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Résumé 

Les systèmes logiciels sont devenus de plus en plus répondus et importants dans notre 

société. Ainsi, il y a un besoin constant de logiciels de haute qualité. Pour améliorer la 

qualité de logiciels, l’une des techniques les plus utilisées est le refactoring qui sert à 

améliorer la structure d'un programme tout en préservant son comportement externe. Le 

refactoring promet, s'il est appliqué convenablement, à améliorer la compréhensibilité, la 

maintenabilité et l'extensibilité du logiciel tout en améliorant la productivité des 

programmeurs. En général, le refactoring pourra s’appliquer au niveau de spécification, 

conception ou code. Cette thèse porte sur l'automatisation de processus de recommandation 

de refactoring, au niveau code, s’appliquant en deux étapes principales: 1) la détection des 

fragments de code qui devraient être améliorés (e.g., les défauts de conception), et 2) 

l'identification des solutions de refactoring à appliquer.  

Pour la première étape, nous traduisons des régularités qui peuvent être trouvés dans 

des exemples de défauts de conception. Nous utilisons un algorithme génétique pour 

générer automatiquement des règles de détection à partir des exemples de défauts. 

Pour la deuxième étape, nous introduisons une approche se basant sur une recherche 

heuristique. Le processus consiste à trouver la séquence optimale d'opérations de 

refactoring permettant d'améliorer la qualité du logiciel en minimisant le nombre de défauts 

tout en priorisant les instances les plus critiques. De plus, nous explorons d'autres objectifs 

à optimiser: le nombre de changements requis pour appliquer la solution de refactoring, la 

préservation de la sémantique, et la consistance avec l’historique de changements. Ainsi, 

réduire le nombre de changements permets de garder autant que possible avec la conception 

initiale. La préservation de la sémantique assure que le programme restructuré est 

sémantiquement cohérent. De plus, nous utilisons l'historique de changement pour suggérer 

de nouveaux refactorings dans des contextes similaires. 

En outre, nous introduisons une approche multi-objective pour améliorer les attributs 

de qualité du logiciel (la flexibilité, la maintenabilité, etc.), fixer les « mauvaises » 

pratiques de conception (défauts de conception), tout en introduisant les « bonnes » 

pratiques de conception (patrons de conception). 

Mots-clés : Défauts de Conception, Restructuration de logiciel, Maintenance de logiciels.
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Abstract 

Software systems have become prevalent and important in our society. There is a constant 

need for high-quality software. Hence, to improve software quality, one of the most-used 

techniques is the refactoring which improves design structure while preserving the external 

behavior. Refactoring has promised, if applied well, to improve software readability, 

maintainability and extendibility while increasing the speed at which programmers can 

write and maintain their code. In general, refactoring can be performed in various levels 

such as the requirement, design, or code level. In this thesis, we mainly focus on the source 

code level where automated refactoring recommendation can be performed through two 

main steps: 1) detection of code fragments that need to be improved/fixed (e.g., code-

smells), and 2) identification of refactoring solutions to achieve this goal.  

For the code-smells identification step, we translate regularities that can be found in 

such code-smell examples into detection rules. To this end, we use genetic programming to 

automatically generate detection rules from examples of code-smells. 

For the refactoring identification step, a search-based approach is used. The process 

aims at finding the optimal sequence of refactoring operations that improve software 

quality by minimizing the number of detected code-smells while prioritizing the most 

critical ones. In addition, we explore other objectives to optimize using a multi-objective 

approach: the code changes needed to apply refactorings, semantics preservation, and the 

consistency with development change history. Hence, reducing code changes allows us to 

keep as much as possible the initial design. On the other hand, semantics preservation 

insures that the refactored program is semantically coherent, and that it models correctly the 

domain-semantics. Indeed, we use knowledge from historical code change to suggest new 

refactorings in similar contexts. 

Furthermore, we introduce a novel multi-objective approach to improve software 

quality attributes (i.e., flexibility, maintainability, etc.), fix “bad” design practices (i.e., 

code-smells) while promoting “good” design practices (i.e., design patterns). 

Keywords: Search-based Software Engineering, Software Maintenance, Code-smells, Refactoring.
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Chapter 1 : Introduction 

 

1.1 Research context 

Source code of large systems is iteratively refined, restructured and evolved due to 

many reasons such as correcting errors in design, modifying a design to accommodate 

changes in requirements, and modifying a design to enhance existing features. Many 

studies reported that these software maintenance activities consume more than 70% of the 

overall cost of a typical software project [3]. 

This high cost could potentially be greatly reduced by providing automatic or semi-

automatic solutions to avoid bad-practices and increase in turn software understandability, 

adaptability and extensibility. As a result, there has been much research focusing on the 

study of bad design and programming practices, also called code-smells, design defects, 

anti-patterns or anomalies [1] [2] [10] [12] in the literature. Although code-smells are 

sometimes unavoidable, they should be in general prevented by the development teams and 

removed from their code base as early as possible for maintainability and evolution 

considerations. In fact, improving the quality of existing software will drastically improve 

productivity and competitiveness of our software industry. 

Improving the quality of software induce the detection and correction of code-

smells. Typically, code smells refer to bad programming practices that adversely affect the 

development of software. As stated by Fenton and Pfleeger [2], code-smells are unlikely to 

cause failures directly, but may do it indirectly. In general, they make a software system 

difficult to maintain, which may often introduce bugs. The most well-known example of 

code-smells is the Blob which is found in code fragments where one large class 

monopolizes the behavior of a system, and other classes primarily contain data. Removing 

these code-smells help developers to easily understand, maintain and evolve their source 

code [1]. 

One of the widely used techniques to fix code-smells is refactoring – the process of 

changing software structure while preserving its external behavior [62] – which has been 

practiced by programmers for many years. The idea is to reorganize variables, classes and 
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methods in order to facilitate future extensions. This reorganization is used to improve 

different aspects of software-quality such as reusability, maintainability, complexity, etc. In 

general, refactoring is performed through two main steps: 1) detection of code fragments 

that need to be improved (e.g., code-smells) and 2) identification of refactoring solutions to 

achieve this goal. In this thesis, we explore and address the automation of these two steps. 

1.2 Problem statement 

Detecting and fixing code-smells is still, to some extent, a difficult, time-

consuming, manual and error-prone process [10]. As a consequence, automating code-

smells detection and correction is considered as a challenging software engineering 

task [10] [12] [71]. In the next subsections, we highlight the different problems and 

challenges addressed in this thesis that are mainly related to the automation of code-smells 

detection and refactoring tasks. 

1.2.1 Automating code-smells detection 

The code-smells detection task consists of finding code fragments that violate 

common object-oriented principles (structure or semantic properties) on code elements such 

as the ones involving coupling and complexity. In fact, the common idea in existing 

contributions [33] [38] [43] consist of defining rules manually to identify key symptoms 

that characterize a code-smell using combinations of mainly quantitative and/or structural 

information. However, in an exhaustive scenario, the number of possible code-smells to 

manually characterize according to rules can be very large. On the other hand, Moha et 

al. [8] proposes to generate detection rules using formal definitions of code-smells. 

Although this partial automation of rule writing helps developers with symptom 

description, still, translating symptoms into rules is not obvious because there is no 

consensus of defining code-smells based on their symptoms [12]. Although there is a 

substantial amount of research work focusing on the detection of code-

smells [1] [2] [8] [12] [14] [33] [38], there are many open issues that need to be addressed 

when defining a detection strategy. We highlight these open issues, as follows: 
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Problem #1.1. Most of the existing approaches are based on translating symptoms into 

rules. However, there is a difference between detecting symptoms and asserting that the 

detected situation is an actual code-smell. 

Problem #1.2. There is no consensus on the definition of code-smells based on their 

symptoms. Although when consensus exists, the same symptom could be associated to 

many code-smell types, which may compromise the precise identification of smell types. 

Problem #1.3. The majority of existing detection methods does not provide an efficient 

manner to guide a manual inspection of code-smell candidates. Indeed, the process of 

manually defining detection rules, understanding the code-smell candidates, selecting the 

true positives, and correcting them is time-consuming, fastidious, and not always profitable. 

Problem #1.4. Existing approaches require an expert to manually write and validate 

detection rules. 

1.2.2 Automating code-smells correction 

Once code-smells are detected, they need to be fixed. One of the widely used 

techniques to fix code-smells and improve the quality of software systems is refactoring. 

Software refactoring improves design structure of the system while preserving its external 

behavior [1]. These two concerns drive the existing approaches to refactoring automation. 

To the best of our knowledge, most of the existing contributions [20] [21] [45] [49] suggest 

refactorings with the perspective of improving only some design/quality metrics while 

satisfying a set of pre- and post-conditions [17] to preserve the external behaviour. 

However, these concerns may not be enough to produce optimal and consistent refactoring 

solutions. In addition to quality improvement and behavior preservation, other aspects 

should be taken into consideration. Hence, to obtain good refactoring strategies, other 

considerations have to be targeted such as preserving the semantic coherence of the 

refactored program, reducing the amount of code changes required to apply refactoring, 

maintaining the consistency with prior code changes and reuse good refactorings 

applied/recorded in the past in similar contexts. In this setting, several open issues should 
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be addressed when searching for refactoring solutions to improve the quality of software 

systems (i.e., fix code-smells). Hence, we identify the following problems. 

Problem #2.1. The majority of existing approaches [1] [40] [41] have manually defined 

"standard" refactorings for each code-smell type to remove its symptoms as described in 

Fowler’s book [1]. However, it is difficult to define “standard” refactoring solutions for 

each code-smell type and to generalize them because these solutions may vary depending 

on the programs and their context. 

Problem #2.2. Removing code-smell symptoms does not mean that the actual code-smell is 

corrected, and, in the majority of cases, these “standard” solutions are unable to remove all 

symptoms for each code-smell. 

Problem #2.3. Different possible refactoring strategies should be defined for the same type 

of code-smell. The problem is how to find the “best” refactoring solutions from a large list 

of candidate refactorings and how to combine them in an appropriate order? The list of all 

possible refactoring strategies, for each code-smell, can be very large [25]. Thus, the 

process of defining refactoring strategies manually, from an exhaustive list of refactorings, 

is fastidious, time-consuming, and error-prone. 

Problem #2.4. In the majority of existing approaches [20] [21] [22] [49], code quality can 

be improved without fixing code-smells. In other terms, improving some quality metrics 

does not guarantee that the detected code-smells are fixed. Therefore, the link between 

code-smells detection (refactoring opportunities) and correction is not obvious. Thus, we 

need to ensure whether the refactoring concretely fixes the detected code-smells. 

Problem #2.5. Existing approaches consider the refactoring (i.e., the correction process) as 

a local process by fixing code-smells (or improving quality) separately. That is, a 

refactoring solution should not be specific to only one code-smell type. Instead, the impact 

of refactoring should be considered on the whole system. For example, moving methods to 

reduce the size/complexity of a class may increase the global coupling, or fixing some 

code-smells may create other code-smells in other code fragments. 
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Problem #2.6. In practice, not all code-smells have equal effects and importance [63]. Each 

individual instance has its severity score that allows developers to immediately spot and fix 

the most critical instances of each code-smell. Concretely, the same code-smell type can 

occur in different code fragments but with different effect and risk [62] [64] [81]. In 

general, developers need to focus their effort on fixing code-smells of the higher risk and 

severity. Thus, the prioritization of the list of detected code-smells is required based on 

different criteria such as severity, risk, importance, development team preferences, etc. 

However, most of the existing refactoring approaches deal with code-smells to fix as if they 

are of same importance. 

Problem #2.7. A refactoring solution that fixes all code-smells is not always the optimal 

one due to the high code adaptation/modification needed. When applying refactoring, 

different code changes are performed. The amount of code changes corresponds to the 

number of code elements (e.g., classes, methods, fields, relationships, field references, etc.) 

modified through adding, deleting, or moving operations. Minimizing code changes when 

recommending refactoring is very important to help developers understand the 

modified/improved design. Moreover, most developers want to keep as much as possible 

the original design structure when fixing code-smells [17]. Hence, improving software 

quality and reducing code changes are conflicting. In some cases, correcting some code-

smells corresponds to performing substantial changes in the system or is, sometimes, 

equivalent to re-implementing a large part of the system. 

Problem #2.8. In general, refactoring restructures a program to improve its structure 

without altering its external behavior. However, it is challenging to preserve the semantic 

coherence of a program when refactoring is decided/implemented automatically. Indeed, a 

program could be syntactically correct, and have the right behavior, but incorrectly model 

the domain semantics. We need to preserve the rationale behind why and how code 

elements are grouped and connected when applying refactoring operations to improve code 

quality. 
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Problem #2.9. The majority of the existing work did not consider the history of changes 

applied in the past when performing refactorings. However, the history of code changes can 

be helpful in increasing the correctness of new refactoring solutions. To better guide the 

search process, recorded code changes applied in the past can be reused in similar contexts. 

This knowledge can be combined with structural and semantic information to improve the 

automation of refactoring. Moreover, it is important to maintain the consistency with prior 

changes when recommending new changes, i.e., refactorings. 

Problem #2.10. Most of the existing studies focus mainly on fixing code-smells and/or 

improving some software metrics. However, this may not be sufficient to make the source 

code easier to understand and to modify. Introducing design patterns that represent good 

design practices can greatly improve the quality of systems. Nevertheless, very few works 

exploit the richness of refactoring to introduce design patterns. 

All of these observations are at the origin of the work conducted in this thesis. In the 

next section, we give an overview of our research directions to address the above-

mentioned problems. 

1.3 Research objectives and main contributions 

1.3.1 Objectives 

The main objectives of this thesis are the following: 

1. By applying search-based software engineering (SBSE) techniques, we can automate 

the refactoring recommending task. SBSE has been shown to be a practical and 

efficient way in solving several software engineering problems [91]. Software 

refactoring problem is, by its nature, ideal for the application of SBSE techniques, in 

its two steps (1) identification code fragments that need to be refactored, and (2) 

identification of the suitable refactoring operations to apply. 

2. Automating the code-smells’ detection task to support developers and relieve them 

from the burden of doing so manually. Developers no longer need to manually define 
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rules/constraints to automate code-smells' detection task. Instead, they simply provide 

a set of examples of code-smells that are already detected in different software 

systems. 

3. Automating the refactoring recommending task. The aim of this thesis is to 

circumvent the problems mentioned in previous section. The majority of existing 

work deals with refactoring from a single perspective which is improving the quality. 

In this thesis, we formulate the refactoring recommending problem as a multi-

objective optimization problem to find the best compromise between different 

objectives: improving the quality, preserving semantic coherence, reducing the 

number of changes, and maintaining the consistency with development/maintenance 

history. 

4. Take advantage of the richness of refactoring through a multi-objective approach to 

introduce “good” design practices (i.e., design patterns), fix “bad” design practices 

(i.e., code-smells), while improving software quality attributes (i.e., flexibility, 

maintainability, etc.). 

1.3.2 Contributions 

To overcome the previously identified problems, we propose the following 

contributions, organized into three major parts (cf. Figure 1.1): 

Part 1: Code-smells detection 

Contribution 1.1: Search-based code-smells detection 

To automate the detection of code-smells we propose a search-based approach [28] 

using genetic algorithm to automatically generate detection rules. Our  proposal  consists  

of  using  knowledge  from  previously manually inspected projects (i.e., code-smell 

examples)  in order to detect code-smells that will serve to generate new detection rules 

based on the combinations of  quality  metrics  and  threshold  values. As illustrated in 

Figure 1.1, the detection process takes as inputs a base (i.e., a set) of code-smell examples 

and takes as controlling parameters a set of quality metrics (the usefulness of these metrics 
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Figure 1.1 - Thesis contributions 

was defined and discussed in the literature [30]). This step generates a set of code-smells 

detection rules. Consequently, a solution to the code-smell detection problem is represented 

as a set of rules that best detect the code-smells presented on the base of examples with 

high precision and recall. 

Part 2: Mono-objective code-smells correction 

Contribution 2.1: Mono-objective search-based code-smells correction 

To fix the detected code-smells, we need to find the suitable refactoring solution. As 

a first contribution, we consider the process of generating correction solutions as a single-

objective optimization problem. A correction solution is defined as a combination of 

refactoring operations that should minimize, as much as possible, the number of detected 

code-smells using the detection rules. To this end, we use genetic algorithm (GA) [52] to 

find and recommend the best combination of refactoring operations from a large list of 

available refactorings (i.e., the suitable metrics and their appropriate threshold values). 

Indeed, one of the advantages of our approach is that it does not correct code-smells 

separately since we consider the correction task as a global process instead of local one. In 

addition, we don't need to define an exhaustive list of code-smells and specify standard 
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refactoring for each code-smell type. We evaluate the efficiency of our approach in finding 

potential code-smells in five different open-source systems.  

Contribution 2.2: Prioritizing code-smells correction 

We extend our previous contribution to prioritize the correction of code-smells. We 

propose an approach that supports automated refactoring recommendation for correcting 

code-smells where riskiest code-smells are prioritized during the correction process. Hence, 

we formulated the refactoring recommending problem as an optimization problem to find 

the near-optimal sequence of refactorings from a huge number of possible refactorings 

according to a prioritization schema. To this end, we used a novel metaheuristic search by 

the means of Chemical Reaction Optimization (CRO) [163], a newly established 

metaheuristics, to find the suitable refactoring solutions (i.e., sequence of refactoring 

operations) that maximize the number of corrected code-smells while prioritizing the most 

important, e.g., riskiest, and severest code fragments according to the developer’s 

preferences. 

Part 3: Multi-objective refactoring recommending 

Contribution 3.1. A Multi-objective approach for recommending software 

refactoring 

In this contribution, we deal with the refactoring recommending task as a multi-

objective optimization problem. The process aims at finding the optimal sequence of 

refactoring operations that improve the software quality by minimizing the number of 

detected code-smells. In addition, we explore other objectives to optimize: reduce the 

number of modifications/adaptations needed to apply refactorings, preserve the semantic 

coherence of the refactored program, and maintaining the consistency with 

development/maintenance history. The idea is to find the best compromise between all of 

these objectives. Hence, by reducing the number of modifications, we reduce the 

complexity of the recommended refactorings and keep as much as possible the original 

design/code structure. Moreover, it is mandatory to preserve the semantic coherence and 

prevent arbitrary changes on code elements, especially when refactoring are decided 
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automatically. Furthermore, historical data in software engineering provide a lot of solid 

knowledge that can be used to make sound data-driven decisions for several software 

engineering problems [152] [153]. Reuse is a common practice for developers during 

software development to save time and efforts. We show in this contribution, how 

recorded/historical code changes could be an effective way to propose new refactoring 

solutions. We evaluate the efficiency of our approach using a benchmark of six different 

industrial size open-source systems, and six frequent code-smells types through an 

empirical study conducted with software engineers. 

Contribution 3.2. A multi-objective refactoring approach to introduce design 

patterns and fix code-smells 

From another perspective, we propose a multi-objective formulation of refactoring 

recommending task where we consider the introduction of design patterns. We propose, in 

this contribution, a recommending framework for automated multi-objective refactoring to 

(1) introduce design patterns, (2) fix code-smells, and (3) improve design quality (as 

defined by software quality metrics). To evaluate our approach, we conducted a 

quantitative and qualitative evaluation with software engineers using a benchmark 

composed of four open source systems. The obtained results confirm the efficiency of our 

proposal compared to the state-of-the-art of refactoring techniques. 

1.4 Thesis organisation 

This thesis is organized as follows. Chapter 2 provides a review of the literature on 

previous research that is relevant to the main themes of this dissertation: code-smells 

detection and correction, software refactoring, existing search-based techniques for 

software refactoring, and the use of historical data in software engineering. Chapter 3 

reports our contribution for the detection of code-smells. We present the use of genetic 

programming (GP) [99] and its adaptation for generating code-smells detection rules. 

In Chapter 4, we present our mono-objective search-based approach for fixing code-smells. 

The proposed approach uses an adaptation of the GA to find the suitable refactoring 
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solutions that should be applied to fix code-smells. Chapter 5 presents an extension of the 

previous contribution to prioritize the correction code-smells using Chemical Reaction 

Optimization. In Chapter 6, we introduce our multi-objective approach using the Non-

dominated Sorting Genetic Algorithm (NSGA-II) [24] to find the optimal refactoring 

solution to fix code-smells, preserve the semantic coherence, and maintain the consistency 

with the change history, while reducing as much as possible the amount of modifications 

needed to apply refactoring. In Chapter 7, we describe our multi-objective approach for 

introducing design patterns while fixing code-smells. Finally, Chapter 8 summarizes the 

contributions of the work presented in this thesis, underlines its main limitations, and 

describes our future research directions. 

 



 

Chapter 2 : State of the art 

 

2.1 Introduction 

This chapter provides a literature review on research work related to this thesis. We 

first provide the background material that is required to understand this thesis. Then, we 

survey the related work that is relevant to the main themes of this research work. In 

particular, the related work can be divided broadly into five research areas: (1) detection of 

code-smells, (2) management and prioritization of code-smells, (3) refactoring and 

correction of code-smells, (4) recommendation systems in software engineering, and (5) the 

use of historical data in software engineering.  

This chapter is structured as follows. Section 2.2 presents the background need for 

unfamiliar readers with code-smells, software refactoring, and search-based software 

engineering. We present in Section 2.3 different metaheursitcs. Section 2.4 summarises 

exiting works in code-smells detection. We classify existing detection strategies into mainly 

seven classes. Section 2.5 describes existing research work on prioritizing and managing 

code-smells. Section 2.6 discusses the state of the art of software refactoring and code-

smells correction; Section 2.7 is devoted to describe recommendation systems in software 

engineering including software refactoring and their usefulness. In Section 2.8, we provide 

a description of research work on mining software repository and their role to improve 

software design/reuse and support the maintenance of software systems. In Section 2.9, we 

conclude this chapter with a discussion on the limitations of the presented work with regard 

to our thesis. 

2.2 Background 

In this section, we provide the necessary background for code-smells, software 

refactoring and search-based software engineering. This section is aimed at readers who are 

unfamiliar with these concepts. 
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2.2.1 Code smells 

Code-smells, also called in the literature anti-patterns [1], anomalies [12], design 

flaws [10] or bad smells [2], are a metaphor to describe problems resulting from bad design 

and programming practices. Along of this dissertation, we will use the term code-smell. 

Originally, code-smells are used to find the places in software that could benefit from 

refactoring. According to Fowler [1], code-smells are unlikely to cause failures directly, but 

may do it indirectly. In general, they make a system difficult to change, which may in turn 

introduce bugs. Different types of code-smells, presenting a variety of symptoms, have 

been studied in the intent of facilitating their detection [8] and suggesting improvement 

solutions. Most of code-smells identify locations in the code that violate object-oriented 

design heuristics, such as the situations described by Riel [70] and by Coad et al. [73]. 

Code-smells are not limited to design flaws since most of them occur in code and are not 

related to the original design. Indeed, most of code-smells can emerge during the 

maintenance and evolution of a system.  

In [1], Beck defines 22 sets of symptoms of code-smells and proposes the different 

possible refactoring solutions to improve the system design. These include God classes, 

feature envy, long parameter lists, and data classes. Each code-smell type is accompanied 

by refactoring suggestions to remove it. Van Emden and Moonen [71] developed, as far as 

we know, the first automated code-smell detection tools for Java programs. Mantyla studied 

the manner of how developers detect and analyse code smells [72]. Previous empirical 

studies have analysed the impact of code-smells on different software maintainability 

factors including defects [74] [75] [76] and effort [77] [78]. In fact, software metrics 

(quality indicators) are sometimes difficult to interpret and suggest some actions 

(refactoring) as noted by Anda et al. [79] and Marinescu et al. [10]. Code-smells are 

associated with a generic list of possible refactorings to improve the quality of software 

systems. In addition, Yamashita et al. [67] [68] show that the different types of code-smells 

can cover most of maintainability factors [69]. Thus, the detection of code-smells can be 

considered as a good alternative of the traditional use of quality metrics to evaluate the 
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quality of software products. Brown et al. define another category of code-smells that are 

documented in the literature, and named anti-patterns.  

2.2.2 Refactoring 

To fix code-smells, one of the most-used techniques is refactoring which improves 

design structure while preserving the external behavior [12]. Refactoring has been practiced 

by programmers for many years. Refactoring is widely recognized as a crucial technique 

applied when evolving object-oriented software systems. More recently, tools that (semi-) 

automate the process of refactoring has emerged in various programming environments 

such as Eclipse [53] and Netbeans [54]. These tools have promised, if applied well, to 

increase the speed at which programmers can write and maintain code while decreasing the 

likelihood that programmers will introduce new bugs [86] [87]. 

Opdyke and Johnson [1] defined refactoring as the process of improving a code 

after it has been written by changing its internal structure without changing the external 

behavior. The idea is to reorganize variables, classes and methods in order to facilitate 

future extensions. This reorganization is used to improve different aspects of software-

quality such as reusability, maintainability, complexity, etc. [1] [18]. Later, it was 

popularized by Martin Fowler’s book [1], but refactoring has been practiced for as long as 

programmers have been writing programs. Fowler’s book is largely a catalog of 

refactorings [25]; each refactoring captures a specific structural change that has been 

observed frequently in different programming languages and application domains. 

Roughly speaking, we can identify two distinct steps in the refactoring process: (1) 

detect when a program should be refactored and (2) identify which refactorings should be 

applied and where [18]. For example, after detecting a Blob code-smell, many refactoring 

operations can be used to reduce the number of functionalities in a specific class, such as 

move methods/fields and extract class. An exhaustive list of refactoring operations can be 

found in [25]. 
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2.2.3 Search-based software engineering 

The research topic of this Ph.D. thesis is about using search techniques in software 

engineering, called search-based software engineering (SBSE). The term SBSE was first 

used by Harman and Jones in 2001 and defined as the application of search-based 

approaches to solving optimization problems in software engineering [91]. Essentially, 

SBSE is based on the idea of reformulating software engineering problems as search 

problems by defining them in terms of solution representation, fitness function and solution 

change operators. Once a software engineering task is framed as a search problem, there are 

many metaheuristic techniques that can be applied to discover near optimal solutions to that 

problem.  

In 2001, Harman and Jones [91] expected to see a dramatic development of the field 

of search based-software engineering. The authors have concluded that in the near future 

metaheuristic search will be applied to several areas of software engineering. As expected, 

SBSE has become a growing research and practice domain which is popularized in both 

academia and industry [90]. Indeed, in the last decade many SBSE approaches has been 

applied to a wide variety of software engineering problems, including software testing [94], 

requirements engineering [93], bug fixing [92], project management [95], refactoring [20], 

service-oriented software engineering [96], and model-driven software engineering [164]. 

The most studied and known models are based on classic evolutionary algorithms (EAs) 

such as simulated annealing (SA) [98], genetic algorithm (GA) [99], particle swarm 

optimization (PSO) [100], and tabu search (TS) [92]. 

We will investigate in this thesis the use of SBSE techniques for automating the 

detection and correction of code-smells as well as automatically recommending refactoring. 

2.3 Metaheuristic search techniques 

Different mono- and multi-objective metaheuristic techniques are used in this thesis. 

We provide in this section the necessary background for unfamiliar readers with 
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metaheursitics. More specifically, we used the following metaheuristics: Genetic 

Algorithm, Genetic Programming, Chemical Reaction Optimization, and Non-dominated 

Sorting Genetic Algorithm. 

2.3.1 Genetic Algorithm 

Genetic Algorithm (GA) [99] is a powerful heuristic search optimization method 

inspired by the Darwinian theory of evolution. The basic idea is to explore the search space 

by making a population of candidate solutions, also called individuals, evolve toward a 

“good” solution of a specific problem. 

In GA, an individual is usually string/vector of numbers that represents a candidate 

solution. Every individual of the population is evaluated by a fitness function that 

determines a quantitative measure of its ability to solve the target problem. The exploration 

of the search space is achieved by the evolution of candidate solutions using selection and 

genetic operators such as crossover and mutation. The selection operator insures selection 

of individuals in the current population proportionally to their fitness values, so that the 

fitter an individual is, the higher the probability is that it be allowed to transmit its features 

to new individuals by undergoing crossover and/or mutation operators. The crossover 

operator insures the generation of new children, or offspring, based on parent individuals. 

The crossover operator allows transmission of the features of the best fitted parent 

individuals to new individuals. This is usually achieved by replacing a randomly selected 

sub tree of one-parent individual with a randomly chosen sub tree from another parent 

individual to obtain one child. A second child is obtained by inverting parents. Finally, the 

mutation operator is applied, with a probability which is usually inversely proportional to 

its fitness value, to modify some randomly selected nodes in a single individual. The 

mutation operator introduces diversity into the population and allows escaping from local 

solutions found during the search.   

Once the selection, mutation and crossover operators have been applied with given 

probabilities, the individuals in the newly created generation are evaluated using the fitness 
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function. This process is repeated iteratively, until a stopping criterion is met. The criterion 

usually corresponds to a fixed number of generations, or when the fitness function reaches 

the desired fitness value. The result of GA (the best solution found) is the fittest individual 

produced along all generations. 

2.3.2 Genetic Programming 

Genetic Programming (GP) [171] is a branch of Genetic Algorithm. The main 

difference between genetic programming and genetic algorithm is the representation of the 

solution. Genetic algorithms create a string of numbers that represent the solution. Genetic 

programming creates (computer) programs as the solution which is usually represented as a 

tree, where the internal nodes are functions, and the leaf nodes are terminal symbols. Both 

the function set and the terminal set must contain elements that are appropriate for the 

target problem. For instance, the function set can contain arithmetic operators, logic 

operators, mathematical functions, etc., whereas the terminal set can contain the variables 

(attributes) of the target problem. 

2.3.3 Chemical Reaction Optimization 

Chemical reaction optimization (CRO) is a new recently proposed 

metaheuristics [176] inspired from chemical-reaction. It is not difficult to discover the 

correspondence between optimization and chemical reaction. Both of them aim to seek the 

global minimum (but with respect to different objectives) and the process evolves in a 

stepwise fashion. With this discovery, CRO was developed for solving optimization 

problems by mimicking what happens to molecules in chemical reactions. It is a 

multidisciplinary design which loosely couples computation with chemistry (see Table 2.1). 

The manipulated agents are molecules and each has a profile containing some properties. A 

molecule is composed of several atoms and characterized by the atom type, bond length, 

angle, and torsion. One molecule is distinct from another when they contain different atoms 

and/or different number of atoms. The term “molecular structure” is used to summarize all 

these characteristics and it corresponds to a solution in the matheuristic meaning. The 
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representation of a molecular structure depends on the problem we are solving, provided 

that it can express a feasible solution of the problem. A molecule possesses two kinds of 

energies, i.e., potential energy (PE) and kinetic energy (KE). The former quantifies the 

molecular structure in terms of energy and it is modeled as the objective function value 

when evaluating the corresponding solution. A change in molecular structure (chemical 

reaction) is tantamount to switching to another feasible solution. CRO evolves a population 

of molecules by means of four chemical reactions called: (1) On-wall ineffective collision, 

(2) Decomposition, (3) Inter-molecular ineffective collision and (4) Synthesis. 

Consequently, similarly to genetic algorithm (GA), the molecule corresponds to the 

population individual and chemical reactions correspond to the variation operators. 

However, CRO is distinguished by the fact that environmental selection is performed by the 

variation operator. Differently to GA which generates an offspring population then makes a 

competition between the latter and the parent population, in CRO once an offspring is 

generated, it competes for survival with its parent(s) within the realization of the 

corresponding chemical reaction. Algorithm 2.1 illustrates the pseudocode of the CRO 

where it begins by initializing the different parameters that are: 

- PopSize: the molecule population size, 

- KELossRate: the loss rate in terms of Kinetic Energy (KE) during the reaction, 

- MoleColl: a parameter varying between 0 and 1 deciding whether the chemical reaction 

to be performed is uni-molecular (on wall ineffective collision or decomposition) or 

mutli-molecular (inter-molecular ineffective collision or synthesis), 

- buffer: the initial energy in the buffer,  

- InitialKE: the initial KE energy, 

- α, and β: two parameters controlling the intensification and diversification.   

Once the initialization set is performed, the molecule population is created and the 

evolution process begins. The latter is based on the following four variation operators 

(elementary chemical reactions): 
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1) On-wall ineffective collision: This reaction corresponds to the situation when a 

molecule collides with a wall of the container and then bounces away remaining in one 

single unit. In this collision, we only perturb the existing molecule structure (which 

captures the structure of the solution) ω to ω′. This could be done by any neighborhood 

operator N(·).  

2) Decomposition: It corresponds to the situation when a molecule hits a wall and then 

breaks into several parts (for simplicity, we consider two parts in this work). Any 

mechanism that can produce ω′1 and ω′2 from ω is allowed. The goal of decomposition 

CRO pseudocode 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

Input: Parameter values 

Output: Best solution found and its objective function value 

/*Initialization*/ 

Set PopSize, KELossRate, MoleColl, buffer, InitialKE, α, and β 

Create PopSize molecules 

/*Iterations*/ 

While the stopping criteria not met do 

    Generate b ∈ [0, 1] 

    If (b > MoleColl) Then 

        Randomly select one molecule Mω 

        If (Decomposition criterion met) Then 

            Trigger Decomposition 

        Else 

            Trigger OnwallIneffectiveCollision 

        End If 

    Else  

        Randomly select two molecules Mω1 and Mω2 

        If (Synthesis criterion met) Then 

            Trigger Synthesis 

        Else 

            Trigger IntermolecularIneffectiveCollision 

        End If 

    End If 

 Check for any new minimum solution 

 End While 

Algorithm 2.1 - Basic CRO pseudocode. 
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is to allow the algorithm to explore other regions of the search space after enough local 

search by the ineffective collisions. 

3) Inter-molecular ineffective collision: This reaction takes place when multiple molecules 

collide with each other and then bounce away. The molecules (assume two) remains 

unchanged before and after the process. This elementary reaction is very similar to the 

uni-molecular ineffective counterpart since we generate ω′1 and ω′2 from ω1 and ω2 

such that ω′1 = N(ω1) and ω′2 = N(ω2). The goal of this reaction is to explore several 

neighborhoods simultaneously each corresponding to a molecule. 

4) Synthesis: This reaction is the opposite of decomposition. A synthesis happens when 

multiple (assume two) molecules hit against each other and fuse together. We obtain ω′ 

from the fusion of ω1 and ω2. Any mechanism allowing the combination of solutions is 

allowed, where the resultant molecule is in a region farther away from the existing ones 

in the solution space. The idea behind synthesis is diversification of solutions. 

 

Chemical meaning Metaheuristic meaning 

Molecular structure Solution 
Potential energy Objective function value 
Kinetic energy Measure of tolerance of having worse solutions 
Number of Hits Current total number of moves 
Minimum structure Current optimal solution 
Minimum value Current optimal function value 
Minimum hit number Number of moves when the current optimal 

solution is found 

Table 2.1 - CRO analogy between chemical and metaheuristic meanings. The first column 
contains the properties of a molecule used in CRO. The second column shows the 
corresponding meanings in the metaheuristic. 

 

To sum up, on-wall and inter-molecular collisions (ineffective collisions) emphasize 

more on intensification while decomposition and synthesis (effective collisions) emphasize 

more on diversification. This allows making a good trade-off between exploitation and 

exploration as the case of GA. The algorithm undergoes these different reactions until the 

satisfaction of the stopping criteria. After that, it outputs the best solution found during the 

overall chemical process.   
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It is important to note that the molecule in CRO has several attributes, some of which 

are essential to the basic operations, i.e.: (a) the molecular structure ω expressing the 

solution encoding of the problem at hand; (b) the Potential Energy (PE) corresponding to 

the objective function value of the considered molecule and (c) the Kinetic Energy (KE) 

corresponding to non-negative number that quantifies the tolerance of the system accepting 

a worse solution than the existing one (similarly to simulated annealing). The optional 

attributes are:  

i) Number of hits (NumHit): When a molecule undergoes a collision, one of the 

elementary reactions will be triggered and it may experience a change in its molecular 

structure. NumHit is a record of the total number of hits (i.e. collisions) a molecule has 

taken. 

ii) Minimum Structure (MinStruct): It is the ω with the minimum corresponding PE which 

a molecule has attained so far. After a molecule experiences a certain number of 

collisions, it has undergone many transformations of its structure, with different 

corresponding PE. MinStruct is the one with the lowest PE in its own reaction history. 

iii) Minimum Potential Energy (MinPE): When a molecule attains its MinStruct, MinPE is 

its corresponding PE. 

iv) Minimum Hit Number (MinHit): It is the number of hits when a molecule realizes 

MinStruct. It is an abstract notation of time when MinStruct is achieved.   

For more details about the role of each of these attributes in CRO, the reader is 

invited to refer to [176]. 

The CRO has been recently applied successfully to different combinatorial and 

continuous optimization problems [179] [180] [181]. Several nice properties for the CRO 

have been detected. These properties are as follows:  

- The CRO framework allows deploying different operators to suit different problems. 

- Its variable population size allows the system to adapt to the problems automatically; 

thereby minimizing the number of required function evaluations. 



22 

 

 

- Energy conversion and energy transfer in different entities and in different forms make 

CRO unique among metaheursitics. CRO has the potential to tackle those problems 

which have not been successfully solved by other metaheuristics. 

- Other attributes can easily be incorporated into the molecule. This gives flexibility to 

design different operators. 

- CRO enjoys the advantages of both SA and GA. 

- CRO can be easily programmed in object-oriented programming language, where a class 

defines a molecule and methods define the elementary reactions. 

Based on all these observations, the CRO seems to be an interesting metaheuristic 

ready to use for tackling SE problems.  

2.3.4 Non-dominated Sorting Genetic Algorithm 

The basic idea of the Non-dominated Sorting Genetic Algorithm (NSGA-II) [24] is 

to make a population of candidate solutions evolve toward the near-optimal solution in 

order to solve a multi-objective optimization problem. NSGA-II is designed to find a set of 

near-optimal solutions, called non-dominated solutions or the Pareto front. A non-

dominated solution is one that provides a suitable compromise between all objectives 

without degrading any of them. As described in Algorithm 2.2, the first step in NSGA-II is 

to create randomly a population P0 of individuals encoded using a specific representation 

(line 1). Then, a child population Q0 is generated from the population of parents P0 using 

genetic operators such as crossover and mutation (line 2). Both populations are merged into 

a new population R0 of size N (line 5). 

Fast-non-dominated-sort is the algorithm used by NSGA-II to classify individual 

solutions into different dominance levels. Indeed, the concept of Pareto dominance consists 

of comparing each solution x with every other solution in the population until it is 

dominated by one of them. If no solution dominates it, the solution x will be considered 

non-dominated and will be selected by the NSGA-II to be a member of the Pareto front. If 

we consider a set of objectives fi , i,j  1…n, to maximize, a solution x dominates x′  
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iff  i, fi (x′) ≤ fi (x) and j | fj (x′)  fj (x). 

 

The whole population that contains N individuals (solutions) is sorted using the 

dominance principle into several fronts (line 6). Solutions on the first Pareto-front F0 get 

assigned dominance level of 0 Then, after taking these solutions out, fast-non-dominated-

sort calculates the Pareto-front F1 of the remaining population; solutions on this second 

front get assigned dominance level of 1, and so on. The dominance level becomes the basis 

of selection of individual solutions for the next generation. Fronts are added successively 

until the parent population Pt+1 is filled with N solutions (line 8). When NSGA-II has to cut 

off a front Fi and select a subset of individual solutions with the same dominance level, it 

relies on the crowding distance to make the selection (line 9). This parameter is used to 

promote diversity within the population. This front Fi to be split, is sorted in descending 

order (line 13), and the first (N-|Pt+1|) elements of Fi are chosen (line 14). Then a new 

population Qt+1 is created using selection, crossover and mutation (line 15). This process 

will be repeated until reaching the last iteration according to the stop criteria (line 4). 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10.
11.
12.
13.
14.
15.
16.
17.

Create an initial population P0 

Generate an offspring population Q0 

t=0; 

while stopping criteria not reached do 
     Rt = Pt ∪	Qt; 
     F = fast-non-dominated-sort (Rt); 
     Pt+1 = ∅	and i=1;  
     while | Pt+1| +|Fi| ≤ N do 
          Apply crowding-distance-assignment(Fi);  
          Pt+1 = Pt+1 ∪	Fi ; 
          i = i+1; 
     end 
     Sort(Fi, ≺	n); 
     Pt+1 = Pt+1  ∪	Fi[1 : (N-| Pt+1 |)]; 
     Qt+1 = create-new-pop(Pt+1); 
     t = t+1; 
     end 

Algorithm 2.2 - High-level pseudo-code of NSGA-II. 
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2.4 Detection of code-smells 

There has been much research effort focusing on the study of code-smells. Existing 

approaches for code-smells detection can be classified into six broad categories: manual 

approaches, symptom-based approaches, rule-based approaches, probabilistic approaches, 

machine-learning based approaches, and visualization-based approaches. 

2.4.1 Manual approaches 

In the literature, the first book that has been specially written for design smells was 

by Brown et al. [12] which provide broad-spectrum and large views on design smells, and 

antipatterns that aimed at a wide audience for academic community, as well as in industry. 

Indeed, in [1], Fowler and Beck have described a list of design smells which may possibly 

exist on a program. They suggested that software maintainers should manually inspect the 

program to detect existing design smells. In addition, they specify particular refactorings 

for each code-smells type. Travassos et al. [31] have also proposed a manual approach for 

detecting code-smells in object-oriented designs. The idea is to create a set of “reading 

techniques” which help a reviewer to “read” a design artifact for the purpose of finding 

relevant information. These reading techniques give specific and practical guidance for 

identifying code-smells in object-oriented designs. So that, each reading technique helps 

the maintainer focusing on some aspects of the design, in such way that an inspection team 

applying the entire family should achieve a high degree of coverage of the code-smells. In 

addition, in [32], another proposed approach is based on violations of design rules and 

guidelines. This approach consists of analyzing legacy code, specifying frequent design 

problems as queries and locating the occurrences of these problems in a model derived 

from the source code. However, the majority of the detected problems were simple ones, 

since it is based on simple conditions with particular threshold values. As a consequence, 

this approach did not address complex code-smells. 
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The main limitation of exiting manual approaches is that they are ultimately a 

human-centric process that requires a great human effort and extensive analysis and 

interpretation effort from software maintainers to find design fragments that corresponds to 

code-smells. In addition, these techniques are time-consuming, error-prone and depend on 

programs in their contexts. Another important issue is that locating code-smells manually 

has been described as more a human intuition than an exact science. To circumvent the 

above mentioned problems, some semi-automated approaches have emerged using different 

techniques.  

2.4.2 Symptom-based detection 

Van Emden and Moonen [71] presented one of the first attempts to automate code-

smell detection for Java programs. The authors exanimated a list of code smells and found 

that each of them is characterized by a number of “smell aspects” that are visible in source 

code entities such as packages, classes, methods, etc. A given code smell is detected when 

all its aspects are found in the code. The identified aspects are mainly related to non- 

conformance to coding standards. The authors distinguish two types of smell aspects: 

primitive smell aspects that can be observed directly in the code, and derived smell aspects 

that are inferred from other aspects. An example of a primitive aspect is “method m 

contains a switch statement”, an example of a derived aspect is “class C does not use any 

methods offered by its superclasses”. The developed Java code-smell detection tool allows 

also visualization of the code and the detected smells. However, conformance to coding 

standards is not always easy to achieve in practice. Moreover, using such visualization 

tools, it is still difficult for a programmer to identify potential code-smells, and his decision 

is most of the time subjective. 

Later, Moha et al. [8] proposed a description of anti-pattern symptoms using a 

domain-specific-language (DSL) for their anti-patterns detection approach called DECOR. 

They proposed a consistent vocabulary and DSL to specify anti-patterns based on the 

review of existing work on code-smells found in the literature. To describe anti-pattern 
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symptoms different notions are involved, such as class roles and structures. Symptoms 

descriptions are later mapped to detection algorithms. However, converting symptoms into 

rules needs a significant analysis and interpretation effort to find the suitable threshold 

values. In addition, this approach uses heuristics to approximate some notions which results 

in an important rate of false positives. The proposed approach has been evaluated on only 

four well-known code-smells: the Blob, functional decomposition, spaghetti code, and 

Swiss-army knife because the literature provide obvious symptom descriptions on code-

smells. Similarly, Munro [33] has proposed description and symptoms-based approach 

using a precise definition of bad smells from the informal descriptions given by the 

originators Fowler and Beck [1]. The characteristics of code-smells have been used to 

systematically define a set of measurements and interpretation rules for a subset of code-

smells as a template form. This template consists of three main parts: a code smell name, a 

text-based description of its characteristics, and heuristics for its detection. 

The most notable limitation of symptoms-based approaches is that there exists no 

consensus in defining symptoms or smell aspects. A code-smell may have several and 

different interpretations by a maintainer. Another limitation is that for an exhaustive list of 

code-smells, the number of possible smells to be manually described, characterized with 

rules and mapped to detection algorithms can be very large. Indeed, the background and 

knowledge of maintainers may influence their understanding of code-smells, given a set of 

symptoms. As a consequence, symptoms-based approaches are also considered as time-

consuming, error-prone and subjective. Thus automating the detection of code-smells is 

still a real challenge. 

2.4.3 Metric-based approaches 

Most of automated code-smell detection techniques are based on software metrics. 

The idea to automate the problem of code-smells detection is not new, neither is the idea to 

use software metrics to evaluate or improve the quality of software systems. Marinescu [10] 

have proposed a mechanism called "detection strategy" for formulating metrics-based rules 
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that capture deviations from good design principles and heuristics. Detection strategies 

allow to a maintainer to directly locate classes or methods affected by a particular code-

smell. As such, Marinescu have defined detection strategies for capturing around ten 

important flaws of object-oriented design found in the literature. Later, Raiu and his 

colleagues [115], refined the original concept of detection strategy, by using historical 

information of the suspected code-smell structures. Using this approach, the authors 

showed how the detection of God Classes and Data Classes can become more accurate. The 

approach refines the characterisation of suspects, which lead to a twofold benefit. 

After his suitable symptom-based characterization of code-smells, Munro [33] 

proposed metric-based heuristics for detecting code-smells, which are similar to 

Marinescu’s detection strategies. Munro has also conducted an empirical study to justify his 

choice of metrics and thresholds for detecting smells. Salehie et al. [39] proposed a metric-

based heuristic framework to detect and locate object-oriented design flaws similarly to 

those illustrated by Marinescu [10]. The detection technique is based on evaluating design 

quality of an object-oriented system through quantifying deviations from good design 

heuristics and principles by mapping these design flaws to class level metrics such as 

complexity, coupling and cohesion by defining rules. Erni et al. [13] introduce the concept 

of multi-metrics, as an n-tuple of metrics expressing a quality criterion (e.g., modularity). 

Unfortunately, multi-metrics neither encapsulate metrics in a more abstract construct, nor 

do they allow a flexible combination of metrics. In [105], Fourati et al. proposed an 

approach that identifies and predicts anti-patterns in UML diagrams through the use of 

existing and newly defined quality metrics. Operating at the design level, the proposed 

approach examines structural and behavioral information through the class and sequence 

diagrams.  

More recently, Palomba et al. [102] have proposed a new approach called HIST 

(Historical Information for Smell detection) to detect specific types of code-smell using a 

set of metrics derived from change history extracted from version control systems. Though 

revision histories often display changes at a file level granularity, they use a tool called the 
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Change History Extractor to parse changes at a method- and class-level granularity, and 

then they identify code-smells from the parsed logs using specific rules. However, the 

developers of HIST point out that not all code smells are possible to detect using just 

source code change history because only some are by definition characterized by how the 

code changes during the project development (e.g., Divergent Change, and Shotgun 

Surgery). Thus the approach is limited to few types of code smell and cannot be 

generalized. Moreover, the authors defines Blobs as classes modified (in any way) in more 

than a given percentage threshold of commits. Therefore, classes containing two methods 

can be detected as a Blob. The results may not always accurate. In fact, it is very important 

to look at the type of changes that are applied but actually HIST just count the number of 

commits without considering the type of change. For example, a class detected as Blob 

where more than 80% of changes applied are delete methods/attributes, or move method to 

another class, thus the class becomes a data or lazy class and not a Blob; however HIST 

detected it as a Blob. 

 In general, the effectiveness of combining metric/threshold is not obvious. That is, 

for each code-smell, rules that are expressed in terms of metric combinations need a 

significant calibration effort to find the fitting threshold values for each metric. Since there 

exists no consensus in defining code-smells, different threshold values should be tested to 

find the best ones. 

2.4.4 Probabilistic approaches 

Probabilistic approaches represent another way for detecting code-smells. Alikacem 

et al. [14] have considered the code-smells detection process as fuzzy-logic problem, using 

rules with fuzzy labels for metrics, e.g., small, medium, large. To this end, they proposed a 

domain-specific language that allows the specification of fuzzy-logic rules that include 

quantitative properties and relationships among classes. The thresholds for quantitative 

properties are replaced by fuzzy labels. Hence, when evaluating the rules, actual metric 

values are mapped to truth values for the labels by means of membership functions that are 
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obtained by fuzzy clustering. Although, fuzzy inference allows to explicitly handle the 

uncertainty of the detection process and ranks the candidates, authors did not validate their 

approach on real programs. Recently, another probabilistic approach has been proposed by 

Khomh et al. [11] extending the DECOR approach [8], a symptom-based approach, to 

support uncertainty and to sort the code-smells candidates accordingly. This approach is 

managed by Bayesian belief network (BBN) that implement the detection rules of DECOR. 

The detection outputs are probabilities that a class is an occurrence of a code-smell type, i.e., 

the degree of uncertainty for a class to be a code-smell. They also showed that BBNs can be 

calibrated using historical data from both similar and different context. More recently, 

Dimitrios et al. [106] explored the ways in which the anti-pattern ontology can be enhanced 

using Bayesian networks in order to reinforce the existing ontology-based detection process. 

Their approach allows software developers to quantify the existence of anti-patterns using 

Bayesian networks, based on probabilistic knowledge contained in the anti-pattern ontology 

regarding relationships of anti-patterns through their causes, symptoms and consequences. 

Although in probabilistic approaches, the above-mentioned problems in Section 1.2 

related to the use of rules and metrics/thresholds do not arise, it still suffers from the 

problem of selecting the suitable metrics to conduct a detection process.  

2.4.5 Machine learning based approaches 

Machine learning represents another alternative for detecting code-smells. Catal et 

al. [36] used different machine learning algorithms to predict defective modules. They 

investigated the effect of dataset size, metrics set, and feature selection techniques for 

software fault prediction problem. They employed several algorithms based on artificial 

immune systems (AIS). Kessentini et al. [35] have proposed an automated approach for 

discovering code-smells. The detection is based on the idea that the more code deviates 

from good practices, the more likely it is bad. Taking inspiration from AIS, this approach 

learns from examples of well designed and implemented software elements, to estimate the 

risks of classes to deviate from “normality”, i.e., a set of classes representing “good” design 
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that conforms to object-oriented principles. Elements of assessed systems that diverge from 

normality to detectors are considered as risky. Although this approach succeeded in 

discovering risky code, it does not provide a mechanism to identify the type of the detected 

code-smell. Similarly, Hassaine et al. [38] have proposed an approach for detecting code-

smells using machine learning technique inspired from the AIS. Their approach is designed 

to systematically detect classes whose characteristics violate some established design rules. 

Rules are inferred from sets of manually-validated examples of code-smells reported in the 

literature and freely-available. Recently, Maiga et al. [103] [104] introduced an approach 

called SMURF to detect anti-patterns, based on a machine learning technique. SMURF is 

based on SVM (support vector machines) using polynomial kernel and take into account 

practitioners’ feedback. The proposed approach takes as input a training dataset that 

contains classes derived from object-oriented systems including instances of code-smells. 

The approach calculates object-oriented metrics that will be used as the attributes for each 

class in the dataset during the learning process.  

The major benefit of machine-learning based approaches is that they do not require 

great experts’ knowledge and interpretation. In addition, they succeeded to some extent, to 

detect and discover potential code-smells by reporting classes that are similar (even not 

identical) to the detected code-smells. However, these approaches depend on the quality 

and the efficiency of data, i.e., code-smell instances, to learn from. Indeed, the high level of 

false positives represents the main obstacle for these approaches. Moreover, the selection of 

the suitable metrics for the learning process is a difficult task and is still a subjective 

decision. 

2.4.6 Visualization-based approaches 

The high rate of false positives generated by the above mentioned approaches 

encouraged other teams to explore semi-automated solutions. These solutions took the form 

of visualization-based environments. The primary goal is to take advantage of the human 

capability to integrate complex contextual information in the detection process. Kothari et 
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al. [15] present a pattern-based framework for developing tool support to detect software 

anomalies by representing potential code-smells with different colors. Dhambri et al. [16] 

have proposed a visualization-based approach to detect design anomalies by automatically 

detecting some symptoms and letting others to human analyst. The visualization metaphor 

was chosen specifically to reduce the complexity of dealing with a large amount of data. 

Although visualization-based approaches are efficient to examine potential code-smells on 

their program and in their context, they do not scale to large systems easily. In addition, 

they require great human expertise and thus they are still time-consuming and error-prone 

strategies. Moreover, the information visualized is mainly metric-based, meaning that 

complex relationships can be difficult to detect. More recently, Murphy-Hill et al. [101] 

have proposed a smell detector tool called Stench Blossom that provides an interactive 

ambient visualization designed to first give programmers a quick, high-level overview of 

the smells in their code, and then, if they wish, to help in understanding the sources of those 

code smells. Indeed, since visualization approaches and tools such as Stench 

Blossom [101], VERSO [34] are based on manual and human inspection, they still, not 

only, slow and time-consuming, but also subjective. 

Although these approaches have contributed significantly to automate the detection 

of code-smells, none have presented a complete and fully automated technique. Detecting 

code-smells is still, to some extent, a difficult, time-consuming, and manual process [9]. 

Indeed, the number of code-smells typically exceeds the resources available to address 

them. In many cases, mature software projects are forced to ship with both known and 

unknown code-smells for lack of development resources to deal with every code-smell.  

2.4.7 Code-smell detection tools 

Different tools for code-smell detection have been developed as research prototypes 

or commercial tools using different detection techniques. The detection techniques are 

usually based on the computation of a particular set of combined metrics [10], standard 

object-oriented metrics or metrics defined for the smell detection purpose. For instance, 
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JDeodorant [83] is a code-smell detection tool implemented as an Eclipse plugin that 

automatically identifies four types of code-smells (Feature Envy, God Class, Long Method, 

and Type Checking) in Java object oriented programs. JDeodorant is based on the 

evaluation of a set of software metrics to identify possible code-smells. Moreover, 

JDeodorant provides a list of possible refactorings according to the detected code-smell. 

 iPlasma [81] [107] is an integrated platform for quality assessment of object-

oriented systems that includes support for all the necessary phases of analysis: from model 

extraction up to high-level metrics based analysis, or detection of code duplication. iPlasma 

is designed to detect several code smells called disharmonies, such as Brain Class Brain 

Method, Data Class, Dispersed Coupling, Feature Envy, and God Class. 

InFusion [82] supports the analysis, diagnosis quality improvement of a system at 

the architectural, as well as at the code level and covers all the necessary phases of the 

analysis process. InFusion allows to detect more than 20 code smells, such as Code 

Duplication, classes that break encapsulation (Data Class, God Class), methods and classes 

that are heavily coupled or ill designed class hierarchies and other code smells (Cyclic 

Dependencies, Brain Method, Shotgun Surgery). InFusion has its roots in iPlasma, and then 

extended with more functionalities. InCode [110] has been developed by the same team of 

inFusion and is very similar to Infusion. InCode is an Eclipse plugin that provides 

continuous detection of design problems (i.e. problems are detected as code is written) 

complementing thus the code reviews, which can be performed with other tools.  

PMD [108], is another tool that scans Java source code and looks for potential 

problems like: possible bugs, such as dead code, empty try/catch/finally/switch statements, 

unused local variables, parameters and duplicate code. Moreover, PMD is able to detect 

three smells (Large Class Long Method Long Parameter List) and allows setting the 

thresholds values for the metrics. 

Stench Blossom is a visualization-based code-smells detection tool developed by 

Murphy et al. [101] and implemented as an Eclipse plugin. StenchBlossom provides an 
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interactive ambient visualization designed to first give programmers a quick, high-level 

overview of the smells in their code, and then, to help understand the sources of the code-

smells. It does not provide numerical values, but only a visual threshold: the size of a petal 

is directly proportional to the entity of the code-smells. However, the only possible 

procedure to find code-smells is to manually inspect the source code, looking for a petal 

whose size is big enough to assume that there is a code smell. Stench Blossom provides the 

programmer with three different views, which progressively offer more information about 

the smells in the code being visualized. 

CheckStyle [109] has been developed to help programmers write Java code that 

adheres to a coding standard. It is able to detect duplicate code and three other smells, Long 

Method, Long Parameter List and Large Class. DÉCOR [8] is implemented as a BlackBox, 

allows the specification and automatic detection of code and design smells such as Large 

Class, Lazy Class, Long Method, Long Parameter List. DÉCOR uses a symptom-based 

approach as described in Section 2.4.2. 

In fact, in all these tools there is no consensus on the detection of code smells. For 

instance, the code-smell large class detected by Stench Blossom and PMD is different from 

Large class recognized by DECOR. Indeed, Stench Blossom and PMD simply concern 

Large Class as a class with many lines of code, whereas DECOR considers both the size in 

terms of number of methods and attributes and the cohesion of the class. There are also 

remarkable differences concerning the number of classes and methods reported by each 

tool [111]. 

Despite the latest advances on automated code-smell detection approaches and 

tools, each has its limitations, and still there are no answers to address different detection 

problems that we underlined in Section 1.2.1. It is also not clear how much additional effort 

is required to interpret the results from the automated detection of code smells to decide 

optimally which code-smells should be prioritized over others. 
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2.5 Management and prioritization of code-smells 

Studies that consider the management and prioritization of code smells have 

emerged recently. That is, in practice, not all code-smells have equal effects/importance. 

Each individual instance has its severity score that allows designers to immediately spot 

and fix the most critical instances of each code-smell. Concretely, the same code-smell type 

can occur in different code fragments but with different impact scores on the system 

design [81] [82].  

The first tool is Code Metrics [122], a .NET based add-in for the Visual Studio 

development environment that is able to calculate a set of metrics. Once the metrics are 

calculated, the tool assigns a “maintainability index” score to each of the analyzed code 

elements. This score is based on the combination of these metrics for each code element. 

The second tool is inFusion tool [82] that provides a “severity” index to help software 

engineer in classifying and understanding code-smell harmfulness. This severity index is 

defined by R. Marinescu [114] as: “Severity is computed by measuring how many times the 

value of a chosen metric exceeds a given threshold”. The severity index takes into 

consideration size, encapsulation, complexity, coupling and cohesion metrics. However, the 

use of only metrics and thresholds is not always sufficient to understand the harmfulness of 

code-smells. Other aspects should be considered to better understand the impact and the 

harmfulness of code-smells such as the change history, the context, and the characteristics 

of the smell, etc. For instance, if a code-smell (e.g., Blob) is created intentionally and 

remains unmodified or hardly undergo changes, the system may not experience any 

problems [63]. Classes participating in code/design problems (e.g., code-smells) are 

significantly more likely to be subject to changes and to be involved in fault-fixing changes 

(bugs) [118]. Using history information, Raiu et al. [115] succeeded in eliminating false 

positives code-smells in their detection approach by filtering out the harmless suspects from 

those provided by a single-version detection strategy. Their approach allows also the 

identification of most dangerous suspects by using additional information on the evolution 

of initial suspects over their analyzed history. However, the proposed approach is limited 
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only on God and Data Class code-smells. In [112], Arcelli et al. proposed an approach 

called JCodeOdor to filter and prioritize code-smells. To this end they defined an index 

called Code Smell Harmfulness to approximate how harmful each code smell is. The idea 

behind the Harmfulness computation is the need to have a way to prioritize the code smells, 

taking into account the characteristics of the smell, captured by metrics used in the 

detection strategy. The Harmfulness computation is strictly joined with the threshold 

computation, and relies on the metrics distribution. However, still using only metrics and 

thresholds to quantify the harmfulness of code-smells is not enough, other aspects should 

be considered. More recently, Arcoverde, et al. [121] present and evaluate four different 

heuristics for helping developers to prioritize code-smells, based on their potential 

contribution to the software architecture degradation. Those heuristics exploit different 

characteristics of a software project, such as change-density and error-density, for 

automatically ranking code elements that should be refactored more promptly according to 

their potential architectural relevance. The goal is to support software maintainers by the 

recommended rankings for identifying which code anomalies are harming architecture the 

most, helping them to invest their refactoring efforts into solving architecturally relevant 

problems. 

Other management and prioritization approaches focus on specific code-smells such 

as Duplicated code (also called code clones). In [119] [123], Zibran and his colleagues 

introduced an approach to schedule prioritized code clone refactoring. They capture the 

risks of refactoring in a priority scheme. To this end, they proposed an effort model for 

estimating the effort required to refactor code clones in object-oriented (OO) programs. 

Then, taking into account the effort model and a variety of possible constraints, they 

formulated the scheduling of code clone refactoring activities as a constraint satisfaction 

optimization problem (CSOP), and solve it by applying constraint programming (CP) 

technique that aims to maximize benefits while minimizing refactoring efforts. In [116], 

Duala-Ekoko et al. proposed a tool called CloneTracker, an Eclipse plug-in that provides 

support for tracking code clones in evolving software. They start from the assumption that 
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the elimination of code clones through refactoring is not always practical, feasible or cost-

effective. With CloneTracker, developers can specify clone groups they wish to track, and 

the tool will automatically generate a clone model that is robust to changes to the source 

code, and can be shared with other collaborators of the project. When future modifications 

intersect with tracked clones, CloneTracker will notify the developer, provide support to 

consistently apply changes to a corresponding clone region, and provide support for 

updating the clone model. In another contribution, Zibran et al. [117] developed a language 

independent matching engine (LIME), a tool for fast localization of all k-difference (edit 

distance) occurrences of one code fragment inside another. The developed tool is an IDE-

based clone management system to flexibly detect, manage, and refactor exact and near-

miss code clones using a k-difference hybrid suffix tree algorithm. However, these specific 

techniques are limited only on code clones and cannot be generalized for other code-smells. 

 To develop a generalized prioritization schema several aspects, such as the change 

frequency, the context, the severity and the relative risk, should be considered and 

combined in a suitable way to approximate the harmfulness of each code-smells. Thus a 

suitable prioritization strategy could help software maintainers in identifying which code-

smells are harming software the most, helping them to invest their refactoring efforts into 

solving relevant problems. 

2.6 Refactoring and code-smells correction  

Several techniques and approaches have been proposed in the literature to support 

software refactoring. We classify existing refactoring approaches into three broad 

categories 1) manual and semi-automated approaches, 2) search-based approaches, and 3) 

automated approaches. 

2.6.1 Manual and semi-automated approaches 

In Fowler’s book [1], a non-exhaustive list of low-level design problems in source 

code have been defined. For each design problem (i.e., smells), a particular list of possible 
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refactorings are suggested to be applied by software maintainers manually. Indeed, in the 

literature, most of existing approaches are based on quality metrics improvement to deal 

with refactoring. Fowler’s book is largely a catalog of refactorings [25]; each refactoring 

captures a structural change that has been observed repeatedly in various programming 

languages and application domains. To apply refactoring, programmers should take the time 

to examine and then select the suitable refactorings to apply continuously along the 

development and maintenance process. In this context, Fowler states: “In almost all cases, 

I’m opposed to setting aside time for refactoring. In my view refactoring is not an activity 

you set aside time to do. Refactoring is something you do all the time in little bursts”. [1] 

Sahraoui et al. [28] have proposed an approach to detect opportunities of code 

transformations (i.e., refactorings) based on the study of the correlation between some 

quality metrics and refactoring changes. To this end, different rules are defined as a 

combination of metrics/thresholds to be used as indicators for detecting bad smells and 

refactoring opportunities. For each bad smell a pre-defined and standard list of 

transformations should be applied in order to improve the quality of the code. Another 

similar work is proposed by Du Bois et al. [41] who starts form the hypothesis that 

refactoring opportunities corresponds of those which improves cohesion and coupling 

metrics to perform an optimal distribution of features over classes. Du Bois et al. analyze 

how refactorings manipulate coupling and cohesion metrics, and how to identify refactoring 

opportunities that improve these metrics. However, this two approaches are limited to only 

some possible refactoring operations with few number of quality metrics. In addition, the 

proposed refactoring strategies cannot be applied for the problem of code-smells correction. 

Moha et al. [42] proposed an approach that suggests refactorings using Formal 

Concept Analysis (FCA) to correct detected code-smells. This work combines the efficiency 

of cohesion/coupling metrics with FCA to suggest refactoring opportunities. However, the 

link between code-smells detection and correction is not obvious, which make the inspection 

difficult for the maintainers. Similarly, Joshi et al. [44] have presented an approach based on 

concept analysis aimed at identifying less cohesive classes. It also helps identify less 
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cohesive methods, attributes and classes in one go. Further, the approach guides refactoring 

opportunities identification such as extract class, move method, localize attributes and 

remove unused attributes. In addition, Tahvildari et al. [43] also proposed a framework of 

object-oriented metrics used to suggest to the software engineer refactoring opportunities to 

improve the quality of an object-oriented legacy system. Other contributions are based on 

rules that can be expressed as assertions (invariants, pre and post-condition). The use of 

invariants has been proposed to detect parts of program that require refactoring by [50]. In 

addition, Opdyke [17] have proposed the definition and the use of pre- and post-condition 

with invariants to preserve the behavior of the software when applying refactoring. Hence, 

behavior preservation is based on the verification/satisfaction of a set of pre and post-

condition. All these conditions are expressed in terms of rules. 

Furthermore, there are few research works that focus on the automation of design 

patterns introduction using refactoring. One of the earliest works to introduce design 

patterns was that of Ó Cinnéide and Nixon [124] [127] who presented a methodology for the 

development of design pattern transformations in a behavior preserving fashion. The 

identified a number of “pattern aware” composite refactorings called mini-transformations 

that, when composed, can create instances of design patterns. They defined a starting point 

for each pattern transformation, termed a precursor. This is where the basic intent of the 

pattern is present in the code, but not in its most flexible pattern form. However, the 

proposed approach is currently adapted only the Visitor design pattern. Later, Jensen and 

Cheng [126] have proposed the first an approach that supports composition of design 

changes and makes the introduction of design patterns a primary goal of the refactoring 

process. They used genetic programming, software metrics, and the set of mini-

transformations identified by Ó Cinnéide and Nixon [127] to identify the most suitable set of 

mini-transformations to maximize the number of design patterns in a software design. 

Roberts et al. [128] use sequences of basic refactoring operations to introduce design 

patterns in existing programs, including the Visitor pattern. Their approach was 

implemented within the Smalltalk Refactoring Browser. The approach was semi-automated, 
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thus one of the key design criteria was to create a tool that could refactor Smalltalk programs 

with the same interactive style that Smalltalk developers are used to. In [18], Mens and 

Tourwé presented an approach to transform class hierarchy into a Visitor pattern. The 

approach is presented as a pseudo-algorithm that show how the introduction of a Visitor 

design pattern can be applied starting from a given point. The pseudo-algorithm describes 

six steps to apply the Visitor. However, the proposed pseudo-algorithm are not described 

and formulated in an automated way. Recently, Ajouli et al. [125] have described how to use 

refactoring tools (IntelliJ, and Eclipse) to transform a Java program conforming to the 

Composite design pattern into a program conforming to the Visitor design pattern with the 

same external behavior, and vice versa. To this end, the authors have selected four common 

variations in the implementation of the Composite pattern and have studied how these 

variations reflect in the Visitor pattern. For each variation, they have extended the 

previously defined transformation. The resulting transformations are automated and 

invertible. 

The major limitation of these manual and semi-automated approaches is that they 

seek to apply refactorings separately without considering the whole program to be refactored 

and its impact on the other artifacts. Indeed, these approaches are limited to only some 

possible refactoring operations and few number of quality metrics to asses quality 

improvement. In addition, the proposed refactoring strategies cannot be applied for the 

problem of code-smells correction. Another important issue is that these approaches do not 

take into consideration the effort (i.e. the number of modifications/adaptations) needed to 

apply the suggested refactorings neither the semantics coherence of the refactored program.  

2.6.2 Semantics preservation for software refactoring 

Recently, there research works focusing on software refactoring have involved 

semantics preservation. For instance, Bavota et al. [45] have proposed an approach to 

automate the refactoring extract class based on graph theory that exploits structural and 

semantic relationships between methods. The proposed approach uses a weighted graph to 
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represent the class to be refactored, where each node represents a method of that class. The 

weight of an edge that connects two nodes (representing methods) is a measure of the 

structural and semantic relationship between two methods that contribute to class cohesion. 

After that, they split the built graph in two sub-graphs, to be used later to build two new 

classes having higher cohesion than the original class. In [47], Baar et al. have presented a 

simple criterion and a proof technique for the semantic preservation of refactoring rules that 

are defined for UML class diagrams and OCL constraints. Their approach is based on 

formalization of the OCL semantics taking the form of graph transformation rules. However, 

their approach does not provide a concrete semantics preservation since there is no explicit 

differentiation between behaviour and semantics preservation. Hence, they consider that the 

semantics preservation "means that the observable behaviors of original and refactored 

programs coincide". Moreover, they use the semantics preservation in the model level with a 

high level of abstraction and therefore the code level and the implementation issues are not 

considered. In addition, this approach uses only the refactoring operation move attribute and 

do not consider an exhaustive list of refactorings [25]. Another semantics-based framework 

has been proposed by Logozzo [48] for the definition and manipulation of class hierarchies-

based refactorings. The framework is based on the notion of observable of a class, i.e., an 

abstraction of its semantics when focusing on a behavioral property of interest. They define 

a semantic subclass relation, capturing the fact that a subclass preserves the behavior of its 

superclass up to a given observed property. 

The most notable limitation of the mentioned works is that the definition of 

semantic preservation is closely related to behaviour preservation. However, preserving the 

behavior does not mean that the semantic coherence of the refactored program is also 

preserved. Another issue is that the proposed techniques are limited to a small number of 

refactorings and thus it could not be generalized and adapted for an exhaustive list of 

refactorings. Indeed, the semantics preservation is still hard to define and ensure since the 

proposed approaches does not provide a pragmatic technique or an empirical study to prove 

whether the semantic coherence of the refactored program is preserved. 
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As far as semantics preservation issues, the above mentioned approaches does not 

provide a fully automated framework for automating the refactoring recommending task. 

Several studies have been focused on automating software refactoring recommending in 

recent years using different meta-heuristic search-based techniques for automatically 

searching for the suitable refactorings to be applied. 

2.6.3 Search-based refactoring approaches 

To automate refactoring activities, new approaches have emerged where search-

based techniques have been used. These approaches cast the refactoring as an optimization 

problem, where the goal is to improve the design quality of a system based mainly on a set 

of software metrics. After formulating the refactoring as an optimization problem, several 

different techniques can be applied for automating refactoring, e.g., genetic algorithm, 

simulated annealing, and Pareto optimality, etc. Hence, we classify those approaches into 

two main categories: mono-objective and multi-objective optimization approaches. 

In the first category, the majority of existing work combines several metrics in a 

single fitness function to find the best sequence of refactorings. Seng et al. [21] have 

proposed a single-objective optimization based-approach using genetic algorithm to suggest 

a list of refactorings to improve software quality. The search process uses a single fitness 

function to maximize a weighted sum of several quality metrics. The used metrics are 

mainly related to various class level properties such as coupling, cohesion, complexity and 

stability. Indeed, the authors have used some pre-conditions for each refactoring. These 

conditions serve at preserving the program behavior (refactoring feasibility). However, in 

this approach the semantic coherence of the refactored program is not considered. In 

addition, the approach was limited only on the refactoring operation move method. 

Furthermore, there is another similar work of O’Keeffe et al. [22] [23] that have used 

different local search-based techniques such as hill climbing and simulated annealing to 

provide an automated refactoring support. Eleven weighted object-oriented design metrics 

have been used to evaluate the quality improvements. In [49], Qayum et al. considered the 
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problem of refactoring scheduling as a graph transformation problem. They expressed 

refactorings as a search for an optimal path, using Ant colony optimization, in the graph 

where nodes and edges represent respectively refactoring candidates and dependencies 

between them. However the use of graphs is limited only on structural and syntactical 

information and therefore does not consider the domain semantics of the program neither 

its runtime behavior.  

Furthermore, Fatiregun et al. [59] [60] have proposed another search-based 

approach for finding program transformations to reduce code size and construct amorphous 

program slices. They apply a number of simple atomic transformation rules called axioms. 

Indeed, the authors presume that if each axiom preserves semantics then a whole sequence 

of axioms ought to preserve semantics equivalence. However, semantics equivalence 

depends on the program and the context and therefore it could not be always proved. 

Indeed, the semantic equivalence is based only on structural rules related to the axioms and 

there is no real semantic analysis has been performed. Moreover, they have used small 

atomic level transformations in their approach and their aim was to reduce program size 

rather than improving its structure/quality through refactoring. Otero et al. [61] use a new 

search-based refactoring. The main idea in this work is to explore the addition of a 

refactoring step into the genetic programming iteration. There will be an additional loop in 

which refactoring steps drawn from a catalogue of such steps will be applied to individuals 

of the population. By adding in the refactoring step the code evolved is simpler and more 

idiomatically structured, and therefore more readily understood and analysed by human 

programmers than that produced by traditional GP methods. Jensen and Cheng [126] have 

proposed the first search-based refactoring approach that supports composition of design 

changes and makes the introduction of design patterns a primary goal of the refactoring 

process. They used genetic programming, software metrics, and the set of mini-

transformations identified by Ó Cinnéide and Nixon [127] to identify the most suitable set 

of mini-transformations to maximize the number of design patterns in a software design. 

However, maximizing the number of design patterns is not always profitable. That is 
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applying a design pattern where it is not needed is highly undesirable as it introduces an 

unnecessary complexity to the system for no benefit. In addition one of the important 

limitations of this work is that the starting point to introduce a design pattern is not 

considered which may lead to arbitrary changes in the source code. That is the basic intent 

of the pattern should be present in the code. Furthermore, Kilic et al. [165] explore the use 

of a variety of population-based approaches to search-based parallel refactoring, finding 

that local beam search could find the best solutions. Recently, Zibran et al. [117] 

formulated the problem of scheduling of code clone refactoring activities as a constraint 

satisfaction optimization problem (CSOP) to fix known duplicate code code-smells. The 

proposed approach consists of applying constraint programming (CP) technique that aims 

to maximize benefits while minimizing refactoring efforts. An effort model is used for 

estimating the effort required to refactor code clones in object-oriented (OO) codebase. 

However, the proposed approach does not ensure the semantic coherence of the refactored 

program. 

Although these approaches are powerful enough to improve software quality as 

expressed by software quality metrics, this improvement does not mean that they are 

successful in removing actual instances of code-smells. Moreover, combining several 

metrics/objectives into a single function may deteriorate the search process since one 

objective may dominate during the search. 

In the second category of work, Harman et al. [20] have proposed the first search-

based approach using Pareto optimality that combines two quality metrics, CBO (coupling 

between objects) and SDMPC (standard deviation of methods per class), in two separate 

fitness functions. The authors start from the assumption that good design quality results 

from good distribution of features (methods) among classes. Their Pareto optimality-based 

algorithm succeeded in finding good sequence of move method refactorings that should 

provide the best compromise between CBO and SDMPC to improve code quality. 

However, one of the limitations of this approach is that it is limited to a unique refactoring 

operation (which is move method) to improve the code structure and only two metrics to 
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evaluate the preformed improvements. In addition, it is odd that there is no semantic 

evaluator to prove that the semantic coherence is preserved. Recently, Ó Cinnéide et 

al. [166] have proposed a multi-objective search-based refactoring to conduct an empirical 

investigation to assess some structural metrics and to explore relationships between them. 

To this end, they have used a variety of search techniques (Pareto-optimal search, semi-

random search) guided by a set of cohesion metrics. 

The main limitation of all of the existing approaches is that the semantics 

preservation has not been explicitly considered to obtain correct and meaningful 

refactorings. 

2.6.4 Refactoring tools  

Refactoring tools automate refactorings that programmers would perform with a 

programming editor. Most of modern and popular development environments for a variety 

of languages now include refactoring tools such as Eclipse1, Microsoft Visual Studio2, 

Xcode3, and Squeak4. A more extensive list is available in [141]. These tools are integrated 

in their development environments, but do not support programmers to decide when, where 

or how to apply refactorings. For large software, selecting and deciding the suitable 

refactorings to apply is a labor extensive, and error prone task. 

To this end, researchers have proposed various ways to improve automated 

refactoring. For instance, Murphy-Hill et al. [86] [130] [131] proposed several techniques 

and empirical studies to support refactoring activities. In [86] [87]  ,t he authors proposed 

new tools to assist software engineers in applying refactoring by hand such as selection 

assistant, box view, and refactoring annotation based on structural information and program 

analysis techniques. Recently, Ge and Murphy-Hill [132] have proposed new refactoring 

tool called GhostFactor that allow the developer to transform code manually, but check the 
                                                 
1 http://eclipse.org 
2 http://msdn.microsoft.com/vstudio 
3 http://developer.apple.com/tools/xcode 
4 http://squeak.org 
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correctness of her transformation automatically. However, the correction is based mainly 

on the structure of the code and do not consider its semantics. Mens et al. formalize 

refactoring by using graph transformations [133]. Bavota et al. [134] automatically identify 

method chains and refactor them to cohesive classes using extract class refactoring. The 

aim of these approaches is to provide specific refactoring strategies; the aim of our research 

in this thesis is to provide a generic and automated refactoring recommendation framework 

to help developers to refactor their code. 

Although refactoring tools offer many potential benefits, programmers appear not to 

use them as much as they could [130]. There is a need to better assist programmer in their 

refactoring task using suitable recommendation systems. 

2.7 Recommendation systems in software engineering 

Recommendation Systems for Software Engineering (RSSEs) are an emerging 

research area [136]. For example, CodeBroker [142] analyzes developer comments in the 

code to detect similarities to class library elements that could help implement the described 

functionality. CodeBroker uses a combination of textual-similarity analysis and type-

signature matching to identify relevant elements. It works in push mode, producing 

recommendations every time a developer writes a comment. It also manages user-specific 

lists of “known components,” which it automatically removes from its recommendations. 

Dhruv [143] recommends people and artifacts relevant to a bug report. It operates chiefly in 

the open source community, which interacts heavily via the Web. Using a three-layer 

model of community (developers, users, and contributors), content (code, bug reports, and 

forum messages), and interactions between these, Dhruv constructs a Semantic Web that 

describes the objects and their relationships. It recommends objects according to the 

similarity between a bug report and the terms contained in the object and its metadata. 

Expertise Browser [144] is a tool that recommends people by detecting past changes to a 

given code location or document. It assumes that developers who changed a method have 

expertise in it. Finding the right software experts to consult can be difficult, especially 
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when they are geographically distributed. Strathcona [137] can recommend relevant source 

code fragments to help developers to use frameworks and APIs. Another recommendation 

system called eRose [138] recommends and predict software artifacts that must be changed 

together. SemDiff [139] recommend replacement methods for adapting code to a new 

library version. 

Recently, there is much interest in recommendation systems in the field of software 

refactoring. For instance, in [146], Terra et al. describe the preliminary design of a 

recommendation system to provide refactoring guidelines for developers and maintainers 

during the task of reversing an architectural erosion process. They formally describe first 

recommendations proposed in their research and results of their application in a web-based 

application. Tsantalis and Chatzigeorgiou have proposed a methodology to suggest Move 

Method refactoring opportunities [140]. Their general goal is to tackle coupling and 

cohesion anomalies. More recently, Silva et al. [135] proposed an approach to identify and 

rank Extract Method refactoring opportunities that are directly automated by IDE-based 

refactoring tools. Their approach aims to recommend new methods that hide structural 

dependencies that are rarely used by the remaining statements in the original method. 

Thies et al. [149] presents a tool for recommending rename refactorings to 

harmonize variable names based on an analysis of assignments and static type information. 

They focus on assignments to discover possible inconsistency of naming, exploiting that a 

variable assigned to another likely points to same objects and, if declared with the same 

type, is likely used for the same purpose. However, the proposed approach does not 

consider other applications such as method, class or package renames which is very 

important top support other refactoring recommendation tools.  

JDeodorant [83] is a system proposed by Tsantalis et al. that can identify and apply 

some common refactoring operations on Java systems, including Extract Method, Move 

Method. Their approach is implemented as an Eclipse plugin and relies on the concept of 

program slicing to select related statements that can be extracted into a new method. 
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Specifically, two criteria are used to compute such slices: 1) the full computation of a 

variable, referred to as complete computation slice; 2) all code that affects the state of an 

object, referred to as object state slice. More recently, Sales et al. [148] describes an 

approach for identifying Move Method refactoring opportunities based on the similarity 

between dependency sets. This technique is implemented by a recommendation system 

called JMove, which detects methods located in incorrect classes and then suggests moving 

such methods to more suitable ones. More specifically, the proposed technique initially 

retrieves the set of static dependencies established by a given method m located in a class 

C. Then JMove calculates based on different static similarity measures if another candidate 

class can receive the method m. Moreover, Bavota et al. [147] proposed a technique to 

recommend Move Method refactoring opportunities and remove the Feature Envy code-

smell from source code. Their approach, coined as Methodbook, is based on Relational 

Topic Models (RTM), a probabilistic technique for representing and modeling topics, 

documents (methods in Methodbook) and known relationships among these. Methodbook 

uses RTM to analyze both structural and textual information gleaned from software to 

better support move method refactoring. 

Bavota et al. [150] proposed an approach that support extract class refactoring based 

on graph theory. The proposed approach represent a class to be refactored as a weighted 

graph in which each node represents a method of the class and the weight of an edge that 

connects two nodes (methods) represents the structural and syntactical similarity of the two 

methods. This approach always splits the class to be refactored in two classes. The 

approach has been extended aiming at splitting a class in more classes [151] where the 

transitive closure of the incident matrix is computed to identify sets of methods 

representing the new classes to be extracted. 

Furthermore, most of search-based approaches [20] [21] [22] [60] described in 

Section 2.6.3 are framed into recommendation systems since their goal is to suggest 

sequences of refactoring operations that could be applied according to different purposes. 
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A general conclusion to be drawn from existing refactoring work is that most of the 

effort has been devoted to the definition of manual and (semi-)automatic approaches 

supporting refactoring based mainly on structural information. Moreover, still existing 

refactoring approaches are limited only on one or few possible refactoring operations and 

their usefulness is limited to specific contexts where particular refactoring are needed, e.g., 

extract method, move method to improve particular aspects of software system. In addition, 

most of these approaches and tools are based on only structural information which is not 

always enough to understand and preserve the semantic coherence of the source code when 

recommending refactoring. Other aspects could significantly help on developing more 

efficient and practical refactoring recommendation systems such the semantic program 

analysis and the use of development change history. 

2.8 Mining software repositories and historical data 

The field of Mining Software Repositories analyzes the data available in systems 

repositories to uncover interesting information about software systems. Historical 

information stored in software repositories contains a wealth of information regarding the 

evolutionary history of a software system and unique view of the actual evolutionary path 

taken to realize a software system. Here software repositories refer to artifacts that are 

produced and archived during software evolution [152]. They include sources such as the 

information stored in source code version-control systems (e.g., the Concurrent Versions 

System (CVS)), requirements/bug-tracking systems (e.g., Bugzilla), communication 

archives (e.g., e-mail) and other information stored/extracted along software evolution (e.g., 

applied refactorings, added requirements, enhanced features, fixed code-smells, etc.).  

Software practitioners and researchers are recognizing the benefits of mining this 

information to support the maintenance of software systems, improve software 

design/reuse, and empirically validate novel ideas and techniques. Research is now 

proceeding to uncover the ways in which mining these repositories can help to understand 
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software development and software evolution, to support predictions about software 

development, and to exploit this knowledge in planning future development [153]. 

Recently, research work that uses the change history emerged in the in the context 

of refactoring. Demeyer et al. [155] proposed an approach to detect (reconstruct) 

refactorings that are applied between two software versions based on the change history. 

The scope of this contribution is different than the one proposed in [155], since our aim is 

to suggest refactoring solutions to be applied in the future to improve software quality 

while maintaining the consistency with the change history. Ratzinger et al. [154] mined 

change history to predict the likelihood of a class to be refactored in the next two months 

using machine learning techniques. Their goal is to identify classes that are refactoring or 

non-refactoring prone. In their prediction models they do not distinguish different types of 

refactorings (e.g., create super class, extract method, etc.); they only assess the fact that 

developers try to improve the design. In contrast, in our approach, we suggest concrete 

refactoring solution to improve code quality and not only identifying refactoring 

opportunities. Another study was presented by Ratzinger et al. [57] that use refactoring 

history information to support bugs prediction. They found that refactorings and bugs have 

an inverse correlation. Thus, when the number of bugs decreases then the number of 

refactorings increases. Hayashi et al. [162] proposed a technique to instruct how and where 

to refactor a program by using a sequence of its modifications. They consider that the 

histories of program modifications reflect developers’ intentions, and focusing on them 

allows us to provide suitable refactoring guides. Their technique can be automated by 

storing the correspondence of modification patterns to suitable refactoring operations. For 

instance, when a programmer repeats copy-and-paste operation of a certain part of the 

program, as a result, instances of code clone appear in several parts of the modified 

program, and it shows a sign of the code-smell code duplication. At this time, i.e., 

immediately after the developer performs a sequence of copy-and-paste operations, the 

proposed approach suggests the developer to proceed to refactor the occurrences of this 

code clone. However, the proposed approach is not really using traditional mining software 
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repository techniques, rather, it works online to abstract patterns of program modifications 

executed by developers and make them correspond to refactoring operations. However, the 

proposed approach is limited only on two types of characteristic modifications: duplication 

of codes and change of complexity measures, and few refactoring operations. 

As far as software refactoring, there are several works on extracting and mining 

historical data from software repositories in the literature. Research has been carried out to 

detect and interpret groups of software entities that change together. These co-change 

relationships have been used for different purposes. Zimmermann et al. [156] have used 

historical changes to point developers to possible places that need change. In addition 

historical common code changes are used to cluster software artifacts [157] [161], to 

predict source code changes by mining change history [156] [157], to identify hidden 

architectural dependencies [159] or to use them as change predictors [158]. In addition, 

recently, co-change has been used in several empirical studies in software engineering. 

However, in the best of our knowledge, until now, the development change history is not 

used for recommending software refactoring.  

Our approach in this dissertation is largely inspired by contributions in mining 

software repository research. We will describe in Chapter 6 how the development and 

maintenance change history can be an effective way to recommend software refactoring. 

2.9 Summary 

Through this chapter, we have provided a comprehensive review of the existing 

work in different domains related to our work. Several approaches and tools have been 

proposed to detect code-smells. The vast majority of these techniques rely on declarative 

rule specification [8] [9] [10] [11]. In these settings, rules are manually defined to identify 

the key symptoms that characterize a code-smell. These symptoms are described using 

quantitative metrics, structural, and/or lexical information. Indeed, we share with all the 

above authors the idea that good code-smell detection strategies relies on the selection of 

the suitable metrics to characterise these code-smells. However, for each code-smell, rules 
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that are expressed in terms of metric combinations need substantial calibration efforts to 

find the right threshold value for each metric, above which a code-smell is said to be 

detected. Since there is no consensus in defining code-smells, different threshold values 

should be tested to find the best one. This led us to introduce our search-based approach to 

relieve software developers from burden of manually defining code-smells detection rules. 

After detecting code-smells, the next step is to fix them. Authors, such as in 

Fowler [1], Liu et al. [9], Mens and Tourwé [18], Sahraoui et al. [40], proposed “standard” 

refactoring solutions that can be applied by hand for each kind of code-smell. However, it 

is difficult to prove or ensure the generality of these solutions to all code-smells or code 

fragments. In fact, the same code-smell type can have different possible refactoring 

solutions. Automated approaches are used in the majority of existing works (O’Keeffe and 

Cinnéide [23]; Harman and Tratt [20]; Seng et al. [21]) to formulate the refactoring 

problem as a single-objective optimization problem to improve software structure while 

preserving the external behaviour. These two concerns drive the existing approaches to 

refactoring automation. Each approach has its strengths and weaknesses. It helps for 

conducting research for automating detection and correction (refactoring) of code-smells. 

However, several concerns and challenges that we stressed in Section 1.2 should be 

considered to propose efficient and practical refactoring solutions. To tackle these 

problems, a mono- and multi-objective search-based approach is proposed. The search 

process aims at finding the optimal sequence of refactoring operations that minimize as 

much as possible the number of detected code-smells. In addition, we explore other 

objectives to optimize: the amount of code changes needed to apply refactorings, the 

semantics preservation, and maintaining the consistency with the change history. 

In the next chapter, we describe our contributions for code-smells detection, and we 

show how to circumvent the above mentioned problems in both detection and correction 

steps. Our contribution is based on a search-based process to find the suitable code-smells 

detection rules learned from a base of real instances of code-smells using genetic algorithm.  



 

 

 

 

 

 

 

Part 1: Code-smells detection 
 

 

The first part of this thesis presents our solution for the detection of code-smells. In 

this contribution, we propose a search-based approach using code-smell examples that are 

generally manually validated and available in software repositories of software 

development companies. Indeed, we translate regularities that can be found in such code-

smell examples into detection rules. Instead of specifying rules manually for detecting each 

code-smell type, or semi-automatically using code-smell definitions, we extract these rules 

from instances of code-smells. This is achieved using Genetic Programming. Unlike 

existing approaches, our proposed approach brings a lot of advantages: 1) it does not 

require to define the different code-smell types, but only to have some code-smell 

examples; 2) it does not require an expert to write detection rules manually; 3) it does not 

require specifying the metrics to use or their related threshold values. 



 

Chapter 3 : Search-based code-smells detection 
 

 

3.1 Introduction 

This chapter introduces our first contribution, which consists of the automatic 

detection of code-smell. To automate the detection of code-smells, we propose a search-

based approach, using genetic programming (GP) [171], to generate detection rules. Our  

proposal  consists  of  using  knowledge  from  previously inspected projects (i.e., code-

smell examples)  in order to detect code-smells that will serve to generate new detection 

rules based on combinations of  quality  metrics  and  threshold  values. A solution to the 

code-smell detection problem is represented as a set of rules that best detect the code-smells 

presented on the base of examples with high scores of precision and recall. 

This chapter is structured as follows. Section 3.2 recalls the different problems and 

challenges related to the detection of code-smells and addressed by our approach. Then, we 

introduce our approach and explain how GP is used to generate code-smells detection rules 

in Section 3.3. In this section, details are given on the adaptation of GP to the problem of 

code-smells detection. In Section 3.4, we present an evaluation of the approach, and we 

discuss the obtained results in Section 3.5. Section 3.6 is dedicated to the limitations of the 

approach and the threats to validity of the evaluation. Finally, Section 3.7 concludes the 

chapter and describes our future research work. 

3.2 Code-smells detection challenges 

Unlike software bugs, there is no general consensus on how to decide if a particular 

design violates a quality heuristic. Indeed, the vast majority of existing techniques relies on 

declarative rule specification [8] [9] [10] [14]. In these settings, rules are manually defined 

to identify the key symptoms that characterize a code-smell. These symptoms are described 

using quantitative metrics, structural, and/or lexical information. For example, large classes 

have different symptoms like the high number of attributes, relations and methods that can 

be expressed using quantitative metrics. However, in an exhaustive scenario, the number of 
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possible code-smells to be manually characterized with rules can be very large. For 

example, [12] [1] [2] describe more than sixty code-smell types. In addition, this list is not 

exhaustive because different code-smells are not documented.  

Furthermore, there is a difference between detecting symptoms and asserting that 

the detected situation is an actual code-smell. For example, consider an object-oriented 

program with hundred classes from which one class implements all the behavior and the 

other classes are mainly classes with attributes and accessors. No doubt, we are in presence 

of a Blob. Unfortunately, in real-life systems, we can find many large classes, each one 

using some data classes and some regular classes. Deciding which classes are Blob 

candidates heavily depends on the interpretation of each analyst. In some contexts, an 

apparent violation of a design principle may be consensually accepted as normal practice. 

For example, a “Log” class responsible for maintaining a log of events in a program, used 

by a large number of classes, is a common and acceptable practice. However, from a strict 

code-smell definition, it can be considered as a class with an abnormally large coupling. 

Moreover, even when consensus exists, the same symptom could be associated to 

many code-smell types, which may compromise the precise identification of code-smell 

types. In fact, translating code-smell definitions from the natural language to metric 

combinations is a subjective task. For this reason, different code-smells are characterized 

by the same metrics. Thus, it is difficult to identify some code-smells types. These 

difficulties explain a large portion of the high false-positive rates reported in most of the 

existing contributions.   

Another very important issue is related to the definition of thresholds when dealing 

with quantitative information. Indeed, there is a general agreement on extreme 

manifestations of code-smells. That is, for each code-smell, rules that are expressed in 

terms of metric combinations need substantial calibration efforts to find the right threshold 

value for each metric, above which a code-smell is said to be detected. Since there is no 

consensus in defining code-smells, different threshold values should be tested to find the 

best one. For instance, the Blob detection involves information such as class size. Although 

we can measure the size of a class, an appropriate threshold value is not trivial to define. A 
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class considered large in a given program/community of users could be considered average 

in another. 

Besides the previous approaches, software repositories are available in many 

companies, where code-smells in projects under development are manually identified, 

corrected and documented. However, this valuable knowledge is not used to mine 

regularities about code-smell manifestations, although these regularities could be exploited 

both to detect and correct code-smells. 

In the next section, we introduce our approach to overcome some of the above-

mentioned limitations for code-smells detection. The proposed approach brings a lot of 

advantages: 1) it does not require to define the different code-smell types, but only to have 

some code-smell examples; 2) it does not require an expert to write detection rules 

manually; 3) it does not require specifying the metrics to use or their related threshold 

values. 

3.3 Approach 

This section describes our contribution for code-smells detection problem. The key 

idea is to see the detection problem as a search based combinatorial optimization problem 

to find the appropriate detection rules from an exhaustive list of possible metrics and 

threshold values. 

The rest of this section describes the proposed approach in more detail. 

Section 3.3.1 introduces the proposed approach while Section 3.3.2 explains the adaptation 

and the design of GP in terms of solution representation, fitness function, selection and 

genetic operators. 

3.3.1 Approach overview 

We propose an approach that uses knowledge from previously manually inspected 

projects, called code-smell examples, in order to detect code-smells that will serve to 

generate new detection rules based on combinations of software metrics. In short, the 

detection rules are automatically derived by an optimization process that exploits the 
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available examples. Figure 3.1 shows the general structure of our approach. It takes as 

inputs a base (i.e., a set) of code-smell examples and a set of quality metrics (the definition 

and the usefulness of these metrics were discussed in the literature [2]). As output, our 

approach derives a set of detection rules. Using GP, our rules' derivation process generates 

randomly, from a given list of quality metrics, a combination of quality metrics/threshold 

for each code-smell type. Thus, the generation process can be viewed as a search-based 

combinatorial optimization to find the suitable combination of metrics/thresholds that best 

detect the code-smell examples. In other words, the best set of rules is the one that detects 

the maximum number of code-smells (we consider both precision and recall scores). 

 

Figure 3.1 - Approach overview. 

 

As showed in Figure 3.2, the base of examples contains projects (systems) that were 

manually inspected to detect possible code-smells. During a training stage, these systems 

are iteratively evaluated using rules generated by the algorithm. A fitness function 

calculates the quality of each solution (rules) by comparing the list of detected code-smells 

with the expected ones from the base of examples.    
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Figure 3.2 - Base of examples 

 

As many metrics combinations are possible, the detection rules generation process 

is, by nature, a combinatorial optimization problem. The number of possible solutions 

quickly becomes huge as the number of metrics increases. A deterministic search is not 

practical in such cases, and the use of heuristic search is warranted. The dimensions of the 

solution space are set by the metrics and logical operations between them: union (metric1 

OR metric2) and intersection (metric1 AND metric2). A solution is determined by 

assigning a threshold value to each metric. The search is guided by the quality of the 

solution according to the number of detected code-smells in comparison to the expected 

ones form the base of examples. To this end, a heuristic search is needed to explore this 

large number of combination. 

3.3.2 GP adaptation 

Our SBSE formulation of code-smells detection is based on GP (cf. 

Section 2.32.3.12.3).A high level view of the GP approach to the code-smells detection 

problem is summarized in Algorithm 3.1. The algorithm takes as input a set of quality 

metrics and a set of code-smell examples that were manually detected in some systems, and 

finds a solution which corresponds to a set of rules that best detect the code-smells in the 

base of examples. 
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Algorithm: Code-smells Detection 

Input:  
Set of quality metrics  
Set of code-smell examples 

Process: 
1. I:= rules(R, Code-smell_Type) 
2. P:= set_of(I)  
3. initial_population(P, Max_size)  
4. repeat 
5.   for all I in P do 
6.           detected_ code-smells := execute_rules(R, I) 
7.             fitness(I) := compare(detected_ code-smells, code-smell_examples) 
8.  end for 
9.  best_solution := best_fitness(I); 
10.   P := generate_new_population(P) 
11.  it:=it+1; 
12. until it=max_it 
13. return best_solution 

Output:  
best_solution: detection rule 

 

Algorithm 3.1 - High-level pseudo-code for GP adaptation to our code-smells detection 

problem. 

Lines 1–3 construct the initial GP population which is a set of individuals that 

define possible detection rules. The function rules(R, Code-smell_Type) returns an 

individual I by randomly combining a set of metrics/thresholds that corresponds to a 

specific code-smell type, e.g., Blob, spaghetti code, or functional decomposition. The 

function set_of(I) returns a set of individuals, i.e., detection rules, that corresponds to a GP 

population. Lines 4–13 encode the main GP loop, which explores the search space and 

constructs new individuals by combining metrics within rules. During each iteration, we 

evaluate the quality of each individual in the population, and save the individual having the 

best fitness (line 9). We generate a new population (P+1) of individuals (line 10) by 

iteratively selecting pairs of parent individuals from population P and applying the 

crossover operator to them; each pair of parent individuals produces two children (new 

solutions). We include both the parent and child variants in the new population P. Then, we 

apply the mutation operator with a probability score for both parent and child to ensure the 

solution diversity; this produces the population for the next generation. The algorithm 
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terminates when the termination criterion (maximum iteration number) is met, and returns 

the best set of detection rules (best solution found during all iterations). 

To adapt GP for a specific problem, the following elements have to be defined: 

representation of the individuals; creation of a population of individuals; definition of the 

fitness function to evaluate individuals for their ability to solve the problem under 

consideration; selection of the individuals to transmit from one generation to another; 

creation of new individuals using genetic operators (crossover and mutation) to explore the 

search space, and finally, the generation of a new population. In the following, we describe 

more precisely our adaption of GP to the code-smells detection problem. 

a) Individual representation 

An individual is a set of IF – THEN rules. For instance, let us consider the 

following detection rule, i.e., individual, and its interpretation (please refer to Appendix A 

for the definition of the used metrics): 

R1: IF (LOC(c) ≥ 1500 AND NOM(c) ≥ 29) OR (WMC(c) ≥ 60) THEN Blob(c) 

R2: IF (CBO(c) ≥ 51) THEN spaghetti code(c) 

R3: IF (NPA(c) ≥ 4 AND WMC(c) < 3) THEN functional decomposition (c) 

Consequently, a detection rule has the following structure:  

 

IF “Combination of metrics with their threshold values” THEN “Code-smell type” 

 

The IF clause describes the conditions or situations under which a code-smell type 

is detected. These conditions correspond to logical expressions that combine some metrics 

and their threshold values using logic operators (AND, OR). If some of these conditions are 

satisfied by a class, then this class is detected as the code-smell figuring in the THEN 

clause of the rule. Consequently, THEN clauses highlight the code-smell types to be 

detected. We will have as many rules as types of code-smell to be detected. In our case, 

mainly for illustrative reasons, and without loss of generality, we focus on the detection of 

three code-smell types, namely Blob, spaghetti code and functional decomposition. 
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Consequently, as it is shown in Figure 3.3, we have three rules, R1 to detect Blobs, R2 to 

detect spaghetti codes, and R3 to detect functional decomposition. 

One of the most suitable computer representations of rules is based on the use of 

trees [171] [172]. In our case, the rule interpretation of an individual will be handled by a 

tree representation which is composed of two types of nodes: terminals and functions. The 

terminals (leaf nodes of a tree) correspond to different quality metrics with their threshold 

values. The functions that can be used between these metrics correspond to logical 

operators, which are Union (OR) and Intersection (AND). Figure 3.3 represents an example 

detection rule represented as a tree. This tree representation corresponds to an OR 

composition of three sub-trees, each sub-tree represents a rule: R1 OR R2 OR R3. 

 

Figure 3.3 - A tree representation of an individual. 

 

For instance, rule R1 is represented as a sub-tree of nodes starting at the branch (N1 

- N5) of the individual tree representation of Figure 3.3. Since this rule is dedicated to 

detect Blob code-smells, we know that the branch (N1 – N5) of the tree will figure out the 

THEN clause of the rule. Consequently, there is no need to add the code-smell type as a 

node in the sub-tree dedicated to a rule. 
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b) Generation of an initial population 

To generate an initial population, we start by defining the maximum tree length, 

including the number of nodes and levels. The actual tree length will vary with the number 

of metrics to use for code-smell detection. Notice that a high tree length value does not 

necessarily mean that the results are more precise since, usually, only a few specific metrics 

are needed to detect a specific code-smell. These metrics can be specified either by the user 

or determined randomly. Because the individuals will evolve with different tree lengths 

(structures), with the root (head) of the trees unchanged, we randomly assign for each one:  

 one metric and threshold value to each leaf node 

 a logic operator (AND, OR) to each function node 

Since any metric combination is possible and correct semantically, we do need to 

define some conditions to verify when generating an individual. 

c) Genetic operators  

Selection. To select the individuals that will undergo the crossover and mutation 

operators, we used stochastic universal sampling (SUS) [171], in which the probability to 

select an individual is directly proportional to its relative fitness in the population. For each 

iteration, we used SUS to select population_size/2 individuals from population p to 

generate population p+1. These (population_size/2) selected individuals will “give birth” to 

another (population_size/2) new individuals using crossover operator. 

Crossover. Two parent individuals are selected, and a sub tree is picked on each 

one. Then, the crossover operator swaps the nodes and their relative sub trees from one 

parent to the other. The crossover operator can be applied only on parents having the same 

type of code-smell to detect. Each child thus combines information from both parents.  

Figure 3.4 shows an example of the crossover process. Indeed, the rule R1 and a 

rule R2 from another individual (solution) are combined to generate two new rules. The 

right sub tree of R1 is swapped with the left sub tree of R2.  
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Figure 3.4 - Crossover operator. 

 

As a result, after applying the cross operator the new rule R1 to detect Blob will be:  

R1: IF (LOC(c) ≥ 1500 AND NOM(c) ≥ 29) OR (NPA(c) ≥ 4) THEN Blob(c) 

 

Mutation. The mutation operator can be applied either to function or terminal 

nodes. This operator can modify one or many nodes. Given a selected individual, the 

mutation operator first randomly selects a node in the tree representation of the individual. 

Then, if the selected node is a terminal (threshold value of a quality metric), it is replaced 

by another terminal. The new terminal either corresponds to a threshold value of the same 

metric or the metric is changed, and a threshold value is randomly fixed. If the selected 

node is a function (AND operator, for example), it is replaced by a new function (i.e., AND 

becomes OR). If a tree mutation is to be carried out, the node and its sub trees are replaced 

by a new randomly generated sub tree.  

To illustrate the mutation process, consider again the example that corresponds to a 

candidate rule to detect the Blob code-smell. Figure 3.5 illustrates the effect of a mutation 

that deletes the node NMD, leading to the automatic deletion of node OR (no left sub tree), 
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and that replaces the node LOCMETHOD by node NPRIVFIELD with a new threshold 

value. Thus, after applying the mutation operator the new rule R1 to detect Blob will be:  

R1: IF (LOCCLASS(c) ≥ 1500 AND NPRIVFIELD(c)  ≥ 14)) THEN Blob(c) 

 

 

Figure 3.5 - Mutation operator 

 

d) Encoding of an individual 

The quality of an individual is proportional to the quality of the different detection 

rules composing it. In fact, the execution of these rules on the different projects extracted 

from the base of examples detects various classes as code-smells. Then, the quality of a 

solution (set of rules) is determined with respect to the number of detected code-smells in 

comparison to the expected ones in the base of examples. In other words, the best set of 

rules is the one that detects the maximum number of code-smells. 

For instance, let us suppose that we have a base of code-smell examples having 

three classes X, W, and T that are considered respectively as Blob, functional 

decomposition and another Blob. A solution contains different rules that detect only X as 

Blob. In this case, the quality of this solution will have a value of 1/3 = 0.33 (only one 

detected code-smell over three expected ones). 

OR 

AND 

LOC≥ 1500 NOM ≥ 29 

WMC ≥ 
60 

After mutationBefore mutation 

Mutation

OR 

AND 

LOC≥ 1500
NOM≥ 29 

WMC ≥ 
60 



64 

 

 

e) Fitness function 

The encoding of an individual should be formalized in a fitness function that 

quantifies the quality of the generated rules. The goal is to define an efficient and simple (in 

the sense of not computationally expensive) fitness function in order to reduce 

computational complexity. 

As discussed in Section 3.3.1, the fitness function aims to maximize the number of 

detected code-smells in comparison to the expected ones in the base of examples. In this 

context, we define the fitness function of a solution, normalized in the range [0, 1], as: 

௡݂௢௥௠ ൌ

∑ ܽ௜
௣
௜ୀଵ
ݐ 	൅

∑ ܽ௜
௣
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݌ 		

2
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where t is the number of code-smells in the base of examples, p is the number of detected 

classes with code-smells, and ai has value 1 if the ith detected class exists in the base of 

examples (with the same code-smell type), and value 0 otherwise. 

To illustrate the fitness function, we consider a base of examples containing one 

system evaluated manually. In this system, six (6) classes are subject to three (3) types of 

code-smells as shown in Table 3.1.  

Class Blob 
Functional 

decomposition 
Spaghetti 

code 
Student  X  
Person  X  

University  X  
Course X   

Classroom   X 
Administration X   

Table 3.1 - Code-smells example. 

 

The classes detected after executing the solution generating the rules R1, R2 and R3 

of Figure 3.3 are described in Table 3.2. 
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Class Blob Functional 
decomposition 

Spaghetti 
code 

Person  X  
Classroom X   
Professor  X  

Table 3.2 - Detected classes. 

 

Thus, only one class corresponds to a true code-smell (Person). Classroom is a 

code-smell but the type is wrong and Professor is not a code-smell. The fitness function has 

the value:  

௡݂௢௥௠ ൌ
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1
6		

2
ൌ 0.25 

 

with t=3 (only one code-smell is detected over 3 expected code-smells), and p=6 (only one 

class with a code-smell is detected over 6 expected classes with code-smells). 

3.4 Evaluation 

To evaluate our approach, we studied its usefulness to guide quality assurance 

efforts for six large and medium-size open-source software systems. In this section, we 

describe our experimental setup and present the results of an exploratory study.  

3.4.1 Research questions 

We designed our experiments to answer the following research questions: 

 RQ1: To what extent can the proposed approach detect code-smells? 

 RQ2: What types of code-smells does it locate correctly? 
 

To answer RQ1, we used an existing corpus of known code-smells [8] to evaluate 

the precision and recall of our approach. We compared our results to those produced by a 

rule-based strategy [8]. To answer RQ2, we investigated the type of code-smells that were 

found. 
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3.4.2 Systems studied 

We used six large-size open-source Java projects to perform our experiments: 

GanttProject v1.10.2, Xerces-J v2.7.0, ArgoUML v0.19.8, Quick UML v2001, LOG4J 

v1.2.1, and AZUREUS v2.3.0.6.  GanttProject1 (Gantt for short) is a cross-platform tool for 

project scheduling. Xerces-J2 is a family of software packages for parsing XML. 

ArgoUML3 is a popular UML modeling tool which includes support for all standard UML 

1.4 diagrams. Quick UML4 is an editor creating and sharing UML diagrams with people on 

many different platforms and generate Java source code from. LOG4J5 is a well-known 

logging library for Java. Finally, AZUREUS6 is a P2P file sharing client using the bittorrent 

protocol that search and download torrent files, play, convert and transcode videos and 

music. Table 3.3 provides some relevant information about the programs. The base of code-

smell examples contains more than examples. Table 3.3 provides some descriptive statistics 

about these six programs. 

 

We selected these systems for our validation because they came from six different 

organisations, involved different kinds of software engineering development and had 

different sizes, ranging from 21 to 1160 KLOC with a considerable number of code-smell 

                                                 
1 http://www.ganttproject.biz 
2 http://xerces.apache.org/xerces-j/ 
3 http://argouml.tigris.org/ 
4 http://sourceforge.net/projects/quj/ 
5 http://logging.apache.org/log4j/1.2/ 
6 http://sourceforge.net/projects/azureus/ 

Systems # of classes KLOC # of code-smells 

GanttProject v1.10.2 245 31 41 
Xerces-J v2.7.0 991 240 66 
ArgoUML v0.19.8 1230 1160 89 
Quick UML v2001 142 19 11 
LOG4J v1.2.1 189 21 17 
AZUREUS v2.3.0.6 1449 42 93 

Table 3.3 - Program statistics. 
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instances. The version of Gantt studied was known to be of poor quality, which led to a 

major revised version. ArgoUML, Xerces-J, LOG4J, AZUREUS and Quick UML, on the 

other hand, has been actively evolved over the past 10 years and their design has not been 

responsible for a slowdown of their developments.  

3.4.3 Analysis method  

In [8], the authors asked three groups of students to analyse the libraries and tag 

instances of specific antipatterns in order to validate their detection technique, DECOR. For 

replication purposes, they provided a corpus of describing instances of different antipatterns 

that includes Blob classes, spaghetti code, and functional decompositions. As described in 

Section 2.2.1, Blobs are classes that do or know too much; spaghetti Code (SC) is a code 

that does not use appropriate structuring mechanisms; finally, functional decomposition 

(FD) is a code that is structured as a series of function calls (please refer to Appendix C for 

the definition of these code-smells). These represent different types of design risks. In our 

study, we verified the capacity of our approach to locate classes that corresponded to 

instances of these anti-patterns. We used a 6-fold cross validation procedure. For each fold, 

one open source project is evaluated by using the remaining five systems as the base of 

examples. For example, Xerces-J is analyzed using detection rules generated from some 

code-smell examples from ArgoUML, LOG4J, AZUREUS, Quick UML and Gantt.  

DECOR [8] reported the number of detected antipatterns, the number of true 

positives, the recall (number of true positives over the total number of code-smells) and the 

precision (ratio of true positives over the number of detected code-smells). The obtained 

results were compared to those of DÉCOR in terms of recall and precision when using our 

approach for each code-smell in Xerces-J, AZUREUS, LOG4J, Quick UML, ArgoUML 

and Gantt. Recall and precision are defined as follow: 
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3.4.4 Results 

Table 3.4 summarizes our findings. For Gantt, our average code-smell detection 

precision was 94%. DECOR, on the other hand, had a combined precision of 59% for the 

same code-smells. The precision for Quick UML was about 86%, over twice the value of 

43% obtained with DECOR. In particular, DECOR did not detect any spaghetti code as 

opposed to our approach. For Xerces-J, our precision average was 90%, while DECOR had 

a precision of 67% for the same dataset. Finally, the comparison results were mixed for 

ArgoUML, AZUREUS and LOG4J; still, our precision was consistently higher than 75% in 

comparison to DECOR.  

On the negative side, our recall for the different systems was systematically lower 

than that of DECOR. In fact, the rules defined in DECOR are too general, which increases 

the recall at the cost of precision. The main reason that our approach finds better precision 

results is that the threshold values are well-defined using our GP. Indeed, with DECOR the 

user should test different threshold values to find the best ones. Thus, it is a fastidious task 

to find the best threshold combination for all metrics. The Blob code-smell is detected 

better using DECOR because it is easy to find the thresholds and metrics combination for 

this kind of code-smells. The hypothesis to have 100% of recall justifies low precision, 

sometimes, to detect code-smells. In fact, there is a compromise between precision and 

recall. However, still our approach provides better compromise in terms of F-Measure 

equals to 88% for all code-smells, whereas DECOR provides only 78.6%. The detection of 

FDs by only using metrics seems difficult. This difficulty is alleviated in DECOR by 

including an analysis of naming conventions to perform the detection process. However, 

using naming conventions lead to results that depend on the coding practices of the 

development team. We obtained comparable results without having to leverage lexical 

information. We can also mention that fixed code-smells correspond to the different code-

smell types.  
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In the context of this experiment, we can conclude that our technique is able to 

identify code-smells, in average, more accurately than DECOR (answer to research 

question RQ1 above).  

 

As described in Table 3.5, we compared our GP detection results with those 

obtained by another local search algorithm, simulated annealing (SA) [98]. The detection 

results for SA are also acceptable. For small systems, the precision when using SA is even 

better than with GP. In fact, GP is a global search that performs best in a large search space 

(which corresponds to large systems). In addition, the solution representation used in GP 

(tree) is suitable for rule generation, while SA uses a vector-based representation that is not. 

Furthermore, SA takes a lot of time, comparing to GP, to converge to an optimal solution 

(more than 10 minutes). 

System Precision Precision-
DECOR Recall Recall-DECOR 

GanttProject 
Blob : 100%
SC : 93% 
FD : 91%

90%
71.4% 
26.7%

100%
97% 
94%

100% 

Xerces-J 
Blob : 97%
SC: 90% 
FD: 88%

88.6%
60.5% 
51.7%

100%
88% 
86%

ArgoUML 
Blob : 93%
SC: 88% 
FD: 82%

86.2%
86.4% 
38.6%

100%
91% 
89%

QuickUML 
Blob : 94%
SC: 84% 
FD: 81%

100%
0% 

30%

98%
93% 
88%

AZUREUS 
Blob : 82%
SC: 71% 
FD: 68%

92.7%
81.7% 
38.6%

94%
81% 
86%

LOG4J 
Blob : 87%
SC: 84% 
FD: 66%

100%
66.7% 
54.5%

90%
84% 
74%

Table 3.4 - Code-smells detection results compared to DÉCOR 
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3.5 Discussion 

We noticed that our technique does not have a bias towards the detection of specific 

code-smell types. In Xerces-J, we had an almost equal distribution of each code-smell (14 

SCs, 13 Blobs, and 14 FDs). On Gantt, the distribution was not as balanced, but this is 

principally due to the number of actual code-smells in the system. We found all four known 

FDs and nine Blobs in the system, and eight of the seventeen FDs, four more than DECOR.  

An important consideration is the impact of the example base size on detection 

quality. Drawn for AZUREUS, the results of Figure 3.6 show that our approach also 

proposes good detection results in situations where only few examples are available. The 

precision and recall scores seem to grow steadily and linearly with the number of examples 

and rapidly grow to acceptable values (75%). Thus, our approach does not need a large 

number of examples to obtain good detection results. 

 

System Precision-GP Precision-SA 

GanttProject 
Blob : 100%
SC : 93% 
FD : 91%

100% 
94% 
90% 

Xerces-J 
Blob : 97%
SC: 90% 
FD: 88% 

83% 
69% 
79% 

ArgoUML 
Blob : 93%
SC: 88% 
FD: 82%

83% 
84% 
67% 

QuickUML 
Blob : 94%
SC: 84% 
FD: 81% 

100% 
88% 
83% 

AZUREUS 
Blob : 82%
SC: 71% 
FD: 68%

91% 
63% 
54% 

LOG4J 
Blob : 87%
SC: 84% 
FD: 66% 

100% 
88% 
73% 

Table 3.5 – GP code-smells detection results compared to Simulated Annealing. 
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Figure 3.6 - Examples-size variation (example = system). 

 

The reliability of the proposed approach requires an example set of bad code. It can 

be argued that constituting such a set might require more work than identifying, specifying, 

and adapting rules. In our study, we showed that by using six open source projects directly, 

without any adaptation, the technique can be used out of the box and will produce good 

detection precision and recall results for the detection of code-smells for the studied 

systems. 

In an industrial setting, we could expect that a company starts with some few open-

source projects, and gradually evolves its set of bad code examples to include context-

specific data. This might be essential if we consider that different languages and software 

environments have different best/worst practices. 

Finally, since we viewed the code-smells detection problem as a combinatorial 

problem addressed with heuristic search, it is important to contrast the results with the 

execution time. We executed our algorithm on a standard desktop computer (Pentium CPU 

running at 2 GHz with 3GB of RAM). The execution time for rules generation with a 

population size of 400 individuals and number of iterations (stopping criteria) fixed to 3500 
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was less than four minutes (3min27s). This indicates that our approach is reasonably 

scalable from the performance standpoint. However, the execution time depends on the 

number of used metrics and the size of the base of examples. It should be noted that more 

important execution times may be obtained than when using DECOR. In any case, our 

approach is meant to apply mainly in situations where manual rule-based solutions are not 

easily available. 

3.6 Threats to validity 

Following the methodology proposed by Wohlin et al. [167], there are four types of 

threats that can affect the validity of our experiments. We consider each of these in the 

following paragraphs.  

Conclusion validity is concerned with the relation between the treatment and the outcome. 

We used the Wilcoxon rank sum test [170] with a 95% confidence level to test whether 

significant differences exist between the measurements for different treatments. This test 

makes no assumption that the data is normally distributed and is suitable for ordinal data, 

so we can be confident that the statistical relationships we observed are significant. In our 

comparison with the technique not based on heuristic search, we considered the parameters 

provided with the tool. This is can be considered as a threat that can be addressed in the 

future by evaluating the impact of different parameters on the quality of the results of 

DECOR. 

Internal validity is concerned with the causal relationship between the treatment and the 

outcome. A possible threat to the internal validity resides in the use of stochastic 

algorithms. To circumvent this threat our experimental study is performed based on 51 

independent simulation runs for each problem instance and the obtained results are 

statistically analyzed by using the Wilcoxon rank sum test [170] with a 95% confidence 

level (α = 5%). Still, the parameter tuning of the different optimization algorithms used in 

our experiments creates another internal threat that we need to evaluate in our future work. 

The parameters' values used in our experiments are found by a trial-and-error method, 

which is commonly used in the SBSE community [169]. However, it would be an 
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interesting perspective to design an adaptive parameter tuning strategy [168] for our 

approach so that parameters are updated during the execution in order to provide the best 

possible performance. 

Construct validity is concerned with the relationship between theory and what is observed. 

Most of what we measure in our experiments are standard metrics such as precision and 

recall that are widely accepted as good proxies for quality of code-smells detection 

solutions. Another construct validity threat is related to the absence of similar work that 

uses search-based algorithms for code-smells detection. For that reason, we compare our 

proposal with other existing techniques not based on search-based algorithms. Another 

threat to construct validity arises because, although we considered three types of code-

smells, we did not evaluate the detection of other types of code-smells. In future work, we 

plan to evaluate the performance of our proposal to detect some other types of code-smell. 

Another construct threat can be related to the corpus of manually detected code-smells 

since developers do not all agree if a candidate is a code-smell or not. We will ask some 

new experts to extend the existing corpus and provide additional feedback regarding the 

detected code-smells. 

External validity refers to the generalizability of our findings. In this study, we performed 

our experiments on six different widely used open-source systems belonging to different 

domains and with different sizes, as described in Table 3.3. However, we cannot assert that 

our results can be generalized to industrial Java applications, other programming languages, 

and to other practitioners. Future replications of this study are necessary to confirm our 

findings. 

3.7 Conclusion 

In this chapter, we proposed a new search-based approach for code-smells detection. 

Typically, researchers and practitioners try to characterize different types of common code-

smells and present symptoms to search for in order to locate these code-smells in a system. 

In this work, we have shown that this knowledge is not necessary to perform the detection. 

Instead, we use examples of code-smells to automatically generate detection rules. Our 
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study shows that our technique outperforms DECOR [8], a state-of-the-art metric-based 

approach, where rules are defined manually, on its test corpus. The proposed approach was 

tested on six medium and large-size open-source systems, and the results are promising.  

As part of future work, we plan to extend our base of examples with additional 

badly-designed code in order to consider more programming contexts. Another direction 

worth to explore is to improve the detection of potential code-smells through the use of 

knowledge from software change history. Indeed, as reported in the literature [64] [118], 

classes participating in design problems (e.g., code-smells) are significantly more likely to 

be changed [118]. Moreover, if a code-smell (e.g., God Class) is created intentionally and 

remains unmodified or hardly undergoes changes, the system may not experience any 

problems [63] [117]. Indeed, it has been shown that, in some cases, a large class might be 

the best solution [63]. For these reasons, combining software static metrics with software 

change-based metrics can be an effective way to improve the detection of code-smells. 

Once code-smells are detected, they should be fixed as early as possible for 

maintainability, quality assurance, and evolution considerations. In the next chapter, we 

introduce our approach to fix code-smells. 

 



 

Part 2: Mono-objective code-smells correction 
 

 

In the first part of this thesis we presented our search-based approach for code-

smells detection. We used genetic programming to generate code smell-detection rules 

learned from real code-smell instances.  

Once code-smells detected, they need to be fixed as early as possible for 

maintainability and evolution considerations. Indeed, it is widely believed that refactoring 

is an effective technique to fix code-smells [1]. In this second part of this thesis, we focus 

on code-smells correction through refactoring. We deal with refactoring recommending 

task as a mono-objective optimization problem to improve software quality by fixing code-

smells. In this setting, we consider two scenarios for practitioners or software development 

companies: 1) they have enough time and resources to address all the detected code-smells; 

2) there are time and resources limitations. 

For the first scenario, we introduce a search-based approach using genetic algorithm 

to find the optimal sequence of refactoring steps that fixes as much as possible the number 

of detected code-smells. The approach was successfully applied to six medium and large 

size software systems by fixing the majority of existing code-smells (90%). Our 

experimental results provide evidence that refactoring is by nature an optimization problem. 

For the second scenario, where there is no enough time and resources to address all 

the detected. Practitioners need to focus their efforts on fixing only the most critical code-

smells. That is, not all code-smells have equal effects and importance. Indeed, it would be 

important to determine which are the more critical code-smells in order to prioritize their 

correction. To this end, we introduce a novel approach to prioritize code-smells correction 

using chemical reaction optimization [176], a newly established metaheuristics.  



 

Chapter 4 : Search-based code-smells correction 

 

 

4.1 Introduction 

We presented in Chapter 3 how code-smell detection rules can be automatically 

generated from examples of code-smell instances. Due to their harmful impact on the 

quality, maintenance and evolution of software systems, code-smells should be prevented 

and removed from the code as early as possible. Hence, it is widely believed that 

refactoring is an efficient technique to fix code-smells, improve software quality, and above 

all, increase and developer’s productivity by making software systems easier to maintain 

and understand. 

In this chapter, we introduce our approach for recommending refactoring solutions 

to fix the detected code-smells. At this stage, we consider the refactoring recommending 

task as a single-objective optimization problem. Our search-based approach aims at finding, 

from a large list of possible refactorings, the suitable refactoring solutions that fixes the 

detected code-smells by the means of genetic algorithm (GA) [99]. Indeed, a refactoring 

solution corresponds to a sequence of refactoring operations that should minimize as much 

as possible the number of code-smells. To this end, our search based process is guided by 

an evaluation function that calculates the number of fixed code-smells using detection 

rules. We evaluate our approach on a benchmark composed of six large and medium size 

software systems. We found that our approach is able to suggest refactoring solutions to 

correct the majority (more than 90%) of the detected code-smells.  

This chapter is organized as follows. Section 4.2 recalls the different problems and 

challenges related to the correction of code-smells that are addressed by our approach. 

Section 4.3 introduces our approach for fixing code-smells using refactoring. In this 

section, details are given on the adaptation of GA to the refactoring and code-smells 

correction problem. While Section 4.4 presents an evaluation of the proposed approach, 

Section 4.5 presents a discussion about the obtained results. Section 4.6 is dedicated to 
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discuss the different limitations and threats to validity. Finally, Section 4.7 concludes the 

chapter and describes our future research work. 

4.2 Code-smells correction and refactoring challenges 

Several problems and challenges should be considered when recommending 

refactoring. Our approach described in this chapter represents a preliminary research 

direction to show how refactoring strategies can be handled as an optimization problem. At 

this stage, we mainly address the problems 2.1 - 2.5 identified in Section 1.2. 

In fact, the majority of existing approaches [1] [40] [41] have manually defined 

"standard" refactorings for each code-smell type to remove its symptoms as described In 

Fowlers book [1]. However, it is difficult to define “standard” refactoring solutions for each 

code-smell type and to generalize them because it depends mainly on the programs in their 

context. To make the situation worst, removing code-smell symptoms does not mean that 

the actual code-smell is corrected, and, in the majority of cases, these “standard” solutions 

are unable to remove all symptoms for each code-smell. 

Furthermore, different possible refactoring strategies should be defined for the same 

type of code-smell. The problem is how to find the “best” refactoring solutions from a large 

list of candidate refactorings and how to combine them in an appropriate order? The list of 

all possible refactoring strategies, for each code-smell, can be very large [25]. Thus, the 

process of defining refactoring strategies manually, from an exhaustive list of refactorings, 

is fastidious, time-consuming, and error-prone. 

From another perspective, in the majority of existing approaches [20] [21] [22] [49], 

code quality can be improved without fixing code-smells. In other terms, improving some 

quality metrics does not guarantee that the detected code-smells are fixed. Therefore, the 

link between code-smells detection (refactoring opportunities) and correction is not obvious. 

Thus, we need to ensure whether the refactoring concretely corrects detected code-smells. 

More significantly, existing approaches consider the refactoring (i.e., the correction 

process) as local process by fixing code-smells (or improving quality) separately. That is, a 
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refactoring solution should not be specific to only one code-smell type; instead, the impact 

of refactoring should be considered on the whole system. For example, moving methods to 

reduce the size/complexity of a class may increase the global coupling, or fixing some 

code-smells may create other code-smells in other code fragments.  

These observations were at the origin of the work described in this chapter. 

4.3 Approach 

In this Section, we introduce our approach for recommending refactoring to fix 

code-smells. We also show the importance of heuristic search to explore the large search 

space of possible refactoring solutions. We start by presenting an overview of our approach 

in Section 4.3.1. Then, we describe, in Section 4.3.2, GA adaptation for the refactoring 

recommending problem in terms of solution representation, fitness function, selection and 

genetic operators. 

4.3.1 Approach overview 

 

Figure 4.1 - Approach overview. 

 

To correct the detected code-smells, we propose a search-based approach that aims 

at finding, from a large list of possible refactoring operation, the suitable refactorings that 

fixes the detected code-smells. To this end, we use GA to find the suitable refactoring 

solutions. Our main aim is to find refactoring solutions that should minimize as much as 

possible the number of code-smells. As illustrated in Figure 4.1, our approach takes as 

Code-smells correction 
(Genetic Algorithm) 
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input a smelly source code (i.e., contains code-smells), a list of possible refactoring 

operations that can be applied (please refer to Appendix B for the list of considered 

refactorings), and code-smells detection rules. As output, our approach suggests the optimal 

sequence of refactoring operations to fix the detected code-smells.  

4.3.2 GA adaptation 

Our SBSE formulation of code-smells correction is based on GA (cf. 

Section 2.32.3.1). A high level view of the GA approach to the code-smells correction 

problem is summarized in Algorithm 4.1. The algorithm takes as input code fragments to 

be corrected Smelly_code, a set of possible refactoring operations RO, and a set of code-

smell detection rules D. Lines 1–5 construct an initial solution population based on a 

1. Algorithm: Code-smells Correction 

Input:  
Smelly_code, 
Set of refactoring operations RO, 
Code-smells detection rules D,  

Process: 
1. initial_population(P, Max_size)  
2. P0:= set_of(S)  
3. S:= sequence_of(RO) 
4. code:= Smelly_code 
5. t:=0 
6. repeat 
7.  for all Si in P do 
8.                code:= execute_refactoring(Si, Smelly_code); 
9.       fitness(Si) := calculate_Quality(D, code); 
10.  end for 
11.    best_solution := best_fitness(Si); 
12.    P := generate_new_population(P) 
13.    it:=it+1; 
14. until it=max_it 
15. return best_solution 

Output:  
best_solution: refactoring solution 

 

Algorithm 4.1 - High-level pseudo-code for GA adaptation to our code-smells correction 

problem. 
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specific representation, using the list of RO given at the input. This initial population stands 

for a set of possible code-smell correction solutions (i.e., sequence of refatorings) returned 

by the function set_of(S), each one representing sequences of RO selected and combined 

randomly using the function sequence_of(RO). 

Lines 6-14 encode the main GA loop whose goal is to make a population of 

candidate solutions evolve toward the best sequence of RO, i.e., the one that minimizes as 

much as possible the number of code-smells. During each iteration t, each refactoring 

sequence in the current population is executed on the smelly code (line 8). Then, each 

solution should be evaluated using our fitness function calculate_Quality (line 9) by 

calculating the number of fixed code-smells over the initial number of code-smells using 

the detection rules. After that, the best solution is recorded in a specific variable called 

best_solution. Then, a new population is generated using our defined genetic operators, i.e., 

crossover and mutation (line 12). The algorithm terminates when it reaches the termination 

criterion, i.e., maximum iteration number, (line 14). The algorithm then returns the best 

solution obtained during all iterations (line 15). 

One key element when applying a search-based technique is to find a suitable 

mapping between the problem to solve and the techniques to use, i.e., in our case, fixing 

code-smells. Applying GA to a specific problem requires specifying the following 

elements: representation of a solution, the fitness function to evaluate the candidate 

solutions, the selection of the fittest solutions, and the change operators to derive new 

solutions from existing ones. In our approach, these elements are defined as follows: 

a) Solution Representation 

In our GA design, we use a vector-based solution coding. Each vector’s dimension 

represents a refactoring operation. When created, the order of applying these refactorings 

corresponds to their positions in the vector. In addition, for each refactoring, a set of 

controlling parameters, e.g., actors and roles, as illustrated in Table 4.1, are randomly 

picked from the program to be refactored. An example of a solution is given in Figure 4.2. 

Hence, we construct a refactoring solution incrementally. First, we create an empty vector 
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that represents the current refactoring solution. Then, we randomly select 1) a refactoring 

operation from the list of possible refactorings and 2) its controlling parameters (i.e., the 

code elements), after that, 3) we apply this refactoring operation to an intermediate model 

that represents the original source code. The model will be updated after applying each 

refactoring operation and the process will be repeated n times until reaching the maximal 

solution length (n). This means that in each iteration i, we have a different model according 

to the (i-1) applied refactoring operations. That is, in each iteration, the controlling 

parameters will be selected from the current version of the model. For this reason, the order 

of applying the refactoring sequence influences the refactoring results. To ease the 

manipulation of these operations, we use logic predicates to describe them. For example, 

the predicates MoveMethod (Person, Employee, getSalary()) indicates that the method 

getSalary() is moved  from class Person to class Employee. 

Moreover, when creating a sequence of refactorings (individuals), it is important to 

guarantee that they are structurally feasible and that they can be legally applied. The first 

Ref. Refactorings Controlling parameters 

MM Move Method (source class, target class, method) 
MF Move Field (source class, target class, field) 
PUF Pull Up Field (source class, target class, field) 
PUM Pull Up Method (source class, target class, method) 
PDF Push Down Field (source class, target class, field) 
PDM Push Down Method (source class, target class, method) 
IC Inline Class (source class, target class) 
EC Extract Class (source class, new class) 
EI Extract Interface (Source class, interface) 
ESuC Extract Super Class  (Source class, super class) 
ESC Extract Sub Class  (Source class, sub class) 

Table 4.1 - Refactorings and its controlling parameters. 

 

MoveMethod (Person, Employee, getSalary()) 
ExtractMethod (Person, printInfo(), printContactInfo()) 
MoveMethod (Departement, University, division ()) 
PushDownField (Person, Student, studentId) 
InlineClass (Car, Vehicle) 
MoveMethod (Person, Employee, setSalary()) 
MoveField (Person, Employee, tax) 
ExtractClass(Person, Address, streetNo, city, zipCode, getAdress(), updateAdress()) 

Figure 4.2 - Representation of a GA individual. 
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work in the literature was proposed by Opdyke [17] who introduced a way of formalising 

the preconditions in order to preserve the behavior of the system. These preconditions must 

be imposed before a refactoring can be applied. Opdyke created functions which could be 

used to formalise constraints. These constraints are similar to the Analysis Functions used 

later by Ó Cinneide [124] and Roberts [175] who developed an automatic refactoring tool 

to reduce program analysis. In our approach, we used a system to check a set of conditions, 

taking inspiration from the work proposed by Ó Cinnéide [124]. Although we suggest a 

recommendation system and we do not apply refactorings automatically, we verify the 

applicability of the suggested refactorings.  

Similarly to [124], our search-based refactoring tool simulates refactorings using pre- 

and post-conditions that are expressed in terms of conditions on a code model. For instance, 

to apply the refactoring operation MoveMethod(Person, Employee, getSalary()), a number 

of necessary preconditions should be satisfied, e.g., Person and Employee should exists and 

should be classes; getSalary() should exist and should be a method; the classes Person and 

Employee should not be in the same inheritance hierarchy; the method getSalary() should 

be implemented in Person; the method signature of getSalary() should not be present in 

class Employee. As post-conditions, Person, Employee, and getSalary() should exists; 

getSalary() declaration should be in the class Employee; and getSalary() declaration should 

not exists in the class Person.  

For composite refactorings, such as extract class and inline class, the overall pre and 

post conditions should be checked. For a sequence of refactorings which may be of any 

length, we simplify the computation of its full precondition by analyzing the precondition 

of each refactoring in the sequence and the corresponding effects on the code model 

(postconditions). For more details about the pre- and post-conditions the interested reader is 

invited to confer to [17]. 
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b) Fitness function. 

After creating a solution, it should be evaluated using a fitness function to ensure its 

ability to solve the problem under consideration. The fitness function quantifies the quality 

of the proposed refactoring solutions. In fact, the fitness function calculates the number of 

fixed code-smells using the detection rules. In this context, we define the fitness function as 

the ratio of the number of fixed code-smells after applying refactoring over the initial 

number of code-smells, as follows: 

ݕݐ݈݅ܽݑܳ ൌ
	݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	ݎ݁ݐ݂ܽ	ݏ݈݈݁݉ݏ	݁݀݋ܿ	݂݋	#

݊
 

where n is the initial number of code-smells before refactoring. 

c) Selection.  

To generate new refactoring solutions, roulette-wheel selection is used [52]. This 

technique assigns to each refactoring solution a probability of being selected that is 

proportional to its fitness. This selection strategy favors the fittest refactoring solutions 

while still giving a chance of being selected to the others. Note that some refactoring 

solutions could be included directly into the new population, i.e., elitist strategy. 

d) Genetic operators. 

To better explore the search space, the crossover and mutation operators are 

defined. 

For crossover, we use a single, random, cut-point crossover.  Crossover operator 

starts by selecting and splitting at random two parent solutions. Then, the operator creates 

two child solutions by putting, for the first child, the first part of the first parent with the 

second part of the second parent, and, for the second child, the first part of the second 

parent with the second part of the first parent. This operator must ensure that the length 

limits are respected by eliminating randomly some refactoring operations. As illustrated in 

Figure 4.3, each child combines some of the refactoring operations of the first parent with 
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some ones of the second parent. In any given generation, each solution will be the parent in 

at most one crossover operation. 

 move field  move field 

 extract class  extract class 

 move method   move method  

 pull up field   move field 

 extract class   extract class 

 inline class    

    

   move method 

 move method  inline class 

 inline class  push down field 

 push down field  pull up field  

 move field  extract class  

 extract class  inline class  

    

    

Figure 4.3 - Crossover operator. 

 

The mutation operator picks randomly one or more operations from a sequence of 

refactoring operations and replaces them by other ones from the initial list of possible 

refactorings. An example is shown in Figure 4.4. 

 move field  move field 

 extract class  extract class 

 move method   move field  

 pull up field   pull up field  

 extract class   move method  

 inline class   inline class  

    

    

Figure 4.4 - Mutation operator. 

4.4 Evaluation 

In order to evaluate the feasibility and the efficiency of our approach for generating 

refactoring solutions to fix code-smells, we conducted an experimental evaluation based on 

six different software systems. In this section, we describe our experimental setup and 

present the obtained results.  
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4.4.1 Research questions 

We designed our experiments to answer the following research questions: 

The goal of the study is to evaluate the efficiency of our approach for the detection 

and correction of code-smells from the perspective of a software maintainer conducting a 

quality audit. We present the results of our experiments that are designed to answer the 

following research questions: 

 RQ1: To what extent can the proposed approach correct code-smells? 

 RQ2: To what extent are the recommended refactorings feasible? 

4.4.2 Analysis method 

To answer RQ1, we check the efficiency of the recommended refactorings in fixing 

the detected code-smells. To this end, we introduce an evaluation metric called code-smells 

correction ratio (CCR) that calculates the ratio of the number of corrected code-smells over 

the initial number of detected code-smells before refactoring. CCR is defined as follow: 

ܴܥܥ ൌ
ݏ݈݈݁݉ݏ	݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	݂݋	#
ݏ݈݈݁݉ݏ	݁݀݋ܿ	݂݋	ݎܾ݁݉ݑ݊	݈ܽ݅ݐ݊݅

 

  To answer RQ2, we validated manually if the proposed refactoring solutions are 

useful and feasible. A refactoring operation is considered as feasible if it doesn’t affect the 

semantic coherence of the original program. To this end, we introduce the evaluation metric 

precision that calculates the number of feasible refactorings over the total number of 

recommended refactorings. The precision metric is defined as follow: 

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݈ܾ݁݅ݏ݂ܽ݁	݂݋	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁݀݊݁݉݉݋ܿ݁ݎ	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ݐ
 

Although, the refactored program is correctly working as refactoring preserves the 

behavior (i.e., operational semantics), it may be semantically incoherent in its internal 

structure with respect to the domain semantics (i.e., descriptive/modelling semantics). 

When a semantic error is found manually, we consider the operations related to this change 



86 

 

 

as a bad recommendation. The precision metric is a performance indicator that should be 

evaluated. 

4.4.3 Systems studied 

To evaluate the efficiency of our approach, we conducted our experiments on six 

medium and large size open-source systems: GanttProject, Xerces-J, ArgoUML, Quick 

UML, LOG4J, and AZUREUS. These systems are described in Section 3.4.2. Moreover, 

Table 3.3 provides descriptive statistics about these six programs. 

We selected these systems for our validation because they are well studied in the 

related work. Moreover, they came from six different organisations, involved different 

kinds of software engineering development, and had different sizes ranging from 21 to 

1160 KLOC with a high number of code-smell instances.  

4.4.4 Results 

Table 4.2 summarize our findings to answer RQ1. The obtained result shows that 

our approach succeeded in finding refactoring solutions that are able to correct most of 

detected code-smells. For instance, for GanttProject 95% (39 over 41) of the detected code-

smells (10 over 11 of blob, 17 over 18 of functional decomposition, and 12 over 12 of 

spaghetti code) was fixed after applying the proposed refactorings. The lowest CCR score 

is obtained for ArgoUML (85%). In average, as shown in Table 4.2, 90% of code-smells 

were fixed, for all the studied systems. Thus, the obtained results give evidence that our 

approach is efficient in fixing code-smells and the obtained correction scores are considered 

significant. However, we found that the majority of non-fixed code-smells are related to 

Blob type. Indeed, this type of code-smells requires, in general, a large number of 

refactoring operations and it is very difficult to fix since it is known to be a very heavy 

class in terms of behaviour and functionalities that it implements. 
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To answer RQ2, we applied the proposed refactorings by hand using the Eclipse1 

IDE, and verified manually the feasibility of the different proposed refactoring sequences 

for each system. As shown in Table 4.2, we found that a large number of the proposed 

refactorings are feasible and can be successfully applied. For all the studied systems, we 

found that, in average, 55% of the recommended refactorings are semantically coherent and 

feasible.  

System CCR Precision 

GanttProject 95% (39|41) 52 % 

Xerces-J 89% (59|66) 49 % 

ArgoUML 85% (76|89) 59 % 

QuickUML 90% (26|29) 59 % 

LOG4J  88% (15|17) 51 % 

AZUREUS 94% (87|93) 57 % 

Table 4.2 - Correction results: CCR median values of 31 independent runs of GA. 

Thus, we found that some of the proposed refactorings are arbitrary changes, and 

therefore, they are unfeasible from software programmer’s perspective. Consequently, 

some semantic errors (coherence of the refactored program with the domain semantics) 

were found. We calculate a correctness precision score (ratio of feasible refactoring 

operations over the number of proposed refactoring) as performance indicator of our 

algorithm (the last column in Table 4.2). For each proposed sequence of refactorings, we 

evaluate the proposed refactorings to eliminate those which are not semantically coherent 

with the program semantics. 

Furthermore, to evaluate the efficiency of our approach in suggesting feasible 

refactoring solutions, we compared our results with another state-of-the-art search-based 

approach [20]. Harman et al. [20] proposed a search-based approach to find the optimal 

sequence of move method refactorings to optimize two quality metrics: CBO (coupling 

between objects), and SDMPC (standard deviation of methods per class). Figure 4.5 shows 

the comparison results. For all the six studied systems, we found comparable results for 

                                                 
1 https://www.eclipse.org/ 



88 

 

 

both approaches with an average of 55% for our approach and 56% Harman’s approach. 

Indeed, our obtained precision score is reasonably acceptable, at this stage, since the 

semantics coherence of the refactored program is not explicitly considered. 

 

Figure 4.5 - GA precision comparison with Harman et al. 

4.5 Discussions 

Although our approach produces good refactoring recommendations for fixing 

code-smells in terms of CCR, it is important to investigate its scalability. Indeed, there is a 

pressing need for scalable solutions to Software Engineering problems. Scalability is 

widely considered as one of the key problems for Software Engineering research and 

development [174]. To evaluate the scalability of the performance of our approach for 

systems of increasing size, we executed GA on the six studied systems that were from 

different sizes ranging from 142 for Quick UML to 1449 classes for AZUREUS. As shown 

in Figure 4.6, when the size of the systems increase, the execution time is not significantly 

affected in turn.  
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Figure 4.6 - Scalability of GA on different systems sizes. 

 

Furthermore, in SBSE, an important step is the tuning parameters. In general, there 

is no standard parameters (e.g., population size, crossover/mutation rates, etc.) that should 

be used in SBSE. This requires a calibration effort to find the best parameters. In our 

implementation, we assume that the number of refactoring operations per individual cannot 

exceed a certain threshold value. Because of the nature of crossover or mutation operations, 

newly created individuals might violate this constraint. After any genetic operation, if this 

constraint is violated for a new individual, repair operation is performed by eliminating 

some operations. In order to calibrate crossover and mutation rates, we considered four 

population sizes (100, 150, 200, and 250) and varied the value of both rates between 5% 

and 90% with increments of 5%. Due to the GA’s randomness effect, we ran the GA 31 

times for each configuration and then calculated the average of all the outputs in terms of 

CCR. To analyze the impact of crossover and mutation, we used two representative 

systems: GanttProject and Xerces. Our experiments showed that with higher population 

sizes (200, 250) best performance is achieved, when crossover rate is over 0.6. Regardless 

of the crossover settings, low mutation rates ended up with lower CCR (worse results) than 

high mutation rates. Particularly, best performance in terms of CCR is achieved when 

fixing the mutation rate to 0.1. In addition, when we increased the mutation rate to 0.5, 
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crossover did not show any effect on the CCR. Usually high mutation destructs the 

discovered good solutions and has negative impact on the performance. We also noticed 

that crossover operator showed similar behavior with software systems with different 

number of code-smells and different sizes. Thus, our analysis suggests the use of high 

crossover rate (0.6) and low mutation rate (0.1), as commonly used in GA experiments. 

Furthermore, we noticed that in some cases, applying the proposed refactorings 

need a considerable effort in terms of code modification/adaptation score. In other words, 

in some situations many related software artifacts are affected when applying refactoring, 

and therefore, they need to be changed and adapted by the maintainer. Moreover, another 

important issue is to study the semantic preservation of the refactored code when searching 

the refactoring operations.  

Thus, to circumvent these problems, the amount of required code changes and 

semantic preservation should be explicitly considered during the search process. 

4.6 Threats to validity 

There are four types of threats that can affect the validity of our experiments. We 

consider each of these in the following paragraphs.  

Regarding the conclusion validity, we used the Wilcoxon rank sum test with a 95% 

confidence level to test if significant differences existed between the measurements for 

different treatments. This test makes no assumption that the data is normally distributed and 

is suitable for ordinal data, so we can be confident that the statistical relationships we 

observed are significant. The reported GA and Harman’s precision values obtained with the 

median CCR values of 51 independent runs. The p-values of the Wilcoxon rank sum test 

indicate whether the median of Harman et al.’s approach is statistically different from GA 

with a 95% confidence level (α = 0.05). A statistical difference is accepted at p<=0.05. 

For the internal validity, the used techniques to detect code-smells can lead to some 

false positives that may have an impact on the results of our experiments. To mitigate this 

threat, we implemented our approach in a flexible way to support the adaptation of code-
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smells detection rules from other state-of-the-art approaches or other existing code-smells 

detection tools according to the user preferences. 

Construct validity is concerned with the relationship between theory and what is 

observed. The manual evaluation of the feasibility of the suggested refactorings depends on 

the expertise of the developer and also it is a subjective process to make sure that a detected 

code-smell is fixed. 

External validity refers to the generalizability of our findings. In this study, we 

performed our experiments on several different widely used open-source systems belonging 

to different domains and with different sizes. However, we cannot assert that our results can 

be generalized to other industrial Java applications, other programming languages, and to 

other practitioners. We plan to conduct more experiments to test our approach on other 

software systems and compare our results with other approaches.  

4.7 Conclusion 

In this chapter, we presented a novel approach to the problem of code-smells 

correction. We start by generating some code-smells correction solutions that represents a 

combination of refactoring operations to apply. A fitness function calculates, after applying 

the proposed refactorings, the number of fixed code-smells using the detection rules. The 

best solution has the maximum fitness value. Due to the large number of refactoring 

combination, a genetic algorithm is used. The proposed approach was tested on six open-

source systems and the results are promising. Our study shows that our technique 

succeeded in fixing most of the detected code-smells (90%) while having reasonably 

accepted score of feasible refactorings (55%). Typically, researchers and practitioners try to 

each detected fix code-smell separately form a software system. In this work, we have 

shown how the correction process can be a global process instead of a local one to prevent 

introducing new code-smells implicitly when fixing existing ones.  

Despite these encouraging results, there is still plenty of room for improvement. 

First, in large-scale systems, the number of code-smells to fix can be very large and not all 
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of them can be fixed automatically. Thus, the prioritization of the list of code-smells is 

required based on different criteria such as the severity, risk, and importance of classes, etc. 

Moreover, from software engineer’s perspective, we intend explore additional techniques to 

help preserving the semantic coherence of the refactored program. Another direction worth 

to explore is to reduce the amount of code changes when recommending refactoring in 

order to keep as much as possible with the initial design. 



 

Chapter 5 : Prioritizing code-smells correction 
 

 

5.1 Introduction 

In this chapter, we describe our approach based on chemical reaction optimization 

metaheuristic search to prioritize the correction of severest and riskiest code-smells 

according to maintainer’s preferences and criteria. As far as we know, this is the first 

contribution in SBSE that adopt CRO metaheuristics. More specifically, the primary 

contributions of the chapter can be summarized as follows:  

1. We introduce a novel formulation of the refactoring suggestion problem using 

chemical reaction optimization (CRO) and, to the best of our knowledge, this is the 

first attempt in SBSE to adopt CRO to solve software engineering problems.  

2. We present a prioritization schema based on four prioritization heuristics: severity, 

risk, importance, and the priority according to maintainers’ preferences. 

3. We report the results of an empirical study on a benchmark composed of five 

different medium and large size software systems. We compare our approach to two 

other approaches that do not prioritize the correction of code-smells. 

4. We report statistical comparisons between our CRO-based approach with three 

popular metaheuristics, genetic algorithm (GA) [99], simulated annealing (SA) [98], 

and particle swarm optimization (PSO) [100], which have been shown to have good 

performance in solving many software engineering problems.  

Our experimental study indicates that the CRO approach has a great promise. The 

statistical analysis of the obtained results provides evidence to support the claim that CRO 

is more efficient and effective than three other popular metaheuristics. Over 31 runs for 

each approach, our CRO based approach significantly outperforms the two other 

refactoring approaches in terms of number of corrected code-smells, as well as the number 

of important, severest, riskiest code-smells that can be fixed. 
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This chapter is organized as follows. Section 5.2 presents the concept of prioritizing 

code-smells correction tasks. Section 5.3 describes our approach. Section 5.4 reports our 

experimental evaluation, while Section 5.5 discusses the obtained result. Section 5.6 is 

dedicated for the threats to validity. Finally, we conclude and suggest our future research 

direction in Section 5.7. 

5.2 Code-smells prioritization 

In large-scale systems, the number of code-smells to fix can be very large and not 

all of them can be fixed automatically. Moreover, once detected, not all code-smells have 

equal effects and importance [12] [63] [64] [112]. In general, developers need to start by 

fixing the higher risk code-smells. However, most of existing refactoring 

approaches [42], [46] treat the code-smells to fix with the same importance. The majority of 

existing contributions proposes manual or semi-automated refactoring solutions that can be 

applied to fix particular types of code-smells (e.g., Blobs, spaghetti code, 

etc.) [12] [21] [42] or to improve some quality metrics (e.g., cohesion, coupling, 

etc.) [23] [41] without taking into consideration the importance/risk of the code fragments. 

Thus, it is important to focus the attention on code-smells that represents severest 

problems to be removed first through refactoring. Thus, the prioritization of the list of code-

smells is required based on different criteria such as the severity, risk, and importance of 

classes, etc. Indeed, it would be important to determine which are the more critical code-

smells in order to prioritize their correction. For instance, based on our prior work on code-

smells correction and refactoring using GA described in Chapter 4, we found that most of 

the important and riskiest code-fragments are not improved. Moreover, most of riskiest 

code-smells, notably the Blob code-smell [70], are very difficult to fix using such a manual 

or an automated approach. Typically, the Blob requires a large number of refactorings. This 

type of code-smells can be detected most of the time within important classes that change 

frequently during the development/maintenance process, which make this kind of code-

smell more severe than other code-smells.  



95 

 

 

5.3 Approach 

This section presents our approach to support automated refactoring suggestion to 

fix code-smells where riskiest code-smells are prioritized during the correction process. 

Hence, we formulated the refactoring suggestion problem as a combinatorial optimization 

problem to find the near-optimal sequence of refactorings from a large number of possible 

refactorings. To this end, we used a novel metaheuristic search by the means of CRO [176] 

to find the suitable refactoring solutions that maximize the number of corrected code-smells 

while prioritizing the most important and riskiest code fragments. We first present an 

overview of our approach and the problem formulation and, subsequently, present the CRO 

algorithm and its adaptation for prioritizing code-smells correction problem. 

5.3.1 Approach overview 

Our approach is designed to support automated code-smells correction according to 

a prioritization schema where the more critical code-smells are prioritized while taking into 

consideration the preferences of developers. In practice, a suitable prioritization scheme can 

significantly improve and maximize the efficiency of allocating maintenance efforts. Our 

approach aims at finding, from a large list of possible refactorings, the suitable refactoring 

solutions that should fix as much as possible the number of detected code-smells according 

to a prioritization schema.  

To find the suitable refactoring solution, a large search space of possible 

refactorings should be explored. Indeed, the search space is determined not only by the 

number of possible refactorings, their possible combinations, and the order in which they 

should be applied, but also by the software system’s size (number of packages, classes, 

methods, fields, etc.). To this end, we see the refactoring suggestion problem as a search-

based optimization problem to explore this large search space, in order to find the suitable 

refactoring solutions by the means of CRO [163].  

The general structure of our approach is sketched in Figure 5.1. It takes as inputs: 

the source code of the program to be refactored, a list of possible refactorings that can be 
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applied, a set of code-smells detection rules, risk and severity score for each detected code-

smell, software maintainer prioritization/preferences,  and a history of code changes applied 

to the system during its lifecycle. Our approach generates as output the optimal sequence of 

refactorings, selected from the list of possible refactorings that should improve software 

quality by minimizing as much as possible the number of more critical code-smells. 

 

Figure 5.1 - Approach overview. 

5.3.2 Problem formulation 

We now describe our formulation of the refactoring recommendation task taking 

into consideration a set of criteria, as well as software engineers’ preferences. Our goal is to 

ensure that the more critical code-smells are fixed first. More concretely, let us consider the 

example of a software system that contains 5 code-smells: 1 Blob, 2 data classes (DC), and 

2 functional decompositions (FD). Many possible refactoring solutions can fix these code-

smells with the same score. For example, we can have 2 different solutions S1 and S2. After 

applying S1, both DC and FD are fixed (the correction score CCR(S1)=4/5=0.8), and after 

applying S2, the Blob, 1 DC and 2 FD are fixed (the correction score CCR(S2)=4/5=0.8). 

The same correction score is obtained by both S1 and S2. However, the Blob class is known 

to be the severest and it may significantly affect the design of the whole system since it 

tends to centralize the functionalities of the system into one class [70]. From this 

perspective we consider that the solution S2 is better than S1. Prioritizing the correction of 

critical code-smells is the main idea behind this contribution. Furthermore, sometimes 
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changing extensively a software system by applying refactorings may perturb the initial 

design. To preserve the initial design, software maintainers my ignore some of the 

suggested refactorings. To this end it is very interesting to start first by fixing important 

code-smells. Hence, results can be of interest to software engineers, who perform 

development or maintenance activities and need to take into account and forecast their 

effort.  

In the following we describe a set of four prioritization heuristics (priority, severity, 

risk and importance) that we adopt in our formulation of the refactoring task to correct 

code-smells: 

Priority. Developers typically give more importance to some code-smell types that can 

occur with different impacts on the system’s quality. Developers can rank different types of 

detected code-smell according to their preferences. Using such prioritization scheme, 

developers can save their time and maximize the efficiency of allocating maintenance effort 

in their software project. For the experiment reported in this chapter, we assigned a priority 

score of 7 for the Blob code-smell, 6 for functional decomposition, 5 for shotgun surgery, 4 

for spaghetti code, 3 for feature envy, 2 for schizophrenic class, and 1 for data classes, so 

that fixing Blob code-smells instances will be more prioritized.  

Severity. In practice, not all code-smells have equal effects/importance [63] [82]. Each 

individual instance has its severity score that allows designers to immediately spot and fix 

the most critical instances of each code-smell. Concretely, the same code-smell type can 

occur in different code fragments but with different impact scores on the system 

design [112]. This impact score represents the relative severity of the code-smell, as well as 

the absolute negative impact on overall quality. For example, two code-smell instances 

having respectively 27 and 36 methods can be detected both as Blob, but each of them have 

different impact scores on the system quality (number of methods, coupling, cohesion, 

etc.). We use the inFusion tool [82], which classifies code-smells based on a set of “design-

properties” such as size and complexity, encapsulation, coupling, cohesion, and 
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hierarchy [182]. Moreover, these design properties are the most useful ones in existing 

code-smells detection approaches [8] [10]. 

Risk. An important score to consider is the risk score. Thus, we consider that the more code 

deviates from good practices, the more it is likely to be risky [35]. Consequently, the 

riskiest code-smells should be prioritized during the correction step. A risk score is 

associated to each detected code-smell that corresponds to the deviance from well design 

code [35]. 

Importance. Generally, developers need to know which code fragments (e.g.,classes, 

packages) are important in the whole software system in order to focus their effort on 

improving their quality. In a typical software system, important code fragments are those 

who change frequently during the development/maintenance process to add new 

functionalities, to accommodate new changes or to improve its structure. Moreover, as 

reported in the literature [64] [118], classes participating in design problems (e.g., code-

smells) are significantly more likely to be subject to changes and to be involved in fault-

fixing changes (bugs) [118]. Indeed, if a class undergoes many changes in the past and it is 

still smelly, it needs to be fixed as soon as possible. On the other hand, not every code-

smell is assumed to have negative effects on the maintenance/evolution of a system. It has 

been shown that in some cases, a large class might be the best solution [63]. Moreover, it is 

reported that if a code-smell (e.g., God Class) is created intentionally and remains 

unmodified or hardly undergo changes, the system may not experience any 

problems [63] [115]. For these reasons, code-smells related to more frequently changed 

classes should be prioritized during the correction process. 

5.3.3 CRO design 

In our formulation, we used the chemical reaction optimization (CRO) [176]. A 

detailed description of CRO is given in Section 2.3.3. To the best of our knowledge, this 

work represents the first attempt to exploit CRO within the SBSE community. In general, 

to adapt a metaheuristic search technique to a specific problem, a number of elements have 

to be defined, and different decisions have to be made. To apply CRO, the following 
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elements have to be defined: the way in which solutions (molecules) should be encoded so 

that they can be manipulated by the search process, creation of a population of solutions (a 

container of molecules), evaluation function to determine a quantitative measure of the 

ability of candidate solutions to solve the problem under consideration, selection of 

solutions for elementary reaction operations, creation/modification of new solutions using 

elementary reaction operations (on-wall ineffective collision, decomposition, synthesis, and 

intermolecular ineffective collision) to explore the search space. 

In the following, we describe the design of these elements for the code-smells correction 

problem using CRO. 

a) Solution representation 

In our CRO design, we use the same vector-based solution representation adopted in 

our GA adaptation. The description of our solution representation is detailed in 

Section 3.3.2.  

b) Creation of the initial population of solutions 

To generate an initial population, we start by defining the maximum vector length 

(maximum number of operations per solution). The vector length is proportional to the 

number of refactorings that are considered and the size of the program to be refactored. A 

higher number of operations in a solution do not necessarily mean that the results will be 

better. Ideally, a small number of operations can be sufficient to provide good solutions. 

This parameter can be specified by the user or derived randomly from the sizes of the 

program and the given refactoring list. During the creation, the solutions have random sizes 

inside the allowed range. To create the initial population, we normally generate a set of 

PopSize solutions randomly in the solution space. 

 

c) Elementary Reaction Operators 

To better explore the search space using CRO, elementary reaction operators are 

defined. In the following, we describe these operators corresponding to the four elementary 

reactions of CRO. We denote a refactoring solution in vector form with w. 
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On-wall Ineffective Collision 

For on-wall ineffective collision, many possible changes can be applied to a given 

refactoring solution. To apply this change operator, n (one or more) refactorings are first 

picked at random from the vector representing the refactoring solution (sequence of 

refactorings). Then, for each of the selected refactorings, we apply one of the following 

possible changes using a “probabilistic select” [176]: 

- Refactoring type change (RTC): consists of replacing a given refactoring operation (the 

refactoring type and his controlling parameters) by another one which is selected 

randomly from the initial list of possible refactorings. Pre- and post-conditions should be 

checked before applying this change. 

- Controlling parameters change (CPC): consists of replacing randomly, for the selected 

refactoring, only their controlling parameters. For instance, for a “move method”, we can 

replace the source and/or target classes by other classes from the whole system. 

An example is shown in Figure 5.2. Three refactorings are randomly selected from 

the initial vector: one refactoring type change (dimension number 4), and two controlling 

parameters change (dimensions number 2 and 6). 

 
      

 1 move field (f18_2, c18, c23)  1 move field (f18_2, c18, c23) 

 2 move method (m4_6, c4, c89)  2 move method (m5_2, c5, c36) 

 3 extract class (c31, f31_1 , m31_1, m31_4)  3 extract class (c31, f31_1 , m31_1, m31_4) 

 4 pull up field (f8_1, c8, c14)  4 inline class (c24, c82) 

 5 move method (f41_2, c41, c129)  5 move method (f41_2, c41, c129) 

 6 move field (f12_8, c12, c52)  6 move field (f12_8, c12, c13) 

      
      

Figure 5.2 - Example of on-wall ineffective collision operator. 

 

Decomposition 

This operator is used to produce two new solutions far away from a given one. We 

apply “half-total-change” [176] to our implementation. We first duplicate the original 

solutions. Then, we add perturbations to n/2 dimensions of the original solution to create 

new solutions, where n is the size of the vector representing the original solution. Each 
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perturbation change could be performed through a refactoring type change but also 

controlling parameters change. An example is depicted in Figure 5.3. 
      

    1  move field (f18_2, c18, c23) 

    2  Inline class (c56, c231) 

    3  move field (f12_10, c12, c119) 

    4  inline class (c24, c82) 

    5  move method (f41_2, c41, c129) 

 1  move field (f18_2, c18, c23)   6  move field (f12_8, c12, c13) 

 2  move method (m4_6, c4, c89)      

 3  extract class (c31, f31_1 , m31_1, m31_4)      

 4  pull up field (f8_1, c8, c14)   1  move field (f18_2, c18, c23) 

 5  move method (f41_2, c41, c129)   2  move method (m41_1, c41, c11) 

 6  move field (f12_8, c12, c52)   3  extract class (c31, f31_1 , m31_3, m31_4)

    4  push down method (m8_4, c8, c14) 

    5  move method (f41_2, c41, c129) 

    6  move field (f172_4, c172, c52) 

       

       

Figure 5.3 - Example of decomposition operator. 

 

Inter-molecular Ineffective Collision 

Inter-molecular ineffective collision is the process of two or more solutions to share 

information with each other and then produce two or more other different solutions. In our 

implementation we apply inter-molecular ineffective collision between only two solutions 

(w1 and w2). To this end, two possible change mechanisms could be applied: 1) apply for 

each of solution on-wall Ineffective Collision, 2) exchange some dimensions between them 

using an operator similar to a single, random, cut-point crossover, in Genetic 

Algorithm [99]. First a random value k is chosen from [0, 1]. Then inter-molecular 

ineffective collision creates two new solutions by putting, for the first new solution, the 

first k*n1 elements from the first parent (with length n1), followed by the last (1-k)*n2 

elements from the second parent (with length n2). On the other hand, the second new 

solution, contains the first k*n2 elements from the second parent followed by last (1-k)*n1 

element of the first parent. This operator ensures that the generated solutions will never 

have greater size than the biggest of the parents [183]. As illustrated in Figure 5.4, each 
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child combines some of the refactoring operations of the first parent with some ones of the 

second parent. 
 1  move field (f18_2, c18, c23)   1  move field (f18_2, c18, c23) 

 2  move method (m4_6, c4, c89)   2  move method (m4_6, c4, c89) 

 3  extract class (c31, f31_1 , m31_1, m31_4)  3  extract class (c31, f31_1 , m31_1, m31_4) 

 4  pull up field (f8_1, c8, c14)   4  move field (f12_10, c12, c119) 

 5  move method (f41_2, c41, c129)   5  inline class (c24, c82) 

 6  move field (f12_8, c12, c52)     

      

     1  move method (m5_1, c5, c112) 

 1  move method (m5_1, c5, c112)   2  Inline class (c5, c31) 

 2  Inline class (c5, c31)   3  push down method (m231_3, c231, c19) 

 3  push down method (m231_3, c231, c19)   4  pull up field (f8_1, c8, c14) 

 4  move field (f12_10, c12, c119)   5  move method (f41_2, c41, c129) 

 5  inline class (c24, c82)   6  move field (f12_8, c12, c52) 

        

      

Figure 5.4 - Example of inter-molecular ineffective collision operator. 

 

Synthesis 

This operator is used to combine two refactoring solutions w1 and w2 into a new one 

w. In our approach we are using two different mechanisms for synthesis operator: 1) cross-

cut combination, and 2) probabilistic select [163]. To apply synthesis operator, CRO selects 

randomly one of these two mechanisms. 

For the first, an integer value k is randomly generated in the range of [1, n], where n 

is the shortest vector length of the solutions w1 and w2 (n=Min(|w1|, |w2|)). Then w is 

generated by picking the first k values from w1 and the rest of the (n - k) values from w2. 

This operator must ensure that the length limits are respected. If not, some refactoring 

operations should be eliminated randomly. As shown in Figure 5.5, a new refactoring 

solution w is formed by combining the first two set of refactorings from w1 and the last set 

of refactorings from w2. 

For the second mechanism, using probabilistic select a new solution w is produced 

from two solution w1 and w2. This operator generates w as follows: for each dimension w(i) 

in w, a random number t  [0.1] is generated. If t>0.5, we assign that dimension from w1(i). 

Otherwise, we assign that dimension from w2(i). 

w1 

w2 

Before reaction After reaction 

Second solution 
produced 

w2’

First solution 
produced 

w1’

Inter‐molecular 
Ineffective Collision

(k = 0.5)
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The idea behind these different synthesis mechanisms is diversification of solutions 

to better explore the search space. 

 
 1  move field (f18_2, c18, c23)      

 2  move method (m4_6, c4, c89)      

 3  extract class (c31, f31_1 , m31_1, m31_4)     

 4  pull up field (f8_1, c8, c14)      

 5  move method (f41_2, c41, c129)   1  move field (f18_2, c18, c23) 

 6  move field (f12_8, c12, c52)   2  move method (m4_6, c4, c89) 

    3  extract class (c31, f31_1 , m31_1, m31_4) 

     4  move field (f12_10, c12, c119) 

 1  move method (m5_1, c5, c112)   5  inline class (c24, c82) 

 2  Inline class (c5, c31)     

 3  push down method (m231_3, c231, c19)     

 4  move field (f12_10, c12, c119)     

 5  inline class (c24, c82)     

        

      

Figure 5.5 - Example of synthesis operator. 

 

d) Fitness function 

After creating a solution, it should be evaluated using an objective function to ensure 

its ability to solve the problem under consideration. We used a fitness function that 

calculates, according to prioritization schema described in the section 3.3, the number of 

corrected code-smells using detection rules. To calculate the quality of a candidate 

refactoring solution w, we define the following fitness function: 

ሻݓሺݏݏ݁݊ݐ݅ܨ ൌ ෍ቀݔ௜ ∗ ൫ߙ ∗ ሺܿ௜ሻݕݐ݅ݎ݁ݒ݁ܵ ൅ ߚ ∗ ሺܿ௜ሻݕݐ݅ݎ݋݅ݎ݌ ൅ ߛ ∗ ሺܿ௜ሻ݇ݏ݅ݎ ൅ ߜ ∗ ሺܿ௜ሻ൯ቁ݁ܿ݊ܽݐݎ݋݌݉݅

௡ିଵ

௜ୀ଴

 

 

where xi is assigned to 0 if the actual class is detected as a code-smell using our code-

smells detection rules, 1 otherwise; and α+β+γ+δ= 1 and their values express the 

confidence (i.e., weight) in each measure that can be assigned according to the developers 

preferences. We have performed comprehensive experiments with different combinations 

of weights on each prioritization measure. For our experiments, we give equal weights 

(=0.25) to each of them. 

w1 

Produced 

solution w 

w2 

Before synthesis After synthesis 

Synthesis

(k = 0.5)
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5.3.4 Implementation details 

An often overlooked aspect of research on metaheuristic search algorithms relies in 

the selection and tuning of the algorithms parameters, which is necessary in order to ensure 

not only fair comparison, but also for potential replication. To this end, we report our 

algorithmic parameter tuning and selection used to facilitate replication of our findings. 

The initial population/solution of CRO, GA, PSO and SA are completely random. 

The stopping criterion is when the maximum number of function evaluations, set to 8000, 

is reached. After several trial runs of the simulation, the parameter values of the four 

algorithms are fixed. There are no general rules to determine these parameters, and thus, we 

set the combination of parameter values by trial and error. Parameter settings of the four 

algorithms are shown in Table 5.1. For each algorithm, we repeat the simulation 31 times in 

each case, and compute the median value.  

 

Algorithms Parameters Values 

CRO 

Population size 
KELossRate  
MoleColl  
InitialKE  
α 
β 

200 
0.05 
0.5 
0.1 
40 
0.6 

GA 

Population size 
Crossover probability 
Mutation probability 
Number of crossing points 
Selection 

200 
0.6 
0.1 
1 
Roulette selection 

SA 

initial temperature 
final temperature 
cooling coefficient 
number of iterations 

100 
0.157 
0.98 
25 

PSO 
number of particles in a swarm 
acceleration coefficient c1  
acceleration coefficient c2 

200 
2 
2 

Table 5.1 - Parameter settings used for the different algorithms. 
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Another issue is that our formulation of code-smells correction problem using 

prioritization schema is a maximization problem. However, CRO is originally designed to 

solve minimization problems and the objective function value should not be negative since 

it is interpreted as energy [176]. Typically, to convert a maximization problem f to a 

minimization one, –f is considered as objective function; however this may not be 

appropriate for CRO [177]. Thus, to keep with CRO principles, we can consider f’= 1 - f, to 

make every possible f’ non-negative. After minimizing f’, we can compute the 

corresponding f by f = 1 – f’. As such, CRO can be adapted to solve maximization 

problems. 

In our experiments reported in this chapter, we considered the following code-smell 

types: Blob, Data Class, Spaghetti Code, Functional Decomposition, Schizophrenic Class, 

Shotgun Surgery, and Feature Envy. The description of these smells can be found in 

Section 2.2.1. 

5.4 Evaluation 

To evaluate the feasibility and the efficiency of our approach for generating good 

refactoring suggestions according to prioritization schema, we conducted our experiments 

based on different versions of medium and large open source systems. In this section, we 

start by presenting our research questions. Then, we describe the design of our experiments 

and discuss the obtained results.  

5.4.1 Research Questions and Objectives 

We assess the performance of our approach by finding out whether it could generate 

good refactoring strategies that fix code-smells according to a prioritization schema. Our 

study aims at addressing the four research questions outlined below. We also explain how 

our experiments are designed to address these questions. The four research questions are: 

 RQ1: (Usefulness) To what extent can the proposed approach correct code-smells? 

 RQ2: (Precision) To what extent can the proposed approach correct severest, 

riskiest and important code-smells? 
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 RQ3: (Comparison to state-of-the-art) To what extent can the proposed approach 

improves the results of refactoring suggestion compared to existing work that do not 

use prioritization? 

 RQ4: (Comparison with other metaheuristics) How does the proposed approach 

using CRO perform compared to other popular search-based algorithms GA [99], 

SA [92], PSO [100]? 

5.4.2 Systems studied 

We applied our approach to five large and medium size open-source java projects: 

Xerces-J12, JFreeChart13, GanttProject14, ArtOfIllusion15, and JHotDraw16. Xerces-J is a 

family of software packages for parsing XML. JFreeChart is a powerful and flexible Java 

library for generating charts. GanttProject is a cross-platform tool for project scheduling. 

JHotDraw is a GUI framework for drawing editors. Finally, Art of Illusion is a 3D-

modeller, renderer and raytracer written in Java. We selected these systems for our 

experimental study because they range from medium to large-sized open-source projects, 

which have been actively developed over the past 10 years, and their design has not been 

responsible for a slowdown of their developments. Table 5.2 provides some descriptive 

statistics about these five programs.  

 

Systems Release # classes # code-
smells 

KLOC # previous 
code-changes 

Code change 
method 

Xerces-J v2.7.0 991 171 240 7493 Change log 

JFreeChart  v1.0.9 521 116 170 2009 Change log 

GanttProject v1.10.2 245 53 41 91 Recorded ref. 

ArtofIllusion  v2.8.1 459 127 87 594 Recorded ref. 

JHotDraw V7.0.6 468 25 57 1006 Change log 

Table 5.2 - Systems statistics. 

                                                 
12 http://xerces.apache.org/xerces-j 
13 http://www.jfree.org/jfreechart 
14 www.ganttproject.biz 
15 http://www.artofillusion.org 
16 http://www.jhotdraw.org 
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Previous code-changes applied to previous versions (seventh column in Table 5.2), 

are used mainly to calculate the importance score. In general, open-source programs and 

their change history (e.g., change log in Concurrent Versions System named CVS17, or 

Apache Subversion System named SVN18) are available through SourceForge.net19. 

However, for other software programs especially where code change history is not publicly 

available, code-changes could be expressed in terms of recorded refactorings that are 

applied to previous versions (i.e., how many times a class experienced a refactoring). In 

order to vary our experiments settings, we are using both: change log history (for Xerces 

and JFreeChart), and recorded refactorings (for GanttProject, AntApache, JHotDraw and 

Rhino). To collect refactorings applied for each program, we use Ref-Finder [46]. Ref-

Finder, implemented as an Eclipse plug-in, can identify refactoring operations between two 

releases of a software system. 

5.4.3 Analysis method 

To answer RQ1, we used two metrics: code-smells correction ratio (CCR) and 

refactoring precision (RP).  

1) CCR calculates the number of corrected code-smells over the total number of code-

smells detected before applying the proposed refactoring sequence. CCR is given by 

the following equation: 

ܴܥܥ ൌ
ݏ݈݈݁݉ݏ_݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݃݊݅ݕ݈݌݌ܽ	݁ݎ݋݂ܾ݁	ݏ݈݈݁݉ݏ_݁݀݋ܿ	#
	∈ ሾ0,1ሿ 

 
2) For the refactoring precision (RP), we inspect manually the feasibility of the different 

proposed refactoring sequences for each system. We applied the proposed 

refactorings using Eclipse IDE and we checked the semantic coherence of the 

modified code fragments. Some semantic errors (programs behavior) were found. 

When a semantic error is found manually, we consider the operations related to this 

                                                 
17 http://cvs.nongnu.org/ 
18 http://subversion.apache.org/ 
19 http://sourceforge.net/ 
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change as a bad recommendation. Then, we calculate a correctness precision score 

(ratio of possible refactoring operations over the number of proposed refactoring) as 

usefulness indicator of our approach. RP is defined as follows: 

ܴܲ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݈ܾ݁ܽݏ݂ܽ݁	#
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݏ݋݌݋ݎ݌	#

	∈ ሾ0,1ሿ 

 

To answer RQ2, we define three metrics: 

1) The importance correction ratio (ICR) that corresponds to the sum of importance 

score of detected code-smells after applying a given refactoring solution w compared 

to the one before applying refactoring. ICR reflects the efficiency of a refactoring 

solution for correcting important code-smells, so that the higher the ICR is, the more 

a refactoring solution is considered as a good recommendation. ICR is defined as 

follows: 

ሻݓሺܴܥܫ ൌ 1 െ
	∑ ሺݔ௜ ∗ 	ሺܿ௜ሻሻ݁ܿ݊ܽݐݎ݋݌݉݅

௡ିଵ
௜ୀ଴

∑ ൫ݔ௝ ∗ ሺ݁ܿ݊ܽݐݎ݋݌݉݅ ௝ܿሻ൯௠ିଵ
௝ୀ଴

	∈ ሾ0,1ሿ 

where n and m are the number of classes in the system, respectively, after and before 

applying the refactoring solution w, the function ݅݉݁ܿ݊ܽݐݎ݋݌ሺܿ௜ሻ returns the importance 

score of the class ci , and xi  takes the value 0 if the actual class ci is detected as code-

smell using code-smells detection rules, 1 otherwise. 

 

2)  The risk correction ratio (RCR) that corresponds to the sum of importance score of 

detected code-smells after applying a given refactoring solution w compared to the 

one before applying refactoring. RCR reflects the efficiency of a refactoring solution 

for correcting riskiest code-smells, so that the higher the RCR is, the more a 

refactoring solution is considered as a good recommendation. RCR is defined as 

follows: 

ሻݓሺܴܥܴ ൌ 1 െ
	∑ ሺݔ௜ ∗ 	ሺܿ௜ሻሻ݇ݏ݅ݎ

௡ିଵ
௜ୀ଴

∑ ൫ݔ௝ ∗ ሺ݇ݏ݅ݎ ௝ܿሻ൯௠ିଵ
௝ୀ଴

	∈ ሾ0,1ሿ 

where n and m are the number of classes in the system, respectively, after and before 

applying the refactoring solution w, the function ݇ݏ݅ݎሺܿ௜ሻ returns the risk score of the 
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class ci , and xi  takes the value 0 if the actual class ci is detected as code-smell using 

code-smells detection rules, 1 otherwise. 

3) The severity correction ratio (SCR) that corresponds to the sum of importance score 

of detected code-smells after applying a given refactoring solution w compared to the 

one before applying refactoring. SCR reflects the efficiency of a refactoring solution 

for correcting severest code-smells, so that the higher the SCR is, the more a 

refactoring solution is considered as a good recommendation. SCR is defined as 

follows: 

ሻݓሺܴܥܵ ൌ 1 െ
	∑ ሺݔ௜ ∗ 	ሺܿ௜ሻሻݕݐ݅ݎ݁ݒ݁ݏ

௡ିଵ
௜ୀ଴

∑ ൫ݔ௝ ∗ ሺݕݐ݅ݎ݁ݒ݁ݏ ௝ܿሻ൯௠ିଵ
௝ୀ଴

	∈ ሾ0,1ሿ 

where n and m are the number of classes in the system, respectively, after and before 

applying the refactoring solution w, the function ݕݐ݅ݎ݁ݒ݁ݏሺܿ௜ሻ returns the severity 

score of the class ci , and xi  takes the value 0 if the actual class ci is detected as code-

smell using code-smells detection rules, 1 otherwise. 

 

For RQ3, we compare our approach to two other different approaches: our GA-based 

code-smells correction approach, and CRO without the use of prioritization where the 

refactoring suggestion task consider is considered only from the quality improvement 

standpoint (i.e., without considering prioritization). 

Finally, to answer RQ4, we assessed the performance of the CRO algorithm that we 

use in our approach compared to three other popular meta-heuristic algorithms GA, SA and 

PSO. We selected these three metaheuristics because they range from global search (GA 

and PSO) and local search (SA). Moreover, these three metaheuristics are the most frequent 

ones demonstrating good performance in solving different software engineering problems 

according to recent surveys [90]. 

5.4.4 Results 

Before delving into details, we provide a high-level view of the experimental 

approach that we adopted and its rationale. We first compared our approach to two other 
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techniques that do not use prioritization (CRO without prioritization, and our GA-based 

approach described in Chapter 4), where the fitness function calculates the number of 

corrected code-smells, to ensure the effectiveness of using such prioritization schema. 

Then, we compare the performance of CRO to three popular metaheurisitics (GA, SA, and 

PSO) using the same CRO fitness function to evaluation the performance of CRO. Thus, 

due to the stochastic nature of the algorithms/approaches we are studying, each time we 

execute an algorithm we can get slightly different results. To cater for this issue and to 

make inferential statistical claims, our experimental study is performed based on 31 

independent simulation runs for each algorithm/technique studied. Wilcoxon rank sum 

test [170] is applied between CRO-based approach and each of the other 

algorithms/techniques (CRO without prioritization, Kessentini et al. 2011) in terms of 

CCR, ICR, RCR and CSR with a 99% confidence level (α = 1%). Our tests shows that the 

obtained results are statistically significant with p-value<0.01 and not due to chance.  

In the result reported in this experiments, we are considering the median value for 

each approach through 31 independent run. The Wilcoxon rank sum test allows verifying 

whether the results are statistically different or not, however it does not give an idea about 

the difference magnitude. In order to quantify the latter, we compute the effect size by 

using the Cohen’s d statistic [184]. The effect size is considered: (1) small if 0.2 ≤ d < 0.5, 

(2) medium if 0.5 ≤ d < 0.8, or (3) large if d ≥ 0.8. We have computed the effect size values 

for the different comparisons and we concluded that our CRO approach with prioritization 

has mainly: (1) medium effect size values against population-based metaheuristics under 

comparison, and (2) large effect size values against single solution-based ones. 
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As described in Table 5.3 and Figure 5.6, the majority of suggested refactorings by 

our approach improve significantly the code quality with good code-smell correction scores 

compared to both CRO without prioritization and GA-based approach. For the five studied 

systems, our approach proves significant performance by fixing, on average, 90% of all 

existing code-smells, whereas, only 84% and 82% for the other two approaches while 

focusing on fixing the prioritized code-smells. For instance, for JFreeChart, 92% (24 over 

26) of Blobs, 94% (16 over 17) of spaghetti code, 79% of functional decomposition (11 

 
Systems 

 
Approach 

 
Code-smell Correction Ratio (CCR) 
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Xerces-J 

CRO (our approach) 
94% 

(29|31) 
92% 

(12|13) 
86% 

(12|14) 
90% 

(26|29) 
90% 

(65|72) 
100% 

(10|10) 
100% 
(2|2) 

91% 
(156|171) 

CRO without 
prioritization 

84% 
(26|31) 

85% 
(11|13) 

93% 
(13|14) 

97% 
(28|29) 

85% 
(61|72) 

80% 
(8|10) 

50% 
(1|2) 

87% 
(148|171) 

GA-based approach 
84% 

(26|31) 
77% 

(10|13) 
86% 

(12|14) 
97% 

(28|29) 
83% 

(60|72) 
70% 

(7|10) 
50% 
(1|2) 

84% 
(144|171) 

JFreeChart  

CRO (our approach) 
92% 

(24|26) 
94% 

(16|17) 
79% 

(11|14) 
89% 

(24|27) 
85% 

(17|20) 
92% 

(11|12) 
100% 
(0|0) 

89% 
(103|116) 

CRO without 
prioritization 

81% 
(21|26) 

76% 
(13|17) 

79% 
(11|14) 

100% 
(27|27) 

80% 
(16|20) 

83% 
(10|12) 

100% 
(0|0) 

84% 
(98|116) 

GA-based approach 
73% 

(19|26) 
82% 

(14|17) 
79% 

(11|14) 
100% 

(27|27) 
80% 

(16|20) 
100% 

(12|12) 
100% 
(0|0) 

85% 
(99|116) 

GanttProject 

CRO (our approach) 
100% 
(7|7) 

83% 
(5|6) 

100% 
(18|18) 

79% 
(11|14) 

86% 
(6|7) 

100% 
(1|1) 

100% 
(0|0) 

91% 
(48|53) 

CRO without 
prioritization 

71% 
(5|7) 

83% 
(5|6) 

100% 
(18|18) 

93% 
(13|14) 

57% 
(4|7) 

0%  
(0|1) 

100% 
(0|0) 

85% 
(45|53) 

GA-based approach 
57% 
(4|7) 

83% 
(5|6) 

94% 
(17|18) 

93% 
(13|14) 

71% 
(5|7) 

0%  
(0|1) 

100% 
(0|0) 

83% 
(44|53) 

ArtofIllusion  

CRO (our approach) 
88% 

(15|17) 
92% 

(11|12) 
100% 
(8|8) 

87% 
(27|31) 

95% 
(42|44) 

86% 
(12|14) 

100% 
(1|1) 

91% 
(116|127) 

CRO without 
prioritization 

76% 
(13|17) 

75% 
(9|12) 

100% 
(8|8) 

97% 
(30|31) 

82% 
(36|44) 

86% 
(12|14) 

100% 
(1|1) 

86% 
(109|127) 

GA-based approach 
71% 

(12|17) 
75% 

(9|12) 
88% 
(7|8) 

94% 
(29|31) 

84% 
(37|44) 

86% 
(12|14) 

0% 
(0|1) 

83% 
(106|127) 

JHotDraw 

CRO (our approach) 
100% 
(4|4) 

100% 
(3|3) 

100% 
(5|5) 

50% 
(2|4) 

100% 
(4|4) 

80% 
(4|5) 

100% 
(0|0) 

88% 
(22|25) 

CRO without 
prioritization 

75% 
(3|4) 

100% 
(3|3) 

80% 
(4|5) 

100% 
(4|4) 

75% 
(3|4) 

60% 
(3|5) 

100% 
(0|0) 

80% 
(20|25) 

 GA-based approach 
50% 
(2|4) 

67% 
(2|3) 

100% 
(5|5) 

100% 
(4|4) 

50% 
(2|4) 

60% 
(3|5) 

100% 
(0|0) 

72% 
(18|25) 

Average (all 
code-smells) 

CRO (our approach) 95% 92% 93% 79% 91% 91% 100% 90% 
CRO without 
prioritization 

78% 84% 90% 97% 76% 62% 90% 84% 

GA-based approach 67% 77% 89% 97% 74% 63% 70% 82% 

Table 5.3 - Refactoring results: code-smells correction score. 
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over 14) are fixed. This score is higher than the one of the other approaches having 

respectively only 81%, 73% of Blobs, 76%, 82% of spaghetti code, 79%, 79% of functional 

decomposition in terms of CCR scores. Moreover, after applying the proposed refactoring 

operations, for all systems, we found that most of the fixed code-smells (87%) are related to 

important code fragments; however only 69% and 66% of ICR score are obtained by both 

other approaches that do not use prioritization (Table 5.4 and Figure 5.7). We also found 

that most of the fixed code-smells relies with the riskiest ones having a RCR average score 

of 92%; while both other approaches provide only an average of 85% and 84% of RCR as 

shown in Table 5.4 and Figure 5.7. Additionally, the obtained results demonstrates that 

using the proposed prioritization schema, 89% of severe code-smells were fixed; while both 

other approaches succeeded in fixing less than 81% of severe code-smells.  

 

 
Figure 5.6 - Code-smells correction results per code-smell type for each studied systems for 

(1) CRO (our approach), (2) CRO without prioritization, and (3) GA-based approach. 
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Another important observation to highlight is that the majority of non-fixed code-

smells obtained with both CRO without prioritization and GA-based approach are related to 

the Blob type, as shown in Figure 5.7. This type of code-smell usually requires a large 

number of refactoring operations and is then very difficult to correct without a specific 

mechanism (e.g., prioritization). On the other hand, the obtained CCR score related to data 

class is acceptable (an average of 79% in all systems); however we noticed that this score is 

less than the ones obtained by both other approaches. Thus, the loss in the data class 

correction ratio is largely compensated by the significant improvement in terms of 

importance, risk and severity scores as shown in Figure 5.7. In fact, this low score is due to 

the fact that, data class is not prioritized in our experiments, we assign data classes the 

lowest priority score (equals to 1) unlike the Blob code-smell, as described in Section 5.3.2. 

This score is assigned according to developers’ preferences. Moreover, in general, data 

classes do not experience changes frequently during the development and maintenance 

since it contains mainly data and performs no processing on these data  (contains mainly 

setters and getters). To this end, the importance score related to this code-smell is very low. 

On the contrary, as shown in Table 6, all the detected shotgun surgery code-smells are fixed 

(a CCR score of 100%). This is mainly due to the fact that shotgun surgery are extensively 

connected to a large number of external methods calling it having large and widespread 

impact of a change. Consequently its importance score is very high, and therefore, it will be 

more prioritized. 

Moreover, to ensure the efficiency and usefulness of our approach, we verified 

manually the feasibility of the different proposed refactoring sequences for each system. 

We applied the proposed refactorings using Eclipse IDE. Some semantic errors (programs 

behavior) were found. When a semantic error is found manually, we consider the 

operations related to this change as a bad recommendation. We calculate a correctness 

precision score (ratio of possible refactoring operations over the number of proposed 

refactoring) as one of the performance indicators of our algorithm. An average of 70% of 

refactorings is feasible. This score is comparable of the one of both other approaches. 
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Systems Approach 
ICR 
(%) 

RCR 
(%) 

SCR 
(%) 

RP (%) 

Xerces-J 
CRO (our approach) 89% 90% 89% 76% (230|302) 
CRO without prioritization 72% 86% 82% 72% (245|341) 
GA-based approach 61% 83% 84% 73% (261|359) 

JFreeChart  
CRO (our approach) 81% 91% 90% 64% (152|238) 
CRO without prioritization 50% 86% 83% 64% (151|236) 
GA-based approach 53% 85% 81% 64% (155|241) 

GanttProject 

CRO (our approach) 87% 93% 87% 67% (147|221) 
CRO without prioritization 67% 83% 75% 66% (145|219) 
GA-based approach 60% 81% 76% 69% (166|242) 

ArtofIllusion  

CRO (our approach) 85% 92% 91% 71% (205|288) 
CRO without prioritization 72% 84% 84% 70% (176|251) 
GA-based approach 70% 85% 84% 72% (180|249) 

JHotDraw 

CRO (our approach) 95% 94% 86% 72% (146|203) 
CRO without prioritization 82% 84% 73% 73% (160|218) 
GA-based approach 85% 85% 77% 74% (147|198) 

Average (all 
systems) 

CRO (our approach) 87% 92% 89% 70% 
CRO without prioritization 69% 85% 80% 69% 
GA-based approach 66% 84% 81% 70% 

Table 5.4 - Refactoring results: importance, risk, severity and RP scores. 

 

 

Figure 5.7 - Refactoring comparison results for the five systems for (1) CRO (our 
approach), (2) CRO without prioritization, and (3) GA-based approach in terms of ICR, 

RCR, SCR, and RP. 
 

To sum up, we have presented in Figure 5.7 the metric scores for all systems using 

boxplots. The majority of code-smells (90%), on average, were corrected using our 

approach which outperforms both CRO without prioritization and GA-based approache in 

terms of code-smells correction ratio. However, only for data classes the obtained results 

are slightly less than other approaches. In general, this kind of code-smells is less 
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risky/important than other code-smells and not need an extensive correction effort by 

software engineers compared to the Blob. Hence, to fix data class, software maintainers can 

easily apply some refactorings such as inline class, move method/field to add new 

behavior/functionalities or merge data classes with other existing classes in the system. 

Although data-classes are not prioritized in our approach, we obtained an acceptable 

correction score. This is due to the fact that Blob are in general related to data classes; 

consequently, fixing Blobs can implicitly fix its related data classes. We also had good 

results in terms of importance, risk and severity correction scores. The majority of 

important, riskiest and severest code-smells were fixed, and most of the proposed 

refactoring sequences (70%) are coherent semantically.  

To better evaluate our approach and to answer RQ4, we compare the results of the 

CRO-based approach with three different population and single-solution based evolutionary 

algorithms (GA, SA, and PSO) which have been shown to have good performance in 

solving different software engineering problems [90] [91]. For all algorithms, we use the 

same formulation given in Section 5.3.3 (solution representation, objective function, change 

operators, etc.) with the algorithms configuration described in section 3.4.4. Table 5.5 

shows the comparison results among the median of solution's quality for each pair of 

algorithms using Wilcoxon rank sum test [170]. As shown in Table 5.5, at 99% of 

confidence level, the median values of CRO and GA; CRO and SA; as well as those of 

CRO and PSO are statistically different in terms of CCR, ICR, and RCR. However, in 

terms of RP, CRO and GA; and CRO and PSO are not. The comparison results, sketched in 

Table 5.5 and Figure 5.8 shows that CRO outperforms the other three algorithms in terms 

of CCR, ICR, and RCR while having similar performance in terms of RP (70%). For 

instance, using CRO, an average of 90% of code-smells are fixed, whereas, only 84%, 83% 

and 84% are obtained with GA, SA, and PSO. Moreover, in terms of ICR, CRO succeeded 

on fixing, 87% of important code-smells, while obtained ones for other algorithms are less 

than fixes less than 83%. Based on these results we can conjecture that CRO performs 

much better in comparison to GA, SA and PSO. Moreover, we notice that SA turns out to 

be the worst algorithm.  
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Systems Algorithms CCR (%) ICR (%) RCR (%) SCR (%) RP (%) 

  Score p-value Score p-value Score p-value Score p-value Score p-value 

Xerces-J 

CRO 91%  89%  90%  89%  76%  

GA 84% < 0.01 86% < 0.01 87% < 0.01 88% < 0.01 76% 0.7854 

SA 82% < 0.01 86% < 0.01 88% < 0.01 87% < 0.01 75% 0.68 

PSO 84% < 0.01 85% < 0.01 88% < 0.01 87% < 0.01 76% 0.5569 

JFreeChart  

CRO 89%  81%  91%  90%  64%  

GA 81% < 0.01 70% < 0.01 87% < 0.01 89% < 0.01 64% 0.769 

SA 80% < 0.01 69% < 0.01 87% < 0.01 88% < 0.01 64% 0.661 

PSO 84% < 0.01 72% < 0.01 86% < 0.01 88% < 0.01 64% 0.487 

GanttProject 

CRO 91%  87%  93%  87%  67%  

GA 87% < 0.01 84% < 0.01 90% < 0.01 84% < 0.01 67% 0.387 

SA 81% < 0.01 83% < 0.01 90% < 0.01 85% < 0.01 68% 0.489 

PSO 87% < 0.01 84% < 0.01 91% < 0.01 86% < 0.01 67% 0.23 

ArtofIllusion  

CRO 91%  85%  92%  91%  71%  

GA 89% < 0.01 83% < 0.01 90% < 0.01 90% < 0.01 70% 0.369 

SA 88% < 0.01 82% < 0.01 90% < 0.01 89% < 0.01 71% 0.217 

PSO 88% < 0.01 83% < 0.01 89% < 0.01 90% < 0.01 70% 0.062 

JHotDraw 

CRO 88%  95%  94%  86%  72%  

GA 84% < 0.01 92% < 0.01 90% < 0.01 81% < 0.01 71% 0.161 

SA 72% < 0.01 91% < 0.01 91% < 0.01 83% < 0.01 71% 0.169 

PSO 84% < 0.01 92% < 0.01 91% < 0.01 87% < 0.01 72% 0.178 

Average 
(all 

systems) 

CRO 90% 87% 92% 89% 70% 

GA 85% 83% 89% 87% 70% 

SA 81% 82% 89% 87% 70% 

PSO 85% 83% 89% 88% 70% 

Table 5.5 - CCR, ICR, RCR, SCR and RP median values of CRO, GP, SA and PSO over 
31 independent simulation runs.  
 

The p-values of the Wilcoxon rank sum test indicate whether the median of the 

algorithm of the corresponding column (GA/SA/PSO) is statistically different from the 

CRO one with a 99% confidence level (α = 0.01). A statistical difference, in terms of the 

obtained recall values, is detected when the p-value is less than or equal to 0.01. 

Another observation is that GA and PSO can produce good refactoring solutions as 

CRO (but not better than CRO) for medium size systems (e.g.,GanttProject and JHotDraw). 

However, for large systems (e.g., Xerces, JFreeChart), the performance of CRO is 

significantly better than GA and PSO. 
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Figure 5.8 - CRO performance comparison with GA, SA and PSO. 

 

Although time constraints is not a real challenge in our proposal, it is relevant to 

analyse the convergence speed when we compare metaheuristics. To this end, we 

performed 31 independent simulation runs on the same PC with Intel Core i5-2450M 

Processor and 4GB of RAM for each of the algorithms CRO, GA, SA and PSO. Hence, SA 

manipulates a single solution in each iteration, while GA and PSO control a population of 

solutions at a time. CRO is also a population-based metaheuristics; however, the number of 

manipulated solutions varies during a simulation run. Through 31 independent simulation 

run, we found that PSO converges faster than the other algorithms (an average of 48m12s). 

CRO is the second one in terms of convergence speed (an average of 48m18s over 31 run) 

while we record an average of 1h32m47s and 1h23m13s for respectively GA and SA.  

To sum up, we can conclude that CRO outperforms other popular metaheuristic 

algorithms [98] [99] [100]. In fact, there are two reasons for the high convergence speed of 

CRO. The first is the ability for CRO to jump out of a local minimum, by the mean of the 

four elementary reaction operators, and quickly search other possible better results. The 

second is due to the efficient encoding scheme and the variety of change operators, which 

greatly explores the search space. 

5.5 Discussions 

Our experimental results provide evidence that our approach significantly 

outperforms two other approaches that do not use the prioritization for correcting code-
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smells. We also found that CRO performs much better than three other popular 

metaheuristic algorithms: GA, SA, and PSO. We also contrast the results of multiple 

executions with the execution time to evaluate the performance and the stability of our 

approach. Moreover, we evaluate the impact of the number of suggested refactorings on the 

CCR, ICR, RCR and SCR scores and the execution time through 31 independent simulation 

run. Over 31 independent simulation runs on JFreeChart, the average value of CCR, ICR, 

RCR, SCR and execution time for finding the optimal refactoring solution with the suitable 

prioritization schema was respectively 90%, 80%, 92%, 90% and 57min36s as shown in 

Figure 5.9. The standard deviation values was lower than 1. Moreover, the results of 

Figure 5.9, drawn for JFreeChart, show that the number of suggested refactorings does not 

affect the refactoring results. Thus, a higher number of operations in a solution do not 

necessarily mean that the results will be better. Thus, we could conclude that our approach 

is scalable from the performance standpoint, especially that quality improvements are not 

related in general to real-time applications where time-constraints are very important. In 

addition, the results accuracy is not affected by the number of suggested refactorings. 

 

 

Figure 5.9 - Impact of the number of refactorings on multiple runs on JFreeChart. 
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Another important consideration is the refactoring operations distribution. We 

contrast that most of the suggested refactorings are related to move method, move field, and 

extract class for almost all of the studied systems. For instance, in JFreeChart, we had 

different distribution of different refactoring types as illustrated in Figure 5.10. We notice 

that the most suggested refactorings are related to moving code elements (fields, methods) 

and extract/inline class. This is mainly due to the code-smells types detected in JFreeChart 

and prioritized during the correction step. Most of code-smells are related to the Blob, 

functional decomposition and spaghetti code that need particular refactorings. For instance, 

to fix a Blob code-smell, the idea is to move elements from the Blob class to other classes 

(e.g., data classes) in order to reduce the number of functionalities from the Blob and add 

behavior to other classes or to improve some quality metrics such as coupling and cohesion. 

As such, refactorings like move field, move method, and extract class are likely to be more 

useful to correcting the bloc code-smell. Furthermore, before starting our experiments and 

analyzing our refactoring results, we expected that code-smell correction score for data 

classes will be very low; however we found that most of them are corrected with a good 

score (an average of 79%). This is mainly due to two reasons 1) data classes are to some 

extent easy to fix and they don’t need lot of refactorings to be fixed; it is sufficient to add 

some functionalities/methods to them from other related classes, and 2) in general there is a 

structural relationship between data classes and Blobs [12] [70]; so that fixing Blobs can 

implicitly fix data classes related to them. Enforcing the correction of Blobs can implicitly 

increase the correction of data classes. As part of future work we plan to conduct a large 

empirical study to investigate the relationship between different types of code-smells, and 

between code-smell types and refactoring types. 
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Figure 5.10 - Suggested refactorings distribution for JFreeChart. 

5.6 Threats to validity 

Some threats can affect the validity of our experiments. We explore in this section 

the factors that can bias our experimental study. These factors can be classified into three 

categories: construct, internal, and external validity. Construct validity concerns the relation 

between the theory and the observation. Internal validity concerns possible bias with the 

results obtained by our proposal. Finally external validity is related to the generalization of 

observed results outside the sample instances used in the experiment. 

Construct validity is concerned with the relationship between theory and what is 

observed. The manual evaluation of the feasibility of the suggested refactorings depends on 

the expertise of the developer and also it is a subjective process to make sure that a detected 

code-smell is fixed. Another construct validity can be related to the used code-smells 

detection rules we use to measure CCR. To mitigate this threat, we manually inspect and 

validate each detected code-smell. Moreover, our refactoring tool configuration is flexible 

and can support other state-of-the-art detection rules.  
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We take into consideration the internal threats to validity in the use of stochastic 

algorithms since our experimental study is performed based on 31 independent simulation 

runs for each problem instance and the obtained results are statistically analyzed by using 

the Wilcoxon rank sum test [170] with a 99% confidence level (α = 1%). However, despite 

we used the same stopping criteria, the parameter tuning of the different optimization 

algorithms used in our experiments creates another internal threat that we need to evaluate 

in our future work. 

External validity refers to the generalizability of our findings. In this study, we 

performed our experiments on seven different code-smells types and five different widely-

used open-source systems belonging to different domains and with different sizes, as 

described in Table 3. However, we cannot assert that our results can be generalized to 

industrial applications, other programming languages, and to other practitioners. Future 

replications of this study are necessary to confirm the generalizability of our findings. 

5.7 Conclusion 

This chapter presented a novel chemical reaction optimization-based approach to 

recommend refactoring solutions according to a prioritization schema. The aim is to fix 

code-smells while prioritizing the severest, riskiest and important code-smells taking into 

consideration software maintainers’ preferences. The suggested refactorings succeed in 

fixing the majority of critical code-smells. Our experimental study on five medium and 

large scale software systems and seven code-smell types shows that the proposed approach 

is superior to two other approaches that do not use prioritization and maintainers 

preferences to automate the refactoring task. Moreover, the experimental results provide 

evidence that the proposed CRO-based approach was performs better than GA, SA, and 

PSO, the most popular metaheuristics in SBSE.  

Despite the great advances in software refactoring in the last years, one of the most 

notable limitations of the majority of existing work, including our GA- and CRO-based 

approaches, is that they deal with the refactoring problem from a single perspective which 

is improving software quality while preserving the behavior. These two concerns drive the 
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existing approaches to refactoring automation. However, these concerns are not enough to 

produce correct and consistent refactoring solutions. Many other criteria are also important 

to consider such as reducing the number of code changes, preserving the semantics of the 

design and not only the behavior, and maintaining the consistency with the change history. 

These observations lead us to deal with the refactoring recommending task as a multi-

objective optimization problem. In Chapter 6, we present our multi-objective formulation 

for the refactoring task. 

 



 

 

 

Part 3: Multi-objective software refactoring 
 

 

In part 2 of this thesis, we described our contributions to single-objective refactoring 

recommendation. In this part, we formulate refactoring recommending task as a multi-

objective optimization problem. To the best of our knowledge, this is the first attempt to 

deal with refactoring recommending task as a multi-objective optimization problem. In our 

multi-objective formulation we consider two scenarios for software practitioners: 1) the 

main goal is to preserve the design semantics while fixing code-smells; and 2) the main 

goal is to improve software quality from different perspectives. 

For the first scenario, we introduce a novel multi-objective search-based approach 

that aims at finding the optimal sequence of refactorings to fix code-code-smells while 

preserving the design semantics from different perspectives, 1) minimizes code changes 

required to apply refactoring, 2) preserves semantic coherence, and 3) maintain the 

conformance with prior refactorings applied in previous versions. 

For the second scenario, we introduce a new multi-objective formulation to 

refactoring recommending task. The aim of our approach, called MORE (Mutli-Objective 

REfactoring recommending)  is to improve software quality from different perspectives: 1) 

improve quality indicators (i.e., flexibility, maintainability, etc.), 2) fix “bad” design 

practices (i.e., code-smells), and 3) promote “good” design practices (i.e., design patterns). 

 



 

Chapter 6 : A Multi-objective approach for 
recommending software refactoring 

 

 

6.1 Introduction 

In Chapter 4 and Chapter 5 we formulated the refactoring recommending task as a 

single-objective optimization problem to fix code-smells. However, while it is important to 

suggest refactorings that improve software quality, many other criteria are also important to 

consider to obtain efficient refactoring strategies. These criteria include reducing the 

number of code changes, preserving the semantic coherence of the software design, and 

maintaining the consistency with the previous changes. In this chapter, we deal with 

refactoring recommending task as a multi-objective optimization problem. We introduce a 

multi-objective search-based approach that aims at finding the optimal sequence of 

refactorings that 1) improves the quality by minimizing as much as possible the number of 

code-smells, 2) minimizes code changes required to fix those smells, 3) preserves semantic 

coherence, and 4) maximizes the consistency with previous changes. To the best of our 

knowledge, this is the first attempt to deal with refactoring recommending task as a multi-

objective optimization problem. The primary contributions of this chapter can be 

summarized as follows:  

1. We introduce a novel multi-objective formulation of the refactoring 

recommendation task using four different criteria. To this end, we use the non-

dominated sorting genetic algorithm (NSGA-II). 

2. We reports the results of an empirical study of our multi-objective approach using a 

benchmark of six medium and large size open-source systems, and six commonly 

occurring code-smell types through an empirical study conducted with experts. We 

found that, in addition to fixing code-smells, the proposed refactorings succeed in 

preserving the semantic coherence of the code, with an acceptable level of code 

change score while reusing knowledge from recorded refactorings applied in the 

past to similar contexts. 
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This chapter is structured as follows: Section 6.2 is dedicated to present the different 

challenges that we address through a motivating example. Section 6.3 presents our 

approach and explains how we adapted NSGA-II. Section 6.4 presents quantitative and 

qualitative evaluation results, while Section 6.5 discusses the obtained results. Section 6.6 

discusses the threats to validity. Finally, Section 6.7 concludes and presents plans for future 

work. 

6.2 Challenges in automated refactoring recommending 

Even though most of the existing refactoring recommendation approaches are 

powerful enough to suggest refactoring solutions to be applied, several issues are still need 

to be addressed.  

6.2.1 Problem statement 

Our approach is designed to address mainly the following problems: 

Quality improvement: Most of the existing approaches [20] [21] [22] [41] [45] 

consider refactoring as the process to improve code quality by improving structural metrics. 

However, these metrics can be conflicting and it is difficult to find a compromise between 

them. For example, moving methods to reduce the size or complexity of a class may 

increase the global coupling. Furthermore, improving some quality metrics does not 

guarantee that detected code-smells are fixed. Moreover, there is no consensus about the set 

of metrics that need to be improved in order to fix code-smells. Indeed, the same type of 

code-smells can be fixed by improving completely different metrics.  

Semantics preservation: In object-oriented programs, objects reify domain 

concepts and/or physical objects, implementing their characteristics and behavior. Unlike 

other programming paradigms, grouping data and behavior into classes is not guided by 

development or maintenance considerations. Methods and fields of classes characterize the 

structure and behavior of the implemented domain elements. Consequently, a program 

could be syntactically correct, implement the appropriate behavior, but violate the domain 
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semantics if the reification of domain elements is incorrect. During the initial 

design/implementation, programs usually capture well the domain semantics when object-

oriented principles are applied. However, when these programs are (semi-)automatically 

modified/refactored during maintenance, the adequacy with regards to domain semantics 

could be compromised. 

Existing approaches suggests refactorings mainly with the perspective of improving 

only some design/quality metrics. However, this may not be sufficient. We need to preserve 

the rationale behind why and how code elements are grouped and connected when applying 

refactoring. Indeed, the refactored program could be syntactically correct, implement the 

correct behavior, but be semantically incoherent. For example, a refactoring solution might 

move a method calculateSalary() from the class Employee to the class Car. This refactoring 

could improve the program structure by reducing the complexity and coupling of the class 

Employee and satisfy the pre- and post-conditions to preserve program behavior. However, 

having a method calculateSalary() in the class Car does not make any sense from the 

domain semantics standpoint, and is likely to lead to comprehension problems in the future. 

Thus, semantics preservation is an important issue to consider when applying refactoring. 

Code changes: When applying refactorings, various code changes are performed. 

The amount of code changes corresponds to the number of code elements (e.g., classes, 

methods, fields, relationships, field references, etc.) modified through adding, deleting, or 

moving operations. Minimizing code changes when suggesting refactorings is important to 

reduce the effort and help developers in understanding the modified/improved program. In 

fact, most developers want to keep as much as possible the original design structure when 

fixing code-smells [1]. However, improving software quality and reducing code changes 

are conflicting. In some cases, fixing some code-smells corresponds to changing radically a 

large portion of the system or is sometimes equivalent to re-implementing a large part of 

the system. Indeed, a refactoring solution that fixes all code-smells is not necessarily the 

optimal one due to the high code adaptation/modification that may be required.  
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Consistency with development/maintenance history: The majority of existing 

work does not consider the history of changes applied in the past when proposing new 

refactoring solutions. However, the history of code changes can be helpful in increasing the 

confidence of new refactoring recommendations. To better guide the search process, 

recorded code changes applied in the past can be considered when proposing new 

refactorings in similar contexts. This knowledge can be combined with structural and 

semantic information to improve the automation of refactoring suggestions. 

In addition, code fragments that have previously been modified at the same time 

period are likely to be semantically connected (e.g., refer to the same feature). Furthermore, 

fragments that have been extensively refactored in the past have a high probability of being 

refactored again in the future. Moreover, the code to refactor can be similar to some 

refactoring patterns that are to be found in the development history, thus, developers can 

easily adapt them.  

6.2.2 Motivating example 

To illustrate some of the above mentioned issues, Figure 6.1 shows a concrete 

example extracted from JFreeChart20 v1.0.9, a well-known Java open-source charting 

library. We consider a design fragment containing four classes XYLineAndShapeRenderer, 

XYDotRenderer, SegmentedTimeline, and XYSplineRenderer. Using code-smells detection 

rules [7], the class XYLineAndShapeRenderer is detected as a code-smell: Blob (i.e., a large 

class that monopolizes the behavior of a large part of the system).  

We consider the scenario of a refactoring solution that consists of moving the method 

drawItem() from the class XYLineAndShapeRenderer to the class SegmentedTimeline. This 

refactoring can improve the design quality by reducing the number of functionalities in this 

Blob class. However, from the design semantics standpoint, this refactoring is incoherent 

since SegmentedTimeline functionalities are related to presenting a series of values to be 

used for a curve axis (mainly for Date related axis) and not for the task of drawing 

                                                 
20 http://www.jfree.org/jfreechart/ 
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objects/items. Based on semantic and structural information, using respectively a semantic 

lexicon [185], and cohesion/coupling [29], many other target classes are possible including 

XYDotRenderer and XYSplineRenderer. These two classes have approximately the same 

structure that can be formalized using quality metrics (e.g., number of methods, number of 

attributes, etc.) and their semantic similarity is close to XYLineAndShapeRenderer using a 

vocabulary-based measure. Thus, moving elements between these three classes is likely to 

be semantically coherent and meaningful. On the other hand, from previous versions of 

JFreeChart, we recorded that there are some methods such as drawPrimaryLinePath(), 

initialise(), and equals() that have been moved from the class XYLineAndShapeRenderer to 

XYDotRenderer 
serialVersionUID : long 
dotWidth : int 
dotHeight : int 
legendShape : Shape 
. . . 

XYDotRenderer() 
getDotWidth() 
setLegendShape() 
drawItem() 
equals(Object) 
clone() 
readObject() 
writeObject() 
. . .  

XYSplineRenderer

points : Vector 
precision : int  
. . .  

XYSplineRenderer() 
getPrecision() 
setPrecision() 
initialise() 
drawPrimaryLineAsPath()
equals() 
solveTridiag() 
. . .  

XYLineAndShapeRenderer

serialVersionUID : long  
linesVisible : Boolean 
legendLine : Shape 
shapesVisible : Boolean 
useFillPaint : boolean 
useOutlinePaint : boolean 
baseShapesFilled : boolean
drawOutlines : boolean 
shapesFilled : Boolean 
baseShapesVisible: boolean
. . . 

getDrawSeriesLineAsPath()
setDrawSeriesLineAsPath()
getPassCount() 
getLegendLine() 
getBaseShapesVisible() 
getSeriesShapesFilled() 
getUseFillPaint() 
initialise() 
getLinesVisible() 
setLinesVisible() 
drawItem() 
getLegendItem() 
clone() 
drawPrimaryLine() 
setDrawOutlines() 
getUseFillPaint() 
setUseOutlinePaint() 
drawSecondaryPass() 
getLegendItem(int, int) 
readObject() 
writeObject() 
drawPrimaryLine() 
drawFirstPassShape() 
. . .  

Code-smell: Blob

SegmentedTimeline

workingCalendar: Calendar
segmentSize : long 
startTime : long 
. . .  

getStartTime() 
getBaseTimeline() 
toTimelineValue() 
toMillisecond() 
getSegmentSize() 
clone() 
equals() 
. . .  

 

 

 

 

Figure 6.1 - Design fragment extracted from JFreeChart v1.0.9. 
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the class XYSplineRenderer. As a consequence, moving methods and/or attributes from the 

class XYLineAndShapeRenderer to the class XYSplineRenderer has higher correctness 

probability than moving methods or attributes to the class XYDotRenderer or 

SegmentedTimeline.  

Based on these observations, we believe that it is important to consider additional 

objectives instead of using only structural metrics to ensure quality improvement. However, 

in most of the existing work, design semantics, amount of code changes, and development 

history are not considered. Improving code structure, minimizing semantic incoherencies, 

reducing code changes, and maintaining the consistency with development change history 

are conflicting goals. In some cases, improving the program structure could provide a design 

that does not make sense semantically or could change radically the initial design. For this 

reasons, an effective refactoring strategy needs to find a compromise between all of these 

objectives. These observations are the motivation of the work described in this chapter. 

6.3 Approach 

This section presents our approach.  In Section 6.3.1, we present an overview of our 

approach. Section 6.3.2 describes how we formulated the refactoring recommending task as 

a multi-objective optimization problem. Section 6.3.3 presents our semantic measures, 

while Section 6.3.4 describes how we adapted NSGA-II. 

6.3.1 Approach overview 

Our approach aims at exploring a large search space to find refactoring solutions, 

i.e., a sequence of refactoring operations, to fix code-smells. The search space is 

determined not only by the number of possible refactoring combinations, but also by the 

order in which they are applied. A heuristic-based optimization method is used to generate 

refactoring solutions. We have four objectives to optimize: 1) maximize quality 

improvement (code-smells correction); 2) minimize the number of semantic incoherencies 

by preserving the way how code elements are semantically grouped and connected 

together; 3) minimize code changes needed to apply the refactorings; and 4) maximize the 
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consistency with development change history. We thus consider the refactoring task as a 

multi-objective optimization problem using the non-dominated sorting genetic algorithm 

(NSGA-II) [24].  

 

Figure 6.2 - Multi-Objective Search-based Refactoring. 

 

The general structure of our approach is sketched in Figure 6.2. It takes as input the 

source code of the program to be refactored, a list of possible refactorings that can be 

applied (label A), a set of code-smells detection rules (label B) [7], our technique for 

approximating code changes needed to apply refactorings (label C), a set of semantic 

measures described in Section 6.3.3 (label D), and a history of applied refactorings to 

previous versions of the system (label E). Our approach generates as output the near-optimal 

sequence of refactorings that improves software quality by minimizing as much as possible 

the number of code-smells, minimizing code changes required to apply the refactorings, 

preserving design semantics, and maximizing the consistency with development change 

history. In the following, we describe the formulation of the four objectives to optimize. 
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6.3.2 Modeling refactoring recommending as a multi-objective problem 

We consider the following criteria: 

6.3.2.1 Quality 

The Quality criterion is evaluated using the Quality formula given below. The 

quality value increases when the number of code-smells in the code is reduced after 

refactoring. This formula returns a real value in the range [0,1] that represents the ratio of 

the number of fixed code-smells (detected using code-smells detection rules) over the initial 

number of detected code-smells before refactoring. The detection of code-smells is based 

on metric-based rules according to which a code fragment can be classified as a code-smell 

or not (without a probability/risk score), i.e., 0 or 1, as formulated in Chapter 3 [28]. 

ݕݐ݈݅ܽݑܳ ൌ
ݏ݈݈݁݉ݏ_݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	#

݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݁ݎ݋݂ܾ݁	ݏ݈݈݁݉ݏ_݁݀݋ܿ	݂݋	ݎܾ݁݉ݑ݊	݈ܽ݅ݐ݅ݐ݊݅
 

 

6.3.2.2 Code changes 

Refactoring Operations (ROs) are classified into two types: Low-Level ROs (LLR) 

and High-Level ROs (HLR) [28]. A HLR is a sequence of two or more ROs. An LLR is an 

elementary refactoring consisting of just one basic RO (e.g., “Create Class”, “Delete 

Method”, “Add Field”). The weight wi for each RO is an integer number that can be 1, 2, or 

3 depending on code fragment complexity and change impact [7]. For a refactoring solution 

that contains n ROs, the code changes score is computed as: 

ݏ݄݁݃݊ܽܿ_݁݀݋ܥ ൌ෍ݓ௜

௡

௜ୀଵ

 

6.3.2.3 Similarity with recorded code changes 

The idea is to encourage the use of refactorings that are similar to those applied to 

the same code fragments in the past. To calculate the similarity score between a proposed 

refactoring operation and a recorded code change, we use the following function: 
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ሺܴܱሻݕݎ݋ݐݏ݄݅_݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ_݉݅ܵ 	ൌ 	෍ݓ௝

௡
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where n is the number of recorded refactoring operations applied to the system in the past, 

and wj is a refactoring weight that reflects the similarity between the suggested refactoring 

operation (RO) and the recorded refactoring operation ROi. The weight wi is computed as 

follows: if the refactoring operations being compared are exactly the same type and applied 

to the same locations (e.g., “Move Method” between the source and target same classes), 

the weight wi = 2. If the refactoring operations being compared are similar (we consider 

two refactoring operations as similar if one of them is composed of the other or if their 

implementations are similar). Some complex refactoring operations, such as “Extract 

Class”, can be composed of other refactoring operations such as “Move Method”, “Move 

Field”, “Create New Class”, etc., the weight wi = 1. Otherwise, wi = 0. 

6.3.2.4 Semantics 

In this section, we do not address the issue of operational semantics that is 

formulated via pre/post-conditions. Instead, our goal is to recommend refactorings to be 

applied by developers and not automatic application of refactorings. In fact, Tokuda and 

Batory [186] found that the pre-conditions originally proposed by Opdyke [17] were not 

sufficient to guarantee behavior preservation for C++ programs. There are several testing 

approaches that have found hundreds of bugs in refactoring tools from state-of-the-art and 

industry [187] [188] [189]. We focus in this section on measures to ensure preservation for 

design semantics coherence during refactoring. 

As far as we know, until now there is no consensual way to investigate whether 

refactoring can preserve the semantic coherence of the original design. Hence, we 

formulate semantics preservation through a meta-model in which we describe the necessary 

concepts from a perspective to help in automating refactoring recommendation. We also 

provide a terminology that will be used throughout this chapter. Figure 6.3 shows the 

semantic-based refactoring meta-model. The class Refactoring represents the main entity in 

the meta-model. As mentioned earlier, we classify refactoring operations into two types: 



133 

 

 

low-level ROs (LLR) and high-level ROs (HLR). A LLR is an elementary/basic program 

transformation for adding, removing, and renaming program elements (e.g., “Add Method”, 

“Remove Field”, “Add Relationship”). LLRs can be combined to perform more complex 

refactoring operations (HLRs) (e.g., “Move Method”, “Extract Class”). A HLR consists of a 

sequence of two or more LLRs or HLRs; for example, to perform “Extract Class” we need 

to “Create New Empty Class” and apply a set of “Move Method” and “Move Field” 

operations.  

To apply a refactoring operation we need to specify which actors, i.e., code 

fragments, are involved in this refactoring and which roles they play when performing the 

refactoring operation. As illustrated in Figure 6.3, an actor can be a package, class, field, 

method, parameter, statement, or variable. In Table 6.1, we specify for each refactoring 

operation the involved actors and their roles. In addition to this list of complex refactorings, 

we considered also in our experiments the Rename refactoring to satisfy the pre/post-

conditions of some complex refactorings. Another complex refactoring considered in our 

experiments is “Extract Method”. We used Soot [190], a java optimization framework, to 

parse the extracted code for references to any variables (local variables and parameters to 

the method) that are local in the source method. Different constraints are related to the 

application of an extract method refactoring as described in [86] [87] [88] (like most of 

other types of refactoring): 

- Local variables used only within this extracted code should be declared in the target 

method as local variables. 

- Parameters used within this extracted code should be considered as parameters in the 

target method. 

- Local variables used (read) within the extracted code should be considered as 

parameters to the target method. 

- Local variable or parameters used (write) within the extracted code should be used as a 

return type from the target method. 

- If the target method do not use (write) any of the local variables or parameters of the 
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source method, then the return type of the target method should be “void”. 

In the case when the extracted code uses (write) more than one parameter and/or 

local variable then it is not possible to apply extract method to the selected fragment. 

Therefore, another appropriate code fragment should be selected. 

 

Refactoring operation Actors Roles 

Move method 
class source class, target class 
method moved method 

Move field 
class source class, target class 
field moved field 

Pull up field 
class sub classes, super class 
field moved field 

Pull up method 
class sub classes, super class 
method moved method 

Push down field 
class super class, sub classes 
field moved field 

push down method 
class super class, sub classes 
method method 

Inline class class source class, target class 

Extract method 
class source class, target class 
method source method, new method 
statement moved statements 

Extract class 
class source class, new class 
field moved fields 
method moved methods 

Move class 
package source package, target package 
class moved class 

Extract interface 
class source classes, new interface 
field moved fields 
method moved methods 

Table 6.1 - Refactoring examples and their involved actors and roles. 

6.3.3 Semantic measures 

To approximate semantics preservation, we define the following measures: 
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Figure 6.3 - Semantics-based refactoring meta-model. 

Vocabulary-based similarity (VS) 

This kind of similarity is interesting to consider when moving methods, fields, or 

classes. For example, when a method has to be moved from one class to another, the 

refactoring would make sense if both actors (source class and target class) use similar 

vocabularies [29]. The vocabulary could be used as an indicator of the semantic similarity 

between different actors that are involved when performing a refactoring operation. We 

start from the assumption that the vocabulary of an actor is borrowed from the domain 

terminology and therefore can be used to determine which part of the domain semantics an 
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actor encodes. Thus, two actors are likely to be semantically similar if they use similar 

vocabularies. 

The vocabulary can be extracted from the names of methods, fields, variables, 

parameters, types, etc. Tokenisation is performed using the Camel Case Splitter, which is 

one of the most used techniques in Software Maintenance tools for the preprocessing of 

identifiers. A more pertinent vocabulary can also be extracted from comments, commit 

information, and documentation. We calculate the semantic similarity between actors using 

an information retrieval-based technique, namely cosine similarity, as shown in the formula 

below. Each actor is represented as an n-dimensional vector, where each dimension 

corresponds to a vocabulary term. The cosine of the angle between two vectors is 

considered as an indicator of similarity. Using cosine similarity, the semantic similarity 

between two actors c1 and c2 is determined as follows: 

ܵ݅݉ሺܿଵ, ܿଶሻ ൌ cos	ሺܿଵሬሬሬԦ, ܿଶሬሬሬԦሻ ൌ
ܿଵሬሬሬԦ	.		ܿଶሬሬሬԦ

‖ܿଵሬሬሬԦ‖ ∗ ‖ܿଶሬሬሬԦ‖
ൌ

∑ ൫ݓ௜,ଵ ∗ ௜,ଶ൯ݓ
௡
௜ୀଵ

ට∑ ൫ݓ௜,ଵ൯
ଶ௡

௜ୀଵ
ට∑ ൫ݓ௜,ଶ൯

ଶ௡
௜ୀଵ

∈ ሾ0,1ሿ 

where ܿଵ ൌ ሺݓଵ,ଵ, … , is the term vector corresponding to actor c1 and ܿଶ		௡,ଵሻݓ ൌ

ሺݓଵ,ଶ, … ,  is the term vector corresponding to c2. The weights wi,j can be computed		௡,ଶሻݓ

using information retrieval based techniques such as the Term Frequency – Inverse Term 

Frequency (TF-IDF) method.  

6.3.3.1 Dependency-based similarity (DS) 

We approximate domain semantics closeness between actors starting from their 

mutual dependencies. The intuition is that actors that are strongly connected (i.e., having 

dependency links) are semantically related. As a consequence, refactoring operations 

requiring semantic closeness between involved actors are likely to be successful when these 

actors are strongly connected. We consider two types of dependency links:  

Shared Method Calls (SMC) that can be captured from call graphs derived from the 

whole program using CHA (Class Hierarchy Analysis) [190]. A call graph is a directed 

graph which represents the different calls (call in and call out) among all methods of the 
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entire program. Nodes represent methods, and edges represent calls between these methods. 

CHA is a basic call graph that considers class hierarchy information, e.g, for a call c.m(...) 

assume that any m(...) is reachable that is declared in a subtype or sometimes supertype of 

the declared type of c. For a pair of actors, shared calls are captured through this graph by 

identifying shared neighbours of nodes related to each actor. We consider both, shared call-

out and shared call-in. To measure shared call-out and shared call-in between two actors c1 

and c2 (e.g., two classes), we define the following formula respectively: 

 

,ሺܿଵݐݑܱ݈݈ܽܥ݀݁ݎ݄ܽݏ ܿଶሻ ൌ
ሺܿଵሻݐݑܱ݈݈ܽܿ| ∩ |ሺܿଶሻݐݑܱ݈݈ܽܿ
ሺܿଵሻݐݑܱ݈݈ܽܿ| ∪ |ሺܿଶሻݐݑܱ݈݈ܽܿ

  

,ሺܿଵ݊ܫ݈݈ܽܥ݀݁ݎ݄ܽݏ ܿଶሻ ൌ
ሺܿଵሻ݊ܫ݈݈ܽܿ| ∩ |ሺܿଶሻ݊ܫ݈݈ܽܿ
ሺܿଵሻ݊ܫ݈݈ܽܿ| ∪ |ሺܿଶሻ݊ܫ݈݈ܽܿ

  

 

Shared method call is defined as the average of shared call-in and shared call-out. 

Shared Field Access (SFA) that can be calculated by capturing all field references that 

occur using static analysis to identify dependencies based on field accesses (read or 

modify). We assume that two code elements are semantically related if they read or modify 

the same fields. The rate of shared fields (read or modified) between two actors c1 and c2 is 

calculated as follows:   

,ሺܿଵܹܴݏ݈݀݁݅ܨ݀݁ݎ݄ܽݏ ܿଶሻ ൌ
|݂݈ܴܹ݅݁݀ሺܿଵሻ ∩ ݂݈ܴܹ݅݁݀ሺܿଶሻ|
|݂݈ܴܹ݅݁݀ሺܿଵሻ ∪ ݂݈ܴܹ݅݁݀ሺܿଶሻ|

 

where fieldRW(ci) computes the number of fields that may be read or modified by each 

method of the actor ci. Thus, by applying a suitable static program analysis to the whole 

method body, all field references that occur can be easily computed. 

6.3.3.2 Implementation-based similarity (IS) 

For some refactorings like “Pull Up Method”, methods having similar 

implementations in all subclasses of a super class should be moved to the super class [1]. 
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The implementation similarity of the methods in the subclasses is investigated at two 

levels: signature level and body level. To compare the signatures of methods, a semantic 

comparison algorithm is applied. It takes into account the methods names, the parameter 

lists, and return types. Let Sig(mi) be the signature of method mi. The signature similarity 

for two methods m1 and m2 is computed as follows: 

ሺ݉ଵ,݉ଶሻ݉݅ݏ_݃݅ܵ ൌ
|ܵ݅݃ሺ݉ଵሻ ∩ ܵ݅݃ሺ݉ଶሻ|
|ܵ݅݃ሺ݉ଵሻ ∪ ܵ݅݃ሺ݉ଶሻ|

 

To compare methods bodies, we use Soot [190], a Java optimization framework, 

which compares the statements in the body, the used local variables, the exceptions 

handled, the call-outs, and the field references. Let Body(m) (set of statements, local 

variables, exceptions, call-outs, and field references) be the body of method m. The body 

similarity for two methods m1 and m2 is computed as follows: 

ሺ݉ଵ,݉ଶሻ݉݅ݏ_ݕ݀݋ܤ ൌ
ሺ݉ଵሻݕ݀݋ܤ| ∩ |ሺ݉ଶሻݕ݀݋ܤ
ሺ݉ଵሻݕ݀݋ܤ| ∪ |ሺ݉ଶሻݕ݀݋ܤ

 

The implementation similarity between two methods is the average of their Sig_Sim 

and Body_Sim values. 

6.3.3.3 Feature inheritance usefulness (FIU)  

This factor is useful when applying the “Push Down Method” and “Push Down 

Field” operations. In general, when method or field is used by only few subclasses of a 

super class, it is better to move it, i.e., push it down, from the super class to the subclasses 

using it [1]. To do this for a method, we need to assess the usefulness of the method in the 

subclasses in which it appears. We use a call graph and consider polymorphic calls derived 

using XTA (Separate Type Analysis) [205]. XTA is more precise than CHA by giving a 

more local view of what types are available. We are using Soot [190] as a standalone tool to 

implement and test all the program analysis techniques required in our approach. The 

inheritance usefulness of a method is defined as follows: 

,ሺܷ݉ܫܨ ܿሻ ൌ 1 െ
∑ ݈݈ܿܽሺ݉, ݅ሻ௡
௜ୀଵ

݊
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where n is the number of subclasses of the superclass c, m is the method to be pushed 

down, and call is a function that return 1 if m is used (called) in the subclass i and 0 

otherwise. 

For the refactoring operation “Push Down Field”, a suitable field reference analysis 

is used. The inheritance usefulness of a field is defined as follows: 

,ሺ݂ܷܫܨ ܿሻ ൌ 1 െ
∑ ,ሺ݂݁ݏݑ ܿ௜ሻ
௡
௜ୀଵ

݊
 

where n is the number of subclasses of the superclass c, f is the field to be pushed down, 

and use is a function that return 1 if f is used (read or modified) in the subclass ci and 0 

otherwise. 

6.3.3.4 Cohesion-based dependency (CD) 

We use a cohesion-based dependency measure for the “Extract Class” refactoring 

operation. The cohesion metric is typically one of the important metrics used to identify 

code-smells. However, the cohesion-based similarity that we propose for code refactoring, 

in particular when applying extract class refactoring, is defined to find a cohesive set of 

methods and attributes to be moved to the newly extracted class. A new class can be 

extracted from a source class by moving a set of strongly related (cohesive) fields and 

methods from the original class to the new class. Extracting this set will improve the 

cohesion of the original class and minimize the coupling with the new class. Applying the 

“Extract Class” refactoring operation on a specific class will result in this class being split 

into two classes. We need to calculate the semantic similarity between the elements in the 

original class to decide how to split the original class into two classes.  

We use vocabulary-based similarity and dependency-based similarity to find the 

cohesive set of actors (methods and fields). Consider a source class that contains n methods 

{m1,… mn} and m fields {f1,… fm}. We calculate the similarity between each pair of 

elements (method-field and method-method) in a cohesion matrix as shown in Table 6.2. 
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The cohesion matrix is obtained as follows: for the method-method similarity, we 

consider both vocabulary and dependency-based similarity. For the method-field similarity, 

if the method mi may access (read or write) the field fj, then the similarity value is 1. 

Otherwise, the similarity value is 0. The column “Average” contains the average of 

similarity values for each line. The suitable set of methods and fields to be moved to a new 

class is obtained as follows: we consider the line with the highest average value and 

construct a set that consists of the elements in this line that have a similarity value that is 

higher than a threshold equals to 0.5. 

 f1 f2 … fm m1 m2 … mn Average 
m1 1 0  1 1 0.15  0.1 0.42 
m2 0 1  1 1 1  0 0.6 
. 
. 
. 

         

mn 1 0  0 0.6 0.2  1 0.32 

Table 6.2 - Example of a cohesion matrix. 

The most notable limitation of the existing works in software refactoring is that the 

definition of semantic preservation is closely related to behaviour preservation. Preserving 

the behavior does not means that the design semantics of the refactored program is also 

preserved. Another issue is that the existing techniques are limited to a small number of 

refactorings and thus it could not be generalized and adapted for an exhaustive list of 

refactorings. Indeed, semantics preservation is still hard to ensure, and to the best of our 

knowledge, until now, there is no pragmatic technique or empirical study to prove whether 

the semantics of the refactored program is preserved. 

6.3.4 NSGA-II for refactoring recommending 

This section is dedicated to describe how we formulated the refactoring 

recommending problem as a multi-objective optimization problem using NSGA-II (cf. 

Section 2.3.4).  
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One key element when applying a search-based technique is to find a suitable 

mapping between the problem to solve and the techniques to use. Applying NSGA-II to a 

specific problem requires specifying the following elements: representation of a solution, 

generation of the initial population, the fitness function to evaluate the candidate solutions, 

the selection of the fittest solutions, and the change operators to derive new solutions from 

existing ones. In our approach, these elements are defined as follows: 

a) Solution representation 

In our NSGA-II design, we use the same vector-based solution representation adopted 

in our GA adaptation. The description of our solution representation is detailed in 

Section 3.3.2.  

b) Creation of the initial population of solutions 

To generate an initial population, we start by defining the maximum vector length 

(maximum number of operations per solution). The vector length is proportional to the 

number of refactorings that are considered and the size of the program to be refactored. A 

higher number of operations in a solution do not necessarily mean that the results will be 

better. Ideally, a small number of operations can be sufficient to provide good solutions. 

This parameter can be specified by the user or derived randomly from the sizes of the 

program and the given refactoring list. During the creation, the solutions have random sizes 

inside the allowed range. To create the initial population, we normally generate a set of 

PopSize solutions randomly in the solution space. 

c) Objective functions 

After creating a solution, it should be evaluated to quantify its ability to solve the 

problem under consideration. Since we have four objectives to optimize, we are using four 

different objective functions in NSGA-II adaptation. We used the four objective functions 

described in Section 6.3.2 : 

1. Quality objective function that calculates the ratio of the number of corrected code-

smells over the initial number of code-smells using detection rules [24].  
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2. Semantic objective function that corresponds to the weighted sum of different 

semantic measures described in Section 6.3.3. The semantic objective function of a 

refactoring solution corresponds to the average of the semantic values of the 

refactoring operations in the vector. In Table 6.3, we specify, for each refactoring 

operation, which measures are taken into account to ensure that the refactoring 

operation preserves design coherence. 

Refactorings VS DS IS FIU CD 

move method x x    
move field x x    
pull up field x x  x  
pull up method x x x   
push down field x x  x  
push down method x x  x  
inline class x x    
extract class x x   x 
move class x x    
extract interface x x   x 

Table 6.3 - Refactoring operations and their semantic measures. 

 

3. Code changes objective function that approximates the amount of code changes 

needed to apply the suggested refactorings operations. We use the model described in 

Section 6.3.2.2.  

4. History of changes objective function that maximizes the use of refactorings that are 

similar to those applied to the same code fragments in the past. To calculate the 

similarity score between a proposed refactoring operation and a recorded refactoring 

operation, we use the objective function described in Section 6.3.2.3. 

d) Selection 

To guide the selection process, NSGA-II uses a binary tournament selection based on 

dominance and crowding distance [24]. NSGA-II sorts the population using the dominance 

principle which classifies individual solutions into different dominance levels. Then, to 

construct a new offspring population Qt+1, NSGA-II uses a comparison operator based on a 
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calculation of the crowding distance [24] to select potential individuals having the same 

dominance level. 

e) Genetic operators 

In our NSGA-II design, we use the same genetic operators formulation adopted in our 

GA adaptation. The description of our genetic operators (crossover and mutation) is 

detailed in Section 4.3.2 d). 

6.4 Evaluation 

In order to evaluate the feasibility and the efficiency of our approach for generating 

good refactoring suggestions, we conducted an experiment based on different versions of 

open-source systems. We start by presenting our research questions. Then, we describe and 

discuss the obtained results. All experimentation materials are available online21. 

6.4.1 Research questions 

In our study, we assess the performance of our refactoring approach by determining 

whether it can generate meaningful sequences of refactorings that fix code-smells while 

minimizing the number of code changes, preserving the semantics of the design, and 

reusing, as much as possible a base of recorded refactoring operations applied in the past in 

similar contexts. Our study aims at addressing the research questions outlined below.  

 RQ1.1: To what extent can the proposed approach fix different types of code-smells? 

 RQ1.2: To what extent does the proposed approach preserve design semantics when 

fixing code-smells?  

 RQ1.3: To what extent can the proposed approach minimize code changes when fixing 

code-smells? 

 RQ1.4: To what extent can the use of previously-applied refactorings improve the 

effectiveness of the proposed refactorings?  

                                                 
21 http://www-etud.iro.umontreal.ca/~ouniali/TSE2014/ 
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 RQ2: How does the proposed multi-objective approach based on NSGA-II perform 

compared to other existing search-based refactoring approaches and other search 

algorithms? 

 RQ3: How does the proposed approach perform compared to existing approaches not 

based on heuristic search? 

 RQ4: Is our multi-objective refactoring approach useful for software engineers in real-

world setting? 

To answer RQ1.1, we validate the proposed refactoring operations to fix code-smells 

by calculating the code-smell correction ratio (CCR) on a benchmark composed of six 

open-source systems. CCR corresponds to the ratio of the number of corrected code-smells 

over the initial number of detected code-smells before applying the suggested refactoring 

solution, and defined as follows:  

ܴܥܥ ൌ
ݏ݈݈݁݉ݏ_݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݃݊݅ݕ݈݌݌ܽ	݁ݎ݋݂ܾ݁	ݏ݈݈݁݉ݏ_݁݀݋ܿ	#
	∈ ሾ0,1ሿ 

 

To answer RQ1.2, we use two different validation methods: manual validation and 

automatic validation to evaluate the efficiency of the proposed refactorings. For the manual 

validation, we asked six groups of potential users of our refactoring tool to evaluate 

manually whether the suggested refactorings are feasible and make sense semantically. We 

define the metric “refactoring precision” (RP), which corresponds to the number of 

meaningful refactoring operations (low-level and high-level), in terms of semantics, over 

the total number of suggested refactoring operations. RP is defined as follows: 

ܴܲ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	ݐ݊݁ݎ݄݁݋ܿ#
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݏ݋݌݋ݎ݌#

	∈ ሾ0,1ሿ 

 

For the automatic validation we compare the proposed refactorings with the expected 

ones using an existing benchmark [8] [7] [42] in terms of recall and precision. The expected 

refactorings are those applied by the software development team to the next software 

release. To collect these expected refactorings, we use Ref-Finder [83], an Eclipse plug-in 

designed to detect refactorings between two program versions. Ref-Finder allows us to 
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detect the list of refactorings applied to the current version of a system (see Table 6.5). 

Automatic recall and precision are defined, respectively, as follows: 

 

ܴ ௥ܲ௘௖௔௟௟ ൌ
|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐݏ݁݃݃ݑݏ| ∩ |ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐܿ݁݌ݔ݁|

|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐܿ݁݌ݔ݁|
	∈ ሾ0,1ሿ 

 

ܴ ௣ܲ௥௘௖௜௦௜௢௡ ൌ
|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐݏ݁݃݃ݑݏ| ∩ |ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐܿ݁݌ݔ݁|

|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐݏ݁݃݃ݑݏ|
	∈ ሾ0,1ሿ 

  

To answer RQ1.3, we evaluate, using our benchmark, if the proposed refactorings are 

useful to fix code-smells with low code changes by calculating the code change score. The 

code change score is calculated using our model described in Section 6.3.2.2. To this end, 

we compare the obtained code change scores with and without integrating the code change 

minimization objective in our tool. 

To answer RQ1.4, we use the metric RP to evaluate the usefulness of the recorded 

refactorings and their impact on the quality of the suggested refactorings in terms of 

semantic coherence (RP). To this end, we compare the obtained code RP scores with and 

without integrating the reuse of recorded refactorings in our tool. In addition, in order to 

evaluate the importance of reusing recorded refactorings in similar contexts, we define the 

metric “reused refactoring” (RR) that calculates the percentage of operations from the base 

of recorded refactorings used to generate the optimal refactoring solution by our proposal. 

RR is defined as follows: 

ܴܴ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁݀ݎ݋ܿ݁ݎ	݂݋	݁ݏܾܽ	݄݁ݐ	݉݋ݎ݂	ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݏݑ	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁݀ݎ݋ܿ݁ݎ	݂݋	݁ݏܾܽ	݄݁ݐ	݊݅	ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	#
	∈ ሾ0,1ሿ 

 

To answer RQ2, we compare our approach to two other existing search-based 

refactoring approaches: our GA-based approach (described in Chapter 4), and Harman et 

al. [20] that consider the refactoring suggestion task only from the quality improvement 

perspective (single objective). We also assessed the performance of our multi-objective 

algorithm NSGA-II compared to another multi-objective algorithm MOGA (Multi-

Objective Genetic Algorithm) [191], a random search (RS) [192], and a mono-objective 
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genetic algorithm (GA) [99] where one fitness function is used (an average of the four 

objective scores). 

To answer RQ3, we compared our refactoring results with a popular code-smells 

detection and correction tool JDeodorant [83] that does not use heuristic search techniques 

in terms of DCR, change score and RP. The current version of JDeodorant [83] is 

implemented as an Eclipse plug-in that identifies some types of code-smells using quality 

metrics and then proposes a list of refactoring strategies to fix them. 

To answer RQ4, we asked a group of three software engineers to refactor manually 

some of the code-smells, and then compare the results with those proposed by our tool. To 

this end we define the following precision metric: 

݊݋݅ݏ݅ܿ݁ݎܲ ൌ 	
|ܴ| ∩ |ܴ௠|

ܴ௠
∈ ሾ0,1ሿ 

where R is the set of refactorings suggested by our tool, and Rm is the set of refactorings 

suggested manually by software engineers. 

6.4.2 Experimental setting and instrumentation 

The goal of the study is to evaluate the usefulness and the effectiveness of our 

refactoring tool in practice. We conducted a non-subjective evaluation with potential users 

of our tool. Thus, refactoring operations should not only remove code-smells, but should 

also be meaningful from a developer's point of view.  

6.4.2.1 Subjects 

Our study involved a total number of 21 subjects divided into 7 groups (3 subjects 

each). All the subjects are volunteers and familiar with Java development. The experience 

of these subjects on Java programming ranged from 2 to 15 years. 

The first six groups are drawn from several diverse affiliations: the University of 

Michigan (USA), University of Montreal (Canada), Missouri University of Science and 

Technology (USA), University of Sousse (Tunisia) and a software development and web 

design company. The groups include four undergraduate students, six master students, six 

PhD students, one faculty member, and four junior software developers. The three master 
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students are working also at General Motors as senior software engineers. Subjects were 

familiar with the practice of refactoring. 

6.4.2.2 Systems studied and data collection 

We applied our approach to a set of six well-known and well-commented industrial 

open source Java projects: Xerces-J22, JFreeChart23, GanttProject24, Apache Ant25, 

JHotDraw26, and Rhino27. Xerces-J is a family of software packages for parsing XML. 

JFreeChart is a powerful and flexible Java library for generating charts. GanttProject is a 

cross-platform tool for project scheduling. Apache Ant is a build tool and library 

specifically conceived for Java applications. JHotDraw is a GUI framework for drawing 

editors. Finally, Rhino is a JavaScript interpreter and compiler written in Java and 

developed for the Mozilla/Firefox browser.  

We selected these systems for our validation because they are well studied in the 

related work. Moreover, they came from six different organisations, involved different 

kinds of software engineering development, and had different sizes ranging from 25 to 255 

KLOC with a high number of code-smell instances. Table 6.4 provides some descriptive 

statistics about these six programs. 

Systems Release # classes 
# code-
smells 

KLOC 

Xerces-J v2.7.0 991 91 240 
JFreeChart v1.0.9 521 72 170 
GanttProject v1.10.2 245 49 41 
Apache Ant v1.8.2 1191 112 255 
JHotDraw v6.1 585 25 21 
Rhino v1.7R1 305 69 42 

Table 6.4 - Systems statistics. 

To collect refactorings applied in previous program versions, and the expected 

refactorings applied to next version of studied systems, we use Ref-Finder [83]. Ref-Finder, 

                                                 
22 http://xerces.apache.org/xerces-j/ 
23 http://www.jfree.org/jfreechart/ 
24 www.ganttproject.biz 
25 http://ant.apache.org/ 
26 http://www.jhotdraw.org/ 
27 http://www.mozilla.org/rhino/ 
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implemented as an Eclipse plug-in, can identify refactoring operations applied between two 

releases of a software system. Table 6.5 shows the analyzed versions and the number of 

refactoring operations, identified by Ref-Finder, between each subsequent couple of 

analyzed versions, after the manual validation. In our study, we consider only refactoring 

types described in Table 6.1. 

Systems 
Expected refactorings Collected refactorings 

Next 
release 

# Refactorings 
Previous 
releases 

# Refactorings 

Xerces-J v2.8.1 39 v1.4.2 - v2.7.0 70 
JFreeChart  v1.0.11 31 v1.0.6 - v1.0.9 76 
GanttProject v1.11.2 46 v1.7 - v1.10.2 91 
Apache Ant  v1.8.4 78 v1.2 - v1.8.2 247 
JHotDraw  v6.2 27 v5.1 - v6.1 64 
Rhino 1.7R4 46 v1.4R3 - 1.7R1 124 

Table 6.5 - Analysed versions and refactorings collection. 

6.4.2.3 Scenarios 

We designed our study to answer our research questions. To this end, we conducted 

our experiments through two different scenarios: 1) the first scenario is to evaluate the 

quality of the suggested refactoring solutions with potential users, and 2) the second 

scenario is to fix manually a set of code-smells and compare the manual results with those 

proposed by our tool. All the recommended refactorings are executed using the Eclipse 

platform.  

Scenario 1: The first six groups of subjects were invited to fill a questionnaire that 

aims to evaluate our suggested refactorings. To this end, we assigned to each group a set of 

refactoring solutions suggested by our tool to evaluate manually. Table 6.6 describes the set 

of refactoring solutions to be evaluated for each studied system in order to answer our 

research questions. We have three multi-objective algorithms to be tested for the 

refactoring suggestion task: NSGA-II (Non-dominated Sorting Genetic Algorithm) [99], 

MOGA (Multi-Objective Genetic Algorithm) [191], and RS (Random Search) [192]. 

Moreover, we compared our results with a mono-objective genetic algorithm (GA) to 

assess the need for a multi-objective formulation. In addition, two refactoring solutions of 

both state-of-the-art approaches (GA-based approach [27], and Harman et al. [20]) are 
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empirically evaluated in order to compare them to our approach in terms of semantic 

coherence.  

Ref. Solution Algorithm/ Approach 
 # objective 
Functions 

Objectives 
considered 

Solution 1 NSGA-II 4 Q, S, CC, RR 
Solution 2 MOGA 4 Q, S, CC, RR 
Solution 3 Random Search (RS) 4 Q, S, CC, RR 
Solution 4 Genetic Algorithm 1 Q + S + CC + RR 
Solution 5 GA-based approach [27] 1 Q 
Solution 6 Harman et al. [20] 2 CBO, SDMPC 

Table 6.6 - Refactoring solutions for each studied system. 

As shown in Table 6.7, for each system, 6 refactoring solutions have to be evaluated. 

Due to the large number of refactoring operations to be evaluated (36 solutions in total, 

each solution consists of a large set of suggested refactoring operations), we pick at random 

a sample of 10 refactorings per solution to be evaluated in our study. In Table 6.7, we 

summarize how we divided subjects into groups in order to cover the evaluation of all 

refactoring solutions. In addition, as illustrated in Table 6.7, we are using a cross-validation 

for the first scenario to reduce the impact of subjects (groups A-F) on the evaluation. Each 

subject evaluates different refactoring solutions for three different systems. 

Subjects (groups A-F) were aware that they are going to evaluate the semantic coherence of 

refactoring operations, but do not know the particular experiment research questions 

(algorithms used, different objectives used and their combinations). Consequently, each 

group of subjects who accepted to participate to the study, received a questionnaire, a 

manuscript guide to help them to fill the questionnaire, and the source code of the studied 

systems, in order to evaluate 6 solutions (10 refactorings per solution). The questionnaire is 

organized within a spreadsheet with hyperlinks to visualize easily the source code of the 

affected code elements. Subjects are invited to select for each refactoring operation one of 

the possibilities: "Yes" (coherent change), "No" (non-coherent change), or "May be" (if not 

sure). All the study material is available online28. Since the application of refactorings to fix 

                                                 
28 http://www-etud.iro.umontreal.ca/~ouniali/TSE2014/ 
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code-smells is a subjective process, it is normal that not all the programmers have the same 

opinion. In our case, we considered the majority of votes to determine if a suggested 

refactoring is accepted or not. 

 

Scenarios Subject 
groups 

Systems   Algorithm / Approach Solutions 

Scenario 1 

Group A 

GanttProject 
NSGA-II 
Genetic Algorithm 

Solution 1 
Solution 4  

Xerces  
MOGA,  
Harman et al. 

Solution 2 
Solution 6 

JFreeChart 
RS, 
GA-based approach 

Solution 3 
Solution 5 

Group B 

GanttProject 
MOGA, 
Harman et al. 

Solution 2 
Solution 6 

Xerces  
RS, 
GA-based approach 

Solution 3 
Solution 5 

JFreeChart 
NSGA-II 
Genetic Algorithm 

Solution 1 
Solution 4 

Group C 

GanttProject 
RS, 
GA-based approach 

Solution 3 
Solution 5 

Xerces  
NSGA-II 
Genetic Algorithm 

Solution 1 
Solution 4 

JFreeChart 
MOGA,  
Harman et al. 

Solution 2 
Solution 6 

Group D 

Apache Ant  
NSGA-II 
Genetic Algorithm 

Solution 1 
Solution 4  

JHotDraw  
MOGA,  
Harman et al. 

Solution 2 
Solution 6 

Rhino 
RS, 
GA-based approach 

Solution 3 
Solution 5 

Group E 

Apache Ant  
MOGA, 
Harman et al. 

Solution 2 
Solution 6 

JHotDraw  
RS, 
GA-based approach 

Solution 3 
Solution 5 

Rhino 
NSGA-II 
Genetic Algorithm 

Solution 1 
Solution 4 

Group F 

Apache Ant  
RS, 
GA-based approach. 

Solution 3 
Solution 5 

JHotDraw  
NSGA-II 
Genetic Algorithm 

Solution 1 
Solution 5 

Rhino 
MOGA,  
Harman et al. 

Solution 2 
Solution 6 

Scenario 2 Group G All systems 
Manual correction of 
code-smells 

N.A. 

Table 6.7 - Survey organization. 

 



151 

 

 

Scenario 2: The aim of this scenario is to compare our refactoring results for fixing 

code-smells suggested by our tool with manual refactorings suggested by software 

engineers. To this end, we asked Group G to fix a set of 72 code-smell instances that are 

picked at random from each subject system (12 code-smells per system) that comes from 

the six different code-smell types considered. Then we compared their sequences of 

refactorings that are suggested manually with those proposed by our approach. The more 

our refactorings are similar to the manual ones, the more our tool is assessed to be useful 

and efficient in practice. 

6.4.2.4 Algorithms configuration 

In our experiments, we use and compare different mono and multi-objective 

algorithms. For each algorithm, to generate an initial population, we start by defining the 

maximum vector length (maximum number of operations per solution). The vector length is 

proportional to the number of refactorings that are considered, the size of the program to be 

refactored, and the number of detected code-smells. A higher number of operations in a 

solution do not necessarily mean that the results will be better. Ideally, a small number of 

operations should be sufficient to provide a good trade-off between the fitness functions. 

This parameter can be specified by the user or derived randomly from the sizes of the 

program and the employed refactoring list. During the creation, the solutions have random 

sizes inside the allowed range. For all algorithms NSGA-II, MOGA, Random search (RS), 

and genetic algorithm (GA), we fixed the maximum vector length to 700 refactorings, and 

the population size to 200 individuals (refactoring solutions), and the maximum number of 

iterations to 6000 iterations. We also designed our NSGA-II adaptation to be flexible in a 

way that we can configure the number objectives and which objectives to consider in the 

execution.  

We consider a list of 11 possible refactorings to restructure the design of the original 

program by moving code elements (methods, attributes) from classes in the same or 

different packages or inheritance hierarchies or splitting/merging classes/interfaces. 

Although we believe that our list of refactorings is sufficient at least to fix these specific 
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types of code smells, our refactoring tool is developed in a flexible way so that new 

refactorings and code smell types can be considered in the future. Moreover, our list of 

possible refactoring is significantly larger than those of existing code-smells correction 

techniques. 

Another element that should be considered when comparing the results of the four 

algorithms is that NSGA-II does not produce a single solution like GA, but a set of optimal 

solutions (non-dominated solutions). The maintainer can choose a solution from them 

depending on their preferences in terms of compromise. However, at least for our 

evaluation, we need to select only one solution. To this end and in order to fully automate 

our approach, we propose to extract and suggest only one best solution from the returned 

set of solutions. In our case, the ideal solution has the best value of quality (equal to 1), of 

semantic coherence (equal to 1), and of refactoring reuse (equal to 1), and code changes 

(normalized value equal to 1). Hence, we select the nearest solution to the ideal one in 

terms of Euclidian distance. 

6.4.2.5 Inferential statistical test method used 

Our approach, like the two others (GA-based approach and Harman et al.), is 

stochastic by nature, i.e., two different executions of the same algorithm with the same 

parameters on the same systems generally leads to different sets of suggested refactorings. 

For this reason, our experimental study is performed based on 31 independent simulation 

runs for each problem instance, and the obtained results are statistically analyzed by using 

the Wilcoxon rank sum test with a 95% confidence level (α = 5%). The Wilcoxon signed-

rank test is a non-parametric statistical hypothesis test used when comparing two related 

samples to verify whether their population mean-ranks differ or not. In this way, we could 

decide whether the difference in performance between our approach and the other detection 

algorithms is statistically significant or just a random result. 
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6.4.3 Empirical study results 

This section reports the results of our empirical study, which are further discussed in 

next section. We first start by answering our research questions. To this end, we use two 

different validations: manual and automatic validations. 

Results for RQ1.1: As described in Table 6.8, after applying the proposed refactoring 

operations by our approach (NSGA-II), we found that, on average, 84% of the detected 

code-smells were fixed (CCR) for all the six studied systems. This high score is considered 

significant in terms of improving the quality of the refactored systems by fixing the 

majority of code-smells coming from various types (Blob, spaghetti code, functional 

decomposition, data class, shotgun surgery, and feature envy).  

Systems Approach CCR 
Changes 

score 
RP 

RP-automatic 

Xerces 
NSGA-II 83%  (76|91) 3843 81 % 26%  (10|39) 
Harman et al. '07 N.A 2669 41 % 8 %  (3|39) 
GA-based approach 89% (81/91) 4998 37 % 13% (5|39) 

JFreeChart 
NSGA-II 86%  (62|72) 2016 82 % 35% (11|31) 
Harman et al. '07 N.A 3269 36 % 0 % (0|31) 
GA-based approach 90% (65\72) 3389 37 % 13% (4|31) 

GanttProject  
NSGA-II 85%  (42|49) 2826 80 % 46%( 21|46) 
Harman et al. '07 N.A 4790 23 % 0% (0|46) 
GA-based approach 95%  (47|49) 4697 27 % 15% (7|46) 

Apache Ant 
NSGA-II 78%  (87|112) 4690 78 % 31% (24|78) 
Harman et al. '07 N.A 6987 40 % 04% (3|78) 
GA-based approach 80%  (90|112) 6797 30 % 0% (0|78) 

JHotDraw 
NSGA-II 84%  (21|25) 2231 80 % 44% (18|41) 
Harman et al. '07 N.A 3654 37 % 10% (4|41) 
GA-based approach 84%  (21|25) 3875 43 % 7% (3|41) 

Rhino  
NSGA-II 85%  (59|69) 1914 80 % 33% (15|46) 
Harman et al. '07 N.A 2698 37 % 0% (0|46) 
GA-based approach 87%  (60|69) 3365 32 % 9% (4|46) 

Average  
(all systems) 

NSGA-II 84% 2937 80 % 36% 
Harman et al. '07 N.A 4011 36 % 4% 
GA-based approach 89% 4520 34 % 9% 

Table 6.8 - Empirical study results on 31 runs. The results were statistically significant on 
31 independent runs using the Wilcoxon rank sum test with a 95% confidence level (α < 
5%). 
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Results for RQ1.2: To answer RQ1.2, we need to assess the correctness/meaningfulness of 

the suggested refactorings from the developers’ point of view. We reported the results of 

our empirical evaluation in Table 6.8 (RP column) related to Scenario 1. We found that the 

majority of the suggested refactorings improve significantly the code quality while 

preserving semantic coherence. On average, for all of our six studied systems, 80% of 

proposed refactoring operations are considered by potential users to be semantically 

feasible and do not generate semantic incoherence.  

In addition to the empirical evaluation, we automatically evaluate our approach 

without using the feedback of potential users to give more quantitative evaluation to answer 

RQ3. Thus, we compare the proposed refactorings with the expected ones. The expected 

refactorings are those applied by the software development team to the next software 

release as described in Table 6.5. We use Ref-Finder [46] to identify refactoring operations 

that are applied between the program version under analysis and the next version. Table 6.8 

(RP automatic column) summarizes our results. We found that a considerable number of 

proposed refactorings (an average of 36% for all studied systems in terms of recall) are 

already applied to the next version by software development team which is considered as a 

good recommendation score, especially that not all refactorings applied to next version are 

related to quality improvement, but also to add new functionalities, increase security, fix 

bugs, etc.   

To conclude, we found that our approach produces good refactoring suggestions in 

terms of code-smells correction ratio, semantic coherence from the point of view of 1) 

potential users of our refactoring tool and 2) expected refactorings applied to the next 

program version. 

Results for RQ1.3 and RQ1.4: To answer these two research questions, we need to 

compare different objective combinations (two, three, or four objectives) to ensure the 

efficiency and the impact of using each of the objectives we defined. To this end, we 

executed the NSGA-II algorithm with different combinations of objectives: maximize 
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quality (Q), minimize semantic incoherence (S), minimize code changes (CC), and 

maximize the reuse of recorded refactorings (RR) as presented in Table 6.9 and Figure 6.4.  

To answer RQ1.3, we present in Figure 6.4.a and Table 6.9, the code change scores 

obtained when the CC objective is considered (Q+S+RC+CC). We found that our approach 

succeeded in suggesting refactoring solutions that do not require high code changes (an 

average of only 2937) while having more than 3888 as code change score when the CC 

objective is not considered in the other combinations. At the same time we found that the 

CCR score (Figure 6.4.c) is not significantly affected with and without considering the CC 

objective. 

To answer RQ1.4, we present the obtained results in Figure 6.4.b. The best RP 

scores are obtained when the recorded code changes (RC) are considered (Q+S+RC), while 

having good correction score CCR (Figure 6.4.c). In addition, we need more quantitative 

evaluation to investigate effect of the use of recorded refactorings, on the semantic 

coherence (RP). To this end, we compare the RP score with and without using recorded 

refactorings. In most of the systems when recorded refactoring is combined with semantics, 

the RP value is improved. For example, for Apache Ant RP is 83% when only quality and 

semantics are considered, however when recorded refactoring reuse is included the RP is 

improved to 87% (Figure 6.4.b). We notice also that when code changes reduction is 

included with quality, semantics and recorded changes, the RP and CCR scores are not 

significantly affected. Moreover we notice in Figure 6.4.c that there is no significant 

variation in terms of CCR with all different objectives combinations. When four objectives 

are combined the CCR value induces a slight degradation with an average of 82% in all 

systems which is even considered as promising results. Thus, the slight loss in the 

correction ratio is largely compensated by the significant improvement of the semantic 

coherence and code changes reduction. Moreover, we found that the optimal refactoring 

solutions found by our approach are obtained with a considerable percentage of reused 

refactoring history (RR) (more than 35% as shown in Table 6.9). Thus, the obtained results 

support the claim that recorded refactorings applied in the past are useful to generate 
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coherent and meaningful refactoring solutions and can effectively drive the refactoring 

suggestion task. 

 

Figure 6.4 - Refactoring results of different objectives combination with NSGA-II in terms 
of (a) code changes reduction, (b) semantics preservation, (c) Code-smells correction ratio. 
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In conclusion, we found that the best compromise is obtained between the four 

objectives using NSGA-II comparing to the use of only two or three objectives. By default, 

the tool considers the four objectives to find refactoring solutions. Thus, a software 

engineer can consider the multi-objective algorithm as a black-box and he do not need to 

configure anything related to the objectives to consider. The four objectives should be 

considered and there is no need to select the objectives by the user based on our 

experimentation results. 

Objectives 
combinations 

DCR 
RP (empirical 

evaluation) 
Code 

changes 
RR 

Q + CC 75% 45% 2591 N.A. 
Q + S 81% 82% 4355 N.A. 
Q + RC 85% 54% 3989 41% 
Q + S + RC 81% 84% 3888 35% 
Q + S + RC + CC 84% 80% 2917 36% 

Table 6.9 - Average refactoring results of different objective combinations with NSGA-II 
(average of all systems) on 31 runs. The results were statistically significant on 31 

independent runs using the Wilcoxon rank sum test with a 95% confidence level (α < 5%). 

 

Results for RQ2: To answer RQ2, we evaluate the efficiency of our approach comparing 

to two existing approaches: Harman et al. [20] and GA-based approach. Harman et al. 

proposed a multi-objective approach that uses two quality metrics to improve (coupling 

between objects CBO, and standard deviation of methods per class SDMPC) after applying 

the refactorings sequence. GA-based approach, a single-objective genetic algorithm is used 

to correct code-smells (see Chapter 4 for more details). The comparison is performed 

through three levels: 1) code-smell correction ratio (CCR) that is calculated using code-

smells detection rules (see Chapter 3) [7], 2) refactoring precision (RP) that represents the 

results of the subject judgments (Scenario 1), and 3) code changes needed to apply the 

suggested refactorings. We adapted our technique for calculating code changes scores for 

both approaches Harman et al. and GA-based approach. Table 6.8 summarizes our findings 

and reports the median values of each of our evaluation metrics obtained for 31 simulation 

runs of all projects. 
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As described in Table 6.8, after applying the proposed refactoring operations, we 

found that more than 84% of detected code-smells were fixed (CCR) as an average for all 

the six studied systems. This score is comparable to the correction score of GA-based 

approach (89%), an approach that does not consider semantic preservation, nor code 

changes reduction nor recorded refactorings reuse (CCR is not considered in Harman et al. 

since their aim is to improve only some quality metrics).  

We also found that our approach succeeded fixing code-smells with lower code 

change scores (an average of only 2917) comparing to other approaches having respectively 

an average of 4011 and 4520 for all studied systems. Consequently, our approach 

succeeded in reducing significantly the number of code changes to preserve the initial 

design while having good correction scores (84%). 

Regarding the semantic coherence, for all of our six studied systems, an average of 

80% of proposed refactoring operations are considered as semantically feasible and do not 

generate semantic incoherence. This score is significantly higher than the scores of the two 

other approaches having respectively only 36% and 34% as RP scores. Thus, our approach 

performs clearly better for RP and code changes score with the cost of a slight degradation 

in CCR compared to GA-based approach. This slight loss in the CCR is largely 

compensated by the significant improvement in terms of semantic coherence and code 

change reduction.  

We compared the three approaches in terms of automatic RPrecall. We found that a 

considerable number of proposed refactorings, an average of 36% for all studied systems in 

terms of recall, are already applied to the next version by the software development team. 

By comparison, the figures for Harman et al. and GA-based approach are only 4% and 9% 

respectively (see Figure 6.5). Moreover, this score shows that our approach is useful in 

practice unlike both other approaches. In fact, the RPrecall of Harman et al. is not significant, 

due to the fact that only the move method refactoring is considered when searching for 

refactoring solutions to improve coupling and standard deviation of methods per class. 

Moreover, expected refactorings are not related only to quality improvement, but also for 
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adding new functionalities, and other maintenance tasks. This is not considered in our 

approach when we search for the optimal refactoring solution that satisfies our four 

objectives. However, we manually inspected expected refactorings and we found that they 

are mainly related to adding new functionality (related to adding new packages, classes or 

methods).  

In conclusion, our approach produces good refactoring suggestions in terms of 

code-smell correction ratio, semantic coherence, and code changes reduction from the point 

of view of 1) potential users of our refactoring tool and 2) expected refactorings applied to 

the next program version. 

 

  

Figure 6.5 - Automatic refactoring precision comparison. 

 

To this end, we compared the performance of our proposal to two other multi-

objective algorithms: MOGA, and a random search and a mono-objective algorithm 

(genetic algorithm). In a random search, the change operators (crossover and mutations) are 

not used, and populations are generated randomly and evaluated using the four objective 

functions. In our mono-objective adaptation, we considered a single fitness function, which 

is the normalized average score of the four objectives using a genetic algorithm. Moreover, 

since in our NSGA-II adaptation we select a single solution without giving more 

importance to some objectives, we give equal weights for each fitness function value.  
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(a)  

 
(b) 

 
(c) 

 
Figure 6.6 - Refactoring results of different algorithms in terms of (a) semantics 

preservation, (b) code-smells correction ratio, (c) code changes reduction. 
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As shown in Figure 6.6, NSGA-II outperforms significantly MOGA, random-search, and 
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mono-objective algorithm in terms of code-smells correction ratio (CCR), semantics 

preservation (RP), and code changes reduction. For instance, in JFreeChart, NSGA-II 

performs much better than MOGA, random search and genetic algorithm in terms of DCR 

and RP scores (respectively Figure 6.6.a and Figure 6.6.b). In addition, NSGA-II reduces 

significantly code changes for all studied systems, approximately by half for Rhino 

(Figure 6.6.c). 

Results for RQ3: JDeodorant uses only structural information to detect and fix code-

smells, but does not handle all the six code-smell types that we considered in our 

experiments. Thus, to make the comparison fair, we performed our comparison using only 

two code-smells that can be fixed by both tools: Blob and feature envy. Figure 6.7 

summarizes our findings. It is clear that our proposal outperforms JDeodorant, on average, 

on all the systems in terms of number of fixed code-smells with a minimum number of 

changes and semantically coherent refactorings. The average number of fixed code-smells 

is comparable between both tools however our proposal is clearly better in terms of 

semantically coherent refactorings. This can be explained by the fact that JDeodorant uses 

only structural metrics to evaluate the impact of suggested refactorings on the detected 

code-smells. In addition, our proposal supports more types of refactorings than JDeodorant 

and this is also explains our outperformance.  

  
Figure 6.7 - Comparison results of our approach with JDeodorant: average code-smells 

correction ratio (CCR), semantic coherence (RP) and code changes score (CC) on all the 
systems. 
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Results for RQ4: To evaluate the relevance of our suggested refactorings for real software 

engineers, we compared the refactoring strategies proposed by our technique and those 

proposed manually by group G (three software engineers) to fix several code-smells on the 

six systems. Figure 6.8 shows that most of the suggested refactorings by NSGA-II are 

similar to those applied by developers with an average of more than 75%. Some code-

smells can be fixed by different refactoring strategies and also the same solution can be 

expressed in different ways (complex and atomic refactorings). Thus we consider that the 

average precision of more than 75% confirms the efficiency of our tool for real developers 

to automate the refactoring recommendation process. We discuss, in the next section, in 

more detail the relevance of our automated refactoring approach for software engineers. 

 

  
Figure 6.8 - Comparison of our refactoring results with manual refactorings in terms of 

precision. 
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obtained between the four objectives using NSGA-II when compared to the use of only two 

or three objectives. Therefore, our four objectives are efficient for providing "good" 

refactoring suggestions. Moreover, we found that NSGA-II performs much better than two 

other multi-objective algorithms: MOGA and random search, and a mono-objective 

algorithm (GA). 

Thus, although our primary goal in this work is to demonstrate that code-smells can 

be automatically refactored, it is also important to assess the refactoring impact on design 

quality. The expected benefit from refactoring is to enhance the overall software design 

quality, as well as fixing code-smells [62]. We use the QMOOD (Quality Model for Object-

Oriented Design) model [193] to estimate the effect of the suggested refactoring solutions 

on quality attributes. We choose QMOOD, mainly because 1) it is widely used in the 

literature [22] [126] to assess the effect of refactoring, and 2) it has the advantage that 

define six high level design quality attributes (reusability, flexibility, understandability, 

functionality, extendibility and effectiveness) that can be calculated using 11 lower level 

design metrics [193]. In our study we consider the following quality attributes: reusability, 

flexibility, understandability, effectiveness. These quality attributes and metrics are defined 

in Appendix A.  

We did not assess the issue of functionality because we assume that, by definition, 

refactoring does not change the behavior/functionality of systems; instead it changes the 

internal structure. We have also excluded the extendibility factor because it is, to some 

extent, a subjective quality factor and using a model of merely static measures to evaluate 

extendibility is inadequate. 

The improvement in quality can be assessed by comparing the quality before and 

after refactoring independently to the number of fixed code-smells. Hence, the total gain in 

quality G for each of the considered QMOOD quality attributes qi before and after 

refactoring can be easily estimated as: 

௤௜ܩ ൌ ௜ݍ
ᇱ െ  ௜ݍ
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where q’i and qi represents the value of the quality attribute i respectively after and before 

refactoring. 

In Figure 6.9, we show the obtained gain values (in terms of absolute value) that we 

calculated for each QMOOD quality attribute before and after refactoring for each studied 

system. We found that systems’ quality increase across the four QMOOD quality factors. 

Understandability is the quality factor that has the highest gain value; whereas the 

Effectiveness quality factor has the lowest one. This mainly due to many reasons 1) the 

majority of fixed code-smells (Blob, spaghetti code) are known to increase the coupling 

(DCC) within classes which heavily affect the quality index calculation of the Effectiveness 

factor; 2) the vast majority of suggested refactoring types were move method, move field, 

and extract class (Figure 6.11) that are known to have a high impact on coupling (DCC), 

cohesion (CAM) and the design size in classes (DSC) that serves to calculate the 

understandability quality factor. Furthermore, we noticed that JHotDraw produced the 

lowest quality increase for the four quality factors. This is justified by the fact that 

JHotDraw is known to be of good design and implementation practices and contains fiew 

code-smell instances comparing to the five other studied systems.  

To sum up, we can conclude that our approach succeeded in improving the code 

quality not only by fixing the majority of detected code-smells but also by improving the 

user understandability, reusability, flexibility, as well as the effectiveness of the refactored 

program. 

 

Figure 6.9 - Impact of the suggested refactoring solution on QMOOD quality attributes. 
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6.5.2 Other observations 

It is important to contrast the results of multiple executions with the execution time 

to evaluate the performance and the stability of our approach. The execution time for 

finding the optimal refactoring solution with a number of iterations (stopping criteria) fixed 

to 6000 was less than forty-eight minutes as shown in Figure 6.10. Moreover, we evaluate 

the impact of the number of suggested refactorings on the CCR, RP, RR, and code changes 

scores in five different executions. Drawn for JFreeChart, the results of Figure 6.10 show 

that the number of suggested refactorings does not affect the refactoring results. Thus, a 

higher number of operations in a solution do not necessarily mean that the results will be 

better. Thus, we could conclude that our approach is scalable from the performance 

standpoint, especially that our technique is executed, in general, up front (at night) to find 

suitable refactorings. In addition, the results accuracy is not affected by the number of 

suggested refactorings. 

 

Figure 6.10 - Impact of the number of refactorings on multiple executions on JFreeChart. 
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methods) and extract/inline class. This is mainly due to the type of code-smells detected in 

Xerces-J (most of code-smells are related to the Blob code-smell) that need particular 

refactorings to move elements from Blob class to other classes in order to reduce the 

number of functionalities from them. On the other hand, we found for JHotDraw less move 

method, move field and extract class refactorings. This mainly due to the fact that 

JHotDraw contains few number of Blob instances (only three Blobs are detected) and it is 

known to be of good quality. Thus, our results in Figure 6.11 reveal an effect that we found: 

refactorings like move field, move method, and extract class are likely to be more useful to 

correcting the Blob code-smell. As part of future work we plan to investigate the 

relationship between code-smells types and refactoring types.  

 

 

Figure 6.11 - Suggested refactorings distribution. 

 

To illustrate some of these refactorings, let us consider the solution fragment 

sketched in Figure 6.12. This solution recommends to apply extract class refactoring twice 

to the class GanttOptions which is detected as a Blob using our code-smells detection rules 

as it contains 31 attributes and 69 methods. The first extract class creates a new empty class 

and moves the following set of attributes {x, y, width, weight, myRoleManager} and 

methods {setWindowPosition, setWindowSize, emptyElement, startElement, endElement, 
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this Blob code-smell to split it again by applying and extract class where another cohesive 

set of attributes and methods are moved. Both extracted classes are of high cohesion and 

low coupling with the original class. In addition, based on semantic similarity, move field 

refactorings are recommended to move the two fields iconSize and openTips to the classes 

GanttLookAndFeelInfo and GanttProject respectively with a vocabulary-based similarity of 

0.38. By applying these refactoring operations, the Blob GanttOptions is successfully fixed 

without affecting other parts of the system or producing semantic incoherencies. 

 

Figure 6.12 - Refactoring solution fragrment executed to GanttProject. 

 

… 

------------------------------------------------------------------- 

Extract Class:  

 source class: net.sourceforge.ganttproject.GanttOptions 

 fields to move: x y width weight myRoleManager 

 methods to move: setWindowPosition setWindowSize emptyElement startElement endElement addAttribute loadRoleSets saveRoleSets 

saveRoles 

------------------------------------------------------------------- 

Extract Class:  

 source class: net.sourceforge.ganttproject.GanttOptions 

 fields to move: isLoaded workingDir redline myChartMainFont myMenuFont 

 methods to move: save load getUIConfiguration setButtonShow intiByDefault setDefaultTaskColor setResourceColor 

setResourceOverloadColor getDefaultColor getResourceColor getResourceOverloadColor 

------------------------------------------------------------------- 

moveField:  

  sourceClass : net.sourceforge.ganttproject.GanttOptions 

  targetClass : net.sourceforge.ganttproject.gui.GanttLookAndFeelInfo 

  field : iconSize 

------------------------------------------------------------------- 

moveField:  

  sourceClass : net.sourceforge.ganttproject.GanttOptions 

  targetClass : net.sourceforge.ganttproject.GanttProject 

  field : openTips 

------------------------------------------------------------------- 

moveMethod:  

  sourceClass : net.sourceforge.ganttproject.GanttGraphicArea$Arrow 

  targetClass : net.sourceforge.ganttproject.parser.DependencyTagHandler$GanttDependStructure 

  method : setDraw 

. . . 
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6.6 Threats to validity 

Some threats limit the validity of our experimental results. 

Construct validity concern the relation between the theory and the observation. In 

our experiments, code-smell detection rules [7] we use to measure CCR could be 

questionable since there is no consensus on detecting code-smells. To mitigate this threat, 

we manually inspect and validate each code-smell. Moreover, our refactoring tool 

configuration is flexible and can support other state-of-the-art detection rules. Another 

threat concerns the modification score needed to apply refactoring. In fact, attributing 

weights manually might not be enough. To mitigate this issue, we are planning to consider 

other software metrics to calculate change score such as coupling and complexity. 

Moreover, another threat concerns the data about the actual refactorings of the studied 

systems. In addition to the documented refactorings, we are using Ref-Finder, which is 

known to be efficient [46]. Indeed, Ref-Finder was able to detect refactoring operations 

with an average recall of 95% and an average precision of 79% [46]. To ensure the 

precision, we manually inspect the refactorings found by Ref-Finder. 

Internal validity: we identify three threats to internal validity: selection, learning 

and fatigue, and diffusion.  

For the selection threat, the subject diversity in terms of profile and experience 

could affect our study. First, all subjects were volunteers. We also mitigated the selection 

threat by giving written guidelines and examples of refactorings already evaluated with 

arguments and justification. Additionally, each group of subjects evaluated different 

refactorings from different systems for different techniques/algorithms. We also took care 

to randomize the selection refactorings to be evaluated for each refactoring solution. 

Randomization also helps to prevent the learning and fatigue threats. For the fatigue 

threat, specifically, we did not limit the time to fill the questionnaire. Consequently, we sent 

the questionnaires to the subjects by email and gave them enough time to complete this 

task. Finally, only ten refactorings per system were randomly picked for the evaluation.  
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Diffusion threat is limited in our study because most of the subjects are 

geographically located in three different universities and a company, and the majority do 

not know each other. For the few ones who are in the same location, they were instructed 

not to share information about the experience prior to the completion of the study.  

Conclusion validity deals with the relation between the treatment and the outcome. 

Thus, to ensure the heterogeneity of subjects and their differences, we took special care to 

diversify them in terms of professional status, university/company affiliations, gender, and 

years of experience. In addition, we organized subjects into balanced groups. This has been 

said, we plan to test our tool with Java development companies, to draw better conclusions. 

Moreover, the automatic evaluation is also a way to limit the threats related to subjects as it 

helps to ensure that our approach is efficient and useful in practice. Indeed, we compare our 

suggested refactorings with the expected ones that are already applied to the next releases 

and detected using Ref-Finder. 

External validity refers to the generalizability of our findings. In this study, we 

performed our experiments on six different widely-used systems belonging to different 

domains and with different sizes, as described in Table 6.4. However, we cannot assert that 

our results can be generalized to industrial Java applications, other programming languages, 

and to other practitioners. Future replications of this study are necessary to confirm our 

findings. Another limitation of our results is the selection of the best solution from the 

Pareto front. We used a technique to select the closest solution to the ideal point in terms of 

Euclidian distance. We plan in our future work to integrate developers in the loop to select 

the best solution from the set of non-dominated solutions. In fact, developers can select, 

sometimes, refactoring solutions that change the behavior or violate the semantics and 

maximize quality improvements because they consider that fixing these semantic issues is 

relatively easy for them if they are familiar with the software design. 

Finally, our approach takes as input a base of recorded/collected code changes from 

previous versions. We believe that this data is not always available, especially in the 

beginning of projects. However, we believe that refactorings recorded/collected for other 
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systems can be used in similar contexts. As a part of our future work, we plan to consider 

the similarity with not only the refactoring type but also with the contexts (code fragments). 

6.7 Conclusion 

We have introduced in this chapter new multi-objective search-based approach 

taking into consideration multiple criteria to find refactoring solutions. The suggested 

refactorings aims at 1) fixing the detected code-smells, 2) preserving the design semantics 

of the refactored program, 3) reducing the amount of code change/adaptation, and 4) 

reusing knowledge from recorded refactorings applied in the past to similar contexts. Our 

search-based approach succeeded to find a near-optimal trade-off between these multiple 

conflicting criteria. Thus, our proposal produces more meaningful refactorings with lower 

code change scores. Moreover, the proposed approach was empirically evaluated on six 

meduim and large size open-source systems, and compared successfully to two existing 

approaches and three different search-based algorithms. Furthermore, our approach 

succeeds in suggesting a significant number of expected refactorings that were applied to 

the next release of the software system being studied, unlike other approaches, which 

provides evidence that our approach is efficient and useful in practice.  

As future reseach directions we intend to adapt our multi-objective approach to fix 

other types of code-smells that can occur in new emergent service-based applications such 

as multi-service and tiny-service. We plan also to conduct an empirical study to understand 

the correlation between the number of applied refactrings and the number of code-smells, 

the correlation between code-smells and QMOOD quality attribues, and  the relationship 

between fixing particular code-smells and introducing/fixing other code-smells implicitely 

in other parts of the system. Furthermore, while it is important to fix “bad” design practices 

(i.e., code-smells), it is also important to introduce “good” design practices (i.e., design 

patterns). In the next chapter, we will introduce our approach that aims at fixing code-

smells while introducing design patterns. 

 



 

Chapter 7 : A Multi-objective refactoring 
recommendation approach to introduce design patterns 
and fix anti-patterns 

 

 

7.1 Introduction 

Refactoring is an efficient technique to improve the quality attributes of software 

systems such as maintainability, readability, and extendibility. To improve these quality 

attributes, most existing studies focus on the correction of Code-smells. However, this may 

not be sufficient to make the source code easier to understand and modify. The introduction 

of design patterns that represent good design practices while fixing code-smells can 

significantly improve the quality of systems. In this chapter, we introduce an automated 

multi-objective refactoring recommending approach to (1) improve design quality (as 

defined by software quality metrics), (2) introduce design patterns, and (3) fix code-smells. 

To the best of our knowledge, this is the first attempt to promote design patterns for fixing 

code-smells. To evaluate our approach, we conducted a quantitative and qualitative 

evaluation with software engineers using a benchmark composed of four open source 

systems. The statistical analysis of the results provides evidence that our approach is 

efficient compared to the state-of-the-art of refactoring techniques. 

This chapter is organized as follows. Section 7.2 explains the motivations behind 

this approach. Section 7.3 describes our apprach. Section 7.4 presents our experimental 

study to evaluate the proposed approach, while Section 7.5 presents and discusses the 

obtained results. Section 6.7 concludes and presents plans for future work. 

7.2 Motivations 

To improve the quality of software systems, one of the widely used techniques is 

refactoring. It can help software developers to reduce the time required for adding new 

requirements, correcting bugs, understanding the existing implementation, modifying the 
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code to improve its quality, and so on. Consequently, various refactoring tools have been 

proposed [22] [49] [126] [132]. 

Despite its significant benefits, recent studies show that automated refactoring tools 

are underused most of the time [85] [131] [194]. One of the possible reasons is that most 

existing refactoring tools [22] [45] [147] [148] focus mainly only on improving some 

quality metrics (e.g., coupling, cohesion, complexity, etc.). For instance, improving 

software quality factors does not mean that code-smells or bad-design practices that may 

exist are fixed. Thus, quality metric values can be significantly improved but the original 

program may still contain a considerable number of code-smells, which may lead, in turn, 

to maintenance and evolution difficulties. On the other hand, design patterns are “good” 

solutions to recurring design problems, conceived to increase reuse, code quality, code 

readability and, above all, maintainability and resilience to change [195]. Design patterns 

can be automatically introduced using refactoring [126] [127], however, most existing 

refactoring tools do not consider the use of design patterns to fix code-smells and improve 

the quality of software systems. In addition, applying a design pattern where it is not 

needed is highly undesirable as it introduces an unnecessary complexity to the system for 

no benefit [127].  

Furthermore, some code-smells can be automatically fixed when applying design 

patterns. For instance, a Blob code-smell can be fixed by introducing a Visitor design 

pattern. Additional functionalities and behaviour can be easily added to the Blob class 

through the visitor pattern. That is, Visitor pattern relates in general to complex hierarchies 

that have a large number of inherited methods or with Blob classes that can be 

detected [124]. 

To address the above-mentioned challenges, we introduce a novel approach to guide 

the introduction of design patterns by fixing code-smells and improving the overall quality 

of the system while avoiding semantic incoherencies to the design. As far as we know, this 

is the first work that suggests refactoring strategies that deals with both design patterns and 

anti-patterns to improve software quality. To this end, we have developed a multi-objective 
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optimization approach supported by a tool called MORE (Multi-Objective REfactoring) to 

find the best compromise between 1) improving software quality, 2) fixing anti-patterns 

and 3) introducing design patterns while satisfying a set of constraints to ensure the 

semantic coherence of the refactored program. More specifically, the primary contributions 

of this chapter are as follows: 

1. We introduce a multi-objective search-based refactoring approach to improve 

software quality attributes (i.e., flexibility, maintainability, etc.), introduce “good” 

design practices (i.e., design patterns) and fix “bad” design practices (i.e., code-

smells). We implemented our approach in a tool called MORE. We present a set of 

constraints, for each refactoring operation, in order to ensure the semantic coherence 

of the refactored program, e.g., that a method is not moved to a class where it makes 

no sense. 

2. We present an empirical study based on a quantitative and qualitative evaluation 

using a benchmark composed of four real-world software projects of various sizes. 

The quantitative evaluation investigates the efficiency of our approach in fixing four 

types of code-smells (Blob, feature envy, data class, and spaghetti code), introducing 

three types of design patterns (Factory Method, Visitor, and Singleton) (cf. Appendix 

C), and improving six quality attributes according to the popular software quality 

model QMOOD [193] (cf. Appendix A). For the qualitative evaluation, we conducted 

a non-subjective evaluation with potential users to evaluate the usefulness of our 

refactoring tool. 

7.3 Approach: MORE 

This section describes the principles that underlie the proposed approach, called 

MORE (Multi-Objective REfactoring recommendation) for improving software quality, 

fixing code-smells, and introducing design patterns while maintaining the coherence of the 

refactored code. We first describe our approach, its components and the semantic 

constraints employed and then provide a detailed description of the adaptation of NSGA-II. 
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7.3.1 Approach overview 

The general structure of MORE is described in Figure 7.1. It takes as input the 

source code of the program to be refactored, and as output it produces a sequence of 

refactorings that find the optimal trade-off between: 1) improving quality, 2) fixing code-

smells, and 3) introducing design patterns. MORE comprises seven components that will be 

described in the following paragraphs. 

 

Figure 7.1 - Architecture of MORE. 

 

Source code parser and analyzer (label A). This component aims at parsing and 

analyzing the source code of the program being refactored. We are using Soot [190], a Java 

optimization framework. The original source code is analyzed in order to extract from it the 

relevant code elements (i.e., classes, methods, attributes, etc.) and the existing relationships 

between them. The outputs are 1) the parsed code in a specific representation that is simple 

to manipulate during the search process, and 2) a call graph for the entire program that will 
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be used for calculating semantic constraints and software metrics (e.g., coupling, cohesion, 

etc.). 

Code-smell detector (label B). This component scans the entire software program in 

order to find existing anti-pattern instances using a set of code-smells detection rules [7]. 

Detection rules are expressed in terms of metrics and threshold values. Each rule detects a 

specific code-smell type (e.g., Blob, feature envy, etc.) and is expressed as a logical 

combination of a set of quality metrics/threshold values. These detection rules are 

generated/learned from real instances of code-smells using genetic algorithm [7]. When 

executed, the code-smells detector returns a list of existing code-smell instances in the 

current version of the program. 

Design pattern detector (label C). This component is responsible for detecting 

existing design pattern instances in the code being refactored. Extensive research has been 

devoted to develop techniques to automatically detect instances of design patterns in the 

code and design levels. In our approach, we are using a detection mechanism that is inspired 

by the work of Heuzeroth et al. [196]. A design pattern P is defined by a tuple of program 

elements such as classes, methods conforming to the restrictions or rules of a certain design 

pattern. The detection strategy [196] is based on static and dynamic specifications of the 

pattern. In MORE, we use only the static specifications with a post-processing step to 

eliminate redundancies. Static specifications are based on predicates to identify the types of 

code elements like classes, methods, calls, etc. and relate them to the roles in the pattern. 

Each design pattern P=(Sc, Sr) is then identified as a tuple of code elements Sc that are 

components of P, and a set of binary relations Sr between them. For instance, according to 

its specifications, the Factory method pattern is defined as follows: PFactoryMethod=(Sc, Sr) 

where 

 Sc={AbstractCreator, ConcreteCreator, ProductInterface, ConcreteProduct, 

FactoryMethod, ConcreteFactoryMethod} represents the code elements involved in the 

design pattern. 
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 Sr represents the minimum set of binary relations between the elements of Sc that should 

be satisfied for the current design pattern, i.e., 

{ConcreteCreator inherits from AbstractCreator, 

ConcreteProduct implements ProductInterface, 

AbstractCreator defines FactoryMethod, 

FactoryMethod returns ProductInterface, 

ConcreteCreator defines ConcreteFactoryMethod, 

ConcreteFactoryMethod returns ConcreteProduct, 

ConcreteFactoryMethod overrides FactoryMethod} 

Software quality evaluator (label D). This component consists of a set of software 

metrics that serves to evaluate the software design improvements after refactoring. Hence, 

the expected benefit from refactoring is to enhance the overall software design quality, as 

well as fixing code-smells [18]. We use, in our approach the QMOOD (Quality Model for 

Object-Oriented Design) model [193] to estimate the effect of the suggested refactoring 

solutions on quality attributes. 

List of refactorings (label E). The MORE tool currently supports the following 

refactoring types: Move method, Move field, Pull up field, Pull up method, Push down field, 

Push down method, Inline class, Extract method, Extract class, Move class, Extract 

superclass, Extract subclass, and Extract interface [1]. We selected these refactoring because 

they are the most frequently used and they are implemented in modern IDEs such as Eclipse 

and Netbeans. 

We also considered specific blocks of refactorings to automatically introduce 

different types of design pattern instances. We are referring to some guidelines given in the 

literature for introducing instances of design patterns [124] [197]. MORE currently supports 

the following three design pattern types: Visitor, Factory Method, and Singleton. 

Introduce Visitor pattern. To introduce a visitor pattern, a sequence of refactoring 

operations should be applied in the right order. Algorithm 7.1 illustrates the necessary 

refactorings to be applied to introduce a Visitor pattern. The starting point is a class 
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hierarchy H that has a superclass/interface SC and a set of subclasses CC. The first step is to 

create for each functional method a corresponding visitor class (lines 5-10). Then, functional 

code fragments should be moved from the class hierarchy H to the visitor classes. To this 

end, we apply the Extract Method refactoring to extract the functional code from the 

functional methods (line 14). The original method will now simply delegate the new 

extracted one (at a later stage, these methods can be deleted and their call sites updated to 

use the appropriate visitor). The extracted method will be moved from the class hierarchy to 

the appropriate newly created visitor class (line 15). The new methods in visitor classes are 

named “visit*” using a Rename Method refactoring (line 16). An abstract Visitor class is 

introduced as a superclass for all the created visitors using an Extract Superclass refactoring 

(line 19). Now, an “accept” method is introduced in all the subclasses CC in H by extracting 

it from the initial methods, using an Extract Method refactoring (line 22). All functional 

methods now call the accept method with an instance of the appropriate Visitor subclass. 

Therefore, their definition can be pulled up to the SC class by using a Pull Up Method 

refactoring. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

input: hierarchy H 
SC = getSuperClass(H) 
CC = getSubClasses(H) 
visitors = ∅	
for each method m in SC do 
  if(m ∉ SC.constructors())   
    v = CreateEmptyClass(m.name) 
    v = renameClass(c.name+”visitor”) 
    visitors = visitors ∪ {v} 
end 
for each class c in CC do 
    for each method m in c do 
       visClass = V(m)//find visitor class that maps to the name of method 
       extractMethod(c, m, m1) 
       moveMethod(c, m1, visClass) 
       renameMethod(visClass, m1, “visit”+c.name) 
     end 
end 
Visitor=extractSuperClass(Visitors,“Visitor”+SC.name) 
for each class c in CC do 
    for each method m in c do 
        extractMethod(c, m, “accept”) 
        pullUpMethod(m, c, SC) 
     end 
end 

Algorithm 7.1 - Pseudo-code to introduce the Visitor design pattern. 
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Introduce Factory Method pattern. As described in Algorithm 7.2, which uses the approach 

developed by Ó Cinnéide and Nixon [127], a Factory Method pattern can be introduced 

starting from a Creator class that creates instances of Product class(es). The first step is to 

apply an extract interface refactoring (line 2) to abstract the public methods of the Product 

classes into an interface. All references to the Product classes in the Creator class are then 

updated to refer to this interface (lines 3-6). Then, for each constructor in each of the 

Product classes, a similar method is added in the Creator class that returns an instance of the 

correspondent Product class (lines 7-14). Finally all creations of Product objects in the 

Creator class are updated to use these new methods (line 15-18). 

 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

input: Class Creator, Class [] Products 
extractInterface(Products[], “abstract”+ Products.getName()) 
for each Object o in Creator do 
   if o.getType  Products[] then 
      o.renameType(o.getType()+“abstract”+ o.getType()) 
end 
for each p  Products[] do 
  for each constructor c in p do 
    m = addMethod(Creator, “create”+p.name()); 
    m.setReturnType(“abstract”+p.name()); 
    m.setParamList=c.paramList; 
    m.setBody=(“return new P(”+c.paramList+“);”); 
  end 
end 
for each Object o in Creator do 
  if o.getType  Products[] then 
    Creator.replaceObjectCreations(o.getType(), “create”+ o.getType()); 
end 

 

Algorithm 7.2 - Pseudo-code to introduce the Factory Method design pattern. 

 

Introduce Singleton pattern. Our formulation for the Singleton pattern is derived 

from [198] and [199]. Algorithm 7.3 describes the basic steps to introduce the Singleton 

Pattern. A Singleton class can be introduced starting from a candidate class Singleton. The 

first step (line 2) is to apply the classic refactoring operation, defined in Fowler’s 

catalog [25], Replace Constructor with Factory Method. The aim of this step is make the 

constructor private. Then access to this class will be performed via the newly generated 

static method getSingleton(), which will be the global access point to the Singleton 
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instance. The second step is to create a static field singleton of type Singleton with 

access level private (line 3) that will be initialized to “new Singleton()” in the body of the 

new method getSingleton() (line 5). The selection statement ensures that the field 

singleton is instantiated only once, i.e., when it is null. 

1. 
2. 
 
3. 
4. 
5. 
6. 
 

input: Class Singleton 
Replace_Constructor_with_Factory_Method(Singleton.constructor, 
“get”+ Singleton.name); 
addField(singleton, Singleton, private, static); 
if(singleton == null) 
    initialize(singleton, “new Singleton()”); 
end 

Algorithm 7.3 - Pseudo-code to introduce the Singleton design pattern. 

 

We selected these three design patterns because they are frequently used in practice, 

and it is widely believed that they embody good design practice [195]. The algorithms here 

apply a typical implementation of the pattern, and leave to the developer the task of tailoring 

the implementation to fit the context, if necessary. Note that if an atomic refactoring fails 

due to a non-satisfied precondition, the whole refactoring sequence that applies the design 

pattern will be rejected. 

Coherence constraints checker (label F). The aim of this component is to prevent 

incoherent changes to code elements. Most refactorings are relatively simple to implement 

and it is straightforward to show that they preserve behaviour assuming their pre-conditions 

are true [17]. However, until now there is no consensual way to investigate whether a 

refactoring operation is semantically feasible and meaningful [29]. Preserving behavior 

does not mean that the coherence of the refactored program is also preserved. For instance, 

a refactoring solution might move a method calculateSalary() from the class Employee 

to the class Car. This refactoring could improve program structure by reducing the 

complexity and coupling of the class Employee while preserving program behavior. 

However, having a method calculateSalary() in the class Car does not make sense from 

the domain semantics standpoint. To avoid this kind of problem, we defined a set of 
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semantic coherence constraints that must be satisfied before applying a refactoring in order 

to prevent incoherent changes to code elements. 

Search process (label G). Our approach is based on a multi-objective optimization 

using the Non-dominated Sorting Genetic Algorithm (NSGA-II) [24] to formulate the 

refactoring suggestion problem. We selected NSGA-II because it is widely-used in the field 

of multi-objective optimization, and demonstrates good performance compared to other 

existing metaheuristics in solving many software engineering problems [91]. Thus our 

approach can be classified as Search Based Software Engineering (SBSE) [91] for which it 

is established best practice to define a representation, fitness functions and computational 

search algorithm. Referring to Figure 7.1, the search process takes as input the source code 

that is then parsed into a more manipulable representation (label A), a set of code-smell 

detectors (label B), a set of design patterns detectors (label C), a software quality evaluator 

(label D) that evaluates post- refactoring software quality, a set possible refactoring 

operations to be applied (label E), and set of constraints (label F) to ensure semantic 

coherence of the code after refactoring. As output, our approach suggests a list of 

refactoring operations that should be applied in the right order to find the best compromise 

between fixing anti-patterns, introducing design patterns, and improving design quality. 

7.3.2 Semantic constraints 

Unlike existing automated refactoring approaches, MORE defines and uses a set of 

semantic constraints to prevent arbitrary changes that may affect the semantic coherence of 

the refactored program. Hence, applying a refactoring where it is not needed is highly 

undesirable as it may introduce semantic incoherence and unnecessary complexity to the 

original design. To this end, we considered several semantic constraints that we defined in 

Section 6.3.3 including Vocabulary-based similarity constraint (VS), Dependency-based 

similarity constraint (DS), Implementation-based similarity constraint (IS), Feature 

inheritance usefulness constraint (FIU), and Cohesion-based dependency constraint (CD).  
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Furthermore, we introduced some semantic constraints related to the introduction of 

design patterns. Before introducing a design pattern to a particular design fragment, the 

basic intent of the pattern should exist in that design fragment already. This starting point is 

termed a “precursor” in the nomenclature of Ó Cinnéide and Nixon [127], and is not taken 

into account in much of the existing work in automated refactoring. MORE formulates the 

notion of precursor as a set of semantic constraints that should be satisfied when introducing 

design patterns. 

The semantic constraint we use for the Factory Method pattern is that the Creator 

class must create a concrete instance of a Product class [127]. This situation could require 

the application of the Factory Method pattern, if the developer decides that the Creator class 

should be able to handle several different types of Product. MORE analyzes, using 

Soot [190], all the method bodies of a candidate Creator class to retrieve statements 

containing the operator “new” that occur within its functional methods’ body. If the 

candidate Creator class does not create instances of the Product class, then there is no need 

to introduce a Factory Method pattern. 

The semantic constraints for the Visitor pattern involve the situation when it is 

required to accumulate new information from an object structure, but the classes of objects 

in the structure do not support the required behavior [199]. This relates in general to 

complex hierarchies that have a large number of inherited methods or with God classes that 

can be detected [127]. 

The semantic constraints we use for the Singleton pattern is that the class under 

refactoring (the candidate Singleton): 1) has only one instance, and 2) provide a global point 

of access to it, i.e., a method called from other classes in the system. These two constraints 

can be checked using static program analysis technique. 

7.3.3 Multi-objective formulation of MORE 

a) Search technique 
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MORE uses NSGA-II, one of the most popular algorithms that have shown good 

performance in solving SE problems based on recent surveys [90]. A detailed description of 

NSGA-II is given in Section 2.3.4. 

b) Solution representation 

In our NSGA-II design, we use the same vector-based solution representation 

adopted in our GA adaptation. The description of our solution representation is detailed in 

Section 3.3.2. 

c) Solution evaluation 

To evaluate the fitness of each refactoring solution, we used three objective 

functions according to each objective. 

 Code-smells objective function: It calculates the ratio of the number of corrected 

code-smells to the initial number of anti-patterns using the anti-patterns detector 

component. The anti-patterns correction ratio (CCR) is defined as follows: 

ܴܥܥ ൌ
ݏ݊ݎ݁ݐݐܽ݌݅ݐ݊ܽ	݀݁ݐܿ݁ݎݎ݋ܿ	݂݋	ݎܾ݁݉ݑ݊
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 Design patterns objective function: It calculates the number of produced design 

pattern instances (NP) using the design patterns detector component. The NP values 

are then normalized in the range [0, 1] using min-max normalization. NP is defined 

as follows: 

ܰܲ ൌ෍݀݁ܿݑ݀݋ݎ݌	݊݃݅ݏ݁݀	ݏ݊ݎ݁ݐݐܽ݌ 

 Quality objective function: It calculates the quality improvement. MORE use the 

QMOOD (Quality Model for Object-Oriented Design) model [193] to estimate the 

effect of the suggested refactoring solutions on quality attributes. We calculate the 

overall quality gain (QG) for the six QMOOD quality factors (reusability, 

flexibility, understandability, effectiveness, functionality, and extendibility) that are 

formulated using 11 low-level design metrics. Full details about QMOOD are 

available in Bansiya and Davis original work [193] and Appendix A. Let Q={q1, 

q2,... q6} and Q'={q'1, q'2,... q'6} be respectively the set of quality attribute values 
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before and after applying the suggested refactorings, and {w1, w2,... w6} the weights 

assigned to each of these quality factors. Then the total quality gain (QG) is 

estimated as follows: 

ܩܳ ൌ෍ݓ௜ ∗ ሺݍ௜
ᇱ െ ௜ሻݍ

଺

௜ୀଵ

 

d) Selection and Change operators 

To guide the selection process, NSGA-II uses a binary tournament selection based 

on dominance and crowding distance [24]. NSGA-II sorts the population using the 

dominance principle, which classifies individual solutions into different dominance levels. 

Then, to construct a new population, NSGA-II uses a comparison operator based on a 

calculation of the crowding distance [24] to select potential individuals having the same 

dominance level. 

We use the same genetic operators formulation adopted in our GA adaptation. The 

description of our genetic operators (crossover and mutation) is detailed in Section 4.3.2.d). 

7.4 Design of the experimental study 

To evaluate the efficiency of our approach in fixing code-smells, introducing design 

patterns and improving design quality, we conducted a quantitative and qualitative 

evaluation with participants from both academia and industry. 

7.4.1 Research questions 

With this study, we intend to answer the following five research questions: 

 RQ1. To what extent can the proposed approach improve the quality of software 

systems? 

 RQ2. How does our approach perform compared to existing search-based refactoring 

approaches? 

 RQ3. How does our approach perform compared to existing non-search-based 

refactoring approaches? 
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 RQ4. How does NSGA-II perform compared to random search and other multi-

objective algorithms? 

 RQ5. Is our approach useful for software engineers in a real-world setting? 

7.4.2 Systems studied 

We applied our approach to a benchmark composed of four medium and large-size 

open-source Java projects: Xerces-J29, GanttProject30, AntApache31, and JHotDraw32. 

Xerces-J is a family of software packages for parsing XML. GanttProject is a cross-

platform tool for project scheduling. AntApache is a build tool and library specifically 

conceived for Java applications Finally, JHotDraw is a GUI framework for drawing editors.  

Table 7.1 provides some descriptive statistics about these four programs. We 

selected these systems for our validation because they came from four different 

organisations, involved different kinds of software engineering development and had 

different sizes, ranging from 21 to 240 KLOC with a large number of both design pattern 

and anti-pattern instances. As we previously note, in these corpora, we considered four 

different code-smell types (god class, feature envy, data class, and spaghetti code) and three 

different design patterns (Abstract Method Factory, Visitor and Singleton). Please refer to 

Appendix C for the definition of these code-smells and design patterns. 

Systems Release # classes KLOC 
# code-

smells 

# design 

patterns 

Xerces-J v2.7.0 991 240 81 36 

GanttProject v1.10.2 245 41 49 15 

AntApache  v1.8.2 1191 255 92 38 

JHotDraw  v 6.1 585 21 24 18 

Table 7.1 – Systems statistics. 

                                                 
29 http://xerces.apache.org/xerces-j/ 
30 www.ganttproject.biz/ 
31 http://ant.apache.org/ 
32 http://www.jhotdraw.org/ 
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7.4.3 Analysis method and evaluation metrics 

We designed our experiments to answer our research questions. To answer RQ1, we 

conduct a quantitative and qualitative evaluation to evaluate the efficiency of our approach:  

Quantitative evaluation. We evaluate the efficiency of our approach for 1) fixing code-

smells, 2) introducing design patterns, and 3) improving software quality.  

- To evaluate the efficiency of our approach in fixing code-smells, we calculate the 

code-smells correction ratio (CCR) on our benchmark. 

- To evaluate the efficiency of our approach in introducing design patterns, we 

calculate the number of new design pattern instances (NP) that are introduced. 

- To evaluate the efficiency of our approach in improving software quality, we 

calculate the overall quality gain (QG) using the QMOOD (Quality Model for Object-

Oriented Design) model [193]. 

Qualitative evaluation. To evaluate the usefulness of the suggested refactorings, we 

performed a qualitative evaluation with six PhD students in Software Engineering; two of 

whom are working at General Motors as senior software engineers. The participants have 

an average of 6.5 years programming experience in Java and familiar with the evaluated 

open-source systems. We asked the participants to manually evaluate, for each system, 10 

refactoring operations that are selected at random from the suggested refactoring solutions. 

Participants assign a correctness score of 0 or 1 for each refactoring according to its 

coherence with the program semantics. Participants were aware that they are going to 

evaluate the semantic coherence of refactoring operations, but do not know the particular 

experimental research questions (the approaches and algorithms being compared). To this 

end, we define the metric refactoring meaningfulness (RM) that corresponds to the number 

of meaningful refactoring operations, in terms of semantic coherence, over the total number 

given to the participants to evaluate. RM is defined as follows: 

 

ܯܴ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݈ݑ݂݃݊݅݊ܽ݁݉	#
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To answer RQ2, we compared our approach to state-of-the-art approaches that use 

SBSE in terms of ACR, NP, and the QG. Hence, for a proposed approach to be adopted it 

must also outperform the state of the art for the problem in hand. To this end, we compared 

our approach to Seng et al. [21], Jensen et al. [126], and our GA-based approach (describes 

in Chapter 4). These approaches are designed each for a specific purpose, i.e., improve 

quality metrics or fix design patterns. Thus, to make the comparison fair, we apply the 

suggested refactorings of each approach, and we calculate our evaluation metrics (CCR, 

NP, QG, and RM) 

To answer RQ3, we compared our refactoring results with a popular anti-patterns 

detection and correction tool JDeodorant [83] that do not use heuristic search techniques in 

terms of ACR and RM. The current version of JDeodorant [83] is implemented as an 

Eclipse plug-in that identifies certain types of code-smells using quality metrics and then 

proposes a list of refactoring operations to fix them. For instance, to fix God class, 

JDeodorant suggests standard refactoring solution based on a move method refactorings. 

To answer RQ4, we used mainly two performance indicators to compare the different 

algorithms used in our experiments. When comparing two mono-objective algorithms, it is 

usual to compare their best solutions found so far during the optimization process. 

However, this is not applicable when comparing two multi-objective evolutionary 

algorithms since each of them gives as output a set of non-dominated (Pareto equivalent) 

solutions. Different metrics for measuring the performance of multi-objective optimization 

methods exist. Zitzler et al. [200] provide a comprehensive review of quality indicators for 

multi-objective optimization, finding that many commonly used metrics do not reliably 

reflect the performance of an optimization algorithm. One of the few recommended metrics 

is the Hypervolume and the Spread indicators. 

- Hypervolume (HV): this metric calculates the proportion of the volume covered by 

members of a non-dominated solution set returned by the algorithm. A higher 

Hypervolume value means better performance, as it indicates solutions closer to the 
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optimal Pareto Front. The most interesting features of this indicator are its Pareto 

dominance compliance and its ability to capture both convergence and diversity. 

- Spread (∆): It measures the distribution of solutions into a given front. The idea 

behind the spread indicator is to evaluate diversity among non-dominated solutions. 

An ideal distribution has zero value for this metric when the solutions are uniformly 

distributed. An algorithm that achieves a smaller value for Spread can get a better 

diverse set of non-dominated solutions. For further details about the formulation of 

these indicators, please refer to [200] and [201]. 

To answer RQ5, we asked our participants to manually evaluate the usefulness of 

the introduced design patterns in the current software design by assigning a usefulness 

score in the range [0,5]. We consider a design pattern as useful if its assigned score is ≥3. 

We define the metric design patterns usefulness (PU) as follows.  

ܷܲ ൌ
ݏ݊ݎ݁ݐݐܽ݌	݊݃݅ݏ݁݀	݈ݑ݂݁ݏݑ	#

ݏ݊ݎ݁ݐݐܽ݌	݊݃݅ݏ݁݀	݀݁ܿݑ݀݋ݎݐ݊݅	#
 

Due to the stochastic nature of the algorithms/approaches we are studying, they can 

provide different results for the same problem instance from one run to another. To cater 

for this issue and to make inferential statistical claims, our experimental study is performed 

based on 31 independent simulation runs for each algorithm/technique studied. The 

obtained results are statistically analyzed using the Wilcoxon rank sum test [202] with a 

95% confidence level (α = 5%). The Wilcoxon rank sum test is applied between NSGA-II 

and each of the other techniques: Seng et al. [21], Jensen et al. [126], and GA-based 

approach. Our tests show that the obtained results are statistically significant with p-

value<0.05. 

7.4.4 Algorithms parameter tuning 

An important aspect of research on metaheuristic search algorithms is the selection 

and tuning of the algorithms’ parameters, which is necessary in order to ensure not only fair 

comparisons, but also for potential replication. To this end, we report our algorithmic 

parameter tuning and selection used to facilitate replication of our findings. The initial 
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population/solutions of NSGA-II, are completely random. The stopping criterion is when 

the maximum number of function evaluations, set to 120,000, is reached. The crossover 

operator performs crossover with a probability 0.6. The mutation probability used is 0.3. 

The semantic constraint thresholds were fixed as follows: VS≥0.55, DS≥0.41, IS≥0.6, 

FIU≥0.76, and CD≥0.5. After several trial runs of the simulation, the parameter values were 

fixed. There are no general rules to determine these parameters [203], and therefore we set 

the combination of parameter values by trial and error. For each algorithm, we repeat the 

simulation 31 times in each case, and compute the median value. 

7.5 Results 

In this section, we present the answer to each research question in turn, indicating 

how the results answer each question. 

Results for RQ1. The results relating in RQ1 are described in Table 7.2. After 

applying the proposed refactoring operations by our approach (MORE), we found that, on 

average, 86% of the detected code-smells were fixed (CCR) for all the four studied 

systems. This high score is considered significant to improve the quality of the refactored 

systems by fixing the majority of code-smells that were from different types (God class, 

Feature Envy, Data Class, and Spaghetti Code). We found that the majority of non-fixed 

code-smells are related to the God class type. This type of code-smell usually requires a 

large number of refactoring operations and is known to be very difficult to fix. 

Moreover, we found that MORE succeeded in producing design pattern instances. 

Table 7.2 shows the number of new design pattern instances for each system. MORE 

successfully introduced an average of 7 design patterns (NP) that were from different types 

(Factory Method, Visitor and Singleton) for all the four studied systems. This can be very 

helpful for software engineers who might be interested to the introduction of design 

patterns to make their software systems more understandable, flexible, and maintainable. In 

addition, when applying the suggested refactorings we noticed that some God classes are 

fixed when involved in introducing a visitor pattern. For instance, we observe that the God 
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class GanttTree  in GanttProject, was fixed automatically when introducing a Visitor 

pattern. In addition, the new structure of this class become more flexible with the Visitor 

pattern where new functionalities and behavior can be easily added without affecting the 

original class. 

Systems Algorithms 
ACR NP QG 

Score p-value Score p-value Score p-value 

Xerces-J 

MORE 89%  12  0.47  
Seng et al. 23% < 0.05 0 < 0.01 0.54 < 0.02 
Jensen et al. 14% < 0.04 31 < 0.01 0.41 < 0.01 
GA-based approach 88% < 0.04 0 < 0.01 0.32 < 0.01 

GanttProject 

MORE 88%  7  0.34  
Seng et al. 24% < 0.02 1 < 0.01 0.33 < 0.01 
Jensen et al. 33% < 0.05 14 < 0.01 0.35 < 0.01 
GA-based approach 84% < 0.05 0 < 0.01 0.21 < 0.01 

AntApache 

MORE 86%  4  0.5  
Seng et al. 7% < 0.04 0 < 0.01 0.52 < 0.01 
Jensen et al. 12% < 0.01 28 < 0.02 0.51 < 0.01 
GA-based approach 87% < 0.01 0 < 0.01 0.39 < 0.01 

JHotDraw 

MORE 83%  4  0.17  
Seng et al. 38% < 0.01 0 < 0.01 0.19 < 0.01 
Jensen et al. 25% < 0.01 9 < 0.01 0.14 < 0.01 
GA-based approach 88% < 0.01 0 < 0.01 0.1 < 0.01 

Average (all 
systems) 

MORE 86% 7 0.37 
Seng et al. 23% 0.25 0.39 
Jensen et al. 21% 20.5 0.35 
GA-based approach 86% 0 0.25 

Table 7.2 - ACR, NP, and QG median values of 31 independent runs of MORE, Seng et al., 

Jensen et al., and GA-based approach. 

In terms of quality improvement (QG), as can be seen in Table 7.2, MORE 

succeeded in improving the quality of the four studied systems, with an average QG score 

of 0.37 in terms of QMOOD quality attributes. In Figure 7.2, we show the obtained QG 

values that we calculated for each QMOOD quality attribute before and after refactoring for 

each studied system. We found that the systems quality increase across the four QMOOD 

quality factors. Understandability is the quality factor that has the highest QG value; 

whereas the effectiveness quality factor has the lowest one. This due to two possible 

reasons 1) the majority of non-fixed code-smells (God class, spaghetti code) are known to 

increase the coupling (DCC) within classes which heavily affect the quality index 
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calculation of the Effectiveness factor; 2) the vast majority of suggested refactoring types 

were move method, move field, and extract class that are known to have a high impact on 

coupling (DCC), cohesion (CAM) and the design size in classes (DSC) that serves to 

calculate the understandability quality factor. Furthermore, we noticed that JHotDraw 

produced the lowest quality increase for the four quality factors. This is justified by the fact 

that JHotDraw is known to be of good design and implementation practices [28] and it 

contains few code-smell instances comparing to the three other studied systems. 

The p-values of the Wilcoxon rank sum test indicate whether the median of the 

approach (Seng/Jensen/GA-based approach) is statistically different from MORE with a 

95% confidence level (α = 0.05). A statistical difference is accepted at p<=0.05. 

 

Figure 7.2 - QMOOD quality factors gain obtained by MORE. 

 

The obtained results are promising, however, improving the design structure is not 

always enough to determine whether our approach produce a coherent program and fit with 

software engineers expectations. Figure 7.3, describes the results of our qualitative 

evaluation. We found that the majority of the suggested refactorings (an average of 86% 

over the four studied systems) could be successfully applied to the program and only a 

small number of the suggested refactorings were rejected by the participants due to 

semantic incoherencies in the source code. 
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To sum up, we can conclude that our approach succeeded in improving the code 

quality not only by fixing the majority of detected anti-patterns and introducing a 

considerable number of design patterns but also by a significant improvement on the 

overall design quality of the refactored program such as the user understandability, the 

reusability, and the flexibility. At the same time, the majority of the proposed refactoring 

operations are considered as semantically feasible and do not affect the semantic coherence 

of the refactored program from the point of view of potential users. 

 

Figure 7.3 - Refactoring meaningfulness (RM) evaluation. 

Results for RQ2. The results relating to RQ2 are summarized in Table 7.2. As 

described in Table 7.2, after applying the proposed refactoring operations, we found that 

more than 86% of detected code-smells were fixed (CCR) as an average for all the four 

studied systems. For instance, for GanttProject, 75% (9 over 12) of God classes, 86% (6 

over 7) of feature envy, 94% (15 over 16) of spaghetti code, 93% (13 over 14) of Data 

classes are fixed. This score is comparable to the correction score of GA-based approach 

having an average of 86%. However, the obtained results are much better than those of 

Seng et al., and Jensen et al. having respectively only 23% and 21%, on average for all the 

studied systems. 

In terms of patterns introduction, Jensen et al. produces the higher score by 

introducing, on average for the four systems, 20.5 design patterns. This score is higher than 
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the one obtained by MORE (an average of 7 patterns per system). This can be explained by 

the fact that Jensen et al. apply design patterns without considering if the design pattern is 

needed or not in that code fragment, i.e., the sole aim is to produce more design patterns. 

This is unlikely to be useful and efficient in practice because introducing a design pattern 

where it is not needed may increase the complexity of the system. For Seng et al. and GA-

based approach, we found that they are not able to produce design patterns. This is because 

the lists of refactorings they use are not geared for the introduction of design patterns. 

Furthermore, MORE produces comparable QG values to Seng et al. and Jensen et 

al. having respectively 0.37, 0.39 and 0.35, since the quality metrics improvement is a 

common component in the objective function of each approach. However GA-based 

approach produces a lower QG score since their approach is driven only by code-smell 

correction and not by improving quality metrics. On the other hand, despite the significant 

improvement in terms of QG for Seng et al. (the highest score), it is not effective at fixing 

code-smells (only 23% of anti-patterns are fixed). Thus these results provide evidence to 

support the claim that improving quality metrics does not necessarily mean that existing 

anti-patterns are fixed. 

More notably, we compared MORE to the three other approaches in terms of 

semantic coherence. Figure 7.3 summarizes our findings. Regarding the refactoring 

meaningfulness, for all of our four studied systems, an average of 86% of proposed 

refactoring operations are considered as semantically feasible and do not generate semantic 

incoherence. This score is significantly higher than the scores of the three other approaches 

having respectively only 40%, 35% and 46%, as RM scores for respectively, Seng et al., 

Jensen et al., and GA-based approach. Thus, our approach performs clearly better for RM. 

Moreover, we noticed that for the larger programs, the performance in terms of refactoring 

meaningfulness (RM) achieved by MORE is more notable than it is for the smaller 

programs. 

Results for RQ3. JDeodorant uses only structural information to detect and fix 

code-smells at the code level but not all the four code-smell types that we considered in our 
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experiments. Thus, to make the comparison fair, we performed our comparison using only 

the two common code-smells, God class and Feature envy, which can be fixed by both 

tools. Figure 7.4 summarizes our findings. The average number of fixed code-smells is 

comparable between both tools; however MORE is clearly far better in terms of 

semantically coherent refactorings. This can be explained by the fact that JDeodorant uses 

only structural metrics to evaluate the impact of suggested refactorings on the detected 

code-smells. In addition, it is also worth noting that MORE supports more refactoring types 

and addresses more code-smell types than does JDeodorant. 

 

Figure 7.4 - Comparison of our approach with JDeodorant in terms of (a) CCR and (b) RM. 

 

Results for RQ4. Figure 7.5 presents the results for RQ4 using the two quality indicators 

Hypervolume (HV) and Spread (∆) through 31 runs of NSGA-II, MOGA, and Random 

 

(a) 

 

(b)
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Search. For the HV, the higher the value, the better the algorithm performance, whereas, for 

the ∆, the lower value, the better the algorithm performance.  

 

 

Figure 7.5 - Boxplots using the quality measures (a) HV, and (b) Spread applied to NSGA-

II, MOGA, and Random Search through 31 independent run. 

 

According to the obtained results in Figure 7.5 (a), Random Search results are generally 

poor, whereas NSGA-II and MOGA obtain good results for the five systems. Moreover, as 

illustrated in Figure 7.5 (a), NSGA-II significantly outperforms MOGA when applied to 
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Xerces, GanttProject, and JHotDraw while presenting a similar performance for 

AntApache. This fact confirms the effectiveness of NSGA-II over MOGA in finding a 

well-converged and well-diversified set of Pareto-optimal refactoring solutions. For the ∆, 

is also desired that a multi-objective evolutionary algorithm maintains a good spread of 

solutions in the obtained set of solutions. Figure 7.5 (b) shows that NSGA-II has the better 

spread among all the other search-based algorithms in all systems.  

To summarize, the Wilcoxon rank sum test showed that in 31 runs, both NSGA-II 

and MOGA results were significantly better than random search. We conclude that there is 

empirical evidence that our multi-objective formulation surpasses the performance of 

random search thus our formulation is adequate (this answers RQ4).  

 

Results for RQ5. The results relating to RQ4 are summarized in Table 7.3. We observe 

that the majority (more than 83%) of the design patterns produced by MORE are 

considered as useful in the four studied systems since their introduction is guided by a set 

of semantic constraints and not arbitrary. However, we found that a relatively small number 

of patterns produced by Jensen et al. (less than 36%) are considered as feasible by the 

group of software engineers. The main reason is that these design patterns are applied in an 

arbitrary way, without considering if they are needed in that code fragment or not.  

Thus MORE produces higher increases in RM than the other three approaches, which 

is probably the cause of the significant score in terms of patterns usefulness. 

 

Systems MORE Jensen et al. 

Xerces-J 83%    (10|12) 35%    (11|31) 

GanttProject 86%    (6|7) 36%    (5|14) 

AntApache 100%    (4|4) 14%    (4|28) 

JHotDraw 100%    (4|4) 22%    (2|9) 

Table 7.3 - Comparison of MORE with Jensen et al. in terms of Patterns usefulness (PU). 
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7.6 Conclusion 

We presented, in this chapter, an automated multi-objective refactoring 

recommendation approach to improve design quality (as defined by software quality 

metrics), fix code-smells, and introduce design patterns. To evaluate our approach, we 

conducted a quantitative and qualitative evaluation with software engineers using a 

benchmark composed of four open source systems. The statistical analysis of the results 

provides evidence that our approach is more efficient comparing to the state-of-the-art of 

refactoring techniques. 

As part of our future work, we are planning to extend the validation of our approach 

with additional types of design patterns and code-smells. In addition, we intend to conduct 

an empirical study to investigate the correlation between introducing patterns and their 

impact on several types of code-smells. 



 

 

Chapter 8 : Conclusion 

 

In this chapter, we summarise the results and conclusions of this thesis. We also 

discuss the limitations and future research directions. 

8.1 Summary of contributions 

The main objective of this thesis was to develop an automated approach to 

recommend refactoring to help software engineers charged with the task of maintaining and 

evolving existing software systems. To this end, we applied different SBSE techniques 

which have been shown to be a practical and efficient way in solving several software 

engineering problems. Software refactoring is ideal for the application of SBSE techniques, 

in its two steps (1) identification of code fragments to be refactored, and (2) identification 

of the suitable refactoring operations to apply. 

The first contribution of our thesis, described in Chapter 3, is about generating code-

smells detection rules to support developers and relieve them from the burden of doing so 

manually. We see the code-smells detection problem as a combinatorial optimization 

problem to find the suitable detection rules using examples of code-smells. Typically, 

researchers and practitioners try to characterize different types of common code-smells and 

present symptoms to search for in order to locate possible code-smells in a system. In our 

approach, we have shown that this knowledge is not necessary to perform the detection. 

Instead, we use examples of code-smells to generate detection rules. Our approach 

succeeded in detecting the majority of code-smells with 86% of precision and 91% of 

recall. 

The second contribution is about automatically recommending refactoring solutions 

to fix the detected code-smells. We proposed four principal solutions. 

In the first solution, we considered the refactoring recommending task as a single-

objective optimization problem as described in Chapter 4. A refactoring solution is defined 

as a combination of refactoring operations that should minimize, as much as possible, the 
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number of detected code-smells. To this end, we use GA to find the best combination of 

refactoring operations from a large list of available refactorings. Our approach was tested 

on six medium and large size software systems and succeeded in fixing more than 90% of 

the detected code-smells. Indeed, one of the advantages of our approach is that it does not 

correct code-smells separately since we consider the correction task as a global process 

instead of a local one. In addition, we don't need to define an exhaustive list of code-smells 

and specify standard refactoring for each code-smell type.  

In the second solution, we extended our GA-based approach to prioritize the 

correction of code-smells in Chapter 5. We propose an approach that supports automated 

refactoring recommendation to fix code-smells where more critical code-smells are 

prioritized during the refactoring process. Hence, we formulated the refactoring 

recommending problem as an optimization problem to find the near-optimal sequence of 

refactorings according to a prioritization schema. To this end, we used a novel 

metaheuristic search by the means of Chemical Reaction Optimization, a newly established 

metaheuristics, to find the suitable refactoring solutions that maximize the number of 

corrected code-smells while prioritizing the most important, riskiest, and severest code 

fragments according to the developer’s preferences.  

The third solution is described in Chapter 6. We deal with the refactoring 

recommending task as a multi-objective optimization problem. We explore four objectives 

to optimize: 1) fix code-smells, 2) reduce the number of modifications/adaptations needed 

to apply refactorings, 3) preserve the semantic coherence of the refactored program, and 4) 

maintain the consistency with development/maintenance history. The idea is to find the best 

compromise between all of these objectives. Hence, by reducing the number of 

modifications, we reduce the complexity of the recommended refactorings and keep as 

much as possible the original design/code structure. Moreover, it is mandatory to preserve 

the semantic coherence and prevent arbitrary changes on code elements. Furthermore, we 

exploit knowledge from previously applied changes to recommend new refactorings. We 

evaluate the efficiency of our approach using a benchmark of six different industrial size 
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open-source systems, and six frequent code-smells types through an empirical study 

conducted with software engineers. 

From another perspective, as a fourth solution, we proposed a multi-objective 

formulation of refactoring recommending task where we consider the introduction of 

design patterns. We described, in Chapter 7, a recommending framework for automated 

multi-objective refactoring to find the best compromise between (1) introducing design 

patterns, (2) fixing code-smells, and (3) improving design quality. To evaluate our 

approach, we conducted a quantitative and qualitative evaluation with software engineers 

using a benchmark composed of four open source systems. The obtained results confirm the 

efficiency of our proposal compared to the state-of-the-art of refactoring techniques. 

8.2 Limitations and future research directions 

In this section, we discuss some limitations and open research directions related to 

our proposal. First, for code-smells detection, the performance of our approach depends on 

the availability of code-smell examples, which could be difficult to collect. We plan to 

extend our base of examples with additional badly-designed code in order to consider more 

programming contexts. Another direction worth to explore is to improve the detection of 

potential code-smells through the use of knowledge from software change history. Indeed, 

as reported in the literature [64] [118], classes participating in design problems (e.g., code-

smells) are significantly more likely to be subject to changes [118]. In other terms, if a 

code-smell (e.g., God Class) is created intentionally and remains unmodified or hardly 

undergo changes, the system may not experience any problems [63] [117]. Indeed, it has 

been shown that, in some cases, a large class might be the best solution [63]. For these 

reasons, combining software static metrics with software historical metrics can be an 

effective way to improve the detection of code-smells. Furthermore, we are working on the 

adaptation of our OO code-smells detection to detect anti-patterns in service-oriented 

software systems. 



200 

 

 

For the refactoring step, some limitations can be addressed and different future work 

directions can be explored. First, our multi-objective approach uses the development 

change history to recommend new refactorings. Nevertheless, the development change 

history is not always available especially for newly developed projects. To address this 

issue, we are working to extend our initial approach to support change history collected 

from other software systems in similar contexts. 

One of the notable limitations of our approach is that recommending refactoring 

offline a large list of refactorings may be a fastidious task for a software engineer. An 

important future direction consists of adapting our approach to work dynamically, i.e., 

online. Code-smells can be detected dynamically when the programmer is writing his code, 

and a list of possible refactorings can be recommended to help him in fixing the produced 

code-smells. Such approaches can be very helpful not only for improving software quality, 

but also for helping programmers to learn from their mistakes. Furthermore, regarding the 

search process itself, it is very important to put the programmer in the loop. An interactive 

multi-objective search can be very beneficial to recommend refactoring solutions that take 

into consideration the programmer’s preferences and needs. 

From another perspective, to apply some refactoring operations such as extract 

class, extract method, our approach assign arbitrary names to the modified code elements. 

However it is important to recommend consistent names for classes and method involved in 

refactoring. As part of our future work, we intend to automatically recommend consistent 

names for the refactored code elements derived from the used vocabulary. 

Furthermore, the work conducted in this theses lead as to think about several 

emprical studies to invertigate some beliefs about code-smells and refactroring. As part of 

our future research directions we intend to conduct several empirical studies. For instance, 

it is interesting to investigate 1) the correlation between the number of applied refactorings 

and the number of code-smells, 2) the correlation between code-smells and QMOOD 

quality attributes, and 3) the correlation between correcting code-smells and introducing 

new code-smell instances or fixing other ones implicitly. Moreover, it is interesting to 
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investigate the definition of some code-smells. For instance, a God class is known to be an 

abnormally large class that monopolize the behaviour of a system. This definition can be 

empirically investigated through dynamic analysis according to a set of execution scenarios 

to make sure whether it monopolizes the behaviour. 
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Appendix A: Definitions of the used quality attributes 

and metrics 

 

In this Appendix, we present the definitions of the quality attributes and metrics 

used in this thesis. 

A.1 Quality attributes 

We consider the following quality attributes according to Bansiya and Davis’ 

QMOOD quality model [193]: 

- Reusability: The degree to which a software module or other work product can be 

used in more than one computer program or software system. 

- Flexibility: The ease with which a system or component can be modified for use in 

applications or environments other than those for which it was specifically designed. 

- Understandability: The properties of designs that enable it to be easily learned and 

comprehended. This directly relates to the complexity of design structure. 

- Functionality: The responsibilities assigned to the classes of a design, which are made 

available by the incorporation of a new requirements in the design. 

- Extendibility: Refers to the presence and usage of properties in an existing design that 

allow for the incorporation of new requirements in the design. 

- Effectiveness: The degree to which a design is able to achieve the desired functionality 

and behavior using OO design concepts and techniques. 

A.2 Metrics 

We consider the following metrics [193] [204] [182]: 

- Design Size in Classes (DSC): Counts the total number of classes in the design 

excluding imported library classes. 

- Number Of Hierarchies (NOH): Counts the number of class hierarchies in the design. 
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- Average Number of Ancestors (ANA): Signifies the average number of classes from 

which each class inherits information.  

- Data Access Metric (DAM): Counts the ratio of the number of private (protected) 

attributes to the total number of attributes declared in the class.  

- Direct Class Coupling (DCC): Counts of the number of different classes that a class is 

directly related to. The metric includes classes that are directly related by attribute 

declarations and message passing (parameters) in methods. 

- Cohesion Among Methods of Class (CAM): Computes the relatedness among 

methods of a class, computed using the summation of the intersection of parameters of 

a method with the maximum independent set of all parameter types in the class. 

- Measure Of Aggregation (MOA): Counts of the number of data declarations whose 

types are user-defined classes. 

- Measure of Functional Abstraction (MFA): Counts the ratio of the number of 

methods inherited by a class to the number of methods accessible by member methods 

of the class. 

- Number of Polymorphic Methods (NOP): Counts the number of the methods that 

can exhibit polymorphic behaviour. Interpreted as the sum over all classes, where a 

method can exhibit polymorphic behaviour if it is overridden by one or more 

descendent classes. 

- Class Interface Size (CIS): Counts the number of public methods in a class. 

Interpreted as the average over all classes in a design.  

- Number Of Methods (NOM): Counts of all the methods defined in a class. 

- Number of Fields (NOF): Measures the number of fields of the classes. 

- Coupling Between Objects (CBO): Counts the number of other classes to which a 

class is coupled. 

- Number Of Attributes (NOA): Counts the number of attributes in a class. 

- Number Of Public Attributes (NOPA): Counts the number of public attributes in a 

class. 

- Number Of Private Attributes (NPA): Counts the number of private attributes in a 
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class. 

- Number Of Accessor Methods (NOAM): Counts the number of getter and setter 

methods in a class. 

- Access Of Foreign Data (AOFD): Counts the number of attributes from unrelated 

classes that are accessed directly or by invoking accessor methods. 

- Tight Class Cohesion (TCC): Counts the relative number of method pairs of a class 

that access in common at least one attribute of the measured class. 

- Weight Of Class (WOC): Counts the number of non-accessor methods in a class 

divided by the total number of members of the interface. 

- Weighted Method Count (WMC): Represents the sum of the statical complexity of 

all methods of a class. 

- Lines Of Code (LOC): Counts the number of lines of code in a class or method. 

- Changing Methods (CM): Counts the number of distinct methods that call the 

measured method. 
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Appendix B: Definitions of the used refactoring 

operations 

 

 

This Appendix presents the definitions of the refactoring operations used in this 

thesis. 

B.1 Refactoring operations 

- Move Method: Moves a method from a source class to a target class in another 

hierarchy. This refactoring can be applied when classes have too much behavior or 

when classes are collaborating too much and are too highly coupled. 

- Move Field: Moves a field from a source class to a target class. This refactoring can be 

applied when a field is used by another class more than the class on which it is defined. 

- Extract Class: Split a class into two classes by moving some methods and fields to a 

new class. This refactoring can be applied when one class doing work that should be 

done by two. 

- Incline Class: Merges two classes into one class by moving all features to the second 

class and delete it.  This refactoring can be applied when a class isn't doing very much. 

- Extract Interface: Several clients use the same subset of a class's interface, or two 

classes have part of their interfaces in common. 

- Extract Superclass: Creates a superclass and move the common features to the 

superclass. This refactoring can be applied when two classes or more share similar 

features. 

- Extract Subclass: Creates a subclass and move the some features to the subclass. This 

refactoring can be applied when a class has features that are used only in some 

instances. 

- Push Down Field: Moves a field from some class to those subclasses that require it. 
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This refactoring can be aplied to simplify the design by reducing the number of classes 

that have access to the field. 

- Pull Up Field: Moves a field from some class(es) to the immediate superclass. This 

refactoring can be applied to eliminate duplicate field declarations in sibling classes. 

- Push Down Method: Moves a method from some class to those subclasses that require 

it. This refactoring can be applied to simplify the design by reducing the size of class 

interfaces. 

- Pull Up Method: Moves a method from some class(es) to their immediate  superclass. 

This refactoring can be applied to help eliminate duplicate methods among sibling 

classes, and hence reduce code duplication in general. 
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Appendix C: Definitions of the used code-smells and 

design patterns 

 

 

This Appendix presents the definitions of the code-smells and design patterns used 

in this thesis. 

C.1 Code-smells 

In this thesis, we primarily focus on the detection/correction the following code-

smell types [1] [129] [84] [70] :   

Code-smells Description 

Blob (also 
called God 
Class) 

It is found in design fragments where one large class monopolizes the behavior of 
a system (or part of it), and the other classes primarily contain data. It is a large 
class that declares many fields and methods with a low cohesion and almost has 
no parents and no children. 

Data Class It contains only data and performs no processing on these data. It is typically 
composed of highly cohesive fields and accessors. 

Spaghetti 
Code 

It is a code with a complex and tangled control structure. This code-smell is 
characteristic of procedural thinking in object-oriented programming. Spaghetti 
Code is revealed by classes with no structure, declaring long methods with no 
parameters, and utilising global variables. Names of classes and methods may 
suggest procedural programming. Spaghetti Code does not exploit and prevents 
the use of object-orientation mechanisms, polymorphism and inheritance. 

Functional 
Decomposition 

It occurs when a class is designed with the intent of performing a single function. 
This is found in code produced by non-experienced object-oriented developers. 

Schizophrenic 
Class 

It occurs when a public interface of a class is large and used non-cohesively by 
client methods i.e., disjoint groups of client classes use disjoint fragments of the 
class interface in an exclusive fashion. 

Shotgun 
Surgery It is found when a method heavily uses attributes and data from one or more 
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external classes, directly or via accessor operations. Furthermore, in accessing 
external data, the method is intensively using data from at least one external 
capsule. 

 

We decided to focus our attention on these code-smells because they are among the 

most related to faults and/or change proneness and the most common in the literature. 

C.2 Design patterns 

In this thesis, we primarily focus on the following design patterns [195]: 

Design 
Pattern 

Description 

Visitor 

Represent an operation to be performed on the elements of an object structure. 
Visitor allows defining a new operation without changing the classes of the 
elements on which it operates. In essence, the visitor allows adding new virtual 
functions to a family of classes without modifying the classes themselves; 
instead, one creates a visitor class that implements all of the appropriate 
specializations of the virtual function. 

Factory 
Method 

The Factory Method is a creational pattern which uses factory methods to deal 
with the problem of creating objects without specifying the exact class of object 
that will be created. It Define an interface for creating an object, but let 
subclasses decide which class to instantiate. Factory Method lets a class defer 
instantiation to subclasses. 

Singleton 

Restrict the instantiation of a class to one object. This is useful when exactly one 
object is needed to coordinate actions across the system. The concept is 
sometimes generalized to systems that operate more efficiently when only one 
object exists, or that restrict the instantiation to a certain number of objects. 

 


