

Université de Montréal

A Mono- and Multi-objective Approach for

Recommending Software Refactoring

par

Ali Ouni

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences

en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en Informatique

Août, 2014

© Ali Ouni, 2014

Résumé

Les systèmes logiciels sont devenus de plus en plus répondus et importants dans notre

société. Ainsi, il y a un besoin constant de logiciels de haute qualité. Pour améliorer la

qualité de logiciels, l’une des techniques les plus utilisées est le refactoring qui sert à

améliorer la structure d'un programme tout en préservant son comportement externe. Le

refactoring promet, s'il est appliqué convenablement, à améliorer la compréhensibilité, la

maintenabilité et l'extensibilité du logiciel tout en améliorant la productivité des

programmeurs. En général, le refactoring pourra s’appliquer au niveau de spécification,

conception ou code. Cette thèse porte sur l'automatisation de processus de recommandation

de refactoring, au niveau code, s’appliquant en deux étapes principales: 1) la détection des

fragments de code qui devraient être améliorés (e.g., les défauts de conception), et 2)

l'identification des solutions de refactoring à appliquer.

Pour la première étape, nous traduisons des régularités qui peuvent être trouvés dans

des exemples de défauts de conception. Nous utilisons un algorithme génétique pour

générer automatiquement des règles de détection à partir des exemples de défauts.

Pour la deuxième étape, nous introduisons une approche se basant sur une recherche

heuristique. Le processus consiste à trouver la séquence optimale d'opérations de

refactoring permettant d'améliorer la qualité du logiciel en minimisant le nombre de défauts

tout en priorisant les instances les plus critiques. De plus, nous explorons d'autres objectifs

à optimiser: le nombre de changements requis pour appliquer la solution de refactoring, la

préservation de la sémantique, et la consistance avec l’historique de changements. Ainsi,

réduire le nombre de changements permets de garder autant que possible avec la conception

initiale. La préservation de la sémantique assure que le programme restructuré est

sémantiquement cohérent. De plus, nous utilisons l'historique de changement pour suggérer

de nouveaux refactorings dans des contextes similaires.

En outre, nous introduisons une approche multi-objective pour améliorer les attributs

de qualité du logiciel (la flexibilité, la maintenabilité, etc.), fixer les « mauvaises »

pratiques de conception (défauts de conception), tout en introduisant les « bonnes »

pratiques de conception (patrons de conception).

Mots-clés : Défauts de Conception, Restructuration de logiciel, Maintenance de logiciels.

ii

Abstract

Software systems have become prevalent and important in our society. There is a constant

need for high-quality software. Hence, to improve software quality, one of the most-used

techniques is the refactoring which improves design structure while preserving the external

behavior. Refactoring has promised, if applied well, to improve software readability,

maintainability and extendibility while increasing the speed at which programmers can

write and maintain their code. In general, refactoring can be performed in various levels

such as the requirement, design, or code level. In this thesis, we mainly focus on the source

code level where automated refactoring recommendation can be performed through two

main steps: 1) detection of code fragments that need to be improved/fixed (e.g., code-

smells), and 2) identification of refactoring solutions to achieve this goal.

For the code-smells identification step, we translate regularities that can be found in

such code-smell examples into detection rules. To this end, we use genetic programming to

automatically generate detection rules from examples of code-smells.

For the refactoring identification step, a search-based approach is used. The process

aims at finding the optimal sequence of refactoring operations that improve software

quality by minimizing the number of detected code-smells while prioritizing the most

critical ones. In addition, we explore other objectives to optimize using a multi-objective

approach: the code changes needed to apply refactorings, semantics preservation, and the

consistency with development change history. Hence, reducing code changes allows us to

keep as much as possible the initial design. On the other hand, semantics preservation

insures that the refactored program is semantically coherent, and that it models correctly the

domain-semantics. Indeed, we use knowledge from historical code change to suggest new

refactorings in similar contexts.

Furthermore, we introduce a novel multi-objective approach to improve software

quality attributes (i.e., flexibility, maintainability, etc.), fix “bad” design practices (i.e.,

code-smells) while promoting “good” design practices (i.e., design patterns).

Keywords: Search-based Software Engineering, Software Maintenance, Code-smells, Refactoring.

Contents

Chapter 1 : Introduction ... 1

1.1 Research context .. 1

1.2 Problem statement .. 2

1.3 Research objectives and main contributions .. 6

1.3.1 Objectives ... 6

1.3.2 Contributions .. 7

1.4 Thesis organisation .. 10

Chapter 2 : State of the art ... 12

2.1 Introduction .. 12

2.2 Background .. 12

2.2.1 Code smells .. 13

2.2.2 Refactoring ... 14

2.2.3 Search-based software engineering .. 15

2.3 Metaheuristic search techniques .. 15

2.3.1 Genetic Algorithm .. 16

2.3.2 Genetic Programming .. 17

2.3.3 Chemical Reaction Optimization ... 17

2.3.4 Non-dominated Sorting Genetic Algorithm ... 22

2.4 Detection of code-smells .. 24

2.4.1 Manual approaches... 24

2.4.2 Symptom-based detection .. 25

2.4.3 Metric-based approaches .. 26

2.4.4 Probabilistic approaches... 28

2.4.5 Machine learning based approaches... 29

2.4.6 Visualization-based approaches ... 30

2.4.7 Code-smell detection tools ... 31

2.5 Management and prioritization of code-smells .. 34

2.6 Refactoring and code-smells correction ... 36

iv

2.6.1 Manual and semi-automated approaches ... 36

2.6.2 Semantics preservation for software refactoring.. 39

2.6.3 Search-based refactoring approaches ... 41

2.6.4 Refactoring tools .. 44

2.7 Recommendation systems in software engineering ... 45

2.8 Mining software repositories and historical data ... 48

2.9 Summary .. 50

Part 1: Code-smells detection .. 52

Chapter 3 : Search-based code-smells detection .. 53

3.1 Introduction .. 53

3.2 Code-smells detection challenges .. 53

3.3 Approach .. 55

3.3.1 Approach overview .. 55

3.3.2 GP adaptation ... 57

3.4 Evaluation .. 65

3.4.1 Research questions ... 65

3.4.2 Systems studied .. 66

3.4.3 Analysis method ... 67

3.4.4 Results .. 68

3.5 Discussion .. 70

3.6 Threats to validity .. 72

3.7 Conclusion ... 73

Part 2: Mono-objective code-smells correction ... 75

Chapter 4 : Search-based code-smells correction... 76

4.1 Introduction .. 76

4.2 Code-smells correction and refactoring challenges ... 77

4.3 Approach .. 78

4.3.1 Approach overview .. 78

4.3.2 GA adaptation .. 79

v

4.4 Evaluation .. 84

4.4.1 Research questions ... 85

4.4.2 Analysis method ... 85

4.4.3 Systems studied .. 86

4.4.4 Results .. 86

4.5 Discussions ... 88

4.6 Threats to validity .. 90

4.7 Conclusion ... 91

Chapter 5 : Prioritizing code-smells correction .. 93

5.1 Introduction .. 93

5.2 Code-smells prioritization .. 94

5.3 Approach .. 95

5.3.1 Approach overview .. 95

5.3.2 Problem formulation .. 96

5.3.3 CRO design .. 98

5.3.4 Implementation details ... 104

5.4 Evaluation .. 105

5.4.1 Research Questions and Objectives ... 105

5.4.2 Systems studied .. 106

5.4.3 Analysis method ... 107

5.4.4 Results .. 109

5.5 Discussions ... 117

5.6 Threats to validity .. 120

5.7 Conclusion ... 121

Part 3: Multi-objective software refactoring ... 123

Chapter 6 : A Multi-objective approach for recommending software refactoring ... 124

6.1 Introduction .. 124

6.2 Challenges in automated refactoring recommending ... 125

6.2.1 Problem statement .. 125

vi

6.2.2 Motivating example ... 127

6.3 Approach .. 129

6.3.1 Approach overview .. 129

6.3.2 Modeling refactoring recommending as a multi-objective problem 131

6.3.3 Semantic measures ... 134

6.3.4 NSGA-II for refactoring recommending .. 140

6.4 Evaluation .. 143

6.4.1 Research questions ... 143

6.4.2 Experimental setting and instrumentation .. 146

6.4.3 Empirical study results ... 153

6.5 Discussions ... 162

6.5.1 Refactoring impact ... 162

6.5.2 Other observations ... 165

6.6 Threats to validity .. 168

6.7 Conclusion ... 170

Chapter 7 : A Multi-objective refactoring recommendation approach to introduce

design patterns and fix anti-patterns ... 171

7.1 Introduction .. 171

7.2 Motivations .. 171

7.3 Approach: MORE .. 173

7.3.1 Approach overview .. 174

7.3.2 Semantic constraints .. 180

7.3.3 Multi-objective formulation of MORE .. 181

7.4 Design of the experimental study ... 183

7.4.1 Research questions ... 183

7.4.2 Systems studied .. 184

7.4.3 Analysis method and evaluation metrics.. 185

7.4.4 Algorithms parameter tuning ... 187

7.5 Results .. 188

vii

7.6 Conclusion ... 196

Chapter 8 : Conclusion ... 197

8.1 Summary of contributions .. 197

8.2 Limitations and future research directions ... 199

Related publications ... 202

Bibliography ... 204

Appendix A: Definitions of the used quality attributes and metrics 222

Appendix B: Definitions of the used refactoring operations .. 225

Appendix C: Definitions of the used code-smells and design patterns 227

viii

List of tables

Table 2.1 - CRO analogy between chemical and metaheuristic meanings. The first column

contains the properties of a molecule used in CRO. The second column shows the

corresponding meanings in the metaheuristic. ... 20

Table 3.1 - Code-smells example. .. 64

Table 3.2 - Detected classes. .. 65

Table 3.3 - Program statistics. .. 66

Table 3.4 - Code-smells detection results compared to DÉCOR ... 69

Table 3.5 – GP code-smells detection results compared to Simulated Annealing............... 70

Table 4.1 - Refactorings and its controlling parameters. ... 81

Table 4.2 - Correction results: CCR median values of 31 independent runs of GA. 87

Table 5.1 - Parameter settings used for the different algorithms. 104

Table 5.2 - Systems statistics. .. 106

Table 5.3 - Refactoring results: code-smells correction score. .. 111

Table 5.4 - Refactoring results: importance, risk, severity and RP scores. 114

Table 5.5 - CCR, ICR, RCR, SCR and RP median values of CRO, GP, SA and PSO over

31 independent simulation runs. .. 116

Table 6.1 - Refactoring examples and their involved actors and roles. 134

Table 6.2 - Example of a cohesion matrix. .. 140

Table 6.3 - Refactoring operations and their semantic measures....................................... 142

Table 6.4 - Programs statistics. .. 147

Table 6.5 - Analysed versions and refactorings collection. ... 148

Table 6.6 - Refactoring solutions for each studied system. ... 149

Table 6.7 - Survey organization. .. 150

ix

Table 6.8 - Empirical study results on 31 runs. The results were statistically significant on

31 independent runs using the Wilcoxon rank sum test with a 95% confidence level (α

< 5%). ... 153

Table 6.9 - Average refactoring results of different objective combinations with NSGA-II

(average of all systems) on 31 runs. The results were statistically significant on 31

independent runs using the Wilcoxon rank sum test with a 95% confidence level (α <

5%). .. 157

Table 7.1 - Studied Systems. .. 184

Table 7.2 - ACR, NP, and QG median values of 31 independent runs of MORE, Seng et al.,

Jensen et al., and GA-based approach. ... 189

Table 7.3 - Comparison of MORE with Jensen et al. in terms of Patterns usefulness (PU).

 .. 195

x

List of figures

Figure 1.1 - Thesis contributions ... 8

Figure 3.1 - Approach overview. ... 56

Figure 3.2 - Base of examples .. 57

Figure 3.3 - A tree representation of an individual. ... 60

Figure 3.4 - Crossover operator. .. 62

Figure 3.5 - Mutation operator ... 63

Figure 3.6 - Examples-size variation (example = system). .. 71

Figure 4.1 - Approach overview. ... 78

Figure 4.2 - Representation of a GA individual. .. 81

Figure 4.3 - Crossover operator. .. 84

Figure 4.4 - Mutation operator. .. 84

Figure 4.5 - GA precision comparison with Harman et al. .. 88

Figure 4.6 - Scalability of GA on different systems sizes.. 89

Figure 5.1 - Approach overview. ... 96

Figure 5.2 - Example of on-wall ineffective collision operator. .. 100

Figure 5.3 - Example of decomposition operator... 101

Figure 5.4 - Example of inter-molecular ineffective collision operator. 102

Figure 5.5 - Example of synthesis operator. .. 103

Figure 5.6 - Code-smells correction results per code-smell type for each studied systems for

(1) CRO (our approach), (2) CRO without prioritization, and (3) GA-based approach.

 .. 112

Figure 5.7 - Refactoring comparison results for the five systems for (1) CRO (our

approach), (2) CRO without prioritization, and (3) GA-based approach in terms of

ICR, RCR, SCR, and RP. ... 114

Figure 5.8 - CRO performance comparison with GA, SA and PSO. 117

Figure 5.9 - Impact of the number of refactorings on multiple runs on JFreeChart. 118

xi

Figure 5.10 - Suggested refactorings distribution for JFreeChart. 120

Figure 6.1 - Design fragment extracted from JFreeChart v1.0.9. 128

Figure 6.2 - Multi-Objective Search-based Refactoring. ... 130

Figure 6.3 - Semantics-based refactoring meta-model. ... 135

Figure 6.4 - Refactoring results of different objectives combination with NSGA-II in terms

of (a) code changes reduction, (b) semantics preservation, (c) Code-smells correction

ratio. ... 156

Figure 6.5 - Automatic refactoring precision comparison. .. 159

Figure 6.6 - Refactoring results of different algorithms in terms of (a) semantics

preservation, (b) code-smells correction ratio, (c) code changes reduction. 160

Figure 6.7 - Comparison results of our approach with JDeodorant: average code-smells

correction ratio (CCR), semantic coherence (RP) and code changes score (CC) on all

the systems. .. 161

Figure 6.8 - Comparison of our refactoring results with manual refactorings in terms of

precision. .. 162

Figure 6.9 - Impact of the suggested refactoring solution on QMOOD quality attributes. 164

Figure 6.10 - Impact of the number of refactorings on multiple executions on JFreeChart.

 .. 165

Figure 6.11 - Suggested refactorings distribution. ... 166

Figure 7.1 - Architecture of MORE. .. 174

Figure 7.2 - QMOOD quality factors gain obtained by MORE. .. 190

Figure 7.3 - Refactoring meaningfulness (RM) evaluation. .. 191

Figure 7.4 - Comparison of our approach with JDeodorant in terms of (a) CCR and (b) RM.

 .. 193

Figure 7.5 - Boxplots using the quality measures (a) HV, and (b) Spread applied to NSGA-

II, MOGA, and Random Search through 31 independent run. 194

xii

List of Acronyms

CCR Code-smell Correction Ratio

CD Cohesion-based dependency

CRO Chemical Reaction Optimization

DS Dependency-based Similarity

FIU Feature inheritance usefulness

GA Genetic Algorithm

GP Genetic Programming

ICR Importance Correction Ratio

IS Implementation-based similarity

MOGA Multi-Objective Genetic Algorithm

NSGA-II Non-Dominated Sorting Genetic Algorithm

PSO Particle Swarm Optimization

RCR Risk Correction Ratio

RM Refactoring Meaningfulness

RO Refactoring Operation

RP Refactoring Precision

RS Random Search

SA Simulated Annealing

SCR Severity Correction Ratio

VS Vocabulary-based Similarity

xiii

To my parents

To my sisters

To my friends

xiv

 Acknowledgments

Feeling gratitude and not expressing it is like
wrapping a present and not giving it.

(by William Arthur Ward, 1921–1994).

I would like to thank the Tunisian Ministry of Higher Education and Scientific

Research, and the University of Montreal for co-funding this research work through many

excellence scholarships.

I would like to thank my PhD supervisor Prof. Houari Sahraoui for giving me

the chance to do such a work within the GEODES Software Engineering Laboratory and

for his valuable comments and critics which led to results of excellent quality. He taught

me how to assess the research value of each proposal and how to be selective. He is a

patient and thoughtful mentor; he listens to his students, not only what they are saying but

also what they are not saying. I am proud to be one of his students.

I would like to express my infinite gratitude to my co-supervisor Prof. Marouane

Kessentini for his unending encouragement and support, for showing me the joy of

research, for shaping my path to research, for creating an enjoyable working environment,

and for becoming a friend! His guidance was very constructive and rich so that they helped

me to improve the quality of my work. Marouane was a great co-supervisor with kind

personality attitudes. I consider him as more than a supervisor but even a member of my

family.

I would like to thank Prof. Katsuro Inoue for accepting to be my external examiner and

for furnishing efforts for reviewing my dissertation. I thank Prof. Olga Baysal for

enthusiastically accepting to be on my PhD committee and for reviewing my dissertation.

Many thanks for Prof. Jean Meunier who was already on my pre-doctoral committee

and who has enthusiastically accepted to chair my doctoral committee.

xv

Thanks to all my friends in the Université de Montréal, Missouri University of Science

and Technology, and University of Michigan. These years and the people I have met are

now a part of me, and part of these pages. To them, and to those who were with me from

the beginning, I owe this work.

Last but not least, I would like to express my special thanks to my parents Naceur and

Kadija and my sisters who never stopped believing in me. I would have never managed any

of this without their love and encouragement.

— Ali Ouni

Chapter 1 : Introduction

1.1 Research context

Source code of large systems is iteratively refined, restructured and evolved due to

many reasons such as correcting errors in design, modifying a design to accommodate

changes in requirements, and modifying a design to enhance existing features. Many

studies reported that these software maintenance activities consume more than 70% of the

overall cost of a typical software project [3].

This high cost could potentially be greatly reduced by providing automatic or semi-

automatic solutions to avoid bad-practices and increase in turn software understandability,

adaptability and extensibility. As a result, there has been much research focusing on the

study of bad design and programming practices, also called code-smells, design defects,

anti-patterns or anomalies [1] [2] [10] [12] in the literature. Although code-smells are

sometimes unavoidable, they should be in general prevented by the development teams and

removed from their code base as early as possible for maintainability and evolution

considerations. In fact, improving the quality of existing software will drastically improve

productivity and competitiveness of our software industry.

Improving the quality of software induce the detection and correction of code-

smells. Typically, code smells refer to bad programming practices that adversely affect the

development of software. As stated by Fenton and Pfleeger [2], code-smells are unlikely to

cause failures directly, but may do it indirectly. In general, they make a software system

difficult to maintain, which may often introduce bugs. The most well-known example of

code-smells is the Blob which is found in code fragments where one large class

monopolizes the behavior of a system, and other classes primarily contain data. Removing

these code-smells help developers to easily understand, maintain and evolve their source

code [1].

One of the widely used techniques to fix code-smells is refactoring – the process of

changing software structure while preserving its external behavior [62] – which has been

practiced by programmers for many years. The idea is to reorganize variables, classes and

2

methods in order to facilitate future extensions. This reorganization is used to improve

different aspects of software-quality such as reusability, maintainability, complexity, etc. In

general, refactoring is performed through two main steps: 1) detection of code fragments

that need to be improved (e.g., code-smells) and 2) identification of refactoring solutions to

achieve this goal. In this thesis, we explore and address the automation of these two steps.

1.2 Problem statement

Detecting and fixing code-smells is still, to some extent, a difficult, time-

consuming, manual and error-prone process [10]. As a consequence, automating code-

smells detection and correction is considered as a challenging software engineering

task [10] [12] [71]. In the next subsections, we highlight the different problems and

challenges addressed in this thesis that are mainly related to the automation of code-smells

detection and refactoring tasks.

1.2.1 Automating code-smells detection

The code-smells detection task consists of finding code fragments that violate

common object-oriented principles (structure or semantic properties) on code elements such

as the ones involving coupling and complexity. In fact, the common idea in existing

contributions [33] [38] [43] consist of defining rules manually to identify key symptoms

that characterize a code-smell using combinations of mainly quantitative and/or structural

information. However, in an exhaustive scenario, the number of possible code-smells to

manually characterize according to rules can be very large. On the other hand, Moha et

al. [8] proposes to generate detection rules using formal definitions of code-smells.

Although this partial automation of rule writing helps developers with symptom

description, still, translating symptoms into rules is not obvious because there is no

consensus of defining code-smells based on their symptoms [12]. Although there is a

substantial amount of research work focusing on the detection of code-

smells [1] [2] [8] [12] [14] [33] [38], there are many open issues that need to be addressed

when defining a detection strategy. We highlight these open issues, as follows:

3

Problem #1.1. Most of the existing approaches are based on translating symptoms into

rules. However, there is a difference between detecting symptoms and asserting that the

detected situation is an actual code-smell.

Problem #1.2. There is no consensus on the definition of code-smells based on their

symptoms. Although when consensus exists, the same symptom could be associated to

many code-smell types, which may compromise the precise identification of smell types.

Problem #1.3. The majority of existing detection methods does not provide an efficient

manner to guide a manual inspection of code-smell candidates. Indeed, the process of

manually defining detection rules, understanding the code-smell candidates, selecting the

true positives, and correcting them is time-consuming, fastidious, and not always profitable.

Problem #1.4. Existing approaches require an expert to manually write and validate

detection rules.

1.2.2 Automating code-smells correction

Once code-smells are detected, they need to be fixed. One of the widely used

techniques to fix code-smells and improve the quality of software systems is refactoring.

Software refactoring improves design structure of the system while preserving its external

behavior [1]. These two concerns drive the existing approaches to refactoring automation.

To the best of our knowledge, most of the existing contributions [20] [21] [45] [49] suggest

refactorings with the perspective of improving only some design/quality metrics while

satisfying a set of pre- and post-conditions [17] to preserve the external behaviour.

However, these concerns may not be enough to produce optimal and consistent refactoring

solutions. In addition to quality improvement and behavior preservation, other aspects

should be taken into consideration. Hence, to obtain good refactoring strategies, other

considerations have to be targeted such as preserving the semantic coherence of the

refactored program, reducing the amount of code changes required to apply refactoring,

maintaining the consistency with prior code changes and reuse good refactorings

applied/recorded in the past in similar contexts. In this setting, several open issues should

4

be addressed when searching for refactoring solutions to improve the quality of software

systems (i.e., fix code-smells). Hence, we identify the following problems.

Problem #2.1. The majority of existing approaches [1] [40] [41] have manually defined

"standard" refactorings for each code-smell type to remove its symptoms as described in

Fowler’s book [1]. However, it is difficult to define “standard” refactoring solutions for

each code-smell type and to generalize them because these solutions may vary depending

on the programs and their context.

Problem #2.2. Removing code-smell symptoms does not mean that the actual code-smell is

corrected, and, in the majority of cases, these “standard” solutions are unable to remove all

symptoms for each code-smell.

Problem #2.3. Different possible refactoring strategies should be defined for the same type

of code-smell. The problem is how to find the “best” refactoring solutions from a large list

of candidate refactorings and how to combine them in an appropriate order? The list of all

possible refactoring strategies, for each code-smell, can be very large [25]. Thus, the

process of defining refactoring strategies manually, from an exhaustive list of refactorings,

is fastidious, time-consuming, and error-prone.

Problem #2.4. In the majority of existing approaches [20] [21] [22] [49], code quality can

be improved without fixing code-smells. In other terms, improving some quality metrics

does not guarantee that the detected code-smells are fixed. Therefore, the link between

code-smells detection (refactoring opportunities) and correction is not obvious. Thus, we

need to ensure whether the refactoring concretely fixes the detected code-smells.

Problem #2.5. Existing approaches consider the refactoring (i.e., the correction process) as

a local process by fixing code-smells (or improving quality) separately. That is, a

refactoring solution should not be specific to only one code-smell type. Instead, the impact

of refactoring should be considered on the whole system. For example, moving methods to

reduce the size/complexity of a class may increase the global coupling, or fixing some

code-smells may create other code-smells in other code fragments.

5

Problem #2.6. In practice, not all code-smells have equal effects and importance [63]. Each

individual instance has its severity score that allows developers to immediately spot and fix

the most critical instances of each code-smell. Concretely, the same code-smell type can

occur in different code fragments but with different effect and risk [62] [64] [81]. In

general, developers need to focus their effort on fixing code-smells of the higher risk and

severity. Thus, the prioritization of the list of detected code-smells is required based on

different criteria such as severity, risk, importance, development team preferences, etc.

However, most of the existing refactoring approaches deal with code-smells to fix as if they

are of same importance.

Problem #2.7. A refactoring solution that fixes all code-smells is not always the optimal

one due to the high code adaptation/modification needed. When applying refactoring,

different code changes are performed. The amount of code changes corresponds to the

number of code elements (e.g., classes, methods, fields, relationships, field references, etc.)

modified through adding, deleting, or moving operations. Minimizing code changes when

recommending refactoring is very important to help developers understand the

modified/improved design. Moreover, most developers want to keep as much as possible

the original design structure when fixing code-smells [17]. Hence, improving software

quality and reducing code changes are conflicting. In some cases, correcting some code-

smells corresponds to performing substantial changes in the system or is, sometimes,

equivalent to re-implementing a large part of the system.

Problem #2.8. In general, refactoring restructures a program to improve its structure

without altering its external behavior. However, it is challenging to preserve the semantic

coherence of a program when refactoring is decided/implemented automatically. Indeed, a

program could be syntactically correct, and have the right behavior, but incorrectly model

the domain semantics. We need to preserve the rationale behind why and how code

elements are grouped and connected when applying refactoring operations to improve code

quality.

6

Problem #2.9. The majority of the existing work did not consider the history of changes

applied in the past when performing refactorings. However, the history of code changes can

be helpful in increasing the correctness of new refactoring solutions. To better guide the

search process, recorded code changes applied in the past can be reused in similar contexts.

This knowledge can be combined with structural and semantic information to improve the

automation of refactoring. Moreover, it is important to maintain the consistency with prior

changes when recommending new changes, i.e., refactorings.

Problem #2.10. Most of the existing studies focus mainly on fixing code-smells and/or

improving some software metrics. However, this may not be sufficient to make the source

code easier to understand and to modify. Introducing design patterns that represent good

design practices can greatly improve the quality of systems. Nevertheless, very few works

exploit the richness of refactoring to introduce design patterns.

All of these observations are at the origin of the work conducted in this thesis. In the

next section, we give an overview of our research directions to address the above-

mentioned problems.

1.3 Research objectives and main contributions

1.3.1 Objectives

The main objectives of this thesis are the following:

1. By applying search-based software engineering (SBSE) techniques, we can automate

the refactoring recommending task. SBSE has been shown to be a practical and

efficient way in solving several software engineering problems [91]. Software

refactoring problem is, by its nature, ideal for the application of SBSE techniques, in

its two steps (1) identification code fragments that need to be refactored, and (2)

identification of the suitable refactoring operations to apply.

2. Automating the code-smells’ detection task to support developers and relieve them

from the burden of doing so manually. Developers no longer need to manually define

7

rules/constraints to automate code-smells' detection task. Instead, they simply provide

a set of examples of code-smells that are already detected in different software

systems.

3. Automating the refactoring recommending task. The aim of this thesis is to

circumvent the problems mentioned in previous section. The majority of existing

work deals with refactoring from a single perspective which is improving the quality.

In this thesis, we formulate the refactoring recommending problem as a multi-

objective optimization problem to find the best compromise between different

objectives: improving the quality, preserving semantic coherence, reducing the

number of changes, and maintaining the consistency with development/maintenance

history.

4. Take advantage of the richness of refactoring through a multi-objective approach to

introduce “good” design practices (i.e., design patterns), fix “bad” design practices

(i.e., code-smells), while improving software quality attributes (i.e., flexibility,

maintainability, etc.).

1.3.2 Contributions

To overcome the previously identified problems, we propose the following

contributions, organized into three major parts (cf. Figure 1.1):

Part 1: Code-smells detection

Contribution 1.1: Search-based code-smells detection

To automate the detection of code-smells we propose a search-based approach [28]

using genetic algorithm to automatically generate detection rules. Our proposal consists

of using knowledge from previously manually inspected projects (i.e., code-smell

examples) in order to detect code-smells that will serve to generate new detection rules

based on the combinations of quality metrics and threshold values. As illustrated in

Figure 1.1, the detection process takes as inputs a base (i.e., a set) of code-smell examples

and takes as controlling parameters a set of quality metrics (the usefulness of these metrics

8

recommended

refactorings

Part 2
Mono-objective code-smells correction

Generation of
detection rules

 (GP)

Mono-objective
search-based
Refactoring

(GA)

detection

rules

Part 1
Code-smells detection

Quality
metrics

Part 3
Multi-objective refactoring

Examples
 of
 code-smells

Prioritizing code-
smells correction

(CRO)
recommended

refactorings

Multi-objective
search-based
Refactoring

(NSGA-II)

MORE
(NSGA-II)

Semantic
measures

Modification
score

Code-change
history

Design-
pattern

Semantic
constrains

recommended

refactorings

recommended

refactorings

Figure 1.1 - Thesis contributions

was defined and discussed in the literature [30]). This step generates a set of code-smells

detection rules. Consequently, a solution to the code-smell detection problem is represented

as a set of rules that best detect the code-smells presented on the base of examples with

high precision and recall.

Part 2: Mono-objective code-smells correction

Contribution 2.1: Mono-objective search-based code-smells correction

To fix the detected code-smells, we need to find the suitable refactoring solution. As

a first contribution, we consider the process of generating correction solutions as a single-

objective optimization problem. A correction solution is defined as a combination of

refactoring operations that should minimize, as much as possible, the number of detected

code-smells using the detection rules. To this end, we use genetic algorithm (GA) [52] to

find and recommend the best combination of refactoring operations from a large list of

available refactorings (i.e., the suitable metrics and their appropriate threshold values).

Indeed, one of the advantages of our approach is that it does not correct code-smells

separately since we consider the correction task as a global process instead of local one. In

addition, we don't need to define an exhaustive list of code-smells and specify standard

9

refactoring for each code-smell type. We evaluate the efficiency of our approach in finding

potential code-smells in five different open-source systems.

Contribution 2.2: Prioritizing code-smells correction

We extend our previous contribution to prioritize the correction of code-smells. We

propose an approach that supports automated refactoring recommendation for correcting

code-smells where riskiest code-smells are prioritized during the correction process. Hence,

we formulated the refactoring recommending problem as an optimization problem to find

the near-optimal sequence of refactorings from a huge number of possible refactorings

according to a prioritization schema. To this end, we used a novel metaheuristic search by

the means of Chemical Reaction Optimization (CRO) [163], a newly established

metaheuristics, to find the suitable refactoring solutions (i.e., sequence of refactoring

operations) that maximize the number of corrected code-smells while prioritizing the most

important, e.g., riskiest, and severest code fragments according to the developer’s

preferences.

Part 3: Multi-objective refactoring recommending

Contribution 3.1. A Multi-objective approach for recommending software

refactoring

In this contribution, we deal with the refactoring recommending task as a multi-

objective optimization problem. The process aims at finding the optimal sequence of

refactoring operations that improve the software quality by minimizing the number of

detected code-smells. In addition, we explore other objectives to optimize: reduce the

number of modifications/adaptations needed to apply refactorings, preserve the semantic

coherence of the refactored program, and maintaining the consistency with

development/maintenance history. The idea is to find the best compromise between all of

these objectives. Hence, by reducing the number of modifications, we reduce the

complexity of the recommended refactorings and keep as much as possible the original

design/code structure. Moreover, it is mandatory to preserve the semantic coherence and

prevent arbitrary changes on code elements, especially when refactoring are decided

10

automatically. Furthermore, historical data in software engineering provide a lot of solid

knowledge that can be used to make sound data-driven decisions for several software

engineering problems [152] [153]. Reuse is a common practice for developers during

software development to save time and efforts. We show in this contribution, how

recorded/historical code changes could be an effective way to propose new refactoring

solutions. We evaluate the efficiency of our approach using a benchmark of six different

industrial size open-source systems, and six frequent code-smells types through an

empirical study conducted with software engineers.

Contribution 3.2. A multi-objective refactoring approach to introduce design

patterns and fix code-smells

From another perspective, we propose a multi-objective formulation of refactoring

recommending task where we consider the introduction of design patterns. We propose, in

this contribution, a recommending framework for automated multi-objective refactoring to

(1) introduce design patterns, (2) fix code-smells, and (3) improve design quality (as

defined by software quality metrics). To evaluate our approach, we conducted a

quantitative and qualitative evaluation with software engineers using a benchmark

composed of four open source systems. The obtained results confirm the efficiency of our

proposal compared to the state-of-the-art of refactoring techniques.

1.4 Thesis organisation

This thesis is organized as follows. Chapter 2 provides a review of the literature on

previous research that is relevant to the main themes of this dissertation: code-smells

detection and correction, software refactoring, existing search-based techniques for

software refactoring, and the use of historical data in software engineering. Chapter 3

reports our contribution for the detection of code-smells. We present the use of genetic

programming (GP) [99] and its adaptation for generating code-smells detection rules.

In Chapter 4, we present our mono-objective search-based approach for fixing code-smells.

The proposed approach uses an adaptation of the GA to find the suitable refactoring

11

solutions that should be applied to fix code-smells. Chapter 5 presents an extension of the

previous contribution to prioritize the correction code-smells using Chemical Reaction

Optimization. In Chapter 6, we introduce our multi-objective approach using the Non-

dominated Sorting Genetic Algorithm (NSGA-II) [24] to find the optimal refactoring

solution to fix code-smells, preserve the semantic coherence, and maintain the consistency

with the change history, while reducing as much as possible the amount of modifications

needed to apply refactoring. In Chapter 7, we describe our multi-objective approach for

introducing design patterns while fixing code-smells. Finally, Chapter 8 summarizes the

contributions of the work presented in this thesis, underlines its main limitations, and

describes our future research directions.

Chapter 2 : State of the art

2.1 Introduction

This chapter provides a literature review on research work related to this thesis. We

first provide the background material that is required to understand this thesis. Then, we

survey the related work that is relevant to the main themes of this research work. In

particular, the related work can be divided broadly into five research areas: (1) detection of

code-smells, (2) management and prioritization of code-smells, (3) refactoring and

correction of code-smells, (4) recommendation systems in software engineering, and (5) the

use of historical data in software engineering.

This chapter is structured as follows. Section 2.2 presents the background need for

unfamiliar readers with code-smells, software refactoring, and search-based software

engineering. We present in Section 2.3 different metaheursitcs. Section 2.4 summarises

exiting works in code-smells detection. We classify existing detection strategies into mainly

seven classes. Section 2.5 describes existing research work on prioritizing and managing

code-smells. Section 2.6 discusses the state of the art of software refactoring and code-

smells correction; Section 2.7 is devoted to describe recommendation systems in software

engineering including software refactoring and their usefulness. In Section 2.8, we provide

a description of research work on mining software repository and their role to improve

software design/reuse and support the maintenance of software systems. In Section 2.9, we

conclude this chapter with a discussion on the limitations of the presented work with regard

to our thesis.

2.2 Background

In this section, we provide the necessary background for code-smells, software

refactoring and search-based software engineering. This section is aimed at readers who are

unfamiliar with these concepts.

13

2.2.1 Code smells

Code-smells, also called in the literature anti-patterns [1], anomalies [12], design

flaws [10] or bad smells [2], are a metaphor to describe problems resulting from bad design

and programming practices. Along of this dissertation, we will use the term code-smell.

Originally, code-smells are used to find the places in software that could benefit from

refactoring. According to Fowler [1], code-smells are unlikely to cause failures directly, but

may do it indirectly. In general, they make a system difficult to change, which may in turn

introduce bugs. Different types of code-smells, presenting a variety of symptoms, have

been studied in the intent of facilitating their detection [8] and suggesting improvement

solutions. Most of code-smells identify locations in the code that violate object-oriented

design heuristics, such as the situations described by Riel [70] and by Coad et al. [73].

Code-smells are not limited to design flaws since most of them occur in code and are not

related to the original design. Indeed, most of code-smells can emerge during the

maintenance and evolution of a system.

In [1], Beck defines 22 sets of symptoms of code-smells and proposes the different

possible refactoring solutions to improve the system design. These include God classes,

feature envy, long parameter lists, and data classes. Each code-smell type is accompanied

by refactoring suggestions to remove it. Van Emden and Moonen [71] developed, as far as

we know, the first automated code-smell detection tools for Java programs. Mantyla studied

the manner of how developers detect and analyse code smells [72]. Previous empirical

studies have analysed the impact of code-smells on different software maintainability

factors including defects [74] [75] [76] and effort [77] [78]. In fact, software metrics

(quality indicators) are sometimes difficult to interpret and suggest some actions

(refactoring) as noted by Anda et al. [79] and Marinescu et al. [10]. Code-smells are

associated with a generic list of possible refactorings to improve the quality of software

systems. In addition, Yamashita et al. [67] [68] show that the different types of code-smells

can cover most of maintainability factors [69]. Thus, the detection of code-smells can be

considered as a good alternative of the traditional use of quality metrics to evaluate the

14

quality of software products. Brown et al. define another category of code-smells that are

documented in the literature, and named anti-patterns.

2.2.2 Refactoring

To fix code-smells, one of the most-used techniques is refactoring which improves

design structure while preserving the external behavior [12]. Refactoring has been practiced

by programmers for many years. Refactoring is widely recognized as a crucial technique

applied when evolving object-oriented software systems. More recently, tools that (semi-)

automate the process of refactoring has emerged in various programming environments

such as Eclipse [53] and Netbeans [54]. These tools have promised, if applied well, to

increase the speed at which programmers can write and maintain code while decreasing the

likelihood that programmers will introduce new bugs [86] [87].

Opdyke and Johnson [1] defined refactoring as the process of improving a code

after it has been written by changing its internal structure without changing the external

behavior. The idea is to reorganize variables, classes and methods in order to facilitate

future extensions. This reorganization is used to improve different aspects of software-

quality such as reusability, maintainability, complexity, etc. [1] [18]. Later, it was

popularized by Martin Fowler’s book [1], but refactoring has been practiced for as long as

programmers have been writing programs. Fowler’s book is largely a catalog of

refactorings [25]; each refactoring captures a specific structural change that has been

observed frequently in different programming languages and application domains.

Roughly speaking, we can identify two distinct steps in the refactoring process: (1)

detect when a program should be refactored and (2) identify which refactorings should be

applied and where [18]. For example, after detecting a Blob code-smell, many refactoring

operations can be used to reduce the number of functionalities in a specific class, such as

move methods/fields and extract class. An exhaustive list of refactoring operations can be

found in [25].

15

2.2.3 Search-based software engineering

The research topic of this Ph.D. thesis is about using search techniques in software

engineering, called search-based software engineering (SBSE). The term SBSE was first

used by Harman and Jones in 2001 and defined as the application of search-based

approaches to solving optimization problems in software engineering [91]. Essentially,

SBSE is based on the idea of reformulating software engineering problems as search

problems by defining them in terms of solution representation, fitness function and solution

change operators. Once a software engineering task is framed as a search problem, there are

many metaheuristic techniques that can be applied to discover near optimal solutions to that

problem.

In 2001, Harman and Jones [91] expected to see a dramatic development of the field

of search based-software engineering. The authors have concluded that in the near future

metaheuristic search will be applied to several areas of software engineering. As expected,

SBSE has become a growing research and practice domain which is popularized in both

academia and industry [90]. Indeed, in the last decade many SBSE approaches has been

applied to a wide variety of software engineering problems, including software testing [94],

requirements engineering [93], bug fixing [92], project management [95], refactoring [20],

service-oriented software engineering [96], and model-driven software engineering [164].

The most studied and known models are based on classic evolutionary algorithms (EAs)

such as simulated annealing (SA) [98], genetic algorithm (GA) [99], particle swarm

optimization (PSO) [100], and tabu search (TS) [92].

We will investigate in this thesis the use of SBSE techniques for automating the

detection and correction of code-smells as well as automatically recommending refactoring.

2.3 Metaheuristic search techniques

Different mono- and multi-objective metaheuristic techniques are used in this thesis.

We provide in this section the necessary background for unfamiliar readers with

16

metaheursitics. More specifically, we used the following metaheuristics: Genetic

Algorithm, Genetic Programming, Chemical Reaction Optimization, and Non-dominated

Sorting Genetic Algorithm.

2.3.1 Genetic Algorithm

Genetic Algorithm (GA) [99] is a powerful heuristic search optimization method

inspired by the Darwinian theory of evolution. The basic idea is to explore the search space

by making a population of candidate solutions, also called individuals, evolve toward a

“good” solution of a specific problem.

In GA, an individual is usually string/vector of numbers that represents a candidate

solution. Every individual of the population is evaluated by a fitness function that

determines a quantitative measure of its ability to solve the target problem. The exploration

of the search space is achieved by the evolution of candidate solutions using selection and

genetic operators such as crossover and mutation. The selection operator insures selection

of individuals in the current population proportionally to their fitness values, so that the

fitter an individual is, the higher the probability is that it be allowed to transmit its features

to new individuals by undergoing crossover and/or mutation operators. The crossover

operator insures the generation of new children, or offspring, based on parent individuals.

The crossover operator allows transmission of the features of the best fitted parent

individuals to new individuals. This is usually achieved by replacing a randomly selected

sub tree of one-parent individual with a randomly chosen sub tree from another parent

individual to obtain one child. A second child is obtained by inverting parents. Finally, the

mutation operator is applied, with a probability which is usually inversely proportional to

its fitness value, to modify some randomly selected nodes in a single individual. The

mutation operator introduces diversity into the population and allows escaping from local

solutions found during the search.

Once the selection, mutation and crossover operators have been applied with given

probabilities, the individuals in the newly created generation are evaluated using the fitness

17

function. This process is repeated iteratively, until a stopping criterion is met. The criterion

usually corresponds to a fixed number of generations, or when the fitness function reaches

the desired fitness value. The result of GA (the best solution found) is the fittest individual

produced along all generations.

2.3.2 Genetic Programming

Genetic Programming (GP) [171] is a branch of Genetic Algorithm. The main

difference between genetic programming and genetic algorithm is the representation of the

solution. Genetic algorithms create a string of numbers that represent the solution. Genetic

programming creates (computer) programs as the solution which is usually represented as a

tree, where the internal nodes are functions, and the leaf nodes are terminal symbols. Both

the function set and the terminal set must contain elements that are appropriate for the

target problem. For instance, the function set can contain arithmetic operators, logic

operators, mathematical functions, etc., whereas the terminal set can contain the variables

(attributes) of the target problem.

2.3.3 Chemical Reaction Optimization

Chemical reaction optimization (CRO) is a new recently proposed

metaheuristics [176] inspired from chemical-reaction. It is not difficult to discover the

correspondence between optimization and chemical reaction. Both of them aim to seek the

global minimum (but with respect to different objectives) and the process evolves in a

stepwise fashion. With this discovery, CRO was developed for solving optimization

problems by mimicking what happens to molecules in chemical reactions. It is a

multidisciplinary design which loosely couples computation with chemistry (see Table 2.1).

The manipulated agents are molecules and each has a profile containing some properties. A

molecule is composed of several atoms and characterized by the atom type, bond length,

angle, and torsion. One molecule is distinct from another when they contain different atoms

and/or different number of atoms. The term “molecular structure” is used to summarize all

these characteristics and it corresponds to a solution in the matheuristic meaning. The

18

representation of a molecular structure depends on the problem we are solving, provided

that it can express a feasible solution of the problem. A molecule possesses two kinds of

energies, i.e., potential energy (PE) and kinetic energy (KE). The former quantifies the

molecular structure in terms of energy and it is modeled as the objective function value

when evaluating the corresponding solution. A change in molecular structure (chemical

reaction) is tantamount to switching to another feasible solution. CRO evolves a population

of molecules by means of four chemical reactions called: (1) On-wall ineffective collision,

(2) Decomposition, (3) Inter-molecular ineffective collision and (4) Synthesis.

Consequently, similarly to genetic algorithm (GA), the molecule corresponds to the

population individual and chemical reactions correspond to the variation operators.

However, CRO is distinguished by the fact that environmental selection is performed by the

variation operator. Differently to GA which generates an offspring population then makes a

competition between the latter and the parent population, in CRO once an offspring is

generated, it competes for survival with its parent(s) within the realization of the

corresponding chemical reaction. Algorithm 2.1 illustrates the pseudocode of the CRO

where it begins by initializing the different parameters that are:

- PopSize: the molecule population size,

- KELossRate: the loss rate in terms of Kinetic Energy (KE) during the reaction,

- MoleColl: a parameter varying between 0 and 1 deciding whether the chemical reaction

to be performed is uni-molecular (on wall ineffective collision or decomposition) or

mutli-molecular (inter-molecular ineffective collision or synthesis),

- buffer: the initial energy in the buffer,

- InitialKE: the initial KE energy,

- α, and β: two parameters controlling the intensification and diversification.

Once the initialization set is performed, the molecule population is created and the

evolution process begins. The latter is based on the following four variation operators

(elementary chemical reactions):

19

1) On-wall ineffective collision: This reaction corresponds to the situation when a

molecule collides with a wall of the container and then bounces away remaining in one

single unit. In this collision, we only perturb the existing molecule structure (which

captures the structure of the solution) ω to ω′. This could be done by any neighborhood

operator N(·).

2) Decomposition: It corresponds to the situation when a molecule hits a wall and then

breaks into several parts (for simplicity, we consider two parts in this work). Any

mechanism that can produce ω′1 and ω′2 from ω is allowed. The goal of decomposition

CRO pseudocode

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Input: Parameter values

Output: Best solution found and its objective function value

/*Initialization*/

Set PopSize, KELossRate, MoleColl, buffer, InitialKE, α, and β

Create PopSize molecules

/*Iterations*/

While the stopping criteria not met do

 Generate b ∈ [0, 1]

 If (b > MoleColl) Then

 Randomly select one molecule Mω

 If (Decomposition criterion met) Then

 Trigger Decomposition

 Else

 Trigger OnwallIneffectiveCollision

 End If

 Else

 Randomly select two molecules Mω1 and Mω2

 If (Synthesis criterion met) Then

 Trigger Synthesis

 Else

 Trigger IntermolecularIneffectiveCollision

 End If

 End If

 Check for any new minimum solution

 End While

Algorithm 2.1 - Basic CRO pseudocode.

20

is to allow the algorithm to explore other regions of the search space after enough local

search by the ineffective collisions.

3) Inter-molecular ineffective collision: This reaction takes place when multiple molecules

collide with each other and then bounce away. The molecules (assume two) remains

unchanged before and after the process. This elementary reaction is very similar to the

uni-molecular ineffective counterpart since we generate ω′1 and ω′2 from ω1 and ω2

such that ω′1 = N(ω1) and ω′2 = N(ω2). The goal of this reaction is to explore several

neighborhoods simultaneously each corresponding to a molecule.

4) Synthesis: This reaction is the opposite of decomposition. A synthesis happens when

multiple (assume two) molecules hit against each other and fuse together. We obtain ω′

from the fusion of ω1 and ω2. Any mechanism allowing the combination of solutions is

allowed, where the resultant molecule is in a region farther away from the existing ones

in the solution space. The idea behind synthesis is diversification of solutions.

Chemical meaning Metaheuristic meaning

Molecular structure Solution
Potential energy Objective function value
Kinetic energy Measure of tolerance of having worse solutions
Number of Hits Current total number of moves
Minimum structure Current optimal solution
Minimum value Current optimal function value
Minimum hit number Number of moves when the current optimal

solution is found

Table 2.1 - CRO analogy between chemical and metaheuristic meanings. The first column
contains the properties of a molecule used in CRO. The second column shows the
corresponding meanings in the metaheuristic.

To sum up, on-wall and inter-molecular collisions (ineffective collisions) emphasize

more on intensification while decomposition and synthesis (effective collisions) emphasize

more on diversification. This allows making a good trade-off between exploitation and

exploration as the case of GA. The algorithm undergoes these different reactions until the

satisfaction of the stopping criteria. After that, it outputs the best solution found during the

overall chemical process.

21

It is important to note that the molecule in CRO has several attributes, some of which

are essential to the basic operations, i.e.: (a) the molecular structure ω expressing the

solution encoding of the problem at hand; (b) the Potential Energy (PE) corresponding to

the objective function value of the considered molecule and (c) the Kinetic Energy (KE)

corresponding to non-negative number that quantifies the tolerance of the system accepting

a worse solution than the existing one (similarly to simulated annealing). The optional

attributes are:

i) Number of hits (NumHit): When a molecule undergoes a collision, one of the

elementary reactions will be triggered and it may experience a change in its molecular

structure. NumHit is a record of the total number of hits (i.e. collisions) a molecule has

taken.

ii) Minimum Structure (MinStruct): It is the ω with the minimum corresponding PE which

a molecule has attained so far. After a molecule experiences a certain number of

collisions, it has undergone many transformations of its structure, with different

corresponding PE. MinStruct is the one with the lowest PE in its own reaction history.

iii) Minimum Potential Energy (MinPE): When a molecule attains its MinStruct, MinPE is

its corresponding PE.

iv) Minimum Hit Number (MinHit): It is the number of hits when a molecule realizes

MinStruct. It is an abstract notation of time when MinStruct is achieved.

For more details about the role of each of these attributes in CRO, the reader is

invited to refer to [176].

The CRO has been recently applied successfully to different combinatorial and

continuous optimization problems [179] [180] [181]. Several nice properties for the CRO

have been detected. These properties are as follows:

- The CRO framework allows deploying different operators to suit different problems.

- Its variable population size allows the system to adapt to the problems automatically;

thereby minimizing the number of required function evaluations.

22

- Energy conversion and energy transfer in different entities and in different forms make

CRO unique among metaheursitics. CRO has the potential to tackle those problems

which have not been successfully solved by other metaheuristics.

- Other attributes can easily be incorporated into the molecule. This gives flexibility to

design different operators.

- CRO enjoys the advantages of both SA and GA.

- CRO can be easily programmed in object-oriented programming language, where a class

defines a molecule and methods define the elementary reactions.

Based on all these observations, the CRO seems to be an interesting metaheuristic

ready to use for tackling SE problems.

2.3.4 Non-dominated Sorting Genetic Algorithm

The basic idea of the Non-dominated Sorting Genetic Algorithm (NSGA-II) [24] is

to make a population of candidate solutions evolve toward the near-optimal solution in

order to solve a multi-objective optimization problem. NSGA-II is designed to find a set of

near-optimal solutions, called non-dominated solutions or the Pareto front. A non-

dominated solution is one that provides a suitable compromise between all objectives

without degrading any of them. As described in Algorithm 2.2, the first step in NSGA-II is

to create randomly a population P0 of individuals encoded using a specific representation

(line 1). Then, a child population Q0 is generated from the population of parents P0 using

genetic operators such as crossover and mutation (line 2). Both populations are merged into

a new population R0 of size N (line 5).

Fast-non-dominated-sort is the algorithm used by NSGA-II to classify individual

solutions into different dominance levels. Indeed, the concept of Pareto dominance consists

of comparing each solution x with every other solution in the population until it is

dominated by one of them. If no solution dominates it, the solution x will be considered

non-dominated and will be selected by the NSGA-II to be a member of the Pareto front. If

we consider a set of objectives fi , i,j  1…n, to maximize, a solution x dominates x′

23

iff i, fi (x′) ≤ fi (x) and j | fj (x′)  fj (x).

The whole population that contains N individuals (solutions) is sorted using the

dominance principle into several fronts (line 6). Solutions on the first Pareto-front F0 get

assigned dominance level of 0 Then, after taking these solutions out, fast-non-dominated-

sort calculates the Pareto-front F1 of the remaining population; solutions on this second

front get assigned dominance level of 1, and so on. The dominance level becomes the basis

of selection of individual solutions for the next generation. Fronts are added successively

until the parent population Pt+1 is filled with N solutions (line 8). When NSGA-II has to cut

off a front Fi and select a subset of individual solutions with the same dominance level, it

relies on the crowding distance to make the selection (line 9). This parameter is used to

promote diversity within the population. This front Fi to be split, is sorted in descending

order (line 13), and the first (N-|Pt+1|) elements of Fi are chosen (line 14). Then a new

population Qt+1 is created using selection, crossover and mutation (line 15). This process

will be repeated until reaching the last iteration according to the stop criteria (line 4).

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

Create an initial population P0

Generate an offspring population Q0

t=0;

while stopping criteria not reached do
 Rt = Pt ∪	Qt;
 F = fast-non-dominated-sort (Rt);
 Pt+1 = ∅	and i=1;
 while | Pt+1| +|Fi| ≤ N do
 Apply crowding-distance-assignment(Fi);
 Pt+1 = Pt+1 ∪	Fi ;
 i = i+1;
 end
 Sort(Fi, ≺	n);
 Pt+1 = Pt+1 ∪	Fi[1 : (N-| Pt+1 |)];
 Qt+1 = create-new-pop(Pt+1);
 t = t+1;
 end

Algorithm 2.2 - High-level pseudo-code of NSGA-II.

24

2.4 Detection of code-smells

There has been much research effort focusing on the study of code-smells. Existing

approaches for code-smells detection can be classified into six broad categories: manual

approaches, symptom-based approaches, rule-based approaches, probabilistic approaches,

machine-learning based approaches, and visualization-based approaches.

2.4.1 Manual approaches

In the literature, the first book that has been specially written for design smells was

by Brown et al. [12] which provide broad-spectrum and large views on design smells, and

antipatterns that aimed at a wide audience for academic community, as well as in industry.

Indeed, in [1], Fowler and Beck have described a list of design smells which may possibly

exist on a program. They suggested that software maintainers should manually inspect the

program to detect existing design smells. In addition, they specify particular refactorings

for each code-smells type. Travassos et al. [31] have also proposed a manual approach for

detecting code-smells in object-oriented designs. The idea is to create a set of “reading

techniques” which help a reviewer to “read” a design artifact for the purpose of finding

relevant information. These reading techniques give specific and practical guidance for

identifying code-smells in object-oriented designs. So that, each reading technique helps

the maintainer focusing on some aspects of the design, in such way that an inspection team

applying the entire family should achieve a high degree of coverage of the code-smells. In

addition, in [32], another proposed approach is based on violations of design rules and

guidelines. This approach consists of analyzing legacy code, specifying frequent design

problems as queries and locating the occurrences of these problems in a model derived

from the source code. However, the majority of the detected problems were simple ones,

since it is based on simple conditions with particular threshold values. As a consequence,

this approach did not address complex code-smells.

25

The main limitation of exiting manual approaches is that they are ultimately a

human-centric process that requires a great human effort and extensive analysis and

interpretation effort from software maintainers to find design fragments that corresponds to

code-smells. In addition, these techniques are time-consuming, error-prone and depend on

programs in their contexts. Another important issue is that locating code-smells manually

has been described as more a human intuition than an exact science. To circumvent the

above mentioned problems, some semi-automated approaches have emerged using different

techniques.

2.4.2 Symptom-based detection

Van Emden and Moonen [71] presented one of the first attempts to automate code-

smell detection for Java programs. The authors exanimated a list of code smells and found

that each of them is characterized by a number of “smell aspects” that are visible in source

code entities such as packages, classes, methods, etc. A given code smell is detected when

all its aspects are found in the code. The identified aspects are mainly related to non-

conformance to coding standards. The authors distinguish two types of smell aspects:

primitive smell aspects that can be observed directly in the code, and derived smell aspects

that are inferred from other aspects. An example of a primitive aspect is “method m

contains a switch statement”, an example of a derived aspect is “class C does not use any

methods offered by its superclasses”. The developed Java code-smell detection tool allows

also visualization of the code and the detected smells. However, conformance to coding

standards is not always easy to achieve in practice. Moreover, using such visualization

tools, it is still difficult for a programmer to identify potential code-smells, and his decision

is most of the time subjective.

Later, Moha et al. [8] proposed a description of anti-pattern symptoms using a

domain-specific-language (DSL) for their anti-patterns detection approach called DECOR.

They proposed a consistent vocabulary and DSL to specify anti-patterns based on the

review of existing work on code-smells found in the literature. To describe anti-pattern

26

symptoms different notions are involved, such as class roles and structures. Symptoms

descriptions are later mapped to detection algorithms. However, converting symptoms into

rules needs a significant analysis and interpretation effort to find the suitable threshold

values. In addition, this approach uses heuristics to approximate some notions which results

in an important rate of false positives. The proposed approach has been evaluated on only

four well-known code-smells: the Blob, functional decomposition, spaghetti code, and

Swiss-army knife because the literature provide obvious symptom descriptions on code-

smells. Similarly, Munro [33] has proposed description and symptoms-based approach

using a precise definition of bad smells from the informal descriptions given by the

originators Fowler and Beck [1]. The characteristics of code-smells have been used to

systematically define a set of measurements and interpretation rules for a subset of code-

smells as a template form. This template consists of three main parts: a code smell name, a

text-based description of its characteristics, and heuristics for its detection.

The most notable limitation of symptoms-based approaches is that there exists no

consensus in defining symptoms or smell aspects. A code-smell may have several and

different interpretations by a maintainer. Another limitation is that for an exhaustive list of

code-smells, the number of possible smells to be manually described, characterized with

rules and mapped to detection algorithms can be very large. Indeed, the background and

knowledge of maintainers may influence their understanding of code-smells, given a set of

symptoms. As a consequence, symptoms-based approaches are also considered as time-

consuming, error-prone and subjective. Thus automating the detection of code-smells is

still a real challenge.

2.4.3 Metric-based approaches

Most of automated code-smell detection techniques are based on software metrics.

The idea to automate the problem of code-smells detection is not new, neither is the idea to

use software metrics to evaluate or improve the quality of software systems. Marinescu [10]

have proposed a mechanism called "detection strategy" for formulating metrics-based rules

27

that capture deviations from good design principles and heuristics. Detection strategies

allow to a maintainer to directly locate classes or methods affected by a particular code-

smell. As such, Marinescu have defined detection strategies for capturing around ten

important flaws of object-oriented design found in the literature. Later, Raiu and his

colleagues [115], refined the original concept of detection strategy, by using historical

information of the suspected code-smell structures. Using this approach, the authors

showed how the detection of God Classes and Data Classes can become more accurate. The

approach refines the characterisation of suspects, which lead to a twofold benefit.

After his suitable symptom-based characterization of code-smells, Munro [33]

proposed metric-based heuristics for detecting code-smells, which are similar to

Marinescu’s detection strategies. Munro has also conducted an empirical study to justify his

choice of metrics and thresholds for detecting smells. Salehie et al. [39] proposed a metric-

based heuristic framework to detect and locate object-oriented design flaws similarly to

those illustrated by Marinescu [10]. The detection technique is based on evaluating design

quality of an object-oriented system through quantifying deviations from good design

heuristics and principles by mapping these design flaws to class level metrics such as

complexity, coupling and cohesion by defining rules. Erni et al. [13] introduce the concept

of multi-metrics, as an n-tuple of metrics expressing a quality criterion (e.g., modularity).

Unfortunately, multi-metrics neither encapsulate metrics in a more abstract construct, nor

do they allow a flexible combination of metrics. In [105], Fourati et al. proposed an

approach that identifies and predicts anti-patterns in UML diagrams through the use of

existing and newly defined quality metrics. Operating at the design level, the proposed

approach examines structural and behavioral information through the class and sequence

diagrams.

More recently, Palomba et al. [102] have proposed a new approach called HIST

(Historical Information for Smell detection) to detect specific types of code-smell using a

set of metrics derived from change history extracted from version control systems. Though

revision histories often display changes at a file level granularity, they use a tool called the

28

Change History Extractor to parse changes at a method- and class-level granularity, and

then they identify code-smells from the parsed logs using specific rules. However, the

developers of HIST point out that not all code smells are possible to detect using just

source code change history because only some are by definition characterized by how the

code changes during the project development (e.g., Divergent Change, and Shotgun

Surgery). Thus the approach is limited to few types of code smell and cannot be

generalized. Moreover, the authors defines Blobs as classes modified (in any way) in more

than a given percentage threshold of commits. Therefore, classes containing two methods

can be detected as a Blob. The results may not always accurate. In fact, it is very important

to look at the type of changes that are applied but actually HIST just count the number of

commits without considering the type of change. For example, a class detected as Blob

where more than 80% of changes applied are delete methods/attributes, or move method to

another class, thus the class becomes a data or lazy class and not a Blob; however HIST

detected it as a Blob.

 In general, the effectiveness of combining metric/threshold is not obvious. That is,

for each code-smell, rules that are expressed in terms of metric combinations need a

significant calibration effort to find the fitting threshold values for each metric. Since there

exists no consensus in defining code-smells, different threshold values should be tested to

find the best ones.

2.4.4 Probabilistic approaches

Probabilistic approaches represent another way for detecting code-smells. Alikacem

et al. [14] have considered the code-smells detection process as fuzzy-logic problem, using

rules with fuzzy labels for metrics, e.g., small, medium, large. To this end, they proposed a

domain-specific language that allows the specification of fuzzy-logic rules that include

quantitative properties and relationships among classes. The thresholds for quantitative

properties are replaced by fuzzy labels. Hence, when evaluating the rules, actual metric

values are mapped to truth values for the labels by means of membership functions that are

29

obtained by fuzzy clustering. Although, fuzzy inference allows to explicitly handle the

uncertainty of the detection process and ranks the candidates, authors did not validate their

approach on real programs. Recently, another probabilistic approach has been proposed by

Khomh et al. [11] extending the DECOR approach [8], a symptom-based approach, to

support uncertainty and to sort the code-smells candidates accordingly. This approach is

managed by Bayesian belief network (BBN) that implement the detection rules of DECOR.

The detection outputs are probabilities that a class is an occurrence of a code-smell type, i.e.,

the degree of uncertainty for a class to be a code-smell. They also showed that BBNs can be

calibrated using historical data from both similar and different context. More recently,

Dimitrios et al. [106] explored the ways in which the anti-pattern ontology can be enhanced

using Bayesian networks in order to reinforce the existing ontology-based detection process.

Their approach allows software developers to quantify the existence of anti-patterns using

Bayesian networks, based on probabilistic knowledge contained in the anti-pattern ontology

regarding relationships of anti-patterns through their causes, symptoms and consequences.

Although in probabilistic approaches, the above-mentioned problems in Section 1.2

related to the use of rules and metrics/thresholds do not arise, it still suffers from the

problem of selecting the suitable metrics to conduct a detection process.

2.4.5 Machine learning based approaches

Machine learning represents another alternative for detecting code-smells. Catal et

al. [36] used different machine learning algorithms to predict defective modules. They

investigated the effect of dataset size, metrics set, and feature selection techniques for

software fault prediction problem. They employed several algorithms based on artificial

immune systems (AIS). Kessentini et al. [35] have proposed an automated approach for

discovering code-smells. The detection is based on the idea that the more code deviates

from good practices, the more likely it is bad. Taking inspiration from AIS, this approach

learns from examples of well designed and implemented software elements, to estimate the

risks of classes to deviate from “normality”, i.e., a set of classes representing “good” design

30

that conforms to object-oriented principles. Elements of assessed systems that diverge from

normality to detectors are considered as risky. Although this approach succeeded in

discovering risky code, it does not provide a mechanism to identify the type of the detected

code-smell. Similarly, Hassaine et al. [38] have proposed an approach for detecting code-

smells using machine learning technique inspired from the AIS. Their approach is designed

to systematically detect classes whose characteristics violate some established design rules.

Rules are inferred from sets of manually-validated examples of code-smells reported in the

literature and freely-available. Recently, Maiga et al. [103] [104] introduced an approach

called SMURF to detect anti-patterns, based on a machine learning technique. SMURF is

based on SVM (support vector machines) using polynomial kernel and take into account

practitioners’ feedback. The proposed approach takes as input a training dataset that

contains classes derived from object-oriented systems including instances of code-smells.

The approach calculates object-oriented metrics that will be used as the attributes for each

class in the dataset during the learning process.

The major benefit of machine-learning based approaches is that they do not require

great experts’ knowledge and interpretation. In addition, they succeeded to some extent, to

detect and discover potential code-smells by reporting classes that are similar (even not

identical) to the detected code-smells. However, these approaches depend on the quality

and the efficiency of data, i.e., code-smell instances, to learn from. Indeed, the high level of

false positives represents the main obstacle for these approaches. Moreover, the selection of

the suitable metrics for the learning process is a difficult task and is still a subjective

decision.

2.4.6 Visualization-based approaches

The high rate of false positives generated by the above mentioned approaches

encouraged other teams to explore semi-automated solutions. These solutions took the form

of visualization-based environments. The primary goal is to take advantage of the human

capability to integrate complex contextual information in the detection process. Kothari et

31

al. [15] present a pattern-based framework for developing tool support to detect software

anomalies by representing potential code-smells with different colors. Dhambri et al. [16]

have proposed a visualization-based approach to detect design anomalies by automatically

detecting some symptoms and letting others to human analyst. The visualization metaphor

was chosen specifically to reduce the complexity of dealing with a large amount of data.

Although visualization-based approaches are efficient to examine potential code-smells on

their program and in their context, they do not scale to large systems easily. In addition,

they require great human expertise and thus they are still time-consuming and error-prone

strategies. Moreover, the information visualized is mainly metric-based, meaning that

complex relationships can be difficult to detect. More recently, Murphy-Hill et al. [101]

have proposed a smell detector tool called Stench Blossom that provides an interactive

ambient visualization designed to first give programmers a quick, high-level overview of

the smells in their code, and then, if they wish, to help in understanding the sources of those

code smells. Indeed, since visualization approaches and tools such as Stench

Blossom [101], VERSO [34] are based on manual and human inspection, they still, not

only, slow and time-consuming, but also subjective.

Although these approaches have contributed significantly to automate the detection

of code-smells, none have presented a complete and fully automated technique. Detecting

code-smells is still, to some extent, a difficult, time-consuming, and manual process [9].

Indeed, the number of code-smells typically exceeds the resources available to address

them. In many cases, mature software projects are forced to ship with both known and

unknown code-smells for lack of development resources to deal with every code-smell.

2.4.7 Code-smell detection tools

Different tools for code-smell detection have been developed as research prototypes

or commercial tools using different detection techniques. The detection techniques are

usually based on the computation of a particular set of combined metrics [10], standard

object-oriented metrics or metrics defined for the smell detection purpose. For instance,

32

JDeodorant [83] is a code-smell detection tool implemented as an Eclipse plugin that

automatically identifies four types of code-smells (Feature Envy, God Class, Long Method,

and Type Checking) in Java object oriented programs. JDeodorant is based on the

evaluation of a set of software metrics to identify possible code-smells. Moreover,

JDeodorant provides a list of possible refactorings according to the detected code-smell.

 iPlasma [81] [107] is an integrated platform for quality assessment of object-

oriented systems that includes support for all the necessary phases of analysis: from model

extraction up to high-level metrics based analysis, or detection of code duplication. iPlasma

is designed to detect several code smells called disharmonies, such as Brain Class Brain

Method, Data Class, Dispersed Coupling, Feature Envy, and God Class.

InFusion [82] supports the analysis, diagnosis quality improvement of a system at

the architectural, as well as at the code level and covers all the necessary phases of the

analysis process. InFusion allows to detect more than 20 code smells, such as Code

Duplication, classes that break encapsulation (Data Class, God Class), methods and classes

that are heavily coupled or ill designed class hierarchies and other code smells (Cyclic

Dependencies, Brain Method, Shotgun Surgery). InFusion has its roots in iPlasma, and then

extended with more functionalities. InCode [110] has been developed by the same team of

inFusion and is very similar to Infusion. InCode is an Eclipse plugin that provides

continuous detection of design problems (i.e. problems are detected as code is written)

complementing thus the code reviews, which can be performed with other tools.

PMD [108], is another tool that scans Java source code and looks for potential

problems like: possible bugs, such as dead code, empty try/catch/finally/switch statements,

unused local variables, parameters and duplicate code. Moreover, PMD is able to detect

three smells (Large Class Long Method Long Parameter List) and allows setting the

thresholds values for the metrics.

Stench Blossom is a visualization-based code-smells detection tool developed by

Murphy et al. [101] and implemented as an Eclipse plugin. StenchBlossom provides an

33

interactive ambient visualization designed to first give programmers a quick, high-level

overview of the smells in their code, and then, to help understand the sources of the code-

smells. It does not provide numerical values, but only a visual threshold: the size of a petal

is directly proportional to the entity of the code-smells. However, the only possible

procedure to find code-smells is to manually inspect the source code, looking for a petal

whose size is big enough to assume that there is a code smell. Stench Blossom provides the

programmer with three different views, which progressively offer more information about

the smells in the code being visualized.

CheckStyle [109] has been developed to help programmers write Java code that

adheres to a coding standard. It is able to detect duplicate code and three other smells, Long

Method, Long Parameter List and Large Class. DÉCOR [8] is implemented as a BlackBox,

allows the specification and automatic detection of code and design smells such as Large

Class, Lazy Class, Long Method, Long Parameter List. DÉCOR uses a symptom-based

approach as described in Section 2.4.2.

In fact, in all these tools there is no consensus on the detection of code smells. For

instance, the code-smell large class detected by Stench Blossom and PMD is different from

Large class recognized by DECOR. Indeed, Stench Blossom and PMD simply concern

Large Class as a class with many lines of code, whereas DECOR considers both the size in

terms of number of methods and attributes and the cohesion of the class. There are also

remarkable differences concerning the number of classes and methods reported by each

tool [111].

Despite the latest advances on automated code-smell detection approaches and

tools, each has its limitations, and still there are no answers to address different detection

problems that we underlined in Section 1.2.1. It is also not clear how much additional effort

is required to interpret the results from the automated detection of code smells to decide

optimally which code-smells should be prioritized over others.

34

2.5 Management and prioritization of code-smells

Studies that consider the management and prioritization of code smells have

emerged recently. That is, in practice, not all code-smells have equal effects/importance.

Each individual instance has its severity score that allows designers to immediately spot

and fix the most critical instances of each code-smell. Concretely, the same code-smell type

can occur in different code fragments but with different impact scores on the system

design [81] [82].

The first tool is Code Metrics [122], a .NET based add-in for the Visual Studio

development environment that is able to calculate a set of metrics. Once the metrics are

calculated, the tool assigns a “maintainability index” score to each of the analyzed code

elements. This score is based on the combination of these metrics for each code element.

The second tool is inFusion tool [82] that provides a “severity” index to help software

engineer in classifying and understanding code-smell harmfulness. This severity index is

defined by R. Marinescu [114] as: “Severity is computed by measuring how many times the

value of a chosen metric exceeds a given threshold”. The severity index takes into

consideration size, encapsulation, complexity, coupling and cohesion metrics. However, the

use of only metrics and thresholds is not always sufficient to understand the harmfulness of

code-smells. Other aspects should be considered to better understand the impact and the

harmfulness of code-smells such as the change history, the context, and the characteristics

of the smell, etc. For instance, if a code-smell (e.g., Blob) is created intentionally and

remains unmodified or hardly undergo changes, the system may not experience any

problems [63]. Classes participating in code/design problems (e.g., code-smells) are

significantly more likely to be subject to changes and to be involved in fault-fixing changes

(bugs) [118]. Using history information, Raiu et al. [115] succeeded in eliminating false

positives code-smells in their detection approach by filtering out the harmless suspects from

those provided by a single-version detection strategy. Their approach allows also the

identification of most dangerous suspects by using additional information on the evolution

of initial suspects over their analyzed history. However, the proposed approach is limited

35

only on God and Data Class code-smells. In [112], Arcelli et al. proposed an approach

called JCodeOdor to filter and prioritize code-smells. To this end they defined an index

called Code Smell Harmfulness to approximate how harmful each code smell is. The idea

behind the Harmfulness computation is the need to have a way to prioritize the code smells,

taking into account the characteristics of the smell, captured by metrics used in the

detection strategy. The Harmfulness computation is strictly joined with the threshold

computation, and relies on the metrics distribution. However, still using only metrics and

thresholds to quantify the harmfulness of code-smells is not enough, other aspects should

be considered. More recently, Arcoverde, et al. [121] present and evaluate four different

heuristics for helping developers to prioritize code-smells, based on their potential

contribution to the software architecture degradation. Those heuristics exploit different

characteristics of a software project, such as change-density and error-density, for

automatically ranking code elements that should be refactored more promptly according to

their potential architectural relevance. The goal is to support software maintainers by the

recommended rankings for identifying which code anomalies are harming architecture the

most, helping them to invest their refactoring efforts into solving architecturally relevant

problems.

Other management and prioritization approaches focus on specific code-smells such

as Duplicated code (also called code clones). In [119] [123], Zibran and his colleagues

introduced an approach to schedule prioritized code clone refactoring. They capture the

risks of refactoring in a priority scheme. To this end, they proposed an effort model for

estimating the effort required to refactor code clones in object-oriented (OO) programs.

Then, taking into account the effort model and a variety of possible constraints, they

formulated the scheduling of code clone refactoring activities as a constraint satisfaction

optimization problem (CSOP), and solve it by applying constraint programming (CP)

technique that aims to maximize benefits while minimizing refactoring efforts. In [116],

Duala-Ekoko et al. proposed a tool called CloneTracker, an Eclipse plug-in that provides

support for tracking code clones in evolving software. They start from the assumption that

36

the elimination of code clones through refactoring is not always practical, feasible or cost-

effective. With CloneTracker, developers can specify clone groups they wish to track, and

the tool will automatically generate a clone model that is robust to changes to the source

code, and can be shared with other collaborators of the project. When future modifications

intersect with tracked clones, CloneTracker will notify the developer, provide support to

consistently apply changes to a corresponding clone region, and provide support for

updating the clone model. In another contribution, Zibran et al. [117] developed a language

independent matching engine (LIME), a tool for fast localization of all k-difference (edit

distance) occurrences of one code fragment inside another. The developed tool is an IDE-

based clone management system to flexibly detect, manage, and refactor exact and near-

miss code clones using a k-difference hybrid suffix tree algorithm. However, these specific

techniques are limited only on code clones and cannot be generalized for other code-smells.

 To develop a generalized prioritization schema several aspects, such as the change

frequency, the context, the severity and the relative risk, should be considered and

combined in a suitable way to approximate the harmfulness of each code-smells. Thus a

suitable prioritization strategy could help software maintainers in identifying which code-

smells are harming software the most, helping them to invest their refactoring efforts into

solving relevant problems.

2.6 Refactoring and code-smells correction

Several techniques and approaches have been proposed in the literature to support

software refactoring. We classify existing refactoring approaches into three broad

categories 1) manual and semi-automated approaches, 2) search-based approaches, and 3)

automated approaches.

2.6.1 Manual and semi-automated approaches

In Fowler’s book [1], a non-exhaustive list of low-level design problems in source

code have been defined. For each design problem (i.e., smells), a particular list of possible

37

refactorings are suggested to be applied by software maintainers manually. Indeed, in the

literature, most of existing approaches are based on quality metrics improvement to deal

with refactoring. Fowler’s book is largely a catalog of refactorings [25]; each refactoring

captures a structural change that has been observed repeatedly in various programming

languages and application domains. To apply refactoring, programmers should take the time

to examine and then select the suitable refactorings to apply continuously along the

development and maintenance process. In this context, Fowler states: “In almost all cases,

I’m opposed to setting aside time for refactoring. In my view refactoring is not an activity

you set aside time to do. Refactoring is something you do all the time in little bursts”. [1]

Sahraoui et al. [28] have proposed an approach to detect opportunities of code

transformations (i.e., refactorings) based on the study of the correlation between some

quality metrics and refactoring changes. To this end, different rules are defined as a

combination of metrics/thresholds to be used as indicators for detecting bad smells and

refactoring opportunities. For each bad smell a pre-defined and standard list of

transformations should be applied in order to improve the quality of the code. Another

similar work is proposed by Du Bois et al. [41] who starts form the hypothesis that

refactoring opportunities corresponds of those which improves cohesion and coupling

metrics to perform an optimal distribution of features over classes. Du Bois et al. analyze

how refactorings manipulate coupling and cohesion metrics, and how to identify refactoring

opportunities that improve these metrics. However, this two approaches are limited to only

some possible refactoring operations with few number of quality metrics. In addition, the

proposed refactoring strategies cannot be applied for the problem of code-smells correction.

Moha et al. [42] proposed an approach that suggests refactorings using Formal

Concept Analysis (FCA) to correct detected code-smells. This work combines the efficiency

of cohesion/coupling metrics with FCA to suggest refactoring opportunities. However, the

link between code-smells detection and correction is not obvious, which make the inspection

difficult for the maintainers. Similarly, Joshi et al. [44] have presented an approach based on

concept analysis aimed at identifying less cohesive classes. It also helps identify less

38

cohesive methods, attributes and classes in one go. Further, the approach guides refactoring

opportunities identification such as extract class, move method, localize attributes and

remove unused attributes. In addition, Tahvildari et al. [43] also proposed a framework of

object-oriented metrics used to suggest to the software engineer refactoring opportunities to

improve the quality of an object-oriented legacy system. Other contributions are based on

rules that can be expressed as assertions (invariants, pre and post-condition). The use of

invariants has been proposed to detect parts of program that require refactoring by [50]. In

addition, Opdyke [17] have proposed the definition and the use of pre- and post-condition

with invariants to preserve the behavior of the software when applying refactoring. Hence,

behavior preservation is based on the verification/satisfaction of a set of pre and post-

condition. All these conditions are expressed in terms of rules.

Furthermore, there are few research works that focus on the automation of design

patterns introduction using refactoring. One of the earliest works to introduce design

patterns was that of Ó Cinnéide and Nixon [124] [127] who presented a methodology for the

development of design pattern transformations in a behavior preserving fashion. The

identified a number of “pattern aware” composite refactorings called mini-transformations

that, when composed, can create instances of design patterns. They defined a starting point

for each pattern transformation, termed a precursor. This is where the basic intent of the

pattern is present in the code, but not in its most flexible pattern form. However, the

proposed approach is currently adapted only the Visitor design pattern. Later, Jensen and

Cheng [126] have proposed the first an approach that supports composition of design

changes and makes the introduction of design patterns a primary goal of the refactoring

process. They used genetic programming, software metrics, and the set of mini-

transformations identified by Ó Cinnéide and Nixon [127] to identify the most suitable set of

mini-transformations to maximize the number of design patterns in a software design.

Roberts et al. [128] use sequences of basic refactoring operations to introduce design

patterns in existing programs, including the Visitor pattern. Their approach was

implemented within the Smalltalk Refactoring Browser. The approach was semi-automated,

39

thus one of the key design criteria was to create a tool that could refactor Smalltalk programs

with the same interactive style that Smalltalk developers are used to. In [18], Mens and

Tourwé presented an approach to transform class hierarchy into a Visitor pattern. The

approach is presented as a pseudo-algorithm that show how the introduction of a Visitor

design pattern can be applied starting from a given point. The pseudo-algorithm describes

six steps to apply the Visitor. However, the proposed pseudo-algorithm are not described

and formulated in an automated way. Recently, Ajouli et al. [125] have described how to use

refactoring tools (IntelliJ, and Eclipse) to transform a Java program conforming to the

Composite design pattern into a program conforming to the Visitor design pattern with the

same external behavior, and vice versa. To this end, the authors have selected four common

variations in the implementation of the Composite pattern and have studied how these

variations reflect in the Visitor pattern. For each variation, they have extended the

previously defined transformation. The resulting transformations are automated and

invertible.

The major limitation of these manual and semi-automated approaches is that they

seek to apply refactorings separately without considering the whole program to be refactored

and its impact on the other artifacts. Indeed, these approaches are limited to only some

possible refactoring operations and few number of quality metrics to asses quality

improvement. In addition, the proposed refactoring strategies cannot be applied for the

problem of code-smells correction. Another important issue is that these approaches do not

take into consideration the effort (i.e. the number of modifications/adaptations) needed to

apply the suggested refactorings neither the semantics coherence of the refactored program.

2.6.2 Semantics preservation for software refactoring

Recently, there research works focusing on software refactoring have involved

semantics preservation. For instance, Bavota et al. [45] have proposed an approach to

automate the refactoring extract class based on graph theory that exploits structural and

semantic relationships between methods. The proposed approach uses a weighted graph to

40

represent the class to be refactored, where each node represents a method of that class. The

weight of an edge that connects two nodes (representing methods) is a measure of the

structural and semantic relationship between two methods that contribute to class cohesion.

After that, they split the built graph in two sub-graphs, to be used later to build two new

classes having higher cohesion than the original class. In [47], Baar et al. have presented a

simple criterion and a proof technique for the semantic preservation of refactoring rules that

are defined for UML class diagrams and OCL constraints. Their approach is based on

formalization of the OCL semantics taking the form of graph transformation rules. However,

their approach does not provide a concrete semantics preservation since there is no explicit

differentiation between behaviour and semantics preservation. Hence, they consider that the

semantics preservation "means that the observable behaviors of original and refactored

programs coincide". Moreover, they use the semantics preservation in the model level with a

high level of abstraction and therefore the code level and the implementation issues are not

considered. In addition, this approach uses only the refactoring operation move attribute and

do not consider an exhaustive list of refactorings [25]. Another semantics-based framework

has been proposed by Logozzo [48] for the definition and manipulation of class hierarchies-

based refactorings. The framework is based on the notion of observable of a class, i.e., an

abstraction of its semantics when focusing on a behavioral property of interest. They define

a semantic subclass relation, capturing the fact that a subclass preserves the behavior of its

superclass up to a given observed property.

The most notable limitation of the mentioned works is that the definition of

semantic preservation is closely related to behaviour preservation. However, preserving the

behavior does not mean that the semantic coherence of the refactored program is also

preserved. Another issue is that the proposed techniques are limited to a small number of

refactorings and thus it could not be generalized and adapted for an exhaustive list of

refactorings. Indeed, the semantics preservation is still hard to define and ensure since the

proposed approaches does not provide a pragmatic technique or an empirical study to prove

whether the semantic coherence of the refactored program is preserved.

41

As far as semantics preservation issues, the above mentioned approaches does not

provide a fully automated framework for automating the refactoring recommending task.

Several studies have been focused on automating software refactoring recommending in

recent years using different meta-heuristic search-based techniques for automatically

searching for the suitable refactorings to be applied.

2.6.3 Search-based refactoring approaches

To automate refactoring activities, new approaches have emerged where search-

based techniques have been used. These approaches cast the refactoring as an optimization

problem, where the goal is to improve the design quality of a system based mainly on a set

of software metrics. After formulating the refactoring as an optimization problem, several

different techniques can be applied for automating refactoring, e.g., genetic algorithm,

simulated annealing, and Pareto optimality, etc. Hence, we classify those approaches into

two main categories: mono-objective and multi-objective optimization approaches.

In the first category, the majority of existing work combines several metrics in a

single fitness function to find the best sequence of refactorings. Seng et al. [21] have

proposed a single-objective optimization based-approach using genetic algorithm to suggest

a list of refactorings to improve software quality. The search process uses a single fitness

function to maximize a weighted sum of several quality metrics. The used metrics are

mainly related to various class level properties such as coupling, cohesion, complexity and

stability. Indeed, the authors have used some pre-conditions for each refactoring. These

conditions serve at preserving the program behavior (refactoring feasibility). However, in

this approach the semantic coherence of the refactored program is not considered. In

addition, the approach was limited only on the refactoring operation move method.

Furthermore, there is another similar work of O’Keeffe et al. [22] [23] that have used

different local search-based techniques such as hill climbing and simulated annealing to

provide an automated refactoring support. Eleven weighted object-oriented design metrics

have been used to evaluate the quality improvements. In [49], Qayum et al. considered the

42

problem of refactoring scheduling as a graph transformation problem. They expressed

refactorings as a search for an optimal path, using Ant colony optimization, in the graph

where nodes and edges represent respectively refactoring candidates and dependencies

between them. However the use of graphs is limited only on structural and syntactical

information and therefore does not consider the domain semantics of the program neither

its runtime behavior.

Furthermore, Fatiregun et al. [59] [60] have proposed another search-based

approach for finding program transformations to reduce code size and construct amorphous

program slices. They apply a number of simple atomic transformation rules called axioms.

Indeed, the authors presume that if each axiom preserves semantics then a whole sequence

of axioms ought to preserve semantics equivalence. However, semantics equivalence

depends on the program and the context and therefore it could not be always proved.

Indeed, the semantic equivalence is based only on structural rules related to the axioms and

there is no real semantic analysis has been performed. Moreover, they have used small

atomic level transformations in their approach and their aim was to reduce program size

rather than improving its structure/quality through refactoring. Otero et al. [61] use a new

search-based refactoring. The main idea in this work is to explore the addition of a

refactoring step into the genetic programming iteration. There will be an additional loop in

which refactoring steps drawn from a catalogue of such steps will be applied to individuals

of the population. By adding in the refactoring step the code evolved is simpler and more

idiomatically structured, and therefore more readily understood and analysed by human

programmers than that produced by traditional GP methods. Jensen and Cheng [126] have

proposed the first search-based refactoring approach that supports composition of design

changes and makes the introduction of design patterns a primary goal of the refactoring

process. They used genetic programming, software metrics, and the set of mini-

transformations identified by Ó Cinnéide and Nixon [127] to identify the most suitable set

of mini-transformations to maximize the number of design patterns in a software design.

However, maximizing the number of design patterns is not always profitable. That is

43

applying a design pattern where it is not needed is highly undesirable as it introduces an

unnecessary complexity to the system for no benefit. In addition one of the important

limitations of this work is that the starting point to introduce a design pattern is not

considered which may lead to arbitrary changes in the source code. That is the basic intent

of the pattern should be present in the code. Furthermore, Kilic et al. [165] explore the use

of a variety of population-based approaches to search-based parallel refactoring, finding

that local beam search could find the best solutions. Recently, Zibran et al. [117]

formulated the problem of scheduling of code clone refactoring activities as a constraint

satisfaction optimization problem (CSOP) to fix known duplicate code code-smells. The

proposed approach consists of applying constraint programming (CP) technique that aims

to maximize benefits while minimizing refactoring efforts. An effort model is used for

estimating the effort required to refactor code clones in object-oriented (OO) codebase.

However, the proposed approach does not ensure the semantic coherence of the refactored

program.

Although these approaches are powerful enough to improve software quality as

expressed by software quality metrics, this improvement does not mean that they are

successful in removing actual instances of code-smells. Moreover, combining several

metrics/objectives into a single function may deteriorate the search process since one

objective may dominate during the search.

In the second category of work, Harman et al. [20] have proposed the first search-

based approach using Pareto optimality that combines two quality metrics, CBO (coupling

between objects) and SDMPC (standard deviation of methods per class), in two separate

fitness functions. The authors start from the assumption that good design quality results

from good distribution of features (methods) among classes. Their Pareto optimality-based

algorithm succeeded in finding good sequence of move method refactorings that should

provide the best compromise between CBO and SDMPC to improve code quality.

However, one of the limitations of this approach is that it is limited to a unique refactoring

operation (which is move method) to improve the code structure and only two metrics to

44

evaluate the preformed improvements. In addition, it is odd that there is no semantic

evaluator to prove that the semantic coherence is preserved. Recently, Ó Cinnéide et

al. [166] have proposed a multi-objective search-based refactoring to conduct an empirical

investigation to assess some structural metrics and to explore relationships between them.

To this end, they have used a variety of search techniques (Pareto-optimal search, semi-

random search) guided by a set of cohesion metrics.

The main limitation of all of the existing approaches is that the semantics

preservation has not been explicitly considered to obtain correct and meaningful

refactorings.

2.6.4 Refactoring tools

Refactoring tools automate refactorings that programmers would perform with a

programming editor. Most of modern and popular development environments for a variety

of languages now include refactoring tools such as Eclipse1, Microsoft Visual Studio2,

Xcode3, and Squeak4. A more extensive list is available in [141]. These tools are integrated

in their development environments, but do not support programmers to decide when, where

or how to apply refactorings. For large software, selecting and deciding the suitable

refactorings to apply is a labor extensive, and error prone task.

To this end, researchers have proposed various ways to improve automated

refactoring. For instance, Murphy-Hill et al. [86] [130] [131] proposed several techniques

and empirical studies to support refactoring activities. In [86] [87] ,t he authors proposed

new tools to assist software engineers in applying refactoring by hand such as selection

assistant, box view, and refactoring annotation based on structural information and program

analysis techniques. Recently, Ge and Murphy-Hill [132] have proposed new refactoring

tool called GhostFactor that allow the developer to transform code manually, but check the

1 http://eclipse.org
2 http://msdn.microsoft.com/vstudio
3 http://developer.apple.com/tools/xcode
4 http://squeak.org

45

correctness of her transformation automatically. However, the correction is based mainly

on the structure of the code and do not consider its semantics. Mens et al. formalize

refactoring by using graph transformations [133]. Bavota et al. [134] automatically identify

method chains and refactor them to cohesive classes using extract class refactoring. The

aim of these approaches is to provide specific refactoring strategies; the aim of our research

in this thesis is to provide a generic and automated refactoring recommendation framework

to help developers to refactor their code.

Although refactoring tools offer many potential benefits, programmers appear not to

use them as much as they could [130]. There is a need to better assist programmer in their

refactoring task using suitable recommendation systems.

2.7 Recommendation systems in software engineering

Recommendation Systems for Software Engineering (RSSEs) are an emerging

research area [136]. For example, CodeBroker [142] analyzes developer comments in the

code to detect similarities to class library elements that could help implement the described

functionality. CodeBroker uses a combination of textual-similarity analysis and type-

signature matching to identify relevant elements. It works in push mode, producing

recommendations every time a developer writes a comment. It also manages user-specific

lists of “known components,” which it automatically removes from its recommendations.

Dhruv [143] recommends people and artifacts relevant to a bug report. It operates chiefly in

the open source community, which interacts heavily via the Web. Using a three-layer

model of community (developers, users, and contributors), content (code, bug reports, and

forum messages), and interactions between these, Dhruv constructs a Semantic Web that

describes the objects and their relationships. It recommends objects according to the

similarity between a bug report and the terms contained in the object and its metadata.

Expertise Browser [144] is a tool that recommends people by detecting past changes to a

given code location or document. It assumes that developers who changed a method have

expertise in it. Finding the right software experts to consult can be difficult, especially

46

when they are geographically distributed. Strathcona [137] can recommend relevant source

code fragments to help developers to use frameworks and APIs. Another recommendation

system called eRose [138] recommends and predict software artifacts that must be changed

together. SemDiff [139] recommend replacement methods for adapting code to a new

library version.

Recently, there is much interest in recommendation systems in the field of software

refactoring. For instance, in [146], Terra et al. describe the preliminary design of a

recommendation system to provide refactoring guidelines for developers and maintainers

during the task of reversing an architectural erosion process. They formally describe first

recommendations proposed in their research and results of their application in a web-based

application. Tsantalis and Chatzigeorgiou have proposed a methodology to suggest Move

Method refactoring opportunities [140]. Their general goal is to tackle coupling and

cohesion anomalies. More recently, Silva et al. [135] proposed an approach to identify and

rank Extract Method refactoring opportunities that are directly automated by IDE-based

refactoring tools. Their approach aims to recommend new methods that hide structural

dependencies that are rarely used by the remaining statements in the original method.

Thies et al. [149] presents a tool for recommending rename refactorings to

harmonize variable names based on an analysis of assignments and static type information.

They focus on assignments to discover possible inconsistency of naming, exploiting that a

variable assigned to another likely points to same objects and, if declared with the same

type, is likely used for the same purpose. However, the proposed approach does not

consider other applications such as method, class or package renames which is very

important top support other refactoring recommendation tools.

JDeodorant [83] is a system proposed by Tsantalis et al. that can identify and apply

some common refactoring operations on Java systems, including Extract Method, Move

Method. Their approach is implemented as an Eclipse plugin and relies on the concept of

program slicing to select related statements that can be extracted into a new method.

47

Specifically, two criteria are used to compute such slices: 1) the full computation of a

variable, referred to as complete computation slice; 2) all code that affects the state of an

object, referred to as object state slice. More recently, Sales et al. [148] describes an

approach for identifying Move Method refactoring opportunities based on the similarity

between dependency sets. This technique is implemented by a recommendation system

called JMove, which detects methods located in incorrect classes and then suggests moving

such methods to more suitable ones. More specifically, the proposed technique initially

retrieves the set of static dependencies established by a given method m located in a class

C. Then JMove calculates based on different static similarity measures if another candidate

class can receive the method m. Moreover, Bavota et al. [147] proposed a technique to

recommend Move Method refactoring opportunities and remove the Feature Envy code-

smell from source code. Their approach, coined as Methodbook, is based on Relational

Topic Models (RTM), a probabilistic technique for representing and modeling topics,

documents (methods in Methodbook) and known relationships among these. Methodbook

uses RTM to analyze both structural and textual information gleaned from software to

better support move method refactoring.

Bavota et al. [150] proposed an approach that support extract class refactoring based

on graph theory. The proposed approach represent a class to be refactored as a weighted

graph in which each node represents a method of the class and the weight of an edge that

connects two nodes (methods) represents the structural and syntactical similarity of the two

methods. This approach always splits the class to be refactored in two classes. The

approach has been extended aiming at splitting a class in more classes [151] where the

transitive closure of the incident matrix is computed to identify sets of methods

representing the new classes to be extracted.

Furthermore, most of search-based approaches [20] [21] [22] [60] described in

Section 2.6.3 are framed into recommendation systems since their goal is to suggest

sequences of refactoring operations that could be applied according to different purposes.

48

A general conclusion to be drawn from existing refactoring work is that most of the

effort has been devoted to the definition of manual and (semi-)automatic approaches

supporting refactoring based mainly on structural information. Moreover, still existing

refactoring approaches are limited only on one or few possible refactoring operations and

their usefulness is limited to specific contexts where particular refactoring are needed, e.g.,

extract method, move method to improve particular aspects of software system. In addition,

most of these approaches and tools are based on only structural information which is not

always enough to understand and preserve the semantic coherence of the source code when

recommending refactoring. Other aspects could significantly help on developing more

efficient and practical refactoring recommendation systems such the semantic program

analysis and the use of development change history.

2.8 Mining software repositories and historical data

The field of Mining Software Repositories analyzes the data available in systems

repositories to uncover interesting information about software systems. Historical

information stored in software repositories contains a wealth of information regarding the

evolutionary history of a software system and unique view of the actual evolutionary path

taken to realize a software system. Here software repositories refer to artifacts that are

produced and archived during software evolution [152]. They include sources such as the

information stored in source code version-control systems (e.g., the Concurrent Versions

System (CVS)), requirements/bug-tracking systems (e.g., Bugzilla), communication

archives (e.g., e-mail) and other information stored/extracted along software evolution (e.g.,

applied refactorings, added requirements, enhanced features, fixed code-smells, etc.).

Software practitioners and researchers are recognizing the benefits of mining this

information to support the maintenance of software systems, improve software

design/reuse, and empirically validate novel ideas and techniques. Research is now

proceeding to uncover the ways in which mining these repositories can help to understand

49

software development and software evolution, to support predictions about software

development, and to exploit this knowledge in planning future development [153].

Recently, research work that uses the change history emerged in the in the context

of refactoring. Demeyer et al. [155] proposed an approach to detect (reconstruct)

refactorings that are applied between two software versions based on the change history.

The scope of this contribution is different than the one proposed in [155], since our aim is

to suggest refactoring solutions to be applied in the future to improve software quality

while maintaining the consistency with the change history. Ratzinger et al. [154] mined

change history to predict the likelihood of a class to be refactored in the next two months

using machine learning techniques. Their goal is to identify classes that are refactoring or

non-refactoring prone. In their prediction models they do not distinguish different types of

refactorings (e.g., create super class, extract method, etc.); they only assess the fact that

developers try to improve the design. In contrast, in our approach, we suggest concrete

refactoring solution to improve code quality and not only identifying refactoring

opportunities. Another study was presented by Ratzinger et al. [57] that use refactoring

history information to support bugs prediction. They found that refactorings and bugs have

an inverse correlation. Thus, when the number of bugs decreases then the number of

refactorings increases. Hayashi et al. [162] proposed a technique to instruct how and where

to refactor a program by using a sequence of its modifications. They consider that the

histories of program modifications reflect developers’ intentions, and focusing on them

allows us to provide suitable refactoring guides. Their technique can be automated by

storing the correspondence of modification patterns to suitable refactoring operations. For

instance, when a programmer repeats copy-and-paste operation of a certain part of the

program, as a result, instances of code clone appear in several parts of the modified

program, and it shows a sign of the code-smell code duplication. At this time, i.e.,

immediately after the developer performs a sequence of copy-and-paste operations, the

proposed approach suggests the developer to proceed to refactor the occurrences of this

code clone. However, the proposed approach is not really using traditional mining software

50

repository techniques, rather, it works online to abstract patterns of program modifications

executed by developers and make them correspond to refactoring operations. However, the

proposed approach is limited only on two types of characteristic modifications: duplication

of codes and change of complexity measures, and few refactoring operations.

As far as software refactoring, there are several works on extracting and mining

historical data from software repositories in the literature. Research has been carried out to

detect and interpret groups of software entities that change together. These co-change

relationships have been used for different purposes. Zimmermann et al. [156] have used

historical changes to point developers to possible places that need change. In addition

historical common code changes are used to cluster software artifacts [157] [161], to

predict source code changes by mining change history [156] [157], to identify hidden

architectural dependencies [159] or to use them as change predictors [158]. In addition,

recently, co-change has been used in several empirical studies in software engineering.

However, in the best of our knowledge, until now, the development change history is not

used for recommending software refactoring.

Our approach in this dissertation is largely inspired by contributions in mining

software repository research. We will describe in Chapter 6 how the development and

maintenance change history can be an effective way to recommend software refactoring.

2.9 Summary

Through this chapter, we have provided a comprehensive review of the existing

work in different domains related to our work. Several approaches and tools have been

proposed to detect code-smells. The vast majority of these techniques rely on declarative

rule specification [8] [9] [10] [11]. In these settings, rules are manually defined to identify

the key symptoms that characterize a code-smell. These symptoms are described using

quantitative metrics, structural, and/or lexical information. Indeed, we share with all the

above authors the idea that good code-smell detection strategies relies on the selection of

the suitable metrics to characterise these code-smells. However, for each code-smell, rules

51

that are expressed in terms of metric combinations need substantial calibration efforts to

find the right threshold value for each metric, above which a code-smell is said to be

detected. Since there is no consensus in defining code-smells, different threshold values

should be tested to find the best one. This led us to introduce our search-based approach to

relieve software developers from burden of manually defining code-smells detection rules.

After detecting code-smells, the next step is to fix them. Authors, such as in

Fowler [1], Liu et al. [9], Mens and Tourwé [18], Sahraoui et al. [40], proposed “standard”

refactoring solutions that can be applied by hand for each kind of code-smell. However, it

is difficult to prove or ensure the generality of these solutions to all code-smells or code

fragments. In fact, the same code-smell type can have different possible refactoring

solutions. Automated approaches are used in the majority of existing works (O’Keeffe and

Cinnéide [23]; Harman and Tratt [20]; Seng et al. [21]) to formulate the refactoring

problem as a single-objective optimization problem to improve software structure while

preserving the external behaviour. These two concerns drive the existing approaches to

refactoring automation. Each approach has its strengths and weaknesses. It helps for

conducting research for automating detection and correction (refactoring) of code-smells.

However, several concerns and challenges that we stressed in Section 1.2 should be

considered to propose efficient and practical refactoring solutions. To tackle these

problems, a mono- and multi-objective search-based approach is proposed. The search

process aims at finding the optimal sequence of refactoring operations that minimize as

much as possible the number of detected code-smells. In addition, we explore other

objectives to optimize: the amount of code changes needed to apply refactorings, the

semantics preservation, and maintaining the consistency with the change history.

In the next chapter, we describe our contributions for code-smells detection, and we

show how to circumvent the above mentioned problems in both detection and correction

steps. Our contribution is based on a search-based process to find the suitable code-smells

detection rules learned from a base of real instances of code-smells using genetic algorithm.

Part 1: Code-smells detection

The first part of this thesis presents our solution for the detection of code-smells. In

this contribution, we propose a search-based approach using code-smell examples that are

generally manually validated and available in software repositories of software

development companies. Indeed, we translate regularities that can be found in such code-

smell examples into detection rules. Instead of specifying rules manually for detecting each

code-smell type, or semi-automatically using code-smell definitions, we extract these rules

from instances of code-smells. This is achieved using Genetic Programming. Unlike

existing approaches, our proposed approach brings a lot of advantages: 1) it does not

require to define the different code-smell types, but only to have some code-smell

examples; 2) it does not require an expert to write detection rules manually; 3) it does not

require specifying the metrics to use or their related threshold values.

Chapter 3 : Search-based code-smells detection

3.1 Introduction

This chapter introduces our first contribution, which consists of the automatic

detection of code-smell. To automate the detection of code-smells, we propose a search-

based approach, using genetic programming (GP) [171], to generate detection rules. Our

proposal consists of using knowledge from previously inspected projects (i.e., code-

smell examples) in order to detect code-smells that will serve to generate new detection

rules based on combinations of quality metrics and threshold values. A solution to the

code-smell detection problem is represented as a set of rules that best detect the code-smells

presented on the base of examples with high scores of precision and recall.

This chapter is structured as follows. Section 3.2 recalls the different problems and

challenges related to the detection of code-smells and addressed by our approach. Then, we

introduce our approach and explain how GP is used to generate code-smells detection rules

in Section 3.3. In this section, details are given on the adaptation of GP to the problem of

code-smells detection. In Section 3.4, we present an evaluation of the approach, and we

discuss the obtained results in Section 3.5. Section 3.6 is dedicated to the limitations of the

approach and the threats to validity of the evaluation. Finally, Section 3.7 concludes the

chapter and describes our future research work.

3.2 Code-smells detection challenges

Unlike software bugs, there is no general consensus on how to decide if a particular

design violates a quality heuristic. Indeed, the vast majority of existing techniques relies on

declarative rule specification [8] [9] [10] [14]. In these settings, rules are manually defined

to identify the key symptoms that characterize a code-smell. These symptoms are described

using quantitative metrics, structural, and/or lexical information. For example, large classes

have different symptoms like the high number of attributes, relations and methods that can

be expressed using quantitative metrics. However, in an exhaustive scenario, the number of

54

possible code-smells to be manually characterized with rules can be very large. For

example, [12] [1] [2] describe more than sixty code-smell types. In addition, this list is not

exhaustive because different code-smells are not documented.

Furthermore, there is a difference between detecting symptoms and asserting that

the detected situation is an actual code-smell. For example, consider an object-oriented

program with hundred classes from which one class implements all the behavior and the

other classes are mainly classes with attributes and accessors. No doubt, we are in presence

of a Blob. Unfortunately, in real-life systems, we can find many large classes, each one

using some data classes and some regular classes. Deciding which classes are Blob

candidates heavily depends on the interpretation of each analyst. In some contexts, an

apparent violation of a design principle may be consensually accepted as normal practice.

For example, a “Log” class responsible for maintaining a log of events in a program, used

by a large number of classes, is a common and acceptable practice. However, from a strict

code-smell definition, it can be considered as a class with an abnormally large coupling.

Moreover, even when consensus exists, the same symptom could be associated to

many code-smell types, which may compromise the precise identification of code-smell

types. In fact, translating code-smell definitions from the natural language to metric

combinations is a subjective task. For this reason, different code-smells are characterized

by the same metrics. Thus, it is difficult to identify some code-smells types. These

difficulties explain a large portion of the high false-positive rates reported in most of the

existing contributions.

Another very important issue is related to the definition of thresholds when dealing

with quantitative information. Indeed, there is a general agreement on extreme

manifestations of code-smells. That is, for each code-smell, rules that are expressed in

terms of metric combinations need substantial calibration efforts to find the right threshold

value for each metric, above which a code-smell is said to be detected. Since there is no

consensus in defining code-smells, different threshold values should be tested to find the

best one. For instance, the Blob detection involves information such as class size. Although

we can measure the size of a class, an appropriate threshold value is not trivial to define. A

55

class considered large in a given program/community of users could be considered average

in another.

Besides the previous approaches, software repositories are available in many

companies, where code-smells in projects under development are manually identified,

corrected and documented. However, this valuable knowledge is not used to mine

regularities about code-smell manifestations, although these regularities could be exploited

both to detect and correct code-smells.

In the next section, we introduce our approach to overcome some of the above-

mentioned limitations for code-smells detection. The proposed approach brings a lot of

advantages: 1) it does not require to define the different code-smell types, but only to have

some code-smell examples; 2) it does not require an expert to write detection rules

manually; 3) it does not require specifying the metrics to use or their related threshold

values.

3.3 Approach

This section describes our contribution for code-smells detection problem. The key

idea is to see the detection problem as a search based combinatorial optimization problem

to find the appropriate detection rules from an exhaustive list of possible metrics and

threshold values.

The rest of this section describes the proposed approach in more detail.

Section 3.3.1 introduces the proposed approach while Section 3.3.2 explains the adaptation

and the design of GP in terms of solution representation, fitness function, selection and

genetic operators.

3.3.1 Approach overview

We propose an approach that uses knowledge from previously manually inspected

projects, called code-smell examples, in order to detect code-smells that will serve to

generate new detection rules based on combinations of software metrics. In short, the

detection rules are automatically derived by an optimization process that exploits the

56

available examples. Figure 3.1 shows the general structure of our approach. It takes as

inputs a base (i.e., a set) of code-smell examples and a set of quality metrics (the definition

and the usefulness of these metrics were discussed in the literature [2]). As output, our

approach derives a set of detection rules. Using GP, our rules' derivation process generates

randomly, from a given list of quality metrics, a combination of quality metrics/threshold

for each code-smell type. Thus, the generation process can be viewed as a search-based

combinatorial optimization to find the suitable combination of metrics/thresholds that best

detect the code-smell examples. In other words, the best set of rules is the one that detects

the maximum number of code-smells (we consider both precision and recall scores).

Figure 3.1 - Approach overview.

As showed in Figure 3.2, the base of examples contains projects (systems) that were

manually inspected to detect possible code-smells. During a training stage, these systems

are iteratively evaluated using rules generated by the algorithm. A fitness function

calculates the quality of each solution (rules) by comparing the list of detected code-smells

with the expected ones from the base of examples.

Generation of
code-smells

detection rules
(Genetic Algorithm)

Software quality
metrics

Code‐smells
detection rules

Examples of
code‐smells

System 2
System 1

System 3

Code-smell
instance

57

Figure 3.2 - Base of examples

As many metrics combinations are possible, the detection rules generation process

is, by nature, a combinatorial optimization problem. The number of possible solutions

quickly becomes huge as the number of metrics increases. A deterministic search is not

practical in such cases, and the use of heuristic search is warranted. The dimensions of the

solution space are set by the metrics and logical operations between them: union (metric1

OR metric2) and intersection (metric1 AND metric2). A solution is determined by

assigning a threshold value to each metric. The search is guided by the quality of the

solution according to the number of detected code-smells in comparison to the expected

ones form the base of examples. To this end, a heuristic search is needed to explore this

large number of combination.

3.3.2 GP adaptation

Our SBSE formulation of code-smells detection is based on GP (cf.

Section 2.32.3.12.3).A high level view of the GP approach to the code-smells detection

problem is summarized in Algorithm 3.1. The algorithm takes as input a set of quality

metrics and a set of code-smell examples that were manually detected in some systems, and

finds a solution which corresponds to a set of rules that best detect the code-smells in the

base of examples.

Base of examples

System 1

System 2

System 3

Code-smell
instance

58

Algorithm: Code-smells Detection

Input:
Set of quality metrics
Set of code-smell examples

Process:
1. I:= rules(R, Code-smell_Type)
2. P:= set_of(I)
3. initial_population(P, Max_size)
4. repeat
5. for all I in P do
6. detected_ code-smells := execute_rules(R, I)
7. fitness(I) := compare(detected_ code-smells, code-smell_examples)
8. end for
9. best_solution := best_fitness(I);
10. P := generate_new_population(P)
11. it:=it+1;
12. until it=max_it
13. return best_solution

Output:
best_solution: detection rule

Algorithm 3.1 - High-level pseudo-code for GP adaptation to our code-smells detection

problem.

Lines 1–3 construct the initial GP population which is a set of individuals that

define possible detection rules. The function rules(R, Code-smell_Type) returns an

individual I by randomly combining a set of metrics/thresholds that corresponds to a

specific code-smell type, e.g., Blob, spaghetti code, or functional decomposition. The

function set_of(I) returns a set of individuals, i.e., detection rules, that corresponds to a GP

population. Lines 4–13 encode the main GP loop, which explores the search space and

constructs new individuals by combining metrics within rules. During each iteration, we

evaluate the quality of each individual in the population, and save the individual having the

best fitness (line 9). We generate a new population (P+1) of individuals (line 10) by

iteratively selecting pairs of parent individuals from population P and applying the

crossover operator to them; each pair of parent individuals produces two children (new

solutions). We include both the parent and child variants in the new population P. Then, we

apply the mutation operator with a probability score for both parent and child to ensure the

solution diversity; this produces the population for the next generation. The algorithm

59

terminates when the termination criterion (maximum iteration number) is met, and returns

the best set of detection rules (best solution found during all iterations).

To adapt GP for a specific problem, the following elements have to be defined:

representation of the individuals; creation of a population of individuals; definition of the

fitness function to evaluate individuals for their ability to solve the problem under

consideration; selection of the individuals to transmit from one generation to another;

creation of new individuals using genetic operators (crossover and mutation) to explore the

search space, and finally, the generation of a new population. In the following, we describe

more precisely our adaption of GP to the code-smells detection problem.

a) Individual representation

An individual is a set of IF – THEN rules. For instance, let us consider the

following detection rule, i.e., individual, and its interpretation (please refer to Appendix A

for the definition of the used metrics):

R1: IF (LOC(c) ≥ 1500 AND NOM(c) ≥ 29) OR (WMC(c) ≥ 60) THEN Blob(c)

R2: IF (CBO(c) ≥ 51) THEN spaghetti code(c)

R3: IF (NPA(c) ≥ 4 AND WMC(c) < 3) THEN functional decomposition (c)

Consequently, a detection rule has the following structure:

IF “Combination of metrics with their threshold values” THEN “Code-smell type”

The IF clause describes the conditions or situations under which a code-smell type

is detected. These conditions correspond to logical expressions that combine some metrics

and their threshold values using logic operators (AND, OR). If some of these conditions are

satisfied by a class, then this class is detected as the code-smell figuring in the THEN

clause of the rule. Consequently, THEN clauses highlight the code-smell types to be

detected. We will have as many rules as types of code-smell to be detected. In our case,

mainly for illustrative reasons, and without loss of generality, we focus on the detection of

three code-smell types, namely Blob, spaghetti code and functional decomposition.

60

Consequently, as it is shown in Figure 3.3, we have three rules, R1 to detect Blobs, R2 to

detect spaghetti codes, and R3 to detect functional decomposition.

One of the most suitable computer representations of rules is based on the use of

trees [171] [172]. In our case, the rule interpretation of an individual will be handled by a

tree representation which is composed of two types of nodes: terminals and functions. The

terminals (leaf nodes of a tree) correspond to different quality metrics with their threshold

values. The functions that can be used between these metrics correspond to logical

operators, which are Union (OR) and Intersection (AND). Figure 3.3 represents an example

detection rule represented as a tree. This tree representation corresponds to an OR

composition of three sub-trees, each sub-tree represents a rule: R1 OR R2 OR R3.

Figure 3.3 - A tree representation of an individual.

For instance, rule R1 is represented as a sub-tree of nodes starting at the branch (N1

- N5) of the individual tree representation of Figure 3.3. Since this rule is dedicated to

detect Blob code-smells, we know that the branch (N1 – N5) of the tree will figure out the

THEN clause of the rule. Consequently, there is no need to add the code-smell type as a

node in the sub-tree dedicated to a rule.

OR

OR AND

AND

LOC≥1500 NOM ≥ 29

CBO ≥ 51

NPA ≥ 4
WMC<3

WMC ≥
60

N6

N1

N2

N3

N4

N5 N7

N8
N10

N9

R1: Blob
R3: FD

R2: SC

61

b) Generation of an initial population

To generate an initial population, we start by defining the maximum tree length,

including the number of nodes and levels. The actual tree length will vary with the number

of metrics to use for code-smell detection. Notice that a high tree length value does not

necessarily mean that the results are more precise since, usually, only a few specific metrics

are needed to detect a specific code-smell. These metrics can be specified either by the user

or determined randomly. Because the individuals will evolve with different tree lengths

(structures), with the root (head) of the trees unchanged, we randomly assign for each one:

 one metric and threshold value to each leaf node

 a logic operator (AND, OR) to each function node

Since any metric combination is possible and correct semantically, we do need to

define some conditions to verify when generating an individual.

c) Genetic operators

Selection. To select the individuals that will undergo the crossover and mutation

operators, we used stochastic universal sampling (SUS) [171], in which the probability to

select an individual is directly proportional to its relative fitness in the population. For each

iteration, we used SUS to select population_size/2 individuals from population p to

generate population p+1. These (population_size/2) selected individuals will “give birth” to

another (population_size/2) new individuals using crossover operator.

Crossover. Two parent individuals are selected, and a sub tree is picked on each

one. Then, the crossover operator swaps the nodes and their relative sub trees from one

parent to the other. The crossover operator can be applied only on parents having the same

type of code-smell to detect. Each child thus combines information from both parents.

Figure 3.4 shows an example of the crossover process. Indeed, the rule R1 and a

rule R2 from another individual (solution) are combined to generate two new rules. The

right sub tree of R1 is swapped with the left sub tree of R2.

62

Figure 3.4 - Crossover operator.

As a result, after applying the cross operator the new rule R1 to detect Blob will be:

R1: IF (LOC(c) ≥ 1500 AND NOM(c) ≥ 29) OR (NPA(c) ≥ 4) THEN Blob(c)

Mutation. The mutation operator can be applied either to function or terminal

nodes. This operator can modify one or many nodes. Given a selected individual, the

mutation operator first randomly selects a node in the tree representation of the individual.

Then, if the selected node is a terminal (threshold value of a quality metric), it is replaced

by another terminal. The new terminal either corresponds to a threshold value of the same

metric or the metric is changed, and a threshold value is randomly fixed. If the selected

node is a function (AND operator, for example), it is replaced by a new function (i.e., AND

becomes OR). If a tree mutation is to be carried out, the node and its sub trees are replaced

by a new randomly generated sub tree.

To illustrate the mutation process, consider again the example that corresponds to a

candidate rule to detect the Blob code-smell. Figure 3.5 illustrates the effect of a mutation

that deletes the node NMD, leading to the automatic deletion of node OR (no left sub tree),

AND

NPA ≥ 4 WMC < 3

R2

R1 OR

AND

LOC≥1500
NOM ≥ 29

NPA≥ 4

Crossover

AND

WMC < 3WMC ≥
60

R’2

R’1

OR

AND

LOC≥1500 NOM ≥ 29

WMC ≥
60

63

and that replaces the node LOCMETHOD by node NPRIVFIELD with a new threshold

value. Thus, after applying the mutation operator the new rule R1 to detect Blob will be:

R1: IF (LOCCLASS(c) ≥ 1500 AND NPRIVFIELD(c) ≥ 14)) THEN Blob(c)

Figure 3.5 - Mutation operator

d) Encoding of an individual

The quality of an individual is proportional to the quality of the different detection

rules composing it. In fact, the execution of these rules on the different projects extracted

from the base of examples detects various classes as code-smells. Then, the quality of a

solution (set of rules) is determined with respect to the number of detected code-smells in

comparison to the expected ones in the base of examples. In other words, the best set of

rules is the one that detects the maximum number of code-smells.

For instance, let us suppose that we have a base of code-smell examples having

three classes X, W, and T that are considered respectively as Blob, functional

decomposition and another Blob. A solution contains different rules that detect only X as

Blob. In this case, the quality of this solution will have a value of 1/3 = 0.33 (only one

detected code-smell over three expected ones).

OR

AND

LOC≥ 1500 NOM ≥ 29

WMC ≥
60

After mutationBefore mutation

Mutation

OR

AND

LOC≥ 1500
NOM≥ 29

WMC ≥
60

64

e) Fitness function

The encoding of an individual should be formalized in a fitness function that

quantifies the quality of the generated rules. The goal is to define an efficient and simple (in

the sense of not computationally expensive) fitness function in order to reduce

computational complexity.

As discussed in Section 3.3.1, the fitness function aims to maximize the number of

detected code-smells in comparison to the expected ones in the base of examples. In this

context, we define the fitness function of a solution, normalized in the range [0, 1], as:

௡݂௢௥௠ ൌ

∑ ܽ௜
௣
௜ୀଵ
ݐ 	൅

∑ ܽ௜
௣
௜ୀଵ
݌ 		

2
∈ ሾ0,1ሿ

where t is the number of code-smells in the base of examples, p is the number of detected

classes with code-smells, and ai has value 1 if the ith detected class exists in the base of

examples (with the same code-smell type), and value 0 otherwise.

To illustrate the fitness function, we consider a base of examples containing one

system evaluated manually. In this system, six (6) classes are subject to three (3) types of

code-smells as shown in Table 3.1.

Class Blob
Functional

decomposition
Spaghetti

code
Student X
Person X

University X
Course X

Classroom X
Administration X

Table 3.1 - Code-smells example.

The classes detected after executing the solution generating the rules R1, R2 and R3

of Figure 3.3 are described in Table 3.2.

65

Class Blob Functional
decomposition

Spaghetti
code

Person X
Classroom X
Professor X

Table 3.2 - Detected classes.

Thus, only one class corresponds to a true code-smell (Person). Classroom is a

code-smell but the type is wrong and Professor is not a code-smell. The fitness function has

the value:

௡݂௢௥௠ ൌ

1
3	൅

1
6		

2
ൌ 0.25

with t=3 (only one code-smell is detected over 3 expected code-smells), and p=6 (only one

class with a code-smell is detected over 6 expected classes with code-smells).

3.4 Evaluation

To evaluate our approach, we studied its usefulness to guide quality assurance

efforts for six large and medium-size open-source software systems. In this section, we

describe our experimental setup and present the results of an exploratory study.

3.4.1 Research questions

We designed our experiments to answer the following research questions:

 RQ1: To what extent can the proposed approach detect code-smells?

 RQ2: What types of code-smells does it locate correctly?

To answer RQ1, we used an existing corpus of known code-smells [8] to evaluate

the precision and recall of our approach. We compared our results to those produced by a

rule-based strategy [8]. To answer RQ2, we investigated the type of code-smells that were

found.

66

3.4.2 Systems studied

We used six large-size open-source Java projects to perform our experiments:

GanttProject v1.10.2, Xerces-J v2.7.0, ArgoUML v0.19.8, Quick UML v2001, LOG4J

v1.2.1, and AZUREUS v2.3.0.6. GanttProject1 (Gantt for short) is a cross-platform tool for

project scheduling. Xerces-J2 is a family of software packages for parsing XML.

ArgoUML3 is a popular UML modeling tool which includes support for all standard UML

1.4 diagrams. Quick UML4 is an editor creating and sharing UML diagrams with people on

many different platforms and generate Java source code from. LOG4J5 is a well-known

logging library for Java. Finally, AZUREUS6 is a P2P file sharing client using the bittorrent

protocol that search and download torrent files, play, convert and transcode videos and

music. Table 3.3 provides some relevant information about the programs. The base of code-

smell examples contains more than examples. Table 3.3 provides some descriptive statistics

about these six programs.

We selected these systems for our validation because they came from six different

organisations, involved different kinds of software engineering development and had

different sizes, ranging from 21 to 1160 KLOC with a considerable number of code-smell

1 http://www.ganttproject.biz
2 http://xerces.apache.org/xerces-j/
3 http://argouml.tigris.org/
4 http://sourceforge.net/projects/quj/
5 http://logging.apache.org/log4j/1.2/
6 http://sourceforge.net/projects/azureus/

Systems # of classes KLOC # of code-smells

GanttProject v1.10.2 245 31 41
Xerces-J v2.7.0 991 240 66
ArgoUML v0.19.8 1230 1160 89
Quick UML v2001 142 19 11
LOG4J v1.2.1 189 21 17
AZUREUS v2.3.0.6 1449 42 93

Table 3.3 - Program statistics.

67

instances. The version of Gantt studied was known to be of poor quality, which led to a

major revised version. ArgoUML, Xerces-J, LOG4J, AZUREUS and Quick UML, on the

other hand, has been actively evolved over the past 10 years and their design has not been

responsible for a slowdown of their developments.

3.4.3 Analysis method

In [8], the authors asked three groups of students to analyse the libraries and tag

instances of specific antipatterns in order to validate their detection technique, DECOR. For

replication purposes, they provided a corpus of describing instances of different antipatterns

that includes Blob classes, spaghetti code, and functional decompositions. As described in

Section 2.2.1, Blobs are classes that do or know too much; spaghetti Code (SC) is a code

that does not use appropriate structuring mechanisms; finally, functional decomposition

(FD) is a code that is structured as a series of function calls (please refer to Appendix C for

the definition of these code-smells). These represent different types of design risks. In our

study, we verified the capacity of our approach to locate classes that corresponded to

instances of these anti-patterns. We used a 6-fold cross validation procedure. For each fold,

one open source project is evaluated by using the remaining five systems as the base of

examples. For example, Xerces-J is analyzed using detection rules generated from some

code-smell examples from ArgoUML, LOG4J, AZUREUS, Quick UML and Gantt.

DECOR [8] reported the number of detected antipatterns, the number of true

positives, the recall (number of true positives over the total number of code-smells) and the

precision (ratio of true positives over the number of detected code-smells). The obtained

results were compared to those of DÉCOR in terms of recall and precision when using our

approach for each code-smell in Xerces-J, AZUREUS, LOG4J, Quick UML, ArgoUML

and Gantt. Recall and precision are defined as follow:

ܴ݈݈݁ܿܽ ൌ
ݏ݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ

ݏ݈݈݁݉ݏ	݁݀݋ܿ	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ݐ

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ݏ݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ

ݏ݈݈݁݉ݏ	݁݀݋ܿ	݀݁ݐܿ݁ݐ݁݀	݂݋	ݎܾ݁݉ݑ݊

68

3.4.4 Results

Table 3.4 summarizes our findings. For Gantt, our average code-smell detection

precision was 94%. DECOR, on the other hand, had a combined precision of 59% for the

same code-smells. The precision for Quick UML was about 86%, over twice the value of

43% obtained with DECOR. In particular, DECOR did not detect any spaghetti code as

opposed to our approach. For Xerces-J, our precision average was 90%, while DECOR had

a precision of 67% for the same dataset. Finally, the comparison results were mixed for

ArgoUML, AZUREUS and LOG4J; still, our precision was consistently higher than 75% in

comparison to DECOR.

On the negative side, our recall for the different systems was systematically lower

than that of DECOR. In fact, the rules defined in DECOR are too general, which increases

the recall at the cost of precision. The main reason that our approach finds better precision

results is that the threshold values are well-defined using our GP. Indeed, with DECOR the

user should test different threshold values to find the best ones. Thus, it is a fastidious task

to find the best threshold combination for all metrics. The Blob code-smell is detected

better using DECOR because it is easy to find the thresholds and metrics combination for

this kind of code-smells. The hypothesis to have 100% of recall justifies low precision,

sometimes, to detect code-smells. In fact, there is a compromise between precision and

recall. However, still our approach provides better compromise in terms of F-Measure

equals to 88% for all code-smells, whereas DECOR provides only 78.6%. The detection of

FDs by only using metrics seems difficult. This difficulty is alleviated in DECOR by

including an analysis of naming conventions to perform the detection process. However,

using naming conventions lead to results that depend on the coding practices of the

development team. We obtained comparable results without having to leverage lexical

information. We can also mention that fixed code-smells correspond to the different code-

smell types.

69

In the context of this experiment, we can conclude that our technique is able to

identify code-smells, in average, more accurately than DECOR (answer to research

question RQ1 above).

As described in Table 3.5, we compared our GP detection results with those

obtained by another local search algorithm, simulated annealing (SA) [98]. The detection

results for SA are also acceptable. For small systems, the precision when using SA is even

better than with GP. In fact, GP is a global search that performs best in a large search space

(which corresponds to large systems). In addition, the solution representation used in GP

(tree) is suitable for rule generation, while SA uses a vector-based representation that is not.

Furthermore, SA takes a lot of time, comparing to GP, to converge to an optimal solution

(more than 10 minutes).

System Precision Precision-
DECOR Recall Recall-DECOR

GanttProject
Blob : 100%
SC : 93%
FD : 91%

90%
71.4%
26.7%

100%
97%
94%

100%

Xerces-J
Blob : 97%
SC: 90%
FD: 88%

88.6%
60.5%
51.7%

100%
88%
86%

ArgoUML
Blob : 93%
SC: 88%
FD: 82%

86.2%
86.4%
38.6%

100%
91%
89%

QuickUML
Blob : 94%
SC: 84%
FD: 81%

100%
0%

30%

98%
93%
88%

AZUREUS
Blob : 82%
SC: 71%
FD: 68%

92.7%
81.7%
38.6%

94%
81%
86%

LOG4J
Blob : 87%
SC: 84%
FD: 66%

100%
66.7%
54.5%

90%
84%
74%

Table 3.4 - Code-smells detection results compared to DÉCOR

70

3.5 Discussion

We noticed that our technique does not have a bias towards the detection of specific

code-smell types. In Xerces-J, we had an almost equal distribution of each code-smell (14

SCs, 13 Blobs, and 14 FDs). On Gantt, the distribution was not as balanced, but this is

principally due to the number of actual code-smells in the system. We found all four known

FDs and nine Blobs in the system, and eight of the seventeen FDs, four more than DECOR.

An important consideration is the impact of the example base size on detection

quality. Drawn for AZUREUS, the results of Figure 3.6 show that our approach also

proposes good detection results in situations where only few examples are available. The

precision and recall scores seem to grow steadily and linearly with the number of examples

and rapidly grow to acceptable values (75%). Thus, our approach does not need a large

number of examples to obtain good detection results.

System Precision-GP Precision-SA

GanttProject
Blob : 100%
SC : 93%
FD : 91%

100%
94%
90%

Xerces-J
Blob : 97%
SC: 90%
FD: 88%

83%
69%
79%

ArgoUML
Blob : 93%
SC: 88%
FD: 82%

83%
84%
67%

QuickUML
Blob : 94%
SC: 84%
FD: 81%

100%
88%
83%

AZUREUS
Blob : 82%
SC: 71%
FD: 68%

91%
63%
54%

LOG4J
Blob : 87%
SC: 84%
FD: 66%

100%
88%
73%

Table 3.5 – GP code-smells detection results compared to Simulated Annealing.

71

Figure 3.6 - Examples-size variation (example = system).

The reliability of the proposed approach requires an example set of bad code. It can

be argued that constituting such a set might require more work than identifying, specifying,

and adapting rules. In our study, we showed that by using six open source projects directly,

without any adaptation, the technique can be used out of the box and will produce good

detection precision and recall results for the detection of code-smells for the studied

systems.

In an industrial setting, we could expect that a company starts with some few open-

source projects, and gradually evolves its set of bad code examples to include context-

specific data. This might be essential if we consider that different languages and software

environments have different best/worst practices.

Finally, since we viewed the code-smells detection problem as a combinatorial

problem addressed with heuristic search, it is important to contrast the results with the

execution time. We executed our algorithm on a standard desktop computer (Pentium CPU

running at 2 GHz with 3GB of RAM). The execution time for rules generation with a

population size of 400 individuals and number of iterations (stopping criteria) fixed to 3500

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

Examples Variation

Precision

Recall

%

Number of examples

72

was less than four minutes (3min27s). This indicates that our approach is reasonably

scalable from the performance standpoint. However, the execution time depends on the

number of used metrics and the size of the base of examples. It should be noted that more

important execution times may be obtained than when using DECOR. In any case, our

approach is meant to apply mainly in situations where manual rule-based solutions are not

easily available.

3.6 Threats to validity

Following the methodology proposed by Wohlin et al. [167], there are four types of

threats that can affect the validity of our experiments. We consider each of these in the

following paragraphs.

Conclusion validity is concerned with the relation between the treatment and the outcome.

We used the Wilcoxon rank sum test [170] with a 95% confidence level to test whether

significant differences exist between the measurements for different treatments. This test

makes no assumption that the data is normally distributed and is suitable for ordinal data,

so we can be confident that the statistical relationships we observed are significant. In our

comparison with the technique not based on heuristic search, we considered the parameters

provided with the tool. This is can be considered as a threat that can be addressed in the

future by evaluating the impact of different parameters on the quality of the results of

DECOR.

Internal validity is concerned with the causal relationship between the treatment and the

outcome. A possible threat to the internal validity resides in the use of stochastic

algorithms. To circumvent this threat our experimental study is performed based on 51

independent simulation runs for each problem instance and the obtained results are

statistically analyzed by using the Wilcoxon rank sum test [170] with a 95% confidence

level (α = 5%). Still, the parameter tuning of the different optimization algorithms used in

our experiments creates another internal threat that we need to evaluate in our future work.

The parameters' values used in our experiments are found by a trial-and-error method,

which is commonly used in the SBSE community [169]. However, it would be an

73

interesting perspective to design an adaptive parameter tuning strategy [168] for our

approach so that parameters are updated during the execution in order to provide the best

possible performance.

Construct validity is concerned with the relationship between theory and what is observed.

Most of what we measure in our experiments are standard metrics such as precision and

recall that are widely accepted as good proxies for quality of code-smells detection

solutions. Another construct validity threat is related to the absence of similar work that

uses search-based algorithms for code-smells detection. For that reason, we compare our

proposal with other existing techniques not based on search-based algorithms. Another

threat to construct validity arises because, although we considered three types of code-

smells, we did not evaluate the detection of other types of code-smells. In future work, we

plan to evaluate the performance of our proposal to detect some other types of code-smell.

Another construct threat can be related to the corpus of manually detected code-smells

since developers do not all agree if a candidate is a code-smell or not. We will ask some

new experts to extend the existing corpus and provide additional feedback regarding the

detected code-smells.

External validity refers to the generalizability of our findings. In this study, we performed

our experiments on six different widely used open-source systems belonging to different

domains and with different sizes, as described in Table 3.3. However, we cannot assert that

our results can be generalized to industrial Java applications, other programming languages,

and to other practitioners. Future replications of this study are necessary to confirm our

findings.

3.7 Conclusion

In this chapter, we proposed a new search-based approach for code-smells detection.

Typically, researchers and practitioners try to characterize different types of common code-

smells and present symptoms to search for in order to locate these code-smells in a system.

In this work, we have shown that this knowledge is not necessary to perform the detection.

Instead, we use examples of code-smells to automatically generate detection rules. Our

74

study shows that our technique outperforms DECOR [8], a state-of-the-art metric-based

approach, where rules are defined manually, on its test corpus. The proposed approach was

tested on six medium and large-size open-source systems, and the results are promising.

As part of future work, we plan to extend our base of examples with additional

badly-designed code in order to consider more programming contexts. Another direction

worth to explore is to improve the detection of potential code-smells through the use of

knowledge from software change history. Indeed, as reported in the literature [64] [118],

classes participating in design problems (e.g., code-smells) are significantly more likely to

be changed [118]. Moreover, if a code-smell (e.g., God Class) is created intentionally and

remains unmodified or hardly undergoes changes, the system may not experience any

problems [63] [117]. Indeed, it has been shown that, in some cases, a large class might be

the best solution [63]. For these reasons, combining software static metrics with software

change-based metrics can be an effective way to improve the detection of code-smells.

Once code-smells are detected, they should be fixed as early as possible for

maintainability, quality assurance, and evolution considerations. In the next chapter, we

introduce our approach to fix code-smells.

Part 2: Mono-objective code-smells correction

In the first part of this thesis we presented our search-based approach for code-

smells detection. We used genetic programming to generate code smell-detection rules

learned from real code-smell instances.

Once code-smells detected, they need to be fixed as early as possible for

maintainability and evolution considerations. Indeed, it is widely believed that refactoring

is an effective technique to fix code-smells [1]. In this second part of this thesis, we focus

on code-smells correction through refactoring. We deal with refactoring recommending

task as a mono-objective optimization problem to improve software quality by fixing code-

smells. In this setting, we consider two scenarios for practitioners or software development

companies: 1) they have enough time and resources to address all the detected code-smells;

2) there are time and resources limitations.

For the first scenario, we introduce a search-based approach using genetic algorithm

to find the optimal sequence of refactoring steps that fixes as much as possible the number

of detected code-smells. The approach was successfully applied to six medium and large

size software systems by fixing the majority of existing code-smells (90%). Our

experimental results provide evidence that refactoring is by nature an optimization problem.

For the second scenario, where there is no enough time and resources to address all

the detected. Practitioners need to focus their efforts on fixing only the most critical code-

smells. That is, not all code-smells have equal effects and importance. Indeed, it would be

important to determine which are the more critical code-smells in order to prioritize their

correction. To this end, we introduce a novel approach to prioritize code-smells correction

using chemical reaction optimization [176], a newly established metaheuristics.

Chapter 4 : Search-based code-smells correction

4.1 Introduction

We presented in Chapter 3 how code-smell detection rules can be automatically

generated from examples of code-smell instances. Due to their harmful impact on the

quality, maintenance and evolution of software systems, code-smells should be prevented

and removed from the code as early as possible. Hence, it is widely believed that

refactoring is an efficient technique to fix code-smells, improve software quality, and above

all, increase and developer’s productivity by making software systems easier to maintain

and understand.

In this chapter, we introduce our approach for recommending refactoring solutions

to fix the detected code-smells. At this stage, we consider the refactoring recommending

task as a single-objective optimization problem. Our search-based approach aims at finding,

from a large list of possible refactorings, the suitable refactoring solutions that fixes the

detected code-smells by the means of genetic algorithm (GA) [99]. Indeed, a refactoring

solution corresponds to a sequence of refactoring operations that should minimize as much

as possible the number of code-smells. To this end, our search based process is guided by

an evaluation function that calculates the number of fixed code-smells using detection

rules. We evaluate our approach on a benchmark composed of six large and medium size

software systems. We found that our approach is able to suggest refactoring solutions to

correct the majority (more than 90%) of the detected code-smells.

This chapter is organized as follows. Section 4.2 recalls the different problems and

challenges related to the correction of code-smells that are addressed by our approach.

Section 4.3 introduces our approach for fixing code-smells using refactoring. In this

section, details are given on the adaptation of GA to the refactoring and code-smells

correction problem. While Section 4.4 presents an evaluation of the proposed approach,

Section 4.5 presents a discussion about the obtained results. Section 4.6 is dedicated to

77

discuss the different limitations and threats to validity. Finally, Section 4.7 concludes the

chapter and describes our future research work.

4.2 Code-smells correction and refactoring challenges

Several problems and challenges should be considered when recommending

refactoring. Our approach described in this chapter represents a preliminary research

direction to show how refactoring strategies can be handled as an optimization problem. At

this stage, we mainly address the problems 2.1 - 2.5 identified in Section 1.2.

In fact, the majority of existing approaches [1] [40] [41] have manually defined

"standard" refactorings for each code-smell type to remove its symptoms as described In

Fowlers book [1]. However, it is difficult to define “standard” refactoring solutions for each

code-smell type and to generalize them because it depends mainly on the programs in their

context. To make the situation worst, removing code-smell symptoms does not mean that

the actual code-smell is corrected, and, in the majority of cases, these “standard” solutions

are unable to remove all symptoms for each code-smell.

Furthermore, different possible refactoring strategies should be defined for the same

type of code-smell. The problem is how to find the “best” refactoring solutions from a large

list of candidate refactorings and how to combine them in an appropriate order? The list of

all possible refactoring strategies, for each code-smell, can be very large [25]. Thus, the

process of defining refactoring strategies manually, from an exhaustive list of refactorings,

is fastidious, time-consuming, and error-prone.

From another perspective, in the majority of existing approaches [20] [21] [22] [49],

code quality can be improved without fixing code-smells. In other terms, improving some

quality metrics does not guarantee that the detected code-smells are fixed. Therefore, the

link between code-smells detection (refactoring opportunities) and correction is not obvious.

Thus, we need to ensure whether the refactoring concretely corrects detected code-smells.

More significantly, existing approaches consider the refactoring (i.e., the correction

process) as local process by fixing code-smells (or improving quality) separately. That is, a

78

refactoring solution should not be specific to only one code-smell type; instead, the impact

of refactoring should be considered on the whole system. For example, moving methods to

reduce the size/complexity of a class may increase the global coupling, or fixing some

code-smells may create other code-smells in other code fragments.

These observations were at the origin of the work described in this chapter.

4.3 Approach

In this Section, we introduce our approach for recommending refactoring to fix

code-smells. We also show the importance of heuristic search to explore the large search

space of possible refactoring solutions. We start by presenting an overview of our approach

in Section 4.3.1. Then, we describe, in Section 4.3.2, GA adaptation for the refactoring

recommending problem in terms of solution representation, fitness function, selection and

genetic operators.

4.3.1 Approach overview

Figure 4.1 - Approach overview.

To correct the detected code-smells, we propose a search-based approach that aims

at finding, from a large list of possible refactoring operation, the suitable refactorings that

fixes the detected code-smells. To this end, we use GA to find the suitable refactoring

solutions. Our main aim is to find refactoring solutions that should minimize as much as

possible the number of code-smells. As illustrated in Figure 4.1, our approach takes as

Code-smells correction
(Genetic Algorithm)

Code to be
refactored

Suggested
refatorings

Code‐smells
detection rules

List of possible
refactorings

79

input a smelly source code (i.e., contains code-smells), a list of possible refactoring

operations that can be applied (please refer to Appendix B for the list of considered

refactorings), and code-smells detection rules. As output, our approach suggests the optimal

sequence of refactoring operations to fix the detected code-smells.

4.3.2 GA adaptation

Our SBSE formulation of code-smells correction is based on GA (cf.

Section 2.32.3.1). A high level view of the GA approach to the code-smells correction

problem is summarized in Algorithm 4.1. The algorithm takes as input code fragments to

be corrected Smelly_code, a set of possible refactoring operations RO, and a set of code-

smell detection rules D. Lines 1–5 construct an initial solution population based on a

1. Algorithm: Code-smells Correction

Input:
Smelly_code,
Set of refactoring operations RO,
Code-smells detection rules D,

Process:
1. initial_population(P, Max_size)
2. P0:= set_of(S)
3. S:= sequence_of(RO)
4. code:= Smelly_code
5. t:=0
6. repeat
7. for all Si in P do
8. code:= execute_refactoring(Si, Smelly_code);
9. fitness(Si) := calculate_Quality(D, code);
10. end for
11. best_solution := best_fitness(Si);
12. P := generate_new_population(P)
13. it:=it+1;
14. until it=max_it
15. return best_solution

Output:
best_solution: refactoring solution

Algorithm 4.1 - High-level pseudo-code for GA adaptation to our code-smells correction

problem.

80

specific representation, using the list of RO given at the input. This initial population stands

for a set of possible code-smell correction solutions (i.e., sequence of refatorings) returned

by the function set_of(S), each one representing sequences of RO selected and combined

randomly using the function sequence_of(RO).

Lines 6-14 encode the main GA loop whose goal is to make a population of

candidate solutions evolve toward the best sequence of RO, i.e., the one that minimizes as

much as possible the number of code-smells. During each iteration t, each refactoring

sequence in the current population is executed on the smelly code (line 8). Then, each

solution should be evaluated using our fitness function calculate_Quality (line 9) by

calculating the number of fixed code-smells over the initial number of code-smells using

the detection rules. After that, the best solution is recorded in a specific variable called

best_solution. Then, a new population is generated using our defined genetic operators, i.e.,

crossover and mutation (line 12). The algorithm terminates when it reaches the termination

criterion, i.e., maximum iteration number, (line 14). The algorithm then returns the best

solution obtained during all iterations (line 15).

One key element when applying a search-based technique is to find a suitable

mapping between the problem to solve and the techniques to use, i.e., in our case, fixing

code-smells. Applying GA to a specific problem requires specifying the following

elements: representation of a solution, the fitness function to evaluate the candidate

solutions, the selection of the fittest solutions, and the change operators to derive new

solutions from existing ones. In our approach, these elements are defined as follows:

a) Solution Representation

In our GA design, we use a vector-based solution coding. Each vector’s dimension

represents a refactoring operation. When created, the order of applying these refactorings

corresponds to their positions in the vector. In addition, for each refactoring, a set of

controlling parameters, e.g., actors and roles, as illustrated in Table 4.1, are randomly

picked from the program to be refactored. An example of a solution is given in Figure 4.2.

Hence, we construct a refactoring solution incrementally. First, we create an empty vector

81

that represents the current refactoring solution. Then, we randomly select 1) a refactoring

operation from the list of possible refactorings and 2) its controlling parameters (i.e., the

code elements), after that, 3) we apply this refactoring operation to an intermediate model

that represents the original source code. The model will be updated after applying each

refactoring operation and the process will be repeated n times until reaching the maximal

solution length (n). This means that in each iteration i, we have a different model according

to the (i-1) applied refactoring operations. That is, in each iteration, the controlling

parameters will be selected from the current version of the model. For this reason, the order

of applying the refactoring sequence influences the refactoring results. To ease the

manipulation of these operations, we use logic predicates to describe them. For example,

the predicates MoveMethod (Person, Employee, getSalary()) indicates that the method

getSalary() is moved from class Person to class Employee.

Moreover, when creating a sequence of refactorings (individuals), it is important to

guarantee that they are structurally feasible and that they can be legally applied. The first

Ref. Refactorings Controlling parameters

MM Move Method (source class, target class, method)
MF Move Field (source class, target class, field)
PUF Pull Up Field (source class, target class, field)
PUM Pull Up Method (source class, target class, method)
PDF Push Down Field (source class, target class, field)
PDM Push Down Method (source class, target class, method)
IC Inline Class (source class, target class)
EC Extract Class (source class, new class)
EI Extract Interface (Source class, interface)
ESuC Extract Super Class (Source class, super class)
ESC Extract Sub Class (Source class, sub class)

Table 4.1 - Refactorings and its controlling parameters.

MoveMethod (Person, Employee, getSalary())
ExtractMethod (Person, printInfo(), printContactInfo())
MoveMethod (Departement, University, division ())
PushDownField (Person, Student, studentId)
InlineClass (Car, Vehicle)
MoveMethod (Person, Employee, setSalary())
MoveField (Person, Employee, tax)
ExtractClass(Person, Address, streetNo, city, zipCode, getAdress(), updateAdress())

Figure 4.2 - Representation of a GA individual.

82

work in the literature was proposed by Opdyke [17] who introduced a way of formalising

the preconditions in order to preserve the behavior of the system. These preconditions must

be imposed before a refactoring can be applied. Opdyke created functions which could be

used to formalise constraints. These constraints are similar to the Analysis Functions used

later by Ó Cinneide [124] and Roberts [175] who developed an automatic refactoring tool

to reduce program analysis. In our approach, we used a system to check a set of conditions,

taking inspiration from the work proposed by Ó Cinnéide [124]. Although we suggest a

recommendation system and we do not apply refactorings automatically, we verify the

applicability of the suggested refactorings.

Similarly to [124], our search-based refactoring tool simulates refactorings using pre-

and post-conditions that are expressed in terms of conditions on a code model. For instance,

to apply the refactoring operation MoveMethod(Person, Employee, getSalary()), a number

of necessary preconditions should be satisfied, e.g., Person and Employee should exists and

should be classes; getSalary() should exist and should be a method; the classes Person and

Employee should not be in the same inheritance hierarchy; the method getSalary() should

be implemented in Person; the method signature of getSalary() should not be present in

class Employee. As post-conditions, Person, Employee, and getSalary() should exists;

getSalary() declaration should be in the class Employee; and getSalary() declaration should

not exists in the class Person.

For composite refactorings, such as extract class and inline class, the overall pre and

post conditions should be checked. For a sequence of refactorings which may be of any

length, we simplify the computation of its full precondition by analyzing the precondition

of each refactoring in the sequence and the corresponding effects on the code model

(postconditions). For more details about the pre- and post-conditions the interested reader is

invited to confer to [17].

83

b) Fitness function.

After creating a solution, it should be evaluated using a fitness function to ensure its

ability to solve the problem under consideration. The fitness function quantifies the quality

of the proposed refactoring solutions. In fact, the fitness function calculates the number of

fixed code-smells using the detection rules. In this context, we define the fitness function as

the ratio of the number of fixed code-smells after applying refactoring over the initial

number of code-smells, as follows:

ݕݐ݈݅ܽݑܳ ൌ
	݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	ݎ݁ݐ݂ܽ	ݏ݈݈݁݉ݏ	݁݀݋ܿ	݂݋	#

݊

where n is the initial number of code-smells before refactoring.

c) Selection.

To generate new refactoring solutions, roulette-wheel selection is used [52]. This

technique assigns to each refactoring solution a probability of being selected that is

proportional to its fitness. This selection strategy favors the fittest refactoring solutions

while still giving a chance of being selected to the others. Note that some refactoring

solutions could be included directly into the new population, i.e., elitist strategy.

d) Genetic operators.

To better explore the search space, the crossover and mutation operators are

defined.

For crossover, we use a single, random, cut-point crossover. Crossover operator

starts by selecting and splitting at random two parent solutions. Then, the operator creates

two child solutions by putting, for the first child, the first part of the first parent with the

second part of the second parent, and, for the second child, the first part of the second

parent with the second part of the first parent. This operator must ensure that the length

limits are respected by eliminating randomly some refactoring operations. As illustrated in

Figure 4.3, each child combines some of the refactoring operations of the first parent with

84

some ones of the second parent. In any given generation, each solution will be the parent in

at most one crossover operation.

 move field move field

 extract class extract class

 move method move method

 pull up field move field

 extract class extract class

 inline class

 move method

 move method inline class

 inline class push down field

 push down field pull up field

 move field extract class

 extract class inline class

Figure 4.3 - Crossover operator.

The mutation operator picks randomly one or more operations from a sequence of

refactoring operations and replaces them by other ones from the initial list of possible

refactorings. An example is shown in Figure 4.4.

 move field move field

 extract class extract class

 move method move field

 pull up field pull up field

 extract class move method

 inline class inline class

Figure 4.4 - Mutation operator.

4.4 Evaluation

In order to evaluate the feasibility and the efficiency of our approach for generating

refactoring solutions to fix code-smells, we conducted an experimental evaluation based on

six different software systems. In this section, we describe our experimental setup and

present the obtained results.

Crossover

Child 1

Child 2

Parent 1

Parent 2

Before crossover After crossover

(i = 3)

Mutation

ChildParent

(j=3, k=5)

Before mutation After mutation

85

4.4.1 Research questions

We designed our experiments to answer the following research questions:

The goal of the study is to evaluate the efficiency of our approach for the detection

and correction of code-smells from the perspective of a software maintainer conducting a

quality audit. We present the results of our experiments that are designed to answer the

following research questions:

 RQ1: To what extent can the proposed approach correct code-smells?

 RQ2: To what extent are the recommended refactorings feasible?

4.4.2 Analysis method

To answer RQ1, we check the efficiency of the recommended refactorings in fixing

the detected code-smells. To this end, we introduce an evaluation metric called code-smells

correction ratio (CCR) that calculates the ratio of the number of corrected code-smells over

the initial number of detected code-smells before refactoring. CCR is defined as follow:

ܴܥܥ ൌ
ݏ݈݈݁݉ݏ	݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	݂݋	#
ݏ݈݈݁݉ݏ	݁݀݋ܿ	݂݋	ݎܾ݁݉ݑ݊	݈ܽ݅ݐ݊݅

 To answer RQ2, we validated manually if the proposed refactoring solutions are

useful and feasible. A refactoring operation is considered as feasible if it doesn’t affect the

semantic coherence of the original program. To this end, we introduce the evaluation metric

precision that calculates the number of feasible refactorings over the total number of

recommended refactorings. The precision metric is defined as follow:

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݈ܾ݁݅ݏ݂ܽ݁	݂݋	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁݀݊݁݉݉݋ܿ݁ݎ	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ݐ

Although, the refactored program is correctly working as refactoring preserves the

behavior (i.e., operational semantics), it may be semantically incoherent in its internal

structure with respect to the domain semantics (i.e., descriptive/modelling semantics).

When a semantic error is found manually, we consider the operations related to this change

86

as a bad recommendation. The precision metric is a performance indicator that should be

evaluated.

4.4.3 Systems studied

To evaluate the efficiency of our approach, we conducted our experiments on six

medium and large size open-source systems: GanttProject, Xerces-J, ArgoUML, Quick

UML, LOG4J, and AZUREUS. These systems are described in Section 3.4.2. Moreover,

Table 3.3 provides descriptive statistics about these six programs.

We selected these systems for our validation because they are well studied in the

related work. Moreover, they came from six different organisations, involved different

kinds of software engineering development, and had different sizes ranging from 21 to

1160 KLOC with a high number of code-smell instances.

4.4.4 Results

Table 4.2 summarize our findings to answer RQ1. The obtained result shows that

our approach succeeded in finding refactoring solutions that are able to correct most of

detected code-smells. For instance, for GanttProject 95% (39 over 41) of the detected code-

smells (10 over 11 of blob, 17 over 18 of functional decomposition, and 12 over 12 of

spaghetti code) was fixed after applying the proposed refactorings. The lowest CCR score

is obtained for ArgoUML (85%). In average, as shown in Table 4.2, 90% of code-smells

were fixed, for all the studied systems. Thus, the obtained results give evidence that our

approach is efficient in fixing code-smells and the obtained correction scores are considered

significant. However, we found that the majority of non-fixed code-smells are related to

Blob type. Indeed, this type of code-smells requires, in general, a large number of

refactoring operations and it is very difficult to fix since it is known to be a very heavy

class in terms of behaviour and functionalities that it implements.

87

To answer RQ2, we applied the proposed refactorings by hand using the Eclipse1

IDE, and verified manually the feasibility of the different proposed refactoring sequences

for each system. As shown in Table 4.2, we found that a large number of the proposed

refactorings are feasible and can be successfully applied. For all the studied systems, we

found that, in average, 55% of the recommended refactorings are semantically coherent and

feasible.

System CCR Precision

GanttProject 95% (39|41) 52 %

Xerces-J 89% (59|66) 49 %

ArgoUML 85% (76|89) 59 %

QuickUML 90% (26|29) 59 %

LOG4J 88% (15|17) 51 %

AZUREUS 94% (87|93) 57 %

Table 4.2 - Correction results: CCR median values of 31 independent runs of GA.

Thus, we found that some of the proposed refactorings are arbitrary changes, and

therefore, they are unfeasible from software programmer’s perspective. Consequently,

some semantic errors (coherence of the refactored program with the domain semantics)

were found. We calculate a correctness precision score (ratio of feasible refactoring

operations over the number of proposed refactoring) as performance indicator of our

algorithm (the last column in Table 4.2). For each proposed sequence of refactorings, we

evaluate the proposed refactorings to eliminate those which are not semantically coherent

with the program semantics.

Furthermore, to evaluate the efficiency of our approach in suggesting feasible

refactoring solutions, we compared our results with another state-of-the-art search-based

approach [20]. Harman et al. [20] proposed a search-based approach to find the optimal

sequence of move method refactorings to optimize two quality metrics: CBO (coupling

between objects), and SDMPC (standard deviation of methods per class). Figure 4.5 shows

the comparison results. For all the six studied systems, we found comparable results for

1 https://www.eclipse.org/

88

both approaches with an average of 55% for our approach and 56% Harman’s approach.

Indeed, our obtained precision score is reasonably acceptable, at this stage, since the

semantics coherence of the refactored program is not explicitly considered.

Figure 4.5 - GA precision comparison with Harman et al.

4.5 Discussions

Although our approach produces good refactoring recommendations for fixing

code-smells in terms of CCR, it is important to investigate its scalability. Indeed, there is a

pressing need for scalable solutions to Software Engineering problems. Scalability is

widely considered as one of the key problems for Software Engineering research and

development [174]. To evaluate the scalability of the performance of our approach for

systems of increasing size, we executed GA on the six studied systems that were from

different sizes ranging from 142 for Quick UML to 1449 classes for AZUREUS. As shown

in Figure 4.6, when the size of the systems increase, the execution time is not significantly

affected in turn.

0%

10%

20%

30%

40%

50%

60%

GA

Harman et al.

Precision (%)

89

Figure 4.6 - Scalability of GA on different systems sizes.

Furthermore, in SBSE, an important step is the tuning parameters. In general, there

is no standard parameters (e.g., population size, crossover/mutation rates, etc.) that should

be used in SBSE. This requires a calibration effort to find the best parameters. In our

implementation, we assume that the number of refactoring operations per individual cannot

exceed a certain threshold value. Because of the nature of crossover or mutation operations,

newly created individuals might violate this constraint. After any genetic operation, if this

constraint is violated for a new individual, repair operation is performed by eliminating

some operations. In order to calibrate crossover and mutation rates, we considered four

population sizes (100, 150, 200, and 250) and varied the value of both rates between 5%

and 90% with increments of 5%. Due to the GA’s randomness effect, we ran the GA 31

times for each configuration and then calculated the average of all the outputs in terms of

CCR. To analyze the impact of crossover and mutation, we used two representative

systems: GanttProject and Xerces. Our experiments showed that with higher population

sizes (200, 250) best performance is achieved, when crossover rate is over 0.6. Regardless

of the crossover settings, low mutation rates ended up with lower CCR (worse results) than

high mutation rates. Particularly, best performance in terms of CCR is achieved when

fixing the mutation rate to 0.1. In addition, when we increased the mutation rate to 0.5,

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600

Ex
e
cu
ti
o
n
 t
im

e
 (
m
in
u
te
s)

Size of systems (number of classes)

QuickUML

LOG4J
GanttProject

Xerces‐J

ArgoUML AZUREUS

90

crossover did not show any effect on the CCR. Usually high mutation destructs the

discovered good solutions and has negative impact on the performance. We also noticed

that crossover operator showed similar behavior with software systems with different

number of code-smells and different sizes. Thus, our analysis suggests the use of high

crossover rate (0.6) and low mutation rate (0.1), as commonly used in GA experiments.

Furthermore, we noticed that in some cases, applying the proposed refactorings

need a considerable effort in terms of code modification/adaptation score. In other words,

in some situations many related software artifacts are affected when applying refactoring,

and therefore, they need to be changed and adapted by the maintainer. Moreover, another

important issue is to study the semantic preservation of the refactored code when searching

the refactoring operations.

Thus, to circumvent these problems, the amount of required code changes and

semantic preservation should be explicitly considered during the search process.

4.6 Threats to validity

There are four types of threats that can affect the validity of our experiments. We

consider each of these in the following paragraphs.

Regarding the conclusion validity, we used the Wilcoxon rank sum test with a 95%

confidence level to test if significant differences existed between the measurements for

different treatments. This test makes no assumption that the data is normally distributed and

is suitable for ordinal data, so we can be confident that the statistical relationships we

observed are significant. The reported GA and Harman’s precision values obtained with the

median CCR values of 51 independent runs. The p-values of the Wilcoxon rank sum test

indicate whether the median of Harman et al.’s approach is statistically different from GA

with a 95% confidence level (α = 0.05). A statistical difference is accepted at p<=0.05.

For the internal validity, the used techniques to detect code-smells can lead to some

false positives that may have an impact on the results of our experiments. To mitigate this

threat, we implemented our approach in a flexible way to support the adaptation of code-

91

smells detection rules from other state-of-the-art approaches or other existing code-smells

detection tools according to the user preferences.

Construct validity is concerned with the relationship between theory and what is

observed. The manual evaluation of the feasibility of the suggested refactorings depends on

the expertise of the developer and also it is a subjective process to make sure that a detected

code-smell is fixed.

External validity refers to the generalizability of our findings. In this study, we

performed our experiments on several different widely used open-source systems belonging

to different domains and with different sizes. However, we cannot assert that our results can

be generalized to other industrial Java applications, other programming languages, and to

other practitioners. We plan to conduct more experiments to test our approach on other

software systems and compare our results with other approaches.

4.7 Conclusion

In this chapter, we presented a novel approach to the problem of code-smells

correction. We start by generating some code-smells correction solutions that represents a

combination of refactoring operations to apply. A fitness function calculates, after applying

the proposed refactorings, the number of fixed code-smells using the detection rules. The

best solution has the maximum fitness value. Due to the large number of refactoring

combination, a genetic algorithm is used. The proposed approach was tested on six open-

source systems and the results are promising. Our study shows that our technique

succeeded in fixing most of the detected code-smells (90%) while having reasonably

accepted score of feasible refactorings (55%). Typically, researchers and practitioners try to

each detected fix code-smell separately form a software system. In this work, we have

shown how the correction process can be a global process instead of a local one to prevent

introducing new code-smells implicitly when fixing existing ones.

Despite these encouraging results, there is still plenty of room for improvement.

First, in large-scale systems, the number of code-smells to fix can be very large and not all

92

of them can be fixed automatically. Thus, the prioritization of the list of code-smells is

required based on different criteria such as the severity, risk, and importance of classes, etc.

Moreover, from software engineer’s perspective, we intend explore additional techniques to

help preserving the semantic coherence of the refactored program. Another direction worth

to explore is to reduce the amount of code changes when recommending refactoring in

order to keep as much as possible with the initial design.

Chapter 5 : Prioritizing code-smells correction

5.1 Introduction

In this chapter, we describe our approach based on chemical reaction optimization

metaheuristic search to prioritize the correction of severest and riskiest code-smells

according to maintainer’s preferences and criteria. As far as we know, this is the first

contribution in SBSE that adopt CRO metaheuristics. More specifically, the primary

contributions of the chapter can be summarized as follows:

1. We introduce a novel formulation of the refactoring suggestion problem using

chemical reaction optimization (CRO) and, to the best of our knowledge, this is the

first attempt in SBSE to adopt CRO to solve software engineering problems.

2. We present a prioritization schema based on four prioritization heuristics: severity,

risk, importance, and the priority according to maintainers’ preferences.

3. We report the results of an empirical study on a benchmark composed of five

different medium and large size software systems. We compare our approach to two

other approaches that do not prioritize the correction of code-smells.

4. We report statistical comparisons between our CRO-based approach with three

popular metaheuristics, genetic algorithm (GA) [99], simulated annealing (SA) [98],

and particle swarm optimization (PSO) [100], which have been shown to have good

performance in solving many software engineering problems.

Our experimental study indicates that the CRO approach has a great promise. The

statistical analysis of the obtained results provides evidence to support the claim that CRO

is more efficient and effective than three other popular metaheuristics. Over 31 runs for

each approach, our CRO based approach significantly outperforms the two other

refactoring approaches in terms of number of corrected code-smells, as well as the number

of important, severest, riskiest code-smells that can be fixed.

94

This chapter is organized as follows. Section 5.2 presents the concept of prioritizing

code-smells correction tasks. Section 5.3 describes our approach. Section 5.4 reports our

experimental evaluation, while Section 5.5 discusses the obtained result. Section 5.6 is

dedicated for the threats to validity. Finally, we conclude and suggest our future research

direction in Section 5.7.

5.2 Code-smells prioritization

In large-scale systems, the number of code-smells to fix can be very large and not

all of them can be fixed automatically. Moreover, once detected, not all code-smells have

equal effects and importance [12] [63] [64] [112]. In general, developers need to start by

fixing the higher risk code-smells. However, most of existing refactoring

approaches [42], [46] treat the code-smells to fix with the same importance. The majority of

existing contributions proposes manual or semi-automated refactoring solutions that can be

applied to fix particular types of code-smells (e.g., Blobs, spaghetti code,

etc.) [12] [21] [42] or to improve some quality metrics (e.g., cohesion, coupling,

etc.) [23] [41] without taking into consideration the importance/risk of the code fragments.

Thus, it is important to focus the attention on code-smells that represents severest

problems to be removed first through refactoring. Thus, the prioritization of the list of code-

smells is required based on different criteria such as the severity, risk, and importance of

classes, etc. Indeed, it would be important to determine which are the more critical code-

smells in order to prioritize their correction. For instance, based on our prior work on code-

smells correction and refactoring using GA described in Chapter 4, we found that most of

the important and riskiest code-fragments are not improved. Moreover, most of riskiest

code-smells, notably the Blob code-smell [70], are very difficult to fix using such a manual

or an automated approach. Typically, the Blob requires a large number of refactorings. This

type of code-smells can be detected most of the time within important classes that change

frequently during the development/maintenance process, which make this kind of code-

smell more severe than other code-smells.

95

5.3 Approach

This section presents our approach to support automated refactoring suggestion to

fix code-smells where riskiest code-smells are prioritized during the correction process.

Hence, we formulated the refactoring suggestion problem as a combinatorial optimization

problem to find the near-optimal sequence of refactorings from a large number of possible

refactorings. To this end, we used a novel metaheuristic search by the means of CRO [176]

to find the suitable refactoring solutions that maximize the number of corrected code-smells

while prioritizing the most important and riskiest code fragments. We first present an

overview of our approach and the problem formulation and, subsequently, present the CRO

algorithm and its adaptation for prioritizing code-smells correction problem.

5.3.1 Approach overview

Our approach is designed to support automated code-smells correction according to

a prioritization schema where the more critical code-smells are prioritized while taking into

consideration the preferences of developers. In practice, a suitable prioritization scheme can

significantly improve and maximize the efficiency of allocating maintenance efforts. Our

approach aims at finding, from a large list of possible refactorings, the suitable refactoring

solutions that should fix as much as possible the number of detected code-smells according

to a prioritization schema.

To find the suitable refactoring solution, a large search space of possible

refactorings should be explored. Indeed, the search space is determined not only by the

number of possible refactorings, their possible combinations, and the order in which they

should be applied, but also by the software system’s size (number of packages, classes,

methods, fields, etc.). To this end, we see the refactoring suggestion problem as a search-

based optimization problem to explore this large search space, in order to find the suitable

refactoring solutions by the means of CRO [163].

The general structure of our approach is sketched in Figure 5.1. It takes as inputs:

the source code of the program to be refactored, a list of possible refactorings that can be

96

applied, a set of code-smells detection rules, risk and severity score for each detected code-

smell, software maintainer prioritization/preferences, and a history of code changes applied

to the system during its lifecycle. Our approach generates as output the optimal sequence of

refactorings, selected from the list of possible refactorings that should improve software

quality by minimizing as much as possible the number of more critical code-smells.

Figure 5.1 - Approach overview.

5.3.2 Problem formulation

We now describe our formulation of the refactoring recommendation task taking

into consideration a set of criteria, as well as software engineers’ preferences. Our goal is to

ensure that the more critical code-smells are fixed first. More concretely, let us consider the

example of a software system that contains 5 code-smells: 1 Blob, 2 data classes (DC), and

2 functional decompositions (FD). Many possible refactoring solutions can fix these code-

smells with the same score. For example, we can have 2 different solutions S1 and S2. After

applying S1, both DC and FD are fixed (the correction score CCR(S1)=4/5=0.8), and after

applying S2, the Blob, 1 DC and 2 FD are fixed (the correction score CCR(S2)=4/5=0.8).

The same correction score is obtained by both S1 and S2. However, the Blob class is known

to be the severest and it may significantly affect the design of the whole system since it

tends to centralize the functionalities of the system into one class [70]. From this

perspective we consider that the solution S2 is better than S1. Prioritizing the correction of

critical code-smells is the main idea behind this contribution. Furthermore, sometimes

Code-smells Correction

(Chemical Reaction Optimization)
Suggested

refactorings

Maintainer’s code-smells
correction preferences

Code-change
history

List of possible
refactorings

Source code
with code-smells

Code-smells

severity scores

Classes risk

score

97

changing extensively a software system by applying refactorings may perturb the initial

design. To preserve the initial design, software maintainers my ignore some of the

suggested refactorings. To this end it is very interesting to start first by fixing important

code-smells. Hence, results can be of interest to software engineers, who perform

development or maintenance activities and need to take into account and forecast their

effort.

In the following we describe a set of four prioritization heuristics (priority, severity,

risk and importance) that we adopt in our formulation of the refactoring task to correct

code-smells:

Priority. Developers typically give more importance to some code-smell types that can

occur with different impacts on the system’s quality. Developers can rank different types of

detected code-smell according to their preferences. Using such prioritization scheme,

developers can save their time and maximize the efficiency of allocating maintenance effort

in their software project. For the experiment reported in this chapter, we assigned a priority

score of 7 for the Blob code-smell, 6 for functional decomposition, 5 for shotgun surgery, 4

for spaghetti code, 3 for feature envy, 2 for schizophrenic class, and 1 for data classes, so

that fixing Blob code-smells instances will be more prioritized.

Severity. In practice, not all code-smells have equal effects/importance [63] [82]. Each

individual instance has its severity score that allows designers to immediately spot and fix

the most critical instances of each code-smell. Concretely, the same code-smell type can

occur in different code fragments but with different impact scores on the system

design [112]. This impact score represents the relative severity of the code-smell, as well as

the absolute negative impact on overall quality. For example, two code-smell instances

having respectively 27 and 36 methods can be detected both as Blob, but each of them have

different impact scores on the system quality (number of methods, coupling, cohesion,

etc.). We use the inFusion tool [82], which classifies code-smells based on a set of “design-

properties” such as size and complexity, encapsulation, coupling, cohesion, and

98

hierarchy [182]. Moreover, these design properties are the most useful ones in existing

code-smells detection approaches [8] [10].

Risk. An important score to consider is the risk score. Thus, we consider that the more code

deviates from good practices, the more it is likely to be risky [35]. Consequently, the

riskiest code-smells should be prioritized during the correction step. A risk score is

associated to each detected code-smell that corresponds to the deviance from well design

code [35].

Importance. Generally, developers need to know which code fragments (e.g.,classes,

packages) are important in the whole software system in order to focus their effort on

improving their quality. In a typical software system, important code fragments are those

who change frequently during the development/maintenance process to add new

functionalities, to accommodate new changes or to improve its structure. Moreover, as

reported in the literature [64] [118], classes participating in design problems (e.g., code-

smells) are significantly more likely to be subject to changes and to be involved in fault-

fixing changes (bugs) [118]. Indeed, if a class undergoes many changes in the past and it is

still smelly, it needs to be fixed as soon as possible. On the other hand, not every code-

smell is assumed to have negative effects on the maintenance/evolution of a system. It has

been shown that in some cases, a large class might be the best solution [63]. Moreover, it is

reported that if a code-smell (e.g., God Class) is created intentionally and remains

unmodified or hardly undergo changes, the system may not experience any

problems [63] [115]. For these reasons, code-smells related to more frequently changed

classes should be prioritized during the correction process.

5.3.3 CRO design

In our formulation, we used the chemical reaction optimization (CRO) [176]. A

detailed description of CRO is given in Section 2.3.3. To the best of our knowledge, this

work represents the first attempt to exploit CRO within the SBSE community. In general,

to adapt a metaheuristic search technique to a specific problem, a number of elements have

to be defined, and different decisions have to be made. To apply CRO, the following

99

elements have to be defined: the way in which solutions (molecules) should be encoded so

that they can be manipulated by the search process, creation of a population of solutions (a

container of molecules), evaluation function to determine a quantitative measure of the

ability of candidate solutions to solve the problem under consideration, selection of

solutions for elementary reaction operations, creation/modification of new solutions using

elementary reaction operations (on-wall ineffective collision, decomposition, synthesis, and

intermolecular ineffective collision) to explore the search space.

In the following, we describe the design of these elements for the code-smells correction

problem using CRO.

a) Solution representation

In our CRO design, we use the same vector-based solution representation adopted in

our GA adaptation. The description of our solution representation is detailed in

Section 3.3.2.

b) Creation of the initial population of solutions

To generate an initial population, we start by defining the maximum vector length

(maximum number of operations per solution). The vector length is proportional to the

number of refactorings that are considered and the size of the program to be refactored. A

higher number of operations in a solution do not necessarily mean that the results will be

better. Ideally, a small number of operations can be sufficient to provide good solutions.

This parameter can be specified by the user or derived randomly from the sizes of the

program and the given refactoring list. During the creation, the solutions have random sizes

inside the allowed range. To create the initial population, we normally generate a set of

PopSize solutions randomly in the solution space.

c) Elementary Reaction Operators

To better explore the search space using CRO, elementary reaction operators are

defined. In the following, we describe these operators corresponding to the four elementary

reactions of CRO. We denote a refactoring solution in vector form with w.

100

On-wall Ineffective Collision

For on-wall ineffective collision, many possible changes can be applied to a given

refactoring solution. To apply this change operator, n (one or more) refactorings are first

picked at random from the vector representing the refactoring solution (sequence of

refactorings). Then, for each of the selected refactorings, we apply one of the following

possible changes using a “probabilistic select” [176]:

- Refactoring type change (RTC): consists of replacing a given refactoring operation (the

refactoring type and his controlling parameters) by another one which is selected

randomly from the initial list of possible refactorings. Pre- and post-conditions should be

checked before applying this change.

- Controlling parameters change (CPC): consists of replacing randomly, for the selected

refactoring, only their controlling parameters. For instance, for a “move method”, we can

replace the source and/or target classes by other classes from the whole system.

An example is shown in Figure 5.2. Three refactorings are randomly selected from

the initial vector: one refactoring type change (dimension number 4), and two controlling

parameters change (dimensions number 2 and 6).

 1 move field (f18_2, c18, c23) 1 move field (f18_2, c18, c23)

 2 move method (m4_6, c4, c89) 2 move method (m5_2, c5, c36)

 3 extract class (c31, f31_1 , m31_1, m31_4) 3 extract class (c31, f31_1 , m31_1, m31_4)

 4 pull up field (f8_1, c8, c14) 4 inline class (c24, c82)

 5 move method (f41_2, c41, c129) 5 move method (f41_2, c41, c129)

 6 move field (f12_8, c12, c52) 6 move field (f12_8, c12, c13)

Figure 5.2 - Example of on-wall ineffective collision operator.

Decomposition

This operator is used to produce two new solutions far away from a given one. We

apply “half-total-change” [176] to our implementation. We first duplicate the original

solutions. Then, we add perturbations to n/2 dimensions of the original solution to create

new solutions, where n is the size of the vector representing the original solution. Each

Before reaction After reaction

On‐wall Ineffective
Collision

Initial
refactoring

solution

Produced
refactoring

solution

101

perturbation change could be performed through a refactoring type change but also

controlling parameters change. An example is depicted in Figure 5.3.

 1 move field (f18_2, c18, c23)

 2 Inline class (c56, c231)

 3 move field (f12_10, c12, c119)

 4 inline class (c24, c82)

 5 move method (f41_2, c41, c129)

 1 move field (f18_2, c18, c23) 6 move field (f12_8, c12, c13)

 2 move method (m4_6, c4, c89)

 3 extract class (c31, f31_1 , m31_1, m31_4)

 4 pull up field (f8_1, c8, c14) 1 move field (f18_2, c18, c23)

 5 move method (f41_2, c41, c129) 2 move method (m41_1, c41, c11)

 6 move field (f12_8, c12, c52) 3 extract class (c31, f31_1 , m31_3, m31_4)

 4 push down method (m8_4, c8, c14)

 5 move method (f41_2, c41, c129)

 6 move field (f172_4, c172, c52)

Figure 5.3 - Example of decomposition operator.

Inter-molecular Ineffective Collision

Inter-molecular ineffective collision is the process of two or more solutions to share

information with each other and then produce two or more other different solutions. In our

implementation we apply inter-molecular ineffective collision between only two solutions

(w1 and w2). To this end, two possible change mechanisms could be applied: 1) apply for

each of solution on-wall Ineffective Collision, 2) exchange some dimensions between them

using an operator similar to a single, random, cut-point crossover, in Genetic

Algorithm [99]. First a random value k is chosen from [0, 1]. Then inter-molecular

ineffective collision creates two new solutions by putting, for the first new solution, the

first k*n1 elements from the first parent (with length n1), followed by the last (1-k)*n2

elements from the second parent (with length n2). On the other hand, the second new

solution, contains the first k*n2 elements from the second parent followed by last (1-k)*n1

element of the first parent. This operator ensures that the generated solutions will never

have greater size than the biggest of the parents [183]. As illustrated in Figure 5.4, each

Before reaction

Decomposition

Initial
refactoring

solution

First solution
produced

After reaction

Second solution
produced

102

child combines some of the refactoring operations of the first parent with some ones of the

second parent.
 1 move field (f18_2, c18, c23) 1 move field (f18_2, c18, c23)

 2 move method (m4_6, c4, c89) 2 move method (m4_6, c4, c89)

 3 extract class (c31, f31_1 , m31_1, m31_4) 3 extract class (c31, f31_1 , m31_1, m31_4)

 4 pull up field (f8_1, c8, c14) 4 move field (f12_10, c12, c119)

 5 move method (f41_2, c41, c129) 5 inline class (c24, c82)

 6 move field (f12_8, c12, c52)

 1 move method (m5_1, c5, c112)

 1 move method (m5_1, c5, c112) 2 Inline class (c5, c31)

 2 Inline class (c5, c31) 3 push down method (m231_3, c231, c19)

 3 push down method (m231_3, c231, c19) 4 pull up field (f8_1, c8, c14)

 4 move field (f12_10, c12, c119) 5 move method (f41_2, c41, c129)

 5 inline class (c24, c82) 6 move field (f12_8, c12, c52)

Figure 5.4 - Example of inter-molecular ineffective collision operator.

Synthesis

This operator is used to combine two refactoring solutions w1 and w2 into a new one

w. In our approach we are using two different mechanisms for synthesis operator: 1) cross-

cut combination, and 2) probabilistic select [163]. To apply synthesis operator, CRO selects

randomly one of these two mechanisms.

For the first, an integer value k is randomly generated in the range of [1, n], where n

is the shortest vector length of the solutions w1 and w2 (n=Min(|w1|, |w2|)). Then w is

generated by picking the first k values from w1 and the rest of the (n - k) values from w2.

This operator must ensure that the length limits are respected. If not, some refactoring

operations should be eliminated randomly. As shown in Figure 5.5, a new refactoring

solution w is formed by combining the first two set of refactorings from w1 and the last set

of refactorings from w2.

For the second mechanism, using probabilistic select a new solution w is produced

from two solution w1 and w2. This operator generates w as follows: for each dimension w(i)

in w, a random number t  [0.1] is generated. If t>0.5, we assign that dimension from w1(i).

Otherwise, we assign that dimension from w2(i).

w1

w2

Before reaction After reaction

Second solution
produced

w2’

First solution
produced

w1’

Inter‐molecular
Ineffective Collision

(k = 0.5)

103

The idea behind these different synthesis mechanisms is diversification of solutions

to better explore the search space.

 1 move field (f18_2, c18, c23)

 2 move method (m4_6, c4, c89)

 3 extract class (c31, f31_1 , m31_1, m31_4)

 4 pull up field (f8_1, c8, c14)

 5 move method (f41_2, c41, c129) 1 move field (f18_2, c18, c23)

 6 move field (f12_8, c12, c52) 2 move method (m4_6, c4, c89)

 3 extract class (c31, f31_1 , m31_1, m31_4)

 4 move field (f12_10, c12, c119)

 1 move method (m5_1, c5, c112) 5 inline class (c24, c82)

 2 Inline class (c5, c31)

 3 push down method (m231_3, c231, c19)

 4 move field (f12_10, c12, c119)

 5 inline class (c24, c82)

Figure 5.5 - Example of synthesis operator.

d) Fitness function

After creating a solution, it should be evaluated using an objective function to ensure

its ability to solve the problem under consideration. We used a fitness function that

calculates, according to prioritization schema described in the section 3.3, the number of

corrected code-smells using detection rules. To calculate the quality of a candidate

refactoring solution w, we define the following fitness function:

ሻݓሺݏݏ݁݊ݐ݅ܨ ൌ ෍ቀݔ௜ ∗ ൫ߙ ∗ ሺܿ௜ሻݕݐ݅ݎ݁ݒ݁ܵ ൅ ߚ ∗ ሺܿ௜ሻݕݐ݅ݎ݋݅ݎ݌ ൅ ߛ ∗ ሺܿ௜ሻ݇ݏ݅ݎ ൅ ߜ ∗ ሺܿ௜ሻ൯ቁ݁ܿ݊ܽݐݎ݋݌݉݅

௡ିଵ

௜ୀ଴

where xi is assigned to 0 if the actual class is detected as a code-smell using our code-

smells detection rules, 1 otherwise; and α+β+γ+δ= 1 and their values express the

confidence (i.e., weight) in each measure that can be assigned according to the developers

preferences. We have performed comprehensive experiments with different combinations

of weights on each prioritization measure. For our experiments, we give equal weights

(=0.25) to each of them.

w1

Produced

solution w

w2

Before synthesis After synthesis

Synthesis

(k = 0.5)

104

5.3.4 Implementation details

An often overlooked aspect of research on metaheuristic search algorithms relies in

the selection and tuning of the algorithms parameters, which is necessary in order to ensure

not only fair comparison, but also for potential replication. To this end, we report our

algorithmic parameter tuning and selection used to facilitate replication of our findings.

The initial population/solution of CRO, GA, PSO and SA are completely random.

The stopping criterion is when the maximum number of function evaluations, set to 8000,

is reached. After several trial runs of the simulation, the parameter values of the four

algorithms are fixed. There are no general rules to determine these parameters, and thus, we

set the combination of parameter values by trial and error. Parameter settings of the four

algorithms are shown in Table 5.1. For each algorithm, we repeat the simulation 31 times in

each case, and compute the median value.

Algorithms Parameters Values

CRO

Population size
KELossRate
MoleColl
InitialKE
α
β

200
0.05
0.5
0.1
40
0.6

GA

Population size
Crossover probability
Mutation probability
Number of crossing points
Selection

200
0.6
0.1
1
Roulette selection

SA

initial temperature
final temperature
cooling coefficient
number of iterations

100
0.157
0.98
25

PSO
number of particles in a swarm
acceleration coefficient c1
acceleration coefficient c2

200
2
2

Table 5.1 - Parameter settings used for the different algorithms.

105

Another issue is that our formulation of code-smells correction problem using

prioritization schema is a maximization problem. However, CRO is originally designed to

solve minimization problems and the objective function value should not be negative since

it is interpreted as energy [176]. Typically, to convert a maximization problem f to a

minimization one, –f is considered as objective function; however this may not be

appropriate for CRO [177]. Thus, to keep with CRO principles, we can consider f’= 1 - f, to

make every possible f’ non-negative. After minimizing f’, we can compute the

corresponding f by f = 1 – f’. As such, CRO can be adapted to solve maximization

problems.

In our experiments reported in this chapter, we considered the following code-smell

types: Blob, Data Class, Spaghetti Code, Functional Decomposition, Schizophrenic Class,

Shotgun Surgery, and Feature Envy. The description of these smells can be found in

Section 2.2.1.

5.4 Evaluation

To evaluate the feasibility and the efficiency of our approach for generating good

refactoring suggestions according to prioritization schema, we conducted our experiments

based on different versions of medium and large open source systems. In this section, we

start by presenting our research questions. Then, we describe the design of our experiments

and discuss the obtained results.

5.4.1 Research Questions and Objectives

We assess the performance of our approach by finding out whether it could generate

good refactoring strategies that fix code-smells according to a prioritization schema. Our

study aims at addressing the four research questions outlined below. We also explain how

our experiments are designed to address these questions. The four research questions are:

 RQ1: (Usefulness) To what extent can the proposed approach correct code-smells?

 RQ2: (Precision) To what extent can the proposed approach correct severest,

riskiest and important code-smells?

106

 RQ3: (Comparison to state-of-the-art) To what extent can the proposed approach

improves the results of refactoring suggestion compared to existing work that do not

use prioritization?

 RQ4: (Comparison with other metaheuristics) How does the proposed approach

using CRO perform compared to other popular search-based algorithms GA [99],

SA [92], PSO [100]?

5.4.2 Systems studied

We applied our approach to five large and medium size open-source java projects:

Xerces-J12, JFreeChart13, GanttProject14, ArtOfIllusion15, and JHotDraw16. Xerces-J is a

family of software packages for parsing XML. JFreeChart is a powerful and flexible Java

library for generating charts. GanttProject is a cross-platform tool for project scheduling.

JHotDraw is a GUI framework for drawing editors. Finally, Art of Illusion is a 3D-

modeller, renderer and raytracer written in Java. We selected these systems for our

experimental study because they range from medium to large-sized open-source projects,

which have been actively developed over the past 10 years, and their design has not been

responsible for a slowdown of their developments. Table 5.2 provides some descriptive

statistics about these five programs.

Systems Release # classes # code-
smells

KLOC # previous
code-changes

Code change
method

Xerces-J v2.7.0 991 171 240 7493 Change log

JFreeChart v1.0.9 521 116 170 2009 Change log

GanttProject v1.10.2 245 53 41 91 Recorded ref.

ArtofIllusion v2.8.1 459 127 87 594 Recorded ref.

JHotDraw V7.0.6 468 25 57 1006 Change log

Table 5.2 - Systems statistics.

12 http://xerces.apache.org/xerces-j
13 http://www.jfree.org/jfreechart
14 www.ganttproject.biz
15 http://www.artofillusion.org
16 http://www.jhotdraw.org

107

Previous code-changes applied to previous versions (seventh column in Table 5.2),

are used mainly to calculate the importance score. In general, open-source programs and

their change history (e.g., change log in Concurrent Versions System named CVS17, or

Apache Subversion System named SVN18) are available through SourceForge.net19.

However, for other software programs especially where code change history is not publicly

available, code-changes could be expressed in terms of recorded refactorings that are

applied to previous versions (i.e., how many times a class experienced a refactoring). In

order to vary our experiments settings, we are using both: change log history (for Xerces

and JFreeChart), and recorded refactorings (for GanttProject, AntApache, JHotDraw and

Rhino). To collect refactorings applied for each program, we use Ref-Finder [46]. Ref-

Finder, implemented as an Eclipse plug-in, can identify refactoring operations between two

releases of a software system.

5.4.3 Analysis method

To answer RQ1, we used two metrics: code-smells correction ratio (CCR) and

refactoring precision (RP).

1) CCR calculates the number of corrected code-smells over the total number of code-

smells detected before applying the proposed refactoring sequence. CCR is given by

the following equation:

ܴܥܥ ൌ
ݏ݈݈݁݉ݏ_݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݃݊݅ݕ݈݌݌ܽ	݁ݎ݋݂ܾ݁	ݏ݈݈݁݉ݏ_݁݀݋ܿ	#
	∈ ሾ0,1ሿ

2) For the refactoring precision (RP), we inspect manually the feasibility of the different

proposed refactoring sequences for each system. We applied the proposed

refactorings using Eclipse IDE and we checked the semantic coherence of the

modified code fragments. Some semantic errors (programs behavior) were found.

When a semantic error is found manually, we consider the operations related to this

17 http://cvs.nongnu.org/
18 http://subversion.apache.org/
19 http://sourceforge.net/

108

change as a bad recommendation. Then, we calculate a correctness precision score

(ratio of possible refactoring operations over the number of proposed refactoring) as

usefulness indicator of our approach. RP is defined as follows:

ܴܲ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݈ܾ݁ܽݏ݂ܽ݁	#
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݏ݋݌݋ݎ݌	#

	∈ ሾ0,1ሿ

To answer RQ2, we define three metrics:

1) The importance correction ratio (ICR) that corresponds to the sum of importance

score of detected code-smells after applying a given refactoring solution w compared

to the one before applying refactoring. ICR reflects the efficiency of a refactoring

solution for correcting important code-smells, so that the higher the ICR is, the more

a refactoring solution is considered as a good recommendation. ICR is defined as

follows:

ሻݓሺܴܥܫ ൌ 1 െ
	∑ ሺݔ௜ ∗ 	ሺܿ௜ሻሻ݁ܿ݊ܽݐݎ݋݌݉݅

௡ିଵ
௜ୀ଴

∑ ൫ݔ௝ ∗ ሺ݁ܿ݊ܽݐݎ݋݌݉݅ ௝ܿሻ൯௠ିଵ
௝ୀ଴

	∈ ሾ0,1ሿ

where n and m are the number of classes in the system, respectively, after and before

applying the refactoring solution w, the function ݅݉݁ܿ݊ܽݐݎ݋݌ሺܿ௜ሻ returns the importance

score of the class ci , and xi takes the value 0 if the actual class ci is detected as code-

smell using code-smells detection rules, 1 otherwise.

2) The risk correction ratio (RCR) that corresponds to the sum of importance score of

detected code-smells after applying a given refactoring solution w compared to the

one before applying refactoring. RCR reflects the efficiency of a refactoring solution

for correcting riskiest code-smells, so that the higher the RCR is, the more a

refactoring solution is considered as a good recommendation. RCR is defined as

follows:

ሻݓሺܴܥܴ ൌ 1 െ
	∑ ሺݔ௜ ∗ 	ሺܿ௜ሻሻ݇ݏ݅ݎ

௡ିଵ
௜ୀ଴

∑ ൫ݔ௝ ∗ ሺ݇ݏ݅ݎ ௝ܿሻ൯௠ିଵ
௝ୀ଴

	∈ ሾ0,1ሿ

where n and m are the number of classes in the system, respectively, after and before

applying the refactoring solution w, the function ݇ݏ݅ݎሺܿ௜ሻ returns the risk score of the

109

class ci , and xi takes the value 0 if the actual class ci is detected as code-smell using

code-smells detection rules, 1 otherwise.

3) The severity correction ratio (SCR) that corresponds to the sum of importance score

of detected code-smells after applying a given refactoring solution w compared to the

one before applying refactoring. SCR reflects the efficiency of a refactoring solution

for correcting severest code-smells, so that the higher the SCR is, the more a

refactoring solution is considered as a good recommendation. SCR is defined as

follows:

ሻݓሺܴܥܵ ൌ 1 െ
	∑ ሺݔ௜ ∗ 	ሺܿ௜ሻሻݕݐ݅ݎ݁ݒ݁ݏ

௡ିଵ
௜ୀ଴

∑ ൫ݔ௝ ∗ ሺݕݐ݅ݎ݁ݒ݁ݏ ௝ܿሻ൯௠ିଵ
௝ୀ଴

	∈ ሾ0,1ሿ

where n and m are the number of classes in the system, respectively, after and before

applying the refactoring solution w, the function ݕݐ݅ݎ݁ݒ݁ݏሺܿ௜ሻ returns the severity

score of the class ci , and xi takes the value 0 if the actual class ci is detected as code-

smell using code-smells detection rules, 1 otherwise.

For RQ3, we compare our approach to two other different approaches: our GA-based

code-smells correction approach, and CRO without the use of prioritization where the

refactoring suggestion task consider is considered only from the quality improvement

standpoint (i.e., without considering prioritization).

Finally, to answer RQ4, we assessed the performance of the CRO algorithm that we

use in our approach compared to three other popular meta-heuristic algorithms GA, SA and

PSO. We selected these three metaheuristics because they range from global search (GA

and PSO) and local search (SA). Moreover, these three metaheuristics are the most frequent

ones demonstrating good performance in solving different software engineering problems

according to recent surveys [90].

5.4.4 Results

Before delving into details, we provide a high-level view of the experimental

approach that we adopted and its rationale. We first compared our approach to two other

110

techniques that do not use prioritization (CRO without prioritization, and our GA-based

approach described in Chapter 4), where the fitness function calculates the number of

corrected code-smells, to ensure the effectiveness of using such prioritization schema.

Then, we compare the performance of CRO to three popular metaheurisitics (GA, SA, and

PSO) using the same CRO fitness function to evaluation the performance of CRO. Thus,

due to the stochastic nature of the algorithms/approaches we are studying, each time we

execute an algorithm we can get slightly different results. To cater for this issue and to

make inferential statistical claims, our experimental study is performed based on 31

independent simulation runs for each algorithm/technique studied. Wilcoxon rank sum

test [170] is applied between CRO-based approach and each of the other

algorithms/techniques (CRO without prioritization, Kessentini et al. 2011) in terms of

CCR, ICR, RCR and CSR with a 99% confidence level (α = 1%). Our tests shows that the

obtained results are statistically significant with p-value<0.01 and not due to chance.

In the result reported in this experiments, we are considering the median value for

each approach through 31 independent run. The Wilcoxon rank sum test allows verifying

whether the results are statistically different or not, however it does not give an idea about

the difference magnitude. In order to quantify the latter, we compute the effect size by

using the Cohen’s d statistic [184]. The effect size is considered: (1) small if 0.2 ≤ d < 0.5,

(2) medium if 0.5 ≤ d < 0.8, or (3) large if d ≥ 0.8. We have computed the effect size values

for the different comparisons and we concluded that our CRO approach with prioritization

has mainly: (1) medium effect size values against population-based metaheuristics under

comparison, and (2) large effect size values against single solution-based ones.

111

As described in Table 5.3 and Figure 5.6, the majority of suggested refactorings by

our approach improve significantly the code quality with good code-smell correction scores

compared to both CRO without prioritization and GA-based approach. For the five studied

systems, our approach proves significant performance by fixing, on average, 90% of all

existing code-smells, whereas, only 84% and 82% for the other two approaches while

focusing on fixing the prioritized code-smells. For instance, for JFreeChart, 92% (24 over

26) of Blobs, 94% (16 over 17) of spaghetti code, 79% of functional decomposition (11

Systems

Approach

Code-smell Correction Ratio (CCR)

CCR

(all code-
smells)

B
lo

b

S
p

ag
h

et
ti

 c
od

e

F
u

n
ct

io
n

al

d
ec

om
p

os
it

io
n

D
at

a
cl

as
s

F
ea

tu
re

 E
n

vy

S
ch

iz
op

h
re

n
ic

cl

as
s

S
h

ot
gu

n

S
u

rg
er

y

Xerces-J

CRO (our approach)
94%

(29|31)
92%

(12|13)
86%

(12|14)
90%

(26|29)
90%

(65|72)
100%

(10|10)
100%
(2|2)

91%
(156|171)

CRO without
prioritization

84%
(26|31)

85%
(11|13)

93%
(13|14)

97%
(28|29)

85%
(61|72)

80%
(8|10)

50%
(1|2)

87%
(148|171)

GA-based approach
84%

(26|31)
77%

(10|13)
86%

(12|14)
97%

(28|29)
83%

(60|72)
70%

(7|10)
50%
(1|2)

84%
(144|171)

JFreeChart

CRO (our approach)
92%

(24|26)
94%

(16|17)
79%

(11|14)
89%

(24|27)
85%

(17|20)
92%

(11|12)
100%
(0|0)

89%
(103|116)

CRO without
prioritization

81%
(21|26)

76%
(13|17)

79%
(11|14)

100%
(27|27)

80%
(16|20)

83%
(10|12)

100%
(0|0)

84%
(98|116)

GA-based approach
73%

(19|26)
82%

(14|17)
79%

(11|14)
100%

(27|27)
80%

(16|20)
100%

(12|12)
100%
(0|0)

85%
(99|116)

GanttProject

CRO (our approach)
100%
(7|7)

83%
(5|6)

100%
(18|18)

79%
(11|14)

86%
(6|7)

100%
(1|1)

100%
(0|0)

91%
(48|53)

CRO without
prioritization

71%
(5|7)

83%
(5|6)

100%
(18|18)

93%
(13|14)

57%
(4|7)

0%
(0|1)

100%
(0|0)

85%
(45|53)

GA-based approach
57%
(4|7)

83%
(5|6)

94%
(17|18)

93%
(13|14)

71%
(5|7)

0%
(0|1)

100%
(0|0)

83%
(44|53)

ArtofIllusion

CRO (our approach)
88%

(15|17)
92%

(11|12)
100%
(8|8)

87%
(27|31)

95%
(42|44)

86%
(12|14)

100%
(1|1)

91%
(116|127)

CRO without
prioritization

76%
(13|17)

75%
(9|12)

100%
(8|8)

97%
(30|31)

82%
(36|44)

86%
(12|14)

100%
(1|1)

86%
(109|127)

GA-based approach
71%

(12|17)
75%

(9|12)
88%
(7|8)

94%
(29|31)

84%
(37|44)

86%
(12|14)

0%
(0|1)

83%
(106|127)

JHotDraw

CRO (our approach)
100%
(4|4)

100%
(3|3)

100%
(5|5)

50%
(2|4)

100%
(4|4)

80%
(4|5)

100%
(0|0)

88%
(22|25)

CRO without
prioritization

75%
(3|4)

100%
(3|3)

80%
(4|5)

100%
(4|4)

75%
(3|4)

60%
(3|5)

100%
(0|0)

80%
(20|25)

 GA-based approach
50%
(2|4)

67%
(2|3)

100%
(5|5)

100%
(4|4)

50%
(2|4)

60%
(3|5)

100%
(0|0)

72%
(18|25)

Average (all
code-smells)

CRO (our approach) 95% 92% 93% 79% 91% 91% 100% 90%
CRO without
prioritization

78% 84% 90% 97% 76% 62% 90% 84%

GA-based approach 67% 77% 89% 97% 74% 63% 70% 82%

Table 5.3 - Refactoring results: code-smells correction score.

112

over 14) are fixed. This score is higher than the one of the other approaches having

respectively only 81%, 73% of Blobs, 76%, 82% of spaghetti code, 79%, 79% of functional

decomposition in terms of CCR scores. Moreover, after applying the proposed refactoring

operations, for all systems, we found that most of the fixed code-smells (87%) are related to

important code fragments; however only 69% and 66% of ICR score are obtained by both

other approaches that do not use prioritization (Table 5.4 and Figure 5.7). We also found

that most of the fixed code-smells relies with the riskiest ones having a RCR average score

of 92%; while both other approaches provide only an average of 85% and 84% of RCR as

shown in Table 5.4 and Figure 5.7. Additionally, the obtained results demonstrates that

using the proposed prioritization schema, 89% of severe code-smells were fixed; while both

other approaches succeeded in fixing less than 81% of severe code-smells.

Figure 5.6 - Code-smells correction results per code-smell type for each studied systems for

(1) CRO (our approach), (2) CRO without prioritization, and (3) GA-based approach.

113

Another important observation to highlight is that the majority of non-fixed code-

smells obtained with both CRO without prioritization and GA-based approach are related to

the Blob type, as shown in Figure 5.7. This type of code-smell usually requires a large

number of refactoring operations and is then very difficult to correct without a specific

mechanism (e.g., prioritization). On the other hand, the obtained CCR score related to data

class is acceptable (an average of 79% in all systems); however we noticed that this score is

less than the ones obtained by both other approaches. Thus, the loss in the data class

correction ratio is largely compensated by the significant improvement in terms of

importance, risk and severity scores as shown in Figure 5.7. In fact, this low score is due to

the fact that, data class is not prioritized in our experiments, we assign data classes the

lowest priority score (equals to 1) unlike the Blob code-smell, as described in Section 5.3.2.

This score is assigned according to developers’ preferences. Moreover, in general, data

classes do not experience changes frequently during the development and maintenance

since it contains mainly data and performs no processing on these data (contains mainly

setters and getters). To this end, the importance score related to this code-smell is very low.

On the contrary, as shown in Table 6, all the detected shotgun surgery code-smells are fixed

(a CCR score of 100%). This is mainly due to the fact that shotgun surgery are extensively

connected to a large number of external methods calling it having large and widespread

impact of a change. Consequently its importance score is very high, and therefore, it will be

more prioritized.

Moreover, to ensure the efficiency and usefulness of our approach, we verified

manually the feasibility of the different proposed refactoring sequences for each system.

We applied the proposed refactorings using Eclipse IDE. Some semantic errors (programs

behavior) were found. When a semantic error is found manually, we consider the

operations related to this change as a bad recommendation. We calculate a correctness

precision score (ratio of possible refactoring operations over the number of proposed

refactoring) as one of the performance indicators of our algorithm. An average of 70% of

refactorings is feasible. This score is comparable of the one of both other approaches.

114

Systems Approach
ICR
(%)

RCR
(%)

SCR
(%)

RP (%)

Xerces-J
CRO (our approach) 89% 90% 89% 76% (230|302)
CRO without prioritization 72% 86% 82% 72% (245|341)
GA-based approach 61% 83% 84% 73% (261|359)

JFreeChart
CRO (our approach) 81% 91% 90% 64% (152|238)
CRO without prioritization 50% 86% 83% 64% (151|236)
GA-based approach 53% 85% 81% 64% (155|241)

GanttProject

CRO (our approach) 87% 93% 87% 67% (147|221)
CRO without prioritization 67% 83% 75% 66% (145|219)
GA-based approach 60% 81% 76% 69% (166|242)

ArtofIllusion

CRO (our approach) 85% 92% 91% 71% (205|288)
CRO without prioritization 72% 84% 84% 70% (176|251)
GA-based approach 70% 85% 84% 72% (180|249)

JHotDraw

CRO (our approach) 95% 94% 86% 72% (146|203)
CRO without prioritization 82% 84% 73% 73% (160|218)
GA-based approach 85% 85% 77% 74% (147|198)

Average (all
systems)

CRO (our approach) 87% 92% 89% 70%
CRO without prioritization 69% 85% 80% 69%
GA-based approach 66% 84% 81% 70%

Table 5.4 - Refactoring results: importance, risk, severity and RP scores.

Figure 5.7 - Refactoring comparison results for the five systems for (1) CRO (our
approach), (2) CRO without prioritization, and (3) GA-based approach in terms of ICR,

RCR, SCR, and RP.

To sum up, we have presented in Figure 5.7 the metric scores for all systems using

boxplots. The majority of code-smells (90%), on average, were corrected using our

approach which outperforms both CRO without prioritization and GA-based approache in

terms of code-smells correction ratio. However, only for data classes the obtained results

are slightly less than other approaches. In general, this kind of code-smells is less

115

risky/important than other code-smells and not need an extensive correction effort by

software engineers compared to the Blob. Hence, to fix data class, software maintainers can

easily apply some refactorings such as inline class, move method/field to add new

behavior/functionalities or merge data classes with other existing classes in the system.

Although data-classes are not prioritized in our approach, we obtained an acceptable

correction score. This is due to the fact that Blob are in general related to data classes;

consequently, fixing Blobs can implicitly fix its related data classes. We also had good

results in terms of importance, risk and severity correction scores. The majority of

important, riskiest and severest code-smells were fixed, and most of the proposed

refactoring sequences (70%) are coherent semantically.

To better evaluate our approach and to answer RQ4, we compare the results of the

CRO-based approach with three different population and single-solution based evolutionary

algorithms (GA, SA, and PSO) which have been shown to have good performance in

solving different software engineering problems [90] [91]. For all algorithms, we use the

same formulation given in Section 5.3.3 (solution representation, objective function, change

operators, etc.) with the algorithms configuration described in section 3.4.4. Table 5.5

shows the comparison results among the median of solution's quality for each pair of

algorithms using Wilcoxon rank sum test [170]. As shown in Table 5.5, at 99% of

confidence level, the median values of CRO and GA; CRO and SA; as well as those of

CRO and PSO are statistically different in terms of CCR, ICR, and RCR. However, in

terms of RP, CRO and GA; and CRO and PSO are not. The comparison results, sketched in

Table 5.5 and Figure 5.8 shows that CRO outperforms the other three algorithms in terms

of CCR, ICR, and RCR while having similar performance in terms of RP (70%). For

instance, using CRO, an average of 90% of code-smells are fixed, whereas, only 84%, 83%

and 84% are obtained with GA, SA, and PSO. Moreover, in terms of ICR, CRO succeeded

on fixing, 87% of important code-smells, while obtained ones for other algorithms are less

than fixes less than 83%. Based on these results we can conjecture that CRO performs

much better in comparison to GA, SA and PSO. Moreover, we notice that SA turns out to

be the worst algorithm.

116

Systems Algorithms CCR (%) ICR (%) RCR (%) SCR (%) RP (%)

 Score p-value Score p-value Score p-value Score p-value Score p-value

Xerces-J

CRO 91% 89% 90% 89% 76%

GA 84% < 0.01 86% < 0.01 87% < 0.01 88% < 0.01 76% 0.7854

SA 82% < 0.01 86% < 0.01 88% < 0.01 87% < 0.01 75% 0.68

PSO 84% < 0.01 85% < 0.01 88% < 0.01 87% < 0.01 76% 0.5569

JFreeChart

CRO 89% 81% 91% 90% 64%

GA 81% < 0.01 70% < 0.01 87% < 0.01 89% < 0.01 64% 0.769

SA 80% < 0.01 69% < 0.01 87% < 0.01 88% < 0.01 64% 0.661

PSO 84% < 0.01 72% < 0.01 86% < 0.01 88% < 0.01 64% 0.487

GanttProject

CRO 91% 87% 93% 87% 67%

GA 87% < 0.01 84% < 0.01 90% < 0.01 84% < 0.01 67% 0.387

SA 81% < 0.01 83% < 0.01 90% < 0.01 85% < 0.01 68% 0.489

PSO 87% < 0.01 84% < 0.01 91% < 0.01 86% < 0.01 67% 0.23

ArtofIllusion

CRO 91% 85% 92% 91% 71%

GA 89% < 0.01 83% < 0.01 90% < 0.01 90% < 0.01 70% 0.369

SA 88% < 0.01 82% < 0.01 90% < 0.01 89% < 0.01 71% 0.217

PSO 88% < 0.01 83% < 0.01 89% < 0.01 90% < 0.01 70% 0.062

JHotDraw

CRO 88% 95% 94% 86% 72%

GA 84% < 0.01 92% < 0.01 90% < 0.01 81% < 0.01 71% 0.161

SA 72% < 0.01 91% < 0.01 91% < 0.01 83% < 0.01 71% 0.169

PSO 84% < 0.01 92% < 0.01 91% < 0.01 87% < 0.01 72% 0.178

Average
(all

systems)

CRO 90% 87% 92% 89% 70%

GA 85% 83% 89% 87% 70%

SA 81% 82% 89% 87% 70%

PSO 85% 83% 89% 88% 70%

Table 5.5 - CCR, ICR, RCR, SCR and RP median values of CRO, GP, SA and PSO over
31 independent simulation runs.

The p-values of the Wilcoxon rank sum test indicate whether the median of the

algorithm of the corresponding column (GA/SA/PSO) is statistically different from the

CRO one with a 99% confidence level (α = 0.01). A statistical difference, in terms of the

obtained recall values, is detected when the p-value is less than or equal to 0.01.

Another observation is that GA and PSO can produce good refactoring solutions as

CRO (but not better than CRO) for medium size systems (e.g.,GanttProject and JHotDraw).

However, for large systems (e.g., Xerces, JFreeChart), the performance of CRO is

significantly better than GA and PSO.

117

Figure 5.8 - CRO performance comparison with GA, SA and PSO.

Although time constraints is not a real challenge in our proposal, it is relevant to

analyse the convergence speed when we compare metaheuristics. To this end, we

performed 31 independent simulation runs on the same PC with Intel Core i5-2450M

Processor and 4GB of RAM for each of the algorithms CRO, GA, SA and PSO. Hence, SA

manipulates a single solution in each iteration, while GA and PSO control a population of

solutions at a time. CRO is also a population-based metaheuristics; however, the number of

manipulated solutions varies during a simulation run. Through 31 independent simulation

run, we found that PSO converges faster than the other algorithms (an average of 48m12s).

CRO is the second one in terms of convergence speed (an average of 48m18s over 31 run)

while we record an average of 1h32m47s and 1h23m13s for respectively GA and SA.

To sum up, we can conclude that CRO outperforms other popular metaheuristic

algorithms [98] [99] [100]. In fact, there are two reasons for the high convergence speed of

CRO. The first is the ability for CRO to jump out of a local minimum, by the mean of the

four elementary reaction operators, and quickly search other possible better results. The

second is due to the efficient encoding scheme and the variety of change operators, which

greatly explores the search space.

5.5 Discussions

Our experimental results provide evidence that our approach significantly

outperforms two other approaches that do not use the prioritization for correcting code-

118

smells. We also found that CRO performs much better than three other popular

metaheuristic algorithms: GA, SA, and PSO. We also contrast the results of multiple

executions with the execution time to evaluate the performance and the stability of our

approach. Moreover, we evaluate the impact of the number of suggested refactorings on the

CCR, ICR, RCR and SCR scores and the execution time through 31 independent simulation

run. Over 31 independent simulation runs on JFreeChart, the average value of CCR, ICR,

RCR, SCR and execution time for finding the optimal refactoring solution with the suitable

prioritization schema was respectively 90%, 80%, 92%, 90% and 57min36s as shown in

Figure 5.9. The standard deviation values was lower than 1. Moreover, the results of

Figure 5.9, drawn for JFreeChart, show that the number of suggested refactorings does not

affect the refactoring results. Thus, a higher number of operations in a solution do not

necessarily mean that the results will be better. Thus, we could conclude that our approach

is scalable from the performance standpoint, especially that quality improvements are not

related in general to real-time applications where time-constraints are very important. In

addition, the results accuracy is not affected by the number of suggested refactorings.

Figure 5.9 - Impact of the number of refactorings on multiple runs on JFreeChart.

45

47

49

51

53

55

57

59

75

80

85

90

95

100

210 222 232 241 257 265 270 271 275 276 277 279 281 282 282 288

Number of refactorings

CCR (%) ICR (%) RCR (%) SCR (%) Time (min)

CCR (%), ICR(%), RCR(%) , SCR(%) Time (min)

119

Another important consideration is the refactoring operations distribution. We

contrast that most of the suggested refactorings are related to move method, move field, and

extract class for almost all of the studied systems. For instance, in JFreeChart, we had

different distribution of different refactoring types as illustrated in Figure 5.10. We notice

that the most suggested refactorings are related to moving code elements (fields, methods)

and extract/inline class. This is mainly due to the code-smells types detected in JFreeChart

and prioritized during the correction step. Most of code-smells are related to the Blob,

functional decomposition and spaghetti code that need particular refactorings. For instance,

to fix a Blob code-smell, the idea is to move elements from the Blob class to other classes

(e.g., data classes) in order to reduce the number of functionalities from the Blob and add

behavior to other classes or to improve some quality metrics such as coupling and cohesion.

As such, refactorings like move field, move method, and extract class are likely to be more

useful to correcting the bloc code-smell. Furthermore, before starting our experiments and

analyzing our refactoring results, we expected that code-smell correction score for data

classes will be very low; however we found that most of them are corrected with a good

score (an average of 79%). This is mainly due to two reasons 1) data classes are to some

extent easy to fix and they don’t need lot of refactorings to be fixed; it is sufficient to add

some functionalities/methods to them from other related classes, and 2) in general there is a

structural relationship between data classes and Blobs [12] [70]; so that fixing Blobs can

implicitly fix data classes related to them. Enforcing the correction of Blobs can implicitly

increase the correction of data classes. As part of future work we plan to conduct a large

empirical study to investigate the relationship between different types of code-smells, and

between code-smell types and refactoring types.

120

Figure 5.10 - Suggested refactorings distribution for JFreeChart.

5.6 Threats to validity

Some threats can affect the validity of our experiments. We explore in this section

the factors that can bias our experimental study. These factors can be classified into three

categories: construct, internal, and external validity. Construct validity concerns the relation

between the theory and the observation. Internal validity concerns possible bias with the

results obtained by our proposal. Finally external validity is related to the generalization of

observed results outside the sample instances used in the experiment.

Construct validity is concerned with the relationship between theory and what is

observed. The manual evaluation of the feasibility of the suggested refactorings depends on

the expertise of the developer and also it is a subjective process to make sure that a detected

code-smell is fixed. Another construct validity can be related to the used code-smells

detection rules we use to measure CCR. To mitigate this threat, we manually inspect and

validate each detected code-smell. Moreover, our refactoring tool configuration is flexible

and can support other state-of-the-art detection rules.

121

We take into consideration the internal threats to validity in the use of stochastic

algorithms since our experimental study is performed based on 31 independent simulation

runs for each problem instance and the obtained results are statistically analyzed by using

the Wilcoxon rank sum test [170] with a 99% confidence level (α = 1%). However, despite

we used the same stopping criteria, the parameter tuning of the different optimization

algorithms used in our experiments creates another internal threat that we need to evaluate

in our future work.

External validity refers to the generalizability of our findings. In this study, we

performed our experiments on seven different code-smells types and five different widely-

used open-source systems belonging to different domains and with different sizes, as

described in Table 3. However, we cannot assert that our results can be generalized to

industrial applications, other programming languages, and to other practitioners. Future

replications of this study are necessary to confirm the generalizability of our findings.

5.7 Conclusion

This chapter presented a novel chemical reaction optimization-based approach to

recommend refactoring solutions according to a prioritization schema. The aim is to fix

code-smells while prioritizing the severest, riskiest and important code-smells taking into

consideration software maintainers’ preferences. The suggested refactorings succeed in

fixing the majority of critical code-smells. Our experimental study on five medium and

large scale software systems and seven code-smell types shows that the proposed approach

is superior to two other approaches that do not use prioritization and maintainers

preferences to automate the refactoring task. Moreover, the experimental results provide

evidence that the proposed CRO-based approach was performs better than GA, SA, and

PSO, the most popular metaheuristics in SBSE.

Despite the great advances in software refactoring in the last years, one of the most

notable limitations of the majority of existing work, including our GA- and CRO-based

approaches, is that they deal with the refactoring problem from a single perspective which

is improving software quality while preserving the behavior. These two concerns drive the

122

existing approaches to refactoring automation. However, these concerns are not enough to

produce correct and consistent refactoring solutions. Many other criteria are also important

to consider such as reducing the number of code changes, preserving the semantics of the

design and not only the behavior, and maintaining the consistency with the change history.

These observations lead us to deal with the refactoring recommending task as a multi-

objective optimization problem. In Chapter 6, we present our multi-objective formulation

for the refactoring task.

Part 3: Multi-objective software refactoring

In part 2 of this thesis, we described our contributions to single-objective refactoring

recommendation. In this part, we formulate refactoring recommending task as a multi-

objective optimization problem. To the best of our knowledge, this is the first attempt to

deal with refactoring recommending task as a multi-objective optimization problem. In our

multi-objective formulation we consider two scenarios for software practitioners: 1) the

main goal is to preserve the design semantics while fixing code-smells; and 2) the main

goal is to improve software quality from different perspectives.

For the first scenario, we introduce a novel multi-objective search-based approach

that aims at finding the optimal sequence of refactorings to fix code-code-smells while

preserving the design semantics from different perspectives, 1) minimizes code changes

required to apply refactoring, 2) preserves semantic coherence, and 3) maintain the

conformance with prior refactorings applied in previous versions.

For the second scenario, we introduce a new multi-objective formulation to

refactoring recommending task. The aim of our approach, called MORE (Mutli-Objective

REfactoring recommending) is to improve software quality from different perspectives: 1)

improve quality indicators (i.e., flexibility, maintainability, etc.), 2) fix “bad” design

practices (i.e., code-smells), and 3) promote “good” design practices (i.e., design patterns).

Chapter 6 : A Multi-objective approach for
recommending software refactoring

6.1 Introduction

In Chapter 4 and Chapter 5 we formulated the refactoring recommending task as a

single-objective optimization problem to fix code-smells. However, while it is important to

suggest refactorings that improve software quality, many other criteria are also important to

consider to obtain efficient refactoring strategies. These criteria include reducing the

number of code changes, preserving the semantic coherence of the software design, and

maintaining the consistency with the previous changes. In this chapter, we deal with

refactoring recommending task as a multi-objective optimization problem. We introduce a

multi-objective search-based approach that aims at finding the optimal sequence of

refactorings that 1) improves the quality by minimizing as much as possible the number of

code-smells, 2) minimizes code changes required to fix those smells, 3) preserves semantic

coherence, and 4) maximizes the consistency with previous changes. To the best of our

knowledge, this is the first attempt to deal with refactoring recommending task as a multi-

objective optimization problem. The primary contributions of this chapter can be

summarized as follows:

1. We introduce a novel multi-objective formulation of the refactoring

recommendation task using four different criteria. To this end, we use the non-

dominated sorting genetic algorithm (NSGA-II).

2. We reports the results of an empirical study of our multi-objective approach using a

benchmark of six medium and large size open-source systems, and six commonly

occurring code-smell types through an empirical study conducted with experts. We

found that, in addition to fixing code-smells, the proposed refactorings succeed in

preserving the semantic coherence of the code, with an acceptable level of code

change score while reusing knowledge from recorded refactorings applied in the

past to similar contexts.

125

This chapter is structured as follows: Section 6.2 is dedicated to present the different

challenges that we address through a motivating example. Section 6.3 presents our

approach and explains how we adapted NSGA-II. Section 6.4 presents quantitative and

qualitative evaluation results, while Section 6.5 discusses the obtained results. Section 6.6

discusses the threats to validity. Finally, Section 6.7 concludes and presents plans for future

work.

6.2 Challenges in automated refactoring recommending

Even though most of the existing refactoring recommendation approaches are

powerful enough to suggest refactoring solutions to be applied, several issues are still need

to be addressed.

6.2.1 Problem statement

Our approach is designed to address mainly the following problems:

Quality improvement: Most of the existing approaches [20] [21] [22] [41] [45]

consider refactoring as the process to improve code quality by improving structural metrics.

However, these metrics can be conflicting and it is difficult to find a compromise between

them. For example, moving methods to reduce the size or complexity of a class may

increase the global coupling. Furthermore, improving some quality metrics does not

guarantee that detected code-smells are fixed. Moreover, there is no consensus about the set

of metrics that need to be improved in order to fix code-smells. Indeed, the same type of

code-smells can be fixed by improving completely different metrics.

Semantics preservation: In object-oriented programs, objects reify domain

concepts and/or physical objects, implementing their characteristics and behavior. Unlike

other programming paradigms, grouping data and behavior into classes is not guided by

development or maintenance considerations. Methods and fields of classes characterize the

structure and behavior of the implemented domain elements. Consequently, a program

could be syntactically correct, implement the appropriate behavior, but violate the domain

126

semantics if the reification of domain elements is incorrect. During the initial

design/implementation, programs usually capture well the domain semantics when object-

oriented principles are applied. However, when these programs are (semi-)automatically

modified/refactored during maintenance, the adequacy with regards to domain semantics

could be compromised.

Existing approaches suggests refactorings mainly with the perspective of improving

only some design/quality metrics. However, this may not be sufficient. We need to preserve

the rationale behind why and how code elements are grouped and connected when applying

refactoring. Indeed, the refactored program could be syntactically correct, implement the

correct behavior, but be semantically incoherent. For example, a refactoring solution might

move a method calculateSalary() from the class Employee to the class Car. This refactoring

could improve the program structure by reducing the complexity and coupling of the class

Employee and satisfy the pre- and post-conditions to preserve program behavior. However,

having a method calculateSalary() in the class Car does not make any sense from the

domain semantics standpoint, and is likely to lead to comprehension problems in the future.

Thus, semantics preservation is an important issue to consider when applying refactoring.

Code changes: When applying refactorings, various code changes are performed.

The amount of code changes corresponds to the number of code elements (e.g., classes,

methods, fields, relationships, field references, etc.) modified through adding, deleting, or

moving operations. Minimizing code changes when suggesting refactorings is important to

reduce the effort and help developers in understanding the modified/improved program. In

fact, most developers want to keep as much as possible the original design structure when

fixing code-smells [1]. However, improving software quality and reducing code changes

are conflicting. In some cases, fixing some code-smells corresponds to changing radically a

large portion of the system or is sometimes equivalent to re-implementing a large part of

the system. Indeed, a refactoring solution that fixes all code-smells is not necessarily the

optimal one due to the high code adaptation/modification that may be required.

127

Consistency with development/maintenance history: The majority of existing

work does not consider the history of changes applied in the past when proposing new

refactoring solutions. However, the history of code changes can be helpful in increasing the

confidence of new refactoring recommendations. To better guide the search process,

recorded code changes applied in the past can be considered when proposing new

refactorings in similar contexts. This knowledge can be combined with structural and

semantic information to improve the automation of refactoring suggestions.

In addition, code fragments that have previously been modified at the same time

period are likely to be semantically connected (e.g., refer to the same feature). Furthermore,

fragments that have been extensively refactored in the past have a high probability of being

refactored again in the future. Moreover, the code to refactor can be similar to some

refactoring patterns that are to be found in the development history, thus, developers can

easily adapt them.

6.2.2 Motivating example

To illustrate some of the above mentioned issues, Figure 6.1 shows a concrete

example extracted from JFreeChart20 v1.0.9, a well-known Java open-source charting

library. We consider a design fragment containing four classes XYLineAndShapeRenderer,

XYDotRenderer, SegmentedTimeline, and XYSplineRenderer. Using code-smells detection

rules [7], the class XYLineAndShapeRenderer is detected as a code-smell: Blob (i.e., a large

class that monopolizes the behavior of a large part of the system).

We consider the scenario of a refactoring solution that consists of moving the method

drawItem() from the class XYLineAndShapeRenderer to the class SegmentedTimeline. This

refactoring can improve the design quality by reducing the number of functionalities in this

Blob class. However, from the design semantics standpoint, this refactoring is incoherent

since SegmentedTimeline functionalities are related to presenting a series of values to be

used for a curve axis (mainly for Date related axis) and not for the task of drawing

20 http://www.jfree.org/jfreechart/

128

objects/items. Based on semantic and structural information, using respectively a semantic

lexicon [185], and cohesion/coupling [29], many other target classes are possible including

XYDotRenderer and XYSplineRenderer. These two classes have approximately the same

structure that can be formalized using quality metrics (e.g., number of methods, number of

attributes, etc.) and their semantic similarity is close to XYLineAndShapeRenderer using a

vocabulary-based measure. Thus, moving elements between these three classes is likely to

be semantically coherent and meaningful. On the other hand, from previous versions of

JFreeChart, we recorded that there are some methods such as drawPrimaryLinePath(),

initialise(), and equals() that have been moved from the class XYLineAndShapeRenderer to

XYDotRenderer
serialVersionUID : long
dotWidth : int
dotHeight : int
legendShape : Shape
. . .

XYDotRenderer()
getDotWidth()
setLegendShape()
drawItem()
equals(Object)
clone()
readObject()
writeObject()
. . .

XYSplineRenderer

points : Vector
precision : int
. . .

XYSplineRenderer()
getPrecision()
setPrecision()
initialise()
drawPrimaryLineAsPath()
equals()
solveTridiag()
. . .

XYLineAndShapeRenderer

serialVersionUID : long
linesVisible : Boolean
legendLine : Shape
shapesVisible : Boolean
useFillPaint : boolean
useOutlinePaint : boolean
baseShapesFilled : boolean
drawOutlines : boolean
shapesFilled : Boolean
baseShapesVisible: boolean
. . .

getDrawSeriesLineAsPath()
setDrawSeriesLineAsPath()
getPassCount()
getLegendLine()
getBaseShapesVisible()
getSeriesShapesFilled()
getUseFillPaint()
initialise()
getLinesVisible()
setLinesVisible()
drawItem()
getLegendItem()
clone()
drawPrimaryLine()
setDrawOutlines()
getUseFillPaint()
setUseOutlinePaint()
drawSecondaryPass()
getLegendItem(int, int)
readObject()
writeObject()
drawPrimaryLine()
drawFirstPassShape()
. . .

Code-smell: Blob

SegmentedTimeline

workingCalendar: Calendar
segmentSize : long
startTime : long
. . .

getStartTime()
getBaseTimeline()
toTimelineValue()
toMillisecond()
getSegmentSize()
clone()
equals()
. . .

Figure 6.1 - Design fragment extracted from JFreeChart v1.0.9.

129

the class XYSplineRenderer. As a consequence, moving methods and/or attributes from the

class XYLineAndShapeRenderer to the class XYSplineRenderer has higher correctness

probability than moving methods or attributes to the class XYDotRenderer or

SegmentedTimeline.

Based on these observations, we believe that it is important to consider additional

objectives instead of using only structural metrics to ensure quality improvement. However,

in most of the existing work, design semantics, amount of code changes, and development

history are not considered. Improving code structure, minimizing semantic incoherencies,

reducing code changes, and maintaining the consistency with development change history

are conflicting goals. In some cases, improving the program structure could provide a design

that does not make sense semantically or could change radically the initial design. For this

reasons, an effective refactoring strategy needs to find a compromise between all of these

objectives. These observations are the motivation of the work described in this chapter.

6.3 Approach

This section presents our approach. In Section 6.3.1, we present an overview of our

approach. Section 6.3.2 describes how we formulated the refactoring recommending task as

a multi-objective optimization problem. Section 6.3.3 presents our semantic measures,

while Section 6.3.4 describes how we adapted NSGA-II.

6.3.1 Approach overview

Our approach aims at exploring a large search space to find refactoring solutions,

i.e., a sequence of refactoring operations, to fix code-smells. The search space is

determined not only by the number of possible refactoring combinations, but also by the

order in which they are applied. A heuristic-based optimization method is used to generate

refactoring solutions. We have four objectives to optimize: 1) maximize quality

improvement (code-smells correction); 2) minimize the number of semantic incoherencies

by preserving the way how code elements are semantically grouped and connected

together; 3) minimize code changes needed to apply the refactorings; and 4) maximize the

130

consistency with development change history. We thus consider the refactoring task as a

multi-objective optimization problem using the non-dominated sorting genetic algorithm

(NSGA-II) [24].

Figure 6.2 - Multi-Objective Search-based Refactoring.

The general structure of our approach is sketched in Figure 6.2. It takes as input the

source code of the program to be refactored, a list of possible refactorings that can be

applied (label A), a set of code-smells detection rules (label B) [7], our technique for

approximating code changes needed to apply refactorings (label C), a set of semantic

measures described in Section 6.3.3 (label D), and a history of applied refactorings to

previous versions of the system (label E). Our approach generates as output the near-optimal

sequence of refactorings that improves software quality by minimizing as much as possible

the number of code-smells, minimizing code changes required to apply the refactorings,

preserving design semantics, and maximizing the consistency with development change

history. In the following, we describe the formulation of the four objectives to optimize.

Output: recorded refactorings
Code changes

amount
approximation

Semantic
measures

Similarity with
good recorded

refactorings

Proposed
refactorings

Output: semantic measures

C

 D

E

Code-smells
detection rules

List of possible
refactorings

 B

A

Multi-Objective Search-

based Refactoring

Input:
List of previous
program
versions

Input:
source code +
call graphs

Input:
Refactoring
weights

Output: recorded refactorings

131

6.3.2 Modeling refactoring recommending as a multi-objective problem

We consider the following criteria:

6.3.2.1 Quality

The Quality criterion is evaluated using the Quality formula given below. The

quality value increases when the number of code-smells in the code is reduced after

refactoring. This formula returns a real value in the range [0,1] that represents the ratio of

the number of fixed code-smells (detected using code-smells detection rules) over the initial

number of detected code-smells before refactoring. The detection of code-smells is based

on metric-based rules according to which a code fragment can be classified as a code-smell

or not (without a probability/risk score), i.e., 0 or 1, as formulated in Chapter 3 [28].

ݕݐ݈݅ܽݑܳ ൌ
ݏ݈݈݁݉ݏ_݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	#

݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݁ݎ݋݂ܾ݁	ݏ݈݈݁݉ݏ_݁݀݋ܿ	݂݋	ݎܾ݁݉ݑ݊	݈ܽ݅ݐ݅ݐ݊݅

6.3.2.2 Code changes

Refactoring Operations (ROs) are classified into two types: Low-Level ROs (LLR)

and High-Level ROs (HLR) [28]. A HLR is a sequence of two or more ROs. An LLR is an

elementary refactoring consisting of just one basic RO (e.g., “Create Class”, “Delete

Method”, “Add Field”). The weight wi for each RO is an integer number that can be 1, 2, or

3 depending on code fragment complexity and change impact [7]. For a refactoring solution

that contains n ROs, the code changes score is computed as:

ݏ݄݁݃݊ܽܿ_݁݀݋ܥ ൌ෍ݓ௜

௡

௜ୀଵ

6.3.2.3 Similarity with recorded code changes

The idea is to encourage the use of refactorings that are similar to those applied to

the same code fragments in the past. To calculate the similarity score between a proposed

refactoring operation and a recorded code change, we use the following function:

132

ሺܴܱሻݕݎ݋ݐݏ݄݅_݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ_݉݅ܵ 	ൌ 	෍ݓ௝

௡

௝ୀଵ

where n is the number of recorded refactoring operations applied to the system in the past,

and wj is a refactoring weight that reflects the similarity between the suggested refactoring

operation (RO) and the recorded refactoring operation ROi. The weight wi is computed as

follows: if the refactoring operations being compared are exactly the same type and applied

to the same locations (e.g., “Move Method” between the source and target same classes),

the weight wi = 2. If the refactoring operations being compared are similar (we consider

two refactoring operations as similar if one of them is composed of the other or if their

implementations are similar). Some complex refactoring operations, such as “Extract

Class”, can be composed of other refactoring operations such as “Move Method”, “Move

Field”, “Create New Class”, etc., the weight wi = 1. Otherwise, wi = 0.

6.3.2.4 Semantics

In this section, we do not address the issue of operational semantics that is

formulated via pre/post-conditions. Instead, our goal is to recommend refactorings to be

applied by developers and not automatic application of refactorings. In fact, Tokuda and

Batory [186] found that the pre-conditions originally proposed by Opdyke [17] were not

sufficient to guarantee behavior preservation for C++ programs. There are several testing

approaches that have found hundreds of bugs in refactoring tools from state-of-the-art and

industry [187] [188] [189]. We focus in this section on measures to ensure preservation for

design semantics coherence during refactoring.

As far as we know, until now there is no consensual way to investigate whether

refactoring can preserve the semantic coherence of the original design. Hence, we

formulate semantics preservation through a meta-model in which we describe the necessary

concepts from a perspective to help in automating refactoring recommendation. We also

provide a terminology that will be used throughout this chapter. Figure 6.3 shows the

semantic-based refactoring meta-model. The class Refactoring represents the main entity in

the meta-model. As mentioned earlier, we classify refactoring operations into two types:

133

low-level ROs (LLR) and high-level ROs (HLR). A LLR is an elementary/basic program

transformation for adding, removing, and renaming program elements (e.g., “Add Method”,

“Remove Field”, “Add Relationship”). LLRs can be combined to perform more complex

refactoring operations (HLRs) (e.g., “Move Method”, “Extract Class”). A HLR consists of a

sequence of two or more LLRs or HLRs; for example, to perform “Extract Class” we need

to “Create New Empty Class” and apply a set of “Move Method” and “Move Field”

operations.

To apply a refactoring operation we need to specify which actors, i.e., code

fragments, are involved in this refactoring and which roles they play when performing the

refactoring operation. As illustrated in Figure 6.3, an actor can be a package, class, field,

method, parameter, statement, or variable. In Table 6.1, we specify for each refactoring

operation the involved actors and their roles. In addition to this list of complex refactorings,

we considered also in our experiments the Rename refactoring to satisfy the pre/post-

conditions of some complex refactorings. Another complex refactoring considered in our

experiments is “Extract Method”. We used Soot [190], a java optimization framework, to

parse the extracted code for references to any variables (local variables and parameters to

the method) that are local in the source method. Different constraints are related to the

application of an extract method refactoring as described in [86] [87] [88] (like most of

other types of refactoring):

- Local variables used only within this extracted code should be declared in the target

method as local variables.

- Parameters used within this extracted code should be considered as parameters in the

target method.

- Local variables used (read) within the extracted code should be considered as

parameters to the target method.

- Local variable or parameters used (write) within the extracted code should be used as a

return type from the target method.

- If the target method do not use (write) any of the local variables or parameters of the

134

source method, then the return type of the target method should be “void”.

In the case when the extracted code uses (write) more than one parameter and/or

local variable then it is not possible to apply extract method to the selected fragment.

Therefore, another appropriate code fragment should be selected.

Refactoring operation Actors Roles

Move method
class source class, target class
method moved method

Move field
class source class, target class
field moved field

Pull up field
class sub classes, super class
field moved field

Pull up method
class sub classes, super class
method moved method

Push down field
class super class, sub classes
field moved field

push down method
class super class, sub classes
method method

Inline class class source class, target class

Extract method
class source class, target class
method source method, new method
statement moved statements

Extract class
class source class, new class
field moved fields
method moved methods

Move class
package source package, target package
class moved class

Extract interface
class source classes, new interface
field moved fields
method moved methods

Table 6.1 - Refactoring examples and their involved actors and roles.

6.3.3 Semantic measures

To approximate semantics preservation, we define the following measures:

135

Refactoring

Low-level
Refactoring

High-level
Refactoring

Role

Structural
Constraints

Semantic
Constraints

Constraints

Pre-Condition Post-Condition

1..*

1..*

0..*

1..* 1..*

satisfy

2..*

Vocabulary
based similarity

Shared
fields

Shared
methods

Implementation
similarity

Feature inheritance
usefulness

Package

Class

Method

Field

access

call

0..*

0..* 0..*

0..*

0..*

Actor

performs

Statement
0..*

1..*

1..* Parameter
0..*

has

1..*

involves

Variable
0..*

use

Cohesion-based
dependancy

Figure 6.3 - Semantics-based refactoring meta-model.

Vocabulary-based similarity (VS)

This kind of similarity is interesting to consider when moving methods, fields, or

classes. For example, when a method has to be moved from one class to another, the

refactoring would make sense if both actors (source class and target class) use similar

vocabularies [29]. The vocabulary could be used as an indicator of the semantic similarity

between different actors that are involved when performing a refactoring operation. We

start from the assumption that the vocabulary of an actor is borrowed from the domain

terminology and therefore can be used to determine which part of the domain semantics an

136

actor encodes. Thus, two actors are likely to be semantically similar if they use similar

vocabularies.

The vocabulary can be extracted from the names of methods, fields, variables,

parameters, types, etc. Tokenisation is performed using the Camel Case Splitter, which is

one of the most used techniques in Software Maintenance tools for the preprocessing of

identifiers. A more pertinent vocabulary can also be extracted from comments, commit

information, and documentation. We calculate the semantic similarity between actors using

an information retrieval-based technique, namely cosine similarity, as shown in the formula

below. Each actor is represented as an n-dimensional vector, where each dimension

corresponds to a vocabulary term. The cosine of the angle between two vectors is

considered as an indicator of similarity. Using cosine similarity, the semantic similarity

between two actors c1 and c2 is determined as follows:

ܵ݅݉ሺܿଵ, ܿଶሻ ൌ cos	ሺܿଵሬሬሬԦ, ܿଶሬሬሬԦሻ ൌ
ܿଵሬሬሬԦ	.		ܿଶሬሬሬԦ

‖ܿଵሬሬሬԦ‖ ∗ ‖ܿଶሬሬሬԦ‖
ൌ

∑ ൫ݓ௜,ଵ ∗ ௜,ଶ൯ݓ
௡
௜ୀଵ

ට∑ ൫ݓ௜,ଵ൯
ଶ௡

௜ୀଵ
ට∑ ൫ݓ௜,ଶ൯

ଶ௡
௜ୀଵ

∈ ሾ0,1ሿ

where ܿଵ ൌ ሺݓଵ,ଵ, … , is the term vector corresponding to actor c1 and ܿଶ		௡,ଵሻݓ ൌ

ሺݓଵ,ଶ, … , is the term vector corresponding to c2. The weights wi,j can be computed		௡,ଶሻݓ

using information retrieval based techniques such as the Term Frequency – Inverse Term

Frequency (TF-IDF) method.

6.3.3.1 Dependency-based similarity (DS)

We approximate domain semantics closeness between actors starting from their

mutual dependencies. The intuition is that actors that are strongly connected (i.e., having

dependency links) are semantically related. As a consequence, refactoring operations

requiring semantic closeness between involved actors are likely to be successful when these

actors are strongly connected. We consider two types of dependency links:

Shared Method Calls (SMC) that can be captured from call graphs derived from the

whole program using CHA (Class Hierarchy Analysis) [190]. A call graph is a directed

graph which represents the different calls (call in and call out) among all methods of the

137

entire program. Nodes represent methods, and edges represent calls between these methods.

CHA is a basic call graph that considers class hierarchy information, e.g, for a call c.m(...)

assume that any m(...) is reachable that is declared in a subtype or sometimes supertype of

the declared type of c. For a pair of actors, shared calls are captured through this graph by

identifying shared neighbours of nodes related to each actor. We consider both, shared call-

out and shared call-in. To measure shared call-out and shared call-in between two actors c1

and c2 (e.g., two classes), we define the following formula respectively:

,ሺܿଵݐݑܱ݈݈ܽܥ݀݁ݎ݄ܽݏ ܿଶሻ ൌ
ሺܿଵሻݐݑܱ݈݈ܽܿ| ∩ |ሺܿଶሻݐݑܱ݈݈ܽܿ
ሺܿଵሻݐݑܱ݈݈ܽܿ| ∪ |ሺܿଶሻݐݑܱ݈݈ܽܿ

,ሺܿଵ݊ܫ݈݈ܽܥ݀݁ݎ݄ܽݏ ܿଶሻ ൌ
ሺܿଵሻ݊ܫ݈݈ܽܿ| ∩ |ሺܿଶሻ݊ܫ݈݈ܽܿ
ሺܿଵሻ݊ܫ݈݈ܽܿ| ∪ |ሺܿଶሻ݊ܫ݈݈ܽܿ

Shared method call is defined as the average of shared call-in and shared call-out.

Shared Field Access (SFA) that can be calculated by capturing all field references that

occur using static analysis to identify dependencies based on field accesses (read or

modify). We assume that two code elements are semantically related if they read or modify

the same fields. The rate of shared fields (read or modified) between two actors c1 and c2 is

calculated as follows:

,ሺܿଵܹܴݏ݈݀݁݅ܨ݀݁ݎ݄ܽݏ ܿଶሻ ൌ
|݂݈ܴܹ݅݁݀ሺܿଵሻ ∩ ݂݈ܴܹ݅݁݀ሺܿଶሻ|
|݂݈ܴܹ݅݁݀ሺܿଵሻ ∪ ݂݈ܴܹ݅݁݀ሺܿଶሻ|

where fieldRW(ci) computes the number of fields that may be read or modified by each

method of the actor ci. Thus, by applying a suitable static program analysis to the whole

method body, all field references that occur can be easily computed.

6.3.3.2 Implementation-based similarity (IS)

For some refactorings like “Pull Up Method”, methods having similar

implementations in all subclasses of a super class should be moved to the super class [1].

138

The implementation similarity of the methods in the subclasses is investigated at two

levels: signature level and body level. To compare the signatures of methods, a semantic

comparison algorithm is applied. It takes into account the methods names, the parameter

lists, and return types. Let Sig(mi) be the signature of method mi. The signature similarity

for two methods m1 and m2 is computed as follows:

ሺ݉ଵ,݉ଶሻ݉݅ݏ_݃݅ܵ ൌ
|ܵ݅݃ሺ݉ଵሻ ∩ ܵ݅݃ሺ݉ଶሻ|
|ܵ݅݃ሺ݉ଵሻ ∪ ܵ݅݃ሺ݉ଶሻ|

To compare methods bodies, we use Soot [190], a Java optimization framework,

which compares the statements in the body, the used local variables, the exceptions

handled, the call-outs, and the field references. Let Body(m) (set of statements, local

variables, exceptions, call-outs, and field references) be the body of method m. The body

similarity for two methods m1 and m2 is computed as follows:

ሺ݉ଵ,݉ଶሻ݉݅ݏ_ݕ݀݋ܤ ൌ
ሺ݉ଵሻݕ݀݋ܤ| ∩ |ሺ݉ଶሻݕ݀݋ܤ
ሺ݉ଵሻݕ݀݋ܤ| ∪ |ሺ݉ଶሻݕ݀݋ܤ

The implementation similarity between two methods is the average of their Sig_Sim

and Body_Sim values.

6.3.3.3 Feature inheritance usefulness (FIU)

This factor is useful when applying the “Push Down Method” and “Push Down

Field” operations. In general, when method or field is used by only few subclasses of a

super class, it is better to move it, i.e., push it down, from the super class to the subclasses

using it [1]. To do this for a method, we need to assess the usefulness of the method in the

subclasses in which it appears. We use a call graph and consider polymorphic calls derived

using XTA (Separate Type Analysis) [205]. XTA is more precise than CHA by giving a

more local view of what types are available. We are using Soot [190] as a standalone tool to

implement and test all the program analysis techniques required in our approach. The

inheritance usefulness of a method is defined as follows:

,ሺܷ݉ܫܨ ܿሻ ൌ 1 െ
∑ ݈݈ܿܽሺ݉, ݅ሻ௡
௜ୀଵ

݊

139

where n is the number of subclasses of the superclass c, m is the method to be pushed

down, and call is a function that return 1 if m is used (called) in the subclass i and 0

otherwise.

For the refactoring operation “Push Down Field”, a suitable field reference analysis

is used. The inheritance usefulness of a field is defined as follows:

,ሺ݂ܷܫܨ ܿሻ ൌ 1 െ
∑ ,ሺ݂݁ݏݑ ܿ௜ሻ
௡
௜ୀଵ

݊

where n is the number of subclasses of the superclass c, f is the field to be pushed down,

and use is a function that return 1 if f is used (read or modified) in the subclass ci and 0

otherwise.

6.3.3.4 Cohesion-based dependency (CD)

We use a cohesion-based dependency measure for the “Extract Class” refactoring

operation. The cohesion metric is typically one of the important metrics used to identify

code-smells. However, the cohesion-based similarity that we propose for code refactoring,

in particular when applying extract class refactoring, is defined to find a cohesive set of

methods and attributes to be moved to the newly extracted class. A new class can be

extracted from a source class by moving a set of strongly related (cohesive) fields and

methods from the original class to the new class. Extracting this set will improve the

cohesion of the original class and minimize the coupling with the new class. Applying the

“Extract Class” refactoring operation on a specific class will result in this class being split

into two classes. We need to calculate the semantic similarity between the elements in the

original class to decide how to split the original class into two classes.

We use vocabulary-based similarity and dependency-based similarity to find the

cohesive set of actors (methods and fields). Consider a source class that contains n methods

{m1,… mn} and m fields {f1,… fm}. We calculate the similarity between each pair of

elements (method-field and method-method) in a cohesion matrix as shown in Table 6.2.

140

The cohesion matrix is obtained as follows: for the method-method similarity, we

consider both vocabulary and dependency-based similarity. For the method-field similarity,

if the method mi may access (read or write) the field fj, then the similarity value is 1.

Otherwise, the similarity value is 0. The column “Average” contains the average of

similarity values for each line. The suitable set of methods and fields to be moved to a new

class is obtained as follows: we consider the line with the highest average value and

construct a set that consists of the elements in this line that have a similarity value that is

higher than a threshold equals to 0.5.

 f1 f2 … fm m1 m2 … mn Average
m1 1 0 1 1 0.15 0.1 0.42
m2 0 1 1 1 1 0 0.6
.
.
.

mn 1 0 0 0.6 0.2 1 0.32

Table 6.2 - Example of a cohesion matrix.

The most notable limitation of the existing works in software refactoring is that the

definition of semantic preservation is closely related to behaviour preservation. Preserving

the behavior does not means that the design semantics of the refactored program is also

preserved. Another issue is that the existing techniques are limited to a small number of

refactorings and thus it could not be generalized and adapted for an exhaustive list of

refactorings. Indeed, semantics preservation is still hard to ensure, and to the best of our

knowledge, until now, there is no pragmatic technique or empirical study to prove whether

the semantics of the refactored program is preserved.

6.3.4 NSGA-II for refactoring recommending

This section is dedicated to describe how we formulated the refactoring

recommending problem as a multi-objective optimization problem using NSGA-II (cf.

Section 2.3.4).

141

One key element when applying a search-based technique is to find a suitable

mapping between the problem to solve and the techniques to use. Applying NSGA-II to a

specific problem requires specifying the following elements: representation of a solution,

generation of the initial population, the fitness function to evaluate the candidate solutions,

the selection of the fittest solutions, and the change operators to derive new solutions from

existing ones. In our approach, these elements are defined as follows:

a) Solution representation

In our NSGA-II design, we use the same vector-based solution representation adopted

in our GA adaptation. The description of our solution representation is detailed in

Section 3.3.2.

b) Creation of the initial population of solutions

To generate an initial population, we start by defining the maximum vector length

(maximum number of operations per solution). The vector length is proportional to the

number of refactorings that are considered and the size of the program to be refactored. A

higher number of operations in a solution do not necessarily mean that the results will be

better. Ideally, a small number of operations can be sufficient to provide good solutions.

This parameter can be specified by the user or derived randomly from the sizes of the

program and the given refactoring list. During the creation, the solutions have random sizes

inside the allowed range. To create the initial population, we normally generate a set of

PopSize solutions randomly in the solution space.

c) Objective functions

After creating a solution, it should be evaluated to quantify its ability to solve the

problem under consideration. Since we have four objectives to optimize, we are using four

different objective functions in NSGA-II adaptation. We used the four objective functions

described in Section 6.3.2 :

1. Quality objective function that calculates the ratio of the number of corrected code-

smells over the initial number of code-smells using detection rules [24].

142

2. Semantic objective function that corresponds to the weighted sum of different

semantic measures described in Section 6.3.3. The semantic objective function of a

refactoring solution corresponds to the average of the semantic values of the

refactoring operations in the vector. In Table 6.3, we specify, for each refactoring

operation, which measures are taken into account to ensure that the refactoring

operation preserves design coherence.

Refactorings VS DS IS FIU CD

move method x x
move field x x
pull up field x x x
pull up method x x x
push down field x x x
push down method x x x
inline class x x
extract class x x x
move class x x
extract interface x x x

Table 6.3 - Refactoring operations and their semantic measures.

3. Code changes objective function that approximates the amount of code changes

needed to apply the suggested refactorings operations. We use the model described in

Section 6.3.2.2.

4. History of changes objective function that maximizes the use of refactorings that are

similar to those applied to the same code fragments in the past. To calculate the

similarity score between a proposed refactoring operation and a recorded refactoring

operation, we use the objective function described in Section 6.3.2.3.

d) Selection

To guide the selection process, NSGA-II uses a binary tournament selection based on

dominance and crowding distance [24]. NSGA-II sorts the population using the dominance

principle which classifies individual solutions into different dominance levels. Then, to

construct a new offspring population Qt+1, NSGA-II uses a comparison operator based on a

143

calculation of the crowding distance [24] to select potential individuals having the same

dominance level.

e) Genetic operators

In our NSGA-II design, we use the same genetic operators formulation adopted in our

GA adaptation. The description of our genetic operators (crossover and mutation) is

detailed in Section 4.3.2 d).

6.4 Evaluation

In order to evaluate the feasibility and the efficiency of our approach for generating

good refactoring suggestions, we conducted an experiment based on different versions of

open-source systems. We start by presenting our research questions. Then, we describe and

discuss the obtained results. All experimentation materials are available online21.

6.4.1 Research questions

In our study, we assess the performance of our refactoring approach by determining

whether it can generate meaningful sequences of refactorings that fix code-smells while

minimizing the number of code changes, preserving the semantics of the design, and

reusing, as much as possible a base of recorded refactoring operations applied in the past in

similar contexts. Our study aims at addressing the research questions outlined below.

 RQ1.1: To what extent can the proposed approach fix different types of code-smells?

 RQ1.2: To what extent does the proposed approach preserve design semantics when

fixing code-smells?

 RQ1.3: To what extent can the proposed approach minimize code changes when fixing

code-smells?

 RQ1.4: To what extent can the use of previously-applied refactorings improve the

effectiveness of the proposed refactorings?

21 http://www-etud.iro.umontreal.ca/~ouniali/TSE2014/

144

 RQ2: How does the proposed multi-objective approach based on NSGA-II perform

compared to other existing search-based refactoring approaches and other search

algorithms?

 RQ3: How does the proposed approach perform compared to existing approaches not

based on heuristic search?

 RQ4: Is our multi-objective refactoring approach useful for software engineers in real-

world setting?

To answer RQ1.1, we validate the proposed refactoring operations to fix code-smells

by calculating the code-smell correction ratio (CCR) on a benchmark composed of six

open-source systems. CCR corresponds to the ratio of the number of corrected code-smells

over the initial number of detected code-smells before applying the suggested refactoring

solution, and defined as follows:

ܴܥܥ ൌ
ݏ݈݈݁݉ݏ_݁݀݋ܿ	݀݁ݐܿ݁ݎݎ݋ܿ	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݃݊݅ݕ݈݌݌ܽ	݁ݎ݋݂ܾ݁	ݏ݈݈݁݉ݏ_݁݀݋ܿ	#
	∈ ሾ0,1ሿ

To answer RQ1.2, we use two different validation methods: manual validation and

automatic validation to evaluate the efficiency of the proposed refactorings. For the manual

validation, we asked six groups of potential users of our refactoring tool to evaluate

manually whether the suggested refactorings are feasible and make sense semantically. We

define the metric “refactoring precision” (RP), which corresponds to the number of

meaningful refactoring operations (low-level and high-level), in terms of semantics, over

the total number of suggested refactoring operations. RP is defined as follows:

ܴܲ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	ݐ݊݁ݎ݄݁݋ܿ#
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݏ݋݌݋ݎ݌#

	∈ ሾ0,1ሿ

For the automatic validation we compare the proposed refactorings with the expected

ones using an existing benchmark [8] [7] [42] in terms of recall and precision. The expected

refactorings are those applied by the software development team to the next software

release. To collect these expected refactorings, we use Ref-Finder [83], an Eclipse plug-in

designed to detect refactorings between two program versions. Ref-Finder allows us to

145

detect the list of refactorings applied to the current version of a system (see Table 6.5).

Automatic recall and precision are defined, respectively, as follows:

ܴ ௥ܲ௘௖௔௟௟ ൌ
|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐݏ݁݃݃ݑݏ| ∩ |ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐܿ݁݌ݔ݁|

|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐܿ݁݌ݔ݁|
	∈ ሾ0,1ሿ

ܴ ௣ܲ௥௘௖௜௦௜௢௡ ൌ
|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐݏ݁݃݃ݑݏ| ∩ |ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐܿ݁݌ݔ݁|

|ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐݏ݁݃݃ݑݏ|
	∈ ሾ0,1ሿ

To answer RQ1.3, we evaluate, using our benchmark, if the proposed refactorings are

useful to fix code-smells with low code changes by calculating the code change score. The

code change score is calculated using our model described in Section 6.3.2.2. To this end,

we compare the obtained code change scores with and without integrating the code change

minimization objective in our tool.

To answer RQ1.4, we use the metric RP to evaluate the usefulness of the recorded

refactorings and their impact on the quality of the suggested refactorings in terms of

semantic coherence (RP). To this end, we compare the obtained code RP scores with and

without integrating the reuse of recorded refactorings in our tool. In addition, in order to

evaluate the importance of reusing recorded refactorings in similar contexts, we define the

metric “reused refactoring” (RR) that calculates the percentage of operations from the base

of recorded refactorings used to generate the optimal refactoring solution by our proposal.

RR is defined as follows:

ܴܴ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁݀ݎ݋ܿ݁ݎ	݂݋	݁ݏܾܽ	݄݁ݐ	݉݋ݎ݂	ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݏݑ	#

ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁݀ݎ݋ܿ݁ݎ	݂݋	݁ݏܾܽ	݄݁ݐ	݊݅	ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	#
	∈ ሾ0,1ሿ

To answer RQ2, we compare our approach to two other existing search-based

refactoring approaches: our GA-based approach (described in Chapter 4), and Harman et

al. [20] that consider the refactoring suggestion task only from the quality improvement

perspective (single objective). We also assessed the performance of our multi-objective

algorithm NSGA-II compared to another multi-objective algorithm MOGA (Multi-

Objective Genetic Algorithm) [191], a random search (RS) [192], and a mono-objective

146

genetic algorithm (GA) [99] where one fitness function is used (an average of the four

objective scores).

To answer RQ3, we compared our refactoring results with a popular code-smells

detection and correction tool JDeodorant [83] that does not use heuristic search techniques

in terms of DCR, change score and RP. The current version of JDeodorant [83] is

implemented as an Eclipse plug-in that identifies some types of code-smells using quality

metrics and then proposes a list of refactoring strategies to fix them.

To answer RQ4, we asked a group of three software engineers to refactor manually

some of the code-smells, and then compare the results with those proposed by our tool. To

this end we define the following precision metric:

݊݋݅ݏ݅ܿ݁ݎܲ ൌ 	
|ܴ| ∩ |ܴ௠|

ܴ௠
∈ ሾ0,1ሿ

where R is the set of refactorings suggested by our tool, and Rm is the set of refactorings

suggested manually by software engineers.

6.4.2 Experimental setting and instrumentation

The goal of the study is to evaluate the usefulness and the effectiveness of our

refactoring tool in practice. We conducted a non-subjective evaluation with potential users

of our tool. Thus, refactoring operations should not only remove code-smells, but should

also be meaningful from a developer's point of view.

6.4.2.1 Subjects

Our study involved a total number of 21 subjects divided into 7 groups (3 subjects

each). All the subjects are volunteers and familiar with Java development. The experience

of these subjects on Java programming ranged from 2 to 15 years.

The first six groups are drawn from several diverse affiliations: the University of

Michigan (USA), University of Montreal (Canada), Missouri University of Science and

Technology (USA), University of Sousse (Tunisia) and a software development and web

design company. The groups include four undergraduate students, six master students, six

PhD students, one faculty member, and four junior software developers. The three master

147

students are working also at General Motors as senior software engineers. Subjects were

familiar with the practice of refactoring.

6.4.2.2 Systems studied and data collection

We applied our approach to a set of six well-known and well-commented industrial

open source Java projects: Xerces-J22, JFreeChart23, GanttProject24, Apache Ant25,

JHotDraw26, and Rhino27. Xerces-J is a family of software packages for parsing XML.

JFreeChart is a powerful and flexible Java library for generating charts. GanttProject is a

cross-platform tool for project scheduling. Apache Ant is a build tool and library

specifically conceived for Java applications. JHotDraw is a GUI framework for drawing

editors. Finally, Rhino is a JavaScript interpreter and compiler written in Java and

developed for the Mozilla/Firefox browser.

We selected these systems for our validation because they are well studied in the

related work. Moreover, they came from six different organisations, involved different

kinds of software engineering development, and had different sizes ranging from 25 to 255

KLOC with a high number of code-smell instances. Table 6.4 provides some descriptive

statistics about these six programs.

Systems Release # classes
code-
smells

KLOC

Xerces-J v2.7.0 991 91 240
JFreeChart v1.0.9 521 72 170
GanttProject v1.10.2 245 49 41
Apache Ant v1.8.2 1191 112 255
JHotDraw v6.1 585 25 21
Rhino v1.7R1 305 69 42

Table 6.4 - Systems statistics.

To collect refactorings applied in previous program versions, and the expected

refactorings applied to next version of studied systems, we use Ref-Finder [83]. Ref-Finder,

22 http://xerces.apache.org/xerces-j/
23 http://www.jfree.org/jfreechart/
24 www.ganttproject.biz
25 http://ant.apache.org/
26 http://www.jhotdraw.org/
27 http://www.mozilla.org/rhino/

148

implemented as an Eclipse plug-in, can identify refactoring operations applied between two

releases of a software system. Table 6.5 shows the analyzed versions and the number of

refactoring operations, identified by Ref-Finder, between each subsequent couple of

analyzed versions, after the manual validation. In our study, we consider only refactoring

types described in Table 6.1.

Systems
Expected refactorings Collected refactorings

Next
release

Refactorings
Previous
releases

Refactorings

Xerces-J v2.8.1 39 v1.4.2 - v2.7.0 70
JFreeChart v1.0.11 31 v1.0.6 - v1.0.9 76
GanttProject v1.11.2 46 v1.7 - v1.10.2 91
Apache Ant v1.8.4 78 v1.2 - v1.8.2 247
JHotDraw v6.2 27 v5.1 - v6.1 64
Rhino 1.7R4 46 v1.4R3 - 1.7R1 124

Table 6.5 - Analysed versions and refactorings collection.

6.4.2.3 Scenarios

We designed our study to answer our research questions. To this end, we conducted

our experiments through two different scenarios: 1) the first scenario is to evaluate the

quality of the suggested refactoring solutions with potential users, and 2) the second

scenario is to fix manually a set of code-smells and compare the manual results with those

proposed by our tool. All the recommended refactorings are executed using the Eclipse

platform.

Scenario 1: The first six groups of subjects were invited to fill a questionnaire that

aims to evaluate our suggested refactorings. To this end, we assigned to each group a set of

refactoring solutions suggested by our tool to evaluate manually. Table 6.6 describes the set

of refactoring solutions to be evaluated for each studied system in order to answer our

research questions. We have three multi-objective algorithms to be tested for the

refactoring suggestion task: NSGA-II (Non-dominated Sorting Genetic Algorithm) [99],

MOGA (Multi-Objective Genetic Algorithm) [191], and RS (Random Search) [192].

Moreover, we compared our results with a mono-objective genetic algorithm (GA) to

assess the need for a multi-objective formulation. In addition, two refactoring solutions of

both state-of-the-art approaches (GA-based approach [27], and Harman et al. [20]) are

149

empirically evaluated in order to compare them to our approach in terms of semantic

coherence.

Ref. Solution Algorithm/ Approach
 # objective
Functions

Objectives
considered

Solution 1 NSGA-II 4 Q, S, CC, RR
Solution 2 MOGA 4 Q, S, CC, RR
Solution 3 Random Search (RS) 4 Q, S, CC, RR
Solution 4 Genetic Algorithm 1 Q + S + CC + RR
Solution 5 GA-based approach [27] 1 Q
Solution 6 Harman et al. [20] 2 CBO, SDMPC

Table 6.6 - Refactoring solutions for each studied system.

As shown in Table 6.7, for each system, 6 refactoring solutions have to be evaluated.

Due to the large number of refactoring operations to be evaluated (36 solutions in total,

each solution consists of a large set of suggested refactoring operations), we pick at random

a sample of 10 refactorings per solution to be evaluated in our study. In Table 6.7, we

summarize how we divided subjects into groups in order to cover the evaluation of all

refactoring solutions. In addition, as illustrated in Table 6.7, we are using a cross-validation

for the first scenario to reduce the impact of subjects (groups A-F) on the evaluation. Each

subject evaluates different refactoring solutions for three different systems.

Subjects (groups A-F) were aware that they are going to evaluate the semantic coherence of

refactoring operations, but do not know the particular experiment research questions

(algorithms used, different objectives used and their combinations). Consequently, each

group of subjects who accepted to participate to the study, received a questionnaire, a

manuscript guide to help them to fill the questionnaire, and the source code of the studied

systems, in order to evaluate 6 solutions (10 refactorings per solution). The questionnaire is

organized within a spreadsheet with hyperlinks to visualize easily the source code of the

affected code elements. Subjects are invited to select for each refactoring operation one of

the possibilities: "Yes" (coherent change), "No" (non-coherent change), or "May be" (if not

sure). All the study material is available online28. Since the application of refactorings to fix

28 http://www-etud.iro.umontreal.ca/~ouniali/TSE2014/

150

code-smells is a subjective process, it is normal that not all the programmers have the same

opinion. In our case, we considered the majority of votes to determine if a suggested

refactoring is accepted or not.

Scenarios Subject
groups

Systems Algorithm / Approach Solutions

Scenario 1

Group A

GanttProject
NSGA-II
Genetic Algorithm

Solution 1
Solution 4

Xerces
MOGA,
Harman et al.

Solution 2
Solution 6

JFreeChart
RS,
GA-based approach

Solution 3
Solution 5

Group B

GanttProject
MOGA,
Harman et al.

Solution 2
Solution 6

Xerces
RS,
GA-based approach

Solution 3
Solution 5

JFreeChart
NSGA-II
Genetic Algorithm

Solution 1
Solution 4

Group C

GanttProject
RS,
GA-based approach

Solution 3
Solution 5

Xerces
NSGA-II
Genetic Algorithm

Solution 1
Solution 4

JFreeChart
MOGA,
Harman et al.

Solution 2
Solution 6

Group D

Apache Ant
NSGA-II
Genetic Algorithm

Solution 1
Solution 4

JHotDraw
MOGA,
Harman et al.

Solution 2
Solution 6

Rhino
RS,
GA-based approach

Solution 3
Solution 5

Group E

Apache Ant
MOGA,
Harman et al.

Solution 2
Solution 6

JHotDraw
RS,
GA-based approach

Solution 3
Solution 5

Rhino
NSGA-II
Genetic Algorithm

Solution 1
Solution 4

Group F

Apache Ant
RS,
GA-based approach.

Solution 3
Solution 5

JHotDraw
NSGA-II
Genetic Algorithm

Solution 1
Solution 5

Rhino
MOGA,
Harman et al.

Solution 2
Solution 6

Scenario 2 Group G All systems
Manual correction of
code-smells

N.A.

Table 6.7 - Survey organization.

151

Scenario 2: The aim of this scenario is to compare our refactoring results for fixing

code-smells suggested by our tool with manual refactorings suggested by software

engineers. To this end, we asked Group G to fix a set of 72 code-smell instances that are

picked at random from each subject system (12 code-smells per system) that comes from

the six different code-smell types considered. Then we compared their sequences of

refactorings that are suggested manually with those proposed by our approach. The more

our refactorings are similar to the manual ones, the more our tool is assessed to be useful

and efficient in practice.

6.4.2.4 Algorithms configuration

In our experiments, we use and compare different mono and multi-objective

algorithms. For each algorithm, to generate an initial population, we start by defining the

maximum vector length (maximum number of operations per solution). The vector length is

proportional to the number of refactorings that are considered, the size of the program to be

refactored, and the number of detected code-smells. A higher number of operations in a

solution do not necessarily mean that the results will be better. Ideally, a small number of

operations should be sufficient to provide a good trade-off between the fitness functions.

This parameter can be specified by the user or derived randomly from the sizes of the

program and the employed refactoring list. During the creation, the solutions have random

sizes inside the allowed range. For all algorithms NSGA-II, MOGA, Random search (RS),

and genetic algorithm (GA), we fixed the maximum vector length to 700 refactorings, and

the population size to 200 individuals (refactoring solutions), and the maximum number of

iterations to 6000 iterations. We also designed our NSGA-II adaptation to be flexible in a

way that we can configure the number objectives and which objectives to consider in the

execution.

We consider a list of 11 possible refactorings to restructure the design of the original

program by moving code elements (methods, attributes) from classes in the same or

different packages or inheritance hierarchies or splitting/merging classes/interfaces.

Although we believe that our list of refactorings is sufficient at least to fix these specific

152

types of code smells, our refactoring tool is developed in a flexible way so that new

refactorings and code smell types can be considered in the future. Moreover, our list of

possible refactoring is significantly larger than those of existing code-smells correction

techniques.

Another element that should be considered when comparing the results of the four

algorithms is that NSGA-II does not produce a single solution like GA, but a set of optimal

solutions (non-dominated solutions). The maintainer can choose a solution from them

depending on their preferences in terms of compromise. However, at least for our

evaluation, we need to select only one solution. To this end and in order to fully automate

our approach, we propose to extract and suggest only one best solution from the returned

set of solutions. In our case, the ideal solution has the best value of quality (equal to 1), of

semantic coherence (equal to 1), and of refactoring reuse (equal to 1), and code changes

(normalized value equal to 1). Hence, we select the nearest solution to the ideal one in

terms of Euclidian distance.

6.4.2.5 Inferential statistical test method used

Our approach, like the two others (GA-based approach and Harman et al.), is

stochastic by nature, i.e., two different executions of the same algorithm with the same

parameters on the same systems generally leads to different sets of suggested refactorings.

For this reason, our experimental study is performed based on 31 independent simulation

runs for each problem instance, and the obtained results are statistically analyzed by using

the Wilcoxon rank sum test with a 95% confidence level (α = 5%). The Wilcoxon signed-

rank test is a non-parametric statistical hypothesis test used when comparing two related

samples to verify whether their population mean-ranks differ or not. In this way, we could

decide whether the difference in performance between our approach and the other detection

algorithms is statistically significant or just a random result.

153

6.4.3 Empirical study results

This section reports the results of our empirical study, which are further discussed in

next section. We first start by answering our research questions. To this end, we use two

different validations: manual and automatic validations.

Results for RQ1.1: As described in Table 6.8, after applying the proposed refactoring

operations by our approach (NSGA-II), we found that, on average, 84% of the detected

code-smells were fixed (CCR) for all the six studied systems. This high score is considered

significant in terms of improving the quality of the refactored systems by fixing the

majority of code-smells coming from various types (Blob, spaghetti code, functional

decomposition, data class, shotgun surgery, and feature envy).

Systems Approach CCR
Changes

score
RP

RP-automatic

Xerces
NSGA-II 83% (76|91) 3843 81 % 26% (10|39)
Harman et al. '07 N.A 2669 41 % 8 % (3|39)
GA-based approach 89% (81/91) 4998 37 % 13% (5|39)

JFreeChart
NSGA-II 86% (62|72) 2016 82 % 35% (11|31)
Harman et al. '07 N.A 3269 36 % 0 % (0|31)
GA-based approach 90% (65\72) 3389 37 % 13% (4|31)

GanttProject
NSGA-II 85% (42|49) 2826 80 % 46%(21|46)
Harman et al. '07 N.A 4790 23 % 0% (0|46)
GA-based approach 95% (47|49) 4697 27 % 15% (7|46)

Apache Ant
NSGA-II 78% (87|112) 4690 78 % 31% (24|78)
Harman et al. '07 N.A 6987 40 % 04% (3|78)
GA-based approach 80% (90|112) 6797 30 % 0% (0|78)

JHotDraw
NSGA-II 84% (21|25) 2231 80 % 44% (18|41)
Harman et al. '07 N.A 3654 37 % 10% (4|41)
GA-based approach 84% (21|25) 3875 43 % 7% (3|41)

Rhino
NSGA-II 85% (59|69) 1914 80 % 33% (15|46)
Harman et al. '07 N.A 2698 37 % 0% (0|46)
GA-based approach 87% (60|69) 3365 32 % 9% (4|46)

Average
(all systems)

NSGA-II 84% 2937 80 % 36%
Harman et al. '07 N.A 4011 36 % 4%
GA-based approach 89% 4520 34 % 9%

Table 6.8 - Empirical study results on 31 runs. The results were statistically significant on
31 independent runs using the Wilcoxon rank sum test with a 95% confidence level (α <
5%).

154

Results for RQ1.2: To answer RQ1.2, we need to assess the correctness/meaningfulness of

the suggested refactorings from the developers’ point of view. We reported the results of

our empirical evaluation in Table 6.8 (RP column) related to Scenario 1. We found that the

majority of the suggested refactorings improve significantly the code quality while

preserving semantic coherence. On average, for all of our six studied systems, 80% of

proposed refactoring operations are considered by potential users to be semantically

feasible and do not generate semantic incoherence.

In addition to the empirical evaluation, we automatically evaluate our approach

without using the feedback of potential users to give more quantitative evaluation to answer

RQ3. Thus, we compare the proposed refactorings with the expected ones. The expected

refactorings are those applied by the software development team to the next software

release as described in Table 6.5. We use Ref-Finder [46] to identify refactoring operations

that are applied between the program version under analysis and the next version. Table 6.8

(RP automatic column) summarizes our results. We found that a considerable number of

proposed refactorings (an average of 36% for all studied systems in terms of recall) are

already applied to the next version by software development team which is considered as a

good recommendation score, especially that not all refactorings applied to next version are

related to quality improvement, but also to add new functionalities, increase security, fix

bugs, etc.

To conclude, we found that our approach produces good refactoring suggestions in

terms of code-smells correction ratio, semantic coherence from the point of view of 1)

potential users of our refactoring tool and 2) expected refactorings applied to the next

program version.

Results for RQ1.3 and RQ1.4: To answer these two research questions, we need to

compare different objective combinations (two, three, or four objectives) to ensure the

efficiency and the impact of using each of the objectives we defined. To this end, we

executed the NSGA-II algorithm with different combinations of objectives: maximize

155

quality (Q), minimize semantic incoherence (S), minimize code changes (CC), and

maximize the reuse of recorded refactorings (RR) as presented in Table 6.9 and Figure 6.4.

To answer RQ1.3, we present in Figure 6.4.a and Table 6.9, the code change scores

obtained when the CC objective is considered (Q+S+RC+CC). We found that our approach

succeeded in suggesting refactoring solutions that do not require high code changes (an

average of only 2937) while having more than 3888 as code change score when the CC

objective is not considered in the other combinations. At the same time we found that the

CCR score (Figure 6.4.c) is not significantly affected with and without considering the CC

objective.

To answer RQ1.4, we present the obtained results in Figure 6.4.b. The best RP

scores are obtained when the recorded code changes (RC) are considered (Q+S+RC), while

having good correction score CCR (Figure 6.4.c). In addition, we need more quantitative

evaluation to investigate effect of the use of recorded refactorings, on the semantic

coherence (RP). To this end, we compare the RP score with and without using recorded

refactorings. In most of the systems when recorded refactoring is combined with semantics,

the RP value is improved. For example, for Apache Ant RP is 83% when only quality and

semantics are considered, however when recorded refactoring reuse is included the RP is

improved to 87% (Figure 6.4.b). We notice also that when code changes reduction is

included with quality, semantics and recorded changes, the RP and CCR scores are not

significantly affected. Moreover we notice in Figure 6.4.c that there is no significant

variation in terms of CCR with all different objectives combinations. When four objectives

are combined the CCR value induces a slight degradation with an average of 82% in all

systems which is even considered as promising results. Thus, the slight loss in the

correction ratio is largely compensated by the significant improvement of the semantic

coherence and code changes reduction. Moreover, we found that the optimal refactoring

solutions found by our approach are obtained with a considerable percentage of reused

refactoring history (RR) (more than 35% as shown in Table 6.9). Thus, the obtained results

support the claim that recorded refactorings applied in the past are useful to generate

156

coherent and meaningful refactoring solutions and can effectively drive the refactoring

suggestion task.

Figure 6.4 - Refactoring results of different objectives combination with NSGA-II in terms
of (a) code changes reduction, (b) semantics preservation, (c) Code-smells correction ratio.

(a)

(b)

(c)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Q + CC Q + S Q + RC Q + S + RC Q + S + RC + CC

Xerces‐J

JFreeChart

GanttProject

AntApache

JHotDraw

Rhino

Code changes score

0,30

0,40

0,50

0,60

0,70

0,80

0,90

Q + CC Q + S Q + RC Q + S + RC Q + S + RC + CC

Xerces‐J

JFreeChart

GanttProject

AntApache

JHotDraw

Rhino

RP

0,50

0,60

0,70

0,80

0,90

1,00

Q + CC Q + S Q + RC Q + S + RC Q + S + RC + CC

Xerces‐J

JFreeChart

GanttProject

AntApache

JHotDraw

Rhino

CCR

157

In conclusion, we found that the best compromise is obtained between the four

objectives using NSGA-II comparing to the use of only two or three objectives. By default,

the tool considers the four objectives to find refactoring solutions. Thus, a software

engineer can consider the multi-objective algorithm as a black-box and he do not need to

configure anything related to the objectives to consider. The four objectives should be

considered and there is no need to select the objectives by the user based on our

experimentation results.

Objectives
combinations

DCR
RP (empirical

evaluation)
Code

changes
RR

Q + CC 75% 45% 2591 N.A.
Q + S 81% 82% 4355 N.A.
Q + RC 85% 54% 3989 41%
Q + S + RC 81% 84% 3888 35%
Q + S + RC + CC 84% 80% 2917 36%

Table 6.9 - Average refactoring results of different objective combinations with NSGA-II
(average of all systems) on 31 runs. The results were statistically significant on 31

independent runs using the Wilcoxon rank sum test with a 95% confidence level (α < 5%).

Results for RQ2: To answer RQ2, we evaluate the efficiency of our approach comparing

to two existing approaches: Harman et al. [20] and GA-based approach. Harman et al.

proposed a multi-objective approach that uses two quality metrics to improve (coupling

between objects CBO, and standard deviation of methods per class SDMPC) after applying

the refactorings sequence. GA-based approach, a single-objective genetic algorithm is used

to correct code-smells (see Chapter 4 for more details). The comparison is performed

through three levels: 1) code-smell correction ratio (CCR) that is calculated using code-

smells detection rules (see Chapter 3) [7], 2) refactoring precision (RP) that represents the

results of the subject judgments (Scenario 1), and 3) code changes needed to apply the

suggested refactorings. We adapted our technique for calculating code changes scores for

both approaches Harman et al. and GA-based approach. Table 6.8 summarizes our findings

and reports the median values of each of our evaluation metrics obtained for 31 simulation

runs of all projects.

158

As described in Table 6.8, after applying the proposed refactoring operations, we

found that more than 84% of detected code-smells were fixed (CCR) as an average for all

the six studied systems. This score is comparable to the correction score of GA-based

approach (89%), an approach that does not consider semantic preservation, nor code

changes reduction nor recorded refactorings reuse (CCR is not considered in Harman et al.

since their aim is to improve only some quality metrics).

We also found that our approach succeeded fixing code-smells with lower code

change scores (an average of only 2917) comparing to other approaches having respectively

an average of 4011 and 4520 for all studied systems. Consequently, our approach

succeeded in reducing significantly the number of code changes to preserve the initial

design while having good correction scores (84%).

Regarding the semantic coherence, for all of our six studied systems, an average of

80% of proposed refactoring operations are considered as semantically feasible and do not

generate semantic incoherence. This score is significantly higher than the scores of the two

other approaches having respectively only 36% and 34% as RP scores. Thus, our approach

performs clearly better for RP and code changes score with the cost of a slight degradation

in CCR compared to GA-based approach. This slight loss in the CCR is largely

compensated by the significant improvement in terms of semantic coherence and code

change reduction.

We compared the three approaches in terms of automatic RPrecall. We found that a

considerable number of proposed refactorings, an average of 36% for all studied systems in

terms of recall, are already applied to the next version by the software development team.

By comparison, the figures for Harman et al. and GA-based approach are only 4% and 9%

respectively (see Figure 6.5). Moreover, this score shows that our approach is useful in

practice unlike both other approaches. In fact, the RPrecall of Harman et al. is not significant,

due to the fact that only the move method refactoring is considered when searching for

refactoring solutions to improve coupling and standard deviation of methods per class.

Moreover, expected refactorings are not related only to quality improvement, but also for

159

adding new functionalities, and other maintenance tasks. This is not considered in our

approach when we search for the optimal refactoring solution that satisfies our four

objectives. However, we manually inspected expected refactorings and we found that they

are mainly related to adding new functionality (related to adding new packages, classes or

methods).

In conclusion, our approach produces good refactoring suggestions in terms of

code-smell correction ratio, semantic coherence, and code changes reduction from the point

of view of 1) potential users of our refactoring tool and 2) expected refactorings applied to

the next program version.

Figure 6.5 - Automatic refactoring precision comparison.

To this end, we compared the performance of our proposal to two other multi-

objective algorithms: MOGA, and a random search and a mono-objective algorithm

(genetic algorithm). In a random search, the change operators (crossover and mutations) are

not used, and populations are generated randomly and evaluated using the four objective

functions. In our mono-objective adaptation, we considered a single fitness function, which

is the normalized average score of the four objectives using a genetic algorithm. Moreover,

since in our NSGA-II adaptation we select a single solution without giving more

importance to some objectives, we give equal weights for each fitness function value.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

Xerces‐J AntApache JFreeChart GanttProject Rhino JHotDraw

NSGA‐II

Harman et el. 2007

GA‐based approach

RP‐recall

160

(a)

(b)

(c)

Figure 6.6 - Refactoring results of different algorithms in terms of (a) semantics

preservation, (b) code-smells correction ratio, (c) code changes reduction.

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

C
C
R

Code‐smells Correction Ratio

NSGA‐II

GA

MOGA

Random search

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90

R
P

Refactoring Precision

NSGA‐II

GA

MOGA

Random search

0

1000

2000

3000

4000

5000

6000

C
o
d
e
 c
h
an

ge
s
sc
o
re

Code changes

NSGA‐II

GA

MOGA

Random search

As shown in Figure 6.6, NSGA-II outperforms significantly MOGA, random-search, and

161

mono-objective algorithm in terms of code-smells correction ratio (CCR), semantics

preservation (RP), and code changes reduction. For instance, in JFreeChart, NSGA-II

performs much better than MOGA, random search and genetic algorithm in terms of DCR

and RP scores (respectively Figure 6.6.a and Figure 6.6.b). In addition, NSGA-II reduces

significantly code changes for all studied systems, approximately by half for Rhino

(Figure 6.6.c).

Results for RQ3: JDeodorant uses only structural information to detect and fix code-

smells, but does not handle all the six code-smell types that we considered in our

experiments. Thus, to make the comparison fair, we performed our comparison using only

two code-smells that can be fixed by both tools: Blob and feature envy. Figure 6.7

summarizes our findings. It is clear that our proposal outperforms JDeodorant, on average,

on all the systems in terms of number of fixed code-smells with a minimum number of

changes and semantically coherent refactorings. The average number of fixed code-smells

is comparable between both tools however our proposal is clearly better in terms of

semantically coherent refactorings. This can be explained by the fact that JDeodorant uses

only structural metrics to evaluate the impact of suggested refactorings on the detected

code-smells. In addition, our proposal supports more types of refactorings than JDeodorant

and this is also explains our outperformance.

Figure 6.7 - Comparison results of our approach with JDeodorant: average code-smells

correction ratio (CCR), semantic coherence (RP) and code changes score (CC) on all the
systems.

0

10

20

30

40

50

60

70

80

90

CCR RP CC

CCR (%), RP (%), CC (*100)

NSGA‐II

Jdeodorant

162

Results for RQ4: To evaluate the relevance of our suggested refactorings for real software

engineers, we compared the refactoring strategies proposed by our technique and those

proposed manually by group G (three software engineers) to fix several code-smells on the

six systems. Figure 6.8 shows that most of the suggested refactorings by NSGA-II are

similar to those applied by developers with an average of more than 75%. Some code-

smells can be fixed by different refactoring strategies and also the same solution can be

expressed in different ways (complex and atomic refactorings). Thus we consider that the

average precision of more than 75% confirms the efficiency of our tool for real developers

to automate the refactoring recommendation process. We discuss, in the next section, in

more detail the relevance of our automated refactoring approach for software engineers.

Figure 6.8 - Comparison of our refactoring results with manual refactorings in terms of

precision.

6.5 Discussions

We now provide more quantitative and qualitative analyses of our results and

discuss some observations drawn from our empirical evaluation of our refactoring

approach.

6.5.1 Refactoring impact

We observed that our technique performs better than two existing approaches. We

also compared different objective combinations and found that the best compromise is

40

50

60

70

80

90

100

Precision (%)

Precision

163

obtained between the four objectives using NSGA-II when compared to the use of only two

or three objectives. Therefore, our four objectives are efficient for providing "good"

refactoring suggestions. Moreover, we found that NSGA-II performs much better than two

other multi-objective algorithms: MOGA and random search, and a mono-objective

algorithm (GA).

Thus, although our primary goal in this work is to demonstrate that code-smells can

be automatically refactored, it is also important to assess the refactoring impact on design

quality. The expected benefit from refactoring is to enhance the overall software design

quality, as well as fixing code-smells [62]. We use the QMOOD (Quality Model for Object-

Oriented Design) model [193] to estimate the effect of the suggested refactoring solutions

on quality attributes. We choose QMOOD, mainly because 1) it is widely used in the

literature [22] [126] to assess the effect of refactoring, and 2) it has the advantage that

define six high level design quality attributes (reusability, flexibility, understandability,

functionality, extendibility and effectiveness) that can be calculated using 11 lower level

design metrics [193]. In our study we consider the following quality attributes: reusability,

flexibility, understandability, effectiveness. These quality attributes and metrics are defined

in Appendix A.

We did not assess the issue of functionality because we assume that, by definition,

refactoring does not change the behavior/functionality of systems; instead it changes the

internal structure. We have also excluded the extendibility factor because it is, to some

extent, a subjective quality factor and using a model of merely static measures to evaluate

extendibility is inadequate.

The improvement in quality can be assessed by comparing the quality before and

after refactoring independently to the number of fixed code-smells. Hence, the total gain in

quality G for each of the considered QMOOD quality attributes qi before and after

refactoring can be easily estimated as:

௤௜ܩ ൌ ௜ݍ
ᇱ െ ௜ݍ

164

where q’i and qi represents the value of the quality attribute i respectively after and before

refactoring.

In Figure 6.9, we show the obtained gain values (in terms of absolute value) that we

calculated for each QMOOD quality attribute before and after refactoring for each studied

system. We found that systems’ quality increase across the four QMOOD quality factors.

Understandability is the quality factor that has the highest gain value; whereas the

Effectiveness quality factor has the lowest one. This mainly due to many reasons 1) the

majority of fixed code-smells (Blob, spaghetti code) are known to increase the coupling

(DCC) within classes which heavily affect the quality index calculation of the Effectiveness

factor; 2) the vast majority of suggested refactoring types were move method, move field,

and extract class (Figure 6.11) that are known to have a high impact on coupling (DCC),

cohesion (CAM) and the design size in classes (DSC) that serves to calculate the

understandability quality factor. Furthermore, we noticed that JHotDraw produced the

lowest quality increase for the four quality factors. This is justified by the fact that

JHotDraw is known to be of good design and implementation practices and contains fiew

code-smell instances comparing to the five other studied systems.

To sum up, we can conclude that our approach succeeded in improving the code

quality not only by fixing the majority of detected code-smells but also by improving the

user understandability, reusability, flexibility, as well as the effectiveness of the refactored

program.

Figure 6.9 - Impact of the suggested refactoring solution on QMOOD quality attributes.

0

0,05

0,1

0,15

0,2

0,25

Reusability Flexibility Understandability Effectiveness

Q
u
al
it
y
ga
in

Quality attributes

Xerces‐J

JFreeChart

GanttProject

AntApache

Rhino

JHotDraw

165

6.5.2 Other observations

It is important to contrast the results of multiple executions with the execution time

to evaluate the performance and the stability of our approach. The execution time for

finding the optimal refactoring solution with a number of iterations (stopping criteria) fixed

to 6000 was less than forty-eight minutes as shown in Figure 6.10. Moreover, we evaluate

the impact of the number of suggested refactorings on the CCR, RP, RR, and code changes

scores in five different executions. Drawn for JFreeChart, the results of Figure 6.10 show

that the number of suggested refactorings does not affect the refactoring results. Thus, a

higher number of operations in a solution do not necessarily mean that the results will be

better. Thus, we could conclude that our approach is scalable from the performance

standpoint, especially that our technique is executed, in general, up front (at night) to find

suitable refactorings. In addition, the results accuracy is not affected by the number of

suggested refactorings.

Figure 6.10 - Impact of the number of refactorings on multiple executions on JFreeChart.

Another important consideration is the refactoring operations distribution. We

contrast that the most suggested refactorings are move method, move field, and extract

class for the majority of studied systems except JHotDraw. For instance, in Xerces-J, we

had different distribution of different refactoring types as illustrated in Figure 6.11. We

notice that the most suggested refactorings are related to moving code elements (fields,

0

10

20

30

40

50

60

70

80

90

293 306 314 332 339

RP (%)

DCR (%)

RR (%)

Code changes
score (*100)
Time (min)

Number of
refactorings

RP (%), DCR(%), RR (%), Code changes score (*100), Time (min)

166

methods) and extract/inline class. This is mainly due to the type of code-smells detected in

Xerces-J (most of code-smells are related to the Blob code-smell) that need particular

refactorings to move elements from Blob class to other classes in order to reduce the

number of functionalities from them. On the other hand, we found for JHotDraw less move

method, move field and extract class refactorings. This mainly due to the fact that

JHotDraw contains few number of Blob instances (only three Blobs are detected) and it is

known to be of good quality. Thus, our results in Figure 6.11 reveal an effect that we found:

refactorings like move field, move method, and extract class are likely to be more useful to

correcting the Blob code-smell. As part of future work we plan to investigate the

relationship between code-smells types and refactoring types.

Figure 6.11 - Suggested refactorings distribution.

To illustrate some of these refactorings, let us consider the solution fragment

sketched in Figure 6.12. This solution recommends to apply extract class refactoring twice

to the class GanttOptions which is detected as a Blob using our code-smells detection rules

as it contains 31 attributes and 69 methods. The first extract class creates a new empty class

and moves the following set of attributes {x, y, width, weight, myRoleManager} and

methods {setWindowPosition, setWindowSize, emptyElement, startElement, endElement,

addAttribute, loadRoleSets, saveRoleSets, saveRoles} that are strongly cohesive with low

coupling with the original class GanttOptions. A second refactoring is recommended to fix

0 100 200 300 400

Xerces‐J

JFreeChart

GanttProject

AntApache

JHotDraw

Rhino

Number of refactorings

Move method

Move field

Extract class

Inline class

Extract interface

Move class

Extract method

Pull up field

Pull up method

Push down method

Push down field

Other refactorings

167

this Blob code-smell to split it again by applying and extract class where another cohesive

set of attributes and methods are moved. Both extracted classes are of high cohesion and

low coupling with the original class. In addition, based on semantic similarity, move field

refactorings are recommended to move the two fields iconSize and openTips to the classes

GanttLookAndFeelInfo and GanttProject respectively with a vocabulary-based similarity of

0.38. By applying these refactoring operations, the Blob GanttOptions is successfully fixed

without affecting other parts of the system or producing semantic incoherencies.

Figure 6.12 - Refactoring solution fragrment executed to GanttProject.

…

Extract Class:

 source class: net.sourceforge.ganttproject.GanttOptions

 fields to move: x y width weight myRoleManager

 methods to move: setWindowPosition setWindowSize emptyElement startElement endElement addAttribute loadRoleSets saveRoleSets

saveRoles

Extract Class:

 source class: net.sourceforge.ganttproject.GanttOptions

 fields to move: isLoaded workingDir redline myChartMainFont myMenuFont

 methods to move: save load getUIConfiguration setButtonShow intiByDefault setDefaultTaskColor setResourceColor

setResourceOverloadColor getDefaultColor getResourceColor getResourceOverloadColor

moveField:

 sourceClass : net.sourceforge.ganttproject.GanttOptions

 targetClass : net.sourceforge.ganttproject.gui.GanttLookAndFeelInfo

 field : iconSize

moveField:

 sourceClass : net.sourceforge.ganttproject.GanttOptions

 targetClass : net.sourceforge.ganttproject.GanttProject

 field : openTips

moveMethod:

 sourceClass : net.sourceforge.ganttproject.GanttGraphicArea$Arrow

 targetClass : net.sourceforge.ganttproject.parser.DependencyTagHandler$GanttDependStructure

 method : setDraw

. . .

168

6.6 Threats to validity

Some threats limit the validity of our experimental results.

Construct validity concern the relation between the theory and the observation. In

our experiments, code-smell detection rules [7] we use to measure CCR could be

questionable since there is no consensus on detecting code-smells. To mitigate this threat,

we manually inspect and validate each code-smell. Moreover, our refactoring tool

configuration is flexible and can support other state-of-the-art detection rules. Another

threat concerns the modification score needed to apply refactoring. In fact, attributing

weights manually might not be enough. To mitigate this issue, we are planning to consider

other software metrics to calculate change score such as coupling and complexity.

Moreover, another threat concerns the data about the actual refactorings of the studied

systems. In addition to the documented refactorings, we are using Ref-Finder, which is

known to be efficient [46]. Indeed, Ref-Finder was able to detect refactoring operations

with an average recall of 95% and an average precision of 79% [46]. To ensure the

precision, we manually inspect the refactorings found by Ref-Finder.

Internal validity: we identify three threats to internal validity: selection, learning

and fatigue, and diffusion.

For the selection threat, the subject diversity in terms of profile and experience

could affect our study. First, all subjects were volunteers. We also mitigated the selection

threat by giving written guidelines and examples of refactorings already evaluated with

arguments and justification. Additionally, each group of subjects evaluated different

refactorings from different systems for different techniques/algorithms. We also took care

to randomize the selection refactorings to be evaluated for each refactoring solution.

Randomization also helps to prevent the learning and fatigue threats. For the fatigue

threat, specifically, we did not limit the time to fill the questionnaire. Consequently, we sent

the questionnaires to the subjects by email and gave them enough time to complete this

task. Finally, only ten refactorings per system were randomly picked for the evaluation.

169

Diffusion threat is limited in our study because most of the subjects are

geographically located in three different universities and a company, and the majority do

not know each other. For the few ones who are in the same location, they were instructed

not to share information about the experience prior to the completion of the study.

Conclusion validity deals with the relation between the treatment and the outcome.

Thus, to ensure the heterogeneity of subjects and their differences, we took special care to

diversify them in terms of professional status, university/company affiliations, gender, and

years of experience. In addition, we organized subjects into balanced groups. This has been

said, we plan to test our tool with Java development companies, to draw better conclusions.

Moreover, the automatic evaluation is also a way to limit the threats related to subjects as it

helps to ensure that our approach is efficient and useful in practice. Indeed, we compare our

suggested refactorings with the expected ones that are already applied to the next releases

and detected using Ref-Finder.

External validity refers to the generalizability of our findings. In this study, we

performed our experiments on six different widely-used systems belonging to different

domains and with different sizes, as described in Table 6.4. However, we cannot assert that

our results can be generalized to industrial Java applications, other programming languages,

and to other practitioners. Future replications of this study are necessary to confirm our

findings. Another limitation of our results is the selection of the best solution from the

Pareto front. We used a technique to select the closest solution to the ideal point in terms of

Euclidian distance. We plan in our future work to integrate developers in the loop to select

the best solution from the set of non-dominated solutions. In fact, developers can select,

sometimes, refactoring solutions that change the behavior or violate the semantics and

maximize quality improvements because they consider that fixing these semantic issues is

relatively easy for them if they are familiar with the software design.

Finally, our approach takes as input a base of recorded/collected code changes from

previous versions. We believe that this data is not always available, especially in the

beginning of projects. However, we believe that refactorings recorded/collected for other

170

systems can be used in similar contexts. As a part of our future work, we plan to consider

the similarity with not only the refactoring type but also with the contexts (code fragments).

6.7 Conclusion

We have introduced in this chapter new multi-objective search-based approach

taking into consideration multiple criteria to find refactoring solutions. The suggested

refactorings aims at 1) fixing the detected code-smells, 2) preserving the design semantics

of the refactored program, 3) reducing the amount of code change/adaptation, and 4)

reusing knowledge from recorded refactorings applied in the past to similar contexts. Our

search-based approach succeeded to find a near-optimal trade-off between these multiple

conflicting criteria. Thus, our proposal produces more meaningful refactorings with lower

code change scores. Moreover, the proposed approach was empirically evaluated on six

meduim and large size open-source systems, and compared successfully to two existing

approaches and three different search-based algorithms. Furthermore, our approach

succeeds in suggesting a significant number of expected refactorings that were applied to

the next release of the software system being studied, unlike other approaches, which

provides evidence that our approach is efficient and useful in practice.

As future reseach directions we intend to adapt our multi-objective approach to fix

other types of code-smells that can occur in new emergent service-based applications such

as multi-service and tiny-service. We plan also to conduct an empirical study to understand

the correlation between the number of applied refactrings and the number of code-smells,

the correlation between code-smells and QMOOD quality attribues, and the relationship

between fixing particular code-smells and introducing/fixing other code-smells implicitely

in other parts of the system. Furthermore, while it is important to fix “bad” design practices

(i.e., code-smells), it is also important to introduce “good” design practices (i.e., design

patterns). In the next chapter, we will introduce our approach that aims at fixing code-

smells while introducing design patterns.

Chapter 7 : A Multi-objective refactoring
recommendation approach to introduce design patterns
and fix anti-patterns

7.1 Introduction

Refactoring is an efficient technique to improve the quality attributes of software

systems such as maintainability, readability, and extendibility. To improve these quality

attributes, most existing studies focus on the correction of Code-smells. However, this may

not be sufficient to make the source code easier to understand and modify. The introduction

of design patterns that represent good design practices while fixing code-smells can

significantly improve the quality of systems. In this chapter, we introduce an automated

multi-objective refactoring recommending approach to (1) improve design quality (as

defined by software quality metrics), (2) introduce design patterns, and (3) fix code-smells.

To the best of our knowledge, this is the first attempt to promote design patterns for fixing

code-smells. To evaluate our approach, we conducted a quantitative and qualitative

evaluation with software engineers using a benchmark composed of four open source

systems. The statistical analysis of the results provides evidence that our approach is

efficient compared to the state-of-the-art of refactoring techniques.

This chapter is organized as follows. Section 7.2 explains the motivations behind

this approach. Section 7.3 describes our apprach. Section 7.4 presents our experimental

study to evaluate the proposed approach, while Section 7.5 presents and discusses the

obtained results. Section 6.7 concludes and presents plans for future work.

7.2 Motivations

To improve the quality of software systems, one of the widely used techniques is

refactoring. It can help software developers to reduce the time required for adding new

requirements, correcting bugs, understanding the existing implementation, modifying the

172

code to improve its quality, and so on. Consequently, various refactoring tools have been

proposed [22] [49] [126] [132].

Despite its significant benefits, recent studies show that automated refactoring tools

are underused most of the time [85] [131] [194]. One of the possible reasons is that most

existing refactoring tools [22] [45] [147] [148] focus mainly only on improving some

quality metrics (e.g., coupling, cohesion, complexity, etc.). For instance, improving

software quality factors does not mean that code-smells or bad-design practices that may

exist are fixed. Thus, quality metric values can be significantly improved but the original

program may still contain a considerable number of code-smells, which may lead, in turn,

to maintenance and evolution difficulties. On the other hand, design patterns are “good”

solutions to recurring design problems, conceived to increase reuse, code quality, code

readability and, above all, maintainability and resilience to change [195]. Design patterns

can be automatically introduced using refactoring [126] [127], however, most existing

refactoring tools do not consider the use of design patterns to fix code-smells and improve

the quality of software systems. In addition, applying a design pattern where it is not

needed is highly undesirable as it introduces an unnecessary complexity to the system for

no benefit [127].

Furthermore, some code-smells can be automatically fixed when applying design

patterns. For instance, a Blob code-smell can be fixed by introducing a Visitor design

pattern. Additional functionalities and behaviour can be easily added to the Blob class

through the visitor pattern. That is, Visitor pattern relates in general to complex hierarchies

that have a large number of inherited methods or with Blob classes that can be

detected [124].

To address the above-mentioned challenges, we introduce a novel approach to guide

the introduction of design patterns by fixing code-smells and improving the overall quality

of the system while avoiding semantic incoherencies to the design. As far as we know, this

is the first work that suggests refactoring strategies that deals with both design patterns and

anti-patterns to improve software quality. To this end, we have developed a multi-objective

173

optimization approach supported by a tool called MORE (Multi-Objective REfactoring) to

find the best compromise between 1) improving software quality, 2) fixing anti-patterns

and 3) introducing design patterns while satisfying a set of constraints to ensure the

semantic coherence of the refactored program. More specifically, the primary contributions

of this chapter are as follows:

1. We introduce a multi-objective search-based refactoring approach to improve

software quality attributes (i.e., flexibility, maintainability, etc.), introduce “good”

design practices (i.e., design patterns) and fix “bad” design practices (i.e., code-

smells). We implemented our approach in a tool called MORE. We present a set of

constraints, for each refactoring operation, in order to ensure the semantic coherence

of the refactored program, e.g., that a method is not moved to a class where it makes

no sense.

2. We present an empirical study based on a quantitative and qualitative evaluation

using a benchmark composed of four real-world software projects of various sizes.

The quantitative evaluation investigates the efficiency of our approach in fixing four

types of code-smells (Blob, feature envy, data class, and spaghetti code), introducing

three types of design patterns (Factory Method, Visitor, and Singleton) (cf. Appendix

C), and improving six quality attributes according to the popular software quality

model QMOOD [193] (cf. Appendix A). For the qualitative evaluation, we conducted

a non-subjective evaluation with potential users to evaluate the usefulness of our

refactoring tool.

7.3 Approach: MORE

This section describes the principles that underlie the proposed approach, called

MORE (Multi-Objective REfactoring recommendation) for improving software quality,

fixing code-smells, and introducing design patterns while maintaining the coherence of the

refactored code. We first describe our approach, its components and the semantic

constraints employed and then provide a detailed description of the adaptation of NSGA-II.

174

7.3.1 Approach overview

The general structure of MORE is described in Figure 7.1. It takes as input the

source code of the program to be refactored, and as output it produces a sequence of

refactorings that find the optimal trade-off between: 1) improving quality, 2) fixing code-

smells, and 3) introducing design patterns. MORE comprises seven components that will be

described in the following paragraphs.

Figure 7.1 - Architecture of MORE.

Source code parser and analyzer (label A). This component aims at parsing and

analyzing the source code of the program being refactored. We are using Soot [190], a Java

optimization framework. The original source code is analyzed in order to extract from it the

relevant code elements (i.e., classes, methods, attributes, etc.) and the existing relationships

between them. The outputs are 1) the parsed code in a specific representation that is simple

to manipulate during the search process, and 2) a call graph for the entire program that will

MORE

Original Source
Code

Suggested Refactoring

Solution

Source Code Parser and
Analyser
(SOOT)

A

Code Model
+

Call Graph

Search Process

(NSGA-II)

G

Code-smell
Detector

B

List of possible
refactorings

E

R1 R2 R3 … Rn

Design
Patterns
Detector

C

List of
coherence
constraints

F

Software
Quality

Evaluator

D

175

be used for calculating semantic constraints and software metrics (e.g., coupling, cohesion,

etc.).

Code-smell detector (label B). This component scans the entire software program in

order to find existing anti-pattern instances using a set of code-smells detection rules [7].

Detection rules are expressed in terms of metrics and threshold values. Each rule detects a

specific code-smell type (e.g., Blob, feature envy, etc.) and is expressed as a logical

combination of a set of quality metrics/threshold values. These detection rules are

generated/learned from real instances of code-smells using genetic algorithm [7]. When

executed, the code-smells detector returns a list of existing code-smell instances in the

current version of the program.

Design pattern detector (label C). This component is responsible for detecting

existing design pattern instances in the code being refactored. Extensive research has been

devoted to develop techniques to automatically detect instances of design patterns in the

code and design levels. In our approach, we are using a detection mechanism that is inspired

by the work of Heuzeroth et al. [196]. A design pattern P is defined by a tuple of program

elements such as classes, methods conforming to the restrictions or rules of a certain design

pattern. The detection strategy [196] is based on static and dynamic specifications of the

pattern. In MORE, we use only the static specifications with a post-processing step to

eliminate redundancies. Static specifications are based on predicates to identify the types of

code elements like classes, methods, calls, etc. and relate them to the roles in the pattern.

Each design pattern P=(Sc, Sr) is then identified as a tuple of code elements Sc that are

components of P, and a set of binary relations Sr between them. For instance, according to

its specifications, the Factory method pattern is defined as follows: PFactoryMethod=(Sc, Sr)

where

 Sc={AbstractCreator, ConcreteCreator, ProductInterface, ConcreteProduct,

FactoryMethod, ConcreteFactoryMethod} represents the code elements involved in the

design pattern.

176

 Sr represents the minimum set of binary relations between the elements of Sc that should

be satisfied for the current design pattern, i.e.,

{ConcreteCreator inherits from AbstractCreator,

ConcreteProduct implements ProductInterface,

AbstractCreator defines FactoryMethod,

FactoryMethod returns ProductInterface,

ConcreteCreator defines ConcreteFactoryMethod,

ConcreteFactoryMethod returns ConcreteProduct,

ConcreteFactoryMethod overrides FactoryMethod}

Software quality evaluator (label D). This component consists of a set of software

metrics that serves to evaluate the software design improvements after refactoring. Hence,

the expected benefit from refactoring is to enhance the overall software design quality, as

well as fixing code-smells [18]. We use, in our approach the QMOOD (Quality Model for

Object-Oriented Design) model [193] to estimate the effect of the suggested refactoring

solutions on quality attributes.

List of refactorings (label E). The MORE tool currently supports the following

refactoring types: Move method, Move field, Pull up field, Pull up method, Push down field,

Push down method, Inline class, Extract method, Extract class, Move class, Extract

superclass, Extract subclass, and Extract interface [1]. We selected these refactoring because

they are the most frequently used and they are implemented in modern IDEs such as Eclipse

and Netbeans.

We also considered specific blocks of refactorings to automatically introduce

different types of design pattern instances. We are referring to some guidelines given in the

literature for introducing instances of design patterns [124] [197]. MORE currently supports

the following three design pattern types: Visitor, Factory Method, and Singleton.

Introduce Visitor pattern. To introduce a visitor pattern, a sequence of refactoring

operations should be applied in the right order. Algorithm 7.1 illustrates the necessary

refactorings to be applied to introduce a Visitor pattern. The starting point is a class

177

hierarchy H that has a superclass/interface SC and a set of subclasses CC. The first step is to

create for each functional method a corresponding visitor class (lines 5-10). Then, functional

code fragments should be moved from the class hierarchy H to the visitor classes. To this

end, we apply the Extract Method refactoring to extract the functional code from the

functional methods (line 14). The original method will now simply delegate the new

extracted one (at a later stage, these methods can be deleted and their call sites updated to

use the appropriate visitor). The extracted method will be moved from the class hierarchy to

the appropriate newly created visitor class (line 15). The new methods in visitor classes are

named “visit*” using a Rename Method refactoring (line 16). An abstract Visitor class is

introduced as a superclass for all the created visitors using an Extract Superclass refactoring

(line 19). Now, an “accept” method is introduced in all the subclasses CC in H by extracting

it from the initial methods, using an Extract Method refactoring (line 22). All functional

methods now call the accept method with an instance of the appropriate Visitor subclass.

Therefore, their definition can be pulled up to the SC class by using a Pull Up Method

refactoring.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

input: hierarchy H
SC = getSuperClass(H)
CC = getSubClasses(H)
visitors = ∅	
for each method m in SC do
 if(m ∉ SC.constructors())
 v = CreateEmptyClass(m.name)
 v = renameClass(c.name+”visitor”)
 visitors = visitors ∪ {v}
end
for each class c in CC do
 for each method m in c do
 visClass = V(m)//find visitor class that maps to the name of method
 extractMethod(c, m, m1)
 moveMethod(c, m1, visClass)
 renameMethod(visClass, m1, “visit”+c.name)
 end
end
Visitor=extractSuperClass(Visitors,“Visitor”+SC.name)
for each class c in CC do
 for each method m in c do
 extractMethod(c, m, “accept”)
 pullUpMethod(m, c, SC)
 end
end

Algorithm 7.1 - Pseudo-code to introduce the Visitor design pattern.

178

Introduce Factory Method pattern. As described in Algorithm 7.2, which uses the approach

developed by Ó Cinnéide and Nixon [127], a Factory Method pattern can be introduced

starting from a Creator class that creates instances of Product class(es). The first step is to

apply an extract interface refactoring (line 2) to abstract the public methods of the Product

classes into an interface. All references to the Product classes in the Creator class are then

updated to refer to this interface (lines 3-6). Then, for each constructor in each of the

Product classes, a similar method is added in the Creator class that returns an instance of the

correspondent Product class (lines 7-14). Finally all creations of Product objects in the

Creator class are updated to use these new methods (line 15-18).

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

input: Class Creator, Class [] Products
extractInterface(Products[], “abstract”+ Products.getName())
for each Object o in Creator do
 if o.getType  Products[] then
 o.renameType(o.getType()+“abstract”+ o.getType())
end
for each p  Products[] do
 for each constructor c in p do
 m = addMethod(Creator, “create”+p.name());
 m.setReturnType(“abstract”+p.name());
 m.setParamList=c.paramList;
 m.setBody=(“return new P(”+c.paramList+“);”);
 end
end
for each Object o in Creator do
 if o.getType  Products[] then
 Creator.replaceObjectCreations(o.getType(), “create”+ o.getType());
end

Algorithm 7.2 - Pseudo-code to introduce the Factory Method design pattern.

Introduce Singleton pattern. Our formulation for the Singleton pattern is derived

from [198] and [199]. Algorithm 7.3 describes the basic steps to introduce the Singleton

Pattern. A Singleton class can be introduced starting from a candidate class Singleton. The

first step (line 2) is to apply the classic refactoring operation, defined in Fowler’s

catalog [25], Replace Constructor with Factory Method. The aim of this step is make the

constructor private. Then access to this class will be performed via the newly generated

static method getSingleton(), which will be the global access point to the Singleton

179

instance. The second step is to create a static field singleton of type Singleton with

access level private (line 3) that will be initialized to “new Singleton()” in the body of the

new method getSingleton() (line 5). The selection statement ensures that the field

singleton is instantiated only once, i.e., when it is null.

1.
2.

3.
4.
5.
6.

input: Class Singleton
Replace_Constructor_with_Factory_Method(Singleton.constructor,
“get”+ Singleton.name);
addField(singleton, Singleton, private, static);
if(singleton == null)
 initialize(singleton, “new Singleton()”);
end

Algorithm 7.3 - Pseudo-code to introduce the Singleton design pattern.

We selected these three design patterns because they are frequently used in practice,

and it is widely believed that they embody good design practice [195]. The algorithms here

apply a typical implementation of the pattern, and leave to the developer the task of tailoring

the implementation to fit the context, if necessary. Note that if an atomic refactoring fails

due to a non-satisfied precondition, the whole refactoring sequence that applies the design

pattern will be rejected.

Coherence constraints checker (label F). The aim of this component is to prevent

incoherent changes to code elements. Most refactorings are relatively simple to implement

and it is straightforward to show that they preserve behaviour assuming their pre-conditions

are true [17]. However, until now there is no consensual way to investigate whether a

refactoring operation is semantically feasible and meaningful [29]. Preserving behavior

does not mean that the coherence of the refactored program is also preserved. For instance,

a refactoring solution might move a method calculateSalary() from the class Employee

to the class Car. This refactoring could improve program structure by reducing the

complexity and coupling of the class Employee while preserving program behavior.

However, having a method calculateSalary() in the class Car does not make sense from

the domain semantics standpoint. To avoid this kind of problem, we defined a set of

180

semantic coherence constraints that must be satisfied before applying a refactoring in order

to prevent incoherent changes to code elements.

Search process (label G). Our approach is based on a multi-objective optimization

using the Non-dominated Sorting Genetic Algorithm (NSGA-II) [24] to formulate the

refactoring suggestion problem. We selected NSGA-II because it is widely-used in the field

of multi-objective optimization, and demonstrates good performance compared to other

existing metaheuristics in solving many software engineering problems [91]. Thus our

approach can be classified as Search Based Software Engineering (SBSE) [91] for which it

is established best practice to define a representation, fitness functions and computational

search algorithm. Referring to Figure 7.1, the search process takes as input the source code

that is then parsed into a more manipulable representation (label A), a set of code-smell

detectors (label B), a set of design patterns detectors (label C), a software quality evaluator

(label D) that evaluates post- refactoring software quality, a set possible refactoring

operations to be applied (label E), and set of constraints (label F) to ensure semantic

coherence of the code after refactoring. As output, our approach suggests a list of

refactoring operations that should be applied in the right order to find the best compromise

between fixing anti-patterns, introducing design patterns, and improving design quality.

7.3.2 Semantic constraints

Unlike existing automated refactoring approaches, MORE defines and uses a set of

semantic constraints to prevent arbitrary changes that may affect the semantic coherence of

the refactored program. Hence, applying a refactoring where it is not needed is highly

undesirable as it may introduce semantic incoherence and unnecessary complexity to the

original design. To this end, we considered several semantic constraints that we defined in

Section 6.3.3 including Vocabulary-based similarity constraint (VS), Dependency-based

similarity constraint (DS), Implementation-based similarity constraint (IS), Feature

inheritance usefulness constraint (FIU), and Cohesion-based dependency constraint (CD).

181

Furthermore, we introduced some semantic constraints related to the introduction of

design patterns. Before introducing a design pattern to a particular design fragment, the

basic intent of the pattern should exist in that design fragment already. This starting point is

termed a “precursor” in the nomenclature of Ó Cinnéide and Nixon [127], and is not taken

into account in much of the existing work in automated refactoring. MORE formulates the

notion of precursor as a set of semantic constraints that should be satisfied when introducing

design patterns.

The semantic constraint we use for the Factory Method pattern is that the Creator

class must create a concrete instance of a Product class [127]. This situation could require

the application of the Factory Method pattern, if the developer decides that the Creator class

should be able to handle several different types of Product. MORE analyzes, using

Soot [190], all the method bodies of a candidate Creator class to retrieve statements

containing the operator “new” that occur within its functional methods’ body. If the

candidate Creator class does not create instances of the Product class, then there is no need

to introduce a Factory Method pattern.

The semantic constraints for the Visitor pattern involve the situation when it is

required to accumulate new information from an object structure, but the classes of objects

in the structure do not support the required behavior [199]. This relates in general to

complex hierarchies that have a large number of inherited methods or with God classes that

can be detected [127].

The semantic constraints we use for the Singleton pattern is that the class under

refactoring (the candidate Singleton): 1) has only one instance, and 2) provide a global point

of access to it, i.e., a method called from other classes in the system. These two constraints

can be checked using static program analysis technique.

7.3.3 Multi-objective formulation of MORE

a) Search technique

182

MORE uses NSGA-II, one of the most popular algorithms that have shown good

performance in solving SE problems based on recent surveys [90]. A detailed description of

NSGA-II is given in Section 2.3.4.

b) Solution representation

In our NSGA-II design, we use the same vector-based solution representation

adopted in our GA adaptation. The description of our solution representation is detailed in

Section 3.3.2.

c) Solution evaluation

To evaluate the fitness of each refactoring solution, we used three objective

functions according to each objective.

 Code-smells objective function: It calculates the ratio of the number of corrected

code-smells to the initial number of anti-patterns using the anti-patterns detector

component. The anti-patterns correction ratio (CCR) is defined as follows:

ܴܥܥ ൌ
ݏ݊ݎ݁ݐݐܽ݌݅ݐ݊ܽ	݀݁ݐܿ݁ݎݎ݋ܿ	݂݋	ݎܾ݁݉ݑ݊
ݏ݊ݎ݁ݐݐܽ݌݅ݐ݊ܽ	݂݋	ݎܾ݁݉ݑ݊	݈ܽ݅ݐ݅݊݅

 Design patterns objective function: It calculates the number of produced design

pattern instances (NP) using the design patterns detector component. The NP values

are then normalized in the range [0, 1] using min-max normalization. NP is defined

as follows:

ܰܲ ൌ෍݀݁ܿݑ݀݋ݎ݌	݊݃݅ݏ݁݀	ݏ݊ݎ݁ݐݐܽ݌

 Quality objective function: It calculates the quality improvement. MORE use the

QMOOD (Quality Model for Object-Oriented Design) model [193] to estimate the

effect of the suggested refactoring solutions on quality attributes. We calculate the

overall quality gain (QG) for the six QMOOD quality factors (reusability,

flexibility, understandability, effectiveness, functionality, and extendibility) that are

formulated using 11 low-level design metrics. Full details about QMOOD are

available in Bansiya and Davis original work [193] and Appendix A. Let Q={q1,

q2,... q6} and Q'={q'1, q'2,... q'6} be respectively the set of quality attribute values

183

before and after applying the suggested refactorings, and {w1, w2,... w6} the weights

assigned to each of these quality factors. Then the total quality gain (QG) is

estimated as follows:

ܩܳ ൌ෍ݓ௜ ∗ ሺݍ௜
ᇱ െ ௜ሻݍ

଺

௜ୀଵ

d) Selection and Change operators

To guide the selection process, NSGA-II uses a binary tournament selection based

on dominance and crowding distance [24]. NSGA-II sorts the population using the

dominance principle, which classifies individual solutions into different dominance levels.

Then, to construct a new population, NSGA-II uses a comparison operator based on a

calculation of the crowding distance [24] to select potential individuals having the same

dominance level.

We use the same genetic operators formulation adopted in our GA adaptation. The

description of our genetic operators (crossover and mutation) is detailed in Section 4.3.2.d).

7.4 Design of the experimental study

To evaluate the efficiency of our approach in fixing code-smells, introducing design

patterns and improving design quality, we conducted a quantitative and qualitative

evaluation with participants from both academia and industry.

7.4.1 Research questions

With this study, we intend to answer the following five research questions:

 RQ1. To what extent can the proposed approach improve the quality of software

systems?

 RQ2. How does our approach perform compared to existing search-based refactoring

approaches?

 RQ3. How does our approach perform compared to existing non-search-based

refactoring approaches?

184

 RQ4. How does NSGA-II perform compared to random search and other multi-

objective algorithms?

 RQ5. Is our approach useful for software engineers in a real-world setting?

7.4.2 Systems studied

We applied our approach to a benchmark composed of four medium and large-size

open-source Java projects: Xerces-J29, GanttProject30, AntApache31, and JHotDraw32.

Xerces-J is a family of software packages for parsing XML. GanttProject is a cross-

platform tool for project scheduling. AntApache is a build tool and library specifically

conceived for Java applications Finally, JHotDraw is a GUI framework for drawing editors.

Table 7.1 provides some descriptive statistics about these four programs. We

selected these systems for our validation because they came from four different

organisations, involved different kinds of software engineering development and had

different sizes, ranging from 21 to 240 KLOC with a large number of both design pattern

and anti-pattern instances. As we previously note, in these corpora, we considered four

different code-smell types (god class, feature envy, data class, and spaghetti code) and three

different design patterns (Abstract Method Factory, Visitor and Singleton). Please refer to

Appendix C for the definition of these code-smells and design patterns.

Systems Release # classes KLOC
code-

smells

design

patterns

Xerces-J v2.7.0 991 240 81 36

GanttProject v1.10.2 245 41 49 15

AntApache v1.8.2 1191 255 92 38

JHotDraw v 6.1 585 21 24 18

Table 7.1 – Systems statistics.

29 http://xerces.apache.org/xerces-j/
30 www.ganttproject.biz/
31 http://ant.apache.org/
32 http://www.jhotdraw.org/

185

7.4.3 Analysis method and evaluation metrics

We designed our experiments to answer our research questions. To answer RQ1, we

conduct a quantitative and qualitative evaluation to evaluate the efficiency of our approach:

Quantitative evaluation. We evaluate the efficiency of our approach for 1) fixing code-

smells, 2) introducing design patterns, and 3) improving software quality.

- To evaluate the efficiency of our approach in fixing code-smells, we calculate the

code-smells correction ratio (CCR) on our benchmark.

- To evaluate the efficiency of our approach in introducing design patterns, we

calculate the number of new design pattern instances (NP) that are introduced.

- To evaluate the efficiency of our approach in improving software quality, we

calculate the overall quality gain (QG) using the QMOOD (Quality Model for Object-

Oriented Design) model [193].

Qualitative evaluation. To evaluate the usefulness of the suggested refactorings, we

performed a qualitative evaluation with six PhD students in Software Engineering; two of

whom are working at General Motors as senior software engineers. The participants have

an average of 6.5 years programming experience in Java and familiar with the evaluated

open-source systems. We asked the participants to manually evaluate, for each system, 10

refactoring operations that are selected at random from the suggested refactoring solutions.

Participants assign a correctness score of 0 or 1 for each refactoring according to its

coherence with the program semantics. Participants were aware that they are going to

evaluate the semantic coherence of refactoring operations, but do not know the particular

experimental research questions (the approaches and algorithms being compared). To this

end, we define the metric refactoring meaningfulness (RM) that corresponds to the number

of meaningful refactoring operations, in terms of semantic coherence, over the total number

given to the participants to evaluate. RM is defined as follows:

ܯܴ ൌ
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݈ݑ݂݃݊݅݊ܽ݁݉	#
ݏ݃݊݅ݎ݋ݐ݂ܿܽ݁ݎ	݀݁ݐܽݑ݈ܽݒ݁	#

186

To answer RQ2, we compared our approach to state-of-the-art approaches that use

SBSE in terms of ACR, NP, and the QG. Hence, for a proposed approach to be adopted it

must also outperform the state of the art for the problem in hand. To this end, we compared

our approach to Seng et al. [21], Jensen et al. [126], and our GA-based approach (describes

in Chapter 4). These approaches are designed each for a specific purpose, i.e., improve

quality metrics or fix design patterns. Thus, to make the comparison fair, we apply the

suggested refactorings of each approach, and we calculate our evaluation metrics (CCR,

NP, QG, and RM)

To answer RQ3, we compared our refactoring results with a popular anti-patterns

detection and correction tool JDeodorant [83] that do not use heuristic search techniques in

terms of ACR and RM. The current version of JDeodorant [83] is implemented as an

Eclipse plug-in that identifies certain types of code-smells using quality metrics and then

proposes a list of refactoring operations to fix them. For instance, to fix God class,

JDeodorant suggests standard refactoring solution based on a move method refactorings.

To answer RQ4, we used mainly two performance indicators to compare the different

algorithms used in our experiments. When comparing two mono-objective algorithms, it is

usual to compare their best solutions found so far during the optimization process.

However, this is not applicable when comparing two multi-objective evolutionary

algorithms since each of them gives as output a set of non-dominated (Pareto equivalent)

solutions. Different metrics for measuring the performance of multi-objective optimization

methods exist. Zitzler et al. [200] provide a comprehensive review of quality indicators for

multi-objective optimization, finding that many commonly used metrics do not reliably

reflect the performance of an optimization algorithm. One of the few recommended metrics

is the Hypervolume and the Spread indicators.

- Hypervolume (HV): this metric calculates the proportion of the volume covered by

members of a non-dominated solution set returned by the algorithm. A higher

Hypervolume value means better performance, as it indicates solutions closer to the

187

optimal Pareto Front. The most interesting features of this indicator are its Pareto

dominance compliance and its ability to capture both convergence and diversity.

- Spread (∆): It measures the distribution of solutions into a given front. The idea

behind the spread indicator is to evaluate diversity among non-dominated solutions.

An ideal distribution has zero value for this metric when the solutions are uniformly

distributed. An algorithm that achieves a smaller value for Spread can get a better

diverse set of non-dominated solutions. For further details about the formulation of

these indicators, please refer to [200] and [201].

To answer RQ5, we asked our participants to manually evaluate the usefulness of

the introduced design patterns in the current software design by assigning a usefulness

score in the range [0,5]. We consider a design pattern as useful if its assigned score is ≥3.

We define the metric design patterns usefulness (PU) as follows.

ܷܲ ൌ
ݏ݊ݎ݁ݐݐܽ݌	݊݃݅ݏ݁݀	݈ݑ݂݁ݏݑ	#

ݏ݊ݎ݁ݐݐܽ݌	݊݃݅ݏ݁݀	݀݁ܿݑ݀݋ݎݐ݊݅	#

Due to the stochastic nature of the algorithms/approaches we are studying, they can

provide different results for the same problem instance from one run to another. To cater

for this issue and to make inferential statistical claims, our experimental study is performed

based on 31 independent simulation runs for each algorithm/technique studied. The

obtained results are statistically analyzed using the Wilcoxon rank sum test [202] with a

95% confidence level (α = 5%). The Wilcoxon rank sum test is applied between NSGA-II

and each of the other techniques: Seng et al. [21], Jensen et al. [126], and GA-based

approach. Our tests show that the obtained results are statistically significant with p-

value<0.05.

7.4.4 Algorithms parameter tuning

An important aspect of research on metaheuristic search algorithms is the selection

and tuning of the algorithms’ parameters, which is necessary in order to ensure not only fair

comparisons, but also for potential replication. To this end, we report our algorithmic

parameter tuning and selection used to facilitate replication of our findings. The initial

188

population/solutions of NSGA-II, are completely random. The stopping criterion is when

the maximum number of function evaluations, set to 120,000, is reached. The crossover

operator performs crossover with a probability 0.6. The mutation probability used is 0.3.

The semantic constraint thresholds were fixed as follows: VS≥0.55, DS≥0.41, IS≥0.6,

FIU≥0.76, and CD≥0.5. After several trial runs of the simulation, the parameter values were

fixed. There are no general rules to determine these parameters [203], and therefore we set

the combination of parameter values by trial and error. For each algorithm, we repeat the

simulation 31 times in each case, and compute the median value.

7.5 Results

In this section, we present the answer to each research question in turn, indicating

how the results answer each question.

Results for RQ1. The results relating in RQ1 are described in Table 7.2. After

applying the proposed refactoring operations by our approach (MORE), we found that, on

average, 86% of the detected code-smells were fixed (CCR) for all the four studied

systems. This high score is considered significant to improve the quality of the refactored

systems by fixing the majority of code-smells that were from different types (God class,

Feature Envy, Data Class, and Spaghetti Code). We found that the majority of non-fixed

code-smells are related to the God class type. This type of code-smell usually requires a

large number of refactoring operations and is known to be very difficult to fix.

Moreover, we found that MORE succeeded in producing design pattern instances.

Table 7.2 shows the number of new design pattern instances for each system. MORE

successfully introduced an average of 7 design patterns (NP) that were from different types

(Factory Method, Visitor and Singleton) for all the four studied systems. This can be very

helpful for software engineers who might be interested to the introduction of design

patterns to make their software systems more understandable, flexible, and maintainable. In

addition, when applying the suggested refactorings we noticed that some God classes are

fixed when involved in introducing a visitor pattern. For instance, we observe that the God

189

class GanttTree in GanttProject, was fixed automatically when introducing a Visitor

pattern. In addition, the new structure of this class become more flexible with the Visitor

pattern where new functionalities and behavior can be easily added without affecting the

original class.

Systems Algorithms
ACR NP QG

Score p-value Score p-value Score p-value

Xerces-J

MORE 89% 12 0.47
Seng et al. 23% < 0.05 0 < 0.01 0.54 < 0.02
Jensen et al. 14% < 0.04 31 < 0.01 0.41 < 0.01
GA-based approach 88% < 0.04 0 < 0.01 0.32 < 0.01

GanttProject

MORE 88% 7 0.34
Seng et al. 24% < 0.02 1 < 0.01 0.33 < 0.01
Jensen et al. 33% < 0.05 14 < 0.01 0.35 < 0.01
GA-based approach 84% < 0.05 0 < 0.01 0.21 < 0.01

AntApache

MORE 86% 4 0.5
Seng et al. 7% < 0.04 0 < 0.01 0.52 < 0.01
Jensen et al. 12% < 0.01 28 < 0.02 0.51 < 0.01
GA-based approach 87% < 0.01 0 < 0.01 0.39 < 0.01

JHotDraw

MORE 83% 4 0.17
Seng et al. 38% < 0.01 0 < 0.01 0.19 < 0.01
Jensen et al. 25% < 0.01 9 < 0.01 0.14 < 0.01
GA-based approach 88% < 0.01 0 < 0.01 0.1 < 0.01

Average (all
systems)

MORE 86% 7 0.37
Seng et al. 23% 0.25 0.39
Jensen et al. 21% 20.5 0.35
GA-based approach 86% 0 0.25

Table 7.2 - ACR, NP, and QG median values of 31 independent runs of MORE, Seng et al.,

Jensen et al., and GA-based approach.

In terms of quality improvement (QG), as can be seen in Table 7.2, MORE

succeeded in improving the quality of the four studied systems, with an average QG score

of 0.37 in terms of QMOOD quality attributes. In Figure 7.2, we show the obtained QG

values that we calculated for each QMOOD quality attribute before and after refactoring for

each studied system. We found that the systems quality increase across the four QMOOD

quality factors. Understandability is the quality factor that has the highest QG value;

whereas the effectiveness quality factor has the lowest one. This due to two possible

reasons 1) the majority of non-fixed code-smells (God class, spaghetti code) are known to

increase the coupling (DCC) within classes which heavily affect the quality index

190

calculation of the Effectiveness factor; 2) the vast majority of suggested refactoring types

were move method, move field, and extract class that are known to have a high impact on

coupling (DCC), cohesion (CAM) and the design size in classes (DSC) that serves to

calculate the understandability quality factor. Furthermore, we noticed that JHotDraw

produced the lowest quality increase for the four quality factors. This is justified by the fact

that JHotDraw is known to be of good design and implementation practices [28] and it

contains few code-smell instances comparing to the three other studied systems.

The p-values of the Wilcoxon rank sum test indicate whether the median of the

approach (Seng/Jensen/GA-based approach) is statistically different from MORE with a

95% confidence level (α = 0.05). A statistical difference is accepted at p<=0.05.

Figure 7.2 - QMOOD quality factors gain obtained by MORE.

The obtained results are promising, however, improving the design structure is not

always enough to determine whether our approach produce a coherent program and fit with

software engineers expectations. Figure 7.3, describes the results of our qualitative

evaluation. We found that the majority of the suggested refactorings (an average of 86%

over the four studied systems) could be successfully applied to the program and only a

small number of the suggested refactorings were rejected by the participants due to

semantic incoherencies in the source code.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

Q
G

QMOOD quality attributes

Xerces‐J

GanttProject

AntApache

JHotDraw

191

To sum up, we can conclude that our approach succeeded in improving the code

quality not only by fixing the majority of detected anti-patterns and introducing a

considerable number of design patterns but also by a significant improvement on the

overall design quality of the refactored program such as the user understandability, the

reusability, and the flexibility. At the same time, the majority of the proposed refactoring

operations are considered as semantically feasible and do not affect the semantic coherence

of the refactored program from the point of view of potential users.

Figure 7.3 - Refactoring meaningfulness (RM) evaluation.

Results for RQ2. The results relating to RQ2 are summarized in Table 7.2. As

described in Table 7.2, after applying the proposed refactoring operations, we found that

more than 86% of detected code-smells were fixed (CCR) as an average for all the four

studied systems. For instance, for GanttProject, 75% (9 over 12) of God classes, 86% (6

over 7) of feature envy, 94% (15 over 16) of spaghetti code, 93% (13 over 14) of Data

classes are fixed. This score is comparable to the correction score of GA-based approach

having an average of 86%. However, the obtained results are much better than those of

Seng et al., and Jensen et al. having respectively only 23% and 21%, on average for all the

studied systems.

In terms of patterns introduction, Jensen et al. produces the higher score by

introducing, on average for the four systems, 20.5 design patterns. This score is higher than

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Xerces‐J GanttProject AntApache JHotDraw

R
M

MORE

Seng et al.

Jenson et al.

GA‐based approach

192

the one obtained by MORE (an average of 7 patterns per system). This can be explained by

the fact that Jensen et al. apply design patterns without considering if the design pattern is

needed or not in that code fragment, i.e., the sole aim is to produce more design patterns.

This is unlikely to be useful and efficient in practice because introducing a design pattern

where it is not needed may increase the complexity of the system. For Seng et al. and GA-

based approach, we found that they are not able to produce design patterns. This is because

the lists of refactorings they use are not geared for the introduction of design patterns.

Furthermore, MORE produces comparable QG values to Seng et al. and Jensen et

al. having respectively 0.37, 0.39 and 0.35, since the quality metrics improvement is a

common component in the objective function of each approach. However GA-based

approach produces a lower QG score since their approach is driven only by code-smell

correction and not by improving quality metrics. On the other hand, despite the significant

improvement in terms of QG for Seng et al. (the highest score), it is not effective at fixing

code-smells (only 23% of anti-patterns are fixed). Thus these results provide evidence to

support the claim that improving quality metrics does not necessarily mean that existing

anti-patterns are fixed.

More notably, we compared MORE to the three other approaches in terms of

semantic coherence. Figure 7.3 summarizes our findings. Regarding the refactoring

meaningfulness, for all of our four studied systems, an average of 86% of proposed

refactoring operations are considered as semantically feasible and do not generate semantic

incoherence. This score is significantly higher than the scores of the three other approaches

having respectively only 40%, 35% and 46%, as RM scores for respectively, Seng et al.,

Jensen et al., and GA-based approach. Thus, our approach performs clearly better for RM.

Moreover, we noticed that for the larger programs, the performance in terms of refactoring

meaningfulness (RM) achieved by MORE is more notable than it is for the smaller

programs.

Results for RQ3. JDeodorant uses only structural information to detect and fix

code-smells at the code level but not all the four code-smell types that we considered in our

193

experiments. Thus, to make the comparison fair, we performed our comparison using only

the two common code-smells, God class and Feature envy, which can be fixed by both

tools. Figure 7.4 summarizes our findings. The average number of fixed code-smells is

comparable between both tools; however MORE is clearly far better in terms of

semantically coherent refactorings. This can be explained by the fact that JDeodorant uses

only structural metrics to evaluate the impact of suggested refactorings on the detected

code-smells. In addition, it is also worth noting that MORE supports more refactoring types

and addresses more code-smell types than does JDeodorant.

Figure 7.4 - Comparison of our approach with JDeodorant in terms of (a) CCR and (b) RM.

Results for RQ4. Figure 7.5 presents the results for RQ4 using the two quality indicators

Hypervolume (HV) and Spread (∆) through 31 runs of NSGA-II, MOGA, and Random

(a)

(b)

194

Search. For the HV, the higher the value, the better the algorithm performance, whereas, for

the ∆, the lower value, the better the algorithm performance.

Figure 7.5 - Boxplots using the quality measures (a) HV, and (b) Spread applied to NSGA-

II, MOGA, and Random Search through 31 independent run.

According to the obtained results in Figure 7.5 (a), Random Search results are generally

poor, whereas NSGA-II and MOGA obtain good results for the five systems. Moreover, as

illustrated in Figure 7.5 (a), NSGA-II significantly outperforms MOGA when applied to

 Xerces-J GanttProject AntApache JHotDraw

(a) Hypervolume indicator

 Xerces-J GanttProject AntApache JHotDraw

(b) Spread indicator

0

0,2

0,4

0,6

0,8

0

0,2

0,4

0,6

0,8

0

0,2

0,4

0,6

0

0,2

0,4

0,6

0,8

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

195

Xerces, GanttProject, and JHotDraw while presenting a similar performance for

AntApache. This fact confirms the effectiveness of NSGA-II over MOGA in finding a

well-converged and well-diversified set of Pareto-optimal refactoring solutions. For the ∆,

is also desired that a multi-objective evolutionary algorithm maintains a good spread of

solutions in the obtained set of solutions. Figure 7.5 (b) shows that NSGA-II has the better

spread among all the other search-based algorithms in all systems.

To summarize, the Wilcoxon rank sum test showed that in 31 runs, both NSGA-II

and MOGA results were significantly better than random search. We conclude that there is

empirical evidence that our multi-objective formulation surpasses the performance of

random search thus our formulation is adequate (this answers RQ4).

Results for RQ5. The results relating to RQ4 are summarized in Table 7.3. We observe

that the majority (more than 83%) of the design patterns produced by MORE are

considered as useful in the four studied systems since their introduction is guided by a set

of semantic constraints and not arbitrary. However, we found that a relatively small number

of patterns produced by Jensen et al. (less than 36%) are considered as feasible by the

group of software engineers. The main reason is that these design patterns are applied in an

arbitrary way, without considering if they are needed in that code fragment or not.

Thus MORE produces higher increases in RM than the other three approaches, which

is probably the cause of the significant score in terms of patterns usefulness.

Systems MORE Jensen et al.

Xerces-J 83% (10|12) 35% (11|31)

GanttProject 86% (6|7) 36% (5|14)

AntApache 100% (4|4) 14% (4|28)

JHotDraw 100% (4|4) 22% (2|9)

Table 7.3 - Comparison of MORE with Jensen et al. in terms of Patterns usefulness (PU).

196

7.6 Conclusion

We presented, in this chapter, an automated multi-objective refactoring

recommendation approach to improve design quality (as defined by software quality

metrics), fix code-smells, and introduce design patterns. To evaluate our approach, we

conducted a quantitative and qualitative evaluation with software engineers using a

benchmark composed of four open source systems. The statistical analysis of the results

provides evidence that our approach is more efficient comparing to the state-of-the-art of

refactoring techniques.

As part of our future work, we are planning to extend the validation of our approach

with additional types of design patterns and code-smells. In addition, we intend to conduct

an empirical study to investigate the correlation between introducing patterns and their

impact on several types of code-smells.

Chapter 8 : Conclusion

In this chapter, we summarise the results and conclusions of this thesis. We also

discuss the limitations and future research directions.

8.1 Summary of contributions

The main objective of this thesis was to develop an automated approach to

recommend refactoring to help software engineers charged with the task of maintaining and

evolving existing software systems. To this end, we applied different SBSE techniques

which have been shown to be a practical and efficient way in solving several software

engineering problems. Software refactoring is ideal for the application of SBSE techniques,

in its two steps (1) identification of code fragments to be refactored, and (2) identification

of the suitable refactoring operations to apply.

The first contribution of our thesis, described in Chapter 3, is about generating code-

smells detection rules to support developers and relieve them from the burden of doing so

manually. We see the code-smells detection problem as a combinatorial optimization

problem to find the suitable detection rules using examples of code-smells. Typically,

researchers and practitioners try to characterize different types of common code-smells and

present symptoms to search for in order to locate possible code-smells in a system. In our

approach, we have shown that this knowledge is not necessary to perform the detection.

Instead, we use examples of code-smells to generate detection rules. Our approach

succeeded in detecting the majority of code-smells with 86% of precision and 91% of

recall.

The second contribution is about automatically recommending refactoring solutions

to fix the detected code-smells. We proposed four principal solutions.

In the first solution, we considered the refactoring recommending task as a single-

objective optimization problem as described in Chapter 4. A refactoring solution is defined

as a combination of refactoring operations that should minimize, as much as possible, the

198

number of detected code-smells. To this end, we use GA to find the best combination of

refactoring operations from a large list of available refactorings. Our approach was tested

on six medium and large size software systems and succeeded in fixing more than 90% of

the detected code-smells. Indeed, one of the advantages of our approach is that it does not

correct code-smells separately since we consider the correction task as a global process

instead of a local one. In addition, we don't need to define an exhaustive list of code-smells

and specify standard refactoring for each code-smell type.

In the second solution, we extended our GA-based approach to prioritize the

correction of code-smells in Chapter 5. We propose an approach that supports automated

refactoring recommendation to fix code-smells where more critical code-smells are

prioritized during the refactoring process. Hence, we formulated the refactoring

recommending problem as an optimization problem to find the near-optimal sequence of

refactorings according to a prioritization schema. To this end, we used a novel

metaheuristic search by the means of Chemical Reaction Optimization, a newly established

metaheuristics, to find the suitable refactoring solutions that maximize the number of

corrected code-smells while prioritizing the most important, riskiest, and severest code

fragments according to the developer’s preferences.

The third solution is described in Chapter 6. We deal with the refactoring

recommending task as a multi-objective optimization problem. We explore four objectives

to optimize: 1) fix code-smells, 2) reduce the number of modifications/adaptations needed

to apply refactorings, 3) preserve the semantic coherence of the refactored program, and 4)

maintain the consistency with development/maintenance history. The idea is to find the best

compromise between all of these objectives. Hence, by reducing the number of

modifications, we reduce the complexity of the recommended refactorings and keep as

much as possible the original design/code structure. Moreover, it is mandatory to preserve

the semantic coherence and prevent arbitrary changes on code elements. Furthermore, we

exploit knowledge from previously applied changes to recommend new refactorings. We

evaluate the efficiency of our approach using a benchmark of six different industrial size

199

open-source systems, and six frequent code-smells types through an empirical study

conducted with software engineers.

From another perspective, as a fourth solution, we proposed a multi-objective

formulation of refactoring recommending task where we consider the introduction of

design patterns. We described, in Chapter 7, a recommending framework for automated

multi-objective refactoring to find the best compromise between (1) introducing design

patterns, (2) fixing code-smells, and (3) improving design quality. To evaluate our

approach, we conducted a quantitative and qualitative evaluation with software engineers

using a benchmark composed of four open source systems. The obtained results confirm the

efficiency of our proposal compared to the state-of-the-art of refactoring techniques.

8.2 Limitations and future research directions

In this section, we discuss some limitations and open research directions related to

our proposal. First, for code-smells detection, the performance of our approach depends on

the availability of code-smell examples, which could be difficult to collect. We plan to

extend our base of examples with additional badly-designed code in order to consider more

programming contexts. Another direction worth to explore is to improve the detection of

potential code-smells through the use of knowledge from software change history. Indeed,

as reported in the literature [64] [118], classes participating in design problems (e.g., code-

smells) are significantly more likely to be subject to changes [118]. In other terms, if a

code-smell (e.g., God Class) is created intentionally and remains unmodified or hardly

undergo changes, the system may not experience any problems [63] [117]. Indeed, it has

been shown that, in some cases, a large class might be the best solution [63]. For these

reasons, combining software static metrics with software historical metrics can be an

effective way to improve the detection of code-smells. Furthermore, we are working on the

adaptation of our OO code-smells detection to detect anti-patterns in service-oriented

software systems.

200

For the refactoring step, some limitations can be addressed and different future work

directions can be explored. First, our multi-objective approach uses the development

change history to recommend new refactorings. Nevertheless, the development change

history is not always available especially for newly developed projects. To address this

issue, we are working to extend our initial approach to support change history collected

from other software systems in similar contexts.

One of the notable limitations of our approach is that recommending refactoring

offline a large list of refactorings may be a fastidious task for a software engineer. An

important future direction consists of adapting our approach to work dynamically, i.e.,

online. Code-smells can be detected dynamically when the programmer is writing his code,

and a list of possible refactorings can be recommended to help him in fixing the produced

code-smells. Such approaches can be very helpful not only for improving software quality,

but also for helping programmers to learn from their mistakes. Furthermore, regarding the

search process itself, it is very important to put the programmer in the loop. An interactive

multi-objective search can be very beneficial to recommend refactoring solutions that take

into consideration the programmer’s preferences and needs.

From another perspective, to apply some refactoring operations such as extract

class, extract method, our approach assign arbitrary names to the modified code elements.

However it is important to recommend consistent names for classes and method involved in

refactoring. As part of our future work, we intend to automatically recommend consistent

names for the refactored code elements derived from the used vocabulary.

Furthermore, the work conducted in this theses lead as to think about several

emprical studies to invertigate some beliefs about code-smells and refactroring. As part of

our future research directions we intend to conduct several empirical studies. For instance,

it is interesting to investigate 1) the correlation between the number of applied refactorings

and the number of code-smells, 2) the correlation between code-smells and QMOOD

quality attributes, and 3) the correlation between correcting code-smells and introducing

new code-smell instances or fixing other ones implicitly. Moreover, it is interesting to

201

investigate the definition of some code-smells. For instance, a God class is known to be an

abnormally large class that monopolize the behaviour of a system. This definition can be

empirically investigated through dynamic analysis according to a set of execution scenarios

to make sure whether it monopolizes the behaviour.

Related publications

The following is a list of our publications related to this dissertation.

Articles in Journal

1. Ali Ouni, Marouane Kessentini, Slim Bechick and Houari Sahraoui, Prioritizing

Code-smells Correction Tasks Using Chemical Reaction Optimization, Journal of

Software Quality, 2014.

2. Ali Ouni, Marouane Kessentini, Mel Ó Cinnéide, Houari Sahraoui, Multi-criteria

Software Refactoring: Quality, Code Changes, and Semantics Preservation, IEEE

Transactions on Software Engineering, 2014. (under review).

3. Marouane Kessentini, Ali Ouni, Philip Langer, Manuel Wimmer and Slim Bechikh,

Search-based Metamodel Matching with Structural and Syntactic Measures, Journal

of Systems and Software (JSS), pp. 1-14, 2014.

4. Wael Kessentini, Marouane Kessentini, Houari Sahraoui, Slim Bechikh, and Ali

Ouni, A Cooperative Parallel Search-Based Software Engineering Approach for

Code-Smells Detection, IEEE Transactions on Software Engineering, pp. 841-861,

2014.

5. Ali Ouni, Marouane Kessentini , Houari Sahraoui and Mohamed Salah Hamdi,

Improving Multi-Objective Code-Smells Correction Using Development History.

Journal of Systems and Software (JSS), 2014. (under revision).

6. Ali Ouni, Marouane Kessentini, Houari Sahraoui, Mel Ó Cinnéide, Kalyanmoy

Deb, Automated Multi-Objective Refactoring to Introduce Design Patterns and Fix

Anti-Patterns. Journal of Automated Software Engineering, 2014. (submitted).

7. Ali Ouni, Marouane Kessentini, Houari Sahraoui and Mounir Boukadoum,

Maintainability Defects Detection and Correction: A Multi-Objective Approach, in

203

Journal of Automated Software Engineering (JASE), 20(1), pp. 47-79, Springer,

2012.

Book Chapters

1. Ali Ouni, Marouane Kessentini, Houari Sahraoui, Multi-Objective Optimization for

Software Refactoring and Evolution, Elsevier, Advances in Computers, volume 94,

pp. 103-167, 2014.

Articles in Refereed Conference

1. Ali Ouni, Marouane Kessentini, Houari Sahraoui and M. S. Hamdi, The Use of

Development History in Software Refactoring Using a Multi-Objective

Evolutionary Algorithm, in the Genetic and Evolutionay Computation Conference

(GECCO), pp. 1461-1468, July 2013, Amesterdam, The Netherlands. Invited to a

special issue of the Journal of Systems and Software (JSS).

2. Ali Ouni, Marouane Kessentini and Houari Sahraoui, Search-based Refactoring

Using Recorded Code Changes, in the 17th European Conference on Software

Maintenance and Reengineering (CSMR), pp. 221-230, March 2013, Genova, Italy.

3. Ali Ouni, Marouane Kessentini, Houari Sahraoui and M. S. Hamdi, Search-based

Refactoring: Towards Semantics Preservation. 28th IEEE International Conference

on Software Maintenance (ICSM), pp. 347-356, September 2012, Riva del Garda-

Italy.

4. Marouane Kessentini, Wael Kessentini, Houari Sahraoui, Mounir Boukadoum, and

Ali Ouni, Design Defects Detection and Correction by Example. 19th IEEE

International Conference on Program Comprehension (ICPC), pp. 81-90, 22-24

June 2011, Kingston- Canada.

204

Bibliography

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts: Refactoring – Improving the

Design of Existing Code, 1st ed. Addison-Wesley, June 1999.

[2] N. Fenton and S. L. Pfleeger: Software Metrics: A Rigorous and Practical Approach, 2nd

ed. London, UK: International Thomson Computer Press, 1997.

[3] R. S. Pressman, Software Engineering – A Practitioner’s Approach, 5th ed. McGraw-Hill

Higher Education, 2001.

[4] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting defects in object-

oriented designs: using reading techniques to increase software quality” in Proceedings of

the 14th Conference on Object-Oriented Programming, Systems, Languages, and

Applications. ACM Press, pp. 47-56, 1999.

[5] H. A. Simon, Why should machines learn? R.S. Michalski, J.G. Carbonell, T.M. Mitchell

(Eds.), Machine Learning, Tioga, Palo Alto, CA 1983 (Chapter 2)

[6] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, A. Ouni, Design Defects

Detection and Correction by Example, 19th Int. Conf. on Program Comprehension (ICPC),

pp. 81-90, 2011.

[7] A. Ouni, M. Kessentini, H. Sahraoui and M. Boukadoum, Maintainability Defects

Detection and Correction: A Multi-Objective Approach. J. of Autmated Software

Engineering, Springer, 2012.

[8] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. L Meur, DECOR: A method for the

specification and detection of code and design smells. IEEE Trans. Softw. Eng.36, pp. 20-

36, 2009.

[9] H. Liu, L. Yang, Z. Niu, Z. Ma, W. Shao, Facilitating software refactoring with appropriate

resolution order of bad smells. In: Proc. of the ESEC/FSE ’09, pp. 265-268, 2009.

[10] R. Marinescu, Detection strategies: metrics-based rules for detecting design flaws,

Proceedings of the 20th International Conference on Software Maintenance, IEEE

Computer Society Press, pp. 350-359, 2004.

205

[11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, H. Sahraoui, A Bayesian approach for the

detection of code and design smells. In Proc. of the ICQS’09, 2009.

[12] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. M. III, and T. J. Mowbray. Anti Patterns:

Refactoring Software,Architectures, and Projects in Crisis. John Wiley and Sons, 1st

edition, 1998.

[13] K. Erni and C. Lewerentz: Applying design metrics to object-oriented frameworks, in Proc.

IEEE Symp. Software Metrics, IEEE Computer Society Press, 1996.

[14] H. Alikacem and H. Sahraoui, Détection d’anomalies utilisant un langage de description de

règle de qualité, in actes du 12e colloque LMO, 2006.

[15] S.C. Kothari, L. Bishop, J. Sauceda, G. Daugherty, A pattern-based framework for software

anomaly detection. Softw. Qual. J.12(2), pp. 99–120, 2004.

[16] K. Dhambri, H. Sahraoui, P. Poulin, Visual detection of design anomalies. In: CSMR.

IEEE, pp. 279-283, 2008.

[17] W. F. Opdyke, Refactoring: A Program Restructuring Aid in Designing Object-Oriented

Application Frameworks, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1992.

[18] T. Mens, A survey of software refactoring, IEEE Transactions on Software Engineering,

vol. 30, no. 2, pp. 126-139, 2004.

[19] IEEE Std. 1219-1998, “Standard for Software Maintenance”, IEEE Computer Society

Press, Los Alamitos, CA, 1998.

[20] M. Harman, and L. Tratt, Pareto optimal search based refactoring at the design level, In:

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’07), pp.

1106-1113, 2007.

[21] O. Seng, J. Stammel, and D. Burkhart, Search-based determination of refactorings for

improving the class structure of object-oriented systems, In: Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO’06), pp. 1909-1916, 2006

[22] M. O’Keeffe, and M. O. Cinnéide, Search-based Refactoring for Software Maintenance. J.

of Systems and Software, 81(4), pp. 502–516, 2008.

206

[23] M. O’Keeffe, and M. O. Cinnéide, Search-based software maintenance. In: Proceedings of

the 10th European Conference on Software Maintenance and Reengineering (CSMR), pp.

249– 260, 2006.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic

algorithm: NSGA-II, IEEE Trans. Evol. Comput., vol. 6, pp. 182-197, 2002.

[25] M. Fowler. Refactoring Catalog, http://www.refactoring.com/catalog/, (last access: 18 June

2014)

[26] A. Abran and H. Hguyenkim, “Measurement of the maintenance process from a demand-

based perspective,” Journal of Software Maintenance: Research and Practice, vol. 5, no. 2,

pp. 63-90, 1993.

[27] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, A. Ouni, Design Defects

Detection and Correction by Example, 19th International Conference on Program

Comprehension (ICPC), pp. 81-90, Kingston, Canada, 2011.

[28] A. Ouni, M. Kessentini, H. Sahraoui and M. Boukadoum, Maintainability Defects

Detection and Correction: A Multi-Objective Approach. J. of Autmated Software

Engineering, Springer, 2012.

[29] A. Ouni, M. Kessentini, H. Sahraoui and M. S. Hamdi, Search-based Refactoring : Towards

Semantics Preservation, in 28th IEEE International Conference on Software Maintenance

(ICSM), September 23-30, Riva del Garda, Italy, 2012.

[30] J. E. Gaffney, Metrics in software quality assurance. In: Proc. of the ACM ’81 Conference,

pp. 126–130. ACM, New York, 1981.

[31] G. Travassos, F. Shull, M. Fredericks, V.R. Basili, Detecting defects in object-oriented

designs: using reading techniques to increase software quality, Proceedings of the 14th

Conference on Object-Oriented Programming, Systems, Languages, and Applications,

ACM Press, pp. 47-56, 1999.

[32] O. Ciupke, Automatic detection of design problems in object-oriented reengineering, D.

Firesmith (Ed.), Proceeding of 30th Conference on Technology of Object-Oriented

Languages and Systems, IEEE Computer Society Press, pp. 18-32, 1999.

207

[33] M.J. Munro, Product Metrics for Automatic Identification of “Bad Smell” Design Problems

in Java Source-Code,”Proc. 11th Internatinal Software Metrics Symp., F. Lanubile and C.

Seaman, eds., 2005.

[34] G. Langelier, H.A. Sahraoui, P. Poulin, visualization-based analysis of quality for large-

scale software systems, T. Ellman, A. Zisma (Eds.), Proceedings of the 20th International

Conference on Automated Software Engineering, ACM Press, 2005.

[35] M. Kessentini, S. Vaucher, H. Sahraoui, Deviance from Perfection is a Better Criterion than

Closeness to Evil when Identifying Risky Code, 25th IEEE/ACM International Conference

on Automated Software Engineering (ASE), 2010.

[36] C. Catal and B. Diri, Investigating the effect of dataset size, metrics sets, and feature

selection techniques on software fault prediction problem, Information Sciences, Elsevier,

vol. 179, no. 8, pp. 1040-1058, 2009.

[37] L. Erlikh, “Leveraging legacy system dollars for e-business,”IT Professional, vol. 02, no. 3,

pp. 17-23, 2000.

[38] S. Hassaine, F. Khomh, Y. G. Guéhéneuc, S. Hamel, IDS: An Immune-Inspired Approach

for the Detection of Software Design Smells. 7th International Conference on the Quality of

Information and Communications Technology (QUATIC), pp 343-348, 2010.

[39] M. Salehie, S. Li, L. Tahvildari, A Metric-Based Heuristic Framework to Detect Object-

Oriented Design Flaws, in Pro-ceedings of the 14th IEEE International Conference on Pro-

gram Comprehension (ICPC’06), 2006.

[40] H. Sahraoui, R. Godin, T. Miceli, Can Metrics Help to Bridge the Gap Between the

Improvement of OO Design Quality and Its Automation?, In Proc. of the International

Conference on Software Maintenance (ICSM’00), 2000.

[41] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring—Improving Coupling and Cohesion

of Existing Code,” Proc. 11th Working Conf. Reverse Eng. pp. 144-151, 2004.

[42] N. Moha, A. Hacene, P. Valtchev, and Y-G. Guéhéneuc. Refactorings of Design Defects

using Relational Concept Analysis. In Raoul Medina and Sergei Obiedkov, editors.

Proceedings of the 4th International Conference on Formal Concept Analysis (ICFCA

2008), February 2008.

208

[43] L. Tahvildari, K. Kontogiannis, A metric-based approach to enhance design quality through

meta-pattern transformation. In: Proceedings of the 7st European Conference on Software

Maintenance and Reengineering , Benevento, Italy, pp. 183-192, 2003.

[44] P. Joshi, R.K. Joshi, Concept analysis for class cohesion. In: Proceedings of the 13th

European Conference on Software Maintenance and Reengineering, Kaiserslautern,

Germany, pp. 237-240, 2009.

[45] G. Bavota, A. De Lucia, R. Oliveto, Identifying Extract Class refactoring opportunities

using structural and semantic cohesion measures, The Journal of Systems and Software 84

(2011) pp. 397-414, 2011.

[46] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit. Ref-finder: a refactoring reconstruction

tool based on logic query templates. In Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of software engi-neering, FSE ’10, pages 371-372,

New York, NY, USA, 2010.

[47] T. Baar, S. Markovic, A Graphical Approach to Prove the Semantic Preservation of

UML/OCL Refactoring Rules,

[48] F. Logozzo, A. Cortesi, Semantic Hierarchy Refactoring by Abstract Interpretation, E.A.

Emerson and K.S. Namjoshi (Eds.), VMCAI 2006, LNCS 3855, pp. 313-331, 2006.

[49] F. Qayum, R. Heckel, Local search-based refactoring as graph transformation. Proceedings

of 1st International Symposium on Search Based Software Engineering; pp. 43-46, 2009.

[50] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin, Automated support for program

refactoring using invariants, in Int. Conf. on Software Maintenance (ICSM), pp. 736–743,

2001.

[51] L. Tahvildari and K. Kontogiannis. Improving design quality using meta-pattern

transformations: a metric-based approach. Journal of Software Maintenance, 16 (4-5), pp.

331-361, 2004.

[52] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[53] http://www.eclipse.org/

[54] https://netbeans.org/

209

[55] A. Abran and H. Hguyenkim, Measurement of the Maintenance Process from a Demand-

Based Perspective, Journal of Software Maintenance: Research and Practice, Vol 5, no 2,

1993.

[56] P. Weißgerber, and S. Diehl, Are refactorings less error-prone than other changes?

Proceedings of the 2006 international workshop on Mining software repositories, 2006.

[57] J. Ratzinger, T. Sigmund, H. Gall, On the relation of refactorings and software defect

prediction, Proceedings of the 2008 international workshop on Mining software

repositories, 2008.

[58] A. Ouni, M. Kessentini and H. Sahraoui, Search-based Refactoring Using Recorded Code

Changes, in the 17th European Conference on Software Maintenance and Reengineering

(CSMR), march 5-8, Genova, Italy, 2013.

[59] D. Fatiregun, M. Harman, and R. Hierons. Evolving transformation sequences using genetic

algorithms. In SCAM 04, pages 65–74, Los Alamitos, California, USA, IEEE Computer

Society Press, 2004.

[60] D. Fatiregun, M. Harman, and R. Hierons. Search-based amorphous slicing. In WCRE 05,

pp. 3-12, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2005.

[61] F. E. B. Otero, C. G. Johnson, A. A. Freitas, , and S. J. Thompson. Refactoring in

automatically generated programs. International Symposium on Search Based Software

Engineering, 2010.

[62] W. F. Opdyke, R. E. Johnson, Refactoring: An Aid in Designing Application Frameworks

and Evolving Object-Oriented Systems. In Proceedings of the Symposium on Object

Oriented Programming Emphasizing Practical Applications (SOOPPA), September 1990.

[63] S. M. Olbrich, D. S. Cruzes, D. I. K. Sjoberg, Are all code smells harmful? A study of God

Classes and Brain Classes in the evolution of three open source systems. Software

Maintenance, ICSM 2010, pp. 1-10, Timisoara, 2010.

[64] S. Olbrich, D. Cruzes, V. R. Basili, N. Zazworka, The evolution and impact of code smells:

A case study of two open source systems, pp. 390-400, ESEM 2009,

[65] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall. Mining software evolution to predict

refactoring. In Proceedings of the First International Symposium on Empirical Software

Engineering and Measurement, pp. 354-363, 2007.

210

[66] Q. D. Soetens, J. Perez, S. Demeyer, An Initial Investigation into Change-Based

Reconstruction of Floss-Refactorings, 2013 29th IEEE International Conference on

Software Maintenance (ICSM 2013), pp.384-387, 2013.

[67] A. F. Yamashita, L. Moonen, To what extent can maintenance problems be predicted by

code smell detection? - An empirical study. Information & Software Technology 55(12),

pp. 2223-2242, 2013.

[68] A. F. Yamashita, L. Moonen, Do developers care about code smells? An exploratory

survey. WCRE: 242-25, 2013.

[69] A. F. Yamashita, L. Moonen, Do code smells reflect important maintainability aspects?

International Conference on Software Maintenance, pp. 306-315, 2012.

[70] A. J. Riel, Object-Oriented Design Heuristics, 1st ed. Boston, MA, USA: Addison-Wesley,

1996.

[71] E. Van Emden and L. Moonen. 2002. Java Quality Assurance by Detecting Code Smells. In

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE'02), IEEE

Computer Society, Washington, DC, USA, 2002.

[72] M.V. Mäntylä, J. Vanhanen, C. Lassenius, A taxonomy and an initial empirical study of bad

smells in code, IEEE International Conference on Software Maintenance (ICSM03), pp.

381–384. 2003.

[73] P. Coad and E. Yourdon, Object-Oriented Design. Prentice Hall, 1991.

[74] A. Monden, D. Nakae, T. Kamiya, S. Sato, K. Matsumoto, Software quality analysis by

code clones in industrial legacy software, in IEEE Symposium on Software Metrics, pp. 87-

94, 2002.

[75] W. Li, R. Shatnawi, An empirical study of the bad smells and class error probability in the

post-release object-oriented system evolution, Journal of Systems and Software 80, pp.

1120–1128, 2007.

[76] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, T. Dybå, Quantifying the

Effect of Code Smells on Maintenance Effort. IEEE Trans. Software Eng. 39(8), pp. 1144-

1156, 2013.

211

[77] I. Deligiannis, M. Shepperd, M. Roumeliotis, I. Stamelos, An empirical investigation of an

object-oriented design heuristic for maintainability, Journal of Systems and Software 65,

pp. 127-139, 2003.

[78] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, M. Shepperd, A controlled

experiment investigation of an object-oriented design heuristic for maintainability, Journal

of Systems and Software 72, pp. 129-143, 2004.

[79] B. Anda, Assessing software system maintainability using structural measures and expert

assessments. In : Software Maintenance, 2007. ICSM 2007. IEEE International Conference

on. IEEE, pp. 204-213, 2007.

[80] T. Mens and S. Demeyer, eds., Software Evolution, Springer, 2008.

[81] iPlasma : http://loose.upt.ro/iplasma/index.html

[82] Infusion hydrogen: Design flaw detection tool. Available at:

http://www.intooitus.com/products/infusion, 2012.

[83] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, JDeodorant: Identification and removal of

type-checking bad smells. In Proceedings of CSMR2008, pp 329–331, 2008.

[84] R. Wirfs-Brock and A. McKean, Object Design: Roles, Responsibilities and Collaborations.

Addison-Wesley Professional, 2002.

[85] E. R. Murphy-Hill, C. Parnin, A. P. Black, How We Refactor, and How We Know It. IEEE

Trans. Software Eng. 38(1), pp. 5-18, 2012.

[86] E. R. Murphy-Hill, A. P. Black, Programmer-Friendly Refactoring Errors. IEEE Trans.

Software Eng. 38(6), pp. 1417-1431, 2012.

[87] E. R. Murphy-Hill, A. P. Black, Breaking the barriers to successful refactoring:

observations and tools for extract method. ICSE, pp. 421-430, 2008.

[88] X. Ge, E. Murphy-Hill, Manual Refactoring Changes with Automated Refactoring

Validation. In Proceedings of the International Conference on Software Engineering

(ICSE), Hyderabad, India, 2014.

[89] M. Harman, The current state and future of search based software engineering, in Future of

Software Engineering 2007, L. Briand and A. Wolf, Eds. Los Alamitos, California, USA:

IEEE Computer Society Press, pp. 342-357, 2007.

212

[90] M. Harman, S. A. Mansouri, Y. Zhang. Search-based software engineering: Trends,

techniques and applications. ACM Comput. Surv. pp. 45-61, 2012.

[91] M. Harman, B. F. Jones, Search-based software engineering. Information and Software

Technology, 43(14), pp. 833-839, 2001.

[92] C. Le Goues, T. Nguyen, S. Forrest, W. Weimer, Genprog: A generic method for automatic

software repair. IEEE Trans. Software Eng. 38(1), pp. 54-72, 2012.

[93] Y. Zhang, A. Finkelstein, M. Andharman, Search based requirements optimisation: Existing

work and challenges. InProceedings of the 14th International Working Conference,

Requirements Engineering: Foundation for Software Quality (RefsQ’08).Lecture Notes in

Computer Science, vol. 5025. Springer, pp. 88-94. 2008.

[94] P. McMinn, Search-Based software test data generation: A survey. Softw. Test. Verif.

Reliab, 2004.

[95] E. Alba, F. Andchicano, Management of software projects with GAs. In Proceedings of the

6th Metaheuristics International Conference (MIC’05), Elsevier, pp. 13-18, 2005.

[96] G. Canfora, M. Di Penta, R. Esposito, M. L. Andvillani, An approach for QoS-aware

service composition based on genetic algorithms. In Proceedings of the Conference on

Genetic and Evolutionary Computation (GECCO’05), ACM, New York, pp. 1069-1075.

2005.

[97] F. Glover and M. Laguna, Tabu Search. Boston, MA: Kluwer Academic Publishers, 1997.

[98] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, “Optimization by Simulated

Annealing,”Science,vol. 220, no. 4598, pp. 671-680, 1983.

[99] DE. Goldberg, Genetic algorithms in search, optimization, and machine learning. Addison-

Wesley, Reading, MA, USA,1989.

[100] J. Kennedy and R. C. Eberhart, Particle Swarm Optimization, in Proc. IEEE Int. Conf.

Neural Networks, Perth, Australia, pp. 1942-1948, 1995.

[101] E. Murphy-Hill, A. P. Black, An interactive ambient visualization for code smells. In

Proceedings of the 5th international symposium on Software visualization, pp. 5-14, ACM,

2010.

213

[102] F. Palomba, G. Bavota, M. Di Penta, Detecting bad smells in source code using change

history information. In : IEEE/ACM 28th International Conference on Automated Software

Engineering (ASE), 2013, pp. 268-278, 2013.

[103] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Guéhéneuc, E. Aïmeur, a SVM-based

incremental anti-pattern detection approach. In : Reverse Engineering (WCRE), 2012 19th

Working Conference on. IEEE, pp. 466-475, 2012.

[104] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Guéhéneuc, G. Antoniol, E. Aïmeur.

Support vector machines for anti-pattern detection. In Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2012. IEEE, pp. 278-

281, 2012.

[105] F. Rahma, N. Bouassida, and H. Ben Abdallah. "A metric-based approach for anti-pattern

detection in uml designs." Computer and Information Science 2011. Springer Berlin

Heidelberg, pp. 17-33, 2011.

[106] S. Dimitrios, A. Cerone, and S. Fenz, Enhancing ontology-based antipattern detection using

Bayesian networks. Expert Systems with Applications 39.10, pp. 9041-9053, 2012.

[107] C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, and R. Wettel. iplasma: An integrated

platform for quality assessment of objectoriented design. In Proceedings of 21st

International Conference on Software Maintenance (ICSM 2005), Tools Section, 2005.

[108] PMD http://pmd.sourceforge.net/

[109] CS-CheckStyle: http://checkstyle.sourceforge.net/index.html.

[110] InCode : http://www.intooitus.com/inCode.html

[111] FA. Fontana, E. Mariani, A. Morniroli, R. Sormani, A. Tonello, An Experience Report on

Using Code Smells Detection technologies, Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference, pp.450-457, 2011.

[112] F. Arcelli, V. Ferme, M. Zanoni, and A. Yamashita. Filtering and Prioritising Code Smells

Detection. In Submitted to conference, 2014.

[113] A. Yamashita, Assessing the capability of code smells to explain maintenance problems: an

empirical study combining quantitative and qualitative data. Empirical Software

Engineering, 1-33, 2013.

214

[114] R. Marinescu, Assessing technical debt by identifying design flaws in software systems,

IBM Journal of Research and Development, vol. 56, no. 5, pp. 9:1–9:13, 2012.

[115] D. Raiu, S. Ducasse, T. Gîrba, and R. Marinescu, Using history information to improve

design flaws detection, in Proc. Conf. Softw. Maintenance Reeng., vol. 8, pp. 223–232,

2004.

[116] D.-E. Ekwa, and M. P. Robillard,. Clonetracker: tool support for code clone management.

Proceedings of the 30th international conference on Software engineering. ACM, 2008.

[117] M. F. Zibran, K. R. Chanchal, Towards flexible code clone detection, management, and

refactoring in IDE. Proceedings of the 5th International Workshop on Software Clones.

ACM, 2011.

[118] F. Khomh, M. D. Penta, and Y.-G. Gueheneuc, “An exploratory study of the impact of code

smells on software change-proneness,” Proceedings of WCRE 2009 (16th IEEE Working

Conference on Reverse Engineering), pp. 75–84, 2009.

[119] M. F. Zibran, K. R. Chanchal, A constraint programming approach to conflict-aware

optimal scheduling of prioritized code clone refactoring. Source Code Analysis and

Manipulation (SCAM), 2011 11th IEEE International Working Conference on. IEEE, 2011.

[120] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for the proactive

management of copy-and-paste programming. In ICPC, pp. 238–242, 2009.

[121] R. Arcoverde, E. Guimaraes, L. Macia, A. Garcia, Y. Cai, Prioritization of Code Anomalies

Based on Architecture Sensitiveness. Software Engineering (SBES), 2013 27th Brazilian

Symposium on. IEEE, 2013.

[122] Code Metrics for Microsoft Visual Studio, http://msdn.microsoft.com/en-

us/library/bb385911.aspx, (last access: 18 June 2014)

[123] M. F. Zibran, K. R. Chanchal, Conflict-aware optimal scheduling of prioritised code clone

refactoring. IET software 7.3, pp. 167-186, 2013.

[124] M. Ó Cinnéide, Automated Application of Design Patterns: A Refactoring Approach. PhD

thesis, University of Dublin, Trinity College, 2001.

[125] A. Ajouli, J. Cohen, J. Royer, Transformations between Composite and Visitor

Implementations in Java. EUROMICRO-SEAA, pp. 25-32, 2013.

215

[126] A. Jensen and B. Cheng. On the use of genetic programming for automated refactoring and

the introduction of design patterns. In Proceedings of GECCO. ACM, 2010.

[127] M. Ó Cinnéide, P. Nixon: A Methodology for the Automated Introduction of Design

Patterns. International Confrence on Software Maintenance, 1999.

[128] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for smalltalk. Theory and Practice

of Object Systems, 3(4), pp. 253–263, 1997.

[129] R. C. Martin. Agile Software Development, Principles, Patterns and Practice. Prentice Hall,

2002.

[130] E. R. Murphy-Hill and A. P. Black, Refactoring tools: Fitness for purpose, IEEE Software,

vol. 25, no. 5, pp. 38-44, 2008.

[131] X. Ge, E. R. Murphy-Hill, BeneFactor: a flexible refactoring tool for eclipse. OOPSLA

Companion, pp. 19-20, 2011.

[132] X. Ge, E. Murphy-Hill, Manual Refactoring Changes with Automated Refactoring

Validation. In Proceedings of the Int. Conf. on Soft. Eng. (ICSE), 2014.

[133] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Journal of software maintenance

and evolution: Research and practice. J. Softw. Maint. Evol., 17(4), pp. 247–276, 2005.

[134] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. A two-step technique for extract class

refactoring. Int. conference on Automated software engineering, pages 151–154, 2010.

[135] D. Silva, R. Terra, M. T. Valente, Recommending Automated Extract Method Refactorings,

Internation Conference on Program Comprehension ICPC, 2014.

[136] M. Robillard, R. Walker, and T. Zimmermann, Recommendation systems for software

engineering, IEEE Software, vol. 27, no. 4, pp. 80–86, 2010.

[137] R. Holmes, R. Walker, and G. Murphy, Approximate structural context matching: An

approach to recommend relevant examples, IEEE Transactions on Software Engineering,

vol. 32, no. 12, pp. 952–970, 2006.

[138] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, Mining version histories to guide

software changes,” IEEE Transactions on Software Engineering, vol. 31, no. 6, pp. 429–

445, 2005.

216

[139] B. Dagenais and M. P. Robillard, Recommending adaptive changes for framework

evolution, in 30th International Conference on Software Engineering (ICSE), pp. 481–490,

2008.

[140] N. Tsantalis and A. Chatzigeorgiou, Identification of move method refactoring

opportunities, IEEE Transactions on Software Engineering, vol. 99, pp. 347–367, 2009.

[141] http://refactoring.com/tools.html

[142] Y. Ye and G. Fischer, Reuse-Conducive Development Environments, Automated Software

Eng., vol. 12, no. 2, pp. 199–235, 2005.

[143] A. Ankolekar et al., Supporting Online Problem-Solving Communities with the Semantic

Web, Proc. Int’l Conf. World Wide Web, ACM Press, pp. 575–584, 2006.

[144] A. Mockus and J.D. Herbsleb, “Expertise Browser: A Quantitative Approach to Identifying

Expertise,” Proc. Int’l Conf. Software Eng. (ICSE 02), IEEE CS Press, 2002, pp. 503–512.

[145] S. Thummalapenta and T. Xie, PARSEWeb: A Programming Assistant for Reusing Open

Source Code on the Web, Proc. IEEE/ACM Int’l Conf. Automated Software Eng. (ASE

07), ACM Press, pp. 204–213, 2007.

[146] R. Terra, M. T. Valente, K. Czarnecki, R. S. Bigonha, Recommending refactorings to

reverse software architecture erosion. In 16th European Conference on Software

Maintenance and Reengineering (CSMR), pp. 335-340, IEEE, 2012.

[147] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. D. Lucia, Methodbook:

Recommending move method refactorings via relational topic models, IEEE Transactions

on Software Engineering, pp. 1–26, 2014.

[148] V. Sales, R. Terra, L. F. Miranda, and M. T. Valente, Recommending move method

refactorings using dependency sets, in 20th Working Conference on Reverse Engineering

(WCRE), pp. 232–241, 2013.

[149] A. Thies, R. Christian, Recommending rename refactorings, Proceedings of the 2nd

International Workshop on Recommendation Systems for Software Engineering, 2010.

[150] G. Bavota, A. De Lucia, R. Oliveto, Identifying extract class refactoring opportunities using

structural and semantic cohesion measures, Journal of Systems and Software, vol. 84, pp.

397–414, 2011.

217

[151] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, Automating extract class refactoring: an

improved method and its evaluation. Empirical Software Engineering, pp. 1-48, 2013.

[152] H. Kagdi, M.L. Collard, J.I. Maletic, A Survey and Taxonomy of Approaches for Mining

Software Repositories in the Context of Software Evolution, in the Journal of Software

Maintenance and Evolution: Research and Practice (JSME), Vol. 19, No. 2, pp. 77-131,

2007.

[153] A. E. Hassan, The road ahead for mining software repositories. Frontiers of Software

Maintenance, 2008. FoSM 2008.. IEEE, 2008.

[154] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall. Mining software evolution to predict

refactoring. In Proceedings of the First International Symposium on Empirical Software

Engineering and Measurement, pp. 354-363, 2007.

[155] Q.D. Soetens, J. Perez, S. Demeyer, An Initial Investigation into Change-Based

Reconstruction of Floss-Refactorings, 2013 29th IEEE International Conference on

Software Maintenance (ICSM 2013), pp.384-387, 2013.

[156] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version histories to guide

software changes. In Proc. 26th International Conference on Software Engineering (ICSE),

Edinburgh, Scotland, 2004.

[157] T. Gîrba, S. Ducasse, A. Kuhn, R. Marinescu, and R. Daniel. Using Concept Analysis to

Detect Co-Change Patterns. In Proceedings of International Workshop on Principles of

Software Evolution (IWPSE), 2007.

[158] A. Hassan and R. Holt. Predicting change propagation in software systems. In Proceedings

20th Int. Conference on Software Maintenance (ICSM’04), pp. 284–293, 2004.

[159] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product release

history. Int. Proc. of Conf. on Soft. Maintenance (ICSM), pages 190–198, Los Alamitos

CA, 1998.

[160] T.T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source code changes by

mining change history. IEEE Transactions on Soft. Eng. (TSE), Vol 30, No. 9, 2004.

[161] D. Beyer, and A. Noack. Clustering Software Artifacts Based on Frequent Common

Changes. Proceedings of the 13th International Workshop on Program Comprehension,

2005.

218

[162] S. Hayashi, M. Saeki, M. Kurihara. Supporting refactoring activities using histories of

program modification. IEICE transactions on information and systems 89.4, pp. 1403-1412,

2006.

[163] A. Y. S. Lam, V. O. K. Li, Chemical-Reaction-Inspired Metaheuristic for Optimization.

IEEE Trans. Evolutionary Computation 14(3), pp. 381-399, 2010.

[164] M. Kessentini, A. Ouni, P. Langer, M. Wimmer and S. Bechikh, Search-based Metamodel

Matching with Structural and Syntactic Measures, Journal of Systems and Software, 2014.

[165] H. Kilic, E. Koc, and I. Cereci. Search-based parallel refactoring using population-based

direct approaches. In Proceedings of the Third international Conference on Search Based

Software Engineering, SSBSE’11, pages 271–272, 2011.

[166] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. H. Moghadam, Experimental

Assessment of Software Metrics Using Automated Refactoring, Proc. Empirical Software

Engineering and Management (ESEM), pp. 49-58, 2012.

[167] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

“Experimentation in Software engineering -- An introduction,” Kluwer Academic

Publishers, ISBN 0-7923-8682-5, 2000.

[168] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Why parameter control mechanisms

should be benchmarked against random variation,” IEEE Congress on Evolutionary

Computation, pp. 349–355, 2013.

[169] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyzing evolutionary

algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 19–31, 2011.

[170] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal

of the American Statistical Association, vol. 47, no. 260, pp. 583–621, 1952.

[171] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA, 1992.

[172] R. Davis, B. Buchanan, and E.H. Shortcliffe, Production Rules as a Representation for a

Knowledge-base Consultation Program, Artificial Intelligence 8, 15-45, 1977.

[173] M. Zhang, T. Hall, N. Baddoo, Code Bad Smells: a review of current knowledge, In Journal

of Software Maintenance and Evolution: Research and Practice 23.3, pp. 179–202, 2011.

219

[174] I. Sommerville, Software Engineering, 6th ed. Addison-Wesley, 2001.

[175] D. B. Roberts, Practical Analysis for Refactoring. PhD thesis, Department of Computer

Science, University of Illinois, 1999.

[176] A. Y. S. Lam, V. O. K. Li, Chemical-Reaction-Inspired Metaheuristic for Optimization.

IEEE Trans. Evolutionary Computation 14(3), pp. 381-399, 2010.

[177] A. Y. S. Lam, V. O. K. Li, J. J. Q. Yu, Real-Coded Chemical Reaction Optimization. IEEE

Trans. Evolutionary Computation 16(3), pp. 339-353, 2012.

[178] J. J. Q. Yu, A. Y. S. Lam, V. O. K. Li, Real-coded chemical reaction optimization with

different perturbation functions. IEEE Congress on Evolutionary Computation, pp. 1-8.,

2012.

[179] J. Xu, A. Y. S. Lam, V. O. K. Li, Chemical Reaction Optimization for Task Scheduling in

Grid Computing. IEEE Trans. Parallel Distrib. Syst. 22(10), pp. 1624-1631, 2011.

[180] Y. Sun, A. Y. S. Lam, V. O. K. Li, J. Xu, J. J. Q. Yu, Chemical Reaction Optimization for

the optimal power flow problem. IEEE Congress on Evolutionary Computation, pp. 1-8,

2012.

[181] A. Y. S. Lam, V. O. K. Li, Z. Wei, Chemical Reaction Optimization for the Fuzzy Rule

learning problem. IEEE Congress on Evolutionary Computation, pp. 1-8, 2012.

[182] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design, IEEE

Transactions on Software Engineering, Vol. 20, No. 6, pp. 476-493, 1994.

[183] G. Fraser, A. Arcuri, Handling test length bloat. Software Testing., Verification and

Reliability. 23 (7). pp. 553-582, 2013.

[184] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed. Lawrence Earlbaum

Associates, 1988.

[185] R. Amaro, R. P. Chaves, P. Marrafa, S. Mendes, Enriching Wordnets with new Relations

and with Event and Argument Structures. In 7th International Conference on Intelligent

Text Processing and Computational Linguistics , pp. 28 - 40, Mexico City, Lecture Notes in

Computer Science, Springer-Verlag, 2006.

[186] L. Tokuda, D. Batory, Evolving Object-Oriented Designs with Refactorings. Automated

Software Engineering. 8, 1, 89-120, 2001.

220

[187] M. Schäfer, T. Ekman, O. de Moor, Sound and extensible renaming for Java. In

Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented programming

systems languages and applications (OOPSLA '08). ACM, NY, USA, 277-294, 2008.

[188] G. Soares, R. Gheyi, T. Massoni, Automated Behavioral Testing of Refactoring Engines,

Software Engineering, IEEE Transactions on , vol.39, no.2, pp.147-162, 2013.

[189] M. Schäfer, T. Ekman, O. de Moor, Challenge proposal: verification of refactorings. In

Proceedings of the 3rd workshop on Programming languages meets program verification,

2009.

[190] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, V. Sundaresan, Optimizing

Java bytecode using the Soot framework: Is it feasible? in Int. Conf. on Compiler

Construction, pp. 18–34, 2000.

[191] C. M. Fonseca and P. J. Fleming, Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization, in Proceedings of the Fifth International

Conference on Genetic Algorithms,S. Forrest, Ed. San Mateo, CA: Morgan Kauffman, pp.

416–423, 1993.

[192] E. Zitzler, and L. Thiele, Multiobjective optimization using evolutionary algorithms-A

comparative case study. In Parallel Problem Solving from Nature, pp.292–301, Springer,

Germany, 1998.

[193] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design quality

assessment. IEEE Trans. Softw. Engg., 28(1): 4–17, 2002.

[194] M. Kim, T. Zimmermann, and N. Nagappan, A field study of refactoring challenges and

benefits, in 20th International Symposium on the Foundations of Software Engineering

(FSE), pp. 50:1–50:11, 2012.

[195] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable

object-oriented software. Addison-Wesley Reading, MA, 1995.

[196] D. Heuzeroth, T. Holl, G. Högström, W. Löwe, Automatic Design Pattern Detection,

International Workshop on Program Comprehension (IWPC) 2003.

[197] A. Ajouli, J. Cohen, J. Royer, Transformations between Composite and Visitor

Implementations in Java. EUROMICRO-SEAA, pp. 25-32, 2013.

221

[198] A. Ajouli, Vues et Transformations de Programmes pour la Modularité des Évolutions,

Ph.D. dissertation, University of Nantes Angers Le Mans, 2013.

[199] J. Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.

[200] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and da V. G. Fonseca. Performance

assessment of multiobjective optimizers: an analysis and review. IEEE Tran. on

Evolutionary Comp., 7:117–132, 2003.

[201] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Wiley. 2009.

[202] F. G. Freitas and J. T. Souza, Ten years of search based software engineering: A

bibliometric analysis, in 3rd International Symposium on Search based Software

Engineering (SSBSE 2011), pp. 18–32, 2011.

[203] A. Arcuri and G. Fraser, Parameter tuning or default values? An empirical investigation in

search-based software engineering, Empirical Software Engineering 18(3), Springer, 2013.

[204] R. Marinescu, Measurement and Quality in Object Oriented Design. Doctoral Thesis.

Politehnica University of Timisoara, 2002.

[205] F. Tip, J. Palsberg, Scalable Propagation-based Call Graph Construction Algorithms. In

Proceedings of the Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 281–293, 2000.

222

Appendix A: Definitions of the used quality attributes

and metrics

In this Appendix, we present the definitions of the quality attributes and metrics

used in this thesis.

A.1 Quality attributes

We consider the following quality attributes according to Bansiya and Davis’

QMOOD quality model [193]:

- Reusability: The degree to which a software module or other work product can be

used in more than one computer program or software system.

- Flexibility: The ease with which a system or component can be modified for use in

applications or environments other than those for which it was specifically designed.

- Understandability: The properties of designs that enable it to be easily learned and

comprehended. This directly relates to the complexity of design structure.

- Functionality: The responsibilities assigned to the classes of a design, which are made

available by the incorporation of a new requirements in the design.

- Extendibility: Refers to the presence and usage of properties in an existing design that

allow for the incorporation of new requirements in the design.

- Effectiveness: The degree to which a design is able to achieve the desired functionality

and behavior using OO design concepts and techniques.

A.2 Metrics

We consider the following metrics [193] [204] [182]:

- Design Size in Classes (DSC): Counts the total number of classes in the design

excluding imported library classes.

- Number Of Hierarchies (NOH): Counts the number of class hierarchies in the design.

223

- Average Number of Ancestors (ANA): Signifies the average number of classes from

which each class inherits information.

- Data Access Metric (DAM): Counts the ratio of the number of private (protected)

attributes to the total number of attributes declared in the class.

- Direct Class Coupling (DCC): Counts of the number of different classes that a class is

directly related to. The metric includes classes that are directly related by attribute

declarations and message passing (parameters) in methods.

- Cohesion Among Methods of Class (CAM): Computes the relatedness among

methods of a class, computed using the summation of the intersection of parameters of

a method with the maximum independent set of all parameter types in the class.

- Measure Of Aggregation (MOA): Counts of the number of data declarations whose

types are user-defined classes.

- Measure of Functional Abstraction (MFA): Counts the ratio of the number of

methods inherited by a class to the number of methods accessible by member methods

of the class.

- Number of Polymorphic Methods (NOP): Counts the number of the methods that

can exhibit polymorphic behaviour. Interpreted as the sum over all classes, where a

method can exhibit polymorphic behaviour if it is overridden by one or more

descendent classes.

- Class Interface Size (CIS): Counts the number of public methods in a class.

Interpreted as the average over all classes in a design.

- Number Of Methods (NOM): Counts of all the methods defined in a class.

- Number of Fields (NOF): Measures the number of fields of the classes.

- Coupling Between Objects (CBO): Counts the number of other classes to which a

class is coupled.

- Number Of Attributes (NOA): Counts the number of attributes in a class.

- Number Of Public Attributes (NOPA): Counts the number of public attributes in a

class.

- Number Of Private Attributes (NPA): Counts the number of private attributes in a

224

class.

- Number Of Accessor Methods (NOAM): Counts the number of getter and setter

methods in a class.

- Access Of Foreign Data (AOFD): Counts the number of attributes from unrelated

classes that are accessed directly or by invoking accessor methods.

- Tight Class Cohesion (TCC): Counts the relative number of method pairs of a class

that access in common at least one attribute of the measured class.

- Weight Of Class (WOC): Counts the number of non-accessor methods in a class

divided by the total number of members of the interface.

- Weighted Method Count (WMC): Represents the sum of the statical complexity of

all methods of a class.

- Lines Of Code (LOC): Counts the number of lines of code in a class or method.

- Changing Methods (CM): Counts the number of distinct methods that call the

measured method.

225

Appendix B: Definitions of the used refactoring

operations

This Appendix presents the definitions of the refactoring operations used in this

thesis.

B.1 Refactoring operations

- Move Method: Moves a method from a source class to a target class in another

hierarchy. This refactoring can be applied when classes have too much behavior or

when classes are collaborating too much and are too highly coupled.

- Move Field: Moves a field from a source class to a target class. This refactoring can be

applied when a field is used by another class more than the class on which it is defined.

- Extract Class: Split a class into two classes by moving some methods and fields to a

new class. This refactoring can be applied when one class doing work that should be

done by two.

- Incline Class: Merges two classes into one class by moving all features to the second

class and delete it. This refactoring can be applied when a class isn't doing very much.

- Extract Interface: Several clients use the same subset of a class's interface, or two

classes have part of their interfaces in common.

- Extract Superclass: Creates a superclass and move the common features to the

superclass. This refactoring can be applied when two classes or more share similar

features.

- Extract Subclass: Creates a subclass and move the some features to the subclass. This

refactoring can be applied when a class has features that are used only in some

instances.

- Push Down Field: Moves a field from some class to those subclasses that require it.

226

This refactoring can be aplied to simplify the design by reducing the number of classes

that have access to the field.

- Pull Up Field: Moves a field from some class(es) to the immediate superclass. This

refactoring can be applied to eliminate duplicate field declarations in sibling classes.

- Push Down Method: Moves a method from some class to those subclasses that require

it. This refactoring can be applied to simplify the design by reducing the size of class

interfaces.

- Pull Up Method: Moves a method from some class(es) to their immediate superclass.

This refactoring can be applied to help eliminate duplicate methods among sibling

classes, and hence reduce code duplication in general.

227

Appendix C: Definitions of the used code-smells and

design patterns

This Appendix presents the definitions of the code-smells and design patterns used

in this thesis.

C.1 Code-smells

In this thesis, we primarily focus on the detection/correction the following code-

smell types [1] [129] [84] [70] :

Code-smells Description

Blob (also
called God
Class)

It is found in design fragments where one large class monopolizes the behavior of
a system (or part of it), and the other classes primarily contain data. It is a large
class that declares many fields and methods with a low cohesion and almost has
no parents and no children.

Data Class It contains only data and performs no processing on these data. It is typically
composed of highly cohesive fields and accessors.

Spaghetti
Code

It is a code with a complex and tangled control structure. This code-smell is
characteristic of procedural thinking in object-oriented programming. Spaghetti
Code is revealed by classes with no structure, declaring long methods with no
parameters, and utilising global variables. Names of classes and methods may
suggest procedural programming. Spaghetti Code does not exploit and prevents
the use of object-orientation mechanisms, polymorphism and inheritance.

Functional
Decomposition

It occurs when a class is designed with the intent of performing a single function.
This is found in code produced by non-experienced object-oriented developers.

Schizophrenic
Class

It occurs when a public interface of a class is large and used non-cohesively by
client methods i.e., disjoint groups of client classes use disjoint fragments of the
class interface in an exclusive fashion.

Shotgun
Surgery It is found when a method heavily uses attributes and data from one or more

228

external classes, directly or via accessor operations. Furthermore, in accessing
external data, the method is intensively using data from at least one external
capsule.

We decided to focus our attention on these code-smells because they are among the

most related to faults and/or change proneness and the most common in the literature.

C.2 Design patterns

In this thesis, we primarily focus on the following design patterns [195]:

Design
Pattern

Description

Visitor

Represent an operation to be performed on the elements of an object structure.
Visitor allows defining a new operation without changing the classes of the
elements on which it operates. In essence, the visitor allows adding new virtual
functions to a family of classes without modifying the classes themselves;
instead, one creates a visitor class that implements all of the appropriate
specializations of the virtual function.

Factory
Method

The Factory Method is a creational pattern which uses factory methods to deal
with the problem of creating objects without specifying the exact class of object
that will be created. It Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

Singleton

Restrict the instantiation of a class to one object. This is useful when exactly one
object is needed to coordinate actions across the system. The concept is
sometimes generalized to systems that operate more efficiently when only one
object exists, or that restrict the instantiation to a certain number of objects.

