
Université de Montréal

Modeling High-Dimensional Audio Sequences with Recurrent Neural
Networks

par Nicolas Boulanger-Lewandowski

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Avril, 2014

c© Nicolas Boulanger-Lewandowski, 2014.

Résumé

Cette thèse étudie des modèles de séquences de haute dimension basés sur des

réseaux de neurones récurrents (RNN) et leur application à la musique et à la

parole. Bien qu’en principe les RNN puissent représenter les dépendances à long

terme et la dynamique temporelle complexe propres aux séquences d’intérêt comme

la vidéo, l’audio et la langue naturelle, ceux-ci n’ont pas été utilisés à leur plein

potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la diffi-

culté de les entrâıner efficacement par descente de gradient. Récemment, l’applica-

tion fructueuse de l’optimisation Hessian-free et d’autres techniques d’entrâınement

avancées ont entrâıné la recrudescence de leur utilisation dans plusieurs systèmes

de l’état de l’art. Le travail de cette thèse prend part à ce développement.

L’idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une

description probabiliste de séquences de symboles, c’est-à-dire une information de

haut niveau associée aux signaux observés, qui en retour pourra servir d’à priori

pour améliorer la précision de la recherche d’information. Par exemple, en mo-

délisant l’évolution de groupes de notes dans la musique polyphonique, d’accords

dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de

sources individuelles dans un mélange audio, nous pouvons améliorer significati-

vement les méthodes de transcription polyphonique, de reconnaissance d’accords,

de reconnaissance de la parole et de séparation de sources audio respectivement.

L’application pratique de nos modèles à ces tâches est détaillée dans les quatre

derniers articles présentés dans cette thèse.

Dans le premier article, nous remplaçons la couche de sortie d’un RNN par des

machines de Boltzmann restreintes conditionnelles pour décrire des distributions

de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous éva-

luons et proposons des méthodes avancées pour entrâıner les RNN. Dans les quatre

derniers articles, nous examinons différentes façons de combiner nos modèles sym-

boliques à des réseaux profonds et à la factorisation matricielle non-négative, no-

tamment par des produits d’experts, des architectures entrée/sortie et des cadres

génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons

également des méthodes d’inférence efficaces pour ces modèles, telles la recherche

vorace chronologique, la recherche en faisceau à haute dimension, la recherche en

faisceau élagué et la descente de gradient. Finalement, nous abordons les questions

de l’étiquette biaisée, du mâıtre imposant, du lissage temporel, de la régularisation

et du pré-entrâınement.

Mots-clés: apprentissage automatique, réseaux de neurones récurrents, recherche

d’information musicale, modèles séquentiels, transcription polyphonique, reconnais-

sance de la parole, factorisation matricielle non-négative.

iii

Summary

This thesis studies models of high-dimensional sequences based on recurrent

neural networks (RNNs) and their application to music and speech. While in prin-

ciple RNNs can represent the long-term dependencies and complex temporal dy-

namics present in real-world sequences such as video, audio and natural language,

they have not been used to their full potential since their introduction by Rumel-

hart et al. (1986a) due to the difficulty to train them efficiently by gradient-based

optimization. In recent years, the successful application of Hessian-free optimiza-

tion and other advanced training techniques motivated an increase of their use in

many state-of-the-art systems. The work of this thesis is part of this development.

The main idea is to exploit the power of RNNs to learn a probabilistic descrip-

tion of sequences of symbols, i.e. high-level information associated with observed

signals, that in turn can be used as a prior to improve the accuracy of information

retrieval. For example, by modeling the evolution of note patterns in polyphonic

music, chords in a harmonic progression, phones in a spoken utterance, or indi-

vidual sources in an audio mixture, we can improve significantly the accuracy of

polyphonic transcription, chord recognition, speech recognition and audio source

separation respectively. The practical application of our models to these tasks is

detailed in the last four articles presented in this thesis.

In the first article, we replace the output layer of an RNN with conditional

restricted Boltzmann machines to describe much richer multimodal output dis-

tributions. In the second article, we review and develop advanced techniques to

train RNNs. In the last four articles, we explore various ways to combine our

symbolic models with deep networks and non-negative matrix factorization algo-

rithms, namely using products of experts, input/output architectures, and gen-

erative frameworks that generalize hidden Markov models. We also propose and

analyze efficient inference procedures for those models, such as greedy chronologi-

cal search, high-dimensional beam search, dynamic programming-like pruned beam

search and gradient descent. Finally, we explore issues such as label bias, teacher

forcing, temporal smoothing, regularization and pre-training.

Keywords: machine learning, recurrent neural networks, music information re-

trieval, sequential models, polyphonic transcription, speech recognition, non-negative

matrix factorization.

v

Contents

Résumé . ii

Summary . iv

Contents . vi

List of Figures . x

List of Tables . xi

List of Abbreviations . xii

Acknowledgments . xiv

1 Introduction . 1
1.1 Modeling high-dimensional sequences 1
1.2 Generalized language models . 2
1.3 Applications . 4

1.3.1 Polyphonic music generation and related applications 4
1.3.2 Polyphonic music transcription 5
1.3.3 Audio chord recognition . 6
1.3.4 Speech recognition . 7
1.3.5 Audio source separation . 8

1.4 Overview . 9

2 Background . 11
2.1 Density estimators . 11

2.1.1 Restricted Boltzmann machines 11
2.1.2 Neural autoregressive distribution estimator 13

2.2 Sequential models . 15
2.2.1 Markov chains . 16
2.2.2 Hidden Markov models . 16
2.2.3 Dynamic Bayesian networks 17
2.2.4 Maximum entropy Markov models 18
2.2.5 Random fields . 19

2.2.6 Conditional random fields 19
2.2.7 Recurrent neural networks 20
2.2.8 Hierarchical models . 23
2.2.9 Temporal RBMs . 24

2.3 Non-negative matrix factorization 25
2.4 Deep neural networks . 29
2.5 Hessian-free optimization . 32

3 Prologue to First Article . 33
3.1 Article Details . 33
3.2 Context . 33
3.3 Contributions . 34
3.4 Recent Developments . 34

4 Modeling Temporal Dependencies in High-Dimensional Sequences:
Application to Polyphonic Music Generation and Transcription 36
4.1 Introduction . 36
4.2 Restricted Boltzmann machines . 39
4.3 The RTRBM . 41
4.4 The RNN-RBM . 43

4.4.1 Initialization strategies . 44
4.4.2 Details of the BPTT algorithm 45

4.5 Baseline experiments . 46
4.6 Modeling sequences of polyphonic music 47
4.7 Polyphonic transcription . 51
4.8 Conclusions . 52

5 Prologue to Second Article . 54
5.1 Article Details . 54
5.2 Context . 54
5.3 Contributions . 54

6 Advances in Optimizing Recurrent Networks 56
6.1 Introduction . 56
6.2 Learning Long-Term Dependencies and the Optimization Difficulty

with Deep Learning . 58
6.3 Advances in Training Recurrent Networks 60

6.3.1 Clipped Gradient . 60
6.3.2 Spanning Longer Time Ranges with Leaky Integration . . . 60
6.3.3 Combining Recurrent Nets with a Powerful Output Proba-

bility Model . 61

vii

6.3.4 Sparser Gradients via Sparse Output Regularization and Rec-
tified Outputs . 62

6.3.5 Simplified Nesterov Momentum 62
6.4 Experiments . 64

6.4.1 Music Data . 64
6.4.2 Text Data . 65

6.5 Conclusions . 66

7 Prologue to Third Article . 69
7.1 Article Details . 69
7.2 Context . 69
7.3 Contributions . 69
7.4 Recent Developments . 70

8 High-dimensional sequence transduction 71
8.1 Introduction . 71
8.2 Proposed architecture . 73

8.2.1 Restricted Boltzmann machines 73
8.2.2 NADE . 73
8.2.3 The input/output RNN-RBM 74

8.3 Inference . 76
8.4 Experiments . 79
8.5 Conclusions . 81

9 Prologue to Fourth Article . 84
9.1 Article Details . 84
9.2 Context . 84
9.3 Contributions . 85
9.4 Recent Developments . 85

10 Audio Chord Recognition with Recurrent Neural Networks . . . 86
10.1 Introduction . 86
10.2 Learning deep audio features . 88

10.2.1 Overview . 88
10.2.2 Deep belief networks . 88
10.2.3 Exploiting prior information 89
10.2.4 Context . 90

10.3 Recurrent neural networks . 91
10.3.1 Definition . 91
10.3.2 Training . 92

10.4 Inference . 93
10.4.1 Viterbi decoding . 93

viii

10.4.2 Beam search . 94
10.4.3 Dynamic programming . 95

10.5 Experiments . 96
10.5.1 Setup . 96
10.5.2 Results . 97

10.6 Conclusion . 99

11 Prologue to Fifth Article . 100
11.1 Article Details . 100
11.2 Context . 100
11.3 Contributions . 101
11.4 Recent Developments . 101

12 Phone sequence modeling with recurrent neural networks 102
12.1 Introduction . 102
12.2 Recurrent neural networks . 104
12.3 Phone sequence modeling . 105
12.4 Decoding . 108
12.5 Optimal alignment . 109
12.6 Experiments . 111
12.7 Conclusions . 113

13 Prologue to Sixth Article . 114
13.1 Article Details . 114
13.2 Context . 114
13.3 Contributions . 115
13.4 Recent Developments . 115

14 Exploiting long-term temporal dependencies in NMF using re-
current neural networks with application to source separation . 116
14.1 Introduction . 116
14.2 Non-negative matrix factorization 117
14.3 Recurrent neural networks . 119
14.4 Temporally constrained NMF . 121
14.5 Evaluation . 123
14.6 Results . 124
14.7 Conclusion . 125

15 Conclusions . 127
15.1 Summary of contributions . 127
15.2 Future directions . 128

References . 130

ix

List of Figures

2.1 Graphical structure of an RNN . 21
2.2 Graphical structures of the CRBM and the TRBM 24
2.3 Illustration of the sparse NMF decomposition of an excerpt of Drigo’s

Serenade. 28

4.1 Mean-field samples of an RBM trained on polyphonic music data. . 40
4.2 Graphical structures of the RTRBM and the RNN-RBM 42
4.3 Receptive fields of an RNN-RBM trained on video data 46
4.4 Effect of pre-training on the RNN-RBM 51
4.5 Frame-level transcription accuracy with a symbolic prior 53

8.1 Graphical structure of the I/O RNN-RBM 75
8.2 Robustness to noise of RNN models on the JSB chorales dataset . . 80
8.3 Demonstration of temporal smoothing during the transcription of

Bach’s chorale Es ist genug (BWV 60.5) 83

10.1 Pre-processing pipeline to learn deep audio features with intermedi-
ate targets . 88

10.2 Graphical structure of an I/O RNN with temporal smoothing con-
nections. 91

10.3 WAOR obtained on the MIREX dataset with the beam search and
dynamic programming algorithms as a function of the (effective)
beam width w. 99

14.1 Graphical structure of the RNN-RBM 120
14.2 Toy example: separation of sawtooth wave sources of different am-

plitudes using supervised NMF with either no prior or with an RNN
with the cosine distance cost . 125

14.3 Source separation performance trade-off on the MIR-1K dataset with
supervised NMF by modulating the weight α of the temporal model 126

List of Tables

4.1 Log-likelihood and expected accuracy for various musical models in
the symbolic prediction task. 49

6.1 Log-likelihood and expected accuracy for various RNN models in the
symbolic music prediction task . 67

6.2 Entropy and perplexity for various RNN models in the next character
and next word prediction task . 68

8.1 Frame-level transcription accuracy obtained on four datasets by the
I/O RNN-NADE model. 79

8.2 Frame-level accuracy of existing transcription methods on the Po-
liner and Ellis (2007) dataset. 81

10.1 Cross-validation accuracies obtained on the MIREX dataset using
DBN and RNN based methods . 98

10.2 Chord recognition performance (training error) of different methods
pre-trained on the MIREX dataset. 98

12.1 Development and test phone accuracies on the TIMIT dataset using
different combinations of acoustic and phonetic models 112

12.2 Development phone accuracies on the Switchboard dataset using dif-
ferent combinations of acoustic and phonetic models 112

12.3 Test word error rates obtained on the Switchboard dataset using
different phonetic models . 113

14.1 Audio source separation performance on the MIR-1K test set ob-
tained via singer-dependent NMF with different temporal priors . . 126

List of Abbreviations

ASR Automatic speech recognition

BPTT Backpropagation through time

BRNN Bidirectional recurrent neural network

CD Contrastive divergence

CE Cross entropy

CG Conjugate gradient

CRBM Conditional restricted Boltzmann machine

CRF Conditional random field

DBN Deep belief network

DBN Dynamic Bayesian network

DNN Deep neural network

DP Dynamic programming

EM Expectation-maximization

ESN Echo state network

GMM Gaussian mixture model

HF Hessian-free

HMM Hidden Markov model

I/O Input/output

KL Kullback-Leibler divergence

LR Logistic regression

LSTM Long short term memory

MEMM Maximum entropy Markov model

MFFE Multiple fundamental frequency estimation

MIR Music information retrieval

MLP Multilayer perceptron

MRF Markov random field

List of Abbreviations

MSE Mean squared error

NADE Neural autoregressive distribution estimator

NAG Nesterov accelerated gradient

NLL Negative log-likelihood

NMF Non-negative matrix factorization

OR Overlap ratio

PCA Principal component analysis

RBM Restricted Boltzmann machine

RTRBM Recurrent temporal restricted Boltzmann machine

RNN Recurrent neural network

SAR Sources to artifacts ratio

SDR Signal to distortion ratio

SGD Stochastic gradient descent

SIR Source to interference ratio

STFT Short-term Fourier transform

SVM Support vector machine

TRBM Temporal restricted Boltzmann machine

WAOR Weighted average overlap ratio

xiii

Acknowledgments

I extend my sincere gratitude to my thesis co-advisors Yoshua Bengio and Pas-

cal Vincent, professors at the department of Computer Science and Operations

Research. In the last few years, I could benefit from their vast scientific knowledge,

expert guidance and generous availability that allowed me to carry out a captivat-

ing project. I would also like to thank all members of the LISA and GAMME labs

who provided a stimulating and creative environment for research.

Thanks to Frédéric Bastien for his constant availability and technical support,

and to Theano developers for making this very useful software library a reality. In

particular, thanks to Razvan Pascanu and Ian Goodfellow for their work on the

scan op and the R-operator, without whom this work would not have been possible.

I am indebted to Douglas Eck, now Research Scientist at Google, for getting

me first interested in machine learning and music information retrieval, and acting

as a mentor at the beginning of my PhD and during my internship at Google; to

Jasha Droppo and the people at Microsoft Research with whom I collaborated for

providing me with the opportunity to apply some of my ideas to speech recognition;

and to Gautham Mysore and Matthew Hoffman at Adobe Research for allowing me

to actualize some long-standing ideas related to non-negative matrix factorization

and source separation.

I would also like to thank NSERC for awarding me the prestigious Alexander

Graham Bell Canada Doctoral Scholarship, and the Canada Research Chairs for

funding. Their support allowed me to spend time on my project uninterrupted and

attend conferences across the world.

I am thankful to my master’s thesis advisor Alain Rochefort, professor at the

Engineering Physics department of Polytechnique Montréal, who showed me the

ropes of academic research and scientific paper writing.

Finally, I am grateful to my parents Solange and Jacques for introducing me

to the natural sciences at a young age and for encouraging me to pursue higher

education, and to whom I attribute much of my success in this adventure.

1 Introduction

This thesis focuses on advancing the state of the art in sequence modeling, and

thereby improving several applications in the area of polyphonic music and speech,

namely polyphonic music generation and transcription, audio chord recognition,

speech recognition and audio source separation. Modeling real-world sequences

often involves capturing long-term dependencies between the high-dimensional ob-

jects that compose such sequences. This problem is in general too difficult to tackle

by manually engineering rules to process the data in each possible scenario and we

instead follow a machine learning approach.

1.1 Modeling high-dimensional sequences

Modeling sequences is an important area of machine learning since many natu-

rally occurring phenomena such as music, speech, or human motion are inherently

sequential. This section outlines some properties of such sequences that are partic-

ularly challenging to model.

Complex sequences are non-local in that the impact of a factor localized in

time can be delayed by an arbitrarily long time-lag. For example, musical patterns

or themes appearing at the beginning of a piece are often repeated towards the

end; similarly, the meaning of a particular sentence in a text often depends on

references introduced much earlier. Recurrent neural networks (RNNs) (Rumelhart

et al., 1986a) incorporate an internal memory that can, in principle, summarize

the entire sequence history. This property makes them well suited to represent

long-term dependencies, but it is nevertheless a challenge to train them efficiently

by gradient-based optimization (Bengio et al., 1994). It was recently shown that

several training strategies could help reduce these difficulties, motivating their use

1.2 Generalized language models

as sequential models in this thesis. RNNs can also be used to generate realistic

sequences in different styles (Sutskever et al., 2011; Graves, 2013).

Many sequences of interest are over high-dimensional objects, such as images

in video, short-term spectra in audio music, tuples of notes in musical scores, or

words in text. In these cases, predicting the value at the next time step given

the observed values at the previous time steps is complicated by the fact that the

conditional distribution of that value given the previous time steps is very often

multimodal. For the case of polyphonic music, it is obvious that the occurrence of

a particular note at a particular time modifies considerably the probability with

which other notes may occur at the same time. In other words, notes appear

together in correlated patterns that cannot be conveniently described by a typi-

cal RNN architecture designed for the multi-label classification task, for example,

because simply predicting the expected value of each unit at the next time step

would produce an incoherent blend of the different modes. The other extreme of

enumerating all configurations of the variable to predict in a multiclass classifica-

tion framework would be very expensive. We would strongly prefer our models of

such sequences to predict realistic multimodal conditional distributions of the next

time step. This motivates using energy-based models which allow us to express the

negative log-likelihood of a given configuration by an arbitrary energy function,

among which the restricted Boltzmann machine (RBM) (Smolensky, 1986) has be-

come notorious. One of our contributions will be to develop an RNN variant that

employs multimodal conditional RBM distributions (Chapters 3 and 4).

In the practical applications tackled in this thesis, it is often useful to im-

pose high-level constraints on the output sequence, in the same way that natural

language models encourage the coherence of a transcribed segment during speech

recognition (Rabiner, 1989). Naturally, our sequence models will be ideal candi-

dates to describe such constraints, as outlined in the next section.

1.2 Generalized language models

Many applications involve the transformation, or transduction, of an input se-

quence into an output sequence. This output sequence can be a string of high-

dimensional symbols that provide an abstract description of the observed signal,

2

1.2 Generalized language models

such as chord labels in polyphonic music or words in speech. Those annotations

themselves often exhibit recurrent patterns that adhere to certain probabilistic

rules. For example, it is well known that chord progressions favor smooth transi-

tions, that musical scores follow harmonic and rhythmic principles, that words in

text satisfy grammatical and semantic constraints, and that individual sounds in

a mixture obey temporal dynamics specific to each source. We refer to these high-

level descriptions as generalized language models or symbolic models. Note that

symbolic models do not forcibly impose any rigid constraints; their probabilistic

nature rather allows for the occasional exception to the rule.

Humans commonly interpret music and speech by giving importance to what

they expect to hear rather than exclusively to what is present in the actual sig-

nal. Unfortunately, many computer algorithms still rely exclusively on the audio

signal or employ only rudimentary temporal constraints. It has long been known

that temporal priors can improve purely auditive approaches to speech recognition

(Schuster, 1999b), polyphonic transcription (Cemgil, 2004; Cemgil et al., 2006;

Raphael, 2002), chord recognition (de Haas et al., 2012) and audio source separa-

tion (Virtanen, 2007). However, combining these two sources of information is not

trivial, with the result that temporal smoothing with an HMM is often the only

post-processing involved in the state of the art (e.g. Nam et al., 2011; Dahl et al.,

2013).

In this thesis, we replace the tedious process of handcrafting symbolic rules

with powerful sequential models that can be learned directly from training data.

In addition to being more readily adaptable to the styles of different corpora, this

approach can also exploit the vastly available unlabeled data in either acoustic or

symbolic form to refine each model independently. This will ultimately allow us to

simulate the synergy between two regions of the brain (e.g. a sensory region reacting

to external stimuli and an analytical region focusing on high-level interpretation

would correspond to the acoustic and symbolic models respectively) while learning

to process sequential events.

3

1.3 Applications

1.3 Applications

We shall now present the set of music and speech related applications of sequence

modeling that we will consider improving and that are the focus of the articles

presented in this thesis.

1.3.1 Polyphonic music generation and related applications

Learning realistic probabilistic models of polyphonic music has many applica-

tions, the most obvious one being to automatically generate music (Mozer, 1994).

Those models can be used to morph the style of background music in video games

depending on the context (Wooller and Brown, 2005), or form the backbone of

an automatic accompaniment system or melody improviser for aspiring musicians

(Davies, 2007). By training different models on datasets having distinct character-

istics such as their genre, it is possible to build a Bayes classifier to predict musical

genre by comparing the likelihood of unseen pieces according to each model. In-

ferring the tonality of a piece is also possible by finding the transposition that

maximizes its likelihood under a model trained on fixed tonality pieces (Aljanaki,

2011; Krumhansl and Kessler, 1982). Finally, polyphonic music models can improve

music information retrieval (MIR) algorithms such as polyphonic transcription or

onset detection by serving as a musicological language prior describing the missing

information (Cemgil, 2004).

In this work, we consider sequences of symbolic music, i.e. represented by the

explicit timing, pitch, velocity and instrumental information typically contained in

a score or a MIDI file rather than more complex, acoustically rich audio signals.

Musical models mostly focus on the basic components of western music, harmony

and rhythm, and are trained to predict the pattern of notes (simultaneities) to be

played together in the next time interval, given the previous ones. Two elements

characterize the qualitative performance of a model: temporal dependencies and

chord conditional distributions. While most existing models output only mono-

phonic notes along with predefined chords or other reduced-dimensionality repre-

sentation (e.g. Mozer, 1994; Eck and Schmidhuber, 2002; Paiement et al., 2009), we

aim to model unconstrained polyphonic music in the piano-roll representation, i.e.

as a binary matrix specifying precisely which notes occur at each time step. Despite

ignoring dynamics and other score annotations, this task represents a well-defined

4

1.3 Applications

framework to improve machine learning algorithms and is directly applicable to

polyphonic transcription.

1.3.2 Polyphonic music transcription

The objective of polyphonic transcription, or multiple fundamental frequency

estimation (MFFE), is to determine the underlying notes of a polyphonic audio

signal without access to its score. For some authors, MFFE strictly involves rec-

ognizing audible note pitches at regular intervals (usually 10 ms) and polyphonic

transcription additionally requires positioning correctly the note onsets and off-

sets. In this thesis, we employ both terms indiscriminately and report the common

frame-level evaluation metrics of precision, recall, F-measure and accuracy (Bay

et al., 2009):

Precision =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FP (t)
(1.1)

Recall =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FN(t)
(1.2)

F-measure =
2× precision× recall

precision + recall
(1.3)

Accuracy =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FP (t) + FN(t)
(1.4)

where TP (t), FP (t), FN(t) denote respectively the number of true positives, false

positves and false negatives at time step t.

Polyphonic transcription is a particular case of the audio source separation

problem that becomes very hard when the polyphony (number of simultaneous

notes) is higher than 4; state-of-the-art systems obtain around 65% accuracy in that

case. Most existing transcription algorithms are frame-based and rely exclusively on

the audio signal, even though some approaches employ rudimentary musicological

constraints (e.g. Li and Wang, 2007). Generally, transcription algorithms primarily

follow either a signal processing or a machine learning approach.

Signal processing approaches are usually based on the short term Fourier

transform (STFT) with sliding analysis windows of length ' 100 ms and zero-

padded to 2–8 times their original size, that yield a so-called spectrogram, or

5

1.3 Applications

time-frequency representation. At each time step, a number of heuristics are per-

formed such as peak detection, peak classification, noise level estimation, iterative

sinusoidal peak elimination (Abe and Smith, 2005), and evaluation of polyphonic

salience functions, in order to form a set of pitch candidates of which all combina-

tions are ranked via handcrafted multi-criteria score functions (Yeh, 2008). Overall,

very few hyperparameters are tuned to instrumental sound corpora.

Machine learning approaches are based on training acoustic models in a su-

pervised way on datasets of musical pieces and their score. Those acoustic models

usually feed columns of the magnitude spectrogram to a multi-label classifier like

the support vector machine (SVM) (Poliner and Ellis, 2007, 2005), a multilayer

perceptron (MLP) (Marolt, 2004), or a non-negative matrix factorization (NMF)

feature extractor (Plumbley et al., 2006; Abdallah and Plumbley, 2006; Smaragdis

and Brown, 2003; Lee et al., 2010; Cont, 2006; Dessein et al., 2010). Learning al-

gorithms are naturally more adaptable to new domain distributions (e.g. different

instruments or styles) than handcrafted heuristics, provided that labeled data is

available in the new domain. This last condition is unfortunately difficult to fulfill

in practice due to the high cost of producing expert annotations, with the result

that most available data is synthesized or obtained from automated means (Yeh

et al., 2007). Furthermore, while learning-based transcription usually performs ex-

tremely well inside a single domain (Marolt, 2004), generalization to new variations

as small as a different physical instrument of the same type is notoriously poor (Po-

liner and Ellis, 2007). Connectionist approaches also suffer from catastrophic for-

getting whenever training examples from all domains are not continuously available

during training (Goodfellow et al., 2014). Due to the large quantity of unlabeled

data, it would be a tremendous advantage for new algorithms to be developed and

evaluated in the self-taught framework (Raina et al., 2007), i.e. under both the

semi-supervised and the transfer learning paradigms.

1.3.3 Audio chord recognition

Automatic recognition of chords from audio music is another active area of re-

search in MIR (Mauch, 2010; Harte, 2010). The objective of chord recognition is

to produce a time-aligned sequence of chord labels taken from predefined dictio-

naries C that describe the harmonic structure of the piece. Popular dictionaries

6

1.3 Applications

include the major/minor task where inversions and deviations from the basic triads

are neglected, and the full chord task that comprises 11 distinct chord types:

Cmajmin ≡ {N} ∪ {maj, min} × S

Cfull ≡ {N} ∪ {maj, min, maj/3, maj/5, maj6, maj7, min7, 7, dim, aug} × S

where S ≡ {A, A#, B, C, C#, D, D#, E, F, F#, G, G#} represents the 12 pitch

classes and ‘N’ is the no-chord label (Harte, 2010; Mauch, 2010). This allows us

to evaluate chord recognition at different precision levels. Evaluation at the ma-

jor/minor level is based on chord overlap ratio (OR) and weighted average overlap

ratio (WAOR), standard denominations for the average frame-level accuracy (Ni

et al., 2012; Mauch and Dixon, 2010). At the full chord level, other metrics can be

defined depending on whether we require an exact match between the target and

the prediction, we allow inversions or we compare at the dyad level (Mauch and

Dixon, 2010).

Audio chord recognition is related to polyphonic transcription in that estimat-

ing active pitches is a reasonable prerequisite; however in chord recognition, some

octave errors, harmonic errors, missed notes, insertions or substitutions are toler-

ated. Chord annotations also tend to be more stable in time, i.e. they are usually

not affected by transients and temporary spurious notes, which makes temporal

models even more important in this context.

Many chord recognition systems are based on harmonic pitch class profiles

(HPCP) (Fujishima, 1999), or chroma features, that compress a truncated spectrum

into an octave-independent histogram of 12 bins (or a multiple if more resolution

is desired) that describe the relative intensity of each of the 12 pitch classes. The

chromagram, a matrix of time-dependent chroma features, is a useful representation

for tonality and harmony based classification.

1.3.4 Speech recognition

Automatic speech recognition (ASR) is a widely studied problem in computer

science that involves extracting phonemes, words or higher-level meaning from

speech audio (Baker et al., 2009). This difficult problem is complicated by a

strong speaker dependence on pronunciation, large vocabulary sizes, continuous

and spontaneous speech, noisy conditions and application-specific constraints. In

7

1.3 Applications

many practical applications, both accuracy and efficiency of decoding matter. Con-

trarily to polyphonic transcription or chord recognition, the output sequences need

not necessarily be aligned in time; a concatenated string of contiguous segments

often suffices.

Traditional models of ASR are based on hidden Markov models (HMMs) with

Gaussian mixture model (GMM) emissions. Recently, deep learning methods have

been very successful at replacing the GMM acoustic model in state-of-the-art sys-

tems (Dahl et al., 2012, 2013; Graves et al., 2013). It is important for learned

acoustic models to take into account the context dependency of phonemes, i.e. the

fact that the same phoneme can have drastically different realizations depending

on the surrounding ones. This usually requires feeding large input context windows

to a frame-level classifier and, with simple phonetic models like an HMM, defining

distinct auxiliary phonemes, or phones, for each possible relevant context.

1.3.5 Audio source separation

Source separation is the problem of extracting individual channels, or sources,

from a mixture signal. This problem naturally occurs in different modalities where

the component signals combine additively such as images of unoccluded or transpar-

ent objects, electromagnetic waves, and more commonly music and speech audio,

especially for denoising or to isolate specific parts (e.g. the cocktail party problem)

(Benaroya et al., 2006).

Non-negative matrix factorization (NMF) (Lee and Seung, 1999) of the mixture

spectrogram is an effective method for source separation because it can discover

a basis of recurring interpretable patterns for each source that combine additively

to reconstitute the observations. NMF assumes that each observed spectrogram

frame is representable as a non-negative linear combination of the isolated sources,

an approximation that depends on the interference between overlapping harmonic

partials in a polyphonic mix but that is nevertheless reasonable (Yeh and Röbel,

2009). It also requires that basis spectra be linearly independent and appear in

all possible combinations in the data. In addition to purely minimizing the NMF

reconstruction error, it is useful to exploit prior knowledge about:

1. the basis spectra, such as sparsity (Cont, 2006), harmonicity (Vincent

et al., 2010) or relevance with respect to a discriminative criterion (Boulanger-

8

1.4 Overview

Lewandowski et al., 2012a); and

2. their time-varying encodings, such as continuity (Virtanen, 2007) or other

temporal behavior (e.g. Nam et al., 2012; Ozerov et al., 2009; Nakano et al.,

2010; Mohammadiha and Leijon, 2013; Mysore et al., 2010).

In contrast to blind source separation (Cardoso, 1998) that uses very little prior

knowledge about the sources, the supervised and semi-supervised NMF paradigms

allow the use of training data to model those properties and hence facilitate the

separation.

1.4 Overview

The remainder of this thesis is organized as follows.

In Chapter 2, we provide some background on the machine learning methods

used in the rest of the thesis. We cover topics such as density estimation, sequential

models, non-negative matrix factorization, deep learning and optimization.

In the first article (Chapters 3 and 4), we introduce the RNN-RBM, a model

that replaces the output layer of an RNN with conditional restricted Boltzmann

machines, and we perform extensive experiments on symbolic sequences of poly-

phonic music.

In the second article (Chapters 5 and 6), we review, analyze and combine ad-

vanced techniques to train RNNs, including a novel formulation of Nesterov mo-

mentum. We carry out experiments on symbolic polyphonic music and text data.

In the third article (Chapters 7 and 8), we introduce the input/output RNN-

RBM that merges a symbolic and acoustic model under a joint training objective,

and we devise an efficient inference algorithm called high-dimensional beam search.

We apply our method to polyphonic music transcription.

In the fourth article (Chapters 9 and 10), we develop an RNN-based system

for audio chord recognition. We propose a two-pass fine-tuning method to exploit

the information contained in chords labels in the form of intermediate chromagram

targets and we develop a dynamic programming-like beam search pruning technique

that improves efficiency and accuracy of inference.

9

1.4 Overview

In the fifth article (Chapters 11 and 12), we introduce a hybrid architecture

that generalizes the HMM to combine an RNN symbolic model with a frame-

level acoustic classifier in a way that circumvents the label bias problem. We

derive training, inference and alignment procedures and we study the role of phone

sequence modeling in speech recognition.

In the sixth article (Chapters 13 and 14), we introduce a generative architecture

that can reconstruct audio signals by incorporating an RNN prior on the NMF

activities. We apply our method to separate voice and accompaniment tracks in a

dataset of karaoke recordings (MIR-1K).

10

2 Background

In this chapter, we briefly present the machine learning methods that the rest

of the thesis builds upon. We cover topics such as density estimation (Section 2.1),

sequential models (Section 2.2), non-negative matrix factorization (Section 2.3),

deep learning (Section 2.4) and optimization (Section 2.5).

2.1 Density estimators

In this section, we review two important generic density estimators: the re-

stricted Boltzmann machine (RBM) and its tractable variant NADE. Those mod-

els allow to estimate the joint probability distribution, or multivariate density, of

vectors v of size N observed in the training data. Those vectors are usually binary,

i.e. v ∈ {0, 1}N , but extensions of both models dealing with real-valued vectors

v ∈ RN are also described.

2.1.1 Restricted Boltzmann machines

An RBM is an energy-based model where the joint probability of a given simul-

taneous configuration of visible vector v (inputs) and hidden vector h is:

P (v, h) = exp(−bT
v v − bT

hh− hTWv)/Z (2.1)

where bv, bh and W are the parameters of the model and Z is a normalization factor

called the partition function. The classic RBM involves binary hidden units hi and

binary visible units vj, but there are many other options in this regard (Welling

et al., 2005). Note that computing Z is usually intractable. When the value of the

vector v is given, the hidden units hi are conditionally independent of one another,

2.1 Density estimators

and vice-versa:

P (hi = 1|v) = σ(bh +Wv)i (2.2)

P (vj = 1|h) = σ(bv +WTh)j (2.3)

where σ(x) ≡ (1 + e−x)−1 is the element-wise logistic sigmoid function. The

marginalized probability of v is related to the free-energy F (v) by P (v) ≡ e−F (v)/Z:

F (v) = −bT
v v −

∑
i

log(1 + ebh+Wv)i (2.4)

Inference in RBMs consists of sampling the hi given v (or the vj given h) according

to their conditional Bernoulli distribution (equation 2.2). Sampling v from the

RBM can be performed efficiently by block Gibbs sampling, i.e. by performing k

alternating steps of sampling h|v and v|h. Computing the gradient of the negative

log-likelihood given a dataset of inputs {v(l)} involves two opposing terms, called

the positive and negative phase:

∂(− logP (v(l)))

∂Θ
=
∂F (v(l))

∂Θ
− ∂(− logZ)

∂Θ
(2.5)

where Θ ≡ {bv, bh,W} are the model parameters. Although Z is an intractable

sum over all possible v configurations, its gradient can be estimated by a single

sample v(l)∗ obtained from a k-step Gibbs chain starting at v(l):

∂(− logP (v(l)))

∂Θ
' ∂F (v(l))

∂Θ
− ∂F (v(l)∗)

∂Θ
. (2.6)

The resulting algorithm, dubbed k-step “contrastive divergence” (CDk) (Hinton,

2002), works surprisingly well with chain lengths of k = 1 but higher k result in

better log-likelihood, at the expense of more computation (proportional to k).

Gaussian RBMs

Instead of modeling the inputs as bits or as bit probabilities (which works

well for discrete inputs such as the musical scores or the pixel intensities of our

bouncing balls video), we can model them as Gaussian values, conditioned on the

hidden units’ configurations. The simplest way to achieve this is to use a Gaussian

12

2.1 Density estimators

RBM (Welling et al., 2005), which simply adds a quadratic penalty term ||v||2/2
to the energy function. Equations (2.3) and (2.4) become:

P ′(v|h) = N (v; bv +WTh, I) (2.7)

F ′(v) = −||v||2/2 + F (v) (2.8)

where N (v;µ,Σ) is the density of v under the multivariate normal distribution of

mean µ and variance Σ.

2.1.2 Neural autoregressive distribution estimator

The neural autoregressive distribution estimator (NADE) (Larochelle and Mur-

ray, 2011) is a tractable model inspired by the RBM and specializing (with tying

constraints) an earlier model for the joint distribution of high-dimensional vari-

ables (Bengio and Bengio, 2000). NADE is similar to a fully visible sigmoid belief

network in that the conditional probability distribution of a visible unit vj is ex-

pressed as a nonlinear function of the vector v<j ≡ {vk,∀k < j}:

P (vj = 1|v<j) = σ(Vj,:hj + (bv)j) (2.9)

hj = σ(W:,<jv<j + bh) (2.10)

where σ(x) ≡ (1 + e−x)−1 is the logistic sigmoid function, and V is an additional

matrix parameter that can be set to W>, but in practice tying those weights is

neither necessary nor beneficial.

In the following discussion, one can substitute RBMs with NADEs by replacing

equation (2.6) with the exact gradient of the negative log-likelihood cost C ≡

13

2.1 Density estimators

− logP (v):

∂C

∂(bv)j
= P (vj = 1|v<j)− vj (2.11)

∂C

∂bh
=

N∑
k=1

∂C

∂(bv)k
Vk,:hk(1− hk) (2.12)

∂C

∂W:,j

= vj

N∑
k=j+1

∂C

∂(bv)k
Vk,:hk(1− hk) (2.13)

∂C

∂Vj,:
=

∂C

∂(bv)j
hj (2.14)

In addition to the possibility of using second-order methods for training, a tractable

distribution estimator is necessary to compare the probabilities of different output

sequences during inference, as explained in Chapter 8.

Real-valued NADE

Analogously to the Gaussian RBM, the real-value NADE (RNADE) (Uŕıa et al.,

2013) was recently introduced to estimate the multivariate density of real-valued

vectors. The one-dimensional conditional distribution of the real-valued variable vj

given v<j (keeping the same notation as previously) is obtained by replacing (2.9)

with a mixture of K Gaussian distributions:

P (vj|v<j) =
K∑
k=1

αjk

σjk
√

2π
exp

[
−(vj − µjk)2

2σ2
jk

]
(2.15)

where αj, µj and σj are vectors denoting respectively the K mixing fractions,

component means and standard deviations for the j-th unit. These parameters are

obtained by a function of the hidden vector hj:

αj = s
(
V αT
j hj + bαj

)
(2.16)

µj = V µT
j hj + bµj (2.17)

σj = exp
(
V σT
j hj + bσj

)
(2.18)

14

2.2 Sequential models

where s(a) is the softmax function of an activation vector a:

(s(a))k ≡
exp(ak)∑K
k′=1 exp(ak′)

. (2.19)

Training an RNADE can be done using gradient descent after heuristically scaling

the learning rate associated with each component mean (Uŕıa et al., 2013).

2.2 Sequential models

In this section, we review important probabilistic sequential models, i.e. graph-

ical models that assign a probability P (z) to a sequence of T symbols z ≡ {z(t), 1 ≤
t ≤ T}. The symbols z(t) are usually vectors of length N and can be real-valued,

binary, or one-hot (binary with unit norm). In the latter case, they can alterna-

tively be represented by a single integer 1 ≤ z(t) ≤ N , depending on the context.

Some models instead capture the conditional probability P (z|x) of z given an input

sequence x ≡ {x(t), 1 ≤ t ≤ T}, or observations. Many of the models presented

in this section, including the RNN, exploit a common factorization of the joint

probability distribution of z:

P (z) =
T∏
t=1

P (z(t)|A(t)) (2.20)

or: P (z|x) =
T∏
t=1

P (z(t)|A(t), x) (2.21)

where A(t) ≡ {z(τ), τ < t} is the sequence history at time step t, i.e. the value

of the previously emitted output symbols. It is important to remember that the

output sequence z is a random variable in this framework, even when the model

predictions are deterministic.

The models presented here are often so general that they can be applied to a

wide variety of natural phenomena like music, speech, human motion, etc. We will

highlight the advantages of each model for modeling musical sequences whenever

appropriate.

15

2.2 Sequential models

2.2.1 Markov chains

A Markov chain of order k, or (k + 1)-gram, is a stochastic process where the

probability of observing the discrete state z(t), 1 ≤ z(t) ≤ N at time t depends only

on the states at the previous k time steps:

P (z(t)|A(t)) = P (z(t)|{z(τ), t− k ≤ τ < t}) (2.22)

The actual probabilities are explicitly maintained in a transition table of Nk values.

More commonly applied to natural language modeling with state z(t) represent-

ing a word from the dictionary or a character from the alphabet, Markov chains

are also well suited for monophonic music (Pickens, 2000) by letting z(t) repre-

sent the active pitch in the equal temperament at time t. We can also model the

evolution of predefined chords (Pickens et al., 2002), which is still a relatively low-

dimensional representation. Modeling polyphonic music with k-grams is harder due

to the exponential number of possible note combinations.

An obvious limitation of this model is that the finite state transition probabil-

ities depend only on a short sequence history, which prevents the model from ex-

ploiting non-local temporal dependencies, such as the overall context of the piece.

Some approaches attempt to discover repeated patterns in a given piece before

running the k-gram in order to alleviate this issue (Conklin, 2003; Paiement et al.,

2007).

2.2.2 Hidden Markov models

A hidden Markov model (HMM) is a generative stochastic process where the

observation x(t) at time t is conditioned on the corresponding hidden state z(t),

which itself evolves according to a Markov chain (eq. 2.22) usually of order k = 1.

The generative qualifier indicates that x is also a random variable. An HMM is a

directed graphical model defined by its conditional independence relations:

P (x(t)|{x(τ), τ 6= t}, z) = P (x(t)|z(t)) (2.23)

P (z(t)|A(t)) = P (z(t)|{z(τ), t− k ≤ τ < t}). (2.24)

16

2.2 Sequential models

Since the resulting joint distribution

P (z(t), x(t)|A(t)) = P (x(t)|z(t))P (z(t)|{z(τ), t− k ≤ τ < t}) (2.25)

depends only on {z(τ), t − k ≤ τ < t}, it is easy to derive a recurrence relation

to optimize z∗ by dynamic programming, giving rise to the well-known Viterbi

algorithm.

The emission probability in equation (2.23) is often parametrized via a Gaussian

mixture model (GMM, eq. 2.15), or formulated as a function of a classifier using

Bayes’ rule:

P (x(t)|z(t)) =
P (z(t)|x(t))P (x(t))

P (z(t))
(2.26)

where P (z(t)|x(t)) is the output of the classifier. The latter case of stacking an

HMM on top of a frame-level classifier corresponds to a simple form of temporal

smoothing.

Despite their limitations, HMMs are popular models for polyphonic music tran-

scription. The common strategy is to use separate HMMs with N = 2 states

to transcribe each possible pitch independently. An input/output HMM (Ben-

gio and Frasconi, 1996), in which the state transitions depend on an auxiliary

input sequence, can also be useful to model melody lines in a given harmonic con-

text (Paiement et al., 2009).

2.2.3 Dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) (Murphy, 2002) are directed graphical

models that exploit the factorization (2.20) to characterize the general evolution

of a distributed, discrete-continuous mixed state from which the observations are

emitted as in equation (2.23). Many configurations and parametrizations of states

are possible in a DBN, giving rise to a number of particular cases, such as the

HMM, the input/output HMM, the factorial HMM, and others.

A carefully constructed DBN incorporating multiple musicological sub-modules

describing harmony, duration, voice and polyphony has recently been used to model

polyphonic music in symbolic form (Raczynski et al., 2013).

17

2.2 Sequential models

2.2.4 Maximum entropy Markov models

Maximum entropy Markov models (MEMMs) (McCallum et al., 2000) are also

directed graphical models that employ the conditional factorization of equation (2.21)

in which the input x is not considered a random variable. This model additionally

imposes Markovian assumptions and predictions in the form of a maximum entropy

classifier:

P (z(t)|A(t), x) = P (z(t)|z(t−1), x(t)) (2.27)

= s
(
Wφ(z(t−1), x(t)) + b

)
(2.28)

where s(·) is the softmax non-linearity function (eq. 2.19), W, b are the weight ma-

trix and bias vector, and φ is a feature vector that depends on z(t−1) and x(t). Train-

ing an MEMM via maximum likelihood is straightforward and similar to training

a logistic regression model.

An advantage of the MEMM is the possibility to include in the feature vec-

tor φ a range of domain-specific discriminative features correlated with non-local

observations, i.e. the dependence on x(t) alone in (2.27) is not a strict requirement.

As argued previously (Brown, 1987), a similar procedure for HMM would violate

the independence property (2.23) and make it difficult to combine the emission

probability with the language model in equation (2.25). Intuitively, multiplying

those predictions together to estimate the joint distribution in an HMM will count

certain factors twice since both models have been trained separately. Note that

this violation does not necessarily translate in a bad performance in practice. The

MEMM nevertheless addresses this issue by predicting the relevant probability

P (z(t)|A(t), x) directly.

The label bias problem

In output sequences with low-entropy conditional distributions P (z(t)|A(t)), a

severe drawback of MEMM-like models is the label bias problem. Low-entropy

conditional distributions can occur with frequently repeated output symbols, i.e.

where z(t) = z(t+1) is highly likely. In this case, the maximum entropy classifier will

understandably be strongly biased toward the previous label while mostly ignoring

the observations. This “conditional class imbalance” is related to the following

18

2.2 Sequential models

issues:

1. The probability flow problem, in which the likelihood of all possible suc-

cessors of an unlikely partial sequence {z(t), 1 ≤ t ≤ T ′ < T} must still sum

to one and cannot be influenced by future observations that would contradict

the current state (Lafferty et al., 2001). Note that multiplying the probabil-

ity distributions in an HMM without renormalizing (eq. 2.25) allows a proper

weighting between the symbolic and acoustic predictors.

2. The teacher forcing problem, in which the model is trained in perfect

conditions with correct sequence histories A(t), but does not necessarily learn

to recover from past mistakes at test time, nor to accurately describe the

likelihood of sequences with incoherent histories.

Several tricks will be described later in this thesis to partially control the label

bias problem in RNNs. The safest strategy to avoid it entirely is probably to use

a generative model like a DBN or conditional random fields, described next.

2.2.5 Random fields

Random fields (RFs) are undirected graphical models between vectors of ran-

dom variables that can be observed or latent depending on the context. Contrarily

to Bayesian networks described previously, RFs are better suited to naturally repre-

sented cyclic rather than causal dependencies. A Markov random field (MRF) is a

special case where each variable is directly connected only to its nearest neighbors.

This method has been used to model polyphonic music in a piano-roll repre-

sentation (Lavrenko and Pickens, 2003), where the symbolic sequence is seen as a

bidimensional random field in which the presence of each note depends on the pres-

ence of past notes and current notes of lower pitch according to learned patterns.

This structure allows to describe within-frame note correlations and short-term

temporal evolution; longer-term dependencies remain elusive due to the limited

range of the learned patterns and the impossibility to remember information about

the sequence history.

2.2.6 Conditional random fields

Conditional random fields (CRFs) (Lafferty et al., 2001) are RFs conditioned on

an observed sequence x; this model was specifically designed to overcome the label

19

2.2 Sequential models

bias problem when estimating the conditional density of the output P (z|x). Linear

chain CRFs, i.e. ones exhibiting Markovian assumptions, are often used in practice

to replace HMMs in what is commonly referred to as “full-sequence training” in the

speech recognition community (e.g. Mohamed et al., 2010).

The undirected connections between output variables z(t) of the random field

define a probability distribution that is only globally normalized (LeCun et al.,

1998) and thus avoids the probability flow problem mentioned earlier. This allows

the current observation to properly influence the distribution of the current output

label, even in the case of frequently reoccuring output symbols z(t) = z(t+1). How-

ever, it should be noted that gains achieved with full-sequence training compared

to an HMM baseline are typically low, e.g. around 0.3% in phone recognition on

TIMIT (Mohamed et al., 2010).

2.2.7 Recurrent neural networks

Recurrent neural networks (RNNs) (Rumelhart et al., 1986a) are characterized

by their internal memory, or hidden layer, defined by the recurrence relation:

h(t) = f(Wzhz
(t) +Whhh

(t−1) +Wxhx
(t) + bh) (2.29)

where Wuv is a weight matrix connecting u → v, bh is a bias vector, f(·) is an

element-wise non-linearity function, and h(0) is an additional model parameter.

Popular choices for f include the logistic sigmoid function f(a) = (1 + e−a)−1, the

hyperbolic tangent f(a) = tanh(a) and the rectifier non-linearity f(a) = max(a, 0)

(Nair and Hinton, 2010; Glorot et al., 2011a). Note that rectifiers should be used

in conjunction with an L1 penalty on the hidden units of an RNN to avoid gradient

explosion.

The prediction y(t) is obtained from the hidden units at the previous time step

h(t−1) and the current observation x(t):

y(t) = o(Whzh
(t−1) +Wxzx

(t) + bz) (2.30)

where o(a) is the output non-linearity function of an activation vector a and should

be as close as possible to the target vector z(t). The prediction y(t) serves to define

20

2.2 Sequential models

z(2) ...
z(T)

...

z(1)

h(1) h(2) h(T)h(0)
Whh

Whz

Wzh

x(1) x(2) x(T)

Wxh

Wxz

...

Figure 2.1: Graphical structure of an input/output RNN. Single arrows represent a deterministic
function, dotted arrows represent optional connections for temporal smoothing, dashed arrows
represent a prediction. The x → z connections have been omitted for clarity at each time step
except the last.

the conditional distribution of z(t) given A(t) and x used in equation (2.21):

logP (z(t)|A(t), x) = −
N∑
j=1

zj log yj + (1− zj) log(1− yj) (2.31)

or: logP (z(t)|A(t), x) = −
N∑
j=1

zj log yj (2.32)

for multi-label (many-of-N) and multiclass (one-of-N) classification respectively,

but other conditional distributions are possible. The RNN graphical structure is

depicted in Figure 2.1.

RNNs are commonly trained to predict the next time step given the previ-

ous ones and the input, using backpropagation through time (BPTT) (Rumelhart

et al., 1986a). Since gradient-based training suffers from various pathologies (Ben-

gio et al., 1994), several strategies will be discussed later in this thesis to help

reduce these difficulties, particularly in Chapter 6.

Here are some common extensions and particular cases of the RNN:

1. Long short term memory (LSTM) cells (Hochreiter and Schmidhuber,

1997) can increase the range of the captured temporal dependencies by using

multiplicative gates to the input (other locations are possible), combined

with unit-norm self-connections that impose a constant error flow. This can

21

2.2 Sequential models

be achieved by replacing (2.29) with:

h(t) = h(t−1) +f(Wzhz
(t) +Whhh

(t−1) +Wxhx
(t) + bh)◦σ(Wxgx

(t) + bg), (2.33)

where Wxg, bg are the weight and bias input gate parameters and ◦ denotes

element-wise multiplication. This approach was successful in a number of

long-term memorization tasks that were previously “effectively impossible”

for stochastic gradient descent.

2. Temporal smoothing connections (dotted arrows in Figure 2.1) are the

optional connections z → h that implicitly tie z(t) to its history and encour-

age coherence between successive output frames, and temporal smoothing in

particular. Without temporal smoothing (Wzh = 0), the z(t), 1 ≤ t ≤ T are

conditionally independent given x and inference can simply be carried out

separately at each time step t.

3. Input/output connections are the optional connections x→ h and x→ z

that make the RNN model the conditional output distribution given the input

P (z|x) for a transduction task. Merely modeling the output distribution P (z)

can be achieved by setting Wxh = Wxz = 0.

4. Time-delay connections (taps) (El Hihi and Bengio, 1996) can be added

in equations (2.29) and (2.30) to supplement the recurrence and the predic-

tions with a direct access to predecessors x(t−τ), h(t−τ) and z(t−τ) for fixed

time lags τ ≥ 1. This can help the RNN discover temporal dependencies

spanning a range τ times longer at the expense of more computation.

5. Equivalent definitions of the RNN, e.g. in which z(t−1) → h(t) → z(t),

can be derived by the change of variable h′(t) = h(t−1), which intuitively cor-

responds to shifting the hidden layer by one time step to the left in Figure 2.1

while keeping all arrows attached. Alternative formulations should not intro-

duce cyclic dependencies between the z(t).

6. Bidirectional RNNs (BRNNs) (Schuster and Paliwal, 1997) are composed

of two RNNs with separate hidden units that recurse respectively forward

and backward in time; the two hidden layers at time t then predict a properly

normalized joint distribution of z(t). Both networks can fully depend on the

input x but only one of them can incorporate temporal smoothing connections

22

2.2 Sequential models

to avoid cyclic dependencies in the output random variables z(t). Stacking a

CRF on top of a bidirectional RNN can avoid this problem (Yao et al., 2013).

Polyphonic music models based on RNNs typically output only monophonic

notes along with predefined chords or other reduced-dimensionality representa-

tion (Mozer, 1994; Eck and Schmidhuber, 2002; Franklin, 2006) via equation (2.30).

Another possibility to model sequences in the piano-roll representation is to predict

independent note probabilities (Martens and Sutskever, 2011), i.e. for which the

conditional output distribution P (z(t)|A(t), x) factorizes:

P (z(t)|A(t), x) =
N∏
i=1

P (z
(t)
i |A(t), x) (2.34)

which is a strong assumption in harmonic music. LSTM cells were also successful

at capturing longer-term structure in symbolic music when used in conjunction

with time-delay connections aligned on the rhythmic structure (Eck and Lapalme,

2008).

2.2.8 Hierarchical models

Many natural sequences exhibit a multilevel or hierarchical structure in which

the occurrence of lower-level patterns can itself be described by a higher-level model.

For example, musical pieces can often be divided into parts (e.g. verse and chorus),

which in turn can be divided into phrases, measures and notes.

The simplest way to incorporate prior knowledge about the hierarchical orga-

nization of temporal dependencies is to provide time-delay bypass connections to

the hidden units of an RNN as described earlier (El Hihi and Bengio, 1996). The

time delays can optionally be aligned with the known temporal structure or follow

a geometrical spacing. Another option is to stack multiple interconnected hidden

layers in a deep RNN (Schmidhuber, 1992), which is a natural architecture to model

hierarchical dependencies (Hermans and Schrauwen, 2013). It is also possible to

constrain different subsets of recurrent hidden units to vary in time at different

frequencies (El Hihi and Bengio, 1996; Jaeger et al., 2007; Siewert and Wustlich,

2007), the rationale for this approach being that high-level phenomena should vary

more slowly than low-level ones. A graphical model with an explicit hierarchical

structure has also been designed to model polyphonic music (Paiement et al., 2005).

23

2.2 Sequential models

2.2.9 Temporal RBMs

In this section, we wish to exploit the ability of RBMs to represent a complicated

distribution for each time step, with parameters that depend on the previous ones,

an idea first put forward with conditional RBMs (Taylor et al., 2007). In this

model (Figure 2.2a), the biases b
(t)
v , b

(t)
h of the time-varying RBM describing the

conditional distribution P (v(t)|A(t)) as per equation (2.4) depend on the sequence

history as a linear function of the previous outputs (for simplicity, only v(t−1) here):

b
(t)
h = W ′v(t−1) + bh (2.35)

b(t)
v = W ′′v(t−1) + bv (2.36)

where W ′,W ′′,W, bh, bv, v, v
(0) are the resulting model parameters. Note that v(t)

is the visible layer of the t-th RBM and also represents of the output random vari-

able z(t) in the directed graphical model; the factorization (2.20) applies. Because

CRBMs are Markov processes, they cannot represent long-term dependencies.

v(2) v(T)

h(2) h(T)...

...v(0)

h(1)

WW'
bh(1)

bv(1)W" bv(2)
v(1)

bh(2) bh(T)

bv(T)

(a) CRBM

v(2) v(T)

h(2) h(T)...

...

h(0) h(1)

W

W' bh(1)

bv(1)
W"

bv(2)
v(1)

bh(2) bh(T)

bv(T)

(b) TRBM

Figure 2.2: Comparison of the graphical structures of (a) the CRBM and (b) the TRBM. Single
arrows represent a deterministic function, double arrows represent the stochastic hidden-visible

connections of an RBM. The RBM biases b
(t)
h , b

(t)
v are a linear function of either v(t−1) or h(t−1).

An extension of conditional RBMs is the temporal RBM (TRBM) (Sutskever

and Hinton, 2007) in which the time-varying RBMs are rather conditioned on the

24

2.3 Non-negative matrix factorization

past values of the hidden units h(τ), τ < t (only h(t−1) here) as shown in Fig-

ure 2.2b. This model is complicated by the fact that h are latent random vari-

ables and requires an heuristic training procedure. The recurrent temporal RBM

(RTRBM) (Sutskever et al., 2008) is a similar model that allows for exact inference

and efficient training by contrastive divergence (CD). The trick is to express the

RBM parameters as a function of the mean-field value ĥ(t) of h(t), i.e. replacing

equations (2.35) and (2.36) with:

b
(t)
h = W ′ĥ(t−1) + bh (2.37)

b(t)
v = W ′′ĥ(t−1) + bv (2.38)

which makes exact inference of h(t) very easy and improves the efficiency of train-

ing (Sutskever et al., 2008). Despite its simplicity, this model successfully accounts

for several interesting sequences, such as videos of balls bouncing in a box and

motion capture data.

Note that the mean-field value of h(t) is deterministic given A(t+1):

ĥ(t) = σ(Wv(t) + b
(t)
h) = σ(Wv(t) +W ′ĥ(t−1) + bh) (2.39)

which is exactly the defining equation of an RNN with hidden units ĥ(t) and a

sigmoid non-linearity (eq. 2.29). A similar architecture based on the echo state

network (ESN) was also recently developed (Schrauwen and Buesing, 2009).

2.3 Non-negative matrix factorization

Non-negative matrix factorization (NMF) is an unsupervised technique to dis-

cover parts-based representations underlying non-negative data (Lee and Seung,

1999), i.e. a set of characteristic components that can be combined additively to

reconstitute the observations. When applied to the magnitude spectrogram of a

polyphonic audio signal, NMF can discover a basis of interpretable recurring sound

events and their associated time-varying encodings, or activities, that together op-

timally reconstruct the original spectrogram.

25

2.3 Non-negative matrix factorization

The activities extracted by NMF have proven useful as features for a wide

variety of tasks, including polyphonic transcription (Abdallah and Plumbley, 2006;

Smaragdis and Brown, 2003; Dessein et al., 2010) and audio source separation

(e.g. Virtanen, 2007). Sparsity, temporal and spectral priors have proven useful

to enhance the accuracy of multiple pitch estimation (Cont, 2006; Vincent et al.,

2010; Fitzgerald et al., 2005). Ordinary NMF is an unsupervised technique, but

some supervised variants exploit the availability of ground truth annotations to

increase the relevance of the extracted features with respect to a discriminative

task (Boulanger-Lewandowski et al., 2012a). A temporal description of the NMF

activity matrices can also serve as a useful prior during the decomposition, as

discussed in Chapter 14.

An advantage of the NMF decomposition is its inherent ability to infer the

time-varying activities from a complex signal in a way similar to the well-known

matching pursuit algorithm (Mallat and Zhang, 1993). This mechanism gives first

priority to the most salient spectral feature before subtracting the“explained away”

part and iteratively repeating this procedure with the residual spectrum. A similar

technique is employed in some polyphonic transcription algorithms (Yeh, 2008).

Algorithms for NMF

The NMF method aims to discover an approximate factorization of an input

matrix X:
N×T
X '

N×T
Λ ≡

N×K
W ·

K×T
H (2.40)

where X is the observed magnitude spectrogram with time and frequency dimen-

sions T and N respectively, Λ is the reconstructed spectrogram, W is a dictionary

matrix of K basis spectra and H is the activity matrix. Non-negativity constraints

Wnk ≥ 0, Hkt ≥ 0 apply on both matrices. NMF seeks to minimize the recon-

struction error, a distortion measure between the observed spectrogram X and the

reconstruction Λ. A popular choice is the Euclidean distance:

CLS ≡ ||X − Λ||2 (2.41)

for which we will provide training algorithms although they can be easily gener-

alized to other distortion measures in the β-divergence family (Kompass, 2007).

26

2.3 Non-negative matrix factorization

Minimizing CLS can be achieved by alternating multiplicative updates to H and

W (Lee and Seung, 2001):

H ← H ◦ W
TX

W TΛ
(2.42)

W ← W ◦ XH
T

ΛHT
(2.43)

where the ◦ operator denotes element-wise multiplication, and division is also

element-wise. These updates are guaranteed to decrease the reconstruction error

assuming a local minimum is not already reached. While the objective is convex in

either W or H separately, it is non-convex in W and H together and thus finding

the global minimum is intractable in general.

If we wish to describe the concatenated spectrogram of a large dataset in terms

of a single dictionary (T � N , T � K), it is more efficient to apply the multiplica-

tive updates toW in mini-batches of X. The corresponding activity mini-batchesH

should then be either kept in memory between training epochs or reinitialized for

each new mini-batch by applying equation (2.42) until convergence, before updates

to W can be performed.

Sparsity constraints

In a polyphonic signal with relatively few sound events occurring at any given

instant, it is reasonable to assume that active elements Hij should be limited to a

small subset of the available basis spectra. To encourage this behavior, a sparsity

penalty CS can be added to the total SNMF objective (Hoyer, 2002):

CS = λ|H| (2.44)

where | · | denotes the L1 norm and λ specifies the relative importance of sparsity.

In order to eliminate underdetermination associated with the invariance of WH

under the transformation W → WD, H → D−1H, where D is a diagonal matrix,

we impose the constraint that the basis spectra have unit norm. Equation (2.42)

becomes:

H ← H ◦ W TX

W TΛ + λ
(2.45)

27

2.3 Non-negative matrix factorization

Spectrogram X Dictionary W Activity matrix H

≈ x

0 10 20 30 40 50 60
dictionary column index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fr
eq

ue
nc

y
(k
H
z)

0 2 4 6 8 10 12 14
time (s)

0.0

0.2

0.4

0.6

0.8
fr
eq

ue
nc

y
(k
H
z)

0 2 4 6 8 10 12 14
time (s)

0

10

20

30

40

50

60

di
ct
io
na

ry
co
lu
m
n
in
de

x

0 2 4 6 8 10 12 14 16
time (s)

45

50

55

60

65

70

75

M
ID

I
no

te
nu

m
be

r

Target score Y

Figure 2.3: Illustration of the sparse NMF decomposition (λ = 0.01, µ = 10−5) of an excerpt of
Drigo’s Serenade. Using a dictionary W pretrained on a polyphonic piano dataset, the spectro-
gram X is transformed into an activity matrix H approximating the piano-roll transcription Y .
The columns of W were sorted by increasing estimated pitch for visualization.

and the multiplicative update to W (equation 2.43) is replaced by projected gra-

dient descent (Lin, 2007):

W ← W − µ(Λ−X)HT (2.46)

Wnk ← max(Wnk, 0),W:k ←
W:k

|W:k|
(2.47)

where W:k is the k-th column of W , µ is the learning rate and 1 ≤ k ≤ K.

NMF for polyphonic transcription

The ability of NMF to extract fundamental note events from a polyphonic

mixture makes it an obvious stepping stone for multiple pitch estimation. In the

ideal scenario, the dictionary W contains the spectrum profiles of individual notes

composing the mix and the activity matrix H approximately corresponds to the

ground-truth score. An example of the sparse NMF decomposition of an excerpt

of Drigo’s Serenade using a dictionary pretrained on a simple polyphonic piano

dataset is illustrated in Figure 2.3. The dictionary contains mostly monophonic

basis spectra that were sorted by increasing estimated pitch for visualization. We

also observe a clear similarity between the activity matrix and the target score in

a piano-roll representation Y .

There are many options to exploit the NMF decomposition to perform ac-

tual multiple pitch estimation. The dictionary inspection approach (Abdallah and

Plumbley, 2006; Smaragdis and Brown, 2003) consists in estimating the pitch (or

lack thereof) of each column of W , which can be done automatically using harmonic

28

2.4 Deep neural networks

combs (Vincent et al., 2010), and to transcribe all pitches for which the associated

Hkt activities exceed a threshold η:

Ylt = 1⇔
∑

k|L(k)=l

Hkt ≥ η (2.48)

or: Ylt = 1⇔ max
k|L(k)=l

Hkt ≥ η (2.49)

where L(k) is the estimated pitch label (index) of the k-th basis spectrum. For

this method, a new factorization can be performed adaptively for each new piece

to analyze, or the dictionary can be pretrained from an extended corpus and kept

fixed during testing. Dictionaries can also be constructed from the concatenation

of isolated note spectra (Cont, 2006; Dessein et al., 2010).

Another option is to predict each column of Y from the corresponding column

of H using a general-purpose multi-label classifier or a set of binary classifiers, one

for each label (note) in the designated range. This obviously requires the use of a

fixed dictionary and the availability of annotated pieces to train the classifiers. An

effective polyphonic transcription system can be built using pre-trained dictionaries

and linear support vector machines (SVM) (Poliner and Ellis, 2007) following this

principle.

Note that the simple interpretation of the activity matrix as an approximate

transcription usually deteriorates when we increase instrumental diversity, pitch

range or polyphony. In this case, the supervised methods that we developed in

(Boulanger-Lewandowski et al., 2012a) and Chapter 14 can help produce more

relevant features with respect to a discriminative task.

2.4 Deep neural networks

The idea of deep learning is to automatically construct increasingly complex

abstractions based on lower-level concepts. For example, predicting a chord label

from an audio excerpt might understandably prerequire estimating active pitches,

which in turn might depend on detecting peaks in the spectrogram. This hierarchy

of factors is not unique to music but also appears in vision, natural language and

other domains (Bengio, 2009). Feature learning with deep neural networks was

29

2.4 Deep neural networks

very successful in a number of audio applications (Mohamed et al., 2009; Hamel

and Eck, 2010; Nam et al., 2011; Hinton et al., 2012; Humphrey and Bello, 2012)

and is also known to generalize well across different domains (Glorot et al., 2011b;

Bengio et al., 2011; Hamel et al., 2013).

Due to the highly non-linear functions involved, deep networks are difficult to

train directly by stochastic gradient descent. A successful strategy to reduce these

difficulties consists in pre-training each layer successively in an unsupervised way to

model the previous layer expectation. For example, we can use RBMs (Smolensky,

1986) to model the joint distribution of the previous layer’s units in a deep belief

network (DBN) (Hinton et al., 2006) (not to be confused with a dynamic Bayesian

network), or denoising autoencoders in a similar greedy fashion (Vincent et al.,

2008). This pre-training technique usually leads to better generalization than with

random initialization (Erhan et al., 2009). Another option is to perform approxi-

mate model averaging after randomly dropping out (i.e., setting to 0) some fraction

of the hidden units at each layer (Hinton et al., 2012). Deep neural networks can

be conveniently constructed and trained using the Theano numerical computing

library (Bergstra et al., 2010; Bastien et al., 2012).

Computing representations

The observed vector x ≡ h0 is transformed into the hidden vector h1, which

is then fixed to obtain the hidden vector h2, and so on in a greedy way. Layers

compute their representation as:

hl+1 = f(Wlhl + bl) (2.50)

for layer l, 0 ≤ l < D where D is the depth of the network, f(·) is an element-wise

non-linearity function and Wl, bl are respectively the weight and bias parameters

for layer l. Popular choices for f include the logistic sigmoid function f(a) =

(1 + e−a)−1, the hyperbolic tangent f(a) = tanh(a) and the rectifier non-linearity

f(a) = max(a, 0) (Nair and Hinton, 2010; Glorot et al., 2011a). The non-linearity

function of the last layer (output) is selected appropriately for the discriminative

task at hand. The whole network is finally fine-tuned with respect to a supervised

30

2.4 Deep neural networks

criterion such as the cross-entropy cost:

L(v, z) = −
N∑
j=1

zj log yj + (1− zj) log(1− yj) (2.51)

or: L(v, z) = −
N∑
j=1

zj log yj (2.52)

for multi-label (many-of-N) and multiclass (one-of-N) classification respectively,

where y ≡ hD is the prediction obtained at the topmost layer and z ∈ {0, 1}N is a

binary vector serving as a target. Note that the target z can have multiple active

elements for multi-label classification, but only one for multiclass classification.

Application to sequence labeling

When assigning class labels z(t) to individual frames of an input signal x(t), such

as the columns of a magnitude spectrogram, a popular enhancement consists in the

use of multiscale aggregated features and time-delay connections to describe context

information (Bergstra et al., 2006; Hamel et al., 2012; Dahl et al., 2012). The

retained strategy is to provide the network with aggregated features x̄, x̃ (Bergstra

et al., 2006) computed over windows of varying sizes L (Hamel et al., 2012) and

offsets τ relative to the current time step t:

x̄(t) =
{ b(L−1)/2c∑

∆t=−bL/2c

x(t−τ+∆t),∀(L, τ)
}

(2.53)

x̃(t) =
{ b(L−1)/2c∑

∆t=−bL/2c

(x(t−τ+∆t) − x̄(t)
L,τ)

2, ∀(L, τ)
}

(2.54)

for mean and variance pooling, where the sums are taken element-wise and the

resulting vectors concatenated, and L, τ are taken from a predefined list that op-

tionally contains the original input (L = 1, τ = 0). This strategy is applicable to

frame-level classifiers such as a DNN, and enables fair comparisons with temporal

models.

31

2.5 Hessian-free optimization

2.5 Hessian-free optimization

Hessian-free (HF) optimization is a second-order optimization method that re-

ceived considerable attention following its successful application to training deep

autoencoders (Martens, 2010) and RNNs (Martens and Sutskever, 2011), alleviat-

ing the problem of learning long-term dependencies in the latter case. The excellent

performance obtained by RNNs on synthetic pathological problems (Hochreiter and

Schmidhuber, 1997), text generation (Sutskever et al., 2011) and music sequence

modeling (Martens and Sutskever, 2011) motivates its use in this thesis.

The method is derived from the Newton method which seeks to minimize the

objective function f(θ) : Rn → R by approximating it near the current point θ by

a quadratic form:

f(θ + δθ) ' f(θ) +∇f(θ)Tδθ +
1

2
δT
θ Bδθ (2.55)

where B approximates the Hessian matrix H. At each training iteration, we min-

imize the approximation of f(θ + δθ) + λ||δθ||2 where a quadratic damping term

prevents straying too far from the current point where the approximation is poten-

tially incorrect.

Hessian-free optimization differs from the Newton method in that the Hessian

matrix is never explicitly calculated. Instead, the quadratic form (2.55) is mini-

mized by the successive application of matrix-vector products Bv in the conjugate

gradient (CG) algorithm (Shewchuk, 1994), which can be efficiently computed by

applying the R operator (Pearlmutter, 1994).

An important modification consists in using for B not H directly, but the

Gauss-Newton matrix (Schraudolph, 2002), a positive-definite approximation to

the Hessian obtained by sectioning the computational graph of f(θ) in two parts

f(θ)→ f(g(θ)) where f(g) is convex:

∇2
θθf = H ' B = ∇θg

T∇2
ggf∇θg. (2.56)

Our Theano-based implementation (Bergstra et al., 2010) of the HF optimizer

that includes all the details explained in (Martens, 2010; Martens and Sutskever,

2011) is available online. 1

1. https://github.com/boulanni/theano-hf

32

https://github.com/boulanni/theano-hf

3 Prologue to First Article

3.1 Article Details

Modeling Temporal Dependencies in High-Dimensional Sequences: Ap-

plication to Polyphonic Music Generation and Transcription

Nicolas Boulanger-Lewandowski, Yoshua Bengio and Pascal Vincent

Published in Proceedings of the 29th International Conference on Machine Learning

(ICML) in 2012.

3.2 Context

RNNs are promising candidates to model sequential phenomena due to their

ability in principle to represent long-term dependencies and complex temporal be-

haviors. It was recently shown that Hessian-free optimization could help reduce the

vanishing and exploding gradient problems (Martens and Sutskever, 2011; Bengio

et al., 1994) and train RNNs more effectively.

In realistic high-dimensional sequences, predicting the next time step is often

complicated by the multimodality of the conditional output distribution. That

property is especially important in polyphonic music where notes appear together

in strongly correlated patterns. The idea of using RBMs to estimate the conditional

distributions was first put forward with the so-called temporal RBM (Taylor et al.,

2007; Sutskever and Hinton, 2007) and later with the recurrent temporal RBM

(RTRBM) (Sutskever et al., 2008). It is also possible to use Gaussian mixtures to

model those conditional distributions (Schuster, 1999a).

Most existing models of polyphonic music output only monophonic notes along

with predefined chords or other reduced-dimensionality representation (e.g. Mozer,

3.3 Contributions

1994; Eck and Schmidhuber, 2002; Paiement et al., 2009), which makes it difficult

to interpret results and compare machine learning algorithms.

Most existing polyphonic transcription algorithms are frame-based and rely

exclusively on the audio signal. It has long been known that musicological models

can improve purely auditive approaches to music information retrieval (Cemgil,

2004). However, combining these two sources of information is not trivial, with

the result that temporal smoothing with an HMM is often the only post-processing

involved in state-of-the-art transcription (Nam et al., 2011).

3.3 Contributions

This paper introduces the RNN-RBM, a generalization of the RTRBM that al-

lows more freedom to describe the temporal dependencies involved in high-dimensional

sequences. Proposed improvements include a separate layer of recurrent hidden

units, the use of pre-training techniques and Hessian-free optimization, and the

possibility to substitute conditional RBMs with NADEs.

With extensive experiments carried over four large datasets of symbolic mu-

sic, we demonstrate that the RNN-RBM consistently outperforms the RTRBM

and many other traditional models of polyphonic music in both log-likelihood and

frame-level accuracy.

Finally, we present a polyphonic transcription algorithm based on a product

of experts between an arbitrary acoustic classifier and our symbolic model. Our

method improves transcription accuracy much more than the popular HMM ap-

proach.

3.4 Recent Developments

Brakel et al. (2013) recently developed the recurrent energy-based model (REBM)

in the context of time-series imputation. The REBM has an architecture similar

to the RNN-RBM but is trained to explicitly minimize the reconstruction error of

deterministic mean-field predictions with respect to ground-truth missing values.

34

3.4 Recent Developments

The four polyphonic music datasets prepared for this paper and the associated

task of sequence prediction in the piano-roll representation were later taken as

benchmarks by other authors attempting to improve learning in RNNs (Pascanu

et al., 2012, 2013, 2014; Bayer et al., 2014). Our architecture still holds the state

of the art on the four datasets in both log-likelihood and accuracy by a significant

margin. In our opinion, the conditional distribution esimators of the RNN-RBM are

an essential component in the realistic modeling of high-dimensional sequences that

cannot fully be accounted for simply by increasing the flexibility of the recurrence

relation or the efficiency of optimization.

The transcription algorithm presented in this paper is based on a product of

experts and a greedy chronological search. In Chapter 8, we extend this approach

with a comprehensive input/output architecture that combines the acoustic and

symbolic models, and a global inference procedure based on high-dimensional beam

search.

35

4
Modeling Temporal Dependencies
in High-Dimensional Sequences:
Application to Polyphonic Music
Generation and Transcription

We investigate the problem of modeling symbolic sequences of polyphonic

music in a completely general piano-roll representation. We introduce a

probabilistic model based on distribution estimators conditioned on a recurrent

neural network that is able to discover temporal dependencies in high-dimensional

sequences. Our approach outperforms many traditional models of polyphonic music

on a variety of realistic datasets. We show how our musical language model can

serve as a symbolic prior to improve the accuracy of polyphonic transcription.

4.1 Introduction

Modeling sequences is an important area of machine learning since many natu-

rally occurring phenomena such as music, speech, or human motion are inherently

sequential. Complex sequences are non-local in that the impact of a factor localized

in time can be delayed by an arbitrarily long time-lag. For example, musical pat-

terns or themes appearing at the beginning of a piece are often repeated towards

the end. Recurrent neural networks (RNN) (Rumelhart et al., 1986a) incorpo-

rate an internal memory that can, in principle, summarize the entire sequence

history. This property makes them well suited to represent long-term dependen-

cies, but it is nevertheless a challenge to train them efficiently by gradient-based

optimization (Bengio et al., 1994). It was recently shown that training RNNs via

Hessian-free (HF) optimization could help reduce these difficulties (Martens and

Sutskever, 2011).

Many sequences of interest are over high-dimensional objects, such as images in

video, short-term spectra in audio music, tuples of notes in musical scores, or words

in text. In these cases, simply predicting the expected value at the next time step

given the observed values of the previous time steps is not satisfying. With such

4.1 Introduction

high-dimensional objects at each time step, the conditional distribution is very often

multi-modal, and we would strongly prefer our models of such sequences to predict

the conditional distribution of the next time step given previous time steps. For

the case of polyphonic music, it is obvious that the occurrence of a particular note

at a particular time modifies considerably the probability with which other notes

may occur at the same time. In other words, notes appear together in correlated

patterns, or simultaneities, that cannot be conveniently described by a typical RNN

architecture designed for the multiclass classification task, for example, because

enumerating all configurations of the variable to predict would be very expensive.

This difficulty motivates energy-based models which allow us to express the negative

log-likelihood of a given configuration by an arbitrary energy function, among which

the restricted Boltzmann machine (RBM) (Smolensky, 1986) has become notorious.

In this context, we wish to exploit the ability of RBMs to represent a compli-

cated distribution for each time step, with parameters that depend on the previous

ones, an idea first put forward with the so-called temporal RBM (Taylor et al., 2007;

Sutskever and Hinton, 2007) which is trained via a heuristic procedure. Combining

the desirable characteristics of RNNs and RBMs has proven to be non-trivial. The

recurrent temporal RBM (RTRBM) (Sutskever et al., 2008) is a similar model that

allows for exact inference and efficient training by contrastive divergence (CD).

Despite its simplicity, this model successfully accounts for several interesting se-

quences. A similar architecture based on the echo state network was also recently

developed (Schrauwen and Buesing, 2009). In this work, we demonstrate that the

RTRBM outperforms many traditional models of polyphonic music, and we in-

troduce a generalization of the RTRBM, called the RNN-RBM, that allows more

freedom to describe the temporal dependencies involved.

More precisely, we will consider sequences of symbolic music, i.e. represented

by the explicit timing, pitch, velocity and instrumental information typically con-

tained in a score or a MIDI file rather than more complex, acoustically rich audio

signals. Musical models mostly focus on the basic components of western music,

harmony and rhythm, and are trained to predict the pattern of notes (simultane-

ities) to be played together in the next time interval, given the previous ones. Two

elements characterize the qualitative performance of a model: temporal dependen-

cies and chord conditional distributions. While most existing models output only

monophonic notes along with predefined chords or other reduced-dimensionality

37

4.1 Introduction

representation (e.g. Mozer, 1994; Eck and Schmidhuber, 2002; Paiement et al.,

2009), we aim to model unconstrained polyphonic music in the piano-roll represen-

tation, i.e. as a binary matrix specifying precisely which notes occur at each time

step. Despite ignoring dynamics and other score annotations, this task represents

a well-defined framework to improve machine learning algorithms and is directly

applicable to polyphonic transcription.

The objective of polyphonic transcription is to determine the underlying notes

of a polyphonic audio signal without access to its score. Human experts approach

this difficult problem by giving importance to what they expect to hear rather

than exclusively to what is present in the actual signal. Most existing transcription

algorithms are frame-based and rely exclusively on the audio signal, even though

some approaches employ rudimentary musicological constraints (e.g. Li and Wang,

2007). It has long been known that, in the same way that natural language mod-

els tremendously improve the performance of speech recognition systems, musical

language models can improve purely auditive approaches to music information re-

trieval (Cemgil, 2004). However, combining these two sources of information is not

trivial, with the result that temporal smoothing with an HMM is often the only

post-processing involved in state-of-the-art transcription (Nam et al., 2011). We

will show how to enrich an arbitrary transcription algorithm (under basic assump-

tions) to include the advice of an expert trained on symbolic sequences. Using our

hybrid approach, we can improve transcription accuracy (Bay et al., 2009) much

more than the popular HMM approach.

The remainder of the paper is organized as follows. In Sections 4.2, 4.3 and

4.4 we introduce the RBM, the RTRBM and the RNN-RBM architectures. In

Section 4.5 we validate our model on benchmark datasets. In Section 4.6 we present

our results on musical sequences, and we detail our hybrid transcription approach

in Section 4.7.

38

4.2 Restricted Boltzmann machines

4.2 Restricted Boltzmann machines

An RBM is an energy-based model where the joint probability of a given con-

figuration of the visible vector v (inputs) and the hidden vector h is:

P (v, h) = exp(−bT
v v − bT

hh− hTWv)/Z (4.1)

where bv, bh and W are the model parameters and Z is the usually intractable

partition function. When the vector v is given, the hidden units hi are conditionally

independent of one another, and vice versa:

P (hi = 1|v) = σ(bh +Wv)i (4.2)

P (vj = 1|h) = σ(bv +WTh)j (4.3)

where σ(x) ≡ (1 + e−x)−1 is the element-wise logistic sigmoid function. The

marginalized probability of v is related to the free-energy F (v) by P (v) ≡ e−F (v)/Z:

F (v) = −bT
v v −

∑
i

log(1 + ebh+Wv)i (4.4)

Inference in RBMs consists of sampling the hi given v (or the vj given h) according

to their conditional Bernoulli distribution (eq. 4.2). Sampling v from the RBM can

be performed efficiently by block Gibbs sampling, i.e. by performing k alternating

steps of sampling h|v and v|h. The gradient of the negative log-likelihood of an

input vector v(l) involves two opposing terms, called the positive and negative phase:

∂(− logP (v(l)))

∂Θ
=
∂F (v(l))

∂Θ
− ∂(− logZ)

∂Θ
(4.5)

where Θ ≡ {bv, bh,W}. The second term can be estimated by a single sample v(l)∗

obtained from a k-step Gibbs chain starting at v(l):

∂(− logP (v(l)))

∂Θ
' ∂F (v(l))

∂Θ
− ∂F (v(l)∗)

∂Θ
. (4.6)

resulting in the well-known contrastive divergence (CDk) algorithm (Hinton, 2002).

The neural autoregressive distribution estimator (NADE) (Larochelle and Mur-

ray, 2011) is a tractable model inspired by the RBM and specializing (with tying

39

4.2 Restricted Boltzmann machines

constraints) an earlier model for the joint distribution of high-dimensional vari-

ables (Bengio and Bengio, 2000). NADE is similar to a fully visible sigmoid belief

network in that the conditional probability distribution of a visible unit vj is ex-

pressed as a nonlinear function of vk,∀k < j. In the following discussion, one can

substitute RBMs with NADEs by replacing equation (4.6) with the exact gradi-

ent defined in (Larochelle and Murray, 2011) where the biases are set to b = v
(t)
b ,

c = v
(t)
h . The advantages of a tractable distribution estimator will become obvious

when used as part of sequential models.

G
#7

C
su

s4 G
7 G

A
6

/E C C

D
m

C
/G E G

7
G

#7

G
#d

im A
m

C0

C1

C2

C3

C4

C5

C6

C7

E C
D

A
m

A
/C

#

E
/B C

C
m

C
#M

aj
7

C
#

/F D
#

D
7

/C
G

di
m

G
#

/C F

C2

C3

C4

C5

C6

Figure 4.1: Mean-field samples of an RBM trained on the Piano-midi (top) and JSB chorales
(bottom) datasets. Each column is a sample vector of notes, with a chord label where the analysis
is unambiguous.

40

4.3 The RTRBM

Figure 4.1 presents mean-field samples P (vj = 1|h∗), where h∗ ∼ P (h), drawn

from RBMs trained on a diverse collection of classical piano music (top) and on

the four-part chorales by J. S. Bach (bottom), along with chord labels where the

analysis is unambiguous. It is obvious that for the diverse collection, each sample

has some room for additional melody notes with probabilities depending on the

harmonic context (grey), whereas for JSB chorales, the simultaneities are taken

from a more restricted pool and the samples are more clear-cut. This mechanism

makes sense musically and the fact that RBMs can adapt to various styles will be

useful for the following.

4.3 The RTRBM

The RTRBM (Sutskever et al., 2008) is a sequence of conditional RBMs (one

at each time step) whose parameters b
(t)
v , b

(t)
h ,W

(t) are time-dependent and depend

on the sequence history at time t, denoted A(t) ≡ {v(τ), ĥ(τ)|τ < t} where ĥ(t) is

the mean-field value of h(t). Its graphical structure is depicted in Figure 4.2a. The

RTRBM is formally defined by its joint probability distribution:

P ({v(t), h(t)}) =
T∏
t=1

P (v(t), h(t)|A(t)) (4.7)

where P (v(t), h(t)|A(t)) is the joint probability (eq. 4.1) of the tth RBM whose pa-

rameters are defined below (eq. 4.8 and 4.9).

While all the parameters of the RBMs can depend on the previous time steps,

we will consider the case where only the biases depend on ĥ(t−1):

b
(t)
h = bh +W ′ĥ(t−1) (4.8)

b(t)
v = bv +W ′′ĥ(t−1) (4.9)

which gives the RTRBM six parameters: W, bv, bh,W
′,W ′′, ĥ(0). The general case

is derived in a similar manner.

While the hidden units h(t) are binary during inference and sampling, it is

the mean-field value ĥ(t) that is transmitted to its successors (see eq. 4.10). This

41

4.3 The RTRBM

important distinction makes exact inference of the ĥ(t) very easy and improves the

efficiency of training (Sutskever et al., 2008):

ĥ(t) = σ(Wv(t) + b
(t)
h) = σ(Wv(t) +W ′ĥ(t−1) + bh) (4.10)

is obtained directly from equations (4.2) and (4.8). Note that equation (4.10) is

exactly the defining equation of a single-layer RNN with hidden units ĥ(t).

v(2) v(T)

h(2) h(T)...

...

h(0) h(1)

W

W' bh(1)

bv(1)
W"

bv(2)
v(1)

bh(2) bh(T)

bv(T)

(a) RTRBM

v(2) v(T)

h(2) h(T)...

...

h(1)

W
W'

bh(1)

W"
bv(1) bv(2) bv(T)
v(1)

bh(2) bh(T)

h(2) h(T)...h(0) h(1)W3

W2

(b) RNN-RBM

Figure 4.2: Comparison of the graphical structures of (a) the RTRBM and (b) the single-
layer RNN-RBM. Single arrows represent a deterministic function, double arrows represent the
stochastic hidden-visible connections of an RBM. The upper half of the RNN-RBM is the RBM

stage while the lower half is a RNN with hidden units ĥ(t). The RBM biases b
(t)
h , b

(t)
v are a linear

function of ĥ(t−1).

42

4.4 The RNN-RBM

4.4 The RNN-RBM

The RTRBM can be understood as a sequence of conditional RBMs whose pa-

rameters are the output of a deterministic RNN, with the constraint that the hidden

units must describe the conditional distributions and convey temporal information.

This constraint can be lifted by combining a full RNN with distinct hidden units

ĥ(t) with the RTRBM graphical model as shown in Figure 4.2b. We call this model

the RNN-RBM. The joint probability distribution of the RNN-RBM is also given

by equation (4.7), but with ĥ(t) defined arbitrarily, here as per equation (4.11).

For simplicity, we consider the RBM parameters to be W, b
(t)
v , b

(t)
h (i.e. only the

biases are variable) and a single-layer RNN (bottom portion of Fig. 4.2b) whose

hidden units ĥ(t) are only connected to their direct predecessor ĥ(t−1) and to v(t) by

the relation:

ĥ(t) = σ(W2v
(t) +W3ĥ

(t−1) + bĥ). (4.11)

The RBM portion of the RNN-RBM (upper portion of Fig. 4.2b) is otherwise

exactly the same as its RTRBM counterpart. This gives the single-layer RNN-RBM

nine parameters: W, bv, bh,W
′,W ′′, ĥ(0),W2,W3, bĥ.

The training algorithm is slightly different than for the RTRBM since the mean-

field values of the h(t) are now distinct from ĥ(t). An iteration of training is based

on the following general scheme:

1. Propagate the current values of the hidden units ĥ(t) in the RNN portion of

the graph using (4.11),

2. Calculate the RBM parameters that depend on the ĥ(t) (eq. 4.8 and 4.9) and

generate the negative particles v(t)∗ using k-step block Gibbs sampling,

3. Use CDk to estimate the log-likelihood gradient (eq. 4.6) with respect to W ,

b
(t)
v and b

(t)
h ,

4. Propagate the estimated gradient with respect to b
(t)
v , b

(t)
h backward through

time (BPTT) (Rumelhart et al., 1986a) to obtain the estimated gradient with

respect to the RNN parameters.

This procedure can be adapted to any RNN architecture and conditional distribu-

tion estimator assuming the RNN provides the estimator’s parameters (step 2) and

can be trained based on a stochastic gradient signal on those parameters (obtained

in step 3). The RNN-NADE, obtained by substituting NADEs for RBMs, allows

43

4.4 The RNN-RBM

for exact gradient computation.

Note that the single-layer RNN-RBM is a generalization of the RTRBM and

reduces to this simpler model by setting W2 = W , W3 = W ′ and bĥ = bh in

equations (4.10) and (4.11). The RTRBM was not gaining computationally from

sharing these connections, hence untying them does not make it slower. In practice,

the ability to distinguish between the number of hidden units h and ĥ allows to scale

RBMs to several hundred hidden units while keeping the RNNs to their (typically

smaller) optimal size, improving performance.

4.4.1 Initialization strategies

Initialization strategies based on unsupervised pretraining of each layer have

been shown to be important both for supervised and unsupervised training of deep

architectures (Bengio, 2009). A recurrent network corresponds to a very deep

architecture when unfolded in time, and indeed we find that pretraining can clearly

affect the overall performance of both the RTRBM and the RNN-RBM. To ensure

the quality of the learned weight matrices, we found that initializing the W , bv

and bh parameters from a trained RBM yields less noisy filters. The hidden-to-

bias weights W ′,W ′′ can then be initialized to small random values, such that the

sequential model will initially behave like independent RBMs, eventually departing

from that state.

In order to capture better temporal dependencies, we initialize theW2,W3, bĥ,W
′′, bv, ĥ

(0)

parameters of the RNN-RBM from an RNN trained with the cross-entropy cost:

L({v(t)}) =
1

T

T∑
t=1

nv∑
j=1

−v(t)
j log y

(t)
j − (1− v(t)

j) log(1− y(t)
j) (4.12)

where y(t) = σ(b
(t)
v) and equations (4.9) and (4.11) hold. This deterministic ob-

jective allows the use of a second-order optimization method for pretraining of the

RNN. Note that the RTRBM could use this strategy to initializeW,W ′, bv, bh,W
′′, ĥ(0),

but in practice we have found the initialization from an RBM more important.

44

4.4 The RNN-RBM

4.4.2 Details of the BPTT algorithm

Suppose we want to minimize the negative log-likelihood cost C ≡ − logP ({v(t)}).
The gradient of C with respect to the parameters of the conditional RBMs can be

estimated by CD using equations (4.4) and (4.6):

∂C

∂b
(t)
v

' v(t)∗ − v(t) (4.13)

∂C

∂W
'

T∑
t=1

σ(Wv(t)∗ − b(t)
h)v(t)∗T − σ(Wv(t) − b(t)

h)v(t)T (4.14)

∂C

∂b
(t)
h

' σ(Wv(t)∗ − b(t)
h)− σ(Wv(t) − b(t)

h). (4.15)

The gradient then back-propagates through the hidden-to-bias parameters (eq. 4.8

and 4.9):

∂C

∂W ′ =
T∑
t=1

∂C

∂b
(t)
h

ĥ(t−1)T (4.16)

∂C

∂W ′′ =
T∑
t=1

∂C

∂b
(t)
v

ĥ(t−1)T (4.17)

∂C

∂bh
=

T∑
t=1

∂C

∂b
(t)
h

and
∂C

∂bv
=

T∑
t=1

∂C

∂b
(t)
v

. (4.18)

For the single-layer RNN-RBM, the BPTT recurrence relation follows from (4.11):

∂C

∂ĥ(t)
= W3

∂C

∂ĥ(t+1)
ĥ(t+1)(1− ĥ(t+1))

+W ′ ∂C

∂b
(t+1)
h

+W ′′ ∂C

∂b
(t+1)
v

(4.19)

for 0 ≤ t < T (ĥ(0) being a parameter of the model) and ∂C/∂ĥ(T) = 0. Formulas

for the remaining RNN-RBM parameters are:

∂C

∂bĥ
=

T∑
t=1

∂C

∂ĥ(t)
ĥ(t)(1− ĥ(t)) (4.20)

45

4.5 Baseline experiments

∂C

∂W3

=
T∑
t=1

∂C

∂ĥ(t)
ĥ(t)(1− ĥ(t))ĥ(t−1)T (4.21)

∂C

∂W2

=
T∑
t=1

∂C

∂ĥ(t)
ĥ(t)(1− ĥ(t))v(t)T. (4.22)

4.5 Baseline experiments

In this section, we compare the performance of the RTRBM with the RNN-

RBM on two baseline datasets: bouncing balls videos and motion capture data

(Sutskever et al., 2008). We use the mean frame-level squared prediction error as

a basis of comparison. The prediction of the tth conditional RBM is performed by

50 steps of block Gibbs sampling starting at v(t−1) and hoping to reconstruct v(t)

optimally.

The bouncing ball videos dataset 1 is based on a simulation of balls bouncing in

a box (Sutskever and Hinton, 2007). The generated videos are of length T = 128

and of resolution 15 × 15 pixels in the [0, 1] interval, which makes binary RBMs

(eq. 4.1) well suited for this task. With up to 300 hidden units and an initial

learning rate of 0.01, we obtain a squared prediction error of 2.11 for the RTRBM

and 0.96 for the RNN-RBM, i.e. less than half the error. The receptive fields

(weights) of the first 48 hidden units h(t) (RNN-RBM) are plotted in Figure 4.3.

Localized edge detectors are apparent in nearly all the learned filters.

Figure 4.3: Receptive fields of 48 hidden units of an RNN-RBM trained on the bouncing balls
dataset. Each square shows the input weights of a hidden unit as an image.

1. www.cs.utoronto.ca/~ilya/code/2008/RTRBM.tar

46

www.cs.utoronto.ca/~ilya/code/2008/RTRBM.tar

4.6 Modeling sequences of polyphonic music

The human motion capture dataset 2 is represented by a sequence of joint an-

gles, translations and rotations of the base of the spine in an exponential-map

parameterization (Hsu et al., 2005; Taylor et al., 2007). Since the data consists

of 49 real values per time step, we use the Gaussian RBM variant (Welling et al.,

2005) for this task. We use up to 450 hidden units and an initial learning rate of

0.001. The mean squared prediction test error is 20.1 for the RTRBM and reduced

substantially to 16.2 for the RNN-RBM.

4.6 Modeling sequences of polyphonic music

In this section, we show results with main application of interest for this paper:

probabilistic modeling of sequences of polyphonic music. We report our experi-

ments on four datasets of varying complexity converted to our input format.

Piano-midi.de is a classical piano MIDI archive that was split according to Po-

liner and Ellis (2007).

Nottingham is a collection of 1200 folk tunes 3 with chords instantiated from the

ABC format.

MuseData is an electronic library of orchestral and piano classical music from

CCARH 4.

JSB chorales refers to the entire corpus of 382 four-part harmonized chorales by

J. S. Bach with the split of Allan and Williams (2005).

Each dataset contains at least 7 hours of polyphonic music and the total duration

is approximately 67 hours. The polyphony (number of simultaneous notes) varies

from 0 to 15 and the average polyphony is 3.9. We use an input of 88 binary visible

units that span the whole range of piano from A0 to C8 and temporally aligned on

an integer fraction of the beat (quarter note). Consequently, pieces with different

time signatures will not have their measures start at the same interval. Although

it is not strictly necessary, learning is facilitated if the sequences are transposed in

a common tonality (e.g. C major/minor) as preprocessing.

2. people.csail.mit.edu/ehsu/work/sig05stf

3. ifdo.ca/~seymour/nottingham/nottingham.html

4. www.musedata.org

47

people.csail.mit.edu/ehsu/work/sig05stf
ifdo.ca/~seymour/nottingham/nottingham.html
www.musedata.org

4.6 Modeling sequences of polyphonic music

In addition to the models previously described, we evaluate the following com-

monly used methods:

• The simplest baseline model consists in outputting a Gaussian density cen-

tered on the previous frame µ = v(t−1) and learned covariance Σ.

• N-grams simulate the evolution of note simultaneities as an (N − 1)th-order

Markov chain. We use add-p or Gaussian smoothing and back-off.

• Note N-grams model each note independently by a binary N-gram, possibly

with shared parameters (IID).

• An interesting model for chorales harmonisation (Allan and Williams, 2005)

has been adapted to serve as a generative model. It can only be evaluated

on the JSB chorales dataset.

• The ‘random fields’ approach of Lavrenko and Pickens (2003) is a type of

fully visible sigmoid belief network with learned connectivity.

• Other common methods include Gaussian mixture models (GMM), hidden

Markov models (HMM) using GMM indices as their state, and multilayer

perceptrons (MLP) with the last n time steps as input.

The log-likelihood (LL) and expected frame-level accuracy (ACC) (Bay et al.,

2009) of the symbolic models are presented in Table 4.1. We estimate the partition

function of each conditional RBM by 100 runs of annealed importance sampling

(Salakhutdinov and Murray, 2008). We make a few key observations:

• The complexity of the dataset, such as the simplistic chord accompaniment

of Nottingham and the redundant style of four-part chorales by a single com-

poser, in comparison with diverse piano and orchestral music, is clearly re-

flected in the obtained log-likelihoods and accuracies.

• N-gram models (optimal N∗ = 2) perform reasonably well for simple datasets

but fail in more realistic settings due to the increased data sparsity. In this

case, note N-grams (N∗ ∈ [8, 14]) are a better alternative albeit ignoring

harmonic dependencies. This inherent trade-off in traditional polyphonic

music models can be addressed robustly by the RNN-based models, that

perform better on a range of datasets.

• The harmonisation model of Allan and Williams (2005), tailored to the spe-

cific style of four-part chorales, requires annotated harmonic symbols and

yet performs relatively poorly compared to our best performer. Similarly

to the GMM + HMM, this model is penalized by the limited history of the

48

4.6 Modeling sequences of polyphonic music

T
a
b
le

4
.1
:

L
og

-l
ik

el
ih

o
o
d

an
d

ex
p

ec
te

d
ac

cu
ra

cy
fo

r
va

ri
o
u
s

m
u
si

ca
l

m
o
d
el

s
in

th
e

sy
m

b
o
li
c

p
re

d
ic

ti
o
n

ta
sk

.
T

h
e

d
o
u
b
le

li
n
e

se
p
a
ra

te
s

fr
am

e-
le

v
el

m
o
d

el
s

(a
b

ov
e)

an
d

m
o
d
el

s
w

it
h

a
te

m
p

o
ra

l
co

m
p

o
n
en

t
(b

el
ow

).

M
o
d
e
l

P
ia
n
o
-m

id
i.
d
e

N
o
t
t
in
g
h
a
m

M
u
se

D
a
t
a

J
S
B

c
h
o
r
a
l
e
s

L
L

A
C
C

%
L
L

A
C
C

%
L
L

A
C
C

%
L
L

A
C
C

%

R
a
n
d
o
m

-6
1
.0
0

3
.3
5

-6
1
.0
0

4
.5
3

-6
1
.0
0

3
.7
4

-6
1
.0
0

4
.4
2

1
-G

r
a
m

(A
d
d
-p
)

-2
7
.6
4

4
.8
5

-5
.9
4

2
2
.7
6

-1
9
.0
3

6
.6
7

-1
2
.2
2

1
6
.8
0

1
-G

r
a
m

(G
a
u
ss
ia
n
)

-1
0
.7
9

6
.0
4

-5
.3
0

2
1
.3
1

-1
0
.1
5

7
.8
7

-7
.5
6

1
7
.4
1

N
o
t
e
1
-G

r
a
m

-1
1
.0
5

5
.8
0

-1
0
.2
5

1
9
.8
7

-1
1
.5
1

7
.7
2

-1
1
.0
6

1
5
.2
5

N
o
t
e
1
-G

r
a
m

(I
ID

)
-1
2
.9
0

2
.5
1

-1
6
.2
4

3
.5
6

-1
4
.0
6

2
.8
2

-1
5
.9
3

3
.5
1

G
M
M

-1
5
.8
4

5
.0
8

-7
.8
7

2
2
.6
2

-1
2
.2
0

7
.3
7

-1
1
.9
0

1
5
.8
4

R
B
M

-1
0
.1
7

5
.6
3

-5
.2
5

5
.8
1

-9
.5
6

8
.1
9

-7
.4
3

4
.4
7

N
A
D
E

-1
0
.2
8

5
.8
2

-5
.4
8

2
2
.6
7

-1
0
.0
6

7
.6
5

-7
.1
9

1
7
.8
8

P
r
e
v
io
u
s
+

G
a
u
ss
ia
n

-1
2
.4
8

2
5
.5
0

-8
.4
1

5
5
.6
9

-1
2
.9
0

2
5
.9
3

-1
9
.0
0

1
8
.3
6

N
-G

r
a
m

(A
d
d
-p
)

-4
6
.0
4

7
.4
2

-6
.5
0

6
3
.4
5

-3
5
.2
2

1
0
.4
7

-2
9
.9
8

2
4
.2
0

N
-G

r
a
m

(G
a
u
ss
ia
n
)

-1
2
.2
2

1
0
.0
1

-3
.1
6

6
5
.9
7

-1
0
.5
9

1
6
.1
5

-9
.7
4

2
8
.7
9

N
o
t
e
N
-G

r
a
m

-7
.5
0

2
6
.8
0

-4
.5
4

6
2
.4
9

-7
.9
1

2
6
.3
5

-1
0
.2
6

2
0
.3
4

G
M
M

+
H
M
M

-1
5
.3
0

7
.9
1

-6
.1
7

5
9
.2
7

-1
1
.1
7

1
3
.9
3

-1
1
.8
9

1
9
.2
4

(A
l
l
a
n
a
n
d

W
il
l
ia
m
s,

2
0
0
5
)

–
–

–
–

–
–

-9
.2
4

1
6
.3
2

(L
a
v
r
e
n
k
o

a
n
d

P
ic
k
e
n
s,

2
0
0
3
)

-9
.0
5

1
8
.3
7

-5
.4
4

5
5
.3
4

-9
.8
7

1
8
.3
9

-8
.7
8

2
2
.9
3

M
L
P

-8
.1
3

2
0
.2
9

-4
.3
8

6
3
.4
6

-7
.9
4

2
5
.6
8

-8
.7
0

3
0
.4
1

R
N
N

-8
.3
7

1
9
.3
3

-4
.4
6

6
2
.9
3

-8
.1
3

2
3
.2
5

-8
.7
1

2
8
.4
6

R
N
N

(H
F
)

-7
.6
6

2
3
.3
4

-3
.8
9

6
6
.6
4

-7
.1
9

3
0
.4
9

-8
.5
8

2
9
.4
1

R
T
R
B
M

-7
.3
6

2
2
.9
9

-2
.6
2

7
5
.0
1

-6
.3
5

3
0
.8
5

-6
.3
5

3
0
.1
7

R
N
N
-R

B
M

-7
.0

9
2
8
.9

2
-2

.3
9

7
5
.4

0
-6
.0
1

3
4
.0

2
-6
.2
7

3
3
.1

2
R
N
N
-N

A
D
E

-7
.4
8

2
0
.6
9

-2
.9
1

6
4
.9
5

-6
.7
4

2
4
.9
1

-5
.8
3

3
2
.1
1

R
N
N
-N

A
D
E

(H
F
)

-7
.0

5
2
3
.4
2

-2
.3

1
7
1
.5
0

-5
.6

0
3
2
.6
0

-5
.5

6
3
2
.5
0

49

4.6 Modeling sequences of polyphonic music

HMM and by the difficulty to generalize to new chord voicings in a principled

manner.

• In accordance with earlier results (Martens and Sutskever, 2011), the use of

HF significantly helps the density estimation and prediction performance of

RNNs (eq. 4.12) which would otherwise perform worse than simpler MLPs.

This motivates our strategy of pretraining the RNN layer of an RNN-RBM

via HF.

• In addition to the distinct recurrent hidden units ĥ(t) that convey temporal

information more freely, and the fact that suitable learning rates can be

specified differently for the RNN and the RBM parts, pretraining the W2, W3

and bĥ parameters can have the most impact on the RNN-RBM prediction

performance. Figure 4.4 clearly demonstrates the importance of pretraining

and finetuning the RNN and the additional advantage of using HF.

• Although frame-level NADEs are slightly less powerful than RBMs, their

desirable properties make the combined RNN-NADE model the most robust

distribution estimator. We believe this is due to their tractable distribution,

for two reasons. First, CD may not be ideally suited for conditional RBMs

with slowly-mixing Gibbs chains (Mnih et al., 2011), a non-issue for exact-

gradient models. Secondly, the joint sequential model, and not only the RNN

portion, can benefit from second-order optimization as can be seen from the

last two rows of Table 4.1.

We evaluate our models qualitatively by generating sample sequences, provided

on the authors’ website 5, and discussed here. While note correlations are obvi-

ously neglected in the simpler models (sequence 2), RBM-based models learned

basic harmony rules (sequence 3), melody lines (sequences 4, 8) and local temporal

coherence (sequence 5). However, long-term structure and musical meter remain

elusive.

5. www-etud.iro.umontreal.ca/~boulanni/icml2012

50

www-etud.iro.umontreal.ca/~boulanni/icml2012

4.7 Polyphonic transcription

Piano-midi.de Nottingham MuseData JSB chorales
20

25

30

35

72

77
A
cc

u
ra

cy
(%

)
Baseline

SGD

SGD-finetuned

HF

HF-finetuned

Figure 4.4: Effect of SGD and HF pretraining on the RNN-RBM symbolic prediction perfor-
mance. All strategies except the baseline involve pretraining.

4.7 Polyphonic transcription

Multiple fundamental frequency (f0) estimation, or polyphonic transcription,

consists in estimating the audible note pitches in the signal at 10 ms intervals

without tracking note contours. We combine our polyphonic sequence models with

the acoustic model of Nam et al. (2011) in order to demonstrate a practical appli-

cation of the sequence models. Their model was adapted for multiple instruments,

and it can be generalized to any method that can score hypothetical combinations

of f0 for a given time frame.

At each time frame, the Nam et al. (2011) algorithm outputs independent prob-

abilities that each note is present and reports every note with probability p ≥ 0.5.

To incorporate our symbolic model prediction Ps(v
(t)|A(t)), we consider the k most

promising f0 candidates (k = 7) from the acoustic model Pa(v
(t)) and jointly eval-

uate all combinations of M candidates ∀M ≤ k by the following cost function:

C = − logPa(v
(t))− α logPs(v

(t)|Ã(t)) (4.23)

51

4.8 Conclusions

where Ã(t) is the approximate sequence history constructed from the f0 estimated

so far in at least half the audio frames corresponding to each past symbolic time

step 6. This corresponds to a product of experts where the hyperparameter α

is the confidence coefficient of our symbolic predictor. If our algorithm is run on

audio signals without preprocessing, tempo tracking must be performed first. Since

the symbolic models describe only fixed tonality pieces, a first audio-only pass is

needed to transpose the estimated f0 in the correct tonality. Once the optimal

f0 estimates have been determined, HMM smoothing can still filter out spurious

results and enhance onset accuracies.

Digital audio has been generated for the four datasets and we report in Fig-

ure 4.5 the frame-level transcription accuracy of the Nam et al. (2011) algorithm,

either alone, after HMM smoothing, or using our best performing model as a sym-

bolic prior. We observe an improvement in absolute accuracy between 1.3% and

10% over the HMM approach. It can be seen easily that an HMM with emission

probabilities Pa(v
(t)) is equivalent to equation (4.23) with a note 2-gram symbolic

model, one time step per audio frame and α = 1. It is therefore unsurprising that

the advantage of our search algorithm decreases when the note N-gram already

performs well, e.g. for Piano-midi.de (Table 4.1). However, the HMM allows for

a global search of the most likely f0 (the Viterbi path), whereas our algorithm

requires a greedy chronological search, a limitation we are currently working to

address.

4.8 Conclusions

We presented an RNN-based model that can learn harmonic and rhythmic prob-

abilistic rules from polyphonic music scores of varying complexity, substantially

better than popular methods in music information retrieval. We showed that dif-

ferent strategies related to the description of temporal dependencies can improve

prediction accuracy of such models. While longer-term musical structure remains

elusive in our unconstrained representation, our model can immediately serve as a

6. This can create a ‘snowball’ effect where accurate baseline transcriptions form accurate Ã(t)

estimates, resulting in more relevant symbolic predictions Ps(v
(t)|Ã(t)), which in turn improve

the final transcription.

52

4.8 Conclusions

Piano-midi.de Nottingham MuseData JSB chorales
20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)
Nam et al.
HMM
Proposed

Figure 4.5: Frame-level transcription accuracy of the Nam et al. (2011) model either alone, after
HMM smoothing or with our best performing model as a symbolic prior.

symbolic prior for polyphonic transcription, clearly improving the state of the art

in this area.

Acknowledgments

The authors would like to thank NSERC, CIFAR and the Canada Research

Chairs for funding, and Compute Canada/Calcul Québec for computing resources.

53

5 Prologue to Second Article

5.1 Article Details

Advances in Optimizing Recurrent Networks

Yoshua Bengio, Nicolas Boulanger-Lewandowski and Razvan Pascanu

Published in Proceedings of the 38th International Conference on Acoustics, Speech,

and Signal Processing (ICASSP) in 2013.

5.2 Context

After it was observed that capturing long-term dependencies by gradient-based

optimization was difficult (Hochreiter, 1991; Bengio et al., 1994), there has been

a major reduction in research efforts in the area of RNNs in the 90’s and 2000’s.

Several strategies have been proposed to reduce those difficulties, such as long short

term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997), Hessian-free

optimization (Martens and Sutskever, 2011), clipped gradients (Mikolov, 2012; Pas-

canu et al., 2012, 2013), leaky units (El Hihi and Bengio, 1996; Jaeger et al., 2007;

Siewert and Wustlich, 2007), conditional output distribution estimators (Chap-

ter 4), sparser gradients (Bengio, 2009), and Nesterov momentum (Nesterov, 1983;

Sutskever, 2012). There is now a revival of interest in these learning algorithms

and their use in state-of-the-art systems (Mikolov et al., 2011; Sutskever, 2012).

5.3 Contributions

This paper studies the issues giving rise to the optimization difficulties in RNNs

and discusses, reviews, and combines several techniques that have been proposed

5.3 Contributions

in order to improve training. Experiments are carried over datasets of symbolic

polyphonic music and text at both character and word level. We find that these

techniques generally help generalization performance as well as training perfor-

mance, which suggests they help to improve the optimization of the training cri-

terion. We also find that although these techniques can be applied in the online

setting similarly to stochastic gradient descent (SGD), they allow to compete with

second-order methods such as Hessian-Free optimization. Finally, we propose a

simplified formulation of Nesterov momentum from the point of view of regular

momentum and we offer an alternative interpretation of the method.

All three co-authors provided a similar contribution to this paper. I conducted

experiments with the RNN-RBM and RNN-NADE and discussed the results ob-

tained on polyphonic music data. I also developed the theory of Section 6.3.5.

55

6 Advances in Optimizing
Recurrent Networks

After more than a decade-long period of relatively little research activity

in the area of recurrent neural networks, several new developments will be

reviewed here that have allowed substantial progress both in understanding and

in technical solutions towards more efficient training of recurrent networks. These

advances have been motivated by and related to the optimization issues surrounding

deep learning. Although recurrent networks are extremely powerful in what they

can in principle represent in terms of modeling sequences, their training is plagued

by two aspects of the same issue regarding the learning of long-term dependencies.

Experiments reported here evaluate the use of clipping gradients, spanning longer

time ranges with leaky integration, advanced momentum techniques, using more

powerful output probability models, and encouraging sparser gradients to help

symmetry breaking and credit assignment. The experiments are performed on text

and music data and show off the combined effects of these techniques in generally

improving both training and test error.

6.1 Introduction

Machine learning algorithms for capturing statistical structure in sequential

data face a fundamental problem (Hochreiter, 1991; Bengio et al., 1994), called the

difficulty of learning long-term dependencies. If the operations performed when

forming a fixed-size summary of relevant past observations (for the purpose of

predicting some future observations) are linear, this summary must exponentially

forget past events that are further away, to maintain stability. On the other hand,

if they are non-linear, then this non-linearity is composed many times, yielding

a highly non-linear relationship between past events and future events. Learning

6.1 Introduction

such non-linear relationships turns out to be difficult, for reasons that are discussed

here, along with recent proposals for reducing this difficulty.

Recurrent neural networks (Rumelhart et al., 1986b) can represent such non-

linear maps (F , below) that iteratively build a relevant summary of past observa-

tions. In their simplest form, recurrent neural networks (RNNs) form a determin-

istic state variable ht as a function of the present input observation xt and the past

value(s) of the state variable, e.g., ht = Fθ(ht−1, xt), where θ are tunable parame-

ters that control what will be remembered about the past sequence and what will

be discarded. Depending on the type of problem at hand, a loss function L(ht, yt)

is defined, with yt an observed random variable at time t and Ct = L(ht, yt) the

cost at time t. The generalization objective is to minimize the expected future cost,

and the training objective involves the average of Ct over observed sequences. In

principle, RNNs can be trained by gradient-based optimization procedures (using

the back-propagation algorithm (Rumelhart et al., 1986b) to compute a gradient),

but it was observed early on (Hochreiter, 1991; Bengio et al., 1994) that capturing

dependencies that span a long interval was difficult, making the task of optimiz-

ing θ to minimize the average of Ct’s almost impossible for some tasks when the

span of the dependencies of interest increases sufficiently. More precisely, using a

local numerical optimization such as stochastic gradient descent or second order

methods (which gradually improve the solution), the proportion of trials (differing

only from their random initialization) falling into the basin of attraction of a good

enough solution quickly becomes very small as the temporal span of dependencies

is increased (beyond tens or hundreds of steps, depending of the task).

These difficulties are probably responsible for the major reduction in research

efforts in the area of RNNs in the 90’s and 2000’s. However, a revival of interest

in these learning algorithms is taking place, in particular thanks to (Martens and

Sutskever, 2011) and (Mikolov et al., 2011). This paper studies the issues giving rise

to these difficulties and discusses, reviews, and combines several techniques that

have been proposed in order to improve training of RNNs, following up on a recent

thesis devoted to the subject (Sutskever, 2012). We find that these techniques

generally help generalization performance as well as training performance, which

suggest they help to improve the optimization of the training criterion. We also

find that although these techniques can be applied in the online setting, i.e., as add-

ons to stochastic gradient descent (SGD), they allow to compete with batch (or

57

6.2 Learning Long-Term Dependencies and the Optimization
Difficulty with Deep Learning

large minibatch) second-order methods such as Hessian-Free optimization, recently

found to greatly help training of RNNs (Martens and Sutskever, 2011).

6.2 Learning Long-Term Dependencies and the

Optimization Difficulty with Deep Learning

There has been several breakthroughs in recent years in the algorithms and

results obtained with so-called deep learning algorithms (see (Bengio, 2009) and

(Bengio et al., 2012) for reviews). Deep learning algorithms discover multiple levels

of representation, typically as deep neural networks or graphical models organized

with many levels of representation-carrying latent variables. Very little work on

deep architectures occurred before the major advances of 2006 (Hinton et al., 2006;

Bengio et al., 2006; Ranzato et al., 2007), probably because of optimization dif-

ficulties due to the high level of non-linearity in deeper networks (whose output

is the composition of the non-linearity at each layer). Some experiments (Erhan

et al., 2010) showed the presence of an extremely large number of apparent local

minima of the training criterion, with no two different initializations going to the

same function (i.e. eliminating the effect of permutations and other symmetries of

parametrization giving rise to the same function). Furthermore, qualitatively dif-

ferent initialization (e.g., using unsupervised learning) could yield models in com-

pletely different regions of function space. An unresolved question is whether these

difficulties are actually due to local minima or to ill-conditioning (which makes

gradient descent converge so slowly as to appear stuck in a local minimum). Some

ill-conditioning has clearly been shown to be involved, especially for the difficult

problem of training deep auto-encoders, through comparisons (Martens, 2010) of

stochastic gradient descent and Hessian-free optimization (a second order optimiza-

tion method). These optimization questions become particularly important when

trying to train very large networks on very large datasets (Le et al., 2012), where

one realizes that a major challenge for deep learning is the underfitting issue. Of

course one can trivially overfit by increasing capacity in the wrong places (e.g. in

the output layer), but what we are trying to achieve is learning of more powerful

representations in order to also get good generalization.

58

6.2 Learning Long-Term Dependencies and the Optimization
Difficulty with Deep Learning

The same questions can be asked for RNNs. When the computations performed

by a RNN are unfolded through time, one clearly sees a deep neural network with

shared weights (across the ’layers’, each corresponding to a different time step),

and with a cost function that may depends on the output of intermediate layers.

Hessian-free optimization has been successfully used to considerably extend the

span of temporal dependencies that a RNN can learn (Martens and Sutskever,

2011), suggesting that ill-conditioning effects are also at play in the difficulties of

training RNN.

An important aspect of these difficulties is that the gradient can be decom-

posed (Bengio et al., 1994; Pascanu et al., 2012) into terms that involve products of

Jacobians ∂ht
∂ht−1

over subsequences linking an event at time t1 and one at time t2:
∂ht2
∂ht1

=
∏t2

τ=t1+1
∂hτ
∂hτ−1

. As t2− t1 increases, the products of t2− t1 of these Jacobian

matrices tend to either vanish (when the leading eigenvalues of ∂ht
∂ht−1

are less than

1) or explode (when the leading eigenvalues of ∂ht
∂ht−1

are greater than 1 1). This is

problematic because the total gradient due to a loss Ct2 at time t2 is a sum whose

terms correspond to the effects at different time spans, which are weighted by
∂ht2
∂ht1

for different t1’s:
∂Ct2
∂θ

=
∑
t1≤t2

∂Ct2
∂ht2

∂ht2
∂ht1

∂ht1
∂θ(t1)

where
∂ht1
∂θ(t1)

is the derivative of ht1 with respect to the instantiation of the parame-

ters θ at step t1, i.e., that directly come into the computation of ht1 in F . When the
∂ht2
∂ht1

tend to vanish for increasing t2 − t1, the long-term term effects become expo-

nentially smaller in magnitude than the shorter-term ones, making it very difficult

to capture them. On the other hand, when
∂ht2
∂ht1

“explode” (becomes large), gradient

descent updates can be destructive (move to poor configuration of parameters). It

is not that the gradient is wrong, it is that gradient descent makes small but finite

steps ∆θ yielding a ∆C, whereas the gradient measures the effect of ∆C when

∆θ → 0. A much deeper discussion of this issue can be found in (Pascanu et al.,

2012), along with a point of view inspired by dynamical systems theory and by the

geometrical aspect of the problem, having to do with the shape of the training cri-

terion as a function of θ near those regions of exploding gradient. In particular, it

1. Note that this is not a sufficient condition, but a necessary one. Further more one usually
wants to operate in the regime where the leading eigenvalue is larger than 1 but the gradients do
not explode.

59

6.3 Advances in Training Recurrent Networks

is argued that the strong non-linearity occurring where gradients explode is shaped

like a cliff where not just the first but also the second derivative becomes large in

the direction orthogonal to the cliff. Similarly, flatness of the cost function occurs

simultaneously on the first and second derivatives. Hence dividing the gradient by

the second derivative in each direction (i.e., pre-multiplying by the inverse of some

proxy for the Hessian matrix) could in principle reduce the exploding and vanishing

gradient effects, as argued in (Martens and Sutskever, 2011).

6.3 Advances in Training Recurrent Networks

6.3.1 Clipped Gradient

To address the exploding gradient effect, (Mikolov, 2012; Pascanu et al., 2012)

recently proposed to clip gradients above a given threshold. Under the hypothesis

that the explosion occurs in very small regions (the cliffs in cost function mentioned

above), most of the time this will have no effect, but it will avoid aberrant parameter

changes in those cliff regions, while guaranteeing that the resulting updates are

still in a descent direction. The specific form of clipping used here was proposed

in (Pascanu et al., 2012) and is discussed there at much greater length: when the

norm of the gradient vector g for a given sequence is above a threshold, the update

is done in the direction threshold g
||g|| . As argued in (Pascanu et al., 2012), this

very simple method implements a very simple form of second order optimization in

the sense that the second derivative is also proportionally large in those exploding

gradient regions.

6.3.2 Spanning Longer Time Ranges with Leaky Integra-

tion

An old idea to reduce the effect of vanishing gradients is to introduce shorter

paths between t1 and t2, either via connections with longer time delays (Lin et al.,

1995) or inertia (slow-changing units) in some of the hidden units (El Hihi and

Bengio, 1996; Jaeger et al., 2007), or both (Sutskever and Hinton, 2010). Long-

Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997), which

60

6.3 Advances in Training Recurrent Networks

were shown to be able to handle much longer range dependencies, also benefit from

a linearly self-connected memory unit with a near 1 self-weight which allows signals

(and gradients) to propagate over long time spans.

A different interpretation to this slow-changing units is that they behave like

low-pass filter and hence they can be used to focus certain units on different fre-

quency regions of the data. The analogy can be brought one step further by in-

troducing band-pass filter units (Siewert and Wustlich, 2007) or by using domain

specific knowledge to decide on what frequency bands different units should fo-

cus. (Mikolov and Zweig, 2012) shows that adding low frequency information as

an additional input to a recurrent network helps improving the performance of the

model.

In the experiments performed here, a subset of the units were forced to change

slowly by using the following“leaky integration”state-to-state map: ht,i = αiht−1,i+

(1−αi)Fi(ht−1, xt). The standard RNN corresponds to αi = 0, while here different

values of αi were randomly sampled from (0.02, 0.2), allowing some units to react

quickly while others are forced to change slowly, but also propagate signals and

gradients further in time. Note that because α < 1, the vanishing effect is still

present (and gradients can still explode via F), but the time-scale of the vanishing

effect can be expanded.

6.3.3 Combining Recurrent Nets with a Powerful Output

Probability Model

One way to reduce the underfitting of RNNs is to introduce multiplicative

interactions in the parametrization of F , as was done successfully in (Martens

and Sutskever, 2011). When the output predictions are multivariate, another ap-

proach is to capture the high-order dependencies between the output variables

using a powerful output probability model such as a Restricted Boltzmann Ma-

chine (RBM) (Sutskever et al., 2008; Boulanger-Lewandowski et al., 2012b) or a

deterministic variant of it called NADE (Larochelle and Murray, 2011; Boulanger-

Lewandowski et al., 2012b). In the experiments performed here, we have experi-

mented with a NADE output model for the music data.

61

6.3 Advances in Training Recurrent Networks

6.3.4 Sparser Gradients via Sparse Output Regularization

and Rectified Outputs

(Bengio, 2009) hypothesized that one reason for the difficulty in optimizing deep

networks is that in ordinary neural networks gradients diffuse through the layers,

diffusing credit and blame through many units, maybe making it difficult for hidden

units to specialize. When the gradient on hidden units is more sparse, one could

imagine that symmetries would be broken more easily and credit or blame assigned

less uniformly. This is what was advocated in (Glorot et al., 2011a), exploiting

the idea of rectifier non-linearities introduced earlier in (Nair and Hinton, 2010),

i.e., the neuron non-linearity is out = max(0, in) instead of out = tanh(in) or

out = sigmoid(in). This approach was very successful in recent work on deep

learning for object recognition (Krizhevsky et al., 2012), beating by far the state-

of-the-art on ImageNet (1000 classes). Here, we apply this deep learning idea to

RNNs, using an L1 penalty on outputs of hidden units to promote sparsity of

activations. The underlying hypothesis is that if the gradient is concentrated in

a few paths (in the unfolded computation graph of the RNN), it will reduce the

vanishing gradients effect.

6.3.5 Simplified Nesterov Momentum

Nesterov accelerated gradient (NAG) (Nesterov, 1983) is a first-order optimiza-

tion method to improve stability and convergence of regular gradient descent. Re-

cently, (Sutskever, 2012) showed that NAG could be computed by the following

update rules:

vt = µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (6.1)

θt = θt−1 + vt (6.2)

where θt are the model parameters, vt the velocity, µt ∈ [0, 1] the momentum

(decay) coefficient and εt > 0 the learning rate at iteration t, f(θ) is the objective

function and ∇f(θ′) is a shorthand notation for the gradient ∂f(θ)
∂θ
|θ=θ′ . These

62

6.3 Advances in Training Recurrent Networks

equations have a form similar to standard momentum updates:

vt = µt−1vt−1 − εt−1∇f(θt−1) (6.3)

θt = θt−1 + vt (6.4)

= θt−1 + µt−1vt−1 − εt−1∇f(θt−1) (6.5)

and differ only in the evaluation point of the gradient at each iteration. This impor-

tant difference, thought to counterbalance too high velocities by “peeking ahead”

actual objective values in the candidate search direction, results in significantly

improved RNN performance on a number of tasks.

In this section, we derive a new formulation of Nesterov momentum differing

from (6.3) and (6.5) only in the linear combination coefficients of the velocity and

gradient contributions at each iteration, and we offer an alternative interpretation

of the method. The key departure from (6.1) and (6.2) resides in committing to the

“peeked-ahead” parameters Θt−1 ≡ θt−1 + µt−1vt−1 and backtracking by the same

amount before each update. Our new parameters Θt updates become:

vt = µt−1vt−1 − εt−1∇f(Θt−1) (6.6)

Θt = Θt−1 − µt−1vt−1 + µtvt + vt

= Θt−1 + µtµt−1vt−1 − (1 + µt)εt−1∇f(Θt−1) (6.7)

Assuming a zero initial velocity v1 = 0 and velocity at convergence of optimization

vT ' 0, the parameters Θ are a completely equivalent replacement of θ.

Note that equation (6.7) is identical to regular momentum (6.5) with different

linear combination coefficients. More precisely, for an equivalent velocity update

(6.6), the velocity contribution to the new parameters µtµt−1 < µt is reduced

relatively to the gradient contribution (1 + µt)εt−1 > εt−1. This allows storing past

velocities for a longer time with a higher µ, while actually using those velocities

more conservatively during the updates. We suspect this mechanism is a crucial

ingredient for good empirical performance. While the “peeking ahead” point of

view suggests that a similar strategy could be adapted for regular gradient descent

(misleadingly, because it would amount to a reduced learning rate εt), our derivation

shows why it is important to choose search directions aligned with the current

velocity to yield substantial improvement. The general case is also simpler to

63

6.4 Experiments

implement.

6.4 Experiments

In the experimental section we compare vanilla SGD versus SGD plus some of

the enhancements discussed above. Specifically we use the letter ‘C‘ to indicate

that gradient clipping is used, ‘L‘ for leaky-integration units, ‘R‘ if we use rectifier

units with L1 penalty and ‘M‘ for Nesterov momentum.

6.4.1 Music Data

We evaluate our models on the four polyphonic music datasets of varying

complexity used in (Boulanger-Lewandowski et al., 2012b): classical piano music

(Piano-midi.de), folk tunes with chords instantiated from ABC notation (Notting-

ham), orchestral music (MuseData) and the four-part chorales by J.S. Bach (JSB

chorales). The symbolic sequences contain high-level pitch and timing information

in the form of a binary matrix, or piano-roll, specifying precisely which notes occur

at each time-step. They form interesting benchmarks for RNNs because of their

high dimensionality and the complex temporal dependencies involved at different

time scales. Each dataset contains at least 7 hours of polyphonic music with an

average polyphony (number of simultaneous notes) of 3.9.

Piano-rolls were prepared by aligning each time-step (88 pitch labels that cover

the whole range of piano) on an integer fraction of the beat (quarter note) and

transposing each sequence in a common tonality (C major/minor) to facilitate

learning. Source files and preprocessed piano-rolls split in train, validation and

test sets are available on the authors’ website 2.

Setup and Results

We select hyperparameters, such as the number of hidden units nh, regulariza-

tion coefficients λL1, the choice of non-linearity function, or the momentum schedule

µt, learning rate εt, number of leaky units nleaky or leaky factors α according to

2. www-etud.iro.umontreal.ca/~boulanni/icml2012

64

www-etud.iro.umontreal.ca/~boulanni/icml2012

6.4 Experiments

log-likelihood on a validation set and we report the final performance on the test

set for the best choice in each category. We do so by using random search (Bergstra

and Bengio, 2012) on the following intervals:

nh ∈ [100, 400] εt ∈ [10−4, 10−1]

µt ∈ [10−3, 0.95] λL1 ∈ [10−6, 10−3]

nleaky ∈ {0%, 25%, 50%} α ∈ [0.02, 2]

The cutoff threshold for gradient clipping is set based on the average norm of

the gradient over one pass on the data, and we used 15 in this case for all music

datasets. The data is split into sequences of 100 steps over which we compute the

gradient. The hidden state is carried over from one sequence to another if they

belong to the same song, otherwise is set to 0.

Table 6.1 presents log-likelihood (LL) and expected frame-level accuracy for

various RNNs in the symbolic music prediction task.

Results clearly show that these enhancements allow to improve on regular SGD

in almost all cases; they also make SGD competitive with HF for the sigmoid

recognition layers RNNs.

6.4.2 Text Data

We use the Penn Treebank Corpus to explore both word and character pre-

diction tasks. The data is split by using sections 0-20 as training data (5017k

characters), sections 21-22 as validation (393k characters) and sections 23-24 as

test data (442k characters).

For the word level prediction, we fix the dictionary to 10000 words, which

we divide into 30 classes according to their frequency in text (each class holding

approximately 3.3% of the total number of tokens in the training set). Such a

factorization allows for faster implementation, as we are not required to evaluate

the whole output layer (10000 units) which is the computational bottleneck, but

only the output of the corresponding class (Mikolov et al., 2011).

Setup and Results

In the case of next word prediction, we compute gradients over sequences of 40

steps, where we carry the hidden state from one sequence to another. We use a

65

6.5 Conclusions

small grid-search around the parameters used to get state of the art results for this

number of classes (Mikolov et al., 2011), i.e., with a network of 200 hidden units

yielding a perplexity of 134. We explore learning rate of 0.1, 0.01, 0.001, rectifier

units versus sigmoid units, cutoff threshold for the gradients of 30, 50 or none, and

no leaky units versus 50 of the units being sampled from 0.2 and 0.02.

For the character level model we compute gradients over sequences of 150 steps,

as we assume that longer dependencies are more crucial in this case. We use 500

hidden units and explore learning rates of 0.5, 0.1 and 0.01.

In table 6.2 we have entropy (bits per character) or perplexity for various RNNs

on the word and character prediction tasks. Again, we observe substantial improve-

ments in both training and test perplexity, suggesting that these techniques make

optimization easier.

6.5 Conclusions

Through our experiments we provide evidence that part of the issue of training

RNN is due to the rough error surface which can not be easily handled by SGD.

We follow an incremental set of improvements to SGD, and show that in most

cases they improve both the training and test error, and allow this enhanced SGD

to compete or even improve on a second-order method which was found to work

particularly well for RNNs, i.e., Hessian-Free optimization.

66

6.5 Conclusions

T
a
b
le

6
.1
:

L
og

-l
ik

el
ih

o
o
d

an
d

ex
p

ec
te

d
ac

cu
ra

cy
fo

r
va

ri
o
u

s
R

N
N

m
o
d

el
s

in
th

e
sy

m
b

o
li
c

m
u
si

c
p
re

d
ic

ti
o
n

ta
sk

.
T

h
e

d
o
u

b
le

li
n

e
se

p
a
ra

te
s

si
gm

oi
d

re
co

gn
it

io
n

la
ye

rs
(a

b
ov

e)
to

st
ru

ct
u

re
d

o
u
tp

u
t

p
ro

b
a
b

il
it

y
m

o
d

el
s

(b
el

ow
).

M
o
d

el
P

ia
n
o-

m
id

i.
d

e
N

o
tt

in
g
h
a
m

M
u
se

D
a
ta

J
S

B
ch

o
ra

le
s

L
L

L
L

A
C

C
%

L
L

L
L

A
C

C
%

L
L

L
L

A
C

C
%

L
L

L
L

A
C

C
%

(t
ra

in
)

(t
es

t)
(t

es
t)

(t
ra

in
)

(t
es

t)
(t

es
t)

(t
ra

in
)

(t
es

t)
(t

es
t)

(t
ra

in
)

(t
es

t)
(t

es
t)

R
N

N
(S

G
D

)
-7

.1
0

-7
.8

6
2
2
.8

4
-3

.4
9

-3
.7

5
6
6
.9

0
-6

.9
3

-7
.2

0
2
7
.9

7
-7

.8
8

-8
.6

5
2
9
.9
7

R
N

N
(S

G
D

+
C

)
-7

.1
5

-7
.5
9

2
2
.9

8
-3

.4
0

-3
.6

7
6
7
.4

7
-6

.7
9

-7
.0

4
3
0
.5

3
-7

.8
1

-8
.6

5
2
9
.9
8

R
N

N
(S

G
D

+
C

L
)

-7
.0

4
-7
.5
7

2
2
.9

7
-3

.3
1

-3
.5

7
6
7
.9

7
-6
.4
7

-6
.9
9

3
1
.5
3

-7
.7

8
-8

.6
3

2
9
.9
8

R
N

N
(S

G
D

+
C

L
R

)
-6
.4
0

-7
.8

0
2
4
.2
2

-2
.9
9

-3
.5

5
7
0
.2
0

-6
.7

0
-7

.3
4

2
9
.0

6
-7
.6
7

-9
.4

7
2
9
.9
8

R
N

N
(S

G
D

+
C

R
M

)
-6

.9
2

-7
.7

3
2
3
.7

1
-3

.2
0

-3
.4
3

6
8
.4

7
-7

.0
1

-7
.2

4
2
9
.1

3
-8

.0
8

-8
.8

1
2
9
.5

2
R

N
N

(H
F

)
-7

.0
0

-7
.5
8

2
2
.9

3
-3

.4
7

-3
.7

6
6
6
.7

1
-6

.7
6

-7
.1

2
2
9
.7

7
-8

.1
1

-8
.5
8

2
9
.4

1

R
N

N
-R

B
M

N
/A

-7
.0

9
2
8
.9
2

N
/
A

-2
.3

9
7
5
.4
0

N
/
A

-6
.0

1
3
4
.0
2

N
/
A

-6
.2

7
3
3
.1

2
R

N
N

-N
A

D
E

(S
G

D
)

-7
.2

3
-7

.4
8

2
0
.6

9
-2

.8
5

-2
.9

1
6
4
.9

5
-6

.8
6

-6
.7

4
2
4
.9

1
-5

.4
6

-5
.8

3
3
2
.1

1
R

N
N

-N
A

D
E

(S
G

D
+

C
R

)
-6

.7
0

-7
.3

4
2
1
.2

2
-2

.1
4

-2
.5

1
6
9
.8

0
-6

.2
7

-6
.3

7
2
6
.6

0
-4

.4
4

-5
.3

3
3
4
.5

2
R

N
N

-N
A

D
E

(S
G

D
+

C
R

M
)

-6
.6

1
-7

.3
4

2
2
.1

2
-2

.1
1

-2
.4

9
6
9
.5

4
-5

.9
9

-6
.1

9
2
9
.6

2
-4
.2
6

-5
.1
9

3
5
.0
8

R
N

N
-N

A
D

E
(H

F
)

-6
.3
2

-7
.0
5

2
3
.4

2
-1
.8
1

-2
.3
1

7
1
.5

0
-5
.2
0

-5
.6
0

3
2
.6

0
-4

.9
1

-5
.5

6
3
2
.5

0

67

6.5 Conclusions

Table 6.2: Entropy (bits per character) and perplexity for various RNN models on next character
and next word prediction task.

Model Penn Treebank Corpus Penn Treebank Corpus
word level character level

perplexity perplexity entropy entropy
(train) (test) (train) (test)

RNN (SGD) 112.11 145.16 1.78 1.76
RNN (SGD+C) 78.71 136.63 1.40 1.44
RNN (SGD+CL) 76.70 129.83 1.56 1.56
RNN (SGD+CLR) 75.45 128.35 1.45 1.49

68

7 Prologue to Third Article

7.1 Article Details

High-dimensional Sequence Transduction

Nicolas Boulanger-Lewandowski, Yoshua Bengio and Pascal Vincent

Published in Proceedings of the 38th International Conference on Acoustics, Speech,

and Signal Processing (ICASSP) in 2013.

7.2 Context

The polyphonic transcription method based on the RNN-RBM presented in

Chapter 4 combines the acoustic and symbolic models by a product of experts and

a greedy chronological search. Existing jointly trained models either operate in the

time domain under Markovian assumptions (Cemgil et al., 2006) or neglect intra-

frame note correlations and temporal smoothing connections (Böck and Schedl,

2012). A generic sequence transduction framework using RNNs to transform an

input sequence into an output sequence was also introduced by Graves (2012), but

that approach is designed for a small number of discrete output symbols and is not

directly applicable to high-dimensional outputs.

7.3 Contributions

In this chapter, we introduce an input/output extension of the RNN-RBM that

can learn the conditional output distribution given the input, whereas the origi-

nal RNN-RBM only learns the output sequence distribution. We also devise an

efficient algorithm to search for the global mode of that distribution. We conduct

7.4 Recent Developments

experiments on five datasets of synthesized sounds and real recordings that show a

significant improvement in transcription accuracy over other methods. We demon-

strate that our approach can produce musically plausible transcriptions in high

levels of stationary and non-stationary noise.

7.4 Recent Developments

The model and inference algorithm introduced in this chapter form the basis

of the chord recognition and speech recognition systems developed in Chapters 10

and 12 respectively. In this chapter, we partially control the label bias problem

with output noise, L2 regularization to the input and output weights, and longer

time steps; it nevertheless remains an important issue. An alternative generative

architecture will be proposed in Chapter 12 to circumvent this problem.

70

8 High-dimensional sequence
transduction

We investigate the problem of transforming an input sequence into a

high-dimensional output sequence in order to transcribe polyphonic au-

dio music into symbolic notation. We introduce a probabilistic model based on a

recurrent neural network that is able to learn realistic output distributions given the

input and we devise an efficient algorithm to search for the global mode of that dis-

tribution. The resulting method produces musically plausible transcriptions even

under high levels of noise and drastically outperforms previous state-of-the-art ap-

proaches on five datasets of synthesized sounds and real recordings, approximately

halving the test error rate.

8.1 Introduction

Machine learning tasks can often be formulated as the transformation, or trans-

duction, of an input sequence into an output sequence: speech recognition, machine

translation, chord recognition or automatic music transcription, for example. Re-

current neural networks (RNN) (Rumelhart et al., 1986a) offer an interesting route

for sequence transduction (Graves, 2012) because of their ability to represent ar-

bitrary output distributions involving complex temporal dependencies at different

time scales.

When the output predictions are high-dimensional vectors, such as tuples of

notes in musical scores, it becomes very expensive to enumerate all possible config-

urations at each time step. One possible approach is to capture high-order interac-

tions between output variables using restricted Boltzmann machines (RBM) (Smolen-

sky, 1986) or a tractable variant called NADE (Larochelle and Murray, 2011), a

weight-sharing form of the architecture introduced in (Bengio and Bengio, 2000).

8.1 Introduction

In a recently developed probabilistic model called the RNN-RBM, a series of dis-

tribution estimators (one at each time step) are conditioned on the deterministic

output of an RNN (Boulanger-Lewandowski et al., 2012b; Sutskever et al., 2008).

In this work, we introduce an input/output extension of the RNN-RBM that can

learn to map input sequences to output sequences, whereas the original RNN-

RBM only learns the output sequence distribution. In contrast to the approach of

(Graves, 2012) designed for discrete output symbols, or one-hot vectors, our high-

dimensional paradigm requires a more elaborate inference procedure. Other differ-

ences include our use of second-order Hessian-free (HF) (Martens and Sutskever,

2011) optimization 1 but not of LSTM cells (Hochreiter and Schmidhuber, 1997)

and, for simplicity and performance reasons, our use of a single recurrent network

to perform both transcription and temporal smoothing. We also do not need special

“null” symbols since the sequences are already aligned in our main task of interest:

polyphonic music transcription.

The objective of polyphonic transcription is to obtain the underlying notes of a

polyphonic audio signal as a symbolic piano-roll, i.e. as a binary matrix specifying

precisely which notes occur at each time step. We will show that our transduction

algorithm produces more musically plausible transcriptions in both noisy and nor-

mal conditions and achieve superior overall accuracy (Bay et al., 2009) compared to

existing methods. Our approach is also an improvement over the hybrid method in

(Boulanger-Lewandowski et al., 2012b) that combines symbolic and acoustic models

by a product of experts and a greedy chronological search, and (Cemgil et al., 2006)

that operates in the time domain under Markovian assumptions. Finally, (Böck and

Schedl, 2012) employs a bidirectional RNN without temporal smoothing and with

independent output note probabilities. Other tasks that can be addressed by our

transduction framework include automatic accompaniment, melody harmonization

and audio music denoising.

1. Our code is available online at http://www-etud.iro.umontreal.ca/~boulanni/

icassp2013.

72

http://www-etud.iro.umontreal.ca/~boulanni/icassp2013
http://www-etud.iro.umontreal.ca/~boulanni/icassp2013

8.2 Proposed architecture

8.2 Proposed architecture

8.2.1 Restricted Boltzmann machines

An RBM is an energy-based model where the joint probability of a given con-

figuration of the visible vector v ∈ {0, 1}N (output) and the hidden vector h is:

P (v, h) = exp(−bT
v v − bT

hh− hTWv)/Z (8.1)

where bv, bh and W are the model parameters and Z is the usually intractable

partition function. The marginalized probability of v is related to the free-energy

F (v) by P (v) ≡ e−F (v)/Z:

F (v) = −bT
v v −

∑
i

log(1 + ebh+Wv)i (8.2)

The gradient of the negative log-likelihood of an observed vector v involves two

opposing terms, called the positive and negative phase:

∂(− logP (v))

∂Θ
=
∂F (v)

∂Θ
− ∂(− logZ)

∂Θ
(8.3)

where Θ ≡ {bv, bh,W}. The second term can be estimated by a single sample v∗

obtained from a Gibbs chain starting at v:

∂(− logP (v))

∂Θ
' ∂F (v)

∂Θ
− ∂F (v∗)

∂Θ
. (8.4)

resulting in the well-known contrastive divergence algorithm (Hinton, 2002).

8.2.2 NADE

The neural autoregressive distribution estimator (NADE) (Larochelle and Mur-

ray, 2011) is a tractable model inspired by the RBM. NADE is similar to a fully

visible sigmoid belief network in that the conditional probability distribution of a

visible unit vj is expressed as a nonlinear function of the vector v<j ≡ {vk, ∀k < j}:

P (vj = 1|v<j) = σ(W>
:,jhj + (bv)j) (8.5)

73

8.2 Proposed architecture

hj = σ(W:,<jv<j + bh) (8.6)

where σ(x) ≡ (1 + e−x)−1 is the logistic sigmoid function.

In the following discussion, one can substitute RBMs with NADEs by replacing

equation (8.4) with the exact gradient of the negative log-likelihood cost C ≡
− logP (v):

∂C

∂(bv)j
= P (vj = 1|v<j)− vj (8.7)

∂C

∂bh
=

N∑
k=1

∂C

∂(bv)k
W:,khk(1− hk) (8.8)

∂C

∂W:,j

=
∂C

∂(bv)j
hj + vj

N∑
k=j+1

∂C

∂(bv)k
W:,khk(1− hk) (8.9)

In addition to the possibility of using HF for training, a tractable distribution

estimator is necessary to compare the probabilities of different output sequences

during inference.

8.2.3 The input/output RNN-RBM

The I/O RNN-RBM is a sequence of conditional RBMs (one at each time step)

whose parameters b
(t)
v , b

(t)
h ,W

(t) are time-dependent and depend on the sequence

history at time t, denoted A(t) ≡ {x(τ), v(τ)|τ < t} where {x(t)}, {v(t)} are re-

spectively the input and output sequences. Its graphical structure is depicted in

Figure 8.1. Note that by ignoring the input x, this model would reduce to the

RNN-RBM (Boulanger-Lewandowski et al., 2012b). The I/O RNN-RBM is for-

mally defined by its joint probability distribution:

P ({v(t)}) =
T∏
t=1

P (v(t)|A(t)) (8.10)

where the right-hand side multiplicand is the marginalized probability of the tth

RBM (eq. 8.2) or NADE (eq. 8.5).

Following our previous work, we will consider the case where only the biases

are variable:

b
(t)
h = bh +Wĥhĥ

(t−1) +Wxhx
(t) (8.11)

74

8.2 Proposed architecture

v(2)

...

...
v(T)

h(1) h(T)

...

v(1)

ĥ(1) ĥ(2) ĥ(T)ĥ(0)

h(2)

Wĥĥ

W
Wĥh

Wĥv

Wvĥ

x(1) x(2) x(T)

Wxĥ

Wxh

Wxv

...

R
N

N
R

B
M

s

Figure 8.1: Graphical structure of the I/O RNN-RBM. Single arrows represent a determinis-
tic function, double arrows represent the hidden-visible connections of an RBM, dotted arrows
represent optional connections for temporal smoothing. The x → {v, h} connections have been
omitted for clarity at each time step except the last.

b(t)
v = bv +Wĥvĥ

(t−1) +Wxvx
(t) (8.12)

where ĥ(t) are the hidden units of a single-layer RNN:

ĥ(t) = σ(Wvĥv
(t) +Wĥĥĥ

(t−1) +Wxĥx
(t) + bĥ) (8.13)

where the indices of weight matrices and bias vectors have obvious meanings. The

special case Wvĥ = 0 gives rise to a transcription network without temporal smooth-

ing. Gradient evaluation is based on the following general scheme:

1. Propagate the current values of the hidden units ĥ(t) in the RNN portion of

the graph using (8.13),

2. Calculate the RBM or NADE parameters that depend on ĥ(t), x(t) (eq. 8.11-

8.12) and obtain the log-likelihood gradient with respect to W , b
(t)
v and b

(t)
h

(eq. 8.4 or eq. 8.7-8.9),

3. Propagate the estimated gradient with respect to b
(t)
v , b

(t)
h backward through

time (BPTT) (Rumelhart et al., 1986a) to obtain the estimated gradient with

respect to the RNN parameters.

By setting W = 0, the I/O-RNN-RBM reduces to a regular RNN that can be

75

8.3 Inference

trained with the cross-entropy cost:

L({v(t)}) =
1

T

T∑
t=1

N∑
j=1

−v(t)
j log p

(t)
j − (1− v(t)

j) log(1− p(t)
j) (8.14)

where p(t) = σ(b
(t)
v) and equations (8.12) and (8.13) hold. We will use this model

as one of our baselines for comparison.

A potential difficulty with this training scenario stems from the fact that since

v is known during training, the model might (understandably) assign more weight

to the symbolic information than the acoustic information. This form of teacher

forcing during training could have dangerous consequences at test time, where the

model is autonomous and may not be able to recover from past mistakes. The

extent of this condition obviously depends on the ambiguousness of the audio and

the intrinsic predictability of the output sequences, and can also be controlled by

introducing noise to either x(τ) or v(τ), τ < t, or by adding the regularization terms

α(|Wxv|2 + |Wxh|2) + β(|Wĥv|2 + |Wĥh|2) to the objective function. It is trivial to

revise the stochastic gradient descent updates to take those penalties into account.

8.3 Inference

A distinctive feature of our architecture are the (optional) connections v → ĥ

that implicitly tie v(t) to its historyA(t) and encourage coherence between successive

output frames, and temporal smoothing in particular. At test time, predicting

one time step v(t) requires the knowledge of the previous decisions on v(τ) (for

τ < t) which are yet uncertain (not chosen optimally), and proceeding in a greedy

chronological manner does not necessarily yield configurations that maximize the

likelihood of the complete sequence 2. We rather favor a global search approach

analogous to the Viterbi algorithm for discrete-state HMMs. Since in the general

case the partition function of the tth RBM depends on A(t), comparing sequence

likelihoods becomes intractable, hence our use of the tractable NADE.

2. Note that without temporal smoothing (Wvĥ = 0), the v(t), 1 ≤ t ≤ T would be condition-
ally independent given x and the prediction could simply be obtained separately at each time
step t.

76

8.3 Inference

Algorithm 8.1 High-dimensional beam search

Find the most likely sequence {v(t), 1 ≤ t ≤ T} under a model m with beam width
w and branching factor K.

1: q ← min-priority queue
2: q.insert(0,m)
3: for t = 1 . . . T do
4: q′ ← min-priority queue of capacity w ?

5: while l,m← q.pop() do
6: for l′, v′ in m.find most probable(K) do
7: m′ ← m with v(t) := v′

8: q′.insert(l + l′,m′)
9: end for

10: end while
11: q ← q′

12: end for
13: return q.pop()

?A min-priority queue of fixed capacity w maintains (at most) the w highest values at
all times.

Our algorithm is a variant of beam search for high-dimensional sequences, with

beam width w and maximal branching factor K (Algorithm 8.1). Beam search is a

breadth-first tree search where only the w most promising paths (or nodes) at depth

t are kept for future examination. In our case, a node at depth t corresponds to a

subsequence of length t, and all descendants of that node are assumed to share the

same sequence history A(t+1); consequently, only v(t) is allowed to change among

siblings. This structure facilitates identifying the most promising paths by their

cumulative log-likelihood. For high-dimensional output however, any non-leaf node

has exponentially many children (2N), which in practice limits the exploration to

a fixed number K of siblings. This is necessary because enumerating the configu-

rations at a given time step by decreasing likelihood is intractable (e.g. for RBM

or NADE) and we must resort to stochastic search to form a pool of promising

children at each node. Stochastic search consists in drawing S samples of v(t)|A(t)

and keeping the K unique most probable configurations. This procedure usually

converges rapidly with S ' 10K samples, especially with strong biases coming

from the conditional terms. Note that w = 1 or K = 1 reduces to a greedy search,

and w = 2NT , K = 2N corresponds to an exhaustive breadth-first search.

77

8.3 Inference

When the output units v
(t)
j , 0 ≤ j < N are conditionally independent given

A(t), such as for a regular RNN (eq. 8.14), it is possible to enumerate configurations

by decreasing likelihood using a dynamic programming approach (Algorithm 8.2).

This very efficient algorithm in O(K logK +N logN) is based on linearly growing

priority queues, where K need not be specified in advance. Since inference is usually

the bottleneck of the computation, this optimization makes it possible to use much

higher beam widths w with unbounded branching factors for RNNs.

Algorithm 8.2 Independent outputs inference
Enumerate the K most probable configurations of N independent Bernoulli random
variables with parameters 0 < pi < 1.

1: v0 ← {i : pi ≥ 1/2}
2: l0 ←

∑
i log(max(pi, 1− pi))

3: yield l0, v0

4: Li ← | log pi
1−pi |

5: sort L, store corresponding permutation R
6: q ← min-priority queue
7: q.insert(L0, {0})
8: while l, v ← q.pop() do
9: yield l0 − l, v04R[v] ?

10: i← max(v)
11: if i+ 1 < N then
12: q.insert(l + Li+1, v ∪ {i+ 1})
13: q.insert(l + Li+1 − Li, v ∪ {i+ 1} \ {i})
14: end if
15: end while

?A4B ≡ (A ∪B) \ (A ∩B) denotes the symmetric difference of two sets. R[v] indicates
the R-permutation of indices in the set v.

A pathological condition that sometimes occurs with beam search over long

sequences (T � 200) is the exponential duplication of highly likely quasi-identical

paths differing only at a few time steps, that quickly saturate beam width with

essentially useless variations. Several strategies have been tried with moderate

success in those cases, such as committing to the most likely path every M time

steps (periodic restarts (Richter et al., 2010)), pruning similar paths, or pruning

paths with identical τ previous time steps (the local assumption), where τ is a

maximal time lag that the chosen architecture can reasonably describe (e.g. τ '
200 for RNNs trained with HF). It is also possible to initialize the search with

78

8.4 Experiments

Dataset HMM RNN-RBM Proposed

Piano-midi.de 59.5% 60.8% 64.1%
Nottingham 71.4% 77.1% 97.4%
MuseData 35.1% 44.7% 66.6%
JSB Chorales 72.0% 80.6% 91.7%

Table 8.1: Frame-level transcription accuracy obtained on four datasets by the Nam et al.
algorithm with HMM temporal smoothing (Nam et al., 2011), using the RNN-RBM musical
language model (Boulanger-Lewandowski et al., 2012b), or the proposed I/O RNN-NADE model.

Algorithm 8.1 then backtrack at each node iteratively, resulting in an anytime

algorithm (Zhou and Hansen, 2005).

8.4 Experiments

In the following experiments, the acoustic input x(t) is constituted of powerful

DBN-based learned representations (Nam et al., 2011). The magnitude spectro-

gram is first computed by the short-term Fourier transform using a 128 ms sliding

Blackman window truncated at 6 kHz, normalized and cube root compressed to

reduce the dynamic range. We apply PCA whitening to retain 99% of the training

data variance, yielding roughly 30–70% dimensionality reduction. A DBN is then

constructed by greedy layer-wise stacking of sparse RBMs trained in an unsuper-

vised way to model the previous hidden layer expectation (vl+1 ≡ E[hl|vl]) (Bengio,

2009). The whole network is finally finetuned with respect to a supervised criterion

(e.g. eq. 8.14) and the last layer is then used as our input x(t) for the spectrogram

frame at time t.

We evaluate our method on five datasets of varying complexity: Piano-midi.de,

Nottingham, MuseData and JSB chorales (see Boulanger-Lewandowski et al., 2012b)

which are rendered from piano and orchestral instrument soundfonts, and Poliner

and Ellis (2007) that comprises synthesized sounds and real recordings. We use

frame-level accuracy (Bay et al., 2009) for model evaluation. Hyperparameters are

selected by a random search (Bergstra and Bengio, 2012) on predefined intervals

to optimize validation set accuracy; final performance is reported on the test set.

79

8.4 Experiments

(a) White noise (b) Pink noise

− ∞ 0 2 4 6 8 10 12 14
SNR− 1 (dB)

0

20

40

60

80

100

ac
cu

ra
cy

(%
)

Bidirectional RNN RNN RNN + beam
I/O-RNN-NADE I/O-RNN-NADE + beam

(c) Masking noise (d) Spectral distortion

0 1 2 3 4 5 6
σ (semitones)

− ∞ 0 2 4 6 8 10 12 14
SNR− 1 (dB)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
fraction

0

20

40

60

80

100

ac
cu

ra
cy

(%
)

Figure 8.2: Robustness to different types of noise of various RNN-based models on the JSB
chorales dataset.

Table 8.1 compares the performance of the I/O RNN-RBM to the HMM base-

line (Nam et al., 2011) and the RNN-RBM hybrid approach (Boulanger-Lewandowski

et al., 2012b) on four datasets. Contrarily to the product of experts of (Boulanger-

Lewandowski et al., 2012b), our model is jointly trained, which eliminates duplicate

contributions to the energy function and the related increase in marginals tempera-

ture, and provides much better performance on all datasets, approximately halving

the error rate in average over these datasets.

We now assess the robustness of our algorithm to different types of noise: white

noise, pink noise, masking noise and spectral distortion. In masking noise, parts of

the signal of exponentially distributed length (µ = 0.4 s) are randomly destroyed

(Vincent et al., 2008); spectral distortion consists in Gaussian pitch shifts of ampli-

80

8.5 Conclusions

SONIC (Marolt, 2004) 39.6%
Note events + HMM (Ryynänen and Klapuri, 2005) 46.6%
Linear SVM (Poliner and Ellis, 2007) 67.7%
DBN + SVM (Nam et al., 2011) 72.5%
BLSTM RNN (Böck and Schedl, 2012) 75.2%
AdaBoost cascade (Boogaart and Lienhart, 2009) 75.2%
I/O-RNN-NADE 79.1%

Table 8.2: Frame-level accuracy of existing transcription methods on the Poliner and Ellis (2007)
dataset.

tude σ (Palomäki et al., 2004). The first two types are simplest because a network

can recover from them by averaging neighboring spectrogram frames (e.g. Kalman

smoothing), whereas the last two time-coherent types require higher-level musical

understanding. We compare a bidirectional RNN (Böck and Schedl, 2012) adapted

for frame-level transcription, a regular RNN with v → ĥ connections (w = 2000)

and the I/O RNN-NADE (w = 50, K = 10). Figure 8.2 illustrates the impor-

tance of temporal smoothing connections and the additional advantage provided

by conditional distribution estimators. Beam search is responsible for a 0.5% to

18% increase in accuracy over a greedy search (w = 1).

Figure 8.3 shows transcribed piano-rolls for various RNNs on an excerpt of

Bach’s chorale Es ist genug with 6 dB pink noise (Fig. 8.3(a)). We observe

that a bidirectional RNN is unable to perform temporal smoothing on its own

(Fig. 8.3(b)), and that even a post-processed version (Fig. 8.3(c)) can be improved

by our global search algorithm (Fig. 8.3(d)). Our best model offers an even more

musically plausible transcription (Fig. 8.3(e)). Finally, we compare the transcrip-

tion accuracy of common methods on the Poliner & Ellis (Poliner and Ellis, 2007)

dataset in Table 8.2, that highlights impressive performance.

8.5 Conclusions

We presented an input/output model for high-dimensional sequence transduc-

tion in the context of polyphonic music transcription. Our model can learn basic

musical properties such as temporal continuity, harmony and rhythm, and effi-

ciently search for the most musically plausible transcriptions when the audio signal

81

8.5 Conclusions

is partially destroyed, distorted or temporarily inaudible. Conditional distribution

estimators are important in this context to accurately describe the density of mul-

tiple potential paths given the weakly discriminative audio. This ability translates

well to the transcription of“clean”signals where instruments may still be buried and

notes occluded due to interference, ambient noise or imperfect recording techniques.

Our algorithm approximately halves the error rate with respect to competing meth-

ods on five polyphonic datasets based on frame-level accuracy. Qualitative testing

also suggests that a more musically relevant metric would enhance the advantage

of our model, since transcription errors often constitute reasonable alternatives.

82

8.5 Conclusions

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

fr
eq

ue
nc

y
(k
H
z)

(a)

55

60

65

70

75

80

85

90

95

M
ID

I
no

te
nu

m
be

r

(b)

55

60

65

70

75

80

85

90

95

M
ID

I
no

te
nu

m
be

r

(c)

55

60

65

70

75

80

85

90

95

M
ID

I
no

te
nu

m
be

r

(d)

5 10 15 20 25 30 35 40
time (s)

55

60

65

70

75

80

85

90

95

M
ID

I
no

te
nu

m
be

r

(e)

Figure 8.3: Demonstration of temporal smoothing on an excerpt of Bach’s chorale Es ist genug
(BWV 60.5) with 6 dB pink noise. Figure shows (a) the raw magnitude spectrogram, and tran-
scriptions by (b) a bidirectional RNN, (c) a bidirectional RNN with HMM post-processing, (d) an

RNN with v → ĥ connections (w = 75) and (e) I/O-RNN-NADE (w = 20, K = 10). Predicted
piano-rolls (black) are interleaved with the ground-truth (white) for comparison.

83

9 Prologue to Fourth Article

9.1 Article Details

Audio Chord Recognition with Recurrent Neural Networks

Nicolas Boulanger-Lewandowski, Yoshua Bengio and Pascal Vincent

Published in Proceedings of the 14th International Society for Music Information

Retrieval Conference (ISMIR) in 2013.

9.2 Context

In this chapter, we apply the transduction framework developed in Chapter 8

to the task of recognizing chords from audio music, an active area of research in

music information retrieval (Mauch, 2010; Harte, 2010). Contrarily to polyphonic

transcription, the target sequence is over a dictionary of predefined chord labels,

which imply a correspondence to the pitch classes present in the music but allows

some room for error in the evaluation of the detected fundamental frequencies. Our

RNN-based transduction framework is thus well suited for this task.

To compete with the state of the art, we will feed our RNN the most discrim-

inative features possible obtained with deep neural networks. Deep learning has

already been applied successfully to music (Hamel and Eck, 2010; Humphrey and

Bello, 2012; Nam et al., 2011) and speech (Hinton et al., 2012) audio, and we will

employ powerful enhancements with the use of multiscale aggregated features to

describe contextual information (Bergstra et al., 2006), as well as a novel way to

exploit prior information present in the chord label definitions to encourage the

network to learn useful intermediate representations (Gülçehre and Bengio, 2013).

We also address a pathological condition that sometimes occurs with beam

search when highly likely quasi-identical candidates surface at the top of the beam

9.3 Contributions

and saturate it. Those quasi-identical candidates typically differ only at a few

time steps, e.g. due to a chord transition occuring infinitesimally earlier or later

than in the next candidate, and tend to duplicate exponentially in the length T ′

of the sequence history. This causes less immediately promising but fundamentally

different paths to be discarded prematurely, as well as requiring very large beams

(e.g. w > 1000) in order to get optimal accuracy, which slows down the overall

method.

9.3 Contributions

Our first contribution is the development of a comprehensive RNN-based sys-

tem for chord recognition and the realization of experiments that demonstrate a

performance competitive with the state of the art on the MIREX dataset. The

second contribution is our proposed method to exploit the prior information con-

tained in the active pitch classes present in each chord label by fine-tuning the DBN

in two passes: first with respect to the intermediate targets, then with respect to

the chord labels. Our third and most significant contribution is the development

and validation of the dynamic programming-like beam search pruning technique

presented in Section 10.4.3. It allows real-time decoding in live situations while ac-

tually increasing recognition accuracy, which is a drastic improvement over regular

beam search.

9.4 Recent Developments

The dynamic programming inference algorithm introduced in this chapter will

be reused and extended in the speech recognition system presented in Chapter 12.

The current approach still suffers from the label bias and teacher forcing problems

encountered in the preceding article (Chapter 8) and uses similar tricks of out-

put noise and weight regularization to mitigate them. A proper solution to these

problems will be investigated in Chapter 12.

85

10
Audio Chord Recognition
with Recurrent Neural
Networks

In this paper, we present an audio chord recognition system based on a recur-

rent neural network. The audio features are obtained from a deep neural net-

work optimized with a combination of chromagram targets and chord information,

and aggregated over different time scales. Contrarily to other existing approaches,

our system incorporates acoustic and musicological models under a single training

objective. We devise an efficient algorithm to search for the global mode of the

output distribution while taking long-term dependencies into account. The result-

ing method is competitive with state-of-the-art approaches on the MIREX dataset

in the major/minor prediction task.

10.1 Introduction

Automatic recognition of chords from audio music is an active area of research

in music information retrieval (Mauch, 2010; Harte, 2010). Existing approaches are

commonly based on two fundamental modules: (1) an acoustic model that focuses

on the discriminative aspect of the audio signal, and (2) a musicological, or language

model that attempts to describe the temporal dependencies associated with the

sequence of chord labels, e.g. harmonic progression and temporal continuity. In

this paper, we design a chord recognition system that combines the acoustic and

language models under a unified training objective using the sequence transduction

framework (Graves, 2012; Boulanger-Lewandowski et al., 2013b). More precisely,

we introduce a probabilistic model based on a recurrent neural network that is

able to learn realistic output distributions given the input, that can be trained

automatically from examples of audio sequences and time-aligned chord labels.

Following recent advances in training deep neural networks (Bengio, 2009) and

its successful application to chord recognition (Humphrey and Bello, 2012), music

10.1 Introduction

annotation and auto-tagging (Hamel and Eck, 2010), polyphonic music transcrip-

tion (Nam et al., 2011) and speech recognition (Hinton et al., 2012), we will exploit

the power of deep architectures to extract features from the audio signals. This

pre-processing step will ensure we feed the most discriminative features possible to

our transduction network. A popular enhancement that we also employ consists in

the use of multiscale aggregated features to describe context information (Bergstra

et al., 2006; Hamel et al., 2012; Dahl et al., 2012). We also exploit prior informa-

tion (Gülçehre and Bengio, 2013) in the form of pitch class targets derived from

chord labels, known to be a useful intermediate representation for chord recognition

(e.g. (Chen et al., 2012)).

Recurrent neural networks (RNN) (Rumelhart et al., 1986a) are powerful dy-

namical systems that incorporate an internal memory, or hidden state, represented

by a self-connected layer of neurons. This property makes them well suited to

model temporal sequences, such as frames in a magnitude spectrogram or chord

labels in a harmonic progression, by being trained to predict the output at the

next time step given the previous ones. RNNs are completely general in that in

principle they can describe arbitrarily complex long-term temporal dependencies,

which made them very successful in music applications (Mozer, 1994; Eck and

Schmidhuber, 2002; Boulanger-Lewandowski et al., 2012b; Böck and Schedl, 2012;

Boulanger-Lewandowski et al., 2013b). While RNN-based musical language mod-

els significantly surpass popular alternatives like hidden Markov models (HMM)

(Boulanger-Lewandowski et al., 2012b) and offer a principled way to combine the

acoustic and language models(Boulanger-Lewandowski et al., 2013b), existing in-

ference procedures are time-consuming and suffer from various problems that make

it difficult to obtain accurate predictions. In this paper, we propose an inference

method similar to Viterbi decoding that preserves the predictive power of the prob-

abilistic model, and that is both more efficient and accurate than alternatives.

The remainder of this paper is organized as follows. In Section 10.2, we present

our feature extraction pipeline based on deep learning. In Sections 10.3 and 10.4

we introduce the recurrent neural network model and the proposed inference pro-

cedure. We describe our experiments and evaluate our method in Section 10.5.

87

10.2 Learning deep audio features

h1

y(t)

W0

v(t)

RBM 1

Output

h2

W1 RBM 2

Prediction

ỹ(t)Audio Signal

Spectrogram

PCA

Figure 10.1: Pre-processing pipeline to learn deep audio features with intermediate targets
z(t), z̃(t). Single arrows represent a deterministic function, double-ended arrows represent the
hidden-visible connections of an RBM.

10.2 Learning deep audio features

10.2.1 Overview

The overall feature extraction pipeline is depicted in Figure 10.1. The mag-

nitude spectrogram is first computed by the short-term Fourier transform using

a 500 ms sliding Blackman window truncated at 4 kHz with hop size 64 ms and

zero-padded to produce a high-resolution feature vector of length 1400 at each time

step, L2 normalized and square root compressed to reduce the dynamic range. Due

to the following pre-processing steps, we found that a mel scale conversion was

unnecessary at this point. We apply PCA whitening to retain 99% of the training

data variance, yielding roughly 30–35% dimensionality reduction. The resulting

whitened vectors v(t) (one at each time step) are used as input to our DBN.

10.2.2 Deep belief networks

The idea of deep learning is to automatically construct increasingly complex

abstractions based on lower-level concepts. For example, predicting a chord label

from an audio excerpt might understandably prerequire estimating active pitches,

which in turn might depend on detecting peaks in the spectrogram. This hierarchy

of factors is not unique to music but also appears in vision, natural language and

88

10.2 Learning deep audio features

other domains (Bengio, 2009).

Due to the highly non-linear functions involved, deep networks are difficult to

train directly by stochastic gradient descent. A successful strategy to reduce these

difficulties consists in pre-training each layer successively in an unsupervised way

to model the previous layer expectation. In this work, we use restricted Boltzmann

machines (RBM) (Smolensky, 1986) to model the joint distribution of the previous

layer’s units in a deep belief network (DBN) (Hinton et al., 2006) (not to be confused

with a dynamic Bayesian network).

The observed vector v(t) ≡ h0 (input at time step t) is transformed into the

hidden vector h1, which is then fixed to obtain the hidden vector h2, and so on in

a greedy way. Layers compute their representation as:

hl+1 = σ(Wlhl + bl) (10.1)

for layer l, 0 ≤ l < D where D is the depth of the network, σ(x) ≡ (1+e−x)−1 is the

element-wise logistic sigmoid function and Wl, bl are respectively the weight and

bias parameters for layer l. The whole network is finally fine-tuned with respect to

a supervised criterion such as the cross-entropy cost:

L(v(t), z(t)) = −
N∑
j=1

z
(t)
j log y

(t)
j + (1− z(t)

j) log(1− y(t)
j) (10.2)

where y(t) ≡ hD is the prediction obtained at the topmost layer and z(t) ∈ {0, 1}N

is a binary vector serving as a target at time step t. Note that in the general

multi-label framework, the target z(t) can have multiple active elements at a given

time step.

10.2.3 Exploiting prior information

During fine-tuning, it is possible to utilize prior information to guide optimiza-

tion of the network by providing different variables, or intermediate targets, to be

predicted at different stages of training (Gülçehre and Bengio, 2013). Intermediate

targets are lower-level factors that the network should learn first in order to succeed

at more complex tasks. For example, chord recognition is much easier if the active

pitch classes, or chromagram targets, are known. Note that it is straightforward to

89

10.2 Learning deep audio features

transform chord labels z(t) into chromagram targets z̃(t) and vice versa using music

theory. Our strategy to encourage the network to learn this prior information is

to conduct fine-tuning with respect to z̃(t) in a first phase then with respect to z(t)

in a second phase, with all parameters Wl, bl except for the last layer preserved

between phases.

While a DBN trained with target z(t) can readily predict chord labels, we will

rather use the last hidden layer h
(t)
D−1 as input x(t) to our RNN in order to take

temporal information into account.

10.2.4 Context

We can further help the DBN to utilize temporal information by directly sup-

plementing it with tap delays and context information. The retained strategy is to

provide the network with aggregated features x̄, x̃ (Bergstra et al., 2006) computed

over windows of varying sizes L (Hamel et al., 2012) and offsets τ relative to the

current time step t:

x̄(t) =
{ b(L−1)/2c∑

∆t=−bL/2c

x(t−τ+∆t),∀(L, τ)
}

(10.3)

x̃(t) =
{ b(L−1)/2c∑

∆t=−bL/2c

(x(t−τ+∆t) − x̄(t)
L,τ)

2,∀(L, τ)
}

(10.4)

for mean and variance pooling, where the sums are taken element-wise and the

resulting vectors concatenated, and L, τ are taken from a predefined list that op-

tionally contains the original input (L = 1, τ = 0). This strategy is applicable to

frame-level classifiers such as the last layer of a DBN, and will enable fair compar-

isons with temporal models.

90

10.3 Recurrent neural networks

z(2) ...
z(T)

...

z(1)

h(1) h(2) h(T)h(0)
Whh

Whz

Wzh

x(1) x(2) x(T)

Wxh

Wxz

...

Figure 10.2: Graphical structure of the RNN. Single arrows represent a deterministic function,
dotted arrows represent optional connections for temporal smoothing, dashed arrows represent a
prediction. The x → z connections have been omitted for clarity at each time step except the
last.

10.3 Recurrent neural networks

10.3.1 Definition

The RNN formally defines the conditional distribution of the output z given

the input x:

P (z|x) =
T∏
t=1

P (z(t)|A(t)) (10.5)

where A(t) ≡ {x, z(τ)|τ < t} is the sequence history at time t, x ≡ {x(t)} and

z ≡ {z(t) ∈ C} are respectively the input and output sequences (both are given

during supervised training), C is the dictionary of possible chord labels (|C| = N),

and P (z(t)|A(t)) is the conditional probability of observing z(t) according to the

model, defined below in equation (10.9).

A single-layer RNN with hidden units h(t) is defined by its recurrence relation:

h(t) = σ(Wzhz
(t) +Whhh

(t−1) +Wxhx
(t) + bh) (10.6)

where the indices of weight matrices and bias vectors have obvious meanings. Its

graphical structure is illustrated in Figure 10.2.

The prediction y(t) is obtained from the hidden units at the previous time step

h(t−1) and the current observation x(t):

y(t) = s(Whzh
(t−1) +Wxzx

(t) + bz) (10.7)

91

10.3 Recurrent neural networks

where s(a) is the softmax function of an activation vector a:

(s(a))j ≡
exp(aj)∑N
j′=1 exp(aj′)

, (10.8)

and should be as close as possible to the target vector z(t). In recognition problems

with several classes, such as chord recognition, the target is a one-hot vector and

the likelihood of an observation is given by the dot product:

P (z(t)|A(t)) = z(t) · y(t). (10.9)

10.3.2 Training

The RNN model can be trained by maximum likelihood with the following cost

(replacing eq. 10.2):

L(x, z) = −
T∑
t=1

log(z(t) · y(t)) (10.10)

where the gradient with respect to the model parameters is obtained by backprop-

agation through time (BPTT) (Rumelhart et al., 1986a).

While in principle a properly trained RNN can describe arbitrarily complex

temporal dependencies at multiple time scales, in practice gradient-based training

suffers from various pathologies (Bengio et al., 1994). Several strategies can be

used to help reduce these difficulties including gradient clipping, leaky integration,

sparsity and Nesterov momentum (Bengio et al., 2013).

It may seem strange that the z(t) variable acts both as a target to the prediction

y(t) and as an input to the RNN. How will these labels be obtained to drive the

network during testing? In the transduction framework (Graves, 2012; Boulanger-

Lewandowski et al., 2013b), the objective is to infer the sequence {z(t)∗} with

maximal probability given the input. The search for a global optimum is a difficult

problem addressed in the next section. Note that the connections z → h are

responsible for temporal smoothing by forcing the predictions y(t) to be consistent

with the previous decisions {z(τ)|τ < t}. The special case Wzh = 0 gives rise to a

recognition network without temporal smoothing.

A potential difficulty with this training scenario stems from the fact that since

z is known during training, the model might (understandably) assign more weight

92

10.4 Inference

to the symbolic information than the acoustic information. This form of teacher

forcing during training could have dangerous consequences at test time, where

the model is autonomous and may not be able to recover from past mistakes.

The extent of this condition can be partly controlled by adding the regularization

terms α(|Wxz|2 + |Wxh|2) + β(|Whz|2 + |Whh|2) to the objective function, where

the hyperparameters α and β are weighting coefficients. It is trivial to revise the

stochastic gradient descent updates to take those penalties into account.

10.4 Inference

A distinctive feature of our architecture are the (optional) connections z → h

that implicitly tie z(t) to its historyA(t) and encourage coherence between successive

output frames, and temporal smoothing in particular. At test time, predicting

one time step z(t) requires the knowledge of the previous decisions on z(τ) (for

τ < t) which are yet uncertain (not chosen optimally), and proceeding in a greedy

chronological manner does not necessarily yield configurations that maximize the

likelihood of the complete sequence. We rather favor a global search approach

analogous to the Viterbi algorithm for discrete-state HMMs.

10.4.1 Viterbi decoding

The simplest form of temporal smoothing is to use an HMM on top of a frame-

level classifier. The HMM is a directed graphical model defined by its conditional

independence relations:

P (x(t)|{x(τ), τ 6= t}, z) = P (x(t)|z(t)) (10.11)

P (z(t)|{z(τ), τ < t}) = P (z(t)|z(t−1)) (10.12)

where the emission probability can be formulated using Bayes’ rule (Hinton et al.,

2012):

P (x(t)|z(t)) ∝ P (z(t)|x(t))

P (z(t))
(10.13)

93

10.4 Inference

where P (z(t)|x(t)) is the output of the classifier and constant terms given x have

been removed. Since the resulting joint distribution

P (z(t), x(t)|{z(τ), τ < t}) ∝ P (z(t)|x(t))

P (z(t))
P (z(t)|z(t−1)) (10.14)

depends only on z(t−1), it is easy to derive a recurrence relation to optimize z∗ by

dynamic programming, giving rise to the well-known Viterbi algorithm.

10.4.2 Beam search

An established algorithm for sequence transduction with RNNs is beam search

(Algorithm 10.1) (Graves, 2012; Boulanger-Lewandowski et al., 2013b). Beam

search is a breadth-first tree search where only the w most promising paths (or

nodes) at depth t are kept for future examination. In our case, a node at depth t

corresponds to a subsequence of length t, and all descendants of that node are as-

sumed to share the same sequence history A(t+1); consequently, only z(t) is allowed

to change among siblings. This structure facilitates identifying the most promising

paths by their cumulative log-likelihood. Note that w = 1 reduces to a greedy

search, and w = NT corresponds to an exhaustive breadth-first search.

Algorithm 10.1 Beam search

Find the most likely sequence {z(t) ∈ C|1 ≤ t ≤ T} given x with beam width
w ≤ NT .

1: q ← priority queue
2: q.insert(0, {})
3: for t = 1 . . . T do
4: q′ ← priority queue of capacity w ?

5: for z in C do
6: for l, s in q do
7: q′.insert(l + logP (z(t) = z|x, s), {s, z})
8: end for
9: end for

10: q ← q′

11: end for
12: return q.max()

?A priority queue of fixed capacity w maintains (at most) the w highest values at all
times.

94

10.4 Inference

10.4.3 Dynamic programming

A pathological condition that sometimes occurs with beam search is the expo-

nential duplication of highly likely quasi-identical paths differing only at a few time

steps, that quickly saturate beam width with essentially useless variations. In that

context, we propose a natural extension to beam search that makes a better use

of the available width w and results in better performance. The idea is to make a

trade-off between an RNN for which z(t) fully depends on A(t) but exact inference

is intractable, and an HMM for which z(t) explicitly depends only on z(t−1) but

exact inference is in O(TN2).

We hypothesize that it is sufficient to consider only the most promising path out

of all partial paths with identical z(t) when making a decision at time t. Under this

assumption, any subsequence {z(t)∗|t ≤ T ′} of the global optimum {z(t)∗} ending

at time T ′ < T must also be optimal under the constraint z(T ′) = z(T ′)∗. Note

that relaxing this last constraint (i.e. assuming that subsequences of the global

optimum are always optimal) would lead to a greedy solution. Setting T ′ = T − 1

leads to the dynamic programming-like (DP) solution of keeping track of the N

most likely paths arriving at each possible label j ∈ C with the recurrence relation:

l
(t)
j = l

(t−1)

k
(t)
j

+ logP (z(t) = j|x, s(t−1)

k
(t)
j

) (10.15)

s
(t)
j = {s(t−1)

k
(t)
j

, j} (10.16)

with k
(t)
j ≡

N
argmax

k=1

[
l
(t−1)
k + logP (z(t) = j|x, s(t−1)

k)
]

(10.17)

and initial conditions l
(0)
j = 0, s

(0)
j = {}, where the variables l

(t)
j , s

(t)
j represent re-

spectively the maximal cumulative log-likelihood and the associated partial output

sequence ending with label j at time t (Algorithm 10.2). It is also possible to keep

only the w ≤ N most promising paths to mimic an effective beam width and to

make the algorithm very similar to beam search.

It should not be misconstrued that the algorithm is limited to “local” or greedy

decisions for two reasons: (1) the complete sequence history A(t) is relevant for

the prediction y(t) at time t, and (2) a decision z(t)∗ at time t can be affected by

an observation x(t+δt) arbitrarily far in the future via backtracking, analogously to

Viterbi decoding. Note also that the algorithm obviously does not guarantee a

95

10.5 Experiments

Algorithm 10.2 Dynamic programming inference

Find the most likely sequence {z(t) ∈ C|1 ≤ t ≤ T} given x with effective width
w ≤ N .

1: q ← priority queue
2: q.insert(0, {})
3: for t = 1 . . . T do
4: q′ ← priority queue of capacity w
5: for z in C do
6: l, s← argmax(l,s)∈q

[
l + logP (z(t) = z|x, s)

]
7: q′.insert(l + logP (z(t) = z|x, s), {s, z})
8: end for
9: q ← q′

10: end for
11: return q.max()

globally optimal solution z∗, but is referred to as DP due to its strong similarity to

the Viterbi recurrence relations.

10.5 Experiments

10.5.1 Setup

This section describes experiments conducted on the dataset used in the MIREX

audio chord estimation task 1. Ground truth time-aligned chord symbols were

mapped to the major/minor and full chord dictionaries comprising respectively

25 and 121 chord labels:

• Cmajmin ≡ {N} ∪ {maj, min} × S,

• Cfull ≡ {N}∪ {maj, min, maj/3, maj/5, maj6, maj7, min7, 7, dim, aug}×S,

where S represents the 12 pitch classes and ‘N’ is the no-chord label (Harte, 2010;

Mauch, 2010). This allows us to evaluate our algorithm at different precision levels.

Evaluation at the major/minor level is based on chord overlap ratio (OR) and

weighted average OR (WAOR), standard denominations for the average frame-level

accuracy (Ni et al., 2012; Mauch and Dixon, 2010).

1. http://www.music-ir.org/mirex/wiki/2012:Audio_Chord_Estimation

96

http://www.music-ir.org/mirex/wiki/2012:Audio_Chord_Estimation

10.5 Experiments

Results are reported using 3-fold cross-validation. For each of the 3 partitions,

25% of the training sequences are randomly selected and held out for validation.

The hyperparameters of each model are selected over predetermined search grids

to maximize validation accuracy and we report the final performance on the test

set. In all experiments, we use 2 hidden layers of 200 units for the DBN, 100

hidden units for the RNN, and 8 pooling windows with 1 ≤ L ≤ 120 s during

pre-processing.

In order to compare our method against MIREX pre-trained systems, we also

train and test our model on the whole dataset. It should be noted that this scenario

is strongly prone to overfitting: from a machine learning perspective, it is trivial

to design a non-parametric model performing at 100% accuracy. The objective is

to contrast our results to previously published data, to analyze our models trained

with equivalent features, and to provide an upper bound on the performance of the

system.

10.5.2 Results

In Table 10.1, we present the cross-validation accuracies obtained on the MIREX

dataset at the major/minor level using a DBN fine-tuned with chord labels z (DBN-

1) and with chromagram intermediate targets z̃ and chord labels z (DBN-2), in

addition to an RNN with DP inference. The DBN predictions are either not post-

processed, smoothed with a Gaussian kernel (σ = 760 ms) or decoded with an

HMM. The HPA (Ni et al., 2012) and DHMM (Chen et al., 2012) state-of-the-art

methods are also provided for comparison.

It is clear that optimizing the DBN with chromagram intermediate targets ulti-

mately increases the accuracy of the classifier, and that the RNN outperforms the

simpler models in both OR and WAOR. We also observe that kernel smoothing

(a simple form of low-pass filtering) surprisingly outperforms the more sophisti-

cated HMM approach. As argued previously (Brown, 1987), the relatively poor

performance of the HMM may be due to the context information added to the

input x(t) in equations (10.3-10.4). When the input includes information from

neighboring frames, the independence property (10.11) breaks down, making it

difficult to combine the classifier with the language model in equation (10.14).

Intuitively, multiplying the predictions P (z(t)|x(t)) and P (z(t)|z(t−1)) to estimate

97

10.5 Experiments

Model Smoothing OR WAOR

None 65.8% 65.2%
DBN-1 Kernel 75.2% 74.6%

HMM 74.3% 74.2%
None 68.0% 67.3%

DBN-2 Kernel 78.1% 77.6%
HMM 77.3% 77.2%

RNN DP 80.6% 80.4%
HPA (Ni et al., 2012) HMM 79.4% 78.8%
DHMM (Chen et al., 2012) HMM N/A 84.2%†

Table 10.1: Cross-validation accuracies obtained on the MIREX dataset using a DBN fine-
tuned with chord labels z (DBN-1) and with chromagram intermediate targets z̃ and chord labels
z (DBN-2), an RNN with DP inference, and the HPA (Ni et al., 2012) and DHMM (Chen et al.,
2012) state-of-the-art methods. †4-fold cross-validation result taken from (Chen et al., 2012).

the joint distribution will count certain factors twice since both models have been

trained separately. The RNN addresses this issue by directly predicting the prob-

ability P (z(t)|A(t)) needed during inference.

We now present a comparison between pre-trained models in the MIREX ma-

jor/minor task (Table 10.2), where the superiority of the RNN to the DBN-2 is

apparent. The RNN also outperforms competing approaches, demonstrating a high

flexibility in describing temporal dependencies. Similar results can be observed at

the full chord level with 121 labels (not shown).

Method OR WAOR

Chordino (Mauch and Dixon, 2010) 80.2% 79.5%
GMM + HMM (Khadkevich and Omologo, 2011) 82.9% 81.6%
HPA (Ni et al., 2012) 83.5% 82.7%
Proposed (DBN-2) 89.5% 89.8%
Proposed (RNN) 93.5% 93.6%

Table 10.2: Chord recognition performance (training error) of different methods pre-trained on
the MIREX dataset.

To illustrate the computational advantage of DP inference over beam search,

we plot the WAOR as a function of beam width w for both algorithms. Figure 10.3

shows that maximal accuracy is reached with a much lower width for DP (w∗ '
10) than for beam search (w∗ > 500). The former can be run in 10 minutes

on a single processor while the latter requires 38 hours for the whole dataset.

98

10.6 Conclusion

While the time complexity of our algorithm is O(TNw) versus O(TNw logw) for

beam search, the performance gain can be mainly attributed to the possibility of

significantly reducing w while preserving high accuracy. This is due to an efficient

pruning of similar paths ending at z(t), presumably because the hypothesis stated

in Section 10.4.3 holds well in practice.

100 101 102 103

beam width w

82

84

86

88

90

92

94
W

A
O

R
(%

)

RNN + beam
RNN + DP

Figure 10.3: WAOR obtained on the MIREX dataset with the beam search and dynamic
programming algorithms as a function of the (effective) beam width w.

10.6 Conclusion

We presented a comprehensive system for automatic chord recognition from au-

dio music, that is competitive with existing state-of-the-art approaches. Our RNN

model can learn basic musical properties such as temporal continuity, harmony and

temporal dynamics, and efficiently search for the most musically plausible chord

sequences when the audio signal is ambiguous, noisy or weakly discriminative. Our

DP algorithm enables real-time decoding in live situations and would also be ap-

plicable to speech recognition.

99

11 Prologue to Fifth Article

11.1 Article Details

Phone Sequence Modeling with Recurrent Neural Networks

Nicolas Boulanger-Lewandowski, Jasha Droppo, Mike Seltzer and Dong Yu

Published in Proceedings of the 39th International Conference on Acoustics, Speech,

and Signal Processing (ICASSP) in 2014.

11.2 Context

In this chapter, we investigate phone sequence modeling with RNNs for speech

recognition. Existing speech recognition systems commonly comprise three fun-

damental modules: an acoustic model, a phonetic model and a language model.

Traditionally, an HMM is stacked on top of a frame-level classifier (e.g. Dahl et al.,

2012), which translates into an implicit N-gram phonetic model. This simple ap-

proach leaves much room for improvement, but it is not clear how important a

robust phonetic model really is in complementarity to powerful acoustic and lan-

guage models. Efficiency of decoding is also a determining factor for an RNN-based

solution.

The label bias problem (McCallum et al., 2000) could be partially controlled

with output noise and weight regularization in Chapters 8 and 10 but could never

be eliminated completely. Several approaches have been proposed to circumvent

this problem, such as conditional random fields (Lafferty et al., 2001) or modeling

unaligned phonetic sequences with an implicit exponential duration model (Graves,

2012; Graves et al., 2013). We propose a generalization of the HMM that naturally

enforces a proper weighting of the acoustic and symbolic predictors and allows the

11.3 Contributions

probability flow of a candidate solution to vary according to the acoustic observa-

tions (Lafferty et al., 2001), eliminating the label bias problem.

A practical difference with the chord recognition task tackled in Chapter 10 is

that time alignments are usually not provided in ground truth phone sequences,

i.e. the precise onset and duration of each phone is unknown. This requires the

development of a fast optimal alignment procedure to be used during training.

11.3 Contributions

We propose a hybrid architecture to combine an RNN phonetic model with an

arbitrary frame-level acoustic classifier such as a DNN in a way that circumvents

the label bias problem, and we provide efficient procedures for training via hard

expectation-maximization, decoding via pruned beam search and optimal align-

ment via a two-pass dynamic programming algorithm. The decoding algorithm

has the same time complexity (and similar run time) as Viterbi, and leads to im-

provements of 2–10% in phone accuracy and 3% in word error rate on the TIMIT

and Switchboard-mini datasets in complementarity to a DNN acoustic classifier and

3-gram language model. This suggests that phone sequence modeling is an essen-

tial component of speech recognition and that RNNs can readily replace HMMs in

current state-of-the-art systems, such as those obtained with dropout (Dahl et al.,

2013).

Note that the product of model probabilities in equation (12.12) is similar in

spirit but technically different than the product of experts in equation (4.23) be-

cause in the current chapter the resulting product is not renormalized, which is key

to avoid the label bias problem.

11.4 Recent Developments

This paper will be presented at ICASSP in May 2014.

101

12
Phone sequence modeling
with recurrent neural
networks

In this paper, we investigate phone sequence modeling with recurrent neural

networks in the context of speech recognition. We introduce a hybrid architec-

ture that combines a phonetic model with an arbitrary frame-level acoustic model

and we propose efficient algorithms for training, decoding and sequence alignment.

We evaluate the advantage of our phonetic model on the TIMIT and Switchboard-

mini datasets in complementarity to a powerful context-dependent deep neural

network (DNN) acoustic classifier and a higher-level 3-gram language model. Con-

sistent improvements of 2–10% in phone accuracy and 3% in word error rate suggest

that our approach can readily replace HMMs in current state-of-the-art systems.

12.1 Introduction

Automatic speech recognition is an active area of research in the signal process-

ing and machine learning communities (Baker et al., 2009). Existing approaches

are commonly based on three fundamental modules: (1) an acoustic model that

focuses on the discriminative aspect of the audio signal, (2) a phonetic model that

attempts to describe the temporal dependencies associated with the sequence of

phone labels, and (3) a language model that describes the higher-level dependen-

cies between words and sentences. In this work, we wish to replace the popular

hidden Markov model (HMM) approach with a more powerful neural network-based

phonetic model.

Recurrent neural networks (RNN) (Rumelhart et al., 1986a) are powerful dy-

namical systems that incorporate an internal memory, or hidden state, represented

by a self-connected layer of neurons. This property makes them well suited to model

temporal sequences, such as frames in a magnitude spectrogram or phone labels in

a spoken utterance, by being trained to predict the output at the next time step

12.1 Introduction

given the previous ones. RNNs are completely general in that in principle they can

describe arbitrarily complex long-term temporal dependencies, which made them

very successful in music and language applications (Boulanger-Lewandowski et al.,

2012b; Mikolov et al., 2011; Bengio et al., 2013).

While RNN-based language models significantly surpass popular alternatives

like HMMs, it is not immediately obvious how to combine the acoustic and pho-

netic models under a single training objective. The simple approach of multiplying

the predictions of both models before renormalizing as in a maximum entropy

Markov model (McCallum et al., 2000) often results in the so-called label bias

problem where the symbolic information overwhelms the acoustic information in

low-entropy sequences with frequently reoccuring symbols (Lafferty et al., 2001).

Several attempts have been made to reduce those difficulties, such as with con-

ditional random fields (Lafferty et al., 2001), regularization of the symbolic and

acoustic sources (Boulanger-Lewandowski et al., 2013b), by increasing the entropy

per time step with a lower temporal resolution (Boulanger-Lewandowski et al.,

2013a), modeling unaligned phonetic sequences with an implicit exponential dura-

tion model (Graves, 2012; Graves et al., 2013), or with the popular approach of

stacking an HMM on top of a frame-level classifier (e.g. (Dahl et al., 2012)). In

this paper, we propose an alternative approach that enforces a proper weighting of

the acoustic and symbolic predictors and allows the probability flow of a candidate

solution to vary according to the acoustic observations (Lafferty et al., 2001). Our

hybrid architecture is a generative model that generalizes the HMM and that can

be trained similarly following the expectation-maximization principle while exploit-

ing the predictive power of RNNs in describing complex temporal dependencies.

An advantage of our design not present in (Graves et al., 2013) is the possibility

of leveraging arbitrary frame-level acoustic classifiers such as a DNN trained with

dropout or advanced optimization techniques (Dahl et al., 2013). We also propose

efficient inference algorithms for decoding and optimal sequence alignment inspired

from Viterbi decoding. Finally, we investigate the extent to which phone sequence

modeling is relevant in complementarity to powerful context-dependent acoustic

classifiers and higher-level language models.

The remainder of the paper is organized as follows. In sections 12.2 and 12.3

we introduce the RNN architecture and our hybrid phone sequence model. In

sections 12.4 and 12.5 we detail our decoding and alignment algorithms. Finally,

103

12.2 Recurrent neural networks

we present our methodology and results in section 12.6.

12.2 Recurrent neural networks

The RNN formally defines the distribution of the output sequence z ≡ {z(t) ∈
C, t ≤ T} of length T , where C is the dictionary of possible phone labels (|C| = N):

P (z) =
T∏
t=1

P (z(t)|A(t)) (12.1)

where A(t) ≡ {z(τ)|τ < t} is the sequence history at time t, and P (z(t)|A(t)) is the

conditional probability of observing z(t) according to the model, defined below in

equation (12.5).

A single-layer RNN with hidden units h(t) is defined by its recurrence relation:

h(t) = σ(Wzhz
(t−1) +Whhh

(t−1) + bh) (12.2)

where the indices of weight matrices and bias vectors have obvious meanings.

The prediction y(t) is obtained from the hidden units at the current time step

h(t) and the previous output z(t−1):

y(t) = s(Whzh
(t) +Wzzz

(t−1) + bz) (12.3)

where the Wzz matrix is useful to explicitly disallow certain state transitions by

setting the corresponding entries to very large negative values, and s(a) is the

softmax function of an activation vector a:

(s(a))j ≡
exp(aj)∑N
j′=1 exp(aj′)

, (12.4)

and should be as close as possible to the target vector z(t). In the case of multiclass

classification problems such as frame-level phone recognition, the target is a one-hot

vector and the likelihood of an observation is given by the dot product:

P (z(t)|A(t)) = z(t) · y(t). (12.5)

104

12.3 Phone sequence modeling

The RNN model can be trained by maximum likelihood with the cross-entropy

cost:

L(z) = −
T∑
t=1

log(z(t) · y(t)) (12.6)

where the gradient with respect to the model parameters is obtained by backprop-

agation through time (BPTT) (Rumelhart et al., 1986a).

While in principle a properly trained RNN can describe arbitrarily complex

temporal dependencies at multiple time scales, in practice gradient-based training

suffers from various pathologies (Bengio et al., 1994). Several strategies can be

used to help reduce these difficulties including gradient clipping, leaky integration,

sparsity and Nesterov momentum (Bengio et al., 2013).

12.3 Phone sequence modeling

In this section, we generalize the popular technique of superposing an HMM

to an acoustic model by replacing the HMM with an arbitrary phonetic model.

This will allow to exploit the power of RNNs for phone modeling while providing

a principled way to combine the two models.

Our hybrid acoustic-phonetic sequence model is a graphical model composed of

an underlying phone sequence z:

P (z(t)|{x(τ), τ < t},A(t)) = P (z(t)|A(t)) (12.7)

and an acoustic sequence x emitted given the phone sequence:

P (x(t)|{x(τ), τ 6= t}, z) = P (x(t)|z(t)). (12.8)

The emission probability (12.8) can be reformulated using Bayes’ rule (Hinton et al.,

2012):

P (x(t)|z(t)) ∝ P (z(t)|x(t))

P (z(t))
(12.9)

where P (z(t)|x(t)) is the output of an acoustic classifier, P (z(t)) is the marginal

105

12.3 Phone sequence modeling

distribution of phones and constant terms given x have been removed. This ad-

justment is referred to as scaled likelihood estimation in (Dahl et al., 2012).

The next-step phone sequence distribution has a general expression in the right-

hand side of equation (12.7) to accomodate different phonetic models. For an HMM,

this distribution depends only on z(t−1):

P (z(t) = i|A(t)) =

Tz(t−1),i if t > 0

πi if t = 0
(12.10)

where Tj,i is the row-normalized transition matrix and πi the initial occupancy of

phone i. In our case, we will replace (12.10) with the distribution of an RNN

(eq. 12.5) which depends on the full sequence history A(t).

By combining equations (12.7)-(12.9), we obtain the conditional distribution

over phones z given the input x:

P (z|x) ∝ P (z, x) =
T∏
t=1

P (z(t), x(t)|A(t)) (12.11)

P (z(t), x(t)|A(t)) ∝ P (z(t)|x(t))

P (z(t))
P (z(t)|A(t)) (12.12)

which can be interpreted as the output of the hybrid model.

As argued previously (Brown, 1987), a limitation of the hybrid model occurs

when the acoustic model has access to contextual information when predicting

z(t), either directly in the form of an input window around x(t) or indirectly via

the hidden state of an RNN. When the input includes information from neighbor-

ing frames, the independence assumption (12.8) breaks down, making it difficult to

combine the two models in equation (12.12). Intuitively, multiplying the predictions

P (z(t)|x(t)) and P (z(t)|A(t)) to estimate the joint distribution will count certain fac-

tors twice since both models have been trained separately. Note that the marginals

P (z(t)) are counted only once with scaled likelihood estimation (eq. 12.9), but it is

reasonable to expect that certain temporal dependencies will be captured by both

models. In our experiments, we found that this conceptual difficulty surprisingly

did not prevent good performance. Furthermore, the alternative approach of mul-

tiplying the two predictions and renormalizing at each time step in order to train

the system jointly (Graves et al., 2006; Graves, 2012; Graves et al., 2013) suffered

106

12.3 Phone sequence modeling

heavily from the label bias problem, and we found it crucial not to renormalize the

two distributions to achieve good performance. Note that the transducer approach

in (Graves et al., 2013) circumvents the label bias problem by modeling unaligned

phone sequences with an implicit exponential duration model. This has the ad-

vantage of significantly increasing the conditional entropy of each time step, but

prevents the model from taking phone duration into account.

During training, we wish to maximize the log-likelihood logP (x, z) of training

example pairs x, z. 1 It is easy to see from equations (12.11) and (12.12) that a

stochastic gradient ascent update involves terms associated with the phonetic and

acoustic models that can be computed separately:

∂ logP (x, z)

∂Θa

=
∂

∂Θa

T∑
t=1

logP (z(t)|x(t)) (12.13)

∂ logP (x, z)

∂Θp

=
∂

∂Θp

T∑
t=1

logP (z(t)|A(t)) (12.14)

where Θa,Θp denote the parameters of the acoustic and phonetic models respec-

tively.

When only unaligned phone sequences z̄ ≡ {z̄(u), u ≤ U} of length U are avail-

able during training, the hard expectation-maximization (EM) approach can be

adopted, by regarding the alignments as missing data. After initializing the aligned

sequences z from a flat start or another existing method, we alternate updates to

the model parameters (M step) and to the estimated alignments given the current

parameters (E step) as described in section 12.5. Both of these steps are guaran-

teed to increase the training objective logP (x, z) unless a local maximum is already

reached. 2

1. We refer to the joint distribution P (x, z) and not merely to P (z|x), because in the hybrid
model P (x) can be regarded as uniform with no associated parameterization.

2. More accurately, hard -EM guarantees the increase of logP (x, {z̄(u∗
t)}) with the notation of

section 12.5, i.e. where the optimal alignment is given.

107

12.4 Decoding

12.4 Decoding

In our architecture, the phonetic model implicitly ties z(t) to its history A(t) and

encourages coherence between successive output frames, and temporal smoothing

in particular. At test time, predicting one time step z(t) requires the knowledge of

the previous decisions on z(τ) (for τ < t) which are yet uncertain (not chosen opti-

mally), and proceeding in a greedy chronological manner does not necessarily yield

configurations that maximize the likelihood of the complete sequence. We rather

favor a global search approach analogous to the Viterbi algorithm for discrete-state

HMMs to infer the sequence z∗ ≡ {z(t)∗|t ≤ T} with maximal probability given the

input.

For HMM phonetic models, the distribution in equation (12.12) becomes:

P (z(t)|x(t),A(t)) ∝ P (z(t)|x(t))

P (z(t))
P (z(t)|z(t−1)). (12.15)

Since it depends only on z(t−1), it is easy to derive a recurrence relation to optimize

z∗ by dynamic programming, giving rise to the well-known Viterbi algorithm.

The inference algorithm we propose for RNN phonetic models is based on a

dynamic programming-like (DP) pruned beam search introduced in (Boulanger-

Lewandowski et al., 2013a). Beam search is a breadth-first tree search where only

the w most promising paths (or nodes) at depth t are kept for future examination.

In our case, a node at depth t corresponds to a subsequence of length t, and all

descendants of that node are assumed to share the same sequence history A(t+1).

Note that w = 1 reduces to a greedy search, and w = NT corresponds to an

exhaustive breadth-first search.

A pathological condition that sometimes occurs with beam search is the ex-

ponential duplication of highly likely quasi-identical paths differing only at a few

time steps, that quickly saturate beam width with essentially useless variations. A

natural extension to beam search is to make a better use of the available width w

via pruning. A particularly efficient pruning strategy is to consider only the most

promising path out of all partial paths with identical z(t) when making a decision

at time t. This leads to the solution of keeping track of the N most likely paths

108

12.5 Optimal alignment

arriving at each possible label j ∈ C with the recurrence relations:

l
(t)
j = l

(t−1)

k
(t)
j

+ logP (z(t) = j|x, s(t−1)

k
(t)
j

) (12.16)

s
(t)
j = {s(t−1)

k
(t)
j

, j} (12.17)

with k
(t)
j ≡

N
argmax

k=1

[
l
(t−1)
k + logP (z(t) = j|x, s(t−1)

k)
]

(12.18)

and initial conditions l
(0)
j = 0, s

(0)
j = {}, where the variables l

(t)
j , s

(t)
j represent re-

spectively the maximal cumulative log-likelihood and the associated partial output

sequence ending with label j at time t (Boulanger-Lewandowski et al., 2013a). In

our case, P (z(t) = j|x, s(t−1)
k) is given by equation (12.12): since the acoustic pre-

diction and the marginal distribution do not depend on A(t), we can compute those

contributions in advance.

It should not be misconstrued that the algorithm is limited to “local” or greedy

decisions for two reasons: (1) the complete sequence history A(t) is relevant for

the prediction y(t) at time t, and (2) a decision z(t)∗ at time t can be affected by

an observation x(t+δt) arbitrarily far in the future via backtracking, analogously to

Viterbi decoding.

12.5 Optimal alignment

In this section, we propose an algorithm to search for the aligned phone sequence

z ≡ {z(t)|t ≤ T} with maximal probability P (z|x) according to a trained model

(eq. 12.11), that is consistent with a given unaligned phone sequence z̄ ≡ {z̄(u)|u ≤
U} where U < T . The sequences z and z̄ are said to be consistent if there exists

an alignment a ≡ {ut|t ≤ T} satisfying u1 = 1, uT = U and ut − ut−1 ∈ {0, 1} for

which z(t) = z̄(ut),∀t ≤ T . The objective is to find the optimal alignment a∗.

Since an exact solution is intractable in the general case that the predictions

fully depend on the sequence history, we hypothesize that it is sufficient to consider

only the most promising path out of all partial paths with identical ut when making

109

12.5 Optimal alignment

a decision at time t. 3 Under this assumption, any subsequence {u∗t |t ≤ T ′} of the

global optimum {u∗t |t ≤ T} ending at time T ′ < T must also be optimal under the

constraint uT ′ = u∗T ′ . This last constraint is necessary to avoid a greedy solution.

Setting T ′ = T − 1 leads to the DP-like solution of keeping track of the (at most)

U most likely paths arriving at each possible index u, max(1, U − T + t) ≤ u ≤
min(U, t) with the recurrence relations:

l(t)u = l
(t−1)

k
(t)
u

+ logP (z(t) = z̄(u)|x, s(t−1)

k
(t)
u

) (12.19)

s(t)
u = {s(t−1)

k
(t)
u

, z̄(u)} (12.20)

with k(t)
u ≡ argmax

k∈{u−1,u}

[
l
(t−1)
k + logP (z(t) = z̄(u)|x, s(t−1)

k)
]

(12.21)

and initial conditions l
(0)
u = 0, s

(0)
u = {}, where the variables l

(t)
j , s

(t)
j are defined

similarly as in equations (12.16)-(12.18). The optimal aligned sequence is then

given by z∗ ' s
(T)
U . This algorithm has a time complexity O(TU) independent

of N .

Since finding an optimal alignment in the inner loop of an EM iteration can be

prohibitive, we can further postulate that the optimal alignment a∗ is close to an

approximate alignment a′ that can be computed much more cheaply. Typically,

a′ would be obtained by an acoustic model whose predictions depend only on x,

eliminating the need to maintain the hidden states of multiple RNNs. Assuming

that the distance between a∗ and a′ is δ:

|a∗, a′| ≡ T
max
t=1
|u∗t − u′t| = δ, (12.22)

the range of plausible values for u can be significantly reduced in equations (12.19)-

(12.21). Values of δ as low as 2–4 were found to work well in practice, producing

identical alignments in a majority of cases with less than 10% of the computation.

3. Replacing the pruning condition on ut with a condition on z(t) as for decoding is not as
effective because ũt 6= ût, z̃

(t) = ẑ(t) for two candidates ã, â indicate a different number of emitted
symbols and thus fundamentally different alignments that should not be pruned against each
other.

110

12.6 Experiments

12.6 Experiments

In this section, we evaluate the performance of our RNN phonetic model and hy-

brid training procedure relatively to a baseline HMM system. We use two datasets

to evaluate our method: the TIMIT corpus and the 30 hour “mini-train” subset

of the Switchboard corpus. We report phone accuracy on the TIMIT data, which

includes expertly-annotated phone sequences. We report phone accuracy and word

accuracy on the Switchboard data, where the correct phonetic transcription is ap-

proximated by a dictionary-based alignment of the data by our baseline DNN +

HMM system.

The TIMIT experiments rely on a 123 dimensional acoustic feature vector,

calculated as 40 dimensional mel-frequency log-filterbank features, together with

an energy measure and first and second temporal derivatives. The Switchboard

experiments use a 52 dimensional acoustic feature vector, consisting of a basic 13-

dimensional PLP cepstral vector together with its first, second, and third temporal

derivatives.

We consider three acoustic models: a simple logistic regression (LR) classifier,

an RNN using x as input (replacing z(t−1) in eq. 12.2) and a DNN with 4 × 1024

(TIMIT) or 5 × 2048 (Switchboard) hidden units trained with context-dependent

triphones. The DNN features are the activations of the final hidden layer of the

fully trained model. For each acoustic model, we compare three phonetic models:

an HMM baseline, an RNN trained with fixed baseline alignments, and an RNN

trained with our hybrid EM procedure. Early stopping is performed based on the

cross-entropy of a held-out development set, which was randomly selected from 5%

of the training set for Switchboard. The phone accuracy is determined as:

PA = 1−
∑

z̄,z̄0
L(z̄, z̄0)∑
z̄0
|z̄0|

(12.23)

where L(·, ·) is the Levenshtein distance between two sequences and z̄, z̄0 represent

respectively the predicted and ground-truth sequences.

Developement and test phone accuracies are presented for the two datasets in

Tables 12.1 and 12.2 for different combinations of acoustic and phonetic models. We

observe consistent improvements with the RNN phonetic model, especially when

trained using the hybrid procedure, attaining accuracies between 2–10% over the

111

12.6 Experiments

Acoustic HMM RNN Hybrid
model (dev) (test) (dev) (test) (dev) (test)

LR 62.6 61.8 63.8 62.8 65.3 63.5
RNN 69.9 68.6 70.6 69.4 74.2 72.2
DNN 79.0 77.1 79.8 77.9 80.4 78.6

Table 12.1: Development and test phone accuracies (%) obtained on the TIMIT dataset using
different combinations of acoustic and phonetic models.

Acoustic HMM RNN Hybrid
model

LR 31.8 32.3 34.4
RNN 40.5 43.8 44.7
DNN 70.0 72.7 73.7

Table 12.2: Development phone accuracies (%) obtained on the Switchboard dataset using
different combinations of acoustic and phonetic models.

baseline. Note that the improvements obtained with CRF full-sequence training

are typically more modest in this context (Mohamed et al., 2010), suggesting that

Markovian assumptions in linear-chain CRFs are more limiting than the conditional

independence assumption violated by our model as discussed in section 12.3.

It could be argued that the improvements brought by our RNN phonetic model

capitalize on higher-level dependencies between phones, and that the inclusion of a

word language model would nullify those gains. In the next experiments we verify

if our method translates in good word recognition performance on the Switchboard

dataset. While a 3-gram language model could be directly integrated into a sophis-

ticated context-dependent decoding procedure, we simply provide a performance

benchmark by rescoring a list of the N best candidates found by a DNN + HMM

system (N = 100). The word error rates shown in Table 12.3 clearly demonstrate

the superiority of an RNN phonetic model when used in complementarity to a

language model.

112

12.7 Conclusions

DNN + HMM 33.0
DNN + RNN 32.7
DNN (Hybrid) 32.0

Oracle 19.5
Anti-oracle 56.8

Table 12.3: Test word error rates (%) obtained on the Switchboard dataset using different
phonetic models.

12.7 Conclusions

In this paper, we presented a principled way to combine an RNN-based phonetic

model with an arbitrary frame-level acoustic classifier. The efficiency of the decod-

ing and alignment procedures now allows to use an RNN whenever an HMM was

previously used. Interestingly, phone sequence modeling seems to be an important

component of accurate speech recognition, even in the case where strong acoustic

classifiers and word language models are already available.

113

13 Prologue to Sixth Article

13.1 Article Details

Exploiting Long-Term Temporal Dependencies in NMF Using Recurrent

Neural Networks with Application to Source Separation

Nicolas Boulanger-Lewandowski, Gautham Mysore and Matthew Hoffman

Published in Proceedings of the 39th International Conference on Acoustics, Speech,

and Signal Processing (ICASSP) in 2014.

13.2 Context

Non-negative matrix factorization (NMF) (Lee and Seung, 1999) is a popular

method to separate complex audio mixtures into their individual constituent chan-

nels, or sources. In addition to the reconstruction criterion of baseline NMF, several

constraints can be applied to the non-negative matrix factors W and H, such as

sparsity (Cont, 2006), harmonicity (Vincent et al., 2010), temporal continuity (e.g.

Virtanen, 2007), or adherence to Kalman filters (e.g. Nam et al., 2012) or Markov

models (e.g. Mysore et al., 2010). In this chapter, we aim to improve the temporal

description in the latter category with an expressive connectionist model that can

describe long-term dependencies and high-level structure in the data. Contrary

to the purely discriminative approaches developed in earlier chapters, we will in-

tegrate our RNN-RBM symbolic model into an NMF generative model that can

reconstruct actual audio signals.

13.3 Contributions

13.3 Contributions

The first contribution of this article is a method to incorporate an RNN-based

prior on the activity matrix H inside the NMF decomposition, and a gradient-

based algorithm to perform inference. A second contribution is the application of

that method to audio source separation and the improvement of benchmarks on

the MIR-1K dataset.

Note that the generative model proposed in this chapter (eq. 14.18) is equivalent

to the hybrid model previously presented in Section 12.3. The correspondence can

be seen by replacing the explicit emissions in the NMF model (eq. 14.2) with the

Bayes’ rule reformulated emissions in the discriminative model (eq. 12.9). As such,

the method in this chapter does not suffer from the label bias problem.

13.4 Recent Developments

This paper will be presented at ICASSP in May 2014.

115

14
Exploiting long-term temporal
dependencies in NMF using
recurrent neural networks with
application to source separation

This paper seeks to exploit high-level temporal information during feature

extraction from audio signals via non-negative matrix factorization. Con-

trary to existing approaches that impose local temporal constraints, we train pow-

erful recurrent neural network models to capture long-term temporal dependencies

and event co-occurrence in the data. This gives our method the ability to “fill in

the blanks” in a smart way during feature extraction from complex audio mixtures,

an ability very useful for a number of audio applications. We apply these ideas to

source separation problems.

14.1 Introduction

Non-negative matrix factorization (NMF) is an unsupervised technique to dis-

cover parts-based representations underlying non-negative data (Lee and Seung,

1999). When applied to the magnitude spectrogram of an audio signal, NMF can

discover a basis of interpretable recurring events and their associated time-varying

encodings, or activities, that together optimally reconstruct the original spectro-

gram. In addition to accurate reconstruction, it is often useful to enforce various

constraints to influence the decomposition. Those constraints generally act on each

time frame independently to encourage sparsity (Cont, 2006), harmonicity of the

basis spectra (Vincent et al., 2010) or relevance with respect to a discriminative

criterion (Boulanger-Lewandowski et al., 2012a), or include a temporal component

such as simple continuity (Virtanen, 2007; Virtanen et al., 2008; Wilson et al.,

2008; Fev́otte, 2011), Kalman filtering like techniques (Nam et al., 2012; Fev́otte

et al., 2013; Mohammadiha et al., 2013) or Markov chain modeling (Ozerov et al.,

2009; Nakano et al., 2010; Mohammadiha and Leijon, 2013; Mysore et al., 2010).

In this paper, we aim to improve the temporal description in the latter category

14.2 Non-negative matrix factorization

with an expressive connectionist model that can describe long-term dependencies

and high-level structure in the data.

Recurrent neural networks (RNN) (Rumelhart et al., 1986a) are powerful dy-

namical systems that incorporate an internal memory, or hidden state, represented

by a self-connected layer of neurons. This property makes them well suited to

model temporal sequences, such as frames in a magnitude spectrogram or fea-

ture vectors in an activity matrix, by being trained to predict the output at the

next time step given the previous ones. RNNs are completely general in that

in principle they can describe arbitrarily complex long-term temporal dependen-

cies, which has made them very successful in music, language and speech appli-

cations (Boulanger-Lewandowski et al., 2012b; Mikolov et al., 2011; Graves et al.,

2013; Bengio et al., 2013). A recent extension of the RNN, called the RNN-RBM,

employs time-dependent restricted Boltzmann machines (RBM) to describe the

multimodal conditional densities typically present in audio signals, resulting in sig-

nificant improvements over N-gram and HMM baselines (Sutskever et al., 2008;

Boulanger-Lewandowski et al., 2012b). In this paper, we show how to integrate

RNNs into the NMF framework in order to model sound mixtures. We apply our

approach to audio source separation problems, but the technique is general and

can be used for various audio applications.

The remainder of the paper is organized as follows. In sections 14.2 and 14.3 we

introduce the NMF and RNN models. In section 14.4 we incorporate temporal con-

straints into the feature extraction algorithm. Finally, we present our methodology

and results in sections 14.5 and 14.6.

14.2 Non-negative matrix factorization

The NMF method aims to discover an approximate factorization of an input

matrix X:
N×T
X '

N×T
Λ ≡

N×K
W ·

K×T
H , (14.1)

where X is the observed magnitude spectrogram with time and frequency dimen-

sions T and N respectively, Λ is the reconstructed spectrogram, W is a dictionary

matrix of K basis spectra and H is the activity matrix. Non-negativity constraints

117

14.2 Non-negative matrix factorization

Wnk ≥ 0, Hkt ≥ 0 apply on both matrices. NMF seeks to minimize the recon-

struction error, a distortion measure between the observed spectrogram X and the

reconstruction Λ. A popular choice is the generalized Kullback-Leibler divergence:

CKL ≡
∑
nt

(
Xnt log

Xnt

Λnt

−Xnt + Λnt

)
, (14.2)

with which we will demonstrate our method. Minimizing CKL can be achieved by

alternating multiplicative updates to H and W (Lee and Seung, 2001):

H ← H ◦ W
T (X/Λ)

W T11T
(14.3)

W ← W ◦ (X/Λ)HT

11THT
, (14.4)

where 1 is a vector of ones, the ◦ operator denotes element-wise multiplication,

and division is also element-wise. These updates are guaranteed to converge to a

stationary point of the reconstruction error.

It is often reasonable to assume that active elements Hkt should be limited to a

small subset of the available basis spectra. To encourage this behavior, a sparsity

penalty CS ≡ λ|H| can be added to the total NMF objective (Hoyer, 2002), where

| · | denotes the L1 norm and λ specifies the relative importance of sparsity. In

that context, we impose the constraint that the basis spectra have unit norm.

Equation (14.3) becomes:

H ← H ◦ W
T (X/Λ)

1 + λ
, (14.5)

and the multiplicative update to W (eq. 14.4) is replaced by projected gradient

descent (Lin, 2007):

W ← W − µ(1−X/Λ)HT (14.6)

Wnk ← max(Wnk, 0),W:k ←
W:k

|W:k|
, (14.7)

where W:k is the k-th column of W and µ is the learning rate.

118

14.3 Recurrent neural networks

14.3 Recurrent neural networks

The RNN formally defines the distribution of the vector sequence v ≡ {v(t) ∈
R+K

0 , 1 ≤ t ≤ T} of length T :

P (v) =
T∏
t=1

P (v(t)|A(t)), (14.8)

where A(t) ≡ {v(τ)|τ < t} is the sequence history at time t, and P (v(t)|A(t)) is the

conditional probability of observing v(t) according to the model, defined below.

A single-layer RNN with hidden units ĥ(t) is defined by its recurrence relation:

ĥ(t) = σ(Wvĥv
(t) +Wĥĥĥ

(t−1) + bĥ), (14.9)

where σ(x) ≡ (1 + e−x)−1 is the element-wise logistic sigmoid function, Wxy is the

weight matrix tying vectors x, y and bx is the bias vector associated with x.

The model is trained to predict the observation v(t) at time step t given the

previous ones A(t). The prediction y(t) is obtained from the hidden units at the

previous time step ĥ(t−1):

y(t) = o(Wĥvĥ
(t−1) + bv), (14.10)

where o(a) is the output non-linearity function of an activation vector a, and should

be as close as possible to the target vector v(t). When the target is a non-negative

real-valued vector, the likelihood of an observation can be given by:

P (v(t)|A(t)) ∝ v(t) · y(t)

|v(t)| · |y(t)|
(14.11)

o(a)k = exp(ak). (14.12)

Other forms for P and o are possible; we have found that the cosine distance

combined with an exponential non-linearity works well in practice, presumably

because predicting the orientation of a vector is much easier for an RNN than

predicting its magnitude. 1

1. The cosine distance cost (eq. 14.11) is not a proper normalizable distribution for real-
valued v(t), but it is only used as a prior in cases where the posterior would be normalizable.
More rigorously, it should include a multiplicative term in exp(−λ|v(t)|2) with λ� 1 that would

119

14.3 Recurrent neural networks

v(2)

...

...
v(T)

h(1) h(T)

...

v(1)

ĥ(1) ĥ(2) ĥ(T)ĥ(0)

h(2)

Wĥĥ

Wvh
Wĥh

Wĥv

Wvĥ

R
N

N
R

B
M

s

Figure 14.1: Graphical structure of the RNN-RBM. Single arrows represent a deterministic
function, double arrows represent the stochastic hidden-visible connections of an RBM. The upper
half of the RNN-RBM is the RBM stage while the lower half is a RNN with hidden units ĥ(t).

The RBM biases b
(t)
h , b

(t)
v are a linear function of ĥ(t−1).

When the output observations are multivariate, another approach is to cap-

ture the higher-order dependencies between the output variables using a powerful

output probability model such as an RBM, resulting in the so-called RNN-RBM

(Figure 14.1) (Sutskever et al., 2008; Boulanger-Lewandowski et al., 2012b). The

Gaussian RBM variant is typically used to estimate the density of real-valued vari-

ables v(t) (Welling et al., 2005). In this case, the RNN’s task is to predict the

parameters of the conditional distribution, i.e. the RBM biases at time step t:

b(t)
v = bv +Wĥvĥ

(t−1) (14.13)

b
(t)
h = bh +Wĥhĥ

(t−1). (14.14)

In an RBM, the likelihood of an observation is related to the free energy F (v(t)) by

P (v(t)|A(t)) ∝ e−F (v(t)):

F (v(t)) ≡ 1

2
||v(t)||2 − b(t)

v · v(t) − |s(b(t)
h +Wvhv

(t))|, (14.15)

where s(x) ≡ log(1 + ex) is the element-wise softplus function and Wvh is the

weight matrix of the RBM. The log-likelihood gradient with respect to the RBM

parameters is generally intractable due to the normalization constant but can be

estimated by contrastive divergence (Hinton, 2002; Boulanger-Lewandowski et al.,

2012b).

become negligible in the posterior distribution.

120

14.4 Temporally constrained NMF

The RNN model can be trained by minimizing the negative log-likelihood of

the data:

CRNN(v) = −
T∑
t=1

logP (v(t)|A(t)), (14.16)

whose gradient with respect to the RNN parameters is obtained by backpropagation

through time (BPTT) (Rumelhart et al., 1986a). Several strategies can be used to

reduce the difficulties associated with gradient-based learning in RNNs including

gradient clipping, sparsity and momentum techniques (Bengio et al., 1994, 2013).

14.4 Temporally constrained NMF

In this section, we incorporate RNN regularization into the NMF framework to

temporally constrain the activity matrix H during the decomposition. A simple

form of regularization that encourages neighboring activity coefficients to be close

to each other is temporal smoothing:

CTS =
1

2
β
T−1∑
t=1

||H:t −H:t+1||2, (14.17)

where the hyperparameter β is a weighting coefficient.

In the proposed model, we add the RNN negative log-likelihood term (eq. 14.16)

with v := {H:t, 1 ≤ t ≤ T} to the total NMF cost:

C = CKL + CS + CTS + CL2 + αCRNN(H), (14.18)

where CL2 ≡ 1
2
η||H||2 provides L2 regularization, and the hyperparameters η, α

specify the relative importance of each prior. This framework corresponds to an

RNN generative model at temperature α−1 describing the evolution of the latent

variable H:t, the observation X:t at time t being conditioned on H:t via the recon-

struction error CKL. The overall graphical model can be seen as a generalization

of the non-negative hidden Markov model (N-HMM) (Mysore et al., 2010).

The NMF model is first trained in the usual way by alternating the updates

(14.5)–(14.7) and extracting the activity features H; the RNN is then trained to

minimize CRNN(H) by stochastic gradient descent. During supervised NMF (Smaragdis

121

14.4 Temporally constrained NMF

et al., 2007), it is necessary to infer the activity matrix H that minimizes the to-

tal cost (eq. 14.18) given a pre-trained dictionary W and a test observation X.

Our approach is to replace the multiplicative udpate (14.5) with a gradient descent

update:

H ← H − µ
[
W T (1−X/Λ) + λ+ ηH + ∂CTS

∂H
+ α∂CRNN

∂H

]
(14.19)

where the gradient of CTS is given by:

∂CTS
∂Hkt

= β


Hkt −Hk(t+1) if t = 1

2Hkt −Hk(t−1) −Hk(t+1) if 1 < t < T

Hkt −Hk(t−1) if t = T.

(14.20)

When deriving ∂CRNN/∂H, it is important to note that H:t affects the cost

directly by matching the prediction y(t) in equation (14.11), and also indirectly by

influencing the future predictions of the RNN via A(t+δt). By fully backpropagating

the gradient through time, we effectively take into account future observations

X:(t+δt) when updating H:t. While other existing approaches require sophisticated

inference procedures (Boulanger-Lewandowski et al., 2013b,a), the search for a

globally optimal H can be facilitated by using gradient descent when the inferred

variables are real-valued.

The RNN-RBM requires a different approach due to the intractable partition

function of the tth RBM that varies with A(t). The retained strategy is to consider

A(t) fixed during inference and to approximate the gradient of the cost by:

CRNN
∂v(t)

' ∂F (v(t))

∂v(t)
= v(t) − b(t)

v − σ(b
(t)
h +Wvhv

(t))W T
vh. (14.21)

Since this approach can be unstable, we only update the value of A(t) every m

iterations of gradient descent (m = 10) and we use an RNN in conjunction with

the RNN-RBM to exploit its tractability and norm independence properties.

122

14.5 Evaluation

14.5 Evaluation

In the next section, we evaluate the performance of our RNN model on a

source separation task in comparison with a traditional NMF baseline and NMF

with temporal smoothing. Source separation is interesting for our architecture be-

cause, contrary to purely discriminative tasks such as multiple pitch estimation or

chord estimation where RNNs are known to outperform other models (Boulanger-

Lewandowski et al., 2013b,a), source separation requires accurate signal reconstruc-

tion.

We consider the supervised and semi-supervised NMF algorithms (Smaragdis

et al., 2007) that consist in training submodels on isolated sources before concate-

nating the pre-trained dictionaries and feeding the relevant activity coefficients into

the associated temporal model; final source estimates are obtained by separately

reconstructing the part of the observation explained by each submodel. In the

semi-supervised setting, an additional dictionary is trained from scratch for each

new examined sequence and no temporal model is used for the unsupervised chan-

nel. Wiener filtering is used as a final step to ensure that the estimated source

spectrograms X(i) add up to the original mixture X:

X̂(i) =
X(i)∑
j X

(j)
◦X, (14.22)

before transforming each source in the time domain via the inverse short-term

Fourier transform (STFT).

Our main experiments are carried out on the MIR-1K dataset 2 featuring 19

singers performing a total of 1,000 Chinese pop karaoke song excerpts, ranging

from 4 to 13 seconds and recorded at 16 kHz. For each singer, the available tracks

are randomly split into training, validation and test sets in a 8:1:1 ratio. The

accompaniment music and singing voice channels are summed directly at their

original loudness (∼ 0 dB). The magnitude spectrogram X is computed by the

STFT using a 64 ms sliding Blackman window with hop size 30 ms and zero-

padded to produce a feature vector of length 900 at each time step. The source

separation quality is evaluated with the BSS Eval toolbox 3 using the standard

2. https://sites.google.com/site/unvoicedsoundseparation/mir-1k

3. http://bass-db.gforge.inria.fr/bss_eval/

123

https://sites.google.com/site/unvoicedsoundseparation/mir-1k
http://bass-db.gforge.inria.fr/bss_eval/

14.6 Results

metrics SDR, SIR and SAR that measure for each channel the ratios of source to

distortion, interference and artifacts respectively (Vincent et al., 2006). For each

model and singer combination, we use a random search on predefined intervals to

select the hyperparameters that maximize the mean SDR on the validation set;

final performance is reported on the test set.

14.6 Results

To illustrate the effectiveness of our temporally constrained model, we first per-

form source separation experiments on a synthetic dataset of two sawtooth wave

sources of different amplitudes and randomly shifted along both dimensions. Fig-

ure 14.2 shows an example of such sources (Fig. 14.2(a–b)), along with the sources

estimated by supervised NMF with either no temporal constraint (Fig. 14.2(c–d))

or with an RNN with the cosine distance cost (Fig. 14.2(e–f)). While this problem is

provably unsolvable for NMF alone or with simple temporal smoothing (eq. 14.17),

the RNN-constrained model successfully separates the two mixed sources. This

extreme example demonstrates that temporal constraints become crucial when the

content of each time frame is not sufficient to distinguish each source.

Source separation results on the MIR-1K dataset are presented in Table 14.1 for

supervised (top) and semi-supervised 4 (bottom) NMF (K = 15). The RNN-based

models clearly outperform the baselines in SDR and SIR for both sources with a

moderate degradation in SAR. To illustrate the trade-off between the suppression

of the unwanted source and the reduction of artifacts, we plot in Figure 14.3 the

performance metrics as a function of the weight α/α0 of the RNN-RBM model,

where α0 ∈ [10, 20] is the hyperparameter value selected on the validation set. This

inherent trade-off was also observed elsewhere (Mysore et al., 2010). Overall, the

observed improvement in SDR is indicative of a better separation quality.

4. Only the singing voice channel is supervised in this case.

124

14.7 Conclusion

(a) Source 1 (b) Source 2

(c) Estimated 1, NMF (d) Estimated 2, NMF

(e) Estimated 1, RNN (f) Estimated 2, RNN

Figure 14.2: Toy example: separation of sawtooth wave sources of different amplitudes (a–b)
using supervised NMF with either no prior (c–d) or an RNN with the cosine distance cost (e–f).

14.7 Conclusion

We have presented a framework to leverage high-level information during feature

extraction by incorporating an RNN-based prior inside the NMF decomposition.

While the combined approach surpasses the baselines in realistic audio source sep-

aration settings, it could be further improved by employing a deep bidirectional

RNN with multiplicative gates (Graves et al., 2013), replacing the Gaussian RBMs

with the recently developed tractable distribution estimator for real-valued vectors

RNADE (Uŕıa et al., 2013; Boulanger-Lewandowski et al., 2012b), implementing

an EM-like algorithm to jointly train the NMF and RNN models, and transition-

ing to a universal speech model for singer-independent source separation (Sun and

Mysore, 2013).

125

14.7 Conclusion

Model SDR SIR SAR
acc. sing. acc. sing. acc. sing.

NMF 5.04 5.05 7.75 7.59 10.00 10.25
NMF-sm 6.08 5.59 8.77 7.42 10.96 11.93
RNN 6.13 5.80 9.46 7.79 10.34 11.52
RNN-RBM 6.83 7.12 11.25 9.75 9.86 11.52

NMF 5.20 3.58 9.54 4.95 8.80 11.43
NMF-sm 5.57 3.71 9.48 4.94 9.57 11.84
RNN 5.94 3.70 10.49 4.86 9.36 12.07
RNN-RBM 6.16 5.05 11.81 7.12 9.04 10.59

Table 14.1: Audio source separation performance on the MIR-1K test set obtained via singer-
dependent supervised (top) and semi-supervised (bottom) NMF with either no prior, simple
temporal smoothing, an RNN (eq. 14.11) or the RNN-RBM.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
weight α/ α 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
weight α/ α 0

6

8

10

12

14

ra
ti
o
(d
B
)

SDR SIR SAR

(a) Accompaniment (b) Singing voice

Figure 14.3: Source separation performance trade-off on the MIR-1K test set by supervised
NMF with an RNN-RBM model weighted by α, where α0 maximizes the validation SDR.

126

15 Conclusions

15.1 Summary of contributions

In this thesis, we proposed, analyzed and applied several RNN-based models of

high-dimensional sequences especially well suited for polyphonic music and speech.

Our contributions can be summarized as follows:

1. We introduced the RNN-RBM (NADE) (Section 4.4) to model high-dimensional

sequences, derived an efficient training procedure based on contrastive diver-

gence, and demonstrated the use of pre-training techniques and of Hessian-

free optimization;

2. We reviewed the issues giving rise to the optimization difficulties in RNNs

and several techniques that have been proposed to reduce them (Chapter 6);

we proposed a simplified formulation of Nesterov momentum and offered an

alternative interpretation of the method (Section 6.3.5);

3. We proposed different ways to combine a generalized language model with an

acoustic classifier in:

(a) A product of experts (Section 4.7), applicable to any acoustic model

that can estimate P (z(t)|x(t)),

(b) An input/output architecture (Section 8.2.3) that expresses P (z|x) un-

der a single training objective,

(c) A generative hybrid model (Section 12.3) that replaces the HMM with

a more realistic symbolic model trainable via EM,

(d) A generative NMF-based model (Section 14.4) that allows to reconstruct

the observations x;

4. We derived inference algorithms for RNNs that present speed and accuracy

improvements over greedy chronological search and beam search:

15.2 Future directions

(a) High-dimensional beam search, optimized for either multimodal (Algo-

rithm 8.1) or factored (Algorithm 8.2) output distributions,

(b) Pruned beam search (Algorithm 10.2), a dynamic programming-like

pruning technique for beam search inspired by Viterbi decoding,

(c) Fast alignment (Section 12.5), an efficient two-pass algorithm to search

for the optimal alignment of a given sequence,

(d) Gradient descent inference (eq. 14.19; 14.21), a technique applicable for

real-valued vectors z(t);

5. We demonstrated applications of our approach and (in some cases) improved

the state of the art in the following areas:

(a) Polyphonic music generation (Section 4.6), with substantial improve-

ment over the RTRBM and other popular models,

(b) Polyphonic music transcription (Section 8.4), with improvement of the

state of the art (Table 8.2) and of robustness to noise (Figure 8.2),

(c) Audio chord recognition (Section 10.5), with accuracies competitive with

the state of the art on the MIREX dataset,

(d) Phone sequence modeling (Section 12.6), shown to be an important com-

ponent of speech recognition even in the presence of powerful acoustic

and natural language models,

(e) Audio source separation (Section 14.6), for which we have shown clear

improvements in the supervised and semi-supervised NMF baselines.

15.2 Future directions

An interesting avenue to improve the dynamic programming-like inference al-

gorithm would be to consider various hash functions that implicitly determine if

different sequences are sufficiently similar to be subject to pruning, and that gen-

eralize the extreme cases of considering only the last emitted symbol or the full

sequence as presented here. Possible hash functions include the n previously emit-

ted symbols, the n previously emitted unaligned symbols, and a vector-quantized

128

15.2 Future directions

version of the RNN state. A further generalization would be to maintain at most

a fixed number of candidates per unique hash value, that could be greater than 1.

Given the success of gradient descent inference to quickly find local maxima

of P (z|x) for real-valued outputs, it may prove fruitful to adapt this method to

binary vectors, e.g. by approaching z∗ via gradient descent on an interpolation of

the density in RNT . Such an approach would also enable us to explicitly optimize

our deterministic test-time predictions z∗ with respect to a relevant cost function

during training by backpropagating through the inference procedure.

Training RNNs, especially to discover long-term complex dependencies, obvi-

ously remains an important area of research. We believe that stochastic methods

(e.g. Bayer et al., 2014) and active learning will become prevalent in the future.

Given the difficulty to learn a sense of meter and rhythm by our symbolic model,

it may also be instructive to provide “metronome” intermediate targets and self-

pacing mechanisms to gain insight into the learning of periodical patterns.

In speech recognition, the rudimentary approach of rescoring the top predictions

of an N-gram word language model as in Section 12.6 could be replaced by an end-

to-end system that directly performs speech to text. Another avenue would be to

learn a distributed representation of context-dependent phones with the RNN-RBM

by using tuples of phonemes as a target z(t) ← (. . . , z(t−1), z(t), z(t+1), . . .) at each

time step and concatenated softmax RBMs as conditional distribution estimators.

Another potential area of investigation is to substitute RNNs with deep LSTM

networks (Graves et al., 2013) and conditional Gaussian RBMs with RNADEs (Uŕıa

et al., 2013) in the models presented in this thesis.

129

References

Abdallah, S. and M. Plumbley (2006). Unsupervised analysis of polyphonic music

by sparse coding. IEEE Trans. on Neural Networks 17 (1), 179–196. (Cited on

pages 6, 26 and 28.)

Abe, M. and J. O. Smith (2005). AM/FM rate estimation for time-varying sinu-

soidal modeling. In ICASSP, Volume 3, pp. 201–204. (Cited on page 6.)

Aljanaki, A. (2011). Automatic musical key detection. Master’s thesis, University

of Tartu. (Cited on page 4.)

Allan, M. and C. Williams (2005). Harmonising chorales by probabilistic inference.

In NIPS 17, pp. 25–32. (Cited on pages 47, 48 and 49.)

Baker, J., L. Deng, J. Glass, S. Khudanpur, C. Lee, N. Morgan, and

D. O’Shaughnessy (2009). Developments and directions in speech recognition

and understanding. IEEE Signal Processing Magazine 26 (3), 75–80. (Cited on

pages 7 and 102.)

Bastien, F., P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,

N. Bouchard, D. Warde-Farley, and Y. Bengio (2012). Theano: new features

and speed improvements. In Deep Learning and Unsupervised Feature Learning

NIPS Workshop. (Cited on page 30.)

Bay, M., A. Ehmann, and J. Downie (2009). Evaluation of multiple-F0 estimation

and tracking systems. In ISMIR. (Cited on pages 5, 38, 48, 72 and 79.)

Bayer, J., C. Osendorfer, N. Chen, S. Urban, and P. van der Smagt (2014). On fast

dropout and its applicability to recurrent networks. In ICLR. (Cited on pages 35

and 129.)

References

Benaroya, L., F. Bimbot, and R. Gribonval (2006, January). Audio source separa-

tion with a single sensor. IEEE Transactions on Audio, Speech, and Language

Processing 14 (1). (Cited on page 8.)

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends

in Machine Learning 2 (1), 1–127. (Cited on pages 29, 44, 54, 58, 62, 79, 86

and 89.)

Bengio, Y., F. Bastien, A. Bergeron, N. Boulanger-Lewandowski, T. Breuel,

Y. Chherawala, M. Cisse, M. Côté, D. Erhan, J. Eustache, et al. (2011). Deep

learners benefit more from out-of-distribution examples. In AISTATS. (Cited on

page 30.)

Bengio, Y. and S. Bengio (2000). Modeling high-dimensional discrete data with

multi-layer neural networks. In NIPS 12, pp. 400–406. (Cited on pages 13, 40

and 71.)

Bengio, Y., N. Boulanger-Lewandowski, and R. Pascanu (2013). Advances in op-

timizing recurrent networks. In ICASSP 38. (Cited on pages 92, 103, 105, 117

and 121.)

Bengio, Y., A. Courville, and P. Vincent (2012). Representation learning: A review

and new perspectives. Technical report, arXiv:1206.5538. (Cited on page 58.)

Bengio, Y. and P. Frasconi (1996). Input-output HMMs for sequence processing.

IEEE Transactions on Neural Networks 7 (5), 1231–1249. (Cited on page 17.)

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2006). Greedy layer-wise

training of deep networks. In NIPS. (Cited on page 58.)

Bengio, Y., P. Simard, and P. Frasconi (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE Trans. on Neural Networks 5 (2), 157–

166. (Cited on pages 1, 21, 33, 36, 54, 56, 57, 59, 92, 105 and 121.)

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimiza-

tion. Journal of Machine Learning Research 13, 281–305. (Cited on pages 65

and 79.)

131

References

Bergstra, J., O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,

J. Turian, D. Warde-Farley, and Y. Bengio (2010). Theano: a CPU and GPU

math expression compiler. In SciPy. (Cited on pages 30 and 32.)

Bergstra, J., N. Casagrande, D. Erhan, D. Eck, and B. Kégl (2006). Aggregate

features and adaboost for music classification. Machine Learning 65 (2-3), 473–

484. (Cited on pages 31, 84, 87 and 90.)

Böck, S. and M. Schedl (2012). Polyphonic piano note transcription with recurrent

neural networks. In ICASSP, pp. 121–124. (Cited on pages 69, 72, 81 and 87.)

Boogaart, C. and R. Lienhart (2009). Note onset detection for the transcription of

polyphonic piano music. In ICME, pp. 446–449. (Cited on page 81.)

Boulanger-Lewandowski, N., Y. Bengio, and P. Vincent (2012a). Discriminative

non-negative matrix factorization for multiple pitch estimation. In ISMIR, pp.

205–210. (Cited on pages 8, 26, 29 and 116.)

Boulanger-Lewandowski, N., Y. Bengio, and P. Vincent (2012b). Modeling tem-

poral dependencies in high-dimensional sequences: Application to polyphonic

music generation and transcription. In ICML 29. (Cited on pages 61, 64, 72, 74,

79, 80, 87, 103, 117, 120 and 125.)

Boulanger-Lewandowski, N., Y. Bengio, and P. Vincent (2013a). Audio chord

recognition with recurrent neural networks. In ISMIR. (Cited on pages 103, 108,

109, 122 and 123.)

Boulanger-Lewandowski, N., Y. Bengio, and P. Vincent (2013b). High-dimensional

sequence transduction. In ICASSP. (Cited on pages 86, 87, 92, 94, 103, 122

and 123.)

Boulanger-Lewandowski, N., J. Droppo, M. Seltzer, and D. Yu (2014). Phone

sequence modeling with recurrent neural networks. In ICASSP 39. (Not cited.)

Boulanger-Lewandowski, N., G. Mysore, and M. Hoffman (2014). Exploiting long-

term temporal dependencies in NMF using recurrent neural networks with ap-

plication to source separation. In ICASSP 39. (Not cited.)

132

References

Brakel, P., D. Stroobandt, and B. Schrauwen (2013). Training energy-based models

for time-series imputation. Journal of Machine Learning Research 14 (1), 2771–

2797. (Cited on page 34.)

Brown, P. (1987). The acoustic-modeling problem in automatic speech recognition.

Ph. D. thesis, Carnegie-Mellon University. (Cited on pages 18, 97 and 106.)

Cardoso, J. (1998). Blind signal separation: Statistical principles. Proceedings of

the IEEE 9 (10), 2009–2025. (Cited on page 9.)

Cemgil, A. (2004). Bayesian music transcription. Ph. D. thesis, Radboud Univer-

sity Nijmegen. (Cited on pages 3, 4, 34 and 38.)

Cemgil, A., H. Kappen, and D. Barber (2006). A generative model for music tran-

scription. IEEE Transactions on Audio, Speech, and Language Processing 14 (2),

679–694. (Cited on pages 3, 69 and 72.)

Chen, R., W. Shen, A. Srinivasamurthy, and P. Chordia (2012). Chord recognition

using duration-explicit hidden Markov models. In ISMIR. (Cited on pages 87,

97 and 98.)

Conklin, D. (2003). Music generation from statistical models. In AISB Symposium

on Artificial Intelligence and Creativity in the Arts and Sciences, pp. 30–35.

(Cited on page 16.)

Cont, A. (2006). Realtime multiple pitch observation using sparse non-negative

constraints. In ISMIR. (Cited on pages 6, 8, 26, 29, 114 and 116.)

Dahl, G., T. Sainath, and G. Hinton (2013). Improving deep neural networks for

LVCSR using rectified linear units and dropout. In ICASSP. (Cited on pages 3,

8, 101 and 103.)

Dahl, G., D. Yu, L. Deng, and A. Acero (2012). Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition. IEEE Transactions

on Audio, Speech, and Language Processing 20 (1), 30–42. (Cited on pages 8, 31,

87, 100, 103 and 106.)

Davies, M. (2007). Towards automatic rhythmic accompaniment. Ph. D. thesis,

University of London. (Cited on page 4.)

133

References

de Haas, B., J. Magalhães, and F. Wiering (2012). Improving audio chord tran-

scription by exploiting harmonic and metric knowledge. In ISMIR, pp. 295–300.

(Cited on page 3.)

Dessein, A., A. Cont, and G. Lemaitre (2010). Real-time polyphonic music tran-

scription with non-negative matrix factorization and beta-divergence. In ISMIR.

(Cited on pages 6, 26 and 29.)

Eck, D. and J. Lapalme (2008). Learning musical structure directly from sequences

of music. Technical report, Université de Montréal. (Cited on page 23.)

Eck, D. and J. Schmidhuber (2002). Finding temporal structure in music: Blues

improvisation with LSTM recurrent networks. In NNSP, pp. 747–756. (Cited on

pages 4, 23, 34, 38 and 87.)

El Hihi, S. and Y. Bengio (1996). Hierarchical recurrent neural networks for long-

term dependencies. In NIPS 8, pp. 493–499. (Cited on pages 22, 23, 54 and 60.)

Erhan, D., Y. Bengio, A. Courville, P. Manzagol, P. Vincent, and S. Bengio (2010).

Why does unsupervised pre-training help deep learning? JMLR 11, 625–660.

(Cited on page 58.)

Erhan, D., P. Manzagol, Y. Bengio, S. Bengio, and P. Vincent (2009). The difficulty

of training deep architectures and the effect of unsupervised pre-training. In

AISTATS, pp. 153–160. (Cited on page 30.)

Fev́otte, C. (2011). Majorization-minimization algorithm for smooth Itakura-Saito

nonnegative matrix factorization. In ICASSP. (Cited on page 116.)

Fev́otte, C., J. L. Roux, and J. R. Hershey (2013). Non-negative dynamical system

with application to speech and audio. In ICASSP. (Cited on page 116.)

Fitzgerald, D., M. Cranitch, and E. Coyle (2005). Generalised prior subspace

analysis for polyphonic pitch transcription. In DAFX 8. (Cited on page 26.)

Franklin, J. (2006). Recurrent neural networks for music computation. INFORMS

Journal on Computing 18 (3), 321–338. (Cited on page 23.)

Fujishima, T. (1999). Realtime chord recognition of musical sound: A system using

Common Lisp Music. In ICMC, pp. 464–467. (Cited on page 7.)

134

References

Glorot, X., A. Bordes, and Y. Bengio (2011a). Deep sparse rectifier neural networks.

In AISTATS. (Cited on pages 20, 30 and 62.)

Glorot, X., A. Bordes, and Y. Bengio (2011b). Domain adaptation for large-scale

sentiment classification: A deep learning approach. In ICML. (Cited on page 30.)

Goodfellow, I., M. Mirza, X. Da, A. Courville, and Y. Bengio (2014). An empirical

investigation of catastrophic forgetting in gradient-based neural networks. In

ICLR. (Cited on page 6.)

Graves, A. (2012). Sequence transduction with recurrent neural networks. In ICML

29. (Cited on pages 69, 71, 72, 86, 92, 94, 100, 103 and 106.)

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850 . (Cited on page 2.)

Graves, A., S. Fernández, F. Gomez, and J. Schmidhuber (2006). Connection-

ist temporal classification: Labelling unsegmented sequence data with recurrent

neural networks. In ICML 23, pp. 369–376. (Cited on page 106.)

Graves, A., A. Mohamed, and G. Hinton (2013). Speech recognition with deep

recurrent neural networks. In ICASSP. (Cited on pages 8, 100, 103, 106, 107,

117, 125 and 129.)

Gülçehre, C. and Y. Bengio (2013). Knowledge matters: Importance of prior

information for optimization. In ICLR. (Cited on pages 84, 87 and 89.)

Hamel, P., Y. Bengio, and D. Eck (2012). Building musically-relevant audio features

through multiple timescale representations. In ISMIR. (Cited on pages 31, 87

and 90.)

Hamel, P., M. Davies, K. Yoshii, and M. Goto (2013). Transfer learning in MIR:

Sharing learned latent representations for music audio classification and similar-

ity. In ISMIR. (Cited on page 30.)

Hamel, P. and D. Eck (2010). Learning features from music audio with deep belief

networks. In ISMIR, pp. 339–344. (Cited on pages 30, 84 and 87.)

135

References

Harte, C. (2010). Towards automatic extraction of harmony information from

music signals. Ph. D. thesis, University of London. (Cited on pages 6, 7, 84, 86

and 96.)

Hermans, M. and B. Schrauwen (2013). Training and analysing deep recurrent

neural networks. In NIPS, pp. 190–198. (Cited on page 23.)

Hinton, G. (2002). Training products of experts by minimizing contrastive di-

vergence. Neural Computation 14 (8), 1771–1800. (Cited on pages 12, 39, 73

and 120.)

Hinton, G., L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury (2012). Deep neural

networks for acoustic modeling in speech recognition. Signal Processing Mag-

azine 29 (6), 82–97. (Cited on pages 30, 84, 87, 93 and 105.)

Hinton, G., S. Osindero, and Y. Teh (2006). A fast learning algorithm for deep belief

nets. Neural computation 18 (7), 1527–1554. (Cited on pages 30, 58 and 89.)

Hinton, G., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov

(2012). Improving neural networks by preventing co-adaptation of feature detec-

tors. arXiv preprint arXiv:1207.0580 . (Cited on page 30.)

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen.

Diploma thesis, T.U. Münich. (Cited on pages 54, 56 and 57.)

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural Com-

putation 9 (8), 1735–1780. (Cited on pages 21, 32, 54, 60 and 72.)

Hoyer, P. (2002). Non-negative sparse coding. In Neural Networks for Signal

Processing, pp. 557–565. IEEE. (Cited on pages 27 and 118.)

Hsu, E., K. Pulli, and J. Popović (2005). Style translation for human motion. In

SIGGRAPH, pp. 1082–1089. (Cited on page 47.)

Humphrey, E. and J. Bello (2012). Rethinking automatic chord recognition with

convolutional neural networks. In ICMLA 11, Volume 2, pp. 357–362. (Cited on

pages 30, 84 and 86.)

136

References

Jaeger, H., M. Lukosevicius, D. Popovici, and U. Siewert (2007). Optimization

and applications of echo state networks with leaky- integrator neurons. Neural

Networks 20 (3), 335–352. (Cited on pages 23, 54 and 60.)

Khadkevich, M. and M. Omologo (2011). Time-frequency reassigned features for

automatic chord recognition. In ICASSP, pp. 181–184. IEEE. (Cited on page 98.)

Kompass, R. (2007). A generalized divergence measure for nonnegative matrix

factorization. Neural computation 19 (3), 780–791. (Cited on page 26.)

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). ImageNet classification with

deep convolutional neural networks. In NIPS. (Cited on page 62.)

Krumhansl, C. and E. Kessler (1982). Tracing the dynamic changes in perceived

tonal organization in a spatial representation of musical keys. Psychological

Review 89 (4), 334. (Cited on page 4.)

Lafferty, J., A. McCallum, and F. Pereira (2001). Conditional random fields: Prob-

abilistic models for segmenting and labeling sequence data. In ICML 18, pp.

282–289. (Cited on pages 19, 100, 101 and 103.)

Larochelle, H. and I. Murray (2011). The neural autoregressive distribution esti-

mator. JMLR: W&CP 15, 29–37. (Cited on pages 13, 39, 40, 61, 71 and 73.)

Lavrenko, V. and J. Pickens (2003). Polyphonic music modeling with random fields.

In ACM MM, pp. 120–129. (Cited on pages 19, 48 and 49.)

Le, Q., M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Ng

(2012). Building high-level features using large scale unsupervised learning. In

ICML. (Cited on page 58.)

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86 (11), 2278–2324.

(Cited on page 20.)

Lee, C., Y. Yang, K. Lin, and H. Chen (2010). Multiple fundamental frequency

estimation of piano signals via sparse representation of Fourier coefficients. In

ISMIR. (Cited on page 6.)

137

References

Lee, D. and H. Seung (1999). Learning the parts of objects by non-negative matrix

factorization. Nature 401 (6755), 788–791. (Cited on pages 8, 25, 114 and 116.)

Lee, D. D. and H. S. Seung (2001). Algorithms for non-negative matrix factoriza-

tion. In NIPS 13. (Cited on pages 27 and 118.)

Li, Y. and D. Wang (2007). Pitch detection in polyphonic music using instrument

tone models. ICASSP 2, 481. (Cited on pages 5 and 38.)

Lin, C. J. (2007). Projected gradient methods for nonnegative matrix factorization.

Neural computation 19 (10), 2756–2779. (Cited on pages 28 and 118.)

Lin, T., B. Horne, P. Tino, and C. Giles (1995). Learning long-term dependen-

cies is not as difficult with NARX recurrent neural networks. Technical Report

UMICAS-TR-95-78, U. Mariland. (Cited on page 60.)

Mallat, S. and Z. Zhang (1993). Matching pursuits with time-frequency dictionaries.

IEEE Transactions on Signal Processing 41 (12), 3397–3415. (Cited on page 26.)

Marolt, M. (2004). A connectionist approach to automatic transcription of poly-

phonic piano music. IEEE Transactions on Multimedia 6 (3), 439–449. (Cited

on pages 6 and 81.)

Martens, J. (2010). Deep learning via Hessian-free optimization. In ICML, pp.

735–742. (Cited on pages 32 and 58.)

Martens, J. and I. Sutskever (2011). Learning recurrent neural networks with

Hessian-free optimization. In ICML 28. (Cited on pages 23, 32, 33, 36, 50, 54,

57, 58, 59, 60, 61 and 72.)

Mauch, M. (2010). Automatic chord transcription from audio using computational

models of musical context. Ph. D. thesis, University of London. (Cited on pages 6,

7, 84, 86 and 96.)

Mauch, M. and S. Dixon (2010). Approximate note transcription for the improved

identification of difficult chords. In ISMIR, pp. 135–140. (Cited on pages 7, 96

and 98.)

138

References

McCallum, A., D. Freitag, and F. Pereira (2000). Maximum entropy Markov models

for information extraction and segmentation. In ICML 17, pp. 591–598. (Cited

on pages 18, 100 and 103.)

Mikolov, T. (2012). Statistical Language Models based on Neural Networks. Ph. D.

thesis, Brno University of Technology. (Cited on pages 54 and 60.)

Mikolov, T., A. Deoras, S. Kombrink, L. Burget, and J. Cernocký (2011). Empir-

ical evaluation and combination of advanced language modeling techniques. In

INTERSPEECH, pp. 605–608. (Cited on pages 103 and 117.)

Mikolov, T., S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur (2011).

Extensions of recurrent neural network language model. In ICASSP 36. (Cited

on pages 54, 57, 65 and 66.)

Mikolov, T. and G. Zweig (2012). Context dependent recurrent neural network lan-

guage model. In Workshop on Spoken Language Technology. (Cited on page 61.)

Mnih, V., H. Larochelle, and G. Hinton (2011). Conditional restricted Boltzmann

machines for structured output prediction. In UAI 27. (Cited on page 50.)

Mohamed, A., G. Dahl, and G. Hinton (2009). Deep belief networks for phone

recognition. In NIPS Workshop. (Cited on page 30.)

Mohamed, A., D. Yu, and L. Deng (2010). Investigation of full-sequence training of

deep belief networks for speech recognition. In INTERSPEECH, pp. 2846–2849.

(Cited on pages 20 and 112.)

Mohammadiha, N. and A. Leijon (2013). Nonnegative HMM for babble noise

derived from speech HMM: Application to speech enhancement. IEEE Trans. on

Acoustics, Speech, and Lang. Proc. 21 (5), 998–1011. (Cited on pages 9 and 116.)

Mohammadiha, N., P. Smaragdis, and A. Leijon (2013). Prediction based filtering

and smoothing to exploit temporal dependencies in NMF. In ICASSP. (Cited

on page 116.)

Mozer, M. C. (1994). Neural network music composition by prediction. Connection

Science 6 (2), 247–280. (Cited on pages 4, 23, 33, 38 and 87.)

139

References

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and

Learning. Ph. D. thesis, UC Berkeley, Computer Science Division. (Cited on

page 17.)

Mysore, G., P. Smaragdis, and B. Raj (2010). Non-negative hidden Markov mod-

eling of audio with application to source separation. In LVA/ICA, pp. 140–148.

(Cited on pages 9, 114, 116, 121 and 124.)

Nair, V. and G. Hinton (2010). Rectified linear units improve restricted Boltzmann

machines. In ICML. (Cited on pages 20, 30 and 62.)

Nakano, M., J. Le Roux, H. Kameoka, Y. Kitano, N. Ono, and S. Sagayama

(2010). Nonnegative matrix factorization with Markov-chained bases for model-

ing time-varying patterns in music spectrograms. In LVA/ICA. (Cited on pages 9

and 116.)

Nam, J., G. J. Mysore, and P. Smaragdis (2012). Sound recognition in mixtures.

In LVA/ICA. (Cited on pages 9, 114 and 116.)

Nam, J., J. Ngiam, H. Lee, and M. Slaney (2011). A classification-based polyphonic

piano transcription approach using learned feature representations. In ISMIR.

(Cited on pages 3, 30, 34, 38, 51, 52, 53, 79, 80, 81, 84 and 87.)

Nesterov, Y. (1983). A method for unconstrained convex minimization problem

with the rate of convergence o(1/k2). Doklady AN SSSR (translated as Soviet.

Math. Docl.) 269, 543–547. (Cited on pages 54 and 62.)

Ni, Y., M. McVicar, R. Santos-Rodŕıguez, and T. De Bie (2012). An end-to-end

machine learning system for harmonic analysis of music. Audio, Speech, and

Language Processing 20 (6), 1771–1783. (Cited on pages 7, 96, 97 and 98.)

Ozerov, A., C. Févotte, and M. Charbit (2009). Factorial scaled hidden markov

model for polyphonic audio representation and source separation. In WASPAA.

(Cited on pages 9 and 116.)

Paiement, J., S. Bengio, and D. Eck (2009). Probabilistic models for melodic

prediction. Artificial Intelligence 173 (14), 1266–1274. (Cited on pages 4, 17, 34

and 38.)

140

References

Paiement, J., Y. Grandvalet, S. Bengio, and D. Eck (2007). A generative model

for rhythms. In NIPS. (Cited on page 16.)

Paiement, J.-F., D. Eck, S. Bengio, and D. Barber (2005). A graphical model

for chord progressions embedded in a psychoacoustic space. In ICML 22, pp.

641–648. (Cited on page 23.)

Palomäki, K., G. Brown, and J. Barker (2004). Techniques for handling con-

volutional distortion with ‘missing data’ automatic speech recognition. Speech

Communication 43 (1), 123–142. (Cited on page 81.)

Pascanu, R., C. Gulcehre, K. Cho, and Y. Bengio (2014). How to construct deep

recurrent neural networks. In ICLR. (Cited on page 35.)

Pascanu, R., T. Mikolov, and Y. Bengio (2012). Understanding the exploding

gradient problem. arXiv preprint arXiv:1211.5063 . (Cited on pages 35, 54, 59

and 60.)

Pascanu, R., T. Mikolov, and Y. Bengio (2013). On the difficulty of training

recurrent neural networks. JMLR W&CP 28 (3), 1310–1318. (Cited on pages 35

and 54.)

Pearlmutter, B. (1994). Fast exact multiplication by the Hessian. Neural Compu-

tation 6 (1), 147–160. (Cited on page 32.)

Pickens, J. (2000). A comparison of language modeling and probabilistic text

information retrieval approaches to monophonic music retrieval. In ISMIR, pp.

36. (Cited on page 16.)

Pickens, J., J. Bello, G. Monti, M. Sandler, T. Crawford, M. Dovey, and D. Byrd

(2002). Polyphonic score retrieval using polyphonic audio queries: A harmonic

modeling approach. In ISMIR, pp. 140–149. (Cited on page 16.)

Plumbley, M., S. Abdallah, T. Blumensath, and M. Davies (2006). Sparse rep-

resentations of polyphonic music. Signal Processing 86 (3), 417–431. (Cited on

page 6.)

Poliner, G. and D. Ellis (2005). A classification approach to melody transcription.

In ISMIR, pp. 161–166. (Cited on page 6.)

141

References

Poliner, G. and D. Ellis (2007). A discriminative model for polyphonic piano

transcription. JASP 2007 (1), 154–164. (Cited on pages xi, 6, 29, 47, 79 and 81.)

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications

in speech recognition. Proceedings of the IEEE 77 (2), 257–286. (Cited on page 2.)

Raczynski, S., E. Vincent, and S. Sagayama (2013). Dynamic Bayesian networks

for symbolic polyphonic pitch modeling. IEEE Transactions on Audio, Speech

and Language Processing 21 (9), 1830–1840. (Cited on page 17.)

Raina, R., A. Battle, H. Lee, B. Packer, and A. Ng (2007). Self-taught learning:

Transfer learning from unlabeled data. In ICML, pp. 759–766. (Cited on page 6.)

Ranzato, M., C. Poultney, S. Chopra, and Y. LeCun (2007). Efficient learning of

sparse representations with an energy-based model. In NIPS. (Cited on page 58.)

Raphael, C. (2002). Automatic transcription of piano music. In ISMIR, Volume 2,

pp. 13–17. (Cited on page 3.)

Richter, S., J. Thayer, and W. Ruml (2010). The joy of forgetting: Faster anytime

search via restarting. In ICAPS, pp. 137–144. (Cited on page 78.)

Rumelhart, D., G. Hinton, and R. Williams (1986a). Learning internal represen-

tations by error propagation. In Parallel Dist. Proc., pp. 318–362. MIT Press.

(Cited on pages ii, iv, 1, 20, 21, 36, 43, 71, 75, 87, 92, 102, 105, 117 and 121.)

Rumelhart, D., G. Hinton, and R. Williams (1986b). Learning representations by

back-propagating errors. Nature 323, 533–536. (Cited on page 57.)

Ryynänen, M. and A. Klapuri (2005). Polyphonic music transcription using note

event modeling. In ASPAA, pp. 319–322. (Cited on page 81.)

Salakhutdinov, R. and I. Murray (2008). On the quantitative analysis of deep belief

networks. In ICML 25. (Cited on page 48.)

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle

of history compression. Neural Computation 4 (2), 234–242. (Cited on page 23.)

Schraudolph, N. (2002). Fast curvature matrix-vector products for second-order

gradient descent. Neural Computation 14 (7), 1723–1738. (Cited on page 32.)

142

References

Schrauwen, B. and L. Buesing (2009). A hierarchy of recurrent networks for speech

recognition. In NIPS 21. (Cited on pages 25 and 37.)

Schuster, M. (1999a). Better generative models for sequential data problems: Bidi-

rectional recurrent mixture density networks. In NIPS, pp. 589–595. (Cited on

page 33.)

Schuster, M. (1999b). On supervised learning from sequential data with applications

for speech recognition. Ph. D. thesis, Nara Institute of Science and Technology.

(Cited on page 3.)

Schuster, M. and K. Paliwal (1997). Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing 45 (11), 2673–2681. (Cited on page 22.)

Shewchuk, J. (1994). An introduction to the conjugate gradient method without the

agonizing pain. Technical report, School of Computer Science, Carnegie Mellon

University. (Cited on page 32.)

Siewert, U. and W. Wustlich (2007). Echo-state networks with band-pass neurons:

Towards generic time-scale-independent reservoir structures. (Cited on pages 23,

54 and 61.)

Smaragdis, P. and J. Brown (2003). Non-negative matrix factorization for poly-

phonic music transcription. In WASPAA, pp. 177–180. (Cited on pages 6, 26

and 28.)

Smaragdis, P., B. Raj, and M. Shashanka (2007). Supervised and semi-supervised

separation of sounds from single-channel mixtures. In ICA. (Cited on pages 121

and 123.)

Smolensky, P. (1986). Information processing in dynamical systems: Foundations

of harmony theory. In Parallel Dist. Proc., pp. 194–281. MIT Press. (Cited on

pages 2, 30, 37, 71 and 89.)

Sun, D. L. and G. J. Mysore (2013). Universal speech models for speaker indepen-

dent single channel source separation. In ICASSP. (Cited on page 125.)

Sutskever, I. (2012). Training Recurrent Neural Networks. Ph. D. thesis, CS Dept.,

U. Toronto. (Cited on pages 54, 57 and 62.)

143

References

Sutskever, I. and G. Hinton (2007). Learning multilevel distributed representations

for high-dimensional sequences. In AISTATS, pp. 544–551. (Cited on pages 24,

33, 37 and 46.)

Sutskever, I. and G. Hinton (2010). Temporal kernel recurrent neural networks.

Neural Networks 23 (2). (Cited on page 60.)

Sutskever, I., G. Hinton, and G. Taylor (2008). The recurrent temporal restricted

Boltzmann machine. In NIPS 20, pp. 1601–1608. (Cited on pages 25, 33, 37, 41,

42, 46, 61, 72, 117 and 120.)

Sutskever, I., J. Martens, and G. Hinton (2011). Generating text with recurrent

neural networks. In ICML. (Cited on pages 2 and 32.)

Taylor, G., G. Hinton, and S. Roweis (2007). Modeling human motion using binary

latent variables. In NIPS 19, pp. 1345. (Cited on pages 24, 33, 37 and 47.)

Uŕıa, B., I. Murray, and H. Larochelle (2013). RNADE: The real-valued neural au-

toregressive density-estimator. In NIPS 26. (Cited on pages 14, 15, 125 and 129.)

Vincent, E., N. Bertin, and R. Badeau (2010). Adaptive harmonic spectral decom-

position for multiple pitch estimation. IEEE Trans. on Audio, Speech, and Lang.

Proc. 18 (3), 528–537. (Cited on pages 8, 26, 29, 114 and 116.)

Vincent, E., R. Gribonval, and C. Févotte (2006). Performance measurement

in blind audio source separation. IEEE Trans. on Audio, Speech, and Lang.

Proc. 14 (4), 1462–1469. (Cited on page 124.)

Vincent, P., H. Larochelle, Y. Bengio, and P. Manzagol (2008). Extracting and

composing robust features with denoising autoencoders. In ICML 25, pp. 1096–

1103. (Cited on pages 30 and 80.)

Virtanen, T. (2007). Monaural sound source separation by nonnegative matrix

factorization with temporal continuity and sparseness criteria. IEEE Trans. on

Acoustics, Speech, and Lang. Proc. 15 (3), 1066–1074. (Cited on pages 3, 9, 26,

114 and 116.)

Virtanen, T., A. Cemgil, and S. Godsill (2008). Bayesian extensions to non-negative

matrix factorisation. In ICASSP. (Cited on page 116.)

144

References

Welling, M., M. Rosen-Zvi, and G. Hinton (2005). Exponential family harmoniums

with an application to information retrieval. In NIPS 17, pp. 1481–1488. (Cited

on pages 11, 13, 47 and 120.)

Wilson, K., B. Raj, and P. Smaragdis (2008). Regularized non-negative matrix fac-

torization with temporal dependencies for speech denoising. In INTERSPEECH.

(Cited on page 116.)

Wooller, R. and A. Brown (2005). Investigating morphing algorithms for gener-

ative music. In Third International Conference on Generative Systems in the

Electronic Arts. (Cited on page 4.)

Yao, K., B. Peng, G. Zweig, D. Yu, X. Li, and F. Gao (2013). Recurrent conditional

random fields. In NIPS Deep Learning Workshop. (Cited on page 23.)

Yeh, C. (2008). Multiple Fundamental Frequency Estimation of Polyphonic Record-

ings. Ph. D. thesis, Université Paris VI. (Cited on pages 6 and 26.)

Yeh, C., N. Bogaards, and A. Röbel (2007). Synthesized polyphonic music database

with verifiable ground truth for multiple f0 estimation. In ISMIR, pp. 393–398.

(Cited on page 6.)

Yeh, C. and A. Röbel (2009). The expected amplitude of overlapping partials of

harmonic sounds. In ICASSP. (Cited on page 8.)

Zhou, R. and E. Hansen (2005). Beam-stack search: Integrating backtracking with

beam search. In ICAPS, pp. 90–98. (Cited on page 79.)

145

	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	 List of Abbreviations
	 Acknowledgments
	1 Introduction
	1.1 Modeling high-dimensional sequences
	1.2 Generalized language models
	1.3 Applications
	1.3.1 Polyphonic music generation and related applications
	1.3.2 Polyphonic music transcription
	1.3.3 Audio chord recognition
	1.3.4 Speech recognition
	1.3.5 Audio source separation

	1.4 Overview

	2 Background
	2.1 Density estimators
	2.1.1 Restricted Boltzmann machines
	2.1.2 Neural autoregressive distribution estimator

	2.2 Sequential models
	2.2.1 Markov chains
	2.2.2 Hidden Markov models
	2.2.3 Dynamic Bayesian networks
	2.2.4 Maximum entropy Markov models
	2.2.5 Random fields
	2.2.6 Conditional random fields
	2.2.7 Recurrent neural networks
	2.2.8 Hierarchical models
	2.2.9 Temporal RBMs

	2.3 Non-negative matrix factorization
	2.4 Deep neural networks
	2.5 Hessian-free optimization

	3 Prologue to First Article
	3.1 Article Details
	3.2 Context
	3.3 Contributions
	3.4 Recent Developments

	4 Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
	4.1 Introduction
	4.2 Restricted Boltzmann machines
	4.3 The RTRBM
	4.4 The RNN-RBM
	4.4.1 Initialization strategies
	4.4.2 Details of the BPTT algorithm

	4.5 Baseline experiments
	4.6 Modeling sequences of polyphonic music
	4.7 Polyphonic transcription
	4.8 Conclusions

	5 Prologue to Second Article
	5.1 Article Details
	5.2 Context
	5.3 Contributions

	6 Advances in Optimizing Recurrent Networks
	6.1 Introduction
	6.2 Learning Long-Term Dependencies and the Optimization Difficulty with Deep Learning
	6.3 Advances in Training Recurrent Networks
	6.3.1 Clipped Gradient
	6.3.2 Spanning Longer Time Ranges with Leaky Integration
	6.3.3 Combining Recurrent Nets with a Powerful Output Probability Model
	6.3.4 Sparser Gradients via Sparse Output Regularization and Rectified Outputs
	6.3.5 Simplified Nesterov Momentum

	6.4 Experiments
	6.4.1 Music Data
	6.4.2 Text Data

	6.5 Conclusions

	7 Prologue to Third Article
	7.1 Article Details
	7.2 Context
	7.3 Contributions
	7.4 Recent Developments

	8 High-dimensional sequence transduction
	8.1 Introduction
	8.2 Proposed architecture
	8.2.1 Restricted Boltzmann machines
	8.2.2 NADE
	8.2.3 The input/output RNN-RBM

	8.3 Inference
	8.4 Experiments
	8.5 Conclusions

	9 Prologue to Fourth Article
	9.1 Article Details
	9.2 Context
	9.3 Contributions
	9.4 Recent Developments

	10 Audio Chord Recognition with Recurrent Neural Networks
	10.1 Introduction
	10.2 Learning deep audio features
	10.2.1 Overview
	10.2.2 Deep belief networks
	10.2.3 Exploiting prior information
	10.2.4 Context

	10.3 Recurrent neural networks
	10.3.1 Definition
	10.3.2 Training

	10.4 Inference
	10.4.1 Viterbi decoding
	10.4.2 Beam search
	10.4.3 Dynamic programming

	10.5 Experiments
	10.5.1 Setup
	10.5.2 Results

	10.6 Conclusion

	11 Prologue to Fifth Article
	11.1 Article Details
	11.2 Context
	11.3 Contributions
	11.4 Recent Developments

	12 Phone sequence modeling with recurrent neural networks
	12.1 Introduction
	12.2 Recurrent neural networks
	12.3 Phone sequence modeling
	12.4 Decoding
	12.5 Optimal alignment
	12.6 Experiments
	12.7 Conclusions

	13 Prologue to Sixth Article
	13.1 Article Details
	13.2 Context
	13.3 Contributions
	13.4 Recent Developments

	14 Exploiting long-term temporal dependencies in NMF using recurrent neural networks with application to source separation
	14.1 Introduction
	14.2 Non-negative matrix factorization
	14.3 Recurrent neural networks
	14.4 Temporally constrained NMF
	14.5 Evaluation
	14.6 Results
	14.7 Conclusion

	15 Conclusions
	15.1 Summary of contributions
	15.2 Future directions

	 References

