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i 

 

Résumé 

 

La tâche de kinématogramme de points aléatoires est utilisée avec le paradigme de choix forcé 

entre deux alternatives pour étudier les prises de décisions perceptuelles. Les modèles 

décisionnels supposent que les indices de mouvement pour les deux alternatives sont encodés 

dans le cerveau. Ainsi, la différence entre ces deux signaux est accumulée jusqu’à un seuil 

décisionnel. Cependant, aucune étude à ce jour n’a testé cette hypothèse avec des stimuli 

contenant des mouvements opposés. Ce mémoire présente les résultats de deux expériences 

utilisant deux nouveaux stimuli avec des indices de mouvement concurrentiels. Parmi une 

variété de combinaisons d’indices concurrentiels, la performance des sujets dépend de la 

différence nette entre les deux signaux opposés. De plus, les sujets obtiennent une 

performance similaire avec les deux types de stimuli. Ces résultats supportent un modèle 

décisionnel basé sur l’accumulation des indices de mouvement net et suggèrent que le 

processus décisionnel peut intégrer les signaux de mouvement à partir d’une grande gamme de 

directions pour obtenir un percept global de mouvement.  

 

 

Mots-clés : prise de décision, psychophysique, intégration sensorimotrice, kinématogramme 

de points aléatoires, choix forcé entre deux alternatives 
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Abstract 

 

Random dot kinematograms are used in visual psychophysics with the two-alternative forced-

choice paradigm to study the process of simple perceptual decisions. Mathematical models of 

this process assume that stochastic motion evidence for the two alternative choices is encoded 

in the brain, and that the difference in evidence is accumulated towards a decision bound. 

However, no study to date has tested this assumption using stimuli with different levels of 

mutually opposing evidence in both directions. This thesis presents the results of two 

experiments using two novel stimuli with opposing coherent motion evidence. Over a variety 

of competing evidence combinations, subject performance was based on the net difference in 

the opposing signals. Furthermore, task performance was similar with both types of stimuli. 

These results support a decision model based on the accumulation of net evidence, and suggest 

that the decision process is capable of integrating motion evidence from a wide range of 

directions to obtain a global percept of motion.  

 

 

 

Keywords: Decision making, psychophysics, sensorimotor integration, random dot motion, 

two-alternative forced-choice.  
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I. Introduction 

Decision making is a fundamental cognitive process that is studied in many disciplines, from 

political science, management science, and computer science, to economics, sociology and 

cognitive psychology. While each discipline studies different forms of decision making, the 

general decision process is similar: it involves “a commitment to a proposition or plan of 

action based on information and values associated with the possible outcomes” (Shadlen and 

Kiani, 2013). Decisions could concern such seemingly simple questions such as whether or 

not a sensory event had occurred (“signal detection”), what was the nature of the stimulus 

(“signal discrimination”), what action to take in response to the stimulus (“action selection”), 

or more complex questions such as what stocks to buy or sell, what restaurant to go to for 

dinner or for which political party to vote. The scope of this present work is to study the 

process of simple perceptual decision making, and to study the properties of the neural 

mechanisms underlying this process. 

In this research project, I will examine how subjects making perceptual decisions about 

dots moving in different directions on a screen can give insight into how the brain integrates 

evidence for alternative choices. I start by giving an overview of several topics to provide 

context for the project. This introduction will consist of three sections. The first section is an 

overview of the psychophysics of decision making and random dot kinematograms. The 

second part will be an overview of the theoretical models of decision making. In the third part 

I will describe the objectives and hypotheses of the project. This introductory section is 

followed by one article detailing part of my work on the project. Finally I will conclude with 
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an overall discussion and a summary of the main findings, as well as a brief description of the 

further analyses of the experimental data that I am pursuing.  

 

I.1. The Psychophysics of Decision Making 

In the field of experimental psychology, the term “psychophysics” is typically used to 

characterize the study of how a sensory stimulus is experienced by an observer. 

Psychophysical experiments involve perceptual tasks in which individual properties of a 

sensory stimulus are systematically manipulated to examine how these properties affect the 

observer’s experience of that stimulus (Fechner, 1966). Among the many properties of sensory 

processing, two have been heavily studied: the point at which an observer can detect a 

stimulus, called the detection threshold, and the point at which an observer can detect a 

difference in two similar stimuli, called the discrimination threshold (Gescheider, 2013). 

These properties can be measured using a simple “yes-no” task paradigm. For example, a 

simple auditory stimulus detection task could involve playing a tone at different intensities 

ranging from sub-threshold values to above threshold values and asking an observer to report 

whether or not they heard the tone. This task produces a psychometric function, as illustrated 

in Figure I.1a. By convention, the threshold for detection is set to the stimulus intensity at 

which observers report hearing the tone 50% of the time. In an auditory stimulus 

discrimination task, on the other hand, two tones could be presented to the observer with 

varying relative differences in the intensity of the two tones. The observer is then asked to 

report whether the intensity of the two tones was the same or different. Stimulus 

discrimination tasks can also measure other properties of musical tones, such as pitch and  
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timbre (Hirsh and Watson, 1996). Similar to the detection task, the threshold for 

discrimination is set to the point at which observers report that the two tones are different 50% 

of the time. This simple “yes-no” paradigm has been used to study the stimulus properties of 

all sensory domains, from vision, hearing and touch to taste and smell. For example, in the 

domain of vision, this task has been used to measure detection and discrimination thresholds 

for luminance, contrast, and color as well as more complex percepts such as orientation and 

visual motion.   

 One of the limitations to the “yes-no” paradigm is that the observer must choose 

between reporting the presence or absence of an event. This can introduce a response bias, in 

which the observer might be more biased towards reporting a “yes” or “no” based on an 

internally defined response criterion (Swets, 1961; Macmillan and Creelman, 1996). 

Furthermore, this response criterion could vary over time for the same observer. Therefore the 

measurement of sensory sensitivity can be contaminated by centrally-generated influences on 

the decision process. One paradigm that was developed in order to reduce the bias in the 

measure of sensory sensitivity is the two-alternative forced-choice task (Linschoten et al., 

2001). 

I.1.1.Two-Alternative Forced-Choice Tasks 

The two-alternative forced-choice (2AFC) task asks a participant to make a decision between 

two alternative choices based on the sensory stimuli shown (Green and Swets, 1966; Swets, 

1986; Macmillan and Creelman, 1996). While the “yes-no” paradigm presents the observers 

with a choice between the presence or absence of an event, the 2AFC task presents the 

observers with a choice between two possible event alternatives. For example, consider a 

2AFC auditory stimulus discrimination task: Instead of the “yes-no” paradigm, where 
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observers are asked whether two tones have the same or different intensities, in the 2AFC 

paradigm, observers would be asked to indicate whether the first or second tone was more 

intense. As a further example, a vibrotactile stimulus detection task could involve a near-

threshold vibration that is presented randomly to an observer’s right or left index finger. The 

observer must then report which index finger received the vibration stimulus. Similarly, a 

vibrotactile frequency discrimination task could involve two vibrations that are presented in 

two sequential time intervals to the observer. The observer is then asked to compare the 

frequencies of the two vibrations and report whether the first or second stimulus had a higher 

frequency vibration. By adjusting the difference in the vibration frequencies presented to the 

observer, one could generate a similar psychophysical curve to the ones generated with the 

“yes-no” paradigm. Since the observer must always choose one of the alternatives, their 

performance on 2AFC tasks will range from chance probability (50%) to perfect 

discrimination (100%) and the discrimination threshold is set to 75% (Figure I.1b).   

With the development of neural recording techniques, psychophysics tasks were 

adopted by neurophysiologists to study the neural mechanisms of sensory processing. 

Mountcastle and colleagues pioneered this approach in the 1960s, and were among the first to 

relate neural activity recorded in non-human primates with human psychophysics. They 

showed that neural activity in the primary afferents of anesthetized monkeys varied with the 

properties of a vibrational stimulus, and that this neural activity had a measurable quantitative 

association with the psychophysical performance of human observers performing a detection 

task with the same vibrotactile stimuli (Werner and Mountcastle, 1965; Mountcastle et al., 

1967; Talbot et al., 1968). 
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Furthermore, the 2AFC paradigm proved to be useful in the study of the neural basis of 

decision making by allowing experimental neurophysiologists to study the activity of neurons 

during the deliberation process of a decision while it is being made (Gold and Shadlen, 2001; 

Cisek and Kalaska, 2002; Roitman and Shadlen, 2002; Cisek and Kalaska, 2005; Gold and 

Shadlen, 2007; Churchland et al., 2008). For example, Romo and colleagues used the 

vibrotactile frequency discrimination task to study the activity of neurons in the 

somatosensory cortex (primary, S1; secondary S2), the premotor cortex (ventral, VPC; dorsal 

DPC; and medial, MPC), the prefrontal cortex (PFC) and the primary motor cortex (M1). 

While neurons in S1 encoded the sensory properties of the two vibration stimuli as they were 

presented (Hernández et al., 2000; Salinas et al., 2000), the activity of neurons in S2, VPC, 

DPC, MPC, PFC and M1 were correlated with later stages in the decision process, such as the 

encoding of the first vibration into working memory, the comparison of the two vibrational 

stimuli, as well as the animal’s final decision (Romo et al., 1999; Hernández et al., 2002; 

Brody et al., 2003; Romo et al., 2004; Hernández et al., 2010). In summary, researchers have 

embraced the combination of psychophysical measurements and neurophysiological 

recordings in order to understand the neural basis of decision making.  

I.1.2. Random Dot Kinematograms 

One stimulus commonly used in conjunction with 2AFC tasks to study decision 

making is the random dot kinematogram (RDK). Random dot motion was used as early as the 

1970s to study the process of visual motion detection and discrimination (Braddick, 1974; 

Lappin and Bell, 1976; Ball and Sekuler, 1979). In a standard RDK (illustrated in Figure I.2), 

a group of dots are displaced randomly on a screen. In order to evoke a percept of coherent 

visual motion, a portion of these dots are chosen to move coherently in one direction 
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(Williams and Sekuler, 1984; Downing and Movshon, 1989; Britten et al., 1992). Used in a 

2AFC direction discrimination paradigm, observers are asked to view an RDK stimulus and 

decide between two possible directions of coherent motion among the background of random 

dot motion.  

 

Figure I.2: Random dot kinematogram 

 

RDK stimuli are ideal psychophysical stimuli to study visual motion: they minimize 

position cues, the individual stimulus elements (dots) usually do not have any easily 

recognizable features that would make them easy to identify and track individually, and they 

can be generated with easy control over other visual parameters, such as contrast, luminance, 

as well as the spatial-temporal frequency content of the stimulus (Newsome and Pare, 1988). 

Furthermore, RDK stimuli are ideal perceptual stimuli for decision-making studies for several 

other reasons. First, they tend to lead to longer reaction times than many other sensory stimuli. 

This led to the development of a reaction-time variant of the 2AFC paradigm in which 

observers could indicate their choice as soon as they made their perceptual decision. This 

facilitates the study of the time course of the decision process by using the time of onset of the 

motor action that signals the subject’s decision as a distal surrogate for the time of the end of 
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the decision process (Roitman and Shadlen, 2002; Gold and Shadlen, 2007). Second, RDKs 

can easily provide different amounts of visual motion signal (“evidence”) by modifying the 

amount of coherently moving dots in the stimuli. Finally, the RDK stimulus paradigm offers a 

number of other ways in which to probe the decision-making process. For instance, one can 

transiently increase or decrease the amount of sensory evidence for different choices at 

different times in the trial (Huk and Shadlen, 2005; Thura and Cisek, 2014). The coherent-

motion evidence signal and random-noise motions can be distributed onto different dots in 

different ways, such as partitioning them onto two separate sub-groups of dots for the entire 

duration of a stimulus, or onto continually-changing groups of dots according to different 

schedules (Williams and Sekuler, 1984; Snowden and Braddick, 1989; Pilly and Seitz, 2009; 

Schütz et al., 2010).   

Similar to the aforementioned studies combining the vibrotactile discrimination task 

with neural recordings in the somatosensory cortex to study the neural basis of vibrotactile 

frequency discrimination, RDKs were combined with neurophysiological studies to show that 

the middle temporal (MT/V5) area of monkeys contributed to the perception of visual motion.  

MT is an extrastriate visual cortical area in which the majority of neurons are preferentially 

activated by moving visual stimuli (Dubner and Zeki, 1971; Zeki, 1974; Albright, 1984; 

Newsome et al., 1986; Mikami et al., 1986a, 1986b).  The ability to detect coherent motion in 

an RDK stimulus was impaired in monkeys after lesions to the MT area (Newsome and Pare, 

1988), as well as with a human patient with damage in the corresponding extrastriate visual 

cortex (Baker et al., 1991). A study by Britten et al. (1993) showed that motion sensitive 

neurons in area MT of monkeys would discharge at a rate proportional to the amount of 

coherent motion in their preferred direction of motion. The neurometric sensitivity profile of 
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these neurons as a function of stimulus motion coherence closely resembled the psychometric 

curves of the motion sensitivity of the animal observers performing a 2AFC RDK motion 

discrimination task (Britten et al., 1992), further solidifying the evidence that MT neurons 

contributed to the perception of visual motion.  

RDK stimuli were subsequently used in further 2AFC action-choice tasks to study the 

relationship between neural activity in area MT and the process of decision making. When 

analyzed on a trial-to-trial basis, the variability of the firing rates of MT neurons was weakly 

but significantly correlated to the monkey’s choices (Britten et al., 1996; Cook and Maunsell, 

2002). Furthermore, Salzman et al. (1992) demonstrated that microstimulation in area MT 

could bias the observing monkey's decision choice towards the preferred direction of motion 

of the neurons in the locally stimulated area. In addition, Ditterich et al. (2003) used a 

reaction-time version of the RDK task to demonstrate that microstimulation would speed up 

the monkey's reaction times towards the direction of preferred motion of the neurons in the 

stimulated area, and slow down reaction times in the opposite direction. These studies 

demonstrated that the activity of MT neurons was causally related to the perceptual decision-

making process in the task.  

To report their perceptual decisions, the monkeys typically made saccadic eye 

movements in the direction of the perceived RDK motion. However, MT cells are not related 

to saccadic eye movements. To study how the monkeys linked the perceptual decision process 

to the planning and execution of the reporting saccadic eye movements, researchers then 

focused on saccade-related areas, such as the lateral intraparietal (LIP) in monkeys, where 

many cells discharge as a function of saccade direction and target spatial location (Robinson et 

al., 1978; Bushnell et al., 1981; Gnadt and Andersen, 1988; Platt and Glimcher, 1997, 1998). 
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A series of studies by Shadlen and colleagues subsequently established area LIP as an integral 

part of the decision making process.  In an instructed-delay version of the RDK-stimulus task, 

Shadlen & Newsome (2001) showed that the time course of changes in the activity of saccade-

related neurons in LIP varied with the coherence of the RDK stimuli. Furthermore, unlike MT 

neurons, the changes in activity of the LIP neurons were related to the monkeys’ perceptual 

decision, whether correct or wrong, that is, how the monkeys interpreted the stimuli rather 

than their actual physical properties (Shadlen and Newsome, 2001). Using a subsequent 

reaction-time variant of the RDK paradigm, Roitman & Shadlen (2002) showed that LIP 

neuronal activity increased gradually over the course of the trial between the onset of the RDK 

stimuli and the onset of the saccade, at a rate that was proportional to the amount of coherent 

motion in the neuron's preferred direction. Furthermore, when aligning the neuronal activity to 

the onset of the saccade, i.e., to the end of the decision process, the firing rate always reached 

a common level of activity regardless of the motion coherence of the stimuli and rate of 

accumulation in each trial, suggesting that the decision process was terminated and a saccade 

initiated once a critical firing rate was reached in LIP.  

In another study, Huk & Shadlen (2005) presented brief motion pulses in the RDK 

stimuli and showed that these pulses increased the firing rate of neurons when the pulse was 

presented in the neuron’s preferred direction, and decreased activity when the pulse was 

presented in the opposite direction. Furthermore, the changes in neural activity caused by the 

motion pulses long outlasted the stimulus changes themselves, consistent with a process of 

accumulation and retention of the sensory evidence during the trial. A subsequent study by 

Hanks et al. (2006) showed that microstimulation in LIP during a RDK task led to similar 

choice biases and RT shifts as the microstimulation studies in area MT described earlier, 
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further supporting the existence of an integration process in LIP and establishing a causal role 

between activity in LIP and the choice behaviour of the monkeys. A study by Kiani et al. 

(2008) showed that when the duration of the RDK stimuli was controlled by the experimenter 

and variable from trial to trial, the performance of the subjects improved as a function of both 

RDK stimulus coherence and the duration of observation of the stimuli, also consistent with an 

evidence integration process. Somewhat surprisingly, however, the observers seemed to adopt 

a strategy of accumulating information towards a critical decision value rapidly after the onset 

of the RDK stimuli and terminating the decision process before the end of the stimulus 

presentation and ignoring any subsequent sensory input, thereby not profiting from the extra 

evidence available at the end of longer RDK stimuli. Finally a study by Churchland et al. 

(2008) extending the RDK task from two to four alternative choices found that the same 

principles of evidence accumulation towards a threshold could apply to more a complex four-

choice task. They also found a gradual non-directional increase in activity as a function of 

time, even in trials in which there was no coherent motion signal. This non-directional 

progressive increase in activity is consistent with an “urgency” signal that is thought to drive 

the DV closer to the decision bound as time progresses in the trial, causing a shortening of the 

decision process especially in the situation of weak sensory evidence (Ditterich, 2006; 

Churchland et al., 2008).  

Taken as a whole, these studies presented a strong body of evidence that LIP activity 

could be related to the accumulation of motion evidence towards a decision, and that the 

decision process terminated once LIP neuronal activity reached a critical firing rate, triggering 

the report saccade. 
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Other studies have used the RDK stimuli to show decision-related activity in the 

superior colliculus (SC) (Horwitz and Newsome, 1999, 2001), and the dorso-lateral prefrontal 

cortex (dlPFC) (Kim and Shadlen, 1999). In summary, RDK stimuli have been used with the 

2AFC paradigm to study the neural correlates of decision making in a number of eye 

movement-related structures, and have yielded extensive evidence consistent with a decision-

making process that involves the temporal accumulation of sensory evidence to a decision 

threshold.  

I.2. Models of Decision Making 

Experimental psychologists have developed mathematical models to understand how the 

decision making process works in a 2AFC task. More recently, neurophysiologists have also 

started using variants of the same models to explain how neuronal activity may be involved in 

the decision process. One of the main frameworks for modeling the computational basis of 

decision-making involves a diffusion-like process (Ratcliff, 1978; Smith and Ratcliff, 2004). 

These models have several similarities: they share common assumptions, they all aim to model 

key features, and they all address similar questions.  

There are three fundamental assumptions underlying these diffusion models, which 

have been formalized by Bogacz et al. (2006). First, evidence supporting the two alternative 

choices is integrated over time. Second, this integration process is subject to random 

fluctuations or “noise”. Third, a decision is reached once sufficient evidence is integrated to 

choose one option over the other. The first assumption can be further extended into the 

neuron/anti-neuron hypothesis, whereby the momentary sensory evidence is encoded by 

separate “neuron” and “anti-neuron” input populations, with the two populations encoding the 
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sensory inputs (evidence) for the opposite choices (Gold and Shadlen, 2001). The activity 

from these pools is then sent to a decision-making mechanism that integrates the encoded 

evidence for each choice over time either independently, or as a difference in evidence for the 

two choices, depending on the type of model used.  

According to Smith and Ratcliff (2004), there are two features that must be upheld in 

order to have a plausible model of the 2AFC task. First, the model must accurately represent 

an observer's reaction times and success rates on varying difficulties of trials. Second, the 

model must also predict differences in these behavioural measurements when correct or 

incorrect choices are made. With the advent of neurophysiological research into decision 

making, a third feature has also emerged - the model should have a plausible neural 

representation in the brain (Ditterich, 2006).  

Finally, these models address several key questions about the decision making process. 

One question is whether the evidence for the alternative choices is integrated separately by 

different accumulators, or whether evidence is integrated as a difference between the evidence 

for the two alternative choices. Another question focuses on the variability of the integration 

process, the sources of this variability and its ultimate influence on the decision process.  

In the following sections I will review four classes of mathematical models of decision 

making and how they fit with the 2AFC paradigm.  

I.2.1. Decision models with noiseless evidence accumulation 

The LATER (linear accumulation to threshold with ergodic rate) model, developed by Roger 

Carpenter, was among the first models to describe the reaction time distributions during 

simple stimulus detection and movement initiation tasks (Carpenter, 1981; Carpenter and 

Williams, 1995). In this model, there is no variability in the momentary accumulation of 
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evidence during a given trial. Instead evidence is accumulated at a constant rate in a ramp-like 

fashion towards a predefined threshold at which the movement is then initiated. Between trials 

of the same stimulus strength, however, the rate of accumulation is subject to random 

variability; this is the only source of noise in the LATER model. As a result, during repeated 

trials with the same stimulus, the slope and resulting duration of evidence accumulation will 

vary between trials with a certain mean and standard deviation. The value of the mean and 

standard deviation changes when the strength of the sensory signals changes. To accommodate 

differences in response priorities such as speed versus precision, the LATER model assumes 

that subjects can adjust the height of the decision threshold.  Lowering the decision threshold 

would allow for faster but less accurate responses, while raising the decision threshold would 

result in slower but more accurate decisions (Reddi and Carpenter, 2000). In addition, the 

LATER model assumes that subjects can change the start point of the evidence accumulation 

process in order to adjust their decision process on the basis of prior knowledge, such as the 

probability of different stimuli or response choices, or the differential reward value of different 

responses (Carpenter and Williams, 1995).  The LATER model can predict distributions of 

RTs that fit well with reaction-time distributions during simple movement initiation tasks in a 

wide range of task conditions (Gold and Shadlen, 2007). However, in the context of the 2AFC 

task, the LATER model has limitations. First - each LATER module only accumulates 

evidence for one alternative and does not address how evidence between two alternatives 

would be compared. Second, the single-module version of the LATER model usually does not 

successfully predict choice probabilities and errors in even simple single-response tasks. In 

order to address these limitations, two or more LATER units can be linked together into 

increasingly complex circuits to race against each other towards two alternate choices to 
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predict response times and success/error rates in a variety of different tasks (Asrress and 

Carpenter, 2001; Leach and Carpenter, 2001; Reddi et al., 2003; Sinha et al., 2006; Story and 

Carpenter, 2009; Noorani and Carpenter, 2011; Noorani et al., 2011).  

Another model with noiseless within-trial evidence accumulation is the Linear Ballistic 

Accumulator (LBA) model (Brown and Heathcote, 2005, 2008). Similar to the Carpenter 

models that use two LATER units, the LBA model accumulates evidence for two competing 

choices separately in two noiseless “ballistic” accumulators, and the rate of accumulation of 

evidence varies randomly between trials of similar evidence strength. In addition to the 

variable rate of accumulation, the LBA model allows for a second source of random inter-trial 

variability - a variable starting point for the accumulation process from trial to trial. This extra 

source of variability allows the LBA model to account for reaction times and success/error 

rates over a range of different task conditions without having to invoke different combinations 

of computational modules in different tasks, as is the case with the LATER model. 

Both the LATER and LBA models assume that the main source of variability in the 

decision process arises between trials (inter-trial variability). However another family of 

models assumes that the main source of variability occurs within each trial (intra-trial 

variability) in the stochastic accumulation of evidence, which can be described as a random 

walk drift-diffusion process. The next three classes of models all use noisy instantaneous 

evidence accumulation in their design.  

I.2.2. Drift Diffusion Models 

An early precursor to the drift diffusion model was independently developed during WWII by 

Abraham Wald to test the quality of batches of munitions being manufactured (Wald, 1945, 

1973), as well as by Alan Turing to help his code-breaking work (Good, 1979; Donovan, 
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2014). Called the sequential probability ratio test, this procedure was developed as a way to 

repeatedly test a hypothesis against its alternative and reach a statistically reliable decision as 

quickly as possible when presented with sequential samples of ambiguous evidence (Bogacz et 

al., 2006; Shadlen and Kiani, 2013). Several years later, the drift-diffusion model combined 

the idea of accumulation of repeated sequential samples of ambiguous evidence with a 

sequential test procedure based on the mathematics of drift-diffusion (random walk) processes 

to characterize the reaction time latencies and choice probabilities in a 2AFC task (Stone, 

1960; Laming, 1968; Ratcliff, 1978). In the original formulation of the drift diffusion model 

(illustrated in Figure I.3a and I.4a), the evidence for the two choices in the 2AFC task is 

compared, and the difference in evidence supporting the two choices is accumulated by a 

single decision variable (DV) over time. The model has an upper and lower decision bound, 

with the upper bound corresponding to the evidence required to choose one choice, and the 

lower bound corresponding to the second choice. The DV will integrate the difference in 

evidence over time until it reaches one of these bounds. At that point, the decision process is 

terminated and the corresponding choice is selected (Ratcliff and McKoon, 2008). According 

to drift-diffusion models, the mean rate of evidence accumulation across many trials is 

determined by the quality and quantity of sensory evidence, like the LATER and LBA models. 

However, unlike the LATER and LBA models, inter-trial variability in response timing and 

choices for a constant stimulus is due to moment-to-moment stochastic noise in the 

accumulation process. 
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Figure I.3: Single and dual drift-diffusion models 

  

choose H1

choose H1

choose H2

A
cc

um
ul

at
ed

 e
vi

de
nc

e
 f

or
 h

1 
ov

er
 h

2
A

cc
um

ul
at

ed
 

ev
id

en
ce

 f
or

 h
1

A
cc

um
ul

at
ed

 
ev

id
en

ce
 f

or
 h

2

choose H2

a)

b)



 

18 

  

a) Single drift-diffusion

c) Leaky, competing accumulator

b) Dual drift-diffusion

d) Feed-forward inhibition

Input units

Decision units

Input units

Decision units

 
 

Figure I.4: Network architecture of various decision models 
 
 

The original formulations of the drift-diffusion models assumed perfect integration, 

that is, the value of the DV at any given moment accurately reflected the entire stream of 

sensory evidence accumulated up to that time. A modification of this model was proposed by 

Busemeyer and Townsend (1993), who introduced a “leakage” factor to the accumulation of 

evidence. This leak works like a high-pass filter, so that at each moment in time, the leaky 

accumulator “forgets” a certain amount of the evidence that had been accumulated up to that 

time while adding the new incoming evidence to the DV. This converted the process into an 

Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930; Smith and Ratcliff, 2004) in 

which earlier evidence is weighed less strongly than the most recent evidence.  
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Both the perfect and leaky integration versions of this model have been successful at 

accurately modelling behavioural data in a wide range of variants of the 2AFC task (Smith and 

Ratcliff, 2004; Ratcliff and McKoon, 2008). However, one of the criticisms with the original 

drift diffusion model with a single DV and two decision thresholds is that it does not fit very 

well with the physiological properties of neurons in the brain. While neurons can both increase 

and decrease their activity, they cannot have a negative firing rate and cannot realistically 

represent a decision variable that can arrive at two different decisions by crossing over either 

an upper or lower threshold (Ratcliff et al., 2007).  

I.2.3. Dual Drift Diffusion Models 

While the original drift diffusion model integrates the difference in evidence for both choices, 

dual drift diffusion models use two diffusion processes to accumulate evidence for each choice 

independently (LaBerge, 1962; Vickers, 1970; Bogacz et al., 2006; Ratcliff et al., 2007). The 

decision process ends once one of the integration processes reaches their respective thresholds. 

An illustration of this model is shown in Figure I.3b and I.4b. Like the LATER and LBA 

models, each drift diffusion module accumulates evidence only for its preferred choice, but the 

dynamics of the decision process is determined by the stochastic noise of the drift-diffusion 

process. 

The idea of a race between two drift diffusion accumulators was more physiologically 

plausible than the single-accumulator drift diffusion model. The two accumulators could be 

represented in the brain as two populations of neurons with opposite choice preferences 

competing by increasing their activity towards a critical firing rate (Ditterich, 2006; Ratcliff et 

al., 2007). Furthermore, while the single-accumulator drift diffusion model was limited to two 



 

20 

  

choices by design, the dual drift diffusion model could be extended to incorporate multiple 

choices as additional separate accumulators.  

However, there were still limitations to the dual drift diffusion model. Psychophysical 

evidence suggested that subjects’ choice behaviour was being driven by the difference in 

evidence for different response choices (Gold and Shadlen, 2001; Mazurek et al., 2003; Niwa 

and Ditterich, 2008). The accumulation of the difference in evidence is particularly 

advantageous because it is approximately equivalent to the calculation of the log likelihood 

ratio for different alternative hypotheses, which is a robust criterion to make decisions based 

on noisy or uncertain evidence (Carpenter and Williams, 1995; Gold and Shadlen, 2001, 

2007). Moreover, LIP neurons were shown to be positively affected by evidence in their 

preferred direction, and negatively affected by the opposite direction (Roitman and Shadlen, 

2002; Mazurek et al., 2003; Bollimunta and Ditterich, 2012). This suggested that a difference 

comparison was being made, which was not being used in the dual drift diffusion models. This 

problem was addressed with dual diffusion models with mutual inhibition.  

I.2.4. Dual Diffusion Models with Mutual Inhibition 

These models resemble the dual drift diffusion model in which two diffusion processes race 

against each other, but the two processes each accumulate a decision variable that represents 

the net evidence for or against their preferred choice. The net evidence is obtained through a 

process of mutual inhibition between the two integrators. This process of mutual inhibition can 

be modeled in different ways (Ditterich, 2006). Usher and McClelland (2001) proposed a 

“leaky, competing accumulator model”, in which two sensory input units feed evidence 

supporting each of the alternate choices separately into two accumulating decision units. 

These two decision units will then mutually inhibit each other by lateral feedback of their 
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output signals onto the accumulator of the other decision unit. An illustration of this model is 

shown in Figure I.4c. Alternatively, Mazurek et al. (2003) proposed a feed-forward inhibition 

model. Instead of having the two accumulating decision units mutually inhibit each other, the 

two sensory input units coding for evidence for the two choices would each send two 

projections, one excitatory to the decision unit whose preferred choice corresponds to their 

preferred sensory input, and one inhibitory to the other decision unit that prefers the 

alternative choice (Ditterich et al., 2003; Mazurek et al., 2003; Ditterich, 2006). In this 

manner, each decision unit will receive an excitatory input from the sensory input unit 

corresponding to its preferred choice, and an inhibitory input from the sensory input unit 

corresponding to the opposite choice. An illustration of this model is shown in Figure I.4d. 

The convergence of the two oppositely-signed sensory inputs onto each accumulator results in 

both accumulators receiving a combined input equal to the net difference in sensory evidence 

favouring the two choices.  

 Since dual diffusion models with mutual inhibition integrate the difference in evidence 

for the two choices, these models are largely indistinguishable from a single-accumulator drift 

diffusion model in their ability to predict and fit behavioural data (Smith and Ratcliff, 2004; 

Bogacz et al., 2006; Ditterich, 2006). However, as mentioned by Ratcliff et al. (2007), the race 

process incorporated in mutual inhibition models provide a more biologically plausible 

framework that more accurately resembles decision related neural activity such as the ramping 

activity of LIP neurons reported by Roitman and Shadlen (2002).  

In summary, many computational models have been proposed to model the process of 

decision-making in a 2AFC task. Most models satisfy the goals of accurately predicting the 

psychophysical data and the neural data (Smith and Ratcliff, 2004) and they all have the same 
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common assumptions: These models assume that evidence is accumulated towards a 

threshold, this accumulation process is noisy, and that a decision is made once enough 

evidence is accumulated for one choice over the other (Bogacz et al., 2006).  

I.3 Objectives  

I.3.1 Effect of directly competing motion 

The first objective of my research project was to determine the effect of directly competing 

motion on the decision process in a 2AFC RDK task. While RDKs have been one of the most 

common stimuli used in perceptual decision-making studies, in most cases these stimuli only 

used coherent motion in one direction in a given trial. Meanwhile, 2AFC decision-making 

models assume that evidence is integrated for both possible choices. In these conventional 

RDK stimuli, the only evidence for the choice in the non-coherent direction would be 

stochastic noise due to the random dot motions that happen to be in the direction opposite to 

the coherent motion signal.  

Furthermore, for decision-making models that assume that the decision variable 

accumulates the net difference in the activity of the neuron and anti-neuron input populations, 

the decision variable should be insensitive to factors that might affect both input populations 

equally (Gold and Shadlen, 2001). Extensive psychophysical and neurophysiological evidence 

is consistent with a decision variable that accumulates the net sensory evidence provided by 

the neuron/anti-neuron input populations (Britten et al., 1993; Roitman and Shadlen, 2002; 

Ratcliff et al., 2007; Bosking and Maunsell, 2011; Bollimunta and Ditterich, 2012; Bollimunta 

et al., 2012). However, this fundamental assumption of the drift-diffusion model cannot be 

fully validated by the standard RDK stimuli used in decision-making studies, because they 
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only use one direction of coherent motion against a background of random visual motion. As a 

result, the difference in evidence for the two alternative choices is essentially equivalent to the 

total coherent motion provided in only one direction in the standard RDK stimuli. 

Furthermore, Liston and Stone (2013) recently critiqued the conventional RDK stimuli 

used in decision-making studies as not being a “true” 2AFC decision because these RDK do 

not show evidence for both of the alternative choices in each trial. This assertion was based on 

the original definition of the 2AFC task, in which the term “alternative” was meant to indicate 

the perceptual comparison of two alternative stimuli or signals, and not just the a priori 

existence of two alternative choices (Green and Swets, 1966; Macmillan and Creelman, 1996). 

If only one signal is presented, the task can still be performed as a yes-no paradigm task. For 

example, an observer of a single coherent motion RDK could use a strategy in which they 

observe each stimulus and attempt to discern whether or not it contains evidence for only one 

of the two choices, such as rightward motion. If they perceive motion in that direction (“yes”), 

they choose the rightward target, but if they do not perceive rightward motion, they reject that 

choice (“no”) and choose the leftward target by default. This introduces the same potential 

choice biases due to a priori response criteria that were one of the limitations of “yes-no” 

paradigms. According to Liston and Stone (2013), a “true” 2AFC RDK motion discrimination 

task would require an RDK stimulus in which two signals of evidence compete against each 

other in the same trial.  

Opposing motion has been used in RDK stimuli to study the psychophysics and 

neurophysiology of visual motion perception, especially the perception of so-called 

“transparent motion”, that is, simultaneous motion in different directions in the same spatial 

location (Snowden et al., 1991; Snowden et al., 1992; Qian and Andersen, 1994, 1995). 
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However, directly opposing motion RDK stimuli have not yet been used to study its effect on 

the process of perceptual decisions about the direction of global motion (see next section).  

This knowledge gap leads to the following questions: What happens to the behavioural 

psychophysics if we present stimuli with mutually-competing opposing motion? Is the process 

really dependent on the net difference in evidence, or could the mutually contradictory 

evidence actually interfere in the decision-making process? In order to explore these questions 

we generated modified RDK stimuli which contained two simultaneous opposing coherent 

motions. Different amounts of coherent motion in both directions were combined to produce 

RDK stimuli that had the same relative net coherent motion in one of the two directions, but 

different amounts of simultaneous coherent motions in both opposing directions. We 

hypothesized that with competing motion, the decision process will still be mainly driven by 

the net amount of coherent evidence towards the correct choice.  

I.3.2 Integration of the global motion signal 

Standard RDK stimuli used in decision-making research provide coherent motion in 

only one of two opposite directions. In addition, all of the coherent dots move in parallel, by 

definition. As a result, the coherent motion signal is carried explicitly by the parallel motions 

of a subset of moving dots. What would happen if the coherent motion signal was instead 

implicitly embedded in the motions of dots moving in many different directions to create a net 

bias in the distribution of dot motions? Would observers be able to integrate the distributed 

motion signals in order to get a single global percept of net motion direction? This has been 

tested in a series on studies of the ability of human subjects to perceive the net global motion 

signal from a wide range of local motion signals (e.g. Williams and Sekuler, 1984; 

Watamaniuk et al., 1989; Watamaniuk and Sekuler, 1992; Smith et al., 1994; Pilly and Seitz, 



 

25 

  

2009; Schütz et al., 2010). These studies used RDK stimuli in which moving dots were 

displaced in a range of directions that was selected from a uniform or Gaussian distribution of 

directions centered on one true direction of global motion bias. Human observers were able to 

integrate the local motion signals spread in many directions to perceive the net direction of 

global motion.  

However, again like conventional RDK stimuli with coherent motion in only one 

direction, the global motion stimuli did not contain an opposing component of coherent dots 

moving in the anti-direction. Indeed, if the width of the distribution of motion signals got too 

broad and started to include motions in nearly opposite directions, the ability of subjects to 

perceive a global motion direction decreased. At the limit, when the motions were selected 

uniformly from the full 360 degree continuum, subjects unsurprisingly failed to perceive any 

net global motion (Williams and Sekuler, 1984). Therefore the second objective of my work 

was to explore the effect of presenting different amounts of two opposing coherent motion 

signals whose presence was implicitly embedded across a broad range of dot motion directions 

in the RDK stimuli. 

A more recent study by Niwa and Ditterich (2008) used varying amounts of coherent 

motion in three equidistant directional axes separated by 120 degrees. Observers’ reaction 

times and target choices were driven by the net direction of motion evidence pooled across the 

three streams of coherent motion presented in each trial. This indicated that the decision was 

based on the total distribution of responses across populations of input neurons with a broad 

range of motion direction preferences. Moreover, the choice behaviour of the subjects could 

be simulated successfully by a three-accumulator drift-diffusion model driven by the net 

output of three neuron/anti-neuron populations. In this model, each accumulator integrated the 
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difference between the motion signal generated by its own sensory input “neurons” that 

preferred the same direction of motion and the average signal of the two other sensory input 

sources preferring the other two directions of motion (Niwa and Ditterich, 2008).  Neurons in 

the area LIP of monkeys performing the same task appeared to sum that net motion signal 

(Bollimunta and Ditterich, 2012; Bollimunta et al., 2012). However, as with other global 

motion studies using RDK stimuli, the stimuli in the Niwa and Ditterich (2008) study did not 

explicitly contain competing opposing motions in each of the three streams of coherent 

motion.  

To explore how the psychophysics of the 2AFC task was affected by presenting 

competing coherent motion spread across many directions, we used two different algorithms 

to generate RDK stimuli. In one of the stimuli, called the “Narrow Coherence” (NC) stimuli, 

the coherent motion was confined to the left and right directions, so that the two competing 

coherent motions are explicitly displayed in the dot motions. In contrast, in the “Brownian 

Drift” (BD) stimulus, this coherent motion signal was distributed implicitly across many 

directions by adding a coherent-motion vector component to the otherwise random Brownian 

motion vector of the RDK dots. Our hypothesis was that if the decision process integrates 

motion signals from a wide range of directions, then observers’ psychophysical reaction times 

and success rates should be identical for both NC and BD stimuli in a 2AFC RDK coherent-

motion discrimination task.  
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Abstract 

Random-dot kinematograms (RDKs) are often used in two-alternative forced-choice (2AFC) 

tasks to study how the brain decides among two perceptual or motor choices based on noisy 

evidence. Some current models assume that two pools of sensory neurons code the motion 

evidence in two opposite directions; the difference of these inputs is then accumulated in a 

decision variable. However, conventional RDKs contain only one direction of coherent motion 

against a background of random “noise” motion. Here, we explored the psychophysics of RDKs 

with mutually contradictory evidence. Different amounts of coherent motion were presented 

simultaneously in both directions to produce RDKs that had the same amount of net coherent 

motion, but different combinations of coherent motions in opposing directions. The two 

competing coherent-motion components were either confined to the two exactly opposite 

directions against a background of random motion (“narrow coherence” stimuli, NC), or spread 

across many directions of motion by adding a coherent-motion vector to the otherwise random 

motion of some of the dots (“Brownian drift” stimuli, BD). The choice behaviour of 12 human 

subjects was primarily driven by the net coherence of motion across a range of combinations of 

opposing coherent motions for both NC and BD stimuli. Nevertheless, reaction times (RTs) 

decreased for low net-coherence stimuli as the total amount of coherent motion and motion 

variability increased. This reduction in RTs can be reproduced with a simple two-accumulator 

drift-diffusion model with feed-forward inhibition by increasing the stochastic noise variability 

of the accumulation process.   
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Introduction 

The brain continuously accumulates sensory information about the external world and uses it to 

make decisions about actions with its surrounding environment (Gold and Shadlen, 2007; Cisek 

and Kalaska, 2010). Random-dot kinematogram (RDK) visual-motion stimuli have been widely 

used in two-alternative forced-choice (2AFC) tasks to study how the brain decides among two 

competing sensory or motor choices (Newsome et al., 1989; Kim and Shadlen, 1999; Roitman 

and Shadlen, 2002; Ratcliff et al., 2003a; Palmer et al., 2005; Ratcliff et al., 2007; Niwa and 

Ditterich, 2008; Resulaj et al., 2009; Kiani et al., 2013).  

One computational framework for modeling decision making proposes a decision 

variable which accumulates noisy evidence across time and can be simulated mathematically by 

a bounded drift-diffusion process (Ratcliff, 1978; Gold and Shadlen, 2001; Mazurek et al., 2003; 

Smith and Ratcliff, 2004; Bogacz et al., 2006; Gold and Shadlen, 2007; Eckhoff et al., 2008; 

Ditterich, 2010). In 2AFC tasks, the models assume that a pair of neuron and “anti-neuron” 

populations with opposite motion direction preferences separately encode the sensory evidence 

supporting each choice (Gold and Shadlen, 2001; Mazurek et al., 2003; Gold and Shadlen, 

2007). The decision variable then integrates the moment-to-moment difference in activity 

between these two sensory inputs.  

 While extensive psychophysical and neurophysiological evidence is consistent with a 

decision variable that accumulates the difference in sensory evidence provided by the 

neuron/anti-neuron inputs (Roitman and Shadlen, 2002; Ratcliff et al., 2007; Bosking and 

Maunsell, 2011; Bollimunta and Ditterich, 2012), conventional RDKs contain only one direction 

of coherent motion against a background of random motion. As a result, the coherent motion 
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signal is encoded primarily by the neural input population that prefers that motion direction, 

while any motion signals near the preferred direction of the “anti-neuron” population would 

result from the stochastic directional variability in the random motion background (Britten et al., 

1993; Bosking and Maunsell, 2011). The net motion evidence is essentially equivalent to that of 

the sensory signal encoded by the one input population that is activated by the coherent motion 

component of the RDK stimulus, and so does not provide a strong test of the assumption of an 

accumulation of the net difference in motion evidence (Liston and Stone, 2013). 

 In this study, we explored the psychophysics of RDK stimuli with mutually contradictory 

evidence. Different amounts of coherent-motion signals in both directions were presented 

simultaneously to produce RDKs that had the same amount of net coherent-motion signal in one 

direction, but different levels of balanced mutually-contradictory “base” coherent motions in 

both opposing directions. The two competing motion components were either confined to the 

two exactly opposite directions against a background of residual random motion (“narrow 

coherence” stimuli , NC), or spread across all possible directions of motion by adding a coherent 

motion component bias to the otherwise random Brownian motion of the RDK dots (“Brownian 

drift” stimuli, BD).  

Our results show that the choice behaviour of 12 human subjects was primarily driven by 

the net coherence of motion across a broad range of different levels of opposing coherent 

motions. Behaviour was very similar for both NC and BD stimuli, which suggests that the 

decision-making process extracts motion evidence across a wide range of motion directions, 

whether the motion signal is confined to two opposite directions or broadly distributed across a 

wide range of dot motion directions (Jazayeri and Movshon, 2006; Bosking and Maunsell, 2011). 

Furthermore, the total amount of signal motion had a secondary impact on choice behaviour; at 
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low net-coherence levels, reaction times (RTs) decreased as total motion signal and associated 

motion variability increased. The choice behaviour of the subjects across different levels of net 

and total signal strength could be replicated by a simple two-accumulator drift-diffusion process 

with mutual feed-forward inhibition between the output of the neuron and anti-neuron channels 

at the input stage of the accumulators, by increasing the level of instantaneous stochastic noise as 

a function of base coherence level.  

 

Methods 

Human Subjects 

8 male and 4 female subjects with ages ranging from 20-36 years old were recruited for the 

present study. Subjects had normal or corrected to normal vision and were naïve to the 

experimental objectives. All experiments conformed to the rules and guidelines established by 

the Comité d’éthique de la recherche en santé de l’Université de Montréal. Subjects read and 

signed an informed consent form before participating in the study.  

 

Experimental Setup 

Experiments were conducted in a darkened room with a 19 inch flat-screen TFT LCD monitor 

(Samsung SyncMaster 191T Plus, 60 Hz). Subjects sat at a viewing distance 60 cm from the 

monitor and subjects recorded their response choices by moving a computer mouse. The 

experimental stimuli were generated on a PC computer running Windows 7, and Matlab 

(R2008b; The Mathworks, Natick MA) with the Psychophysics Toolbox Extension (Brainard, 

1997; Pelli, 1997). Data were collected and stored with custom-written Matlab routines.  
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Experimental Task 

Subjects completed a series of trials in which they had to determine the direction of overall  

motion in a random-dot kinematogram (RDK) stimulus that usually contained two variable-

strength opposing motion “signals” to the right or left (“signal-R” and “signal-L”, respectively) 

against a variable-strength background of random-motion “noise”, (Figure 1A). Each trial had 

four epochs. The first epoch was the center-fixation epoch, which began when a small central 

white circle (diam: 0.5 deg visual angle) appeared. The subject had to move the mouse to 

position an on-screen cursor in the central circle and hold it there for 700ms. Two large white 

circular peripheral targets then appeared to the left and right of the central cue (diameter: 4 deg, 

distance from center: 12.5 degrees) for 700ms (target-display epoch). Next, the RDK epoch 

began when the central circle disappeared and a dynamic RDK motion stimulus appeared in the 

center of the screen, subtending 5 degrees of visual angle. Subjects were told to look at the 

stimulus and to determine the direction of the motion stimulus. The subjects’ head was not fixed 

and no explicit eye fixation controls were used. Once the subjects made a decision about the net 

direction of visual motion, they reported the decision by moving the mouse to displace the on-

screen cursor from the center circle to the peripheral target located in the same direction as their 

estimate of the signal motion. Once the cursor exited the center circle, the RDK stimulus froze 

on the last presented frame and the RDK epoch ended. The choice Reaction Time (RT) was 

measured as the duration of the RDK epoch from the onset of the RDK stimulus to the exit of the 

cursor from the small central window. The fourth epoch was the movement-time (MVT) epoch 

from the exit of the central start circle to the entrance into the chosen target circle. At the end of 

the trial, the subjects where shown the correct target by changing the correct target’s color from 
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white to green. Simultaneously, the subjects received an auditory cue that confirmed whether 

they had made the correct choice (one short beep, 400Hz) or an incorrect choice (two short 

beeps, 240Hz and 200Hz).  

Subjects were given the general instruction to “move as quickly and as accurately as 

possible to the target in the direction of perceived motion”, but were not given any explicit 

instructions to bias their behaviour to either speed or accuracy of choices. Furthermore, no hard 

constraint was made on the duration of the subjects’ reaction times (RT), beyond a trial time-out 

if the subjects did not respond in less than 10 seconds. As a result, each subject established their 

own preferred speed/accuracy trade-off criterion. 

 

Visual Stimuli – Random dot kinematogram (RDK) algorithms 

The RDK-generating algorithms used in this experiment created three interleaved sequences of 

image frames that presented sets of dots that carried the coherent-motion signal as well as 

random-noise dots. Similar to some previous RDK algorithms (Shadlen and Newsome, 2001; 

Roitman and Shadlen, 2002; Niwa and Ditterich, 2008; Pilly and Seitz, 2009; Bollimunta and 

Ditterich, 2012), three sets of dot sequences were interleaved so that the dots from one sequence 

were presented every three frames. As such, the first group of dots were plotted on frames [1, 4, 

7 …], while the second group of dots were plotted on frames [2, 4, 8 …], and the third group of 

dots were plotted on frames [3, 4, 9 …] and so on. With a frame rate of 60 Hz, successive frames 

from one random-dot sequence were plotted every 50 ms. However, unlike those previous RDK 

algorithms in which coherent motion occurred in only one direction against a background of 

random motion, most of the stimuli in the present study were designed to present motion signals 
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of different strengths in two opposite directions simultaneously, against a background of random 

dot motions. The procedure was as follows. 

The algorithm first initialized the dot pattern for each of the 3 dot sequences by randomly 

distributing the dots in a 5x5 degree square area. The dots were subsequently masked by a 

circular aperture of 5 degrees in diameter. Each dot filled a square with an edge size of two 

pixels (0.055 degrees). The dot density was 33.4 dots/(deg2 · s). This comprised 3 groups of 14 

dots moving in the three separate interleaved frames, for a total of 42 dots in the full RDK 

sequence. However, because of the circular mask, somewhat fewer than 42 dots were usually 

visible at any one time. To plot the movement of the dots in the next frame in their sequence, 

each dot was assigned a Brownian motion vector with a constant length but a random direction. 

The dots were then divided into three subgroups. The first subgroup of dots conveyed the 

rightward motion signal (signal-R), while the second subgroup of dots conveyed the leftward 

motion signal (signal-L). The remaining dots formed the third subgroup, which provided the 

random-noise component of the visual stimulus. The different stimulus conditions were created 

by modifying the relative number of dots assigned to these three subgroups. 

We used two different methods to displace the signal dot subgroups in the stimuli, 

illustrated in Figure 1B. In the “Narrow-Coherence” (NC) stimulus set, a vector component in 

the assigned signal direction replaced the assigned Brownian motion vectors of the signal dots 

for that frame, similar to most standard RDK stimuli. The resulting apparent coherent motions of 

the two signal dot subgroups in the NC stimuli were narrowly confined to leftward and rightward 

displacements parallel to the horizontal axis, and were therefore explicitly visible in their frame-

wise displacements.  
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In contrast, in the “Brownian-Drift” (BD) stimulus set, the coherent signal vector 

component of the signal dots was added to their assigned Brownian motion vector. As a result, 

the coherent motion component of the signal dot displacements in the BD stimuli was not 

confined to the horizontal axis, but was instead embedded implicitly in signal dot motions across 

a broad range of directions, similar to the RDK stimuli often used in global-motion studies 

(Williams and Sekuler, 1984; Watamaniuk et al., 1989; Watamaniuk and Sekuler, 1992). 

Furthermore, while the signal dots had a fixed speed (2°/s) in the NC stimuli, the signal dot 

speeds ranged from 0°/s - 4°/s in the BD stimuli (see below). 

Between successive frames of the three sets of random-dot sequences, each dot was 

randomly chosen to be in one of the 3 dot subgroups. As a result, the displacement of any given 

dot between two successive image frame pairs could be a signal-R or signal-L vector or a 

random-noise vector, so that the nature of the motion signal provided by each dot had a short 

lifetime.  

Importantly, however, the dots themselves had extended lifetimes. Unlike many RDK 

stimuli (Shadlen et al., 1996; Kim and Shadlen, 1999; Shadlen and Newsome, 2001; Pilly and 

Seitz, 2009; Schütz et al., 2010; Kiani et al., 2013), the dots were not randomly repositioned to 

new positions in the stimulus array between pairs of frames in a sequence. Instead, the positions 

of the dots in each of the three interlaced sequences of frames were incremented progressively in 

each frame according to their random assignment into each of the three dot subgroups. As a 

result, the dots in the NC and BD stimuli had a long lifetime and created the illusion of sets of 

dots in continuous noisy motion, with different relative strengths of motion in the two opposing 

signal directions rather than an evanescent “snow” of transient flickering dots that moved in 

different directions. The random-replacement procedure has some advantages for studying pure 
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visual movement direction perception mechanisms (Huk and Meister, 2012). However, most 

ecologically-natural moving stimuli that the visual system evolved to process are usually 

generated by the continuous sequential changes in the spatial location of physical objects that 

exist over periods of time much longer than the 50ms repeat rate of the frames in the RDK dot 

sequences. Pilot studies using NC, BD and standard RDK stimuli generated with random 

replacement of dots between successive pairs of frames (not presented here) confirmed that the 

psychophysical performance of subjects using the NC and BD stimuli were consistent with all 

the major trends reported many times in subjects responding to RDK stimuli with random 

replacement (Britten et al., 1992, 1993; Shadlen and Newsome, 2001; Roitman and Shadlen, 

2002; Palmer et al., 2005; Niwa and Ditterich, 2008; Pilly and Seitz, 2009; Bollimunta and 

Ditterich, 2012). Moreover, other comparative studies have reported similar results, supporting 

the idea that the visual system obtains a global percept of motion direction primarily by 

processing the directional displacements of the dots between successive corresponding frames, 

and does not rely solely on the additional motion information that might be available in the 

temporally evolving spatial paths of individual dots in stimuli with prolonged dot lifetimes 

(Williams and Sekuler, 1984; Snowden and Braddick, 1989; Watamaniuk et al., 1989; Tripathy 

and Barrett, 2004; Pilly and Seitz, 2009). This supported the basic generality and robustness of 

the findings in this study, and indicated that they could not be an idiosyncratic product of the 

way in which the motion illusions were generated. 
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Combinations of coherent motions 

The main stimulus set was generated by combining different levels of signal motions in one 

direction (0% - 64%) with different levels (0% - 32%) of contradictory signal motion in the 

opposite direction (Table 1).  

Two properties were used to characterize the motion signal of the stimulus. The net 

coherence was the difference between the percentage of signal dots moving in the dominant 

(correct) and non-dominant (incorrect) direction. The net coherences used in this study ranged 

from 0% (chance) to 44% in the correct direction. The base coherence was defined as the 

percentage of signal dot displacements moving equally in the two opposite directions, and which 

should not result in a net global motion percept. Table 1 lists the 26 different combinations of 

motion signals whose percentages of coherences ranged from (0/0) to (64/32). Conditions with 

the same net coherence were grouped into the same column, while those with the same base 

coherence were grouped in rows. The top row resemble standard RDK motion stimuli in that 

signal motion was induced in only one mean direction against a background of randomly moving 

dots. The following rows represent stimulus conditions with the same net coherence but 

increasing amounts of base coherence. This set of conditions yielded five combinations of 

different percentages of opposing signal-motion stimuli for each given net coherence level. An 

additional condition (44/0) was included to extend the range of standard motion conditions. 

Note that we are using the terms “base coherence” and “net coherence” here to describe 

the relative frequencies of signal dots that were assigned a coherent-motion vector component in 

the two opposite directions and the excess signal dots that had a vector component in one of the 

two opposite directions, respectively. However, only the signal dots in the NC stimuli moved 

coherently in the usual sense of parallel motions in one direction.   
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Task design: 

Experiment 1 

In the first experiment, six subjects performed the task in blocks of trials during which they 

received only the NC or BD stimuli. Trials in each block were randomized and counter-balanced 

to ensure that there were equal numbers of trial conditions with net motion coherence oriented 

toward the right and left targets. For the stimuli with 0 net coherence (0/0 – 32/32), one of the 

two targets was arbitrarily designated as the correct target in a given trial. A single block of trials 

comprised 26 stimulus conditions x 2 targets x 3 replications per target, for a total of 156 trials. 

Subjects performed 15 blocks of trials with each of the NC and BD stimuli over several days, 

yielding 90 replications of each stimulus combination for each of the 2 stimulus types (4680 

trials/subject). 

 

Experiment 2 

Because of the blocked structure of the task in Experiment 1, subjects may have adjusted or 

optimized how they processed the NC versus BD stimuli in response to their different visual 

appearance. This could either result in differences in the choice behaviour of the subjects, or 

alternatively similar psychophysical performance despite processing the visual stimuli in 

different ways. To assess the potential impact of the blocked structure of the first experiment, a 

second group of six subjects were recruited to perform the task in blocks of trials during which 

they received both the NC or BD trials randomly interleaved in the same block. A single block of 

trials comprised 25 stimulus conditions x 2 targets x 2 stimulus types x 5 replications per target, 

for a total of 500 trials (the 44/0 stimuli were not used in this experiment). Subjects were given a 

60 second rest break every 100 trials. Subjects performed 10 blocks of trials over several days, 
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yielding 100 replications of each stimulus combination for the NC and BD formats (5000 

trials/subject). All other details were similar to Experiment 1. 

 

Grouping of trials 

Trials were grouped by several different conditions, including the base coherence, the net 

coherence, the stimulus version, the direction of the correct target, the subject's chosen target, 

and the trial outcome. To combine equivalent trials separated according to rightward and 

leftward stimulus motions or target choices, measures of the motion stimuli for leftward trials 

were mirror reversed and then grouped with the rightward trials. 

 

Repeated-measures analysis of variance 

Three-way repeated-measures ANOVA were conducted using IBM SPSS Statistics 21 to 

measure the main and interaction effects of base coherence, net coherence and stimulus version 

on reaction times and success rates. In the cases where Mauchly’s test indicated that the 

assumption of sphericity was violated, the degrees of freedom were corrected using the 

Greenhouse-Geisser estimates of sphericity.  
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Dot Displacement Distributions 

The different algorithms used to generate the NC and BD stimuli resulted in very different 

distributions of dot displacements between corresponding pairs of frames in the stimulus 

sequence. We defined the X-axis and Y-axis as being parallel and perpendicular to the mean left-

right direction of coherent motion respectively. Figure 2 shows the frequency distribution of the 

(X,Y) screen pixel displacements of the dots between pairs of corresponding stimulus frames in 

the NC stimuli. When there was no coherent-motion signal in the stimuli (0/0 stimulus), the 

RDK stimulus contained only random-motion vectors that were uniformly distributed across all 

directions and had a fixed length, resulting in a circular distribution of dot displacements. The 

remaining graphs in Figure 2 illustrate the separation of the dot displacements into three distinct 

populations as the base and net coherence increased. The random-noise dots continued to form a 

circle, while the signal-R and signal-L dots formed two discrete and oppositely oriented columns 

whose (X,Y) pixel coordinates were (3.64,0) and (-3.64,0) respectively. As the base and net 

coherence levels increased, the numbers of dot displacements in the signal-R and signal-L 

columns increased while the numbers of random-noise dot displacements decreased in a 

corresponding manner. Because the vector displacements of all dots were of a constant length, 

the net result was three variable-sized sets of dots in different stimuli, one set moving randomly, 

and two signal sets moving either left or right, all at apparent instantaneous velocities of 2°/s. 

Note that the row of base-0% coherence stimuli (0/0 – 32/0) have coherent motion in only one 

direction, similar to the RDK stimuli used in many studies of visual motion perception. 

Moreover, the base-0% NC stimuli are identical to the “Brownian Motion” RDK stimuli used by 

Pilly and Seitz (2009) and Schütz et al. (2010). 
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Figure 3 shows the corresponding frequency distributions of dot displacements for the 

BD stimuli. In the BD stimuli, the left or right coherent motion vectors assigned to the chosen 

signal dots were added to their random-motion vector for each frame. This resulted in two 

adjacent circles of signal dot displacements shifted to the left or right of the origin by the length 

of the coherent-motion vector, while the random-noise dot displacements continued to form a 

circle centered on the origin of the graph. The region at which the two circles of signal dot 

displacements converged near the origin represents the signal dots whose random and coherent 

motion vectors were nearly opposite in direction, resulting in only a very small net displacement 

of the dots between frames. As a result, the distributions of dot displacement velocities remained 

similar along the Y-axis between the NC and BD stimuli, but were spread out continuously over 

twice as broad a range (-4°/s to +4°/s) along the X-axis in the BD stimuli. 

Indeed, one can easily envisage the distributions of the frame-wise velocities (direction 

and speed) of dot motions by drawing lines from the (x, y) origin of each graph to each point on 

the circumference of each circle. The result would be a uniform distribution of random-noise 

vectors with a fixed velocity, and a bi-lobed distribution of signal dot velocities in the two 

opposite directions, whose relative frequencies would be proportional to the height of each circle 

of signal displacements. Furthermore, if one were to average the three sets of vectors separately, 

the net random-noise velocity would be zero, while that for the two signal velocities would be 

+2°/s for the signal-R dots and -2°/s for the signal-L dots, exactly the same as for the random-

noise and signal dots of the NC stimuli.  

Figure 4 and 5 present the same data in the form of polar histograms of the frequencies 

of the directions of dot displacements in the NC and BD stimuli, respectively, independent of 

their length (speed).  These figures further emphasize how the coherent-motion signals are 
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sharply confined to the two opposing directions in the NC stimuli, but are implicitly embedded in 

a much more broad range of signal dot motions in the BD stimuli, occupying the entire left and 

right half-circles centered on the vertical axis for signal-L and signal-R dots respectively. These 

BD direction distributions are reminiscent of the RDK stimuli used by Williams and Sekuler 

(1984) to study global motion discrimination. However, they generated their distributions by 

sampling from uniform distributions of vector directions of different directional bandwidths, 

whereas the present distributions resulted from the vectorial summation of a coherent-motion 

vector and a random-motion vector. Note as well that, unlike the NC stimuli, increases in the 

base coherence in BD stimuli of a given net coherence do not alter the overall frequency 

distributions of the directions of dot displacements (Figure 5, each column), but do change the 

distributions of velocities of displacements, which become increasingly biased and variable 

along the horizontal axis as base coherence increases (Figure 3).  

 

Auto-correlation Analysis 

Figures 2-5 illustrate the motions attributed to each dot in two consecutive matching frames in 

the stimulus sequence. However, the human observers did not have access to that information, so 

they could not be certain which dot in the next matching frame of the sequence corresponded to 

which dot in the previous frame. This introduces uncertainty “noise” into the perceptual process 

resulting from the so-called correspondence problem (Barlow and Tripathy, 1997). One way to 

measure the impact of this correspondence uncertainty is to calculate the auto-correlation of the 

stimulus. In this analysis, the positions of each of the dots from one frame are compared to the 

positions of all the dots in the next corresponding frame in that sequence. Paired frames were 

three frames apart, since the motion stimuli had three sets of interleaved dot distributions. For 
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each dot in a given frame, we generated a set of potential displacement vectors to the positions of 

all dots in the next corresponding frame in the sequence, not just the displacement designated by 

the RDK algorithm for that dot (Barlow and Tripathy, 1997). These vectors were collected for all 

pairs of frames in the stimulus for all trials of the same conditions to produce a frequency 

distribution of possible dot displacements. For example, Figure 6A shows a distribution of 5.92 

million vectors of all the possible dot combinations between each pair of corresponding frames 

in the 600 NC 64/32 trials presented to the subjects in Experiment 2 (50329 frames total). Note 

that without any a priori knowledge of how individual dots were moved by the algorithm from 

frame to frame, the autocorrelation revealed two peaks of displacements to the left and right of 

the origin, superimposed on a broad base of spurious dot displacement vectors (Figure 6A). 

Furthermore, the number of dot displacements in the rightward peak was twice as large as that in 

the leftward peak, reflecting the 64/32 percent composition of the coherent motions. 

 It is important to note that this autocorrelation analysis does not take into account the 

interleaved frames between two corresponding frames of a given dot motion sequence. The dot 

distributions in the frames of the three separate dot motion sequences were uncorrelated. As a 

result, an auto-correlation analysis of each sequential frame in the RDK stimulus sequence would 

have yielded a purely random distribution of potential vector displacements. The coherent 

motion information was contained in only every third frame, which emphasizes the importance 

of persistence in the early processing of visual motion inputs.  

 

  



 

45 

  

Framewise Pixel Displacement Analysis 

To measure the amount of motion information presented in the NC and BD stimuli as a function 

of time, we calculated the mean frame-wise pixel displacement (FPD). The FPD is obtained by 

summing the horizontal components of the potential displacement vectors extracted by the 

autocorrelation analysis for all combinations of dots in each pair of frames. The resulting FPD is 

a measure of the instantaneous mean potential dot displacement in the horizontal axis pooled 

across all dots between corresponding pairs of frames in the RDK stimuli, assuming no a priori 

knowledge of which dot in a given frame corresponded to which dot in its paired frame. Note 

that all potential dot displacement vectors that corresponded to a velocity greater than 8°/s were 

removed from this calculation, since the speed of controlled dot motions in the stimuli was fixed 

at 2°/s in the NC stimuli and ranged from 0°/s to 4°/s in the BD stimuli. Only some of the vectors 

with velocities less than 8°/s were the true signal motions in the stimuli (Figure 6A, B). All 

potential displacement vectors with velocities greater than 8°/s would have resulted from 

spurious pairings of dots between two image frames and would have yielded zero net motion 

displacement (Figure 6A).  The distribution of vectors in Figure 6A that were actually used for 

the FPD measurement for the NC stimuli is shown in Figure 6B. The FPDs from all pairs of 

sequential frames in a trial can then be averaged to calculate the mean trial FPD. To combine 

stimuli with net rightward and leftward signals, all displacement vectors was mirror inverted for 

the leftward stimuli. This analysis provides a direct physical measure of the potential motion 

signals contained in the changes in dot positions between successive image frames in the RDK 

stimuli arriving at the retina, without any assumptions about the nature of the early motion 

processing in the central visual system. 
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Ideal observer analysis 

 The ideal observer analysis models the upper limit of performance on the motion discrimination 

task based on an “ideal observer” that has direct access to the FPD values (Green and Swets 

1966; Britten et al. 1992). Figure 7A shows the frequency histograms of the average trial FPD 

for the NC trials, grouped by net coherence. We computed five receiver operating characteristic 

(ROC) curves by pairing each net coherence distribution (0%, 4%, 8%, 16%, 32%) with the net 

0% distribution (Figure 7B). Each point on the ROC curve represented the proportion of trials in 

the coherent motion group that exceeded a criterion level, plotted against the proportion of trials 

in the net 0% group that exceeded the same criterion. Each ROC curve was then generated by 

calculating these proportions while increasing the criterion level from a FPD value of -10 pixels 

to 30 pixels. The area under the ROC curve corresponded to the expected performance of an 

ideal observer whose decision was based on the FPD motion information. For example, the area 

under the net-0% ROC curve covers only 50% of the area, indicating that an ideal observer 

would perform at a chance (50%) rate. On the other hand, the area under the net-16% and 32% 

ROC curves cover nearly 100% of the area, indicating that an ideal observer would nearly 

perfectly detect a 16% or 32% net coherent motion RDK. The expected performance of this 

model at different net coherences was plotted with the behavioural data in Figure 10C and 10D 

for the NC and BD trials respectively.   
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Motion energy analysis 

A number of computational models of visual motion perception assume that the visual system 

extracts signals about the spatiotemporal distribution of motion energy in the temporal sequence 

of visual inputs without attempting to track the motions of specific elements in the visual scene 

(Adelson and Bergen, 1985; Qian and Andersen, 1994; Simoncelli and Heeger, 1998). We used 

the Adelson and Bergen (1985) spatio-temporal motion filter model as a second method to 

estimate the motion information contained in the RDK stimuli presented to the subjects. This 

method has been previously used to analyse the RDK stimuli used in decision-making studies 

(Kiani et al., 2008; Resulaj et al., 2009; Bollimunta et al., 2012; Zylberberg et al., 2012; Kiani et 

al., 2013). This model uses two pairs of spatiotemporal filters, with one pair of filters selective 

for leftward direction, and the second pair selective for rightward direction. To construct the 

spatiotemporal filters, the following spatial filters were used: 

 

ଵ݂(ݔᇱ, (ᇱݕ = (ߙ)ସݏ݋ܿ × cos	(4ߙ) × ݌ݔ݁ ቆ−  ௚ଶቇߪଶ2′ݕ

ଶ݂(ݔᇱ, (ᇱݕ = (ߙ)ସݏ݋ܿ × sin(4ߙ) × ݌ݔ݁ ቆ−  ௚ଶቇߪଶ2′ݕ

ߙ = ଵି݊ܽݐ ቆߪ′ݔ௖ቇ 

 

Where σg controls the width of the Gaussian envelope in the y dimension and σc controls the 

width of the 4th order Cauchy envelope in the x dimension. As in the study by Kiani et al. (2008), 

σg=0.05 as an approximation of the direction selectivity of MT neurons, and σc= 0.35. 

  



 

48 

  

The temporal filters used are as follows: 

 

ଵ݃(ݐ) = (݇ × ௡ೞ೗೚ೢ(ݐ × exp	(−݇ × (ݐ × ቈ 1(݊௦௟௢௪)! − (݇ × ଶ(݊௦௟௢௪(ݐ + 2)!቉ 
 

݃ଶ(ݐ) = (݇ × ௡೑ೌೞ೟(ݐ × exp	(−݇ × (ݐ × ቈ 1(݊௙௔௦௧)! − (݇ × ଶ(݊௙௔௦௧(ݐ + 2)!቉ 
 

Where k controls the width of both filters while nslow and nfast control the width of the slow g1(t) 

and fast g2(t) filters respectively. As in the filters used by Kiani et al. (2008), k=60, nslow= 3 and 

nfast= 5. 

The two spatial and two temporal filters were then combined to produce the two pairs of 

directionally selective spatial-temporal motion filters. The leftward pair of selective filters was 

generated by combining f1g1 + f2g2 and f2g1- f1g2. The rightward pair of selective filters was 

generated by combining f2g1 + f1g2 and f1g1 - f2g2. These filters are illustrated in Figure 8. 

Both pairs of these filters formed a spatial quadrature pair, i.e. 90 degrees out of phase from each 

other in the spatial dimension.  

The resulting directionally selective motion energy filters spanned -0.7 to 0.7 degrees in 

the x- and y-dimensions, and 300 ms in the time dimension. Collapsing along the x-y 

dimensions, the motion energy measured at time t corresponded to the activity of the stimulus in 

the immediately preceding 300 ms. 
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These filters were then convolved with the stimulus, which was represented as an x-y-t 

matrix of pixels. The results of each convolution was then squared and summed over the x and y 

dimensions to make a measure of motion energy as a function of time for each filter.  

The two rightward responses were added to produce the combined motion energy in the 

rightward direction. The same was done for the leftward responses. Finally the right and left 

motion energies were subtracted to obtain the net energy as a function of time. The average net 

energy of the trial was then obtained by summing all the values of this net energy function and 

dividing by the number of frames. 

The off-axis motion energy was also measured using four more mirror symmetrically 

oriented opponent pairs of filters rotated ±30° and ±60° from the horizontal left-right motion 

axis. This produced a measure of net motion energy in 5 directions, including the horizontal. No 

filters were used for the 90°/270° axis orthogonal to the direction of coherent motion in the NC 

and BD stimuli, since the net output of that pair of filters would be approximately zero. The x-

component of these motion vectors were then summed to provide a weighted sum of net motion 

energy in the x (horizontal) direction. 
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Results 

1. Task Design 

We asked human subjects to observe random-dot kinematogram (RDK) stimuli that contained 

different amounts of mutually contradictory evidence in two opposite directions and to determine 

the overall directional bias of dot motion. We used two different RDK algorithms to produce the 

Narrow Coherence (NC) and Brownian Drift (BD) stimuli. In the NC stimuli, differing amounts 

of opposing motion signals were explicitly visible in the instantaneous rightward or leftward 

movements of signal-R and signal-L dots, against a background of random-noise dot motion. In 

the BD stimuli, the rightward and leftward motion signals were carried implicitly by signal-R 

and signal-L dots that each moved over a 180° range of actual dot motion directions in opposite 

directions. In both versions of the stimuli we presented varying degrees of stimulus difficulty by 

presenting different levels of signal evidence simultaneously in the left and right directions.  

 

2.1. Experiment 1 

In the first experiment, six subjects were tested with the NC and BD stimuli presented in separate 

blocks of trials. The mean reaction times (RTs) of the subjects (±95% confidence intervals) are 

shown as a function of net and base coherence for the NC trials in Figure 9A and for the BD 

trials in Figure 9B. Each line links the data for the series of five stimuli at different net 

coherences but the same base coherence. Data from stimuli with the same net coherence are 

aligned in columns, but are slightly shifted arbitrarily along the X-axis to increase visibility.  

The first prominent feature of the subjects’ behaviour was the overall long duration of 

their RTs. For the NC base-0% stimuli that most closely resembled standard RDK stimuli, mean 
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RTs ranged from 671ms for net-44% stimuli to 2410ms for net-0% stimuli (Figure 9A). This is 

significantly longer than the RTs often reported for human subjects in RDK tasks (Williams and 

Sekuler, 1984; Watamaniuk et al., 1989; Reddi and Carpenter, 2000; Ratcliff et al., 2003b; 

Palmer et al., 2005), but are similar to the RTs of human subjects in at least one other prior study 

using more complex RDK stimuli with three simultaneous coherent-motion directions (Niwa and 

Ditterich, 2008). This suggests that our subjects were instinctively cautious in their choice 

behaviour, and tended to observe the stimuli for longer periods of time than in most studies 

before making a response choice. Nevertheless, even when there was only random motion in the 

stimuli (0,0 condition), subjects typically made a response choice with RTs ranging over ~500-

5000ms, and rarely took longer than 6000-7000ms for any net-0% stimuli (see later section). 

The second prominent feature of their choice behaviour is that despite the significant 

differences in the nature of the NC and BD motion stimuli, the basic response trends of the 

subjects were strikingly similar. The grand mean RT for net-0% stimuli was 2136ms for the NC 

stimuli and 2252ms for the BD stimuli, which decreased to 833ms and 926ms respectively for 

the net-32% stimuli. For each base coherence series of stimuli (Figure 9A, B; solid lines), RTs 

decreased systematically as a function of the net coherence. The complete RT distributions of 

individual subjects for different base coherences at a given net coherence were extensively 

overlapping (data not shown), indicating that subjects’ psychophysical performance was more 

strongly influenced by the net coherence than the base coherence or total motion coherence of 

each stimulus. This was particularly prominent at higher net coherence levels. For instance, the 

mean RTs for the net-16% and net-32% NC and BD stimuli were nearly identical across base 

coherence levels, even though the total percentage of signal dots changed from 16%  in the 16/0 
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condition to 80% in the 48/32 condition, and from 32% (32/0 condition) to 96% (64/32 

condition).  

The third prominent feature of the choice behaviour of the subjects is that the 

psychophysical functions relating RTs to net coherence at different base coherence levels 

overlapped at high net coherence levels, but diverged at low net coherences, especially for the 

net-4% and net-0% stimuli (Figure 9A). More specifically, when net coherence was low, RTs 

decreased systematically as the base coherence level increased. 

We conducted a 3-way, repeated-measures ANOVA to identify the effects of different 

net coherences, base coherences and stimulus versions on subjects’ RTs. There was a significant 

difference in task performance between different subjects; with single-subject grand mean RTs 

ranging from 1263ms to 2212ms (F(1,5) = 146.15, p < 0.01). After accounting for inter-subject 

differences, there was a significant main effect of net coherence (F(1.08,5.38) = 17.10, p < 0.01), but 

not stimulus version (F(1,5) = 3.40, p = 0.124).  

While the net coherence had a strong effect on RTs, there was also a more modest but 

statistically significant main effect of base coherence (F(1.08,5.41) = 7.02, p < 0.05), as well as a 

significant interaction between the base coherence and net coherence, (F(2.90,14.52) = 4.24, p < 

0.05). In particular, at low net coherences (net-0% to net-8%), RTs were generally shorter as 

base coherence increased (Figure 9A, B). As a result, the slope of the psychophysical function 

for the effect of net coherence (Figure 9A, B; solid lines) was steeper for base-0% stimuli than 

for base-32% stimuli for both the NC and BD stimuli. This was slightly more prominent for the 

NC stimuli than for the BD stimuli, especially for stimuli with base-32% coherence.  

The success rates for the subjects as a function of base and net coherence are shown in 

Figure 9C, D. Success rates increased systematically with net coherence from near chance 
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performance (success rate 0.5) at the net-0% coherence conditions to asymptote at nearly 100% 

success for the net-32% coherence conditions, for both the NC and BD stimuli. Furthermore, 

while the psychometric success-rate functions for different net stimuli were generally similar at 

different base coherences, they were not overlapping (Figure 9C, D; solid lines).  A 3-way, 

repeated-measures ANOVA indicated a significant main effect of net coherence (F(1.17,5.83) = 

96.15, p < 0.01) but not stimulus version (F(1,5) = 0.03, p = 0.87). There was a systematic 

decrease in success rates for all stimuli above net 0% as the base coherence increased (significant 

effect of base coherence, (F(4,20) = 7.45, p < 0.01), but there was no significant interaction effect 

between base and net coherence (F(3.69,18.43) = 2.485, p = 0.83) for success rates, unlike RTs. This 

trend was somewhat more pronounced for the NC stimuli than the BD stimuli (significant 

interaction effect between base coherence and stimulus type; F(4,20) = 11.75, p < 0.01). In 

summary, success rates were mainly driven by increasing net coherence, but also decreased 

modestly with increasing base coherence across all net coherences. 

As already stated, one of the striking findings of Experiment 1 was how similar the 

choice behaviour of the subjects was in response to the NC and BD stimuli. However, one 

potential confound in the design of this first experiment was that the NC and BD stimuli were 

presented in separate blocks of trials. It is possible that subjects adjusted their motion 

discrimination process or decision-making strategy between blocks to accommodate for the 

differing visual appearance of the two different stimuli, resulting in similar choice behaviour 

despite potentially different central motion processing mechanisms.  
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2.2. Experiment 2 

To address this potential confound, we conducted a second experiment in which we interleaved 

the BD and NC stimuli within the same blocks, and presented them to a new group of 6 subjects. 

At the same time, we saved the complete record of frame-by-frame positions of each dot for each 

trial. This permitted a detailed analysis of the exact motion evidence presented in each trial. All 

other details were essentially identical to Experiment 1. The RTs and success rates are shown in 

Figure 10A-D. The general trends in the data were very similar to that in Experiment 1, 

confirming the basic robustness of the results. The grand mean RT for net-0% stimuli was 

1748ms for the NC stimuli and 1800ms for the BD stimuli, which decreased to 868ms and 

888ms respectively for the net-32% stimuli, indicating that this second group of subjects 

responded somewhat more quickly than the first group. Nevertheless, success rate profiles of the 

two groups largely overlapped. 

The RTs and success rates in both the NC and BD trials were once again mainly 

modulated by the net coherence. A 3-way, repeated-measures ANOVA for RTs indicated that 

there was a significant difference in task performance between subjects (F(1,5) = 25.11, p < 0.01).  

After accounting for the inter-subject differences, there was a significant main effect of net 

coherence (F(1.02,5.08) = 9.85, p < 0.05) but not base coherence (F(1.46, 7.32) = 3.01, p = 0.12) or 

stimulus type (F(1,5) = 3.85, p = 0.11). While the base coherence did not have a significant main 

effect on RTs, the RT curves followed the same trend as Experiment 1, in which mean RTs 

decreased as the base coherence increased, especially at low coherence conditions (net-0% and 

net-4%). The resulting slopes of the psychometric RT curves systematically decreased as the 

base coherence increased. There was a notable increase in reaction times for the NC base-32% 
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stimuli at high net coherences (net-16% and net-32%) compared to the lower base-coherence 

conditions, which was not present in the BD trials. However, this is largely due to two subjects in 

the experiment who showed very flat RT curves for the base 32% conditions in the NC trials 

(Figure 11A) but not the BD trials (Figure 11B). This version-specific RT response was paired 

with a decreased success rate in the NC trials (Figure 11C) but not the BD trials (Figure 11D) 

which would suggest that these two subjects were unable to extract the 16% and especially the 

32% net coherence signals of the 48/32 and 64/32 NC stimuli against the equal and opposite 32% 

base coherences in both directions. In contrast, the other four subjects had RT curves that 

systematically decreased as the net coherence increased in both NC (Figure 12A) and BD 

stimuli (Figure 12B), and strikingly resembled the choice behaviour of the subjects in 

Experiment 1 (Figure 9). It is important to note that the outlier data from the two subjects shown 

in Figure 11 was in the NC base-16% and base-32% stimuli conditions, and only represented 

3.33% of all the data from the 12 subjects studied in Experiment 1 and 2. For all the other 

stimulus conditions, these two subjects showed similar choice behaviour as the other 10 subjects 

studied.  

Finally, success rates were lower for base-32% conditions in the NC trials (Figure 10C) 

but not the BD trials (Figure 10D). A 3-way, repeated-measures ANOVA for success rates 

indicated significant main effects of net coherence (F(4,20) = 416.86, p < 0.01) and base coherence 

(F(2.54, 12.69) = 7.55, p < 0.01) as well as significant interaction effects between the stimulus type 

and the base coherence (F(4,20) = 12.507, p < 0.01).  

In summary, when the NC and BD stimuli were presented in an interleaved sequence, all 

subjects responded to the net and base coherence of most stimuli in Experiment 2 in the same 

way as the subjects in Experiment 1. The only exception were two subjects who seemed to be 
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unable to process the base-32% NC stimuli and as a result showed nearly constant RTs and lower 

success rates with increasing net coherence. 

With these two exceptions, the overall results from Experiment 2 indicated that the major 

trends and small differences seen between NC and BD stimuli in Experiment 1 could not be 

explained solely by their presentation in separate blocks of trials. Similar trends were still 

observed when they were presented in interleaved fashion to different subjects in Experiment 2. 

 

3. Framewise pixel displacement analysis 

Due to the stochastic nature of RDK generation algorithms, the motion information presented in 

a sequence of image frames can vary considerably within and between trials, even for stimuli 

that should ideally present the same level of base and net coherence. As a measure of the motion 

signal presented to the subjects, we calculated the “frame-wise pixel displacement” (FPD). This 

analysis yielded a frame by frame sum of the horizontal component of possible horizontal 

displacements of signal and random-noise dots in the RDK stimulus (see Methods for more 

details). These values could then be averaged over all frames in a trial and over all trials within a 

condition to get an average FPD for a particular combination of base coherence and net 

coherence in each stimulus version. The FPD is proportional to the mean instantaneous 

horizontal velocity of the pooled motions of all dots in the RDK stimuli. 

Note that the FPD calculation was not based only on the dot displacements generated by 

the RDK algorithm, but takes into account all possible pairings of dots between successive 

frames in a frame sequence within a certain displacement radius equivalent to 8°/s velocities (c.f. 

Figure 6B), and so is an unbiased measure of the potential motion information in the stimuli 

without any a priori knowledge of which dots moved where from frame to frame. 
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The average FPD values pooled across all trials presented to all 6 subjects in Experiment 

2 are shown in Figure 13A. First, the FPD for net-0% stimuli was essentially zero, and the FPD 

scaled linearly with increasing net coherence, as intended. Furthermore, the FPD values were 

very consistent across all base coherence levels for a given net coherence level. This occurred 

because the mean FPD of the increasing proportions of signal-R and signal-L dots comprising 

the base coherence was always near zero, leaving only the extra signal dots responsible for the 

net coherence component of the RDK to contribute to the FPD. Finally, the NC and BD stimuli 

had virtually identical FPD values for all stimulus combinations, indicating that the amount of 

horizontal motion input being presented to subjects was the same for both types of stimuli, 

despite the different algorithms by which they were generated.  

With these FPD values, we also performed an ideal observer analysis which establishes 

an upper limit on the performance on the task (Green and Swets 1966; Britten et al. 1992). The 

results of this analysis was plotted in the dotted black lines in Figure 10C and Figure 10D and 

show that an ideal observer would perform similarly on the NC and BD task. This analysis 

confirmed that the subjects received, on average, the intended net horizontal motion signal across 

all combinations of net and base coherence level, and between both types of stimuli.  

The constant FPD values across all base coherences for a given net coherence level could 

explain the similarity of the choice behaviour of the subjects for the stimuli with high net 

coherence (net-16%, net-32%), but does not appear to provide an explanation for the progressive 

reduction of RTs as base coherence level increased for the stimuli with a given lower net 

coherence level (from net-8% to net-0%).  
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4. Framewise pixel displacement variance analysis 

We also calculated the variance of the motion signal in the stimuli. Figure 13B shows the 

variance of the FPD as a function of base and net coherence. While the mean FPDs of stimuli 

with the same net coherence but different base coherences were identical (Figure 13A), the 

variance of the FPDs of these stimuli increased systematically as a function of base coherence 

and thus of the total motion coherence for both the NC and BD stimuli at all levels of net 

coherence (Figure 13B).  

The progressive increase in variance of NC and BD stimuli with base coherence level 

could be implicated in the shift to faster RTs as the base coherence increased at low net 

coherences (0% - 8%) (Figure 10A, B). However, the effects of base coherence level on RTs 

was less pronounced for the higher net-coherence stimuli (net-16% and net-32%) in both 

Experiments 1 and 2, even though the increase in FPD variance with increasing base coherence 

was as great for those stimuli as it was for net-0% stimuli. Furthermore, the changes in FPD 

variance with base and net coherence were more pronounced for the BD stimuli than the NC 

stimuli (Figure 13), but the effects of base coherence level on RTs were somewhat more 

pronounced in the NC stimuli than for the BD stimuli (Figure 9, 10, 12). These trends suggest 

that the signal-dependent variance in dot displacements measured at the level of the sensory 

input at the retina may have had an impact on RTs at low net coherence levels. However, they 

were not the main influence on RTs across the full range of net and base motion coherences.  
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5. Motion energy analysis 

In addition to using the frame-wise pixel displacement calculation, we did a motion energy 

analysis as an alternative measure of motion information in the stimuli. We used a variant of the 

original Adelson-Bergen (1985) spatial motion energy filter that included two spatial filters and 

two temporal filters to create a directionally oriented x-y-t spatiotemporal filter that attempts to 

replicate the visual properties of motion sensitive MT neurons (Kiani et al., 2008). 

Using this model and recordings of all the RDK stimuli shown to subjects in Experiment 

2, we used 5 pairs of opposing motion filters aligned in five directions centered on the horizontal 

left-right axis to obtain a single value of motion energy along the horizontal axis at each moment 

in time in each given trial (see Methods for more details). The results of these motion filter 

analyses of the RDK stimuli are shown in Figure 14A, B. The measured motion energies show 

similarities with the FPD values calculated in the previous section. For example, the mean 

motion energy scaled linearly with the net coherence, and remained nearly constant across all 

base coherence levels for a given net coherence (Figure 14A). Furthermore, the motion energy 

variance increased systematically with the base coherence level for each level of net coherence 

(Figure 14B). However, the measured motion energies also show differences from the FPD 

values. The motion filter measured less mean motion energy for the BD stimuli than the NC 

stimuli for net-4% to net-32% stimuli (Figure 14A), and the effects of base and net coherence 

level on motion energy variance of NC versus BD stimuli (Figure 14B) were reversed from that 

seen for the FPD measures (Figure 13B). Moreover, the motion energy variance of NC stimuli 

increased more with rising base coherence across all net coherence levels than did the BD 

stimuli. 
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These differences between the FPD and motion energy measures were not simply due to 

the parameter settings of the motion energy filter. We explored a range velocity preferences of 

the spatiotemporal filter (2°/s – 6°/s) as well as different widths of the y-axis Gaussian envelope 

of the spatial filters (σg from 0.025 – 0.100). While this had an impact on the size of the absolute 

values of mean motion energy and motion energy variance, they did not eliminate the 

quantitative differences in motion energy trends between the NC and BD stimuli (data not 

shown).  

The differences between the FPD and motion energy measures are more likely due to the 

nature of the motion energy analysis itself. The motion energy filters we used were designed to 

ne optimally activated by motion signals along a particular oriented spatiotemporal trajectory in 

(x,y,t) space (Adelson and Bergen, 1985; Qian and Andersen, 1994; Kiani et al., 2008). The NC 

stimuli, in which the entire coherent signal is carried by dots that only move along the horizontal 

axis at a constant speed will provide a strong activation of motion energy filters with the 

appropriate tuning properties. However the motion signal embedded in the BD stimuli is carried 

by signal dots moving in a much broader range of directions. As a result, the local motion signal 

detected by each motion energy filter will never provide as effective an activation of the filter as 

the NC stimuli, resulting in less motion energy output.  

This indicates that the FPD and motion energy analyses capture two different attributes of 

the physical properties of the stimuli that differ between the two stimulus versions. While the 

motion energy analysis models what a single MT neuron might encode from a motion stimulus, 

the FPD analysis gives a measurement of the global percept of motion in the stimulus. 

Figure 15 replots the RTs of Experiment 1 as a function of the FPD (top row) and 

average motion energy (bottom row), rather than as a function of net coherence as in Figure 10. 
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The FPD graphs in the top row closely resemble Figure 10A,B since the mean FPD values 

scaled with net coherence in the same way for the NC and BD stimuli. However, in the motion 

energy graphs in the bottom row, the lower motion energies measured in the BD stimuli shifted 

the RT curves to the left compared to those for the NC stimuli. This indicates that the similar 

psychophysics of choice behaviour of the subjects in response to NC and BD stimuli is better 

related to the mean instantaneous motion velocities of the pooled dot motions in the RDK stimuli 

than to the estimated motion energy contained in the two stimulus sets.  

 

6. Model simulations of the effect of signal-dependent noise on RT distributions 

One of the principal findings of this study is that, whereas choice behaviour was primarily driven 

by the net coherence in the stimuli, RTs nonetheless were also influenced by the background 

base coherence level, especially for stimuli with lower net coherence strengths (Figure 9A, 10A-

12A). Comparison of the RT distributions for the base-0% and base-32% NC stimuli from 

Experiment 1 show that the reduction in mean RTs reflected a greater positive (leftward) skew of 

the entire RT distribution toward shorter RTs, that was more pronounced for the low net 

coherence stimuli (Figure 16, left column). The same trend was seen for the NC stimuli in 

Experiment 2, as well as for BD stimuli in both experiments. Because the base coherence 

comprised equal amounts of coherent motion in both opposing directions, they should in 

principle cancel and have no effect on the accumulation process if it is driven by the net 

difference in coherent motion in the two directions. 

Niwa and Ditterich (2008) reported a similar effect of the total coherent motion on RTs 

using RDK stimuli with different amounts of simultaneous coherent motion in three distinctly 

different directions (see Discussion).  They suggested that this could result from signal-
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dependent noise that increased the instantaneous stochastic variability of the evidence 

accumulation process as a function of the total amount of coherent motion signal in their stimuli. 

They showed that a computational model that included a signal-dependent stochastic noise term, 

a divisive normalization and other features could account for their subjects’ RTs (Niwa and 

Ditterich, 2008).  

Motivated by their findings, we assessed to what degree a simple generative drift-

diffusion model could account for the range of behaviour of our subjects in the task. The 

objective of this exercise was not to create a rigorous computational model that fully explained 

the presumed computational processes underlying the subjects’ decisions in this task, but simply 

to assess the potential impact of signal-dependent changes in instantaneous stochastic noise on 

the choice behaviour of the subjects. 

The generative model assumed that decisions were made by temporal accumulation of 

noisy instantaneous sensory evidence by a decision variable (DV) to a decision criterion 

threshold: 

௧ܸܦ =෍݃ܽ݅݊௘ ∙ ௧݁ܿ݊݁݀݅ݒ݁ + ݃ܽ݅݊௡ ∙ ;௧݁ݏ݅݋݊ ௧ܸܦ		ݎ݋݂		 < ௧(1)																															ܥܦ
௜ୀ଴  

 

where DVt is the accumulated amount of evidence up to time t (incrementing in time steps of 

1ms), evidencet is the instantaneous evidence, noiset is the instantaneous stochastic noise (normal 

distribution, s.d. = 1.0; Matlab function randn), gaine and gainn are two gain terms that 

independently determine the relative size of the increment in DVt  due to sensory evidence and 

stochastic noise at each time step, and DC is the level of the criterion decision bound. The results 

of the Niwa and Ditterich (2008) study predict that the change in RT distributions from base-0% 
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to base-32% stimuli should be explained primarily by an increase in the gainn term, since the 

increase in base coherence increases the variability of the motion evidence signals while the net 

motion evidence remains constant across all base coherence levels (Figure 13, 14). 

 The generative drift-diffusion model contained two independent modules that each 

accumulated the net sensory evidence for or against its preferred choice and momentary 

stochastic noise until one of the two accumulators exceeded the decision criterion threshold, at 

which time the decision process was terminated and the subject made their response (Mazurek et 

al., 2003; Ratcliff et al., 2007; Churchland et al., 2008). 

The model also assumed that the observed RT is comprised of the decision time captured 

by Eqn 1, plus a non-decision time that accounts for input delays resulting from transmitting the 

sensory signal from the periphery to central visual structures, encoding of the stimulus 

properties, and output delays required to generate and transmit the motor command for the 

chosen arm response to the muscles to initiate the movements. 

We also implemented a Linear Ballistic Accumulator model with two independent 

accumulator modules (Brown and Heathcote, 2005, 2008). Each module accumulated noise-free 

evidence in a given trial at a mean rate that was proportional to the total evidence for its 

preferred choice, but whose actual single-trial rate varied stochastically between trials (normal 

distribution), and whose starting point of evidence accumulation also varied between trials 

(uniform distribution) (Brown and Heathcote, 2005, 2008). This LBA model thus had three gain 

terms, for the effect of mean evidence level, the magnitude of variability of inter-trial integration 

rate and the magnitude of the inter-trial variability of the starting point of evidence accumulation. 

The results for the LBA model were fundamentally similar to that of the drift-diffusion model, so 

only the latter results will be presented in detail here. 
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Initial tests using both the drift-diffusion and LBA models to simulate the base-0% RT 

distributions showed that when the criterion decision bound DC had a fixed value across time, 

values of the gain terms that generated simulated RT distributions that closely matched the 

observed RT distributions for net-16% and net-32% stimuli predicted RT distributions that were 

much longer than those observed for the net-4% and net-0% stimuli, and also generated many 

trials in which DVt failed to cross the decision bound in either accumulator even after 10,000ms. 

The incidence of non-decision trials could be reduced or eliminated by increasing the noise gain 

term gainn of the drift-diffusion model to a higher value, but this resulted in simulated RT 

distributions that were unrealistically positively skewed, and predicted RTs that were far too 

short for net -8% to net 32% stimuli, as well as choice error rates that were too high for all non-

zero net-evidence strengths (data not shown). These results indicated that neither the generative 

drift-diffusion nor LBA model could account for the full range of observed RTs in this task with 

a fixed decision bound. Therefore, we implemented a generative model with a decision bound 

that decreased quadratically with time or alternatively an urgency signal that increased non-

linearly with time (Ditterich, 2006; Churchland et al., 2008; Resulaj et al., 2009; Thura et al., 

2012; Coallier and Kalaska, 2014).  This eliminated trials with unrealistically long decision 

times. 

The resulting drift-diffusion model had six potential free parameters – the evidence gaine 

and noise gainn which are the parameters of interest in this simulation, as well as the non-

decision time, the starting decision criterion threshold height, the rate of change of the decision 

bound and the delay after which the decision bound value began to decrease. To estimate the 

non-decision time and the two collapsing-bound parameters, we fit the observed RT distributions 

for the base-0% stimuli from each subject separately to a drift-diffusion model with time-
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dependent collapsing bounds (Coallier and Kalaska, 2014). Based on those results, we set the 

non-decision time at 300ms, the starting decision bound at an arbitrary value of 200, the bound 

decline start time at 500ms and the gain of the quadratic bound decline at each 1ms interval to 

1.25x10-5. Using those parameter values, we then performed an iterative grid search to find the 

best combination of signal gaine and noise gainn for the base-0% and base-32% stimuli 

separately that could match the median RT values observed for the 5 net-coherence levels for the 

pooled data across all subjects. In each iteration, we simulated multiple trials for each of the 5 

net-evidence levels for a range of pairs of values of gaine and gainn and compared the resulting 

median RT values against those of the observed data (chi-square calculation of the difference 

between observed and simulated median RT values). We began the iterative search using a large 

range and a coarse grain of increments of the values for gaine and gainn and 2,000-trial 

simulations, found a range of gain values that yielded the smallest chi-square values, then 

searched that smaller range of gain values with a finer grain of increments and 5,000-trial 

simulations. We continued this iterative process until we found a pair of gain values that 

consistently yielded the smallest chi-squared differences between the observed and simulated 

median RT values for 10,000 simulated trials each of the net-0% to net-32% stimuli, at gain 

increments of 0.025 and within the limits of the stochastic variability of the results of repeated 

simulations using the same gain values. This iterative grid search was robust because the solution 

space of fits across different combinations of values of the two gain terms had only one local 

minimum (data not shown). Other, more sophisticated parameter-search algorithms may have 

found a more theoretically “optimal” pair of gain values, but this approach was reliable, simple 

and provided the resolution required for this test of the effect of signal-dependent noise. 
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The best-fit results are shown in Figure 16, with gaine=1.425 and gainn= 4.45 for the 

base-0% stimuli, and gaine=1.40 and gainn = 6.10 for the base-32% stimuli.  As predicted, the 

simulation captured the reduction in RTs for low net-coherence stimuli between the base-0% and 

base-32% stimuli by an increase in the instantaneous stochastic noise variability (gainn), while 

the gain for evidence signal accumulation (gaine) remained nearly constant. The reduction in 

RTs for base-32% stimuli resulted primarily from an increased positive skew of the distribution 

of simulated RTs toward shorter values, as was observed in the subjects (Figure 16). In contrast, 

the simulated median RTs and overall RT distributions for the net-16% and net-32% stimuli 

showed much smaller differences between the base-0%and base-32%, again as was observed in 

the subjects. The correspondence between the shape of the observed versus predicted RT 

distributions is all the more striking since the magnitudes of the signal and noise gains were 

selected by matching predicted to observed data using only one measure of the central tendency 

of the RTs, their median value.  

This simple generative model was quite successful in capturing both the general trends 

and fine-grained details of the RT distributions simply by increasing the moment-to-moment 

stochastic variability of the evidence accumulation process between the base-0% and base-32% 

stimuli. It is possible that the stochastic noise gain term gainn comprises at least two sources of 

stochastic noise, one that is dependent on the stochastic properties of neurons independent of 

signal strength and remains constant across all stimulus conditions, and a second component that 

is dependent on signal strength. However, we did not attempt to estimate what those two gains 

might be separately.  

The simulations assumed that both accumulators integrated a noisy instantaneous signal 

proportional to the net coherence of each stimulus. Not surprisingly, when we ran simulations 
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using the best gain terms for either the base-0% or base-32% data but allowed the two 

accumulators to independently accumulate evidence proportional to the total coherent motion 

(base + net) of the base-32% stimuli, the simulated RTs became unrealistically short at all net 

coherences (data not shown). The LBA model displayed the same results. 

Interestingly, the iterative search procedure can find values for gaine and gainn that will 

yield simulated RT distributions whose median values provide a good fit to the observed base-

32% median RTs. However, to achieve that match of median RT values, the signal gaine was 

reduced from 1.4 to 0.625 to compensate for the greater total coherent motion in each direction 

in the base-32% stimuli. More importantly, the value of the stochastic noise gainn was reduced 

from 6.10 to 0.50. This generated simulated RT distributions that were unrealistically narrow, 

with very little variability about the median values and very little overlap between RT 

distributions for the different net-coherence values (data not shown; similar results were obtained 

for the LBA model). This emphasizes the importance of instantaneous noise in determining the 

shape of RT distributions in drift-diffusion models, and the potential perils lurking in simulation 

studies that use only one measure of the central tendency of model simulations (median or mean 

RTs, for example) to assess model performance (c.f., Ditterich 2006, 2010).  
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Discussion 

In this study, we used two types of RDK stimuli that had different combinations of coherent 

motion signals in opposing directions. This yielded RDK stimuli with a range of net motion 

signals towards the correct target against a variable background of balanced motion signals in the 

two opposite directions. Using these stimuli in a 2AFC paradigm, psychometric reaction-time 

and success-rate curves for human observers performing this task show that the decision process 

is mainly driven by the net motion evidence in the RDK stimuli. This is the first study to our 

knowledge to directly test this fundamental assumption of many decision-making models using 

RDK stimuli with different amounts of contradictory motion signals in opposite directions. We 

also found that the level of balanced base motion signals in the two opposite directions also had a 

smaller effect on performance at low net-coherence levels. Simulations with a simple generative 

drift-diffusion model showed that this latter effect could be explained by a shift in the 

distributions of RTs to smaller values resulting from a signal-dependent increase in intra-trial 

stochastic noise in the evidence accumulation process as the level of contradictory base 

coherence in both directions increased. 

 

Global motion perception 

Our NC and BD stimuli used RDK dots with extended lifetimes, and different dots carried the 

motion signal in different stimulus frames. They were similar to other Brownian-motion-like 

stimuli used in previous studies (Williams and Sekuler, 1984; Watamaniuk et al., 1989; 

Watamaniuk and Sekuler, 1992; Smith et al., 1994; Watamaniuk et al., 1995; Scase et al., 1996; 

Zohary et al., 1996; Pilly and Seitz, 2009; Schütz et al., 2010). Similar to the present findings, 
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those studies also found that subjects could perceive the direction of net global motion in RDK 

stimuli whether the motion signal was confined to a narrow band of directions like our NC 

stimuli or was distributed over a broad range of local motion directions like our BD stimuli. The 

general consensus of all these studies is that subjects integrate local motion information across 

space and time to generate a percept of a single direction of visual motion even when the local-

motion signals are readily discriminable and highly diverse. However, many of those studies 

were concerned with the stimulus properties that influenced the psychophysical threshold for 

global motion perception, and did not analyze the subjects’ overall choice behaviour across a 

range of stimulus conditions in the context of computational models of decision-making based 

on noisy sensory evidence. Furthermore, none of those global-motion studies used RDK stimuli 

in which variable amounts of motion signal were presented simultaneously in opposing 

directions. 

RDK stimuli with sets of dots moving in opposite directions have been used in previous 

studies, but usually with the goal of determining which stimulus conditions would evoke a 

percept of two transparent surfaces moving in opposite directions (Snowden et al., 1991; 

Snowden et al., 1992; Qian et al., 1994a; Qian and Andersen, 1994; Qian et al., 1994b; Snowden 

and Verstraten, 1999; Takemura et al., 2011). However, our stimuli were non-transparent, 

because they had balanced signal-R, signal-L and random-motion signals in all local regions of 

the stimuli that could be also carried by the same dot at different times (Qian et al., 1994a). 

Niwa & Ditterich (2008; Bollimunta and Ditterich, 2012) presented subjects with RDK 

stimuli that contained different levels of coherent motion simultaneously in three different 

divergent directions separated by 120°. The three uni-directional streams of coherent motion 

were presented against a background of random motion rather than with differing degrees of 
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motion in the opposite direction in each of the three directional axes. Nevertheless, consistent 

with our results they found that observer RTs and success rates were primarily driven by the net 

motion direction bias summed across all three streams of coherent motion (Niwa and Ditterich, 

2008; Bollimunta and Ditterich, 2012). Also similar to the present findings, they observed a 

secondary effect on RTs as a function of the total motion coherence in the stimuli, whereby RTs 

decreased as the motion coherence level in each of the three directions increased equally in each 

direction, i.e., 0% net coherence, but did not show the same decrease when the stimuli had a 

strong net direction bias (Niwa and Ditterich 2008). The ranges of RTs and success rates across 

stimulus conditions in that study were also very similar to those found here. 

Niwa and Ditterich (2008) proposed that this motion-coherence dependent reduction in 

RTs at low net motion coherence might be due to signal-dependent noise that increased as the 

total amount of coherent motion in the stimuli increased. They showed that they could fit their 

subjects’ choice behaviour with a computational model that included a signal-dependent noise 

variance term whose value increased as the total coherent motion in their stimuli increased. 

Using a simple generative drift-diffusion model, we showed that we could simulate the changes 

in median RTs and the total RT distributions between base-0% and base-32% stimuli by 

increasing the gain of the instantaneous stochastic noise term in the evidence accumulation 

process. This supports the possibility that signal-dependent variability in the evidence-

accumulation process could contribute to the effect of base coherence on choice behaviour, 

especially when the net motion signal was weak and the stochastic noise had a proportionately 

greater influence on the decision process. In contrast, when the net motion signal was strong 

(e.g., net-16% and net-32% stimuli), it dominated the accumulation process and the increased 
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stochastic noise for the corresponding base-32% stimuli (48/32 and 64/32) has less impact on the 

decision process. 

A key question is whether this signal-dependent noise is of peripheral or central origin. 

Our FPD and motion energy measures showed clear increases in stimulus variability at higher 

base coherences, raising the possibility that the stochastic physical variability of the visual 

stimuli may have contributed to the decrease in RTs as base coherence increased. However, MT 

neuron discharge rate and variability both follow a near-linear relationship with the strength of 

the motion signal in the RDK stimuli (Britten et al., 1993; Shadlen et al., 1996). Furthermore, 

this trial-to-trial variability of MT neuronal activity has been linked with subjects’ behavioural 

choices, such that when an MT neuron had a higher discharge rate in a trial with a given motion 

strength, the observing monkey had a higher chance of choosing the target in the neuron’s 

preferred direction (Britten et al., 1996). Most importantly, the variability of MT neuronal 

activity is largely independent of the trial-to-trial variability of the RDK stimuli; their responses 

are equally variable when the monkeys see exactly the same RDK stimulus in repeated trials 

(Britten et al., 1992, 1993; Britten et al., 1996; Cook and Maunsell, 2002). This suggests that 

most of the signal-dependent variability might be central in origin. 

 

Accumulation of net evidence  

Our findings show that RTs were primarily modulated by the net evidence in the stimulus across 

all levels of base coherence, which is in agreement with decision-making models that integrate 

the net difference in evidence over time. In contrast, our findings cannot be readily explained by 

simple race models in which non-interacting decision modules each accumulate the total 

evidence supporting their preferred choice independent of any contradictory evidence supporting 
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the alternate choice (Carpenter and Williams, 1995; Brown and Heathcote, 2005, 2008; Story 

and Carpenter, 2009).  These race models would predict a systematic decrease in RTs as base 

coherence increased at all levels of net evidence, which was not observed.  

 A key question is where the net coherence signal might be calculated. Studies in which 

subjects used RDK stimuli to choose between two eye saccade targets have implicated motion-

sensitive neurons in MT in the encoding of the sensory evidence for each choice and saccade-

related neurons in LIP in the net-evidence accumulation process (Shadlen et al., 1996; Shadlen 

and Newsome, 2001; Roitman and Shadlen, 2002; Mazurek et al., 2003). This implies that the 

net evidence signal might be calculated in LIP. Consistent with this possibility, Niwa and 

Ditterich (2008) reported that the sensory input signal to LIP was proportional to the total motion 

energy in their 3-direction RDK stimuli whereas LIP neuron activity was proportional to the net 

motion energy. 

 However, there is no a priori reason to assume that populations of MT “neurons” and 

“anti-neurons” will each encode the total motion coherence in their preferred motion direction in 

our stimuli, independent of any conflicting local motion. On the contrary, the opponent-motion 

properties of MT neurons are well-known. MT responses to RDK dot motions in their preferred 

direction are strongly suppressed in a direction-dependent manner by simultaneous local-motion 

stimuli in other directions in their RF (Mikami et al., 1986a; Snowden et al., 1991; Snowden et 

al., 1992; Qian et al., 1994a; Qian and Andersen, 1994; Qian et al., 1994b; Recanzone et al., 

1997). Moreover, motion-energy models that attempt to simulate the properties of MT neurons 

have an opponent-motion stage to extract the net motion energy in the preferred spatiotemporal 

orientation of the motion energy filter from the local-motion signals (Adelson and Bergen, 1985; 
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Simoncelli and Heeger, 1998). This suggests that the computation of the net motion signal begins 

in MT, but leaves open the possibility that it continues in LIP in saccade-related tasks.  

It is therefore reasonable to assume that MT neurons in the subjects in our study generate 

signals that begin to reflect the net motion signal in each stimulus and not just the total motion 

signal in each of the opposite directions.  Whether and where similar computations might 

continue in arm- and hand-related neural structures in this task is an open question, since no one 

to date has studied those structures in decision-making tasks using RDK stimuli. However, 

Romo and colleagues (Romo et al., 2004; Romo and de Lafuente, 2013) have found strong 

neural correlates of a tactile vibration-frequency discrimination task in arm-related cortical 

premotor and prefrontal areas when monkeys report their tactile perceptual decision by pushing 

on one of two buttons with the non-stimulated hand. This raises the possibility that activity in 

these same areas resembling that seen in saccade-related LIP neurons might arise when subjects 

report their perceptions of the global visual motion in RDK stimuli by making differential 

arm/hand movements. 

 

Implications of the differences in the NC and BD stimuli on the neuronal pools underlying 

the decision process 

The NC and BD stimuli were significantly different. The dots carrying the opposing coherent 

motions in each image of the NC stimuli moved in parallel along the horizontal axis at a constant 

speed, while the dots carrying the opposing coherent motion signals in the BD stimuli moved in 

a broad range of directions with a variable speed. The resulting RDK stimuli had a distinctly 

different appearance. This was reinforced by the performance of the two subjects in Experiment 

2 who displayed the usual response trends for base-32% BD stimuli but could not successfully 
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extract the net coherence signal in the base-32% NC stimuli.  Nevertheless, the FPD calculations 

confirmed that there were exactly the same amounts of physical displacements of the dots along 

the horizontal axis in corresponding NC and BD stimuli. In parallel, the subjects had very similar 

psychometric functions for RTs and success rates as a function of net and base coherence. 

Finally, the ideal observer analysis using the FPD data also showed that an ideal observer would 

perform similarly with both stimulus types. 

Studies have suggested that MT signals might be pooled in different ways depending on 

which neurons provide the most reliable signals required for the directional discrimination 

required in a task, such as coarse discrimination between opposite motion directions versus fine 

discrimination of similar directions (Snowden et al., 1991; Snowden et al., 1992; Purushothaman 

and Bradley, 2005; Jazayeri and Movshon, 2006). Although the subjects in this study made 

coarse direction discriminations to both NC and BD stimuli, the fact that the motion signals were 

contained in two very different bandwidths of local motion directions raises the possibility that 

the subjects pooled the MT activity in different ways for the two stimulus sets. This might have 

been feasible in Experiment 1 when the NC and BD stimuli were presented in different blocks of 

trials. However, this seems much less feasible in Experiment 2, in which the two stimulus sets 

were interleaved in different trials of the same block, and which would have required the subject 

to switch dynamically between two pooling strategies from trial to trial. 

A more parsimonious explanation for the similar choice behaviour of most subjects 

between the two types of stimuli is that they used a common pooling algorithm that combined 

the output signals from MT neurons with a broad range of spatiotemporal tuning properties to 

extract the global motion signal from both types of stimuli (Williams and Sekuler, 1984; Jazayeri 

and Movshon, 2006; Bosking and Maunsell, 2011; Webb et al., 2011). This would not require 
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the subjects to switch between “optimal” pooling algorithms from trial to trial based on prior 

knowledge of the statistics of motion signal distributions in the two types of stimuli. 

 

Perception of global motion direction: direction versus position cues 

Subjects were asked to report their percept of the direction of global motion in the RDK stimuli 

in this task. Consistent with a large number of studies using a wide range of different RDK 

motion algorithms, their choice behaviour suggested that they accumulated evidence about the 

direction of local motion signals across space and time to determine the global direction of 

motion  (Williams and Sekuler, 1984; Snowden and Braddick, 1989; Watamaniuk et al., 1989; 

Britten et al., 1992; Watamaniuk and Sekuler, 1992; Britten et al., 1993; Watamaniuk et al., 

1995; Britten et al., 1996; Scase et al., 1996; Shadlen et al., 1996; Zohary et al., 1996; Roitman 

and Shadlen, 2002; Kiani et al., 2008; Niwa and Ditterich, 2008; Pilly and Seitz, 2009; Kiani et 

al., 2013). 

 Alternatively, because the dots in our stimuli had an extended lifetime, subjects may have 

been monitoring and accumulating evidence about the time course of position changes of the 

dots. The spatial trajectory of each dot is the record of all its frame-wise displacements and its 

current position is the net result of the accumulated history of all of its frame-wise displacements 

since the start of the trial, including those reflecting the signal-R and signal-L motion 

components and the random motions. The change in position of each dot at each moment in time 

from its initial position at the start of each trial would thus reflect the net motion signal that it 

had carried up to that time. If indeed the subjects were monitoring the changes in dot positions 

across time, the present results would indicate that global motion percepts based on the temporal 

accumulation of evidence about the changing positions of many dots across time displays 
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strikingly similar psychophysics to that of motion perception presumably extracted from the 

instantaneous directions of displacements of dots with short lifetimes (Niwa & Ditterich 2008).  

However, this would require subjects to monitor the evolving trajectories of motion of 

many dots across time. In contrast, numerous studies have found that subjects are not very 

efficient in extracting multi-dot trajectory information (Williams and Sekuler, 1984; 

Watamaniuk et al., 1989; Watamaniuk and Sekuler, 1992; Watamaniuk et al., 1995; Scase et al., 

1996; Tripathy and Barrett, 2004; Pilly and Seitz, 2009). At the extreme, subjects might try to 

track the motion of a single dot. However, this is not easy to do in these stimuli because dot 

paths frequently cross, and would not be a very reliable estimate of the global motion signal in 

the entire population of dots, especially at low net-coherence levels, because each dot carries 

stochastically variable signal-R, signal-L or random-motion signals in each trial. 

Furthermore, the distinction between instantaneous motion direction and position changes 

may not be as absolute as it might seem. In RDK algorithms with random replacement (Shadlen 

et al., 1996; Kim and Shadlen, 1999; Shadlen and Newsome, 2001), the lifetime of dots that 

carries the coherent motion signal increases probabilistically as the level of motion coherence 

increases. Moreover, sequences of similar instantaneous directions and successive changes in 

position across the extended spatio-temporal “receptive fields” of motion energy filters are 

confounded by their spatial and temporal integration functions, suggesting that the temporal 

evolution of the spatial locations of visual stimuli is inherent in the motion analysis of motion-

energy models. 
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Tables 

 

 Net Coherence (%) 

0 4 8 16 32 44 
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0 0/0 4/0 8/0 16/0 32/0 44/0 

4 4/4 8/4 12/4 20/4 36/4 

8 8/8 12/8 16/8 24/8 40/8 

16 16/16 20/16 24/16 32/16 48/16 

32 32/32 36/32 40/32 48/32 64/32 

 

Table 1: The 26 motion conditions  
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Figures 

 

Figure 1: Experimental paradigm
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Figure 2: Spatial distributions of dot pixel displacements for the Narrow Coherence task
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Figure 3: Spatial distributions of dot pixel displacements for the Brownian Drift task 
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Figure 4: Polar histograms of the frequencies of the directions of dot displacements for the 

Narrow Coherence (NC) task   
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Figure 5: Polar histograms of the frequencies of the directions of dot displacements for the 

Brownian Drift (BD) task    
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Figure 6: Auto-correlation analysis  
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Figure 7: Ideal observer analysis  
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Figure 8: The spatiotemporal motion filters used in the motion energy analysis
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Figure 9: Psychometric curves for Experiment 1  
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Figure 10: Psychometric curves for Experiment 2  
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Figure 11: Psychometric curves for the two outlier subjects in Experiment 2 
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Figure 12: Psychometric curves for the remaining four subjects in Experiment 2
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Figure 13: Framewise pixel displacement (FPD) measures for Experiment 2
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Figure 14: Motion energy measures for Experiment 2  
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Figure 15: Reaction times as a function of measured FPD and motion energy in the NC and 

BD trials  
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Figure 16: Dual-diffusion race model fit of the Experiment 1 reaction time data
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Figure/Table Legends 

Table 1. The 26 motion conditions. Each cell indicates the coherent motion in the two opposite 

directions. Each column groups stimuli that have the same net coherence signal (i.e. the 

difference in coherent motion presented in the 2 opposite directions), but different base 

coherence (i.e. amount of coherent motion presented equally in both directions). 

 

Figure 1. Experimental paradigm. (A) Experimental task. Humans subjects watched a random 

dot kinematograms (RDK) and had to make a decision on whether there was more motion 

towards the right or left direction. Subjects then indicated their choice by moving a cursor from 

the central target one of the peripheral targets. Trial outcome and reaction times were recorded. 

(B) The two RDK versions. Different amounts of competing coherent motion is induced in the 

stimulus. In the Narrow Coherence version (left) the coherent motion is confined to the left and 

right directions. In the Brownian Drift version (right) the coherent motion is masked by random 

Brownian motion. See the Methods section for more detail.   

 

Figure 2. Spatial distributions of dot pixel displacements for the Narrow Coherence (NC) task. 

Dot displacements are split into three distinct groups. The randomly moving dots form a circle of 

displacements equidistant from the origin. The leftward and rightward coherent dots form two 

oppositely oriented columns of displacements. 
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Figure 3. Spatial distributions of random and coherent dot displacements for the Brownian Drift 

(BD) task. Dot displacements are again split into three groups. The randomly moving dots form a 

circle of displacements equidistant from the origin. The leftward and rightward coherent dots 

also form a circular distribution, but shifted leftward and rightward respectively. 

 

Figure 4. Polar histograms of the frequencies of the directions of dot displacements for the 

Narrow Coherence (NC) task. 0 degrees corresponds to the rightward direction and the direction 

of the net coherent motion. Dot displacements were sharply confined to the two opposing 

directions and were confined further with greater total coherent motion in the stimulus.  

 

Figure 5. Polar histograms of the frequencies of the directions of dot displacements for the 

Brownian Drift (BD) task. 0 degrees corresponds to the rightward direction and the direction of 

the net coherent motion. Dot displacements were broadly distributed in all directions and were 

shifted to the right as the net coherent motion increased.  

 

Figure 6. Auto-correlation analysis. (A) Two-dimensional histogram of vectors generated from 

all possible dot combinations between each pair of corresponding frames in 600 NC 64/32 trials. 

Displacements are measured in pixels. (B) Magnified view. 

 

Figure 7. Ideal observer analysis. (A) Distribution of the average FPD per trial for the NC 

condition grouped by net coherence. (B) ROC curves for the different net coherence NC stimuli.   
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Figure 8. The directionally selective spatiotemporal motion filters used in the motion energy 

analysis. The pair of filters on the left column are selective for leftward motion, while the filters 

on the right are selective for rightward motion. These filters are combined and convolved with 

the random dot stimuli to give a measure of motion as a function of time in the stimulus.  

 

Figure 9. Psychometric curves for Experiment 1. (A,B) Mean reaction time as a function of net 

coherence for the NC and BD stimuli respectively. Each line connects conditions with the same 

background base coherence. Values with the same net coherence are grouped into columns and 

are shifted slightly to increase visibility. (C,D) Success rate as a function of net coherence for the 

NC and BD stimuli respectively.  

 

Figure 10. Psychometric curves for Experiment 2. (A,B) Mean reaction time as a function of net 

coherence for the NC and BD stimuli respectively. (C,D) Success rate as a function of net 

coherence for the NC and BD stimuli respectively. The dotted black line indicates how well an 

ideal observer would perform if it could perfectly integrate the stochastic motion information 

presented to the subjects. All other labelling details are identical to Figure 9.  

 

Figure 11. Psychometric curves for the two outlier subjects in Experiment 2. (A,B) Mean 

reaction time as a function of net coherence for the NC and BD stimuli respectively. (C,D) 

Success rate as a function of net coherence for the NC and BD stimuli respectively. All labelling 

details are identical to Figure 9.  
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Figure 12. Psychometric curves for the remaining four subjects in Experiment 2. (A,B) Mean 

reaction time as a function of net coherence for the NC and BD stimuli respectively. (C,D) 

Success rate as a function of net coherence for the NC and BD stimuli respectively. All labelling 

details are identical to Figure 9.  

 

Figure 13. Framewise pixel displacement (FPD) measures for Experiment 2. Top row: Mean 

FPD as a function of base and net coherence. Values are grouped into separate columns of equal 

net coherence and different base coherence within each column. Mean FPD values were identical 

for NC and BD stimuli. Bottom row: variance of FPD for the stimuli. The BD conditions had 

systematically greater variance than the corresponding NC conditions. 

 

Figure 14. Motion energy measures for Experiment 2. Top row: Mean motion energy as a 

function of base and net coherence. Values are grouped into separate columns of equal net 

coherence and different base coherence within each column. Mean motion energy values were 

greater for the NC than the BD stimuli. Bottom row: variance of motion energy for the stimuli. 

The BD conditions had systematically lower variance than the corresponding NC conditions. 

 

Figure 15. Reaction times as a function of motion signal measured in the NC (left column) and 

BD trials (right column). Top row: RTs as a function of mean framewise pixel displacement. 

Bottom row: RTs as a function of mean motion energy. Each line connects conditions with the 

same background base coherence.  
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Figure 16. Comparison of the observed (left column) and predicted (right column) distributions 

of RTs for different motion coherence levels of base-0% (top row) and base-32% (bottom row) 

stimuli. Inserts in the right column: the observed and predicted median RTs for the different net 

motion coherence levels for each base coherence level. 
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III. Overall Discussion 

III.1. Review of the main objectives 

In the following two sections, I will discuss the results from the article in the context of the 

two main objectives stated in the introduction.  

III.1.1. Effect of directly competing motion 

The first objective of this work was to determine the effect of net evidence and total 

relevant evidence in a 2AFC task on an observer’s reaction times and success rates. We used a 

modified RDK stimulus design where different amounts of coherent random dot motion in 

both directions were combined to produce an RDK stimulus that had the same amount of net 

coherent motion in one of the two directions, but different amounts of simultaneous coherent 

motions in both opposing directions. We hypothesized that if the decision process was driven 

by the integration of net evidence, reaction times and success rates would be mainly driven by 

the net amount of coherent evidence towards the correct choice and would be independent of 

the total amount of motion in the stimulus. On the other hand, if the decision process was 

driven by two accumulators integrating evidence supporting their own preferred choice 

independent of each other, reaction times and success rates would be influenced primarily by 

the total amount of evidence for each choice rather than the net evidence.  

Our results showed that observers' reaction times and success rates were primarily 

driven by the net coherence of the stimuli, with a smaller secondary effect of base coherence 

when the net evidence signal was weak. Our results therefore support the idea that the 

decision-making process in the brain integrates the relative difference in evidence towards 
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both choices. We showed that models that are based on the integration of the net evidence in 

the trial can predict the RT and success rate data well. On the other hand, we showed that 

simple race models in which two competing integrators accumulate all the evidence for their 

respective choices would not fit well with the data.  

The stimuli that we have created are not the first to use multiple or opposite directions 

of motion in an RDK. Opposing motion RDK stimuli have been used to study the perception 

of transparent motion, in which local stimuli moving in different directions are grouped 

perceptually and perceived as separate transparent surfaces moving coherently in different 

directions (for a review, see Snowden and Verstraten, 1999). However, our stimuli do not 

evoke sensations of motion transparency, because dots can switch from carrying random 

motion to coherent motion displacements from frame to frame. Instead, our stimuli yield 

sensations of a bias in the direction of motion in one direction or the other. In addition, 

transparent motion has been studied as a visual perceptual phenomenon of itself. On the other 

hand, we are using opposing motion RDK stimuli in order to study the process of decision-

making in the context of drift diffusion models. By manipulating the amount of coherent 

motion bias in two opposite directions, this experiment demonstrated that the perception of 

global motion direction was determined primarily by the level of net motion bias in one of the 

two directions, across a wide range of levels of opposing total coherent motion. 

The results that we have presented add to the extensive psychophysical and 

neurophysiological literature showing that the decision process accumulates the difference in 

neuron/anti-neuron inputs (Roitman and Shadlen, 2002; Ditterich et al., 2003; Bosking and 

Maunsell, 2011; Bollimunta and Ditterich, 2012; Bollimunta et al., 2012). However, where in 

the brain does the differencing operation of opposing motion signals occur? Gold and Shadlen 
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(2001) proposed that sensory evidence is encoded in area MT and that opposing motion 

signals encoded in area MT are subtracted downstream by neurons in the parietal and frontal 

association cortex such as area LIP and FEF. MT neurons were thought not perform the 

differencing operation because MT neurons would increase their activity from baseline inter-

trial levels even when coherent motion was presented in the null direction (Britten et al., 

1993). The differencing operation could occur in LIP neurons, since they showed a ramping 

activity whose rate of rise was correlated with the net evidence in the trial (Roitman and 

Shadlen, 2002). The calculation of net motion coherence in LIP was further supported by a 

recent study by Bollimunta and Ditterich (2012) who recorded single unit activity and local 

field potentials (LFP) in LIP while monkeys performed the same 3-direction RDK task used 

by Niwa and Ditterich (2008). The monkeys showed the same psychophysics as humans, in 

that their choice behaviour was driven by the net motion coherence across the three motion 

streams. Bollimunta and Ditterich also found that single unit activity and the LFPs in LIP 

encoded different information about the coherent motion in the task. While single-neuron 

activity in LIP was best correlated with the net coherent motion in the trial, the LFP activity 

was better correlated with the sum of three coherent motion components. As LFPs are often 

presumed to reflect the synaptic input into the local circuits (Mitzdorf, 1985; Logothetis, 

2003), this suggested that area LIP was receiving the full motion signals as input and that the 

net difference operation was being calculated locally by LIP neurons (Bollimunta and 

Ditterich, 2012; Bollimunta et al., 2012).  

These neurophysiological recordings during a RDK motion discrimination task were 

used as a neural basis for the feed-forward inhibition race model proposed by Mazurek et al. 

(2003) (Figure I.4d), in which MT neurons play the role of sensory units encoding motion in 
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their preferred direction, while LIP neurons are the decision units that take the MT neuronal 

output and perform the differencing operation and accumulate the net evidence for the 

decision process. 

However, one of the problems with this interpretation of these results is that the RDK 

stimuli used in decision making research only induce one direction of coherent motion. One 

could therefore not directly test how an MT neuron would respond to mutually opposing 

motion signals presented at the same time. In fact, evidence from studies of transparent motion 

indicates that MT neurons do indeed show a form of motion opponency. For example, 

Snowden and colleagues (1991; 1992) used RDK stimuli with transparent motion to show that 

MT neuronal activity was systematically suppressed as more dots drifted in the anti-preferred 

direction. Qian & Andersen (1994) showed that the MT motion opponency occurred in RDK 

stimuli in which dots with opposing vectors were paired locally. Recanzone et al. (1997) 

demonstrated similar motion opponency of MT neurons even when only two dots moved in 

different directions. 

Consistent with these neurophysiological results, “motion-energy” computational 

models of motion perception also predict that an opponent-motion subtraction stage occurs in 

the early stages of the visual motion analysis pathway and usually attribute the opponent-

motion process to V1 complex cells and MT motion-selective neurons (Adelson and Bergen, 

1985; Snowden et al., 1991; Qian et al., 1994b; Simoncelli and Heeger, 1998). These lines of 

evidence suggest that the calculation of net motion evidence probably begins before area LIP, 

at least locally in area MT, but does not rule out the possibility of further opponent motion 

processing in LIP.  
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 In summary, the reaction times and choice probabilities of observers in our task were 

mainly driven by the net evidence in the trial. These results support decision models which 

accumulate a decision variable representing the net evidence in the trial. It is unclear where in 

the brain this differencing operation occurs but future neurophysiological studies using 

competing RDK motion stimuli could fill this knowledge gap.  

III.1.2. Integration of the global motion signal 

The second objective of my work was to explore the effect of distributing competing 

coherent motion evidence across a broad range of directions in the RDK stimuli. In my 

experiments, I compared the psychophysics of a 2AFC task using RDK stimuli with coherent 

motion confined either to the two opposing directions at a constant velocity (Narrow 

Coherence), or spread across many different directions (Brownian Drift). The key difference 

between the two types of stimuli used was that in the NC stimuli, the coherent motion vectors 

replaced the random motion vectors of the selected coherent dot populations. The coherent 

motion in the NC stimuli was therefore explicitly evident in the motion stimuli. In contrast, the 

coherent motion vector component in the BD stimuli was added to the random-motion vector 

of the selected dots and was therefore implicitly embedded in a change in the distribution of 

dot motion directions and velocities. Our hypothesis was that if the decision process integrates 

motion signals from a wide range of directions and velocities (Williams and Sekuler, 1984; 

Smith and Ratcliff, 2004; Jazayeri and Movshon, 2006; Bosking and Maunsell, 2011), then 

participants should have similar reaction times and success rates for both versions of the RDK 

stimuli. If instead subjects were only relying on motion signals in the narrow band of left and 

right directions since the subjects have to make a decision between left and right to point to 

the correct target, then the behavioural results for the two stimuli would be different. Our 
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results showed that observers had similar reaction times and success rate curves for both types 

of stimuli across all base coherences. This suggested that participants were able to integrate 

motion signals with the same efficiency whether the coherent motion signal was confined to 

the two directly opposite directions at a constant velocity, or was spread across many 

directions at varying velocities. Furthermore, they could perform the task equally well with the 

two types of stimuli whether they were presented in separate blocks (Experiment 1) or 

randomly interleaved in the same trial block (Experiment 2).  

The psychophysical results obtained for the NC and BD stimuli were consistent with a 

similar study by Niwa and Ditterich (2008), who found the subject behaviour in a three-

direction discrimination task (described in Section I.3.2) was driven by the net difference 

between the coherent motion in the correct direction and the average of the coherent motions 

in the other two directions. Furthermore, the psychophysical results obtained in the BD stimuli 

were consistent with previous studies by Sekuler and colleagues who used stimuli that spread 

the local motion along a wide range of directions centered on one net motion direction (for 

more detail, see Section I.3.2). They showed that observers could integrate the global coherent 

motion from an RDK in which the coherent dots had a distributed range of directions 

(Williams and Sekuler, 1984; Watamaniuk et al., 1989; Watamaniuk and Sekuler, 1992). In 

addition to replicating these results with our BD stimuli, we also demonstrated that the 

integration of local motion signals still occurs when coherent motion was presented in two 

opposing directions in the RDK.   

At the neural mechanism level, these results suggest that the pools of motion sensitive 

neurons used in this decision process were not limited to those with preferred directions in the 

left and right directions, but consisted of a broad distribution of preferred directions. The 
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evidence from this wide range of directions was then combined with motion evidence across 

different velocities as a global picture of the net evidence signal to be used in decision making 

process. The population of motion sensitive neurons in the middle temporal (MT) cortex 

exhibits a wide range of preferred motion directions (Dubner and Zeki, 1971; Zeki, 1974; 

Albright, 1984; Newsome et al., 1986; Mikami et al., 1986a, 1986b). In addition, MT neurons 

also have a diverse range of velocity tuning (Maunsell and Van Essen, 1983).  

Recent theoretical modelling has suggested that the global percept of motion can be 

generated in the brain by sampling the activity of a large population of MT neurons with a 

broad range of preferred motion directions (Jazayeri and Movshon, 2006). In this model, MT 

neurons are thought to represent the likelihood that the presented motion stimuli are in their 

preferred direction of motion. This decision framework would pool the population of neuronal 

activity and weigh each neuron’s activity based on their likelihood to contribute to the 

decision hypothesis. This framework makes it possible for the population of MT neurons to 

adapt their weighting based on the task demands towards the neurons that provide the greatest 

discriminatory information. During a coarse discrimination task such as the present task in 

which an observer must distinguish between two opposite directions 180° apart, if all the 

information is confined to those two directions (such as in the NC stimulus), a population code 

might only have to strongly weigh neurons tuned to the two opposite directions. However, if 

the global coherent motion is distributed across a range of local signals with different 

directions (such as in the BD stimulus), a population code would have to incorporate the 

neuronal activity of neurons with a wide range of preferred directions. The similar 

psychophysical profiles of the human subjects in our experiments for both the NC and BD 

stimuli would indicate that the pooling process was incorporating neurons with a wide range 
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of preferred directions. Under the framework of the Jazayeri & Movshon (2006) model and 

consistent with the neurophysiological results of Bosking & Maunsell (2011), these results 

suggest that the NC and BD stimuli activated the population of directionally selective MT 

neurons differently, but that the combined likelihood contributions from the MT neurons 

produced a similar likelihood output to the decision process.  

III.2. Quantifying motion evidence in RDKs 

The motion evidence given by the random dot stimuli is variable in nature due to three factors. 

First the dots are initialized in random locations for each trial. Second, each dot is initially 

assigned a random displacement vector between two frames. Third, the algorithm that 

determines which dots move randomly or coherently in each frame also uses a random 

selection process. Because of this variability, the motion signal that is presented from frame to 

frame and over many frames is not always exactly the percent coherence indicated for that 

particular trial. This results in transient deviations of the motion evidence from its intended 

value in a given trial that can cause an unintended bias in the motion evidence towards one or 

the other choice (Britten et al., 1996). To measure this trial-by-trial stimulus variation, we used 

two methods: the Framewise Pixel Displacement (FPD) analysis and motion energy analysis. 

The motion energy model that we used, developed by Adelson and Bergen (1985), attempts to 

simulate the motion sensitivity of an MT neuron. This model convolves four directionally 

oriented spatiotemporal motion filters with the RDK stimulus to give a measure of directional 

motion as a function of time. However, one of the limitations to the motion energy model is 

that the spatiotemporal filters are selective for a specific direction and speed. While this is 

good for stimuli that have the matching properties, such as the NC version of our stimuli, their 
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properties may not capture all the coherent motion component added to the dot motions in our 

BD version of our stimuli, in which the coherent motion component was carried implicitly by 

the dots that moved along all directions and with speeds of 0°/s and 4°/s. Indeed, as shown in 

Figure III.1, the motion energy values measured at 5 different angles centered on the left right 

axis show systematically lower motion energy values for the BD version compared to the NC 

version. 

In order to ensure that the same amount of potential motion information was being 

presented in both stimulus versions, we used the FPD analysis. This analysis takes a simple 

sum of the horizontal components of all the displacements made by each possible pair of dots 

between two corresponding frames. Aside from omitting dot displacements corresponding to 

speeds greater than 8°/s, which were twice as large as any of the dot displacements actually 

controlled by the RDK algorithm, the FPD analysis captures all possible horizontal motion 

signals in the input regardless of the speeds and directions of actual displacement, and free of 

any assumptions of how those stimuli were processed centrally. The FPD measurements 

produced nearly identical motion values for equivalent coherent-motion conditions of NC and 

BD stimuli, and indicated that the same amount of coherent component motion evidence was 

being presented in both stimuli.  
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Figure III.1: Motion energy (ME) values measured at different angles from the coherent 
motion for the Narrow Coherence (NC) and Brownian Drift (BD) stimuli
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It should be noted that the results of the motion energy analysis does not mean that the 

motion energy analysis is an inappropriate way to measure the relative amount of movement 

direction strength in RDK stimuli. Both FPD and motion energy measurements showed the 

same trends in the effects of net and base coherence on mean motion strength and variance for 

stimuli of the same stimulus type. Thus, the motion energy and FPD analysis will give 

comparable results when comparing levels of coherent motion strength within any one RDK 

algorithm.  

The FPD analysis provided more consistent measures of motion strength between the 

NC and BD stimuli than the motion energy analysis. The key difference between the FPD and 

the motion energy analysis is that the FPD analysis is a global measure of motion that simply 

sums the directional components of the physical displacements of the dots across all directions 

and velocities. In contrast, the motion energy analysis uses spatiotemporal filters that extract a 

measure of motion strength with a specific directional and velocity tuning, and that 

incorporate a number of known non-linear properties of MT neuron responses to visual motion 

stimuli, including temporal and spatial integration and facilitation of the local motion stimuli 

in their spatiotemporal “receptive fields”. As the motion evidence in the BD stimuli is 

distributed across many directions and velocities, there are fewer local motion stimuli at any 

given time and spatial position that optimally activate the filters, with the result that less 

motion energy is captured by the motion energy filter in the BD stimuli than the NC stimuli. It 

is possible that similar motion energy read-outs might be attained for the BD and NC stimuli if 

we used a large population of motion energy filters tuned for multiple velocities and all the 

spatio-temporal filter combinations that would be tuned to those velocities (Simoncelli and 

Heeger, 1998). This would further support the idea that the decision mechanism must integrate 
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from a pool of neurons with a wide distribution of directional and velocity tunings to perform 

the task at a similar level in the NC and BD stimuli.  

III.3. Limitations to the stimuli used 

One of the potential caveats in our work is that in the NC and BD stimuli, dots that were 

chosen to move randomly between a pair of image frames were not then randomly replaced to 

another location in the next frame of the image sequence like some conventional RDK stimuli 

(Roitman and Shadlen, 2002; Palmer et al., 2005; Kiani et al., 2008; Niwa and Ditterich, 2008; 

Pilly and Seitz, 2009). Instead, they were continuously displaced in a random direction in a 

form of Brownian motion. Because of this, the dots had a sustained lifetime for the entire 

duration of the trial, unless they disappeared behind the edge of the masking circular aperture. 

This raises the possibility that subjects could ignore the moment-to-moment motions of the 

dots and instead monitor the progressive changes in position of the dots across time, since the 

position of each dot is the cumulative result of the entire sequence of frame-to-frame 

displacements from the start of the trial. Furthermore, because each dot can be part of any of 

the three subgroups of dots (coherent left, coherent right, or random), its change in position 

over extended periods of time would approximate the net motion evidence in the stimulus. At 

the extreme, subjects could attempt to track the changing position of a single dot and try to 

base their directional choice on that single-dot evidence. However this would not be a very 

effective strategy for several reasons. First the single-dot displacements were rapid and noisy; 

dots frequently “collided” in crossed paths, making it difficult to track a single dot reliably. 

Furthermore, at low net motion coherences, the probability of any single dot showing a 

reliable change in position across time that is perceptually distinguishable from all of its 



 

116 

  

moment-to-moment movement changes in motion direction is low. This suggests that if the 

subjects were basing their perceptual decisions primarily on the basis of progressive changes 

in position across time, they would have to monitor the position trends of many dots 

simultaneously.  

However, our subjects did not seem to gain substantial additional evidence from the 

long lifetime of dots. If they were indeed primarily using the temporal evolution of dot 

positions across extended periods of time to make their perceptual decisions, our results show 

that the psychophysics of their motion perception decisions is remarkably similar to that for 

subjects who presumably had to depend primarily on the global directional signals available in 

RDK motion stimuli with short dot lifetimes (Niwa and Ditterich, 2008). This result is also 

consistent with studies that have directly compared the responses of subjects to RDK stimuli 

with short and long dot lifetimes and have found that subjects do not utilize the information 

given by the progressive changes in position of the dots across time but instead monitor the 

distribution of motion displacements from frame to frame in order to obtain a global percept of 

motion (Watamaniuk et al., 1989; Pilly and Seitz, 2009). 

Finally, it must be noted that the question of the degree to which subjects use 

instantaneous direction versus progressive position changes is inevitably confounded by the 

design of motion energy filters used to model the early processing of visual motion. These 

filters inherently incorporate information about the temporal evolution of the positions of dots 

in RDK stimuli since they are optimally activated by dots that move in a consistent direction 

over time across their spatio-temporal “receptive fields” (Adelson and Bergen, 1985; Qian et 

al., 1994b; Simoncelli and Heeger, 1998).  
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One additional feature of the BD stimuli is that the velocity of the dots carrying the 

coherent motion was not constant but varied as a function of the resultant direction of the 

vector sum of the coherent and random vector components. Another modification to the 

random dot algorithm could be used to eliminate this velocity variability. Instead of adding the 

coherent motion vector to the random displacement of the dot, the magnitude of the coherent 

motion steps could remain constant while the dot’s direction would be selected from a 

predefined uniform or Gaussian distribution of directions. In this way, the motion would be 

spread out along different directions, centered on one net direction, but have the same 

velocity. This method has been used previously by Sekuler and colleagues (Williams and 

Sekuler, 1984; Watamaniuk et al., 1989; Watamaniuk and Sekuler, 1992), in which dot 

directions were selected from a uniform or Gaussian distribution with a mean in the direction 

of global motion. However, while the motion signal was distributed in many directions, the 

Sekuler stimuli only contained one component of global coherent motion, instead of two 

distributed components of global motion with opposing mean directions as in our stimuli. One 

prediction with these stimuli would be that the FPD measurements would be lower for the new 

BD stimuli compared to the NC stimuli, because moving dots off the main axis would reduce 

the horizontal component of the coherent motion. The motion energy values would remain 

lower in the BD stimuli compared to the NC stimuli. It would be interesting to see if subjects 

would still have similar psychophysics with these new BD stimuli and the more conventional 

NC stimulus, assuming that less motion evidence will be shown in the BD stimuli.  
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III.4. Future Directions 

In the current work, we found that in low net-coherence trials, subjects’ reaction times 

shortened as the base coherence increased. This effect was paired with an increase in the 

measured variability of the motion signal presented in the different base coherence conditions. 

We suggested that increasing the base coherence increased the magnitude of momentary 

biases of motion signal away from the intended net motion coherence. Under the context of 

drift-diffusion models, this could be represented as an increase in the gain of the noise in the 

accumulation process, which could lead to faster decision times. Using a very simple 

generative drift-diffusion model, we showed that we could simulate not only the observed 

median RTs of subjects to different combinations of met and base coherence but also the 

overall RT distributions simply by increasing the gain of the stochastic noise term in the 

model without any other changes in the model parameters. This also implied that the 

momentary fluctuations could have an effect on subject choice. In the next few sections I will 

detail some of the more recent analyses that I have conducted in order to examine to what 

degree the trial-to-trial variability of the observed visual RDK stimuli could explain the trial-

to-trial variability in the subjects’ choice selection.  

Drift-diffusion models predict that if the accumulation process is perfect, without any 

leak or other loss of accumulated evidence, then the average signal presented to subjects on 

each trial should determine their subject choice. Figure III.2 shows a scatterplot of the single-

trial RTs as a function of the mean FPD in the trial. Each dot in the figure represents one trial 

plotted as a function of its average motion signal in the stimulus and the reaction time of the 

subject. Trial conditions were grouped by net coherence and collapsed over base coherence.  
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The solid horizontal lines show the average FPD signal for the two groups in each 

scatterplot. For the net 4-32% coherence conditions, the two groups represent success (black) 

and error (cyan) trials. There is a small shift in the mean motion displacements between the 

correct and error trials, whereby the average motion signal in trials in which the subjects made 

the correct choice was slightly stronger than in trials in which they made incorrect choices. 

This shift is also apparent in the net 0% conditions, where the two groups represent trials in 

which the subject selected the leftward (blue) or rightward (red) target. However, the 

distributions overlap extensively, and so it is not apparent that the average motion signal had a 

strong causal impact on choice selection on a trial-to-trial basis.  

To illustrate how moment-to-moment fluctuations could influence the amount of 

motion evidence being presented over the course of a trial, we measured the FPD values as a 

function of time for each trial. Figure III.3 shows the accumulation over time of FPD motion 

evidence presented for single trials. Each line represents the cumulative sum of momentary 

FPD motion evidence measured in one trial as that trial progressed. Lines are aligned to the 

start of the trial and are colored by the direction of coherent motion and the outcome of the 

trial. For example, in the net 4% column, the red and orange lines represent trials in which the 

net coherent motion was towards the right. Red lines indicate that the subject successfully 

chose the correct rightward target, while the orange lines indicate that the subject incorrectly 

chose the leftward target. There is extensive overlap in the cumulative information for the 

correct and incorrect trials.  
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Assuming that the decision process is modeled by a perfect integrator of the motion 

presented in the stimuli, there should be far fewer errors than observed in Figure III.3, even for 

the net 4% coherent stimuli as there is a clear bifurcation in the accumulated evidence for 

rightward and leftward trials. Furthermore, when the same cumulative motion evidence is 

aligned to the reaction time (Figure III.4), one can see that the final cumulative evidence 

presented in a trial can vary greatly between trials not only with different net evidence, but 

also for trials with the same net coherence. This is not consistent with the prediction of drift 

diffusion models that the evidence in the decision process is accumulated towards a bounded 

threshold and that a decision is made once the accumulating evidence exceeds that constant 

threshold across all stimulus conditions. Figures III.3 and III.4 therefore suggest that the 

integration process does not perfectly accumulate the motion evidence presented. There must 

be a neural source of variability in the accumulation of evidence that has a major impact on 

evidence accumulation in the decision process.  

While our data show that a central source of variability must have a major impact 

accumulation of evidence during the trial, we also found evidence that momentary fluctuations 

of motion evidence in the stimuli presented had an effect on subjects’ choice selections. 

Figure III.5 show a reverse correlation analysis of trial motion displacements averaged and 

aligned to the reaction time. There is a clear difference in observed motion displacements in a 

500 ms window before the RT in trials with different response outcomes for the 0%-8% net 

motion coherences. For example in a rightward net 4% trial, the average motion signal 

increased just before the subjects responded in trials where the subjects correctly picked the 

rightward target (red line), but decreases just before subjects incorrectly picked the leftward 
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target (orange line). This suggests that small momentary fluctuations may have a significant 

impact on both what choice the subjects made and when they halted the decision process.  

There are several possible explanations for this striking effect. One possibility is that 

the integration process is not perfect. There may be a leaky process which puts a greater 

weight on later evidence in the trial. Another possibility is that this is an effect of the 

termination process. Subjects might be waiting for a strong piece of motion information in the 

random dot kinematogram for stimuli with low net coherence before terminating their decision 

process and picking a target.  

To my knowledge this is the first time that the reverse correlation analysis has been 

applied to a RT version of the 2AFC task in which subjects are free to view the RDK stimulus 

until they have sufficient information to make a decision. Other studies used the reverse 

correlation analysis but with a fixed duration version of the RDK task. Zylberberg et al. (2012) 

used a RDK task with a fixed duration of 700ms and found that early information had a 

greater influence on subject choice. Interestingly, the window in which motion energy 

fluctuations were most correlated with subject choice was also around 500ms, similar to our 

results.  

In Kiani et al. (2008), monkeys were presented with a RDK 2AFC direction 

discrimination task in which the stimulus duration was experimentally controlled to vary 

between 80-1500 ms. Kiani et al. reported that in their experiment, the earlier evidence had a 

disproportionate impact on decisions while later evidence was discounted. However, this 

effect could likely be explained by the design of the task. The distribution of stimulus 

durations was out of control of the observing monkeys. As a result, the monkeys were 

confronted with a task environment with considerable uncertainty at the start of each trial 
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about the duration of the motion stimulus. It would seem reasonable to expect that this 

uncertainty would lead the monkeys to pay more attention evidence early in the trial because 

they did not know when the trial would end. The different results from the reverse correlation 

analysis between fixed duration and RT versions of the RDK direction discrimination task 

suggests that the decision process can flexibly weigh momentary evidence differently 

depending on the design and requirements of the task, and on expectations about the duration 

of available motion evidence.  

In summary, the average motion signal presented to subjects on each trial does not 

have a strong effect on their choices. The extensive overlap of the accumulated motion 

evidence in trials in which the subjects made correct and error choices suggests that a central 

source of stochastic neural activity is a major source of variability. Nevertheless, momentary 

fluctuations in the motion signal in a time window of 500 ms before subjects terminate their 

decision correlates with their eventual choice selection. The preliminary analysis presented in 

this section has the potential to address the validity of some of the fundamental features used 

in decision making models that rely on the accumulation of noisy evidence. This avenue of 

research will be one our objectives for a future publication.  
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IV. Conclusion 

In conclusion, we have developed a novel RDK paradigm that tested how simple perceptual 

decisions are formed when two opposing motion signals are presented in one visual stimulus. 

Using this stimulus we have shown that the decision making process is based on the net 

difference of these two opposing signals. Furthermore, similar psychophysical performance on 

the NC and BD versions of the experiment demonstrate that the decision process can integrate 

motion signals from a wide distribution of directions in order to obtain a global percept of 

coherent motion.  
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