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Résumé 

L’objectif de ce projet était de développer une formulation liquisolide (LS) de 

clozapine ayant des propriétés de dissolution améliorées et évaluer sa stabilité et ainsi que sa 

robustesse à la modification d’excipients. Le propylène glycol (PG), la cellulose 

microcrystalline (MCC) et le glycolate d’amidon sodique (SSG) ont été utilisés 

respectivement en tant que véhicule liquide non volatile, agent de masse et agent désintégrant 

pour la préparation de comprimés LS. Le dioxyde de silicium colloïdal (CSD), le silicate de 

calcium (CS) et l'aluminométasilicate de magnésium (MAMS) ont été choisis comme agents 

d’enrobage sec. La caractérisation complète des mélanges et des comprimés a été effectuée. Le 

taux de libération des comprimés LS était statistiquement supérieur à celui des comprimés 

réguliers. La surface spécifique des matériaux d’enrobage avait un effet sur les propriétés 

d’écoulement des mélanges et la taille des particules des matériaux d’enrobage a eu un effet 

sur la vitesse de dissolution. Le ratio support/enrobage du mélange de poudres (valeur de R) 

était un paramètre important pour les systèmes LS et devait être plus grand que 20 afin 

d’obtenir une meilleure libération du médicament. La formulation choisie a démontré une 

stabilité pour une période d’au moins 12 mois. La technique LS s’est avéré une approche 

efficace pour le développement de comprimés de clozapine ayant des propriétés de dissolution 

améliorées.  

 

Les comprimés oro-dispersibles (ODT) sont une formulation innovante qui permettent 

de surmonter les problèmes de déglutition et de fournir un début d'action plus rapide. Dans 

l’optique d’améliorer les propriétés de dissolution, un essai a été effectué pour étudier la 

technique LS dans la formulation des ODT de clozapine. Le PG, la MCC, le CSD et la 

crospovidone (CP) ont été utilisés respectivement en tant que véhicule liquide non volatile, 

agent de masse, agent d’enrobage sec et agent superdésintégrant pour la préparation de 

comprimés oro-dispersibles liquisolides (OD-LST). Le mannitol a été choisi comme agent de 

masse et agent édulcorant. La saccharine de sodium a été utilisée comme agent édulcorant. La 

caractérisation complète des comprimés a été effectuée. Le taux de libération des OD-LSTs 

était statisquement supérieur comparativement aux comprimés ODTs. La formulation choisie a 

démontré une stabilité pour une période d’au moins 6 mois. Il a été conclu que des ODT de 
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clozapine peuvent être préparés avec succès en utilisant la technologie LS dans le but 

d’améliorer la désintégration et le taux de dissolution de la clozapine dans la cavité orale. 

 

Mots-clés : Liquisolide, clozapine, formulation, comprimé, oro-dispersible, excipients, 

superdésintegrant, dissolution, stabilité. 
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Abstract 

The objective of this research was to develop a liquisolid (LS) formulation of 

clozapine with improved dissolution properties and evaluate its robustness to excipient 

modifications as well as its stability. Propylene glycol (PG), microcrystalline cellulose (MCC) 

and sodium starch glycolate (SSG) were employed as non-volatile liquid vehicle, carrier 

material and disintegrant respectively for preparing LS compacts. Colloidal silicon dioxide 

(CSD), calcium silicate (CS) and magnesium aluminometasilicate (MAMS) were selected as 

coating materials. Complete characterisation of the blends and tablets was performed. The 

drug release rates of LS compacts were distinctly higher as compared to regular tablets. The 

specific surface areas of coating materials had an effect on the flow properties of the blends 

and the particle sizes of coating materials affected the dissolution rate. The carrier : coating 

ratio of the powder system (R value)  was an important parameter for LS systems and had to 

be larger than 20 to obtain enhanced drug release. The selected formulation demonstrated 

stability for a period of at least 12 months. The LS technique was an effective approach to 

prepare clozapine tablets with enhanced dissolution properties. 

 

Orally disintegrating tablets (ODT) constitute an innovative dosage form that 

overcomes the problems of swallowing and provides a quick onset of action. In view of 

enhancing dissolution properties an attempt has been made to study LS technique in 

formulation of ODT of clozapine. PG, MCC, CSD and crospovidone (CP) were employed as 

non-volatile liquid vehicle, carrier material, coating material and superdisintegrant 

respectively for preparing orally disintegrating liquisolid tablets (OD-LST). Mannitol was 

selected as a carrier material and sweetening agent. Sodium saccharin (SS) was employed as a 

sweetening agent. Complete characterisation of the tablets was performed. The drug release 

rates of OD-LSTs were distinctly higher as compared to regular ODTs. The selected 

formulation demonstrated stability for a period of at least 6 months. It was concluded that the 

ODT of clozapine can be successfully prepared using LS technology in order to improve 

disintegration and dissolution rate of clozapine in oral cavity.   
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Chapter one  

 

1 Introduction  

 

1.1 Liquisolid (LS) technology 

1.1.1 Overview 

Solubility is one of the important parameters to achieve desired concentration of drug 

in systemic circulation for pharmacological response to be shown
 
(Charman and Charman 

2003). Poorly water soluble drugs will be inherently released at a slow rate owing to their 

limited dissolution rate within the gastrointestinal tract (GIT) contents. One challenge for 

poorly water soluble drugs is to enhance the rate of dissolution (Darwish and El-Kamel 2001).  

 

Various techniques have been employed to formulate oral drug delivery system that 

would enhance the dissolution profile and in turn, the absorption efficiency of poorly water 

soluble drugs (Shinde 2007; Patel and Patel 2008): Solid dispersions (Kapsi and Ayres 2001; 

Shah, Amin et al. 2007; Rane, Mashru et al. 2007; Vanshiv, Rao et al. 2009), micronization 

(Li, Wang et al. 2007; Nighute and Bhise 2009), use of mesoporous silica carriers (Ahuja and 

Pathak 2009), ball milling technique (Sonoda, Horibe et al. 2008), use of complexing agents 

(El-Zein, Riad et al. 1998; Pravin and Nagarsenker 2004; Ghorab, Abdel-Salam et al. 2004; 

Gowrishankar, Ali et al. 2007), crystal engineering (Blagden, de Matas et al. 2007), 

solubilization by surfactants (Nazzal, Nutan et al. 2002; Patil and Paradkar 2006) and 

liquisolid (LS) technique developed by Spireas et al. (Spireas and Bolton 1999; Spireas 2002). 

These techniques take advantage of the increased dissolution rate resulting from the addition 

of a solubilizing agent, particle size reduction or the drug being in an already dissolved or 

amorphous state.  

 

LS technique has been identified as a promising technique to improve the dissolution 

rate of poorly water soluble drugs (Fahmy and Kassem 2008). When properly formulated, LS 
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powder blends possess acceptable flowability and compressibility properties. They are 

prepared by simple blending with selected powder excipients referred to as the carriers and the 

coating materials.  

 

This technique was successfully applied for low dose poorly water soluble drugs. Drug 

can be present in a completely or partially dissolved state in the LS formulation. The LS 

formulation can then facilitate the release of this drug by two mechanisms: (1) Already 

dissolved drug only need to diffuse out of the formulation and (2) the liquid component of the 

formulation act as a solubilizing aid to facilitate the wetting and dissolution of undissolved 

particles. Since dissolution of a non-polar drug is often the rate limiting step in gastrointestinal 

absorption, better bioavailability of an orally administered poorly water soluble drug is 

achieved when the drug is formulated using a LS system.  

  

1.1.2 Classification of LS systems 

The term LS systems refers to the powdered forms of liquid medications formulated by 

converting liquid lipophilic drugs or drug suspensions or solutions of water insoluble solid 

drugs in suitable non-volatile solvent systems, into dry, non-adherent, free flowing and readily 

compressible powder admixtures by blending with the selected carrier and coating materials 

(Figure 1.1). 
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Figure 1.1 Schematic representation of the structure of the liquisolid systems 

 

Based on the type of liquid medication encapsulated, LS systems may be classified into 

three subgroups: (1) Powdered drug solutions, (2) powdered drug suspensions and (3) 

powdered liquid drugs.  

 

Simultaneously, based on the formulation technique used, LS systems may be 

classified into two categories namely: (1) LS compacts and (2) LS microsystems.  

 

The term LS compacts refers to immediate or sustained release tablets or capsules 

prepared, combined with the inclusion of appropriate excipients required for tableting or 

encapsulation, such as lubricants and for rapid or sustained release action, such as 

disintegrants or binders, respectively. 

 

The term LS microsystems refers to capsules prepared by combining the drug with the 

carrier and the coating materials with inclusion of an additive in the liquid medication wherein 

the resulting unit size may be as much as five times that of LS compacts (Spireas and Bolton 

1999; Spireas 2002). 

Liquid drug, 

drug solution or 

drug suspension 

Carrier saturated with 

liquid (wet layer) 

Coating particles                    

(dry surface) 
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1.1.3 Excipients used for the preparation of LS systems 

1.1.3.1   Non-volatile solvents 

With the LS technology as described by Spireas, a liquid may be transformed into free 

flowing, readily compressible and apparently dry powder by simple blending with selected 

excipients such as the carriers and coating materials. The liquid portion, which can be a liquid 

drug, a drug suspension or a drug solution in suitable non-volatile solvents is incorporated into 

the porous carrier material. Inert, preferably water-miscible, not highly viscous, non-toxic 

organic solvents with high boiling point such as propylene glycol (PG), liquid polyethylene 

glycols (PEG), glycerine and polysorbates are best suitable as liquid vehicles (Kulkarni, 

Aloorkar et al. 2010). Once the carrier is saturated with liquid, a liquid layer is formed on the 

particle surface which is instantly adsorbed by the fine coating particles. Thus, an apparently 

dry, free flowing and compressible powder is obtained (Spireas 2002).  

 

Non-volatile solvents enhance the solubility of poorly water soluble drugs by 

formation of micelles and act as dispersants. For immediate release LS compacts, the selection 

of solvent is based on high drug solubility and for sustained release, solvents with least 

solubilizing capacity is selected. Since there are no specific non-volatile liquid vehicles used 

in the preparation of LS compacts, different non-aqueous solvents have been used as non-

volatile liquid vehicles in the preparation of immediate release and sustained release LS 

formulations with different drugs. So, selection of non-volatile solvent in LS technique is 

important to obtain immediate or sustained release formulation (Baby, Saroj et al. 2012).  

 

In various studies, the effect of different types of non-volatile liquid vehicles has been 

investigated. The results suggest that the selection of a liquid vehicle with a high solubilizing 

capacity for the drug and thus, an increased the fraction of molecularly dispersed drug (FM), 

leads to enhanced release profiles (Spireas and Sadu 1998; Nokhodchi, Javadzadeh et al. 2005; 

Javadzadeh, Siahi et al. 2007; Gubbi and Jarag 2009; Akinlade, Elkordy et al. 2010). That 

means that by the selection of a liquid vehicle with optimum solubilizing properties the 

amount of liquid and thus, the weight and size of the LS compacts can be reduced. However, 

in addition to the drug solubility in the liquid vehicle other physicochemical characteristics of 
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the liquid vehicles such as polarity, viscosity, molecular weight, chemical structure and 

lipophilicity may also have an effect on drug release (Spireas and Sadu 1998).  

 

 Propylene glycol (PG), an inert solvent miscible with water is a suitable liquid vehicle 

for LS systems. It is not highly viscous (dynamic viscosity: 58.1 cP at 20 °C) and has a high 

boiling point (188 °C). PG is used in a wide variety of pharmaceutical formulations and is 

generally regarded as a relatively non-toxic material (Handbook of Pharmaceutical Excipients 

2009; Baby, Saroj et al. 2012). 

 

PG was successfully used as non-volatile solvent in LS preparation of drugs such as 

bromhexine hydrochloride (Gubbi and Jarag 2009), famotidine (Fahmy and Kassem 2008), 

pioglitazone hydrochloride (Gandhi, Sawant et al. 2013), simvastatin (Burra, Kudikula et al. 

2011), to name a few.
 

 

1.1.3.2   Carrier materials 

In LS approach, the carrier material plays as a major role in obtaining the dry form of 

the powder from the liquid medication. Each carrier has its unique property. Selection of the 

carrier will depend upon its liquid holding capacity, the flowability of the powder and which 

carrier requires less compression force (Kavita, Raju et al. 2011).  

 

When the drug dissolved in liquid is incorporated into a carrier material, the liquid is 

initially absorbed in the interior of the particles. Once the carrier is saturated with liquid, a 

liquid layer is formed on the particle surface which is instantly adsorbed by the fine coating 

material particles. The coating material provides the conversion from a wet to a dry surface 

and gives the LS system desirable flow properties (Gavali, Pacharane et al. 2011).  

 

The particles of the carrier materials are compression enhancing, relatively large, 

preferably porous particles possessing sufficient absorption property which contributes in 

liquid absorption, e.g. various grades of microcrystalline cellulose (MCC) (Spireas 2002), 
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starch (Spireas 2002), lactose (Javadzadeh, Siahi et al. 2007), sorbitol (Javadzadeh, Siahi et al. 

2007), dibasic calcium phosphate (DCP) (Yadav and Yadav 2009) etc.  

 

 Microcrystalline cellulose (MCC) is a purified, partially depolymerized cellulose 

that occurs as a white, odorless, tasteless, crystalline powder composed of porous particles. It 

is commercially available in different particle sizes and moisture grades that have different 

properties and applications. The specific surface areas and particle sizes of carrier materials 

are important parameters for the optimization of LS systems. 

 

MCC is widely used in pharmaceuticals, primarily as a binder/diluent in oral tablet and 

capsule formulations where it is used in both wet granulation and direct compression 

processes.
 
In addition to its use as a binder/diluent, MCC has some lubricant

 
and disintegrant 

properties that make it useful in tableting (Handbook of Pharmaceutical Excipients 2009). 

 

MCC was successfully used as carrier material in LS preparation of drugs such as 

furosemide (Akinlade, Elkordy et al. 2010), griseofulvin (Hentzschel, Alnaief et al. 2011), 

hydrocortisone (Spireas, Sadu et al. 1998), irbesartan (Boghra, Patel et al. 2011), pioglitazone 

hydrochloride (Gandhi, Sawant et al. 2013), piroxicam (Javadzadeh, Siahi et al. 2005), 

rofecoxib (El-Say, Samy et al. 2010), tamoxifen citrate (Walunj, Sharma et al. 2012) to name a 

few. 

 

1.1.3.3   Coating materials 

The particles of the coating materials are flow enhancing, highly adsorptive particles, 

e.g. silica of various grades like medium surface fumed silica, colloidal silicon dioxide (CSD), 

synthetic amorphous silica, calcium silicate (CS), magnesium aluminometasilicate (MAMS). 

These particles contribute in covering the wet carrier particles and displaying a dry looking 

powder by adsorbing any excess liquid (Spireas and Bolton 1999; Spireas and Bolton 2000; 

Spireas 2002). The coating material is required to cover the surface and so maintain the 

powder flowability (Yadav and Yadav 2010).  
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Colloidal silicon dioxide (CSD), a submicroscopic fumed silica is a suitable coating 

material for LS systems. Its specific surface area is 100–400 m
2
/g depending on grade. The 

specific surface area of Aerosil
®

 200 is 200 ± 25 m
2
/g. Primary particle size is 7–16 nm. 

Aerosil
®
 forms loose agglomerates of 10–200 µm (Handbook of Pharmaceutical Excipients 

2009). 

 

CSD is widely used in pharmaceuticals, cosmetics and food products. Its small particle 

size and large specific surface area give it desirable flow characteristics that are exploited to 

improve the flow properties of dry powders
 
in a number of processes such as tableting

 
and 

capsule filling.  

 

CSD was successfully used as coating material in LS preparation of drugs such as 

carvedilol (Pardhi, Shivhare et al. 2010), hydrocortisone (Spireas, Sadu et al. 1998), irbesartan 

(Boghra, Patel et al. 2011), pioglitazone hydrochloride (Gandhi, Sawant et al. 2013), 

piroxicam (Javadzadeh, Siahi et al. 2005), rofecoxib (El-Say, Samy et al. 2010), tamoxifen 

citrate (Walunj, Sharma et al. 2012), valsartan (Lakshmi, Srinivas et al. 2011), to name a few. 

 

Calcium silicate (CS) has large micropores and excellent tabletability, also leads to a 

physical stabilization of amorphous drugs with enhanced drug release. CS possesses many 

intraparticle pores on its surface. Moreover, it has been shown that this silicate is also suitable 

for adsorption of liquid (Sharma, Sher et al. 2005). It can absorb up to 2.5 times its weight of 

liquids and still remain a free flowing powder (Handbook of Pharmaceutical Excipients 2009). 

CS is used as a filler aid for oral pharmaceuticals. It has also been used in pharmaceutical 

preparations as an antacid.  

 

 CS is used as coating material in LS preparation of some drugs. Repaglinide is widely 

used for the treatment of diabetes. It is a poorly water soluble drug which has poor absorption 

in the upper intestinal tract and has a very low bioavailability (Shams, Sayeed et al. 2011). The 

LS compacts of repaglinide were prepared using CS as a coating material (El-Houssieny, 

Wahman et al. 2010).   
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Tocopherol acetate (vitamin E acetate) is an oil soluble liquid drug. Hentzschel et al. 

investigated the suitability of various novel coating materials such as CS (Florite
®
), MAMS 

(Neusilin
® 

US2) for LS compacts of tocopherol acetate (Hentzschel, Sakmann et al. 2011). 

 

Neusilin
®
 US2, a synthetic amorphous form of MAMS which is prepared by spray 

drying and provides an extremely large specific surface area (300 m
2
/g) and good flow and 

tableting properties. The high porosity and large specific surface area of Neusilin
®
 allow a 

high liquid adsorption capacity (Hentzschel, Sakmann et al. 2011). This may be of interest 

especially for the preparation of LS compacts. Neusilin
®
 makes hard tablets at low 

compression forces compared to similar binders. Primary particle size of neutral grade of 

Neusilin
®
 US2 is 44-177 µm.  It is a multifunctional excipient that can be used in both direct 

compression and wet granulation of solid dosage forms. Neusilin
®
 is widely used for 

improvement of the quality of tablets, powders, granules and capsules. 

  

Neusilin
® 

was used as coating material in LS preparation of some drugs.                   

Cyclosporine-A is a fat soluble, hydrophobic polypeptide metabolite of fungus beauveria 

nivea (formerly tolypocladium inflatum gams). It is a hydrophobic cyclic peptide built from 

non-mammalian aminoacids with low oral bioavailability; which is one of first line 

immunosuppressive drugs used to prevent transplant rejection and to treat autoimmune 

diseases. The self-emulsifying cyclosporine-A tablets were prepared by the LS compaction 

technique using MAMS (Neusilin
®
 S1) as a coating material (Zhao, Zhou et al. 2011).  

 

Griseofulvin is an antifungal drug which has very low solubility in water. The LS 

compacts of griseofulvin were prepared using colloidal silica and MAMS (Neusilin
® 

US2)
 
as 

coating materials (Hentzschel, Alnaief et al. 2011). 

 

1.1.3.4   Disintegrants 

Disintegrants indirectly affect the dissolution parameter since the immediate next step 

is dissolution (Kavitha, Raju et al. 2011). To aid dissolution, tablet formulations generally 

require rapid disintegration, which can be facilitated by the addition of superdisintegrants.  
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Once a tablet disintegrates, the solubility properties of the drug, either alone or assisted 

by other formulation ingredients, determine the drug's subsequent dissolution rate and extent  

of release. The solubility properties of water-soluble drugs result in rapid and high-level drug 

release, but with poorly water soluble drugs, other ingredients in the formulation, including the 

disintegrant, play a key role in determining the drug dissolution characteristics exhibited by 

the finished formulation (Balasubramaniam and Bee 2009). Sodium starch glycolate (SSG), 

croscarmellose sodium (CCS), pregelatinized starch, crospovidone (CP) etc. are most 

commonly used disintegrants (Rajesh, Rajalakshmi et al. 2011). 

   

Sodium starch glycolate (SSG) is widely used in oral pharmaceuticals as a 

disintegrant in capsule and tablet formulations.
 
It is commonly used in tablets prepared by 

either direct compression or wet granulation processes.
 

The mechanism by which 

disintegration action takes place is rapid absorption of water and swell leading to an enormous 

increase in volume of granules which result in rapid and uniform disintegration. The higher 

dissolution rates observed with superdisintegrants may be due to rapid disintegration and fine 

dispersion of particles formed after disintegration (Kumar and Nirmala 2012). 

 

SSG is successfully used as disintegrant in LS preparation of drugs such as atorvastatin 

calcium (Gubbi and Jarag 2010), bromhexine hydrochloride (Gubbi and Jarag 2009), 

diazepam (Manogar, Hari et al. 2011), irbesartan (Boghra, Patel et al. 2011), pioglitazone 

hydrochloride (Gandhi, Sawant et al. 2013) etc.  

 

1.1.3.5   Drug candidates 

LS technique has been successfully employed to improve the dissolution rate of poorly 

water soluble or water insoluble drugs which belong to Biopharmaceutical Classification 

System (BCS) Class II or IV. Some of developed LS systems are listed in Table 1.1. These LS 

systems are the compacts based on the formulation technique used.  
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Table1.1 List of some of developed liquisolid systems to enhance dissolution rate 

Drug  Therapeutic class/ 

BCS class 

Liquid vehicle Carrier / Coating materials Reference 

Aceclofenac Nonsteroidal 

antiinflammatory drug 

(NSAID)/Class II 

PEG 400 MCC, DCP /  

Hydroxypropylmethyl 

cellulose (HPMC) 

Yadav, Nighute et al. 2009 

Amlodipine besylate Antihypertensive/            

Class II 

PG MCC / Silica Kaur, Bala et al. 2013 

Atorvastatin calcium Lipid lowering agent/ 

Class II 

PEG 400, PG MCC / Silica Gubbi and Jarag 2010 

Bromhexine HCl Mucolytic agent/               

Class II 

PEG 400, PG MCC / Silica Gubbi and Jarag 2009 

Candesartan cilexetil Antihypertensive/   

Class II 

Polysorbate 80 MCC / Silica Sayyad, Tulsankar et al. 2013 

Carbamazepine Antiepileptic/Class II PEG 200 MCC, Lactose / Silica Javadzadeh, Navimipour et al. 

2007 

Carbamazepine Antiepileptic/Class II PG MCC / Silica Tayel, Soliman et al. 2008 

Carvedilol Nonselective beta 

blocker/alpha 1 blocker/ 

Class II 

PEG 400 MCC / Silica Pardhi, Shivhare et al. 2010; 

Burra and Reddy 2012 

 



11 

 

Drug  Therapeutic class/ 

BCS class 

Liquid vehicle Carrier / Coating materials Reference 

Clofibrate                  

(liquid drug) 

Lipid lowering agent - MCC / Silica Spireas 2002 

Cyclosporine-A 

 

 

 

Immunosuppressive/ 

Class II 

Lauroglycol
®
 FCC, 

Maisine
®
 35-1, 

PEG-35 castor oil,  

PEG 400 

MCC / MAMS Zhao, Zhou et al. 2011 

Diazepam Antiepileptic, 

antianxiety agent/                    

Class II 

PEG 600 MCC / Silica Manogar, Hari et al. 2011 

 

Domperidone Antidopaminergic/ 

Class II 

Polysorbate 20, 

Polysorbate 40, 

Polysorbate 60, 

Polysorbate 80, PG, 

PEG 200, PEG 400 

MCC / Silica Ibrahim, El-Faham et al. 2011 

Escitalopram oxalate Antidepressant/Class II PG MCC / Silica Kumbhar, Mujgond et al. 2013 

Etoricoxibe NSAID/Class II PEG 400 MCC / Silica Yala, Srinivasan et al. 2012 

Ezetimibe Lipid lowering agent/ 

Class II 

PEG 400, Polysorbate 

80, Transcutol
®
 HP, 

Labrasol
®
   

MCC / Silica Khanfar, Salem et al. 2013 
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Drug  Therapeutic class/ 

BCS class 

Liquid vehicle Carrier / Coating materials Reference 

Famotidine Antiulcer/Class IV PG MCC / Silica Fahmy and Kassem 2008 

Fenofibrate Antihyperlipidemic/ 

Class II 

PG MCC / Silica Karmarkar, Gonjari et al. 2009 

Fenofibrate Antihyperlipidemic/  

Class II 

PG, PEG 600 MCC / Silica Sabale, Grampurohit et al. 2012 

Furosemide High-ceiling loop 

diuretic/Class IV 

PEG 400,                 

Synperonic
®
 PE/L81, 

Caprol
®
 PGE-860  

MCC / Silica Akinlade, Elkordy et al. 2010 

Furosemide 

 

High-ceiling loop 

diuretic/Class IV 

Polysorbate 80 MCC / Silica Burra and Galipelly 2010 

Gemfibrozil  Antilipidemic/Class II Polysorbate 80 MCC / Silica Spireas 2002 

 

Glibenclamide Antidiabetic/Class II PEG 400 MCC / Silica Darwish and El-Kamel 2001 

Glimepiride Antidiabetic/Class II PG MCC / Silica Singh, Prakash et al. 2011 

Glipizide Antidiabetic/Class II PG, PEG 200, 

PEG 400 

MCC / Silica Mahajan, Dhamne et al. 2011 

Griseofulvin Antifungal/Class II PEG 300 MCC, MAMS /                             

Colloidal silica, MAMS 

Hentzschel, Alnaief et al. 2011 

Griseofulvin Antifungal/Class II PEG 400 MCC / Silica Yadav and Yadav 2010 
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Drug  Therapeutic class/ 

BCS class 

Liquid vehicle Carrier / Coating materials Reference 

Hydrochlorothiazide Diuretic, 

antihypertensive/     

Class IV 

PEG 200 MCC / Silica Khaled, Asiri et al. 2001 

Hydrochlorothiazide Diuretic, 

antihypertensive/     

Class IV 

PEG 400 MCC / Silica Spireas 2002  

Hydrocortisone Corticosteroid/Class II PG MCC / Silica Spireas, Sadu et al. 1998;                 

Spireas 2002 

Ibuprofen NSAID/Class II PEG 300 MCC / Silica Hentzschel, Alnaief et al. 2010 

Ibuprofen NSAID/Class II PEG 400 MCC / Silica Chuahan, Patel et al. 2012 

Indomethacin NSAID/Class II  PG MCC / Silica Nokhodchi, Javadzadeh et al. 

2005 

Indomethacin NSAID/Class II PEG 400 MCC, DCP / HPMC Yadav and Yadav 2009 

Indomethacin NSAID/Class II PEG 200, Glycerin MCC / Silica Saeedi, Akbari et al. 2011 

Irbesartan Antihypertensive/    

Class II 

PEG 400 MCC / Silica Boghra, Patel et al. 2011 

Ketoprofen NSAID/Class II PG, Polysorbate 80 MCC, DCP / Silica Nagabandi, Tadikonda et al. 2011 

Ketoprofen NSAID/Class II PEG MCC, DCP, Starch, Lactose / 

Silica 

Nagabandi, Tadikonda et al. 2011 
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Drug  Therapeutic class/ 

BCS class 

Liquid vehicle Carrier / Coating materials Reference 

Lamotrigine Antiepileptic/Class II PEG 400 MCC / Silica Yadav and Yadav 2010 

Lansoprazole Proton-pump 

inhibitor/Class II 

Polysorbate 80 MCC / Silica Kasture, Gondkar et al. 2011 

Levothyroxine 

sodium 

Thyroid hormone/   

Class II 

Olive oil, Soybean oil MCC / Silica Spireas 2005 

Loratadine Antihistaminic/Class II PG MCC / Silica El-Hammadi and Awad 2011 

Meloxicam NSAID/Class II PG, PEG 400, 

Polysorbate 80 

MCC / Silica El-Gizawy 2007 

Meloxicam NSAID/Class II PEG 400 MCC / Silica Emmadi, Sanka et al. 2010 

Metaxalone Muscle relaxant/       

Class II 

PEG 400,                

Polysorbate 80, 

MCC  Spireas 2011 

Methyclothiazide Diuretic, 

antihypertensive/    

Class II 

PEG 400 MCC / Silica Spireas, Wang et al. 1999;  

Spireas 2002 

Naproxen  NSAID/Class II PEG 400,  

Cremophor
®
 EL, 

Synperonic
®
 PE/L61 

MCC / Silica Tiong and Elkordy 2009 

Nifedipine  Vasodilator/Class II PEG 400 MCC / Silica Spireas 2002 
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Drug  Therapeutic class/ 

BCS class 

Liquid vehicle Carrier / Coating materials Reference 

Nifedipine  Vasodilator/Class II PG, PEG 400, 

Polysorbate 80 

MCC / Silica Annapureddy, Preetha et al. 2013 

Nimesulide NSAID/Class II PG, PEG 400, 

Polysorbate 80 

MCC / Silica Hassan and El-Saghir 2011 

Pioglitazone HCl Antidiabetic/Class II  PG MCC / Silica Gandhi, Sawant et al. 2013 

Piroxicam NSAID/Class II Polysorbate 80 MCC / Silica Javadzadeh, Siahi et al. 2005; 

Javadzadeh, Siahi et al. 2007 

Piroxicam NSAID/Class II PG MCC / Silica Javadzadeh, Shariati et al. 2009 

Prednisolone Glucocorticoid/Class II PG, PEG 400, Glycerin, 

Polysorbate 80 

MCC / Silica Spireas and Sadu 1998 

Prednisone Glucocorticoid/         

Class II 

PG MCC / Silica Spireas 2002 

Repaglinide Antidiabetic/Class II Polysorbate 80 MCC / Calcium silicate El-Houssieny 2008;                             

El-Houssieny, Wahman et al. 

2010 

Rifampicin NSAID/Class II Polysorbate 80 MCC / Silica Rajesh, Pinkesh et al. 2013 

Rofecoxib NSAID/Class II PEG 600 MCC / Silica El-Say, Samy et al. 2010                      

Rosuvastatin 

calcium 

Cholesterol lowering 

agent/Class II 

PG, PEG 400, 

Polysorbate 80 

MCC / Silica Kapure, Pande et al. 2013                      
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Drug  Therapeutic class/ 

BCS class 

Liquid vehicle Carrier / Coating materials Reference 

Simvastatin Hypolipidemic/Class II PG MCC / Silica Burra, Kudikula et al. 2011 

Spironolactone Steroid/Class II PEG 400 MCC / Silica Spireas 2002 

Tamoxifen citrate Antiestrogenic/Class II PG MCC / Silica Walunj, Sharma et al. 2012 

Telmisartan Antihypertensive/            

Class II 

PEG 400 MCC / Silica Swamy and Shiny 2013 

Tocopherol acetate 

(liquid drug) 

Vitamin supplement - MCC, MAMS, Fujicalin
®

 / 

Colloidal silica, Calcium 

silicate, MAMS 

Hentzschel, Sakmann et al. 2011 

Valsartan  Antihypertensive/             

Class II 

PG, PEG, Glycerine MCC / Silica Lakshmi, Srinivas et al. 2011 

Valsartan  Antihypertensive/              

Class II 

PG MCC, Lactose, DCP / Silica Chella, Shastri et al. 2012 

     

Caprol
®
 PGE-860: 1,2,3-propanetriol homopolymer (9Z)-9-octadecenoate. 

Cremophor
®
 EL: Polyoxyl 35 castor oil. 

Fujicalin
®
: Spherically granulated dicalcium phosphate anhydrous.  

Labrasol
®
: Capryl capryol polyoxy glycerides. 

Lauroglycol
®
 FCC: Propylene glycol monolaurate (type 1). 

Maisine
®
 35-1: Glyceryl monolinoleate. 
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Synperonic
®
 PE/L61: Poloxamer 181. 

Synperonic
®
 PE/L81: Polyoxyethylene-polyoxypropylene block copolymer.  

Transcutol
®
 HP:  Diethylene glycol monoethyl ether.
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1.1.4 Liquid loading capacity of powders 

A powder can retain only limited amounts of liquid while maintaining acceptable flow 

and compression properties. To calculate the required amounts of powder excipients (carrier 

and coating materials) a mathematical approach for the formulation of LS systems has been 

developed by Spireas (Spireas and Sadu 1998; Spireas 2002). This approach is based on the 

flowable (Ф-value) and compressible (Ψ-number) liquid retention potential introducing 

constants for each powder/liquid combination. The Ф-value of a powder represents the 

maximum amount of a given non-volatile liquid that can be retained inside its bulk [w/w] 

while maintaining an acceptable flowability. The flowability may be determined from the 

powder flow or by measurement of the angle of repose.  

 

The Ψ-number of a powder is defined as the maximum amount of liquid the powder 

can retain inside its bulk [w/w] while maintaining acceptable compactability resulting in 

compacts of sufficient hardness with no liquid leaking out during compression. The 

compactability may be determined by the so-called “pactisity” which describes the maximum 

(plateau) crushing strength of a one gram tablet compacted at sufficiently high compression 

forces. The terms “acceptable flow and compression properties” imply the desired and thus 

preselected flow and compaction properties which must be met by the final LS formulation. 

 

Depending on the excipient ratio (R) of the powder substrate an acceptably flowing 

and compressible LS system can be obtained only if a maximum liquid load on the carrier 

material is not exceeded. This liquid/carrier ratio is termed “liquid load factor (Lf)” and is 

defined as the ratio between the weights of liquid formulation (W) and the carrier material (Q) 

in the system: 

 

Lf  = W / Q      

 

R represents the ratio between the weights of the carrier (Q) and the coating (q) 

material present in the formulation: 
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R = Q / q       

 

The Lf that ensures acceptable flowability  (
Φ

Lf ) can be determined by: 

 

Φ
Lf  =  Φ + φ ⋅(1/R)  

 

Where Φ and φ are the Ф-values of the carrier and coating materials, respectively 

(Spireas and Sadu 1998; Spireas 2002). 

 

Similarly, the Lf for production of LS systems with acceptable compactability (
Ψ
Lf) can 

be determined by: 

 

Ψ
Lf  =  Ψ + ψ ⋅(1/R)  

  

Where Ψ and ψ are the Ψ-numbers of the carrier and coating materials, respectively. 

 

The optimum liquid load factor (L0) required to obtain acceptably flowing and 

compressible LS systems are equal to either 
Φ
Lf or 

Ψ
Lf whichever represents the lower value. 

 

As soon as the L0 is determined, the appropriate quantities of carrier (Q0) and coating 

(q0) material required to convert a given amount of liquid formulation (W) into an acceptably 

flowing and compressible LS system may be calculated as follows: 

 

Q0 = W / L0      

and 

q0 = Q0 / R      

 

The validity and applicability of the above mentioned principles have been tested and 

verified by producing LS compacts possessing acceptable flow and compaction properties 

(Spireas 2002). 
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1.1.5 Preparation and optimization of LS systems  

The new LS technique may be applied to formulate liquid medications (i.e., oily liquid 

drugs and solutions, suspensions or emulsions of poorly water soluble solid drugs carried in 

non-volatile liquid vehicles) into powders suitable for tableting or encapsulation. Simple 

blending of such liquid medications with calculated quantities of a powder substrate consisting 

of certain excipients referred to as the carrier and coating powder materials, can yield dry 

looking, non adherent, free flowing and readily compressible powders (Spireas and Bolton 

1999). The liquid portion, which can be a liquid drug, a drug suspension or a drug solution in 

suitable non-volatile liquid vehicles, is incorporated into the porous carrier material. Once the 

carrier is saturated with liquid, a liquid layer is formed on the particle surface which is 

instantly adsorbed by the fine coating material particles. The coating material provides the 

conversion from a wet to a dry surface and gives the LS system desirable flow properties 

(Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Schematic representation of liquisolid systems 

 

To prepare a LS system, first the drug is dispersed or dissolved in the non-volatile 

solvent, the carrier and coating material mixture in a ratio is then added to the liquid 

medication. The liquid medication is now converted to powder form. Various excipients such 

as disintegrants and lubricants may be added to the LS compacts (Figure 1.3). Before 

preparing into compacts pre-compression studies have to be performed.  

 

 

 

 

 

 

 

Liquid (liquid drug, drug 

solution, drug suspension) 

Carrier particles Incorporation of liquid 

Carrier saturated with 

liquid 
Liquid layer on particle surface 

Addition of coating 

particles 

Conversion from a wet to a dry 

surface 



22 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 

Figure 1.3 Schematic outline of the steps involved in the preparation of liquisolid systems 
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The LS technology has been successfully applied to low dose, poorly water soluble 

drugs. The formulation of a high dose, poorly soluble drug is one of the limitations of the LS 

technology. As the release rates are directly proportional to the fraction of molecularly 

dispersed drug in the liquid formulation a higher drug dose requires higher liquid amounts for 

a desired release profile.   

 

Moreover, to obtain LS systems with acceptable flowability and compressibility, high 

levels of carrier and coating materials are needed. However, this results in an increase in tablet 

weight ultimately leading to tablet sizes which are difficult to swallow. Therefore, to 

overcome this and various other problems of the LS technology several formulation 

parameters may be optimized (Table 1.2).  

 

Table 1.2 Optimization of some formulation parameters for liquisolid 

 systems with immediate drug release 

Formulation parameter Optimization Effect 

Liquid vehicle  High drug solubility in the 

vehicle 

Increased fraction of the 

molecularly dispersed drug (FM) 

Carrier and coating 

materials 

High specific surface area Increased liquid load factor (Lf) 

Excipient ratio (R) High R value Fast disintegration, inhibition of 

precipitation 

 

1.1.6 Characterization of LS systems  

1.1.6.1     Preformulation studies 

Before formulating the LS systems preformulation studies should be performed first, 

these include; solubility studies, determination of angle of slide, calculation of liquid load 

factor, determination of flowable liquid retention potential and LS compressibility test. 
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Solubility studies 

To select the best non-volatile solvent for dissolving or suspending the drug in liquid 

medication, solubility studies are carried out by preparing saturated solutions of drug by 

adding excess of drug into non-volatile solvents and shaking them on shaker for specific time 

period under constant vibration. After this, the solutions are filtered and analyzed (Kulkarni, 

Aloorkar et al. 2010).  

 

Determination of angle of slide 

Powder excipient or its mixture is accurately weighed and placed at one end of a metal 

plate (with a polished surface). This end is raised gradually until the plate makes an angle with 

the horizontal at which the powder is about to slide. This is called the angle of slide (Ɵ). It is 

taken as a measure for the flow properties of powders. An angle of slide corresponding to 33
0
 

is regarded as optimal flow behaviour (Spireas, Jarowski et al. 1992). 

 

Calculation of liquid load factor  

Liquid load factor (Lf) is defined as the ratio of weight of the liquid medication (W) to 

weight of the carrier material (Q) and it can be determined by using the following formula 

(Spireas and Bolton 2000; Spireas 2002). 

 

Lf  = W / Q      

 

W= Weight of liquid medication 

Q= Weight of carrier material 

 

Determination of flowable liquid retention potential 

The term "flowable liquid retential potential" (Φ value) of a powder material describes 

its ability to retain a specific amount of liquid while maintaining good flow properties. The Φ 

value is defined as the maximum weight of liquid that can be retained per unit weight of the 

powder material in order to produce an acceptably flowing liquid/powder admixture (Tayel, 

Soliman et al. 2008). 
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LS compressibility test 

LS compressibility test is used to determine Φ values and involves steps such as 

preparing carrier-coating material admixture systems, preparing several uniform liquid or 

powder admixtures, compressing each liquid or powder admixtures to tablets, assessing 

average hardness, determination of average liquid content of crushed tablets, as well as 

determining plasticity, sponge index and Φ value and Lf value (Spireas and Bolton 1999; 

Spireas 2002). 

 

1.1.6.2     Evaluation of LS systems 

1.1.6.2.1     Pre-compression evaluations 

In order to ensure the suitability of the selected excipients, Differential Scanning 

Calorimetry (DSC), X-Ray Diffraction (XRD), Fourier Transformed Infrared Spectroscopy 

(FTIR) and Scanning Electron Microscopy (SEM) studies are performed. In addition, 

flowability studies are also carried out to select the optimal formula for compression.  

 

Differential Scanning Calorimetry (DSC) 

It is used to determine the interactions between drug and excipients, which indicates 

the success of stability studies. The drug has a characteristic peak, absence of this peak in DSC 

thermogram indicates that the drug is in the form of solution in liquid formulation and it is 

molecularly dispersed within the system (Fahmy and Kassem 2008). DSC studies showed that 

clozapine exhibits a sharp endothermic peak at 182.67
0
 (Govda, Ram et al. 2012). 

 

 

X-Ray Diffraction (XRD) 

For characterization of the crystalline state, the XRD patterns are determined for drug, 

excipients used in formulation, physical mixture of drug and excipients, finally for the 

prepared LS system (Javadzadeh, Navimipour et al. 2007). Absence of constructive specific 

peaks of the drug in the LS X-ray diffractogram indicate that drug has almost entirely 

converted from crystalline to amorphous or solubilized form. Such lack of crystallinity in the 

LS system is understood to be as a result of drug solubilization in the liquid vehicle i.e., the 
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drug has formed a solid solution within the carrier matrix. This amorphization or solubilization 

of drug in the LS system may contribute to the consequent improvement in the apparent 

solubility and therefore the dissolution rate of the drug (Fahmy and Kassem 2008). XRD 

pattern of pure clozapine showed a characteristic peaks at 2θ
0 

= 10.52, 17.39, 19.36, 19.73, 

21.05, 21.44, 23.09 and 23.72 (Govda, Ram et al. 2012). 

 

Scanning Electron Microscopy (SEM) 

SEM is utilized to assess the morphological characteristics of the raw materials and 

drug-carrier systems
 
(Fahmy and Kassem 2008). 

 

Fourier Transformed Infrared Spectroscopy (FTIR) 

FTIR studies are performed to determine the chemical interaction between the drug 

and excipients used in the formulation. The presence of drug peaks in the formulation and 

absence of extra peaks suggest that there are no chemical interactions between the drug and 

the carrier when formed as LS system (Yadav, Nighute et al. 2009). 

 

Contact angle measurement 

For assessment of wettability, contact angle of LS tablets is measured according to the 

imaging method. The commonly used method is to measure contact angle directly for a drop 

of liquid resting on a plane surface of the solid, the so-called imaging method. A saturated 

solution of the drug in dissolution media is prepared and a drop of this solution is put on the 

surface of tablets. The contact angles are calculated by measuring the height and diameter of 

sphere drop on the tablet
 
(Javadzadeh, Navimipour et al. 2007). 

 

Flow behaviour 

 Flow property of a powder is of major importance in the production of tablet dosage 

forms in order to attain a uniform feed and reproducible filling of tablet dies. Angle of repose, 

Carr’s index, Hausner’s ratio and compressibility index are used in order to ensure the flow 

properties of the powders (Banker and Anderson 1987). 
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1.1.6.2.2     Post-compression evaluations 

 The formulated LS systems are evaluated for post-compression parameters such as;  

-  Weight variation 

- Drug content / content uniformity 

- Hardness 

- Thickness and diameter 

- Friability 

- Disintegration 

- In vitro dissolution studies 

- In vivo evaluation 

- Stability studies 

(Kavitha, Raju et al. 2011; Lakshmi, Kumari et al. 2012) 

 

Evaluation parameters of the tablets mentioned in the Pharmacopoeias need to be 

assessed, along with some special tests are discussed here: 

 

Stability studies 

To obtain information on the stability of LS systems, the effects of storage on the 

release profile and the crushing strength of LS compacts were investigated. Stability studies of 

LS systems containing atorvastatin calcium (40 °C / 75% RH, 6 months) (Gubbi and Jarag 

2010), carbamazepine (25 °C / 75% RH, 6 months) (Javadzadeh, Navimipour et al. 2007), 

ezetimibe (30 
0
C / 60% RH, 1 month) (Khanfar, Salem et al. 2013), glimepiride (25 °C / 75% 

RH, 6 months) (Singh, Prakash et al. 2011), hydrocortisone (ambient conditions, 10 months) 

(Spireas 2002), indomethacin (25 °C / 75% RH, 12 months) (Javadzadeh, Siahi et al. 2007),  

naproxen (20 °C / 76% RH, 4 weeks) (Tiong and Elkordy 2009) and piroxicam (25 °C / 75% 

RH, 6 and 9 months, respectively) (Javadzadeh, Siahi et al. 2007;  Javadzadeh, Shariati et al. 

2009) showed that storage at different conditions neither had an effect on the hardness nor on 

the release profiles of LS compacts. This indicates that the LS technology is a promising 

technique to enhance the release rate without having any physical stability issues. 
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In vivo evaluation 

The LS technology is a promising approach for the enhancement of drug release of 

poorly water soluble or practically water insoluble drugs. Bioavailability assessment is 

required for LS technique, because it was proved that enhancing the drug releases from the 

dosage form by determination of in vitro release studies. So, this parameter should establish 

for determination of the efficacy of the formulation. Some researchers have been evaluated in 

vivo absorption and bioavailability characteristics of LS compacts as described in Table 1.3.  
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Table 1.3 List of some in vivo studies 

Drug  Therapeutic class Results Reference 

Carbamazepine Antiepileptic (sodium 

channel blocker) 

In vivo testing demonstrated that the bioavailability of 

carbamazepine from the LS capsules was enhanced by 

182.7%. The study also showed that a lower drug dose can 

be administrated using LS capsules to achieve similar 

clinical effects but minimize the associated adverse effects.  

Chen, Wang et al. 2012 

Pioglitazone HCl Antidiabetic It was found that the relative bioavailability of pioglitazone 

HCl from the LS tablets was significantly higher than that 

from the commercial tablets. In addition, the in vivo 

reduction of blood glucose level through the optimized LS 

formula was greater than that of marketed product. 

Gandhi, Sawant et al. 2013 

Repaglinide Antidiabetic The study showed that the relative bioavailability of 

repaglinide from the LS compacts was significantly higher 

than that from the commercial tablets. The results of the 

glucose tolerance test showed that the blood glucose level 

was decreased significantly after the commercial drug 

(percent change, 18.1%) while in groups treated with the LS 

formulation the decrease was highly significant with a 

percent change of 29.98%. 

El-Houssieny, Wahman et al.  

2010 
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1.1.7 Sustained release with LS formulations 

Development of sustained release oral dosage forms is beneficial for optimal therapy in 

terms of efficacy, safety and patient compliance. Ideally, a controlled release dosage form will 

provide therapeutic concentration of the drug in the blood that is maintained throughout the 

dosing interval. To achieve this aim, several methods have been developed such as preparation 

of salt form of drug, coating with special materials and incorporation of drugs into 

hydrophobic carriers. LS technique is a novel method that can change the dissolution rate of 

drugs (Javadzadeh, Musaalrezaei et al. 2008). If hydrophobic carriers such as acrylic resin 

polymers (Eudragit
®
 RL and RS) are used instead of hydrophilic carriers in LS systems, 

sustained release formulations can be obtained. Some drugs have been formulated as LS 

sustained release systems. Different liquid vehicles, carriers and coating materials were used 

to formulate these drug delivery systems (Table 1.4). 
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Table1.4 (a) List of some of developed sustained release liquisolid systems 

Drug  Therapeutic 

class 

Liquid vehicle  Carrier material  Coating 

material 

Additional 

retardant agent 

Reference 

Lornoxicam NSAID  Polysorbate 80  

 

MCC, Eudragit
®
 RL PO, 

Eudragit
®
 S-100, 

Chitosan, Sodium CMC 

Silica - Ganesh, Deecaraman 

et al. 2011 

Metoprolol 

succinate 

Antihypertensive, 

antiarrhythmic  

Polysorbate 80  

 

MCC Silica HPMC Jagannath, Maroti et 

al. 2013 

Propranolol 

HCl 

β-adrenergic 

blocking agent  

Polysorbate 80  Eudragit
®
 RL and RS Silica HPMC (4000 

mPa.s) 

Javadzadeh, 

Musaalrezaei et al. 

2008 

Theophylline Antiasthmatic Polysorbate 80 Eudragit
®
 RL and RS Silica HPMC E4M Nokhodchi, Aliakbar 

et al. 2010 

Tramadol HCl Opioid analgesic  PG MCC Silica HPMC K4M     

 

Karmarkar, Gonjari 

et al. 2010 

Venlafaxine 

HCl 

Antidepressant PG, PEG 400, 

polysorbate 80 

Eudragit
®
 RS PO Silica HPMC Khanfar, Salem et al. 

2013 

Eudragit
® 

RL: Acrylic resin RL polymer, Eudragit
®
 RL PO: A copolymer of ethyl acrylate, methyl methacrylate and a low content of 

methacrylic acid ester with quaternary ammonium groups, Eudragit
®
 RS: Acrylic resin RS polymer, Eudragit

® 
S-100: Anionic copolymer 

based on methacrylic acid and methyl methacrylate, HPMC: Hydroxypropylmethyl cellulose, Sodium CMC: Sodium carboxymethyl 

cellulose. 
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Table1.4 (b) List of some of developed sustained release liquisolid systems 

Drug  Results Reference 

Lornoxicam The results showed retardation in the release rate of the drug from the LS compacts 

and the kinetic studies showed that the sustained release LS formulations followed 

zero-order.  

Ganesh, Deecaraman et al. 2011 

Metoprolol 

succinate 

The study showed the LS technique can be optimized for the production of sustained 

release matrices of water-soluble drugs. LS formulations containing Polysorbate 80 

followed zero-order release kinetics. In this study, wet granulation technique showed 

more retardation properties compared to direct compression technique.   

Jagannath, Maroti et al. 2013 

Propranolol HCl Sustained release LS tablets prepared by wet granulation technique showed greater 

retardation properties in comparison with conventional matrix tablets and most of LS 

formulations followed zero-order release pattern. 

Javadzadeh, Musaalrezaei et  al. 

2008 

Theophylline The prepared LS compacts showed more sustained release behaviour as compared to  

simple sustained release matrix tablets and the results suggested that zero-order release 

can be achieved with LS formulations. 

Nokhodchi, Aliakbar et al. 2010 

Tramadol HCl The prepared LS compacts of water-soluble drug, tramadol HCl showed more 

sustained release behaviour as compared to marketed sustained release formulations. 

The release profiles of drug followed the Peppas model. 

Karmarkar, Gonjari et al. 2010 

 

Venlafaxine 

HCl 

The prepared LS formulations have shown a better sustained release effect in 

comparison with directly compressed tablets. The type of liquid vehicle was to found 

to affect the drug release significantly.   

Khanfar, Salem et al. 2013 
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1.1.8 Advantages and limitations of LS systems 

Some advantages and limitations of LS systems are listed in Table 1.5. 

 

Table 1.5 Advantages and limitations of liquisolid systems 

Advantages Limitations 

Poorly water soluble or water insoluble drugs can be 

formulated into LS systems. 

This technique is only for slightly*/very 

slightly water soluble** and practically 

water insoluble*** drugs. 

Better availability of an orally administered poorly 

water soluble drug is achieved when the drug is in 

solution form. 

In order to achieve acceptable 

flowability and compactability for LS 

powder formulation, high levels of 

carrier and coating materials should be 

added. This will increase the weight of 

tablets to above one gram which makes 

them difficult to swallow.  

Optimized rapid release LS tablets or capsules of 

poorly water soluble drugs exhibit enhanced in vitro 

and in vivo drug release as compared to their 

commercial counterparts. 

The LS systems have drug loading 

capacities and they require high 

solubility of drug in non-volatile liquid 

vehicles.  

Can be applied to formulate liquid medications such as 

oily liquid drugs. 

 

Enhanced bioavailability can be obtained as compared 

to conventional tablets. 

 

Drug release can be modified using suitable 

formulation ingredients. 

 

Can be used in controlled drug delivery and zero-order 

release can be obtained. 

 

Drug can be molecularly dispersed in the formulation.  

Capability of industrial production is also possible.  
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Advantages Limitations 

Their production cost is lower than that of soft gelatine 

capsules, because the production of LS systems is 

similar to that of conventional tablets. 

 

 

(Saharan, Kukkar et al. 2009; Saharan, Kukkar et al. 2009; Kulkarni, Aloorkar et al. 2010; 

Bindu, Kusum et al. 2010; Sharma and Jain 2010; Gavali, Pacharane et al.  2011; Rajesh, 

Rajalakshmi et al. 2011; Burra, Yamsani et al. 2011) 

 

* Slightly soluble: From 100 to 1000 parts solvent needed to dissolve 1 part solute 

** Very slightly soluble: From 1000 to 10 000 parts solvent needed to dissolve 1 part solute 

*** Practically insoluble or insoluble: More than 10 000 parts solvent needed to dissolve 1 

part solute (USP36-NF31, 2013).  

 

 

 

1.1.9 Conclusion 

LS technique is a promising alternative method for formulation of poorly water soluble 

or water insoluble solid drugs and liquid lipophilic drugs. LS compacts refer to formulations 

formed by conversion of solid state to liquid state, drug suspensions or drug solutions in non-

volatile solvents into dry, non-adherent, free flowing and compressible powder mixtures by 

blending the suspension or solution with selected carrier and coating materials. When the drug 

within the LS system is completely dissolved in the liquid vehicle, it is located in the powder 

substrate still in a solubilized state. Already the dissolved drug only needs to diffuse out of the 

formulation and the liquid component of the formulation act as a solubilizing aid to facilitate 

the wetting and dissolution of the undissolved particles. Thus, this shows improved release 

rates and greater bioavailability. This technique is also used to design sustained release 

systems by using hydrophobic carriers in LS systems.  

 



35 

 

1.2 Orally disintegrating tablets (ODTs) 

1.2.1 Overview 

For the past one decade, there has been an enhanced demand for more patient-friendly 

and compliant dosage forms. As a result, the demand for developing new technologies has 

been increasing annually (Hirani, Rathod et al. 2009). Since the development cost of a new 

drug molecule is very high, efforts are now being made by pharmaceutical companies to focus 

on the development of new drug dosage forms for existing drugs with improved safety and 

efficacy together with reduced dosing frequency and the production of more cost effective 

dosage forms.  

 

For most therapeutic agents used to produce systemic effects, the oral route still 

represents the preferred way of administration, owing to its several advantages and high 

patient compliance compared to many other routes (Valleri, Mura et al. 2004). Tablets and 

hard gelatin capsules constitute a major portion of drug delivery systems that are currently 

available. However, many patient groups such as the elderly, children and patients who are 

mentally retarded, uncooperative, nauseated or on reduced liquid-intake/diets have difficulties 

swallowing these dosage forms. Those who are traveling or have little access to water are 

similarly affected (Hanawa, Watanabe et al. 1995; Mallet 1996; Porter 2001). 

 

To fulfill these medical needs, pharmaceutical technologists have developed a novel 

oral dosage form known as “Orally Disintegrating Tablets (ODT)” which disintegrate rapidly 

in saliva, usually in a matter of seconds, without the need of water. Drug dissolution and 

absorption as well as onset of clinical effect and drug bioavailability may be significantly 

greater than those observed from conventional dosage forms (Seager 1998; Bradoo, Shahani et 

al. 2001; Sreenivas, Dandagi et al. 2005). 

 

Although chewable tablets have been on the market for some time, they are not the 

same as the new ODTs. Patients for whom chewing is difficult or painful can use these new 

tablets easily. ODTs can be used easily in children who have lost their primary teeth but do not 

have full use of their permanent teeth (Mizumoto, Masuda et al. 2005).  
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Recent market studies indicate that more than half of the patient population prefers 

ODTs to other dosage forms (Deepak 2004) and most consumers would ask their doctors for 

ODTs (70%), purchase ODTs (70%) or prefer ODTs to regular tablets or liquids (>80%) 

(Brown 2003). 

 

ODTs have been developed for numerous indications ranging from migraines (for 

which rapid onset of action is important) to mental illness (for which patient compliance is 

important for treating chronic indications such as depression and schizophrenia) (Ghosh, 

Chatterjee et al. 2005).  

 

1.2.2 Description of orally disintegrating (OD) dosage forms 

All fast disintegrating tablets approved by United States Food and Drug 

Administration (US FDA) are classified as “ODTs”. European Pharmacopoeia adopted the 

term “orodispersible tablets” for tablets that dispersed or disintegrate in less than 3 min in the 

mouth before swallowing. Such a tablet disintegrates into smaller granules or gel like 

structure, allowing easily swallowing by patients. As per recent US FDA guideline on ODT, 

disintegration time of ODT should have an in vitro disintegration time of approximate 30 s or 

less, when based on United States Pharmacopoeia (USP) disintegration test method or 

alternative.  

 

ODTs are different from conventional sublingual tablets, buccal tablets and lozenges, 

which require more than a minute to dissolve in oral cavity. Different OD dosage forms are as 

follows: 

 

Fast dissolving tablets and ODTs: Fast dissolving tablet (also known as fast 

dissolving multiparticulate, rapid dissolving, mouth dissolving, fast melting or orodispersible 

tablet) is an oral tablet that does not require water for swallowing (Hirani, Rathod et al. 2009).  

 

Recently, European Pharmacopoeia has used the term orodispersible tablets. This may 

be defined as uncoated tablets intended to be placed in the mouth where they disperse readily 
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within 3 min before swallowing (Fu, Yang et al. 2004). USP has also approved these dosage 

forms as orodispersible tablets. Thus, orodispersible tablets are solid unit dosage forms like 

conventional tablets, but are composed of superdisintegrants, which help them to dissolve the 

tablets within a minute in the mouth in the presence of saliva without any difficulty of 

swallowing. It offers several advantages with respect to its stability, administration without 

water, accurate dosing, easy manufacturing, small packaging size and handling (Seager 1998; 

Habib, Khankari et al. 2000; Brown 2003; Bandari, Mittapalli et al. 2008). Its ease of 

administration in the population especially for pediatric, geriatric or any mentally retarded 

persons makes it a very popular dosage form. Due to the presence of superdisintegrants, it gets 

dissolved quickly, resulting in rapid absorption of drug which in turn provides rapid onset of 

action (Behnke, Sogaard et al. 2003). Since the absorption is taking place directly from the 

mouth, so, bioavailability of the drug increases (Clarke, Brewer et al. 2003). Drugs present in 

orodispersible tablets are also not suffering from first pass metabolism. This type of drug 

delivery is becoming popular day by day due to its numerous advantages. 

 

US FDA Center for Drug Evaluation and Research (CDER) Nomenclature Standards 

Committee developed the following definition for an ODT as a new dosage form in 1998: “A 

solid dosage form containing medicinal substances which disintegrates rapidly, usually within 

a matter of seconds, when placed upon the tongue.” (US FDA CDER 2008). The drug is 

released, dissolved or dispersed in the saliva and then swallowed and absorbed across the GIT. 

 

Freeze-dried wafer: It is a quick-dissolving, thin matrix that contains a medicinal 

agent that does not need water for swallowing. This fragile dosage form requires unit-dose 

packaging to ensure physical stability. The wafer disintegrates instantaneously in the oral 

cavity and releases drug, which dissolves or disperses in the saliva. The saliva is swallowed 

and the drug is absorbed across the GIT (Dobetti 2000). 
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1.2.3   Selection of drug candidates 

Several factors must be considered when selecting drug candidates for delivery as 

ODT dosage forms. In general, an ODT is formulated as a bioequivalent line extension of an 

existing oral dosage form. Under this circumstance, it is assumed that the absorption of a drug 

molecule from the ODT occurs in the postgastric GIT segments, similar to the conventional 

oral dosage form. But this scenario may not always be the case. An ODT may have varying 

degrees of pregastric absorption and thus, the pharmacokinetic (PK) profiles will vary (Lies, 

Atherton et al. 1993).  Therefore, the ODT will not be bioequivalent to the conventional oral 

dosage form. For example, ODT formulations of selegiline, apomorphine and buspirone have 

significantly different PK profiles compared with the same dose administered in a 

conventional dosage form (Ostrander 2003; Pfister and Ghosh 2005). 

 

It is possible that these differences may, in part, be attributed to the drug molecule, 

formulation or a combination of both. If significantly higher plasma levels have been 

observed, pregastric absorption leading to the avoidance of first pass metabolism may play an 

important role. This situation may have implications for drug safety and efficacy, which may 

need to be addressed and assessed in a marketing application for an ODT. For example, safety 

profiles may be improved for drugs that produce a significant amount of toxic metabolites 

mediated by first pass liver metabolism and gastric metabolism and for drugs that have a 

substantial fraction of absorption in the oral cavity and segments of the pregastric GIT. Drugs 

having ability to diffuse and partition into the epithelium of the upper GIT (log P > 1 or 

preferable > 2); and those able to permeate oral mucosal tissue are considered ideal for ODT 

formulations. Patients who concurrently take anticholinergic medications may not be the best 

candidates for these drugs. Similarly, patients with Sjögren’s syndrome or dryness of the 

mouth due to decreased saliva production may not be good candidates for these tablet 

formulations. Drugs with a short half-life and frequent dosing, drugs which are very bitter or 

otherwise unacceptable taste because taste masking can’t be achieved or those which require 

controlled or sustained release are unsuitable candidates of rapidly dissolving oral dosage 

forms (Hirani, Rathod et al. 2009). 
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Researchers have formulated ODTs for various categories of drugs used for therapy in 

which rapid peak plasma concentration is required to achieve the desired pharmacological 

response. These include neuroleptics, cardiovascular agents, analgesics, antiallergics, 

antiepileptics, anxiolytics, sedatives, hypnotics, diuretics, antiparkinsonism agents, 

antibacterial agents, lipid regulating agents, etc. (Sharma 2008). 

 

1.2.4 Excipients used for the preparation of ODTs 

1.2.4.1     Overview 

 Mainly seen excipients in orally disintegrating dosage forms are diluents, 

superdisintegrants, sweeteners, flavoring agents, lubricants etc. To formulate orally 

disintegrating dosage forms, superdisintegrants and sweetening agents play an important role.  

 

1.2.4.2   Superdisintegrants 

Superdisintegrants increase the rate of disintegration and hence the dissolution rate. 

For the success of fast dissolving tablet, the tablet having quick dissolving property which is 

achieved by using the superdisintegrants (Nagar, Singh et al. 2011). SSG, CCS, pregelatinized 

starch, CP etc. are most commonly used disintegrants (Rajesh, Rajalakshmi et al. 2011). 

 

Crospovidone (CP) quickly wicks saliva into the tablet to generate the volume 

expansion and hydrostatic pressures necessary to provide rapid disintegration in the mouth. 

Unlike other superdisintegrants, which rely principally on swelling for disintegration, CP uses 

a combination of swelling and wicking. CP disintegrants are highly compressible materials as 

a result of their unique particle morphology (Mohanachandran, Sindhumol et al. 2011). 

 

1.2.4.3   Sweetening agents 

There are various drugs which do not taste good. Since ODTs dissolve in mouth, so 

proper taste masking is very much essential, especially in the case of bitter taste drugs. 

Various approaches have been explored in order to mask the bitter or any other bad taste of the 

drugs which include addition of sweeteners and flavors or encapsulating the unpleasant drugs 
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into the microparticles or by the adjustment of pH. The most popular and general approach is 

the addition of sweeteners and flavors (Day and Maiti 2010). Artificial sweeteners such as 

aspartame, sodium saccharin and bulking agents such as dextrose, sucrose, mannitol, sorbitol, 

xylitol etc. are commonly used for taste masking.  

 

 Sodium saccharin (SS) is an intense sweetening agent used in pharmaceutical 

formulations such as tablets, powders, suspensions, liquids etc. SS considerably more soluble 

in water than saccharin and is more frequently used in pharmaceutical formulations. Its 

sweetening power is approximately 300–600 times that of sucrose. SS enhances flavor 

systems and may be used to mask some unpleasant taste characteristics. 

 

SS is successfully used as sweetening-taste masking agent in orodispersible tablet 

preparation of drugs such as carbamazepine (Swamy, Shahidulla et al. 2008), domperidone 

(Islam, Haider et al. 2011), metrodinazole (Mohire, Yadav et al. 2009) etc.  

 

 Mannitol has a sweet taste, approximately as sweet as glucose and half as sweet as 

sucrose and imparts a cooling sensation in the mouth. Mannitol is widely used in 

pharmaceutical formulations and food products. In pharmaceutical preparations it is primarily 

used as a diluent (10–90% w/w) in tablet formulations, where it is of particular value since it is 

not hygroscopic and may thus be used with moisture sensitive active ingredients. Mannitol 

may be used in direct compression tablet applications,
 
for which the granular and spray dried 

forms are available or in wet granulations. It is also used as a sweetening agent. 

 

Pearlitol
®
 SD 200 is granulated mannitol, slightly sweet tasting, crystalline powder. It 

has a unique blend of exceptional physical and chemical stability. It has properties like 

flowable, excellent compressibility, non-hygroscopic, excellent chemical stability. Pearlitol 

SD dissolves very rapidly because of its porous crystalline particles (Chaudhary, Chaudhary et 

al. 2010). 
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Mannitol is successfully used as a sweetening agent in orodispersible tablet preparation 

of drugs such as levocetirizine (Gandhi, Mundhada et al. 2011), meloxicam (Singh and Singh 

2009), metoprolol tartrate (Shailaja, Latha et al. 2012), valsartan (Ibrahim and El-Setouhy 

2010) etc. 

 

1.2.5   Methods of preparation of ODTs 

There are several methods for the preparation of ODTs, but the prepared products vary 

in their properties depending on the method of preparation. The properties in which they vary 

are mechanical strength of the tablets, swallowability, bioavailability, drug dissolution in 

saliva, stability and to some extent taste (Bandari, Mittapalli et al. 2008). Various process of 

manufacturing of ODTs are molding, compaction, spray-drying, freeze-drying, cotton candy, 

mass extrusion and some special methods are melt granulation, phase transition, sublimation 

and effervescent techniques.  

 

Molding: Tablets formed by molding process are highly porous in structure, resulting 

in high rate of disintegration and dissolution. This process includes moistening, dissolving or 

dispersing the drugs with a solvent then molding the moist mixture into tablets by applying 

lower pressure in compression molding, but always lower than the conventional tablet 

compression. The powder mixture may be sieved prior to the preparation in order to increase 

the dissolution (Dobetti 2000). Molded tablets have low mechanical strength, which results in 

erosion and breakage during handling. 

 

Compaction: Conventional methods for the preparation of tablets such as dry 

granulation, wet granulation and direct compression are also exist for the preparation of ODTs. 

Some superdisintegrants which are used during preparation of ODTs are CP, CCS, SSG, 

sodium alginate and acrylic acid derivatives (Ozeki T., Yasuzawa et al. 2003; Yang, Fu et al. 

2004). Baclofen orodispersible tablets were prepared by direct compression method using CP 

and SSG as superdisintegrants (Radke, Jadhav et al. 2009). Even orodispersible tablets of 

carbamazepine were prepared by this method having MCC and CP (Swamy, Shahidulla et al. 

2008). In all the cases it has been found that preparation by compression method along with 
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addition of superdisintegrants in correct concentration obey all the properties of ODTs 

(Swamy, Shahidulla et al. 2008; Radke, Jadhav  et al. 2009). 

 

Spray-drying: ODTs are made up of hydrolyzed or unhydrolyzed gelatin as 

supporting agent for matrix, mannitol as bulk agent and SSG or CCS as disintegrating agent. 

Sometimes in order to improve the disintegration and dissolution, citric acid and sodium 

bicarbonate are used. Finally, the formulation is spray-dried in a spray-drier. ODTs prepared 

through this method are disintegrated in less than 20 s (Allen and Wang 2001). 

 

Freeze-drying: This is a very popular process for the preparation of ODTs. Tablets 

prepared by this process have low mechanical strength, poor stability at higher temperature 

and humidity, but glossy amorphous structure resulting in highly porous, light weight product. 

There are various patents on this particular technology (Habib, Khankari et al. 2000). 

 

Melt granulation: It is a unique method for the preparation of ODTs by incorporating 

superpolystate (Abdelbary, Prinderre et al. 2004). Superpolystates are hydrophilic waxy 

binders with a melting point 33-37 °C and hydrophilic-lipophilic balance (HLB) value is 9. 

They play a dual role as a binder that increases the physical resistance of the tablets and also 

as a disintegrant, which helps the tablet to melt in the mouth and solubilize rapidly leaving no 

residue in the mouth.  

 

Cotton candy process: This process is so named as it utilizes a unique spinning 

mechanism to produce floss-like crystalline structure, which mimic cotton candy. Cotton 

candy process involves formation of matrix of polysaccharides or saccharides by simultaneous 

action of flash melting and spinning. The matrix formed is partially recrystallized to have 

improved flow properties and compressibility. This candy floss matrix is then milled and 

blended with active ingredients and excipients and subsequently compressed to ODT. This 

process can accommodate high doses of drug and offers improved mechanical strength. 

However, high-process temperature limits the use of this process (Meyers, Battist et al. 1995). 
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Mass extrusion: This technology involves softening the active blend using the solvent 

mixture of water soluble PEG and methanol and subsequent expulsion of softened mass 

through the extruder or syringe to get a cylinder of a product into even segments using heated 

blade to form tablets (Gupta, Mittal et al. 2012). 

 

Phase transition process: Kuno et al. investigated this process by compressing 

powder containing two sugar alcohols (Kuno, Kojima et al. 2005). One with high and another 

with low melting point and they are heated at a temperature between their melting points and 

then compressed finally in order to get the tablets. Example of sugar alcohols are erythriol 

(melting point: 122 °C), xylitol (melting point: 93-95 °C), trehalose (melting point: 97 °C), 

and mannitol (melting point: 166 °C). After heating, tablet hardness is increased due to an 

increase in interparticle bonds or the bonding surface area in tablets induced by phase 

transition of lower melting point sugar alcohol. 

 

Sublimation: In this process, subliming material “camphor” is used. It is sublimed in 

vacuum at 80 °C for 30 min after preparation of tablets. Here, also tablets prepared are porous 

in nature. In conventional types, sometimes rapid disintegration does not occur. Therefore, in 

order to improve porosity, volatile substance camphor is added in the preparation, which gets 

sublimed from the formed tablet (Koizumi, Watanabe et al. 1997). 

 

Effervescent method: ODTs are also prepared by effervescent method by mixing 

sodium bicarbonate and tartaric acid of concentration 12% (w/w) along with 

superdisintegrants like pregelatinized starch, SSG, CP and CCS. First, sodium bicarbonate and 

tartaric acid are preheated at a temperature of 80 °C to remove absorbed/residual moisture and 

thoroughly mixed in the mortar to get a uniform powder and then added to other ingredients. 

Finally, the blends are compressed to the tablets (Kaushik, Dureja et al. 2004; Swamy, Divate 

et al. 2009). 
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1.2.6 Evaluation of ODTs 

Evaluation parameters of tablets mentioned in the Pharmacopoeias need to be assessed, 

along with some special tests are discussed here. 

 

Hardness 

A significant strength of ODT is difficult to achieve due to the specialized processes 

and ingredients used in the manufacturing. The limit of hardness for the ODT is usually kept 

in a lower range to facilitate early disintegration in the mouth. The hardness of the tablet may 

be measured using conventional hardness testers (Velmurugan and Sundar 2010). 

 

Friability 

To achieve % friability within limits for an ODT is a challenge for a formulator since 

all methods of manufacturing of ODTs are responsible for increasing the % friability values. 

Thus, it is necessary that this parameter should be evaluated and the results are within bound 

limits (Velmurugan and Sundar 2010). 

 

Wetting time and water absorption ratio 

Wetting time of dosage form is related to with the contact angle. Wetting time of the 

ODT is another important parameter, which needs to be assessed to give an insight into the 

disintegration properties of the tablet. Lower wetting time implies a quicker disintegration of 

the tablet. The wetting time of the tablets can be measured by using the simple procedure 

(Gohel, Patel et al. 2004). Five circular tissue papers of 10 cm diameter are placed in a 

petridish. 10 mL of water soluble dye solution is added to a petridish. A tablet is carefully 

placed on the surface of the tissue paper. The time required for water to reach upper surface of 

the tablet is noted as the wetting time.  

 

For measuring water absorption ratio the weight of the tablet before keeping in the 

petridish is noted (Wb). The wetted tablet from the petridish is taken and reweighed (Wa). The 

water absorption ratio (R) can be the determined according to the following equation. 

 



45 

 

R = 100 (Wa-Wb) / Wb 

 

Moisture uptake studies 

Moisture uptake studies for ODT should be conducted to assess the stability of the 

formulation. Ten tablets from each formulation are kept in a dessicator over calcium chloride 

at 37 
0
C for 24 hrs. The tablets are then weighed and exposed to 75% RH, at room temperature 

for 2 weeks. Required humidity is achieved by keeping saturated sodium chloride solution at 

the bottom of the dessicator for 3 days. One tablet as control (without superdisintegrants) is 

kept to assess the moisture uptake due to other excipients. Tablets are weighed and the 

percentage increase in weight was recorded (Velmurugan and Sundar 2010). 

 

Disintegration test 

The ODT has remarkable disintegration properties; without water, it is rapidly 

disintegrated in the mouth within only a few seconds. When the ODT is placed in the oral 

cavity, saliva quickly penetrates into the tablet causing rapid disintegration.  

 

One of the most important characteristics of the ODT is its disintegration time in the 

oral cavity; however, a suitable method to access the disintegration properties described in the 

Pharmacopoeias (US, British, Japan and India) has not been developed. At present, the 

disintegration time of ODTs is measured utilizing the conventional tests (for tablets) that were 

described in the Pharmacopoeias. However, it is difficult to assess the disintegration rate for 

the ODT with these tests due to its rapid disintegration rate even in a small amount of water. 

Further, the conventional tests employ a volume of 900 mL of test solution compared to the 

volume of saliva in humans, which is less than 6 mL. Thus, the disintegration rate obtained 

from the conventional disintegration tests appears not to be reflective of the disintegration rate 

in the human mouth (Bi, Sunada et al. 1996). To overcome this problem, several new methods 

have been proposed such as; disintegration test with charge coupled device (CCD) camera, 

pressurized disintegrating test apparatus (DTA), magnetic signaled DTA, texture analyzer, 

sinker type DTA, shaker type DTA, test tube analysis, wire basket type DTA, etc. (Sharma, 
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Hardenia et al. 2009). Among them, the wire basket DTA is considered as a suitable method to 

access the disintegration properties of ODTs.  

 

Briefly, the apparatus (Figure 1.4) consisting of a glass beaker of 1000 mL capacity 

with the wire basket is positioned in the beaker with the help of a support in a way that when 

the beaker is contained 900 mL of disintegrating medium (simulated saliva fluid, pH 6.2), the 

basket has only 6 mL of it. A magnetic bead is placed at the bottom of the beaker maintaining 

at 37 ± 2
 
0
C. Disintegration time is determined at 25 and 50 rpm (Khan, Kataria et al. 2007). 

Described apparatus is very useful for predicting disintegration time similar in the mouth or 

oral cavity for fast disintegrating tablets.  

 

 

 

Figure 1.4 Wire basket type disintegrating test apparatus 
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Dissolution test 

The development of dissolution methods for ODT is comparable to approach taken for 

conventional tablets and is practically identical when ODT does not utilize taste masking. 

Commonly the drugs may have dissolution conditions as in USP monograph. Other media 

such as 0.1 N HCl (pH 1.2), pH 4.5 and pH 6.8 buffers should be used for evaluation of ODT 

in the same way as their ordinary tablet counterparts. Experience has indicated that USP II 

paddle apparatus is most suitable and common choice for dissolution test of ODTs, where a 

paddle speed of 50 rpm is commonly used. Typically the dissolution of ODTs is very fast 

when using USP monograph conditions. Hence slower paddle speeds may be utilized to obtain 

a comparative profile. Large tablets approaching or exceeding one gram and containing 

relatively dense particles may produce a mound in the dissolution vessel, which can be 

prevented by using higher paddle speeds. These two situations expand the suitable range of 

stirring to 25-75 rpm (Velmurugan and Sundar 2010). 

 

Other tests may be performed for evaluation of ODTs such as; tablet tensile strength, 

tablet porosity, evaluation of effectiveness of taste masking (in vitro and in vivo) etc. (Shukla, 

Chakraborty et al. 2009).  

 

1.2.7   Advantages and limitations of ODTs 

Some advantages and limitations of ODTs are listed in Table 1.6. 
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Table 1.6 Advantages and limitations of orally disintegrating tablets 

Advantages Limitations 

ODTs can be administered to the patients who can’t 

swallow tablets/capsules, such as elderly, stroke 

victims, bedridden patients, patients with esophageal 

problems and patients who refuse to swallow such as 

pediatric, geriatric and psychiatric patients and thus 

improve patient compliance. 

 

Increased bioavailability and proved rapid absorption 

of drugs through pregastric absorption of drugs from 

mouth, pharynx and esophagus as saliva passes down. 

 

ODTs are most convenient for disabled, bedridden 

patients, travelers and busy people, who do not always 

have access to water.  

 

Good mouth feel property of ODT helps to change the 

perception of medication. 

Some time it possesses mouth feeling. 

 

The risk of chocking or suffocation during oral 

administration of conventional formulations due to 

physical obstruction is avoided, thus providing 

improved safety. 

 

Conventional manufacturing equipment. ODT requires special packaging for 

properly stabilization and safety of 

stable product. 

Good chemical stability as conventional oral solid 

dosage forms. 

ODTs show the fragile, effervescence 

granules property. ODTs are also 

hygroscopic in nature so must be keep 

in dry place. 

ODTs provide rapid drug delivery from dosage forms.  

Cost effective.  
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Advantages Limitations 

ODTs provide advantage of liquid medication in form 

of solid preparation.  

 

Rapid onset of action.  

Rapid drug therapy intervention.  

No chewing needed.  

No water needed.   

 

(Allen and Wang 1997; Fix 1998; Chang, Guo et al. 2000; Bradoo, Shahani et al. 2001; Nagar, 

Singh et al. 2011; Indurwade, Rajyaguru et al. 2002; Bhaskaran and Narmada 2002) 

 

1.3 Schizophrenia and Clozapine 

1.3.1 Schizophrenia 

Schizophrenia is a chronic, severe, and disabling brain disorder that has affected 

people throughout history. About 1% of Americans have this illness (Regier, Narrow et al. 

1993).  Risk factors include birth in cities, birth in winter and early spring and viral infections 

in the mother during the second and third trimesters of gestation. A strong association between 

hypofrontality and negative symptoms of schizophrenia, as well as with antipsychotic 

treatment has been reported. Some studies have reported that about half of the chronic cases of 

schizophrenia show hypofrontality at rest. Studies have shown that individuals with 

schizophrenia, including those who have never been treated, have a reduced volume of gray 

matter in their brains, especially in the frontal and temporal lobes. Patients with the worst 

brain tissue loss also have the worst symptoms, including hallucinations, delusions, psychosis 

and bizarre behaviour (Sharafi 2005). 

 

There are two types of schizophrenia symptoms: positive symptoms and negative 

symptoms. Positive symptoms are psychotic behaviors not seen in healthy people. People with 

positive symptoms often “lose touch” with reality. These symptoms can come and go. 

Sometimes they are severe and at other times hardly noticeable, depending on whether the 

individual is receiving treatment. They include hallucinations, delusions, thought disorders 
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and movement disorders. Negative symptoms are associated with disruptions to normal 

emotions and behaviors. These symptoms are harder to recognize as part of the disorder and 

can be mistaken for depression or other conditions. Negative symptoms include flat affect, 

lack of pleasure in everyday life, lack of ability to begin and sustain planned activities and 

speaking little, even when forced to interact. People with negative symptoms need help with 

everyday tasks. 

 

Schizophrenia affects men and women equally. It occurs at similar rates in all ethnic 

groups around the world. Symptoms such as hallucinations and delusions usually start 

between ages 16 and 30. Men tend to experience symptoms a little earlier than women. Most 

of the time, people do not get schizophrenia after age 45 (Mueser and McGurk 2004). 

 

The risk of suicide in the general population is only about 1%. But people with 

schizophrenia are at a much greater risk of suicide. Approximately 30% to 40% of people with 

schizophrenia attempt suicide at some point in their lifetime. About 10% will actually die by 

suicide. In fact, suicide is the most common cause of premature death among people with 

schizophrenia. And the suicide rate may be even higher for people with schizoaffective 

disorder. Although suicidal behavior is difficult to predict, research scientists have found 

several factors that can increase the risk of suicide in people with schizophrenia.  

 

1.3.2 Clozapine 

 Clozapine, an atypical antipsychotic agent, is commonly prescribed for the 

management and symptomatic relief from the symptoms of severe schizophrenia. Clozapine is 

a selective monoaminergic antagonist with high affinity for the serotonin Type 2 (5HT2), 

dopamine  Type 2 (D2), 1 and 2 adrenergic and H1 histaminergic receptors and can also be 

used for treating various dopamine-mediated behaviours (Ahmed, Li et al. 2010).  

 

Properties of Clozapine: 

Formula: C18H19CIN4 

Molecular weight: 326.82 g/mol 
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Melting point: 183-184
0 

Solubility in water: 0.189 mg/mL (20 
0
C) (slightly soluble in water) 

(http://en.wikipedia.org/wiki/Clozapine) 

 

pKa: pKa1 3.70 pKa2 7.60 

Log P: Partition coefficient (octanol/water): 0.4 (pH 2), 600 (pH 7), 1000 (pH 7.4), 1500 (pH 

8) (http://www/drugfuture.com/chemdata/clozapine.html) 

 

 Clozapine is the prototype of atypical antipsychotic drugs that are used to treat 

patients with schizophrenia who are unresponsive or intolerant to typical antipsychotics. It is 

effective in treating the positive and negative symptoms of schizophrenia. Clozapine is more 

effective in schizophrenia than older antipsychotics. It may also help to reduce relapses, 

suicide and the need for hospitalization (Sharafi 2005). Clozapine reduces suicidal behaviour 

in patients with schizophrenia. Clozapine has been shown to have a substantial effect on 

attempted suicide and completed suicide (Novakovic and Sher 2012). Clozapine has a number 

of characteristics that make it unique. It appears to be more effective than conventional 

antipsychotics for schizophrenia patients who are severely psychotic and poorly responsive to 

the mechanism of action of conventional antipsychotic drugs. Another important characteristic 

of clozapine is its spectrum of antipsychotic activity (Kane, Honifeld et al. 1988). Clozapine 

has been found superior for both positive and negative symptoms than any other atypical 

antipsychotics (Preskorn, Burke et al. 1993; Breier, Buchanan et al. 1994). 

 

After oral administration, clozapine is rapidly absorbed, but there is extensive                    

first-pass metabolism and only 27-50% of the dose reaches the systemic circulation 

unchanged. So the relative bioavailability of clozapine is very low. Clozapine is approximately 

95% bound to plasma proteins. Its plasma concentration declines in the biphasic manner and 

its elimination half-life ranges from 6 to 33 hrs. About 50% of a dose is excreted in urine and 

30% in the faeces (Naheed and Green 2001).  

 

 

http://en.wikipedia.org/wiki/Clozapine
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1.4 Hypothesis of the thesis 

The hypothesis that the drug (clozapine) is dissolved in the liquid vehicle (PG) may be 

chiefly responsible for its enhanced dissolution rate. According to the LS hypothesis, the 

phenomena of absorption and adsorption occur when clozapine (dissolved in PG) is 

incorporated into a carrier and coating system.  

 

1.5 Objectives of the thesis 

The principle focus of this project is to formulate LS compacts of poorly water soluble 

drug, clozapine to enhance its dissolution rate. For this purpose, the LS powder blends and 

tablets of clozapine were prepared. The specific aims of the project are to: 

 

 Investigate the influence of the type of coating material, 

 

 Investigate the influence of the excipient ratio (R), 

 

 Investigate the influence of the liquid load factor (Lf)  

 

on the flow properties of LS powder blends and on the in vitro release of clozapine from LS 

tablets. 

 

 Formulate OD-LSTs of clozapine to enhance its dissolution rate.  
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2.1 Abstract 

The objective of this research was to develop a liquisolid (LS) formulation of 

clozapine with improved dissolution properties and evaluate its robustness to excipient 

modifications as well as its stability. Propylene glycol (PG), microcrystalline cellulose (MCC) 

and sodium starch glycolate (SSG) were employed as non-volatile liquid vehicle, carrier 

material and disintegrant respectively for preparing LS compacts. Colloidal silicon dioxide 

(CSD), calcium silicate (CS) and magnesium aluminometasilicate (MAMS) were selected as 

coating materials. Complete characterisation of the blends and tablets was performed. The 

drug release rates of LS compacts were distinctly higher as compared to regular tablets. The 

specific surface areas of coating materials had an effect on the flow properties of the blends 

and the particle sizes of coating materials affected the dissolution rate. The powder to 

excipient ratio was an important parameter for LS systems and had to be larger than 20 to 

obtain enhanced drug release. The selected formulation demonstrated stability for a period of 

at least 12 months. The LS technique was an effective approach to prepare clozapine tablets 

with enhanced dissolution properties. 

 

Keywords: Liquisolid, clozapine, formulation, tablet, excipients, dissolution, stability 
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2.2 Introduction 

Dissolved state is a requirement for absorption drugs through gastrointestinal tract. In 

the case of poorly soluble drugs, dissolution is the rate-limiting step in absorption process 

(Wong et al., 2006). Generally, compounds with aqueous solubility lower than 100 μg/mL 

show dissolution-limited absorption (Hörter and Dressman, 2001) and erratic and incomplete 

absorption after oral administration (Wong et al., 2006). Advancements in the fields of 

biotechnology and drug discovery have led to the discovery of increasingly large number of 

active molecules. However, the intestinal absorption of 40% of all newly developed drugs is 

limited by their aqueous solubility, leading to ineffective absorption and therapeutic failure 

(Rong, 2008). 

 

Various techniques have been employed to formulate oral drug delivery systems that 

would enhance the dissolution profile and in turn, the absorption efficiency of poorly water 

soluble drugs (Shinde, 2007). These techniques take advantage of the increased dissolution 

rate resulting from the addition of a solubilizing agent, particle size reduction or the drug 

being in already dissolved or amorphous state:  Solid dispersions (Kapsi and Ayres, 2001; 

Shah et al., 2007; Rane et al., 2007; Vanshiv et al., 2009), micronization (Li et al., 2007; 

Nighute and Bhise, 2009), use of mesoporous silica carriers (Ahuja and Pathak, 2009), ball 

milling technique (Sonoda et al., 2008), use of complexing agents (El-Zein et al., 1998; Pravin 

and Nagarsenker, 2004; Ghorab et al., 2004; Gowrishankar et al., 2007), crystal engineering 

(Blagden et al., 2007), solubilization by surfactants (Nazzal et al., 2002; Patil and Paradkar, 

2006) and LS technique developed by Spireas (Spireas and Bolton, 1999; Spireas, 2002).  

 

LS technique was previously reported to improve the dissolution rate of poorly water 

soluble drugs (Fahmy and Kassem, 2008). When properly formulated, LS powder blends 

possess acceptable flowability and compressibility properties. They are prepared by simple 

blending with selected powder excipients referred to as the carriers and the coating materials.  

 

This technique was successfully applied for low dose poorly water soluble drugs. Drug 

can be present in a completely or partially dissolved state in the LS formulation. The LS 
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formulation can then facilitate the release of this drug by two mechanisms: (1) Already 

dissolved drug only need to diffuse out of the formulation and (2) the liquid component of the 

formulation act as a solubilizing aid to facilitate the wetting and dissolution of undissolved 

particles. Since dissolution of poorly water soluble drugs is often the rate limiting step in 

gastrointestinal absorption, better bioavailability can be achieved when they are formulated 

using a LS system.  

 

 LS technique is a powdered solution technology that can be used to formulate liquid 

medication (Tiong and Elkordy, 2009). LS system is defined as dry, non-adherent, free 

flowing and compressible powder mixtures converted from liquid drugs, drug suspensions or 

drug solutions in non-volatile solvents with selected carriers and coating materials 

(Javadzadeh et al., 2007). The liquid portion, which can be a liquid drug, a drug suspension or 

a drug solution in suitable non-volatile liquid vehicles, is incorporated into the porous carrier 

material. Once the carrier is saturated with liquid, a liquid layer is formed on the particle 

surface which is rapidly adsorbed by the fine coating particles. Thus, an apparently dry, free 

flowing and compressible powder is obtained. Since non-volatile solvents are used to prepare 

the drug solution or suspension, the liquid is not evaporated and the drug is carried in a liquid 

system and is dispersed throughout the final product. The drug in the solid dosage form is held 

within the powder substrate in a solubilized or finely dispersed form which is the main reason 

for the enhanced dissolution rate. The quantity of drug available for dissolution is increased 

and hence show enhanced drug release characteristics and improved oral bioavailability 

(Manogar et al., 2011). Besides drug release enhancement, the LS approach is a promising 

technique because of the simple manufacturing process, low production costs and the 

possibility of industrial manufacture due to the good flow and compaction properties of the LS 

formulations. 

 

Clozapine is a poorly water soluble antipsychotic drug used for treatment-resistance 

schizophrenia. Extent and rate of absorption of clozapine are critical and therefore it could 

benefit from the LS technology. The objective of this research was to develop a LS 
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formulation of clozapine with improved dissolution properties and evaluate its robustness to 

excipient modifications as well as its stability. 

 

Specifically, this project investigated the influence of the type of coating material, 

powder excipient ratio (R value) and liquid load factor (Lf) on the flow properties of LS 

powder blends and on the in vitro release of clozapine from LS tablets; a stability study was 

also performed. 

  

2.3 Materials and methods 

2.3.1   Materials 

Clozapine was provided by AK Scientific Inc. (USA). Propylene glycol (PG, Medisca, 

USA), microcrystalline cellulose (MCC, Avicel PH102, FMC, USA), colloidal silicon dioxide 

(CSD, Aerosil 200, Degussa AG, Germany), calcium silicate (CS, 200 mesh, Sigma-Aldrich, 

USA), magnesium aluminometasilicate (MAMS, Neusilin US2, Fuji, Japan) and sodium 

starch glycolate (SSG, Explotab, Mendell, USA) were purchased from major suppliers. All 

other reagents were of analytical grade and used without further purification. 

 

2.3.2   Methods 

2.3.2.1     Use of a mathematical model to design LS compacts 

The formulation design of LS systems was done in accordance with a mathematical 

model proposed by Javadzadeh (2007). In this study, PG was used as a liquid vehicle, MCC 

was used as carrier material and three different coating materials were used.  

 

The concentration of the drug in solvent was kept constant in all formulations. 

According to this model, the carrier and coating powder materials can retain only certain 

amounts of liquid while maintaining acceptable flowability and compressibility.  

 

Firstly, the excipient ratio R of the powder is defined as, 
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R = Q / q 

 

Where R is the ratio of the weight of carrier (Q) and coating (q) materials present in the 

formulation.  

 

Secondly, the liquid load factor (Lf) is defined as the ratio of the weight of liquid 

medication (W) to the weight of the carrier material (Q) in the system. This ratio can be 

correlated with the flow and the compression properties of a given LS system.  Lf is defined 

as, 

 

Lf = W / Q 

 

2.3.2.2     Preparation of LS powder blends and tablets of clozapine 

Calculated quantities of clozapine and PG were accurately weighed and mixed together 

until a homogeneous drug solution was obtained. The resulting liquid medication was 

incorporated into calculated quantities of carrier and coating materials. The mixing process 

was carried out in three steps. In the first, the system was blended in a mortar using pestle at a 

mixing rate of one rotation per second for one minute in order to evenly distribute the liquid 

medication in the powder. In the second, the liquid/powder admixture was evenly spread as a 

uniform layer on the surface of a mortar and left standing for 5 min to allow the drug solution 

to be absorbed inside powder particles. In the third, the powder was scraped off the mortar 

surface using a spatula. The final mixture was compressed into tablets by using a manual 

hydraulic press (15 ton press, Specac, England) equipped with round flat-faced tooling 

(diameter 12.6 mm) using a compression force of 25 kN. 

 

Preliminary experiments were conducted to identify adequate LS composition (LS-1, 

Table 2.1) using common excipients. This system was composed of PG as a non-volatile 

liquid vehicle, MCC as a carrier, CSD as a coating material and SSG as a disintegrant. The 

robustness of this formulation to excipients modifications was evaluated.  
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Firstly,  LS formulations of clozapine (LS-1, LS-2 and LS-3, Table 2.1) with different 

R values (10.0, 20.9 and 30.2) were prepared to investigate the influence of the excipient ratio 

on the flow properties of LS powder blends and on the in vitro release of clozapine from LS 

tablets.  

 

Secondly, LS formulations of clozapine (LS-1, LS-4 and LS-5, Table 2.1) were 

prepared to investigate the influence of the type of coating material on the flow properties of 

LS powder blends and on the in vitro release of clozapine from LS tablets. The particle size 

and specific surface area of the coating materials may affect the flow properties and the drug 

release. For this purpose, CSD, CS and MAMS were selected as coating materials. The 

particle size (d50) of CSD, CS and MAMS were 12 µm, 74 µm and 100 µm and the specific 

surface area of these materials were 200 m
2
/g (Hentzschel 2011), 142 m

2
/g (Hentzschel et al., 

2011) and 339 m
2
/g (Shah et al., 2012), respectively. 

 

Thirdly, LS formulations of clozapine (LS-1, LS-6, LS-7 and LS-8, Table 2.1) with 

different Lf values (0.427, 0.382, 0.345 and 0.315) were prepared using PG as a non-volatile 

liquid vehicle to investigate the influence of the liquid load factor on the flow properties of LS 

powder blends and on the in vitro release of clozapine from LS tablets.  

 

Each system (LS-1 to LS-8, Table 2.1) was containing 100 mg of clozapine and 65 mg 

of PG. The detailed formulation characteristics of these systems are shown in Table 2.1. 

 

2.3.2.3     Preparation of conventional tablets of clozapine 

Conventional tablets of clozapine were prepared for comparison purposes. These 

tablets were produced by direct compression using a manual hydraulic press (15 ton press, 

Specac, England) equipped with round flat-faced tooling (diameter 12.6 mm) using a 

compression force of 25 kN. Each tablet contained clozapine (100 mg), MCC (405 mg), CSD 

(17 mg) and SSG (28 mg).  
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Table 2.1 Formulation design of clozapine liquisolid tablets 

System Lf R Clozapine (mg) PG (mg)     MCC (mg) CSD (mg) MAMS (mg)  CS (mg) SSG (mg) Total (mg) 

LS-1 0.427 20.9 100.0 65.0 386.5 18.5 - - 30.0 600 

LS-2 0.448 10.0 100.0 65.0 368.0 37.0 - - 30.0 600 

LS-3 0.421 30.2 100.0 65.0 392.0 13.0 - - 30.0 600 

LS-4 0.427 20.9 100.0 65.0 386.5 - 18.5 - 30.0 600 

LS-5 0.427 20.9 100.0 65.0 386.5 - - 18.5 30.0 600 

LS-6 0.382 21.6 100.0 65.0 432.0 20.0 - - 33.0 650 

LS-7 0.345 22.3 100.0 65.0 478.5 21.5 - - 35.0 700 

LS-8 0.315 22.8 100.0 65.0 524.0 23.0 - - 38.0 750 
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2.3.2.4     Flow properties of LS systems 

The tapping method was used to investigate the flow properties of prepared LS powder 

blends. Bulk density measurements were carried by placing fixed weight of powder in 

graduated cylinder and volume occupied was measured and initial bulk density was calculated. 

20 grams of the prepared powder blends were placed in a 50 mL cylinder. The cylinder was 

then tapped 1000 times at a constant velocity. The tapped density was determined on a tapped 

volume determination apparatus (Vanderkamp, Vankel Ind., New Jersey, USA). Each analysis 

was carried out in triplicate.  

 

2.3.2.5    Weight variation, hardness, friability and content uniformity tests 

The prepared tablets were evaluated by carrying out tests for weight variation, 

hardness, friability and drug content uniformity. For estimating weight variation, 20 tablets 

were taken randomly from each tablet formulation and weighed individually. The average 

weight of all tablets and percentage deviation from the mean for each tablet were determined.  

 

 The hardness of formulated tablets was assessed using a hardness tester (PTB 301, 

Pharma Test AG, Hainburg, Germany) and the mean hardness of three tablets was determined. 

The friability was determined on ten tablets using a friability tester (PTF II, Pharma Test AG, 

Hainburg, Germany) and the percentage loss in weight was calculated.  

 

For drug content uniformity test, ten tablets were crushed individually and powder 

equivalent to 100 mg of clozapine was dissolved in 100 mL of methanol. The solution was 

then passed through a 0.45 µm nylon filter and analyzed using UV spectrophotometer (WPA, 

Biochrom Ltd., Cambridge, England) at 290 nm after sufficient dilution with pH 4.5 acetate 

buffer.  

 

2.3.2.6     In vitro dissolution studies 

The USP apparatus II (paddle method) (DTB 678 equipment with thermostatic bath 

and circulation pump VTC-100, Logan Instruments Corporation, New Jersey, USA) was used 

for all the in vitro dissolution studies. In this method, acetate buffer having the pH of 4.5 was 
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used as dissolution media. The rate of stirring was 50 rpm. The dosage forms were placed in 

900 mL of pH 4.5 acetate buffer maintained at 37 ± 0.5 ⁰C. At appropriate intervals (5, 10, 15, 

20, 30 and 45 min), 5 mL of the samples were taken. The dissolution media was then replaced 

by 5 mL of fresh dissolution fluid to maintain a constant volume. After proper dilution, the 

samples were analyzed at 290 nm spectrophotometrically (WPA, Biochrom Ltd., Cambridge, 

England). The mean of three determinations was used to calculate the drug release from each 

of the formulations. 

 

2.3.2.7     Stability study 

 The effect of aging on the hardness and dissolution of LS tablets (LS-1) was 

determined by storing the tablets at 22 
0
C for up to 12 months. After that, the samples were 

tested for their dissolution profiles and hardnesses at the conditions that have been used with 

freshly prepared tablets. The results were compared with the freshly tested tablets.  

 

2.4 Results and discussion 

2.4.1 Flow properties 

 Good flow properties are critical for larger scale production of tablet dosage forms. To 

evaluate the flow properties of the prepared LS powder blends, Carr’s index was calculated 

from the bulk and tapped densities of the blends. According to the USP, powders are 

considered to have passable flow properties if they have a Carr’s index value of less than 25% 

(USP36-NF31, 2013).  

 

R value is an important formulation parameter for LS systems that may be optimized. 

The R values of LS-1, LS-2 and LS-3 were 20.9, 10.0 and 30.2 respectively. As shown in 

Table 2.2, LS-1 and LS-3 had fair flow properties because the formulations were containing 

high quantities of MCC and low quantities of colloidal silica. LS-2 exhibited passable flow 

properties because the formulation was containing high amounts of colloidal silica. 

 

As shown in Table 2.2 the LS-1 had fair and LS-4 had good flow properties according 

to the Carr’s index, but LS-5 exhibited poor flow properties. CS with its petaloid crystal 
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structure and large micropores exhibited the smallest specific surface area which is lower than 

that of CSD with its loose particle aggregates. MAMS which is prepared by spray drying 

resulting in spherically shaped, porous, ultralight granules showed an almost 1.5 fold larger 

specific surface area than CSD (Hentzschel, 2011). LS-5 powder system prepared using CS 

showed poor flow properties, because CS has the lowest specific surface area in comparison to 

CSD and MAMS. This study showed that the nature of the coating agent and most likely its 

specific surface area has an effect on the flow properties of LS powders.   

 

As shown in Table 2.2, the LS-1 and LS-6 had fair and LS-7 and LS-8 had good flow 

properties according to the Carr’s index. It was found that there is a relationship between Lf 

and the flow properties of LS powder blends. The LS systems with low Lf values have better 

flow properties. This can be explained by the fact that, the LS systems with high Lf values 

contain high amounts of liquid and low quantities of powder excipient. In contrast, the LS 

systems with low Lf values contain high amounts of carrier material (MCC) and low quantities 

of liquid.  

 

Table 2.2 Flow properties of liquisolid powder blends 

System Carr’s index (%) Type of flow 

LS-1 19.8 ± 0.3 Fair 

LS-2 24.6 ± 0.3 Passable 

LS-3 16.5 ± 0.7 Fair 

LS-4 11.5 ± 0.4 Good 

LS-5 30.0 ± 0.4 Poor 

LS-6 17.6 ± 0.7 Fair 

LS-7 15.2 ± 0.8 Good 

LS-8 15.5 ± 0.5 Good 
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2.4.2 Weight variation, friability, hardness and content uniformity tests 

The results of weight variation, friability, hardness and drug content are represented in 

Table 2.3. Average weight of LS tablets ranged from 598 ± 2 mg to 748 ± 2 mg.  

 

All the clozapine LS tablets had acceptable friability as none of the tested formulae had 

percentage loss in tablet’s weights that exceed 1%, also no tablet was cracked, split or broken 

in either formula. Since all prepared tablets met the standard friability criteria, they are 

expected to show acceptable durability and withstand abrasion in handling, packing and 

shipment.  

 

In general, formulation should be directed at optimizing tablet hardness without 

applying excessive compression force, while at the same time assuring rapid tablet 

disintegration and drug dissolution. In other words, tablets should be sufficiently hard to resist 

breaking during normal handling and yet soft enough to disintegrate properly after 

swallowing. The mean hardness of each LS tablet was determined and is presented in Table 

2.3 providing that all the LS tablets had acceptable hardness. All LS formulations have shown 

lower hardness compared with that of conventional formula (DCT). This was due to the 

presence of the liquid in the LS formulations that hinder the formation of the interparticle 

bonds (H-bonds in case of MCC) which are the main reason for the higher specific hardness 

obtained in DCT.  

 

It was found that there is a relationship between R value and the hardness of the 

tablets. The R value was inversely proportional to the hardness of the tablets i.e., when the R 

value increases, the hardness of the tablet will decrease. This was obvious from the following 

results. LS-2 had R value equal to 10.0 and the mean hardness was 171 N. LS-3 had R value 

equal to 30.2 and the mean hardness was 104 N. This can be explained by that, increasing R 

value increases the amount of carrier powder (MCC) used which is a highly porous material 

and the amount of coating material (colloidal silica) will decrease and this subsequently leads 

to decreased hardness of the tablets.  
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 It was found that there is a relationship between Lf and the hardness of the tablets in 

the LS formulation having approximately the same R value. The Lf was inversely proportional 

to the hardness of the tablets i.e., when the Lf increases, the hardness of the tablets will 

decrease. This was obvious from the following results. LS-1, LS-6, LS-7 and LS-8 were 

having Lf 0.427, 0.382, 0.345 and 0.315 and the mean hardness of them was 120, 123, 167 and 

194 N, respectively. This can be explained by that, increasing Lf of the formulation increases 

the amount of solvent used and decreases the amount of the powder excipient and this 

subsequently decreases the hardness of the tablets. 

 

It was clear from Table 2.3 that all the investigated clozapine LS tablets complied with 

the pharmacopoeial requirements as regard their content uniformity which was found to lie 

within the range 90-110%.  

 

Table 2.3 Evaluation of clozapine liquisolid tablets 

LS system Hardness (N) 

Friability 
Weight variation 

(mg) 

Drug content 

(%) 
Fines 

(%) 

No. of broken 

tablets 

LS-1 120 ± 2 0.25 None 599 ± 2 100 ± 2 

LS-2 171 ± 5 0.12 None 598 ± 2 98 ± 3 

LS-3 104 ± 8 0.34 None 600 ± 2 98 ± 5 

LS-4 124 ± 4 0.23 None 599 ± 1 100 ± 4 

LS-5 95 ± 7 0.14 None 599 ± 2 97 ± 5 

LS-6 123 ± 7 0.28 None 649 ± 4 99 ± 3 

LS-7 167 ± 8 0.18 None 699 ± 3 96 ± 5 

LS-8 194 ± 10 0.45 None 748 ± 2 99 ± 3 

DCT 216 ± 6 0.45 None 549 ± 2 101 ± 3 
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2.4.3  In vitro dissolution studies 

The dissolution profiles of clozapine LS tablets (LS-1) and directly compressed tablets 

(DCT) in pH 4.5 acetate buffer are shown in Figure 2.1. Dissolution rates of LS tablets were 

compared with DCT. LS formulation showed greater release than DCT formulation. The 

percentages of drug released from LS-1 and DCT after 5 min were 99.6% and 32.5% 

respectively at pH 4.5 acetate buffer. This showed that the LS compacts produced faster 

dissolution rate in comparison with DCT. 

 

The enhanced dissolution rates of LS tablets compared to DCT may be attributed to the 

fact that, the drug is already in solution in PG, while at the same time, it is carried by the 

powder particles (MCC and CSD). When the drug within the LS system is completely 

dissolved in the liquid vehicle, it is located in the powder substrate still in a solubilized state. 

Therefore they show improved release rates.  
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                Figure 2.1 Dissolution profiles of clozapine from liquisolid tablets and  

                             directly compressed tablets (means ± SD; n=3) 

 

The R value is an important parameter which is the ratio between the weights of the 

carrier and the coating material that may be optimized. An increase in the R value results in an 

enhanced release rate, if MCC and colloidal silica are used as carrier and coating materials, 

respectively. LS compacts with high R values contain high amounts of MCC, low quantities of 

CSD and low liquid to powder ratios. This is associated with enhanced wicking, disintegration 

and thus, enhanced drug release. In contrast, if high amounts of colloidal silica are used, which 

means that the R value is low, the LS compact is overloaded with liquid formulation due to a 

high Lf. In such cases, even though drug diffusion out of the primary particles may be rapid, 

oversaturation might occur resulting in local precipitation or recrystallization of the drug and 

thus decreased release rates (Javadzadeh et al., 2007).  
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As shown in Figure 2.2, the LS formulations that had R values of 20.9 (LS-1) and 30.2 

(LS-3) exhibited similar drug release profiles with small variations while the LS formulation 

that had low R value of 10.0 (LS-2) showed lower drug release.  This study confirmed that the 

R value is an important parameter for LS systems and must be minimum 20 to obtain 

enhanced drug release (Spireas  et al., 1999). 
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           Figure 2.2 Dissolution profiles of clozapine from liquisolid tablets that  

              had different R values (means ± SD; n=3) 

 

The dissolution profiles of clozapine from LS tablets containing different coating 

materials in pH 4.5 acetate buffer are shown in Figure 2.3. The dissolution test results showed 

that LS-1 containing CSD had the highest drug release compared with LS-4 containing MAMS 

and LS-5 containing CS. The particle size of CS (74 µm) is smaller than that of MAMS (100 

µm), but is much higher than that of CSD (12 µm). Therefore the drug release from LS-5 was 

higher than that of LS-4, but was lower than that of LS-1 as expected. This study confirmed 

that the particle size of the coating materials has an effect on the release of clozapine from LS 

tablets and CSD is the best suitable coating material for preparing LS compacts of clozapine.  
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Figure 2.3 Dissolution profiles of clozapine from liquisolid tablets   

containing different coating materials (means ± SD; n=3) 

 
 

The dissolution profiles of clozapine from LS tablets with different Lf values in pH 4.5 

acetate buffer are shown in Figure 2.4. The LS formulations with different Lf values exhibited 

similar drug release profiles with small variations. This study showed that the Lf values did not 

cause important differences on the drug release from LS tablets.  
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  Figure 2.4 Dissolution profiles of clozapine from liquisolid tablets  

       that had different Lf values (means ± SD; n=3) 

 

2.4.4 Stability study 

 The effect of aging on the hardness and dissolution rate of LS tablets (LS-1) was 

determined by storing the tablets at 22 
0
C for up to 12 months. The dissolution rate and 

hardness were measured for the LS tablets at the end of 3, 6 and 12 months. The results 

showed that storage at 22 
0
C neither had an effect on the hardness (Table 2.4) nor on the 

release profiles (Figure 2.5) of LS compacts. These results indicate that in the case of 

clozapine the LS technology is a promising technique to enhance the release rate without 

having any stability issues.  
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Table 2.4 Hardness results of clozapine liquisolid tablets (fresh and aged) 

LS system 
Hardness (N) 

(fresh) 

Hardness (N) 

(aged, 3 months) 

Hardness (N) 

(aged, 6 months) 

Hardness (N) 

(aged, 12 months) 

LS-1 120 ± 2 110 ± 5 116 ± 6 114 ± 5 
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      Figure 2.5 Dissolution profiles of clozapine from liquisolid tablets                                                   

(fresh and aged) (means ± SD; n=3) 
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2.5 Conclusion 

LS technique has been used successfully to produce a tablet dosage form of clozapine 

with faster dissolution rate than the regular tablet. Various trials were characterized based the 

blend and tablet parameters which showed the LS formulation containing MCC, CSD and 

SSG with clozapine dissolved in PG as a robust formula with required parameters. It showed 

significant increase in dissolution as compared DCT. It was found that there is a relationship 

between the carrier to coating material ratio (R value) and the in vitro release of clozapine 

from LS tablets. The R value was directly proportional to the in vitro release of clozapine from 

LS formulations. This study showed that the specific surface area of coating materials has an 

effect on the flow properties of LS powder blends and the particle size of coating materials 

affects the drug release from LS tablets. It was found that the liquid load factor (Lf) has an 

effect on the flow properties of LS powder blends but had no significant effect on the drug 

release from LS tablets. It was observed that aging had no significant effect on the hardness 

and dissolution profile of clozapine LS compacts. Although, better flow properties could be 

obtained using MAMS when compared to CSD, this former material resulted in slower 

dissolution rate. The LS-1 formulation was therefore considered optimal as it provided 

improve dissolution properties while being stable and robust to excipients modifications. 

 

In conclusion, this study showed that LS technique could be a promising strategy in 

improving dissolution of poorly water soluble drugs such as clozapine and formulating 

immediate release dosage forms.   
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Chapter three 

 

3 Formulation development and dissolution rate 

enhancement of clozapine by orally disintegrating 

liquisolid systems 

 

3.1 Overview 

Patients, particularly pediatric and geriatric patients have difficulty in swallowing solid 

dosage forms. These patients are unwilling to take these solid preparations due to fear of 

choking. In order to assist these patients, several mouth dissolving drug delivery systems have 

been developed. ODTs dissolve rapidly in the saliva without the need for water and release the 

drug. Some drugs are absorbed from the oral cavity as the saliva passes down into stomach. In 

such cases, bioavailability of drug is significantly greater than those observed conventional 

tablet dosage forms (Reddy, Ahad et al. 2011). ODTs can be preferred for dosage forms for 

patients suffering from schizophrenia because they can be taken without water intake and 

disintegrate immediately upon contacting the tongue or buccal cavity, thereby improving 

patient compliance (Ahmed, Li et al. 2010).  

 

Clozapine is an antipsychotic drug used to alleviate the symptoms and signs of 

schizophrenia, hallucinations, delusions and unusual behavior. The main criteria for ODTs is 

to disintegrate/dissolve rapidly in oral cavity with saliva without need of water and should 

have pleasant mouth feel (Reddy, Ahad et al. 2011). Clozapine is subject to first pass 

metabolism, resulting in an absolute bioavailability of 50 to 60% which is very low (Quitkin, 

Adams et al. 1998). It is poorly water soluble drug and rate of absorption of clozapine is often 

controlled by its solubility and dissolution rate. Some schizophrenic patients hide a 

conventional tablet under their tongue to avoid its daily dose of atypical antipsychotic. Also 
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schizophrenic patients with dsyphagia are not able to swallow conventional tablets 

(Shankarrao, Mahadeo et al. 2010). ODTs are a perfect fit for all these patients.  

 

LS technology promotes the dissolution rate of poorly water soluble drugs to a greater 

extent. LS compacts of poorly water soluble drugs containing a drug molecularly dispersed in 

a liquid vehicle show enhanced drug dissolution. Accordingly, the improved drug dissolution 

may result in higher drug absorption and thus, improved oral bioavailability (Basalious,          

El-Sebaie et al. 2013). This technique was successfully applied for low dose poorly water 

soluble drugs. Drug can be present in a completely or partially dissolved state in the LS 

formulation. The LS formulation can then facilitate the release of this drug by two 

mechanisms: (1) Already dissolved drug only need to diffuse out of the formulation and (2) 

the liquid component of the formulation act as a solubilizing aid to facilitate the wetting and 

dissolution of undissolved particles. Since dissolution of poorly water soluble drugs is often 

the rate limiting step in gastrointestinal absorption, better bioavailability can be achieved when 

they are formulated using a LS system.  

 

  Literature lacks any data about application of LS technique for development of 

clozapine orally disintegrating LS tablets (OD-LST) useful for management of schizophrenia 

crisis. The developed clozapine OD-LSTs with enhanced dissolution rate may hasten the 

absorption of clozapine and avoid its hepatic first pass metabolism through the partial 

absorption from buccal mucosa and esophagus. Thus, in this study, it was proposed to 

formulate an oral delivery system containing clozapine, in the formulation of OD-LST to 

enhance its dissolution rates.  

 

3.2 Literature review on orally disintegrating liquisolid tablets (OD-LSTs) 

 Aceclofenac is a NSAID, showing effective anti-inflammatory and analgesic properties 

mainly used in osteroarthritis, rheumatoid arthritis and anklysoling spondylitis (Legrand 

2004). Aceclofenac being poorly soluble in water its rate of oral absorption is often controlled 

by the dissolution rate in the GIT (Amidon, Lennernäs et al. 1995). In the present study, LS 

compacts of aceclofenac were prepared by dispersing drug in various non-volatile solvents 
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(PEG 400, PG, polysorbate 80). MCC was added as a carrier. CCS, SSG and CP were used as 

superdisintegrants. Magnesium stearate and silica were mixed with granules as a glidant and 

lubricant respectively. Finally granules were compressed using manual tableting machine. 

Orodispersible LS compacts prepared with polysorbate 80 enhance the dissolution rate of 

aceclofenac to a greater extent. Compacts with SSG added intragranularly and CP 

extragranularly showed highest dissolution rate (Yadav, Shete et al. 2005).  

 

 Felodipine is a calcium channel blocker used as antihypertensive and antianginal drug. 

Felodipine has poor water solubility and hence poor dissolution and bioavailability after oral 

administration (Acholu, Yajaman et al. 2013). Felodipine was proposed as a candidate drug in 

emergency and treatment of hypertensive crisis. Literature lacks any data about the application 

of LS technique for development of felodipine LS orodispersible tablet (FLODT) useful for 

management of hypertension crisis. Thus, in the present study, orodispersible LS compacts of 

felodipine were prepared using PEG 400 and PG as non-volatile liquid vehicles, MCC and 

silicified MCC as carrier materials, silica as a coating material, CP as a superdisintegrant and 

aspartame as a sweetening agent. The optimized FLODT formulation showed a significant 

increase in dissolution rate compared to felodipine solution in PEG filled in soft gelatin 

capsule in 0.5% sodium lauryl sulphate (SLS) solution. The in vivo PK study suggests that the 

optimized FLODT developed in this work may be useful for management hypertensive crisis 

due to enhanced dissolution and rapid absorption of felodipine through the buccal mucosa 

(Basalious, El-Sebaie et al. 2013).  

 

3.3 Materials and methods 

3.3.1  Materials 

Clozapine was provided by AK Scientific Inc. (USA). Propylene glycol (PG, Medisca, 

USA), microcrystalline cellulose (MCC, Avicel PH102, FMC, USA), colloidal silicon dioxide 

(CSD, Aerosil 200, Degussa AG, Germany), mannitol (Pearlitol
 
200 SD, Roquette, France), 

crospovidone (CP, Polyplasdone XL-10, ISP, USA), lactose monohydrate (Galenova, Canada) 

and sodium saccharin (SS, Giroux Lab., Canada) were purchased from major suppliers. All 

other reagents were of analytical grade and used without further purification. 
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3.3.2 Methods 

3.3.2.1     Preparation of OD-LSTs of clozapine 

Calculated quantities of clozapine and PG were accurately weighed and mixed together 

until a homogeneous, fine dispersion was obtained. The resulting liquid medication was 

incorporated into calculated quantities of carrier and coating materials. The mixing process 

was carried out in three steps. In the first, the system was blended at a mixing rate of one 

rotation per second for one minute in order to evenly distribute liquid medication in the 

powder. In the second, the liquid/powder admixture was evenly spread as a uniform layer on 

the surface of a mortar and left standing for 5 min to allow the drug solution to be absorbed 

inside powder particles. In the third, the powder was scraped off the mortar surface using a 

spatula. The final mixture was compressed into tablets by using a manual hydraulic press (15 

ton press, Specac, England) equipped with round flat-faced tooling (diameter 12.6 mm) using 

a compression force of 25 kN after addition of sweetening agent and superdisintegrant. The 

ODTs were prepared using direct compression technique. The simplicity and cost 

effectiveness of the direct compression technique have positioned direct compression as an 

alternative to the other techniques such as spray-drying, melt granulation, freeze-drying etc.  

 

Preliminary experiments were conducted to identify adequate OD-LST composition 

(OD-LST, Table 3.1) using common excipients. This system was composed of PG as a                     

non-volatile liquid vehicle, MCC as a carrier material, mannitol as a carrier material and 

sweetening agent, CSD as a coating material, CP as a superdisintegrant and SS as a 

sweetening agent.  
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Table 3.1 Formulation design of clozapine orally disintegrating  

liquisolid tablets 

System OD-LST 

Lf
*
 0.210 

R
**

 20.0 

Clozapine (mg) 25.0 

PG (mg) 15.0 

MCC (mg) 40.0 

Mannitol (mg) 150.0 

CSD (mg) 9.5 

CP (mg) 58.0 

SS (mg) 2.5 

Total (mg) 300 

 

*Lf : Liquid load factor 

**R : The carrier : coating ratio of the powder system 

 

3.3.2.2     Preparation of conventional ODTs of clozapine 

Conventional ODTs (DC-ODT) of clozapine were prepared for comparison purposes 

These tablets were produced by direct compression using a manual hydraulic press (15 ton 

press, Specac, England) equipped with round flat-faced tooling (diameter 12.6 mm) using a 

compression force of 25 kN. Each tablet contained clozapine (25 mg), MCC (70 mg), 

mannitol (90 mg), lactose monohydrate (27 mg), CSD (8 mg) and CP (55 mg). 
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3.3.2.3     Weight variation, hardness, friability, content uniformity, 

disintegration time, wetting time and water absorption capacity 

tests  

The prepared OD-LSTs were evaluated by carrying out tests for weight variation, 

hardness, friability, content uniformity, disintegration time, wetting time and water absorption 

percent. For estimating weight variation, 20 tablets were taken randomly from each tablet 

formulation and weighed individually. The average weight of all tablets and percentage 

deviation from the mean for each tablet were determined.  

 

 The hardness of formulated tablets was assessed using a hardness tester (PTB 301, 

Pharma Test AG, Hainburg, Germany) and the mean hardness of three tablets was determined. 

The friability was determined on ten tablets using a friability tester (PTF II, Pharma Test AG, 

Hainburg, Germany) and the percentage loss in weight was calculated.  

 

For drug content uniformity test, ten tablets were crushed individually and powder 

equivalent to 25 mg of clozapine was dissolved in 25 mL of methanol. The solution was then 

passed through a 0.45 µm nylon filter and analyzed using UV spectrophotometer (WPA, 

Biochrom Ltd., Cambridge, England) at 290 nm after sufficient dilution with pH 6.4 

phosphate buffer.  

 

One of the most important characteristics of the ODT is its disintegration time in the 

oral cavity; however, a suitable method to access the disintegration properties described in the 

Pharmacopoeias (US, British, Japan and India) has not been developed. At present, the 

disintegration time of ODTs is measured utilizing the conventional tests (for tablets) that were 

described in the Pharmacopoeias. However, it is difficult to assess the disintegration rate for 

the ODT with these tests due to its rapid disintegration rate even in a small amount of water. 

Further, the conventional tests employ a volume of 900 mL of test solution compared to the 

volume of saliva in humans, which is less than 6 mL. Thus, the disintegration rate obtained 

from the conventional disintegration tests appears not to be reflective of the disintegration rate 

in the human mouth (Bi, Sunada et al. 1996). To overcome this problem, several new methods 
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have been proposed such as; disintegration test with charge coupled device (CCD) camera, 

pressurized disintegrating test apparatus (DTA), magnetic signaled DTA, texture analyzer, 

sinker type DTA, shaker type DTA, test tube analysis, wire basket type DTA, etc. (Sharma, 

Hardenia et al. 2009). Among them, the wire basket DTA is considered as a suitable method to 

access the disintegration properties of ODTs.  

 

Briefly, the apparatus (Figure 3.1) consisting of a glass beaker of 1000 mL capacity 

with the wire basket is positioned in the beaker with the help of a support in a way that when 

the beaker is contained 900 mL of disintegrating medium the basket has only 6 mL of it. A 

magnetic bead is placed at the bottom of the beaker maintaining at 37 ± 2
 
0
C. Disintegration 

time is determined at 25 and 50 rpm (Khan, Kataria et al. 2007).  

 

During this study we made an attempt to develop a more suitable apparatus (Figure 

3.2) for the disintegration test. A glass beaker of 10 mL capacity contained 6 mL of pH 6.4 

phosphate buffer as a disintegration medium was placed on the magnetic stirrer. A very small 

magnetic bead was placed at the bottom of a beaker and temperature was maintained at                       

37 ± 2 
0
C. Disintegration time was determined at 50 rpm. The disintegration test was carried 

out on six tablets. 
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                        Figure 3.1 Wire basket type disintegration test apparatus 

 

 

 

          Glass beaker (10 mL) 

                    Wire plaque 

                      6 mL of pH 6.4 phosphate buffer (37 ± 2 
0
C) 

      Tablet                Magnetic bead  

  

       Magnetic stirrer 

    

 

 

                        Figure 3.2 Modified disintegration test apparatus 

 

rpm Temperature 
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Wetting time was determined by placing five circular tissue papers in a petri dish of 10 

cm diameter (Gohel, Patel et al. 2004). 10 mL of water containing water-soluble blue dye 

(metylene blue) (0.1% w/w) was added to the petri dish. The dye solution was used to identify 

complete wetting of the tablet surface. A tablet was carefully placed on the surface of tissue 

paper in the petri dish at room temperature. The time required for water to reach the upper 

surface of the tablet was noted as the wetting time. These measurements were carried out in 

replicates of three. 

  

The weight of the tablet prior to placement in the petri dish was noted (Wb). The 

wetted tablet was removed and reweighed (Wa). Water absorption ratio (R) was then 

determined according to the following equation.  

 

             Wa – Wb  

 R = 100 X  ------------------- 

        Wb 

 

 Wa: Weight of tablet after water absorption 

 Wb: Weight of tablet before water absorption 

 

3.3.2.4     In vitro dissolution study  

 The USP apparatus II (paddle method) (DTB 678 equipment with thermostatic bath 

and circulation pump VTC-100, Logan Instruments Corporation, New Jersey, USA) was used 

for all the in vitro dissolution studies. In this method, phosphate buffer having the pH of 6.4 

was used as dissolution medium. Phosphate buffer of pH 6.4 was selected as the dissolution 

medium to simulate the pH value of the saliva.  The rate of stirring was 100 rpm. The dosage 

forms were placed in 400 mL of the phosphate buffer maintained at 37 ± 0.5 ⁰C. At 

appropriate intervals (5, 10, 20, 30 and 45 min) 5 mL of the samples were taken. The 

dissolution media was then replaced by 5 mL of fresh dissolution fluid to maintain a constant 

volume. After proper dilution, the samples were analyzed at 290 nm spectrophotometrically 
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(WPA, Biochrom Ltd., Cambridge, England). The mean of three determinations was used to 

calculate the drug release from each of the formulations. 

 

3.3.2.5     Stability study  

 The effect of aging on the disintegration time and dissolution rate of OD-LSTs was 

determined by storing the tablets at 22 
0
C for up to 6 months. After that, the samples were 

tested for their dissolution profiles and disintegration times at the conditions that have been 

used with freshly prepared tablets. The results were compared with the freshly tested tablets.  

 

3.4  Results and discussion 

3.4.1  Weight variation, hardness, friability, content uniformity, 

disintegration time, wetting time and water absorption capacity tests  

The results of weight variation, hardness, friability, drug content, disintegration time, 

wetting time and water absorption capacity tests are represented in Table 3.2. Average weight 

of OD-LST was 299 ± 2 mg. Average hardness of OD-LST was 45 ± 3 N and the tablets 

possessed acceptable hardness. All the clozapine OD-LSTs had acceptable friability as none of 

the tablets had percentage loss in tablet’s weights that exceed 1%, also no tablet was cracked, 

split or broken. Average percentage drug content was 99 ± 3 % indicating the compliance with 

the pharmacopoeial limits (90-110%).  

 

The most important parameter that needs to be evaluated in the development of ODTs 

is the disintegration time. As per recent US FDA guideline on ODT, disintegration time of 

ODT should have an in vitro disintegration time of approximate 30 s or less (US FDA CDER 

2008), when based on USP disintegration test method or alternative. In the present study, all 

the tablets disintegrated in less than 30 s fulfilling the official requirements for ODTs. The 

OD-LST of clozapine disintegrated within 20 s. CP quickly wicks saliva into the tablet and 

provides rapid disintegration in the mouth (Mohanachandran, Sindhumol et al. 2011). The 

rapid disintegration of OD-LST could be explained by its rapid wetting (wetting time 8 s) and 

its high water absorption capacity (128%). The wetting time is important step for 
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disintegration process to take place (Shankarrao, Mahadeo et al. 2010). The OD-LST showed 

quick wetting, this may be due to ability of swelling and also capacity of absorption of water.  

 

Table 3.2 Physical characterization of clozapine orally  

disintegrating liquisolid tablets  

Test OD-LST 

Weight variation (mg) 299 ± 2 

Hardness (N) 45 ± 3 

Friability (%) 0.22 

Drug content (%) 99 ± 3 

Disintegration time (s) 20 ± 1 

Wetting time (s) 8 

Water absorption (%) 128 ± 2 

 

 

3.4.2     In vitro dissolution study  

The dissolution profiles of clozapine OD-LSTs and DC-ODTs in pH 6.4 phosphate 

buffer are shown in Figure 3.2. It was obvious that drug release from OD-LSTs was much 

faster than that from the regular ODTs. Within 45 min only 68.8% of clozapine was released 

from DC-ODTs as compared to the OD-LSTs with 99.8% drug release.  

 

The enhanced dissolution rates of OD-LST compared to DC-ODT may be attributed to 

the fact that, the drug is already in solution in PG, while at the same time, it is carried by the 

powder particles (MCC, mannitol and CSD). When the drug within the LS system is 

completely dissolved in the liquid vehicle, it is located in the powder substrate still in a 

solubilized state. Therefore they show improved release rates. 
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Figure 3.3 Dissolution profiles of clozapine from orally disintegrating liquisolid tablets  

and directly compressed orally disintegrating tablets (means ± SD; n=3) 

 

3.4.3     Stability study  

 The effect of aging on the disintegration time and dissolution rate of OD-LSTs was 

determined by storing the tablets at 22 
0
C for up to 6 months. The dissolution rate and 

disintegration time were measured for the OD-LSTs at the end of 3 and 6 months. The results 

showed that storage at 22 
0
C neither had an effect on the disintegration time (Table 3.3) nor on 

the release profiles (Figure 3.4) of OD-LSTs. These results indicate that in the case of 

clozapine the OD-LS technology is a promising technique to enhance the release rate without 

having any stability issues.  
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Table 3.3 Disintegration time results of clozapine orally disintegrating liquisolid  

tablets (fresh and aged) 

LS system Disintegration time (s) 

(fresh) 

Disintegration time (s) 

(aged, 3 months) 

Disintegration time (s) 

(aged, 6 months) 

 

OD-LST 20 ± 1 19 ± 1 20 ± 2 

 

 

 

 

 

Figure 3.4 Dissolution profiles of clozapine from orally  

disintegrating liquisolid tablets (fresh and aged) (means ± SD; n=3) 

 

3.5 Conclusion 

LS technique has been used successfully to produce an ODT dosage form of clozapine 

with enhanced dissolution rate. This study demonstrated that formulation of clozapine as   

OD-LST is feasible for enhancing the in vitro dissolution of the drug so it would be possible to 
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hasten the absorption of clozapine and avoids its hepatic first pass metabolism through the 

partial absorption from buccal mucosa and esophagus. The physicochemical properties and 

stability of the prepared LS tablets were satisfactory.  

 

It was concluded that the ODTs of clozapine can be successfully prepared using LS 

technology in order to improve disintegration and dissolution rate of clozapine in oral cavity.   
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Chapter four 

 

4 Conclusion 

LS technique has been used successfully to produce a tablet dosage form of clozapine 

with faster dissolution rate than the regular tablet. Various trials were characterized based the 

blend and tablet parameters which showed the LS formulation containing MCC, CSD and 

SSG with clozapine dissolved in PG as a robust formula with required parameters. It showed 

significant increase in dissolution as compared DCT. It was found that there is a relationship 

between the carrier to coating material ratio (R value) and the in vitro release of clozapine 

from LS tablets. The R value is an important parameter which is the ratio between the weights 

of the carrier and the coating material that may be optimized. An increase in the R value 

results in an enhanced release rate, if MCC and colloidal silica are used as carrier and coating 

materials, respectively. LS compacts with high R values contain high amounts of MCC, low 

quantities of CSD and low liquid to powder ratios. This is associated with enhanced wicking, 

disintegration and thus, enhanced drug release. In contrast, if high amounts of colloidal silica 

are used, which means that the R value is low, the LS compact is overloaded with liquid 

formulation due to a high Lf. In such cases, even though drug diffusion out of the primary 

particles may be rapid, oversaturation might occur resulting in local precipitation or 

recrystallization of the drug and thus decreased release rates (Javadzadeh et al., 2007).  

 

This study showed that the liquid load factor (Lf) has an effect on the flow properties 

of LS powder blends but had no significant effect on the drug release from LS tablets. It was 

observed that aging had no significant effect on the hardness and dissolution profile of 

clozapine LS compacts. In conclusion, this study showed that LS technique could be a 

promising strategy in improving dissolution of poorly water soluble drugs such as clozapine 

and formulating immediate release dosage forms.   

 

In this study OD-LSTs of clozapine were prepared and in vitro evaluated. The 

optimized OD-LST formulation of clozapine showed a significant increase in dissolution rate 
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compared to the regular ODTs. This study demonstrated that formulation of clozapine as              

OD-LST is feasible for enhancing the in vitro dissolution of the drug so it would be possible to 

hasten the absorption of clozapine and avoids its hepatic first pass metabolism through the 

partial absorption from buccal mucosa and esophagus. It was observed that aging had no 

significant effect on the disintegration time and dissolution profile of clozapine OD-LSTs. It  

was concluded that the ODTs can be successfully prepared using LS technology and adding 

superdisintegrants to the formulation in order to improve disintegration and dissolution rate of 

poorly water soluble drugs such as clozapine.  

 


