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Summary

Data available to economists is often incomplete. Frequently values of the explana-
tory variables cannot be observed or are observed with a noise. To deal with the
data limitation problems, various latent variable models have been considered in the
econometric and statistic literature. In this thesis, we examine two categories of these
models and propose new approaches to estimation and inference. The first category
consists of regression models with unobserved explanatory variables, such as expec-
tational variables. The second category contains models of financial time series with
a latent process of stochastic volatility. In the first essay, we focus on inference in
regression models while the stochastic volatility models are discussed in essays two
and three.

Finite sample tests and confidence sets for models with unobserved and generat-
ed regressors as well as various models estimated by instrumental variable method
are first proposed. We study two distinct approaches for various models considered
by Pagan (1984). The first one is an instrument substitution method which gener-
alizes an approach proposed by Anderson and Rubins (1949) and Fuller (1987) for
different (although related) problems, while the second one is based on splitting the
sample. The instrument substitution method uses the instruments directly, instead
of generated regressors, in order to test hypotheses about the “structural paramet-
ers” of interest and build confidence sets. The second approach relies on “generated
regressors”, which allows a gain in degrees of freedom, and a sample split technique.
A distributional theory is obtained under the assumptions of Gaussian errors and
strictly exogenous regressors. We show that the various tests and confidence sets
proposed are (locally) “asymptotically valid” under much weaker assumptions. The
properties of the tests proposed are examined in simulation experiments. In general,
they outperform the usual asymptotic inference methods in terms of both reliability
and power. Finally, the techniques suggested are applied to a model of Tobin’s ¢ and
to a model of academic performance.

In the second essay, we study stochastic volatility models with time deformation.



Such processes relate to early works by Mandelbrot and Taylor (1967), Clark (1975),
Tauchen and Pitts (1983), among others. In our setup, the latent process of stochastic
volatility evolves in an operational time which differs from calendar time. The time
deformation can be determined by part volume of trade, part price changes, possibly
with an asymmetric leverage effect, and other variables setting the pace of information
arrival.

The econometric specification exploits the state-space approach for stochastic
volatility models proposed by Harvey, Ruiz and Shephard (1994) as well as matching
moment estimation procedures using SNP densities of stock returns and trading vol-
ume estimated by Gallant, Rossi and Tauchen (1992). Daily data on the price changes
and volume of trade of the S&P500 over a 1950-1987 sample are investigated. Sup-
porting evidence for a time deformation representation is found and its impact on
the behavior of price series and volume is analyzed. We find that increases in volume
accelerate operational time, resulting in volatility being less persistent and subject to
shocks with a higher innovation variance. Downward price movements have similar
effects while upward price movements increase persistence in volatility and decrease
the dispersion of shocks by slowing down the operational time clock. We present the
basic model as well as several extensions. In particular, we formulate and estimate a
bivariate return-volume stochastic volatility model with time deformation. The lat-
ter is examined through bivariate impulse response profiles following the example of
Gallant, Rossi and Tauchen (1993).

We finally study trading patterns, time deformation and stochastic volatility in
foreign exchange markets. Globalization of trading in foreign exchange markets is a
principal source of the daily and weekly seasonality in market volatility. One way to
model such phenomena is to adopt a framework where market volatility is tied to the
intensity of (world) trading through a subordinated stochastic process representation.
In this essay, we combine elements from Clark (1973), Dacorogna et al. (1993) and
from our work on stock prices and volume, and present a stochastic volatility model
for foreign exchange markets with time deformation. The time deformation is based

on daily patterns of arrival of quotes and bid-ask spreads as well as returns. For
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empirical estimation, we use the QMLE algorithm of Harvey et al. (1994), adapted
by us for time deformed processes, and applied to the Olsen and Associates high

frequency data set.
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Résumé

Dans la littérature économétrique et statistique, on rencontre souvent des modéles
comportant des variables latentes. Dans cette these, nous examinons deux catégories
de modéles de ce type et nous proposons des méthodes pour les analyser. La premiére
catégorie est un ensernble de modéles de régression ol apparaissent des variables ex-
plicatives non observables telles que des variables d’anticipation. La seconde catégorie
est un ensemble de modeéles financiers o apparait un processus latent de volatilité
stochastique. Les problémes de premier type sont abordés dans un premier essai
tandis que nos résultats sur la seconde catégorie de modeéles sont subdivisés en deux
essais.

L’approche usuelle pour estimer des modales dont les variables explicatives sont
latentes ou représentent des valeurs espérées est de procéder en deux étapes. D’abord,
on remplace les variables non observées par les valeurs ajustées générées i partir
d’une régression auxiliaire. Ensuite, on estime le modéle structurel par les moindres
carrés ordinaires. Cette méthode simple et facile & appliquer pose des problémes au
niveau des tests d’hypotheses. Notamment, les écart-types ainsi obtenus sont sous-
évalués et affectent les statistiques t de sorte que les tests ne sont pas valides. Pour
remédier a ce probléme, diverses méthodes de correction ont été proposées. Ce sont
des méthodes asymptotiques, qui le plus souvent consistent & remplacer les écart-types
des moindres carrés ordinaires par les écart-types obtenus par la méthode des variables
instrumentales [Pagan (1984, 1986)]. En général, les niveaux des régions de confiance
résultant d’une procédure asymptotique ne sont que des approximations et peuvent
parfois différer considérablement du vraj niveau a distance finie. Or, plusieurs études
récentes indiquent que linférence basée sur les variables instrumentales en petits
échantillons peut étre extrémement peu fiable notamment en présence de mauvais
instruments; voir par exemple Staiger et Stock (1993), Angrist et Krueger (1994)
ainsi que Dufour (1994).

Dans le premier essai nous abordons ce type de problemes et nous dérivons deux

méthodes de tests basés sur des statistiques pivotales et valides a distance finje [voir
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Dufour (1994)]. La premiére approche que I'on appelle la “substitution d’instruments”
est une généralisation de la méthode de Anderson et Rubin (1949). La seconde ap-
proche exige un partage préliminaire des données en deux sous-échantillons. Le test
qu’on obtient est basé directement sur les variables explicatives générées a partir
de la régression complémentaire et est plus avantageux du point de vue du nombre
de dégrés de liberté conservés. Les deux types de tests sont basés sur des statis-
tiques de type Fisher. Les régions de confiance correspondantes sont définies par des
inégalités non linéaires qui, en général, peuvent étre résolues soit analytiquement soit
numeériquement. II faut souligner que nos méthodes d’inférence ne s’appliquent pas
seulement & des modéles comportant des variables non observées. Nous les présentons
dans le contexte des modéles considérés par Pagan (1986) pour la clarté d’exposition,
mais nos tests peuvent également étre utilisés dans divers modeles structuraux comme,
par exemple, les modéles & équations simultandes. .

Les distributions exactes des statistiques de tests sont obtenues sous I’hypothése
de normalité des erreurs et d’exogénéité stricte des variables explicatives du modéle,
Les tests et les régions de confiance proposées demeurent valides asymptotiquement
sous des hypothéses moins restrictives, permettant des erreurs non gaussiennes et des
variables explicatives faiblement exogenes. Il est important de noter que les régions de
confiance proposées sont non bornées avec une probabilité strictement positive [voir
Dufour (1994)]. Cette caractéristique est nécessaire pour que la région soit valide
pour un parametre qui peut ne pas étre identifiable et constitue une différence fon-
damentale entre nos méthodes et les tests du type Wald. Le niveau des régions qui
ne possedent pas cette propriété est nul. Il est clair que le probléeme de non identifia-
bilité apparait tres souvent dans I’inférence sur les parameétres de modéles qui incluent
des variables non observées ou générées, ainsi que dans les modéles 3 équations si-
multanées. En simulant un modéle du premier type, on montre que les méthodes
d’inférence proposées sont supérieures a la fois en termes de niveau et de puissance
aux méthodes usuelles de type Wald. En outre, nous observons que la puissance des
tests basés sur le partage d’échantillon s’accrojt quand les variables explicatives sont

estimées a partir d'une portion relativement faible de I’échantillon. Nous développons
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aussi une technique qui, contrairement aux tests originaux de Anderson et Rubin per-
met de tester les hypothéses sur un élément du vecteur de parametres des variables
endogenes ou non observées. Cette technique de projections permet aussi d’obtenir
des tests sur des transformations non linéaires du vecteur de parametres d’intérét.

Dans la section 2 de ’essai, nous présentons le modéle principal et nous dérivons les
tests et régions de confiance basés sur la méthode de substitution d’instruments. La
section 3 décrit I’approche A 'inférence fondée sur un partage d’échantillon. L’étude
des tests d’hypothéses conjointes sur les parameétres des variables non observées et les
contraintes linéaires sur les parametres des autres variables explicatives du modéle
apparait dans la section 4. L’extension des résultats précédents aux tests sur des
composantes non anticipées des variables non observées est présentée dans la section
3. Dans la section 6 nous discutons Iinférence sur les transformations non linéaires
du vecteur des paramétres d'intérét. La validité asymptotique des tests est démontrée
dans la section 7. La section 8 résume les résultats des simulations qui comparent
la performance de nos tests aux autres procédures. Finalement, des applications
empiriques au modele q de Tobin et & un modele de résultats scolaires d’éléves sont
présentées dans la section 9. Le premier exemple est une illustration d’un cas ou on
dispose d’un ensemble d’instruments de bonne qualité, tandis que le second exemple
est un modele oti, au contraire, les instruments sont faibles. Dans le premier cas les
régions de confiance basées sur les statistiques de type Wald coincident avec celles
qu’on obtient & partir de nos procédures. Par contre, la région de confiance obtenue
dans le second exemple construite 3 partir de nos méthodes est non bornée. Nous
concluons dans la section 10.

Dans la deuxiéme partie de la thése, nous proposons un modéle de volatilité sto-
chastique avec déformation du temps. Le modele de volatilité stochastique connu
dans la littérature décrit I’évolution des prix d’actifs financiers en temps continu. en
supposant que la variance est une variable non observée qui suit une diffusion in-
dépendante [voir, par exemple Hull et White (1987)]. En particulier, la spécification
que l'on emploie dans les études empiriques est basée sur une hypothése implicite

supplémentaire d’invariance dans le temps des coefficients de deux équations. Ce-
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ci est une contrainte treés forte, notamment dans le cas ot on estime, par exemple,
I’évolution d’un indice boursier comme le S&P500 sur une longue période. En effet,
dans le passé la composition du S&P500 a été redéfinie plusieurs fois. Par ailleurs,
les mécanismes de fonctionnement du marché se sont modifiés avec 1’accés aux ordi-
nateurs et le progrés en informatique.

Le modéle de volatilité stochastique exploite la prévisibilité de la volatilité & partir
des variances conditionnelles passées pour déterminer les rendements d’actifs. Une ap-
proche plus ancienne explique la dynamique des rendements par le flux d’information
[voir Clark (1973)]. Cette idée est justifiée par plusieurs études empiriques ou l’on
observe I'effet de publication de données économiques importantes sur la volatilité
[voir, par exemple, Baillie et Bollerslev (1991)]. Inspirés par les deux approches, nous
supposons que le processus de volatilité des prix d’actifs évolue en temps déformé
(opérationnel) déterminé par le processus latent de ’arrivée d’information. Comme
variables auxiliaires, on utilise des séries telles que le volume de transactions et le
rendement passé. Elles servent 3 identifier la correspondance entre le temps cal-
endrier et opérationnel et apparaissent dans la forme fonctionnelle de la vitesse du
temps opérationnel. On y introduit aussi les valeurs absoiues des rendements passés
pour modéliser une asymétrie dans le comportement de la volatilité suite & un ac-
croissement ou une baisse des prix (effet de levier). Les liens entre la dynamique des
rendements financiers et celle du volume d’échanges sont analysés d’avantage dans le
cadre d’un modeéle bivarié de volatilité stochastique.

Contrairement aux modéles déja existants, notre spécification admet des coeffi-
cients qui varient dans le temps et permet ainsi de mieux modéliser les divers aspects
d’hétérogenéité dans la dynamique des séries financiéres. L’approche de déformation
du temps permet aussi de distinguer une composante lisse de la volatilité sur I’échelle
du temps opérationnel. En outre, I’évolution des prix est modélisé conjointement avec
le volume, pour mieux identifier les périodes de haute volatilité accompagnées d’un
niveau de volume accru et vice-versa.

Dans la partie empirique, nous utilisons des données journaliéres de la bourse de

New York de 1928 4 1987. On estime les deux modeles par la méthode de quasi
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maximum de vraisemblance et par inférence indirecte. La raison pour employer les
deux procédures est que la seconde méthode produit des estimateurs plus efficaces,
mais restreint en méme temps le choix de la formule du changement de temps. Dans la
premiere approche on discrétise le modele et dérive une représentation d’espace d’états
linéaire pour maximiser ensuite la fonction de vraisemblance conditionnelle obtenue
a partir d’un algorithme de filtre de Kalman. La méthode d’inférence indirecte est
basée sur la fonction de densité semi-nonparametrique (SNP) estimée au préalable
sur une série univariée des changements de prix et une série bivariée prix — volume.
On trouve une forte évidence en faveur de I’hypothése de présence de déformation du
temps. Nous constatons que les accroissements du volume d’échanges accélerent le
temps opérationnel et rendent la volatilité moins persistante et sujette & d’importants
chocs aléatoires. Les baisses des prix d’actifs ont un effet semblable, tandis que les
hausses augmentent la persistance dans la volatilité et réduisent "amplitude des chocs
aléatoires en ralentissant le temps opérationnel. La complexité de la structure du
modele bivarié nous oblige I'analyser avec des fonctions non linéaires de réponse
a des impulsions (impulse responses) [voir Gallant, Rossi et Tauchen (1993)]. On y
compare les effets de chocs positifs et négatifs au prix et au volume sur la volatilité
et les rendements. Nos résultats coincident avec ceux de Gallant, Rossi et Tauchen
obtenus a partir du modele semi-nonparametrique bivarié.

Le modeéle de base est présenté dans la section 2. L’estimation et les tests
d’hypotheéses sont décrits dans 1a section 3. La section 4 présente les résultats em-
piriques et la section 5 contient les conclusions.

Le troisiéme essai présente une extension du modele de volatilité stochastique avec
la déformation du temps. On y modélise trois séries des taux de change: DEM/USS,
DEM/JPY et JPY/USS. Les prix d’offre et d’achats proviennent des enregistrements
effectués par I'agence Reuter sur le marché mondial au moment de la cotation, soit en
temps réel. Le marché des taux de change est actif 24 heures sur 24. L’intensité des
transactions dépend pendant cette période des heures d’ouverture de centres financiers
localisés en Europe, en Amérique et en Asie. Les échanges s’intensifient au moment

ot les marchés sur plus d’un continent deviennent accessibles, créant ainsi de forts
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effets “saisonniers” 3 travers la journée. A ces effets s’ajoutent encore les effets du
jour de la semaine et les effets du mois, en déterminant conjointement une complexe
composante saisonniére des rendements sur les taux de change.

L’approche de déformation de temps est tres utile pour modéliser les données de
haute fréquence comme on appelle les séries en temps réel. Comme les observations
sont séparées par des intervalles de temps inégaux, le choix des méthodes d’estimation
est tres limité. Un exemple d’une adaptation du modéle ARCH & ce type de don-
nées a été présenté récemment par J. Poi et W. Polasek A la conférence sur High
Frequency Data (Ziirich, Mars 1995). Une autre approche consiste soit 4 ignorer les
intervalles inégaux et & modéliser les rendements sur 1’échelle du temps opérationnel
déterminée par le processus de comptage des cotations, soit & échantillonner les don-
nées 3 des intervalles constants, comme un jour, une heure ou dix minutes. Il est
crucial de prendre en considération lajustement du temps qui résulte de la seconde
méthode. Les intervalles de temps opérationnel sont dans ce cas définjes par une
séquence de nombres des transactions conclues dans les intervalles du temps calen-
drier correspondants ou encore par le volume. Dans notre essal, nous comparons les
moments empiriques des séries en temps réels et ceux produits par ’échantillonnage
pour montrer les différences qui résultent d’une négligence de 'effet du changement
de temps.

La forme fonctionnelle du temps opérationnel que 1'on emploie dans notre modele
permet de modéliser les données échantillonnées a intervalle constant et s’adapte aux
effets saisonniers. On distingue une composante prévisible du nombre des cotations
dans un intervalle particulier du jour & laquelle s’ajoute une composante de surprise
définie comme la différence entre la moyenne empirique et le nombre de cotations en-
registrées. Une autre échelle de temps opérationnel est construite de la méme facon
a partir des rendements passés et des fourchettes de prix passés. Les résultats em-
piriques permettent de décrire la dynamique des rendements sur les taux de change
dont la volatilité est, en général, particuliérement sensible aux composantes non an-
ticipées. On compare aussi les marchés de différentes monnaies et les séries des prix

d’offre et d’achat. La partie empirique est basée sur les données de Olsen and Asso-
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ciates du mois d’Octobre 1992 4 I’Octobre 1993. Dans la section 2, nous analysons les
données et nous discutons les conséquences de I'ajustement de I’échelle du temps sur
les propriétés distributionnelles des données. La section 3 décrit le modéle de base.
Les différentes échelles de temps opérationnel sont comparées dans la section 4. Les

résultats empiriques sont présentés dans la section 3 et les conclusions sont résumées

dans la section 6.
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Finite Sample Inference Methods for Simultaneous
Equations and Models with Unobserved and

Generated Regressors



1. INTRODUCTION

A frequent problem in econometrics and statistics consists in making inferences on
models which contain unobserved explanatory variables, such as expectational or la-
tent variables and variables observed with error; see, for example, Barro (1977), Pagan
(1984, 1986), and the recent survey of Oxley and McAleer (1993). A common solu-
tion to such problems is based on using instrumental variables which serve to replace
the unobserved variables by proxies obtained from auxiliary regressions (generated
regressors). It is also well known that the use of such regressors raises difficulties for
making tests and confidence sets, and it is usually proposed to replace the ordinary
least squares (OLS) standard errors by instrumental variables (IV) based standard
errors; see Pagan (1984, 1986) and Murphy and Topel (1985). In any case, all the
methods proposed to deal with such problems only have an asymptotic justification,
which means that the resulting tests and confidence sets can be extremely unreliable
in finite samples. In particular, such difficulties are especially obvious in situations
which involve “weak instruments”, a problem which has received considerable inter-
est recently; see, for example, Nelson and Startz (1990a, b), Buse (1992), Maddala
and Jeong (1992), Bound, Jaeger and Baker (1993, 1995), Staiger and Stock (1993),
Angrist and Krueger (1994), Dufour (1994) and Hall, Rudebusch and Wilcox (1994)
[for some early results relevant to the same issue, see also Nagar (1959), Richardson
(1968) and Sawa (1969)).

In this paper, we treat these issues from a finjte sample perspective and we pro-
pose finite sample tests and confidence sets for models with unobserved and generated
regressors. We also consider a number of related problems in the more general con-
text of linear simultaneous equations. To get reliable tests and confidence sets, we
emphasize the derivation of truly pivotal (or boundedly pivotal) statistics, as opposed
to statistics which are only asymptotically pivotal; for further discussion of the im-
portance of such statistics for inference, see Dufour (1994). We study two distinct
approaches for various models considered by Pagan (1984). The first one is an instru-
ment substitution method which generalizes an approach proposed by Anderson and
Rubin (1949) and Fuller (1987) for different (although related) problems, while the
second one is based on splitting the sample. The instrument substitution method uses

the instruments directly, instead of generated regressors, in order to test hypotheses
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about the “structural parameters” of interest and build confidence sets. The second
approach relies on “generated regressors”, which allows a gain in degrees of freedom,
and a sample split technique. Depending on the problem considered, we derive either
exact similar tests (and confidence sets) or conservative procedures. The hypothe-
ses for which we obtain similar tests (and correspondingly similar confidence sets)
include: a) hypothesis which set the value of the unobserved (expected) variable
coefficient vector [as in Anderson and Rubin (1949) and Fuller (1987)]; b) analo-
gous restrictions taken jointly with general linear constraints on the coefficients of
the (observed) exogenous variables in the equation of interest; and c) hypothesis
about the coefficients of “surprise” variables when such variables are included in the
equation. Tests for these hypotheses are based on Fisher-type statistics, but the con-
fidence sets typically involve nonlinear (although quite tractable) inequalities. The
exact distributional theory is obtained under the assumptions of Gaussian errors and
strictly exogenous regressors| which ensures that we have well-defined testable mod-
els. Although we stress here applications to models with unobserved regressors, the
extensions of Anderson-Rubin procedures that we discuss are also of interest for in-
ference in various structural models which are estimated by instrumental variable
methods (e.g., simultaneous equations models). Furthermore, we show that the tests
and confidence sets proposed are (locally) “asymptotically valid” under much weak-
er distributional assumptions (which may involve non-Gaussian errors and weakly
exogenous instruments).

It is important to note that the confidence sets obtained by the methods described
above, unlike Wald-type confidence sets, are unbounded with non-zero probability. As
emphasized in Dufour (1994), this is a necessary property of any valid confidence set
for a parameter that may not be identifiable on some subset of the parameter space.
As a result, confidence procedures that do not have this property have true level zero,
and the sizes of the corresponding tests (like Wald-type tests) must deviate arbitrarily
from their nominal levels. It is easy to see that such difficulties occur in models
with unobserved regressors, models with generated regressors, simultaneous equations
models, and different types of the error-in-variables models. In the context of the
first type of model, we present below simulation evidence that strikingly illustrates
these difficulties. In particular, our simulation results indicate that tests based on

instrument substitution methods have good power properties with respect to Wald-
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type tests, a feature previously pointed out for Anderson-Rubin tests by Maddala
(1974) in a comparative study for simultaneous equations. Furthermore, we find that
generated regressors sample-split tests perform better when the generated regressors
are obtained from a relatively small fraction of the sample (e.g., 10% of the sample)
while the rest of the sample is used for the main regression (in which generated
regressors are used).

An apparent shortcoming of the similar procedures proposed above and what is
probably one of the reasons why Anderson-Rubin tests have not become widely used,
is the fact that they are restricted to testing hypotheses which specify the value of
the coefficients of all the endogenous (or unobserved) explanatory variables, excluding
the possibility of considering a subset of coefficients (e.g., individual coeflicients). We
show that inference on the individual parameters or subsets of coefficients is however
feasible by applying a projection technique analogous to the ones used in Dufour
(1990) and Dufour and Kiviet (1993). We also show that such techniques may be
used for inference on general possibly nonlinear transformations of the parameter
vector of interest.

The plan of the paper is as follows. In section 2, we describe the main mod-
el which may contain several unobserved variables (analogous to the “anticipated”
parts of those variables), and we introduce the instrument substitution method for
this basic model with various tests and confidence sets for the coefficients of the unob-
served variables. In section 3, we propose the sample split method for the same mode]
with again the corresponding tests and confidence sets. In section 4, we study the
problem of testing joint hypotheses about the coefficients of the unobserved variables
and various linear restrictions on the coefficients of other (observed) regressors in the
model. Section 5 extends these results to a model which also contains error terms
of the unobserved variables (the “unanticipated” parts of these variables). In section
6, we consider the problem of making inference about general nonlinear transforma-
tions of model coeflicients. Finally, in section 7, we give an “asymptotic validity”
result for the various procedures proposed under weaker distributional assumptions.
Section 8 presents the results of simulation experiments in which the performance of
our methods is compared with some widely used asymptotic procedures. Section 9
presents the empirical results on hypothesis testing in the context of the Tobin’s ¢

model and an application to an economic model from the domain of the education-
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al economics. It explains the relationship between student’s academic performance,
their personal characteristics and some socio-economic factors. The first example il-
lustrates inference in presence of good instruments, while in the second example only
poor instruments are available. As expected, confidence intervals for Tobin’s q based
on the Wald-type procedures largely coincide with those resulting from our methods.
On the contrary, large discrepancies arise between the confidence intervals obtained
from the asymptotic and the exact inference methods when poor instruments are

used. We conclude in section 10.

2. EXACT INFERENCE BY INSTRUMENT SUBSTITUTION

In this section we develop finite sample inference methods based on instrument substj-
tution methods for models with unobserved and generated regressors. We first derive
general formulae for the test lsta,tistics and then discuss the corresponding confidence
sets.

We consider the following basic setup which includes as special cases Models 1
and 2 studied by Pagan (1984):

(2.1) Yy=2.6+Xvy+e,

(2.2) Z=Z.+V=WB+V,

where y is a T'x 1 vector of observations on a dependent variable, Z, is a T x G matrix
of unobserved variables, X is a T x K matrix of exogenous explanatory variables in
the structural model, Z is a T x G matrix of observed variables, W is a T x g matrix
of variables related to Z,, while e = (e1,-..,er) and V = [vl, .. L vy] are T x 1
and T x G matrices of disturbances. The matrices of unknown coefficients, o, v,
and B have dimensions, respectively, G x 1, K x 1 and q¢ X G. In order to handle
common variables in both equations (2.1) and (2.2), like for example the constant
term, we allow for the presence of common columns jn the matrices W and X. In the
setup of Pagan (1984), the exogenous regressors X are excluded from the “structural”
equation (2.1).

The finite sample approach we adopt in this paper requires additional assumptions,

especially on the distributional properties of the error term. We will suppose that
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the following conditions are satisfied:

(2.3) X and W are independent of e and V' :
(2.4) 1< rank(X) =K, 1< rank(W)=¢<T, 1< K+G<T;
(2.5) (er, vi) X'N[0,Q), t=1,....T;

(2.6) var(e;) #0, t=1,...,T.

Assumptions (2.3) - (2.6) can be relaxed if they are replaced by assumptions on
the asymptotic behaviour of the variables as T — oo. Results on the asymptotic
“validity” of the various procedures proposed in this paper are presented in section
7.

Let us now consider the null hypothesis:
(27) Ho : 6= (50.

The instrument substitution method is based on replacing the unobserved variable

by a set of instruments. First, we substitute (2.2) into (2.1):

(2.8) y=(Z-V)6+Xy+e=26+ Xy +(c - V§).

Then subtracting Z6;, on both sides of (2.8), we get:

(2.9) y—2Zby = Z(8 = b0) + Xy + (e — V)
= (WB+V)(5—50)+X7+(6—V6)

where u = e — V§,. Now suppose that W and X have K, columns in common

(0< K, < g) while the other columns of X are linearly independent of W:

(2.10) W =[W,X;], X =[X,X,],

rank (W1, X, X5] = ¢+ K — K, <T,
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where Wy, X, and X, are T x 9, T x K; and T x K, matrices, respectively (K =
K1+ K3, ¢ = ¢1 + K;). We can then rewrite (2.9) as
(2.11) Yy - Z&o = [W1B1 + Xng] (5 - 50) + [Xl‘)’] + Xz’)’g] +u
= WiB (6 - bo) + Xom + Xa[v: + B3(6 — 8)] + u
= Wibi 4+ Xim + Xomaw + u
= W151t + X7& +u
where 81 = Bi(6 — bo), 724 = 72 + By(6 — bo) and . = (v}, 44.)".
It is easy to see that model (2.11) satisfies all the assumptions of the classical

linear model. Furthermore, since é;, = 0 when § = b0, we can test Hy by a standard

F-test of the null hypothesis

(2.12) Hy, : 6. = 0.
This F-statistic has the form

(y = Z6o) P(M(X)W,) (y — Zbo) /1
(y — Z&)M(W1, X)) (y — Z60)/(T — 1 — K)

(2.13) F(60; Wy) =

where P(A) = A(A’A)"'4’ and M (A) = It — P(A) for any full column rank matrix
A. The statistic F(8o; W1) may also be expressed in terms of the OLS estimator &y,
from (2.11),

SLIWIM(X) Wb /g1

(2.14) o W) = o) (T —a )

or in terms of sum of squared residuals:

[t0(80) @0 (80) — 11 (80)'1i1(60)] /a1
t1(60) i1 (b0) /(T — q1 — K)

where 1o(60)"lo(80) and 1, (&)’ U1(80) denote the restricted and the unrestricted resid-

ual sum of squares from equation (2.11). When 6 = 6, we have
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(2.16) F(bo; W1) ~ F(q1, T — ¢ ~ K)

so that F(6p; W) > F(a; ¢, T —q — K ) is a critical region with level « for testing

6 = 6o, where
(2.17) Prob[F'(é0; W1) < F(e; q1, T — ¢, — K)l=1-a.

The essential ingredient of the test is the fact that @1 2 1, i.e. some instruments
must be excluded from X in (2.1). On the other hand, the usual order condition
for “identification” (g, > G) is not necessary for applying this procedure. In other
words, it is possible to test certain hypotheses about § even if the latter vector is not

completely identifiable. It is then straightforward to see that the set

(2.18) Cs(a) = {bo : F(bo; Wy) < Fla; ¢, T —q1 — K)}

is a confidence set with level 1 —a for the coefficient §. The tests based on the statistic
F(60; W1) and the above confidence set generalizes the procedure proposed by Fuller
(1987, pp. 16-17) for a model with one unobserved variable (G =1) and X limited
to a constant variable (K = 1).

Consider now the case where Z is a T' x 1 vector and X is a T x K matrix. In this

case, the confidence set (2.18) for testing Ho : é = 8o has the following general form:

_ s W Z8)A(y—-Z6)  wn
(2.19) Cs(a) = {50 = Zhy Ay —28) g S Fa} ’

where F, = F(a; ¢, T — 1 — K)and v, = T — ¢; — K and the matrices A; and A,

are defined by the expressions:
(2.20) Ay = P(M(X)W,), A,= MWy, X]).

Since (v2/¢1) only takes positive values, the inequality in (2.19) is equivalent to



(y - ZJQ)’(AI - GaAz) (y - Z6O) < Oa

or

Z'CZé —[y'CZ + Z'Cylés + y'Cy < 0,

where G, = (q1/v2)F, and C = Ay — GLA,. Adopting the usual notation, this

quadratic inequality in 8, can be explicated as follows:
(2.21) alg + b6 +c<0

where a = Z'CZ, b= —2y/CZ, ¢ = y'Cy.

In empirical work, some problems may arise due to the high dimensions of the
matrices M(X) and M([Wy, X]). A simple way to avoid this difficulty consists in
using vectors of residuals from appropriate OLS regressions. Consider the coefficient
a = Z'CZ. We may replace it by the expression Z'A,Z — G,Z'A,Z and then rewrite

both terms as follows:

Z'AZ = Z'P(M(X)W,)Z
= (ZM(X)) (M(X)W1) [(M(X)W1) (M(X)W)] ™ (M(X)Wh ) (M(X)Z)
242 = Z'M(Wh, X)Z = [M(Wy, X])Z)[M([W4, X])Z].

In the above expressions, M (X )Z is the vector of residuals obtained by regressing
Z on X, M(X)W; is the vector of residuals from the regression of Wi on X and,
finally, M([W1, X])Z is a vector of residuals from the regression of Z on X and W;.
We can proceed in the same way to compute the two other coefficients of the quadratic
inequality (2.21). This will require only two additional regressions: yon X, and y on
both X and Wj;.

It is easy to see that the confidence set (2.21) is determined by the roots of the
second order polynomial in (2.21). The shape of this confidence set depends on the
signs of a and A = b? — 4qc. All possible options are summarized in Table 1 where
we denote by 6. the smaller root and by &;. the larger root of the second order

polynomial (when both roots are real).



Table 2.1: Confidence sets based on the quadratic inequality
aél+b6+c<0

A>0 A<O
(real roots) (complex roots)
a>0 [61., 62,.] Empty
a<0 (=00, é1.] U [82., o0) (=00, +0o0)
c
a=0 b>0 (_oo, _ﬂ
c
b <0 [-——-5- y OO)
b=0, ¢>0 Empty
b=0, ¢c<0 (—o0, +00)

Note there are non-zero probabilities that the confidence region be empty or covers
the entire real line. However, if the model is correctly specified, the probability of
obtaining an empty confidence set is not greater than a. An empty confidence set
might be an indication of the poor fit of the model. On the other hand, the possibility
of an unbounded confidence set is a necessary characteristic of any valid confidence
set in the present context, because the structural parameter § may not be identifiable
[see Dufour (1994)]. Unbounded confidence sets are most likely to occur when § is
not identified or close to being unidentified, for then all values of § are observationally
equivalent. Wald-type confidence sets for § are typically bounded with probability
one, so their true level must be zero. Note finally that an unbounded confidence
set is not necessarily uninformative: e.g., the set (—oo, 61,] U [6;., 00) may exclude

economically important values of § (6 = 0 for example).
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3. INFERENCE WITH GENERATED REGRESSORS

Test statistics similar to those of the previous section can alternatively be computed
from linear regressions with generated regressors. To obtain finite sample inferences
in such contexts, we propose to compute adjusted values from an independent sample.
In particular, this can be done by applying a sample split technique.

Consider again the model described by (2.1) to (2.6). In (2.9), a natural thing
to do would consist in replacing W B by WB, where B is an estimator of B. Take
B=(w W)~1W'Z, the least squares estimate of B based on (2.2). Then we have:

(3.1) y— 26 = WB(5-50)+X7+[u+W(B-B)(5_5O)]
= Z50,.+X*y+u...

where 6o, = § — 6y and u, = e — Véo+W (B~ f?) (6 — b0)- Again, the null hypothesis
6 = 8o may be tested by testing Hy, : 6. = 0 in model (3.1). Here the standard F
statistic for Ho. is obtained by replacing W; by Z in (2.13), i.e.

(y — Z59)’A(2) (y — Z6)/G
(y — Z60)'B(Z) (y — Z&)/(T — G - K)

(3.2) F(b; Z) =

where A(Z) = P(M(X)Z), and B(Z) = M((Z, X]). However, to get a null distribu-
tion for F(6y; Z ), we will need further assumptions. In addition to the assumptions

(2.1) to (2.6), we will now also suppose that

(3.3) e: and v; are independent for each t = 1,...,T,
and
(3.4) det(Q2) > 0.

When § = 6, = 0, Z and u, are then independent and, conditional on Z, model (3.1)
satisfies all the assumptions of the classical linear model (with probability 1). Thus
the null distribution of the statistic F (0; Z) for testing 6o = 0 is F(G, T — G — K).
Unfortunately, this property does not extend to the more general statistic F (b0; Z )
where §p # 0 because Z and u. are not independent in this case. A similar observation

(in an asymptotic context) was made by Pagan (1984).
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Suppose now that an estimate B of B independent of u and V is available, and
replace Z = WB by Z = WhB in (3.1). We then get

(3.5) y— Z&g =Z§0..+X7+u...

where u.. = ¢ — V6, + W(B - B) (6 — éo). Under the assumptions (2.1) - (2.6)
and conditional on Z (or B), model (3.5) satisfies all the assumptions of the classical

linear model and
(3.6) F(8; Z) ~ F(G,T - G - K)

when 6 = &y, so that the critical region F(86; Z) > F(a; G, T — G — K) has size a.
Note that the independence between u and V [assumption (3.3)] is not needed here.
Furthermore (3.5) can be estimated by OLS and an alternative form of the F-statistic

can be computed, i.e.

8.2'M(X)Zbo./G
a1(80)'d1(60)/(T — G - K)

[do(80)"tko(b0) — 11(80)111(80)]/G
ﬁ1(50)’121(50)/(T-— G - K) ’

(3.7) F(éo; Z) =

where the usual notation has been adopted. Consequently
(3.8) Cs(a) ={80: F(b0; 2) < F(a; G, T — G — K)}

is a confidence set for § with size 1—a. For scalar § (G = 1), this confidence set takes a
form similar to the one in (2.19), except that A, = P(M(X)Z) and A, = M([Z, X)).

A practical problem here consists in finding the independent estimate B. Under
the assumptions (2.1) - (2.6), this can be done easily by splitting the sample. Let
T =T, +T,, where T} > G + K and T2 > q, and write

_ 3/(1)) _ (Xu)) _ (Z(l)) _ (Wm>
3.9 = . X = . Z= W=
(3.9) Y (y(z) X(2) Z(3) W)

where the matrices Yy X(@), Z() and W) have T; rows (i = 1, 2). Consider now the

equation

(3.10) Y1) = Zwbo = Znybo. + Xayy + t(1)ee
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where Z(l) = W'(l)é and B = [Hf(’z)mz)]’IW'(’”Z(g) is obtained from the second sam-
ple. Clearly B is independent of Z(1y and the statistic F(éo; Z(1)) based on equation
(3.8) follows a F(G, Ty — K — G) distribution.

The sample split technique has been adopted by Angrist and Krueger (1994) to
build a new IV estimator, called Split Sample Instrumental Variables (SSIV). Its ad-
vantage over the traditional IV method is that SSIV yields an estimate biased toward
zero, rather than toward the probability limit of the OLS estimator in finite sample
if the instruments are weak. Angrist and Krueger show that an unbiased estimate of
the attenuation bias can be calculated and, consequently, an asymptotically unbiased
estimator (USSIV) can be derived. In their approach, Angrist and Krueger rely on
splitting the sample in half, i.e., setting 71, = T = % when T is even. However,
in our setup, different choices for T 1 and T, are clearly possible. Alternatively, one
could select at random the observations assigned to the vectors Ya) and y(z). As we
will show later (see section 8) the number of observations retained for the first and
the second subsample have a direct impact on the power of the test. In particular,
1t appears that we get a more powerful test once we use a relatively small number
of observations for computing the adjusted values and keep more observations for
the estimation of the structural model. This point is illustrated below by simulation

experiments.

4. JOINT TESTS ON § AND 0

The instrument substitution and sample split methods described above can easily
be adapted to test hypotheses on the coefficients of both the latent variables and
the exogenous regressors. In this section, we derive F-type tests for general linear
restrictions on the coefficient vector.

Consider again model (2.1) - (2.6), which after substituting the term (Z-YV) for

the latent variable yields the following equation:

(4.1) y = (Z=V)6+Xy+e
= Z6+ Xy + (e~ V).

We first consider a hypothesis which fixes simultaneously § and an arbitrary set of
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linear transformations of +:
H, : 5=5o, n =ho

where v; = Ryv, R; is a r; x K matrix such that 1 <rank(R))=r, < K.
The matrix R; can be viewed as a submatrix of a K x K matrix R = [R{, R}J

where det(R) # 0, so that we can write

= wem )= (5] []

Let Xp = XR™! = [Xp,, Xg,| where X R, and Xg, are T X r; and T x r, matrices

(r2 = K —ry). Then we can rewrite (4.1) as

(4.3) y =,264+Xv+ (e-Vé)
= Z§+ XR 'Ry + (e~ V$)
= Z8+ Xpi + Xp,va + (e — V§).

Subtracting Z&, and Xg,v10 on both sides, we get

(44) Yy - Z50 - XR1V10 = Z(6 —_— 60) + XR1 (1/1 - Vlo) +XR2V2 + (6 - V&)
= [WiB; + X2 By (6 - ) + Xg, (v, — V10)

+ Xp,vs +[e— VE+ V(6 — 6)].

Suppose now that W and X have K3 columns in common (with 0 < K, < g¢),

while the other columns of X are linearly independent of W as in (2.10). Since

R,

X = [Xl, X2] = XgR = [XRl, Xr,)R = [XRU XR:] [ R,

] = Xgr, Ry + Xg, R, ,
we can write

(4.5) X =[X1, Xo] = [Xp,Ri1 + Xr, R, Xp, Ria + Xr, Ry,

where Ry = [Ry, Ryy), R, = [R21, Rys) and Ri; is a r; x K; matrix (i, j = 1, 2).
Then replace X, by Xp,Ri3+ Xg,Ry; in (4.4):
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(46)  y—Z8&—Xpuo = [WiB+ (Xp,Rur + Xp,Ru)By) (6 — 60)
+ Xr, (11 — v10) + Xp,v2 + (e — V§)
= WiBi(6 ~ &) + Xg,[R12B:(6 — &)
+ (1 — v0)] + X, 75 + (e - V§)

= Wi + Xp,v; + Xp, 75 + u

where 6; =6 (50, 7{ = R12B2(6 - 60) + (V1 - Vlg), ’)‘; = R22B2(5 e 60) + Vo, and
u = e— V4. Consequently, we can test H, by testing Hy : 67 =0, 47 =0 in (4.6),
which leads to the statistic:

(4.7) ,
F(bo, vio; WiXR,) = {y (b0, v10) P(M(Xp, Wr,) y (80, v10)/(q1 + 1)}
{y (éo, vio)' M([Wy, X))y (bo, v10)/(T — q1 — K)}-!

[ﬁ0(50, Vlo)'ﬁo(5o, Vig) — i1 (o, VIO),ﬁl(éoy VlO)]/(Ql + 1)
ft1(50, V1o)'171(50, VIO)]/(T - q1— K)

where y (6o, v10) = Yy—Zéo~Xp,v10, Wg, = [W, Whr,]. tio(0, v10) and i1 (b0, v10)
refer to the restricted and unrestricted residual vectors obtained from the estimation
of (4.6). Under Hy, F(bo, v10; Wi, Xr,)~ Flgi+r, T~ — K) and we reject Hy
at level o when F(éo, v10; Wi, Xg,) > F(a; ¢ + r,, T — ¢ — K). Correspondingly,

(48) {(6{)’ V{O)I : F(60, Vio; WI, XRI) S F(a; 1 + T1, T — q1 — I{)}

is a confidence set with level 1 — o for § and Rivy.
Suppose now that we employ the procedure with generated regressors and that
we have calculated an estimator B independent of u and V. We can then proceed in

the following way. Since Z = W B, we have:
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(4.9) y=2b—Xpvio = (Z+V)(6—6)+ Xn, (11 - ¥10)
+ Xg,v2 + (e — V6)
= Z(& — 80) + Xg,(vy — vio) + Xpg,v2
+e-VE+ V(- 6)]

= Z&f + Xr, v + Xp,v5 + u

where 67 =8—8o, v} =1, —1y9 and u=e—V§ +V(6- 60). In this case we will
simply test the hypothesis H, : 6y =0, v; =0. The F statistic for Hj takes the

form:

(4.10)

F(bo, vio; Z, Xp,) = {y (b, v10)'P(M(XRr,)Zr,) y (80, v10)/(G + 1)}
X {y (60, v10)'M([Z, X))y (b0, 110)/(T - G — K)}!

[%0(80, ¥10)'To(bo, v10) ~ T1(o, v10)'d (b0, 110))/(G + 1)
'&1(60, Vlo)'ﬂ1(6o, Vlo)/(T - G -— K)

where y (o, v10) = y — Zbo — Xp,v10, Zn, = [Z, Xr,), while 1ig(6, v10) and
t1(bo, v10) are the restricted and unrestricted residual vectors from (4.9). Under H,,
F(bo, vi0; Z, Xp,) ~ F(G+r, T—G—-K). The corresponding critical region with

level « is given by

F(507 Y05 Z') XRl) 2 F(a; G+7‘1, T—G—Tl),

and the confidence set at level 1 — o 1s thus

(4.11) {80 ¥10)": Fl(bo, v1o; Z, Xp,) < F(a; G417, T— G — K}.
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5. INFERENCE WITH A SURPRISE TERM

In many economic models we encounter the so-called surprise term among the ex-
planatory variables. It reflects the difference between the expected value of the latent
variable and the realization. In this section we study a model which contains the
unanticipated part of Z [Pagan (1984, model 4)] as an additional regressor beside the

latent variable, namely,

(5.1) Y = Zb5+(Z-Z)yy+XB+e
= Z6+Vy+XB+e-VS§,
(5.2) Z = Z.+V = WB+V,

where the general assumptions (2.3) - (2.6) still hold. The term (Z — Z,) represents
the unanticipated part of Z.
Consider first the problem of testing the hypothesis Hy : & = §,. Applying the

same procedure as before, we get the equation:
(5.3) Yy—Zbo = Z(6—b)+XB+Vy+e—V§
= WB( - &)+ XB+Vy+(e— V&),
hence, assuming that W and X have K; columns in common,
(5.4) Yy—2Zb = [WiB1+X,B,](6 - &)+ X8+ V(iy—éo) +e
= WiBi(8 —bo) + X3 By(8 — &) + [ X1 + X20,]
+V(r—6)+e
= WiBi(6 —éo) + X181 + X285 + e + Viy — &)

= W151* +Xﬂ* +u

where 81, = By(6 — &), 82 = B2 + Ba(8 ~ o), B. = (B, B3') and u = e + V(v = b).
Then we can test § = §, by using the F-statistic for 610 =0:
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(y — Zbo)) P(M(X)W:) (y — Z&o) /a1
(y — Z6o) MIX(W)| (y — Zb0) /(T — q1 — K)

8 WIM(X)Widra/qu
41(80)'81(80)/(T — 1 — K)

[Go(0)"tio(80) — 1i1(60)"a1 (80)]/ g
1(80)'d1(80) /(T — ¢1 — K)

where 1o(69)'t0(80) and 4y (8o)"i(8) denote the corresponding restricted and unre-
stricted residual sum of squares from (5.4). When 6 = &, F(é; Wi) ~ F(q, T —
q1 — K). 1t follows that F(&; Wi) 2 Fla; q— Ky, T — ¢, — K) is a critical region

with level « for testing § = §y while

(5.6) {éo: E(50; Wi)<Fla;q, T —q — K)}

is a confidence set with level 1 — « for §. The procedure developed for the case where
no surprise variable is present applies thus without change.
We will now generalize the previous test to a joint hypothesis about § and any set

of linear restrictions on 3. The hypothesis is formulated as follows:
Ho 6= 60, V1 = o,

where B3 = v, and Ry is a full line rank r1 X K matrix. This can be done by using

the corresponding F-statistic based on equation (5.4):

(5.7) ) , )
14 ) -1 ( 014 )
) R{(W, XY(Wh, X)" 1R’ ,
F(bo; 110) = <R1/B* — g [B[(W1, X)W1, X) R Rufh — v /(g1 + 1)
' 11 (b0, v10)"11 (b0, 110)/(T — q1 — K)
[('&0(50, Vlo)'ﬁo(50, Vlo) - ﬁ1(50, Vw)"fﬂ((so, V10))]/(<11 + 7'1)
(6o, v10)'t1(80, 110)/(T — g1 — K) ’ %
i
here R= |1 0 Under Ho, F ((f); Wi, X) ~ F T K), which
where R = | g, |- Under Ho, )i Wi, )~ (@147, T — g — K), whic
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yields the following confidence set with level 1 — o for 6 and 1;:

(5.8) {(5") : F((‘S"); Wi, X) SFle;q+r, T—q —K)}.
Y10 V1o

If generated regressors are used, we can write:
(5.9) Y= 26 =WB(§—6)+ X8+ Vy+ V(6 -6).
Replacing W B by W B, where B is an estimator independent of e and V, we get
(5.10) y— 28 = WB(E—6)+XB+ e+ V(y—é&)+ V(6 — &)]
= Z6+XB+u

where 6, = § — 8y and u = e + V(y = &) + f/(é — 6o). Here the hypothesis § = &,
implies the null hypothesis Hj : 6, = 0. The F-statistic for testing H} has the form:

(v = Z8)'P(M(X)Z) (y - 26)/G
(y = Zéo)M([Z, X]) (y — 26)/T -G — K

(5.11) F(6;Z) =
8.2'M(X)Z6,/G
11(80)11(60) /(T — G — K)

[do(60)"20(80) — 1i1(60)' 1 (80)]/G
t1(60)'111(60)]/(T — G — K)

where, as before, tig(8p) and #1(6o) denote the restricted and unrestricted residual
vectors from equation (5.10). When 6§ = &, F(80; Z)~F(G, T~G — K). Conse-
quently, F(é,; Z )2 Fla; G, T-G~-K ) is a critical region with level « for testing

6 = 8 and the corresponding confidence set

(5.12) {bo: F(éo; Z) < F(e; G, T - G - K))

has level 1 — a. For a discussion of different forms of confidence sets when Z is a

T x 1 vector, see section 2.
This procedure is easily generalized again to test an hypothesis of the form Hy:

6 = 8o, v1 = vy, where v; = RiB, Ry is a r; x K matrix of restrictions of rank ry,
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1 < r < K. This can be done again by estimating (5.10) with and without the
restrictions § = § and R;8 = vy,. Adopting the same notation as in the instrument

substitution method, we get the F-statistic:

(5.13)

A !

(Rl/;: Vlo) [R[(Z’ Xy, X)]_IR'J N ( 153_ y 0) /(G +7)

F (6, v10; Z, X) i1 (60)'11(80)/(T — G — K)

[0(0, V10) tio (o, v10) — 11 (8o, v10)'ti1 (o, 110)]/(G + 7‘1)
U1(5o, VlO) U1(5o, Vlo)/(T G- K)

Clearly, when & = 6 and 11 = o, F ((2); 2, X) ~ F(G+1, T~ G~ K), which

yields the following confidence set with level 1 — & for (&', v}):

(5.14) {(i‘;) . F ((Z‘;) Z, X) < F(o; G+, T—G—K)}.

Let us now consider the problem of testing the hypothesis on the coefficient of the

surprise term, i.e. Hy: 4 = . Here we will make the additional assumption:

(5.15) e: and v; are independent for each ¢ = ,...,T.
We can write

(516) y = Z4b+(Z-Z)y+XB+e = Z6+ XB+Vy+e— V6
= Z6+XP+V(y—8)+e = (WB+V)§+XB+V(y—6)+e
= WBS+XB+Vy+e = WBS+(Z-WB)y+e
= WB—-y)+Zv+X0+e

= Wibi+Zy+ XB. +e.
Subtracting Z+, on both sides yields
(5.17) y=2Zv = WB.+Z(y—v)+XB+e

= WéitZv. + Xf. +e
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where 7, = 4 —~5. We can thus test 7 = 7o by testing 4. = 0 in (5.17), which can be
done by computing the F-statistic:

(¥ = Z5)P(M(W1, X])Z) (y — Z~)/G
¥ = Z%)M(W, 2, X)) (y = Z70)/(T - G — q1 = K)’

(5.18) F(yo; Z) =
YZ'M(W, X))Z4./G
u1(v0)' U (%)/(T -G — ¢ — K)’

[to(70)"tho(0) = tia(70)'ik1(70)]/G
u1(70)' i1 (7)/(T - G~ ¢ — K) ’

where 4o(7) and 4;(v) are the restricted and unrestricted residual vectors. When
Y =%, F(v; Z) ~ F(G, T-G-qi~K)so that F(y,; Z) > Fla; G, T-G~q,-K)

is a critical region with level a for Y =~ and

4

(5.19) {w: Fly; 2) < F(o; G, T - G- ¢ - K)}

1s a confidence set with level 1 — « for .
We can now discuss the construction of the confidence set when + is a scalar. The
confidence set in (5.20) can be explicated as:

(y = Z7)'D(y — Z) Z }
: x — < F,
{7" W=ZWEWY-2Zv) = n =

(5.20)

where =G =1,1b=T-G-g¢ - K, D = P(M([W, X)), E = M([W,, Z, X)).

Define H, = (v1/v;)F,. Since the ratio va/n1 always takes positive values, the confi-

dence set is obtained by finding the values ~, that satisfy the inequality

(5.21) (v = Z7%)(D ~ HyE) (y — Z0) < 0

or equivalently
(5.22) a1g + b0 +¢c<0
where a = Z'LZ b= —-2Z2'Ly,c=y'Lyand L = D — H,FE.

Finally we can treat by similar methods the problem of testing a joint hypothesis

of the type Hy : ~ = Yo, V1 = 110, Where vy = R, and rank(R;) = ry. Again we
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can proceed by finding the restricted and unrestricted residual sums of squares from

equation (5.13) which yields the F-statistic:

(5.23)

[do(70, ¥10)'tko(70, ¥10) ~ t1(70, v10)"th (Y0, ¥10)]/(G + 1)
Flyo, vio; W, Z, X) = / / ,
(0, 10 ) i, 1070, )T - G = ¢, — K)

Clearly, under the null hypothesis, F ((‘Z‘;), Z, X) ~FG+r, T-G—q - K) tests

and confidence sets follow as usual.

6. TESTING GENERAL NONLINEAR TRANSFORMATIONS OF §

The finite sample tests presented in this paper are based on extensions of Anderson—
Rubin statistics. As we have pointed out in the introduction, this category of tests
yields valid inferences, independently of the sample size T, performs better then other
tests in terms of power and allows for unbounded confidence sets when the parameter
is unidentified or nearly unidentified. However, an apparent limitation of Anderson—
Rubin type tests come from the fact that they are designed for hypothesis fixing
the complete vector of the of the endogenous (or unobserved) regressor coefficients.
In this section, we propose a solution to this problem which is based on applying a
projection technique. Even more generally, we study inference on general nonlinear
transformations of é in (2.1) and propose finite sample tests of general restrictions
on subvectors of §. For a similar approach, see Dufour (1989, 1990) and Dufour and
Kiviet (1994).

In the previous sections, we derived confidence sets for § which take the form

(6.1) Cs(a) = {bo : F(bo; W) < F(a)}.

This means the probability that the true § belongs to the set Cs(a) is:
(6.2) ’ Plé € Cs(a)] =1 - c.
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If § = 6y, we have
(6.3) Plbo € Cs(a)) =1—a, and Pléy & Cs(a)] = a.

Consider first a nonlinear transformation of §: 7 = f(6). It is easy to see that the set

(6.4) Cola) = {no : no = f() for some 6 ¢ Cs(a)}

is a confidence set for y with level at least 1 — a: i.e.

(6.5) PlheChla)] 21 -a
hence,
(6.6)  PhgC @) <a

Consequently, by rejecting Hy : = 5o whenever no € Cp(a), we perform a test of

level a. Furthermore

(6.7) Mo & Cola) & mo # f(6) , V6 € Cs(a)
so that the condition 7o & C,(e) can be verified by minimizing F(8o; W;) over the
set f71(0) = {80 : f(&) = no}.

Consider now the special case where 1= f(8) =6 and § = (&, &Y, i.e. nis a

subvector of §. Then the confidence set Cy(a) takes the form:

(6.8) Cy(@) = Cs,(a) = {510 : (f;:) € Cs(a), for some 52} :

Consequently we must have:

(6.9) P[4 € Cs(a)] 21— @
and
(610) P[‘SIO g Cgl (a)] S Q.
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The test which rejects Hy : 81 = 610 when 859 & Cs,(a) has level not greater than a.

Furthermore,

(6.11) 610 € Cs,(a) &V &, F ( (?2"); Wl) > F(a)

where the last equivalence holds with probability one. In practice, we can employ a
numerical procedure which would consist in minimizing the F statistic with respect
to 62 and comparing the minimum value of F with F (@). In case where the minimum

of F is greater than F(a) in which case we reject the hypothesis § = 6,,.

7. ASYMPTOTIC VALIDITY

In this section we show that the finite sample inference methods remain valid under

weaker assumptions when the number of observations goes to infinity.
Consider again the model described by (2.1) - (2.6) and (2.10), which yields the

following equations:

(7.1) Yy=26+Xvy+u
(72) Z = W1B1 + Xng + ‘/,

where u = e — V§. If we are prepared to accept a procedure which is only asymp-
totically “valid”, we can relax the finite-sample assumptions (2.3) - (2.6) since the
normality of error terms and their independence are no longer necessary. We will

prove the asymptotic validity of our tests by showing that:

a) under the null hypothesis § = bo the F-statistic in (2.13),

F(60; Wy) = W= Z8) MOOWAWIM (X)W | WIM(X) (y — Z80)/ay
o (¥ = Zéo) M([X, Wi]) (y — Z80)/(T — ¢ — K

follows a x2 /q; distribution asymptotically (as T' — oo), where ¢; = ¢; — K ;

b) under the fixed alternative § = 61, provided that Bi(61, — &) # 0, the value of
(2.13) tends to get infinitely large as T increases, i.e. the test based on F (bo; W) is

consistent.
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Assume that the following limits hold jointly:

D (5 ~ (02 T, Bv),

2) (X_'X_ X'Wy M) — (EXX, Z:XW’la wawl)’

3) (T~%X'u, T-TWiu, T-+ X'V, T—%W;V,)
= @ = (Pxu, Pwyu, Bxv, Bwyy),

where — and = denote respectively convergence in probability and convergence in
distribution as T — oo, and the joint distribution of the random variables in ® is

multinormal with the covariance matrix of (P Piy,.)' given by

by, Lxx Zxw
2=V = i
[ Dy, J [EXW1 Yw,w, J

where Lyw, = E%w, and deé(E) # 0. We know from equation (2.11) that
y— Zﬁo = WlBl(5 - 60) -+ X"}’,.. + u.

Under the null hypothesis § = do, the numerator of (2.13) is equal to N where N
is defined by the expression:

N = o« MX)Wi WM (X)W, ' WM (X )u/q,

W(I = PYWA[Wi(I - PYWA)'Wi(T — P)u/gy

-1

= [T~%W;(I — P)u]' [% Wil - P)Wl] [T‘%W{(I - P)u] [

where P = P(X) = X(X'X)=1X'. Under the assumptions 1 to 3, we have the

following convergence result:
‘3’1'W,(I~ Pu = T TWu- —I-W'X —1—X'X B ( “%X'u)
1 1 T 1 T

= Qwix = ®wyu— Zw,x Ex% Pxu
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where

VI®wix] = V[®wiu] + Zwix T3k V[x.] 534 xw,
= E[®wiu O%.) S3% Sxwy — Swyx 534 E[®x O]
= Twyw +Zw,x 23y Exx S Sxw, — 2Zwix Ex'x Sxw,

-1
= Yww, — Zwx 53 Sxw,

and
1 1. | S A S I
T Wil -P)W, = }—WIWI -7 249.¢ TXX TX 124}
= Tww — Swyx Ik Sxw,.
Consequently

N = O, ix (Zwaws ~ Zwix % Siewy) ™ ®wax/ar ~ x3(@1)/ a1,

This means that we can define the confidence intervals as the sets of points {6y} for
which the statistic (2.13) fails to reject, using the asymptotic X2 /41 critical values or
the more conservative critical values of the Fisher distribution. Furthermore, it is easy

to see that, both under the null and the alternative, the denominator D converges to

2.

ol

D = o'M([X, Wi))u/T

— }_‘ili _ uI[X> Wl]{[X7 VVI]I[X7 Wl]}—l[X’ Wl]u - o2

T T “

Consider now a fixed alternative § = 1. We need to show that N goes to infinity as

T gets large. When 6§ = &, we have

26



N = [WlBl(Jl - 50) -+ u]'M(X)W1[W{M(X)Wl]'IWI'M(X) [WlBl(tsl - 50) -+ u]/q1

W{M(X)W1J'1
T

= [T—%_(WI’M(X)WIBI((SI —bo) + W{M(X)u)}' [
[ “T(WiM(X)W,By(6, — &) + W;M(X)u)] /q1.

The behavior of the variable N depends on the convergence limits of the terms on
the right-hand side of the last equation. It means that we can find the limit of N by
showing the convergence of the individual components. The major building block of

the expression for N is

fl

T-%[W{M(X)WIBI(& — &) + WiM(X)u] = T (w

T ) Bi(8; — &)

+ T"TW/M(X)u.

As we have shown, ‘%WI’M (X)u converges in distribution to a random variable
Dy, 1x and the term T (W) By(& — &) diverges in probability as T' gets
large. Consequently, under a fixed alternative, the whole expression goes to infinity,
and the test is consistent. It is easy to prove similar asymptotic results for the other

tests proposed in this paper.

8. MONTE CARLO STUDY

In this section, we present the results of a small Monte Carlo experiment comparing
the performance of the exact tests proposed above with other available (asymptoti-
cally justified) procedures, especially Wald-type procedures.

A total number of one thousand realizations of an elementary version of the model
(2.1) ~ (2.2), equivalent to the Model 1 discussed by Pagan (Pagan, 1984) have been

simulated for a sample of size T = 100. In this particular specification, only one latent
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variable Z is present. The error terms in e and V' (where e and V are vectors of length
100) are independent with N (0, 1) distributions. We allow for the presence of only
one instrumental variable W in the simulated model, which was also independently
drawn from a N(0, 1) distribution. According to the Pagan’s original specification,
there is no constant term or any exogenous variables included.

The explanatory power of the instrumental variable W depends on the value of
the parameter B. Hence, we let B vary and take, respectively, the following values:
0, 0.05, 0.1, 0.5 and 1. Note that when B is equal or very close to zero, W has almost
no explanatory power, i.e. W is a bad instrument for the latent variable Z. For each

value of B we consider four null hypotheses

Ho: 6=50, for 60 =0, 1, 5, 10 and 50,

each one being tested against four alternative hypotheses of the form

H1 1 6= (51 ) for 61 ='60 +p*1(60) .

The alternative H; is constructed by adding an increment to the value of 6o where
p*=0,0.5 1,2 and 4, and I(8) =1 for &y = 0, and I(60) = 6y otherwise.

Table 1 summarizes the results. In the first 3 columns, we report the parameter
value of B, § and the alternative §;. When the entries in columns II and III are equal,
we have 6§y = 6, and the corresponding row reports the levels of the tests. The next
three columns (IV, V and VI) show the performance of the Wald-type IV-based test
[as proposed by Pagan (1984)], which consists in correcting the understated standard
errors of a two stage procedure by replacing them by a 2SLS standard error. We
report the corresponding results in column IV. In cases where the level of Pagan’s
test exceeds 5%, we consider two correction methods. The first method (column
V) is based on the critical value of the test at a 5% level for a given value of &, in
the particular row of the table. The critical value is obtained from an independent
simulation with 1000 realizations of the mode]. Another independent simulation
allows us to compute the critical value at 5% level in an extreme case when the

instrumental variable is very bad, i.e. by supposing B = 0 also for a given value of &,
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in the given row (column VI). This turns out to yield larger critical values and is thus
closer to the theoretically correct critical value to be used here (on the assumption
that B is actually unknown). In column VII, we present the power of the exact test
based on the instrument substitution. In the following four columns, (VIII to XI),
we show the performance of the exact test based on splitting the sample, where the
numbers of observations used to estimate the structural equation are, respectively,
25, 50, 75 and 90. Finally, we report the level and the power of a naive two-stage
test as well as the results of a test obtained by replacing the latent variable Z, in the
structural equation by the observed values Z.

Let us first discuss the reliability of the asymptotic procedures. The level of the
IV test proposed by Pagan exceeds 5% essentially always when the parameter B is
less then 0.5, sometimes by very wide margins. The tests based on the two-stage
procedure or replacing the latent variable by the vector of observed values are both
extremely unreliable no matter the value of the parameter B.

The performance of Pagan’s test improves once we move to higher values of the
parameter B, i.e. when the quality of the instrument increases. The improvement is
observed both in terms of the level and power. It is, however, important to note that
Pagan’s test has, in general, the same or less power, than the exact tests. The only
exception is the sample split test reported in column 8, where only 25 observations
were retained to estimate the structural equation.

For B higher then 0.5, the two other asymptotic tests are still performing worse
then the other tests. They are indeed extremely unreliable. In the same range of B,
the exact tests behave very well. They show the best power properties compared to

the asymptotically based procedures and in general outperform the other tests.
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Table 8.1: SIMULATION BASED STUDY OF TEST PERFORMANCE

FOR A MODEL WITH UNOBSERVED VARIABLES

Parameter Values

Rejection Frequencies

B bo 61 | Pagan-type IS Split-sample 25 OLS
I II OI| IV 'V VI[ VII[VII IX X XI| XII XIII
0.00 0.0 0.0 0.1 511 51 61 52 54/ 51
0.00 0.0 0.5] 0.0 47| 51 44 41 39| 4.7
0.00 0.0 1.0} 0.0 36| 48 55 57 54| 56
0.00 0.0 20| 0.0 42| 45 45 38 45| 4.9
0.00 0.0 4.0 0.0 3.21 53 59 43 50| 52
0.00 1.0 1.0 73 51 51| 50| 46 4.9 48 52157 4.7
0.00 1.0 1.5] 68 55 55| 44| 48 4.4 5.4 6.1 157 6.8
0.00 1.0 20 76 5.9 59| 50| 4.3 48 48 51179 6.5
0.00 1.0 30| 86 66 66| 63| 50 4.9 5.0 5.8119.9 7.0
0.00 1.0 3.0 6.6 49 49 44| 43 46 5.5 4.6 ]18.1 5.1
0.00 5.0 5.0 541 55 55| 51| 55 4.9 5.2 491705 69.3
0.00 5.0 751528 54 54| 49| 6.1 49 51 4.669.7 69.0
0.00 50 10.0{56.5 57 57 48| 45 61 5.0 48717 715
0.00 5.0 15.0(50.7 4.6 4.6 48| 45 43 45 38!666 67.0
0.00 50 250527 52 52 46| 45 46 56 50(67.8 688
0.00 10.0 10.0{69.0 4.5 45 491 53 60 49 51845 850
0.00 10.0 15.0 684 5.7 5.7 39 47 50 56 4.5/|84.3 83.9
0.00 10.0 20.0]68.6 5.0 5.0 9.7 43 49 47 52846 843
0.00 10.0 30.0{70.2 49 49 45| 54 52 50 52854 844
0.00 10.0 50.0|68.7 5.3 5.3 48| 42 51 56 50/83.6 83.1
0.00 50.0 50.086.5 6.4 6.4 54| 44 50 51 541969 96.5
0.00 50.0 75.0{85.2 6.7 6.7 621 39 50 6.6 67951 961
0.00 50.0 100.0 |87.4 5.2 5.2 46| 65 50 4.5 55968 964
0.00 50.0 150.0 [85.8 6.5 6.5 3.8 5.0 53 59 59971 971
0.00 50.0 250.0 |86.7 6.8 6.8 39| 48 60 6.2 538|971 97.3
0.05 0.0 0.0] 0.0 48| 50 36 36 53| 4.8
0.05 0.0 0.5 0.2 49| 51 55 48 52| 4.9
0.05 0.0 1.0{ 0.0 741 54 57 62 76| 74
0.05 0.0 20 0.3 16.6 | 87 11.7 14.7 15.7!16.6
0.05 0.0 4.0 1.0 478 [ 164 269 38.1 44.0 | 47.8
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4.5
6.3
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4.8
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14.0
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5.5
5.2
5.2
10.5
25.4

4.8
6.0
8.5
13.2
43.0

6.5
5.9
7.6
13.9
49.1

4.5
6.2
7.3
15.8
46.1

5.0
7.4
13.5
46.0
95.9

4.7
6.2
10.0
26.6
74.1

5.4
7.5
16.0
45.7
95.0

16.9
16.9
18.1
25.3
51.1

71.7
69.7
71.9
81.2
93.6

84.8
85.8
88.9
90.0
97.5

97.5
96.9
97.7
97.0
99.8

4.8
8.2
15.8
49.4
97.1

15.2
19.8
25.8
49.5
92.4

71.5
3.7
81.6
94.8
100.0

7.9
7.5
7.6
7.4
5.6

72.7
71.4
69.9
66.9
59.0

84.0
78.9
79.0
74.2
62.2

92.0
89.2
86.5
79.8
65.3

14.0
16.2
14.3
10.9

74

78.9
74.4
73.0
65.2
46.9



Table 8.1 cont.

0.10
0.10
0.10
0.10
0.10

0.10
0.10
0.10
0.10
0.10

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

10.0
10.0
10.0
10.0
10.0

50.0
50.0
50.0
30.0
50.0

0.0
0.0
0.0
0.0
0.0

1.0
1.0
1.0
1.0
1.0

5.0
5.0
5.0
3.0
5.0

10.0
10.0
10.0
10.0
10.0

50.0
50.0
50.0
50.0
50.0

10.0
15.0
20.0
30.0
50.0

50.0
75.0
100.0
150.0
250.0

0.0
0.5
1.0
2.0
4.0

1.0
1.5
2.0
3.0
3.0

5.0
7.5
10.0
15.0
25.0

10.0
15.0
20.0
30.0
50.0

50.0
75.0
100.0
150.0
250.0

17.1
6.0
2.7
0.8
0.5

19.8
6.5
3.5
0.9
0.8

2.7
60.3
98.8
99.6
99.0

5.3
8.5
68.0
98.7
99.8

7.4
9.7
92.6
99.1
99.6

6.9
8.6
92.1
99.5
99.5

8.3
8.9
94.3
98.8
99.5

5.6
1.5
0.1
0.0
0.1

4.8
0.8
0.5
0.0
0.0

4.8
5.2
88.1
98.2
99.7

5.6
1.7
69.1
97.9
99.1

5.2
1.0
74.2
99.0
99.1

6.7
3.7
88.8
98.3
99.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

4.2
2.6
47.4
97.5
99.6

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

4.7
7.0
14.1
51.9
96.5

5.9
7.7
17.7
45.9
97.2

4.6
67.7
99.9

100.0
100.0

5.0
41.4
93.4

100.0
100.0

5.1
66.6
99.7

100.0
100.0

5.1
67.9
99.7

100.0
100.0

4.6
69.8
99.6

100.0
100.0
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4.6
6.4
6.5
18.0
49.5

4.5
5.5
9.4
16.4
48.9

5.4
24.1
68.7
98.4

100.0

4.7
15.5
39.7
90.3

100.0

4.2
18.4
63.9
98.8

100.0

5.5
21.7
66.6
99.4

100.0

3.9
21.8
63.2
99.4

100.0

4.7
7.0
10.4
28.8
77.6

5.1
3.7
12.3
27.7
78.5

4.3
41.8
92.8

100.0
100.0

5.1
244
68.6
99.8

100.0

5.0
39.4
90.5

100.0
100.0

5.2
39.9
93.2

100.0
100.0

4.5
39.1
92.3

100.0
100.0

6.0
8.0
11.3
40.9
91.6

5.1
6.6
15.7
39.5
94.0

4.8
55.0
99.1

100.0
100.0

4.9
324
84.3

100.0
100.0

44
34.5
97.9

100.0
100.0

4.2
55.4
98.7

100.0
100.0

4.4
56.1
98.5

100.0
100.0

3.7
6.7
13.2
47.9
94.1

4.8
6.6
17.3
43.5
95.6

4.4
63.8
99.6

100.0
100.0

4.6
39.3
90.6

100.0
100.0

5.3
61.6
99.4

100.0
100.0

5.6
62.0
99.8

100.0
100.0

4.5
64.7
99.5

100.0
100.0

84.6
85.0
90.7
97.8
100.0

97.0
97.4
97.7
99.6
100.0

4.6
67.7
99.9

100.0
100.0

17.6
64.4
98.4
100.0
100.0

69.6
97.7
100.0
100.0
100.0

83.5
99.6
100.0
100.0
100.0

96.3
99.9
100.0
100.0
100.0

86.0
84.8
79.4
68.9
49.3

89.6
86.1
82.2
73.1
49.7

98.4
92.8
62.6
1.7
0.1

100.0
99.9
99.2

5.4
0.1

100.0
99.7
99.1

5.6
0.0

100.0
100.0
99.4
5.2
0.3



Table 8.1 cont.

1.00 0.0 0.0 5.1 5.6 4.9 5.0 5.6 5.8 5.6
1.00 0.0 05| 99.5 995 649 91.2 985 992 99.5
1.00 0.0 1.0 | 100.0 100.0 | 99.2 100.0 100.0 100.0 | 100.0
1.00 0.0 2.0 { 100.0 100.0 | 100.0 100.0 100.0 100.0 | 100.0
1.00 0.0 4.0 | 100.0 100.0 | 100.0 100.0 100.0 100.0 | 100.0
1.00 1.0 1.0 6.8 7.2 3.8 6.3 5.4 7.0 6.9 6.8 179 99.7
1.00 1.0 L5 879 89.2 822 933| 395 683 847 90.1| 981 33.7
1.00 1.0 2.0 {100.0 100.0 100.0 {100.0 | 89.9 99.8 100.0 100.0 100.0 0.7
1.00 1.0 3.0 | 100.0 100.0 100.0 | 100.0 | 100.0 100.0 100.0 100.0 100.0  57.3
1.00 1.0 5.0 ] 100.0 100.0 100.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 98.1
1.00 5.0 5.0 4.8 44 0.0 4.1 5.5 44 4.7 4.8 | 67.2 100.0
1.00 5.0 75| 98.8 98.3 00| 996 | 625 91.5 98.0 99.4|100.0 67.6
1.00 5.0 10.0{100.0 100.0 0.0 {100.0 | 99.0 100.0 100.0 100.0 | 100.0 1.3
1.00 5.0 15.0 [ 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0  65.9
1.00 5.0 25.0 | 100.0 100.0 7.3 1100.0 | 100.0 100.0 100.0 100.0 | 100.0 98.3
1.00 10.0 10.0 5.1 44 0.0 6.0 6.2 5.8 6.9 6.3 85.3 100.0
1.00 10.0 15.0| 98.8 985 00| 99.6 | 631 91.1 977 99.4 1000 695
1.00 10.0 20.0 { 100.0 100.0 0.0 [100.0 | 99.0 100.0 100.0 100.0 | 100.0 0.6
1.00 10.0 30.0 [ 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 66.5
1.00 10.0  50.0 | 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0  99.2
1.00 50.0 50.0 5.2 5.0 0.0 5.5 5.5 5.3 5.2 6.9 96.8 100.0
1.00 50.0 75.0{ 99.0 98.7 00| 999| 658 914 983 99.3(100.0 68.1
1.00 50.0 100.0 { 100.0 100.0 0.0 [ 100.0 | 98.8 100.0 100.0 100.0 | 100.0 0.6
1.00 50.0 150.0 { 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 67.0
1.00 50.0 250.0 | 100.0 100.0 0.0 | 100.0 { 100.0 100.0 100.0 100.0 | 100.0 99.0
Notes:

Column: Column:

I:  value of parameter B; VIII: sample split test using 25 observations

Il:  null hypothesis; for the structural equation;

III:  alternative hypothesis; IX:  sample split using 50 observations;

IV: Pagan’s test; X:  sample split using 75 observations;

V:  Pagan’s test corrected for level; XI:  sample split using 90 observations;

VI:  Pagan’s test corrected for level XII:  two stage test (25);

at B = 0; XII: test with latent variable replaced by
VIL: instrument substitution test (1§ ); observed vector (OLS).
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9. ILLUSTRATIONS

In this section, we present empirical results on inference in two distinct economic
models with latent regressors. The first example is based on Tobin’s marginal ¢ mod-
el of investment (Tobin, 1969), with fixed assets used as the instrumental variable for
q- The second model stems from educational economics and relates students’ aca-
demic achievements to a number of personal characteristics and other socioeconomic
variables. Among the personal characteristics, we encounter a variable defined as the
self esteem which we consider as latent and instrument with some measure of prestige
of parents’ professional occupation. The first example is one where we have good
instruments, while the opposite holds for the second example.

Consider first Tobin’s marginal ¢ model of investment (Tobin, 1969). Investment
of an individual firm is defined as an increasing function of the shadow value of
capital, equal to the present, discounted value of expected marginal profits. In Tobin’s
original setup, investment behavior of all firms is similar and no difference arises from
the degree of availability of external financing. In fact, investment behavior varies
across firms and is determined, in great extent, by financial constraints some firms are
facing in the presence of asymmetric information. For those firms, external finance
may either be too costly or may not be provided for other reasons. Thus, investment
depends heavily on the firm’s own source of finance, namely the cash flow. To account
for differences in investment behavior implied by financial constraints, several authors -
(Abel, 1979; Hayashi, 1985; Abel and Blanchard, 1986; Abel and Eberly, 1993; Salvas,
1995) introduce the cash flow as an additional regressor to Tobin’s ¢ model. It can be
argued that another explanatory variable controlling the profitability of investment is
also required. For this reason, one can argue that the firm’s income has to be included

in the investment regression as well. The model is thus
(9.1) Li=v%+6Qi;+ 1CF; + 12R; +¢;

where v = (0, 11, 72)" is the coefficient vector of the matrix of independent variables
X = [CONST, CF, R]. The symbols CF and R denote, respectively, the cash flow
and income of an individual firm. Tobin’s g (denoted Q) is measured by equity plus
debt and is approximated empirically by adding data on current debt, long term

debt, deferred taxes and credit, minority interest and equity less inventory. Given
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the compound character of the variable constructed on a basis of several indexes, fixed
assets are used as an explanatory variable for q in the regression which completes the

model:
(9-2) Qi = Po+ B F; + v;

Our empirical work is based on “Stock Guide Database” containing data on com-
panies listed at the Toronto and Montreal stock exchange markets between 1987 and
1991. The records consist of observations on economic variables describing the firms’
size and performance, like fixed capital stock, income, cash flow, stock market price,
etc. All data on the individual companies have previously been extracted from their
annual, interim and other reports. We retained a subsample of 9285 firms which
traded at the Toronto and Montreal stock exchange markets in 1991.

Since we are interested in comparing our inference methods to the widely used
Wald-type tests, we first adopt the approach suggested by Pagan (1984). As the
residual variance estimator obtained from the OLS regression of I on () and the ob-
served exogenous variables X is inconsistent,! Pagan proposed to use the instrumental
variable or two stage least squares estimation methods. He made the point that IV
and 25LS yield correct standard errors of the parameter estimators and thus allow to
obtain valid, although only asymptotically justified hypotheses test.

25LS estimation of the model (9.1) - (9.2) means that in the first step, the de-
pendent variable I is regressed on all the exogenous variables in the system, i.e., the
constant CF, R and F while F remains the only instrument for Q. The adjusted
values Q are next substituted for Q in the second stage regression. The results are

summarized in Table 9.1.

'For a formal proof, see Pagan (1984).
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Table 9.1: 2SLS Estimates, N = 9285

DEPENDENT VARIABLE: INVESTMENT

VAR EST STD. ERR T-RATIO
CONST 0.0409 0.0064 6.341
@ TOBIN 0.0052 0.0013 3.879
CASH FLOW 0.8576 0.0278 30.754
INCOME 0.0002 0.0020 0.109

DEPENDENT VARIABLE: TOBIN’S Q

VAR EST STD. ERR T-RATIO
CONST 1.0853 0.1418 7.650
FIX ASST 2.4063 0.0400 60.100

P-VALUE

0.0000
0.0001
0.0000
0.9134

P-VALUE

0.0000
0.0000

Table 9.2 below presents.the parameter values computed for a subsample of 100

randomly chosen firms. These results allow us to show how the length of the confi-

dence interval vary with the sample size.

Table 9.2: 2SLS Estimates, N = 100

DEPENDENT VARIABLE: INVESTMENT

VAR EST STD. ERR T-RATIO
CONST 0.0436 0.0376 1.158
@ TOBIN 0.0779 0.0038 20.142
CASH FLOW ~-3.0535 0.1666 -18.325
INCOME 0.2620 0.0309 8.471

DEPENDENT VARIABLE: TOBIN’S Q

VAR EST STD. ERR T-RATIO
CONST 2.4967 2.3785 1.050
FIX ASST 4.7814 1.4764 3.238

P-VALUE

0.2497
0.0000
0.0000
0.0000

P-VALUE

0.2964
0.0016

The following Table 9.3 presents the 95% confidence intervals for Tobin’s q. The

three first intervals are obtained from, respectively, 2SLS, Two Stage and Augmented

Two Stage methods by adding or subtracting 1.96 times the standard error to/from
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the estimated parameter value.? Below, we report the confidence intervals comput-
ed on the basis of the exact methods — instrument substitution and sample split,
discussed in section 2. Recall that the precision of the confidence intervals depends,
in the case of the sample split method, on the number of observations retained for
the estimation of the structural equation. We thus show the results for, respectively,

50%, 75% and 90% of the entire number N.

Table 9.3: Confidence Intervals, N = 9285

METHOD INTERVAL
2SLS 0.0026, 0.0078
AUG. TWO’ STAGE 0.0025, 0.0079
TWO STAGE —0.0091, —0.0029
INSTRUMENT SUBST. 0.0025, 0.0078
SAMPLE SPLIT 50% 0.0000, 0.0073
SAMPLE SPLIT 75% 0.0017, 0.0077
SAMPLE SPLIT 90% 0.0023, 0.0078

We complete the analysis by presenting below (Table 9.4) the confidence intervals
for one hundred randomly chosen firms. As it has been expected, the intervals’ lengths

increase with the diminishing sample size.

?The Augmented Two Stage method has been proposed by Pagan (1986) as an alternative for
the ordinary Two Stage method to avoid underestimated standard errors. It consists here of adding
the variable F, i.e., the instrument for Tobin’s g, to the structural equation.
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Table 9.4: Confidence Intervals, N = 100

METHOD INTERVAL
2SLS 0.0703, 0.0855
AUG. TWO STAGE 0.0618, 0.0940
TWO STAGE —0.1788, -0.1174
INSTRUMENT SUBST. 0.0693, 0.0851
SAMPLE SPLIT 50% 0.0218, 0.0191
SAMPLE SPLIT 75% 0.0697, 0.0868
SAMPLE SPLIT 90% 0.0699, 0.0860

It is clear that the confidence intervals computed on the basis of the 2SLS regres-
sion, by instrument substitution and by sample split based on 75% and on 90% of the
entire sample coincide to a great extent. This result is not surprising, given the high
quality of instrumental variable used for Tobin’s ¢, as it can also be easily inferred
from Tables 9.1 and 9.2.

Let us now present another example where, on the contrary, important discrep-
ancies arise between the intervals based on the asymptotic and the exact inference
methods.

Montmarquette and Mahseredjian (Montmarquette and Mahseredjian, 1989; Mont-
marquette, Houle, Crespo and Mahseredjian, 1989) study the student’s academic
achievements as a function of personal and socioeconomic explanatory variables. The
student’s school results in French and mathematics are measured by the grade, tak-
ing values on the interval 0 — 100. The grade variable is assumed to depend on some
student’s personal characteristics, such as age, the intellectual ability (IQ) observed
in the kindergarten and the self esteem measured on a adapted children self esteem
scale ranging from 0 to 40. Other explanatory variables are parents’ income, father’s
and mother’s education measured in number of years of schooling, number of sib-

lings, student’s absenteeism, his own education and experience as well as the class
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size. We examine the significance of the self esteemn variable, modelled as a latent
regressor, to explain the first grader’s achievements in mathematics. The self esteemn
of younger children has been measured, in this particular study, on a French adapta-
tion of McDaniel-Piers scale. Noting that the measurement scale may not be equally
well adjusted to the age of all students and that there exist a high degree of arbi-
trariness regarding the choice of the criterion, we had to slightly modify the original
model: We use, namely, a set of instruments consisting of Blishen indices that reflect
the prestige of father’s and mother’s professional occupations to get rid of eventual
mismeasurement.

The data stem from a 1981-1982 enquiry of first graders attending Montreal fran-
cophone public elementary schools. The sample consists of 603 observations on s-
tudents’ achievements in mathematics. Given that we have to handle the limited
dependent variables, we perform some necessary transformations that are explained
below. ‘

The model can be written in the following form:

(9.3) LMAT = ﬂo+6SE+ﬂ11Q+ﬂzl+ﬂ3FE+ﬂ4ME+ﬁ58N

+ ,86 A + ,67 ABP + ,33 EX + ,BQED + ,810 ABS + ,611 CS + €s,

where LMAT = ¢n(grade/(100 — grade)), SE = fn(self esteem test result /(40 —
self esteem test result)), IQ is a measure of intelligence (observed in kindergarten),
I is parents’ income, FE and ME are father’s and mother’s years of schooling, SN
denotes the sibling’s number, A is the age of the student, ABP is a measure of teach-
er’s absenteeism, EX indicates the years of student’s work experience, ED measures
his education in years, ABS is student’s absenteeism and CS denotes the class size.

Finally, the instrumental regression can be expressed as follows:

(9:4) SE=9%+mFP++,MP + v,
where FP and MP correspond to the prestige of the father and mother’s profession

expressed in terms of Blishen indices.
The 2SLS estimates are reported in Table 9.5 below.
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Table 9.5: 2SLS Estimates, N = 603

DEPENDENT VARIABLE: LMAT

VAR EST STD. ERR T-RATIO P-VALUE
CONST —4.1557 0.9959 —4.173 0.0000
SE 0.2316 0.3813 0.607 0.5438
IQ 0.0067 0.0015 4.203 0.0000
I 0.0002 0.3175 0.008 0.9939
FE 0.0015 0.0089 0.172 0.8636
ME 0.0393 0.0117 3.342 0.0009
SN -0.0008 0.0294 -0.029 0.9767
A 0.0144 0.0070 2.050 0.0408
ABP -0.0008 0.0005 -1.425 0.1548
EX -0.0056 0.0039 ~-1.420 0.1561
ED -0.0007 0.0206 -0.035 0.9718
ABS -0.0001 - 0.0002 -0.520 0.6033
CS -0.0184 0.0093 -1.964 0.0500

DEPENDENT VARIABLE: SE

VAR EST STD. ERR T-RATIO P-VALUE
CONST 0.8117 0.1188 6.830 0.0000
FP 0.5120 0.2625 1.951 0.0516
M 0.6170 0.2811 2.194 0.0286

The results presented above clearly indicate that the confidence interval of the self
esteemn variable is finite. The exact methods, on the contrary, confirm the intuitive
guess that the estimated latent variable is, in fact, far from being identified. In
presence of poor instruments, we obtain infinite confidence intervals which cover the
entire line of real numbers. For example, the instrument substitution method yields

the confidence interval defined by the inequality

—31.9536 65 — 84.7320 8, — 850.9727 <0

Since the roots of the second order polynomial are complex, and a < 0, the § coefficient

can take on any value between —oo and +oo.

40



10. CONCLUSIONS

The inference methods presented in this paper are applicable to a variety of models,
as regressions with unobserved explanatory variables or structural models which can
be estimated by instrumental variable methods (e.g., simultaneous equations mod-
els). They may be considered as extensions of Anderson-Rubin procedures where the
major improvement consists of providing tests of hypotheses on subsets or elements
of the parameter vector. This is accomplished via a projection technique allowing for
inference on general, possibly nonlinear transformations of the parameter vector of
interest. We emphasized that our test statistics, being pivotal or at least boundedly
pivotal functions, yield valid confidence sets which are unbounded with a non-zero
probability. The unboundedness of confidence sets is of particular importance when
the instruments are poor and the parameter of interest is hence unidentifiable or close
to being unidentified. Accordingly, a valid confidence set should cover the entire set of
real numbers since all values are observationally equivalent [see Dufour (1994)]. Our
empirical results indicate that inference methods based on Wald-type statistics are
involved in the presence of poor instruments since asymptotic tests still yield finite
confidence sets. In general, unidentifiability of parameters results either from low
quality instruments or, more fundamentally, from a poor model specification. A valid
test yielding an infinite confidence set becomes thus a relevant indicator of problems
involving the econometric setup. The power properties of exact and Wald-type tests
were compared in a simulation-based experiment. The test performances were ex-
amined by simulations on a simple model with varying levels of instrument quality
and the extent to which the null hypotheses differ from the true parameter value.
The exact procedures were found better or, occasionally at least equally good power
properties as the alternative methods.

It is important to note that although the simulations were performed under the
normality assumption, our tests yield valid inferences in more general cases involving
non-Gaussian errors and weakly exogenous instruments. This result has a theoretical
Justification and is also confirmed by our empirical examples. Since the inference
methods we propose are as well computationally easy to perform, they can be con-

sidered as a reliable and a powerful alternative to Wald-type procedures.
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Stochastic Volatility and Time Deformation:
An Application to Trading Volume

and Leverage Effects



1. INTRODUCTION

Asset prices respond to the arrival of information. Some days, even some parts of
a trading day, very little news, good or bad, is released. Trading is typically slow
and prices barely fluctuate. In contrast, when new information changes expectations,
trading is brisk and the price process evolves much faster. This observation motivat-
ed Mandelbrot and Taylor (1967) and particularly Clark (1973) to suggest modelling
asset price processes as subordinated stochastic processes. Instead of studying asset
prices as a function of (equally spaced calendar) time, via monthly, weekly, daily or
intraday series, they suggested to let asset price movements be a function of informa-
tion arrival which itself evolves randomly through time. To be slightly more formal,
instead of studying say daily returns as z(At) = log(p(t)/ p(t — 1)), it was suggested
to view log(p(t)/ p(t —1) = z(T'(t)) where T(t) is a positive stochastic process, some-
times called a directing process.! This setup, which is sometimes also called time
deformation since the relevant time scale is no longer calendar time ¢ but operational
time T'(t), has several attractive features. For instance, it easily accommodates lep-
tokurtic distributions for asset returns as emphasized by Mandelbrot and Taylor; it is
also a convenient framework to study trading volume and asset return comovements
as stressed by Clark; and, last but surely not least, it yields a random variance or
what nowadays would be called a stochastic volatility model. These ideas have been
refined and extended in several ways. Particularly, the restrictive assumption made
in the early work that T'(t) was an i.i.d. process was relaxed by Tauchen and Pitts
(1973). Other contributions include Harris (1987), Lamoureux and Lastrapes ( 1990),
Gallant, Hsieh and Tauchen (1991), Andersen (1993).2 Moreover, the microstructure
foundations for time deformation and the process of price adjustments can be found
most explicitly in Easley and O’Hara (1992). It is interesting and at the same time
important to note that none of these developments exploited explicitly the contin-
uous time financial modelling approach which has become so widely used since the

seminal work of Merton (1973) and many others. Indeed, when one refers to stochas-

IClark, for instance, deliberately chose the notation T(t) to indicate he meant the trading volume
on day t.

2There is, of course, also an extensive literature on trading volume, including both theoretical and
empirical papers. See, for instance, Foster and Viswanathan (1993a,b), Gallant, Rossi and Tauchen
(1992), Hausman and Lo (1991), Huffman (1987), Karpoff (1987), Lamoureux and Lastrapes (1993),
Wang (1993), among others.
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tic volatility, one typically thinks of models originally constructed for the valuation
of options where changes in the volatility are governed by a stochastic differential
equation which is not explicitly related to the arrival of information through trading
volume or other variables. Such models were developed by Hull and White (1987),
Johnson and Shanno (1987), Scott (1987), Wiggins (1987), Chesney and Scott (1989),
Stein and Stein (1991) and Heston (1993), among others.

In this paper, we study continuous time stochastic volatility models with time
deformation. The setup combines insights borrowed from the earlier literature on
subordinated stochastic processes and from the more recently developed diffusion
equation stochastic volatility models. Let us briefly return to a more formal discussion

and note that the latter class of models typically takes the form:

(1.1a) dy(t) = py(t)dt + o (t)y(t)dW,(t)

(1.1b) dlogo(t) = a(b—log o(t))dt + cdW,(t)

where Wy(t) and Wy(t) are two standard Wiener processes usually assumed to be
independent. We will not assume that the volatility process moves continuously and
smoothly through calendar time, as is usually assumed and described by (1.1b). The
initial motivation for the work of Mandelbrot and Taylor, as well as Clark, was that
key variables affecting volatility, like the arrival of information to the market, tend
not to evolve continuously and smoothly through time. Therefore, we shall make the
volatility process a subordinated stochastic process evolving in a time dimension set
by market activity. To make this more explicit, let us assume an operational time
scale s for the volatility process, with s = g(t), a mapping between operational and

calendar time ¢, such that:?

(1.2a) dy(t) = py(t)dt + o(g(t))y(t)duw (2)

(1.2b) dlog o(s) = a(b—log o(s))ds + cdws(s).

3The mapping s = g(t) must satisfy certain regularity conditions which will be discussed later.
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Following Stock (1988), we denote by g(t) the directing process. It may depend
on trading volume besides many other series that help determine the pace of the
market. Before discussing this issue in detail, we would like to make some observations
regarding equations (1.2). Indeed, it should first be noted that the equations collapse
to the usual stochastic volatility model if g(t) = t. This was done on purpose to
accommodate econometric hypothesis testing. Obviously, we could have adopted
another specification for o(g(¢)). Moreover, one could correctly argue that, defining
volatility as a subordinated process amounts to suggesting a more complex law of
motion for volatility in comparison to the Ornstein-Uhlenbeck (henceforth O — U)
specification appearing in (1.1b). This interpretation is valid, yet it should be noted
that, through g(t), one can associate many series other than the security price y(t)
to explain volatility; hence, one implicitly deals with a multivariate framework.

What should determine g(t)? Since the flow of information is a latent process,
we have to specify the mapping s = g(t) in terms of related observable processes.
We propose to use past volume of trade and other variables such as past returns
allowing possibly for an asymmetric response to create a leverage effect. Therefore,
our setup provides a way of introducing data on trading volume in the specification
of stochastic volatility models. Furthermore, it is possible to accommodate leverage
effects by specifying a directing process that would allow for asymmetric responses of s
to past price changes. Hence, out operational time evolves differently in bull and bear
markets. The empirical results suggest that our specification provides an alternative
to a class of option pricing models, put forward by Merton (1976a, b), where jumps in
the underlying security returns are permitted. Merton suggested to include a Poisson
jump process to distinguish between the arrival of normal information, modeled as
a standard log normal diffusion, and the arrival of abnormal information, modeled
as a Poisson process. We find that operational time typically moves slowly, but
every so often one finds dramatic increases in market speed. In Merton’s setup, the
information arrival spells are purely exogenous, whereas our approach has the sources
of these changes modeled both in a multivariate sense, via the introduction of volume
series, and in an endogenous fashion through past price changes. Using daily S&P 500
data and NYSE volume from 1950-1987, we find that increases in volume accelerate
operational time, resulting in volatility being higher, less persistent and subject to

shocks with a higher innovation variance. Downward price movements have similar
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effects, while upward price movements increase persistence in volatility and decrease
the dispersion of shocks by slowing down the operational time clock.4

In order to estimate the subordinated diffusions, we rely on two alternative estima-
tion procedures. The first method involves the Kalman filter and draws upon results
from Harvey, Ruiz and Shephard (1994) on estimating stochastic volatility models in
state space form and results from Stock (1988) on estimation of linear processes with
time deformation. The second method is based on a “matching moment” principle as
presented by Gallant and Tauchen (1994) using SNP densities for stock returns and
volume series fitted by Gallant, Rossi and Tauchen (1992).

In section 2, we present the basic model. Estimation and hypothesis testing are

discussed in section 3. Empirical results appear in section 4.

2. A TIME DEFORMATION APPROACH TO STOCHASTIC
VOLATILITY

Stochastic processes used in finance are most often assumed to be generated by a

first-order stochastic differential equation of the form:

(2.1) dX(s) = a(s, X(s), ©)ds + b(s, X(s), ©)dM(s)

where X (s) is a n-dimensional process adapted to a filtered probability space (2, F,
P) evolving in some operational time. The process is parameterized by & € RP with
dM(s) a m-dimensional semi-martingale process, while a(s, X(s), ©) and b(s, X(s),
©) are both bounded predictable processes of dimensions n and n x m, respectively.
Equations like (2.1) have been adopted to describe security, bond and derivative prices
as well as information flows, mortgage values, inventories and other state variables
such as technology. Whenever the assumed operational time scale s differs from t,
there is so-called time deformation or, alternatively with s = g(t), the process X (9(2))

is a subordinated stochastic process. Both expressions will be used throughout the

paper.

4Obviously other series could figure in the specification of 9(t). Indeed in many instances one can
find time deformation arguments in financial modelling. In section 2, we will provide a brief review
of examples which appeared in the literature.
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Besides the aforementioned works of Clark, Mandelbrot and Taylor, the idea of
time deformation appears in quite a number of finance papers, though not always ex-
plicitly. Probably the simplest examples of time deformation are related to the widely
documented nontrading day, holiday and weekend effects in asset prices. Bessem-
binder and Hertzel (1993) are the most recent example of several papers on these
so-called stock market anomalies.’ In foreign exchange markets, activity scale deter-
mined by the number of active markets around the world at any particular moment
can be considered. Dacorogna et al. (1993) describe explicitly a model of time defor-
mation along these lines for intraday movements of foreign exchange rates. Besides
these relatively simple examples, there are a number of more complex ones. The most
prominent being the work of Mandelbrot and Taylor as well as Clark and extension-
s which were mentioned in the introduction. Before elaborating on this further, it
is worth mentioning a few other examples as well. For instance, Madan and Sene-
ta (1990) and Madan and Milne (1991) introduced a Brownian motion evaluated at
random (exogenous) time changes governed by independent gamma increments as
an alternative martingale process for the uncertainty driving stock market returns.
Geman and Yor (1993) also used time-changed Bessel processes to compute path-
dependent option prices such as is the case with Asian options.®

As explained in the introduction, we study a continuous time stochastic volatility
model with time deformation. We combine the insights from Mandelbrot and Taylor
(1967) and Clark (1973) on subordinated stochastic processes and from the option
pricing stochastic volatility models associated with the work of Hull and White (1987)
and others mentioned before. Volatility is modeled as a subordinated process driven
by a generic directing process s = g(t), s being an operational time scale, associated
with the arrival of information. In particular, we consider the set of equations (1.2)

repeated here for convenience:

3For instance, Lakonishok and Smidt (1988) and Schwert (1990) argue that returns on Monday
are systematically lower than any other day of the week, while French and Roll (1986), French,
Schwert and Stambaugh (1987) and Nelson (1991) demonstrate that daily return volatility on the
NYSE is higher following nontrading days closures.

Time deformation is also used for a variety technical reasons in, for instance, Detemple and
Murthy (1993) to characterize intertemporal asset pricing equilibria with heterogeneous beliefs.
Nelson and Foster (1993, 1994) use changes in time scales to study ARCH models as filters for
diffusion models.
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(2-22) dy(t) = py(t)dt + o(g(t))y(t)dWi(t)

(2.2b) dlog o(s) = a(b - log o(s))ds + cdWy(s).

To enhance our understanding of the mechanics of the process, let us momentarily
isolate the volatility equation (2.2b) and discuss its properties as well as its discretiza-
tion. To simplify this task even further, let us set = 0 and work with a continuous
time AR(1). To describe an investor’s information, let us consider the probability
space (2, F , P) and the nondecreasing family F = {F:HS5 of sub— o-algebras in
calendar time. Furthermore, let Z; be a m-dimensional vector process adapted to
the filtration F, i.e., Z, is Fi-measurable. The rate of operational time speed will be

assumed to be F;_; measurable via the logistic transformation:

. T
(2.3) @(—Z?Zf:—l—) = §(7, Zi-1) = exp(c'Ziy) / {% Zexp(c’Zt_l)}

fort—1 < 7 < ¢.” Equation (2.3), setting the speed of change of operational time as a
measurable function of calendar time process Z;_,, is complemented with additional

identification assumptions:

(2.4a) 0<g(r; Zi1) <
(2.4b) 9(0) =0

1T
(2.4¢) = ; Ag(t)=1.

"The fact that the denominator in (2.3) contains a sample average may suggest that o(g(t)) is
not measurable with respect to the filtration F: in calendar time. However, the denominator in (2.3)
is there for reasons of numerical stability of the algorithms described in the next section. Since it is
only a scaling factor, its presence is of no conceptual importance.
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These three technical conditions, which will not be discussed at length here as
they are covered in detail in Stock (1988), guarantee that the operational time clock
progresses in the same direction as calendar time without stops or jumps.® Given that
4 is constant between successive calendar time observations via (2.3), its discrete time
analogue Ag(t) = g(t) — g(t — 1) takes the same logistic form appearing in (2.3). At
this point, we have not yet discussed what series should enter the vector Z,_;. A
detailed discussion will be delayed until later in the section, but it may be worth
pointing out at those variables like past trading volume or any other processes linked
to information arrival will be candidate series to enter equation (2.3). Proceeding
with the discussion of equation (2.2b), we note that the solution in operational time

of a first-order linear process can be expressed as:

(2.5) log o(s) = e*=*) log o(s') +/ e*CdW, (r)

ry

where s’ < s. To recover the solution in calendar time, we let s = g(¢) and s’ = g(t—1)

and obtain:

(2.6&) ht = eaAg(t)ht-l + Vg t= 1, ey T
(2.6b) ve ~ N(0,— Y (1 - exp(2a Ag(t))) / 2a)

T
(2.6¢) Ag(t) = exp(c'Z;-y) / 51; {Z exp(c’Zt_l)}

t=1
Hence, the process where h; = loga(g(t)) while linear in operational time becomes

a random coefficient model, also called doubly stochastic process, in calendar time

also featuring conditional heteroscedasticity governed by Ag(t).®

8Excluding jumps for the time deformation process must not be confused with the presence
of jumps in the stock return process, as proposed by Merton (1976a, b). The time deformation
will govern the (stochastic) volatility of the return process. Arbitrarily large (yet finite) changes
in operational time will make the stock return process extremely volatile through the conditional
variance.

®Doubly stochastic processes have been discussed in detail by Tjgstheim (1986). Stability con-
ditions and existence of moments have been studied for cases where Ag(t) is Markovian. It may
be worth noting at this point that the Zi-1 process need not be exogenous. Indeed, Stock (1988)
showed that by setting Z,_, equal to the square of the process appearing in the mean equation, one
obtains an ARCH-like process having the additional feature of a random coefficient model.
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The brief digression on time deformation facilitates the presentation of the process
of main interest, which is a SV model with time deformation. Suppose now that
{y:} represents a discrete time sample of the process in (2.2). A standard Euler

approximation to (2.2a) yields:

(2.7 log y: = X +log ysy + fo 09 & ~1ii.d. N(0, 1).

Let us combine this expression with the volatility equation. If we assume again
that B # 0 in (2.2b) and furthermore observe that the stock returns used in our
empirical application exhibit small yet significant autocorrelation at lag 1, we obtain

the following discrete time representation:

(2.8a) Alog y: —ay Alog ye_y — A\ = O Es

(2.8b) he = (1 — exp(alAg(t))b + exp(alg(t))hiy + v,

where the variance of ; is given by (2.6b). Equations (2.8a) and (2.8b) are the basic
set of equations of the discrete time representations of the SV model with a subordi-
nated volatility process which evolves at a speed set by Ag(t). The set of equations
(2.8) will be used for a simulated method of moments estimation procedure which
will be discussed in the next section. We will also use a quasi-maximum likelihood
estimation algorithm, however, based on a Kalman filter state space representation.

For this, we rely on Harvey, Ruiz and Shephard (1994) and write equations (2.8a) as:

(2.9) log[Alog y: — a;Alog y,_; — A2 = h, +log €2

where F log £ = —1.27 and Var log e! = 7?/2. We can rewrite equation (2.9) adding
(2.8b), as follows:

(2.10a) log[Alogy, — a4 Alog yeoy — A\ = ~1.27 + h, + G
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(2.10b) ht = (1 — exp(aQg(t))b+ exp(alg(t))hi-1 + vs.

Except for the parameter A, whose treatment is discussed, for instance, by Gouriéroux,
Monfort and Renault (1993), we obtain a state-space model with time-varying coef-
ficients similar to that obtained by Stock (1988), apart from the properties of the (;
process which is no longer Gaussian.1° Consequently, the estimation procedure based
on the Kalman filter will result here in a quasi-maximum likelihood estimator, similar
to Harvey, Ruiz and Shephard (1994).

Obviously, the SV model with time deformation can be viewed simply as a model
with a doubly stochastic process for h; which replaces the usual linear or Ornstein-
Uhlenbeck process. Yet, the stochastic variation in the autoregressive coefficient has
a very specific interpretation through the specification of the mapping g(t). Let us,
therefore, turn our attention now to a description of the functional form that will be
adopted. Z;_; should include both past volume and price movements. With respect
to price movements, we will adopt a functional form which can allow for asymmetries
in the time deformation when prices move upward or downward. Finally, we could
also include a set of predetermined processes denoted d; to account for nontrading
day effects and possibly other periodic patterns discussed, for instance, by Bollerslev
and Ghysels (1994). The logistic function emerging from the above discussion would

be:1?
(2.11)  exp(c'Zi-1) = exp(c; ds + ¢, log Vol,_; + pAlog yi1 +ci|Alog yi_y ).

where log Vol; represents a trading volume series and A log y, the return series. The
specification of the time deformation function is chosen in light of certain existing
stylized facts we would like the model to fit. Other specifications can be chosen,

however. The general model we develop holds for any process Z;_;, which is assumed

19The innovations vy and (; are assumed i.i.d. Correlation between the two processes would
create asymmetries in the conditional variance [see Harvey and Shephard (1993)]. We do not need
to assume such a correlation since the asymmetry will come through the time deformation (as will
be discussed later in the text).

1Note that the timing of d; differs from the other processes. Since the variables entering d; are
predetermined, they are measurable with respect to Fy_; and, therefore, legitimate for setting the
pace of operational time changes Ag(t). Moreover, it should be observed that ¢4 is a vector of
parameters since d; may be multivariate.
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to capture the flow of information. The specification in (2.11) is just one of possibly
many, yet is directly related to the existing literature on conditional variance models.
Further research may find other series appropriate as well.

It might be useful to describe the stochastic behavior of the process obtained so
far. Referring to some of the empirical results, discussed later, we must first observe
that coefficient A in (2.8b) is found to be negative. Therefore, when ¢, > 0, the
model predicts that increases in volume make Ag(t) increase. This acceleration in
operational time results in a decline in a; = exp AAg(t) and an increase in o2, defined
in (2.6b). These two effects imply that the ; process becomes more erratic since its
persistence declines and it is subject to larger shocks. Thus, trading volume increases
are paired with volatility increases, an empirical fact documented via SNP fitting
by Gallant, Rossi and Tauchen. If we find ¢, < 0 combined with ¢, > 0, while
lee] > || to ensure Ag(t) > 0, then a change in price of the same magnitude but
of the opposite sign will result in Ag(t) to be smaller with upward price movements
and larger with falling prices. Consequently, declining stock prices have an effect of
making the volatility process more erratic (i.e., a; declines and o2, increases), while a
positive price move of the same size has an opposite effect, namely, a; increases and
o2, decreases.

When the subordinated stochastic volatility model involves trading volume through
Ag(t) it is natural to consider a bivariate model of stock returns and trading volume
since both series are jointly determined by the arrival of information. It is indeed
a major point stressed by Clark (1973), Tauchen and Pitts (1983) and many other-
s. The framework developed so far lends itself easily to extensions which take into

account the laws of motion of trading volume. Such model would be as follows:

(2.12a) (Alog y: — a1Alog y;-1) _ [HP 4 [oee
log Vol, oy v,

e120) () =11~ explangey) (5) +exp(ang(0) (1) + (1)

Ut Vi1 Vot
ayy Q12
az1 azz
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(2.13) A
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(2.14) Ev; = T[(I - exp(AAg(t))]|A~1/?

19 x-(7 )

Equation (2.14) is the bivariate extension of (2.6b) now involving the matrix A defined
in (2.13) and the covariance matrix £. Note also that the time deformation Ag(t) is
common to both processes. It is clear that while the specification of Ag(¢) remains
the same, the arrival of information which drives jointly k¢ and v, is different in
comparison to the univariate model only involving h;. It should also be noted the
past volume affects A, directly through the term a12Ag(t)v,_y as well as through
Ag(t). The dynamics of the joint process (2.12) will be more difficult to describe.
Instead, our discussion will revolve around the analysis of impulse response functions
for the nonlinear bivariate system along the lines suggested by Gallant, Rossi and
Tauchen (1993) and Potter (1991).

3. ECONOMETRIC ANALYSIS

Estimating SV models represents some stiff challenges for econometricians. In recen-
t years, several estimation principles were proposed involving the use of simulated
method of moments, Kalman filter and Bayesian procedures. Recent contributions
include Duffie and Singleton (1993), Gallant and Tauchen (1994), Gouriéroux, Mon-
fort and Renault (1993), for the method of moments estimators while Harvey, Ruiz
and Shephard (1994) and Jacquier, Polson and Ross] (1994) discuss, respectively, the
Kalman filter and Bayesian methods. To estimate the SV models with time defor-
mation, we shall adopt two methods: one using the Kalman filter and one relying
on the “matching moments” approach described by Gallant and Tauchen (1994). A
subsection will be devoted to each method. Before turning to the specifics, it is
worth making several observations. Both estimation procedures should be viewed
a,s‘complementary especially with regard to estimating subordinated processes. The

Kalman filter estimator is a quasi-maximum likelihood procedure, henceforth QMLE,

56



and therefore has the disadvantage of being asymptotically inefficient. Simulation
evidence reported in Andersen and Sorensen (1994) and Jacquier, Polson and Rossi
(1994) suggests that the state space QMLE may be quite inefficient, depending on
the circumstances. This setup has certain advantages, however, in comparison to
the simulated methods of moments procedure. Indeed, there is a greater flexibility
with the Kalman filter in formulating Ag(t) without having to match the moments
of all the series involved in the time scale transformation. Hence, there are certain
trade-offs between the two estimation procedures which we will discuss. Therefore,

we turn our attention now to the specific details to clarify these observations.

3.1 Quasi-Maximum Likelihood Estimation of SV Models with Time
Deformation

This method consists of maximizing the quasi-likelihood function of a nonlinear SV
model written in a form of linear discrete-time state space system as specified in
equations (2.10a and b). The Gaussian quasi-likelihood function is evaluated in the
(calendar) time domain using a Kalman filter with time varying filter parameters that
depend on Ag(t). This algorithm is described in Stock (1988) and summarized in this
section. We cast the presentation in a general multivariate context since we also want
to cover the bivariate model involving volume described by equation (2.12).

The evolution of the state is described by the transition equation. In operational
time s, the r*f-order linear differential equation representing a n-dimensional O — [/

process can be written in a stacked form as:

(3.1.1) dy*(s) = A[RB — ¢"(s)|ds + Rdn(s),
where
£(s) 0 0
O T L S I B .
Dr—lf(s) I A, A,-_l PR A1

Here {(s) may represent any subordinated process of interest while the vector

¥*(s) is of dimension nr and the matrix R is nr x n, The matrix of coefficients A is
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of dimension nr x nr, its elements being n x n, while the mean vector Bisnx1. We
denote the mean-square differential operator by D. The innovation process n(s) is
Gaussian with zero-mean increments and covariance matrix E[dp(s)dp(s')] = 3 ds
for s = s’ and 0 otherwise. The real parts of the roots of matrix A are required
to be negative for stability. We will also assume that they are distinct in order to
adopt a useful eigenvalue decomposition A = GAG™1, where A is a diagonal matrix
of eigenvalues of A, which are, in general, complex numbers, while G is a matrix of
eigenvectors of A. Following Stock (1988), we set y(s) = G~14*(s) and observe that

in operational time the transformed variable satisfies the following equation:

(3.1.2) ¥(s) = [I—eMe=] G1RB 4 eAlo=s)y(y)

+/ eAls=r) G‘len(r) ,

where s > 5. Let the calendar time state vector be denoted S(r) = ¥(g¢(r)). E-
valuating the previous equation at s = 9(r) and s’ = g(t — 1), we find that S (1)

satisfies:

(3.1.3) S(r) = [I - eMo=o6-1] G=1Rg 4 AG()-s(t-D)g(; 1)

9(7)
+/ ere=-")G-1 Rdn(r) .

=g(t-1)

Developing the first term on the r.h.s of (3.1.3), we obtain:

(3.1.4) S(r) = G7'RB - Al()-st-1)G-1pg
7)

(
+6A(g(”f)-g(t-1))5(t ~1) 4 /9 cA(g(T)-r)G"leq(r) ,

r=g(t-1)

and hence,

(3.1.5) 3(1) = GT'RB = eMo()~slt-1)[g(¢ — 1) _ G1Rp]

9(7)
+/ ere=-NG1 R (r) .

=g(t-1)
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Now, set S(r) = S(r) — G™'RB. 1t is easy to note that equation (3.1.5) can be

written as:

™)

o . 9(
(3.1.6) S(r) = rt-et-1)gy _ 1) 4 / e* )G Rap(r) .

r=g{t-1)

Equation (3.1.6) evaluated at 7 = ¢ yields the final representation of the transition

equation:
(317) S’t = Tt gt—-l + Vg,
9(7)
where T; = exp(A Ag(t)) and v, = / exp[A(g(t) — r)]G~' Rdy(r).
r=g(t-1

The multivariate measurement equation can be written, in terms of the state

vector 5}, as:
(3.1.8) Y, =-1271+ GS: + RB + ¢,

where Y; and (; are n x 1 vectors with elements y;, = log[A log y;: — AR, G =
log €,+1.27,i=1, ..., n, and ¢ is a n vector of ones. The equations (3.1.7) and (3.1.8)
form a linear state space system. We suppose that the disturbances in both equations
are uncorrelated since in our setup any eventual impact of prices on volatility is
channelled through the time deformation term Ag(t).

The next step of the procedure consists of applying the Kalman filter algorithm.
Note, however, that (;; in (3.1.8) are not normally distributed and, hence the linear
filtering method can only be approximate while estimation will be asymptotically
inefficient (see Andersen and Sorensen (1994) and Jacquier et al. (1994) for further
discussion of this issue as well as simulation evidence).

Following Stock (1988), we initialize the Kalman filter by taking unconditional
expectations and assuming that prior to the sample Ag(t) = 1. The one-step ahead
forecast of the state, a1)o is equal to zero and its covariance matrix Pio=32, T"QT-"-
can be easily obtained by computing T' = T}, and Q = Q, = E(v:7}) evaluated at
Ag(t) = 1. Moreover, the (¢ — j) the element of the matrix @t is known to be equal

Ag(t) _ — —
to q;j/ exp[(\; + Ai) (Ag(t) - r)ldr = —gi;(1 — TiTj) /(N + A;), where gi; is the

(1 — j) element of the matrix G-1R > RG™.
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3.2 Simulated Method of Moments Estimation of Subordinated
Stochastic Processes

Gallant, Rossi and Tauchen (1992) have analyzed stock returns and volume of trans-
actions data and estimated semi-nonparametric densities, henceforth SNP, of the Joint
process. These SNP densities will be the setting for the simulated method of moments
procedure described in this section. The moment matching procedure involving S-
NP densities, dubbed by Gallant and Tauchen (1994) as efficient GMM (henceforth
EMM), allows one to avoid problems related to the appropriate choice of moments in
a standard GMM setup. The choice of moments js indeed particularly cumbersome
in cases of highly nonlinear models, such as SV models. The EMM procedure relies
on moment conditions which are generated in a first step using the score function of
the auxiliary SNP model. To facilitate the presentation, let us denote the parameter
vector describing the SNP density as § while the vector « describes the parameters
of the SV model. For the EMM method, we are interested in generating the vector of
moment conditions using expectations under the SV model of the score from an aux-
iliary SNP model. The task of computing this expectations vector is facilitated since
it is obtained easily by simulating the realizations, for a given value of the parameter
vector a, of the SV model with deformation of time. To be more formal, consider the

mapping obtained through simulation:
(3.2.1) & = {jr(a), 2,-1(a)},

where §, and %, denote respectively the set of simulated endogenous variables and
the set of lagged endogenous variables both generated by the time deformation SV
model. It is worth pointing out that we no longer rely on the normal approximation,
as appearing in (2.10a), but instead use directly (2.8a). In our case, ¥-(a) would
typically contain stock returns and trading volume while %,(«) consists of their past
realisations. The estimation is performed in two steps. F irst, the estimation of the

auxiliary model (called the score generator) yields:

. 1 <
(3.2.2) Op = Argrr;ax = Zl’n fi(§e | 41, ©),
Se t=1

where {7, Z5_,}", denotes the set of observed data from a sample of size n (the

simulated data set is of size N ). In the second step, the following moment criterion
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is computed:

. 1 1K 9 s =
(3.2.3) ma(a, 8,) = - _1\—’T=1 % i fi(§:(a)lE,-1(a), D).

Finally, the estimation of the time deformation SV model is given as:
(3.2.4) @n = Argmin m; (a, &,) (1) 'ma(a, &,),

where I, is a weighting matrix. [For a discussion of the appropriate choice of the
I. estimator, see Gallant and Tauchen (1994)]. The efficiency of EMM depends, of
course, on the choice of the auxiliary model. A score generator nesting the time defor-
mation SV model would allow to attain the maximum likelihood efficiency. However,
even a score generator that only closely approximates the actual distribution of the
data is nearly fully efficient. As noted before, the score function selected for the
time deformation SV model is the derivative of the log density estimated by a semi-
nonparametric method (SNP) proposed by Gallant, Rossi and Tauchen (1992). The

SNP density function is based on a hermite expansion of the form:
(3.2.5) h(z) < [P(2)]*®(2),

where z denoted a M-dimensional vector, P(z) is a multivariate polynomial of degree
K, and ®(z) denotes the density function of the multivariate Gaussian distribution
with mean zero and an identity covariance matrix. The constant of proportionality
1/ [[P(s)]*®(s)ds makes h(z) integrate to one. A more complex specification can
easily be handled by means of a change of variables y = Rz + i, where R is defined
as an upper triangular matrix and 4 is a vector of dimension M. In consequence, we

obtain the following expression:

(3.2.6) F(y1©) o< {PIR7}(y — w)]}*{ @R (y — w))/ | det(R)|},

where the leading term is now proportional to the multivariate Gaussian density func-
tion with mean y and covariance matrix & = RR'. Hence, by setting K, equal to zero,
a multivariate normal density can be estimated. N onzero values of K, result in shape
modifications that can accommodate fat tails and skewness. Other modifications can
be done by adjusting values of the remaining turning parameters L,L,L., K, I

and I,. The tuning parameter L, determines the number of lags in the location shift
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H considered as a linear function of L past values of y for accommodating a Gaussian
VAR specification. To approximate a conditionally heterogeneous process, each co-
efficient of the polynomial P(z) can be defined as a polynomial of degree K, in past
values of y. The new polynomial P(z, z), where z is the vector of lagged values of y
is hence of degree K, + K,. The conditional heteroscedasticity can also be captured
by letting R be a linear function of past values of y. The number of lags in the scale
shift R, is determined by the parameter L,. The number of lags in the z part of the
polynomial P(z, z) is controlled by L,. Finally, the parameters I, and I, allow to
suppress an excessive number of cross product terms in case of multivariate series.

The optimal score selection strategy is summarized in Table 3.1. The data used
consist of the daily closing value of the S& P composite stock index and the daily vol-
ume of shares traded on the NYSE. The data set is identical to that used by Gallant,
Rossi and Tauchen (1992), who described its sources in detajl.!? To determine the
best fit, we computed three ¢riterias AIC, BIC and HQ. AIC is the Akajke criterion
defined as:

AIC=85,(6)+ Py /n,

where S,(6,) is the mean of the log likelihood and Py denotes the number of param-
eters. The more conservative criterion of Schwartz (BIC), which penalizes specifica-

tions involving too many parameters is computed as:
BIC =Sy (©) + § (Po / N) log (N).

Finally, the Hannan-Quinn criterion lies in between the last two and is given by

the following expression:
HQ = $,(8) + (Ps / n) log [log (n)].

We retained the best performing specification under the most conservative Schwartz
criterion. Our preferred SNP model is described by the following set of the tuning
parameter values: {L, = 2, L, = 16, L, =2, K, =4, K, = 1, I, = I, = 0} with
total number of 35 parameters.

Before turning to the empirical results, it may be worth pointing out that the fitted

SNP densities reported in Table 3.1 only involve stock returns. A consequence of this

2Besides the description of data sources, they also describe several transformations.
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is that the matching moment SV estimates will be limited to a time deformation

based on past returns, since trading volume does not figure in the SNP density. We

Table 3.1
Univariate Price Changes 19501987 Optimized Likelihood

L, L. L, K, I, K, I, Sy Ps BIC HQ AIC

2 16 2 4 0 0 0 12849 25 1.2963 1.2904 1.2874
2 16 2 4 0 1 0 1.2793 35 1.2955 1.2871 1.2828
2 16 4 4 0 0 0 12849 25 1.2963 1.2904 1.2874
2 16 4 4 0 1 0 1.2759 45 1.2969 1.2861 1.2805
2 16 6 4 0 1 0 1.2746 55 1.3003 1.2871 1.2802

2 16 8 4 0 1 0 1.2735 65 1.3040 1.2882 1.2802

Notes: L,: number of lags in VAR part p,; L,: number of lags in the ARCH part R;; L,: number
of lags in the polynomial part P(z, z); P(z, z) is of degree K in z with cross product terms
exceeding K, —1I, set to zero; same for K. z and I; Sy negative of the log likelihood divided by
sample size (9636); Pg: total number of parameters; BIC, HQ, AIC: respectively: Schwartz,
Hannan-Quinn and Akaike criterions.

have to formulate a bivariate SNP involving both returns and volume to fit a SV
model with Ag(¢) including both series. This is, of course, different from the QMLE
setup described in the previous section. A bivariate SNP involving both returns and
volume has been estimated by Gallant, Rossi and Tauchen (1992). We relied on an
optimal score defined by the following values of the tuning parameters: {L, = 2,
L, =18, L, =2 K, =4, 1, = 1, K; = 2, I, = 1}."® Since the bivariate SNP
involves a very large number of parameters (368), we extended the sample period and

considered data on prices and trading volume from a 1928-1987 sample.

3For further details, see Gallant, Rossi and Tauchen (1992).
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4. EMPIRICAL RESULTS

In this section, we turn our attention to an empirical study of SV models sub ject to
time deformation. As noted in the previous section, the data used consist of the daily
closing value of the S& P composite stock index and the daily volume of shares traded
on the NYSE. The data are plotted in Figure 4.1 which consists of two parts: namely,
4.1a displays the return series, while 4.1b contains volume. The empirical results
reported here are based exclusively on the series appearing in Figure 4.1. A first
subsection will be devoted to SV models not involving the laws of motion of trading
volume log V;. The second subsection will be based on the joint volatility-volume

specification.

4.1 Empirical Subordinated SV Models

We fitted two continuous time SV models: the first one contains a simplified volatility
equation and is based on the assumption that in a long run of operational time, the
Ornstein-Uhlenbeck process is pulled towards zero. The second model corresponds
exactly to the setup presented in section 2, where the stochastic volatility is allowed
to tend towards any finite level. Two estimation methods, namely the QMLE and
EMM presented in the previous section, were applied. The Kalman filter parameter
estimates of the zero drift model appear in Table 4.1, while the second volatility
process specification is covered in Table 4.2. The EMM estimates appear in Table
4.3.
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Table 4.1

Stochastic Volatility with Time Deformation Determined by
Past Trading Volume and Prices with Leverage Effects

Sample: 1950-1987, QMLE, nonzero drift

(1) (2) (3)

Est SE P Est SE P Est SE P
¢ 0.5164 0.9152 0.5726 | 1.2475 03793 0.0010 | — - —
¢, -0.2043 0.1734 02386 | — — — | -0.1874  0.0906 0.0386
ce 02461 0.3011 04138 — — — | 03333 0.1118 0.0028
2 00108 00034 0.0014 | 0.0143 0.0037 0.0000| 0.0120 0.0045 0.0038
@ -0.0098 0.0040 0.0146 | -0.0146  0.0034 0.0000 | -0.0105 0.0036 0.0036
b -0.2163 0.1133 0.0562 | 02742  0.0853 0.0014 0.1007  0.0752 0.1808
A~ 00281 00109 0.0100 | 0.0281 0.0109 0.0100| 0.0281 0.0109 0.0100
9 0.1768  0.0100 0.0000 | 0.1768 0.0100 0.0000 | 0.1768 0.0100 0.0000

(4) (5) (6)

Est SE P Est SE P Est SE P
¢, 13210 0.6898 0.0554 | — — — — — —
¢ 03724 0.0816 0.0000 | -0.2252 0.0830 0.0066 | — — —
c¢ — — — — — — — — —
2. 00150 0.0054 0.0052 | 0.0114 0.0039 0.0032]| 0.0126 0.0037  0.0008
¢ 00133 0.0048 0.0052 [ -0.0117 0.0044 0.0074 | -0.0133 0.0037 0.0004
b -0.1591 0.1168 0.1730 | -0.2471 0.0980 0.0118 | 0.2379 0.0772  0.0020
A~ 00281 0.0109 0.0100 | 0.0281 0.0109 0.0100 | 0.0281 0.0109  0.0100
9 0.1768  0.0100 0.0000 | 0.1768 0.0100 0.0000 | 0.1768 0.0100 0.0000

Note: The standard errors reported are based on corrected QMLE asymptotic covariance matrix.
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Table 4.2

Stochastic Volatility with Time Deformation Determined by
Past Trading Volume and Prices with Leverage Effects

Sample: 1950-1987, QMLE, zero drift

(1) (2) (3)
Est SE P Est SE P Est SE P
Cy 1.0098 0.6236 0.1054 | 0.9790 0.7012 0.1626 — — -
¢, —0.1674 0.0959 0.0810 — — — -0.1565 0.0979 0.1098
Ce 0.2562  0.1356 0.0588 — — — 0.3542  0.1152 0.0022
> 0.0149 0.0051 0.0038 0.0123  0.0035 0.0002 | 0.0125 0.0034 0.0002
a -0.0121 0.0040 0.0024 | -0.0115 0.0035 0.0008 | -0.0107  0.0031 0.0006
A 0.0281  0.0109 0.0160 0.0281  0.0109 0.0100 | 0.0281  0.0109 0.0100
a; 01768  0.0100 0.0000 | 0.1768 0.0100 0.0000 | 0.1768  0.0100 0.0000
(4) (5) (6)
Est SE P Est SE P Est SE P
Cy 1.2559  0.5759 0.0292 — — — — —_ —
¢ —0.3742  0.0767 0.0000 | -0.5101  0.0472 0.0000 — — —
ce — — — — — — — — —
2. 0.0138 0.0037 0.0002 0.0155  0.0058 0.0039 | 0.0117 0.0033 0.0004
a -0.0117 0.0032 0.0002 | -0.0132 0.0047 0.0026 | -0.0113  0.0030 0.0002
A 0.0281  0.0109 0.0100 | 0.0281 0.0109 0.0100 | 0.0281 0.0109 0.0100
a;  0.1768  0.0100 0.0000 | 0.1768 0.0100 0.0000 | 0.1768  0.0100 0.0000

Note: The standard errors reported are based on corrected QMLE asymptotic covariance matrix.
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A total of six variants of each model were evaluated, with the sixth being a SV
model without time deformation, i.e., imposing ¢; = ¢, = ¢, = 0. The other five spec-
ifications involve time deformation, yet with different functional forms. The most
general specification is the unconstrained model with Ag(t) as a function of past vol-
ume and returns with a leverage effect. The second model involves only volume; the
third, only prices with leverage effect; the fourth, prices and volume without leverage;
and, finally, the fifth model has Ag(t) determined by past price changes. A total of
seven coeflicients in the zero drift O — U and eight in the other case were estimated.
The parameter \ was obtained as a sample average of Alog y, following the suggestion
of Gouriéroux, Monfort and Renault (1993). Moreover, as there appears to be some
minor autocorrelation left in A logy;, we first fitted first-order autoregressive models
to Alogy: and replaced Alogy, by the residuals to estimate the SV models. The
autoregressive coeflicients appear as a; in both tables. The standard errors reported
in Tables 4.1 and 4.2 are based on a QMLE covariance matrix estimator. The EMM
method based on simulations allows us to estimate only three out of six variants,
namely, the model without the deformation of time and with time deformation either
determined by past returns only or returns with leverage effects. The eight param-
eters (we considered only the nonzero drift volatility specification) were estimated
simultaneously, as opposed to the two-step procedure adopted in the QML approach
involving the estimation of ) separately. The parameter estimates are presented in
Table 4.3, where we compare them to the results of the Kalman filter.

The parameter values all appear to agree with the stochastic process behavior
described in section 2. To evaluate the significance of individual coefficients, we rely
on the QML ¢ ratios. In particular, the basic continuous time parameters A and ¥ are
significantly different from zero throughout all specifications and A takes only negative
values. The mean coefficient 3 yields mixed results since it is significant in four out of
six specifications. This would mean that we should have a preference for the nonzero
drift model if we were to choose between the two volatility specifications. Moreover
B always takes negative values, except for the model (3) estimated by EMM, where
the long run mean of the volatility process in operational time is much higher than
elsewhere. The parameters appearing in the return equation, ) and a; are significant,

though their values vary depending on the estimation method. In general, the QML
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Table 4.3

Stochastic Volatility with Time Deformation Determined by
Past Prices with Leverage Effects

Sample: 1950-1987, EMM, nonzero drift

(3) (5) (6)
EFFGMM ﬁ%%% EFFGMM fgé%% EFFGMM

¢, -0.8875  0.5562 | -2.9543  0.429 —
c 3.2260 1.5634 — — —
e — 0.0101 — ~0.1524 —
> 00002 00001 | 00022 00005 | 0.0150
@ -0.0003  -0.0002 | -0.0025  -0.0003 | —0.0291
b 02173 00491 | -0.0447  -05108 | -0.5543
A 00445 0.0447 | 00447 00448 | 0.0529
a1 02125 02117 | 02125 02127 | 09143
X* 113846 127.082 | 123726 120985 | 126.563

estimates of A and a; are larger than the EMM estimates in a one-step procedure,
while the continuous time parameters A and % resulting from the simulation-based
method are much lower.

Let us now discuss briefly the estimates of the time deformation parameters Cy,
¢ and c¢; beginning with the QMLE results. Past volume has a positive impact
on Ag(t) since ¢, takes always positive values. This implies, as noted in section 2,
that the marginal effect of increases in trading volume is a volatility process being
less persistent in calendar time and more erratic. The leverage coefficient is also
positive, while past price change always enter with a negative coefficient in the Ag(t)
specification. However, since |c,| > o] with ¢, > 0 and ¢, < 0 it follows that whenever
A log p:-1 is negative, we find a greater positive effect of past returns on Ag(t) than
when A log p;_; is positive. Hence, bull markets tend to make volatility larger, less

persistent and more erratic, while bear markets are associated with a lower volatility

68




with smaller variance. Note that the EMM procedure yields larger values of the Ag(t)
parameter estimates then QMLE. This is partly due to a different treatment of the
time deformation function in the EMM framework, where we did not require Ag(t)
to average to one in long term as we did in the Kalman filter, but we imposed instead
an upper bond of 1.394 x 10%. Joint tests, based on the QML results, have also
been examined. Hence, we complement the Wald tests presented in Tables 4.1 and
4.2 with LR-type tests that appear in Tables 4.4 and 4.5. Tests regarding the time
deformation hypothesis appear in the first table. The results indicate that when Ag(t)
is determined by either one of the individual series, volume or prices the Wald and
LR tests are not in agreement and there is also a difference depending on the process
specification. However, prices combined with either a leverage effect or trading volume
yield robust and strong results supporting significant time deformation. F inally, the
three series combined again yield mixed results with the joint LR test favoring time
deformation, though none of ‘the coefficients are individually significant for the zero-

drift model. In Table 4.5, we turn our attention to a number of LR tests

Table 4.4
Time Deformation Hypothesis Tests (LR)

Series in Ag(t) AR(1) Ornstein-Uhlenbeck
Volume only? 2.794 5.492
Prices only? 10.599 1.445
Prices with leverageb 6.455 8.961
Prices and volumeP 9.635 11.947
Prices with leverage and volume® 15.994 5.299

Note: The likelihood ratio statistic is asymptotically distributed as y? with respectively

a=1,5=2and c = 3 degrees of freedom.
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Table 4.5
Hypothesis Tests of the Time Deformation Function (LR) —
The Continuous Time AR(1) Model

Hypotheses AR(1) Ornstein-Uhlenbeck
Ho: cv#0 ¢,=0 ¢, =0

13.200 12.911
Hi:t c,#0 ¢,#0 ¢, #0
Ho: ¢,=0 ¢, #0 a#0

9.538 10.502
Hy: co#0 ¢, #0 ce #0
Hy: ¢,=0 ¢, #0 ¢,=0

5.396 5.877
Hy: c,#0 ¢, #0 Cz#lo
Ho: ¢, #0 ¢, #0 ¢, =0

6.359 0.001

Hi: ey #0 ¢, #0 ¢, #0

regarding the functional specifications of time deformation. We test whether Ag(t)
is determined by: (1) volume only against the alternative of volume and prices with
leverage; (2) prices with leverage only against the same alternative; (3) prices only
without leverage; and volume once again against all three series. In each case, the
restricted model is rejected. We also test whether leverage should be introduced once
prices and volume determine time deformation and find mixed results. In the zero-
drift model, we observe a significant leverage effect, while the O — U process appears
to have a very flat likelihood surface, making the marginal contribution of leverage
to Ag(t) negligible.

We turn our attention now to the sample path of the time deformation process
Ag(t) for a number of specifications. As we could not plot all possible combina-
tions, since it would be quite repetitive, we selected a few representative cases. We
first examine the path of time deformation for the AR(1) model with two alternative
specifications of Ag(t) : one involving prices and volume, the other adding leverage

effects. Four plots appear in Figure 4.2. Each Ag(t) specification yields a pair of
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plots, one for Ag(t), the other for the innovation variance which also depends on
Ag(t). Figures 4.2a and 4.2b display the patterns of time deformation, both involv-
ing prices and volume with leverage effects included in the latter. They appear to
be quite similar, though Ag(t) with leverage seems to be slightly less erratic. One
key feature emerging from both figures, as well as the adjacent plots containing the
innovation variance to the volatility process, is the infrequent appearance of sharp
peaks in operational time acceleration. Since A is found to negative, this means that
the conditional variance function becomes locally extremely erratic, unattached to
the previous period and subject to a large variance innovation shock. As noted in the
introduction, this finding complements a competing specification of laws of motion
via diffusion processes involving jumps. Such processes, proposed by Merton (1967a,
b) were built on the premise that one would occasionally observe abnormal informa-
tion leading to the incidence of a Jjump in asset prices. Through the time deformation
specification, one can view stich information arrival as extremely rapid acceleration
of market time through the increased trading and price movement per unit of calen-
dar time. The advantage of SV models with time deformation over jump-diffusion
processes is that the former might be relatively easier to estimate, at least if one is
satisfied with the asymptotically inefficient QMLE algorithm. Indeed, the ML est;-
mation of jump-diffusion processes can be quite involved [see, for instance, Lo (1988)
for details).!4

We turn our attention now to the volatility process itself, i.e., the h; process as
extracted via the Kalman filter procedure. A first caveat to note is that the fil-
tering algorithm we use, like the estimation procedure, is only an approximation of
the true latent volatility process. Indeed, the Kalman filtering algorithm ignores all
non-Gaussian features of the DGP, as noted in section 3. Jacquier, Polson and Rossi
(1992) proposed a procedure that yields an exact extraction algorithm for the volatili-
ty process as a by-product of their Bayesian inference procedure for SV models. Their
algorithm is numerically quite more involved in comparison to that described in sec-
tion 3 and is probably not so easy to modify so that a time deformation SV model can
be handled [see Ghysels and Jasiak (1993) for further discussion]. Figure 4.3a displays

the approximate filter extraction of the volatility process h;. The figure consists of

M There is, of course, a substantial difference between the stochastic process behavior of a jump
process and a process with SV having occasionally very large volatility.
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two parts, namely, 4.3a displays stochastic volatility as extracted under the assump-
tion of no time deformation. Hence, Figure 4.3a corresponds to a volatility process
that one would obtain from the approach proposed by Nelson (1988) and Harvey,
Ruiz and Shephard (1994). Figure 4.3b plots A, extracted from a model with time
deformation. In sharp contrast to the standard SV specification, we uncover a very
smooth volatility process. This may not be as surprising, given the plots in F igure
4.2 where Ag(t) and the innovation variance appeared. Indeed, most of the erratic
behavior of A, obtained through a specification without time deformation is absorbed
through the doubly stochastic random coefficient stochastic volatility specification.
Once time deformation is taken into account, it appears that the underlying volatility
process evolves smoothly in operational time. This yields an alternative interpreta-
tion. Indeed, the smooth evolution of h; in operational time implies that the process is
easier to predict over long horizons. This smooth and predictable component appears
to be separated from the mote erratic behavior of market time through Ag(¢). This
separation into two components is interesting as it decomposes a volatility process
that is itself latent.

Let us now examine further the empirical results obtained from the EMM frame-
work. A goodness of fit test can be performed by computing, a chi-square statis-
tic Nmiy(én, &n) (In)Imn (é&n, ©), which, under a correct specification of the SV
model, is asymptotically distributed as x? with degrees of freedom equal to the length
of the SNP parameter vector © minus the number of parameters of the SV model,
collected in the vector a. All the three models under study failed the chi-square test
(see Table 4.3). The value of the test statistic obtained for the nondeformation SV
model falls far beyond the critical value. However, the objective function can be sig-
nificantly improved upon, once we incorporate the time deformation determined by
past price changes with leverage effects. A similar but weaker reduction in the value
of the statistics can be observed when Ag(t) is defined as function of past returns
only.

Figure 4.4 shows the improvement in terms of the t-statistics on the scores of
the SNP model obtained by fitting a time deformation SV model. The parameters
“psi” correspond to the AR coefficients of the SNP model, the “a’s” indicate the
quadratic and quartic terms, and finally the “tau’s” are the coefficients on the ARCH

components of the score generator. The time deformation model with leverage effects
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improves 28 among 34 ¢ ratios, while the model without the leverage performs equally
well, reducing 29 out of 34. It is interesting to note here that most of the improved
moment fits appear in the “tau” group representing ARCH components. This is of
course a key issue, as time deformation should affect the volatility component first
and foremost.

In Tables 4.4 and 4.5, we reported joint tests to examine the fit of the SV model
with time deformation. In the context of the EMM estimation procedure, we can
perform some model diagnostics more directly aimed at the restrictions imposed by
the time deformation specification of the volatility equation. Returning to equation
(2.10b), we notice that Ag(t) controls the intercept AR coefficient as well as the
innovation variance. In a simulation context, we can ask ourselves whether we can
improve the fit by breaking this link between the correlations and variance of the

volatility. We do so by adding an extra term to the equation, namely:
(4.1.1) he = [(1 — exp(AAg(t))8 + [exp(AAG(t)) + cabie)ber + v

where 7 is an iid. N(0, 1) sequence and ¢, is an additional parameter. The
results in Table 4.3 indicate that the fit deteriorates with the “noise added” speci-
fication. We also find larger t statistics on the score vector, is illustrated in Figure
4.5. Out of 34 ¢ ratios, 17 went up in the case of model (3) and 13 out of 34 for
model (5). These results suggest that breaking the restrictions obtained in equation
(2.10b) do not improve the fit. Also, the “tau” group of moment conditions is the one
where the deterioration proclaims itself as one would expect. We simply perturbed
the specification by adding a noise term to the AR coefficient. Perturbations in oth-
er “directions” may perhaps yield other results. So, far however, we find the time

deformation specification the best fit focused so far.

4.2 Empirical Volatility-Volume Models

In this section, we rely exclusively on EMM estimation guided by the bivariate return
and volume SNP density described at the end of section 3. The parameter estimates
of the bivariate model with time deformation are reported in Table 4.6. A total of 14

parameters are estimated with the empirical score of the bivariate SNP as a guidance
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of matching moments. In our specification of the time deformation, we did not include
the absolute value of returns. We experimented with such a specification as well, but
found the model reported in 4.6 a better fit. This does not mean the model does not
produce leverage effects. Indeed, the bivariate structure is far more complex than the
univariate one and asymmetric responses can arise without it appearing in Ag(t). We
shall in fact return to this issue shortly.

Judging the adequacy of the bivariate model js no longer as straightforward as
judging that of the univariate of course. We mentioned in section 2 that we would
therefore analyze the model via impulse response functions. We will follow a strategy

proposed by Gallant, Rossi and Tauchen (1993) which consists of computing response

Table 4.6

EMM Parameter Estimates of Bivariate Stochastic
Volatility-Volume Model with Time Deformation

Up -0.1762 a1y -0.4550
wv 0.9511 ap -0.4267
a; 0.4570 as 0.8026
Bp -1.1440 a3, -4.6646
By 0.9301 i 1.9558
cp ~1.1204 Lan=2Xp -0.1298
cv 0.3412 Y22 1.0171

Note: Moment matching using score function of bivariate SNP
described by the following turning parameters: L,=2
Ly =18, Lp =2, Kz=4, I; =1, Kx =2, Iy =1.

profiles for the conditional mean and conditional volatility, where the profiles are
defined by:
(4.2.1) Ui(z) = E(yyj|ze=2) = 0,1, ..
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for the conditional mean profile and:
(4.2.2) IA/;("’) = E[Var(y:; [Ze4j-1)ze = Zl j=0,1,...

In both cases, y;,; represents a component of the bivariate return-volume process.
The conditioning vector z is the one which is perturbed to produce different response
profiles. Gallant, Rossi and Tauchen consider three scenarios to compute the response

profiles, namely:

(4.2.3) =¥ = (0, ¥0s ¥la, ) 4 (65,0, 0, )
(4.2.4) z° = (Yo, ¥.y, ¥g ...)
(4.2.5) 7 = (Y, ylq, ) + (6,7, 0,0, ..)

where 6} and 6, are shocks to the nonlinear dynamic system. The vector z° is called
the baseline shock while z+ and z- are respectively positive and negative shocks.
Hence, the conditional profiles are predictions of y;,; for the three different 1nitial
conditions listed in (4.2.3) through (4.2.5). The combination of equations (4.2.1)
through (4.2.5) yield the conditional mean and volatility profiles (§;(z), f/;(:v)) for
z = z+, 2° and £~. These response profiles were computed for both stock returns
and trading volume. Of course, so far we did not discuss how the conditional means
and variances appearing in (4.2.1) and (4.2.2) are obtained. In Gallant, Rossi and
Tauchen (1993), the empirical SN P, which yields an estimate of the conditional den-
sity was used to compute (4.2.1) and (4.2.2). This empirical density will serve as a
benchmark against which we want to measure the success of the bivariate stochastic
volatility model with time deformation described in (2.12). In order to compare the
impulse response profiles of the empirical SNP with those of the bivariate SV model
with time deformation, we produced a simulated sample of data containing 20,000
observations (approximately the size of the empirical data using the estimated mod-
el). The simulated data generated by the model were than used to fit an SNP density
from which the impulse profiles were computed. To assess the usefulness of the time
deformation specification, we also estimated the bivariate stochastic volatility model
defined in (2.12) through (2.14) restricting Ag(t) = 1Vt. We followed exactly the
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same procedure as above and obtained impulse response profiles under a bivariate
model specification without time deformation. We have therefore three impulse re-
sponse profiles to compare, a first from the empirical fit of the SNP from the data, a
second from a SNP density fitted to data simulated from a bivariate model with time
deformation using the EMM parameter estimates and finally a third which, like the
second, is obtained from simulated data, yet without a time deformation specification.

Gallant, Rossi and Tauchen (1993) point out that impulse response profiles for a
bivariate volatility-volume process need to take into account the widely document-
ed contemporaneous relationship between price and volume movements [see, e.g.,
Karpoff (1987) or Tauchen and Pitts (1983)]. From a scatterplot of historical return-
volume data, they define three types of impulses which described different scenarios
of contemporaneous return-volume shocks. These shocks, called of type A, B and C
were constructed to be consistent with the historical range of the data. We do not
want to repeat all the details of the computations and findings based on the three
types of shocks as they are reported in Gallant, Rossi and Tauchen. Instead, we
will single out one particular case which the authors identified as one of the most
interesting and novel findings emerging from the impulse response analysis. N amely,
Gallant, Rossi and Tauchen found that the leverage effect is essentially a transient
effect when analyzed in a bivariate system in sharp contrast to the univariate price
shock models which shows a much more persistent wedge between effects of positive
&F and negative 6, price shocks. We reexamine this 1ssue using both type A and B
shocks, the former being a combined price-volume shock while the latter being a pure
price shock.1®

The impulse response profiles are summarized in Figures 4.6a and 4.6b. The for-
mer covers shocks of type A while the latter of type B. Each figure has six panels,
the top three panels display conditional mean profiles of returns while the lower three
panels exhibit conditional variance profiles. Each time, one has (1) impulse responses
from the empirical SNP, (2) from the SNP generated by a time deformation bivariate
model and (3) one without time deformation. We consider the empirical SNP as being
the benchmark case where the data features are summarized. A first observation to

make is that the response profiles for the model without time deformation appear to

15Shocks of type C relate to volume only, see Gallant, Rossi and Tauchen (1993) for more details,
in particular regarding the interpretation given to the three types of shocks.
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overstate the volatility responses considerably, both for shocks of type A and B. Be-
sides being off track, we also notice that the baseline shock without time deformation
shows a slight kink in both cases which does not appear in the deformation model
nor the empirical SNP. While both models appear to confirm the transient nature
of the leverage effect, we note the model without time deformation tends to slightly
overstate, in relative terms, the initjal response of a negative shock. The differences
are minor, but the time deformation specification does show an edge, at least on
the basis of these impulse response profiles. Other criteria may be found to better

discriminate between models, but this we would rather leave for future research.

5. CONCLUSIONS

In this paper, we proposed an empirical class of time deformation stochastic volatility
models that were fitted to daily return and volume data for the NYSE. Two estimation
procedures were discussed, one involving a Kalman filter QMLE algorithm, the other
involving a moment matching principle. A univariate as well as bivariate return-
volume model specification were considered.

The framework can easily be extended to deal with high frequency data. For
instance, Ghysels and Jasiak (1995) suggest a specification of a time deformed SV
models involving arrivals of quotas and bid-ask spreads at 5 and 20 minutes intervals
for foreign exchange markets. Last but not least, Ghysels, Gouriéroux and Jasiak
(1995) provide a detailed discussion of the stochastic process theory for subordinated
processes. They, as well as Conley, Hansen, Luttmer and Scheinkman ( 1994) discuss

various estimation procedures not covered here.
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Trading Patterns, Time Deformation and Stochastic

Volatility in Foreign Exchange Markets



1. INTRODUCTION

The interbank FX market for foreign exchange transactions is one of the prime exam-
ples of the recent trends in globalization of trading in international financial markets.
The Bid/Ask prices quoted by various firms and banks are recorded over the 24 hours
per day and displayed worldwide by news services, such as Reuters or Telerate. Due
to the overlapping periods of activity of market makers located over the 3 continents
— America, Europe and Asia, a sequential pattern in intra-day trading is observed.
Works by Wasserfallen and Zimmerman (1985), Wasserfallen (1989), Feinstone (1987),
Ito and Roley (1987), Miiller et al. (1990), Goodhart and Figliouli (1991), Bollerslev
and Domowitz (1993) and Dacorogna et al. (1993) are examples of a growing interest
in research in this area. Most of them document and examine both daily and weekly
seasonalities in the volatility of foreign exchange rates.

The seasonal phenomena in the volatility of foreign exchange markets can be
modelled in a variety of ways. One possibility to accommodate seasonality is to modify
the traditional ARCH or GARCH type models.! Another strategy is to seasonally
adjust the data, a practice quite common for economic time series but which is not
without its longstanding controversies.? Alternatively, the market volatility can be
tied to the intensity of trading via a subordinate stochastic process representation,
as suggested by Clark (1973). This approach has been adopted in some recent works
by researchers from Olsen and Associates [see, for example, Dacorogna et al. (1992,
1993), Miller et al. (1992)]. Instead of modelling asset price behavior in calendar
time, price movements can be represented as being driven by an information arrival
process which itself evolves randomly yet with certain predictable patterns through
time. Formally, daily returns, z(At) = log(p(t)/p(t — 1)), are hence redefined as
log p(¢)/p(t — 1) = z(Ag(t)) where 9(t) is a positive, increasing stochastic process,
sometimes called directing process. This setup can be referred to as time deformation
since the relevant time scale is no longer calendar time t but operational time g(t).
Let us point out some advantages of this approach. As emphasized by Mandelbrot
and Taylor (1967), it easily accommodates leptokurtic distributions for asset returns.

Clark (1973) has shown that within this framework, comovements between trading

'ARCH models with seasonality are discussed in Bollerslev and Ghysels (1994).
?See Ghysels ( 1994) and Miron (1994) for further discussion as well as Andersen and Bollerslev
(1994) for applications.
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volume and asset returns can easily be modelled. Finally, time deformation yields a
random variance equivalent to a stochastic volatility model. These ideas have been
refined and extended in several ways for foreign exchange markets. Dacorogna et
al. (1993) proposed time scales related to a measure of worldwide activity, based on an
empirical scaling law of returns relating the mean absolute change of the logarithmic
middle price to calendar time. It is intuitively based on the notion that as the
world market time “slows down”, depending on the number of markets active and
on their local intra-day pattern, price volatility decreases and vice versa. Since this
time deformation concept is based on average market activity at any point in time,
it accommodates the repetitive seasonal pattern. Dacorogna et al. (1993) do not
fully exploit, however, the framework of subordinated processes suggested by Clark
as they forego the information in the current market activity. In this paper we adopt
the generic framework of Ghysels and Jasiak (1994) and propose a stochastic volatility
model with time deformation which blends features of an average and a conditional
market activity.

The empirical work is based on the data provided by Olsen and Associates. The
series consist of DEM/USD, JPY/USD and JPY/DEM exchange rates and contain
all quotes that appeared on the interbank Reuters network over the entire year from
October 1, 1992 through September 29, 1993. Although this data bank contains a bid
and ask price for each quote along with the time to the nearest even second, several
researchers (see, for example, Dacorogna et al. (1993), Miiller et al. (1993), Moody
and Wu (1994)) consider a single price series constructed as a logarithmic average
of asks and bids. In section 2 we examine the data and discuss the advantages and
shortcomings of this approach. The stochastic volatility model in its generic form is
presented in section 3. In section 4, we discuss observable stochastic processes which
approximate the market activity and appear in our specification of operational time.
In section 5 we report the empirical estimates of the stochastic volatility model with

time deformation based on intra-day market activity. Section 6 concludes the paper.
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2. MARKET DYNAMICS AND THE DISTRIBUTIONAL
PROPERTIES OF ASKS AND BIDS

In this section we provide a statistical analysis of asks and bids and study the behavior
of their geometric average. We examine the descriptive statistics, the autocorrelation
patterns and also investigate marginal and joint empirical densities. Since the out-
comes of time scale adjustments are for us of primary concern, the data are both
analyzed on a real time (tick-by-tick) basis, and over a fixed 20 minute sampling
interval.

The high frequency data consist of interbank FX price quotes for three exchange
rates: the Deutschmark/US Dollar (DEM/USD), the Japanese Yen/US Dollar (JPY/
USD) and the Yen/Deutschmark (JPY/DEM) rate. The numbers of observations in
the three samples are, respectively, 1,472,266, 570,839 and 159,004. Although the ask
and bid sequences are reported simultaneously for every transaction, a vast majority
of researchers study a single price series constructed as a logarithmic average of asks
and bids. Following the notation adopted by Dacorogna et al. (1993), the returns on

the foreign exchange market are thus defined as:

Az(t) = z(t)—2(t-1)
= %[(Zog ask(t) + log bid(t)) — (Log ask(t — 1) + fog bid(t - 1))],

or,

Az(t) = $[(fogask(t)— log ask(t — 1)) + (fog bid(t) — Log bid (¢ — 1))]

[Alog ask(t) + Alog bid(¢)] .

7
7

Usually it is assumed that the dynamics of the z(t) series reflect the general
pattern of market activity. One could argue, however, that the logarithmic middle
price averages out outcomes of distinct trading strategies of buyers and sellers. Indeed,
the real time data reveal several differences between asks and bids. Table 2.1 presents
the summary statistics of Afog ask(t) and Afog bid(t), the two components of Az (¢),
as well as of Az(t) compared across markets in real time. Table 2.2 contains the
same statistical summary over a fixed 20 minute interval of time scale. We report
the mean, variance, standard deviation, skewness coeflicient, excess kurtosis (i.e., the
empirical kurtosis -3), the minimum and maximum values as well as the range. A

95% confidence interval of the mean and variance estimators are also provided.
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In real time, we find in general that Alog ask(t) has a higher mean and a larger
variance than Afog bid(t). However, the first two moments of asks and bids differ
only marginally as compared to the discrepancies reported in moments of order 3 or 4,
In fact, the most relevant differences arise in terms of asymmetry and tail properties.
On the JPY/USD and JPY/DEM markets, the ask series are skewed to the right,
while the bids are skewed to the left. The quotes on the DEM/USD exchange rates
are both skewed to the right and show little differences in absolute values of the
skewness coefficients. On the contrary, on the JPY/DEM market, we report a 434
times higher absolute value of the skewness coefficient of asks compared to bids. More
excess kurtosis is found in the ask series as well. The difference is either slight, as it
is the case of the most active and hence, most regularly behaved DEM/USD market,
moderate in the JPY/USD quotes, where excess kurtosis in asks is almost 3.5 times
higher than in bids or extreme on the J PY/DEM market where the ask coefficient is
almost 1523 times larger thah the excess kurtosis of the bid series.

Two observations can be made regarding the third and fourth moment statistics
reported in tables 2.1 and 2.2. F irst, the differences in skewness and kurtosis for bids
and asks in the tick-by-tick data indicate that there are far more extreme changes
in the ask quotations than there are in the bids. As noted before, these differences
are particularly important for the JPY/DEM and JPY/USD markets. A second
observation is with respect to the comparison of the kurtosis statistics obtained from
real time and twenty minute sampling. In Ghysels, Gouriéroux and Jasiak (1995) it is
shown that for a time deformed process X(Ag(t)) there is an increase in kurtosis due
to time deformation when the mechanism generating Ag(t) is independent of X. This
would yield larger excess kurtosis for the twenty minute sampled series in comparison
with the tick-by-tick series. The results in tables 2.1 and 2.2 show that this is the
case for the DEM/USD series and for the bid series of the JPY/USD market. All
other series do not have this feature.

The logarithmic middle price seems to follow the asymmetric pattern of the bid
quotes, both in terms of the sign and the magnitude of skewness coefficients. The
thickness of tails in the Az(¢) series appears also to be determined rather by bids
than by asks at least on those markets where the largest bid-ask discrepancies in
terms of excess kurtosis were reported, ie, JPY/USD and JPY/DEM.

The descriptive statistics resulting from data sampled over 20 minute intervals,
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presented in Table 2.2, provide us some insights on the time scale adjustment effects.
The results in Tables 2.1 and 2.2 indicate that the sampling scheme has an immediate
and very strong impact on the distributional properties of the data. We report largely
different values of the first four moments of quotes on the same exchange rates sampled
on the adjusted time scale.? Besides, data show much less variety across the markets
in a sense that the basic statistics defining the distinct character of the 3 data sets
become much less dissimilar. It seems that on the aggregated time scale, some of the
properties identifying the individual series are getting attenuated. Accordingly, we
do not observe either the bid-ask discrepancies, at least to the extent reported in the
real time. For this reason, statistics on both quote sequences and their logarithmic
average appear more coherent as well.

To visualize the differences between the Alog ask(t), Alog bid(t) and Az(t)
series in terms of their distributional properties, we present plots of the corresponding
empirical univariate densities. (See figure 2.1, appendix 1.) For clarity of exposition,
we cover only one market, namely J PY/DEM featuring extreme bid-ask discrepancies
in real time.

Figures 2.2-2.3 display the bivariate distributions of [Alog ask(t), Alog bid(t)],
the univariate distributions of the two series, as well as the contour plots of quotes
recorded both in real time and on the adjusted time scale. A typical shape of the
bivariate density can be described as a sudden, very pronounced peak surrounded by
some smaller ones within a large domain of infrequently quoted values. In all data
sets, the empirical densities are stretched out along one axis of the ellipse, indicating a
strong positive correlation between Alog ask(t) and Alog bid(¢). The shapes shown
on the contour plots confirm a higher variance of data sampled at 20 minute intervals
and suggest more correlation between both quote sequences on the 20 minute grid.

The issue that remains to be investigated is whether the distributional properties
revealed by quotes recorded over one year are shared by samples over shorter time
horizons, like one month or one day. A closely-related problem is the stability of
the empirical densities through calendar time versus presence of some seasonal or
irregular patterns.

We selected 6 monthly subsamples consisting of quotes recorded in October and

3This phenomenon has been documented for series aggregated from daily to weekly or to monthly
sampling frequencies [see Drost and Nijman (1993)).
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December 1992 as well as in January, March, May and July 1993. We analyzed both
the tick-by-tick data and quotes sampled at 20 minute intervals. For simplicity of
exposition, we report the results for one market only, i.e., the JPY/USD. (See figures
2.4-2.5, appendix 1.)

The variety of shapes of the bivariate empirical densities of monthly subsamples
throughout the year reveals the complexity of seasonal phenomena in exchange rates.
In the monthly tick-by-tick data sets, asks and bids show less discrepancies than in the
entire sample. The JPY/USD market is particular in a sense that Afog ask(t) still
take values over a larger range than Afog bid(t), has a higher variance and longer
tails. (See figures 2.4, appendix 1.) Especially ask quotes on the JPY/USD rates
remain symmetric in October, while bids display a strong skewness. Interestingly,
the October asymmetry is common to all bid sequences and exhibited also by asks
on the JPY/DEM exchange rates.

The density of the average JPY/USD price, Az(t), seems, in general, to take on
values over the bid’s range. However, it does not reflect the bid’s asymmetry. On
the remaining markets where the ask and bid densities are more similar in terms of
range and variance, skewness in the Az (t) sequence seems to be determined by the
skewness of bids.

Quotes on the JPY/USD rates, sampled at 20 minute intervals, do not reveal
the “October skewness”. (See figure 2.5, appendix 1.) Instead, an asymmetry in
the asks’ density is observed in January, while bids display asymmetric behavior
either in January, May, July and December. The bids and asks prices recorded
on the remaining two markets have similar asymmetric distributions in almost all
monthly subsamples. Apparently, on the adjusted time scale, every month has its
own particular rthythm and pattern of trading, as reflected by a characteristic tajl
behavior.

Since asks and bids on DEM/USD and JPY/DEM rates exhibit on the 20 minute
grid similar distributional properties, the general tendency of these markets is ex-
pected to be well-approximated by Az(t). In case of the JPY/USD quotes, their
logarithmic average mimics the tail behavior of bids rather than asks.

The empirical densities of daily samples are shown in figures 2.6-2.7, appendix 1.
Our data consists of quotes recorded over 4 days of the week of October 5 through
12, 1992. Daily patterns are examined on the most active DEM/USD market. The
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empirical densities of daily subsamples differ again in terms of shape. In the tick-by-
tick records, Wednesday’s and Sunday’s distributions are more stretched out and are
more symmetric than the Monday’s and Friday’s ones. On Monday, both asks and
bids are characterized by long right tails, while on Friday the asymmetry is exhibited
by bids only. The middle price Az(t) reflects again the distributional properties of
bids.

The quotes sampled over the 20 minute grid show a variety of daily densities
although due to a small number of observations, Sunday’s data can be disregarded.
As we have observed in the monthly data, the adjustments of the time scale imparts
asymmetries and thus seasonality on days (months) where they are not reported in
the tick-by-tick data. For example, thick and uneven Wednesday’s tail reappear on
all markets.

Many of the seasonal phenomena can also be uncovered within the autocorrelation
patterns of the series. As this issue will be discussed in section 4, we concentrate on
serial dependencies on the real and the adjusted time scales up to lag 100.

The autocorrelations in bids and asks on both time scales are persistent and do
not reveal any new facts. Although we do not report the cross-correlation functions,
some insights on the price dynamics are worth being presented. As we have inferred
from the empirical densities, asks and bids sampled at 20 minute intervals are more
correlated than asks and bids in the real time. In fact, covariances of data on the
adjusted time scale are almost equal to one on all markets and vary between 0.7-0.8
across markets in the tick-by-tick samples. In terms of the lagged dependence, the
first tick is of primary importance for the ask and bid price adjustments. The cross-
correlation at lag 1 is negative and varies on the markets between —0.2 and -0.3. The
cross-correlations drop dramatically within the next tick indicating still a significant,
although a very low, positive dependence (less than 0.03) at lag 2. At higher lags, the
dependence between ask and bid series remains extremely low and occasionally takes
on significant values. On the 20 minute scale, the real time cross-correlations sum up
to one significant lag observed on all markets of a negative value close to —0.1.

To investigate the persistence in (Az(t))?, modelled within the SV framework,
we computed the autocorrelation functions of (Alog ask(t))?, (Alog bid(¢))? and
(Az(t))%. On all markets, squared values of returns, asks and bids in real time show

similar, persisting patterns of serial dependence. (See figure 2.8, appendix 1.) The
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same behavior is revealed by data sampled at 20 minute intervals on the DEM JUSD
and JPY/USD markets. The squares of returns (Az(t))? on the JPY/DEM exchange
rates are exceptional, as they do not follow the autocorrelation pattern of squared
values of ask and bids (see figure 2.9, appendix 1).

The time scale adjustments have shown, so far, either to alleviate some extremes
in the distributional structure of the tick-by-tick data or to impart some phenomena
related to the seasonality unobserved in real time. Two interpretations seem to be
plausible: by sampling at fixed time intervals, we either extract the necessary infor-
mation out of the noisy tick-by-tick records and reveal the essential properties of the
data, or we forego important information and hence obtain an oversimplified image
of the true underlying processes. The evidence we have presented, indicates that,
apart from some exceptions, the behaviors of asks and bids, the two components of
the logarithmic middle price, are much more coherent on the 20 minute time scale.
Hence, the middle price incréments Az(t) approximate better the general tendency
of the quotes. By choosing the 20 minute grid to model volatility in the Az(t) series,
we need to make the necessary adjustments in the traditional SV model to accom-
modate several aspects of seasonality. In the next section we explain how this can be

achieved by modelling the stochastic volatility within a time deformation framework.
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3. STOCHASTIC VOLATILITY AND TIME DEFORMATION

In this section we provide a brief summary of the stochastic volatility model with time
deformation presented in Ghysels and Jasiak (1994). Following the work by Hull and
White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987), Chesney
and Scott (1989), Stein and Stein (1991) and Heston (1993), we call a stochastic

volatility model the following set of equations:
dy(t) = py(t) dt + o(2) y(t) dWi(2) (3.1a)

dlogo(t) = a(b~logo(t))dt + cdWs(t) (3.1)

where W1 (t) and Wy(t) are two independent, standard Wiener processes. Ghysels and
Jasiak (1994) suggested to adopt the framework of equations (3.1a) and (3.1b) and
define the volatility process as a subordinated stochastic process evolving in a time
dimension set by market activity. This approach has been motivated by the works
of Mandelbrot and Taylor (1967) as well as Clark (1973). The complex and quite
frequently irregular behavior of asset prices becomes simpler and hence easier to model
once we assume that the volatility is tied to some observed or unobserved variables,
like the information arrival, which determine the dynamics of trades.* Hence, we
assume that there exist an operational time scale of the volatility process, with s =

g(t), a mapping between operational and calendar time ¢, such that:*

dy(t) = py(t)dt + o (g(8)) y(1) du(t) (3.20)
dlog a(s) = a(b—logo(s))ds + cdws(s) . (3.2b)

Following Stock (1988), we use the notation g(t) for the directing process to indi-
cate some generic time deformation, which may include trading volume besides many
other series that help to determine the pace of the market. Before discussing what
might determine g(t), we would like to make some observations regarding equations
(3.1a) and (3.1b). Indeed, it should first be noted that the equations collapse to the
usual stochastic volatility model if g(t) = t. Obviously, there are several possible

specifications of ¢ (g(t)). Moreover, one could correctly argue that defining volatility

“The microfoundations for time deformation and the process of price adjustments can be found
most explicitly in Easley and O’Hara (1992).
5The mapping s = g(t) must satisfy certain regularity conditions which will be discussed later.
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as a subordinated process amounts to suggesting a more complex law of motion in
comparison to the Ornstein-Uhlenbeck (henceforth, O-U) specification appearing in
(3.1b). This interpretation is valid, yet it should be noted that, through ¢(t), one can
associate many series other than the security price y(t) to explain volatility; hence,
one implicitly deals with a multivariate framework. Moreover, as we have pointed out,
the time deformation setup enables us to handle rather complex structure through
the subordinated representation.

To enhance our understanding of the mechanism of the process, we first consid-
er the system (3.2) in its continuous and discrete time versions. To simplify the
presentation, let us set b = 0 and discuss a continuous time AR(1). An investor’s
information can be described by considering the probability space (Q, F, P) and the
nondecreasing family F = {F3ESS of sub-g-algebras in calendar time. Furthermore,
we let Z; be a m-dimensional vector process adapted to the filtration Fiie., Z, is
Fi-measurable. The incremehts of the time deformation mapping g will be assumed

to be F;_; measurable via the logistic transformation:

dg(r; Zo_y) 1 &
—-——C-};L"—l— = 9(75Zi-1) = exp(c'Zi_y)/ {—T— ;exp(c’Zt-l)} , (3.3)

fort—1 < 1 < t.5 Equation (3.3), setting the speed of changes in operational time as
a measurable function of calendar time process Z;_,, is completed by the additional

identification assumptions:

0 <g(r;Z4-1) < 0, (3.4)
9(0)=0, (3.5)

1 T
= D Ag(t)=1. (3.6)

These three conditions guarantee that the operational time clock progresses in the
same direction as calendar time without stops or jumps.” Given that g is constant

between consecutive calendar time observation via (3.3), its discrete time analogue

8The fact that the denominator in (3.3) contains a sample average may suggest that a(g(t)) is
not measurable with respect to the filtration F; in calendar time. However, the denominator in
(3-3) is there for reasons of numerical stability of the algorithms. Since it is only a scaling factor,
its presence is of no conceptual importance.

"See Stock (1988) for a detailed discussion of the identification assumptions.
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Ag(t) = g(t)—g(t—1) takes the same logistic form appearing in (3.3). At this point,
we will not present the components of the Zy-y vector. As we will discuss this issue
in the next section, let us Just indicate that, in principle, Z,_; consists of any process
related to the information arrival. Ghysels and Jasiak (1994) show that the solution

in calendar time can be expressed as:

Alogy: —ayAlogy, g — ) = ette, , (3.7
he = [(1 — exp(AAg(1)))1B + exp(AAG () hees + vy | (3.8)
v~ N(0,-X(1 - exp(2444(t)))/ —24) . (3.9)

Equations (3.7) and (3.8) constitute the basic set of equations for the discrete time
representation of the SV model with a subordinated volatility process which evolves at
a pace set by Ag(t). A linear state-space representation of the system (3.7)-(3.8) can
be estimated by maximizing the conditional maximum likelihood function within the
Kalman filter framework. Following Harvey, Ruiz and Shephard (1994), we rewrite

equation (3.7) as:
log[Alogy; — a;Alog y,—y — Al? = h; + log e, (3.10)
where: Elogef = —1.27 and Var log &} = 72/2. Defining ¢, = log 2, we obtain:
log[Alog y, — aiAlogy,y — A\ = —1.27 + hi + ¢ . (3.11)

Apart from the parameter ), whose treatment is discussed for instance by Gouriér-
oux, Monfort and Renault (1993), the coeficients of this state-space model are time-
varying and, hence, similar to the specification proposed by Stock (1988), except
for the properties of the ¢, process which is no longer Gaussian. Consequently, the
estimation procedure based on the Kalman filter will result here in a quasi-maximum
likelihood estimates, as pointed out by Harvey, Ruiz and Shephard (1994). The
details of the QMLE algorithm for time deformed SV models are discussed in Ghysels
and Jasiak (1994); while Ghysels, Gouriéroux and Jasiak (1994) present a detailed

account of subordinated process theory and their estimation.
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4. DIRECTING PROCESSES FOR MARKET ACTIVITY

The model structure described in the previous section is a generic one where, apart
from some regularity conditions and the logistic form, the specification of A g(t) was
left open. Clark (1973), Tauchen and Pitts (1983) and Ghysels and Jasiak (1994)
studied stock returns and used a time deformation model with trading volume as
proxy for market activity. It is well known that for foreign exchange markets trading
volume is difficult to obtain. Hence, we need to consider other series. The Olsen
and Associates data base provides several possibilities to model market activity. The
purpose of this section is to discuss the different approaches one could consider.

Our strategy will consist of distinguishing “regular” or average market activity,
and deviations from the expected level of activity. For example, when European finan-
cial markets open and start active trading in say the DEM/USD currency exchange,
each market participant has.a certain expectation of the number of quotes arriving
during the first five minutes, the next five minutes, and so on. Some mornings, trading
is more brisk or even sometimes frenzy-like. On other mornings, the market activity
is down relative to its usual rhythm. Every part of the trading day has a certain
reference norm of activity against which one portrays the latest quote arrivals. What
is true for quote arrivals also holds for other market indicators like bid-ask spreads,
returns, absolute value of returns, etc. The model specification strategy which we will
adopt is to incorporate into A g(t) measures of “regular” or average market activity
and series representing deviations from average trading patterns. To continue with

the quote arrival example, we can formulate A g(t) as:
Ag(t) = exp(c'Zi_1) = exp(O,anqas_y + Ou(ngai1 — ngiy)), (4.1)

where the scaling constant appearing in (3.3) has been omitted from (4.1). Hence,
from (4.1) we have that: Z,_, = (nqay_y, (nge_q — ng:—1)) where nga,_; is the mean
number of quotes arriving over the interval ¢ — 1, while ng,_; is the actual number of
quotes which arrived in t — 1.

To clarify this, let us consider the plots appearing in figure 4.1 in appendix 2. The
figures consist of six plots, the left side displaying graphs with results from data
sampled at 5 minute intervals and the right panel containing the 20 minute sampling

frequency equivalent. We study the three markets of the Olsen data set, namely
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DEM/USD, JPY/DEM and JPY/USD. Each plot covers a span of a week, omitting
the weekends, and displays the average number of quotes, computed over the entire
sample, for each 5 (left) or 20 (right) minute time intervals of the week. The plots
display the repetitive intra-day cycle which is so typical of high frequency exchange
rate date. The 5 minute plots are, of course, more jagged than the 20 minute ones, but
each shows clearly the patterns of quote arrivals repeating each 24 hour cycle. The
graphs displayed in figure 3.1 represent the nga;_; series used to model A g(t). The
number of quote arrivals is one candidate series to measure market activity, besides
other series which we shall discuss shortly.

Before turning to these other series, it is worth drawing attention to a special case
of time deformation. Suppose for the moment that O = 01in (4.1). Then, A g(t) is
purely a function of the repetitive daily pattern of {nga;} which amounts to volatility

being a periodic autoregressive process:

1

ht ="t + atht-l + m y (42)

where v; and «; are changing every 5 or 20 minutes, depending on the sampling
frequency, with a 24 hour repetitive cycle, i.e., 3 = Yoy 0t = ay wWith 8 = ¢t + 24
hours.® A periodic model like (4.2) resembles the class of periodic ARCH processes
proposed by Bollerslev and Ghysels (1994) in analogy with periodic ARMA models
for the mean which have been extensively studied. Of course, the parameter variation
in (4.2) is determined by v, = (1 - exp(AAg(t))) and o = (AAg()).

We noted that quote arrivals are not the only measure of market activity, and
indeed several other series in the Olsen data file could be considered. Figure 4.2 of
appendix 2 displays the intra-daily pattern of bid-asks spreads. The figure has the
averages computed on a weekly basis of the average bid-ask spreads during 5 or 20
minute intervals. We notice in figure 4.2 a reasonably regular 24 hour pattern for bid-
ask spreads but by far not as pronounced and regular as the quote arrivals displayed in
figure 4.1 of appendix 2. Following the example in (4.1), we can formulate a directing

process as follows, using the same principle:

Ag(t) = eXp(esaspat—l + @ad(spat—l - Spt—l)) ’ (43)

8Since the averages nqa; were computed on a weekly basis, there might be some slight differences
from one day to the next one over an entire week. Yet, judging on the basis of figure 4.1, those
differences appear minor.
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where spa;_; is the sample average computed on a weekly basis of the mean spread
over the interval ¢t — 1 while sp,_; is the mean spread actually realized.

Last, but certainly not least; we can use absolute return. The weekly averages
are displayed in figure 4.3 of appendix 2 this time. The absolute return series has
been used by Miiller et al. (1990) to model an activity scale. It was observed by these
authors that absolute returns exhibited clear structures reflecting market activity
through the repetitive cycle of business hours. Indeed, we recover such a pattern, as
in figures 4.1 and 4.2, in the case of absolute returns, although the patterns are again
not as regular as in the case of quote arrivals. If we were to use only absolute returns,

we could construct a directing process:
Ag(t) = exp(Orqara;_; + O,4(ara;_y — ary_y)), (4.4)

where ara,_; is the sample average of absolute returns while ar_; are the actual
realization for time interval ¢ — 1.

Whatever measure suits best to formulate the directing process is ultimately an
empirical question of model specification and diagnostics. In (3.1) through (3.4) we
took each of the series separately in their expected value format and deviations from
the mean. However, one could easily combine the series and create a generic directing

process:

Ag(t) = exp(cd'Ziy) = exp(Oqanga;s_; + O,.8pa;_y + O,q.ara;_, (4.5)

+ O4a(ngas-1 — ngi_1) + 0,4(spas_; — 3pi-1) + Ory(ara;_y — ar,_,)) .

A priori one should expect that the formulation in (4.5) has a lot of redundancy,
particularly with respect to the nqa, spa and ara time series. Presumably, the best
representation is to pick one of the averages as representative and to measure market
activity as a combination of the selected average process plus the series measuring
deviations from regular market activity. The latter could be measured either by one,
two or all three series entering (4.5).

This is precisely the modelling strategy which we will adopt in the next section.
Before discussing the estimation results, we conclude, however, with a discussion of
the time series properties of the (nqga: —ngy), (spa; — sp;) and (ara; — ary) series, i.e.,

the series measuring deviations from regular market activity. We will do this through
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the autocorrelation function for each series. These autocorrelations are plotted in
figures 4.4 through 4.6 of appendix 2. They are complementary to the plots of the
weekly averages. The first of three figures covers the ACF of the {nga; — nq,} series.
We notice a very strong and repetitive pattern in all three markets. This means
that average quote arrivals, as displayed in figure 4.1 of appendix 2 are not the
only source of periodic patterns appearing in equation (3.1), but also the deviations
from market average is strongly autocorrelated with seasonal patterns. When we
turn our attention to figure 4.5 of appendix 2, which covers the bid-ask spread series
{spa;—sp;}, we observe less seasonal autocorrelation, at least on a daily basis, but still
observe a weekly lag. Since weekends were deleted to compute these autocorrelation
functions, one recovers positive autocorrelation at around 360 lags. This weekly
pattern is present for both the DEM/USD and JPY/USD market. For the JPY/DEM
market, we recover a daily seasonal pattern, however, quite similar to that of figure
4.4. Finally, we turn our attention to the absolute return market deviation series
{ara; — ar;} in figure 4.6. Unlike the two previous series, we find no particular
regular patterns in the ACF. Instead, we find a slowly decaying pattern starting from
a first order autocorrelation which is much higher than the previous ones, namely .25
instead of around .05 for those appearing in figures 4.4 and 4.5. Even after 800 lags,

we still have an autocorrelation above .05.
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5. EMPIRICAL RESULTS

There are three currency exchange markets available in the Olsen and Associates
data set, we will devote a subsection to each market. We begin with the most ac-
tive DEM/USD market which is covered in section 5.1 followed by JPY/DEM and
finally, JPY/USD markets which are covered in section 3.2. Before discussing the
actual results, a few observations are in order regarding estimation. It was noted
in the previous section that the details of the QMLE algorithm are omitted here as
they appear in Ghysels and Jasiak (1994). The numerical optimization of the quasi-
likelihood function was accomplished via simulated annealing. The algorithm, which
is described in Goffe et al. (1994), appeared to be the best equipped to deal with
the multiplicity of local maxima which tricked most other conventional algorithms we
tried. Also, for reasons of numerical stability, we rescaled the quote and spread series

by 1.e-03 while the absolute return series was rescaled by 1.e-01.

5.1 The DEM/USD Foreign Exchange Market

In section 4 we noted that our model strategy for formulating the mapping between
calendar time and operational time would consist of picking one of the three series
measuring anticipated market activity and combine it with the set of series reflecting
deviations from averages. Table 5.1 reports the estimation results obtained from the
20 minute sampling interval for three model specifications, each involving different
measures of average market activity, as appearing in equations (4.1) through (4.5)
complemented with several combinations of the deviations from average market activ-
ity. To avoid reporting too many empirical results, we present models with nga and
ara variables of average market activity and omit those with spa which yield quite
similar results. The three surprise terms appear either simultaneously or separately in
models summarized in table 5.1. Besides the point estimates, we also report standard
errors which were computed using a heteroskedasticity consistent QMLE covariance
matrix estimator. One should recall that the QMLE procedure is asymptotically in-
efficient, yet the standard errors in Table 5.1 reveal that all series entering Ag(t), no

matter what specification is used, appear significant. Hence, the standard errors do
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not give us much guidance on what model specification to pick. Before elaborating
further on model choice, let us discuss first the interpretation of the estimates. One
should first of all note that all the coefficients ©;; have negative signs. Obviously,
each coefficient measures a partial effect. However, from microstructure models we
know, for instance, that as the time interval between quotes decreases, one expects
spreads to increase (see, for instance, Easley and O’Hara (1992) for further discus-
sion). Hence, each of the series reflect movements that are obviously not unrelated.
The mapping between calendar time and operational time we investigate is, of course,
one based on statistical fit. Let us distinguish first the coefficients related to average
market activity from those related to deviations from the normal pace. The first
example covers average quotes. Negative coefficients ©,, and a imply that during
times that average quotes are high, market volatility becomes more persistent and
less erratic. Obviously, high quote arrivals do not necessarily reflect a high informa-
tion content, but often it medns many markets are active simultaneously. Comparing
figures 4.1 and 4.2, we note that high average quote arrivals appear to be associated
with higher bid-ask spreads, at least for the DEM/USD market discussed here. Like-
wise, comparing figures 4.1 and 4.2, we note the same thing for absolute returns, at
least again for the DEM/USD market.

The coefficients related to deviations from normal market activity are also nega-
tive. Since deviations are measured as average minus actual realizations, it is clear
that, with negative a coefficient, above normal market activity increases volatility
and vice versa. Also, operational time increases (decreases) when market activity is
above (below) average. It must also be noted that each specification of Ag(t) involved
lagged values of the deviations from market activity. This was, of course, done in or-
der to guarantee that Ag(t) is based on variables that are measurable with regard
to t — 1 information. From the autocorrelation functions in figures 4.4 through 4.6,
we also know, however, that the first order autocorrelations for each of the market
activity deviation processes are positive.

With all entries being significant for the 20 minute DEM/USD specifications,
we must rely on other criteria to discriminate among models. In the remainder of
this section, we will focus on the models appearing in the first column of tables 5.1
through 5.3. These models contain all three measures of deviations from average

market activity combined with each of the three measures of average market activity.
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We first turn our attention to the plots of squared returns paired with the sample
paths of market time as obtained from the estimated Ag(t) processes. These appear
in figure 5.1 of appendix 3. The three A 9(t) processes appear quite similar, although
upon closer examination, it is clear that the time deformation involving average quotes
looks quite distinct from the other two specifications.

Since we have the Ag(t) process, we may also proceed as in Miiller et al. (1993)
and analyze returns not in calendar time, but rather in operational time. It is a useful
tool, as Miiller et al. (1993) suggest to study “deseasonalized” returns. It should be
noted though that while the Olsen and Associates activity scale is purely based on
average (repetitive) patterns, our uses direct dynamic effects. To compute the auto-
correlation function in operational time from our models, we use an approximation,
namely, we define the [Alogy, — a, Alogy;.y — > / Ag(t) process as being nor-
malized returns, relative to market time. Obviously, when A g(t) =1, we recover the
calendar time process. Othetwise, we recover a squared return process adjusted for
serial dependence and drift which is normalized by operational time changes. This
normalized process is used to compute an autocorrelation function. For comparison,
we plot first the squared returns ACF in calendar time followed by the ACF com-
puted from the Olsen and Associates time scale.? (See figures 5.2-5.3, appendix 3.)
We observe that all operational time autocorrelation functions, namely, the Olsen
and Associates and our different specifications look very different. The specifica-
tion involving average spreads which were not reported in table 5.1 show significant
autocorrelations at weekly, biweekly, etc. lags.

In sharp contrast, it appears from the ACF’s involving operational time scales with
average quotes and particularly with absolute returns, are almost white noise series
which do not show any long memory properties. Judging on the basis of these ACF,
it appears that the model involving absolute returns is probably the most appealing
to use for the DEM/USD market.

$We are grateful to Michael Dacorogna for providing us with the ACF. It should be noted that
the sample used in Miiller et al. (1993) and the one used here is not exactly the same. We ignore
this aspect here.
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5.2 The JPY/USD and JPY/DEM Foreign Exchange Markets

We now turn our attention to tables 5.2 and 5.3, each covering empirical results from
one market. Again, we present model specifications involving two different measures
of average market activity, nga and ara, combined with three measures of deviations
introduced in the previous section.

There are several differences between the parameter estimates based on the DEM/
USD sample and those reported on the JPY/USD and JPY/DEM markets. In tables
5.2 and 5.3 we notice immediately positive as well as negative signs of ©,; and we
also see that some coefficients became insignificant. Exceptionally, the parameter
estimates of the JPY/USD model involving the nga variable (table 5.2, top panel)
have similar signs as the coefficients of the analogue specification estimated from the
DEM/USD data. Consequently, both models yield a similar interpretation of the
volatility behavior. The operational time slows down when the number of expected
quotes increases and it accelerates while the current number of quotes, the current
level of spread or returns exceeds the expected values. Thus, changes in the volatility
appear to be driven by the extent in which the actual market activity deviates from
the average level. The results presented in the bottom panel of table 5.2 indicate that
the surprise terms have the same effect in the specification involving the ara variable.
A high level of expected returns, contrary to the average quote arrival, speeds up the
operational time and the volatility adjustments.

The results based on the JPY/DEM sample are difficult to interpret. In section
2 we have pointed out several distinct distributional properties of JPY/DEM quotes.
Some particular seasonal patterns of this series have also been discussed in section
4. It appears that the only variable accelerating the operational time and, hence,
changes in the volatility process, is the instantaneous excess return. The coefficients
on the remaining variables are positive throughout both specifications indicating an
opposite effect. In conclusion, the JPY/DEM model yields results which are not
plausible, and it seems appropriate to estimate volatility on this particular market

within a different framework.
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Table 5.1
QML Estimates of Stochastic Volatility Models with Time Deformation
20 Minute Sampling Intervals — DEM /USD Market
Model:

log[Alogy: — ajAlogys—y — AJ? =127+ he + ¢ hy

= [(1-exp(aAg(t)))]b+ exp(aAg(t))he_y + v;
Ag(t) = exp[@ganqar_; + O,4(ngas_; — ngi-1) + ©54(spas_y — spi_1) + O,q4(ara;_; — ari_1)]

v ~ N(0,~E(1 - exp(2aAg(1)))/2a)

) 2 (3) ()

Est. St. Er. Est. St. Er. Est. St. Er. Est. St. Er.
O -0.0106 0.0011 | -0.0107 0.0011 | -0.0114 0.0032 | -0.0148 0.0016
O,  —0.0197  0.0029 | -0.0196  0.0029 0.0320  0.0057 — —
©,a -1.5040 0.0054 | -1.4805 0.0053 — — -1.6044  0.0262
©ra —4.5236  0.0049 —- — — — -4.7899  0.0050
a -0.4206  0.0050 | -0.3800  0.0053 | -0.1357  0.0305 -0.6455  0.0226
z 1.1714  0.0049 1.0581  0.0049 0.3758  0.1050 1.7842  0.0114
b ~14.9361  0.0050 | -14.9369  0.0050 -14.9702  0.0773 | -14.8807  0.0375

Ag(t) = eXP[OraCl7‘at-1 + eqd(nqat—l - th-l) + ead('spat—l - -9Pt-1) + 9rd(a7‘at—1 - a"t-l)]

(1) (2) 3) (4)

Est. St. Er. Est. St. Er. Est. St. Er. Est. St. Er.
©ra  -2.2065 0.0050 | -2.3450  0.0050 | —2.2099  0.6004 -1.8602  0.0049
©4 -0.0270 0.0028 | -0.0270 0.0028 -0.0268  0.0047 — —
©,a -1.7471 0.0161 | -1.7464 0.0157 — — -1.8360 0.0142
©ra -3.0309 0.0049 — — —_ — -2.6463  0.0049
a -0.7601  0.0269 | -0.7418  0.0245 -0.1257  0.0189 | -0.8759  0.0276
z 2.0766  0.0115 2.0260 0.0106 0.3382  0.0629 2.2712  0.0120
b -14.8290  0.0060 | -14.8193  0.0119 -14.8360 0.0614 | -14.6385 0.0106
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Table 5.2
QML Estimates of Stochastic Volatility Models with Time Deformation
20 Minute Sampling Intervals — JPY/USD Market

Model: log[Alogy: — a;Alog ys_q — A2 = —127+h + Se; he
= [(1-exp(alg()))]b+ exp(aAg(t))he_y + v;

Ag(t) ~ eXP[annqat—l + Oga(nga;; — ng_1)+ ©,4(spas_y — Spe-1) + Or4(ara;_; — ari_y)]

ve ~ N(0,-3(1 - exp(2aAg(t)))/2a)

(1) (2) (3) (4)

Est. St. Er. Est. St. Er. Est. St. Er. Est. St. Er.
O, -0.0153  0.0043 | -0.0167  0.0066 | —0.0070 0.0024 | -0.0070  0.0042
O —0.0239  0.0036 | —0.0243  0.0083 — — — —
©,a —0.2002 0.0049 — — 0.2970  0.1401 — —
©,a -0.8204 0.0049 _ — — — -0.5879  0.0049
a -0.2189  0.0053 | -0.2152  0.0411 | -0.1943 0.0069 | -0.1983  0.0399
z 0.6899  0.0111 0.6777  0.1756 0.5801  0.0239 0.5951  0.0079
b -14.9240  0.0050 | -14.9306  0.0596 | -14.7899  0.0212 -14.7950  0.0050

Ag(t) ~ exp[Orqara;_y + O,4(nqas; — 7gi-1) + Oua(3pas_y — spi_1) + 0,4(ara;_q — ars_y)]

(1) ) 3) (4)

Est. St. Er. Est. St. Er. Est. St. Er. Est. St. Er.
©rq 6.2526  0.0049 6.2884  2.6309 6.0877  3.8865 5.2324  0.0049
©q¢  -0.0178  0.0041 | —0.0181 0.0054 — — — —
O, -0.2864 0.0050 — — -0.3251  0.1398 — —
O,a -0.7404  0.0049 — — —_ — -0.5565  0.0049
a -0.2063  0.0161 | -0.2063 0.0202 | -0.1921 0.0068 | -0.1943 0.0154
z 0.6357  0.0643 0.6354  0.0804 0.5702  0.0234 0.5777  0.0596
b —14.8784  0.0339 | -14.8860  0.0388 | -14.7786 0.0213 | -14.7838  0.0024
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Table 5.3
QML Estimates of Stochastic Volatility Models with Time Deformation
20 Minute Sampling Intervals — JPY/DEM Market
Model:

-1.27 + ht + Sty ht
(1~ exp(a g ()b + exp(a A g(t))hes + v,

log[Alogy; — a;Alog yi—; — AJ?

Ag(t) ~ exp[Ogangas_; + O,q(ngar_; — ngi-1) + Osa(spas_1 — sp_1) + O,q4(aras_; — ary_)]

ve~ N(0,-Z(1 - exp(2aAg(t)))/2a)

) @) 3) (4)
Est. St. Er. Est. St. Er. Est. St. Er. Est. St. Er.
O¢a 0.0273  0.0074 0.0022  0.0132 0.0186  0.0134 | -0.0050 0.0131
O, -0.0204 0.0097 0.0201  0.0111 — — — —
.4 0.4924  0.0054 — — 0.4822 0.0800 — —
Ors -0.2240 0.0052 — -— — — 0.1387  0.5881
a -0.1773  0.0098 | -0.1743  0.0088 | -0.1781 0.0091 | -0.1767  0.0089
= 0.3195  0.0272 0.3163  0.0212 0.3232  0.0215 0.3241 0.0216
b —14.3923  0.0022 | -14.3674  0.0202 | -14.4061 0.0199 | -14.3817 0.0196
Ag(t) ~ exp[Orqara;_y + Oga(ngas—1 ~ ng;_1) + 0,44(spa;_y — 8pi-1) + Ora(ara;_y — ar;_y))
1 2 (3) (4)
Est. St. Er. Est. St. Er. Est. St. Er. Est. St. Er.
Oq 6.6248  5.4780 7.7326  5.6690 6.4390  3.0797 7.6165  0.0052
O, -0.0214 0.0116 0.0195 0.0111 — — — —
©,a -0.4577  0.0787 — — -0.4573  0.0978 — —
©ra  —-0.2292 0.6664 — — — — -0.1189  0.0054
a —0.1805  0.0093 | -0.1748  0.0088 | -0.1812 0.0171 | -0.1750  0.0147
b)) 0.3276  0.0220 0.3178  0.0212 0.3309  0.0417 0.3199  0.0356
b -14.4100 0.0198 | -14.3696 0.0196 -14.4160  0.0252 | -14.3790  0.0133
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6. CONCLUSIONS

In this paper we discussed the dynamics of three exchange markets: DEM/USD,
JPY/USD and JPY/DEM, and we proposed a stochastic volatility model for exchange
rates sampled at high frequencies.

We first examined the complexity of market dynamics emphasizing the seasonal
patterns in return, bid, and ask. The analysis has been based both on unequally
spaced data as well as on series sampled at fixed 20 minute intervals. We have
pointed out that the choice of the time scale is crucial for the accuracy and the
informational content of the results. In the tick-by-tick records, we observed some
interesting shifts in the entire distributions from one month to the other and even
throughout the week. The equally spaced data exhibit similar radical changes in the
behavior of the empirical distributions through time. The complexity of the seasonals
in high frequency records requires, thus, a more sophisticated framework than simple
mean shift models of standard adjustment techniques developed in the (macro) time
series analysis. Finally, we presented evidence that the usual geometric average of
bids and asks is an appropriate measure of returns on the 20 minute time scale but
is an unreliable indicator of mean price changes in the tick-by-tick records.

Next, we investigated a new approach to deal with the seasonal effects in high
frequency data and proposed a time deformation framework of stochastic volatility.
It is worth emphasizing that it is the first attempt to fit this type of model to high
frequency exchange rate series. We examined two specifications of the relationship
between the volatility of quotes and the expected values of some relevant variables
approximating the market activity as well as the instantaneous deviations from their
average behavior. In general, the models successfully explained the market dynamics

at least in two out of three data sets.
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Figure 2.2

JPY_USD In(ask(t)) - In(ask(l-1))
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Figure 2.3
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Figure 2.4
Bivariate Monthly Histograms of JPY/USD Quotes (Real Time)
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Figure 2.5
y Histograms of JPY/USD Quotes (
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" Figure 2.6
Daily Histograms of DEM/USD Quotes (Real Time)
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Figure 2.7
Daily Histograms of JPY/USD Quotes (20

Minutes)
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Figure 2.8
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Figure 2.9
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Appendix 2

Figure 4.1
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Figure 4.3
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Figure 4.4

Deviations from Averages: Quotes 20 Min. Intervals - ACF
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Figure 4.5

Devialions from Averages: Bid-Ask Spreads 20 Min. Intervals - ACF
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Figure 4.6
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