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Sommaire

Cette thése a pour but de développer et d’appliquer des procédures économétriques
adaptées aux modeles dans lesquels il est difficile ou impossible de dériver des résultats
distributionnels pouvant servira des fins d’inférence ou d’estimation. Ces deux domaines
de 'analyse économétrique seront abordées successivement 3 travers trois essais.

Les deux premiers sont consacrés a l'inférence et ont pour objectif de dériver des
procédures exactes dans divers modéles fréquemment utilisés en économétrie, tels que
les modeles dynamiques autorégressifs (AR) ou de moyenne mobile (MA), ou encore
des modeles présentant d’autres formes de dépendances que la corrélation temporelle,
comme les modeles de régressions empilées apparemment non reliées (SURE) et & don-
nées de panel.

L’idée directrice est que dans des situations ol il est typiquement difficile, voire
impossible & ce jour, d’obtenir des procédures dont on connait les propriétés a distance
finie, une simple division de I’échantillon simplifie considérablement les propriétésrdistri—
butionnelles du modéle, au point qu’il est possible d’appliquer les méthodes d’inférence
classiques pour lesquelles on dispose de bornes sur les probabilités d’erreur. Ces procé-
dures sont composées de deux étapes. La premiére consiste & trouver un moyen adéquat
de diviser I’échantillon en plusieurs sous-ensembles d’observations, aboutissant & une
simplification du modéle. Aprés avoir obtenu les résultats d’inférences dans chacun
de ces sous-modéles ou modeles auxiliaires, on essaie dans une deuxiéme étape de re-
combiner ces résultats afin de former une régle de décision ou une région de confiance
uniques, fondées sur 'intégralité de I’échantillon. |

Cette méthode de division-combinaison est présentée au début du premier essai dans

un cadre théorique tres général. Bien que cette technique soit applicable & un grand
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nombre de modeéles, la facon dont se fait la premiere étape de division de P’échantillon

est propre au modele considéré. Dans certaines situations, elle apparait de manitre

naturelle a travers la spécification du modeéle, comme pour les modéles SURE. Le cas des

modeles MA qui est décrit immédiatement apres reste également relativement simple.
Par contre, lorsqu’on s’intéresse aux modéles AR, la division de I’échantillon est suggérée
par des résultats théoriques beaucoup plus élaborés. Pour cette raison, ces modéles font
a eux seuls I’objet du deuxidme essai. Nous y présentons et prouvons des propriétés des
processus de Markov et montrons comment les utiliser pour appliquer les techniques de
division-combinaison développées dans le premier essai.

Dans chacun des modéles abordés, nous montrons explicitement comment se fait
chacune des étapes de la procédure et présentons des applications 3 des données macro-
et microéconomiques. De plus, pour les modales MA(1) et AR(1), nous présentons
les résultats de nos simulations qui nous ont permis d’évaluer la performance de notre
méthode. Ces résultats montrent que dans la plupart des cas, I’étape de combinai-
son permet un gain de puissance. Pour certaines paramétrisations du modele MA(1),
nous montrons que notre technique n’est dominée par aucune des procédures classiques
habituellement utilisées. Nos simulations permettent aussi d’illustrer simultanément le
manque de fiabilité de ces méthodes et la validité de celle que Nous proposons.

Dans le troisitme essai, nous abordons le probleme de [’estimation d’une certaine
classe de modéles avec dépendances. Ici, nous ne proposons pas de nouvelle technique,
mais nous nous intéressons plutdt A une procédure d’estimation récemment développée,
appelée inférence indirecte. Elle est caratérisée par la possibilité de simuler le modéle
et par I'utilisation d’estimateurs auxiliaires plus simples & obtenir, dérivés & partir de
ces simulations. Son domaine d’application est extrémement vaste et elle permet de
résoudre des problemes d’estimation réputés difficiles. Nous I’étudions ici dans le con-
texte d’une certaine classe de modéles avec dépendances constituée des équations dif-
férentielles décrivant la dynamique de processus stochastiques. LA encore, nous sommes
confrontés & une situation ot les propriétés statistiques du modéle sont difficiles & établir
et utiliser. L’approche de linférence indirecte est tout-a-fait appropriée A cette caté-

gorie de modeles. Cependant, ses propriétés ne sont connus que lorsque les échantillons



sont de taille infinie. Dans le troisiéme essai, nous étudions le comportement de cette
methode a distance finie, en appliquant & des transformations du parameétre d’intérét.
Puisque nous avons choisi de le faire dans le contexte de modéles de finance théorique,
en raison de l'utilisation de plus en plus répandue des équations de diffusion dans ce
domaine, nos conclusions débordent du cadre statistique. En effet, tout en montrant les
bonnes propriétés du type d’estimateurs que nous utilisons, nous mettons en’évidence
inadéquation du modéle de finance & décrire de fagon satisfaisante certains phénomenes

observés sur les marchés financiers.



Résumé

- Cette these est composée de trois essais traitant de certains aspects de deux probléma-
tiques majeures de I’économétrie que sont I’estimation et I'inférence. Elle a pour but
de présenter et d’appliquer des techniques adaptées aux modales pour lesquels il est dif-
ficile ou méme impossible d’obtenir des resultats distributionnels pouvant étre utilisés
a des fins d’inférence et d’estimation. Méme si dans la pratique ces deux problémes
sont presque toujours indissociables, on peut aussi choisir de les percevoir comme con-
ceptuellement différents. C’est ce que, pour des raisons d’exposition, nous avons décidé
de faire dans ce qui suit, et les essais seront logiquement répartis dans deux volets.

La premiére partie regroupe deux essais qui visent 3 développer des procédures
d’inférence dans divers modeéles économétriques. Nul doute que les techniques de test
et de construction de régions de confiance occupent la place centrale en économétrie.
Cependant les procédures d’inférence de base de la discipline, développées dans un cadre
ou les observations composant I’échantillon sont indépendantes, ne s’applique évidem-
ment plus lorsque le modeéle est dynamique. Les coefficients inconnus paramétrant la
dépendance temporelle interviennent généralement dans la distribution de la statistique
que l'on souhaite utiliser pour former la région critique d’un test ou pour construire
une région de confiance sur le paramétre d’intérét du modéle. Dés que se présente ce
genre de situation, la procédure habituellement retenue consiste 3 trouver un estimateur
convergent du paramétre de nuisance et 3 le substituer & la vraie valeur inconnue de ce
parametre dans la distribution de la statistique. Cette pratique repose sur des résultats
de convergence en loi et n’est par conséquent valable que pour des échantillons de taille
infinie. Ses propriétés sont inconnues dés que le nombre d’observations est fini. Ii appa-

rait donc clairement que les principes de base de I'inférence statistique tels que définis
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dans I"approche de Neyman-Pearson [voir Lehmann (1936. p.69) ou Gouriéroux et Mon-
fort (1989, p.14)] ne sont plus respectés. Ainsi I'utilisation de ces procédures ne conduit
pas a des tests dont la taille est nécessairement inférieure au niveau. De méme les régions
de confiance ainsi obtenues ne respectent pas la contrainte imposant que la probabilité
de couverture doit étre au moins aussi grande que le niveau. Seules des expériences
de type Monte Carlo permettent de mesurer ces déviations de niveau. Aussi dans la
pratique espére-t-on que les distortions dues 3 I’utilisation d’approximations asympto-
tiques restent minimes. Cependant‘, plusieurs études montrent le manque de fiabilité de
telles procédures. Dans le contexte de modéles autorégressifs, on peut consulter Park
et Mitchell (1980), Miyazaki et Griffiths (1984) et DeJong et al. (1992). Burnside et
Eichenbaum (1994) rapportent des résultats semblables pour les tests fondés sur des
statistiques de type Wald dans le contexte d’estimation par la méthode des moments
généralisée (GMM). Des résultats plus généraux, basés sur des arguments théoriques,
montrant I’'invalidité des procédures asymptotiques fondées sur des statistiques de type
Wald ont été établis par Dufour (1994). On peut aussi noter que 'un des essais qui
constituent la these vient également renforcer cette conclusion.

Lorsqu'il s’agit de tests, une alternative aux méthodes d’inférence asymptotique est
d’avoir recours aux tests & bornes. Le principe consiste & borner les points critiques
associés a la vraie distribution inconnue de la statistique de test. Il est clair que si
de telles bornes sont disponibles, on peut arriver a construire un test ayant une région
critique incluse dans la région critique du test (fictif) basé sur la vraie valeur critique. Les
test & bornes sont doné des procédures conservatrices. Des variantes de cette méthode
ont été proposées par Vinod (1976), Kiviet (1980), Zinde-Walsh et Ullah (1987) et Hillier
et King (1987). Cependant, il semble que les bornes proposées deviennent arbitrairement
grandes lorsque le paramétre de nuisance du modgle se rapproche de certains seuils
critiques, comme les valeurs de non-stationnarité dans les processus ARMA. De fait, ces
procédures deviennent totalement non-informatives au voisinage de ces seuils. Dufour
(1990) a proposé une autre catégorie de tests & bornes ne présentant pas ces défauts.
Par contre, sa procédure devient lourde 3 appliquer lorsque la structure de dépendance

du modele se complexifie.
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La méthode d’inférence que nous proposons ici est une alternative & celles qui vi-
ennent d’étre décrites. Elle a pour but premier de dériver des tests et des régions de
confiance valides dans le contexte de modéles dynamiques. On peut noter ici que la
procédure est suffisamment générale pour pouvoir s’étendre 3 des modéles présentant
d’autres formes de dépendances que la corrélation temporelle. Plus généralement elle
permettra d’apporter des solutions & des problemes ou des résultats distributionnels
pouva.ht étre utilisés pour Dinférence sont difficiles 3 obtenir. C’est ainsi que pour-
ront étre envisagés des problémes d’inférence dans des situations aussi variées que les
modeles dynamiques autorégressifs (AR) et de moyenne mobile (MA), et les modeles 3
données de panel ou de régressions empilées apparemment non reliées (SURE). Cepen-
dant, 'emphase portera sur les deux premieres catégories de modeles puisque ceux sont -
eux qui ont motivés le développement de la procédure.

L’idée directrice est que dans des situations ot il est typiquement difficile, voire
impossible & ce jour, d’obtenir des procédures dont on connait les propriétés & distance
finie, une simple division de I’échantillon simplifie considérablement les propriétés distri-
butionnelles du modele, au point qu’il est possible d’appliquer les méthodes d’inférence
classiques pour lesquelles on dispose de bornes sur les probabilités d’erreur. Ces procé-
dures sont composées de deux étapes. La premieére consiste a trouver un moyen adéquat
de diviser I’échantillon en plusieurs sous-ensembles d’observations, aboutissant & une
simplification du modeéle. Aprés avoir obtenu les résultats d’inférences dans chacun
de ces sous-modéles ou modéles auxiliaires, on essaie dans une deuxiéme étape de re-
combiner ces résultats afin de former une régle de décision ou une région dé confiance
uniques, fondées sur l'intégralité de 1’échantillon.

Cette méthode de division-combinaison est présentée dans la premiére partie de la
thése, consacrée & linférence. Elle est appliquée a divers modeéles économétriques avec
dépendances auxquels elle est remarquablement bien adaptée. Ainsi seront résolus des
problemes de tests et de construction de régions de confiance dans kdes formulations
tres générales des modeles AR, MA et SURE. La technique de division-combinaison est
présentée en détail dans chacune de ces spécifications. Bien que la deuxiéme étape de la

procédure, dans laquelle on combine les résultats d’inférence obtenus 3 la premiere étape,



soit la méme dans chacun des différents modeles, la fagon dont s’effectue la division de
PPéchantillon est propre 2 la structure du modéle considérs. Dans certaines situations, la
formation des sous-échantillons s’impose naturellement comme dans le cas des modeéles
SURE. Par contre, dans d’autres contextes, la méthode de division des observations
est suggerée par des résultats statistiques plus élaborés. A cet égard, les modeles AR
constituent une classe particuliere. Pour cette raison, ils sont traités séparément dans
le deuxiéme essai.

Dans ce qui constitue le premier chapitre de la these, nous essayons de construire
la méthode de division-combinaison et de ’inscrire dans un cadre théorique rigoureu:{,
qui permet de la proposer comme une procédure d’inférence pouvant s’appliquer & une
vaste gamme de modeles économétriques. Nous commengons par aborder le probleme
des tests d’hypothéses. Afin de développer un tel cadre d’analyse, nous supposons, et
nous montrerons que c’est le cas dans tous les modeéles considérés par la suite, que
Ihypotheése nulle peut s’exprimer comme ’union ou Vintersection de sous-hypothéses.
Si chacune de ces sous-hypothéses peut &tre testée au moyen d’une procédure valide
fondée sur 'utilisation d’une statistique, nous proposons une méthode pour recombiner
les différentes régions critiques qui en résultent afin d’obtenir une seule région de rejet
fondée sur I'intégralité de I’échantillon. L’outil probabiliste utilisé de fagon systématique
pour arriver a un tel résultat est I’inégalité de Bonferroni. La méthode doit sa, généralité
au fait qu’elle est bitie non pas & partir d’un modéle particulier, mais plutdt sur la
possibilité de réexprimer ou décomposer I’hypothése nulle.

Par une approche similaire, nous pouvons dériver une procédure pour construire des
régions de confiance. Il est intéressant de constater que cette démarche nous conduit
a proposer une nouvelle classe d’estimateurs, qui sont une généralisation du concept
d’estimateurs de Hodges-Lehmann. Bien que l'estimation ne soit pas le but principal
de cette partie de la thése, ce sous-produit apparait de fagon naturelle comme le pro-
longement logique d’une analyse économétrique d’un modéle au moyen des techniques
de division—combinaison proposées ici.

Nous proposons une étude détaillée de la procédure lorsqu’elle est appliquée & un

modele de type MA(1) univarié pour tester une hypothese sur le paramétre de moyenne.



Nos expériences de tvpe Monte Carlo portant sur ses performances comparatives rap-
portent des résultats plus que satisfaisants. En effet. notre procédure n’est dominée
par aucune des méthodes (asymptotiques) de test habituellement employées dans ce
genre de situation. De plus. les mémes résultats apportent une évidence supplémentaire
sur le manque de fiabilité des procédures concurrentes qui. pour certaines paramétrisa-
tions du modele, necessitent des corrections substantielles de taille afin de pouvoir étre
appﬁquées en contrélant le risque de premiere espece.

Le souci de vouloir étendre la procédure de division-combinaison & la classe des
modeles AR qui, avec celle des modeles MA. est la plus couramment utilisée pour
représenter les dépendances temporelles en économétrie, nous conduit directement au
deuxiéme essai.

La fagon dont se fait la division de |’échantillon généré par un modéle autorégressif
repose sur des résultats théoriques propres aux processus de Markov. Par la généralité de
leur portée, ces résultats, qui sont enoncés et prouvés au sein du premier essai, peuvent
etre considérés d’une maniére tout & fait indépendante du probléme d’inférence qui nous
préoccupe ici. Ils constituent donc en soi une contribution générale & I’étude des proces-
sus de Markov. Cependant, tout en essayant de nous départir le moins possible de leur
généralité, nous les avons établis en vue de nous en servir pour résoudre des problémes
d’inférence sur les parameétres de la distribution de processus markoviens admettant
une représentation autorégressive. C’est pourquoi nous avons pris soin de clairement
détailler Iutilisation que nous pouvons en faire dans cette perspective. En particulier,
puisque le modéle AR(1) est notre objectif central, nous avons consacré la majeure par-
tie de ’essai & montrer comment ces résultats peuvent é&tre utilisés pour obtenir des tests
et des régions de confiance sur les coefficients du modéle. Apres une bréve description de
la maniere dont les résultats d’inférence basés sur les sous-échantillons sont combinés,
nous étudions les propriétés de puissance des tests d’hypothese.

La principale contribution de la premigre partie de la these appartient au domaine
de I'inférence dans les modéles économétriques avec dépendances. Par conséquent, tous
les problemes touchant a estimation de ces modales sont laissés de c6té. On peut pour-

tant aisément concevoir que lors d’une analyse économétrique, I'estimation est une étape



tout aussi importante que les tests d’hypotheses ou encore la, construction de régions de
confiance. Plus encore, 'estimation va dans certains cas de pair avec I'inférence, comme
dans toute situation ou la statistique de test est directement dérivée d’un estimateur
(par exemple les statistiques de type Wald ou encore les statistiques exprimées comme
des différences de fonctions objectif ayant servi de critéres pour obtenir un estimateur).
C’est pourquoi nous n’avons pas voulu nous limiter 3 des aspects de 'inférence dans
les modeles avec dépendances sans étudier quelques problémes liés & Iestimation de ces
modeles. Ainsi, faisant )suite a la premiére partie de la thése dans laquelle nous avons
développé des procédures d’inférence et étudié leurs performances, nous consacrons le
deuxieme volet & étudier, toujours dans le contexte de modales avec dépendances, cer-
tains aspects des problémes d’estimation. Méme s’il existe, comme nous I’avons re-
marqué, une certaine complémentarité entre "inférence et Pestimation, la motivation et
"approche sur lesquelles sont fondées dans la deuxieme partie different quelque peu de
celles de la premiére.

Au lieu de nous attacher a dériver des outils économétriques, nous considérons
des techniques déja existantes, quoi que trés récentes et encore peu utilisées, et nous
nous intéressons & étudier leur comportement lorsqu’elles sont appliquées & une cer-
taine classe de modeéles dynamiques qui décrivent I’évolution de processus stochastiques
définis sur un intervalle de temps continu. De tels modéles occupent maintenant une
place prépondérante dans certains domaines de ’économie comme la, finance théorique
ou ils sont systématiquement utilisés pour décrire I’évolution des prix des divers actifs
financiers [voir par exemple Duffie (1992)]. Malgré la fréquence de leur utilisation, ces
modeles sont longtemps restés trés difficiles & estimer. La raison principale en est que
les données dont nous disposons ne sont enregistrées qu’a des dates disjointes. Par
conséquent, si nous désirons écrire la vraisemblance d’un tel échantillon, il nous faut
connaitre les probabilités de transition d’une date d’observation 3 autre. Or il est bien
connu que de telles probabilités sont tres difficiles & obtenir et prennent des formes ex-
trémement peu maniables [voir par exemple Dacunha-Castelle et Florens (1986)]. Une

fois de plus, nous nous retrouvons dans une situation ol nous ne pouvons pas utiliser les

résultats distributionnels du modéle 4 des fins d’estimation. Récemment des techniques



nouvelles ont été développées par Duffie et Singleton (1993), Gallant et Tauchen (1992)
et Gouriéroux, Monfort et Renault (1993) qui permettent d’estimer ce genre de modeles.
C’est notamment le cas pour un grand nombre d’équations différentielles stochastiques,
et en particulier pour le modele qui nous intéresse ici. Méme si de ce fait ces procé-
dures semblent trés prometteuses, elles ont été encore relativement peu utilisées. En
ce sens, le troisieme essai de cette these contribue & leur essor. Le comportement des
estimateurs obtenus par 'application de ces techniques a été étudié par Gouriéroux
et Monfort (1994) et Broze, Scaillet et Zakoian (1995) lorsque les équations de diffu-
sion admettent comme solution un mouvement brownien géométrique ou un processus
d’Ornstein-Uhlenbeck.

L’approche que nous avons retenue dans cet essai est motivée par les remarques
que nous venons de faire. En raison de I'utilisation de plus en plus répandue de la
classe de processus décrits plus haut dans le domaine de la finance, nous avons choisi de
mener notre étude de la méthode d’estimation dans le cadre d’un modale d’évaluation
d’options américaines, apportant par I3 un contenu appliqué a la these. Nous atteignons
ainsi simultanément plusieurs objectifs. Premigrement, nous appliquons la méthode
d’estimation a de vrales séries économiques, contrairement 3 la plupart des études ot
les échantillons sont simulés. Cela nous permettra de souligner quelques aspects de la
procédure qui ne sont pas présents lors de simulations. Deuxiemement, nous allons au-
dela de I’étude des propriétés statistiques de la méthode d’estimation en I’appliquant
a une famille de fonctions déterministes dont argument est le vecteur de paramétres
composé des termes de tendance et de volatilité du processus. Troisiemement, le fait
d’avoir choisi comme cadre théorique un modeéle d’évaluation d’options américaines nous
permet d’appliquer la méthode & un probléme qui, & ce jour, n’avait pas été résolu, a
savoir 'estimation de la frontiere d’exercice optimale. Les seules références 3 ce sujet
sont Bossaerts (1988) et de Matos (1994). Cependant, méme si I’estimation de cette
frontiere est la préoccupation majeure de ces travaux, aucun ne rapporte d’application
de leurs méthodes a des données financieres. On peut donc considérer que la frontiére
qui est estimée dans le troisidme chapitre est la premiere & I’avoir été. De plus, au-

dela d’une simple analyse économétrique d’une catégorie d’estimateurs, nos résultats
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fournissent un moyen d’évaluer le modéle théorique d’évaluation d’actifs contingents
dans une perspective tout-a-fait nouvelle.

Nous présenterons donc successivement ces trois essais, chacun comprenant une in-
troduction et une conclusion qui lui sont propres. Dans la derniére partie de la these,
nous commenterons les resultats que nous avons obtenus et en ferons une synthese 3

partir de laquelle nous ouvrirons d’autres avenues de recherche.
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Chapter 1

Union-Intersection and
sample-split methods in
econometrics with applications

to MA(1) and SURE models

1.1 Introduction

Straightforward application of usual inference procedures (tests and confidence regions)
in econometrics is often impossible. The problem usually comes from an insufficient
knowledge of the probability distribution generating the data. This is obviously the case
when the distribution is unknown, up to some of its moments. However, the problem
still arises in situations where we know the family to which the generating distribution
belongs. This is typically the case when the assumptions made on the disribution depart
from those made in the linear regression model framework, the most important of which
are the absence of time dependence and homoskedasticity.

This paper treats in a unified way two apparently distinct categories of problems
where distributional results are difficult to establish. The first one consists in compar-
ing and pooling information about parameter estimates from samples whose stochastic
relationship is totally unspecified. In such cases, it is not possible to write a usable
likelihood function and standard finite sample or asymptotic methods are not applica-
ble. The second one consists in making inferences in models for which the distributions
of standard test and confidence set procedures are difficult to establish, e.g. because

of the presence of nuisance parameters, but for which relevant test statistics based on



appropriately selected subsamples are distributionally more tractable.
For example, consider the case where we have m 2 1 regression equations which
can be written
Yie =2 B+, t=to;+1,--, to; + N
(1.1)
Ui = (Uigg 41y Uity +N;) ~ N(0,8), 1=1,2,...,m,
where 3; is an unknown k; X 1 vector (k; < Ny}, @i, is a k; X 1 vector of variables
exogeneous for 3;, and €2; is an unknown positive definite, non singular V; X V; matrix,
i €1:={1,2, --- ;m}. This setup describes situations frequently met in econometrics.

Particular cases of interest include the following ones.

1. models in which each of the equations expresses the same relation between the
same variables (i.e. the coeflicients §; have the same economic interpretation),
but each one corresponds to a different sample and the different samples may not

be independent in a way that is difficult to specify (e.g. panel data);

2. models with structural change: this situation is statistically similar to 1, but in
this case, with m = 2, we typically have tg5 > toq +1{ or to; > too + [ for some

leZiy;

3. stacked regressions: each equation represents a different economic relation. We
can distinguish several cases:
(a) the Y variables are the same in the m equations, but variables aré different;
(b) the Y variables are different but the z variables are the same;
(c) both Y and z variables are different in the m equations:
4. dynamic multivariate models: we allow for time dependence by setting w,, #0

for some ¢,5 € {to;+ 1, --+ ,to; + N;} and some i € I, where Wi, , is the (¢, s)-th

element of ;.

We give some examples of such econometric models in the case m = 2 and k; =

1, e = 1,2. A model of group 1 could express the relation between the log of the wage
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and a variable measuring the level of education for two individuals. Coefficients J are
interpreted as the return to education [see Ashenfelter and Krueger (1992) for instance].
We wish to test if this return is the same for individuals 1 and 2. In models of group
2, we may want to know whether the parameter linking variable y to variable z is the
same on the whole period of observation. An example of model 3({a) could be a model
composed of two equations, y being the consumption, zy, the instantaneous income and
z2 the permanent income. The two equations of model 3(b) may describe the relation
between the consumption of two goods (y; and y;) and the consumer price index (z).
And model 3(c) is composed of two distinct relationships, but for some reason, we want
to test the equality of the two coefficients. An important example of a group 4 model
is when m =1 and w; ; = Jz(p!t‘s’) X (1-pH)~1 vt se {to+1, -+ tog+ N}, which is
the linear regression model with (stationary) AR(1) errors.

The most common practice in such situations is to rely on asymptotic inference
procedures. The solution to the problem usually consists in applying Generalized Least
Squares (GLS)-type methods of estimation to the model and then make inference on the
basis of this estimation. The lack of reliability of such methods is now well documented
in the literature. This feature of asymptotic tests has been established by Park and
Mitchell (1980), Mivazaki and Griffiths (1984), Nankervis and Savin (1937) and DeJong
et al. (1992) in the context of AR(1) models. Burnside and Eichenbaum (1994) provide
evidence on the poor performance of GMM based Wald test statistics. Dufour (1994)
establishes more general theoretical results on the behaviour of Wald tests. Apart from
the badness of such approximations in small samples, the use of asymptotics often
involves very cumbersome computations. Typically, one has to derive the asymptotic
distribution of the statistic, then simulate the asymptotic critical values and evaluate
the closeness of such an approximation for different sample sizes by means of Monte
Carlo simulations. However, there are situations where asymptotics does no longer
apply. Consider for instance a model of panel data with time dependent errors. If no
assumption on the dependence structure is made, asymptotic techniques cannot bring
a solution to inference problems.

The specificity of models of type (1.1) is that the vector of dependent variables,
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Y = (Y}, Y5 -, Y,) is in some way divided in m subsamples {different individuals
and/or different subperiods), whose joint distribution is unknown. Because we did not
specify the distribution of the vector of error terms, u := (u}, u}, --- ,ul ), usual
inference methods based on the whole sample Y ‘are no use anvmore.- This paper
develops infrence procedures which are applicable in such contexts.

Our aim is twofold. First, in the context of models of type (1.1), we seek to build a
method for testing specific hypotheses, denoted by Hg, on the stacked vector of param-
eters B := (81,84, ---,B5,). Although a direct test that makes use of the information
contained in Y is impossible, for some formulations of the null Hy can be equivalently
written as some combination (union or intersection) of hypotheses, Hy,, which can be
individually tested. The second objective of the paper is to pool information on an.
econometric relationship. There are many instances where such information is split
in several pieces (different studies, different subsamples, ...). The question we ask is:.
How, from several individual inference results, each bringing some information on the
true model, can one obtain a single statement on the model, by collecting together
these pieces of information? In other words, this is a question of finding a method for
combining tests or confidence regions.

Although the problem of combining can be addressed in two different ways, the
method of combination is the same. The procedure is derived from a logical equivalence
between the original null hypothesis we wish to test, and some reformulatioﬁ of it. It
leads to decision rules which are similar to those used in the meta-analysis literature
[see Folks (1984) and Hedges and Olkin (1985)]. But usual combined test procedures
assume the independence of the decisions which are combined. This assumption is
of course not tenable in dynamic models, but also in most econometric models. Qur
procedure is free from this assumption and is equivalent to Tippett’s (1931) procedure
when independence is assumed. In that sense, it generalizes some previous combined
test procedures.

The implementation of the procedure requires the splitting of the original sample,
Y, in several subsamples on which usual inference procedures are applied. Then the

individual decisions taken on the basis of these inferences are, in some way, combined to
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obtain a single decision concerning the distribution of the entire model. In that sense,
our method makes use of the information contained in the whole sample.

In some situations, the structure of the model naturally splits the sample in several
parts. as in SURE models, and this decomposition is used in the application of the
procedure. In some other instances, the division of the sample appears less straightfor-
wardly and has to be made on some more technical considerations. This is the case for
AR or MA models.

This chapter is organized as follows. Section 1.2 presents the general theory. In the
context of a very general statistical model, we derive a procedure for testing several
kinds of null hypotheses. We also show how one can use these procedures to pool the
information on the true probability distribution when it is available only under the form
of separate pieces, whose stochastic link is unknown. The results of this section can be
extended to allows one to derive confidence set and point estimators of the parameters
of the model. This procedure is presented in section 1.3 In section 1.4, we apply our
results to test for the equality of linear combinations of parameters of each equation of
a SURE model. In particular, we impose no restrictions on the contemporaneous co-
variance matrix: we allow for heteroskedasticity or /and instantaneous cross-correlation.
In section 1.5, we examine the case of linear regression models with MA(g) errors. We
show that our inference technique is very well suited for testing hypotheses on the mean
parameters of the regression equation. We treat in more details the case of a process
which has MA(1) representation. We test for the nullity of the mean. We compare our
procedure with some alternative tests. It appears that it is much easier to implement
than other commonly used procedures, since it does not require the estimation of the
MA parameters. We provide some simulation results to evaluate the performance of
our method. They support the admissibility of the combined test procedure. They also

provide further evidence on the lack of reliability of asymptotic inference methods.

1.2 Hypothesis testing: general theory

In this section, we consider a general statistical model caracterized by a sample space,

Y, and a family of probability distributions parametrized by 8, L = {Pg : 6§ € ©}, where
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© is a set of admissible values for 4. Let Ly be a subset of £ and suppose we want to test
Hy : Py € Lo against Hy : Py € L\Lo. If the model is identified, which will be assumed,
this amounts to test Hy : 8 € O, against Hy : 6 € Oy, where § € Oy = Py ¢ Lo.

We consider three problems of inference on §. We first study situations in which ©,
is expressed as a finite intersection of subsets of © : Qo = (.er ©oy, where T is a set
of indices of the form I' = {1,2,...r}, and Ooy C ©,7 € T. Then we examine null
hypotheses which restrict 8 to belong to a subset @y of ©, where ©g can be written as
©0 = Uyer ©o(7), ©0(7) C ©,7 € I. Here, we do not constrain I' to be a finite set. r
can be either finite or infinite. The third situation we consider is one where we wiéh
to test a null hypo.thesis Hy : 8 € ©g, but where the information on 8 is available from
different subsamples whose joint distribution is unknown. We try to pool these pieces

of information by combining inferences based on each subsample.
1.2.1 Hp as the finite intersection of subhypotheses

The test procedure we present in this paragraph is based on the fact that, although Hy is
not directly testable, it is expressed as the intersection of subhypotheses, Hy, : § € Oy,
we are able to test using any of the usual procedures. Qur decision rule is built from the
logical equivalence that Hg is wrong if and only if any of its components Hyy is wrong.

Assume that we can test Ho, using a statistic T, such that, for any 8 € Ooy, Po({y €
Y :T,(y) > t}) is known, forall t € R, v € T := {1,2, ---,r}. The relation between
these statistics is generally unknown or difficult to establish (as it is the case in model
(1.1)). We want to combine the information on the true probability distribution of the
model, brought by each of those r statistics. Since Hy is true if and only if all the Hy,’s
are individually true, a natural way of testing Hy is to proceed as follows. Using the
r satistics Ty, we build 7 regions W, (o) := T ([ty(en), o0)), where t,(a,) is chosen
so that Py(W,(ay)) = ey under Hy,. We reject the null hypothesis Hy on the basis of
the individual T, statistics if the vectors of observations y lies in one of the W, (ay), at
least, or equivalently, if at least one of the observed value Ty (y) of T,(Y') is larger than

ty(ay). The rejection region corresponding to this decision rule is Uqer W, {o). Such
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a test is called an induced test of Hy. ! Its size is impossible or difficult to determine
since the joint distribution of the statistics T, is generally unknown or untractable. It
is however possible to choose the a,’s so that the induced test has level o, @ € (0,1).
Since P is a measure, by sub-additivity we have
Py (U W‘)’(a'v)) < Z Py (Wv(aw)) .

~vel ~elr
By construction of the W, (ay)’s, the right hand side of the inequality is equal to
D el @y, for any 8 € (her @0y = ©¢. Therefore, if we want the induced test to
have level a, we only need to choose the @y’s so that they sum to a.

To our knowledge, there is no criterion for choosing the a.,’s in an optimal manner.
Without such a rule, in most of our applications we will give the null hypotheses Hy., the
same degree of protection against an erroneous rejection by taking o, = ag = a/r, Vv e
['. However, there may exist situations where we wish to weight the Hy, in a different
way. In particular, if for some reason we know that one of the decisions, d.., say, of
accepting or rejecting Ho., is less reliable than the other decisions, we are naturally led
to give d/ less impact on the final decision concerning the acceptance or rejection of
Ho. In other words, we will choose .y < oy, Vy # 7.

In the case where we choose Gy =g = af/r,Vv €T, we reject Hy., at level oy when

y is in W, (ag). Now this region of J can be re-expressed as

Wylao) = {yely:1- FolTy(y)] <1- Eyo(ty(a0)]}

= {yeV:1-Fy[T ()] < al,

for all § € Qg, where F,4(z) := P, [T_Y“l((—-oo, z])] is the probability distribution
function of T, (Y). Then an equivalent alternative rejection criterion is to reject Hgy., if
the p-value Ay(y) := 1 — F, [T, (y)] is less than . So according to our decision rule,
a rejection of Hy occurs whenever one of the r p-values A, at least, is smaller than 0y

Therefore, the rejection region corresponding to this test procedure is

W) ={ye): min A,(y) < ao}.

!See Savin (1984)
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If we assume that the statistics T, are identically distributed under the null hypothesis,

then Fl, 9 = Fy, V8 € ©g and ty(ap) = t(ag), Vv €T, and we have
Wi(a,a0) ={yey: max T, (y) 2 t(a0)}.

This criterion is derived heuristically from the logical equivalence that Hy is true if
and only if all the Hg,’s are true. It is very similar to Tippett’s (1931) procedure for
combining inferences obtained from independent studies. It is designed for dealing with
situations in which we have r individual decisions about Hy : 8 € ©g, obtained from r
independent studies. From these decisions, we want to make an unique statement on
accepting or rejecting Hp. Using the fact that, if Hy is true, the r p-values are i.i.d.

Upo,1}, Tippett (1931) suggests the following rule:
reject Ho at level o if min{A,:y €T} < 1-(1 - a)/r 2

Such a procedure has been developed for purposes of meta-analysis [see Hedges and
Olkin {1985)] and has seldom been used in econometrics. We have shown here that an
extension of Tippett’s procedure to the case where the p-values are not independent, can
be naturally introduced in testing problems frequently met in econometrics. The analogy
with meta-analysis is that, in the context of model (1.1), because the distribution of
the stacked vector Y of dependent variables is unknown, we isolate each regression
equation from the rest of the model and treat it ignoring the inter-equation relationships.
Inference on the i-th equation is made “independently” from inference on any other
equation, although the test statistics may not be stochastically independent. Since
dependence of the test statistics is, by far, the most common situation in econometrics,
we cannot assume the independence of the p-values. This is why the critical value
for the minimum of the empirical significance levels is simply o/r instead of 1 — (1 —
@)/, Finally, in the cases where the tests statistics are known to be independent, our
procedure coincide with Tippett’s.

The induced test has an optimality property. Consider a test procedure which
combines r p-values Ay, Ag, ..., A,, so that it rejects Ho when S(Ay, Ao, ... WAL < s,

where S is some function from IR" into R. It can be shown [Birnbaum (1954)] that

*Note that this decision rule implies that all the Hoy’s have been given the same weight.
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every monotone combined test procedure is admissible in the class of all combined test
procedures.® A combined test procedure S is monotone if S is a non decreasing function,
ve if o7 < zii=1,2, ... ,r = S(z},23, ... 2r) < S(zy, 22, ... ,2.). In our case,
S(Ay, Ay, o0 Ay) = min{Ay, A, ... y Ar}, is clearly non decreasing and our procedure

is admissible in the class of combined test procedures.
1.2.2  H, as the union of subhypotheses

We now consider a null hypothesis of the form Hy : § € ©g, where ©0 = U,er Oo(7)-
The solution to this testing problem is very similar to the one we proposed in the case
of an intersection of subhypotheses. Once again it is based on the fact that Hy is
wrong if and only if each of its components is wrong. If each hypothesis Ho(v) : 8 €
©o(7) can be tested using the rejection region W, (ay) = 77! ([ty(ay), o)), satisfying
Ps (Wy(ay)) = 0,V 8 € ©o(7), it would appear natural to consider the overall rejection
region W(a,,y € I') = er Wy(a,) for a test of H.

However, difficult problems arise when one wants to implement this procedure such

as we described it. First, if I’ contains a finite number, p say, of elements, using the

sub-additivity of probability measures, it is easy to show that
P
Po(Wlay,veT)) 2 > [1 =Py (Wy(a))],

=1
which provides a lower bound for the probability of making a type one error. Of course,
this kind of bqunds is of no use since we try to bound from above the probability
of an erroneous rejection of Hy. Appropriate upper bounds for the probability of an
intersection are difficult to obtain. Second, when T is infinite, it is impossible to build
W.,(a) for every v € T.

It is however interesting to note that some null hypotheses can be seen as an (infinite)
union of subhypotheses. It is possible to construct an overall rejection region which is
equivalent to the infinite intersection (,cp W, (a,). This is the case for the hypothesis
Ho:0, =0, = ... =0, where §; are ¢ x 1 subvectors of the initial vector parameter
. We note that Hy is true if and only if 30y ¢ R : 6; =0y = ... = O = By. by is

interpreted as the unknown true value of §; under the null. Defining ©¢(6;) := {# € © :

®On admissibility of decision rules, see Lehmann (1986, section 1.8, p.17).
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br =0, = ... =0, =6}, we have Oy = erequ ©0(fo). Ho can be expressed as an
infinite union of subhypotheses Ho(Bg) : 6 € ©g(fp). Therefore Hy is true if and only if
any of the Hy(fg)’s is true.

Obviously, it is impossible to test every Hy(6p). We propose the following procedure.
For each ¢ € {1,2, ..., m}, we build a confidence region C(y;, a;) for 6; at level 1 — a;
using subsample y;, where the o;’s are chosen so that Yi=; @ = a. This region is such
that

Po({y €Y : Cilyiu) 36} =1 - a, Véeo,

or
P9 (Ai(eivai))zl-aiv VHEG,

where A4;(6;,0:) = {y € ¥V : Ci(y;, ) 36}, i=1,2,...,m. In particular, if 8y is the

true value of 4;, we have

Pg [A; (6o, a)]l=1-a;, V8€0O,.

Proposition 1 A (conservative) a-level test of Hy : 0 = 6, = ... = 0m is given by
the rejection region
m
W(a,m)={y€¥: () Ci(y;, ;) = 0}.
=1
where ;1= 1,2, ... ,m satisfy Y7, o; = a.
Proof of proposition 1: We need to show that Py W(a,m)] < a,V8 € 0y,Vac
(0, 1). Note that V 8y € IRY,
(1 Cilyse) =0=>3j € {1,2,...,m} : C;(y;, ;) ¥ bo.
i=1
Since. P is a probability measure,

Po [W(a,m)] < Py G{y €Y :Cilyi, ai) # 6o}

i=1

ipﬁ Y\ 4i(bo, )], VOeO.

i=1

IN

By construction of the A;(fp, o;)’s, the right hand side term of the last inequality equals
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In our notation, the form of W {a, m) does not depend directly upon «, but on how
the a;’s are chosen to satisfy the constraint i1 @ = a. For this procedure to be
applicable, we need to be able to find confidence regions C(y;, &;) which have level a.
This is of course possible in model (1.1) as long as Q; = oy, i€ {1,2,... ,m}. We
describe three interesting particular cases for which the procedure takes a simple and

appealing form.

1.2.2.1  Intersection of confidence intervals: the sum of critical values rule
We consider a situation where g = 1. Typically, Ci(y;, @;) has the form
Ci(y;, i) = [@' - ei(y;, 04); 0; + ey, a,-)} ,

where 4; is some estimator of 0:, and c¢;(y;, ;) > 0 for all possible values of y; and o
such that 3", oy = a € (0,1).
The following result is almost surely already proved in the mathematical litterature,

but as it will be useful for our purpose, we state it here.

Lemma 1 The intersection of a finite number m of intervals I; := [L;; U;] C IR with

non empty interior is empty if and only if
min{U; :i=1,2,...,m}<max{L;:i=1,2, ... ,m}.

Proof of lemma 1 : Define U;,, := min{U; :i = 1,2, ... ym}and Lj, = max{L; :

t=1,2,...,m}.
¢ Suppose Uj,, > Lj,, and define [ := {z € R : Liy £z < U 3. T #0, by
assumption. Choose z € [ and i € {1,2, ... ,m}. Then

Li<Lj, <2<U;, <U

by definition of Uj,, and L;,,. Hence z € [ = z ¢ L,V i€ {1,2,...,m}. Then
® Suppose Uj,, < Lj,,. Then I, N I;,, = § and N L=9. O

From lemma 1 and proposition 1, we reject Hy if and only if

min{4; + ci(yi, i) 1i=1,2,... ,m} < max{§; - iy, ) :i=1,2,... ,m}.
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~1

But this is equivalent to
3, ke{l,2,... ,m}:4; +¢i(y;, 05) < B — k(Y o)

or
10 — 8]

> 1
cj (Y, @) + ey, ax)

37 ke{l,2,...,m}:

Finally, we reject Hy if and only if

0y — 6;] A
max > 1.
ike{1.2,...m} | (Y5, ;) + crlyy, ar)

In the case where m = 2 the rejection criterium takes a very simple form: reject the
null hypothesis when the distance between the two estimates is larger than the sum of

the two “critical values”. The rejection region is
W(e2)={yeV:l|b - 6| > c1(yyy 1) + c2(yq, o) }.

For m > 2, we reject the null hypothesis when at least one of the distances |9k -

8;] is larger than the sum of the corresponding two “critical values”, ci(y;,a/m) +

Ck(yk7 O‘/m)

We now extend the procedure to multidimensional parameters and consider confi-

dence ellipsoids.

1.2.2.2  Intersection of two confidence ellipsoids

Consider the null Hg : 8; = 6,, with dim(6;) = ¢ > 1. As before, Hy can be restated
asHo:0€{0cO©:30,cR?:0, =0, = fo}. Suppose that for i = 1,2 we derived a

confidence ellipsoid C(y;, a;) for ;, such that, for 8 € IR,

Cilyp, i) 560, & (631' - HO)IAi (95 — 90) < ci(a),

-

where A; is a ¢ X ¢ positive definite matrix whose elements depend on y;, §; is an

estimator of 4;, and ¢;(«;) is a constant such that

Pol{y eV :Ci(y;, )36} ]=1~-c;, YOe€O.



28

Then there exists two ¢ x ¢ matrices P, and P, such that P'4,P = Ly, PY'(P/4,P) P,

= D, a diagonal ¢ X ¢ matrix, [Pl # 0, and P,'P, = I,. It is easy to show that

(é1 - eo)lAl (él - '90) Salm) & HB-7E-7) < ci(ay)

(b2 - 90)/A2 (6, - )

IA

caas) & (F2=7)D(F2-7) < cafon)
where v := P,'P, 716, and #; := PP i = 1,2. Defining

Ey(ay) = {veR: (1 -7 (51— 7) < eila)}

Ey(a) == {ye€R :(%2-9)D(3—7) < ca(ag) },
the rejection criterion Ci(y;, ay) NCs (Y2, @2) = 0 of Proposition 1 is seen to be equiv-
alent to Ey(ay) ) E2(az) = 0. We now propose a two stage procedure to determine if
the intersection of the two ellipsoids is empty.

First step: check whether 9j € Ci(y;, ), for i, = 1,2, i £ j. If one of these events
is realized, then C)(y;, a1) NCa(y,, o) is not empty, and Ho is accepted. Otherwise,
go to the second stage of the procedure.

Second step: consider OFj(ay), the subset of IR? whose elements are the solutions of
the minimization problem

ernﬁq(“r 1)/ (y= %) subject to (2~ 7)'D(32 — 7) = ca(an).

Elements of 9 F(c3) are the points on the boundary 0FEs(as) of the ellipsoid Ey(as)

that are the closest to 4. If 0Ej(a2) () E1(a1) = 0, then Ci(yy, 1) ﬂC’g(yz,az') =90

and reject Hy at level a.

1.2.2.3 Intersection of two confidence hypercubes

When the covariance matrices of the estimators f; are unknown, it is impossible to build
confidence ellipsoids. To illustrate such situations, consider the following example. Two
published papers investigate the nature of the econometric relationship between Y and

X. Both estimate a linear regression model

Y =XB+u,
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where © ~ N(0,0%Iy), and B is a k x 1 vector of unknown parameters. In he first
paper, an OLS estimate, Bl, Is obtained from a sample of observations that runs from
to1+1 to tg; + N, while the second paper uses observations from tg;+1 to toz+ N, where
to,2 > toy + N. We ignore the joint distribution of the two subsamples. In particular,
the mean parameter 3 of the dependent variable may not be the same for the two
subsamples (in which case a structural change has occured between time to; + N and
time to2). If we are interested in comparing the two vectors of parameters, the procedure
described in section 1.2.2.21is particularly well adapted. But its implementation requires
the knowledge of the estimated covariance matrices of the OLS estimators. Usually, such
papers do not provide the full matrix, but only the estimated standard deviations of
the components of 3; (or equivalently the associated Student t-statistics).

But using an intersection of several confidence intervals, which only require the es-
timated variances of the QLS estimators, we can construct an confidence hypercube at
level a; € (0,1) for B;. Consider the same model as in section 1.2.2.2. It is possible
to build & confidence intervals, denoted by Cf(y,,af) for each of the k£ components
ﬂ7 of B;,7 =1,2,...,k, i = 1,2. The Cartesian product of these k intevals forms an

1

hypercube in IR¥, and their intersection in IR is such that
k _ ' ) '
Po|(HyeY:Cllyiod) 38} 2 1-i, WhEO,
=1

with the a{’s satisfying Zle af = ¢4. This follows from the Bonferroni inequality:
P(ANB) > 1-P(E\ A) - P(E\ B),

which holds for any pair of elements, A and B, of £, a g-algebra of subsets of F, and any
probability measure P on £. Then, choosing the o;’s so that 2iz1 & = o, and applying
the result of proposition 1, we reject Hy : B, = B, at level a when the intersection of
the two hypercubes is empty.

The use of hypercubes instead of ellipsoids was motivated by the impossibility to
build the latter when the estimated covariance matrices of B, and B, are unknown.
However, even when these matrices are available, we may prefer to use the hypercube

technique. This could be the case when we know that the estimation of a coefficient
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associated with one of the regressors is not accurate. This Inaccuracy may be due to
an errors in variables problem. In this situation, building our inference from the union
of hypercubes has the advantage of not transmitting the lack of precision on one of the
components of 3 to some others.

To conclude this section we make the following remark. Although we proposed a test
for the null hypothesis that all the parameter vectors B; are equal (then imposing that
in each equation has the same number of parameters), we can straightforwardly extend
our procedure to a situation in which the null hypothesis imposes the equality of linear
combinations of 8;,4 = 1,2, ..., m. Indeed, our method relies only on the ability to
derive confidence regions for the parameters which are restricted to be equal under the
null. This is clearly possible when the paramaters of interest is of the form R.3;. The
procedure is actually applicable to any function h(8) of the parameter, provided we are
able to build a confidence region for A(6).

In the next section, we show how the procedures we derived can be used to estimate

the parameter of a model by pooling pool several pieces of information on this coeflicient.

1.3 Intersection based estimation

In the previous section, we have developped a general method for testing hypothesis
in several contexts. The main feature of the procedure is that a single final decision
concerning a family of probability distributions is taken by combining several individual
(partial) decisions on that family.

In some situations, we might want to go a step further. For instance, consider again
model (1.1) and the null Hy: B; = 8, = --- = B_,. Results of section 1.2 show how to
test such an hypothesis. Suppose now that Hy has been accepted. It is then natural to
ask what would be a good estimate of 3, the unknown true value of B;i=1,2,...,m.
We also may wish to build a confidence region for 3.

Concerning the estimation of 3, one could think of applying least squares (LS) tech-
niques to the whole sample ¥ = (y},v5, ... y¥m) - But we have already noticed in
section 1.2.2.3 that we may not dispose of the whole sample Y and that the only infor-

mation available on 8 consists of estimates B; and standard errors, each coming from
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different samples y;,7 = 1,2, ..., m. Furthermore, even in the cases where the sample
Y is available, LS methods do not give information on the precision of the estimation,
unless we specify the distribution of Y, which has been assumed to be unknown. For
those reasons, LS estimation does not help much when it comes to confidence regions.

In the next sections, we propose a procedure which allows the construction of con-
fidence regions and estimators in models of type (1.1). We first consider a statistical
model parametrized by 6 and show how to build a 1 — & level confidence set for the
parameter of the model by combining several confidence regions for §. We then develop
a procedure for deriving estimators of # from confidence sets, which generalizes the
method proposed by Hodges and Lehmann (1963). We extend the method to models
where the distribution of the sample Y is unknown, but in which we know the marginal
distribution of some vector components of Y. We then apply the procedure to models
like (1.1), where we want to combine several pieces of information to obtain a confidence

region and an estimator for 4. Finally, we discuss some properties of HLSS estimators.
1.3.1 Confidence set estimation

It is relatively easy to build a confidence set for the mean parameter in models like
(1.1), where it is assumed that 8, = B,V i = 1,2, ..., m. More generally, consider
a statistical model (),{Ps : § € ©}) where the information on 8 is available from
several subsamples, y;,¥3, ... , ¥, ¥; € V,i= 1,2, ..., m. Although the distribution
of Y = (¥1,¥2, - -+ , Um) is unknown, we assume that it is possible to build m confidence

regions for 8, with the form C;(oy, y;), which satisfy
Pol{yi € V:Cilai,y:) 30} =1-s, VOeEO.

The question is: can we combine those confidence sets to obtain. a single confidence
region for ¢, with the desired level 1 — a? This issue is clearly a problem of pooling
several pieces of information on 8, given by the Cj(ai,y;)’s. To solve this problem,
define

Ai(ai,y;) = {y; € ¥V : Ciew, 9;) 3 6},
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and consider the probability of the intersection of these events. Along the same lines as

in the proof of proposition 1, we use the properties of measures and we get

PolMZ: Ailai, yi)] = 1-Po[UR Y\ Ai(es, v))]

S 1-ZZiPaV\Ailony)]=1-T2 oy, V6O,
The (random) subset of ©, %, C;(c, v;), is therefore a confidence region for 9,.Whose
level is 1 — 5", ;. The level 1 — « is achieved by choosing ay, a9, ..., a,, such that
2k o =a
In the next section, we present a technique for deriving estimators from confidence

regions. This method can be viewed as an extension of the Hodges-Lehmann procedure.
1.3.2  Point estimation: generalized Hodges-Lehmann estimators

Consider a statistical model (Y, {P; : § € ©}). We can derive an estimator of @ using

the following method. Suppose we obtained a « level confidence region C'(a, y) for 8
Pr({y€Y:Cla,y)38})=1~a, VicoO.

The monotonicity property of confidence regions, as defined below, will be useful in the

sequel.

Definition 1 A family of 1 — o level confidence regions Cla,y) for 8 is said to be

monotonic if oy > as = Clay, y) C Clag, y),Y a1, s € [0, 1].

A consequence of monotonicity is that, for a fixed y € Y, Cl(a,y) “narrows” as «
increases. If we make some continuity assumptions on C/(a, y), there must be a value,
&, say, of a such that C'(&,y) # 0 and C(a,y) = 0,Ya > 4. If C(4,y) = {8y}, a
singleton, é(y) can be taken as an estimator of §. This method for deriving estimators
from confidence regions generalizes the procedure proposed by Hodges and Lehmann
(1963) (see Hodges and Lehmann (1983) for a presentation of the general principle of
Hodges-Lehmann estimators).

We now consider a confidence region which is built on a statistic, T(y), i.e. a region
which can be expressed as Cla,y) = {§ € © : T(y) € R(a, f)}, where R(qa,8) is

some subset of the real line. Suppose for instance that T'(y) is a statistic for testing



Ho(8y) : 8 = 8. The decision rule is to reject Ho(fo) at level o if T(y) > ¢(a, o).
From the duality between tests and confidence regions, we know that {§, € © : T(y) <
t(a,00)} is a 1 — a level confidence region for 4. It is interesting to note that the
maximum likelihood estimator of 8, is a particular estimator in the class of estimators
Q(y) derived by using the method of narrowing confidence regions described above. To
see that, let T'(y) be the likelihood ratio statistic, T(y) = In Lymre(y)] - In L(6o)
associated with the test of Ho(6;), where L(6) is the likelihood corresponding to Py
and HAMLE(y) = arg maxgeo In L(#). The 1 — o level confidence region built on T'(y) is
Clo,y) = {6 € ©® : In L[éMLE(y)] ~1InL(fo) < t(a,6p)}. By definition of Orrre(y),
we have In L[0yr5(y)] — In L(6s) > 0,Y6y € ©. The equality holds if and only if
Oy = éMLE(y), when the (log) likelihood has a unique maximum. As a consequence,
BAMLE(y) € C(a, y),Ya € [0,1]. For o sufficiently large, the region reduces to a single
point, which is of course éMLE(y).

We next show that, for some class of confidence regions, the generalized Hodges-
Lehmann estimator is a M-estimator. For a fixed y define &(y), the element of [0, 1]

such that C(&(y),y) # 0, and Cle,y) = 0,Ya > &(y). We can state the following

proposition.

Proposition 2 Let {C(a,y) : a € [0,1]} be a family of 1 — « level confidence sets
Jor 8, of the form C(a,y) = {§ € © : T(y) < t(a,0)}, where T(y) is a real valued
statistic with a continous probability distibution function, Fy, and where t(a, 8) is such
that Po[{y € YV : T(y) > t(,8)}] = , V0 € O. Then frr(y), the generalized Hodges-
>Lehmann estimator of 6 based on the family {C(e,y) : o € [0, 1]}, satisfies
Oz (y) = argmax Ag(y),
9eC(&(y)y)

where Ag(y) :=1— Fp[T(y)].

Proof of proposition 2 : If F4(-) is continuous, for all § € O, the 1 —~ « level confidence
region for & based on T'(y), C(a,vy), is equivalent to {6 € © : As(y) > o}, since
by construction of t(a,f), we have 1 — Fy[t(c, 8)] = o. Note that these regions are

monotonic. Now, for 2 fixed y define A(y) := {o € [0,1] : C(e,y) # 8}, and for any
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a € A(y) let

(a,y) := argmax Ag(y).
€0 (a,y)

By monotonicity of C(«,y), we have SUPgec(ary) Ao(y) < SUPgec(a,y) Mo (Y), Vo' €
A(y) such that o/ > a. Therefore Aoy @) 2 Aely), V0 € C(o/,y), for all o € A(y)

such that o’ > a. In particular, since a(y) € Ay), we have
May V) 2 Ao(y), V0 € Cla(y), y).

Hence

Moy (W) 2 Agis (y):=_ sup  Ag(y).
8(ay) 8(&(y).y) 8eC(a(y),y)

But from the definition of é(d(y),y), we have Aé(&(y),y)(y) > @&(y). Since it was as-
sumed that C(e, y) # 0, we must have Aé(a,y) (y) < a(y), (otherwise, C(a, y) would
be empty and é(a, y) would be undefined.) We reached the point where Aé(a,y) (y) <
Aé(a(y),y) (y) and Aé(a,y) (y) > Aé(a(y),y) (y). Therefore, we must have
0(&(y),v) = 8(e,y) = argmax Ag(y).
seC(&(y)y)

As ‘a, result, §(a, y) does not depend on o and is denoted H(y) The desired result
follows. O

8(y) is a M-estimator of @ since it has been obtained from the maximization of a crite-
rion, Ag(y), which depends on v, §, and on the dimension n of y. Figure 1.1 illustrate the
way @(y) has been derived. In our example, © = {8y, 04, 65,

f4}. The confidence region at level 1 — o is C(o,y) = {61,03,04} and clearly, 4(y) = 6;.

In the next section, we extend the method to derive estimators derived from combi-

nation of confidence regions.
1.3.3 The Hodges-Lehmann split-sample estimator
1.3.3.1 The derivation of the estimator

In section 1.3.1, we showed how to combine several confidence sets to build a 1 — &

confidence region for §. This region is the intersection of m 1 — @; level confidence
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A,y

0 y

Figure 1.1: Derivation of the Hodges-Lehmann estimator

sets for 6, with 3°7, a; = a. We denote this set Clay, az,...,am,Y), where ¥ =

(Y1, %2, -+, YUyn)- Now, if Clag,ag,...,am,Y) is monotone, i.e.
(of >ey,i=1,2,...,m) = Cley,ay,...,al,,Y)CClay, ag, ... ) O, YY),

we can derive a generalized Hodges-Lehmann estimator of 8 by “narrowing” C/(ay,
@2, ..., 0m, Y). Since this estimator is derived from a confidence set which is con-
structed on a split sample, we call it a Hodges-Lehmann split sample estimator (HLSS
estimator) of #. It is not unique and depends crucially on the “weights”, o;, attached
to each sample, y;. In the sequel, we will set o; = a/m,i=1,2,... ,m Yo € [0, 1].
Therefore, the confidence region for 8 is denoted Cla,Y) =NZ, Ci(a/m,y;). The cor-
responding HLSS estimator, éHL(Y), is obtained by increasing o up to &(Y), where

&(Y') is defined in the previous paragraph and satisfies

Cav),¥) = )= (16 (2,y,).

=1
In the next section, we show how to apply this technique to stacked regressions

models.
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1.3.3.2 An example

To illustrate the procedure, consider model (1.1) with k; = 1, so that 3; is a scalar.

1=1,2,...,m. Typically, C;(a/m, y;) is an interval of the form

C; <%y> = {Bi(y;) - (%%) Bily:) + i <%y)J ;

where 8;(y;) = (X{X:) "' Xy, and ¢:(2,9;) = t:(a)s:(v;), with
si(yi) = V¥t - |(In, = X{(XIX) T XDyl /v/m = 1,
=" being the (4,7)-th element of (XiX:)~'. For any « € [0, 1], we have

ﬂz’n;:l Ci (%) yi) =

- o . P oY )
{sup{ﬁi(yi) - ¢ (;;,y,) ve=12, ..., m},inf{B:(y;) + ¢ (E’yi) yi=1,2, ... ,m}] .
(This follows from lemma 1). This intersection is necessarily non empty for some « > 0,
since otherwise the hypothesis that the §;’s are equal would be rejected at any level
a by the induced test and tyring to estimate § would be meaningless. From its definition,

&(Y) satisfies
a(Y)
m

sup{fi(vi) - o (

a(Y)

,yi>,z’:l,2,...,m}:

inf{ﬂ}(yi){—c,‘ < yz-> ,t=1,2,... ,m},
so that %, C; (9%2, y,-) is a singleton. In section 5.2.4, we give an example of a HLSS

estimator of the mean of a MA(1) process.

1.3.3.3 Some properties of HLSS estimators derived from two confidence

intervals

In this section, we discuss the location of f5(Y) relative to the estimates, §;(y,),i =
1,2,...,m of § which have been used to build the confidence regions C; (%, y;) . We
only examine the case where m = 2 and 8 is a scalar parameter. 7

In most situations of interest, the confidence intervals, C; (%,y,—), are Wald-type

confidence regions. It is meant that they are based on a pivotal function which is itself
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constructed by finding an estimate 4; (y;) of § and an estimator of the standard error of

#:(y;), a random variable which is denoted 5i(y;). Usually, the pivot takes the form

P(y;,0) = gi(ni)’e_i%f”(%:)“e‘

where g;(n;) is a function of the dimension n; of y; only (this includes the case where
gi(ni) =1,V n;). #(y;,0) has a probability distribution function F;. By choosing the
appropriate quantile of F;, it is possible to find a constant, ¢;(a), such that C; (¢, y,)

has the form
C; <g’ y,‘) - [éi(yi) = 5i(y:)t:(); 6i(y;) + s (yi)ti(a)] (1.2)

for ¢ = 1,2. We assume that C; (%,;) is monotonic (see definition 1), which implies
that ¢;(a) is non decreasing in @, i = 1,2. Note that since we considered regions of the
form (1.2) which are symmetric about 4;(y,),V a € [0, 1], the center of these intervals
is unaffected by a change in @. The (random) length of C;(%,y;) is determined by
5i(y;)ti(a). Both s;(y;) and t;(«) generally depend on the dimension n; of y; so that
it also affects the width of the interval. For the sake of simplicity, we will consider
a situation where n; = n,i = 1,2, so that we can reasonably assume that ¢(a) =
t(a),Ya €[0,1],7=1,2. We will latter discuss the incidence of this assumption.

We start from a situation where we have obtained two 1 — a/2 level confidence
intervals of type (1.2) for 4, whose intersection is non empty so that we cannot reject
the hypothesis Hy : 8, = 85 at level o (where 8; parametrizes the distribution of y;). Let
ww (§) and 75 (§) be the indices corresponding to the widest and the shortest intervals

respectively) among C; (£,y,),i=1,2. It is easy to see that
g 2 Yi

w (%) =i () =: iy

is ($) = is(ag) =: ig
for all ag € [0, 1]. Indeed, from the observation that the length of an interval is de-
termined by ¢;(a)si(y;) and from the assumption ;{e) = tl@),Vae[0,1],i=1,2 it
follows that the widest (shortest) interval is the one associated with the largest (small-

est) s;(y;), a random variable which does not depend on «. In particular, ¢; [&(Y)/2] =



i+ J = W5 where @(Y) is defined in section 1.3.2. We have

sup{6:(y:) - si(y;) ¢t <%—)> Hi=120 = inf{fi(y,) +si(yi) ¢ <ﬂ¥> ri=1,2}

= OuL(Y)
(see section 1.3.3.2). We can assume without loss of generality that

4(v)

5 ) ri=1,2} =6, (y,) “Sl(yl)t(g(_}ig.

sup{0;i(y;) — s:(y;) t ( 5

If 6, (y1) # 05(y,), an event which occurs with probability one when the estimators

have a continuous probability distribution functions, we must have

d(Y)) |

nt (0w +1(6) ¢ (FL) 11,2} = hatwa) 4 ) £ (2

If this were not the case, we would have

() G (% y) G (21, 4,) #0
and

(@ Gily) = suly)t (3) = dulwy) +su(yy) ¢ (21)

i.e. t(a'(y)> = 0 and C (ég/),%) = {6;(y;)}. But in turn, this would imply
Cy (ﬂzy—), yz) = {62(y,)}. Therefore, unless 6, (y1) = 92(y2), this is incompatible with
(7). Then

Bre(¥) = ity = stwt () i< 12

We conclude that the estimate 6;(y;) which is the closest to O L(Y) is the one which has
the largest estimated variance [s;(y;)]*. This can be put in an interesting way. We can
always find a real, a € [0, 1], such that §g1(Y) = a §, (¥1)+(1~a) d(y,). Consequently,
éHL(Y) can be seen as a convex combination of the two subsample based estimators.
The procedure for deriving HLSS estimators described in 1.3.3.1 provides a criterion
for selecting the weight a. The rule for choosing a appears to be reasonable because
it gives more weight to the estimate with the smallest variance. This is to be related
to optimally weighted least squares estimators, where the optimal weights are inversely

proportional to V(y:) [see Gouriéroux and Monfort (1989, chap. 8, p. 238 - 245)].
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We now discuss the assumption ¢, {a) = t{a1. i = 1.2. The constant t:{a) is deduced
from the probability distribution function E; of the pivor ¢(y,,8) and it depends on
n;. Since n, need not be equal to ng, as we will see in our example of section 1.5.2.4,
generally the assumption ¢;(a) = t;(a) does not hold. However, if n; and n, are close
enough, the difference t;(a) — t3(a) is relatively small and the weighting made by the
HLSS estimators remains almost unchanged.

In the next section, we consider a seemingly unrelated regression equations (SURE)
model and show that the procedure presented in section 1.2 is particularly well adapted
to hypothesis testing in such contexts. In some specifications of the SURE model, it is

actually the only valid technique.

1.4 Exact inference in SURE models

1.4.1 The model and the procedure
In this section we consider the follwing SURE model

Yir = a:ft,Bi +uy, t=1,2,...,N;
(1.3)
u; ~ N(0,0;4ln;)
where 3; is a k; X 1 vector of unknown parameters, ¢ = 1,2, ... ,m. We assume that

in (1.3), E(uitu;s) = 0,Vt # 5. The null hypotheses of interest are Hél) (A= Aoyt =

1,2,...,m) and H{gz) DAL = A = ... = A, where \; := R:3;, R; is a known
gi X ki matrix with rank ¢; (< k;),4 = 1,2, ..., m, and Ag; is known ¢; x 1 vector,
1=1,2,...,m.* A interesting special case of Ho(l) s By =0y = - =8, =By, which

is obtained by choosing k; = k, R; = I}, \g; = Bo, a known k x 1 vector, in the above
setup.

We will consider two versions of (1.3), depending on whether we make the assumption -
Al: oy == E(uipuj) = 0,Vi # j. Under assumption Al with oy; = o;, Vi, 7, there
exists an optimal test of Hél) given by the critical region associated to the Fisher F'

statistic, based on the stacked model ¥ = X8+ u, where Y = (Y1,Y9, ...,Y Y, B=

For Hén we must have ¢ =¢;,¥i=1,2,...,m, and ¢ < min{k :i = 1,2,...,m}.
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(81,82, -+ B)', X = diag(Xi)im1 5, . m, and

(A~ 40) [R(X'X)1 R (4 - 40)
5 ,

with A = (AN, ... A )4 = (;\;,;\;, ,;\in)’,Ao is a @ X 1 vector whose

< f;ll a0 + 1>-th to (Zle q,-)—th components are the elements of Ag;,j = 1,2, ... , 1,
Ai = Ri3;, B; is the i-th subvector of (X'X)7'X'Y,i=1,2,...,m, R = diag(R;, i =
L,2,...,m), s? = ||(In - X(X'X)"I XYY /(N - NL,Q=Y"6¢ K = Doimy ki,
N =37 N;.

When we introduce heteroskedasticity in the model by allowing the variances to
differ in each equation, our procedure is still valid, but the Fisher procedure is not.
As an alternative, we would an asymptotic method based on a generalized least square
estimation and on a critical region built on a Wald, Lagrange multiplier or likelihood
ratio statistic. But, as we already mentioned in the introduction, it is well known that
these approximations are not reliable.

An induced test of Hél) consists in testing Hé}) ©Ai = Ag; at level «; using the

critical region Wi(a;) ={y € YV : F; > F(a;; i, N; — k;)}, where

P (Xt - /\Q,‘)l (S?R,‘(‘XF;‘X{)_IRZA)—I (iz - AO,‘)
;= q{ ;

with X = Ry, B; = (XIX)) ' Xly;, s? = (Tv; = Xi (X)X yill /(N — ki) and
F(oy;qi, N; = k;) is the o; percentile of the Fishér distribution with (g;, N; — k;) degrees
of freedom. The a;’s have to be chosen such that 2iz1 = a. The a level critical region
for an induced test of H(gl) is U, Wi(a).

If we now want to test H((,z) at level «, we just have to build m confidence regions at
level 1'-— «; for A; which are defined by
Cilyi,u) = {z € R?: (\i — )’ (S?Ri(Xin)_lRﬁ)—l (A —2) < GF(as; g, N~ ki)
in the A; space, and reject ng) ‘whenever iz1 Ci(¥i i) = 0, with 7 o = a.

Note that, under assumption A1, the induced procedure for a test of H(gl)can be
improved by taking into account the independence of the regressions. In section 1.2, we

showed that the rejection region associated to an induced test of H(gl) is Uz, Wi(ai),
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where Wi{a;) is the critical region for a test of B; = By at level a;. Under assumption
A1, we have

m m m

Py [U Wi(af)J =1-Pg [ﬂ YA Wi(af)} =1~ []Po ¥\ Wi(a)].

i=1 i=1 i=1
If HC(,I) is true Py (¥ \ Wi(a;)] = 1 — o;, Choosing the ;s such that Mel-o) =«
yields to a test of Hél) which has level a. If o; = ag,i = 1,2,...,m, we must have
=1~ (1-a)l/m

Unfortunately, the independence assumption Al is not helpful when we turn to the
test of HéQ). But the procedure of section 1.2.2 remains valid. To see why it is difficult to
exploit the independence of the regressions, consider the case where m = 2 and k£ = 1.
We can build two confidence intervals Ci{y;, 0) = [,B; - ci(y;, a0), Gs —f-ci(y,-,afg)] ,
with ag = @/2. According to our rejection criterion (see section 2.2.1), we reject Hé2) at
level & when 8, — 32 > ¢; (Y1, @) + c2(y,, @o) or when fy — 5 < ¢ (Y1, @0) + c2(yq, ),
which are two disjoint events. To evaluate the probability of these events, we need the
marginal distribution of the two random variables 3 — 3 — ¢; (y1, a0) — c2(ys, o) and
By — By — c1(yy, ao) — c2(ys, ag), which is usually unknown.

Consider now model (1.3) where assumption A1l is not imposed. The model has
-’ﬂ%ﬂl + 2 i=1 k: parameters and 37, N; observations. In small samples, where the
need for exact procedures is crucial, a testing procedure which requires an estimation of
the parameters of (1.3) in a first step may be unreliable, especially if (1.3) is composed
of a large number of equations. On another hand, not only the induced procedure
remains valid for testing both Hél) and H(2), but, to our knowledge, it is also the only
one available to test H(g2) .

We now present some illustrations of our procedure.
1.4.2 Some examples
1.4.2.1 Testing restrictions in a system of demands for Inputs

The first example draws from Berndt (1991, p. 460-462). We consider the problem
of testing restrictions on the parameters of a generalized Leontieff cost function. We

assume that the production technology has constant returns to scale and incorporates



42

only two inputs, capital (K) and labor (L), whose prices are Py and Prp, respectively.
If we denote the output by ¥ and the total cost by C, the generalized Leontieff cost

function is

C=Y . (dggPx+ QdKL(PKPL)llz +drLPr).

If the producer has a cost minimizing strategy, it can be shown that the demands for

factors ' and L are given by

K/Y = dxx+dgp(Pr/Px)'/?

L)Y = dpp+dgp(Px/P)Y?

A stochastic version of this model would consist in the two equation SURE model

ke = ag+bipf + uf

b = ar+bpl+ul
where u* and ' are two Gaussian random vectors with zero mean and covariance
matrices 0f Iy and o?ly, respectively. N = 25 is the sample size for each variable of the
model. A restiction imposed by the theory is by = by, which will be our null hypothesis.
To test Hp, the procedure described in section 1.2.2.1 is particularly well suited since
we have no a priori information on the relation between the random variables uf and
u!. Using the data provided in Berndt (1991), which are described in Berndt and Wood

(1975), we performed separate tests of the following null hypotheses
Hy: b= Hj =

Results of the estimation are given below

keo=0.0490  + 0.00342 pt
(.000125)  (.000084)

~0.04464 + 0.28295 p!
(.001621)  (.002350)

e
Il
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Figure 1.2: 97.5% confidence ellipsoids and intervals in the Berndt example. (— :
ellipsoid for (ag,by)'. - - - : ellipsoid for (ar,b)".)

Our findings are summarized in figure 1.2. We report the two 97.5% level confidence
intervals for the test of Hy and the two 97.5% level confidence ellipsoids for the test of
Hg. It is straightforward to see that we reject both null hypotheses at level 5% because

none of the regions intersect.

1.4.2.2 Testing restrictions on returns to schooling

This example is taken from Ashenfelter and Zimmerman (1993). The study considers

the following SURE model

Yij = X1+ X+ w1;

Yy = A1X; + 0. X5 + wy;

where Y;; and Xj; represent the log wage and the schooling of the ¢-th brother in the

J-th family. These equations are the reduced form of a structural model which expresses
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the relationship between the wage and the vears of schooling

15, = PNy + Fj+uy

Yyj = [BoXoj+ Fj+uvy;

Fi = MXyj+ Xy + &
where F' is a family specific component. We must have §; = 3; + \;,i = 1,2.
The structural model has been estimated over a sample of 143 pairs of brothers. The
estimates reported by Ashenfelter and Zimmerman (1993) in table 3 are given below,

with standard errors in parentheses.

6, = 0.052 A o= 0.018
(0.015) (0.020)

6; = 0.068 Ay = 0.006
(0.019) (0.015)

A natural hypothesis to test, which is considered in the paper, is Hy : (ﬁl,/\l)' =
(B2, A2)" . This can easily be tested from the estimated structural model, since Hy is
equivalent to Hg : (61, ;) = (63, X2)". Here. we will use the hypercube technique,
because Ashenfelter and Zimmerman (1993) do not provide the full estimated covariance
matrix for each regression. We first form a confidence interval a level 1 — o/4 for each
one of the mean parameters in the structural model. Then, for each equa.tidn, we
derive the hypercube from the confidence intervals. Finally, we check whether the
two hypercubes overlap, in which case, we accept the null hypothesis. This is done
for o = 5%. Each of the following events [0.0140,0.0900] > 61,[—0.0326, 0.0686] 3
A1,[0.0199,0.1161] 3 62,[—0.0320, 0.0440] 3 A,, occurs with probability 0.9875. We
accept the null hypothesis at level 5%, since the two hypercubes [0.0140, 0.0900] x
(~0.0326,0.0686] and [0.0199, 0.1161] x [~0.0320, 0.0440] have a non-empty intersection,
which is [0.0199, 0.0900] x [—0.0320, 0.0440].

In the next section, we show that the procedures developed in section 1.2 can be

applied in some dynamic models.
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1.5  Exact inference in linear regression models with
MA (q) errors

1.5.1 A test on the mean parameters of a general MA (gq) model

In this section, we consider models of the form

Yt = My + uy, ’U,t‘—‘\I’(B)Et, t€T={1,2,...,T}
e:= (e1,€2 ... ,e7) ~ N(0,0%Ir) (1.4)

U(z) = o+ P12+ 2% + - + 29, g =1

with (eo,6_1, ... ,g441)" given. We assume that my = ZkK=1 Tekb, where b :=
(b1, b9, ... ,bx)" is a vector of unknown coefficients and the T’s are random variables
exogeneous for b, and such that Ez; ju, =0, Vk,¢, 5. In model (14),y ~ N( M,Q),

where M = (Emy,Emgy, ... ,Em7) and Q = (wt,s)e,6=1,2, ... T, With

02 Z?:]t—si ’(/)i wi—(t-s] if It - Si < q,
Wt s = (15)
0 if [t-s] > ¢
(1.5) shows the key feature of model (1.4): observations distant of more than g periods

from each other are mutually independent. Then, we are naturally led to consider model

(1.4) for subsamples obtained as follows. Define the subsets of T, J; := {1, 0+ (g+1),i+

2(g+1), ... i+ ni(g+ 1)}, where n; == [(T - i)/(¢ + 1)] ([z] denotes the integer part
ofz),fori=1,2, ... ,9+ 1 and consider the g + 1 equations
Yye=me+u, te.; umN(O,Jﬁ]m_;.l), t=1,2,...,q+1. (1.6)

(1.6) belongs to the class of model (1.1). In each equation, the error term satisfies the
assumptions of the linear regression model, so that it is possible to apply the usual
inference procedures to test restrictions on b, Hy : b € ®. This null hypothesis can be
seen as the intersection of ¢ + 1 subhypothseses Hy;, each of which restricts the mean
of the i-th subsample to be in ®, i =1,2, ... ,¢+ 1. Then, the method presented in

section 1.2 is perfectly suited to situations like model (1.6). We build ¢+ 1 /(g + 1)
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level critical regions for the test of the subhypotheses Hp ;, and reject the null hypothesis
at level a if the vector of observations is in the union of these regions.

Note that we did not make any assumption on the roots of ¥(z). In particular, we
did not restrict the MA process, {¥(B)e; : t € T}, to be invertible.

In the next subsection we apply the procedure to a MA(1) process with a constant.
We make comparisons with some alternative procedures such as asymptotic tests and

bounds tests.
1.5.2  Exact inference in the context of a MA(1) process
1.5.2.1 An induced test on the mean parameter
The model is described by (1.4), with g=1,K=landz; =1, VteT:
Ut =B+ + ey, & inwd'N(O,az); teT. | (1.7)

The vector of parameters is § = (B,%,02). The null hypothesis we consider is Hy: 8¢

'O, Og := {6 € © : § = 0}. According to our procedure, assuming that T is even, we

form the two subsamples of size T/2, (ye,t € J;), where J; = {1,3,5, ... ,T =1} and
J2 ={2,4,6, ... ,T}. For each subsample, we make inference on 8 from the regression
equation

Yye=0+u, tel;, wu;:= (ut:teJi)'wN(O,ale/z), 1=1,2. (1.8)

A /2 level critical region is
Wile/2) = {y € ¥ : B:()| x V(B:@)]V? > t(T/2 - 1;0/2)},

where 3;(y) is the OLS estimator of 8 and V(Bi(y)) is its unbiased variance estimator in
model (1.8);¢(T'/2—1; &/2) is the upper a/2 percentile of a the Student distribution with
T/2 — 1 degrees of freedom. We reject Hy : 3 = 0 at level « if y € Wi(a/2) UW,(a/2).

1.5.2.2  Alternative procedures

We compared this procedure with two alternatives. The first one is to test Hy using

bounds tests. They are of two sorts and have been proposed in Hillier and King (1987)
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and Zinde-Walsh and Ullah {1987), and in Vinod ({1976) and Kiviet (1980) [see also
Vinod and Ullah (1981), ch. 4]

Bounds tests are very useful in testing problems for
which the distribution of the test statistic is difficult or impossible to establish. In our
case, the distribution of the test statistic T(Y), generally depends upon the unknown
moving average parameter, 1, so that the a% critical value is undetermined. Bounds
tests procedures typically derive bounds /() and ¢t*(a) on the unknown critical value

ts(@) so that t!(a) < ty(a) < tv (@), or equivalently,
Pol{T(Y) > t(0)}] 2 Pol[{T(Y) > ts()}] 2 Po{T(Y) > t*(a)}],

for all § € ©9, a € (0,1). Then the decision rule that consists in brejecting Hg when
T(y) > t“(a) and accepting Hy when T(y) < t!(c) has level @, and leads to the same
conclusion as the one we would achieve if we knew the true critical value to(e). An incon-
venient of such procedures is that it may be unconclusive (when T'(y) € [t'(a), t*())).
Obviously, to avoid losses of power, we wish to make the bounds as tight as possible.
In all of the references on bounds tests, the bounds are derived assuming that the
MA parameter is known, so that they depend on it, even under the null hypothesis.
Therefore we will denote by ¢j(a) and t3(c) the lower and upper bounds on tg(a). But
as ¢ is unknown, we have to find the supremum, *(a), over the set {th(a) : th(a) >

to(a), ¥ 8 € ©g}, to make sure that the test based on the rejection region
W(a) :={yeY:T(y) > t*(a)}

satisfies the level constraint,

sup Py (W(a)) < «a.
56@0

Since the moving average parameter is not restricted by Hy, the set of admissible values
for ¢ is IR. The upper bound is then likely to be quite large.

In the context of model (1.7), T(Y) is typically the usual ¢ statistic, or its square or
absolute value. Since under Hy, its distribution depends only on ¥ (and on the sample
size), we write ty, ty and tfﬁ instead of g, ¥ and tf,, respectively.

Here, we only use the bounds of Zinde-Walsh and Ullah (1987) and Kiviet (1980),

denoted by t% ,(a) and t%,4 (), because they are respectively thighter than those of
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Hillier and King (1987) and Vinod (1976). The supremum t%(a) of th (@) forp € Ris
difficult to establish, but Kiviet (1980), (table 6, p. 357), gives the values of the bounds
for ¢ € {.2,.3,.5,.9}, and it can be seen that th ola) > tk 4(a), for p € {.2,.3, .5, 9}
We note that these bounds increase with ¥, and we suspect that the supremum is
arbitrarly large, and possibly infinite when % = 1. Neverthless, we will use t% o) as
the relevant upper bound in our simulations. Zinde-Walsh and Ullah (1987) derived
bounds on the Fisher statistic (or on the square of the ¢ statistic in our case). t% ()
is proportional to the ratio Amaz(¥)/Amin (1) of the higher and lower eigenvalues of the

covariance matrix of Y

% (a) = [to(a)]2’\max(¢)/’\min(¢)-

We need to make here a remark about the accuracy of Zinde-Walsh and Ullah’s
bound. Their test rejects Hy at level a when [T(Y)]? > Supye IR 1% 4 (@) =: t%(a).
t% () is not easy to determine analytically, so instead of finding the maximum of t% (@)
on IR, we reckoned ¢% ,(0.05) for some values of 1 in the interval [-1,2]. We found a
maximum at ¢ = 1, and a minimum at ¢ = —1, for every sample size we considered.
Although t%,(0.05) < t%(0.05), we used this value as the upper bound. Doing so gives
more power to the Zinde-Walsh — Ullah test than it really has, because it rejects Hy
more often than it would do if we used #%(0.05). Despite this fact, t%,(0.05) is so large
(see table I) that the power (and the size) of the test is zero everywhere on the set of

alternatives we considered, for any sample size and any 1 (see section 1.5.2.3).

Table 1. Zinde-Walsh and Ullah’s bounds.
sample size 25 50 75 100
12",1(0'05) 1164.1972]4254.3396{9 291.4222|16 274.6855

The second alternative is to use asymptotic tests. In this category, we considered
three commonly used tests. The first category includes tests which are based on a GLS
estimation of (1.7). In the first step, we find a consistent estimator O of Q and P
such that pr = Q! In the second step, we multiply both sides of (1.7) by P and
apply OLS to that transformed model. In the third and last step, we test Hp using

the standard F' statistic, which has asymptotically a Fisher distribution. We examine
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two estimation procedures that lead to a consistent estimator of 3, resulting in two test
statistics. The first one is detailed in Fomby, Hill and Johnson (1984, p. 220 ~ 221). We
denote it by GLS-MM because in the first step of GLS, we estimate the MA parameter
¥ by a method of moments. ¥ is estimated by minimizing the distance (in the sense
of the Euclidean norm on IR) between the sample and true first order autocorrelations.
The second estimation procedure uses exact maximum likelihood in the first step of
GLS and will be denoted by GLS-ML.

The third test we consider is motivated by the Central Limit theorem that can be
found in Brockwell and Davies (1991, p. 219) for instance, which says that if a process,

with mean §, has an infinite order MA representation with IID error terms and MA

coefficients 9,71 = ..., -2, —1, 0,1,2,..., satisfying the two following conditions
Zt?;—oo !¢t| < oo,
z——oo th 7“'é 0

then the sample mean of the process is asymptotically normally distributed, with mean
3 and variance 7! Zt__oo v(#), where (i) is the autocovariance at lag 1. 3 In view of
this result, a natural way of testing Hp is to estimate § by the sample mean, Y7, and
the asymptotic variance by a consistent estimator proposed in Newey and West ( 1987)
or(p) = = [rT +2Z <1 - ——~) rT(i)J
=1
where r7(¢) is the sample autocovariance at lag . Then, if Hy is true, the statistic
__ Y
T-1¢7(p)

has an asymptotic y? distribution with 1 degree of freedom. We will denote this proce-

NW
&r

dure by NW.

Before we expose the results of our simulations, we want to insist on a very important
condition one has to impose when comparing the relative performance of two tests. It is
meaningless to say that test A has a higher power than test B for testing Hy against an

alternative H,, if we have no certainty that the two tests have the same level. Typically,

®Note that the last condition on the ¥:’s is not satisfied for the MA(1) process (1.7) with ¢ = —1,
but as ¢ is unknown, we might not be aware of this fact or ignore it.
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if no sort of Monte Carlo experiment is rna,de,‘ it is extremely difficult to say something
about the level of an asymptotic test, as long as the sample size n is not infinite, which
is always the case. If we want to make comparisons, we must correct the size of the
asymptotic test in order that all the tests we consider have the same level.

A way of doing this is to detect the value of ¥, ¥~, say, for which the discrepancy
between the level and the size is maximum. For that value, we simulate S times the
test statistic, Ty« (Y).° We then take the observation of rank ((95 % S)/100) + 1 of the
statistic as our corrected 5%-level critical value: we reject Hy at level 5% when Ty (y)
is larger than or equal to that value.

Table II reports %*, the size (in %), the 5% asymptotic critical value (ACV), and
the 5% corrected critical value (CCV), for each sample size T, and each of the three

agymptotic procedures.

Table II. Size and critical values of 5% level asymptotic tests.
=25 . T =50

Y™ |size (%)| ACV | CCV || ¥* |size (%) ACV | CCV-

GLS-MM | ~0.5] 19.22 |4.25968(30.664| —0.5| 18.59 |4.0384 59.555

GLS-ML || -0.5| 27.87 |4.25968/37.979!l—0.5 15.06 [4.0384|14.615

NW 1 15.03 | 3.840 | 8.459 1 10.25 | 3.840 | 5.789

T=175 T =100
¥” |size (%)| ACV | CCV || ¢~ |size (%)| ACV | CCV
GLS-MM |/ -0.5| 16.98 |3.97024|64.502]] 0.5 14.98 13.9371(38.789
GLS-ML ||-0.5] 10.13 |3.97024] 6.396 || —0.5 7.84 13.9371] 4.983
NW 1 8.82 3.840 | 5.243 1 8.08 | 3.840 | 4.907

1.5.2.3 Simulations

In our simulations, we adopted the following procedure. Fix ¢ € {-1, -.5, 0, .5, 1}
and T € {25,50,75,100}. Consider a set V(Bo) of s values {8y, 5,, ... ,Bs} of B in
a neighbourhood of 8y, (8 = 0). For § = Bi generate a sample of size T, (yr : t =

1,2, ... ,T). From this sample, calculate:

8For all asymptotic test procedures, we set S = 10000.
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the t statistic based on the whole sample,

the ¢ statistic based on subsamples (ye:teJy)and (s :t e J2),

the GLS-MM and GLS-ML based F statistics,

|

— the &M% statistic.
Using these statistics, implement the different following tests at level 5%:
~ Zinde-Walsh and Ullah’s test,

- Kiviet’s test,

GLS-MM asymptotic test (corrected and uncorrected for the size),

GLS-ML asymptotic test (corrected and uncorrected for the size),

NW asymptotic test (corrected and uncorrected for the size),

induced test,

tests based on subsamples (y;:¢ € J;) and (y;: ¢t € Ja).

Repeat this 1 000 times and for each test, calculate the rejection frequency of Hy. Finally,
do this for each T' € {25, 50,75,100} and 5; € V(08,).” We report our results in figures
1.3 to 1.17. In all the figures, the estimated power of the induced test is represented by

the solid line.

"Because Kiviet (1980) does not provide the upper bound for T = 75 and T = 100, we did not
investigate the behaviour of Kiviet’s test for these values of T
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25,50, 75,100. induced test (— ), tests based on subsamples (y; :t € Jy) and (y, : t € J2)

(+-and—-—).
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Figure 1.6: Rejection frequencies of Ho : B = 0 in model (4) with ¢ = -.5,T =
25,50,75,100. induced test (— ), tests based on subsamples (y::t € J1) and (ys : t € Jp)
(---and —-— ).
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Figure 1.7: Rejection frequencies of Hy : 8 = 0 in model (4) with ¥ = —-1,T =
25,50,75,100. induced test (— ), tests based on subsamples (ye:t € Jy)and (y; : t € Jo)
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Figure 1.8: Rejection frequencies of Ho : § = 0 in model (4) with ¢ = 1,T = 25, 50.
induced test ( — ), Kiviet’s test (- - ).
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Figure 1.9: Rejection frequencies of Ho : 8 = 0 in model (4) with 1 = 0.5,¢ = 25, 50.
induced test ( — ), Kiviet’s test (- - ).
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Figure 1.10: Rejection frequencies of Hy : 8 = 0 in model (4) with ¥ = 0,T = 25, 50.
induced test ( — ), Kiviet’s test (- - ).
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Figure 1.11: Rejection frequencies of Hy : # = 0 in model (4) with ¢ = —0.5,T = 25, 50.
induced test ( — ), Kiviet’s test (- - ).
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Figure 1.12: Rejection frequencies of Hy : 3 = 0 in model (4) with v = —-1,T = 25, 50.
induced test ( — ), Kiviet’s test ( - - ).

As it became clear in the description of the induced test, when applying such a
procedure to model (1.7), one is led to split the sample in two, and make two «/2
To-level tests. At a first look, the procedure displays features that may seem quite
unattractive. First, it splits the available sample in two, and second it combines two
tests of level a/2 % only. From these two remarks, one may expect the procedure to
lack power. But one has to keep in mind that although the two “sub-tests” have level
a/2 %, the resulting induced test has level o %. Furthermore, this test actually uses
the information contained in the whole sample. Then it becomes less clear whether
the induced test procedure automatically leads to a loss of power relatively to other
alternative tests. Figures 1.3 to 1.7 show that the power of the induced test is geﬂera.lly
higher than that of an o %-level test based on one of the two subsamples. In other
words, combining is preferable to not combining. When it is not the case (when the
true value of the MA parameter is unity, 3 = 1, see figures 1.3(a) to 1.3(d)), the loss of
power from using the induced test is very small, so that one would usually prefer the
the sample-split procedure that uses all the observations.

As can be seen from figures 1.8 to 1.12, the Kiviet test is dominated by the induced
test, except in the case where ¢ = 1. We already mentioned in section 1.5.2.2 that the

bound which has been used here, namely t"K’.g(O.OS), is not appropriate because we do
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Figure 1.13: Rejection frequencies of Hy : § = 0 in model (4) with ¢ = 1,T =
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test (— ).
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Figure 1.14: Rejection frequencies of Hyq : f = 0 in model (4) with v = 0.5,T =
25,50,75,100. NW test (--- ), GLS-MM test ( - - ), GLS-ML test ( — - — ), induced
test ( — ).
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Figure 1.15: Rejection frequencies of Hg : § = 0 in model (4) with ¢ = 0,T =
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Figure 1.16: Rejection frequencies of Hy : 8 = 0 in model (4) with ¥ = —0.5,T =
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test (— ).
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Figure 1.17: Rejection frequencies of Hy : # = 0 in model (4) with % = —-1,T =
25,50,75,100. NW test (--- ), GLS-MM test ( - - ), GLS-ML test ( — - — ), induced

test (— ).



not know whether this value satisfies the level constraint:
sup Py [{y €V :T(y) > tk o(0.05)}] < 0.05.
06@0

In other words, a critical region based on Kiviet’s bounds has an unknown level. More-

over, what makes the induced test more attractive relatively to Kiviet’s test is that it

avoids the calculation of a bound that changes with the sample size. Finally, because

Zinde-Walsh and Ullah’s upper bounds are so large (see table I), the power of their test
is zero for all ¥ and the estimated power function coincides with the horizontal axis on
figures 1.8 to 1.12.

The most surprising result which emerges from our Monte Carlo study is seeable
in figures 1.13 to 1.17. Once the asymptotic critical values used for the GLS-MM and
GLS-ML tests have been corrected so that the corresponding critical regions have the
desired level, our procedure becomes more powerful than these alternatives for some
very plausible values of . The difference between estimated power functions grows as
P increases, but diminishes when the sample size T gets larger. The GLS-MM method
seems to be the worst of all the asymptotic procedures studied here, whereas GLS-ML
benefits the asymptotic efficiency property of maximum likelihood estimators. But for
non negative values of ¢, the sample size has to be T = 100 for the GLS-ML test to
have a probability of correctly rejecting the null as high as the induced test. The GLS-
MM test is still dominated for some negative values of 4 (% = —.5), irrespective to the
'sar"nple size. Only when % is close to —1 does this procedure become admissible.

While the two commonly used asymptotic inference procedures, GLS-MM and GLS-
ML, cannot be recommended on the ground of our Monte Carlo study, the conclusion
concerning the NW method is different. Except for small sample sizes (T = 25) and Iargé
values of the MA parameter (¢ = 1,.5), it does better than the induced test procedure.
This result is also unexpected because the Newey-West estimator of V(Y1) does not
take intb account the autocovariance structure of the process. However, although the
induced test is Conservative, it is more powerful than NW test for alternatives close to
the null hypothesis when 1 is negative.

We now present an application of the induced test procedure to a canadian macroe-

conomic time series whose data generating process has been identified as a MA(1).
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Figure 1.18: First differences of the Canadian per capita GDP. Source: Bernard and
Durlauf (1994).

1.5.2.4 An example: a induced test on the mean of the Canadian per

capita GDP series

We show how we can apply our procedure to test the nullity of the mean of a process
that has a MA(1) representation. Qur series is the first difference of the Canadian per
capita GDP, denominated in real 1980 Purchasing Power Parity-adjusted US dollars,
observed yearly from 1901 to 1987. It is taken from Bernard and Durlauf (1994). Figure
1.18 plots the series.

Using standard Box-Jenkins procedure (autocorrelation and extended autocorrela-

tion functions), we identified as a MA(1) process for the series (see table III).

Table III. Sample autocorrelations of the Canadian per capita GDP series.

Lag 1121345 (6|78 ]9 10]11]12
Autocorrelation 41 .19 |.10 {-.04|.05| .07 | .12 | .04 [-.04] .09 | .08 | .20
Standard Error J10.12).131.13 .13 .13 (.13 .13 |.13| .13 | .13 .13
Ljung-Box Q-statistic|{15.4]18.8/19.8/19.9{20.2/20.622.1]22.3[22.5/23.3124.0|28.3




67

We then consider a model like {1.7). ML estimation of (1.7) gives 3 = 136.1810 and
y = 0.4211 with estimated variances 945.1919 and 0.0095, respectively. The estimated
Cov(ﬁ, w) is 0.0834 and the sample variance of the residuals is 40117.5725.

To implement an induced test for the nullity of the mean parameter, 3, at level 5%,
we split the sample in two parts, {y; : ¢ € J;},7 = 1,2, and make two 2.5% tests of =0,
- using statistics £; := \/n; |§i|/s;, where §; = ¥ c 5 yi/ni, s? = (Zjeji (y; — gj,-)2> /(ng —
1), and n; is the size of subsample i, 1 = 1,2. We reject the null hypothesis when
t1 > t(a/2,v1), or ty > t(a/2, 1), where t(a/2,v) is the a/4 percentile of the Student
distribution with v degrees of freedom. We also perform both GLS-MM and GLS-ML
asymptotic tests. Our results are reported in table IV. 3 is the two step estimator of 3,
1 is the estimation of & that has been obtained in the first step to estimate the error
covariance matrix, and t is the test statistic, which is asymptotically distributed as a

Student with 86 degrees of freedom.

Table IV. Induced and asymptotic tests.
Model: y; = B + &4 + 1psi—q.

i=1 i=2 GLS-MM | GLS-ML

8 127.6836 | 1254406 | 122.2522 | 123.6574

t(v) | 4.1892(43) | 3.5076 (42) | 7.5112 (36) | 6.9345 (36)
p-values | 0.00014 0.00109 0.00000 0.00000
P - - 0.5298 0.4221

Both subtests reject the null hypothesis at level 2.5%. Hence the induced test- rejects
the nullity of the mean at level 5%. The two tests also reject the null hypothesis, if we
admit that the asymptotic critical value is a good approximafion when the sample size
is 87. Our findings are consistent with the results of the Monte Carlo study of section
1.5.2.3. For similar sample sizes (T = 75 or T’ = 100) we found that the GLS-MM test
produces larger values of the test statistic than the GLS-ML test does. This is what we
have here with T = 87.

We now show how to derive a HLSS estimator of 3. We have considered two linear

regression submodels

y=p+u,, teJ
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Figure 1.19: Behaviour of the bounds of I and I, in the MA(1) model.

Yye=PB2+uz:, te.y

Since these two models come from the same initial MA(1) model, we obviously have
1 = B2 = §. To implement the induced test, we derived two half-sample based OLS
estimators of 3. We use the results of section 1.3 to obtain a HLSS estimator for this

parameter. The half sample confidence intervals at level o have the form

Ztay )|, i=1,2,

_ S{ _
Ii(avyi) =¥ — \—/—n—'.'t(a? Vi)’ ¥ + \/ﬁ—

where t(a,v) is the &/2 quantile of the Student distribution with v degrees of freedom.
Figure 1.19 shows the behavior of the upper and lower bounds of I;(e,y;) (which are
denoted by UBi and LBi, respectively) when « is close to one. We found that aly) =

97.3146% Then

= [126.6516, 128.7156]

I (a—?l,%) = [124.2295, 126.6516]
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so that

P Hy €y:h <&(2y),y1> arp (dg‘y),yz) > ﬁH 2 1= a(y) = 2.6864%.

and Brr(y) = 126.6516. In this example, because the subsample sizes differ, t;(a)
and ?z(a) such as defined in 1.3.3.3 are not equal. However, the property discussed in
section still holds: the HLSS estimator of 3 gives more weight to the subsample based
OLS estimate which has the smallest estimated variance.

If we decide to include a linear trend in the mean of the MA(1) process, our in-

duced test procedure still applies. The per capita GDP series now admits the following

representation
ind
Yt = Bo+ Bit + €t 4 e, gt ~ N(0,0%)
fort =1,2,...,T(=87). We are interested in testing three hypotheses
0
Héo)iﬁc):Oy H((,l):ﬂlzo, Hyp : o =
B 1

For each hypothesis, we perform the induced test as well as the asymptotic tests. Results
appear in table V.

Table V.Induced and asymptotic tests.
Model: y; = Bo + Bit + &1 + tper_y.

i=1 i=2 GLS-MM GLS-ML
Bo —37.0695 —6.2981 —22.5258 —-22.5578
By 3.7444 2.9941 3.3507 3.3554
to (v) ~0.6832 (42) | —0.0903 (41) | —0.6726 (85) | —0.6577 (85)
p-values 0.49823 0.92849 0.50303 0.51251
t (v) 3.5058 (42) | 2.1674 (41) | 5.0392 (85) 4.9319 (85)
p-values 0.00110 0.03606 0.00000 0.00000
F (v, ) || 17.2244 (2,42) | 9.0421 (2,41) | 37.9250 (2, 85) | 39.3875 (2, 85)
p-values 0.00000 0.00056 0.00000 0.00000
" - - 0.3536 0.3253

We note that only one of the subtests rejects the presence of a linear trend. However,
according to our decision rule, this is enough to reject Hél) . Both GLS-MM and GLS-
ML unambiguously reject this hypothesis. But we know from our simulations that the

asymptotic tests tend to reject the null too often when it is true.
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When we apply the induced test procedure, we implicitely assume that we have
correctly identified a MA(1) process. An interesting issue is to look at what we get
if, instead of the true MA(1) representation, we use a MA(2) model to build our test
statistics. In this case, we split the sample in three parts, make three tests at level 5/3%
and reject the null when our sample falls in one of the three critical regions. Our results

are given in table VI.

Table VI.Induced and asymptotic tests
Model: ys = B 4+ &, + 1841 + ags_o.

i=1 i=2 i=3 GLS-MM | GLS-ML

8 122.4644 | 130.7687 | 126.4918 | 128.9405 | 129.7032

t(v) || 2.6573 (28) | 4.1328 (28) | 2.9150 (28) | 3.6828 (86) | 3.2812 (86)
p-values || 0.01286 0.00029 0.00692 0.00040 0.00149
Wy - - - 0.4096 0.3931

U - - - 0.2354 0.1037

1.6 Concluding remarks

In this paper we proposed a general framework for solving hypothesis testing problems
and building confidence regions. Our procedure is composed of two steps. We first split
the sample in several subsets of observations, from which we obtain separate inference
results. In the second step, we recombine these results (rejection regions or confidence
regions) to obtain a single decision which is based on the whole sample. The way the
data set is split depends on the structure of the model we consider. In some situations
the structure naturally suggests the division. This is particularly true when the model
is composed of several equations. In other cases, the split is based on more elaborate
statistical results such as in moving average models. As regarding the combination step,
it is independent of the model specification. The way the rejections regions associated
with a test procedure are put together depends on how the null hypothesis is expressed.
In section 1.2, we developed a general theory which provides a method for combining
separate inference results without knowing the features of the joint distribution of the
statistics that were used.

In a similar context, we also derived a procedure for combining confidence regions.
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Considering confidence regions as estimators, this technique can be seen as a way for
pooling several pieces of separate information on the model ‘probability distribution.
As a by-product, it also led to a new class of estimators which can be percieved as a
generalization of Hodges-Lehmann estimators.

This paper therefore provides a whole theory of point and confidence region estima-
tion as well as valid inference based on a division-combination technique. It is partic-
ularly useful in a wide variety of econometric models and we successfully applied the
method to SURE and MA(1) models to derive confidence regions and point estimators,
and to carry out inference. An extensive Monte Carlo study assesses the performance
of the procedure in the context of the MA(1) model. Two major conclusions arise from
these experiments. First, it provides further evidence on the distortions of asymptotic
procedures that are recommanded in most econometrics textbooks. Second, it reveals
the good power properties of the division-combination method. It is shown to be dom-
inated by no other inference procedure we considered.

In addition to these remarks, there are a number of other features which favor our
procedure. First, in some situations where it is typically very difficult to derive valid
inference procedures such as MA models, we developed a method which controls the
level. Second, this procedure is much simpler than usual asymptotic methods. It uses
critical values from standard distributions to construct confidence or rejection regions.
In particular, these distributions do not change with the sample size and/or the model
specification. Moreover, in MA(1) models, it avoids the difficult task of having to
estimate the autocorrelation parameter. Third, the procedure offers some robustness to
certain model mispecifications. For instance, in SURE models the method of hypercubes
is valid irrespective to the inter-equation correlation structure. Finally, as we already
mentioned the procedure has good power properties. For those reasons, we believe that
the division-combination method developed in this paper should be considered as an

alternative to usual asymptotic procedures.



Chapter 2

Exact inference procedures in
dynamic models with
applications to AR(1) processes

2.1 Introduction

The presence of nuisance parameters is a crucial problem when doing inference on
the parameters of a dynamic model. Typically test statistics have distributions which
depend on those nuisance parameters so that they are difficult to interpret.

A first approach to solve this problem consists in finding a consistent estimate of the
nuisance parameter and replace it in the distribution of the statistic we wish to use.
However it is well known that such approximations are arbitrarily bad; see Park and
Mitchell (1980) Miyazaki and Griffiths (1984) and DeJong et al. (1992) for examples
in the context of AR processes, and Dufour (1994) for a more general treatment of
asymptotic inference procedures derived from Wald statistics. As a consequence, when
hypothesis testing is the objective, such a procedure offers no guarantee that the test
based on such asymptotic approximation satisfies the level constraint in a Neyman-
Pearson approach [see Gouriéroux and Monfort (1989, p. 14) and Lehmann (1986, p.
69)]. This makes comparisons with other testing procedures difficult.

A second approach is to use bounds tests which are usually conservative. Suppose the
true critical value for our test statistic is unknown, but that it is possible to find bounds
on this value. The rejection region of a bounds test is characterized by the bounds on the

critical value. For some examples of such tests, see Vinod (1976), Kiviet (1979, 1980),
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Hillier and King (1987) and Dufour (1990). Except for the last reference, the bounds
seem to increase without limit when the nuisance parameters approach some threshold
values (non invertibility and non stationarity in the case of ARMA processes) and/or
with the sample size [see Dufour and Torrées (1994)] so that they become uninformative.
Dufour (1990) proposed a test procedure which does not display this quite unattractive
feature. However, this method becomes quickly intractable when we deal with processes
that have more complex dynamic structures such as AR(p) processes, p > 2.

In this chapter, we propose an exact inference procedure on the parameters of Markov
processes. It is based on extending a result due to Ogawara (1951) stated for univariate,
stationary Gaussian AR(p) process. We noted that this reference does not contain the
proof of the result, and that such a demonstration seems to be found nowhere. The
procedure has been extended by Hannan (1956) to multivariate, stationary, Gaussian
processes admitting a VAR(1) representation. In these two references, the objective was
to develop a procedure to make inference on the autocorrelation parameters of pure AR
processes. Hannan (1955a, 1955b) mentioned that this method can be applied to test a
hypothesis on the mean parameters in a linear regression model with stationary AR(1)
errors. In this paper, we extend and improve these results in several directions. Our
approach extends results due to Ogawara and Hannan. This generalization is made in
several directions. First, the initial results of Ogawara (1951) are extended to a larger
class of processes, which includes multivariate, possibly non-normal, integrated or explo-
sive processes. Second, we consider in our applications a class of models and hypotheses
that includes as special cases all the models that have been examined in earlier litera-
ture [Ogawara (1951), Hannan (19552 and 1955b) and Krishnaiah and Murthy (1966)].
In particular, although this procedure was originally designed to make inference on the
mean coefficients of a dynamic model, we show it is also suitable for inference on the
nuisance parameters, such as autocorrelation coefficients. Furthermore, we develop a
procedure for constructinvg confidence regions. Third, we propose a way for resolving the
problem of information loss due to the application of the Ogawara-Hannan procedure.
Fourth, we provide simulations results to evaluate the performance of our method.

Our procedure involves several steps. We first split the sample in several subsets
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of observation. Next, by conditioning the original model to one of these subsamples,
we obtain a transformed model which is in fact a two-sided regression. The dependent
variable is regressed on its own leads and lags. This transformed model has simpler
distributional properties and allows one to apply standard inference techniques. This is
repeated for each subsample and a combination method developed in Dufour and Torrés
(1994) is used to put together the results of subsample-based inferences and obtain a
single final result based on the whole sample.

The procedures are quite easy to implement. They only require the application of
standard test procedures (Student, Fisher, x?) to a transformed model. This means
that there is no need for establishing critical points that may change with the model
specification. The method is flexible enough to be easily adaptable to a great variety of

econometric models. In particular, we show it can easily be adapted to:
o integrated or explosive processes,
e models with very general dynamic structures,
o multidimensional processes (VAR models).

The chapter is organized as folloWs. In section 2.2, we present the extensions of
the theoretical results of Ogawara and Hannan. In section 2.3, we show how to apply
the results to derive exact inference procedures in the context of an AR(1) process. In
section 2.4 we consider a more general model by introducing mean components in the
AR(1) model. In particular, we explicitly show; how one can obtain an exact test on the
mean parameter and on the autocorrelation coefficient. We also derive an exact test
on the order of the autregression. In section 2.5, we propose a way for improving the
performance of Ogawara’s procedure and we present our simulation results. In section
2.6, we apply the procedure to macroeconomic data. We conclude in section 2.7. An

appendix gives the‘proofs of the results of section 2.2.
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2.2 Theoretical results

2.2.1 Notation

Let {X; : t € T} be astochastic process on a probability space (2, F,P) with trajectories
i R™ e X(w, t) = (Xi(w, 1), Xo(w 1), ..., X, 8)), m > 1L, teT. T={teZ:
tg < t < t}isasubset of integers, for some tg, ¢ € Z such that —oo <tg, to+1 <t < .
The symbol “:=” means “equal by definition”.

We assume that for all ¢ € T, the law of probability of X; has density fy, with respect
to the Lebesgue measure on R™, the Borel o-algebra of subsets of R™. Ix.jo(z|d) is
the conditional density of X; given ® = ¢, evaluated at z € IR™, where ® is a vector of
conditioning variables. Unless otherwise specified, an upper case letter denote a random
vector, while a lower case letter refers to a realization of this random vector.

It will be useful to introduce the following notations. Let p and n be two strictly

positive integers. We consider the random process {X; : ¢t € T} and we define

Hypi=(Xr:5<7<t), hggi=(2z,:5<1 <)

3

for1<s<t<n(p+1)+p,
Bipi=(Xper :1<7 <), bupi=(2yr:1<7 < p)
forp+1<v<(n+1)(p+1), and
Atp = (Brips)p  t ST <0+ 1), agp = (brpr)p it ST <N+ 1)

for 1 <t < n+ 1. Furthermore, we define the random vector B,,=(X_, X, _4 ...,
X, ) forp+1<v<(n+1)(p+1).

Let {X;:t € T} be a random process and p an element of Z,, where Z_ is the
set of strictly positive integers. We say that {X; :t € T} is a Markov process of order
pon T (or {X;:¢ € T} is Markovian of order p on T) if FXiHeg o = FxHe_ s T8
such that £ > ¢t > to + p + 1. Note that for T = Z and p = 1, we have the standard
definition of a Markov process.

Let X and Y be two random vectors of dimension g and r, respectively. The affine
regression of X on Y is the random vector of size ¢, denoted P(X|Y), whose i-th com-

ponent is the orthogonal projection of X; on the space spanned by the affine functions
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of Y. If IV is another random vector. X LY |W means that the residuals from the affine

regressions of X and ¥ on W are uncorrelated, i.e. E[X — P(X[W)Y -PY W)} = 0.
2.2.2 Intercalary independence and truncation properties

The procedures presented in Ogawara {1951) and Hannan (1955a, 1955b, 1956) exploit
special properties of Markov processes (intercalary independence, truncation), which
we now study more explicitely and generalize. One can apply the set of propositions
that follows to build a transformed model by conditioning the original model. We
will see that this transformed model is actually the classical linear regression model
on which standard inference techniques can be applied. The intercalary independence
property is stated without proof in Ogawara (1951) for univariate Markov processes,
while the truncation property is used (again wihtout proof) in the context of univariate
autoregressive stationary Gaussian processes.! In this section, we demonstrate and
we extend these results for multivariate Markov processes of order p, by allowing for
non-stationarity and non-normality.

The first result we state (intercalary independence for Markov processes of order p)
is an extension of theorems 1 and 2 in Ogawara (1951). The proofs are given in the

Appendix.

Theorem 1 (Intercalary independence for a Markov process of order ponT)
Let {X; :t € T} be a random process such that Fxam o = fXqH ey Yt 2 D+ L
ThenVn € Ziq, Xpt1, Xo(p+1) - -+ s Xn(p1) are mutually independent, conditionally to

Ay p.
Consider a dynamic model of the form
thgl,t(Zt»Hu,f)'*'Et’ = 1927 1T:: n(p+l)+p (21)

where {X; : t € T} is 2 m-dimensional Markov process of order pon T := {1,2, ..., n(p+ -

D+p}and 1 <v <7 <t=1.%2Z is a vector of fixed exogenous variables, Eit ~

'Ogawara notes that these results are stated without proof in Linnik (1949). However the proof is

given nowhere in Ogawara (1951).
*If {X: : t € T} is Markovian of order p, we have t ~1 > 7 > v > t—p.



WN(0,0%),i=1,2....,m, and g1, 1s a deterministic function in IR™. If we condition

(2.1) on A4; ,, we obtain a conditional model

"Yt(p+1) = gz,t(Zt(p-(-l)v Al,p) + Me(p+1) » t=1,2,...,n, (22)

in which, according to Theorem 1, the endogenous variables are independent and where
M(p+1) = 0. We achieve the independence at the expense of a possibly much larger
number of variables in the conditional mean of Xy(,.1) (4; , instead of H, ,). However,
by the following theorem, we can restrict ourselves to consider a more parsimonious

model which is distributionally equivalent to (2.2).

Theorem 2 (Truncation for a Markov process of order p on T) Let {X;:te

T} be a random process such that FXH o = thlHe-p,:-x , VYt > p+ 1. Then

th(p+l) [A1p ™ sz(p+1) ([B(e+1)(p+1),0:Be(p+1),p]

Note that only the Markov property of the process is needed to establish these results.
In particular, stationarity and/or normality are not required. The result stated without
proof in Ogawara (1951) in the context of an univariate, stationary, Gaussian Markov

process of order p is given by the following corollary.

Corollary 1 Let {X; : ¢t € Z} be a (multidimensional) Markov process of order p (p >
1). Then theorems 1 and 2 hold for {X;:t € Z} .

(Simply note that V¢ > p+1, TXtH sy = ) A FXHeyoor = XiHe ot ¥
s > p). Theorems 1 and 2 show that Ogawara’s results generalizes to a larger class of
processes. Theorem 2 says that if {X, :¢ € T} is Markovian of order p, variables other
than those in Bt(;,+1)yp and B(i11)(p+1),p do not appear in the conditional density of
Xi(p+1) given Ay ,. This result suggests that, instead of (2.2) we can limit ourselves to

consider the much simpler equivalent model

Xt(p+1) = gt(Zt(p-{-l), Bt(p+1),p) B(t+1)(p+1),p) +Mp+1y, t=1,2,...,n, (2.3)

where the Xy, 1)’s are (conditionally) independent. Model (2.3) is obtained from model

(2.1) by a projection of Xi(p+1) on the space spanned by the functions of the variables
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Bi(p+1),p and Biip1)(p+1),p- Corollary 2 gives a sufficient condition for this projection to
be invariant with ¢, in which case g;(-) = g(-),forall t =1,2, ..., n. We first need to

introduce the following definition.

Definition 2 Let {X; : t € T} be a random process. We say that {X; : t € T} is

p-conditionally strictly stationary (p-CSS) if there erists p in Z,, such that for all

t> pA-!— 1 we have ;
Sxabepe C1) = FC-10).

Corollary 2 Let {X; : t € T} be a p-CSS process (p > 1) such that fx, g, ,_, =

th'Ht—p,t—l . Then
FXepayBsnypany o Beipany 21 1) = FO1)-

To see that this condition holds, note that from the notation we have B, , = H,_, 1.
Then writting the conditional density as

t{p+1)+
_ Hr(Zt(pL-lz; erlB".p

f Xt + ![B +1)}{p+1},p B -+ ]
At(p+1) L2 (t+1){p+1),p 1 t(p+1).p t(p+1)+p i
f HT—_t(p+1) folB,-_p xt(p-l—l)

(see the proof of theorem 2), the p-CSS property of {X; :t € T} yields the result.

We note that the p-CSS condition is implied by, hence weaker than, strict stationarity.
Furthermore, any random process that admits an AR(p) representation with i.i.d. errors
is Markovian of order p and p-CSS. This will be important for our purpose, since (2.3)

can be rewritten as

Xt(p+1) - g(Zt(p+1)7 Bt(p+1),p» B(t+1)(p+1),p) + Mp+1)r =1, 2,...,m, (2.4)

where g does no longer depend on ¢, which makes statistical inference much easier.
Furthermore, if ¢ is affine, (2.4) is the classical linear regression model.
We give here another result and its corollary which will be particularly useful when

the process {X; :t € T} has an AR representation.

Theorem 3 Let {X; : t € T} be a Markov process of order p on T. Then for any

q€ Z++ such that q > p, we have th'[Bt,quz+1+q,q] = fX!”Bt.poHHp,p]'
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Corollary 3 Let {X, : t € T} be a Markov process of order p on T. Then for any
q e Z++ such that q Z P, we have P(4X‘!lBt,qy Bg+1+q,q) = P(-XtIBt,py B’H—l'{-p‘p)'

In the context of random processes having weaker properties than Markov processes,
results similar to intercalary independence and truncation hold. These are given in

theorems 3 end 4.

Theorem 4 (Intercalary orthogonality) Let{X;:t & T} be a random process such
that
X LHY, | HE,, .

Then

Xt(p+1)_ﬂ_Xs(p+1), Vt, s :1<t, s<n, t#s.
Theorem 5 Let {X, :t € T} be a random process such that
XeLHY , (|HE o
Then for allt, 1 <t < n, we have
Xipany L [BY iy, 1S TS+ 1,m g {68+ 1} [B(f‘fﬂ)(mm,B;‘(fpm,p] .

In the next section, we apply our results to derive an exact inference procedure on
the parameters of the original model (2.3). We start with AR(1) processes. We then
consider a Markov process of order 1 admitting a more general dynamic representation,
which includes the classical linear regression model with AR(l) errors as a special case.
In a subsequent section, we derive an exact inference procedure in the context of Markov

processes of order p.

2.3 Exact inference for a process which admits an AR(1)
representation

In the previous section, we showed how to use Theorems 1 and 2 to derive a time
invariant transformed model (2.4) from the initial model (2.1). If we want to make
inference on the parameters of (2.1) via those of (2.4), it is desirable to make the

relation between the two types of parameters as simple as possible. We can transform
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(2.1) in (2.4) using two sorts of projections. Let {Y, : t € T} be a Markov process
of order pon T := {1,2,..,n(p+ 1) + p}. The first kind of projection is suggested by
the results of section 2.2. It is the projection of Yi(p+1) On the space generated by the
functions of the variables in Bi(p41),p and B(t41)(p+1),» (oF the conditioning of Yip+1) to
Bi(p+1),p and B(t41)(p+1),p)- Unless normality is assumed, this projection is likely to be
nonlinear and difficult to establish. Moreover, if {V; : t € T} is not p-CSS, we have no
guarantee that this projection will be identical for all ¢.

The second type of projection is the affine regression of Y1,y on Bi(pt1),p and
Blt41)(p+1),p- The resulting model is linear by constuction and the relation between the
initial and the transformed parameters is likely be simple enough to be useful for the
purpose of inference. A sufficient condition (but not necessary, as we will see in the case
of AR(1) processes) for this relation to be time invariant is the weak stationarity of the
process {Y; : t € T} . However, our objective is to make exact inference and we may
wish to introduce a probability distribution on {Y;:t € T}. We will then assume that
{Y; :t € T} is a Gaussian process. In that case, the two projections coincide.

In this section, we show how the results of the previous section can be applied to

obtain exact tests and conficence regions on the parameters of an AR(1) model.
2.3.1 Model transformation

Suppose the scalar process {Y; : t € T}, T := {1,2,...,T} with 7 = 2n + 1 for some

integer n, admits the following representation
Y, = ¢Yi1 e, &~ WN0,0%), teT, (2.5)

with Y5 given and ¢ € R. If we assume that the &;’s are normally distributed, then
{Y; :t € T} is a 1-CSS Markov process of order 1 on T. We are now ready to apply the
results of section 2.2. The conditional distribution of Y, given (Y41, Y2:—1) is normal,
forall t=1,2,...,n. Its mean is given by the affine regression of Y5; on (Yaty1, Yoro1)

and takes the form
P(Yat|Yat41,Yor1) = a+ i Yorpr + BoYoio1,t = 1,2, ..., n.

The following theorem shows that if |¢| < 1, then 8; = 8, =: 3.
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Theorem 6 (Symmetry for a weakly stationary univariate random process)
Let {X¢ : t € T} be a weakly stationary univariate random process. For allp € Z,.,
the coefficients of Xy, and Xy_; in the affine regression of X, on (Bitps1p Bip) are

equal, 1 < k < p.

Expressions for 3 and « are derived in the Appendix. It is shown that B = ¢(1+
¢?)~' and & = 0. The variance of the residuals from the regression is o2(1 + $?)~ L.
These expressions are valid for any ¢ € IR. Starting from (2.5), the equivalent of the

transformed model (2.4) is

2

c
Y?t = /3Y2’; + N2t t= 17 27 ceey My ZV(O) < 2-[71)) (26)
1+¢
where Y3} := Yor1 + Yor1, t = 1,2, ... 0y = (92,74, - .. nen)’ and I, is the n x n

identity matrix. (2.6) is a Gaussian linear regression model from which we can easily
estimate 3 and make exact inference on this coefficient. In particular, using the usual
critical region W(a) := {|t(8°) > t;_4/2(n — 1)}, where t(8°) := (§ — 8O)[V(8)]~V2, 3
and \7(,@) being the OLS estimates of 8 and V(ﬁ), we can test any hypothesis Hy : f = 3°

against H; : B # 3° for any real 8°. This test has level « since the procedure is exact.

2.3.2 Exact tests on ¢

The relation between the “initial” parameter ¢ and the “transformed” parameter 3 is
given by 8¢% — ¢ + 8 = 0. In order to make inference on ¢ using model (2.6), we need
to examine the roots of the polynomial ¢(z) = Bz% — z + 8 = 0. Since ¢ is assumed
to lie in IR, we discard complex roots, obtained with |5] > 1/2. If we also exclude
the trivial case f = 0 which yields ¢ = 0, the roots of ¢q(z) are z, = (1 + A;ﬂ) /20,
Ty = (l - A;/Z) /283, where A, := 1 — 4% Since z,2, = 1 and sign(z;) = sign(z2),
we have z; > 1 <= z; < 1,4, = 1,2, ¢ # j. Hence, with § # 0 and |§] < 1/2, two
values of ¢ only are identified in (2.6). These values are 1 and —1 which are respectively
equivalent to § = 1/2 and 8 = —1/2. In other words, given an a priori value for
B, we can decide whether the process is integrated (|| = 1), but, if not, we cannot
distinguish a stationary process (|¢] < 1) from an explosive process (J¢| > 1). However

this identification problem can be avoided by excluding explosive processes. This should
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not be a too restrictive practice if we admit that macroeconomic time series are usually
integrated or stationary. The case where 3 = 0 corresponds to a white noise process,
ie. ¢ =0.

From the point of view of hypothesis testing, we have established the equivalence
between the families of null hypotheses Hy; : »=0, Hyp:0o=1, Hpz : ¢ = —1 and
Hgy :8=0, H3: 8=1/2, Hyy : f = —1/2, respectively. For these a priori values of
¢, we have derived an exact test procedure. For other values of ¢, we can still consider
the test of H : 8 — 3% = 0 which corresponds to the test of Hp : ¢ € {29, (913},

where z{ is the first root of ¢(z), evaluated at 3 = 3°.
2.3.3 Exact confidence regions for ¢

It is relatively easy to find an exact confidence interval at level 1 — o for the parameter
8in (2.6). Suppose the random variables ¢; and ¢y, ¢; < ¢q, satisfy
PHa<BIn{B<c})=1-0.

Since {c1¢® — ¢+ c1} N {cop? — ¢ + c2} ={c1 £ B} N{PB < ¢z}, when these regions are
interpreted as subsets of the probability space, {c1¢* ~¢+c;}N{c2¢? ~p+cy) isal—a
confidence region for ¢. To characterize this region in the space of the parameter ¢, we
need to find the roots of the polynomials ¢;(z) = ¢;z2 ~z +¢;, i = 1,2, when ¢y and ¢
are treated as constants. The discriminant of ¢;(z) is A; = 1 — 4¢?. We distinguiéh the

following different cases.
1. AL >0 < || <1/2

o If ¢; # 0, the roots are z; = (14 v/A1)/2¢; and 7, = (1 — /A7)/2c;.
Moreover, z; — 3 = ci'l\/A—l. Hence, when 1/2 > ¢; > 0, we have z; > 24
and ¢;(z) < 0if and only if z2 < 7 < x5, whereas when z; < zo, q1(z) < OA
if and only if ¢ < z; or z > z4.

o Ifc; =0, 1(z) <Oif ‘and only if z > 0.
2. 01 =0 = || =1/2

e When ¢; = 1/2, the roots are z; = 2, = ~1 and ¢;(z) = —(1 + 2)2/2 <

0, Vz € R.
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e When ¢; = —1/2, the roots are z; = 7 = 1 and @iz)=—=(1-2)?/2<0if

and only if x = 1.

Similarly, we determine the regions of IR on which q2(z) > 0. The results are presented

in table VII.

Table VII. Confidence regions for the autocorrelation parameter of an AR(1) process

2 (~1/2,0) 0 (0,1/2) 1/2
&
-1/2 [21,2] (—c0,0] (—00,22)U(z1,00) R
(=1/2,0) | ((=o0,z1]ulzz,00)) | ((—00,21]ulz2,00)) ((=o0,@1]ulz2,00)) (=c0,z1]ufz2,00)
Alz1,2] A(=00,0] A((=00,22]ulz1,00))
0 (=0m)u(100)) | [0,00)
n[o,c0)
(0,1/2) ((=00122)u(z1,00) ) z1,22] [z1,72]

T; : roots of q1(2). z :roots of go(z), 1 =1, 2.

In the next section, we extend the procedure by considering processes admitting more

general dynamic representations.

2.4 Extension of the AR(1) model

Let {Y;:t €T}, T:=12,...,T =n(p+1) +p, be a random process satisfying the

following representation:
A(B)Yt:mt—{-et, t=1,2,...,T,
A(B) :=1-3%_ \B,

ind.
Et+ Y (0,0'EIT),

}/(),Y_.l, e ,Y_p+1 ﬁXEd,




where B is the backward shift operator, m,; is an exogenous component and £ =

(€1,€2, ..., 27)". Taking expectations on both sides, we get
A(BYM; = my,

where M; = EY;. Define the process {X; := Y, - M; : t € T}. Clearly, {X; : t €
T} satisfies

AB)Xi=¢e, t=1,2,...,T, ™ (0,0%I7), (2.8)
i.e. {X;:t € T}isa zero mean process that admits an AR(p) representation. Consider

now the case where p = 1. We have

ind.

Vi=me+ Y +e, t=1,2,...,T, &~ (0,02l7).

This representation includes as particular cases a wide range of models frequently used

in econometrics. In particular,
o if m; =0Vt €T, and A = 1, we have the random walk model;
e if m;y = by Vet € T, and A =1, we have the random walk with drift model;
o if my = b(t) := 37, bit', the process contains a deterministic polynomial trend.

In what follows, we assume that m; has the form m; = Zii_—o brZk:, where Zo, Zy, ...,

Zk are exogenous variables.
Since {X; : t € T} has an AR(1) representation, application of the procedure de-

scribed in section 2.3 is straightforward. The projection is
PlXoe|(Xat41, Xot—1)] = B(Xoe41 + Xoe—1)
with 8 = A(1 4+ A?)™! and we consider the following transformed model

Xoe = BXp+me, t=1,2,...,n, 72 (0,021, (2.9)

where X3, = Xopp1 + Xoio1, 02 :=02(1+ A7 and = (2,4, -+, T2n) (2.9) can
be written

Y2t = MZ! — ﬂ(M2t+l + A/Igt—yl) + IBYQ,;, + 2t
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with Y{; = }f2t+l + }lgt_l. NOW, with my = A/[t - /\Mt—l and ﬁ = /\(1 —+ AQ)—l, (29)
becomes

Y2t :ﬁ1m2t+ﬁ2m2t+1 +ﬂY2§+7]2t7 t= 1,21 ey Ty

in which fy == {1+ /\2)_1, B2 := — . Finally, since m; was assumed to be Zf:o bk Zkz,

the transformed model is
K K
Yor=BY5i+ > 01k Zroe+ Y 02k Zk 241 + N2, (2.10)
k=0 k=0
where 815 = br(1 + A%) 7! and 6y := —Abe(1 + A2)}. Using matrix notation (2.10) is

equivalent to

w=Z'5+n, t=1,2,...,n, (2.11)

with
ve =Yy, ZF = (Zaty Zorgr, Y3,

6:=(01,09,8), 6;:=(8i0,0i1,...,0:iK), 1=1,2.

If we assume that 7 is normally distributed, we can perform exact tests on A and/or

br,k=0,1, ..., K. This is done in the next section.
2.4.1 Exact confidence regions and tests on b,

As we showed, the parameters of (2.11) must satisfy o = 013,k = 0,1, ..., K. The
hypothesis by, = b7 is therefore equivalent to 8o +5°8 = 0 which can be tested in (2.11)
by a standard F' procedure. Furthermore it is well known that the set of all values 5°
such that the hypothesis Hg : 61 +b°3 = 0 is not rejected at level « forms a confidence
region for by at level 1 — . Using the same relation between the transformed parameters
21 and B and the initial parameters b,k = 0,1, ..., K, any linear hypothesis of the
form Rb —r = 0, where R is a known (¢ X K + 1) matrix with rank g, r is a known
(g x 1) vector and b = (bg, by, ... ,bx)’, can be tested at level . To see how to exploit

the relation between the two sets of parameters, note that

Rb—r=0 <= RO, +r8=0 < R*§=0,
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where % := (0, R, r) so that a test of Rb—r = 0 is equivalent to a test of R*§ = 0.
Again, this is a hypothesis on the parameters of (2.11) which can be tested with the

usual I’ procedure.
2.4.2 Exact tests on )

The components of § in (2.11) must satisfy 8y = -0 Mk =0,1,..., K and 8 =
A(1+2?)7!. From these relations, we see that a test of A = A° is equivalent to a test of
the joint hypothesis

92}¢+/\091k=0, k:O,l,...,I{

AO
14+ (/\0)2

Using matrix notation we can easily write this set of restrictions as a usual linear

hypothesis on the parameters of (2.11) RS = r°, with

AT Ix 0

Bo= B B ) 0. | (ersyx
‘ 0’ 0 1 ’ A0
(Ix(K+1)  (1x(K+1)) 1+ (A9)°

Unlike for the pure AR(1) process of section 2.3, we are now able to obtain a test for

any a priori value A° of the autocorrelation parameter A.
2.4.3 Exact confidence regions for A

In 2.3.3 we showed how to build an exact confidence region for A at level 1 — a. This
confidence region is denoted Ax1;(e) and satisfies P[Ax ()] =10y, Yo, € (0,1).
Similarly, we can also use the relation ox 4+ My = 0,k = 0,1,..., K, to derive an .
exact test of Ho : A = A% This hypothesis is equivalent Hox()%) : ax(A%)'6 = 0,
where ai(z) := (zbfﬂ_l Y1 O), ¢ being the [-th vector of the canonical basis of
RE+1 z € IR. The set Akt1(ay) of all values A° of A such that Hop (A% is not rejected
at level oy is a 1 —a; confidence region for A. Therefore PlAk+1(a1)] = 1 —oy. Since this
condition holds for any &£ = 0,1, ... K, we can combine these regions to form a single
confidence region for A which has level 1 — o Simply note that since P is a measure, we

have

K+1 K+1 K41
P [ﬂ Ak(al)J =P(Q)-P [U Ak(al)} =1-P {U Ak(al)J )
k=0 k=0 k=0
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By Bonferroni inequality, we have

K+1 K+1
P{U Ak(al)J < Y PlAk(en)] = (K +2)on.
k=0 k=0

Hence
K+1
P [m 44]{(&1)] >1- (I{ + 2)0(1 N
k=0

and choosing e such that oy = /(K + 2), we get
K+1
P[ﬂ Ak(al)} >l-a
k=0
which shows that A(a) := ﬂf:%l A (ﬁ’z) is a 1 — a confidence region for A.
2.4.4 Exact tests of joint hypotheses

It is also possible to use (2.11) to derive an exact test procedure for a linear hypothesis
!
on the vector (z\,b(m),) , where b{™) is a (m x 1) subvector of b. Consider the null

hypothesis
A= 20
Rb™ — =0
where R is a known (¢ x m) matrix with rank ¢, r is a known (¢ x 1) vector and
(™) = (bg,, by,, - .. bx,.)’. The following equivalences hold
A= A0 Ook + A1, =0, k€ Kn L8 +007,,6™ = 0
Rb(™ —p =0 ¢ Rb™B —rg =0 = RO™ +r3 =0

where Ky = {k1, k2, .. km}, 8 = (120, Ok, - - Bix)' ) & = 1, 2. Defining

0("‘)
Im  A°I, 0 1
Q= (mx1) and 6™ ;= 0%"‘) ,
0 R r
(gxm) 3

Hy is equivalent to Q6(™) = 0. Finally Hy appears as a linear hypothesis on the param-
eters of (2.11) R6* = 0 with

R = < Q ()’ ) ,
(m+gx2m+1) (m+gx2(K+1-m}

5= (5(m) 5)m() :

A= (O1 4 Oak, k€ Kn).
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Once again, the standard Fisher procedure solves the problem.

2.4.5 The particular case of the linear regression model with AR(1)
errors

We now show that model (2.7) with p = 1 includes as an important particular case the

linear regression model with AR(1) errors. This model is given by
Yi=mitu, w=du_1+e, t= 1,2,...,T,
with ¢ ¢ N(0,02) and ug given. An alternative form of this model is
}Q:mt+¢u1_1+5t, t=1,2,...,T.
Since uy =Y —my, t=1,2,...,T, we have
Yi=m{+oYi1+e, t=23,...,T, (2.12)

where mj := m; — ¢m;_;. It is now clear that this model is a special case of (2.7). All
the testing procedures developed in the previous sections therefore apply to (2.12). In
particular, exact inference in integrated AR(1) models is available.

In the next paragraph, we turn to another kind of inference problem. We are no
longer interested in inference on the components of the mean vector or autocovariance

matrix, but rather on the order of the autoregression in AR(p) models.
2.4.6 A test on the order of an autoregression

There is a situation in which Theorem 3 and its corollary are of special interest. Con-
sider {X; :t € T} , a stochastic process for which we know that one of the following

representations is true

O(B)X: =e;, where B(2) =1 — ¢12 — o2 — - = ¢, 2P|
and
U(B)X;=v;, where ¥(z) =1 — 9p;2 — thp2? — ... — p, 272,
where and ¢; and v; are both Gaussian white noise and where P1 # p2 (we will set
P1 < p2). Suppose we wish to test Ho :{X;: £ € T} ~ AR(p,) against H, :{X, : t € T}~
AR(p2). If Hy is true, then {X; : ¢t € T} is Markovian of order p1, and we know from
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corollary 3 that the coefficient of X, in the affine regression of X; on p, leads and P2
lags will be zero, for any 7 such that |r —¢| = p; + 1, ..., ps. Since the affine regression
is a classical linear regression model, standard inference procedures apply.

From the exposition of the procedures, it is clear that the splitting of the sample en-
tails a loss of information. We may then suspect the tests to lack power. We investigate

this issue in the next section.

2.5 Combination of tests

One of the purposes of this paper is to improve the Ogawara-Hannan testing procedure.
In the previous sections, we showed that Ogawara’s results can be extended to a much
wider class of processes than those considered in Ogawara (1951) and Hannan (1955a,
1955b, 1956). We also showed that we can use these results to obtain exact inference
procedures for a great variety of econometric models. However, when we apply these
procedures, we are led to leave one half of the sample apart, at least. In this section,
we propose a testing procedure which makes use of the whole sample. We also present
simulation results which show that in many situations our method performs better than

that of Ogawara and Hannan.
2.5.1 Theoretical results

Consider a statistical model characterised by a family of probability laws, paramterized
vby 0, P = {Pg,0 € ©}. Suppose we want to test Ho : P € P, against H; : P € P\ Py. If
the model is identified, which will be assumed, this amounts to test Hp : § € ©g against
H; :0 € 0, where § € Oy <= Py € Py. Assume that we have m statistics T},% €
J = {1,2,...,m}, that can be used for testing Hy. Further assume that under Hy,
Po [{v : T:(y) > t}] is known, for all ¢ € IR, € J. The relation between these statistics
is typically unknown or difficult to establish. We want to combine the information
provided by each of those m statistics on the true probability distribution of the model.

A natural way of doing this is to proceed as follows. Using the m statistics T,
we build m regions Wi(a;) = T7 ' [(t:(e), 00)], where the ;(a;)’s are chosen so that

P [Wi(a;)] = a;. We reject Hp with a test based an the i-th statistic if y is in Wilas),
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or equivalently if the observed value t; of T} is in (t;{c;}), ). Consider the decision
rule which consists in rejecting Hy when it has been rejected by one of the tests based
on a T; statistic at least. The rejection region corresponding to this decision rule is
Uics Wi(a:). This test is called an induced test of Hy [see Savin (1984)]. Its size is
impossible or difficult to determine since the distribution of the vector (T, 75, ... T
is generally unknown or untractable. It is however possible to choose the a;’s so that
the induced test has level a. Since Py is a measure,
Pe< U Wi(ai)> < D P [Wi(as)].
ied ied

Now, by construction of the W;(a;)’s, the right hand side of the inequality is equal to
> icg @ when Hy is true. Therefore, if we want the induced test to have level a, we only
need to choose the a;’s so that they sum to «. To our knowledge, there is no criterion
for choosing the a;’s in a way that could be optimal in some sense. Without such a
rule, we will set a; = ap = a/m for all 7 € J.

It is a prior: difficult to compare the power of an « level test based on a single statistic
T; with that of a o level induced test. The latter uses the information provided by the
whole sample, but is derived by a combination of m tests of level &/m only, whereas the
former has level &« > a/m, but is based on a subsample only. In other words, in terms of
power, what can be gained on the one hand with an induced test (due to a larger sample
size) can be lost on the other hand since the individual level of the tests we combine
is lower (a/m instead of «). In the following paragraph, we present simulations that
reveal the power increase resulting from the method of combining tests.
2.5.2 Simulations of the power of induced tests in the case of an AR(1)

process
Let {Y;:t € T}, T ={1,2,...,T}, be a random process admitting an AR(1) repre-
sentation
Yi=AYso14+e, te€T, e~ N(0,Ir), (2.13)

with Yy given. For the sake of simplicity, we assume that 7" is even and T = 2n for some
n € Zyy. Since {Y; : t € T} is a Markov process of order 1, results of section 2 apply

and we know that
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e Y5, t=1,2,...,n— 1, are mutually independent, conditionally to (¥3,Ys, ...,
YZn—I);

e Yorp1, t=1,2,...,n—1, are mutually independent, conditionally to (Y5, Yy, ...,
Yon).

If we define two subsets of T, J; = {2,4,...,2n -2} and J, = {3,5,...,2n ~ 1}, we
obtain two transformed models of type (2.6)

A
Y; = 1+ N2 (Y;H—l +Yrt—1) + e, t€ Jim i~ IV(O,O}Q]L%) (214)

with n; := (nir,t € Ji)', i=1,2,and n; = n — 1, ny = n. In each of these two models it
is possible to test Hp : A = A% at level /2, as shown in section 2.3. We combine these
two tests according to the procedure described in 2.5.1.

In our simulations, we proceed as follows. Fix A% € {0,1/2,1} and T = 100. For a
set V(A% of S values of A in a neighbourhood of A°, simulate a sample of size T’ from
the AR(1) process (2.13). Then form the two subsamples (y; : t € J;), ¢ = 1,2, from
which test Hog : § = 3% in the transformed model (2.14), with 8% = /\0[1 + (AO)Q]-I.
For purposes of comparison, these tests are done at levels 5% and 2.5%. The two
2.5% level tests are combined to give a 5% level induced test. These computations are
repeated 1000 times, for each value of A in V(Xg). The number of rejections of Hy gives
an estimation of the performance of the test. Results are shown in figure 2.1, which
is divided in two columns of three graphs each. Graphs (1) to (3) in the first column
display the estimated power function for A = 0,1/2, 1, respectively, whereas the graphs
4 to 6 in the second column show the difference of rejection frequencies for A = 0,1/2, 1,
respectively. More precisely these differences are computed as: Number of rejections of
Ho with the induced test — Number of rejections of Hy with the test based on subsample
(ye:teJy), i=1,2.

Apart from the case where A% = 0, the combination method leads to an increase of
the power, relative to a 5% level test based on a subsample. When \° = 0, the loss of
power from combining is about 8% at most, which remains relatively small. The value
A% = 1/2 is not identified in model (2.14). This comes from the fact that \ = 1/2

implies # = 2/5 in the transformed model, but in turn g = 2/5 implies \ € {1/2,2}.
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Consequently, the induced test of Hog : B = 2/5 identifies 1/2 and 2 as the true values
of the autocorrelation parameter under the null hypothesis. This explains‘ the presence

of the inversed peak at A = 2 (figure 2.1-(3)).

2.6 An example

We present an application of the procedure to macroeconomic time series. The series is
the US gross private domestic investment in non residential structures. For a detailed
description of the data see Berndt (1991, p. 278). The sample contains quarterly running
from 1952: to 1986:IV. Following Dufour and Kiviet (1994), the natural logarithm of
the variable over the period (1952:1, 1969:IV) can be described by the AR(1) model

Yi =AY +me +ue

my = bg + by1t/100
The OLS estimate are A = 0.92143, by = 0.87197, b, = 0.06986 with an unbiased
variance estimation s® = 4.92300.10~%. } being close to 1, one may wish to test for the
presence of a unit root in the AR polynomial. According to the results of section 2.4,

the transformed models are

Ye = Bimy + Bamagr + B(Yeq1 + Y1) + e, tEJ;

Jv={2,4,...,70}, Jo = {3,5,...,71}, i = 1,2, or alternatively

Ye = oo + a1t/100 + B(ys1 + Y1) + e, tE€ J;, (2.15)
where \
o= bollJ:A/\Q ~hie
— . 1= A
=0T

Since A = 1 <= (a; = 0 and # = 1/2) a unit root test is equivalent to a test of

Hy: Ré — r = 0 in models (2.15) with

010
R= , Jz(aoalﬁ), r:(()l/?).
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Table VIII reports the OLS estimates and F test statistics computed from subsamples
1 and 2, together with the 2.5% critical value. The 97.5% percentile of the Fisher
distribution with (2,31) degrees of freedom is 4.16484. Therfore we do not reject Hyp at

level 5% with an induced test.

Table VIII. Results of the estimation of models (2.15)

subsample 1 (¢t € J;) subsample 2 (¢ € J3)
do 0.17965 —0.49970
iy 0.00883 —0.03342
8 0.49191 0.52265
s? 1.90333.10~4 2.62195.10~%
0.21226 0.01775 —0.00968 0.31227 0.02587 —0.01423
V() . 0.00163 —0.00081 . 0.00234 -0.00118
0.00044 : ‘ 0.00065
F-stat. 0.211179 0.563799

2.7 Conclusion

In this paper we proposed way for making exact inference on the parameters of autore-
gressive models. This was made possible thanks to properties of Markov processes. The
conditions under which such results hold are very mild since their demonstrations only
require the existence of density functions. In particular, they are general enough to
be applied to multivariate and possibly non stationary and/or non-Gaussian processes.
However, with the addition of conditional stationarity and normality assumptions, we
were able to use these properties to derive exact tests and confidence regions on the

parameters of AR(1) models. In order to apply our procedure, it is necessary to split
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the sample in two subsets of observations. Qur simulations in the case of a pure AR(1)
model showed that a combination of separate inference results based on these subsam-
ples generally leads to an improvement in the performance of the procedure.

Our method displays several attractive features. F irst, since it is exact. it controls
the probability of making a type I error. Second, it is readily applicable to a wide
range of econometric specifications of AR(1) models. In particular, it can be used
to deal with random walk models, models with a deterministic mean expressed as a
~linear combination of exogenous variables, including polynomial deterministic trends,
etc. Third, the critical regions are built from standard distributions that, unlike most
asymptotic procedures, do not change with the sample size and/or model specification.
Finally, Monte Carlo experiments éhow that it has good power properties. For those
reasons, we think that our procedure should be considered as a good alternative to
asymptotic inference methods.

In section 2.5, we argued that simulations of power functions were necessary because
we could not say a priori whether the combination method yields more power. Indeed,
on the one side we make use of the whole sample when combining, but on the other side
we must lower the bound on the probability of making a type I error (the level) in each
of the tests we combine. The former should increase the performance of the procedure
whereas the latter should decrease it. Although the method is easily transposable to
higher order autoregressive models, it is not clear whether the positive effect due to
combination still dominates. This aspect of the problem makes room for further study

on the performance of the procedure.



Appendix A

A.l Proof of Theorem 1

We must show that

f(*’Yc(p-{-l 1<t<n

The following equality is always true

f(Xf(P+1):1§tSn)|Al,p =

A1 H FX ey ldr g

H fX:(p+1) 41,50 (Xr (1) 17<E)]

t=1

Consider the t-th term of the product

fX:(p+1)I[Al,pv(Xr(p+1)11$T<t)] = th(p+1)I{At+1,va1,t(p+1)—1]

(L)If t = n,

th(p+1)I[Al,p7(Xr(p+1)=157'<n)] =

Il

say.

f[At+1,pr-Xt(p+l)]IHl,t(p+l)-—1
Acr1,plHy tpr1y—1

f[B(n+1)(p+1),van(p+1)]|H1,n(p+1)—1

B(n+1)(p+1),p|H1,n(p+1)—1

S oty mipe 114 H, nlp+1)—1

LfHﬂ(pH e+ 1+p Hin(pt1)~ dwn(P'H)

n{p+1)+p
H qulHl,u—l
v=n(p+1)
n(p+1)+p
L II ixim,-d%apey

v=n(p+1)

n{p+1)+p

I fxis.,
v=n(p+1)
n(p+1)+p

i I fxpdzapey

v=n(p+1)

g(an,pv xn(p+1))’

96

(.16)
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(2) If t < n, the numerator in (.16) can be written

f[Az+1,p,Xz(p+1)]|H1,t(p+1)—1

- M ' ﬂf‘f [Aet1 (X a(pa 1) A e 1)1 Q1) (p+1) A8 (e2) (p41) -+ - dZnpin)

- M h i/*szmu.n<p+n+le1,z(p+u_1dx(t+1)(p+1)d$(t+z)<p+1) - A2

n(p+1)+p

= ML H fX,,iHl,,,_ldz(t+1)(p+l)dx(t+2)(29+1)"'dx"(P'H)
i " v=t(p+1)

n(p+1)+p

= L[ LT Frsedopnmrndeermm - dagay
b Y v=t(p+1)

= gi(atp, zt(p+1))7

say. Similarly, the denominator can be written

Faciis H 1 e(p+1) -1

= fl . ‘:[‘f[At+l,p:(X/\(p+l):tg’\sn)”Hl,t(;H-l)—ldxt(p+1)d:r(t+l)(p+1) +e s d@n(py)

= |l ~-'Lth(P+l)‘n(P+l)+PIHI,t(pH)_ldxt(p+1)dz(t+1)(l’+1) <= dZn(py)

n(p+1)+p
= [ IT  fxim s 90 d2 ey pan) - AZnipan)

v=t(p+1)

n{p+1)+p
= [[_L H fXL,IB,,,,pdmt(p+1)d$(t+1)(l’+1)"'dxn(P-i-l)

v=t(p+1)

= g2(arp), |
say. Collecting terms and forming the ratio (.16), the t-th term of the conditional density
of (X;(ps1):1 <7< m) given A, is a function g defined by

0 (al,pvxt(pw‘-l)) .
ch(p+l)l[Al-P’(‘XT(P-Pl)5157'<t)] = T2(ar,) =: g(a1,p, To(pt1))-
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Clearly, this function does not depend on (Xup+1) 1 < v < t). Therefore we can write

th(pﬂ)I[Al.p,(Xr(p+1):1ST<t)] = er(p+1)lA1,p'

Since this is true for any t = 1,2, ..., n, we can factorize the conditional density as

n
f(Xt(p+1)31§tSn)|A1,p = H th(p-!—l)lAl,p
t=1

which was to be shown. O
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A.2 Proof of Theorem 2

From Theorem 1 X4, Xopr1) Xn(p+1) are mutually independent, conditionally to A4 ,.

Hence

fX:(pH)HLp = f\r(p+1)l Hipt )4 1mipt )4 Hepr ) ~1]

th(P+l),n(P+1)+plHt(p-H)—l

Ht(p+1)+1,n(p+1)+p!Ht(p-f-l)—-l

th(p+l) n(p+ D +plHepe1y—1

Lth (41 m(pt ) et 1)1 AT 8(p+2)

n(p+1)+p
H erlHl.r-l
T=t(p+1)
n(p+1)+p

‘L 1T Fxoim 2 dTi(pr2)

T=t(p+1)

n{p+1)+p
Il x5,
T=t(p+1)
n{p+1)+p
L I Fxse,deipen

r=t(p+1)

t(p+1)+p
11 fx.\B.,
r=t(p+1)

t(p+1)+p

L H fXTIBf.pdzt(P'i‘?)

© or=t(p+1)

g(b(t+1)(p+1),p7 zt(p-{-l), bt(p+1),p)

IO(t41)(p+1),0 Te(p41)s De(p+1) p) AT 4(p12)

.

We now show that

(b(t+1)(p+1),p1 Zt(p+1) bt(p+1),P) f[B(t+1)(p+1) pXe(p+ ) IBe(pi1) 0

From the Markovian property of {X, : t € T}, we have

Sxe1Brp = FX 0 ooty -
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V7 such that t(p+ 1) <+ <{#({p+ 1)+ p. Hence

tHp+1)+p

IO+ T beprny) = [ Fxaima,
T=t{p+1)

t{p+1)+p

= H eriHr(pH)—p,r—l

r=t(p+1)
ch(p+1),r(p+1)+p|Ht(p+1)—p,t(p+1>—1

f[B(r+1)(p+1),p’Xt(p+1)]|Bt(p+1),p'
It follows that

f[B(t+1)(P+1),p'Xt(P+l)”Bt(P+l),P

fX:(p+x) [41,p L q
: JBet1y 41,0 X et ) 1Bt 1,5 IEt(p+1)

th(p+1) (B4 1)(p+1) .0 Be(pt1),5]°

which yields the desired result. O

A.3 Proof of Theorem 3

We need to show that thl[Bt,Qth+q+l,q] does not depend on X;_, and X;y,, for 7 =
p+lLp+2,...,q.

_ f[XnBr+q+1,q]|Bt'q _ f[Xtht+q+1,q]lBt.q _ sz,:+qlB:,q

erl[Bt,q»B:+q+1,q] = = = .
th+q+1.q|Bt,q Lf[X:,Bt.Q.qH,q]IBt,qdzt Lth,t+q|Bt,qd$t

Now, using the fact that {X; : ¢t € T} is Markovain of order p, the numerator of this

last term can be written
t+g

fHeiralBeg = 11 FX01B2s

T=t
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so that
t+q
I1 fx.5.,
f _ =t
XellBe,q\Bttgsrgl — t+gq
/H fXT(BT.pdl't
=t
t+q
11 #x.15.,
. r==t
- t+q t+p
I rxs., /H fx.B, 4t
T=t+p-+1 v=t
t+p
11 fx.18..,
— T=t
- t+p )
/H fx.iB. 4%t
r=t

It is easy to check that the variables X, with t+¢ > 7 > t+p+1landt—p—1 > 71 >t—gq

do not appear in the last expression. O
A.4 Proof of Theorem 4 i

Let {Y; :¢t € T} be a Gaussian process having the same first and second order moments
as {X;:t € T} . Then {Y; : t € T} must also satisfy the condition in the theorem
Yt-u-Hlitt—p—llth—p,t—l ’ v Z P+ 1

= fy,my o Vt > p+1,since {Y; : t € T} is Gaussian.

which is equivalent to fy, HY,_,
. yE—- t—-p't._

From Theorem 1, Yor1, Yagpar)s - - - ) Yo (p41) are mutually independent, conditionally to

A{p. Using the normality of {Y; : ¢ € T}, this is equivalent to
Yt(p+1)-ﬂ—Ys(p+1)’Apr Vi,s: 1<t,s<n, t#s.

This is a condition on the first and second order moments of {Y; : ¢t € T} , which must

also be satisfied by the first and second order moments of {X;:¢t € T} . Hence
Xt(p+1)-LXs(p+1)|A‘1X,p’ Vt,S 01 S t,S S n, t 7é s. O
A.5 Proof of Theorem 5

Let {Y; :t € T} be a Gaussian process having the same first and second order moments

as {X¢:t € T} . From the prof of Theorem 4, we know that {Y; : ¢ € T} must also



satisfy
fYcleft_l = fYtIHcY.p,:_l , Yt 2 p+ L

From Theorem 2, we have

LYt 1<t< n.

fYt(PH)IAKp = fYt(PH)”B t{p+1),p] '

Y
(t+1)(p+1),p’B

since {Y; : ¢t € T} is Gaussian, this condition is equivalent to
Y . Y Y
[Yt(p+1)l(BT(p+1),p ol rSn+ L r#ELE+ 1)] ‘ [B(t+1)(p+l),p) Bt(p-}-l),p] 1<t <m.

This is condition on the first and second order moments of {Y; : ¢ € T} whic hmust also

be satified by those of {X;:t € T}. O
A.6 Proof of Theorem 6

Pr [Xt[(_B_;_!_pH’p,_ng’p)'} = Pr I:Xt[(ﬁg-i-p-{-l,p?-B—;,p,)l] is the affine regression of X, on
(Blypr1p Bi,), where By ' := (X,_p, Xyepi1, -, Xuo1). The matrix of the coeffi-

cients of this regression is given by ¥,2¥5}, where £5 1= cov [Xt, (§§+p+1’p,§;p’)']

and Yoy =V {(§£+p+1,p’§;p,),} . We partition these matrices in the following way
‘ A Ar
Lo = (01 Cz> Lo = )
(1.2p) (27,2p) Az A

with
é,lp = V(-B-t+p+1,p)7 (/;’213 = V(—B—:,p)? élzs = Ag = COV(§t+p+1,p»§Zp)’
;md

C; :=cov(X,,B , := cov(Xy, BL ).
(141)) cov(Xe, Biypi1p) (%) cov(Xy, B )

Since {X; :t € T} is assumed to be weakly stationary, C; = Cy =: C and A;; = A =:
A;. We next show that Ajp = Agy, i.e. Ajp is symmetric. The (¢, 7)-th element of this
matrix is

CoV(Xetpti~is Xemptia1) = Verpti—imtep—j+1| = YViz-injls

and its (7, ¢)-th element is

COV(Xt+p+1—j> Xt—p+£-1) = Vitdpl—jttp—i+1] = V|2—j~i]»
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where v,y = cov(X,, X;). These two terms are identical and consequently A, =
Aly = Ag; =: A,. The vector II whose components are the coefficients of X, ; and

Xi—k, 1 <k < p,in the affine regression of X; on (Bitpt1,0 Bi,) is given by

A A -1
o, =(C C><Ai Af) '

Define II; and Iy, the two (1 X p) subvectors of II whose elements are the coeeficients

of the variables in Bitpr1p and in B3, respectively. Then

C=H1A1+H2A2 AI(HI —H2)+A2(H2—H1) :0

C=114; + 11,4, Ay(Ily — o) + A1 (I, - ;) =0
which is equivalent to
I, -1,
X2 =0.
I, - 11,
Assuming that the Varianée—covariance matrix Y5 is non singular, we must have II; =
;. O

A.7  Expressions for the coefficients of the regression in the context
of an AR(1) process

The model is
Y;f:(by't—l""ut: t:172a"'7n7

u~WN(0,0il,),
with Yo given. Rewriting Y; = ¢'Yp + /25 ¢'us—; and taking expectations, we get
EY; = ¢'Y,. The mean deviation process {Xy =Y, -EY;: t =1, 2, ..., n} satisfies the

autoregression X; = ¢X;_1 + u.

A.7.1 Computation of first order moments

Define L2 := COV[)/zt, (Ygt.HYgt_l)'J and $,5 := V[(Ya:+1Y2¢-1)"). From the definition
of {X; :t € T}, we have X; = YiZ;¢'w;; and EX, = 0, EX? = o2 Tz o2,
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Furthermore the autocovariances are
cov(Yartr, Yor) = E(Xorp1 Xop) = 02 2T 2
2t+1, L2 AQt41449¢ (2P Z;:o D™
cov(Yae, Yaro1) = E(X9e X)) = 029 152 0%,

cov(Yars1, Yaro1) = E(Xarpa Xoem) = 00g? D157 6%,

and
2t 424 2 2t—2 ;2
2t-1 22 =087 7T
2i 2i
3312=¢03(Z¢1 ZQV), 3322303
1=0 =0

¢2 Zf;—d? ¢)2i 23;62 qf)?i
A.7.2  The affine regression of Yy; on (Yp;1,Y2:_1)": the case lol # 1

We have
Yoty1 — EYor

Pr[Yo:|(Yasg1 Yoro1)] = EYay + 12357
Yoro1 — BV
Using the fact that for |¢] # 1

k s 1- $2k+1)

we obtain the following expressions

1— ¢4t+2 ¢)2(1 _ ¢4t—2)

2 2
L= l(b_a;z (1—¢4t 1—¢4t_2), Log = 1 iu(ﬁz
¢2(1 _ ¢4t—-2) 1= ¢4t—2

Hence

Y2:+1 - EY5 4

Pr(Yoe|(Yae41 Yoro1)] = EYy + ﬁ_%f(l 1)
Yor1 — EYoey

= a+ f(Yorqr + Yoroy),

where @ = EYyt — B(EY341 + EY2e-y) and 8 = ¢(1 + ¢?)~!L. Since for all t > 0 EY; =
FEY;p, k=0,1,...,t, a=0.



A.7.3 The affine regression of Y2; on (Y5;41Y2:-1}": the case ol =1
With |¢] = 1, we have

A+1 2t-1
Lo = gon(2t 2t — 1), Yu=o02
20-1 2t—-1
and Pr [Y2tl(Y2t+1 Y2t-—1)] = %(th-l—l +Y2t_.1) = i—_*‘i%y(%t.f.l +Y21-1). Note that from the

derivations in the case where |¢| # 1, @ = 0 irrespective to the value of ¢. In any case,

the residual variance is

VYo = Pr¥atl (Var1 Yaeor)] | = V(Yar) = S50, =

2
Ty

1_*_@27 OE (—O0,00).



Chapter 3

Estimation of continuous time
stochastic processes with
applications to American option
exercise boundaries

3.1 Introduction

American option contracts figure prominently among the wide range of securities which
are traded. An American call option does not only provide the possibility to trade the
underlying asset at a particular strike price, but it also allows the owner to exercise his
right at any point in time before maturity. The early exercise feature of the contract
considerably complicates its evaluation. Indeed, it critically depends on the optimal
exercise which must be determined as part of the solution to price American option
contracts. The earliest analysis of the subject by McKean (1965) recognized that the
evaluation of the derivative security could be formulated as a free boundary problem.
Later Van Moerbeke (1976) took his work further by studying the properties of the
optimal stopping boundary. While both contributions formulated American options
evaluation in terms of optimal stopping problems, they did neither provide a closed-form
pricing formula nor a financial justification in terms of hedging like the Black-Scholes
formula for European options. In later work by Bensoussan (1984) and Karatzas (1988)
a hedging strategy argument was formulated for quite general market models, where
the price of the underlying asset on which the option is written is represented by a

diffusion process. It should not come as a surprise that its distributional properties
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determine those of the exercise boundary. However, in such a general context, analytical
closed-form solutions are typically not available and computations of both the optimal
exercise boundary and the contract price can be achieved only via numerical methods. A
standard way to proceed is to specify a process for the underlying asset price, generally
a geometric Brownian motion, and search for numerical efficient algorithms to compute
the pricing formula and the boundary. A whole range of numerical procedures have been
proposed, including finite differences, binomial, multinomial, quasi-analytical, quadratic
methods as well as the method of lines and Richardson extrapolations.?

In this chapter, our prime interest will be to estimate the exercise boundary for
American option contracts. First and foremost, we assume we have observations on
the exercise decisions of agents who own American options, along with the features
of the contract being exercised. Such data are available, a prominent example being
the S&P100 Index option, where exercise data are collected by the Option Clearing
Corporation (OCC).2 The idea is that with enough data, like say ten years of daily
observations, which is not unusual for this type of data, we should be able to tell
something about how market participants perceive themselves the exercise boundary.
Our approach can be seen as a way to characterize the exercise boundary for American
options, by making use of observations on exercises.

Questions whether in fact the market participants exercise “optimally”, whatever
the model or assumptions might be, will not be the main focus of our paper although
several procedures we suggest would create a natural framework to address some of
these issues.® This will be the subject of a future paper. ’

Previous attempts to estimate the exercise boundary for American option contracts
are the work by Bossaerts (1988) and de Matos (1994), the latter being an extension of

the former. To our knowledge, these are the only studies that address the issue of esti-

'A partial list of paper includes Brennan and Schwartz (1977), Cox, Ross and Rubinstein (1979),
Geske and Johnson (1984), Barone-Adesi and Whaley (1987), Boyle (1988), Breen (1991), Yu (993),
Broadie and Detemple (1994} and Carr and Faguet (1994), among others. For a review of these proce-
dures, see Broadie and Detemple (1994).

?Option exercise data have been used in a number of studies, including Ingersoll (1977), Bodurtha and
Courtadon (1986), Overdahl (1988), Dunn and Eades (1989), Gay, Kolb and Yung (1989), Zivney(1991),
French and Maberly (1992) and Diz and Finucane (1993).

3For the most recent work on testing market rationality using option exercise data, see Diz and
Finucane (1993). They also review the literature.
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mating the boundary. Their approach is fully parametric as it requires a parametrization
of both the underlying asset price process and the boundary (or at least a polynomial ap-
proximation of the boundary). The vector of parameters to be estimated is the solution
of a set of moment conditions, most of them expressing the rationality of exercise deci-
sions. Because it is usually impossible to obtain a closed-form solution for the boundary
and the option price, no analytical expressions are available for these moments. Orthog-
onality conditions are then réplaced by their sample analogues, obtained via a number
of simulations of the option price. The estimated parameter is the argmin of a distance
between simulated moments and zero. The procedure is computationally cumbersome
and this may explain why it has not been applied with real data to produce an estimate
of the exercise boundary.

The approach suggested by Bossaerts and de Matos is in fact one of a great many that
can be considered for estimating exercise boundaries. A wide spectrum of econometric
methods is available. Purely nonparametric procedures, which essentially amount to
fitting a curve through the exercise data lie at one extreme of the spectrum. Here we
make no explicit assumptions about the stochastic process for the underlying asset price,
only some mild regularity assumbtions are necessary to do proper statistical inference.*
Moreover, rationality of exercise decisions is not imposed either, as we simply fit a
boundary to whatever behavior market participants have. At the other extremé of the
spectrum, we have a set of very tight parametric procedures. They are parametric in
thé sense fhat an explicit diffusion for the underlying asset price has to be specified.
Furthermore, optimal exercise behavior is assumed so that any of the aforementioned
numerical algorithms can be used to calculate the implicit boundary using the estimated
process parameter. Between these two extremes, i.e. purely parametric with explicit
optimality imposed versus purely nonparametric and no optimality necessarily holding,
we provide a wide range of intermediate methods which, to a varying degree, make
explicit assumptions regarding the underlying asset price and market behavior.

In this chapter, we propose two different estimation procedures. The first one is

nonparametric and estimates the boundary by fitting a piecewise third order polynomial

4The conditions essentially limit the class of processes admissible. It is shown to include jump
diffusion as well as stochastic volatility processes. See Broadie et al. (1995) for further details.
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function through exercise data. This technique is known as cubic spline smoothing in
the statistical litterature and its properties have been derived [e.g. Eubank (1988) and
Wahba (1990)]. The second one is fully parametric as it explicitely specifies a data
generating process (DGP) for the underlying price (namely a log-normal diffusion). It
combines recent techniques for statisical inference in continuous time series models, with
newly created efficient algorithms for evaluating exercise bounds and contingent claim
prices in American option pricing models. These two estimation tecniques will serve as
a benchmark for further generalizations.

The remainder of the chapter is organized as follows. In section 2, we review what
is known about pricing models and exercise boundaries for American option contracts.
Section 3 introduces two different estimation procedures for these boundaries. In section
4, we implement these methods using data on American options exercises. In section 5,

we investigate the behavior of the estimators we proposed in section 3.

3.2 The pricing of American call options and the optimal
exercise policy

In this section, we briefly review the problem of pricing American options. The method
is based on the two assumptions that the markets are complete and frictionless_, and
that there are no arbitrage opportunities. Exploiting these two features of financial
markets, and using a hedging argument, it is possible to state the problem of option
pricing in a risk neutral environment [see Harrison and Kreps (1979)]. Therefore, in
this context, all assets must have the same expected rate of return, which is equal
to the riskless interest rate. Harrison and Kreps (1979) have shown that, in such an
environment, the absence of arbitrage assumption is equivalent to the existence of a risk
neutral probability measure, called the equivalent martingale probability measure, since

the discounted price processes are martingales under this probability.
3.2.1 The theory of American option pricing

Consider now an American call option on an underlying asset whose price, S is assumed

to follow an It diffusion. The option is issued in ¢ = 0 and matures at date T > 0
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with strike price X' > 0. For the sake of simplicity, we will assume that the underlying
asset does not generate cash flows, such as dividends, interest payments, etc. Such an
assumption entails no loss of generality for a presentation of option valuation principles.
However, whether the underlying asset pays dividends or not is a key assumption for
deriving the price of an American option. We discuss its impliéa.tions at the end of this
section. Suppose the strategy chosen by an investor is to exercise the option at date
7 € [0,T]. The option is a claim to the payoff (S, — K)*. In absence of arbitrage and
given this exercise policy, the price at time ¢ € [0,7) of the contingent claim, Vi(r),
is given by the discounted payoff which is expected under the equivalent martingale

probability measure, i.e.
Vi(r) =E [exp (—-/ rsds> (S; - K)ﬂ]—}] ,
¢

where r, denotes the time s risk-free interest rate in the economy, E denotes the ex-
pectation taken with respect to the equivalent‘ martingale probability measure P [see
Harrison and Kreps (1979)] and {F; : ¢ > 0} is a filtration on (Q,F,P), the probability
space on which the price process {S; : ¢ > 0} is defined. An American option can be
exercised at any time in the interval (0, T], and an option holder will choose the strategy
(i.e. the exercise time) which maximizes the expected discounted payoff. This stopping

time must solve

max Volr 3.1
max Vo(r) (3.1

and at any date ¢ the price of the American call is given by
Cy= sup E [exp (—- /T rsds> (Sr — I()+|ft] (3.2)
7€M, t
where T[] is the set of stopping times (w.r.t. ;) with values in [u, v]. The existence of
a 7" solving (3.1) has been proved by Karatzas (1988) under some regularity conditions
on {S; :t > 0}. The main theoretical results regarding the problem of optimal exercise
for American contingent claims can be found in McKean (1965), Van Moerbeke (1976),
Bensoussan (1984), and Karatzas (1988).
As we mentioned earlier, the assumption on the presence of dividends plays an im-

portant role in the valuation of an American option. Merton (1973) has shown that,
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for some specifications of the economy, an American option contract written on a non
dividend paying stock is never exercised before maturity. As a consequence, for given
strike price and maturity, its price is equal to the price of an European option. How-
ever, Ramaswamy and Sundaresan (1985) have shown that this result does not hold
for American options on futures contracts: even when the dividend yield is zero, the-
possibility of an early exercise still remains. This is a consequence of the specification
of their economy, where the dividend rate & is assumed to be constant {(and possibly
null) and where the futures price does not depend on §. For American option an stocks,
we will see later that, in the specification of the economy we will adopt, the presence of
dividends clearly affects the exercise policy, and a change in dividends can therefore be
a source of the existence of early exercise. One may ask whether dividends play a signif-
icant role in the decision of exercising prematurely the option. This essentially depends
on the specification of the pricing model. Roll (1977), Geske (1979) and Whaley (1981)
show that, when the dividend rate is a discrete process, the option is always exercised
the period immediately before the payment of the dividend. When the process is time
continuous, there is no evidence on the role of dividends on exercise decisions. Several
studies concluded that the presence of dividend payments has no significant influence
[see for instance Day and Lewis (1988)]. However, Harvey and Whaley (1992) reached
the opposite conclusion and argued that the specification of the dividend process in Day
and Lewis (1988) does not properly reflect the temporal pattern of the observed divi-
dend series. Diz and Finucane (1993) on the other hand used a model free framework to
assess the impact of dividend payments on observed early exercises. They found little
significance of this impact. The effect of dividend on early exercise decisions is still an
open question. In this chapter, we will stick to the specification of Kim (1990), in which

the dividend rate is assumed to be constant and proportional to the stock price.
3.2.2 The optimal exercise boundary

Although the result of Karatzas establishes the existence of the optimal exercise time,
its characterization is of limited interest from the empirical point of view.

If we want to have a better understanding of its behavior, we must restrict our
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attention to a smaller class of models for the underlying asset price process. By far,
the most common practice in the literature consists of considering a so calied Black-
Scholes economy in which this process has a geometric Brownian motion representation.
Moreover, in this economy there is absence of arbitrage and completeness of markets.
Finally, the risk-free interest rate is constant over time. Examples of this literature are
Kim (1990), Jacka (1991) and in particular Myneni (1992) who gives a good overview
of the problem of American option pricing. |

Considering such a class of models leads to a very interesting characterization of the
optimal exercise strategy. More precisely, the result is the following. If the underlying
asset price process {S; : t > 0} is a continuous version of the It& solution of the following

stochastic differential equation
dSy = Si(pdt + odWy), So given, (3.3)

where p 1= r — 4, r is the constant risk-free interest rate, § is the constant dividend
rate, o is a strictly positive constant, and {W; :t > 0} is a standard Brownian motion
defined on (£, 7, P), then it can be shown [e.g. Jacka (1991)] that there exists a process

{B; :t > 0} such that the optimal exercise time 7* can be characterized by
THw) =inf{0 <t < T:S(w) =B}, weq. (3.4)

The rule for optimal exercise can be stated as “ezercise your option the first time the
price of the underlying asset meets the bound B.”

Although only ¢ appears as an argument of B in (3.4), the boundary may élearly
depend on the other parameters in the model (T, K, r, § and o). We explicitely intro-
duced the random experience w in the notation to stress the fact that in this context
B is non-stochastic. However, it should be noted that this is a consequence of the par-
ticular specification of the economy. For more general models, such a characterization
does not necessarily hold and we have no guarantee that the resulting boundaries are
deterministic.

In the context of a Black-Scholes economy, Kim (1990) [Propositions 1 and 2] and
Jacka (1991) [Propositions 2.1 to 2.5] derive the properties of the optimal exercise

boundary for American options which is given by (3.4). In particular they show it
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is ¢t-continuous and non-decreasing in 7 — ¢, the time to maturity. Working with de-
terministic boundaries that have such nice properties naturally leads to attempts for
obtaining representation of these frontiers.

3.2.3 Computation and estimation of the exercise boundary: the ex-

isting work

Although the characterization and the interpretation of the exercise boundary in (3.4)
remains quite simple, its computation is substantially harder. The pricing of an Ameri-
can option and the derivation of its optimal exercise bound are interdependent prbblems
which have to be solved simutaneously, as the presentation of Kim (1990) reveals quite
explicitly. Since no closed-form expressions for the option price C' and the exercise bound
B are available, solutions have to be derived numerically. Several procedures have been
proposed. For a review of these methods, see Broadie and Detemple (1994) and the
references therein. Following Broadie and Detemple (1994), they can be classified in

four categories:
(i) tree approaches [e.g. Cox, Ross and Rubinstein (1979)];
(i) approximations of the pricing model [e.g. Barone-Adesi and Whaley (1986)];
(u1) integral equations [e.g. Kim (1990)];
(iv) variational inequalities [e.g. Jaillet, Lamberton and Lapeyre (1990)]

Application of these techniques resulted in interesting simulations, e.g. Whaley ( 1986),
Brenner, Courtadon and Subrahmanyan (1985), Ramaswamy and Sunderasan (1985).
Recently, Broadie and Detemple (1994) have proposed an algorithm for computing the
price of an American call option which is dominated by no other method in terms of
ratio speed of execution/approximation error.

Although many studies in empirical finance have recourse to such numerical proce-
dures to produce some “estimates” of the exercise bounds, it seems that there has been
very few attempts to find reasonable estimators of the boundary that could be used
to make inference. Not only estimation of the boundary is interesting in itself, but it

can also be viewed as a means for testing the whole model for option valuation. The
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latter perspective has been adopted in almost all empirical studies on American option
pricing models. An illustration of such work are Whaley (1986), Overdahl (1988), Gay,
Kolb and Yung (1989), in which several tests of the rationality of exercise decisions are
proposed. ® An exercise is rational if it occurs at the first crossing of the bound B by the
underlying asset price process. However, the parameters of the Balck-Scholes economy
r, § and o being unknown, one has to find estimates of those coefficients in order to
implement one of the numerical procedures, which returns the value taken by the bound
as well as the price of the option. The va.lueé of r, § and o which are introduced in the
algorithm are usually calibrated from historical data. Typically, r and § are replaced by
an average value calculated over the period of observation and o is taken as the‘ Black-
Scholes implied volatility, i.e. the volatility that matches the observed option price with
the price deduced from the Black-Scholes formula for European options. Rationality is
then assessed by comparing the resulting estimate of the theoretical exercise price with
the observed path of the underlying price S. Although the purpose of this work is not to
find an estimate of the exercise boundary, its conclusions strongly rely on it. However
these studies contain no investigation on the properties of the estimator they propose.

Another limitation to the aforementioned empirical work on rational exercise bound-
aries is that the methods strongly depend upon the specification of the economy. The
least realistic assumption is that the volatility of the underlying asset price process is
constant. Evidence against this assumption can be found in the empirical finance litter-
ature. For a review of stylized facts regarding asset price volatility, see Ghysels, Harvey
and Renault (1995). A more realistic model of option valuation is one in which the
volatility of the underlying asset price is itself a stochastic process. The first stochastic
volatility model for option pricing has been proposed by Hull and White (1987). How-
ever, in such context no tractable characterization of optimal exercise is available and
testing the rationality of exercise policies becomes much more difficult.

Probably the only study that addresses the issue of finding an estimate of the optimal
exercise boundary is the work by de Matos (1994), which is an extension of Bossaerts

(1988). This paper proposes an estimation procedure which is based on orthogonal-

°In all these references, the computations and tests are based on an approximation of the option
pricing model, which has been proposed in Barone-Adesi and Whaley (1987).
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ity conditions resulting from maximizing behavior and some other conditions that are
supposed to hold in the economy. In particular, the first moment conditions express
the optimality of exercise time which is given by equation (3.2). However, although no
particular dynamic equation is postulated for {S; : t > 0}, de Matos (1994) assumes
that the optimal exercise boundary is deterministic and continuous, and approximates
it by a finite order polynomial in time, whose parameters are to be estimated from the
moment conditions.

There exists a wide range of econometric methods that could be used for estimating
the American option exercise boundary. Exploiting the fact that the data on exercises
can be described by an indicator function, taking the value 1 when an exercise is observed
and 0 otherwise, one could think of applying probit techniques. The work by Matzkin
(1991, 1992) on nonparametric probit estimation could be especially useful since the
boundary does not have an known analytic form. However, due to the dynamic nature
of the problem, the likelihood of the observed sample, which consists in a series of zeros
and ones, may be difficult to establish. A family of econometric procedures has been
proposed for estimating stochastic boundaries by Tsybakov (1992), Korostelev, Simar
and Tsybakov (1992) (see also the references therein). The presentation of American
option pricing by Kim (1990) can be straightforwardly reformulated in the setting of
Tsybakov (1992). Once again, those techniques for stochastic frontiers estimation have
be developed in an i.i.d. sampling framework, and we have no idea about how their
properties can be affected by the temporal dimension of our problem. Simulation based
inference techniques, where the criterion from which the estimator is derived is simu-
lated, are more familiar to econometricians and are relatively easy to apply in a time
series context. The estimation procedure adopted in de Matos (1994) and Bossaerts
(1988), which is a simulated methods of moments, belongs to this family.

Although the technique used in this paper is different from de Matos (1994) and
Bossaerts (1988), it is also based on simulations of the criterion function. Our procedure
is described in the next sections. We exploit the information provided by the dynamics
of the underlying asset price described by equation (3.3) and consistently estimate the

parameters 1 and o. These estimators are used as the true values in the numerical
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algorithm of Broadie and Detemple (1994), which returns estimates of the call price and
the associated exercise bound. Since the procedure for inference on the coefficients of
the stochastic differential equation generating {S, : t > 0} is not restricted to goemetric
Brownian motions. we can consider more realistic economies. In particular, we will
allow the volatility of the underlying asset price to vary. In this context, our previous
estimate of the boundary will serve as a benchmark from which corrections will be made
to incorporate the stochastic feature of the volatility.

Before going on with estimation procedures, we briefly describe the algorithm devel-

oped in Braodie and Detemple (1994), since it will be used in section 3.4.
3.2.4 The Broadie-Detemple (BD) algorithm

The Broadie-Detemple numerical procedure is based on new results on American option
pricing. In their paper, Broadie and Detemple (1994) consider a Black-Scholes economy
where the dynamics of the underlying price {S; : t > 0} is given by (3.3), with § > 0.
The optimal exercise strategy for an American call contract is then characterized by a
deterministic function B of time to maturity as in (3.4). The resulting call price is de-
noted Cy(St, By). More generally, assuming that any nonnegative deterministic function
of time to maturity, D, defines the exercise policy inf{t € (0,T]: S; = D;}, where T is
the maturity date, the corresponding option price will be denoted Cy(S;, Dy).

In order to find bounds on Cy(S¢, B;) Broadie and Detemple introduce two contracts

written on the same underlying asset:
e an American capped call option;

e A contract composed of a European call option and a riskless continuous flow of

payments depending on a nonnegative continuous function of time denoted b.

An American capped call option is a American type contract with payoff (min(S;, L)—
K)*, where L is the cap. A special feature of this derivative is that it is exercised
as soon as .Sy reaches L. Therefore, it can be viewed as an American call with exercise

strategy characterized by L, with price C;(S:, L). The price of the compounded contract



at time ¢ is denoted by V;(S;,b). The main result is the following. Defining

Ly = aLr:%anlgx Ce(St, L)

and L7, the solution of
9C(Se, L)
3L Setl

Broadie and Detemple (1994) show that for any date t € (0, T), there exists a A, € [0,1]

=0,

such that Cy(Sy, B) = MCe(Se, L) + (1 - A¢e)Vi(Se, Ly). This equality provides a lower
and upper bound on the price of the call which can be used as folléws. If Cy(St, L)
and Vi(Sy, L) are easy to compute, we can just approximate the price of the call by
Cy = MCo(Sy, L)+ (1 - A)Vi(S;, LY) where X, is obtained from any reasonable method.
Broadie and Detemple (1994) suggest a regression technique. In addition to this result,
they also show that L} is a lower bound on the optimal exercise price and converges to
B as T —t approaches zero. Furthermore, their Theorem 1 (p. 4) and Proposition 1
(p. 6) provide an evaluation of the tightness of their bounds. Figures 3.1 and 3.2 give
a visual evaluation of the sensitivity of L7/K to changes in the parameters of (3.3).

The important thing to note in figure 3.1 is that for all times to maturity, the critical
S/ K ratio beyond which optimal exercise occurs is a nondecreasing function of volatility.
Moreover, this sensitivity of the bound to ¢ vanishes as the time to maturity approaches
zero. In other words, the volatility of the underlying asset price plays a less important
role in exercise decisions for short maturities than for high ones. The kinks diéplayed
by L}/K at 7 = 0 in figures 3.2 and 3.3 illustrate the property of the boundary shown
by Kim (1990, Proposition 2, p. 558):

. B; r
im =93

where g(z) = ¢ (1 00)(2) + I(~0o,1)(), and T4(z) = 1 if z € A and 0 otherwise.
In the next section, we present different estimation procedures we will use to produce

our estimates of the boundary.
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Figure 3.2: Sensitivity of L* to r. o = 0.25, § = 0.07.
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Figure 3.3: Sensitivity of L* to 6. r = 0.04, o = 0.25.

3.3 Econometric estimation procedures

3.3.1 Parametric estimation: simulation based inference

In mathematical finance, variables such as asset prices, rates of return, exchange rates,
etc, are usually modeled as continuous time stochastic processes.® American option
pricing models are no exceptions. If our purpose is to make inference on the components
of these models, we must have adequate statistical methods.

One of the most important and recent innovation in econometric theory is the devel-
opment of techniques for estimating complex dynamic models, where densities or even
first order moments are not available. Diffusion processes whose dynamics is described
by stochastic differential equations are examples of such models. Major contributions
to the theory of statistical inference in this field are Gouriéroux, Monfort and Renault
(1993), Duffie and Singleton (1993) and Gallant and Tauchen (1994). In this section we

descibe the procedure developed in the first reference since all the mentioned methods

can be embeded in this framework.

81t should be noted that some pricing models have been developed in a discrete time framework; see
for example Duan (1994a) for models of term structure of interest rates and Duan (1995) for option
valaution models. However some results on the convergence of discrete time dynamics to continuous
time diffusions establish an equivalence of the two approaches [see Nelson (1990) and Duan (1994b)].



3.3.1.1 Some notation

Consider a statistical model M = (¥, A, (Pg : 8 € ©)), where Y is the sample space, A
is a o-algebra of subsets of ', and (Py : @ € ©) is a family of probabilities defined on A

, containing the true probability law Py, of the random vector
Y (QA,(Py:0€0)) — (Y, A (Ps:8€0))

ie. Pg(A) = PR(Y~1(A4)), A€ A8 € ©. We assume ¥ ¢ RT,0 ¢ R?, and Py <
AT 9 ¢ ©, where \ denotes the Lebesgue measure on (R, R). For § € O, let f(,0):

Y — R be the density of Py with respect to A\®T.

3.3.1.2 The principle of indirect inference
In our context, M is supposed to have two main features

(7) for any 8 € O, M can be simulated by drawing a sample, y(f) € V, in the

probability distribution Pj.
(#) f(-,0) is unknown or untractable for estimation purposes.

The purpose is to consistently estimate the unknown parameter 4 whose true value is 6p.
The starting point in estimation theory is to exploit the information on 6y provided by
the observed sample, yo, through a function of the observations S : Y —+ B, B C RY.
In classical estimation procedures, S would be any empirical moment of Py, and an
estimator of § would be obtained by minimizing a distance between S(yo) and the
theoretical analogue of S(y), denoted by M (). S could also be a (pseudo-) likelihood
function which has to be minimized. Because of (i) above, an expression for M (6) is not
available. Still because of (71) the likelihood function associated to a sample y € Y may
be unknown or difficult to establish, which excludes maximum likelihood techniques.
The idea of indirect inference is to take advantage of the “simulability” of M by
drawing H independent samples y*(),h = 1,2, ..., H from Pg,6 € ©. From those
simulated samples, it is possible to compute any statistic S[y*(8)],h = 1,2, ..., H,
from which an estimate of § is found by minimizing a distance between S(yo) and a

function of the H simulated statistics, A (S[yl(ﬁ)],S[yQ(H)], ,S[yH(H)]). We now
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briefly describe the different steps of indirect inference. For a more detailed treatement
of the procedure, we refer to Gouriéroux, Monfort and Renault (1993).
Suppose that M is a dynamic model described by the following dynamic equations
e = T(yt—lyut;g)
ue = @lu—1,560), ug given (3.5)
, WY G
where {y; : t € T} is a stationary process observable for indices t € {0,1,...,T} C
T, r and ¢ are known deterministic functions, and Go is the known distribution of
g, t € {0,1,...,T}. us is an unobservable stationary process. © Define the statistic
Br : Y — B as the solution of
min Qr(y: B)
where Q7 is a function Q7 : Y xB — R. BT(y) can be viewed as an estimator of § in
an “auxiliary” model M* = (¥, A, (Ps : 8 € B)) obtained by minimizing the criterion
Q. If the auxiliary estimator ﬁT() is defined for simulated samples y(6),8 € ©, the
observed sample yo = y(fo) being considered as a particular drawing — “the simulation

of the Nature” —, it can be seen as a function of 6, and we define

pgr: ©®@ —B
6 — B7(8) := Br(y(9)).
The relation between 8 and ﬁT() can be made more explicit by introducing the binding
vfunction. We make here the crucial assumption that Qr(y; /) T_i%o Qo (Go, 9; ) uni-
formly in 8 € B, where 35, denotes Pg-almost sure convergence, V8 € ©. Qo (Go, - ; )
‘s a non stochastic function defined on © x B. The binding function b is defined by
b:0 — B

8 > b(8):= argérll;in Qoo (Go, 8; B)
and the value By := b(fo) = Mﬁé‘,‘gi“ Qoo (Go, 00; Bo) is interpreted as the “true value”
of the coefficient 3 in model M*. The convergence assumption on Qr ensures the con-
vergence (Pg,-as) of Br(10) to Bo. Then a natural way to derive a consistent estimator of

6 would be by calibrating b(6) on Br(yo) = argrrllgin Q1 (vo; B)- Indeed, if the function
€

7For a treatment of the more general case where M contains exogeneous variables, see Gouriéroux,
Monfort and Renault (1993).
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b were known, the solution of mingeo ||F7(30) — 0(6)]|* would converge to the solution
of mingee [|Bo — b(6)]|*, which is 8y as soon as the binding function is one to one.
However, in dynamic models b is often difficult to establish. The solution consists in
approximating the binding function by simulating M. H independent samples yh(()), h=
1,2,...,H, are drawn from Py, 0 € ©, and serve to compute H auxiliary estimators
B8) = Brlv"(8)],h = 1,2,...,H. Since y"(8) is a random sample from Py, the

assumption of convergence of Q7 implies that

argmin Qr(v"(0):8) 17, argmin Quo(Go,64), V6 € ©,
i.e. 37[y"(8)] is a consistent estimator of 5(d). Then the unknown binding function b is
replaced by its consistent estimate 4 s H | Brly™(8)] in the calibration step. Formally,
the Indirect Inference Estimator (IIE) of 8 is defined by

H ! H
(0 9) = ssgrin (Brton) - 3 3 Be0s"0)) o (Brioo) ~ 5 3 st 0)
h=1

(3.6)

h=1

where Qr is a sample dependent weighting matrix, converging (in probability) to a
positive definite deterministic matrix, Q.

This estimation procedure displays several analogies with two other methods, namely
the Pseudo Maximum Likelihood (PML) and the Generalized Method of Moments
(GMM). The first analogy comes from the use of an auxiliary criterion, Q7. Suppose
that M* is an approximation to M which is sufficiently close in some sense for 8 and
¢ to have the same dimension and the same econometric interpretation. If the (log)-
likelihood of M* can be derived and maximized, it can be taken as the auxiliary criterion
Q7. This function is then a pseudo-likelihood and its a.rgrniri Br(-) is a PML estimator
of 3.

Now, if the binding function 5(#) is a moment of the distribution of Z := ¢(Y), a
transformation of the random vector Y, — for instance 5(8) = E4[g(Y")] — the problem
of minimizing a distance between b(d) and fr is a standard method of moments. When
no analytic expression is available for (6), Duffie and Singleton (1993) proposed their
Simulated Method of Moments, where simulations are used to approximate the unknown

moment.
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The properties of IIEs for infinite size samples are given in Gouriéroux, Monfort and

Renault (1993). We give their main result in the following theorem.

Theorem 7 (Gouriéroux, Monfort and Renault (1993)) Define the following ma-

trices:

[Q 1= l]ll_inoo\/[ﬁ%%“(yh(e())vﬂﬂ) )

9*Qoo

Jo BEEE)E

(GO) 301 /80))

for il = 1,...,H, h # Il. In model (3.5) and under assumptions Al to A8 in
Gouriérouz, Monfort and Renault (1993), and if Qr is chosen so that Qr T{Z Qr =
JOIO—IJO, we have

R p
88 (0, Q%) — by

T—o0
and
- A
VT (08 (90,97 = 60) .~ N(O,W(Q, H))
with

W(Q H) = (1 + 73) @—’;(90) o %’7(90))_1.

Moreover, W(Q, H) — W(Q*, H) is a positive semi definite matriz, for any §, positive -

definite, and any H.

The Indirect Inference procedure is especially useful for estimating the parameters
of a model in which the dynamics of the variables is described by a system of stochastic
differential equations. In the next paragraph, we describe how Indirect Inference can

be applied in this context.

3.3.1.3 Estimation of diffusion processes by Indirect Inference

Consider a process {Y; : t > tg} which is a continuous solution of the following stochastic

differential equation

dY; = p(Ys, 0)dt + o (Y, 0)dW,, ¢ > to, 3T
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where IV is a standard Brownian motion, and x(-,-) and o(-, -) are known functions and
satisfy some regularity conditions for {Y; : ¢ > tg} to be well defined as the unique Itd
solution of (3) for a given Y}, [see Qksendal (1992, p. 86 ~ 87)]. The main problem when
estimating 8 is that we observe a realization of the process for a finite set of dates only,
t=1,2,...,T,say, sothat our sample (y; : t = 1,2, ...,T), with y; = Y;(wp), is a finite
subset of points of the whole realized trajectory, (Y;(wo) : t > to). Except for some simple
specifications of the functions p and o, the corresponding likelihood is usually difficult
to establish, since the transition probabilities p(z,y) = P(Y; € [y,y +dy]|Vio1 = 2)
have complex analytical expressions [see Dacunha-Castelle and Florens (1986)]. In this
situation, having recourse to simulations of the process may bring a solution and the
procedure of Indirect Inference is a simple way to derive a consistent estimator of 8.
However, we must be able to simulate trajectories of the process {Y; : t > tp}, or
at least realizations of (Y; : ¢t = 1,2,...,7T). If (3.7) admits an exact discretization
[see for example Bergstrom (1984)], simulating a sample (y; : t = 1,2, ...,T) of the
process {Y; : t > to} remains quite an easy task. However, this is generally impossible
because the transition probabilities are unknown. A natural solution to this problem
is to simulate samples from an approximate discretized model, instead of using the
(unavailable) exact discretization of (3.7). These discrete trajectories generate a right-
continuous process which converges in distribution to the true process {Y; : t > #o}.

More explicitely, we introduce the discrete time analogue of the diffusion (3.7)
Y(%—H)A —YA = 0p(YR,0) + o (YA, 0VAey, k=12, ..., [%—] \ (3.8)

where A is the time unit for discretization (usually smaller than the observation step)
and {ex,k = 1,2, ..., {%}} vt N(0,1). For a given initial value (3.8) generates a
process {Y;2 : t > to} defined by Y;® := Y}, t € [kA, (k+1)A), which can be shown
to converge in distribution to {Y; : ¢t > to} as A — 0.8 The inference procedure which
consists in applying the steps of Indirect Inference to models where discrete paths are
simulated from an approximative model is described in Broze, Scaillet and Zakoian

(1995). The consistency and asymptotic normality of these so called Quasi Indirect

8 For results on convergence of discretized processes, see Pardoux and Talay (1985).
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Inference estimators is guaranteed by the convergence of the discretized process to the
process solution of (3.7).

When an exact discretization is available, any discrete path of the process, (Y; : ¢t =
1,2,...,T) satisfies a first order difference equation whose parameters are transforma-
tions of . The most useful examples of such processes are the log-normal diffusion (or
geometric Brownian motion), where § = (i, o)’ and u(y, 8) = py, o(y,8) = oy, and the
Ornstein-Uhlenbeck process where § = (A, a,0)" and p(y,0) = Aa —y), o(y,8) = o.
The form of the corresponding discretizations are given in Bergstrom (1984).

As mentioned in the introduction, one of the purposes of this chapter is to produce
a nonparametric estimate of the exercise boundary for American options. The next

section presents the technique used for deriving such estimators.
3.3.2 Nonparametric estimators: spline smoothers

We introduce a completely different strategy for estimating the exercise boundary. The
estimator we present here belongs to the class of nonparametric estimatofs and is called
smoothing spline for reasons we will mention later. It is nonparametric in the sense that
no explicit assumptions are made on the form of the function to be estimated and on
the option pricing model in general. We only implicitly recognize that there exists some
exercise policy characterized by a function g which associates to each time to maturity
T a value S/K = g¢(7) at which the option is exercised. In particular, we make no
assumption on the dynamics of {S; : t € T} and on its parametrization. Moreover, we

do not impose any rationality in the decision of exercise. We now describe the method.

3.3.2.1 Cubic splines

We observe couples (X; := 7, Y, :=(S/K);),i = 1,2, ...,n which are assumed to be

(g—) =g(r)+e¢,

realizations of the model

where ¢ is an unobserved random variable representing the noise in the relation between
S/K and 7. The technique relies entirely on the data to specify the form of the g function.

It consists in fitting a curve to the data points (X, Y;:). The problem seems relatively
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simple and one could think of solving the following problem

n

mig, 3= m(X) (3.9)
where M is a class of functions satisfying a number of desirable properties (e.g. con-
tinuity, smoothness ...). Obviously, any m € M resticted to satisfy m(X;) = Y;,i =
1,2,...,nis a candidate to be a solution of the minimization problem. Then, one of
them would merely consists in interpolating the data. Even if we restrict m to have
a certain degree of smoothness (by imposing continuity conditions on its derivatives),
functions m satisfying m(X;) = Y;,4 = 1,2,...,n, can be too wiggly to be a good

approximation of g. To avoid this, on chooses m € M in such way that functions not

smooth enough are “penalized”. A criterion to obtain such solutions is

n

i i m(X) + A /I [m® ()] de (3.10)

or, using norm notation
min (Y = m(X0)[* + @, (3.11)

where Y := (Y1,Y,, ..., Ya), m(X) = (m(Xy),m(X3), ..., m(X,)) for any m € M.
[l |l and || - [[z2(4) denote the Euclidean norm and the norm on L?(A), the set of square
integrable functions on A, respectively. I is an interval [a, b] such that a < min{X; : 7 =
1,2,...,n} <max{X;:i=1,2,...,n} < b, and m(¥ denotes the k-th derivative of
m. The integral in the second term of (3.11) is & measure of the degree of smoothness
of the function m, since |m®)] L2(1) can be considered as the total variation of the slope
of m. Then for A high, we penalize functions which are too wiggly and we move away
from solutions that teﬁd to interpolate the data. If A becomes too high, we decrease
the goodness of the fit. In the limit, if A — oo, the problem tends to minimizing the
second term of (3.11), whose solution is a function that is “infinitely smooth”. Such a
function is a straight line which has a zero second derivative everywhere. Conversely,
if A —+ 0, the solution of (3.11) tends to the solution of (3.9) which is the interpolant.
Note that for the minimization problem to be well posed, the class M must contain
functions having second derivatives on [a, b] which are (Lebesgue) square integrable on

this interval.
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When M is taken as the class of continuously differentiable function on 7, with
square integrable second derivative on I, the solution of (3.11) is unique and is a nat-
ural cubic spline, which we denote by j) [see Wahba (1990, p. 13 - 14) and Eubank
(1988, p. 200 - 207)]. Given a mesh ¢ < z; < z3 < --- < z, < b on [a,d], a
spline of order r (r > 2) is a r — 2 times continuously differentiable piecewise poly-

nomial of order r function, denoted s(-). By piecewise polynomial, it is meant that

s is a polynomial on each interval [z;,zi11), 1 = 1,2,...,n — 1. Therefore, s(z)
can be written s(z) = S} Uiz; z:401(2) Pi(z), where y(z) = 1if 2z € A and 0
otherwise. F;, ¢+ = 1,2,...,n — 1, are polynomials of order r with the property

p® Tl = p¥ Tig1), fort =1,2,...,n -2, and ¥ = 0,1,2,...,r — 2, where
h + i+1

P®) denotes the k-th derivative. Cubic splines are defined with r = 4. As a nat-
ural cubic spline, s must satisfy the boundary condition 5(2)(:1:1) = 3(2)(3,,) = 0.
In the context of observational data, the mesh (z;,z2,...,2,) is the order statistic
(Xap Xy -0 Xw)-

It can be shown [see Hardle (1990, p. 58 — 59)] that the spline gy is a linear trans-

formation of the vector of observations ¥ := (Y1, Y3, ... Y,,)', ie.
ar(z) =) wi(z) Vi (3.12)
=1

A result of Silverman (1984) proves that the weight functions w? behave asymptotically
like kernels. This relation between spline and kernels shows that splines belong to the
family of smoothers. If we write (3.12) for observations X := (X1, X3, ... X,.)/, we

have the following expression

gA(X) = ' =W(A)Y (3.13)
9r(Xx)
in which appears the influence matriz W(A), whose (7, j)-th entry is w? (X:) [see Wahba
(1990), p. 13]. This matrix is explicitely derived in Eubank (1988, section 5.3.2) and
is shown to be symmetric, positive definite. Note that the k-th element of its diagonal
measures the “influence” of Y on §)(Xk), the “fitted” value of Y.
A question that arises immediately is the choice of the smoothing parameter A. It

is important to select a “good” value for A, since it controls the paramerization of the
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spline and the quality of the fit. Some criteria for choosing A have been developed and

are presented in the next paragraph.

3.3.2.2 The choice of the smoothing parameter: cross validation

Intuitively, A should be chosen so that some distance between g and §y is minimized.

The most natural measure of distance is the quadratic loss function

L) = = 3 [3(6) = g (X = w7 19200 = 9 (O

Such a rule is impossible to implement because ¢( - ) is unknown. An immediate solution
is to replace the unknown values ¢(X;), ¢ = 1,2, ...,n, by their unbiased estimates

Y1,Ys, ..., Y, and minimize
LA =n"H g (X) - Y%

However, as Hardle (1990, p. 151) shows, in some situations @ L(A)/8X > 0 and an
optimal choice for the smoothing parameter would be A — 0, which we want to avoid.
The reason of the inadequacy of L()\) for choosing A is that L()) is a biased estimator
of the risk function defined by R(X) := E L()). Using (3.13), we have

ELO) = ol [(Id - W)Y

= n~r[QE (YY)

= a7l [QU) (S +9(X)g(X))]

where Q()) == (Id, — W(A))? and I := Ee<’. Expanding Q()), we get

EL(A) =2 "1g(X)QN)g(X) +n e WA L] + n~ltr [T - 2W (A)T] . (3.14)

On an other hand, using the relation §x(X) = W(A)Y = W(A)(g(X) +¢€), we have

R = E[Ha(X) - g
= n lE[[W(Ne - (Tdn — W(A))g(X)I] (3.15)

= a7 [W() P+~ g(X)Q(Ng(X) -
When compared with (3.15), we see that the last term of (3.14) constitute the bias

in the approximation of the risk function by L()). To remedy this problem, we can
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examine the source of the bias. It can be seen that it arises because each observation
Y: is used twice, once in the formula for the §1(X;)’s and once as an approximation of
g(X:) in D(X) [see Hirdle (1990, p. 152)]. This suggests as a solution to leave the i-th

observation out and select A by minimizing

n

> [Yi - ﬁg}(Xi)r :

=1

S|

where gf{] is the estimator of g obtained by leaving aside the i-th observation. More

explicitely, g[;'] is the solution of

i STV - (X ) ()]
Jmin 2 Y; — m(X;)] +/\/[[m (:z)} dz .
s
Whaba (1990) gives theoretical support to this criterion. She shows (p. 50 - 51) that

S [H-alo] = L S - P e = ooy,

=1 =1

I~

where
-2

mi(A) = [1- w(X0)]
A rule for selecting the smoothing parameter is then to minimize OCV(A), which is a
weighted mean square error, the weights m;(\) being transformations of the diagonal
elements of the influence matrix. OCV stands for Ordinary Cross Validation. f £ =
o?Id,, it can be shown that this criterion is not invariant to some tranformations of the
model (for instance orthogonalization of the errors) and it may be desirable to introduce
a more robust selection rule. To this end we will rather use the General Cross Validation

(GCYV) criterion. The smoothing parameter will be chosen to minimize

GCV()) := % S 1% - X/ (1= n e v ])

The relation between OCV and GCV is given by

n

== S -] %W,

i=1

GCV(A

3|H

with %(A) == 1/m()) (1 = =t [W(N)]))* - GCV appears as a generalization of OCV

obtained by introducing the weights +;(A) on the prediction errors Y; — g&‘](Xi), i =
1,2,...,n, [see Wahba (1990)]. The properties of GC'V as a criterion for selecting
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A are discussed in Wahba (1990, sections 4.4 and 4.9) and in Eubank (1988, p. 225
— 227) in the case where errors are spherical. Choosing the smoothing parameter by
minimizing GCVis now a standard procedure and several statistical packages use it as
the default in their smoothing routines. Since A is also selected from a data dependent
criterion, the smoothing spline appears as a fitting technique which is entirely based on
the information provided by the observations. No extra sample information, such as an

a priort parametric form, is introduced to derive an estimator of g.

3.4 Estimation of the exercise boundary for American
call options on the S&P100 Stock Index

In this section, we apply the estimation procedures presented in section 3 to data on

American option contracts on the Standard and Poors 100 (S&P100) Stock Index.

3.4.1 Description of the economy

We assume that usual assumptions on financial markets organization and investors are
satisfied. More explicitly, markets are assumed to be complete and frictionless and there
are no arbitrage opportunities. Investors are supposed to behave rationally in the sense
that they maximize their welfare conditionally on the available information. Harrison
and Kreps (1979) have shown that when trading on such markets, it is equivalent to
consider that investors maximize their expected payoff.

We model the S&P100 Index price as a geometric Brownian motion, which is sup-
posed to be generated by equation (3.3). In section 2.2, we described the properties
of the optimal exercise boundary for American options for such an underlying asset
price dynamics. From Jacka (1991), we know that the boundary is a deterministic
function of time to maturity, T — ¢, where t is the date of observation and T the
maturity of the contract, of § = (r,6,0) and of the strike price, K. This function
is continuous in T' — ¢ and homogeneous of degree 1 in K [for a proof of this prop-
erty, see Broadie et al. (1995)] In particular, denoting this function by B we have
(1/K)B(8,T —t,K) = B(8,T —t,1). Therefore, the optimal exercise strategy is given
by inf{t € (0,T): S;/K = B(8,T —t,1)}, where S denotes the S&P100 Index price. In
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the sequel. we will use the notation B(#, T — ¢) instead of B(¢, T —t,1}. This character-
ization of the optimal policy in terms of a threshold value on S/K will be particularily

useful to derive nonparametric estimators of the boundary.
3.4.2 Description of the data

The data on the characteristics of S&P100 Index American contracts (maturity, strike
price, number of exercises) is the same as in Diz and Finucane (1993) and we refer to
this paper for a description of the sources. These are end-of-the-trading-day daily data
on S&P100 Index American put and call contracts which are traded on the Chicago
Board Options Exchange. The contract is described in OEX - S&P100 Index Option
(1995). To this set of data we added the corresponding series of observed S&P100 Index
prices obtained from Standard and Poors, as well as the S&P100 Index dividend series,
which was kindly provided by C. Harvey. For a description of the latter series, see
Harvey and Whaley (1992). The sample we consider runs from January 3™ 1984 to
March 30* 1990. Table IX provides summary statistics of the data. Figures 3.4 and
3.5 show the sample distribution of the number of exercises of call and put contracts,
conditionally to the current S&P100 Index price to strike price ratio (S/K), and to
the time to maturity (7). Note that these figures present truncated data, since we left
aside observations corresponding to high values of 7. The purpose was to obtain a better
visualization of what happens when the number of exercises is significant. However, the

complete sample was used at the estimation stage.

Table IX. Summary statistics of exercise data

Var. X min 5% 25% 50% 75% 95% max

Npug 1335 1 2 11 56 417 6428 109500

Neaa 2697 1 3 24 202 1357 16946 72590
S 236.9 146.5 154.495 181.8 238.5 280.9 322.838 336.1
) 0.03356 0 0 0 0.004825 0.0415455 0.1534249 0.5513

The subscript “put” (“call”) indicates that the sample statistic has been computed with
observations on put (call) contracts. N is the number of exercises, S is the price of the
S&P100 Index and § is the dividende rate on S. X denotes the sample mean of the series
and the value in the column 2% for the sample (X; :7 =1,2,...,nx) is the number
Xo € {Xi:1=1,2,...,nx} such that n3! 30X (oo, x,(Xi) = /100, nx being the

number of observations for the variable X.
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Figure 3.4: Distribution of the number of call contracts exercised, conditionally to S/K
and T
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Figure 3.5: Distribution of the number of put contracts exercised, conditionally to S/K
and T
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Figures 3.4 and 3.5 show that most of the exercises occur during the last week before
expiration. Excepted for a period of one or two days to maturity, exercise decisions are
taken when the ratio S&P100 Index price / strike price is close to one. During this
period, the ratio is never above one for call contracts and below one for put contrats.
However, in the last days before maturity, although most decisions of exercise take place
at S/ K close to one, the dispersion of the observed ratio is increased towards values less
than one for puts and more than one for calls. These stylized facts do not contradict
the predictions of the option pricing model when the underlying asset price is assumed
to be a log-normal diffusion. As shown in Kim (1990) for call contracts, when the time
to maturity 7 tends to zero, B(r)/K | r/§ when § < r and B(r)/K | 1 when § > r.
For put contracts, similar convergence results hold, namely B(r)/K | r/5 when § > r
and B(7)/K | 1 when § < r.

We next describe the implementation of the estimation procedures.
3.4.3 Parametric estimation

The procedure is composed of two stages. We first estimate the parameter of the stochas-
tic differential equation (3.3) generating {S; : ¢ € T} by Indirect Inference. In a second
step, we implement the Broadie-Detemple algorithm for calculating exercise prices us-
ing the first stage estimates.® The main difficulty comes from the non identifiability of
the vector of coefficients # = (r,6,)’ in (3.3). The family of probability distributions
associated to (3.3) is parametrized by (u, o), with u = r — 4, and the parameters r and
6 are clearly not identified. However, we do observe the series of dividends, from which
we form §, a consistent estimator of 6. An estimate of r is then given by 7 = i + 4,
where /i is the first step estimate of the trend in (3.3).

.By assumption, the S&P100 Stock Index price is a geometric Brownian motion, whose
dynamics is given by (3.3). Applying Itd ’s lemma. to the transformed variable st :=1InS;
one can show that {s; : t € T} satisfies ds; = (¢ — ¢?/2)d¢ + odW;. Integrating gives
8t = so + (1 — 02/2)t + oW;. Therefore, given some values for sp, ¢ and o, the process

{In S; : t € T} is easy to simulate by drawing a random sample (g, : t = 1,2, ..., T) from

? A detailed description of the algorithm is given in Broadie and Detemple (1994)
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Figure 3.6: Objective function near the IIE of (u, o).

N(0,1), and generating (s; : t = 1,2, ..., T) using the relation s; = so+(u—0?/2)t+0e,.
We then form the auxiliary estimator S7[S*(6)] using the A-th simulated sample. Here
B7[S"(8)] is the maximum likelihood estimator of the parameter § := (u*, 07)" of the

auxiliary model obtained from the Euler discretization of (3.3)
SP = (14+17)Sty + Sk .

Some care has to be taken when implementing the algorithm which minimizes the
objective function in (3.6). Figure 3.6 shows this function in the neighborhood of the IIE
of the parameters of (3.3). If the starting values are not properly chosen, the algorithm
returns negative values for the volatility parameter. We used Q = Qr = Ids, the (2x2)
identity matrix.'” The number of independent simulations is H = 10. The sample size
is T = 1579 and simulations were made using (3.3) with initial value equal to 164.83,

the first observation of the S&P100 Index series. This procedure was implemented with
several starting values which yield a positive estimated volatility parameter. We give a

summary of the results in table X, where yy denoted the observed sample of S&P100

%]t can be shown [see Gouriéroux, Monfort and Renault (1993)] that when the parameter of interest

¢ and the auxiliary parameter 8 have the same dimension, the asymptotic distribution of the IIE of 8
is independent from the choice of 2.
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Figure 3.7: Parametric estimation of the optimal exercise boundary for American call
options.

Index price.

Table X. IIE of (i, o)

min max mean median
(190 (yo, Idy)  4.452042.107% 4.956742.107% 4.489014.107% 4.465797.107%
6499 (yo, Id2) 0.011320 0.012743 0.012281 0.012301

For the set of times to maturity 7 € {0, 1,...,120} we computed the estimated optimal
exercise bound (%\) using the Broadie and Detemple alghorithm with 6 =0.03356 (see
‘table IX), # = median[i!%4(yo, Id2)] + 6 and & = median[610:4(yo, Idy)]. We chose the
median because of its robustness to extreme values. The resulting boundary is plotted
in figure 3.7.

These results were obtained under the set of quite restrictive assumptions made in

section 4.1. It is interesting to compare our parametric estimate of B with another

estimate which is free from any specification of the option pricing model.
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Figure 3.8: Representation of the data.

3.4.4 Nonparametric estimation

In this section, we adopt a different estimation strategy. The objective is to estimate a
boundary by fitting a curve through a scatterplot in the space (r,S/K). We proceeded
as follows.

Over the period of observation, the set of observed values for the time to maturity
variable is 7 := {0,1, ..., Tmax}. Over the same period, we observe a total of N call
options indexed by ¢ € 7 := {1,2, ..., N}. Each of these options is characterized by the
date of its issue (t}), its maturity (¢ + T%), and strike price (K;). In addition to these
variables, for 7 € T, we observe Si := tgr and 7t := nié +, Which are respectively
the price of the S&P100 Index and the number of exercises of option i at date th 4T,
i €I, :={j € Z:nl #0}. Observations can be represented as in figure 3.8.

The idea underlying the estimation procedure is that observed S,/K ratios result
from an exercise policy and can therefore be considered as realizations of the bound
B(8, 7). With such an interpretation of the data, to each 7 corresponds only one optimal
exercise policy, and we should observe only one S/K ratio. However, as figure 3.8 makes
it clear, we observe several realizations of S/K for a single 7. A natural way to summarize

the information is to give more weight to S%/K* ratios associated with high numbers of
g g pe g
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Figure 3.9: Nonparametric estimate of the exercise boundary.

exercises n!. In other words, we consider the weighted averages
(). ~som Tr
K T Zz’er,. TI,; i€, 7 I(i
as our realizations of B(#, 7). A nonparametric estimator of B is obtained by applying

the procedure of section 3.2 to the model

I—(,:g(r)—i—e.

A curve is fitted to the points (,(S/K),), 7 € T. Figure 3.9 shows the resulting
estimated boundary. The smoothing parameter A was selected by Generalized Cross
Validation. This is the default procedure of the function smooth.spline in S-Plus
statistical package. The value of A computed from observations on S/K ratio is A =
0.009058884, which gives a GCV criterion GCV(A) = 0.0005911787.

- Even when g is considered as the closest approximation of the true boundary, a
mere comparison of B(8H (yo, ), 7) with g5 is clearly not sufficient to assess the prop-
erties of the parametric estimator. In the next section, we present an evaluation of the

distributional properties of B(8 (o, Q), 7).
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3.5 Monte Carlo study of the properties of B(é, T).

Under the assumptions made in section 3.4.1, and at the light of figures 3.1 and 3.2 in
section 3.2.4, we can reasonably suppose that g—gf(ﬁg,r) exists for any 7 > 0.!! From
standard asymptotics, we get the infinite sample distribution of the parametric estimator

of the boundary:

aB’

VT (B0 (10,9),7) - B6o, ) 2 o (0,55 001w, 1) S5 00, )

However, in the setup of section 3.4.1, %9,-(00, ) is unknown. Two alternative strategies
can be adopted for evaluating the performance of B (9{;1 (y0,82), 7). The first one consists
in using numerical techniques for approximating the derivative % and plugging it into
the ésymptotic variance formula. We will rather use an other approach to the problem
and simulate the distribution of the estimator by Monte Carlo experiments. We feel it is
more appealing since it allows us to evaluate the statistical properties of B(é¥ (yo,82),7)
for any sample size.

We first fix § € © and generate R independent discrete realizations of the process
{St} denoted 7, with s¥ = (57,57, ...,57) ,¥y=1,2, ..., R, from which we compute
R estimators B(éYH(S’Y,Q),T), re€T, vy=12,...,R With R realizations of this
random variable, we are now able to estimate its first and second order moments and
density function. In the Monte Carlo experiments, we used four sets of values for r, 0
and o which are those of Broadie and Detemple (1994, p. 10 - 11). For any of these
parameters values, we simulated R = 1000 samples (S; : ¢t = 1,2,...,T) from (3.3)
using So = 100 as the starting value and T' = 200 and 7' = 2000. We next estimated
¢ by Indirect Inference with H = 10 simulations of a geometric Brownian motion and
Qr = Id,. We computed the boundary B = B(é?(s“’,[dz),r) for an American call
option with a maturity of 120 days and a strike price K = 100 at three different times
to maturity, 7 = 6, 30 and 90 days. Results are shown in tables XI.a to XI.d and
visualized in figures 3.10 to 3.12. Note that the graph identified by the letter (z) is

associated with table XI.(z), for z € {a ,b, ¢, d}. X denotes the sample mean (over the

""When 7 = 0, the derivatives with respect to r and § may not exist because of the kink in B at
maturity (see figures 3.2 and 3.3.)
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Table XI.a. Estimated exercise bounds. r = 0.03,0 =0.07,0 = 0.2.

P el B

7=6 days 7 =30 days 7 =90 days

X -0.0424 02111 1057269  110.9159  114.1916
-0.0405 0.2011  105.4239  110.3178  113.3984

RMSE  0.0100 0.0166 0.5850 1.2087 1.6408
0.0048 0.0039 0.1837 0.4029 0.5613

Std Error  0.0097 0.0121 0.4779 1.0068 1.3854
0.0048 0.0037 0.1803 0.3973 0.5545

Bias (%) -6.1169 5.5487 0.3198 0.6018 0.7749
~1.2461 0.5280 0.0323 0.0594 0.0749

True value -0.0400 0.2000  105.3898 110.2523 113.3135

number of simulations) of the estimate, RMSE is the simulated root mean square error,
Std Error denotes the square root of the sample variance, and Bias (%) is defined as
(X~ True value)/True value, when True value # 0 and 0 otherwise. For each of these
statistics, the first row displays the values computed with a sample of size T' = 200,
whereés the second row shows the same values obtained with a sample of size T = 2000.
It is also interesting to report the density estimation of the IIE of §. These are shown
in figures 3.13 and 3.14.

The content of tables XI.a to XI.d suggests several remarks on the behavior of the
parametric estimators of B. As expected, the precision improves with the sample size.
This can be seen by comparing the RMSEs and standard deviatioﬁs from two consecutive
lines (T' = 200 and T = 2000). As the sample size increases, the average dispersion of
the estimator around the true value and around its sample mean decreases. This is true
for the estimates of the bound as well as for the estimates of the diffusion coefficients.
This appears very sharpely in figures 3.10 to 3.14. We note that this improvement is
more pronounced for the volatility parameter. which evidence hasalready been provided
in the literature. The drift parameter of a geometric Brownian motion is estimated more
accurately than the volatility coefficient [see for example Gouriéroux and Monfort (199)].

Still regarding the parameter 8, the bias diminishes when the sample size gets larger, the



Table X1.b. Estimated exercise bounds. r = 0.03,8 = 0.07,0 = 0.4.

—

r—39 &

B

T =6 days 7 =30 days 7 =90 days

X

RMSE

Std Error

Bias (%)

True value

-0.0416 0.4029
-0.0410 0.4007
0.0051 0.0283
0.0028 0.0095
0.0048 0.0281
0.0026 0.0095
=-3.9775 0.7339
-2.5969 0.1752
-0.0400 0.4000

112.5212
112.4495
1.0527
0.4086
1.0498
0.4083
0.0618
-0.0020
112.4518

125.1465
124.9911
2.2666
0.8892
2.2616
0.8885
0.1061
-0.0181
125.0138

133.7282
133.5055
3.1803
1.2571
3.1725
1.2562
0.1487
-0.0181
133.5297

Table XI.c. Estimated exercise bounds. r = 0,4 = 0.07, 0 = 0.3.

r—6 G B
T =06 days 7 =30 days r =90 days
X -0.0734 0.3068  108.1659 115.6357 120.4029
-0.0708 0.3008  107.9952 155.2960 119.9492
RMSE  0.0153 0.0201 0.7568 1.6241 2.2521
0.0055 0.0063 0.2682 0.5867 0.8198
Std Error 0.0149 0.0188 0.7310 1.5775 2.1930
0.0054 0.0062 0.2670 0.5848 0.8175
Bias (%) -4.7927 2.2622 0.1800 0.3323 0.4236
-1.1255 0.2792 0.0219 0.0376 0.0453
True value -0.0700 0.3000  107.9715 115.2527 119.8950

140
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Table XI.d. Estimated exercise bounds. r = 0.07,8 = 0.03, o = 0.3.
r—4 G B

7=06 days 7 =30 days =90 days

X 0.0396 0.3051  238.1476 245.4172 250.9232
0.0405 0.3006  240.7845 247.9008 253.2674

RMSE 0.0088 0.0210 28.8787 29.4178 29.7675
0.0027 0.0062 9.1229 9.4003 9.6056

Std Error  0.0088 0.0203 28.8522 29.3968 29.7498
0.0026 0.0061 8.9384 9.2065 9.4047

Bias (%) -0.9750 1.6862 -0.3488 -0.2467 —0.1642
1.2017 0.2060 0.7546 0.7628 0.7684

True value 0.0400 0.3000  238.9812 246.0241 251.3360
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Figure 3.10: Kernel estimate of the density ofB(éTIII(y, Idy), 7}/K.T = 6 days, K = 100,
T = 200 (solid line), T = 2000 (dashed line). The vertical straight line indicates the
true parameter value.
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Figure 3.11: Kernel estimate of the density ofB(éIH(y, Idy), 7)/K.T = 6 days, K = 100,
T = 200 (solid line), T = 2000 (dashed line). The vertical straight line indicates the
true parameter value.
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Figure 3.12: Kernel estimate of the density ofB(éQH(y, Idy), 7)/K.7 = 90days, K = 100,
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true parameter value.
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Figure 3.13: Kernel estimate of the density of § (y, Ida). T = 200 (solid line), T = 2000
(dashed line). The vertical straight line indicates the true parameter value.
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only exception being the drift coefficient for the fourth parametrization of the diffusion.
The bias reduction is particularly substantial for the volatility parameter. Together with
the RMSEs and standard errors diminution, this illustrates the consistency property of
[TEs. Things are very similar with the estimation of the boundary, excepted for the last
set of parameters, where the bias on the boundary estimate increases with the sample
size. However, the bias remains well below 1% of the true value.

For a fixed sample size, now, when comparing tables XI.a and XLb, we see the influ-
ence of a variation of the volatility on the estimates. An augmentation of ¢ diminishes
considerably the bias on this parameter. However, it increases the RMSE and standard
error. It has excatly the same effect on the boundary estimation. Finally, we note that
both the bias and the precision of the boundary estimates deteriorate as the time to

maturity increases.

3.6 Concluding remarks: comparison of parametric and
nonparametric exercise boundary estimators

Up to this point, we derived two estimates of the exercise boundary for American call
option contracts. The first one is entirely data-based, and since it does not rely on a
specification of the economy, it can be considered as the true boundary. The second
estimate is parametric in the sense that it requires a parametrization of the economy.
A question that comes naturally is: how far these two boundaries lie from each other?
Plotting the two estimates on a same graph brings a part of the answer. However,
in the spirit of what has been done in the previous section, we can account for the
parameter estimation uncertainty by deriving interval estimates of B(f, 1), for r € T,
T being defined as in section 3.4.4. To this purpose, we used the normal asymptotic
approximation of the distribution of B(é?(yo, 1dy), 7). Using 0% (yo, Idy) as the true
parameter value , we simulated R = 1000 samples (S] : t = 1, ... ,2000){;1 of the
geometric Brownian motion. We next estimated the diffusion coefficients by Indirect
Inference and we obtained R estimates é?”(yo,ldg),y = 1,2, ..., R. In turn, these
estimates were used in the BD algorithm to produce R estimates of the boundary at each

time to maturity, B(ég”(yg, Id), 7),v=1,2,...,R, 7 € T. From these independent
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Figure 3.15: Parametric and nonparametric estimates of the exercise boundary.
simulations of the boundary, we estimated V[B(6¥ (yo, Idy), 7)] by

R R
VB0 (vo, 1), 7)) = 5 3 [BOE w0, 1), 7) ~ % S BOE (o, 1), 1], 7 eT.
y=1

¥=1

We then built the 1 — « interval estimate of B (65 (yo, Idy), 7) whose limits are given by
B(8H (yo, Idy), 7) + cq V[B(8H (yo, Idy), 7)]*/2, T € T, where ¢, satisfies Blea) =1-%,
® being the cumulative distribution function of N(0, 1).

Figure 3.15 displays our results. We see that except for the very long maturities,
the two boundaries cannot be considered as significantly different at level 5%, if we
admit that the normal approximation is appropriate. However, this conclusion should
be reconsidered once we have noticed that the parametric boundary is always above or
on the observation points. The previous section shows that the drift term is the most
seriously biased parameter in the estimation of 3.3. We can try to assess the effects

on the boundary estimation. The estimated drift can be decomposed as ,[LIH(yO, Idy) =
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fg(yo, Idy) +5. where 4 is the sample mean of the dividend series. Since it is an unbiased
estimate of ¢, the bias in [L?(yo, Idz) is equal to the bias in f';‘;[(yo, Ids). To assess its
magnitude when the parameter 4 takes values near é#(yg, Idy), we assumed this value

to be the true one, and we approximated the bias on r by

R .H~y

1 r '(yg, [dg)
100x | =y L2 22 g
* [R Z fg(yo, [dg) J

~=1
which we found equal to -0.0963. Although this value is relatively small, its sign is
negative. When we match this result with those of section 3.2.4, we deduce that we are
underestimating the boundary. It is therefore clear that the option pricing model based
on a geometric Brownian mbtion representation of the S&P100 Index does not properly
describe the observed exercise strategies.

As mentioned in the introduction, the main drawback of the Black-Scholes economy
is the assumption of constant volatility. A better description of the dynamics of the
underlying asset price should incorporate the stylized facts regarding the varying volatil-
ity of stocks prices [see Ghysels, Harvey and Renault (1995)]. However, in the so-called
stochastic volatility models of option pricing, there is no known characterization of the
optimal exercise policy which could be useful for practical purposes. This is why we
believe that a more promising approach would consist in correcting approximate opti-
mal exercise boundaries, such as the one which is derived in a Black-Scholes economy,
using smoothing methods based on observations of exercise decisions. This approach
has recently been suggested by Gouriéroux, Monfort and Tenreiro (1994) for correcting

option pricing formula.



Conclusion générale

Les trois essais qui viennent d’étre présentés apportent des résultats nouveaux, & notre
avis tres intéressants, aussi bien dans le domaine de l'inférence que dans celui de
Pestimation.

En ce qui concerne les tests d’hypothéses, nous avons proposé une méthode nou-
velle composée d’une étape de division de I’échantillon, suivie d’une deuxiéme étape de
combinaison de résultats d’inférences. La conclusion la plus importante que nous pou-
vons avancer est que cette procédure dite de division-combinaison posséde d’excellentes
propriétés. Premiérement, cette méthode est trés générale et peut s’appliquer & la fois
a une grande variété de modeles économétriques et & un grand nombre de problémes
de tests couramment recontrés dans la pratique. Dans certaines situations, les métho-
des habituellement employées limitent la classe de spécifications pouvant &tre retenues
pour le modele. On pense en particulier aux modeles & données de panel dans lesquels
la dépendance temporelle entre les observations est généralement difficile 4 modéliser
et a estimer, du fait du peu d’observations dont on dispose dans la dimension temps.
Notre méthode, puisqu’elle est libre de toufe hypothese sur la nature des dépendances
temporelles, permet de s’affranchir de ces contraintes. Elle est de ce fait robuste & des
erreurs de spécification concernant la forme des corrélations.

Deuxiémement, notre procédure reste dans tous les cas abordés trés simple & mettre
en ceuvre, puisqu’elle fait appel uniquement  des techniques classiques d’inférence, alors
que les modéles considérés possédent des propriétés statistiques qui les rendent difficiles
a manier. Dans les modéles de régression avec erreurs MA par exemple, l’estimation des
parametres d’autocorrélation n’est pas requise et on évite ainsi une étape délicate. De

plus, pour la méme raison, la méthode n'utilise que des distributions standard. Ainsi,
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dans les modeéles AR en particulier, on élimine les calculs et/ou les simulations, parfois
lourds, nécessaires pour dériver des distributions qui changent avec la spécification du
modele et/ou la taille de I’échantillon, auxquels sont soumises les procédures asympto-
tiques.

Troisiemement, les tests que nous proposons possédent de trés bonnes propriétés de
puissance. Nous avons notamment montré que dans la plupart des situations, 1’étape de
combinaison conduit & un gain de puissance. Losrque nous effectuons des comparaisons
avec les procédures les plus employées, nous montrons, dans le contexte d’un modale
MA(1), que notre procédure est admissible. Il existe donc un probleme de test pour
lequel elle est plus puissante que les autres méthodes étudiées. Remarquons également
que notre procédure est fiable, alors que pour des paramétrisations trés plausibles du
modele MA(1), les procédures usuelles enregistrent de trés sévéres distortions de niveau.

Enfin, soulignons que dans le cas des modéles autorégressifs, les résultats théoriques
servant a construire la procédure division-combinaison sont nouveaux et contribuent 3
I’ananlyse des processus de Markov.

Dans le cadre d’un mouvement brownien géométrique, nous appliquons la métho-
de d’inférence indirecte pour estimer les paramétres de tendance et de volatilité du
processus, ainsi qu’une transformation déterministe de ces coefficients. Grace & des
simulations, nous arrivons & établir de fagon détaillée les propriétés statistiques des
estimés lorsque les tailles d’échantillon ne sont pas infinies. Nos résultats montrent
clairement que la méthode s’applique trés bien au modéle que nous avons considéré,
méme lorsque la fonction que nous cherchons & estimer n’a pas de forme analytique
connue. Nous mettons également en evidence les propriétés de convergence que posséde
ce type d’estimateur.

Puisque nous avons inscrit notre étude dans le cadre d’un modéle d’évaluation d’op-
tions ameéricaines, nous sommes capables de tirer des conclusions quant 3 la capacité de
ce modele a fournir une bonne description des données. Nos remarques & ce sujet sont
basées sur I’estimation de la frontiére d’exercice qui découle de la résolution du modéle.
En utilisant les données financiéres dont nous disposons nous obtenons, en appliquant

la méthode d’inférence indirecte, une estimation de cette frontiere. Lorsque nous la
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comparons, en tenant compte de l'incertitude liée a 'estimation des parameétres, & une
frontiere obtenue de fagon non-paramétrique, c’est-a-dire en s’affranchissant de toute
hypothese rattachée au modeéle économique, il assez apparait clairement que ce dernier
est inapte a décrire de fagon satisfaisante le fonctionnement du marché des options
américaines. La démarche par laquelle nous sommes arrivés a ce résultat est tout A fait
originale dans ce domaine de ’application de I’économétrie.

Tout au long de ces trois essais, nous avons eu pour souci premier d’étudier Pestima-
tion et Pinférence dans des modeéles trés fréquemment utilisés en économie. Nous pou-
vons mettre en évidence deux aspects du probleme. Du point de vue de [’inférence,
notons que la préoccupation fut de se doter de méthodes fiables et performantes. En ce
qui concerne l’estimation, nous avons insisté sur le fait d’avoir a notre disposition des
techniques possédant de bonnes propriétés et pouvant s’appliquer a une vaste gamme de
modeles. Lorsque nous considérons ces deux aspects séparément, nous constatons qu’a
cet égard, les procédures présentées dans les trois articles de la these atteignent leurs
objectifs respectifs. Nous pouvons également remarquer que pour les atteindre, chacune
des méthodes fait appel une transformation du modéle original. En ce qui concerne les
tests d’hypothéses et les régions de confiance, la transformation s’effectue en réécrivant
le modeéle original pour des sous-ensembles d’observations, ces derniers étant formés
de diverses facons, selon le modele considéré. Quant a Pestimation, la transformation
consiste a adopter, de manieére plus ou moins arbitraire, un modele auxiliaire 3 partir
duquel est construit le critere servant a dériver 'estimateur. Dans un cas comme dans
Pautre, cette transformation aboutit & une simplification considérable du probléme a
résoudre. Cependant, en dépit de leur gnéralité, les méthodes d’inférence développées
dans la premiére partie ne peuvent pas s’appliquer & la plupart des processus dont la
dynamique est représentée par une équation différentielle stochastique comme celui que
nous avons étudié dans le troisiéme essai. De son c6té, la méthode d’estimation par
inférence indirecte ne fournit pas les outils permettant de dériver des procédures de test
fiables puisque ses propriétés ne sont pas connues en échantillons finis. Nous pouvons
nous demander s’il n’existerait pas une méthode qui permettrait d’associer les aspectsr

positifs de chacune des deux procédures, que nous avons décrits plus haut.
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Il semble que ’on puisse apporter une réponse positive A cette question. Nous
partons du constat que la méthode d’estimation par inférence indirecte est fondée
sur 'observation que le modeéle étudié est simulable, et sur Pexploitation de ce fait.
Nous pouvons décider d’aﬂopter une démarche similaire pour le probleme de tests
d’hypotheses. Ceci nous conduit & considérer la procédure de tests randomisés dont
'idée est la suivante. Supposqns que nous-décidions de tester une hypothése en u-
tilisant une région critique construite de maniére habituelle, c’est-a-dire en trouvant
un point critique a partir de la distribution d’une statistique de test. Comme nous
Pavons déja remarqué, dans la plupart des modeles avec dépendances, de tels points
critiques sont inconnus tant que la taille de ’échantillon n’est pas infinie. La métho-
de de test randomisé consiste & simuler ce point critique. Dufour (1995) développe la
procédure et démontre sa validité sous des conditions trés générales et ses performances
ont été étudiées dans plusieurs contextes par Dufour et Khalaf (1995). Si donc nous
percevons le test d’hypothese comme [’étape suivant I’estimation, et si pour effectuer
cette derniere est utilisée une méthode basée sur des simulations du modéle, comrﬁe Vla
méthode d’inférence indirecte, nous sommes naturellement amenés 3 adopter la procé-
dure de test randomisé pour résoudre les problemes d’inférence dans ce modale. Ainsi,
les simulations qui seront utilisées pour dériver le point critique de la procédure de test
pburront étre les mémes que celles ayant servi i estimer le modéle. Nous aurons donc
intégré dans un méme cadre deux techniques apparemment différentes.

L’unité formée par la réunion de ces deux procédures dans un méme cadre d’analyse
nous semble un peu plus profonde qu’elle peut nous I'apparaitre au premier abord.
En effet, si 'on adhére & cette méthodologie, on accepte de faire reposer ses résultats
d’estimation et d’inférence sur la réalisation d’un certain nombre d’expériences aléa-
toires. Des lors, et contrairement a ce qui se produit lorsqu’on applique plutét des
procédures plus classiques, deux économétres utilisant le méme ensemble de données
peuvent aboutir a des conclusions différentes, ce qui dans le cas des tests d’hypothéses,
signifie que les conclusions sont opposées. En dépit de sa validité et de ses bonnes
propriétés, cette caractéristique de la méthode peut pousser certains a lui préférer des

procédures plus habituelles, bien que soumises & un certain nombre d’approximations.



133

La seule condition d’applicabilité de la procédure est la possibilité de simuler le
modele. On voit par conséquent que la classe de modéles auxquels elle peut s’appliquer
est extrémement large. La méthode est donc particulidrement bien adaptée aux modeles
pour lesquels il est difficile ou impossible d’établir la vraisemblance ou encore de dériver
expression des moments. Son avantage est que tout en fournissant des estimateurs
performants, elle permet de faire de I’inférence sans avoir recours 3 des approximations
asymptotiques, et par 13 obtenir des résultats fiables. Au-deld de tous ces avantages
comparatifs, la méthode basée sur des simualtions est pour le moment la seule qui

permette de résoudre des problémes jusque 13 insolubles.
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