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Résumé 

Malgré le progrès technologique et nos connaissances pharmaceutiques et médicales 

croissantes, le développement du médicament demeure un processus difficile, dispendieux, 

long et très risqué.   Ce processus mérite d'être amélioré pour faciliter le développement de 

nouveaux traitements.  À cette fin, cette thèse vise à démontrer l’utilité de principes 

avancés et d’outils élaborés en pharmacocinétique (PK), actuels et nouveaux.  Ces outils 

serviront à répondre efficacement à des questions importantes lors du développement d’un 

médicament, sauvant ainsi du temps et des coûts. 

Le premier volet de la thèse porte sur l’utilisation de la modélisation et des 

simulations et la création d’un nouveau modèle afin d’établir la bioéquivalence entre deux 

formulations de complexe de gluconate ferrique de sodium en solution de sucrose pour 

injection.  Comparé  aux méthodes courantes, cette nouvelle approche proposée se libère de 

plusieurs présuppositions, et requiert moins de données.  Cette technique bénéficie d’une 

robustesse scientifique tout en étant associée à des économies de temps et de coûts.   Donc, 

même si développé pour produits génériques, elle pourra également s’avérer utile dans le 

développement de molécules innovatrices et « biosimilaires ». 

Le deuxième volet décrit l’emploi de la modélisation pour mieux comprendre et 

quantifier les facteurs influençant la PK et la pharmacodynamie (PD) d’une nouvelle 

protéine thérapeutique, la pegloticase.  L’analyse a démontré qu’aucun ajustement 

posologique n’était nécessaire et ces résultats sont inclus dans la monographie officielle du 

produit.  Grâce à la modélisation, on pouvait répondre à des questions importantes 

concernant le dosage d’un médicament sans passer par des nouvelles études ni 

d'évaluations supplémentaires sur les patients.  Donc, l’utilisation de cet outil a permis de 

réduire les dépenses sans prolonger le processus de développement.  Le modèle développé 

dans le cadre de cette analyse pourrait servir à mieux comprendre d’autres protéines 

thérapeutiques, incluant leurs propriétés immunogènes. 

Le dernier volet démontre l’utilité de la modélisation et des simulations dans le 

choix des régimes posologiques d’un antibiotique (TP-434) pour une étude de Phase 2.  Des 
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données provenant d’études de Phase 1 ont été modélisées au fur et à mesure qu’elles 

devenaient disponibles, afin de construire un modèle décrivant le profil pharmacocinétique 

du TP-434.  Ce processus de modélisation exemplifiait les cycles exploratoires et 

confirmatoires décrits par Sheiner.  Ainsi, en se basant sur des relations PK/PD d’un 

antibiotique de classe identique, des simulations ont été effectuées avec le modèle PK final, 

afin de proposer de nouveaux régimes posologiques susceptibles d’être efficace chez les 

patients avant même d'effectuer des études.  Cette démarche rationnelle a mené à 

l’utilisation de régimes posologiques avec une possibilité accrue d’efficacité, sans le dosage 

inutile des patients.  Ainsi, on s’est dispensé d’études ou de cohortes supplémentaires 

coûteuses qui auraient prolongé le processus de développement.  Enfin, cette analyse est la 

première à démontrer l’application de ces techniques dans le choix des doses d’antibiotique 

pour une étude de Phase 2. 

En conclusion, cette recherche démontre que des outils de PK avancés comme la 

modélisation et les simulations ainsi que le développement de nouveaux modèles peuvent 

répondre efficacement et souvent de manière plus robuste à des questions essentielles lors 

du processus de développement du médicament, tout en réduisant les coûts et en épargnant 

du temps. 

 

Mots-clés : modélisation de population, pharmacocinétique, pharmacodynamie, 

développement du médicament 
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Abstract 

Despite the scientific and technological breakthroughs that have graced the last 

century, the path to bringing a drug to the market is fraught with risk and remains an 

expensive and time-consuming process.  Significant improvements to this process are 

needed if patients are to continue to benefit from new therapies.  The objective of this thesis 

is to demonstrate the use of modeling and simulations in this regard.  It will show how 

advanced pharmacokinetic (PK) techniques can be used to answer critical questions that 

arise during the drug development process, and that their use can lead to cost and time 

savings. 

The first part of this thesis shows how modeling and simulations, including the 

development of an innovative model, can be used for the relative bioequivalence 

assessment of a new sodium ferric gluconate complex intravenous formulation.  Compared 

to traditional methods, this approach did not make inaccurate assumptions about drug 

characteristics, nor did it necessitate the enrollment of hundreds of subjects.  Thus, this 

scientifically robust approach was associated with significant financial savings and 

economy of time.  Although this research was conducted within the generic drug 

development, it could also be applied to innovator or biosimilar drug development. 

The second section illustrates the use of modeling and simulations in the 

development of an innovative biological therapeutic agent, pegloticase.  This approach 

allowed us to answer important questions pertaining to the factors influencing pegloticase’s 

PK and pharmacodynamics (PD), confirming that no special dosing adjustments were 

required, thus contributing to the official product labeling.  These questions were answered 

without conducting additional trials or performing supplementary assessments on patients, 

which resulted in significant cost and time savings.  In the future, such PK/PD models 

could be used to better understand other biological agents, including their immunogenicity 

profiles which remain a concern for clinicians. 

The third part of this thesis focuses on the use of modeling and simulations to select 

optimal dosing regimens for the Phase 2 study of the novel antibiotic TP-434.  A PK model 
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for TP-434 was developed with Phase 1 data.  This model was continuously updated and 

confirmed as new Phase 1 data became available, similar to the approach advocated by 

Sheiner’s learn and confirm paradigm.  Based on simulations performed with this model, 

and knowledge of PK/PD relationships for another compound, Phase 2 dosing regimens 

were recommended that were likely to show efficacy in the patient population.  This 

rational approach to dose selection ensured that patients were not needlessly exposed to the 

drug, and that efficacy would likely be demonstrated in Phase 2.  Consequently, it was 

unnecessary to dose additional cohorts or conduct additional trials, which would have 

lengthened the process and been expensive.  Moreover, this was the first published account 

of Phase 2 dose regimen selection based solely on simulated Phase 1 data for an 

antimicrobial drug.   

In summary, the research presented in this thesis illustrates how advanced 

pharmacokinetic techniques like modeling and simulations, including the creation of 

innovative models, can efficiently answer key drug development questions, leading to 

significant cost and time savings.  

 

Keywords : population modeling, pharmacokinetics, pharmacodynamics, drug 

development 
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Preface 

In spite of the scientific and technical advances made by our society in the last 

century, drug development today remains a gruelling process.  Not only is it expensive, 

time consuming, and a highly risky endeavour, but it is associated with a very low 

probability of success.  This thesis will demonstrate how modeling and simulations, 

including the creation of innovative PK models, can help answer key questions within the 

drug development process (DDP), thereby improving its efficiency and decreasing some of 

the inherent risk. 

To better illustrate the relevance and significance of the research presented in this 

thesis, it is necessary to first review some basic principles of drug action and describe the 

types of analyses typically conducted to better understand drug effects.  It is also important 

to understand the drug development process, appreciate its strengths and more importantly 

underline some of its weaknesses. 

After describing the context in which the research presented herein has evolved, the 

following articles will be presented individually: 

1) Novel Population Pharmacokinetic Methods Compared to the Standard 

Noncompartmental Approach to Assess Bioequivalence of Iron Gluconate 

Formulations 

2) Population pharmacokinetic and pharmacodynamic analysis of pegloticase 

administered by intravenous infusion in two dose regimens to subjects with 

chronic gout 

3) Optimizing Drug Development of TP-434, a Novel Fluorocycline, with 

Adaptive Learn & Confirm Cycles of Modeling & Simulation Using Single 

Ascending Dose Data 
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4) Population Pharmacokinetic Modeling of TP-434 Following Multiple Dose 

Administration 
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Chapter 1 – Introduction 

1.  The Drug 

The word “drug” evokes different associations in people, ranging from therapeutic 

aid to illicit activities.  The Canadian government defines a drug as “any substance or 

mixture of substances manufactured, sold or represented for use in (a) the diagnosis, 

treatment, mitigation or prevention of a disease, disorder or abnormal physical state, or its 

symptoms, in human beings or animals, (b) restoring, correcting or modifying organic 

functions in human beings or animals, or (c) disinfection in premises in which food is 

manufactured, prepared or kept” (1).  A similar definition is employed by the American 

“Food, Drug and Cosmetic Act”, which defines a drug as: “(A) articles recognized in the 

official United States Pharmacopoeia, official Homoeopathic Pharmacopoeia of the United 

States, or official National Formulary, or any supplement to any of them; (B) articles 

intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease in 

man or other animals (C) articles (other than food) intended to affect the structure or any 

function of the body of man or other animals (D) articles intended for use as a component 

of any article specified in clause (A), (B), or (C)” (2).  

It is clear that drugs can be used to fulfill different therapeutic roles, ranging from 

the diagnosis to the treatment of disease.  Although most clinicians are taught to favor non-

medical treatments whenever possible (such as adopting lifestyle changes), the benefits of 

appropriate drug therapy are undeniable.  Patients themselves recognize the importance of 

drug therapy.  In a survey of 1000 patients in the United States, over 85% indicated that 

prescription medication was very or extremely valuable to their health and well-being (3).    

While not solely attributable to drug therapy, in the span of the last 60 years, 

modern medicine has contributed to increasing our lifespan from 30 years  up to 78 years in 

developed countries, which is a remarkable feat (4, 5).  In the first half of the last century, 

medical advances such as vaccinations and antibiotics caused a significant decline in 
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infection-related mortality, which leveled off in the second half of the century (5).   Drug 

and medical interventions also contributed to decreasing mortality rates in the second half 

of the century, especially those related to cardiovascular events (5).  Clearly, the use of 

drug therapy has revolutionized modern medicine by providing viable treatment options 

when they did not exist before.   

The poster child for drug therapy is without a doubt penicillin, which, even in its 

early commercial form was able to treat infections ranging from pneumonia to syphilis, 

including those that proved to be resistant to sulphonamide antibiotics.  Although it was not 

the first antibiotic used to treat bacterial infections, more than 70 years after its discovery 

by Fleming, penicillin remains part of our modern therapeutic arsenal (6, 7).  Its use, which 

began in World War II, serves as a reminder that while drug therapy as we know it is 

relatively new, it is a cornerstone of modern medicine. 

As the benefits of drug therapy throughout the years have greatly evolved, so have 

our methods for discovering and developing new drugs.  In the early days of drug 

discovery, fortuitous findings related to plants and other natural products were the key to 

developing new medicines (8).  Some classic examples include the discovery that digitalis 

extracted from the foxglove plant had certain cardiac properties (9) and that extracts from 

moldy sweet clover hay could produce dicoumarol, a powerful anticoagulant compound 

(10).  Since then, drug discovery has come a long way.  Advances in disciplines such as 

analytical chemistry, biochemistry, microbiology, and more recently molecular biology and 

genomics have helped shape the process to its current state (11).  Our improved 

understanding of chemistry, disease and pharmacology has allowed us to move away from 

reliance on serendipity to a more targeted approach to drug discovery.    

Despite the contributions of drug therapy to the improvement of healthcare and the 

progression of drug discovery, unmet needs still remain.   Although our lifespan has more 

than tripled in comparison with that of our cave-dwelling ancestors (5), there is still much 

for us to learn about the human condition.  Mortality caused by infection or cardiovascular 

events have declined in the previous century, but they still remain among the top 15 causes 
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of death in North America (12, 13) and are among the ten leading causes of death in 

Canada (14).  Added to this list are diseases such as cancer and Alzheimer’s disease (12, 

13), which were closer to the bottom of the list at the turn of the 20th century in the United 

States (15).  Thus, with an increasingly aging population, we are faced with additional 

medical challenges that call for new uses for products already on the market, or for 

innovative new products.     

It is important to remind ourselves that the ultimate goal of drug therapy will always 

be to improve lifespan as well as quality of life, and the aim of the drug development 

process is to create products that will help achieve these goals.  In addition to developing 

products that are novel in their mechanisms of action (exemplified by pegloticase in 

Research Project #2), the drug development process can also produce therapies that are not 

necessarily different in terms of mechanism of action but that offer clinical advantages with 

respect to what is already on the market (such as developing anti-infective agents that are 

associated with less bacterial resistance, exemplified by TP-434 in Research Projects #3 

and #4).  Another important aspect of the drug development process is the development of 

generic drugs, which allow medication to be more accessible in terms of costs (as 

illustrated by sodium ferric gluconate complex in glucose in Research Project #1).      

Before embarking upon an overview of the drug development process, the following 

section will describe some fundamental aspects of drug pharmacology that play a key role 

in the process.  More details on the general pharmacology of the drugs  and/or therapeutic 

classes of the drugs studied within this thesis can be found in Appendix 1.  
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2.  Pharmacokinetic and Pharmacodynamic Principles 

In order to better appreciate why drug products have had, and continue to have, such 

an important impact on health and mortality, it is necessary to have a global understanding 

of “what the body does to the drug”, otherwise known as pharmacokinetics (PK), and “what 

the drug does to the body”, defined by the term pharmacodynamics (PD) (16).   

2.1 Pharmacokinetics 

For all drugs, pharmacokinetics encompasses different phenomena, which will each be 

discussed separately.  These include liberation, absorption, distribution, metabolism and 

excretion, and are often referred to collectively as “LADME”.  Whether or not a drug’s PK 

includes all of these steps depends on its route of administration.  Drugs that are 

administered by the enteral route (i.e., they enter the gastrointestinal (GI) tract after being 

given orally) generally involve more processes than those that are administered by 

parenteral routes, such as intravenously (IV) administered products.  An overview of all of 

the processes is depicted in Figure 1 and presented in more detail hereafter, with special 

attention being paid to intravenous drug products. 
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Figure 1. Illustration of Typical Pharmacokinetic Processes 
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2.1.1 Liberation 

The liberation of a drug from its pharmaceutical form is a critical first step in a 

drug’s disposition pathway.  This process is inherently tied to drug formulation.  For 

instance, an active ingredient that is administered as a solid form (tablet, capsule, etc.) must 

be dissolved into a solution before any of the other PK processes can occur (17).  This also 

implies that the product must first disintegrate (break up into smaller particles) and 

disperse.  Conversely, a drug that is administered as a solution (for either oral or injectable 

administration) does not require this dissolution step.  Because the drugs studied in the 

context of this thesis were all administered intravenously (IV), liberation will not be 

described any further in this chapter.   

2.1.2 Absorption 

Once the drug has been solubilized, it is ready to be absorbed by the body and enter 

the bloodstream.  Drugs administered intravenously bypass this step, since they are injected 

directly into the bloodstream, but most drugs that are given via other routes must 

necessarily undergo this process.  Although the topic of drug absorption is beyond the 

scope of this thesis, it should be mentioned that it is a complex process that is governed in 

part by physicochemical drug properties (such as lipophilicity and molecule size), the 

presence of membrane transporters (both influx and efflux), and physiological states (such 

as intestinal transit time or food intake).    

2.1.3 Distribution 

Once the drug has entered the bloodstream (either directly or via passage through 

various membranes), it has the opportunity to enter different tissue or organs throughout the 

body.  If the human body can be compared to a large city made up of dynamic components 

(people, animals, vehicles, etc.), and the drug is a person trying to reach a particular 

destination, then the bloodstream is analogous to the city streets that allow that person to 
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navigate through the city until the target building (representative of a tissue or organ) is 

attained.  Depending on various factors (size, use of a vehicle, mobility), people are able to 

access multiple buildings or only certain ones, much like drugs whose distribution is 

controlled by different factors.  

Protein binding plays a critical role in drug distribution, since generally only free 

(unbound) drug is able to cross membranes and reach specific tissues.  In the cityscape 

analogy, plasma proteins are analogous to vehicles such as automobiles or buses which 

transport people (the drugs) to various locations.  However, in order to enter buildings 

(reach target tissue), occupants must disembark from their vehicles.  In human plasma, the 

most important transport proteins include albumin, 1-acid glycoprotein (AAG) and 

lipoproteins (18, 19).  Albumin is the most important plasma protein (accounting for 

roughly 60% of plasma protein (20)) and exhibits low affinity, high capacity binding. 

Conversely, AAG is less present in the plasma but is considered to have a high affinity, low 

capacity binding site (19).  Most drugs that are acid or neutral bind to albumin while AAG 

is a major binding protein for basic drugs.  Variations in albumin or AAG levels due to 

pathophysiological conditions can thus affect the concentrations of free (unbound) drug that 

are available to distribute to organs or tissue.       

In order to reach target receptors in organs or tissues, drugs must cross membrane 

barriers.  As with drug absorption, different types of transport mechanisms across 

membranes exist, such as paracellular transfer (passage between cells), passive diffusion 

(passage through cell lipid bilayers dependent upon a concentration gradient that follows 

Fick’s law) (21), simple diffusion (drug transfer through aqueous pores of the cell that 

follows the concentration gradient), facilitated transport (drug transfer along the 

concentration gradient using a transporter protein) and active transport (drug transfer 

against the concentration gradient using a transporter protein and requiring energy 

expenditure).  Therefore, many of the factors governing the membrane permeability during 

drug absorption will also influence drug distribution.  For example, drug distribution is 

influenced by the size of the compound and its lipophilicity.  Larger molecules (≥ 15-30 
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kDa) such as biologicals tend to remain in the plasma compartment and/or extracellular 

space (22).  More lipophilic molecules cross the membrane barrier by passive diffusion 

more readily than hydrophilic, charged molecules.        

2.1.4 Metabolism 

The human body is remarkably endowed with protective mechanisms, and the 

metabolic processes surrounding drugs generally aim to transform them into compounds 

that are more easily eliminated or excreted.  Due to its size and the high content of 

metabolizing enzymes, one of the major organs involved in metabolism is the liver (23), 

which oversees two general types of chemical reactions that are known as Phase I and 

Phase II type reactions.  Phase I reactions involve (but are not limited to) the oxydation, 

reduction and hydrolysis of compounds while some Phase II reactions include 

glucuronidation, sulfation and methylation, whereby groups (glucuronide, sulfate or 

methyl, for instance) are conjugated to the drug to facilitate its excretion (21, 24).  

Metabolites resulting from Phase I or Phase II reactions can either be active or inactive 

compounds.  Some drugs, termed “pro-drugs”, are specially formulated as inactive 

compounds which must be transformed into metabolites which possess the desired 

pharmacological activity. 

Many enzymes are responsible for Phase I and II reactions. Some examples of 

Phase I enzymes include (but are not limited to) catalases, peroxidases, reductases, 

cholinesterases, dehydrogenases, while examples of Phase II enzymes are N-

acetyltransferase, glucuronosyltransferases, glutathione-S-transferase, and sulfotransferases 

(25). However, one type of enzyme formerly known as cytochrome P450 (now referred to 

as CYP) is responsible for the metabolism of approximately 90% of all drugs (26).  These 

enzymes are divided into different families (such as CYP1, CYP2, CYP3, etc.) which have 

amino acid sequences that are < 36% similar to each other.  Each family is further divided 

into sub-families (such as CYP2A, CYP2B, etc.) where each member has an amino acid 

sequence that exhibits greater than 68% similarity to other members.  Individual enzymes 
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are identified by a number following the letter, such as CYP2C9 or CYP2C19.  The 

families CYP1, CYP2 and CYP3 are those which are mainly involved in drug metabolism 

while other CYPs are associated with the biosynthesis and catabolism of endogenous 

substances (27). Enzymes belonging to the CYP3A sub-family, especially CYP3A4, 

account for approximately 30% of all hepatic cytochromes (27) while they make up the 

majority of all intestinal CYP (21, 28).  This family of cytochromes is responsible for most 

of the body’s hepatic and intestinal metabolism (23), and is involved in the metabolism of 

approximately 50% of all drugs (26).  

Although a comprehensive review of the topic is beyond the scope of this 

introduction, enzyme polymorphisms deserve a brief mention.  Countless research has been 

devoted to better understand the genetic variations in metabolizing enzymes that frequently 

translate into starkly different drug responses between individuals.  A classic example of 

polymorphisms that influence drug effect involves CYP2D6.  Approximately 5 to 10% of 

Caucasians exhibit a poor metabolizer phenotype for CYP2D6, which can be attributed to a 

number of alleles.  Compared to extensive metabolizers, these individuals have a limited 

capacity to inactivate drugs such as fluoxetine, and therefore have a greater risk of suffering 

from adverse events due to supratherapeutic levels of active drug.  Conversely, drugs such 

as codeine, which must be metabolized into an active metabolite by CYP2D6, are mostly 

ineffective in such populations compared to extensive metabolizers (27).           

Many drugs are subject to hepatic metabolism, but this is not true of all drugs.  

Compounds that are proteins undergo catabolic processes that allow the body to recycle the 

amino acids found in such proteins (22).  In other words, proteins are degraded into their 

amino acid subunits through proteolytic processes, such as those in the ubiquitin-

proteasome pathway (29).  Polyethylene glycol (PEG)-modified recombinant mammalian 

urate oxidase (pegloticase) is an example of a biological product that is not metabolized 

(30).  In addition, for many drug products, only a portion of the administered drug is 

metabolized while another remains unchanged. 
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As previously discussed, metabolism can occur in other organs, such as the 

intestine, where both Phase I and Phase II reactions take place (21).  Other sites of drug 

metabolism include the kidneys, the lungs, skin and brain (27).  The presence of 

hydrolyzing enzymes, such as cholinesterases, in the plasma compartment even allows 

metabolism to occur within the vascular space (31).       

Metabolism of an orally administered drug can occur after systemic absorption, but 

it can also occur before a drug reaches systemic circulation.  This pre-systemic metabolism 

is often called “first pass metabolism”, and includes metabolism that may occur at the 

intestinal and hepatic levels (21).  The fraction of a drug that is metabolized during its 

initial transit through an organ is referred to as the extraction  ratio, which is also known as 

“first pass” or “pre-systemic” elimination.  Examples of drugs that are subject to significant 

first pass metabolism in the intestine include cyclosporine (32), midazolam, nifedipine, 

quinidine, saquinavir and terfenadine (21).  

2.1.5 Excretion 

Drugs and their metabolites can be excreted via different organs such as the skin or 

lungs, but the main eliminating organs remain the kidney and the liver.  Hepatic excretion 

involves biliary elimination of drugs and metabolites in fecal matter.  ABCB1 transporters 

located on the canalicular membrane of hepatocytes are often involved in expulsing drugs 

into the bile (23). Renal excretion of unchanged drugs and/or their metabolites can involve 

glomerular filtration, tubular secretion, and reabsorption (23).  

A key element of renal excretion involves the filtration of unbound (free) drug 

through the glomerulus. Another process that contributes to renal elimination is secretion to 

the proximal tubule, which is an active process involving transporters such as the organic 

anion transporter (OATP) and organic cation transporter (OCT).  ABCB1 transporters 

located on the luminal brush-border membrane of renal cells also play a role in drug 

excretion by expulsing drugs into the urine (23).  Finally, tubular reabsorption is a 

component of renal excretion that involves the reuptake of drugs by passive diffusion, 
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sometimes with the aid of endocytosis.  Thus, the extent to which a drug is eliminated by 

the kidney depends on the relative importance of each of the processes involved.   

Exceptionally, some compounds are not eliminated at all from the human body, 

such as iron.  This mineral plays a vital role in many bodily functions, most notably 

involving the heme protein and oxygen transport (33, 34).  Although the average human 

body contains 3 to 4 g of iron, only about 1 mg is lost daily (33, 35-37), which represents 

negligible elimination.  Similarly, biotechnology derived proteins (biologicals) often 

undergo catabolism which generates amino acids that are re-used by the organism (22).  

This is the case for the biological product pegloticase. 

2.1.6 Bioavailability 

Extravascular routes of drug administration, in particular the oral route,  are the 

generally preferred route of administration (38), which explains in part why over 60% of 

currently marketed products are for oral administration (39, 40).  Although this route of 

administration is favoured, absorption and metabolism can be huge impediments to its use, 

since both phenomena can contribute to a decreased bioavailability (F). 

Bioavailability is a contraction of the terms “biological availability” (41) and it is 

defined as “the rate and extent to which the active drug ingredient or therapeutic moiety is 

absorbed from a drug product and becomes available at the site of drug action” (42).  In 

other words, bioavailability indicates the proportion of an administered drug dose that 

attains the site of action, after accounting for the fraction that is not absorbed as well as the 

fraction that undergoes metabolism in the gut or liver (21, 43).   

The European Agency for the Evaluation of Medicinal Products (EMEA), 

Committee for Proprietary Medicinal Products, has also defined F in a similar manner, but 

has nuanced its description by replacing “site of drug action” by the phrase “general 

circulation” (44).  The latter definition reflects the difficulties faced with measuring drug 

levels at the site of action, which can be highly impractical and extremely invasive.  

Instead, it is often assumed, as in this definition, that drug concentrations in the general 
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circulation (for instance as characterized by venous plasma concentrations) are indicative of 

drug levels at the site of action. 

The use of plasma (or urinary) concentrations to calculate metrics for rate and extent 

of drug exposure is widely accepted as a surrogate for concentrations at the site of action, 

for drugs that reach the systemic circulation before or at the same time as they reach their 

site(s) of activity. Maximal observed serum or plasma concentration (Cmax) is associated 

with the rate of exposure, or how quickly drug concentrations attain their peak level, while 

area under the plasma/serum concentration time curve (AUC) is a measure of the overall 

extent of drug exposure.  In Phase 1 studies, both parameters are calculated using 

noncompartmental PK analysis (45), which, is a robust approach when many plasma 

samples are available. This method of analysis is described in more detail in Section 3.1.   

2.2 Pharmacodynamics 

The drug development process is ultimately concerned with bringing a product to 

the market that will exert a desired effect or elicit a particular response.  Such drug 

responses, otherwise known as pharmacodynamics, are intrinsically linked to PK and will 

be briefly described in this section.  For a more detailed overview of the subject, the reader 

is referred to a book chapter previously published by our laboratory (46).  A review of PK-

PD modeling in a historical context (covering the 1960’s until 2004) has also been 

published by Csajka and Verotta (47).       

2.2.1 Classification of Effects 

The pharmacological activity of a drug comprises both beneficial and harmful 

effects, the former generally being the reason for which the drug is administered.  Although 

a drug may be administered with a specific purpose in mind, such as eradicating bacteria to 

treat an infection, other unwanted effects can occur, such as diarrhea.  One of the 

challenges of drug therapy is finding the right balance between these pharmacodynamic 

effects, to help patients while avoiding undesirable effects as much as possible. 
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Pharmacological responses can be categorized broadly as quantal or continuous 

variables.  Quantal responses are discrete categorical responses that do not belong to a 

continuum of responses.  Such responses include dichotomous responses (awake/asleep) or 

polychotomous responses (grades of hematological toxicity) (48).  Continuous responses 

can include laboratory values such as triglyceride levels or other clinical results such as 

heart rate. 

PD responses can range from easily measured short-term responses (such as 

decrease in plasma glucose level or decrease in pain), to long-term outcomes (for instance 

increased survival or decrease of the risk of irreversible morbidity).  A PD response can be 

considered to be a “clinical endpoint”, which is defined as a characteristic or variable that 

reflects how a patient feels, functions or survives (49-51). When clinical endpoints are 

difficult to assess, surrogate endpoints that are a substitute for clinical endpoints provide an 

alluring alternative especially when there are severe time constraints.  For instance, the 

desired clinical outcome of a drug may be a decrease in mortality and it may be difficult to 

wait for information on patient mortality. Therefore, it would be more practical to associate 

drug levels with a biomarker that is easily and quickly detectable (52, 53).  By definition, a 

biomarker is “a characteristic that is objectively measured as an indicator of normal or 

pathologic, biologic or pathogenic processes, or pharmacological responses to a therapeutic 

indication” (49, 51).  Biomarkers can server diagnostic purposes (for prognostic purposes 

or to guide therapeutic choices), they can measure disease activity, they can assess drug 

effect, or they can server as markers of drug kinetics (e.g., polymorphisms transporter 

proteins or in metabolizing enzymes) (50, 51).  Biomarkers that are intended substitutes for 

clinical endpoints and that are expected to “predict clinical benefit (or harm or lack of 

benefit or harm) based on epidemiologic, therapeutic, pathophysiologic, or other scientific 

evidence” are considered “surrogate endpoints” (49-51). 

Cases have been reported where the use of a biomarker proved to be successful as a 

predictor of clinical outcome (e.g. HMG-CoA reductase inhibitors (54)) and could be used 

as a surrogate endpoint, while in other cases (e.g. antiarrhythmic agents (55, 56)), the 
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biomarker proved to be inadequate.  However, caution must be employed with the use of 

surrogate endpoints because there is always the danger that they might fail to predict rare, 

negative side effects that can lead to overall negative clinical outcomes (54).  

2.2.2 Types of PK-PD Relationships 

A fundamental principle of clinical pharmacology is the link between the PK of the 

drug and its PD.  Although this relationship may not be easily discernible, it is always 

present.  This fundamental relationship is depicted in Figure 2. 

Figure 2. Relationship between Drug Pharmacokinetics and Pharmacodynamics 

 

Drugs can exert their effects in a direct or indirect manner.  For instance, the drug 

bivalidurin (57) acts directly on thrombin to produce an anticoagulant effect, while a drug 

such as warfarin exerts an indirect anticoagulant effect on blood clotting by inhibiting the 

formation of clotting factors (58).  In addition, effects can be reversible or irreversible, or in 

other terms, the effect will either dissipate or remain well after the drug is no longer present 

in the system.  An example of a reversible drug effect is the bronchodilation caused by 

theophylline, while irreversible tumour cell death caused by an anticancer drug exemplifies 

irreversible effects (46). 
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Direct response models can be used to relate a drug’s PK to its PD using linear 

models (with a slope and intercept), Emax models or sigmoidal Emax models.  The 

ordinary Emax model and sigmoidal Emax model are intuitively appealing because they 

indicate that there is no effect when drug levels are equal to zero and that, above a certain 

concentration threshold, increases in concentration cause no further increment in effect 

(59).  Although the ordinary or sigmoidal Emax models are hyperbolic in nature, it must be 

pointed out that, within certain concentration ranges, the relationship between the 

concentration and response is linear.  For the sigmoidal Emax model, there is a log-linear 

relationship between concentration and response between 20 to 80% of the maximal effect 

while below 20% or above 80% of the maximal response, the relationship is non-linear 

even on a log scale.  

In many cases, there is a delay between the change in plasma drug concentrations 

and the associated drug response and/or the same drug concentration can be associated with 

different responses.  To account for these time-dependent effects, many response models 

have been developed from the now classic effect compartment (or link) model to the more 

recent indirect modeling approach.  The link model includes an artificial delay 

compartment where concentrations are in equilibrium with those in the biophase, which 

results from “collapsing” of the hysteresis curve. The link model attributes the delay in 

drug response to a process whereby the drug must attain the biophase from systemic 

circulation (47, 48, 60).  As previously described, this process is influenced by many 

pharmacokinetic factors.  Therefore, the observed delay between the pharmacological 

response and drug concentration levels are related to the time necessary for equilibration of 

concentrations in the plasma and the effect compartments (61).  The drug concentrations in 

the effect compartment can then be related to the PD marker using direct models such as 

the Emax model or sigmoidal Emax model.  

A major advance was made in our ability to relate the PK to the PD of drugs with 

the indirect modeling technique proposed by Jusko (60, 62). As the name suggests, indirect 

models relate drug concentrations to their pharmacological effect by an indirect 
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mechanism.  In this approach, concentrations of drugs inhibit or induce the formation or the 

elimination of an effect.  The basic indirect or turnover model includes Kin (the zero-order 

constant for production of the response) and Kout (which represents the first-order rate 

constant for loss of the response).  An increase in response can be achieved by either 

stimulation of the response production (Kin) or by inhibition of the loss of response (Kout).  

Conversely, a decreased response can be attributed to an inhibition of Kin or a stimulation 

of Kout.  These four situations, illustrated in Figure 3, correspond to the four basic indirect 

models (62, 63).  Of course, response can be described by a combination of these four basic 

models.  As with the link model and indirect model, drug effect on Kin or Kout can be 

described by an Emax or sigmoidal Emax function. 

Figure 3. Indirect PD Models 
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3.  Quantification of Pharmacokinetic and Pharmacodynamic 

Properties 

The characterization of a drug’s pharmacokinetic and pharmacodynamic behaviour 

is an essential component of the drug development process.  The quantification of these 

properties allows researchers and drug developers to make informed decisions concerning 

doses, dosing regimens and clinical benefits, among other things.  Improved understanding 

of a drug’s PK and PD gained from post-marketing studies can also help clinicians use the 

drug in a more judicious manner. 

Essentially, two approaches exist for quantifying the PK and PD of drugs: 

noncompartmental analysis and compartmental analysis.  These analyses can be performed 

with data obtained from animals or humans, although only the latter will be discussed here.  

Both methods will be briefly outlined and contrasted in the following sections.   

3.1 Noncompartmental Analysis 

Noncompartmental analysis stems from statistical moment theory, where parameters 

describing PK or PD can be easily derived from concentration-time data (45).  The rate of 

drug absorption or exposure is often characterized by the parameters Cmax and Tmax, 

which represent the maximal observed concentration (in a biological matrix such as blood, 

plasma or serum) over the time period studied, and time at which this concentration is 

observed, respectively.  For PD parameters, maximal observed effect is often denoted as 

Emax, while TEmax corresponds to the time associated with this maximal effect. 

Following the administration of a single dose of a drug, exposure can be assessed by 

determining the area-under-the-concentration-time curve (AUC) using linear trapezoidal, 

log-linear trapezoidal or a combination of both linear and log-linear trapezoidal methods.     

Using the linear trapezoidal method, the AUC from time zero to time “t” (AUC0-t) is 

calculated using Equation 1 while the AUC from time zero to infinity (AUC0-inf) is 
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calculated using the formula in Equation 2.  In both equations, a total of n concentrations 

are available, with the last detectable concentration (Cn) being associated with time tn (45). 

Equation 1 
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The second term in Equation 2 represents the extrapolated AUC from time t to 

infinity, and it requires the determination of Kel, or the terminal elimination rate constant.  

This parameter is calculated by ln-transforming the terminal portion of the concentration-

time profile and estimating the slope of this transformed data using linear regression.  In 

turn, this parameter can be used to calculate the terminal half-life (T1/2), using Equation 3.  

T1/2 represents the time necessary for the amount of drug in the organism to decrease by 

50%.  It should be noted that for PD analyses, the term AUC is replaced by the term AUEC 

to denote “area-under-the-effect-curve”.  

Equation 3 Kel
T
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The area-under-the-first-moment-curve (AUMC) also requires the determination of 

Kel.  Equation 4 and Equation 5 can be used to calculate AUMC from time zero to time t 

(AUMC0-t) and AUMC from time zero to infinity (AUMC0-inf), respectively. 

Equation 4 
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Other pharmacokinetic parameters can be calculated using the ones described 

above.  Following the administration of a drug by the IV route, the mean residence time 

(MRT) can be calculated by dividing AUMC0-inf by AUC0-inf and subtracting half of the 

duration of infusion.  MRT represents the average time spent by a molecule in the body, or 

the time necessary for 63.2% of an intravenously administered drug to be eliminated from 

the organism if the drug’s PK is well described by a 1-compartment model  (45). 

The body’s capacity to eliminate a drug is often characterized by clearance (CL).  

Clearance is often expressed as a volume per time unit (such as L/h), representing the 

volume of blood or plasma that is cleared of the drug per unit of time.  For a drug 

administered intravenously, clearance is calculated as dose divided by AUC0-inf.  For an 

orally administered drug, the formula is similar except that it is an apparent clearance 

(CL/F) that is calculated, since the dose in the numerator is actually the bioavailable dose 

(dose x F), which is not necessarily the total dose.  The total volume of distribution (Vss/F 

for a parenteral dose), which does not necessarily correspond to a true physiological 

volume, can also be determined by noncompartmental methods.  This parameter should be 

viewed as a constant that relates the amount of drug in the body to the measured 

concentration at pseudo equilibrium, and it can be calculated as CL x MRT following 

single-dose intravenous administration of a drug.  Should the drug be administered by an 

extra-vascular route, the volume of distribution can then be approximated in the terminal 

phase and is denoted by Varea/F or Vz/F. Generally, Vss/F is a much more meaningful 

parameter than Varea/F, but it should be noted that both parameters are equivalent if the PK 

of the drug follows a one-compartment model. 

If concentration data obtained following IV and oral administration of a drug are 

available, it is possible to calculate the absolute bioavailability (F) of the orally 

administered product using noncompartmental analysis, as demonstrated by Equation 6.  

Similarly, the relative bioavailability (Frel) of two products can also be determined with 

AUCs using Equation 7.     
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In order to perform noncompartmental analyses in a robust manner, it is necessary 

to include an important number of concentration values sampled at appropriate times.  The 

trapezoidal method of calculating AUC actually provides an approximation of the true 

AUC (which could be determined by integrating the function describing the concentration 

as a function of time over the desired time interval), therefore more samples leads to a 

better approximation (45).  In addition to requiring an important number of concentration 

values (biological samples), noncompartmental analyses should only be applied when 

certain assumptions hold true.  The first assumption is that the drug in question displays 

linear pharmacokinetics (45, 64).  In other words, exposure increases in proportion with 

increasing dose and PK parameters are stable through time.   A second important 

assumption is that the drug is eliminated from the body strictly from the pool in which it is 

being measured, the plasma, for example (64, 65).  Finally, this approach assumes that all 

sources of the drug are direct and unique to the measured pool (64).  Examples of drugs 

which may not be candidates for noncompartmental analyses because they do not fulfill 

these criteria include iron supplements and thyroid hormones (66). 

3.2 Compartmental Analysis 

The essence of compartmental analysis is to create a model defined by integrated, 

matrix, or partial differential equations (equations that have derivatives with respect to 

more than one variable) that describe the PK or PD behaviour of a drug.  Although this 

approach may not explain the true mechanisms underlying PK or PD behaviour, important 

correlations between covariates and parameters may point the way to further studies or 

provide deeper mechanistic understanding (67).  Among other advantages of this method 

are its use in special populations (such as pediatric or hepatic impairment patients) and its 
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potential partitioning of variability into inter-individual, intra-individual, inter-occasion and 

residual sources (68). 

Various types of compartmental analyses exist, ranging from individual analysis to 

population PK modeling including the naïve pooled data approach, the standard two stage 

approach, and non-linear mixed effect modeling that includes among others the iterative 

two stage, the First Order Conditional Estimation (FOCE) and the MLEM (Maximum 

likelihood Expectation Maximization) approaches (67, 69, 70).  In these last approaches, all 

data is modeled simultaneously while retaining individual information, in order to obtain 

estimates of population mean and variance as well as quantify sources of variability (68, 

71). 

At the core of compartmental analyses is non-linear regression.  In contrast with 

linear regression, where data is being fitted with a straight line defined by a slope and 

intercept, non-linear regression depends on equations whose partial derivatives (with 

respect to each of the parameters) involve other model parameters (72).  Another important 

difference between the two types of regressions is that linear regressions have analytical 

solutions, such that the functions can be manipulated to obtain a specific equation for the 

solution, while only numerical solutions exist for non-linear regressions.  For non-linear 

equations, approximate solutions to the equations can only be obtained through iterative 

processes that are described in further detail below.  Since most biological processes are 

described by non-linear equations, linear regressions will not be examined any further. 

3.2.1 Individual Analysis 

As its name implies, individual analysis involves the development of a model using 

data from one source (such as one human or one animal).  Because of the error that is 

always inherent in data, whether it be related to the collection procedures themselves or to 

analytical assays, a model can never perfectly predict the observed data.  The relationship 

between observed and predicted concentration values must therefore account for this error, 

as defined in Equation 8.  In this equation, Xi represents a vector of known values (such as 
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dose and sampling times), Ci represents the vector of observed concentrations, i represents 

the measurement errors, j represents the vector of model parameters (in other words the 

pharmacokinetic parameters) and ƒi is the function that relates Ci to j and Xi.  The 

subscript i represents the total number of observations or values.  

Equation 8   iijii XfC   ,   

The successful creation of a model might give rise to a semi-log concentration-time 

profile similar to the one in Figure 4. 

 

Figure 4. Example of a Concentration Time Profile from Individual Compartmental 

Analysis 
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3.2.1.1 Numerical Approaches for Individual Analyses 

The aim of PK compartmental analysis is to develop a model that is associated with 

predicted concentration values (or whatever observation is being studied) that are as close 

as possible to the observed values.  In other words, the goal is to minimize the difference 

between the predicted and observed values (represented by i in Equation 8), and generally 

the least-squares and maximum likelihood approaches are used to quantify these 

differences (73).   

Various least-squares metrics (often termed “residual sum of squares”) can be used 

to quantify these differences, and they are outlined in Table 1 below (72, 73). 

Table 1. Comparison of Least-Squares Methods  

Method Objective Function Formula Characteristics 

Ordinary least 

squares (OLS) 




n

1i

2

iiOLS )ĈC(O  
No weighting 

Weighted least 

squares (WLS) 




n

1i

2

iiiWLS )ĈC(WO  
Model and parameters 

must be defined and stated 

empirically 

Extended least 

squares (ELS) or 

Maximum 

Likelihood (ML) 

 



n

1i

i

2

iiiELS ))Ĉln(var()ĈC(WO  
Models can be defined, but 

parameters of the models 

are fitted within the 

procedure, e.g., 

)Ĉvar(1W ii   

Ĉi = predicted ith concentration value, Ci = observed ith concentration value, Wi = weighting factor,  

n = number of observations, var = variance 

  

Although it is a simple formula, OOLS is inherently biased because it tends to favour 

model estimates that provide better predictions for larger observations compared to smaller 
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ones.  The WLS and ML/ELS approaches are an improvement over the OLS method since 

they account for the magnitude of observations (and their relative variability) by 

incorporating a weighting factor into their formulas. The ML/ELS approaches differ from 

the least-squares approach, because they deal with the probability of observing the actual 

data given the model and its parameter estimates.  In these methods, the function that is 

being minimized is the log-likelihood (LL), or the probability of observing the actual 

concentration values given a set of model parameter estimates.  The function for LL is 

presented in Equation 9. It should be noted that the only difference between ELS and ML is 

in the assumptions about the distribution of the variance parameters. In the ML approach, 

the distribution is assumed to be normal, while the ELS approach makes no such 

assumption (74). 

Equation 9    
22

2
2

2

n

n

CC

Ln
n

Ln
n

CLL

ii





































  

Because it is easier to minimize a positive number rather than a negative one, the 

LL is often multiplied by -2 to obtain a positive number called the “-2LogLikelihood” (-

2LL).  

3.2.1.2 Algorithms for Numerical Problem Solving 

Since many combinations of parameter estimates must be evaluated in order to find 

the parameters that minimize one of the objective functions described previously, many 

algorithms have been developed to systematically do so.  Some algorithms apply 

linearization techniques to approximate the model using linear equations.  Cauchy’s method 

employs a first-order Taylor series expansion, Newton or Newton-Raphson based methods 

utilize a second-order Taylor series expansion while the Gauss-Newton method iteratively 

uses multiple linear regressions via first-order Taylor series expansion.  The Levenberg-

Marquardt method is another algorithm which includes a modification of the Gauss-
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Newton method. Finally, in contrast with the algorithms previously described, the Nelder-

Mead simplex approach does not involve linearization procedures.  This technique involves 

the examination of the response surface (in order to find the lowest point) using a series of 

moving and contracting or expanding polyhedra (three dimensional objects composed of 

flat polygonal faces joined by vertices) (73).  

3.2.2 Population Analysis 

Population analysis can be viewed as an extension of individual analysis, since it attempts 

to develop a model that predicts concentration data associated with different individuals or 

animals.  The general concept is similar to that embraced by individual analysis, except that 

the model must also take into consideration inter-individual variability.  The resulting 

model is therefore able to predict concentration values for each individual within the 

population, but it also provides an “overall” (mean or population) set of predictions.  In 

other words, the model describes the behaviour of the whole population as well as the 

behaviour of each individual within this population.  This concept is illustrated by Figure 5, 

where the coloured circles represent observed concentrations from different individuals, 

and the dotted lines of the same colour represent the predicted concentrations for that 

specific individual.  The solid orange line passing through the middle of the figure 

represents the population predicted values. 
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Figure 5. Example of Concentration Time Profiles from Population Compartmental 

Analysis 

 

Observed concentrations must therefore be ascribed to specific subjects, as defined 

in Equation 10 which is analogous to Equation 8.  In this equation, Xij represents a vector 

of known values (represented by i) for the j
th

 subject, Cij represents the vector of observed 

concentrations for the j
th

 subject, ij represents the measurement errors for the j
th

 subject, j 

represents the vector of model parameters for the j
th

 subject and ƒij is the function that 

relates Cij to j and Xij. 

Equation 10   ijijjijij XfC   ,   

Each individual has a distinct set of PK model parameters (j) that will provide the 

best predicted values for that individual’s observed data.  However, as previously 
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mentioned, there is also a typical profile of “population predictions” that is associated with 

population PK model parameters () that can be regarded as mean values.  The relationship 

between the mean PK parameters and individual PK parameters is described by   Equation 

11, where g is a known function that relates j to  using the individual’s characteristics 

such as height or weight, denoted by zj.  The last term, j, represents random (unexplained 

or uncontrollable) variability that also causes j to deviate from . 

  Equation 11   jjj zg   ,  

3.2.2.1 Numerical Approaches for Population Analyses 

The numerical approaches described for individual compartmental analysis are also 

used in population compartmental analyses.  In population compartmental analyses, the 

goal is also to minimize some sort of objective function. 

3.2.2.2 Various Approaches to Population Compartmental Analyses  

The most basic type of population compartmental analysis is the “naïve-average 

data” method, where the average concentration value at given time points are computed 

from the entire dataset, and then a model is developed using these average values.  A 

similar method is the “naïve-pooled data” approach, where data from different individuals 

are treated as though they were obtained from a single individual, and then analyzed using 

the individual approach. 

The two-stage approach to population compartmental analyses offers some 

improvement over the previous ones.  In essence, data from each subject is first fitted 

individually (in other words using the individual approach), and in the second step, 

population parameter estimates are obtained.  Different types of two-stage approaches exist, 

such as the standard two-stage (STS) approach, the global two-stage (GTS) approach, and 

finally a mixed effect modeling approach known as the iterative two-stage approach (IT2S 

or ITS).  In the STS approach, the population parameters estimates (for mean and variance) 
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are determined by calculating the mean and variance of the individual PK parameters, while 

the GTS approach actually estimates expectations for the mean and variance through an 

iterative process.  The ITS method is a non-linear mixed effect modeling technique that 

uses a more refined iterative approach utilizing a mixture of ML and MAP (Maximum a 

posteriori probability) techniques. Within each population iteration, prior values are used to 

estimate individual PK parameters in the first step, while individual values are then used in 

the second step to recalculate a newer, more probable set of population parameters.  Steps 

one and two are subsequently repeated until there is little to no difference between the new 

and old prior distributions (e.g., until the algorithm “converges”). 

In contrast with the iterative two-stage approach, other types of non-linear mixed 

effect modeling techniques proceed by first fitting the data in a reverse manner so they 

obtain population mean estimates followed in a second step with individual data estimates 

(therefore called “post-hocs”). The fixed effects (variables that can be controlled, such as 

dose or pharmacokinetic parameters) and random effects (uncontrollable factors like inter-

occasion variability) are fitted simultaneously as it regards to population mean and 

variability estimates as well as the residual variability.  

3.2.2.3 Algorithms for Numerical Problem Solving 

Some of the algorithms used in the context of population compartmental analyses 

include the first order (FO) method, first order conditional estimation (FOCE) approach, 

and the maximum likelihood expectation maximization (MLEM) method.  In both the FO 

and FOCE algorithms, the minimum objective function is sought out by linearization of the 

model through a series of first order Taylor series expansions of the error model.  The 

difference between the FO and FOCE algorithms is that in the former, inter-individual 

variability for PK parameters is estimated using estimates of the population mean and 

variance in a post hoc step, while in the latter, inter-individual variability is estimated 

simultaneously with the population mean and variance (75).  In other words, the FO 

algorithm uses a linearization technique that first assumes  = 0, contrary to the FOCE 
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algorithm which uses the posterior mode of  (that relies on conditional estimates) (73).  

Furthermore, the FO method assumes that inter-individual variability follows a constant 

coefficient of variation model, even if it is coded for a log-normal model.  This is due to the 

Taylor expansion, whose first term is the same for the log normal model and the constant 

coefficient of variation model.  A modification of the FOCE algorithm, known as the 

Laplacian FOCE method, exists whereby a second order Taylor series is performed instead 

of the first order expansion (75).  

The MLEM algorithm is different from the previous methods because it does not 

rely on any linearization techniques (76).  This algorithm involves maximizing a likelihood 

function through an iterative series of two steps which are repeated until convergence.  In 

the first step, termed the expectation step or “E-Step”, the conditional mean and covariance 

for each individual’s data are computed and the expected likelihood function associated 

with these parameters is obtained.  In the second step, the maximization step or “M-step”, 

the population mean, covariance and error variance parameters are updated to maximize the 

likelihood from the previous step (73, 76). 

3.2.3 Software Available for Compartmental Analyses 

Although many computer programs are available to perform both individual and 

population pharmacokinetic analyses, only the two that were used in the context of this 

thesis (NONMEM
® 

and ADAPT 5
®
) will be described briefly.  One of the first software 

developed for this purpose was NONMEM
®
, which was created by Sheiner and Beal in the 

early 1980’s for mainframes and personal computers (77-79), and many consider it to be 

the gold standard even today.  Many versions of NONMEM
®
 have been developed over the 

years, incorporating various types of algorithms, including FO, FOCE, FOCE Laplacian 

and most recently, ITS and MLEM.  The second software is ADAPT 5
®
, the fifth version of 

the ADAPT-II® software developed by D’Argenio and Schumitzky in 1982 (76).  Different 

algorithms are also available in ADAPT 5
®
, such as STS, ITS and MLEM. 
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3.3 Differences Between Noncompartmental and Compartmental 

Approaches 

Noncompartmental and compartmental analyses are both excellent methods that can 

be used to characterize the PK and/or PD of a drug, when used in their appropriate context.  

The disadvantages of each method highlight the advantages of the other method, but when 

utilized correctly, each approach has its own merits.  Table 2 summarizes the key 

advantages and disadvantages of each approach (68, 80). 

Table 2. Advantages and Disadvantages of Noncompartmental and Compartmental 

Population Analyses 

 

 Advantages Disadvantages 
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- Easy and quick to perform 

- No special software is needed 

- Robust and easily reproducible 
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linearity  
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s - Can be performed with rich or 

sparse data 

- Can be performed using data from 

heterogeneous sources or special 

populations 

- Quantifies inter-subject variability 

- Can perform covariate analyses 

- Can deal with both linearity and 

nonlinearity 

- Requires experienced analyst 

- Time-consuming and labour intensive 

- Software is not user-friendly 
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4. The Drug Development Process 

Now that we have examined some of the pharmacokinetic and pharmacodynamic 

principles that underlie drug development, we can turn our attention to the process itself, in 

order to better introduce the benefits of modeling and simulations within this process that 

will be demonstrated throughout this thesis. 

Although each phase of the drug development process is important, in the context of 

this thesis, more emphasis will be placed on the clinical pre-marketing phases (Phases 1 to 

3) of the process.  Generally the process is viewed as a series of sequential (and sometimes 

overlapping) phases, as illustrated in Figure 6 (81).  The whole process can take anywhere 

from 10 to 20 years to complete (82, 83).   

Figure 6. Phases of the Drug Development Process 

  

The subsections below present an overview of each of the phases of the DDP.  

Additionally, a description of the drug development process for generic products is also 

provided. 

Pre-clinical (including discovery)

Phase 1

Phase 2

Phase 3

Submission 

to Launch
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4.1 Pre-clinical 

Once promising drug compounds are identified and a suitable formulation is 

developed, pre-clinical tests are performed.  At this stage, compounds are screened for 

efficacy and safety through in vitro and animal studies, to make sure that they will be 

potentially effective and reasonably safe to administer to humans (84).  Four general types 

of studies are conducted during this phase.  The first type of studies (often called the 

“pharmacological screen”) aim to detect drug effects that are not the intended ones.  The 

second series of tests are performed to characterize the PK of the compound in relevant 

animal species, while the third type of test includes toxicology assessments in the same 

species, to evaluate the effects of single-dose and repeated administration of the drug in 

target animals.  Toxicology tests in animals are actually pursued throughout clinical 

development, in order to assess potential long term toxicity (85). Tests are also conducted 

to assess the compound’s teratogenicity (in vivo) and mutagenicity (in vitro) (86).   

During this phase, the maximal tolerated dose and no-observed-adverse-event-level 

(lower dose level where no adverse events are observed) will be determined in at least two 

different species (85).  Using this information, a safe dose that can be administered to 

humans for the first time is then selected. 

4.2 Clinical 

4.2.1 Phase 1 

The studies undertaken during Phase 1 aim to assess the safety and tolerability of 

the drug in humans, and they offer the first opportunity to characterize the PK/PD of the 

compound in humans (82, 87).  Phase 1 studies are generally conducted in a small group of 

healthy volunteers, with the exception of some drugs (such as oncology drugs) which are 

administered to patients instead (82).  A small number of healthy volunteers, ranging from 

20 to 100 (85, 88), are normally included in these studies.  
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The types of studies encountered in Phase 1 are generally randomized, placebo-

controlled studies which may include a single, ascending dose administration study and a 

multiple (repeated administration), ascending dose  study.  Ultimately, these studies should 

help determine a range of doses that are safe and tolerated in humans (85).  In addition to 

the ascending dose studies, Phase 1 studies may also include drug-drug interaction studies, 

studies to assess the effect of food on PK, special population studies such as in renally or 

hepatically impaired subjects, a thorough QTc study, and others  (82).  

4.2.2 Phase 2 

In Phase 2 studies, the goal is to obtain preliminary evidence of efficacy and safety 

by administering the drug to patients who suffer from the targeted disease or condition (85).  

A relatively small number of patients are included in these studies, often numbering in the 

hundreds (85, 88).  In addition to providing insight into the drug’s efficacy, these studies 

can also indicate what type of short term adverse events may occur in this population.  

Phase 2 studies are normally randomized, placebo-controlled trials.  They are 

sometimes divided into two parts, Phase 2a and Phase 2b, but occasionally the two trials are 

combined into a larger trial.  In Phase 2a, a range of doses of the compound is administered 

to a small group of patients (twelve to one hundred) to prove the drug’s short term efficacy 

(and safety) (85).  This is what is known as “Proof-of-concept” (POC).  POC has also been 

described as “the earliest point in the drug development process at which the weight of 

evidence suggests that it is ‘reasonably likely’ that the key attributes for success are present 

and the key causes of failure are absent” (89), and therefore POC studies can also be 

performed within Phase 1.  POC might require demonstrating proof of mechanism, 

identifying novel endpoints, confirming PK-PD behaviour or assessing safety. 

The subsequent Phase 2b trial administers a range of doses to patients for a longer 

period of time, starting from doses deemed to be sub-therapeutic to maximally tolerated 

ones, in order to establish a dose-response relationship.  This is done to find the minimal 

effective dose or dosing regimen that will be used in subsequent stages of the DDP (82). 
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In addition to determining the minimal effective dose to be further investigated in 

Phase 3, Phase 2 is often a period during which other issues must be taken into 

consideration before proceeding any further.  As always, the safety and tolerability of the 

dose in question remains a concern.  In addition, the efficacy of the product with respect to 

competitor compounds must also be addressed, as well as the probability of technical and 

regulatory success, and potential market share (82).   

4.2.3 Phase 3 

This phase of the DDP involves even more patients from the target population than 

in Phase 2.  The number of patients recruited for these trials can range from several 

hundred to several thousand (82, 85, 88).  Though they vary in design, they are frequently 

conducted as multi-center trials. They aim to confirm the efficacy and safety that was 

demonstrated in Phase 2 and to uncover side effects that may be infrequent (87).  In 

addition, they serve to confirm the dose and dosing regimen selected based on the Phase 2 

results. 

The drug product that is tested at this stage is generally the one that the company is 

planning to market in terms of composition, formulation and strength (85). 

Generally, two successful, pivotal Phase 3 trials are required by regulatory 

authorities.  A placebo arm is generally included in these studies, but it is not uncommon to 

include treatment arms where other treatments (currently on the market) are administered, 

especially if a “gold-standard” is available or if a placebo arm is not ethical.  In this way, 

the efficacy of the new compound can be compared to that of the current treatment(s), with 

the hopes of demonstrating non-inferiority or superiority.  Non-inferiority could be targeted 

when the drug being studied possesses other attributes (such as a superior safety profile or 

simplified dosing regimen) that make it an appealing therapeutic alternative to what is 

already on the market.  At a minimum, the drug’s efficacy and safety must be compared to 

that of the placebo (82, 85) if it is ethical to administer one. 



  37 

 

 

4.2.4 Phase 4 

Once a drug is on the market, it is still the object of investigations often called 

“post-marketing studies” or “pharmacovigilance”.  The overall objective of these studies is 

to continue to monitor the drug’s efficacy but especially its safety and tolerability (85).  

Now that the drug has found its way to the market, it is being exposed to a broader 

audience than the population tested in Phase 3 studies, therefore Phase 4 studies may reveal 

the presence of rare but dangerous adverse events that were not previously noted.  Phase 4 

studies may also have pharmacoeconomic objectives, or may seek to study additional 

indications (85). 

4.3 Generic Product Development 

Although the development of generic drug products must adhere to stringent rules 

and regulations, bringing a generic product to market is generally a shorter, less risky and 

easier process than bringing an innovator product to market (90).  Unlike the DDP for 

innovator products, companies that develop generics are not usually required to submit 

clinical data that establishes their product’s safety and efficacy.  This is because regulatory 

authorities rely on the already-approved safety and efficacy profile of the innovator 

reference product (88).  Furthermore, no pre-clinical data are normally submitted for review 

(91). 

A key concept in generic drug product development is termed bioequivalence (BE), 

where the relative bioavailability of two drug products are judged to be equivalent, with the 

underlying assumption that drug levels in systemic circulation reflect levels, or will 

eventually be linked to levels, at the site of action.  The U.S. FDA, Health Canada, and 

European Agency describe products as being bioequivalent if administration of the same 

molar dose of the active ingredient or moiety under identical conditions leads to similar 

bioavailability, or bioavailability that is not significantly different. 

BE can be assessed by various means, such as PK studies, PD studies, clinical 

studies and in vitro studies, although European, Canadian and U.S. regulatory authorities 
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favour PK studies in general (91, 92).  PK studies typically involve conducting in vivo trials 

in healthy volunteers.  Specific BE guidelines outlining the ideal in vivo study design and 

statistical approaches that are preferred have been emitted by various regulatory 

(government) agencies (93-96), but for most drug products, BE is generally assessed by 

comparing the average relative bioavailability parameters (Cmax and AUC) of two 

products (91).  Study designs tend to be two-way, two-treatment, two-sequence crossovers 

conducted in healthy volunteers, to minimize variability by administering the test and 

reference products to the same subjects (91).  Using the ln-transformed PK parameters 

calculated for each subject, analyses of variance (ANOVA) are then performed and least 

square mean (LSM) ratios of test to reference PK parameters are obtained.  Pre-defined 

confidence interval (CIs) limits, which can be viewed as target goalposts, are then used to 

determine BE by assessing whether or not LSM ratios and CIs fall within the targeted 

range.  

Pharmacodynamic methods can be employed when it is not possible to measure 

systemic concentrations, such as in the case of locally-acting products like bronchodilators 

or topical creams, which have limited systemic absorption.  This approach can also be 

adopted when systemic concentrations are not reflective of concentrations at the purported 

site of action.  For such products, bioequivalence may be evaluated using an appropriate PD 

endpoint instead of PK parameters (91).  When PD endpoints are employed instead of PK 

parameters in what is referred to as a Therapeutic Equivalence (TE) study, it is normally 

necessary to establish a dose response curve (depicted by the black line in Figure 7), by 

administering a placebo, a low dose of both test and references treatments and a high dose 

of the reference product (illustrated by the green circles in Figure 7).  (The inclusion of a 

high dose test product is not necessary, and it is only included in the figure to illustrate the 

importance of selecting the right dose, as described in more details below.) The approach of 

projecting the PD effect on the dose scale in order to construct a ratio and a 90% CI is 

known as the dose-scale approach (97).  The inclusion of a placebo will confirm that the 

low dose of the test or reference product is more efficacious than a placebo, and the 

administration of the high dose of the reference product will demonstrate that the 
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comparison between products at the low dose is truly discriminatory. In other words, by 

establishing a complete dose-response curve, it can be shown that the test and reference 

product meet BE criteria because they are truly BE and not because their responses are both 

at the upper end (plateau) of the dose-response curve or at the bottom end where no 

difference with placebo is seen. In the example depicted in Figure 7, the red squares depict 

test doses that are more than 2 times greater than the corresponding references doses (green 

circles).  At a low dose, the difference in percentage PD response (45% vs. 61%) is more 

apparent and reflects the true difference in doses (300 mg vs. 620 mg).  However, at higher 

doses which are located on the plateau portion of the dose-response curve, the similarity in 

percentage PD response (82% vs. 86%) masks the true difference in doses (3000 mg vs. 

6100 mg).  This highlights the importance of selecting appropriate doses when undertaking 

this type of study.  

Figure 7. Example of a Dose-Response Curve in a Therapeutic Equivalence Study 
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In some cases, PK or PD studies can be replaced by adequate and well-controlled 

clinical trials (91).  Furthermore, there are situations where the conduct of in vivo BE 

studies for immediate-release products can be waived entirely, based on the principles set 

forth by the “biopharmaceutic drug classification” system (BCS).  In the mid 1990’s, 

Amidon and coworkers published a seminal paper on the BCS that categorized drugs 

according to their solubility and permeability (98).  Drugs belonged to one of four classes, 

more specifically I: high solubility and high permeability drugs, II: low solubility and high 

permeability drugs, III: high solubility and low permeability drugs or IV: low solubility and 

low permeability drugs, as depicted in Figure 8.  It was suggested that in vivo 

bioavailability of products could be predicted from this classification system.  Based on this 

premise, the FDA adopted the BCS in their 2000 guidance entitled “Waiver of In Vivo 

Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage 

Forms Based on a Biopharmaceutics Classification System” (99).  According to this 

document, in vivo bioavailability and bioequivalence studies may be waived for immediate-

release formulations of drugs belonging to Class I.  Health Canada has also adopted a 

similar guidance, but their guidance includes drugs belonging to Class I and Class III (100). 

Figure 8. Biopharmaceutics Classification System 
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It should be noted that BE studies do not only fall within the domain of generic drug 

development, but that innovator products require the conduct of BE equivalence studies to 

bridge the different formulations that they have used during their clinical trials.  For 

instance, formulations typically evolve and change during the development process or after 

approval by regulatory authorities has been granted. BE studies must be performed to 

ensure that the changes that were made do not impact the drug’s PK properties and call into 

question the associated efficacy and safety (91).  In other words, BE studies can be 

performed to bridge results obtained with different drug formulations at various stages of 

the DDP. 

A description of the generic  drug product development would not be complete 

without mentioning “supergenerics”, although a detailed description of the topic is beyond 

the scope of this thesis.  These products differ from traditional generics because rather than 

being pure copies of the innovator drug, they offer an improvement over the latter, with 

regards to drug delivery system or formulation, among other possibilities (90).  Some 

“added value” that could be provided by a supergeneric drug include modification of a 

dosing form to improve patient compliance or improvement of a compound’s safety 

margins (90). 

5.  Current Use of Modeling and Simulations in the DDP 

The utility of PK/PD modeling and simulations throughout the drug development 

process has been the focus of many reports and discussions (53, 80, 84, 101-111).  

Although it is not being used to its full potential, some of its current applications in the 

development of both innovator and generic drug products are described herein. 

5.1 Innovator Drugs 

Performing PK/PD modeling using animal (pre-clinical) data can provide some 

insight into the nature of the exposure-response shape as well as estimates of potency 

(EC50) or maximal effect (Emax) (108).  Information on PK properties (absorption, 
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distribution, metabolism, elimination) that could impact pharmacological response can also 

be obtained at this stage.  Modeling can also make use of existing clinical data on similar 

compounds.  Despite its utility in screening potential drug candidates, one of the main uses 

of PK/PD modeling at the nonclinical stage remains the selection of doses for first-time 

human administration (102).  Different modeling approaches can be used for dose range 

projection including population PK/PD analyses of sparse nonclinical data, allometric 

scaling to predict human PK and efficacy scaling, or physiological-based PK modeling 

(105). 

The PK/PD model developed at the pre-clinical stage can be further refined using 

data obtained from Phase 1 studies conducted in small numbers of healthy volunteers.  A 

model can actually be developed to link animal and human data.  In this first phase of 

clinical development, a PK/PD model can describe complex exposure-response 

relationships, such as those which involve non-linearity, as well as make use of scarce data 

(related to sparse sampling or assay limitations) (112).  PK/PD modeling can make use of 

data available from all Phase 1 studies in order to get robust parameter estimates.  Modeling 

can also reveal if there are any deviations from dose-proportionality, and can describe 

possible time-related phenomena such as tolerance or sensitization.   

Phase 2 studies are conducted in a larger number of subjects and information can 

therefore be obtained to better understand inter-subject variability.  Another important 

application of PK/PD modeling at this stage is that it can support proof-of-concept (POC) 

claims by demonstrating that the drug acts on its targeted mechanism, thereby leading to 

the desired short-term outcome.  PK/PD models can, in fact, be used to support claims of 

efficacy throughout drug development (101).  As in Phase 1 studies, PK/PD modeling can 

be used for further evidence of POC as well as in the selection of dosing regimens, 

sampling schedules and study design.  Information gleaned from Phase 2 studies can be 

also used to optimize the design of future trials, as well as further enrich the understanding 

of a compound’s attributes that will distinguish it from competitor drugs (105).  For 

example, based on a developed PK/PD model, several dosing schemes can be simulated in 
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order to select the range of doses or types of regimens that could provide optimal response 

(113). 

In later stages of clinical development, PK/PD models can be used to understand the 

impact of covariates on drug response.  Since Phase 3 studies are conducted in larger 

numbers of patients from the target population compared to Phase 2 trials, they provide key 

information regarding the effect of patient characteristics and different pathological states 

on drug response.   

Models developed during Phase 3 can further confirm the dose-exposure-response 

relationship in the target population.  In some cases, when surrogate markers are available, 

the use of exposure-response information coupled with a single pivotal clinical trial can be 

sufficient evidence of effectiveness (101).  This demonstrates how a thorough 

understanding of the exposure-response relationship can even obviate the need for 

additional studies.  In addition to developing PK-PD models, disease-drug models can be 

developed at this stage. 

Modeling and simulations are not only being used and further developed by the 

pharmaceutical industry or academia, but from a regulatory perspective, they have also 

been used to enhance decision-making and contribute to product labeling (pertaining to 

dosage and administration, safety or clinical pharmacology) (114).  In some submissions to 

the FDA, drug companies benefitted from modeling and simulations performed by 

reviewers, who were able to extract information from the data that had not otherwise been 

presented (114, 115).  Over an eight year period studied (2000 to 2008), modeling and 

simulations contributed to the approval of 64% of products while it influenced the labeling 

of 67% of products (116).  However, although modeling and simulations are being used 

more frequently by regulatory reviewers as an aid to decision-making, this tool remains 

under-utilized by drug developers and the research presented in this thesis will demonstrate 

other ways in which it can be applied or further developed.  
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5.2 Generic Drugs 

While the use of modeling and simulations in the development of innovator drugs is 

gaining greater acceptance, its use in the world of generic drug development is still in its 

infancy.  Indeed, the generic drug industry still relies heavily on simple noncompartmental 

methods to assess PK and PD.   

One exception to this is when BE or TE studies require Emax calculations such as 

those for topical corticosteroids (117) or certain locally acting products (118, 119) for the 

U.S. FDA. Many times equivalence can be calculated with the dose-scale approach where a 

dose-response relationship is developed for the drug under study, and modeling (i.e., data 

fitting) is often relied upon to establish this relationship.  An example of an equation that 

could be used to describe the dose-response relationship is provided in Equation 12. 

Equation 12 
50

max
Response

EDFDose

FDoseE

rel

rel






 

By fitting the overall response data to this equation, it is then possible to obtain 

mean estimates for the parameters Emax (maximal response), Frel (relative bioavailability) 

and ED50 (the dose associated with half of the maximal response).   But, as previously 

mentioned, modeling and simulation is still in its infancy for generic drugs because even 

though this equation would be better solved using mixed-effect modeling, at this time U.S. 

regulators are still recommending the use of a naive pooled data approach to sponsors. 

Once parameter estimates are found, a non-parametric bootstrap can then be performed to 

establish a bias-corrected and accelerated 90% confidence interval (120) around the 

estimated Frel.     

6. Challenges in the Drug Development Process 

While there are undeniable benefits to drug therapy, the process of discovering a 

new chemical entity (NCE) and bringing it to market, whether it be a small or large 

molecule, is marred by several obstacles.  Indeed, two major issues faced by drug 
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developers are the staggering costs associated with the DDP and the extremely low rate of 

success.  In the following subsections, each of these problems will be addressed in more 

detail.  Finally, some reflections on how the DDP can be improved with the use of 

modeling and simulations are presented in the last sub-section. 

6.1 High Costs 

Bringing a drug to the market is far from being inexpensive, and costs associated with the 

DDP have risen dramatically within the last 40-year period.  Over the years, researchers 

have attempted to calculate the cost associated with drug development, using various 

methodologies.  The findings of some of the more prominent studies are illustrated in 

Figure 9 (81, 87, 121-123).  In this figure, the year associated with each cost represents the 

mid-point of the range of years studied by the researchers.  These estimates represent the 

cumulative costs of all stages of the DDP.  They take into consideration the revenues that 

are invested (and ultimately wasted) on compounds that never made it to the market, and 

they also account for the time involved in the DDP by increasing the cost by a certain 

percentage that represents the potential return if the funds had been invested elsewhere 

(hence the term capitalized estimate). 
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Figure 9. Capitalized Estimates (in 2009 Million US Dollars) of Drug Development Costs 

Over Time 

 

This figure shows that despite differences in methodologies, data sources and 

studied timeframes, there is a trend towards increase costs associated with the entire DDP.  

This trend is confirmed when comparing the results of studies conducted at different times 

but by the same research group (121).  The increase may actually even be exponential in 

nature, as suggested by others (124, 125).        

The rising cost of drug development can be attributed to many factors, but one of 

the important ones is the increase in the number and magnitude of clinical trials in response 

to increased regulatory requirements (83).  Indeed, although the cost of pre-clinical research 

has also increased over the years, the overall increases can mostly be attributed to costs 

associated with increased human trials rather than pre-clinical efforts (87).   

An increase in the number and size of clinical trials also adds to the development 

time, which also impacts the DDP costs (83).  Over the past decade, the time required for 

research and development has increased by 12 to 15 months (126).  The old adage “time is 

money” also holds true in the pharmaceutical industry, where it has been estimated that a 
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delay of six months to launch a product translates to a loss of 100$ million in net present 

value (126). 

Although the majority of drug development costs (approximately 63%) are 

associated with clinical phases (Phases 1 to 3) (81), these costs are not evenly divided 

between the different phases, and they increase with each phase.  According to one study, 

mean costs associated with pre-clinical, Phase 1, Phase 2, and Phase 3 studies were 5.2, 

15.2, 23.5, and 86.3 millions (dollars in the year 2000), respectively (87).  These figures 

were even higher in 2012, with mean costs rising to 35.7, 34.3, 82.1 and 245.1 millions for  

pre-clinical, Phase 1, Phase 2, and Phase 3 studies , respectively (127).  The elevated cost 

associated with Phase 3 studies is not surprising, as these studies can include thousands of 

patients from different sites, and can span many years. 

6.2 High Attrition Rates 

What makes drug development such a high-stakes venture is that in addition to the 

staggering costs associated with the process, the chances of success are very slim.  

Estimates of the probability of successfully bringing a drug to the market (starting from 

pre-clinical stages) have ranged from 11.7% to 30.2% (81, 87, 121-123).  Even with the 

most optimistic of these probabilities, it is clear that the likelihood of success is marginal.   

These numbers can also be viewed from the perspective of the number of tested candidates 

that eventually make it to the market.  Some analyses suggest that for every new molecular 

entity that makes it to the market, 8 others will have been pursued but eventually discarded 

(81).  Similarly, other authors have reported that only 1 in 9 or 10 drugs that are tested in 

clinical trials will make it to the market (82, 128). 

In the past, a drug’s inability to make it to market was mostly related to 

pharmacokinetic causes (poor characterization of pharmacokinetic properties or low 

bioavailability) (128).  However, improvements in our understanding of pharmacokinetics 

and in the quality of the tools used for pharmacokinetic analyses have led to less 

pharmacokinetic-related failure. Now, at the beginning of the twenty-first century, attrition 

rates remain high, but rather than being attributable to pharmacokinetics, failure is often 
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related to safety and efficacy outcomes revealed at the end of the drug development process 

(Phase 3).  What is striking is that Phase 3 attrition rates remain high and have not 

decreased since the last decade despite advances in technology and our increasing 

knowledge (124). 

Failure of drugs in Phases 1 or 2 of the DDP can be broadly categorized as being 

due to poor drug characteristics (either PK or PD) or due to poor choices made by 

researchers.  In the former, the drug may not act on its target as anticipated, or it may cause 

unacceptable adverse events.  In the latter, Phase 2 attrition may be caused, among other 

reasons, by the selection of the wrong patient population, the administration of an 

inappropriate dose or by the inadequacy of the measured endpoint to detect the desired 

effect (89).  One analysis of Phase 2 failures occurring between 2008 and 2010 suggests 

that 51% of all Phase 2 failures could be attributed to a lack of efficacy while 19% were 

due to safety or toxicology concerns (129).  Despite technological advances and increased 

medical knowledge, the attrition rate for drugs entering Phase 2 of the drug development 

process can be as high as 62% (128).  Nevertheless, if a drug is destined to fail, it would be 

better to do so in Phase 2 than during or after costlier Phase 3. 

In two analyses conducted in 1991 and 2003, DiMasi and colleagues used similar 

methodologies to estimate the failure rates of drug compounds in different phases of drug 

development.  Interestingly, there was an increased failure rate in Phase 1 studies (from 

32.5% to 37%) and a decreased failure rate in Phase 3 (17.1% to 12.6%), while rates for 

Phase 2 studies remained stable.  This shows that companies today may be more proficient 

at weeding out less promising compounds earlier in the drug development process, leading 

to lower failure rates later in the process (87, 122). 

In an ideal world, drugs in Phase 3 of the DDP would only fail due to the 

occurrence of unforeseen and extremely rare adverse events.  However, this is not the case 

and the attrition rate for drugs entering Phase 3 can be as high as 45% (128).  The reasons 

for failure in late-stage Phase 3 studies are numerous, including the underpowering of 

studies or even selecting the wrong dose or dosing regimen (85).  One report suggests that 
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up to 30% of Phase 3 failures can be attributed to lack of efficacy, while safety concerns led 

to another 30% of Phase 3 failures (128).  An even higher failure percentage of 66% due to 

efficacy reasons has been suggested by two separate analyses (130, 131).  In either case, the 

figure is high and signals a problem.  Indeed, the repeating of failed pivotal trials represents 

a significant waste of time, resources, monetary investment, and corporate energy, which is 

why the pharmaceutical industry seeks to avoid this situation (85). 

Many have argued that the generally high attrition rates currently seen are also due 

to an increased stringency in regulatory demands (83, 128).  Indeed, in light of recent 

post-approval withdrawal of high-profile drugs, this precautionary attitude is entirely 

understandable.  Additional reasons for such elevated failure rates may include the attempt 

to treat diseases or conditions that are more complex than in the past (128).  In other words, 

therapies for “easier” disease targets have already been developed.  In addition, standards 

of care have improved considerably over the years, making it even more difficult to prove 

that a drug can provide added benefits compared to what is currently available (128) 

because efficacy trials will be compared to an active, currently marketed treatment instead 

of a placebo. This has led people to discuss the “better than the Beatles” argument, whereby 

regulatory agencies are exceedingly demanding of companies by requiring new medications 

to be better than everything else, instead of allowing drugs to come onto the market when 

they are efficacious even though they would not appear from the Phase III trial to 

necessarily be the best product (132).  The argument is not without merit, as of course if we 

were to prevent music from being marketed unless proven to be better than the Beatles’ 

music, then this would lead to severe attrition of new commercialized music. In addition, 

the true benefit of a drug is often not realized or found during the DDP but later when it is 

marketed, supporting the argument that the regulatory bar for new medicines may currently 

be too high. 

6.3 Room for Improvement 

The constantly increasing costs associated with drug development, as well as the 

high chance of failure, have led to a decrease in the number of new therapies that are 
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marketed yearly.  Since the 1990’s, the top 50 pharmaceutical companies have seen a 

decline in their productivity (defined as the number and quality of new chemical entities 

brought to market) (133).  This trend is reflected in the number of new molecular entities 

(NMEs) that have been submitted to the FDA over a fifteen year period (from 1996 to 

2011), which have been declining steadily.  In 1996, 45 applications were submitted while 

in 2010, only 23 submissions were filed (134). 

The high risks and rising costs associated with drug development may also foster 

other problems, by encouraging drug companies to develop products that are deemed to be 

“higher selling” (to obtain a better return on investment), which are normally drugs that act 

against proven targets.  This means that there will be less impetus to develop drugs with 

novel mechanisms of action or products to treat less common conditions (86).  Despite 

incentives such as the “Orphan drug status”, which offers companies fast-track review and 

in the US a seven-year market exclusivity for targeting diseases that affect less than 200 

000 people, costs remain prohibitively high for these specialized markets (82).  Thus, if 

cutting the cost of drug development can encourage researchers to develop products for all 

unmet needs, without favouring the more lucrative options, then this is certainly something 

that cannot be ignored. 

These disturbing issues and trends have not gone unnoticed and led the FDA to 

publish its oft-cited “Challenge and Opportunity on the Critical Path to New Medical 

Products”, sometimes called the “Critical Path document” (134).  This document has been 

viewed somewhat as a “call to arms” for the pharmaceutical industry, to spur researchers 

into reshaping their ways.  In it, the FDA re-iterates that the DDP is an expensive, time-

consuming process that has a very low success rate and that high clinical failure rates can 

generally be attributed to safety problems and lack of effectiveness.  Throughout the 

document, they highlight the need for a new set of tools (such as assays, standards, 

computer modeling techniques, biomarkers, and clinical trial endpoints) that will help make 

the process more efficient and effective.  Some suggested areas of improvement mentioned 

in this document were the making use of proteomics and toxicogenomics, developing new 
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tools to assess heart rhythm abnormalities, expanding the knowledge base for pediatric 

studies and finding new biomarkers or surrogate endpoints.  

Among the items that they list as opportunities for improvement, the FDA included 

in silico (computer) modeling, which could enhance development knowledge management 

and decision-making with regards to both safety and efficacy.  However, even before the 

publication of the FDA’s infamous “Critical Path Initiative”, others had recognized the 

need for change and the role that modeling and simulations could play in bringing about 

such change.  In his 1997 paper, Carl Peck suggests that modeling and simulations should 

play a more prominent role in the DDP, as they do in other industries such as the aerospace 

or automotive industries.  He also suggests that data should be analyzed to gain insight on 

the dose-response relationship, rather than simply relying on empirical hypothesis testing 

(135).   

The concept of model-based drug development described in the FDA’s white paper 

was also largely inspired by Sheiner’s “learn-confirm” concept first presented in 1997 

(136).  In this new paradigm for drug development, the phases of drug development are 

viewed as successive learn-confirm cycles.  In the learning phases, the goal of study design 

is to glean as much information as possible about exposure-response relationships and 

mechanisms of action.  The confirmatory portions of the cycle serve to provide further 

evidence to support specific claims, for instance regarding risk/benefit ratios or optimal 

doses.  Thus, Phase 1 studies are studies designed to learn about tolerated doses and explore 

dose-response relationships while Phase 2a studies are meant to confirm that selected doses 

are associated with the desired response.  The learn-confirm cycle begins anew with Phase 

2b studies where researchers learn about the drug’s behaviour in the intended patient 

population.  Finally, Phase 3 and 4 studies aim to confirm the dose and dosing regimen 

selected based on the Phase 2b studies as well as provide further supportive evidence on the 

drug’s postulated efficacy. 

It is clear that many opportunities exist for improving the current drug development 

process, and it is the hope that these modifications will allow the pharmaceutical industry to 



  52 

 

 

continue to provide new therapies to patients which are safe, reliable and effective.  

Furthermore, the changes brought about should allow the industry to do so in a timely and 

more cost effective manner.  Indeed, cost analyses have shown that improvements in the 

development process can lead to significant savings.  For example, reducing the lengths of 

clinical phases by 25% is associated with a 16% reduction in capitalized costs (roughly 

129$ million year 2000 dollars).  Furthermore, increasing the success rate from 21.5% to 

33.3% would save 221 to 242 million dollars (year 2000 dollars) per NCE, which is not 

negligible (137).  According to one model, decreasing Phase 2 attrition rates from 66% to 

50% would yield a 25% in the cost of bringing a NME to market.  Similarly, a decrease in 

Phase 3 attrition rates from 30% to 20% would be associated with cost savings of 12% (81).  

Thus, there is a clear economic incentive to decrease failure rates. 

If humanity is to continue to benefit from advances in drug therapy, it is imperative 

that old methods be cast off and replaced with different ones.  This thesis will therefore 

focus on approaches that can contribute to the improvement of the drug development 

process. 
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7. Research Hypotheses 

 

In light of the elevated costs and risks that plague the drug development process, 

changes must be made if these are to be decreased.  While it is not always possible to 

shorten the time period devoted to clinical trials (because a minimum amount of data, 

especially pertaining to long-term safety and efficacy, must be collected), and thereby 

reduce costs, it is possible for researchers to use their time more efficiently by employing 

some of the methods described earlier.  Similarly, it is not within our power to change the 

stringent regulatory requirements, nor would it be advisable to reduce safety standards, but 

there are certainly methods that can be devised or processes that can be improved so that 

these demands are met in a more timely and efficient manner. 

As previously described, one tool that could render different aspects of the drug 

development more efficient is modeling and simulations.  More specifically, risks can be 

decreased by using modeling and simulations to answer questions that are a key part of 

decision-making which will ultimately influence how (and if) a drug will make it on the 

market.  Importantly, modeling and simulations can provide quantitative answers that are 

more objective than “gut-feelings” and that do not rely upon a researcher’s underlying 

desire to “see the project through”.  These answers can ultimately ensure that subsequent 

studies are better designed to succeed and that they are conducted in a timely manner. 

In its white paper, the FDA has cited a need for “new tools to get fundamentally 

better answers” (134), and we hypothesize that modeling and simulation is one such tool.  

Thus, this thesis will demonstrate how modeling and simulations, including new tools in 

the form of innovative models, can be used to answer the following key questions that may 

arise during drug development: 

 

1) How to prove that two different intravenous formulations of iron are equivalent 

using a new innovative approach instead of relying on standard approaches that 

contradict iron’s known pharmacology? 
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2) How to determine the factors that may influence the PK of a drug in patients and 

select a more refined dosing regimen accordingly? 

3) How to predict the dose of a drug that could be administered to patients when no 

data is available yet in that population? 

 

The articles presented hereafter will each present the utility of creating innovative 

models within modeling and simulations to answer the above key questions.  In addition, it 

will be shown that the use of such tools to answer these critical questions can significantly 

improve the drug development process by relying on data from smaller trials, eliminating 

the need for additional trials and planning trials that have a higher probability of success. 
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2.1 Preface 

The first research project undertaken for this thesis aimed to demonstrate how 

advanced pharmacokinetic techniques, such as modeling, can be used to improve the 

development of generic products.  Compartmental modeling is not a technique that has 

been entirely embraced in this particular subset of drug development, yet this article will 

show that it can be instrumental in answering important questions related to generic drugs, 

such as “Are two products bioequivalent?”. 

In a society that is already burdened by healthcare costs and an increasingly aging 

population, the savings afforded by generic drug products are an excellent incentive 

towards their continued, and increased, usage.  Indeed, the cost savings associated with the 

use of generic products are substantial.  One study reports that only 12 months after the 

introduction of a generic product to a therapeutic class, overall reductions in daily cost of 

therapy were noticeable.  For lipid regulators and biphosphonates, the cost decreased by 

32%, while it was 42% for selective serotonin reuptake inhibitors and 20% for calcium-

channel blockers (138).      

Accordingly, the use of generic drugs is on the rise, accounting for 51% of 

prescriptions in 2002 and 67% in 2007 (138).  A recent estimate indicates that by the end of 

2010, generic drugs accounted for 78% of all retail prescriptions dispensed in the U.S. 

(139).  Similarly, in Canada, patented drugs have experienced a decline in overall drug 

sales between 2003 and 2012, suggesting that the sale of generic drugs has increased over 

the same time period (140).  With the expiration of more and more patents, and with the 

increased economic pressure faced by third-party payers and patients, these figures can be 

expected to increase steadily. 

Because of this increased use of generic drug products, it is important to consider 

how the manufacturers of such products can continue to provide quality drugs in a timely 

manner.  In truth, the challenges faced by the pharmaceutical industry not only apply to the 

development of innovative new products, but they also affect the development of generic 

drugs.  Although developing a generic drug product entails less risks and costs compared to 
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a brand-name product, generic drug companies must also be cost-efficient because of lower 

profit margins and increased competition with other generic manufacturers (141).  Effective 

use of time is also an issue in generic drug development, and efforts are also made to 

perform the necessary assessments in a timely and effective manner.  Thus, this research 

project aimed to address some of these challenges through the use of modeling and 

simulations.  

In order to address drug development issues specific to the generic drug industry, 

the FDA emitted a document entitled “Critical Path Opportunities for Generic Drugs”, 3 

years following the publication of their original “Critical Path Initiative” (142).  In this 

document, the FDA lists four main areas of opportunity specific to generic drug 

development: 1) improve the science of quality by design for the development and 

manufacture of generic drug products 2) improve the efficiency of current methods for 

assessment of BE of systemically acting drugs (including complex ones or those that 

employ novel methods of drug delivery 3) develop methods for the assessment of 

bioequivalence of locally acting drugs 4) develop methods for characterizing complex drug 

substances and products. 

Some ideas proposed by the FDA to improve the science of quality by design 

include the use of modeling and simulations (such as absorption models or in vitro-in vivo 

correlation models) to better formulate products.  Various methods are also suggested to 

improve the efficiency of current methods for evaluating the BE of systemic compounds, 

including expanding biowaivers based on BCS criteria to include categories II and III.  

Additionally, new approaches could be developed to assess the BE of drugs with novel 

delivery technologies (such as transdermal patches) or highly variables drugs.  

Improvements could also be made to the BE assessments of locally acting and targeted 

delivery drugs, such as inhaled products, nasal sprays, topical dermatological products and 

liposome products.  Finally, complex drug substances could benefit from improved 

analytical methods for identification and from better statistical methods to compare 

profiles.  



   

  58 

 

By addressing some of the issues raised by the FDA, it may be possible to develop 

generic products for innovator drugs that are either too complex to mimic, or difficult to 

characterize properly.  It has been estimated that for a drug with no generic counterpart 

earning $500 million dollars per year, the introduction of a generic product could result in 

cost savings equivalent to hundreds of millions of dollars (141).  Therefore, using improved 

tools to develop generic equivalents for products that only exist under innovator form could 

translate to significant savings.  An improved process would not only lead to the creation of 

new generic products, but would also be worthwhile for the generic industry as a whole.  

Indeed, simulation results have also suggested that “sizable cost savings can also be 

attained by increasing generic efficiency rates” (138).   

It is therefore important to examine ways in which the development of generic drugs 

can be improved.  As demonstrated by the results of this first research project, one tool that 

has been used more considerably in the development of innovator products, but that can 

also be applied in the development of generic drugs, is modeling and simulations.  

Although the FDA mentions some of the advantages that this technique could confer at the 

drug formulation stage, modeling and simulations could also be used later on in the 

development process. 

One of the potential utilities of modeling and simulations within the generic context 

is as a tool to assess bioavailability for further assessment of bioequivalence.  This 

approach could be particularly useful when traditional methods of estimating bioavailability 

(based on PK studies and noncompartmental analyses) are not appropriate or robust.  As 

previously mentioned, although they are relatively simple to conduct, noncompartmental 

analyses make certain assumptions which do not always hold true with all compounds.  

Iron complexes are examples of such compounds, as they are not significantly eliminated 

from the body and exhibit non-linear PK behaviour.  Furthermore, it is not possible to 

directly measure iron that is bound to complexes. Therefore, data obtained from iron 

complexes are ideal candidates for compartmental analyses, which, as previously 

explained, can take into consideration all types of elimination (or lack thereof) as well as 

non-linearity.  Compartmental analyses can also be used to describe the disposition of iron 
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associated with complexes in an indirect manner, by modeling the PK of analytes that are 

detectable (such as total iron or transferrin-bound iron). 

Thus, the following article will demonstrate how population PK (compartmental) 

analyses can be used to determine if two formulations of iron complexes are bioequivalent.  

It will also illustrate that properly conducted population PK analyses can replace larger, 

traditional PK studies that rely on noncompartmental methods, thereby resulting in time 

and cost savings. 

2.2 Abstract 

 

Purpose:  Iron-containing products are atypical in terms of their pharmacokinetic 

properties because iron is only removed by plasma sampling and is non-linear. This study 

aims to present a novel way of assessing the relative bioavailability of two sodium ferric 

gluconate complex (SFGC) formulations and compare this approach to a standard 

previously published noncompartmental approach.  

 

Methods: Data were from open-label, randomized, single-dose studies (Study 1 was 

parallel whereas Study 2 was crossover). Subjects with low but normal iron levels were 

infused IV SFGC in sucrose by GeneraMedix Inc. and/or Ferrlecit® Injection (Watson 

Laboratories Inc.). In Study 1 (n=240), 125 mg was infused over 10 minutes. In Study 2 

(n=29), 62.5 mg was infused over 30 minutes. Samples were assayed for total iron (TI) and 

transferrin-bound iron (TBI) over 36 hours (Study 1) or 72 hours (Study 2) post-dose. 

Studies 1 and 2 used standard noncompartmental analysis. Study 2 also used population PK 

(PPK) analyses with ADAPT 5®. The final model predicted SFGC area-under-the-curve 

(AUCpred) and maximal concentration (Cmaxpred). Analyses of variance was conducted on 

ln-transformed PK parameters. Ratios of means and 90% confidence intervals (CIs) were 

estimated. Bioequivalence was demonstrated if values were within 80-125%.   

 

Results: For Study 1, ratios and 90% CIs for TI baseline-corrected Cmax and AUC0-36 

were 100.4 (96.5 – 104.5) and 99.7 (94.2 – 105.5). For TBI, results for TI baseline-
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corrected Cmax and AUC0-36 were 86.8 (82.7 – 91.1) and 92.4 (85.6 – 99.7). For Study 2, a 

multi-compartmental model simultaneously described the PK of TI, TBI and SFGC. Ratios 

and 90% CIs for SFGC Cmaxpred and AUCpred were 89.9 (85.9 - 94.0) and 89.7 (85.7 - 

93.9), while ratios and 90% CI obtained from the noncompartmental analysis of Study 2 

did not meet BE criteria because of low power.   

 

Conclusions:  Both the standard and PPK modeling approach suggested bioequivalence 

between the iron products. However, with the PPK method, less subjects were required to 

meet study objectives compared to the standard noncompartmental approach which 

required considerably more subjects (29 vs 240). 

 

2.3 Introduction 

Iron plays several important roles in the human body, by participating in 

transmembrane transport, electron transfers, DNA synthesis and acting as a co-factor in 

enzymatic reactions (especially those involving heme)  (1,2). In addition to these functions, 

iron plays a vital part in the transport of oxygen via the heme molecule, a porphyrin ring 

structure with a central iron atom (1,2). It is also a component of enzymes such as 

peroxidase, myeloperoxidase, amino acid hydroxylase and 5-lipoxygenase (2). 

Because of its vital importance to so many bodily functions, severe iron deficiency 

is often treated with intravenous administration of iron. Parenteral iron was first 

administered over a century ago, and since then various intravenous formulations of iron 

have been developed (3). Although the different iron nanoparticles (iron dextran, iron 

sucrose, sodium ferric gluconate, ferumoxytol) exhibit various characteristics, once the iron 

is internalized, it is taken up by the reticuloendothelial system (RES) composed of 

monocytes and macrophages in the liver, spleen and bone marrow (2,4,5).  Subsequently, it 

is bound to transferrin, either intracellularly in pools or extracellularly for transport to 

erythrocytes. It should be noted that a small fraction of iron likely binds to extracellular 

transferrin directly from the plasma (4). Only a small amount of iron is excreted daily in the 
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urine and feces (around 1 mg or 0.03% of the average body’s total stores), as there is no 

true excretion pathway for iron, and the loss from desquamation of skin cells and sweat is 

negligible (1,5,6,7). Thus, iron requirements for erythropoiesis are generally met through 

the recycling of iron from senescent erythrocytes (1,5).  An overview of iron metabolism is 

presented in Appendix 1. 

The pharmacokinetics (PK) of iron appears to be non-linear, as demonstrated by the 

saturable plasma clearance of iron dextran, which appears to reach a plateau after doses 

exceeding 500 mg (8). This non-linearity is thought to occur between the distribution of 

iron taken up by the RES that subsequently binds to transferrin.  In addition, it is virtually 

not eliminated from the body, as it is only lost through phenomena such as blood 

donations/sampling or through blood loss and hemorrhagic events (2,9). Because of these 

particular PK characteristics, iron does not lend itself well to noncompartmental PK 

analyses (10). Indeed, it violates certain basic assumptions of noncompartmental analysis 

such as linearity and constant elimination from the sampling compartment (10,11,12). In 

addition, the endogenous baseline concentration of iron is not constant and changes 

significantly after iron dosing simply because iron is not eliminated. All of this can pose 

problems when using the noncompartmental approach to derive baseline adjusted 

parameters such as the maximal observed serum or plasma concentration (Cmax) and the 

area under the plasma/serum concentration time curve (AUC) as this method assumes 

linearity in the PK of iron and in its baseline levels. These PK parameters are often used to 

assess the relative bioavailability (BA) between two formulations, a process that compares 

"the rate and extent to which the active drug ingredient or therapeutic moiety is absorbed 

from a drug product and becomes available at the site of drug action” (13). This comparison 

is central to the bioequivalence (BE) assessment, which aims at determining if 

administration of the same molar dose of the same active ingredient or moiety under 

identical conditions leads to similar BA, or BA that is not significantly different. 

Specific BE guidelines outlining the ideal study design and statistical approaches 

that are preferred have been published by various regulatory (government) agencies 

(14,15,16,17), and for most drug products, BE is generally assessed by comparing the 
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average BA parameters (Cmax and AUC) of two products. Study designs tend to be two-

period, two-treatment, two-sequence crossovers conducted in healthy volunteers, to 

minimize variability by administering the test and reference products to the same subjects. 

Using the ln-transformed PK parameters calculated for each subject, analyses of variance 

(ANOVA) are then performed and least square mean (LSM) ratios of test to reference PK 

parameters and 90% confidence intervals (CIs) associated with the ratios are obtained. Pre-

defined bioequivalence limits, which can be viewed as target goalposts, are then used to 

determine BE by assessing whether or not LSM ratios and CIs fall within the targeted 

range. 

Although such BE guidelines are generally appropriate for most drugs, the BE 

assessment of drugs with particular PK characteristics remains challenging.  For example, 

the presence of endogenous levels for drugs such as iron or levothyroxine can make it 

difficult to distinguish between drug concentrations that come from exogenous sources and 

those already present in systemic circulation, especially if baseline levels account for a 

large portion of the observed concentrations (18,19).  Furthermore, endogenous substances 

are frequently subject to processes not typically associated with non-endogenous products 

(feedback mechanisms (20,21,22), saturable transport or elimination, etc.) (23). 

For iron products, the Office of Generic Drugs (OGD) of the US Food and Drug 

Administration (FDA) has recommended to sponsors of generic submissions that 

bioequivalence be assessed on baseline-adjusted Cmax and AUC0-t of total serum iron and 

of transferrin-bound iron. Considering the relative bioavailability of two iron formulations 

theoretically cannot be determined reliably by noncompartmental methods using total 

serum iron (TI) and transferrin-bound iron (TBI) because of the changing baseline 

following iron administration and its non-linear PK, other approaches for calculating AUC 

and Cmax and subsequently establishing the bioequivalence of iron products should be 

considered. Thus, we postulated that compartmental analyses, rather than 

noncompartmental analyses, could be more powerful (e.g., would present better statistical 

power for the same number of subjects) to use to determine the PK parameters necessary 

for the assessment of the relative bioavailability of two formulations of intravenously-
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administered Sodium Ferric Gluconate Complex in Sucrose (SFGC) simply because the 

non-linear characteristics of iron and its changing baseline could be addressed with that 

method. In other words, the aim of this analysis was to assess the relative bioavailability of 

two IV formulations of iron by using the compartmental approach.  Standard 

noncompartmental analyses were also conducted so that statistical power would be 

compared, including results from a previously published study.    

2.4 Subjects and Methods 

2.4.1 Study Design 

This study was an open label, randomized, single dose, two-treatment, two-period, 

two-sequence, crossover study. A four week washout period was observed between doses. 

Subjects received both the test product (Sodium Ferric Gluconate Complex in Sucrose 

Injection, 62.5 mg/5 mL) and the reference product (Ferrlecit® Injection by Watson 

Laboratories Inc., 62.5 mg/5 mL) at a dose of 62.5 mg as an intravenous infusion over 30 

minutes. Both treatments were diluted in 50 mL of 0.9% NaCl.     

Subjects were advised to fast for at least 10 hours before dosing, and until at least 4 

hours after dosing. Water was permitted ad libitum. Standardized meals (with no specific 

restrictions on iron content) were served at about 4 (breakfast), 10 (lunch) and 14 (dinner) 

hours post-dose on Day 1 and at 24 (breakfast), 28 (lunch) and 33.5 (dinner) hours post-

dose on Day 2.  

Subjects were confined to the clinical facility from at least 10 hours before Day 1 

dosing in each period and were required to stay until 36 hours thereafter. Subjects returned 

to the clinical site for the 48 (± 1) and 72 (± 1) hour post-dose blood sample collection. 

During both periods, twenty one (21) PK samples were collected at the following 

times based on the start of the infusion: -0.5, -0.25 and -0.083 hour (to establish baseline 

values); 0.25 hour (mid-point of infusion), 0.5 hour (immediately at the end of the 

infusion); and 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8, 12, 16, 24, 36, 48 and 72 hours after the 

start of the infusion. An additional 12.5 mL of blood was obtained from subjects pre-



   

  64 

 

infusion and an additional 8.5 mL of blood was obtained from subjects at 4, 16, 48 and 72 

hours post-infusion start for the measure of hematocrit (only pre-infusion), ferritin, 

transferrin saturation and total iron binding capacity. A total of about 420 mL of blood was 

obtained from each subject over the course of the study for analysis.  

Adverse events and vital signs were monitored throughout the study. Subjects were 

closely supervised and remained within sight of study personnel for four hours after 

receiving their initial dose. In addition, seated blood pressure and heart rate were measured 

prior to dosing and at 12, 24 and 36 hours post-dose.  

2.4.2 Population 

The study population was comprised of healthy male and non-pregnant female 

volunteers between the ages of 18 to 55 years old, inclusively, with low but normal iron 

levels. Ferritin levels had to be between 22 and 100 ng/mL, inclusively, for men, and 

between 10 and 100 ng/mL, inclusively, for women prior to first dosing. All subjects were 

required to have a body mass index of 18-32 kg/m
2
 as well as an acceptable medical 

history, laboratory evaluation and physical examination before study entry. The laboratory 

tests included screens for biochemistry, hematology, urinalysis, cotinine, drugs of abuse, 

hepatitis B and C, and HIV as well as beta-human chorionic gonadotropin (if applicable) 

and follicle-stimulating hormone (if applicable). 

2.4.3 Ethics 

The protocol, protocol amendments and informed consent forms were approved by 

an institutional review board before any study-related procedures were initiated. Written, 

informed consent was obtained from volunteers prior to their participation in this study. 

This study was conducted in accordance with ethical principles outlined in the Declaration 

of Helsinki, and the Tri-Council Policy Statement: Ethical Conduct for Research Involving 

Humans as well as Canadian Regulatory requirements and guidelines. 
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2.4.4 Sample Handling and Bioanalytical Method 

Samples were sequentially collected by direct venipuncture or catheter and 

processed in a timely manner. Samples were allowed to clot at room temperature for a 

minimum of 30 minutes and for a maximum of 45 minutes. The tubes were then 

centrifuged at 3000 RPM and 4 ± 1° C for 10 minutes and then placed at room temperature 

for a maximum of 15 minutes. A minimum of 1 mL of serum was transferred into duplicate 

5 mL polypropylene tubes and maintained in the ice bath or cooling device until frozen. 

Samples were stored at approximately -20°C (between -10 and -35°C) until transfer or 

shipment to the bioanalytical laboratory. The time between sample collection and freezer 

storage did not exceed 1.5 hours.  

A validated analytical colorimetric method was used to assay total iron (TI) and 

transferrin bound iron (TBI). TI and TBI concentrations were measured within the 

validated standard curve range of 50 to 2000 mcg/dL. Assays were performed by Cetero 

Research. 

2.4.5 Population Pharmacokinetic Modeling 

Datasets included subjects who completed the study and who had measurable 

concentrations of TI and TBI. Actual doses, infusion durations and sampling times were 

used to create the datasets, and iron lost through blood sampling was also taken into 

consideration. For each subject, the hematocrit value used to account for iron lost during 

blood sampling was calculated as an average of the hematocrit values taken before dosing 

in either Period 1 or 2. Concentration values that were below the limit of quantitation 

(BLQ) were treated as missing values. 

Compartmental analyses were performed using the software ADAPT 5® (24), first 

using the maximum likelihood method to obtain initial estimates and subsequently using 

the iterative two stage (ITS) approach. This is a fully automated mixed effect modeling 

approach using both maximum likelihood and maximum a posteriori (MAP) modeling 

approaches. Briefly, the first probable population PK parameters and variance estimates 

(e.g., residual variability) were found by using maximum likelihood. Then a population 
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analysis is undertaken where population, individual and residual variability PK parameters 

are calculated and updated with ever more probable values at every new population 

iteration. The mixed modeling approach was eventually stopped when it had converged 

(last iteration preceded by 10 consecutive iterations having a similar objective function 

(within 3%)) and the most probable and stable results were found. 

The base model used for model discrimination was a previously published 

multicompartmental model that simultaneously described the time courses of total iron, 

transferrin-bound iron and iron bound to sodium ferric gluconate complex (SFCG-I) (25). 

The primary PK parameters estimated by this model included: CL1 (the clearance of SFGC-

I to the RES), CL2 (clearance of SFGC-I directly to transferrin), CL3 (clearance of iron 

entering and exiting the marrow and red blood cell compartment), CL4 (clearance of TBI to 

the RES), Km (Iron concentration associated with half of the maximal rate of exchange 

between the RES and TBI compartments), Vss (the apparent steady-state volume of 

distribution of SFGC-I), V_RES (volume of distribution associated with the RES), V_RBC 

(marrow and red blood cell compartment), V_TBI (volume of distribution associated with 

TBI), and Vmax (maximal rate of exchange between the RES and TBI compartments).  

All iron concentrations were fitted using weighting procedures of Wj = 1/j2 where 

the variance j
2
 was calculated for each observation using the equation Sj

2
=(a+bYj)

2
 where 

a and b are the intercept and slope of each variance model. The slope is the residual 

variability proportional to each concentration and the intercept is the additional component 

of the residual variability.  Inter-subject variability was also estimated for each PK 

parameter estimated by the model. 

Secondary PK parameters that were derived from the primary PK parameters 

included the following: CL (total clearance for SFGC-I, calculated as the sum of CL1 + 

CL2), AUCpred (area under the serum-time curve of SFGC-I, from the beginning of the 

infusion to infinity, calculated as dose divided by CL), Cmaxpred (maximum predicted 

serum concentration of serum SFGC-I over the 72-hour sampling period), and T1/2 

(apparent first-order terminal elimination half-life of SFGC-I). 
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In addition to standard metrics used to evaluate goodness of fit, visual predictive 

checks were performed. With the final model estimates for both population PK parameters 

and variability, concentration-time profiles for 1000 subjects were simulated, and median 

concentrations along with 95% confidence intervals were established using the predicted 

concentrations.  Observed concentration values and predicted confidence intervals were 

then overlaid graphically. 

2.4.6 Statistical Analyses for Bioequivalence Assessment 

Analyses of variance (ANOVA) were performed on the natural logarithm of 

Cmaxpred and AUCpred for SFGC-I obtained from the compartmental analysis. The ANOVA 

model included group, sequence, period nested within group and formulation as fixed 

effects and subject nested within group*sequence as a random effect. The 

group*formulation interaction was tested at a 5% level of significance and removed from 

the model if it was not significant. Sequence was tested using subject nested within 

group*sequence as the error term. A 10% level of significance was used to test the 

sequence effect. Each analysis of variance included calculation of least-squares means, the 

difference between adjusted formulation means and the standard error associated with this 

difference. The above statistical analyses were conducted using the appropriate SAS® 

procedure. 

In agreement with the two one-sided test for bioequivalence (26), 90% confidence 

intervals for the difference between drug formulation least-squares means (LSM) were 

calculated for AUCpred and Cmaxpred obtained from the compartmental analysis, using the 

data transformed to their natural logarithm. The confidence intervals were expressed as a 

percentage relative to the LSM of the reference formulation. 

Ratios of means were calculated using the LSM for the above mentioned ln-

transformed AUCpred and Cmaxpred obtained from the compartmental analysis. The 

geometric mean values were reported and  ratios of means were to be expressed as a 

percentage of the LSM for the reference formulation. 
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Bioequivalence was to be declared if the Test/Reference ratios of geometric means 

of Cmaxpred and AUCpred and their complete 90% confidence intervals were to be contained 

within the bioequivalence interval 80.00 to 125.00% for iron bound to the SFGC. 

2.4.7 Noncompartmental Analyses 

Baseline-adjusted PK parameters AUC0-t, AUCinf, Cmax and Tmax were calculated 

for TI and TBI.  Baseline adjustments were performed by subtracting each individual’s 

baseline value (which was the average of all 3 pre-dose values) from each of their post-dose 

concentration value.  ANOVA were conducted on ln-transformed PK parameters AUC0-t, 

AUCinf and Cmax for TI and TBI using the same statistical model as the one employed for 

the parameters obtained from the compartmental analysis.  Similarly, ratios of LSM and 

90% CI were calculated for each parameter. 

Results derived from noncompartmental analyses were also obtained from a 

previously published study (27). This study was an open-label, randomized, single-dose, 

parallel-group study conducted in 240 healthy volunteers under fasting conditions. Subjects 

received 125 mg of the test (Nulecit™, Watson Pharmaceuticals) or reference (Ferrlecit™, 

A. Nattermann & Cie. GmbH.) SFGC formulation infused intravenously over 10 minutes. 

Samples for TI and TBI analysis were collected prior to dosing and at 0.0833, 0.167, 0.25, 

0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8, 12, 16, 24, and 36 hours after the start of the infusion. 

Samples were also collected at 24, 18, 12, 6, and 0 hours before dosing to determine 

baseline levels. Validated spectrophotometric assays were used to assay TI and TBI (refer 

to original publication for more details).  

Post-dose concentration values were adjusted using the average of all 5 baseline 

values for each individual, and PK parameters AUC and Cmax were determined by 

standard noncompartmental methods with these baseline-adjusted concentrations assuming 

a stable baseline. ANOVA was conducted to compare ln-transformed PK parameters 

between formulations. Treatment, group and group-by-treatment were used as classification 

variables. The group-by-treatment interaction and group terms were removed if they were 

deemed non-significant at an alpha level of 5%. Geometric mean treatment ratios and the 
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corresponding 90% CIs were determined and BE was declared if the ratios and 90% CIs 

were contained within 80 and 125% (27). 

2.5 Results 

2.5.1 Population Characteristics 

A total of 32 subjects were enrolled in the study, and 29 completed both periods of 

the study. Subjects were dosed in two groups, where Group 1 (Subjects 1 to 16) was dosed 

on February 5, 2008 (Period 1) and March 4, 2008 (Period 2) and Group 2 (Subjects 17 to 

32) was dosed on February 8, 2008 (Period 1) and March 7, 2008 (Period 2).  Table 1 

summarizes the demographic characteristics of the subjects enrolled in the study (both 

groups combined). 
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Table 1. Demographic Traits of Subjects Included in the Population PK Analysis 

Characteristic Number (%) 

Sex  

 Female 24 (75%) 

 Male 8 (25%) 

Race  

 Caucasian 20 (62.5%) 

 African American 7 (21.9%) 

 Asian 4 (12.5%) 

 Native American 1 (3.1%) 

  

Characteristic Mean ± SD (CV%) 

Median (Minimum – Maximum) 

Age (years) 
37.3 ± 9.29 (24.9%) 

37.5 (22 – 51) 

Height (cm) 
164.4 ± 7.20 (4.38%) 

164.5 (149.5 – 180.0) 

Weight (kg) 
67.8 ± 10.3 (15.1%) 

65.5 (47.1 – 89.1) 

Body mass index (kg/m
2
) 

25.0 ± 3.00 (12.0%) 

24.8 (20.4 – 31.8) 

Hemoglobin at screening (g/dL) 
13.4 ± 1.09 (8.13%) 

13.2 (11.2 – 15.4)   

Hematocrit at screening (%) 
40.3 ± 3.35 (8.32%) 

39.9 (33.9 – 46.1) 

 

CV% : Percent coefficient of variation; SD : Standard deviation 

 

Of the 3 subjects who did not complete the clinical phase of the study, 2 withdrew 

before Period 2 because of adverse events deemed unlikely to be related to the 
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investigational product and one subject was withdrawn by the Investigator because of a 

positive drug screen test (amphetamines) at Period 2 check-in. 

Subjects included in the previously published study were predominantly White 

(comprising around 91% of the subjects receiving the generic formulation and 85% of the 

subjects receiving the reference formulation).  Around 7% and 13% of subjects in the 

generic and reference treatment arms, respectively, were Black or African American and 

other races (American Indian/Alaskan, Native Hawaiian/Pacific Islander, multirace 

subjects) accounted for less than 2.5% of subjects in both groups.  In terms of ethnicity, 

over 90% of subjects in each arm were not Hispanic or Latino.  In both treatment arms, 

around 50% of the subjects were male.  Mean (± SD) age, height, weight and body mass 

index in the generic cohort were 30.8 ± 9.6 years, 171 ± 9.5 cm, 75.1 ± 15.0 kg and 25.5 ± 

3.77 kg/m
2
, respectively.  Mean (± SD) values for age, height, weight and body mass index 

were similar in the reference cohort, at 29.9 ± 8.5 years, 172 ± 8.7 cm, 77.5 ± 13.4 kg and 

26.0 ± 3.50 kg/m
2
, respectively. 

2.5.1 Population PK Approach  

A total of 2413 concentrations of TI and TBI were included in the analysis. Two 

basic models were evaluated. In the first model, it was assumed that the test and reference 

product had the same values for CL1, CL2 and Vss but with a different relative 

bioavailability factor (Frel). In other words, CL1, CL2 and Vss between formulations only 

differed by the same factor Frel. In the second model, different values for CL1, CL2 and Vss 

were estimated for the test and reference products. Results from the STS analysis 

performed with these 2 models are presented in Table 2. 

Table 2. PK Model Discrimination 

Model  BIC AIC OF 
R

2
 

Residual 

variability (%) 

TI TBI TI TBI 

Model 1 990.742 945.014 453.507 0.927 0.808 21.0 17.2 

Model 2 998.591 948.050 453.025 0.930 0.829 20.1 16.0 
AIC – Akaike information criterion; BIC – Bayesian information criterion; OF – Objective function; R2 – 

Coefficient of determination; TI – Total iron; TBI – Transferrin-bound iron; 

 



   

  72 

 

Based on the model discrimination criteria, especially as indicated by the Bayesian 

and Akaike information criterion, as well as the graphical indicators of goodness of fit, the 

first model was superior. Two additional parameters were estimated: C_NTBI_P1 and 

C_NTBI_P2. These parameters estimated the concentrations of non-transferrin bound iron 

in Periods 1 and 2, respectively.  Differential equations describing the final model were: 

𝑑𝑋(1)

𝑑𝑡
= 𝑅(1) −

𝐶𝐿1 + 𝐶𝐿2
𝑉𝑠𝑠

∙ 𝑋(1) 

𝑑𝑋(2)

𝑑𝑡
=
𝐶𝐿1
𝑉𝑠𝑠

∙ 𝑋(1) +
𝐶𝐿3

𝑉_𝑅𝐵𝐶
∙ 𝑋(4) +

𝐶𝐿4
𝑉_𝑇𝐵𝐼

∙ 𝑋(3) −
𝑉𝑚𝑎𝑥

𝐾𝑚 ∙ 𝑉_𝑅𝐵𝐶 + 𝑋(2)
∙ 𝑋(2) 

𝑑𝑋(3)

𝑑𝑡
=
𝐶𝐿2
𝑉𝑠𝑠

∙ 𝑋(1) +
𝑉𝑚𝑎𝑥

𝐾𝑚 ∙ 𝑉_𝑅𝐵𝐶 + 𝑋(2)
∙ 𝑋(2) −

𝐶𝐿4
𝑉_𝑇𝐵𝐼

∙ 𝑋(3) −
𝐶𝐿3
𝑉_𝑇𝐵𝐼

∙ 𝑋(3) 

𝑑𝑋(4)

𝑑𝑡
=

𝐶𝐿3
𝑉_𝑇𝐵𝐼

∙ 𝑋(3) −
𝐶𝐿3

𝑉_𝑅𝐵𝐶
∙ 𝑋(4) − 𝐾0 ∙ 𝑅(2) 

 

Where X(1), X(2), X(3) and X(4) represent the amount of iron in the serum, RES, 

TBI and red blood cell (marrow) compartments.  R(1) represents the SFGC infusion rate 

while R(2) is an on/off switch that accounts for the iron loss associated with blood 

sampling.  K0 was the rate of iron loss, which was calculated as the product of the 

hematocrit (for each subject at each period) and the approximate blood volume extracted 

per blood draw (7 mL).  

The parameter Vmax was defined as Vmax = (CL3 + CL4) x (Km + TBIbase), 

where TBIbase represents the observed baseline TBI concentration for each subject before 

dosing in each period.  This equation was determined from the assumption that prior to the 

administration of SFGC, iron levels are at an equilibrium between the RES, TBI and RBC 

(marrow) compartments. 

Observed concentrations for total serum iron and TBI, parameterized as Y(1) and 

Y(2), respectively, were fitted according to the following equations, where C_NTBI was 

different for Periods 1 and 2, as previously described. 

𝑌(1) =
𝑋(1)

𝑉𝑠𝑠
+

𝑋(3)

𝑉_𝑇𝐵𝐼
+ 𝐶_𝑁𝑇𝐵𝐼 

𝑌(2) =
𝑋(3)

𝑉_𝑇𝐵𝐼
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The final model is depicted in Figure 1 and the PK parameter estimates from the 

final model are presented in Table 3. 

Figure 1. Final PK Model 
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Table 3. Population PK Parameter Estimates 
PK Parameter Mean (CV%) Median (Minimum- Maximum) 

CL1 (L/h) 2.25 (32.0%) 2.03 (1.46 – 4.17) 

CL2 (L/h) 0.0458 (11.8%) 0.0455 (0.0357 – 0.0571) 
Vss (L) 4.41 (14.5%) 4.53 (3.32 – 5.50) 

V_RES (L) 1220 (0.175%) 1220 (1214 – 1226) 

V_TBI (L) 0.589 (5.62%) 0.595 (0.522 – 0.637) 

CL3 (L/h) 0.000000213 (59.5%) 0.000000267 (4.01E-11 – 3.48E-07) 
V_RBC (L) 0.000288 (55.0%) 0.000369 (0.00000539 – 0.000451) 

CL4 (L/h) 0.0313 (23.2%) 0.0315 (0.0170 – 0.0439) 

Km (mcg/dL) 36.1 (37.0%) 38.8 (3.61 – 59.7) 
Frel 0.905 (13.9%) 0.926 (0.644 – 1.19) 

C_NTBI_P1 (mcg/dL) 44.3 (52.8%) 45.5 (5.18 – 83.1) 

C_NTBI_P2 (mcg/dL) 75.8 (50.2%) 73.6 (0.00 - 147) 

 
CL1: Clearance of SFGC-I to the reticuloendothelial system (RES) compartment; CL2: Clearance of SFGC-I 

directly to transferrin; Vss: the apparent steady-state volume of distribution of SFGC-I; V_RES: volume of 

distribution associated with the RES; V_TBI: volume of distribution associated with TBI; CL3: clearance of 

iron entering and exiting the marrow and red blood cell compartment; V_RBC: marrow and red blood cell 

compartment; CL4: clearance of TBI to the RES; Km: Iron concentration associated with half of the maximal 

rate of exchange between the RES and TBI compartments; Frel: Relative bioavailability factor; C_NTBI_P1: 

Concentration of non-transferrin-bound iron during Period 1; C_NTBI_P2: Concentration of non-transferrin-

bound iron during Period 2; CV%: Percent coefficient of variation 

   

Plots of goodness of fit are presented in Figure 2 while visual predictive checks are 

presented in Figure 3.  
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Figure 2. Goodness-of-Fit Plots Individual observed versus individual predicted total iron 

concentrations on a log scale (A); Standardized residuals versus individual predicted total iron concentrations 

(B); Standardized residuals versus time for total iron concentrations (C); Individual observed versus 

individual predicted transferrin-bound iron concentrations on a log scale (D); Standardized residuals versus 

individual predicted transferrin-bound iron concentrations (E); Standardized residuals versus time for 
transferrin-bound iron concentrations (F); Legend: Circles = observed concentrations, Dotted line = reference 

line (unity or zero), Solid black line = Loess curve (span = 0.5, degree = 1) 
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Figure 3. Visual Predictive Checks Total Iron Concentration Time Profiles (Linear Scale) (A); Total 

Iron Concentration Time Profiles (Semi-Log Scale) (B); Transferrin Bound Iron Concentration Time Profiles 

(Linear Scale) (C); Transferrin Bound Iron Concentration Time Profiles (Semi-Log Scale) (D); Legend: 

Circles = observed concentrations; Dotted line = 95% confidence intervals; Dashed line = median predicted 

concentration 
 

As demonstrated by the goodness-of-fit plots and visual predictive checks, the 

model adequately describes all observed concentrations of total iron and transferrin-bound 

iron. Predicted versus observed concentrations were randomly scattered around lines of 

identity. No important trends were observed with respect to the standardized weighted 

residuals or with respect to time. In addition, the residual variability, which includes the 

intra-individual variability, variability from the bioanalytical measurement, all experimental 

error and all errors from the modeling itself, was only 23.0% and 17.2% for total iron and 

transferrin-bound iron, respectively. 
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Secondary PK parameters estimated from the final model are presented in Table 4. 

The median estimated terminal elimination half-life for both the test and reference products 

was 1.63 hours (ranging from 0.785 to 5.92 hours).  

 

Table 4. Secondary PK Parameters 

Parameter 

Mean (CV%) 

Median (Range) 

Test Reference 

Vss (L) 
4.96 (19.3%) 

5.20 (3.38 – 6.41) 

4.41 (14.5%) 

4.53 (3.32 – 5.50) 

 

CL (L/h) 
2.60 (34.4%) 

2.30 (1.55 – 4.77) 

2.30 (31.4%) 

2.07 (1.51 – 4.22) 

 

AUCpred (mcg*h/dL) 
2662 (30.8%) 

2714 (1400 – 4033) 

2927 (24.9%) 

3017 (1481 – 4152) 

 

Cmaxpred (mcg/dL) 
1150 (20.5%) 

1100 (854 – 1654) 

1270 (14.7%) 

1227 (946 – 1649) 
 

AUCpred: Area under the serum-time curve of SFGC-I, from the beginning of the infusion to 

infinity, calculated as dose divided by CL; CL: Total clearance for SFGC-I, calculated as the sum 
of CL1 + CL2; Cmaxpred: Maximum predicted serum concentration of serum SFGC-I over the 72-

hour sampling period;  CV%: Percent coefficient of variation; Vss: Apparent steady-state volume 

of distribution of SFGC-I 

 

ANOVA results demonstrated no statistically significant sequence effect at a 10% 

level, although there was a statistically significant group effect for ln-transformed Cmaxpred 

(p=0.0104). Because the sizes of Groups 1 and 2 were similar (n=15 and n=14, 

respectively), the equality of variances test was not performed since ANOVA is robust to 

the violation of the equality of variance assumption when groups are equally sized and 

larger than 5 (28). Statistical analyses on the ln-transformed Cmaxpred and AUCpred 

parameters for SFGC-I are presented in Table 5. 
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Table 5. Summary of the Statistical Analyses for Ln-transformed PK Parameters 

 

Study Analysis Type Analyte 

Cmax (mcg/dL) AUC (mcgh/dL)
d
 Statistical 

Power to  

Prove BE 
Test

a
 Reference

a
 

Ratio
b
 

(90% CI) 
Test

a
 Reference

a
 

Ratio
b
 

(90% CI) 

          

Study 1 

(n=29) 

Compartmental SFGC-I 1127 1256 
89.9 

(85.9 - 94.0) 
2534 2828 

89.7 

(85.7 - 93.9) 
> 80% 

         

Noncompartmental
c
 

TI 1338 1279 
104.6 

(86.3 – 127.0) 
8807 9071 

97.1 

(74.1 – 127.2) 
< 40% 

TBI 171.1 178.4 
95.9 

(83.4 – 110.2) 
3364 2811 

119.7 

(20.5 – 698.6) 

          

Study 2 

(n=240) 
Noncompartmental

c
 

TI 3106 3098 
100.4 

(96.5 – 104.5) 
11101 11033 

99.7 

(94.2 – 105.5) 
> 80% 

TBI NA NA 
86.8 

(82.7 – 91.1) 
NA NA 

92.4 

(85.6 – 99.7) 

 

NA – Information not available in publication 
a
Geometric mean for Study 1 and arithmetic mean for Study 2 (geometric mean not reported for Study 2) 

b
Ratio of geometric means (Test/Reference) 

c
Baseline-adjusted PK parameters 

d
AUCinf for Study 1 and AUC0-36 for Study 2 



 

  79 

 

 

2.5.1 Noncompartmental Approach 

Mean concentration-time profiles for TI and TBI associated with each of the studies 

are presented in Figure 4.  ANOVA results obtained from noncompartmental analyses of 

both studies are summarized in Table 5. 

A. 

 

C. 

 

B. 

 

D. 

 

 

Figure 4. Mean Concentration Versus Time Profiles  (A) Baseline-adjusted total iron 

profiles (linear scale) (B) Baseline-adjusted total iron profiles (semi-log scale) (C) 

Baseline-adjusted transferrin-bound iron profiles (linear scale) (D) Baseline-adjusted 

transferrin-bound iron profiles (semi-log scale); Legend: Dashed lines represent the test 

product while solid lines represent the reference product.  Diamond and triangle symbols 
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represent data associated with Study 1 while squares and circles are associated with Study 

2. 

2.6 Discussion 

Both the standard, noncompartmental approach to BE assessment (only when n = 

240) as well as the innovative population PK approach (n = 29) demonstrated BE between 

the iron formulations that were tested. To our knowledge, this is the first published account 

of compartmental analyses being used to demonstrate BE with pharmacokinetic endpoints 

for iron products. This unconventional approach was favoured over the traditional 

noncompartmental method of calculating Cmax and AUC because of the particularities of 

iron pharmacokinetics. Noncompartmental analyses are robust when certain assumptions 

hold true, and iron violates many of these assumptions. The first assumption is that the drug 

in question displays linear pharmacokinetics (10,12). In other words, exposure increases in 

proportion with increasing dose.  A second important assumption is that the drug is 

eliminated strictly from the body from the pool in which it is being measured, the plasma, 

for example and in a continuous fashion (11,12). Finally, this approach assumes that all 

sources of the drug are direct and unique to the measured pool, and that consequently 

baseline levels remain constant (12). In contrast, the compartmental method employed in 

the current analysis does not require the drug under study to meet such assumptions as the 

model included all of these iron PK characteristics. Similar approaches could be applied to 

analyze other difficult drugs from a PK point of view. Examples may include enzymes or 

metabolites that are metabolized intra-cellularly (29).   

Another challenge for assessing SFGC pharmacokinetics is the inability to assay the 

iron associated with SFGC directly. Although it is possible to assay total serum iron and 

transferrin-bound iron, it is impossible to distinguish endogenous iron from the iron 

provided by SFGC supplementation. One approach that is often used to work around this 

problem involves subtracting transferrin-bound iron levels from total serum iron levels, 

thus assuming that the resulting concentration differences represent iron from the SFGC. In 

contrast, the compartmental model used in the current analysis estimates iron levels coming 
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from both endogenous and exogenous sources without performing this simple subtraction 

and does not assume that total iron is only composed of TBI and SFGC-I. 

In order to apply compartmental analysis in a BE context, the first step was the 

determination of a compartmental model that described the pharmacokinetics of iron in all 

its forms (total, bound to transferrin and associated with SFGC). Based on a previously 

published model (25), a model describing both formulations of iron was established. 

Overall, it explained the data very well. Although twelve parameters were estimated by the 

model, the model was not deemed overparameterized since two analytes were being fitted, 

each demonstrating two visible exponentials in their disposition with known nonlinearity 

(30). In addition, over 80 concentrations were fitted per subject, signifying that 6 samples 

were available per PK parameter, which represents a clear rich sampling scenario for the 

PK model (sparse sampling can be defined when less than 1 sample is available per fitted 

PK parameter).  This PK model accounted for serum iron, iron bound to transferrin, and 

stores in the reticuloendothelial system and bone marrow (red blood cells). The model also 

took into consideration iron lost during each blood sample, as well as iron not bound to 

transferrin.  Although the administration of intravenous iron is not associated with the 

generation of detectable or dialyzable free iron (3,31), there is evidence that points to the 

existence of non-transferrin bound iron (NTBI) that is biologically active and labile 

(9,31,32). This NTBI may even be bound to albumin (32). The levels of NTBI estimated in 

our population were about 46 mcg/dL before any treatment (Period 1) and about 74 mcg/dL 

before Period 2, which are equivalent to roughly 0.001 and 0.002 M and which are well 

under the 1 M levels normally seen in healthy subjects (1).  

The PK parameters for volume of distribution and clearance estimated with our 

model were slightly lower than what has been reported in the literature. The Vss and CL 

estimated for SFGC-I from our analysis were 4.41 L and 2.3 – 2.6 L/h, whereas they were 

5.72 L and 3.87 L/h in the previous study for which a compartmental analysis was used 

(25). Conversely, the average SFGC-I half-life in our study was 1.63 h whereas it was 

closer to 1 h in the other study (25). The differences observed between the PK parameter 
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estimates from our analysis and those in the literature may result from the differences in 

study populations. In the current study, enrolled subjects had ferritin levels between 22 

ng/mL (10 ng/mL for women) and 100 ng/mL, inclusively, whereas levels were less than or 

equal to 20 ng/mL in the other study. This means that the subjects in this analysis had a less 

profound iron deficiency than those studied by Seligman et al., considering ferritin is a 

measure of bodily iron stores (9). Degree of deficiency has been shown to influence iron 

pharmacokinetics, particularly its rate of transfer from RBC to RES (4). Patients who are 

more iron-deficient incorporate iron faster into the RES, which could explain why the 

terminal elimination half-life of SFGC-I determined by others was shorter than in the 

current study. In addition, the proportion of women was different in each study. The study 

population in the current study was composed of 75% women whereas women only made 

up 43% of the other population. As iron storage and loss are different between men and 

women (9), it is possible that the different gender compositions led to slightly different 

pharmacokinetic parameter estimates. 

By using a compartmental approach to assess the BE of two formulations of SFGC, 

problems associated with the noncompartmental method were altogether avoided. Indeed, 

because SFGC-I Cmax and AUC were calculated by model-based methods, iron’s non-

linear behaviour, non- continuous elimination (e.g., only through the specific blood 

samples), unstable baseline, and continual recycling were no longer issues as they were 

directly addressed by the model. All the specificity of iron pharmacokinetics such as non-

transferrin bound iron and iron lost through blood draws were specifically incorporated. 

The absence of a stable baseline for both total iron and TBI also became a non-issue as the 

model fitted all the analytes specifically and allowed for the fact that the iron administration 

in the two periods naturally raised the levels of TBI and total serum iron. The overall result 

is that all of this unaccountable variability in the baseline adjusted concentrations of total 

serum iron and TBI are not present in the population compartmental analysis, therefore 

demonstrating BE with a much lower number of subjects because of this lower 

unaccountable variability.  
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The population PK modeling approach described in this article shows that BE can 

be demonstrated with a relatively small sample size for iron products. Although BE was 

concluded in the study described by Baribeault (27), it was necessary to dose 240 subjects 

in a parallel-group design. Moreover, when noncompartmental analyses were conducted 

with data from our study, only one parameter (Cmax of baseline-adjusted TBI) met 

bioequivalence criteria.  Post-hoc analyses also revealed that the study lacked the power to 

show equivalence at ± 20% with an alpha error of 5% (i.e., power was less than 40%).  

Overall, this suggests that in order to demonstrate BE between SFGC formulations using 

traditional noncompartmental methods, a very large number of subjects must be dosed. In 

contrast, the compartmental approach was adequately powered to show equivalence with a 

sample size of 29 subjects.  This highlights again the strengths of the compartmental 

approach used in this study, as it is able to demonstrate bioequivalence with a significantly 

smaller number of subjects in a crossover design. In other words, this approach is not only 

scientifically sound, but it decreases the number of subjects who are exposed to the study 

drugs, resulting in a more cost-efficient and time-efficient study.  

Other researchers have shown, through the analysis of simulated data or data 

obtained from real clinical trials, that the compartmental approach can be used to assess 

bioequivalence (33,34,35,36,37,38,39,40,41). However, the PK models employed in 

previously published analyses were relatively simple ones (one or two compartment 

models). The population PK model developed in the current analysis is obviously more 

complex, but it allowed us to simultaneously characterize the PK of two different analytes 

(TI, TBI) and present concentration time profiles for what was directly administered 

ferrlecit-bound-iron or SFGC. 

The analysis presented here demonstrates how the compartmental approach can be 

used to perform BE assessments for drugs that do not meet assumptions necessary to 

employ more traditional, noncompartmental approaches.  These drugs may or may not be 

highly variable drugs (i.e., drugs for which within-subject variability of AUC or Cmax are 

greater than 30%).  Thus, for highly variable drugs that do not lend themselves to 
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traditional analyses, the compartmental approach described here can be adopted.  This 

would first entail developing a model that simultaneously describes the PK of both the test 

and reference drugs, which could be based on models already described in the literature.  

Specific model development criteria must be established a priori in the protocol and ideally 

in a population PK analysis plan.  For highly variable drugs that meet the criteria associated 

with standard noncompartmental analyses, use of the compartmental approach can also be 

used but other types of analyses, such as the reference-scaled average bioequivalence 

method (42,43), should also be considered.     

Although there were many advantages to adopting this non-traditional approach to 

evaluating BE, the development of a PK model for iron was more time-consuming and 

labour-intensive than the noncompartmental approach from an analysis perspective. The 

advantages and disadvantages of using a compartmental PK approach for a highly variable 

drug that meets the assumptions associated with standard analyses must be weighed in 

comparison with the reference-scaled average bioequivalence approach. Despite this, 

results show that this compartmental approach to BE assessment should be seriously 

considered for iron and potentially other rare, complicated drugs from a PK point of view 

for which traditional methods are unsuitable. 

2.7 Conclusions 

A compartmental analysis approach was applied successfully to demonstrate the BE 

between two formulations of sodium ferric gluconate complex in sucrose. BE was also 

concluded for the same products in a separate, much larger, parallel-design study 

employing traditional, noncompartmental methods of analysis. The results of this study 

suggest that alternative methods, such as the population compartmental analysis proposed 

here, should also be considered for assessing BE of drugs that are complicated from a PK 

point of view and for which the standard approach becomes artificially variable thereby 

necessitating the enrollment of too many subjects. 
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2.8 Abbreviations 

Term Definition 

AIC Akaike information criterion 

ANOVA Analysis of variance 

AUCpred Area under the serum-time curve of SFGC-I, from the beginning of the 

infusion to infinity, calculated as dose divided by CL 

AUC0-36 Area-under-the-concentration-time-curve from time zero to 36 hours 

BA Bioavailability 

BE Bioequivalence 

BIC Bayesian information criterion 

BLQ Below the limit of quantitation 

CI(s) Confidence interval(s) 

CL1 Clearance of SFGC-I to the RES 

CL2 Clearance of SFGC-I directly to transferrin 

CL3 Clearance of iron entering and exiting the marrow and red blood cell 

compartment 

CL4 Clearance of TBI to the RES 

CL Total clearance for SFGC-I, calculated as the sum of CL1 + CL2 

Cmaxpred Maximum predicted serum concentration of serum SFGC-I over the 72-hour 

sampling period 

C_NTBI_P1 Concentration of non-transferrin-bound iron during Period 1 

C_NTBI_P2 Concentration of non-transferrin-bound iron during Period 2 

CV% Percent coefficient of variation 

FDA Food and Drug Administration 

Frel Relative bioavailability 

ITS Iterative two-stage 

Km Iron concentration associated with half of the maximal rate of exchange 

between the RES and TBI compartments 
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Term Definition 

LSM Least squares mean 

MAP Maximum a posteriori 

NTBI Non-transferrin bound iron 

OGD Office of Generic Drugs 

PK Pharmacokinetics 

PPK Population pharmacokinetics 

RBC Red blood cells 

RES Reticuloendothelial system 

SD Standard deviation 

SFGC Sodium ferric gluconate complex 

SFCG-I Iron bound to sodium ferric gluconate complex 

STS Standard two-stage 

T1/2 Apparent first-order terminal elimination half-life of SFGC-I 

TBI Transferrin-bound iron 

TI Total iron 

Vmax Maximal rate of exchange between the RES and TBI compartments 

V_RBC Marrow and red blood cell compartment 

V_RES Volume of distribution associated with the RES 

Vss Apparent steady-state volume of distribution of SFGC-I 

V_TBI Volume of distribution associated with TBI 
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3.1 Preface 

The previous article demonstrated that the innovative use of modeling and 

simulations in the development of a generic drug could provide a scientifically sound and 

robust approach to bioequivalence assessment when other traditional approaches were 

inappropriate.  In addition, this method was able to answer the study objective without 

relying upon a large and lengthy clinical study, therefore it proved to be a cost-efficient and 

time-efficient approach.  Modeling and simulation can also be applied to develop innovator 

products, as the current article will demonstrate.  Indeed, in the present article, advanced 

pharmacokinetic techniques are used to better understand factors that could influence the 

PK and PD of a first-in-class biological agent that was being developed to treat gout.  The 

drug in question has since been approved by regulatory agencies and is available on the 

market, which is further evidence that these approaches can contribute to a product’s 

success. This article is also the first published population PK/PD analysis for a drug 

belonging to the urate-oxidase drug class conducted on a large cohort of Phase 3 gout 

patients.   

Therapeutic biological agents are essentially proteins or peptides that are derived 

from biotechnology.  In other words, the technology used to produce these agents generally 

involves recombinant DNA and organisms such as bacteria, yeast or mammalian cells (22, 

143).  Some well known examples of biologics include insulin and rituximab.  A 

classification system has been proposed that categorizes biological therapeutics into 

different groups based on their functions (143).  Group 1 includes agents with enzymatic or 

regulatory activity, meaning that these biologics replace absent or dysfunctional enzymes, 

modulate existing pathways or provide novel functions.  This group includes drugs such as 

recombinant erythropoietin and rasburicase.  Group 2 therapeutics target specific activities 

or act as delivery agents for other compounds or proteins, and includes products such as 

infliximab and trastuzumab.  In Group 3 are protein vaccines (for instance the Hepatitis B 

vaccine) and in Group 4 are proteins used for diagnostic purposes (such as the recombinant 

purified protein derivative used to diagnose tuberculosis exposure).   
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Biologics are two to three times larger than most “small molecule” drugs which are 

synthesized chemically (22).  Other differences between biologics and small molecules 

include their route of administration (small molecules can often be administered orally 

while biologics must often be given parenterally), immunogenicity (biologics can be highly 

antigenic compared to small molecules), and pharmacokinetic properties (22, 144).  Some 

particularities regarding the PK of biologics are that they often reach systemic circulation 

via the lymphatic system, they are poorly distributed outside of the vasculature and they are 

not metabolized into active or inactive metabolites (rather, they are catabolized to 

endogenous amino acids). 

Given these fundamental differences between biologics and small molecules, it is 

understandable that there are some drug development issues that are specific to biologics.  

Although the phases of drug development are the same regardless of the source of the drug 

(biological or chemical), some challenges are unique to biologic therapeutics.  Primary 

among them is immunogenicity.  Even for agents that are endogenous or from “natural 

sources”, the possibility that the organism mounts an immune response against the 

therapeutic agent is always an underlying concern.  The consequences of antibody binding 

to the protein can vary, ranging from a complete absence of clinical effect to increased 

activity or elimination (144).  In some cases, immune responses leading to harmful effects 

can even occur (145), which is why special attention is paid to the immunogenicity of these 

compounds.  In addition, due to their heterogeneous nature, developing reliable and 

accurate analytical methods to assay protein therapeutics can prove to be difficult (143, 

144).         

Beyond the goal of developing safe and effective drugs, one concern that is shared 

by developers of both small molecules and biologics is cost effectiveness. DiMasi and 

colleagues have shown that developing biologics is just as expensive as developing a small 

molecule, with similar estimated total capitalized costs between the two ($1241 million 

2005 dollars for biologics and $1318 million 2005 dollars for small molecules) (123).  It 
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must be noted, however, that initial out-of-pocket costs were 24% higher in total for 

biologics, which was offset by shorter clinical development times (123). 

Despite the challenges in bringing a biologic to market, as of 2008, there were at 

least 130 biological therapeutic agents available on the U.S. market (143).  The number of 

biologics submissions have continued to rise since 1982 (146), and they will no doubt 

continue to do so.  Protein therapeutics can provide treatments for diseases that cannot 

always be treated by small molecules, and they can also be complimentary to certain small 

molecule therapies (146).  There is clearly an interest in continuing to develop such 

products and to render the process more efficient. 

Some have suggested that a better understanding of PK and PD during the biologic 

drug development process can lead to many improvements (144).  More specifically, it was 

suggested that the application of an integrated PK/PD database throughout the drug 

development process could save time and money, reduce the number of unnecessary 

studies, generate pivotal information to influence key decisions, and improve the overall 

odds of demonstrating safety and efficacy.  A thorough understanding of PK/PD can also 

be useful in making decisions at the regulatory level, such as those pertaining to product 

labeling.  Because an overwhelming amount of PK/PD information can be gathered during 

the course of preclinical and clinical trials, it is important to find a way to integrate all of 

this information and to build upon previously acquired knowledge.  One way of managing 

all of these PK/PD findings is through model building.  The construction of PK/PD models 

leads to clear dose-response relationships which have the flexibility of incorporating past 

results with more recent ones, in a continual and ongoing basis.   

Thus, the following article demonstrates how the development of a PK/PD model 

for a biological product was able to answer a key question regarding potential factors that 

could influence the PK and PD of the drug.  This product was the first of its class that was 

developed to treat gout, and because of its novelty, clinical studies and specific analyses 

were necessary to better understand the drug and answer this question.  (Additional 

information concerning the drug class can be found in Appendix 1.)  In the end, the PK/PD 
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model that was created answered the question efficiently and contributed to the eventual 

product labeling. 

3.2 Abstract 

Two identical Phase 3 studies were conducted in persistently hyperurecemic 

patients with treatment refractory chronic gout.  Subjects received placebo or 8 mg 

pegloticase intravenously infused over approximately 2 hours every 2 or 4 weeks for 24 

weeks.  Samples for pegloticase, uric acid and antibody assays were collected from baseline 

through 2 weeks after the last dose.  Population pharmacokinetic (PK) and 

pharmacodynamic (PD) analyses were conducted with data from 163 subjects using 

NONMEM VI.  Covariates tested were weight, height, body surface area (BSA), anti-

pegloticase antibody level (Ab), creatinine clearance, age and sex. Pegloticase PK was best-

described by a 1-compartment model with linear elimination with BSA and Ab exhibiting 

covariate effects on Vc and CL.  An indirect model described the PD of pegloticase, where 

the depletion rate of uric acid was influenced by pegloticase and Ab levels.   

Keywords: Urate oxidase, uricase, population pharmacokinetics, population 

pharmacodynamics, uric acid, PEG 

3.3 Introduction 

Gout is the most common inflammatory arthritis in developed countries, occurring 

in 1 to 3% of people in most developed countries and in 3.9% of the US population, 

predominantly men.(1, 2) The hallmark biochemical marker of gout is hyperuricemia, 

although hyperuricemia alone is insufficient to diagnose gout.  When the concentration of 

serum uric acid (SUA) is above the biochemical limit of solubility, 6.8 mg/dL, 

monosodium urate (MSU) crystals precipitate in tissues. (3) It is the biological response to 

MSU crystals in tissues, and not to circulating urate, that causes the signs and symptoms of 

the disease. These include the occurrence of episodic acute inflammation in and around a 
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joint or joints (a gout flare), the formation of gout tophi, gouty arthritis, and uric acid 

nephropathy (including uric acid renal stones). (4, 5)   

Approximately 3 – 5.9 million patients in the US diagnosed with gout receive 

treatment to lower serum uric acid, and > 90% of these patients are treated with allopurinol 

(a xanthine oxidase inhibitor, XOI), making allopurinol the standard conventional urate-

lowering therapy. (3-13)  However, for a subset of chronic gout patients, XOIs either 

cannot control hyperuricemia with the maximum medically appropriate dose or is 

contraindicated. (3, 14)  Compliance can also be an issue.  These treatment refractory 

chronic gout patients tend to have advanced disease characterized by frequent gout flares, 

multiple gout tophi, and chronic painful joints (gouty arthritis), and also may have urate 

nephropathy. (1, 4, 15)  

Almost all mammals, except for humans and great apes, express an enzyme that 

catalyzes the conversion of urate, the by-product of purine metabolism, to allantoin. (4)  

Allantoin, unlike urate, is easily eliminated by renal excretion.  The administration of 

exogenous uricase to control urate levels is therefore an attractive alternative for chronic 

gout patients who cannot benefit from existing therapies.  Pegloticase (a PEGylated 

recombinant modified mammalian urate oxidase), which was developed to provide this 

therapeutic option, was approved by the US FDA in September 2010 and received 

marketing authorization in Europe in January 2013. 

Pegloticase was shown to effectively decrease plasma uric acid (PUA) to well 

below the solubility limit in early clinical development.  Phase 1 and 2 clinical studies 

suggested that 8 mg of pegloticase by intravenous (IV) infusion can maintain PUA levels 

below the clinical target of 6.0 mg/dL. (16, 17) Additionally, these Phase 1 and 2 studies 

revealed a long half-life (17 days), low pegloticase concentration associated with 50% of 

the maximal effect and sustained PUA suppression over dosing intervals, which supported 

the use of a long dose administration interval (two weeks).  Population pharmacokinetic 

(PK) and pharmacodynamic (PD) analysis of Phase 2 data suggested that no dose 

adjustment is required to account for covariates such as age, sex, race, body weight, ideal 
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body weight and antibody levels, since no covariates had a significant effect on the PD of 

the drug. (18) 

The current parallel, randomized multi-center placebo-controlled pivotal Phase 3 

studies were designed to determine the safety and efficacy of pegloticase and to further 

characterize the PK/PD of pegloticase using population PK methodology.  This article 

presents the population PK/PD results from these studies of pegloticase for the treatment of 

patients with chronic gout refractory to conventional therapy. 

3.4 Methods 

3.4.1 Study Design 

These were two Phase 3 multicenter, randomized, double-blind, placebo-controlled, 

three-arm, parallel treatment group studies conducted in patients suffering from gout and 

hyperuricemia.  A total of 212 patients were dosed and 157 subjects completed the study 

per protocol.  Patients were administered placebo or 8 mg pegloticase IV over 

approximately 2 hours, every 2 or 4 weeks for 24 weeks.  Samples for PK/PD analyses 

were collected at various timepoints, as depicted in Table 1.  In the event of an early 

termination, a sample was also collected at that time. 
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Table 1. Sampling Schedule 

Week Dose PK sample PD sample Ab sample 

1 1 X
a,b

 X X 

3 2 X X X 

5 3 X
b
 X X 

7 4 X X  

9 5 X
a,b

 X X 

10 . X   

11 6 X
a
 X  

12 . X   

13 7 X X X 

15 8 X X  

17 9 X X X 

19 10 X X  

21 11 X
a,b

 X X 

22 . X   

23 12 X
a
 X  

24 . X   

25 . X X X 

aIncluding a 2-hour post-dose collection 

bIncluding a 24-hour post-dose collection 

 

Each subject was expected to participate in the study for approximately 27 weeks, 

including a 2-week screening period, the 24 week treatment period and a 1 week post-

treatment follow-up.  Patient safety was monitored throughout the study.  This included the 

monitoring of adverse events (such as infusion reactions and gout flares), vital signs, 

clinical laboratory tests (hematology, serum chemistry, and urinalysis), pegloticase 
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antibodies, total hemolytic complement function, electrocardiograms, and physical 

examinations. 

3.4.2 Ethics 

Prior to initiation of the study, the protocol, informed consent form and other 

pertinent information were reviewed by a properly constituted Institutional Review 

Board/Independent Ethics Committee.  Written, informed consent was obtained from all 

subjects before they participated in any protocol-related activities. 

3.4.3 Inclusion and Exclusion Criteria 

Subjects included in the study were: outpatients of either sex;  18 years; 

hyperuricemic (screening SUA  8 mg/dL); subjects with symptomatic gout (at least 3 gout 

flares experienced in the 18 months prior to entry, or at least 1 gout tophus, or gouty 

arthritis); subjects in whom conventional therapy was contraindicated or had been 

ineffective (i.e., history of hypersensitivity or of failure to normalize SUA with at least 3 

months treatment with allopurinol, the only marketed XOI when the studies were 

conducted, at a maximum medically appropriate lower dose based on dose-limiting toxicity 

or dose limiting comorbidity). 

3.4.4 Analytical Methods 

Bioanalytical assays were conducted at Charles River Laboratories Preclinical 

Services Montreal Inc.  Pegloticase in serum, anti-PEG antibodies and anti-pegloticase 

antibodies were measured by enzyme-linked immunosorbent assay, with pegloticase as the 

capture antigen and horseradish peroxidase-conjugated as secondary antibody.  PUA was 

measured in trichloroacetic acid-precipitated chilled plasma, using a similar validated 

method.  Analytical methods have been described in detail elsewhere. (18)  
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3.4.5 Population PK/PD Analysis 

Data from the two Phase 3 studies was pooled in these analyses.  Subjects who 

received active treatment and who had at least one detectable post-dose pegloticase 

concentration were included in the PK/PD analyses.  Actual doses, infusion rates, dosing 

times and sampling times were used. 

Using NONMEM VI 2.0, various structural PK models were tested, such as one- 

and two-compartment models with linear and non-linear elimination processes. (30, 33)  

Quality of fit and selection of the final model was determined using objective function 

(OF), Akaike information criterion, residual variability, and by visual inspection of 

pertinent graphs (e.g., fitted and observed concentrations versus time, weighted residuals 

versus fitted values). 

After selecting the final structural PK model, various covariates were tested for 

potential inclusion in the model.  The impact of covariates was assessed graphically and 

using a generalized additive model implemented in Xpose Release 3.104 with S-Plus
®
 8.0 

for Windows. (34)  Covariates suggested by the previous step were entered into the model 

one by one using forward stepwise regression.  The most significant covariate was retained 

at each step, and subsequent covariates were added to this model.  Covariates were added to 

the model based on their reduction of the OF (using the log-likelihood ratio test at  = 

0.05), and based on their physiological and pharmacological plausibility.  Once all 

significant covariates were added to the model, backward stepwise deletion was performed 

to avoid redundancy and to ensure that all covariates remained significant despite the 

presence of all covariates.  In this process, each covariate was removed one by one from the 

complete model.  If its deletion resulted in a decrease in OF that was statistically significant 

( = 0.01), then it was excluded from the final model.   

Covariates investigated for inclusion in the model were: weight, height, body mass 

index, body surface area (BSA), ideal body weight, age, sex, presence of tophi, creatinine 

clearance (calculated using the Cockcroft-Gault equation), (35) baseline SUA level, number 

of gout flare ups, antibody levels (against PEG and pegloticase), the presence of co-
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morbidities (such as hypertension and diabetes) and allergy or gastrointestinal intolerance 

to allopurinol.  Concomitant medications were not investigated as covariates since no drug-

drug interactions were anticipated to affect the PK/PD of pegloticase. 

Antibody response against pegloticase and PEG were treated as categorical 

variables. Subjects were categorized as having no increase or an increase (either low, 

moderate or high).  No increase included subjects who were negative at baseline, Month 3 

and Month 6 (no titer), or who were positive at baseline but with no increase from baseline 

in titer during Months 3 and 6 (no increase in titer); low increase if titer was  0 and  810 

at Month 3 and/or Month 6; moderate increase if titer was  810 and  7,290 at Month 3 

and/or Month 6; high increase if titer  7,290 at Month 3 and/or Month 6.  Antibody 

isotyping data were not included in the covariate analysis since the data were deemed 

incomplete.  No subjects demonstrated antibody neutralization of pegloticase, therefore, 

this covariate was not included in the covariate analysis. 

For the PK analysis, antibody response against pegloticase was treated as a 

dichotomous categorical variable, where subjects either had no increase or an increase 

(either low, moderate or high).  Antibody response was originally categorized as “no 

increase”, “low increase”, “moderate increase” or “high increase”, however covariate 

analysis using these four categories did not produce pharmacologically plausible results.  

For the PD covariate analysis, the anti-pegloticase antibody level was separated into 5 

categories (“no increase”, “low increase”, “moderate increase”, “high increase” or 

“information unavailable”), as it was possible to stratify the effect of pegloticase based on 

the magnitude of the increase in anti-pegloticase antibody level.  Missing results were due 

to analytical reasons or to subject dropout prior to antibody determination in Month 3.  

After selecting the final PK model, a PD model was evaluated using the previously 

described model discrimination criteria and covariate analysis process.  The same 

covariates were tested as in the PK analysis.  To estimate the PD effect, final individual PK 

parameters were used to predict plasma pegloticase concentrations for developing the PD 

model.  Different models were tested, including the direct model (PD effect is related to 

predicted pegloticase concentrations), effect compartment model (PD effect is related to 
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pegloticase concentrations at the site of action) and indirect model (pegloticase 

concentrations exert their PD effect by influencing the rate of formation or elimination of 

PUA).  In the indirect model, the rate of uric acid presentation to plasma was estimated as 

Kin, which was influenced by the production rate of uric acid by the body and/or the release 

of uric acid from crystalline deposits within the body.  The rate of uric acid depletion from 

plasma was estimated as Kout. The elimination of uric acid from plasma was increased 

directly by plasma pegloticase concentrations through a linear relationship.   

All serum pegloticase concentrations were fitted using a weighting procedure where 

the weighting function is inversely proportional to the estimated variance.  Inter-individual 

variability was assumed to be centered around a mean value of zero with a variance of 
2
.  

Intra-individual variability for pegloticase was modeled as a combination of additive and 

proportional error, while the error model for PUA was additive.  When it was possible, 

inter-occasion variability (assuming normal distribution of error) was also modeled. 

3.5 Results 

In all, 163 subjects were included in the PK/PD analysis.  The demographic 

characteristics of these patients are summarized in Table 2.  Overall, a total of 1,176 serum 

pegloticase concentrations and 3,358 PUA concentrations obtained from this patient 

population were fitted with the PK/PD model. 
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Table 2. Summary Demographics of Subjects 

Trait Mean (CV%) Median (Range) 

Age (years) 55.6 (26.0%) 57 (23 - 89) 

Body Weight (kg) 99.1 (25.1%) 96.2 (48.2 – 191) 

Height (cm) 174 (6.28%) 175 (145 - 193) 

Body mass index (kg/m
2
) 32.8 (22.5%) 31.5 (15.0 - 65.9) 

Body surface area (m
2
) 2.12 (13.3%) 2.12 (1.44 - 2.88) 

Ideal body weight (kg) 68.2 (16.3%) 70.5 (38.6 - 86.8) 

Screening creatinine clearance (mL/min)* 92.4 (55.4%) 84.5 (17 - 264) 

Screening serum uric acid (mg/dL) 10.07 (14.0%) 9.9 (8.0 - 14.9) 

Number of acute gout flare ups in the past 18 

months (n=161) 

9.70 (113%) 6 (0 - 90) 

 Number of 

Patients 

% 

Sex   

Male 131 80.4 

Female 32 19.6 

Presence of tophi 122 74.8 

Diabetes mellitus 41 25.2 

Hypertension 119 73.0 

Allergy or gastrointestinal intolerance to 

allopurinol 

96 58.9 

Overall anti-pegloticase antibody level   

No increase 16 9.8 

Low increase [0 < titer  810] 49 30.1 

Moderate increase [810 < titer  7, 290]   33 20.2 

High increase [7, 290 < titer] 50 30.7 

Unknown change 15 9.2 

*Creatinine clearance was calculated using the Cockcroft-Gault equation. (147) 
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The PK of pegloticase was best described by a one compartment model with a linear 

elimination process.  The model was parameterized in terms of volume of distribution (Vc) 

and clearance (CL), as described by Equation 1, where C represents serum pegloticase 

concentration. 

Equation 1 C
Vc

CL

dt

dC
  

An indirect model was selected to describe the PD of pegloticase. (19)  Steady-state 

PUA levels prior to pegloticase dosing were defined as the ratio of Kin to Kout, as described 

by Equation 2.  The rate of change of PUA and the effect of pegloticase on Kout are 

described by Equation 3 and Equation 4, respectively. 

Equation 2 
out

in

K

K
IC   

Equation 3    PUAStimKK
dt

dPUA
outin  1  

Equation 4 CSlopeStim   

C = serum pegloticase concentration; IC = initial condition (steady-state uric acid level prior to 

pegloticase dosing); PUA = plasma uric acid concentration; Stim = Stimulation factor; Slope = 

variable representing the linear relationship between serum pegloticase and stimulation of Kout 

 

Thus, according to this model, as the serum concentration of pegloticase reaches its 

peak, the stimulation (represented by Stim) also reaches its peak. Conversely, when serum 

pegloticase levels decrease to zero, the stimulation drops to zero and normal physiologic 

urate elimination remains.  

Significant covariates included in the PK model were BSA and anti-pegloticase 

antibody level on Vc and CL.  For each antibody category, a different population value () 
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was estimated with identical inter-subject variability ().  An example of how these 

covariates were coded (for Vc) can be found in Equation 5 and Equation 6. 

Equation 5 Vc

VcBSA

e
BSA

increaseAbnopopulationVcincreaseAbnoindividual





 





















_

12.2
_______  

Equation 6 
Vc

VcBSA

e
BSA

increaseAbpopulationVcincreaseAbindividual





 





















_

12.2
_____  

The only covariate included on PD parameters was the overall anti-pegloticase 

antibody level on slope, the variable representing the linear relationship between serum 

pegloticase and stimulation of PUA elimination.  For each category, a different  and  

were estimated. 

An inter-occasion variability (IOV) factor was also added to the PK parameters Vc 

and CL to improve the quality of fit. This improved the model in a statistically significant 

manner and enhanced other goodness-of-fit criteria.  The IOV term accounted for intra-

subject variability from one occasion to another, where the first occasion was the first 3 

months of the study period (Weeks 1 to 12), the second occasion was between months 3 

and 6 (Weeks 13 to 24), and the third occasion was after the sixth month (Week 25). 

The final structural PK/PD model is depicted in Figure 1, while typical predicted 

pegloticase and PUA profiles are presented in Figure 2.  Population PK/PD parameters and 

estimated half-life values are presented in Tables 3 and 4, respectively. 
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Figure 1. Final PK/PD Model for Pegloticase 

 

CL = pegloticase clearance, Dashed arrow = stimulatory effect of pegloticase, Kin = 

rate of uric acid presentation to plasma, Kout = rate of uric acid depletion from plasma, Vc = 

pegloticase volume of distribution 
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Figure 2. Example of Predicted Profiles for One Patient 

 

LEGEND: Circles = observed pegloticase concentrations, Triangles = observed uric acid concentrations, 

Solid line = predicted pegloticase concentrations, Dashed line = predicted uric acid concentrations 
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Table 3. Population PK/PD Parameters of Pegloticase 

Parameter Mean 
Coefficient Variation (%) 

Inter-subject Inter-occasion 

Vc if no increase in anti-pegloticase antibodies (L) 4.73 
24.7 18.2 

Vc if increase in anti-pegloticase antibodies (L) 5.93 

Exponent for BSA on Vc 1.73 Not estimated 

CL if no increase in anti-pegloticase antibodies (L/h) 0.0145 
39.6 17.0 

CL if increase in anti-pegloticase antibodies (L/h) 0.0191 

Exponent for BSA on CL  1.12 Not estimated 

Kin (mg/dL/h) 0.727 14.6 Not estimated 

Kout (1/h) 0.079 9.34 Not estimated 

Slope (mL/mcg) if no increase in anti-pegloticase antibodies 3.93 112 Not estimated 

Slope (mL/mcg) if low increase in anti-pegloticase antibodies 1.60 236 Not estimated 

Slope (mL/mcg) if moderate increase in anti-pegloticase antibodies 0.578 163 Not estimated 

Slope (mL/mcg) if high increase in anti-pegloticase antibodies 0.0526 39.8 Not estimated 

Slope (mL/mcg) if information unavailable on increase in anti-pegloticase antibodies 0.380 Not estimated Not estimated 

Residual variability (%) 
Pegloticase 30.8   

Uric acid 64.0   

Table 4. Bayesian Terminal Elimination Half-life Estimates 
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Subgroup 
Half-life (hours) 

Mean Median Range 

All subjects 221 217 123 – 452 

Subjects with no increase in anti-pegloticase antibody levels 234 216 123 – 444  

Subjects with an increase in anti-pegloticase antibody levels 220 217 124 – 452  
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3.6 Discussion 

3.6.1 Pharmacokinetics 

The one-compartment model with linear elimination that was chosen as the base PK 

model for this Phase 3 analysis was identical to the structural model determined by analysis 

of Phase 2 data.(18)  The selection of a 1-compartment model suggests that pegloticase is 

mostly confined to the intravascular space, which can be explained by its size of 

approximately 545 kDa.  With hydration of the PEG moieties, the apparent molecular 

weight is even larger.  Other therapeutic biologics also tend to cross blood capillaries 

slowly (20, 21). 

The inclusion of anti-pegloticase antibody response on Vc and CL indicates that the 

presence of antibodies is associated with an increased Vc as well as an increased CL.  

Increased CL is consistent with results published by Sundy and colleagues, who found that 

the presence of antibodies was associated with an increase in the clearance of IV 

pegloticase. (17)  Since antibodies were non-neutralizing, the presence of antibodies likely 

facilitates the clearance of pegloticase, by a mechanism related to the formation of immune-

complexes between the antibodies and pegloticase, which are possibly captured by the 

reticuloendothelial system. (22) Although anti-pegloticase antibody response was initially 

tested as a categorical covariate comprised of 4 categories, the use of 4 categories did not 

produce pharmacologically plausible results.  More specifically, the presence of increased 

quantities of antibodies was associated with an increase in terminal elimination half-life 

rather than a decrease in half-life.  Therefore, antibody response was classified as a 

dichotomous variable.  

The increase in Vc associated with the presence of antibodies could also be 

explained by the formation of immune-complexes.  Anti-pegloticase antibodies could 

increase the uptake of immune-complexes by phagocytes of the reticuloendothelial system, 
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thereby increasing the intracellularly-bound fraction of pegloticase.  With increasing 

cellular uptake of pegloticase, the quantity of pegloticase in serum naturally decreases.  

Since Vc is a variable that relates serum pegloticase concentration with the amount of 

pegloticase in the central compartment, the decrease in pegloticase concentration is 

reflected by an increase in Vc. 

The only demographic covariate that was retained in the final model was BSA, 

suggesting that increasing body size is associated with increasing Vc and CL.  Indeed, it is 

not surprising that a person who is taller and heavier than another individual would have a 

larger Vc since it not only encompasses the intravascular space, but possibly tissue volume.  

Such a person might have a greater hepatic mass, further enhancing the elimination of 

pegloticase via the uptake of antibody-pegloticase complexes. (13)  Although it has been 

suggested that BSA does not correlate strongly with hepatic metabolic capacity, the 

elimination of pegloticase does not involve metabolism, therefore the inclusion of BSA on 

CL in the model is reasonable. (2)   

Although BSA was retained as a covariate in the PK model, this does not suggest 

that pegloticase dosing adjustments are required with respect to BSA.  It simply indicates 

that part of the inter-individual variability in PK parameters can be attributed to BSA (i.e., 

differences in pegloticase concentrations between patients can be partially explained by 

differences in BSA). Moreover, patients had similar PD responses to pegloticase regardless 

of their BSA.  Thus, based upon analysis of the data using the PK/PD model, dosing 

adjustments to correct for BSA are unnecessary.   

Although the population PK approach was ideal to analyze the sparse data collected 

from this study, one of the analysis limitations was the variability of the data.  Significant 

variability in the pegloticase concentrations was observed, which could explain the residual 

variability value of 30.8% (representing the variability that is not explained by the model, 

including intra-individual variability, the experimental “noise” of the analytical method and 

errors arising from the pharmacokinetic modeling itself), as well as the elevated inter-
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individual variability associated with PK parameters.  Such variability of the measured 

pegloticase concentrations is not unexpected, considering that multiple clinical sites were 

involved and that subjects were not confined to a controlled clinical setting, with the 

exception of visits to clinical sites for dose administration. 

3.6.2 Pharmacodynamics 

The use of PUA as a PD marker was deemed appropriate, as it is the direct target of 

pegloticase and it correlates well with clinical outcomes. (23)  Indeed, low levels of urate 

are associated with dissolution of MSU crystals (leading to a decrease in gouty flares and 

tophi) (24, 25) and a decrease in the urate pool. (26, 27)  Furthermore, although pegloticase 

was measured in serum, PUA was selected as a PD marker because it avoided the 

possibility of ex vivo SUA degradation by circulating pegloticase.  In addition, statistical 

analyses demonstrated excellent agreement of PUA and SUA levels. (23) 

Pegloticase was designed to catalyze PUA metabolism, and a model reflecting its 

pharmacologic action with stimulation of the rate of urate elimination was selected as the 

best model.  In this model, pegloticase affects the rate of PUA depletion (elimination) from 

the plasma to produce the observed decreases in PUA levels.  Although several other 

structural models were tested, such as the effect compartment model and direct inhibitory 

Emax models, (28, 29) the indirect PD response model with stimulation of Kout provided the 

best overall fit to the observed data.  Although a direct inhibitory Emax model was 

previously used to describe the PD effect of pegloticase based on Phase 2 data (18), only 

one dose of pegloticase was administered in Phase 3 (compared to Phase 2 where 3 

different doses were administered), which made it more difficult to characterize an Emax 

curve in the current analysis.     

Following covariate analysis, only overall anti-pegloticase antibody level had a 

significant effect on the slope (the variable representing the linear relationship between 

serum pegloticase and stimulation of PUA elimination).  Subjects with large increases in 
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overall anti-pegloticase antibody level had a much smaller slope value than those who had 

little or no increase in overall anti-pegloticase level.  A small slope value suggests that large 

amounts of pegloticase are required to effect a small stimulation in the elimination of uric 

acid. Conversely, large slope values suggest significant stimulation of uric acid elimination 

with small pegloticase levels.  This means that in the presence of anti-pegloticase 

antibodies, more pegloticase is required to stimulate the elimination of urate, as illustrated 

by Figure 3.  This finding is consistent with the known effects of antibodies to reduce 

efficacy of therapeutic agents.(22)  However, even in subjects with high anti-pegloticase 

antibody levels, pegloticase elicits a 10.6% increase in the rate of PUA elimination at 

estimated average therapeutic levels (2 mcg/mL).  In addition, despite the detection of 

antibodies in 89% of patients, 42% of patients receiving biweekly pegloticase were 

persistent responders (patients with PUA less than 6.0 mg/dL for 80% of the time or longer 

during months 3 and 6), for whom PUA levels remained well below the solubility limit 

throughout the inter-dosing period (30). 
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Figure 3. Predicted (Simulated) Uric Acid Profiles by Treatment Group and Anti-

pegloticase Antibody Category 

Figure 3a. Pegloticase Administered Every 2 Weeks 

 

LEGEND: Black line = no increase in anti-pegloticase antibodies; Orange line = low increase in anti-

pegloticase antibodies; Blue line = moderate increase in anti-pegloticase antibodies; Green line = high 

increase in anti-pegloticase antibodies; Pink line = information unavailable on increase in anti-pegloticase 

antibodies (n=1); Dashed, horizontal gray line = Dosing time 
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Figure 3b. Pegloticase Administered Every 4 Weeks 

 

LEGEND: Black line = no increase in anti-pegloticase antibodies; Orange line = low increase in anti-

pegloticase antibodies; Blue line = moderate increase in anti-pegloticase antibodies; Green line = high 

increase in anti-pegloticase antibodies; Pink line = information unavailable on increase in anti-pegloticase 

antibodies (n=1); Dashed, horizontal gray line = Dosing time 

 

In humans, PUA is normally eliminated from the body via the kidney as urate, while 

pegloticase allows it to be eliminated renally as allantoin.  One might therefore expect the 

Kout parameter (which incorporates the transformation of uric acid into allantoin and the 

subsequent urinary elimination of the latter) to be correlated with renal function and 

creatinine clearance to be retained as a statistically significant covariate.  However, the 

results of this analysis suggest that baseline creatinine clearance was not a significant 

covariate of the effect of pegloticase on PUA levels.  Creatinine clearance reflects mostly 

glomerular filtration while uric acid (urate) undergoes glomerular filtration, tubular 
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reabsorption, secretion and post-secretory reabsorption. (31, 32)  It may be that creatinine 

clearance, as calculated by the Cockcroft-Gault formula, is not a variable that completely 

characterizes the renal processes involved in urate elimination, even though for most drugs 

creatinine clearance represents total tubule activity.  Finally, hyperuricemia often involves 

an under-excretion of PUA, (31, 32) therefore the lack of correlation between baseline renal 

function and baseline PUA elimination may simply be a reflection of the abnormal PUA 

excretion. 

Overall, the PD model appears to describe the PUA concentrations well, despite the 

significant amount of variability in the observed data.  The between-subject variability is 

large, particularly for the slope parameter when anti-pegloticase antibody levels are low, 

suggesting that there are large differences in the responses between subjects.  The residual 

variability (64%) is reasonable for this PK/PD analysis, considering that the PK profiles 

were quite variable, as previously mentioned. 

3.6.3 Antibodies  

The effect of antibodies on PK and PD parameters was assessed in a previously 

published Phase 2 study, but results failed to demonstrate any influence of antibodies on 

pegloticase.  (18)  In contrast, this Phase 3 analysis revealed a significant effect on 

pegloticase PK and PD.  The larger sample size of the current study (n = 163 vs. n = 40) 

and the longer treatment period (6 months vs. 3 months) may have enabled the detection of 

an antibody effect in comparison with the previous study. 

The results of the PD model with respect to the effect of anti-pegloticase antibodies 

concord with the efficacy findings of the Phase 3 studies, as measured by the percentage of 

subjects achieving PUA levels < 6 mg/dL for at least 80% of the time during months 3 and 

6 combined.  Indeed, 100% of subjects initially responded to pegloticase treatment with 

lowering of PUA to below the therapeutic target within 24 hours of receiving the first 

pegloticase infusion.  However, persistent response was observed in 42% and 35% of 
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subjects receiving 8 mg every 2 weeks or 8 mg every 4 weeks, respectively and anti-

pegloticase antibody responses were observed in 89% of subjects. (23) 

While the inclusion of anti-pegloticase antibody titer category helped explain the 

variability in the PK/PD model, the titer itself has limited utility in the clinical setting.  

Indeed, only the highest anti-pegloticase antibody observed for each individual was 

incorporated into the model, as it was not possible to co-model antibody levels as a 

function of time.  Therefore, the PK/PD model cannot be used to monitor loss of effect in a 

clinical setting.   

3.7 Conclusion 

The PK model that best described pegloticase was a 1-compartment model with a 

linear elimination process.  For the first time, the influence of antibodies on the PK/PD of 

pegloticase was quantified.  An increase in anti-pegloticase antibodies was associated with 

an increase in Vc and CL.  BSA was also a significant covariate affecting the PK 

parameters Vc and CL.  In other words, inter-individual variability seen in PK parameters 

could be attributed to differences in BSA as well as the presence of antibodies. 

An indirect model was used to describe the PD of pegloticase, where the depletion 

rate of PUA was directly influenced by pegloticase levels.  The stimulation of PUA 

elimination by pegloticase was influenced by antibody levels, such that in the presence of 

increased anti-pegloticase antibodies, greater pegloticase levels were necessary to stimulate 

uric acid metabolism.  No other covariates (BSA, weight or creatinine clearance) influenced 

the PD parameters of pegloticase.  Therefore, based upon the analysis of the data using the 

PK/PD model, dosing adjustments to correct for BSA are unnecessary. 

Overall, both dosing regimens were able to reduce urate levels to well below the 

targeted 6 mg/dL.  However, there was a substantial effect of anti-pegloticase antibodies on 

the pharmacodynamics of pegloticase in a subset of these patients, as indicated by the 
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modeling results.  This is consistent with clinical laboratory results indicating that subjects 

with no or low anti-pegloticase antibody levels had a sustained urate-lowering response to 

pegloticase treatment while subjects who developed high levels of anti-pegloticase antibody 

titers lost their urate control over the course of the study.  However, caution must be 

exercised with respect to the clinical utility of antibody levels, since a model could not be 

developed to predict loss of effect as a function of time-dependent antibody titers. 
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4.1 Preface 

Modeling and simulations is a tool that can enhance the drug development process 

by answering key questions in a timely and efficient fashion, and this applies as much to 

generic drugs as it does to innovator products.  The first article presented in this thesis 

highlighted the role of PK modeling in the bioequivalence assessment of an iron complex, 

which was a novel approach within the generic drug development context.  It was also an 

approach that was less costly and time-consuming than the traditional approach.  The 

second article dealt with the innovator product environment for a biologic agent, 

pegloticase, which despite being different from the world of generic drug development, also 

benefitted from the use of modeling.  PK/PD modeling was able to answer critical 

questions about potential pegloticase dosage adjustments, and the results of the research 

were even incorporated into the product labeling.  Indeed, modeling made significant 

contributions to the eventual approval and successful marketing of pegloticase.   

In the present article, another utility of modeling and simulations is demonstrated in 

the context of innovator drug development.  The findings in this research project highlight 

the role of modeling and simulations in the  selection of appropriate doses and dosing 

regimens, making use of available information and incorporating new data as it became 

available.   In contrast with the previous article, the compound being studied here is a small 

molecule belonging to the antibiotic drug class, but as it will be shown, modeling and 

simulations can be used to enhance the development of a wide array of products.  

The decline in the overall productivity of the pharmaceutical industry has affected 

many therapeutic areas, and antimicrobials are no exception.  Since the early 1980’s, there 

has been a steady decrease in the number of small molecule anti-infective agents that have 

received FDA approval (146, 148). Indeed, compared to other therapeutic classes (such as 

anesthetics/analgesics, antineoplastics, cardiovascular, endocrine, central nervous system, 

gastrointestinal, immunologic and respiratory) which have seen an increase in the number 
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of approvals over the last 3 decades or a mixture of increased and decreased numbers, the 

number of approved anti-infective agents has been on the decline since the 1980’s (148).  

One of the reasons for this trend may be the slew of anti-infective agents already on the 

market, making it a highly competitive area of development (148).  Moreover, the rising 

presence of generic products adds more pressure to those who wish to develop anti-

infectives, because the drug must possess a truly novel mechanism of action or significant 

added benefit to justify its expense. 

Drug resistance is both a hurdle to the development of antibiotics as well as an 

opportunity to improve current therapies.  Increased resistance of bacteria to antibiotics has 

even led some pundits to warn of a return to a pre-antibiotic era (149). Indeed, antibiotics 

have been used for the last 60 years and their extensive use, and often misuse, has 

contributed to the growing resistance (149).  The mechanisms for resistance are numerous, 

and include the modification of drug targets, the pumping out of the drug from the cell via 

efflux pumps, and the metabolism of drugs via bacterial enzymes (149).  Our understanding 

and appreciation of these mechanisms has greatly improved, which helps drug developers 

chemically modify compounds that can bypass these resistance mechanisms.  However, 

resistance remains inevitable, reminding us that antibiotic use must be well-controlled to 

slow down the onslaught of resistance as much as possible, while researchers continue to 

develop products to overcome this continuing problem. 

Despite the challenges in bringing new anti-infective agents to market, the quest to 

add new anti-infectives to our therapeutic arsenal is still being pursued by some.  One 

molecule currently under development is TP-434, a novel fluorocycline belonging to the 

class of tetracyclines.  (A general overview of this drug class can be found in Appendix 1.)  

This IV product offers the possibility of eradicating bacteria that are resistant to antibiotics 

that are currently on the market.  Some targets of TP-434 include methicillin-resistant 

Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium and 

Enterococcus faecalis and penicillin-resistant strains of Streptococcus pneumonia.  
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Although it has become harder and harder to identify promising anti-infective 

agents due to the increasing bacterial resistance, among other factors, modeling and 

simulations can help promising agents, such as TP-434, reach the market in a more 

effective and timely manner.  For instance, modeling and simulation can help design 

optimal dosing regimens and aid in the planification of future trials (150). In one drug 

development example cited by the FDA, a more thorough analysis of the first of three trials 

that were conducted with the drug could have led to better planification of the subsequent 

trials, and may have shortened development time and improved the probability of approval 

(114).  In other words, the subsequent trials (and the entire DDP for this drug) could have 

benefitted from a better understanding of the results obtained in the first trial.  In contrast to 

this example described by the FDA, modeling and simulations was embraced during the 

DDP of TP-434, which made the process more efficient by continuously improving the 

understanding of the drug’s PK and by applying this knowledge to dosing regimen 

selection.   

Because the decisions made during the drug development process can have 

important ramifications, it is important that prior information be leveraged.  For example, 

pre-clinical results can be included in PK/PD models to predict effects in humans.  In the 

case of antimicrobials, PK/PD indices have been established for various classes of drugs.  

The minimum inhibitory concentration (MIC) represents the lowest concentration that 

inhibits visible growth of an organism, and this parameter has been correlated with various 

PK parameters to predict outcomes for different antibiotics.  It has been shown for beta-

lactams that time over MIC (over a 24 hour interval) greater than or equal to 40% correlates 

well with efficacy (151, 152).  For aminoglycosides, ratios of Cmax to MIC ranging from 

10 to 12 are good predictors of efficacy (153), while ratios of AUC to MIC ranging from 87 

to 175 seem to predict the efficacy of fluoroquinolones (154-156).  Modeling and 

simulations provide an excellent framework in which this information can be used, 

therefore it can play an important role in the development of antibiotics. 
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Thus, the current article illustrates how modeling and simulations, in conjunction 

with previously acquired knowledge, served to select appropriate TP-434 dosing regimens 

for further investigation.  Importantly, this approach allows future protocols to be modified 

prior to their initiation to include dosing regimens that may not initially have been 

envisaged.  This builds upon the learn and confirm paradigm advocated by Sheiner (136), 

by permitting learning and confirming to occur within different studies in the same phase of 

the DDP and further demonstrates how modeling and simulation can enhance the drug 

development process.  

4.2 Abstract 

Background: TP-434 is a novel fluorocycline being developed.  A first in human, single 

ascending dose (SAD) study was conducted.  TP-434 was infused IV over 30 minutes at 

doses of 0.1 to 3 mg/kg.  This analysis aimed to describe the pharmacokinetics (PK) of TP-

434 following a single dose and to determine the dosing regimens for a multiple ascending 

dose (MAD) study.  

 

Methods:  Population PK analyses were conducted with ADAPT 5 after the completion of 

each cohort using plasma & urinary data.  The best model was chosen using standard model 

discrimination criteria.  Simulations were performed with the model to predict clinical 

endpoints associated with various dosing regimens, such as AUC/MIC (area under the 

concentration-time curve/ minimal inhibitory concentration). MAD regimens were 

proposed using these endpoints. 

 

Results: Seven cycles of modeling and simulation were conducted with data from 42 

subjects.  The model was improved with each successive analysis.  The final model was a 

4-compartment model with linear elimination.  Mean parameters were Vc = 10.8 L, CLnr = 

11.5 L/h, Vp1 = 16.1 L, CLd1 = 44.3 L/h, Vp2 = 132 L, CLd2 = 6.95 L/h, Vp3 = 103 L, 
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CLd3 = 26.9 L/h and CLr = 2.34 L/h. Inter-individual variability ranged from 8.7 to 41%.  

Based on AUC/MIC, simulations suggested that a minimum of 1.5 mg/kg QD for 10 days 

would be efficacious for organisms with an MIC50 = 0.5 g/mL. 

 

Conclusion: Using model-based simulations, dosing regimens originally proposed for the 

MAD study (1.0 mg/kg) were modified to evaluate more appropriate regimens (≥1.5 mg/kg 

daily). 

4.3 Introduction 

Antibiotic resistance is a phenomenon that continues to challenge clinicians and 

researchers who strive to find new treatments for different infections.  This problem has 

touched many classes of antibiotics, if not most, and the tetracyclines have certainly not 

been spared.  Resistance to tetracyclines, caused by the presence of efflux pumps or 

ribosomal protection, has resulted in the decreased use of these antibiotics (16).  However, 

the relatively recent emergence of a new type of tetracycline which is effective against 

resistant organisms, tigecycline, has renewed interest in the class (2).   

Another new type of tetracycline that belongs to the fluorocycline sub-group is 

TP-434, which is currently being developed by Tetraphase Pharmaceuticals, Inc. (5).  It is a 

novel antibiotic that exhibits in vitro activity against a wide array of gram-positive and 

gram-negative pathogens, such as nosocomial and community-acquired methicillin-

susceptible or -resistant Staphylococcus aureus strains (MRSA), vancomycin-susceptible or 

-resistant Enterococcus faecium and Enterococcus faecalis, and penicillin-susceptible or -

resistant strains of Streptococcus pneumoniae (8, 17-18).  In addition, it is active in animal 

models of infection (11). 

Although in vitro and pre-clinical results were promising, the pharmacokinetics 

(PK) and safety of TP-434 in humans had yet to be determined.  To this effect, a single 
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ascending dose (SAD) study was conducted in healthy volunteers.  In this study, TP-434 

was administered as a single intravenous (IV) infusion over 30 minutes, at a dose of either 

0.1 mg/kg, 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, 1.5 mg/kg, 2 mg/kg, or 3 mg/kg.  In each 

cohort, 6 subjects received active treatment while 2 subjects received placebo.  Serial blood 

and urine samples were collected pre-dose until 96 hours post-dose.    

We hypothesized that the modeling of data from this SAD study, together with our 

knowledge of antimicrobial pharmacokinetic and pharmacodynamic (PD) relationships, 

would allow us to gain more insight into the PK of TP-434 during the conduct of the study 

and help us select more appropriate dosing regimens for a multiple dose study, before the 

initiation of the latter.  Indeed, exposure response relationships for a similar compound, 

tigecycline, demonstrated that the ratio AUCSS/MIC (the area under the concentration-time 

curve over 24 hours at steady state divided by the minimal inhibitory concentration) was a 

good predictor of clinical efficacy (1, 3, 4, 10).  Because data was available after the 

completion of each successive cohort, it would be possible to create a PK model and 

improve upon the model with the inclusion of new results.  Our objective was therefore to 

develop a PK model to describe the disposition of TP-434 after the administration of each 

dose and to select repeated dose regimens using simulations performed with this model. 

4.4 Materials and Methods 

4.4.1 Study Design 

The study was a randomized, double-blind, parallel-group, placebo-controlled 

study.  Healthy men and women, between 18 to 50 years of age inclusively, were included 

in the study.  Good health was assessed by the Principal Investigator based on lack of 

clinically significant abnormalities in health assessments such as vital signs, 

electrocardiograms (ECG), laboratory tests, body mass index.  Women included in the 
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study must have been surgically sterile (by tubal ligation, bilateral oophorectomy, or 

hysterectomy) for at least 6 months prior to study initiation.   

Seven dose levels were studied: 0.1 mg/kg, 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, 1.5 

mg/kg, 2 mg/kg and 3 mg/kg.  In each cohort, 6 subjects received active treatment while 2 

subjects received placebo.  TP-434 was administered by IV infusion over 30 minutes.  Dose 

escalation only proceeded in the absence of dose-limiting adverse events or clinically 

relevant safety laboratory parameters such as (but not limited to) alanine aminotransferase 

levels and absolute reticulocyte counts.   

Subject safety was monitored throughout the study.  Blood samples for TP-434 

assay were collected prior to dosing and at the following times post-dose: 0.25, 0.5, 0.583, 

0.75, 1, 2, 4, 6, 8, 12, 24, 36, 48, 72, and 96 hours.  Urine samples were obtained before 

dosing and between 0 to 8 hours, 8 to 24 hours, 24 to 48 hours, 48 to 72 hours, and 72 to 96 

hours after the start of the infusion.  Subjects were asked to void their bladders completely 

prior to dosing. 

Protocol approval was obtained from the local institutional review board prior to the 

commencement of the study.  In addition, written informed consent was obtained from 

study participants before conducting any study-related procedures. 

4.4.2 Analytical Methods 

Bioanalytical sample analysis for TP-434 was performed by Tandem Labs (Salt 

Lake City, UT, US).  TP-434 in plasma was assayed using a validated liquid 

chromatography/mass spectrometry (LC/MS/MS) method with a quantitation range of 5.00 

ng/mL to 1000 ng/mL. Assay precision (%CV) varied from 2.8% to 6.8% while accuracy 

(% bias) ranged from -0.1% to 3.0%.  Similarly, TP-434 in urine was assayed using a 

validated LC/MS/MS method with a quantitation range of 5.00 ng/mL to 1000 ng/mL.   
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Assay precision (%CV) varied from 4.6% to 8.5% while accuracy (% bias) ranged from -

0.8% to 3.3%. 

4.4.3 Pharmacokinetic Analyses 

Population PK analyses were performed using clinical and analytical data from all 

subjects receiving active treatment.  Actual dose, drug infusion times, PK sampling times 

(for plasma and urine) as well as urinary volume were collected and used.  Both plasma and 

urinary TP-434 concentrations were included in the analysis.  Dataset preparation was 

performed using Microsoft Excel
®
 2003 and S-Plus

®
 8.0 for Windows. 

Two, three and four-compartment models with linear elimination were first tested 

using the standard two-stage (STS) option in ADAPT 5
®
 (6).  The best model was selected 

based on standard discrimination techniques such as the minimization of the Akaike 

information criterion test, the residual variability, the maximization of the coefficient of 

determination, and based on graphical representation of the goodness of fit (e.g. observed 

versus predicted concentrations, weighted residuals versus predicted concentrations). All 

plasma and urinary concentrations were simultaneously fitted and explained by the model. 

Following the determination of the final structural pharmacokinetic model using 

STS, a population pharmacokinetic analysis was performed using the maximum likelihood 

expectation maximization (MLEM) method within ADAPT 5
®
. This is a fully automated 

mixed effect modeling approach using both maximum likelihood and sampling-based 

methods. Briefly, the first probable population PK parameters and variance estimates (e.g., 

residual variability) were found by the STS approach using maximum likelihood. Then a 

population analysis was undertaken where population, individual and residual variability 

PK parameters were calculated and updated with more probable values at every new 

population iteration.  The procedure was stopped when convergence was achieved (PK 
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mean and variance estimates were stabilized after over 1000 iterations were run) and the 

most probable and stable results for the population and individuals were determined.   

All TP-434 concentrations were fitted using weighting procedures of Wj=1/j
2
 

where the variance j
2
 was calculated for each observation using the equation Sj

2
=(a + b x 

Yj)
2
 where a and b are the intercept and slope of each variance model.  The slope is the 

residual variability proportional to each concentration and the intercept is the additional 

component of the residual variability.  These parameters were estimated continuously at 

each population iteration step as noted above using the MLEM approach. 

Using the individual PK parameter estimates from the final model, secondary PK 

parameters were calculated for each subject.  Cmax and Cmin were the maximal and 

minimal predicted concentration values for each subject (Cmin was the trough 

concentration at 24 hours post-dose).  The area-under-the-curve from time zero to infinity 

(AUCinf) was calculated as dose divided by total clearance (CLT), which was the sum of 

renal and non-renal clearances.  Secondary PK parameters were calculated using Microsoft 

Excel
®
 2003 and S-Plus

®
 8.0 for Windows. 

The model’s predictive performance was assessed using the secondary predicted PK 

parameter AUCinf, as the overall predicted exposure would be used for exposure-response 

correlations.  The predicted AUCinf values were visually compared to AUCinf values that 

were determined by noncompartmental methods (linear trapezoidal) using observed 

concentrations (7).  Bias was determined as the percentage difference between the observed 

(noncompartmental) and predicted parameter, relative to the observed value, while 

precision was calculated as the absolute value of the bias (15).  Equations for bias and 

precision are presented below, where AUCinfobs represents the AUCinf determined by 

noncompartmental methods while AUCinfpred is the AUCinf predicted by the model. 
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4.4.4 Simulations 

Monte Carlo simulations (n=1000) were performed using the final model, in order 

to predict PK parameters in a population and associated with various dosing regimens that 

were either included in the MAD protocol or being considered for further investigation.  

The following 10-day dosing regimens were simulated for an average patient weighing 70 

kg: 

 0.5 mg/kg IV administered over 30 minutes QD 

 0.75 mg/kg IV administered over 30 minutes QD 

 1.0 mg/kg IV administered over 30 minutes QD 

 1.0 mg/kg IV administered over 60 minutes QD 

 1.5 mg/kg IV administered over 30 minutes QD 

 1.5 mg/kg IV administered over 60 minutes QD 

 2 mg/kg IV administered over 30 minutes QD 

 1 mg/kg administered over 30 minutes BID 

Using predicted concentrations from the simulated subjects in each of the dosing 

regimens, the PK parameters AUCtau(ss) (AUC over the dosing interval tau at steady-state), 

Cmax(ss) (maximal concentration at steady state) and Cmin(ss) (minimum concentration at 
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steady state) were calculated.  AUCtau(ss) was calculated as dose divided by CLT, while 

Cmax(ss) and Cmin(ss) were the maximal and minimal predicted concentration values for 

each subject over the dosing interval.  The clinical endpoint AUC/MIC associated with 

various dosing regimens was also estimated.  In addition, the percentage of subjects 

achieving a target AUC/MIC value was also determined for each dosing regimen.  These 

target values were calculated from total (bound and unbound) tigecycline concentrations, 

and because TP-434 has a similar percentage of protein binding (40%) (2), no adjustment 

for free fraction was deemed necessary.  For complicated skin and skin-structure infections 

(caused by S. Aureus and Streptococcus sp.), the targeted AUC/MIC value was 17.9 while 

it was 12.96 for complicated intra-abdominal infections (caused by Escherichia coli, 

Klebsiella sp., and Enterobacteriacea) (4, 10).  These endpoints were obtained from studies 

conducted in patients who received tigecycline monotherapy.  The AUC/MIC targets for 

community-acquired pneumonia (S. pneumoniae) and hospital-acquired pneumonia 

(Escherichia coli and MRSA) were 64 and 5.75, respectively (3). 

Predicted PK parameters AUCtau(ss), Cmax(ss), and Cmin(ss) were calculated using 

Microsoft Excel® 2003 and S-Plus® 8.0 for Windows. 

4.5 Results 

A total of 56 subjects were enrolled in the study, with 42 subjects who received 

active treatment.  Fifty-two subjects completed the clinical portion of the study (two 

subjects were withdrawn due to potential influenza infections).  A summary of subject 

demographics is presented in Table 1. 
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Table 1. Subject Demographics   

Characteristic n (%) 

Sex  

 Male 49 (87.5%) 

 Female 7 (12.5)% 

Race  

 Asian 3 (5.4%) 

 Amerindian 1 (1.8%) 

 African-american 5 (8.9%) 

 Caucasian 47 (84%) 

Characteristic Mean ± Standard deviation 

Age 28.1 ± 8.65 

Weight (kg) 80.2 ± 12.5 

Height (cm) 176 ± 7.71 

 

Results associated with 2-, 3-, 4- and 5-compartment structural models that were 

investigated are presented in Table 2.  The model with the lowest AIC value was the 4-

compartment model.       
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Table 2.  Structural Model Determination for TP-434 using Standard Two-Stage Analysis 

Model Description 

Negative Log 

likelihood 

AIC BIC 

R
2
 Residual variability (%) 

Plasma Urine Plasma Urine 

2-compartments, 

linear elimination 

106.25 230.5 239.2 0.924 0.994 33.1 13.9 

3-compartments, 

linear elimination 

82.94 187.9 198.3 0.983 0.996 11.8 11.9 

4-compartments, 

linear elimination 

74.30 174.6 186.9 0.996 0.995 8.9 10.8 

5-compartments, 

linear elimination 

77.65 185.3 200.2 0.996 0.993 8.4 16.1 

AIC: Akaike information criterion,  BIC: Bayesian information criterion, R2: Coefficient of determination 
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The final model selected to describe the plasma PK of TP-434 was a 4-compartment 

model with a linear (first order) elimination process, as depicted in Figure 1.  The model 

was parameterized with a central volume of distribution (Vc), peripheral volumes of 

distribution (Vp1, Vp2 and Vp3), renal clearance (CLr), non-renal clearance (CLnr) and 

distributional clearances (CLd1, CLd2 and CLd3). 

 

Figure 1. Final Pharmacokinetic Model for TP-434 

 

A total of 578 plasma concentrations and 209 urinary concentrations were 

simultaneously fitted by the model.  Residual variability for plasma was 9.42% while it was 

19.2% for urine.  An example of a goodness-of-fit plot is presented in Figure 2.  Plots of 

goodness of fit for weighted residuals (as a function of predicted concentrations or time) 

demonstrated no trends or biases in the quality of fit.  Mean observed and predicted plasma 

concentration-time profiles are presented in Figure 3. 
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Figure 2. Predicted versus Observed TP-434 Concentrations 

 

a) Plasma Concentrations 

 

a) Urinary Concentrations  

 

LEGEND: Dark circles represent concentrations while the dotted line represents the line of identity. 
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Figure 3. Mean Observed versus Predicted Plasma TP-434 Concentrations (Semi-log scale) 

 
Note: Orange dashed line represents the lower limit of quantitation  
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Population PK parameter estimates and their precision are presented in Table 3 and 

a summary of secondary PK parameters by treatment group are presented in Table 4. 

 

Table 3.  Population Pharmacokinetic Parameter Estimates for TP-434 

Parameter 

Mean Inter-subject 

Estimate %RSE Estimate as CV% %RSE 

Vc (L) 10.8 12.1 20.6 41.2 

CLnr (L/h) 11.5 6.74 19.5 29.1 

Vp1 (L) 16.1 16.9 23.8 68.1 

CLd1 (L/h) 44.3 11.1 8.69 181 

Vp2 (L) 132 9.96 20.2 49.1 

CLd2 (L/h) 6.95 20.9 40.8 51.4 

Vp3 (L) 103 13.2 25.1 46.1 

CLd3 (L/h) 26.9 14.2 30.8 49.7 

CLr (L/h) 2.34 6.41 18.4 37.2 

CLd1: distributional clearance between central compartment and first peripheral compartment; CLd2: 

distributional clearance between central compartment and second peripheral compartment; CLd3: 

distributional clearance between central compartment and third peripheral compartment; CLnr: non-renal 

clearance; CLr: renal clearance; %RSE: standard error as a percent of the corresponding maximum likelihood 

estimate; Vc: central volume of distribution; Vp1: first peripheral volume of distribution; Vp2: second 

peripheral volume of distribution; Vp3: third peripheral volume of distribution;  
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Table 4.  Predicted Secondary Pharmacokinetic Parameters for TP-434 

Dose 

(mg/kg) 

Mean  SD (CV%) 

AUCinf (mcg*h/L) Cmax (mcg/L) Cmin (mcg/L) 

0.1 560  122 (21.7%) 212  38.3 (18.1%) 5.16  1.42 (27.6%) 

0.25 1363  203 (14.9%) 503  79.7 (15.9%) 13.4  2.63 (19.7%) 

0.5 2680  660 (24.6%) 1067  207 (19.4%) 25.2  6.84 (27.2%) 

1.0 5546  1085 (19.6%) 2027  450 (22.2%) 53.4  12.3 (23.1%) 

1.5 8896  1563 (17.6%) 3287  656 (20.0%) 84.3  14.1 (16.7%) 

2.0 12376  2010 (16.2%) 4694  787 (16.8%) 110  17.6 (16.0%) 

3.0 23235  4773 (20.5%) 9855  1530 (15.5%) 175  36.5 (20.8%) 

 

The mean half-life of TP-434 in plasma (all cohorts confounded) was 26.2 h, while 

the median value was 23.1 h.  Renal elimination of TP-434 accounted for approximately 

17.1 ± 2.65 % of overall elimination. 

Predictive performance is depicted in Figure 4, which suggests that AUCinf is well 

predicted by the model since all results are closely aligned with the line of identity (dashed 

line).  Additionally, average bias and precision were 0.27% and 2.6% for AUCinf. 
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Figure 4.  Predictive performance of the final model 

 

LEGEND: Dark circles represent AUCinf values while the dotted line represents the line of identity. 

Mean secondary parameters estimated from the simulated profiles are summarized 

in Table 5, while Figure 5 displays the percentage of target attainment for various dosing 

regimens and different values of AUC/MIC.  Target AUC/MIC values were taken from 

published tigecycline results in different patient populations (3, 4, 10).  The arrow along the 

x-axis in each figure indicates the MIC value associated with TP-434 for the organism(s) 

being targeted.  Therefore, this MIC value indicates the TP-434 clinical response associated 

with different TP-434 regimens for each indication. 
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Table 5.  Secondary Simulated Steady-State Pharmacokinetic Parameters for TP-434 

Dosing regimen (mg/kg) 

Mean  SD (CV%) 

AUCtau(ss) 

(mcg*h/L) 

Cmax(ss) (mcg/L) Cmin(ss) (mcg/L) 

0.5 mg/kg QD over 30 minutes 

2575 ± 459 

(17.8%) 

1025 ± 147 

(14.4%) 

42.0 ± 15.5 

(37%) 

0.75 mg/kg QD over 30 minutes 

2611 ± 498 

(19.1%) 

1556 ± 225 

(14.4%) 

64.1 ± 25.3 

(39.5%) 

1 mg/kg QD over 30 minutes 

5163 ± 920 

(17.8%) 

2051 ± 293 

(14.3%) 

84.0 ± 31.0 

(36.9%) 

1 mg/kg QD over 60 minutes 

5167 ± 938 

(18.2%) 

1405 ± 214 

(15.3%) 

84.4 ± 31.7 

(37.6%) 

1.5 mg/kg QD over 30 minutes 

7814 ± 1389 

(17.8%) 

3106 ± 436 

(14.0%) 

127 ± 45.7 

(35.9%) 

1.5 mg/kg QD over 60 minutes 

7725 ± 1393 

(18%) 

2078 ± 293 

(14.1%) 

126 ± 47.5 

(37.8%) 

2 mg/kg QD over 30 minutes 

10386 ± 1967 

(18.9%) 

4120 ± 586 

(14.2%) 

168 ± 65.9 

(39.4%) 

1.0 mg/kg BID over 30 minutes 

5182 ± 989 

(19.1%) 

2218 ± 318 

(14.3%) 

217 ± 69.6 

(32.0%) 
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Figure 5. Percentage of target attainment for different dosing regimens over a range of MIC 

values 

 

 

 

LEGEND: Arrows indicate the MIC value associated with TP-434 for the organism(s) being targeted. 

Simulated dosing regimens are represented as follows: dark circles with a solid line: 0.5 mg/kg QD; dark, 

inverted triangle with large dashes: 0.75 mg/kg QD; square with medium dashes: 1.0 mg/kg QD; diamond 
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with short dashes: 1.5 mg/kg QD; pale triangle with dotted line: 1.0 mg/kg BID; pale circle with dotted and 

dashed line: 2.0 mg/kg BID;  

4.6 Discussion 

This is the first published account describing the pharmacokinetics of TP-434 in 

humans.  Before the study had even dosed, allometric scaling was performed with pre-

clinical data in order to estimate possible PK parameters in humans. The analysis suggested 

that in humans, one could expect a CL of approximately 46 L/h, a Vc of around 20 L, a Vss 

of around 13 L/kg and a terminal elimination half-life close to 13 hours.  Preliminary dose 

estimations suggested that a minimal daily dose of 1.5 mg/kg would be necessary for 

clinical efficacy against complicated skin and skin structure infections and possibly higher 

doses would be necessary for monotherapy against S. Aureus.  

After the first cohort (receiving 0.1 mg/kg TP-434) had completed the clinical phase 

of the study, the plasma and urinary data that was obtained was used to develop an initial 

PK model.  A 3-compartment model was selected at this stage.  Following the completion 

of the next dose group (0.25 mg/kg TP-434) and the availability of their data, the model 

discrimination process was repeated to include data from both cohorts.  The best model was 

also a 3-compartment model, and revised parameter estimates were obtained.  This process 

was repeated following the completion of each treatment group, such that more data was 

being analyzed each time.  By the time that data for the fourth cohort (1 mg/kg) was 

included in the analysis, the best model became a 4-compartment model, and this model 

was retained for all subsequent analyses. 

The model development process that we used exemplifies the “learn and confirm” 

paradigm proposed by Sheiner nearly a decade and a half ago (14).  Our initial attempt to 

learn about the PK of TP-434 in humans was through allometric scaling using preclinical 

data.  This learning stage was further pursued when data from the first SAD cohort was 
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available and a first PK model was created.  The PK parameters estimated in humans were 

different from those predicted by allometric scaling, therefore this analysis contributed 

significantly to our understanding of TP-434 PK.  The PK results gathered at this stage 

were then confirmed with the availability and analysis of data from cohort 2, therefore this 

represented the first step in the “confirming” process.  Subsequent analyses reinforced the 

“learn & confirm” cycle, improving the PK model and parameter estimates with each 

iteration. 

The law of parsimony requires that the simplest model that describes the PK of a 

compound be used preferentially over a more complicated model, if the standard model 

discrimination criteria are similar between both models.  In our case, the best model was a 

4-compartment model according to the model discrimination criteria applied to the two-

stage analysis results.  The 4-compartment model was associated with lower AIC and 

residual variability values compared to the 2- and 3-compartment models, while the 5-

compartment model did not improve these values any further. 

The number of parameters that can be calculated for a given compartmental model 

depends on many factors, notably the number of visible exponentials in plasma disposition, 

the number of excretory pathways measured, the number of tissue spaces analyzed as well 

as the number of visible nonlinear features in the data (9).  In the current analysis, 3 

exponentials were visible and concentrations were measured in both plasma and urine. 

With this in mind, the rich plasma and urinary sampling scheme in this study 

(approximately 16 samples per subject) provided sufficient information to robustly estimate 

the nine PK parameters associated with the 4-compartment model (CLnr, CLr, Vc, CLd1, 

Vp1, CLd2, Vp2, etc.).         

The residual variability associated with the final PK model (9.42% for plasma and 

19.2 % for urine) represents the variability that is not explained by the model, including 

intra-individual variability, the experimental “noise” of the analytical method and errors 
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arising from the pharmacokinetic modeling itself (model misspecification).  The low 

residual variability associated with our model confirms that the 4-compartment model was 

able to properly capture the PK of TP-434.   

The current analysis demonstrates that TP-434 had a population mean CLT of 13.9 

L/h and a Vss of approximately 262 L (around 3.3 L/kg).  The total clearance value is 

slightly lower than what was previously reported for tigecycline.  The PK of tigecycline in 

healthy volunteers was also described by a multi-compartment model (19).  For this drug, a 

3-compartment model with zero-order input and first-order elimination was chosen to 

describe its PK.  A population mean CL of 16.3 L/h was estimated, with a Vss of 749 L or 

approximately 10 L/kg.   

Total clearance of TP-434 did not change with increasing doses, thus results of the 

current analysis indicate that TP-434 exhibits dose-proportional pharmacokinetics over the 

dose range studied.  In addition, renal clearance estimated by the model (17.1% of total 

clearance) confirms that the elimination of TP-434 is mainly through non-renal pathways.  

This is similar to what was observed in chimpanzees, where urinary excretion was roughly 

20% of total elimination (12). 

Simulations revealed that for most target organisms, all regimens were associated 

with a probability of meeting the target AUC/MIC that exceeded 80%.  However, for 

treating complicated intra-abdominal infections caused by E. Coli and Klebsiella sp., doses 

inferior to 1.5 mg/kg TP-434 per day were not associated with much success.  Indeed, for 

these dosing regimens, less than 10% of subjects achieved the desired AUC/MIC.  Thus, 

prior to initiation of the MAD study, the protocol was modified in order to include a 

treatment regimen of 1.5 mg/kg administered once daily.  Initially, the second dosing group 

of the MAD study was scheduled to receive 1.0 mg/kg QD, but the protocol was amended 

such that the 1.0 mg/kg QD was replaced by the 1.5 mg/kg dose group.  In addition, single 

doses of 1.5 mg/kg appeared to be well tolerated by the subjects in the SAD study, and 
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simulations did not suggest significant accumulation following repeated administration.  

Finally, a twice-daily (BID) dosing regimen was added to the MAD study (1.0 mg/kg BID), 

in light of the simulation results and the tolerability of a single dose of 2.0 mg/kg in the 

SAD study. 

4.7 Conclusion 

The final model was not only used to describe the PK of TP 434 following single 

dose administration, but was also used to predict plasma TP-434 concentrations associated 

with various multiple dose regimens.  These predictions were used to further refine the 

regimens tested in a multiple dose setting, prior to study initiation, and demonstrated the 

utility of modeling and simulations in early stages of drug development. 
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5.1 Preface 

The research that was presented in the first three manuscripts demonstrated how 

modeling and simulations can be used to answer key questions that are frequently 

encountered during the drug development process.  In the first article, modeling and 

simulations played a critical part in an innovative approach to bioequivalence assessment, 

while in the second article, population modeling was used to better understand the PK and 

PD of a biologic drug and enhance the product labeling.  The third article illustrated how 

PK/PD concepts used in conjunction with a population PK model could be useful as early 

as in Phase 1 of clinical development, in a single ascending dose study, and that such a 

model could lead to more rational dose and dosing regimen selections for subsequent 

studies.  The current (fourth) article demonstrates how pharmacokinetic models can be 

continually refined as more information becomes available, such that it incorporates all 

current knowledge to allow for more informed decision-making. 

As described in the third manuscript, the antibiotic TP-434 is being developed to 

treat various types of infections caused by highly resistant organisms.  A first-in-man, 

single ascending dose study was conducted in healthy volunteers and the data collected 

from this study was incorporated into a population PK model that was used to select dosing 

regimens for investigation of repeated dosing.  The current study describes the first repeat-

dose study of TP-434 in man, which benefitted from previous population PK analyses 

(described in Article #3) with the addition of dosing regimens that were not originally 

envisaged.  More specifically, a twice daily dosing regimen was evaluated instead of a once 

daily dosing regimen.  Population PK analyses were also undertaken with data obtained 

from this multiple ascending dose study of TP-434 and they served to broaden our 

understanding of the PK of TP-434, as well as confirm the previously defined model.  

Thus, the research presented in this manuscript was conducted in the spirit of “learn and 
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confirm” advocated by Sheiner (136) and demonstrates how it can be applied to data 

obtained within the same phase of drug development.  It shows how the continual use of 

modeling and simulation throughout the drug development process can increase confidence 

levels when important decisions must be made, thereby decreasing some of the risk 

inherent to bringing a drug to market.  Dosing regimens that were administered in this 

multiple ascending dose study, and that had been tested purely based on the results of 

Article #3, were ultimately selected for administration to patients in Phase 2.  Thus, this 

approach ensured that dosing regimens for the target population were assessed following 

repeated administration in healthy patients, prior to the initiation of Phase 2, which would 

not have occurred without the use of modeling and simulations.  

5.2 Abstract 

 

Background: A multiple ascending dose study was completed for TP-434.  Placebo or TP-

434 (either 0.5 or 1.5 mg/kg QD over 30 minutes, or 1.5 mg/kg QD or 1 mg/kg BID over 1 

hour) was administered for 10 days.  Plasma and urine samples were collected throughout.  

This analysis aimed to describe the pharmacokinetics (PK) of TP-434, confirm previously 

determined PK & confirm dosing regimens for further investigation. 

 

Methods:  Population PK analyses were done with ADAPT 5
®
 using plasma and urinary 

data.  Two-, three- and four-compartment models were tested and standard model 

discrimination criteria were used to select the best model.  Results were compared to those 

obtained from single dose (SD) data. 

 

Results: TP-434 was well described by a 4-compartment model with linear elimination.  

Mean parameters were Vc = 12.2 L, CLnr = 11.5 L/h, Vp1 = 16.6 L, CLd1 = 29.9 L/h, Vp2 

= 188 L, CLd2 = 4.90 L/h, Vp3 = 103 L, CLd3 = 21.2 L/h & CLr = 2.05 L/h.  Inter-
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individual variability ranged from 2.3 to 47%.  Steady-state volume of distribution was 320 

L and mean half-life was  48 hours.  Results were similar to those of SD and confirm 

predictions made from SD data.  Exposure associated with daily doses  1.5 mg/kg was 

expected to be efficacious against organisms with minimum inhibitory concentrations 

(MIC) ≤ 2 µg/ml.        

 

Conclusion: Multiple dose PK of TP-434 was described by a 4-compartment model, with 

results similar to those following SD.  Observed and predicted exposure confirmed the 

doses predicted to be efficacious in Phase 2. 



   

  156 

 

 

 

5.3 Introduction 

A novel antimicrobial agent belonging to the fluorocycline class, TP-434, is being 

developed by Tetraphase Pharmaceuticals, Inc (4, 7).  Although this antibiotic is a member 

of the tetracycline family, in vitro tests have demonstrated activity against organisms that 

are generally resistant to tetracyclines, including methicillin-resistant Staphylococcus 

aureus, vancomycin-resistant Enterococcus faecium and penicillin-resistant Streptococcus 

pneumoniae (12, 13).  Thus, this molecule could be an excellent addition to a therapeutic 

arsenal that is becoming more and more limited by bacterial resistance. 

A first-in-man, single ascending dose (SAD) study was undertaken with TP-434 to 

evaluate its safety and pharmacokinetics (PK) in humans.  The drug was administered at 

doses ranging from 0.1 mg/kg to 3.0 mg/kg.  Based on the results of the SAD study, a 4-

compartment model was developed to describe the PK of the drug.  Simulations performed 

with the final model were used to determine which dosing regimens should be tested in a 

multiple ascending dose (MAD) study, prior to study initiation (C. Seng Yue, J. A. 

Sutcliffe, P. Colucci, C. R. Sprenger, and M. P. Ducharme, submitted for publication).  A 

key principle underlying this analysis was the relationship between clinical efficacy and the 

parameter AUC/MIC (the area under the concentration-time curve over 24 hours at steady 

state divided by the minimal inhibitory concentration) (1-3, 8).  Thus, according to the 

simulation results, a minimum daily dose of a least 1.5 mg/kg would be necessary in order 

to achieve target AUC/MIC values for more resistant pathogens, such as Escherichia coli 

and Klebsiella sp. 

The MAD study was designed to evaluate the safety, tolerability and PK of TP-434 

following multiple dose administration.  In this study, multiple ascending doses of TP 434 

were administered to 4 separate cohorts.  Subjects received TP-434 for a ten day period, at 

a dose of either 0.5 mg/kg infused over 30 minutes QD, 1.5 mg/kg infused over 30 minutes 



   

  157 

 

 

 

QD, 1.5 mg/kg infused over 60 minutes QD or 1.0 mg/kg infused over 60 minutes BID.  In 

each cohort, 6 subjects received active treatment while 2 subjects received placebo. 

The objectives of this analysis were to describe the PK of TP 434 following 

repeated administration and to validate dosing regimens to be administered in Phase 2 

studies.  In addition, this analysis sought to confirm the PK of TP-434 previously predicted 

using SAD data. 

5.4 Materials and Methods 

5.4.1 Study Design 

The study was a randomized, double-blind, parallel-group, placebo-controlled 

study.  Healthy men and women, between 18 to 50 years of age inclusively, were included 

in the study.  Good health was assessed by the Principal Investigator based on lack of 

clinically significant abnormalities in health assessments such as vital signs, 

electrocardiograms (ECG), laboratory tests, body mass index.  Women included in the 

study must have been surgically sterile (by tubal ligation, bilateral oophorectomy, or 

hysterectomy) for at least 6 months prior to study initiation. 

Four (4) ten-day dosing regimens were studied: 0.5 mg/kg IV infused over 30 

minutes QD, 1.5 mg/kg IV infused over 30 minutes QD, 1.5 mg/kg IV infused over 60 

minutes QD, and 1.0 mg/kg IV infused over 60 minutes BID.  In each cohort, 6 subjects 

received active treatment while 2 subjects received placebo.  Dose escalation only 

proceeded in the absence of dose-limiting adverse events or clinically relevant safety 

laboratory parameters.   

Subject safety (laboratory results, electrocardiograms, vital signs, adverse events) 

was monitored throughout the study.  Blood samples for TP-434 assay were collected on 

Days 1 and 10 prior to dosing and at the following times post-dose: 0.25, 0.5, 0.583, 0.75, 
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1, 2, 4, 6, 8, and 12 hours.  In addition, pre-dose samples were collected on Days 2 to 9, and 

on Days 11-14, samples were collected 24, 36, 48, 72, and 96 hours after the start of the 

infusion on Day 10.  Urine samples were obtained on Days 1 and 10 before dosing and 

between 0 to 8 hours, 8 to 24 hours, 24 to 48 hours, 48 to 72 hours, and 72 to 96 hours after 

the start of the infusion of each of these days. 

Protocol approval was obtained from the local institutional review board prior to the 

commencement of the study.  In addition, written informed consent was obtained from 

study participants before conducting any study-related procedures. 

5.4.2 Analytical Methods 

Bioanalytical sample analysis for TP 434 was performed by Tandem Labs (Salt 

Lake City, UT, US).  TP-434 in plasma was assayed using a validated liquid 

chromatography/mass spectrometry (LC/MS/MS) method with a quantitation range of 5.00 

ng/mL to 1000 ng/mL.   Assay precision (%CV) varied from 2.8% to 6.8% while accuracy 

(% bias) ranged from -0.1% to 3.0%.  Similarly, TP-434 in urine was assayed using a 

validated LC/MS/MS method with a quantitation range of 5.00 ng/mL to 1000 ng/mL.   

Assay precision (%CV) varied from 4.6% to 8.5% while accuracy (% bias) ranged from -

0.8% to 3.3%. 

5.4.3 Pharmacokinetic Analyses 

Population PK analyses were performed using clinical and analytical data from all 

subjects receiving active treatment.  Actual dose, drug infusion times, PK sampling times 

(for plasma and urine) as well as urinary volume were used.  Both plasma and urinary TP-

434 concentrations were included in the analysis.  

Two, three and four-compartment models with linear elimination were first tested 

using the standard two-stage (STS) option in ADAPT 5
®
 (5).  The best model was selected 
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based on standard discrimination techniques such as the minimization of the Akaike 

information criterion test, the residual variability, the maximization of the coefficient of 

determination, and based on graphical representation of the goodness of fit (e.g. observed 

versus predicted concentrations, weighted residuals versus predicted values). 

Following the determination of the final structural pharmacokinetic model using 

STS, a population pharmacokinetic analysis was performed using the maximum likelihood 

expectation maximization (MLEM) method within ADAPT 5
®
. This is a fully automated 

mixed effect modeling approach using both maximum likelihood and sampling-based 

methods. Briefly, the first probable population PK parameters and variance estimates (e.g., 

residual variability) were found by the STS approach using maximum likelihood. Then a 

population analysis was undertaken where population, individual and residual variability 

PK parameters were calculated and updated with more probable values at every new 

population iteration.  The procedure was stopped when convergence was achieved (PK 

mean and variance estimates were stabilized after over 1000 iterations were run) and the 

most probable and stable results for the population and individuals were determined.   

All TP-434 concentrations were fitted using weighting procedures of Wj=1/j
2
 

where the variance j
2
 was calculated for each observation using the equation Sj

2
=(a + b x 

Yj)
2
 where a and b are the intercept and slope of each variance model.  The slope is the 

residual variability proportional to each concentration and the intercept is the additional 

component of the residual variability.  These parameters were estimated continuously at 

each population iteration step as noted above using the MLEM approach. 

Using the individual PK parameter estimates from the final model, secondary PK 

parameters were calculated.  These included Vss, terminal elimination half-life and total 

clearance.  Peak and trough concentrations were also determined using predicted 

concentrations on Day 1 and Day 10.  On Day 1, Cmax and Cmin were the maximal and 

minimal predicted concentration values for each subject over the dosing interval.  For 
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subjects dosed twice daily, these parameters were calculated for the morning dose.  On Day 

10, the maximal and minimal predicted concentrations over the dosing interval were 

labeled Cmax(ss) and Cmin(ss). In addition, the area-under-the-curve over the dosing interval 

at steady-state (AUCtau(ss)) was calculated as dose divided by total clearance (CLT) while 

AUC0-24 for Day 1 was calculated with the linear trapezoidal method using all predicted 

concentrations during the dosing interval (6). 

Predictive performance was assessed using the secondary predicted PK parameter 

AUCtau(ss), as the overall predicted exposure was critical for exposure-response correlations.  

The predicted AUCtau(ss) values were visually compared to AUCtau(ss) values that were 

determined by noncompartmental methods using observed concentrations (6).  Bias was 

determined as the percentage difference between the observed (noncompartmental) and 

predicted parameter, relative to the observed value, while precision was calculated the 

absolute value of the bias (11).  Equations for bias and precision are presented below, 

where AUCinfobs represents the AUCinf determined by noncompartmental methods while 

AUCinfpred is the AUCinf predicted by the model. 

100
inf

infinf
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
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Dataset preparation and secondary PK parameter calculations were performed using 

Microsoft Excel® 2003 and S-Plus® 8.0 for Windows. 
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5.5 Results 

A total of 32 subjects were enrolled in the study, with 24 subjects who received 

active treatment.  All 32 subjects completed the clinical portion of the study.  A summary 

of subject demographics is presented in Table 1. 

Table 1. Subject Demographics   

Characteristic n (%) 

Sex  

 Male 31 (96.9%) 

 Female 1 (3.1)% 

Race  

 Asian 1 (3.13%) 

 Amerindian 1 (3.13%) 

 African-american 1 (3.13%) 

 Caucasian 29 (90.6%) 

  

Characteristic Mean ± Standard deviation 

Age 30.8 ± 9.66 

Weight (kg) 79.4 ± 13.1 

Height (cm) 175 ± 8.05 

 

Results associated with 2-, 3-, 4- and 5-compartment structural models that were 

investigated are presented in Table 2.  The model with the lowest AIC value was the 4-

compartment model. 
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Table 2.  Structural Model Determination for TP-434 using Standard Two-Stage Analysis 

Model Description 

Negative Log 

likelihood 

AIC BIC 

R
2
 Residual variability (%) 

Plasma Urine Plasma Urine 

2-compartments, 

linear elimination 

275.97 569.9 586.2 0.891 0.951 43.4 17.0 

3-compartments, 

linear elimination 

244.36 510.7 530.6 0.975 0.948 13.3 20.3 

4-compartments, 

linear elimination 

234.50 495.0 518.5 0.984 0.949 12.3 21.6 

5-compartments, 

linear elimination 

234.55 499.1 526.2 0.984 0.948 12.3 21.1 

AIC: Akaike information criterion,  BIC: Bayesian information criterion, R2: Coefficient of determination 
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The final model selected to describe the plasma PK of TP-434 was a 4-compartment 

model with a linear (first order) elimination process, as depicted in Figure 1.  The model 

was parameterized with a central volume of distribution (Vc), peripheral volumes of 

distribution (Vp1, Vp2 and Vp3), renal clearance (CLr), non-renal clearance (CLnr) and 

distributional clearances (CLd1, CLd2 and CLd3). 

A total of 812 plasma concentrations and 237 urinary concentrations were 

simultaneously fitted by the model.  Residual variability for plasma was 14.0% while it was 

21.5% for urine. An example of a goodness-of-fit plot is presented in Figure 2.  Plots of 

goodness of fit for weighted residuals (as a function of predicted concentrations or time) 

demonstrated no trends or biases in the quality of fit.  Mean observed and predicted plasma 

concentration-time profiles are presented in Figure 3. 

 

Figure 1. Final Pharmacokinetic Model for TP-434 
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Figure 2. Predicted versus Observed TP-434 Concentrations 

a) Plasma Concentrations 

 

b) Urinary Concentrations 

 

Legend: Dark circles represent concentrations while the dotted line represents the line of identity. 
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Figure 3. Mean Observed versus Predicted Plasma TP-434 Concentrations (Semi-log scale) 

Day 1 Day 10 

  

LEGEND: Dark circle = observed concentrations for Cohort 1 (0.5 mg/kg), white circle = observed concentrations for Cohort 2 (1.5 mg/kg over 30 minutes), Dark 

triangle = observed concentrations for Cohort 3 (1.5 mg/kg over 1 hour), White triangle = observed concentrations for Cohort 4 (1.0 mg/kg over 1 hour BID), Solid line 

= predicted concentrations for Cohort 1 (0.5 mg/kg), Dotted line = predicted concentrations for Cohort 2 (1.5 mg/kg over 30 minutes), Dashed line = predicted 

concentrations for Cohort 3 (1.5 mg/kg over 1 hour), Dashed and dotted line = predicted concentrations for Cohort 4 (1.5 mg/kg over 1 hour BID), Orange dashed line = 

lower limit of quantitation 
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Population PK parameter estimates and their precision are presented in Table 3 and 

a summary of secondary PK parameters by treatment group are presented in Table 4. 

Volume of distribution at steady-state was approximately 320 L.  The mean half-life 

of TP-434 in plasma (all cohorts confounded) was 47.7 h, while the median value was 35.3 

h.  Renal elimination of TP-434 accounted for approximately 15.5 ± 2.37 % of overall 

elimination. 

Predictive performance is depicted in Figure 4, which suggests that AUCtau(ss) is 

well predicted by the model since all results are well aligned with the line of identity 

(dashed line).  Additionally, average bias and precision were -5.8% and 7.1% for AUCtau(ss). 

Table 3.  Population Pharmacokinetic Parameter Estimates for TP-434 Following 

Repeated Administration 

Parameter 
Mean Inter-subject 

Estimate %RSE Estimate as CV% %RSE 

Vc (L) 12.2 19.4 10.9 186 

CLnr (L/h) 11.5 12.4 23.0 52.2 

Vp1 (L) 16.6 36.8 2.28 902 

CLd1 (L/h) 29.9 69.0 21.2 300 

Vp2 (L) 188 10.2 15.4 81.4 

CLd2 (L/h) 4.90 49.2 46.7 61.1 

Vp3 (L) 103 17.1 9.56 356 

CLd3 (L/h) 21.2 39.0 29.4 81.8 

CLr (L/h) 2.05 10.9 15.7 62.6 

CLd1: distributional clearance between central compartment and first peripheral compartment; CLd2: 

distributional clearance between central compartment and second peripheral compartment; CLd3: 

distributional clearance between central compartment and third peripheral compartment; CLnr: non-renal 

clearance; CLr: renal clearance; %RSE: standard error as a percent of the corresponding maximum likelihood 

estimate Vc: central volume of distribution; Vp1: first peripheral volume of distribution; Vp2: second 

peripheral volume of distribution; Vp3: third peripheral volume of distribution; 
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Table 4.  Secondary Pharmacokinetic Parameters for TP-434 

Dosing 

Regimen 

(mg/kg) 

Mean  SD (CV%) 

Day 1 Day 10 

AUC0-tau 

(mcg*h/L) 

Cmax 

(mcg/L) 

Cmin 

(mcg/L) 

AUC0-tau(ss) 

(mcg*h/L) 

Cmax(ss) 

(mcg/L) 

Cmin(ss) 

(mcg/L) 

0.5 mg/kg QD 

over 30 minutes 

1991 ± 405 

(20.3%) 

1020 ± 132 

(13.0%) 

26.1 ± 9.46 

(36.2%) 

2992 ± 838 

(28.0%) 

1075 ± 149 

(13.9%) 

55.9 ± 23.5 

(42.1%) 

1.5 mg/kg QD 

over 30 minutes 

5903 ± 553 

(9.4%) 

3582 ± 316 

(8.8%) 

57.8 ± 10.5 

(18.2%) 

7803 ± 928 

(11.9%) 

3596 ± 295 

(8.2%)
a
 

121 ± 32.2 

(26.7%)
a
 

1.5 mg/kg QD 

over 60 minutes 

6449 ± 898 

(13.9%) 

2486 ± 354 

(14.2%) 

68.0 ± 11.2 

(16.5%) 

8671 ± 1391 

(16.0%) 

2605 ± 376 

(14.4%) 

129 ± 28.6 

(22.1%) 

1.0 mg/kg BID 

over 60 minutes 

3937 ± 462 

(11.7%) 

1815 ± 180 

(9.9%) 

104 ± 19.1 

(18.3%) 

6667 ± 668 

(10.0%) 

2142 ± 200 

(9.3%)
b
 

280 ± 48.2 

(17.2%)
b
 

a
n=3; 

b
n=4 



  168 

 

Figure 4.  Predictive performance of the final model 

  

Legend: Dark circles represent AUCtau(ss) values while the dotted line represents the line of identity. 

5.6 Discussion 

The analysis presented here embodies Sheiner’s “learn and confirm” cycle (10).  

Previous modeling work shed light upon the PK of TP-434 following single dose 

administration, but before this study had been completed, no information was available 

about disposition of multiple-dose TP-434.  Therefore, this study allowed us to gather 

additional information and learn more about TP-434.  At the same time, the PK analysis 

confirmed the selection of the 4-compartment model that was applied to single-dose data.  

Indeed, the pharmacokinetics of TP-434 following repeated administration was best 

described by a 4-compartment model with linear elimination, which was the same model 

used to describe its disposition after single dose administration.  Consequently, this analysis 

served both “learning” and “confirming” roles. 

Although certain residual figures suggested the presence of outlier concentration 

data, all concentration data was retained for the final analysis.  When outlier concentrations 
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were removed from the analysis (C. Seng Yue, J. A. Sutcliffe, P. Colucci, C. R. Sprenger, 

and M. P. Ducharme, unpublished data), mean population values did not change 

significantly and there was only a minimal improvement in inter-subject variability, 

therefore they were kept in the analysis.  

The residual variability associated with the final PK model (14.0% for plasma and 

21.5 % for urine) represents the variability that is not explained by the model, including 

intra-individual variability, the experimental “noise” of the analytical method and errors 

arising from the pharmacokinetic modeling itself (model misspecification).  The low 

residual variability associated with our model was similar to the residual variability in the 

SAD study, and further confirms that the 4-compartment model was able to properly 

capture the PK of TP-434.   

The current analysis demonstrated that TP-434 had a population mean CLT of 13.5 

L/h and a Vss of approximately 320 L (around 4.2 L/kg).  These values are similar to what 

was obtained in the SAD study (13.9 L/h and 262 L).  Renal clearance values were also 

similar in the SAD and MAD population PK analyses (2.34 L/h and 2.05 L/h, respectively).  

In addition, the total clearance value is similar to what was previously reported for 

tigecycline.  The PK of tigecycline was also described by a multi-compartment model (14).  

For this drug, a 3-compartment model with zero-order input and first-order elimination was 

chosen to describe its PK.  A population mean CLT of 16.3 L/h was estimated, with a Vss 

of 749 L or approximately 10 L/kg. 

The mean terminal elimination half-life value estimated from the MAD data was 

approximately 48 hours (median 35.3 hours) and individual values ranged from 27.6 to 

108.9 hours.  No relationship was observed between individual half-life values and 

administered doses, further confirming the linear PK of TP-434.  The mean half-life value 

estimated in the MAD study was longer than the one estimated using the SAD data (mean 

of 26.2 hours, median of 23.1 hours).  This could be attributed to greater inter-individual 
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variability in the volume of distribution estimates (Vc, Vp1, Vp2 and Vp3) in the SAD 

study.  It is also possible that the longer sampling schedule and the greater number of 

samples per subject associated with the MAD study allowed a better characterization of the 

terminal elimination half-life, since the collection period spanned over 300 hours (at least 6 

times the half-life).  Another possibility is that with repeated dosing, the rate of TP-434 

penetration into certain compartments is increased, thereby increasing its half-life.  Indeed, 

the ratio of the rate constants K12 and K21 (describing transfer between the central and 

second peripheral compartment) increased by approximately 26% following multiple 

dosing, in comparison with single dose administration.  This suggests that the net transfer 

from the central compartment into the second peripheral compartment increases with 

repeated administration.  Despite the differences between the terminal elimination half-life 

estimated separately with SAD and MAD data, both population PK analyses indicated that 

TP-434 has a long half-life. 

Results of the current analysis indicated that TP-434 exhibits dose-proportional 

pharmacokinetics over the dose range studied, similar to what was found with the SAD 

analysis.  Total clearance of TP-434 did not change with increasing doses or with the 

administration of multiple doses.  In addition, renal clearance estimated by the model 

(15.5% of total clearance) confirms that the elimination of TP-434 is mainly through non-

renal pathways.  This is similar to what was observed in the SAD study, as well as in 

chimpanzees, where urinary excretion was roughly 20% of total elimination (9). 

Finally, secondary PK parameters AUCtau(ss), Cmax(ss) and Cmin(ss) from the MAD 

study were similar to the values that were predicted using the model based on the SAD 

study.  This provides further confirmation that the 4-compartment model used to describe 

the PK of TP-434 after both single and multiple dosing is adequate.  Thus, simulation 

results that were previously obtained, suggesting that a minimal daily dose of 1.5 mg/kg of 

TP-434 would be efficacious against multidrug-resistant gram-negative aerobic and 
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facultative bacilli and gram-positive pathogens, remained accurate (C. Seng Yue, J. A. 

Sutcliffe, P. Colucci, C. R. Sprenger, and M. P. Ducharme, submitted for publication).  

Consequently, dosing regimens selected for further investigation in Phase 2 studies 

included 1.5 mg/kg administered once daily and 1.0 mg/kg given twice daily. 

5.7 Conclusion 

The same model describes the PK of TP-434 regardless of the number of doses that 

are administered, and this model can predict the PK of TP-434 under varying dosing 

conditions.  Results from this multiple ascending dose study confirmed the dosing regimens 

that had been previously selected for administration to patients in Phase 2 studies. 
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Chapter 6 – General Discussion 

The four research projects presented within the context of this thesis all demonstrate 

how advanced pharmacokinetic techniques, such as modeling and simulations and the 

development of innovative new models, can be used to enhance decision-making within the 

drug development process.  These articles highlight the versatility and flexibility of such 

techniques, since each article presents a different, critical question that is efficiently 

answered by modeling and simulations.  Thus, the findings from each article fully support 

the hypothesis that this tool can be a significant asset in drug development.   

As previously described, the drug development process is in drastic need of an 

overhaul, as evidenced by soaring costs which do not necessarily translate into an increased 

number of drugs submitted to regulatory agencies, let alone the number of drugs that 

eventually reach the market.  Furthermore, those who wish to bring a drug to market 

undertake important risks, because the success rate is so low.  The repercussions associated 

with a suboptimal drug development process can be felt on many levels.  On a more direct 

level, the failure to successfully bring a product to market can mean that significant money 

is wasted, especially if attrition occurs during later phases of the process and expensive 

clinical trials have already been completed.  Another important resource that is spent on the 

failed endeavour includes manpower, or the time and efforts of a diverse array of people 

who are involved in drug development.  The energy that was invested in the failed product 

could conceivably have been invested elsewhere with a potentially greater return, such as in 

the development of another product that might have been successfully marketed.   

The difficulties encountered in bringing a drug to market make new therapies even 

less accessible for the patients who use them in the end.  This manifests itself in two ways.  

Firstly, so much time and money have been invested in bringing a drug to market that once 

regulatory approval has been received and market access is attained, new drugs are often 
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extremely costly, and prohibitively so for some patients.  Secondly, due to the multiple 

challenges faced by drug developers, there are simply less new drugs being marketed, as 

demonstrated by the declining submission rate over the years (134).  

Many aspects of the drug development process could benefit from some form of 

improvement.  For example, better tools could be developed to predict toxicity, which 

currently relies on animal models that are not always highly predictive of toxicity in 

humans.  The manufacturing aspect of drug development could also be enhanced by 

adopting state-of-the-art technology into its processes, and by creating software that could 

predict the effect of formulation or manufacturing process changes on drug performance in 

humans (134).  While these aspects of drug development must not be neglected, the focus 

of the research presented within this thesis has been on the utility of modeling and 

simulations at later stages of the drug development process.  The four articles have shown 

that advanced pharmacokinetic techniques, such as modeling and simulations, can be used 

to answer key questions frequently encountered during Phase 1 and Phase 3 of drug 

development. 

The first research article presents an innovative approach to proving whether or not 

two different intravenous formulations of iron are equivalent.  This question is normally 

answered by analyzing study data using a noncompartmental approach, but our research 

proposes a flexible and innovative model developed using a compartmental population 

approach that does not necessitate the enrollment of a large group of subjects.  Furthermore, 

this method makes no assumptions about linearity, nor does it require the drug under study 

to meet any assumptions regarding elimination.   

Despite the advantages that the compartmental method has to offer, it is rarely used 

in the context of bioequivalence assessments.  In the area of BE, in silico modeling is most 

often associated with biowaivers of drugs belonging to certain BCS classes (157-163), 

however some researchers have studied its applications in proving BE from in vivo studies.  
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In 2005, Panhard and Mentré compared traditional noncompartmental bioequivalence 

assessments to a population compartment approach using data from simulated theophylline 

studies with varying designs (164).  They evaluated two global tests and two tests based on 

empirical Bayes’ estimates (EBEs).  Compared to standard tests based on 

noncompartmental methods, the global tests were associated with inflated Type I error 

while the tests based on EBEs produced results that were similar to standard tests.  Dubois 

and colleagues performed a similar comparison using simulated theophylline data, however 

they used the stochastic approximation expectation maximisation (SAEM) algorithm rather 

than the FOCE algorithm, and they also used a different statistical approach (linear mixed 

effects model to determine treatment effect rather than paired t-tests) (165).  Their findings 

showed that sample means estimated by the noncompartmental approach were generally 

more biased than with the compartmental approach, but for both methods, root mean square 

error increased as the number of samples per subject decreased.  With sparse sampling, type 

I error was greater with the compartmental approach, because of shrinkage which caused 

EBEs to tend towards the mean, making it easier to declare bioequivalence even when it is 

not the case.  However, when small sample sizes or elevated residual error were present, 

both approaches were flawed.  Another study performed by the same group also analyzed 

simulated theophylline data using SAEM with Wald tests to evaluate bioequivalence (166).  

They showed that in the case of rich sampling with the compartmental approach, type I 

errors were close to the nominal value of 5%.  They also applied their proposed approach to 

the comparison of two formulations of somatropin, and showed that bioequivalence Wald 

tests performed using ln-transformed PK parameters obtained from both methods yielded 

similar results.  Their overall conclusion was similar to the earlier study, in that 

compartmental analysis could be an alternative to traditional BE approaches except when 

sample size was small or when the drug was highly variable.     

While some researchers performed their analyses with simulated data, others have 

used compartmental analyses to analyze real data from bioequivalence trials.  Due to the 
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small sample size (difficult patient recruitment because of the low disease prevalence) and 

limited blood sampling, Keizer and collaborators opted to use compartmental analyses to 

compare two drug formulations that differed in manufacturing processes (167).  Their 

analyses showed that this approach was superior to the standard one.  Kaniwa et al. 

performed bioequivalence assessments for various drugs (phenytoin, flufenamic acid, 

indomethacin, nalidixic acid, metronidazole and griseofulvin) using both standard and 

compartment approaches (with NONMEM) and demonstrated that similar ratios and 

confidence intervals were obtained with both methods (168).  Combrink and collaborators 

determined relative bioequivalence using noncompartmental and compartmental methods 

for two formulations of ibuprofen that were administered in a single dose, open-label, 

crossover study in healthy volunteers (169).  They found that relative bioavailability 

estimates obtained with the compartmental analysis were not biased by outlier data, 

contrary to the noncompartmental approach.  In addition, confidence intervals associated 

with the compartmental approach, which were determined using two different methods (one 

which used the standard error of the estimate taken directly from NONMEM and the other 

which relied on a log-likelihood procedure), were similar in width to the one obtained with 

the standard method.  However, these results were obtained with data that was not very 

variable, therefore the authors could not extrapolate these conclusions to more variable 

data.  Fradette and colleagues also compared both methodologies (standard 

noncompartmental versus population compartmental) in the bioequivalence assessment of 

two formulations of cyclosporine administered to a group of patients (170).  They 

demonstrated that both approaches led to similar conclusions of bioequivalence.  Other 

researchers have also reached similar conclusions for the bioequivalence assessment of 

chlorthalidone (171), tiludronate (172), somatropin and epoetin- (173). 

In light of the paucity of published BE studies that employ non-traditional 

compartmental methods to meet their objectives, the first article presented in this thesis 

makes a significant contribution to the analysis of BE trials and to furthering our 
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knowledge about the use of advanced PK techniques within the field of generic drug 

development.  Contrary to previously published articles (164, 165, 167-172, 174, 175), this 

article relies on an innovative, complex and sophisticated PK model that fits multiple 

analytes simultaneously and also includes a non-linear component.  Although one other 

model incorporated non-linearity (PK model for epoetin-) (173), the other published 

models are simpler (one- and two-compartment models with linear elimination), therefore 

this article provides additional insight into the use of more elaborate PK models in the 

world of BE evaluation.  Furthermore, our analyses were conducted with highly variable 

data, thereby demonstrating that this approach is not only limited to homogeneous data, but 

that it can be used to better understand more variable data as well.  This article is also the 

first published account which uses the software ADAPT 5
®
 to conduct a bioequivalence 

assessment. 

Importantly, the first article demonstrates that the population PK approach can 

result in considerable savings, from both a monetary and time perspective.  Findings 

demonstrated that conclusions derived from this novel approach were comparable to those 

obtained from a traditional method applied to a sample size that was more than 8-fold 

greater (n=29 vs n=240).  This suggests that less subjects need to be dosed if a non-

traditional approach is favoured, which means that less money and time are invested in the 

clinical trial and less subjects are needlessly exposed to an investigational drug.  This has 

important ramifications for the drug development process of generic products, which is 

subject to important time constraints and financial concerns.     

The research presented in the first article in this thesis contributes significantly to 

the progress of bioequivalence assessments, which have greatly evolved since the last 

century (176).  From a historical perspective, the concepts related to bioavailability were 

introduced in the mid 1940’s, but interest in bioequivalence and its assessments only date 

back to the early 1960’s, when there was rising concern on the bioavailability of generic 



   

  178 

 

 

 

products with respect to innovator products (177).  People were worried that generics might 

not provide equivalent exposure to innovators and that patients would suffer from these 

differences.  Ideas and approaches evolved over the subsequent decades in what can be 

viewed as four phases.  In the first phase, from the 1970’s to the early 1980’s, regulatory 

agencies such as the FDA began demanding proof of bioavailability in drug submission 

applications, and statistical discussions regarding bioequivalence assessments began to take 

place. In 1984, the “Drug Price Competition and Patent Term Restoration Act” was passed 

by the U.S. Congress, which allowed the FDA to approve generic drug products based on 

bioavailability and bioequivalence data. During the second phase, from 1984 to 1992, 

issues relating to the statistical aspect of bioequivalence testing were examined, 

culminating in the publication of the FDA guidance entitled “Statistical Procedures for 

Bioequivalence Studies Using a Standard Two-Treatment Crossover Design”. This 

approach is commonly referred to as the “Average Bioequivalence” (ABE) approach.  In 

the third phase, from 1992 to the beginning of the new millennium, discussions arose on 

many topics such as post-approval changes, racemate products, locally acting products, and 

BCS, leading to new guidances such as the skin blanching assay for topical corticosteroids 

(117), the BCS biowaiver option (99), as well as the scale-up and post-approval changes 

(SUPAC) recommendations (178-180).  In addition, the individual bioequivalence 

approach was proposed as a replacement for ABE, but it was eventually abandoned (181, 

182). The start of the fourth phase was marked by the FDA’s publication of their guidance 

document “Statistical Approaches to Establishing Bioequivalence” (183), which was 

followed by guidance documents published in Canada, Japan and European nations (44, 92, 

94, 184). During this phase, concerns arose with evaluating the bioequivalence of highly 

variable drugs (those possessing a within-subject coefficient of variability of at least 30%), 

as proving BE between two highly variable drugs using traditional ABE criteria 

necessitated the enrollment of many subjects, and this seemed unwarranted for drugs that 

generally had a large therapeutic index (185, 186). The scaled average bioequivalence 
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approach emerged from the discussions that ensued as being the most promising approach, 

because it allowed BE limits to be scaled according to the within-subject variability of the 

reference product (obtained through a replicate design study).  Furthermore, with this 

approach, the mean difference between the test and reference product was still required to 

fall between the traditional limits of 80 to 125% (186).  Our research, which supports the 

use of advanced pharmacokinetic modeling for certain bioequivalence assessments, will 

help usher in the newest phase in the evolution of bioequivalence approaches.  

While our research has shown that compartmental analyses can be a valuable tool 

for assessing the relative BE between two products, it is an approach that also has its limits 

and challenges.  Developing a pharmacokinetic model can be a difficult and time-

consuming process, and very often more than one model can be used to describe the same 

set of data.  This makes the results obtained by compartmental modeling more difficult to 

reproduce than the results obtained by traditional noncompartmental methods.  The creation 

of a pharmacokinetic model also requires the skills of an experienced pharmacometrician, 

whereas noncompartmental analyses are easily performed.  Therefore, for most drugs 

which exhibit linear pharmacokinetics, are detectable and are eliminated from the body, 

noncompartmental analyses should be more than sufficient to evaluate relative 

bioequivalence.  However, compartmental analyses should be considered as an alternative 

for drugs which do not meet these criteria. 

In addition to their use in evaluating BE between two drug products, the 

compartmental approach advocated by the results of the first research project could also be 

used to perform meta-analyses of bioequivalence trials to assess the switchability of 

different generic formulations of the same drug.  Although generic drugs are approved 

based on bioequivalence with the established reference product, little research is done to 

compare generic products to one another.  In other words, if a patient is currently being 

treated with an innovator product, bioequivalence trials have shown that it is acceptable to 
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replace the innovator product with an approved generic formulation, but it is unclear 

whether or not this generic formulation can be substituted with another.  This may not be an 

issue for drugs with a wide therapeutic index and large safety margin, but it could pose a 

problem for certain drugs.  Chow and colleagues have described methods for performing 

such meta-analyses (187, 188), but this is an area of research that could also benefit from 

compartmental modeling.  Indeed, compartmental analysis can easily accommodate data 

derived from different studies (with different study designs).  Furthermore, population PK 

models developed to compare multiple generic formulations can estimate different inter- 

and intra-subject variability for each study or formulation, in contrast to previously 

published methods which assume that they are similar across studies (187).  In addition, the 

use of compartmental analysis could also be useful in the development of biosimilars, or 

large molecule therapeutic proteins that are similar but not identical to innovator proteins.  

Our research has shown that advanced techniques such as modeling and simulation 

can improve the development of generic compounds, such as SFGC, and that this approach 

also has wider applications, such as studying the interchangeability of different generic 

formulations.  However, such methods can also be used to develop innovator products.  

Recently, we used a modeling and simulation approach to better understand the 

pharmacokinetics of a novel oncology drug being developed for acute myeloid lymphoma, 

elacytarabine.  The use of advanced PK methods, including the creation of an innovative 

model, allowed us to test certain hypotheses with respect to the pathways involved in the 

formation of an active metabolite and this improved understanding could not have been 

achieved through traditional techniques (189).  Additional applications of modeling and 

simulations for the development of innovator drugs are also demonstrated by the remaining 

articles presented in this thesis.   

There is a clear need to bring to market more innovator products, as there are fewer 

and fewer first-in-class products being developed.  In 2008, of the 21 new drugs approved 
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by the FDA, only 29% were first-in-class while this number decreased the following year.  

In 2009, the FDA approved 24 new drugs, 17% of which were first-in-class (81).  As 

shown in the second article of this thesis (“Population pharmacokinetic and 

pharmacodynamic analysis of pegloticase administered by intravenous infusion in two dose 

regimens to subjects with chronic gout”), modeling can help to develop first-in-class 

medicine for the treatment of refractory gout, by helping to better understand the PK and 

PD of new products (since we cannot rely on previous knowledge).     

Pegloticase is a PEGylated recombinant modified mammalian urate oxidase that 

currently is the only member of the uricase class that is indicated for the treatment of 

chronic refractory gout (190).  It acts by converting uric acid into the more easily excreted 

allantoin, while other treatments for gout exert their urate-lowering effect by reducing its 

production or its renal tubular re-absorption (191).  Although another recombinant uricase 

enzyme is available on the market (rasburicase, commercialized as Fasturtec
 

and Elitek


), 

it is not indicated for the treatment of refractory gout.  Rather, it is indicated for the 

treatment and prophylaxis of hyperuricemia caused by tumour lysis syndrome in pediatric 

and adult cancer patients (192).  Although rasburicase is effective in decreasing uric acid 

levels in cancer patients (193-197), it is associated with a shorter terminal elimination half-

life and persistent immunogenicity (191, 198).  Therefore, despite some publications that 

have described its efficacy in treating refractory tophaceous gout patients (199-204), this 

remains an off-label indication for rasburicase.  

  The second article presented in this thesis represents the first population PK/PD 

analysis for a drug belonging to the urate-oxidase drug class conducted on a large cohort of 

Phase 3 patients.  The only other published population PK/PD analysis for a urate-oxidase 

also involved pegloticase data, but subjects included in the analysis were from a smaller 

cohort (n = 40) of a Phase 2 study (205).  Furthermore, the PD model developed with the 

Phase 2 data (direct inhibitory Emax model) was different from the model developed using 
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the Phase 3 data (indirect model), since the range of doses administered in both studies was 

very different. Fewer dosing regimens and doses were administered in Phase 3, which is 

why it was not possible to apply an Emax model to the data.  Many articles have been 

published on population PK and/or PD analyses conducted on other biological agents, such 

as darbepoetin alfa (206-209), recombinant human erythropoietin (210, 211), alpha 

interferon (212), filgrastim (213, 214), PEGylated thrombopoietin (215), desonumab (216), 

abatacept (217), bevacizumab (218), cetuximab (219), infliximab (220, 221), rituximab 

(222), and trastuzumab (223).  However, to our knowledge, this is the first large-scale 

population PK/PD analysis conducted on a urate-oxidase therapeutic protein.  Thus, the 

findings from our research make important contributions to our knowledge about this drug 

class, by not only describing the PK and PD of pegloticase, but by quantifying its inter-

subject variability and identifying factors (demographic and other) which could be 

influential.  Among the important factors that affected PK parameters were BSA and anti-

pegloticase antibody levels (for Vc and CL), while the PD of pegloticase was only 

influenced by anti-pegloticase antibody levels. 

The results of the research presented in the second article not only improved our 

understanding of pegloticase disposition and effect, but they also played a critical role in 

determining whether or not dosage adjustments would be necessary.  Indeed, they showed 

that body surface area and anti-pegloticase antibody levels influenced both the volume of 

distribution and clearance of pegloticase.  Anti-pegloticase antibody levels also appeared to 

diminish the effect of pegloticase on the elimination of uric acid.  Although anti-pegloticase 

antibody categories helped to explain the variability in pegloticase PK and PD responses, it 

was not necessary to perform any dosage adjustments to take this into account since 

pegloticase managed to elicit therapeutic responses even in patients with high levels of 

antibodies.  Furthermore, the analysis revealed that no dosing adjustments were necessary 

for renal insufficiency, as estimated creatinine clearance (which ranged from 17 mL/min to 

264 mL/min in the cohort) was tested as a potential covariate in the model and was not 
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retained as a significant covariate.  Importantly, the population PK and PD analyses 

conducted on pegloticase contributed to the product labeling (monograph) (190) and 

ultimately enhanced the drug’s development process.  

The advanced pharmacokinetic techniques employed to better understand 

pegloticase were the ideal tool to help meet the analysis objectives, as compartmental 

analyses do not require rich sampling as is the case for noncompartmental analyses.  

Indeed, in Phase 3 trials such as the ones that were analyzed for the second article, it is 

often impractical or unfeasible to collect many blood samples from patients, who are 

already burdened by their disease and often multiple co-morbidities.  Compartmental 

analyses also have the flexibility of incorporating data from different sources, such as trials 

with different study designs or sampling schedules.  Moreover, by performing 

compartmental analyses on the data collected from these two pivotal Phase 3 studies to 

answer specific questions pertaining to pegloticase PK and PD, it was possible to avoid the 

conduct of additional clinical trials designed specifically to study such questions.  For 

example, it was not necessary to conduct a clinical trial with renally-impaired patients, 

since the results of this analysis demonstrated that creatinine clearance was not a factor that 

influenced pegloticase pharmacokinetics or pharmacodynamics.  Thus, advanced modeling 

allowed us to incorporate prior knowledge about pegloticase, gained from modeling of 

Phase 2 data, with data obtained from larger Phase 3 studies in order to extract the 

maximum amount of information from the available data and answer critical drug 

development questions, such as “Do dosing regimens need to be adjusted to account for 

demographic traits such as weight or body surface area?”. 

Modeling and simulations could also prove to be useful in further broadening our 

understanding of pegloticase, more particularly with respect to its immunogenicity.  

Although pegloticase was designed to be less immunogenic than rasburicase and non-

recombinant uricase, by virtue of its PEG conjugates (224-227), immunogenicity remains 
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an important concern.  Infusion reactions (systemic, localized or acute hypersensitivity) are 

an immune-response manifestation (228, 229), and in the Phase 3 studies from which data 

was obtained to conduct the population PK/PD analyses (230), infusion-related reactions 

were the second most common adverse event (the first one being gout flare).  Serious 

infusion reactions occurred in 5 to 8% of patients, but all of them resolved completely.  

These types of immune responses do not only occur with pegloticase, but they can occur 

with any type of therapeutic protein or biological agent (228, 231, 232).  Significant 

immune responses that affected clinical efficacy were reported for drugs such as salmon 

calcitonin (233), gonadotropin-releasing hormone (234), and granulocyte macrophage 

colony stimulating factor (235).   

In light of the concerns surrounding biological agents and their immunogenicity, 

using the pegloticase PK/PD model that was developed as part of this thesis, it would be 

possible to build a model (or extend the current one) to predict the onset of immunogenic 

reactions.  In the Phase 2 studies included in the PK/PD model, it was observed that over 

90% of infusion reactions in the 8 mg biweekly cohort were preceded by uric acid levels 

exceeding 6 mg/dL, while this was the case for approximately 71% of infusion reactions in 

the 8 mg monthly cohort (230, 236).  Indeed, there may be a link between loss of 

pegloticase effect (as reflected by rising uric acid levels) and the occurrence of infusion 

reactions and it has been suggested that discontinuing pegloticase treatment when uric acid 

levels are  6 mg/dL can avoid most infusion reactions (230, 236).  The mechanism behind 

this potential relationship is unknown and although this was not a question that arose at the 

time when the pegloticase PK/PD was being developed, with modeling and simulations it 

would have been possible to confirm the validity of such a threshold uric acid level and its 

relationship with infusion reactions.  Covariate analysis, such as the one conducted in the 

second article, could also help identify other factors related to the patient or the disease 

itself that could contribute to the occurrence of such adverse events.  Factors such as a 

patient’s genetic background, the type of disease, and the manufacturing process are some 
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of the factors known to influence the immunogenicity of therapeutic proteins (228), and 

population PK/PD analyses could help identify the specific factors which affect 

pegloticase’s immunogenicity.  Ultimately, developing such a model could help patients 

benefit from pegloticase treatment while minimizing the risk of unwanted effects. 

Another potential application of modeling and simulations stems from both its 

utility in the characterization of biological agents, as illustrated by the second article of the 

thesis, as well as its use in bioequivalence assessments, as demonstrated in the first article 

of the thesis.  As is the case with small-molecule innovator products, once the period of 

market exclusivity and patent protection have expired for biological agents, there is the 

possibility of developing similar biological agents.  Unlike small molecule drugs, where 

generic drugs are considered identical copies of their innovator counterparts, biological 

agents cannot be copied strictly speaking, due to their inherently heterogeneous nature and 

complex, unique manufacturing process (237-241).  These “similar” biological agents 

(sometimes labeled biosimilars, follow-on biologics or subsequent entry biologics) cannot 

simply rely on pharmaceutical equivalence and bioequivalence to demonstrate their 

comparability to the innovator product, unlike small molecule generics (237, 242, 243).  

Often, biosimilars must show that they are comparable to their innovator counterpart 

through in vitro and in vivo tests that provide evidence of similar quality (purity and 

potency), efficacy and safety, including immunogenicity (238, 240, 241, 243-245).  

Therefore, those who wish to develop biosimilar products are faced with challenges that are 

unique to these types of molecules. 

Biological agents inherently possess traits that do not always make them candidates 

for noncompartmental analyses, making compartmental analyses an attractive alternative to 

demonstrate comparability.  As previously mentioned, some underlying assumptions for 

noncompartmental analysis include linearity and elimination from the sampling 

compartment, and these do not always hold true for all drugs, as shown for iron in the first 
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article.  Like iron, the PK of biological agents can often be non-linear, because therapeutic 

proteins can undergo target-mediated drug disposition, such that the drug’s PK is 

influenced by its PD (specifically by its binding to target receptors).  In such instances, PK 

is often non-linear because of this saturable process (246).  Non-linearity can also be 

caused by immune-mediated clearance or receptor-mediated uptake into hepatocytes for 

subsequent elimination (232).  Furthermore, numerous biological agents are also eliminated 

in peripheral compartments via proteolysis, which violates the assumption that elimination 

occurs solely from the central compartment (231).  The accurate characterization of the PK 

and PD of therapeutic proteins using traditional methods can also be complicated by 

feedback mechanisms or loops that actively modify drug levels, or simply by the presence 

of endogenous counterparts (232).  Although the use of population compartmental 

modeling to compare biological agents has been described in a handful of publications 

(166, 167, 247, 248) and even advocated by the FDA (241), this remains an area that could 

benefit greatly from the application of advanced pharmacokinetic techniques such as the 

ones described in this thesis, including the development of innovative new models.  

Key questions arising during drug development, such as “Are two formulations of 

the same drug are bioequivalent?” or “What factors influence a drug’s PK and PD?”, can be 

efficiently answered by advanced pharmacokinetic techniques such as modeling and 

simulations, as shown in the first two articles presented within this thesis.  Others have 

shown that such methods can also be used to halt drug development, as was the case for a 

cholesterol absorption inhibitor (107) and PEG-modified interferon alfa-2a (249), thus 

preventing more unnecessary time and money from being invested in a product that was 

unlikely to be successful.  Although these examples show how modeling and simulations 

can answer “go or no-go” questions, it is often just as important to be able to answer 

questions that pertain to subsequent steps in the drug development process.  Accordingly, 

the third and fourth articles presented in this thesis illustrate the applicability of advanced 

pharmacokinetic techniques in the planning of future studies.  While the analyses of SFGC 
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and pegloticase demonstrated that modeling and simulations can be used to answer key 

drug development questions, the analyses of TP-434 take this one step further by answering 

critical questions that influence the design of subsequent studies.   

The third article presented in this thesis demonstrates how the careful and timely use 

of modeling and simulations based on data obtained from a single, ascending-dose Phase 1 

study was pivotal in the selection of dosing regimens for Phase 2 patient studies.  

Timeliness is an important consideration with the use of such a tool to answer these 

questions, because decision-making must occur prior to the initiation of subsequent studies.  

Indeed, as noted by Peck, “tardy analysis of a trial guarantees that the results cannot 

influence subsequent trials” (135).  Thus, the findings from the third article show that 

modeling and simulations can not only answer important questions that arise during drug 

development, but they can do so in an efficient manner and within a reasonable timespan to 

modify, if necessary, the course of ongoing or future studies.  

The more quantitative approach to selecting doses for a Phase 2 study, based on 

modeling and simulations, can help lower attrition rate in Phase 2, which remains 

problematic despite our technological achievements and increasing knowledge.  Indeed, 

Phase 2 and 3 attrition are key determinants in research and development productivity and 

efficiency (81), therefore a decrease in Phase 2 attrition rates will directly impact 

productivity and efficiency.  Additionally, the selection of an optimal dose or dosing 

regimen as early as possible during the drug development process can lead to considerable 

savings, in terms of both time and money.  This is illustrated by the drug development path 

taken for nesiritide, a drug indicated for the acute treatment of decompensated congestive 

heart failure whose NDA was submitted to the FDA in April 1998.  From a clinical 

perspective, the FDA did not agree with the proposed dosing regimen, and sent the 

company a nonapprovable letter one year after the submission date.  Based on some 

exposure-response analyses conducted by the FDA, the sponsor conducted an additional 
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study to confirm the selection of the new dosing regimen.  Eventually, the product was 

approved in May 2001, three years after the initial submission.  Clearly, if the exposure-

response relationship had been well-defined prior to the submission, at early stages in the 

development process, the optimal dose could have been selected prior to submission, and 

the ensuing time delays and additional study could have been avoided (115). 

Modeling and simulations are excellent tools for making Phase 2 dosing 

recommendations based on Phase 1 data, because they can make use of prior knowledge.  

Fortunately, in the field of antimicrobials, there is a considerable body of knowledge 

pertaining to PK/PD relationships that can be incorporated into models.  The first insights 

into the PK/PD of antimicrobials were described by Eagle in the 1940’s and 1950’s, who 

noticed that penicillin efficacy was related to its concentration and time above a threshold 

concentration (250-253).  Research in this subject area was pursued in subsequent decades 

and continues to this day.  Thus, for many classes of antimicrobials, such as 

fluoroquinolones (154-156, 254-256), beta lactams (151, 257-260) and aminoglycosides 

(153, 261-263), relationships between PK/PD indices and clinical outcomes are well 

defined and recognized by the scientific community.  In the case of TP-434, when only PK 

results in healthy volunteers were available, previously established PK-PD relationships for 

another tetracycline, tigecycline, were used in conjunction with this information to select 

dosing regimens for further study in a patient population (264-266).  This illustrates one of 

the most appealing features of modeling and simulations, which is its capacity to 

incorporate information from different sources and make use of all available data.      

In the context of drug development, simulations such as those performed for TP-434 

dosing regimen selection can answer questions without relying on the conduct of expensive 

clinical trials.  For instance, using the final PK model developed for TP-434, it was possible 

to conduct many simulations of different dosing regimens in order to determine the 

probable outcome associated with each of these regimens.  This allowed the pharmaceutical 
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company that was developing TP-434 to be more selective of their dosing regimens and 

avoid testing regimens that were unlikely to provide the desired clinical outcomes.  Rather 

than test many dosing regimens, of which only maybe one or two would be promising, this 

allowed the company to test only the most optimal regimens.  Similarly, if only one or two 

regimens were to be tested, this approach ensured that the most promising ones would be 

tested, thereby avoiding the situation that occurred for nesiritide.   

The choice of dosing regimens has important ramifications throughout drug 

development, as an improper selection can result in an inefficacious exposure or 

undesirable side effects, which could force companies to conduct additional studies or even 

worse, halt clinical development.  In the world of antimicrobial drug development, another 

reason for optimizing dosing regimens is the unrelenting development of antimicrobial 

resistance.  Although resistance genes have existed for many millennia (267), unchecked 

clinical antibiotic use has contributed to increased resistance (149).  Thus, one of the ways 

in which resistance can be reduced is by exerting a better control over the use of such drugs 

(149).  By carefully selecting dosing regimens during the course of drug development, we 

can therefore ensure that people are not unnecessarily exposed to antibiotics (which is the 

case when sub-optimal dosing regimens are tested) and that they are being administered the 

minimally effective dose.  In other words, they are not being given more antibiotics than 

what is required to eradicate the infection.  Therefore, the use of modeling and simulations 

to choose optimal dosing regimens for antibiotics under development also fosters a more 

rational and controlled use of these drugs, to thwart potential resistance. 

In anti-infective research, population modeling and simulations have been used to 

better understand a drug’s PK and/or PD in patient populations (268, 269), including 

special groups such as burn patients (270, 271), cancer patients (272, 273), cystic fibrosis 

patients (274, 275), neonates (276, 277), children (278, 279), and pregnant women (280, 

281).  It has also been used to optimize dosing regimens for special populations (such as 
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critically ill patients (282-290), cancer patients (291), neonates (292-300), children (301-

304), the elderly (305, 306), dialysis patients (307-310), and burn patients (311)), compare 

drug dosing regimens or potency of anti-viral drugs given as combination therapy (312, 

313) and determine PK/PD breakpoints for clinical outcome assessments based on patient 

data (154, 156, 265, 266, 314-317).  Moreover, modeling and simulations were used to 

guide Phase 3 dose regimen selection during the drug development of doripenem (318) and 

fusidic acid (319).  However, to our knowledge, the results presented in the third article of 

the thesis are the first report of this approach being used to select Phase 2 dosing regimens 

based solely on in vitro and Phase 1 data.  This illustrates an important role for such 

advanced pharmacokinetic techniques within the drug development context, in that their 

use can extend to the planning of future studies. 

The dose optimization analyses described in articles 3 and 4 are the first published 

population PK analyses for TP-434.  Importantly, they are also the first published accounts 

of the use modeling and simulations for early-stage dose determination of an antibiotic 

under development.  In other words, in previously published reports where modeling and 

simulation was performed to refine dosing regimens for an antibiotic (282-311), patient 

data was always available and included in the analysis, whereas our dose projections were 

only based on healthy volunteer data.  Moreover, although this type of early-phase dose-

defining analysis based on results from healthy subjects has been described for other drugs, 

such as the monoclonal antibody HAE1 (320) and selective factor IXa inhibitor 

pegnivacogin (321), the research presented within this thesis represents the first of its kind 

for antibiotics.  The impact of our Phase 1 modeling and simulations on the TP-434 dosing 

regimens selected for Phase 2 investigations was also definitive and significant, whereas in 

other publications that suggest dosing regimens issuing from compartmental analyses, it is 

unclear whether or not these recommendations were actually put into place (322-324).   
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The last article presented within the context of this thesis, also pertaining to TP-434, 

further highlights one of the strengths of population compartmental analyses within the 

drug development process.  Prior to the conduct of the multiple, ascending dose study in 

healthy volunteers, only single-dose data was available for TP-434, but once the repeated 

administration results became available, it was possible to easily incorporate these results 

into the previously determined population PK model.  Thus, the PK model developed for 

TP-434 could be continuously updated with new information, in order to extract the 

maximum amount of knowledge from available data.  The results obtained from the 

multiple ascending dose study not only allowed us to learn more about TP-434, but they 

also served to confirm the PK model that was chosen based on single dose data.  This 

embodies the “learn and confirm” approach to drug development first proposed by Sheiner 

(136) and advocated by many.  In contrast with the view that drug development is a 

succession of independent steps that ultimately lead to a product’s entry on the market, the 

“learn and confirm” paradigm makes use of advanced pharmacokinetic techniques such as 

modeling and simulations to integrate data throughout the course of drug development.  In 

the latter, there is always the possibility of learning from studies, even those whose 

outcomes are unexpected. 

The successful application of the learn and confirm paradigm in the development of 

a novel antibiotic agent was demonstrated in the last two articles of this thesis.  Although in 

this example, advanced pharmacokinetic techniques were employed in the development of 

a drug belonging to the antibiotic class, the approaches defined by this research can be 

applied to any type of compound within any therapeutic area.  However, some insight into 

the PK and PD relationship of the investigational drug is necessary to take full advantage of 

this tool.  Nonetheless, these articles serve as an example for other researchers wishing to 

develop a new drug, and will hopefully encourage others to adopt a model-based, rational 

approach to dose regimen selection.  
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The articles presented within the context of this thesis demonstrated the utility of 

advanced pharmacokinetic techniques such as modeling and simulations, and the creation 

of innovative models, within the drug development process.  The research presented here 

provides researchers with tools that can be applied not only to drugs with particular PK 

characteristics (such as iron), innovative biological agents (like pegloticase) or novel 

antimicrobial agents (such as TP-434), but to drugs in all therapeutic areas.  Questions that 

can arise at different stages of the drug development process (Phase 1 for TP-434 and Phase 

3 for pegloticase) can be effectively answered using modeling and simulations, which 

makes this an invaluable tool.  However, to make the most of this approach, data should be 

collected and analyzed at the earliest stages of the DDP, and this analysis must be reiterated 

throughout.  Although it can be a time-consuming and arduous task, the research presented 

herein has demonstrated that no matter what the question or phase of drug development, 

modeling and simulations are well worth the effort.  
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Chapter 7 - Conclusion 

 

We are reminded time and time again that drug development is a risky, expensive 

and lengthy process.  Nevertheless, although they often defy quantification, the benefits of 

drug therapy on quality of life and lifespan are undeniable. 

In 1993, the Office of Technology Assessment in the U.S. declared that the most 

important components of pharmaceutical research and development investment were 

money, time and risk (83).  Almost two decades have elapsed since then, but these tenets 

hold true even today. However, more is being done to improve the drug development 

process.  The research conducted within the context of this thesis have important 

ramifications on different aspects of the drug development process and provide concrete 

examples of how advanced pharmacokinetic techniques, such as modeling and simulations, 

can render the process more efficient. 

The first research article demonstrated that compartmental analyses can be used to 

answer questions pertaining to bioequivalence, and that this approach offers many 

advantages over the traditional methods normally espoused.  It not only forgoes the need to 

meet specific assumptions about a drug pertaining to its linearity and elimination, but it 

allows study objectives to be attained without enrolling hundreds of subjects.  From a drug 

development perspective, this translates into significant financial savings and an economy 

of time.  In addition, the research presented in this article makes significant contributions to 

the relatively unexplored domain of compartmental modeling within bioequivalence 

assessments.  Indeed, few publications exist on this topic and this research explores the use 

of more elaborate and complex models that have not been previously described within this 

context.  The approach described in this article not only broadens our appreciation of 

modeling and simulations within the field of generic drug development, but it can also be 

applied to innovator or biosimilar drug development. 
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The second research article describes how advanced pharmacokinetic techniques 

such as population PK/PD modeling improved our understanding of pegloticase.  Not only 

did the research conducted on pegloticase identify covariates that influenced its PK and PD, 

but it quantified the influence of these covariates.  By establishing relationships between 

patient demographics, laboratory parameters and PK/PD parameters, it was possible to 

determine that no dosing adjustments were necessary for pegloticase.  Thus, the research 

described in the article contributed directly to product labeling by answering key questions 

that could otherwise not have been answered from the Phase 3 trials.  Due to the sparse 

sampling collected from patients during these trials, it would not have been possible to 

perform robust noncompartmental analyses, therefore the approach that was adopted was 

ideal for meeting study objectives.  In other words, the population PK/PD analysis 

maximized the information that was extracted from the available data, thereby obviating the 

need to conduct of additional studies or collect many blood samples from patients.  Thus, 

this approach proved to be an economical and efficient tool in the development of a 

biological therapeutic agent.  Furthermore, this tool could be used to gain an improved 

understanding of pegloticase’s immunogenicity, just as it could be used to develop other 

biological therapeutic agents. 

The third and fourth research articles illustrate the use of modeling and simulations 

in determining optimal antibiotic dosing regimens to be studied in subsequent clinical trials.  

Although the methods described in these articles can be applied to drugs in diverse 

therapeutic areas, these articles represent the first account of the use of modeling and 

simulations to select Phase 2 dosing regimens for an anti-infective drug.  The rational dose 

regimen selection that resulted from the use of modeling and simulations improved the 

overall drug development process of TP-434 by avoiding the exposure of subjects to dosing 

regimens that would ultimately prove to be ineffective, and by ensuring that proof-of-

concept would likely be established in the Phase 2 study.  Consequently, this thwarted the 

need for re-dosing additional cohorts or conducting another clinical trial, which would both 
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have been expensive and have added more time to the already lengthy development 

process.  In addition to reducing the cost and time associated with the development of 

TP-434, the modeling and simulation approach employed in this research provided a 

flexible and adaptable framework with which the PK TP-434 could be better understood.  

The PK model developed for TP-434 could be refined as more information became 

available, thereby demonstrating that the learn and confirm paradigm could be applied to 

the development of an antibiotic drug.  Furthermore, the methods described in these articles 

could have broader applications, and could be used to develop new drugs in various 

therapeutic areas.   

In conclusion, the projects described in this thesis have shown that advanced 

pharmacokinetic techniques such as modeling and simulations are able to minimize drug 

development costs through the use of smaller studies, by avoiding the conduct of additional 

studies and by ensuring that future studies are designed for a high probability of success.  

Modeling and simulations, including the development of innovative models, are therefore a 

tool that can result in a significant economy of time and money, which are two components 

that contribute to the challenges present during the drug development process.  By using 

such approaches to answer key questions that arise during drug development, the risk 

involved in the process is decreased, and generic and innovator drugs can be brought to 

market in a faster and more efficient manner.  Ultimately, this will provide clinicians and 

caregivers with even more therapeutic options to treat or cure diseases, and more 

importantly, improve the lives of their patients.   
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Appendix 1 

General Pharmacology of Therapeutic Agents or Classes 

Studied within this Thesis 




