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SOMMAIRE

Cette thése est composée de trois essais sur les contrats de partage des risques avec
contraintes d’engagement des parties. Le premier essai étudie ce type de contrat
lorsqu’il est possible pour les parties d’effectuer un transfer financier avant la réali-
sation de I’état de la nature. Ce paiement ex ante permet de relicher les contraintes
d’engagement ex post et ainsi d’améliorer la relation contractuelle au sens de Pareto.
Certaines propriétés dynamiques des trajets optimaux expliquées jusqu'ici dans la lit-
térature a l'aide de modeles avec asymmétrie d’information, sont répliquées par notre

modele avec information symétrique.

Le deuxiéme essai développe une méthode d’apprbximation polynémiale de la
fonction de valeur qui caractérise le type de contrat étudié. Les polynémes de Cheby-
shev sont utilisés pour leurs propriétés d’orthogonalité qui permettent d’appliquer
la méthode de collocation orthogonale. Cette méthode converge vers la solution en
quelques minutes. Un résultat théorique du premier essai qui n’a pu étre démontré
que dans un environnement a deux états est vérifié et généralisé numériquement dans

un environnement a trois états.

Le troisieme essai étudie le contrat optimal entre un agent riscophobe, qui peut
investir pour augmenter son bien-étre la période suivante mais ne peut s’engager a
respecter son contrat, et un agent neutre au risque qui s'engage a respecter les termes
de son contrat. Une analogie est faite avec la relation financiére entre un pays en voie
de développement que ’on ne peut forcer & respecter ses engagements, et un financier.
Le résultat principal est qu’une diminution de I’endettement du pays ne serait pas

nécessairement suivie d’une hausse de 1’investissement.
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RESUME

Cette these est composée de trois essais sur les contrats de partage des risques avec
contraintes d’engagement des parties. Le premier essai étudie ce type de contrat
lorsqu’il est possible pour les parties d’effectuer un transfer financier avant la réali-
sation de I’état de la nature. Ce paiement ex ante permet de relacher les contraintes
d’engagement ex post et ainsi d’améliorer la relation contractuelle au sens de Paréto.
Le résultat principal est & I'effet que les paiements ex ante ne sont pas stationnaires.
Ils dépendent de fagon optimale du surplus espéré par chaque agent dans la rela-
tion contractuelle. Ce surplus est fonction de I’histoire de réalisation des états de
la nature. Lorsqu’un agent prévoit recevoir une faible part du surplus de la re-
lation, ses contraintes ex post sont relativement serrées et par conséquent, on ne
peut lui demander d’effectuer un gros paiement ex post. Dans ce cas, il est optimal
pour l’agent d’effectuer un paiement ex ante de maniére & relacher ses contraintes ex
post. En général, cependant, ces contraintes ne peuvent étre complétement éliminées
puisqu’un paiement élevé ex ante de la part d’un agent augmente les incitations de
'autre agent a briser son contrat et partir avec ce paiement. Nous montrons que la
grosseur du paiement ex ante est inversement reliée au surplus espéré de la relation.
Nous montrons également 1'émergence de propriétés dynamiques intéressantes méme
si les chocs subis par le revenu sont indépendants et identiquement distribués d’une
période a l'autre. Par exemple, dans un exemple d’assurance & deux états, nous
montrons que la dynamique des primes du contrat optimal dépend de I’expérience
de 'assuré méme s'il n'y a pas d’information privée ni d’apprentissage dans notre

modéle.

Le deuxieme essai développe une méthode d’approximation polynémiale de la



fonction de valeur qui caractérise le type de contrat étudié. Les polynémes de Cheby-
shev sont utilisés pour leurs propriétés d’orthogonalité qui permettent d’appliquer
la méthode de collocation orthogonale. La collocation orthogonale consiste & éval-
uer le probléme statique a n + 1 points pour obtenir une approximation polyndémiale
d’ordre n. L’approximation de la fonction de valeur sera obtenue de fagon itérative
par l'interpolation & ces n + 1 points. Nous pouvons ainsi obtenir un approximation
polynémiale satisfaisante d’ordre 2, en quelques minutes seulement, sur un microor-

dinateur avec processeur 486.

Nous avons ensuite utilisé cette approximation de la fonction de valeur pour ef-
fectuer des simulations du contrat optimal & partir de 100 séries de revenus sur 100
périodes. Nous avons ainsi pu vérifier numériquement dans un environnement & trois
états de la nature, qu’une hausse (baisse) du revenu de I’agent riscophobe d’une péri-
ode & l'autre, diminuera (augmentera) le surplus espéré par ’agent neutre au risque.
Gréce aux simulations, ce résultat théorique du premier essai qui n’a pu étre démon-
tré que dans un environnement & deux états est vérifié et généralisé numériquement

dans un environnement 3 trois états.

Dans un autre ordre d’idées, une littérature abondante existe sur la pertinence
ou non d’effacer une partie de la dette de certains pays trés endettés, notamment en
Amérique Latine, de r;laniére a stimuler l'investissement du pays et ainsi augmenter
'espérance de remboursements des financiers. Dans la plupart de ces papiers, on
étudie le probléme en supposant que le pays est déja dans une situation d’endettement

telle qu'il lui soit impossible de rembourser un jour la totalité de sa créance.

Le troisieme essai de cette thése étudie le contrat optimal entre un agent risco-
phobe, qui peut investir pour augmenter son bien-étre la période suivante mais ne
peut s’engager a respecter son contrat, et un agent neutre au risque qui s’engage a
respecter les termes de son contrat. Une analogie est faite avec la relation finan-
ciere entre un pays en voie de développement que ’on ne peut forcer a respecter ses

engagements, et un financier. Notre modélisation est tout a fait différente de celle
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généralement rencontrée dans la littérature sur cette question. Dans notre papier,
le contrat optimal est auto-exécutoire, c’est-a-dire qu’en tout temps et en toute cir-
constance, il est dans I'intéret du pays de respecter sa part du contrat. Puisque la
banque (ou le consortium bancaire) s’engage a respecter sa part du contrat, le contrat
optimal sera tel que les financiers feront des profits positifs au début de la relation de

crédit et feront des pertes par la suite.

Le résultat principal du papier est qu’une diminution de I’endettement du pays
ne serait pas nécessairement suivie d’une hausse de U'investissement. En fait, le signe
de la corrélation entre le niveau d’endettement et I’investissement est fonction des

parametres du modele.
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INTRODUCTION

Cette these est composée de trois essais sur les contrats de long terme de partage de
risques avec contraintes de banqueroute. La problématique générale est la suivante.
Le revenu d’un agent riscophobe est aléatoire. Il cherche donc a diversifier le plus
possible son risque a chaque période en transigeant sur les marchés financiers. Il veut
également lisser autant que possible sa consommation dans le temps. Nous étudions
dans cette theése le contrat financier d’un agent riscophobe dans un contexte ot les
pouvoir légaux sont limités, c’est-a-dire un environnement économique dans lequel on
ne peut forger le respect des termes du contrat (ou dans lequel les cofits nécessaires &
I'imposition du respect du contrat sont excessivement élevés). Par exemple, dans le
cas de la dette des pays en voie de développement (PVD), il n’existe pas d’instance
supranationale qui puisse imposer au PVD le remboursement de sa créance. En
I'absence d’une telle instance, si le remboursement exigé au PVD devient tres élevé,
il peut décider de ne plus rembourser sans qu’on puisse Iy forcer. Le contrat optimal
dans un tel environnement doit faire un compromis entre le partage des risques et
le lissage de la consommation d’une part, et donner les incitations & ne pas déclarer
faillite d’autre part. Le but de la thése est précisément d’étudier ’effet des contraintes
de banqueroute sur les contrats optimaux de partage de risques, et ce dans différents

environnements économiques.

Nous étudierons donc deux agents en relation de long terme pour partager leurs
risques, et lisser leur consommation. La relation est déterminée par un contrat qui
prescrit des transferts financiers contingents a la réalisation de 1’état de la nature (et
possiblement a toute ’histoire de réalisation des états de la nature depuis le début de
la relation). Si les deux agents pouvaient s’engager 4 respecter leur part du contrat,

on atteindrait le niveau de premier rang de partage de risque, puisque le contrat de
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long terme serait une suite de contrat d’une période dans lequel les agents s’engagent
a effectuer le transfert permettant le partage optimal des risques. Par exemple, si
'agent 1 est neutre au risque et recoit un revenu constant, il pourra s’engager a
chaque période a verser a I'agent 2 la différence entre son revenu moyen et le revenu
réalisé a cette période. L’agent 1 acceptera un telle entente puisque son revenu moyen
est inchangé et qu’il est donc indifférent entre signer ou non un tel contrat, et 'agent
2 étant pleinement assuré se verra ravi. Par contre, lorsqu’un agent ne peut s’engager
a ne pas faire défaut une fois I’état de la nature réalisé, le partage de risque optimal
peut étre difficile ou impossible & obtenir puisqu’il est possible qu'un agent décide de
ne pas effectuer le transfert prescrit par le contrat, si celui-ci est trop élevé. Dans
exemple précédent, I’agent 1 pourrait décider de ne pas verser le montant prescrit par
le contrat lorsque I’agent 2 regoit son revenu le plus bas, si les bénéfices escomptés qu’il
espere recevoir dans la suite de sa relation financiére ne compensent pas pour le gros
déboursement qu’il doit faire maintenant. Supposons que 'agent 1 est un consortium
bancaire qui préte & I’agent 2, un PVD. Supposons que ces deux agents signent un
contrat de partage des risques. En I'absence d’instance légale internationale, si le
consortium, par exemple, décide de ne pays effectuer le paiement prescrit par un
contrat de pleine assurance, rien ni personne ne peut 'y forcer. Le contrat doit
donc stipuler des paiements auto-exécutoires, c’est-a-dire des paiements tels qu'il soit
toujours dans 'intéret de 'agent qui doive les effectuer, d’effectivement les effectuer.
A chaque période, le surplus qu’un agent anticipe de la relation future conditionne le
montant qu'’il est prét & débourser. Si un agent anticipe un surplus futur élevé, il est

prét a payer plus cher aujourd’hui pour ce surplus que s'il anticipe un surplus futur
faible.

Nous caractériserons dans les deux premiers essais de la theése, le contrat optimal
de partage de risque lorsque les transferts financiers peuvent &tre contingents ou non
a la réalisation du revenu. On pourra ainsi caractériser la dynamique des emprunts et

des remboursements dans le cas de I’endettement des PVD. Dans le troisieme essal,
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nous cherchons a comprendre I'effet d’un surendettement sur I’investissement dans le

PVD.

Le probleme de partage des risques étudié dans la litérature a généralement la
structure suivante '. On a deux agents. Un agent riscophobe regoit une dotation
stochastique a chaque période. Cette dotation est indépendamment et identiquement
distribuée d’une période & 'autre. Les transferts stipulés par le contrat prennent
toujours place en fin de période, lorsque I’état de la nature est réalisé. Dans un
environnement ou les deux agents ne peuvent s'engager a effectuer les transferts de-
mandés, des contraintes de participation doivent étre satisfaites pour chaque agent,
a chaque période et pour chaque réalisation bossible de la dotation. On qualifie ces
contraintes de contraintes ex post puisqu’elles doivent &tre satisfaites pour chaque
niveau possible de réalisation de la dotation. Il est possible que ces contraintes soient
serrées éventuellement pour un des agents, disons 'agent 1. Dans ce cas, le montant
exigé de I'agent 1 est limité par sa contrainte de participation, et le niveau de partage
de risque n’atteint pas le niveau de premier rang. Il serait alors dans l'intéret de
agent 1 de payer un montant d’argent 3 Pagent 2 avant la réalisation de 1’état de
la nature, lorsque les contraintes de participation n’ont & tenir qu’en espérance sur
les différentes réalisations possibles de la dotation. L’objectif du premier essai de
la these est donc d’élargir I'espace contractuel pour permettre un transfert financier
avant la réalisation de I’état de la nature et d’étudier comment cette possibilité affecte

la dynamique des transferts optimaux entre les agents.

Ce paiement ex ante réduit les paiements futurs a effectuer et reliche les con-
traintes de participation, ce qui permet d’atteindre un meilleur partage des risques.
Lorsqu’ un agent effectue un paiement ex ante il relache ses propres contraintes de
participation ex post, mais par contre, il ressere généralement celles de l'autre agent
en lui faisant supporter une plus grande partie du fardeau des paiements futurs. Con-

séquemment, le paiement ex ante doit contrebalancer les contraintes ex post d’un

'Par exemple, voir Thomas et Worrall (1998)
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agent et celles de 'autre agent.

Dans le contexte étudié ici, 'opportunité de faire un transfert ex ante permet
d’augmenter le surplus total espéré dans la relation et ainsi d’améliorer ’ensemble
des contrats possibles?. Nous analysous l'arbitrage entre les contraintes de partici-
pation des deux agents en caractérisant les paiements optimaux ex ante et ex post.
Nos principaux résultats sont & l'effet que les paiements ex ante sont utilisés de facon
optimale et que ces paiements ne sont pas stationnaires. Ils dépendent de fagon opti-
male du surplus espéré de la relation par chacun des agents. Ce surplus évolue avec
Phistoire des réalisations passées des états de la nature. Lorsqu’un agent anticipe
une faible part du surplus de la relation, ses contraintes de participation ex post sont
relativement serrées, et on ne peut donc exiger de sa part un paiement ex post élevé.
Dans ce cas, il est optimal de demander & cet agent un paiement avant la réalisa-
tion de I’état de la nature. En général cependant, ces contraintes ne peuvent étre
complétement éliminées puisqu’un paiement ex ante élevé de la part d’un agent aug-
mente les incitations de 'autre agent & briser le contrat et quitter avec ce paiement.
Nous montrons que le montant du paiement ex ante qu’un agent effectue est inverse-
ment reli€ au surplus que cet agent anticipe de la relation. Nous montrons également
'émergence de propriétés dynamiques intéressantes, méme si les chocs aléatoires sont
indépendamment et identiquement distribués d’une période & l’'autre. Par exemple,
dans le cas d’un contrat entre un individu riscophobe et une compagnie d’assurance,
la prime d’assurance est payée par le client avant la réalisation de 1'état de la nature.
Cette prime peut donc étre vue comme un paiement ex ante. Dans un modéle &
deux états, nous montrons que la dynamique du contrat optimal imite une tarifica-

tion selon 'expérience malgré ’absence d’information privée ou d’apprentissage dans

*MacLeod et Malcomson (1989) étudient la structure salariale optimale entre un travailleur et
un employeur lorsqu’on ne peut vérifier la performance du travailleur en cour. La possibilité pour
le travailleur de donner un montant d’argent & 'employeur avant la réalisation de ses performances
ne permet pas d’améliorer I’ensemble des contrats possibles puisque dans leur modele, il n'y a ni

incertitude, ni partage des risques.
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notre modele. En effet, suite & une mauvaise réalisation de ’état de la nature, disons
un accident de la part de ’agent 1, la compagnie d’assurance indemnisera son client.
En contrepartie, le surplus futur espéré de la compagnie devra augmenter. Ceci sera
réalisé de fagon optimale par une hausse de la prime d’assurance du client. C’est
I'effet de la volonté de lisser la consommation dans le temps: un accident est ainsi
amorti sur plusieurs périodes. Une suite d’accidents sera généralement suivie d’une

suite de hausses de la prime d’assurance.

Les paiements ex ante sont observés dans plusieurs relations contractuelles dif-
férentes. Par exemple, dans une relation financiére, la firme s’engage ex ante a donner
des garanties financiéres qu’elle laissera aux financiers en cas de défaut de paiement.
Pour leur part, les financiers peuvent s’engager & verser un certain montant 3 la firme
par 'ouverture d’une marge de crédit de laquelle la firme pourra puiser au besoin.
Ces paiements peuvent &tre interprétés comme des transferts ex ante d'un agent a
Pautre, effectués dans le but d’alléger le probleme d’engagement des parties. Dans un
contrat d’assurance, la prime d’assurance est payée avant la réalisation de ’état de
la nature, et peut donc étre réinterprétée comme un paiement ex ante de I’assuré
Iassureur. Pour ce qui est de la compagnie d’assurance, on exige généralement d’elle
un niveau de réserves minimales pour atténuer le probléme de responsabilité limitée.
Ces paiements non contingents peuvent étre réinterprétés comme des transferts ex

ante d’un agent a Pautre.

Les manipulations des conditions de premier ordre décrivant le contrat optimal
sont tres difficiles, étant donné I’existence de plusieurs contraintes d’inégalité. Pour
cette raison, certaines caractéristiques du contrat optimal n’ont pu étre démontrées
que dans un environnement & deux états de la nature. L'objectif du second essai de
cette these est d’étudier de fagon approfondie les propriétés du contrat optimal a ’aide
d’'un exemple. Cett étude nécessite le développement d’un algorithme permettant
Papproximation rapide, sur un micro-ordinateur avec processeur 486, de la fonction

de valeur qui décrit la relation dynamique optimale.
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Phelan et Townsend (1991) développent un algorithme permettant le calcul d’une
solution numérique au probleme de planification sociale pour une économie avec un
continuum d’agents identiques, ayant tous accés & la méme technologie de production
indépendante. Cette technologie utilise le travail de I'agent pour produire 'unique
bien de consommation de ’économie en fonction du niveau de travail fourni et d’un
choc exogéne indépendant. Le surplus social de 'économie est défini comme la somme
des surplus individuels (définis comme la différence entre la production individuelle
et la consommation). Leur méthode pour trouver I'optimum de Pareto de I’économie
consiste a maximiser le surplus social sous contrainte que chaque agent recoive un
niveau d’utilité spécifié ex ante. Un optimum est ainsi la solution de ce probleme
pour une distribution initiale des utilités requises qui soit & la fois possible et telle
que n’importe laquelle autre distribution d’utilité qui domine au sens de Pareto la
distribution initiale ne soit pas une solution réalisable. Phelan et Townsend cherchent
a maximiser le surplus social de chaque groupe d’agents correspondant & un niveau
d’utilité ex ante donné en choisissant la fraction optimale des agents de ce groupe
qui devront choisir un niveau de travail (ou d’effort) fixé et qui auront droit & un
niveau fixé de consommation, et ce pour toutes les combinaisons possibles d’effort et
de consommation. Phelan et Townsend étudient ensuite le cas ot1 le niveau d’effort
n’est observable que par I’agent le fournissant, en rajoutant au probléme une con-
trainte d’incitation telle que le niveau d’effort demandé soit faiblement préféré par
agent. Les auteurs rameénent ainsi le probléme a un probléme de programmation
linéaire (dans les probabilités) simple. La solution sera d’autant plus précise que la
grille des possibilités pour les niveaux de travail et de consommation sera raffinée.
Notre premiere tentative d’approximation fut 'utilisation de la méthode suggérée par
Phelan et Townsend. Cette méthode simple & appliquer demande par contre énormé-
ment de temps machine. Nous avons estimé, par extrapolation du temps requis pour
une approximation grossiere de notre fonction, & plusieurs mois le temps machine

nécessaire a une approximation raisonnable sur un micro-ordinateur avec processeur

486.
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Wang (1994) développe un algorithme pour dériver numériquement |’ensemble,
¢, des paires d’utilité admissibles dans une relation dynamique d’assurance entre
deux agents riscophobes avec asymétrie d’information bilatérale. En utilisant cet
ensemble ¢, la résolution de I'équation de Bellman donne les trajets de consommations

optimales et la loi de transition de la variable d’état.

Nous avons obtenu une approximation rapide par une méthode d’approximation
polynomiale appelée la méthode de collocation orthogonale. Cette méthode est sug-
gérée dans Judd (1992) et est une application du théoréme des projections. Les
conditions d’orthogonalité du théoréme des projections sont grandement simplifiées
lorsque I'ensemble des éléments utilisés pour engendrer I’espace dans lequel on pro-
jette 'élément a approximer constitue une base orthogonale. Nous utilisons donc les
polynomes de Chebyshev, qui obéissent & certaines relations discrétes d’orthogonalité,

pour obtenir une approximation de notre fonction.

D’autre part, on sait par le théoréme de Wierstrass que l’on peut obtenir une
approximation aussi précise que 'on veut de toute fonction continue sur un intervalle
fermé, & I'aide d’un polyndme. La précision de I’approximation est définie comme
la distance maximale dans l'intervalle d’approximation entre la fonction i approx-
~ imer et le polyndme de Chebyshev. Cette distance maximale est appelée lerreur
d’approximation. L’erreur d’approximation diminue avec le degré du polynéme. Nous
chercherons donc dans cet essai & obtenir une “bonne” approximation polynémiale

de la fonction de valeur, dans I’espace engendré par les polyndémes de Chebyshev.

Nous utiliserons de plus deux théoremes d’analyse numérique. Le premier nous
indique que toute approximation polynémiale est caractérisée par l'existence d’au
moins deux points distincts dans I'intervalle d’approximation pour lesquels I’erreur
d’approximation est minimale (voir Rivlin (1969)). Le second théoréme caractérise
une approximation a l'aide de polynémes de Chebyshev de degré n, en démontrant
Pexistence de n + 1 points dans l'intervalle d’approximation pour lesquels ’erreur

d’approximation est nulle. Ces n+ 1 points sont les zéros du polynéme de Chebyshev
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d’ordre n + 1 (voir Rivlin (1990)) et définissent un systeme d’équations exprimant le
fait que la distance entre la fonction que l'on cherche & approximer et le polynome
est nulle en ces points. La méthode de collocation orthogonale consiste & résoudre ce

systeme de n 4 1 équations linéaires dans les parametres du polyndme.

L’algorithme d’approximation consiste d’abord 4 calculer une fonction de valeur de
départ. Nous avons obtenu de bons résultats avec la fonction de valeur caractérisant
la solution de pleine assurance. La seconde étape consiste & maximiser un probleme
d’optimisation non-linéaire (a l’aide d’un utilitaire d’optimisation de Matlab) pour
n + 1 valeurs spécifiques de la variable d’état, ol n est le degré de I'approximation
polynémiale. Cetfe étape nous donne n + 1 couples (variable d'état, valeur de la
fonction). La méthode de collocation orthogonale est ensuite utilisée pour obtenir
une nouvelle approximation de la fonction de valeur. Nous répétons les deuxieme
et troisiéme étapes jusqu’a ce que I'erreur d’approximation soit inférieure & un seuil
prédéterminé.

Cette méthode s’est avérée étonnamment rapide (quelques minutes), pourvu que
'on ait une bonne approximation de la fonction de valeur comme valeur de départ.
Nous avons ainsi pu vérifier numériquement pour trois états de la nature, un résultat

analytique démontré dans I'essai précédent pour deux états de la nature.

Dans le troisieme essai, nous nous intéressons au probléme du remboursement
de la dette des pays en voie de développement. Deux questions en particulier nous
préoccuperont. D’une part, deux propositions sérieuses de réglement du probléme
du remboursement de la dette ont été formulées dans les Plans Baker et Bradley.
Le Plan Baker suggeére de continuer A financer les pays endettés sans effacer aucune
partie de la dette, ni changer la nature des créances. Le Plan Bradley propose plutét
d’effager une partie importante de la dette de maniére  rétablir une situation normale.
D’autre part, on a observé dans les derniéres années une crise d’investissement dans
les pays trés endettés. Plusieurs études suggérent que cette baisse des investissements

est due au probleme d’endettement et que la situation pourrait &tre rétablie par une
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diminution de I’endettement.

Le probleme peut étre vu comme un probléme de négotiation entre les créditeurs
qui veulent obtenir le plus gros remboursement possible, et le pays qui veut minimiser
le transfert de nouvelles ressources. Bulow et Rogoft (1988) étudient cette facette du
probleme a l'aide d’un modeéle de négociation a la Rubinstein. Une approche dif-
férente consiste a considérer le montant disponible au remboursement comme connu.
Cette approche utilisée par Krugman (1988) simplifie grandement le probléme. Krug-
man étudie I'arbitrage auquel sont confrontés les créditeurs d’un pays dont la dette
est tellement élevée qu'il lui est impossible d’attirer volontairement de nouveaux pré-
teurs. Lorsque les ressources courantes du pays sont insuffisantes pour assurer le
service de sa dette, les créditeurs ont deux choix: ils peuvent financer le pays en
prétant a perte dans ’espoir que le pays sera éventuellement capable de rembourser
en totalité; ou ils peuvent effacer une partie de la dette. Krugman démontre d’abord,
dans un modeéle qui fait abstraction des incitations du pays, qu’il serait toujours dans
P'intéret des banquiers de donner I’argent nécessaire au service de la dette et d’exiger
le plus gros remboursement possible non-contingent 4 la réalisation du revenu du pays.
Supposons maintenant que le fardeau de la dette d’un pays est aussi gros que le mon-
tant maximal qu’il puisse obtenir en effectuant I'effort d’ajustement (investissement,
politiques monétaires et fiscales, etc.) maximal. Le pays n’a aucun intérét & effectuer
cet effort maximal puisque tous les bénéfices iraient aux créanciers. Lorsqu’il tient
compte des incitations du pays i faire un effort de restructuration, Krugman démon-
tre I’existence d’un arbitrage entre déma.nder le plus gros remboursement possible et
créer des distortions dans les incitations du pays qui voit s’envoler une part d’autant

plus grande des bénéfices de son effort que le remboursement demandé est éleve.

Le modéle de Krugman est un jeu & deux périodes dans lequel la banque choisit
en premiere période le niveau de remboursement 3 exiger du pays, et le pays choisit
ensuite le niveau d’effort d’ajustement a déployer pour améliorer ses perspectives

économiques futures. Les deux agents sont neutres au risque, et le jeu commence
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dans une situation dite de “debt overhang”, c'est-a-dire une situation dans laquelle
les remboursements espérés par la banque sont inférieurs 3 la dette accumulée du
pays. Dans cet environnement, une hausse du remboursement exigé diminuera le
rendement marginal de l'effort puisque le pays devra rembourser plus dans les états
ou il n’est pas limité par les ressources dont il dispose pour le remboursement. Il
réagira de fagon optimale & la hausse des exigences bancaires par une baisse de son

niveau d’effort de restructuration.

Cette réaction est mise en doute par Warner (1992) dont les résultats empiriques
révelent que la crise d’investissement des pays en voie de développement n’est pas
causée par la crise d’endettement. Au contraire, Warner vérifie empiriquement que
la chute des investissements peut étre prédite par des équations simples du taux
d’intérét mondial et des termes des échanges qui n’incluent pas d’effet dus a la crise
d’endettement. Il en conclut que I’hypothese selon laquelle le déclin des investisse-
ments est expliqué par le niveau d’endettement doit étre fortement mise en doute. Il
rajoute, qu’a tout le moins, l'influence directe des chocs économiques mondiaux sur

I'investissement n’a pas recu suffisamment d’attention.

Dans ce papier, nous cherchons des fondements théoriques aux résultats em-
piriques de Warner (1994). La différence majeure de notre modéle avec celui de
Krugman (1988) réside dans I’hypothése que les coiits & encourir pour imposer un
remboursement du pays sont tellement élevés, que le contrat financier entre les ban-
ques et le pays doit étre auto-exécutoire. Thomas et Worrall (1994) ont développé un
modele similaire pour étudier le cas d’une firme multinationale qui investit & I’étranger
et doit verser une partie de ses dividendes sous forme de taxes au pays hote. Le pays
héte a le pouvoir de saisir le capital physique de la firme. A I'optimum, la firme in-
vestit peu au début de la relation et ne verse aucune taxe au pays hote en promettant
de les lui verser plus tard. Avec un investissement faible au début, la production de
la firme est faible et il est donc peu tentant pour le pays hote de la saisir d’autant

plus qu’elle perdrait par le fait méme la totalité des taxes promises. A mesure que
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les taxes futures augmentent, le surplus espéré du pays augmente et la firme peut

augmenter son investissement sans crainte d’étre saisi.

Dans notre modele, le pays est riscophobe. Cette hypothese réflete la difficulté
qu’ont les pays en voie de développement & diversifier parfaitement leurs risques sur
les marchés internationaux. De plus, toute I’histoire d’endettement du pays y est
caractérisée, et les remboursements exigés par les banques sont contingents & la réal-
isation d’une variable aléatoire qui est fonction du niveau d’investissement choisi
par le pays & la période précédente. Dans ce contexte, la réaction du pays suite &
une baisse du remboursement exigé est indéterminée. En effet, nous montrons que
dans un modeéle & deux états, le pays pourrait aussi bien diminuer qu’augmenter
son effort d’ajustement suite a une baisse des exigences des banques. L’intuition
de ce résultat est la suivante. A Poptimum, le coiit marginal de la dette doit
étre égal au colit marginal de l'investissement. Lorsqu’on efface une partie de la
dette du pays, on augmente la valeur marginale en terme d’utilité de cette dette,
puisqu’une moins grande part des ressources futures du pays devront étres utilisées
pour le remboursement. Une baisse de I’endettement améliore donc les possibilités
de consommation future et diminue le cofit marginal de la dette en termes d’utilité
marginale de la consommation. Puisque le colt marginal de la dette doit étre égal
au cout marginal de l'investissement, la pressién a la baisse sur le colt marginal
de la dette aura un effet négatif sur le coiit marginal de l'investissement. Puisque
le colit marginal d’investissement est en terme d’utilité marginale de la consomma-
tion, une baisse du coit marginal signifie une hausse de la consommation qui sera
réalisée par une une baisse du niveau d'investissement. Mais, par la nécessité de
maintenir 'investissement a un niveau efficace, le revenu marginal de I'investissement
devra lui aussi diminuer, et cette diminution ne peut étre accomplie que par une
hausse du niveau d’investissement. Lequel de ces deux effets contraires sur le niveau
d’investissement sera le plus important dépendra des pa,ra,métres du modele. En par-

ticulier, plus le revenu marginal de I'investissement sera sensible & une diminution
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marginale de la dette, plus I'effet a la baisse sur I'investissement sera important.
Une situation dans laquelle Pinvestissement pourrait diminuer suite & une baisse de
Pendettement est donc une situation o le rendement marginal de I’investissement est

élevé, c’est-a-dire un environnement dans lequel I’investissement est faible.



1 Using ex ante payments in self-enforcing risk-

sharing contracts



1.1 Introduction

Long-term contracts are useful for the governance of long-term relationships. Such
contracts can help improve incentives as well as risk-sharing between two agents.
An optimal contract will trade-off between incentives and risk-sharing to attain an
efficient allocation; however this efficient allocation is often time-inconsistent. For
example, an ex ante efficient allocation may not be ex post efficient (once certain
actions have been undertaken or some information has been revealed). This time-
consistency problem has led to the recent literature on renegotiation. Or, an ex
ante profitable contract may not be ex post profitable following a given history. In
this case, if enforcement costs are high (or mobility costs are low), agents may be
tempted to renege on the contract to seek more profitable opportunities elsewhere.

The literature on self-enforcing contracts studies this problem.

Consider two agents that enter into a long-run relationship to share risk and for
which enforcement costs are high. Their relationship_is governed by a contract that
prescribes in every period transfer payments from one agent to the other contingent
on the realization of the state of nature (and possibly the complete history of the
relationship). If the two agents can commit not to default on any prescribed transfer
payment then the optimal contract achieves an efficient risk-sharing allocation; how-
ever, if an agent cannot commit not to default, efficient risk sharing may be impeded
as the optimal contract is constrained by the possibility of ex post default. The con-
tract should then prescribe payments that are self-enforcing, that is, an agent will
make a transfer payment if and only if it is in her interest to do so. In any period, the
surplus one expects from the relationship conditions the transfer that she can make
in this period. If an agent expects a high surplus in the future, she has low incen-
tives to break the relationship and she is therefore willing to make a high payment
to continue the relationship. On the other hand, if her expected surplus is low, she
has high incentives to break the relationship and she must therefore be induced not

to do so by requiring a low (possibly negative) payment. Self-enforcing constraints



generally limit transfer payments and therefore reduce the opportunity for efficient
risk sharing.

The risk-sharing problem analysed in the literature usually has the following

structure.!

There are two agents. I[n every period, a risk-averse agent receives a
stochastic endowment. This endowment is independently and identically distributed
across periods. Risk-sharing between the two agents is implemented by a contract
specifying transfer payments between the two agents. The contracting space is such
that all transfers take place at the end of the period once the state of nature has
been observed. In an environment in which the two agents cannot commit to making
all prescribed payments, ex post self-enforcing constraints must be satisfied, that is,
for any realization of the state of nature, the contractually specified payment must
satisfy a participation constraint for each agent. It is possible that these constraints
be quite stringent for one agent, say agent 1. This effectively limits the payments
agent 1 can make to agent 2. In this case, agent 1 would like to make a transfer to
agent 2 before the state of nature is realized. At this point, agent 1’s self-enforcing
constraints only have to hold in expectation over all states of nature. Such ex ante
transfer would effectively relax agent 1’s ex post self-enforcing constraints. When the
two agents face self-enforcing constraints, if one agent makes such payment to relax
her own self-enforcing constraints it usually makes the other agent’s self-enforcing
constraints more stringent by leaving the ex post burden to that agent to make the
necessary transfers for optimal risk-sharing, Consequently, the ex ante payment must

trade-off between the self-enforcing constraints of the two agents.

In this paper we analyse a risk-sharing contract between two risk-averse agents
facing self-enforcing constraints. We enlarge the contracting space to allow for an ex
ante transfer (at the beginning of the period) before the state of nature is realized.
We analyse the trade-off between the self-enforcing constraints of the two agents by

characterizing the optimal ex ante and ex post transfer payments.

!For example, see Thomas and Worrall (1988).



Our main results are that ex ante payments are optimally used and that these
payments are non-stationary. They optimally depend on the surplus from the rela-
tionship each agent expects. This expected surplus evolves with the history of past
realizations of states of nature. When an agent expects a low share of the surplus
of the relationship, her ex post self-enforcing constraints are relatively stringent and
she cannot be required to make a-high payment. In this case, she is optimally asked
to pay up front before the realization of the state of nature. This effectively relaxes
her ex post self-enforcing constraints. In general, however, these constraints cannot
be completely eliminated because a high ex ante payment by one agent increases
the incentives of the other agent to break the relationship and run away with this
payment. We show that the size of the ex ante payment an agent makes is inversely
related to the surplus she expects to get from the relationship. We can also show
that interesting dynamics properties emerge froﬁl our model even though shocks are
independently and identically distributed across periods. For example, in a two-state
example, we show that the dynamics of the optimal contract exhibits experience

rating even though there is no private information or learning taking place.

Ex ante payments are observed in many different contractual relationships. For
example, in a financing relationship the firm commits ex ante to a certain amount of
collateral in case it défa.ults on the contract. Alternatively, the financier can commit
to a given amount of financing by providing the firm with a credit line. Such payments
can be interpreted as ex ante transfers from one agent to the other. In other contexts,
the ex ante payment can be réinterpreted as a breach-of-contract penalty which is
in fact a payment agents are committed to if they default on the contract. In an
insurance-contract example, insurance premia are paid before the state of nature is
realized as an ex ante payment from the insuree to the insuror. We discuss the
economic implications of our model more at length in Section 5. Section 2 presents
the basic model. In Section 3 we analyze the role of ex ante payments when only

one agent faces self-enforcing constraints. Section 4 presents the main results of



the paper when the two agents face self-enforcing constraints. Section 5 provides
different economic interpretations of the contractual form with an ex ante payment.

A conclusion follows.

1.2 The model

The environment we consider can be described by an infinite sequence of periods,
t =1,2,...,00, and for each period, a finite set of states of nature, s € {1,2, ey S,
with § > 2. We assume that the states are distributed independently and identically
across all periods, and therefore, in each period, the state of nature s occurs with
probability p* where Y5_, p* = 1. It is assumed that each period t is divided into three
dates, to,t,, and t,, where ¢, is the date at which the state of nature is realized; the

dates o and ¢; denote respectively the dates preceding and following the realization

‘of the state of nature.

Two infinitely-lived agents evolve in this environment. Both agents are risk averse.
In each period, agent 1’s preferences over consumption c are represented by a state-
independent strictly concave quadratic utility function u(c) for ¢ € [0,8]. In each
period, agent 1 obtains a state-contingent endowment y*. We adopt the convention
that y* > y*~! for all states s. We assume that 0 < ! < yS < b. In each period, agent
2’s preferences over consumption c are given by v(c) which is also a state-independent
concave quadratic function. In each period, agent 2 obtains a state-independent
endowment e.? To insure an interior solution, we assume that y° + e < b and that

w'(0) and v'(0) are sufficiently large. Both agents discount the future by a common

factor 8 € (0,1).

In such an environment there exists gains from trade to be exploited: both agents
are risk averse, and agent 1 obtains a risky endowment, while agent 2 obtains a

constant endowment. We assume that there are no contingent markets that would

*The analysis can be generalized to the case in which the endowment of agent 2 is stochastic.



allow the agents to diversify their risk and therefore the two agents enter into a
risk-sharing relationship. For example, agent | may represent a firm and agent 2, a
financier; or alternatively, agent 1 may be a sovereign agent and agent 2, a consortium
of financiers. A relationship is characterized by transfer payments between the two
agents that take place at various time periods and dates. We call the governance of
such relationship a contract where the term contract is interpreted in a broad sense,
namely it can encompass implicit as well as explicit agreements. A contract then
specifies various transfers between the two agents for all periods of the relationship.

In each period ¢, a contract can specify the following structure of transfer payments.

1. A (positive or negative) ex ante transfer B, from agent 2 to agent 1 at date ¢,

(before the state of nature is realized).

2. Ex post (positive or negative) transfers af from agent 1 to agent 2 at date ¢,

(after the state of nature s is realized).

Consumption takes place at the end of the period. Agent 1’s consumption in period

tif state s is realized is ¢f = y;+B,—aj; agent 2’s consumption is b— B, +a] = b+y?—c’.

In a typical relationship the prescribed transfers can potentially be contingent on
the complete past history of the relationship. The history up to period ¢ is the vector
of all previous realizations of the state of nature. Let s; denote the realized state
of nature in period ¢. The history at the end of.period t — 1 (date (t — 1)2) or at
the beginning of period ¢ (date ¢o) is denoted by h;—, = (81,824 ., St—1). We assume
that ho = 0. Assume that the two agents enter into a long-term (infinite) contractual

relationship. We can then define formally a contract between the two agents.

Definition 1 A contract, §, is a sequence of two functions: {B(hi-1),a(he)} o,
where B, = B(h;_,) represents the transfer from agent 2 to agent ! at the beginning
of period t (date to) when history is hy_y, and where af = a(h;_1,s) represents the
transfer from agent | to agent 2 at the end of period t (date t,) when history is h,_,

up to period t and s is the realized state of nature in period t.



~1

For any contract, 6, and any history, h,_;, agent 1’s expected surplus of the
relationship from the beginning of period ¢ onwards is
U(Siheer) = B 377 uly? + By = «2) — u(y?))
T=t
where E is the expectation operator taken over all states in all future periods and y?
denotes that the endowment y° is realized in period r. Similarly, the expected surplus
of agent 2 from the beginning of period ¢ onwards is
o0
V(6iheer) = EY B {v(e~ B, +a2) — v(e)}.
T=t
The surplus of the two agents are measured with respect to autarky, that is, it gives
the surplus one agent can get from the relationship over autarky where it would

consume its endowment.

The approach we take is to assume that the two agents enter into a relationship at
the beginning of a period called period 1. This relationship is governed by a contract.
The characterization of the implemented contract depends on the available technology
to legally enforce the prescribed payments. The objective of the paper is to study the
effects of limited enforceability of payments on optimal contracts. The literature on
self-enforcing contracts® has tackled such analysis and we will discuss later how our

paper relates to some of these papers.

We first establish a benchmark case in which the two agents sign a contract at
the beginning of the first period and all prescribed transfers are legally enforceable.
We refer to this case as the full-commitment case. In this case, the optimal contract,
6%¢, is the solution to the following maximization problem where, for simplicity, it is

assumed that agent 1 has the bargaining power and 0 is agent 2’s reservation utility.

6¢ = arg max {U(&; ho) s/t V(8; ko) >0} . (1)

3For example, see Harris and Holmstrom (1982), MacLeod and Malcomson (1988), Thomas and
Worrall (1988), and Kletzer and Wright (1990).



This maximization problem simply states that the optimal contract maximizes the
discounted expected utility of agent | subject to agent 2’s participation constraint.
This constraint states that the contract must provide agent 2 with a discounted
expected surplus of at least 0. A solution to this maximization problem exists and is

characterized in the following proposition.

Proposition 1 When both agents can commit to the terms of the contract, the opti-
mal contract, §/¢, is characterized by the equalization of marginal rates of substitution

of consumption of the two agents across all states and periods. Formally, for all pe-

w(yf+Be—ai) _ v'(e=Bi+af)

riods t, 7, all states s, q, and all histories h,_;, T TB—a) = v(eBrtal):

The optimal full-commitment contract specifies perfect risk-sharing with a station-

ary consumption rule. This consumption rule can be written as ¢f = c*(c;—1, yi—1, )

where
w'(c*(ce-1, Yt-1, ) _Vlety —c(e1,¥-1,5))
w(ci-1) v'(e+ Y1 — Ct-1)

Two aspects of this characterization deserve mention. First, in problem (1), the
functions U($; ho) and V/(8; ko) depend only on the net transfers B, —a} and therefore,
in each state, only optimal net transfers are determined. This implies that the value
of B, is arbitrary. With full commitment, there is no role for the ex anté transfer B,

in the optimal contract.

Second, in some states of nature, net transfers from agent 1 to agent 2 are positive,
and in other states, the reverse is true. Complete legal enforcement of the contract is
a sufficient condition to make these transfers feasible. In the next sections we relax
the assumption of complete legal enforcement to study the characterization of optimal

contracts under incomplete legal enforcement.



1.3 Contracting under one-sided commitment

In this section we consider an environment in which legal enforcement of all prescribed
payments is limited. We first examine the situation in which only agent 1 cannot
commit to making all transfers prescribed by the contract. We say that agent 1
faces self-enforcing constraints. These constraints impose that, at any point in time,
agent 1 should always do as well obeying the contract as reneging on it. When the

self-enforcing constraints are satisfied we say that the contract is self-enforcing.

When legal enforcement cannot provide a sufficient incentive for agent 1 to obey
the contract, she must be incite to do so differently. In a long term relationship such
incentive arises endogenously from the interaction of the two agents over time. One
approach to study this incentive would be to model the relationship as a strategic
game where each agent’s strategy would be a sequence of payments for the complete
history and following any history. In this case, the incentive for agent 1 to obey
her equilibrium strategy would come from the anticipation of agent 2’s response to
a deviation. Any payment by agent 1 would therefore be enforced by the strategy
of player 2. The more severe would be player 2’s punishment, the higher would be
coopéra,tion‘between the two agents. In this case, the Folk theorem states that given
a high enough discount factor any individually rational feasible allocation can be
sustained in equilibrium. For our purposes, such an approach is unsatisfactory for
two reasons. First, as is well known in the theory of supergames, the multiplicity of
equilibria creates significant coordination problems between the two agents. Second,
we are interested here in characterizing allocations for any value of the discount factor

and not just allocations for high values of the discount factor.

We therefore adopt the following approach. We assume that if agent 1 reneges
on the contract she suffers maximal punishment in that she must stay in autarky

forever after. This punishment strategy by agent 2 allows us to characterize the best

“The analysis of the opposite case in which agent 2 can renege on the contract is symmetric.
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possible contract satisfying self-enforcing constraints.> The optimal contract is then
the solution to a well-defined maximization problem. This approach resolves the
coordination problem in effectively coordinating the two agents on a Pareto optimal
allocation. Furthermore it allows us to characterize optimal allocations for any value

of the discount factor.

When agent 1 can renege on the contract at any point in time, she will make a
transfer to agent 2 if and only if it is in her interest to do so. Agent 1 will compare the
benefit of making the transfer and obeying the contract with the payoff of reneging on
the contract and staying in autarky thereafter. For example, suppose the two agents
have signed a contract ¢ prescribing transfers { B(k,~,),a(h;)} for all histories A,. In
period ¢, agent 1 may decide to renege on the contract at date ¢, before receiving
the (possibly negative) transfer B;. Her surplus from staying in the contract is then
U(8; he—1). Agent 1 may also decide to renég‘e on the contract after the state of nature
has been realized at date ;. In this case her surplus from staying in the contract
is u(yf + Bt — a}) — u(y} + B,) + BU(6; hy—_y,s) where the first two terms represent
her current surplus from the relationship and the last term, her discounted expected

future surplus. We can now define a self-enforcing contract for agent 1.

Definition 2 A contract ¢ is self-enforcing for agent 1 if and only if, for all

histories h,_q, periods t, and states s, the following constraints hold.

(z) U(6hi=1) >0
(i) uly? + Be— a}) = u(y} + B) + BU(S; heor, ) > 0

This definition states that a contract is self-enforcing for agent 1 if at any time during

the relationship agent 1 prefers making the contractual transfer rather than reneging

SMacLeod and Malcomson (1989) model a situation similar to ours as an explicit game and show
that the maximal punishment is indeed subgame perfect. Any deviating agent is punished in the
future by not being able to enter a successful relationship, all parties expecting the deviating agent

to deviate again in the future.
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on the contract and be reduced to autarky from then on. Constraint (i) is an ex
ante self-enforcing constraint in that it holds at date ty; constraint (i) is an ex post
self-enforcing constraint in that it holds at date ¢, after the state of nature has been
realized. Note that all ex post self-enforcing constraints being satisfied does not
necessarily imply that the ex ante self-enforcing constraint is also. For example, if B,
is negative, the ex ante constraint may bind while ex post constraints may not once
the ex ante payrnent. B; has been paid. It is therefore necessary to consider these two

sets of constraints.

When designing the optimal contract the two agents will anticipate agent 1’s

" incentive to renege, and the terms of the contract will take into account such incentive.

To solve for the optimal contract we must therefore add self-enforcing constraints to
the maximization problem (1). The optimal contract with non-commitment by agent
1, 6, is then the solution to the following maximization problem where, for simplicity,

we assume that agent 2’s reservation utility is equal to zero.
&' = arg max U(8; ho)
s/t V(§iho) 20 (2)
U(6;he-1) 20 Vi, hey
u(yy + Be — af) — u(y; + B) + BU(6 heey, ) 20 Vs t, by

The next proposition characterizes the optimal contract §!.6

Proposition 2 Suppose that the mazimum ex ante payment agent I can make is B.
(i) For all values of B € (0,1) the optimal contract with non-commitment by agent I
is the optimal full-commitment contract, that is, §' = §/¢, if and only if B > yS —cSfe,
where ¢*/¢ is the optimal consumption in state s under the full-commitment contract.
Suppose that B < y° — ¢5/¢,

(ii) There exists a B which depends on B such that for 8 € [61,1), the optimal con-

tract with non-commitment by agent 1 is the optimal full-commitment contract, that

Al proofs are relegated to the Appendix A.
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is, 6! = §/¢.
(i) For all B € (0, By), the following characterization forms part of an optimal con-

tract §!:

1. Agent 1 makes the highest ex ante payment in every period, that is, B, = —B
for all periods t;

2. Agent 2’s expected profit is non-increasing in time, that is, V(8';hiy,s) <
V(8% he=1) for all histories hy_;, time periods t, and states s;

EELCJ_))_ <

ﬂﬂﬂ'—y‘_—c‘l— for all histories hy_; and time periods t where ¢ = c(h,_1,s) and

v'(etyear—ce—

3. Agent I’s implicit discount factor is no greater than agent 2’s, that is, 3

¢i-1 = ¢(hs—1) and c(h) defines the optimal consumption following history h.

This proposition states that if agent 1 can make a high enough ex ante payment
(B > y° — ¢5/¢), then the optimal full-commitment contract can satisfy agent 1’s
self-enforcing constraints. A large enough ex ante payment effectively allows all ex
post transfers af to be negative which in turn implies that all ex post self-enforcing

constraints are satisfied.”

When the maximum ex ante payment agent 1 can make is not high enough, the
optimal contract with full-commitment cannot be supported for all values of the
discount factor. If the discount factor is high enough, that is, no.lower than £,, then
agent 1’s ex post self-enforcing constraints are not binding.® In this case, the future
benefits of perfect risk-sharing exceed the short-run cost of making the prescribed
transfer in any state s. Contrary to the full-commitment case however, the transfer
B is not a matter of indifference. It will optimally be set to the maximum level agent

1 can pay. A maximal ex ante payment reduces ex post transfers ai from agent 1

"Note that the transfer y* — c¢5/° is the largest transfer agent 1 makes to agent 2 in the full-

commitment contract /¢
8This result is akin to results in the theory of supergames where any efficient outcome of a static

game can be supported as an equilibrium of its associated supergame provided that the discount

factor is high enough.
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to agent 2 and hence the incentive for the former to renege ex post on the contract.
It therefore allows the optimal full-commitment contract §/¢ to be supported for the

largest interval of discount factors.

When the discount factor is smaller than B, the optimal full-commitment contract
cannot obtain if B < y¥ — ¢5/¢. In this case, the transfer that agent 1 must make
to agent 2 in state S is large compared to the discounted future benefits of perfect
risk-sharing. Agent 1 then has the incentive to renege on the contract. The optimal
contract must therefore account for this possibility. In this case, agent 1 can make the
maximum ex ante payment B; in all periods, namely, B, = —B.® The intuition for
this result can be found by looking at the maximization problem (30). Suppose the
optimal contract specifies B, > —B and transfer payments af for some t. It is then
possible to construct a contract é with, in period ¢, B, = —~Bandal =a;-B,-B < a;
for all states s, and leave all other periods unchanged. These modifications leave the
two agents’ consumption unchanged and therefore do not change the value of agent 2’s
participation constraint, nor the value of ex ante self-enforcing constraints; however
they do relax the ex post self-enforcing constraints of agent 1. When one of these

constraints is binding, this new contract (weakly) increases the utility of agent 1.

The optimal contract also specifies that agent 2s expected profit be non-increasing
in time. The optimal contract seeks two objectives: (1) to insure agent 1 against
shocks to her endowment and (2) to smooth her consumption across periods. When
agent 1 cannot commit to make any transfer at the end of a period, risk-sharing and
intertemporal smoothing are partially impeded. These objectives can be improved
upon by having agent 1 save in the early periods and good states of the world and
withdraw her savings in later periods in bad states of the world. This is possible
given that agent 2 can commit not to “steal” agent 1’s early savings. The optimal

contract therefore uses agent 2 as a savings account. The objective of this savings

9Although making the largest ex ante payment is not necessary for an optimal contract for all

values of the discount factor, it is clearly sufficient.
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account is precisely to insure future consumption against bad states of the world.
This is optimally achieved by having agent 2’s expected profits be non-increasing in
time. This can also be seen in the fact that agent 1’s implicit discount factor is not
larger (and sometimes strictly smaller) than agent 2’s which reflects agent 1’s relative
preference for the future. Self-enforcing constraints force agent | to save more than
she would in a full-commitment environment. [t is therefore as if she could earn a

high interest rate on her savings (a low discount factor).

The following corollary gives a more precise characterization of the optimal con-

sumption path.

Corollary 1 Assume that B < y® — ¢5/° and that 8 < 4.

(i) For all states s, there exists a time-invariant consumption level ¢* such that ¢ > ¢*
for all time periods t.

(i1) The lower bounds of consumption, ¢*, are increasing in the state of the world,
that is, k > q¢ = c* > &%, and are decreasing in the mazimal payment B that agent [

can make.

(iii) For any history (he-1,q,s), optimal consumption at time t is such that:

c’ if ¢ (ctm1,0i-1,8) < c*
C(h:_z,q,3)= f (ct-1,9s 1 )_

c*(ci-1,Yi-1,8) otherwise

wlet (1w 113) _ v'(etyi-c*(cem1,u)_,.9))
w(Ctei) - v'(ety!_—ci-1)

where c*(ci-1,Yi-1,8) is implicitly defined by

This corollary shows that, in each state, there exist time-invariant lower bounds
on agent 1’s consumption. These bounds are increasing with the state of the world
and are decreasing in the maximum ex ante payment that agent 1 can make. Thus

the higher the payment B, the larger are the intervals of consumption that can be

supported in each state.

If, given consumption in period ¢ — 1, consumption smoothing satisfies agent 1’s ex

post self-enforcing constraint, then consumption in period ¢ is equal to ¢*(¢,—1, yi_1, ).
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If it does not satisfy agent 1’s ex post self-enforcing constraint, then consumption in
period t is equal to ¢*. Consumption follows a stationary first-order Markov process
where period ¢ consumption depends on period ¢ — 1 consumption and the realized
states in periods ¢t — 1 and t. The dynamics of consumption also imply that there is
convergence to perfect risk-sharing and consumption smoothing. In the steady state,
consumption only depends on the current state. Moreover, since optimal risk-sharing
at actuarially fair prices is impossible when 8 < 4, the steady-state cbnsumption in
every state must be higher than optimal consumption in the full-commitment case.
This implies that agent 1 gets, in the steady state, optimal risk-sharing at prices
lower than actuarially fair prices. This is acceptable to agent 2 because he gets a
compensating surplus at the beginning of the relationship in order to make zero-
profit overall. In terms of the implicit discount factor the two agents face, agent 1’s is
lower than agent 2’s until the steady state is reached, after which they become equal

(as is implied by perfect risk sharing and consumption smoothing).

The results of Proposition 2 and Corollary 1 are similar to results obtained by
Harris and Holmstrém (1982) in a model of labor contracts. They showed that under
the assumption of non-commitmept by the employee, wages are downward rigid as
the risk-neutral employer fully insures the worker against bad states of the world.
Our characterization is, first, a generalization to the case of two Fisk-averse agents.
It shows in fact that in this case, consumption can decrease in some states. Secondly,
it shows that the non-committed party (agent 1) would like to make, in each period,
ex ante transfers to relax the ex post self-enforcing constraints, that is, an optimal

characterization sets B, = —B.

A similar analysis could be performed for the case in which agent 2 cannot com-
mit not to renege on the contract and similar results would obtain. Having the
non-committed agent making the maximal ex ante payment relaxes its ex post self-
enforcing constraints. The non-committed agent effectively uses the committed agent

as a savings account. This improves risk-sharing and consumption smoothing as con-
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sumption eventually achieves perfect risk-sharing. The possibility that the committed
agent has of making an ex ante payment allows to shift (some or all) the burden of
ex post transfers to the committed agent. However if both agents face self-enforcing
constraints, the above characterization may not be feasible. One agent may run away
with the ex ante payment of the other agent as its ex post self-enforcing constraints
would become too stringent. The next section studies the optimal contract when the

two agents face self-enforcing constraints.

1.4 Contracting under no commitment

In this section, we relax the assumption of commitment by either agent and study the

properties of the optimal contract. We have seen that when agent 1 cannot commit she
makes the maximal ex ante payment at date to. Agent 2 does similarly when he cannot
commit. This payment reduces the non-committed agent’s ex post transfers at date
t2 and thus relaxes its ex post self-enforcing constraints. For constant consumption,
the substitution from ex post to ex ante payments does not affect ex ante constraints
since they only have to hold in expectation over the possible states of the world.
However when both agents simultaneously face self-enforcing constraints, an ex ante
payment that relaxes one agent’s ex post self-enforcing constraints may strengthen
the other agent’s constraints. The optimal ex ante payment should therefore trade

off between the two sets of self-enforcing constraints. This section studies the details

of that trade-off.

We first define the concept of a self-enforcing contract under the non-commitment

assumption.
Definition 3 A contract § is self-enforcing if and only if, for all histories he-y,
periods t, and states s, the following constraints hold.

(1) U(§hi-) 20

(@) w(y; + B — a}) = u(y; + Bi) + BU(6; hecyys) 2 0



17

(1) V(6 ki) 20

(iv) vie—=Bi+a])—vie— B)+ AV (65 himr,8) >0

This definition simply states that a contract is self-enforcing if it is self-enforcing

for agent 1 (constraints i and ii) as well as for agent 2 (constraints iii and iv).

Before proceeding with the analysis, we assume that there are no exogenous
bounds on the ex ante payment B,. This assumption is motivated by the fact that
we want to study how self-enforcing constraints rather than some exogenous bound

limit the use of the ex ante payment.

The optimal contract without commitment, 6™, is the solution to the following

maximization problem.

0" = arg max U(6; ho)
s/t U(8;h) >0 Vi,h,
u(yy + Be — af) —u(y; + By) + BU(6; by, s) > 0 Vs, t, he—(3)
V(§;he) 20 Vi h,
vie— Bi+a;) —v(e— By) + BV (8 heerys) 20 Vs, t, by

Following any time period and any history, the optimal contract 6™ will necessarily be
efficient, since if it was not it would be possible to replace the non-efficient path by an
efficient path thus (weakly) increasing the utility each agent derives from the contract
and hence relaxing all previous self-enforcing constraints. This new contract would
necessarily be self-enforcing and would dominate the old contract at the beginning of
the relationship. This argument implies that the optimal contract from the start of
period t onwards is the solution to the following maximization problem.
V)=, max  F {ulw + B — ) — uly) + B (V3))

s/t f(V&) 20 Vs

u(yy + Bi— o)) —uly; + B) + Bf(V5,) 20 Vs



Vi 20 Vs (4)
vie—=Bi+a))—v(e-B)+pVE, >0 Vs
Ve S B{o(b = B+ a}) ~v(b) + BV, )

where f(V;) represents the Pareto frontier that can be attained through a self-enforcing
contract after an arbitrary history ,_,. Denote by A(h,_;) the set of contracts satis-
fying the self-enforcing constraints following the history A,_,. The Pareto frontier is
then given by a time-independent function

f(V) = 6&1/&%351) {U(8;hoer) s/t V(83 hiey) = Vi)

In problem (4), the variable V%, is to be interpreted as V(§; hi_y,s), that is,
agent 2’s expected surplus from period ¢ + 1 onwards when contract § is signed and
s is the realized state of nature in period t. The first two constraints represent
agent 1’s ex ante and ex post self-enforcing constraints respectively. The next two
constraints represent agent 2’s self-enforcing constraints. The last constraint of the
problem ensures that the contract is dynamically consistent. Before characterizing

the properties of the optimal contract we need some technical results.

Lemma 1 (i) The set of self-enforcing contracts following history he_y, A(h,_y), is
convez.

(i) The set of values of V, for which a self-enforcing contract ezists is a compact
interval [0, V).

(i) The Pareto frontier f(V,) is decreasing, strictly concave, and continuously dif-
ferentiable almost everywhere on (0,V).

(iv) For each value of V; € [0, V] there exists a unique continuation of the contract §

at time t in which V(6 he_y) =V, and U(6;himy) = f(Ve).

To get a better understanding of the role of the ex ante payment in this contracting

problem, we will first state the solution to this problem assuming that no ex ante
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payments are allowed.!®

Proposition 3 Assume that B, = 0 for all time periods t.

(i) For all states s, there exists optimal time-invariant consumption levels ¢* and &
such that ¢* < ¢ < & for all time periods t.

(ii) The optimal lower bounds ¢* and upper bounds & are increasing with the states
of the world, that is, k > ¢ = ¢* > ¢ and & > &.

(i) For any history (hy_,,q,s), optimal consumption at time t is such that:

.C_s ifC*(ct—lay?—-las) S Qs
c(hi-2,q,8) = C*(Ct—lay?-l,b‘) if ¢’ < C'(Cz-lay?-las) <c
¢ otherwise

(tv) There are no values of B such that the contract with non-commitment, 6m¢, is the

optimal contract with full commitment, §/¢.

When no ex ante payments are allowed, there are upper and lower bounds on optimal
consumption. These bounds are determined by the two agents’ ex post self-enforcing
constraints. Agent 1’s consumption follows a simple stationary first-order Markov
process. In period t, consumption depends on period t — 1 consumption and the
states of the world realized in periods ¢ — 1 and ¢. This implies that the consumption
of the two agents is smoothed as much as possible subject to ex post self-enforcing

constraints.

We now characterize the optimal solution when the ex ante payment is chosen
optimally. An implication of Lemma 1 is that problem (4) is a concave program
and therefore first-order conditions are both necessary and sufficient for a solution.

Denote respectively by Bp*a®, p*6®, Bp°¢®, p°A°, and o the multipliers of the five

19This corresponds to the generalization to the case of bilateral risk aversion of Thomas and
Worrall’s (1988).
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constraints in problem (4). The first-order conditions are
B: Y opu(yl+ Bi—al) + Y p%07 (W(y} + B, — af) — '(y} + By))
=Y PN+ Y)(e - Bi+a})+ Y p’ A (e—B) =0 (5)
a: =P L+ W (Y + Bi—ap) +p' (N + ) (e = Bi+4}) =0 Vs (6)
Vi (1+a’+0‘)f'(Vt‘ll)+/\s+¢s+1/)=0 Vs (7)
and the envelope condition is f/(V;) = —%. Lemma 2 provides some basic properties

of the solution.

Lemma 2 (i) There ezists a B, such that the. optimal non-commitment contract,

6™, yields the same consumption as the optimal full-commitment contract, §/¢, if and

only if B € [Bre, 1).

| Suppose that 8 < B,..

(i) For i = 1,2, there exists a state s; in which agent i’s ex post self-enforcing

constraint is binding.

This lemma shows that if the discount factor is high enough, the optimal full-
commiﬁnent contract is feasible with non-commitment and is therefore optimal.
Agent 2 pays up front a high enough payment (B, = c¢/¢ — y') such that the re-
sulting ex post payments, af, are all positive. These payments yield zero expected
utility to agent 2 in every period and therefore his self-enforcing constraints are all
satisfied. If the discount factor is high enough, agent 1 prefers to make the ex post
payments in all states of nature and be optimally insured in the future rather than
keep the up front payment, renege on the contract, and revert to autarky thereafter.
The critical discount factor §,. is defined as the lowest discount factor such that
agent 1 does not renege on the contract-in all states of nature. This contrasts with
the case B, = 0 where optimal risk-sharing is not feasible with non-commitment for
any value of the discount factor. The intuition for the difference in these two results

is the following. Optimal risk-sharing yields zero expected utility to agent 2 in every



21

period. Ex post self-enforcing constraints then hold if and only if af > 0 for all states
s. But this is incompatible with optimal risk-sharing and hence there is no value of
the discount factor such that optimal risk-sharing is feasible. Lemma 2 provides a
first indication that the use of ex ante payments can strictly improve the utility of

the two agents (at least for some values of the discount factor).

When the discount factor is such that optimal risk-sharing is not feasible, at least
one agent is constrained by its ex post self-enforcing constraints. The second result
of Lemma 2 states that each agent always has at least one ex post self-enforcing con-
straint binding. The intuition for this result is the following. Suppose only one agent
is constrained. This implies that the constrained agent could increase marginally its
up front payment, adjust its ex post payments to maintain its level of consumption,
and hence relax its ex post self-enforcing constraints. At the margin, this would not
violate the other agent’s ex post self-enforcing constraints which were not binding
before the increase in the ex ante payment. This would therefore increase the utility
of a least one agent. Such increase in the ex ante payment by one agent is possi-
ble until one of the other agent’s self-enforcing constraint becomes binding, in which
case further increases may not be self-enforcing anymore. Therefore, in the optimal

contract each agent always has at least one ex post self-enforcing constraint binding.

The next proposition provides a characterization of the optimal ex arite payment

when the discount factor does not allow optimal risk-sharing.

Proposition 4 Assume that § < B,..

(i) The optimal value of the ex ante payment in period t is strictly decreasing in the
ezpected surplus that agent [ has to concede to agent 2 in period t, that is, Vi>V'=>
B; < B{ where B, (B}) is optimal if the expected surplus in period t is Vi (v").

(1t) The optimal ez ante payment is strictly positive when agent 2 has a zero expected

surplus and negative when agent 2 has mazimal expected surplus, that is, B, > 0 if

Vi=0and B,<0ifV, = V.
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L

This result states that the ex ante payment is used optimally to relax ex post
self-enforcing constraints. Furthermore, the optimal ex ante payment is decreasing in
the expected surplus of agent 2. Suppose that, following a given history, the contract
promises a low expected surplus to agent 2. This makes the contract not much more
profitable than autarky and thus agent 2’s ex post self-enforcing constraints are likely
to be more constraining than agent 1’s ex post self-enforcing constraints. In this case.
agent 2 optimally pays out a relatively large ex ante payment to relax his ex post
self-enforcing constraints. The size of the optimal ex ante payment is inversely related
to the expected surplus of agent 2. This logic can easily be extended to show that
the optimal ex ante payment is negative when agent 2 expects a high surplus from

the relationship, that is, agent 1 pays out to agent 2 a high ex ante transfer.

It is difficult to provide a more complete characterization of the solution in the
general case given the number of inequality constraints; however, we can do so in a
special case in which there are only two states. This simple example is sufficient to
illustrate the role of the ex ante payment. We then compare our results with the case
in which no ex ante payments are allowed. Suppose that S = 2 and assume that the

discount factor is such that optimal risk-sharing is not self-enforcing.

Proposition 5 Suppose that S =2 and 8 < ™.
(i) The ezpected profit of agent 2 for period t+1 is larger (smaller) than that of period t
if state 1 (2) occurs in period t, that is, V(6™ hi-1,2) S V(8™ hyy) S V(8™ hyoy, 1),
with strict inequality if V(6™ h,_y) ¢ {0, V}.
Suppose that 0 < V,; < V and define ¢ = c(he_y,s) and ¢;_; = c(hi_q).
u) Agent 1's intertemporal marginal rate of substitution is larger (smaller) than agent
1) Agent 1’s intert l nal rat bstitution is I ller) th
: - o w(el) Vietyl-c) o w(d) v(ety-c)

2’s if state 1 (2) occurs, that is, Tes) ” Tty and Tes) < Tetvemany

(1)) Agent 1’s consumption in period ¢ is smaller (larger) than c*(ci—1,y{_\,s) if

s =1 (if s = 2) in period t where ¢ is the realized state in period t — 1, that is,

¢ < (e, yi1,1) and ¢ > ¢*(c1-1, 9!y, 2).
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This proposition states that in a two-state example if the bad state occurs (state
1) agent | borrows from agent 2 to smooth her consumption, that is, Vi, > V.

Alternatively, agent 1 lends (or reimburses) to agent 2 if state 2 occurs, that is V2, <
Vi. This allows the best consumption smoothing possible for agent 1. This same result
can be translated in terms of each agent’s intertemporal marginal rate of substitution.
In state 1, self-enforcing constraints are such that agent 1 has stronger preferences
than agent 2 for the present and she therefore borrows from agent 2. The opposite
is true in state 2 and agent 2 lends to agent 1. The last result of the proposition
states that in general the contract cannot achieve optimal risk-sharing because of

self-enforcing constraints. Consequently the two agents bear more risk than they do

in the full-commitment case.

These results may seem quite similar to those one would obtain when no ex ante
payments are allowed. The dynamics of consumption is however quite different in
the two cases. Consider first the case where no ex ante payments are allowed. The
results of Proposition 3 imply that optimal consumption takes place at &' (¢?) if state
1 (2) occurs. These consumption levels are time-invariant and therefore consumption
can only take one of these two values depending on the realized state. At any given
period, expected consumption for next period is the same regardless of the history.
Now consider the case where ex ante payments are allowed. Proposition 5 states
that V2, < Vi < VL,. Proposition 4 states that the ex ante payment from agent
1 to agent 2 will decrease (increase) in period ¢ 4+ 1 compared to that of period ¢ if
state 1 (2) occurs. Since the optimal consumption bounds & and ¢ are increasing
with the ex ante payment,!! then if state 1 occurs in period ¢, agent 2 is promised
a higher expected surplus for period ¢ + 1 and this implies that he will make a
lower ex ante payment in period ¢ + 1 thus reducing the two consumption bounds
for that period. Expected consumption will then be lower in period ¢ + | than in

period ¢t. The opposite holds if state 2 occurs in period t. Expected consumption

1This is a straight extension of Proposition 3 and Corollary 1.
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rises in period ¢ + 1 compared to period ¢. The consumption pattern with an ex
ante payment looks like “experience rating”, that is, average consumption in one
period is inversely related to the state variable and thus is positively related to the
previous realization of the state of nature. This implies that the complete history
up to period ¢ may be potentially relevant in explaining period ¢ consumption. Our
model can therefore generate higher order correlation in consumption even though
endowments are independently distributed. In fact, the introduction of the ex ante
payment allows better risk-sharing across states within a period at the expense of
worse consumption smoothing across periods. This shows that neither asymmetric
information nor uncertainty and learning are necessary to explain experiehce rating in
insurance contracts. This simple example shows that allowing for an ex ante payment

yields predictions that are significantly different from those without ex ante payments.

1.5 Conclusion

We develop a model of contracting for risk-sharing purposes. Complete insurance is
impeded by ex post opportunism in that agents can break the relationship at any
time if it is in their own interest to do so. However, agenés can commit partially by
making payments at the beginning of a period before the state of nature is realized.
We show that these payments can increase the potential gains from trade but cannot

generally restore perfect risk-sharing.

The ex ante payment can be interpreted as a bond. It is well known that posting a
bond is one way of avoiding self-enforcing constraints, namely, the agent that cannot
commit or that must be disciplined simply posts a bond that it may lose if it does
not perform satisfactorily. For example, Williamson (1983) illustrates how the use of
a bond can promote efficient trade. In this context, our model can be reinterpreted
as modeling a situation in which the two agents must be disciplined and each agent

can run away with the bond that has been posted by the other agent. This puts
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endogenous limits to the size of the bond that each agent can post and therefore
bonding becomes a non-trivial solutiou to the incentive problem. Our model would

therefore predict that the net bond posted by one agent is inversely proportional to

its expected surplus from the relationship.



2 Approximation of the value function in self-

enforcing risk-sharing contract and simulations
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2.1 Introduction

The goal of this paper is to simulate the optimal risk-sharing contract in a non-
commitment environment when more than two states of the world are possible!?. To
this end, the first and most complicated step is to get a good approximation of the
optimal contract. Judd (1992) describes a general numerical approach, the projection
method, to solve operator equations which arises in economic models. Principles
from numerical analysis are then used to develop efficient implementations of the
projection method for solving aggregate growth models. In the present paper, we
will use one of these implementations called orthogonal collocation, which has turned
out to be surprisingly good. This method is an application of the projection theorem
in which the orthogonal basis is composed of Chebyshev polynomials evaluated at
specific points. We will use orthogonal collocation to approximate the value function
associated with the optimal self-enforcing risk-sharing contract with bonding studied
in Gauthier and Poitevin (1994). This environment is described in Section 1. In
~ Section 2 we present an overview of the projection theorem. Section 3 introduces
polynomial approximation. Section 4 presents Chebyshev polynomials. Finally, we
describe the orthogonal collocation’s method and the approximation’s algorithm in
Section 5, and presents the simulation’s results obtained with the approximated value

function.

2.2 The contractual environment

The optimal contract in the general case in which bonding is possible is the solution
to the following maximisation problem

(V) = ma

Bc,(a‘l),,()\;5z+1)’ E {U(ysc + Bt — asc) — u(y.n) + ﬂg(V”'“ )}

12The reader is refered to Gauthier and Poitevin (1994) for the theoritical characterization of the
optimal contract. Some of the results are proved in a two-states world because of the complexity of

the problem.



g(Vs‘-“) >0 Vs

oL

w(y™ + Bu— @) = uly™ + B) + Ag(V*) 20 ¥s (8)

Vet >0 Vs
a’t+ pVvVit >0 Vs
V! < E{=B,+a* + gV}

The optimal contract is thus the séquences of ex ante payments, (B,), ex post
payments, (a**), and promised expected surplus to the risk-neutral agent, (V1)
which rﬁaximize the expected surplus of the risk-averse agent'®. For the contract to
be self-enforcing, it must be in the interest of both agents to comply to the contract.
We must therefore add the self-enforcing constraints. The last constraint of the

problem ensures that the contract is dynamically consistent.

The consumption and ex ante payment paths has been characterized in Gauthier
and Poitevin (1994) in a two-states world. With a good approximation of g(Vh), it
will become possible to verify numerically those results when the number of possible
states of nature is higher than two. Judd (1992) describes a general method to obtain
a good approximation. This method relies on the projection theorem. We will thus

present first, this important theorem.

2.3 The projection theorem

The approximation method used in this paper relies on the projection theorem. This
theorem tells us that the best approximation, P,z, of an element, z, in a specific
space, 4, (generated by all the linear combinations of the elements of the basis) is such
that the distance between z and P,z, that is the approximation error, is orthogonal to

p. We now give the formal result and suggest Brockwell and Davis (1991) as reference

13The reader is refered to Gauthier aud Poitevin (1994) for a detailed description of this problem.

4The best approximation is defined as the one which minimizes the approximation error.
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to the reader interested in a very well done presentation of Hilbert spaces and proof

of the theorem.

Theorem 1 If u is the span of {zy,...,2,}, then for any given & € a Hilbert Space,

P,z is the unique element of the form
Pir=ojz + ... + apz,, (9)

such that

<z-Pux,y>=0, yeu (10)

To get an intuition of what this theorem says, let the basis be composed of two inde-
pendent elements of ®2. Hence, u is %2.. Suppose now that we want to approximate
an element = € R°, by a projection in R?, that is, we search P,z. The best approxi-
mation is defined as the one which minimizes the distance ||z — P,z||. Equation (10)
means that z — P,z must be orthogonal to every element in y. In our case, it is clear
that the shortest way from x to p is the vector orthogonal to x. Any vector which is
not orthogonal to 4 is clearly longer and thus, can not be the one which minimizes
the distance between z and p. It is also clear in this example, that there is only one
vector from z to u which is orthogonal to the plane u. This gives an insight for the

unicity’s proof.

Equation (10) implies
< Pir,z;>=<z,2;> j=1,...,n (11)

where y can be replaced by z; € p since orthogonality to a linear combination of
elements implies orthogonality to each element in the linear combination. This implies

that

n
Za,-<2:,-,xj >=<z;z; >, J=1...,n. (12)

t=1

This theorem tells us that we need to solve a system of n equations in n unknows, the

;’s, in order to obtain the best projection of = in u. The system to be solved is as



30

big as the number of elements in the basis. We can simplify greatly by choosing an
orthonormal basis, which is composed of elements with inner product equal to 1. In
fact, if the z; are orthonormal, then (12) becomes a; =< z,z; >. This implies that
the projection is represented by
n
Piz=) <z,z;> . (13)
i=1
Thus, with an orthonormal basis, the projection equations are simpler. Orthogonal

collocation will use an orthogonal basis.

What is the best space in which the projection should be done? We will use the
power of the famous Weierstrass theorem, which is presented in the next section, to

study this question.

2.4 An introduction to approximation of functions

We will now introduce some basic notions in approximation theory. First the Weier-
stras theorem is presented. Then we present a second theorem which gives some

intuition of the idea behind orthogonal collocation!®.

Theorem 2 If V is a normed linear space and W a finite dimensional subspace of

V, then, given v € V, there exists w* € W such that

lv—w|| < llv—w|| YweW. (14)

As an example, the set of continuous functions on a given closed interval [a, b], which

we denote C[a, b], is a linear space. If f € C[a, b], we can define a norm in Cf[a, ] by

IfIl = max |f(<)| (15)

a<z<b
This norm is called the uniform or Chebyshev norm. As an example of Theorem 2

take V' to be Cla, b] and W to be spanned by the functions {1,z,... ,z"}. That is, W

15The interested reader is refered to Rivlin (1965) for the proofs of these theorems.
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consists of all polynomials of degree at most n. We call this particular subspace P™.
Theorem 2 says that every continuous function, f(z), on [a, b} has a best approxima-
tion out of the polynomials of degree at most n in the uniform norm. That is, given

f € Cla, b], there exists p* € P" such that

max |f(z) —p*(z)| < max |f(z) — p(z)| Vpe P (16)

a<z<b a<z<b
Define E,.(f;a,b]) = E.(f) = ||f — p;|l. What is the behaviour of £,(f) as n — co?
We can show that E,(f) — 0 as n — co for each function f(z) continuous on [a, b].
That is, a continuous function on a finite interval can be approximated uniformly
within any preassigned error by polynomials. This result is the famous Weierstrass

approximation theorem, which we state as follows.

Theorem 3 (Weierstrass) Given f(z) continuous on [a,b] and € > 0, there ezists a

polynomial, p(z), such that
1f(@) - p@)ll < e (1)

How can be characterized the best approximation p*? Let e(z) = f(z) — p*(z); then
|le(z)ll = En(f;[a,b]). The next theorem will give us an important property of the
best approximation p*. We will also present the proof of this theorem which yields

some intuition about orthogonal collocation.

Theorem 4 There exists (at least) two distincts points z,,z, € la,b] such that

le(z1)| = le(22)| = En(f;[a,0]) and e(z1) = —e(z,).

proof (Rivlin (1965))

The continuous curve y = e(x) is constrained to lie between the lines y=—E£.(f)
and y = E,(f) for a < 2 < b and touches at least one of these lines. We wish to prove
that it must touch both of them. If it does not, then a better approximation to f than
p” exists. For assume that e(z) > —E,(f) throughout [a,b]; then Ming<.<p () =

m 2 —-FE.(f) and ¢ = 5'%&'-'1 > 0. Since ¢, = p; +¢ € P, f(z) — q(z) = e(z) — ¢,
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and —(Ea(f) —c) = m—c < e(z)—¢ < Eu(f) —¢; we thus have [|f = gu]| = En(f)~c,
contradicting the definition of £,(f). Thus, there exists a point of [a, ], call it z,,
such that e(z;) = —E.(f). A similar argument establishes the existence of z, € [a, b]

such that e(z;) = E,(f), and the theorem is proved. Q.E.D.

This Theorem is just a foreshadowing of the true state of affairs, however. As
can be shown, the curve y = e(z) must touch the lines y = —E,(f) and y = E.(f)
alternatively at least n + 2 times, and this property characterizes the best uniform
approximation of a continuous function by a polynomial of degree at most n. This
suggests the existence of at least n + 1 points where e(z) = 0. We will use this result

in the method of orthogonal collocation which is the described in the next section.

2.5 Chebyshev Polynomials

Because of their usefullness, we will review the key properties of Chebyshev polyno-
mials. They are defined over [—1, 1] by the formula T,(z) = cos(n arccos(z)). They
are generated by the recursive scheme T,4;(z) = 2zT,(z) — T,_,(z), which is ini-
tialized by To(z) = 1 and Ti(z) = z. The restriction to [~1,1] is inessential since
one can define Chebyshev polynomials over any bounded interval by a linear trans-
formation. The ability of Chebyshev polynomials to approximate smooth functions

is summarized in the following properties!®.

The Chebyshev polynomials obey the discrete orthogonality relationship

n

S T(ZNT(Z7) =0 i#j (18)
=1
where we define the Z7*, [ = 1,...,n, to be the zeroes of T}, given by
. (20-1)r _
Zl =COS(T), = 1,...,77,. 4 (19)

Thus, the Chebyshev polynomials are orthogonals when evaluated at the zeroes of

16See Judd (1992) for more details and Rivlin (1991) for proofs.
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T... The following result characterizes a polynomial of degree n — 1 which interpolates

f(z) at the Zp.

Suppose f(z) is a continuous function. Define
2 & n :
ch;z-Zf(Z,)Tj(Z,"), J=0,1,...,n—1. (20)
=1
Then the function
1 n-—1
Lia(2) = =3eo + Y e Ti(a) (21)
k=1
agrees with f(z) on the Z!''" thereby being a polynomial of degree n — 1 which
interpolates f(z) at the Z. We call I7_, the degree n — 1 Chebyshev interpolant of
f. In this way we can approximate a function by interpolation at the Z. One can
immediately remark the analogy between the c;’s defined here and the a’s generated

by the projection theorem when the basis is orthogonal. We will now present the

collocation method and the approximation’s algorithm.

2.6 The collocation method and the approximation’s algo-

rithm.

Let define

We know from the Chebyshev interpolation result that &(f(Z1) =0 VI =
l,...,n + 1. Solving this'system of n + 1 equations for a;,7 = 0,...n is called
the orthogonal collocation method. As long as ¢(V;a) is smooth in V, the Cheby-
shev interpolation result says that these zero conditions force e(f(V)) to be close to
zero for all V and that these are the best possible points to use if we want to force
€(f(V)) to be close to zero. The performance of orthogonal collocation turns out to

be very good. This method is very fast since it only uses the value of e(f(V)) at n

"This is that agreement with f(x) on the Z! which leads directly to what is called orthogonal

collocation.
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points. We now have all the necessary tools to construct the algorithm which will

give us our approximated value function.

We want to approximate the value function f(V'), described at the begining of the

present paper. The constructed algorithm can be divided into three parts:

1. Find good starting values for fo(V) = T, oiTi(V).
2. Solve!'®

u(y™ + Be—a™) —u(y™) + ﬂi a; Ty (V2 )}

=1

Bt e, {
SaT(V) 20 Vs

=1

u(y® + B, — a®) —u(y™ + By) + B}ﬁ_,‘afTi(V"“) 20 Vs
Vet >0 Vs a

a* + BV >0 Vs

Vi< E{—'Bt +a; + ﬂVﬁH}

for V! = Z!'*', I =1,...n + 1 where Z"*! are the zeroes of the degree n + 1

Chebyshev polynomial and n is the chosen degree of approximation.

3. Apply the orthogonal collocation method to interpolate the ﬁew value function
fi(V?) at the zeroes evaluated in step 1. Define this new value function as
A(VY) = T & (VY.

4. Substitute f,(V') obtained in step 2 for fo(V*) and repeat step 1 if f; and f,

are not close enough. In our application, f; and f; are defined close enough

when 37, |4 — o] < 10e — 4.

18This is done using the Optimization toolbox of MATLAB.

19We obtained a very good approximation with n = 2.
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2.7 Simulations

The characterization of the optimal paths of ex ante payments, B,, consumptions,
c®, and expected profits of agent 2, V*+i of Problem (8) is done in Gauthier and
Poitevin (1994). However, given the increasing number of inequality constraints as
the number of states increases, some results has been demonstrated in a two-states
world. In this section, we look at the results of a simulation in a three-states world,
step by step, and note the presence of a surprising point in the optimal paths which

may be the source of a future new theoretical result.

We did simulations of Problem (8) in a three-states world. We first have calculated
an approximation of the value function with the orthogonal collocation algorithm
described in Section 5. The discount rate in the simulated model is 3 = .85; the three
possible states of nature are y = (3,4, 5]; each state has a probability of realization of
1/3, and the quadratic utility function of agent 1 is —2 % ¢ 4+ 25 * ¢ + 4. We used the
value function of the full-insurance contract as the starting function for fo(V). We

then did simulations with the approximated value function.

Let’s now have a look at the results of our simulations, step by step, for a sequence
of 20 periods. The starting value for the expected surplus of the risk neutral agent
(agent 1) is Vo = .8. Since the value for which agent 2’s ex ante constraint is binding
is 0.8754, agent 2’s ex post self-enforcing contraints are relatively binding. Agent 2
is thus willing to pay an amount of money ex ante to agent 1 in order to relax his
ex post self-enforcing constraints. Graphic 1 illustrates this transfer from agent 2 to
agent 1 which is precisely B = —.24. The first random revenue generated has been
yo = 5. This is the best state of the world, and agent 2 should be expected to pay
back some of it’s debt to agent I. This is the case as can be seen in Graphic 3 in
which the first element of agent 2’s optimal path of consumption is ¢; = 3.96 which is
much lower than his revenue. This is in fact the optimal lower bound of consumption

in that state given the expected surplus of agent 1. What is paid now won’t have to
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be paid tomorrow. Thus, this ex post transfer from agent 2 decreases the expected
future surplus of agent | (This is illustraded in Graphic 1 where V, = .15). This in
turn will increase the ex ante payment at the beginning of period 1 relatively to the
ex ante payment done at the beginning of period 0. Graphic 1 shows this increase
in B which is now positive to reflect the fact that agent 1’s expected surplus is now
close to it’s self-enforcing limit of 0. Agent | is thus interested in making a transfer

to agent 2 in order to relax his ex post self-enforcing constraints.

The next random revenue is y; = 5. We have the same optimal reactions in that
agent 2’s consumption is under his revenu and agent 1’s expected surplus is depressed.
This is illustrated in Graphic 1 and Graphic 3 by ¢ = 4.22 and V> = 0. Note that the
lower bound of consumption is higher than it was in the last period. This is the result
of the positive ex ante payment which has relaxed agent 1’s ex post constraint but
strengthened those of agent 2. Agent 1’s lower level of expected surplus will induce

a higher level of ex ante payment. This is reflected by B, = .5201 and B, = .7386.

The third random revenue is 3. This is the worst possible revenu in our world.
The optimal transfer is such that agent 2’s consumption is higher than the revenue
(€3 = 3.93 in Graphic 3), and agent 1’s expected surplus is higher (V3 > 0 in Graphic
1). This induce a fall in the ex ante payment (from B = .7386 to B = .4161). The
next generated revenu is y = 4. Since no ex post constraints are binding, we have
perfect smoothing from last period, that is neither agent 2’s consumption or agent
I’s expected surplus changes, and AB = 0. The fifth revenue is y = 5. The expected
surplus of the risk neutral agent goes down to zero and agent 2’s consumption improves

to 4.1804 as predicted by the theoretical results.

Then we obtain a curious result. This may be an error due to the approximation
of the value function or this may be a good result which has not been demonstrated
yet in our theoretical work. The generated revenu has been y = 4. The optimal level
of agent 2’s consumption is lower than it was in the previous good state of the world.

This would not be curious if agent 2’s ex post constraint was binding, but this is not
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the case. More work should be done to understand this result. But we already know
that this is not at odd with the first-order conditions. This should help to improve
our understanding of the optimal paths in a world with more than two states. The
next four generated revenues has been y = 5. As expected, agent 2’s consumption is
increasing as much as possible, that is up to the point where agent 1’s expected surplus
can no more decrease. The next three revenues are y = 3. We observe successive
improvements in the expected surplus of agent 1 and the corresponding successive
drops in the level of agent 2’s optimal consumption. Note that agent 1’s ex post self-
enforcing constraints are always binding when y = 3. The optimal maximal bounds
of consumption are decreasing here, since the successive improvements in agent 1’s
expected surplus has induced successive drops in the ex ante payment. A lower ex
ante payment means a lower bound of consumption. Note that in a contract without
ex ante payment, those bounds would not have changed and thus the consumption
and agent 1’s expected surplus would have been constant. The remaining of the
simulation is exactly in line with the anticipated results as described in the theoretical

characterization.

2.8 conclusion

Simulations are very usefull when theoretical characterization of a model is difficult.
We have used here one method of approximation derived from the projection method
suggested by Judd (1992). This simple and fast approximation method turns out to
be very good when the starting guess for the value function is not too far from the

solution. More work remains to be done to improve the calculation of starting values.
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Graphic 5. Agent 1’s consumption and income

55

25

= Consumption
<~ Income

40



3 Investment in self-enforcing risk-sharing con-

tracts and the existence of debt overhang
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3.1 Introduction

The recent literature on less developed country’s debt has introduced the notion
of debt overhang, which proposes that an excessively high debt works as a tax on
new investment (see Krugman (1988)). This result follows from the assumption that
creditors obtain a share in the new proceeds from new investment, which acts as an
effective tax on new investment. The cure generally proposed in the case of a debt
overhang is to erase a part of the country’s outstanding debt, in order to stimulate

investment.

On the othber hand, in an important empirical paper, Warner (1992) finds that
the debt crisis has not caused the investment crisis in the less developed countries.
The fall in investment would rather be explained by conjectural variables such as
falling export prices and high interest rates. As Warner (1992) concludes: “Yet the
evidence casts doubt on the existence of debt effects... (on investment)... Instead,
the investment decline in many of the countries on the heavily endebted list can be
forecast... by simple terms of trade and world interest rate equations that do not
include debt-crisis effects... The presumption that debt-crisis effects are needed to
explain the investment crisis decline in heavily indebted countries is strongly reduced
by the fact that simple forecasts without debt-crisis effects can explain much of the
declines. At the very least, the direct influence of world economic shocks in the 1980’s

on investment in heavily endebted countries has received insufficient attention.”

In this paper, we are searching for theoritical grounds for Warner’s empirical re-
sults. An important aspect of a country’s financial contracts is precisely the country’s
sovereignty. Sovereignty may be defined as the power to break a promise without the
intervention of an international court. In that context, every contract must be self-
enforcing, that is, it must be in the interest of both parties to respect their part of
the contract, in any state and at any time. We analyse here the optimal financial

contract between a sovereign country and a bank (or a consortium of banks) when
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the country cannot be forced to reimburse ex post all payments prescribed by the

contract.

One feature of the model is that the country also has the opportunity to invest®in
order to increase its expected revenue. In each period, investment is financed with
production proceeds as well as with financial transfers from banks. In this context.
we show that a lower level of debt does not necessarely increase investment at steady
state. We demonstrate, in fact, that in a two-state world, erasing part of the country’s
debt can induce a fall in investment, that is, the correlation between the stock of debt
and investment may be positive. The intuition for this result being that, in the steady
state, the marginal cost of debt must be equal to the marginal cost of investment.
When we erase a part of the country’s debt, we increase the value (in terms of utility)
of debt, since less of the country’s future revenues would have to be used to pay back
the debt. That means that a lower level of debt would increase the future consumption
possibilities and thus decrease the marginal cost of debt in terms of marginal utility
of consumption. Since the marginal cost of debt must be equal to the marginal cost of
investment, the lower marginal cost of debt would push down the level of investment.
But to maintain the level of investment at its efficient level, its marginal revenue also

need to be depressed, and this would be realized by a higher level of investment.

Which one of those two effects will determine the net optimal impact of a diminu-
tion of debt on investment depends on the parameters of the model. In particular, the
more the marginal revenue of investment will react to a change in investment, the less
the level of investment would be pushed up following a decrease in the level of debt,
and thus, the negative effect on investment would be relatively more important. A
conjecture in which investment could decrease following the decrease in investment is
thus a situation in which marginal returns on investment are high, that is a situation

in which investment is low.

20See Gauthier and Poitevin (1994) for the characterization of the optimal risk-sharing contract

with bonding, when enforcement costs are high.
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Moreover, in the steady state, investment is uncorrelated with gross revenue, that
is, whatever is the country’s economic performance in terms of production, the coun-
try’s willingness to invest in order to improve its expected future wealth, doesn‘t
change at steady state. This result does not contradict Warner’s results. If, for ex-
ample, the world interest rate was aloud to change in our model, the discount rate
would change and with it, the consumption and investment levels would be differ-
ent at steady state. These results are in line with Warner’s (1992) empirical results
and suggest that a country’s sovereignty and risk-sharing motivation for endebtness
may help to explain the causal links between investment and financial obligations. In
the next section, the model is presented and the autarky situation and the first-best
financial contract are characterized. In Section 3 we study the financial relation in

which the country cannot commit not to renege on the contract at any time.

3.2 The model

The environment we consider can be described by an infinite sequence of periods, t =
1,2,...,00, and for each period, a finite set of states of nature, s € {1,2,..., S}, with
S > 2. Two infinitely-lived agents evolve in this environment. Agent 1, say a sovereign
country, is risk-averse. In each period, agent 1’s preferences over consumption ¢
are represented by a state-independent quadratic utility function u(c) for ¢ € (a, b].
In each period, agent 1 obtains a state-contingent endowment y°. We adopt the
convention that y° > y*~! for all states s. We assume that a < y' < y% < b. Agent |
discounts the future by factor § € (0,1). In each period, agent 1 can allocate a part
of his revenue to investment.

Assumption 1

States follow a conditional distribution F(y*|I) where y* and I denote, respectively,
the realized endowment in state s and period t, and the level of investment chosen in
period ¢ — 1. We denote by f(y*|/), the conditional density function associated with

this distribution function and assume that this conditional density function is i.i.d..
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A decrease in [ is a mean-preserving increase in risk, which implies that

3 s=5 se|f
§,=,y‘f(y‘|)=0.

3l
It is assumed that each period t is divided into two dates, ¢,, and t,, where ¢, is
the date at which the state of nature is realized; the date ¢, denotes the date following
the realization of the state of nature. In each period, the level of investment is chosen

after the realization of the state of nature, in f,.

The history up to period ¢ is the vector of all previous realizations of the state of
nature. Let s, denote the realized state of nature in period t. The history at the end
of period ¢ — 1 (date (t — 1)2) or at the beginning of period ¢ (date t;) is denoted by

hi—y = (81,52, ..., 5¢—1). We assume that hy = 0.

We first establish a benchmark case, autarky, in which the country finances its in-
vestment from its endowment. In each period and state, agent 1 must decide ui)on an
investment level. An investment’s path is a function I(h¢), that is, the optimal choice
of investment in period ¢t may depend on complete past history. The consumption in

autarky in period ¢ if state s has occured in t;, is thus ¢* = y* — [*.

The optimal investment rule is given by solution to the following maximization

problem
1*(h¢) = arg maxge),, u(c®) + B, fly2 | I*)u(c) + (22)
B2 T [y 15) Ty [y 11 )u(c™®) + (23)
B Lo Sy |1M) Ty f(y=11%) oy [y 117 )u(c™)
+o BT, Yy IM) B Sy 1) (24)

v sy S g Sy Jy(et) + -

This maximization problem simply states that the optimal investment’s rule un-
der autarky, I°(.), maximizes the discounted expected utility of agent 1. We make
implicitly the assumption that agent 1 commits to an infinite investment path chosen

after the realization of state & in period 1. A solution to this maximization problem

1
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exists and is characterized in the following proposition.?!

Proposition 6 (i) The optimal investment level only depends on the current state
of nature, that is 1*(h,_,, s;) is independent of hy_y;

(ti) The level of investment is increasing with endowment;

(i) Consumption is increasing with endowment, that is, if y* > y9, then y* — [** >

y? — 14,

Note that this characterization is independent of time. By Bellman’s principle,
after every history the investment rule is optimal, and therefore, it depends only on
the current state variable. Since capital depreciates completely in one period, the
state variable in this model is the current endowment. The contemporaneous choice

rule for investment is thus time-invariant since it is not affected by history.

The marginal cost of investment is in terms of lost consumption. This cost is lower
as [ increases since consumption is lower when investment is higher. Marginal revenue
of investment is in terms of marginal change in expected utility of consumption and is
also an increasing function of investment. When revenue is higher, the marginal cost
of investment is pushed down for a fixed level of I, while the marginal revenue does not
change for a fixed level of I. Investment must then be higher when revenue is higher.
Investment is thus used to smooth somewhat consumption. But smoothing is not
perfect. Investment is not a perfect substitute to asset markets, since consumption is

increasing in the better states of the world.

Suppose now that to improve smoothing and risk-sharing agent 1 can borrow
from and/or lend to a risk-neutral financier, say agent 2. In each period, agent 2’s
preferences over consumption ¢ are given by v(c) which is assumed to be a state
independent 1inear function. In each period, agent 2 obtains a state-independent

endowment b. Agent 2 has the same discount factor as agent 1, namely, 3.

21All proofs are relegated to the Appendix B.
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A financial relationship between agents | and 2 is characterized by transfer pay-
ments between the two agents and investment level by agent 1 at various states and
dates. We call the governance of such relationship a contract where the term contract
is interpreted in a broad sense, namely it can encompass implicit as well as explicit
agreements. In each period ¢, a contract can specify a state-contingent (positive or
negative) transfers ¢** from agent 1 to agent 2 and a level of investment by agent 1
at date ¢, (after the state of nature s is realized).For this structure of contract, agent
’s consumption in period ¢ if state s is realized is ¢ = y® — [* — ¢*; agent 2’s

consumption is b + a*.

In a typical relationship the prescribed transfers and investment levels can poten-
tially be contingent on the complete past history of the relationship. Assume that the

two agents enter into a long-term (infinite) relationship. We can then define formally

a contract between the two agents.

Definition 4 A contract, §, is a sequence of couples of functions: {a(h,), I{h¢)}52,
where a* = a(hi-1,s) represents the transfer from agent I to agent 2 at the end of
period t (date t;), and I** = I[(h4_1,s) represents the level of investment chosen by
agent 1 at the end of period t (date t;) when history is h,_; up to period t and s is

the realized state of nature in period t.

We suppose here that the financier can monitor the level of investment chosen
by the country. This can be interpreted as the presence of a third party (like the
FMI) which supervises the restructuration’s policies of the country. In that sense,
every contingent transfer of money is acompanied by a specific investment level by

the country.

We will now define the utility function of both agents under an arbitrary contract,

¢ following any history, h,—;. Agent 1’s expected utility from date t, onwards is

U b k) Zu(@) + 3 87 (y |1 u(e™)

r=t+1
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Similarly, agent 2’s expected revenue from period ¢, onwards is

V(i hmy k) = d¥ + 3 377y |17 )asr

r=t+1

The approach we take is to assume that the two agents begin a relationship at the
beginning of a period called period 1. This relationship is governed by a contract.
The characterization of the implemented contract and the associated investment path
depends on the available technology to legally enforce the prescribed payments. The
objective of the paper is to study the effects of limited enforceability of payments on’

the optimal contract and the optimal path of investment.

In order to get a comparison point, we will first characterize the optimal contract
when both parties can commit to the contract. We will refer to this contract as
the full-commitment contract. The full-commitment contract solves the following

maximization problem.

{67} = arg max {U(§; ko) s/c V(6; ho) > 0} (25)

When both agents commit to the contract, the optimal full-commitment contract
maximizes the expected utility of agent 1 subject to agent 2 having its reservation

utility which is set to the competitive level of zero for simplicity.

Proposition 7 (i) The full-commitment contract fully insures agent 1.

(i) The full-commitment investment level is constant in every period t and state s.

With complete enforcement, every agent can commit to any payment prescribed
by the contract. In this case, the optimal contract fully insures agent 1. This is
the first-best solution and, therefore, this is the optimal contract. Hence, agent 1’s
opportunity to borrow and/or lend on financial markets, provides agent 1 with optimal

risk sharing.

With a full-insurance contract, the marginal cost of investment in terms of foregone

consumption is constant in every period and state. Furthermore, the expected future
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revenue is a time-invariant function of investment. This implies that the optimal level
of investment is state and time independent. Thus, investment is such that agent |

smooths his consumption perfectly over time.

In the next section, we turn to the case in which agent 1 cannot commit to make all
payments prescribed by the contract. In the sovereign-debt context, this assumption
of non-commitment reflects the absence of international courts which could force the

country, in some way, to meet her obligation whenever required.

3.3 Contracting under one-sided commitment

In this section we consider an environment in which legal enforcement of all prescribed
payments is limited. We examine the situation in which agent 1 cannot commit to
make all transfers prescribed by the contract. Specifically, at any date, agent 1 will
agree to make a specified transfer or invest at specified level, only if it is in its interest
to do so. A contract that specifies transfers and investments such that it is always in
the interest of agent 1 of respecting it, is called self-enforcing. We assume that the
agent reneging on the contract suffers maximal punishment in that it must remain in

autarky forever after.?? This maximal punishment allows us to support the highest

22At first sight, this punition may seem uncredible and thus the equilibrium may seem not to
be renegotiation-proof. Farrell and Maskin (1989) have defined a set of weakly renegotiation-proof
equilibrium payoffs (WRP), Q, as one in which no equilibrium payoff is Pareto dominated by the
payoffs of another equilibrium in Q. The optimal contract induced by this environment would then
be WRP if the set of possible equilibrium payoffs was defined as the set of payoffs on the Pareto
frontier (which will be characterized in this section). This will be the case as will be demonstrated
in the remainder of the paper. The threat of imposing autarky level of utility to a deviant would
then have to be interpreted as the autarky payoff on the Pareto frontier, that is, as the strategy
profile which gives the cheater its autarky payoff and, consequently, gives to the punishing party its
best Pareto-optimal payoff. The interested reader is referred to Fudenberg and Tyrole (1991) for
a short survey on renegotiation-proofness in infinitely repeated games and to Kletzer and Wright
(1991) for a proof of the renegotiation-proofness of the optimal contract induced by this model in

the case without investment.
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level of cooperation in a self-enforcing contract.

An arbitrary contract generally prescribes agent | to make a transfer to agent
2 and invest at a specific level in some period ¢. Under our assumption of non-
commitment by agent 1, these transfer and investment will be made only if it is
in the interest of agent 1 to do so. Agent 1 will compare the benefit of making
the transfer and investment and obeying the contract with the payoff of reneging
on the contract and remaining in autarky thereafter. For example, suppose the two
agents have signed a contract § prescribing transfers {a(h,)} and investment [(h)
for all histories k.. In period ¢, agent 1’s utility from staying in the contract is
w(y® — I* = a®) + BT,,,, f(y™ | I*)U(8; he, se41) where a® = a(hy_y,s) and [* =
I(h¢-1,8). The first term represent its current utility from the relationship and the
last term, its expected future surplus. We can now define a self-enforcing contract for

agent 1.

Definition 5 A contract § is self-enforcing for agent 1 if, for all histories h,, all
periods t and states s, the following constraint holds.
u(y™ = I* = a™) + B 3 f(y™+ [I*)U(6; heysegr) = U - (26)
St41

where U is the mazimum of Problem (1) when state s is the realized state in period

L

This definition states that a contract is self-enforcing for agent 1 if at any time during
the relationship agent 1 prefers making the contractual transfer and investment rather

than reneging on the contract and be reduced to autarky from then on.

When designing the optimal contract the two agents will anticipate agent 1’s
incentive to renege, and the terms of the contract will take into account such incentive.
To solve for the optimal contract we must therefore add self-enforcing constraints to
the maximization problem (28). This constraint will limit the set of feasible contracts.

The optimal contract with non-commitment by agent 1, §' are then the solution to
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the following maximization problem where, for tractability, we assume that agent 2’s

reservation utility is equal to zero.

' = arg max U(6; hy)
s/t V(6;ho) 20 (27)
u(ya: N £ asz) + 8 Z f(y8z+1|]51)U(5; htaSH-l) > Ues Vs, t, hiy

yit+l

The next two propositions characterize the optimal contract §.

Proposition 8 (i) For § € [8,,1), where 8, = QSJ—:‘}J—CI, the optimal contract with
non-commitment by agent 1 is the optimal contract with full commitment, that is,
8 = 8lc;

(i) For all states s, there exists a time-invariant optimal level of consumption ¢* such
that ¢t > ¢*;

(1)) The optimal lower bounds of consumption, ¢, are increasing in the state of the

world that is, k > g = ¢* > [

(iv) For any history (h-1,s), the contract at time t is such that:

c(he-1) if c(hear) 2 ¢

oy if c(hesr) < &

C(hg_l,S) =

This proposition first shows that there exists a critical value of 3 under which the
full-insurance contract is not self-enforcing for agent 1. For those low values of 3, the
expected benefits that agent 1 would receive by complying to the contract are not
sufficient to compensate the cost incurred in the best state of the world, that is, the
state in which agent 1 is asked to make the biggest transfer to agent 2. The second
part of the proposition shows that there exist time-invariant lower bounds on agent

I’s consumption. These bounds are increasing with the state of the world.

The proposition provides a precise characterization of the downward rigidity in
the path of consumption of agent 1. This rigidity is introduced because agent |

cannot commit to make large transfers. There is however no upward rigidity because
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agent 2 can commit to make any transfer to agent 1. An immediate consequence of
this proposition is that ¢ eventually converges to a steady state. Since the bounds
on consumption are increasing in the state of the world, the evolution of ¢} given in
(iv) implies that the optimal path of ¢! eventually converges to ¢® for all states and
periods. Moreover, since optimal risk-sharing with full-commitment at actuarially
fair prices is impossible when 8 < f,, the steady-state ¢ must be higher than the
steady-state optimal consumption with full commitment. This implies that agent |
gets, in the steady state, optimal risk-sharing at prices lower than actuarially fair
prices. This is acceptable to agent 2 because he gets a compensating surplus at the
beginning of the relationship in order to make zero-profit overall. This contract is
possible because agent 2 can commit to provide agent 1 with insurance at prices
yielding negative profits given that agent 1 has provided positive profits early in the

relationship. This is resumed in the next corollary?.

Corollary 2 For 3 < 1, at steady state, ¢° = y* — [ — a™ > ¢J° = y* — [fc _ g/e,

The results of Proposition 10 are similar to results obtained by Harris and Holm-
strém (1982) in a model of labor contracts. They showed that under the assumption
of non-commitment by the employee, wages are downward rigid as the risk neutral
employer fully insures the worker against bad states of the world. We show here that

the opportunity to invest does not eliminate this downward rigidity in consumption.

The innovation of this paper is the study of the optimal path of investment in
the context of a risk-sharing contract where one party cannot commit. In order to
characterize the optimal path of investment when commitment is not possible by agent
1, we will limit ourselves to the two-state case. The next proposition presunts the

characteristics of the optimal investment path in a partial commitment framework.

23In order to distinguish the environment with full commitment from the environment without
agent 1’s commitment, the notation in the non-commitment case and the full-commitment one, will

be, respectively, nc, and fe.
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Proposition 9 At the steady state, in a two-state world where y* > y9,
(i) V¥ > V9 and I* = [7
(i) the investment level I, is increasing with the expected utility of agent 2 in the bad

state of the world if a—ﬂgm[‘_/k -Vi< 1™

In the steady state, the marginal cost of investment in terms of foregone con-
sumption is constant in every period and state. Furthermore, the expected revenue
is a time-invariant function of investment. This implies that the optimal level of in-
vestment is state and time independant in the steady state. The second part of the
proposition teaches us that it may not be right to think that fbrgiveness of a part
of agent 1’s debt would improve investment. We show that, in a two-state world,
erasing a part of the country’s debt when the country is in bad economic situation,
could rather depress investment. The intuition for this result being that, in the steady
state, the marginal cost of debt must be equal to the marginal cost of investment. If
we erase a part of the country’s debt, we increase the value (in terms of utility) of
debt, since less of the country’s future revenues would have to be used to pay back the
debt. That means that a lower level of debt would increase the future consumption
possibilities and thus decrease the marginal cost of debt in terms of marginal utility
of consumption. Since the marginal cost of debt must be equal to the marginal cost of
investment, the lower marginal cost of debt would push down the level of investment.
But to maintain the level of investment at its efficient level, its marginal revenue also

need to be depressed, and this would be realized by a higher level of investment.

Which one of those two effects will determine the net optimal impact of a diminu-
tion of debt on investment depends on the parameters of the model. In particular,
the more the marginal revenue of investment will react to a change in investment, the
less the level of investment would be pushed up following a decrease in the level of -

debt, and thus, the negative effect on investment would be relatively more important.

#4Note that V' is exogenous at ¢t and V¥ = g=!(U°*) which is thus a function of an exogenous

variable.
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A conjecture in which investment could decrease following the decrease in investment

is thus a situation in which marginal returns on investment are high.

3.4 Conclusion

In Krugman’s (1988) model, the negative correlation between investment and endebt-
ment of a sovereign country is a consequence of the assumption that the debt’s burden
of the country has become so cumbersome that the expected present value of poten-
tial future payments to the bank(s) is lower than the level of debt. In our model, we
assume that imperfect commitment possiblity by the country is an important aspect

of its international financial relations.

When a contract takes into account that lack of commitment possibilities by the
country, a self-enforcing relation emerges. That is, a relation in which anticipated
benefits in the future are always sufficient to induce the current prescribed optimal
outflow by the country. These net transfers can be interpreted as the combination of

new money and repayments observed in the international loan market.

In a model of risk-sharing with non commitment constraint, a diminution of the
endebtment’s level of the country does not necessarily induce a higher level of in-
vestment. In fact, at least in some contingencies, erasing a part of the country’s
endebtment would rather depress investment. If sovereignty of the country is an im-
portant aspect of the financial relation between a bank and a country, then a lower

level of debt may not necessarily induce higher investment.
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Cette these est composée de trois essals sur les contrats de long terme de partage
de risques avec contraintes de banqueroute. La problématique générale est la suivante.
Le revenu d’un agent riscophobe est risqué. Il cherche donc a diversifier le plus possible
son risque a chaque période en transigeant sur les marchés financiers. De plus, il
voudra lisser autant que possible sa consommation dans le temps. Nous étudions
dans cette theése le contrat financier d’un agent riscophobe dans un contexte ou les
pouvoir légaux sont limités, c’est-a-dire un environnement économique dans lequel on
ne peut forger le respect des termes du contrat (ou dans lequel les colits nécessaires a
'imposition du respect du contrat sont excessivement élevés). Par exemple, dans le
cas de la dette des pays en voie de développement (PVD), il n’existe pas d’instance
supranationale qui puisse imposer au PVD le remboursement de sa créance. En

'absence d’une telle instance, si le remboursement exigé du PVD devient tres élevé,

‘il peut décider de ne plus rembourser sans qu’on puisse 'y forcer. Le contrat optimal

dans un tel environnement doit faire un compromis entre le partage des risques et
le lissage de la consommation d’une part, et donner les incitations & ne pas déclarer
faillite d’autre part. Le but de la these est précisément d’étudier I’effet des contraintes
de banqueroute sur les contrats optimaux de partage de risques, et ce dans différents

environnements économiques.

Nous avons caractérisé, dans les deux premiers essais de la thése, le contrat opti-
mal de partage de risque lorsque les transferts financiers peuvent étre contingents ou
non a la réalisation du revenu. Nous avons démontré que 'opportunité de faire un
transfert ex ante permet d’augmenter le surplus total espéré dans la relation et ainsi

d’améliorer I’ensemble des contrats possibles. Nous avons ensuite analysé I'arbitrage
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entre les contraintes de participation des deux agents en caractérisant les paiements
optimaux ex ante et ex post. Nos principaux résultats sont que les paiements ex ante
sont utilisés de facon optimale et que ces paiements ne sont pas stationnaires. Ils
dépendent de fagon optimale du surplus espéré de la relation par chacun de agents.
Ce surplus évolue avec I’histoire des réalisations passées des états de la nature. Nous
avons montré que le montant du paiement ex ante qu’un agent effectue est inversement
relié au surplus que cet agent anticipe de la relation. Nous anons montré également
I’émergence de propriétés dynamiques intéressantes, méme si les chocs aléatoires sont
indépendamment et identiquement distribués d’une période a I’autre. Par exemple,
dans un modele & deux périodes, nous montrons que la dynamique du contrat opti-
mal imite une tarification selon I’expérience malgré I’absence d’information privée ou
d’apprentissage dans notre modeéle. En effet, suite & une mauvaise réalisation de 1’état
de la nature, disons un accident de la part de 'agent 1, la compagnie d’assurance in-
demnisera son client. En contrepartie, le surplus futur espéré de la compagnie devra
augmenter. Ceci sera réalisé de fagon optimale par une hausse de la prime d’assurance
du client. Une suite d’accident sera généralement suivie d’une suite de hausse de la

prime d’assurance.

Les manipulations des conditions de premier ordre décrivant le contrat optimal
sont tres difficiles, étant donné I'existence de plusieurs contraintes d’inégalité. Pour
cette raison, certaines caractéristiques du contrat optimal n’ont pu étre démontrées
que dans un environnement & deux états de la nature. L’objectif du second essai de
cette these est d’étudier de fagon approfondie les propriétés du contrat optimal 4 I’aide
d’un exemple. Cett étude nécessite le développement d’un algorithme permettant
approximation rapide, sur un micro-ordinateur avec processeur 486, de la fonction

de valeur qui décrit la relation dynamique optimale.

Nous avons obtenu une approximation rapide par une méthode d’approximation
polynomiale appelée la méthode de collocation orthogonale. Cette méthode est sug-

gérée dans Judd (1992) et est une application du théoréme des projections.Cette
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méthode s’est avérée étonnamment rapide (quelques minutes), pourvu que I'on ait
une bonne approximation de la fonction de valeur comme valeur de départ. Nous
avons ainsi pu vérifier numériquement pour trois états de la nature, un résultat ana-

lytique démontré dans I’essai précédent pour deux états de la nature.

Dans le troisieme essai, nous nous sommes intéressés au probléeme du rembourse-
ment de la dette des pays en voie de développement. Deux questions en particulier
nous ont préoccupés. D’une part, deux propositions sérieuses de reglement du prob-
léme du remboursement de la dette ont été formulées dans les Plans Baker et Bradley.
Le Plan Baker suggere de continuer a financer les pays endettés sans effacer aucune
partie de la dette, ni changer la nature des créances. Le Plan Bradley propose plutét
d’effager une partie importante de la dette de maniére & rétablir une situation nor-
male. D’autre part, on a observé dans les derniéres années une crise d’investissement
dans les pays tres endettés. Plusieurs études suggerent que cette baisse des investisse-
ments est due au probleme d’endettement et que la situation pourrait étre rétablie

par une diminution de ’endettement.

Dans notre modele, le pays est riscophobe. Cette hypothése réflete la difficulté
qu’ont les pays en voie de développement & diversifier parfaitement leurs risques sur
les marchés internationaux. De plus, toute I'histoire d’endettement du pays y est
caractérisée, et les remboursements exigés par les banques sont contingents a la réal-
isation d’une variable aléatoire qui est fonction du niveau d’investissement choisi par
le pays a la période précédente. Dans ce contexte, la réaction du pays suite a une
baisse du remboursement exigé est indéterminée. En effet, nous avons montré que
dans un modele & deux états, le pays pourrait aussi bien diminuer qu’augmenter son

effort d’ajustement suite a une baisse des exigences des banques.
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Proof of Proposition 1 Consider the maximization
[o.¢] t Y y
M {(5)0m 15 Feat oo E3 2 B {uly +67) - uly?)}
EY2,8 {v(e-67)-v(e)} 20
Denote A the multiplier of the constraint. The first-order conditions are
Wy +68) - M(e-6)=0 Vs,t
This implies that
w'(y7 + &)
—_—— = t
v(e—67) ve,
Q.E.D.

Pfoof of Proposition 2 (i) Consider the optimal full-commitment contract 6/¢ charac-
terized in Proposition 1. The per-period surplus to agent 1 is Eu(c?/¢) — Eu(y?) which is
positive. Hence U(6fc;ht_.1) > 0 for all histories h;—; and periods ¢. This implies that all
ex ante self-enforcing constraints are satisfied. Suppose that B > y5 — ¢5/¢ and that agent
1 makes the maximum ex ante payment, namely, B; = —B. From Proposition 1 we know
that af = y§ + By — c¢*/¢. If B; = — B, then al < yf - yS + cSfc — ¢3fc. Since the transfer
from agent 1 to agent 2 is largest when s = §, we have that af < 0 for all s, and hence no
ex post self-enforcing constraints are binding. The contract §/¢ can then be supported as

the optimal contract §!.

(ii) Assume that B < y5 — ¢5/¢. Consider the optimal full-commitment contract 6/¢. As
argued above, all ex ante self-enforcing constraints are satisfied. Ex post self-enforcing

constraints are satisfied if and only if
u(c*f®) - u(y! + By) + if_ﬁ (Eu(c®) - Eu(y?)) 20 Vs

These constraints become less binding if B, is set at its lowest level, namely, B, = — B and
net transfers are adjusted such that agent 1’s consumption be ¢*f¢. Setting B; = — B and
solving for 3 in the ex post self-enforcing constraint yields

u(yl — B) — u(c*l°)

P2 T B = bu(y)  Bu(@l) < w(e )

for all s.
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that the contract is dynamically consistent. We will first show that problem (1) is a concave

program and then use its first-order conditions to characterize the optimal contract §!.

To show that problem (1) is a concave program, we show that the Pareto frontier is
strictly concave and continuously differentiable.! We first have to show that the set Qhey)
is convex. Consider two self-enforcing contracts for agent 1, §’ and §” with associated
payments {a'(h;), B'(h¢)} and {a”(h:), B"(h;)} respectively. It is easily shown that because
the utility function u(-) is concave and quadratic, any linear combination of these two
contracts 6* where a*(h;) = Aa'(h¢) + (1 = A)a”(h,) and B ki) = AB'(he) + (1 — A)B"(hy)
is also self-enforcing for agent 1. Secondly, following history h;_;, the set of V; such that a
self-enforcing contract for agent 1 exists is a compact interval [~ K, V] where — K7 is the
discounted utility of agent 2 when it pays out to agent 1 transfers yielding her a consumption
of b in every state and period.® Such transfers are obviously self-enforcing for agent 1. There
exists an upper bound on the surplus agent 1 can concede to agent 2 in a self-enforcing
contract. Denote this upper bound by V. If V is attainable by a self-enforcing contract,
then any V; € [~ Ky, V] is also. The closedness of this interval can be shown by constructing
a sequence of self-enforcing contracts yielding some utility level to agent 2 converging to V.
Since u(-) is continuous and 8 € (0,1), the Dominated Convergence Theorem implies that
the limiting contract is also self-enforcing and hence V is included in the interval. Finally, we
show that the Pareto frontier is decreasing, strictly concave and continuously differentiable.
It is obvious that the function g(-) is decreasing. The strict concavity property follows
from the strict concavity of u(-), the concavity of v(-), and the convexity of £(-). The
differentiability property follows from the continuity and differentiability of u(-). Consider
an efficient self-enforcing contract § such that V(§;hi—1) = Vi € (=K;,V). Construct a
contract 67 which differs from the contract § in that a¥(h;—1,s) = a(h¢-1,8) + 7. The state
s is chosen such that agent 1’s ex post self-enforcing constraint is not strictly binding. The
contract 6" is therefore self-enforcing for v small enough. Define the function § such that
U(67;ht-1) = §(V(87; he—1)) < g(V(8;he—r)) with equality if ¥ = 0. As « is varied, it ca be

showned that the function § is concave and differentiable at V;. Therefore it satisfies Lemma

*Most of the arguments used here follow those of Lemma | of Thomas and Worrall (1988).

SRemember that agent 1’s utility function is defined over the interval [a,b].
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1 reported in Benveniste and Scheinkman (1979). The function g¢(-) is then differentiable.
Since it is monotonic, it is also continuously differentiable almost everywhere. This implies
that for any value V; € [- K, V], there exists a unique efficient continuation of the contract
6 at time ¢t in which V(8;h,—;) = Vi and U(6;hy—y) = g(V¢). Existence is guaranteed by the
compactness of the interval [~ K, V]; uniqueness is guaranteed by the convexity of Q(-) and
the strict concavity of u(:). These results effectively imply that problem (1) is a concave
program, and therefore its first-order conditions are both necessary and sufficient for a
solution. Let Ap*a®, p°0® and ¥ be the respective multipliers of the constraints in problem
(1), and g1 and p2 the multipliers for the constraints on the lower and upper bounds of B,.

The first-order conditions are then

Be: S pw(yl + B—a}) + Y00 (W3] + B - af) — w(y; + By))
8 3

=D _¥p*v'(e = Bi+af) + p1— pa =0 (2)
af: —p(L+ 00 (y; + Bi—af) +p’yv'(e - Bi+af) =0 Vs (3)
Viii: (1+a’+0°)g' (Vi) +9=0 Vs (4)

and the envelope condition is ¢'(V;) = —4.

1. Summing over s all conditions (3) and substituting in condition (2) yield — 3, p*8°u/(y] +
Bt)+ p1 = p2 = 0. If there is at least one self-enforcing constraint that binds, the multiplier
#1 > 0 and therefore B; = —~B. If no self-enforcing constraint binds, only net payments
matter and hence B can be set arbitrarily at its highest level B, namely the level for which
ex post self-enforcing constraints are the least binding,.

2. Condition (4) and the envelope condition jointly imply that (1+a°+6%)g'(Vs,) = ¢'(Vi).
Because o’ + 6* > 0 and the Pareto frontier g(-) is decreasing and concave, it implies that
V%1 £ Vi with strict inequality when o® +6° > 0.

3. We now show that agent 1’s implicit discount factor is not larger than agent 2’s. Suppose
first that V; < V. The above result implies that o® = 0 for all states s. Conditions (3) and

(4) then imply that ﬁ‘r ¢'(V%1)- Furthermore, efficiency of the optimal contract

in period t — 1 implies that 1%%%2 = —-g¢'(V4). Using the result that Vi < W,

W(ye—1—B-ac_i) w'(yf ~B~-a})

we then have that 4+ Bra) 2 T (eFBFa) for all states s. Rearranging terms and

taking expectation over the states s then prove the result. Suppose now that V; = V. When
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Vi1 =V, the condition (1 + o® + 8°)g' (V%) = ¢'(V;) implies that o® + 8° = 0. We then

have that "—;%%_:E%__—‘:;)—) = —¢'(Vi%1) = —¢' (V). A similar argument for period ¢ — | implies
that %ﬁﬁl = —¢'(Vi). When V| < V, the multiplier a® = 0. We then have that

ul(ya_g_aa)
v'(e+B+a})

= —¢' (V1) < ¢(Vi). This implies that “f’,’(;‘_éf;’:’)‘) > ulj,((f;f_*__a‘?)) for all
states s and the result follows. Finally note for future reference that these arguments imply

that a® = 0 for all states s and time periods ¢. Q.E.D.

Proof of Corollary 1 (i) Denote by V* and ¢° the optimal maximum and minimum
values for Vi3, and ¢f respectively such that there exists a self-enforcing contract for agent

1. These values are implicitly defined by

ul(gs) _ (X8
eryr-o - 0V

u(e’) - u(y’ - B) +8g(V°) = 0.

The first equation follows from first-order conditions to problem (1) and the fact that o®* = 0
for all s while the second represents agent 1’s ex post self-enforcing constraint in state s.
Note that these equations are time-independent. After substituting for V* in agent 1’s

ex post self-enforcing constraint, the optimal bound on consumption, ¢*, is then implicitly
defined by

u(¢’) - u(y’ - B) + By (g'"’ < ___zL(g_)___)) =0. (5)

—v’(e + ys — _C_")
The left-hand side of the ex post self-enforcing constraint is increasing in ¢® which implies

that it is satisfied for ¢{ > ¢* for all ¢ and s.

(ii) Differentiating along equation (5) yields

de _ Beg ™"+ (“astes®)) - vy - B)
W () + Byt (- S )

which is positive since ¢'¢'~'’ > 0.6 Hence, ¢° is increasing in the states of the world, that

is, ¢¥ > ¢ if and only if y* > y.

8Since the function g is continuously differentiable and concave we know that g'~1" exists almost

everywhere. Where it does not exists, we know that the right-hand and left-hand derivatives are

negative.
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Finally, differentiating along equation (5) yields

de® _ u'(y* - B) <0
dﬁ . u/(gs) + ﬁg/g[_ll * (—ull(c#)'ul(e+y-’—c-‘)+ul(c!)ull(e+y.s_ga))

U'(e+y’—-g’)2

(iii) From the first-order conditions we know that
(L+6°) (w'(ct)/v'(e + y{ = ) = w'(cem1)/v'(e + yeo1 = 1)

Suppose first that ¢*(c;-1,¢,) > ¢*. This condition is satisfied when ¢ = c¢*(¢;—y,q,8) > ¢*

and 6° = 0. Now suppose that c*(c;,-1,¢,s) < ¢*. This condition is satisfied when ¢{ = ¢*

and 6° > 0. Q.E.D.

Proof of Lemma 1 (i) From the proof of Proposition 2 we know that Q(k,_,) is convex.
By symmetry, the set of self-enforcing contracts for agent 2 is also convex. The set A(h;-;)
is the intersection of these two convex sets and is therefore convex.

(i), (iii), (iv) The rest of the proof follows that of Proposition 2 with minor modifications.
Q.E.D.

Proof of Proposition 3 Denote respectively by 8p°a®, p*6°, Bp*¢®, p*A°, and ¥ the
multipliers of the five constraints in problem (4) in the main text. The first-order conditions

when B; = 0 for all time periods are

a;:  =p’(1+60)u(yi + Be—a}) + (M + ) (e—=Bi+al)=0 Vs (6)
Ve (14 +8)f (Vi) + X+ +9=0 Vs (7)

and the envelope condition is f/(V;) = —4.
(i) First-order conditions imply that
U+ 0) gl = (14 o + ) (Vi) = & ®)
We first define the optimal lower bounds on consumption. Suppose first that ¢* = a®* = 0.
Condition (8) then implies u'(¢f)/v'(e + y{ — ¢§) = —f'(V{%,). This can be rewritten as
%1 = [T (=w'(e])/v'(e + yi = ¢})). It is easily shown that the right-hand-side of this
expression is decreasing in ci. A lower bound on consumption is therefore associated with

an upper bound on Vj%,. If * > 0, then V;,, = V. The lower bound on consumption, ¢?, is
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defined by the intersection of this expression and agent 1’s ex post self-enforcing constraint.

More formally,
w(€’) - u(y’) + Bf (min {71 (~/()/v/(e + " =€), V}) = 0 (9)

where f(V) = 0. This expression states that optimal lower bounds on consumption are
defined by the intersection of first-order conditions and agent 1’s ex post self-enforcing
constraint to the extent that they respect the ex ante self-enforcing constraints; otherwise
the expression reduces to ¢® = y*. It is clear from expression (9) that ¢* < y®. Note that
these optimal lower bounds are time-independent.

We now define the optimal upper bounds on consumption. The expression
= (=) e+ yi - )
is substituted in agent 2’s ex post self-enforcing constraint. More formally,
v(e+y® - &) - v(b) + B (max {f"‘ (—u'(&)/v'(e + v° ~ &) 0}) =0.  (10)

This expression states that optimal upper bounds on consumption are defined by the inter-
section of first-order conditions and agent 2’s ex post self-enforcing constraint to the extent
that they respect the ex ante self-enforcing constraints; otherwise the expression reduces to
¢* = y°. It is clear from expression (10) that ¢° > y°. Again, note that these optimal upper
bounds are time-independent.

The preceding arguments show that in any time period ¢t and state s, consumption c

must be included in the interval [¢°,2%]; otherwise one of the self-enforcing constraints or
g

first-order conditions would be violated.

(i) We now show that the optimal lower bounds are increasing in the states of the world.

The optimal lower bounds are implicitly defined as a function of y* in expression (9). This

expression is continuous in ¢’ and y® but is not differentiable at one point (where the

minimum switches from f'~!(-v/(¢*)/v'(e + y°* — ¢*)) to V). When the minimum equals

V, ¢® = y* and clearly the optimal bound is increasing in the state of the world. When the

minimum equals the first expression, total differentiation of the implicit function yields
det BffY s (Melletrog)) iy

;1? - —u’(c’) + ﬂf’f"l’ % (_u”(c‘)u'(e+y’-—c‘)+u‘(c‘)v”(e+y’-c-’))

v’(c+y’—_c_’ )‘2
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which is positive since f'f"ll > 0.7 Hence, because ¢® is a continuous implicit function of
y°, these results imply that ¢® is increasing in the states of the world, that is, ¢* > ¢ if and
only if vF >yl

We now show that the optimal upper bounds are increasing in the states of the world.
The optimal upper bounds are implicitly defined as a function of y° in expression (10).
This expression is continuous in ¢° and y° but is not differentiable at one point (where the
maximum switches from f'~'(-u/(¢°)/v'(e + y* — ¢°)) to 0). When the maximum equals
0, ¢® = y* and clearly the optimal bound is increasing in the state of the world. When the

maximum equals the first expression, total differentiation of the implicit function yields

dy-’ --'U’(e + y3 — Es) + ﬂfl_.ll " (_ull(E’)ul(e+y:I—(f:-);;Qi/§f;guu(e+y_,_E,))

which is positive since f"" < 0. Hence, because ¢° is a continuous implicit function of y*,
these results imply that ¢° is increasing in the states of the world, that is, & > & if and

only if y* > 9.

iii) The proof of this part of the proposition requires proving the followin preliminary
g g

result.
Lemma 1 The multipliers a® = ¢* = 0 for all s and t.

Proof of Lemma 3 This proof consists of two parts. First we show that a® = 0 for all s.
Consider the optimal lower bounds ¢*. From agent 1’s self-enforcing constraints, we know
that y° > ¢’. Furthermore it is easy to show that 0 < d¢®/dy® < 1 when Viii < V. Since
¢’ is continuous in y* it must be the case that if ¢* = y* then s = 1. In this case if ¢ =,
then V;}, = V. Given that the optimal lower bounds are increasing in the states of nature
and that first-order conditions imply an inverse relationship between ¢ and V%1, it must
be the case that o’ = 0 for all s > 2. Now suppose that in period ¢t — 1 we had ¢;—; = ¢!

and V; = V. First-order conditions in periods ¢ — 1 and ¢ imply that

u/(ct—l) = (1 +o-1 + 05’1) {(1 + 93) ul(c:) _ /\s} _ Pr-1
v'(e+ y! — cimq) 146, viet+yi - ¢f) 146,

"Since the function f is continuously differentiable and concave we know that =Y exists almost
everywhere. Where it does not exists, we know that the right-hand and left-hand derivatives are
g

negative.



XXX Viil
fl(‘/t) — (1+a5+03)f/(‘/t.:-1)+¢s+/\5

for all states s. Take s = 1 and suppose that a;,—; > 0. This implies that ¢,_; = 0 and
Vi = V. The solution to these two equations must then include consumption ¢! = ¢! which
implies that A\! = 0. But then the first equation cannot be satisfied. It must then be the
case that a;—; = 0 and hence a! = 0 in all periods.

The second part shows that ¢* = 0 for all s. The argument is similar as above. We know
that y* < . It is easy to show that 0 < d¢*/dy® < 1 when V5 > 0. Since ¢ is continuous
in y° it must be the case that if & = y* then s = §. In this case if ¢ = &°, then Vt_sH = 0.
Given that the optimal upper bounds are increasing in the states of nature and that first-
order conditions imply an inverse relationship between ¢f and V3, it must be the case that
a® =0 for all s < S — 1. Suppose that in period ¢t — 1 we had ¢;—; = & and V; = 0. Use
the above relationships between c;~; and ¢f, and V; and Vi1, take s = §, and suppose
that ¢;—y > 0. This implies that a;_; = 0 and V; = 0. The solution must then include

S

consumption ¢ = & which implies that 65 = 0. But then the above equation cannot be

satisfied. It must then be the case that ¢;—; = 0 and hence ¢° = 0 in all periods. Q.E.D.

The results of this lemma are now used to show that the optimal consuinption path follows
that stated in part (iii) of the proposition. First-order conditions and the envelope condition
imply that

uw'(ci)

140)——2tL 2 = —f(V,
w'(c;) ’
—_—Tt ~ (Vs
v’(e +y£s _ c.ts) f( t+l)

First-order conditions in period t — 1 then imply that

wied) s u'(ei-1)

146 = .
(14 )v’(e+y,’-c§) v'(e+ yi—1 — c1-1)

Suppose that ¢* < c*(ci—1,¥t-1,8) < &°. The solution must then be ¢ = c¢*(ci=1,Yi-1,$)
with 0° = A* = 0. If ¢*(¢t~1,Yt-1,8) > &, then the solution must be A* > 0 and ¢{ = ¢°. If

c*(ct-1,Yt-1,8) < ¢°, then the solution must be 6° > 0 and ¢§ = ¢°.

iv) The contract 6/¢ is such that V%' = 0 for all states and periods. This implies that
t+1

agent 2’s ex post self-enforcing constraints can be satisfied if and only if a§ > 0 in all states
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and periods. But this is inconsistent with the payments prescribed by the contract §/¢,

hence it cannot be self-enforcing when B, = 0. Q.E.D.

Proof of Lemma 2 (i) We know that V(éfc; h:) = 0 for all histories h,. The contract §/¢
is self-enforcing if and only if aj > 0 for all states s and periods t. Consider the following
contract 6: the ex ante payment is set at B, = clfc — y' and contingent payments at
ad = y§ —y' + ¢ —¢%/° > 0 in all states and periods. This contract yields for both agents
the same consumption as under the contract 6/, The contract 6 is self-enforcing for agent
2. The ex ante self-enforcing constraints are trivially satisfied, that is, thH = 0 for all states
and periods; the ex post self-enforcing constraints are also satisfied by construction since
aj 2 0 for all states and periods. It is self-enforcing for agent 1 if and only if all her ex post

self-enforcing constraints are satisfied, that is,
sfc s 1fc 1 'H qfc q
u(c®) —u(y® + ¢ —y)+T—_—E{Eu(c ) — Eu(y )}ZOforall s.

Note that agént 1’s ex ante self-enforcing constraints are satisfied by §. Define Bne as the
smallest discount factor that satisfies the above equation in all states. This shows that
B > Bne is a sufficient condition for the contract é to be self-enforcing. It is also necessary
since a contract with a smaller ex ante payment would not be self-enforcing for agent 2 as
it would require at least one ex post payment to be negative; a contract with a larger ex
ante payment would be self-enforcing for larger values of the discount factor than Bne-

(ii) When 8 < fBnc, there is at least one ex post self-enforcing constraint that binds. Adding

up all conditions (6) to condition (5) in the main text yields
Zp’{/\sv'(e—Bt)—()’u’(yf-}-B,)} =0. (11)
3

It therefore follows that there must be a s; for which 8*' > 0 and a s; for which A®2 > 0.
Q.E.D.

Proof of Proposition 4 Consider the optimal solution to maximization (4) in the main
text as a function of the state variable V,. By the theorem of the maximum we know that
the solution is continuous in the state variable over the interval [0, V]. Consider a marginal
increase in the value of the state variable. We want to show that the optimal ex ante payment

is strictly decreasing in the state variable. The proof goes by contradiction. Suppose that
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the optimal value of the ex ante payment is left unchanged following a marginal increase in
the state variable. The envelope condition implies that f"(Vi)dVy = =dy < 0. Consider all
ex post constraints that are satisfied at equality before the increase in the state variable.
Of these constraints, we choose all those that become strictly binding following the increase
in the state variable. These are the only constraints that bind following the increase in
Vi. Consider the first-order conditions (6) in the main text for all states s for which one
self-enforcing constraint becomes binding. In these. states, consumption is left unchanged
following the small increase in V;.8 For all those ex post self-enforcing constraints, for first-
order conditions to continue to hold we have that dA* = —dy if the binding constraint is
that of agent 2, and (u'(c)/v'(e + y§ ~ ¢{)) d8° = dy if it is that of agent 1. If we substitute
these changes in condition (11), we have

v'(e+yi - cf)
w'(¢e})

;ps {_dw(y‘s Be)x ~ dy'(e - Bc)} =0

for this condition to continue to hold. Since dy > 0, this expression cannot be equal to 0
if By remains constant. This implies that for any marginal change in the state variable V,
the ex ante payment B, must change and therefore B, is monotonic in the state variable Vi
over the range [0,V].

Suppose that V; = V and fix B; = 0. In this case, only agent | has some ex post self-
enforcing constraints that bind. We know from Proposition 2 that agent 1 pays the maxi-
mum ex ante payment. Since our problem is a concave problem, this implies that at V; = Vv,
the optimal value of B, is negative. A similar argument shows that the optimal B, is pos-
itive at V; = 0. Since B, is monotonic in V; the relationship between B; and V; must be

decreasing. ' Q.E.D.

Proof of Proposition 5 We know from Lemma 2 that there exist states s1 and s such
that 6t > 0 and A°> > 0. Suppose that A> > 0 and 6! > 0. This implies that A! = 0 and
62 = 0. First-order conditions then imply

1 w(cp) _
—(1+9)m = —f(V)

8This follows from the results of Proposition 3 which show that for B, = 0, the optimal lower
(and upper) optimal consumption bounds that satisfy the ex post self-enforcing constraints are

time-invariant. This result can easily be generalized to any fixed value of B,.
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w'(cf)

—— e 2 - —f!
verd-d S
which yields
(1 + 01) u,(ctl) _ ul(c?) 2

vietyl—cl)  vie+tyi-cF)
But this implies that ¢} = ¢! > ¢/ = & which is inconsistent with the results of Proposition

3.9 Consequently it must be the case that A! > 0 and 62 > 0.

(i) First-order conditions imply that, for state 1,
(1+a)f (Vi) + A1 + ¢! = f(Vh).
If a' >0, then V[}, = V > V.. If a! = 0, the above expression reduces to
t+1 .

FVAD+ A + ¢! = (V)

which implies that V|, > V; by the concavity of the Pareto frontier f(-). In state 2, we
have that
(1+a® + %) f' (Vi) + 6* = f/(V).

If > > 0, then Vt?i-l =0 < V. If ¢2 = 0, the above expression reduces to
(1+a® +6%)f (Vi) = f(V2)

which implies that V2, < V; by the concavity of the Pareto frontier f(-). We then have
Vt?*_l <V < Vt}H which proves the result. For future reference, note that these equations

imply that ¢! = a? = 0.

(ii) If 0 < V; < V, first-order conditions in period t — 1 imply that w/(c,—;)/v'(e + yi_1 —
ct-1) = — f'(Vt). We then have

A2 1 A1 I
1462 w'(cf) - w'(cy) -l = u'(ce-1) .
(1+ )v’(e+y? —¢)  ve+yl-ch v'(e+ Yim1 — €i_1)

This yields the following inequalities.

(e} Wiem) o w(ed)

<
vietyi—cl)  viety-1—c-1)  vie+yl —cf)

The results of Proposition 3 to the effect that the optimal bounds on consumption are increasing
in the states of the world hold for B; = 0. In any period this can be easily generalized to any value

of the ex ante payment, namely the optimal value.
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Rearranging terms gives the result.

() _ vletst-cd) o ow(e) | vetyl—el)

u'(ci-1)  v(e+ Y1 — ci-1) w'(ce-1) ~ v'(e+ yi—1 — ce—1)

(iii) This result is an immediate consequence of the above inequalities.

xlii

Q.E.D.
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Proof of Proposition 8 (i) First-order conditious are V¢, ¢:

23¢+1 0f(3t+1|[‘7¢ )[u(c8t+l ) + I@ ES¢+2 f(st+2|[sc+l )u(csu-z) + ﬁ2 . ]

_u’(c'lt)+,5 EYCh

=0. (12)

The optimal choice of investment is clearly independent of history. We may thus write the

problem as the following dynamic problem !°

gs(y*) = ma.x u(c®) + 3 Z fy* s+ 1) g(y+1) Vi (13)

St41

The optimal investment choice is characterized by

0L, ,, f° (1) gs(y*+)

k
u'(c™)+ 8 5]k

=0 Vt (14)

which implies that I*t = J*,
(ii) If we use the Implicit Function Theorem and differentiate (14), we obtain
aIakg II( kc)

= - >0 (15)
k 32E ak, gs(y’tt1)
By ¢ u”(Ck') + 'B_Ikak?—

(iii) The convexity in I of the distribution function of y implies that < 1. This in turn
implies that Jya_yr_l >0.Thus ¢ > ¢? Vi >q. Q.E.D.

Proof of Proposition 9 The next formulation of the problem is motivated in Proposition
3 as is given the proof of existence and unicity of the solution when the problem is more
constrained. We omit to repeat it unnecessarily here. Problem (29) in the main text can

be written, V¢, k, as:

k — kt — kz — k k St
(VR = e, R 1t £ 8 5 Sl (V)
VE S+ 83 flsmllves

St41

With A as the multiplier of the constraint, the first-order conditions are:

‘ , Of(sial*) g5 (el
Ik . c* c*) +ﬁz at;;‘ gs(Vor+1) + Ak ﬂz at}'zc Vet = 0 (16)
a*t —‘u’(ck‘) + /\k‘ =0 (17)
Ve gy abe =g s (18)

10The existence, unicity and concavity of the following value function is proved for the most

constrained case in Propoposition 3. We omit to repeat it unnecessarily here.
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and the envelope condition is

gr(VF) = =A%k, (19)

(i) Equations (17), (18), and (19) implies that c¥* = %+ = ofc Vi, k,q.
(ii) Equations (18) and (19) = g/ (V*+1) = g/ (V) = V41 = V' Vt, s. Equations (16),
(17) and (i) implies

St41 t s ’ fc s
(el +ﬂ023,+, Fy+1 | 19)[gs(V?) + u'(cfe)V?) _

ol

0 Vg,t. (20)

Since the expression in brackets is independent of time and current state, this implies that

[ =[9=TF=[f Yt Q.E.D.

Proof of Proposition 10 (i) Consider the optimal contract with full commitment g/
characterized in Proposition 9. The per-period utility of agent 1 in state s is u(¢/¢). We can
easily show, by using the results of Proposition 1, that /*? is the biggest in state 5. Thus, it
is sufficient for /¢ to be self-enforcing that u(cf¢)+ 8 Lseer S(St41 |15 U (85 hey 5e41) > USS,
This is equivalent to Eli'i%l > U%5, Since the left-hand side of the last inequality is increasing
in g, the critical 8 over which 6/ is self- enforcing, f,, is

Ues — u(cfc)

ﬂl = Uas

(ii) The proof of this part of the proposition is more involved and we need to introduce
some notation. Define by Q(h¢) the set of contracts satisfying the self-enforcing constraints
for agent 1 following history A;. The Pareto frontier is then given by a time-independent
function

g9s(V*) = sg‘}zzz.’};) {U(&; he=1,8) s/t V(8;hyy,s8) > V).

The frontier is time-independent since the functions U(.), V(.), and the set w(.) are all
forward looking. This frontier implicitly defines the set of all efficient self-enforcing contracts
for agent 1. Following any history, the optimal contract §! will necessarily be efficient, since
if it was not it would be possible to replace the non-efficient path by an efficient path
thus relaxing all previous self-enforcing constraints. This new contract would necessarily
be self-enforcing and would dominate the old contract at the beginning of the relationship.

This argument implies that the optimal contract from the start of period t onwards is the
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solution to the following maximization problem.

gr(VE) = max u(yh — I —db) 4+ 3 Z FlyP TR ) g (Voety
[“l,a“t,(v’l"'l)s Seet
9s(Vi) 2 U Vs (21)
VE<ai + 8 It

Se+1

In this problem, the variable V3, is to be interpreted as V/(6;hy—1,k, s), that is, agent
2’s expected profit from period ¢t + 1 onwards when contract § is signed, k is the realized
state of nature in period ¢, and s is a realized state in period ¢ + 1. The last constraint of
the problem ensures that the contract is dynamically consistent. We will first show that
problem (21) is a concave program and then use its first-order conditions to characterize

the optimal contract §'1!.

To show that problem (21) is a concave program, we have to show that the set Q(h;) is
convex, that is, that the self-enforcing constraints are conéave. The first term in the self-
enforcing constraints is u(.) which is concave. We will now see that the third and following
terms in these constraints can be simplified. The third term is

T A 3 fe |1 pu(e), (22)
341 Se4+2
By the assumption of independence of the conditional density functions, f(y®+2|I%+1) is
independent of f(y*+!|I*) and therefore, the first summation in equation (22) is equal to

1. Thus (22) is equivalent to

> e yu(e),

St42
Of course, this can be generalized to every following terms in the self-enforcing constraints.

Hence, it is sufficient to show that the self-enforcing constraints are concave, to show that

BT Ol D

' The arguments showing that problem (21) is a concave program can be proven formally by using

a proof similar to that employed in Lemma 1 of Thomas and Worrall (1988).
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is concave. That is, we have to show that;!?

/ w(M)dF(YI1) > Mu(¢)dF(y|LL) + (1 = A) / w(c")dF(y| 1) (23)

where ¢ + 1 is meant when no time subscript is specified, and where & = Ak’ + (1= A)k"

for k € {c,I}. If we use integration by parts the inequation (23) can be written

u(ed)=Au(es)=(1=Nulel)= [ w/() P 2 =A [W/(IFIF-(1-3) [ W)l
(24)
By concavity of u(.), we know that the first three terms are positive. If we integrate by

parts the three last terms, it is now sufficient to show that

W() [ Pl - [ [ Pl s aw@) [ Fair - [ [ roiree)
H1 =N () [P - [ [ Feirmuen) @s)

The three terms in u”(.) can be written as

- [wO{[Fer -2 [Fain-a-x [ PO (26)

by the assumption of quadratic utility function. These three terms sums to zero by the mean-
preserving spread assumption which implies that [ F(y|/) is invariant in I. By Taylor’s

theorem we now can write the three other terms of equation (25) as:
O [Far) - {wOe [ ruin) - a-n{uoe [rem) e

This last expression also sums to zero by the mean-preserving spread assumption. This
proves the concavity of the self-enforcing constraints. Second, we argue that the Pareto
frontier is decreasing, strictly concave and continuously differentiable. The strict concavity
property follows from the strict concavity of u(-) and the convexity of (-). The differentia-
bility property follows from the continuity and differentiability of u(-). This could be shown
by constructing a differentiable concave function that lies below the function g(:) in the

neighbourhood of one point. Lemma 1 reported in Benveniste and Scheinkman (1979) then

12We suppose here a continuum of states in order to simplify the proof by the use of integration

by parties. Moreover, we omit the integration bounds which are always the same, namely y! and

v,
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proves the result. Finally, following history h;-1, the set of V;* such that a self-enforcing
contract for agent 1 exists is the compact interval [~ Ky, V*] where V* = g7 (U**) and - K,
is the discounted utility of agent 2 when it pays out the maximum feasible transfer to agent
l in every period, namely a* = —b < 0, and investment is /*' for all dates and periods.
Such transfer and investment are obviously self-enforcing for agent 1. The closedness of
this interval can be shown by constructing a sequence of self-enforcing contracts yielding
some utility level to agent 2 converging to V*. Since u(-) is continuous, the Dominated
Convergence Theorem implies that the limiting contract is also self-enforcing and hence V*
is included in the interval. This implies that for any value V;* € [- K\, V], there exists
a unique efficient continuation of the contract § at time ¢ in which V(&;h,_;) = V, and
U(6;he-1) = g(Vi). Existence is guaranteed by the compactness of the interval [~ K., V?);
uniqueness is guaranteed by the convexity of Q(-) and the concavity of u(-). These re-
sults effectively imply that problem (21) is a concave program, and therefore its first-order

conditions are both necessary and sufficient for a solution.

Let Ba® and ¥* be the respective multipliers of the constraints in problem (21). The

first-order conditions are then

0 s,,, f(y | I*)

IFe: /(g - TR — gk 4 {gs(veen) 4+ gtvonl = 0 (28)

Ak
ak¢ . ___u/(ykt _ Ikz - akz) + ¢k =0 (29)
E ]
Vot : (14 ———)g' (V) 4+ ¥ =0 Vs 30
(1 + Fomagry V) + 9 (30)
and the envelope condition is
gi(VF) = =gk, (31)

Define ¢* by —u'(¢*) = g(V*). By concavity of g(.) and by the definition of Ve, we
must have that ¢ > ¢°. (iii) Define v* = y* — a*. We have that
key ke _ ke Se41 | ke Se41
(V) =, max (v~ Hﬂ,.;, Fy | IR )gs(Vott)

9s(Vi) 2 U™ Vs (32)
ch < ykz _ vkc + /3 Z f(y8c+1|1k,)vs‘+l

St41
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In the same way, in state ¢ we can write

q = qe _ Qc Se41 | Jq¢e Se41
9o (V¥) = | nax | u(ot =)+ ﬂs%:l fly" 1) gs (Vo)
9s(Vik1) 2 U Vs (33)
1%L < yth - ¥ 4+ 8 Z f(y3¢+1ll<h)vse+1
Sed 1
Written this way, it is clear that
gk (VE) = 9o(VE + v - vb). (34)

This implies that gj(V*) = g;(Vk‘ + y% — y*). When V¥ = V* we have that U%F =
94(V* + y7 — y¥). Moreover, g,(V9) = U% < U by Proposition 8. The concavity of
9¢(V?) implies that gj(V* +y? — ¢*) > 95(V?). Thus by (34), gi(V*) > g5(V9). Since
w(e*) = —gy(V?) = ¢ = w7 (=g} (V) > ¢t > ¢, Q.E.D.
(iv) Equations (29) and (31) = v/(c{) = —¢'(V{®). Since the first-order conditions are verified
Vtand Vs, u'(cf,;) = —g;(Vi},). Equations (30) and (31) = (1 + —(—qg—jl,,—t)g;(v,il) =
9.(V®). This implies that — (1+ )u (¢iy1) = —u'(c}). Suppose that ¢f > ¢? and A
If ¢],, > ¢ then, the above expressnon implies a? > 0 = ¢, = ¢ = ¢? > ¢ which
contradicts the initial assumption. If ¢{,; < ¢f, then a? < 0 which is impossible. Thus
¢ 2 ¢ = cfy; = ci. Now suppose that ¢ < ¢? and ¢fy; > 7. If ¢f,; > ¢7 then

ad = 0= ¢, =cf = c >c? which contradicts the initial assumption. Q.E.D.

Proof of Proposition 11 (i) At the steady state, we have u/(c5) = —¢’(V'5) by Proposition
10; This implies that V* = V* and ¢* = ¢*. Thus the marginal revenue of investment
is equal to 3=, f(y°|I¥) {gs(V*) + ¥} which is equal to the constant marginal cost, that
is /(c*). That implies that I? = I,¥q at steady state. Moreover, c* = ¢? implies that
y* —af — I = y9 — 4% — I which implies that a* > a9 = V¥ > V7 at the steady state.

(ii) With two states of the world, y* > 37, we have ?_L(glﬂ = _Qﬂ%"lﬂ > 0; Using (31),

equation (28) becomes

f(y |7

—wi(ehy + gL vy +PIVE = g (V) = 97V = 0 (35)

Using equations (29) and (31), and using the fact that gg(Va+1) = g7 (V%) implies that



%’T;?Tl = 1, we can differentiate (35):
3f(y* . 3 flyk ,
or gy {1- sk vyl 4 g UGN gy vy
ove =)

where we use the fact that gf(V*) = 9o(V'?) at steady state. The sufficient condition for

(36)

this derivative to be positive follows.



