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Abstract 
Paralogs are present during ribosome biogenesis as well as in mature ribosomes in form 

of ribosomal proteins, and are commonly believed to play redundant functions within the cell. 

Two previously identified paralogs are the protein pair Ssf1 and Ssf2 (94% homologous). Ssf2 

is believed to replace Ssf1 in case of its absence from cells, and depletion of both proteins 

leads to severely impaired cell growth. Results reveal that, under normal conditions, the Ssf 

paralogs associate with similar sets of proteins but with varying stabilities. Moreover, 

disruption of their pre-rRNP particles using high stringency buffers revealed that at least three 

proteins, possibly Dbp9, Drs1 and Nog1, are strongly associated with each Ssf protein under 

these conditions, and most likely represent a distinct subcomplex. In this study, depletion 

phenotypes obtained upon altering Nop7, Ssf1 and/or Ssf2 protein levels revealed that the Ssf 

paralogs cannot fully compensate for the depletion of one another because they are both, 

independently, required along parallel pathways that are dependent on the levels of availability 

of specific ribosome biogenesis proteins. Finally, this work provides evidence that, in yeast, 

Nop7 is genetically linked with both Ssf proteins. 

 

Keywords: Ribosome biogenesis, parallel pathways, paralogs, Ssf, Ssf2, subcomplex, 

Nop7, genetic interactions 
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Résumé 
Les paralogues sont présents lors de la biogenèse des ribosomes ainsi que dans les 

ribosomes matures sous forme de protéines ribosomiques, et sont généralement censées jouer 

des fonctions redondantes dans la cellule. Deux paralogues précédemment identifiées sont la 

paire de protéines Ssf1 et Ssf2 (94 % d'homologie). Ssf2 remplacerait Ssf1 en cas d’absence 

du dernier dans la cellule, et l’absence des deux protéines diminue la croissance cellulaire. Nos 

résultats révèlent que, dans des conditions normales, les paralogues Ssf s’associent à des 

ensembles de protéines similaires, mais avec différentes stabilités. De plus, la perturbation de 

leurs particules pré-rRNP à l’aide de tampons de haute stringence a révélé qu'au moins trois 

protéines, probablement Dbp9, Drs1 et Nog1, sont fortement associées à chaque protéine Ssf 

dans ces conditions, et très probablement représentent des sous-complexes distincts. Dans 

cette étude, les phénotypes cellulaires observés lors de la déplétion des protéines Nop7, Ssf1 

et/ou Ssf2 ont révélé que les paralogues Ssf ne peuvent pas compenser entièrement pour la 

diminution de l'autre, car ils sont, indépendamment l’un de l’autre, nécessaires le long de voies 

de biogénèse ribosomale parallèles qui dépendent des niveaux de protéines impliqués dans la 

biogénèse des ribosomes disponibles. Enfin, ce travail fournit des preuves que, dans la levure, 

Nop7 est génétiquement lié aux deux protéines Ssf. 

 

Mots-clés: Biogénèse ribosomale, voies parallèles, paralogues, Ssf, Ssf2, sous-complexe, 

Nop7, interactions génétiques 
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1.1 Ribosome biogenesis  
It is known that ribosomes are essential to every growing cell from Archaea to 

Animalia, including homo sapiens. As for the yeast Saccharomyces.cerevisiae, cells have to 

meet a minimal size requirement before they are able to divide and this is intimately linked to 

the number of ribosomes available in the cell (1, 2). Ribosomes are large ribonucleoprotein 

(RNP) machines made of a large and a small subunit (LSU and SSU), 78 ribosomal proteins 

(Rps) and four rRNAs (ribosomal RNAs), the active component of the ribosome that is 

responsible for mRNA (messenger RNA) translation. Making a ribosome involves ~200 

trans-acting factors that mediate ribosome biogenesis (RiBi), which entails pre-rRNA 

processing and modification as well as its hierarchical, complex assembly with Rps.  

 

1.1.1 Pre-rRNA processing  

A single cell’s genome has about 120 rDNA polycistronic tandem repeats in 

chromosome XII, a highly transcribed region (Fig 1.1) (3).  Each resulting polycistronic 

transcript contains 18S, 5.8S and 25S pre-rRNA which are flanked by external transcribed 

spacers I and II (ETS) and separated by internal transcribed spacers I and II (ITS).  

The earliest event is ETS2 processing by the endoribonuclease Rnt1, a protein which 

dimerizes and recognises tetraloop structures (4). Cleavage of the primary transcript at site B0 

by Rnt1 gives rise to the 35S pre-rRNA.  

 

1.1.1.1 35S to 32S processing:  ETS1 and ITS1 

The ETS1 region is highly structured and requires stem loops for correct A0 and A1 

endonucleolytic cleavages to occur (4). The 33S pre-rRNA is obtained through A0 processing, 

which can be performed by many endonucleases, including Rnt1 and RNase MRP (4-6). The 

released 5’ETS portion of the transcript is degraded by the exosome (3’→5’ exonuclease, 

Rrp6) or by Rat1/Rai1 (5’→3’ exonuclease Rat1) (4). A1 endonucleolytic cleavage can be 

performed by various endonucleases, including RNase MRP, yields 32S pre-rRNA and the 

exosome degrades the A0-A1 fragment (4, 6). 
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Figure 1.1 : The pre-rRNA processing pathway in yeast 
In dividing cells, about half of the rDNA repeats are in an open chromatin state, ready for transcription. A single rDNA 
repeat is simultaneously transcribed by many RNA polymerase  I, each resulting in a polycistronic primary transcript 
which is cotranscriptionnally processed by early RiBi factors. RiBi particles appear as decorations in an inverted 
Christmas tree, the base being rDNA associated with polymerases and the branches being the pre-rRNA transcripts. 
Each primary transcript contains 18S, 5.8S and 25S pre-rRNA flanked by transcribed spacers (External: ETS1, ETS2 
and Internal: ITS1, ITS2) which are sequentially cleaved and processed. Detailed in section 1.1.1. Figure modified from 
(3, 7). 
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ITS1 processing occurs almost simultaneous to A1 processing; A2 endonucleolytic 

cleavage can be performed by Rcl1, RNase MRP or Rnt1 (4, 6, 8). Interestingly, a delay A0 and 

A1 processing is not deleterious to the cell (4). U3 snoRNA, is a special class of box C/D 

snoRNP  believed to stabilise pre-rRNA and facilitate A0, A1 and A2 processing by its RNA 

basepairing to the 5’ETS of 35S pre-rRNA (just upstream of cleavage site A0), at least two 

regions within ITS1 and the 5’ coding region of 18S (9). 

 

1.1.1.2 Processing of 20S pre-rRNA in the cytoplasm 

A predominant cleavage at site A2 separates 20S from 27SA2 pre-rRNA processing, 

and thus maturation of 40S from that of 60S pre-ribosomal subunits. In a minor pathway, 

however, cleavage at site A3 occurs prior to those at sites A0, A1 and A2, which generates 23S 

pre-rRNA. This precursor is then sequentially processed at A0 (A0-A3=22S), A1 (A1-A3=21S) 

and A2 (A1-A2=20S) by the usual processing factors (10). In all cases, 20S pre-rRNA is already 

fully processed at its 5’. Its 3’ will be partially trimmed (3’→5’) by Xrn1 before the final 

maturation event through endoribonuclease cleavage by Nob1at site D in the cytoplasm (8). 

 

1.1.1.3 27S precursor maturation: ITS1/ETS2 processing 

At the stage of 27SA precursors, the 3’-end of ITS1 pairs with the 5’-end of 5.8S 

rRNA (11, 12). Concomitantly, ETS2 is completely removed by B0-B2 processing through the 

action of a yet unidentified protein, generating the mature 3’-end of the 25S (4).  

A3-cleavage within ITS1 is performed endonucleolytically by RNase MRP, prior to 

exonucleolytic digest of the resulting A2-A3 fragment, as well as processing of 27SA3 pre-

rRNA from site A3 by the 5’→3’ exonucleases Xrn1, Rat1 or Rrp17. This will generate the 

mature 5' end of 5.8SS (27SBS pre-rRNA) (7, 13). 27SBL pre-rRNA is presumably obtained 

through an endonucleolytic cleavage after cleavage at A3, however, the enzyme responsible 

for this event is still unknown (12).   

Both 27SB pre-rRNAs are subsequently processed within ITS2 by apparently identical 

pathways to generate the mature 25S rRNA and the mature 3’ ends of either 5.8SS or 5.8SL 
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rRNAs. 5.8SS-containing ribosomes are five times more abundant than 5.8SL-containing 

ribosomes.  

 

1.1.1.4 Processing events within ITS2  

After ITS1 removal, the pre-rRNA adopts another intermediate structure in which the 

5' of 25S interacts with the 3' of the 5.8S rRNA and forms a stem loop structure that is critical 

for processing and which is conserved in the mature ribosome (14). During its processing, ITS2 

switches from an open ‘ring’ to a closed hairpin structure (14). The closed hairpin structure can 

form spontaneously and its formation is prevented by RiBi factors (12). 

Unlike ITS1, ITS2 sequences are not recognised by RiBi proteins of distantly related 

organisms (15). However, the secondary structures adopted by the pre-rRNAs are similar and 

the important nucleotides required for correct processing are conserved (15). It has been 

proposed that correct ITS2 processing requires RiBi factors recognising specific secondary 

structures, specific sequences, or both (14).  

Cleavage at site C2 by an unidentified endonuclease within ITS2 generates the 7S and 

26S pre-rRNAs. Following C2 cleavage, the 3’ of 7S pre-rRNA is exonucleolytically 

processed, first by the exosome followed by fine trimming through Rrp6, Rex1 or Rex2 to 

first generate a stable precursor, the 6S, and then finally the mature 5.8S rRNA.  

The 5’ processing of 26S pre-rRNA is performed by Xrn1, Rat1 or Rrp17 and 

generates first 25S’ (C2 to C1’ processing), and then, after further fine trimming, mature 25S 

rRNA. 

 

1.1.2 Assembly with ribosomal proteins 

As pre-rRNA is processed in the compartments of the nucleolus, some RiBi factors 

will mediate its assembly with ribosomal proteins of the large subunit (Rpl). This is the case 

with the ribosomal-like proteins (Rlp), which interact with RiBi factors and are believe to 

mimic the structure of Rpls, inducing proper folding and conformational changes of the pre-

rRNA structure prior to the entry of the corresponding Rpl protein (16). For instance, Rlp7 has 

been reported to bind to two regions. It binds to the ITS2, very close to the 5.8S coding region 
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and also to the 5’ of the 25S coding region, a region forming  the proximal stem loop where 

Rpl7 is found in the mature ribosome (16). Therefore, some RiBi proteins are required to 

correctly fold pre-rRNA so that accommodation of the Rpl protein is possible, while other 

RiBi factors are required to recruit the Rpl proteins into the pre-rRNP particle. In the case of 

Rpl5 and Rpl11, they are recruited along with 5S rRNA as a module through interactions with 

LSU RiBi factors Rpf2 and Rrs1 (17). The import of ribosomal proteins into the nucleus is 

predominantly mediated by Kap123, an importin (18). 

 

1.1.3 The RiBi pathway 

Most RiBi proteins have been identified and are highly conserved in higher 

eukaryotes. They can be classified according to their function or to their entrance into the 

maturing pre-RNP particle (early, intermediate or late factors). However, even if most of their 

roles can be predicted, their exact function(s), substrates and physical interactions within the 

dynamic pre-rRNP particles remain elusive.  

In the dense fibrillar compartment (DFC) of the nucleolus, ribosome biogenesis is 

dependent on chromatin remodelling and RNA polymerase (pol) I regulation  (19-23). Co-

transcriptionally, snoRNPs will modify pre-rRNA (2'-O-ribose methylation and 

pseudourydilation) and early RiBi factors will be recruited onto the nascent transcript to form 

the pre-90S particle (3, 24, 25). As the particle transitions towards the granular compartment 

(GC) of the nucleolus, the primary transcript is separated in two by the A2 cleavage and 

distinct RiBi factors bind pre-rRNA, forming pre-60S and pre-40S particles. Within pre-60S 

maturation, several LSU RiBi proteins are required to ensure ribosome biogenesis, including 

Nop7 and the paralog pair Ssf1 and Ssf2 (Fig. 1.2). 
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Figure 1.2: RiBi pathway of the LSU 
Ribosome biogenesis involves 200 non-ribosomal proteins (RiBi) that modify, cleave, fold and correctly associates pre-rRNA with the 
ribosomal proteins (Rps). As the LSU matures, it moves from the dense fibrillar compartment (DFC) and granular compartment (GC) of the 
nucleolus to the nucleoplasm and its maturation is completed once it is in the cytoplasm. Here, the estimated time of entry and of exit of 
some RiBi proteins involved in the LSU maturation are shown. In red: some of the Brix/Imp superfamily members. In blue: trimeric complex 
Nop7, Erb1 and Ytm1. Information and figure adapted from (2, 7). 
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1.2 Parallel pathways during pre-60S maturation and 

specialized ribosomes 
In the field, most of the RiBi proteins involved in ribosome biogenesis are now 

characterised. Although the presence of multiple parallel pathways during yeast ribosome 

biogenesis has been highly debated, it is now an accepted concept and several groups are now 

working to uncover them (2). The presence of parallel/alternative pathways ensuring ribosome 

biogenesis is further supported by the presence of different pools of mature ribosomes within 

the cell under normal conditions and the emergence of specialized ribosomes under specific 

cellular stress (26-29).  In any case, substantial work still need to be performed in order to 

define the players involved in these parallel pathways, which is aided by the significant 

advances in proteomics.  

1.2.1 Hierarchies of processing factors 

1.2.1.1 Loss of essential RiBi factors does not result in cell death 

Although most RiBi factors are said to be essential, their depletion results in impaired 

or slowed cell growth, rather than cell death, while mature ribosomes are still produced. This 

emphasizes the presence of alternative maturation within the cell as an adaptive response to 

maintain the essential translation machinery and thus secure cell survival. Some work has 

been performed to elucidate some of these pathways during pre-90S maturation in which it 

has been shown that ribosome biogenesis first requires the t-UTP complex (Utp4, Utp5, Utp8, 

Utp9, Utp10, Utp15 and Nan1) and can then continue via at least three alternative pathways 

involving i) the RiBi protein Rrp5 and then the UTP-C complex (Utp22, Rrp7 and Cka1); ii) 

the U3-snoRNP complex; iii) the UTP-B complex (Pwp2, Dlp2, Utp21, Utp13, Utp18 and 

Utp6)  (25, 30, 31). The association of either the U3-snoRNP or the UTP-B complexes allows the 

incorporation of Bms1, a GTPase required for U3 snoRNA pairing with the pre-90S that is 

found associated to a lesser extent with Rcl1 (25, 30). Since U3 sno-RNAcan be involved in A0, 

A1 and A2 processing, this data suggests that in one pathway, Bms1 stabilizes the U3-snoRNP 

complex which is responsible for A0, A1 and A2 processing (9). In the pathway in which 

UTP-B enters the pre-90S particle, Bms1 possibly enters as a heterodimer with Rcl1, which 
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performs the A2 cleavage while other endonucleases perform A0 and A1 cleavages. Following 

Bms1 binding, two alternative pathways ensure ribosome biogenesis. In one case, Kre33 

enters the particle and in the other, Utp20 binding will allow the association of either the 

Mpp10 complex (Mpp10 and Imp4) or the protein Enp2 (25).  

However, several components of the pre-90S have still not been associated with this 

pathway, and imply that other alternative pathways exist but remain to be elucidated.  

Moreover, it has been shown that some proteins can enter as preformed modules (e.g. 

Rcl1/Bms1) or alone (e.g. Bms1), depending on the cellular context, which further adds to the 

complexity of elucidating these pathways. There is also some evidence of parallel pathways 

during pre-60S maturation, where the  Nop7 and Nug1 associated particles share nearly 

identical pre-rRNA content, indicating that they are involved in the same pre-rRNA 

processing events, and yet they have only a 25% overlap in RiBi protein content (32). 

 

1.2.1.2 RiBi protein paralogs 

In the past, protein paralogs were believed to have redundant functions. This, however, 

is not the case for at least some of the ribosomal proteins (Section 1.2.2.2). Some RiBi factors 

were also shown to have paralogs, as in the case of the Ssf1/Ssf2 and Fpr3/Fpr4 paralogs. 

Their potential role in the context of alternative pathways has never been investigated.  

Structural studies of the pre-rRNP particles are now elucidating part of the structural 

rearrangements required for its remodelling and those mainly involve stearic hindrance 

constraints. This could explain why a protein can enter the pre-rRNP particle alone (e.g. 

Bms1) or in a subcomplex (e.g. Bms1/Rcl1), depending on the previous RiBi proteins that 

associated with the pre-90S particle around its binding site (25, 30). As paralogs have subtle 

amino acid changes and are compacted in the pre-rRNPs, in close contact with other RiBi 

proteins, it is valid to ask whether these changes are sufficient to trigger alternative pathways. 

Unlike what was previously assumed, an extensive comparison of the Ssf1 and Ssf2 

interactors suggest that these paralogs have in fact non-redundant functions within the cell, a 

feature that has never been explored in the context of ribosome biogenesis (Section 1.3.2).  
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1.2.2 Specialized ribosomes 

1.2.2.1 Two types of ribosomes containing 5.8SS or 5.8SL rRNA 

Most evidently, there exist two types of ribosomes, containing either 5.8SS (80%) or 

5.8SL (20%) rRNA. Their divergence during ribosome maturation is clear because they 

generate two types of precursors from 27SA3 exonucleolytic or endonucleolytic processing, 

resulting in either 27SBL or 27SBS. However, the trans-acting factors involved in generating 

the minor pathway (27SBL) have not yet been reported and its cellular significance is still 

poorly understood. To this date, no clear assays have been performed to verify if these 

ribosomes have different affinities with different subsets of mRNAs or if they react differently 

when submitted to ribosomal stress as it has been shown for hypo-pseudourydilated 

ribosomes, which are more susceptible to frame shift errors and show decreased IRES-

dependent translation rate upon specific cellular stress (4, 26, 29, 33).  

 

1.2.2.2 Ribosomal proteins: paralogs with different functions 

Of the 78 ribosomal proteins, 59 have a paralog (A or B) (4). Two ribosomal pools, 

each containing one of the two paralogs, can be spatially separated within the cytoplasm 

suggesting that the ribosomes containing ribosomal protein paralogs could have distinct 

functions within the cell (28). Furthermore, to this day, it is unclear how assembly of these 

ribosomal protein paralogs onto the maturing ribosome occurs and whether it is achieved 

through parallel RiBi pathways.  

One specific function was demonstrated for three ribosomal proteins of the large 

subunit (Rpl7A, Rpl12B, and Rpl22A) and one of the small subunit (Rps18B). These 

ribosomal proteins were shown to have a role in the correct localisation and translation of 

ASH1 mRNA, while their paralogs do not (28). Interestingly, upon depletion of the LSU RiBi 

factors Loc1 or Puf6, the ribosomes carrying these particular ribosomal proteins are still 

generated yet mislocalized within the cytoplasm altering ASH1 mRNA transport and 

translation (28).  
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1.2.2.3 Ribosomal proteins and ribosome types 

More and more evidence pointing towards specialized ribosomes, that are also 

different in composition, are emerging. It has been reported recently that a retroviral and 

oncogenic protein, V-erbA, can alter ribosome biogenesis such that a second pool of 

ribosomes, which does not contain the ribosomal protein Rpl11, is generated (27). It has been 

suggested that these Rpl11-depleted ribosomes can have a higher translational affinity with 

certain types of mRNA (27). Given the fact that Rpl11 plays an important role in the activation 

of both tumor suppressors c-myc and p53, this mechanism by V-erbA appears to be an 

appropriate adaptive response to inhibit the cellular response upon infection. Another such 

examples is found in E. coli, where in order to survive the presence of the antibiotic 

kasugamycin, the bacteria generates functional ribosomes lacking at least six ribosomal 

proteins, two of which are essential (34). Because this antibiotic mimics mRNA structure 

between the P and E sites of the ribosome, loss of these ribosomal proteins most likely 

changes the ribosomal structure at this region such that the antibiotic is no longer able to 

block the ribosome during translation. 

 

1.3 Specific RiBi proteins 

1.3.1 Nucleolar protein 7 (Nop7)  

Pes1 was originally discovered as pescadillo in zebrafish, where it was shown to be 

important for eye development (35). Moreover, its mouse homolog Pes1 was shown to interact 

with the p53 suppressor Mdm2 in mouse astrocytes (35). In yeast, the NOP7 (Nucleolar 

Protein 7) gene is located in chromosome VII and its cellular protein abundance is ~ 4530 

molecules per cell according to SGD (30). Nop7 (also called Yeast pescadillo homolog 1) links 

ribosome biogenesis to cell cycle progression and DNA repair (1, 36). The protein has two coil-

coil regions one of which is in its C-terminal and contains a nuclear localisation signal (NLS, 

Fig. 1.3).  
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Figure 1.3: Nop7 protein and its domains 
Nop7 is composed of four main domains: pescadillo, a conserved region required for ribosome 
biogenesis; BRCT, a domain required for cell cycle and DNA damage responses; CC1 and CC2, two 
coil-coil regions, CC2 containing a nuclear localisation signal (NLS) which can be cleaved. For further 
details refer to main text. Image constructed according to information from (1). 

 

 

The C-terminal region needs to be truncated for some cellular functions since a shorter 

form of Nop7 was detected using an antibody against the N-terminus of the protein (1). This 

C-terminus-truncated form of Nop7 is cytoplasmic and co-sediments with polysomes (1). 

However, details on how this modification is triggered and why it is needed remain elusive to 

this date and do not seem to be linked to its function during ribosome biogenesis (1).  

In the following sections, only functions of full-length Nop7 will be discussed, as the 

affinity purifications isolated the interactors of C-terminally tagged Nop7 cells in log (Nop7-

PrA, Fig. 1.4A) and lag phase (Nop7-TAP, Fig. 1.4B) (37, 38). The lag phase interactors were 

identified in a high-throughput study and are therefore more likely to contain false positives. 

However, Nop7 particles during log phase also contain proteins involved in similar processes, 

and at least its interaction with ORC complexes has been confirmed in complementary 

immunoprecipitations assays (IPs, e.g. ORC2) (1). It is therefore possible that Nop7 has other 

functions in processes other than ribosome biogenesis, ensuring fine-tuning between these 

processes.  
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Figure 1.4: Nop7 interactors during log and lag phase 
(A) During log phase, Nop7-PrA is mostly associated with pre-60S RiBi proteins but is also 

associated with five proteins involved in other cellular processes. According to information from (37). 

(B) During lag phase, when ribosome biogenesis is shut down, Nop7-TAP is mostly associated with 

proteins which are involved in other cellular functions but is still associated with one RiBi protein. 

According to information from (38). 

1.3.1.1 Nop7 and ribosome biogenesis 

Through its evolutionary conserved pescadillo domain, nucleolar Nop7 enters early 

during ribosome biogenesis and is found in pre-90S and early pre-60S particles. During this 

stage it is most likely a scaffold protein as it is present in at least three distinct RNP particles 

during pre-60S maturation (Fig. 1.5) (36). It binds the C-terminal tail of Erb1 and forms a 

highly stable trimeric complex with Ytm1 (39). This trimeric complex is required for correct 

processing of 27SA3 pre-rRNA to 27SB through exonucleolytic trimming (step * of figure 

1.5) (1, 39).  Nop7 can also bind directly to pre-rRNA, possibly through its BRCT domain (12). 
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Its interaction with RNA was determined using a crosslinking technique and was pinpointed 

to helix H54 within the 5’coding region of 25S rRNA (12). Nop7 appears to travel with the pre-

60S subunit from the nucleolus to nuclear rim, and has been proposed to have different 

functions, processing, assembly and lastly quality control of export-competent subunits, 

depending on its subnuclear localisation (36).  

 

 

Figure 1.5: Ssf1 and Nop7 are involved in the LSU pathway 
Ssf1 and Nop7 have been found in three distinct particles of the LSU maturation pathway containing 
either 27SA2, 27SA3 and 27SBS pre-rRNA. Nop7 is known to form a trimeric complex necessary for 
exonucleolytic trimming of 27SA3. Adapted from (2, 7, 39). 

 

1.3.1.2 Nop7 depletion phenotype 

Upon depletion of Nop7, cell growth is severely delayed and is at least in part caused 

by delayed ribosome biogenesis, as the Dt roughly doubles and Nop7-depleted cells arrest 

longer in G2 (1, 36). However, even if cell growth was affected, depletion of Nop7 did not lead 

to cell death, which suggests that alternative mechanisms are still present to ensure ribosomal 

production. The proteins involved in these pathways however have never been investigated. 

What is known, is that whole cell extracts of Nop7-depleted showed a general decrease in 
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Ytm1 and Erb1 protein levels, which was not the case for other RiBi proteins that were not 

directly interacting with Nop7 (39). This suggests that formation of the trimeric complex is 

necessary for these proteins to be involved in ribosome biogenesis and that depletion of one of 

these proteins likely leads to a cellular down-regulation of the other two proteins by yet to be 

determined mechanisms. Interestingly, Nop7 also seems to have a synergistic interaction with 

Rpl25, however, in what capacity is still unclear. This assumption is due to the synthetic 

lethal phenotype observed upon Nop7 depletion in an Rpl25 temperature-sensitive strain in 

restrictive conditions (glucose-containing medium at 37°C) (36). 

Upon Nop7 depletion, pre-rRNA processing is also affected, as previously 

demonstrated by Northern blot, primer extension and pulse-chase analysis (36). Nop7 depletion 

profoundly affects LSU maturation: absence of Nop7 causes processing of 27SA3 pre-rRNA 

into 27SBL through endonucleolytic cleavage and a switch to the minor pathway producing 

5.8SL-containing ribosomes (36). Moreover, after 24 hours of depletion, slight accumulation of 

primary transcript 35S was observed with a reduction in 27SB, 7S and 6S precursors (36). Only 

mature 25S and 5.8SS rRNA decreased and an aberrant precursor was observed (23S), which 

indicated a delay in A0, A1 and A2 processing (36). Interestingly, Nop7-containing particles 

contain Drs1 both during log and lag phase although they do not directly interact with each 

other according to a yeast-two hybrid assay and although Drs1-depleted cells are also 

deficient in 25S and 5.8S pre-rRNA maturation (38, 40). This suggests that Nop7 and Drs1 are 

involved in similar pathways during ribosome biogenesis and are also associated with at least 

another common protein not involved in ribosome biogenesis during lag phase. Finally, an 

accumulation of aberrant pre-rRNA generated by premature C2 cleavage was also observed in 

Nop7-depleted cells by primer extension analysis from a probe annealing within ITS2 (36, 40). 

1.3.1.3 Nop7, cell cycle, DNA replication and DNA repair  

Nop7 is a member of the BRCT domain-containing family of proteins, which play an 

important function in human cells in the development of breast and colorectal cancer (41-44). 

This may explain some functions of PES1, the human Nop7 homolog, and its interactions 

with Mdm2 (36). The BRCT domain is located in between the two coil-coil regions and is also 

common to proteins involved during cell cycle progression and DNA repair, such as BRCA1, 

RAD9, DPB11 and ECT2 (Fig. 1.3) (45).  
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During log phase, Nop7 particles affinity purify (AP) with Msa1, a protein required to 

initiate transcription of G1-specific genes (30). A mechanism by which Nop7 is involved in 

regulating Msa1 activity is possible, as it has previously been shown that Nop7-depleted cells 

arrest longer in G1(1).  

During log phase, Nop7 has a role in DNA replication through associations with ORC 

complexes and Psf1, a protein involved in DNA replication machinery assembly (1). 

Consistent with Nop7 having a role in regulating DNA replication, very few Nop7-depleted 

cells arrest in S phase (1, 36).  It is possible that Nop7 remains associated with proteins involved 

in inhibiting DNA replication during lag phase as it is likely associated with an 

uncharacterized protein (Ykr018c) whose cellular levels are increased upon DNA replication 

stress (1, 30).  

In addition, the tubulin content of Nop7 depleted cells decreases in S phase cells (1). 

Consistent with Nop7 having a possible role in tubulin maintenance and remodelling, Nop7-

associated complexes were found to contain proteins involved in microtubule maintenance 

during both log (e.g. Kar3) and lag phase (e.g. Okp1). Kar3 is a microtubule motor required 

for spindle pole body formation during mitosis and meiosis, and Okp1 is a protein of 

unknown function required during kinetochore-microtubule assembly (30). Moreover, during 

log phase, it is known that Nop7 directly binds to Ytm1, a RiBi protein known to directly 

interact with tubulin and required to G1/S transition (46).  

 

1.3.1.4 Nop7 and protein paralogs 

Another interesting feature of Nop7, that is still unexplained, is that it interacts with 

proteins that have paralogs, both during log and lag phase. During log phase, Nop7-associated 

complexes contain Ssf1, Fpr4 (LSU RiBi factors, paralogs: Ssf2 and Fpr3 respectively) and 

Msa1 (cell cycle initiation, paralog: Msa2), during lag phase, Ykr018c (mitochondrial protein 

increased upon DNA replication stress, paralog: Iml2) and Uth1 (required for mitochondria 

biogenesis, paralogs: Nca3). Since Nop7 seems to be involved in several cellular processes 

together along ribosome biogenesis and the cell cycle (G1, S and G2), it is possible that it 

triggers slightly different cascades through interactions with both or just one of these 
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paralogs. Further investigation will be necessary to determine if Nop7-associated particles 

during lag phase really include Ykr018c and Uth1 or are false positives. 

 

1.3.1.5 Nop7 orthologs in higher eukaryotes 

As mentioned above, several Nop7 orthologs exist in higher eukaryotes, such as 

zebrafish, Xenopus laevis, mouse and humans. During embryogenesis, Pes mRNA has been 

found in several developing organs of different embryos. In mouse, the protein is found 

throughout developing brain structures; in Xenopus laevis, it is found in early eye structures, 

the neural crest, and pronephros development, while in zebrafish it is found in the eye, brain, 

and skeletal muscle structures (36, 47). Pes1 was also found to be upregulated in p53-/- cells as 

well as in some breast cancer tumors (36, 47). In higher eukaryotes, pescadillo protein can be 

sumoylated at two regions of its BRCT domain (1). Similar to yeast, it forms a trimeric 

complex with WD12 and Bop1, the human homologs of yeast Ytm1 and Erb1, that is required 

for progression into S phase and LSU biogenesis (48). Pes1 also has functions independent of 

ribosome biogenesis during Xenopus laevis pronephros development (47). 

 

1.3.2 Suppressor of Ste4 paralogs 1 and 2 (Ssf1/2) 

In the presence of pheromones, the two proteins Ssf1 and Ssf2 were found to suppress 

Ste4, allowing bud formation during the mating response (49, 50). This is how the Ssf proteins 

were discovered and named although the mechanisms for this regulation are still elusive to 

this date. This finding however shows that the Ssf proteins can function in other cellular 

processes. 

 

1.3.2.1 Ssf paralogs can bind RNA 

The Ssf proteins belong to the Brix/Imp superfamilly of proteins, which is further 

composed of LSU RiBi proteins Brx1, Rpf1, Rpf2, and pre-90S RiBi protein Imp4 (51, 52). The 

shared Brix domain contains a ơ70-like motif and confers to this superfamily the capacity to 

bind RNA. This has been demonstrated for Imp4, Rpf1 and Rpf2, which can all bind single-
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stranded (ss) RNA, but with different affinities (53). Wehner et al not only demonstrated the 

capacity of ơ70-like motif to bind RNA but also studied the depletion phenotypes for each of 

these proteins using pulse-chase and analyzed the rRNA precursors co-isolated during affinity 

purification of each of the proteins. From these analyses, the RNA binding site of the Ssf 

paralogs was suggested to be located within the ITS1, between cleavage site A3 and the 5’ 

coding region of mature 18S rRNA (52-54). Another study of the Imp/Brix superfamilly 

proposed that the family members closely interact with one other functionally (51). 

 

1.3.2.2 Differences between the Ssf proteins 

 The Ssf1 and Ssf2 proteins are believed to have arisen from genome duplication. Their 

genes are located in different chromosomes and are not expressed at the same levels under 

normal growth conditions (30). SSF1 is located on chromosome VIII and its protein abundance 

is ~8150 molecules per cell, while SSF2 is located on chromosome IV and its protein 

abundance is ~1350 molecules per cell (30).  

The two proteins share a 94% sequence homology, and, with a few exceptions, most of 

the non-homologous sequence regions contain amino acids with equivalent charge 

(exceptions in red, Fig. 1.6) (30, 52, 54). They share the Brix/ơ70-like motif and a predicted 

homo/heterobinding domain (HBD). 

 

 
Figure 1.6: Ssf1/2 proteins and their domains 
The Ssf paralogs share an RNA binding domain. In red are indicated the amino acids that do not 
have the same charge. According to information taken from (30, 52, 54) and Blastp alignment. 
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1.3.2.3 Ssf-protein depletion phenotype 

 Depletion of either of the paralogs has not been reported to affect ribosome biogenesis, 

yet depletion of both proteins simultaneously for 12 hours did affect pre-rRNA processing (54). 

The primary transcript, 35S pre-rRNA, accumulated along with aberrant precursors 23S, 

5’ETS-D and A2-C2 
(54). The presence of these aberrant precursors indicated that A0, A1 and 

A2 processing was delayed and that C2 cleavage occurred prematurely. Concomitantly, 

precursors normally found in wild-type cells were no longer detected: 27SA2, 27SB, 20S, 7S 

and 6S pre-RNAs (54). Fatica et al also reported an overall reduction in mature rRNAs, 

including 5S rRNA (54). 5S rRNA is transcribed by RNA polymerase III in the nucleolus. It is 

processed and assembled with Rpl5 and then enters into the pre-60S particle after C2 cleavage 

in the nucleus, also associated with other RiBi proteins (Rpf2, Rrs1 and Rpl11) (17). Part of the 

drop in 5S rRNA could alternatively be explained by changes in the chromatin state caused by 

a drop in Ssf1 and Ssf2, as both proteins have been found to interact with histones modifiers. 

However, the paralogs are unexpectedly associated with proteins of opposite function 

(Fig. 1.7 A and B). Ssf2 has been found associated with histone deacetylases Rpd3 and Hda1, 

while Ssf1 has been found to be associated with a histone 3 methylase (Sdc1); a component of 

a complex that exchanges H2AZ to H2A (Swr1); and an acetylase of the N terminal tails of 

H4 and H2A (Eaf7) (38, 55, 56). Although these associations come from high-throughput data, 

which is background prone, those interactions could at least partially be accounted for the 

drop in overall transcription observed. During lag phase, Ssf1 was also found associated with 

histones 3 (Hht1 and Hht2) and 4 (Hhf1 and Hhf2) (55, 56).   
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(A) During log phase, most of the RiBi proteins associated with Ssf1 are not associated with Ssf2. 
Both Ssf proteins have also been linked to proteins not involved in ribosome biogenesis during log 
and (B) lag phase, suggesting that they are involved in non-overlapping cellular functions. According 
to information taken from (38, 54-56).
 

1.3.2.4 The Ssf paralogs can form complexes with different proteins  

To verify if the Ssf proteins can form similar complexes, reported affinity purification 

results were compared during lag and log phase.  

Cells in lag phase have not been extensively studied, but it is known that cells are no 

longer dividing, ribosome biogenesis is shut-off and cells survive with the existing pool of 

ribosome (57, 58). However, as many RiBi proteins have been found to be involved in other 

cellular processes during log phase (e.g. Nop7 and Ytm1). If RiBi proteins are present during 

lag phase, then they likely function as sensors for energetic changes within the cell. Data 

retrieved from (high throughput) lag phase affinity purifications suggest that both Ssf proteins 

are part of distinct complexes. Ssf1 AP during lag phase has not been performed but it was 

found as part of the Rnt1 particle (38).  Rnt1, an endonuclease, is an early RiBi factor required 

for rDNA transcription which has a role in closing rDNA repeats and increasing rDNA 
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transcription by physically interacting with RNA polymerase (pol) I (30, 59). If Ssf1 and Rnt1 

belong to common particle during lag phase, then Ssf1 could inhibit Rnt1 activity and thereby 

be indirectly involved in repressing rDNA transcription. Ssf2, on the other hand, was found to 

associate with proteins involved in amino acid synthesis (Ypl113c and Avt4), cell polarity 

(Dnf2) and the DNA damage response (Cdc1). If these interactions are real, then Ssf2 likely 

serves as a sensor of energy changes and DNA integrity. In addition to these proteins, Ssf2 

was also linked to a RanGTP of unknown function (Ygl164c) and Avt4, a protein belonging 

to the family of transporters required in the brain and CNS for release of neurotransmitters 

GABA-glycine. If these associations are real then Ssf2 and its higher eukaryote orthologs 

share an evolutionary conserved interaction that seems to be useful for HIV viral infection in 

higher eukaryotes (Fig. 1.7 and Section 1.3.2.5).  

During log phase, the Ssf1 particle contains several RiBi proteins, including Nop7 but 

excluding Ssf2, that have been associated to A3 and B1S+L processing (Dbp9, Nop7, Nop15, 

Npa1/Urb1, Nsa1 and Rlp7; Fig. 1.7A). The Ssf2 particle has never been analyzed in log 

phase cells. A search for its interactors revealed that it has been reported in very few RiBi 

particles. In accordance with its role in these steps, it is present in particles required for A3 

processing and B1S+L processing (Nop15, Nsa1, Rlp7) (55). Unexpectedly, Ssf2 interacts with 

Rrp15 and Nop53 using a coiled-coil motif (yeast two hybrid), whilst these proteins are absent 

from the Ssf1 particle (55, 60). Interestingly, Rrp15 is also absent from the Nop7 particle which 

suggests that both Ssf2 and Rrp15 are required in a processing pre-rRNP particle that is 

independent of the main pre-60S maturation pathway.  Together, these data are consistent 

with the Ssf1 and Ssf2 proteins performing a non-redundant function during ribosome 

biogenesis.  

1.3.2.5 Ssf1/2 orthologs in higher eukaryotes 

Interestingly, the need of a paralog for Ssf1 seems to be conserved in Xenopus laevis 

(Peter pan-b, Ppan-b) and even in humans, where Ppan2 is generated by alternative splicing 

events. In higher eukaryotes, Ppan is constitutively expressed in human cells of adults but, at 

least in Xenopus laevis, its expression is more regulated during embryogenesis (47, 61). Ppan 

mRNA is expressed in nuclei and mitochondria of cells during eye development, neural crest, 

craniofacial cartilage and pronephros development, and appears to be always associated with 
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regions rich in microtubule structures (47, 62). Tecza and collaborators depleted Ppan mRNA 

using a morpholino (MO) targeting both paralogs (verified by nBlast) and demonstrated that, 

during pronephros development, the essential Ppan pair is needed for embryogenesis, a 

function independent of ribosome biogenesis (47). Another study from the same group 

involved the use of the same MO and also of MO2, which targeted mRNA of Ppan-b only 

(verified by Blastn), with the same results, indicating that Ppan-b depletion is sufficient to 

affect early eye and cranial cartilage formation (62).  

In humans, the Ssf1 homolog Ppan, is always co-transcribed with the P2Y11 gene, an 

ATP receptor required during granulocytic differentiation, and up-regulation of both PPAN 

and P2Y11 genes has been linked to a specific type of leukemia (63). In HeLa extracts, up-

regulation of Ppan and Ppan-P2Y11 proteins has been observed as a response to the presence 

of HIV-1 Rev protein and Ran-GTP (64). The viral mRNA contains RRE sequences that are 

recognised by the Rev protein and complexes with Ran-GTP to transport the viral mRNA to 

the cytoplasm, where it is translated by ribosomes (65). Upregulation of PPAN is therefore a 

mechanism for forcing an increase in ribosome biogenesis.   

 

1.4 Ssf1, Ssf2 and Nop7  

1.4.1 Ssf1 and Nop7  

Isolated Ssf1-TAP complexes were previously reported to show tremendous overlap 

with Nop7-PrA ones (Fig. 1.8). This is not surprising, as both proteins assemble onto pre-60S 

particles during the same time, and both play a role during 27SA2, 27SA3 and 27SB 

processing.  However, some RiBi proteins have been found distinctly only in the Ssf1-TAP 

complexes: Puf6, a repressor of ASH1 mRNA translation; Dbp9, a RNA helicase involved in 

27S pre-rRNA processing (S and L) and Yef3, γ-subunit of elongation factor3 (30, 66). This 

suggests that Ssf1 might also belong to particles that do not contain Nop7. The Nop7 particle 

entails several very early and late factors, as it enters the pre-90S particle and is released at 

the nuclear rim. However, the Nop7 complex also contains proteins required for ETS1, ITS1 
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and ITS2 processing that are not part of the Ssf1 particle (Loc1, Nop15, Sda1, Mak10, Dhr2 

and Nop53), which suggests that it can form particles lacking Ssf1.  

 

According to already published data, (A) most of the RiBi proteins associated with Ssf1 are also 
Nop7-associated during log phase while Ssf2 has been found with proteins mostly Nop7-associated. 
Ssf1, Ssf2 and Nop7 have also been linked to other proteins, suggesting that they are involved in 
other cellular functions both during (B) log and (C) lag phase. An asterix (*) indicates whenever a 
tagged version of Ssf1, Nop7 or Ssf2 was used as bait. Built according to information from M. 
Oeffinger, unpublished data, (38, 54-56, 60, 67-71).
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1.4.2 Ssf2 is most likely involved in a parallel pathway 

Ssf1 and Ssf2 paralogs have been predicted to heterodimerize and yet Ssf2 is absent in 

the Ssf1 particle (Fig. 1.8). Data analysis of high-throughput studies, have revealed that it 

belongs to the Cic1/Nsa3, Nsa1 and Rlp7 particles, like Ssf1. However, it also co-precipitates 

with RiBi proteins belonging to the Nop7 particle but not with Nop7. Moreover, it also 

directly associates with Rrp15 and Nop53, which are not part of the Ssf1 particle. As Ssf2 

compensates for the loss of Ssf1, it is likely that the compensation phenotype observed during 

ribosome biogenesis in ensured through an as yet uncharacterized alternative pathway. Thus 

studying the functions of Ssf1 and Ssf2 during ribosome biogenesis is relevant to the overall 

picture of ribosome assembly and maturation. 
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1.5 Research project  
The potential distinct and overlapping functions of the Ssf1 and Ssf2 paralogs have not 

yet been determined. Although the two proteins share 94% of their amino acids, they are able 

form complexes with histone modifiers of opposite function and with different protein sets 

during lag phase; this also seems to be the case during ribosome biogenesis in log phase (Fig. 

1.8) (38, 55, 56, 60). Both proteins have been predicted to bind to ITS1 pre-rRNA and play a role 

in preventing premature cleavage at site C2, which is located within ITS2 (Table I and Fig. 

1.9) (53, 54).   

 

Table I: Summary of what is known about Ssf1/2 and Nop7 

 Nop7 Ssf1 Ssf2 
(94%identical to Ssf1) 

Cellular 
distribution Nucleolar, punctuated at nuclear rim (36) Nucleolar (50, 54) 

abundance 
(molec/cell) 4530 (30) 8150 (30) 1350 (30) 

Known 
subcomplexes 

formed 
Ytm1/Erb1/Nop7 (39) N/D 

C term tail of Erb1 (39) N/D 
- Rrp15(60) 

- Nop53 (60) Direct 
interactions  

Nop7/Ssf1 in Xenopus laevis (47) N/D 

Binds pre-
rRNA? 

5’ of 25S (12) Predicted to bind ITS1 near the 5’ of 5.8S (53) 

Function 
during pre-

rRNA 
maturation 

Scaffold protein (36) N/D 

Depletion 
phenotype 

- Accumulation of 35S (36)  
- Aberrant 23S, premature C2 cleavage  (36) 
- Pre-rRNA reduction of 27SB, 7S, 6S (36) 

- Mature rRNA reduction: 25S, 5.8SS (36, 40) 
- Switch to 5.8SL- ribosome production (36) 

- Accumulation of 35S (54) 
- Reduction of 27SA2, 27SB, 20S, 7S, 6S(54) 

- Reduction of all mature rRNAs, including 5S (54) 
- Accumulation of aberrant 23S, 5’ETS-D, A2-C2

(54)  
- Premature C2 cleavage (54) 

- Reduction of all mature rRNAs (54) 

Known - required for exit from G0 
 DNA replication 

- necessary for yeast budding (49, 50) 
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Nop7 is a protein predicted to have several functions, as it is found in at least three 

distinct sub-nuclear compartments and associated with changing pre-ribosomal complexes (36). 

The protein interacts with the 5’ coding region of 25S rRNA and its depletion causes a mild 

pre-mature C2 cleavage phenotype (Fig. 1.9) (12, 36). The trimeric Nop7-Erb1-Ytm1 complex 

has been extensively studied; the complex is only found in one of the pre-ribosomal 

complexes Nop7 can be found in during ribosome biogenesis, which is at the stage of 27SA3 

processing to 27SBS (39). Nop7 is a major player in the main LSU maturation route that 

generates 5.8SS-containing ribosomes.  

Recent evidence reported a direct interaction between Ssf1 and Nop7 in Xenopus 

laevis during pronephros development, an interaction independent of the proteins function in 

ribosome biogenesis (47). Similar information has already been used to identify a set of 

proteins that enter the pre-rRNP particle as a subcomplex during ribosome biogenesis, like the 

Rpf2 module required for 5S rRNA incorporation into the pre-60S particle following C2 

cleavage (17). A comparison of Ssf1 and Nop7 particles has revealed that both have many RiBi 

 

Figure 1.9: Similar to Ssf1/Ssf2 depletion, Nop7 depletion results in premature C2 
cleavage. 
Primer extension performed from probe 007 and resolved on 6% polyacrylamide gel showed that (A) 
Nop7 depleted cells  accumulate 26S pre-rRNA (as demonstrated by a stop at site C2), which is also 
observed upon (B) Ssf1 and Ssf2 depletion. Adapted from (36) and (54). 
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proteins in common yet also contain distinct RiBi proteins specifically involved in A3 and B1 

processing, which suggests that Ssf1 and Nop7 are involved in common as well as 

overlapping pre-60S maturation pathways (Fig. 1.8). On the other hand, Ssf2-associated 

particles have never been characterized, and this protein is not found in either Ssf1and Nop7 

particles but with RiBi proteins involved in 27S processing, suggesting that it has a non-

redundant function to Ssf1 during ribosome biogenesis. 

 

 

Further investigation of Ssf1 and Nop7 interactions during ribosome biogenesis and 

the better understanding of the role of Ssf2 during ribosome biogenesis and other cellular 

processes therefore become relevant.    

The aim of this project is to uncover the presence of parallel pathways during 

ribosome biogenesis that may involve different paralogs of known ribosome biogenesis 

factors, namely Ssf1 and Ssf2. 

 

My main hypotheses are: 

1. Ssf1 and Ssf2 associate with distinct pre-rRNP particles and subcomplexes. 

2. Nop7 and Ssf1 are genetically linked and function along the main LSU  

 maturation pathway. 

3. Nop7 and Ssf2 are not genetically linked.  

4. Ssf2 functions along an alternative parallel LSU maturation pathway,  

 independent of Ssf1 and Nop7.  
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To validate my hypotheses, I will:  

1. Use a PCR-based (polymerase chain reaction) strategy to generate  

 yeast strains to study Nop7/Ssf1/Ssf2 interactions.  

2. Use ssAP (single step affinity purification) to compare Ssf1 and Ssf2  

 complexes and identify potential subcomplexes. 

3. Use the generated strains to modulate one or two of the target proteins (SSf1, 

Ssf2 and/or Nop7) in order to uncover the presence of parallel pathways by 

monitoring changes in  

i. cell growth  

ii. total protein levels for the target factors  

iii. pre-rRNA processing  

iv. mRNA levels of the target proteins  

 

As both Ssf1 and Ssf2 can form homo or heterodimers, bind pre-rRNA and, 

potentially, also bind Nop7, I will also generate the necessary tools to validate these 

interactions in vitro. 

Hence I will: 

4. Use recombinant Ssf1, Ssf2 and Nop7 for in vitro interaction studies.  



 

 

 

 

 

 

 

 

 

2 Material and methods 
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2.1 General recipes and protocols 

2.1.1 Media composition 

Here is the media composition list used when manipulating bacterial and yeast strains. 

For agar plate preparation, the media was supplemented with 2% agar before autoclaving. 

 

2.1.1.1 For bacterial manipulation 

LB-Luria Broth: 1%(W/V) Bacto-tryptone, 0.5%(W/V) yeast extract, 1%(W/V) NaCl. 

Autoclaved. 

For agar plate preparation, the media was supplemented with 2% agar before autoclaving. 

 

SOC-Super optimal broth with catabolic repression: 2%(W/V) vegetal peptone, 0.5%(W/V) 

yeast extract, 10mM NaCl, 2.5mM KCl, 10mM MgCl2, 10mM MgSO4, 20mM glucose. 

Autoclaved. 

 

Table II : List of the antibiotics used when manipulating bacteria  

 

2.1.1.2 For yeast manipulation 

YPD: 1%(w/v) yeast extract, 2%(w/v) peptone, 2%(w/v) glucose. Autoclaved. 

YPGRS: 1%(w/v) yeast extract, 2%(w/v) peptone, 2%(w/v) galactose, 2%(w/v) raffinose, 

2%(w/v) sucrose. Autoclaved. 

 

Drop-out media: 1.5%(w/v) yeast nitrogen base (amino acid and ammonium sulfate free), 

5%(w/v) ammonium sulfate, 1X amino acids except methionine and/or histidine, 2% of each 

sugar needed. Filter sterilized. The media was prepared with freshly autoclaved water. 

Antibiotic Abbreviation Solubilised in 1000X stock (mg/mL) 

Ampicillin Amp 50%EtOH 50 

Kanamycin Kan Water 50 

Chloramphenicol CAM 100%EtOH 35 
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Drop-out media with antibiotics, ammonium sulfate was replaced with 0.1%(w/v) of  

monosodium glutamate. 

2.1.2 Whole cell lysis - protein extraction (72) 

The protocol used for whole cell lysis was taken from (72). Approximately 2.5 OD600 

(optical density) of cells were incubated for 5min (minutes) at RT (room temperature) with 

200μL of 0.1M NaOH. The pellet was then resuspended in 50μL of modified Laemmli SDS 

sample buffer  (detailed below) and stored at -20°C. Prior to loading, the samples were boiled 

for 3min at 95°C and spun. A 20μL volume of supernatant (1OD600 of cells) was loaded on a 

pre-cast 4-12% Bis-Tris gel.  

The modified Laemmli SDS sample buffer is a mixture of 0.06M Tris-HCl pH6.8, 5% 

glycerol, 2%SDS 4% β-mercaptoethanol and 0.0025% bromophenol blue, as described 

in (72). 

2.1.3 Western blot (WB) 

Bis-Tris gels (4-12%) were run at 185V for approximately 45min in a Tris-Tricine 

buffer. Protein transfer to nitrocellulose (NC) membrane or activated polyvinylidene 

difluoride (PVDF) membrane was performed for 2 hours (60V, 4°C) or overnight (30V, 4°C) 

in Towbin buffer. For WB analysis of yeast strains, antibodies PAP (α-PrA-HRP), α-HA 

(mouse), α-Nop7 (rabbit) and α-β-actin (mouse) were used (Table VIII). For recombinant 

protein purification, α-GST-HRP and α-HIS (mouse) antibodies were used (Table III).  

The membranes were blocked in 1XTBST and 5% non-fat milk or BSA rocking for 20 

min to 1hour at RT. The probing with antibody was usually performed rocking for 1hr at RT. 

If a secondary antibody was needed (α-mouse or α-rabbit), the membrane was washed twice 

in 1XTBST (5min, rocking) before probing the secondary antibody (30min, RT). Three 

washes in 1XTBST (5min, rocking) were performed prior to detection.  

To minimize background when probing secondary antibodies on PVDF membranes, 

the solution was supplemented with SDS and Tween 20 to a final concentration of 0.01% and 

0.1% respectively.  
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Table III : List of antibodies used  

Antibody Animal Provider 
Method of 

detection 

Concentration 

used 
Diluted in 

PAP (α-PrA-HRP) Rabbit Sigma ECL 1:7500 TBST/milk 

α-HA Mouse Genscript α-mouse 1:5000 TBST/milk 

α-GST-HRP Rabbit Genscript ECL 1:3000 TBST/milk 

α-HIS Mouse Sigma α-mouse 1:7500 TBST/milk 

α-Nop7 Rabbit (39) α-rabbit 1:7500 TBST/milk 

α-β-actin Mouse Abcam α-mouse 1:7500 TBST 

α-mouse Cy600 or Cy800 Llama LI-COR Odyssey* 1:20000 TBST/milk 

α-rabbit Cy600 or Cy800 Llama LI-COR Odyssey* 1:10000 TBST/milk 

*Odyssey: Infrared imaging system (LI-COR Biosciences) 

10X TBST, 1L: 24.2g Tris, 80g NaCl, 21mL Tween20 brought to pH 7.6 with HCl 

Tris glycine buffer, 1L: 3.03g Tris, 14.4g Glycine, 1g SDS 

Tris-trycine buffer, 1L: 3.63g Tris, 3.59g Trycine, 0.5g SDS 

Towbin buffer, 1L: 100mL MeOH, 3.03g Tris, 14.4g Glycine 

For PVDF membrane activation, the membrane was washed with MeOH and equilibrated in 

towbin buffer. 

2.1.4 Casting homemade gels – BioRad’s Mini protean 

To make home-made tris-glycine gels BioRad’s Mini protean’s system was used. The 

percentage of the gel varied depending on the size of the protein being analysed.  

 

Table IV : Volume (mL) of components needed to make resolving and stacking gels  
Resolving gel (10mL) Stacking gel (5mL) 

Components 
6% 8% 10% 5% 

Water 5.3 4.6 4.0 3.4 

30% acrylamide mix 2.0 2.7 3.3 0.83 

Tris solution* 2.5 2.5 2.5 0.63 

10% SDS 0.1 0.1 0.1 0.05 

10% ammonium 

persulfate (APS) 
0.1 0.1 0.1 0.05 

TEMED 0.008 0.006 0.004 0.005 

Protein size (kDa) 180-200 150 50-100 - 

*: For resolving gels, the Tris solution is 1.5M Tris-Cl pH 8.8. For stacking gels, it is 1M Tris-Cl pH6.8. 



33 

 

2.1.5 chDNA purification and DNA purification 

2.1.5.1 chDNA purification 

About 2.5ODs of cells were recovered from an o/n culture or from a plate and 

resuspended in 100μL of ultrapure water. The cells were treated with 100μL of breaking 

buffer (200mM NaOH, 2.5% SDS, 500mM NaCl, 2mM EDTA) for 5min at RT. 

Neutralisation was performed with 300μL of 0.5M Tris-HCl pH 6.8 and briefly vortex mixed 

to then add 500μL of a Phenol/Chloroform/Isoamyl alcohol (Ph/Cl/IAA corresponding ratio 

of 25:24:1). After thoroughly vortexing the sample at VMAX for 1min, the sample was spun at 

VMAX for 10minutes. The supernatant was then mixed to 2volumes of cold 100% EtOH and 

spun at VMAX for 10minutes at 4°C. The resulting pellet was then washed with 500μL of 70% 

cold EtOH, spun at VMAX for 3minutes at 4°C and air dried. The pellet was then resuspended 

in 50μL of ultrapure water, nanodrop quantified and the chDNA (chromosomal 

desoxyribonucleic acid) was adjusted to a final concentration of 250ng/μL for diagnostic 

PCRs (polymerase chain reaction) and of 100ng/μL cassette amplifications from chDNA. All 

DNA samples were stored at -20°C. 

 

2.1.5.2 DNA purification  

Gel extraction and column purification were performed during molecular cloning. 

E.Z.N.A Gel Extraction Kit from Omega bio-tech was used as described by the supplier. 

 

2.1.5.3 Gel extraction 

For DNA extraction of digested vector or insert from an agarose gel, the DNA was 

first migrated on a 0.5 or 1% agarose gel. The DNA band corresponding to the right 

molecular size was excised from the gel, weighted and melted at 55°C with a 1μL/μg volume 

ratio of binding buffer (XP2) supplied in the kit. The mix was passed through a HiBind DNA 

Mini Column by centrifuging for 1min at 10 000xg. The column was then washed once with 

300μL of XP2 buffer and twice with 700μL SPW Wash Buffer, each time centrifuging for 
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1min at 13 000xg. A final centrifugation of the column alone (2min, 13 000xg) was 

performed to completely remove the EtOH (from the wash buffer) prior to elution. The insert 

was then eluted in 30μL of a 50mM Tris-Cl pH8.5 solution provided in the kit.  

2.1.5.4 Column purification 

Column purification of DNA was performed to remove buffers and enzymes no longer 

needed. The protocol was the same as for gel extraction except that an equal volume of XP2 

binding buffer was added in the first step and no heating was necessary. Also, an additional 

washing with 700μL SPW Wash Buffer was performed. 

2.1.6 RNA extraction (73) and purification 

RNA extraction form yeast samples were performed using Trizol (Invitrogen) as 

described in (73). A total of 17-26 OD600 of cells (2.5-5.0x108cells) were pelleted and washed 

three times with water. The pelleted cells were resuspended in 500μL Trizol and 200μL of 

DEPC treated glass beads (0.4-0.5mm diameter). Cell walls were disrupted by vortexing (at 

least 6min, 4°C). The mixture was then incubated at 70°C (5 min) and at RT (3min). To 

separate the aqueous phase, 200μL of chloroform, mixed (vortexing for 15 sec), let stand at 

RT (3min) and centrifuged (VMAX, 15min, 4°C). Most of the aqueous phase (350μL) was 

transferred into a new tube containing 500μL of isopropanol. RNA precipitated at RT for 

10min and was pelleted by centrifugation (VMAX, 15min, 4°C). The pellet was washed once 

with 70% EtOH (1mL), centrifuged (VMAX, 5min, 4°C), air dried and resuspended in RNAse-

free water or formamide. The RNA was quantified (nanodrop) and stored at -80°C.  

For primer extension and qRT-PCR analysis, the RNA in water was DNAse treated 

using RNeasyMini-Kit (QIAGEN) as described by the manufacturer and quantified. 

2.1.7 Northern blot  

For northern blot analysis of high molecular weight pre-rRNA, 10μg of total RNA was 

resolved in a 1% agarose/1.25% formaldehyde gel (11X14cm) in 30mM tricine, 30mM 

triethanolamine, as described in (74). Passive transfer of the RNA onto HyBond-N+ nylon 

membrane was performed overnight in 10X SSC. To resolve low molecular weight species, 

10μg of total RNA was run in an 8% polyacrylamide/ 7M urea gel in 1X TBE as described in 
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(36). RNA transfer onto HyBond-N+ nylon membrane was performed overnight in 0.5X TBE 

buffer (12V). Following transfer, RNA was cross-linked to the nylon membrane (stratalinker, 

1200J/m2, 254nm) and probed at 37°C essentially as described in (36) but using fluorescently 

labelled probes (labelling protocol is detailed below). Briefly, the membrane was pre-

hybridized with pre-hybridization buffer (6XSSPE, 5X Denhardt’s, 2% Fish Sperm DNA, 

0.2% SDS) pre-heated to 65°C and let cool to 37°C for 15minutes. The membrane was 

incubated with the fluorescent probe (20pmol) for at least 1 hour and washed once with 6X 

SSPE (15min, 37°C) and scanned using Odyssey infrared imaging system (LI-COR 

Biosciences). The approximate locations of the probes used in this study are schematised in 

the following figure:  

 

A  

001: 5’-CCAGTTACGAAAATTCTTG; 002: 5’-GCTCTTTGCTCTTGCC;  

003: 5’-TGTTACCTCTGGGCCC; 005: 5’- ATGAAAACTCCACAGTG 

006: 5’-AGATTAGCCGCAGTTGG; 007: 5’-CTCCGCTTATTGATATGC;  

008: 5’-CATGGCTTAATCTTTGAGAC; 017: 5’-GCGTTGTTCATCGATGC;  

020: 5’-TGAGAAGGAAATGACGCT; 041: 5’- CTACTCGGTCAGGCTC.

B 

 
Figure 2.1: Probe sequences and approximate target location in the pre-rRNA 
(A) The probes sequences and (B) the approximate location they target in the pre-rRNA  were 

constructed according to data from (36, 54). 

 

10X TBE, 500mL: 54g Tris, 27.5g Boric acid, 20mL 0.5M EDTA pH8. 
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2.1.7.1 Probe labelling 

For northern blot (NB) detection of pre-rRNA species, probes were ordered from IDT with a 

5’ and 3’ amine. For fluorescent primer extension, the primer order had only one amine (5’). 

The following protocol was used for probe labelling. 20μg of probe was resuspended in 20μL 

of 100mM NaCO3 pH 9 buffer and incubated (no light, overnight RT) with 50μg of Dylight 

NHS ester 800 (Thermo Scientific). The following day, a nucleotide removal kit (Quiagen) 

was used as described by the supplier. The eluted labelled probe was quantified (nanodrop) 

and 20pmol of probe was used for NB detection and 10pmol of probe was used for each 

primer extension reaction.  

2.1.8 Reverse transcription and primer extension 

For both reverse transcription and primer extension, SuperScript II reverse 

transcriptase (RT from Invitrogen) was used. 

The reverse transcription reaction was performed as described by the supplier using 

random hexamers (Operon). Briefly, 1μg or RNA was mixed to 100ng of random primers and 

1μL of dNTP mix (each 10mM) in a final volume of 13μL. This mix was incubated at 70°C 

for 5 minutes and then let on ice for 1 minute. 4μL of 5X first strand buffer  and 2μL of 0.1M 

DTT (both supplied in the kit) were added and the new mix was incubated at room 

temperature (RT) for 2 minutes, after which 1μL of the enzyme was added for total volume of 

20μL. This mix was incubated at RT for 10 minutes and then at 42°C for 50 minutes. To 

inactivate the enzyme, the reaction mix was incubated at 70°C for 15 minutes. The cDNAs 

obtained were used for quantitative real-time PCR (qRT-PCR). As negative controls for the 

qRT-PCR reaction (RT-), an additional μg of total RNA per sample was prepared in parallel 

but water was added instead of the enzyme.  

Primer extension analysis was performed using 1μg of total RNA per sample 

essentially as described in (75). Briefly, a 13μL mix of total RNA, 10pmol of fluorescently 

5’-labelled probe 007 and 1μL of 10mM dNTP mix was incubated at 95°C for 1 minute and 

slowly let cool to 42°C for 3minutes. Then, 4μL of 5X standard buffer and 2μL of 0.1M DTT 

was added and incubated at 42°C for 2min. 1μL of enzyme was added and the reaction was 

performed at 42°C for 50 min, after which 2μL of 3M NaOAc pH 5.2 and 40μL of 100% 
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EtOH were used to stop the reaction. After centrifugation, the pellet was resuspended in 10μL 

of loading dye (7M urea, 1X TBE, bromophenol blue). 1.5μL of this mix was separated on an 

8% polyacrylamide gel and detected using Odyssey infrared imaging system.  

2.1.9 Plasmid purification 

For plasmid purifications, Wizard Plus SV Minipreps DNA purification system from 

Promega was used. At each step during cell lysis, mixing by ups and downs or inversion was 

preferred to vortexing. All centrifugation steps involving the column were performed at VMAX 

(13.2 Krpm) and RT.  

Essentially, cells from 5mL of o/n grown cultures were pelleted and resuspended in 

250μL of Cell resuspension buffer, lysed by adding 250μL of Cell Lysis Solution and 10μL of 

alkaline protease solution and incubating for 5min at RT. To neutralize the solution, 350μL of 

neutralization solution was added and then the lysed cells were centrifuged at top speed for 

10min at RT. The supernatant was passed through the supplied spin column by centrifugation 

for 1min. The column was then washed with 750μL and then with 250μL of wash solution by 

centrifugation for 1min. Remaining EtOH was removed from the column with an additional 

centrifugation step (2min) and then the plasmid was eluted in 50μL of nuclease free water. 

The plasmid was quantified (Nanodrop), brought to a final concentration of 100ng/μL and 

visualised on a 0.5% agarose gel. Plasmids were stored at -20°C. 

 

2.1.10 Bacterial transformation 
For plasmids transformed in NEB turbo cells (Table X), NEB’s protocol was used. In 

summary, the competent cells were thawed on ice and 50μL of cells were gently mixed and 

then incubated on ice for 30minutes with 100ng of plasmid. The cells were then heat shocked 

for 30sec at 42°C then let stand on ice for 5min. After adding 950uL of SOC media to each 

tube, the cells were incubated for 1hr at 37°C at 500rpm. The cells were then pelleted and 

resuspended in 100μL of SOC media for spreading onto an LB+Res plate (antibiotic depends 

on the plasmid that was transformed) and incubated for 16hrs at 30°C. 
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For transformations in pLYS and RipL cells (Table V), the protocol varied slightly: 

LB media was used instead of SOC and the 5min incubation on ice following the heat shock 

was not performed. These cells were incubated at 37°C o/n. 

 

Table V: List of bacterial cells used for plasmid preparation and expression of 

recombinant protein  

Purpose ID Strain Genotype Antibiotic 
resistance 

Plasmid 
preparation NEB Turbo NEB Turbo competent E. 

coli (High Efficiency) 

F´ proA+B+ lacIq Δ lacZ M15/ fhuA2 Δ(lac-
proAB) glnV gal R(zgb-

210::Tn10)TetS endA1 thi-1 Δ(hsdS-mcrB)5 
- 

RIPL BL21-CodonPlus (DE3)-
RIPL competent cells 

E. coli B F- ompT hsdS(rB
-mB

-) dcm+Tetr 
galλ(DE3) endA Hte [argU proL Camr] 

[argU ileY leuW Strep/Specr] 

Tet r Camr 
Strep/Sper Expression 

vector 
pLys BL21-Gold(DE3)pLysS 

competent cells 
E. coli B F- ompT hsdS(rB

-mB
-) dcm+Tetr 

galλ(DE3) endA Hte [pLYS Camr] Tet r Camr 

 

2.2 Molecular cloning 
To ensure the proper directionality of the insert, primers were designed so that BamHI 

and Xho1 restriction enzyme sites flanked the gene’s ORF at its N and C terminal respectively 

during molecular cloning. For N-terminal GST-TEV tagging, the pGEX4T1 vector was used. 

For N-terminal His6-TEV tagging, the pET28 MHL GS vector was used. This vector is the 

pET28-MHL vector in which a BamH1 site (GS) was added in house between the TEV 

cleavage site and Nde1 restriction enzyme site. 

 

Table VI: Plasmids used for molecular cloning  

RES position in 

plasmid (bp) Plasmid 
Plasmid 

size (bp) 
Resistance 

Type of 

N-term 

tagging BamH1 Xho1 

Expected length of 

vector after RE 

treatment (bp) 

Reference 

pGEX4T1 4969 Amp GST-TEV 930 954 4786 GE Healthcare 

pET28- 

MHL GS 
7331 Kan His6-TEV 5125 7166 5287 Oeffinger lab 

 

The plasmids above were cut using BamH1 and Xho1. Of the digestion products, the 

one with the expected length (Table VI) was gel purified and the ends were treated with 
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Antarctic Phosphatase to change the phosphate group into an OH and prevent re-ligation of 

the vector.  

 

The following table shows the primers used to create the inserts for molecular cloning 

(Table VII). All primers were designed to have 6 random nucleotides at their 5’, followed by 

a restriction enzyme site (RES), a start (for forward primer) or stop codon (for reverse primer) 

and 27nts complementary to the beginning of the gene (after the start) or its end (before the 

stop codon). For the 3’ primers used with the pET28-MHLGS vector, 2 additional stop 

codons were added, as recommended in the pET28-MHL parental vector specifications sheet.  

 

Table VII: Primers used for molecular cloning  

 

2.2.1 Insert preparation 

The expected size of the insert depended on the length of the target gene listed in table 

VIII + 30 to 36nt. The target gene ORF was amplified by PCR from purified W303a chDNA 

using the primers listed in table VII. The annealing temperature corresponded to the lowest 

salt-adjusted Tm value minus 3°C (Table IX). The PCR recipe and program were used are the 

following:  

PCR mix final concentrations:  iProof buffer 1X, 5’and 3’ primers 0.5pmol/ul, 200μM of each 

dNTP, 2% DMSO, 1ng/uL chDNA, 0.25U/uL Taq. 
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Table VIII: Size of genes selected for molecular cloning  
Gene SSF1 SSF2 NOP7 

gene length (nt) 1362 1362 1818 

 

Table IX: PCR program used to amplify the insert from chDNA  
Temperature (°C) Time (min:sec) Number of cycles 

98 0:30 1X 

98 0:05 

SSF1/2: 66  NOP7:63 0:10 

72 0:30 

30X 

72 5:00 1X 

4 Forever  

 

The insert was then purified form a 1% agarose gel using the gel extraction protocol 

detailed in section 2.1.5.3 and then digested in parallel with the parental vector. 

 

2.2.2 Restriction enzyme digestion  

Because both BamH1-HF and Xho1 restriction enzymes (RE, from BioLabs) are 

compatible with the same buffer, the digestion of both the insert and vector using these 

enzymes could be performed simultaneously. The inserts and the vectors were each treated 

with both restriction enzymes for 1hr to o/n at 37°C in a total volume of 50μL. The reaction 

mix contained final concentrations of 1X Buffer4, 0.5μg/μL BSA, 3μg of vector or 30μL of 

purified insert and 1.5(U/μL) active units of each enzyme. The insert was then cleaned 

following the enzymatic clean-up protocol (Section 2.1.5.4) and then Nanodrop quantified 

and visualised for purity in a 1% agarose gel. 

To make sure it did not re-ligate itself, the vector was treated with Antarctic 

Phosphatase. To do so, the RE-treated vector was run on a 1% agarose gel and the band 

corresponding to the expected size of the digested vector (Table VI) was extracted from the 

gel (Section 2.1.5.3). The eluted vector was treated with Antarctic Phosphatase for 15-30min 

at 37°C in a total reaction volume of 50μL containing 30μL purified vector, Antarctic 

Phosphatase 1X buffer, Antarctic Phosphatase 0.1U/μL. The reaction mix was incubated at 
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65°C for 5min to fully inactivate the enzyme and then let for 5min on ice. The vector was 

quantified using the Nanodrop and visualised for purity in a 1% agarose gel prior to ligation.  

 

2.2.3 Verification of relative abundance of V and I and plasmid 

ligation  

To efficiently ligate the vector with the insert, the ratio of insert to plasmid had to be 

of 3:1. At the end of the procedure, 100ng of plasmid was needed to transform into the rapid-

growing bacterial NEB turbo cells. To ensure proper ratio, the following calculation was 

performed. This calculation allowed us to take into account the size of the linearized vector 

and of the insert to ensure that the ratio was of 3.  

 

 
Prior to ligation, a final verification on agarose gel was performed with 50ng of insert 

and digested/antarctic phosphatase-treated plasmid. The amount of insert calculated was 

incubated with 100ng of vector 1hr at 16°C, using the smallest volume possible (eg. 10μL). 

The reaction-mix contained 1X T4 DNA ligase buffer, 100ng of plasmid, calculated amount 

of insert, 1μL T4 DNA ligase. 

The plasmids were transformed into NEB turbo cells and grown for 8 hours at 37°C 

and then 15-20 single colonies were selected from the transformation plate. These 

transformants were grown in 500μL LB+Res at 37°C for 2-3hours while shaking at 500rpm. 

Then, 500μL of Ph/Ch/IAA was added and thoroughly vortexed, then spun at VMAX, 56μL of 

10X buffer was added and 5μL of the top layer was loaded on a 0.5% agarose gel to compare 

the clone’s plasmid to the parental vector. Because the plasmid is now different in size, it will 

migrate differently in its supercoiled and circular forms (Fig. 2.2). 
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 Parental 
Vector 

 New plasmid 

  
  

Nicked 
Linear 

Supercoiled  
  

Figure 2.2: Expected bands when screening for positive plasmid transformants 
As the new plasmid is expected to be of higher molecular weight that the parental plasmid, 

the nicked, linear and supercoiled forms of the new plasmid are expected to migrate 

differently on gel. 
 

 

From this preliminary analysis, 5-6 potentially positive clones per plasmid were grown 

in liquid LB+resistance (3-5mL) o/n at 30°C, plasmids were purified and quantified using 

Nanodrop. To test for positive plasmids, a restriction enzyme digestion was performed using 

500ng of plasmid in a total volume of 10 to 20μL of RE digestion reaction using restriction 

enzymes BamHI and XhoI (detailed above). The bands were resolved on 1% agarose gel. 

Three positive clones per plasmid were sent for sequencing using T7 promoter, T7 terminator 

and the primer internal for the ORF of the gene. The internal primer was chosen about 500np 

after the start of the gene (Table X). 

  

Table X: Primers used to sequence-validate the plasmids    

# Primer name 

pG
E

X
4T

1 
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T
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 (°

C
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1 5’_500bpSeqSSF1 √ √ Fwd 5` TCT ATG TTT CAG AAT ATT TTC 50 

2 5’_500bpSeqSSF2 √ √ Fwd 5` TCC ATG TTC CAG AAT ATT TTC 54 

3 5’_500bpSeqNop7 √  Fwd 5` TTA GCC TAT GTT GCC AAG GAA 57 

4 T7 Promoter √ √ Fwd 5` TAA TAC GAC TCA CTA TAG GG 48 

5 T7 terminator √ √ Rev 5` GCT AGT TAT TGC TCA GCG G 54 
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2.3 Recombinant protein  

2.3.1 Recombinant protein expression 
Once the clones were confirmed by sequencing, the plasmids were transformed in 

pLYS and RipL cells because they were available in the lab (Table X). Recombinant protein 

expression was assayed for each transformant using varying amounts of IPTG (0.5 or 1mM) 

and different temperatures (16°C, 25°C and 37°C).  A 300μL aliquot was taken at time-points 

0, 2, 4 and o/n. Then the best induction conditions were selected for large-scale inductions 

(Table XI). 

 

Table XI: List of plasmids generated and optimized conditions for optimal protein 
expression 
 
Plasmid name 

Plasmid 

size (bp) 
Background Resistance N-term tag 

Optimized induction 

conditions 
Reference 

GST-TEV-NOP7 6763 pGEX4T1 Amp GST-TEV pLYS, 1mM IPTG, 16°C o/n This study 

GST-TEV-SSF1 6307 pGEX4T1 Amp GST-TEV RipL, 0.5mM IPTG, 16°C, o/n This study 

GST-TEV-SSF2 6307 pGEX4T1 Amp GST-TEV pLYS, 1mM IPTG, 16°C o/n This study 

HIS6-TEV-SSF1 6649 pET28 MHL GS Kan His6-TEV pLYS, 1mM IPTG, 16°C o/n This study 

HIS6-TEV-SSF2 6649 pET28 MHL GS Kan His6-TEV RipL, 1mM IPTG, 16°C o/n This study 

 

2.3.1.1 Small-scale optimisation 

Each plasmid was transformed in pLYS cells. A single colony was streaked and then 

grown o/n in 5mL of LB+CAM+Res at 37°C (Tables VII, X and XVI). The following day, 

300μL of the o/n culture was grown for 2hrs in 6ml of fresh LB+CAM+Res (37°C), resulting 

in an OD600 between 0.6-0.8. The cells were then divided in two 3mL aliquots and induced 

with 0.5 or 1mM IPTG. The 3mL aliquots were then divided into three aliquots of 1mL and 

shifted to 16°C, 25°C or 37°C. At each time-point (0, 2, 4hrs and o/n), a 300μL aliquot of 

culture was sampled for whole cell lysis treatment followed by WB analysis. The gels were 

run on a 10% Tris-glycine SDS-PAGE (Table IX) and blotted in activated PVDF membranes 

for immunodetection. To visualize the relative abundance of the protein, the membranes were 

stained for 1min with coomassie and destained with several washes in a destaining solution 

containing 25% ethanol.  
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The same procedure was performed for each plasmid when transformed in RipL cells. 

Once the best protein induction conditions were determined, large scale inductions were 

performed from each plasmid.   

 

2.3.1.2 Recombinant protein expression  

Each plasmid was transformed into the expression vector chosen from the optimization 

trials. The cells were streaked from glycerol stock onto LB +CAM +Res plates at 37°C, 

150rpm, o/n. The following day, the clones were each grown over-day up to an OD600~0.6 at 

37°C, 150rpm (pre-culture). For each liter of induced culture, 50mL of pre-culture was 

prepared. The cells were let at 4°C o/n. The following day, the pelleted pre-culture cells were 

resuspended into 1L of LB media+CAM+Res and grown up to a final OD600 of 0.6. Then, the 

media was spiked with IPTG and shifted to the induction temperature determined during the 

optimisation step. The following day, the cells were pelleted at 4°C, 4000rpm for 20min. The 

pellet was weighed, flash-frozen with liquid nitrogen, and kept at -80°C for recombinant 

protein purification. 

 

2.3.2 Recombinant protein purification 

2.3.2.1 His6-tagged proteins 

For each gram of pellet, 7mL of binding buffer (100mM HEPES pH7.4/500mM 

NaCl/20mM imidazole/10 µg/mL antipain/2 µg/mL leupeptin/1 µg/mL pepstatine/2 µg/mL 

aprotinine/1 mM PMSF/70KU lysozyme) was used. The thawed sample was vortex 

resuspended, homogenized on ice (polytron, 1min) and incubated for 30min at 4°C on a 

rotating wheel, to let the lysozyme break down the cell walls. After 30min of incubation, the 

cells were sonicated using 5 cycles of 1min sonication, 1min on ice. DNA was broken by 

passing the mix several times through a syringe. The SN obtained after centrifugation 

(16 000g, 20min, 4°C) was filtered (0.22μm), de-gazed and passed into a HP His-Trap 1mL 

column HP from GE healthcare (FPLC). The column was washed with a volume of wash 

buffer (100mM HEPES pH7.4/500mM NaCl/50mM imidazole) equivalent to the injected 

sample and the proteins bound to the column were eluted in 4mL fractions of elution buffer 
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with increasing imidazole concentrations (100mM HEPES pH7.4/500mM NaCl with 75, 100, 

300 or 500mM imidazole). 

For analysis, 60μL of every fraction was recovered, mixed with 12μL of 6Xloading 

dye, and boiled (95°C, 5min). To validate the fractions to pool for the following steps, 1/500th 

of each fraction were resolved on two 10% Tris-glycine SDS-PAGE gels. One of them was 

Coomassie stained (Fig. 2.3 A) and the other was transferred on a NC membrane and blotted 

with α-HIS antibody (Fig. 2.3 B). The fractions containing the protein were dialyzed against a 

100mM Hepes pH8.0/ 10mM KCl/ 10mM MgCl2/ 150mM NaCl/ 20% glycerol buffer and 

concentrated on a PALL concentrator with a MWCO of 30kDa as specified by the supplier. 

To verify the amount of recombinant protein obtained and potentially lost, a 37th of input, 

retention and filtrate samples were resolved on a 4-12% Bis-Tris gel together with BSA 

samples of varying concentrations, later used as a standard curve. The resolved samples were 

transferred to a PVDF membrane and detected using α-his (mouse) as the primary antibody 

and α-mouse Cy800 as secondary antibody for detection of the tag (Odyssey). The PVDF 

membrane was then Coomassie-stained to approximate the amounts of purified protein from 

the BSA standard curve. 
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Figure 2.3: FPLC purification 
His6-Ssf1 recombinant protein was purified by FPLC. A 500th of each purification step was resolved 

on a 10% SDS-PAGE gel and either (A) Coomassie stained  or (B) transferred to a NC membrane 

and blotted with α-His. For further information, refer to text. 
 

 

2.3.2.2 GST-tagged proteins 

The frozen pellet was vortex resuspended in 10mL of binding buffer (1XPBS, 70KU 

lysozyme), homogenized on ice (polytron, 1min) and incubated for 30min at 4°C on a rotating 

wheel for lysozyme treatment. The cells were then sonicated 5 for cycles of 1min sonication, 

1min on ice. DNA was further broken by passing the mix several times through a syringe. The 

SN obtained after centrifugation (16 000g, 20min, 4°C) was incubated for 1hr, 4°C, gentle 

agitation with a 750uL aliquot of homogenous ‘Glutathione Sepharose 4 fast flow’ resin from 

GE Healthcare pre-washed with binding buffer. The beads were then recovered by 
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centrifugation (1200rpm, 2min, 4°C) and washed three to four times with wash buffer 

(1XPBS). The recombinant protein was then eluted three times in 375uL of elution buffer 

(50mM Tris-Cl/10mM reduced glutathione pH8.0, 10min, RT). To validate the fractions to 

pool for the following steps 1/50th of the eluates were run on a 10% Tris-glycine SDS-PAGE, 

transferred on PVDF membrane. Eluates in which recombinant protein was detected using 

anti-GST-HRP antibody (home-made ECL detection) were pooled, the eluates were 

concentrated and switched to 100mM Hepes pH8.0/ 150mM NaCl/ 0.5mM EDTA/ 10% 

glycerol/ 0.1% triton/1mM DTT buffer by passing them on a PALL concentrator with a 

MWCO of 30kDa as specified by the supplier (Fig. 2.4). To verify the amount of recombinant 

protein loss and the efficacy of cleaning, a 37th of input, retention and filtrate samples were 

taken each time the MWCO column was used. These samples were resolved on a 10% 

tris-glycine SDS-PAGE gel next to BSA samples of varying concentrations, latter used as a 

standard curve. The resolved samples were transferred to a PVDF membrane and blotted 

using α-GST-HRP antibody for detection of the tag. The PVDF membrane was then 

Coomassie-stained to approximate the amounts of purified protein from the BSA standard 

curve. 
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Figure 2.4: Molecular weight cut-off  

The buffer was exchanged and the recombinant protein was separated from free tag using a 

molecular weight cut-off column of 30kDa. Free-tag and tagged protein were detected with 

α-GST-HRP antibody and the final concentration of purified protein was approximated using 

a BSA standard curve (μg/μL) and Coomassie staining. Here, a 37th of each purification step 

for GST-Ssf1 was resolved on a 10% SDS-PAGE gel and transferred on a PVDF membrane. 
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2.4 Construction of yeast strains 
Two different haploid baker’s yeast strains (Saccharomyces cerevisiae) were tested as 

parental: CML476a and W303a. Due to a growth defect detected in the CML476a strain, 

W303a was chosen as suitable background strain for all experiments in this project.  

 

2.4.1 Endogenous modifications in yeast 

The modifications performed were essentially I) insertion of a regulatable promoter in 

front of the gene of interest, II) deletion of the gene of interest, and III) C-terminal tagging of 

the gene of interest. In all cases, the procedure was based on the same principle: (Fig. 2.5) 

primers (Table XII) with a 5’ region (45-66nts) targeting the gene of interest and followed by 

18-20nts annealing with a plasmid containing the modification were designed. They were 

used to amplify a 1840-2236nt long cassette from a plasmid containing the modification 

(Table XIII) by PCR (Table XIV). The purified cassette was then transformed into the haploid 

background strain where it integrated into the genome by recombinant homology. A selection 

marker within the cassette allowed the survival of positive transformants in the presence of an 

antibiotic (Gal1 promoter: G418; Met25 promoter: ClonNAT, gene deletion: hygromycin B - 

hph), or the absence of an essential amino acid (C-terminal PrA tags: histidine plated directly 

onto media lacking histidine). In the case of drug-resistance cassettes, all cells were first 

grown in permissive media (YPD or SD-methionine) to form colonies. Then, positive 

transformants were selected by replica plating the colonies onto fresh, permissive media 

supplemented with the corresponding antibiotic (drug concentrations: Table XV). In the case 

of G418 resistant cassettes, a first selection was performed in 200μg active units of G418 per 

mL of replica plate and then a second replica plate was performed with a higher concentration 

of G418 (600μg of active units/mL). All transformants were tested by diagnostic PCR. The 

control primers are listed in Table XVI. The primer pairs used and their expected PCR 

product sizes indicating positive or negative transformants are listed in Table XVII. The 

standardized diagnostic PCR program is described in Table XVIII.   
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Figure 2.5: Types of modifications performed to yeast cells. 
(A) Using primers that can anneal with a plasmid and recognise a specific region in the genome, the 
cassette was amplified by PCR and cleaned. (B) The cassettes were then transformed into haploid 

cells where (C) the cassettes integrated into the genome by recombinant homology. Positive 

transformants were validated by diagnostic PCR using control primers whose approximate locations 

are schematized here.  
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Table XII: List of primers used for yeast transformations  

Pu
rp

os
e 

Name Direction Sequence* 
Used 
with 

plasmid 

5'pGal1::NOP7 Fwd 5' AAA AAT TTT GGA AGG TTA ATT AGA GAT GTG TAG TAA ATC CTG CTG 
GTG GAA TAC ATT TTA GAA TTC GAG CTC GTT TAA AC 1 

pG
al

 
in

se
rt

io
n 

3'pGal1::NOP7 Rev 5' AGC TTG AGA TCT GGT AAT AAA GTT TCT TGC GTT ACC TCT GGT GTT 
TTT CTT CTT GAT TCT GCA CTG AGC AGC GTA ATC TG 1 

5'pMet25::SSF1 Fwd 5' AAA AGA GTA TAA TCC AGA TAT AGC AGA CAA TAA AAT TTC AAG ATG 
CGT ACG CTG CAG GTC GAC 2 

pM
et

25
 

in
se

rt
io

n 

3'pMet25::SSF1 Rev 5' AGG TGT AAG CTG TGC ATG TGT TCT TTT CTT TTG TCT TCT CTT GGC 
CAT CGA TGA ATT CTC TGT CG 2 

5'HphDelSsf2 Fwd 5' TAA TAT TCG ACT AAA TTG CAG CTG CTA GGT CAC CAT CCC GCA CAT 
ACC TTA GAT ATT TTG GAA CTA ATG CGT ACG CTG CAG GTC GAC 3 

G
en

e 
de

le
tio

n 

3'HphDelSsf2 Rev 
5' ATC GGA GTC ATG GCT ACT ATA TGG ATA GTG ATG TTA CGT ACG 

GAG GAT ATA TAT ACA TAT CGT GCA TAA ATC GAT GAA TTC GAG CTC 
G 

3 

5'Cic1PrACterm Fwd 5' GAA AAA GAA TCT AGC GAG TCA GAA GCT GTC AAG AAG GCT AAA 
AGT GGT GAA GCT CAA AAA CTT AAT 4 

3'Cic1PrACterm Rev 5' GCA CCG CAC TCT ATG AAA TTC AAA TTT TTT TCT TCA CAA GAA AAA  
GTC GAC GGT ATC GAT AAG CTT 4 

5'Ssf1PrACterm Fwd 5' AGT GAC AGC GAA CAT TAT GGT AGC GTA CCA GAG GAT CTA GAT 
AGT GAC TTA TTT AGT GAG GTC GAAGGT GAA GCT CAA AAA CTT AAT 4 

3'Ssf1PrACterm Rev 5' TAT ATG TAT CAA GTA TGC AAT TTA TCT AAA GTG AAG AAG TAT ACG 
TGC GTT GGT GGA TAG CCA GGC GTC GAC GGT ATC GAT AAG CTT 4 

5'Ssf2PrACterm Fwd 5' GAT GTA CCA GAG GAT TTG GAT AGT GAC TTA TTC AGT GAA GTA 
GAA GGT GAA GCT CAA AAA CTT AAT 4 

C
te

rm
 P

rA
 

3'Ssf2PrACterm Rev 5'  TAT GAA TAA ACA GAC ACT TCC TGG TTC TTT AAG TCC ATC GGA 
GTC GTC GAC GGT ATC GAT AAG CTT 4 

*: sequence underligned corresponds to start or stop, sequence in bold sequence annealing with plasmid 

 

 

Table XIII: List of plasmids used to make the cassettes used for yeast transformations  
Modification type 

# Plasmid 

Plasmid 

size 

(bp) 

Bacterial 

resistance Term Nature of tag 

Yeast 

selection 

marker 

Expected 

length of 

insert* 

(bp) 

Reference 

1 
pFA6a-Pgal-3HA-

KanMX6 
4821 Amp N pGAL1::3xHA- 

-

KanMX6 
2236 (76) 

2 pYM-N36 4347 Amp N pMet25::3XHA- clonNAT 1892 (77) 

3 pFa6a-hphNT1 4167 Amp Gene deletion Hph 1840 (77) 

4 pBXA-PrA-SpHis5 2595 Amp C -PrA -HIS5 1950-1980 (78) 

*: variation depends on the length of sequence in the primer annealing with the target gene 
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Table XIV: PCR programs used to generate cassettes from plasmids  

Plasmids 1, 4  Plasmids 2, 3 (modified from Janke 2004) 
Temperature (°C) Time (min:sec) # Cycles  Temperature (°C) Time (min:sec) # Cycles 

98 0:30 1X  98 0:30 1X 

98 0:05  98 b 1:00 

SSF1/2: 66 0:10  54 0:30 

72 0:30 

30X 

 72 1:20 
10X 

72 5:00 1X  98 1:00 

4 Forever 1X  54 0:30 

    72 1:20+0:10/cycle 
20X 

    4 Forever 1X 
a: The elongation time depended on the expected length of product specified in table XVIII: iProof taq elongates 1KB/30sec. 

 

Table XV: List of antibiotics used when manipulating yeast  

 

 

 

 

 

 
Table XVI: List of control primers used to validate yeast transformants  
 

 
 

 

Antibiotic Abbreviation 
1X concentration 

(μg/mL) 

Geneticin G418 200 and then 600 

Noursethricine ClonNAT 300 

Hygromycin B Hph 300 

Name direction Sequence Salt adjusted Tm (°C) 

5'UTR NOP7 Fwd 5' ACC ATA CAG GTC TTG ATA AAT 53.5 

5'UTR SSF1 Fwd 5' AAA AAG TAG ACG AAG AAG CTC 56.7 

5'UTR SSF2 Fwd 5' CTT CCT TTT TGG TCT TTA GTC 56.7 

3’N-ORF of KanMX6 Rev 5' ATC GCG AGC CCA TTT ATA CCC 48 

3’N-ORF of hph Rev 5' CAT CAC AGT TTG CCA GTG ATA 58.7 

3’N-ORF SSF1*/2 Rev 5' GAA GTC CTT TAC TAA TTG GTT 54.8 

5’C-ORF CIC1 Fwd 5’ TCC GAA TTG GGT TCA ATT TTC 55.5 

5’C-ORF SSF1*/2 Fwd 5' GAA GGT CAA GGA AAA GAT GAT 56.7 

5’C-ORF SSF1/2* Fwd 5' TTG GAA AGA AGA AAA GCT AGA 54.8 

3'UTR CIC1 Rev 5' CCG AGA AAC CAA TAT TCA AAT 53.5 

3'UTR SSF1 Rev 5' TCT GAG ATC TAC GTT TCC TTT 56.7 

3'UTR SSF2 Rev 5' ATA TTT ACT TTG AGG TGT TCC 54.8 



53 

Table XVII: Expected PCR product sizes in genomically modified and control strains 

*: Because of the high homology at the nucleotide level, most 21nt primers could anneal to a certain extent both SSF genes. 
However, their 5’ and 3’ UTR sequences are different from each other according to a blast2seq alignment. 

 
 

Table XVIII : Standardized diagnostic PCR program 
Temperature (°C) Time(min:sec) Number of cycles 

95 5:00 1X 

95 0:30 

52 0:30 

68 2:30 

39X 

68 5:00 1X 

4 Forever  

 

2.4.1.1 Regulatable promoter 
Following recombinant homology, the sequence upstream of the gene start site was 

replaced by a selection marker followed by regulatable promoter and a 3xHA tag replacing 

the endogenous promoter. The selection markers were KanMX6 for the Gal1 promoter and 

clonNAT for the Met25 promoter. Positive transformants were detected using diagnostic 

PCR. A 21nt-long primer annealing with the 5’UTR (fwd) of the gene was used. In the case of 

the MET25 promoter insertion, a 21nt-long primer annealing with the SSF1 ORF was used 

and positive transformants were expected to yield a 2152nt-long PCR product, compared to a 

260nt-long PCR product for negative transformants. For the Gal1 promoter insertion, the 

reverse primer was 21nt-long and annealed with the resistance marker used. Only positive 

transformants generated a PCR product (1387nt-long).  

Diagnostic PCR Control primer location* 
Expected PCR 

product size (bp) 

Term 
primer 

set 
tests for FWD REV If WT 

if 

modified 

Nature of modification 

1 SSF1 5’UTR modification 5'UTR SSF1 3’N-ORF SSF1*/2 260 2152 pMet25 insertion 

2 SSF2 presence 5'UTR SSF2 3’N-ORF SSF1*/2 629 - - 

3 SSF2 ORF replacement 5'UTR SSF2 3’N-ORF of hph - 935 gene replaced by hph gene 
N 

4 NOP7 5’UTR modification 5'UTR NOP7 3’N-ORF of KanMX6 - 1387 pGal1 insertion 

5 SSF2 modification 5’C-ORF SSF1/2* 3'UTR SSF2 282 2163 PrA tag 

6 SSF1 modification 5’C-ORF SSF1*/2 3'UTR SSF1 263 2177 PrA tag C 

7 CIC1 modification 5’C-ORF CIC1 3'UTR CIC1 264 2178 PrA tag 
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2.4.1.2 Gene deletion 

Following recombinant homology, the complete gene, including its start and stop 

codons, was replaced by hygromycine B resistance. To screen for positive clones, diagnostic 

PCR using a primer annealing in the 5’UTR of the deleted gene and another annealing within 

the ORF of the selection marker was performed. Only positive transformants generated a PCR 

product (935nt-long). 

 

2.4.1.3 C terminal fusion 

Following recombinant homology, the stop codon of the targeted gene and about 45 

nucleotides after the stop codon were replaced by the PrA tag, a stop codon, and the histidine 

selection marker, with its start and stop codons. The remaining 3’ UTR of the gene was 

therefore shifted downstream. To screen for positive clones, a 21nt-long primer was designed 

in the forward strand of the gene ORF. It was used in pair with a 21nt-long primer that 

annealed a region about 200nts after the endogenous stop codon of the gene. Negative 

transformants gave a 263-282nt-long PCR product and positive transformants gave a 2163-

2178nt-long PCR product. 

2.4.2 Cassette amplification and purification  

The cassettes used to carry out the genomic yeast modifications were amplified from 

the plasmids listed in Table XIII using primers listed in Table XII. Usually, 200-500μL of 

PCR mix was used with the following final concentrations: 1XiProof buffer, 0.5pmol/μL of 5’ 

and 3’ primers, 200μM of each dNTP, 2% DMSO, 1ng/μL plasmid, 0.25U/μL Taq. The PCR 

programs used depended on the plasmid and are summarized in Table XIV.  

 

The PCR product was cleaned prior to transformation into the yeast cells. The 

phenol/Chloroform/IAA clean-up procedure used is the following: the PCR reactions were 

topped to 450μL with water and vortexed for 30sec with 450μL of phenol/Chloroform/IAA 

and then spun at VMAX for 2min to separate phases. To precipitate the DNA, 400μL of the 

aqueous phase was mixed with 40μL of a 3M NaOAc pH5.2 solution, 2μL of glycogen stock 
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solution (10mg/μL) and 1000μL of 100% EtOH. This mixture was then stored at -20°C from 

30min to o/n and then centrifuged for 10min at 4°C, VMAX. The pellet was then washed with 

500μL of 70% EtOH and air-dried at RT. The pellet was then resuspended in 11μL of water 

of which 1μL was used for visualisation on gel and 10μL for transformation.  

2.4.3 Yeast transformation 

For yeast transformations, yeast cells were first made competent as follows: 50mL of 

yeast cells in log phase were grown to an OD600 of 0.6-0.8, washed with 50mL and then with 

1mL of water. The cleaned cells were recovered by centrifugation at 30sec at 4000rpm and 

made competent by treating them with 1XTELiAc (1mM Tris-Cl, 0.1mM EDTA, 100mM 

LiAc pH8.0) three times (1x1mL and 2x0.5mL). The cells were finally resuspended in 500μL 

of 1XTELiAc and 50μL of cells were used for yeast transformation. 

For the transformation, 50μL of competent cells were incubated with 10μL of cleaned 

PCR product, 5μL of carrier DNA and 300μL of PEG4000 (0.4g/mL PEG 4000, 1X TELiAc) 

for 30min at 30°C, 400rpm. The cells were then heat shocked for 15min at 42°C, pelleted, 

resuspended in 100μL of 1X TE and plated on appropriate plates. Single clones were streaked 

and validated by PCR and WB.  

All working stock solutions were prepared fresh and filter sterilized using a 0.45μm 

filter.  

 

2.4.4 Screening for yeast transformants 

2.4.4.1 Diagnostic PCR 

To screen for positive transformants, diagnostic PCRs were performed on purified 

chDNA (Section 2.1.5.1). Biobasic’s taq DNA polymerase was used to amplify the genome 

according to the specifications of the product provided by the supplier. A typical 25uL PCR 

mix contained the following final concentration of reagents:  1X PCR buffer, 0.5pmol/μL of 

5’ and 3’ primers, 200μM of each dNTP, 20% DMSO, 100ng/μL chDNA, 0.25U/μL Taq. The 

standardized diagnostic PCR program used is detailed in Table XVIII. To standardize the 

PCR program, the annealing temperature (Tm) was set to 52°C. Since Biobasic’s taq DNA 
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polymerase transcribes 1kb/min at 68°C and the longest expected PCR product was of 

2178bp, elongation time was set to 2min30sec. At the end of the run, 3μL of 10X loading dye 

was added to the mix and 3-5μL was loaded on a 1% agarose gel and run in 1X TBE for 

visualisation (Fig. 2.6). 

 

 

 
Figure 2.6: Diagnostic PCR 
To validate transformants, diagnostic PCRs were performed on their purified chDNA (250ng) with 
sets of primers listed in Table XVI and using a standardized diagnostic PCR program (Table XVIII) 
Lane 1 shows where the primers migrate, W303a was used as negative control (lanes 2-5). Lanes 7-
10 show that the PrA tag of either Ssf1 or Ssf2 is specific (expected sizes of amplicons are listed in 
Table XVII). 
 

2.5 Growth curve  
The strains were grown in 250mL of permissive media to an OD600 ranging between 

0.2-0.6. At T0, the cells were pelleted, washed twice with sterile water and shifted in 

repressive media. At each time-point, the cells were diluted with repressive media to an OD600 

ranging between 0.2-0.6 to keep them logarithmic phase throughout the experiment. Two 

samples were collected at each time-point (20OD600 and 10OD600), washed twice with 

ultrapure water and stored at -80°C for subsequent RNA (NB, primer extension, qRT-PCR) 

and protein analysis (WB). The OD600 was measured before and after dilution at each 

timepoint to calculate the dilution factor of the time-point (DFtp=DObefore/DOafter) and the 

cumulative dilution factor (DFcum= DFtp* DFcum previous). The growth curve was performed at 



57 

least in duplicate for each strain. To construct the graphs of the relative OD600 against time, 

the mean and standard deviation of the replicates’ relative OD600 was calculated for each 

time-point and outliers were discarded when the standard deviation was half of the mean. 

 

2.5.1 Serial dilution 

As a rapid way to confirm that only the depletion of both SSF proteins generated a 

growth defect similar to other essential RiBi proteins, a serial dilution test was performed. 

Cells were taken from plate or from liquid culture and brought to an OD600 of 1 (DIL0). For 

the serial dilution 100μL of the previous cell dilution was mixed with 900μL of sterile water. 

This procedure was performed to obtain DIL-1 (1/10), -2(1/100) and -3(1/1000). To test the 

inducible promoter, spots of 10μL of each culture were dried on permissive and restrictive 

plates and grown at 30°C.   

 

2.6 Cell harvest and cryo-lysis (78) 
Cell harvest and cryo-lysis was performed as described in (78).  

2.6.1 Cell harvest 

Depending on the amount of material needed, 0.2-6L of cells were grown up to an 

OD600 of 0.8 and spun at 4000xg for 5min. The cells were then washed twice with 50mL of 

water. The pellet was resuspended on ice with an equal volume of resuspension buffer (1.2% 

PVP-40, 20mM HEPES pH 7.4, 1:100 protease inhibitor cocktail, 1:100 solution P and 

1:1000 DTT) and spun twice at 2600xg for 15min at 4°C to completely remove the 

supernatant. The pellet was then passed through a syringe onto a 50mL falcon tube filled with 

liquid nitrogen, broken down into smaller pieces with a spatula and stored at -80°C. 
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2.6.2 Cryo-lysis 

The noodles were placed into a metal jar filled with metal beads and pre-chilled with 

liquid nitrogen.  The cells were cryo-lysed using a Retsch PM-100 ball mill (eight cycles of 

400rpm, 1min rotation clockwise, 1min rotation counter-clockwise, 1min rotation clockwise). 

The jar was chilled in liquid nitrogen in between cycles. The final cell powder was stored at 

-80°C. 

 

 
Figure 2.7: Cryolysis and storage
The cells were harvested during log phase, treated with PVP buffer, cryo-lysed and stored at -80°C. 
Taken from (78). 
 

 

2.7 Conjugating of Dynabeads with rabbit IgG (78) 
This protocol was carried out as described in (78) to obtain 160μg of rabbit IgG 

per mg of Dynabeads, with a final concentration of 0.15μg of beads per μL of solution. Total 

volumes and amounts are listed here but, to facilitate magnetic bead recovery, the mixtures 

were divided into four equal volumes in 15mL Falcon tubes.  

To reconstitute the magnetic beads, 300mg of Dynabeads were resuspended in 16mL 

of a 0.1M NaPO4, pH7.4 buffer by vortexing for 30sec. The solution was incubated at RT, 

rocking for 10min and the beads were recovered using a magnetic holder and washed with 

16mL of the same buffer by vortexing (15sec).  

To prepare the antibodies, 3.525mL of a 14mg/mL rabbit IgG stock was mixed with 

9.850mL of 0.1M NaPO4, pH7.4 and then 6.650mL of 3M NH4SO4 was slowly added while 

shaking. The solution was then filtered using a 0.22μm filter.   
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Once the antibody solution was ready, the beads were magnetically recovered and 

incubated for 18-24hrs at 30°C, rocking. The beads were then submitted to a series of washes:   

 1X 12mL of 100mM Glycine pH 2.5;  

 1X: 12mL of 10mM Tris pH8.8;  

 1X: 12mL of 100mM Triethylamine;  

 5X: 12mL of PBS 1X, rocking for 5minutes; 

 1X: 12mL of PBS 1X, 0.5% Triton X-100, rocking for 5minutes; 

 1X: 12mL of PBS 1X, 0.5% Triton X-100, rocking for 15minutes. 

All the beads were then resuspended in 2mL of 1X PBS, 0.02% NaN3 and can be stored at 

4°C for up to several months. 

PBS 1X, 1L: 0.26g NaH2PO4*H2O, 1.44g Na2HPO4*2H2O, 8.78g NaCl, final pH 7.4 

2.8 Single-Step affinity purification (ssAP) (78) 
Intact pre-rRNP complexes recovery was performed as described in (78). In the 

96-well single step affinity purification (ssAP), a variant of the protocol was used to fit in 

2mL wells in which everything was scaled down to 0.2-0.4g of cell powder. 

2.8.1 ssAP and the extraction buffer 

To determine the relative stability of the complexes made by Ssf1 and Ssf2 proteins, 

strains in which they were PrA-tagged were used to perform their single step affinity 

purification in a 96-well AP design detailed below, using 26 different extraction buffers with 

various types of salt of varying stringency and concentrations (Fig. 2.8). Some of these 

buffers are detailed in the results section in Figure 3.1.  

Because of the relative abundance of these proteins in the cell, 0.2g of cell grindate 

was used for Ssf1-PrA (8150 molecules/cell) and Nop7-PrA (4530 molecules/cell) baits and 

0.4g of grindate was used for Ssf2-PrA (1350 molecules/cell). The background strain 

(W303a) and the PrA tag expressed alone (pZPR::PrA) were used as negative controls. First, 

the cells were harvested and cryo-lysed using the protocol detailed in Section 2.6. For 0.2g of 

frozen cell grindate, 10μL of rabbit IgG conjugated Dynabeads (0.15μg/μL, Section 2.7) were 

pre-washed three times in 200μL of extraction buffer and resuspended in 10-15μL of 
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extraction buffer. The cell grindate was then thawed on ice and resuspended by pipetting in 

1.8mL (for a 1:9 ratio) or 0.8mL (for a 1:4 ratio) of cold extraction buffer. The mixture was 

spun at 4°C, 3500rpm for 10min and the supernatant was incubated with the beads at 4°C for 

30min with slow rotation. The beads were then magnetically recovered and washed three 

times with 250μL of extraction buffer and then incubated at RT with 250μL of last wash 

buffer (100mM NH4OAc/0.1mM MgCl2/0.02% Tween20) for 5min and with slow rotation. 

The PrA tagged protein along with its RNP complex was then eluted by incubating it twice 

with 250μL of elution buffer solution (500mM NH4OAc/0.5mM EDTA) with slow rotation 

for 20min at RT. The eluates were pooled, dried using a speedvac compatible with organic 

solvents, and stored at -80°C. 

 

 

   

 
Figure 2.8:Affinity purification of intact pre-rRNP complexes.  
Intact pre-rRNP complexes are recovered from cryo-lyzed log-phase cultures using a 
rapid single step affinity purification (ssAP) and buffers optimized for each bait protein. 
Adapted from (78, 79). 
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2.8.2 Pre-rRNP complex visualisation 

  The proteins were resuspended in 16μL of 1X loading dye, heated at 70°C for 10min. 

8μL of the mixture was resolved using a pre-cast 4-12% Bis-Tris gel and proteins were 

visualized as described in (78) using a silver staining kit from invitrogen. To discriminate by 

eye more easily proteins belonging to the rRNPs from the background proteins, the W303a 

AP performed in the same buffer, which always gave a higher background than the PrA tag 

expressed alone, was superposed to the bait proteins AP using Photoshop.  

2.9 Protease accessibility laddering (80)  
For this experiment, a variant of the affinity purification protocol detailed in 

Section 2.8.2 was used as described in (80). For Ssf1-PrA and Nop7-PrA, 1.25g of thawed 

cell grindate was resuspended in TBT buffer (20mM Hepes pH 7.4, 100mM NaCl, 110mM 

KOAc, 0.1% Tween20, 2mM MgCl2, 1:500 PIC, 1mM DTT, 1:5000 antifoam) supplemented 

with 1% Triton-X100 (1:9 ratio, vortex, 30sec), homogenized (polytron, 30sec) and 

centrifuged (15min, 2000g, 4°C). The supernatant was incubated with IgG-coupled magnetic 

beads for 1hr at 4°C. The beads were then submitted to five washes (1mL TBT+200mM 

MgCl2). The beads were then resuspended in 250μL of 1X endoproteinase reaction buffer 

previously supplemented with 80ng of endoproteinase and 50μL aliquots were collected at 

timepoints 0.5, 3, 15, 75min. The reaction was stopped by adding Last Wash Buffer and 

incubating for 5minutes. Elution was then performed with 2x500μL of elution buffer (rock 

20min at RT). Eluate was dried using a speed-vac, o/n at RT. For all previous steps, 

everything was doubled for SSF2-PRA cell grindate. The pellet was resuspended in 30μL of 

loading dye and 3μL was resolved on gel and immunoblotted on a PVDF membrane for PAP 

detection. For preliminary analysis, the amino acid sequence for each protein was compared 

to the proteolysis pattern obtained by the three endoproteinases. This allowed detecting the 

regions that were more susceptible for proteolysis (Fig. 2.9). 
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Figure 2.9 : Protease accessibility laddering (PAL) to detect exposed domains. 
Using stringent buffer conditions, the PrA-tagged protein is recovered from cryolyzed cell grindate 

using magnetic beads and submitted to protease degradation. The PrA-recovered C-terminal end 

was analyzed by western blot. Figure taken from (80). 

 

Roche endoproteinases Asp-N (catalog ID : 1 420 488 or 1 054 589, 2ug/vial), Lys-C 

(catalog ID : 1 420 429, 5ug/vial) and Trypsin (catalog ID : 1 521 187, 25ug/vial) were 

reconstituted on ice in 50uL of ultrapure water, as recommended by the supplier. Single used 

aliquots of 2.5uL were flash-frozen in liquid nitrogen and stored at -80°C.   

To prepare the endoproteinase working stock for the PAL experiment, an aliquot of 

each endoproteinase was diluted with their respective 1X endoproteinase reaction buffer Asp-

N (50mM Na2PO4 pH8.0, 0.1%SDS; 3.75μL), Lys-C (25mM Tris-Cl pH8.5, 0.1% SDS, 1mM 

EDTA; 11μL), Trypsin (100mM Tris-Cl pH8.5, 0.1%SDS; 64μL) to give a mix of about 

16ng/μL.  

2.10 qRT-PCR 
To screen for any changes in mRNA levels of our proteins of interest in response to 

the depletion of one of them, quantitative reverse transcriptase polymerase chain reaction 

(qRT-PCR) was performed on cDNAs obtained using random primers (Section 2.1.8). 

The primers (Table XIX) were designed to have a salt adjusted Tm close to 60°C and 

to generate a PCR product of 96-173bps. An additional care was taken when designing the 

primers to be able to discriminate between the mRNA of each of the Ssf paralogs. The 



63 

sequence tag present in some strains (HA-SSF1, SSF1-PRA, SSF2-PRA) was used to 

discriminate between both Ssf paralog, as one primer was designed fully or partially in this 

sequence. Endogenous primers for each protein were also designed and validated using 

PrimerBlast (endSSF1, endSSF2, endNOP7). 

 

Table XIX: Primers designed for qRT-PCR 

Primer ID Sequence Salt adjusted Tm 
(°C) 

5RTPCR-SSF2PRA Fwd 5’-AGG TCA AGG GAA AGA TGG TG 59 
3RTPCR-SSF2PRA Rev 5’- TTT GAG CTT CAC CTT CTA CTT CA 58 
5RTPCR-SSF1PRA Fwd 5’- CGA TGA GCG ATG ATG AGT CT 59 
3RTPCR-SSF1PRA Rev 5’- GCT TCA CCT TCG ACC TCA CTA 59 
5RTPCR-HASSF1 Fwd 5’ AAT TCA TCG GCC AAG AGA AG 59 
3RTPCR-HASSF1 Rev 5’-CAC TCT GAT TAC CAT TGA CTT AGG TAT 58 
5RTPCR-endSSF1 Fwd 5’- ACA GTG CCG AAT TTG CAT CG 60 
3RTPCR-endSSF1 Rev 5’-ACC GGT GTT CTT TGG GAC TT 59.5 
5RTPCR-endSSF2 Fwd 5’-TCT CAA ACT TCG CTG TCG CA 60 
3RTPCR-endSSF2 Rev 5’- ACG TGG AGT TGG TTG CGA AT 60.5 
5RTPCR-endNOP7 Fwd 5’- CAA GGG CTC TAC TGC ACC AA 60 
3RT-PCRendNOP7 Rev 5’-CCC TAC CCA AAG CCC TTG TT 60 

Controls 
ACT1fwd (81) Fwd 5’-ATT ATA TGT TTA GAG GTT GCT GCT TTG G 58 
ACT1rev (81) Fwd 5’-CAA TTC GTT GTA GAA GGT ATG ATG CC 60 
UBC6fwd (81) Fwd 5’-GAT ACT TGG AAT CCT GGC TGG TCT GTC TC 69 
UBC6rev (81) Rev 5’- AAA GGG TCT TCT GTT TCA TCA CCT GTA TTT GC 66 

 

 

Before attempting the experiment, the efficiency of each primer sets were tested as 

follows: 5μL of four different samples were mixed together (dilution 1/4) and further diluted 

with 60μL of water (Vtot=80 μL) and the same procedure was done with their corresponding 

negative controls (RT-). These dilutions (1/16) were considered to be dilution 1 in the 

qRT-PCR tests. The RT+ was further diluted in series to give dilutions 1/10, 1/100, 1/1000 

and1/10 000 (10μL of previous dilution in 90μL water). For each primer set, the PCR reaction 

was performed in duplicate for each cDNA dilutions (1 to 1/10 000) and for RT- (Dil 1). Each 

reaction contained 3μL of cDNA (of varying dilutions), 5μL of SYBR Select Master Mix (2X, 

from Applied Biosystems) and 0.5μL of each primer set (10μM stocks). The PCR was 

performed in a 96-well format using ViiA7 and with the following PCR program: 50°C, 

2min; 95°C, 2min and 40X (95°C, 15sec; 60°C, 1min), followed by a melting curve analysis. 
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The preliminary analysis showed that the primers recognized only one template, as a 

single peak, with the same Tm, was observed in the melting curve plot for all cDNA dilutions. 

Here, a representative melting curve obtained for one primer set which targets UBC6 mRNA 

is presented and shows a single peak (Fig 2.10A). The threshold cycle (Ct) value can be 

linearly correlated to the levels of target cDNA present in the sample, as demonstrated by the 

standard curve (Fig 2.10B). For all primer sets, R2 of this standard curve ranged between 

0.98-1. From these analyses, it was determined that the best dilution of cDNA to use for every 

sample was DIL1, as it gave a Ct value of about 20 cycles for all genes tested under normal 

conditions. For normalisation purposes, mRNA levels of actin and UBC6 were also tested for 

every sample. All samples were normalized against actin or UBC6 (81). To detect mRNA level 

changes for a given gene, its mRNA levels at time 0 were assigned the value of 1.  
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A 

 
B 

 
Figure 2.10: UBC6 qRT-PCR melting and standard curves 

Prior to their use, each primer set was tested to validate their template specificity (melting curve) and 

linear correlation (R2 = 0.98-1) between CT values and levels of target cDNA (standard curve). Here: 

the UBC6 primers (A) generate a single narrow peak for all cDNA dilutions, which indicate that the 

primers are specific. (B) Additionally, the UBC6 primers generate CT values which can be linearly 

correlated (R2=1) with the levels of target cDNA present in a given sample. 
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The specificity of the endogenous primers targeting SSF1 (endSSF1) and SSF2 

mRNA (endSSF2) was verified (Fig. 2.11) by testing them using the cDNA of 

MET::HA-SSF1/SSF2-PRA strain before and after shutting off the repressible promoter 

(depleted HA-SSF1 mRNA). Their results were compared to the primer sets overlapping with 

the tags (SSF2-PRA and HA-SSF1). The endSSF2 primers detected no significant change in 

mRNA levels after HA-SSF1 depletion (1.052), similar to what was obtained using the 

SSF2-PRA primers (1.016). The endSSF1 primer set detected a decrease in mRNA upon 

HA-SSF1 depletion (0.157), similar to what was observed with the HA-SSF1 primer 

set (0.051). The endogenous primers are therefore specific, as they give similar results when 

compared to the primer sets overlapping with the tags (SSF2-PRA and HA-SSF1). 

 

 

Figure 2.11: Endogenous primers designed for qRT-PCR can discriminate between SSF 
paralogs.  
As SSF1 and SSF2 mRNAs are highly similar, the specificity of the primer pairs targeting their 
endogenous sequence needed to be verified. (A) The endogenous primers were tested against the 
cDNA of MET::HA-SSF1/SSF2-PRA strain, before (lanes 1 and 3) and after (lanes 2 and 4) )shutting 
off the repressible promoter (HA-SSF1 depletion). (B)These gave similar results as primers overlaping 
with the tags (HA-SSF1 and SSF2-PRA), which confirmed their specificity. 



 

 

 

 

 

 

 

 

 

3 Results 
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3.1 Generation of Yeast strains  
The Ssf proteins share 94% of their sequence and are believed to be redundant in the 

cell. However, analysis of their BioGRID interactors has revealed that this is not the case. The 

first aim of this project is to determine if there are notable differences between the particles 

that the Ssf proteins form, as the Ssf2-particle has never been reported during log phase. For 

this purpose, SSF1-PRA and SSF2-PRA strains were generated to compare their particles and 

potentially detect subcomplexes they form by ssAP (Section 3.2). In these assays, the controls 

were W303a and the PRA-tag expressed alone.  

Another aim is to potentially uncover the presence of parallel pathways during ribosome 

biogenesis involving one of the Ssf paralogs and Nop7. To alter the levels of these proteins, 

several strains were generated by genomically modifying haploid W303a (regulatable 

promoter insertion, gene deletion and C-termini tag insertion, Table XX). For this purpose, 

primers were designed to anneal with a genomic sequence of W303a in their 5’ (45-66nts) 

followed by a sequence annealing (18-21nts) with a plasmid containing the modification and a 

resistance cassette. The generated cassette was transformed into the background strain and 

transformants were validated by WB and diagnostic PCR.  

 

Combination strains were constructed to potentially uncover the presence of parallel 

pathways involving Nop7/Ssf1 and Ssf2 (Sections 3.3). All strains have a C-termini PRA-

tagged gene that is under its own promoter. The PRA-tag is relatively small (27kDa), and has 

been selected for its capacity of strongly bind to IgG antibodies, a feature useful for pre-rRNP 

complex isolation by ssAP (Section 3.2). The PRA-tag can also be readily detected using an 

HRP-coupled rabbit antibody (PAP), which was useful to monitor the behavior of the tagged 

RiBi proteins upon depletion of Ssf1 and/or Nop7 (Section 3.3). SSF1 and NOP7 genes were 

put under the influence of a regulatable promoter (Met25 and Gal1 respectively) and their 

levels can be monitored by WB through an N-termini HA epitope (3kDa) that has been 

integrated into the cassette. These promoters slightly over-express the target proteins in 

permissive media (-methionine and GRS respectively) but this does not happen to negatively 

affect cell growth or progression of ribosome biogenesis. By switching media (+met and 
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dextrose respectively), the expression of the protein that is under the control of the regulatable 

promoter can be modulated. As the Ssf proteins might have a different function during 

ribosome biogenesis, the SSF2 gene was deleted in some strains.  

 

Table XX: Yeast strains used in this study 
Name/phenotype Background Genotype Reference 

W303a - MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}  (78) 

ZPR::PRA W303 
MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

YGR211W::PRA } 
(78) 

SSF1-PRA 
W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

YHR066W-PRA-SpHIS5} 
This study 

SSF2-PRA 
W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

YDR312W-PRA-SpHIS5} 
This study 

NOP7-PRA 
W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15  

YGR103W-PRA-SpHIS5 } 
(78) 

SSF2-PRA/ MET25::SSF1 
W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

YDR312W-PRA-SpHIS5 ClonNAT-MET25::3HA-YHR066W} 
This study 

CIC1-PRA/ 
MET25::SSF1/ ΔSSF2 

W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 
YHR052W::PRA-SpHIS5 ClonNAT-MET25::3HA-YHR066W 

YDR312WΔ::hph} 
This study 

NOP7-PRA/ 
MET25::SSF1/  ΔSSF2 

W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15  
YGR103W-PRA-SpHIS5 ClonNAT-MET25::3HA-YHR066W 

YDR312WΔ::hph} 
This  study 

SSF1-PRA/ GAL1::NOP7 
W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

YHR066W-PRA-SpHIS5 KanMX6-GAL1::3HA-YGR103W} 
This study 

SSF2-PRA/ GAL1::NOP7 
W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

YDR312W-PRA-SpHIS5 KanMX6-GAL1::3HA-YGR103W} 
This study 

SSF1-PRA/ GAL1::NOP7/ 
ΔSSF2 

W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 
YHR066W-PRA-SpHIS5 KanMX6-GAL1::3HA-YGR103W 

YDR312WΔ::hph} 
This study 

SSF2-PRA/ GAL1::NOP7/ 
MET25::SSF1  

W303 MATa {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 
YDR312W-PRA-SpHIS5 KanMX6-GAL1::3HA-YGR103W 

ClonNAT-MET25::3HA-YHR066W} 
This study 

 

All combination strains were analyzed in repressive media that is upon depletion of 

HA-SSF1 and/or HA-NOP7 in the presence or absence of SSF2. Each strain was tested during 

three independent experiments, except the SSF1-PRA/GAL1::NOP7/ΔSSF2 strain, which was 

tested in duplicate only. For all strains, cell growth was monitored in repressive media for at 

least 20 hours as described in Section 2.5. In addition to changes in cell growth, total protein 

levels of the selected proteins were monitored by WB. Changes in pre-rRNA processing were 

monitored by NB using fluorescently labelled probes and the mature rRNAs were also 

detected by methylene blue staining. As premature C2 cleavage was reported upon Nop7 

depletion and also upon depletion of the SSF proteins, primer extension analysis of the C2 and 
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C1/C1’ sites were also performed for all strains. Changes in SSF1, SSF2 and NOP7 mRNA 

levels were monitored by qRT-PCR (Section 3.6). 

Finally, as both Ssf1 and Ssf2 potentially form homo or heterodimers, bind pre-rRNA 

and also bind Nop7, plasmids were constructed and the optimised conditions were determined 

for recombinant Ssf1, Ssf2 and Nop7 protein purification (Section 2.3). The recombinant 

protein will be useful for future in vitro interaction studies. In order to look for potential 

folding differences between Ssf1 and Ssf2, Ssf1-PrA and Ssf2-PrA proteins were submitted to 

protease accessibility laddering while they were in complex with other proteins (Section 3.7). 

 

3.2 Ssf1 and Ssf2 form similar complexes 
In order to compare Ssf1-PrA and Ssf2-PrA particles and potentially detect 

subcomplexes that these proteins form, ssAP (single-step affinity purification) was performed 

using a 96-well format. SSF1-PRA and SSF2-PRA cells were harvested and cryo-lysed. 

During the ssAP, the particle is recovered either intact or partially disrupted, depending on the 

stability of the particle and on the stringency of the buffer used during the ssAP. Since the 

relative stability of the complexes made by Ssf1 and Ssf2 proteins were not known, various 

salts were selected according to their stabilisation properties: KOAc > NH4OAc > NaCl > 

NaCitrate (79, 82, 83). In order to obtain buffers of varying stringency, these salts were used in 

different concentrations ranging from 100-300mM and once, MgCl2 and DTT were used in 

low concentrations (2mM and 1mM respectively in buffer 1, TBT). The detailed composition 

of the buffers is detailed in Fig. 3.1C. The cell grindate was solubilised in the selected buffer 

and incubated with IgG-coupled magnetic metal beads (78). The PrA tagged protein along with 

its intact or partially disrupted pre-rRNP complex was then eluted from the beads using 

NH4OH. Proteins were separated by size (4-12% Bis-Tris) and visualized by silver staining 
(78). The controls used are the background strain (W303a) and the PrA tag expressed alone 

under the control of the ZPR1 promoter (ZPR::PRA).  

In general, W303a cells generated more background than ZPR::PRA; hence bands 

found in these two control strains were considered contaminants (Fig. 3.1B). The buffer giving 

the most background contained 100mM KOAc salt (Fig. 3.1A, buffer4). Neither addition of 
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DTT nor MgCl2 had an effect on the band patterns observed (Fig. 3.1A, buffer1), which 

suggest that the particle stability is not affected by disruption of proteins with disulfide bonds 

nor by stabilizing RNA-protein interactions (78, 84)
. To verify if a change in the powder to 

buffer ratio had an effect on the the background observed in the control strains, ssAP was 

performed using two powder to buffer rations (1:9 and 1:4) but this did not generate a 

significant change in the background for buffers #1, 2, 3 and 6. 

Ssf1-PrA and Ssf2-PrA ssAPs revealed identical band patterns, which indicate that 

these proteins are most likely associated with similar sets of proteins. In particular, six proteins 

that have not yet been identified by MS repeatedly appeared in complex with each of the Ssf 

proteins (Fig. 3.1A). If these proteins are tightly bound to Ssf1-containing particles, then they 

are likely present in the proteins previously identified Ssf1 and likely enter the particle at the 

same time as Ssf1 (Fig. 1.7) (54, 67). A protein of ~90kDa and two proteins appearing as a 

doublet at ~70kDas were continuously present, even under high-stringency conditions (buffer 

#6, NaCitrate 200mM) and could correspond to Dbp9, Drs1 and Nog1 (85).  The data suggest 

that the Ssf proteins form a stable sub-complex with these proteins. One protein of ~90kDas 

and two ~130kDas were repeatedly observed except when using NaCitrate-containing buffers, 

which are highly-stringent (buffers #3, #6 and #11). This probably indicates that these proteins 

are required for the sub-complex containing one of the Ssf proteins to assemble into the pre-

rRNP complex and likely correspond to Dbp10, Noc1and Noc2. All of the patterns mentioned 

above are more strongly detected with SSF2-PRA than SSF1-PRA, indicating that the sub-

complex is more stable with Ssf2. Both Ssf1 and Ssf2 associated complexes are completely 

disrupted in the presence of NaCitrate 300mM (buffer #11), which indicate that their 

interactions are less stable than other sub-complexes found during ribosome biogenesis, such 

as Noc1-Noc2 and Noc2-Noc3 heterodimers, which were still recovered in the low molecular 

weight fractions of a sucrose gradient using a buffer containing 800mM KCl (86). The presence 

of a sub-complex containing Ssf1 protein is further supported by a sucrose gradient analysis 

which detected Ssf1-PrA in fractions of lower molecular weight than the 40S (54).  MS analysis 

of the Ssf particles is necessary to unambiguously identify the most abundant RiBi proteins in 

these particles and will be the next step. 
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Figure 3.1: Stability of key pre-rRNP complex components 
Grindate (0.25-0.5g) of cells were used. In these strains, (A) Ssf1 or Ssf2 was C-termini tagged (PrA) 

and used as bait (*) for ssAP. Recurring band patterns observed are indicated (-). (B) W303a and a 

strain expressing the PrA (*) tag alone were used as background strains. (C) Buffers of varying 

stringency were used for ssAP for each strain. For buffers #1, #2, #3 and #6, cell grindate to buffer 

ratio of 1:4 was also tested to verify if this change had a significant effect on background. 



73 

3.3 Ssf2 does not fully compensate for the loss of Ssf1 
Initially, tetrad analysis of a diploid yeast strain lacking one copy of the SSF1 and 

SSF2 genes generated an inviable haploid spore, which corresponded to the one lacking both 

genes (49). The other spores did not generate an obvious phenotype. In this study, a 

HA-SSF1-depleted strain was tested by serial dilution and the strain generated as many 

colonies as the wild-type strains but which were smaller, suggesting a mild growth defect 

(Fig. 3.2). The same phenotype was also observed in a strain slightly over-expressing 

HA-SSF1 in which SSF2 was deleted (data not shown). Consistent with the finding that the 

Ssf proteins are essential, HA-SSF1-depleted/SSF2  cells showed a growth defect similar to 

that observed upon depletion of an essential RiBi protein, like Nop7.  
 

 
Figure 3.2: SSF1-depletion mildly affects cell growth 

In permissive media, the three strains grow at a similar rate. In restrictive media, Ssf1-

depleted cells show a mild growth defect while Ssf1-depleted/SSF2 -cells show a severe 

growth defect. 

 

To further characterize this mild growth defect observed upon depletion of one of the 

SSF proteins, a growth curve was performed, which allows to quantify cell growth. The 

doubling time (Dt) of wild-type cells (WT, W303a) was of 90min (Fig. 3.3-3.5A). The 

precursors detected by NB in W303a were: 27SA (both 27SA2 and 27SA3) and 27SB, 23S, 

20S, A3-C2, 7S, 6S; to a lesser extent, 27SA2 and non-detectable levels of A2-C2 (Fig. 3.3-

3.5D, lanes 1-2). Primer extension using a probe annealing to the 5’ coding region of the 25S 
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allowed the amplification of part of the ITS2. For W303a, this analysis showed no primer 

extension stop at the C2 site and a normal C1’ and C1 stops, which indicates normal 5’ 

processing of 25S (Fig. 3.3-3.5F lanes 1-2). The levels of mature rRNAs did not change (25S, 

18S 5.8S and 5S). These were detected by using probes targeting their 5’ (Fig. 3.3-3.5D lanes 

1-2) and also by staining the membrane with methylene blue (Fig. 3.3-3.5E lanes 1-2). 

Staining also detected tRNAs, which could serve as a loading control, since 5S rRNA has been 

shown to decrease upon depletion of the Ssf paralogs. 

HA-Ssf1 protein, was no longer detected after 6 hours of growing in repressive media 

(YPD+met) for the three strains tested, which indirectly confirmed repression of the HA-SSF1 

gene. The Dt of HA-SSF1-depleted cells in which Ssf2 was present was of 120min 

(MET::SSF1/SSF2-PRA, Fig. 3.3A). Analysis of total protein showed that total Ssf2-PrA 

levels increased in these strains, which may indicated the existence of a compensatory 

mechanism (Fig. 3.3B lanes 3-6). However, this increase in Ssf2 was not sufficient to maintain 

ribosome biogenesis, which, at least partially, may explain the mild decrease in cell growth. 

Accumulation of 35S precursor and 23S and A3-C2
 pre-rRNA indicate that ribosome 

biogenesis was mildly affected in this strain (Fig. 3.3D lanes 3-4). The levels of other 

intermediates and mature rRNAs did not seem to change and primer extension showed no stop 

at the C2 site as well as normal C1’ and C1 stops (Fig. 3.3D-F lanes 3-4). 

Two ΔSSF2 populations were also tested (MET::SSF1/ΔSSF2/CIC1-PRA and 

MET::SSF1/ΔSSF2/NOP7-PRA). In permissive media (t0), pre-rRNA analysis of these strains 

showed an accumulation of 35S (Fig. 3.3D lanes 5 and 7), indicating that slightly over-

expressed levels of Ssf1 cannot fully compensate for the loss of Ssf2. In repressive media, the 

Dt of each population was of 168 and 180min respectively, a significant decrease in cell 

growth characteristic of the depletion of an essential RiBi gene, like Nop7 (Fig. 3.4A). As the 

depletion phenotype observed upon depletion of both of the Ssf proteins has been reported by 

Fatica et al, NB analysis and primer extension of the pre-rRNAs for these strains would 

corroborate their depletion phenotype. Therefore, an accumulation of 35S pre-rRNA and a 

reduction in 27SA2, 27SB, 20S, 7S, 6S precursors is expected, as well as a premature C2 

cleavage (primer extension), a reduction of all mature rRNAs, including 5S, and accumulation 

of aberrant pre-rRNAs (23S, 5’ETS-D, A2-C2) (54). However, the background strains used in 

the previous study is W3031a, a strain sensitive to oxidative stress because of mutations in the 



75 

YBP1 gene. Therefore, it would be normal to observe slight differences in pre-rRNA 

processing, but the background strain used in this study (W303a) is expected to be more fit. 

Upon HA-SSF1 depletion, MET::SSF1/ΔSSF2/CIC1-PRA showed a slight 

accumulation of 35S, concomitant with a decrease in 27SA2, 27SAs and 27SBs, 20S, 7S, 6S 

precursors, as previously reported (Fig. 3.3D lane 6). A premature C2 cleavage was detected 

using primer extension as well as a mild decrease in C1’ and C1 stops, which indicate that the 

ITS2 processing from the C2 cleavage site to the mature end of the 5’-25SrRNA is delayed 

(Fig. 3.3F lane 6). The 23S (5’ETS-A3) pre-rRNA was still visible but decreased and this was 

concomitant with the appearance of a 22S (A0-A3) precursor, which indicate that A0 site-

processing is delayed but still occurring in the absence of the Ssf proteins (Fig. 3.3D lane 6). 

The probe required for 5’ETS-D pre-rRNA detection was not available at the time the probing 

was performed. Aberrant A2-C2 pre-rRNA could not be detected before or after depletion, 

which highlights a difference in pre-rRNA processing between W3031a and W303a. Instead, 

A3-C2 pre-rRNA accumulated, which indicate a premature C2 cleavage is occurring, since it 

would be normally cleaved after complete ITS1 processing (Fig. 3.3D lane6). A decrease in all 

mature rRNAs, including the 5S, was detected by NB and methylene blue staining, confirming 

that depletion of the Ssf proteins induces a decrease in all mature rRNAs (Fig 3.3 D-E lanes 

5-6). The same phenotype was observed for MET::SSF1/ΔSSF2/NOP7-PRA. 

 

3.3.1 Nop7 levels are affected by Ssf protein levels 

Using an antibody against endogenous Nop7, it was possible to detect constant levels 

of Nop7 in wild-type cells. However, endogenous levels of Nop7 could not be detected in the 

MET::SSF1/SSF2-PRA strain or in the CIC1-PRA/MET::SSF1/ΔSSF2 strain, which suggest 

that Nop7 levels are decreased in these strains. Alternatively, this could also be explained in 

limitations of the WB analysis. However, analysis of the levels of Nop7-PrA in the third strain 

showed that the Nop7 protein levels decreased in the absence on the Ssf proteins, whereas 

Cic1-PrA protein levels, another RiBi protein, did not change (Fig. 3.3B lanes 7-11). Taken 

together, this data therefore contradicts the hypothesis that Nop7 and Ssf2 are not genetically 

linked and suggests that the levels of Nop7 are correlated to the cellular levels both Ssf 
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proteins. Additional analysis of other strains will help determine if the contrary is also valid 

(Section 3.5). 

 
 

 
Figure 3.3 : Ssf2 does not fully compensate for the loss of Ssf1 
Depletion of HA-SSF1 was performed by switching cells in repressive media (YPD+5mM met). (A) 

Cell growth was monitored for these cells in the presence (light blue) or absence of Ssf2 (orange). (B) 
Levels of Ssf2 were assayed for several timepoints. Ssf1 depletion was confirmed by WB and actin 

was used as loading control.  Total protein levels of Ssf2, the antibodies used for WB analysis are 

indicated at the right. (C) Using fluorescent probes, (D) total RNAs were analyzed by NB. (E) The 

most abundant RNAs were also detected using methylene blue staining. (F) Using 1μg of RNA, primer 

extension was performed to detect changes C2 and C1/C1’ site-processing. 
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3.4 Nop7 and Ssf1 belong to a similar maturation route  
As demonstrated in the previous section, Ssf2 is upregulated in the absence of Ssf1, 

and depletion of both Ssf proteins downregulate the levels of Nop7. A strain was constructed 

in which HA-Nop7 and HA-Ssf1 levels could be independently regulated by changing media 

to dextrose or adding methionine respectively.  

Prior to repressing HA-NOP7 and/or HA-SSF1 genes, GAL::NOP7/MET::SSF1/SSF2-

PRA cells showed normal pre-rRNA processing phenotype, except for a mild increase in 35S, 

which show that the slight overexpression of HA-Ssf1 mildly affects the levels of its paralog, 

Ssf2, which performs a function that cannot be fully compensated for by Ssf1 (Fig. 3.4D-F 

lanes 1-3).  

This strain allowed testing if HA-Nop7 depletion affects the levels of Ssf2-PrA, when 

Ssf1 levels are stably regulated by means of a regulatable promoter. Under these conditions, 

cellular Dt increased to 180min (Fig. 3.4A), which corroborates the growth phenotype defect 

previously reported in Nop7-depleted cells (36). Upon HA-Nop7 depletion, HA-Ssf1 levels did 

not notably change, which was partially expected since the transcription of the gene was 

controlled by the Met25 promoter. Ssf2-PrA levels decreased, confirming that Ssf2 and Nop7 

are genetically linked (Fig. 3.4B lanes 1-2). The strain used in the previously reported study 

used a variant of S288C, which differs from W303a in that it cannot form pseudohyphae and 

has a mutated HAP1 gene, which alters normal processes occurring in the mitochondria. 

Therefore, slight changes in pre-rRNA processing are expected between the previously 

reported results and the ones obtained in this study. Furthermore, pre-rRNA processing should 

also be modified because the levels of the Ssf proteins are altered under these conditions and 

these were found associated with histone modifiers of opposite function. Ssf1 was found 

associated with Eaf7 a histone acetylase and acetyltransferases open DNA while Ssf2 has been 

associated with deacetylases Rpd3 and Hda1 and these should close chromatin (55).  

HA-NOP7-depleted cells showed a strong accumulation of 35S, premature C2-site 

processing and a reduction in 27SA/27SB, 7S and 6S pre-rRNA (Fig. 3.4D and F lanes 3-4), 

which is consistent with previous results (36). However, instead of observing an accumulation 

of aberrant 23S (5’ETS-A3) pre-rRNA, this precursor decreased and a lower molecular weight 

precursor, probably 22S (A0-A3), was observed (Fig. 3.4D lanes 3-4), which suggest that under 
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these conditions A0 processing can still occur.  A reduction in 25S, 18S, 5S and 5.8S rRNA 

was detected by NB and methylene blue staining but problems with the gel resolution did not 

allow discriminating between short and long forms of 5.8S rRNA (Fig. 3.4D-E). These results 

suggest that, in addition to the effect of Nop7 depletion, this phenotype is also resulting from 

the altered levels of the Ssf proteins. For instance, as Ssf2 can be found in affinity 

purifications of histone deacetylases, while Ssf1 can be found associated with histone 

acetylases, the resulting levels of these proteins for this strain under these conditions could 

have a role in closing rDNA repeats and reducing transcription. 

If Nop7 and Ssf1 belong to a same maturation route, as hypothesised, their 

simultaneous depletion should result in an increase of cellular Dt from 90 to 180min, as 

observed upon Nop7 depletion. Indeed, cellular Dt increased to 180min and WB analysis 

revealed increased Ssf2-PrA levels (Fig. 3.4A). During NB analysis, no 35S, 27SA/27SB, 

27SA2 precursors were detected (Fig. 3.4D lane 6). Levels of 23S were not detected but there 

was a slight accumulation of 22S and 20S (A1-A2) pre-rRNA, which suggest that A0, A1 and 

A3 processing can occur under these conditions. No change in A2-C2 and A3-C2 levels were 

detected, which suggest that these pre-rRNAs are still normally processed (Fig. 3.4D lane 6). 

However, premature C2-site processing was detected by primer extension and was 

concomitant with undetectable levels of 7S and 6S pre-rRNA, suggesting that these precursors 

are rapidly processed or even degraded under these conditions, as the levels or 5.8S rRNA 

were nearly non detectable by NB and non detectable by methylene blue staining (Fig. 3.4D-F 

lane 6). Lower levels of mature rRNAs were detected, including 5S rRNA by NB and 

methylene blue staining (Fig. 3.4D-E lane 6), which suggest that overall transcription was also 

affected upon depletion of Nop7 and Ssf1. Together, these data suggest that Nop7 and Ssf1 are 

genetically linked and function in a similar maturation route, as hypothesised. 

3.4.1 Ssf2-PrA levels are inversely correlated to Nop7 and Ssf1 

If Nop7 and Ssf2 are not genetically linked, no change in Ssf2-PrA levels is expected 

upon HA-Nop7 depletion. After 16 hours of repressing HA-NOP7 gene transcription (Gal1 

promoter shut-off in SD-met), HA-Nop7 protein levels were no longer detected, indirectly 

confirming the repression of the gene transcription, and HA-Ssf1 protein levels detected did 
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not change, as its gene was under the expression of a regulatable promoter that was kept on 

(Fig. 3.4B lanes 1-2). Unexpectedly, Ssf2-PrA levels decreased under these conditions, which 

imply that its protein levels can be correlated to Nop7 proteins levels. In the same strain, 

depletion of HA-Ssf1 increased Ssf2-PrA levels (Fig. 3.4B lanes 1 and 3), which corroborates 

that was previously observed in the MET::SSF1/SSF2-PRA strain (Fig. 3.3A and B lanes 4-6). 

If Ssf2 is inversely regulated by Nop7 and Ssf1 depletions, then simultaneous repression of 

both HA-SSF1 and HA-NOP7 genes would show intermediate levels of Ssf2. WB analysis 

revealed that this is the case and therefore show that Nop7 and Ssf1 protein levels inversely 

correlate to the levels of Ssf2. This contradicts the hypothesis that Nop7 and Ssf2 are not 

genetically linked.  

 

3.4.2 HA-Nop7 levels unexpectedly increase upon depletion of HA-

Ssf1 in the presence of Ssf2 

After 24 hours of repressing HA-SSF1 gene transcription (Met25 promoter shut-off in 

GRS+met), HA-Ssf1 levels were no longer detected, Ssf2-PrA levels increased cellular Dt was 

of 120min (Fig. 3.4A and B lanes 1 and 3). This phenotype is identical to the one observed 

upon HA-Ssf1 depletion in the MET::SSF1/SSF2-PRA strain and further corroborates that 

Ssf2 cannot fully compensate for the loss of HA-Ssf1 (Fig. 3.3 lanes 3-6). As the HA-NOP7 

gene is under the Gal promoter, the HA-Nop7 levels are slightly higher than in wild-type cells, 

which is expected. As these conditions were tested in the same WB and actin levels are 

similar, the HA-Nop7 levels should be the same before and after depletion of HA-Ssf1 (Fig. 

3.4B lanes 1 and 3). Unexpectedly, HA-Nop7 levels increased, which contradicts the 

observation in the MET::SSF1/SSF2-PRA strain, where Nop7 levels were undetectable, and 

was concomitant with a mild accumulation of 35S and 23S pre-rRNA (Fig. 3.3B lanes 3-6). 

HA-Ssf1 depletion delays pre-rRNA processing and is most likely responsible for the 35S pre-

rRNA accumulation observed (Fig. 3.4D lane 5). As Nop7 has been associated with 27SAB 

processing, its increase should result in faster processing of 27SAB precursors (36).  This 

phenotype is indeed observed in these cells and is concomitant with premature C2 site 

cleavage, as observed by primer extension (Fig. 3.4D and F), which suggest that the C2 site is 
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partially unprotected when HA-Ssf1 is absent but HA-Nop7 and Ssf2-PrA are increased. The 

levels of the other precursors and mature rRNAs did not notably change (Fig. 3.4D and E). 

This data therefore suggests that the increase in HA-Nop7 levels observed by WB is real and 

qRT-PCR analysis of its mRNA levels should determine if the cell achieves this by stabilising 

its mRNA or rather by increasing its translation rate or stabilising the protein. These results are 

presented and discussed in Section 3.6. 
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Figure 3.4: Ssf1 and Nop7 belong to a similar maturation route 
Depletion of HA-SSF1 and/or HA-NOP7 was performed by switching cells in repressive media (SD-

met, GRS+5mM met or YPD+5mM met). (A) Cell growth was monitored upon depletion of HA-Nop7 

(orange), HA-Ssf1 (light blue), and simultaneous depletion of both proteins (orange). (B) Levels of HA-

Ssf1, HA-Nop7 and Ssf2-PrA were assayed for each condition by WB and actin was used as loading 
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control.  The antibodies used for WB analysis are indicated at the right. (C) Using fluorescent probes, 

(D) total RNAs were analyzed by NB. (E) The most abundant RNAs were also detected using 

methylene blue staining. (F) Using 1μg of RNA, primer extension was performed to detect changes C2 

and C1/C1’ site-processing. 

 

3.5 Nop7 depletion in the absence of Ssf2 may generate 

aberrant ribosomes and severely impair cell growth 
First, in order to further support the finding that Nop7 levels affect both Ssf1 and Ssf2 

protein levels, Nop7 was depleted in two strains in which both Ssf proteins were present and 

regulated by their endogenous promoters. Depletion of Nop7 was validated by WB and the Dt 

was of 180min in both strains (Fig. 3.5A and B lanes 1-8). In the first strain, Ssf1-PrA levels 

decreased over time and the same was observed for Ssf2-PrA in the second strain. These 

results therefore further validate that Nop7 levels are correlated to the levels of both Ssf 

proteins.  

As previously demonstrated, Nop7 and Ssf1 most likely function in a same maturation 

route. Unexpectedly, the levels of Ssf proteins are correlated to Nop7 levels and the contrary is 

also valid, which links Ssf2 with Nop7. However, it is still possible that Ssf2 functions in a 

parallel LSU maturation pathway, independent of Ssf1 and Nop7. In order to test this 

hypothesis, HA-Nop7 was depleted in a strain in which Ssf1 was C-termini PrA-tagged and 

SSF2 was deleted from the genome. In restrictive media, the Dt of NOP7-depleted/SSF2 -

cells was of 372min (Fig. 3.5A). At time 0, the levels of Ssf1-PrA were significantly lower in 

this strain compared to the other strain in which Ssf2 was still present (Fig. 3.5B lanes 1 and 

9). Previously, it was observed that Ssf2-PrA levels increased as a response to Ssf1 depletion 

(Figs. 3.3 lanes 3-6 and 3.4B lanes 1 and 3) but the the contrary does not seem to be the case. 

This therefore suggests that the levels of the Ssf proteins are regulated in the cell through 

independent mechanisms. Upon Nop7 depletion, the levels of Ssf1-PrA increase and then 

decrease only in SSF2 -cells (Fig. 3.5B lanes 9-12).  
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Prior to HA-Nop7 depletion, GAL::NOP7/SSF1-PRA/ΔSSF2 cells show a pre-rRNA 

processing phenotype comparable to WT (Fig. 3.5D-F lanes 1-3) except for a mild 

accumulation of 35S pre-rRNA that was also observed in other strains in which Ssf2 was 

deleted (Fig. 3.3D lanes 5 and7). 

Upon depletion of  Nop7 and Ssf2, pre-rRNA processing defects would be expected to 

resemble features of both phenotypes (Table I). However, after HA-NOP7 depletion, 35S pre-

rRNA levels did not change, 18S and 5S levels dramatically decreased and no other pre-rRNA 

or mature rRNA could be detected by NB (Fig. 3.5D lane4). Primer extension using a probe 

that hybridized within the 5’ end of mature 25S rRNA (007) did unfortunately not reveal any 

accumulation of premature cleavage of the C2-site (Fig. 3.5F lane4). Methylene blue staining 

showed strong accumulation rRNAs that were slightly lower in molecular weight than 25S, 

18Sand 5S (Fig. 3.5E lane4). 
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Figure 3.5: Ssf2 belongs to a parallel LSU maturation pathway independent of Nop7 and 

Ssf1  
Depletion of HA-NOP7 was performed by growing cells in repressive media (YPD). (A) Cell growth was 

monitored upon depletion of HA-Nop7 (orange, red). (B) Levels of HA-Nop7, Ssf1-PrA and Ssf2-PrA 

were assayed by WB and actin was used as loading control.  The antibodies used for WB analysis are 

indicated at the right. (C) Using fluorescent probes, (D) total RNAs were analyzed by NB. (E) The most 

abundant RNAs were also detected using methylene blue staining. (F) Using 1μg of RNA, primer 

extension was performed to detect changes C2 and C1/C1’ site-processing. 
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3.6 The cell regulates differently the levels of Ssf2 and 

Nop7 

3.6.1 Upon depletion of Ssf1 or both Ssf proteins, Nop7 mRNA is 

stabilized and its translation rate is modulated  

As previously shown, Nop7 protein levels unexpectedly decreased upon depletion of 

Ssf1 or in the absence of the Ssf proteins (Fig. 3.3B lanes 1-11). It is therefore valid to ask 

whether regulation of Nop7 is performed transcriptionally, post-transcriptionally or both. 

Upon depletion of Ssf1, both in presence (Fig. 3.6A lanes 1-2) and absence of Ssf2 (Fig. 3.6B 

lanes 1-4), the mRNA levels of Nop7 significantly increased. Because the decrease in Nop7 

protein is not concomitant with a decrease in its mRNA, then post-transcriptional mechanisms 

exist that degrade Nop7 protein. Alternatively this could also be explained by a decreased 

affinity of its transcript with the translational machinery. The increase in NOP7 mRNA levels 

could be explained by increased transcriptional rate or is stabilised under these conditions. 

Using the Gal regulatable promoter, NOP7 gene transcription was kept constant upon HA-

Ssf1 depletion (Fig. 3.6A lane 5). Under these conditions, there was an increase in its mRNA, 

which suggests that the increase in NOP7 mRNA levels results from an increase in its 

stabilisation. Although NOP7 mRNA levels always increased, its protein levels either 

decreased (Fig. 3.3B lanes 1-11) or increased (Fig. 3.4B lanes 1 and 3). This data is therefore 

consistent with the supposition that altering the levels of at least one of the Ssf proteins 

generates NOP7 mRNA stabilisation with changes in its translational rate and/or protein 

stability. 
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3.6.2 Upon depletion of Ssf1 or Nop7+Ssf1 proteins, Ssf2 protein 

levels change, its mRNA levels remains stable and its 

translation rate is modulated  

As Ssf2 proteins levels are upregulated in the absence of Ssf1 and downregulated in the 

absence of Nop7, analysis of its mRNA levels could provide further insight on the 

mechanisms the cell used to regulated Ssf2 protein levels. Upon depletion of Ssf1, the mRNA 

levels of Ssf2 did not significantly change, suggesting that the protein levels of Ssf2 result 

from the stabilisation of the protein or from increased translation rate of its transcript 

(Fig. 3.6A lanes 1-2). Depletion of Nop7 or both Nop7 and Ssf1 protein levels also did not 

significantly change the mRNA levels of SSF2, which further support this idea. In this strain, 

Ssf1 depletion, resulted in an increase in both Ssf2 and Nop7 protein levels and the levels of 

SSF2 mRNA significantly decreased (0.588-fold, Fig. 3.6A lanes 3 and 5). 

 

Upon Nop7 depletion, the SSF1 gene was under the expression of Met25 promoter and 

both levels of mRNA and protein remained constant (Figs. 3.6A lane 4 and 3.4B lanes 1-2 

respectively). This implies that if the levels of mRNA change, it is most probably caused by a 

change in transcriptional rate of the gene. In another strain, Nop7-depleted/ Ssf2  cells 

increased the levels of SSF1 mRNA (1.521-fold increase, Fig. 3.6B lane 5-6). This increase 

was however concomitant with significantly lower levels of Ssf1 proteins that fluctuated over 

time (Fig. 3.6B lanes 9-12). In order to better understand if the fluctuation of Ssf1 protein 

observed is linked to a change in its mRNA, a timepoint analysis of SSF1 mRNA will be 

required for this strain.  
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Figure 3.6: qRT-PCR analysis of NOP7, SSF1 and SSF2 mRNA levels 
For each strain, cells in log phase were collected in the presence or absence of Ssf1 and or Nop7, 

regulated by means of distinct regulatable promoters. Using random primers and reverse 

transcriptase II, cDNAs were created from total RNA extracts. Primer sets specifically targeting unique 

endogenous sequences of key mRNAs were used for RT-PCR. Results were normalised against actin 

or UBC6, which are expected to remain constant. Assays in which Ssf2 is (A) present or (B) absent. 

 

3.7 Structural changes of Ssf1, Ssf2 and Nop7  
In an attempt to discern potential protein folding differences between Ssf1 and Ssf2, a 

protease accessibility laddering (PAL) assay was performed as per (80). Depending if the 

protein is alone or in complex, protein folding changes are expected and can be associated 

with changes in the accessibility of specific amino acids in the protein sequence when 

degraded using limited protease activity (87-89). The PAL assay can also confirm fold 

recognitions and sequence structures (80). The PAL assay was also chosen because the cell 

grindate of log phase strains with either Ssf1, Ssf2 or Nop7 C-terminally tagged (PrA) were 

already available in the lab. The tagged protein is recovered in its natively folded state using 

single-step affinity purification (ssAP) and it can be recovered alone or in complex, depending 

on the buffers stringency and the stability of the complexes it forms with other proteins. 

Limited proteolysis is then used to target exposed surface loops and domain-linking segments. 

The resulting C terminal PrA tagged fragments of the protein can then be tracked by western 

blot (Fig. 2.9) (80). For each sample, three different endoproteinases targeting one or two amino 

acids were used: Asp-N (D, aspartic acid), Lys-C (K, lysine) and trypsin (K, lysine and R, 

arginine), which helped locate the reacting amino acids. By comparing changes in proteolytic 

cleavages when the protein is alone or in complex, structural changes can be inferred and the 

exact location of the amino acid sequence can be identified by Edman sequencing (80). 

As a preliminary step, NOP7-PRA, SSF1-PRA and SSF2-PRA strains were submitted to 

limited proteolysis using a low stringency buffer (20 mM K/HEPES pH 7.4, 110 mM KOAc, 2 

mM MgCl2, 0.1% Tween 20, 1 mM DTT, 1:500 protease inhibitor cocktail) (80). The exposed 

regions of the Nop7 protein, when it is in complex with other proteins, can be approximated to 

regions located between its known domains (Fig. 3.7A). When they are in complex, both Ssf 
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proteins fold similarly and the exposed regions were approximated to regions located between 

domains (Fig. 3.7B). The The Ssf proteins show a similar pattern, consistent with the finding 

that the Ssf proteins are most likely associated with similar sets of proteins (Section 3.2). 

Cleavage patterns of the Ssf and Nop7 proteins when they are in complex with other RiBi 

factors under normal cellular conditions have been identified in this study.  
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A 

 

B 

 

Figure 3.7: Exposed domains of key proteins when in complex. 
Using stringent buffer conditions, the PrA-tagged protein is recovered from cryolyzed cell grindate 

using magnetic beads and submitted to protease degradation (*: full length). The PrA-recovered 

C-terminal end was analyzed by western blot. Nop7 (A) and Ssf (B) proteins domains constructed 

according to information taken from (54), (52) and (1). 



 

 

 

 

 

 

 

 

 

4 Discussion and perspectives 
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4.1 Ssf1 and Ssf2 form similar pre-rRNP particles and 

subcomplexes 
In the cell, Ssf1 is six times more abundant than its paralog, Ssf2. The Ssf1 affinity 

purification complex has previously been reported during log phase and contains many LSU 

RiBi factors, consistent with its role during ribosome biogenesis. Both paralogs can potentially 

heterodimerize with each other, although Ssf1 particles do not seem to contain Ssf2 under 

normal conditions (54). Moreover, Ssf2 has been found in particles in which Ssf1 is absent, like 

the Arx1 particle (90). Therefore, taken together, this data suggests that both proteins associate 

with distinct particles during ribosome biogenesis. However, analysis of the Ssf1 and Ssf2 

associated complexes has revealed that both paralogs form similar pre-rRNP complexes under 

normal growing conditions (Fig. 3.2 A, all buffers except #3, #6 and #11).  

Above 60kDa, six proteins consistently observed in higher abundance are probably 

always found in particles containing Ssf1 or Ssf2 (Fig. 3.1). It is therefore very likely that 

those six proteins are Dbp9, Dbp10, Drs1, Noc1, Noc2 and Nog1, as they are present in the 

previously reported Ssf1-particle and match the corresponding molecular weights (54). Also, if 

the particles are nearly identical, then Ssf1-particles are very likely to also contain Rrp15 

(LSU RiBi factor) and Nop53 (pre-90S RiBi factor) proteins, as Ssf2 has been shown to 

directly interact with Ssf2 (54, 60). Unfortunately, both RiBi are expected to run below the 

60kDa region, which showed high background. MS analysis will therefore be necessary to 

determine whether these proteins are found in both complexes, or not.  

Significant disruption of the particles revealed that three of the components previously 

observed in high abundance were still associated with the bait proteins and are likely Dbp9, 

Drs1 and Nog1, as these RiBi  proteins are predicted to enter the LSU maturing particle nearly 

at the same time as Ssf1 and could represent a subcomplex (Fig. 3.2 A, buffer #6) (85).. 

Previously, this type of observation has proven to be effective in identifying proteins that enter 

the pre-rRNP particle as subcomplexes, as is the case of Rpf2, Rrs1, Rpl5 and Rpl11 (17). Ssf1 

was previously detected in fractions of lower molecular weight than the 40S subunit during a 

sucrose gradient analysis, which further supports that this protein belongs to a yet unidentified 

subcomplex (54).  A sucrose gradient separation coupled to ssAP of the fractions of lower 



93 

molecular weight than the 40S sub-unit followed by MS analysis would allow the 

identification of these proteins as this method proved effective in identifying the Nop7-Erb1-

Ytm1 subcomplex (1). Once unambiguously identified, in vitro studies could be performed in 

order to validate their interaction.  

It is tempting to speculate that the other highly abundant proteins, likely Dbp10, Noc1 

and Noc2, are required for the entry of the tetrameric subcomplex into the pre-60S particle 

(Fig. 1.2) (85). However, if the proteins are not Dbp10, Noc1 and Noc2, then it is possible that 

these proteins are enriched in the particle because they associate earlier with the pre-60S and 

leave later than the Ssf proteins. In this latter scenario, the disappearance of these proteins in 

buffers of higher stringency would reflect that they are not in close proximity with the Ssf 

proteins in the pre-60S particles. Identification of these proteins by MS together with the data 

already available for the RiBi proteins will provide further insight. 

Ssf1 and Ssf2 differ in charge at only nine amino acids and yet Ssf2 appeared to make 

stronger interactions with the above mentioned proteins (Figs. 1.4 and 3.1). It is therefore 

likely that the nature of amino acids 281, 282, 290, 299, 300, 316, 411, 413 and 427 in Ssf2 

stabilize protein-protein. In order to verify this hypothesis, PCR-induced mutations could be 

performed on one paralog to change these amino acids and verify if a change in the stability of 

the associated subcomplex can be observed. In the short-term, MS analysis will readily 

identify these components and also distinguish background from real interactors below 60kDa, 

since some patterns are also conserved between the Ssf1 and Ssf2 particles in this region; 

however, these bands are most likely r-proteins in both ssAPs. 

4.2 Nop7, Ssf1 and Ssf2 proteins are genetically linked 
Thorough analysis of data available prior to this study, lead to the hypothesis that Nop7 

and Ssf1 were genetically linked and function in the main LSU maturation pathway, whereas 

Nop7 and Ssf2 were not genetically linked. Moreover, it was hypothesized during this study 

that Ssf2 functioned in a parallel, unreported pathway. In order to uncover the presence of 

parallel maturation pathways during ribosome biogenesis using Nop7, Ssf1 and Ssf2, one or 

two of these proteins were modulated, and changes in cell growth, total protein and mRNA 

levels (for some key factors) and pre-rRNA processing were monitored. Results concur with 
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the likely presence of parallel pathways independently involving Ssf1 or Ssf2 (Section 3.5). 

Results also suggest that Nop7 is genetically linked with Ssf1 but, also with Ssf2, contrary to 

what was previously expected. This study also uncovered an unreported phenotype observed 

upon Ssf2 and Nop7 depletion, which raises several questions that will be addressed in this 

section and will require further investigation.  

A heat map that summarizes all phenotypes observed in this study is listed in 

Table XXI. Phenotypes were divided in three; (A) in the first section, Ssf1 depletion in the 

presence of Ssf2 was observed with endogenous or slightly overexpressed Nop7 protein. (B) 

In the second section, the growth phenotype previously reported in SSF1-depleted/SSF2  cells 

was corroborated in two strains (54). The growth phenotype previously reported in Nop7-

depleted cells was almost identical to the phenotype observed in cells Nop7-depleted but 

slightly overexpressed Ssf1-protein (36). (C) Finally, Nop7 depletion in Ssf1-depleted or Ssf2  

cells was assayed. In all cases, depletion of the targeted protein and its mRNA levels were 

validated by WB and qRT-PCR, respectively. 
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Table XXI : Summary of the phenotypes observed  
To summarize the phenotypes observed (cell growth, pre-rRNA, mRNA, protein levels), a heat map was constructed for all the strains 

tested. (A): depletion of Ssf1 only. (B) Absence of both Ssf proteins. (C) Depletion of Nop7 under different cellular contexts. 
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4.2.1 Comparison between reported and observed phenotypes is 

limited because of the choice of the background strain  

As background strain W303a was used in this study. The previously reported Nop7-

depletion phenotype was reported in S288C-derived cells, which differs from W303a in that it 

cannot form pseudohyphae and has a mutated HAP1 gene, which alters normal processes 

occurring in the mitochondria (36). The depletion phenotype observed upon depletion of the Ssf 

proteins was reported in W303-1a cells, which are W303a cells sensitive to oxidative stress 

due to further mutations in the YBP1 gene (54). Therefore, strain variability has to be 

considered and could account for some differences observed during pre-rRNA processing. 

However, because W303a is less genetically modified than S288C and W3031a, it is expected 

to be the most fit.  

Another improvement in the NB assays would be to independently probe for 5S and 

5.8S rRNA, instead of simultaneously. Because these rRNAs are very close in size 

(5S: 121bases, 5.8SL: 160bases, and 5.8Ss: 154bases), the 5S signal was very strong and it did 

not allow discrimination between the 5.8SS and 5.8SL forms of rRNAs. Ideally a separate gel 

of lower polyacrylamide content (6% instead of 8%) and for a longer period of time should be 

run to resolve 5.8SS and 5.8SL rRNAs. Primer extension analysis could also be performed. 

Upon depletion of the Ssf proteins, A0 and A1 cleavages are expected to be severely 

delayed and to occur after ITS1 processing is completed, leading to an accumulation of 

aberrant 5’ ETS-D pre-rRNA (54). However, with the probes used in this study, this aberrant 

form of pre-RNA could not be detected.  Additional analyses could be performed using a 

probe targeting the 5’ETS of pre-rRNA (033). This, however, would most likely detect the 

accumulation of this pre-rRNA only in the cases where both Ssf paralogs have been deleted, as 

reported previously (54). Therefore, using this probe is not expected to alter the conclusions of 

this study.  

4.2.2 Ssf1 depletion cannot be fully compensated for by Ssf2 

Previous tetrad dissection studies have reported that the presence of one Ssf paralogs is 

sufficient for cell viability (49). Since Ssf1 and Ssf2 are required during the mating response 

and cell budding, deletion of both proteins impairs cell division, particularly during meiosis, 
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and cells arrest in G1 while no obvious phenotype was observed in cells lacking Ssf1 (49, 54). 

The current study shows a mild growth defect in SSF1-depleted cells (Dt: 120min, Table 

XXIA) which is likely explained by a slower processing of 35S pre-rRNA, indicating 

slowerpre-90S particle formation despite increased levels of Ssf2. Also, aberrant precursors 

indicated a mild processing delay of A0, A1 and A2 sites (23S: 5’ETS-A3) concomitant with 

the mild increase in premature C2 cleavage (A3-C2). As deletion of one single endonuclease 

does not seem to greatly affect A0, A1 or A2 processing, it has been proposed that several 

endonucleases can ensure these pre-rRNA processing events to take place. Endonucleases 

required during ribosome biogenesis include Rnt1 (A0, A2), Rcl1 (A2), RNase MRP (A0, A1, 

A2, A3) (4-6, 8). In addition to endonucleases, U3 snoRNPs have also been reported to have the 

capacity to bind and cleave at A0, A1 and A2 sites (76, 91). The pre-rRNA precursors 

accumulating in the absence of Ssf1 point towards a mild delay in U3-dependent cleavages 

(A0-A2). It would therefore be of interest to verify if the Ssf2-particle contains the components 

of the U3-snoRNP complex, which include Sof1, Mpp10, Rrp9, Lcp5 and whether or not these 

change upon depletion of Ssf1 (76, 91). Alternatively, the delay could also be explained by lower 

activity of the Imp3 protein, which is necessary for the recruitment of U3-snoRNP complex on 

the pre-rRNA concomitant with a longer occupancy of the Imp/Brix-family member Imp4, 

which has been reported to bind to U3 RNA, and promote its release from pre-rRNA (76, 91).  

A delay in A0-A2 cleavages should result in a premature A3 cleavage, generating 23S 

and 27SA3 pre-rRNA, the latter of which was not shown in this assay. However, the presence 

of an A3-C2 precursor suggests that 27SA3 is further prematurely cleaved at C2, which should 

also generate 26S’ (C2-B0). Presence of this precursor was not assayed in this study but could 

be detected using a probe hybridizing within the 3’ETS2. Taken together, these results 

indicate that Ssf1 depletion, and hence function, of Ssf1 cannot be fully compensated for by 

Ssf2, despite a clearly increased level. 

4.2.2.1 The effect of Ssf1 depletion depends on the cellular level of 

other RiBi proteins  

Ssf1 depletion was also performed in another strain where Nop7 was slightly 

overexpressed (MET::SSF1/SSF2-PRA/GAL::NOP7, SSF1-depletion, Table XXIA).  
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The growth phenotype observed in this strain is nearly identical as with 

MET::SSF1/SSF2-PRA cells. However, no 23S aberrant pre-rRNA was detected in these cells, 

and therefore the phenotype cannot be explained by a delay in U3-dependent cleavages (10). 

Therefore, accumulation of the 35S pre-rRNA in these cells could fit a scenario in which 

mechanisms up regulating 35S pre-rRNA transcriptional rate and creating a mild accumulation 

of this precursor. As both Ssf proteins were found in the particles of histone modifiers, the 

second scenario is plausible but would require further investigation. For example, AP-MS 

could be performed to assay changes in the Sdc1, Swr1, Eaf7, Rpd3 and Hda1-containing 

particles caused by the modulation of the Ssf proteins (Fig. 1.7A) (55, 56).  

In this strain, GAL::NOP7 mRNA levels unexpectedly increased upon Ssf1 depletion.. 

Since Nop7 is an important scaffold protein required for 27S pre-rRNA processing, its 

increased levels likely accounts for decreased levels of 27SA/SB and 27SA2 pre-rRNA of 

these precursors observed in this strain. However, a decrease in these pre-rRNAs could also be 

caused by an accumulation of 27SA3 precursor. The levels of this pre-rRNA can be verified by 

probing between the A3 and B1 sites (probe 001) and, alternatively, by primer extension 

analysis. If no change or a decrease in 27SA3 precursor is confirmed, then the phenotype 

would fit this scenario. Higher levels of Nop7 may increase the processing rate of 27S 

precursors, which, along with Ssf1 depletion, could generate less stable pre-rRNP complexes 

and a few of these complexes do not completely protect their C2-site.  

According to results presented in this study, Ssf2 is part of both Nop7-dependent and 

independent pathways (Section 3.5). Therefore, the Nop7/Erb1/Ytm1 complex is likely 

required in both common and parallel pathways involving Ssf2 under these conditions. It 

would therefore be if interest to i) identify the proteins present and the ones disappearing from 

the Ssf2-particle upon Nop7-depletion these conditions and ii) PRA-tag a protein not 

associated to Ssf2-containing particles in a MET::SSF1/GAL::NOP7 background. 

Together, this data further reiterates that Ssf1 and Ssf2 proteins cannot fully 

compensate for the loss of one another. Furthermore, it suggests that accumulation of different 

precursors at steady-state levels depend on the available levels of specific RiBi proteins.  
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4.2.3 Nop7 is genetically linked with both Ssf proteins  

Pre-rRNA processing defects associated with NOP7-depleted and SSF1-

depleted/SSF2  cells were previously reported and have been successfully reproduced in this 

study (Tables I and XXIB) (36, 54). As the absence of Ssf proteins affects early events that occur 

co-transcriptionally and can potentially associate with histone modifiers (Fig. 1.7A), it would 

be interesting to verify if rDNA transcription rates are altered in SSF1-depleted/SSF2  cells 

by performing either a Miller spread or psoralen assay.  

What seems clear from whole cell protein analyses is that absence of both Ssf proteins 

correlated with a decrease in Nop7, but not Cic1. The Cic1 protein is a RiBi protein binding 

within ITS2, close to the Nop7 binding site (12). It has been shown to interact with Nop7 

(protein-fragment complementation assay) in at least one particle, and finally, it is part of both 

the Ssf1 and Nop7 associated complexes while is not likely to physically interact with the Ssf 

proteins (12, 54). Furthermore, Ssf1 and Ssf2 protein levels decrease upon Nop7 depletion. This 

data therefore adds weight to Nop7 being genetically linked with Ssf1 and, unexpectedly, also 

with Ssf2.  

Previously, it has been observed that depletion of one component of the 

Nop7-Erb1-Ytm1 trimeric complex affects the total protein levels of the two other components 

without altering other RiBi proteins present in the same pre-60S particle (39). However, under 

normal conditions, the Nop7 associated particle was found to contain only Ssf1, suggesting 

that Nop7 has higher affinity for Ssf1, which may change when Ssf1 is absent, and Ssf2 is 

present in higher levels. This will be validated in future characterization of these interactions 

in vitro and ex vivo.  

 

4.2.4 Nop7/Ssf1 and Ssf2 can be part of parallel pathways 

Because of an observed correlation between the levels of Nop7, Ssf1 and Ssf2, NOP7 

depletion was assayed i) when SSF1 was slightly overexpressed (MET::SSF1, promoter on) 

or; ii) depleted (MET::SSF1, promoter off); and, iii) when SSF2 was deleted. The doubling 

time (Dt) of NOP7-depleted cells was not affected (180min) upon alteration of Ssf1 proteins 
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levels (by either overexpression or depletion) while the Dt of NOP7-depleted/SSF2Δ cells 

nearly doubled (372min). 

4.2.4.1 Altering the levels of the Ssf proteins can reduce the number of 

open rDNA 

In this study, a reduction of 5S rRNA was observed in SSF1-depleted/SSF2 -cells, as 

previously reported (54). In addition, an unambiguous reduction in 5S rRNA was observed in 

GAL::NOP7/MET::SSF1/SSF2-PRA cells but only upon the simultaneous depletion of Nop7 

and Ssf1 (Fig. 3.4D-E lane6). Unlike an Ssf1-depletion, Nop7 depletion was shown to 

correlate with a drop in Ssf2 (Figs 3.3B lanes 3-6 and 3.5B lanes 5-8). Consequently, the 

simultaneous depletion of Nop7 and Ssf1 resulted in a moderate increase in Ssf2 (Fig. 3.4B). 

As the main maturation pathway was blocked under these conditions (Nop7 depletion), it is 

logical to imagine LSU ribosome biogenesis being driven by a larger proportion of Ssf2-

containing particles lacking Nop7 and Ssf1. As 5S rRNA is not transcribed by RNA pol I but 

is located between rDNA repeats, its reduction is likely caused by a reduction in the number of 

open rDNA repeats, which is dependent on the activity of chromatin remodelling factors. Ssf1 

and Ssf2 potentially associate with chromatin modifiers; it is therefore very likely that Ssf2 is 

not abundant enough in these cells to perform every one of its cellular functions. In is 

therefore highly probable that, Ssf2 fails to associate with Rpd3 and Hda1, or other chromatin 

modifiers, resulting in a decresase in the number of open rDNA repeats (Fig 1.7A). As 

transcription of the four rRNA genes is tightly correlated through TORC1, a decrease in 

transcription rate of RNA pol I, assayed by a Miller spread, could indirectly explain the 

reduction in 5S rRNA and will be performed.  

4.2.4.2 Nop7 and Ssf1 depletion  

It was previously reported that upon Nop7 depletion a switch to the minor pathway, 

that makes 5.8SL-containing ribosomes, occurs (36). It has also been reported that Nop7 binds 

to 5’-25S rRNA, and yet its depletion, or that of both Nop7 and Ssf1 simultaneously, does not 

result in ‘de-protection’ of this region, as (Table XXI C ) (12). This data supports the existence 

of an alternative pathway along which at least another RiBi factor that can bind pre-rRNA is 
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able to ensure the protection of this region and will be likely be found enriched in the Ssf2-

containign particles upon Ssf1+Nop7 depletion.  

4.2.4.3 Absence of Nop7 and Ssf2 generate a dominant negative mutant 

with severely impaired cell growth 

The effect of Nop7-depletion in the absence of Ssf2 was assayed in 

GAL::NOP7/SSF1-PRA/ΔSSF2 cells (Fig. 3.5B lanes 9-12). From what was observed in 

previous strains, at time 0, Ssf1 should compensate for the absence of Ssf2, and its levels 

should be increased or at least wild-type. Unexpectedly, Ssf1 protein levels were almost non-

detectable at time 0, which suggests that in the absence of Ssf2 and the minor overexpression 

of Nop7, Ssf1 becomes dispensable. This results therefore implies that there is at least one 

pathway in which ribosome maturation occurs independent on Ssf1 and Ssf2 and the presence 

of Nop7.  Upon Nop7 depletion, cellular doubling time was of 372min (roughly 6 hours) and 

Ssf1 levels slightly increased (6 and 16 hours), and could be caused by increased number of 

cells delayed during formation of the bud tip, where Ssf1 is likely needed (30). Information of 

such fluctuations has been overlooked in the literature. Changes in RiBi protein levels of as a 

response to depletion of another RiBi protein, if available, include only two time points (levels 

before and after depletion). Moreover, this information is often limited to proteins known to 

form stable complexes during ribosome biogenesis, as the Nop7/Ytm1/Erb1 complex, while 

RPs are used as controls (39).  

When grown in media repressing the NOP7 gene, cells showed a dominant negative 

phenotype for growth: its Dt increased to 372min. As Nop7 depletion can account for 

doubling the normal Dt, the additional 182min can be explained only by the absence of Ssf2. 

Therefore, taken together, this indicates that Ssf2 functions in an alternative pathway, 

independent of Nop7.  

 

4.2.4.3.1 Slow growing cells, fast pre-rRNA processing and aberrant ribosomes  

With the exception of modest levels of 35S, 22S, 18S and 5S, no other precursor or 

mature form of rRNA accumulated, pointing towards unusually fast pre-rRNA processing 

(Table XXI C). Methylene blue staining detected highly abundant, lower molecular weight 
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forms of 25S, 18S were undetected with probes targeting their 5’ coding regions 

(5’18S+115bases = probe 008; 5’25S+135 bases = probe 007). 

During ribosome biogenesis, Nop7 binds to the 5’ region of 25S rRNA(12)  The Ssf 

proteins likely bind to ITS1 and participate in the formation of ITS1-5’ 5.8S base pairing 

structure required to preventing hairpin structure formation (11, 12, 53). Results therefore suggests 

that Nop7 and the Ssf pair therefore likely protect 5’ ends of 25S and 5.8S rRNA during 

ribosome biogenesis from 5’→3’ degradation and imply that there exists at least one protein 

which can bind the 5’ regions of the 25S in particles devoid of Nop7. Presence of likely 

5’trimmed 18S rRNA in Nop7-depleted/SSF2  cells also suggest that the Ssf proteins might 

have a role in stabilising RNA-protein, protein-protein interactions or both in pre-90S particles 

which will protect the 5’ region of 18S rRNA. 

Results could reflect that there exists a small, nearly undetectable pool of normal 

ribosomes while there is a trong accunmulation of pre-rRNA degradation products In the past, 

pre-rRNA degradation products have been detected upon depletion of RiBi proteins, giving 

specific degradation patterns but this was not observed in this study (Fig. 3.5D) (92). 

Degradation of aberrant pre-rRNA usually occurs very fast and degradation products can be 

probed upon depletion of exosome components or exonucleases (e.g Rrp17 and Rat1) but 

neither Nop7, Ssf1 nor Ssf2 are knwon or predicted exonucleases (7, 93). A scenario in which 

NOP7-depleted/SSF  cells produce aberrant ribosomes which are inefficient in mRNA 

translation could explain the highly impaired cell growth observed. In either scenario, 

polysome gradient analysis coupled with RNA analysis of the collected fractions would 

address these questions. 

 

4.2.5 Nop7/Ssf1, Ssf2 and parallel pathways during ribosome 

biogenesis 

Previously it had been shown that pre-90S processing events can occur via two 

alternative pathways (31). However, the study was focused on pre-90S and pre-40S particles, 

and no study so far has shown whether the LSU can also be processed by alternative 

pathways. What is known, however, are all the components required to incorporate the 5S 
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rRNA, which is mediated, as previously mentioned, by Rpf2 and timed to coincide with C2 

processing (17). 

Is it possible that early associations dictate the downstream pre-rRNA processing 

events that will generate 5.8SS or 5.8SL-containing ribosomes? This possibility will be 

explored in this subsection, taking into account the results obtained during this study, and 

should be further supported by performing additional NB probing, primer extension (ITS1) 

and MS analysis of the bait proteins for all the strains tested in this study (permissive and 

restrictive conditions). In some strains, especially in the case of 

GAL::NOP7/ΔSSF2/SSF1-PRA, pulse-chase analysis should be performed.  

 

4.2.5.1 There exists a LSU maturation pathway dependent on 

Ssf1/Ssf2 heterodimer  

As demonstrated in this study, the Ssf proteins associate within similar complexes under 

normal cellular conditions. This study has also shown that the Ssf proteins cannot fully 

compensate for the loss of each other, and that this is due to the fact that they do not function 

along the same but parallel pathways. It is tempting to speculate that the Ssf proteins can only 

homodimerize, however, Ssf1 is one result in a search for physical and genetic interactions of 

Ssf2 (30). Thus, this possibility cannot be ruled out with the available data but it could suggest 

that Ssf1/Ssf2 heterodimer is relatively rare under normal conditions, since the Ssf1 particle 

does not contain Ssf2 (54). In vitro studies (solution binding assay) will have to be performed to 

ultimately explore either possibility.  

 

4.2.5.2 The 5.8SS pathway is mostly Ssf1/Nop7 dependent 

Upon Nop7 depletion, cells switch to producing high levels of 5.8SL-containing 

ribosomes, which are normally the result of a less preferred RiBi pathway. Cells lacking both 

Ssf proteins generate less ribosomes overall, possibly due to a drop in transcription, yet the 

ratio of 5.8SS to 5.8SL does not change, suggesting that these proteins are involved in events 

upstream of both pathways leading to the different forms of 5.8SrRNAs.  
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Early pre-90S processing events can occur via two alternative pathways, one of which 

is Rrp5 (Noc1/Noc2)/UTP-C dependent (31). Both Nop7 and Ssf1 proteins most likely follow 

this pathway as both of their particles (Fig 1.8A) contain Noc1/Noc2 heterodimer and Nop7-

containing particles also include Rrp5. From what has been published, and the data obtained 

during this study, it can be speculated that Nop7 is likely genetically linked to both Ssf 

proteins but that it is most often found with Ssf1, as Nop7 normally only binds with Ssf1 in its 

homodimeric form. This scenario would explain why Ssf2 is not part of Nop7 associated 

complexes (37). However, even if Ssf2 is not part of the Rrp5-dependent pre-90S pathway, it 

can, albeit to a lesser extent, be associated with B1S processing through its direct interaction 

with Rrp15, a protein required for B1S processing, which is also not part of Nop7 associated 

complexes. Upon Nop7 depletion, both Ssf protein levels drop but are still detectable. It is 

therefore possible that B1S processing still occurs in these cells through Ssf2-Rrp15-containing 

particles as well as Ssf1-containing particles. What is certain is that, Nop7-depleted cells are 

able to successfully protect the 5’ends of rRNA, through a yet unidentified mechanism, as no 

overly exonucleolytically processed 5’ forms of 25S, 18S and 5S rRNAs could be detected.   

 

4.2.5.3 Ssf2 is probably linked to the U3 snoRNP/Bms1-dependent 

pre-90S pathway  

The Rpf2 particle  is the only one that has been reported to contain the Ssf2 protein (17). 

Why has Ssf2 not been reported in other particles? This could be due to previous detection 

limitations in MS analysis in addition to the low abundance of the protein. Another reason 

could be that Ssf2 is involved in the pre-90S pathway, which is U3 snoRNP/Bms1 dependent. 

Ssf1 and Nop7 particles contain all Noc1/Noc2 and members of the Imp/Brix superfamily 

(Brx1, Ssf1, Rpf1, and Rpf2) except Imp4 and Ssf2 (51, 52). As previously mentioned, pre-90S 

processing events can also occur through a pathway that is U3 snoRNP/Bms1 dependent and 

requires Imp3 and Imp4 RiBi factors (31). Imp3 has been reported to recruit U3 RNA on the 

pre-rRNA and Imp4 (Imp4/Brix family) has been reported to bind to U3 RNA, and promote its 

release from pre-rRNA (76). U3-RNA plays a role in correct processing of A0 to A2 sites. If 

Ssf2 is involved in this pathway, then MS analysis of its particle under at least some of the 

conditions tested during this study should identify U3 snoRNP components or Bms1 as well as 
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other components usually attributed to pre-90S or early pre-40S maturation. If Ssf2 does 

belong into this pathway, then it was most likely ruled out as background in pre-90S and pre-

40S studies due to its high similarity with Ssf1, which was associated with pre-60S 

maturation.  

 

4.2.5.4 Ribosome biogenesis devoid of A3-cluster factors 

In the field, some believe that pre-60S maturation is split from pre-40S maturation and 

others believe that it can be coupled. Results from this study suggest that Nop7/Ssf1 and Ssf2 

might play a role in stabilizing the RiBi factors required for 5’ protection of 18S, 5.8S and 25S 

rRNAs and therefore implies that particles exist in which the LSU and SSU RiBi factors are 

partially stabilizing each other in the pre-90S particle. In one scenario, in which Nop7 is 

depleted, this stabilizing role might be compensated by particles lacking A3-cluster ribosomes, 

as defined by Granneman et al (2011). These particles most probably contain Ssf2 and other 

factors that are able to bind pre-rRNA within the ITS1 and ITS2 regions. These proteins are 

also stabilizing a second structure later during LSU pre-rRNA processing that will ensure the  

protection of the 5S rRNA. Upon depletion of both Ssf2 and Nop7, the stabilization role 

required during both of these cases cannot be efficiently compensated by the presence of Ssf1 

alone, and the 5’ of the rRNAs become unprotected. 

 

4.2.6 Regulating protein levels 

Another aspect of the dynamics of the RiBi proteins is regulation of their protein 

levels. A qRT-PCR analysis of the mRNA coupled with whole-protein extract analysis could 

determine on how the cell specifically regulates its protein levels. Overall, this analysis 

indicates that the cell uses different mechanisms for regulating the levels or a RiBi protein, 

and those depend on the cellular context. 
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4.2.6.1 SSF2 is mostly post-transcriptionally regulated 

In the MET::SSF1/SSF2-PRA, the protein levels of Ssf2 increased but its mRNA levels 

remained constant (1.052-fold). In the MET::SSF1/SSF2-PRA/GAL::NOP7 strain, when Ssf1 

was depleted and Nop7 protein levels increased, Ssf2 protein levels increased, yet its mRNA 

levels decreased (0.588-fold). In all other cases studied in the same strain, which is upon Nop7 

depletion or Nop7+Ssf1 depletion, the mRNA levels did not significantly change (1.252-fold 

and 0.906-fold), whilst the protein levels respectively decreased and increased. However, 

these results were analyzed in triplicate and generated high variability and should therefore be 

repeated. From the data available, it can be concluded that SSF2 mRNA stability and/or 

transcription can be altered, depending on the cellular context; Ssf2 protein levels can also be 

modulated by stabilizing the protein, or changing its translation rate. 

 

4.2.6.2 NOP7 mRNA can be stabilized  

In the MET::SSF1/SSF2-PRA strain, Nop7 protein levels were not detectable but its 

mRNA levels were significantly increased (1.72-fold). Upon Ssf1 depletion in the 

MET::SSF1/SSF2-PRA/GAL::NOP7 strain, there was an increase in Nop7 mRNA levels 

(2.161X) and protein, which could also be attributed to its expression being driven from a Gal-

promoter. In the MET::SSF1/ΔSSF2/CIC1-PRA strain, endogenous Nop7 protein levels were 

not detectable although its mRNA levels significantly increased (1.386-fold). The 

MET::SSF1/ΔSSF2/NOP7-PRA strain further corroborated that Nop7 protein levels decreases 

even if its mRNA levels increased (4.294-fold). Because the NOP7 gene was under the control 

of a regulatable promoter and the mRNA levels increased, this data suggests that Nop7 mRNA 

transcription rate is not altered in response to a stress, but its mRNA becomes stabilized. This 

explains the increase of NOP7 mRNA in all cases. Because Nop7 protein usually decreased, 

either the protein is degraded faster or is less translated. Why its mRNA is not targeted for 

degradation, has to be determined. 
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4.2.6.3 Ssf1 regulation needs to be further studied 

Ssf1 mRNA levels were assayed in two strains. In the first strain, there was no change 

in Ssf1 mRNA (1.025-fold) and protein levels upon Nop7 depletion 

(MET::SSF1/SSF2-PRA/GAL::NOP7), when Ssf2 was present. In the second strain, Ssf2 

protein was completely absent, Nop7 was depleted and the Ssf1 gene was under its 

endogenous promoter (GAL::NOP7/SSF1-PRA/ΔSSF2). Under these conditions, Ssf1 protein 

levels fluctuated significantly (Table XXIC). At the last timepoint observed, Ssf1 protein 

levels were nearly non-detectable, whilst its mRNA levels were increased (1.5-fold). Because 

Ssf1 protein levels unexpectedly fluctuated in the absence of Ssf2, its mRNA levels should be 

assayed under the same conditions but in the presence of Ssf2 protein (GAL::NOP7/SSF1-

PRA) before drawing any conclusions.  

 

4.3 Dissecting structural changes in Ssf1, Ssf2 and Nop7  
Using the buffer for complex purification detailed in (80), cleavage patterns of the 

Ssf1, Ssf2 and Nop7 proteins when they are in complex with other RiBi factors have been 

identified in this study. The exposed regions corresponded to regions located between domains 

(Fig. 3.7A and B). The Ssf proteins show a similar pattern, consistent with the finding that 

they are most likely associated with similar sets of proteins (Section 3.2). 

Because of the nature of the proteins and the strength of the association it forms with 

other RiBi proteins, the stringency of the buffer required to recover a RiBi protein alone 

changes and needs to be individually validated. The ssAP buffer condition that is stringent 

enough to completely disrupt complexes formed by the Ssf proteins (20mM Hepes pH 7.4, 

300mM NaCitrate, 0.5% Triton, 0.1% Tween 20, 1:100 solution P) has been identified in this 

study and will allow to detect possible changes in Ssf1 and Ssf2 protein folding when they are 

alone. Nop7 forms a tight trimeric sub-complex with Erb1 and Ytm1. The buffers detailed in 

Section 3.2 were not stringent enough to recover Nop7-PrA as a single protein (data not 

shown). Further investigation is necessary to identify a ssAP buffer stringent enough to 

completely disrupt Nop7-PrA pre-rRNP complexes.  
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It is possible to recover endogenously-folded bait protein alone, without associated 

proteins, by coupling ssAP with a highly stringent buffer. Alternatively, association with 

endogenous Nop7 protein recovered in this fashion could be tested using recombinant Ssf1 or 

Ssf2 protein, and if an interaction is detected, limited protease accessibility assay on this 

complex could provide further information on changes in Nop7 protein folding upon binding 

with the Ssf proteins. The same could be performed using Ssf1 or Ssf2 as bait proteins and 

recombinant Nop7. 

 

4.4 Nop7 likely interacts directly with Ssf1 
Previously it has been reported that Ssf1 and Nop7 directly interact with each other 

during Xenopus laevis pronephros development, independently of ribosome biogenesis (Ssf2 

has not been tested) (47). The possibility of them physically interacting with each other during 

yeast ribosome biogenesis was supported by the accumulation of a common, aberrant pre-

rRNA (26S) upon their independent depletion, suggesting premature C2 cleavage in both cases 

(Fig. 1.7) (36, 54).  

Several aspects of the Ssf proteins need to be validated by in vitro studies, such as their 

capacity to bind rRNA through their family conserved ό70-like motif, and their capacity to 

homo- and/or heterodimerize with each other, through their predicted homo/hetero-binding 

domain (Fig. 1.4). Furthermore, the potential interaction of Ssf1 with Nop7 also needs to be 

validated in vitro. Given the high similarity to Ssf1, a potential interaction of Ssf2 with Nop7 

also needs to be addressed. During this study, the plasmids required to generate recombinant 

proteins were cloned and the conditions for the expression of recombinant Nop7, Ssf1 and 

Ssf2 were optimized (Table XI and Figs. 2.3-2.4) and will allow in vitro solution binding 

studies to test for these protein-protein interactions. The capacity of the Ssf proteins to bind 

RNA will also be tested since they are believed to protect, though binding, the 5’ coding 

region of 5.8S during 27SA3 5’→3’ trimming of ITS1, thus slowing the activity of the 

exonuclease (Rat1 or Rrp17) (7, 12, 53).  

 



 

 

 

 

 

 

 

 

 

5 Conclusion 
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The Ssf1 and Ssf2 proteins have been implied to fulfil redundant functions in the cell 

and during ribosome biogenesis. This work supports this observation to some extent, as it 

highlights that, under normal conditions, both paralogs can make identical pre-rRNP particles. 

However, analysis of the stability of these particles using buffers of different stringency during 

ssAP suggests that Ssf2-PrA containing complexes may be more stable. Disruption of the 

affinity purified particles using higher stringency buffers revealed that at least three proteins, 

likely Dbp9, Drs1 and Nog1 strongly affinity purify with the bait proteins and likely represent 

a subcomplex. 

Although cellular levels of Ssf2-PrA increased upon SSF1-depletion, this works 

provides evidence that the Ssf proteins cannot entirely compensate for the loss of each other, 

as pre-rRNA processing was mildly delayed in SSF1-depleted cells. The pre-rRNA processing 

defects previously reported for both Nop7-depleted and SSF1-depleted/SSF2Δ cells were 

corroborated (36, 54). This work also provides evidence that Ssf1 and Ssf2 levels are correlated 

to the levels of Nop7 and are genetically linked. The Ssf1 and Nop7 proteins might be 

required, under normal conditions, in the major pre-rRNA maturation pathway, which is 

further reinforced by the fact that they are found in particles associated with tagged Nop7 and 

Ssf1. Nop7 depletion, when Ssf1 was overexpressed, and generated a pre-rRNA depletion 

phenotype reminiscent of the depletion phenotype observed in the absence of both Ssf 

proteins. Simultaneous depletion of Nop7 and Ssf1 in the presence of Ssf2 also and generated 

less ribosomes, as shown by Northern blot analysis. The pre-rRNA depletion phenotype 

observed here was reminiscent of the one observed upon depletion of both Ssf proteins, in 

which transcription and early processing appears delayed.  

In clear contrast, simultaneous absence of Nop7 and Ssf2 in the presence of Ssf1 

showed a dominant negative growth phenotype with a strong accumulation of what appears to 

be overly exonucleolytically processed 5’ forms of 25S, 18S and 5S rRNAs and no 5.8S 

rRNA. To this date, such depletion phenotype has never been reported and implies that there 

exists an early particle that requires the presence of Nop7/Ssf1 or Ssf2 to correctly stabilize 

RiBi proteins required for 5’ protection of rRNA coding regions. In fact is was previously 

suggested that Ssf1 would fulfil such a role for 25S and 5.8S, however it appears that Ssf1 

alone is not sufficient for the protection of 5’ends of pre-rRNAs. These results also imply that 
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under these conditions, incorporation of 5S rRNA in the pre-60S particle is possible but that 

this rRNA becomes unprotected and at least partially degraded, a phenotype never previously 

observed. Further analysis of the Northern blots generated as well as additional assays will 

allow a more detailed analysis of this phenotype and its origins. Moreover, performing ssAP 

coupled with MS/MS will allow screening for any pre-rRNP particle changes in all the strains 

and conditions tested in this study.  

While cellular Ssf2 protein levels varied, its mRNA levels remained relatively stable in 

four of the five conditions it was tested, which suggests that it is mostly post-transcriptionally 

regulated. This clearly contrasts with the cellular regulation of Nop7 protein. In three of the 

four cases studied, Nop7 protein levels appeared decreased and in the fourth case, the gene 

was steadily transcribed under the Gal1 promoter and WB analysis showed a clear increase in 

Nop7 protein upon Ssf1 depletion. In the four cases, Nop7 mRNA increased, which suggest 

that NOP7 mRNA stabilisation. 

Taken together, these results strongly suggest that the Ssf paralogs function in fact along 

separate parallel maturation pathways during yeast ribosome biogenesis, and are not, as 

previously thought, interchangeable. These findings highlight the relevance to further 

characterise these proteins in vitro. RNA binding and solution binding assays can be 

performed in the future, as recombinant proteins have been generated in this study. As other 

paralogs, such as for example Fpr3 and Fpr4, are believed to play also a functionally 

redundant role during ribosome biogenesis, results presented in this study raise the question as 

to whether these proteins as well as others are truly functional homologues, or fulfil functional 

different tasks along different branches of the pathway or under certain circumstances. Better 

understanding the binding partners of such paralogs could provide a good starting point for 

new studies. In ribosome biogenesis of higher eukaryotes there are 74 RiBi proteins which 

have no homolog in yeast and which include several paralogs or proteins submitted to 

alternative splicing (94). The present study suggests that these paralogs can be used as tools to 

gain better understanding of the additional layers of complexity observed during ribosome 

biogenesis in these cells and may finally lead to an understanding of why so many proteins are 

involved in this intricate pathway. 
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