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ABSTRACT 

We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents 

recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial 

ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present 

study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy 

metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced 

by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour 

MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced 

increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as 

well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain 

ammonia correlated with the percent change in ICP (r
2
 = 0.511). Increases in brain lactate dehydrogenase activity and 

mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was 

unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The 

observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- 

and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain 

glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of 

increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further 

investigation. (HEPATOLOGY 2007.) 

Abbreviations 

MARS, molecular adsorbents recirculating system; ALF, acute liver failure; LDH, lactate dehydrogenase; ICP, 

intracranial pressure. 

INTRODUCTION 

Acute liver failure (ALF) is defined by the occurrence of hepatic encephalopathy (HE), which is characterized by an 

increase in intracranial pressure (ICP) that may lead to cerebral herniation, an important cause of death.
1
 Current 

hypotheses suggest that increased ICP in ALF is the result of multiple factors that involve the effects of 

hyperammonemia, increased cerebral blood flow, and inflammation.
2
 Increased brain ammonia, arising from the onset of 
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hyperammonemia, is detrimental to neurological function.
3
 Arterial ammonia levels, ammonia brain delivery, and 

metabolic rate correlate with severity of intracranial hypertension and risk of cerebral herniation.
1, 4, 5 

Alterations in brain energy metabolism have been hypothesized to be involved in the cerebral consequences of ALF 

because ammonia is known to inhibit the rate-limiting enzyme α-ketoglutarate dehydrogenase in the tricarboxylic acid 

cycle (TCA).
6
 This is supported by experiments demonstrating an increase in de novo synthesis of lactate

7, 8
 from 

glucose (using nuclear magnetic resonance spectroscopy) in the brains of rats with ALF. As a result, this would lead to 

less adenosine triphosphate (ATP) production per molecule of glucose compared with that in aerobic metabolic pathways 

(through TCA cycle). Therefore, increased ammonia in the brain reduces generation of ATP. On the other hand, elevated 

ammonia also increases energy demand. Ammonia detoxification through glutamine synthetase activity and stimulation 

of glutamate uptake by ammonia into astrocytes
9
 along with activation of NMDA receptors

10
 (both resulting in increased 

Na
+
-K

+
-adenosine triphosphatase [ATPase] activity) all require ATP. Thus, ammonia affects brain bioenergetics, through 

both an increase in the demand for and a reduction in the supply of ATP. 

Albumin dialysis, using the molecular adsorbents recirculating system (MARS), removes protein bound substances from 

the blood. Several controlled clinical trials have shown that MARS therapy is an effective treatment for HE.
11–16

 The 

mechanism by which MARS treatment results in improved HE is not clear, as results showing a reduction in blood 

ammonia with MARS have been inconsistent. In keeping with the results in humans, we recently showed attenuation in 

the rise in ICP (following a 4-hour MARS treatment) in a porcine model of ALF (induced by liver devascularization).
17

 

This beneficial effect of MARS was not associated with any significant changes in arterial ammonia, cerebral blood flow, 

or severity of inflammation,
17

 allowing the use of this model and MARS therapy as an experimental tool to explore 

alternative pathophysiological mechanisms that may be important in the pathogenesis of intracranial hypertension in 

ALF. The aims of the present study were to determine whether changes in ammonia, glutamine, glutamate, and energy 

metabolites in the extracellular compartment of the brain are associated with the changes in ICP previously observed in 

ALF- and ALF+MARS-treated pigs.
17

 

MATERIALS AND METHODS 

The study was performed in the Surgical Research Laboratory at the University of Tromsø, Norway, and was approved 

by the Norwegian Experimental Animal Board. Twenty-four female Norwegian Landrace pigs from 3 litters weighing 

23–30 kg (mean weight ± SEM: 26.8 ± 0.3 g) were used. 

Study Design. 

The pigs were randomized into 3 groups17: sham, ALF, and ALF+MARS (8 per group). ALF was induced by 

devascularization of the liver. This was achieved with an end-to-side portacaval anastomosis followed by hepatic artery 

ligation (HAL). In the sham group, a laparotomy was performed without interfering with hepatic blood supply. Details of 

the operation were described previously.
18, 19

 Time (T) = 0 was defined as following HAL in the ALF and ALF+MARS 

groups or just prior to closing the abdominal wall in the sham group. All pigs were monitored over 6 hours. In the 

ALF+MARS group, a 4-hour MARS dialysis treatment began at T = 2 hours. Experiments were terminated at T = 6 hours 

by giving the pigs an overdose of pentobarbital and potassium chloride. 

Animal Model. 

The animal room facilities, anesthesia, and surgical preparation have previously been described in detail.
12, 17–20

 The pigs 

were premedicated with an intramuscular injection of ketamine (20 mg/kg) and atropine (1 mg). To prevent any 

preoperative dehydration, all animals received 500 mL of 0.9% NaCl containing 625 mg of glucose. The pigs were 

anesthesized with an intravenous bolus of 10 mg/kg pentobarbital and 10 mg/kg fentanyl and were maintained during the 

operation with a central venous infusion of 4 mg pentobarbital/kg per hour, 0.02 mg fentanyl/kg per hour, and 0.3 mg 

midazolam/kg per hour. Anesthesia was terminated following HAL, and small bolus doses of fentanyl and midazolam 
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were given when clinical signs of light sedation appeared. Becuase of drug removal by MARS,12 animals were kept 

sedated with a continuous infusion of 0.04 mg fentanyl/kg per hour and 0.6 mg midazolam/kg per hour. 

The pigs were ventilated (PaCO2 4.5–5.0 kPa) throughout the experiment and infused with 0.9% NaCl, 5% glucose, and 

20% human albumin (to counteract intra-abdominal proteinaceous fluid loss during and after surgery) as described 

previously.12, 17–20 Normal core body temperature was maintained at 38.5°C ± 1°C. Heparin was used to keep the 

activated clotting time (ACT) > 100 seconds (>180 seconds during MARS). 

Catheter Placement. 

A very thin catheter
21

 was introduced into the abdominal aortas of the pigs in all 3 groups. MARS was performed through 

an 11.5Fr dual-lumen catheter (Mahurkar, Tyco Healthcare, UK) in the inferior vena cava. To be comparable, ALF and 

sham animals also received a vena caval catheter. 

MARS. 

MARS (Monitor 1, Teraklin AG, Rostock, Germany)
2, 22, 23

 works on the basis that blood is dialyzed across an albumin-

impregnated membrane with 20% human albumin in the dialysate. Albumin-bound toxins detach from the blood, bind to 

free-binding sites on the membrane, and then bind to the albumin in the dialysate. The dialysate is then activated through 

the charcoal and anion-exchanger (adsorbing albumin-bound toxins). The ―regenerated‖ albumin is then recirculated, 

allowing for removal of more toxins from the blood.
22, 23

 A roller pump (Stöckert Shiley, Munich, Germany) and the 

MARS pump perfusing the blood and albumin dialysate were running at the same rate (15 0 mL/minute). 

Microdialysis. 

A burr hole was created over the right frontal region of the skull (1 cm lateral, 2 cm rostral from bregma, and 0.5 cm 

ventral), the dura mater was incised, and a microdialysis catheter [CMA 70: 10-mm-long semipermeable membrane 

(20,000 Da cutoff) and an outer diameter of 0.6 mm] was placed into the cortex at least 1 hour before T = 0. The burr 

hole was sealed with bone wax to ensure stable positioning of the catheter and to prevent pressure release. The 

microdialysis catheter was connected to a microinjection pump (CMA/106 microinjection pump; CMA Microdialysis 

AB, Stockholm, Sweden) and perfused with artificial CSF (Na
+
 147 mmol/L; K

+
 4 mmol/L; Ca

2+
 2.3 mmol/L; Cl

−
 156 

mmol/L) at a flow rate of 2.0 μL/minute. The microdialysate was collected in microvials every hour, resulting in 120 μL 

for biochemical analysis. Samples were stored at −20°C. At the end of each experiment, a craniotomy was performed, and 

the brain was removed, dissected and examined for any intracranial hemorrhaging. 

Extracellular Brain Glucose, Glutamate, Lactate, and Pyruvate Measurements. 

The microdialysis samples were analyzed using a CMA 600 Microdialysis Analyzer (CMA Microdialysis AB). The 

analyzer measures glucose, lactate, pyruvate, and glutamate concentrations using small-volume samples. The 

methodologies are based on enzymatic oxidation and colorimetric measurements (CMA Microdialysis AB). 

Extracellular Brain Glutamine Measurement. 

Glutamine from microdialysis samples were measured and analyzed using a Perkin-Elmer reverse-phase HPLC system 

with fluorescence detection and precolumn o-phthalaldehyde derivatization.
24

 

Extracellular Brain Ammonia Measurement. 

Microdialysate ammonia level was determined using an ammonia reagent kit (Sigma-Aldrich, St. Louis, MO), which was 

used in conjunction with an automated enzymatic method (Cobas Fara II, Roche, Basel, Switzerland). 

Microdialysis Recovery Rates. 

Using the same microdialysis probes and microperfusion pump (at a flow rate of 2.0 μL/minute), we measured in vitro 

the recovery rate for each microdialysate analyte measured. This was done by immersing the probe in a solution of known 

concentrations of glucose, glutamate, glutamine, lactate, and pyruvate and measuring the concentrations of all 5 analytes 

in the collected microdialysate. The recovery rate at 2.0 μL/minute was 46.7% ± 7.1% for all analytes. 
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Arterial Lactate Measurement. 

Arterial blood was collected every 2 hours and centrifuged, and the plasma was stored at −70°C for subsequent analysis. 

Arterial plasma lactate level was determined using a lactate reagent kit (Sigma-Aldrich, St. Louis, MO) with an 

automated enzymatic method (Cobas Fara II, Roche, Basel, Switzerland). 

Lactate Dehydrogenase Activity. 

Following termination of experiments, the brain was rapidly removed, and samples were dissected from the frontal cortex 

and homogenized at 4°C in phosphate-buffered saline containing a protease inhibitor cocktail (Sigma-Aldrich, St. Louis, 

MO). Homogenates were vortexed, set on ice for 10 minutes, and then centrifuged at 10,000g for 5 minutes at 4°C. 

Lactate dehydrogenase (LDH) activity was assayed in supernatant within 24 hours, and samples were kept at 4°C at all 

times. Cell suspensions were mixed with NADH (0.13 mM; Sigma-Aldrich, St. Louis, MO) and concentrations of 

pyruvic acid (Sigma-Aldrich, St. Louis, MO) ranging from 0.01 to 1 mM in a 0.1M potassium phosphate buffer (pH = 

7.4). LDH activity was assessed over a 2-minute period by following the rate of oxidation of NADH as measured by 

spectrophotometric absorbance at 340 nm. 

Oxygen Consumption. 

Oxygen consumption was calculated from the blood gas measurements (Rapidab 800, Chiron Diagnostics, MD) in 

samples collected from catheters inserted into the carotid artery and a separate catheter inserted in the reverse direction 

with its tip in the jugular bulb. The sampling from this catheter represents the venous drainage from the brain. Extraction 

was calculated as a percentage using the formula [(CaO2 − CvO2)/CaO2] × 100. 

Mitochondrial Complex Activities. 

Mitochondrial complex activity was measured by well-described spectrophotometric methods (Agilent 8543 Diode array 

spectrophotometer, Agilent Technologies, UK).
25

 Tissue samples were homogenized on ice with a handheld glass 

homogenizer, then underwent 3 episodes of rapid freeze-thawing to ensure cell lysis. Complex activity was measured as 

the inhibitor sensitive rates (rotenone for complex I, antimycin A for complexes II and III, and cyanide for complex IV). 

To correct for mitochondrial enrichment in the sample, results are expressed as a ratio of citrate synthase activity.
26

 

Cytochrome c Oxidase. 

Cytochrome c oxidase concentration in the tissue homogenate was determined spectrophotometrically as the reduced 

cyanide complex. Briefly, a sample of homogenate was incubated in a phosphate buffer solution (100 mM, pH 7.1) 

containing sodium ascorbate (30mM), TMPD (0.15 mg/mL), and potassium cyanide (30 mM). After 2 minutes, 

absorbance was measured at 605 nm, and the concentration was calculated using an extinction coefficient of 24 

mM
−1

cm
−1

. 

Statistics. 

Results are expressed as mean ± SEM. Significance of differences within a group was tested by the paired Student t test, 

and the significance of differences between groups was measured by 1- or 2-way analysis of variance (ANOVA) where 

applicable. A difference with a P value < 0.05 was considered statistically significant. GraphPad Prism 4.0 (GraphPad 

Software, San Diego, CA) was used for statistical analyses. 

RESULTS 

As previously mentioned,17 3 pigs were excluded (1 sham and 1 ALF because of intracranial hemorrhage and 1 ALF 

because of technical problems with ICP monitoring), leaving a total of 21 pigs analyzed: 7 sham, 6 ALF, and 8 

ALF+MARS. 

Extracellular Brain Ammonia and Lactate. 
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Two hours following the onset of liver devascularization (pre-MARS treatment), a significant increase in extracellular 

brain ammonia was observed in pigs with ALF compared with sham-operated control pigs (Fig. 1A). Extracellular 

ammonia continued to rise in pigs with ALF, whereas this rise was attenuated at T = 6 hours following a 4-hour treatment 

with MARS (P < 0.01; Fig. 1A). Transforming the data into percent increase (from T = 0 in each group), an earlier 

attenuation with MARS was observed, as early as 2 hours following MARS treatment (at T = 4–6; Fig. 1B). To 

emphasize the effect of MARS on extracellular ammonia, the percent change in extracellular brain ammonia was 

calculated from T = 2 hours (start of the MARS treatment) until T = 6 hours (end of the MARS treatment), as shown in 

Fig. 1C. Using all 6 times from all 3 groups, a significant correlation was calculated between percent change in 

extracellular ammonia and percent change in ICP (r
2
 = 0.511, P < 0.001; Fig. 1D). 

 

Figure 1. (A) Extracellular brain concentrations of ammonia following induction of ALF (T = 0). (B) 

Percent increase [from baseline (T = 0)] of extracellular concentrations of ammonia. (C) Percent change 

(from T = 2–6) in extracellular ammonia. (D) Correlation between change in extracellular brain ammonia 

and change in ICP (***P < 0.001, **P < 0.01, *P < 0.05 versus SHAM; 
†††

P < 0.001, 
††

P < 0.01, ALF 

versus MARS; 1-way ANOVA). 

Extracellular concentrations of brain lactate in ALF demonstrated a similar pattern as that observed with extracellular 

brain ammonia, where extracellular brain lactate was significantly higher than shams at T = 2 (2 hours following liver 

devascularization; Fig. 2A). As early as 1 hour following MARS treatment, extracellular brain lactate normalized, which 

persisted until T = 6 hours. 
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Figure 2. (A) Extracellular concentrations of lactate following induction of ALF (T = 0). (B) Correlation 

between extracellular brain ammonia and lactate (***P < 0.001, **P < 0.01 versus SHAM; 
††

P < 0.01, 
†
P 

< 0.05, ALF versus MARS; 2-way ANOVA). 

Using all 6 times from all 3 groups, a significant correlation was found between extracellular brain ammonia and 

extracellular brain lactate concentrations (r
2
 = 0.632, P < 0.001; Fig. 2B). No significant correlations were found between 

percent change in ICP and percent change in extracellular brain lactate (data not shown). 

Arterial Lactate. 

Arterial lactate concentrations were significantly increased in ALF and ALF+MARS at all times—2, 4, and 6 hours—

compared to in the sham pigs (Fig. 3). No significant differences were found between ALF and ALF+MARS at any time. 
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Figure 3. Arterial concentrations of lactate following induction of ALF at T = 0 (***P < 0.001, **P < 0.01, 

*P < 0.05 versus SHAM; 1-way ANOVA). 

Arterial and Extracellular Brain Glucose. 

Arterial glucose levels were closely monitored and controlled to remain within physiological concentrations in all 3 

groups (Table 1). No significant changes were found in extracellular brain glucose concentration in any of the 3 groups 

over the 6-hour duration of the experiment (Table 1). 

 

Extracellular Brain Pyruvate. 

No significant changes were measured in extracellular brain pyruvate in any of the 3 groups over the 6-hour duration of 

the experiment (Table 1). 

Ratios of Brain Energy Metabolites. 

Ratio of extracellular brain lactate/pyruvate, a measure of anaerobic metabolism,27 was found to be significantly 

increased at T = 6 hours in the ALF group compared with the sham group (P < 0.05; Fig. 4A). At the same time, a 4-hour 

MARS treatment attenuated this increase. 
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Figure 4. (A) Extracellular brain lactate/pyruvate ratio and (B) extracellular brain lactate/glucose ratio 

following induction of ALF at T = 0 (***P < 0.001, **P < 0.01, *P < 0.05, versus SHAM; 
†
P < 0.05, ALF 

versus MARS; 2-way ANOVA). 

A significant increase in the ratio of extracellular brain lactate/glucose (indicating accelerated glycolysis) was found in 

the ALF group versus the sham group at T = 5 hours (P < 0.01) and T = 6 hours (P < 0.001). A 4-hour treatment of 

MARS resulted in normalization at T = 6 hours (P < 0.05; Fig. 4B). 

Extracellular Brain Glutamate, Glutamine. 

Extracellular brain glutamate was significantly increased in the ALF group at T = 5 hours (P < 0.01) and T = 6 hours (P 

< 0.01) compared to the sham group and normalized at the same times with MARS following 3 hours (P < 0.05) and 4 

hours (P < 0.001) of treatment (Fig. 5A). Extracellular brain glutamine was significantly increased in the ALF group 

compared to the sham group at T = 3–6 hours (P < 0.05). MARS treatment had no effect on extracellular brain glutamine, 

as a significant increase was also found in the ALF+MARS group compared to the sham group, however, only from T = 

4 to 6 hours (P < 0.01; Fig. 6B). No significant correlations were found between percent change in ICP and percent 

change in either extracellular brain glutamate or glutamine (data not shown). 
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Figure 5. Extracellular brain concentrations of (A) glutamate and (B) glutamine following induction of ALF at T = 

0 (**P < 0.01, *P < 0.05 versus SHAM; 
†††

P < 0.01, 
†
P < 0.05, ALF versus MARS; 2-way ANOVA). 

 

Figure 6. LDH activity (% baseline) in frontal cortex following induction of ALF at T = 0 (*P < 0.05 

versus SHAM; 1-way ANOVA). 
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Lactate Dehydrogenase Activity in Brain. 

An increase in LDH activity was found in the frontal cortex in pigs with ALF compared to sham pigs. This same increase 

was found following a 4-hour MARS treatment (Fig. 6). 

Oxygen Extraction. 

The calculated oxygen extraction showed no significant change in oxygen uptake across the brain in all 3 groups at T = 6 

hours (sham: 0.53 ± 0.03; ALF: 0.55 ± 0.02; ALF+MARS: 0.57 ± 0.03). 

Mitochondrial Enzyme Activity. 

No differences were found between the groups in the activity levels of mitochondrial electron transport chain complexes I 

or II/III (Fig. 7A,B). A significant increase in the activity of complex IV (cytochrome c oxidase) was found in brain tissue 

(frontal cortex) homogenates from pigs in both the ALF and ALF+MARS groups compared to sham animals (P < 0.05 

for both, Fig. 7C). This finding was reflected in the increased level of cytochrome c oxidase protein measured in the 

homogenate, which was likewise significantly increased in both test groups compared to the sham-operated control (P < 

0.05 for both, Fig. 7D). 

 

Figure 7. (A) Mitochondrial complex I activity relative to citrate synthase activity, expressed as the 

rotenone-sensitive rate; (B) complex II/III combined activity relative to citrate synthase activity, 

expressed as the antimycin A–sensitive rate; (C) complex IV activity assay relative to citrate synthase 

activity, expressed as the cyanide-sensitive rate; (D) concentration of complex IV in brain tissue 

homogenate (*P < 0.05 versus SHAM; 1-way ANOVA). 

DISCUSSION 

We previously demonstrated in pigs with ALF that a 4-hour albumin dialysis (MARS) treatment results in attenuation of 

increased ICP.
17

 We also observed that this reduction in ICP was independent of changes in the currently proposed 

pathophysiological mechanisms: arterial ammonia, cerebral blood flow, and inflammation. Hence, this experimental 

paradigm allows testing for alternative hypotheses. The results of this study reveal that the development of intracranial 

hypertension in ALF is associated with increased extracellular brain ammonia, lactate, and glutamate, with a significant 

correlation found between extracellular brain ammonia and lactate. The reduction in these metabolites in the MARS-
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treated animals in association with reduced ICP indicates the important role of these metabolites in the pathogenesis of 

intracranial hypertension in ALF. 

Our study provides novel data that indicate the importance of extracellular ammonia in the pathogenesis of increased ICP 

in ALF, including a correlation between percent change in extracellular brain ammonia and percent change in ICP. 

Previous studies have suggested that the rate of ammonia delivery to the brain correlates with the severity of intracranial 

hypertension in patients with ALF.
7
 Our study provides further insights into the relationship between arterial and 

extracellular brain ammonia. As early as 2 hours following ALF, pigs developed a significant increase in extracellular 

brain ammonia in the brain. From the beginning of the MARS treatment, at T = 2 hours, until T = 6 hours, extracellular 

brain ammonia rose 244% in the ALF pigs compared to 80% in the MARS-treated ALF pigs. This attenuation in the 

extracellular compartment of the brain in the MARS-treated animals (and no change in arterial ammonia
17

) depicts the 

importance of extracellular brain ammonia in the pathogenesis of intracranial hypertension in ALF. 

Changes in arterial and extracellular brain lactate occurred in a pattern similar to that of ammonia.
17

 An increase in 

extracellular brain and arterial lactate was observed in ALF pigs; however, only extracellular brain lactate was normalized 

following MARS treatment, as increased arterial lactate remained unaffected. This indicates that cerebral, and not arterial, 

lactate is likely to be more important in the pathophysiology of increased ICP in ALF. Our results are in keeping with 

similar observations in patients with ALF but argue against the suggestion that the increase in extracellular brain lactate is 

blood-borne rather than produced in the brain.
28

 Lactate is produced by the action of LDH, an enzyme in neurons and 

astrocytes that is implicated during anaerobic glycolysis/TCA cycle inhibition. Our data showing an increase in LDH 

activity in the pigs with ALF compared to sham-operated animals suggests that lactate production is occurring in the 

brain. An increase in extracellular brain lactate may result from an increase in anaerobic metabolism because of either 

cerebral hypoxia or inhibition of aerobic energy metabolism. The attenuation of the increased lactate:glucose and 

lactate:pyruvate ratios (with no change in extracellular brain glucose or pyruvate) in the ALF animals treated with MARS 

is the result of a reduction in extracellular brain lactate in the same animals. Interestingly, LDH activity was not 

attenuated in the MARS-treated pigs. The mechanism for this remains unclear; however, a decrease in extracellular 

lactate would result from increased removal or decreased utilization of lactate from the extracellular space. Lactate is not 

only an energy impairment marker but also an energy source for neurons.
29

 This would entail neurons removing lactate 

more efficiently in the MARS-treated pigs. 

To investigate whether the increase in lactate was a result of inhibition of aerobic energy metabolism, we measured the 

activity of mitochondrial enzyme complexes of the electron transport chain in the frontal cortex. We observed that 

complex IV activity was increased together with cytochrome oxidase in both the ALF- and ALF+MARS-treated animals. 

The activity of the other enzymes remained unchanged in all 3 groups. These data contrast with those of previous studies 

of cultured astrocytes exposed to 5 mM concentrations of ammonia, in which mitochondrial proteins (in particular, 

complex IV) were found to be reduced following long-term exposure.
30–32

 The maintenance of normal oxygen 

consumption further provides evidence that mitochondrial function is maintained in the brain during ALF. 

It is known that elevated ammonia concentrations inhibit α-ketoglutarate dehydrogenase
6
 and reduce energy availability.

8, 

33
 A strong correlation between extracellular brain ammonia and extracellular brain lactate supports the hypothesis that 

ammonia may stimulate increased lactate. This increase in lactate may indicate a situation of energy deficit due to an 

imbalance between energy demand and supply. Brain detoxifies ammonia into glutamine by an energy-requiring process 

involving glutamine synthetase. Furthermore, ammonia and glutamine synthetase activity stimulate an increase in 

glutamate uptake into astrocytes.
9, 34

 This, in addition to glutamate-activated and/or ammonia-induced NMDA receptor 

activation, stimulates the ATP-required Na
+
-K

+
 ATPase. Therefore, ammonia may affect brain energy metabolism and 

increase extracellular brain lactate by increasing the demand for and impairing the supply of ATP. The correlation 

between extracellular brain ammonia and extracellular brain lactate along with a reduction of both in association with ICP 

attenuation in MARS-treated pigs further supports this hypothesis. 
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An increase in extracellular brain glutamate has been consistently demonstrated in different animal models of ALF,
24, 35–38

 

which could be the result of decreased glutamate uptake or increased glutamate release.
39

 It has been recently 

demonstrated that an acute insult of ammonia leads to glutamate release from astrocytes.
40

 Accordingly, we observed an 

increase in extracellular brain glutamate in the ALF animals, which was normalized with MARS treatment. Glutamate 

uptake by high-affinity glutamate transporters
41

 found in astrocytes stimulates Na
+
/K

+
 ATPase, which increases aerobic 

glycolytic lactate production that is then taken up by neurons and used for oxidative phosphorylation.
29

 According to this 

hypothesis, a disproportionate amount of glycolysis may occur despite sufficient oxygen levels.
42

 The importance of 

extracellular brain glutamate in the pathogenesis of increased ICP is indicated by the observation that MARS-induced 

normalization of extracellular brain glutamate was associated with attenuation of the rise in ICP. The lack of correlation 

between extracellular brain glutamate and ICP in a study of patients with ALF may indicate that those patients were at a 

later stage of the disease.
28

 

Pigs with ALF showed an increase in extracellular brain glutamine that was unaffected by MARS treatment, supporting 

the view that extracellular brain glutamine is not likely to be important in increased ICP in ALF. These data are in 

contrast to those from a study of patients with ALF that showed extracellular brain glutamine was related to surges in 

ICP.
43

 This may be because we are studying the initiating mechanisms of intracranial hypertension in ALF. 

In summary, our results demonstrate that percent change in ICP is correlated with percent change in extracellular brain 

ammonia in pigs with ALF, which is associated with changes in extracellular lactate and glutamate but not glutamine. 

The attenuation of increased extracellular brain ammonia in the MARS-treated animals may reduce energy demand (by 

lowering extracellular brain glutamate) and increase supply, leading to attenuation of the increase in lactate. The 

observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- 

and MARS-treated animals supports this hypothesis. In conclusion, the results of our study indicate an important role for 

extracellular brain ammonia in the pathogenesis of intracranial hypertension in ALF, but how MARS reduces 

extracellular brain ammonia requires further investigation. 
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