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Résumé 

 

Au cours des dernières années, des méthodes non-invasives de stimulations permettant de 

moduler l’excitabilité des neurones suivant des lésions du système nerveux central ont été 

développées. Ces méthodes sont maintenant couramment utilisées pour étudier l’effet de 

l’inhibition du cortex contralésionnel sur la récupération motrice à la suite d’un accident 

vasculocérébral (AVC).  Bien que plusieurs de ces études rapportent des résultats prometteurs, 

les paramètres permettant une récupération optimale demeurent encore inconnus.  

Chez les patients victimes d'un AVC, il est difficile de débuter les traitements rapidement et 

d'initier l’inhibition dans les heures suivant la lésion.  L'impact de ce délai est toujours inconnu.  

De plus, aucune étude n’a jusqu’à maintenant évalué l’effet de la durée de l’inhibition sur la 

récupération du membre parétique.  Dans le laboratoire du Dr Numa Dancause, nous avons 

utilisé un modèle bien établi de lésion ischémique chez le rat pour explorer ces questions. Nos 

objectifs étaient d’évaluer 1) si une inactivation de l’hémisphère contralésionnel initiée dans les 

heures qui suivent la lésion peut favoriser la récupération et 2) l’effet de la durée de 

l’inactivation sur la récupération du membre parétique.  

Suite à une lésion dans le cortex moteur induite par injections d’un vasoconstricteur, nous 

avons inactivé l’hémisphère contralésionnel à l’aide d’une pompe osmotique assurant l’infusion 

continue d’un agoniste du GABA (Muscimol). Dans différents groupes expérimentaux, nous 

avons inactivé l’hémisphère contralésionnel pour une durée de 3, 7 et 14 jours suivant la lésion. 

Dans un autre groupe, le Muscimol a été infusé pour 14 jours mais à un débit moindre de façon à 

pouvoir étudier le lien entre la fonction du membre non-parétique et la récupération du membre 

parétique. Les données comportementales de ces groupes ont été comparées à celles d’animaux 

ayant récupéré de façon spontanée d'une lésion similaire.  
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Nos résultats indiquent que l’augmentation de la durée de l’inactivation (de 3 à 14 jours) 

accélère la récupération du membre parétique. De plus, les deux groupes ayant reçu une 

inactivation d'une durée de 14 jours ont montré une plus grande récupération fonctionnelle que le 

groupe n’ayant pas reçu d’inactivation de l’hémisphère contralésionnel, le groupe contrôle. Nos 

résultats suggèrent donc que l’inactivation de l’hémisphère contralésionnel initiée dans les 

heures suivant la lésion favorise la récupération du membre parétique.  

La durée d’inhibition la plus efficace (14 jours) dans notre modèle animal est beaucoup 

plus longues que celles utilisées jusqu’à maintenant chez l’homme. Bien qu’il soit difficile 

d’extrapoler la durée idéale à utiliser chez les patients à partir de nos données, nos résultats 

suggèrent que des traitements de plus longue durée pourraient être bénéfiques.   

Finalement, un message clair ressort de nos études sur la récupération fonctionnelle après 

un AVC: dans le développement de traitements basés sur l’inhibition de l’hémisphère 

contralésionnel, la durée de l’inactivation est un facteur clef à considérer.  

 

Mots-clés: accident vasculocérébral, AVC, avant-bras, contralésionnel; cortex; inhibition; 

inactivation; lésion; main; rat; récupération motrice 
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Abstract 

 

With the introduction of non-invasive brain stimulation methods aimed at modulating the 

excitability of cortical areas after stroke, many groups are intensively investigating the effects of 

inhibition of the contralesional hemisphere on functional recovery. Although the reported results 

of these studies are very promising, limitations of enrolling acute stroke patients as well as 

technical difficult of establishing continuous inhibition protocols have left several open ended 

questions regarding the treatment parameters and patient selection. For example, the efficacy of 

inhibition treatment in acute setting after stroke and the effect of treatment duration are two 

questions that are virtually unexplored. 

Therefore, in the laboratory of Prof. Numa Dancause, we took advantage of a well established rodent 

model of cortical ischemic lesion to gain direct and objective insight about the importance of 

contralesional inactivation on motor recovery of the paretic limb. Using an Endothelin-1 rodent 

model of ischemic cortical lesion, we pharmacologically inactivated the contralesional 

hemisphere with a GABA agonist (Muscimol). By doing so we were interested in the effect of 

early treatment when contralesional inactivation is initiated rapidly after the lesion. 

Early after induction of cortical ischemic lesion, the contralesional hemisphere was inactivated 

with continuous infusion of the Muscimol for 3, 7 or 14 days in three different groups of 

animals. In a fourth group, Muscimol was infused at slower rate for 14 days to provide additional 

insights on the relation between the effects of inactivation on the non-paretic forelimb behavior 

and the recovery of the paretic forelimb. We included a group of animals with spontaneous 

recovery that received no inactivation after lesion.  
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Our results indicated that increasing inactivation duration (from 3 to 14 days) accelerated the 

recovery of grasping function. Both groups with 14 days of inactivation had similar recovery 

profiles and performed better than animals that spontaneously recovered. In fact, the duration of 

inactivation, not the intensity, correlated with the better functional outcomes.  

Our results support early contralesional inactivation to improve recovery of the paretic 

forelimb after cortical lesion. Moreover, based on our results, the duration of inactivation is the 

most important factor to correlate with the functional outcomes. Therefore, by providing precise 

temporal and behavioral evidence, our results provide a window of opportunity for the 

researchers in which the current gap in our understanding of the clinical efficacy of 

contralesional inhibition in acute phase after stroke can be approached with more confidence. 

 

Keywords: contralesional; cortex; forelimb; hand; inhibition; inactivation; lesion; stroke; rat; 

recovery 
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CHAPTER I.  

General introduction 

Stroke is the leading cause of disability worldwide (Go et al., 2013). Morbidity and 

mortality with acute stroke is substantial (Hartmann et al., 2001) however in long term, some of 

the initial deficits of the survived patients are subject to various degrees of recovery (Langhorne 

et al., 2009). Depending on the underlying cause of the stroke, up to sixty percent of stroke 

patients will still suffer from significant functional deficits a year after stroke incidence (Petty et 

al., 2000). With 700,000 cases per year in north America, this signifies that one person dies from 

stroke every three minutes and two are left with various degrees of permanent disability (Feigin 

et al., 2009).  

The recent improvements in the management of acute stroke are reflected in the substantial 

increase of stroke survivors, many of whom show persistent neurological deficits in terms of 

paresis, aphasia, apraxia or neglect (Langhorne et al., 2009). Therefore, investigating the 

reparative events in the brain after stroke, neuroprotective therapies and developing strategies to 

augment the efficacy of rehabilitative techniques is the priority of stroke research. 

In the last few years, several approaches to increase adaptive plasticity and recovery after 

stroke have been proposed and are currently being tested. In particular, many groups are 

intensively investigating the effects of inhibition of the contralesional hemisphere on functional 

recovery (Hummel and Cohen, 2006). The rationale behind the treatment strategy used in most 

studies is the concept of post-stroke interhemispheric imbalance (Liepert et al., 2000; Nowak et 

al., 2009). According to this hypothesis, increased activity in the contralesional hemisphere after 

stroke exerts an augmented inhibitory influence on the ipsilesional hemisphere. By doing so, it 
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interferes with function and adaptive plasticity in the ipsilesional hemisphere and hence the 

recovery of the paretic arm. Therefore, one proposed method of reducing interhemispheric 

imbalance is to inhibit the contralesional hemisphere.  

Interhemispheric inhibition in health and after stroke 

In normal conditions, both hemispheres are engaged in a mutual transcallosal 

interhemispheric inhibition which contributes to the functional coupling of the two hemispheres 

at the onset and during performance of voluntary movements (Jeeves et al., 1988; Ferbert et al., 

1992; Gerloff et al., 1998; Di Lazzaro et al., 1999; Grefkes et al., 2008). It has been shown that 

when one hemisphere is inhibited in healthy subjects with low frequency transcranial stimulation 

methods, the excitability of contralateral hemisphere is augmented (Plewnia et al., 2003; 

Schambra et al., 2003; Kim et al., 2004), the performance of the ipsilateral hand is increased 

(Kobayashi et al., 2004; Dafotakis et al., 2008) and the interhemispheric inhibition from 

contralateral hemisphere to the inhibited hemisphere is enhanced significantly (Lang et al., 

2004).  

The transcallosal imbalance after stroke follows a similar principle. A substantial body of 

animal and human studies has documented increased excitability of contralesional sensorimotor 

brain areas after stroke (Liepert et al., 2000; Marshall et al., 2000; Abo et al., 2001; Manganotti 

et al., 2002; Wittenberg et al., 2007) because of the decreased inhibitory transcallosal inputs from 

ipsilesional to the contralesional (intact) hemisphere. The disinhibited contralesional cortex 

(Traversa et al., 1998; Liepert et al., 2000; Cicinelli et al., 2003; Rossini et al., 2003) exerts 

further inhibitory transcallosal inputs into the ipsilesional hemisphere (Murase et al., 2004), 

which possibly contributes to the loss of function in addition to that of the damage to 

corticospinal fibers (Nowak et al., 2009). The magnitude of increased excitability in 
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contralesional hemisphere (Liepert et al., 2000; Manganotti et al., 2002, 2008; Nardone and 

Tezzon, 2002a; Shimizu et al., 2002) and the interhemispheric inhibition from contralesional to 

ipsilesional hemisphere (Murase et al., 2004; Duque et al., 2005) is found to be proportional to 

the  motor impairment in stroke patients.  

Possible mechanism of hyperexcitability of contralesional hemisphere after stroke 

The increased neuronal activity of the contralesional hemisphere occurs in a very short time 

(< 1 hour) after cortical damage (Mohajerani et al., 2011). In this short time, the post-stroke 

rewiring and experience cannot not be cause of the enhanced contralesional activity. This effect 

is most probably a result of immediate circuit loss or de-afferentaion of glutamatergic 

transcallosal fibers from the ipsilesional to the contralesional hemisphere (Buchkremer-

Ratzmann and Witte, 1997). In fact, if the lesion spares the cortical layer V (from which the main 

callosal output arises) there will be no subsequent contralesional hyperexcitability.  

In the contralesional hemisphere of acute and subacute stroke patients with cortical and 

subcortical lesions, the balance of excitatory and inhibitory activity is shifted towards an increase 

of excitatory activity (a lower threshold for activation of excitatory interneurons) due to 

decreased potency of inhibitory circuits (Bütefisch et al., 2003a). In human stroke subjects, 

experimental paired pulse stimulation paradigms with non-invasive stimulus patterns to measure 

short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) has been widely 

used to study the changes of the potency of inhibitory and excitatory circuits at the cortical level. 

SICI is a type of intracortical inhibition that can be studied by paired TMS. The protocol to 

measure SICI involves a sub-threshold conditioning stimulus followed by a supra-threshold test 

stimulus applied at the same cortical site with one coil (Kujirai et al., 1993). The test response is 
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typically inhibited at inter-stimulus intervals (ISI) of 1-6 ms. There is considerable evidence that 

SICI occurs within the cortex itself rather than in sub-cortical structures and reflects the potency 

of GABAergic inhibitory circuits (Kujirai et al., 1993; Chen et al., 1998; Di Lazzaro et al., 

1998). ICF is tested using protocols similar to SICI with a sub-threshold conditioning stimulus 

followed by a supra-threshold test stimulus that is also applied at the same cortical site with one 

coil (Kujirai et al., 1993). Facilitation occurs at an ISI of 8-30 ms. Similar to SICI, ICF occurs at 

the cortical level rather than in subcortical structures (Ziemann et al., 1996b; Nakamura et al., 

1997) and appears to be mediated by separate neuronal populations from SICI (Chen et al., 1998; 

Ashby et al., 1999; Strafella and Paus, 2001).  

For example, Bütefisch and collaborators documented a marked hyperexcitability of 

contralesional hemisphere in terms of decreased SICI after paired-pulse stimulation of 

contralesional hemisphere (Bütefisch et al., 2003a). In this experiment, they used a paired pulse 

paradigm with a single TMS coil where conditioning stimulus (CS) of about 80% of motor 

threshold (MT) was delivered 2 ms before a test stimulus (TS) with intensity of 110% of MT at 

the cortical area that would elicit a maximal response in first dorsal interosseous muscle (FDI) of 

the non-paretic hand. The diminished SICI they found was attributed to GABA down regulation 

(Ziemann et al., 1996a, 1996b; Ashby et al., 1999). Moreover, Bütefisch and collaborators 

(2003a) demonstrated decreased threshold for excitation of excitatory circuits of the 

contralesional hemisphere. For the latter experiment, they used a paired pulse paradigm with a 

constant ISI of 2 ms, while the CS varied from 20% to 100 % of MT and TS was fixed at 110% 

of MT. They observed that in CL hemisphere of stroke patients, the excitation threshold was 

decreased to less than 50-60% of MT compared to normal subject where the threshold is about 

70% of MT. So all in all, the new electrophysiological evidence in human stroke survivors has 
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demonstrated a hyperexcitability of CL hemisphere, which is linked to the down regulation of 

GABA.  

Contralesional GABA-Receptor down regulation has been demonstrated by more direct 

molecular studies as well. Qü and collaborators, in a series of experiments using 

autoradiography, investigated the density of [
3
H] muscimol binding sites to GABA-A receptors 

in ipsi- and contralateral hemisphere in two animal models of stroke 7 days after the lesion in 

mice (Qü et al., 1998b), and rats (Qü et al., 1998a). In both experiments, they observed a drastic 

decrease of the [
3
H] muscimol binding in contralesional hemisphere. In the latter study, in 

addition to the autoradiographic evidence of [
3
H] muscimol binding in contralesional 

hemisphere, they used electrophysiology on 400 µm rat brain slices 7 days after the lesion. In the 

cortex of contralesional hemisphere, they recorded field potentials from layer 2 and stimulated 

the layer 6 in a pattern that activates GABA mediated inhibitory circuits. They observed a 

reduction of GABA mediated inhibition in CL hemisphere that correlated with the diminished 

density of [
3
H] muscimol binding (autoradiography) in these animals.  

Similarly, Lee and Yamashita (Lee et al., 2011) showed  a decrease in expression of 

GABAA R-ɑ1 subunits in the contralesional hemisphere for at least two weeks after a traumatic 

brain injury (TBI) in the primary somatosensory cortex of mice. This study used real-time 

reverse-transcriptase PCR to look at the gene expression in terms of mRNA of various GABAA-

Receptor subunits. The results demonstrated a decreased expression of ɑ1 and ɣ2 subunits in CL 

hemisphere as soon as 7 days after injury. Next, they investigated the temporal down-regulation 

of GABAA R-ɑ1 protein in CL hemisphere by immunohistochemical staining: At 2 weeks after 

the injury the expression of GABAA R-ɑ1 was decreased in all cortical layers and this effect 

lingered on in Layer II, III, and V till 4 weeks after the injury. In this study, there was a 



General introduction 

6 
 

correlation between the downregulation of GABA and upregulation of activity dependent gene 

(Alivin-1) in the CL hemisphere. Hence, the down-regulation of GABA could be associated with 

increased neuronal activity in CL hemisphere.  

Contralesional inhibition after stroke 

The precise role of lesion induced changes in the contralesional cortex in functional 

reorganization and recovery after stroke is yet to be determined, but at least in small cortical 

lesions, recent studies have suggested a detrimental role for increased excitability of homotopic 

contralesional cortex (Liepert et al., 2000; Neumann-Haefelin and Witte, 2000; Nardone and 

Tezzon, 2002b; Duque et al., 2005; Manganotti et al., 2008). In the current literature, this 

phenomenon has been widely attributed to abnormally increased interhemispheric inhibition 

from contralesional to ipsilesional primary motor cortex (Murase et al. 2004; Duque et al. 2005) 

after stroke.  

Consistent with the model of interhemispheric inhibition, new lines of investigation have 

provided insight about the importance of decreasing the excitability of contralesional hemisphere 

in promoting recovery after stroke. Support for this hypothesis is provided by fMRI connectivity 

studies that demonstrated that improvements of motor function after low frequency repetitive 

transcranial magnetic stimulation (rTMS) over contralesional M1 is associated with a reduction 

of interhemispheric inhibition between the contralesional and ipsilesional primary motor cortices 

(Grefkes et al., 2010).  

TMS and transcranial direct current stimulation (tDCS) methods have been the mainstay of 

the above-mentioned experiments to change the excitability of contralesional hemisphere. TMS 

is a well-established non-invasive method in brain research to interfere with and measure the 
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cortical activity (Dimyan and Cohen, 2010). A very short magnetic pulse introduced via the scalp 

induces an electric field in the underlying brain that activates the axons and/or neurons. When 

applied as repetitive rTMS in a train of several thousand pulses, the TMS can be used to change 

the excitability of cortical neurons for minutes to several hours depending on the stimulation 

frequency and duration (Rothwell, 1997; Di Lazzaro et al., 2004). The exact neurobiological 

mechanisms of the sustained effect of rTMS in humans in not clear yet, but it has been shown to 

resemble long term depression (Di Lazzaro et al., 2004).  

In humans, reducing the excitability of primary motor cortex of the contralesional 

hemisphere by means of low-frequency (≤ 1Hz) rTMS is shown to improve the function of the 

paretic hand in sub-acute and chronic stages of stroke (Hummel and Cohen, 2006). Recent 

evidence suggest that the neuromodulatory interventions by means of low frequency rTMS are 

particularly more effective when applied on a regular basis (Conforto et al., 2011; Avenanti et 

al., 2012). For example, in a sham controlled study, Avenanti and collaborators found that 

inhibiting the contralesional hemisphere with daily sessions of rTMS in the span of 10 days 

resulted in a significant increase in excitability of ipsilesional M1(Avenanti et al., 2012). The 

intervention in Avenanti’s study caused a significant decrease in interhemispheric inhibition to 

the ipsilesional cortex in terms of decreased ipsilesional silent period (Avanzino et al., 2007) 

meaning that the observed effect was mediated by transcallosal rather than corticospinal 

pathways (Boroojerdi et al., 1996; Meyer et al., 1998). The behavioral improvements after the 

aforementioned intervention, as indicated by grip force and dexterity, persisted for three months.  

Cathodal (i.e. inhibitory) tDCS has also been widely used in proof-of-principle studies to 

reduce the excitability of contralesional hemisphere after stroke (Fregni et al., 2005; Hummel et 

al., 2005; Sparing et al., 2009). Despite the fundamental neuromodulatory difference between the 
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tDCS and rTMS, the functional outcomes following the contralesional hemisphere inhibition at 

least in mild to moderate hand impairment seems to be similar (Hummel and Cohen, 2006). In 

tDCS, a small transcranial current (1-2 mA) is applied via surface electrodes. Because of the 

electrical resistance of SCALP and cranium, this current is not sufficient enough to induce action 

potentials in cortical neurons. Thus, in contrast to TMS, it does not cause a muscle twitch when 

used. tDCS alters the level of intrinsic postsynaptic activity by causing a shift in the membrane 

potential. Depending on the direction of the electrical flow, a bi-directional shift in the 

membrane potential can be achieved. Hence tDCS can be used to increase (anodal stimulation) 

or decrease (cathodal stimulation) the excitability of neurons underneath the stimulation 

electrode (Nitsche and Paulus, 2000).  

Zimmerman and collaborators recently showed that applying cathodal tDCS on the 

contralesional hemisphere significantly improves learning of a new finger sequence in stroke 

patients (Zimerman et al., 2012). By employing a paired pulse paradigm on the ipsilesional M1, 

they associated the improvements in the motor performance to decreased potency of inhibitory 

circuits in the ipsilesional M1. This implies that interhemispheric modulation of GABAergic 

circuits in ipsilesional hemisphere is responsible for the behavioral effect following 

contralesional inhibition. Likewise, similar to rTMS studies, the behavioral gain achieved by 

contralesional cathodal tDCS correlates with significant movement related fMRI activity in 

ipsilesional cortex in moderately impaired stroke patients (Stagg et al., 2012). In other words, the 

ipsilesional increase in the M1 BOLD signal following the contralesional inhibition is associated 

with better motor performance. This is perfectly in line with a very recent meta-analysis (Rehme 

et al., 2012) that has demonstrated that irrespective of the method of contralesional inhibition, 
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restoration of neuronal activity in ipsilesional primary motor cortex is the most critical factor that 

underlies motor recovery after stroke.  

Limitations of human studies: major questions to be answered 

The effect of lesion size 

The studies reviewed above strongly suggest that non-invasive contralesional brain 

stimulation can become an important treatment approach in neurorehabilitation after stroke. This 

claim is supported by functional imaging studies that cast light on the pathophysiological 

disturbances in cortical networks after stroke. According to these studies, persistent overactivity 

of contralesional areas is often observed in patients with less successful recovery of function, a 

finding that is typically associated with severe corticospinal tract lesions (Ward et al., 2007; 

Schaechter et al., 2008).  

Thus, the initial impairment and the lesion size seem to be a critical factor in treatment 

response after contralesional hemisphere inhibition. Nair and collaborators recently applied 

cathodal tDCS on the contralesional M1 for 5 days in a group of chronic stroke patients with 

severe impairments of upper extremity (Nair et al., 2011). The authors discovered that in 

severely paretic patients, tDCS was able to effectively reduce the contralesional overactivity, 

however the ipsilesional activity was increased only in a few patients and was not significantly 

different from that of sham stimulation. Similar negative findings have been attributed in part to 

ceiling effect (Malcolm et al., 2007) meaning that the amount of improvement achievable in 

severely impaired patients might be limited because of the extensive circuit loss.  

In addition to the effect of lesion size, the previous studies have left open questions 

regarding the importance of inter-subject differences in stimulation sensitivity (Hamada et al., 
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2012), lesion location and time after stroke (Hesse et al., 2011), and duration or number of 

treatment sessions necessary to achieve a sustained effect (Bestmann et al., 2004, 2010; Sarfeld 

et al., 2012). None of these possible parameters, however, has been effectively tested in a well 

controlled study (Khedr and Fetoh, 2010), which makes drawing a unanimous conclusion for 

proper patient selection virtually impossible. 

The choice of inhibition: what cortical circuits are engaged? 

A subset of studies is reporting no additional benefit over motor training with non-invasive 

brain stimulation methods other than low frequency rTMS or tDCS. For example, in two recent 

studies, Talelli and collaborators used continuous theta burst stimulation (cTBS) to inhibit the 

contralesional primary motor cortex of chronic stroke patients in single sessions (Talelli et al., 

2007) or multiple sessions in combination with physical therapy for two weeks (Talelli et al., 

2012). Compared to sham stimulation, patients demonstrated no additional benefit of 

contralesional inhibition in terms of grip force or skilled hand movements.  

One possible mechanism for these contradictory results can be the difference of low 

frequency rTMS and cTBS in engaging the GABAergic interneurons in the stimulated cortex 

(Grefkes and Fink, 2012). Recent evidence from animal models suggest that cTBS and low 

frequency rTMS have selective effects on certain classes of cortical interneurons (Trippe et al., 

2009). Low frequency rTMS induces a steady increase of the activity dependent proteins of the 

cortical inhibitory interneurons possibly leading to sustained but gradual increase of secretion 

and reuptake of GABA at the synaptic level, however, cTBS causes strong activation of 

inhibitory neurons leading to immediate but not sustained GABA release (Trippe et al., 2009; 

Benali et al., 2011). The latter animal evidence is supported by a recent study using magnetic 
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resonance spectroscopy that demonstrated robust but transient increase of cortical GABA content 

following cTBS in human motor cortex (Stagg et al., 2009).  

As mentioned earlier in this chapter, down regulation of GABAergic system in the 

contralesional hemisphere seems to underlie the transcallosal imbalance after stroke. In this light, 

do the contradictory results from human studies simply reflect the differences of the various non-

invasive inhibitory modalities in potentiating the GABAergic system?  

The optimal time to deliver the intervention 

With the introduction of non-invasive brain stimulation methods aimed at modulating the 

excitability of cortical areas after stroke, understanding the post-stroke adaptive and maladaptive 

events has become very critical to optimize the neuromodulatory interventions and proper patient 

selection. The evolution of activation in the sensory-motor cortex from early contralesional 

activity to late ipsilesional activity suggests that a dynamic bihemispheric reorganization of 

motor networks occurs during recovery from hemiparesis (Marshall et al., 2000). Therefore the 

immediate phase after stroke, when the transcallosal imbalance is at its maximal strength, seems 

to be a critical window for contralesional inhibition. Nonetheless, few studies have tested the 

effect of contralesional inhibition very early after stroke (Conforto et al., 2011), none of which 

has included more than one or two patients with less than one week after the ischemic attack. 

Instead, a rapidly growing number of studies using diverse protocols of inhibition of the 

contralesional cortex are implementing non invasive stimulation methods in subacute and 

chronic stages after cerebral ischemic attacks when the evidence of transcallosal imbalance 

gradually subside (Cramer, 2008). 
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 While the human studies might have the limitations of enrolling acute stroke patients in 

proof of principle studies or implement comprehensive selection criteria, the well-established 

animal stroke models provide a window of opportunity in which the effect of contralesional 

inhibition can be investigated in a well controlled experimental environment. Using such a 

model, we used a pharmacological method of inactivation using a GABA agonist (Muscimol) to 

gain direct and objective insight about the importance of potentiating the GABA system in 

contralesional hemisphere on motor recovery of the paretic limb. In particular, we were 

interested in the effect of early treatment when contralesional inactivation is initiated rapidly 

after the lesion, the period during which increased activity in the contralesional hemisphere is at 

its highest. 



Mansucript submission. Journal of experimental Neurology 
 

CHAPTER II. Manuscript submission 
 

 

 

 

 

 

 

 

The following manuscript is resubmitted to the journal of Experimental Neurology  

in November 2013. 



Mansucript submission. Journal of experimental Neurology 
 

Cover Page: 

 

Acute inactivation of the contralesional hemisphere for longer durations improves recovery 

after cortical injury 

Babak K. Mansoori
1,2

 MD, Loyda Jean-Charles
1,2

 MSc, Boris Touvykine
1,2

 MSc, Aihua Liu
3
 

PhD, Stephan Quessy
1
 PhD, Numa Dancause

1,2
 PhD 

 

 

 

 

(The authors information is removed from the submission cover page according to the 

regulations of Canadian government to protect the personal information) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mansucript submission. Journal of experimental Neurology 

15 
 

Running title: Acute contralesional inactivation after lesion 

Summary:  

A rapidly growing number of studies using inhibition of the contralesional hemisphere after 

stroke are reporting improvement in motor performance of the paretic hand. These studies have 

used different treatment onset time, duration and non-invasive methods of inhibition. Whereas 

these results are encouraging, several questions regarding the mechanisms of inhibition and the 

most effective treatment parameters are currently unanswered. In the present study, we used a rat 

model of cortical ischemic lesion to study the effects of GABA-mediated inactivation on motor 

recovery. In particular, we were interested in understanding better the effect of inactivation 

duration when it is initiated within hours following a cortical lesion. Cortical lesions were 

induced with endothelin-1 microinjections. The contralesional hemisphere was inactivated with 

continuous infusion of the GABA-A agonist Muscimol for 3, 7 or 14 days in three different 

groups of animals. In a fourth group, Muscimol was infused at slower rate for 14 days to provide 

additional insights on the relation between the effects of inactivation on the non-paretic forelimb 

behavior and the recovery of the paretic forelimb. In spontaneously recovered animals, the lesion 

caused a sustained bias to use the non-paretic forelimb and long-lasting grasping deficits with the 

paretic forelimb. Animals in which the contralesional hemisphere was inactivated for 3 and 7 

days did not show such bias to use their non-paretic forelimb and inactivation of 14 days resulted 

in a bias to use the paretic forelimb. In contrast, infusion at a slower rate for 14 days did not 

caused this bias to use the paretic forelimb. Increasing inactivation duration also accelerated the 

recovery of grasping function. Both groups with 14 days of inactivation had similar recovery 

profiles and performed better than animals that spontaneously recovered. Whereas the plateau 

performance of the paretic forelimb correlated with the duration of contralesional inactivation, it 

was not correlated with the spontaneous use of the forelimbs or with grasping performance of the 
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non-paretic hand. Our results support that contralesional inactivation initiated within hours after 

a cortical lesion can improve recovery of the paretic forelimb. In our model, increasing the 

duration of the inactivation improved motor outcomes but the spontaneous use and motor 

performance of the non-paretic forelimb had no impact on recovery of the paretic forelimb.  

 

Highlights:  

 GABA-mediated inactivation of the contralesional hemisphere can improve recovery 

 Inactivation initiated within hours after cortical lesions can improve recovery  

 Inactivating the contralesional hemisphere for longer duration has better outcomes 

 Inactivation duration correlates better with recovery than non-paretic limb behavior 

 

 

 

Keywords: contralesional; cortex; forelimb; hand; inhibition; inactivation; lesion; stroke; rat; 

recovery 
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Introduction:  

Several studies have shown that following a lesion, there an increase of cortical excitability in 

the contralesional hemisphere (Meyer et al., 1985; Mohajerani et al., 2011; Sakatani et al., 1990). 

The hyperexcitability in the contralesional cortex (Buchkremer-Ratzmann et al., 1996) is 

associated with a diminution of GABAergic inhibition (Witte and Stoll, 1997) and a reduction of 

GABA-A receptor binding (Lee et al., 2011; Qu et al., 1998), suggesting that it may be related to 

a decreased potency of the inhibitory GABAergic system. Longitudinal imaging studies in 

humans have shown that the contralesional activity is typically maximal early after the injury and 

progressively diminishes with time and recovery (Carey et al., 2006; Jaillard et al., 2005; 

Marshall et al., 2000). 

In the last few years, several modulatory approaches using non-invasive stimulation 

techniques to favor adaptive plasticity and recovery after stroke have been proposed and are 

currently being tested. In particular, many groups are intensively investigating the effects of 

inhibition of the contralesional hemisphere on behavioral recovery (Hummel and Cohen, 2006). 

The rationale behind the treatment strategy used in most studies is based on the concept of 

interhemispheric imbalance (Liepert et al., 2000; Nowak et al., 2009). According to this 

hypothesis, hyperexcitability in the contralesional hemisphere results in an augmented inhibitory 

influence on the ipsilesional hemisphere. In this manner, the contralesional hemisphere would 

interfere with function and adaptive plasticity in the ipsilesional hemisphere and with recovery of 

the paretic arm. However, this hypothesis is far from being universally accepted.  

While some studies using protocols of inhibition of the contralesional cortex with non-

invasive stimulation techniques show improvement in motor performance of the paretic hand 

(Khedr et al., 2009; Nowak et al., 2008; Takeuchi et al., 2005), inhibition of contralesional areas 
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with atypically high activity in chronic stroke patients was also shown to interfere with 

performance of the paretic hand (Johansen-Berg et al., 2002; Lotze et al., 2006). To date, only a 

few studies have used multiple treatments sessions, many of them with different treatment 

duration and onset (Boggio et al., 2007; Fregni et al., 2006; Khedr et al., 2009). Therefore, the 

effect of inhibition duration on behavioral recovery is virtually unexplored. No study has yet 

tested the effect of contralesional inhibition initiated within hours following the lesion, when the 

interhemispheric imbalance should be maximal. Moreover, the mechanisms through which non-

invasive stimulation methods can induce cortical inhibition and to what extent they act through 

GABA are not fully understood, leaving open the question if potentiating GABA-mediated 

inhibition of the contralesional hemisphere can improve recovery.  

To provide some insight on these issues, we used a well-established method of inactivation 

consisting of continuous infusion of the GABA-A agonist Muscimol (Martin, 1991) in a rat 

model of ischemic cortical lesion. In particular, our objectives were to confirm that GABA-

mediated inactivation and very early inactivation could favor recovery, and to study the effect of 

duration of contralesional inactivation on motor outcomes. These data increase our 

understanding of the basic interactions between inactivation of the contralesional hemisphere and 

recovery and may provide useful cues for the development of treatments based on contralesional 

inhibition after stroke. 

Methods:  

Animals 

A total of 53 Sprague-Dawley rats (Charles River, QC, CA) of approximately 2 months of age 

and weighing 250-300 grams were included in the study. All animals were housed in solitary 

standard Plexiglas cages with reverse day-night cycle (7am-7pm). They were handled only 
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during the dark cycle. Upon their arrival at our facility, animals were familiarized with banana 

food pellets in the Montoya staircase test (Biernaskie and Corbett, 2001; Montoya et al., 1991) 

for 10 work-days (Figure 1). To incite reaching behavior in the Montoya test, food access was 

carefully monitored during the two weeks of familiarization. For each rat, the daily food 

minimum corresponded to 5% of its body weight. Rats had free access to 85% of their daily 

minimum in the home cage. They could obtain more food to surpass the 100% value in the 

Montoya staircase apparatus. On any given day, if the animal did not attain its daily minimum in 

the Montoya, additional food was supplied in its home cage to reach the daily minimum. 

Baseline data were collected at the end of the familiarization period. Spontaneous use of 

forelimbs in exploratory behavior was documented with the cylinder wall test (Schallert et al., 

2000) and grasping function with the Montoya Staircase test (Montoya et al., 1991). Animals 

that performed above the inclusion criteria (see Montoya Staircase test below) were randomly 

assigned to an experimental group. During the post-lesion period, food was restricted for 12-14h 

prior to each behavioral testing session and animals were given free access to food after testing. 

The weight of the animals was recorded daily during the 2 weeks prior to the lesion and weekly 

after the lesion. If an animal lost more than 10% of its original body weight at any point during 

the experiment, it was excluded. Two animals from Group 14D were excluded from the study 

during the recovery period because of weight loss and seizures. Animals had ad libitum access to 

water at all times. Our experimental protocol followed the guidelines of the Canadian Council on 

Animal Care and was approved by the Comité de Déontologie de l'Expérimentation sur les 

Animaux of the Université de Montréal.  

Measurement of Forelimb Asymmetry 
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To detect spontaneous asymmetrical use of forelimbs, rats were placed in a transparent cylinder 

of 19cm diameter and 33cm height for 3-30 minutes or until 60 touches to the cylinder wall was 

achieved (Schallert et al., 2000). Animals were videotaped from above using a high definition 

digital video camera (30 frames/second). The videos were analyzed frame-by-frame offline to 

count the use of paretic versus non-paretic limbs during vertical exploration of the cylinder wall. 

The forelimb asymmetry score was calculated using the following equation: 

               

  
                                                               

                       
 

Montoya Staircase test: Grasping and retrieving performance 

Rats were placed in a Plexiglas chamber (6-cm wide, 12-cm high and 30cm long) with a central 

platform (2.3-cm wide, 6-cm high and 19-cm long) that supports the weight, separating the right 

and left forelimbs (Biernaskie and Corbett, 2001; Montoya et al., 1991). A pair of staircases with 

seven steps on each side was loaded into the Plexiglas chamber on both sides of the central 

platform. Each step had a smooth well that can hold one to three standard 45mg banana flavored 

food pellets (Bioserve Inc., Frenchtown, NJ, USA). During the familiarization period, animals 

had a session of Montoya staircase in the morning and one in the afternoon, the two separated by 

3 to 4 hours. In a session, the rats had 4 trials with each hand (8 trials per day in totals). Initially, 

for each trial, every well on one side of the staircase was filled with 3 food pellets and 15 

minutes were given to retrieve the pellets. In the following days, the number of pellets in each 

well and the time provided was progressively tapered according to the performance of the rat. 

However, by the 8
th

 day, only one pellet per well and three minutes per trial were given to all 

rats. On the 9
th

 and 10
th

 days of the familiarization period, the performance in terms of the 
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number of eaten pellets was recorded and used to establish if the animal reached our inclusion 

criteria. To be included in the study, rats needed to eat 4 out of 7 pellets in 3 of the 4 trials on 

both days with one of the two arms. Based on these criteria, 9 animals were excluded from the 

study. The ischemic lesion was induced in the cortex contralateral to the arm with the best 

performance score.  

Surgical Procedures 

All surgical procedures were conducted aseptically. Anesthesia was induced with Ketamine 

(80mg/kg, intra-peritoneal) and maintained with isoflurane (~2% in 100% oxygen) delivered via 

a custom-made facial mask adapted to our stereotaxic frame. Pulse rate and oxygen saturation 

were monitored and documented during the surgery. A self-regulating heating blanket (Harvard 

Apparatus, Holliston, MA) was used to maintain body temperature during the surgery. A midline 

incision was made to expose the skull and neck muscles. A small incision was made between C0 

and C1 to release cerebrospinal fluid of the cisterna magna and reduce intracranial pressure.  

In order to confirm the location of the motor areas of 3-month-old Sprague Dawley rats, 

we conducted intracortical microstimulation (ICMS) mapping experiments in naïve animals 

(n=3) (Figure 1B). Following craniotomy and durectomy, anesthesia was switched to ketamine 

hydrochloride (~10mg/kg/10 minutes; intraperitoneal) for the collection of electrophysiological 

data. A glass coated tungsten microelectrode (~1 MΩ) was used for electrical stimulation applied 

at a depth of ~1600μm. Stimulation consisted of a 40ms train of 13 monophasic cathodal pulses 

of 200 µs delivered at 350 Hz from an electrically isolated, constant current stimulator 

(Dancause et al., 2006; Nudo et al., 1992; Nudo et al., 1996). Pulse trains were repeated at 1 Hz 

intervals; current was ≤100 µA. Microelectrode interpenetration distances were ~333µm. 
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Stimulations were done to identify the caudal and rostral forelimb areas (CFA and RFA). The 

two areas were typically separated with neck and vibrissa representations. Based on ICMS maps, 

we selected the stereotaxic coordinates for six injections of endothelin-1 (ET-1) as in Fang and 

collaborators (Fang et al., 2010) (Figure 1C). ICMS mapping was conducted in additional 

animals (n=3) at the end of the recovery period (day 60 after the lesion) and confirmed that the 

lesion destroyed large portion of the CFA and appeared to leave the RFA intact (Figure 1B). 

To induce the cortical lesion, six 0.6-mm holes were drilled over the caudal forelimb area 

(CFA) based on stereotaxic coordinates (+1.5, +0.5, -0.5mm anteroposterior, +2.5, +3.5mm 

mediolateral to bregma; Figure 1B) (Fang et al., 2010). Using a 1µl Hamilton syringe, a 

microinjection of endothelin-1 (ET1) (EMD chemicals, CA, USA) was made in each hole at a 

depth of 1.5 mm in the cortex (0.33µl, 0.3 µg/µl, 3nl/s). Following each injection of endothelin-1 

(ET-1), the holes were sealed with bone wax. After the lesion induction, an additional 0.6-mm 

hole was drilled over the center of the contralesional CFA (+0.5mm anterior and +3mm lateral to 

bregma). A cannula (0.36mm, brain infusion kit 1; Alzet, CA, USA) was implanted at the depth 

of 1.5mm below the cortical surface and secured in place with acrylic cement (Figure 1D). The 

cannula was connected to an osmotic pump filled with Muscimol (10mM, Tocris Bioscience, 

Bristol, UK), a non-toxic GABA-A agonist. Muscimol was chosen because it is a well-

established and simple way to reliably inactivate neural tissue for sustained periods without 

causing damage (Martin, 1991; Martin et al., 1999; Reiter and Stryker, 1988). Neck muscles 

were then glued back with dermal adhesive and the skin sutured. After the surgery, animals 

received a regimen of pain, anti-inflammatory and antibiotics medication and their recovery was 

closely followed. 

 



Mansucript submission. Journal of experimental Neurology 

23 
 

Experimental groups  

In 3 different experimental groups (Table 1), the contralesional hemisphere was inactivated for 3, 

7 or 14 days with infusion of Muscimol (10mM) at a rate of 0.5µl/hour (Groups 3D, 7D and 

14D) beginning within 2 hours following the lesion. An additional group (Group 14Dslow) also 

received 14 days of Muscimol infusion, but delivered at a slower rate (0.25µl/hour). Because no 

pump model could provide infusion of 3 days, the plastic tube between the pump and the cannula 

was cut and sealed in a minor procedure 72 hours after the lesion in Group 3D. 

In control animals (Group Lesionno pump), to reproduce the mechanical damage caused by 

the cannula, a stainless steel rod of the same diameter as the cannula was lowered at a depth of 

1.5mm and immobilized in acrylic. In additional control rats (n=3), a pump infusing saline 

(0.5µl/hour) for 14 days was implanted after the cortical lesion. No statistical difference of 

performance on the Montoya staircase tests was found between the two control groups (One way 

ANOVA paretic hand F=0.10; p=0.76; non-paretic hand F=0.23 p=0.64). The absence of 

behavioral effects from saline infusion is in line with previous publications using comparable 

infusion methods in the motor cortex (Martin et al., 2000). On post-lesion day 56, the animal was 

killed, the brain fixed, cryoprotected and cut coronally for anatomical reconstruction and 

estimation of the lesion size (MicroBrightField, VT, USA).  

Reversible inactivation using Muscimol infusion of long duration  

The effects of chronic brain inactivation using GABA-A agonist Muscimol on neural activity 

and behavior have been carefully documented (Hata and Stryker, 1994; Martin, 1991; Martin and 

Ghez, 1999; Reiter and Stryker, 1988). In kittens, recording of neural activity in the visual cortex 

following infusion with osmotic pumps for 8 to 11 days with parameters similar to the ones we 
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used (0.5µl/h of 10Mm) showed that inactivation extended over a radius of 1 to 3.5mm (Reiter 

and Stryker, 1988). To confirm that our injection protocol resulted in comparable spread, we 

filled the osmotic pump with Fluorophore-conjugated Muscimol molecule (BODIPY® TMR-X 

conjugate; Molecular probes). We infused fluorescent Muscimol at 0.5µl/h for 3 days in one 

animal (Group 3D; Figure 2A), for 7 days (Group 7D; Figure 2B) in one animal and for 13 days 

(Group 14D; Figure 2C) in one animal. Whereas the pump model infuses for 14 days, we chose 

to perfuse on day 13 to insure the infusion was still at its maximum. Finally we infused 

fluorescent Muscimol at 0.25µl/hour in one animal for 13 days (Group 14Dslow; Figure 2D). 

Following the infusion period, animals were perfused, the tissue processed and images acquired 

according to an established protocol using this product (Allen et al., 2008). The radius for each 

animal was an average of the maximal radius found on a coronal section and the AP radius 

calculated from the span of sections showing the fluorescence.  We found that Groups 3D and 

7D had identical diffusion radius (1.2mm). Group 14Dslow had the smallest (1.1mm) and Group 

14D the largest radius (1.9mm) of Muscimol diffusion. However, these differences are small and 

their significance questionable considering the variability of the diffusion radius reported by 

others (Reiter and Stryker, 1988). Thus, analyses and conclusions in the present set of 

experiments are based on the behavioral effect of the inactivation on the non-paretic forelimb 

and not on the rate of infusion or hypothetical radius of inactivation.  

 To show that in our model, Muscimol effectively induced a reversible contralesional 

inactivation and did not cause permanent damage to the contralesional hemisphere, we have 

conducted a series of controls. First, we conducted ICMS mapping in the contralesional 

hemisphere at the end of the recovery period in one animal of Group Lesionno pump, Group 7D and 

Group 14D (Figure 3). We found that we could evoke movements from the cortex immediately 
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surrounding the cannula using normal current intensity and could not differentiate the responses 

in the animals that received Muscimol from the Lesionno pump or from naïve animals. We also 

visually inspected the Nissl stained tissue around the cannula in all of our animals and found no 

differences between experimental groups (Figure 4). To further confirm this finding, we 

calculated the size of the lesion made by cannula in the contralesional hemisphere in Nissl-

stained sections for Group 14D and 14Dslow, the two groups with Muscimol infusion of the 

longest duration, and compared it to the lesions made by the metal rod in the Group Lesionno 

pump. In the contralesional hemisphere, the cannula made a small mechanical lesion in all groups. 

On average for Groups Lesionno pump, 14D and 14Dslow, the lesion made by the cannula was 

0.15mm
3
, corresponding to 1.6% of the volume of the ET-1 lesion. A one-way ANOVA between 

the three groups found no significant difference (F=2.15, p=0.16) and, combining Groups 

14D+14Dslow and comparing the lesion size to the Group Lesionno pump also did not show any 

difference (t-test; equal variance not assumed: F=0.88, p=0.40).  

Altogether, these data support that Muscimol transiently inactivated the contralesional 

hemisphere and did not result in any permanent damage in our experimental groups. Thus, 

whereas there is permanent damage to the contralesional hemisphere, it was a small mechanical 

damage caused by the insertion of the cannula that was of identical size across experimental 

groups and controlled for in our Groups Lesionno pump.  

Histology and anatomical reconstruction 

At the end of the experiment, animals were given a lethal dose of sodium pentobarbital and were 

transcardially perfused with heparinized 0.1 M phosphate buffered saline (PBS) followed by 4% 

paraformaldehyde in 0.1 M PBS. Brains were extracted and post-fixed in 4% paraformaldehyde. 
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The brains were cryoprotected in a solution of 20% sucrose and 2% dimethyl sulfoxide (DMSO) 

over-night followed by 20% sucrose for 48 hours and quickly frozen at -55°C utilizing methyl 

butane and stored at -80°C (Brocard et al., 2010). Coronal sections were cut with a cryostat 

(40µm thickness). One out of six sections were Nissl stained and used for analysis of the lesion 

size and location. The lesion size was calculated with a software (MicroBrightField, Colchester, 

VT, USA) using the following formula:  

               

  
                                                             

                                   
 

     

Statistical Analysis of experimental results 

All values are reported as mean ± SEM, unless specified, and significance was considered at p < 

0.05. Lesion volume between groups of animals was compared with a one-way ANOVA. For the 

Cylinder and Montoya tests, two repeated measures ANOVAs were conducted using animal 

group, time and group x time as factors and Tukey-HSD for post-hoc testing. Pre-lesion baseline 

data and post-intervention recovery period data (day 21 to 56 post-lesion) were included in this 

analysis. Statistical analysis during the intervention period was impossible because behavioral 

data could not be collected in all animals (see Results).  

Mixed modeling, adjusting for correlations between individual measurements over time, 

was conducted to identify the plateau performance of the paretic limb on the Montoya test. 

Regressions were used to investigate how different factors correlated with this plateau 

performance for each rat. The autoregressive correlation structure, which indicates that for each 
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individual, observations taken close in time tend to be more highly correlated than observations 

taken far apart in time, was assumed in the analysis. To avoid making unfounded assumptions on 

the shape of the effect of time, we treated time as a categorical variable in the analysis. 

Regression results report the Spearman’s correlation coefficient and t-test on the slope of the 

distribution. Statistical significance for the t-test was adjusted according to the Bonferroni 

correction factor (p < 0.017).
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Results: 

Cortical lesions 

The average ET-1 induced lesion volume was 6.8±2.5mm
3
 (Mean ± standard deviation). As 

reported by others using a similar ET-1 lesion protocol (Fang et al., 2010), ischemic lesions 

destroyed all cortical layers and there was no significant difference of lesion size between 

experimental groups (F=0.206, P = 0.892) (Figure 5).  

 

General behavior during the intervention period 

During the infusion of Muscimol, rats were typically much less active. Some rats made no 

movement in the Montoya staircase tests (Figure 6). In Group 3D, some rats were still inactive at 

day 7 after the lesion, showing that the reversal of the effects of inactivation took more than four 

days in some cases. Group 7D and 14D were more severely affected. More than half of the 

animals in these groups were inactive in the Montoya staircase in the first week during infusion 

of Muscimol. The side effects of Muscimol became problematic with time for some animals of 

Group 14D, and two rats from this group had to be excluded (see Methods). Using a slower rate 

of infusion (Group 14Dslow) diminished the inactivity caused by infusion of Muscimol. In fact, 

the general behavior of animals from Group 14Dslow was the least affected by Muscimol delivery, 

supporting that the rate of infusion had a greater influence on these deleterious effects than the 

duration of inactivation. 

 

The effect of inactivation on grasping performance of the non-paretic forelimb 

The animals receiving Muscimol showed signs of impairments of grasping performance with the 

non-paretic forelimb in the Montoya test, confirming the effectiveness of the pharmacological 
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agent. The analysis of the performance of the non-paretic forelimb in the Montoya test was done 

on the baseline and the post-intervention recovery period to includes all animals in each group. 

The ANOVA showed a significant effect of group (F=9.237, P<0.001), time (F=49.244, 

P<0.001), and time x group (F=11.034, P<0.001). The pre-lesion performance was similar 

between all groups. In Group Lesionno pump, the ET-1 lesion and the mechanical damage caused 

by the metal rod did not decrease the performance of the non-paretic forelimb to a significant 

level (Figure 7). In Groups 3D and 7D, whereas inactivation affected grasping during the 

intervention period, performance was not statistically different from pre-lesion baseline or from 

Group Lesionno pump in the post-intervention recovery period. The effect of inactivation on the 

non-paretic forelimb function of animals in the Group 14D was strikingly different. Grasping 

performance was significantly lower than pre-lesion baseline and from Group Lesionno pump until 

the 35
th

 day after the lesion. Thus 14 days of inactivation resulted in behavioral impairments of 

the non-paretic forelimb that lasted more than 2 weeks after the end of infusion. Using a slower 

infusion rate for 14 days in Group 14Dslow did not affect the level of impairments on grasping 

performance caused by the inactivation. Together with results from Figure 6, these data show 

that a slower rate of infusion had less detrimental effects on the general state of the animals but 

still had a comparable impact on the function of the non-paretic forelimb.  

 

The effect of inactivation on spontaneous use of forelimbs 

Rats also reared less often during the infusion of Muscimol. This was particularly true for 

animals in Group 7D and 14D and less in Group 3D and 14Dslow (missing data points in Figure 

8). We found that animals either did no touch the cylinder wall at all or when they did explore, 

we obtained a large number of touches. In only 5 rats, we obtained one data collection session 
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with less than 55 touches, but more than 22. We considered that more than 20 touches were 

sufficient to provide an average for that session and thus included that session in the group 

average. Four of these 5 sessions were during the infusion of Muscimol and thus, were not 

included in the statistical analyses. In all other data collection sessions (n=457), we obtained 

more than 55 touches. Thus, the laterality scores obtained for each rat, in any session, are robust.  

Analysis of the spontaneous use of the forelimbs in the cylinder test was done for the 

post-intervention recovery period and includes all animals in each group. The ANOVA showed a 

significant effect of group (F=32.549, P<0.001) and group x time (F=4.338, p<0.001). After the 

cortical lesion, animals in Group Lesionno pump used their non-paretic forelimb more often 

throughout the post-intervention recovery period (Figure 8). Thus, the lesion created a persistent 

bias for the use of the non-paretic forelimb. Following inactivation of short duration (Group 3D), 

there was an initial bias toward the use of the non-paretic forelimb. However, the animals 

recovered symmetrical use of their forelimbs at day 28. Inactivation of longer duration caused an 

initial bias to use the paretic forelimb. Whereas animals in Groups 7D returned to symmetrical 

use of their forelimb by day 28, the bias for the paretic forearm persisted until day 35 in Group 

14D. The laterality index of Group 14D was different from Lesionno pump  group throughout 

recovery. The use of a slower infusion rate for 14 days in Group 14Dslow still resulted in a bias to 

use the paretic forelimb on day 21. However, the animals returned to a symmetrical forelimb use 

during spontaneous exploration on day 28 and their laterality index was not different from Group 

Lesionno pump, much like for Groups 3D and 7D. 

The effect of inactivation on post-intervention recovery of the paretic forelimb 

In the Montoya staircase test, grasping performance of the paretic forelimb showed a significant 

effect of group (F=6.016, P<0.001), time (F=49.528, P<0.001) and time x group (F=5.739, 
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P<0.001). Pre-lesion performance was similar among all experimental groups (Figure 9). The 

Group Lesionno pump had significant deficits until the 56
th

 day after the lesion. Inactivation of the 

contralesional hemisphere initially worsened the paretic forelimb function during the 

intervention period but then improved it in the post-intervention recovery period. Groups 3D and 

7D recovered faster from the lesion than Group Lesionno pump. They reached pre-lesion 

performance at day 35 and 28, respectively, and Group 7D transiently performed better than 

Group Lesionno pump on day 28. Group 14D had significant deficits and poorer performance than 

other groups on day 21. However, by day 28 and for the rest of the post-intervention recovery 

period, these animals had no deficits and performed significantly better than Group Lesionno pump. 

Grasping performance of Group 14Dslow was similar to other groups and better than Group 14D 

on day 21. This group performed better than Group Lesionno pump from day 28 to 49. Thus, the 

beneficial effects of inactivation on recovery of the paretic forelimb were mostly preserved when 

a slower infusion rate was used to inactivate the contralesional hemisphere for 14 days. These 

results suggest that the beneficial effect of contralesional inactivation depends mainly on the 

duration of the inactivation and not the rate of infusion.  

The effect of post-intervention behavior and inactivation duration on final level of recovery 

We found that plateau performance on the Montoya test for the paretic limb was reached at day 7 

for Group Lesionno pump, day 21 for Group 3D, day 28 for Group 7D and day 35 for Groups 14D 

and 14Dslow. Thus, from day 35 to day 56, all groups had a stable level of performance. For each 

animal, we calculated the average Montoya score between days 35 to 56 to obtain a ‘plateau 

performance score’. Three regressions were conducted to study factors potentially correlating 

with the plateau performance score.  
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First, we performed a regression between the asymmetry score on the Cylinder test at day 

21 and the plateau performance score for each animal (Figure 10A). A positive correlation 

between these factors would suggest that increased spontaneous use of the paretic forelimb at the 

beginning of the post-intervention recovery period results in better recovery of the paretic 

forelimb. We found a weak correlation between the two factors (R = 0.28) and a non-significant 

slope of the distribution (p = 0.13). 

Second, we performed a regression analysis between the Montoya score of non-paretic 

forelimb at day 21 and the plateau performance score of the paretic forelimb (Figure 10B). Here, 

a negative correlation between these factors suggests that poor performance of the non-paretic 

forelimb at the beginning of the post-intervention period results in better recovery of the paretic 

forelimb. We found a weak negative correlation between the two factors (R = -0.12) and a non-

significant slope of the distribution (p = 0.58).  

A third regression was conducted between the inactivation duration value (0, 3, 7, 14) and 

the plateau performance score to test how well the inactivation duration correlated with the level 

of recovery (Figure 10C). A positive correlation between these factors suggests that a longer 

duration of inactivation results in better recovery of the paretic forelimb. The correlation between 

the two factors was higher than other variables tested (R = 0.52) and the slope of the distribution 

was highly significant (p = 0.0004). Overall, the correlation analyses suggest that the level of 

recovery was weakly influenced by the spontaneous use of forelimbs or on grasping function of 

the non-paretic forelimb after inactivation of the contralesional hemisphere. In contrast, the 

duration of inactivation had a great impact.   
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Discussion: 

We used a rat model of cortical lesions to study the basic interaction between GABA-mediated 

inactivation of the contralesional hemisphere and behavioral recovery. Inactivation was initiated 

rapidly following the lesion and was maintained for increasing durations in different groups of 

animals. During the Muscimol delivery period, inactivation resulted in general inactivity of the 

animals, impaired the use of the non-paretic forelimb and worsened the function of the paretic 

forelimb. In the post-intervention recovery period, the adverse effects of inactivation 

progressively reverted. Rats with inactivation of the contralesional hemisphere recovered their 

grasping skills faster than untreated animals and the time of recovery was shorter for animals 

with inactivation of longer duration. In comparison to Lesionno pump group the grasping function 

of the paretic forelimb showed a tendency to be greater following inactivation of longer 

durations. In rats with 14 days of inactivation, this trend reached significance four weeks after 

the lesion and remained significant for the rest of the experiment. Using a slower infusion rate to 

inhibit the contralesional hemisphere for 14 days diminished the deleterious effect on the general 

behavior during inactivation while still preserving most of the beneficial effects on chronic 

recovery. Final recovery scores were correlated to the duration of inactivation but not to the 

spontaneous use of the forelimbs or the function of the non-paretic forelimb. 

In our model, we found that acute inactivation of the contralesional hemisphere can favor 

recovery of the paretic forelimb. Inactivation of longer duration results in more pronounced and 

sustained recovery of function. Final recovery is more affected by the duration of inactivation 

than the effects of inactivation on general behavior or on the non-paretic forelimb.  

 

Spontaneous recovery following ET-1 lesions in the sensorimotor cortex of rats  
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Cortical microinjections of ET-1 are now a common approach to produce focal cortical lesions in 

rats (Windle et al., 2006). As shown by others using similar lesion protocols, we found relatively 

small variability in lesion size among animals, facilitating comparison of behavioral recovery 

between experimental groups (Fang et al., 2010).  

In spontaneously recovering animals, the Group Lesionno pump in the present study, lesions 

caused typical motor deficits of the paretic forelimb. The Cylinder and Montoya tests both 

revealed initial deficits of the paretic forelimb that recovered in the first 3 weeks. The recovery 

then slowed to reach a plateau and animals had small but persistent long-term deficits 

(Biernaskie and Corbett, 2001). 

For the non-paretic forelimb, we found no change of performance in the Montoya test after 

lesion. Together with Cylinder test results, our data confirm that the mechanical damage caused 

by implantation of the cannula did not affect the function of the non-paretic forelimb.  

 

Effects of GABA-mediated inactivation on general behavioral inactivity 

We inactivated the contralesional hemisphere with chronic infusion of the GABA-A agonist 

Muscimol. This method has carefully documented effects on neural activity and behavior. With 

the parameters of infusion we used to test the effect of duration on recovery (10mM, 0.5µl/hour) 

for 8 to 11 days, Muscimol was shown to inhibit activity within a radius of 1 to 3.5mm from the 

cannula (Reiter and Stryker, 1988). Using fluorescent Muscimol, we found that the radius of 

diffusion in our experiment had similar values, ranging from 1.1mm (Group 14Dslow) to 1.9mm 

(Group 14D). In animals of Groups 3D, 7D and 14D, the Muscimol appeared to diffuse further 

below the cortex, affecting the callosum and the dorsal striatum (Figure 2). In Group 14Dslow, 

Muscimol appeared to be limited to the cortex. It is thus possible that the general inactivity, 
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which we found to be the lowest in Group 14Dslow is a result of a spread of Muscimol to these 

additional structures. However such conclusion must be taken with caution and warrants more 

data, specifically knowing the variability of Muscimol diffusion reported by others using similar 

techniques (Reiter and Stryker, 1988).  

The level of general behavioral inactivity of the animal caused by Muscimol infusion after 

cortical lesion could have influence the level of recovery the paretic limb. However, using a 

slower infusion rate for 14 days (Group 14Dslow) was less detrimental to the general behavioral 

activity than 3 days of inactivation using the faster infusion rate (Group 3D). As the recovery of 

the paretic limb was comparable in Groups 14D and 14Dslow (Figure 9), respectively the group 

with the most and least pronounced effects on general behavioral inactivity (Figure 6), it appears 

that this inactivity add little effect on the recovery of the paretic forelimb.  

 

Effects of GABA-mediated inactivation function of the non-paretic forelimb  

In kittens, after sustained inhibition that lasts for 30 days, there is no injury to the inhibited tissue 

and grasping function returns to normal within 2-3 days (Martin et al., 2000).  In adult rats 

following cortical lesions, we found that similar parameters of Muscimol infusion resulted in 

more sustained behavioral deficits of the non-paretic forelimb. Following 14 days of inactivation, 

animals had significantly poorer grasping performance with the non-paretic forelimb 3 weeks 

after the end of Muscimol delivery. It is possible that the volume of inactivation in relation to 

small brain size of the rat caused these effects. An alternative explanation may be that the 

cortical lesion potentiated the effects of inactivation in the contralesional hemisphere. It is well 

known that lesions trigger multiple changes in the contralesional cortex (Buchkremer-Ratzmann 
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et al., 1996; Jones and Schallert, 1994), some of which can increase skill learning of the non-

paretic arm (Bury and Jones, 2002). Acute inhibition of this hemisphere after a lesion could have 

a particularly stable impact on the non-paretic forelimb. In humans, it may prevent patients from 

developing useful compensatory strategies with the non-paretic forelimb, something that should 

be investigated further. 

The sustained functional impact on non-paretic forelimb caused by the 14 days inactivation 

raises a fundamental question. Are functional gains of the paretic forelimb due to central effects 

of the inhibition, increased use and practice with the paretic forelimb or a reversal of learned-non 

use (Taub, 2000)? This issue cannot be completely addressed with the present data. However, 

our regression analyses show that the spontaneous use and grasping function of the non-paretic 

forelimb were poorly correlated to the recovery of the paretic forelimb. In contrast, duration of 

inactivation was highly correlated with final level of recovery, suggesting that inhibition duration 

is much more critical and thus that central mechanisms were more involved in the recovery of 

the paretic forelimb. Following lesions in the CFA, increased use and motor learning with the 

non-paretic forelimb can decrease the recovery of the paretic arm (Allred and Jones, 2008; 

Allred et al., 2005). The adverse effects of the non-paretic forelimb behavior on recovery are not 

seen in animals that sustain a bilateral CFA injury or a partial callosal transection (Allred et al., 

2010). These data suggest that the negative effect of the non-paretic forelimb training is 

mediated through the contralesional cortex and its callosal interactions with the ipsilesional 

hemisphere. Similarly, it is possible that the inactivation in our model improved the non-paretic 

forelimb recovery by limiting the interhemispheric influence of the contralesional CFA on the 

ipsilesional hemisphere. 
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Finally, it is worth mentioning that the effects on general motor behaviors or on the non-

paretic forelimb we found have not been reported in human studies using inhibition of the 

contralesional hemisphere after stroke. These results support that in our model, not only was the 

duration of inactivation longer, but inactivation was also more profound than what has been used 

so far in human protocols. These differences should be taken into consideration in the 

interpretation of the results. However, the improved recovery of paretic forelimb and the absence 

of long-term adverse effects in any of our experimental group, suggest that inhibition of longer 

duration and higher intensity could be beneficial. 

 

The effects of inactivation duration on the recovery of grasping function of the paretic 

forelimb 

In humans, hyperexcitability of the contralesional hemisphere has been shown in several studies 

and is generally attributed to GABA down regulation (Butefisch et al., 2003). In rodents, there is 

a rapid increase of somatosensory evoked potentials in the contralesional cortex (Sakatani et al., 

1990). After a few days, the contralesional hyperexcitability (Buchkremer-Ratzmann et al., 

1996) is associated with a reduction of GABA-A receptors (Qu et al., 1998). According to the 

interhemispheric imbalance hypothesis, the contralesional hyperexcitabilty is thought to 

contribute to ipsilesional diaschisis and to interfere with recovery of the paretic forelimb through 

an increase of interhemispheric inhibition (Liepert et al., 2000; Nowak et al., 2009).  

In the present study, inactivation of neural activity in the contralesional hemisphere with a 

GABA-agonist initially resulted in a decrease of function of the paretic forelimb. Similar short-

term detrimental effects to the paretic forelimb have been reported in mice after traumatic 

cortical injury (Lee et al., 2011). In our study, following recovery for a longer period, we found 
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that these detrimental effects are transient. All experimental groups showed that GABA-

mediated inactivation of the contralesional hemisphere initiated rapidly after the lesion can 

improve the rate and/or extent of recovery of the paretic forelimb.  

In the present experiments, we chose to initiate contralesional inactivation within hours 

following the lesion. Longitudinal imaging studies in humans show that the increased 

contralesional activity is at its highest early after the lesion and is progressively resorbed with 

time and recovery (Jaillard et al., 2005; Marshall et al., 2000). Accordingly, inhibition of the 

contralesional hemisphere early after lesion should be most beneficial to recovery. Only a few 

human studies have initiated treatment within the first week following stroke and their results 

indicate an improvement of recovery of the paretic forelimb (Khedr et al., 2009; Khedr et al., 

2010). However, early interventions, such as forced-use of the paretic forelimb, can increase 

functional deficits (Bland et al., 2000), raising doubts on how early any intervention should be 

initiated after lesion. In our model, results suggest that initiating inactivation of the 

contralesional hemisphere within hours following the lesion has no long-term detrimental effect 

on recovery of the paretic forelimb, regardless of inactivation duration. 

In humans, studies using a single inhibition treatment appear to have short-lasting effects 

(Mansur et al., 2005; Nowak et al., 2008; Takeuchi et al., 2005) in comparison to treatments 

using multiple sessions (Emara et al., 2010; Fregni et al., 2006). However, to date, there has been 

no systematic investigation of treatment duration on motor outcomes. The comparison of Groups 

3D, 7D and 14D conveys a compelling message that increasing contralesional inactivation 

duration promotes recovery of the paretic forelimb. Of course, due to numerous differences such 

as the method of inhibition and limitations of our animal model, absolute numbers for treatment 

duration in stroke patients using non-invasive methods of inhibition cannot directly be inferred 
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from our data. However, it is interesting to note that the most beneficial treatment was of 14 

days, a period that corresponds to the time during which most of the spontaneous recovery 

occurs in our model. In humans, this period of faster recovery is of approximately one month, 

independently of the initial level of impairments (Duncan and Lai, 1997). To date, treatment 

durations in human studies have all been much shorter than this critical period. Whereas our data 

do not resolve the issue of inhibition duration in humans after stroke, they do strongly indicate 

that duration is a crucial factor to consider in treatment design.  
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Chapter III. General Discussion 

Modeling human stroke in rats 

More than 80% of human cerebrovascular accidents are ischemic in origin (Go et al., 

2013). Majority of these accidents are focal in nature and induced by arterial occlusion in the 

territory of middle cerebral artery (Roger et al., 2012). Thus, animal models of stroke are 

developed to induce ischemia in the same arterial territory (Sicard and Fisher, 2009; Bacigaluppi 

et al., 2010). These models are used to investigate the mechanisms involved in the evolution of 

ischemic injury, which in turn can lead to development of strategies to minimize the ischemic 

damage or enhance functional recovery after stroke (Turner et al., 2011).  

Rats are the most commonly used animals for modeling the stroke for several reasons: (1) 

the brain anatomy and blood supply relatively resembles the humans, (2) their small size enables 

the experimenters to use well established anatomical and physiological methods easily, (3) low 

cost, (4) genetic homogeneity within one strain, (5) well established and accurate behavioral 

tests, and (6) easier public and institutional acceptance compared to primate models (Kleim et 

al., 2007).  

There are several rat models of stroke (Table 2). Each of these models encompasses 

particular elements of human stroke (Carmichael, 2005; Bacigaluppi et al., 2010). With careful 

consideration of lesion size, mechanism and purpose, the rat models can be used to investigate 

various targets of human neuroprotective therapies: inflammatory cascade, reperfusion injury, 

change of excitability of remote brain regions, and sensorimotor cortical reorganization (Murphy 

and Corbett, 2009)(Gerloff et al., 2006). Rodent models can be easily steered to investigate the 

cell death and repair after stroke with precise control on the temporal and spatial elements 

implicated in the stroke (Bacigaluppi et al., 2010).  
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The current rat models of stroke 

Middle Cerebral Artery occlusion (MCAo) models 

Given the high proportion of involvement of middle cerebral artery in clinical stroke, the 

MCAo models are commonly used methods of inducing ischemia in rats. These models involve 

permanent or temporary interruption of MCA blood supply most commonly by insertion of an 

intraluminal suture in the internal carotid artery (Ginsberg and Busto, 1989). This technique 

entails unilateral dissection of the animal’s neck, ligation of distal part of the external carotid 

artery (ECA), and insertion of a 0-5 nylon suture into the internal carotid artery (ICA). The 

suture will eventually rest at the bifurcation of anterior and middle cerebral arteries and 

depending on the experimental design can be used to cause a permanent or temporary ischemia 

(Carmichael, 2005). Given the high complication rate of the suture MCAo including the 

unwanted ischemia in the ECA territory (Dittmar et al., 2003), failure rate and extensive cervical 

soft tissue damage, other methods of MCAo have been developed (Gerriets et al., 2004). 

Embolization with either embospheres (Gerriets et al., 2003) or throboemboli (Wang et al., 2001) 

are two methods that have been tried with some success. Embospheres are titanium oxide round 

microspheres with predetermined sizes that are locally injected into bloodstream to provide 

embolization at the level of arteries, arterioles or capillaries depending on the size of 

microspheres. In their clinical application, embospheres provide consistent and predictable 

results for effective embolization of uterine fibroids, hypervascular tumors or arteriovenous 

malformations. When delivered to the ICA of rats with a 0.5 mm nylon tubing, 0.4-0.5 mm 

embospheres provide a permanent occlusion of large to medium sized arteries in the territory of 

ICA.  In thromboembolic lesion, a small amount (5µl) of pre-formed clot is injected into the ICA 

hoping to produce ischemia distal to the arteries blocked by the clot (Chen Xu et al., 2000). 
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Vasoconstriction by injection of ET1 around the MCA after visualization of the MCA 

(craniotomy) or by stereotaxic coordinates has been shown to be advantageous above the 

abovementioned endovascular techniques (Nikolova et al., 2009). 

The lesion size, location, and the level of impairment after MCAo models are highly 

dependent on the method and duration of MCAo, as well as the rat strain (Duverger and 

MacKenzie, 1988). Irrespective of the method, all MCAo models will results is highly variable 

lesions (Sharkey and Butcher, 1995; Gerriets et al., 2004; Nikolova et al., 2009), that may or not 

involve frontal, parietal, temporal and occipital cortex, or various subcortical structures including 

the thalamus, hypothalamus and striatum (Kanemitsu et al., 2002). Most importantly, in contrast 

to primates, MCAo in rodents tend to spare the forelimb representation area in the sensorimotor 

cortex (Gharbawie et al., 2005; Windle et al., 2006). Thus, such models are not well suited to 

study motor recovery following injury to motor areas of the cortex in rodents.  

Photothrombosis 

Considering the disadvantages of MCAo models, simpler stroke lesion induction 

techniques are gaining popularity among stroke researchers as alternative models (Bacigaluppi et 

al., 2010). Photothrombosis is one of these alternative models. This model uses intravenous 

injection of photosensitive dye “Rose Bengal” and photo-oxidation by transcranial illumination 

of specific brain areas (Watson et al., 1985). Recently, laser photocoagulation of penetrating 

arteries after craniotomy and visualization of surface brain arteries has also been used with 

success to induce mini stroke lesions (Mohajerani et al., 2011). Either way, the photo-oxidation 

causes release of oxygen radicals inside the blood vessels and subsequently endothelial damage, 

which leads to activation of coagulation cascades. This establishes permanent vascular occlusion 

in the illuminated tissue.  
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The advantage of this model (in the transcranial illumination method) is ability to create 

very focal lesions with minimal surgical intervention (Carmichael, 2005). The biggest 

disadvantage of this model is that very little re-perfusion or ischemic penumbra is achieved by 

the non-physiological thrombotic insult. Moreover, the endothelial damage leads to significant 

extravasation and vasogenic (and/or cytotoxic) edema that is often the hallmark of traumatic 

brain injury rather than ischemic stroke in humans (Carmichael, 2005). 

The endothelin-1 (ET-1) models 

In the present study, we used an ET-1 model of ischemic stroke in rats that uses multiple 

microinjections of ET-1 in the rat cortex. Our objective of using this model was to meet the 

following criteria:  

1- to mimic pathophysiological changes in focal human stroke (i.e. ischemia 

followed by re-perfusion)  

2- to create reproducible trans-cortical lesions with precision in size 

3- to effectively target the caudal forelimb area  

4- to induce long-lasting, reproducible and measurable functional deficits 

enabling us to study the recovery of function 

5- to enable monitoring of physiological parameters and analysis of brain 

tissue over a large sample size 

6- feasibility of multiple interventions including lesion induction, cannula 

implantation and pump installation in one short surgery session with minimal anatomic 

distortion or surgical manipulation 

ET-1 is a potent vasoconstrictor (Yanagisawa et al., 1988). When injected directly into the 

brain tissue, applied topically to the surface of the cortex or injected adjacent to large cerebral 
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arteries, ET-1 reduces blood flow to the level that causes ischemic injury (Windle et al., 2006). 

The reduction of blood flow is rapid but not instantaneous with no endothelial damage (Macrae 

et al., 1993), and is accompanied by reperfusion over several hours (Biernaskie et al., 2001). The 

perivascular injection of ET-1 is already discussed in the previous section on MCAo models. 

Although this technique provides many technical advantages over the traditional MCAo models, 

the resultant lesion location and variability is very similar to the traditional models and not 

suitable for the objectives of the present study.  

Both the topical application and intracortical microinjections of ET-1 produce dose-

dependent ischemic lesions with minimal vasogenic edema (Windle et al., 2006). They provide 

precision in size and injury location, and produce long lasting reaching and grasping deficits 

(Gilmour et al., 2004; Windle et al., 2006). The topical application of ET-1, however, has 

important differences from the ET1 intracortical microinjections that make it a less favorable 

model to answer our experimental questions. For example, consistent involvement of deep 

cortical layers has been very important for our experimental design. Because it has been already 

shown in rodent models that involvement of the layer V, is necessary to induce down-regulation 

of GABA receptors and hyper-excitability in the contralesional hemisphere (Buchkremer-

Ratzmann and Witte, 1997). The representative cortical lesions induces by topical application of 

ET1 fail to include the deep cortical layers consistently (Windle et al., 2006; Jones et al., 2009). 

Moreover, the topical application of ET-1 entails performing a craniotomy, which in addition to 

increasing the time of the surgery would cause an additional functional deficit making the 

quantification of deficit and recovery of hand function a constant experimental challenge (Cole 

et al., 2011). 
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Cresyl violet histology for infarct quantification in our study, as well as the behavioral 

testing revealed that by using ET-1 microinjections we were able to satisfy our lesion induction 

criteria. The histological analysis of coronal brain sections revealed that we were able to achieve 

consistent lesion size among experimental groups (figure 5). The lesions involved all of the 

cortical layers and consisted of a necrotic core surrounded by glia scar (Franco et al., 2012). The 

optimal placement of ET-1 microinjections to target the CFA and to produce sensorimotor 

deficits is already explored and validated (Rouiller et al., 1993; Windle et al., 2006; Fang et al., 

2010). On the rostro-caudal plane, our lesions extended on average from bregma AP: +2.2 mm to 

begma AP: -0.8 mm (Paxinos and Watson, 2005) which is similar to the validated CFA lesion 

span in the previous studies. There was no significant different between the groups regarding the 

starting and ending coordinates of the lesions on histology (data not presented). In summary, ET-

1 microinjections allowed us to achieve reproducible lesions in terms of size and location, which 

enabled us to compare the post stroke functional deficit and recovery between the experimental 

groups. 

In spontaneously recovering animals, the Lesionno pump group in the present study, lesions 

caused typical motor deficits of the paretic forelimb (Gilmour et al., 2004; Windle et al., 2006). 

The Cylinder and Montoya tests both revealed profound initial deficits of the paretic forelimb 

that rapidly recovered in the first 3 weeks reaching a plateau of persistent long-term deficits 

validating the model for investigating the long term recovery of function (Livingston-Thomas et 

al., 2013).  

 



General Discussion 

51 
 

Reversible contralesional inactivation with GABA 

In the present study, we used a well-established model of stroke aiming to investigate 

whether continuous GABA-mediated pharmacological inactivation of the contralesional 

hemisphere in the acute phase of stroke would benefit the functional recovery. Our goal was not 

to propose a treatment modality. It was to test the implication of post-stroke transcallosal 

imbalance in a well-controlled experimental environment to provide insight about the current 

gaps in the literature. In particular, our objectives were to confirm that GABA-mediated 

inactivation and very early inactivation could favor recovery, and to study the interaction 

between duration and volume of contralesional inhibition and motor outcomes. This information 

increases our understanding of the basic interactions between inhibition of the contralesional 

hemisphere and recovery and may provide useful cues for the development of treatments based 

on contralesional inhibition after stroke. 

We used chronic infusions of 10mM Muscimol to inhibit the contralesional hemisphere. 

We chose Muscimol because its pharmacological profile is shown to be a precise reflection of 

GABA receptor stimulation (Beaumont et al., 1978; Andén et al., 1979) and thus for a long time, 

Muscimol has been an excellent candidate for studying the effects of GABA potentiation (Naik 

et al., 1976). Moreover, this natural alkaloid is structurally similar to GABA (Krogsgaard-Larsen 

and Johnston, 1978) and has selective affinity and specificity for GABA-A receptor sites 

(Beaumont et al., 1978) with a weak agonist effect on GABA-B receptors (Krogsgaard-Larsen et 

al., 1994). Muscimol binds to GABA-A receptors to directly regulate gating of the chloride ion 

channel, which subsequently leads to hyper-polarization (Macdonald and Olsen, 1994). Given 

the ubiquitous distribution of GABA-A receptors (Chu et al., 1990), Muscimol can be used to 
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inhibit the neuronal activity virtually in all regions of central nervous system while sparing the 

conduction of fibers-of-passage (Majchrzak and Di Scala, 2000).  

Muscimol induced inactivation has a rapid onset and lasts several hours depending on the 

dose (Martin and Ghez, 1993, 1999). In our experimental animals, the effects of inactivation 

appeared overall six hours after the placement of the osmotic mini pump which is the time 

needed for the pumps to reach a steady state of function (personal communication with the 

manufacturer). During the infusion of Muscimol, rats were typically less active in terms of 

exploratory behavior and grooming. They walked in a circular pattern of motion indicating 

significant weakness in the forelimb contralateral to the inhibition site (Brailowsky et al., 1988). 

Although we did not use a measure to document the locomotor slowness of these animals (Di 

Scala et al., 1990), the pattern of inactivity of our animals in the cylinder and Montoya staircase 

tests (Figure 6) provides clear clues about the effect of unilateral inactivation on the general state 

of the experimental animals. Our observation indicated that in the animals that did not show a 

complete inactivity in the cylinder test, the activity was slow. For example, acquiring 60 

exploratory touches in the cylinder test typically requires less than three minutes, whereas during 

the inactivation (if the animals was not inactive) this time increased from three to forty-five 

minutes. 

The decreased activity of our experimental animals that received Muscimol at the rate of 

0.5 µl/hr might be a reflection of reduced synaptic activity in the interconnected areas adjacent to 

the core of inactivation in addition to the inactivation of CFA alone. In a series of experiments, 

Martin and collaborators provided a comprehensive analysis of spread of Muscimol induced 

inactivation (Martin, 1991; Martin and Ghez, 1993, 1999). By using autoradiographic 

measurement of [
14

C] glucose uptake following cortical injection of Muscimol (1µg/mL) in rats, 
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they demonstrated that the effects of focal inactivation extended beyond the region of drug 

spread (Martin, 1991). They revealed a small area (1mm) of strong hypometabolism in the 

injection area, surrounded by a much larger area of milder hypometabolism. This hypometabolic 

area exceeded the spread of the Muscimol that was evaluated with [
3
H] Muscimol injection, 

indicating that the extension of inactivation might have been due to reduced synaptic activity in 

interconnected neurons. Martin and collaborators demonstrated similar results with chronic 

infusion of Muscimol. With chronic cortical infusion of 10mM Muscimol at the rate of 0.5 µl/hr 

for two weeks (same as our 14D group) they demonstrated a 6.5–8 mm radius of reduced activity 

in cortex of kittens surrounding a 3 mm core of inactivity at the injection site (Martin and Lee, 

1999). If these results could be applied to our rat model, the locomotor deficits in our animals, 

could have been the result of decreased neuronal activity in the medial frontal cortex; where 

chronic infusions of GABA is previously shown to produce similar behavioral effects (Di Scala 

et al., 1990).  

As mentioned above, when animals were not completely inactive in the cylinder during the 

inactivation, the cylinder test data could be collected albeit in a longer time span (30-45 minutes) 

rather than a typical cylinder session (3 minutes). The cylinder test in these animals showed that 

inactivation caused a change of laterality of hand usage from decreased non-paretic limb usage in 

the 3D group to a complete reversal of forelimb usage in the 7D and 14D groups. It is already 

shown that chronic unilateral GABAergic inactivation for 3 to 14 days causes evident weakness 

of the contralateral forelimb (Brailowsky et al., 1988); therefore, the subsequent non-reliance on 

the non-paretic (inhibited) forelimb for rearing in the cylinder test seems to reflect the efficacy of 

inactivation in our animals. In the Montoya staircase, the inactivation caused reversible 

functional deficit in the non-paretic limb. All inactivation treatment groups in our study 



General Discussion 

54 
 

demonstrated very low functional scores in Montoya staircase during the infusion of Muscimol 

denoting the effectiveness of cortical inactivation in reducing the grasping and retrieving 

performance of the non-paretic forelimb. 

The absence of decreased activity in our 14Dslow group that received inactivation at a 

slower rate (0.25 µl/hr), despite the measurable deficits of hand function as well as transient 

reversal of laterality index in the cylinder test, demonstrates that in this group reduction of 

Muscimol flow rate caused a more focal but effective inactivation that involved the forearm 

representation area without probable involvement of the adjacent cortical areas. In fact, our 

preliminary experiments to measure the spread of Muscimol confirms that in the 14Dslow group 

the spread of Muscimol is confined to the forelimb representation area and the adjacent areas 

may not be involved (Figure 10). 

The decreased activity of all of our inactivation groups subsided immediately after the 

inactivation period demonstrating the reversibility of Muscimol inactivation (Majchrzak and Di 

Scala, 2000). However, the reversal of the grasping deficit and retrieval performance of the non-

paretic limb differed depending on the duration of inactivation (Figure 7). After three days of 

inactivation (Group 3D) the grasping and retrieving performance of the non-paretic limb returned 

back to normal in less than a week. For the 7D group we observed a significant deficit one week 

after the inactivation had stopped. In both groups with 14 days of inactivaition (14D and 

14Dslow) the deficit of the non-paretic limb continued for three weeks beyond the period of 

inactivation.  

Our critical analysis of the behavioral data after chronic infusions of Muscimol, suggest 

that depending on the duration of inactivation, some affects may not be immediately reversible. 

To our knowledge, little attention has been given to possible long lasting effects of GABA 
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potentiation. Hence, it is not possible to differentiate if the delayed reversal of grasping 

performance is due to central effects of unilateral GABA potentiation or merely a delayed 

reversal of learned non-use of the non-paretic limb (Taub, 2000). The reversibility is particularly 

important when animals are tested again. In this respect, scarce empirical evidence 

demonstrating the course of neuronal changes after chronic cortical inactivation is available. 

Chronic cortical infusions of Muscimol (Martin and Ghez, 1999; Lee et al., 2011) or GABA 

(Meneses et al., 1993) using mini-osmotic pumps are shown previously to  cause no histological 

damage compared to saline infusions at the cortical injection site, therefore cortical damage due 

to chronic infusion of Muscimol cannot explain the delayed reversal of grasping and retrieving 

performance. Our histological examination of the infusion site of Muscimol did not show any 

difference between the inactivation groups and our Lesionno pump animals in terms of damage to 

neural tissue or formation of scar tissue around the injection site. Therefore, similar to Martin 

and collaborators we have observed no tissue damage related to chronic microinfusions of 

Muscimol. 

The effects of contralesional inactivation on the grasping function of the paretic 

forelimb 

Recent developments in stroke research highlight the importance of post-stroke increase of 

neuronal excitability in contralesional hemisphere that is linked to GABA down regulation 

(Bütefisch et al., 2003b). The increased excitability of contralesional hemisphere after stroke 

(Liepert et al., 2000; Manganotti et al., 2002, 2008; Nardone and Tezzon, 2002a; Shimizu et al., 

2002) and the subsequent interhemispheric inhibition from contralesional to ipsilesional 

hemisphere (Murase et al., 2004; Duque et al., 2005) are shown to interfere with the recovery of 

stroke patients. 
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In rodents, unilateral cortical damage leads to a rapid increase of contralesional neuronal 

excitability (Abo et al., 2001; Mohajerani et al., 2011) and decreased intracortical inhibition 

(Buchkremer-Ratzmann and Witte, 1997), which is due to the reduction of GABA-A receptors 

(Qü et al., 1998a) and decreased production of GABA-A receptor subunits (Lee et al., 2011). 

According to longitudinal studies, the hyperexcitability of contralesional hemisphere is maximal 

shortly after stroke and gradually subsides over a period of several months (Marshall et al., 

2000). Hence, in the present study, we chose to initiate the GABA-A potentiation of 

contralesional hemisphere within hours following the cortical ischemic lesion. Hypothetically, 

inhibition of the contralesional hemisphere early after lesion could be most beneficial to 

recovery. However, only a few human studies have aimed to implement inhibition treatment 

early following stroke in which very few patients within one week of stroke are included 

(Conforto et al., 2011). 

In our experiments, infusions of Muscimol in the contralesional hemisphere initially 

resulted in general hypoactivity of animals and a decrease of function of the paretic forelimb. 

Similar short-term detrimental effects to the paretic forelimb have been reported after chronic 

contralesional infusion of Muscimol in mice with cortical lesions (Lee et al., 2011). In our study, 

following recovery for a longer period, we found that these detrimental effects are transient. All 

experimental groups showed that GABA mediated inactivation of the contralesional hemisphere 

initiated rapidly after the lesion can improve the extent of recovery of the paretic forelimb.  

As discussed earlier, our experimental animals demonstrated a decreased functional 

reliance on their non-paretic limb during the inactivation period for rearing in the cylinder and 

grasping/retrieval in the Montoya staircase. In light of the better functional recovery of these 

animals in the post-intervention recovery period, it was essential for us to determine if the non-
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reliance on the non-paretic limb (versus the effect of inhibition per se) was the main driver for 

the better functional outcomes. In other words, we wanted to examine if the better outcomes 

were related to non-reliance on the non-paretic limb as is observed in the studies using the 

constraint-induced therapy. Our correlation analysis (Figure 10) provides evidence that in our 

experimental animals the decrease of spontaneous use of non-paretic forelimb, as well as the 

functional deficit of non-paretic forelimb in Montoya test only weakly influenced the recovery. 

However, the duration of inactivation had a significant impact on the better functional outcomes 

of the groups with inactivation treatment.  
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Conclusions 
 

In humans, studies using a single inhibition treatment appear to have promising but short-

lasting effects on the level of spasticity and performance in fine motor tasks (Mansur et al., 2005; 

Takeuchi et al., 2005; Nowak et al., 2008). Same neuromodulatory interventions, when applied 

on a regular basis, seem to be more effective and yield longer-lasting effects on the recovery of 

paretic limb (Fregni et al., 2006; Emara et al., 2010; Conforto et al., 2011; Avenanti et al., 2012). 

To date, there has been no systematic investigation of treatment duration on motor outcomes, and 

our study is the first trying to address this question in a well-controlled laboratory environment. 

In fact the comparison of Groups 3D, 7D and 14D in our study demonstrates that increasing the 

duration of contralesional inactivation promotes recovery of the paretic forelimb in a time 

dependent manner. Whereas, providing absolute figures for duration (or the number) of treatment 

sessions in stroke patients is out of scope of the present study, our results strongly indicate that 

duration of treatment is a factor that should be accounted for when comparing the efficacy of 

contralesional inhibition in stroke subjects.  

It is important to note that in our study, the most beneficial effects were observed when the 

inactivation treatment targeted the contralesional hemisphere throughout the first 14 days after 

the ischemic lesion: a period corresponding to the time during which most of the spontaneous 

recovery occurs in our model. Moreover, shorter durations of inactivation resulted in less 

prominent but still sustained effects on the recovery of function. In humans, independent of the 

initial level of impairment, the period of maximal recovery is approximately one month (Duncan 

PW and Lai SM, 1997). Hence, the acute phase after the stroke seems to be a golden interval of 

intervention for contralesional inhibition that should be considered while enrolling stroke 

patients in clinical trials. The current patient care protocols in acute setting after stroke (e.g. 
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thrombolysis or endovascular interventions) may constitute an obstacle for enrollment of patients 

in the non-invasive stimulation trials immediately after stroke. Therefore, by providing precise 

temporal and behavioral evidence, our results provide a window of opportunity for the 

researchers in which the current gap in our understanding of the clinical efficacy of 

contralesional inhibition in acute phase after stroke can be approached with more confidence. 

 

Future direction 

In continuum with our experiments, a mixed model of ET1 cortical ischemia and 

contralesional inactivation can be used to address the following behavioral questions in rats: 

1- Is delayed inactivation of contralesional hemisphere by chronic microinfusions of 

Muscimol as efficacious in terms of functional recovery as the immediate inactivation protocols 

that were employed in the present study? 

2- Can contralesional inactivation provide similar benefits in terms of functional recovery of 

the paretic forelimb function after large cortical lesions compared to the observed results of the 

present study with a small cortical lesion? 

3- Can contralesional inactivation provide similar benefits in terms of functional recovery of 

paretic forelimb function after subcortical lesions compared to the results of the present study 

with a small cortical lesion? 

4- Can alternative method of continuous inactivation (e.g. tDCS) provide similar benefits 

in terms of functional recovery of paretic forelimb function compared to the results of the 

present study that uses continuous GABA-A potentiation by means of chronic microinfusions of 

Muscimol? 
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5- Is continuous vs. interrupted inhibition with tDCS for 14 days starting immediately 

after the cortical lesion, providing different behavioral outcomes in terms of functional recovery 

of paretic forelimb function?  

By comparing the behavioral outcomes of the groups 14D and 14Dslow, it is inferred that our 

mixed model of ET1 cortical ischemia and contralesional inactivation is able to provide reliable 

and reproducible behavioral results. Therefore we propose our rat model of ET1 cortical lesion 

and 14 day contralesional inactivation as a model of contralesional inactivation after stroke to 

investigate the following questions:  

1- What is the difference of expression of activity dependent gene, Alivin-1, in the 

ipsilesional CFA and RFA of stroke rats with and without contralesional inactivation? 

2- How electrophysiological indicators of potency of cortical inhibitory circuits including 

SICI are different between stroke rats with and without contralesional inactivation? 

3- How electrophysiological indicators of cortical excitability including ICF are different 

between stroke rats with and without contralesional inactivation? 

4- How electrophysiological indicators of transcallosal inhibition including SICI and IHI10 

are different between stroke rats with and without contralesional inactivation? 

5- How axonal sprouting and dendritic arborisation are different in ipsi and contralesional 

CFA and RFA of stroke rats with and without contralesional inactivation? 

 

 

 

 

 



References 

61 
 

References: 

Abo M, Chen Z, Lai LJ, Reese T, Bjelke B (2001) Functional recovery after brain lesion--contralateral 

neuromodulation: an fMRI study. Neuroreport 12:1543–1547. 

Andén N-E, Grabowska-Andén M, Wachtel H (1979) Effects of the GABA Receptor Agonist Muscimol 

on the Turnover of Brain Dopamine and on the Motor Activity of Rats. Acta Pharmacologica et 

Toxicologica 44:191–196. 

Ashby P, Reynolds C, Wennberg R, Lozano AM, Rothwell J (1999) On the focal nature of inhibition and 

facilitation in the human motor cortex. Clinical Neurophysiology 110:550–555. 

Avanzino L, Teo JTH, Rothwell JC (2007) Intracortical circuits modulate transcallosal inhibition in 

humans. J Physiol 583:99–114. 

Avenanti A, Coccia M, Ladavas E, Provinciali L, Ceravolo MG (2012) Low-frequency rTMS promotes 

use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology 78:256–264. 

Bacigaluppi M, Comi G, Hermann DM (2010) Animal Models of Ischemic Stroke. Part Two: Modeling 

Cerebral Ischemia. Open Neurol J 4:34–38. 

Beaumont K, Chilton WS, Yamamura HI, Enna SJ (1978) Muscimol binding in rat brain: Association 

with synaptic GABA receptors. Brain Research 148:153–162. 

Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, Girzalsky W, Eysel UT, Erdmann R, Funke K 

(2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 

31:1193–1203. 

Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate 

impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European 

Journal of Neuroscience 19:1950–1962. 

Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, Driver J, Rothwell JC, Ward NS 

(2010) The role of contralesional dorsal premotor cortex after stroke as studied with concurrent 

TMS-fMRI. J Neurosci 30:11926–11937. 

Biernaskie J, Corbett D, Peeling J, Wells J, Lei H (2001) A serial MR study of cerebral blood flow 

changes and lesion development following endothelin‐1‐induced ischemia in rats. Magnetic 

Resonance in Medicine 46:827–830. 

Boroojerdi B, Diefenbach K, Ferbert A (1996) Transcallosal inhibition in cortical and subcortical cerebral 

vascular lesions. Journal of the Neurological Sciences 144:160–170. 

Brailowsky S, Kunimoto M, Menini C, Silva-Barrat C, Riche D, Naquet R (1988) The GABA-withdrawal 

syndrome: a new model of focal epileptogenesis. Brain Research 442:175–179. 

Brailowsky S, Kunimoto M, Silva-Barrat C, Menini C, Naquet R (1990) Electroencephalographic study 

of the GABA-withdrawal syndrome in rats. Epilepsia 31:369–377. 



References 

62 
 

Brocard F, Ryczko D, Fénelon K, Hatem R, Gonzales D, Auclair F, Dubuc R (2010) The Transformation 

of a Unilateral Locomotor Command into a Symmetrical Bilateral Activation in the Brainstem. J 

Neurosci 30:523–533. 

Buchkremer-Ratzmann I, Witte OW (1997) Extended brain disinhibition following small 

photothrombotic lesions in rat frontal cortex. Neuroreport 8:519–522. 

Bütefisch CM, Netz J, Weßling M, Seitz RJ, Hömberg V (2003a) Remote changes in cortical excitability 

after stroke. Brain 126:470–481. 

Bütefisch CM, Netz J, Weßling M, Seitz RJ, Hömberg V (2003b) Remote changes in cortical excitability 

after stroke. Brain 126:470–481. 

Carmichael ST (2005) Rodent Models of Focal Stroke: Size, Mechanism, and Purpose. NeuroRX 2:396–

409. 

Chen R, Tam A, Bütefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG (1998) Intracortical 

Inhibition and Facilitation in Different Representations of the Human Motor Cortex. J 

Neurophysiol 80:2870–2881. 

Chen Xu W, Yi Y, Qiu L, Shuaib A (2000) Neuroprotective activity of tiagabine in a focal embolic model 

of cerebral ischemia. Brain Research 874:75–77. 

Chu DCM, Albin RL, Young AB, Penney JB (1990) Distribution and kinetics of GABAB binding sites in 

rat central nervous system: A quantitative autoradiographic study. Neuroscience 34:341–357. 

Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM (2003) Interhemispheric 

Asymmetries of Motor Cortex Excitability in the Postacute Stroke Stage A Paired-Pulse 

Transcranial Magnetic Stimulation Study. Stroke 34:2653–2658. 

Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, McMullen DC, Jacobowitz DM, Pollard HB, 

O’Neill JT, Grunberg NE, Dalgard CL, Frank JA, Watson WD (2011) Craniotomy: True Sham 

for Traumatic Brain Injury, or a Sham of a Sham? J Neurotrauma 28:359–369. 

Conforto AB, Anjos SM, Saposnik G, Mello EA, Nagaya EM, Santos W Jr, Ferreiro KN, Melo ES, Reis 

FI, Scaff M, Cohen LG (2011) Transcranial magnetic stimulation in mild to severe hemiparesis 

early after stroke: a proof of principle and novel approach to improve motor function. Journal of 

Neurology Available at: http://www.ncbi.nlm.nih.gov/pubmed/22173953 [Accessed December 

27, 2011]. 

Cramer SC (2008) Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. 

Annals of Neurology 63:272–287. 

Dafotakis M, Grefkes C, Wang L, Fink G, Nowak D (2008) The effects of 1 Hz rTMS over the hand area 

of M1 on movement kinematics of the ipsilateral hand. Journal of Neural Transmission 

115:1269–1274. 

Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali P., Rothwell J. 

(2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. 

Clinical Neurophysiology 115:255–266. 



References 

63 
 

Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999) Direct 

demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial 

magnetic stimulation. Experimental Brain Research 124:520–524. 

Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC 

(1998) Magnetic transcranial stimulation at intensities below active motor threshold activates 

intracortical inhibitory circuits. Exp Brain Res 119:265–268. 

Di Scala G, Meneses S, Brailowsky S (1990) Chronic infusions of GABA into the medial frontal cortex 

of the rat induce a reversible delayed spatial alternation deficit. Behavioural Brain Research 

40:81–84. 

Dimyan MA, Cohen LG (2010) Contribution of Transcranial Magnetic Stimulation to the Understanding 

of Functional Recovery Mechanisms After Stroke. Neurorehabil Neural Repair 24:125–135. 

Dittmar M, Spruss T, Schuierer G, Horn M (2003) External Carotid Artery Territory Ischemia Impairs 

Outcome in the Endovascular Filament Model of Middle Cerebral Artery Occlusion in Rats. 

Stroke 34:2252–2257. 

Duncan PW, Lai SM (1997) Stroke recovery. Top Stroke Rehabil 4:51–58. 

Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG (2005) Transcallosal inhibition in 

chronic subcortical stroke. NeuroImage 28:940–946. 

Duverger D, MacKenzie ET (1988) The Quantification of Cerebral Infarction Following Focal Ischemia 

in the Rat: Influence of Strain, Arterial Pressure, Blood Glucose Concentration, and Age. J Cereb 

Blood Flow Metab 8:449–461. 

Emara TH, Moustafa RR, Elnahas NM, Elganzoury AM, Abdo TA, Mohamed SA, Eletribi MA (2010) 

Repetitive transcranial magnetic stimulation at 1Hz and 5Hz produces sustained improvement in 

motor function and disability after ischaemic stroke. Eur J Neurol 17:1203–1209. 

Fang P, Barbay S, Plautz EJ, Hoover E, Strittmatter SM, Nudo RJ (2010) Combination of NEP 1-40 

Treatment and Motor Training Enhances Behavioral Recovery After a Focal Cortical Infarct in 

Rats. Stroke 41:544–549. 

Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and 

early case fatality reported in 56 population-based studies: a systematic review. The Lancet 

Neurology 8:355–369. 

Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric Inhibition 

of the Human Motor Cortex. J Physiol 453:525–546. 

Franco ECS, Cardoso MM, Gouvêia A, Pereira A, Gomes-Leal W (2012) Modulation of microglial 

activation enhances neuroprotection and functional recovery derived from bone marrow 

mononuclear cell transplantation after cortical ischemia. Neuroscience Research 73:122–132. 

Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJL, Lima MC, Rigonatti SP, Marcolin MA, 

Freedman SD, Nitsche MA, Pascual-Leone A (2005) Transcranial direct current stimulation of 

the unaffected hemisphere in stroke patients. Neuroreport 16:1551–1555. 



References 

64 
 

Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJL, Wagner T, Fecteau S, Rigonatti SP, 

Riberto M, Freedman SD, Pascual-Leone A (2006) A sham-controlled trial of a 5-day course of 

repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. 

Stroke 37:2115–2122. 

Fukuda H, Brailowsky S, Ménini C, Silva-Barrat C, Riche D, Naquet R (1987) Anticonvulsant effect of 

intracortical, chronic infusion of GABA in kindled rats: Focal seizures upon withdrawal. 

Experimental Neurology 98:120–129. 

Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, 

Ishii K, Cohen LG, Hallett M (2006) Multimodal Imaging of Brain Reorganization in Motor 

Areas of the Contralesional Hemisphere of Well Recovered Patients After Capsular Stroke. Brain 

129:791–808. 

Gerloff C, Cohen LG, Floeter MK, Chen R, Corwell B, Hallett M (1998) Inhibitory influence of the 

ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J 

Physiol 510:249–259. 

Gerriets T, Li F, Silva MD, Meng X, Brevard M, Sotak CH, Fisher M (2003) The macrosphere model: 

Evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. Journal 

of Neuroscience Methods 122:201–211. 

Gerriets T, Stolz E, Walberer M, Müller C, Rottger C, Kluge A, Kaps M, Fisher M, Bachmann G (2004) 

Complications and Pitfalls in Rat Stroke Models for Middle Cerebral Artery Occlusion A 

Comparison Between the Suture and the Macrosphere Model Using Magnetic Resonance 

Angiography. Stroke 35:2372–2377. 

Gharbawie OA, Gonzalez CLR, Whishaw IQ (2005) Skilled reaching impairments from the lateral frontal 

cortex component of middle cerebral artery stroke: a qualitative and quantitative comparison to 

focal motor cortex lesions in rats. Behavioural Brain Research 156:125–137. 

Gilmour G, Iversen SD, O’Neill MF, Bannerman DM (2004) The effects of intracortical endothelin-1 

injections on skilled forelimb use: implications for modelling recovery of function after stroke. 

Behavioural Brain Research 150:171–183. 

Ginsberg MD, Busto R (1989) Rodent models of cerebral ischemia. Stroke 20:1627–1642. 

Go AS et al. (2013) Heart Disease and Stroke Statistics—2013 Update A Report From the American 

Heart Association. Circulation 127:e6–e245. 

Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR (2008) Dynamic intra- and interhemispheric 

interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. 

NeuroImage 41:1382–1394. 

Grefkes C, Fink GR (2012) Disruption of motor network connectivity post-stroke and its noninvasive 

neuromodulation. Current Opinion in Neurology 25:670–675. 

Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR (2010) Modulating cortical 

connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. 

NeuroImage 50:233–242. 



References 

65 
 

Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2012) The Role of Interneuron Networks 

in Driving Human Motor Cortical Plasticity. Cereb Cortex Available at: 

http://cercor.oxfordjournals.org/content/early/2012/05/31/cercor.bhs147 [Accessed May 18, 

2013]. 

Hartmann A, Rundek T, Mast H, Paik MC, Boden-Albala B, Mohr JP, Sacco RL (2001) Mortality and 

causes of death after first ischemic stroke: the Northern Manhattan Stroke Study. Neurology 

57:2000–2005. 

Hesse S, Waldner A, Mehrholz J, Tomelleri C, Pohl M, Werner C (2011) Combined transcranial direct 

current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, 

randomized multicenter trial. Neurorehabil Neural Repair 25:838–846. 

Hummel F, Celnik P, Giraux P, Floel A, Wu W-H, Gerloff C, Cohen LG (2005) Effects of non-invasive 

cortical stimulation on skilled motor function in chronic stroke. Brain 128:490–499. 

Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve 

neurorehabilitation after stroke? The Lancet Neurology 5:708–712. 

Jeeves MA, Silver PH, Jacobson I (1988) Bimanual co-ordination in callosal agenesis and partial 

commissurotomy. Neuropsychologia 26:833–850. 

Jones TA, Allred RP, Adkins DL, Hsu JE, O’Bryant A, Maldonado MA (2009) Remodeling the Brain 

With Behavioral Experience After Stroke. Stroke 40:S136–S138. 

Kanemitsu H, Nakagomi T, Tamura A, Tsuchiya T, Kono G, Sano K (2002) Differences in the extent of 

primary ischemic damage between middle cerebral artery coagulation and intraluminal occlusion 

models. J Cereb Blood Flow Metab 22:1196–1204. 

Khedr EM, Fetoh NA-E (2010) Short- and long-term effect of rTMS on motor function recovery after 

ischemic stroke. Restorative Neurology and Neuroscience 28:545–559. 

Kim Y-H, Park J-W, Ko M-H, Jang SH, Lee PKW (2004) Facilitative effect of high frequency 

subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in 

humans. Neuroscience Letters 367:181–185. 

Kleim JA, Boychuk JA, Adkins DL (2007) Rat models of upper extremity impairment in stroke. ILAR J 

48:374–384. 

Kobayashi M, Hutchinson S, Théoret H, Schlaug G, Pascual-Leone A (2004) Repetitive TMS of the 

motor cortex improves ipsilateral sequential simple finger movements. Neurology 62:91–98. 

Krogsgaard-Larsen P, Froelund B, Joergensen FS, Schousboe A (1994) GABAA Receptor Agonists, 

Partial Agonists, and Antagonists. Design and Therapeutic Prospects. J Med Chem 37:2489–

2505. 

Krogsgaard-Larsen P, Johnston G a. R (1978) Structure-Activity Studies on the Inhibition of Gaba 

Binding to Rat Brain Membranes by Muscimol and Related Compounds. Journal of 

Neurochemistry 30:1377–1382. 



References 

66 
 

Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden 

CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519. 

Lang N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN (2004) Effects of transcranial direct current 

stimulation over the human motor cortex on corticospinal and transcallosal excitability. 

Experimental Brain Research 156:439–443. 

Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. The Lancet 

Neurology 8:741–754. 

Lee S, Ueno M, Yamashita T (2011) Axonal remodeling for motor recovery after traumatic brain injury 

requires downregulation of γ-aminobutyric acid signaling. Cell Death & Disease 2:e133. 

Liepert J, Hamzei F, Weiller C (2000) Motor cortex disinhibition of the unaffected hemisphere after acute 

stroke. Muscle & Nerve 23:1761–1763. 

Livingston-Thomas JM, Hume AW, Doucette TA, Tasker RA (2013) A novel approach to induction and 

rehabilitation of deficits in forelimb function in a rat model of ischemic stroke. Acta Pharmacol 

Sin 34:104–112. 

Macdonald RL, Olsen RW (1994) Gabaa Receptor Channels. Annual Review of Neuroscience 17:569–

602. 

Macrae IM, Robinson MJ, Graham DI, Reid JL, McCulloch J (1993) Endothelin-1-Induced Reductions in 

Cerebral Blood Flow: Dose Dependency, Time Course, and Neuropathological Consequences. J 

Cereb Blood Flow Metab 13:276–284. 

Majchrzak M, Di Scala G (2000) GABA and Muscimol as Reversible Inactivation Tools in Learning and 

Memory. Neural Plasticity 7:19–29. 

Malcolm MP, Triggs WJ, Light KE, Gonzalez Rothi LJ, Wu S, Reid K, Nadeau SE (2007) Repetitive 

Transcranial Magnetic Stimulation as an Adjunct to Constraint-Induced Therapy: An Exploratory 

Randomized Controlled Trial. Am J Phys Med Rehabil 86:707–715. 

Manganotti P, Acler M, Zanette GP, Smania N, Fiaschi A (2008) Motor cortical disinhibition during early 

and late recovery after stroke. Neurorehabil Neural Repair 22:396–403. 

Manganotti P, Patuzzo S, Cortese F, Palermo A, Smania N, Fiaschi A (2002) Motor disinhibition in 

affected and unaffected hemisphere in the early period of recovery after stroke. Clin 

Neurophysiol 113:936–943. 

Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, Wagner T, Rigonatti SP, 

Marcolin MA, Pascual-Leone A (2005) A sham stimulation-controlled trial of rTMS of the 

unaffected hemisphere in stroke patients. Neurology 64:1802–1804. 

Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of 

Cortical Activation During Recovery From Corticospinal Tract Infarction. Stroke 31:656–661. 

Martin JH (1991) Autoradiographic estimation of the extent of reversible inactivation produced by 

microinjection of lidocaine and muscimol in the rat. Neuroscience Letters 127:160–164. 



References 

67 
 

Martin JH, Ghez C (1993) Differential impairments in reaching and grasping produced by local 

inactivation within the forelimb representation of the motor cortex in the cat. Exp Brain Res 

94:429–443. 

Martin JH, Ghez C (1999) Pharmacological inactivation in the analysis of the central control of 

movement. J Neurosci Methods 86:145–159. 

Martin JH, Lee SJ (1999) Activity-dependent competition between developing corticospinal terminations. 

Neuroreport 10:2277–2282. 

Meneses S, Galicia O, Brailowsky S (1993) Chronic infusions of GABA into the medial prefrontal cortex 

induce spatial alternation deficits in aged rats. Behav Brain Res 57:1–7. 

Meyer BU, Röricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum 

mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369. 

Mohajerani MH, Aminoltejari K, Murphy TH (2011) Targeted mini-strokes produce changes in 

interhemispheric sensory signal processing that are indicative of disinhibition within minutes. 

Proc Natl Acad Sci USA 108:E183–191. 

Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on 

motor function in chronic stroke. Annals of Neurology 55:400–409. 

Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nature 

Reviews Neuroscience 10:861–872. 

Naik SR, Guidotti A, Costa E (1976) Central GABA receptor agonists: Comparison of muscimol and 

baclofen. Neuropharmacology 15:479–484. 

Nair DG, Renga V, Lindenberg R, Zhu L, Schlaug G (2011) Optimizing recovery potential through 

simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restorative 

Neurology and Neuroscience 29:411–420. 

Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after 

transcranial magnetic stimulation in conscious humans. J Physiol 498:817–823. 

Nardone R, Tezzon F (2002a) Inhibitory and excitatory circuits of cerebral cortex after ischaemic stroke: 

prognostic value of the transcranial magnetic stimulation. Electromyogr Clin Neurophysiol 

42:131–136. 

Nardone R, Tezzon F (2002b) Inhibitory and excitatory circuits of cerebral cortex after ischaemic stroke: 

prognostic value of the transcranial magnetic stimulation. Electromyogr Clin Neurophysiol 

42:131–136. 

Neumann-Haefelin T, Witte OW (2000) Periinfarct and Remote Excitability Changes After Transient 

Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow & Metabolism 20:45–52. 

Nikolova S, Moyanova S, Hughes S, Bellyou-Camilleri M, Lee T-Y, Bartha R (2009) Endothelin-1 

induced MCAO: Dose dependency of cerebral blood flow. Journal of Neuroscience Methods 

179:22–28. 



References 

68 
 

Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak 

transcranial direct current stimulation. J Physiol 527:633–639. 

Nowak DA, Grefkes C, Ameli M, Fink GR (2009) Interhemispheric Competition After Stroke: Brain 

Stimulation to Enhance Recovery of Function of the Affected Hand. Neurorehabil Neural Repair 

23:641–656. 

Nowak DA, Grefkes C, Dafotakis M, Eickhoff S, Küst J, Karbe H, Fink GR (2008) Effects of low-

frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex 

on movement kinematics and neural activity in subcortical stroke. Arch Neurol 65:741–747. 

Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Amsterdam; Boston: Elsevier 

Academic Press. Available at: 

http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=189

458 [Accessed May 15, 2013]. 

Petty GW, Brown RD, Whisnant JP, Sicks JD, O’Fallon WM, Wiebers DO (2000) Ischemic Stroke 

Subtypes : A Population-Based Study of Functional Outcome, Survival, and Recurrence. Stroke 

31:1062–1068. 

Plewnia C, Lotze M, Gerloff C (2003) Disinhibition of the contralateral motor cortex by low-frequency 

rTMS. Neuroreport 14:609–612. 

Qü M, Buchkremer-Ratzmann I, Schiene K, Schroeter M, Witte OW, Zilles K (1998a) Bihemispheric 

reduction of GABAA receptor binding following focal cortical photothrombotic lesions in the rat 

brain. Brain Research 813:374–380. 

Qü M, Mittmann T, Luhmann H., Schleicher A, Zilles K (1998b) Long-term changes of ionotropic 

glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse 

brain. Neuroscience 85:29–43. 

Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-

analysis of motor-related neural activity after stroke. NeuroImage 59:2771–2782. 

Roger VL et al. (2012) Heart Disease and Stroke Statistics—2012 Update A Report From the American 

Heart Association. Circulation 125:e2–e220. 

Rossini PM, Calautti C, Pauri F, Baron J-C (2003) Post-stroke plastic reorganisation in the adult brain. 

Lancet Neurol 2:493–502. 

Rothwell J. (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor 

cortex. Journal of Neuroscience Methods 74:113–122. 

Rouiller EM, Moret V, Liang F (1993) Comparison of the connectional properties of the two forelimb 

areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary 

motor cortical area. Somatosens Mot Res 10:269–289. 

Sarfeld A-S, Diekhoff S, Wang LE, Liuzzi G, Uludağ K, Eickhoff SB, Fink GR, Grefkes C (2012) 

Convergence of human brain mapping tools: Neuronavigated TMS Parameters and fMRI activity 

in the hand motor area. Human Brain Mapping 33:1107–1123. 



References 

69 
 

Schaechter JD, Perdue KL, Wang R (2008) Structural Damage to the Corticospinal Tract Correlates with 

Bilateral Sensorimotor Cortex Reorganization in Stroke Patients. Neuroimage 39:1370–1382. 

Schambra HM, Sawaki L, Cohen LG (2003) Modulation of excitability of human motor cortex (M1) by 1 

Hz transcranial magnetic stimulation of the contralateral M1. Clin Neurophysiol 114:130–133. 

Sharkey J, Butcher SP (1995) Characterisation of an experimental model of stroke produced by 

intracerebral microinjection of endothelin-1 adjacent to the rat middle cerebral artery. J Neurosci 

Methods 60:125–131. 

Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S, Rossini PM (2002) Motor cortical disinhibition 

in the unaffected hemisphere after unilateral cortical stroke. Brain 125:1896–1907. 

Sicard K, Fisher M (2009) Animal models of focal brain ischemia. Experimental & Translational Stroke 

Medicine 1:7. 

Sparing R, Thimm M, Hesse MD, Küst J, Karbe H, Fink GR (2009) Bidirectional alterations of 

interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132:3011–3020. 

Stagg CJ, Bachtiar V, O’Shea J, Allman C, Bosnell RA, Kischka U, Matthews PM, Johansen-Berg H 

(2012) Cortical activation changes underlying stimulation-induced behavioural gains in chronic 

stroke. Brain 135:276–284. 

Stagg CJ, Wylezinska M, Matthews PM, Johansen-Berg H, Jezzard P, Rothwell JC, Bestmann S (2009) 

Neurochemical Effects of Theta Burst Stimulation as Assessed by Magnetic Resonance 

Spectroscopy. J Neurophysiol 101:2872–2877. 

Strafella AP, Paus T (2001) Cerebral Blood-Flow Changes Induced by Paired-Pulse Transcranial 

Magnetic Stimulation of the Primary Motor Cortex. J Neurophysiol 85:2624–2629. 

Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K (2005) Repetitive Transcranial Magnetic 

Stimulation of Contralesional Primary Motor Cortex Improves Hand Function After Stroke. 

Stroke 36:2681–2686. 

Talelli P, Greenwood RJ, Rothwell JC (2007) Exploring Theta Burst Stimulation as an intervention to 

improve motor recovery in chronic stroke. Clinical Neurophysiology 118:333–342. 

Talelli P, Wallace A, Dileone M, Hoad D, Cheeran B, Oliver R, VandenBos M, Hammerbeck U, Barratt 

K, Gillini C, Musumeci G, Boudrias M-H, Cloud GC, Ball J, Marsden JF, Ward NS, Di Lazzaro 

V, Greenwood RG, Rothwell JC (2012) Theta Burst Stimulation in the Rehabilitation of the 

Upper Limb: A Semirandomized, Placebo-Controlled Trial in Chronic Stroke Patients. 

Neurorehabilitation and Neural Repair 26:976–987. 

Taub E (2000) Constraint-induced movement therapy and massed practice. Stroke 31:986–988. 

Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM (1998) Follow-up of interhemispheric 

differences of motor evoked potentials from the “affected” and “unaffected” hemispheres in 

human stroke. Brain Res 803:1–8. 



References 

70 
 

Trippe J, Mix A, Aydin-Abidin S, Funke K, Benali A (2009) Theta burst and conventional low-frequency 

rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res 

199:411–421. 

Turner RJ, Jickling GC, Sharp FR (2011) Are Underlying Assumptions of Current Animal Models of 

Human Stroke Correct: from STAIRs to High Hurdles? Transl Stroke Res 2:138–143. 

Wang CX, Todd KG, Yang Y, Gordon T, Shuaib A (2001) Patency of Cerebral Microvessels After Focal 

Embolic Stroke in the Rat. J Cereb Blood Flow Metab 21:413–421. 

Ward NS, Newton JM, Swayne OBC, Lee L, Frackowiak RSJ, Thompson AJ, Greenwood RJ, Rothwell 

JC (2007) The relationship between brain activity and peak grip force is modulated by 

corticospinal system integrity after subcortical stroke. European Journal of Neuroscience 

25:1865–1873. 

Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain 

infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504. 

Windle V, Szymanska A, Granter-Button S, White C, Buist R, Peeling J, Corbett D (2006) An analysis of 

four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. 

Experimental Neurology 201:324–334. 

Wittenberg GF, Bastings EP, Fowlkes AM, Morgan TM, Good DC, Pons TP (2007) Dynamic Course of 

Intracortical TMS Paired-Pulse Responses During Recovery of Motor Function After Stroke. 

Neurorehabil Neural Repair 21:568–573. 

Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T (1988) A novel peptide vasoconstrictor, 

endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J 

Hypertens Suppl 6:S188–191. 

Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996a) Effects of antiepileptic drugs on motor cortex 

excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378. 

Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and 

facilitation in human motor cortex. J Physiol 496:873–881. 

Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC (2012) Modulation of training by 

single-session transcranial direct current stimulation to the intact motor cortex enhances motor 

skill acquisition of the paretic hand. Stroke 43:2185–2191. 

 

 

 



Figures 

71 
 

Figures 
 

 

Figure 1. Experimental design.  

A) Time course of events in reference to the lesion. Baseline data were collected on the 9
th

 and 

10
th

 day of the familiarization period and averaged to establish a baseline performance score. 

Following the cortical lesion, data were collected twice in the first week, on days 4 and 7, and 

then once per week until day 56. Horizontal bars in the intervention period show the duration of 

inactivation in different experimental groups. B) Location of ET-1 lesion in relation to motor 

representations. The top panel shows a typical ICMS map in a naïve animal of comparable age 

and weight to animals used in the present study. Contours outline the caudal forelimb area (CFA; 

red) and the rostral forelimb area (RFA; orange). Each dot is a penetration site where 
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microstimulations were delivered. Bottom panel shows an example of the impact of the 

endothelin-1 lesion in a rat that spontaneously recovered for 56 days (Group Lesionno pump). The 

lesion was in the CFA and spared the RFA. Evoked movements are color-coded. C) Cartoon 

showing the location of ET-1 injections based on stereotaxic coordinates in relation to the 

cortical motor map collected in the naïve animal shown in B. The red dots show the location of 

ET-1 injections and the blue dot the cannula. The ET-1 injections targeted the caudal forelimb 

area (CFA). D) Cartoon showing the location of the cannula and osmotic pump.  
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Figure 2. Spread of muscimol infusion in different experimental groups. 

We infused fluorophore-conjugated Muscimol to evaluate the spread of muscimol in our different 

experimental groups. Coronal sections of animals in which Muscimol was infused for A) 3 days at 

0.5µl/hour (Group 3D), B) 7 days at 0.5µl/hour (Group 7D), C) 14 days at 0.5µl/hour (Group 14D) and 

D) 14 days at 0.25µl/hour (Group 14Dslow) are shown. We found that the radius of diffusion was less than 

2mm in all animals. Scale bar = 5mm.  
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Figure 3. Responses to intracortical microstimulation following sustained muscimol 

infusion. 

At the end of the recovery period, we derived motor maps in the contralesional hemisphere using 

intracortical microstimulation (ICMS) techniques in A) one animal from Groups Lesionno pump, B) one 

animal from Group 7D and C) one animal from Group 14D. In all cases, only a small cortical lesion was 

visible on the surface of the cortex (asterisk). Evoked movements are color-coded and the two motor 

representations, the caudal (CFA) and the rostral forelimb area (RFA), are outlined. We found that the 

tissue in the CFA was responsive to stimulation, with no apparent difference between the animals. These 

data support that sustained infusion of Muscimol did not result in permanent damage of the tissue. D) 

ICMS map of the animal from Group 14D on which the range of Muscimol diffusion we found is 

superimposed (see Figure 2). Circles show the smallest (1.1mm, Group 14Dslow) and largest radius 

(1.9mm, Group 14D) of fluorescent Muscimol spread.  
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Figure 4. Histological evaluation of the tissue surrounding the cannula in the contralesional 

hemisphere. 

 A) Example of a Nissl stained coronal section of rat of Group Lesionno pump at +0.5mm AP. Asterisk 

shows the position of the cannula. The black box outlines the tissue shown at higher magnification on the 

left. Scale bar = 1mm. Inset width = 0.5mm.  B) Example of a Nissl stained coronal section of rat of 

Group 14D at +0.5mm AP. Small arrow shows an example of ICMS electrode penetration track. There 

was no obvious difference in the tissue between animals infused with Muscimol and animals that had a 

metal rod in the Group Lesionno pump. In all animals, the lesion made by the cannula was only visible in 

one Nissl-stained section, supporting that the lesion did not extend into the AP axis. 
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Figure 5. Histological evaluation of the endothelin-1 lesion size. 

A) Example of a Nissl stained coronal section of rat brain at AP +0.5 mm from bregma of the ipsilesional 

hemisphere. B) A block of brain of identical size was reconstructed in Neurolucida (Microbrightfield, 

inc.) for each animal. To compare experimental groups, the lesion volume was normalized to the volume 

of contralesional hemisphere of the block (see Methods). There was no difference of lesion volume 

between experimental groups.   
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Figure 6. Side effects of contralesional inactivation. 

During Muscimol delivery the different experimental groups showed variable degrees of 

inactivity in the Montoya staircase test. Rats were given 15 minutes in the Montoya to perform 

the task for each trial. The graphs show the percentage of animals in each experimental group 

that were inactive in the tests for that entire period and from which no behavioral data could be 

collected.  
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Figure 7. Non-paretic forelimb grasping performance on the Montoya test. 

 The intervention period is highlighted with gray background. In this period, data points with n≥5 are 

shown even if they were not included in the statistical analyses. Inactivation in Group 14D resulted in 

sustained deficits of the non-paretic forelimb until day 35 after the lesion. Slower infusion rate (Group 

14Dslow) induced similar deficits. Symbols show significant differences from Group Lesionno pump. 

  



Figures 

79 
 

 

Figure 8. The effect of inactivation on spontaneous use of forelimbs. 

Laterality scores in the cylinder test. Positive values highlight an increased use of the paretic forelimb in 

relation to the pre-lesion behavior of the animal. During the infusion period, only data points with n≥5 are 

shown even if they were not included in the statistical analyses. In controls, the ischemic lesion caused a 

bias for the non-paretic forelimb. In contrast, inactivation in Groups 7D, 14D and 14Dslow resulted in a 

bias to use the paretic forearm. The laterality index in Group 14D was significantly different from Group 

Lesionno pump throughout recovery. Symbols show significant differences from Group Lesionno pump.  
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Figure 9. Effects of inactivation on the recovery of the paretic forelimb. 

 Grasping performance of the paretic forelimb in the Montoya test. Group Lesionno pump recovered to 

baseline level only by day 56. The performance was worsened by the inactivation during the intervention 

period. However, in the post-intervention recovery period, animals with inactivation recovered better than 

controls. Symbols show significant differences from Group Lesionno pump. 
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Figure 10. Correlation analyses of factors potentially involved in the recovery of the paretic 

forelimb. 

A) Correlation between the spontaneous use of forelimbs at the beginning of the post-intervention period 

and level of recovery of the paretic forelimb. The plot shows the asymmetry scores at day 21 and the 

average Montoya score of the paretic forelimb between days 35 to 56 after the lesion (plateau 
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performance score). When more than one animal had the same laterality score, their plateau performance 

scores were averaged. B) Correlation between non-paretic forelimb function at the beginning of the post-

intervention period and level of recovery of the paretic forelimb. The plot shows the Montoya score of 

non-paretic forelimb at day 21 and the plateau performance score of the paretic forelimb. When animals 

had the same Montoya score with the non-paretic forelimb, their plateau performance scores were 

averaged. C) Correlation between duration of inactivation and level of recovery of the paretic forelimb. 

The plot shows the duration of inactivation and the plateau performance score of the paretic forelimb. The 

plateau performance scores of the animals for each of the four time points (0, 3, 7, 14) are shown. 
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Table 1 - Animal groups and inactivation protocols 

Group 

Inactivation 

protocol 

ET-1 

Lesion 

CL hemisphere 

Osmotic 

Pump type 

Muscimol 

concentration 

Infusion 

rate (µl/hr) 

n 

No-pump No inactivation yes Metal rod - - - 9 

3D 3 day  yes Cannula Alzet 1007D 10 mM 0.5 8 

7D 7 day  yes Cannula Alzet 1007D 10 mM 0.5 8 

14D 14 day  yes Cannula Alzet 2002 10 mM 0.5 8 

14Dslow 14 day, slow rate yes Cannula Alzet 1002 10 mM 0.25 9 

 



 

 
 

Table 2 - A summary of currently used rat models of ischemic stroke 

Model 

Site of 

surgery 

CFA 

involvement 

Transcortical 

lesion 

Intervention on skull Mechanism of CVA 

Reproducibility of 

lesion size 

Localized 

lesion 

MCA artery occlusion Neck No Yes N/A Ischemia+reperfusion No No 

MCA embolism Neck No Yes N/A Ischemia No No 

Peri MCA ET-1 injection Skull Yes Yes Craniotomy Ischemia+reperfusion No No 

Topical ET-1 Skull Yes No Craniotomy Ischemia+reperfusion Good Yes 

Cortical microinjection of ET-1 Skull Yes Yes Drilling holes Ischemia+reperfusion Excellent Yes 

Photothrombotic Model Skull Yes No Thinning the cranium Ischemia Good variable 

Devascularization Skull Yes Yes Craniotomy Ischemia Excellent Yes 

 

 

  

 


