[Q(E)] (1.170)
and therefore Q(E) = Q(E).
Q.E.D.

1.10.3 Proofs of section 1.5
Proof of theorem 12

First it follows from theorem 8 that if insiders have no arbitrage opportunities

investment horizons must end before resolution T' < Tg; and/or insider information
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o(G) is completely atomic and consequently Q < P on G, for all t € [0,1] and
therefore also P < P on F; for all ¢t € [0,1]. It follows that in the absence of

arbitrage we have

ey 9(2) —
P ({p(w,t, 2 €]0, +oo[}) =1 (1.171)
Then if we define e* := eo + EP*[ [T £(5%),e,dt] and £(S7) := (S)tﬂf}z—) we have

for fixed z € R? that the value function

J(e*) == inf BF[ / (6, (2, y"E(57),)) — y*E(S7)eI(t, Y E(S%)0)dt + y7e]

y=>0
(1.172)
satisfies
T
Ie) =B ([ u(e, 16,5°€(5)0)ed (1173
0
where §* is such that
EP’[/ E(S*)d (t,7E(S?)))dt] = €° (1.174)

and where the existence of §* follows from (1.35). Now since for F, adapted
non-negative consumption processes ¢
T
EF’ [/ sup(u(t, ¢;) — 9°c;)dt] > sup EF [/ u(t, ¢) — §°eq)dt] (1.175)
0 c0 >0
and the convex conjugate function in the first integral is
su>13[u(t, ct) — 9PE(S%)sce] = ult, &) (1.176)
c*>

we have established that the consumption policy of a “gambler”

& =1(t,9°E(S%)y) (1.177)
is optimal for the problem
T
sup EF” [/ u(t, c;)dt] (1.178)
c20 0
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subject to the static budget constraint
T
EF*[ / E(S7)scedt] = € (1.179)
0

where §* is the multiplier associated to the constraint. To establish that these

strategies are optimal for the dynamic problem

T
sup EF’ [/ u(t, c;)dt] (1.180)
(m,C)EA(P* Fe) 0

it is suflicient to show that optimal wealth satisfies X**** > —K some K > 0 and
XT’Arz # > 0 both P*- a.s.. Since preferences are strictly monotone and there is no

incentive for a bequest we have that X7 " = 0 P#-a.s.. Then since
T
E”[E(S))r XT°|F) — £(S9) X[ = B’ / E(S%)e(ce — e)dt|Fy]  (1.181)
0

it follows from the fact that the endowment process e is bounded from below
that the optimal wealth X*"¥ must be bounded from below. This establishes the

optimality of é* for an investor “gambling” upon the event {G = z}.

Next we have to show that é° is optimal for an investor having beliefs P and

additional information o(G).

Since all ¢; € A(P,G,e) are also in L'?(R?) we have from theorem 22 that
there exists ¢ = (cf;t € [0,T]) such that

e =& (1.182)

and where ¢* € A(P?*F,e). From the optimality of ¢* in A(P?,F, e) we must have
that

B[ / "ty #)d] > BP| / "t (1.183)

for fixed z € R?. This remains true at z = G and it follows from the lemma 23

that

E[/o u(v,ef)deo]zm/o u(v, ¢)dv|Go] (1.184)
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for all ¢; € A(P, G, e).

It remains to proof that the cumulative net consumption process fOT(ét -
e:)dt can be financed by G,- measurable portfolio strategy. For T < Ty this was
established in theorem 10. We have to show that the same kind of argument
remains true for discrete signals if ' > Tg. We have already established that

sorzy < oo forallt €[0,1] P* as.. In fact we have on {G = 2} for t € [Tg, 1]
E(S%)e = Po({z})E(S): (1.185)

P?-a.s. and therefore that the density process of the absolutely continuous local

martingale measure Q is finite and positive on {G = z}. We therefore have on

{G = z} from the comparison of
/ E(s)u(& — e)dt = e + / E(S)(nio, — (6 +af))dWE  (1.186)

where of = 0 and correspondingly dW7 = dw(t) for t € [Tg, 1] P*-a.s. with

T
/ g Sz AZ - et)dt = €9 +/ { t Z [/ 8 Ct - et)dt|.7-'t]} thz
0

that

{ (w, t 2) [/ E(S)( ”et)dtl}.t]} E(S™)(7{) 0r — (0: + of)*) (1.187)

Since P*({G = z}) = 1 solving for #} as in the proof of theorem 10 gives the
results on P* @ M-a.e.. As for consumption expressions for optimal strategies
of a gambler “evaluated” at z = G are optimal for the consumption-investment
problem of an insider since they replicate G, adapted cumulative net-consumption

without tracking error.

Finally if there are arbitrage opportunities then as we have seen in theorem 8
we can finance any cumulative consumption process with zero cost. This implies
that the static budget constraint will never bind and therefore the marginal value

of wealth §* is zero. It follows that the first order condition dyu(t, ¢) = 0. But
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this is by the Inada conditions only possible if consumption is unbounded with
positive P*- probability. Since P* & P such states have non-zero P*- probability
and consequently the value of the problem for fixed outcome of the signal G = z

explodes. This remains true if we “evaluate” at z = G.

Q.E.D.

Proof of proposition 13 and corollaries 14, 15 and 16

Again we are first conditioning on {G = 2} in a first step and get results by
“evaluating” at z = G in a second step. Since the marginal rate of substitution

of a gambler can be written for the state dependent Bernoulli indicator v(w, )

n (1.53) as

azu(s’ C:) — ((flfz)t ( )62v(w S C ) (1 188)
&u(t,&)  \(Z), )" dv(w,s,&) '
we can on {G = z} equivalently write (1.47) as
T &
(77)"0r = E] ______021)( )( — ey)du|F)A(t, &)Dié +
¢ Ov(,t,8)
Opv(u, cu, ,2) : nz u _
Bl 2B e A D7)

621)( u, ua) )

E
[t a2v(>t’7)

But from the expression for “gambler’s” optimal consumption policy (1.177)

taking instantaneous Malliavin derivatives we get

oY A 1 -4 *
Dié; = A(t,éf)(a +6) (1.190)
and fort < u
) 1 q(2)€(8)u
2z .
Dé = Al cu)Dt[IOg ——‘_(w,t, 2) ] (1.191)
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Finally it follows from theorem 2.1.1 page 102 of Nualart (1995) that the Malliavin
derivative of the endowment rate process D,e, is found as solution of the linearized
stochastic differential equation(1.59). If we replace this expression together with

(1.190) and (1.191) in (1.189) we get the result announced by arranging terms.

Q.E.D.

Proof of proposition 17

In the proofs of corollaries 2 we have shown that (1.68) implies of = 0 PQ X- a.e..
It follows from the expressions of optimal consumption in theorem 12 that in this
case 6 = & = ¢, for all t € [0, T] where & denotes the optimal consumption policy

in A(P,F,e). This is sufficient to establish the equivalence of the value functions.

Q.E.D.

Proof of proposition 18

Since admissible strategies in the consumption-investment problem of an insider

have to be G;- adapted we clearly have that
FEN\ 7 cg, (1.192)

for all ¢t € [0,T] and it remains to find conditions for which we have the reversed
inclusion. From (1.43) we see that #§ = 0 and therefore necessary conditions for
which the information generated by optimal strategies corresponds to all individ-

ual private information must also guarantee that

o(é8) = o(G) (1.193)
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But to establish this is equivalent to establish the existence of a Borel function

such that

G = h(¢&) | (1.194)

Since ¢§ satisfies the state by state first order conditions
0,u(0,&5) = V(e€, G) (1.195)

where Y(z,2) is such that X()(z,2),z) = r it is by the definition of X(y,2)
sufficient for the existence of the Borel measurable function h to show that the
mapping
T
q(2)
—E wey————)d 1.196
e Bl St D) (1196)
is bijective. It follows that for h to exist the mapping

q(2)

2 -
plw, u, 2)

(1.197)

must be bijective P ® A- a.e.. Then suppose such a mapping exists and is given
by k. Consequently it must be true that k= (2)p(w, t, 2) = ¢(2) P ® A- a.e.. This
would imply since E[p(w,t, z)] = ¢(z) that k~!(2) = 1 which proofs that such a
bijection does not exist unless the signal is independent of the public information.
Consequently the optimal insider strategies will never be fully revealing if it is

non-redundant.

Q.E.D.



Chapter 2

A Monte Carlo Method for
Optimal Portfolios

2.1 Introduction

Asset allocation models have received extensive attention in the past three decades.
Prompted by the seminal work of Merton (1969, 1971) researchers have explored
various aspects of the problem in the context of financial markets with diffusion
price processes (e.g. Richard (1975)). Numerical methods based on the dynamic
programming approach employed in this literature have also been used to exam-
ine the properties of optimal portfolios (Brennan, Schwarz and Lagnado (1997)).
Numerical schemes based on PDEs, however, become increasingly difficult to im-
plement when the number of underlying state variables increases. More recent con-
tributions by Karatzas, Lehoczky and Shreve (1987) and Cox and Huang (1989)
have proposed an alternative resolution method based on martingale techniques.
This approach yields a closed form solution for optimal consumption when markets
are complete even when asset prices follow Ito processes with history-dependent

coefficients. The optimal portfolio was derived by Ocone and Karatzas (1991) us-

79
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ing the Clark-Ocone formula. This representation formula expresses the portfolio
in terms of expectations of random variables which involve ”abstract” Malliavin
derivatives of the coefficients of the model, namely the interest rate (IR) and the

market price of risk (MPR).

But while theoretical formulas for optimal portfolios are available in general
contexts little is known about the structure and properties of the hedging com-
ponents. Even if we restrict attention to diffusion models, realistic specifications
with stochastic IR and MPR give rise to complex hedging terms which depend on
multiple state variables and are often difficult to evaluate numerically. As a result
attention has been devoted to (i) state variable specifications for which closed form
solutions are available (Kim and Omberg (1996), Liu (1999), Wachter (1999)) or
(ii) specifications which are computationally tractable based on dynamic program-
ming techniques (Brennan, Schwarz and Lagnado (1997)), or (iii) discrete time

models based on approximated Euler equations (Campbell and Viceira (1999)).

This paper provides three main contributions. First we exploit the diffusion
nature of the opportunity set to provide explicit expressions for the Malliavin
derivatives arising in the hedging components of the optimal portfolio. Hedging
demands are expressed as conditional expectations of random variables which de-
pend on the drift and variance of the relevant state variables. These formulas are
valid for any structure of the underlying processes and of the utility function and
reduce the computation of hedging demands to the computation of expectations,
as in traditional option pricing. Our approach can therefore be seen as a transla-
tion of the dynamic asset allocation problem into an option pricing problem for
which Monte Carlo methods, as summarized in Boyle, Broadie and Glasserman
(1997), have long been successfully applied by practitioners'. Furthermore, the

formulas enable us to establish new theoretical results about the hedging behavior.
1See also Fournié et. al. (1999)
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Second we derive an alternative representation of Malliavin derivatives of diffu-
sion processes which simplifies their evaluation. Our formula relies on a variance-
stabilizing transformation of the underlying process and eliminates stochastic in-
tegrals from their representation. Aside from its theoretical interest this new
expression has interesting computational benefits. Indeed, the absence of stochas-
tic integrals ensures the existence of an exact weak approximation scheme for the
martingale part of the Malliavin derivatives and this improves the rate of conver-
gence of approximations of Malliavin derivatives to their true values. The scheme
also increases the speed of convergence of simulated trajectories of hedging terms
and of any statistic (such as confidence intervals) of simulated hedging terms.
Finally it may also help to reduce the second-order bias and therefore the size
distortion of asymptotic confidence intervals of the Monte Carlo estimator of the

hedging demands and portfolios given the realization of the state variables.

Third we provide new results on the economic properties of optimal portfo-
lios. We examine bivariate and trivariate IR and MPR models in a setting with
constant relative risk aversion. In our benchmark bivariate model the IR process

is mean-reverting with square-root volatility (MRSR) and the MPR process is

- Gaussian with either mean-reversion (MRG) or with mean-reversion and interest

rate dependence in the drift (MRGID). More elaborate trivariate models with
stochastic dividend yield or volatility, and with multiple assets are also consid-
ered. In these settings we document the magnitude of the hedging terms and their
behavior relative to the parameters of the model such as risk aversion, investment
horizon or IR and MPR values. All our results are based on a portfolio formula
which evolves from the Ocone-Karatzas representation. This modified formula
which emphasizes the role of relative risk aversion and wealth sheds further light
on the portfolio/hedging behavior. It can be viewed as a minor contribution of

the paper.

Some of the lessons drawn from our simulations can be summarized as follows:
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1. Our methodology involving the combination of Monte-Carlo simulation and
our variance-stabilizing transformation produces very reasonable values for
the shares of wealth invested in the stock. Unlike some earlier studies of
optimal portfolios interior solutions are obtained and portfolio shares are

stable in simulation exercises such as market timing experiments.

2. Hedging components are important for asset allocation purposes. For long
horizons the adjustment to mean-variance demands can represent up to 80%
of the stock demand. Hedging demands also exhibit low volatility and are

- therefore very stable over time.

3. Critical factors in optimal asset allocation are the risk aversion and the in-
vestment horizon of the investor. For instance, in our basic bivariate model,
investors with short (long) horizons and whose risk aversion exceeds 1 want
to reduce (increase) their stock demand relative to the logarithmic investor
in order to hedge against MPR (IR) fluctuations. The effects documented
in the paper rationalize the marketing of investment products tailored to

different categories of investors classified according to those criteria.

4. Allocation rules are remarkably stable relative to the other parameters of the
model. Variations of the order of 2 standard deviations around estimated

parameter values have little impact on the magnitude of investment shares.

5. The global behavior of the optimal portfolio in the multiasset case parallels
the behavior displayed with a single risky asset. Hedging terms exhibit
strong patterns with respect to correlations when asset returns are highly
correlated. Correlations between returns and among state variables emerge

as additional factors driving the size of hedging demands.

The portfolio choice problem is stated next. Section 3 presents a closed-form

solution and discusses its structure. Section 4 develops an alternative formula
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for Malliavin derivatives of diffusion processes. Numerical implementation is dis-
cussed in section 5. Qur basic bivariate model with MRSR interest rate and
MRG/MRGID market price of risk is analyzed in sections 6 and 7. Sections 8 and
9 provide trivariate extensions to stochastic dividends and stochastic, imperfectly
correlated volatility. A multiasset model is analyzed in section 10. Proofs are
in appendix A; appendix B extends the procedure to multivariate diffusions; ap-
pendix C contains results for the MRGID model; appendix D reports asymptotic

properties of state variable estimators.

2.2 The portfolio choice problem

We consider a portfolio choice problem in an economy with d state variables
Y;,7 = 1,...,d, and d sources of Brownian uncertainty Wy,: = 1,...,d.2 State

variables follow the vector diffusion process
dY;, = p¥ (t,Y;)dt + 0¥ (¢, Y;)dW, (2.1)

where the coefficients satisfy appropriate Growth and Lipschitz conditions for the
existence of a unique strong solution.® The investor allocates his wealth between
d risky securities and one riskless asset (a money market account) with instan-
taneous riskless rate of return r, = r(¢,Y;). The security prices S;,i = 1, ...,d,

satisfy the stochastic differential equations

dSi = Sul(u(t, Y)) — 66, V)t + 0:(t, Y)dWi;, 1<i<d  (22)

21t is straightforward to consider k # d state variables. To simplify notation, in particular

for the expressions of the Malliavin derivatives, we assume that k = d.
3Note that the d state variables are joint solutions of the system (3.2), i.e. they influence

each other. Remark 1 considers the special case of an autonomous system in which each state

variable is determined independently.
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where ; is the expected return, J; the dividend rate and o; the vector of volatility
coefficients of security i. We assume that r(t,Y;), u;(t, Y:), 6:(t, ;) are integrable
(P — a.s.) and that 0,(¢,Y;) is square-integrable (P — a.s.). Let o denote the
d x d-dimensional volatility matrix whose rows are o;,i = 1, ..., d. Suppose that o

is nonsingular almost everywhere and that the market price of risk
6, = 6(t, Yt) = o(t, Yt)_l(/-"(ta Y;) - r(t, Y3)1),

where 1 is the unit vector, is continuously differentiable and satisfies the Novikov
condition E exp (% fOT 0;0tdt) < 00. Under this condition the risk neutral measure

is well defined and given by d@ = nrdP where

t t
M, = exp [— / gl dW, — E / o;etdt].
0 2 Jo

The state price density is & = B; 'n, where B, = exp| fot rsds] is the date t-value
of a dollar investment in the money market account. Relative state prices are
written &, = &,/&. Under @ the process WtQ =W, + fot 0,dv is a Brownian

motion.

Suppose that an investor seeks to maximize the expected utility of his terminal
wealth by selecting a dynamic portfolio policy composed of the d risky assets and

the riskless asset

max U(Xt) = E[u(T, X1)] s.t. (2.3)

dXy = ryXedt + mif(pe — red)dt + 0, dWy], Xo=z

(2.4)
X, >0 for all t € [0,T].
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Here X, represents the investor’'s wealth at date ¢, z is his initial wealth and 7,
the amounts invested in the risky assets at date ¢. The nonnegativity constraint is
a typical no-bankruptcy condition. The utility function is strictly increasing and
concave with limiting values limy_,o, Ou(T, ) = 0 and limy_, 8u(T, ) = oo for
all T < oo. (For any function f(t, X) we write 8;f for the first derivative relative
to i, 2 =1,2 and 0;; f the second derivative, ¢, j = 1,2; when the second argument

is a vector 0, f is the gradient and 9, f the hessian of second derivatives).

2.3 The optimal portfolio: the investor’s hedg-

ing behavior

The portfolio choice problem described above can be resolved by using a martin-
gale approach (Karatzas, Lehoczky and Shreve (1987), Cox-Huang (1989)) to iden-
tify optimal terminal wealth in explicit form and then applying the Clark-Ocone
formula on the representation of Brownian functionals to obtain the financing
portfolio. This approach was adopted by Ocone and Karatzas (1991) who provide
formulas in the form of conditional expectations of random variables involving
Malliavin derivatives. Due to the generality of their model in which asset prices
follow Ito processes (with unspecified coefficients) these Malliavin derivatives are
abstract quantities without an explicit structure. In this section we exploit the
diffusion specification of the financial market to derive explicit expressions for the

Malliavin derivatives and hence for the optimal portfolio.

2.3.1 The optimal portfolio policy.

Let V(z) denote the value function in the optimization problem (3.3)-(3.4), I(T,y)

the inverse marginal utility, 7 the marginal value of initial wealth and X the



86

optimal wealth. Our first result identifies the general structure of the optimal

L/‘ portfolio and of its hedging components.

Theorem 24 If V(2) < oo and &7I(T, gér) € D'? we have that

s = X —(o(t, Y;))710(t, Y,)c(t, Y, 2.5
t ‘R, :)(( 1)) 0(t, Yi)e(t, V) (2.5)
- 1
+X — — 1)(c(t,Y2)) ta(t, Y
t(R(t,Xt) (e (t,Ye)) a(t, 1)
5 1
+X — — 1)(o(t, Y,)) " 16(¢, Y,
t(R(t,Xt) )o(t,Y))7b(t, YY)
where R(t,z) := :%%E denotes the Arrow-Pratt measure of relative risk aver-
sion, and
Xr (1 _ > T ‘
a(t,Y,) = EQ | E 1 - I/R(T, {{T) / Dyrsds (2.6)
%—I‘ 1~ 1/R(t,Xt) t
Xr (4 o T
bt, V) = EQ | 22 (1 YR, )f"”)> / (dWR)' D6, (2.7)
Ett 1- l/R(t,Xt) t
2(‘_1 ~
c(t,Y;) = ER B R X) | (2.8)
%f R(Ta XT)

In these ezpressions optimal wealth equals X, = E.&rI(T,y¢r)]. The Malliavin
derivatives in (3.6)-(8.7) are given in explicit form by D0’ = 8,6(s,Y,)' D;Y, and
Dyrs = 0y1(s, Ys)D,Y, where

DY, = 0¥ (t,Y;) exp {/ dLv} , (2.9)
t

4D"? is the domain of the Malliavin derivative. See Nualart (1995) for exact definitions.
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with the d X d random variable dL, defined by®

d d
dL, = |8u¥ (0, Y;) - % 3 0,0% (0, Y,)(320% (0, %)) | do + 3 850 (v, Vo) AW,

i=1 j=1
(2.10)

where oY denotes the j* column of the matriz oY .

Note that the first component of the optimal portfolio (2.5) is a mean-variance
component while the two other components are intertemporal hedging terms (see
Merton (1971)).° In this general formula the mean-variance term varies with
optimal wealth since the coefficient of relative risk aversion is allowed to change
with wealth. Hedging arises since the investor seeks insurance against fluctuations
in the interest rate (second component of (2.5)) and in the market prices of risk
(third component of (2.5)). That the second term is motivated by the desire to
hedge interest rate risk is evidenced by the presence of the Malliavin derivative
D,rs which captures the interest rate’s sensitivity to the underlying risk factors,
i.e. the Brownian motion processes W;. In accordance we call this term an IR-
hedge.” Similarly the third term is seen to emerge when the market prices of
risk are sensitive to the W; (i.e. when D,f; # 0) and is called an MPR-hedge.
When (r,6) are constant or deterministic all these hedging terms are null since
in the Malliavin derivatives Dyr, and D,f;,, the partial derivatives dr(s,Y;) and
020(s,Ys) are zero. |

5The exponential in (2.9) should be interpreted as the exponential of a matrix, i.e. (2.9) is

short hand notation for the solution of dD,Y, = (dL, + }d|L],) DY, subject to the boundary

condition D;Y; = 0¥ (t,Y;), where [L] is the quadratic variation process.
8The optimal portfolio formula extends easily to the case of intermediate consumption. It

also extends to settings with infinite horizon provided that the Novikov condition is satisfied.
"Expression (2.9) shows that the Malliavin derivative, in a Markovian model, corresponds

to the derivative of the stochastic flow of the SDE of state variables with respect to the initial

position of the state variables (Colwell, Elliott and Kopp (1991)).
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Before discussing the behavior embedded in the hedging components it is also
of interest to point out that formula (2.5) expresses the hedging components in
explicit form: hedging demands are conditional expectations of random variables
which depend entirely on the exogenous coefficients of the model and the utility
function. The key to these explicit expressions is the derivation of closed-form
solutions for the Malliavin derivatives D;r, and D.f, which are obtained due the
diffusion structure of the uncertainty. As mentioned above these results comple-
ment Ocone and Karatzas (1991) who express the optimal portfolio in terms of

abstract Malliavin derivatives.

2.3.2 The intertemporal hedging behavior.

Let us now focus on the hedging behavior of the investor. First, it should be noted
that a myopic individual (R(¢, )?t) = 1) does not hedge®. The signs of the hedging
terms will otherwise depend on the signs of the conditional expectations a(t, ¥;)
and b(t,Y;). For example, when these are positive, an individual who is more
(less) risk tolerant than the logarithmic investor will over- (under) invest in the
risky assets. For the IR-hedge simple sufficient conditions ensure an unambiguous

behavior.

Proposition 25 Fiz ¢t € [0,T]. Suppose that the conditions
(2) (o(t, Y)Y (Dyrs)’ <0 for all s > t,(P-a.s)
(i) R(t,X,) > 1 and R(T, X7) > 1 (P-a.s).

hold. Then, intertemporal hedging of interest rate risk raises the demand for stocks
(i.e. the IR-hedge is nonnegative). If (i)-(ii) hold for all t € [0,T) the IR-hedge

boosts the proportion of wealth invested in stocks at all times.

8When R(t,)?t) and R(T, )?T) tend to one, the ratio inside the conditional expectations
(3.6)-(3.7) tends to one as seen by applying I’'Hépital’s rule.
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Conditions (i)-(ii) are very general. The first condition holds in a variety of
special cases that are of interest for empirical or theoretical reasons. For instance

it holds if state variables are autonomous (see remark 1 below) and
(o(t, V) (8er(t, Yi)o¥ (1, ¥2)) < 0. (2.11)

In the single risky asset case this simply boils down to negative correlation between
the interest rate and the risky asset price, which is empirically verified if the risky
asset is interpreted as the SP500 index. Condition (2.11) also holds with multiple
risky assets that are independent and negatively correlated with the interest rate.
In all these cases the particular structure of the coefficients of the state variables
processes (whether they are increasing, decreasing, convex or concave functions)
does not matter for the sign of the hedging term: the only aspect of relevance is

whether (2.11) is verified.

The second condition applies even to models in which relative risk aversion
varies with optimal wealth. As long as an investor displays more risk aversion than
a myopic investor at date ¢ and for all possible realizations of optimal terminal

wealth the condition will hold.

When we combine both conditions we obtain, for instance, the intuitive propo-
sition that individuals that are more risk averse than the log investor (R(t, X;) >
1, R(T, X7) > 1) will increase their demand for the market portfolio of risky assets
when the interest rate covaries negatively with the portfolio return (single risky

asset model) in order to hedge interest rate risk.

We conclude this discussion with a description of hedging demands and Malli-

avin derivatives for the case of autonomous state variables.

Remark 1 When the system of stochastic differential equations (8.2) is composed
of d autonomous equations dYy, = p¥ (¢, Yi)dt + o} (t,Yi)dW,; fori=1,...,d, we
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In this formula two expressions are provided for the coefficients a,b in the
hedging components. The first is simply the specialization of the previous result
to the case under consideration. The second forrhula uses the relation between
optimal wealth and state prices in order to express a, b in terms of the relative state
price density & r between periods ¢t and T. This formula clearly demonstrates that

the functions a, b depend only on the state variables Y.

The formulas described in theorems 34 and 26 provide useful information about
the qualitative behavior of the investor. In order to assess the magnitude of the
various components, and hence their relevance for asset allocation purposes, it is
nevertheless necessary to get quantitative estimates. Practical implementations
require the computation of the conditional expectations appearing in the portfo-
lio formulas. Clearly Monte Carlo simulation appears to be an appealing way to
proceed. In the next section we pursue this avenue and suggest a further trans-
formation which facilitates the computation of Malliavin derivatives and may also

help in the estimation of the hedging demands.

2.4 An alternative formula for Malliavin deriva-

tives of diffusions

The key to our simplification is a change of variables which transforms a stochastic
differential equation into an ordinary differential equation. In effect this (variance-
stabilizing) transformation removes stochastic integrals from expressions such as
a(t,Y;) and b(t,Y;). Changes of variables of this type are used by Doss (1977)
to prove that an SDE can be solved pathwise, since it can be reduced to an

ordinary differential equation.® Appendix A shows how Doss’ arguments can be

9This result also plays an important role in the approximation of solutions of SDEs (e.g.

Talay and Pardoux (1985)). In this context it can be used to conclude that convergence of the
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used to derive alternative expressions for Malliavin derivatives of solutions of one-

dimensional SDEs. In this section we state the result and discuss its implications.

2.4.1 The main result.

Consider a process Y which satisfies the one-dimensional SDE
dY, = u(t, Yo)dt + o(t, Y)dWs Yo = u.

The Malliavin derivative of Y has the following alternative representation.

Proposition 27 If the following conditions hold!®
(i) differentiability of drift: p € c'([0,T] x R)
(ii) differentiability of volatility: o € C%([0,T] x R)
(iii) growth condition: u(t,0) and o(t,0) are bounded for allt € [0, T,

then we have for t < s that

~Lmo)e - B van] @10

DY, = o(s,Y,) exp {/ts[azﬂ - uaazd
Note that (2.17) expresses the Malliavin derivatives entirely in terms of Riemann-
Stieltjes integrals of first and second derivatives of the coefficients of Y. Thus the
stochastic integrals which appeared in the earlier formulas ((2.10) and (2.13)) have
been entirely eliminated. Formula (2.17) is therefore easily computed using stan-
dard methods to approximate the Riemann integrals involved. With the yariance
stabilizing transformation the numerical calculation of the Malliavin derivatives
is therefore of the same complexity as the numerical solution of an ODE. A sec-

ond difference with the earlier expressions is that the leading term is the future

underlying Wiener process implies the convergence of the solution of an SDE.
10The space C([0, T] x R) is the space of i times continuously differentiable functions on the

domain [0, T} x R.
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volatility of the process at date s instead of the current volatility at ¢. This im-
plies that this leading term cannot be factored out of conditional expectations at
date ¢ as was the case in (2.5) or (2.9). Randomness of the leading term however
does not increase the computational difficulty involved in evaluating the Malliavin

derivative.

With this numerically appealing expression for the Malliavin derivative we
obtain a formula for the IR-hedge which does not involve stochastic integrals any
longer. To achieve the same result for the MPR-hedge we introduce a second
transformation which enables us to write the SPD and, as a consequence, also
the MPR-hedge without any stochastic integral. We illustrate the idea in the

univariate case.

Proposition 28 Let d = 1. If the following conditions hold
(i) differentiability of MPR: 0 € C*([0,T] x R)
(i) differentiability of volatility: o € C*([0,T) x R)

then the SPD can be written as

t
& = exp [— /0 [r + -;—92 - gu -0 — -;—(8290 — 00,0)](s,Y;)ds — (¢, Y:) + 4(0, )

(2.18)
where the function ¢ € C'([0,T] x R) solves 8y1p0 = 6. Consequently, we obtain

g

T 0 T
/ Dib,[dW, + 8,ds] = (T, Yo)D,Yr — 6(2,Y;) - / (91(5,Y,) + g2(5, ¥,)) DyYids
t t

(2.19)
where
_ 86 660
(s, Y,) = [ P ] (s,Ys)
1 0,0 00,0 6
90(s,Y;) = [5(32200 — §0x0) + —g-ll - M;% + ;3211 —00,0| (s,Y5)
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2.4.2 A bivariate state variable example.

To illustrate the formulas above consider the model with CRRA of theorem 26

and suppose that the state variables are given by the pair (r,#) which satisfies!!

dry = Kk, (F — ry)dt + o] dW,, 7o given (2.20)

d; = ke(0 — 6,)dt + 0o07°dW,, 6, given (2.21)

where (., T, 0r, Vr, ke, 0, 79) are nonnegative constants, (o,, 0g) are constants (pos-
sibly negative) and (7;,7) € [0,1]. The Brownian motion W is unidimensional.
This model nests standard formulations as special cases. The class of interest
rate processes (2.20) is used in another context in Chan, Karolyi, Longstaff and
Sanders (1992). The class of models (2.21) for the MPR has not been explored in
the literature yet. We also assume that the stock volatility is stochastic and equal

to o(r¢,6:). This financial market is then described by two state variables (r, ).

The transition from the general model with state variables Y to the model
(2.20)-(2.21) with state variables (r, §) is immediate since the Malliavin derivative
D0, can now be computed directly from the process (2.21). In order to state the
result define the process

h (’)’fﬁaf-m)z_(l_’y)/v o147 2 _1_)—1027(i)2(1-'r) du
to\ )y Ry Uy iy t 1——7;1,'“ 5 z

for a quadruple of constants (7, k,0,%) and some process z. Taking account of

the specific structure (2.20)-(2.21) then leads to

Corollary 29 In the financial market (2.20)-(2.21) the optimal portfolio for CRRA
utility is given by (2.14)-(2.16) where

Dyr, = 1) 0y exp [Py (Vry Kry 0r, Ty 7))

'1This is equivalent to a model with two state variables Y = (¥;,Y) in which the equations

(re = r(t,Y1),6, = 6 (t,Y3)) can be inverted and the state variables can be expressed as

Y: = (fi(re), f2(64)).
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Dtav = 03009 €Xp [ht,v (79, K¢, 09, p? 0)] :

L/ and

T T
for = exp [_ / rods — % / 162 + 0o(1 — 70)6° + 2?0;-70 (8 — 6,)]ds — $(67) + 6(6,)
t t [

with ¢(z) = 00(21_70)x2‘79. The stochastic integral in the MPR-hedge (2.16) can

also be written

T T
/ Db, [dAW, +8,ds] = b7 exp [u (10, Ko, 73, 5 6)] — b — / g2(s, Y, Dibyds
t t

with ga(s, Ys) = 5007e(1 — 71)67° ™" + 52 (1 — 79)86;% — (2 — 75)617%) .

When +;,7p = 0 (Ornstein-Uhlenbeck IR and MPR. processes) the formulas

above simplify even further.

Corollary 30 Suppose that u € CRRA. When the interest rate and the market
price of risk follow Ornstein- Uhlenbeck processes (v, s = 0) the optimal portfolio
is given by (2.14)-(2.16) where

alt,ry) = 5’— (1 — expl—r. (T — 1)) (2.22)
B, 67" (] ereoowa)]

b(t,0:) = 04 E, [ :;1/3]

(2.23)

The analytical expression for the IR-hedge in (2.22) clarifies the influence of the
parameters of the interest rate process and the time horizon. Given the expressions
provided in corollary 29 the MPR-hedge in (2.23) also has an analytical expression,

albeit more complicated than the interest rate expression.
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2.5 Numerical implementation

It follows from the results in the prior sections that the problem of finding the
optimal portfolio for power utility function reduces to the identification of the
functions @ and b. When closed form expressions for a, b are not available, one must
resort to a numerical scheme to estimate their values. As explained before Monte-
Carlo simulation is naturally suggested by the structure of the problem and this is
the approach that we adopt. In our context the simulation procedure involves two
sources of error. First, since the joint law of the SPD and the Malliavin derivatives
involved in the IR- and MPR- hedge terms are generally unknown we have to use
a discretization scheme to approximate these random variables. It is well-known
that such a discretization procedure produces a bias. Second, since we do not
know how to calculate analytically the conditional expectation we rely on a law of
large numbers to evaluate the expectation using independent replications of the
random variables which enter in the hedging terms. This Monte-Carlo estimation

of the conditional expectation also introduces an error.

In the discussion which follows we shall restrict attention to the model with
CRRA utility. In this context, we estimate the functions a and b with M replica-

tions and N discretization points for the investment horizon by

ZzAil( QIY’_it(YN(y)))l—l/RH;,z,i(YN(y))
211\11( g.’.zt(YN(y)))l—l/R

, MY N (@) YRERN (YN (y))
BYM(T —t,y) = S (eNE (PN (2))U/R

1=

aN,M(T - ta y) =

(2.24)

(2.25)

where Hy" (YN (y)) and HE™ (Y ¥ (y)) are estimators of ftT D;ryds and ftT D,6,[dW,+

0sds) respectively. In these expressions we have emphasized that these quantities

are functionals of the approximated state variables starting at Yj¥ = y.

Since the state variables, the SPD and the Malliavin derivatives of the state

variables are all given as solutions of SDEs, the simplest approach for estimation
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is to use the Euler scheme. It has been shown by Kurtz and Protter (1991)
that the order of convergence for this scheme is 1/v/N'? due to the discretization
error in the martingale parts of the SDEs. In Detemple, Garcia and Rindisbacher
(DGR) (2000) we show that our variance-stabilizing transformation eliminates
discretization errors in the martingale part of the SDE of the transformed state
variables and therefore attains a rate of convergence of order 1/N, which is the
same convergence rate as for the Euler scheme of an ODE (see Appendix D).!3
In order to illustrate this difference in performance between the two schemes we
estimate the respective absolute computational errors in the Malliavin derivative
of the IR for different discretizations N of the time interval [0,7]. We estimate

errors by the strong criterion
1 M
ANM _ pM | 3N _ E N, i
€ =F |D0 TT'—DOTTI —M \DO TT"'D()TT
i=1

where Dyrr denotes the true value of the derivative and D} rr its approximation
based on N discretization points using M independent replications. We also com-
pute the respective errors with and without transformation for the state variable
rp. Since the computation of this statistic requires the true distribution of the
Malliavin derivative we assume that the IR follows the MRSR process ((2.20) with
Y, = 1) with parameters T = 1, k, = .004,7 = .06, o, = .0309839, r, = .06.14

12That is VN(YN —Y) = UY where convergence is in the weak sense and the error process
in non-trivial UY (# 0).
13That is N(G(ZN) - Y) = VY, where G(Z") is an estimator of the state variables Y and

ZN is obtained using the Euler scheme for the transformed state variables.
MSince o, = 2v/k,T the interest rate r is the square of an Ornstein-Uhlenbeck process Y; =

v/Tt. The true value can then be calculated by using the exact simulation of the transformed

state variables
Vira = Yie®® + B(0re**VAWiya — Wi) + V5221 2)

where Z is a Gaussian variate independent of W, a = —%, 8 = 0,/2,A = % and sy =

e *A(L — A)+ 2(A - 1)+ . This choice of coefficients ensures that ¥ has the correct
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To compute the expectation above we take 20 batches of 1,000 simulations each.
For each batch an absolute error is estimated. Estimated absolute errors are then
averaged over the batches. Table 1 below reports the results. Columns 2 and 4
show that the speed of convergence of the Euler scheme is roughly of order 1/ Vv'N.
Columns 3 and 5 illustrate the increase in the speed of convergence to 1/N when

the scheme with transformation is used.

[Insert Table 1 here].

However, to compute hedging terms, we evaluate expectations of functionals
of the state variables. In DGR (2000), we show that the increased speed of
convergence obtained with the transformation for the numerical solution of SDEs
of state variables fails to increase the speed of convergence of expectations of
functionals of the state variables. This extends a result of Talay and Tubaro
(1991). They have shown that, for the Euler scheme, E[f(Y}) — f(Yr)] is of order
% for functions f and diffusion coefficients u and o satisfying certain boundedness
assumptions. Even though our problem is more complicated since we are not
evaluating a function of a terminal point of a numerical solution to a SDE but a
functional which depends on the whole trajectory of the solution, the same result
holds. Nevertheless, as we will discuss next, the transformation may still be useful

as it may reduce the asymptotic second order bias.

Denoting estimators without our transformation (by direct application of the
Euler scheme) by ~ and estimators with the transformation by *, we obtain under

certain integrability conditions (see DGR (2000) for details) for the a(-) function

VM@ M(T - t,y) ~ a(T - t,y)) = eK2®) 4 MW (2.26)

variance and covariance with the increment of the Brownian motion Wy a — W;.



99

VM@E™™(T - t,y) - a(T - t,3)) = eks) + M2Y) (2.27)

where € = %VM is fixed for all M, N. Corresponding limit laws are also obtained for
the b(-) function. The vector processes K°®) and Ko) (resp. K*® and K2¥)) are
deterministic whereas M°® (resp. M®®) is a Gaussian martingale. As indicated

both types of processes depend on the initial position of the state variables, y.

In these expressions, the deterministic processes K correspond to the dis-
cretization error resulting from the approximation scheme and therefore depend
on the approximation method used. Ideally, they should be zero. Using our
transformation this is indeed the case if the underlying state variables are given
by an invertible, twice continuously differentiable function of lognormal processes.
It happens in this case that the approximation using the transformation is also
exact for the part of the SDE involving Riemann integrals. But in general K-
will be different from zero. Therefore, although the estimators are consistent, a
smaller K" reduces the second order bias. If in the construction of confidence
intervals we do not correct for this second order bias the size distortion!® will
be smaller with the transformation whenever K* < K. Consequently, a reduced
second order bias will also improve the validity of statistical tests based on the
law of M" only. Furthermore, a small second order bias is potentially important
for a good performance of the estimators given a finite number of replications and

discretization points.

The processes M are for both approximation methods the same. They result
from the Monte Carlo estimation of the conditional expectation and would not
vanish even if we could sample from the true joint law of H* and the SPD ¢.

The expressions for both processes K and M are obtained in explicit form and

13Size distortion refers to the fact that the actual coverage probability is different from the

prescribed level.
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described in detail in DGR (2000) and can therefore be used to implement error

corrections and variance reductions.

All the results discussed above are conditional on the knowledge of the state
variables at a given moment in time. If we are only interested at point estimators
of the optimal composition of our portfolio given a certain state the estimators of
a and b are all we have to calculate. But for other purposes, such as risk man-
agement, we may well be interested in testing a given portfolio strategy against a
specific benchmark. Since this type of exercise requires the probabilistic structure
of the optimal portfolio strategy, we need the distribution of conditional estima-
tors of the mean-variance component, the IR-hedge and the MPR-hedge. Since
we cannot sample from the true law of the state variables it follows that we have
to rely on an approximation of their dynamic evolution described by the SDE. As
we show in DGR (2000) the conditional estimators converge weakly with order *
with transformation and order 7% without. The limit laws of these conditional
estimators are non-Gaussian !¢ but known and therefore can be used to construct

asymptotically valid confidence intervals or statistical tests.

2.6 Calibration of the model

In order to examine the economic properties of optimal portfolios we need to
specify and calibrate our model of the financial market. We will focus on the
class of bivariate processes for (r,8) described in the section above. Specifically

we estimate the following IR-MPR model

dry = K (T — r)dt — o,rtl/det, To given (2.28)

df; = k(0 — 6;)dt + opdW,, 6y given (2.29)

16The reader is referred to DGR (2000) for the exact expressions.
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where (k,,T, 0y, Vr, K6, 0, 09, 79) are constants.

We assume that the approximate discrete-time process is the true time-series
model.’” The econometric procedure described in this section is based on the

maximization of the loglikelihood of the following discrete-time model:

rﬁfil = rgf) + Kr(Fp — rff)) + Oy pt/ rff)s, To given (2.30)

0., =064, +Kg(0—6,,) +0gv, O given. (2.31)

where 7, = 7h and 0, = o,vh and {t, : n =0, ..., N} is a partition of [0,T). In

our estimations, we consider a monthly frequency with h = %

Since the MPR, 6, = 0; ! (p; — r¢), is unobservable it must be filtered from the
data. We take two approaches.'® First we assume that the stock volatility o is
constant. In other words, we estimate the MPR from the conditional mean p,
of the stock return series (taken as the SP500 index), assuming a simple AR(1)

process for the conditional mean. The estimation period is January 1965-June

1996.

In the continuous-time model the same Brownian motion applies to r and 8, but
with a perfect negative correlation. We therefore produce two sets of estimates,

one with the correlation coefficient between £;,; and v, left unconstrained, an-

"Estimating the parameters of a continuous-time diffusion model based on a discrete-time
approximation of the likelihood function leads to a discretization bias (Lo (1988)). However,
for the monthly estimation of interest rate processes, Broze, Scaillet and Zakoian (1995) use an
indirect estimation to correct for the bias and find that the bias is small for the mean-reversion
Kr, the mean 7 and the variance o,. We therefore follow the simpler approach to calibrate the

parameters. We also investigate the sensitivity of the results to changes in the parameters.
18This filtering approach is in the spirit of Nelson and Foster (1994), although we do not claim

any optimality property for the GARCH(1,1) process we use.
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other one with a negative correlation of —0.9.1° The results are presented in Tables
2 and 3 respectively. The estimates obtained for the parameters of the interest rate
CIR process are comparable to the values obtained by Broze, Scaillet and Zakoian
(1995) and Chan et al. (1992). The process slowly reverts to an annualized mean
of about 6% with a yearly volatility of about 1.76% for the unconstrained model
and around 3.6% for the constrained estimate. The estimation results for the
MPR Orstein-Uhlenbeck process show that the market price of risk reverts rather
quickly to its mean. The mean is abbut 8%, which is low compared with the
standard estimates of the market price of risk. The MPR volatility is about ten
times the volatility of the interest rate process in both the unconstrained and
constrained estimations; almost perfect negative correlation between the interest
rate and the MPR forces upwards the volatilities of the two processes by a factor
of two. Given the low value of the MPR, we also investigate a specification where
the interest rate enters in the drift of the market price of risk, since excess returns

are known to be predictable by the interest rate. Equation (2.32) replaces (2.31)

0r,,, = 0r, +Ko(0—0,,) + th(f) +ogv, O given. (2.32)

The estimation results, reported in Table 4, are quite similar to the previous
specification, except for the mean level of the MPR, which is more in line with
the usual estimate of 0.3. The expected negative coefficient of the interest rate &
comes out quite significantly different from zero. As we will see, this specification
will only change the absolute magnitude of the stock position and the hedging

terms, but not the relative importance of the later with respect to the former.

To assess the robustness of the results obtained with a constant o,we use a

GARCH (1,1) model for the stock returns to construct the series for the market

1%Since at a correlation of -1, the variance-covariance matrix would be singular, we chose the

closest approximation that did not create numerical problems.
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price of risk ;. We keep as before an AR(1) specification for the conditional
mean of the stock returns. The results are reported in Tables 5 and 6, where
as before we estimate two versions of the model, with correlation coefficient p,s
left unconstrained (Table 5) and constrained to a value of —0.9 (Table 6). The
most notable differences are a moderate increase (decrease) in the interest rate
(MPR) speed of mean-reversion by about 10%, an increase in the long run mean
of the MPR by about 5% and a decrease in the MPR volatility by about 7%.
The estimates obtained for the other parameters are roughly the same as before.
Overall these differences should not exert much influence on the magnitude of the
hedging terms and will not be considered in our numerical computation of optimal

portfolios.

2.7 Economic properties of optimal portfolios

We now implement our numerical procedure for the model with (i) constant rela-
tive risk aversion, (ii) a single risky stock with constant volatility, (iii) an MRSR
(mean reverting - square root) process for the interest rate and (iv) a MRG (mean-
reverting Gaussian) process or a MRGID (mean-reverting with interest rate de-
pendence in the drift) process for the MPR. The uncertainty is thus captured by
a bivariate system of state variables (r,0). For this specification of preferences

and uncertainty we recall that the stock demand is

. ~ 1 _ s (1 _ 5 (1 -
Ty = XtEO' lgt + Xt <§ - 1) g 1(l(t, Tt) + Xt (E - 1) g lb(t, 0t) (233)
) Et[ 1-1/R ft Dt?‘sds] (234
a\t,r) = s .34
Et[ 1- l/R]
E. &7 [T D,dwe
b(t,6,) := [ : ] (2.35)

Et[ 1- 1/3]



104

where Dyr,, D,0, and &, r are provided in corollary 29. For the MRGID model see
Appendix C.

Parameter values are set at their estimated values reported in Tables 3 and 4
and at values equal or close to the means for ry and 6p; the volatility of the stock
is set at its historical average 0.2. Specifically, in the first model (Table 3), we
take k, = .0824, T = .0050 x 12, v, = .5, 0, = .01050 x /12 (recall that there
is a minus sign in front of o, in (2.28)), ro = .0050 x 12, 0 = .20, kg = .6950,
0=.0871,v =0, 0p = .21, By = .10. In the second model, we take the following
values: &, = .0005, 7 = .0050 x 12, v, = .5, g, = .01050 x /12, rg = .0050 x 12,
o= .20, kg = .T771, 0 = 2675, v = 0, 05 = .205,8 = —-26.29/12, 6, = .30.
Simulations are carried out using daily increments and 5,000 paths with variance
reduction by antithetic variables method (M = 5,000, h = 1/365). Since the
results are very similar, except for the difference in the absolute magnitude of the
hedging terms as mentioned earlier, we only report in Table 7 summary results
for the first model and provide a full-fledged analysis with graphs for the second

model.?°

2.7.1 Optimal portfolios and hedging components.

Figures 1-3 illustrate the behavior of the optimal portfolio and the hedging com-
ponents relative to the risk aversion coefficient and the investment horizon. Risk
aversion varies from .5 to 5; the investment horizon from 1 year to 5 years. As
expected the fraction of wealth invested in the stock decreases as risk aversion
increases and increases as the horizon increases. The hedges, however, display

strikingly different behavior. The MPR-hedge displays mildly humped decreasing-

200f course the expressions for the Malliavin derivatives with respect to the interest rate and
the MPR as well as the state price density change compared to our previous expressions in

section 5. The new expressions are given in Appendix C.
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increasing behavior relative to risk aversion and appears to decrease relative to
horizon. The IR-hedge increases relative to both variables. As noted before the
signs of the hedges change depending on whether risk aversion exceeds or falls
short of 1. This illustrates the standard knife-edge behavior of (myopic) logarith-
mic utility. For investors that are more risk averse than the Bernoulli investor
the negative values of the MPR-hedge stem from the positive correlation between
the stock return and the MPR. Such an investor tries to hedge the additional risk
away by reducing his/her stock demand. Similarly the IR-hedge tends to boost
stock demand since it covaries negatively with the stock return. Note also that the
combination of the two hedges is negative for short investment horizons (less than
4 years in the numerical example) and positive for longer holding periods. Thus,
hedging behavior reduces (increases) the stock investment for short run (long run)
horizons relative to a pure mean-variance investor. In fact, the increase in stock

holdings increases with longer investment horizons.

[Insert figures 1-3 here]

Figures 4-6 display the behavior relative to the levels of the IR and the MPR
ro,0p for risk aversion R = 2 and investment horizon T — t = 1. Again the
fraction invested in the stock varies considerably over the range of initial values
investigated, from over 90% of wealth to nearly 25%. The hedge components’
ranges are much narrower: while the IR-hedge varies between about 1.8% and

2.6%, the MPR-hedge lies between —1.8% and about —6%.

Second note that the fraction invested in the stock is an increasing function
of the MPR and is almost insensitive to the interest rate. As 6, increases the
IR-hedge stays flat (figure 5) while the MPR-hedge becomes more negative (fig-
ure 6). These effects, however, are of second order relative to the increase in the

mean-variance component of the stock demand. When ry increases the IR-hedge
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increases moderately and becomes more positive (see figure 6): it tends to in-
crease stock demand. The MPR-hedge also increases but even more moderately.
Combining these two effects produces a mildly increasing total stock demand. For
typical values of the MPR (between .20 and .40) the sum of the hedging terms is

negative and tends to reduce the overall demand for the stock.

[Insert figures 4-6 here].

2.7.2 Market timing strategies.

In order to assess the importance and stability over time of our hedging demand
estimates we perform two market timing experiments. The first consists in draw-
ing trajectories of the underlying state variable processes r,# and computing the
portfolio and hedging demands along these trajectories. The second experiment
simulates the optimal portfolio for very long horizons and using actual market

data.

Results for the first experiment are reported in figures 7-10. A typical trajec-
tory of the pair (r,6) is drawn in figures 7 and 8. The interest rate is seen to vary
between 3.9% and 5.4%; the MPR takes values between —.08 and .30. Figure 9
illustrates the stock demand behavior for an investor with risk aversion of 4 and
a fixed horizon of 5 years. For the trajectory drawn the proportion invested in
the stock evolves between —3% and 40%. Close inspection of the graph, however,
shows that changes superior to 30% in the portfolio share are usually spread over
periods of 6 month or more. There are also long stretches of time, of duration

larger than a year, over which the stock share varies within at 10% interval.

Figure 10 which shows the respective contributions of the IR-hedge, the MPR-
hedge and the sum of the two hedges sheds further light on this issue. First
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note that the IR-hedge is remarkably stable over time. It experiences very small
fluctuations and decreases slowly toward zero due to the maturity effect of the
fixed horizon. It also remains positive throughout the period. The MPR-hedge is
negative and exhibits stronger volatility, which is not surprising since it is sensitive
to the MPR level which is more volatile. Within intervals of a year though the
fluctuations rarely exceed 5%. Again a trend toward zero is observed due to
the fixed investment horizon. Both hedges work in opposite direction and partly
offset each other. The net hedging correction is of the order of 5% — 10% at the
beginning of the investment horizon, thus boosting the stock demand. It then
slowly converges toward zero taking negative values along the way, thus reducing
stock demand, in the last couple of years of the period. The net hedging correction
inherits the stability of its two components: its fluctuations rarely exceeds 5% over
periods of a year or longer. Over the whole 5 year period the hedging correction

varies between —3% and 10%.

Although not reported in the paper similar properties are recorded when the
analysis is performed for rolling horizons of 2 years and 5 years (though hedging
terms do not converge to zero in that case) and for risk aversions in the range

2-4.

We conclude from this (representative) experiment that hedging components
are remarkably stable over time in the sense that they exhibit low volatility. The
variation in the total stock demand which is observed in figure 9 stems primarily

from the variation of its mean variance component.

[Insert figures 7-10 here]

Our second experiment examines the actual behavior, based on market data,

of the portfolio over time for an investor with long horizon of about 30 years at



108

the beginning of the period. Hedging demands and portfolio positions are com-
puted using our model along the realized trajectory of the IR and the MPR in the
last 31.5 years (our estimation sample). Based on these data, we compute each
month of the sample the optimal share of the stock in the portfolio with and with-
out hedging for an investor with a relative risk aversion of 4 (computations are
performed using 25,000 replications and variance reduction, i. e. 50,000 replica-
tions). As figure 11 shows, intertemporal hedging will increase the optimal share
to a reasonable level of about 60% at the beginning of the investment horizon to
roughly 10% at the end, with an average holding of 44%. This is in sharp contrast
with the myopic mean-variance optimal share which varies substantially around
an average level of about 10%. Note also that the hedging investor will short the
stock by 15% only once during the investment period (during the 1987 crash) and
only because the triggering event happened shortly (10 years) before the end of
the investment horizon. The observed increase in stock holdings comes mainly
from the positive IR-hedge. From this realistic situation we then conclude that
intertemporal hedging has a fundamental impact when the investment horizon is

long. As in the previous experiment it tends to stabilize the overall stock demand.

[Insert figure 11 here]

2.8 Stochastic dividends (trivariate model)

Suppose now that the dividend-price ratio (DPR), denoted by p, is a relevant
stochastic factor which influences the evolution of the market price of risk. The
following trivariate process for (r, 6, p) generalizes the MRGID model by incorpo-

rating such an effect

dry = k. (F — r¢)dt — a,rtl/2th, To given (2.36)
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do; = [ke(0 — 6,) + 6,7, + Sppe)dt + ogdWs, 6o given (2.37)
dp: = Kp(D — py)dt — apptl/det, 7o given. (2.38)

In this specification the DPR follows a mean-reverting square root process and

has a linear effect on the drift of the MPR.

The model is estimated as previously: we maximize the loglikelihood of the
discretized model using for the MPR the filtered series based on an AR(1) spec-
ification and a constant stock volatility. For the sake of brevity, we just re-
port the estimated values of the parameters. These are s, = 0.06977, 7 =
0.005 x 12, ko = 0.9088, § = 0.1685, §, = —23.90/12, 0p = 17.63/12, k, =
0.0344, = 0.003 x 12, o, = 0.01227V12, 05 = 0.16127, o, = 0.004578+/12. It
should, however, be noted that these estimates, in particular those corresponding
to the impact of the IR and the DPR on the drift of the MPR, are statistically dif-
ferent from zero. Other parameters are also seen to be close to the values obtained

for the model with two state variables only.

Table 8 shows that optimal behavior changes when stochastic dividends are
accounted for. The most notable feature is the reversal in the sign of the MPR-
hedge. Inspection of the trivariate process reveals the root of this behavior. Recall
that the estimated model displays positive impact of the dividend-price ratio on
the drift of the MPR (6, = 17.63/12) and negative correlation between stock
returns and the dividend-price ratio (—aa,, = —0.2 x 0.004578\/ﬁ). Under these
conditions hedging MPR-risk will involve two components. The first results from
the positive association between stock returns and innovations in the MPR. This
hedge against direct MPR-risk is negative, as in the earlier models. The second is
the consequence of the indirect negative association between the drift of the MPR
and innovations in the dividend-price ratio. This hedge, against indirect MPR—

risk, is positive. Evidently, the two hedging motives work in opposite direction.
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As illustrated in the table (see also figure 12) the second effect dominates in the
context of our estimated model and results in a positive overall MPR-hedge when

risk aversion exceeds unity.

2.9 Stochastic volatility with imperfect correla-

tion (trivariate model)

Consider now the trivariate state variable model (r,#, o) described by

dry = Kk, (F — 1) dt — o, 2dW, (2.39)

.

dﬁt = [K)g(g - gt) + 5T't]dt + O'oqu (240)

dO’t = [K,a(ﬁ - O't) + O't{(slgetl{gzo} + (5290t1{g<0} }]dt + 0:/2[)\1qu + /\deQt]
(2.41)
where (1, 6y, 0¢) are given, the coefficients (k,, T, oy, kg, 8, 8, 04, Ky, T, 819, 026, A1, A2)

are all constant and W, W, are independent Brownian motion processes.

The model (2.39)-(2.41) contains several innovations relative to the prior MRSR-
MRGID model. The most important feature is that volatility is now stochastic.
Furthermore, the volatility process is imperfectly correlated with the interest rate
and the MPR processes. As a result our basic model is one with (apparently) in-
complete markets. The drift of the volatility process also permits an asymmetric
dependence on the MPR process, conditioned on positive or negative realizations
of the MPR. This structure seeks to capture the notion that volatility is high when
the magnitude (absolute value) of the MPR is large. As in the MRGID model the

MPR process also involves an interaction in the drift with the rate of interest.

Even though this trivariate model (2.39)-(2.41) is driven by two underlying

Brownian motions, and hence appears to have incomplete markets since there
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are only two assets, the portfolio formulas of the previous sections are still valid.
The intuition for this seemingly surprising result is that the state price density &
depends only on (r,6) which are independent of the risk W,. Since the investor’s
marginal utility is proportional to the state price density at the optimum it follows
that optimal terminal wealth is independent of W,. The portfolio that finances
optimal wealth, in turn, will be independent of this idiosyncratic volatility risk.

It follows that the individual valuation of the risk W is null at the optimum.

Assuming CRRA preferences gives the optimal stock demand

7y = X’%a{let + X, (jli - 1) o; ta(t, ey, 0;) + X, (% - 1) o7 'b(t, 1, 0,) (2.42)
Et[ - I/th Dt'r'st]
a(t,r, 6;) = , (2.43)
Et[ 1- 1/R]
E: (a7 [T Dbsaw ]
b(t, Tty 9t) = (244)

Et[ 1- 1/R]

where ;7 is defined in corollary 29 and where D;r,, Dif, are given in explicit
form in appendix C. The only notable impact of stochastic volatility is that it
implies a continuous rescaling of the stock demand as it changes over time: the

volatility-scaled portfolio demand o;#; is immune to volatility risk.

The economic properties of the optimal portfolio follow directly from the scal-
ing property. The fraction of each hedging demand relative to total stock demand
is insensitive to volatility fluctuations. Since the magnitude of each component
is simply rescaled as volatility changes the portfolio components exhibit more

volatility. This behavior is illustrated in figure 13.2!

21 Again for this extension of the basic two-state variable model, we maximize the loglikelihood

of the discretized model. The MPR series is now filtered with a GARCH(1,1) model with
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2.10 A multiasset-trivariate model: hedging with

two mutual funds

We now consider a financial market with three assets (2 risky and a riskless asset)
and a triplet of state variables. Our objectives are to provide a decomposition

of the optimal portfolio and to examine the effects of correlations on the hedging

terms.

The state variables (r, 6, ;) evolve according to

dry = k(T — ry)dt — o,r?dWy, 1o given (2.45)
— 1 .
dby; = (nl(ﬂl —01) + 51,7't) dt + Uf\/T_a (cdWy, + pgdWo;), 63 given (2.46)

d02t = (K/2(§2 -— agt) + 62,.7‘t) (padWlt + aszt) y 03 given (247)

1
| dt + ag \/—2_‘;
where oo = 1 + \/T——_pg and (nr,’f,orr,51,51,51,,0{’,ng,gg,égr,og,pg) are con-
stants. In this formulation of is the standard deviation of §;,i = 1,2, and ps
represents the correlation coefficient between 6, and 6,. The correlation be-
tween the interest rate and the market price of Wi-risk is negative and equals
Pro, = —\/ %(1 + \/1_-—53) The correlation with the market price of W,-risk,
which equals prg, = —pp/ \/ 21+ \/1~—p3), is negative (positive) when py is pos-

itive (negative). When MPRs are positively correlated (ps positive) an increase

in their correlation will increase p,9, and decrease prg,.

an AR(1) conditional mean as described in section 6. The estimates of the parameters in
(r,6) are found to be stable relative to those obtained in the earlier bivariate model. For the
volatility process we find evidence of different effects for the positive and negative values of
the MPR. This confirms the asymmetry reported in the literature. Estimated parameters are
&y = 0.004575, 7 = 0.007 x 12, kg = 0.7772, 8 = 0.2689, § = —26.3514/12, K, = 0.0445, & =
0.0594+/12, &3¢ = —0.2159/12, 839 = 0.1254/12, o, = 0.01045v/12, o4 = 0.185, A; = 0.00081,
and A, = v0.012522 + 0.001742. The numerical simulation is based on these estimates.
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The riskless asset pays interest at the rate r in (2.45). The price S; of asset 3,

i = 1,2, satisfies
dS;; + 64 S;dt = Sy [Uitdt + 0; <pidW1t +4/1— p%det)] (2.48)

where the dividend rate d; and the drift u; are stochastic. The volatility matrix of
asset returns is constant and assumed to be invertible (i.e. A = 0y03(p1+/1 — p2—
p2v/1— p3) # 0). Asset prices induce the (bivariate) MPR process (61, 6,) whose
evolution is described in (2.46)-(2.47). The first risky asset can be interpreted
as the market portfolio of risky stocks (SP500); the second is a portfolid of as-

sets (mutual fund) whose correlation with the market portfolio is p = p;p; +

V1 —p3\/1— p2. The correlation coefficients between the portfolio returns and

the interest rate are respectively —p; and —p,.

In this setting with two assets the optimal portfolio is given by??

Z2The structure of the optimal portfolio remains the same if the volatility coefficients oy, 02
are stochastic. As in the prior section structure is preserved even when volatility risk can only

be partially hedged with traded assets.
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F1e/ Xy _ 024/ 1 — P61, — 02p202
Trar) X —014/1 = piby + 010102
1 1| oov/1=p5 |_
+(E - I)K a(t, Tty Gt)
i =014/ 1-—- p%
1 1 | 024/1 - p3a— peoap; ! 1 Fdir
Hg - V3 Tah 1 (e 6)
| —o1V 1 — pla+ pgorpy
1 1 ZPAY, 1- Pg Tind
+(—- -— 1)— (51rb (t rt,Ot)
R A V) 1
| —ov1-nm
1 1 | peoay/1— pi — aosps o 1 —dir
+(§ - I)Z 09 \/—bz (t,74,04)
| —peo1y/1 = pi + o 20
1 1 o2y/1— ,0% —ind
+(“' - 1)— (52,—()2 (t 'rt,Ot) (249)
R A ] ) /1 — p%
where

1-1/R

Fdir tT T —Ki(s—t) Q :
bi (t, Ttygt) = Et _W/ e dVVw y 1= 1, 2
e "]

1 l/R
5t 71, 6) = 1 = /R / /t e~ = IDyr, dvdW S|, i=1,2.
and Dyr, = —arrs exp(— ft Kp — 94}- %ds - %mr(s — t)) is nonpositive at all

times (taking o, > 0). The first line in (2.49) is the MV-demand, the second the
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IR-hedge, the third and fourth the MPR(6, )-hedge and the last two the MPR/(6,)-
hedge. The function a(t,r,6;) is the cross-moment between the cost of optimal
consumption {tl, }1/ B and the sensitivity of the cumulative interest rate to W;-risk
(i.e. ftT Dyreds). Since 6; and 6, depend on the interest rate (see (2.46)-(2.47)),
innovations in W; will have a direct effect on future values of the MPRs as well
as an indirect effect through the interest rate. The covariances Eﬂr(t,rt, 6;) and

i _
En (t, 7, 6;) capture, respectively, these two aspects.

Let us focus on the effects of correlation between the two funds. Assume that
all the coefficients are positive except for the correlation coefficients p;, p3, pg which
may take positive or negative values. As it turns out the sign of all the demand
components result from the spanning properties of the two traded assets and the
risk exposure of the present value of terminal (optimal) consumption (PVC). This

follows since the optimal portfolio is selected so as to finance this present value.

In particular, note that the MV components result from the desire to syn-
thesize the vector (6y,6;) which describes the risk exposure of the state price
density and captures the impact of the SPD on the PVC. When (6,,6,) is a
convex combination of the vectors generated by the two funds returns, namely
(p1, /1 — p?) and (p3, /1 — p2) then both demands are positive. This is the case

when py//1— p? > 6,/0, > pa/\/1 — p% > 0. Otherwise, one fund is held short
and the other long, and the MV demands are of opposite signs.

The IR-hedges in the two portfolio components reflect similar considerations.
Here it is the risk exposure of the PVC induced by the interest rate that is being

synthesized, i.e. the vector

- — E,rt,Gt.
G0, |0

Since this risk exposure is outside the convex cone generated by asset returns

demands will necessarily be of opposite sign. When risk aversion exceeds one
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interest rate risk has a positive impact on the PVC ((1/R — 1)a(t,r:,6;) > 0).
If A > 0 fund one exhibits more sensitivity to W;-risk and will be held long.
The second fund is used to neutralize the exposure to W,-risk induced by the
IR-hedge component of fund 1. Combining the IR-hedging demands of the two
funds produces a perfect hedge against the impact of IR-risk on the PVC. The
overall IR-hedge achieved is positive when risk aversion exceeds 1. This parallels

the results found in prior sections.

MPR-hedges display an interesting structure. Since MPRs respond directly to
exogenous shocks as well as indirectly through the interest dependence of their
drift these MPR-hedges have two components. The direct hedges correspond
to the terms with (of/ \/-Z-E)Efir(t, rt,0:); indirect hedges involve éirgjnd(t, Tty 04).
Considerations similar to those above govern the signs of these components. Let

us focus on the MPR(6;)-hedge. We have:

1. direct hedge: fluctuations in the PVC related to the direct impact of (W;, W5)

on @, are described by the vector

R Po 20

When A > 0, pp < 0 and (1/R — l)Ffir(t, Tt,0;) is positive this wealth
component is financed by a long (short) position in fund 1 (fund 2). Under
these conditions fund 1 is used to span Wj-risk. This, however, will result in
an overexposure to Wy-risk. Shorting fund 2 in suitable proportion creates

a perfect hedge. When one of the two funds provides a perfect hedge (i.e.
p1/v/1—p} = a/pg or a/ps = pa/+/1 — p2) holdings of the other fund are

null.

2. indirect hedge: fluctuations in the PVC induced through the interest rate
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dependence of 8; are described by

1 1 —ind
(E - 1) 61rb1 (t, Tt, 0t)
0

Properties of the fund positions which synthesize this risk parallel the prop-
erties of the IR-hedges.

We now provide a numerical illustration of the properties described above
as well as others. Consider the symmetric case (ki,8y,68:,,01) = (Ka, 02, 82y, 02)
and calibrate the model by using the parameter estimates reported in section 6:
kr = 0.06977, T = 0.005 x 12, k; = Ky = 0.9088, 8, = 0, = 0.1685, &y, = b5, =
-23.90/12, o, = 0.01227v/12, of = of = 0.16127. The common volatilities of the
two funds are 0, = 03 = 0.2 and the correlation of the market portfolio with the
interest rate is p; = 0.1. In order to simulate the portfolio components we set
initial values at ro = .06, 619 = 05 = .10. The graphs show results for correlations
between the MPRs from pg = —0.9 to +0.9 with increment 0.1. Given that p; =

0.1, the correlation p, of the second risky fund with the interest rate is chosen such

that the implied correlation between the risky assets, p = p1po++/1 — p31/1 — p2
varies between —.2 and +1. Values for p, vary from p, = —0.99 to +.01 in
increments of 0.01. Finally, risk aversion R = 4 and the investment period is

taken to be 5 years.

Figures 14 and 15 illustrate, respectively, the behaviors of the mean-variance
components and of the IR-hedges. In addition to the theoretical effects described
above it should be noted that the IR-hedges are nearly insensitive, and the MV
components completely insensitive, to the correlation between the MPRs. Both
components increase in magnitude as the returns correlation becomes more posi-
tive. Figure 16 shows that the hedge against #; embedded in the demand for fund
1 (fund 2) displays concavity (convexity) with respect to pp and is increasing (de-

creasing) with respect to p. Figures 17 and 18 reveal that concavity (convexity)
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reflects the structure of both the direct and indirect components. Furthermore
the indirect hedge changes sign when py is in a neighborhood of 1. This follows

from a sign reversal of the covariance Eind(t, r+,0;) when pg approaches +1.

The hedge against 6, displays surprising behavior (figure 19). Its direct com-
ponent, in the demand for fund 1, exhibits a convex-concave structure (horizontal
S-shape) relative to py for large values of p; a symmetric pattern characterizes
the direct component in the demand for fund 2 (figures 20-21). This S-shape is
a consequence of the behavior of the covariance E;ir(t, T, 0;) which is convex with
respect to pg and takes positive values in a neighborhood of pg = +1. For values of
ps close to —1 direct hedging entails duplicating the vector ‘52’" (t,7¢,6:)(pg, @) and
this is achieved by taking a long position in fund 1. As ps increases the covariance
l_)gir(t, Tt,0;) becomes negative which implies a short position in fund 1. As pp
increases further the vector Fzﬁr(t, 7¢,0:)(ps, @) enters the convex cone formed by
asset returns. Both funds are then held long. Eventually, as ps approaches 1 the

. Tdir . . . . .
covariance b, (t,¢,0;) becomes positive and a short position in fund 1 is required

to synthesize by (t, 7, 6;)(ps, ).

When combined the total MPR-hedging demand is concave (convex) for fund
1 (fund 2) reflecting the dominance of the hedge against 8; (figure 22). Finally
figures 23 and 24 show the behavior of the sum of all the hedging components
and the overall behavior of the portfolio. The overall hedging demand reflects the
reinforcing behaviors of the IR- and MPR-hedges. The overall portfolio structure
also exhibits the same pattern. In general hedging implies a significant departure

from mean-variance demand behavior.
[Insert figures 14-24 here.]

Numerical values for fund holdings and hedging demands are provided in Table

9 for selected values of the correlation coefficients. They illustrate some of the
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features discussed above.

[Insert table 9 here.]

2.11 Appendix

2.11.1 Appendix A: proofs

Proof of Theorem 34: It follows from Cox and Huang (1989) and Karatzas,
Lehoczky and Shreve (1987) that optimal final wealth must be given by Xr =
I(T, §&r) where I = [Gou]™! is the inverse marginal utility of consumption and §
satisfies E[¢r](T, 9€r)] = z. Since &,X; = E,[é7Xr] we have for J(t,y) := yI(t,y)
that

X, = I(t, 9&)Ey[Jy 1)

where

J(T’ géT)
'](t, gét) .

Using the chain rule of Malliavin calculus and the relation —8,I(t,y) =

Jt,T =
_1
=822u(y,I(t,y))
(which follows from the definition Gu(t, I(t,y)) = y) we obtain

DSXt 1 DsEt[Jt T]
- —— — DS + —_—
%, GRGIGEN YT L)

where R(t,z) = %ﬁﬁ is the relative risk aversion of the investor. Taking

the limit as s 1 ¢ on both sides of this equation and using lim,q DX, = fr;at,
limgyy D&y = —&:0; and the commutativity of the conditional expectation and
Malliavin derivative operator then leads to

E.[D,J, 7] ool
EJir] | P

7?;=Xt

! 6; -+
R(t, I(ta gft)) !
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But since
02 J(T, Y1) . . J(T, 9€r) 02 (t, §€:)
J Didip = ——"222D - - .
“ =TT ee) YT T T gE) I 66)
where Dyjér = —§&r (0, + H, 1) with

D&

T T T T T
Ht,T = / Dt‘f'sds + / dW;Dtes + / dsﬂ;'Dtﬂs = / DthdS + / (dWsQ)'DtHS
t t t t t

and since
%L(f,t’f)j‘)y - y%g)y) =1 Ty oY
the second term in the expression for the optimal portfolio can be written
S = s v -
= Ep | e e ()| <

—_ = 1 J(T’ géT) ~ ’ , R ,
= Et[JtT]Et [ 7. 96) a(T, I(T, 9€7)) (ot +Ht,T)] + af(t, I(t, §£))6,

( E[ Jir De’-E [—it’T—a /TDrds]
BT )RR [Jr] T ), 70

aT/ [dW, + 0,ds)'D,8 ]

)

B [Et[Jt 7]
where oy = a(t, I(t, §&)) (note that ap = o(T, I(T, §¢r)) = (T, Xr))

Finally using E [ 5, T] = %))ﬁ where ﬂl P = = By&;, we obtain

N Xt
T = =i

R(t, X;)

é R(t, X))

')B% R(T> XT)

At1_R(t,Xt)EQ 3= R(t,X) (R(T,Xr) -1 /T Dords
¢) | % R(T,Xr) \ R, X) -1 e

R(t, Xy)
_ % [ Xz > >\ T
1%, 1R X pa [ 57 R, X) (R(T,{fT) 1) / (dWsQ),Dtes] -
t

!
-1
t0¢

-1
0y

R(t, X3) i %f R(T,Xr) \ R(t,X;)—1
Now note that the chain rule of Malliavin calculus gives
D.0; = 0,0(s,Y,)D,Y,
{ Diry = 87 (s, Y,)DY,
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Furthermore (3.2) and Nualart (1995), section 2.2, p. 99-108, imply that D,Y, =
(D11Ys, ..., DatY,) solves d systems (one for each of the d Malliavin derivatives) of

d stochastic differential equation

8 8 d
Du¥y = Dudi+ [ D0, Yo+ Dy [ (Zo.‘;(v,n)dmv)
t t j=1

] s d
= G'_}l:(t, Y;) + / azll,y(’u, Yv)DktK}dU + / Dkt (Z U_);('U, Yv)dW]v)
t

t s

s 8 d
= 0},2(t,Y})+/ 62MY(U,Y,,)’Dth;dv+/ (Zaza?;(v,m)pkmdwjv>
t t

j=1

s s d
= ok(t,Y;) +/ az,uy(v,Y,,)Dth,,dv-l-/ (Z Bgag(v,Y,,)de,,) Dy:Y,
t t j=1

for k =1,...,d. The solutions of these systems of linear equations are as stated in
the theorem using the fact that the quadratic variation of the martingale part is
Ejzl 020% (v, Y,)(0;0% (v,Y,))'dv where oY, denotes the j® column of the matrix

o¥.m

Proof of Proposition 27: Following the arguments of Doss (1977) we consider
a function F': [0,T] x Ry ~ R, such that 8,F = L. Using 0, F = (6,1) = - &¢

and Ito’s lemma implies that
dF(t,Y;) = [g— - %620 + BlF] (t,Yi)dt + dW,.

so that F'(t,Y;) has the decomposition F(t,Y;) = N, + W, where

o 2

dN, = [“ Lo + 61F] (t,Y,)dt.

Since F" has an inverse G given by G(t, F(t,y)) = y we can write Y; = G(t, N;+W,)

and therefore

dNt = l:g e %320' + GIF] (t, G(t, Nt + Wt))dt
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with Ny = F(0,y). Then since from assumptions (i) and (ii) G is continuously
differentiable and by theorem 2.2.1 of Nualart (1995) which needs assumption (iii)
the process is in the domain of the Malliavin derivative operator N € D' we have

for ¢t < s that
DY, = 8,G(s, Ny + W) Ze,
where
iz, = &, [g - %aza + alp] (5,G(5, Ny + W) (3G (5, N, + Wy)) Zeds

with Z;; = 1. Solving this linear SDE for Z;, and using the relations for deriva-

tives of F' and its inverse G produces the result stated. B.

Proof of Proposition 28: Since dY; = u(¢,Y;)dt + o(t, Y;)dW; we have

/HSYdW— /[,u]sYds+/[]sY

Then for ¢ such that 8,10 = 6 we have that

t t
Bt Y:) ~ 9(0,Y) = /0 01+ 3 00%|(s, Vi)ds + /0 (26 Yo)a.

But 851 = &2¢ — ga and therefore

/ (s, Y,)d / (2005, Vs + 4(6,¥) —v(0,%) - | 101+ 210160 — 80015, ¥

Using this expression for the stochastic integral in the expression of the SPD

provides (2.18).

To establish (2.19) use ftT D0,[dW; + 0,ds]) = Dy fot 0,(dW, + 36,ds]}, substi-
tute the expression for fot 6(s,Y,)dW, above on the right hand side, and compute

the Malliavin derivative of the expression in bracket. B

Proof of Corollary 30: Substituting 7,,7 = 0 in the expressions for the

Malliavin derivatives in Proposition 27 gives Dyr, = o, exp[—k,(v — t)] and
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D0, = ogexp[—ke(v — t)]. Since R is constant and D,r, is deterministic we
can then write

1-1/R

a(t, i, S¢) = E, E;[LT“—/R] (/tT or exp [k, (v — t)] dv) = /tT oy exp [—k,(v — t)] dv.

Substituting the expression for D, in b(¢, r¢, 8;) gives the formula in the lemma. B

Proof of equations (2.42)-(2.44): We conjecture that the individual price
of W-risk is null. The SPD is then given by the formula in theorem 26 where
(r,0) satisfy (2.39)-(2.40). Since (r,6) is independent of W,-risk, optimal wealth
Xr=1 (T,y¢r) is independent of W,. The Martingale representation theorem
and the Clark-Ocone formula imply the existence of a unique financing portfolio

which is given by (2.42)-(2.44). m

Proof of equation (2.49): Theorem 26 implies that the optimal portfolio is

given by
Ty = X't(a;)‘l lﬁt + (l = Da(t,rs,6:) + (l = Dby (t, e, 60;) + (}— — 1)by(t, 4, 6;)
R R R R
where
1-1/R
a(t,re,6;) = 1 1/R / D,r.ds

1-1/R

—E—'W/ Dtﬂde } 1= 1 2.
t

Straightforward computations give the Malliavin derivatives

bi(t, Tty Ot)' = Et

1

—our? L[S — 9Vl de _ 1. (o
(Der.) = Diirs _ OyT3 exp( NG T);ods — 5he(s t))

Doyrs 0
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(Dtels), — [ D116y, ] _ i O’fT';:e""l(s't) +L"’ e—nl(s—v)dlrpltrvdv 1

L/‘ i Dyt | i 9 2ae—n1(s—t) -
(Dt02s), — [ D102, ] _ [ gg%e—ﬂz(s—t) + fts e—nz(s—v)62rD1t'rvd’U T

| D105 1 i 0—?% -

which leads to
fl 1/R
Et t ’Dursds]

-1/R T
E, [51 1/3] 1 1-1
a(t,re,0;) = g l/R = I: E, —% / Dyyreds
E—{W] L th'l‘sdb‘] 0 Et [ | t
a o 1 :;1/1{ T (s—1) Q-
— , —rq (s~
bl (t’ Tt, at) - pe a]_ \/2—Et [ l—l/R] [ € ! dWls

1 1 l/R
+ 0 01, Ey 11/R // Tl U)Dltrvdvdwg

and a symmetric expression for b, (t, Tt Gt).

Defining the determinant of the volatility matrix A = 0,09 (p1 V1—p0%:—pp/1- p%)

we can write the mean-variance term as

11|: o2\/1 - p3 -0292] 01t]

1

50070 =

RA —oi\/T=2 o

Substituting the expression for a(t, s, 8;) gives the IR-hedg

1 Oor/1 — o2 1-1/R T
(= - 1)) - | V' "2 |g —-————]— / Dierods

T o

a(t, Tt)gt) =\ — 1) t
R R A -0 /1 _p% Et { 1- I/R
Finally, substituting b; (¢, ¢, 6;) provides the MPR(6; )-hedge

(S — 1)(0)) by (£, 70, 6)

R
1 2 1-1/R T
_ (l _ 1)_:_1— (op) 1 P& — Pe02pP2 a'f 1 E T / e_K’l(s—t)dWS
R A —01V1 = pPa+ porp V2a Et[ - I/R] ¢

1 o /1 ) 1 l/R

+(l ~1)=| & 61, E; e~ =)Dy r, dud WS

R A 1 l/R 1s
—01y/1-p?
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A symmetric expression holds for the MPR(6,)-hedge. B

2.11.2 Appendix B: A representation of Malliavin deriva-
tives of multivariate diffusion processes
Consider a d-dimensional process Y which satisfies the system of SDEs
dY; = p(t,Yi)dt + o(t,V,)dWy; Yo = y

where W is a d-dimensional Brownian motion process. For any d x 1 vector of
functions f(t,Y’) let O f represent the d x 1 vector of first derivatives relative to
time and 8, f the d x n matrix whose rows are composed of the gradients relative to
Y of the elements of f. The Malliavin derivative of Y has the following alternative

representation.

Proposition 31 If the following conditions hold

(i) differentiability of drift: u € C1([0,T] x R%)

(i) differentiability of volatility: o € C%([0,T] x R?)

(iti) growth condition: p(t,0) and o(t,0) are bounded for all t € [0, T
(iv) invertibility condition: det(a(t,y)) # 0 for allt € [0,T] and y € R?

(v) volatility condition: the Lie algebra of the vector fields generated by the
columns of o, L{o1,...,0a} is Abelian, i.e. (8y0;)0; = (Op05)0; for all
i,j = 1,...,d where 0,0; is the d x d Jacobian matriz with respect to y of

the d x 1 vector function o;.

then we have for t < s that

DY, = 0(3, Ys)Zt,s
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where the d x d process Z, ; satisfies
dZ, = [82 [(a)'lu + %H] + 31(0)‘1] (s,Yy)o(s,Ys) 2, sds (2.50)
subject to the‘ boundary condition Z,y = I (d X d-identity matriz) where
H=(IQ1)(Ko(1®d0o)1 (2.51)
with K for the Jacobian matriz of 0~ given by
K = =310 @) 0,(0") + [(020') (o' ©0)1L.). (252

The operators ® and © represent, respectively, the Kronecker and Hadamard prod-
ucts,”® whereas the stack operator [),, operates on a dxd? matriz B = [By, ... , By

where B; are d-dimensional square matrices as follows: [B], = [(B,), ..., (By)'").

Assumption (v) in this proposition guarantees that there exists ¥ such that
0oF = 071, Since by (iv) F has an inverse G, say, condition (v) could equivalently
be written as 9;Gi(t, 2z) = 0, ;(t, G(t, z)). The assumption is automatically satis-
fied if the state variables do not interact with each other, i.e. if o;(t, Y;) = o, (¢, Y{)

for j =1,...,d. The one dimensional case treated earlier falls in this category.

Proof of Proposition 31: The proof parallels the one dimensional case. As-
sumption (v) ensures the existence of a d x 1 vector of functions F : [0, T] x R¢ —
R? such that 8,F = =1, Using 85, F = 8,0~ we get by the identification theorem
for Hessian matrices of vector functions (theorem 6.7. of Magnus and Neudecker

(1988)) that

0uF(t,y) = 310 ©0)0(0) +[(B0) (7 @) Nlty)  (259)

*3The Kronecker product of a vector Y and a matrix A = [a;;] is X ® A = [Yay;]. The
Hadamard product of two matrices A and B is A ® B = [a; jb; 4], i.e. the matrix composed of

the direct products of the corresponding elements in the two matrices.
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where the stack operator [-], acts in the following manner: for a d x d? matrix
B = [By,...,Bg] where B; are d-dimensional square matrices we have [B], =
[(B1)',...,(Bq)"). The use of the stack operator is necessary to guarantee that

the components 052 F;(t,y) which arise in blocks in 852 F(t,y) remain symmetric.

Using Ito’s lemma applied to each element of F' we get
dF;(t,Y;) = [0\ F; + 0 F;u + %trace(aggFio’a)](t, Y:)dt + (0. F;0](t, Y;)dW,

fori=1,...,d. Stacking these SDEs for i = 1,...,d one below the other gives for
F(t,Y),

dF(t,Y) = |o~ u+ %H + alF] (t, Yy)dt + dW,

where H' = [trace(0yF10'0),... ,trace(8,pFy0'0)]. To obtain the expression
(2.51) for H note that trace(AB') = 1'(A®B)1 where © is the Hadamard product,

ie. A® B = [[a; b;;]]. Now we can write the matrix H as follows
H = [1'((0F)) ®0d'0)1,... ,1'((622F;) ©0'0)1)
which is equivalent to
H = [(I®1)[((0:2F1) ®d'0),...,((82Fy) ® d'0)]'1.
But since O F = (02 F1)', ... , (0 F,)") we get
[((0F) ©d'0),...,((02Fs) ©®d'0)) = (02F © (1® d'0))

and therefore H = (1®1')(05,2F ©®(1®0'0))1 where 820 F (¢, y) is as given in (2.53).
Thus, H is obtained by multiplying the Hessian of each element of F element by
element with the matrix o'c then summing over all elements and arranging the
result in a column vector whose first element is obtained by performing the same

operation for Fj, the second for F, and so on until F,;. This establishes (2.51).
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Thus, using these expressions we see that F(t,Y;) = N; + W, where

dN, = [a'lu + %H + alF] (t, Y;)dt.

Since the determinant of the Jacobian d,F differs from 0 (assumption (iv)) the
vector F(t,y) has a unique inverse G defined by G(t, F(t,y)) = y. We can then
write Y; = G(t, N, + W) and therefore

dN; = [0'_1/—" + %H + alF] (t)G(t’ N+ Wt))dt

with No = F(0,y). Then since from assumptions (i)-(ii) G is continuously differ-

b

entiable and by theorem 2.2.1 of Nualart (1995), which requires assumption (iii)
the process is in the domain of the Malliavin derivative operator N € D'2 we have

for t < s that
DY, = 0,G(s, Ny + W,) Z,
where
dZis =8 |07 u+ %H + O F| (5,G(s, N; + W;))(8.G (s, Ny + W;)) Z, 5ds

with Zyy = I;. Since 8,G(s, N, + W,)3.F(s,Y,) = I we have that 8,G(s, N, +
W) = o(s,Y;). Substituting in the equation above leads to the result in the

proposition. W

2.11.3 Appendix C: the MRGID model

We consider the following interest rate - market price of risk model with interaction

in the drift of the MPR

dry = K (F — 12)dt + 0,/T:dW;, 1 given (2.54)
d6;, = (ke(0 — 6;) + Ggr) dt + 0pdW;, 6, given (2.55)
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where (k,,7,0,, kg, 0,8, 04) are nonnegative constants. The transition from the
general model with state variables Y to the model (2.54)-(2.55) with state vari-
ables (7, §) is immediate since the Malliavin derivative D, can now be computed
directly from the process (2.55). Taking account of the specific structure (2.54)-
(2.55) then leads to

Proposition 32 In the financial market (2.54)-(2.55) the optimal portfolio is
given by (2.5) with

D;r, = \/T,0, exp —--1—/v K (1+rl) - lc72( —) ) du
v 2J, 7 r 47" r,

u

v
D.8, = gpe "0t 4 §, / e (=) D,r ds.
t

The SPD is then

st—exp[ / e+ G = 2062 - 200, — Zoras) - 56 o§>+§aot]

and the stochastic integral for the MPR-hedge becomes

T T
/ D0 [dW, + 0,ds) = / {[(1 + 2§ ) — 5-0 + i7'S]Dt0 + —9 Dtrs] ds + —OTDtHT —6,.
t t ; 9

2.11.4 Appendix D: asymptotic laws of state variables es-

timators

In this appendix we report theorems from Detemple, Garcia and Rindisbacher
(2000) providing the asymptotic laws of estimators of functionals of Brownian
motions. The proofs of these results are based on Kurtz and Protter (1991) and
Jacod and Protter (1998). Consider the SDE of the vector of state variables Y,
after the Doss transformation

d
dY, = m(Y,)dt + > dw} (2.56)
=1
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In this case the resulting speed of convergence is 1/v/N. These results illustrate
the increase in the speed of convergence achieved by using the Doss transforma-
tion. They also highlights the fact that the limit law is different and involves an
exponential of a bounded total variation process instead of a stochastic integral.
DGR (2000) provides similar theorems for the Malliavin derivatives and the func-
tionals that appear in the hedging terms a(t, ;) and b(t, Y;). The increased rate of
convergence is important when computing conditional estimators of the hedging

terms based on an approximation of the dynamic evolution of the state variables.



2.11.5 Appenix E: Tables

Table 1- Comparison of the speeds of convergence of the discretization

schemes when the IR follows a MRSR process.

N r Dr
Euler Euler-Transform Euler Euler-Transform

2 0.000115598 5.49255e-06 5.81463e-07 3.47457e-07
4 0.000111128 3.37985e-06 3.58341e-07 2.13681e-07
8 8.74541e-05 1.82631e-06 2.33208e-07 1.15422e-07
16  6.50156e-05 9.41716e-07 1.6312e-07  5.9616e-08
32  4.66084e-05 4.7979e-07 1.16983e-07 3.03396e-08
64  3.336e-05 2.40698e-07 8.29213e-08 1.52396e-08
128 2.3761e-05  1.20386e-07 5.97503e-08 7.63041e-09
256 1.68824e-05 5.83759¢-08 4.18739%-08 3.69586e-09
512 1.19618e-05 2.53747e-08 3.00371e-08 1.60477e-09

Table 2 - Unconstrained monthly estimates of the bivariate interest

rate-MPR process with constant stock volatility
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Parameters | ML estimates | Standard Errors
KrM 0.0265 0.0107
T 0.0053 0.0007
Kg 0.6528 0.0482
6 0.0846 0.0084
or 0.0049 0.0002
o/ 0.1052 0.0039
Pro -0.1651 0.0539
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Table 3 - Constrained (with p, set at -0.9) monthly estimates of the bivariate

interest rate-MPR process with constant stock volatility

Parameters | ML estimates | Standard Errors
KrM 0.0824 0.0116
T 0.0050 0.0005
Ko 0.6950 0.0507
6 0.0871 0.0161
Oy 0.0105 0.0004
o 0.2125 0.0080
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Table 4 - Constrained (with p, set at -0.9) monthly estimates of the bivariate

interest rate-MPR process with constant stock volatility with r;_; in the drift of

MPR
Parameters | ML estimates | Standard Errors
KrM 0.0005 0.0185
T 0.0051 0.0010
Kg 0.7771 0.0484
6 0.2675 0.0348
o 0.0105 0.0004
o/ 0.2050 0.0073
é -26.2469 4.9686

Table 5 - Unconstrained monthly estimates of the bivariate

interest rate-MPR process with a GARCH stock conditional variance

Parameters | ML estimates | Standard Errors
KrM 0.0290 0.0106
T 0.0053 0.0006
Ko 0.5975 0.0464
9 0.0882 0.0083
Or 0.0049 0.0002
Og 0.0979 0.0035
Pro -0.1863 0.052

Table 6 - Constrained (with p,s set at -0.9) monthly estimates of the

bivariate interest rate-MPR process with a GARCH



stock conditional variance

Parameters | ML estimates | Standard Errors
KrM 0.0947 0.0128
T 0.0050 0.0004
Ko 0.6826 0.0507
] 0.0900 0.0147
or 0.0104 0.0004
o/ 0.1928 0.0070
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Table 7 - Shares of the portfolio in the stock and Hedging Components for

Model 1.

Investment horizon | 1 2 3 4 5
Stock demand 2542612701292 30.5
MPR-hedge -1.71-3.0(-39]-35|-37
Interest rate hedge | 2.1 | 4.1 [ 59 | 7.6 | 9.2

Risk aversion 0.5 1 1.5 4 5
Stock demand 113.0 1 50.0 | 33.2 | 144 | 12.3
MPR-hedge 172 1 0.0 | -16}|-131|-1.24

Interest rate hedge | -4.3 | 0.0 | 1.4 | 3.2 | 3.4

Table 8 - Dividend-Price Ratio Model - Shares of the portfolio in the stock

and Hedging Components for Model 1 (¢ = 0.20).

Investment horizon 1 2 3 4 3
R Stock demand 30.18 | 39.92 | 46.88 | 52.45 | 57.27
MPR-hedge 13.90 | 20.13 | 23.82 | 26.35 | 28.33
Interest rate hedge | 3.78 | 7.29 | 10.56 | 13.60 | 16.43
Risk aversion 0.5 1 1.5 2 5
T =1 Stock demand 81.42 | 50.0 | 40.86 | 36.49 | 28.94

MPR-hedge -13.56 | 0.0 | 5.85 | 8.98 | 14.91

Interest rate hedge | -5.02 | 0.0 | 1.68 | 2.52 | 4.03




Table 9 - Multiasset model - Shares invested

in the two Funds and Hedging Components (case p» < 0).
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Returns Correlation: p = 0

Fund | p | MV-Comp. | IR-H MPR1-H | MPR2-H | H-Comp. | Holdings
1 [-0.9]13.68594 1.62469 | -0.46143 |-2.86238 | -1.69912 | 11.98682
2 -11.18734 | -16.18569 | -0.54965 | -2.24462 | -18.97997 | -30.16731
1 -0.6 | 13.68594 1.61552 | -1.85189 | 3.16808 | 2.93171 16.61764
2 -11.18734 | -16.09436 | -8.47951 | 1.43846 | -23.13540 | -34.32275
1 1-0.3]13.68594 1.61200 |-0.56593 | 6.75339 | 7.79946 | 21.48540
2 -11.18734 | -16.05926 | -12.29448 | 1.77988 | -26.57386 | -37.76121
1 0.0 | 13.68594 1.61197 | 1.28385 | 6.38567 | 9.28149 | 22.96742
2 -11.18734 | -16.05898 | -12.79016 | 0.67745 | -28.17169 | -39.35903
1 0.3 | 13.68594 1.61506 | 2.55858 | 4.96426 | 9.13790 | 22.82384
2 -11.18734 | -16.08978 | -10.21850 | -0.23006 | -26.53834 | -37.72568
1 0.6 | 13.68594 1.61690 | 3.73219 | 2.63805 | 7.98715 | 21.67309
2 -11.18734 | -16.10812 | -8.57007 | -0.57762 | -25.25582 | -36.44316
1 0.9 | 13.68594 1.62484 | 1.22769 |-3.01071 |-0.15819 | 13.52775
2 -11.18734 | -16.18717 | -1.46995 | 1.47530 | -16.18182 | -27.36916
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Returns Correlation: p = .5
Fund | pg | MV-Comp. | IR-H MPRI1-H | MPR2-H | H-Comp. | Holdings
1 |-0.9|20.14629 10.97144 | -0.14402 | -1.56618 | 9.26124 | 29.40754
2 -12.91800 | -18.68958 | -0.63468 | -2.59186 | -21.91612 | -34.83412
1 |-0.6|20.14629 10.90953 | 3.04477 | 2.33741 | 16.29171 | 36.43800
2 -12.91800 | -18.58412 | -9.79127 | 1.66099 | -26.71440 | -39.63239
1 |-0.3]20.14629 10.88574 | 6.53376 | 5.72556 | 23.14507 | 43.29136
2 -12.91800 | -18.54359 | -14.19641 | 2.05522 | -30.68478 | -43.60277
1 |0.0 |20.14629 10.88555 | 8.66978 | 5.99446 | 25.54979 | 45.69608
2 -12.91800 | -18.54326 | -14.76876 | 0.78225 | -32.52978 | -45.44777
1 |03 {20.14629 10.90643 | 8.45946 | 5.09711 | 24.46300 | 44.60929
2 -12.91800 | -18.57883 | -11.79928 | -0.26565 | -30.64375 | -43.56175
1 0.6 |20.14629 10.91886 | 8.68116 | 2.97161 | 22.57163 | 42.71792
2 -12.91800 | -18.60001 | -9.89584 | -0.66698 | -29.16283 | -42.08083
1 |09 |20.14629 10.97244 | 2.07654 | -3.86265 | 9.18633 | 29.33262
2 -12.91800 | -18.69129 | -1.69734 | 1.70352 | -18.68511 | -31.60311
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Returns Correlation: p = .9

Fund | ps | MV-Comp. | IR-H MPR1-H | MPR2-H | H-Comp. | Holdings
1 -0.9 | 36.78663 35.04645 | 0.67354 1.77253 | 37.49252 | 74.27915
2 -25.66581 | -37.13294 | -1.26099 | -5.14958 | -43.54350 | -69.20931
1 |-0.6|36.78663 34.84868 | 15.65741 | 0.19780 | 50.70389 | 87.49052
2 -25.66581 | -36.92339 | -19.45354 | 3.30010 | -53.07684 | -78.74264
1 |-0.3]36.78663 34.77270 | 24.82088 | 3.07813 | 62.67170 | 99.45833
2 -25.66581 | -36.84288 | -28.20578 | 4.08337 -60.96529 | -86.6311
1 0.0 | 36.78663 34.77207 | 27.69419 | 4.98680 | 67.45306 | 104.23969
2 -25.66581 | -36.84222 | -29.34296 | 1.55420 | -64.63098 | -90.2967
1 |03 |36.78663 34.83877 | 23.65871 | 5.43931 | 63.93679 | 100.7234
2 -25.66581 | -36.91289 | -23.44310 | -0.52779 | -60.88378 | -86.5495
1 |0.6 |36.78663 34.87849 | 21.42850 | 3.83078 | 60.13777 | 96.9244
2 -25.66581 | -36.95497 | -19.66131 | -1.32517 | -57.94146 | -83.6072
1 0.9 | 36.78663 35.04965 | 4.26297 | -6.05705 | 33.25558 | 70.0422
2 -25.66581 | -37.13633 | -3.37232 | 3.38461 | -37.12405 | -62.78985

2.11.6 Appendix F: Graphics




Figure 1: Share of portfolio invested in stock as a function of time and risk aversion.

R=2 Investment horizon | 1 2 3 4 5
. Stock demand 72.7 | 73.2 | 744 | 76.7 | 78.3
T=1 Risk aversion 0.5 1 3 4 5

o Stock demand | 339.1 | 150.0 | 48.9 | 37.3 | 30.5

Figure 2: Share of the MPR hedge as a function of time and risk aversion.

R=2 Investment horizon | 1 2 3 4 5
. MPR-hedge -451-63|-74]-731-8
T=1 Risk aversion | .05 1 3 4 5

- MPR-hedge | 43.5 | 00| -4.1]-3.5]-3.5
41
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Figure 3: Share of the interest rate hedge as a function of time and risk aversion.

R=9 Investment horizon | 1 | 2 | 3 | 4 5
. Interest rate hedge | 2.2 | 4.5 6.7 [ 9.0 | 11.3

T=1 Risk aversion 05| 1 3 141|5
- Interest rate hedge | -4.4 | 0.0 | 3.0 [ 3.4 | 3.6

Figure 4: Stock demand behavior relative to ro and 6. Interest rate varies between 0.04 and 0.08;
MPR between .05 and .40.

r=6% MPR 0.10 | 0.20 | 0.40
T27% 1 "Stock demand | 25.4 | 49.1 | 96.4
_ Interest rate (%) | 4 6 8
MPR=25 | I ock demand | 60.3 | 60.0 [ 615
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Figure 5: Interest rate hedge behavior relative to rg and 6;. Interest rate varies between 0.04 and
0.08; MPR between .05 and .40.

—6% MPR 0.10 | 0.20 { 0.40
~°’% | [ Interest rate hedge | 2.2 | 2.2 | 2.2
_ Interest rate(%) 4 [ 6 | 8

MPR=.25 Interest rate hedge | 1.8 | 2.2 | 2.6

LRI S R GRS N

o

Figure 6: MPR -hedge behavior relative to ro and 6. Interest rate varies between 0.04 and 0.11;
MPR between .10 and .45.

o | MPR__J010]020[040
~7 | [ MPR-hedge | -1.8 | -3.2 | -5.8

- %) | 4] 68
MPR=25 | "3PR -hedge | 4.0 | 35 [ 3.6

43
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Figure 7: Simulated Path for Interest Rate.
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Figure 8: Simulated Path for Market Price of Risk.
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Figure 9: Fixed 5-year Horizon - Share in Stocks - R = 4.
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Figure 10: Fixed 5-year Horizon - Hedging Shares (top to bottom): Interest Rate, Total, MPR-R
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Figure 11: Share of Stock in Portfolio with (top) and without (bottom) hedging - Fixed Horizon
of 31.5 years (our sample).
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Figure 12: Model with Stochastic Dividends - Share of Stock in Portfolio with (top) and without
(bottom) hedging - Fixed Horizon of 31.5 years (our sample).
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Figure 13: Model with Stochastic Volatility - Share of Stock in Portfolio with (top) and without
(bottom) hedging - Fixed Horizon of 31.5 years (our sample).
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Figure 14: Mean-Variance Component: Fund 1 (plain) and Fund 2 (dotted line)

, 47
C



147

Mean-Variance Component

Percent of Wealth

0.2
4-0-8 MPRs Correlation

0

Retums Correlation o

Figure 2.1: Mean-Variance Component: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 2.2: Interest Rate Hedge: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 2.3: Hedge against MPR1-Risk: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 2.4: Direct MPR Hedge against first MPR-Risk: Fund 1 (plain) and Fund
2 (dotted line)
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Figure 2.7: Direct MPR Hedge against second MPR-Risk: Fund 1 (plain) and
Fund 2 (dotted line)
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Figure 2.8: Indirect MPR Hedge against second MPR-Risk: Fund 1 (plain) and
Fund 2 (dotted line)
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Figure 2.9: MPR Hedge: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 2.10: Hedge Demand: Fund 1 (plain) and Fund 2 (dotted line)
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Chapter 3

Asymptotic Properties of

Optimal Portfolio Estimators

3.1 Optimal Portfolios

The motivation for our study stems from results on optimal portfolios. To set the

stage we review key results introducing the random processes to be estimated.

Consider a financial market in which uncertainty is captured by d Brownian
motions W},7 = 1,...,d. Two types of assets are traded: d risky stocks and 1
riskless asset. The stock prices S;,7 = 1,...,d, satisfy the stochastic differential

equations

dSit = S,'t[(/,l,,'(t, Y;) - 6,-(t, Y't))dt + Ui(t, }/t)th], 1= 1, ceey d (31)

dY, = p¥ (t,Y;)dt + oY (¢, Y;)dW, (3.2)

where Y is a d-dimensional vector of state variables describing the evolution of

the opportunity set. Here y; is the gross expected return, d; the dividend rate
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and o; the vector of volatility coefficients of security i. The riskless asset pays
an interest rate r; = r(t,Y;). We assume that the coefficients r(t,Y;), wi(t, Y:),
6(t, Y3), u¥ (¢t,Ys), respectively, 0¥ (t,Y;) are integrable (P — a.s.), that oi(t,Y})
is square-integrable (P — a.s.) and that all the coefficients satisfy Growth and
Lipschitz conditions for the existence of a weak solution to (3.1)-(3.2). Let o
denote the d x d-dimensional volatility matrix whose rows are o0;,7 = 1,...,d.
Assume that o is nonsingular almost everywhere and that the market price of risk

process
0 = 0(t,Y:) = o2, Yt)_l (u(t, Yy) — (¢, Vo)1),

where 1 is the unit vector, is continuously differentiable and satisfies the Novikov
condition F exp (% fOT 0;0tdt) < oo. Under this condition the risk neutral measure

is given by d@Q = nrdP where

t t
m=mpP/9ﬂ%—l/¢Wﬂ.
0 2 Jo

The state price density is & = B; 'n; where B; = exp] fot 7sds] is the date t-value of
a dollar investment in the riskless asset. Under @ the process WtQ =W;+ fot 0, dv

is a Brownian motion. Let &, = &,/ denote the relative state price density.

The portfolio choice problem of an investor consists in selecting a dynamic

portfolio policy so as to maximize the expected utility of terminal wealth

maxE[

s

T RX}‘R] s.t. (3.3)

dXt = TtXtdt + Xﬂl’;[(ut - Ttl)dt + O'tth], Xo =T

(3.4)
X;>0foralltel0,T).
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Here X; represents wealth at date ¢,  is initial wealth and =, the vector of pro-
portions invested in the risky assets at t. The nonnegativity constraint prevents
bankruptcy. In (3.3) we focus immediately on a specialized utility function with

constant relative risk aversion R > 0.

This portfolio choice problem was originally analyzed by Merton (1969, 1971)
using dynamic programming techniques. Karatzas, Lehoczky and Shreve (1987)
and Cox-Huang (1989)) have proposed a resolution procedure based on martin-
gale methods which applies to a larger class of (Ito) price processes. In this
context, Ocone and Karatzas (1991) have used the Clark-Ocone formula to write
the optimal portfolio in terms of abstract Malliavin derivatives of the coefficients
of the model. A specialization to diffusion processes, which identifies the Malli-
avin derivatives in explicit form, is found in Detemple, Garcia and Rindisbacher

(2000). For constant relative risk aversion they show that the optimal portfolio is

Theorem 34 Let p=1~1/R and suppose that E(£5) < oo and &5 € D'2. Then

7o = (08, Y5)) ! [_}Za(t’ Y, + (-Il—z - 1) a(t,Y:) + (%2— - 1) b(t,Yt)] (3.5)
where

a(t,Y,) = E, Et—gfg;—T]/tT Dyrsds (3.6)

b(t,Y;) = E, Eé[tpr”_T] /t T(de)’Dtes] : (3.7)

The Malliavin derivatives in (3.6)-(3.7) are Db, = 8,0(s,Y,)D,Y, and Dyr, =
0or (s, Y,) DY, where

D,Y, = 0¥ (t,Y;) exp (/ dL,,) , (3.8)
t
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with the k x k random variable dL, defined by*

d
= |BppY ( Z 820 (v,Y,)(8:0% (v, Y2))’ dv+262¢7y(v Y, )dW?

= ] =1

and oY, denotes the j*™ column of 0¥ and d2f(v,Y) = 8f(v,Y)/8Y.

Expression (3.5) shows that the optimal portfolio has 3 components: a mean-
variance term (6(2,Y;)), a hedging term against interest rate fluctuations (a(t, ¥;))
and a hedging term against market price of risk fluctuations (b(¢,Y;)). Since the
last two terms involve expectations of functionals of the Malliavin derivatives of

the state variables Y we need numerical methods that approximate such objects.

An alternative representation, in the spirit of Doss (1977), can be obtained by

performing a change of (state) variables,

Theorem 35 (Detemple, Garcia and Rindisbacher (2000)). Suppose that there
ezists functions G : XR? = R? and ® : R x R% — R? such that

(i) 0,,Gi(t, z) = 045(t, G(2)) fori,j ={1,...,d}
() 8,,9(t, 2) = 6;(t, G(2)) for j ={1,...,d},

and let F be the inverse of G, i.e. F(t,G(t,2)) = z.. The new state variables
Zy = Fi(t,Y), i = 1,...,d satisfy the SDEs

i
Ziy = F;(0,z) + / pi(s, Z,)ds + W} (3.9)
0
where fi; = m; o G with

i = [(o7

d
E ) + O, F; (3.10)

t\Dl’—‘

The exponential in (3.8) should be interpreted as the exponential of a matrix, i.e. (3.8) is
short hand notation for the solution of dD;Y, = (dL, + 3d[L],) D,Y; subject to the boundary

condition D;Y; = o¥ (t,Y;), where [L] is the quadratic variation process.
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and where [(0Y)71]; is the i*® row of the inverse of o¥. The optimal portfolio is

given by (8.5)-(8.7) with

D.Y, = o(s,Y;) exp [/ts[aguay ~ (0¥)10,0Y](s,Y3) (3.11)

Theorem 35 provides an alternative representation of the random variables
arising in the hedging components. This formula is obtained by passing to a new
system of state variables, Z, whose evolution has unit volatility. The advantage of
this transformation (hereafter called Doss transformation) is at the computational
level. Unit'volatility implies the existence of an exact Euler discretization scheme
which avoids biases associated with the martingale part of the SDE and improves

the speed of convergence in simulation exercises.

While the benefits of Doss transformations in terms of speed of convergence
for the solutions of SDEs is straightforward, little is known about convergence
properties of functionals of those solutions, such as those arising in the hedging
terms. The purpose of the next sections is to study these properties and to
establish the limit laws of these functionals and of the corresponding estimators

for the hedging terms.

The results presented are based on techniques developped recently by Jacod
and Protter (1998) and Kurtz and Protter (1999). Without loss of generality we
will restrict the analysis to the case of homogeneous dynamics of state variables
(3.2).

3.2 Embedding of the Problem

In this section we perform an expansion of the set of state variables in order to
write the random variables and functionals entering the functions a and b as the

solutions of systems of SDEs. To this end define the functions,
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Definition 1: For 2’ = [z1,... ,7] e Rx Rx R x R X R x R let

h(zs) = [r + 31161} (zs)

mi(ws) = [[(6¥) (WY ~ § L1800} ))(xs)
i=1,...,d

h(zs) = [0 + 1tr((06)a¥ ] (z3)

where [(0¥)~!]} is the ith row of the inverse of oY.

The k™ (k =1,...,d) element of the a and b entering the hedging terms can

be rewritten in the form

ak(t, }/t)’ = E §t T / Dk trsds

Et[ Hyper ]
Et ftT

E;[H: 7]

b(t,Y:)' = Ey ——gipl;— / @3y, =, [—-———Ha”“’t’T ]
E, [gt,T] t E; [H l,t,T]
Where Hl’t,T = JO,t,TJLt,T, H2,k,t,T = Hl,t,TJZ,k,t’T respectively H3,k,t,T = Hl,t,TJ3,k,t,T

with

Jogw = exp (—p [} h(Y;)ds)
Jigo = exp (- [l 1o0(Ys) dW, + %I]pﬁ(Ys)les])
Jokpo = [, Or(Ys)DyyYeds k=1,...d

J3lctv—ft Dthd8+pj; (dW '60( )Dkty k=1,...,d.

By Ito’s lemma the vector

v/ — 1 '
ch,t,T = [JO,t,m Jl,t,‘va },t ) (Dk,tyvt) ) J2,k,t,v, 'J3,k,t,'u]
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satisfies the integral equation

T d T
ch,t,T = Xk,t,t + / A(Xk,t,,)ds + Z/ Bj (Xk,t,s)dW,f ~ (3.12)
t

j=1"*

with coefficients A € C'(R?**) and B, € C'(R?+*) given by

[ —z1h(z3) ] [ 0 ]
—37%2(|08(z3)|I? —pz20;(zs)
Alz) = pY (z3) and  B(g) = 0’ (z3)
ouY (z3)z4 60};(:1:3)3:4
p0r(z3)z4 0
| —[0h — pOr](z3)z4 ] | 09;(z3)zs |

and initial condition Xy ,; = [1,1,Y/,0%(Y})’,0,0]

In a similar manner we can also rewrite the expressions of theorem 35 as

JosrJ
a(t,Y)) = E, s ok 182, Zr)
B, [Jour107(Z0 2r)]

Jortd .
be(t,Y:) = Ey DAL IT ¢(Zt, Zr)[Js ka1 — POk © G)(Z7)Dr 127 — 0(Y1)']
B [Josrir6(Z, Zr)]

where Jy 7, Jo 7 are defined above

jl,t,v = exp{p ftv[il o G|(Z,)ds}

js,k,t,v = - f:[(Z}; 0.1'80]' - ail’ay) ° G](Zs)

and

¢(Z1, Z,) = exp (—p(®(Z,) - ¥(Z)))).-
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By Ito’s lemma the vector
Xt 10 = [ogor Jits Zos (DitZe)'s Faeps 3k t0)
satisfies the system of SDEs’
A -~ ~ d ~
dXppo = AXigo)dv+ > BdW) (3.13)
j=1
with A € C1(R?**) and B given by
—pz1[h o G](z3) 0
p.’I?g[iZOG](x;g) 0
. i1(z . I
A = | 2 and  Bl)=| *
Op(z3)x4 0
[OraY o G)(x3)x4 0
| —[(355-1 6,065 — 0ho™) 0 G)(xs)zs | | 0 |

and initial condition X}, , = [1,1, F(Y,)', €},0,0].

In this second representation the Wiener process enters additively into the
system of SDEs. We can then approximate the martingale part of the diffusion
equations without error by drawing multivariate Gaussian random variables. As
we will show this increases the speed of convergence for the approximation of

functions of the random variables Xj .2

We have now expanded the space of state variat;les in such a way as to be able
to write the functionals of Malliavin derivatives arising in the optimal portfolio
policy as the terminal value of a system of SDEs. In principle any numerical
solution scheme for SDEs could be applied to approximate these random vari-

ables. In what follows we will analyze the simplest scheme available, namely the

2If we would approximate the increments of the Wiener process by a convergent approxima-
tion like a binomial approximation the speed of convergence would not be improved. For the
proof of increased speed of convergence it is therefore important to sample Gaussian random

variables
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Euler scheme. Our next two sections will establish that the Doss transformation

increases the speed of convergence from 1/v/N to 1/N.

3.3 Approximating Functionals of Brownian Mo-

tion

Well-known results have established that that the speed of convergence of the
Euler approximation of the solution of an SDE is of order 1/+/N. In this sec-
tion we (i) extend the result to functional solutions of SDE and (ii) establish
corresponding results for the Euler scheme combined with a Doss transformation
of the underlying state variables. As we will show the transformation increases
the speed of convergence to order 1/N. We also provide asymptotic laws for the

approximation errors.

3.3.1 Euler approximation without transformation

Consider a functional X}, satisfying the SDE (3.12). In this section we demon-

strate properties of its Euler approximation

N-1 .
5 > v T-t
Xlﬁ\,{t,T = Xggt+ Z A(th’t_*_nqv_tz) (T) (3.14)
n=0
N-1 d . . . '
+ Z B; (X:,,t,t+¢—l" It ) (W:+$—25—J"+‘NT"‘ - Ws]+4—l" It )
n=0 j=1

From Kurtz and Protter (1991) and Jacod and Protter (1998) we can deduce
the following result for the error distribution of the Euler approximation of the

2d + 4 x d matrix Xt,T = [Xl,t,Ty co aXd,t,T]-
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Theorem 36 The asymptotic law of the estimator of the random matriz Xt,T 18
\/N(Xt]:,T - Xt,T) = 0}{2’»
where the error for the k** column of )~(tT is
U=~ [ 853, 3108, BT B
h,j=1

where [BM ), je(k,... ay 18 a d® X 1 standard Brownian motion independent of W

and
. v 18
k0 = €XD ( /t [aA—Eg thsds+z / 8B;( ths)dWJ)

Special cases of Theorem 36 provide the asymptotic laws of the errors involved
in the estimation of the state variables Y, of their Malliavin derivatives DY, and
of the functionals H;,: = 1,2,3, and J;,i = 0,...,3, appearing in the hedging

components a and b. To state these results define the random variables

ﬁl,t,v = exp (—p/ h(Ys)ds) (3.15)
t
5 1 v d |
Qo t0 = €Xp (—5/ ||p0(Y;)||2ds - pZ/ Hj(Ys)dWs’) (3.16)
t =t

Q3,40 = exp ( /t v[@uy 5 Z 80 (00%)|(Y;)ds + Z / 8o ( dW’)
(3.17)
For the estimate of the state variable Y we obtain,
Corollary 37 The asymptotic law of the estimator of the state variables Y is
0" = VNEN -Y) = UY
where

0¥, = Qm/ QMSZ[BJ Jo¥|(Y:)dBM. (3.18)

h,j=1
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The law of the estimate of the Malliavin derivative of the state variable is,

Corollary 38 The asymptotic law of the estimator of the Malliavin derivatives
of the state variables DY is

U = VN(BYY. - DY) = U

where the k™ column

Uty = Qm/ 051 (T ® (DiY5))[0% Y (Vs ds+Zao LAWY, (3.19)
j=1

—Zaa )1y ® (DiYs))0%0.5(Y,) U, ds

fZ [(Ia & (DeaYa))(@%0%)o¥)(Ys) + [(86% )00 (Ya) D1 Ye]dB19).

h,j=1

Our last corollary describes properties of estimators of the functionals H;, J;.

Corollary 39 The asymptotic law of the estimator of the functional H;, J; are

- N - 5
UtI”I;' = \/N(HJ’\;T - Hi,t,T) = Utflffw fOT 1= 1, 2, 3

UtJ¥ = \/N(jﬁ,:r - JigT) = UtJ{p fori=0,1
Iik jN Frdi .
Ur = \/N(Ji,k,t,T = Jigtr) = Upp fori=2,3

where

Uk tT = JltvUtT‘*'Jow

H
U o= JltTJ2ktTUtT+JOtTJ2ktTUtT+J0tTJ1tTUtT
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UHS'c = JltTJ3ktTUtT + JOtTJsktTUtT+J0tTJ1,tTUtr}

(U:IT“" denotes the k" element of the vector ﬁtﬁ‘;’i =1,2) and

Ul =—Q“T/ 07} Jo,s0R(Y,) U, ds

T d
Uy = —pur / Qzt.opT10s{[20]) _ 0;00;)(Y:)ds
j=1
+Zaa )WY,

Z[e Oy — (89,)0%)(Y,)dBM}

h,j=1

G5t = [ (Dur ()0 + 0r ()T

Qt

/ (DY) 08(Y) T, + 6(Y,) T2+ )ds

+/ Z[ DY) 0°05(Y:) 0, + 06, (Y) U 1dW;

Z[Dkty 26;)0’] + [06;00%)(Y,)|dBM.

h,j=1

In all these expressions UY and UPx+Y are given in (8.18) and (3.19), respectively.

3.3.2 Euler approximation with Doss transformation

We now establish the corresponding results with Doss transformation. We consider
the Euler approximation obtained .after application of a Doss transformation to

the state variables.
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X ) N-1 Tt
Xhr = Xige+ ZA(X:;’t_‘_nT—t ) (—N—) (3.20)
n=0
N-1 . '
+ ZBj (W:+ n+1)(T—t s+n§T—Q>
n=0 j=1

The error distribution of the Euler approximation of the d x d matrix Xt,T =
(X1e1, - Xagr) is given first.
Theorem 40 The asymptotic law of the estimator of the random matriz Xt,T is
N(X[ - Xir) = Uiy
where

T d
X R R A 1 1 ~ ;
Ul r=-GQ / Q1 OA(Xi )2 Xk 10 + —= E B;dB?
k,t)T k’t’T ' k,t,‘U ( kvt’ )[2 kytr /12 J=l J ]

where [Bj]je{l,m’d} is a d X 1 standard Brownian motion independent of W and

B and
Qk,t,v = exp ( / OA(Xk,t,s)ds>
¢

This theorem shows that the speed of convergence increases if we use the
Doss transformation. It also highlights the fact that the limit law is different and
involves exponentials of a bounded total variation process instead of a stochastic

integral.

In order to specialize the results of this theorem we introduce the random

ﬁl,t,v = exp (—p/ h(Ys)ds)
¢

Qz,t,u = exp (P/ il(Ys)ds)
t

variables:
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Qs,t,v = exp (/ [(am)ay](Y;)ds) .
t
With these definitions the law of the error of the estimate of the state variable is
given by the following corollary.
Corollary 41 The asymptotic law of the estimator of the state variable Y is given
by
Ut)’;v = N(?q{v - YT) = ﬁt),,T

where

. A T, . 1,. 1
Ut),,T = _UY(YT)Q&’«’T/t Qayi,sam(Y,) I:*i(m(Y,,)dS + dWs) + ﬁst . (321)

For the Malliavin derivative of the state variables we get,

Corollary 42 The asymptotic law of the estimator of the Malliavin derivatives

of the state variables without the transformation is

UPYY = N(BYY. - DY) = U2
where
”t’,’;ﬁ’ =¥ (Yr)UZr ® 1)U (3.22)

and where the k™ column of UD:Z is
t.T

T
0% = faar [ (00 (@ (0 ()" DiYi))
X [0 @ L) (80 ) + (o ) 0Pri) (¥,) (D, ds — -;—[ay(rh(Ys)ds +dW,)]]
+[BroY (V) [T Zds — %am(n)pk,,ms]]

Similarly, for the asymptotic law of the approximated random variables fIk,t,T

involved in the calculation of the functions @ and b we obtain:
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Corollary 43 The asymptotic law of the estimator of the functional fI,-, J; are

~ N . - .
U UL = N(HNz - Hyr) = U5 fori=1,2,3
" A B |
Ut{f"r = NNz — Jigr) = Uk fori=0,1
i,

Wk — T 2 J'-, .
Uyt = NJINr = Jirer) = Upgt fori=2,3

where

TH1 _ Jo Jy

Ut,T =J 1,t,vUt,T + JO,t,vUt,T
rHe e rJo FrJa Frdy
Ur™ = NardakarUir + JogrJoroUst + Jogr e nUsh

-~ Ha,k kol J A J ~ J3
Uir” = Juer e nUpr + Jorr U s + JogrdierUss.
~ H; ~H.
o7 denotes the k™ element of the vector Ui i = 2,3) and

T
2 ~ ~ ]_ R
Ut{% - ""Ql,t,T/ Ql—j’a[pJo’t,s(5([(3h)aym]()’;)ds+{(ah)ay](Ys)dWs)
¢

—ah(Ys)Ut,ysds) - —;-dJo,t,s]

v _ T 1Y
Ut,T =7 Ut,T - pJ1470(Yr) Ut,T
14T

k)

Uizt = /t T(OY(K)"Dk,tYs)'[[(arébId)(aay)'+(UY)’azr](K)[ﬁt,’;

—S(R(Y,)ds + dW,)]| + 0ro (V) [OD ~ LdDy, 2]

U5 = Ul - plo'(0"))(vr) 00"
=p(O) (7)) 7100 + (6'(c")™ ® (7)) )3(0") 1 DesYr
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with

. . T . 1 . X .
Ul = Ouar [ 0510 (OR)0Y m)(¥ds + [BR)o (V,)aw,)
t

1

—aﬁ(Ys)Ut}:‘,ds) - Edjl,t,s]

d

O = [ [0 M Deba) (3 (0606, +6,0°0,) ()

j=1

~((0h® 1)(00"Y — (6" YORN(V,)[0¥:ds — 50" (V) (¥, )ds + dW,)]

d
=D 6,08; — 0ho¥|(Y,) Uk ds + %de,tZs]]
Jj=1

and where UY and UPx+Z are defined in (3.21) and (3.22), respectively.

3.4 Expected Approximation Errors

In this section we analyze the expected approximation errors. We show that the or-
der of convergence of expected approximation errors is identical for both methods
and explain the source of this result. Our analysis is based on weak convergence
results for the drift and martingale part of the SDE. We derive expected approx-
imation errors for both schemes in the form of expectations of known random
variables. Our findings can be viewed as probabilistic counterparts of the results
of Talay and Tubaro (1991) and Bally and Talay (1996) who have characterized

the expected approximation error as the solution of a PDE.

3.4.1 Expected Approximation Error: General Results

Throughout this section we assume that X,,,v € [t, T] satisfies (3.12). Our first
result describes the convergence of the expected approximation error using the

Euler scheme.
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Theorem 44 For g € C'(R?) such that

lim supyE [1, Xﬁﬂ,»}g(i{,{‘;)m] =0 (3.23)
P-a.s. we have
- 1.
NE [9(X{%) - 9(Xur)| ] = 5Ker(X) (3.24)
where
-~ ~ T e d .
Kr(X) = -E [ag(Xt,T)Qt,T / Q7> 0B Al(Xy,)dW!  (3.25)
t =

d
+ [aA - Z aB'ij](Xt,s)dXt,st'tjl

j=1

with {4, = exp ( JOA(Xys) - 1 X0 (0B;)1ds + $0_, fY aBdeg') .

This Theorem provides a probabilistic counterpart to the results of Talay and
Tubaro (1991) and Bally and Talay (1996) who characterized the second order
expected approximation error of the Euler scheme as the solution of a PDE. Our
proof uses probabilistic arguments to provide a representation in the form of a
conditional expectation of a random variable whose components depend on the

coeflicients of the SDE satisfied by X;,.

Note that the second order bias I?t,T(Xt) can be approximated by simulation.
Our result could then be used to develop approximation schemes that correct for
second order bias. As will be discussed further such schemes are preferable as
soon as the number of state variables is sufficiently large to make the numerical

solution of PDEs costly in terms of computation.

The corresponding result for the scheme based on the transformed state vari-

ables is given by the following theorem.
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Theorem 45 Suppose that Assumption A holds. For f € CY(R?) such that

lim supyE 1,15y 9K =0 (3.26)
P-a.s. we have
NE [g(&) - o(Xe)l ) = 5Kear(X) (3.27)
where
f{t,T(Xt) = -E [[agO’](Xt,T)Qt,T
T

[ 05 (@)X, s + (O] (Xu) ) 729

t

with Q1 = exp ( ftv[(afrh)a](Xt,s)ds) .

A comparison of (3.25) with (3.28) suggests that it will be difficult, in general,
to establish the dominance of one method over the other. Indeed, as the asymp-
totic expressions show the speed of convergence crucially depends of the volatility

coefficient o.

The difference in the rates of convergence for the limit distribution and the
expected approximation error can be explained as follows. As we have seen the
asymptotic law of the approximation error using the Euler scheme is the product
of two random variables that are independent. Since the second of these is a
stochastic integral with null expectation the asymptotic law is centered around
zero. The expected approximation error for the Euler scheme can therefore not
be of order 1/v/N. In contrast, the expectation of the random variable describing
the asymptotic law of the Euler approximation with Doss transformation differs
from zero. This approximation scheme has therefore a second order bias, which

implies convergence speed of order 1/N.
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Wk = p / [(Des¥) Sr(Y)2T + dYe] + 0r(V,) 202 ds + dDy Y]

and
- T d
A / (DiYe)'[D [0°0;00% ¥ (Y, )ds
t =

d d
+Y_8%0;(0pY — > _[80%80% ok, ;1(Y:)ds

j=1 h=1

—[8%h — pB°r](Y, +Z[a29 o¥](Y,)dY,

i=1

—([6%h — p&*7( ds—232 Y,)dwi)2vY,

+ Z 86, (Y,)[[8pY - Z 805 80%)(Y,)80-5Y (Y,) Dy Y,ds

h=1

d
+(L ® (D oYs) )80 ¥ ](Ya) + (8% = D B0k 00X} (Y,)ds

h=1
d
+8%0% (Y))dY, — Yo% (I ® (DisYs))oY ds + [0¥ u¥ (Y, ) ds]
h=1
d
~[0h — pOr + > 86;00%](Y,)d Dy .Y,
F=1

—([6h — pdr](Y. ds+289 L) dW )2V, Bk

3.4.3 Expected Approximation Error with Transformation.

We now present the expected approximation error for the estimates of H e ﬁé\,’k’w
and H. k1 The results can be derived immediately from corollary (43) using the
fact that stochastic integrals with respect to the independent Brownian motion

processes B are zero.
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Define the random variables

VP = o (Yp)VPZ + (Dea¥r) (0¥ (Vr)) ® L)V

Vi? = Qg0 /t v(fla,t,s)“[((Dk,tYT)’(aY(YT))’ ® I)[(Ia® (¢¥))0*m
+(0m ® 1)3(c ) |(Y.)(2V;, — [0¥ ] (Y3))ds — o (Y,)dW,)
—[(Bm)” (8m))(Y;) Dk, Ysds]

T
0% = —o¥ (Ve)ser / Q5L (Y,)[(Ys)ds + dW,).
t

We have,

Corollary 47 The asymptotic law of the conditional ezpectation of the functional

Hiyr is

NE[HltT Hyyr|F) — %R’ L(Xy)

NE[Hi]Xc,t,T — Hi 7| Fe] = %f(tH%k (Xt) fori=23
where

f(f]l‘(Xt) = E[Jl,t,th,Jqo« + Jo,t,vV.g,J11~|~7'-t]

H ~ A -~
K74 (X0) = Bl o dope Vit + JogrdasrVid + Jo ViR Fi)

A

H ~ ~ ~
K" (X;) = E[Jl,t,TJa,k,t,TVt? + Jo,t,Tja,t,TVt,Jr} + JO,t,TJl,t,TVt:I;*IE]-

In these expressions

Ve = Qe / Q52 oo ([(BR)0¥ M)(Y,)ds + [(9R) [(Y)dW,) — Oh(Y,)V,Xds) — dJos]

AJ] — JlataTAjl IAY
Vt,T = ""“j Vt,T — pJ1,,70(Yr) Vt,T
14T
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with

N\, Vik =Qopr / Ozt o[J1es(([(BR)GY M)(Ys)ds + [(OR)o |(Ys)dW,) — Oh(Y,)V,ids) — dJy s,
t

T
Vit = p ft [(Dx,eYs)' [0%r + (7)) 7H(8r ® 12)3(c¥)|(Y,) (2V;%ds
~[o¥1m](Ys)ds — 0¥ (Y,)dW,)
—0r(Y,) (Vo4 ds — [0 Om)(Y,) Dy 1Yads))]

Vit = V-l @)V
—p(Viz) (7)) 06 + (0'(0") ™ @ (6))™)(e" Y 1Dk,

A / (D6 — p*(Y:)
+((0h + 0k — por) ® Ip)0(a¥))(Y,) (2V;%ds
—[0¥m(Y.) - o (V,)dW,)
—[Bh + 8h — par](V)(2V;, " ds — [0¥ 0rm)(Y,) Dy,Y,ds)).

We now have all the necessary results to establish the asymptotic distribution

of the approximation error for hedging terms using our Monte Carlo method.

3.5 Asymptotic Laws of Hedging Terms Estima-

tors

We now use results from the previous sections to derive the asymptotic distri-
bution of the approximation errors of the hedging terms. As we have seen this
problem can be embedded in the more general problem of finding the conditional
expectation of a function of the terminal value of an SDE. When the finite di-

mensional distribution of the solution of an SDE is unknown we can obtain an
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estimator of the expected value by sampling independent replications of the nu-
merical solutions of the SDE. The overall approximation error of this numerical
scheme should then be analyzed. From Duffie and Glynn (1995) it is known that
this error has two components. The first is the expected approximation error we
derived in the previous section. The second is related to the approximation error
of the conditional expectation relying on a law of large numbers for independent
random variates. Since we have found an explicit expression for the expected
approximation error we can completely characterize the asymptotic distribution

of the overall procedure.

In this section we will first derive a general result that will be applied to our
context. We then derive an estimator of functions of terminal values of an SDE
that are asymptotically equivalent to infeasible estimators we would have been

obtained if we could sample from the true distribution of these random variates.

3.6 Asymptotic Laws of Hedging Terms Estima-

tors

We now use results from the previous sections to derive the asymptotic distri-
bution of the approximation errors of the hedging terms. As we have seen this
problem can be embedded in the more general problem of finding the conditional
expectation of a function of the terminal value of an SDE. When the finite di-
mensional distribution of the solution of an SDE is unknown we can obtain an
estimator of the expected value by sampling independent replications of the nu-
merical solutions of the SDE. The overall approximation error of this numerical
scheme should then be analyzed. From Duffie and Glynn (1995) it is known that
this error has two components. The first is the expected approximation error we

derived in the previous section. The second is related to the approximation error
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of the conditional expectation relying on a law of large numbers for independent
random variates. Since we have found an explicit expression for the expected
approximation error we can completely characterize the asymptotic distribution

of the overall procedure.

In this section we will first derive a general result that will be applied to our
context. We then derive an estimator of functions of terminal values of an SDE
that are asymptotically equivalent to infeasible estimators we would have been

obtained if we could sample from the true distribution of these random variates.

3.6.1 General Results: Asymptotic Laws of Monte Carlo

Estimators.

Suppose that we wish to calculate E[g(X,r)|F:] where X, 1 solves
d .
dXyy = A(Xep)dv + Y Bj(X,,)dW].
j=1
Our next result describes the asymptotic laws for the scheme with and without

transformation,

Theorem 48 Under the conditions of theorem {4 and for g € C*(R?) such that
9(Xir) € DY we have

M
VM (% ;g()?ivfi) - E[g(Xt,T)lft]) = eKyr(Xy) + Myr(Xy)

M
vM (Ilj Zg(XtJYfi) - E[g(Xt,T)I]:t]> = eKor(Xp) + My (Xy)

i=1
respectively, for the scheme without and with transformation, where e = limpy 00 %

and

T
My, My Jr = / E[N,, (N,,)'| Filds
t
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Nt,s = E[ag(Xt,T)DsXs,Tl}-s]

Remark 2 (i) Assumption A is satisfied if d = 1.

(i) The asymptotic laws of the estimators have two parts. The first, K, cor-
responds to the discretization bias; the second, M, results from the Monte Carlo
estimation of the expectation. Note that M would not vanish even if we could
sample from the law of X, 1, since we are unable to calculate the conditional ez-

plication in closed form.

(ii) It is clear from the results above that the transformation does not increase
the speed of convergence of estimates of the expected value of a function of the

terminal value of an SDE.

(iv) Both procedures have an asymptotic second order discretization bias given
by eK and eK , respectively. It follows that any confidence interval based on the
Gaussian process M alone would suffer from a size distortion. Asymptotically
valid confidence intervals must correct for this second order bias. Since the second
order discretization bias was expressed as the expectation of random variables that

can be simulated it is easy to correct for the size distortion, as we will show.

(v) Both of our procedures achieve the same rate of convergence as the Euler
scheme of an ODE. Additionally, any higher order scheme for the transformed
state variables would not improve the speed of convergence of the overall procedure
since speed is determined by the central limit theorem of independent replications

involved in the estimation of the conditional expectation.

(vi) The second order discretization bias could be important in finite samples.

Our explicit formulas can be used to assess its magnitude.

Before applying these results to the hedging term estimators we provide es-

timators that are asymptotically equivalent to standard Monte-Carlo estimators.
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Let

M
~ N ,t )i
Ger,T M Z [ XtN;+NA) + 3g(X t+NA)CtI,\£+NA]
=1
withn=20,... ,N~1 and
CtA;-:- (n+1)a = C’ﬁim + [aA(XtA;inA)A

+Z@B (X, t+nA)(Wt+(n+1)A Wi G na

j=1
A
° Wik — Wt
Z[(BA)B + (0B;) A|(X] t+nA) t+(n+1)?v t+nA
j=1

d
" x o N,i Ny i i
Xeprm+1)a = Xiptna = A(Xt,t+nA)A + Z B;( Xt t+nA)(WzJ+(n+1)A — W)
i=1

with X't]\i’ = X; and é’t,t = 0 where A = Iﬁ—t

Similarly if we apply first Doss transformation

M
Ny 1 SN SN, AN,
g7 = W Z [9 (Xitina) + ag(Xt,t-:-NA)Ct,t-:-NA]

1=1

withn=0,...,N—1and

RS YA\
Ctt+(n+1)A = Ctt+nA+[aM Xtt+nA) ] t+nA [(3N)H](Xt1,\;’+m)ﬁ

_ Z t+(n+1)A ~ Weina

Xiprnina = Xepena = X Fina) A + Wi ina — Wiina)

with X’t]\;’ = X; and C;; = 0 where A = =
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As shown in the next theorem the estimators g™ and §V'M are asymptotically
equivalent. They also have the same asymptotic distribution as the Monte Carlo

estimator obtained by sampling from the true distribution of XeT.

Theorem 49 : Under the conditions of theorem 48 we have
\/A_’-’(ﬁcﬁi‘M - E[g(X.1)|F]) = Myr(X)

and

VM (ﬁcf%M - gAc:YI"M) =0

Remark 3 (i) Standard asymptotic confidence intervals based on the Gaussian
random variate do not any longer suffer from size distortion if we use the second

order bias corrected estimators gN'M and gN-M

(i) Since the second order bias corrected estimator using the Doss transfor-
mation is asymptotically equivalent to the second order bias corrected estimator
without, all potential advantages of the transformation have disappeared. In finite

samples, however, these estimators may perform differently.

(i1i) The asymptotic equivalence with an infeasible estimator based on sampling
from the true distribution shows that the precision of the corrected estimators
depends on the quadratic variation [M,., My Jr. When this variance is large we
can use standard variance reduction techniques to obtain the shortest confidence
intervals possible. It is important to note that variance reduction without second
order bias correction may not be appropriate. Indeed, when the second order bias is
large one may incorrectly conclude that precision is high since confidence intervals
are short, when in fact this is due to the far smaller effective size of the confidence
interval relative to its nominal size. This problem still exists if the approzimation
is performed with weak higher order schemes such as those proposed by Mil’shtein
(1993). Since our second order bias corrected estimators are numerically not much

more costly than those schemes there is a direct advantage to our procedure.
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3.6.2 Asymptotic Law of Hedging Term Estimators with-

out Transformation.

Let us now apply the results above to our setting. Without transformation we

estimate the functions a and b by

N i 5N
dN’M _ ?!_-1 Hyjr and I‘;N,M _ Egl Hy k'tT
= S g = M _gn,
kt,T it Hl,t:T kt.T i=1 Hl,t:T

with (I?ﬁ't’fT,I:IQ’,;’;t’T, I:Ig,;’;t,T) = f(f(,ﬁvt'T) as described before. The asymptotic

distribution of these estimators is,

Theorem 50 Under the conditions of theorem 46

VM@ - a(t,Yh) = eK—}fﬁ"g—‘)— + M (Yy)
’ E[§ 7| ] ’

VIR — bt 1) = B 0D am
’ E[¢] 1| Fi] ’

where € = limpy 00 @ and

T E[Ng,(Ng,) |7
Ma.’Ma' =/ t,s t,s
M Mide = . g1

T B[N, (Ne,)' | 4]
Mb,,Mb_ =/ t,s\* 'L,
[ t, t, ]T . E[{ZTL?:t]

with

ng,t,s = E[Dk,stk,t,Tlfs]

Ny, , = E[Di  Hs 17| F|
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3.6.3 Asymptotic Law of Hedging Term Estimators with

Transformation.

With transformation we estimate the function a and b by

M N - M N

~NM _ Yz Byl r d pvM Y= Hyler

Tt T = i HY an ktT = ¥M, H
= 4] = "y

with (ﬂ;\f{:}’ﬁg&ftmﬁﬂfu) = f (X{;7) as described before. The asymptotic

distribution of these estimators is given by

Theorem 51 Under the conditions of theorem 46

N M K[2(Y)
VM(a 3" —a(t, 1) = GW + Mr(Y:)
IN,M f(tHTs‘(}/t) b
VM(by = bt 1) = 6E—[€’{’;Tfj + My r(X)

where e, M®, M® are given as without transformation.

We see that the difference between the estimator with and without transforma-
tion is exclusively in the second order approximation bias. As mentioned before
in general it will be difficult to establish whether or not this error is smaller for

one of the two solution schemes.

In the next section we show how to correct for the second order bias. The
resulting estimators are asymptotically equivalent with the infeasible estimator

obtained if we could sample from the distributions of Xy ;1 respectively Xior.

3.6.4 Second Order Bias Corrected Estimators for Hedg-

ing Terms

As shown before since we have explicit solutions of the second order bias K Hz*,

KHs respectively KH2x, KHsx as solutions of linear SDE’s we have an easy way
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to correct for the second order bias involved in the asymptotic law of the functions

determining the hedging terms in the optimal portfolio demand.

c N
~NM _ Zz—l[f2(Xk t t+NA) +0f2 (Xk,t,zt+AN)Ck ti+AN
Qe = M_ N

1=1 1,tt+NA

gNM >l f: 3(th’ft+NA) +0fs (Xlg,lt’,iHAN)thHAN]
ekt T =
S HY LAt+NA

with

AN _
Ck,t,t+(n+1)A - C tt+nA + [aA(Xk t t+nA)A

d
+ Z OB, (le:\,li,zt+nA)(WtJ-;-l(n+l)A - Wt+nA)]C£f£ft+nA

j=1
"[ ) ) ](tht+nA)
A d N\ B 5\ A1/ v N, W]’n naA Wt]-;-znA
5 — 204 B; + (0B) A (X, 0) —H
Jj=1
whereas
~ -~ ~ ~ . d ..
Xk t+m+1)a — Xkt t4na = A(Xli\,li,zt-FnA A+ Z i( Xliv tzt+nA Wtjf:(nﬂ WtJanA)
Jj=1
with X,ft’ft = X’k,t and C‘k,t,t = 0 where A = I-ﬁi
Similarly if we apply first Doss transformation
GM Zf—.l[ﬁ()zl?,,t’fHNA) + af2(XI?,,t,ft+AN)C tt+AN]
ckt,T = AN
Zi:l th,lt’,t+NA
5N’M — Zz—l[f3(tht+NA) 0fs ktt+AN)tht+AN]
ck,t, T E _ I"{
with
K AN Ny AN
CIICV ttrmina = Ckigina [aA(Xk 114na) AlCk s ina (3.29)
A
(A A XN ns) 7
- VVt+(n+1)A Wg-i’-znA
Z Xk t t+nA N
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whereas
~ -~ -~ ~ I3 d -~ .. .
Xiparnrna = Xegena = AX N ina) A+ Y Bi(Wi o 0a — Wika) (3.30)
i=1

with X ,f:t”'t = Xi, and Cyy = 0 where A = 22,

We now get the following equivalent to the general theorem

Theorem 52 Under the conditions of theorem 50 and 51 we have that

VM(G™ - a(t,Y)) = M7 (Y) (3.31)
VM (b, ™ = b(t, Y)) = Mir(Y5). (3.32)
Furthermore
VM(dopf! = depp?) =0 (3.33)
VMg —beg) =0 (3.34)

3.7 Asymptotic Laws of Estimators with Unknown

Initial State

Up to now we have assumed that the initial position of state variables X, is
known. In this section we extend our results and allow for situations where this is
not any longer the case and future state variables have to be approximated. Such
situations occur when we are interested in properties of future estimators from
today’s point of view. If we want to answer questions like what is the probability

that the future hedging demand will be in a prescribed set.

We obtain such estimators in a straightforward way. Suppose we have infor-

mation up to time ¢ today, we then first simulate a trajectory up to time t+7. The
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corresponding feasible predictor of the future state is then given by X[,  (X).
This value serves as starting point for M trajectories used to calculate estimators
like a;.,r respectively by, r for example. If we want to analyze the asymptotic
properties of approximation errors for such estimators we can again distinguish
two sources of errors, a discretization error and Monte Carlo error. But now the
need to discretize the SDE enters in two forms. First as before we cannot sam-
ple from the true random variables involved in the expectations of the functions
we want to estimate and secondly now also the future state where we want to

estimate can only be approximated.

As we will show now the difference in speed of convergence for the expected
approximation error and the asymptotic distribution of the solution of an SDE
without the transformation implies that only the latter approximation error is
asymptotically not negligible. Furthermore in this case the speed of convergence
of the overall procedure is slower. As a consequence estimators that are second
order bias corrected are asymptotically equivalent to non-corrected estimators if

initial state variables have also to be approximated.

On the other hand with transformation, the asymptotic distribution for second
order bias corrected estimators is different than the one obtained without bias
correction. In this case both discretization errors, the error coming from the
approximation of the initial state and the discretization error of the approximated
variables in the estimation of the conditional expectation are of the same order.
Consequently the speed of the overall procedure is the same as if the initial state

would have been known.

We first give results for the general SDE

d
dX, = A(X)dt + Y B;(X,)dW}

j=1
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and estimators

d
1
gm%T(Xg.r) = H Zg(XtI-\{’-T,T(Xg—T))

t=1

where X;.,r(z) denotes the stochastic flow with starting point = at ¢t + 7.

Theorem 53 Under the conditions of theorem 50 we have that

VMG (XN, — Elg(Xerrn) | Fesr)) = Myprz(Xiser) (3.35)
+eE[6g(Xt+,,T)Qt+T,T|f t][}t),gﬂ-

where € = limy y_00 YM ond M is given as in 48, respectively Q as in 86. Fur-
) VN

thermore we have

VM (Gopprr(Xiesr) = G0 (XN.)) = 0 (3.36)

Remark 4 1. The speed of convergence is ﬁ If we double the number of
Monte Carlo replications we must at least also double the number of dis-
cretization points to guarantee convergence. This is in contrast to estimators
without transformation with known initial value. In this case the speed of
convergence 18 % and we have to double the number of discretization points
only if the number of Monte Carlo replications is quadrupled. It follows that

giwen a budget of computing time the estimators without transformation is

more costly if the initial state is unknown.

2. The second order bias of the estimator with known initial value K is asymp-
totically negligible since the asymptotic distribution of the state variables
converges at a smaller speed. This explains why second order bias correction

does not pay off in this situation.

We know give corresponding results if we can use the transformation.
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Theorem 54 Under the conditions of theorem 51 we have that

\/M(@,ﬁfT(XﬁH) - Elg(Xt4r7| Ferr]) = €Kt+T,T(Xt,t+‘r) + Mir (X 3:37)
+€E[0g (Xt+T,T)Qt+T,T|-7:t]Ut}§+T

where € = limpy Ny o0 3@ as in theorem 51 and M is given as in 48, respectively

Q as in 40. Furthermore we have

VM (Gprrr(XN.) = Blg(Xoira(Xeese)| Fesr]) = Mypr(Xepir) (3.38)
+eB[09(Xotr,1) | Fil Uk,

Remark 5 1. The speed of convergence of this estimator is % as if the initial
state would have been known. The increase in speed of convergence compared
to the estimator without transformation explains why the second order bias
term of the conditional estimators does not vanish asymptotically. If we
quadruple the number of Monte Carlo replications we need only to double
the number of discretization points to guarantee the same precision as for

the estimator without transformation.

2. The asymptotic law of the estimator with transformation is non-centered
indicating a second order bias. This second order bias does not vanish when
we use the second order bias corrected conditional estimator. But since the

speed of convergence is not the same, a comparison relative to second order

bias is difficult.

We will now specialize these results to derive the asymptotic law of portfolio

estimators for market timing.

For this we need the derivatives of the functionals involved in the calculation
of the hedging terms with respect to the initial state. We will use the following

definition
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Definition 55 The derivative of the Brownian functionals H; ., with respect

to the initial position Yy, 1 is as follows

H, _ Jo J J2
Litrr = Juprpopir Ll 0 + JoprrJopir Lt o + Jotra Lt+r,r Ll

Hs
Ll = Nprdaper TLH.TT + Jo 4773 t4r TLH.TT + Jot+r 7104 TLt.;,.-rT

T

Lg-?-r,Tz —pJot+rT . Oh(Y, )Q3 t+7,508
T

LY, 7= plisser / 1> 0,00(x ds—plzae] L
+T =1

T T
Lor= [ (D4 Bsmrds + [ or() (L Yds

or -
T
Li, = /m[e(n)'+p(dWs)'ae(n)J(Lﬁfz,*;Y“)' (3.39)
[ b 3005))ds + (Do) © @)W D
with
LEEY) = (10 Mppanr) X (3.40)

T
| @y e t5L oA, ds+Za2 ,)aW s
t+7

d T
=3 [ (DY OBL(Y) © 0511, )5 B (XD s

=17t

With these definitions we are now ready to present result for market timing

estimators with and without transformation.
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3.7.1 Asymptotic Laws for Market Timing: No Transfor-

mation

We have seen that it is sufficient to estimate functions a and b to obtain estimators

of the hedging term. In this section we consider the following estimators.

M 7 N
~NM ( ) 2t+TT(X +T)
t+ T t+ N, ¥
B ’ Ei:l Hl,t—zi-T,T(Xﬁ-T)
and
M [N, v
bN M (XN ) Ei:l H3,t-":}-T,T(XtIX-‘r)
t+r, T\ +1/) ™ M 7[yNig
" Zi=1 Hl,t:-T,T(XiI-Y-T)

Given the results in the previous section we obtain the following results:

Theorem 56 Under the assumptions of theorem 50 we have that

VM@ (Xi) = alt+7,Yr) = ME 2 (Vi) (3.41)
E[L{I-:T,Tl‘ﬁ+’r] Utlji-r
E[é.tp+1',T|'7:t+T]
\/—J\Z(bﬁ%«(){ﬁw) b(t +7,Y4s)) = M r(Yersr) (3.42)
E[Lt+1' T|‘7: t+'r]Utg-3+r
E[€t+r,T|‘7: t+f]
Furthermore,
VM(&MM(X,) - aMM(XL)) =0 (3.43)
respectively

N,M

\/M—( (Xt+‘r) bC (Xt]i‘r)) =0 (3'44)

where in all expressions € = limy y—y00 \/%.
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In the next section we will derive the same results with transformation and

k/" show that in contrast to the asymptotic law with known initial state, for market
timing strategies the transformation increases the speed of convergence from ﬁ

to 5. Given the expressions of the asymptotic distributions the construction of

conﬁdence sets and test for market timing strategies is now straightforward.

3.7.2 Asymptotic Laws for Market Timing: Transforma-
tion

We have seen that it is sufficient to estimate functions a and b to obtain estimators

of the hedging term. In this section we consider the following estimators.

M #ANji O
Z HZ t,:-T,T('Xt]YFT)

~N.M
byrr(XN,) = >
T t+ E Hl t+TT('Xt]-\II-'r)
and
M N, N
AN (XN
bt+7—T(Xﬁ-‘r) — Zz 3t+TT( t+ )

21 1 Hl 47, T(Xt+7')

Given the results in the previous section we obtain the following results

Theorem 57 Under the assumptions of theorem 51 we have that

\/—M—(Aﬁ}-yT(Xt tr) —a(t+7,Yr)) = CIA{:MT(Yt t47) + My p(Yi24,§3.45)

[ t+7, TI‘E"l’T]Ut 2T
El | Feir]

\/M(bt+r T(th,\;+‘r) =b(t+7,Y)) = CKEM r(Yetr) + MtTT(Yt,HTI?’AG)

E[Lt+T T|-7:t+‘r]Ut,t+'r
E[€t+T,TI}-t+T]

Furthermore,

VMM M(XN,) - 6MM(XN, = —eRE . p(Yiger) (3.47)
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~ NM

~NM A ~ ~ ~
\/M(bc (th-\il—'r) - b, (Xt]-\(-'r = -€Kf+T,T(Yt,t+T)

vM

where in all expressions € = limpy N 00 %7~ and K r(Yigr) =

a

H
K¢+3-,- T(Yt.t+r)

b =
whereas K}, r(Yig1r) = Eler o Fenr]’

3.8 Proofs
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(3.48)

oH
Kt+2r 7(Ye,t47)
E[Et+,-,7‘l-7'-t+‘r] ’

The next lemma is important to obtain the asymptotic law of the discretization

€ITors.

Lemma 58 The following weak convergence results hold

t
th’NEN/ (s—nf)dsé%t
0

. t . 1 . 1 .
VQ"’NEN/ Wi—-WionpM)ds = W'+ ——B!
t 0 ( s 773 ) 2 t \/15 t
v s [ (s —nyawi = twi - L g

0 2 V12

yasiN = /N / (Wi =~ Wion¥)awi = L pis
0 V2

(3.49)

(3.50)

(3.51)

(3.52)

where (W*)ieq,... ap (BYiequ,... ap» (B )i jeqn,.. ap) 18 a (2d+d?)- dimensional stan-

dard Brownian motion.

Proof of lemma 58: Since nY¥ = ¥ for Nt ¢ N we have

[[s=mas = g [t~ ohas



192

Thus,
[N1] 1 Nt
N/s—sds— / (s —[s])ds + = s — [s])ds
=53 | ARGt

[Nt]

and therefore since [s] =k — 1 for s € [k — 1, k[

1 [N?] 1 Nt
N/ s —nN)ds = Z/o sds+N (s — [s])ds

[NY)
Result (3.49) then follows using

[N t]

/ sds — t

(s—[s])ds =0

and
1 Nt
N [N1]

when N — oo.

Similarly, we can show using the scaling property of Brownian motion that

t _ 1 [Nt] .
N/ Wi—WionN)ds = —— / Wi - Wi ds+———/ — Wi )ds.
o( ) \/_JV; [k—l,k[( s 2

It6’s lemma then implies

k
/ (Wi — Wi)ds = / (k - 8)dW?
[k=1,k[ k-1

so that

Nt]
N/ W'ons / dW'+~— W Ws]
k-1, k [Nt]

Note that the sequence of i.i.d random variables [, , . (k — s)dW{ has variance 3

and covariance 36; ; with the Brownian motion W7. It then follows from Donsker’s

functional central limit theorem that
[Nt]

1 .
8)dW! = W’ —B;
/k 1,k[ Vvl
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where B! is a standard Brownian motion independent of W7 for all j € {1,...,d}.
This establishes (3.50) since the continuity of the pathwise integral with respect
to the Lebesgue measure implies that

—llm———— W VVM )ds = 0.
[Nt]

The same type of argument establishes that

[Nt] Nt

/{klk[ [s)dW? + \/_ o=

Again, by Donsker’s functional central limit theorem, the first part converges to

N/ (s = nN)dwi =

a Brownian motion whereas the second part converges to zero in probability by

the continuity of the Wiener integral

—hm——/ (s — [s])dW! = 0.

Since the sequence of i.i.d. random variables f[k_l w(s— [s])dW! has variance
3 and covariance 14; ; with WY as well as covariance 16;; with J—rp (k= 8)dW]
we have

[N t] 1

——B.
Viz™

/ (s = [s])dWi = W’
[k—1,k[
This establishes (3.51).

It remains to show (3.52). Again by the scaling property of Brownian motion

vy
VN / —Wion)aw; = LZ/ (Wi — W, )aw?
(k—1,k[ s

\/N
/ W) dW;.
(v

Since the sequence of i.i.d random variables f[k_l’k[(W W[a])dWsi has variance of

1 and is independent of W7, Jip-1.f (Wi = Wi))ds as well as of S (s = [s])dW;
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we have again by Donsker’s invariance principle that

1 ..
W dW' —B}V.
/[k 1,k[ [s]) V2

whereas it follows from the continuity of the Ité integral that

[N t)

This completes the proof of (3.52). |

Duffie and Protter (1992) gives suitable conditions for the weak convergence

of stochastic integrals. We adopt their definition of goodness.

Definition 59 (Duffie and Protter (1992)) A sequence of semimartingales { XV}
is good if, for any {HN} the convergence of (HY,X™) to (H,X) in distribution
implies that X is a semimartingale and that (HN, XN, [ HNdX"™) converges to
(H,X, [ H-dX) in distribution.

Below we will see that the expansion of the approximation error involves
stochastic integrals with respect to V. To establish the limit laws of our es-

timation errors we must prove that V' is good.
Lemma 60 The semimartingale VV is good.

Proof of Lemma 60: It follows from condition A of Duffie and Protter (1992)
that it is sufficient for V1V to be good that N fOT(s —nN)ds < co. But from the

proof of the previous lemma we know that

T _1[NT] 1 [NT
N/o (s-—nﬁv)ds—i—]\—[—-+-ﬁ/[NT](S—[S])ds
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we obtain
O
. T 2d+4 ZN oN
Ut,qufN = / Z OAXxs,s + M tetU,;’k)Ut,Xs"de (3.57)
t =1
T 2d+4 d L.
+/ Z ZalBj(Xk,t,s + )\2,lelUt )Ut lde]
=1 =1
| [T 2
- Zat ths+)‘3lelUts AKX, .~ )aVEY
1 T2d+4 v d
“‘N Z 8 A ths +’\3lelUts Z ktnN )av e
]:
T2d+4 d _ &N
2 D OB (R + Mgl )AL )V
=1 j=1
T2d+4 d d
ZZ@[ ths+A4lelUtslk Z k“h dV4h’J,
=1 j=1 h=1
Proof of Theorem 36: Since limy_,o, 7Y = s and
XN gw
P—Ilim U " =P- lim Uttkt =0 (3.58)
N-oo N-oo
and since, by lemma 60, V¥ is good it follows that
VNUX" = 0% (3.59)
where
. T 2d+4
U = / Za,A (Xk,s)Us, ; ds (3.60)
T2d+4 d
/ >N aBy( ths)Uts dw?
=1 j=1
T2d+4 d d )
ZZ&,B (X0 )Y Bin(Xiz,s)dBM.

llJ]. h=1
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The solution of this linear SDE corresponds to the result announced. B

Proof of Corollary 38: For both approximations the result are obtained by
simple calculus using the definitions of the functions A, B, the linear SDEs 3.60

and the mean value theorem:

2d+4
-~ . X2,
f(le,,t,T) - f(Xker) = z Of(Xpar + Azert )U (3.61)
=1
such that
VNF(XLz) = F(Xiur)) = 0F (Xior)U%. (3.62)

Results with Doss Transformation

We have seen that to find the asymptotic law without distribution the martingale
part of the approximation is responsible for the order of convergence \/— An error
free approximation of the martingale part of the SDE would obviously improve the
order of convergence. In general this is infeasible since we do not know the law of
the increments f:% oY dW,, except when the volatility coefficient is deterministic.
But if assumption A is satisfied there exists a transformation of the state variables

which has Gaussian increments that can be approximated without error.

If we apply the Doss transformation and sample Gaussian increments (W’
WJ

t+n T t
of the Euler continuous approximation can without transformation be expanded

) then we obtain the following expansion of the error UXke = X¥ ket~ X s

as follows

YN
th

T 2d+4 2N
U / Z OhA(Xi e + M1 htht )Ut,s"""‘ds (3.63)

T2d+4 2N
hk ~Ahk,
/ Z@h th.g+/\3hth t)Uts t

b 1) TRt
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tht

where A, €]0,1{ for all h = 1,...,2d + 4, e, is the h* unit vector and U =

N _ VN .
Xh,k,t’s Xh’k’tm:,. Since

= XN r o . . .
Ups™ = An( KXy ) (s = nl) + D Boj(Wi = Wiy) (3.64)
i=1
we obtain
- T 2d+4
Uz),(:l’f't /t > nA(Xips + M hthts ") X"”‘ds (3.65)
h—

T 2d+4

Z nARE,, + apenl), : ) A (X gy )V

T2d+4 ‘N d ) |
N / Z nA( ths + A3 hChUts Zthdv;ZJ,N
¢ -

Proof of Theorem 40: Since limy_,o njv = s and

~

Xy .~y
P— lim U™ =P lim U%% =0 (3.66)
N—=oo N—ooo
and by lemma 60 V" is good it follows that
NUX" = 0% (3.67)

where

1 T 2d+4
5/ ZahA ths)Uts *ds (3-68)
t
1 T2d+4 o o
....2-/ ZahA(Xk,t,s)Ah(Xk,tys)ds
t p=1

T20+4 d_ 1 1
- B =dW7 4. —dBJ
/t h‘zahA(Xk’t’S)Z; il S W7 + 12st]
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This is SDE is linear and its solution corresponds to the result announced.

Proofs of Corollary 42 and Corollary 43: The result of both corollaries are
obtained by simple calculus using the definitions of the functions A respectively

B and the linear SDE’s 3.68 and that again by the mean value theorem

2d+4 ) A
~ A ~ A PN XN XN
FXYr) = f(Xepr) = Z O f (Xisr + MeU, r)U, 1* (3.69)
=1
such that
N(f(Xer) = FRiar)) = 0F (Rior) U5, (3.70)

3.8.2 Expected Approximation Errors

In the previous section we have established the asymptotic laws of the approx-
imation error and found the order of weak convergence. These results seem to
contradict results summarized in Kloeden and Platen (1993) or Mil’shtein (1993)
that state that the weak order of convergence of the Euler scheme is 7{,— . The
apparent contradictions stems from the fact that they use different criterion to
measure weak convergence. They define the weak order of convergence as order
of convergence of the expected approximation error for a sufficient smooth class
of functions (the class of Talay and Bally (1996) being the most general)3. Since
convergence plus uniform integrability implies convergence of means we can use

the asymptotic laws derived in the previous section to establish the expected ap-

proximation error. The following proofs can be seen as probabilistic counterparts

3The difference can be illustrated with the following example. Consider the estimator ZN =
% S, ZF where Z* are i.i.d square integrable random variables. Kloeden and Platen et al.
then consider the error |E[f(ZV)] - E[f(2)]] < E{—,‘-@ Consequently they conclude that ZV is
of order % (or order 1). In contrast since by the central limit theorem for i.i.d. random variates
VN(ZN - Z) = Z where Z ~ N(0, VAR[Z]) we would say that ZV is of order 7117 (or of oder

%) This explains the different conclusions



201

of the characterization of the approximation error in terms of a PDE by Talay

and Tubaro (1991) and Bally and Talay (1996).

Since the asymptotic law of the approximation errors with Doss transformation
1s non-centered the proofs are straight forward in this case. On the other hand
without transformation the asymptotic law has expectation zero. Therefore, some
more work is needed to get expected approximation errors but as we show we
can again derive results using weak convergence results for components of the

approximation errors.

Expected Approximation Errors without Transformation
In this section we will proof the result for the system

d
X g = A(Xr,) + z (X ,0) AW (3.71)

with X kit = Xk,t known. The general results in section 3.4 are for and SDE with

drift 4 and volatility o.;. The translation of results should be obvious.

We have seen in the proof of the asymptotic law of the approximation error
that the order of convergence and the asymptotic law is crucially determined by

the convergence of

T 2d+4 d

i / SN 0By (RD, + Merl, ZB,,, (KD, w)AVERSN  (3.72)
t

=1 j=1

We will show now that v N I:fft,T is asymptotically negligible for expected ap-

proximation errors.

The following shows that there is a link between V4N and V2N

Lemma 61 For M,, = Zj=1 [ aidW, where o is adapted and square integrable
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P a.s. the following covariation result holds true
N e R (3.73)
Proof of lemma 61: Since
dW*, VPN, = VN1 ) (W — Wh)ds (3.74)

and V2PN = N(Wh — Wy )ds the result announced follows.

This lemma will also implicitly be used for the following lemma
Lemma 62 We have for random variables G € D'? and and dxd- dimensional
adapted square integrable matriz process B € L%(Q, F,F,P) x [t,T] such that
T N
lim sup E[I{IIG\/WLTﬂsdfi‘,’t,.,ll>r}G\/N/t BsdIy, (| Fe] = 0 (3.75)

T30 N

P- a.s. that
T -~
VNE[G / B.dil, ) F] = 0 (3.76)
t

P- as..

Proof of lemma 62: First it follows by the Clark-Ocone Formula that any

G € D'? can be written

d  ,T
G=E[GIF]+)_ / ol dW? (3.77)
g=1"¢
where of = E[D; ;G|F,]. It follows by lemma 61 that
T _ d T .
BIGVN [ Al F)= Y Bl alpolitavietiF] a1y
t hj=1
where
N _an
Yo =" aBi(XY,, + Mgel,,") Bu, (XQemy) (3.79)
=1
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But then since

Z / odBALINAVERN = Vo (3.80)

h,j=1

where

vm_’;l / o3 B,1(08;) Bal (Re )2 dW"+—\/——_—dB"] (3.81)

and by assumption (3.75) the LHS of (3.80) is uniformly integrable with respect

the conditional probability measure we must have that
T
VNE[G / BudUL, | 7] = ElVaszlF (3.82)
t

and the result follows since E[V, ; 7|F;] = 0. This establishes the result announced.

With this two lemmas we are no able to proof theorem 44

Proof of theorem 44: It follows from the error expansion (3.57) that the approx-

imation error UXt satisfies a linear SDE. The solution can therefore be written

~ _ XN
N(Qr) Ut

T T
- [ @, - [ @it esy)
t t

T
- [ @, - (R 2

t

T
VN / @)Y, , - (BN, TN,
t
where

T 2d+4
QQIT = exp( Zal ths+>\1lelUt3 d3+/ Zal ths+)\2lelUts )dW]>

d

d
1 ~
><9XP<—§/ > 8By ths+)‘2lelUt.g Z ths+)‘2lelUts) )
t =1
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and
) T 2d+4
Bir= [ OAR, + el VAR v
t =1
) T2+4 P
Bir= [ Y aAXN,+ ,\3,,e,U Z i (X oy )V
to= Jj=1
) 7244 d
Nr = / SN aBiXE,, + Al Y A(XY, v )dVES
=1 j=1
whereas I}', 1. is given in (3.72).
Then since by lemma 61
N d. ZN
VNARY, IYi)e = > 0Bj(Xpss + MagerlUs ) vpiN vy (3.84)
and therefore
1
VNIRY, PVlr = / Z 1B10B, Bu) (Kue) 5aW3 + Bl (89)
h,j=1
Similarly, since
. LI gN
ARV, I]s =Y 0B;(Xkes + AgeUy o )rhN dVIN (3.86)
j=1
with
e = Za, (Xips+ ,\2,e,Uts )A(XY, ~) (3.87)

we have that

BN, ) = / Z[aB 0B, A)(Re1)ds (3.88)
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For the remaining terms we have the following weak convergence results
(N, 2N fNYy o (P 2, 79) (3.89)
where
< 1 T . . .~

It,T = ‘2— 6A(Xk,t,3)A(Xk,t,5)ds (390)
t .

T 1 1
2 =/ OA(Kis) B (K)o dW? + ——dB] 3.91
t,T \ ; ( k,t,) J( kit, )[2 s \/ﬁ s] ( )

T 1 1
I =/ OB;j( X ,s) A(Xp p,s)[2dWI — ——=dBI 3.92
= Z (X a) AXs) [5dW] — —=dBl) (3.92)

We show now that the only term that is of smaller order of weak convergence
convergence to zero in expectation. This can be seen as follows. By lemma 62

with G = [Q{V T)i; and B, = vas and by assumption 3.23 we have that
- T -~ -~
\/J_V'E[Q{YT / Q) 'l | F] = 0 (3.93)
t
P-as. as N = 0.

Then since under the assumption on the function ¢ and again by the fact that

XV is convergent it follows by the mean value theorem that
. . 1 ~ .
NE[g(X{i1r) ~ 9(Xe 1) F] = 5E09(Xksr)Vir | F] (3.94)

where V, r is obtained from the limit of the error N Ut{\} by taking into account
that by lemma 62

T
VBE[0g( Xy, r) (0 Q) I, | F) =0 (3.95)
t

P- as. when N — oo and that expectations involving stochastic integrals with

respect to the BM B that are independent from ; vanish. More precisely
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Wir = —fur / Qts[c’)A(Xk“)dX“8+Z[aBA (K ) AW

i=1

d
Z 0B;0B;)(Xk.1,s)d X 1.6]
Jj=1

This establishes the result announced.

The proof of the result for the approximation error of the random variables

used to calculate the hedging terms is now straightforward.

Proof of Corollary 46: If we put in the general result ¢ = f and use the

definitions of A and Bj we obtain the result announced.

Expected Approximation Error with Transformation

We now prove results for the expected approximation error using the Doss trans-

formation.

Proof of Theorem 45: In this case all terms of the error expansion (3.65 are of
order 1/N and the limit distribution is non-centered. The result is then obtained,
if the conditional measure is uniformly integrable, by taking the expectation of

the solution of the linear SDE for the approximation error

X, A T AN \~1 T AN \—1 N T AN V=1 37N
NU =_Qt,T \ (Qt,s) ] (Qt,s) dIl,t,s— ] (Qt,s) dI2,t,s (396)

A A N
where Qt T = exp ( ftT 0A(Xy s + )\l,lele"")ds) and

. T 2d+4
NTE/ 26, ths+/\3[61Uts )Al(X tﬂN)dVI’N
t
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R T 2d+4 d
IzN,tnT = / Z al 'ths + )\3lelU Z ktnN dV2"7’
to= Jj=1
Since
(RtN’Qf{V’ItI,NaIE’N’Xﬁt) = (RtthItI’IE’Xk,t) (3'97)
where Rt, Qt, X'k,t are as announced and
1 [T
ir=3 | (OAAIRega)ds (3.98)
t
d 1
I? = / [6.%) dW’ ——dB? 3.99
t,T Z—; ki, \/ﬁ ] ( )

The proof of the theorem now follows using the same arguments as in the proof

without transformation. W

Proof of Corollary 47: Substituting ¢ = f in the general result and using the

definitions of A and Bj yields the result announced. B

3.8.3 Asymptotic Law of Hedging Terms

Proof of Theorem 48: The proof with and without transformation is the same.
The approximation error can be written

M M M
1 PN 1 N : .
—=>_9(X;7) - Elg(Xir)lF] = —= Y _(9(X*") — g(X?)) = Y (9(X*) — Elg(X)|F))
M i=1 M i=1 i=1
By the Lindeberg central limit theorem for i.i.d. random variables we then have

M
> (9(X*) - Elg(X)|F]) = VAR[g(X:1)|F)Z

=1
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where Z ~ N(0,1). Since by the Clark-Ocone formula we have that

T
9(Xr) - Blg(Xer)| 7] = f E[D,g(Xs2)|F.JdW,

the conditional variance can be written
T
VARlg(X,zlF) = [ Ell0g(Xa)DeXr|PIFJds
¢

This establishes that VAR[g(X,1)|F:]Z = M;7(X:). It remains to find the weak
limit of f ¥ (9 Xt’ Ny — g( i1)). We introduce a sequence of numbers de-
pendent on N such that eV N = M. We then have by the Kolmogorov’s strong

law of large numbers that for all N

Net (% Z(Q(X::’IIY) —9( :T))) - NGNE[Q(XtI,VT) - 9(Xi1)|Fi) P-as.

Then if limy.,o €V = € < 00. We obtain from the previous results on the expected

approximation error that
1 XM

Vi Z X:7IY (Xir) = eK(X,)

i=1

as N = o0
This establishes the result announced
|
Proof of theorem 50 and theorem 51
Again the proof with and without transformation is the same.
Given the fact that P — limL ¥ H{ﬁg: = E[§£T|.7-'t] we have that

tT E[H2tT|-7'-t]+o (1)
El&r| 7] F

VM(a3" - a(t,Y,) = T T B

respectively

o Til, Hytlr — B[Hs 7|

VM (b - b(t, ) = E[£),|F]

+ Op(].).
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The results announced follow then by the same arguments used to proof the

general case W

Proof of Theorem 49 The Euler approximation of the proéess N C’f’v_’i given by

CN‘t —

tt+(n+1)A

C t+nA + [aA(XtIIinA)A

+ Z 0B;(X,Yina) (Wg-{’-(n+1)A Wi A)IC N ina
j=1
_vi A
~[(0A)A)(X,iinn)
- N, tJ;;-i(n+1)A Wt+nA
= 3 (GA)B; + (0B;) Al (R p) 241
j=1

has a Euler continuous approximation

d(NCY) =

It then follows that

[DA(X ] x)ds + ZBB

tny JAWI(NCJLy)

~[(0A) A (X[ vds — Z[(BA)B,- + (8B;) A)( X,y )AW?

j=1

NE[ag(Xt wa)CNIF) = —K(Xy) (3.100)

Consequently, by the same arguments as in the proof of theorem 48 we have

for N = YM

=%£ such that limpy_,o €

= € < 0o that

\/— Zag Xt A+NA Ct HENA TP T NNE[ag(XtJ,VT)étI,VT|-7:t]

as M — oo. It follows that the term - S 09(XNina)Covi wa corrects the

asymptotic second order bias for the estimator without transformation.

The proof of the result for the estimator with transformation follows exactly

the same steps.

In this case the average over independent replications of the
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random variables 8g(X )Ct t+na aPproximate the negative of the second order

bias with transformation.

The asymptotic equivalence of the bias corrected estimators with and without

transformation is then simply a consequence of them having the same asymptotic

distribution. B

Proof of Theorem 52: The proof of this theorem follows again along the lines of
the arguments used to establish the general result. The second order error correc-
tion variables CV, respectively CV are again chosen such that they approximate
random variables whose expectation converges to the negative of the second or-
der bias. Consequently, the estimators are asymptotically free of any effects from
discretization. The asymptotic equivalence of the corrected estimators with and
without transformation is simply a consequence of the fact that the part of the
error distribution that captures the Monte Carlo approximation error is for both

the same. W

3.8.4 Asymptotic Laws of Estimators with Unkown Initial
State |

The estimators for market timing are obtained by first simulating trajectories up
to time ¢t+7 for 7 € [0, T —t[ and then starting of M trajectories starting at XN,

Corresponding estimators are the given by

M
aN MT N ) _ H2 t+‘rT(Xt+‘r)
t+T, t+1r/) —
Zz lHl t+‘rT(XN )
and
M
bNM N ) _— Hlflt-ll-‘rT(Xt+T)

t+r, T\ +1/) ™ N,
! ’ Zi-— Hl t:-TT(Xt'FT)

where we have made explicitly clear that random variables HV are obtained with

approximated starting point X~. Again we obtain corresponding expressions with
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transformation for X, = XX, and HY(X},) = AN, 7(X},) respectively es-

timators with transformation for X{y, = XY and H N er(XN,) = I?"{T(X{X_T)

We first consider a more general case and are interested to find asymptotic

distributions of the errors Ut +TT =vM(g] +T:,1(Xt’f{_T ~ E[g(Xtsr,7(Xerr) | Fear]),

that is with transformation

t+TT_\/—Z (9(X3s #(X)) = Blo(Xesrr(Xear)) | Fear])

and

M
JIM-Z (O(RNS 2(X) = Blg(Ketn (Xe )| Fose])

=1

without.

Note that in this case Xi,,r(X;.,) corresponds to the stochastic flow and

therefore solves the SDE

T T

Xiprm(Xoqr) = Xpgr + A(Xptr,s(Xiyr))ds + / B(Xttr,s(Xetr))dW,
t+7 t+r

whereas X .(X}{,) corresponds to the numerical approximation of the stochas-

tic flow. These will play an important role in the proofs of estimators for market

timing below.

We no will proof the general results for estimators with and without transfor-

mation

Proof of Theorem 53 The error can be expanded as follows
oot VM (1w s ,
Utg+1',T = —TV_'" (N ('M_ Z(g(XtN-i-"r,T(Xt]X-‘r)) (Xt+r, (X +'r))))>

Z frr (X)) = Elg(Xerrr (X)) | Frsr))

+\/_E[( (Xt+-rT( t]ir)) - g(Xt+r,T(Xt+'r)))|ft+T]
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Finally, the equivalence with the error corrected estimator follows since as we have
seen the first term in the error expansion that converges to the second order bias

is asymptotically negligible.

Proof of Theorem 54 We can expand the error Ut"’_:v:;‘ as in the proof of theorem

53 (replace “with ") and obtain for the last term of this expansion that

VMEUIEEV|F) = S Blog(Xerra)Qutnir| Fosr Uiy, + 0p(1)

as N — oo. It follows that if %"Z — € < oc we have that
a N ~ ~
VMEUIFE N F) = €E[09(Xt4+.1)tr,7| Feir| Uy ir
It follows in this case that the first term will not vanish if ‘/—NM— — € < 00. Therefore

we have in this case

gN

M - A .
Uprr = €Kiprr(Xear) + Mipr(Xoir) + €BIOg(Xtgr 1) Qarr| Ferr U,
The equivalent second order bias corrected estimator with transformation is then

~ N,M N A
Ultrr = Miyrr(Xegr) + €B[09(Xerr1) Qtr,r| Fear JUs s

since as we have seen in this the first term does asymptotically vanish.

Proof of Theorem 56 and Theorem57 As in the proof with the known initial

value we can use the arguments of the general proof once we have realized that
d HN,i 1

—1_sd gl >d  HNG
i = el = sardloinl T 4 gp(1) for j = 2,3 as M, N — oco. The result
W Tt Hyfhrr El¢l 1,7l Fetr] p(1) J ’ ’

then follows from the fact that Hj;..7 is a function of the terminal point of an

SDE and the fact that the derivative of this functional with respect to the initial

position is as described in definition 55. W



Chapter 4

Conclusion

The results of the first article can be seen as a necessary step for the construction
of general dynamic models with anticipative information. The expressions for
optimal portfolio and consumption policies enable us to investigate exactly how
pieces of anticipative information affect the optimal behavior of an investor. They
can therefore be used to analyze whether or not conclusions about the efficiency
of trading mechanisms in the presence of insiders are robust to the probabilistic
specification of the model. Furthermore, since the whole setup is non-Markovian,
that is prices are not state variables, our results seem more appropriate to address
questions about the informational efficiency of prices in financial markets. Such
issues are considered in Rindisbacher (1998) where we use the analysis at the

individual level of this paper to construct equilibrium models.

The result about the existence of arbitrage opportunities for insiders illustrates
that without restrictions on the investment horizon careful modeling of such in-
vestors is required. It shows that viability is an important issue for any model of

inter-temporal risk sharing.

The techniques introduced in this paper have interesting applications in other
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fields. In many problems of dynamic risk management it is required to quantify
the effects of a worst case scenario on the value of contingent claims and optimal
wealth. In this case we can interpret the vector of signals as realizations of such
a scenario and the value of insider information as a measure of the value at risk.
Such a measure will incorporate the investor’s attitude towards risk. This issue
will be of interest for future research where we plan to consider enlargements of
filtrations not only by random variables but by continuous stochastic processes.

Such a generalization will enable us to study exactly the structure of a given flow

of information.

In the second paper we have developed a comprehensive approach for the
calculation of the optimal portfolio in the asset allocation problem. One major
benefit of our method which relies on Monte-Carlo simulation is its flexibility.
Indeed the approach can be easily adapted to encompass (i) any finite number of
state variables, (ii) any process for the state variables which satisfies the conditions
described and (iii) any number of risky assets. It is also valid for any preference
relation in the von Neumann-Morgenstern class. This flexibility provides a distinct

advantage over alternative approaches to the problem.

The paper also derives a number of economic results which can be used as
guidelines for sound asset allocation rules. The lessons drawn from our simulations

can be summarized in the following observations:

1. Hedging components cannot be ignored for asset allocation purposes. Even
for short investment horizons they imply an adjustment to mean-variance
demands which may represent up to 20% of the stock demand. For long
investment horizons hedging behavior has a major impact: the adjustment

to mean-variance demands can represent up to 80% of the stock demand.

2. Hedging corrections are fairly stable over time: market timing experiments

show that the volatility of the hedging components is low relative to the
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variation in the mean-variance component.

3. The most important factors in optimal allocation shares are the risk aversion
of the investor and the investment horizon. Of particular interest is the
behavior of the optimal stock demand relative to the investment horizon,
namely the fact that long (short) investment horizons mandate an increase
(decrease) in stock holdings relative to myopic behavior. Although this effect
was only recorded in the context of our basic bivariate model, it confirms the
interest of tailoring investment products and strategies to different categories

of clienteles.

4. Allocation shares are also remarkably stable relative to the other parame-
ters of the model. Variations of the order of 2 standard deviations around
estimated parameter values have little impact on the magnitude and the

behavior of investment shares.

5. In multi-asset models return correlations and correlations between returns
and state variables emerge as important factors composition of the optimal
portfolio. Even for short horizons asset demands can increase by a factor of

5 when assets returns are highly correlated.

Naturally, the performance of any asset allocation rule will also depend on the
soundness of the underlying model of financial markets. Clearly we do not suggest
that the models investigated in this paper are adequate in that respect. However,
the approach that we have proposed is universal in the sense that it can be used
to address the asset allocation problem under complete markets for any realistic

specification of the uncertainty structure no matter how complex.

The third paper introduces an asymptotic error analysis for the solution method

of the optimal portfolio choice problem presented in the second paper. We present:
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e Asymptotic error distributions of the approximation errors for Euler schemes

for stochastic differential equations with and without Doss transformation.
e Probabilistic expression of expected approximation errors for both cases.

e Asymptotic distributions of estimators of expected values of functionals of

variables satisfying stochastic differential equations.
e Second order bias corrected approximation schemes.
e Asymptotic error distributions for error corrected approximation schemes.

e Asymptotic error distributions of approximation schemes of conditional ex-
pectations of functionals of stochastic differential equations with unknown

initial value.

Since we are able to characterize the second order asymptotic bias due to the
discretization of the stochastic differential equation we are able to develop bias
corrected schemes that are asymptotically equivalent to standard Monte Carlo
procedures that have been applied in computational finance for a long time. We
also show that Doss’s transformation which eliminates stochastic integrals will in-
crease the speed of convergence for weak solution schemes of stochastic differential
equations but not if these solution schemes have to be combined with a Monte

Carlo procedure to estimate a conditional expectation.

Since we first embed the problem in a more general one, our results have
important application other domains than portfolio allocation like option pricing
of exotic options by Monte Carlo, numerical approximation of stochastic volatility
coefficients in general equilibrium models, Error analysis for GARCH models as

diffusion approximation.

The three articles together can be seen as on step forward to provide fund

managers with tools that allow them to develop decision support systems for
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optimal dynamic portfolio allocation similar to the ones they already use to trade

in a derivatives.
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