


Université de Montréal

Essais en économetrie et économie de l’éducation

par
Guy Tchuente Nguembu

Département de sciences économiques
Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en Economie

Juillet, 2014

c© Guy Tchuente Nguembu, 2014.



Université de Montréal
Faculté des études supérieures

Cette thèse intitulée:

Essais en économetrie et économie de l’éducation

présentée par:

Guy Tchuente Nguembu

a été évaluée par un jury composé des personnes suivantes:

Benoit Perron, président-rapporteur
Marine Carrasco, directeur de recherche
Baris Kaymak, codirecteur
Joshua Lewis, membre du jury
Jorgen Hansen, examinateur externe
Jean-Michel Cousineau , représentant du doyen de la FES

Thèse acceptée le: 28 août 2014



RÉSUMÉ

Cette thèse est organisée en trois chapitres. Les deux premiers s’intéressent à l’évalua-

tion, par des méthodes d’estimations, de l’effet causal ou de l’effet d’un traitement, dans

un environnement riche en données. Le dernier chapitre se rapporte à l’économie de

l’éducation. Plus précisément dans ce chapitre j’évalue l’effet de la spécialisation au

secondaire sur le choix de filière à l’université et la performance.

Dans le premier chapitre, j’étudie l’estimation efficace d’un paramètre de dimension

finie dans un modèle linéaire où le nombre d’instruments peut être très grand ou infini.

L’utilisation d’un grand nombre de conditions de moments améliore l’efficacité asymp-

totique des estimateurs par variables instrumentales, mais accroit le biais. Je propose

une version régularisée de l’estimateur LIML basée sur trois méthodes de régularisations

différentes, Tikhonov, Landweber Fridman, et composantes principales, qui réduisent le

biais.

Le deuxième chapitre étend les travaux précédents, en permettant la présence d’un

grand nombre d’instruments faibles. Le problème des instruments faibles est la conse-

quence d’un très faible paramètre de concentration. Afin d’augmenter la taille du para-

mètre de concentration, je propose d’augmenter le nombre d’instruments. Je montre par

la suite que les estimateurs 2SLS et LIML régularisés sont convergents et asymptotique-

ment normaux.

Le troisième chapitre de cette thèse analyse l’effet de la spécialisation au secondaire

sur le choix de filière à l’université. En utilisant des données américaines, j’évalue la

relation entre la performance à l’université et les différents types de cours suivis pendant

les études secondaires. Les résultats suggèrent que les étudiants choisissent les filières

dans lesquelles ils ont acquis plus de compétences au secondaire. Cependant, on a une re-

lation en U entre la diversification et la performance à l’université, suggérant une tension

entre la spécialisation et la diversification. Le compromis sous-jacent est évalué par l’es-

timation d’un modèle structurel de l’acquisition du capital humain au secondaire et de
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choix de filière. Des analyses contrefactuelles impliquent qu’un cours de plus en matière

quantitative augmente les inscriptions dans les filières scientifiques et technologiques de

4 points de pourcentage.

Mots clés: Modèles de grande dimension, LIML, Variable instrumentale faibles,

Erreur Quadratique moyenne, régularisation, capital humain, choix discrets, Choix

de filière.



ABSTRACT

This these is organized in three chapter; the first two chapters are in Econometrics

and the third in labor Economics. The econometrics chapters focuses on estimating pa-

rameters in data rich environments. I investigate how to establish causal effect or treat-

ment effect in high dimensional setting using regularization techniques. The last chapter

of this thesis focuses on the outcomes associated with general and specific education. In

particular I study the effect of specialization in high school on college major choice and

performance in college.

In the first chapter, entitled “Regularized LIML for many instruments ”(joint with

Marine Carrasco), I consider the efficient estimation of a finite dimensional parameter in

a linear model where the number of potential instruments is very large or infinite. The

use of many moment conditions improves the asymptotic efficiency of the instrumental

variables estimators. I propose regularized a versions of the limited information maxi-

mum likelihood (LIML) based on three different regularizations: Tikhonov, Landweber

Fridman, and principal components.

The second chapter, entitled “Efficient estimation with many weak instruments using

regularization techniques ”, (Joint with Marine Carrasco), extends the previous works,

to allow for the presence of a large number of weak instruments or weak identification.

The problem of weak instruments is due to a very small concentration parameter. To

boost the concentration parameter, I propose to increase the number of instruments to a

large number or even up to a continuum. I show that normalized regularized 2SLS and

LIML are consistent and asymptotically normally distributed.

The third chapter of this thesis is entitled “High school human capital portfolio and

college outcomes" investigates the trade-off between acquiring specialized skills, in high

school, which will be useful for a particular college major and acquiring a package

of skills that diversifies risk across majors. Using the 1980 High School and Beyond

(HS&B) survey, I study the empirical relationship between college performance and dif-
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ferent types of courses taken during formal high school education. This panel shows that

students sort into majors according to the subject in which they acquired more skills.

However, I find a U-shaped relation between diversification and college performance,

suggesting a trad-off between specialization and diversification. The underlying trade-

off is assessed by estimating a structural model of high school human capital acquisi-

tion and college major choice. Policies experiments suggest that one more high school

quantitative course increases enrollment in Science Technology Engineering, and Math

(STEM) majors by 4 points percentage.

Keywords: High-dimensional models, LIML, many weak instruments, MSE,

regularization methods, Human capital, Discrete choice, College Major.
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CHAPTER 1

REGULARIZED LIML FOR MANY INSTRUMENTS

1.1 Introduction

The problem of many instruments is a growing part of the econometric literature. 1

This paper considers the efficient estimation of a finite dimensional parameter in a linear

model where the number of potential instruments is very large or infinite. Many moment

conditions can be obtained from nonlinear transformations of an exogenous variable or

from using interactions between various exogenous variables. One empirical example of

this kind often cited in econometrics is Angrist and Krueger (1991) who estimated re-

turns to schooling using many instruments, Dagenais and Dagenais (1997) also estimate

a model with errors in variables using instruments obtained from higher-order moments

of available variables. The use of many moment conditions improve the asymptotic effi-

ciency of the instrumental variables (IV) estimators. For example, Hansen et al. (2008)

have recently found that in an application from Angrist and Krueger (1991), using 180

instruments, rather than 3 shrinks correct confidence intervals substantially toward those

of Kleibergen (2002). It has been observed that in finite samples, the inclusion of an ex-

cessive number of moments may result in a large bias (Andersen and Sorensen (1996)).

To solve the problem of many instruments efficiently, Carrasco (2012) proposed an

original approach based on regularized two-stage least-squares (2SLS). However, such

a regularized version is not available for the limited information maximum likelihood

(LIML). Providing such an estimator is desirable, given LIML has better properties than

2SLS (see e.g. Hahn and Inoue (2002), Hahn and Hausman (2003), and Hansen et al.

(2008)). In this paper, we propose a regularized version of LIML based on three reg-

1. This chapter is a joint work with Marine Carrasco. The authors thank the participants of CIREQ
conference on High Dimensional Problems in Econometrics (Montreal, May 2012), of the conference in
honor of Jean-Pierre Florens (Toulouse, September 2012), of the seminars at the University of Rochester
and the University of Pennsylvania for helpful comments.
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ularization techniques borrowed from the statistic literature on linear inverse problems

(see Kress (1999) and Carrasco et al. (2007a)). The three regularization techniques were

also used in Carrasco (2012) for 2SLS. The first estimator is based on Tikhonov (ridge)

regularization. The second estimator is based on an iterative method called Landweber-

Fridman. The third regularization technique, called spectral cut-off or principal compo-

nents, is based on the principal components associated with the largest eigenvalues. In

our paper, the number of instruments is not restricted and may be smaller or larger than

the sample size or even infinite. We also allow for a continuum of moment restrictions.

We restrict our attention to the case where the parameters are strongly identified and

the estimators converge at the usual
√

n rate. However, a subset of instruments may be

irrelevant.

We show that the regularized LIML estimators are consistent and asymptotically

normal under heteroskedastic error. Moreover, they reach the semiparametric efficiency

bound in presence of homoskedastic error. We show that the regularized LIML has finite

first moments provided the sample size is large enough. This result is in contrast with

the fact that standard LIML does not possess any moments in finite sample.

Following Nagar (1959), we derive the higher-order expansion of the mean-square

error (MSE) of our estimators and show that the regularized LIML estimators domi-

nate the regularized 2SLS in terms of the rate of convergence of the MSE. Our three

estimators involve a regularization or tuning parameter, which needs to be selected in

practice. The expansion of the MSE provides a tool for selecting the regularization pa-

rameter. Following the same approach as in Donald and Newey (2001), Okui (2004),

and Carrasco (2012), we propose a data-driven method for selecting the regularization

parameter, α , based on a cross-validation approximation of the MSE. We show that this

selection method is optimal in the sense of Li (1986,1987), meaning that the choice of α

using the estimated MSE is asymptotically as good as if minimizing the true unknown

MSE.

The simulations show that the regularized LIML is better than the regularized 2SLS
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in almost every case. Simulations show that the LIML estimator based on Tikhonov and

Landweber-Fridman regularization often have smaller median bias and smaller MSE

than the LIML estimator based on principal components and than the LIML estimator

proposed by Donald and Newey (2001).

There is a growing amount of articles on many instruments and LIML. The first pa-

pers focused on the case where the number of instruments, L, grow with the sample size,

n, but remains smaller than n. In this case, the 2SLS estimator is inconsistent while

LIML is consistent (see Bekker (1994), Chao and Swanson (2005), Hansen et al. (2008),

among others). Hausman et al. (2012) and Chao et al. (2012) give modified LIML esti-

mators which are robust to heteroskedasticity in the presence of many weak instruments.

Recently, some work has been done in the case where the number of instruments ex-

ceed the sample size. Kuersteiner (2012) considers a kernel weighted GMM estimator,

Okui (2004) uses shrinkage. Bai and Ng (2010) and Kapetanios and Marcellino (2010)

assume that the endogenous regressors depend on a small number of factors which are

exogenous, they use estimated factors as instruments. Belloni et al. (2012a) assume the

approximate sparsity of the first stage equation and apply an instrument selection based

on Lasso. Recently, Hansen and Kozbur (2014) propose a ridge regularized jacknife

instrumental variable estimator in the presence of heteroskedasticity which does not re-

quire sparsity and provide tests with good sizes. The paper which is the most closely

related to ours is that by Donald and Newey (2001) (DN henceforth) which select the

number of instruments by minimizing an approximate MSE. Our method assumes nei-

ther a strong factor structure, nor a exactly sparse first stage equation. However, it as-

sumes that the instruments are sufficiently correlated among themselves so that the trace

of the instruments covariance matrix is finite and hence the eigenvalues of the covariance

matrix decrease to zero sufficiently fast.

The paper is organized as follows. Section 2 presents the three regularized LIML

estimators and their asymptotic properties. Section 3 derives the higher order expansion

of the MSE of the three estimators. In Section 4, we give a data-driven selection of
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the regularization parameter. Section 5 presents a Monte Carlo experiment. Empirical

applications are examined in Section 6. Section 7 concludes. The proofs are collected in

appendix.

1.2 Regularized version of LIML

This section presents the regularized LIML estimators and their properties. We show

that the regularized LIML estimators are consistent and asymptotically normal in pres-

ence of heteroskedastic error and they reach the semiparametric efficiency bound as-

suming homoskedasticity. Moreover, we establish that, under some conditions, they

have finite moments.

1.2.1 Presentation of the estimators

The model is  yi =W ′i δ0 + εi

Wi = f (xi)+ui

(1.1)

i = 1,2, ....,n. The main focus is the estimation of the p× 1 vector δ0. yi is a scalar

and xi is a vector of exogenous variables. Wi is correlated with εi so that the ordinary

least-squares estimator is not consistent. Some rows of Wi may be exogenous, with

the corresponding rows of ui being zero. A set of instruments, Zi, is available so that

E (Ziεi) = 0.The estimation of δ is based on the orthogonality condition:

E[(yi−W ′i δ )Zi] = 0.

Let f (xi) = E (Wi|xi)≡ fi denote the p×1 reduced form vector. The notation f (xi)

covers various cases. f (xi) may be a linear combination of a large dimensional (possibly

infinite dimensional) vector xi. Let Zi = xi, then f (xi) = β
′Zi for some L× p β . Some

of the coefficients β j may be equal to zero, in which case the corresponding instruments

Z j are irrelevant. In that sense, f (xi) may be sparse as in Belloni et al. (2012b). The
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instruments have to be strong as a whole but some of them may be irrelevant. We do not

consider the case where the instruments are weak (case where the correlation between

Wi and Zi converges to zero at the
√

n rate) and the parameter δ is not identified as in

Staiger and Stock (1997). We do not allow for many weak instruments (case where the

correlation between Wi and Zi declines to zero at a faster rate than
√

n and the number of

instruments Zi grows with the sample size) considered by Newey and Windmeijer (2009)

among others.

The model allows for xi to be a few variables and Zi to approximate the reduced

form f (xi). For example, Zi could be a power series or splines (see Donald and Newey

(2001)).

As in Carrasco (2012), we use a general notation which allows us to deal with a finite,

countable infinite number of moments, or a continuum of moments. The estimation is

based on a set of instruments Zi = {Z(τ;xi) : τ ∈ S} where S is an index set. Examples

of Zi are the following.

- Assume Zi = xi where xi is a L- vector with a fixed L. Then Z(τ;xi) denotes the τth

element of xi and S = {1,2, ....L}.

- Z(τ;xi) = (xi)
τ−1 with τ ∈ S = N, thus we have an infinite countable instruments.

- Z(τ;xi) = exp(iτ ′xi) where τ ∈ S = Rdim(xi), thus we have a continuum of moments.

It is important to note that throughout the paper, the number of instruments, L, of Zi

is either fixed or infinite and L is always independent of T . We view L as the number

of instruments available to the econometrician and the econometrician uses all these

instruments to estimate the parameters. We need to define a space of reference in which

elements such that E (WiZ(τ;xi)) are supposed to lie. We denote L2(π) the Hilbert space

of square integrable functions with respect to π where π is a positive measure on S. π (τ)

attaches a weight to each moments indexed by τ. π permits to dampen the effect of some

instruments. For instance, if Z(τ;xi) = exp(iτ ′xi), it makes sense to put more weight on

low frequencies (τ close to 0) and less weight on high frequencies (τ large). In that case,
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a π equal to the standard normal density works well as shown in Carrasco et al. (2007b).

We define the covariance operator K of the instruments as

K : L2(π) → L2(π)

(Kg)(τ1) =
∫

E(Z(τ1;xi)Z(τ2;xi))g(τ2)π(τ2)dτ2

where Z(τ2;xi) denotes the complex conjugate of Z(τ2;xi). K is assumed to be a nuclear

(also called trace-class) operator which is satisfied if and only if its trace is finite. This

assumption and the role of π are discussed in details in Carrasco and Florens (2014).

This is trivially satisfied if the number of instruments is finite. However, when it is

infinite, this condition requires that the eigenvalues of K decline to zero sufficiently

fast which implies some strong colinearity among the instruments. If the instruments{
Zi j : j = 1,2, ...,∞

}
are independent from each other then K is the infinite dimensional

identity matrix which is not nuclear. However, Section 2.3 of Carrasco and Florens

(2004) shows that an appropriate choice of π makes such a matrix nuclear. The weight π

gives an extra degree of freedom to the econometrician to meet some of our assumptions.

We will see in Section 1.2.2 that the asymptotic distribution of our estimator does not

depend on the choice of π . In the case where the vector of instruments Zi has a finite

dimension L (potentially very large), we can select π as the uniform density on S =

{1,2, ....L}. In that case, K is the operator which associates to vector v of RL, the vector

Kv = E
(
ZiZ′i

)
v/L. The condition "K nuclear" is met if the trace of E

(
ZiZ′i

)
/L is finite.

This is satisfied if the Zil , l = 1,2, ...,L depend on a few common factors (see for instance

Bai and Ng (2002)). It may be satisfied also if the eigenvalues continuously decline

without having a factor structure.

Let λ j and φ j j = 1,2, ... be respectively the eigenvalues (ordered in decreasing or-

der) and the orthogonal eigenfunctions of K. The operator K can be estimated by Kn

defined as:

Kn : L2(π) → L2(π)
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(Kng)(τ1) =
∫ 1

n

n

∑
i=1

Z(τ1;xi)Z(τ2;xi)g(τ2)π(τ2)dτ2

If the number of moment conditions is infinite, inverting K is an ill-posed problem

in the sense that its inverse is not continuous, moreover its sample counterpart, Kn, is

singular. Consequently, the inverse of Kn needs to be stabilized via regularization. By

definition (see Kress, 1999, page 269), a regularized inverse of an operator K is Rα :

L2(π) → L2(π) such that lim
α→0

RαKϕ = ϕ , ∀ϕ ∈ L2(π).

As in Carrasco (2012), we consider three different types of regularization schemes:

Tikhonov (T), Landwerber Fridman (LF) and Spectral cut-off (SC). They are defined as

follows 2:

1. Tikhonov(T)

This regularization inverse is defined as (Kα)−1 = (K2 +αI)−1K or equivalently

(Kα)−1r =
∞

∑
j=1

λ j

λ 2
j +α

〈
r,φ j

〉
φ j

where α > 0 and I is the identity operator.

2. Landweber Fridman (LF)

This method of regularization is iterative. Let 0 < c < 1/‖K‖2 where ‖K‖ is the

largest eigenvalue of K (which can be estimated by the largest eigenvalue of Kn).

ϕ̂ = (Kα)−1r is computed using the following procedure:

 ϕ̂l = (1− cK2)ϕ̂l−1 + cKr, l=1,2,...,
1
α
−1;

ϕ̂0 = cKr,

where
1
α
−1 is some positive integer. Equivalently, we have

(Kα)−1r =
∞

∑
j=1

[1− (1− cλ 2
j )

1
α ]

λ j

〈
r,φ j

〉
φ j.

2.
〈
., .
〉

represents the scalar product in L2(π) and in Rn (depending on the context).
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3. Spectral cut-off (SC)

It consists in selecting the eigenfunctions associated with the eigenvalues greater

than some threshold.

(Kα)−1r = ∑
λ 2

j ≥α

1
λ j

〈
r,φ j

〉
φ j,

for α > 0. As the φ j are related to the principal components of Z, this method is

also called principal components (PC).

The regularized inverses of K can be rewritten using a common notation as:

(Kα)−1r =
∞

∑
j=1

q(α,λ 2
j )

λ j

〈
r,φ j

〉
φ j

where for T q(α,λ 2
j ) =

λ 2
j

λ 2
j +α

, for LF q(α,λ 2
j ) = [1− (1− cλ

2
j )

1/α ], and for SC

q(α,λ 2
j ) = I(λ 2

j ≥ α).

In order to compute the inverse of Kn, we have to choose the regularization parameter

α . Let (Kα
n )
−1 be the regularized inverse of Kn and Pα a n× n matrix defined as in

Carrasco (2012) by Pα = T (Kα
n )
−1T ∗ where T : L2(π) → Rn with

T g =
(
〈Z1,g〉′ ,〈Z2,g〉′ , ...,〈Zn,g〉′

)′
and T ∗ : Rn → L2(π) with

T ∗v =
1
n

n

∑
j=1

Zivi

such that Kn = T ∗T and T T ∗ is an n× n matrix with typical element

〈
Zi,Z j

〉
n

. Let φ̂ j,

λ̂1 ≥ λ̂2 ≥ ... > 0, j = 1,2, ... be the orthonormalized eigenfunctions and eigenvalues of

Kn and ψ j the eigenfunctions of T T ∗. We then have T φ̂ j =
√

λ jψ j and T ∗ψ j =
√

λ jφ̂ j.

Remark that for v ∈ Rn, Pαv =
∞

∑
j=1

q(α,λ 2
j )
〈
v,ψ j

〉
ψ j.

Let W =
(
W ′1, W ′2, ..., W ′n

)′ n× p and y =
(
y′1, y′2, ..., y′n

)′ n× p. Let us define k-class
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estimators as

δ̂ = (W ′ (Pα −νIn)W )−1W ′ (Pα −νIn)y.

where ν = 0 corresponds to the regularized 2SLS estimator studied in Carrasco (2012)

and

ν = να = min
δ

(y−Wδ )′Pα(y−Wδ )

(y−Wδ )′(y−Wδ )

corresponds to the regularized LIML estimator we will study here.

1.2.2 Asymptotic properties of the regularized LIML

First, we establish the asymptotic properties of the regularized LIML estimators

when the errors are heteroskedastic. Next, we will consider the special case where the

errors are homoskedastic and the reduced form f can be approached by a sequence of

instruments. We will focus on the case where the regularization parameter, α, goes to

zero. If α were bounded away from zero, our estimators would remain consistent and

asymptotically normal but would be less efficient.

One of the drawbacks of LIML in the many-instruments setting is that it fails to even

be consistent in presence of heteroskedasticity. We will show that the regularized LIML

estimators remain consistent and asymptotically normal. Here, we assume that
(
εi,u′i

)
are iid but conditionally heteroskedastic. We define the covariance operator K̃ of the

moments {εiZi} as

K̃ : L2(π) → L2(π)

(K̃g)(τ1) =
∫

E(ε2
i Z(τ1;xi)Z(τ2;xi))g(τ2)π(τ2)dτ2

where Z(τ2;xi) denotes the complex conjugate of Z(τ2;xi). K nuclear, together with the

assumption E(ε2
i |xi) = σ

2
i < C, implies that the operator K̃ is nuclear. This, in turn,

implies that a functional central limit theorem holds (see van der Vaart and Wellner

(1996), p.50), namely
n

∑
i=1

Z(.;xi)εi/
√

n converges in L2 (π) to a mean zero Gaussian
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process with covariance operator K̃. Let g denote E (Z(.;xi)Wi) and F = K−1/2.

Proposition 1. (Case with heteroskedasticity)

Assume
(
yi,W ′i ,x

′
i
)

are iid, E(εi|xi)=E(ui|xi)= 0.Var
((

εi,u′i|xi
))

depends on i. E(ε2
i |xi)=

σ
2
i , where σ

2
i is bounded, the operator K is nuclear, the p× p matrix

〈
Fg,Fg′

〉
is nonsin-

gular. The regularization parameter α goes to zero. Then, the T, LF, and SC estimators

of LIML satisfy:

1. Consistency: Assume that each element of g belongs to range of K1/2. Then δ̂ →

δ0 in probability as n and nα
1/2 go to infinity.

2. Asymptotic normality: If moreover, each element of g belongs to the range of K,

then
√

n(δ̂ −δ0)
d→N

(
0,
〈
Fg,Fg′

〉−1
〈

Fg,
(

FK̃F∗
)

Fg
〉〈

Fg,Fg′
〉−1
)

as n and α
√

n go to infinity.

The condition
〈
Fg,Fg′

〉
nonsingular is an identification assumption. It would be in-

teresting to compare this result with the asymptotic distribution of the regularized 2SLS

estimator of Carrasco (2012). Using Theorem 2 of Carrasco and Florens (2000), it can be

shown that they have the same asymptotic distribution. Hence, both types of estimators

are robust to heteroskedasticity.

A consistent estimator of the asymptotic variance is given by

(
W ′PαW

)−1 (W ′Pα
Ω̂PαW

)(
W ′PαW

)−1

where Ω̂ is n× n diagonal matrix with ε̂
2
i on the diagonal with ε̂i = yi−W ′i δ̃ and δ̃ a

consistent estimator of δ . An alternative consistent estimator is given by

(
Ŵ ′W

)−1 (Ŵ ′Ω̂Ŵ
)(

W ′Ŵ
)−1

where Ŵ = (Pα −νIn)W.
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Next, we turn to the homoskedastic case and establish that the regularized LIML

estimators asymptotically reach the semiparametric efficiency bound. Let fa(x) be the

ath element of f (x).

Proposition 2. (Case with homoskedasticity)

Assume
(
yi,W ′i ,x

′
i
)

are iid, E(ε2
i |xi)=σ

2
ε , E( fi f ′i ) exists and is nonsingular, K is nuclear,

α goes to zero. E
(
ε

4
i |xi
)
< C and E

(
‖ui‖4 |xi

)
< C, for some constant C. Moreover,

fa(x) belongs to the closure of the linear span of {Z(.;x)} for a = 1,..., p. Then, the T,

LF, and SC estimators of LIML satisfy:

1. Consistency: δ̂ → δ0 in probability as n and nα
1/2 go to infinity.

2. Asymptotic normality: If moreover, each element of g belongs to the range of K,

then
√

n(δ̂ −δ0)
d→N

(
0,σ2

ε [E( fi f ′i )]
−1)

as n and nα go to infinity.

Proof In Appendix.

For the asymptotic normality, we need nα go to infinity as in Carrasco (2012) for

2SLS. It means that α is allowed to go to zero faster than for the heteroskedastic case.

Indeed, in Proposition 1, the condition was α
√

n. This improved rate for α has a cost

which is the condition that the fourth moments of εi and ui are bounded. We did not need

this condition in Proposition 1 because a slightly different proof was used.

The assumption " fa(x) belongs to the closure of the linear span of {Z(.;x)} for

a = 1, ..., p" is necessary for the efficiency but not for the asymptotic normality. We

notice that all regularized LIML have the same asymptotic properties and achieve the

asymptotic semiparametric efficiency bound, as for the regularized 2SLS of Carrasco

(2012). Therefore to distinguish among these different estimators, a higher-order expan-

sion of the MSE is necessary.
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1.2.3 Existence of moments

The LIML estimator was introduced to correct the bias problem of the 2SLS in the

presence of many instruments. It is thus recognized in the literature that LIML has bet-

ter, small-sample, properties than 2SLS. However, this estimator has no finite moments.

Guggenberger (2008) shows by simulations that LIML and GEL have large standard de-

viations. Fuller (1977) proposes a modified estimator that has finite moments provided

the sample size is large enough. Moreover, Anderson (2010) shows that the lack of finite

moments of LIML under conventional normalization is a feature of the normalization,

not of the LIML estimator itself. He provides a normalization (natural normalization)

under which the LIML has finite moments. In a recent paper, Hausman et al. (2011)

propose a regularized version of CUE with two regularization parameters and prove the

existence of moments assuming these regularization parameters are fixed. However, to

obtain efficiency these regularization parameters need to go to zero. In the following

proposition, we give some conditions under which the regularized LIML estimators pos-

sess finite moments provided the sample size is large enough. Let X = (x1,x2, ...,xn).

Proposition 3. (Moments of the regularized LIML)

Assume
{

yi,W ′i ,x
′
i
}

are iid, εi ∼ iidN (0,σ2
ε ) and assume that the vector ui is indepen-

dent of X, independently normally distributed with mean zero and variance Σu. Assume

that the eigenvalues of K are strictly decreasing. Let α be a positive decreasing function

of n with nα → ∞ as n→ ∞. Moreover, assume that the regularized LIML estimators

based on T, LF, and SC are consistent.

Then, the rth moments (r = 1,2, ..) of the regularized LIML estimators are bounded for

all n greater than some n(r).

Proof In Appendix.

Proposition 3 assumes that the eigenvalues of K are strictly decreasing which rules

out the case where all the eigenvalues are equal 3. In Proposition 2, we assumed that K

3. Recall that the eigenvalues are ranked in decreasing order by assumption.
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was nuclear. If the number of instruments is infinite, K nuclear implies that the eigenval-

ues of K decline to zero fast. However, if the number of instruments is finite, K is a finite

dimensional matrix and it is automatically nuclear. To make the proposition 3 hold for

both cases with finite and infinite number of moments, we have added the requirement

that the eigenvalues strictly decline. The case where the eigenvalues are equal is not

covered by our proposition. In this case, the moments of the regularized LIML may not

be bounded. This is easy to see for spectral cut-off regularization. Assume that K is the

identity matrix and hence the λ j are all equal to 1. For n large enough, the estimated λ̂ j

will also be close to 1. For α small, the q j = I
(

λ̂ j > α

)
will be all equal to 1, hence the

Pα is the projection matrix on all the instruments and the regularized LIML is nothing

but the usual LIML estimator which is known to have no moments. Of course, in prac-

tice, with a relatively small sample, the λ̂ j may be far from being equal to each other

but we may still retain a large number of principal components yielding large moments.

This is well illustrated by the simulations of Model 1 in Section 5. The spectral cut-off

regularized estimator seems to be more affected than the estimators obtained by T and

LF regularizations.

1.3 Mean square error for regularized LIML

Now, we analyze the second-order expansion of the MSE of regularized LIML es-

timators. First, we impose some regularity conditions. Let ‖A‖ be the Euclidean norm

of a matrix A. f is the n× p matrix, f = ( f (x1), f (x2), ..., f (xn))
′. Let H̄ be the p× p

matrix H̄ = f ′ f/n and X = (x1, ...,xn).

Assumption 1: (i) H = E( fi f ′i ) exists and is nonsingular,

(ii) there is a β ≥ 1/2 such that

∞

∑
j=1

〈
E(Z(.,xi) fa(xi)),φ j

〉2

λ
2β+1
j

< ∞
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where fa is the ath element of f for a = 1,2, ..., p

Assumption 2: {Wi,yi,xi} iid, E(ε2
i |X) = σ

2
ε > 0 and E(‖ui‖5|X), E(|εi|5|X) are

bounded.

Assumption 3: (i) E[(εi,u′i)
′(εi,u′i)] is bounded, (ii) K is a nuclear operator with

nonzero eigenvalues, (iii) f (xi) is bounded.

These assumptions are similar to those of Carrasco (2012). Assumption 1(ii) is used

to derive the rate of convergence of the MSE. More precisely, it guarantees that ‖ f −

Pα f ‖= Op(α
β ) for LF and SC and ‖ f −Pα f ‖= Op(α

min(2,β )) for T. The value of β

measures how well the instruments approximate the reduced form, f . The larger β , the

better the approximation is. The notion of asymptotic MSE employed here is similar

to the Nagar-type asymptotic expansion (Nagar (1959)), this Nagar-type approximation

is popular in IV estimation literature. We have several reasons to investigate the Nagar

asymptotic MSE. First, this approach makes comparison with DN (2001) and Carrasco

(2012) easier since they also use the Nagar expansion. Second, a finite sample parametric

approach may not be so convincing as it would rely on a distributional assumption.

Finally, the Nagar approximation provides the tools to derive a simple way for selecting

the regularization parameter in practice.

Proposition 4. Let σuε = E(uiεi|xi), Σu = E(uiu′i|xi) and Σv = E(viv′i|xi) with vi = ui−

εi
σuε

σ2
ε

. If Assumptions 1 to 3 hold , Σv 6= 0, E(ε2
i vi) = 0 and nα → ∞ for LF, SC, T

regularized LIML, we have

n(δ̂ −δ0)(δ̂ −δ0)
′ = Q̂(α)+ r̂(α),

E(Q̂(α)|X) = σ
2
ε H̄−1 +S(α)+T (α),

[r̂(α)+T (α)]/tr(S(α)) = op(1),
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S(α) = σ
2
ε H̄−1

[
Σv

[tr((Pα)2)]

n
+

f ′ (1−Pα)2 f
n

]
H̄−1.

For LF, SC, S(α) = Op(1/αn+α
β ) and for T, S(α) = Op(1/αn+α

min(β ,2)).

The MSE dominant term, S(α), is composed of two variance terms, one which in-

creases when α goes to zero and the other term which decreases when α goes to zero

corresponding to a better approximation of the reduced form by the instruments. Remark

that for β ≤ 2, LF, SC, and T give the same rate of convergence of the MSE. However,

for β > 2, T is not as good as the other two regularization schemes. This is the same

result found for the regularized 2SLS of Carrasco (2012). For instance, if f were a finite

linear combination of the instruments, β would be infinite, and the performance of T

would be far worse than that of SC or LF.

The MSE formulae can be used to compare our estimators with those in Carrasco

(2012). As in DN, the comparison between regularized 2SLS and LIML depends on the

size of σuε . For σuε = 0 where there is no endogeneity, 2SLS has smaller MSE than

LIML for all regularization schemes, but in this case OLS dominates 2SLS. In order to

do this comparison, we need to be precise about the size of the leading term of our MSE

approximation:

SLIML(α) = σ
2
ε H̄−1

[
Σv

[tr((Pα)2)]

n
+

f ′ (I−Pα)2 f
n

]
H̄−1 (1.2)

for LIML and

S2SLS(α) = H̄−1

[
σuεσ

′
uε

[tr(Pα)]2

n
+σ

2
ε

f ′ (I−Pα)2 f
n

]
H̄−1

for 2SLS (see Carrasco (2012)). We know that

SLIML(α) ∼ 1
nα

+α
β ,

S2SLS(α) ∼ 1
nα2 +α

β
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for LF, PC and if β < 2 in the Tikhonov regularization. For β ≥ 2 the leading term of

the Tikhonov regularization is

SLIML(α) ∼ 1
nα

+α
2,

S2SLS(α) ∼ 1
nα2 +α

2.

The MSE of regularized LIML is of smaller order in α than that of the regularized

2SLS because the bias terms for LIML does not depend on α . This is similar to a

result found in DN, namely that the bias of LIML does not depend on the number of

instruments. For comparison purpose, we minimize the equivalents with respect to α

and compare different estimators at the minimized point. We find that T, LF and SC

LIML are better than T, LF and SC 2SLS in the sense of having smaller minimized value

of the MSE, for large n. Indeed, the rate of convergence to zero of S(α) is n−
β

β+1 for

LIML and n−
β

β+2 for 2SLS. The Monte Carlo study presented in Section 5 reveals that

almost everywhere regularized LIML performs better than regularized 2SLS.

1.4 Data driven selection of the regularization parameter

1.4.1 Estimation of the MSE

In this section, we show how to select the regularization parameter α .The aim is to

find the α that minimizes the conditional MSE of γ
′
δ̂ for some arbitrary p×1 vector γ .

This conditional MSE is:

MSE = E[γ ′(δ̂ −δ0)(δ̂ −δ0)
′
γ|X ]

∼ γ
′S(α)γ

≡ Sγ(α).



17

Sγ(α) involves the function f which is unknown. We will need to replace Sγ by an

estimate. Stacking the observations, the reduced form equation can be rewritten as

W = f +u.

This expression involves n× p matrices. We can reduce the dimension by post-multiplying

by H̄−1
γ:

WH̄−1
γ = f H̄−1

γ +uH̄−1
γ ⇔Wγ = fγ +uγ (1.3)

where uγi = u′iH̄
−1

γ is a scalar. Then, we are back to a univariate equation. Let vγ =

vH̄−1
γ and denote

σ
2
vγ
= γ
′H̄−1

ΣvH̄−1
γ.

Using (1.2), Sγ(α) can be rewritten as

σ
2
ε

[
σ

2
vγ

[tr((Pα)2)]

n
+

f ′γ (I−Pα)2 fγ

n

]

We see that Sγ depends on fγ which is unknown. The term involving fγ is the same as

the one that appears when computing the prediction error of fγ in (1.3).

The prediction error
1
n

E
[
( fγ − f̂ α

γ )′( fγ − f̂ α
γ )
]

equals

R(α) = σ
2
uγ

tr((Pα)2)

n
+

f ′γ (I−Pα)2 fγ

n

As in Carrasco (2012), the results of Li (1986) and Li (1987) can be applied. Let δ̃ be

a preliminary estimator (obtained for instance from a finite number of instruments) and

ε̃ = y−W δ̃ . Let H̃ be an estimator of f ′ f/n, possibly W ′Pα̃W/n where α̃ is obtained

from a first stage cross-validation criterion based on one single endogenous variable, for

instance the first one (so that we get a univariate regression W (1) = f (1)+u(1) where (1)

refers to the first column).
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Let ũ = (I−Pα̃)W , ûγ = ũH̃−1
γ,

σ̂
2
ε = ε̃

′
ε̃/n, σ̂2

uγ
= û′γ ûγ/n, σ̂uvε = û′γ ε̃/n.

We consider the following goodness-of-fit criteria:

Mallows Cp (Mallows (1973))

R̂m(α) =
û′γ ûγ

n
+2σ̂

2
uγ

tr(Pα)

n
.

Generalized cross-validation (Craven and Wahba (1979))

R̂cv(α) =
1
n

û′γ ûγ(
1− tr(Pα )

n

)2 .

Leave-one-out cross-validation (Stone (1974))

R̂lcv(α) =
1
n

n

∑
i=1

(W̃γi− f̂ α
γ−i

)2,

where W̃γ =WH̃−1
γ , W̃γi is the ith element of W̃γ and f̂ α

γ−i
= Pα
−iW̃γ−i . The n×(n−1) ma-

trix Pα
−i is such that Pα

−i = T (Kα
n−i)T

∗
−i are obtained by suppressing ith observation from

the sample. W̃γ−i is the (n−1)×1 vector constructed by suppressing the ith observation

of W̃γ .

Noting that σ
2
vγ
−σ

2
uγ
= −σ

2
uγ ε/σ

2
ε where σuγ ε = E

(
uγiεi

)
. The approximate MSE

of γ
′
δ̂ is given by:

Ŝγ(α) = σ̂
2
ε

[
R̂(α)−

σ̂2
uγ ε

σ̂2
ε

tr((Pα)2)

n

]

where R̂(α) denotes either R̂m(α), R̂cv(α), or R̂lcv(α).
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Since σ̂
2
ε does not depend on α , the regularization parameter is selected as

α̂ = arg min
α∈Mn

[
R̂(α)−

σ̂2
uγ ε

σ̂2
ε

tr((Pα)2)

n

]
(1.4)

where Mn is the index set of α . Mn is a compact subset of [0,1] for T, Mn is such that

1/α ∈ {1,2, ...,n} for SC, and Mn is such that 1/α is a positive integer no larger than

some finite multiple of n.

Remark 1. This selection is cumbersome because it depends on a first step estimator

of α , α̃ . Moreover, the quality of the selection of the regularization parameter α̂ may

be affected by the estimation of H̄. A solution to avoid the estimation of H̄ is to select γ

such that H̄−1
γ equals a deterministic vector chosen by the econometrician, for instance

the unit vector e or any other vector denoted µ . Given the choice of µ is arbitrary and

for each µ corresponds a γ, we believe the resulting criterion is a valid way for selecting

α . In this case, Wγ =W µ , fγ = f µ , uγ = uµ and σ̂
2
uγ ε can be estimated by u′γ ε̃/n. As a

result, the criterion (1.4) can be computed without relying on any first step estimate of

α (except when Mallows Cp is used).

1.4.2 Optimality

In this section, we will restrict ourselves to the case described in Remark 1 where γ

is such that H̄−1
γ = µ and µ is an arbitrary vector chosen by the econometrician.

We wish to establish the optimality of the regularization parameter selection criteria

in the following sense
Sγ(α̂)

infα∈Mn Sγ(α)

P→ 1 (1.5)

as n and nα → ∞ where α̂ is the regularization parameter defined in (1.4). The result

(1.5) does not imply that α̂ converges to a true α in some sense. Instead, it establishes

that using α̂ in the criterion Sγ(α) delivers the same rate of convergence as if minimizing

Sγ(α) directly. For each estimator, the selection criteria provide a means to obtain higher
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order asymptotically optimal choices for the regularized parameter. It also means that

the choice of α using the estimated MSE is asymptotically as good as if the true reduced

form were known.

Assumption 4:

(i) E[((uie)
8)] is bounded. (i’) ui iid N (0,Σu).

(ii) σ̂
2
uγ

P→ σ
2
uγ

, σ̂
2
uγ ε

P→ σ
2
uγ ε , σ̂

2
ε

P→ σ
2
ε ,

(iii) lim
n→∞

sup
α∈Mn

λ (Pα
−i)< ∞ where λ (Pα

−i) is largest eigenvalue of Pα
−i,

(iv) ∑
α

(nR̃(α))−2 P→ 0 as n→ ∞ with R̃ is defined as R with Pα replaced by Pα
−i

(v) R̃(α)/R(α)
P→ 1 if either R̃(α)

P→ 0 or R(α)
P→ 0.

Proposition 5. Optimality of SC and LF

Under Assumptions 1-3 and Assumption 4 (i-ii), the Mallows Cp and Generalized cross-

validation criteria are asymptotically optimal in the sense of (1.5) for SC and LF. Under

Assumptions 1-3 and Assumption 4 (i-v), the leave-one out cross validation is asymptot-

ically optimal in the sense of (1.5) for SC and LF.

Optimality of T

Under Assumptions 1-3 and Assumption 4 (i’) and (ii), the Mallows Cp is asymptotically

optimal in the sense of (1.5) for Tikhonov regularization.

Proof In Appendix.

In the proof of the optimality, we distinguish two cases: the case where the index

set of the regularization parameter is discrete and the case where it is continuous. Using

as regularization parameter 1/α instead of α , SC and LF regularizations have a discrete

index set, whereas T has a continuous index set. We use Li (1987) to establish the op-

timality of Mallows Cp, generalized cross-validation and leave-one-out cross-validation

for SC and LF. We use Li (1986) to establish the optimality of Mallows Cp for T. The

proofs for generalized cross-validation and leave-one-out cross-validation for T regular-

ization could be obtained using the same tools but are beyond the scope of this paper.
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Note that our optimality results hold for a vector of endogenous regressors Wi whereas

DN deals only with the case where Wi is scalar.

1.5 Simulation study

In this section we present a Monte Carlo study. Our aim is to illustrate the quality of

our estimators and compare them to regularized 2SLS estimators of Carrasco (2012), DN

estimators, and LIML estimator with all the instruments and using the many instrument

standard error proposed by Hansen, Hausman, and Newey (2008) (denoted HHN in the

sequel). In all simulations, we set π = 1.

Consider  yi =W ′i δ + εi

Wi = f (xi)+ui

for i = 1,2, ...,n , δ = 0.1 and (εi,ui)∼N (0,Σ) with

Σ =

 1 0.5

0.5 1

 .

In all simulations, we consider large samples of size n = 500 and use 1000 replications.

For the purpose of comparison, we are going to consider two models.

Model 1 (Linear model).

In this model, f is linear as in DN. f (xi) = x′iπ with xi ∼ iidN (0, IL), L = 15,30,50. As

shown in Hahn and Hausman (2003), the specification implies a theoretical first stage

R-squared that is of the form R2
f = π

′
π/(1+π

′
π).

The xi are used as instruments so that Zi = xi. We can notice that the instruments are

independent from each other, this example corresponds to the worse case scenario for

our regularized estimators. Indeed, here all the eigenvalues of K are equal to 1, so there

is no information contained in the spectral decomposition of K. Moreover, if L were

infinite, K would not be nuclear, hence our method would not apply.
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We set πl =

√√√√ R2
f

1−R2
f
, l = 1,2, ...,L with R2

f = 0.1. As all the instruments have the

same weight, there is no reason to prefer an instrument over another instrument .

Model 2 (Factor model).

Wi = fi1 + fi2 + fi3 +ui

where fi = ( fi1, fi2, fi3)
′ ∼ iidN (0, I3), xi is a L× 1 vector of instruments constructed

from fi through

xi = M fi +νi

where νi ∼ N (0,σ2
ν I3) with σν = 0.3, and M is a L× 3 matrix which elements are

independently drawn in a U[-1, 1].

We report summary statistics for each of the following estimators: Carrasco’s (2012)

regularized two-stage least squares, T2SLS (Tikhonov), L2SLS (Landweber Fridman),

P2SLS (Principal component), Donald and Newey’s (2001) 2SLS (D2SLS), the un-

feasible instrumental variable regression (IV), regularized LIML, TLIML (Tikhonov),

LLIML (Landweber Fridman), PLIML (Principal component or spectral cut-off), Don-

ald and Newey’s (2001) LIML (DLIML), and finally the usual LIML with all instruments

and HHN standard errors. When L exceeds n, LIML is computed using a Moore Pen-

rose generalized inverse for the inverse of Z′Z. For each regularized and DN estimator,

the optimal tuning parameter is selected using generalized cross-validation. For all the

regularized LIML estimators, the starting values for the minimization needed in the es-

timation of ν are the 2SLS using all the instruments when L ≤ 50 or the corresponding

regularized 2SLS for L> 50. For standard LIML, the starting value is again the 2SLS us-

ing all the instruments when L≤ 50 or 1 for L = 400 and 520. We report the median bias

(Med.bias), the median of the absolute deviations of the estimator from the true value

(Med.abs), the difference between the 0.1 and 0.9 quantiles (dis) of the distribution of

each estimator, the mean square error (MSE) and the coverage rate (Cov.) of a nominal
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95% confidence interval. To construct the confidence intervals to compute the coverage

probabilities, we used the following estimate of asymptotic variance:

V̂ (δ̂ ) =
(y−W δ̂ )′(y−W δ̂ )

n
(Ŵ ′W )−1Ŵ ′Ŵ (W ′Ŵ )−1

where Ŵ = PαW for 2SLS and Ŵ = (Pα −νIn)W for LIML.

Tables 2 and 4 contain summary statistics for the value of the regularization parame-

ter which minimizes the approximate MSE. This regularization parameter is the number

of instruments in DN, α for T, the number of iterations for LF, and the number of prin-

cipal components for PC 4. We report the mean, standard error (std), mode, first, second

and third quartile of the distribution of the regularization parameter.

Results on Model 1 are summarized in Tables 1.I and 2. In Model 1, the regularized

LIML strongly dominates the regularized 2SLS. The LF and T LIML dominate the DN

LIML with respect to all the criteria. We can then conclude that in presence of many

instruments and in absence of a reliable information on the relative importance of the

instruments, the regularized LIML approach should be preferred to DN approach. We

can also notice that when the number of instruments increases from L = 15 to L = 50,

the MSE of regularized LIML becomes smaller than those of regularized 2SLS. We

observe that the MSE of regularized LIML, DLIML and standard LIML tend to be very

large for L = 400 and 520. However, the median bias and dispersions of these remain

relatively small suggesting that the large values of the MSE are due to a few outliers. The

large MSE of the regularized estimators can be explained by the fact that all eigenvalues

of K (in the population) are equal to each other and consequently the assumptions of

Proposition 3 are not satisfied. For PC, the cross-validation tends to select either very few

or a large number of principal components (see Table 2). In that latter case, the PC LIML

is close to the standard LIML estimator which is known for not having any moments. It

4. The optimal α for Tikhonov is searched over the interval [0.01,0.5] with 0.01 increment for Models
1 and Model 2. The range of values for the number of iterations for LF is from 1 to 10 times the number
of instruments and for the number of principal components is from 1 to the number of instruments.
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is important to note that the MSE is sensitive to the starting values used for computing

ν . For some starting values, explosive behaviors will appear more frequently yielding

larger MSE. However, the other statistics reported in the table are not very sensitive to the

starting values. We see that HHN standard errors for LIML give an excellent coverage

for moderately large values of L (L≤ 50) but this coverage deteriorates as L grows much

larger.

Now, we turn to Model 2 which is a factor model. From Table 3, we see that there is

no clear dominance among the regularized LIML as they all perform very well. Standard

LIML is also very good. From Table 4, we can observe that PC selects three principal

components in average corresponding to the three factors.

We conclude this section by summarizing the Monte Carlo results. LIML based

estimators have smaller bias than 2SLS based methods. Selection methods as DN are

recommended when the rank ordering of the strength of the instruments is clear, other-

wise regularized methods are preferable. Among the three regularizations, LLIML and

TLIML have smaller bias and better coverage than PLIML in absence of factor structure.

Overall, TLIML performs the best across the different values of L. It seems to be the

most reliable method.

1.6 Empirical applications

1.6.1 Returns to Schooling

A motivating empirical example is provided by the influential paper of Angrist and

Krueger (1991). This study has become a benchmark for testing methodologies con-

cerning IV estimation in the presence of many (possibly weak) instrumental variables.

The sample drawn from the 1980 U.S. Census consists of 329,509 men born between

1930-1939. Angrist and Krueger (1991) estimate an equation where the dependent vari-

able is the log of the weekly wage, and the explanatory variable of interest is the number

of years of schooling. It is obvious that OLS estimate might be biased because of the
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Table 1.I: Simulation results of Model 1 with R2
f = 0.1, n = 500.

T2SL L2LS P2LS D2LS IV TLIML LLIML PLIML DLIML LIML
L=15 Med.bias 0.099 0.096 0.112 0.128 -0.006 -0.001 -0.001 0.015 0.011 -0.002

Med.abs 0.109 0.115 0.141 0.146 0.087 0.103 0.102 0.103 0.101 0.104
Disp 0.290 0.297 0.372 0.346 0.347 0.390 0.386 0.378 0.380 0.385
MSE 0.023 0.023 0.059 0.042 0.019 0.024 0.025 0.023 0.023 0.024
Cov 0.840 0.843 0.837 0.805 0.946 0.953 0.953 0.928 0.929 0.950

L=30 Med.bias 0.172 0.165 0.174 0.219 0.006 0.010 0.011 0.040 0.050 0.010
Med.abs 0.173 0.165 0.202 0.237 0.091 0.107 0.110 0.110 0.115 0.108

Disp 0.264 0.277 0.453 0.457 0.355 0.412 0.421 0.409 0.409 0.413
MSE 0.039 0.038 3.682 907.31 0.020 0.030 0.033 0.031 0.032 0.029
Cov 0.594 0.643 0.725 0.673 0.952 0.955 0.950 0.892 0.899 0.951

L=50 Med.bias 0.237 0.226 0.214 0.257 -0.004 -0.004 0.000 0.079 0.105 0.001
Med.abs 0.237 0.226 0.252 0.285 0.089 0.124 0.126 0.136 0.152 0.123

Disp 0.235 0.259 0.581 0.590 0.353 0.470 0.489 0.477 0.515 0.492
MSE 0.061 0.058 1.794 4.946 0.020 0.039 0.045 0.050 0.427 0.040
Cov 0.300 0.406 0.688 0.639 0.951 0.960 0.955 0.866 0.849 0.957

L=400 Med.bias 0.411 0.380 0.314 0.373 0.006 0.030 0.018 0.287 0.382 0.212
Med.abs 0.411 0.380 0.449 0.594 0.092 0.249 0.264 0.370 0.486 0.428

Disp 0.128 0.177 2.291 3.116 0.342 1.110 1.231 1.198 1.719 4.373
MSE 0.171 0.150 763.56 224.83 0.021 6.9e+20 3.1e+23 1.0e+30 Inf 8.7e+27
Cov 0.000 0.001 0.752 0.795 0.961 0.927 0.948 0.798 0.792 0.838

L=520 Med.bias 0.426 0.418 0.353 0.449 -0.007 0.080 0.106 0.347 0.450 0.594
Med.abs 0.426 0.418 0.494 0.608 0.098 0.287 0.267 0.431 0.526 0.954

Disp 0.114 0.123 2.361 2.951 0.365 1.247 1.053 1.357 1.526 54.807
MSE 0.184 0.178 34.68 639.34 0.021 6.115 4.5e+21 3.1e+29 Inf 6.9e+29
Cov 0.000 0.000 0.743 0.740 0.961 0.912 0.895 0.803 0.778 0.435

NB: We report Median Bias (Med.Bias), Median Absolute deviation (Med.abs), the difference between
the 0.1 and 0.9 quantiles (Disp) of the distribution of each estimator, the mean square error (MSE) and the
coverage rate (Cov) of a nominal 95% confidence interval. We report results for regularized 2SLS: T2SLS
(Tikhonov), L2SLS (Landweber Fridman), P2SLS (Principal component), the unfeasible instrumental
variable regression (IV), regularized LIML: TLIML (Tikhonov), LLIML (Landweber Fridman), PLIML
(Principal component), Donald and Newey’s (2001) LIML (DLIML), and finally the LIML with HHN
standard errors.
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Table 1.II: Properties of the distribution of the regularization parameters Model 1
T2SL L2LS P2LS D2LS TLIML LLIML PLIML DLIML

L=15 Mean 0.437 18.118 8.909 10.021 0.233 32.909 13.053 14.223
sd 0.115 12.273 3.916 3.995 0.085 9.925 2.463 1.460
q1 0.410 11.000 6.000 7.000 0.170 26.000 12.000 14.000
q2 0.500 15.000 9.000 11.000 0.210 31.000 14.000 15.000
q3 0.500 21.000 12.000 14.000 0.270 37.000 15.000 15.000

L=30 Mean 0.486 11.963 10.431 11.310 0.421 26.584 22.636 25.283
sd 0.060 11.019 7.660 8.634 0.091 9.299 7.160 6.303
q1 0.500 6.000 4.000 4.000 0.360 20.000 18.000 24.000
q2 0.500 9.000 9.000 9.000 0.460 25.000 25.000 28.000
q3 0.500 14.000 15.000 17.000 0.500 31.000 29.000 30.000

L=50 Mean 0.493 10.127 11.911 13.508 0.492 20.146 26.210 29.362
sd 0.044 13.632 11.605 13.943 0.031 7.537 14.197 16.864
q1 0.500 4.000 4.000 3.000 0.500 15.000 15.000 13.000
q2 0.500 7.000 8.000 8.000 0.500 19.000 26.000 33.000
q3 0.500 11.000 16.000 19.000 0.500 24.000 38.000 46.000

L=400 Mean 0.500 8.581 9.412 6.580 0.500 5.091 15.633 13.063
sd 0.000 10.174 20.114 15.373 0.000 3.071 26.556 25.520
q1 0.500 1.000 1.000 1.000 0.500 3.000 1.000 1.000
q2 0.500 4.000 2.000 1.000 0.500 5.000 4.000 3.000
q3 0.500 13.000 7.000 4.000 0.500 7.000 14.000 10.000

L=520 Mean 0.326 747.443 22.783 23.297 0.326 736.191 31.248 30.903
sd 0.197 1385.074 87.568 92.740 0.197 1368.495 95.671 99.198
q1 0.110 73.000 1.000 1.000 0.110 73.000 1.000 1.000
q2 0.430 153.500 1.000 1.000 0.430 152.000 3.000 3.000
q3 0.500 522.500 7.000 5.000 0.500 513.500 14.000 10.000
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Table 1.III: Simulations results of Model 2, n = 500
T2SL L2LS P2LS D2LS IV TLIML LLIML PLIML DLIML LIML

L=15 Med.bias 0.001 0.001 0.001 0.003 0.001 0.000 0.000 0.000 0.000 -0.000
Med.abs 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.018

Disp 0.068 0.068 0.068 0.068 0.067 0.068 0.068 0.068 0.068 0.069
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.951 0.951 0.951 0.943 0.952 0.951 0.951 0.951 0.953 0.946

L=30 Med.bias 0.001 0.001 0.001 0.006 0.001 0.000 0.001 0.001 0.002 0.000
Med.abs 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.017 0.018 0.018

Disp 0.067 0.067 0.067 0.066 0.067 0.067 0.067 0.067 0.067 0.066
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.963 0.961 0.964 0.949 0.958 0.962 0.964 0.965 0.962 0.958

L=50 Med.bias 0.000 0.000 0.000 0.004 0.001 -0.000 -0.001 -0.001 0.001 -0.001
Med.abs 0.017 0.017 0.017 0.018 0.017 0.017 0.017 0.017 0.018 0.017

Disp 0.065 0.065 0.065 0.066 0.065 0.065 0.065 0.065 0.066 0.067
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cov 0.955 0.954 0.954 0.945 0.950 0.954 0.953 0.953 0.957 0.952

NB: We report Median Bias (Med.Bias), Median Absolute deviation (Med.abs), the difference
between the 0.1 and 0.9 quantiles (Disp) of the distribution of each estimator, the mean square
error (MSE) and the coverage rate (Cov) of a nominal 95% confidence interval. We report re-
sults for regularized 2SLS: T2SLS (Tikhonov), L2SLS (Landweber Fridman), P2SLS (Principal
component), the unfeasible instrumental variable regression (IV), regularized LIML: TLIML
(Tikhonov), LLIML (Landweber Fridman), PLIML (Principal component), Donald and Newey’s
(2001) LIML (DLIML) and finally the LIML with HHN standard errors.
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Table 1.IV: Properties of the distribution of the regularization parameters Model 2
T2SL L2LS P2LS D2LS TLIML LLIML PLIML DLIML

L=15 Mean 0.330 149.673 3.012 9.936 0.157 149.853 3.012 13.076
sd 0.085 2.608 0.109 1.203 0.114 1.861 0.109 1.985
q1 0.290 150.000 3.000 9.000 0.030 150.000 3.000 11.000
q2 0.345 150.000 3.000 10.000 0.170 150.000 3.000 14.000
q3 0.390 150.000 3.000 11.000 0.260 150.000 3.000 15.000

L=30 Mean 0.493 299.992 3.011 13.881 0.257 300.000 3.011 24.046
sd 0.036 0.253 0.114 2.105 0.192 0.000 0.114 4.092
q1 0.500 300.000 3.000 12.000 0.040 300.000 3.000 22.000
q2 0.500 300.000 3.000 12.000 0.290 300.000 3.000 23.000
q3 0.500 300.000 3.000 16.000 0.450 300.000 3.000 28.000

L=50 Mean 0.499 448.503 3.010 13.931 0.305 483.828 3.010 26.343
sd 0.014 54.664 0.100 0.908 0.204 35.748 0.100 7.897
q1 0.500 411.000 3.000 14.000 0.070 496.000 3.000 22.000
q2 0.500 463.000 3.000 14.000 0.410 500.000 3.000 23.000
q3 0.500 500.000 3.000 14.000 0.500 500.000 3.000 29.000

endogeneity of education. Angrist and Krueger (1991) propose to use the quarters of

birth as instruments. Because of the compulsory age of schooling, the quarter of birth

is correlated with the number of years of education, while being exogenous. The rel-

ative performance of LIML on 2SLS, in presence of many instruments, has been well

documented in the literature (DN, Anderson et al. (2010), and Hansen et al. (2008)). We

are going to compute the regularized version of LIML and compare it to the regularized

2SLS in order to show the empirical relevance of our method.

We use the model of Angrist and Krueger (1991):

logw = α +δeducation+β
′
1Y +β

′
2S+ ε

where logw = log of weekly wage, education = year of education, Y = year of birth

dummy (9), S = state of birth dummy (50). The vector of instruments Z = (1,Y,S,Q,Q∗

Y,Q∗S) includes 240 variables.

Table 1.V reports schooling coefficients generated by different estimators applied to
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Table 1.V: Estimates of the returns to education
OLS 2SLS T2SLS L2SLS P2SLS

0.0683 (0.0003) 0.0816 (0.0106) 0.1237 (0.0482) 0.1295 (0.0309) 0.1000 (0.0411)
α= 0.00001 Nb of iterations 700 Nb of eigenfunctions 81

LIML TLIML LLIML PLIML
0.0918 (0.021) 0.1237 (0.0480) 0.1350 (0.0312) 0.107 (0.0184)

α= 0.00001 Nb of iterations 700 Nb of eigenfunctions 239

NB: Standard errors are in parentheses. For LIML, HHN standard errors are given in parentheses. The
concentration parameter is equal to 208.61.

the Angrist and Krueger data along with their standard errors 5 in parentheses. Table

1.V shows that all regularized 2SLS and LIML estimators based on the same type of

regularization give close results. The coefficients we obtain by regularized LIML are

slightly larger than those obtained by regularized 2SLS suggesting that these methods

provide an extra bias correction, as observed in our Monte Carlo simulations. Note that

the bias reduction obtained by regularized LIML compared to standard LIML comes at

the cost of a larger standard error. Among the regularizations, PC gives estimators which

are quite a bit smaller than T and LF. However, we are suspicious of PC because there is

no factor structure here.

1.6.2 Elasticity of Intertemporal Substitution

In macroeconomics and finance, the elasticity of intertemporal substitution (EIS) in

consumption is a parameter of central importance. It has important implications for

the relative magnitudes of income and substitution effects in the intertemporal con-

sumption decision of an investor facing time varying expected returns. Campbell and

Viceira (1999) show that when the EIS is less (greater) than 1, the investor’s optimal

consumption-wealth ratio is increasing (decreasing) in expected returns.

Yogo (2004) analyzes the problem of EIS using the linearized Euler equation. He

explains how weak instruments have been the source for an empirical puzzle namely

that, using conventional IV methods, the estimated EIS is significantly less than 1 but its

5. Our standard errors are not robust to heteroskedasticity.
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reciprocal is not different from 1. In this subsection, we follow one of the specifications

in Yogo (2004) using quarterly data from 1947.3 to 1998.4 for the United States and

compare all the estimators considered in the present paper. The estimated models are

given by the following equation:

∆ct+1 = τ +ψr f ,t+1 +ξt+1

and the "reverse regression":

r f ,t+1 = µ +
1
ψ

∆ct+1 +ηt+1

where ψ is the EIS, ∆ct+1 is the consumption growth at time t + 1, r f ,t+1 is the real

return on a risk free asset, τ and µ are constants, and ξt+1 and ηt+1 are the innovations

to consumption growth and asset return, respectively.

Yogo (2004) use four instruments: the twice lagged, nominal interest rate (r), in-

flation (i), consumption growth (c) and log dividend-price ratio (p). This set of in-

struments is denoted Z = [r, i,c, p]. Yogo (2004) argues that the source for the empir-

ical puzzle mentioned earlier is weak instruments. To strengthen the instruments, we

increase the number of instruments from 4 to 18 by including interactions and power

functions. The 18 instruments used in our regression are derived from Z and are given

by 6 II = [Z,Z.2,Z.3,Z(:,1) ∗Z(:,2),Z(:,1) ∗Z(:,3),Z(:,1) ∗Z(:,4),Z(:,2) ∗Z(:,3),Z(:

,2) ∗ Z(:,4),Z(:,3) ∗ Z(:,4)]. As a result, the concentration parameters increase in the

following way:

Table 1.VI: Concentration parameter µ
2
n for the reduce form equation.

L = 4 L = 18
1/ψ 9.66 33.54

ψ 11.05 68.77

6. Z.k = [Zk
i j] , Z(:,k) is the kth column of Z and Z(:,k) ∗ Z(:, l) is a vector of interactions between

columns k and l.
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According to Hansen et al. (2008), p. 403, the concentration parameter is a better

indication of the potential weak instrument problem than the F−statistic. They argue

on p. 404 that "the use of LIML or FULL with the CSE and the asymptotically nor-

mal approximation should be adequate in situations where the concentration parameter

is around 32 or greater". Since the increase of the number of instruments improves effi-

ciency and regularized 2SLS and LIML correct for the bias due to the many instrument

problem, we expect to obtain reliable point estimates. Interestingly, the point estimates

obtained by T and LF regularized estimators are very close to each other and are close

to those used for macro calibrations (EIS equal to 0.71 in our estimations and 0.67 in

Castro et al. (2009)). Moreover, the results of the two equations are consistent with each

other since we obtain the same value for ψ in both equations. PC seems to take too many

factors, and did not perform well, this is possibly due to the absence of factor structure.

Table 1.VII: Estimates of the EIS
2SLS (4 instr) 2SLS (18 instr) T2SLS L2SLS P2SLS

ψ 0.0597 0.1884 0.71041 0.71063 0.1696
(0.0876) (0.0748) (0.423) ( 0.423) (0.084)

α = 0.01 Nb of iterations 1000 Nb of PC 11
1/ψ 0.6833 0.8241 1.406 1.407 0.7890

(0.4825) (0.263) (0.839) (0.839) (0.357)
α = 0.01 Nb of iterations 1000 Nb of PC 17

LIML (4 instr) LIML (18 instr) TLIML LLIML PLIML
ψ 0.0293 0.2225 0.71041 0.71063 0.1509

(0.0994) ( 0.156) (0.424) ( 0.423) (0.111)
α = 0.01 Nb of iterations 1000 Nb of PC 8

1/ψ 34.1128 4.4952 1.407 1.4072 3.8478
(112.7122) (4.421) (0.839) (0.839) (3.138)

α = 0.01 Nb of iterations 1000 Nb of PC 17

NB: For LIML with 18 instruments, HHN standard errors are given in parentheses. For the regularized
estimators, we provide the heteroskedasticity robust standard errors in parentheses.

1.7 Conclusion

In this paper, we propose a new estimator which is a regularized version of LIML

estimator. We allow for a finite and infinite number of moment conditions. We show
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theoretically that regularized LIML improves upon regularized 2SLS in terms of smaller

leading terms of the MSE. All the regularization methods involve a tuning parameter

which needs to be selected. We propose a data-driven method for selecting this pa-

rameter and show that this selection procedure is optimal. Moreover, we prove that the

regularized LIML estimators have finite moments. Our simulations show that the lead-

ing regularized estimators (LF and T of LIML) are nearly median unbiased and dominate

regularized 2SLS and standard LIML in terms of MSE.

We restrict our work in this paper to the estimation and asymptotic properties of

regularized LIML with many strong instruments. One possible topic for future research

would be to extend these results to the case of weak instruments as in Hansen et al.

(2008). Another interesting topic is the use of our regularized LIML or 2SLS for infer-

ence when facing many instruments or a continuum of instruments. This would enable

us to compare our inference results with those of Hansen et al. (2008) and Newey and

Windmeijer (2009).
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1.8 Appendix

1.8.1 Proofs

Proof of Proposition 1

To prove this proposition, we first need the following lemmas.

Lemma 1 (Lemma A.4 of DN)

If Â P→ A and B̂ P→ B. A is positive semi definite and B is positive definite, τ0 =

argminτ1=1
τ ′Aτ

τ ′Bτ
exists and is unique (with τ = (τ1,τ

′
2)
′ and τ1 ∈ R) then

τ̂ = argminτ1=1
τ ′Âτ

τ ′B̂τ
→ τ0.

Lemma 2. Under the assumptions of Proposition 1, we have

ε
′Pα

ε = Op(1/α).

Proof of Lemma 2.

Let Ω be the n×n diagonal matrix with ith diagonal element σ
2
i and λmax (Ω) be the

largest eigenvalue of Ω (which is equal to the largest σ
2
i )

E
(
ε
′Pα

ε|X
)

= tr
(
PαE

(
εε
′|X
))

= tr (Pα
Ω)

≤ λmax (Ω) tr (Pα)

≤ C∑
j

q j.

Hence by Markov’s inequality, ε
′Pα

ε = Op

(
∑

j
q j

)
= Op (1/α) . This completes the

proof of Lemma 2.

Pα is a symmetric idempotent matrix for SC but not idempotent for T and LF.
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We want to show that δ̂ → δ as n and nα
1
2 go to infinity.

We know that

δ̂ = argminδ

(y−Wδ )′Pα(y−Wδ )

(y−Wδ )′(y−Wδ )

= argminδ

(1,−δ ′)Â(1,−δ ′)′

(1,−δ ′)B̂(1,−δ ′)′

where Â = W̄ ′PαW̄/n, B̂ =
W̄ ′W̄

n
and W̄ = [y,W ] =WD0 + εe, where D0 = [δ0 , I], δ0 is

the true value of the parameter and e is the first unit vector.

In fact

Â = W̄ ′PαW̄/n (1.6)

=
D′0W ′PαWD0

n
+

D′0W ′Pαεe
n

+
e′ε ′PαWD0

n
+

e′ε ′Pαεe
n

. (1.7)

Let us define gn =
1
n

n

∑
i=1

Z(.;xi)Wi, g = EZ(.;xi)Wi and
〈
g,g′

〉
K is a p× p matrix with (a,

b) element equal to
〈
K−

1
2 E(Z(.,xi)Wia),K−

1
2 E(Z(.,xi)Wib)

〉
where Wia is the ath element

of the Wi vector.

D′0W ′PαWD0

n
= D′0

〈
(Kα

n )
− 1

2 gn,(Kα
n )
− 1

2 g′n
〉
D0

= D′0
〈
Fg,Fg′

〉
D0 +op(1)

P→ D′0
〈
Fg,Fg′

〉
D0

as n and nα
1
2 go to infinity and α→ 0, see the proof of Proposition 1 of Carrasco (2012).

We also have by Lemma 3 of Carrasco (2012):
D′0W ′Pαεe

n
= D′0

〈
(Kα

n )
− 1

2 gn,(Kα
n )
− 1

2
1
n

n

∑
i=1

Z(.;xi)εi
〉
e = op(1),

e′ε ′PαWD0

n
= e′

〈
(Kα

n )
− 1

2
1
n

n

∑
i=1

Z(.;xi)εi,(Kα
n )
− 1

2 g′n
〉
D0 = op(1),
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e′ε ′Pαεe
n

= e′
〈
(Kα

n )
− 1

2
1
n

n

∑
i=1

Z(.;xi)εi,(Kα
n )
− 1

2
1
n

n

∑
i=1

Z(.;xi)ε
′
i
〉
e = op(1).

We can then conclude that Â P→ A = D′0
〈
Fg,Fg′

〉
D0 as n and nα

1
2 go to infinity and

α → 0 and

B̂ P→ B = E(W̄iW̄ ′i )

by the law of large numbers with W̄i = [yi W ′i ]
′.

The LIML estimator is given by

δ̂ = argminδ

(1,−δ ′)Â(1,−δ ′)′

(1,−δ ′)B̂(1,−δ ′)′
,

so that it suffices to verify the hypotheses of Lemma 1.

For τ = (1,−δ
′)

τ
′Aτ = τ

′D′0
〈
Fg,Fg′

〉
D0τ (1.8)

= (δ0−δ )
〈
Fg,Fg′

〉
(δ0−δ )′ (1.9)

Because
〈
Fg,Fg′

〉
is positive definite, we have τ

′Aτ ≥ 0, with equality if and only if

δ = δ0. Also, for any τ = (τ1,τ
′
2)
′ 6= 0 partitioned conformably with (1,δ ′), we have

τ
′Bτ = E[(τ1yi +W ′i τ2)

2] (1.10)

= E[(τ1εi +( fi +ui)
′(τ1δ0 + τ2))

2] (1.11)

= E[(τ1εi +u′i(τ1δ0 + τ2))
2]+ (τ1δ0 + τ2)

′H(τ1δ0 + τ2) (1.12)

Then by H =E
(

fi f ′i
)

nonsingular τ
′Bτ > 0 for any τ with τ1δ0+τ2 6= 0. If τ1δ0+τ2 = 0

then τ1 6= 0 and hence τ
′Bτ = τ

2
1 σ

2 > 0. Therefore B is positive definite. It follows that

δ = δ0 is the unique minimum of
τ ′Aτ

τ ′Bτ
.

Now by Lemma 1, we can conclude that δ̂
P→ δ0 as n and nα

1
2 go to infinity.
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Proof of asymptotic normality:

Let A(δ ) = (y−Wδ )′Pα(y−Wδ )/n , B(δ ) = (y−Wδ )′(y−Wδ )/n and Λ(δ ) =
A(δ )
B(δ )

. We know that the LIML is δ̂ = argminΛ(δ ).

The gradient and Hessian are given by

Λδ (δ ) = B(δ )−1[Aδ (δ )−Λ(δ )Bδ (δ )],

Λδδ (δ ) = B(δ )−1[Aδδ (δ )−Λ(δ )Bδδ (δ )]−B(δ )−1[Bδ (δ )Λ
′
δ
(δ )−Λδ (δ )B

′
δ
(δ )].

Then by a standard mean-value expansion of the first-order conditions Λδ (δ̂ ) = 0,

we have
√

n(δ̂ −δ0) =−Λ
−1
δδ
(δ̃ )
√

nΛδ (δ0)

where δ̃ is the mean-value. Because δ̂ is consistent, δ̃
P→ δ0.

It then follows that B(δ̃ ) P→ σ
2
ε , Bδ (δ̃ )

P→ −2σuε , Λ(δ̃ )
p→ 0, Λδ (δ̃ )

P→ 0 where

σuε =E(uiεi) and Bδδ (δ̃ )= 2W ′W/n P→ 2E(WiW ′i ), Aδδ (δ̃ )= 2W ′PαW/n P→ 2
〈
Fg,Fg′

〉
.

So that σ̃
2
Λδδ (δ̃ )/2 P→

〈
Fg,Fg′

〉
with σ̃

2 = ε
′
ε/n.

By Lemma 2, we have ε
′Pα

ε/
√

n = Op(1/(α
√

n)) = op(1).

−
√

nσ̃
2
Λδ (δ0)/2 =

W ′Pαε√
n
− ε ′Pαε√

n
W ′ε
ε ′ε

=
W ′Pαε√

n
+op(1)

d→N
(

0,
〈

Fg,
(

FK̃F∗
)

Fg′
〉)

.

To obtain the asymptotic normality, note that

W ′Pαε√
n

=

〈
(Kα

n )
−1 gn,

∑
n
i=1 Zi (.,xi)εi√

n

〉
(1.13)

=

〈
K−1g,

∑
n
i=1 Zi (.,xi)εi√

n

〉
+

〈
(Kα

n )
−1 gn−K−1g,

∑
n
i=1 Zi (.,xi)εi√

n

〉
(1.14)

Moreover, {Zi (.,xi)εi} is iid with E ‖Zi (.,xi)εi‖2 <∞ (because E
(
ε

2
i |xi
)

is bounded and

K is nuclear). It follows from van der Vaart and Wellner (1996), p.50 that
n

∑
i=1

Z(.;xi)εi/
√

n
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converges in L2 (π) to a mean zero Gaussian process with covariance operator K̃. Hence,

〈
K−1g,

∑
n
i=1 Zi (.,xi)εi√

n

〉
d→ N

(
0,
〈

K−1g, K̃K−1g
〉)

.

As g belongs to the range of K, Lemma 3 of Carrasco (2012) implies that
∥∥∥(Kα

n )
−1 gn−K−1g

∥∥∥ P→

0 and hence the second term of the r.h.s. of (1.14) is op (1). This concludes the proof of

Proposition 1.
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Proof of Proposition 2

Lemma 3. Let v = u− εφ
′. Under the assumptions of Proposition 2, we have

v′Pα
ε = Op

(
1√
α

)
.

Proof of Lemma 3. Using the spectral decomposition of Pα , we have v′Pα
ε =

1
n ∑

j
q j
(
v′ψ j

)(
ε
′
ψ j
)

(v′Pα
ε)2 =

1
n2 ∑

j,l
q jql(v′ψ j)(ε

′
ψ j)(v′ψl)(ε

′
ψl)

=
1
n2 ∑

j,l
q jql

(
∑

i
viψ ji

)(
∑
b

vbψlb

)

×
(

∑
c

εcψ jc

)(
∑
d

εdψld

)
.

Using the fact that E (εi) = E (vi) = E (εivi) = 0 and that the eigenvectors are orthonor-

mal, i.e. ∑
i

ψliψ ji/n = 1 if l = j and 0 otherwise, we have

E
[
(v′Pα

ε)2]= 1
n2 ∑

j,l
q jql ∑

i
E
(
v2

i ε
2
i
)

ψ
2
jiψ

2
li +∑

j
q2

jE
(
v2

i
)

E
(
ε

2
i
)(∑i ψ2

ji

n

)2

. (1.15)

As ψ
2
li is summable, it is bounded, hence ∑

i
E
(
v2

i ε
2
i
)

ψ
2
jiψ

2
li/n <C and the first term on

the r.h.s of (1.15) is negligible with respect to the second. By Markov inequality,

v′Pα
ε = Op

(∑
j

q2
j

)1/2
= Op

(
1/
√

α
)
.

This completes the proof of Lemma 3.

The proof of the consistency is the same as that of Proposition 1.

Now
〈
Fg,Fg′

〉
= H = E

(
fi f ′i
)

because by assumption ga = E(Z(.,xi) fia) belongs
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to the range of K. Let L2(Z) be the closure of the space spanned by {Z(x,τ),τ ∈ I}

and g1 be an element of this space. If fi ∈ L2(Z) we can compute the inner product

and show that
〈
ga,gb

〉
K = E( fia fib) by applying Theorem 6.4 of Carrasco, Florens, and

Renault (2007). For the asymptotic normality, the beginning of the proof is the same.

Let φ̂ =
W ′ε
ε ′ε

, φ =
σuε

σ2
ε

and v = u−εφ
′. We have v′Pα

ε/
√

n = Op(1/
√

nα) = op(1) by

Lemma 3. Moreover, φ̂ −φ = Op(1/
√

n) by the Central limit theorem and delta method

so that (φ̂ −φ)ε ′Pα
ε/
√

n = Op(1/nα) = op(1) by Lemma 2.

Furthermore, f ′ (I−Pα)ε/
√

n=Op(∆
2
α)= op(1) by Lemma 5(ii) of Carrasco (2012)

with ∆α = tr( f ′ (I−Pα)2 f/n).

−
√

nσ
2
ε Λδ (δ0)/2 = (W ′Pα

ε− ε
′Pα

ε
W ′ε
ε ′ε

)/
√

n (1.16)

= ( f ′ε− f ′ (I−Pα)ε + v′Pα
ε− (φ̂ −φ)ε ′Pα

ε)/
√

n (1.17)

= f ′ε/
√

n+op(1)
d→N (0,σ2

ε H). (1.18)

The conclusion follows from Slutzky’s theorem. Note that because v′Pα
ε/
√

n=Op(1/
√

nα),

we get a faster rate for α in the homoskedastic case than in the heteroskedastic case. The

proof in the heteroskedastic case relies on ε
′Pα

ε/
√

n = Op(1/α
√

n).

Proof of Proposition 3

We want to prove that the regularized LIML estimators have finite moments. These

estimators are defined as follow 7:

δ̂ = (W ′ (Pα −να In)W )−1W ′ (Pα −να In)y

where να = min
δ

(y−Wδ )′Pα(y−Wδ )

(y−Wδ )′(y−Wδ )
and Pα = T (Kα

n )
−1T ∗.

The following lemma will be useful in the remaining of the proof.

7. Let g and h be two p vectors of functions of L2(π). By a slight abuse of notation,
〈
g,h′

〉
denotes

the matrix with elements
〈
ga,hb

〉
, a,b = 1, ..., p
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Lemma 4. Under the assumptions of Proposition 3, we have

να = Op

(
1

nα

)
.

Proof of Lemma 4.

να =
(y−W δ̂ )′Pα(y−W δ̂ )

(y−W δ̂ )′(y−W δ̂ )
.

Using y−W δ̂ = ε−W
(

δ̂ −δ0

)
and the consistency of δ̂ , we have

(y−W δ̂ )′(y−W δ̂ )

n
=

ε ′ε

n
+op (1) = Op (1) .

Moreover, by Lemma 2, ε
′Pα

ε = Op (1/α). It follows that

(y−W δ̂ )′Pα(y−W δ̂ )

= ε
′Pα

ε +
(

δ̂ −δ0

)′
W ′PαW

(
δ̂ −δ0

)
+2
(

δ̂ −δ0

)′
W ′Pα

ε

= ε
′Pα

ε +Op

(
1
n

)
= Op (1/α)

where the second equality follows from the proof of Proposition 1 in Carrasco (2012).

The result of Lemma 4 follows.

Let us define Ĥ =W ′ (Pα −να In)W and N̂ =W ′ (Pα −να In)y thus

δ̂ = Ĥ−1N̂.

If we denote W v = (W1v,W2v, ...,Wnv)
′, Ĥ is a p× p matrix with a typical element

Ĥvl = ∑
j
(q j−να)

〈
W v, ψ̂ j

〉〈
W l, ψ̂ j

〉
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and N̂ is a p×1 vector with a typical element

Nl = ∑
j
(q j−να)

〈
y, ψ̂ j

〉〈
W l, ψ̂ j

〉
.

By the Cauchy-Schwarz inequality and because |να | ≤ 1, |q j| ≤ 1, we can prove that

|Ĥvl| ≤ 2‖W l‖‖W v‖ and |Nl| ≤ 2‖y‖‖W l‖.

Under our assumptions, all the moments (conditional on X) of W and y are finite, we can

conclude that all elements of Ĥ and N̂ have finite moments.

The ith element of δ̂ is given by:

δ̂i =
p

∑
j=1
|Ĥ|−1co f (Ĥi j)N j

where co f (Ĥi j) is the signed cofactor of Ĥi j, N j is the jth element of N̂ and | . | denotes

the determinant.

| δ̂i |r≤ |Ĥ|−r|
p

∑
j=1

co f (Ĥi j)N j|r

Let α1 > α2 be two regularization parameters. It turns out that Pα1 −Pα2 is semi

definite negative and hence 0≤ να1 ≤ να2 . This will be used in the proof. 8

We want to prove that |Ĥ| ≥ |S| where S is a positive definite p× p matrix to be

specified later on. The first step consists in showing that Pα −ν α

2
In is positive definite.

8. Note that if the number of instruments is smaller than n we can compare ν obtained with Pα replaced
by P, the projection matrix on the instruments, and να . It turns out that Pα −P is definite negative for
fixed α and hence 0≤ να ≤ ν as in Fuller (1977).
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Let us consider x ∈ Rn. We have

x′
(

Pα −ν α

2
In

)
x = ∑

j
(q j−ν α

2
)
〈
x,ψ j

〉′ 〈x,ψ j
〉

= ∑
j
(q j−ν α

2
) ‖
〈
x,ψ j

〉
‖2

= ∑
j,q j>ν α

2

(q j−ν α

2
) ‖
〈
x,ψ j

〉
‖2 (1)

+ ∑
j,q j≤ν α

2

(q j−ν α

2
) ‖
〈
x,ψ j

〉
‖2 . (2)

For a given α , q j is a decreasing function of j because λ j is decreasing in j. Hence,

there exists j∗α such that q j ≥ ν α

2
for j ≤ j∗α and q j < ν α

2
for j > j∗α and

x′
(

Pα −ν α

2
In

)
x = ∑

j≤ j∗α

(q j−ν α

2
) ‖
〈
x,ψ j

〉
‖2 (1)

+ ∑
j> j∗α

(q j−ν α

2
) ‖
〈
x,ψ j

〉
‖2 . (2)

The term (1) is positive and the term (2) is negative. As n increases, α decreases and

q j increases for any given j. On the other hand, when n increases and nα → ∞, ν α

2

decreases by Lemma 3. It follows that j∗α increases when n goes to infinity.

Consequently, the term (2) goes to zero as n goes to infinity. Indeed, when j∗α goes

to infinity, we have∣∣∣∣∣∣ ∑
j> j∗α,

(q j−ν α

2
) ‖
〈
x,ψ j

〉
‖2

∣∣∣∣∣∣≤ ∑
j> j∗α

‖
〈
x,ψ j

〉
‖2= op(1).

We can conclude that for n sufficiently large, j∗α is sufficiently large for (2) to be smaller

in absolute value than (1) and hence x′
(

Pα −ν α

2
In

)
x > 0.
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Denote S = (ν α

2
−να)W ′W we have

Ĥ = W ′ (Pα −να In)W

= W ′
(

Pα −ν α

2
In

)
W +(ν α

2
−να)W ′W

= W ′
(

Pα −ν α

2
In

)
W +S.

Hence,

|Ĥ| = |W ′
(

Pα −ν α

2
In

)
W +S|

= |S||Ip +S−1/2W ′
(

Pα −ν α

2
In

)
WS−1/2|

≥ |S|.

For n large but finite, ν α

2
−να > 0 and |S|> 0. As in Fuller (1977) using James (1954),

we can show that the expectation of the inverse 2rth power of the determinant of S exists

and is bounded for n greater than some number n(r), since S is expressible as a product

of multivariate normal r.v.. Thus, we can apply Lemma B of Fuller (1977) and conclude

that the regularized LIML has finite rth moments for n sufficiently large but finite. At the

limit when n is infinite, the moments exist by the asymptotic normality of the estimators

established in Proposition 2.

Proof of Proposition 4

To prove this proposition, we need some preliminary result. To simplify, we omit the

hats on λ j and φ j and we denote Pα and q(α,λ j) by P and q j in the sequel.

Lemma 5: Let Λ̃ = ε
′Pε/(nσ

2
ε ) and Λ̂ = Λ(δ̂ ) with Λ(δ ) =

(y−Wδ )′P(y−Wδ )

(y−Wδ )′(y−Wδ )
.

If the assumptions of Proposition 4 are satisfied, then

Λ̂ = Λ̃− (σ̂2
ε /σ

2
ε −1)Λ̃− ε

′ f ( f ′ f )−1 f ′ε/2nσ
2
ε + R̂Λ

= Λ̃+op(1/nα),

√
nR̂Λ = op(ρα,n),
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where ρα,n = trace(S(α)).

Proof of Lemma 5: It can be shown similarly to the calculations in Proposition 1

that Λ(δ ) is three times continuously differentiable with derivatives that are bounded in

probability uniformly in a neighborhood of δ0. For any δ̃ between δ0 and δ̂ , Λδδ (δ̃ ) =

Λδδ (δ0)+Op(1/
√

n). It implies that

δ̂ = δ0 +[Λδδ (δ0)]
−1

Λδ (δ0)+Op(1/n).

Then expanding Λ(δ̂ ) around δ0 gives

Λ̂ = Λ(δ0)− (δ̂ −δ0)
′
Λδδ (δ0)(δ̂ −δ0)/2+Op(1/n3/2) (1.19)

= Λ(δ0)−Λδ (δ0)
′[Λδδ (δ0)]

−1
Λδ (δ0)/2+Op(1/n3/2). (1.20)

As in proof of Proposition 1 and in Lemma A.7 of DN

−
√

nσ̂
2
ε Λδ (δ0)/2 = h+Op(∆

1/2
α +

√
1/nα) with h = f ′ε/n. Moreover,

σ̂
2
ε Λδδ (δ0)/2 = H̄ +Op(∆

1/2
α +

√
1/nα).

And by combining these two equalities, we obtain

Λδ (δ0)
′[Λδδ (δ0)]

−1
Λδ (δ0) = h′H̄−1h/(nσ

2
ε )+Op(∆

1/2
α /n+

√
1/(n3α)).

Note also that

Λ(δ0) = (σ2
ε /σ̂

2
ε )Λ̃ = Λ̃− (σ̂2

ε /σ
2
ε −1)Λ̃+ Λ̃(σ̂2

ε −σ
2
ε )

2/(σ̂2
ε σ

2
ε ) (1.21)

= Λ̃− (σ̂2
ε /σ

2
ε −1)Λ̃+Op(

√
1/n3α). (1.22)
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ραn = tr(S(α)) (1.23)

= tr
(

σ
2
ε H̄−1

[
Σv

tr(P2)

n
+

f ′(I−P)2 f
n

]
H̄−1

)
(1.24)

= tr
(

σ
2
ε H̄−1[Σv

tr(P2)

n
]H̄−1

)
+ tr

(
σ

2
ε H̄−1

[
f ′(I−P)2 f

n

]
H̄−1

)
(1.25)

= Op(1/nα)+∆α . (1.26)

We then have that
√

n
√

1/(n3α) = o(ραn) and
√

n∆
1/2
α /n = o(ραn). Using this and

combining equations give

Λ̂ = Λ̃− (σ̂2
ε /σ

2
ε −1)Λ̃− ε

′ f ( f ′ f )−1 f ′ε/2nσ
2
ε + R̂Λ

and
√

nR̂Λ = op(ρα,n).

By using Λ̃ = Op(1/nα), it is easy to prove that Λ̂ = Λ̃+op(1/nα) .

Lemma 6: If the assumptions of Proposition 4 are satisfied, then

i) u′Pu− Λ̃Σu = op(1/nα),

ii) E(hΛ̃ε
′v/
√

n|X) = (tr(P)/n)∑
i

fiE(ε2
i v′i|xi)/n+O(1/(n2

α)),

iii) E(hh′H̄−1h/
√

n|X) = O(1/n).

Proof of Lemma 6: For the proof of i), note that E(Λ̃|X) = tr(PE(ε ′ε))/nσ
2
ε =

tr(P)/n. Similarly, we have E(u′Pu|X) = tr(P)Σu and by Lemma 5 (iv) of Carrasco

(2012) using ε in place of u we have

E[(Λ̃− tr(P)/n)2|X ] = [σ4
ε tr(P)2 +o(tr(P)2)]/(n2

σ
4
ε )− (tr(P)/n)2 = o((tr(P)/n)2).

Thus, (Λ̃− tr(P)/n)Σu = op(tr(P)/n) = op(1/nα) by Markov’s inequality. And u′Pu−
tr(P)

n
Σu = op(1/nα) such that u′Pu− Λ̃Σu = op(1/(nα)).
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To show ii) we can notice that

E(hΛ̃ε
′v/
√

n|X) = E(hε
′Pεε

′v/(nσ
2
ε

√
n)|X) (1.27)

= ∑
i, j,k,l

E( fiεiε jPjkεkεlv′2l σ
2
ε )|X) (1.28)

= ∑
i

fiPiiE(ε4
i v′i|xi)/n2

σ
2
ε +2∑

i 6= j
fiPi jE(ε2

j v′j|x j)/n2 (1.29)

+ ∑
i6= j

fiPj jE(ε2
i vi|xi)/n2 (1.30)

= O(1/n)+(tr(P)/n)∑
i

fiE(ε2
i v′i|xi)/n. (1.31)

This is true because E(ε4
i v′i|xi) and E(ε2

i v′i|xi) are bounded by Assumption 2 hence

f ′Pµ/n is bounded for µi = E(ε4
i v′i|xi) and µi = E(ε2

i v′i|xi).

For iii)

E(hh′H̄−1h/
√

n|X) = ∑
i, j,k

E( fiεiε j f ′jH̄
−1 fkεk|X)/n2 (1.32)

= ∑
i

E(ε3
i |xi) fi f ′i H̄−1 fi/n2 (1.33)

= O(1/n). (1.34)

Now we turn to the proof of Proposition 4.

Proof of Proposition 4

Our proof strategy will be very close to those of Carrasco (2012) and DN. To obtain

the LIML, we solve the following first order condition

W ′P(y−W δ̂ )− Λ̂W ′(y−W δ̂ ) = 0

with Λ̂ = Λ(δ̂ ).

Let us consider
√

n(δ̂ −δ ) = Ĥ−1ĥ with Ĥ =W ′PW/n− Λ̂W ′W/n and

ĥ =W ′Pε/
√

n− Λ̂W ′ε/
√

n.
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As in Carrasco (2012), we are going to apply Lemma A.1 of DN 9.

ĥ = h+
5

∑
j=1

T h
j +Zh with h = f ′ε/

√
n,

T h
1 =− f ′(I−P)ε/

√
n = Op(∆

1/2
α )

T h
2 = v′Pε/

√
n = Op(

√
1/nα), T h

3 =−Λ̃h′ = O(1/nα), T h
4 =−Λ̃v′ε/

√
n = Op(1/nα),

T h
5 = h′H̄−1hσuε/2

√
nσ

2
ε = Op(1/

√
n),

Zh =−R̂ΛW ′ε/
√

n− (Λ̂− Λ̃− R̂Λ)
√

n(W ′ε/n−σ
′
uε) where R̂Λ is defined in Lemma 4.

By using the central limit theorem on
√

n(W ′ε/n−σ
′
uε) and Lemma 4, Zh = O(ρnα).

The results on the order of T h
j hold by Lemma 5 of Carrasco (2012).

We also have

Ĥ = H̄ +
3

∑
j=1

T H
j +ZH ,

T H
1 =− f ′(I−P) f/n = Op(∆α), T H

2 = (u′ f + f ′u)/n = Op(1/
√

n),

T H
3 =−Λ̃H̄ = Op(1/nα),

ZH = u′Pu/n− Λ̃Σu− Λ̂W ′W/n+ Λ̃(H̄ +Σu)−u′(I−P) f/n− f ′(I−P)u/n.

By Lemma 5, u′Pu/n− Λ̃Σv = op(1/nα). Lemma 5 (ii) of Carrasco (2012) implies

u′(I−P) f/n = O(∆
1/2
α /
√

n) = op(ρnα). By the central limit theorem, W ′W/n = H̄ +

Σu +Op(1/
√

n). Moreover,

Λ̂W ′W/n− Λ̃(H̄ +Σu) = (Λ̂− Λ̃)W ′W/n+ Λ̃(W ′W/n− H̄−Σu)

= op(1/nα)+Op(1/nα)Op(1/
√

n) = op(ρnα)

thus, ZH = o(ρnα).

We apply Lemma A.1 of DN with T h =
5

∑
j=1

T h
j , T H =

3

∑
j=1

T H
j ,

ZA = (
5

∑
j=3

T h
j )(

5

∑
j=3

T h
j )
′+(

5

∑
j=3

T h
j )(T

h
1 +T h

2 )
′+(T h

1 +T h
1 )(

5

∑
j=3

T h
j )
′,

9. The expression of T h
5 , Zh and ZH below correct some sign errors in DN.
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and

Â(α)= hh′+
5

∑
j=1

hT h′
j +

5

∑
j=1

T h
j h′+(T h

1 +T h
2 )(T

h
1 +T h

2 )
′−hh′H̄−1

3

∑
j=1

T H ′
j −

3

∑
j=1

T H
j H̄−1hh′.

Note that hT h′
3 −hh′H̄−1T H ′

3 = 0. Also we have E(hh′H̄−1(T H
1 +T H

2 )|X) =−σ
2
ε e f (α)+

O(1/n), E(T h
1 h′)=E(hT h′

1 )=−σ
2
ε e f (α), E(T h

1 T h′
1 )=σ

2
ε e2 f (α) where e f (α)=

f ′(I−P) f
n

and e2 f (α) =
f ′(I−P)2 f

n
. By Lemma 3 (ii) E(hT h′

4 |X) =
tr(P)

n ∑
i

fiE(ε2
i v′i|xi)/n+

O
(

1
n2α

)
.

By Lemma 5 (iv) of Carrasco (2012), with v in place of u and noting that σvε = 0,

we have

E(T h
2 T h′

2 |X) = σ
2
ε Σv

tr(P2)

n
,

E(hT h′
2 |X) = ∑

i
Pii fiE(ε2

i v′i|xi)/n.

By Lemma 5 (iii), E(hT h′
5 ) = Op(1/n).

For ξ̂ =∑
i

Pii fiE(ε2
i v′i|xi)/n− tr(P)

n ∑
i

fiE(ε2
i v′i|xi)/n−∑

i
Pii(1−Pii) fiE(ε2

i v′i|xi)/n, Â(α)

satisfies

E(Â(α)|X) = σ
2
ε H̄ +σ

2
ε Σv

tr(P2)

n
+σ

2
ε e2 f + ξ̂ + ξ̂

′+O(1/n).

We can also show that ‖T h
1 ‖‖T h

j ‖ = op(ρnα), ‖T h
2 ‖‖T H

j ‖ = op(ρnα) for each j and

‖T h
k ‖‖T

H
j ‖ = op(ρnα) for each j and k > 2. Furthermore ‖T H

j ‖2 = op(ρnα) for each

j. It follows that ZA = op(ρnα). Therefore, all conditions of Lemma A.1 of DN are

satisfied and the result follows by observing that E(ε2
i v′i|xi) = 0. This ends the proof of

Proposition 4.

To prove Proposition 5, we need to establish the following result.

Lemma 7 (Lemma A.9 of DN): If sup
α∈Mn

(|Ŝγ(α)−Sγ(α)|/Sγ(α))
P→ 0, then Sγ(α̂)/ inf

α∈Mn
Sγ(α)

P→

1 as n and nα → ∞.



49

Proof of Lemma 7: We have that inf
α∈Mn

Sγ(α) = Sγ(α
∗) for some α

∗ in Mn by the

finiteness of the index set for 1/α for SC and LF and by the compactness of the index

set for T. Then, the proof of Lemma 7 follows from that of Lemma A.9 of DN.

Proof of Proposition 5

We proceed by verifying the assumption of Lemma 7.

Let R(α) =
f ′γ (I−P)2 fγ

n
+σ

2
uγ

tr(P2)

n
be the risk approximated by R̂m(α), R̂cv(α), or

R̂lcv(α), and Sγ(α) = σ
2
ε

[
f ′γ (I−P)2 fγ

n
+σ

2
vγ

tr(P2)

n

]
. For notational convenience, we

henceforth drop the γ subscript on S and R. For Mallows Cp, generalized cross-validation

and leave one out cross-validation criteria, we have to prove that

sup
α∈Mn

(
|R̂(α)−R(α)|/R(α)

)
→ 0 (1.35)

in probability as n and nα → ∞.

To establish this result, we need to verify the assumptions of Li’s (1986, 1987) the-

orems. We treat separately the regularizations with a discrete index set and that with a

continuous index set.

Discrete index set:

SC and LF have a discrete index set in terms of 1/α .

We recall the assumptions of Li (1987) (A.1) to (A.3’) for m = 2.

(A.1) lim
n→∞

sup
α∈Mn

λ (P)< ∞ where λ (P) is the largest eigenvalue of P;

(A.2) E((uie)
8)< ∞;

(A.3’) inf
α∈Mn

nR(α)→ ∞.

(A.1) is satisfied because for every α ∈Mn, all eigenvalues {q j} of P are less than or

equal to 1.

(A.2) holds by our assumption 4 (i).
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For (A.3’), note that nR(α) = f ′γ (I−P)2 fγ +σ
2
uγ

tr(P2) = Op

(
nα

β +
1
α

)
.

Minimizing w.r. to α gives

α =

(
1

nβ

) 1
1+β

.

Hence, inf
α∈Mn

nR(α) ≈ nα
β → ∞, therefore the condition (A.3’) is satisfied for SC and

LF (and T also).

Note that Theorem 2.1 of Li (1987) use assumption (A.3) instead of (A.3’). However,

Corollary 2.1 of Li (1987) justifies using (A.3’) when P is idempotent which is the

case for SC. For LF, P is not idempotent, however the proof provided by Li (1987) still

applies. Given tr(P2) = Op

(
1
α

)
for LF, we can argue that for n large enough, there

exists a constant C such that

tr(P2)≥ C
n
,

hence Equation 2.6 of Li (1987) holds and Assumption (A.3) can be replaced by (A.3’).

The justification for replacing σ
2
uγ ε , σ

2
uγ

and σ
2
ε by their estimates in the criteria is the

same as in the proof of Corollary 2.2 in Li (1987).

For the generalized cross-validation, we need to verify the assumptions of Li’s (1987)

Theorem 3.2. that are recalled below.

(A.4) inf
α∈Mn

n−1∥∥ fγ −PWγ

∥∥→ 0;

(A5) For any sequence {αn ∈Mn} such that

1
n

tr(P2)→ 0,

we have
(
n−1tr(P)

)2
/(n−1tr(P2))→ 0;

(A.6) sup
α∈Mn

n−1tr(P)≤ γ1 for some 0 < γ1 < 1;

(A.7) sup
α∈Mn

(
n−1tr(P)

)2
/(n−1tr(P2))≤ γ2, for some 0 < γ2 < 1.

Assumption (A.4) holds for SC and LF from R(α) = En−1∥∥ fγ −PWγ

∥∥→ 0 as n and

nα go to infinity.
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Note that tr (P) = O
(
α
−1) and tr

(
P2) = O

(
α
−1) . So that n−1tr(P2)→ 0 if and

only if nα → ∞. Moreover
1
n
(tr(P))2/tr(P2) = O(1/nα)→ 0 as nα → ∞. This proves

Assumption (A.5) for SC and LF.

Now we turn our attention to Assumptions (A.6) and (A.7). By Lemma 4 of Carrasco

(2012), we know that tr(P)≤C1/α and tr(P2)≤C2/α. To establish Assumptions (A.6)

and (A.7), we restrict the set Mn to the set Mn =
{

α : α >C/n with C > max(C1,C2
1/C2)

}
.

This is not very restrictive since α has to satisfy nα → ∞. It follows that

sup
α∈Mn

tr(P)/n = sup
α>C/n

tr(P)/n≤ C1

C
< 1,

sup
α∈Mn

1
n
(tr(P))2/tr(P2) = sup

α>C/n

1
n
(tr(P))2/tr(P2)≤

C2
1

CC2
< 1.

Thus, Assumptions (A.6) and (A.7) hold.

In the case of leave-one-out cross-validation criterion, we need to verify the assump-

tions of Theorem 5.1 of Li (1987). Assumption (A.1) to (A.4) still hold as before.

Assumptions (A.8), (A.9), and (A.10) hold by Assumption 4 (iii) to (v) of this paper,

respectively. This ends the proof of (1.35) for SC and LF.

Continuous index set

The T regularization is a case where the index set is continuous. We apply Li’s (1986)

results on the optimality of Mallows Cp in the ridge regression. We need to check the

Assumption (A.1) of Theorem 1 in Li (1986). (A.1) inf
α∈Mn

nR(α)→ ∞ holds using the

same proof as for SC and LF. It follows that (1.35) holds for T under Assumption 4 (i’).

We have proved that (1.35) holds for the various regularizations. We proceed to

check the condition of Lemma 7. First note that, given σ
2
ε 6= 0, R(α)≤CSγ(α)/σ

2
ε . To

see this, replace R(α) and Sγ(α) by their expressions in function of
f ′γ (I−P)2 fγ

n
and
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use the fact that σ
2
uγ
> σ

2
vγ

and take C = σ
2
uγ
/σ

2
vγ
. Now we have

|Ŝγ(α)−Sγ(α)| = σ
2
ε

∣∣∣∣∣
(

R̂(α)−
σ̂2

uγ ε

σ̂2
ε

tr(P2)

n

)
−

(
σ

2
vγ

tr(P2)

n
+

f ′γ (I−P)2 fγ

n

)∣∣∣∣∣
= σ

2
ε

∣∣∣∣∣R̂(α)−
f ′γ (I−P)2 fγ

n
−

(
σ

2
vγ
+

σ̂2
uγ ε

σ̂2
ε

)
tr(P2)

n

∣∣∣∣∣
= σ

2
ε

∣∣∣∣∣R̂(α)−R(α)+σ
2
uγ

tr(P2)

n
−

(
σ

2
vγ
+

σ̂2
uγ ε

σ̂2
ε

)
tr(P2)

n

∣∣∣∣∣
≤ σ

2
ε

∣∣R̂(α)−R(α)
∣∣+σ

2
ε

∣∣∣∣∣
(

σ̂2
uγ ε

σ̂2
ε

−
σ2

uγ ε

σ2
ε

)
tr(P2)

n

∣∣∣∣∣ .
Using Sγ(α)≥ σ

2
ε σ

2
vγ

tr(P2)

n
and R(α)≤CSγ(α)/σ

2
ε , we have

|Ŝγ(α)−Sγ(α)|
Sγ(α)

≤C
|R̂(α)−R(α)|

R(α)
+
|

σ̂2
uγ ε

σ̂2
ε

−
σ2

uγ ε

σ2
ε

|
σ2

vγ

.

It follows from (1.35) and Assumption 4(ii) that sup
α∈Mn

|Ŝγ(α)−Sγ(α)|/Sγ(α)→ 0. The

optimality of the selection criteria follows from Lemma 7. This ends the proof of Propo-

sition 5.



CHAPTER 2

EFFICIENT ESTIMATION WITH MANY WEAK INSTRUMENTS USING

REGULARIZATION TECHNIQUES

2.1 Introduction

The problem of weak instruments or weak identification has recently received con-

siderable attention 1 in both theoretical and applied econometrics. 2 Empirical examples

include Angrist and Krueger (1991) who measure return to schooling, Eichenbaum et al.

(1988) who consider consumption asset pricing models. Theoretical literature on weak

instruments includes papers by Staiger and Stock (1997), Zivot et al. (1998), Guggen-

berger and Smith (2005), Chao and Swanson (2005), Han and Phillips (2006), Hansen et

al. (2008), and Newey and Windmeijer (2009) among others 3. Staiger and Stock (1997)

proposed an asymptotic framework with local-to-zero parametrization of the coefficients

of the instruments in the first-stage regression. They show that with the number of in-

struments fixed, the two-stage least squares (2SLS) and limited information maximum

likelihood (LIML) estimators are not consistent and converge to nonstandard distribu-

tions. Subsequent work focused on situations where the number of instruments is large,

using an asymptotic framework that lets the number of instruments go to infinity as a

function of sample size. In these settings, the use of many moments can improve estima-

tor accuracy. Unfortunately, usual Gaussian asymptotic approximation can be poor and

IV estimators can be biased.

1. This chapter is a joint work with Marine Carrasco. Carrasco gratefully acknowledges financial
support from SSHRC.

2. Hahn and Hausman (2003) define weak instruments, by two features: (i) two-stage least squares
(2SLS) analysis is badly biased toward the ordinary least-squares (OLS) estimate, and alternative unbiased
estimators such as limited-information maximum likelihood (LIML) may not solve the problem; and (ii)
the standard (first-order) asymptotic distribution does not give an accurate framework for inference. Weak
instrument may also be an important cause of the finding that the often-used test of over identifying
restrictions (OID test) rejects too often.

3. Section 4 discusses related literature in more details.



54

Carrasco (2012) and Carrasco and Tchuente (2013) proposed respectively regular-

ized versions of 2SLS and LIML estimators for many strong instruments. The regular-

ization permits to address the singularity of the covariance matrix resulting from many

instruments. These papers use three regularization methods borrowed from inverse prob-

lem literature. The first estimator is based on Tikhonov (ridge) regularization, the second

estimator is based on an iterative method called Landweber-Fridman (LF), the third es-

timator is based on the principal components associated with the largest eigenvalues.

We extend these previous works to allow for the presence of a large number of weak

instruments or weak identification. We consider a linear model with homoskedastic

error and allow for weak identification as in Hansen et al. (2008) and Newey and Wind-

meijer (2009). This specification helps us to have different types of weak instruments

sequences, including the many instruments sequence of Bekker (1994) and the many

weak instruments sequence of Chao and Swanson (2005). We impose no condition on

the number of moment conditions since our framework allows for an infinite countable

or even a continuum of instruments. The advantage of regularization is that all avail-

able moments can be used without discarding any a priori. We show that regularized

2SLS and LIML are consistent in the presence of many weak instruments. If properly

normalized, the regularized 2SLS and LIML are asymptotically normal and reach the

semiparametric efficiency bounds. Therefore, their asymptotic variance is smaller than

that of Hansen et al. (2008) and Newey and Windmeijer (2009). All these methods

involve a regularization parameter, which is the counterpart of the smoothing parame-

ter that appears in the nonparametric literature. A data driven method was developed

in Carrasco (2012) and Carrasco and Tchuente (2013) to select the best regularization

parameter when the instruments are strong. We use these methods in our simulations

for selecting the regularization parameter when the instruments are weak but we do not

prove that these methods are valid in this case. A related paper is that of Hansen and

Kozbur (2014) who propose a regularized jackknife instrumental variables estimator in

a strong instruments setting where the design is not sparse.
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Our Monte Carlo experiment shows that the leading regularized estimators (LF and

T LIML) perform very well (are nearly median unbiased) even in the case of weak

instruments.

The paper is organized as follows. Section 2 introduces four regularization methods

we consider and the associated estimators. Section 3 derives the asymptotic properties

of the estimators. Section 4 discusses efficiency and related results. Section 5 presents

Monte Carlo experiments. Section 6 considers an application to the effect of social

infrastructure on per capita income. Section 7 concludes. The proofs are collected in

Appendix.

2.2 Presentation of the regularized 2SLS and LIML estimators

This section presents the weak instruments setup and the estimators used in this

paper. Estimators studied here are the regularized 2SLS and LIML estimators introduced

in Carrasco (2012) and Carrasco and Tchuente (2012). They can be used with many or

even a continuum of instruments. This work extends previous works by allowing for

weak instruments as in Hansen et al. (2008).

Our model is inspired by Hausman et al. (2012). The model is yi =W ′i δ0 + εi,

Wi = γi +ui,

i = 1,2, ....,n. The parameter of interest δ0 is a finite dimensional p×1 vector.

E(ui|xi) = E(εi|xi) = 0; E(ε2
i |xi) = σ

2
ε . yi is a scalar and xi is a vector of exogenous

variables. Some rows of Wi may be exogenous, with the corresponding rows of ui being

zero. γi = E(Wi|xi) is a p× 1 vector of reduced form values with E(γiεi) = 0. γi is

the optimal instrument which is typically unknown. The estimation is based on a set of

instruments Zi = Z(τ;xi), indexed by τ ∈ S. The index τ may be an integer or may take

its values in an interval. Examples of Zi are the following.
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- when xi is a large L×1 vector, then one can select Zi = xi. In this case, S = {1,2, ....L}

thus we have L instruments.

- assume that xi is a scalar and Z(τ;xi) = (xi)
τ−1 with τ ∈ S = N, we obtain an infinite

countable sequence of instruments.

- assume that xi is a vector and Z(τ;xi) = exp(iτ ′xi) where τ ∈ S = Rdim(xi), we obtain

a continuum of moment.

To simplify the presentation, we will present the estimators in the case where Zi

is a L× 1 vector of instruments where L is some large integer. The theoretical results

of Section 3 are proved for an arbitrary L which may be finite or infinite (case with a

countable sequence of or a continuum of instruments). In all cases, L does not depend on

n. The presentation of the estimators in the case with an infinite number of instruments

is left in Appendix A.

This model allows for γi to be a linear or a non linear combination of Zi. The model

also allows for γi to approximate the reduced form. For example, we could let γi be a

vector of unknown functions of xi and Zi could be power functions of xi or interactions

between elements of xi. Adding extra instruments is a way to boost the concentration

parameter as illustrated in the application in Section 6.

The estimate δ is based on the orthogonality condition.

E[(yi−W ′i δ )Zi] = 0

where the vector of instruments Zi has dimension L.

Let W =



W ′1

W ′2

.

.

W ′n


n× p and u =



u′1

u′2

.

.

u′n


n× p.

Let Z denote the n×L matrix having rows corresponding to Z′i . Denote ψ j the eigen-
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vectors of the n×n matrix ZZ′/n associated with eigenvalues λ j. Recall that two-stage

least squares (2SLS) and LIML estimators involve a projection matrix

P = Z
(
Z′Z
)−1 Z′.

The matrix Z′Z may become nearly singular when L gets large. Moreover, Z′Z is singu-

lar whenever L ≥ n. To cover these cases, we will consider a regularized version of the

inverse of the matrix Z′Z. For an arbitrary n×1 vector v, we define the n×n matrix Pα

as

Pαv =
1
n

n

∑
j=1

q
(
α,λ 2

j
)(

v′ψ j
)

ψ j

where q
(
α,λ 2

j
)

is a weight that takes different forms depending on the regularization

schemes. We consider three types of regularization:

– The Tikhonov (T) regularization: q
(
α,λ 2

j
)
=

λ 2
j

λ 2
j +α

.

– The Landweber-Fridman (LF) regularization: q(α,λ 2
j )= [1−(1−cλ

2
j )

1/α ], where

c is a constant such that 0 < c < 1/
∥∥Z′Z/n

∥∥2 and
∥∥Z′Z/n

∥∥ denotes the largest

eigenvalue of Z′Z/n.

– The Spectral Cut-off (SC): q(α,λ 2
j ) = I(λ 2

j ≥ α).

Note that all these regularization techniques involve a tuning parameter α . The case

α = 0 corresponds to the case without regularization, q
(
α,λ 2

j
)
= 1. Then, we obtain

P0 = P = Z
(
Z′Z
)−1 Z′.

Consider regularized k-class estimators defined as follows:

δ̂ν = (W ′(Pα −νIn)W )−1W ′(Pα −νIn)y.

where ν is either a constant term or a random variable. The case where ν = 0 corre-
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sponds to regularized 2SLS estimator studied in Carrasco (2012):

δ̂ = (W ′PαW )−1W ′Pαy

and the case ν = να = min
δ

(y−Wδ )′Pα(y−Wδ )

(y−Wδ )′(y−Wδ )
corresponds to the regularized LIML

studied in Carrasco and Tchuente (2012). We denote δ̂ the regularized 2SLS estimator

and δ̂L the regularized LIML estimators.

We study both 2SLS and LIML because LIML may have some advantages over

2SLS. For example when the number of instruments, L, increases with the sample size, n,

so that L/n→ c (with c constant), the standard 2SLS estimator is not consistent whereas

standard LIML estimator is consistent.

2.3 Asymptotic properties

Carrasco (2012) and Carrasco and Tchuente (2012) focused on strong instruments.

They found that regularized 2SLS and LIML estimators are asymptotically normal and

attain the semiparametric efficiency bound. Here, we extend Carrasco (2012) and Car-

rasco and Tchuente (2012) results to the case of many weak instruments.

The weakness of the instruments is measured by the concentration parameter. For

p = 1, the concentration parameter is equal to

CP =
∑

n
i=1 γ2

i

E
(
v2

i
) .

When the instruments are weak, CP converges to a constant and the parameter δ is not

identified. This is the weak IV described by Staiger and Stock (1997). This case is not

considered here. We will maintain the assumption that CP diverges. It may diverge at the

n rate (strong instruments) or at a slower rate (many weak IV asymptotics). By adding
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more instruments in the first stage equation:

W = ZΠ+V,

the concentration parameter

CP =
Π′Z′ZΠ

E
(
v2

i
)

does not decrease and actually increases if these instruments contain non trivial infor-

mation. Hence, adding more instruments is a way to boost the concentration parameter.

Where do you get these new instruments? If you already have exogenous instruments, it

is possible to interact them as it has been done for the estimation of return to schooling

(Angrist and Krueger (1991)) or take higher order power of the same instruments as in

Dagenais and Dagenais (1997). In the case of panel data, the use of lag variables is

usually a source of many instruments. We provide an empirical application of the use of

many weak instruments in Section 6.

Assumption 1:

(i) There exists a p× p matrix Sn = S̃ndiag(µ1n, ...,µpn) such that S̃n is bounded, the

smallest eigenvalue of S̃nS̃′n is bounded away from zero; for each j, either µ jn =
√

n

(strong identification) or µ jn/
√

n→ 0 (weak identification),

µn = min
1≤ j≤p

µ jn→ ∞ and α → 0.

(ii) There exists a function fi = f (xi) such that γi = Sn fi/
√

n and µnS−1
n → S0.

n

∑
i=1
‖ fi‖4 /n2→

0,
n

∑
i=1

fi f ′i /n is bounded and uniformly nonsingular.

These conditions allow for many weak instruments. If µ jn =
√

n this leads to asymp-

totic theory like in Kunitomo (1980), Morimune (1983), and Bekker (1994), but here we

use regularization parameter instead of having an increasing sequence of instruments.

For µ
2
n growing slower than n, the convergence rate will be slower that

√
n, leading to an

asymptotic approximation as that of Chao and Swanson (2007). This is the case where
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we have many instruments without strong identification. Assumption 1 also allows for

some components of the reduced form to give only weak identification (corresponding

to µ jn/
√

n→ 0 which allows the concentration parameter to grow slower than
√

n), and

other components (corresponding to µ jn =
√

n) to give strong identification for some

coefficients of the reduced form. In particular, this condition allows for fixed constant

coefficients in the reduced form. This specification of weak instruments can also be

viewed as a generalization of Chao and Swanson (2007) but differs from that of Antoine

and Lavergne (2012) who define the identification strength through the conditional mo-

ments that flatten as the sample size increases. To illustrate Assumption 1, let us consider

the following example.

Example 1: Assume that p = 2, S̃n =

 1 0

π21 1

, and µ jn =


√

n, j = 1

µn, j = 2
with µn/

√
n→ 0.

Then for f (xi) = ( f ′1i, f ′2i)
′ the reduced form is

γi =

 f1i

π21 f1i +
µn√

n
f2i

 .

We also have

µnS−1
n → S0 =

 0 0

−π21 1

 .

Assumption 2:

(i) The operator K is nuclear.

(ii) The ath row of γ , denoted γa, belongs to the closure of the linear span of {Z(.;x)}

for a = 1, ..., p.

(iii) E(Z(.,xi) fia) belong to the range of K.

Condition (i) refers to the covariance operator K defined in Appendix A. K is nuclear

provided its trace is finite, see for instance Carrasco et al. (2007a). This assumption is
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trivially satisfied if L is finite but may or may not be satisfied when L is infinite. This as-

sumption implies in particular that the smallest eigenvalues decrease to zero sufficiently

fast. For this to be true, the Zi have to be correlated with each other. If E
(
ZiZ′i

)
= IL as

in Assumption 5 of Newey and Windmeijer (2009), all the eigenvalues of the operator

K equal 1 and hence K is not nuclear when L goes to infinity. To see whether Condi-

tion (i) is realistic, we examine the properties of the sample counterpart of K, namely

Kn = Z′Z/n, in three applications: the return to schooling using 240 instruments from

Angrist and Krueger (1991) (see also Carrasco and Tchuente (2012)), the elasticity of

intertemporal substitution (see Carrasco and Tchuente (2012)), and the application on

the effect of institutions on growth (see Section 6 of this paper). In the table below, we

report the smallest eigenvalue, the largest eigenvalue, the condition number (which is

the ratio of the largest eigenvalue on the smallest eigenvalue) and the trace of Z′Z/n in

two cases: raw data and standardized instruments. In the standardized case, the instru-

ments are divided with their standard deviation. This standardization has no impact on

2SLS and LIML estimators which are scale invariant. However, our estimators are not

scale invariant and standardization may improve the results. Such standardizations are

customary whenever regularizations are used, see for instance De Mol et al. (2008) and

Stock and Watson (2012). We observe that in all applications, the smallest eigenvalue is

close to zero so the instruments are strongly correlated 4. The condition number - which

is scale invariant - is an indicator on how ill-posed the matrix Kn is. The higher the

condition number, the more imprecise the inverse of Kn will be. The smallest possible

condition number is 1 (which corresponds to the identity matrix). Here, the condition

numbers are all very large which suggests that regularization will be helpful to improve

the reliability of the estimate of K−1. The trace of Kn appears to be finite throughout the

applications.

4. A word of caution: when the number of instruments is large enough relative to the sample size, the
sample covariance matrix Z′Z/n will be near singular or singular which does not mean that the smallest
eigenvalue of K is not bounded away from 0 in the population. Moreover, eigenvalues are not scale
invariant.
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Table 2.I: Properties of Z′Z/n
Largest

eigenvalue
Smallest

eigenvalue
Condition
number Trace

Angrist and Krueger 1.35 0.0000107 126168.22 5.05
Angrist and Krueger

standardized 5.93 0.0012 4941.66 244.47

EIS 1550 1.41×10−13 1.09929×1016 1550
EIS standardized 11.8 2.35×10−5 5.06×105 11.89

Institutions 474×107 9.47×10−6 5.00528×1014 4.78×109

Institutions standardized 28.9 0.000116 249137.93 43.58

Condition (ii) guarantees that the optimal instrument f can be approached by a se-

quence of instruments. It is similar to Assumption 4 in Hansen et al. (2008). Condition

(iii) is a technical assumption which can also be found in Carrasco (2012). Assumptions

2(ii) and (iii) are needed only for efficiency.

Proposition 6. (Asymptotic properties of regularized 2SLS with many weak instruments)

Assume {yi;Wi;xi} are iid, E(ε2
i |X) = σ

2
ε , α goes to zero as n goes to infinity. More-

over, Assumptions 1 and 2 are satisfied. Then, the T, LF, and SC estimators of 2SLS

satisfy:

1. Consistency: S′n(δ̂ −δ0)/µn→ 0 in probability as n, nα
1
2 and µn go to infinity.

2. Asymptotic normality:

S′n(δ̂ −δ0)
d→N

(
0,σ2

ε

[
E( fi f ′i )

]−1
)

as n, nα and µn go to infinity, where E( fi f ′i ) is a nonsingular p× p matrix.

Proof In Appendix.

The first point of Proposition 1 implies the consistency of the estimator, namely

(δ̂ − δ0)→ 0 (see the proof of Theorem 1 in Hansen and Kozbur (2014)). Moreover,

Proposition 1 shows that the three estimators have the same asymptotic distribution.

Instead of restricting the number of instruments (which may be very large or infinite),

we impose restrictions on the regularization parameter which goes to zero. This insures
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us that all available and valid instruments are used in an efficient way even if they are

weak. To obtain consistency, the condition on α is nα
1
2 go infinity, whereas for the

asymptotic normality, we need nα go to infinity. This means that α is allowed to go

to zero at a slower rate. However, this rate does not depend on the weakness of the

instruments.

Interestingly, our regularized 2SLS estimators reach the semiparametric efficiency

bound. This result will be further discussed in Section 4.

We are now deriving the asymptotic properties of the regularized LIML with many

weak instruments.

Proposition 7. (Asymptotic properties of regularized LIML with many weak instru-

ments)

Assume {yi;Wi;xi} are iid, E(ε2
i |X) = σ

2
ε , E

(
ε

4
i |X
)
< ∞, E

(
u4

bi|X
)
< ∞, α goes to

zero as n goes to infinity. Moreover, Assumptions 1 and 2 are satisfied. Then, the T, LF,

and SC estimators of LIML with weak instruments satisfy:

1. Consistency: S′n(δ̂L−δ0)/µn→ 0 in probability as n, µn and µ
2
n α go to infinity.

2. Asymptotic normality:

S′n(δ̂L−δ0)
d→N

(
0,σ2

ε

[
E( fi f ′i )

]−1
)

as n, µn and µ
2
n α go to infinity where E( fi f ′i ) is a nonsingular p× p matrix.

Proof In Appendix.

Again, Proposition 1 implies the consistency of the estimator, namely (δ̂ −δ0)→ 0.

Interestingly we obtain the same asymptotic distribution as in the many strong instru-

ments case (with a slower rate of convergence). We also find the same speed of conver-

gence as in Hansen et al. (2008) and Newey and Windmeijer (2009). For the consistency

and asymptotic normality, µ
2
n α needs to go to infinity, which means that the regulariza-

tion parameter should go to zero at a slower rate than the concentration parameter. The

asymptotic variance of regularized LIML corresponds to the lower bound and is smaller

than that obtained in Hansen et al. (2008). We believe that the reason, why Hansen et al.
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(2008) obtain a larger asymptotic variance than us, is that they use the number of instru-

ments as regularization parameter. As a result, they can not let L grow fast enough to

reach efficiency. Our estimator involves the extra tuning parameter α which is selected

so that extra terms in the variance vanish asymptotically. Moreover, we assume that the

set of instruments is sufficiently rich to span the optimal instrument (Assumption 2(ii)).

Example 1:(cont)

S′n(δ̂ −δ0) =

 √n[(δ̂1−δ01)+π21(δ̂2−δ02)]

µn(δ̂2−δ02)

 is jointly asymptotically normal.

The linear combination (δ̂1−δ01)+π21(δ̂2−δ02) converges at rate
√

n. This is the /co-

efficient of fi1 in the reduced form equation for yi. And the estimator of the coefficients

δ2 of Wi2 variables converges at rate
1
µn

.

Now, as in Newey and Windmeijer (2009), we consider a t-ratios for a linear com-

bination c′δ of the parameter of interest. The following proposition is a corollary of

Proposition 6 and 7.

Proposition 8. Under the assumptions of Proposition 2 and if we assume that there

exist rn, c and c∗ 6= 0 such that rnS−1
n c→ c∗ and S′nΦ̂Sn/n→ Φ in probability with

Φ = σ
2
ε

[
E( fi f ′i )

]−1.

Then,
c′(δ̂L−δ0)√

c′Φ̂c
d→N (0,1)

as n and µ
2
n α go to infinity.

This result allows us to form confidence intervals and test statistics for a single linear

combination of parameters in the usual way.
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2.4 Efficiency and Related Literature

2.4.1 Efficiency

If the optimal instrument γi were known, the estimator would be solution of

1
n

n

∑
i=1

γi
(
yi−W ′i δ

)
= 0.

Hence,

δ̂ =

(
n

∑
i=1

γiW ′i

)−1 n

∑
i=1

γiyi,

δ̂ −δ0 =

(
n

∑
i=1

γiW ′i

)−1 n

∑
i=1

γiεi

=

(
Sn

∑
n
i=1 fi f ′i

n
S′n +Sn

∑
n
i=1 fiui√

n

)−1

Sn
∑

n
i=1 fiεi√

n
,

Sn

(
δ̂ −δ0

)
=

(
∑

n
i=1 fi f ′i

n
+

∑
n
i=1 fiui√

n
S′−1

n

)−1
∑

n
i=1 fiεi√

n
d→N

(
0,σ2

ε

[
E
(

fi f ′i
)]−1

)
.

So the lowest asymptotic variance that can be obtained is σ
2
ε

[
E
(

fi f ′i
)]−1

. We will refer

to this as the semiparametric efficiency bound 5.

In Carrasco (2012, Section 2.4), it was shown that the regularized 2SLS estimator

coincides with a 2SLS estimator that uses a specific nonparametric estimator, γ̂i, of γi :

δ̂ =

(
n

∑
i=1

γ̂
′
iWi

)−1 n

∑
i=1

γ̂
′
i yi.

5. We do not provide a formal proof that this bound is the semiparametric bound. This proof is beyond
the scope of the present paper. We refer the interested readers to Newey (1990), Newey (1993), and
Chamberlain (1992).
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This may explain why for the regularized 2SLS estimator, the conditions on α are not

related to µn whereas, in the case of LIML, the rate of convergence of α depends on how

weak the instruments are.

2.4.2 Related Literature

In the literature on many weak instruments, the asymptotic behavior of estimators

depends on the relation between the number of moment conditions L and sample size n.

For the CUE, L and n need to satisfy L2/n→ 0 for consistency and L3/n→ 0 for asymp-

totic normality. Under homoskedasticity, Andrews and Stock (2005) require L2/n→ 0.

Hansen, Hausman, and Newey (2008) allowed L to grow at the same rate as n, but re-

stricted L to grow slower than the square of the concentration parameter, for the consis-

tency of LIML and FULL. Andrews and Stock (2006) require L3/n→ 0 when normality

is not imposed.

Caner and Yildiz (2012) in a recent work consider a Continuous Updating Estima-

tor (CUE) with many weak moments under nearly singular design. They show that the

nearly singular design affects the form of asymptotic covariance matrix of the estimator

compared to that of Newey and Windmeijer (2009). Our work is also related to Haus-

man et al. (2011) who modify the continuous updating estimator (CUE) by introducing

two tuning parameters which perform a Tikhonov-type regularization. They show that

their estimator has finite moments when the regularization parameters are positive. On

the other hand, their estimator is shown to be asymptotically equivalent to the conven-

tional CUE under many weak asymptotics when the regularization parameters go to

zero. There are two main differences with our approach. First, they introduce two tun-

ing parameters instead of one. Second, they restrict the number of moments as in Newey

and Windmeijer (2009), whereas we allow for the number of instruments to exceed the

sample size.

Belloni et al. (2012b) propose to use an alternative regularization named lasso in

the IV context. This regularization imposes a l1 type penalty on the first stage coeffi-
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cient. Assuming that the first stage equation is approximately sparse, they show that the

postlasso estimator reaches the asymptotic efficiency bound.

Just as 2SLS is not consistent if L is too large relative to n, LIML estimator is not

feasible if L > N because the matrix Z′Z is not invertible. Therefore, some form of

regularization needs to be implemented to obtain consistent estimators when the num-

ber of instruments is really large. Regularization has also the advantage to deliver an

asymptotically efficient estimator.

Table 2.II gives an overview of the assumptions used in the main papers on many

weak instruments.

Table 2.II: Comparison of different IV asymptotics
Number of instruments Extra assumptions

Conventional Fixed L
Phillips (1989) Fixed L, Cov(W,x) = 0
Staiger and Stock (1997) Fixed L, Cov(W,x) = O(n−1/2)
Bekker (1994) L/n→ c < 1, µ

2
n = O(n)

Han and Phillips (2006) L→ ∞ and
L

ncn
→ c

cn µn constant or zero

Chao and Swanson (2005)
L
µ2

n
→ 0 or

L1/2

µ2
n
→ 0

Hansen et al. (2008) (I)
L
µ2

n
bounded or (II)

L
µ2

n
→ ∞ ∑ziz′i/n nonsingular

Newey and Windmeijer (2009) L→ ∞,
L
µ2

n
bounded,

L3

n
→ 0

Carrasco (2012) No condition on L, possibly continuum Compactness of
strong instruments covariance matrix

Belloni et al. (2012) log(L) = o(n1/3), Approximately sparse
strong instruments first stage equation

2.5 Monte Carlo study

We now carry out a Monte Carlo simulation for the simple linear IV model where

the disturbances and instruments have a Gaussian distribution and the instruments are

independent from each other as in Newey and Windmeijer (2009). The parameters of
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this experiment are the correlation coefficient ρ between the structural and reduced form

errors, the concentration parameter (CP), and the number of instruments L.

The data generating process is given by:

yi =W ′i δ0 + εi,

Wi = x′iπ +ui,

εi = ρui +
√

1−ρ2vi,

ui ∼N (0,1), vi ∼N (0,1), xi ∼N (0, IL)

π =

√
CP
Ln

ιL

where ιL is an L-vector of ones. The sample size is n = 500. The instruments are Zi = xi

and the number of instruments L equals 30 and 50. Note that this setting is not favorable

for us because the eigenvalues of the matrix Z′Z/n are all equal to 1. If L were infinite,

the matrix Z′Z/n would become an infinite dimensional identity matrix which is not

nuclear. Therefore, our basic assumption of compactness of the operator K would not

satisfied if we would let L go to infinity. However, here L being no larger than 50, K is

nuclear.

In the simulations, ρ = 0.5 and δ0 = 0.1. The values of CP equal 8, 35, and 65.

The estimators we proposed in this paper depend on a regularization (smoothing)

parameter α that needs to be selected. In the simulations, we use a data-driven method

for selecting α based on an expansion of the MSE and proposed in Carrasco (2012) and

Carrasco and Tchuente (2012). These selection criteria were derived assuming strong

instruments and may not be valid in presence of weak instruments. Providing a robust to

weak instruments selection procedure is beyond the scope of this paper.

We report the median bias (Med.bias), the median of the absolute deviation of the

estimator from the true value (Med.abs), the difference between the 0.1 and 0.9 quantiles
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(dis) of the distribution of each estimator, and the coverage rate (Cov.) of a nominal 95%

confidence interval for unfeasible instrumental variable regression (IV), regularized two-

stage least squares (T2SLS (Tikhonov), L2SLS (Landweber Fridman), P2SLS (Principal

component)), LIML and regularized LIML (TLIML (Tikhonov), LLIML (Landweber

Fridman), PLIML (Principal component)) and Donald and Newey’s (2001) 2SLS and

LIML (D2SLS and DLIML). For confidence intervals, we compute the coverage prob-

abilities using the following estimate of asymptotic variance as in Donald and Newey

(2001) and Carrasco (2012).

V̂ (δ̂ ) =
(y−W δ̂ )′(y−W δ̂ )

n

(
Ŵ ′W−1)−1

Ŵ ′Ŵ
(
W ′Ŵ

)−1

where Ŵ = PαW for 2SLS and Ŵ = (Pα −νIn)W for LIML. Note that the formulaes for

the confidence intervals is the same as for strong instruments (see Carrasco and Tchuente

(2012)).

Table 2.III reports simulation results. We use different strength (measured by the

concentration parameter) of instruments and number of instruments. We investigate the

case of very weak instruments for example, when CP = 8 and L = 50, the first stage

F-statistic equals
CP
L

+1 = 1.16.

We observe that

(a) The performances of the regularized estimators increase with the strength of in-

struments but decrease with the number of instruments. Providing regularization pa-

rameter selection procedure robust to weak instruments would certainly improve these

results.

(b) The bias of regularized LIML is quite a bit smaller than that of regularized 2SLS.

(c) The bias of our regularized estimators are smaller than those of the correspond-

ing Donald and Newey’s estimators. On the other hand, DN estimator has often better

coverage.



70

Table 2.III: Simulations results for regularized 2SLS and LIML with L =30 and 50; CP
= 8, 35 and 65 ; n = 500; 1000 replications.

T2SLS L2SLS P2SLS D2SLS IV TLIML LLIML PLIML DLIML
L=30
CP=8 Med.bias 0.3909 0.3825 0.3271 0.3520 -0.0325 0.0559 0.0648 0.3228 0.3513

Med.abs 0.3909 0.3825 0.4947 0.5372 0.2337 0.4286 0.4243 0.4511 0.4598
Disp 0.3690 0.4148 2.5366 2.8523 1.0464 2.3226 2.1875 1.4859 1.6547
Cov 0.2550 0.3170 0.7570 0.7710 0.9600 0.9300 0.9230 0.8030 0.7930

CP=35 Med.bias 0.2276 0.2211 0.2245 0.2540 -0.0099 -0.0127 -0.0071 0.0858 0.1125
Med.abs 0.2276 0.2211 0.2623 0.2846 0.1099 0.1499 0.1434 0.1652 0.1785

Disp 0.2990 0.3124 0.6175 0.6887 0.4200 0.6014 0.6237 0.6382 0.6592
Cov 0.4860 0.5220 0.7100 0.6540 0.9660 0.9580 0.9570 0.8590 0.8470

CP=65 Med.bias 0.1499 0.1443 0.1548 0.1905 -0.0097 -0.0076 -0.0050 0.0194 0.0178
Med.abs 0.1499 0.1446 0.1826 0.2065 0.0836 0.0987 0.0955 0.0972 0.1016

Disp 0.2500 0.2538 0.4139 0.4502 0.3231 0.3822 0.3870 0.3825 0.3755
Cov 0.6480 0.6810 0.7560 0.6900 0.9560 0.9670 0.9670 0.9130 0.9090

L=50
CP=8 Med.bias 0.4220 0.4155 0.3969 0.4103 0.0044 0.0865 0.1483 0.3860 0.4096

Med.abs 0.4220 0.4155 0.5418 0.5984 0.2450 0.4988 0.4697 0.4730 0.5230
Disp 0.2999 0.3468 2.4463 2.8784 1.0486 2.7924 2.8911 1.5870 1.7716
Cov 0.0650 0.1420 0.7450 0.7670 0.9520 0.9160 0.9240 0.7960 0.8030

CP=35 Med.bias 0.2865 0.2761 0.2654 0.2789 0.0056 0.0105 0.0123 0.1475 0.2113
Med.abs 0.2865 0.2761 0.2961 0.3243 0.1117 0.1719 0.1796 0.2103 0.2495

Disp 0.2359 0.2624 0.8402 1.1239 0.4450 0.7549 0.7242 0.7554 0.8485
Cov 0.1670 0.2410 0.6730 0.6360 0.9530 0.9520 0.9520 0.8420 0.7920

CP=65 Med.bias 0.2155 0.2080 0.2020 0.2448 0.0036 0.0051 0.0059 0.0695 0.0789
Med.abs 0.2155 0.2080 0.2214 0.2701 0.0829 0.1054 0.1129 0.1212 0.1250

Disp 0.2228 0.2413 0.4840 0.5105 0.3169 0.4208 0.4085 0.4261 0.4568
Cov 0.3170 0.3650 0.6840 0.6450 0.9590 0.9520 0.9510 0.8520 0.8450
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(d) LF LIML and T-LIML estimators have very low median bias even in the case of

relatively weak instruments (CP = 8).

(e) The coverage of our estimators deteriorates when the instruments are weak.

2.6 Empirical application: Institution and Growth

This section revisits Hall and Jones (1999) empirical work. Hall and Jones (1999)

argue that the difference between output per worker across countries is mainly due to the

differences in institution and government policies - the so-called social infrastructure.

They write "Countries with corrupt government officials, severe impediments to trade,

poor contract enforcement, and government interference in production will be unable to

achieve levels of output per worker anywhere near the norms of western Europe, northern

America, and eastern Asia." To quantify the effect of social infrastructure on per capita

income, they use two-stage least squares (2SLS) with four instruments: the fraction

of population speaking English at birth (EnL), the fraction of population speaking one

of the five major European languages at birth (EuL), the distance from the equator 6

(latitude , Lt) and Romer and Frankel (1999) geography-predicted trade intensity (FR).

The linear IV regression model is given by:

y = c+δS+ ε,

where y is an n× 1 vector of log income per capita, S is an n× 1 vector which is the

proxy for social infrastructure, θ is an L×1 vector, c and δ are scalars. Dmitriev (2013)

points out the fact that the instruments 7 X = [EnL,EuL,Lt,FR] are weak. To address

this issue, we increased the number of instruments from 4 to 18. The 18 instruments in

our regression are derived from X and are given by 8

6. The distance from the equator is measured as the absolute value of latitude in degrees divided by 90
to place it on a 0 to 1 scale.

7. This correspond to the specification (iv) of Dmitriev (2013).
8. X .k = [Xk

i j] , X(:,k) is the kth column of X and X(:,k) ∗X(:, l) is a vector of interactions between
columns k and l.
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Z = [X ,X .2,X .3,X(:,1)∗X(:,2),X(:,1)∗X(:,3),X(:,1)∗X(:,4),X(:,2)∗X(:,3),X(:,2)∗

X(:,4),X(:,3)∗X(:,4)] where all instruments are divided by their standard deviation.

The use of many instruments increased the concentration parameter from µ̂
2
n = 28.6

to µ̂
2
n = 51.48. However, it also increased the condition number of the Z′Z matrix from

1.08e+ 04 for 4 instruments to 2.48e+ 05 for 18. The regularized 2SLS and LIML

correct the bias due to the use of many instruments. This enables us to have better points

estimates.

We use a sample of 79 countries for which no data were imputed 9. The results are

reported in Table 2.IV below. Robust to heteroskedasticity standard errors are given in

parentheses. They are computed using the formula of Carrasco and Tchuente (2012):

V̂ (δ̂ ) =
(
Ŵ ′W

)−1Ŵ ′Ω̂Ŵ
(
W ′Ŵ

)−1

where Ŵ = PαW for 2SLS, Ŵ = (Pα −νIn)W for LIML, and Ω̂ is the diagonal matrix

with ith diagonal element equal to ε̂
2
i =

(
yi−W ′i δ̂

)2
.

Table 2.IV: Institutions and growth
2SLS (4) 2SLS (18) T2SLS L2SLS P2SLS

4.6612 (0.7027) 4.0124 (0.5041) 4.2916 (0.338) 4.27 (0.431) 4.03 (0.327)
α=0.01 Number of iterations 1000 Number of eigenvalues 15

LIML (4) LIML (18) TLIML LLIML PLIML
5.2683 (0.7602) 5.7090 (0.899) 5.3062 (0.631) 4.73 (0.687) 5.57 (0.846)

α=0.01 Number of iterations 1000 Number of eigenvalues 15
µ̂

2
n =28.6 µ̂

2
n =51.48

NB: We report 2SLS and LIML for 4 and 18 instruments. For LIML with 18 instruments, we report
the many instrument robust standard error of Hansen, Hausman, and Newey (2008) in parentheses.
The regularized estimators are computed for 18 instruments. For the regularized estimators, the
heteroskedasticity robust standard errors are given in parentheses.

Our findings suggest that "social infrastructure" has a significant causal effect on

long-run economic performance throughout the world. The use of many instruments

9. The data were downloaded from Charles Jones’ webpage:
http://www.stanford.edu/~chadj/HallJones400.asc
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first increase the bias as illustrated by the fact that the distance between 2SLS and LIML

is larger when 18 instruments are used. When the regularization is introduced, this gap

shrinks. For instance, the regularized LF, LIML and 2SLS are very close, this may be

due to bias correction. But, for the PC regularization, the gap remains wide. The reason

may be due to the lack of factor structure in the instruments set.

2.7 Conclusion

This paper illustrates the usefulness of regularization techniques for estimation in the

many weak instruments framework. We derived the properties of the regularized 2SLS

and LIML estimators in the presence of many or a continuum of moments that may be

weak. We show that if well normalized the regularized 2SLS and LIML are consistent

and reach the semiparametric efficiency bound. Our simulations show that the leading

regularized estimators (LF and T of LIML) perform well.

In this work, we restricted our investigation to 2SLS and LIML with weak instru-

ments. It would be interesting, for future research, to study the behavior of regularized

version of other k-class estimators, such as FULL (Fuller (1977)) and bias adjusted 2SLS

or other estimators as generalized method of moments or generalized empirical likeli-

hood, in presence of many weak instruments. This will help us to have results that can

be compared with those of Newey and Windmeijer (2009) and Hansen et al. (2008). An-

other topic of interest is the use of our regularization tools to provide version of robust

tests for weak instruments as Anderson-Rubin tests, that can be used with a large number

or a continuum of moment conditions.
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2.8 Appendix

2.8.1 General notation

Here we consider the general case where the estimation is based on a sequence of

instruments Zi = Z(τ;xi),τ ∈ S. Let π be a positive measure on S. We denote L2(π) the

Hilbert space of square integrable functions with respect to π .

We define the covariance operator K of the instruments as

K : L2(π)→ L2(π)

(Kg)(τ1) =
∫

E(Z(τ1;xi)Z(τ2;xi))g(τ2)π(τ2)dτ2

where Z(τ2;xi) denotes the complex conjugate of Z(τ2;xi).

K is assumed to be a nuclear operator. Let λ j and φ j, j = 1,2, ... be respectively, the

eigenvalues (ranked in decreasing order) and orthonormal eigenfunctions of K. K can be

estimated by Kn defined as:

Kn : L2(π) → L2(π)

(Kng)(τ1) =
∫ 1

n

n

∑
i=1

Z(τ1;xi)Z(τ2;xi)g(τ2)π(τ2)dτ2.

If the number of moment conditions is infinite then the inverse of Kn needs to be regular-

ized because it is not continuous. By definition (see Kress, 1999, page 269), a regularized

inverse of an operator K is

Rα : L2(π) → L2(π)

such that lim
α→0

RαKϕ = ϕ , ∀ϕ ∈ L2(π).

Three different types of regularization schemes are considered: Tikhonov (T), Landwer-

ber Fridman (LF), Spectral cut-off (SC) or Principal Components (PC). They are defined

as follows:
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1. Tikhonov(T)

This regularization scheme is related to the ridge regression.

(Kα)−1 = (K2 +αI)−1K

(Kα)−1r =
∞

∑
j=1

λ j

λ 2
j +α

〈
r,φ j

〉
φ j

where α > 0 is the regularization parameter. A fixed α would result in a loss of

efficiency. For the estimator to be asymptotically efficient, α has to go to zero

at a certain rate which will be determined later on. This regularization is closely

related to ridge regularization. Ridge regularization was first used in regression

in a context where there were too many regressors. The aim was then to stabilize

the inverse of X ′X by replacing X ′X by X ′X +αI. However, this was done at

the expense of a bias relative to OLS estimator. In the IV regression, the 2SLS

estimator has already a bias and the use of many instruments usually increases its

bias. The selection of an appropriate ridge parameter for the first step regression

helps to reduce this bias. This explains why, in the IV case, ridge regularization is

useful.

2. Landweber Fridman (LF)

This method of regularization is iterative. Let 0 < c < 1/‖K‖2 where ‖K‖ is the

largest eigenvalue of K (which can be estimated by the largest eigenvalue of Kn).

ϕ̂ = (Kα)−1r is computed using the following algorithm:

 ϕ̂l = (1− cK2)ϕ̂l−1 + cKr, l=1,2,...,
1
α
−1;

ϕ̂0 = cKr,
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where
1
α
−1 is some positive integer. We also have

(Kα)−1r =
∞

∑
j=1

[1− (1− cλ 2
j )

1
α ]

λ j

〈
r,φ j

〉
φ j.

3. Spectral cut-off (SC)

This method consists in selecting the eigenfunctions associated with the eigen-

values greater than some threshold. The aim is to select those who have greater

contribution.

(Kα)−1r = ∑
λ 2

j ≥α

1
λ j

〈
r,φ j

〉
φ j

for α > 0.

This method is similar to principal components (PC) which consists in using the

first eigenfunctions:

(Kα)−1r =
1/α

∑
j=1

1
λ j

〈
r,φ j

〉
φ j

where
1
α

is some positive integer. It is equivalent to projecting on the first principal

components of W . Interestingly, this approach is used in factor models where Wi

is assumed to depend on a finite number of factors (see Bai and Ng (2002), Stock

and Watson (2002)) As the estimators based on PC and SC are identical, we will

use PC and SC interchangeably.

These regularized inverses can be rewritten in common notation as:

(Kα)−1r =
∞

∑
j=1

q(α,λ 2
j )

λ j

〈
r,φ j

〉
φ j

where for T: q(α,λ 2
j ) =

λ 2
j

λ 2
j +α

,

for LF: q(α,λ 2
j ) = [1− (1− cλ

2
j )

1/α ],
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for SC: q(α,λ 2
j ) = I(λ 2

j ≥ α), for PC q(α,λ 2
j ) = I( j ≤ 1/α).

In order to compute the inverse of Kn we have to choose the regularization parameter

α . Let (Kα
n )
−1 be the regularized inverse of Kn and Pα a n× n matrix defined as in

Carrasco (2012) by Pα = T (Kα
n )
−1T ∗ where

T : L2(π) → Rn

T g =



〈
Z1,g

〉〈
Z2,g

〉
.

.〈
Zn,g

〉


and

T ∗ : Rn → L2(π)

T ∗v =
1
n

n

∑
i=1

Zivi

such that Kn = T ∗T and T T ∗ is an n× n matrix with typical element

〈
Zi,Z j

〉
n

. Let φ̂ j,

λ̂1 ≥ λ̂2 ≥ ... > 0, j = 1,2, ... be the orthonormalized eigenfunctions and eigenvalues

of Kn. λ̂ j are consistent estimators of λ j the eigenvalues of T T ∗. We then have T φ̂ j =√
λ jψ j and T ∗ψ j =

√
λ jφ̂ j.

For v ∈ Rn, Pαv =
∞

∑
j=1

q(α,λ 2
j )
〈
v,ψ j

〉
ψ j. It follows that for any vectors v and w of Rn :

v′Pαw = v′T (Kα
n )
−1T ∗w (2.1)

=

〈
(Kα

n )
−1/2

n

∑
i=1

Zi (.)vi,(Kα
n )
−1/2 1

n

n

∑
i=1

Zi (.)wi

〉
. (2.2)
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2.8.2 Proofs

Proof of Proposition 1:

We first prove the consistency of our estimator.

Let gn =
1
n

n

∑
i=1

ZiWi = Sn

[
1
n

n

∑
i=1

Zi fi

]
/
√

n+
1
n

n

∑
i=1

Ziui = Sngn1/
√

n+ gn2 (remember that

gn is a function indexed by τ and Zi is also a function of τ , such a representation can

handle both countable and continuum of instruments). Note that gn2 =
1
n

n

∑
i=1

Ziui = op(1),
√

ngn2 = Op (1) and Sn/
√

n is bounded by Assumption 1(i).

δ̂ −δ0 = (W ′PαW )−1W ′Pα
ε

We have S′n(δ̂ −δ0)/µn = [S−1
n W ′PαWS−1′

n ]−1[S−1
n W ′Pα

ε/µn] and by construction 10 of

Pα :

W ′PαW = n
〈
(Kα

n )
−1/2gn,(Kα

n )
−1/2g′n

〉
= Sn

〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2g′n1

〉
S′n

+Sn

〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2g′n2

〉√
n

+
〈
(Kα

n )
−1/2gn2,(Kα

n )
−1/2g′n1

〉
S′n
√

n

+
〈
(Kα

n )
−1/2gn2,(Kα

n )
−1/2g′n2

〉
n.

S−1
n W ′PαWS−1′

n =
〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2g′n1

〉
+
〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2√ng′n2

〉
S−1′

n

+S−1
n

〈
(Kα

n )
−1/2√ngn2,(Kα

n )
−1/2g′n1

〉
+S−1

n

〈
(Kα

n )
−1/2√ngn2,(Kα

n )
−1/2√ng′n2

〉
S−1′

n .

10. Let g and h be two p vectors of functions of L2(π). By a slight abuse of notation,
〈
g,h′

〉
; denotes

the matrix with elements
〈
ga,hb

〉
a,b = 1, ..., p
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Hence,

S−1
n [W ′PαW ]S−1′

n =
〈
(Kα

n )
− 1

2 gn1,(Kα
n )
− 1

2 g′n1
〉
+op(1).

At this stage, we can apply the same proof as that of Proposition 1 of Carrasco (2012)

which shows that 〈
(Kα

n )
− 1

2 gn1,(Kα
n )
− 1

2 g′n1
〉
→
〈
g1,g′1

〉
K

in probability as n and nα
1
2 go to infinity, with

〈
g1,g′1

〉
K a p× p matrix with (a,b)

element
〈
K−

1
2 E(Z(.,xi) fia),K−

1
2 E(Z(.,xi) fib)

〉
which is assumed to be nonsingular.

S−1
n W ′Pαε

µn
=

nS−1
n

µn

〈
(Kα

n )
−1/2gn,(Kα

n )
−1/2 1

n

n

∑
i=1

Ziεi

〉

=
1
µn

〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2 1√

n

n

∑
i=1

Ziεi

〉

+
µnS−1

n
µ2

n

〈
(Kα

n )
−1/2√ngn2,(Kα

n )
−1/2 1√

n

n

∑
i=1

Ziεi

〉
= op (1)

because µnS−1
n → S0 by Assumption 1(ii) and

1√
n

n

∑
i=1

Ziεi = Op (1). This proves the

consistency of the regularized 2SLS.

For the asymptotic normality we write

S′n(δ̂ −δ0) = [S−1
n W ′PαWS′−1

n ]−1[S−1
n W ′Pα

ε]
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We then have

S−1
n W ′Pα

ε = nS−1
n
〈
(Kα

n )
−1gn,

1
n

n

∑
i=1

Ziεi
〉

=

〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2 1√

n

n

∑
i=1

Ziεi

〉

+S−1
n

〈
(Kα

n )
−1/2√ngn2,(Kα

n )
−1/2 1√

n

n

∑
i=1

Ziεi

〉

=

〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2 1√

n

n

∑
i=1

Ziεi

〉
+op (1) .

Moreover, 〈
(Kα

n )
−1/2gn1,(Kα

n )
−1/2 1√

n

n

∑
i=1

Ziεi

〉
(2.3)

=
〈
(Kα

n )
−1gn1−K−1g1,

1√
n

n

∑
i=1

Ziεi
〉

(2.4)

+
〈
K−1g1,

1√
n

n

∑
i=1

Ziεi)
〉
. (2.5)

The first term is negligible since〈
(Kα

n )
−1gn1−K−1g1,

1√
n

n

∑
i=1

Ziεi)
〉
≤‖(Kα

n )
−1gn1−K−1g1‖‖

1√
n

n

∑
i=1

Ziεi‖= op(1)Op(1).

By the functional central limit theorem, we obtain the following result〈
K−1g1,

1√
n

n

∑
i=1

Ziεi
〉
→N (0,σ2

ε

〈
g1,g′1

〉
K) as n and nα go to infinity.

We then apply the continuous mapping theorem and Slutzky’s theorem to show that

S′n(δ̂ −δ0)
d→N (0,σ2

ε

〈
g1,g′1

〉−1
K ).

By assumption, g1a = E(Z(.,xi) fia) belong to the range of K. Let L2(Z) be the closure

of the space spanned by {Z(x,τ),τ ∈ I} and g1 is an element of this space. If fi ∈ L2(Z)
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we can compute the inner product in the RKHS and show that

〈
g1a,g1b

〉
K = E( fia fib).

This can be seen by applying Theorem 6.4 of Carrasco, Florens, and Renault (2007). It

follows that

S′n(δ̂ −δ0)
d→N

(
0,σ2

ε

[
E
(

fi f ′i
)]−1

)
This completes the proof of Proposition 1.

Proof of Proposition 2:

To prove this proposition, we need three lemmas. The first lemma corresponds to lemma

A0 of Hansen et al. (2008).

Lemma 1: Under assumption 1 if ‖S′n(δ̂L−δ0)/µn‖2/(1+‖δ̂L‖2)
P→ 0 then ‖S′n(δ̂L−

δ0)/µn‖
P→ 0.

Proof: The proof of this lemma is the same as in Hansen et al. (2008).

Lemma 2: Let us assume that there exists a constant C such that E(‖εi‖4|X) ≤ C

and E(‖uai‖4|X)≤C for all i. Then,

Var(ε ′Pαua)≤C(∑
j

q2
j),

ε
′Pαua−E(ε ′Pαua|X) = O((∑

j
q2

j)
1
2 ),

ε ′Pαε

µ2
n

= Op

(
1

αµ2
n

)
= op (1) .

Proof:

For notational simplicity, we suppress the conditioning on X . Let E(ε2
i )=σ

2
ε , E(εiuai)=
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σεua and E(u′aiuai) = σ
2
ua

,

Var(ε ′Pαua) = E(ε ′Pαuau′aPα
ε)−E(ε ′Pαua)E(u′aPα

ε).

Using the spectral decomposition of Pα , we have

E(ε ′Pαuau′aPα
ε) =

1
n2 ∑

j,l
q jqlE

{
(ε ′ψl)(u′aψl)

′(ε ′ψ j)(u′aψ j)
}

=
1
n2 ∑

j,l
q jqlE

{
∑

i
εiu′aiψ

2
li ∑

b
εbuabψ

2
jb

+ ∑
c

εcu′acψlcψ jc ∑
d

εduadψ jdψld

+ ∑
c

ε
2
c ψlcψ jc ∑

d
u′aduadψ jdψld

}
= (∑

j
q j)

2
σ
′
εua

σεua +(σ ′εua
σεua +σ

2
ε σ

2
ua
)∑

j
q2

j

by the fact that (uai,εi) are independent across i and the eigenvectors are orthonormal.

E(ε ′Pαua) =
1
n ∑

l
qlE{(∑

k
u′akψlk)(∑

i
εiψli)}

=
1
n ∑

l
qlnσ

′
εua

= σ
′
εua

(∑
j

q j).

Thus

Var(ε ′Pαua) = (σ ′εua
σεua +σ

2
ε σ

2
ua
)∑

j
q2

j ≤C(∑
j

q2
j).

The second conclusion follows by Markov inequality.

E
(
ε
′Pα

ε
)

= tr
(
PαE

(
εε
′))

= σ
2
ε (∑

j
q j) = Op (1/α) .
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Using the result for ε
′Pαua with ε in place of ua, we obtain

Var(ε ′Pα
ε)≤C(∑

j
q2

j).

It follows that
(
ε
′Pα

ε−E
(
ε
′Pα

ε
))

/µ
2
n = Op

(∑
j

q2
j

)1/2

/µ
2
n

 = op

(
∑

j
q j/µ

2
n

)
.

Hence, the third equality holds.

Lemma 3: Let Â =
f ′Pα f

n
and B̂ =

W̄ ′W̄
n

with W̄ = [y,W ] , there exist two constants

C and C′ such that Â≥CIp and ‖B̂‖ ≤C′.

Proof: By the definition of Pα , we have (see Equation (2.2)):

Â =
f ′Pα f

n
=
〈
(Kα

n )
− 1

2 fn,(Kα
n )
− 1

2 f ′n
〉

with

fn =
1
n ∑

i
Zi fi.

By Lemma 5(i) of Carrasco (2012) and the law of large numbers,

f ′Pα f
n

=
f ′ f
n

+op (1) = E( f ′i fi)+op(1)

as α goes to zero. Because E( f ′i fi) is positive definite, there exists a constant C such that

Â≥CIp

with probability one.

We have W̄ = [y,W ] = WD0 + εe where D0 = [δ0, I], δ0 is the true value of the
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parameter and e is the first unit vector.

B̂ =
W̄ ′W̄

n

= D′0Sn
f ′ f
n

S′nD0/n+D′0Sn
f ′u
n

D0/
√

n+D′0Sn
f ′ε
n

e/
√

n

+ D′0
u′ f
n

S′nD0/
√

n+D′0
u′u
n

D0 +D′0
u′ε
n

e

+ e′
ε ′ f
n

S′nD0/
√

n+ e′
ε ′u
n

D0 + e′
ε ′ε

n
e.

Using the law of large numbers, we can conclude that ‖B̂‖ ≤C′, where C′ is a constant,

with probability one.

Proof of consistency

Let us consider

Q̂(δ ) =
(y−Wδ )′Pα(y−Wδ )/µ2

n
(y−Wδ )′(y−Wδ )/n

.

δ̂L = argminQ(δ ).

For δ = δ0, Q̂(δ0) =
ε ′Pαε/µ2

n
ε ′ε/n

. With probability one ε
′
ε/n >C and by lemma 2

ε
′Pα

ε/µ
2
n = op(1).

Hence Q̂(δ0) = op(1).

Since 0≤ Q̂(δ̂L)≤ Q̂(δ0) it is easy to see that Q̂(δ̂L) = op(1).

Let us show that

µ
−2
n (y−Wδ )′Pα(y−Wδ )≥C‖S′n(δ −δ0)/µn‖2.

Let D(δ )= µ
−2
n (y−Wδ )′Pα(y−Wδ )= µ

−2
n (1,−δ

′)W̄ ′PαW̄ (1,−δ
′)′. Moreover, D(δ )=

µ
−2
n (1,−δ

′)D′0Sn
f ′Pα f

n
S′nD0(1,−δ

′)′+op(1)= µ
−2
n (1,−δ

′)D′0SnE
(

f f ′
)

S′nD0(1,−δ
′)′+
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op(1). It follows from lemma 3 that

D(δ )≥C‖S′n(δ −δ0)/µn‖2.

We also have that (y−Wδ )′(y−Wδ )/n = (1,−δ
′)B̂(1,−δ

′)′. Hence,

‖S′n(δ̂L−δ0)/µn‖2

(1+‖δ̂L‖2)
≤CQ̂(δ̂L).

Then by Lemma 1 we have S′n(δ̂L−δ0)/µn→ 0 in probability as n and µ
2
n α go to infinity.

This proves the consistency of LIML with many weak instruments.

Now let us prove the asymptotic normality.

Proof of asymptotic normality

Denote A(δ ) = (y−Wδ )′Pα(y−Wδ )/2 , B(δ ) = (y−Wδ )′(y−Wδ ) and

Λ(δ ) =
A(δ )
B(δ )

.

We know that the LIML is δ̂L = argminΛ(δ ).

We calculate the gradient and Hessian Λδ (δ ) = B(δ )−1[Aδ (δ )−Λ(δ )Bδ (δ )],

Λδδ (δ ) = B(δ )−1[Aδδ (δ )−Λ(δ )Bδδ (δ )]−B(δ )−1[Bδ (δ )Λ
′
δ
(δ )−Λδ (δ )B

′
δ
(δ )].

Then by the mean-value theorem applied to the first-order condition Λδ (δ̂ ) = 0, we

have:

S′n(δ̂L−δ0) =−[S−1
n Λδδ (δ̃ )S

−1′
n ]−1[S′nΛδ (δ0)]

where δ̃ is the mean-value. By the consistency of δ̂L, δ̃ → δ0.
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It then follows that

Bδ (δ̃ )/n = −2∑
i

Wiε̃i/n,

= −2∑
i
(γi +ui)ε̃i/n

= −2Sn/
√

n(∑
i

fiε̃i/n)−2(∑
i

uiε̃i/n)

= −2σuε +op(1)

under the assumption that Sn/
√

n is bounded, with ε̃i = (yi−W ′i δ̃ ) and σuε = E(uiεi).

B(δ̃ )/n P→ σ
2
ε , Bδ (δ̃ )/n P→−2σuε

Λ(δ ) =
(y−Wδ )′Pα(y−Wδ )/2n
(y−Wδ )′(y−Wδ )/n

For δ = δ0, Λ(δ0) =
ε ′Pαε/2n

ε ′ε/n
. With probability one, ε

′
ε/n >C, and by Lemma 2 and

µ
2
n ≤ n,

ε
′Pα

ε/n = op(1).

We have Λ(δ0) = op(1). Therefore, Λ(δ̃ )
P→ 0. By the first order condition, we also have

Λδ (δ̃ )
P→ 0.

Bδδ (δ̃ ) = 2W ′W/n P→ 2E(WiW ′i ), Aδδ (δ̃ )/n =W ′PαW/n.

We can then conclude that Λδδ (δ̃ ) = nB−1(δ̃ )[Aδδ (δ̃ )/n]+op(1). Hence

nσ̃
2
ε Λδδ (δ̃ ) = W ′PαW

= Sn
〈
(Kα

n )
− 1

2 gn1,(Kα
n )
− 1

2 g′n1
〉
S′n +op(1)

= SnHS′n +op(1)

with H = E( f (xi) f (xi)
′) and σ̃

2
ε = (y−W δ̃ )′(y−W δ̃ )/n.
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Hence

nσ̃
2
ε S−1

n Λδδ (δ̃ )S
−1′
n = H +op(1).

Let φ̂ =
W ′ε
ε ′ε

, φ =
σuε

σ2
ε

and v = u− εφ
′. It is useful to remark that v′Pα

ε = Op(1/
√

α)

using Lemma 2 with v in place of u and E (uivi) = 0. Moreover, φ̂ −φ = Op(1/
√

n) by

the central limit theorem and the delta method. Hence, (φ̂ −φ)ε ′Pα
ε = Op(1/α

√
n).

Furthermore, f ′ (I−Pα)ε/
√

n = Op(∆
2
α) = op(1) by Lemma 5(ii) Carrasco (2012)

with ∆α = tr( f ′ (I−Pα)2 f/n) = Op

(
α

min(β ,2)
)
= op (1) . We have

−nσ̃
2S−1

n Λδ (δ0) = S−1
n (W ′Pα

ε− ε
′Pα

ε
W ′ε
ε ′ε

)

= f ′ε/
√

n− f ′ (I−Pα)ε/
√

n+S−1
n v′Pα

ε−S−1
n (φ̂ −φ)ε ′Pα

ε

= f ′ε/
√

n+op(1)+S−1
n Op(1/

√
α)+S−1

n Op(1/α
√

n)

= f ′ε/
√

n+op(1)
d→N (0,σ2

ε H)

as n, αµ
2
n go to infinity under the assumption µnS−1

n → S0.

The conclusion follows from Slutzky’s theorem.



CHAPTER 3

HIGH SCHOOL HUMAN CAPITAL PORTFOLIO AND COLLEGE

OUTCOMES

3.1 Introduction

In modern labor markets, workers specialize in specific occupations. For many pro-

fessional occupations, specialization begins when individuals choose their field of study

in university. 1 Before entering the university or college, individuals may acquire particu-

lar skills in high school. Every field of study requires a specific set of skills. Conversely,

many skills are useful, to different degrees, in a wide variety of fields. A psychology

student, a law student and a biology student apply similar skills involving reading, writ-

ing and arithmetic albeit in different amounts. Moreover, some majors appear to more

heavily emphasize a small subset of particular skills whereas other majors more or less

weigh skills evenly. Engineering and mathematics students, for instance, are likely to

use more mathematics than literature students.

In high school, individuals are uncertain about their future college major and perfor-

mance. As a result, a high school graduate may study natural sciences courses and end

up majoring in an unrelated field. Faced with uncertainty, high school students may want

to balance their efforts in case their initial target does not work out. However, if they

specialize in a particular skill they will be more productive in a related field. Therefore,

they will want to choose the composition of their high school courses to acquire a set of

skills based on their inherent abilities and on their prospective field of study in college.

To investigate the tension between specialization and diversification in high school

and its effects on college major choice and performance, I first establish panel data ev-

1. I thank the participants of 9th CIREQ Ph.D. students conference (Montreal, June 2013), of the
seminars at the University of Montreal for helpful comments. Comments from Andriana Bellou, Marc
Henry and Joshua Lewis are gratefully acknowledged. I am much indebted to Marine Carrasco and Baris
Kaymak for intensive discussions and advices.
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idence linking individual high school transcript courses with college major choice and

performance. I then propose a structural dynamic model of high school skills acquisi-

tion and college major choice under uncertainty. This model not only sheds light on the

patterns of skill acquisition in high school, and then in university, but also allows for a

quantitative evaluation of policies geared towards encouraging certain majors, such as

those related to science and technology.

To assess the relationship between courses taken in high school and college major

choice, I use the 1980 High School and Beyond (HS&B) survey, which has detailed in-

formation on transcripts. High school transcripts in HS&B allow for the construction of

empirical measures of human capital portfolios that help investigate the underlying rela-

tion between the skill set, the innate ability and college major choice and performance. I

find that students choose their majors according to the subject they concentrated in high

school. However, there is an U-shaped relation between diversification and college per-

formance: students that are heavily specialized in a particular subject and those that are

broadly diversified across subjects have, on average, higher grade point averages (GPA)

in college. As a result, students targeting the same first major are likely to acquire dif-

ferent portfolios of high school courses for their intended major as well as their back-up

plan.

To investigate the implications of this tension on college major choice, I propose and

estimate a structural model of high school human capital acquisition and college major

choice. By explicitly modeling the educational decision process, I both disentangle the

heterogeneous effects of specialization and control for the self-selection inherent in ed-

ucational outcomes. In the model, students are endowed with different innate abilities

and have two decision periods. In these periods they chooses which high school course

to attend and their college major. In the first period students choose the high school

courses that maximize their expected discounted utility across majors. Upon graduation

from high school, in the second period, students choose their major and observe their

major-specific preferences.
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Estimation results suggest that quantitative majors are preferred by specialized stu-

dents even after controlling for selection. High school courses also play an important

role in determining college major choice. More quantitative courses in high school in-

crease the likelihood of majoring in natural science, maths & physics and engineering,

while more humanities courses are better for social science & humanities majors, busi-

ness & communication. These results suggest that an appropriate high school quantita-

tive curriculum can increase enrollments in Science Technology Engineering, and Math

(STEM) 2 majors.

To confirm this intuition, I perform two types counterfactuals experiments. The first

one allows for one more high school course requirement while the second experiment

imposes the same high-school curriculum for everyone, completely eliminating special-

ization. Both experiments show substantial effect on enrollment in STEM majors. In-

crease of enrollments in STEM is an issue of interest in many countries. In the U.K., the

Royal Academy of Engineering reported that the nation will have to graduate 100 000

STEM majors every year until 2020. President of the US Council of Advisors on STEM,

stated that over the next decade, 1 million additional STEM graduates will be needed.

Moreover, one more quantitative course increases enrollment in STEM majors by 4 to 5

percentage points.

There is a huge literature on college major choice 3. Most of the theoretical frame-

work in this literature implies that college major choice is influenced by expectations

of future earnings, preferences, ability, and preparation (see Altonji et al. (2012) for

more details). Turner and Bowen (1999) document the sorting that occurs across ma-

jors by SAT math and verbal scores. Arcidiacono (2004) finds that the differences in

monetary returns explain little of the ability sorting across majors, and concludes that

virtually all ability sorting is because of preferences for particular majors in college and

the workplace, with the former being larger than the latter. The present model extends

2. Increase of enrollments in STEM majors is an issue of considerable interest in many rich countries.
3. See Montmarquette et al. (2002), Zafar (2009), Stinebrickner and Stinebrickner (2011), Arcidiacono

(2005), Arcidiacono et al. (2013)
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Arcidiacono (2004) to add college preparation where students can have a specialization

or diversification strategy.

A related strand of the literature studies the causal effect of high school curriculum on

labor market outcomes ( Altonji (1995) and followed by Levine and Zimmerman (1995)

and Rose and Betts (2004)). More recently Joensen and Nielsen (2009) and Goodman

(2009) rely on quasi-experiments to estimate the effect of math coursework on earnings.

The main research question these studies aim to answer is: do skills accumulated in high

school matter for college performance and labor market outcomes? Relative to these

papers, I investigate the effect of the composition of skills acquired in high school on

college performance. It therefore contributes the existing studies by introducing multi-

dimensional endowments of skills and by studying the tension between specialization

and diversity. In this sense, this paper is closer to Malamud (2010), Smith (2010) and

Malamud (2012) who examine the trade-off between specialized and diversified human

capital in college and its effect on labor market outcomes. Silos and Smith (2013) study

how diversification and specialization strategies in college influence income dynamics.

They find that diversification generates higher income for individuals who switch occu-

pations whereas specialization benefits those who stick with one type of job. This paper

considers this issue one step back and investigate how specialization in high school affect

college major choice and performance.

The paper proceeds as follows. Section 2 provides a brief overview of the US high

school system and explains why the US system is a unique opportunity to investigate

the effect of high school courses choice on college outcome. Section 3 describes the

data and the sample used in the empirical analysis. It also discuss some data regularities

and provides a reduced form analysis of the relationship between diversification in high

school on college performance. The dynamic model of college and major choice as well

as the econometric techniques used to estimate the model are described in Section 4.

Section 5 provides the empirical and simulations results. Section 6 concludes.
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3.2 Background: High school course choice in US

The US high school education system provides a particularly appropriate, if not

unique, setting in which one can examine the effect of specialization in high school

system. In the US schools, students have much more control of their education, and

are even allowed to choose their core classes. The control given to students varies from

state to state 4 and from school to school. It therefore results in a substantial variation

in students academic experiences, within schools and across them (Lee et al. (1997),

Allensworth et al. (2009)). There is a wide variance in the curriculum required each

year but many schools require that courses in the “core ”areas of English, science, social

studies, and mathematics be taken by the students every year although other schools set

the required number of credits and allow the student to choose when the courses will be

taken.

The availability of courses depends upon each particular school’s financial situation

and school staff decisions or preferences. This affects the possibility of specialization

in particular set of skills 5. The degree of flexibility in choice in high school is also

a direct function of the preferences of school teachers, these preferences are usually

idiosyncratic. Furthermore, inducements for students to take a particular set of skills may

change between school as certain teachers are hired or school administrators decide to

place greater emphasis on these skills. Thus, there is a substantial element of exogenous

variation course choice across schools due to idiosyncracies among teachers, school

administrators and state. I will take advantage of these exogenous variations to identify

how the specialization in high school affects college performance.

4. See for example Goodman (2009) Figure 2 for difference in state requirement in maths.
5. State requirements for graduation can be found on web pages of States Department of education see

for example http://www.azed.gov/hsgraduation/ (view on 2013/09/12)
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3.3 Data and Empirical regularities

3.3.1 Data

To investigate the empirical relationship between portfolios of courses acquired through

formal high school education and post-secondary education outcome, I use the 1980

High School and Beyond (HS&B) survey data. HS&B has detailed information from

high school to post-secondary. I study This panel dataset contains a combination of

information on courses taken in different subject of study as well as information on

post-secondary education. The HS&B survey was conducted by the National Center for

Education Statistics. A nationally representative sample of high school students who

were sophomores in 1980 were interviewed once every two years between 1980 and

1986 and once again in 1992. High school usually runs either from grades 9 to 12 or

from grades 10 to 12. In this work I restrict high school from 10 to 12 grade because

of the availability of data for all high schools in the sample. These interviews recorded

detailed informations on student courses in various dimensions of skills when they were

in high school and high school transcripts. These high quality data provide the measures

of human capital. The Post-Secondary Education Data System (PETS) contains institu-

tional transcripts from all post-secondary institutions attended for a sub-sample of stu-

dents present in the survey and will be used to have college performance of student.The

estimations are performed using data from the 1980, 1982, 1984 and 1986 surveys.

HS&B survey initially contains 14,825 students. A sub-sample of 5,533 students had

their transcripts encoded for high school and college. Dropping those who do not have

SAT data reduced the sample to 1810 individuals. Taking into account others controls

variables reduced the sample to 1265. Cleaning of the data yields a final sample of

1112 students for structural model estimation. Table 1 shows average characteristics for

the unrestricted and restricted samples and in almost all cases, there is no significant

difference in mean values between the two samples. This is somewhat suggesting that

sample selection issues may not be a big problem. The Appendix provides a step-by-step
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description of construction of human capital portfolios and college major aggregation.

3.3.2 Empirical regularity

I first provide empirical motivation using data from HS&B. Human capital portfolios

are calculated using high school formal courses and contain seven categories of study.

Components of high school study are grouped into: (i) Quantitative (mathematics and

physics); (ii) Reading and writing; (iii) Social science and Humanities (iv) Life sciences;

(v) Business and communication; (vi) Arts; (vii) Others.

Given courses taken in each field or type of human capital k = 1, ...K, the weights in

the human capital portfolio of an individual i are:

ωi,k =
coursei,k

∑
K
j=1 coursei, j

,

where K = 7 and coursei,k is the number of courses taken in subject k. I use the share of

each subject to concentrate not on the number of courses but on the distribution. Table

3.II displays these portfolio weights by major across the population. For each major, the

table displays the mean, across individuals, of the weights in each of the seven subjects.

The mean weight on quantitative subjects varies from low values in Education (0.165)

and Business and communication (0.169) majors to higher values for Engineering and

Science major. It is not surprising that Humanities majors have the highest mean weight

in humanities subject (0.258). Business and Communication major have also the highest

shares of business and communications subject, allocating about 10% of total course on

average to this component, this large given high requirement in other type of skills. Al-

though the difference in mean in some subject appears small, the two last lines of Table

3.II shows that these differences are statistically significant.

Each student i has a vector of human capital weights ωi,k components measuring the

weight of skill of type k in the overall portfolio. A skewed or balanced portfolio does not

necessarily imply specialization or diversification of human capital investments. Some
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students may choose a uniform allocation of course across fields to self-insure against

shocks or because a particular major explicitly rewards balanced skills. To evaluate the

level of specialization I follow Silos and Smith (2012). I therefore assess how well tai-

lored an individual’s acquired skill set is for a particular college field by viewing human

capital investments relative to a benchmark in that major 6.

Let us define the measure of diversification as

ρi,m =

√√√√ K

∑
k=1

(ωi,k− ω̄k,m)2

where ω̄k,m denotes the typical (or average) portfolio for major m observed in Table

3.II. To interpret this measure of specialization. I assume that, a portfolio is chosen for

a given major if that portfolio is “close”to the average portfolio of that major. Self-

insurance against shocks is simply the distance between the portfolio weights and the

typical portfolio of the college major. It is then possible to hedge with respect to your

major by diversifying your portfolio (with respect to major related subject) or specializ-

ing yourself in major related subjects.

3.3.2.1 Estimation results

Table 3.III presents regression estimates linking the observed college performance

measure by grade (GPA) and the portfolio distance measure, ρ . This helps us investigate

the empirical regularities beyond raw mean difference 7.

I estimate the following reduced form equation

Gimh = α0 +α1ρim +α2ρ
2
im +α3Xi +αm +αh + εih

6. This measure is related to Krugman (1992) diversification index in trade where absolute distance
instead of square root. See also Palan (2010) for review of specialization index in trade.

7. The division of human capital into seven types of skills is obviously not the only one possible. I
consider different division. The results are very similar to those obtained with seven types of skills. I also
consider other diversification measure as the Gini index and other relatives measures and the results were
qualitatively the same
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where αm and αh are respectively major and high school fixed effects. Gmh is the college

GPA of individual i in major m from high school h, X represents other variables such as

SAT scores, Socioeconomic status (SES) and gender.

Table 3.III shows the relation between GPA and the measure of diversification ρ is

quadratic, large and significant. This results is robust to control for demographics char-

acteristic gender and race, background: Socioeconomic status (SES), parents education,

ability by SAT Math and SAT Verbal and number of course taken in high school for each

type of human capital. It is also robust to regional disparities by including of dummy

variable for living in south. The major specific effect is controlled by including dummy

for each major. Furthermore the inclusion of more control variables increased the effect

of specialization on college performance. This suggests that the effect of specialization

on performance may be larger than the estimates reported here.

3.3.2.2 U-shaped: a comment and robustness check

According to Table 3.III result, the relation between college performance measured

by GPA and diversification measured by ρ is a U-shaped relation. This shows trade-

off between specialization and diversification. The trade-off is driven by two mains

opposite forces implied by diversification strategy. Diversification reduces the human

capital in the targeted college major, it also increases skills in other human capitals.

As level of diversification increases, the negative effect first dominates since enough

knowledge is not acquired to compensate the losses in major specific skills. However,

there comes a point where performance increases with the level of diversification. Others

skills acquired can now compensate the losses through complementarity.

This result shows that high school human capital plays an important role for college

outcomes. The results discussed here are based on the presence of a U-shaped relation.

To test properly for the presence of a U-shape I use the procedure proposed by Lind

and Mehlum (2010). Results in Appendix Table 3.IV show the presence of a U-shaped

relationship. I also perform a non parametric robustness check. I run a regression on all
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control variables used in our best regression in Table 3.III. I perform a non parametric

regression of residual on ρ . The predict values of residual of the non parametric regres-

sion show a U-shaped relationship between diversification and performance. The results

are in Figure 3.1.

In this model it is possible to have, despite all controls used in the regression, some

selection issues due to the presence of unobserved characteristics. I, therefore, propose

and estimate a structural model of high school human capital acquisition and college

major choice. This enables me not only to control for potential selection on unobserved

variables but also to conduct counterfactual experiments to study the potential effects of

various curriculum policies in high school.

3.4 Structural model of high school human capital choice

In the Model, individuals differ in both their innate abilities to learn and in their pref-

erences for different college majors. The choice of subject in high school is based on

these differences. I assume that they know their abilities to acquire imperfectly substi-

tutable skills. They choose their high school courses to maximize their expected utility

across majors. While they graduate the choose to enter a major or not enroling into

college.

Initial ability drawn and college major targeted provide an incentive for individuals

to specialize by acquiring skills that reflect their personal circumstances. In contrast, the

risk of low utility draws in each college major provides an incentive to acquire a more

widely applicable portfolio of human capital skills.

I suppose that individuals with discount factor β ∈ (0,1) live for a finite number of

discrete periods, t = 0,1,2, ...T . Individuals choose their human capital investments, i.e.

their set of individually distinct courses to attaint, in the initial period (t = 0) to optimize

expected discounted utility.

There are three types of skills which can be employed all majors. High school skills
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are useful to college but their importance differs from one major to another. 8 Denote

an individual’s portfolio of human capital by s = (sQ,sH ,sNS), where sQ is quantitative

human capital and sH is humanities human capital and sNS is natural sciences human

capital. 9 Individuals can choose their portfolio composition by investment through more

HS courses in a particular major (or more homework or tutoring this share of investment

is not observed).

Before choosing s, individuals draw abilities τ = (τQ,τH ,τNS) from distribution

H(τ), where τNS represents the ability to accumulate natural science human capital.

The cost of accumulating s with ability τ is ch(s,τ) with ch convex and twice differ-

entiable. Individual knows how different human capital are used in different majors. But

they are unsure about an idiosyncratic component of college preference.

Once an individual has acquired the skill set s, they enter the college in the next

period t = 1. Individuals can choose in which major to study. Although individuals have

a general idea before they invest in their portfolio of skills of how well they are likely

to fit into a given major, it is only after they complete HS and enter college that their

true fit in that major is known. Actual experience in a major reveals an individual’s true

preference for that major 10. They may also choose not to enrol.

The timing of the model is the following:

– In period 1: individuals draw abilities τ from distribution H(τ), and after that

choose the amount of each human capital to invest in.

– In period 2: individuals choose a major and receive new information about their

abilities and preference in a particular major and accumulate human capital (GPA).

8. In the descriptive statistics I assume seven field of skills I reduce the number here to three for
computational reason and also to focus on the most important skills.

9. Quantitative human capital is measured by the number of HS course in Maths and Physics. Human-
ities human capital is measured by HS courses in reading and writing, humanities, business and commu-
nication. Natural sciences human capital is the number of HS life science courses.

10. I assume that students make a one-time decision about their college major. In fact, students may
change their majors over the course of their college careers. About 55% to 60% college students change
their major at least once according to the NELA http://www.nela.net/Centers/pages/collegemajors.aspx.
But I am not able to investigate this issue because of data limitation. Second, I ignore the possibility that
students may continue their education by seeking post-baccalaureate degrees our drooping out.
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3.4.1 High school and college stages

Due to data limitation I was not able to use wage in the model. Given that the grade

point averages has a positive effect on future earnings (see Arcidiacono (2004)). I will

therefore use it as proxy of future wage. I assume that college grade (G) is a function of

the individual abilities, as well as XG which represent other demographic characteristics

such as gender, Socioeconomic status (SES). Specifically, performance in college takes

the following form:

G = η0 +η1ρ +η2ρ
2 +η

′
3s+η

′
4XG + εm + ε1

The major specific fixed effect is εm. The idiosyncratic shocks (the ε1’s) are assumed

to be distributed N (0;σ
2
G).

The utility of choosing the college major m is given by

uc
m = ϑ

′
0cs+ϑ

′
1cXcm− cm(s,G)+ vm + εm

εm is generalized extreme value (GEV) distribution. The fixed intercept (vm) represents

the combined effect of all omitted major-specific covariates that causes some students to

be more prone to a particular major. Utility of being in high school is given by

uh =−ch(τ,s)+ ε

where ε has normal distribution. High school and college cost functions are respectively

cm(s,G) and ch(τ,s).

I assume that marginal cost for human capital k is:

Mch
k(τ,s) = ϑ4hksk +ϑ5hkτ

Mcmk(s,G) = ϑ4mk +ϑ5mkG
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where Mch
k is the marginal of acquiring skill k in high school, Mcmk is the marginal

of acquiring skill k in major m and ϑ4mk and ϑ5mk are cost elasticity contribution of

producing grade in major m of human capital type k and ϑ.mk is observed with error;

that is why I have major fixed effect vm. Integrating on different dimension of human

capital will give the effort cost function. This cost of effort may imply that even if an

individual was allowed to attend all majors, the individual may not choose to attend the

highest paying major because of the effort required. Individuals also have the option not

to attend college, with the utility given by uo where the o subscript indicates that the

individual chose the outside option.

Individuals then choose the major with the highest uc
m ie which yields the highest

utility. I assume that εm follows a generalized extreme value distribution. Special cases

of the generalized extreme value distribution lead to multinomial logit and nested logit

models. I use a nested logit model; this generalized extreme value distribution allows

for errors to be correlated across multiple nests while still being consistent with random

utility maximization consistent with McFadden (1978) framework. 11

I assume that majors are grouped in four nests:

-Nest 1 Quantitative major (Maths, Physics and engineering)

-Nest 2 Business & Communication Humanities major and Education and military

-Nest 3 Health and Natural science major

-Nest 4 No college

11. McFadden (1978) framework is as follows. Let r = 1...R index all possible choices. Define a
function G(y1, ...,yR) on yr for all r. If G is nonnegative, homogeneous of degree 1, approaches +∞ as one
of its arguments approaches +∞, has nonnegative nth cross-partial derivatives for odd n, and nonpositive
cross-partial derivatives for even n, then McFadden (1978) showed that

F(ε1, ...,εR) = exp{−G(e−ε1 , ...,e−εR)}

is the cumulative distribution function for a multivariate extreme value distribution. Furthermore, the
probability of choosing the rth alternative conditional on the observed characteristics of the individual is
given by

P(r) =
yrGr(y1, ...,yR)

G(y1, ...,yR)

where Gr is the partial derivative of G with respect to the rth argument. This is the same in Arcidiacono
(2005)
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Let uc′
m be the net present value of indirect utility for attending major m.

F
(

euc′
)
= ∑

m

(
∑
N

exp

(
uc′

mn
η

))η

+ exp(uo)

The error terms are known to the individual, but they are not observed by the econome-

trician. Therefore, from the econometrician’s perspective, the probability of choosing

the major m then given by

Pr(m) =

exp
(

uc′
mn
η

)(
∑N exp

(
uc′

mn
η

))η−1

F
(

euc′
)

Before choosing major individuals first choose their HS human capital. The net utility

of outside option, which is not going into college is normalized to zero.

3.4.2 Choice of high school human capital

After making the major choice decision, there are no decisions left. Let uc
1 indicates

the best option in the college. Individuals need now to choose how much of different

human capital to accumulate in high school. They choose the s which yields the highest

utility V0(s,τ) where V0(s,τ) is given by:

V0(s,τ) = uh +βE0(uc
1|τ)

For each type of human capital, s∗k is the optimal value of sk that solves the Euler

equation

Mck = β1E0(uc
1k|τ).

If I apply envelope theorem on uc
1; I get E0(uc

1m|τ) = βϑ0ck−βE0(MCk(s,G)))

ϑ4hksk +ϑ5hkτk = βϑ0ck−β (MCk(s,G))
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thus

s∗k = θ0m̂k +θ1m̂kτk +θ2m̂kG

Let s̃∗j be latent variable with

s̃∗k = s∗k + εk = θ0m̂k +θ1kτ +θ2m̂kG+ εk

with εk normal forecast error.

The observed chosen level of course sk is

sk =

 s̃∗k i f s̃∗k >C

0 i f s∗k ≤C

The forecast error, εk, is independent of τ , G and m. I estimate the coefficients of the

model with a Tobit model.

3.4.3 Identification and estimation strategy

In this section, I discuss how several key parameters of the model are identified.

3.4.3.1 Identification without unobservables

All characteristics of the individuals are taken as exogenous, including such things

as test scores and GPA in college, high school courses and 10th grade standardized test

score. One of the main advantage of HS&B data is that for all individual in the sample

there are base year test score in different subject. These score are in math, science, civic,

reading and writing and are assume to our main exogenous variables. I assume no cor-

relations across the various stages of the model, selection into majors is then controlled

for by these exogenous characteristics.
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3.4.3.2 Identification with unobservables

Assuming that preference parameters are uncorrelated over time is particularly un-

reasonable. That is, if one has a strong preference for high school initially, he is just

as likely as someone who has a small preference for high school to choose any major

in college. I would suspect that this is not the case. Furthermore, it is unreasonable to

assume that there is no unobserved (to the econometrician) ability that is known to the

individual. Some variables can be used to identify types: initial ability (here measure

by base year standardized test scores), relation in the level of human capital and college

major choice.

3.4.3.3 Estimation method

I first estimate a model with independent errors across grades and choice processes.

The log likelihood function is the sum of three pieces:

– L1(η) the log likelihood contribution of grade point averages,

– L2(ϑc,η) the log likelihood contribution of major decisions,

– L3(ϑh,ϑc,η) the log likelihood contribution of high school human capital deci-

sions,

The total log-likelihood function is then L = L1 +L2 +L3.

Consistent estimates of η can be found by maximizing L1 separately. Then η are

replaced by consistent estimates in L2 and consistent estimate of ϑc can be obtained by

maximizing L2. I estimate ϑh using L3 and all other estimates.

Following Arcidiacono (2004, 2005) I assume that there are R = 2 types of people.

To account for selection on unobservables into majors, I use a mixture distribution that

allows errors to be correlated across the various stages.

Types remain the same throughout all stages, individuals know their type. Prefer-

ences and abilities may vary across types.
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The log likelihood function for a data set with N observations is then given by

L(η ,ϑ) =
N

∑
i=1

ln(
R

∑
r=1

πrLir1Lir2Lir3)

πr is the proportion of type r in the data and Lir. refers to the likelihood (as opposed to

the log likelihood L). The log likelihood function is no longer additively separable. I use

the Expectation-Maximization (EM) algorithm to solve the problem. The EM algorithm

has two steps:

– first calculate the expected log likelihood function given the conditional probabil-

ities at the current parameter estimates,

– second maximize the expected likelihood function holding the conditional proba-

bilities fixed.

These steps are repeated until convergence . The expected log likelihood function is:

L(η ,ϑ) =
N

∑
i=1

R

∑
r=1

Pi(r|Xi,α,η ,ϑ)[Lir1(η)+Lir2(η ,ϑc)+Lir3(η ,ϑc,h)]

with Pi(r|Xi,η ,ϑ) =
πrLir1Lir2Lir3

∑
R
r=1 πrLir1Lir2Lir3

Using the EM algorithm helps us recover additivity of log likelihood. And param-

eters can be estimated at each step as in the case without unobservable heterogeneity.

Note that all pieces of the likelihood are still linked through the conditional probabilities

where the conditional probabilities are updated at each iteration of the EM algorithm.

3.5 Structural model estimations results

This section presents and discusses the results from estimating the parameters of

the performance equations, the structural parameters of the utility function and high

school courses choice equations. Results of the model with unobserved heterogeneity

are presented in the estimation of each equation separately.
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3.5.1 College performance regressions

Estimates of the college period performance equation are given in Table 3.V. The

first column displays the coefficient estimates without unobserved heterogeneity, while

the second presents estimates with unobserved heterogeneity approximated by two types.

There is a U-shape relationship between college performance and diversification in

high school. The size of the coefficients are the same with or without unobserved hetero-

geneity. Females receive higher grades than their males counterparts. All of the ability

coefficients are positive, with smaller coefficients for verbal. Without unobserved het-

erogeneity, math ability is particularly useful. Once the mixture distribution is added, the

differences in ability coefficients dissipate. The results with unobserved heterogeneity

show that type 2’s receive substantially higher grades.

3.5.2 Estimate of the utility function parameters

I use the estimates of the performance to obtain the second stage maximum likeli-

hood estimates of the utility function parameters. Table 3.VII displays the maximum

likelihood estimates for the parameters of the utility function.

The first three sets of rows of Table 3.VII display the differences in preferences

across high school courses individuals have for each of the fields. More quantitative

courses are more attractive for natural science, maths & physics and engineering, while

more humanities courses are better for social science & humanities majors, business &

communication. Controlling for unobserved heterogeneity did not change these results.

Diversification effect size differ with the major. Having large diversification index is

better for business & communication than for maths & physics majors. This effect is the

same with and without unobserved heterogeneity. Diversification has lager negative ef-

fect in quantitative majors ( maths & physics and Engineering ). Females are more likely

to be in education or health and less likely in quantitative majors. Taking unobserved

heterogeneity into account does not change the results.
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Types 1’s are more likely to be in quantitative major in model with mixture. Ability

measure (SATM, SATV), GPA and GPA×HScourses interacts with major, along with

major specific constant terms, also were included. Consistent with Arcidiacono (2004), I

also find that students’ comparative advantage in their abilities in different majors plays

a very important role in the choice of a major.

The nesting parameters are both relatively small for all models. The estimates that are

less than one suggest that the preferences for major options are correlated. Indeed, this

nesting parameter measures the cross-school component of the variance. In particular,

had these coefficients been estimated to be one, then a multinomial logit would have

resulted.

3.5.3 Courses choice equations regressions

Estimates of courses equations Tobit model are in Table 3.VIII, 3.IX and 3.X. As in

performance results, adding controls for unobserved heterogeneity did not significantly

affect the other parameter estimates. Those who have high math and science scores in

the 10th grade standardized test have higher probabilities to accumulate more skills in

quantitative and life science subject. Those with high score in Civic and writing are

more likely to accumulate humanities skills. Types 1’s 12 are more likely take more life

science and quantitative courses than humanities in high school.

3.5.4 Model Fit

Table 3.XI displays the actual data and the predictions of the model. I use parameters

to see how the model matches some key features and trend of the data. For example

the number of quantitative courses choose in HS, in the data, is very close to what is

predicted by the model. The models with and without the mixture distribution predict

the trends in the data very well. The models often hit the observed mean almost exactly.

The prediction with mixture model are better than those without.

12. The proportion of type 1 individual is 33.16% of the population.
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3.5.5 Simulations

Since the model matches the data reasonably well, I can use the model to simulate

how the major choice would vary given a different environment. The purpose of the sim-

ulation is to compare policies which aim to increase enrollments in Science Technology

Engineering, and Math (STEM) majors. The first policy is an increase in high school

Maths course requirements (which imply more specialization in math and science). The

second experiment is an increase in high school humanities course requirements while

the third simulation increases high school life science course. The last simulation assume

that there is no specialization in high school.

Increase of enrollments in STEM majors is an issue of considerable interest in many

countries, given that the economy is increasingly driven by complex knowledge and

advanced cognitive skills. Thus, STEM is one of the key components to keeping com-

petitive in a global economy. The U.S. President’s Council of Advisors on Science and

Technology, in a 2012 report, suggested that the number of STEM majors needed to

increase significantly to meet the demand for STEM professionals. In UK, a lack of

workers in scientific occupations is a recurrent issue (Chevalier (2012)). The shortage

of STEM majors occurs despite STEM majors earning substantially more than other

college degrees with the exception of perhaps business (Arcidiacono (2004), Pavan and

Kinsler (2012), Arcidiacono et al. (2013)).

The first to third simulations assumes respectively that one more quantitative course,

one more humanities course and one more life science course, in high school is required.

These simulations are designed to answer the question: how much STEM major choice

is due to high school courses choice?

The last simulation eliminates specialization in HS. The results of the simulation will

then show how much specialization in HS affect STEM major enrollment.

Note that these simulations are not taking into account general equilibrium effects;

the simulations are only designed to illustrate how much of the current major choice is
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due to high school courses or specialization.

Table 3.7.1 shows that quantitative course and specialization affect STEM majors

choice. When there is one more high school quantitative courses, the share of people in

STEM (maths & physics and engineering) and natural science increases (see Simulation

1). One more high school quantitative course increases enrollment in STEM by 4 point

percentage. But in the same time we have a reduction in overall enrolment. It is in-

teresting to note that when I use the model without unobserved heterogeneity one more

high school quantitative course increases enrollment in STEM by 5 points percentage.

When the model with unobserved heterogeneity the enrolment in STEM increases only

by 4 points, this suggest a correction of the unobserved ability bias. Increase by one

of high school humanities course did not heavily decrease enrollment in STEM. One

more course of life science increases enrollment in Natural science major by 0.015 point

percentage and reduces enrollment in STEM majors by the same amount.

Force every student to have the portfolio (see Simulation 4) also boosts enrollment.

The share of students choosing STEM major moves up by 18 to 20 points percentage.

This suggests that high school specialization play a key role in major choice.

These results suggest that increasing high school quantitative course requirement will

affect enrollment more in STEM major. Moreover, uniform curriculum in high school

can also largely increase enrollment in STEM. However, this policy is less realistic.

Increasing high school quantitative courses requirement is, therefore, the most appealing

policy to reduce the preparation gap in Maths.

3.6 Conclusion

This paper investigates how specialization and diversification in high school influ-

ence future college choice and performance. I establish panel data evidence linking

individual’s high school skill sets with college major choice. I find that students usu-
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ally choose major in which they acquired more skills related to this major, suggesting

specialization in HS. However, I find a U-shaped relation between diversification and

college performance. This result suggests a trade-off between specialization and diver-

sification. This trade-off is assessed through a model of human capital acquisition and

college major choice with different skills, abilities and uncertainty regarding college.

Estimation of structural parameters of the model suggests that quantitative majors are

preferred by specialized students. I also find that high school courses also play an im-

portant role in determining college major choice. More quantitative high school courses

makes more attractive natural science, maths & physics and engineering, while more

humanities courses are better for social science, humanities , business & communication

majors. Moreover, the estimated model remarkably match some central tendencies in

the data. I then exploited this model to evaluate and quantify the impact of economic

policies on enrollment in STEM majors. Policy experiments suggest that increasing high

school quantitative courses requirement, by one, will boost STEM enrollment by 4 to 5

percentage points.

In this paper, I restrict my attention to the role played by high specialization on col-

lege major choice and performance. Possible future research could be to investigate the

effect of high school specialization on labor market outcomes (unemployment, income).

It will be also interesting to compare system with forced specialization (European style)

and system with chosen specialization (USA style).

3.7 Appendix

3.7.1 Data

Merging the PETS, Sophomores in 1980 - HS&B and High school transcript data

sets yields an initial sample of 5,533 students. Dropping those who do not have SAT

data reduced to 1185 individuals for regression. Taking into account others controls

variables reduced the sample to 1112.
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To find portfolios, human capital is partitioned into seven broad areas of knowledge

using the Classification of Secondary School Courses (CSSC) in US. Each of these areas

is the sum of course taken in areas of study belonging to that area of knowledge 13.

- Quantitative: mathematics and physics: 27, 11, 41, 40, 15, 14, 04

- Reading and writing: 23, 16

- Social science and Humanities: 45, 44, 43, 42, 39, 38, 37, 24, 19, 13, 05

- Natural life science: 17, 18, 26, 34, 02

- Business and communication: 22, 10, 09, 08, 07, 06, 01

- Art: 50, 21

- Others: 55, 51, 49, 48, 47, 46, 29, 28, 20, 03, 56, 54, 36, 35, 33, 32, 31, 30, 25, 12

I also aggregate majors into seven categories: Math and Physics, Engineering, Busi-

ness and Communication, Social Science & Humanities, Natural Science, Education,

Health. The criteria for aggregation was the degree of similarity in field topics.

- Math and Physics:Physics, Science Technologies, Mathematics, Calculus, Com-

munication Technologies, Computer & Information Sciences Computer Program-

ming.

- Engineering: Engineering, Civil Engineering, Electric & Communications Engi-

neering, Mechanical Engineering, Architecture & Environmental Design.

- Business and Communication: Construction Trades,Business & Management, Ac-

counting, Banking & Finance, Business & Office, Secretarial & Related Pro-

grams, Marketing & Distribution, Communications, Journalism,Precision Produc-

tion, Transportation & Material Moving,.

- Natural life sciences: Geology, Life Sciences, Geography, Renewable Natural Re-

sources,.

- Social Science & Humanities: Area & Ethnic Studies, Foreign Languages, Ger-

man, French, Spanish, Home Economics, Vocational Home Economics, Law, Let-

ters, Composition, American Literature, English Literature, Philosophy & Reli-

13. Number for each field are CSSC codes
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gion, Theology, Psychology, Protective Services, Public Affairs, Social Work, So-

cial Sciences, Anthropology, Economics, Geography, History, Political Science

& Government, Sociology, Visual & Performing Arts, Dance, Fine Arts, Music,

Liberal/General Studies.

- Education: Education, Adult & Continuing Education, Elementary Education, Ju-

nior High Education, Pre-Elementary Education, Secondary Education.

- Health: Allied Health, Practical Nursing, Health Sciences, Nursing.

Table 3.I: Summary Statistics
Unrestricted sample Restricted sample

Mean SD SD in HS Frac in HS Obs. Mean SD SD in HS Frac. in HS Obs.
Female 0.541 0.498 0.211 0.821 5072 0.530 0.499 0.266 0.716 1265
Black 0.125 0.331 0.210 0.597 5072 0.089 0.284 0.151 0.717 1265
SATM 477.747 115.141 47.416 0.830 2064 483.075 110.838 43.172 0.848 1265
SATV 440.612 107.143 43.714 0.834 2042 447.249 103.189 40.650 0.845 1265
College GPA 2.316 0.803 0.211 0.931 4686 2.453 0.689 0.190 0.924 1265
SES 0.224 0.738 0.412 0.688 4912 0.403 0.687 0.398 0.664 1265
Share of Course
Reading and writing 0.232 0.066 0.045 0.530 5072 0.246 0.062 0.046 0.455 1265
Maths 0.122 0.041 0.023 0.686 5072 0.132 0.037 0.022 0.640 1265
Life science 0.168 0.067 0.055 0.325 5072 0.168 0.066 0.059 0.221 1265
Physics 0.054 0.041 0.021 0.746 5072 0.065 0.041 0.022 0.718 1265
Humanities 0.186 0.074 0.065 0.235 5072 0.200 0.079 0.071 0.195 1265
Business and communication 0.074 0.065 0.031 0.768 5072 0.060 0.054 0.027 0.744 1265
Art 0.070 0.071 0.036 0.747 5072 0.059 0.066 0.035 0.709 1265
Others 0.050 0.058 0.044 0.422 5072 0.042 0.054 0.047 0.260 1265
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Figure 3.1: U-shaped between residual and ρ by college major

Figure 3.2: U-shaped between GPA and ρ
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Table 3.II: High school Human Capital Portfolios by college major
College Major \ Share Quant. R. and W. Life sc. Hum. Com./Bus. Arts Others

Bus. & Com. 0,169 0,236 0,167 0,190 0,095 0,063 0,081

Natural science 0,219 0,251 0,186 0,178 0,040 0,065 0,061

Math and Physical 0,225 0,245 0,167 0,187 0,056 0,056 0,064

Education 0,165 0,232 0,169 0,180 0,075 0,092 0,088

Engineer 0,227 0,227 0,171 0,172 0,050 0,063 0,089

Social/hum. 0,185 0,258 0,163 0,198 0,056 0,066 0,074

Health 0,172 0,232 0,181 0,188 0,075 0,073 0,078

Others 0,169 0,228 0,170 0,176 0,066 0,093 0,098

F 50,218 12,651 3,385 5,174 37,233 9,784 6,410
P-value ,000 ,000 ,001 ,000 ,000 ,000 0,000
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Table 3.III: Estimation results of college performance: GPA as the dependent variable
(1) (2) (3) (4) (5) (6) (7)

ρ -6.834*** -5.222*** -5.824*** -5.766*** -5.861*** -5.923*** -7.154***
(2.08) (1.98) (1.90) (1.90) (1.89) (1.96) (2.59)

ρ
2 17.477*** 14.707*** 16.128*** 15.985*** 16.195*** 16.740*** 21.376***

(5.49) (5.25) (5.05) (5.05) (5.03) (5.34) (6.87)
Female 0.127*** 0.179*** 0.179*** 0.178*** 0.164*** 0.072

(0.04) (0.04) (0.04) (0.04) (0.04) (0.05)
Black -0.281*** -0.141** -0.136** -0.141** -0.114* -0.047

(0.06) (0.06) (0.06) (0.06) (0.06) (0.09)
SES 0.039 -0.057** -0.050 -0.054 -0.045 -0.051

(0.03) (0.03) (0.05) (0.05) (0.05) (0.06)
SAT Maths 0.109*** 0.109*** 0.111*** 0.126*** 0.096***

(0.02) (0.02) (0.02) (0.03) (0.03)
SAT verbal 0.127*** 0.126*** 0.126*** 0.126*** 0.144***

(0.02) (0.02) (0.02) (0.02) (0.03)
Father education 0.002 0.002 -0.000 -0.005

(0.01) (0.01) (0.01) (0.01)
Mother education -0.006 -0.005 -0.006 0.007

(0.01) (0.01) (0.01) (0.01)
Plan college Dad 0.034 0.034 0.093

(0.08) (0.08) (0.08)
Plan college Mom -0.037 -0.036 0.009

(0.08) (0.08) (0.09)
Dummy for south 0.047 0.071

(0.04) (0.04)
Plan HS Dad -0.018 -0.001

(0.07) (0.07)
Plan HS Mom -0.134 -0.096

(0.10) (0.10)
Majors Yes Yes Yes Yes Yes Yes
High school courses Yes Yes
Constant 3.067*** 2.591*** 1.604*** 1.612*** 1.607*** 1.646*** 1.864***

(0.19) (0.18) (0.20) (0.21) (0.22) (0.24) (0.37)

Observations 1265 1265 1265 1265 1265 1265 1265
R2 0.01 0.11 0.20 0.20 0.20 0.21 0.19
Number of groups 389
R2 overall 0.16

NB: *** Significant at 1%; ** Significant at 5%; and * Significant at 10% Heteroskedasticity robust standard errors are clustered by high school in
parentheses for column 1 to 6. Column 7 estimates OLS with high school fixed effect. Background characteristics include parents education, parents
participation to college enrollment decision, High school courses are formal courses taken in HS form HS transcripts.
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Table 3.IV: Lind and Mehlum (2010) test for U-shape
Specification: f (x) = x2

Extreme Point: 0.1699134
H1: U shape vs H0 Monotone or inverse Ushape

Lower bound Upper bound
Interval .04625 .6006787

Slope -4.066305 14.16445
t-value -2.559242 3.20296

P>|t| .0054755 .0007488
Overall test of presence of a U shape:

t-value=2.56
P>|t|=0.0054

Table 3.V: Performance regressions
One type Two types

Coefficient Stand. Error Coefficient Stand. Error

ρ -7.6077 2.2671 -8.3000 2.0323
ρ

2 22.2215 6.0855 27.6217 5.4638
Female 0.1563 0.0483 0.1418 0.0433
Dummy South -0.0105 0.0159 0.0014 0.0143
SATM 0.1192 0.0279 0.1110 0.0250
SATV 0.0859 0.0283 0.0929 0.0254
SES -0.0326 0.0333 -0.0688 0.0300
Black -0.0814 0.0748 -0.0604 0.0671
Business and Communication 0.1205 0.1111 0.1174 0.0995
Natural science -0.0906 0.1334 -0.1240 0.1196
Maths & Physics 0.1316 0.1088 0.1569 0.0975
Education and Military 0.0155 0.0956 -0.0269 0.0857
Engineering 0.0962 0.0703 0.0518 0.0631
Health -0.0176 0.0114 -0.0115 0.0102
Type 1 -0.7128 0.0430
const 2.1672 0.3110 1.9749 0.2790
Variance 0.7225 0.0153 0.6476 0.0137

NB:major-specific constant terms were also included
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Table 3.VI: Utility parameters estimates
One type Two types

Coefficient Stand. Error Coefficient Stand. Error
Life science courses

Business and Communication 0.1041 0.0979 0.1204 0.0665
Natural science 0.2068 0.1301 0.1694 0.0996
Maths & Physics 0.0511 0.1247 -0.0242 0.0813
Education and Military 0.1038 0.1316 0.1256 0.0705
Engineering 0.0658 0.1217 -0.0147 0.0812
Humanities 0.0648 0.0994 0.0764 0.0687
Health 0.1603 0.1199 0.1600 0.0917

Quantitative courses
Business and Communication 4.8964 1.0766 -0.0443 0.0879
Natural science 5.0620 1.0837 0.0421 0.1277
Maths & Physics 5.2565 1.0777 0.2146 0.1057
Education and Military 4.8938 1.0670 -0.0359 0.0945
Engineering 5.2959 1.0805 0.2558 0.1058
Humanities 4.8925 1.0742 -0.0770 0.0907
Health 5.0410 1.0862 0.0662 0.1180

Humanities courses
Business and Communication 0.1223 0.0763 0.1031 0.0369
Natural science 0.0548 0.1064 -0.0086 0.0717
Maths & Physics 0.0597 0.1026 -0.0464 0.0499
Education and Military 0.0657 0.1123 0.0764 0.0417
Engineering 0.0538 0.0984 -0.0413 0.0496
Humanities 0.0793 0.0777 0.0600 0.0391
Health 0.0385 0.0965 0.0118 0.0613

GPA
Business and Communication 1.5436 0.9165 0.9756 0.3705
Natural science 0.8338 1.1941 -0.4789 0.8508
Maths & Physics 2.0673 1.1337 0.7189 0.4828
Education and Military 1.7819 1.2066 1.1058 0.3971
Engineering 2.0723 1.1096 0.7165 0.4878
Humanities 1.1457 0.9292 0.5134 0.4223
Health 0.9436 1.1081 0.1823 0.6781

ρ

Business and Communication -12.9912 2.6876 -4.2077 2.8318
Natural science -17.4797 3.7017 -4.6484 3.5321
Maths & Physics -21.0977 3.3094 -14.1069 3.3499
Education and Military -14.8482 3.1440 -4.5911 2.9716
Engineering -20.5266 3.2969 -13.5531 3.3480
Humanities -13.4522 2.7094 -4.4163 2.8372
Health -11.8757 3.3616 -1.4088 3.4043
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Table 3.VII: Utility parameters estimates (cont.)
One type Two types

Coefficient Stand. Error Coefficient Stand. Error
GPA × HS courses

Business and Communication -0.0279 0.0353 -0.0147 0.0147
Natural science -0.0145 0.0451 0.0274 0.0328
Maths & Physics -0.0487 0.0436 -0.0041 0.0192
Education and Military -0.0305 0.0472 -0.0162 0.0163
Engineering -0.0561 0.0427 -0.0097 0.0194
Humanities -0.0162 0.0359 0.0018 0.0169
Health -0.0100 0.0421 0.0132 0.0273

SATM
Business and Communication 0.2981 0.1769 0.2984 0.1721
Natural science 0.5880 0.2189 0.5464 0.2084
Maths & Physics 0.7487 0.1986 0.7520 0.1914
Education and Military 0.1307 0.2003 0.2090 0.1798
Engineering 0.6788 0.1981 0.7199 0.1916
Humanities 0.1598 0.1771 0.2223 0.1719
Health 0.1296 0.2111 0.2267 0.2015

SATV
Business and Communication 0.4005 0.1723 0.4078 0.1660
Natural science 0.5737 0.2123 0.4268 0.1988
Maths & Physics 0.1994 0.1945 0.1636 0.1848
Education and Military 0.3943 0.1949 0.4086 0.1734
Engineering 0.2815 0.1937 0.1999 0.1845
Humanities 0.6591 0.1729 0.5390 0.1659
Health 0.3215 0.2049 0.3063 0.1963

Constant
Business and Communication -4.9800 1.1411 -3.0227 1.2116
Natural science -2.7318 2.1281 -4.1982 2.1996
Maths & Physics -5.8052 3.0440 -2.3435 1.5126
Education and Military -4.8387 2.8206 -3.3495 1.3289
Engineering -2.7981 3.0284 -2.2728 1.5035
Humanities -4.4636 2.6980 -2.0683 1.2663
Health -2.1956 2.1706 -4.0940 1.9494

Type 1
Business and Communication -0.4613 0.3148
Natural science -0.8189 0.3875
Maths & Physics -0.2081 0.3527
Education and Military -0.4716 0.3296
Engineering -0.3901 0.3543
Humanities -0.4986 0.3154
Health -0.2955 0.3712

Nesting Parameter 0.4834 0.0111 0.2653 0.0088
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Table 3.VIII: High school courses choices estimations
Humanities courses

One type Two types
Coefficient Stand. Error Coefficient Stand. Error

Base year test score
Vocabulary 0.0610 0.0172 0.0568 0.0175
Reading 0.0104 0.0166 -0.0005 0.0168
Math 0.0031 0.0194 -0.0377 0.0193
Science -0.0357 0.0171 -0.0402 0.0173
Writing 0.0587 0.0184 0.0410 0.0184
Civic 0.0137 0.0142 0.0193 0.0143
Expected GPA 2.8965 0.5722 4.4575 0.4860
Expected GPA interacted by major:
Business and Communication -6.9553 0.8609 -4.3865 0.6309
Natural science -13.1673 2.0744 -8.5054 1.5168
Maths & Physics -9.1344 2.4134 -3.0334 0.9578
Education and Military -4.6856 1.4340 -5.5758 1.4804
Engineering -6.4705 1.3250 -5.0364 0.9241
Humanities -6.9276 0.9197 -5.7341 0.6865
Health -8.4818 1.9966 -4.2283 1.0902
Major:
Business and Communication 17.7216 2.1358 11.1098 1.5040
Natural science 32.4560 5.1415 21.3923 3.7467
Maths & Physics 20.9101 5.7522 6.6542 2.5020
Education and Military 11.1049 3.7968 12.6932 3.5860
Engineering 14.7227 3.2620 11.5303 2.2438
Humanities 17.5508 2.2610 14.6686 1.6314
Health 20.3698 4.7245 10.3561 2.5678
Type 1 0.6906 0.3993
Variance 3.3723 0.0712 3.4201 0.0723
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Table 3.IX: High school courses choices estimations
Life science courses

One type Two types
Coefficient Stand. Error Coefficient Stand. Error

Base year test score
Vocabulary -0.0311 0.0107 -0.0318 0.0108
Reading -0.0124 0.0103 -0.0077 0.0104
Math -0.0337 0.0121 -0.0247 0.0119
Science 0.0142 0.0107 0.0166 0.0107
Writing -0.0223 0.0115 -0.0179 0.0114
Civic 0.0119 0.0089 0.0160 0.0088
Expected GPA 3.7839 0.3567 2.8776 0.2998
Expected GPA interacted by major:
Business and Communication -0.3033 0.5366 -0.2213 0.3892
Natural science 0.6705 1.2927 -1.0865 0.9356
Maths & Physics 3.0931 1.5043 0.1327 0.5908
Education and Military -1.3200 0.8938 1.3837 0.9131
Engineering -1.2856 0.8259 -0.4680 0.5700
Humanities -0.9882 0.5733 -1.1866 0.4235
Health -0.2333 1.2446 -2.3845 0.6725
Major:
Business and Communication 0.4262 1.3312 0.7125 0.9277
Natural science -0.5294 3.2042 4.1990 2.3111
Maths & Physics -7.0656 3.5854 -0.6851 1.5433
Education and Military 2.7386 2.3666 -2.7487 2.2120
Engineering 3.1075 2.0332 1.4399 1.3841
Humanities 2.2836 1.4094 3.2095 1.0063
Health 1.2013 2.9451 6.5287 1.5839
Type 1 1.4862 0.2463
Variance 2.1020 0.0445 2.1096 0.0447
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Table 3.X: High school courses choices estimations
Quantitative courses

One type Two types
Coefficient Stand. Error Coefficient Stand. Error

Base year test score
Vocabulary -0.0055 0.0084 -0.0031 0.0083
Reading 0.0112 0.0081 0.0068 0.0080
Math 0.0531 0.0095 0.0451 0.0092
Science 0.0289 0.0084 0.0263 0.0082
Writing -0.0162 0.0090 -0.0208 0.0087
Civic -0.0046 0.0070 -0.0051 0.0068
Expected GPA 0.8426 0.2795 0.9916 0.2301
Expected GPA interacted by major:
Business and Communication -0.1068 0.4205 0.8343 0.2987
Natural science 1.3458 1.0131 0.9615 0.7181
Maths & Physics -2.3925 1.1788 -0.2132 0.4534
Education and Military -1.0858 0.7004 -1.6626 0.7008
Engineering 1.2274 0.6471 0.6087 0.4375
Humanities -0.0793 0.4492 0.6151 0.3250
Health -0.3827 0.9752 1.0640 0.5161
Major:
Business and Communication -0.1636 1.0431 -2.3126 0.7120
Natural science -2.9809 2.5111 -1.6040 1.7737
Maths & Physics 5.2358 2.8096 1.2428 1.1844
Education and Military 3.3402 1.8545 3.8587 1.6976
Engineering -2.1985 1.5932 -0.3277 1.0622
Humanities -0.0869 1.1043 -1.5347 0.7723
Health 0.9063 2.3076 -2.3652 1.2156
Type 1 1.1915 0.1890
Variance 1.6471 0.0349 1.6191 0.0343
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Table 3.XI: Comparing model predictions of individual choices with the data
HS Quantitative

Data One type Two types
Business and Communication 5.5044 5.5068 5.4890
Natural science 6.7018 6.7304 6.6787
Education and Military 6.7570 6.7757 6.7561
Maths & Physics 5.1628 5.1810 5.1848
Engineering 7.1130 7.1161 7.1001
Humanities 5.6754 5.6703 5.6627
Health 5.6582 5.6384 5.6624

HS Humanities
Data One type Two types

Business and Communication 13.7609 13.9761 13.8079
Natural science 13.7368 13.5100 13.5951
Education and Military 12.8505 12.8022 12.7235
Maths & Physics 12.5349 12.6713 12.5517
Engineering 12.3826 12.4544 12.4572
Humanities 14.0623 13.8463 13.9706
Health 13.4177 13.3346 13.4069

HS Life sciences
Data One type Two types

Business and Communication 5.0612 5.0585 5.0410
Natural science 5.9298 5.9030 6.0344
Education and Military 4.8879 4.9064 4.9184
Maths & Physics 5.0465 5.0528 5.0619
Engineering 4.8261 4.8231 4.7790
Humanities 4.9377 4.9399 4.9283
Health 5.5063 5.5292 5.4045

Table 3.XII: Simulations of the change in major choice distribution
Simulations

(1) (2) (3) (4)
One type STEM Majors 0.036 -0.014 -0.015 0.186

Natural Science 0.011 0.000 0.015 0.000
Humanities -0.05 0.015 0.002 -0.127
No College 0.003 0.001 -0.002 -0.059

Two types STEM Majors 0.027 -0.017 -0.021 0.231
Natural Science 0.012 0.009 0.033 -0.039
Humanities -0.05 0.009 -0.01 -0.168
No College 0.01 -0.001 0.0019 -0.023
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