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Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)
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RÉSUMÉ

À mesure que la population des personnes âgées dans les pays industrialisés

augmente au fil de années, les ressources nécessaires au maintien du niveau de vie

de ces personnes augmentent aussi. Des statistiques montrent que les chutes sont

l’une des principales causes d’hospitalisation chez les personnes âgées, et, de plus,

il a été démontré que le risque de chute d’une personne âgée a une correlation

avec sa capacité de maintien de l’équilibre en étant debout. Il est donc d’intérêt

de développer un système automatisé pour analyser l’équilibre chez une personne,

comme moyen d’évaluation objective.

Dans cette étude, nous avons proposé l’implémentation d’un tel système. En se

basant sur une installation simple contenant une seule caméra sur un trépied, on a

développé un algorithme utilisant une implémentation de la méthode de détection

d’objet de Viola-Jones, ainsi qu’un appariement de gabarit, pour suivre autant le

mouvement latéral que celui antérieur-postérieur d’un sujet.

On a obtenu des bons résultats avec les deux types de suivi, cependant l’al-

gorithme est sensible aux conditions d’éclairage, ainsi qu’à toute source de bruit

présent dans les images. Il y aurait de l’intérêt, comme développement futur, d’in-

tégrer les deux types de suivi, pour ainsi obtenir un seul ensemble de données facile

à interpréter.

Mots clés : traitement d’images, équilibre, détection de caractéris-

tiques, suivi d’une cible



ABSTRACT

As the senior population in developed countries increases, so will the resources

dedicated to maintaining a high standard of life for the elderly. Statistics show that

falls are one of the main causes of senior citizens being hospitalized. Furthermore,

it has been shown that the risk of an elderly person falling is correlated to their

ability to maintain their balance during standing position. It is then of interest to

develop an automated system to evaluate a subject’s balance, or postural sway, as

a means of objective evaluation.

In this study we have proposed the implementation of such a system. Based on

a simple setup of one camera on a tripod, we have developed an algorithm using

the Viola-Jones implementation, as well as template matching, to track both lateral

and anterior-posterior postural sway.

We have obtained good results for both types of tracking, however, the tracking

algorithm is sensitive to lighting conditions and any kind of noise in the images. It

would be of interest, as a future development, to integrate both types of tracking,

so as to obtain only one easily-interpretable dataset as a result.

Keywords: image processing, balance, feature detection, tracking
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CHAPTER 1

INTRODUCTION

1.1 An increasingly aging population

Statistics

Canada, much like many other industrialized countries, is facing the prospect

of managing an increasingly aging population, and the costs associated with it.

According to Statistics Canada [14] the projected population of senior citizens will

reach 24.6% in 2036, compared to 14.5% in 2011, the date of the latest census.

This increase is a result of a generation baby-boomers reaching old age, as well as

an overall increase in life expectancy. The growing population of elderly citizens

will require increasingly more resources for maintaining its health and well-being.

The need for automating health and well-being tests

One of the major problems affecting the health of the elderly are falls, which can

lead to severe impairment, or even death [30]. It has been observed [44] that one

predictor of future falls in an older person is abnormal postural sway, i.e. increased

sideways and forward-backward sway, while the person is standing. It is therefore

of use to perform tests in order to anticipate as much as possible which individuals

would be at risk.

1.2 What is postural sway and why study it?

A person’s balance is generally defined to be an even distribution of weight

enabling them to remain upright and steady. Consequently, postural sway is defined

as lack of balance, identified by the body’s movement while standing still. It has

been suggested [44] that an older person’s increased loss of balance is a result of

a decrease in spatial visual sensitivity, as well as the peripheral sensory system
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becoming less effective with age.

According to the Public Health Agency of Canada [30], almost two thirds of

injury-related hospitalizations for the elderly are as a result of a fall. In addition,

it has been observed [26][18] that increased postural sway during quiet standing is

correlated to an increased likelihood of falling.

1.3 Different approaches to measuring sway in a clinical environment

Postural sway is traditionally measured in a clinical setting under the supervi-

sion of trained personnel. The subjects are made to perform several tasks and are

then evaluated according to a gold standard, which is generally taken to be the

Berg Balance Scale (BBS) [11]. This consists of a series of balance-related tasks,

each scored on a scale from zero to four, and then summed up. The BBS has been

found to be a good predictor of falls in populations of older adults [13], especially

those residing in long-term care facilities.

Another method is Tinetti’s test, also known as the Performance Oriented Mo-

bility Assessment (POMA). The test is comprised of a static component, first on a

chair, then standing, followed by a dynamic gait analysis. The test is scored over 28

points, with a result below 19 showing a high risk for future falls. The inter-rater

reliability was measured by having a physician and a nurse test the patients at the

same time and high agreement was found [36].

A simple and yet effective test is the Timed Up and Go test, which simply

measures the time taken to rise from a chair, walk three metres, turn around, walk

back to the chair, and sit down. When used as a test on elderly individuals who

are already frail, it has been shown that a score higher than 14 seconds indicates

that the person has a higher risk of falling.

Other ways of measuring standing balance include placing sensors or markers

on the subject or centre of pressure (COP) measurements with force platforms,

discussed further in the literature review.



CHAPTER 2

LITTERATURE REVIEW

2.1 Video surveillance

Video surveillance has been a ubiquitous part of our lives for several decades,

publicly, as well as in the private sector. It is widely used for traffic monitoring,

commercial security, as well as customs and border protection. More recently, it has

been used as a tool to assist in monitoring the safety of elderly patients, both those

in institutional care and those residing at home. The approach differs markedly

from the public-camera monitoring, due to privacy issues as well as the need for

more cost-effective means, supported by small privately-owned companies.

The number of cameras in public spaces has increased exponentially in the last

decade [16], making it crucial to develop software capable of analyzing the produced

data without human interaction. A comprehensive review of multi-camera video

surveillance [42] has focused on the connection and integration of large distributed

multi-camera networks and the aggregation of the data provided by these networks.

The study shows that jointly modelling data improves the robustness and the accu-

racy of the detection and tracking. As an example, activity modelling can improve

inter-camera tracking, while multi-camera tracking provides information for camera

calibration and the inference of the topology of camera views.

A study presented by Baumann et al. [8] reviews several measures used to

evaluate different video surveillance algorithms and their results. Automated alert

systems need to be precise and robust enough to alert a human agent only when

needed, while at the same time not missing any of the events that do need to

raise an alarm. In general, algorithm results are found to be largely dependent

on the choice of a ground truth, as well as that of the benchmark datasets. One

of the difficulties in assessing different algorithms and the evaluation metrics used

is that some published articles provide little information on the details of their
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implementation, such as methods for averaging out data, or combining different

computational measures.

2.2 Human activity analysis

A recent and comprehensive review has been published by Aggarwal and Ryoo [3].

They classify activity recognition methodologies into two types of approaches:

single-layered and hierarchical. Single-layered approaches classify activities directly

from video data, or, more specifically, from sequences of images. Single-layered ap-

proaches are further divided into space-time approaches and sequential approaches.

Space-time approaches generally work with training videos, from which a model

3-D XYT space-time volume representing each activity is constructed. When a

new video is then tested, a new 3-D space-time volume is constructed and com-

pared with each activity model, and the activity which has the highest similarity

is chosen. Sequential approaches view an input video as a sequence of observations

and each activity is viewed as a particular sequence of feature vectors.

Hierarchical approaches are based on the recognition of sequences of simpler

subactivities, which are combined to create high-level activities - e.g. punch-

ing and kicking combined to create fighting. Hierarchical approaches are fur-

ther divided into statistical methods, syntactic methods and description-based ap-

proaches. Statistical approaches use multiple layers of state-based models, such as

Hidden Markov Models (HMMs) and Dynamic Bayesian Networks (DBNs), while

syntactic approaches model human activities as a string of symbols, each of which

represents a subactivity. High-level activities are then recognized from the latter by

using context-free grammars (CFGs) or stochastic context-free grammars (SCFGs).

Description-based approaches, like the other hierarchical approaches, also view an

action as being composed of simpler events (i.e. subevents, or subactivities). Ac-

tivities are recognized by searching the subevents satisfying the relations specified

in its representation. Time-intervals are usually associated with subevents in order

to generate temporal relationships among subevents, and CFGs are used as formal
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syntax for human activity representation.

2.3 Gait analysis

Gait is generally defined as an individual’s manner of walking, taking into ac-

count speed, cadence, balance as well as any idiosyncratic features specific to the

individual. It is dependent on physical features such as height, weight, limb length,

as well as posture and characteristic motion. Gait analysis may be useful in iden-

tifying a person, for security reasons, as well as identifying certain medical issues

in patients [21].

2.3.1 Analyzing gait for identification purposes

One of the methods of analyzing gait for identification purposes was proposed

by Lee et al. [24]. They have used feature vectors based on moments extracted

from orthogonal-view video silhouettes of walking motion, and used these for both

person identification and gender classification. They have focused on two types of

gait features, one based on average appearance of gait, and one based on spectral

components. They have found the latter to be performing less accurate identifi-

cation when the subject’s type of appearance and clothing was already present in

the training database, but better suited for when the clothing changed drastically

from the training set to the testing set.

Alternatively, Wang et al. [39] used three-dimensional voxel reconstruction, with

two calibrated inexpensive webcams. Their approach was to first subtract the

background, then extract silhouettes, and then finally to reconstruct 3-D voxels

from back projecting the silhouettes from multiple camera views. The algorithm

results were tested against output using the GAITRite Electronic mat, and the

Vicon motion capture system, both of which have been shown to be accurate [43],

and very good agreement was obtained for walking speed, step time and step length.

These are only two simple examples among the many other methods proposed

in the literature. For a comprehensive treatment and many additional references
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to the existing literature on the subject, the reader may refer to Nixon et al. [27].

2.3.2 Gait analysis in the medical field

Gait analysis is performed in the medical field as a tool to detect possible

pathologies, as well as to determine future treatment for known ones. It has been

shown that cerebral palsy and stroke patients benefit from gait analysis while de-

veloping strategies for rehabilitation. In the case of cerebral palsy patients [22],

when comparing visual gait analysis performed by trained medical personnel and

3-D gait analysis, the latter performed markedly better. Out of ten specific points

of the gait cycle only two were shown to have been similarly evaluated by visual

analysis and 3-D computer analysis.

In studying elderly persons without dementia, Verghese et al. [37] concluded

that the presence of neurological gait abnormalities is a significant predictor of the

risk of development of dementia, and more particularly non-Alzheimer’s dementia.

Bautmans et al. [9] have used 3-D accelerometers to study gait and its corre-

lation to fall-risk. They have found that, when based on the average of two walks

instead of only one, the assessment of gait speed and regularity of steps and strides

shows good to excellent reliability. However, in this study, only gait speed showed

sufficient consequence on the increase of fall-risk, while the the relationship of other

gait features needs more research.

As an example of a more traditional method of measuring gait, Bamberg et

al. [7] developed the “GaitShoe”, a wireless wearable system for gait analysis. The

benefit of such a system is that it is portable and independent of the patient’s pres-

ence in the motion analysis laboratory. It is, however, an intricate framework, as it

consists of three orthogonal accelerometers, three orthogonal gyroscopes, four force

sensors, two bidirectional bend sensors, two dynamic pressure sensors, as well as

electric field height sensors. Their results were promising, being validated using re-

sults obtained simultaneously from the Biomotion Laboratory of the Massachusetts

General Hospital, however, the prototype’s price being close to $500 per shoe at

the time of the article’s writing, it also makes it cost-prohibitive for use with large
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samples of individuals.

This non-exhaustive list of research work demonstrates that gait analysis is

a field of interest in clinical medical practice, both for neurological and non-

neurological disorders.

2.4 Fall analysis

Falls are the leading cause of hospitalizations in the elderly population in

Canada [32]. They are also the second most common cause of unintentional in-

jury deaths (at 25%), surpassed only by transportation incidents. It is thus of

great interest to develop accurate and affordable systems for automatically detect-

ing such events. In addition to the elderly population residing in long-term care

facilities, this would also benefit older persons living independently in their own

home. In the past, many such systems were dependent on either the person wearing

a set of sensors, which was both cumbersome and costly, or the person being able

to push a button or a switch to call for help, which was largely dependent on the

person being conscious and able to reach the signalling device.

A vision-based, ceiling-mounted Personal Emergency Response System is pro-

posed by Belshaw et al. [10] and tested in a home environment. The system is

based on visual background modelling, which separates a subject’s shadowed sil-

houette and shadow-less silhouette regions. The regions are then analyzed to create

velocity, area, and moment features, which in turn are classified as fall or non-fall.

Their results were promising, detecting all the simulated falls in the video input,

and detecting only 5.4 false positives per day, obtaining a false positive rate of

0.00126%, and a true positive rate of 100%, where the rates are calculated by di-

viding the number of events (true or false positives) by 3,024,000, the total number

of frames occurring over the trial period.

Another similar system was presented by Lee and Mihailidis [25], also using a

digital videocamera installed on the ceiling, in a mock home-environment setting.

The algorithm was based on the Pfinder [46] background subtraction model, and
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they have obtained accurate fall detection on 77% of occasions, compared to 23%

missed falls and 5% false alarms.

Anderson et al. [6] have presented a framework for modelling and monitoring

human activity from video, falls in particular. Their model was based on recon-

structing a voxel person from the frame sequence and using fuzzy logic to classify

the type of activity in which the person is engaged. In order to build a 3-D approx-

imation of the human, i.e., voxel person, silhouettes are extracted from multiple

camera views. The model is then refined by removing additional shadows, reflective

static surfaces, and errors, to subsequently extract features from it. Features are

extracted from the voxel person and used along with fuzzy inference to determine

the temporal state of the resident. The resulting fuzzy rule base outputs can then

be temporally processed to detect activity. This is a flexible framework in which

rules can be modified, added, or removed, allowing for customization of resident-

specific knowledge. Their “on-the-ground” person recognition accuracy was 97.6%,

while “upright” is 83.1%. False classification of “upright” as “on-the-ground” was

10%.

A survey of some of the systems and algorithms used to detect falls in the

elderly is presented by Noury et al. [28]. The review also details the difficulty of

comparing the performances of the different systems due to the lack of a common

framework, while presenting a possible evaluation method.

2.5 Postural sway

It has been observed that, as people age, or due to cerebellar disease [17], it

becomes increasingly difficult to maintain one’s balance and, as such, postural sway,

both lateral and anterior-posterior, increases with time [45][29][35]. In Figure 2.1,

from Fujita et al. [35], we can see an example of the centre of mass (COM) trajectory

for a young person, compared to that of an older person. We can see definite

increased postural sway in the latter, especially with eyes opened.

The work of Berg et al. [12] has shown that the ability to control one’s bal-
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Figure 2.1 – Postural sway trajectory in a young (top) vs. an older (bottom)
subject with eyes opened (left) and closed (right); Fujita et al. [35]
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ance is an important predictor of falls within the elderly population. Lajoie and

Gallagher [23] have conducted a comparative study in order to determine the ef-

fectiveness of several scales of measure in predicting such falls, by comparing these

tests as applied to older adults who have fallen before and those who have not.

The study has focused on results from simple reaction time, the Berg Balance

Scale (BBS), the Activities-specific Balance Confidence (ABC) scale and postural

sway. Their results suggest that those who do not have a history of falling have

significantly faster reaction times, higher scores on the BBS and the ABC scale

as well as sway at slower frequencies when compared to those who have fallen in

the past. When comparing postural sway between these two groups, those who

have a history of falling seem to oscillate at a higher frequency. In addition, it was

observed that postural oscillations were much more apparent in the lateral plane

than in the anterior-posterior one.

2.5.1 Two-dimensional

Historically, postural sway has been measured by either following the trajectory

of a person’s centre of mass (COM), or the movement of the centre of pressure

(COP). Until recently, the norm was to acquire these measures by either placing

sensors or markers on patients to measure the former, or else by using force plates

(FPs) to measure the latter. More modern systems, however, use computer vision

techniques to track relevant elements without using markers, making the process

more time-efficient as well as more cost-effective.

Goffredo et al. [20] have presented a marker-less, model-free study, based on the

block matching algorithm (BMA). The method consisted of tracking the relevant

points on the human silhouette, followed by the evaluation of the rotations of

the principal body segments, and then estimation of COM trajectories. Their

method has been proven effective in correctly estimating the anterior-posterior

component of a trajectory, as well as obtaining results validated by comparing the

COM movement with COP variations.

An inexpensive setup was also presented by Allin et al. [5]. The system consisted



11

of a single uncalibated camera, used to film one-minute video sequences of elderly

patients in a community centre. The camera was placed in front of the subject, who

was made to perform a series of tasks. The gold-standard was human evaluation

by physical therapists, using the Berg Balance Scale (BBS). The trajectory of the

postural sway was extracted by using a template tracker for the heads and feet and

the results matched those obtained by the traditional visual method of the BBS.

The advantages of this method over previous accelerometer, marker or FP methods

is the simplicity of the setup, as well as the low cost and easy availability of the

equipment.

2.5.2 Three-dimensional

Wang et al. [40] presented a method for analyzing body sway from a three-

dimensional voxel reconstruction. The system consisted of two inexpensive cali-

brated webcams, which were used to extract sway parameters from both standing

and walking subjects. The voxel person, similarly to Wang et al. [39], was built

from back-projected silhouettes extracted from multiple camera views. The Vicon

marker-based motion capture was used as ground truth, and the authors have ob-

tained very good agreement for body sway during standing. For walking, however,

while the detected body centroid followed the Vicon results, the overall agreement

numbers were lower, due to the sway amplitude having a larger error rate.

It has been noted [7] that FPs are able to measure subtle changes in a person’s

standing balance that are not perceptible by a physical therapist. The use of the

BBS still remains largely subjective, and thus it is preferable to measure sway more

precisely using hardware or software systems. Clark et al. [4] experimented the use

of the Nintendo Wii Balance Board (WBB) as a less expensive alternative to FPs.

In addition to being more affordable, the WBB is also more portable and more

widely available than FPs, thus making it more accessible in a variety of clinical

situations.

Similarly to FPs, the WBB uses four transducers which are used to assess force

distribution and the resultant movements in COP. In this study, thirty participants
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were asked to perform four types of balance tasks: single limb standing with eyes

closed, single limb standing with eyes open, double limb standing with eyes closed

and feet together and double limb standing with eyes open and feet a comfortable

distance apart. The results were evaluated in terms of COP path length, for fixed

time intervals, and the data obtained from the WBB and FP were compared using

intraclass correlation coefficients (ICC), Bland-Altman plots (BAP) and minimum

detectable change (MDC). The ICC obtained for COP path length test-retest reli-

ability between-device was fair at between 0.77 and 0.89, on all testing protocols.

In this chapter we have given ample evidence demonstrating the potential of

gait and balance analysis for clinical medical practice. Traditionally, simple score

sheets are used for quick screening of patients based on their balance and gait,

however, these tests are limited to very simple and somewhat subjective assess-

ments. More sensitive methods exist, such as motion capture devices or force

plates, but usually involve complex systems requiring a dedicated laboratory with

trained specialists. We have shown that, fortunately, human motion analysis with

video cameras has become a viable alternative. This method has the potential

benefits of being relatively affordable, marker-less, and applicable in a wide range

of environments. However, this approach is currently often limited to the study

of features extracted from the body’s silhouette. Furthermore, it is usually used

for activity recognition or identification, while clinical applications have not yet

been extensively exploited. Taking the above into account, we present in the next

chapter a very simple, portable and automated system to evaluate postural sway,

as a means of objective evaluation of a patient’s balance, for early detection of

anomalies and assessment of fall risk in clinical or home environments.



CHAPTER 3

A SIMPLE SYSTEM FOR POSTURAL SWAY ASSESSMENT

3.1 Introduction

It has been shown in the previous chapter that the fall risk of an elderly person

is correlated to their ability to maintain their equilibrium during standing position.

It is therefore of interest to develop an automated system to evaluate a subject’s

movement, or sway, whilst in a standing position. It this chapter, we present a

simple, affordable, marker-less and portable system for postural sway assessment,

as a means of objective evaluation that could be used either in a clinical or home

environment.

3.2 Camera setup

The typical system setup is quite simple with two synchronized cameras mounted

on tripods, one facing the subject to assess lateral motion and the other on the

side for anteroposterior measurements, as illustrated in Figure 3.1. Alternatively,

one camera can be moved from the front to the side of the subject to get two

independent sets of measurements.

3.2.1 Calibration

The camera model used in computer vision uses perspective projection to rep-

resent the mapping from the 3D world space onto a 2D image space. Also known

as the full perspective projection, this model is computationally complex, and can

in certain situations be approximated by simpler methods, namely the orthogonal

perspective model, the weak perspective model and the paraperspective model.

Wang et al. [41] illustrate this in Figure 3.2.
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Figure 3.1 – Setup for two synchronized cameras

The Orthographic Perspective model

Orthographic projection is a subset of parallel projection, for which all the pro-

jection lines are orthogonal to the projection plane. As it can be seen in Figure 3.2,

this results in image projections which are to scale, but not representative of how a

human eye would perceive them, as objects in the distance will not appear smaller

than those close by.

The Weak Perspective model

The weak perspective model can be seen as a hybrid between the orthogonal

perspective model and the full perspective projection model. It is defined as a per-

spective projection in which each individual point depth is replaced by a constant

point depth, therefore making it an orthographic projection scaled by a constant

factor. The weak perspective assumption is a good approximation of perspective

projection when the depth variation of the object is small compared with the dis-
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Figure 3.2 – Different projection models; Wang et al. [41]
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tance to the camera.

Generally, weak perspective is a good approximation if: the focal length, as well

as the field-of-view are small, the field-of-view is small comparatively to the average

depth and the depth variation of the object is small compared to the average depth

[31]. For example, considering a normal lens for a 35 mm camera with a focal

length of f=50 mm, the distance from the camera at 2.5m and an average depth

variation of a person’s head of 100mm, we can use the weak perspective model

as an approximation, as all the above conditions are satisfied. These parameters

correspond to our experimental setup, presented in Chapter 4.

3.2.2 Flow diagram of the system

A diagram of the system flow chart is presented in Figure 3.3.

The initial videos are acquired with a static camera on a tripod, under either

natural or artificial light. The images are then extracted from the videos, and each

image is subsequently processed to locate the person’s face, using the Viola-Jones

algorithm, presented in section 3.3. If several faces are located, we only keep the

one found in the upper third or half of the image, depending on the distance of the

person from the camera, discarding the image if more than one face is found in the

upper region, or if no faces are located. The location of the face is not necessary for

the trajectory tracking, but it is used for confirming the accuracy of the location

of the eyes and the mouth, needed for postural sway assessment.

The left eye, right eye, and mouth are detected separately, also using the same

Viola-Jones implementation. For each one of these, the threshold is increased until

only one of each is found. The smaller the threshold is, the more detected features

are found, and as the threshold is increased, there are fewer and fewer of each

until the number of features detected converges to zero. The maximum threshold

T, which has been empirically found to be a good cut-off point beyond which the

chances of detecting something are very slim, is computed. If no left eye, no right

eye, or no mouth is found up until this threshold, the image is skipped, as all three

are necessary for the computation of the face centroid, used as a virtual marker for
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Figure 3.3 – System flow chart
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lateral sway estimation. Typically, the number of skipped images is around 2%, as

can be seen in Table 4.I.

The last two right eyes, two left eyes, and three mouths found while increasing

the threshold are kept in memory for each image iteration, in the event that one

of the current features is incorrect, i.e. not within the bounds of the face. In the

majority of cases, the feature that was not correctly identified at the end is present

in these last two or three saved features and is then chosen instead. Otherwise the

image is skipped.

The centroid is computed for each image as the centre of the left eye, right eye

and mouth. To compute the centroid, we have chosen to use both eyes, as well

as the mouth, rather than only one of these features, in order to increase both

precision and robustness. The outliers of the trajectory, if any, are then removed

by using an implementation of the Thompson tau method [15], available online

[33]. This method is based on the average of a dataset and the absolute standard

deviation of each point with respect to the average. A rejection region, based on a

formula using the critical value of the Student’s t-distribution probability density

function, is determined, within which points are considered to be outliers. This

region is given by:

Re jectionRegion =
tα/2 (n−1)

√
n
√

n−2+ t2
α/2

In this formula, tα/2 is the critical value from the Student t-distribution, with

α = 0.05, and n as the sample size.

Finally, the trajectory of the centroid is plotted.

The procedure is somewhat different for the side view sequence of images. The

trajectory of the movement viewed from the side is extracted using a subject-specific

method, namely template matching, presented in section 3.4. For each subject, the

template of one feature must be selected by the evaluator as a separate image and

loaded into memory. In our case we used an ear, and limited the region of interest to

the upper half of the image. The template matching is performed and the resulting
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trajectory is plotted, similarly to the frontal trajectory.

Since this method is significantly more time-consuming, as it can be seen in

Table 4.II, we have opted to use it for the side-view tracking only. In addition,

the templates for each feature are somewhat person-specific and may need to be

defined for each individual subject, further complexifying the task of the evaluator.

3.3 Viola-Jones object-detection algorithm

The Viola-Jones framework uses a set of four Haar-like features, as seen in

Figure 3.4.

Figure 3.4 – Viola-Jones features; Viola and Jones [38]

These are simple features used to coarsely classify the subsections of an image,

before combining them to form stronger classifiers. Each feature is computed by

subtracting the pixels corresponding to the black area from the pixels corresponding

to the white area. As an example, this can be seen by looking at features A and B in

Figure 3.4, which are particularly sensitive to vertically and horizontally delimited

image regions, respectively. However, these are primitive features and, as such, will

only produce a rough evaluation.

The advantage of using such simple features, is that, due to the use of the

concept of integral image, each feature can be computed in constant time. In the

integral image, also known as the summed area table, the value of any point (x,y)

is the sum of all the pixels above and to the left of (x,y), as seen in Figure 3.5,

from Viola and Jones [38]:
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I(x,y) = ∑
x′<=x
y′<=y

i(x′,y′)

Figure 3.5 – The value of a point in an integral image; Viola and Jones [38]

Similarly, a rectangle defined by four points A, B, C, D will be computed with

four lookups, as it can be seen in Figure 3.6, from Viola-Jones [38]:

∑
x0<=x<=x1
y0<=y<=y1

i(x,y) = I(C)+ I(A)− I(B)− I(D)

Figure 3.6 – The value of a rectangle in an integral image; Viola and Jones [38]

From this, it follows that any two-rectangle feature can be computed in six array

references, any three-rectangle feature in eight, and any four-rectangle feature in

nine.
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AdaBoost

Although each feature can be computed quickly, the number of possible fea-

tures causes their evaluation to be inefficient and extremely time-consuming: for

a 24 x 24 pixel sub-window, the number of possible features exceeds 160,000. The

object detection algorithm uses a variant of AdaBoost [19] to only choose the best

features.

Boosting can be illustrated by Figure 3.7, from Szeliski [34]. After each primitive

classifier is selected - in our case one of the four features in Figure 3.4 - the weights

of the points that were mis-classified are increased. The final strong classifier is a

linear combination of the simple weak classifiers.

Figure 3.7 – AdaBoost classifiers; Szeliski [34]

Cascade architecture

The last step of the Viola-Jones framework uses a cascading approach to evalu-

ate the strong classifiers. These are evaluated successively by order of complexity,

by training each successive classifier on only the sub-windows which have passed

through preceding, less complex and faster, classifiers.

3.4 Template matching

To compute the profile-view sway in our subjects, we have used a different video

sequence, and processed it using a template matching method. This was necessary

since, in the case of a side view, the implementation of the Viola-Jones algorithm
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only detects faces and eyes, rather poorly for the latter. There is an option to

train classifiers to detect other features, however, this would have been extremely

time-prohibitive in our case, in addition to the added difficulty of enrolling many

subjects for adequate training.

Template matching is essentially a method for locating a given pattern within

an image. In our case, since facial features are person-specific to a certain degree,

it needs user input in selecting the region of an image that represents what is being

tracked, such as an ear, a nose, or a mouth. The decision to use the visible ear for

tracking was based on the fact that it is still fully visible in case the person turns

their head slightly away from the camera.

Template matching uses a sliding window approach in finding a feature within

an image. Out of several methods of implementing template matching, the one

we have used is based on a convolution mask, applied to greyscale images. First,

a template is chosen, such as the one of the ear seen in Figure 4.9. The centre

or origin of the template is then moved over each point in the examined image,

calculating the Sum of Absolute Differences (SAD) at each point. The SAD at

point (x,y) is given by:

SAD(x, y) = ∑
i

∑
j
|T (i, j) − I(x+ i, y+ j)|; T : template, I: image

In doing this, all possible values of the template with respect to the examined

image are evaluated, and the position with the highest value is chosen. The advan-

tage of this method is that it is easy to implement, however, it is slow to execute

and dependent on the user selecting the template beforehand. Note that although

the SAD is illumination-dependent, this is not an issue in our case because of the

high frame rate and controlled environnement.

3.5 Post-processing

Our methodology, as described in subsection 3.2.2, consists of first extracting

the images from video, detecting the features, then plotting the trajectory. Several
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methods of post-processing the data have been tried. In earlier versions of our

algorithm, there were instances of obvious outliers within the trajectory which

were eliminated, by first using a simple rule of each point not being farther than

five times the distance of the previous three pairs of points. Later on we have used

an implementation of the Thompson tau method. However, this processing is less

necessary with better quality videos and with a few constraints on the lighting and

the subject’s clothes.

3.5.1 Focusing on Face Sway

Traditionally, we look either at the centre of gravity or centre point of pressure

to assess the degree of sway. In our study, however, we have decided to focus on

the face movement to determine sway. The subjects were asked to first stand with

feet held together, and were not allowed to move the feet in order to keep their

balance. Since our subjects were young and in good health, this test often resulted

in a very small amount of postural sway. Several tests were devised to make the

subjects’ sway more pronounced.

3.5.2 Frontal and side views

Our experiments consisted of sequentially filming two videos of a subject, one

from the front, and another one from the side, in order to assess both medial-lateral

and anterior-posterior sway. Ideally, these two videos would have been filmed at

the same time with two identical cameras, however, due to practical constraints,

the subject was filmed twice with the same camera, resulting in two videos of two

different sway sequences.

3.5.3 Validation

The validation process consisted of comparisons between our results and those

generated by placing a green marker on the face of the subject. In the case of frontal

tracking, the marker was placed on the tip of the nose, as seen in Figure 4.3, whereas
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for profile tracking it was placed near the ear, as in Figure 4.9. The nose is not

one of the features detected for the frontal tracking, and, for the side view, the

green marker was placed outside of the area of the template. As the marker was

placed on regions that were not tracked in either of the two algorithms, it did not

influence the outcome of the tracking in either cases.

The tracking of the marker was done by simply extracting the green from the

image, ensuring that there were no other green objects present, and tracking the

trajectory of the centroid of the green pixels. Both the visual trajectories and the

subsequent error calculations between our feature-tracking algorithm and the green

marker tracking give us an idea of the validity of our approach, however, it is not

expected that the trajectories will be identical. For the frontal images, the tracked

centroid corresponds to the centre of the three features tracked: the left and right

eyes and the mouth, expressed as rectangles. This centroid will not necessarily

correspond to the tip of the nose. Similarly, the centre of the ear, as found by the

template matching algorithm, does not necessarily move in an identical way to the

centre of a marker placed on the face.



CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 System implementation

The system was developed using a full version of Matlab on an 8GB Mac OS X

platform. For the final testing, the videos were 30s long, at 30fps, and the native

video resolution was 1920 x 1080. The algorithm was developed using the face

detection implementation available in the Computer Vision toolbox of Matlab.

Object detection in general, and face detection in particular, is implemented in

Matlab using the Viola-Jones object-detection algorithm [38].

4.2 Experiments

Empirical observations

The final algorithm and camera setup were based on a few observations made

during the development phase.

4.2.1 Camera setup

Our experiments were carried out using an 18 MP Digital SLR Camera with an

18-55mm lens. The frame rate was set at 30 fps and the resolution of the images

extracted from video was 608 x 1080. The camera was placed on a tripod, facing the

subject at a distance of approximately 2.5m for lateral motion assessment. Then

the camera was moved to the side of the subject for anteroposterior measurements.

For these experiments we did not use two synchronized cameras due to practical

restrictions, but the overall methodology remains the same. Two lamps were also

placed on each side of the camera, facing the subject. Figure 4.1 shows a typical

camera setup, with a somewhat smaller than usual distance from the camera to

the subject.
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Figure 4.1 – A typical camera setup

4.2.2 Camera positioning and lighting

The camera was placed on a tripod so as the subject’s face was clearly visible

and centered. The torso and upper part of the legs were also visible, while the

feet and lower part of the legs were not. Because of the decision to not track the

movement of the feet, it became unnecessary to have them in the videos. The

algorithm also performs better when the face is not too close to the camera: for

instance, when the face takes about a quarter of the image, the processing time

increases more than threefold. This is due to the cascading classifiers, which take

far longer to compute on a larger face. The convergence of the features towards

the last correct one is also much slower within our algorithm, frequently reaching a

threshold higher than 100, versus an average of 45 for a face that is only roughly a

tenth of the image. The maximum threshold was set at T = 200, based on a series

of empirical observations showing that the chances of detecting features above this

value are very slim.

If the faces are in-plane rotated by 90 degrees, e.g. when the camera was vertical

when filming and the extracted images were not subsequently unrotated, the algo-

rithm fails entirely. This is due to the fact that the Viola-Jones feature detectors
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were only trained on the normal frontal view of the faces, without rotation. The al-

gorithm also performs poorly if the images have a small amount of blur, either due

to fast movement or insufficient lighting. It is then paramount to ensure that there

is sufficient illumination and appropriate head orientation, i.e. lighting focused on

the subject and frontal view with head roll, yaw and pitch near 0 degrees.

4.2.3 Clothing

The clothing worn by the subject can also aid in increasing the accuracy of the

feature detection. It generally does not matter if the person is wearing short or long

sleeves or pants, as our algorithm only considers the faces detected in the upper

third, or upper half of the image, depending on the distance of the subject from

the camera. However, we have observed that the accuracy is improved when black

clothing is used, as it created less small shadows along the folds in the clothing.

These shadows may be mis-classified by the algorithm as features and significantly

increase computation times. It is obviously advised to avoid wearing clothing that

has faces on it, such as cartoons, as they might also be mis-classified as real faces.

4.3 Results

The results were obtained over a period of several months, using both artificial

and natural light, indoors and outdoors.

4.3.1 No movement

As a control experiment, we have used a 10 second video in which there was

no movement. The centroid of the two eyes and mouth was computed for all the

images, and the trajectory is displayed in blue in Figure 4.2. There were no points

omitted due to features not found, and no outliers were removed. As expected, the

trajectory is concentrated in a very small spot. The maximum horizontal postural

sway is of about 6mm, and the vertical sway is of about 4mm.
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Figure 4.2 – No sway trajectory

4.3.2 Single leg balance

An example of a single-leg balance experiment is shown in Figure 4.3. For

illustration purposes, the trajectory represents a smaller subset of images than the

standard 30 seconds/900 frames we have used. In order to have a clearer trajectory

displayed on the final image, we have only used 300 frames (i.e. 10 seconds).

The left image represents the trajectory as computed by our algorithm. The

image on the right represents the tracking of the green marker placed on the nose,

as a means of comparison to the centroid of the two eyes and the mouth, which

generally falls on the nose, unless the face is not forward-facing. The two displayed

trajectories are similar in shape, however, we can see that the one on the left

contains some noise on the left-hand side.

This particular video sequence contains two images that were bypassed by our

algorithm, both because the mouth was not found. No visible outliers were present,

so the outlier removal code was not run. We computed the error between the two

curves, by calculating the Euclidean distance between each pair of corresponding
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Figure 4.3 – Trajectory comparison with ground truth

Figure 4.4 – Distance (in pixels) between the trajectories in Fig. 4.3
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Figure 4.5 – Shorter distance from the subject

points. The mean error was found to be 9.90 pixels, with a minimum error of 0.50

pixels and a maximum error of 28.75 pixels. Displaying a ruler at the beginning of

the video, we have found a correspondence of 9 pixels per cm, or 1.11mm per pixel.

The mean error is then of 11mm, with a maximum of 31.91mm, and a minimum

of 0.55mm. These errors are partly due to the systematic slight difference between

the mouth-eyes centroid and the nose position. The graph in Figure 4.4 represents

the computed distance between the two trajectories, image by image.

The postural sway from this image sequence is about 289.2mm horizontally and

63.0mm vertically, by computing the differences between the maxima and minima

along the x and y axes, respectively.

4.3.3 Ball throwing

Another experiment consisted of having the subject throw a ball to somebody

behind the camera and then catch it, a test devised in an attempt to increase

postural sway. As seen in Figure 4.7, the tracking works well if the face is sharp

and in focus, even if parts of the image are blurry. The outline of the detected face,
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Figure 4.6 – Cropped image of a ruler from the video beginning

eyes, and mouth are displayed, along with the centroid of the eyes and mouth, in

blue. The results of this test, however, have been rather poor, with an average

of 15.3 skipped images for each set of a hundred. In our particular experiments,

this was due to the person oftentimes looking after the ball and showing a profile

face or looking down and obscuring the mouth. In a few instances, the subject

completely lost their balance and the face or part of it went beyond the boundaries

of the image.

The graph in Figure 4.8 depicts the number of centroid points passed over for

a 30 second video sequence of our subject in Figure 4.7. We mark by a 1 an

image that was skipped, thus a centroid that was not computed. The result of 138

omitted images, representing 15% of the total of 900, is much higher than for the

other types of experiments, due to the aforementioned reasons.

Another thing to note, which has been observed in many of the video sequences,

is that skipped images tend to cluster. This holds even for good videos (not blurry,

person looking at the camera), and it shows that in most cases when features are
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not detected correctly, it is as a result of the image sequence, not of the algorithm.

Even minute changes, such as a person briefly squinting while trying to keep their

balance or a shadow or hair obscuring a feature, can render an image unusable for

feature tracking.

Figure 4.7 – Subject throwing ball

4.3.4 Comparison

During the course of our experiments, we have noted that wearing glasses does

not negatively affect the eye detection, unless there is significant glare from artificial

lighting. In the case that the light source directly faces the subject, it would be

preferable that the subject remove their eye glasses during the experiment.

From a series of videos with the camera placed at varying distances from the

subject, it has been apparent that the length of image processing increases with the

subject being closer, as noted in subsection 4.2.2. As an example, the sequence of
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Figure 4.8 – Images skipped in ball throwing experiment

900 images corresponding to the trajectory in Figure 4.5 took significantly longer

to process, compared to 3.45 hours on average for smaller faces, such as the one in

Figure 4.8. This is partly due to the fact that, as presented by Viola and Jones [38],

the features were trained on much smaller faces than the ones used in our close-up

videos. Although the results for the sequence in Figure 4.5 were very good, having

omitted only nine images out of the 900, and having not removed any outliers, we

have decided against using video sequences that require such extended processing

times. This was due partly to our own time constraints, but also in an effort to

obtain statistics helpful in building a system that would be convenient to use by a

third party.

A few details worth mentioning regarding the results in table 4.I concern the

size of the dataset for each type of experiment. We had many more video sequences

for one-leg standing balance in artificial lighting than any other type of motion.

This was because we felt it was the most representative type of movement and

indoor setting. In addition, we acquired less video outdoors since it was mainly for

testing purposes and it does not reflect a realistic environment for our experiments,

such as a medical clinic, for example. We have noted, however, that the tracking

is very good in outdoor scenes, but less so in indoor sequences with natural light
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Type of experiment
Average points
skipped (%)

Average outliers
removed (%)

Trajectory mean
error (mm)

Two legs, artificial light 1.8 0 5.2

Single leg, artificial light 2.1 0 12.7

Single leg, natural light 1.6 0 N/A

Ball throwing 9.8 0.2 N/A

Table 4.I – Results of different experiments

only. This is mainly due to the lower exposure time needed for outdoor scenes,

resulting in negligible motion blurring. In order to create a good environment with

natural light, the subject needs to face a window that receives a lot of it, without

any obstructions and not creating any shadows on the subject.

In addition, it was only possible to compute the trajectory error for the videos

that had a green marker present. Since the ball experiment proved to create videos

with many unusable images, we never attempted to calculate the trajectory error.

Similarly, no marker was present in the outdoor scenes, due to the small amount

of data collected.

As noted before, the quality of the images in the videos highly impacts the

tracking, and this is seen in the poor results obtained for the ball throwing exper-

iment: as there was a high number of images in which the person was not facing

the camera, there is consequently a very high number of omitted images as well as

a higher than usual number of outliers.

The number of outliers is generally low, averaging less than one per 30sec/900

frame sequence. Rounded down, we obtain the zero percent seen in the table.

Finally, we see that the trajectory error is higher for a single-leg balancing

exercise than a two-leg one and this is mainly due to the fact that when there is

little movement the person tends to look at the camera, and the centroid of the eyes

and mouth is close to the centre of the marker on the tip of the nose. When there

is more movement, the face is not perfectly frontal and this moves the centroid of
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the eyes and mouth further away from that of the green marker.

4.3.5 Side-view ear detection

As detailed in section 3.4, the profile sway tracking was performed using a

template matching method, using an implementation provided by Matlab. We

have used a person-specific template for each one of our subjects, however, it is

interesting to note that testing the tracking of the subject in Figure 4.10 with a

template of the ear of the subject in Figure 4.5 produced similar results.

In order to compare the trajectories obtained by tracking the ear and that

of the green marker, we have translated the latter by the distance between the

first points of each trajectory. This method is not perfect, as this distance is not

necessarily the one that would minimize the error between the two curves. Once

the computed errors were available in pixels, we used the image of the ruler in

Figure 4.6 to find the corresponding distance in millimetres. From this particular

image, we obtained that 1 pixel represents a distance of 1.69mm. Thus, using this

sequence of images, we have obtained a mean error of 9.33 pixels, or roughly 16mm

between the trajectory obtained by using the template obtained from the current

subject and the trajectory obtained with the template from a previous subject.

The minimum error was of 0mm, as expected, due to the initial translation, while

the maximum was of 14.8 pixels, or 25mm.

In Table 4.II, we present the results of using different Regions of Interest (ROIs).

As expected, since we know that our subject’s ear will always be in the upper half

of the image, and that template matching does not use the image as an ensemble,

but rather processes it from beginning to end, the results show that a smaller ROI

always produces a faster runtime, without penalizing the accuracy of the results.

The image sequences for this table were of 100 frames only, as the computation

times were very high, and it would have been extremely time-consuming to run 900

frames on a full-image ROI. The high run-times for these sequences are a result of

the slow-computing Matlab localization function, which finds the template within

the image [2]. It is then best to use the minimum possible ROI, as the computation
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Figure 4.9 – Profile sway tracking: ear template and position of the green marker

Figure 4.10 – Profile sway tracking trajectories
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times can increase more than threefold with larger ROIs, without significantly

improving the performance.

Region of interest Computation time (min) Mean error (mm)

Full image 77 13.1

Upper half 37 15.8

Upper third 23 16.4

Table 4.II – Template tracking results

4.3.6 Trajectory comparisons

To illustrate the difference between a stable and an unstable postural movement,

we have calculated the standard deviations (SDs) for each one of the trajectories.

For the stable sway, we have used a video sequence in which the subject was on

both legs, only moving slightly. For the unstable postural sway, we have used a

video segment in which the subject had been standing on one leg for more than a

minute and had visibly lost some of their balance.

As expected, we can see in Table 4.III that the SD is more than nine times higher

along the x-axis and roughly five times higher along the y-axis for the unstable

movement. We also notice that the SD is higher along the x-axis, when compared

to the y-axis, for the same experiment, since our subjects move mostly laterally.

Sway type SD (mm)

Stable x-axis 9.5

Stable y-axis 4.4

Unstable x-axis 88.1

Unstable y-axis 21.9

Table 4.III – Stable vs. unstable sway
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In addition, from the ensemble of our data, we have found a maximum anterior-

posterior sway of 16.2cm, and a maximum lateral sway of 41.7cm on one leg, or

56.6cm on one leg and throwing a ball.

4.3.7 Virtual combined trajectories

Due to practical constraints, it was not possible during this project to test

the synchronized capture of videos using two cameras. However, for illustration

purposes, we have created a combined virtual trajectory by roughly combining the

results of two sequentially shot videos. Given a set of coordinates (x,z) for the

frontal view of the subject and a set of (y,z) coordinates for the side view, we

take the first coordinate of each set to create a combined horizontal virtual set of

coordinates (x,y), representing both movements.

Since our subjects were young and in good health, most of the sway had to

be artificially provoked. As a result, as we can see in the combined trajectories in

Figure 4.11, the movement on the x-axis has higher amplitude, as healthy subjects

tend to have a more pronounced lateral sway.

Figure 4.11 – Visualizing combined trajectories



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Overview

In this project, we have implemented a simple and inexpensive system for track-

ing postural sway, the motivation behind this being the facilitation of an objective

assessment by evaluating personnel. By tracking movement by computer, we pro-

duce a quantifiable result that may not necessitate the presence of a qualified

professional for evaluation.

Our system is based on the processing of two different video streams, by using

two methods of feature tracking. We use an implementation based on the Viola-

Jones algorithm for lateral, front-facing movement, and template matching for side-

view anterior-posterior movement.

We have obtained good results for both methods, with a small margin of error

when compared to the tracking of a marker placed on the face. An important

factor in having successful experiments is the quality of the video, as noisy images

can render the feature tracking ineffective. In these cases, the images are bypassed

during processing and removing a high number of images from the sequence can

significantly affect the overall resulting movement trajectory.

5.2 Future work

As a first improvement to our system, we would consider an alternate method

for the profile tracking. Template matching has a slow feature-detection speed,

in addition to being dependent on a user selecting the template of the feature to

be searched. Another option would be to to train new classifiers for detecting

profile features by using a publicly available face dataset, such as the CMU Image

Database [1], which contains profile images with annotated ears.

Another improvement to our system would be to use a set of two synchronized
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cameras, as seen in figure 3.1, in order to film the lateral and the anterior-posterior

movements at the same time. The cameras would be placed facing straight ahead,

at face-level for the subject, thus keeping the cameras’ optical axes perpendicular

to the subject, and also perpendicular to each other, for correct tracking of both

the frontal and profile features. The two videos obtained in this fashion could be

synchronized by a short burst of light, signalling to the algorithm the beginning

of the two sequences to be processed. This method would be the simplest since

it wouldn’t involve any hardware signal analysis, or processing of sound from the

videos, which is discarded when the video clips are sequenced, and we would only

need the extra step of detecting a burst of light within images which are already

processed with the current implementation. We could also consider a few bursts of

light to improve time registration of both sequences.

This improvement would slightly increase the cost of the system, however, it

would render the framework much more user-friendly by fully automating the pro-

cessing of the image sequences, and thus rendering it a viable option for use in a

clinical setting.

Finally, we plan to also explore the possibility of reducing the positioning error

by the application of a more powerful tracking algorithm using methods such as

Kalman filters or particle filters. These methods are reliable and efficient and very

robust to noisy or missing measurements. We believe that the added complexity

will be compensated by their accuracy.

To conclude this work, we hope that this type of portable imaging system will be

useful in both clinical and home environments, as a screening tool to detect elderly

ambulatory problems or other musculoskeletal disorders. It would allow the early

detection of such problems, before more sophisticated tests could be conducted in

more specialized facilities. We believe that the relative simplicity and reliability of

such a system will facilitate the examination of the patient and encourage clinicians

to use it.





BIBLIOGRAPHY

[1] CMU/VASC image database. http://vasc.ri.cmu.edu/idb/html/face/.

[Online; accessed 29-July-2014].

[2] Template matching in Matlab. http://www.mathworks.com/help/

vision/ref/vision.templatematcher-class.html. [Online; accessed 07-

September-2014].

[3] J.K. Aggarwal and M.S. Ryoo. Human activity analysis: A review. ACM

Computing Surveys (CSUR), 43(3):16, 2011.

[4] S. J. Allin, C. Beach, A. Mitz, and A. Mihailidis. Video based analysis of

standing balance in a community center. Proc. 30th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, 347

(22):4531–4534, 2008.

[5] S.J. Allin, C. Beach, A. Mitz, and A. Mihailidis. Video based analysis of

standing balance in a community center. Engineering in Medicine and Biol-

ogy Society, 2008. EMBS 2008. 30th Annual International Conference of the

IEEE, pages 4531–4534, 2008.

[6] D. Anderson, R.H. Luke, J.M. Keller, M. Skubic, M.J. Rantz, and M.A. Aud.

Modeling human activity from voxel person using fuzzy logic. Fuzzy Systems,

IEEE Transactions on, 17(1):39–49, 2009.

[7] S. J. M. Bamberg, A. Y. Benbasat, D. M. Scarborough, D. E. Krebs, and

J. A. Paradiso. Gait analysis using a shoe-integrated wireless sensor system.

Information Technology in Biomedicine, IEEE Transactions on, 4(12):413–

423, 2008.

[8] A. Baumann, M. Boltz, J. Ebling, M. Koenig, H.S. Loos, M. Merkel, W. Niem,

J.K. Warzelhan, and J. Yu. A review and comparison of measures for auto-

http://vasc.ri.cmu.edu/idb/html/face/
http://www.mathworks.com/help/vision/ref/vision.templatematcher-class.html
http://www.mathworks.com/help/vision/ref/vision.templatematcher-class.html


43

matic video surveillance systems. EURASIP Journal on Image and Video

Processing, 824726:1–30, 2008.

[9] I. Bautmans, B. Jansen, B. Van Keymolen, and T. Mets. Reliability and

clinical correlates of 3d-accelerometry based gait analysis outcomes according

to age and fall-risk. Gait & posture, 57(2):366–372, 2011.

[10] M. Belshaw, B. Taati, D. Giesbrecht, and A. Mihailidis. Intelligent vision-

based fall detection system: preliminary results from a real-world deployment.

RESNA/ICTA 2011: Advancing Rehabilitation Technologies for an Aging So-

ciety, 2011.

[11] K. Berg. Measuring balance in the elderly: preliminary development of an

instrument. Physiotherapy Canada, 41(6):304–311, 1989.

[12] K.O. Berg, B.E. Maki, J.I. Williams, P.J. Holliday, and S.L. Wood-Dauphinee.

Archives of physical medicine and rehabilitation. Clinical and laboratory mea-

sures of postural balance in an elderly population, 73(11):1073–1080, 1992.

[13] L.K. Boulgarides, S.M. McGinty, J.A. Willett, and C.W. Barnes. Use of clin-

ical and impairment-based tests to predict falls by community-dwelling older

adults. Physical Therapy, 83(4):328–339, 2003.

[14] Statistics Canada. Projected population by age group according to

three projection scenarios for 2006, 2011, 2016, 2021, 2026, 2031 and

2036. http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/

demo08a-eng.htm, 2014. [Online; accessed 24-April-2014].

[15] J. M. Cimbala. Thompson tau method for removing outliers. https:

//www.mne.psu.edu/me345/Lectures/outliers.pdf. [Online; accessed 25-

July-2014].

[16] W. Deisman, P. Derby, A. Doyle, S. Leman-Langlois, R. Lippert, D. Lyon,

J. Pridmore, E. Smith, K. Walby, and J. Whitson. A report on camera surveil-

lance in Canada (part one). http://www.sscqueens.org/sites/default/

http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/demo08a-eng.htm
http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/demo08a-eng.htm
https://www.mne.psu.edu/me345/Lectures/outliers.pdf
https://www.mne.psu.edu/me345/Lectures/outliers.pdf
http://www.sscqueens.org/sites/default/files/SCAN_Report_Phase1_Final_Jan_30_2009.pdf


44

files/SCAN_Report_Phase1_Final_Jan_30_2009.pdf, 2009. [Online; ac-

cessed 21-June-2014].

[17] H.C. Diener, J. Dichgans, M. Bacher, and B. Gompf. Quantification of postural

sway in normals and patients with cerebellar diseases. Electroencephalography

and clinical neurophysiology, 57(2):134–142, 1984.

[18] G.R. Fernie, C.I. Gryfe, P.J. Holliday, and A. Llewellyn. The relationship of

postural sway in standing to the incidence of falls in geriatric subjects. Age

and Ageing, 11(1):11–16, 1982.

[19] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Computer Vision and Pattern Recog-

nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society

Conference on, 1:I–511, 1995.

[20] M. Goffredo, M. Schmid, S. Conforto, and T. D’Alessio. A markerless sub-pixel

motion estimation technique to reconstruct kinematics and estimate the centre

of mass in posturography. Medical engineering & physics, 28(7):719–726, 2006.

[21] D. Hodgins. The importance of measuring human gait. Medical Device Tech-

nology, 19(5):44–47, 2008.

[22] C. M. Kawamura, M. C. de Morais Filho, M.M. Barreto, S.K. de Paula Asa

Y. Juliano, and N.F. Novo. Comparison between visual and three-dimensional

gait analysis in patients with spastic diplegic cerebral palsy. Gait & posture,

25(1):18–24, 2007.

[23] Y. Lajoie and S.P. Gallagher. Predicting falls within the elderly community:

comparison of postural sway, reaction time, the berg balance scale and the

activities-specific balance confidence (ABC) scale for comparing fallers and

non-fallers. Archives of gerontology and geriatrics, 38(1):11–26, 2004.

http://www.sscqueens.org/sites/default/files/SCAN_Report_Phase1_Final_Jan_30_2009.pdf
http://www.sscqueens.org/sites/default/files/SCAN_Report_Phase1_Final_Jan_30_2009.pdf


45

[24] L. Lee, W. Grimson, and L. Eric. Gait analysis for recognition and classifica-

tion. Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE

International Conference on, pages 148–155, 2002.

[25] T. Lee and A. Mihailidis. An intelligent emergency response system: pre-

liminary development and testing of automated fall detection. Journal of

Telemedicine and Telecare, 11:194–198, 2005.

[26] B.E. Maki, P.J. Holliday, and A.K. Topper. A prospective study of postural

balance and risk of falling in an ambulatory and independent elderly popula-

tion. Journal of Gerontology, 49:M72–M84, 1994.

[27] M.S. Nixon, T. Tan, and R. Chellappa. Human identification based on gait,

volume 4. Springer, 2010.

[28] N. Noury, A. Fleury, P. Rumeau, A.K. Bourke, G.O. Laighin, V. Rialle, and

J.E. Lundy. Fall detection-principles and methods. Engineering in Medicine

and Biology Society, 2007. EMBS 2007. 29th Annual International Conference

of the IEEE, pages 1663–1666, 2007.

[29] T.E. Prieto, J.B. Myklebust, R.G. Hoffmann, E.G. Lovett, and B.M. Mykle-

bust. Measures of postural steadiness: differences between healthy young and

elderly adults. Biomedical Engineering, IEEE Transactions on, 43(9):956–966,

1996.

[30] Division of Aging Public Health Agency of Canada and Seniors. Re-

port on seniors’ falls in Canada, 2005. publications.gc.ca/collections/

Collection/HP25-1-2005E.pdf, 2005. [Online; accessed 24-April-2014].

[31] L. S. Shapiro. Computer vision: algorithms and applications. Cambridge

University Press., 2005. [Online; accessed 25-July-2014].

[32] SMARTRISK. The economic burden of injury in Canada, 2009.

publications.gc.ca/collections/Collection/HP25-1-2005E.pdf
publications.gc.ca/collections/Collection/HP25-1-2005E.pdf


46

[33] M. Sohrabinia. Matlab thompson tau method implementation for remov-

ing outliers. http://www.mathworks.com/matlabcentral/fileexchange/

37211-remove-outliers. [Online; accessed 25-July-2014].

[34] R. Szeliski. Computer vision: algorithms and applications. Springer, 2010.

[35] Fujita T, Nakamura S, Ohue M, Fujii Y, Miyauchi A, Takagi, Y, and Tsugeno

H. Effect of age on body sway assessed by computerized posturography. Jour-

nal of bone and mineral metabolism, 23(2):152–156, 2005.

[36] M.E. Tinetti, M. Speechley, and S.F. Ginter. Risk factors for falls among

elderly persons living in the community. New England Journal of Medicine,

319:1701–1707, 1988.

[37] J. Verghese, R.B. Lipton, C.B. Hall, G. Kuslansky, M.J. Katz, and H. Buschke.

Abnormality of gait as a predictor of non-alzheimer’s dementia. New England

Journal of Medicine, 347(22):1761–1768, 2002.

[38] P. Viola and M. Jones. Rapid object detection using a boosted cascade of

simple features. Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, 1:I–511, 2001.

[39] F. Wang, E. Stone, W. Dai, M. Skubic, and J. Keller. Gait analysis and

validation using voxel data. Engineering in Medicine and Biology Society,

2009. EMBC 2009. Annual International Conference of the IEEE, pages 6127–

6130, 2009.

[40] F. Wang, M. Skubic, C. Abbott, and J.M. Keller. Body sway measurement for

fall risk assessment using inexpensive webcams. Engineering in Medicine and

Biology Society (EMBC), 2010 Annual International Conference of the IEEE,

pages 2225–2229, 2010.

[41] G. Wang and Q.M. Wu. Guide to three dimensional structure and motion

factorization. Springer Publishing Company, Incorporated, 2010. [Online;

accessed 22-June-2014].

http://www.mathworks.com/matlabcentral/fileexchange/37211-remove-outliers
http://www.mathworks.com/matlabcentral/fileexchange/37211-remove-outliers


47

[42] X. Wang. Intelligent multi-camera video surveillance: A review. Pattern

Recognition Letters, 34:3–19, 2013.

[43] K.E. Webster, J.E. Wittwer, and J.F. Feller. Validity of gaitrite walkway

system for the measurement of averaged and individual step parameters of

gait. Gait and Posture, 22(4):317–321, 2005.

[44] M. H. Woollacott, A. Shumway-Cook, and L. M. Nashner. Aging and posture

control: Changes in sensory organization and muscular coordination. Interna-

tional Journal of Aging and Human Development, 23(2):97–114, 1986.

[45] M.H. Woollacott, A. Shumway-Cook, and L.M. Nashner. Aging and posture

control: changes in sensory organization and muscular coordination. The In-

ternational Journal of Aging and Human Development, 23(2):97–114, 1986.

[46] C.R. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland. Pfinder: Real-

time tracking of the human body. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 19(7):780–785, 1997.


	Résumé
	abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	Introduction
	An increasingly aging population
	What is postural sway and why study it?
	Different approaches to measuring sway in a clinical environment

	Litterature review
	Video surveillance
	Human activity analysis
	Gait analysis
	Analyzing gait for identification purposes
	Gait analysis in the medical field

	Fall analysis
	Postural sway
	Two-dimensional
	Three-dimensional


	A simple system for postural sway assessment
	Introduction
	Camera setup
	Calibration
	Flow diagram of the system

	Viola-Jones object-detection algorithm
	Template matching
	Post-processing
	Focusing on Face Sway
	Frontal and side views
	Validation


	Experiments and results
	System implementation
	Experiments
	Camera setup
	Camera positioning and lighting
	Clothing

	Results
	No movement
	Single leg balance
	Ball throwing
	Comparison
	Side-view ear detection
	Trajectory comparisons
	Virtual combined trajectories


	Conclusion and future work
	Overview
	Future work

	Bibliography

