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RÉSUMÉ

Dans cette thèse, nous étudions quelques problèmes fondamentaux en mathéma-

tiques financières et actuarielles, ainsi que leurs applications. Cette thèse est con-

stituée de trois contributions portant principalement sur la théorie de la mesure de

risques, le problème de l’allocation du capital et la théorie des fluctuations. Dans

le chapitre 2, nous construisons de nouvelles mesures de risque cohérentes et étu-

dions l’allocation de capital dans le cadre de la théorie des risques collectifs. Pour

ce faire, nous introduisons la famille des "mesures de risque entropique cumulatifs"

(Cumulative Entropic Risk Measures). Le chapitre 3 étudie le problème du porte-

feuille optimal pour le Entropic Value at Risk [2, 46] dans le cas où les rendements

sont modélisés par un processus de diffusion à sauts (Jump-Diffusion). Dans le

chapitre 4, nous généralisons la notion de "statistiques naturelles de risque" (nat-

ural risk statistics) [53] au cadre multivarié. Cette extension non-triviale produit

des mesures de risque multivariées construites à partir des données financiéres

et de données d’assurance. Le chapitre 5 introduit les concepts de "drawdown"

et de la "vitesse d’épuisement" (speed of depletion) dans la théorie de la ruine.

Nous étudions ces concepts pour des modeles de risque décrits par une famille de

processus de Lévy spectrallement négatifs.

Mots-clés: mesures de risque cohérentes et convexes, allocation de capital,

mesures de risque multivariées construites à partir des données, processus càdlàg,

problème de portefeuille optimal, processus Jump-Diffusion, processus de Lévy

spectrallement négatifs, drawdown, vitesse d’épuisement
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SUMMARY

The aim of this thesis is to study fundamental problems in financial and insur-

ance mathematics particularly the problem of measuring risk and its application

within financial and insurance frameworks. The main contributions of this thesis

can be classified in three main axes: the theory of risk measures, the problem

of capital allocation and the theory of fluctuation. In Chapter 2, we design new

coherent risk measures and study the associated capital allocation in the context

of collective risk theory. We introduce the family of Cumulative Entropic Risk

Measures. In Chapter 3, we study the optimal portfolio problem for the Entropic

Value at Risk coherent risk measure [2, 46] for particular return models which

are based on relevant cases of Jump-Diffusion models. In Chapter 4, we extend-

ing the notion of natural risk statistics [53] to the multivariate setting. This

non-trivial extension will endow us with multivariate data-based risk measures

that are bound to have applications in finance and insurance. In Chapter 5, we

introduce the concepts of drawdown and speed of depletion to the ruin theory

literature and study them for the class of spectrally negative Lévy risk processes.

Keywords: Coherent and Convex Risk Measure, Capital Allocation, Multi-

variate Data-Based Risk Measures, Càdlàg Process, Optimal Portfolio Problem,

Jump-Diffusion Processes, Spectrally Negative Lévy Process, Drawdown, Speed

of Depletion



v

CONTENTS

Résumé. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1. Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1. Lévy Processes and Infinitely Divisible Distributions . . . . . . . . . . . 10

1.1.2. Subordinators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3. Examples of Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4. Distributional properties for Lévy processes . . . . . . . . . . . . . . . . . . . . 16

1.2. Fluctuation Theory for Lévy Process and Collective Risk Theory . . 17

1.2.1. Collective Risk Theory and Ruin Problem. . . . . . . . . . . . . . . . . . . . . . 18

1.2.2. Fluctuation Theory for Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3. Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1. Coherent and Convex Risk Measures on the Space L∞ . . . . . . . . . 24

1.3.2. Capital Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.3. Set-Valued Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.4. Natural Risk Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 2. On the Capital Allocation Problem for a New Coherent
Risk Measure in Collective Risk Theory . . . . . . . . . . 31

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2. Cumulative Entropic Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



vi

2.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1.1. Brownian Motion with Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1.2. Gamma Subordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3. Capital Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1. CEVaR and the Capital Allocation Problem . . . . . . . . . . . . . . . . . . . 42

2.3.2. Capital Allocation for Insurance Lévy Risk Processes. . . . . . . . . . . 46

2.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1. Brownian Motion with Scale Parameter . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2. Cramér- Lundberg Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.3. Gamma Subordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 3. Optimal Portfolio Problem Using Entropic Value at
Risk: When the Underlying Distribution is Non-
Elliptical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1. Coherent Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2. Optimal Portfolio Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3. Set up of the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1. Non-Elliptical Multivariate Models 1,2 . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2. Distributional Properties of the Multivariate Models 1, 2 . . . . . . . 59

3.3.3. Necessary and Sufficient Conditions for Optimal Problems, KKT

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3.1. KKT Conditions for Optimal Problem with the multivariate

model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3.2. KKT Conditions for Optimal Problem with the multivariate

model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4. Efficient Frontier Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1. Parameters Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2. Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 4. Multivariate Data-based Natural Risk Statistics . . . . . 69

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vii

4.2. Natural risk statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1. Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3. Multivariate Data-based Natural Risk Statistics . . . . . . . . . . . . . . . . . . . 73

4.3.1. Definition and Representation Theorem . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2. Minimum Distance Data-based Risk Measures. . . . . . . . . . . . . . . . . . 82

4.3.3. Multivariate Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4. An Alternative Characterization of the Multivariate Date-Based

Risk Measures via Acceptance Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1. MVaR, MTCM and MTCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.2. Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.2.1. Illustration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.2.2. Illustration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.2.3. Illustration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2.4. General Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 5. On the Depletion Problem for an Insurance Risk
Process: New Non-ruin Quantities in Collective
Risk Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2. The Depletion Problem for an Insurance Risk Model . . . . . . . . . . . . . . 95

5.3. Drawdowns for Spectrally Negative Lévy Processes . . . . . . . . . . . . . . . . 98

5.4. Analysis of the Depletion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1. Distributions of depletion quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.2. Distributions of depletion quantities in risk management . . . . . . . 106

5.5. Examples of Lévy Insurance Risk Processes . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.1. Classical Cramer-Lundberg Model with Exponential Claims . . . . 108

5.5.2. Gamma Risk Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.3. Spectrally Negative Stable process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.4. Brownian Perturbed Model without Claims . . . . . . . . . . . . . . . . . . . . 122

5.5.5. Meromorphic Risk Process (Beta Risk Process) . . . . . . . . . . . . . . . 125

5.6. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



viii

5.6.1. Classical Cramer-Lundberg mode with Exponential Claims . . . . . 128

5.6.2. Gamma Risk Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter 6. Conclusions and Future Research Directions . . . . . . . . 133

6.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2. Future Research Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix A. Measure Theory and Stochastic Processes. . . . . . . . . A-i

A.1. Measure and probability space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-i

A.2. Banach and Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-iii

A.3. Lévy-Ito Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-iii



ix

LIST OF FIGURES

3.1 Efficient frontier for EVaR95% under non-elliptical model 1 . . . . . . . . . . . 67

3.2 Efficient frontier for standard deviation under non-elliptical model 1. . 68

5.1 A path of Xt = 10+ t+2Bt − St, the corresponding drawdown process

Y , and their related depletion quantities, where (Bt)t≥0 is a standard

Brownian motion and S is an independent compound Poisson process

with Lévy measure ν(dx) = e−2ydx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 A path of a compound Poisson process R, the corresponding drawdown

process Y and their related depletion quantities. . . . . . . . . . . . . . . . . . . . . . 109

5.3 Empirical probability of ruin before the first critical drawdown. . . . . . . 129

5.4 Empirical distribution of the overshoot Yτa
− a. . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Empirical distributions for a drifted compound Poisson process. . . . . . . 130

5.6 Evolution of the probability of ruin before the first critical drawdown. 130

5.7 Empirical probability of ruin before the first critical drawdown. . . . . . . 131

5.8 Empirical distributions for a Gamma process. . . . . . . . . . . . . . . . . . . . . . . . . 132



x

LIST OF TABLES

3.1 Portfolio composition and corresponding EvaR95% under model 1 . . . . . 66

3.2 Portfolio composition and corresponding standard deviation under

model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 MVaR, MTCM and MTCE for Apple Inc. and Intel Corp. weekly

losses (negative returns) from 20/09/2010 to 26/08/2013. . . . . . . . . . . . . 89

4.2 MVaR, MTCM and MTCE for Apple Inc., Intel Corp. and Pfizer Inc.

weekly losses (negative returns) from 20/09/2010 to 26/08/2013. . . . . . 90

4.3 MVaR, MTCM and MTCE for the bivariate Gumbel copula with

dependence parameter θ = 1.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 MVaR, MTCM and MTCE for the bivariate Gumbel copula with

dependence parameter θ = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



1

ACKNOWLEDGMENTS

No one walks alone on the journey of life. The writing of this thesis has been

one of the most significant academic challenges I have ever had to face. This

research project would not have been completed without the support, patience

and guidance of many people. The author would like to express his deepest grat-

itude to his supervisor Prof. Manuel Morales for his excellent guidance, patience,

motivation, enthusiasm, and providing the author with an excellent atmosphere

for carrying out research. Deepest appreciation goes to my co supervisor Prof.

Mélina Mailhot for her invaluable assistance and support during my studies at the

University of Montreal. Special thanks to Prof. Louis-Pierre Arguin for whose

knowledge and guidance during my PhD. The author takes this opportunity to

express his deepest appreciation to Prof. Andrew Luong, Prof. Hélène Guérin

without whose knowledge and assistance this study would not have been success-

ful. Special appreciation to Prof. Hirbod Assa, who as a great friend, was always

willing to help and give his best suggestions and guidance during my studies at

the University of Montreal.

The author would also like to convey thanks to the staff in the Department

of Mathematics and Statistics at the University of Montreal for their invaluable

assistance. The author wishes to use this occasion to express his sincere gratitude

to Le Centre de recherches mathématiques (CRM), L’Institut des sciences math-

ématiques (ISM), the Institute of Mathematical Finance of Montreal (IFM2), La

Direction des relations internationales (DRI) de l’Université de Montréal and Le

Fonds de recherche du Québec Nature et technologies (FQRNT) for providing the

financial means.

The author wishes to express his love and appreciation to his beloved family

for their endless love, emotional support and encouragement through the duration

of his studies.

Last but not the least, the author would like to dedicate this thesis to his

uncle (Shamshir Ali Omidi Firouzi), who has been a constant source of support

and encouragement during his life. I am so grateful to have you in my life.



INTRODUCTION

MOTIVATION AND RESEARCH PROBLEMS

Studying and evaluating the risk faced by a financial or an insurance institu-

tion has always represented challenge from both theoretical and practical points

of view. Indeed, the good health of financial and insurance companies relies on

hedging a given level of risk by identifying how much money should be kept aside

in order to face worse case scenarios. This requires methods to readily quantify

financial risks. In [6], the authors paved the mathematical ground to measure

the risk of a company by using a solid mathematical construction. The authors

defined the concept of a risk measure as a real-valued function on the space of

random variables representing possible outcomes of a financial position. Such a

function assigns to each financial model a numerical value quantifying the level

of risk associated with it. They devised an axiomatic structure for such measures

that is compatible with the risk management point of view in which risks are

evaluated through weighted sums of a set of possible scenarios. A large amount

of scientific work has appeared since their seminal work which not only gener-

alizes the theory of risk measures but also brings the theory into the context of

different applications.

We find a fair amount of literature concerned with the practical aspects of the

theory of risk measures. Two important financial and insurance problems which

make use of this theory of risk measures are: 1) the problem of capital allocation,

and 2) the optimal portfolio problem. The problem of capital allocation investi-

gates different solutions in which one can allocate the total risk of a company, to

each of its lines of business or departments. In other words, it seeks to understand

how each component of a company is responsible for the total risk. On the other

hand, the optimal portfolio problem is at the heart of Modern portfolio theory

(MPT). It concerns itself with a portfolio optimization problem where one tries

to minimize risk of a given portfolio, composed of different stocks, given a fixed
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required level of return on investment. These are two problems that we address

in this thesis under new perspectives.

Indeed, although, the theory and applications of risk measures has been ex-

tensively studied for random variables, there are open frontiers when it comes

to a generalized framework that takes into account the dynamical features of

market evolution. A space of suitable random variables endows us with static

models operating on a given point in time but that overlooks the time evolution

of financial assets. Such a question can be framed within a sound theory of risk

measures for stochastic processes. This is the framework in which we look at the

problem of capital allocation in this thesis. We know that the random behavior of

financial phenomena is modeled by a stochastic process representing the financial

fluctuation of system over time. The problem of capital allocation for stochastic

processes needs to be well studied and explored in the framework of the theory

of risk measures defined on space of stochastic processes. This requires advanced

notions and techniques from different fields of mathematics like functional and

convex analysis. This makes the generalization of the notions of coherent and

convex risk measures to the space of stochastic processes very challenging to say

the least (see [24] for thorough discussion on such an axiomatic generalization).

We have then that designing risk measures in the space of stochastic pro-

cesses becomes a challenge not only at the theoretical level but as far as practical

applications are concerned. Problems like capital allocation turns out to be a

more difficult endeavor under such a framework. Studying the problem of capital

allocation for risk measures on space of stochastic processes requires a represen-

tation of a risk measure analog to the one already available for random variables.

This can be done in different ways. To the best of our knowledge, the theory

of coherent and convex risk measures on space of stochastic processes based on

the axiomatic definition proposed in [24] has not been extensively studied and it

represents a promising avenue of research.

After all the above considerations, the first question that motivates the current

work is to investigate a new class of coherent risk measures on the space of

stochastic processes having the following properties:

• They satisfy in the axiomatic definition proposed in [24] and also capture

the risk associated with the path-properties of a financial or an insurance

model.

• They have smooth explicit representations which enable us to easily com-

pute without having to make use of the advanced mathematical tools.
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• They can be enough tractable to apply them in practice. For instance,

applying them to the problem of capital allocation.

We address this problem by tackling these challenges discussed above in par-

ticular cases of interest.

For instance, in this thesis we are interested in proposing a class of risk mea-

sures capturing the risk associated with the path-properties of a financial or an

insurance model. This takes us to the realm of ruin theory where traditionally

the risk reserve of an insurance company can be modeled by a spectrally nega-

tive Lévy processes (SNLP). Now, since this class of processes accepts a Laplace

transform, we focus our attention to risk measures which have closed-form expres-

sions and have a representation in terms of Laplace transform of the underlying

model. There are at least two good reasons to do this. First, through charac-

terization theorems for Lévy processes, it is apparent that Laplace transforms of

SNLP provide a description of the path-properties for this class of processes which

motivates our approach of constructing risk measures based on such notions. Sec-

ond, we are ultimately looking for a coherent risk measure defined on the space

of stochastic processes. Our construction allows us to build up such measures by

using risk measures for random variables as a benchmark that can be extended

from the one-dimensional law of the process to the law of the process itself. As

we discuss in our contribution, we carry this out by multiplying a benchmark risk

measure to a suitable weight function and integrating over a fixed period of time.

Interesting enough, this construction allows us to address the other two features

that we seek in our risk measure. In fact, this method of designing risk measures

will also simplify the problem of capital allocation for processes and avoids the

use of advanced techniques in mathematics to numerically compute the resulting

expressions.

Another direction that we explore in this thesis and that it relates to the main

goal of designing new risk measures defined on space of stochastic processes is the

study of new quantities in collective risk theory. In fact, before the actual design

of a risk measure one needs to define quantities of interest that describe the risky

features of a given model. In collective risk theory one traditional example of

such quantity is the ruin time and its associated ruin probability. In this thesis,

we turn our interest to the definition of alternative quantities that describe path-

dependent features of the process in question and in turn of the associated risk

of the insurance model.
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In [93] we find the novel concept of speed of market crash in finance. This

study motivated us to introduce and propose new path-related concepts in col-

lective risk theory which have not yet been studied in an insurance management

context. The ultimate goal of having expressions for such quantities relates to the

core of this thesis in the sense that one can devise risk measures through the inte-

grating procedure discussed in a previous application by using the new quantity’s

probability functions as weights functions in the construction. Although this is

the ultimate motivation, in this part of the contribution we concern ourselves

only with the introduction and study of quantities like the speed of depletion and

drawdowns which turned to be a challenge in its own. In an insurance context,

these concepts have not been studied and yet they seem to possess a potential in

insurance risk management. These quantities enable us to know how an insur-

ance reserve is affected by drawdowns and how fast and frequent these drawdowns

occur. This is problem constitutes a second contribution in this thesis.

A third problem which is close to the problem of designing coherent risk mea-

sures is to devise a class of risk measures for data sets instead. Traditionally,

risk measures are defined on a space of models but in practice the underlying

model is unknown leaving us only with observed data sets. These data sets can

be univariate or multivariate depending on the application at hand. We seek to

extend the notion of univariate data-based risk measures to a multivariate set-

ting. We have then to define suitable vector-valued risk measures on the space

of random vectors. In our contribution we start by looking at the theory of risk

measures in multivariate setting, which is a challenge in its own, in order to pro-

duce a multivariate data-based axiomatic risk measure. Studying risk measures

in multivariate setting has only recently been studied. In this framework, a risk

measure on space of random vectors assigns a set of vectors instead of a real

single value to a random vector. To the best of our knowledge unfortunately,

these vector-valued risk measures defined on the space of random vectors are not

tractable enough to apply them into practice. We circumvent this problem by

proposing another alternative method. To do this, we propose to use multivariate

data sets instead of using random vectors and define a multivariate data-based

risk measure. In [53], the authors propose a new risk measure defined on a set of

data. This so-called natural risk statistics also satisfies in an axiomatic definition

which are based on data than random variables. By inspiring from the definition

of natural risk statistics and its properties, we propose to define a class of risk

measures defined on the multivariate data sets. This risk measures satisfy an

axiomatic definition based on a novel couple ordering that we propose and that

suits our goals.
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In all we investigate three questions dealing, at different levels, with the main

objective put forward at the beginning of this thesis which is designing suitable

risk measures in insurance and finance.

CONTRIBUTIONS AND STRUCTURE OF THE THESIS

This thesis is based on four independent research articles that deal with both

theoretical and practical aspects of risk measures and collective risk theory. These

articles are presented in chapters 2, 3 ,4 and 5. An introductory Chapter 1 is

included to give a brief summary of the main definitions and results of the theory

of risk measures as well as the fluctuation theory for Lévy processes.

We now provide a brief account of the content of each of the main chapters.

In Chapter 2, which is based on the paper [11] entitled On the Capital Allo-

cation Problem for a New Coherent Risk Measure in Collective Risk Theory, we

deal with a definition of suitable risk measures on the space of bounded càdlàg

process having moment generating functions. The objective of this contribution is

two-fold. First, we introduce and study new coherent risk measures on the space

of stochastic processes having moment generating functions based on a recently

introduced risk measure for random variables presented in [2]. These so-called

cumulative risk measures, are defined as a weighted integral of a given coherent

risk measure over a finite-time interval. Second, we study the capital allocation

problem in the context of collective risk theory for these risk measures. This line

of research is relevant since the theory of risk measures on the space of bounded

stochastic processes lacks tractable examples that could be used in practical ap-

plications. In fact, we study the problem of capital allocation in an insurance

context for these tailor-made risk measures.

The first objective is accomplished, we have shown that our Cumulative En-

tropic Risk Measure is coherent and that it has a representation that allows us

to tackle the capital allocation problem. We have indeed shown that the capital

allocation problem for processes has a unique solution determined by the Euler

allocation method, as presented in [83], under some assumptions. Furthermore,

we applied this result for a proposed model for the net-loss claim process asso-

ciated to an insurance company with n different departments. In our model we

let the aggregate claims process, (X i
t)0≤t≤T , to be a linear combination of m in-

dependent spectrally positive Lévy processes for 1 ≤ i ≤ n.
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Chapter 3, which is based on the article [74] entitled Optimal Portfolio Prob-

lem Using Entropic Value at Risk: When the Underlying Distribution is Non-

Elliptical, deals with the optimal portfolio problem. Due to both practical and

theoretical objections that can be made about the framework of modern portfolio

problem, in this chapter, we propose a new stochastic model for the asset re-

turns that is based on Jumps-Diffusion (J-D) distributions [76, 80]. This family
of distributions is more compatible with stylized features of asset returns, not

to mention that it allows for a straight-forward statistical inference from readily

available data. We also propose to use a new coherent risk measure, so-called, En-

tropic Value at Risk(EVaR) as presented in [2], in the optimization problem. For

certain models, including a jump-diffusion distribution, this risk measure yields

an explicit formula for the objective function so that the optimization problem

can be solved without resorting to numerical approximations.

In Chapter 4, which is based on the paper [69] entitled Data-Based Natural

Risk Statistics, we deal with definitions of suitable multivariate risk measures

for data sets. In this chapter we propose a non-trivial extension of the concept

of natural risk statistics to the multivariate setting. The notion of natural risk

statistics was introduced as a technique to measure risk from data as opposed

to measuring risk from predetermined models [53]. In other words, these are ax-

iomatic risk measures defined, not on the space of random variables or processes,

but rather on the space of sequences. These new risk measures have been recently

introduced and their full potential has not yet been explored.

The challenge to redefine the concept of natural risk statistics for multivariate

data sets is to define a right set of axioms that will allow for a coherent repre-

sentation of such risk measures. This is a non-trivial problem. First, one must

come with a reasonable way of ordering vectors. A second objective is to study

these data-based risk measures as estimators of model-based risk measures and

look into the problem of sensitivity to model mismatch. We propose a couple

ordering for data vectors in Rn × Rn that yields a natural axiomatic definition

for multivariate data-based risk measures. We find a representation for these risk

measures. We also characterize these multivariate data-based risk measures via

acceptance sets which complete the extension of known results from the univari-

ate to the multivariate setting. The notion of data-based risk measures has gone

unnoticed for the past couple of years but now attention is turning to the problem

of risk measure estimators or natural risk statistics.
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Chapter 5, which is based on the article [15] entitled On the Depletion Prob-

lem for an Insurance Risk Process: New Non-ruin Quantities in Collective Risk

Theory, deals with the new quantities which are not ruin related yet they capture

important features of an insurance position. This chapter elaborates on alterna-

tive non-ruin quantities that measure the riskiness associated with large claims

in an insurance reserve. The field of risk theory has traditionally focused on ruin-

related quantities that can naturally be interpreted in terms of risk. Although it is

true that there are still many challenging questions, ruin-related quantities do not

seem to capture path-dependent properties of the reserve process. In this chapter,

we aim at presenting the probabilistic properties of drawdowns and the speed at

which an insurance reserve depletes as a consequence of the risk exposure of the

company. These new quantities are not ruin related yet they capture important

features of an insurance position and we believe it can lead to the design of a

meaningful risk measures. Studying drawdowns and speed of depletion for Lévy

insurance risk processes represents a novel and challenging concept in insurance

mathematics. Indeed, drawdowns and speed of depletion are quantities that do

not depend on the level but on path properties of the model, which explains how

fast the process can drop. In other words, how faster the claims are depleting the

reserve than premiums can be collected. This type of quantities has never been

proposed before as measures of riskiness in collective insurance risk theory. Draw-

downs have been studied for diffusion processes in a financial setting as presented

in [93]. However, in insurance, we need expressions for processes with jumps.

We have obtained expressions for many drawdown-related quantities in dif-

ferent cases of Lévy insurance risk processes for which they can be calculated, in

particular for the classical Cramér-Lundberg model. In this model, we assume

aggregate claims are modeled by a compound Poisson process with exponentially

distributed severities.



Chapter 1

PRELIMINARIES

The main objective which we investigate in this thesis is designing a class of risk

measures on space of stochastic processes. To achieve this, the main idea we put

forward in this thesis, to achieve the main goal, requires recalling basic notions

in different theories and making use of them simultaneously. These theories are

1) the theory of Lévy processes, 2) the theory of fluctuation for Lévy processes

and 3) the theory of risk measures. In this chapter, we aim at providing main

and important notions tying with one of these theories.

The outline of this chapter is as follows. In Section 1.1, we provide basic

definitions and properties of Lévy processes. In the other words, in Subsection

1.1.1, we recall the definition of a Lévy process and provide one of the most im-

portant characterization theorem in probability theory so called Lévy-Khintchine

Theorem which provides a representation for characteristic function for a Lévy

process. Section 1.1 will continue in Subsection 1.1.2 by recalling an important

subclass of Lévy processes so called subordinators. We use this class of processes

in Chapter 2 to apply in the problem of capital allocation. In Subsections 1.1.3

and 1.1.4, we study some distributional properties for Lévy processes which we

make us in Chapter 5, as well as provide some examples for Lévy processes. In

Section 1.2, we will provide main notions in collective risk theory as well as the

theory of fluctuations for Lévy processes. In Subsection 1.2.1, we recall the main

problem in collective risk theory so called ruin problem and provide important

theorems related to a particular Lévy process in hand. We finish Section 1.2 with

studying the theory of fluctuation for Lévy processes and show how theses two

theories are connected in Subsection 1.2.2. We also provide different important

theorems available in this context. In Section 1.3, we recall main definitions and

theorems for risk measures as well as providing different classes of risk measures

which we use in Chapter 2 and Chapter 4 of this thesis. In Subsection 1.3.1, we
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provide the definition of convex and coherent risk measures as well as their repre-

sentations. In Subsection 1.3.2, we recall a definition of capital allocation which

we widely use in Chapter 2 of this thesis. Section 1.3 will continue in Subsections

1.3.3 and 1.3.4 by giving the definition of two important classes of risk measures

which motivated us to study multivariate data-based risk measures in Chapter 4.

1.1. Lévy processes

Lévy processes is an important class of stochastic processes that are used in

mathematical finance and insurance. Having càdlàg (continuous from right and

having limit from left) paths along with stationary and independent increments

makes this family of processes tangible to apply as mathematical models for

financial and insurance phenomena.

Lévy processes will appear in this thesis as a core and body of our work. On

one hand, we are interested in designing a new class of risk measures on the space

of bounded càdlàg processes that can capture the risk associated with the path-

properties of the insurance model. These risk measures have a mathematical

closed form for processes which have Laplace transform or moment generating

function. Another application of Lévy processes ties with introducing the new

concept in insurance called drawdowns. We generalize this financial concept to

insurance by using Lévy processes.

1.1.1. Lévy Processes and Infinitely Divisible Distributions

There are different ways to study behavior of a random variable (or a stochas-

tic process). One of such ways which provides the distributional properties of a

random variable is to study its characteristic function (or in particular, Laplace

transform). In fact, characteristic functions or Laplace transforms characterize

probability distributions. We can also find different applications of characteristic

functions (Laplace transforms) in probability theory. For instance, we can see

applications of characteristic functions (or Laplace transforms if exist) in study-

ing the first passage times for Lévy processes (or generally stochastic processes).

Therefore, knowing characteristic function (or Laplace transform) for a Lévy pro-

cess is of a great importance. One of the most important theorems in probability

theory is called Lévy-Khintchine Theorem. This theorem provides characteristic

functions for a class of distributions so called infinitely divisible distributions (or

somehow characterizes this class of distributions). We will see in the sequel of

this chapter that there is a one to one correspondence between Lévy processes
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and the class of infinitely divisible distributions. Hence, using Lévy-Khintchine

Theorem we can obtain characteristic function for Lévy processes as well.

In this subsection, we will recall important definitions and theorem related to

infinitely divisible distributions as well as definition of Lévy processes and their

relation with this class of distributions. Most of the definitions and results about

Lévy processes and their properties in this section are taken from [5, 81].

In the following definition, we introduce a class of probability distributions

which can be presented in terms of convolution functions of independent and

identically distributed (i.i.d.) distributions.

Definition 1.1.1. ([5]) Let P(R) denote the set of all Borel probability measures
on R. Then a Borel probability measure µ ∈ P(R) is infinitely divisible if it has a
convolution n-th root in P(R). i.e., there exists a probability measure µ

1
n ∈ P(R)

for which µ = (µ
1
n )∗

n

, for each n ∈ N.

We can specialize Definition 1.1.1 for a random variable and investigate when

a random variable can be infinitely divisible. A random variable X (see Defini-

tion A.1.4) is infinitely divisible if its law PX (see Definition A.1.5) is infinitely

divisible, e.g. X =d Y
(n)
1 + · · ·+Y (n)

n , where =d means equality in distribution and

Y
(n)
1 , . . . , Y (n)

n are i.i.d. random variables, for each n ∈ N. Note that, the charac-

teristic function of X (see Definition A.1.7) can be written as φX(u) = (φ
Y
(n)
1
(u))n.

Poisson distribution and normal distributions are two main examples of infin-

itely divisible distributions. In order to provide a characterization for this class of

distributions we need to know some basic notions. One of them is Lévy measure

which appears in the characterization theorem, Lévy-Khintchine Theorem.

Definition 1.1.2. ([5]) A measure ν (see Definition A.1.2) defined on R\{0} is

called a Lévy measure if
∫

R\{0}
(|y|2 ∧ 1)ν(dy) < ∞, (1.1.1)

where |.| is the absolute value function.
Lévy measures are one of the key components in representations for Lévy

processes. They includes useful information about the structure of Lévy processes

and infinitely divisible distributions (see Propositions 1.1.1, 1.1.2 and 1.1.3).

The following theorem characterizes infinitely divisible probability measures

on R using characteristic functions.

Theorem 1.1.1. (Lévy-Khintchine) ([5, 63]) A Borel probability measure µ

on R is infinitely divisible if there exists a value b ∈ R , σ ≥ 0 and a Lévy measure
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ν on R\{0} such that for all u ∈ R,

φµ(u) = exp

{

ibu − 1

2
σ2u2 +

∫

R\{0}

(

eiuy − 1− iuy1(|y|<1)(y)
)

ν(dy)

}

(1.1.2)

Conversely, any mapping of the form (1.1.2) is the characteristic function of

an infinitely divisible probability measure on R.

Proof. For a proof, we refer to Subsection 1.2.4 of [5]. �

The triple (b, σ, ν) is called the characteristics of the infinitely divisible prob-

ability measure µ, and η := log φµ is called the Lévy symbol or Characteristic

exponent.

In the following, we recall the definition of an example of infinitely divisi-

ble random variables so called α-stable random variable. We apply this type of

random variable in Chapter 2 and Chapter 5. We also provide a theorem charac-

terizing these random variables which mainly uses Lévy-Khintchin Theorem. For

more details, read Subsection 1.2.5 of [5].

Definition 1.1.3. (α-stable random variable) ([5]) A random variable X is

said to be α-stable if there exist real-valued sequences (σn
1
α , n ∈ N) and (dn, n ∈ N)

such that

X1 +X2 + · · ·+Xn
d
=σn

1
α X + dn (1.1.3)

where X1, X2, . . . , Xn are independent copies of X . In particular, X is said

to be strictly stable if each dn = 0.

Theses random variables are heavy tailed (except normal distribution) in the

sense that the tails of their distributions decay slowly enough to zero (see [73]

for more information). It follows immediately from (1.1.3) that all stable ran-

dom variables are infinitely divisible. The characteristics in the Lévy-Khintchine

formula are given by the following theorem.

Theorem 1.1.2. ([63, 81]) If X is an α-stable real-valued random variable, then

its characteristics in Theorem 1.1.1 must take one of the two following forms:

(1) when α = 2, ν = 0, so X ∼ N(b, σ);

(2) when α Ó= 2, σ = 0 and

ν(dx) =
c1

xα+1
1(0,∞)(dx) +

c2
|x|α+11(−∞,0)(dx),

where c1 ≥ 0, c2 ≥ 0 and c1 + c2 > 0.

Proof. A proof can be found in [81], page 80. �
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In the sequel of this section we provide a concise description of a class of pro-

cesses (Lévy processes) which have a one to one correspondence with infinitely

divisible distributions. In probability theory, a Lévy process, named after the

French mathematician Paul Lévy, is any continuous-time stochastic process that

starts at 0, admits càdlàg modification and has "stationary independent incre-

ments", (this phrase will be explained below). The most well-known examples

are the Wiener process and the Poisson process.

Definition 1.1.4. ([5]) A Lévy process X = (Xt)t≥0 is a stochastic process sat-

isfying the following:

(1) X(0) = 0 (a.s.);

(2) X has independent and stationary increments;

(3) X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0,

lim
t→s

P (|Xt − Xs| > a) = 0.

Lévy-Ito decomposition Theorem (see Theorem A.3.1) provides a characteri-

zation for Lévy processes. It turns out form Theorem A.3.1 that a Lévy process is

an independent sum of a Brownian motion with drift, an independent compound

Poisson processes and a square integrable jump process. Independent structure

of Lévy processes along with having both continuous and jump parts in its na-

ture, make this class of processes more suitable to model dynamical financial and

insurance phenomena.

It follows from the Definition 1.1.4 that each Lévy process Xt is infinitely

divisible. Referring to [5] we have the following theorem.

Theorem 1.1.3. ([5]) If X is a Lévy process, then Xt is infinitely divisible for

each t ≥ 0. Furthermore,

φXt
(u) = etη(u), ∀u ∈ Rd, t ≥ 0,

where η is the Lévy symbol of X(1).

As we mentioned earlier, there is an one to one correspondence between Lévy

processes and infintely divisible distributions. Theorem 1.1.3 along with the fol-

lowing theorem show this correspondence. For a comprehensive discussion on this

theorem we refer to Subsection 1.4.1 in [5].

Theorem 1.1.4. ([5]) If µ is an infinitely divisible distribution on R with Lévy

symbol η, then there exists a Lévy process X such that µ is the law of X(1).

There are two important subclasses of the class of Lévy processes for which

we can find a large amount of literature studying their path properties as well as

their distributional properties (see for instance [60, 61, 62, 63]). In this thesis we

also focus on these classes of processes which model risk and surplus of insurance
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companies. Referring to Lévy-Ito decomposition (Theorem A.3.1), a Lévy process

has both continuous and jump parts. These jumps can be either upward or

downwards. i.e., the process can have positive jumps or negative jumps.

Definition 1.1.5. ([63]) A Lévy process having just negative jumps is called a

spectrally negative Lévy process (SNLP). A Lévy process which has only positive

jumps is called a spectrally positive Lévy process (SPLP).

One of the simplest classes of processes which is included in the class of SPLP

is the class of subordinators. Elements of this class have increasing paths and do

not have Brownian motion part in their Lévy-Ito decomposition. In the following

subsection, we are interested to provide the mathematical definition of these

processes as well as study their Laplace transforms (they exist).

1.1.2. Subordinators

In this part we will provide a particular example of spectrally positive Lévy

processes so called subordinators. A subordinator is a Lévy process which is

increasing almost surely. Such processes can be thought of as a random model of

time evolution [5].

Definition 1.1.6. ([5]) The process X = (Xt)t≥0 is called a subordinator if we

have

Xt ≥ 0 a.s. for each t > 0,

and

X(t1) ≤ X(t2) a.s. whenever t1 ≤ t2.

The following theorem, which is taken from [5], provides Lévy-Khintchine

characterization for subordinators.

Theorem 1.1.5. ([5]) A Lévy process X = (Xt)t≥0 be a subordinator if and only

if its Lévy symbol takes the form

η(u) = ibu+
∫

(0,∞)
(eiuy − 1)λ(dy), (1.1.4)

for some b ≥ 0 and a Lévy measure λ satisfying

λ(−∞, 0) = 0 and
∫

(0,∞)
(y ∧ 1)λ(dy) < ∞.

We call the pair (b, λ) the characteristics of the subordinator X.

We then obtain the following expression for the Laplace transform of the

distribution:

E(e−uXt) = e−tψ(u),
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where

ψ(u) = −η(iu) = bu+
∫ ∞

0
(1− e−uy)λ(dy),

for each u > 0. The function ψ(u) is called the Laplace exponent of the subordi-

nator.

For some application of subordinators in mathematical insurance, see [49,

55]. An example of subordinators which is of interest in this thesis is gamma

subordinator. In fact, having Laplace transform for this process enables us to

apply it in the new coherent risk measure introduced in Chapter 2 of this thesis.

In the following we provide a brief description with properties of this subordinator.

Example 1.1.1. (Gamma Subordinators) ([5]) Let X = (Xt)t≥0 be a gamma

process with parameters a, b > 0, so that each Xt has density

fXt
(x) =

bat

Γ(at)
xat−1e−bx,

for x ≥ 0; then it is easy to verify that, for each u ≥ 0
∫ ∞

0
e−uxfXt

(x)dx =
(

1 +
u

b

)−at

= exp
[

−ta log
(

1 +
u

b

)]

. (1.1.5)

From here it is a straightforward exercise to show that
∫ ∞

0
e−uxfXt

(x)dx = exp
[

−t
∫ ∞

0
(1− e−ux)ax−1e−bxdx

]

. (1.1.6)

From this we see that X = (Xt)t≥0 is a subordinator with b = 0 and λ(dx) =

ax−1e−bxdx. Moreover, ψ(u) = a log(1 + u/b).

1.1.3. Examples of Lévy processes

In this subsection we give two well know examples of Lévy processes. In fact,

referring to Theorem A.3.1 we see theses examples are two important parts in

Lévy-Ito decomposition. Moreover, different applications of these examples in

mathematical modeling in finance and insurance can be also found. We apply

these examples in Chapter 2 of this thesis as well.

Example 1.1.2. (Brownian Motion With Drift) ([5]) Let (Bt)t≥0 be a standard

Brownian motion in R. Then, the process (Ct)t≥0 with Ct = bt + σBt is a Lévy

process with its characteristic function given by

φBt
(u) = exp {−1

2
tηc(u)},

where ηc(u) is Lévy symbol of C(1) of the form

ηc(u) = ibu − 1

2
σ2u2,
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For b ∈ R and σ ≥ 0. In fact a Lévy process has a continuous sample paths if

and only if it is of the form C(t) . For some application of Brownian motion in

mathematical insurance, see the article [49].

Example 1.1.3. (Compounded Poisson Process) ([5]) Let {Z(n) : n ∈ N} be a

sequence of i.i.d. random variables in R with law µZ . Let N be a Poisson process

of intensity λ , which is independent of Z(n). The compound Poisson process Y

is defined as follows:

Y (t) = Z(1) + · · ·+ Z(N(t)).

Then, Y has Lévy symbol of

ηY (u) =
∫

R
(eiuy − 1)λµZ(dy).

If µZ = δ1 where δ1 is the Dirac delta measure, then Y is said to be Pois-

son process (see [5]). Classical risk model can be viewed as an application of

compounded Poisson process in mathematical modeling in insurance (see [50]).

1.1.4. Distributional properties for Lévy processes

As we mentioned earlier, the class of Lévy processes is the main core and body

of this thesis. We apply this class of processes in different cases. Since we deal

with a subclass of Lévy processes with important distributional properties in this

thesis, knowing distributional properties for Lévy processes helps us to understand

much better this class of processes. Studying the variational behavior as well as

verifying when these processes have finite moments are two important problems

which we need to consider in this subsection. Lévy processes are not in general

of finite variation and they do not have finite moments. In the following, we

recall some important results which under some assumptions classify the bounded

variation Lévy processes. The main components in Lévy processes which play

important roles are Lévy measure ν and continuous component σ ≥ 0.

Proposition 1.1.1. ([63]) Let (Xt)t≥0 be a Lévy process with triplet (b, σ, ν).

(1) If ν(R) < ∞, then almost all paths of Xt have a finite number of jumps

on every compact interval.

(2) If ν(R) = ∞, then almost all paths of Xt have an infinite number of jumps

on every compact interval.

Proposition 1.1.2. ([5]) Let (Xt)t≥0 be a Lévy process with triplet (b, σ, ν).

(1) If σ = 0 and
∫

|x|≤1 |x|ν(dx) < ∞, then almost all paths of Xt have finite

variation.
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(2) If σ Ó= 0 or
∫

|x|≤1 |x|ν(dx) = ∞, then almost all paths of Xt have infinite

variation.

It can be seen from Proposition 1.1.2 that a Brownian motion with drift is

a Lévy process with infinite variation as σ > 0. In the next proposition we will

recall necessary and sufficient conditions for a Lévy process (Xt)t≥0 to have a

finite moment.

Proposition 1.1.3. ([5]) Let (Xt)t≥0 be a Lévy process and n ∈ N. E(|Xt|n) < ∞
for all t > 0 if and only if

∫

|x|≥1 |x|nν(dx) < ∞.

The reason we should care about big jumps to figure out the moment proper-

ties of a Lévy process is that both the Brownian motion part and the martingale

pure jump part have finite moments at any order (see Chapter 2 of [5]) while the

compound Poisson part with big jumps, bigger than 1, has not necessarily finite

moments.

It can be seen from Propositions 1.1.1, 1.1.2 and 1.1.3 that activity of jumps

of a Lévy process depends on all the jumps of the process, the variation of a

Lévy process depends on the small jumps and the Brownian motion part and the

moment properties of a Lévy process depend on the big jumps.

1.2. Fluctuation Theory for Lévy Process and Collec-

tive Risk Theory

So far, we paved the way to study the theory of fluctuation by introducing the

class of Lévy processes and their properties. Fluctuation theory which recently

found its application in insurance context, mainly focuses on studying the path

behavior of stochastic processes (in particular Lévy processes). Studying prob-

lems like the problem of ruin for a spectrally negative Lévy process, which models

the surplus process of an insurance company, can be found in the realm of this

theory. In the other words, ruin problem has been studied as a particular case

of so called exit problem in the theory of fluctuation for Lévy processes (we refer

to [17, 63]). Known expressions in ruin theory can be derived as applications of

the results of theory of fluctuation. To better understand this theory and main

problems in it, we recall important results related to exit problems in the sequel

of this section. We start by providing a flavor of ruin problem for the reader and

show how this problem can be connected to an exit problem in the theory of fluc-

tuation. We also study the theory of fluctuation by introducing new path-related

quantities for the class of spectarlly negative Lévy process in Chapter 5 of this

thesis.



18

Ruin problem for an insurance company which was introduced in collective

risk theory has been extensively studied in the past decades. We can find in the

related literature a range of examples of Lévy processes for which the ruin problem

has been studied and interesting results have been derived (see [55, 58, 63, 72]).

1.2.1. Collective Risk Theory and Ruin Problem

In this subsection we provide basic concepts and notations widely used in

collective risk theory. We give a mathematical definition of ruin probability and

Gerber-Shiu function for the risk reserve of an insurance company. We also pro-

vide some results related to ruin probability for a classical risk reserve process

studied in [55].

Consider the following general model for the risk reserve of an insurance com-

pany,

Rt = x+ c t − Xt , t ≥ 0 , (1.2.1)

where the aggregate claims process X is a spectrally positive Lévy process with

zero drift, with X(0) = 0. Moreover, x is the initial reserve level and c is a

constant premium rate defined as

c = (1 + θ)E[X1] (1.2.2)

where θ > 0 is the security loading factor.

Then the associated ruin time is

τx := inf{t ≥ 0 | Xt − c t ≥ x} , (1.2.3)

and the infinite-horizon ruin probability can be defined by

Ψ(x) := Px(τx < ∞) , (1.2.4)

where Px is short-hand notation for P( · | X(0) = x).

Ruin probability in model presented in (1.2.1) has been discussed in different

articles. For instance, we refer to [55, 58, 63, 72] for a thorough discussion.

In the sequel, we provide some important results related to different cases of

risk models in (1.2.1).

Theorem 1.2.1. ([7]) If Rt is a surplus process in (1.2.1) based upon a compound

Poisson aggregate claim process, Xt, with c = (1 + θ)E[X1], that θ is security

loading factor, then for x ≥ 0,

Ψ(x) =
e−Kx

E[e−KR(τ)|τ < ∞] (1.2.5)

Where K is the smallest positive root of the Lundberg’s fundamental equation,

MXt
(k) = ekct.
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Corollary 1.2.1. Using the fact that R(τ) < 0 when τ < ∞ and one application

of theorem 1.2.1 yields a nice approximation for ruin probability. That is,

Ψ(x) ∼= e−Kx.

Now, we are going to give the important theorem taken from [55] studying a

ladder-height decomposition for the ruin probability for the risk process of the

form

Rt = x+ ct − S(t) + ηZ(t). (1.2.6)

Here S is a subordinator with Lévy measure dν and Z is a Lévy motion with no

positive jumps and zero drift.

Theorem 1.2.2. ([55]) Let R be a risk process as in (1.2.6) and denote by Yt =

Rt − x. Then its associated ruin probability Ψ(u) = P[supt≥0{−Yt > x}] satisfies
the equation

1−Ψ(x) = θ

θ + 1

∞∑

n=0

(
1

1 + θ
)nM⋆n ⋆ G⋆(n+1)(x), x ≥ 0, (1.2.7)

where M is the distribution with Laplace transform given by

ξM(s) =
∫ ∞

0
e−sxdM(x) =

ψS(s)

sE(S1)
, (1.2.8)

where ψS is the Laplace exponent of S and G is the distribution with Laplace

transform given by

ξG(s) =
∫ ∞

0
e−sxdG(x) =

cs

ψct+ηZ(s)
. (1.2.9)

The following example recalls results for a particular case of the model model

(1.2.6).

Example 1.2.1. [38, 50] study model (1.2.6) when Z = W is a Brownian motion

with zero drift and variance σ2, and S is a compound Poisson process, that is,

Rt = x+ ct − St + σWt, t ≥ 0.

The corresponding functions G and M in Theorem 1.2.2 for this process are:

G(u) = 1− e−( c

σ2
)u, u > 0,

and M(u) = 1
β

∫ u
0 [1− F (t)]dt, where β =

∫ ∞
0 [1− F (t)]dt < ∞.

Another historic contribution to collective risk theory was made by actuarial

scientists Hans U. Gerber and Elias S.W. Shiu in their article [50], where the

expected discounted penalty function (EDPF) comes to light. The problem of

ruin can be studied as a particular case of this function. The expected discounted
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penalty function (or called Gerber-Shiu function) is defined by

η(x) = Ex[e
−δτ w(Rτ− , |Rτ |)I(τ < ∞)], x ≥ 0, (1.2.10)

where δ ≥ 0 is the discounting force of interest, τ is the time of ruin, Rτ− is

the surplus immediately before ruin and the bounded function w(u, v) is called

a penalty function depending on the amount of surplus prior to ruin u and the

amount of deficit at ruin v. In equation (1.2.10), Ex is shorthand for E(.|X0 = x).

([50]) Let f(u, v, t|x) denote the joint probability density function of Rτ− , |Rτ |and
τ , then we can rewrite the function η(x) as follows:

η(x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
w(u, v)e−δtf(u, v, t|x)dtdudv. (1.2.11)

For u0 > 0 and v0 > 0, if w(u, v) is a “generalized” density function with mass 1

for (u, v) = (u0, v0) and 0 for other values of (u, v), then

η(x) =
∫ ∞

0
e−δtf(u0, v0, t|x)dt = f(u0, v0|x).

The expected discounted penalty, considered as a function of the initial sur-

plus, satisfies a certain renewal equation, which has a probabilistic interpretation.

Explicit answers are obtained for different cases. For instance, when the initial

surplus is zero, initial surplus is very large, and for arbitrary initial surplus if the

claim distribution follows an exponential distribution or a mixture of exponen-

tials. For more discussion, we refer to the [50].

We refer to [19, 49, 50, 66] for results on EDPF for different risk models.

1.2.2. Fluctuation Theory for Lévy Processes

In this subsection, we discuss fluctuation theory and give some important

results related to the first passage time of a Lévy process. We introduce some

notions and results that are needed in the rest of the thesis. It is worthwhile

to know the connection between fluctuation theory and collective risk theory. In

fact, by defining the first passage time, important concept in fluctuation theory,

we see that the time of ruin in collective risk theory defined in (1.2.3) for the

general risk model (1.2.1) is in fact a first passage time for a Lévy process. To

show this connection, first we need to provide notations and definitions available

in the theory of fluctuation.

Let X = (Xt)t>0 be a spectrally negative Lévy process defined on a filtered

probability space (Ω, F , (Ft)t>0,P). Since X has no positive jumps, the expecta-

tion E
[

esXt

]

exists for all s > 0 and it is given by E
[

esXt

]

= etψ(s) where ψ(s) is
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of the form

ψ(s) = a s+
1

2
σ2s2 +

∫ ∞

0
(e−x s − 1 + s x1{x<1}) ν(dx) , (1.2.12)

where a ∈ R, σ ≥ 0 and ν is the Lévy measure associated with the process −X

(for a thorough account on Lévy process see [17, 63]). For the right inverse of ψ,

we shall write Φ on [0, ∞). Formally, for each q > 0,

Φ(q) := sup{s > 0 : ψ(s) = q} . (1.2.13)

Notice that since X is a spectrally negative Lévy process X, we have that Φ(q) > 0

for q > 0 (see [63]).

In the sequel, we consider the following stopping times so called first passage

times. Afterward, we show how we can rewrite the time of ruin presented in

equation (1.2.3) as a first passage time.

τ+x = inf{t > 0 : Xt > x}. (1.2.14)

for x > 0 and

τ−
x = inf{t > 0 : Xt < x}, (1.2.15)

for x ∈ R. If we consider Yt = ct − Xt in equation (1.2.1), then by replacing Yt

in equation (1.2.3) we get

τ := inf{t ≥ 0 | Yt ≤ −x} ,

where is in form of equation (1.2.15).

In the following theorem we recall Laplace transform for the first passage time

τ+x .

Theorem 1.2.3. ([63]) Let (Xt)t≥0 be a spectrally negative Lévy process and τ+x
is given in (1.2.14). Then,

E(e−qτ+x 1(τ+x <∞)) = e−Φ(q)x, (1.2.16)

where Φ(q) is given in (1.2.13).

Corollary 1.2.2. From Theorem 1.2.3 we have that P(τ+x < ∞) = e−Φ(0)x which

is one if and only if E(X1) ≥ 0.

In this sequel of this subsection we provide the definition of the so-called q-

scale functions W (q) which is a key notion in the analysis of path properties for

spectrally negative Lévy processes. Moreover, we provide some important results

related to the Laplace transform of one- and two-sided exit problem for spectrally

negative Lévy processes.
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Theorem 1.2.4. ([63]) Let (Xt)t≥0 be a spectrally negative Lévy process. Then

for every q > 0, there exists a strictly increasing and continuous function W (q) :

R −→ [0, ∞) such that W (q)(y) = 0 for all y < 0 satisfying
∫ ∞

0
e−λyW (q)(y)dy =

1

ψ(λ)− q
, λ > Φ(q). (1.2.17)

Furthermore, W (q) has left and right derivatives on (0, ∞) which may not agree for

all spectrally negative Lévy processes. If σ > 0 then the left and right derivatives

agree and W (q) ∈ C1(0, ∞).

Notice that for q = 0, equation (1.2.17) defines the so-called scale function and

we simply write W . Although, q-scale functions are one of the most important

key notions to study path properties of Lévy processes, but unfortunately, there

are few cases of processes for which we have explicit representation for associated

q-scale functions. We refer to Subsection 5.5.1 on page 108 for an example of a q-

scale function. In this case, we consider a compound Poisson process which jump

distributions follow an exponential distribution. Studying q-scale functions can

be reduced to studying W using the following result. In the following corollary

we recall a representation for W (q) in terms of W .

Corollary 1.2.3. ([63]) Let (Xt)t≥0 be a spectrally negative Lévy process. Then

W (q)(x) =
∑

n≥0
qnW ∗(n+1)(x), (1.2.18)

where W ∗(n) is the n-th convolution of W with itself.

In the following we recall a theorem providing the Laplace transforms for one-

and two-sided exit problem.

Theorem 1.2.5. ([63]) Let (Xt)t≥0 be a spectrally negative Lévy process and W (q)

the q-scale function defined in (1.2.17). Also consider τ+x and τ−
x as the stopping

times defined in (1.2.14) and (1.2.15) for x ∈ R respectively. Then the following

statements are true.

(1) For any x ∈ R and q ≥ 0,

Ex(e
−qτ−

0 1(τ−
0 <∞)) = Z(q)(x)− q

Φ(q)
W (q)(x), (1.2.19)

where Z(q)(x) = 1 + q
∫ x
0 W (q)(y)dy for x ∈ R.

(2) For any x ≤ a and q ≥ 0,

Ex(e
−qτ+a 1(τ−

0 >τ+a )
) =

W (q)(x)

W (q)(a)
. (1.2.20)
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(3) For any x ≤ a and q ≥ 0,

Ex(e
−qτ−

0 1(τ−
0 <τ+a )

) = Z(q)(x)− Z(q)(a)
W (q)(x)

W (q)(a)
. (1.2.21)

This theorem provides important results related to Laplace transforms of exit

problems. One of the important results which we can derive from this theorem

is the ruin probability for a SNLP. Setting q = 0 in Theorem 1.2.5 yields to the

following corollary.

Corollary 1.2.4. Under the same assumptions in Theorem 1.2.5 we have

(1) For any x ∈ R,

Px(τ
−
0 < ∞) = 1− (E(X1) ∨ 0)W (x), (1.2.22)

where (E(X1) ∨ 0) is the maximum between E(X1) and 0.

(2) For any x ≤ a,

Px(τ
+
a < τ−

0 ) =
W (x)

W (a)
. (1.2.23)

Proof. (1.2.22) and (1.2.23) can be derived by replacing q = 0 in (1.2.19) and

(1.2.20) respectively. �

It can be seen from equation (1.2.22) when E(X1) ≤ 0, claim sizes have negative

means, the ruin surely happens. Setting x = a in equation (1.2.23) yields to

Px(τ
+
a < τ−

0 ) = 1 which means the process creeps upward at the initial value a

before going below 0. This is compatible with the path behavior of a SNLP. As

a particular case if we set x = a = 0, then we have P(τ+0 < τ−
0 ) = 1. This means

that a SNLP with initial value 0, this process creeps upward than downward at

0. This is also compatible with path behavior of a SNLP. Consider a Brownian

motion as an example for this case.

1.3. Risk Measures

As a part of this thesis, we are to design a risk measure for the class of bounded

càdlàg processes. Knowing the basic definitions and properties of risk measures

leads to bring this section into this chapter.

Article [6] and book [45] gave a mathematically construction of a risk mea-

sure. The authors introduced the concept of a coherent risk measure based on a

preference relation on a subset of L∞ (see Definition A.2.3). In this section L∞

represents the space of uncertain payoff values of financial positions.
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1.3.1. Coherent and Convex Risk Measures on the Space L∞

In this subsection we bring the axiomatic definition for convex and coher-

ent risk measures on the space of bounded random variables. This axiomatic

definition implies to study the theory of risk measure in the context of convex

analysis. Referring to standard textbook on convex analysis, Fenchel’s Theorem

states that if f is a convex and lower semi-continuous function, then it meets

a representation in terms of its conjugate (see [79]). Convex and coherent risk

measures defined on Lp spaces also meet such representations, so called robust

representations, under some limit constraints (we refer to [45]). In the sequel of

this section, we recall important theorems and representations for both convex

and coherent risk measures. In the following definitions and theorems we assume

the argument of a risk measure is "profit" than "loss".

Definition 1.3.1. ([45]) A mapping ρ : L∞ → R is called a Convex risk measure

if it satisfies the following conditions for all X, Y ∈ L∞.

(1) Monotonocity: if X ≤ Y then ρ(X) ≥ ρ(Y ).

(2) Cash invariance: If m ∈ R, then ρ(X +m) = ρ(X)− m.

(3) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for 0 ≤ λ ≤ 1.

In Definition 1.3.1 if the argument of risk measure ρ considered to be "loss", then

conditions (1) and (2) will be replaced by ρ(X) ≤ ρ(Y ) and ρ(X+m) = ρ(X)+m.

Definition 1.3.2. A convex risk measure ρ is called a coherent risk measure if

it satisfies

• Positive Homogeneity: if λ ≥ 0, then ρ(λX) = λρ(X).

If a risk measure ρ is positively homogeneous, then it is normalized, i.e.,

ρ(0) = 0. Under the assumption of positive homogeneity, convexity is equivalent

to

• Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

The financial meaning of conditions above are clear:

• Monotonocity: That is, if portfolio Y always has better values than port-

folio X under almost all scenarios then the risk of Y should be less than

the risk of X.

• Cash Invariance: The value m is just adding cash to your portfolio X,

which acts like an insurance: the risk of X +m is less than the risk of X,

and the difference is exactly the added cash m. In particular, if m = ρ(X)

then ρ(X + ρ(X)) = 0.

• Positive Homogeneity: Doubling your portfolio, doubles your risk.

• Subadditivity: The risk of two portfolios together cannot get any worse

than adding the two risks separately.
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Example 1.3.1. One of the most important risk measures which is widely used in
financial risk management is value at risk (VaR). Let X show profit of a financial

position. VaR is defined as follows.

V aRβ(X) = inf{m ∈ R | P(X +m < 0) ≤ β}. (1.3.1)

([45]) In financial terms, VaRβ(X) is the smallest amount of capital which, if

added to X and invested in the risk-free asset, keeps the probability of a negative

outcome below the level λ.

Value at Risk is neither a convex nor a coherent risk measure as it does not

meet subadditivity property. But, in the following example we recall an upper

bound coherent risk measure for VaR.

Example 1.3.2. Let X show profit of a financial position. The Conditional Value

at Risk at level β ∈ (0, 1) of X is given by

CV aRβ(X) =
1

β

∫ β

0
V aRλ(X)dλ, (1.3.2)

where V aRλ(X) is defined by equation (1.3.1) (see [45] for a thorough discussion).

So far, we have provided axiomatic definition of convex and coherent risk

measures along with the financial interpretation of axioms. In the sequel of this

section we are interested in recalling robust representations which these risk mea-

sures meet. Before going further, we provide an important set of financial po-

sitions which an underlined risk measure induced. This set helps us introduce

robust representations for convex or coherent risk measures.

Definition 1.3.3. ([45]) A risk measure ρ induces the class

Aρ := {X ∈ L∞|ρ(X) ≤ 0}, (1.3.3)

of positions which are acceptable in the sense that they do not require additional

capital. The class Aρ will be called the acceptance set of ρ.

As we mentioned earlier in this section, Convex and coherent risk measures

meet explicit representations in terms of their conjugate functions. These repre-

sentations help apply available results on risk measures to practice. For instance,

these representations enable to study practical problems using coherent risk mea-

sures and derive interesting results (see [27]). For instance, we apply these repre-

sentations to study the problem of capital allocation in Chapter 2 of this thesis.

This part of Chapter 1 is devoted to recall main definitions and representation

theorems for convex and coherent risk measures. For more information see [45, 9].
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Definition 1.3.4. ([45]) A coherent risk measure ρ : L∞ → R is said to have the

Fatou property if for any bounded sequence Xn in L∞ converging to X ∈ L∞

almost surely( in probability) , we have

ρ(X) ≤ lim inf ρ(Xn). (1.3.4)

Fatou Property enables us to study convex and coherent risk measures using their

penalty functions (which are also called conjugate functions in convex analysis

context). In fact, this property which is equivalent with continuity from above

for a risk measure plays the role of property so called lower semi continuity for

convex functions in convex analysis.

Now,let us denote by M1 := M1(Ω, F , P ) the set of all probability measures

on (Ω, F) which are absolutely continuous with respect to P. The following theo-
rem characterizes those convex risk measures on L∞ that can be represented by

a penalty function concentrated on probability measures, and hence on M1(P )

as presented in [45].

Theorem 1.3.1. ([45]) For a convex risk measure ρ : L∞ → R the following are

equivalent:

(1) ρ is a convex risk measure with the Fatou property

(2) The acceptance set Aρ of ρ is weak∗ closed in L∞ i.e., Aρ is closed with

respect to the topology σ(L∞, L1) and convex.

(3) ρ is a convex risk measure which is continuous from above i.e. for any

bounded and decreasing sequence Xn converging to X, ρ(X) = lim ρ(Xn).

(4) ρ can be represented by:

ρ(X) = sup
Q∈M1(P )

(EQ(−X)− αmin(Q)) ∀X ∈ L∞, (1.3.5)

where, αmin(Q) = supAρ
EQ(−X).

We point out that penalty function in Theorem 1.3.1 is not unique for a given

convex risk measure. These Penalty functions αmin are not only hard to find for

convex risk measures but also difficult to deal with in practical problems. In the

next corollary we specialize Theorem 1.3.1 for coherent risk measures where it

shows for coherent risk measures αmin is zero.

Corollary 1.3.1. ([45]) A coherent risk measure on L∞ can be represented by

a set M ⊂ M1(P ) if and only if the equivalent conditions of Theorem 1.3.1 are

satisfied. In this case:

ρ(X) = sup
Q∈M

(EQ(−X)) ∀X ∈ L∞. (1.3.6)
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We see from Corollary 1.3.1 that penalty function αmin in Theorem 1.3.1 is

vanished for a coherent risk measure . As the set Aρ for the coherent risk measure

ρ is a cone and also ρ has positive homogeneous property, we come up with only

two values for αmin which are 0 and ∞. This is the reason why αmin is vanished

for coherent risk measures.

Remark 1.3.1. If we identify a subset of absolutely continuous measures M with

the set of its Radon-Nikodym derivatives i.e. Dσ = {f ∈ L1+(Ω)|∃Q ∈ M, f =
dQ
dP

} where

L1+(Ω, F ,P) = {f ∈ L1(Ω, F ,P) | f ≥ 0, E(f) = 1}, (1.3.7)

then we can rewrite the representation of ρ by:

ρ(X) = sup
f∈Dσ

(EP (−fX)) ∀X ∈ L∞.

1.3.2. Capital Allocation

Risk measures find different applications in mathematical finance and insur-

ance. One of the problem for which we see the theory of risk measures has been

widely used is the problem of capital allocation. We also study this problem in

Chapter 2 under a class of coherent risk measures when we model the reserve

of an insurance company by spectrally negative Lévy processes. We also pro-

vide explicit results for this problem. Let ρ be a risk measure on L∞ and let

X = X1 + · · · + Xd be the cash flow produced over a unit time period by the

portfolio of a company consisting of several departments, so that Xi is the cash

flow produced by the ith department. The problem of the capital allocation is:

how is the total risk ρ(X) allocated between the departments? There have been

proposed different allocation methods to solve this problem. For a comparison of

different combinations of risk measures and allocation methods we refer to [88].

For class of coherent risk measures [36, 42] propose the following axiomatic defi-

nition for capital allocation which we use as benchmark for capital allocation in

Chapter 2 of this thesis.

Definition 1.3.5. ([27]) Let ρ be a coherent risk measure on L∞ and let X =

X1 + · · · +Xd be the cash flow produced over a unit time period by the portfolio

of a company consisting of several departments, so that Xi is the cash flow pro-

duced by the ith department. a capital allocation between X1, . . . , Xd is a vector

(x1, ..., xd) ∈ Rd such that

d∑

i=1

xi = ρ

(
d∑

i=1

Xi

)

, (1.3.8)
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d∑

i=1

hixi ≤ ρ

(
d∑

i=1

hiXi

)

, h = (h1, . . . , hd) ∈ Rd
+. (1.3.9)

The first condition is called the full allocation property the second condition

is called the linear diversification property of capital allocation. If we set hi = 1

and hj = 0 for j = 1, . . . , n, j Ó= i in inequality (1.3.9), then xi ≤ ρ(Xi). This

means that we expect i-th department in an insurance company has smaller risk

contribution in the total risk of the company than when it considered as a separate

sector. This is compatible with diversification property of capital allocation.

1.3.3. Set-Valued Risk Measures

In previous subsection we have provided the definition and robust represen-

tation for coherent and convex risk measures defined on the space L∞ where it

is the space of all real -valued risky portfolios. Now, consider the case where the

risky portfolio is an Rd-valued random variable. In [56], the authors propose an

axiomatic definition for set-valued coherent risk measures defined on the space of

L∞
d (R

d), the space of all equivalence classes of (essentially) bounded Rd-valued

random variables. They define (d, n) -coherent risk measures as set-valued maps

from L∞
d (R

d) into subsets of Rd, P(Rn), satisfying some axioms for n ≤ d (see

[56]). As we will see in the following, dealing with vector-valued risk measures

turns out to be a difficult task. This inspired us to look for an alternative way to

extend the theory of risk measures to vector-valued random variables. The struc-

ture proposed in [56] inspired us to study vector-valued risk measures defined on

a set of data instead of studying them for multidimensional random variables.

In Chapter 4 of this thesis we propose an axiomatic definition for vector-valued

data-based risk measures which enables us to evaluate the possible risk of mul-

tivariate data. We consider these risk measures defined on multivariate data as

alternative risk measures for vector-valued risk measures. To give the reader a fla-

vor of this structure, we need to provide the proposed definition for vector-valued

risk measures presented in [56].

In order to provide the definition of (d, n) -coherent risk measures we need to

recall the portfolio ordering for L∞
d (R

d). The following discussion is taken from

[56].

Let (Ω, F ,P) and K be a probability space and a closed convex cone of Rd

respectively such that

Rd
+ ⊂ K, K Ó= Rd,

and

∀i = n+ 1, . . . , d : −1
i + α11 and 1i − β11 ∈ K for some α, β > 0, (1.3.10)
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where 1i is the ith canonical basis vector defined by 1
i
j = 1 if i = j, and zero

otherwise. The condition (1.3.10) is called the substitutability condition. The

closed convex cone K induces the partial ordering on Rd by x ² 0 if and only if

x ∈ K. This induces the partial ordering on L∞
d (R

d) in the following way.

X ² 0 if and only if X ∈ K, (1.3.11)

for X ∈ L∞
d (R

d).

For each x ∈ Rn we consider the following notation for the translation of x

into Rd for n ≤ d.

∀x ∈ Rn, x̃ := (x,0) ∈ Rd,

where the last d − n components of x̃ are zero.

Definition 1.3.6. ([56]) A (d, n)-coherent risk measure is a set-valued map R :

L∞
d (Rd) −→ P(Rn) satisfying the following axioms:

(1) ∀X ∈ L∞
d (Rd), R(X) is closed, and 0 ∈ R(0) Ó= Rn;

(2) ∀X ∈ L∞
d (Rd) : X ² 0 P − a.s. =⇒ R(0) ⊂ R(X);

(3) ∀X, Y ∈ L∞
d (Rd), R(X) + R(Y ) ⊂ R(X + Y );

(4) ∀t > 0 and X ∈ L∞
d (Rd), R(tX) = tR(X);

(5) ∀x ∈ Rn and X ∈ L∞
d (Rd), R(X + x̃) = {−x} + R(X).

In Definition 1.3.6 the summation between two sets R(X) and R(Y ) is the

Minkowski sum which is defined as follows.

R(X) + R(Y ) = {a + b : a ∈ R(X), b ∈ R(Y )}.

1.3.4. Natural Risk Statistics

In this subsection, we give the definition of the concept so called natural

risk statistics and a representation of it. Multivariate data-based risk measures

which we propose in Chapter 4 of this thesis are alternatives for vector-valued risk

measures. These data-based risk measures meet an axiomatic construction which

is a natural development of a construction of the natural risk statistics propose

in [53]. Natural risk statistics, as defined in [53], is an alternative to coherent risk

measures. This type of risk measure is defined on Rn, as the space of data with

length n. Before moving on further, note that in the definition of natural risk

statistics, the argument of risk measure is "loss" instead of "profit" or "pay-off".

Definition 1.3.7. ([53]) A function ρ : Rn → R is a natural risk statistics if,

(1) Positive homogeneity and translation invariance:

ρ(ax̃ + b1) = aρ(x̃) + b, ∀x̃ ∈ Rn, a ≥ 0, b ∈ R

where 1 = (1, . . . , 1)T ∈ Rn.
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(2) Monotonicity:

ρ(x̃) ≤ ρ(ỹ), if x̃ ≤ ỹ,

where x̃ = (x1, . . . , xn) ≤ ỹ = (y1, . . . , yn) if and only if xi ≤ yi, i =

1, . . . , n.

(3) Comonotonic subadditivity:

ρ(x̃ + ỹ) ≤ ρ(x̃) + ρ(ỹ), if x̃ and ỹ are comonotonic,

where x̃ and ỹ are comonotonic if and only if (xi − xj)(yi − yj) ≥ 0, for

any i Ó= j.

(4) Permutation invariance:

ρ((x1, . . . , xn)) = ρ((xi1 , . . . , xin
))

for any permutation (i1, . . . , in).

The following theorem, proved in [53], gives a robust representation for natural

risk statistics.

Theorem 1.3.2. ([53]) Let x(1), . . . , x(n) be the order statistics of the observation

x̃ with x(n) being the largest. Then ρ is a natural risk statistic if and only if there

exists a set of weights W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each w̃ ∈ W satisfying
∑n

i=1 wi = 1 and wi ≥ 0, ∀1 ≤ i ≤ n, such that

ρ(x̃) = sup
w̃∈W

n∑

i=1

wix(i), ∀x̃ ∈ Rn. (1.3.12)



Chapter 2

ON THE CAPITAL ALLOCATION PROBLEM
FOR A NEW COHERENT RISK MEASURE

IN COLLECTIVE RISK THEORY

Abstract
In this chapter we introduce a new coherent cumulative risk measure on a sub-

class in the space of càdlàg processes. This new coherent risk measure turns out to be

tractable enough within a class of models where the aggregate claims is driven by a

spectrally positive Lévy process. Moreover, this risk measure is well-suited to address

the problem of capital allocation in an insurance context. Indeed, we show that the

capital allocation problem for this risk measure has a unique solution determined by

the Euler allocation method. Some examples are provided.

Keywords. Capital allocation, Euler allocation method, Coherent risk measures, Lévy

insurance processes, Risk measures on the space of stochastic processes.

This chapter is a joint research work with Hirbod Assa and Manuel Morales; see

[11] 1.

2.1. Introduction

Collective risk theory has built upon the pioneering work of Filip Lundberg

[30] and it now comprises a substantial body of knowledge that concerns itself

1In this project, my contribution was to identify the main idea of the research problem where
we were interested to introduce a class of coherent risk measures on the space of stochastic
processes . After discussing with Prof. Assa about the possible extensions of research projects
he has already done in his thesis [9], we came up with a general idea we put forward in [11].
I prepared the mathematical ground for the project by recalling important required theorems
and definitions in the context. I proved the results in the project and applied them to important
examples in actuarial context. I also contributed in this project by writing up the first draft of
it, then polishing it with Prof. Morales to get the final version.
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with the study the riskiness of an insurer’s reserve as measured by the ruin prob-

ability and related quantities [7]. A large amount of literature now exists on such

insolvency measures for a wide variety of models, the latest being the so-called

Lévy insurance risk models [19] and [20].

Traditionally, collective risk theory focuses on the insurer’s ability to manage

the solvency of its reserve through the control of initial investment x. The math-

ematical tool often cited for such task is the probability of ruin. It is indeed a

measure of the likelihood that an insurer’s reserve would eventually be insufficient

to cover its liabilities in the long run.

More precisely, consider the following general model for the risk reserve of an

insurance company,

Rt = x + c t − Xt , t ≥ 0 , (2.1.1)

where the aggregate claims process X is a spectrally positive Lévy process with

zero drift, with X(0) = 0 and jump measure denoted by ν. Moreover, x is the

initial reserve level and c is a constant premium rate defined as

c = (1 + θ)E[X1] (2.1.2)

where θ > 0 is the security loading factor.

Then the associated ruin time is

τx := inf{t ≥ 0 | Xt − c t ≥ x} , (2.1.3)

and the infinite-horizon ruin probability can be defined by

Ψ(x) := Px(τx < ∞) , (2.1.4)

where Px is short-hand notation for P( · | X(0) = x).

Much of the literature in collective risk theory studies the problem of deriving

expressions and reasonable approximations for the probability of ruin as a function

of the initial reserve level x. This problem is addressed within an ever-growing

set of models for the aggregate claims process. See [7] for a thorough account on

the so-called ruin theory.

Naturally, the ruin probability Ψ quantifies the solvency of the net-loss process

Yt := Xt − ct as a function of the initial reserve level x. In fact, we can define

a risk measure ρβ : X −→ [0, 1] on a suitable model space X (say the space

of bounded càdlàg stochastic processes R∞). Let Yt = Xt − ct be the net-loss

process associated with the reserve process (2.1.1), then

ρβ(Y ) Ô−→ a := inf{x ≥ 0 | Ψ(x) ≤ β} , (2.1.5)
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where ψ is the associated ruin probability (2.1.4) and β ∈ (0, 1) represents a given

tolerance to ruin. We refer to [25] for a particular case dealing with Value at Risk.

One can interpret a as the smallest initial level for which the process R has

an acceptable risk level, i.e. its associated ruin probability is less or equal to a

tolerable figure β. Such risk measures have been recently studied (see [84]) and

although they exhibit interesting properties, they lack the tractability of an effi-

cient risk management tool. In fact, any meaningful risk management application,

such as capital allocation, would be hard to implement using (2.1.5). Recently,

other risk measures have been studied such as one based on the concept of area

in red, which is a measure of how large the overall deficit of the company can

be (see [65] for details). These new notions turn out to exhibit some interesting

properties, yet the issue with these risk measures remains, they are very difficult

to implement in a risk management problem such as capital allocation.

In this chapter, we recover this idea of measuring the risk of an insurance risk

process but with a view towards an application in the capital allocation problem.

In fact, we reverse-engineer a risk measure with the sole purpose of addressing

the non-trivial problem of capital allocation in a collective risk theory context.

That is, we look at the aggregate loss from a number of, potentially dependent,

lines of business and we give a way to allocate a portion of the overall risk to

each component. More precisely, we define a coherent risk measure on a suitable

subspace of the space of càdlàg processes, Rp
L, as a mapping ρ : Rp

L −→ R+ (the

precise description of the subspace in question, Rp
L, is given in Defintion 2.2.1 on

page 35). We then give a definition of what we mean by capital allocation in

this context and give an explicit solution for it. Unlike (2.1.5), this measure is

tractable enough and allows for a solution of the capital allocation problem within

a suitable space of stochastic processes. This is carried out within the framework

given by the theory of coherent and convex risk measures for stochastic processes.

There is indeed a fair amount of research on the question of how to define risk

measures for stochastic processes. Among previous works on these issues we

find, for instance, [24] and [25] where the authors work out risk measures on the

space of random processes modeling the evolution of a certain financial position

or [26] where they develop risk measures in a dynamic fashion. Indeed there is

now a comprehensive theory of risk measures on the space of stochastic processes

that draws from convex analysis, probability and the general theory of stochastic

processes in order to build a mathematical framework for the quantification of

economic risks in a dynamic fashion.
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On the other hand, applications of risk measures defined on the space of

stochastic processes are less abundant. In particular, the problem of capital allo-

cation in such a framework is far from trivial. On the space of random variables,

this problem is well-studied and it has been addressed in different ways. For in-

stance, in [82], the author applies risk measures to study the problem of capital

allocation for random variables in a general framework while in [37] we find a

cooperative game theory study of the fair allocation principle for coherent risk

measures. In [37, 82], the authors propose the Euler principle for allocating the

required capital under some technical assumptions and, in [88], a comparison of

different combinations of risk measures and allocation methods can be found.

Another approach can be found in [86], where they propose a sensitivity analysis

framework for internal risk models for the class of distortion risk measures. As

a special case they study the problem of capital allocation for this class of risk

measures under their sensitivity framework.

Unfortunately, when it comes to the space of stochastic processes, it is a

different story. The problem of capital allocation for coherent risk measures

on the space of stochastic processes turns out to be a more difficult task. A

comprehensive understanding of the problem of capital allocation for coherent risk

measures in this setting requires advanced notions and techniques from functional

analysis as well as convex analysis. In fact, a formal treatment of the problem

of capital allocation for coherent risk measures requires studying the weak sub-

gradient set associated to the risk measure [10]. As it turns out, in order to get a

good understanding of the sub-gradient set and its properties, we need a robust

representation of the underlying risk measure which, in turn, requires studying

of the dual space of Rp
L. Now, the fact that, we have a sophisticated topological

structure to deal with for the dual space of Rp
L, makes it difficult to characterize

the sub-gradient set and to give a solution to the problem of capital allocation.

To the best of our knowledge, this problem has not been thoroughly studied for

risk measures defined on the space of stochastic processes. We can only cite, [10],

where the author discusses the problem of capital allocation for risk measures

defined on the space of cádlág processes. Or, [65] where the authors study the

capital allocation problem for a new risk measure that, as it turned out, it does

not satisfy an axiomatic definition of coherent risk measures defined on stochastic

processes proposed in [24]. As a drawback, the resulting solution of the capital

allocation problem, does not follow an axiomatic definition of capital allocation.

Moreover, neither the proposed risk measure, nor the capital allocation solution,

have an explicit formula.
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We circumvent all these issues by giving an ad-hoc smooth explicit represen-

tation of a class of risk measures. Such construction leads naturally to an explicit

solution for the capital allocation problem without having to make use of the

advanced machinery from functional analysis.

The contribution of this chapter is then two-fold. First, based on [2] and [9],

we design a new risk measure on the space of bounded càdlàg processes that can

capture the risk associated with the path-properties of an insurance model. We do

this by extending the notion of Entropic Value at Risk, first introduced in [2], to

a suitable space of stochastic processes. Second, we explore the capital allocation

problem using this new risk measure in an insurance context and we show that

the Euler allocation method is the only method to allocate the requiring capital

for this risk measure.

The outline of the chapter is as follows. In Section 2.2, we introduce the notion

of Cumulative Entropic Value at Risk (CEVaRβ) as a coherent risk measure on

the space of bounded stochastic processes and we explore some of its relevant

features. In Section 2.3, we explore the capital allocation problem and give a

theorem which characterizes the capital allocation set for these measures. In

fact, we show that for the CEVaRβ risk measure the Euler allocation method is

the only way to allocate the risk capital. Finally, in Section 2.4, we show some

results for CEVaRβ and provide some examples.

2.2. Cumulative Entropic Risk Measures

Let (Ω, F ,P, F̄) be a filtered probability space. We consider the space Rp

of stochastic processes on [0, T ] that are càdlàg, adapted and such that X∗ :=

sup[0,T ] |Xt| ∈ Lp(Ω, F), with 1 ≤ p ≤ ∞. Furthermore, assume that L1(Ω, F ,P)

has a countable dense subset. Notice that, for any 1 ≤ p ≤ ∞, the space Rp

endowed with the norm ||X||Rp = ||X∗||Lp , is a Banach space.

In [24] and [25] the authors developed the theory of convex risk measures on

the space of Rp (ρ : Rp −→ R+). It is within this framework that we develop our

approach. We start by defining a subset of Rp that serves our purposes and with

which we will work for the rest of the chapter.

Definition 2.2.1. We define the subspace Rp
L containing the processes X ∈ Rp

with the following property.

mt(s) = E[exp(−s Xt)] < ∞ , s ≥ 0 ,

for t ∈ [0, T ].

The idea we put forward in this chapter is to use a cumulative risk measure

based on the Entropic Value at Risk that was defined in [2]. That is, following
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[10], we measure the risk of a random process X ∈ Rp
L by defining a cumulative

risk measure ρ : Rp
L −→ R+ as follows. Let ρ0 be a given risk measure on

Lp(Ω, F ,P), i.e. ρ0 : Lp(Ω, F ,P) −→ R, and let ω : [0, T ] −→ R+ be a suitable

weight function, i.e.
∫ T
0 ω(t)dt = 1. Then we can define a cumulative risk measure

ρ : Rp
L −→ R+ based on ρ0 as the weighted aggregate risk of a random process

X ∈ Rp
L. More precisely,

ρ(X) :=
∫ T

0
ρ0(Xt)ω(t)dt . (2.2.1)

An interesting and meaningful choice for a weight function mentioned above can

be a density function for a random time which captures important moments asso-

ciated to the underlined process X = (Xt)t≥0. Such constructions were proposed

and studied in [10]. The features of such measures inherently depend on the

choice of base risk measure ρ0. In fact, if the risk measure ρ0 is coherent then ρ

in (2.2.1) is coherent as well.

Theorem 2.2.1. Let Lp(Ω, F ,P) be the space of financial positions with finite

||.||p and ρ0 be a coherent risk measure on Lp(Ω, F ,P). Then the risk measure

ρ : Rp
L −→ R+, given in (2.2.1), is a coherent risk measure on the space Rp

L.

Proof. First we show the positive homogeneity and translation invariance prop-

erties of ρ. For λ > 0 and m ∈ R we have,

ρ(λX +m) =
∫ T

0
ρ0(λXt +m)ω(t)dt = λ ρ(X)− m

∫ T

0
ω(t)dt ,

which shows the positive homogeneity and translation invariance properties since
∫ T
0 ω(t)dt = 1.

As for monotonicity, if Xt ≤ Yt a.s., then ρ0(Xt) ≥ ρ0(Yt) for t ∈ [0, T ]. Now,

since ω is a positive real valued function, we have ρ0(Xt)ω(t) ≥ ρ0(Yt)ω(t) for any

t ∈ [0, T ] as well. This implies that ρ(X) ≥ ρ(Y ) which proves the monotonicity.

Now using the subadditivity property of ρ0 and since ω is a positive function

we have,

ρ0(Xt + Yt)ω(t) ≤ ρ0(Xt)ω(t) + ρ0(Yt)ω(t) ,

for t ∈ [0, T ]. This directly implies the subadditivity property of ρ. i.e.,

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) .

�

In this chapter, we propose to use the Entropic Value at Riskmeasure (EVaRβ)

as our measure ρ0 in (2.2.1). This yields an interesting family of risk measures on
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the space of bounded stochastic processes. Following [2, 46] we now give a first

definition.

Definition 2.2.2. Let X be a random variable in L∞(Ω, F ,P) with

E[exp(−s X)] < ∞ , s > 0 . (2.2.2)

Then the Entropic Value at Risk, denoted by EVaRβ, is given by

EV aRβ(X) := inf
s>0

lnE[exp(−s X)]− ln β

s
, (2.2.3)

for risk level β ∈ (0, 1).
We can generalize this definition for random variables in Lp(Ω, F ,P) for p ≥ 1,

as long as they meet (2.2.2). The following key result for EVaRβ can be found in

[2].

Theorem 2.2.2. The risk measure EVaRβ from Definition 2.2.2 is a coherent

risk measure. Moreover, for any X ∈ L∞(Ω, F ,P) having property (2.2.2), its

dual representation has the form

EV aRβ(X) = sup
f∈D

EP(−fX) , (2.2.4)

where D = {f ∈ L1
+(Ω, F ,P) | EP[f ln(f)] ≤ − ln β} and

L1
+(Ω, F ,P) = {f ∈ L1(Ω, F ,P) | EP(f) = 1}. (2.2.5)

For the proof we refer to [2].

If we use the risk measure (2.2.3) in our general definition of a cumulative risk

measure (2.2.1), we naturally obtain a risk measure on the space Rp
L that would

inherit some of the key features of the original risk measure.

We now formally introduce the concept of Cumulative Entropic Value at Risk,

denoted by CEVaRβ, on the space Rp
L.

Definition 2.2.3. Let X be a stochastic process in Rp
L and let EVaRβ be the risk

measure in Definition 2.2.2. Then, for a given weight function ω : [0, T ] −→ R+

(i.e.
∫ T
0 ω(t)dt = 1), the Cumulative Entropic Value at Risk, denoted by

CEVaRβ, is defined by

CEV aRβ(X) =
∫ T

0
EV aRβ(Xt)ω(t)dt . (2.2.6)

The main advantage of using (2.2.3) as our based measure is that the resulting

cumulative risk measure (2.2.6) is tractable enough for a wide family of collective

risk models. This comes from the fact that the expectation appearing in (2.2.3) is

merely the Laplace exponent of the random variable Xt (for t ≥ 0). In collective
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risk theory, many of the models used for insurance reserves have closed-form

Laplace transforms, in particular the so-called Lévy insurance risk processes. If

the aggregate claims process is driven by a spectrally negative Lévy processes then

a cumulative entropic risk measure based on the EVARβ is an natural choice to

work with in risk management applications.

The risk measure in Definition 2.2.3 belongs to the general framework of

axiomatic risk measures on the space of stochastic processes developed in [24].

We now study some of its properties.

Corollary 2.2.1. The risk measure CEVaRβ, given in Definition 2.2.3, is a

coherent risk measure on the space Rp
L.

Proof. Since EVaRβ is of the form (2.2.1) with a coherent base risk measure

ρ0, it follows that EVaRβ is a coherent risk measure as a special case of Theorem

2.2.1. �

Now, one can notice that in Definition 2.2.3 the weight function ω plays an

important role. Different choices of weight functions would result in different

cumulative Entropic risk measures. One can naturally think of ω as a density

function that distributes a probability mass over the interval [0, T ]. Interesting

choices would be to use the density function fτ of a suitable stopping time τ ∈
[0, T ], like the first passage time or ruin time. This would penalize certain regions

of the interval [0, T ] according to whether a certain meaningful event is more or

less likely to occur over these regions.

For tractability purposes, in this chapter, we use a uniform weight function,

i.e. we consider ω(t) = 1
T
. In the remaining of the chapter we will be working

with the following subfamily of CEVaR,

CEV aRβ(X) =
1

T

∫ T

0
EV aRβ(Xt)dt . (2.2.7)

Now, the object of our interest in this chapter is to apply the CEVaR in

(2.2.7) within an insurance context where the aggregate claims are modeled by a

spectrally positive Lévy processes (or equivalently, the surplus process is modeled

by a spectrally negative Lévy process). The following proposition enables us to

include a subclass of spectrally negative Lévy processes having m.g.f in the space

Rp for some p ≥ 1. This would enable us to use CEVaR with this class of

processes.

Proposition 2.2.1. Let X be a càdlàg Lévy process with X0 = 0 and let p be a

real number in [1, ∞). Then, the following are equivalent.

(1) X is Lp-integrable.
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(2) X∗
t = sup0≤s≤t |Xs| is Lp-integrable.

Proof. This is a special case of Theorem 25.18 in [81]. �

Remark 2.2.1. It can be seen from Proposition 2.2.1 that the class of L1-

integrable spectrally negative Lévy processes having m.g.f is in the space R1. Thus,

we can model the surplus process of an insurance company using the elements of

this class of processes and apply CEVaR.

2.2.1. Examples

The Cumulative Entropic Risk Measure introduced in Definition 2.2.3 has the

advantage of being tractable enough for a large family of processes which have

moment generating function and that can be used as models for the net-loss

process in (2.1.1). Here we discuss a few examples and compute expressions for

the CEVaR in (2.2.7) for some Lévy insurance risk models. More examples will

be provided in Section 5.5 when we set up our surplus model in Subsection 2.3.2.

2.2.1.1. Brownian Motion with Drift

Let Yt = µt + σWt be a Brownian motion with drift parameter µ and scale

parameter σ for µ < 0, σ > 0. Such a process is used in collective risk theory as the

net-loss process in (2.1.1) for an approximation to the classical Cramer-Lundberg

model ([51]). The moment generating function of Zt = −Yt is

E(e−sZt) = E(esYt) = eµts+ 1
2

σ2s2t .

By direct substitution in (2.2.3) and differentiation with respect to s we have, for

t ∈ [0, T ],

s∗ =

√

−2 ln β

σ2t
.

By direct substitution in (2.2.3) we then have

EV aRβ(Zt) = µt +
1

2
σ

√

−2t ln β − σ ln β√−2 ln β

√
t . (2.2.8)

Direct substitution and integration of (2.2.8) into (2.2.7) results in

CEV aRβ(Z) =
µT

2
− 4σ ln β

3
√−2 ln β

√
T .

2.2.1.2. Gamma Subordinator

Let Yt = µt + Xt be a gamma process with parameters a, b > 0, with drift

parameter µ < 0 and mean E(Yt) = (µ + a
b
)t. The moment generating function



40

of Zt = −Yt is

E(e−sZt) = E(esYt) = eµts−ta ln(1−s/b).

In this case, to obtain EVaRβ(Zt) we need to find s∗ from the following equation.

tas

b − s
+ at ln(1 − s

b
) + ln β = 0 , s ≥ 0 .

The above equation is obtained by applying the moment generating function of

Zt in the definition EVaRβ and by straight-forward differentiation with respect

to s. Unlike the previous examples, there is no closed-form expression for the

solution of this equation. But once s∗ is obtained numerically, we can calculate

EVaRβ(Zt) by direct substitution s∗ in (2.2.3). CEVaRβ(Z) can be obtained by

direct integration of EVaRβ(Zt) over [0, T ].

2.3. Capital Allocation

We now study the problem of capital allocation in an insurance context with

the coherent risk measure CEVaR that we introduced in Section 2.2. A discussion

of the problem of capital allocation for CEVaR, which is a risk measure defined

on Rp
L, must start with an analysis of this problem for EVaR, which is a risk

measure on a subspace of L∞(Ω, F ,P).

Finding the capital allocation for a risk measure on the space of stochastic pro-

cesses typically requires knowledge of its robust representation and its subgradient

set (see [9] for a detailed account on this problem). This robust representation is

typically a hard problem in the space Rp
L that normally requires advanced func-

tional analysis tools. In the case of EVaR we propose to tackle the problem of

finding the capital allocation for CEVaR by finding first the capital allocation

for EVaR and then use the linear relation between EVaR and CEVaR to get the

capital allocation for CEVaR.

We first give some definitions that will be needed throughout this section.

Definition 2.3.1. Let ρ be a coherent risk measure defined on L∞(Ω, F ,P). Now

let D ⊂ L1
+ be the largest set for which the following robust representation holds

true for ρ.

ρ(X) = sup
f∈D⊂L1+

EP(−fX) ∀X ∈ L∞(Ω, F ,P) , (2.3.1)

where L1
+ is the set defined in (1.3.7). The set D is called the determining set of

ρ (see [45]).

The following definition is taken from [27].

Definition 2.3.2. Let ρ be a coherent risk measure defined on L∞(Ω, F ,P) with

determining set D ⊂ L1
+. Let X ∈ L∞(Ω, F ,P). A function f ∈ D is called
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an extreme function for X if ρ(X) = EP(fX) ∈ (−∞, ∞). The set of extreme

functions will be denoted by χD(X).

The following result is taken from [27] and gives conditions for the set of

extreme functions defined above to be non-empty.

Proposition 2.3.1. Let D ⊂ L1
+ be the determining set of a given coherent risk

measure ρ on L∞(Ω, F ,P). Now consider the following set.

L1(D) := {X ∈ L∞(Ω, F ,P) | lim
n−→∞

sup
f∈D

EP[f |X| I{|X|>n}] = 0}. (2.3.2)

If the determining set D is weakly compact and X ∈ L1(D), then the set of

extreme functions for X is not empty, i.e.χD(X) Ó= ∅.
Now, we turn our attention to the concept of capital allocation. Consider

a vector of risks X = (X1, . . . , Xd), such that X i ∈ L∞(Ω, F ,P) for i = 1, . . . , d,

are random variables representing the cash flow or risk exposure of a portfolio

consisting of d risky positions or departments.

Given a coherent risk measure ρ on L∞(Ω, F ,P), we now look at the problem

of how to allocate the total risk of the portfolio ρ
(

X1 + · · ·+Xd
)

among the

different departments such that the individual risk of each one of them is properly

measured.

The following formal definition of capital allocation was proposed by [36] and

[42] and it is the one we set out to study in this chapter. In fact, the following

gives a mathematical definition of capital allocation for a coherent risk measure.

Definition 2.3.3. Consider a coherent risk measure ρ on L∞(Ω, F ,P) and a

vector of risks X = (X1, . . . , Xd) such that X i ∈ L∞(Ω, F ,P) for i = 1, . . . , d. A

fair capital allocation for X is a vector (K1, ..., Kd) ∈ Rd such that

(1)
d∑

i=1

Ki = ρ

(
d∑

i=1

X i

)

,

(2)
d∑

i=1

hiKi ≤ ρ

(
d∑

i=1

hiX i

)

, ∀ h = (h1, . . . , hd) ∈ Rd
+ .

The first condition is called the full allocation property and it simply states

the fact that the total risk of the whole portfolio should be the aggregated risks of

each department. The second condition is called the linear diversification property

of capital allocation. In fact, this condition has a one to one correspondence with

the positive homogeneity and subadditivity of a coherent risk measure ρ (see [57]).

Since we work in this chapter with a coherent risk measure it is somehow natural

to adopt this definition of capital allocation.
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The following is an interesting result characterizing the set of possible such

capital allocations and it is adapted from [27].

Theorem 2.3.1. Let D ⊂ L1
+ be the determining set of a given coherent risk

measure ρ on L∞(Ω, F ,P) and let X = (X1, . . . , Xd) be a vector such that X i ∈
L∞(Ω, F ,P) for i = 1, . . . , d. Consider the following set

G = {(EP(−f X1), . . . ,EP(−f Xd)) | f ∈ D} ⊂ Rd . (2.3.3)

The set U ⊂ Rd of capital allocations for X = (X1, . . . , Xd), satisfying Definition

2.3.3, is convex and bounded and it has the form

U = argmax
x∈G

< e, x > , (2.3.4)

where < ·, · > is the inner product in Rd, e = (1, . . . , 1) and argmax is the set of

points of G for which < e, x > attains its maximum value.

If moreover, X1, . . . , Xd ∈ L1(D) and D is weakly compact, then U can be

identified to be

U =

{
(

EP(−f X1), . . . ,EP(−f Xd)
)

| f ∈ χD

(
d∑

i=1

X i

)}

. (2.3.5)

Proof. In [27], the author provides a proof of the theorem for coherent utility

functions. The result follows by noticing that, for a given coherent risk measure ρ,

if we set ρ∗(X) := −ρ(−X) we obtain a coherent utility function and the result

in [27] holds. So, from ρ(X) = −ρ∗(−X) the results for the statement of our

theorem holds. �

The set G ⊂ Rd in Theorem 2.3.1 is called the generator for X and ρ (see

[27]). The following corollary gives a condition on G for the uniqueness of the

capital allocation.

Corollary 2.3.1. Under the conditions of Theorem 2.3.1. If moreover, G ⊂ Rd is

strictly convex (i.e. its interior is non-empty and its border contains no interval),

then there is a unique capital allocation satisfying Definition 2.3.3.

Proof. See [27] for a proof in terms of coherent utility functions. �

2.3.1. CEVaR and the Capital Allocation Problem

Our main goal in this chapter is to apply cumulative entropic risk measure in

a capital allocation problem. So far, we have discussed key notions of the capital

allocation problem for a risk measure on L∞(Ω, F ,P). In this subsection, we
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apply these results in order to give an answer to the problem of capital allocation

for CEVaR which is a risk measure on Rp
L. Notice that this is a somewhat more

complicated problem since there is a dynamic component to this problem. Here,

this is overcome by the cumulative property of CEVaR
β
. We start by extending

Definition 2.3.3 to the more general notion of capital allocation with respect to

a coherent risk measure on the space Rp
L. The following definition is taken from

[18].

Definition 2.3.4. Let
(

X1
t , . . . , Xd

t

)

t∈[0,T ]
be d random processes in Rp

L repre-

senting d financial positions or departments. Moreover, consider a coherent risk

measure ρ : Rp
L −→ R+ defined on the space Rp

L. A fair capital allocation for
(

X1
t , . . . , Xd

t

)

t∈[0,T ]
with respect to ρ is a vector (L1, ..., Ld) ∈ Rd such that

(1)
d∑

i=1

Li = ρ

(
d∑

i=1

X i

)

,

(2)
d∑

i=1

hiLi ≤ ρ

(
d∑

i=1

hiX i

)

, ∀ h = (h1, . . . , hd) ∈ Rd
+ ,

where
∑d

i=1 X i denotes the process
(

∑d
i=1 X i

t

)

t∈[0,T ]
.

In this section, we show how a capital allocation satisfying Definition 2.3.4

can be obtained when using CEVaR as risk measure. In fact we show that the

border of the set D in the robust representation (2.3.1) for EVaRβ is not a convex

set so leads to the fact that the border of the set G in (2.3.3) is not a convex set as

well. This yields to the uniqueness of the capital allocation for EVaR (Corollary

2.3.1) as well as for CEVaR.

Theorem 2.3.2. Let D be the determining set in the robust representation (2.2.4)

for EVaRβ. Then the convex combination of elements of ∂D is never an element

of ∂D where ∂D = {f ∈ L∞
+ : EP(f ln(f)) = − ln β}.

Proof. It is sufficient to show that for any λ ∈ [0, 1] and any two functions f

and g in ∂D, the function λf + (1 − λ)g is not in ∂D. Define the function H on

the space of positive real line taking real values as follows.

H(x) := x ln x,

for all x ∈ R+.

It is clear that the function H is strictly convex on the positive real line.

Since, H ′(x) = ln x+1 and H ′′(x) = 1
x

> 0 for all x ∈ R+. Now again we define a

new function K on [0, 1] with its values in R by using the composition function
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H(λf + (1 − λ)g) as follows.

K(λ) = EP(H(λf + (1 − λ)g)),

for the fixed functions f and g in ∂D. Notice that we use a slight abuse of

notation, here H(λf + (1 − λ)g) is to be understood point-wise. That is, for

x ∈ R, the function H(λf + (1 − λ)g) −→ H(λf(x) + (1 − λ)g(x)).

If we take the first and second derivatives for the function K, we see that

this function is strictly convex too. K ′(λ) = EP((f − g)(H ′(λf + (1 − λ)g)) and

K ′′(λ) = EP((f − g)2(H ′′(λf + (1 − λ)g)) = (f−g)2

λf+(1−λ)g
> 0. Now, considering

K(0) = EP(H(f)) and K(1) = EP(H(g)) along with the strictly convexity of the

function K, we come up with the inequality

K(λ) = EP(H(λf + (1 − λ)g)) < − ln β ∀λ ∈ (0, 1).

This proves our assertion. �

Now, we are going to characterize the capital allocation satisfying Definition

2.3.4 with respect to CEVaRβ given by (2.2.6). Notice that this seems to be a

more complicated problem since CEVaR
β
is a risk measure defined on the space of

stochastic processes Rp
L. However, this is possible thanks to the cumulative prop-

erty of CEVaR
β
. In fact, this enables us to study the problem of capital allocation

for CEVaRβ through studying the same problem for EVaR
β
. A characterization

theorem for the problem of capital allocation for coherent risk measures on space

of random variables has been proved by [37] in the context of game theory. But in

the following theorem, for the sake of completeness, we provide a different proof

for the capital allocation for EVaR
β
using different approach.

Theorem 2.3.3. Let (X1
t , . . . , Xd

t )0≤t≤T be a vector such that each (X i
t)0≤t≤T ∈

Rp
L (for i = 1, . . . , d) represents the cash-flow or risk exposure from one risk

position or department at time t ∈ [0, T ]. We denote by Xt =
∑d

i=1 X i
t the

portfolio-wide cash-flow produced at time t ∈ [0, T ]. Furthermore, define the

function f t
ρ(u1, . . . , ud) = ρ(

∑d
i=1 uiX

i
t) where ρ is EVaRβ as defined in Definition

2.2.2. Then, the capital allocation satisfying Definition 2.3.4 over the period

[0, T ], with respect to CEVaRβ as defined in (2.2.6), is determined uniquely for

i = 1, . . . , d by

Li =
∫ T

0
Ki

tω(t)dt , (2.3.6)

where Ki
t is

Ki
t =

dρ

dh
(Xt + hX i

t)|h=0 =
∂

∂ui

f t
ρ(1, . . . , 1) 1 ≤ i ≤ d, t ∈ [0, T ] . (2.3.7)
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Proof. From the definition of CEV aRβ it is clear that

CEV aRβ

(

(
d∑

i=1

X i
t)t∈[0,T ]

)

=
∫ T

0
EV aRβ

(
d∑

i=1

X i
t

)

ω(t)dt =
∫ T

0
EV aRβ(Xt)ω(t)dt.

Because of the linear property of integral, studying the problem of capital allo-

cation, both existence and uniqueness of capital allocation, for CEV aRβ can be

reduced to study this problem for EV aRβ. Now, we show that Ki
t provided in

the theorem is the capital allocation for EV aRβ and the vector (X1
t , . . . , Xd

t ) for

a fixed t ∈ [0, T ]. For this first of all we show that the possible capital allocations

for the vector (X1
t , . . . , Xd

t ) are those belonging to the following set.

At := {x ∈ G | f t
ρ(V ) − f t

ρ(e) ≥ < x, V − e >, ∀ V ∈ Rd}, (2.3.8)

where G is given by (2.3.3), e = (1, . . . , 1) and < ., . > is the inner product in

Rd. To show this, we assume that x ∈ G is a capital allocation for the vector

(X1
t , . . . , Xd

t ). Thus, we have f t
ρ(e) =< e, x >. Then, for every V ∈ Rd we have

f t
ρ(V )− f t

ρ(e) ≥ < x, V − e >. Therefore, x ∈ At. Now, assume that x ∈ At, then

f t
ρ(V )−f t

ρ(e) ≥ < x, V −e > for all V ∈ Rd. By replacing V = 2e and V = 1
2
e into

the last inequality we get f t
ρ(e) =< e, x >. Therefore, the set of capital allocation

associated to the vector (X1
t , . . . , Xd

t ) is At. Since, the risk measure EVaRβ is

positive homogeneous, i.e., for all λ > 0 we have EVaRβ(λXt) = λ EVaRβ(Xt), we

deduce that the function fρ above is a homogeneous function. So, by Euler’s theo-

rem on homogeneous functions we have f t
ρ(u1, . . . , un) =

∑d
i=1 ui

∂
∂ui

f t
ρ(u1, . . . , ud)

which implies

f t
ρ(1, . . . , 1) =

d∑

i=1

∂

∂ui

f t
ρ(1, . . . , 1) . (2.3.9)

for (u1, . . . , un) = (1, . . . , 1). Because EV aRβ(Xt) has smooth explicit represen-

tation so partial derivative ∂
∂ui

f t
ρ(1, . . . , 1) exists for all i = 1, . . . , d. Now, referring

to [27] we can see that x =
(

∂
∂ui

f t
ρ(1, . . . , 1)

)

1≤i≤d
belongs in G as well as in At.

This shows that gradient of f t
ρ evaluated at e = (1, . . . , 1) is one choice for capital

allocation of the vector (X1
t , . . . , Xd

t ). To show the uniqueness we refer to any

classical convex analysis textbook to see when the gradient exists then the set At

is a singleton [79]. i.e., the gradient of f t
ρ evaluated at e = (1, . . . , 1) is the only

possible allocation for the vector (X1
t , . . . , Xd

t ). Now to get the capital allocation

for CEV aRβ we just need to multiply Ki
t by ω(t) and take integral w.r.t t. This

finishes the proof. �

Corollary 2.3.2. Under the assumptions of Theorem 2.3.3, the capital allocated

to the department ith for the cumulative risk measure CEV aRβ given by (2.2.7)
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is

Li =
1

T

∫ T

0
Ki

tdt ,

where Ki
t is given by equation (2.3.7).

Proof. By replacing ω(t) = 1
T
into equation (2.3.6) we get the required capital

for the department ith. �

Theorem 2.3.3, gives us a solution to the problem of capital allocation for sto-

chastic processes over a finite time period [0, T ]. Interesting enough, unlike other

solutions to this problem, this capital allocation can be readily computed for a

large family of processes. Now, we turn our attention to an application of our

results.

2.3.2. Capital Allocation for Insurance Lévy Risk Processes

We now apply Corollary 2.3.2 to give an answer to the capital allocation

problem for an insurance risk process. We consider here an insurance company

consisting of n departments. For each department, we let Ri
t be a risk reserve

process of the form (2.1.1). In other words, Ri
t = xi − Y i

t where Y i
t = X i

t − cit

denotes the net-loss claim process related to the i-th department. We recall that xi

is the initial reserve, ci is the loaded premium and X i
t is a model for the aggregate

claims while the index i refers to one of the n departments. In order to allow

for a more rich description of an insurance company, we think of the aggregate

claims process X i
t as the aggregate amount paid out by the department i which is

composed of fractions of m independent classes of claims. That is, let W 1
t , . . . , W m

t

be m independent spectrally positive Lévy process modeling aggregate claims of m

different types. One can think for instance of claims associated with car accidents,

home damage, medical insurance, etc. Then, the aggregate claims X i
t paid out

by the i-th department would be a linear combination of some of these W j
t claims

processes. For example, consider aggregate claims produced by a car insurance

contract. We suppose that one department will pay out property damage coverage

(a fraction of the aggregate claims from the contract) while another department

will pay out third-party liability costs (another fraction of the aggregate claims

from the contract).

Mathematically, we let W 1
t , . . . , W m

t be m independent spectrally positive

Lévy processes having moment generating function(m.g.f) for j = 1, . . . , m. Now,



47

we let each X i
t to be a linear combination of some, or all, of the W 1

t , . . . , W m
t , i.e.

X =











X1
t

X2
t
...

Xn
t











=











a11 . . . a1m

a21 . . . a2m

... . . .
...

an1 . . . anm





















W 1
t

W 2
t
...

W m
t











, (2.3.10)

where aij’s are non-negative real numbers for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

We point out that we chose this structure because it admits a neat solution for

the capital allocation problem through Theorem 2.3.3. One can always fall back

on the more simple case where each department pays out one, and only one, type

of claims as oppose to paying fractions of different types of claims. This would

correspond to having n = m and a diagonal matrix in (2.3.10) with all elements

in the diagonal equal to one yielding X i
t = W i

t for all i. We also point out that

this construction endows the processes Ri’s with a dependence structure through

the aggregate claims X i’s. The next result is one of the main contribution of our

chapter.

Theorem 2.3.4. Consider n risk processes such that (Ri
t)0≤t≤T ∈ Rp

L, for i =

1, . . . , n. Now, let such Ri
t = xi + cit − X i

t where the aggregate risk processes X i
t

be those defined in (2.3.10). Then the capital allocation that satisfies Definition

2.3.4 over the time period [0, T ], for each net-gross process cit − X i
t and with

respect to the risk measure CEVaRβ in (2.2.7) is

Li =
1

T

∫ T

0
Ki

tdt − ci T

2
, (2.3.11)

where

Ki
t = t

m∑

j=1

aijφ
′
j(s

∗
n∑

k=1

akj) , t ∈ [0, T ] , (2.3.12)

and E(esW j
1 ) = eφj(s) for s ≥ 0, φ′

j(0) ≥ 0, 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof. First we want to find the capital allocation with respect to the risk

measure EVaRβ before applying Theorem 2.3.3. For any coherent risk measure

ρ defined on L∞(Ω, F), we have, by the cash-invariant property, that, for each

t ∈ [0, T ]

ρ(
n∑

i=1

Y i
t ) = ρ(

n∑

i=1

−X i
t)−

n∑

i=1

ci t .

That is, in order to find the capital allocation (at t ∈ [0, T ]) in this setting with

respect to a coherent risk measure (in particular for EVaRβ), we just need to find

the capital allocation for each claim process X i
t .
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For a given coherent risk measure ρ on L∞(Ω, F), let us define the function
f t

ρ(u1, . . . , un) := ρ(
∑n

i=1 −uiX
i
t) for t ∈ [0, T ]. Taking into account the structure

of the processes X1
t , . . . , Xn

t , we can write, for t ∈ [0, T ]

f t
ρ(u1, . . . , un) = ρ(

n∑

i=1

−uiX
i
t)

= ρ



−


(
m∑

j=1

u1a1jW
j
t ) + (

m∑

j=1

u2a2jW
j
t ) + · · ·+ (

m∑

j=1

unanjW
j
t )









= ρ

(

−
(

(
n∑

i=1

uiai1)W
1
t + (

n∑

i=1

uiai2)W
2
t + · · ·+ (

n∑

i=1

uiain)W
m
t

))

.

If we let

dj =
n∑

k=1

ukakj, (2.3.13)

we can write a more compact form

f t
ρ(u1, u2, . . . , un) = ρ

(

−(d1W
1
t + d2W

2
t + · · · + dmW m

t )
)

. (2.3.14)

By using the independence of principal factors W i, we have, for t ∈ [0, T ]

ln
(

E(es(d1W 1
t +d2W 2

t +···+dmW m
t ))

)

= ln
(

Πm
j=1E(e

sdjW j
t )

)

m∑

j=1

ln
(

E(esdjW j
t )

)

= t
m∑

j=1

φj(sdj) ,

where the last equality comes from E(esW j
t ) = etφj(s).

If we specialize the above equations to the case of EVaR, then equation (2.3.14)
becomes, for t ∈ [0, T ]

f t
EV aRβ

(u1, u2, . . . , un) = EV aRβ

(
−(d1W 1

t + d2W 2
t + · · · + dmW m

t )
)
= inf

s≥0

t
∑m

j=1
φj(sdj) − lnβ

s
.

(2.3.15)

Now, consider the right-hand side of equation (2.3.15). By taking derivatives with

respect to s we have, for t ∈ [0, T ],

∂

∂s

(

t
∑m

j=1 φj(sdj)− ln β

s

)

=
st

∑m
j=1 djφ

′
j(sdj)− t

∑m
j=1 φj(sdj) + ln β

s2
.

(2.3.16)

By setting equation (2.3.16) equal to zero, we can find the value s∗(t, u1, . . . , un)

that minimizes the right-hand side in (2.3.15). As indicated by the notation, this

minimum value s∗(t, u1, . . . , un) is a function of t and ui for 1 ≤ i ≤ n but in the

following we use the more simple notation s∗ for this value. Notice that the value

s∗ is in fact the infimum too. Based on convexity property of Laplace transform

for one-sided Lévy processes and the condition φ′
j(0) ≥ 0, the infimum in (2.3.15)

should be reached at some point we denote s∗ (see [63]).
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According to Theorem 2.3.3, the Euler allocation is the only possible allocation

method for EVaRβ. So, in order to find the capital allocation, it is sufficient to

find the derivative of the right-hand side of equation (2.3.15) with respect to

the variable ui and evaluate it at the point u = (1, 1, . . . , 1). Straight-forward

differentiation yields, for i = 1, . . . , n and t ∈ [0, T ]

∂

∂ui

f t
EV aRβ

(u1, u2, . . . , un) =
s∗t

∑m

j=1
(s∗

i dj + aijs∗)φ′
j(s

∗dj) − ts∗
i

∑m

j=1
φj(s

∗dj) + s∗
i lnβ

s∗2
, (2.3.17)

where we use the notation s∗
i =

∂s∗

∂ui
.

Since s∗ is the solution of setting equation (2.3.16) equal to zero, we can

simplify (2.3.17) as follows, for i = 1, . . . , n.

∂

∂ui

f t
EV aRβ

(u1, u2, . . . , un) = t
m∑

j=1

aijφ
′
j(s

∗dj) . (2.3.18)

Evaluating equation (2.3.18) at the point u = (1, 1, . . . , 1) yields the allocated

capital associated to the ith department at time t ∈ [0, T ]. Namely, for i = 1, . . . , n

Ki
t =

∂

∂ui

f t
EV aRβ

(u1, u2, . . . , un) = t
m∑

j=1

aijφ
′
j(s

∗
n∑

k=1

akj) . (2.3.19)

Using Corollary 2.3.2 and integratingKi
t in (2.3.19) yields the allocated capital

satisfying Definition 2.3.4 with respect to the risk measure CEVaRβ. Thus, the

allocated capital to ith department over the period [0, T ] with respect to CEVaRβ

is

Li =
1

T

∫ T

0
Ki

tdt − ci T

2
.

This completes the proof. �

2.4. Examples

In this section, we are interested in examining Theorem 2.3.4 for some ex-

amples in order to illustrate how this capital allocation can be computed. We

present capital allocations for the examples already discussed in Subsection 2.2.1.

As we will see, there are some cases for which we can obtain an explicit

expression for the capital allocation. In others, such an explicit form is not

available but a solution can still be obtained by standard numerical methods.

The difficulty lies in solving equation (2.3.16) when is set to be equal to zero.

2.4.1. Brownian Motion with Scale Parameter

Consider the general set-up defined through equation (2.3.10). Let the prin-

cipal factors W 1
t , . . . , W m

t to be m independent Brownian motions with different

scale parameters σi > 0 and m.g.f E(esW i
t ) = e

1
2

σ2i s2t. We now only need to apply
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Theorem 2.3.4. By solving equation (2.3.16) equal to zero we get, for t ∈ [0, T ]

s2t
m∑

j=1

d2jσ
2
j − 1

2
s2t

m∑

j=1

d2jσ
2
j + ln β = 0, (2.4.1)

where dj is given in (2.3.13). Or equivalently,

s∗ =

(

−2 ln β

t
∑m

j=1 d2jσ
2
j

) 1
2

. (2.4.2)

Substituting (2.4.2) into equation (2.3.19) at the point u = (1, 1, . . . , 1) we can

compute the value Ki
t for i = 1, . . . , n. That is,

Ki
t = t

1
2

(

−2 ln β
∑m

j=1 σ2
j (

∑n
k=1 akj)2

) 1
2 m∑

j=1

σ2
j aij

n∑

k=1

akj , (2.4.3)

for t ∈ [0, T ]. Thus, the allocated capital to the ith department with respect to

CEVaRβ can be computed to be

Li =
2

3
T
1
2

(

−2 ln β
∑m

j=1 σ2
j (

∑n
k=1 akj)2

) 1
2 m∑

j=1

σ2
j aij

n∑

k=1

akj − ci T

2
. (2.4.4)

Now as a special case, let the principal factors W 1
t , . . . , W m

t to be m inde-

pendent Brownian motions with common scale parameter σ > 0 and common

Laplace transform E(esW i
t ) = e

1
2

σ2s2t. So, (2.4.2) will be reduced to

s∗ =

(

−2 ln β

σ2t
∑m

j=1 d2j

) 1
2

, (2.4.5)

and the value Ki
t is then, for t ∈ [0, T ]

Ki
t = σt

1
2

(

−2 ln β
∑m

j=1(
∑n

k=1 akj)2

) 1
2 m∑

j=1

aij

n∑

k=1

akj . (2.4.6)

Thus, the allocated capital, Li, to the ith department satisfying Definition 2.3.4

with respect to CEVaRβ for this special case can be written as

Li =
2

3
T
1
2σ

(

−2 ln β
∑m

j=1(
∑n

k=1 akj)2

) 1
2 m∑

j=1

aij

n∑

k=1

akj − ci T

2
. (2.4.7)
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2.4.2. Cramér- Lundberg Process

Consider again the general set-up defined through equation (2.3.10). We let

the principal factors W 1
t , . . . , W m

t to be m independent compound Poisson pro-

cesses with different jump means 1
µi

> 0. i.e.,

W i
t =

N i
t∑

k=1

Zi
k, (2.4.8)

where the number of claims is assumed to follow a Poisson process (N i
t )0≤t≤T

with intensity λi which is independent of the positive and i.i.d random variables

(Zi
n)n≥1 representing claim sizes. The m.g.f for (2.4.8) is

E(esW i
t ) = exp [λi(ψi(s)− 1)] , (2.4.9)

where ψi(s) is the m.g.f for claim process for i = 1, . . . , m. By solving equation

(2.3.16) equal to zero we get, for t ∈ [0, T ]

t
m∑

j=1

λj

(

sdjψ
′
j(sdj)− ψj(sdj) + 1

)

+ ln β = 0, (2.4.10)

where dj is given in (2.3.13). Let s∗ be a solution of (2.4.10) satisfying (2.3.15)

which also is a function of t. Evaluating s∗ at the point u = (1, 1, . . . , 1) and

substituting into (2.3.19) yields the capital allocation value Ki
t for i = 1, . . . , n.

That is,

Ki
t = t

m∑

j=1

aijλjψ
′
j(s

∗
n∑

k=1

akj), (2.4.11)

for t ∈ [0, T ]. Thus, the allocated capital to the ith department satisfying Defini-

tion 2.3.4 with respect to CEVaRβ is given by

Li =
1

T

∫ T

0
Ki

tdt − ci T

2
, (2.4.12)

for i = 1, . . . , n. As a special case assume that claim sizes follow exponential

distributions with mean 1
µi
for i = 1, . . . , m. In this case we have ψi(s) = µi

µi−s
for

s < µi. Therefore, equation (2.4.11) will be reduced to the following equation for

t ∈ [0, T ].

st
m∑

j=1

djλj

(

µj

(µj − sdj)2
− 1

µj − sdj

)

+ ln β = 0 , s < min

(

µj

dj

)

1≤j≤m

,

(2.4.13)

where dj is given in (2.3.13). This is not as straight-forward as the equiva-

lent equation for the previous example. Nonetheless, the value s∗ satisfying

(2.4.13) and (2.3.15) can be obtained numerically. Evaluating at the point u =
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(1, 1, . . . , 1) and substituting into (2.3.19) yields the capital allocation value Ki
t

for i = 1, . . . , n. That is,

Ki
t = t

m∑

j=1

aij

(

λjµj

(µj − s∗ ∑n
k=1 akj)2

)

, (2.4.14)

for t ∈ [0, T ] and where s∗ is the solution of equation (2.4.13). Thus, the allocated

capital to the ith department satisfying Definition 2.3.4 with respect to CEVaRβ

is given by

Li =
1

T

∫ T

0
Ki

tdt − ci T

2
, (2.4.15)

for 1 ≤ i ≤ n.

2.4.3. Gamma Subordinator

Assume the general set-up defined through equation (2.3.10). We let the prin-

cipal factors W 1
t , . . . , W m

t to be m independent gamma processes with different

parameters αi, bi > 0 and m.g.f

E(esW i
t ) =

(

1− s

b i

)−αit

= exp
[

−tαi ln
(

1− s

b i

)]

, s < bi . (2.4.16)

We now only need to apply Theorem 2.3.4. By solving equation (2.3.16) equal

to zero we get, for t ∈ [0, T ]

t
m∑

j=1

αj

(

ln(1− sdj

bj

) + s
dj

bj − sdj

)

+ ln β = 0 , s < min

(

bj

dj

)

1≤j≤m

, (2.4.17)

where dj is given in (2.3.13). This equation like equation (2.4.13) is not as

straight-forward as the equivalent equation for the example with Brownian mo-

tion. Nonetheless, the value s∗ satisfying (2.4.17) and (2.3.15) can be obtained nu-

merically. Evaluating at the point u = (1, 1, . . . , 1) and substituting into (2.3.19)

yields the capital allocation value Ki
t for i = 1, . . . , n. That is,

Ki
t = t

m∑

j=1

aij

(

αj

bj − s∗ ∑n
k=1 akj

)

, (2.4.18)

for t ∈ [0, T ] and where s∗ is the solution of equation (2.4.17). Thus, the allocated

capital to the ith department satisfying Definition 2.3.4 with respect to CEVaRβ

is given by

Li =
1

T

∫ T

0
Ki

tdt − ci T

2
, (2.4.19)

for 1 ≤ i ≤ n.



Chapter 3

OPTIMAL PORTFOLIO PROBLEM USING
ENTROPIC VALUE AT RISK: WHEN THE

UNDERLYING DISTRIBUTION IS
NON-ELLIPTICAL

Abstract
This chapter is devoted to study the optimal portfolio problem. Harry Markowitz’s

Ph.D. thesis prepared the ground for the mathematical theory of finance [70]. In mod-

ern portfolio theory, we typically find asset returns that are modeled by a random

variable with an elliptical distribution and the notion of portfolio risk is described by

an appropriate risk measure. In this chapter, we propose new stochastic models for

the asset returns that are based on Jumps-Diffusion (J-D) distributions [76, 80]. This

family of distributions is more compatible with stylized features of asset returns. On

the other hand, in the past decades, we find attempts in the literature to use well-

known risk measures, such as Value at Risk and Expected Shortfall, in this context.

Unfortunately, one drawback with these previous approaches is that no explicit for-

mulas are available and numerical approximations are used to solve the optimization

problem. In this chapter, we propose to use a new coherent risk measure, so-called,

Entropic Value at Risk(EVaR) [2], in the optimization problem. For certain models,

including a jump-diffusion distribution, this risk measure yields an explicit formula for

the objective function so that the optimization problem can be solved without resorting

to numerical approximations.

This chapter is a joint research work with Andrew Luong; see [74] 1.

1The contribution I have made to this project was in different ways. My first contribution was to
define the main problem of the project and how to solve it. After discussing with Prof. Luong,
we jointly identify the framework and body of the project, then I proposed to apply Entropic
Value at Risk (EVaR) as a risk measure in modern portfolio problem. I also proposed to use
different Jump-Diffusion processes to model returns in modern portfolio problem. I prepared
the mathematical ground for the project by recalling required theorems and definitions in the
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3.1. Introduction

The problem of optimal portfolio which is nowadays introduced in a new

framework, called Modern Portfolio Theory (MPT), has been extensively studied

in the past decades. The MPT is one of the most important problems in financial

mathematics. Harry Markowitz [70] introduced a new approach to the problem of

optimal portfolio so calledMean-Variance analysis. He chose a preferred portfolio

by taking into account the following two criteria. The expected portfolio return

and the variance of the portfolio return. In fact, Markowitz preferred one portfolio

to another one if it has higher expected return and lower variance.

Later, we find attempts in the literature to replace variance with well-known

risk measures, such as Value at Risk and Expected Shortfall. For instance, Em-

brechts et al.[39] have shown that replacing mean-variance with any other risk

measure having the translation invariant and positively homogeneous proper-

ties under elliptical distributions yields to the same optimal solution. Basak and

Shapiro [13] studied an alternative version of Markowitz problem by applying VaR

for controlling the incurred risk in an expected utility maximization framework

which allows to maximize the profit of the risk takers. Studying the Markowitz

model has been done in the same framework by considering the CVaR as risk

measure [78]. Later, Acerbi and Simonetti [1] studied the same problem as the

one studied in [13] with spectral risk measures. Recently, Cahuich and Hernandez

[21] solved the same problem within the framework of utility maximization using

the class of distortion risk measures [87].

There are both practical and theoretical weaknesses that can be made about

the relevant framework of optimal portfolio problem in the literature. One of

such criticisms relates to the asset returns model itself. In fact, elliptical distri-

bution is the most and relevant distribution which is used to model asset returns

in MPT. One of the reason for choosing this distribution ties with the tractability

of this class of distribution. But, in practice financial returns do not follow an

elliptical distribution (see [29]). A second objection focuses in the choice of a

measure of risk for the portfolio. Unfortunately, one drawback with the previous

works, for instance [13, 78], is that no explicit formulas are available and numer-

ical approximations are used to solve the optimization problem. The stochastic

models which we are proposing for the asset returns in this chapter are based

on Jumps-Diffusion (J-D) distributions [76, 80]. This family of distributions

is more compatible with stylized features of asset returns and also allows for a

straight-forward statistical inference from readily available data. We also tackle

context. I also contributed in this project by writing up the first draft of it, then polishing it
with Prof. Luong to get the final version.
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the second issue by choosing a suitable (coherent) risk measure as our objective

function. In this chapter, we propose to use a new coherent risk measure, so-

called, Entropic Value at Risk(EVaR) [2, 46], in the optimization problem. As

this risk measure is based on Laplace transform of asset returns, applying it to the

jump-diffusion models yields an explicit formula for the objective function so that

the optimization problem can be solved without using numerical approximations.

The organization of this chapter is as follows. In Section 2, we provide a

summary of properties about coherent risk measures and Entropic Value at Risk

measure. We also continue this section by presenting a typical representation

of optimal portfolio problem where we minimize the risk of the portfolio for a

given level of portfolio return. In Section 3, we introduce our two models to

fit as asset returns and we apply them into the optimization problem. We also

derive some distributional properties for these models and finish Section 3 by

discussing about the KKT conditions and optimal solutions. In Section 4, we

discuss about parameters estimation method which we have used in this chapter.

We also provide a numerical example for three different stocks and analyze the

efficient frontiers for EVaR, mean-variance and VaR for these three stocks. In

this chapter we use optimization package in MATLAB to do the computations.

3.2. Preliminaries

3.2.1. Coherent Risk Measures

We are considering L∞(Ω, F ,P) as the set of all bounded random variables

representing profit/loss for financial positions. The following definition is taken

from [45].

Definition 3.2.1. . A function ρ : L∞(Ω, F ,P) → R is a Coherent Risk measure

if

1- ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for any X, Y ∈ L∞ and λ ∈
[0, 1].(Convexity)

2- ρ(λX) = λρ(X) for any X ∈ L∞ and λ > 0.(Positive Homogeneity)

3- ρ(X +m) = ρ(X)− m for any X ∈ L∞ and m ∈ R.(Translation Invariant)

4- ρ(Y ) ≤ ρ(X) if X, Y ∈ L∞ and X ≤ Y .(Decreasing)

In this chapter, we propose to use the Entropic Value at Riskmeasure (EVaRα)

which is a coherent risk measure. Following [2] we now give a first definition.

Definition 3.2.2. Let X be a random variable in L∞(Ω, F ,P) such that

E[exp(−s X)] < ∞ , s > 0 .
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Then the Entropic Value at Risk, denoted by EVaRα, is given by

EV aRα(X) := inf
s>0

lnE[exp(−s X)]− lnα

s
, (3.2.1)

For a given level α ∈ (0, 1).
The following key result for EVaRα can be found in [2, 46].

Theorem 3.2.1. The risk measure EVaRα from Definition 3.2.2 is a coherent

risk measure. Moreover, for any X ∈ L∞(Ω, F ,P) having Laplace transform, its

dual representation has the form

EV aRα(X) = sup
f∈D

E(−fX) ,

where D = {f ∈ L1
+(Ω, F ,P) | E[f ln(f)] ≤ − lnα} and L1

+(Ω, F ,P) is defined in

(1.3.7).

For a comprehensive study on this risk measure we may refer to [2, 46].

3.2.2. Optimal Portfolio Problem

Consider a portfolio in a financial market with n different assets. Denote the

assets returns by the vector R = (R1, . . . , Rn) in which Ri shows the return of

the i-th asset. The returns are random variables and their mean is denoted by

µ = (µ1, . . . , µn) where µi is the the expected return of the i-th asset, µi = E(Ri).

Moreover, assume ρ as a risk measure. Then following [78], we have this definition.

Definition 3.2.3. the optimal portfolio problem can be written mathematically

as follows.

min
ω

ρ(
n∑

i=1

ωiRi)

subject to
n∑

i=1

ωiµi = µ∗,

n∑

i=1

ωi = 1,

ωi ≥ 0, (3.2.2)

where µ∗ is a given level of return.

Applying various risk measures along with different models for random returns

yields to interesting problems in both theoretical and practical point of views.

For instance, the classical mean-variance model introduced by Markowitz [70] is

a special case of the model introduced in Definition 3.2.3. In fact, Markowitz

used variance as a risk measure and apply it into the objective function given in

(3.2.2) and he also considered returns from the portfolio are normally distributed.
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Remark 3.2.1. It has been shown in [39] that if we assume the return variables
follow elliptical distributions(like multivariate normal distribution), then the so-

lution for the Markowitz mean-variance problem will be the same as the optimal

solution for optimal portfolio problem (3.2.2) by minimizing any other risk mea-

sure having the translation invariant and positively homogeneous properties for a

given level of return.

[54] has shown in his PhD thesis that for two different examples of ellipti-

cal distributions(normal and Student t) the portfolio decomposition for Expected

Shortfall and Value at Risk are the same as the one for standard deviation.

Referring to Remark 3.2.1 we see that if the underlying distribution is ellip-

tical, then for any coherent risk measure the optimal solution for the problem in

(3.2.2) is the same as the optimal solution for the classical model by Markowitz.

3.3. Set up of the Models

In this section, we propose two multivariate models which do not follow ellip-

tical distributions. These models which are based on jump-diffusion distributions

can be fitted as the underlying models for returns. Distributional properties of

these models will be also studied.

3.3.1. Non-Elliptical Multivariate Models 1,2

Multivariate Model 1. Consider the following multivariate model:

R = X +H +
M∑

k=1

Wk, (3.3.1)

where R, X, H, Wk are n-variate vectors such that

R = (R1, . . . , Rn) ,

X = (X1, . . . , Xn) ,

Wk = (Wk1, . . . , Wkn) ,

H =





N1∑

k=1

Yk1, . . . ,
Nn∑

k=1

Ykn



 .

Here, Xi follows the normal distribution with Xi ∼ N(µ̃i, σ2) and Xi’s are

mutual independent for i = 1, . . . , n. Wk = (Wk1, . . . , Wkn) is assumed to fol-

low the multivariate normal distribution with Wk ∼ N(µ, A) for each k where
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µ = (µ1, . . . , µn) is mean and A is n × n covariance matrix. Moreover, Wk’s are

assumed to be mutually independent. The random variable M follows the Pois-

son distribution with intensity γ and is independent of Wk for each k. Nk are

assumed to have Poisson distribution with intensity λk and mutually independent

for k = 1, . . . , n. The Yki are assumed to be mutually independent for all k and

all i = 1, . . . , n and Yki is normal distributed with Yki ∼ N(θi, σ2
i ). Finally, Nk

and Ykn are mutually independent as well as X, H,
∑M

k=1 Wk.

This model can be driven from a jump-diffusion model which is the solution

for a stochastic differential equation [76]. We can rewrite this multivariate model

as follows.

R1 = X1 +
N1∑

k=1

Yk1 +
M∑

k=1

Wk1,

R2 = X2 +
N2∑

k=1

Yk2 +
M∑

k=1

Wk2,

...

Rn = Xn +
Nn∑

k=1

Ykn +
M∑

k=1

Wkn.

Multivariate Model 2. The model (6.5) in [80] prepared the ground to in-

troduce another non-elliptical multivariate model which can be fitted for portfolio

returns. This proposed model is given as follows.

R = X +
M∑

k=1

Wk. (3.3.2)

Here, R, X, Wk are n-variate vectors such that

R = (R1, . . . , Rn) ,

X = (X1, . . . , Xn) ,

Wk = (Wk1, . . . , Wkn) ,

where X = (X1, . . . , Xn) follows the multivariate normal distribution with X ∼
N(µ̃, Q) where µ̃ is mean and Q is n×n covariance matrix. Wk = (Wk1, . . . , Wkn)

is assumed to follow the multivariate normal distribution with Wk ∼ N(µ, A) for
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each k where µ = (µ1, . . . , µn) is mean and A is n × n covariance matrix. More-

over, Wk’s are assumed to be mutually independent. The random variable M

follows the Poisson distribution with intensity λ and is independent of Wk for

each k. Also, X,
∑M

k=1 Wk are mutually independent.

Like the model (3.3.1) introduced in Subsection 3.1 we can rewrite the multi-

variate model (3.3.2) as

R1 = X1 +
M∑

k=1

Wk1,

R2 = X2 +
M∑

k=1

Wk2,

...

Rn = Xn +
M∑

k=1

Wkn.

3.3.2. Distributional Properties of the Multivariate Models 1, 2

Consider the multivariate models (3.3.1) and (3.3.2). As these models are

given in terms of summation of multivariate normal and compound Poisson dis-

tributions we can provide the joint density functions for each of these models.

[77] gives the following presentation for the density function of model (3.3.1) and

also provides a proof but we give a proof here for the sake of completeness.

Proposition 3.3.1. Consider the model (3.3.1). Then the joint density functions
of the vector R is given by

fR(r) =
∞∑

k1=0

· · ·
∞∑

kn=0

∞∑

m=0

(

e−λ1λk1
1

k1!

)

. . .

(

e−λnλkn
n

kn!

) (

e−γγm

m!

)

e− 1
2
(r−u)T −1(r−u)′

(2π)
n
2 |T | 12

,

(3.3.3)

where r = (r1, . . . , rn) ∈ Rn, u = (µ̃1 + k1θ1, . . . , µ̃n + knθn) + mµ and T =

mA + diag(σ2 + k1σ
2
1, . . . , σ2 + knσ2

n).

Proof. The idea we put forward to prove this proposition is using conditional

density function. Since the Xi are mutual independent with normal distribution

so the vector X = (X1, . . . , Xn) follows a multivariate normal distribution with

mean (µ̃1, . . . , µ̃n) and covariance matrix σ2In where In is the identity matrix of

order n. Moreover by conditioning on each of Ni and using independency between
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Yji we obtain

L




Ni∑

j=1

Yji|Ni = ki



 = N(kiθi, kiσ
2
i ), (3.3.4)

for each 1 ≤ i ≤ n. Thus, independency between Ni and Yji for all i and j yields

L (H|N1 = k1, . . . , Nn = kn) = N
(

(k1θ1 + · · ·+ knθn), diag(k1σ
2
1, . . . , knσ2

n)
)

.

(3.3.5)

Conditioning on the random variable M and using the independency between Wi

and M gives the following conditional distribution.

L
(

M∑

i=1

Wi|M = m

)

= N(mµ, mA). (3.3.6)

Putting (3.3.5) and (3.3.6) together and using independency between X, H and
∑M

i=1 Wi provide the conditional distribution of R given N1 = k1, . . . , Nn =

kn, M = m. i.e.,

L (R|N1 = k1, . . . , Nn = kn, M = m) = N(u, T ). (3.3.7)

(3.3.7) gives the conditional density of R given N1 = k1, . . . , Nn = kn, M = m.

To get the density function of R we need to multiply the conditional density by

the probability functions associated to each Ni and M and add them up. This

completes the proof. �

If we follow the same procedure done for Proposition 3.3.1 and apply it for the

model (3.3.2) we can obtain the density function for the vector R.

Remark 3.3.1. The density function for the model (3.3.2) is

fR(r) =
∞∑

m=0

(

e−λλm

m!

)

e− 1
2
(r−u)T −1(r−u)′

(2π)
n
2 |T | 12

, (3.3.8)

where r = (r1, . . . , rn) ∈ Rn, u = µ̃ + mµ and T = Q + mA.

In the sequel of this part we provide the Laplace exponents for both models

(3.3.1) and (3.3.2).

Lemma 3.3.1. Consider the multivariate model (3.3.1). Then the Laplace expo-
nent for the vector R = (R1, . . . , Rn) at u = (u1, . . . , un) is

logE(e−uR) = −uµ̃t+
σ2

2
uut+γ(e−uµt+uAut −1)+

n∑

k=1

λk(e
−θkuk+

σ2
k

u2
k

2 −1), (3.3.9)

where ut, µt and µ̃t are the column vectors associated to the row vectors u, µ and

µ̃ = (µ̃1, . . . , µ̃n) respectively.
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Proof. The independency between X, H and
∑M

k=1 Wk and using this point that

Laplace transform for normal and compound Poisson distributions exists, yield

the result. �

Lemma 3.3.2. Consider the multivariate model (3.3.2). Then the Laplace expo-
nent for the vector R = (R1, . . . , Rn) at u = (u1, . . . , un) is

logE(e−uR) = −uµ̃t + uQut + λ(e−uµt+uAut − 1). (3.3.10)

Proof. The Laplace transform for Gaussian distributions and compound Poisson

distributions exists. So, (3.3.10) can be driven by using the independency between

X and
∑M

k=1 Wk. �

Now, we apply EVaRα along with the model proposed in (3.3.1) to the optimal

portfolio problem (3.2.2). Thus (3.2.2) is written as follows.

min
ω,s

{ n∑

k=1

(−µ̃kωk +
σ2

2
sω2

k) +
γ(e−s

∑n

k=1
µkωk+s2ωAωt − 1)

s

+

∑n
k=1 λk(e

−θkωks+
s2σ2

k
ω2

k
2 − 1) − lnα

s

}

subject to
n∑

i=1

(µ̃i + λiθi + µiγ)ωi = µ∗,

n∑

i=1

ωi = 1,

ωi ≥ 0, s ≥ 0. (3.3.11)

Applying EVaRα and the model (3.3.2) into the optimal portfolio problem

(3.2.2) yield

min
ω,s

n∑

k=1

−µ̃kωk + sωQωt +
λ(e−s

∑n

k=1
µkωk+s2ωAωt − 1) − lnα

s

subject to
n∑

i=1

(µ̃i + µiλ)ωi = µ∗,

n∑

i=1

ωi = 1,

ωi ≥ 0, s ≥ 0. (3.3.12)
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3.3.3. Necessary and Sufficient Conditions for Optimal Problems,
KKT Conditions

In this section we would like to identify the necessary and sufficient conditions

for optimality of problems (3.3.11) and (3.3.12). In fact, we want to examine the

Karush-Kuhn-Tucker (KKT) conditions for these problems and study whether

the constrained problems in the last two sections have optimal solutions. Being

the objective functions for both problems (3.3.11) and (3.3.12) smooth enough

(they are continuously differentiable functions), will help us to verify the KKT

conditions much easier.

3.3.3.1. KKT Conditions for Optimal Problem with the multivariate model 1

The KKT conditions provide necessary conditions for a point to be optimal

point for a constrained nonlinear optimal problem. We refer to Chapter 5 page 241

[14] for a comprehensive study of KKT conditions for nonlinear optimal problems.

Here, we study these conditions for the model (3.3.11) by using the same notation

used in page 200 [14]. We rewrite problem (3.3.11) as follows.

min
ω,s

f(ω, s) =
{ n∑

k=1

(−µ̃kωk +
σ2

2
sω2

k) +
γ(e−s

∑n

k=1
µkωk+s2ωAωt − 1)

s

+

∑n
k=1 λk(e

−θkωks+
s2σ2

k
ω2

k
2 − 1) − lnα

s

}

subject to h1(ω, s) =
n∑

i=1

(µ̃i + λiθi + µiγ)ωi − µ∗ = 0,

h2(ω, s) =
n∑

i=1

ωi − 1 = 0,

gi(ω, s) = −ωi ≤ 0, ∀1 ≤ i ≤ n,

gn+1(ω, s) = −s ≤ 0. (3.3.13)

Let ωs = (ω, s) be a regular point2 for the problem (3.3.11). Then, the point

ωs is a local minimum of f subject to the constraints in (3.3.13) if there exists

Lagrange multipliers ν1, . . . , νn+1 and η1, η2 for the Lagrangian function L =

f(ωs) +
∑n+1

k=1 νkgk(ωs) +
∑2

j=1 ηjhj(ωs) such that the followings are true.

(1) ∂L
∂ωi

= −µ̃i + sσ2ωi + γ(−µi + 2s2(ωA)i)
(e

−s
∑n

k=1
µkωk+s2ωAωt

)
s

+ λi(−θi +

s2σ2ωi)
e−θkωks+

s2σ2
k

ω2
k

2

s
− νi + (µ̃i + λiθi + µiγ)η1 + η2 = 0, i = 1, . . . , n,

2Let ωs be a feasible point. Then, ωs is said to be a regular point if the gradient vectors ∇gi(ωs)
for i ∈ {i : gi(ωs) = 0, i = 1, . . . , n + 1} are linearly independent.
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(2) ∂L
∂s
=

∑n
k=1

σ2

2
ω2

k +
(−γ

∑n

k=1
µkωk+γs2ωAωt−γ)(e

−s
∑n

k=1
µkωk+s2ωAωt

)+γ

s2
+

∑n

k=1

(

(λk(−θkωks+s2σ2
k

ω2
k

−1))

(

e−θkωks+
s2σ2

k
ω2

k
2

))

+
∑n

k=1
λk+lnα

s2
= 0,

(3) νk ≥ 0, k = 1, . . . , n+ 1,

(4) νkgk = 0, k = 1, . . . , n+ 1,

(5) gk ≤ 0, k = 1, . . . , n+ 1, and hj = 0, j = 1, 2,

where (ωA)i is the ith entry of the row vector (ωA).

Remark 3.3.2. Since, the functions h1 and h2 in (3.3.13) are linear and the

functions gi for i = 1, . . . , n are convex, then by referring to Section 5.7 of [14] we

see that the feasible region Ω = {ωs : gk(ωs) ≤ 0, k = 1, . . . , n+ 1, and hj(ωs) =

0, j = 1, 2} is a convex set. On the other hand, the risk measure ρ = EvaR1−α is

a convex function subject to the variables ωi and s for all i = 1, . . . , n. We refer

to [2] for a proof. Thus, the objective function f in problem (3.3.13) is convex too.

We see that any local minimum for problem (3.3.13) is a global minimum
too and the KKT conditions are also sufficient. See [14] page 212.

3.3.3.2. KKT Conditions for Optimal Problem with the multivariate model 2

In this section we will provide the KKT conditions for the optimal problem

(3.3.12). We show that these conditions are also sufficient for a solution to be an

optimal one. First, we rewrite the problem (3.3.12) in the following way.

min
ω,s

f(ω, s) =
n∑

k=1

−µ̃kωk + sωQωt +
λ(e−s

∑n

k=1
µkωk+s2ωAωt − 1) − lnα

s

subject to h1(ω, s) =
n∑

i=1

(µ̃i + µiλ)ωi − µ∗ = 0,

h2(ω, s) =
n∑

i=1

ωi − 1 = 0,

gi(ω, s) = −ωi ≤ 0, ∀1 ≤ i ≤ n,

gn+1(ω, s) = −s ≤ 0. (3.3.14)

By applying the same definition and notation used in the previous section we

can provide the KKT conditions as follows.

(1) ∂L
∂ωi

= −µ̃i + 2s(ωQ)i + λ(−sµi + 2s2(ωA)i)
(e

−s
∑n

k=1
µkωk+s2ωAωt

)
s

= 0, i =

1, . . . , n,

(2) ∂L
∂s

= ωAωt +
λ(−

∑n

k=1
µkωk+2s2ωAωt−1)(e

−s
∑n

k=1
µkωk+s2ωAωt

)+λ+lnα

s2
= 0,
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(3) νk ≥ 0, k = 1, . . . , n+ 1,

(4) νkgk = 0, k = 1, . . . , n+ 1,

(5) gk ≤ 0, k = 1, . . . , n+ 1, and hj = 0, j = 1, 2,

where (ωA)i and (ωQ)i are the ith entry of the row vectors (ωA) and (ωQ) re-

spectively.

Remark 3.3.3. Since the feasible region Ω = {ωs : gk(ωs) ≤ 0, k = 1, . . . , n +

1, and hj(ωs) = 0, j = 1, 2} and the objective function for the optimal problem

(3.3.14) are convex, so again by referring to [14] we can see that the KKT con-

ditions are also sufficient and any local minimum for problem (3.3.14) is a

global minimum as well.

3.4. Efficient Frontier Analysis

In this section we study the optimization problem (3.2.2) for multivariate

model 1 given in (3.3.1). In fact, we analyze the efficient frontier for this problem

when the risk measures are EVaR and standard deviation. Our analysis shows

that we have different portfolio decomposition corresponding to EVaR and stan-

dard deviation as the underlined model for returns is followed by a non-elliptical

distribution (model 1). Thanks to the closed form for EVaR we can use opti-

mization packages in mathematical software to solve the optimization problem

(3.3.11) without using simulation techniques like Monte Carlo simulation.

3.4.1. Parameters Estimation

Studying the optimization problems (3.3.11) and (3.3.12) requires knowing

the parameters of the multivariate models (3.3.1) and (3.3.2). To estimate these

parameters we use a method of estimation for joint parameters so called Extended

Least Square(ELS)[89]. In fact, assume that we are given a sample of n individ-

uals. Let yi = [yi1. . . . , yipi
] denote the ith subject’s 1 × pi vector of repeated

measurements where the yi are assumed to be independently distributed with

mean and covariance matrices given by

E(yi) = µ̄i(β) (3.4.1)

Cov(yi) = Gi(β, θ),

where β and θ are vectors of unknown parameters which should be estimated.

Extended Least Square(ELS) estimates are obtained by minimizing the following
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objective function.

f(β, θ) =
n∑

i=1

{(yi − µ̄i(β))G
−1
i (β, θ)(yi − µ̄i(β))

′ + ln |Gi(β, θ)|}, (3.4.2)

where µ̄i(β) and Gi(β, θ) are defined in (3.4.1) and |Gi| is the determinant of the
positive definite covariance matrix Gi. Following [89] it can be seen that ESL is

joint normal theory maximum likelihood estimation. In fact, minimizing (3.4.2)

is equivalent to maximizing the log-likelihood function of the yi when the yi are

independent and normally distributed with mean anc covariance matrices given

by (3.4.1).

3.4.2. Data Sets

We construct the portfolio by choosing 3 stocks which are Intel Corp. (http://

finance.yahoo.com/q/hp?s=INTC&a=08&b=20&c=2010&d=07&e=26&f=2013&g=w), Ap-

ple Inc. (http://finance.yahoo.com/q/hp?a=08&b=20&c=2010&d=07&e=26&f=

2013&g=w&s=AAPL%2C+&ql=1) and Pfizer Inc. (PFE) (http://finance.yahoo.

com/q/hp?a=08&b=20&c=2010&d=07&e=26&f=2013&g=w&s=PFE%2C+&ql=1). We

use the close data ranged from 20/09/2010 to 26/08/2013. The weekly close

data are converted to log return. i.e., if we consider Pn as the close price for the

week nth then log return is Rn = lnPn − lnPn−1.

Now consider the model (3.3.1). We try to apply this model to these three

stocks and determine the parameters in (3.4.1) in order to solve the optimization

problem (3.4.2). In this case we have n = 153, the number of our sample and yi

is a 1 × 3 row vector associated to the mean of returns. Then the vector µ̄i is

µ̄i = (µ̃1 + λ1θ1 + µ1γ, µ̃2 + λ2θ2 + µ2γ, µ̃3 + λ3θ3 + µ3γ) , (3.4.3)

for all 1 ≤ i ≤ 153. Let A = (aij)3×3 be the covariance matrix for the multivari-
ate normal distribution Wk. Then, the covariance matrix Gi in (3.4.1) has the
following representation.

Gi =





σ2 + λ1(θ21 + σ21) + γ(a11 + µ21) γ(a12 + µ1µ2) γ(a13 + µ1µ3)

γ(a12 + µ1µ2) σ2 + λ2(θ22 + σ22) + γ(a22 + µ22) γ(a23 + µ2µ3)

γ(a13 + µ1µ3) γ(a23 + µ2µ3) σ2 + λ3(θ23 + σ23) + γ(a33 + µ23)



 ,

(3.4.4)

for all 1 ≤ i ≤ 153. Therefore, by plugging (3.4.3) and (3.4.4) into (3.4.2) we

get the objective function for the ELS method. Doing the same procedure for

the model (3.3.2) we can find the parameters in (3.4.1). Let Q = (qij)3×3 and

A = (aij)3×3 be the covariance matrices for the multivariate normal distribution

X and Wk respectively. Then we have

µ̄i = (µ̃1 + µ1λ, µ̃2 + µ2λ, µ̃3 + µ3λ) , (3.4.5)
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and

Gi =







q11 + λ(a11 + µ2
1) q12 + λ(a12 + µ1µ2) q13 + λ(a13 + µ1µ3)

q12 + λ(a12 + µ1µ2) q22 + λ(a22 + µ2
2) q23 + λ(a23 + µ2µ3)

q13 + λ(a13 + µ1µ3) q23 + λ(a23 + µ2µ3) q33 + λ(a33 + µ2
3)







,

(3.4.6)

for all 1 ≤ i ≤ 153.

In the following we provide the results for the portfolio decomposition cor-

responding to the three stocks, EVaR95% and standard deviation. This results

have been driven for the model 1 given in (3.3.1). In order to estimate our pa-

rameters for the model 1 we call fminsearch in MATLAB, where the function to

be optimized is the objective function introduced in (3.4.2). To find the efficient

frontiers of EVaR95% we also call fmincon in MATLAB, where the function to

be optimized is the objective function in (3.3.11). Figure 3.1 and 3.2 show the

efficient frontiers based on model 1 for EVaR95% and standard deviation respec-

tively. Tables 3.1 and 3.2 show the portfolio compositions and the corresponding

EVaR95% and standard deviation respectively.

Return EVaR95% Apple Intel PFE

0.0400 0.0738 0.2743 0.4140 0.3117

0.0480 0.0604 0.3210 0.3482 0.3308

0.0560 0.0494 0.3682 0.2827 0.3491

0.0640 0.0410 0.4159 0.2175 0.3667

0.0720 0.0351 0.4638 0.1524 0.3838

0.0800 0.0316 0.5120 0.0875 0.4005

0.0880 0.0301 0.5602 0.0226 0.4172

0.0960 0.0334 0.6772 0.0000 0.3228

0.1040 0.0493 0.8308 0.0000 0.1692

0.1120 0.0740 0.9844 0.0000 0.0156

Tab. 3.1. Portfolio composition and corresponding EvaR95% under
model 1
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Fig. 3.1. Efficient frontier for EVaR95% under non-elliptical model 1

Return Deviation Apple Intel PFE

0.0400 0.1219 0.2674 0.4098 0.3228

0.0480 0.1143 0.3194 0.3472 0.3333

0.0560 0.1119 0.3715 0.2847 0.3438

0.0640 0.1147 0.4235 0.2222 0.3543

0.0720 0.1227 0.4755 0.1596 0.3648

0.0800 0.1359 0.5276 0.0971 0.3754

0.0880 0.1543 0.5797 0.0346 0.3857

0.0960 0.1811 0.6772 0.0000 0.3228

0.1040 0.2409 0.8308 0.0000 0.1692

0.1120 0.3386 0.9844 0.0000 0.0156

Tab. 3.2. Portfolio composition and corresponding standard de-
viation under model 1
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Fig. 3.2. Efficient frontier for standard deviation under non-
elliptical model 1



Chapter 4

MULTIVARIATE DATA-BASED NATURAL
RISK STATISTICS

Abstract
In [53], the concept of natural risk statistics is introduced as a data-based risk

measure, i.e. as an axiomatic risk measure defined in the space Rn. In this chapter,

we set to generalize this notion to bivariate data sets (more generally, multivariate

data sets) by defining an axiomatic risk measure on the space Rn × Rn. This

construction requires the definition of a suitable order in R2. This allows us to give a

coherent characterization of these bivariate natural risk statistics. Some examples and

applications of these measures are provided.

This chapter is a joint research work with Mélina Mailhot and Manuel Morales;

see [69] 1.

4.1. Introduction

Designing risk measures with the right properties is an important problem from a

practical point of view and, at the same time, it leads to interesting mathematical

constructions. The usual approach is to postulate some reasonable axioms and

then characterize the set of risk measures that satisfy these axioms. Coherent

risk measures presented in [6] and insurance risk measures provided in [90] are

examples of such constructions.

Along these lines, the concept of natural risk statistics has been introduced

and studied in [8] and [53]. An interesting feature of this risk measure is that

is defined on Rn, i.e. the new risk measure assigns a value to a finite sample

1In this project, my contribution was in different ways. The main problem in this project was
mostly joint identified by Prof. Morales, Prof. Mailhot and I. Then, I came up with the proof
of the main theorem. Applying main results of the project in actuarial and financial context,
providing different examples and interpretation of results obtained from examples were other
contributions I have made to this project. I also contributed in this project by writing up the
first draft of it, then polishing it with Prof. Morales and Prof. Mailhot to get the final version.
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(x1, . . . , xn). This function measures the risk associated with a data sample from

a financial (or insurance) position without further assumption on the underlying

distribution. One can argue that this is often the kind of information upon which

a risk manager relies to perform any risk analysis.

A natural risk statistics is a risk measure ρn that assigns a numerical value to

a finite collection of data (x1, . . . , xn). Any collection of data can be seen as an

element of Rn where n is the number of data available at the time. Under a set

of axioms, it can be shown that natural risk statistics are characterized by the

existence of a weight set Wn such that

ρn(x) = sup
w∈Wn

n∑

i=1

wix(i),

where x(i) is the order statistics.

This characterization is what makes natural risk statistics consistent with indus-

trial practices. These risk measures can be found as the supremum over a set of

different scenarios defined by wi. The main goal of this note is to extend this

notion of natural risk statistics to the space Rn × Rn so that we can deal with

bivariate data samples. We also provide illustrations showing the straightforward

extension to higher dimensions.

In this setting, we suppose that we have a bivariate data set denoted by

{(x1, y1), . . . , (xn, yn)}. Naturally, each observation can be seen as element of

R2 but, for our approach, we choose to see the whole data set as an element of

Rn × Rn, i.e. as {(x1, . . . , xn), (y1, . . . , yn)}. In this note, we discuss how an ax-

iomatic risk measure ρ can be defined on the space Rn ×Rn. In particular, we give

a characterization of such risk measures and some of their interesting properties.

Our motivation for studying functions on Rn × Rn is then two-fold, this space

allows us to measure the risk associated with all finite collections of bivariate

observations. On the other hand, extending the theory of coherent and convex

risk measures to include risk measures on Rn ×Rn is an interesting mathematical

exercise on its own right.

Now, since we are interested in measuring the risk of bivariate portfolios, we felt

compelled to define our risk measure through a vector-valued risk function. We

find such an extension in [56] where they generalize the notion of coherent risk

measures (as introduced in [6]) in order to allow for random portfolios taking val-

ues in Rd. Their motivation to introduce such vector-valued risk measures is that

investors are in general not able to aggregate their portfolio because of liquid-

ity problems and/or transaction costs between the different security markets. In

other words, a vector-valued risk measure is defined as a map from L∞ × · · · × L∞
︸ ︷︷ ︸

d−times



71

(the set of bounded random portfolios) into a subset of Rn for some n ≤ d. This

is, the risk of a multivariate portfolio composed of n positions is measured by a

vector of d risk outcomes, i.e. ρ : L∞ × · · · × L∞
︸ ︷︷ ︸

d−times

→ Rn.

Here, we extend the notion of the natural risk statistics, introduced in [53],

to the space Rn × Rn. This generalization is carried out along the lines of the

construction in [56] and as such, the end result is a set-valued risk measure which

follows an axiomatic structure. This is carried out through the definition of a

couple ordering on the space R2 which in turn allows us to order elements in

Rn × Rn.

The chapter is organized as follows. In Section 4.2 we provide a brief discussion

of the concept of natural risk statistics, formal definitions and related theorems.

In Section 4.3, we detail the axiomatic construction of a vector-valued natural

risk statistics on Rn × Rn. In this section, we define a couple ordering for the

space R2, an axiomatic definition of bivariate data-based risk measure as well as

a robust representation. In Section 4.4, we discuss an alternative characterization

of the bivariate data-based risk measure via acceptance sets. Finally, in Section

4.5, we provide some practical examples that illustrate the interesting features of

the proposed risk measures.

4.2. Natural risk statistics

The concept of natural risk statistics was first introduced in [53]. This notion

attempts to move away from a modeled-based risk measure towards a data-based

risk measure. Indeed, more often than not, a risk manager would have a data

sample of a risky position from which risk must be assessed. Unlike coherent and

convex risk measures, as introduced in [6] and [45], the notion of natural risk

statistics makes no further assumption on the model behind the observations.

In fact, in the presence of data, coherent risk measures lack robustness features

with respect to outliers in a given data sample (x1, ..., xn) (see for instance [31]

and [53]). It turns out that there is an incompatibility between robustness and

coherence for natural risk statistics (see [31]). This fact is documented in [3] and

is a consequence of the very characterization of natural risk statistics. This is yet

another motivation behind this contribution.

In order to proceed with our discussion, we briefly present in this section some

definitions and results regarding natural risk statistics. We start with the ax-

iomatic definition of a natural risk statistics which is stated here for finite (Rn)

and infinite (l∞ or cl) data sets.
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4.2.1. Definition and properties

In the following definition we consider a data sets representing "loss" data for an

insurance company rather than profit.

Definition 4.2.1. ([8, 53]) Let A be either one of spaces Rn, l∞ or cl. A function

ρ : A −→ R is a natural risk statistics if it is:

(1) Component wise positive homogeneous, i.e.

ρ(λX) = λρ(X), ∀ X ∈ A ,

for any λ ≥ 0.

(2) Component wise translation invariant, i.e.

ρ(X + c1) = ρ(X) + c, ∀ X ∈ A, c ∈ R,

where 1 = (1, . . . , 1
︸ ︷︷ ︸

n−times

) if A = Rn and 1 = (1, 1, . . . ) if A = l∞ or cl.

(3) Component wise increasing, i.e.

ρ(X) ≤ ρ(Y ) ,

for all X ≤ Y in A. Here, the inequality X ≤ Y must be understood in

the component wise sense.

(4) Component wise comonotone subadditive, i.e. if

(xi − xj)(yi − yj) > 0 for any j Ó= i, then

ρ(x1 + y1, . . . , xn + yn) ≤ ρ(x1, . . . , xn) + ρ(y1, . . . , yn) ,

for all X, Y ∈ Rn, and

ρ(x1 + y1, x2 + y2, . . . ) ≤ ρ(x1, x2, . . . ) + ρ(y1, y2, . . . ) ,

for all X, Y ∈ l∞ or cl.

(5) Symmetric, i.e.

ρ(X) = ρ(X ij) ,

for all X ∈ A and all i, j > 0. Here the sequence X ij is the element in A

which is equal component wise to X except for the i-th and j-th component

which are interchanged.

Moreover, if ρ satisfies only 2., 3. and 5. we say it is a general symmetric risk

measure.

We notice that if A = Rn, then Definition 4.2.1 is the one in [3] and [53]. If A =

l∞ or cl, then Definition 4.2.1 is an extended definition of natural risk statistics

for infinite data sets.
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Natural risk statistics can be interpreted as a weight vector allowed to each com-

ponents of a vector of data. In this section we recall two main representations

presented for natural risk statistics and subadditive natural risk statistics.

We refer to [53] for a thorough discussion related to the proof of the following

theorems.

Theorem 4.2.1. Let D := {X ∈ R
n | x1 ≤ x2 ≤ ... ≤ xn} and let Xos represent

the order statistics of X, i.e. Xos := (x(1), ..., x(n)) := Xπ for some π ∈ Sn, such

that Xπ ∈ D where Sn is the set of all permutations for {1, . . . , n}. Moreover,

assume P = {ω̃ = (ω1, . . . , ωn) ∈ Rn | ∑n
i=1 ωi = 1}.

(1) For an arbitrarily given set of weights W ⊂ P, the function

ρ̂(X) := sup
W ∈W

n∑

i=1

wix(i), ∀X ∈ R
n, (4.2.1)

is a natural risk statistic.

(2) Conversely, if ρ̂ is a natural risk statistic, then there exists a closed convex

set of weights W ⊂ P such that (4.2.1).

The following is a somewhat stronger representation characterizing subadditive

natural risk statistics.

Theorem 4.2.2. Let D, P and Xos be as in Theorem 4.2.1.

(1) For an arbitrarily given set of weights W ⊂ P ∩ D, the function

ρ̂(X) := sup
W ∈W

n∑

i=1

wix(i), ∀X ∈ R
n,

is a subadditive natural risk statistic, i.e. satisfies axiom 4.

(2) Conversely, suppose the natural risk statistic ρ̂ is subadditive. Then there

exists a closed convex set of weights W ⊂ P ∩ D such that (4.2.1).

A natural risk statistic represents a risk measure of the observed data X =

(x1, ..., xn). For a justification of the concept, and a thorough comprehensive

study of natural risk statistics as well as a detailed comparison to other classes

of risk measure, we refer to [53] and [90].

4.3. Multivariate Data-based Natural Risk Statistics

In the last decade, financial industry as well as actuarial researchers and quantita-

tive risk managers have started to accord great importance to the risk assessment

of dependence structures. It is indeed common to have situations, in both in-

surance and finance, where multivariate models are needed in order to capture

the risk of dependence across potentially correlated positions or losses. Moti-

vated by this need, recent research has concentrated on studying risk measures
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in the multivariate setting. We find, for instance, in [56], the authors intro-

duce an axiomatic definition for coherent vector-valued risk measures which is

defined based on a proposed portfolio ordering. In [16], the author introduces a

quantile-based risk measure for multivariate financial positions "the vector-valued

Tail-conditional-expectation (TCE)". This extension is compatible with the mul-

tivariate framework introduced in [56]. In [22], the authors describe a general

framework for multivariate risk measures, where the risk measure takes values in

an abstract cone. They apply depth-trimmed (or central) regions and show that

there is a close relation between this concept and the axiomatic definition for

multivariate risk measures they propose. In [40], the authors introduce the mul-

tivariate lower and upper orthant VaR. In [32], the authors study the bivariate

lower and upper orthant VaR. In particular, they provide new characterizations

of the bivariate lower and upper orthant VaR and also derive desired properties

of these bivariate risk measures. The author in [52] also studies set-valued risk

measures.

Just like in the univariate case, existing multivariate risk measures are model-

based as opposed to data-based. We set to study data-based risk measures in

the multivariate case. The natural framework for this would be the development

of a comprehensive construction of the natural risk statistics. Thus, the main

contribution of this chapter is to construct a multivariate data-based risk measure

or a multivariate version of the concept of natural risk statistics as introduced in

[53]. Such a construction will endow us with a novel way of assessing dependence

risk within multivariate data.

In this section, we give a definition of bivariate data-based risk measure and a

representation for it in the bivariate setting. Natural extensions to higher di-

mensions are straight-forward but notationally cumbersome. We suppose that

we have a bivariate data set denoted by {(x1, y1), . . . , (xn, yn)}. These should be

understood as observations coming from a portfolio composed of two positions or

lines of business. Naturally, each observation can be seen as element of R2 but,

for our purposes, we choose to see the whole data set as an element of Rn×Rn, i.e.

as {(x1, . . . , xn), (y1, . . . , yn)}. In other words, a data set of n paired observations

is now seen as coupled pair of vectors each in Rn.

In order to carry out the axiomatic construction of bivariate data-based risk

measures along the lines of the robust representation of data-based univariate

natural risk statistics, we first need a suitable definition couple ordering in R2.

Definition 4.3.1. Let (x1, y1) and (x2, y2) be two elements of R
2. Then, we say

that (x1, y1) ≤co (x2, y2) if and only if x1 + y1 ≤ x2 + y2 (and (x1, y1) <co (x2, y2)

if and only if x1 + y1 < x2 + y2). Here we refer "co" to couple ordering.
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Notice that this ordering makes sense from a financial or insurance point of view

where each pair (xi, yi) represents one observation coming from a portfolio com-

posed of two, different and possibly dependent, positions or lines of business.

Then, the sum xi + yi is modeling one observation of the aggregate value of the

whole portfolio. Ordering two data sets of such portfolio according to this aggre-

gate order gives a certain degree of importance to the total value of the position

as opposed to the value of each component.

Interestingly, we can now define the order statistics for a given bivariate

data set using this ordering. Given n observations of a bivariate portfolio,

{(x1, y1), . . . , (xn, yn)}, we can now write (x, y)(i) for the ith smallest pair of ob-

servations {(xj, yj)}1≤j≤n according to the aggregate ordering given in Definition

4.3.1, i.e.

(x, y)(1) ≤co (x, y)(2) ≤co · · · ≤co (x, y)(n−1) ≤co (x, y)(n) . (4.3.1)

In the case of having more than one pair with the same aggregate value, we come

up with different versions of the order statistics associated to the given bivariate

data set.

Moreover, this couple ordering implies a convenient ordering on the space Rn×Rn,

which is the space we need for our application since we chose to see this data in

the form of ((x1, . . . , xn), (y1, . . . , yn)). Indeed, this definition allows us to order

two bivariate data-sets as follows,

Definition 4.3.2. Let ((x1
1, x1

2, . . . , x1
n), (y

1
1, y1

2, . . . , y1
n)) and

((x2
1, x2

2, . . . , x2
n), (y

2
1, y2

2, . . . , y2
n)) be two elements of Rn × Rn. Then, we

say that ((x1
1, x1

2, . . . , x1
n), (y

1
1, y1

2, . . . , y1
n)) ≤co ((x2

1, x2
2, . . . , x2

n), (y
2
1, y2

2, . . . , y2
n)) if

and only if (x1
k, y1

k) ≤co (x2
k, y2

k) for all k = 1, . . . , n.

Definition 4.3.2 can be easily extended to the multivariate version. In fact, we

use the same couple ordering introduced in Definition 4.3.1 to compare elements

in Rn × · · · × Rn.

This couple ordering induces an equivalence relation on Rn × Rn.

Definition 4.3.3. Let ((x1
1, x1

2, . . . , x1
n), (y

1
1, y1

2, . . . , y1
n)) and

((x2
1, x2

2, . . . , x2
n), (y

2
1, y2

2, . . . , y2
n)) be two elements of Rn × Rn. Then, we

say that
(

(x1
1, x1

2, . . . , x1
n), (y

1
1, y1

2, . . . , y1
n)

)

∼
(

(x2
1, x2

2, . . . , x2
n), (y

2
1, y2

2, . . . , y2
n)

)

,

if and only if
(

(x1
1, x1

2, . . . , x1
n), (y

1
1, y1

2, . . . , y1
n)

)

≤co

(

(x2
1, x2

2, . . . , x2
n), (y

2
1, y2

2, . . . , y2
n)

)

,
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and
(

(x1
1, x1

2, . . . , x1
n), (y

1
1, y1

2, . . . , y1
n)

)

≥co

(

(x2
1, x2

2, . . . , x2
n), (y

2
1, y2

2, . . . , y2
n)

)

,

This relation gives us equivalence classes for Rn ×Rn. Without loss of generality

we consider all portfolios of a class to be equally risky in an aggregate value sense.

In this context, such ordering seems reasonable when the overall value of the

portfolio is the main feature of concern. Under this perspective, two portfolios

can be compared if one of them consistently produces observations that have a

larger aggregate value.

4.3.1. Definition and Representation Theorem

We can now give a formal definition of a bivariate data-based risk measure. In

fact, any bivariate data-based risk measure ρ : Rn × Rn → P(R2) is a set-valued

function which for any bivariate data set in Rn × Rn assigns a subset of R2

containing of vectors. Here, P(R2) is the power set of R2. These vectors are all

equals in the sense of couple ordering. That is, they all have the same aggregate

value under the couple ordering in Definition 4.3.1. In the following, we provide

an axiomatic definition for data-based risk measures assigning a single vector in

R2. Thanks to the couple ordering in Definition 4.3.1 which enables us to reduce

studying the case of set-valued data-based risk measures to the single vector-

valued data-based risk measures.

Definition 4.3.4. A function ρ : Rn × Rn → R2 is a bivariate data-based risk

measure if:

(1) It is positive homogeneous and translation invariant component wise, i.e.,

ρ [a (x̃, ỹ) + b (1,1)] = a ρ [(x̃, ỹ)]+b (1,1) , ∀ (x̃, ỹ) ∈ Rn×Rn , a ≥ 0 , b ∈ R ,

where 1 = (1, 1, . . . , 1) ∈ Rn.

(2) It is component-wise monotonic, i.e.,

ρ
[

(x̃1, ỹ1)
]

≤co ρ
[

(x̃2, ỹ2)
]

,

for all (x̃1, ỹ1) ≤co (x̃2, ỹ2) in Rn × Rn.

(3) It is component-wise comonotone subadditive, i.e.,

ρ
[

(x̃1, ỹ1) + (x̃2, ỹ2)
]

≤co ρ
[

(x̃1, ỹ1)
]

+ ρ
[

(x̃2, ỹ2)
]

,

for all (x̃1, ỹ1) and (x̃2, ỹ2) in Rn × Rn such that,
[

(x1
i + y1

i ) − (x1
j + y1

j )
] [

(x2
i + y2

i ) − (x2
j + y2

j )
]

≥ 0 ,

for any i Ó= j.
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(4) It is permutation invariant, i.e.,

ρ [((x1, . . . , xn), (y1, . . . , yn))] = ρ [((xi1 , . . . , xin
), (yi1 , . . . , yin

))] ,

for any permutation (i1, . . . , in) of (1, 2, . . . , n).

Remark 4.3.1. We can extend the axioms proposed in Definition 4.3.4 in the

case of set-valued data-based risk measures too. Assume that ρ is a set-valued

data-based risk measure. For instance, we say ρ satisfies in the component-wise

monotonic property if the following hold.

(u, v) ≤co (w, z),

for all (x̃1, ỹ1) ≤co (x̃2, ỹ2) in Rn × Rn and for all (u, v) ∈ ρ [(x̃1, ỹ1)], (w, z) ∈
ρ [(x̃2, ỹ2)].

We can easily see that the first two axioms in Definition 4.3.4 are enough to

guarantee the continuity of the function ρ. We state this in the following result.

Proposition 4.3.1. A function ρ : Rn × Rn → R2 satisfying the axioms 1. and

2. in Definition 4.3.4 is a continuous function.

Proof. For every (x̃1, ỹ1) ∈ Rn × Rn , ǫ > 0 and (x̃2, ỹ2) satisfying |x1
i − x2

i | < ǫ

and |y1
i −y2

i | < ǫ , i = 1, . . . , n, we have (x̃1, ỹ1)−ǫ(1,1) <co (x̃2, ỹ2) <co (x̃1, ỹ1)+

ǫ(1,1). By the monotonicity in Axiom 2., we have ρ [(x̃1, ỹ1)] − ǫ(1,1)) <co

ρ [(x̃2, ỹ2)] <co ρ [(x̃1, ỹ1)]+ǫ(1,1)). Using Axiom 1., this last inequality becomes,

ρ
[

(x̃1, ỹ1)
]

− ǫ(1, 1) <co ρ
[

(x̃2, ỹ2)
]

<co ρ
[

(x̃1, ỹ1)
]

+ ǫ(1, 1) ,

which establishes the continuity of ρ. �

We are now in a position to state the main result of this chapter. The following

theorem, gives a necessary and sufficient condition to characterize bivariate data-

based risk measures. In fact, we show that every bivariate data-based risk measure

has a representation as follows. In the following theorem, we assume that we have

just a unique order statistics for a given bivariate data set meaning that for a given

bivariate data set we do not have more than one pair with the same aggregate

value under the couple ordering given in Definition 4.3.1. We extend the following

theorem for the case of having more than one version of order statistics for a given

bivariate data set after the proof of the following theorem.

Theorem 4.3.1. Let (x̃, ỹ) = ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) be an element of

Rn × Rn representing a bivariate data set of observations {(x1, y1), . . . , (xn, yn)}.
And let (x, y)(1), . . . , (x, y)(n) be the associated order statistics with respect to the

couple ordering as given in (4.3.1).
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Then a function ρ : Rn × Rn → P(R2) is a bivariate data-based risk measure if

and only if there exists a set of weights W = {w̃ = (w1, . . . , wn) | ∑n
i=1 wi =

1 and wi ≥ 0 ∀ 1 ≤ i ≤ n} ⊂ Rn such that

ρ [(x̃, ỹ)] = sup
w̃∈W

n∑

i=1

wi(x, y)(i), ∀(x̃, ỹ) ∈ Rn × Rn. (4.3.2)

Proof. First, we show the "if" part of the theorem. Suppose ρ accepts the

representation in (4.3.2). Then it is obvious that ρ satisfies axioms 1. and 4.

of Definition 4.3.4 in the sense we explained in Remark 4.3.1. In order to verify

axiom 2., let us take two elements (x̃1, ỹ1) ≤co (x̃2, ỹ2) of Rn ×Rn. By definition,

this means (x1
i , y1

i ) ≤co (x2
i , y2

i ), i = 1, . . . , n. In terms of the order statistics we

can write,

(x1, y1)(i) ≤co (x2, y2)(i) ∀i = 1, . . . , n.

In turn, this implies that,

ρ
[

(x̃2, ỹ2)
]

= sup
w̃∈W

n∑

i=1

wi(x
2, y2)(i) ≥co sup

w̃∈W

n∑

i=1

wi(x
1, y1)(i) = ρ

[

(x̃1, ỹ1)
]

,

which shows that ρ satisfies axiom 2.

In order to verify axiom 3., consider again two elements (x̃1, ỹ1), (x̃2, ỹ2) of Rn ×
Rn. We notice that, if (x̃1, ỹ1) and (x̃2, ỹ2) are comonotonic, then there exists

a permutation (i1, . . . , in) of (1, 2, . . . , n) such that (x1
i1

, y1
i1
) ≤co (x1

i2
, y1

i2
) ≤co

· · · ≤co (x1
in

, y1
in
) and (x2

i1
, y2

i1
) ≤co (x2

i2
, y2

i2
) ≤co · · · ≤co (x2

in
, y2

in
).

Hence, we have ((x̃1, ỹ1)+(x̃2, ỹ2))(j) = (x1
ij

, y1
ij
)+(x2

ij
, y2

ij
) = (x1, y1)(j)+(x2, y2)(j)

for j = 1, 2, . . . , n. Therefore,

ρ
[

(x̃1, ỹ1) + (x̃2, ỹ2)
]

= ρ
[

(x̃1 + x̃2), (ỹ1 + ỹ2)
]

= sup
w̃∈W

n∑

i=1

wi

(

(x1 + x2), (y1 + y2)
)

(i)

= sup
w̃∈W

n∑

i=1

wi

(

(x1, y1)(i) + (x2, y2)(i)
)

≤co sup
w̃∈W

n∑

i=1

wi(x
1, y1)(i)

+ sup
w̃∈W

n∑

i=1

wi(x
2, y2)(i)

= ρ
[

(x̃1, ỹ1)
]

+ ρ
[

(x̃2, ỹ2)
]

,

which implies that ρ satisfies axiom 3.
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Now, for the " only if" part, it turns out to be a more complex task. We need

to exhibit the set of weights W described in Theorem 4.3.1 and show that any

function ρ satisfying the axioms accepts such a representation. Inspired by the

proof of the main theorem in [53], we start by defining the set B = {(x̃, ỹ) ∈
Rn × Rn | (x1, y1) ≤co (x2, y2) ≤co · · · ≤co (xn, yn)}. In fact, we only need to

prove the ”only part” for this set B as by using axiom 4 we can always have a

new rearrangement for any element (x̃, ỹ) ∈ Rn × Rn such that this new element

will be in B. The following two lemmas about this set B are needed in order

to continue with the proof of the "only if" part. In these lemmas, we are going

to find a set of weights W which used to reach the representation (4.3.2) for

ρ [(·, ·)]. Finding this set of weights needs to apply an important theorem in

convex analysis so-called supporting hyperplane theorem. More technical detail

are provided in the following lemmas. Thanks to the continuity of ρ [(·, ·)], we just
need to prove these lemmas for the interior points of B. The results for boundary
points can be obtained by approximating the boundary points by the interior

points, and by using continuity of the function ρ [(·, ·)] . It is worth to point out

that in the following two lemmas we assume that ρ [(·, ·)] is a vector-valued risk

measure which takes its value in R2. We then finish the proof of Theorem 4.3.1

for the case ρ : Rn × Rn → P(R2).

Lemma 4.3.1. Let B = {(x̃, ỹ) ∈ Rn × Rn | (x1, y1) ≤co (x2, y2) ≤co · · · ≤co

(xn, yn)} and denote Bo to be the interior of B. (z̃, z̃′) Moreover, let us consider a

fixed (z̃, z̃′) ∈ Bo and any ρ : Rn ×Rn → R2 satisfying axioms 1− 4 in Definition

4.3.4. If ρ [(z̃, z̃′)] = (1, 1) then there exists a weight w̃ = (w1, . . . , wn) ⊂ Rn such

that the homogeneous function λ [(x̃, ỹ)] :=
∑n

i=1 wi(xi, yi), satisfies

λ [(z̃, z̃′)] = (1, 1), (4.3.3)

λ [(x̃, ỹ)] <co (1, 1) ∀(x̃, ỹ) ∈ B and ρ [(x̃, ỹ)] <co (1, 1). (4.3.4)

Proof. Consider the set D = {(x̃, ỹ) | ρ [(x̃, ỹ)] <co (1, 1)} ∩ B. Now, consider a
function ρ : Rn × Rn → R2 satisfying axioms 1.-4. in Theorem 4.3.1. Take two

arbitrary elements, (x̃1, ỹ1) and (x̃2, ỹ2) of Rn × Rn. By construction, we know

that (x̃1, ỹ1) and (x̃2, ỹ2) are comonotonic. It now follows from axioms 1. and 3.

imply that the set D is convex, and, therefore, the closure D̄ of D is also convex.

For any ǫ > 0, since, ρ [(z̃, z̃′) − ǫ(1,1)] = ρ [(z̃, z̃′)] − ǫ(1, 1) = (1, 1) − ǫ(1, 1) <co

(1, 1), it follows that (z̃, z̃′) − ǫ(1,1) ∈ D. Since, (z̃, z̃′) − ǫ(1,1) tends (z̃, z̃′) as

ǫ ↓ 0, we know that (z̃, z̃′) is a boundary point of D because ρ [(z̃, z̃′)] = (1, 1).
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Now, define U = {ũ = (xi + yi)1≤i≤n | (x̃, ỹ) ∈ D}. Therefore, by one application
of the supporting hyperplane theorem 2 there exists a linear functional for Ū at the

point ũ′ = (zi+z′
i)1≤i≤n, i.e., there exists a nonzero vector w̃ = (w1, . . . , wn) ∈ Rn

such that F (ũ) :=
∑n

i=1 wi(xi + yi) satisfies F (ũ) ≤ F (ũ′) for all ũ ∈ Ū .

Now we define the new function λ [(x̃, ỹ)] :=
∑n

i=1 wi(xi, yi). The function λ [(·, ·)]
satisfies in λ [(x̃, ỹ)] ≤co λ [(z̃, z̃′)] for all (x̃, ỹ) ∈ D̄. In particular, we have

λ [(x̃, ỹ)] ≤co λ [(z̃, z̃′)] , ∀(x̃, ỹ) ∈ D. (4.3.5)

By Axiom 1 we have ρ [(0,0)] = (0, 0) therefore, (0,0) ∈ D. Letting (x̃, ỹ) =

(0,0) in (4.3.5) yields λ [(z̃, z̃′)] >co (0, 0). So, we can re-scale λ such that

λ [(z̃, z̃′)] = (1, 1) = ρ [(z̃, z̃′)] .

Now, the proof is finished if we show that the inequality appeared in (4.3.5) is

strict. i.e. we need to show that

λ [(x̃, ỹ)] <co λ [(z̃, z̃′)] , ∀(x̃, ỹ) ∈ D.

This can be shown by using absurdity method and applying axioms 1-4. The rest

of the proof will be the same as one for univariate case. We refer to [53] to follow

the procedure. �

In the following lemma, we try to get one more step closer to complete the plot

which helps us to finish the proof of Theorem 4.3.1. This lemma which is mainly

based on Lemma 4.3.1, will enable us to find a set of non-negative weights which

are applied in the presentation (4.3.2) in Theorem 4.3.1.

Lemma 4.3.2. Let B = {(x̃, ỹ) ∈ Rn × Rn | (x1, y1) ≤co (x2, y2) ≤co · · · ≤co

(xn, yn)}, and denote Bo to be the interior of B. For any fixed (z̃, z̃′) ∈ Bo and

any ρ satisfying Axioms 1 − 4 in Definition 4.3.4, there exists a weight w̃ =

(w1, . . . , wn) such that

n∑

i=1

wi = 1, (4.3.6)

wi ≥ 0 , i = 1, 2, . . . , n, (4.3.7)

ρ [(x̃, ỹ)] ≥co

n∑

i=1

wi(xi, yi), ∀(x̃, ỹ) ∈ B, and ρ
[
(z̃, z̃′)

]
=

n∑

i=1

wi(zi, z′
i). (4.3.8)

2This theorem states that if S is a closed convex set in a topological vector space X, and x0

is a point on the boundary of S, then there exists a supporting hyperplane containingx0. i.e.,
there exists a continuous linear functional F on X such that F (x) ≤ F (x0) for all x ∈ S.
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Proof. We give a sketch of the proof since the lemma is the multivariate version

of the univaraite one discussed in [53]. To prove this lemma we can consider three

following cases on ρ [(z̃, z̃′)].

(1) ρ(z̃, z̃′) = (1, 1).

(2) ρ(z̃, z̃′) Ó= (1, 1), and ρ(z̃, z̃′) >co (0, 0).

(3) ρ(z̃, z̃′) Ó= (1, 1), and ρ(z̃, z̃′) ≤co (0, 0).

Cases 2 and 3 can be studied using case 1 by applying axiom 1 where we can use

positive homogeneity for the case 2 and translation invariant for case 3. so we

just need to take care of case 1. In case 1 we use the weight w̃ = (w1, . . . , wn)

and the function λ [(·, ·)] in Lemma 4.3.1 and show that all components of w̃ are

non-negative and their sum is equal to 1. These along with Property (4.3.8) can

be verified by doing some algebraic operations and an application of continuity of

λ [(·, ·)]. For technical details we refer to [53] where the authors prove this lemma
in univariate case.

�

Now, By applying the last two lemmas and one application of the continuity of

the function ρ [(·, ·)], the proof of Theorem 4.3.1 will be completed.

By Axiom 4, we only need to show that there exists a set of weights W = {w̃ =

(w1, . . . , wn)} ⊂ Rn with each w̃ ∈ W satisfying
∑n

i=1 wi = 1 and wi ≥ 0, ∀1 ≤
i ≤ n, such that

ρ [(x̃, ỹ)] = sup
w̃∈W

n∑

i=1

wi (xi, yi) , ∀(x̃, ỹ) ∈ B, (4.3.9)

where recall that B = {(x̃, ỹ) ∈ Rn × Rn / (x1, y1) ≤co (x2, y2) ≤ co · · · ≤co

(xn, yn)}.

By Lemma 4.3.2, for any point (x̃, ỹ) ∈ Bo there exists a weight w̃(x̃,ỹ) which is

non-negative, summation of its components is 1 and satisfies in (4.3.8). Therefore,

we can take the set of such weights as

W = {w̃(x̃,ỹ) | (x̃, ỹ) ∈ Bo}. (4.3.10)

We claim that the weight set W proposed in (4.3.10) is a set satisfying in Theorem

4.3.1 which leads to the representation (4.3.2) for ρ [(·, ·)]. From (4.3.8), for any

fixed (x̃1, ỹ1) ∈ Bo we have

ρ
[

(x̃1, ỹ1)
]

≥co

n∑

i=1

w
(x̃,ỹ)
i (x1

i , y1
i ), ∀(x̃, ỹ) ∈ Bo, (4.3.11)

ρ
[

(x̃1, ỹ1)
]

=
n∑

i=1

w
(x̃1,ỹ1)
i (x1

i , y1
i ). (4.3.12)
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As w̃(x̃1,ỹ1) may not be unique for (x̃1, ỹ1), then we can come up with a set of

vectors evaluating the risk of (x̃1, ỹ1). In the other words, ρ [(x̃1, ỹ1)] is a set of

vectors with the same aggregate value under the couple ordering in Definition

4.3.1. Therefore,

ρ
[

(x̃1, ỹ1)
]

= sup
(x̃,ỹ)∈Bo

n∑

i=1

w
(x̃,ỹ)
i (x1

i , y1
i ), ∀(x̃1, ỹ1) ∈ Bo, (4.3.13)

where each w̃ ∈ W given in (4.3.10). The proof is complete by using the continuity

of ρ [(·, ·)] to show that equality (4.3.13) is also true for any point in the boundary

of B, ∂B. The proof would be the same as the one for univariate case but in a

multivariate framework. We refer to [53] for a thorough discussion on this issue

for univariate case.

�

Remark 4.3.2. We can extend Theorem 4.3.1 for the case of having more

than one order statistics for a given bivariate data set under the couple or-

dering in Definition 4.3.1. In fact, a function ρ : Rn × Rn → P(R2) is a

bivariate data-based risk measure if and only if there exists a set of weights

W = {w̃ = (w1, . . . , wn) | ∑n
i=1 wi = 1 and wi ≥ 0 ∀ 1 ≤ i ≤ n} ⊂ Rn

such that

ρ [(x̃, ỹ)] = sup
w̃∈W,1≤j≤k

n∑

i=1

wi(x, y)j
(i), ∀(x̃, ỹ) ∈ Rn × Rn, (4.3.14)

where k is the number of different versions of the order statistics associated to a

given bivariate data set (x̃, ỹ) ∈ Rn × Rn.

The way we extended Theorem 4.3.1 in Remark 4.3.2 can yield to have a set of

vectors evaluating the bivariate risk for a given bivariate data set. In the following

subsection we provide a method to choose one vector from this set of risk vectors.

4.3.2. Minimum Distance Data-based Risk Measures

Consider a bivariate data-based risk measure ρ with representation given in

(4.3.2). It is possible to have more than one vector as a risk of observation

(x̃, ỹ). i.e., ρ [(x̃, ỹ)] can be a set of vectors which are obtained by taking supre-

mum over a set of weights W in the representation (4.3.2). Because of the nature

of the couple ordering we proposed to use ordering the observations, we can have

several vectors in R2 belonging to a same equivalence class. For instance, consider

a typical observation (x̃, ỹ). Then, it is possible to have ρ [(x̃, ỹ)] = (1, 3) = (2, 2)

because (1, 3) ∼ (2, 2)which means (1 + 3 = 2 + 2 = 4).

A question arising in this context is to choose a right pair of the equivalence class

which contains ρ [(x̃, ỹ)]. There are several ways in which a risk measure can be
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chosen within an equivalent class. In this chapter we chose to use the Euclidean

distance in R2. For this let us consider the loss observation (x̃, ỹ) and ρ [(x̃, ỹ)] ⊂
[(a, b)] where [(a, b)] is an equivalence class containing the set of ρ [(x̃, ỹ)]. On the

other hand, assume that ρ [(x̃,0)] and ρ [(0, ỹ)] are the univariate risk statistics

associated to the observations x̃ and ỹ driven from ρ [(·, ·)] by projecting (x̃, ỹ)

on the first and second components respectively. Now, we choose the unique risk

associated to the observation (x̃, ỹ) by the following way.

ρmin [(x̃, ỹ)] = min
(c,d)∈ρ[(x̃,ỹ)]

√

(c − ρ [(x̃,0)])2 + (d − ρ [(0, ỹ)])2.

Therefor, ρmin [(x̃, ỹ)] is the closest pair in R2 to ρ [(x̃,0)] and ρ [(0, ỹ)] with

respect to the Euclidean distance. So, this is our desired bivariate data-based

risk measure.

4.3.3. Multivariate Extension

The concept of bivariate data-based risk measure and its characterization in The-

orem 4.3.1, can be both easily extended to the multivariate case. We chose to

thread our discussion around the bivariate case since it allows for a less cumber-

some notation, nonetheless it is a straight-forward exercise to derive expressions

in the multivariate case. In this small section, we present this generalization in

the form of a proposition that will be used later in the examples section.

Proposition 4.3.2. Let (x̃(1), ..., x̃(d)) ∈ Rn × · · · × Rn and

{(x(1), . . . , x(d))(1), . . . , (x(1), . . . , x(d))(n)} be the order statistics of the obser-

vation (x̃(1), ..., x̃(d)) with respect to the couple ordering introduced in Section 4.3.

Then, a function ρ : Rn · · · × Rn → P(Rd) is a multivariate data-based risk mea-

sure if and only if there exists a set of weights W = {w̃ = (w1, . . . , wn) | ∑n
i=1 wi =

1 and wi ≥ 0 ∀ 1 ≤ i ≤ n} ⊂ Rn such that

ρ
[

(x̃(1), ..., x̃(d))
]

= sup
w̃∈W

n∑

i=1

wi(x
(1), . . . , x(d))(i), ∀(x̃(1), ..., x̃(d)) ∈ Rn × · · · × Rn.

(4.3.15)

The proof of Proposition 4.3.2 can easily be obtained as a trivial extension of the

proof of Theorem 4.3.1 to higher dimensions.

In Section 5.5, we will provide examples showing how we can work with multi-

variate data-based risk measures using Proposition 4.3.2.
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4.4. An Alternative Characterization of the Multivari-

ate Date-Based Risk Measures via Acceptance Sets

Coherent risk measures on the space of the random variables can also be charac-

terized via so-called acceptance sets. Here, we explore a similar characterization

like the one proposed for natural risk statistics in [53]. For the sake simplicity, and

just like in the previous sections, we focus on the bivariate case only. The axioms

and characterization theorem provided in this section can be easily extended to

the multivariate cases.

Definition 4.4.1. Let A ⊂ Rn × Rn. We define the risk statistics ρA associated

with A on Rn × Rn to be the function ρA : Rn × Rn → R2,

ρA [(x̃, ỹ)] = inf{(m, m′) | (x̃ − m1, ỹ − m′
1) ∈ A}, ∀(x̃, ỹ) ∈ Rn × Rn . (4.4.1)

Notice that this infimum is well-defined via couple ordering defined in Section 4.3

although it is also possible that ρA [(x̃, ỹ)] is a set of vectors in R2. We use the

convention discussed in Subsection 4.3.2 to deal with such equivalence classes, i.e.,

we try to choose a vector in ρA [(x̃, ỹ)] in a way that it minimizes the Euclidean

distance between elements of ρA [(x̃, ỹ)] with ρA1
[

(x̃, 0̃)
]

and ρA2
[

(0̃, ỹ)
]

where

A1 and A2 are sets of the first of second coordinates of A respectively. Such a set

will be referred as a statistical acceptance set and it can be understood as a set

of observations whose risk is acceptable. Then, the associated function ρA would

be the amount of capital that needs to be injected to a given set of observations

to make it be an element of the acceptable set A.

On the other hand, notice that a given bivariate data-based risk measure ρ nat-

urally defines a subset in A ⊂ Rn × Rn, denoted by Aρ, in the following way,

Aρ := {(x̃, ỹ) ∈ Rn × Rn | ρ [(x̃, ỹ)] ≤co (0, 0)}. (4.4.2)

We can now define the notion of acceptance set.

Definition 4.4.2. Let A be a subset of Rn × Rn. Then, A is called a bivariate

data-based acceptance set if it satisfies in the following axioms,

C1. The set A contains Rn
− ×Rn

− where Rn
− ×Rn

− = {(x̃, ỹ) ∈ Rn ×Rn | xi, yi ≤
0, i = 1, . . . , n},

C2. The set A does not intersect the set Rn
++ × Rn

++, where

Rn
++ × Rn

++ = {(x̃, ỹ) ∈ Rn × Rn | xi, yi > 0, i = 1, . . . , n} ,

C3. If (x̃1, ỹ1) and (x̃2, ỹ2) are comonotonic and such that (x̃1, ỹ1) ∈ A,
(x̃2, ỹ2) ∈ A, then α(x̃1, ỹ1) + (1 − α)(x̃2, ỹ2) ∈ A, for all α ∈ [0, 1],
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C4. The set A is positively homogeneous, i.e., if (x̃, ỹ) ∈ A, then α(x̃, ỹ) ∈ A
for all α ≥ 0,

C5. If (x̃1, ỹ1) ≤co (x̃2, ỹ2) and (x̃2, ỹ2) ∈ A, then (x̃1, ỹ1) ∈ A,
C6. If (x̃, ỹ) ∈ A, then (xi1 , xi2 , . . . , xin

, yi1 , yi2 , . . . , yin
) ∈ A for any permuta-

tion (i1, . . . , in).

Interestingly enough, a bivariate data-based risk statistics can be characterized

through bivariate acceptance sets. This is ensured by the following result.

Theorem 4.4.1. Let ρ be a function ρ : Rn×Rn → R2 and A a subset of Rn×Rn.

Then,

(1) if ρ is a bivariate data-based risk measure in the sense of Definition 4.3.4,

then the set Aρ associated with ρ is a bivariate acceptance set, i.e. it

satisfies axioms C1−C6 in Definiton 4.4.2. Moreover, Aρ is a closed set,

(2) if A is a bivariate data-based acceptance set, in the sense of Definiton

4.4.2, then its associated risk function ρA, as defined in (4.4.1), is a bi-

variate data-based risk measure.

Proof. We get inspiration from the method of proof given in Hayde et al. [53].

for natural risk statistics to prove the theorem. We refer to [53] for the first part

and we give the proof of second part which is slightly different than one in [53].

For (x̃, ỹ) ∈ Rn × Rn and b ∈ R, we have

ρA [(x̃, ỹ) + b(1,1)] = inf{(m, m′) | (x̃ + (b − m)1, ỹ + (b − m′)1) ∈ A}
= inf{(b + u, b + u′) | (x̃ − u1, ỹ − u′

1) ∈ A}
= b(1, 1) + inf{(u, u′) | (x̃ − u1, ỹ − u′

1) ∈ A}
= b(1, 1) + ρA [(x̃, ỹ)] ,

which we used the couple ordering defined in the last section. This shows the vec-

torial translation invariance property of ρA. To prove the positively homogeneous

property, assume that (x̃, ỹ) ∈ Rn × Rn and a ≥ 0, if a = 0, then

ρA [a(x̃, ỹ)] = inf{(m, m′) | (0 − m1,0 − m′
1) ∈ A} = (0, 0) = aρA [(x̃, ỹ)] ,

where the second equality follows from C1 and C2. If a > 0, then

ρA [a(x̃, ỹ)] = inf{(m, m′) | (ax̃ − m1, aỹ − m′
1) ∈ A}

= inf{(au, au′) | a(x̃ − u1, ỹ − u′
1) ∈ A}

= a inf{(u, u′) | a(x̃ − u1, ỹ − u′
1) ∈ A}

= a inf{(u, u′) | (x̃ − u1, ỹ − u′
1) ∈ A}
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= aρA [(x̃, ỹ)] ,

by using Axiom C4. This shows the positively homogeneous property of ρA. To

show the monotonicity property of ρA, suppose (x̃1, ỹ1) ≤co (x̃2, ỹ2). For any

m ∈ R, if (x̃2 − m1, ỹ2 − m′
1) ∈ A, then (x̃1 − m1, ỹ1 − m′

1) ≤co (x̃2 − m1, ỹ2 −
m′
1) along with Axiom C5 imply that (x̃1 − m1, ỹ1 − m′

1) ∈ A. Therefore,

{(m, m′) | (x̃2−m1, ỹ2−m′
1) ∈ A} ⊂ {(m, m′) | (x̃1−m1, ỹ1−m′

1) ∈ A}. Now,
by taking infimum on both sides of the above relation, we obtain ρA [(x̃1, ỹ1)] ≤co

ρA [(x̃2, ỹ2)] which proves the monotonicity property of ρ. To verify comonotonic

subadditivity property, let (x̃1, ỹ1) and (x̃2, ỹ2) be comonotonic. For any couples

(m, m′) and (n, n′) such that (x̃1 − m1, ỹ1 − m′
1) ∈ A , (x̃2 − n1, ỹ2 − n′

1) ∈ A,

since (x̃1 − m1, ỹ1 − m′
1) and (x̃2 − n1, ỹ2 − n′

1) are comonotonic, it follows from

Axiom C3 that 1
2
(x̃1 − m1, ỹ1 − m′

1) + 1
2
(x̃2 − n1, ỹ2 − n′

1) ∈ A. By positive

homogeneity property of A and the previous formula we have (x̃1 + x̃2 − (m +

n)1, ỹ1 + ỹ2 − (m′ + n′)1) ∈ A. Therefore,

ρA
[

(x̃1, ỹ1) + (x̃2, ỹ2)
]

≤co (m + n, m′ + n′) = (m, m′) + (n, n′).

Now, taking infimum of all couples (m, m′) and (n, n′) satisfying (x̃1 − m1, ỹ1 −
m′
1) ∈ A , (x̃2 − n1, ỹ2 − n′

1) ∈ A, on both sides of above inequality yields

ρA
[

(x̃1, ỹ1) + (x̃2, ỹ2)
]

≤co ρA
[

(x̃1, ỹ1)
]

+ ρA
[

(x̃2, ỹ2)
]

.

So, comonotonic subadditivity property of ρA was proved.

To show the permutation invariance property of ρA, fix any (x̃, ỹ) ∈ Rn × Rn

and any permutation (i1, . . . , in). Then for any m ∈ R, Axiom C6 implies that

(x̃−m1, ỹ−m′
1) ∈ A if and only if (xi1−m, . . . , xin

−m, yi1−m′, . . . , yin
−m′) ∈ A.

Hence,

{m | (x̃−m1, ỹ−m′
1)} = {m | (xi1 −m, . . . , xin

−m, yi1 −m′, . . . , yin
−m′) ∈ A}.

Now, if we take infimum on both sides then, we have

ρA [(x̃, ỹ)] = ρA [(xi1 , xi2 , . . . , xin
, yi1 , yi2 , . . . , yin

)] .

This proves the permutation invariance property of ρA.

�

4.5. Examples

In this section, we present examples of different multivariate data-based risk mea-

sures. Reducing our statistics to the univariate framework allows to retrieve defi-

nitions found in [53]. We define Multivariate Value-at-Risk (MVaR), Multivariate
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Tail Conditional Median (MTCM) and Multivariate Tail Conditional Expecta-

tion (MTCE). In this section we assume that for a given multivariate data-set,

there is only one associated order statistics. For the general case, we follow the

procedure explained in Remark 4.3.2. Consider (x̃(1), ..., x̃(d)) ∈ Rn ×· · ·×Rn and

let {(x(1), . . . , x(d))(1), . . . , (x(1), . . . , x(d))(n)} be the order statistics of the observa-
tion (x̃(1), ..., x̃(d)) with respect to the couple ordering introduced in Section 4.3.

Here, we give the definitions for MVaR, MTCM and MTCE when data represent

losses of a company with different dependent departments/portfolios. Tradition-

ally, when using returns, we first convert the data into losses. Then, we apply the

desired multivariate data-based risk measures. Suppose (x̃(1), ..., x̃(d)) represents

returns of a company and ρα [(·, . . . , ·)] is a multivariate data-based risk measure

defined for loss data. Then, the risk measure ρ̃α [(·, . . . , ·)] defined for return data
is defined by

ρ̃α

[

(x̃(1), ..., x̃(d))
]

= ρ(1−α)

[

(−x̃(1), ..., −x̃(d))
]

, (4.5.1)

for 0 ≤ α ≤ 1. This definition is compatible with the representation of univariate

risk measures defined on a set of random variables representing returns, based

on a risk measure defined on a set of random variables representing losses, as

detailed in [45].

4.5.1. MVaR, MTCM and MTCE

Multivariate Value-at-Risk: We define MVaRα

[

(x̃(1), ..., x̃(d))
]

by

MVaRα

[

(x̃(1), ..., x̃(d))
]

= inf
1≤i≤n, α≤ i

n

(x(1), . . . , x(d))(i), (4.5.2)

where "inf" is taken under couple ordering. This definition is compatible with

representation (4.3.15) for multivariate data-based risk measures. In this case,

the set of weights W is a singleton and its element is chosen by setting wi = 1

and wj = 0 for 1 ≤ i ≤ n and j Ó= i.

Multivariate Tail Conditional Median: We define MTCMα

[

(x̃(1), ..., x̃(d))
]

as the MVaR at level α+1
2
, that is

MTCMα

[

(x̃(1), ..., x̃(d))
]

= MVaRα+1
2

[

(x̃(1), ..., x̃(d))
]

= inf
1≤i≤n, α+1

2
≤ i

n

(x(1), . . . , x(d))(i).

(4.5.3)

This definition is compatible with representation (4.3.15) for multivariate

data-based risk measures. The set of weights W is a singleton and its element is

chosen by setting wi = 1 and wj = 0 for 1 ≤ i ≤ n and j Ó= i.
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Multivariate Tail Conditional Expectation: We define

MTCEα

[

(x̃(1), ..., x̃(d))
]

by

MTCEα

[
(x̃(1), ..., x̃(d))

]
= (4.5.4)

inf
1≤i≤n, α≤ i

n

1

1 − α

[
(

i

n
− α

)

MVaRα

[
(x̃(1), ..., x̃(d))

]
+

1

n

n∑

j=i+1

MVaR j
n

[
(x̃(1), ..., x̃(d))

]

]

.

This definition is also compatible with representation (4.3.15) for multivariate

data-based risk measures. We obtain this element by choosing wi = 0 and wj =
1

n(1−α)
for i + 1 ≤ j ≤ n for 1 ≤ j ≤ i − 1.

Remark 4.5.1. For the case of having more than one version for the order sta-

tistics associated to (x̃(1), ..., x̃(d)), we take the inf over different order statistics

in equations (4.5.2), (4.5.3) and (4.5.4). Then we follow the criterion proposed

in Subsection 4.3.2 to choose the right risk vector for MVaR, MTCM and MTCE

respectively.

4.5.2. Numerical illustrations

In this section, we consider portfolios of dependent stocks. Illustration

1 presents a portfolio with 2 stocks: Intel Corp. (http://finance.

yahoo.com/q/hp?s=INTC&a=08&b=20&c=2010&d=07&e=26&f=2013&g=w) and Ap-

ple Inc. (http://finance.yahoo.com/q/hp?a=08&b=20&c=2010&d=07&e=26&f=

2013&g=w&s=AAPL%2C+&ql=1), respectively. Illustration 2 presents a port-

folio composed of 3 stocks: Apple Inc., Intel Corp. and Pfizer

Inc. (PFE) (http://finance.yahoo.com/q/hp?a=08&b=20&c=2010&d=07&e=

26&f=2013&g=w&s=PFE%2C+&ql=1), respectively. We use close data ranged from

20/09/2010 to 26/08/2013 in both examples. Weekly close data are converted

into log returns, i.e. if we consider Pn as the close price for the nth week then the

log return is Rn = lnPn − lnPn−1. We use negative returns to calculate MVaR,

MCTM and MTCE for weekly losses. Finally, in Illustration 3, we present a

portfolio of two dependent risks, representing losses. We use a bivariate Gumbel

copula model, with varying dependence parameter.

4.5.2.1. Illustration 1

In Table 4.1, we provide numerical results for three different bivariate data-based

risk measures for weekly losses (negative returns) data of Apple Inc. and Intel

Corp.
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α MVaRα

[

(x̃(1), x̃(2))
]

MTCMα

[

(x̃(1), x̃(2))
]

MTCEα

[

(x̃(1), x̃(2))
]

(MTCEα − MTCMα)/MTCEα

99.5% (0.1281,0.0137) (0.1281,0.0137) (0.1281,0.0137) (0.0000,0.0000)

99.0% (0.0572,0.0733) (0.1281,0.0137) (0.1035,0.0344) (-0.2377,0.6017)

95.0% (0.0308,0.0664) (0.0441,0.0715) (0.0606,0.0573) (0.2723,-0.2478)

50.0% (0.0234,-0.0266) (-0.0065, 0.0445) (0.0266,0.0169) (1.2444,-1.6331)

Tab. 4.1. MVaR, MTCM and MTCE for Apple Inc. and In-
tel Corp. weekly losses (negative returns) from 20/09/2010 to
26/08/2013.

Remark 4.5.2. We can also directly compute bivariate data-based risk measures

MVaRα [(·, ·)], MTCMα (·, ·)] and MTCEα [(·, ·)] at arbitrary levels α ∈ [0, 1] for

data sets representing returns, from (4.5.1). Consider (ũ, w̃) as the returns for

Apple Inc. and Intel Corp., respectively. For example, suppose α = 0.95. Then,

(1) M̃VaR0.05 [(ũ, w̃)] = MVaR0.95

[

(x̃(1), x̃(2))
]

= (0.0308, 0.0664),

(2) M̃TCM0.05 [(ũ, w̃)] = MTCM0.95

[

(x̃(1), x̃(2))
]

= (0.0441, 0.0715),and

(3) M̃TCE0.05 [(ũ, w̃)] = MTCE0.95

[

(x̃(1), x̃(2))
]

= (0.0606, 0.0573).

Remark 4.5.3. Based on numerical results of Table 4.1, we illustrate the posi-

tive homogeneous and component wise translation invariant property for bivariate

data-based risk measures. Let 0.1281 be the larger loss (-0.1281 being the lower

return) data for the two stocks combined, and suppose α = .95. Then, we have

(1) MVaR0.95

[

(x̃(1), x̃(2)) + 0.1281 (1,1)
]

= MVaR0.95

[

(x̃(1), x̃(2))
]

+

0.1281(1, 1) = (0.1589, 0.1945),

(2) MTCM0.95

[

(x̃(1), x̃(2)) + 0.1281 (1,1)
]

= MTCM0.95

[

(x̃(1), x̃(2))
]

+

0.1281(1, 1) = (0.1722, 0.1996), and

(3) MTCE0.95

[

(x̃(1), x̃(2)) + 0.1281 (1,1)
]

= MTCE0.95

[

(x̃(1), x̃(2))
]

+

0.1281(1, 1) = (0.1887, 0.1854).

4.5.2.2. Illustration 2

Table 4.2 provides numerical results for multivariate data-based risk measures,

introduced at the beginning of this section, for weekly losses of three different

stocks Apple Inc., Intel Corp. and Pfizer Inc. Multivariate data-based risk mea-

sures are easily extendable to higher dimensions. MVaR, MTCM and MTCE are

fast to compute.

α MVaRα

[

(x̃(1), x̃(2), x̃(3))
]

MTCMα

[

(x̃(1), x̃(2), x̃(3))
]

MTCEα

[

(x̃(1), x̃(2), x̃(3))
]

(MTCEα − MTCMα)/MTCEα

99.5% (-0.0026,0.0097,0.3956) (-0.0026,0.0097,0.3956) (-0.0026,0.0097,0.3956) (0.0000,0.0000,0.0000)

99.0% (0.00001,-0.0056,0.3497) (-0.0026,0.0097,0.3956) (-0.0017,0.0044,0.3797) (-0.5294,-1.2045,-0.0419)

95.0% (0.0646,0.0171,0.0333) (-0.0177,-0.0054,0.3575) (0.0129,0.0159,0.2441) (2.3721,1.3396,-0.4646)

50.0% (-0.0188,-0.0005,0.0124) (0.0958,-0.0345,-0.0258) (0.0220,0.0158,0.0232) (-3.3545,3.1835,2.1121)
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Tab. 4.2. MVaR, MTCM and MTCE for Apple Inc., Intel Corp.
and Pfizer Inc. weekly losses (negative returns) from 20/09/2010
to 26/08/2013.

Table 4.1 and Table 4.2 show that, for fixed level α and different number of stocks

in two similar portfolios, multivariate data-based risk statistics are varying. This

can be interpreted in terms of risk diversification. In fact, aggregated risks are

diversified and global risk is distributed between each component of the portfolio.

When the dimension of data changes, the risk associated to each element of the

portfolio changes as well.

4.5.2.3. Illustration 3

Here, we consider a bivariate Gumbel copula as benchmark model. The bivariate

Gumbel copula is defined by

CGC
θ (u1, u2) = exp

[

−
(

(− ln u1)
θ + (− ln u2)

θ
) 1

θ

]

,

where θ > 1 and 0 ≤ u1, u2 ≤ 1, as presented in [28]. It can be shown that for

the Gumbel copula the coefficient of upper tail dependence is λu = 2 − 2
1
θ . This

shows that the Gumbel copula has upper tail dependence when θ > 1.

We simulate using MATLAB function "copularnd(’Gumbel’,θ, N)" where θ is the

dependence parameter for the Gumbel copula and N is the number of returns.

We simulate 30 times, with N = 100, θ = 1.6 (Table 4.3) and θ = 20 (Table 4.4).

We obtain 3000 returns. We calculate MVaRα

[

(x̃(1), x̃(2))
]

, MTCMα

[

(x̃(1), x̃(2))
]

and MTCEα

[

(x̃(1), x̃(2))
]

by averaging the statistics obtained for each simulation.

α MVaRα

[

(x̃(1), x̃(2))
]

MTCMα

[

(x̃(1), x̃(2))
]

MTCEα

[

(x̃(1), x̃(2))
]

(MTCEα − MTCMα)/MTCEα

99.5% (0.9730,0.9840) (0.9730,0.9840) (0.9730,0.9840) (0.0000,0.0000)

99.0% (0.9475,0.9560) (0.9730,0.9840) (0.9730,0.9840) (0,0)

95.0% (0.8985,0.8641) (0.9094,0.9475) (0.9210,0.9512) ( 0.0126,0.0039)

50.0% (0.5893,0.3333) (0.7359,0.5812) (0.6910,0.6932) (-0.0650,0.1616)

Tab. 4.3. MVaR, MTCM and MTCE for the bivariate Gumbel
copula with dependence parameter θ = 1.6.

α MVaRα

[

(x̃(1), x̃(2))
]

MTCMα

[

(x̃(1), x̃(2))
]

MTCEα

[

(x̃(1), x̃(2))
]

(MTCEα − MTCMα)/MTCEα

99.5% (0.9931,0.9932) (0.9931,0.9932) (0.9931,0.9932) (0,0)

99.0% (0.9845,0.9836) (0.9931,0.9932) (0.9931,0.9932) (0,0)

95.0% (0.9277,0.9216) (0.9656,0.9664) (0.9667 0.9664) (0.0011,0)

50.0% (0.4872, 0.4845) (0.7521 0.7511) (0.7393,0.7401) (-0.0076, -0.0027)

Tab. 4.4. MVaR, MTCM and MTCE for the bivariate Gumbel
copula with dependence parameter θ = 20.
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Remark 4.5.4. In Tables 4.3 and 4.4, we clearly see that for a fixed level of

risk α, each one of MVaR, MTCM and MTCE are increasing functions of the

dependence parameter θ. Hence,

MVaRθ1
α

[

(x̃(1), x̃(2))
]

≤co MVaRθ2
α [(ũ, ṽ)] ,

MTCMθ1
α

[

(x̃(1), x̃(2))
]

≤co MTCMθ2
α [(ũ, ṽ)] ,

MTCEθ1
α

[

(x̃(1), x̃(2))
]

≤co MTCEθ2
α [(ũ, ṽ)] , (4.5.5)

where (x̃(1), x̃(2)) and (ũ, ṽ) are two bivariate data sets simulated from Gumbel

copula with the same marginal, for different θ1 and θ2 respectively.

Since Gumbel copula has upper tail dependence when θ > 1, we see from the last

column of Table 4.3 and Table 4.4 that when the dependence parameter θ → ∞,

the components of a bivariate data-based risk measure at a fixed level of risk α

get closer to the same value. This is due to the upper tail dependence of Gumbel

copula.

4.5.2.4. General Remark

Remark 4.5.5. Let (x̃(1), ..., x̃(d)) be a multivariate data set. Then, the multi-

variate data-based risk measures introduced in this section are increasing functions

w.r.t the risk level α. That is,

MVaRα1

[

(x̃(1), ..., x̃(d))
]

≤co MVaRα2

[

(x̃(1), ..., x̃(d))
]

,

MTCMα1

[

(x̃(1), ..., x̃(d))
]

≤co MVaRα2

[

(x̃(1), ..., x̃(d))
]

,

MTCEα1

[

(x̃(1), ..., x̃(d))
]

≤co MVaRα2

[

(x̃(1), ..., x̃(d))
]

,

for 0 ≤ α1 ≤ α2 ≤ 1. Moreover, for a fixed level of risk α, we have

MVaRα

[

(x̃(1), ..., x̃(d))
]

≤co MTCMα

[

(x̃(1), ..., x̃(d))
]

,

MVaRα

[

(x̃(1), ..., x̃(d))
]

≤co MTCEα

[

(x̃(1), ..., x̃(d))
]

, (4.5.6)

where ≤co is the ordering introduced in Section 4.3. The first inequality in (4.5.6)

can be driven using monotonicity property of MVaRβ [(·, ..., ·)]. Replacing β = α

and β = α+1
2

in MVaRβ [(·, ..., ·)] yields the inequality. The second inequality in
(4.5.6) can be also driven from monotonicity property of MVaRβ [(·, ..., ·)] and
definition of MTCEβ [(·, ..., ·)]. We refer to Tables 4.1, 4.3 and Table 4.4 for a

numerical verification of (4.5.6) for bivariate data-based risk measures.

Remark 4.5.6. In each illustration, we observe that MVaR.995 = MTCM.99,

which is consistent with our definition of MTCMα+1
2

= MVaRα.



Chapter 5

ON THE DEPLETION PROBLEM FOR AN
INSURANCE RISK PROCESS: NEW

NON-RUIN QUANTITIES IN COLLECTIVE
RISK THEORY

Abstract
The field of risk theory has traditionally focused on ruin-related quantities. In

particular, the so-called Expected Discounted Penalty Function [50] has been the

object of a thorough study over the years. Although interesting in their own right, ruin

related quantities do not seem to capture path-dependent properties of the reserve. In

this article we aim at presenting the probabilistic properties of drawdowns and the

speed at which an insurance reserve depletes as a consequence of the risk exposure of

the company. These new quantities are not ruin related yet they capture important

features of an insurance position and we believe it can lead to the design of a mean-

ingful risk measures. Studying drawdowns and speed of depletion for Lévy insurance

risk processes represent a novel and challenging concept in insurance mathematics.

In this chapter, all these concepts are formally introduced in an insurance setting.

Moreover, using recent results in fluctuation theory for Lévy processes [71], we derive

expressions for the distribution of several quantities related to the depletion problem.

Of particular interest are the distribution of drawdowns and the Laplace transform

for the speed of depletion. These expressions are given for some examples of Lévy

insurance risk processes for which they can be calculated, in particular for the classical

Cramer-Lundberg model.

This chapter is a joint research work with Zied Ben-Salah, Hélène Guérin and

Manuel Morales; see [15] 1.

1I contributed in this project in different ways. Prof. Morales came up with the general idea
of the project, then I worked on it to derive different solutions for quantities of interest in
the project. Applying main results of the project to different examples and interpreting the
obtained solutions were other contributions I have made to this project. I also contributed in
this project by writing up the first draft of it, then polishing it with Prof. Morales, Prof. Guérin
and Dr. Ben-Salah to get the final version.
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5.1. Introduction

Traditionally, collective risk theory is mainly concerned with the ruin prob-

lem which is nicely encapsulated in the concept of Expected Discounted Penalty

Function (EDPF) introduced in [50]. This so-called Gerber-Shiu function is a

functional of the ruin time (i.e., the first time the reserve level of a firm becomes

negative), the surplus prior to ruin, and the deficit at ruin. The EDPF has been

extensively studied and generalized to various scenarios and there is now a wide

range of models for which expressions of the EDPF are available. All of these

models incorporate different levels of complexity into the picture.

In particular, the so-called Lévy insurance risk processes have been the object

of much attention in the last decade, mainly because they nicely generalize the

Cramer-Lundberg model while allowing to bring new insight into the field of

ruin theory through the well-developed theory of fluctuations for such processes.

Several families of Lévy processes have been put forward as risk models and we

now have a well-established literature on the subject. For a thorough discussion

on the suitability of these processes as risk models we refer the reader to [49, 72]

and references therein.

As it turns out, the first-passage problem for Lévy processes is well understood

and recent results in this area have been applied to the ruin problem in order

to gain interesting insight (see for instance [19, 20, 60]). In this chapter, we

focus yet again on Lévy insurance risk processes because of the extensive set of

tools available for this family of stochastic processes. Through concepts originally

developed for the study of the first-passage time problem, we can now study ques-

tions that go beyond the ruin problem and that are connected to path-properties

of the process that give a telling picture of how depletion occurs.

Quantities such as the speed of depletion and drawdowns have been studied in

finance in connection to the concept of market crash [93]. Indeed, in finance one

would be interested in knowing how fast and how frequent drawdowns of a certain

size occur. In insurance, these questions have not been studied yet, despite the

fact that these concepts are meaningful from an insurance risk management point

of view. Clearly knowing how your insurance reserve is affected by drawdowns

and how fast and frequent these are could be useful to devise risk management

tools. These quantities provide a measure of riskiness that is not linked to the ruin

event but rather to the depletion features of the reserve. However, this problem

is technically challenging due to the jump nature of insurance models.

The aim of this chapter is two-fold. On one hand, we aim at introducing the

problem of depletion into the theory of collective risk theory as a meaningful
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question from a risk management point of view. We formally define new non-

ruin quantities within the classical risk theory framework and we discuss their

main features and advantages over traditional ruin-related quantities. Indeed, it

is interesting to notice that all of the available research focuses on ruin-related

quantities which, by their very nature, fail to explain how an insurance reserve

depletes over time. Thus, although ruin theory provides a good probabilistic

picture of the problem of insolvency of an insurance reserve, it cannot explain

other features that are equally representative of the riskiness of an insurance

reserve such as its speed of depletion and the frequency of drawdowns. The ruin

event is an object of concern over the long-run but a risk manager might also keep

an eye on any series of particularly large drawdowns especially if they happen

particularly fast. So concerning oneself with the ruin event overlooks other risky

events that also have an impact on the solvency and financial planning of an

insurance company.

A second objective is to actually derive expressions for the distribution of several

depletion-related random variables. As it turns out, recent results in the theory

of fluctuations for one-sided Lévy processes [71] can be used to derive expressions

for these depletion-related quantities. Key to the derivation of such expressions is

the scale function of the process driving the insurance risk model. As we discuss,

general and non-explicit expressions for the distribution of random variables in

the depletion problem can only be simplified if a simple form for the scale func-

tion is available. Hence, we derive explicit expressions for the case of a classical

Cramer-Lundberg model driven by a compound Poisson process with exponential

jumps. Not surprisingly, this simple case has always yielded text-book examples

of closed-form solutions in the risk theory literature. The problem of depletion

is no exception and we present explicit expressions for the distribution of several

depletion-related random variables in this case. We also provide a similar analy-

sis for other examples of insurance risk models possessing simple scale functions,

namely the gamma subordinator and the stable family of processes.

This chapter is organized as follows. In Section 5.2 we introduce a general model

based on a Lévy risk process for which we define the depletion problem and the

notions of drawdowns and speed of depletion as well as related variables. Some

preliminary results from the theory of fluctuations for Lévy processes are given

in Section 5.3. In Section 5.4 we study the problem of depletion for an insurance

Lévy risk process and we give general expressions for the distribution of depletion

random variables of interest. In Section 5.5, we derive explicit expressions for all

depletion-related quantities for three examples of Lévy insurance risk processes.
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Finally, in Section 5.6, we simulate some of risk models which discussed in Section

5.5, and study the empirical results for these risk models.

5.2. The Depletion Problem for an Insurance Risk

Model

We consider a very general setup that generalizes the standard Cramer-Lundberg

model. We consider in this chapter an insurance risk process X = (Xt)t>0 with

X a spectrally negative Lévy process defined on a filtered probability space

(Ω, F , (Ft)t>0,P) and X0 = 0 P − a.s. For technical reasons that will become

clear later in the chapter, we restrict ourselves to those processes having paths

of unbounded variation or paths of bounded variation as well as a Lévy measure

which is absolutely continuous with respect to the Lebesgue measure. In order to

avoid the case of trivial reflected processes we exclude processes with monotone

paths. As is customary, the symbols Ex and Px will denote the expectation and

the probability measure related to the process started at x, i.e. the expectation

and law of the process x+X under P and if the process is started from zero we

will use simple notations E and P.

Notice that a such a model contains all elements of a traditional risk model and

encompasses, among others, the risk models studied in [19, 48, 55, 72]. Indeed, the

constant rate premium is included as the drift of X, the so-called perturbation

comes in as the Brownian component of X and the pure aggregate claims is

present as the jump part of X, which could be set as a compound Poisson or an

infinite activity process. With this in mind, we assume the process X to have a

positive drift such that E[X1] > 0. Notice that in traditional ruin theory, this

assumption responds to both, technical and practical reasons. Technically, it is

needed in order to avoid the possibility that X becomes negative almost surely

whereas from a practical point of view it makes sense since it is common practice

in insurance to work with loaded premiums. Indeed, it is standard to write the

drift component within X in terms of a safety loading. For instance, notice that

we can recuperate the classical Cramer-Lundberg model if Xt = c t − St where

c := (1+θ)E[S1] and S is a compound Poisson process modeling aggregate claims.

The drift c, with a positive safety loading θ > 0, is the collected premium rate.

In the context of the depletion problem we do not need this condition. We keep

it here for purely practical reasons as it is common practice to have insurance

loaded premiums.

One of the advantages of considering a general Lévy risk model is that we can

use the tools and methods of the fluctuation theory of Lévy processes, allowing
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for a somewhat deeper understanding of the ruin problem but also of the deple-

tion problem which can prove to yield just as interesting information about the

riskiness of the reserve.

For a more extensive discussion on Lévy risk models we refer to [49]. In this

chapter we will specialize this setting to three examples of Lévy processes that

have been studied in the literature in the context of the ruin problem.

One of the main objects of interest in ruin theory is the ruin time, τ , representing

the first passage time of an insurance Lévy risk process X below zero when

X0 = x, i.e.

τ := inf{t > 0 : Xt < 0}, (5.2.1)

where we set τ = +∞ if Xt ≥ 0 for all t > 0.

In this chapter, our main object of concern is the depletion problem that has two

different random times as its main building blocks. In order to give a thorough

definition of these concepts we need to introduce some notation.

We define the running infimum and the running supremum of a given Lévy process

X by

X t := inf
06s6t

Xs and X t := sup
06s6t

Xs .

Now we characterize the depletion problem for X. We first define the drawdown

process Y = (Yt)t>0, associated with a given risk process X, to be

Yt := X t − Xt , t > 0 . (5.2.2)

The first-passage time over a level a > 0 of the drawdown process Y is then

defined to be

τa := inf{t > 0 : Yt > a} . (5.2.3)

It is well-known that τa < ∞ P-almost surely (see [12], Theorem 1). Just like the

ruin time in (5.2.1), this new random time in (5.2.3) contains relevant information

on potentially risky behavior of the reserve. Their distribution can be used to

measure the likeliness of path-related events that might have a negative impact

on the financial health of the reserve. The random time τa records the time at

which a drawdown in the reserve is larger than a, previously agreed upon, critical

level a. An interesting set of associated tale-telling random variables can be built

upon the random time (5.2.3). First, we need to define a process that will be

useful in constructing meaningful non-ruin quantities. The last time before t that

X reaches its running supremum, denoted by Gt, is defined as

Gt := sup{s ≤ t : Xs or Xs− = Xs} . (5.2.4)
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Thus the time τa of the critical drawdown of size a along with the following

quantities characterize the depletion problem for X:

• the last time the reserve was at its maximum level prior to critical draw-

down, Gτa
;

• the speed of depletion, τa − Gτa
;

• the maximum reserve level attained before critical drawdown is observed,

Xτa
;

• the minimum reserve level prior to critical drawdown, Xτa
;

• the largest drawdown observed before critical drawdown of size a, Yτa−;

• the overshoot of the critical drawdown over level a, Yτa
− a.

Xt

τaGτa

Xτa

Xτa

Yτa
> a

a

Yt

Yτa

Yτ−
a

τaGτa

a

Fig. 5.1. A path of Xt = 10 + t + 2Bt − St, the corresponding
drawdown process Y , and their related depletion quantities, where
(Bt)t≥0 is a standard Brownian motion and S is an independent
compound Poisson process with Lévy measure ν(dx) = e−2ydx.

Clearly, these variables contain information on the how the insurance deserve

depletes over time. All of these quantities encapsulate relevant knowledge about

the critical drawdown event. A risk manager would be potentially interested in

gaining information regarding the distribution of the time of the critical drawdown
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of size a, i.e. Px(τa 6 t). This gives information on how likely the reserve

is to face a critical drawdown within a given time interval. Even more valuable

information can be found in the distribution of the speed of depletion, this random

variable indicates how fast critical drawdowns tend to occur. A drawdown is

not as alarming if it happens over a long period than if it happens suddenly.

Information about the distributions of the maximum and minimum reserve levels

prior to critical drawdown and of the largest drawdown on record before critical

drawdown sheds light on the structure of the depletion event. It is also interesting

to know how large (or not) critical drawdowns tend to be, that is, by how much

they overshoot the critical level a when they occur. In fact, the level a itself

can be set by using the distribution of the overshoot. Since this distribution is a

function of a we can decide what a critical drawdown size is depending on how

likely certain levels are.

It is interesting to notice that there is a connection between ruin and depletion

through the distribution of the minimum reserve level prior to critical drawdown.

We will see that, if expressions are available, we can calculate the probability that

ruin occurs before a critical drawdown of size a.

In general, just like in the ruin problem, knowledge on the probabilistic properties

of such quantities could be relevant in risk management applications. Although

critical drawdowns do not spell immediate doom for the company as ruin does,

a large enough drawdown might be a warning sign that a risk manager might

want to take into account. This information coupled with knowledge on how fast

these critical drawdowns happen could be used to design risk measures and or

management policies that will ensure the solvency of the reserve.

Once that these non-ruin quantities have been introduced, the aim of the chapter

is to derive expressions for the probability measure of these random variables

associated with the depletion problem. This will be done in detail for three

examples of Lévy insurance risk processes. But before we need to introduce some

preliminary results that are key to our analysis.

5.3. Drawdowns for Spectrally Negative Lévy Pro-

cesses

In this section, we introduce some notions and results that are needed in the rest

of the chapter. Let X = (Xt)t>0 be a spectrally negative Lévy process defined

on a filtered probability space (Ω, F , (Ft)t>0,P). We impose the same restrictions

as in [12], i.e. X has either paths of unbounded variation or paths of bounded
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variation as well as a Lévy measure which is absolutely continuous with respect

to the Lebesgue measure. Further, we exclude processes with monotone paths.

Since X has no positive jumps, the expectation E
[

esXt

]

exists for all s > 0 and

it is given by E
[

esXt

]

= etψ(s) where ψ(s) is of the form

ψ(s) = d s +
1

2
σ2s2 +

∫ ∞

0
(e−x s − 1 + s x1{x<1}) ν(dx) , (5.3.1)

where d ∈ R, σ > 0 and ν is the Lévy measure associated with the process −X

(for a thorough account on Lévy process see [17, 63]).

For the right inverse of ψ, we shall write Φ on [0, ∞). Formally, for each q > 0,

Φ(q) := sup{s > 0 : ψ(s) = q} . (5.3.2)

Notice that since X is a spectrally negative Lévy process X, we have that Φ(q) > 0

for q > 0 (see [63]).

It is well-known that, for every q > 0, there exists a function W (q) : R −→ [0, ∞)

such that W (q)(y) = 0 for all y < 0 satisfying
∫ ∞

0
e−λyW (q)(y)dy =

1

ψ(λ)− q
, λ > Φ(q). (5.3.3)

This is the so-called q-scale functions {W (q), q > 0} of the process X (see [63])

and it is a key notion in the analysis of drawdowns for spectrally negative Lévy

processes. Notice that for q = 0, equation (5.3.3) defines the so-called scale

function and we simply write W .

Before discussing drawdowns, we need to introduce additional functions related

to the q-scale function. Let W
′(q)
+ be the right derivative function of the q-scale.

Following the notation in [71], we denote the ratio of the right derivative of the

q-scale function and the q-scale function at a > 0 by

λ(a, q) :=
W

′(q)
+ (a)

W (q)(a)
. (5.3.4)

We can now define, for any a > 0 and p, q > 0, the mapping Fp,q,a : R+ → R+

Fp,q,a(y) := λ(a, q)e−yλ(a,p) . (5.3.5)

Moreover, consider the q-resolvent measure R(q)
a (dy) = E[

∫ τa

0 e−qt
1Yt∈dydt] of Y

killed upon first exit from [0, a] which can be expressed in the following way (see

[75], Theorem 1),

R(q)
a (dy) :=

[

λ(a, q)−1W (q)(dy)− W (q)(y)dy
]

, y ∈ [0, a] , (5.3.6)



100

and the function

∆(q)(a) =
σ2

2

[

W ′(q)(a)− λ(a, q)−1W ′′(q)(a)
]

(5.3.7)

with ∆(q)(a) = 0 when σ = 0.

The functions in (5.3.4), (5.3.5), (5.3.6) and (5.3.7) will frequently appear

throughout the chapter. The following theorem will play a key role in our contri-

bution. For a thorough discussion and a proof, we refer to [71].
Theorem 5.3.1. Consider a spectrally negative Lévy process X such that X0 =
x ∈ R. Moreover, X has paths of unbounded variation or has a Lévy measure
which is absolutely continuous with respect to the Lebesgue measure. Let further
Y be its associated drawdown process defined in (5.2.2). Let τa be the stopping
time in (5.2.3) so we can define the following events, for a given a > 0,

A0 = {Xτa
> u, Xτa ∈ dv, Yτa− ∈ dy, Yτa − a ∈ dh} and Ac =

{
Xτa

> u, Xτa ∈ dv, Yτa = a
}

, (5.3.8)

where u, v, y and h satisfy

u ≤ x, y ∈ [0, a], v > x ∨ (u+ a) and h ∈ (0, v − u − a].

Then, for any q, r > 0 the following identities hold true:

Ex

[

e−qτa−rGτa1A0

]

=
W (q+r)((x − u) ∧ a)

W (q+r)(a)
Fq+r,q,a(v − (x ∨ (u + a)))R

(q)
a (dy)ν(a − y + dh)dv, (5.3.9)

Ex

[

e−qτa−rGτa1Ac

]

=
W (q+r)((x − u) ∧ a)

W (q+r)(a)
Fq+r,q,a(v − (x ∨ (u + a)))∆(q)(a)dv, (5.3.10)

where 1 is the standard indicator function, ν is the Lévy measure of X that appears in (5.3.1), x∨y = max(x, y),

x ∧ y = min(x, y) and Gt is the process defined in (5.2.4).

We remark that the above theorem holds for spectrally negative Lévy process

having paths of unbounded variation or having a Lévy measure which is abso-

lutely continuous with respect to the Lebesgue measure. That is why we restrict

ourselves to this type of processes. This is in no way restrictive since most of

the risk insurance processes in the literature fall within this class, i.e. they are

defined through a Lévy density.

We also remark that on the event A0 defined in (5.3.8), the critical drawdown is

performed by a jump of the Lévy process X while it is performed continuously

on the event Ac. These two events and the expectations in (5.3.9) and (5.3.10)

in Theorem 5.3.1 contain all information regarding the depletion problem. The

aim of this chapter, to provide explicit expressions for the distribution of these

depletion-related random variables under relevant insurance models.

5.4. Analysis of the Depletion Problem

In this section, we use the general setting described in Section 5.2 where X

is a spectrally negative Lévy process either with paths of unbounded variation
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or paths of bounded variation with a Lévy measure absolutely continuous with

respect to the Lebesgue measure. The main goal of this chapter is then to study

the depletion event as told by the quantities in Theorem 5.3.1. In principle,

we can study through the expectations in (5.3.9) and (5.3.10) the probability

measure of all quantities involved as well as the Laplace transform of the speed

of depletion. This can be accomplished by setting q = r = 0 and/or integrating

over a suitable set those expressions in (5.3.9) and (5.3.10). How explicit these

expressions are will depend on the form of the q-scale function and the Lévy

measure of the model. Nonetheless, in this section we give some general results

that bring insight into the problem.

It turns out that there is a link between the running infimum at time τa given by

(5.2.3) and the ruin time τ given by (5.2.1). We can easily deduce that τa ≤ τ

a.s. on the event {Xτa
> 0}, while {τa < τ} implies {Xτa

> 0}.
Furthermore, from the definition of these quantities we can see that when the

initial surplus x is strictly greater than a, then Xτa
− > 0 and the hitting time of

the critical drawdown is smaller than the ruin time, i.e. τa ≤ τ a.s. On the other

hand, when x < a, ruin can occur before the critical drawdown.

We can now state a a result which makes a link between the ruin event and the

depletion problem.

Theorem 5.4.1. Consider an insurance risk process (Xt)t>0 with initial surplus

x > 0 satisfying assumptions of Section 5.2 and let a > 0 be a fixed critical

drawdown size. Then

Px(Xτa
< 0) = 1 − W (x ∧ a)

W (a)
+

W (x ∧ a)

W (a)

∫

y∈[0,a]

∫

h>0

(
1 − e−λ(a,0)h

)
ν(x ∨ a − y + dh)R

(0)
a (dy), (5.4.1)

where W is the scale function, ν the Lévy measure of X and R(0)
a is defined by

(5.3.6) with q = 0.

Proof. We notice that Px(Xτa
< 0) = 1 − Px(Xτa

> 0) and

Px(Xτa
> 0) = Px(Xτa

> 0, Yτa
> a) + Px(Xτa

> 0, Yτa
= a).

Then putting q = r = u = 0 and integrating (5.3.9) and (5.3.10) with respect to
v ∈ [x ∨ a, ∞), y ∈ [0, a] and h ∈ (0, v − a], we have

Px(Xτa
> 0) =

W (x ∧ a)

W (a)

[∫

y∈[0,a]

(∫

v>x∨a

F0,0,a(v − x ∨ a)

∫

h∈(0,v−a]

ν(a − y + dh)dv

)

R
(0)
a (dy)

+

∫

v>x∨a

F0,0,a(v − x ∨ a)∆(0)(a)dv

]

.
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Since F0,0,a is defined by (5.3.5), using Fubini’s theorem, the previous expression
gives

Px(Xτa
> 0) =

W (x ∧ a)

W (a)

[

eλ(a,0)x∨a

∫

y∈[0,a]

∫

h>0

e−λ(a,0)(x∨(h+a))ν(a − y + dh)R
(0)
a (dy) + ∆(0)(a)

]

.

(5.4.2)

We notice that taking u → −∞ and integrating (5.3.9) and (5.3.10) with respect

to v ∈ [x ∨ a, ∞), h ∈ (0, v − a] and y ∈ [0, a] with r = q = 0,
∫ a

0
R(0)a (dy)

∫ ∞

0
ν(a − y + dh) + ∆(0)(a) = 1. (5.4.3)

Using this remark, we deduce that (5.4.2) gives for x ≤ a

Px(Xτa
> 0) =

W (x)

W (a)

[
∫

y∈[0,a]

∫

h>0
e−λ(a,0)hν(a − y + dh)R(0)a (dy) + ∆(0)(a)

]

=
W (x)

W (a)

[

1−
∫

y∈[0,a]

∫

h>0

(

1− e−λ(a,0)h
)

ν(a − y + dh)R(0)a (dy))

]

,

and for x > a,

Px(Xτa
> 0)

=

∫

y∈[0,a]

∫ x−a

0

ν(a − y + dh)R
(0)
a (dy) +

∫

y∈[0,a]

∫ ∞

x−a

e−λ(a,0)(h+a−x)ν(a − y + dh)R
(0)
a (dy) + ∆(0)(a)

= 1−
∫

y∈[0,a]

∫ ∞

x−a

(
1− e−λ(a,0)(h+a−x)

)
ν(a − y + dh)R

(0)
a (dy)

= 1−
∫

y∈[0,a]

∫

h>0

(
1− e−λ(a,0)h

)
ν(x − y + dh)R

(0)
a (dy).

The theorem is proved.

�

Theorem 5.4.1 is of interest because Px[Xτa
< 0] is in fact the probability of ruin

occurring before a critical drawdown of size a, i.e. it is the probability that the

reserve falls below the level zero during the interval [0, τa].

In Section 5.4.1, we first give general expressions for the probability measures of

depletion-related quantities. As it might be of interest, from a risk management

point of view, to study the depletion problem when ruin does not occur before

the critical drawdown time, we also compute the distribution of depletion-related

quantities on the event {τa < τ}. This is carried out in Section 5.4.2.

5.4.1. Distributions of depletion quantities

Theorem 5.4.2. Consider an insurance risk process (Xt)t>0 with initial surplus

x > 0 satisfying assumptions of Section 5.2 and let a > 0 be a fixed critical

drawdown size. Then,
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(1) the probability distribution of the drawdown observed just before critical

drawdown is the following,

Px(Yτa− ∈ dy) =
(

R(0)
a (dy)

∫ ∞

0
ν(a − y + dh)

)

1y∈(0,a] +∆
(0)(a)δa(dy) , (5.4.4)

(2) the probability distribution of the overshoot over the critical drawdown

Yτa
− a is the following,

Px(Yτa
− a ∈ dh) =

∫ a

0
ν(a − y + dh)R(0)

a (dy)1h>0 +∆
(0)(a)δ0(dh) , (5.4.5)

(3) the maximum reserve level attained before critical a drawdown, Xτa
, fol-

lows a translated exponential distribution, i.e.

Px(Xτa
∈ dv) = λ(a, 0)e−λ(a,0)(v−x)

1v>xdv .

Proof. In order to prove this theorem, we use Theorem 5.3.1 when u → −∞
with r = q = 0. By integrating,

(1) For y ∈ [0, a), we have

Ex[I{Yτa−∈dy}] = R(0)
a (dy)

∫ ∞

x
F0,0,a(v − x)dv

∫ ∞

0
ν(a − y + dh),

and for y = a, P(Yτa− = a) = ∆(0)(a)
∫ ∞

x F0,0,a(v − x)dv.

(2) For h > 0, we have

Ex[I{Yτa −a∈dh}] =
∫ ∞

x
F0,0,a(v − x)dv

∫ a

0
ν(a − y + dh)R(0)

a (dy),

and for h = 0, P(Yτa
= a) =

∫ ∞
x F0,0,a(v − x)dv∆(0)(a).

(3) Finally,

Px(Xτa ∈ dv) = Ex

[

I
{Xτa ∈dv}

]

= F0,0,a(v − x)dv

(∫ a

0

R
(0)
a (dy)

∫ ∞

0

ν(a − y + dh) + ∆(0)(a)

)

.

Using (5.4.3) and (5.3.5) yields the result.

�

We notice from Theorem 5.4.2 that the distributions of Yτ−
a
and of Yτa

− a do

not depend on the initial surplus x and whatever are the characteristics of the

Lévy process X, the distribution of the maximum reserve level Xτa
attained

before critical drawdown is always an exponential distribution shifted by the

initial surplus x. This result is a typical extension of the same result where

we study the distribution of the maximum reserve level X
eq
attained before an

exponentially distributed random time eq with parameter q.

Now we turn our attention to the random times τa and Gτa
. We start by giving

an interesting result concerning the speed of depletion τa − Gτa
. This is an
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immediate consequence from to Theorem 5.3.1 that was not pointed out in [71],

yet it is crucial in evaluating all components in the expression (5.3.9).

Proposition 5.4.1. Under the same assumptions and definitions of Theorem

5.3.1, the random variables Gτa
and τa − Gτa

are independent.

Proof. It can be easily verified that the statement in Theorem 5.3.1 still holds

under weaker conditions on q and r. In fact, the result in (5.3.9) holds true for

q > 0 and q+r > 0 and not only for q, r > 0 as indicated in the original statement.

In fact, the conditions on q and r arise in the proof when we want to take the q

and q + r -scale functions into account in the expressions given in Theorem 5.3.1.

As the scale functions W (q), W (q+r) are just well defined for q, q + r > 0.

By definition, Gτa
and τa − Gτa

are positive P-almost-surely finite random vari-

ables. It is well-known that, for r, q > 0, the bivariate Laplace transform

Ex

[

e−rGτa −q(τa−Gτa )
]

characterizes the joint distribution of Gτa
and τa − Gτa

(see

for example [41]).

Clearly,

Ex

[

e−rGτa −q(τa−Gτa )
]

= Ex

[

e−qτa−(r−q)Gτa

]

.

An expression for the bivariate Laplace transform of Gτa
and τa − Gτa

can be

obtained through identities (5.3.9) and (5.3.10) in Theorem 5.3.1. Since Fr,q,a(v)

is the product of a function depending only on r and a function depending only

on q, expressions (5.3.9) and (5.3.10) are also the product of a function depending

only on r and a function depending only on q respectively, which concludes the

proof.

�

Proposition 5.4.2. Consider an insurance risk process (Xt)t>0 with initial sur-

plus x > 0 satisfying the assumptions of Section 5.2 and let a > 0 be a fixed critical

drawdown size. Then, for q > 0, q + r > 0, the bivariate Laplace transform of τa

and Gτa
is given by

Ex

[

e−qτa−rGτa

]

=
λ(a, q)

λ(a, q + r)

(
∫

y∈[0,a]

∫

h>0
ν(a − y + dh)R(q)

a (dy) + ∆(q)(a)

)

.

(5.4.6)

Proof. Now, just like in the proof of Proposition 5.4.1, we notice that the result
of Theorem 5.3.1 is still valid with q ≥ 0 and r + q ≥ 0. Taking u → −∞ and
integrating (5.3.9) and (5.3.10) with respect to v, h and y in Theorem 5.3.1, we
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obtain

Ex

[

e−qτa−rGτa

]

=

∫

v>x

Fq+r,q,a(v − x)dv

(∫

y∈[0,a]

∫

h>0

ν(a − y + dh)R
(q)
a (dy) + ∆(q)(a)

)

.

From the definition (5.3.5) of Fq+r,q,a(.), we have
∫ ∞

x Fq+r,q,a(v − x)dv = λ(a,q)
λ(a,q+r)

.

Substituting this last equation yields,

Ex

[

e−qτa−rGτa

]

=
λ(a, q)

λ(a, q + r)

(
∫

y∈[0,a]

∫

h>0
ν(a − y + dh)R(q)a (dy) + ∆(q)(a)

)

.

�

Remark 5.4.1. Putting r = 0 in (5.4.6), the Laplace transform of τa is given by

Ex

[

e−qτa

]

=
∫

y∈[0,a]

∫

h>0
ν(a − y + dh)R(q)a (dy) + ∆(q)(a) .

Using (5.4.6) with q = 0 and (5.4.3) the Laplace transform of Gτa
is given by

Ex

[

e−rGτa

]

=
λ(a, 0)

λ(a, r)
. (5.4.7)

In the following, we are going to provide an expression for the Laplace transform

of the depletion random variable, τa − Gτa
.

Theorem 5.4.3. Consider an insurance risk process (Xt)t>0 with initial surplus

x > 0 satisfying the assumptions of Section 5.2 and let a > 0 be a fixed critical

drawdown size. Then, the Laplace transform of the speed of depletion τa − Gτa
is

given by

Ex

[

e−q(τa−Gτa )
]

=
λ(a, q)

λ(a, 0)

(
∫

y∈[0,a]

∫

h>0
ν(a − y + dh)R(q)a (dy) + ∆(q)(a)

)

.

Proof. By Proposition 5.4.1, we know that Gτa
and τa − Gτa

are independent

variables, then for r, q > 0

Ex

[

e−rGτa

]

Ex

[

e−q(τa−Gτa )
]

= Ex

[

e−rGτa −q(τa−Gτa )
]

= Ex

[

e−qτa−(r−q)Gτa

]

. (5.4.8)

We can now find an expression for the right-end of equation (5.4.8) by setting

q∗ = q and r∗ = r − q and using (5.4.6). In other words, since q∗ > 0 and

q∗ + r∗ > 0, we can then write

Ex

[

e−qτa−(r−q)Gτa

]

= Ex

[

e−q∗τa−r∗Gτa

]

=
λ(a, q∗)

λ(a, q∗ + r∗)

(
∫

y∈[0,a]

∫

h>0
ν(a − y + dh)R(q

∗)
a (dy) + ∆(q

∗)(a)

)

.

Substituting q∗ = q and r∗ = r − q into (5.4.10) and using equation (5.4.8) and

equation (5.4.7) in Proposition 5.4.2 yield the result. �
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5.4.2. Distributions of depletion quantities in risk management

In this subsection, we provide expressions for the conditional distribution of de-

pletion quantities discussed in Section 5.4.1 given the event {Xτa
> 0}. This set

guarantees that ruin does not occur before the critical drawdown time. We use

the notations P(. ;A) and E[. ;A] for P(. ∩ A) and E[.1A] respectively.

Proposition 5.4.3. Consider an insurance risk process (Xt)t>0 satisfying as-

sumptions of Section 5.2 with initial surplus x > 0 and let a > 0 be a fixed

critical drawdown size. Then,

(1) the conditional distribution of the drawdown observed just before critical

drawdown given the event {Xτa
> 0} is

Px(Yτa− ∈ dy| Xτa
> 0)

=
R(0)

a (dy)eλ(a,0)x∨a
∫

h>0 e−λ(a,0)(x∨(h+a))ν(a − y + dh)1y∈[0,a] +∆
(0)(a)δa(dy)

1− ∫

y∈[0,a]

∫

h>0 (1− e−λ(a,0)h)ν(x ∨ a − y + dh)R
(0)
a (dy)

,

(2) the conditional distribution of the overshoot over the critical drawdown

Yτa
− a given the event {Xτa

> 0} is

Px(Yτa
− a ∈ dh| Xτa

> 0)

=
e−λ(a,0)(x∨(h+a)−x∨a)

∫ a
0 ν(a − y + dh)R(0)

a (dy)1h>0 +∆
(0)(a)δa(dh)

1− ∫

y∈[0,a]

∫

h>0 (1− e−λ(a,0)h)ν(x ∨ a − y + dh)R
(0)
a (dy)

,

(3) the conditional distribution of the maximum reserve level attained before

critical drawdown of size a given the event {Xτa
> 0} is

Px

(

Xτa
∈ dv| Xτa

> 0
)

=
λ(a, 0)e−λ(a,0)(v−x∨a)

(∫ v−a
0

∫ a
0 ν(a − y + dh)R(0)

a (dy) + ∆(0)(a)
)

1− ∫

y∈[0,a]

∫

h>0 (1− e−λ(a,0)h)ν(x ∨ a − y + dh)R
(0)
a (dy)

1v>x∨adv .

Proof. It is clear from Theorem 5.4.1 that

Px(Xτa
> 0) =

W (x ∧ a)

W (a)

(

1 −
∫

y∈[0,a]

∫

h>0

(
1 − e−λ(a,0)h

)
ν(x ∨ a − y + dh)R

(0)
a (dy)

)

. (5.4.9)

Using Theorem 5.3.1 with u = 0 and r = q = 0 yields:
(1) For y ∈ [0, a), we have

Px(Yτa− ∈ dy;Xτa
> 0) = R

(0)
a (dy)

W (x ∧ a)

W (a)

∫ ∞

x∨a

F0,0,a(v − (x ∨ a))

∫

h∈(0,v−a]

ν(a − y + dh)dv, (5.4.10)
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and for y = a, P(Yτa− = a;Xτa
> 0) = W (x∧a)

W (a)
∆(0)(a)

∫ ∞
x∨a F0,0,a(v − x ∨

a)dv. By applying Fubini’s Theorem and equation (5.3.5) together into

equation (5.4.10) we have

Px

(
Yτa− ∈ dy;Xτa

> 0
)
=

W (x ∧ a)

W (a)

[

R
(0)
a (dy)eλ(a,0)x∨a

∫

h>0

e−λ(a,0)(x∨(h+a))ν(a − y + dh)1y∈[0,a] +∆
(0)(a)δa(dy)

]

.

(5.4.11)

The first part of the Theorem is obtained by using (5.4.11) and (5.4.9).
(2) For h > 0, we have

Ex

[
1{Yτa −a∈dh};Xτa

> 0
]
=

W (x ∧ a)

W (a)

∫ ∞

x∨(h+a)

F0,0,a(v − x ∨ a)dv

∫ a

0

ν(a − y + dh)R
(0)
a (dy), (5.4.12)

and for h = 0, P(Yτa
= a;Xτa

> 0) = W (x∧a)
W (a)

∫ ∞
x∨a F0,0,a(v −

x ∨ a)dv∆(0)(a). The proof of the second part of the Theorem is done

by applying the last equation, (5.4.12) and (5.4.9) into the definition of

conditional distribution.
(3) At the end, for v > x ∨ a

Px(Xτa ∈ dv;Xτa
> 0) =

W (x ∧ a)

W (a)
F0,0,a(v − x ∨ a)

(∫ v−a

0

∫ a

0

ν(a − y + dh)R
(0)
a (dy) + ∆(0)(a)

)

dv.

(5.4.13)

The proof is complete if we use (5.4.13) and (5.4.9).

�

Proposition 5.4.4. Consider an insurance risk process (Xt)t>0 satisfying as-
sumptions of Section 5.2 with initial surplus x > 0 and let a > 0 be a fixed
critical drawdown size. Then, for q, r > 0, we have

Ex

[

e−qτa−rGτa ;Xτa
> 0

]

=
W (q+r)(x ∧ a)

W (q+r)(a)

λ(a, q)

λ(a, q + r)

(∫

y∈[0,a]

∫

h>0

e−λ(a,q+r)(x∨(h+a)−x∨a)ν(a − y + dh)R
(q)
a (dy) + ∆(q)(a)

)

.

(5.4.14)

Proof. This result can be obtained, like in the proof of the previous proposition,

by putting u = 0 in (15) and (16) in Theorem 5.3.1 and integrating with respect

to dv, dh and dy. �

We notice that in general, variables τa − Gτa
and Gτa

given the event {Xτa
> 0}

are no more independent variables (especially when the diffusion coefficient σ is

positive).
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5.5. Examples of Lévy Insurance Risk Processes

We study in this section particular examples of risk process X satisfying the

general setting described in Section 5.2, when the q-scale function of the model

has a tractable form.

We start by studying three examples of risk process X, without Brownian motion

part, i.e. σ = 0 in its Laplace exponent (5.3.1). Thus the results in Section 5.4

apply to our problem and they endow us with tools to fully study the depletion

problem. Since σ = 0 in the studied models without Brownian perturbation, the

set Ac in Theorem 5.3.1 is empty and the coefficient ∆(q)(a) will not appear in

the sequel. We also discuss two examples of risk process X starting at an initial

surplus x ≥ 0, with a Brownian motion part, i.e. σ Ó= 0 in its Laplace exponent
(5.3.1).

In this chapter, we aim at computing expressions for the distribution of the

depletion-related random variables for relevant insurance risk processes. As it

turns out, the results in Theorems 5.3.1, 5.4.1, 5.4.2 and 5.4.3 lead to explicit

expressions for the distribution of depletion-related random variables when the

q-scale function of the model has a tractable form. In fact, we will see that a

tractable form for the q-scale function is inherited by the functions λ, Fp,q,a and

R(q)
a defined in (5.3.4), (5.3.5) and (5.3.6) respectively. These functions are the key

ingredients in the general expressions of Theorems 5.3.1, 5.4.1, 5.4.2 and 5.4.3. In

this section, we show how there are some interesting examples of insurance mod-

els with tractable q-scale functions leading to relatively simple expressions for the

distributions of depletion random variables. In the following, we will analyze in

more detail some models for which we can have an explicit understanding of the

depletion problem:

• the Classical Cramer-Lundberg model with exponential claims,
• the Gamma risk process,
• the Spectrally Negative Stable risk process,
• the Brownian perturbed model without claims,
• the Meromorphic risk process (Beta process).

5.5.1. Classical Cramer-Lundberg Model with Exponential Claims

The so-called classical or Cramer-Lundberg model was introduced in [68]. The

risk process R is a compound Poisson process starting at x > 0, i.e.,

Rt = x+Xt , (5.5.1)
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where Xt = ct − ∑Nt
i=1 Zi and the number of claims is assumed to follow a Poisson

process (Nt)t>0 with intensity λ which is independent of the positive and iid

random variables (Zn)n>1 representing claim sizes. The loaded premium c is of

the form c = (1 + θ)λE[Z1] for some safety loading factor θ > 0. The form of

the q-scale function in this model is relatively simple when the claim sizes are

exponentially distributed with mean 1/µ. In this case, the Lévy measure takes

the simple form ν(dx) = λK(dx) where K is the exponential probability measure

associated to the claim sizes. In turn, the Laplace exponent in (5.3.1) becomes

ψ(s) = c s − λ[φK(s) − 1] , s > 0 , (5.5.2)

where φK(s) = µ
µ+s

is the Laplace transform of an exponential distribution (see

for instance [63]). In this case, the premium rate is c = λ(1+θ)
µ

where θ > 0 is a

positive security loading.

A path of a such process is linear by parts, so its corresponding drawdown process

is quite simple to draw.

t

Xt

Xτa

Gτa

τa

a

Yτa
> aYτ−

a

Xτa

t

Yt

Gτa

τa

Yτ−
a

a
Yτa

Fig. 5.2. A path of a compound Poisson process R, the corre-
sponding drawdown process Y and their related depletion quanti-
ties.

This model has been for long a textbook example for which the distribution of

ruin-related quantities can be explicitly computed. This is in fact possible thanks

to the tractable form of the q-scale function although maybe this was not imme-

diately recognized. It turns out that just like for the ruin problem, this tractable

form of the q-scale function also allows for an explicit study of the depletion
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problem. Here, we give the form of the q-scale function and study in detail the

depletion problem for this particular example. Moreover, we derive explicit ex-

pressions for the distributions of depletion random variables of Theorems 5.3.1,

5.4.1, 5.4.2 and 5.4.3.

The expression for the q-scale function in this case is known and is given by

W (q)(x) =
1

c2(Φ(q) + µ)2 − cλµ

[

c(Φ(q) + µ)2 eΦ(q)x − λµe−(µ− λµ
c(Φ(q)+µ))x

]

,

(5.5.3)

with Φ(q) = 1
2c

(

q + λ − cµ+
√

(q + λ − cµ)2 + 4qµc
)

. For details see [62].

Now we also need expressions for the functions λ and R(q)
a . These are given in

the following result.

Proposition 5.5.1. Consider the process (Rt)t≥0 in (5.5.1) where the Zi’s are

identically independent exponential random variables with mean 1/µ and let a > 0

be a critical drawdown size. Then

λ(a, q) = Φ(q) +
λµ

[

c(Φ(q) + µ)2 − λµ
]

c(Φ(q) + µ)
[

(Φ(q) + µ)2ce(Φ(q)+µ− λµ
(Φ(q)+µ)c)a − λµ

] , (5.5.4)

R(q)
a (dy) =

1

cλ(a, q)
δ0(dy) +

[

1

λ(a, q)
W ′(q)(y)− W (q)(y)

]

1y∈(0,a]dy ,

with W (q) and W ′(q) given by (5.5.3) and (5.5.5) respectively.

Proof. By definition

λ(a, q) =
W

′(q)
+ (a)

W (q)(a)
.

By referring to equation (5.5.3) we can see that W (q) is a derivable function on
(0, ∞) so by differentiating equation (5.5.3) we can directly obtain

W ′(q)(x) = Φ(q)W (q)(x) +
λµ

c
[
(Φ(q) + µ)2c − λµ

]

[

Φ(q) +

(

µ − λµ

(Φ(q) + µ)c

)]

e
−

(
µ−

λµ

(Φ(q)+µ)c

)
x

= Φ(q)W (q)(x) +
λµ

c2(Φ(q) + µ)
e

−
(

µ−
λµ

(Φ(q)+µ)c

)
x

. (5.5.5)

Combining (5.5.3) and (5.5.5) in the definition (5.3.4) yields the first result.

As W (q) is an increasing function and has a mass at x = 0, recall that in this

case (see [63]), W (q)(0+) = 1/c, we have W (q)(dx) = W ′(q)(x)dx+ 1
c
δ0(dy). Direct

substitution into the definition (5.3.6) of R(q)
a yields the second result. �

The main results regarding depletion-related quantities are given in terms of W (q)

and λ(a, q) with q = 0. These expressions take on a more simple form in this case

and are given in the following result.
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Proposition 5.5.2. Consider the process (Rt)t≥0 in (5.5.1) where the Zi’s are

identically independent exponential random variables with mean 1/µ and let a > 0

be a critical drawdown size. Then

W (x) =
µ

λ(1 + θ)θ

(

1 + θ − e
−µθ
1+θ

x
)

,

W ′(x) =
µ2

λ(1 + θ)2
e

−µθ
1+θ

x ,

λ(a, 0) =
µθ

(1 + θ)
(

(1 + θ)e
µθ
1+θ

a − 1
) ,

F0,0,a(y) =
µθ

(1 + θ)
(

(1 + θ)e
µθ
1+θ

a − 1
) exp







−µθy

(1 + θ)
(

(1 + θ)e
µθ
1+θ

a − 1
)







,

R(0)
a (dy) =

µ

λθ

(

e
µθ
1+θ

(a−y) − 1
)

1y∈(0,a]dy +
1

λθ

(

(1 + θ)e
µθ
1+θ

a − 1
)

δ0(dy) .

Proof. It is straight forward by setting q = 0 in Proposition 5.5.1 with c =
λ(1+θ)

µ
, and by using definitions (5.3.5) and (5.3.6). Recall that Φ(0) = 0. �

We now give explicit representations for the distributions in Theorems 5.4.1, 5.4.2

and 5.4.3 as they are specialized to this case.

Proposition 5.5.3. Consider an insurance risk process (Rt)t>0 of the form de-

fined in (5.5.1) with an initial level x > 0 and let a > 0 be a fixed critical

drawdown size. Then

Px(Xτa
< 0) = 1− W (x ∧ a)

W (a)

(

1− λ(a, 0)

µ+ λ(a, 0)
e−µ(x∨a−a)

)

, (5.5.6)

where λ(a, 0) and the scale function W are given in Proposition 5.5.2.

Proof. To show this proposition we use the expression of Px(Xτa
< 0) given in

Theorem 5.4.1. But in this model σ = 0 so we have ∆(0)(a) = 0 and

Px(Xτa
< 0) = 1 − W (x ∧ a)

W (a)
+

W (x ∧ a)

W (a)

∫

y∈[0,a]

∫

h>0

(
1 − e−λ(a,0)h

)
ν(x ∨ a − y + dh)R

(0)
a (dy), (5.5.7)

The Lévy measure for the process St is ν(dx) = λµe−µxdx. So, by replacing this

into the interior integral in (5.5.7) we have

∫

h>0

(

1− e−λ(a,0)h
)

ν(x ∨ a − y + dh) =
∫

h>0

(

1− e−λ(a,0)h
)

λµe−µ(x∨a−y+h)dh
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= λe−µ(x∨a)

(

eµy − µ

µ + λ(a, 0)
eµy

)

.

(5.5.8)

On the other hand, we have

λ
∫ a

0
eµyR(0)

a (dy) = eµa. (5.5.9)

So by applying (5.5.9) and (5.5.8) into (5.5.7) we have

Px(Xτa
< 0) = 1 − W (x ∧ a)

W (a)
+

W (x ∧ a)λ(a, 0)e−µ(x∨a−a)

W (a)(µ + λ(a, 0))

�

Proposition 5.5.4. Consider an insurance risk process (Rt)t>0 of the form de-

fined in (5.5.1) with an initial level x > 0 and let a > 0 be a fixed critical

drawdown size. Then

(1) the largest drawdown observed before critical drawdown follows a mixture

of a diffusive distribution on (0, a] and the Dirac measure at 0. i.e.,

Px(Yτa− ∈ dy) =
µ

θ

(

e
− µ
1+θ

(a−y) − e−µ(a−y)
)

1y∈(0,a]dy+
1

θ

(

(1 + θ)e− µ
1+θ

a − e−µa
)

δ0(dy) .

(2) the overshoot over the critical drawdown Yτa
− a follows an exponential

distribution with mean 1/µ. i.e.,

Px(Yτa
− a ∈ dh) = µe−µh

1h>0dh .

Proof. We prove this proposition by applying Theorem 5.4.2. Here σ = 0 and

naturally ∆(0)(a) = 0.

(1) By plugging
∫ ∞
0 ν(a − y + dh) = λe−µ(a−y) into (5.4.4) we have

Px(Yτa− ∈ dy) = λe−µ(a−y)R(0)
a (dy). (5.5.10)

We conclude the first part of the theorem using the expression of R(0)
a (dy)

given in Proposition 5.5.2.

(2) To prove the second part of the theorem we have

ν(a − y + dh) = λµe−(a−y+h)µdh. (5.5.11)

for h > 0, y ∈ [0, a]. Substituting (5.5.11) in (5.4.5) gives

Px(Yτa
− a ∈ dh) = µe−µhdh.

�
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We now provide explicit expressions for joint Laplace transform of Gτa
and τa as

well as the Laplace transform of the speed of depletion. Notice that the Laplace

transform of Gτa
is a simple function of λ(a, q) and it can be computed in a

straightforward way using Proposition 5.4.2 and equation (5.5.4).

Proposition 5.5.5. Consider an insurance risk process (Rt)t>0 of the form de-

fined in (5.5.1) with an initial level x > 0 and let a > 0 be a fixed critical

drawdown size. Then for q, r > 0

(1) the bivariate Laplace transform of τa and Gτa
is given by

Ex

[

e−qτa−rGτa

]

=

(

Φ(q) + µ

µ

)(

λ(a, q)− Φ(q)

λ(a, q + r)

)

eΦ(q)a , (5.5.12)

with Φ(q) = (2c)−1
(

q + λ − cµ+
√

(q + λ − cµ)2 + 4qµc
)

,

(2) the Laplace transform of the speed of depletion τa − Gτa
is given by

Ex

[

e−q(τa−Gτa )
]

=

(

Φ(q) + µ

µ

)(

λ(a, q)− Φ(q)

λ(a, 0)

)

eΦ(q)a .

Recall that λ(a, .) is given in Proposition 5.5.2.

Proof. As σ = 0, then ∆(0)(a) = 0.

(1) The Lévy measure of the process X is ν(dx) = λµe−µxdx and so
∫ ∞
0 ν(a−

y + dh) = λe−µ(a−y). Now using Proposition 5.4.2 as it specializes to this

case yields

Ex

[

e−qτa−rGτa

]

=
λ(a, q)λe−µa

λ(a, q + r)

∫

y∈[0,a]
eµyR(q)

a (dy) . (5.5.13)

Now, using Proposition 5.5.13 we can compute the following integral.

λe−µa
∫

y∈[0,a]
eµyR(q)

a (dy) =
λ

λ(a, q)
W (q)(a) − λe−µa

(
µ

λ(a, q)
+ 1

) ∫ a

0
eµyW (q)(y)dy.

(5.5.14)

In order to finish the proof it would be sufficient to find an expression for
∫ a
0 eµyW (q)(dy). By using equation (5.5.3), we have

∫ a

0
eµyW (q)(y)dy =

Φ(q) + µ

(Φ(q) + µ)2c − λµ

(

e(Φ(q)+µ)a − e
λµ

(Φ(q)+µ)c
a
)

. (5.5.15)

Now, by combining equations (5.5.15) and (5.5.14) into (5.5.13) we obtain

Ex

[

e−qτa−rGτa

]

=
λ

λ(a, q + r)

(

W (q)(a)− (µ+ λ(a, q))
Φ(q) + µ

(Φ(q) + µ)2c − λµ

(

eΦ(q)a − e
−

(
µ−

λµ

(Φ(q)+µ)c

)
a

))

.
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Using the expressions (5.5.3) and (5.5.4) for W (q)(a) and λ(a, q) respec-

tively, we deduce that,

Ex

[

e−qτa−rGτa

]

=
λ

λ(a, q + r)

((Φ(q) + µ)2c − λµ)eΦ(q)a

c
(

(Φ(q) + µ)2ce(Φ(q)+µ− λµ
(Φ(q)+µ)c)a − λµ

)

=
(Φ(q) + µ)(λ(a, q)− Φ(q))eΦ(q)a

µλ(a, q + r)
.

This completes the proof.

(2) In a similar way, specializing Theorem 5.4.3 to this case using the expres-

sions in Proposition 5.5.13 yields the result.

�

In the following proposition, we provide the conditional distribution for the deple-

tion quantities given the event {Xτa
> 0}. Expressing the joint Laplace transform

for Gτa
and τa in the presence of the event {Xτa

> 0} is also of interest so that

for which we discuss in the following proposition.

Proposition 5.5.6. Consider an insurance risk process (Rt)t>0 of the form de-

fined in (5.5.1) with an initial level x > 0 and let a > 0 be a fixed critical

drawdown size. Then
(1) Px

(
Yτa− ∈ dy| Xτa

> 0
)
= λe−µ(a−y)R

(0)
a (dy)1[0,a](y),

(2) Px

(
Yτa − a ∈ dh| Xτa

> 0
)
= µe−λ(a,0)(x∨(h+a)−x∨a)−µhdh

1−
λ(a,0)

µ+λ(a,0)
e−µ(x∨a−a)

1h>0,

(3) Px

(
Xτa ∈ dv| Xτa

> 0
)
=

λ(a,0)e−λ(a,0)x∨a
(

e−λ(a,0)v−e−(λ(a,0)+µ)v+µa
)

1−
λ(a,0)

µ+λ(a,0)
e−µ(x∨a−a)

1v>x∨adv,

(4) Ex

[

e−qτa−rGτa ;Xτa
> 0

]

=
W (q+r)(x∧a)

W (q+r)(a)

(µ+Φ(q))(λ(a,q)−Φ(q))
µλ(a,q+r)

(
1 − λ(a,q+r)

µ+λ(a,q+r)
e−µ(x∨a−a)

)
.

Proof. To prove this proposition we need to use Propositions 5.4.3 and 5.4.4.

(1) To show the first part we compute the expression given in (5.4.11). In

fact by considering different cases between x and a we have

Px
(
Yτa− ∈ dy;Xτa

> 0
)
=

W (x ∧ a)

W (a)

(

λe−µ(a−y)R(0)
a (dy)

(

1 − λ(a, 0)

µ + λ(a, 0)
e−µ(x∨a−a)

))

.

(5.5.16)

On the other side, by (5.5.6) we have

Px(Xτa
> 0) =

W (x ∧ a)

W (a)

(

1 − λ(a, 0)

µ + λ(a, 0)
e−µ(x∨a−a)

)

(5.5.17)

Applying (5.5.17) and (5.5.16) to (5.4.11) yields the result in the first part

of the theorem.



115

(2) To show this part we also compute the expression given in (5.4.12). After

simplifying the expression we have

Px(Yτa
− a ∈ dh;Xτa

> 0) =
W (x ∧ a)

W (a)

(

µe−λ(a,0)(x∨(h+a)−x∨a)−µh
)

dh. (5.5.18)

Once again applying (5.5.18) and (5.5.17) to (5.4.12) proves the result in

the second part of the theorem.

(3) This part can be proven by computing the expression given in (5.4.13)

and using (5.5.17). In fact after some simplifications we get

Px

(

Xτa ∈ dv;Xτa
> 0

)

=
W (x ∧ a)

W (a)

(

λ(a, 0)e−λ(a,0)x∨a
(

e−λ(a,0)v − e−(λ(a,0)+µ)v+µa
))

dv.

(5.5.19)

To end the proof we just need to replace (5.5.19) and (5.5.17) to (5.4.13).

(4) The last part of the theorem can be shown directly by computing the

expression in (5.4.14). It is clear from (5.5.12) that

λ
∫

y∈[0,a]
eµyR(q)

a (dy) =

(

Φ(q) + µ

µ

)(

λ(a, q)− Φ(q)

λ(a, q)

)

e(Φ(q)+µ)a. (5.5.20)

So the proof is complete if we apply (5.5.20) to the expression in (5.4.14)

and simplify the expression.

�

Remark 5.5.1. Under the same assumptions of Proposition 5.5.6, it can be seen
that

(1) from the first part of Proposition 5.5.6, the event {Yτa− ∈ dy} is in-

dependent of the event {Xτa
> 0}. In fact by recalling (5.5.10) we

have Px(Yτa− ∈ dy| Xτa
> 0) = λe−µ(a−y)R(0)

a (dy) = Px(Yτa− ∈ dy). Thus

knowing Xτa
does not affect on the distribution of the largest drawdown

before critical drawdown, Yτa−.

(2) from the second part of Proposition 5.5.6, if x < a, then the random

variable Yτa
− a given {Xτa

> 0} follows an exponential distribution with

parameter µ+ λ(a, 0). In other words,

Px(Yτa
− a ∈ dh| Xτa

> 0) = (µ+ λ(a, 0))e−(µ+λ(a,0))h
1h>0.

(3) from the joint Laplace transform of (τa, Gτa
), we deduce that Gτa

and

τa −Gτa
are independent random variables on the event {Xτa

> 0}. Thus,
the Laplace transform of the depletion random variable , τa − Gτa

, given
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the event {Xτa
> 0} is

Ex

[

e−q(τa−Gτa)| Xτa
> 0

]

=
µ+ Φ(q)

µ

λ(a, q)− Φ(q)

λ(a, 0)
.

In fact, with the same proof as for Proposition 5.4.1 we can show that Gτa

and τa − Gτa
are independent random variables on the event {Xτa

> 0}.

Moreover, we have Ex

[

e−q(τa−Gτa)| Xτa
> 0

]

=
Ex

[

e
−q(τa−Gτa);Xτa

>0

]

Px(Xτa
>0)

,

where Ex

[

e−q(τa−Gτa);Xτa
> 0

]

can be obtained from part 4 in Proposi-

tion 5.5.6 as Gτa
and τa − Gτa

are independent random variables on the

event {Xτa
> 0}. Moreover, Px(Xτa

> 0) is given by equation (5.5.17).

5.5.2. Gamma Risk Process

The gamma risk model was introduced in [38] and is defined by

Rt = x+Xt , (5.5.21)

where Xt = ct − St and the aggregate claims process (St)t>0 is assumed to follow

a gamma subordinator with Lévy measure

ν(dx) = αx−1e−βxdx , x > 0 ,

where α, β > 0. The loaded premium c is of the form c = (1 + θ)E[S1] for some

safety loading factor θ > 0. In turn, the Laplace exponent in (5.3.1) becomes

ψX(s) = c s − α ln(1 +
s

β
) . s > 0 ,

We refer the reader to [49] for a discussion of subordinator models in risk theory.

In this section we are going to provide expressions for Xτa
, Xτa

, Yτa− and Yτa
− a

associated to the process X given by Xt = ct − St.

To find these expressions we need first to provide W (x) for X. Let the process

X start at x > 0. Based on the result given in Chapter 8 of [63] for survival

probability for a spectrally negative Lévy process we have

1− φ(x) =







ψ′
X(0

+)W (x) if ψ′
X(0

+) > 0

0 Otherwise,
(5.5.22)

where φ(x) is the probability of ruin and ψX is the Laplace exponent for X. On the

other hand, [38] gives another expression for survival probability for Xt = ct − St
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when S is a gamma subordiantor. That is

1 − φ(x) =
θ

1 + θ

∑

n>0

1

(1 + θ)n
M∗n(x), (5.5.23)

where M(x) = β
∫ x
0

∫ ∞
βt u−1e−ududt = 1 + βxE1(βx). Here E1(x) =

∫ ∞
x u−1e−udu

is the exponential integral function and M∗n(x) =
∫ x
0 M∗(n−1)(x − y)M ′(y)dy is

the nth-fold convolution where M ′(y) = βE1(βy).

As ψ′
X(0+) = c−ψ′

S(0
+) = c− α

β
and c = α(1+θ)

β
, we have ψ′

X(0+) = αθ
β

> 0. Now,

by equalizing (5.5.22) and (5.5.23) we can get the expression for W (x). More

precisely, we have

W (x) =
β

(1 + θ)α

∑

n>0

1

(1 + θ)n
M∗n(x). (5.5.24)

Taking derivative of W (x) in (5.5.24) yields

W ′(x) =
β

(1 + θ)α

∑

n>0

1

(1 + θ)n
(M∗n)′(x) =

β

(1 + θ)α

∑

n>0

1

(1 + θ)n

∫ x

0

∂M∗(n−1)

∂x
(x − y) ∗ M ′(y)dy. (5.5.25)

So we have the following expression for λ(a, 0).

λ(a, 0) =
W ′(a)

W (a)
=

∑

n>0
1

(1+θ)n (M
∗n)′(a)

∑

n>0
1

(1+θ)n M∗n(a)
. (5.5.26)

Using (5.5.24), (5.5.25) and (5.5.26) can also provide expressions for F0,0,a(x) and

R(0)
a (dy).

Proposition 5.5.7. Consider an insurance risk process (Rt)t>0 of the form de-

fined in (5.5.21) with an initial level x > 0 and let a > 0 be a fixed critical

drawdown size. Then

Px[Xτa
< 0] = 1−W (x ∧ a)

W (a)
+

W (x ∧ a)e−β(x∨a)

W (a)

(

Gβ,β(x ∨ a) − Gβ+λ(a,0),β(x ∨ a)
)

,

where Gγ,β(v), λ(a, 0) and W (a) are given by (5.5.27), (5.5.26) and (5.5.24) re-

spectively.

Proof. Once again like the procedure we have done in the previous subsection,
to show this proposition we need to use Theorem 5.4.1. Here as σ = 0 so naturally
∆(0)(a) = 0. We just need to compute the integrals in the expression given for
Px[Xτa

< 0] in Theorem 5.4.1. The Lévy measure for the process St is ν(dx) =

αx−1e−βxdx. So, by replacing this into
∫

h>0

(

1− e−λ(a,0)h
)

ν(x ∨ a − y + dh) we

have
∫

h>0

(
1 − e−λ(a,0)h

)
ν(x ∨ a − y + dh) = α

∫ ∞

0

(
1 − e−λ(a,0)h

)
(x ∨ a − y + h)−1e−β(x∨a−y+h)dh
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= α
(

E1(β(x ∨ a − y)) − eλ(a,0)(x∨a−y)E1((β + λ(a, 0))(x ∨ a − y))
)

,

where E1 is the exponential integral function.

Now, define the following function.

Gγ,β(v) =
∫ ∞

0
e−γh

∫ a

0
(v + h − y)−1eβyR(0)

a (dy)dh, (5.5.27)

for γ, v > 0. It is clear that Gβ,β(a) =
eβa

α
because of

α
∫ a

0
E1(β(a − y))R(0)

a (dy) = 1. (5.5.28)

We use equation (5.4.3) to get equation (5.5.28). So by applying numerical meth-

ods we can compute the function Gγ,β.

To end the proof it is sufficient to apply (5.5.27) in (5.4.1). Thus we have

Px(Xτa
< 0) = 1−W (x ∧ a)

W (a)
+

W (x ∧ a)e−βx∨a

W (a)

(

Gβ,β(x ∨ a) − Gβ+λ(a,0),β(x ∨ a)
)

.

�

Now, we are going to provide representations for distributions of each of the

random variables Yτa− and Yτa
− a.

Proposition 5.5.8. Consider an insurance risk process (Rt)t>0 of the form de-

fined in (5.5.21) with an initial level x > 0 and let a > 0 be a fixed critical

drawdown size. Then

(1) the distribution of Yτa−, the largest drawdown observed before the critical

drawdown of size a, is

Px(Yτa− ∈ dy) = αE1(β(a − y))R(0)
a (dy).

(2) the overshoot of critical drawdown over level a is:

Px(Yτa
− a ∈ dh) = αe−β(a+h)

∫ a

0
(v + h − y)−1eβyR(0)

a (dy)dh.

Proof. As σ = 0 thus ∆(0)(a) = 0.

(1) It is clear that
∫ ∞
0 ν(a − y + dh) = αE1(β(a − y)). By plugging it into

(5.4.4) we have

Ex[1{Yτa−∈dy}] = αE1(β(a − y))R(0)
a (dy).

(2) To prove the second part of the theorem we have

ν(a − y + dh) = αe−β(a−y+h)(a − y + h)−1dh. (5.5.29)
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for h > 0 , y ∈ [0, a]. Substituting (5.5.29) in (5.4.5) gives

Ex[1{Yτa −a∈dh}] = αe−β(a+h)
∫ a

0
(a + h − y)−1eβyR(0)

a (dy)dh.

�

5.5.3. Spectrally Negative Stable process

In this subsection we are studying the running minimum at the first-passage time

over a level a of the drawdown process Y . In fact, we study the probability

which the running minimum at the first-passage time goes below 0 when Xt is a

spectrally negative stable process with stability parameter α ∈ (1, 2). Further-

more, we give representations for distributions of each of the stochastic processes

Xτa
, Yτa− and Yτa

− a associated to the main process X given above.

Let (Xt)t≥0 be a spectrally negative stable process with stability parameter α ∈
(1, 2) and Laplace exponent ψ(s) = sα for s > 0. Moreover, the Lévy measure in

(5.3.1) is ν(dx) = β
x1+α dx for x, β > 0. It can be seen (see for example [64, 71])

that

W (q)(x) = αxα−1E ′
α,1(qxα), (5.5.30)

for x, q > 0 where Eα,1(z) =
∑

k>0
zk

Γ(1+αk)
is the Mittag-Leffler function and Γ is

the gamma function.

Proposition 5.5.9. Let (Xt)t≥0 be a stable process with stability parameter α ∈
(1, 2) and let a > 0 be a critical drawdown size. Then

λ(a, q) =
α − 1

a
+ qαaα−1E ′′

α,1(qaα)

E ′
α,1(qaα)

, (5.5.31)

R(q)
a (dy) =

[

αyα−2E ′
α,1(qyα)

(

α − 1

λ(a, q)
− y

)

+
qα2y2α−2

λ(a, q)
E ′′

α,1(qyα)

]

dy . (5.5.32)

Proof. Taking derivative of (5.5.30) with respect to x and substitute it in λ(a, q)

given by (5.3.4) (in R(q)
a given by (5.3.6) respectively) yields (5.5.31)((5.5.32)

respectively). �

As a particular case of Proposition 5.5.9, we have

λ(a, 0) =
α − 1

a
and R(0)

a (dy) =
αyα−2

Γ(1 + α)
(a − y)dy. (5.5.33)

Proposition 5.5.10. Consider a spectrally negative stable process (Xt)t>0 with

stability parameter α ∈ (1, 2) with an initial surplus x > 0 and let a > 0 be a
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fixed critical drawdown size. Then

Px(Xτa
< 0) = 1−

(
x ∧ a

a

)α−1
+β

(
x ∧ a

a

)α−1(H0,0,0(x ∨ a)

α
− Hλ(a,0),λ(a,0),0(x ∨ a)

)

,

where λ(a, 0) is given by (5.5.31) and ga,α,0(v) is defined by (5.5.34).

Proof. To show this proposition we need to use Theorem 5.4.1 one more time.
The Lévy measure for the process −Xt is ν(dh) = β

h1+α dh for β > 0. So, by
replacing this into

∫

h>0

(

1 − e−λ(a,0)h
)

ν(x ∨ a − y + dh) we have
∫

h>0

(
1 − e−λ(a,0)h

)
ν(x ∨ a − y + dh) =

∫

h>x∨a−y

(
1 − eλ(a,0)(x∨a−y)e−λ(a,0)h

) β

h1+α
dh

=
β

α

[
1

(x ∨ a − y)α
− eλ(a,0)(x∨a−y)

∫

h>x∨a−y

αe−λ(a,0)h

h1+α
dh

]

.

Now define

Hγ1,γ2,q(v) =
∫ ∞

0
e−γ1h

∫ a

0

e−γ2yR(q)
a (dy)

(v − y + h)α+1
dh. (5.5.34)

We can use the numerical methods to compute Hγ1,γ2,q(v) for a given value v. For

the special case γ1 = γ2 = 0, v = a and q = 0 we have

H0,0,0(a) =
∫ a

0

R(0)
a (dy)

(a − y)α
=

α

β
, (5.5.35)

because of ∫ a

0

∫ ∞

0

β

(a − y + h)1+α dhR(0)
a (dy) = 1. (5.5.36)

We use (5.4.3) to get equation (5.5.36). To end the proof it is sufficient to replace

(5.5.34) and (5.5.35) into (5.4.1).

Therefore, after some simplifications we get

Px(Xτa
< 0) = 1−

(
x ∧ a

a

)α−1
+β

(
x ∧ a

a

)α−1(H0,0,0(x ∨ a)

α
− Hλ(a,0),λ(a,0),0(x ∨ a)

)

.

�

Proposition 5.5.11. Consider a spectrally negative stable process (Xt)t>0 with

stability parameter α ∈ (1, 2) with an initial surplus x > 0 and let a > 0 be a

fixed critical drawdown size. Then

(1) the distribution of Yτa−, the largest drawdown observed before the critical

drawdown of size a is

Px(Yτa− ∈ dy) =
βyα−2

Γ(1 + α)(a − y)α−1dy.
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(2) the overshoot of critical drawdown over level a is

Px(Yτa
− a ∈ dh) = β

∫ a

0

R(0)
a (dy)

(a − y + h)α+1
dh.

Proof. As σ = 0, thus ∆(0)(a) = 0.

(1) It can be easily shown that
∫ ∞
0 ν(a − y + dh) = β

α(a−y)α
. By plugging it

into (5.4.4) we get

Ex[1{Yτa−∈dy}] =
β

α(a − y)α
R(0)

a (dy). (5.5.37)

The proof of first part is done by replacing (5.5.33) into (5.5.37).

(2) To prove the second part of the theorem we have

ν(a − y + dh) =
β

(a − y + h)α+1
dh. (5.5.38)

Substituting (5.5.38) in (5.4.5) gives

Ex[1{Yτa −a∈dh}] = β
∫ a

0

R(0)
a (dy)

(a − y + h)α+1
dh.

�

In the sequel of this subsection, we are going to provide the joint Laplace trans-

form of τa and Gτa
. In fact, we are seeking the Laplace transform of the depletion

random variable, τa − Gτa
.

Proposition 5.5.12. Consider a spectrally negative stable process (Xt)t>0 with

stability parameter α ∈ (1, 2) with an initial surplus x > 0 and let a > 0 be a

fixed critical drawdown size.

(1) The bivariate Laplace transform of τa and Gτa
is given by

Ex

[

e−qτa−rGτa

]

=
βλ(a, q)

αλ(a, q + r)
H0,0,q(a),

where H0,0,q(a) is defined by (5.5.34) and λ(a, q) is given by (5.5.31).

(2) The Laplace transform of the speed of depletion τa − Gτa
is given by,

Ex

[

e−q(τa−Gτa )
]

=
βλ(a, q)

αλ(a, 0)
H0,0,q(a) .

Proof. As σ = 0 thus ∆(0)(a) = 0 in Proposition 5.4.2 and Theorem 5.4.3.
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(1) The Lévy measure of the process −X is β
xα+1dx and so

∫ ∞
0 ν(a−y+dh) =

β
α(a−y)α

. Now using Proposition 5.4.2 as it specializes to this case yields

Ex

[

e−qτa−rGτa

]

=
βλ(a, q)

αλ(a, q + r)

∫ a

0

R(q)
a (dy)

(a − y)α
=

βλ(a, q)

αλ(a, q + r)
H0,0,q(a).

This ends the proof of the first part.

(2) In a similar way, specializing Theorem 5.4.3 to this case using the expres-

sions in (5.5.31) and (5.5.32) yields the result.

�

5.5.4. Brownian Perturbed Model without Claims

The Brownian Perturbed risk process R without claims is a Brownian motion

with drift, starting at x > 0, i.e.

Rt = x + Xt , (5.5.39)

where X is a Brownian motion with a drift given by

Xt = ct + σBt , (5.5.40)

and (Bt)t>0 is assumed to be a standard Brownian motion. The form of the q-

scale function in this model is relatively simple since the claim sizes disappear.

In this case, the Laplace exponent in (5.3.1) takes a simple form and becomes

ψ(s) = c s +
σ2

2
s2 , s > 0 . (5.5.41)

We obtain an explicit expression for the q-scale function (see [62] for more details)

as

W (q)(x) =
1√

c2 + 2qσ2

[

e(
√

c2+2qσ2−c) x

σ2 − e−(
√

c2+2qσ2+c) x

σ2

]

(5.5.42)

Following the same order of ideas as in previous examples, we obtain explicit

expressions for the functions λ, R(q)
a and ∆(q)

a . These are given in the following

result.
Proposition 5.5.13. Consider the process (Rt)t≥0 in (5.5.39) and let a > 0 be
a critical drawdown size. Then

λ(a, q) = − c

σ2
+

√
c2 + 2qσ2

σ2

[

1 + e
−2 a

σ2

√
c2+2qσ2

1 − e
−2 a

σ2

√
c2+2qσ2

]

, (5.5.43)

R
(q)
a (dy) =

[

−
(

c

σ2 λ(a, q)
+ 1

)

W (q)(y) +
1

σ2 λ(a, q)

(
e
(
√

c2+2qσ2−c)
y

σ2 + e
−(

√
c2+2qσ2+c)

y

σ2
)]

1y∈(0,a]dy ,

∆(q)(a) = −
(

c

2
+

c2 + qσ2

σ2 λ(a, q)

)

W (q)(y) +

(
1

2
− c

σ2 λ(a, q)

)(
e
(
√

c2+2qσ2−c) a

σ2 + e
−(

√
c2+2qσ2+c) a

σ2
)

,

where W (q) is given by (5.5.42).
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Proof. We have

λ(a, q) =
W

′(q)
+ (a)

W (q)(a)
.

By referring to equation (5.5.42) we can see that W (q) is a differentiable function

on (0, ∞) so by differentiating equation (5.5.42) we can directly obtain

W ′(q)(x) = − c

σ2
W (q)(x) +

1

σ2

[

e
(
√

c2+2qσ2−c) x

σ2 + e
−(

√
c2+2qσ2+c) x

σ2

]

= − c

σ2
W (q)(x) +

1

σ2

[

e
−c x

σ2
(
e

√
c2+2qσ2 x

σ2 + e
−

√
c2+2qσ2 x

σ2
)]

.(5.5.44)

Applying (5.5.42) and (5.5.44) in the definition (5.3.4) yields the first result.

As W (q) is an increasing function and does not have a mass at x = 0, we have

W (q)(dx) = W ′(q)(x)dx (see [63]). Direct substitution into the definition (5.3.6)

of R(q)
a yields the second result.

Differentiating equation (5.5.44) we can obtain

W ′′(q)(x) = − c

σ2
W ′(q)(x) − c

σ4

(

e
(
√

c2+2qσ2−c) x

σ2 + e
−(

√
c2+2qσ2+c) x

σ2

)

+
c2 + 2qσ2

σ4
W (q)(x)

=
2c2 + 2qσ2

σ4
W (q)(x) − 2c

σ4

(

e
(
√

c2+2qσ2−c) x

σ2 + e
−(

√
c2+2qσ2+c) x

σ2

)

, (5.5.45)

where in the last equality we have substituted W ′(q)(x) by its expression provided

in (5.5.44). Combining (5.5.44) and (5.5.45) in equation (5.3.7) for ∆(q)(a) yields

the third result. �

In the following propositions, we will give explicit representations for the distri-

butions in Theorem 5.4.1, 5.4.2 and 5.4.3 for the risk model (5.5.39).

Proposition 5.5.14. Consider a process (Rt)t>0 of the form defined in (5.5.39)

with an initial level x > 0 and let a > 0 be a fixed critical drawdown size. Then

(1)

Px(Xτa
< 0) =

e− 2c(x∧a)

σ2 − e− 2ca

σ2

1 − e− 2ca

σ2

. (5.5.46)

(2) the largest drawdown observed before critical drawdown follows a Dirac

measure at a. That is

Px(Yτa− ∈ dy) = δa(dy) .

(3) the overshoot over the critical drawdown Yτa
− a follows a Dirac measure

at 0. That is

Px(Yτa
− a ∈ dh) = δ0(dh) .
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Proof. (1) The expression given for Px(Xτa
< 0) in Theorem 5.4.1 will be

reduced to

Px(Xτa
< 0) = 1 − W (x ∧ a)

W (a)
, (5.5.47)

since the Lévy measure vanishes. Moreover, W (x) is given by

W (x) =
1

c

(

1 − e− 2cx

σ2

)

. (5.5.48)

Thus, (5.5.46) holds.

(2) Note that for q = 0, (5.5.43) will be reduced to

λ(a, 0) =
2c

σ2

(
e

−2ac

σ2

1 − e
−2ac

σ2

)

. (5.5.49)

On the other hand, by differentiating (5.5.48) we have

∆(0)(a) =
σ2

2

[

W ′(a)− λ(a, 0)−1W ′′(a)
]

= 1 . (5.5.50)

Therefore, Px(Yτa− ∈ dy) = δa(dy) .

(3) The third part of this proposition can also be obtained in the same way.

�

In the following, we provide explicit expressions for joint Laplace transform of Gτa

and τa as well as the Laplace transform of the speed of depletion. Notice that the

corresponding integral with respect to R(q)
a (·) in Proposition 5.4.2 and Theorem

5.4.3 disappears since Xt has no jumps. In this case, these Laplace transforms

are a simple function of W (q)(a) given in (5.5.42), and they can be computed in

a straightforward way using Proposition 5.4.2 and Theorem 5.4.3.

Proposition 5.5.15. Consider a process (Rt)t>0 of the form defined in (5.5.39)

with an initial level x > 0 and let a > 0 be a fixed critical drawdown size. Then

for q, r > 0

(1) the bivariate Laplace transform of τa and Gτa
is given by

Ex

[

e−qτa−rGτa

]

=
1

λ(a, q + r)

[

(−
c
2λ(a, q) + q + c2

σ2
√

c2 + 2qσ2
+

1

2
λ(a, q) − c2

σ2
)e(

√
c2+2qσ2−c) a

σ2

+(
c
2λ(a, q) + q + c2

σ2
√

c2 + 2qσ2
− 1

2
λ(a, q) +

c2

σ2
)e−(

√
c2+2qσ2−c) a

σ2

]

, (5.5.51)

with λ(a, q) given in (5.5.43).

(2) the Laplace transform of the speed of depletion τa − Gτa
is given by

Ex

[

e−q(τa−Gτa )
]

=
σ2(1 − e

− 2c

σ2
a
)

2c e
− 2c

σ2
a

[

(−
c
2

λ(a, q) + q + c2

σ2
√

c2 + 2qσ2
+
1

2
λ(a, q) − c2

σ2
)e
(
√

c2+2qσ2−c) a

σ2
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+(

c
2

λ(a, q) + q + c2

σ2
√

c2 + 2qσ2
− 1

2
λ(a, q) +

c2

σ2
)e

−(
√

c2+2qσ2−c) a

σ2

]

. (5.5.52)

Proof. (1) As the risk process X has no jumps, then Proposition 5.4.2 will

be reduced to

Ex

[

e−qτa−rGτa

]

=
λ(a, q)

λ(a, q + r)
∆(q)(a). (5.5.53)

We can then compute equation (5.5.53) using the given representation for
∆(q)(a) in Proposition 5.5.13. That is,

Ex

[

e−qτa−rGτa

]

=
1

λ(a, q + r)

[

(−
c
2λ(a, q) + q + c2

σ2
√

c2 + 2qσ2
+

1

2
λ(a, q) − c2

σ2
)e(

√
c2+2qσ2−c) a

σ2

+ (
c
2λ(a, q) + q + c2

σ2
√

c2 + 2qσ2
− 1

2
λ(a, q) +

c2

σ2
)e−(

√
c2+2qσ2−c) a

σ2

]

, (5.5.54)

where in the last equality we have substituted W (q)(a) by its expression

given by (5.5.42). Thus (5.5.51) holds.

(2) In a similar way, specializing Theorem 5.4.3 to this case and using the

expression in (5.5.49) yield the result.

�

5.5.5. Meromorphic Risk Process (Beta Risk Process)

The beta risk model was introduced in [60]. It is of the form

Rt = x+Xt, (5.5.55)

where the net aggregate claim process X is a beta process. That is,

Xt = ct − Zt , (5.5.56)

where the aggregate claims process (Zt)t>0 has the following Lévy measure

ν(dx) = ξ β
e−(1+α)βx

(1− e−βx)λ
x. , x > 0 , (5.5.57)

with α, β, ξ > 0 and λ ∈ (1, 2) ∪ (2, 3).
Parameters α and β are responsible for the rate of decay of the tail of the Lévy

measure and for the shape of this measure, parameter ξ controls the overall “in-

tensity” of jumps, while the parameter λ describes the singularity of the Lévy

measure at zero and therefore controls the intensity of the small jumps. Indeed,

if λ ∈ (1, 2), then the process has jump part of infinite activity and finite variation
while if λ ∈ (2, 3), the jump part of the process will be of infinite variation. For
a thorough discussion of the beta family of processes we refer to [59].
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The loaded premium c is again of the form c = (1 + θ)E[Z1] for some safety

loading factor θ > 0. In turn, the Laplace exponent in (5.3.1) becomes,

ψ(s) = c s+
1

2
σ2s2+ξ B(1+α+s/β, 1−λ)−ξ B(1+α, 1−λ) . s > 0 , (5.5.58)

where B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the Beta function.

Notice that this family has a Gaussian component that can be switched on and

off using the σ parameter in (5.5.58) making our risk model a member of the

so-called perturbed family of models.

The beta process is in fact an example of a member of a larger family of processes

having either a rational or meromorphic Laplace exponent which is at the heart

of their tractability. As was shown in [61], many results of fluctuation theory can

be given rather explicitly for this family of processes. These processes are defined

by requiring that their Lévy density Π(x. ) = π(x)x. is essentially a “mixture” of

exponential distributions, and in the spectrally negative case this translates into

the following definition

π(x) = 1{x>0}
∞∑

m=1

bme−ρmx, (5.5.59)

where all the coefficients bm and ρm are positive and ρ1 < ρ2 < . . . . The Laplace

exponent ψ(s) for a process with the Lévy measure (5.5.59) is a meromorphic

(M = +∞) function (see [61]). In the case of the beta process, it has been shown

(see [59]) that its Lévy density (5.5.57) is of the form in (5.5.59) with coefficients

bm = ξ β

(

m+ λ − 2

m − 1

)

, ρm = β(α +m) . (5.5.60)

In the following, we give the form of the q-scale function for beta process and

study depletion quantities for this process. The following lemma is taken from

[60]

Lemma 5.5.1. Consider the process (Xt)t≥0 in (5.5.56). Then, for q ≥ 0

W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

∑

n≥1

e−ζnx

ψ′(−ζn)
, x > 0, (5.5.61)

where {Φ(q), −ζ1, −ζ2, . . . } is the set of simple poles of the function ezx

ψ(z)−q
.

As we have ψ(s) = E(X1)s + O(s2) when s → 0, it gives Φ(0) = 0. By setting

K(x) =
∑

n≥1
e−ζnx

ψ′(−ζn)
, we haveW (0)(x) = 1

E(X1)
+K(x). Taking derivative ofW (0)(x)

provides us λ(a, 0). That is,

λ(a, 0) =
W ′(0)(x)

W (0)(x)
=

E(X1)K
′(x)

1 + E(X1)K(x)
. (5.5.62)
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Using (5.5.62) and W ′′(0)(x) = K ′′(x) =
∑

n≥1
ζ2ne−ζnx

ψ′(−ζn)
, we can also find expressions

for F0,0,a(x), R(0)
a (dy) and ∆(0)(a).

Proposition 5.5.16. Consider a meromorphic beta spectrally negative process

(Xt)t>0 with an initial surplus x > 0 and let a > 0 be a fixed critical drawdown

size. Then

(1)

Px(Xτa
< 0) = 1−1 + E(X1)K(x ∧ a)

1 + E(X1)K(a)
+
1 + E(X1)K(x ∧ a)

1 + E(X1)K(a)
[G(b, ρ, 0) − G(b, ρ, λ(a, 0))] ,

(5.5.63)

(2) the distribution of Yτa−, the largest drawdown observed before the critical

drawdown of size a, is:

Px(Yτa− ∈ dy) =
∞∑

m=1

bm

ρm

e−ρm(a−y)R(0)
a (dy) + ∆(0)(a)δa(dy),

(3) the overshoot of critical drawdown over level a is:

Px(Yτa
− a ∈ dh) =

∞∑

m=1

bme−ρm(a+h)dh
∫ a

0
eρmyR(0)

a (dy) + ∆(0)(a)δ0(dy),

where G(c, d, k) is defined in (5.5.65).

Proof. To show the first part of this proposition we need to use Theorem 5.4.1.
We just need to compute the integrals in the expression given for Px[Xτa

< 0] in
Theorem 5.4.1. The Lévy measure for the process Xt is given by (5.5.59). So, by
replacing this into

∫

h>0

(

1− e−λ(a,0)h
)

ν(x ∨ a − y + dh) we have
∫

h>0

(
1 − e−λ(a,0)h

)
ν(x ∨ a − y + dh) =

∫

h>0

(
1 − e−λ(a,0)h

)
∞∑

m=1

bme−ρm(x∨a−y+h)dh

=

∞∑

m=1

[
bm

ρm

− bm

λ(a, 0) + ρm

]

e−ρm(x∨a−y). (5.5.64)

For two sequences c = (cm)m≥1 and d = (dm)m≥1 and constant k ∈ R define

G(c, d, k) =
∞∑

m=1

cm

dm + k

∫ a

0
e−ρm(x∨a−y)R(0)

a (dy). (5.5.65)

We can compute (5.5.65) numerically. Therefore, using (5.5.64) and (5.5.65) we

have
∫ a

0

∫

h>0

(

1 − e−λ(a,0)h
)

ν(x ∨ a − y + dh)R(0)
a (dy) = G(b, ρ, 0) − G(b, ρ, λ(a, 0)).

(5.5.66)
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To finish the proof we need to substitute (5.5.66) in equation (5.4.1) in Theorem
5.4.1. That is,

Px[Xτa
< 0] = 1−1 + E(X1)K(x ∧ a)

1 + E(X1)K(a)
+
1 + E(X1)K(x ∧ a)

1 + E(X1)K(a)
[G(b, ρ, 0) − G(b, ρ, λ(a, 0))] .

To prove the second part of the proposition we use equation (5.4.4) in Theorem

5.4.2. We have
∫

h>0
ν(a − y + dh)R(0)

a (dy) =
∞∑

m=1

bm

ρm

e−ρm(a−y)R(0)
a (dy). (5.5.67)

By substituting (5.5.67) into (5.4.4) we get

Px(Yτa− ∈ dy) =
∞∑

m=1

bm

ρm

e−ρm(a−y)R(0)
a (dy) + ∆(0)(a)δa(dy).

To show the third part of the proposition we follow the same procedure as applied

for the first and second parts. In fact, we use equation (5.4.5) in Theorem 5.4.2.

In the other words, we have
∫

y∈[0,a]
ν(a − y + dh)R(0)

a (dy) =
∞∑

m=1

bme−ρm(a+h)dh
∫ a

0
eρmyR(0)

a (dy). (5.5.68)

By substituting (5.5.68) into (5.4.5) we get

Px(Yτa
− a ∈ dh) =

∞∑

m=1

bme−ρm(a+h)dh
∫ a

0
eρmyR(0)

a (dy) + ∆(0)(a)δ0(dy).

�

Remark 5.5.2. It can be seen from Proposition 5.5.16 that we come up with

expressions included series for depletion quantities. These expressions might be

not straightforward to compute but we can use numerical method to compute these

expressions. We can also apply numerical methods to study other depletion quan-

tities like Ex

[

e−q(τa−Gτa )
]

.

5.6. Simulations

5.6.1. Classical Cramer-Lundberg mode with Exponential Claims

We consider a drifted compound Poisson process, introduced in Subsection 5.5.1,

with λ = 5, exponential claims with parameter µ = 1 starting from an initial

capital x > 0 with a loading factor θ > 0.

We first consider a sample of size n = 10000 of a such process on the time

interval [0, 1000] and compute the depletion quantities by Monte-Carlo method

with a = 6, the initial capital x = 5 and the loading factor θ = 1. Note that

c = (1 + θ)λ/µ = 10.
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In Figure 5.3, we observe the convergence of the empirical probability of ruin

before the first critical drawdown (the black line) to its theoretical value (the red

line), obtained by Formula (5.5.6), when n is increasing.

Figure 5.4 illustrates the second point of Proposition 5.5.4 by comparing the

empirical distribution of the overshoot Yτa
−a over the critical drawdown and the

exponential density with parameter µ (the red line).
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Fig. 5.3. Empirical probability of ruin before the first critical
drawdown.
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Fig. 5.4. Empirical distribution of the overshoot Yτa
− a.

In Figure 5.5, we give the empirical distribution of τa, Gτa
and the speed of

depletion τa − Gτa
respectively and compare them to an exponential density (the

red line) which seems to be a good estimation for the two first variables. The

histogram of τa − Gτa
suggests that with a positive probability τa is equal to Gτa

.
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Fig. 5.5. Empirical distributions for a drifted compound Poisson
process.
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Fig. 5.6. Evolution of the probability of ruin before the first crit-
ical drawdown.

We now observe, in Figure 5.6, the evolution of the probability of ruin before the

first critical drawdown in the loading factor θ and in the initial surplus x. The

probability was computed using Formula 5.5.6.
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5.6.2. Gamma Risk Process

We now consider a Gamma risk process, introduced in Subsection 5.5.2, with

α = β = 1 starting from the initial capital x = 5 with the loading factor θ = 0.2.

The loaded premium is then equal to c = (1 + θ)α/β = 1.2.

We first consider a sample of size n = 10000 of a such process on the time

interval [0, T ] with T = 1000 and compute the depletion quantities by Monte-

Carlo method with a = 3.

We use a time step h = T ∗ 2−15 to generate the increments of a Gamma process

on [0, T ].

In Figure 5.7, we observe the convergence of the empirical probability of ruin

before the first critical drawdown (the black line) to a positive value which is

equal to 0.97% (the red line), when n is increasing.
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Fig. 5.7. Empirical probability of ruin before the first critical
drawdown.

In Figure 5.8, we give the empirical distribution of τa, Gτa
and the speed of

depletion τa − Gτa
respectively. We observe that they are more distinct of an

exponential density than in the Cramer-Lundberg model.
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this chapter, we will review the research contributions of this thesis, as well as

discuss directions for future research.

6.1. Contributions

The following are the main research contributions of this thesis.

The first contribution the author of this thesis has made was designing a new

class of coherent risk measures on space of stochastic processes. Both designing

risk measures on space of stochastic processes and applying them to practical

problems turn out to be a hard task. We circumvented these challenges by using

a coherent risk measure defined on space of random variables as a benchmark risk

measure which yields to come up with a class of desired risk measures on space of

stochastic processes. This was done by multiplying the benchmark risk measure

by a suitable weight function and integrating over a fixed period of time. The

elements of this class satisfy in an axiomatic definition proposed in [24] and also

capture the risk associated with the path-properties of a financial or an insurance

model. Moreover, they have smooth explicit representations which enable us to

easily compute without having to make use of the advanced mathematical tools.

Finally, they can be enough tractable to apply them in practice. For instance, We

applied them to the problem of capital allocation and derived interesting explicit

results for some models in insurance context.

Next contribution the author of this thesis has made in this thesis was studying

and designing a class of risk measures defined on data sets instead of dealing with

random vectors. A risk measure on the space of random vectors assigns a set of

vectors, instead of a real single value to a random vector. These vector-valued
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risk measures defined on space of random vectors are not enough tractable and

straightforward to apply them into practice. We circumvented this problem by

proposing multivariate data sets instead of using random vectors and defining a

multivariate data-based risk measure. By inspiring from the definition of natural

risk statistics proposed in [53] and its properties, we proposed to use a couple

ordering which yields to define a class of risk measures, defined on multivariate

data sets, satisfying in an axiomatic definition.

Introducing and proposing new path-related concepts in the collective risk theory

which have not yet been studied in an insurance management context was another

contribution the author has made in this thesis. These quantities are quantities

in collective risk theory which are related to the so-called Lévy insurance risk

processes and the first passage problem. These quantities are drawdowns and

the speed of depletion, the speed at which an insurance reserve depletes as a

consequence of the risk exposure of the company. We have derived expressions for

many drawdown-related quantities in some cases of Lévy insurance risk processes

for which they can be calculated, in particular for the classical Cramer-Lundberg

model.

6.2. Future Research Directions

In the following we will point out several research directions which can be

explored in different ways.

One of such directions would be to investigate possible ways to define another

class of risk measures on space of stochastic processes using the obtained results

in Chapter 5. One possibility could be to seek the density functions (if exist) for

depletion-related quantities explored in Chapter 5 and apply as weight functions

in risk measure introduced in (2.2.1). Deriving a new coherent risk measure

defined on space of random variables rather than the one given in (2.2.2) and

plug it in (2.2.1) would also be of interest. Next, it could be interesting to study

the problem of capital allocation and the problem of portfolio optimization for

such risk measures.

Another possible research direction could be to generalize the method used in

Chapter 4 to define multivariate data-based risk measures. In the other words,

one can study this class of data-based risk measures under another couple ordering

than the one introduced in Chapter 4. In this case, applying obtained class of risk

measures to practice and investigating different properties of them would also be

of interest.
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Appendix A

MEASURE THEORY AND STOCHASTIC
PROCESSES

A.1. Measure and probability space

The aim of this section is to recall key notions of measure theory and probability

that will be used extensively throughout this thesis. The following discussion is

mostly taken from Section 1.1.1 of [5].

Definition A.1.1. ([5]) Let Ω be a non-empty set and F a collection of subsets

of Ω . We call F a σ-algebra if the following hold:

(1) Non-empty. Ω ∈ F .
(2) Closed under complement. If A ∈ F , then Ac ∈ F .
(3) Closed under countable union. If (An)n∈N is a sequence of subsets in F ,

then
⋃∞

n=1 An ∈ F .
The pair (Ω, F) is called a measurable space.
Definition A.1.2. ([5]) A measure P defined on (Ω, F) is a mapping P : F →
[0, ∞) that satisfies

(1) P(∅) = 0.
(2) For every sequence (An)n∈N of mutually disjoint sets in F

P(
∞⋃

n=1

An) =
∞∑

n=1

P(An).

The triple (Ω, F ,P) is called a measure space. If P(Ω) = 1 then the triple (Ω, F ,P)

is called a probability space.

Definition A.1.3. ([5]) A Borel σ-algebra of R is the smallest σ-algebra of sub-

sets of R that contains all the open sets (or equivalently, all closed sets) and is

denoted by B(R). Any measure on (R, B(R)) is called a Borel measure.
Definition A.1.4. ([5]) Let (Ω, F) be a measurable space. The function X : Ω →
R is a random variable if {ω : X(ω) ≤ r} ∈ F for all r ∈ R.
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Definition A.1.5. ([5]) let (Ω, F ,P) be a probability measure and X be a random

variable. Its law (or distribution) is the Borel probability measure PX on R defined

by PX = PoX−1 where ”o” is the composition operator between functions P and

X−1.

Now, let (Ω, F ,P) contain all null sets (i.e. is complete). The expectation E is a

functional defined as E(X) =
∫

Ω |X|dP, where |.| is the absolute value function.
In this thesis we use different stochastic models for studying the random behavior

of surplus of financial and insurance companies. These models use stochastic

processes for which we provide the following definition.

Definition A.1.6. ([5]) Let (Ω, F ,P) be a probability space. A stochastic process

(Xt)t∈[0,T ] is a function from Ω × [0, T ] to R which is measurable with respect to

the σ-algebra σ(F × B) where B is the Borel σ- algebra on [0, T ].

An important class of stochastic processes which we use widely in this thesis

is the class of Lévy processes. This class of processes meet interesting path

properties in both analytical and practical point of view (see [63]). One of

the important tools which enables us to deeply study this class of processes is

characteristic functions. This function finds a lot of applications in probability

and is used to prove several important theorems in probability. For instance,

the central limit theorem and Lévy continuity theorem. Characteristic functions

are also used to study an important decomposition theorem for Lévy processes

so-called the Lévy-Ito decomposition theorem. This theorem will be discussed

in the next section. For the sake of completeness, we recall the definition of

characteristic function for a random variable and give some of its properties.

The following definition and lemma are taken from Subsection 1.1.6 of [5].

Definition A.1.7. ([5]) Let X be a random variable defined on (Ω, F ,P) and

taking values in R with probability law PX(i.e. PX = PoX−1). Its characteristic

function φX : R → C is defined by

φX(u) = Ee(iuX) =
∫

R
eiuyPX(dy),

for each u ∈ R.

Some properties of φX are collected in the following lemma.

Lemma A.1.1. ([5]) Let X be a random variable defined on (Ω, F ,P) with char-

acteristic function φX . Then

• φX(0) = 1 and |φX(u)| ≤ 1,

• φX(−u) = φX(u),

• X is symmetric if and only if φX is real-valued,

• The map u → φX(u) is continuous at the origin.
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A.2. Banach and Lp spaces

The theory of risk measures has been defined on different spaces of random vari-

ables (or stochastic processes at each fixed time) and extensively studied (see

[45]). Important classes for which this theory has been introduced and studied

are Banach and Lp(Ω) spaces. In this thesis, the idea we put forward to study

coherent risk measures defined on subspaces of the space of stochastic processes

requiring to know Banach and Lp spaces. The following definitions are taken from

[4].

Definition A.2.1. ([4]) Let B be a linear space over the field R. A norm ||.|| on
B is a function from B to [0, ∞) such that

(1) ∀X ∈ B, ||X|| = 0 if and only if X = 0;

(2) ∀X ∈ B, t ≥ 0, ||tX|| = t||X||;
(3) ∀X, Y ∈ B, ||X + Y || ≤ ||X|| + ||Y ||.

The linear space B is a normed space if its topology is induced by metric d(X, Y ) =

||X − Y ||.
Definition A.2.2. ([4]) A normed space (B, ||.||) is called a Banach space if it
is complete. i.e. every Cauchy sequence in B converges to an element in B.

In the following we provide definition for Lp spaces as an example of Banach

spaces.

Definition A.2.3. ([4]) Let (Ω, F ,P) be a measure space. For 1 ≤ p < ∞ we

define the space Lp(Ω) as the space of all measurable functions X on Ω such

that ||X||p = (
∫

Ω |X|pdP)
1
p is finite. The space L∞(Ω) is defined as the space of

all measurable functions X on Ω such that ||X||∞ = esssup|X| = inf{C ≥ 0 :

|X(ω)| ≤ C for almost every ω} is finite.

A.3. Lévy-Ito Decomposition

One of the most important result in the theory of Lévy process is Lévy-Ito de-

composition. This results characterizes this class of processes. Roughly speaking,

Lévy-Ito decomposition says every Lévy process has a continuous part, a com-

pound Poisson part and a pure jump part. This characterization helps to have a

better sight about path properties of Lévy processes (see [63]). In the following,

we provide some preliminaries related to this decomposition and then recall the

main theorem which gives Lévy-Ito decomposition.

Definition A.3.1. (Poisson Random Measure) ([63]) Let (E, A, µ) be some

measure space with σ-finite measure µ. The Poisson random measure with in-

tensity measure µ is a family of random variables {MA}A∈A defined on some

probability space (Ω, F ,P) such that
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(1) ∀A ∈ A, MA is a Poisson random variable with rate µ(A).

(2) If sets A1, A2, . . . , An ∈ A don’t intersect then the corresponding random

variables from (1) are mutually independent.

(3) ∀ω ∈ Ω, M•(ω) is a measure on (E, A).

Assume that (Xt)t≥0 is a cádlág process. Let ∆Xt = Xt−X(t−) (it is well defined
due to existence of X(t−)) and A be bounded below, i.e. 0 ∈ Ā. For t ≥ 0 define,

N(t, A) = #{∆X(s) ∈ A : s ∈ [0, t]}. (A.3.1)

It is obvious that N(t, A) is a stochastic process. In the following proposition we

recall some properties if this process.

Proposition A.3.1. ([5]) Let N(t, A) be the process given by (A.3.1). Then,

(1) For each A bounded below,(N(t, .), t ≥ 0) is a Poisson process with inten-

sity

µ(A) = E[N(1, A)]. (A.3.2)

(2) The measure µ given by (A.3.2) is a Lévy measure.

(3) The compensator Ñ(t, .), t ≥ 0 is a martingale-valued measure where

Ñ(t, A) = N(t, A)− tµ(A),

for A bounded below. i.e. for a fixed A bounded below, Ñ(t, A) is a mar-

tingale.

Let f be a Borel measurable function f : R → R and let A be bounded below,

then for each t > 0 , ω ∈ Ω the Poisson integral of f can be defined in the

following way.

∫

A
f(x)N(t, dx)(ω) =

∑

x∈A

f(x)N(t, {x})(ω). (A.3.3)

Note that each
∫

A f(x)N(t, dx) is a R-valued random variable and gives rise to

a càdlàg stochastic process as we vary t. This leads to define the compensated

Poisson integral associated to Ñ(t, dx), (see [5]), in the following way.
∫

A
f(x)Ñ(t, dx) =

∫

A
f(x)N(t, dx)− t

∫

A
f(x)µ(dx), (A.3.4)

where f is an integrable function with respect to (w.r.t.) the measure µ restricted

to A. It can be shown that if f is a square integrable function w.r.t. µ restricted

to A, then
∫

A f(x)Ñ(t, dx) is a square integrable martingale (see [5]).

Now, we are in a position to recall Lévy-Ito decomposition.
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Theorem A.3.1. (Lévy-Ito decomposition) ([5]) If X is a Lévy process, then

there exists b ∈ R, σ ≥ 0, Brownian motion W , and an independent Poisson

random measure N on R+ × (R\{0}) such that for each t ≥ 0,

Xt = bt + σW (t) +
∫

|x|≥1
xN(t, dx) +

∫

|x|<1
xÑ(t, dx). (A.3.5)

Remark A.3.1. It can be seen from Theorem A.3.1 that each Lévy process X

can be represented as X = X(1) + X(2) + X(3) where

(1) X(1) is a Brownian motion with drift;

(2) X(2) is a compound Poisson process;

(3) X(3) is a square integrable pure jump martingale.


