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Résumé 
L’hypothyroïdie congénitale par dysgénésie thyroïdienne (HCDT) est la condition 

endocrinienne néonatale la plus fréquemment rencontrée, avec une incidence d’un cas sur 4000 

naissances vivantes. L’HCDT comprend toutes les anomalies du développement de la thyroïde. 

Parmi ces anomalies, le diagnostic le plus fréquent est l’ectopie thyroïdienne (~ 50% des cas). 

L’HCDT est fréquemment associée à un déficit sévère en hormones thyroïdiennes 

(hypothyroïdisme) pouvant conduire à un retard mental sévère si non traitée. Le programme de 

dépistage néonatal assure un diagnostic et un traitement précoce par hormones thyroïdiennes. 

Cependant, même avec un traitement précoce (en moyenne à 9 jours de vie), un retard de 

développement est toujours observé, surtout dans les cas les plus sévères (c.-à-d., perte de 10 

points de QI). 

Bien que des cas familiaux soient rapportés (2% des cas), l’HCTD est essentiellement 

considérée comme une entité sporadique. De plus, plus de 92% des jumeaux monozygotiques 

sont discordants pour les dysgénésies thyroïdiennes et une prédominance féminine est rapportée 

(spécialement dans le cas d’ectopies thyroïdiennes), ces deux observations étant clairement 

incompatible avec un mode de transmission héréditaire mendélien. Il est donc cohérent de 

constater que des mutations germinales dans les facteurs de transcription thyroïdiens connus 

(NKX2.1, PAX8, FOXE1, and NKX2.5) ont été identifiées dans seulement 3% des cas 

sporadiques testés et furent, de plus, exclues lors d’analyse d’association dans certaines familles 

multiplex. Collectivement, ces données suggèrent que des mécanismes non mendéliens sont à 

l’origine de la majorité des cas de dysgénésie thyroïdienne. Parmi ces mécanismes, nous devons 

considérer des modifications épigénétiques, des mutations somatiques précoces (au stade du 

bourgeon thyroïdien lors des premiers stades de l’embryogenèse) ou des défauts 

développementaux stochastiques (c.-à-d., accumulation aléatoire de mutations germinales ou 

somatiques). Voilà pourquoi nous proposons un modèle «2 hits » combinant des mutations 

(épi)génétiques germinales et somatiques; ce modèle étant compatible avec le manque de 

transmission familial observé dans la majorité des cas d’HCDT. 

Dans cette thèse, nous avons déterminé si des variations somatiques (épi)génétiques sont 

associées à l’HCTD via une approche génomique et une approche gène candidat. Notre 

approche génomique a révélé que les thyroïdes ectopiques ont un profil d’expression différent 
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des thyroïdes eutopiques (contrôles) et que ce profil d’expression est enrichi en gènes de la voie 

de signalisation Wnt. La voie des Wnt est cruciale pour la migration cellulaire et pour le 

développement de plusieurs organes dérivés de l’endoderme (p.ex. le pancréas). De plus, le rôle 

de la voie des Wnt dans la morphogénèse thyroïdienne est supporté par de récentes études sur le 

poisson-zèbre qui montrent des anomalies du développement thyroïdien lors de la perturbation 

de la voie des Wnt durant différentes étapes de l’organogénèse. Par conséquent, l’implication de 

la voie des Wnt dans l’étiologie de la dysgénésie thyroïdienne est biologiquement plausible. 

Une trouvaille inattendue de notre approche génomique fut de constater que la calcitonine 

était exprimée autant dans les thyroïdes ectopiques que dans les thyroïdes eutopiques (contrôles). 

Cette trouvaille remet en doute un dogme de l’embryologie de la thyroïde voulant que les 

cellules sécrétant la calcitonine (cellules C) proviennent exclusivement d’une structure 

extrathyroïdienne (les corps ultimobranchiaux) fusionnant seulement avec la thyroïde en fin de 

développement, lorsque la thyroïde a atteint son emplacement anatomique définitif. 

Notre approche gène candidat ne démontra aucune différence épigénétique (c.-à-d. de 

profil de méthylation) entre thyroïdes ectopiques et eutopiques, mais elle révéla la présence 

d’une région différentiellement méthylée (RDM) entre thyroïdes et leucocytes dans le promoteur 

de FOXE1. Le rôle crucial de FOXE1 dans la migration thyroïdienne lors du développement est 

connu et démontré dans le modèle murin. Nous avons démontré in vivo et in vitro que le statut de 

méthylation de cette RDM est corrélé avec l’expression de FOXE1 dans les tissus non tumoraux 

(c.-à-d., thyroïdes et leucocytes). Fort de ces résultats et sachant que les RDMs sont de potentiels 

points chauds de variations (épi)génétiques, nous avons lancé une étude cas-contrôles afin de 

déterminer si des variants génétiques rares localisés dans cette RDM sont associés à la 

dysgénésie thyroïdienne. 

Tous ces résultats générés lors de mes études doctorales ont dévoilé de nouveaux 

mécanismes pouvant expliquer la pathogenèse de la dysgénésie thyroïdienne, condition dont 

l’étiologie reste toujours une énigme. Ces résultats ouvrent aussi plusieurs champs de recherche 

prometteurs et vont aider à mieux comprendre tant les causes des dysgénésies thyroïdiennes que 

le développement embryonnaire normal de la thyroïde chez l’homme. 
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Abstract 
Congenital hypothyroidism from thyroid dysgenesis (CHTD) is the most common 

congenital endocrine disorder with an incidence of 1 in 4,000 live births. CHTD includes 

multiple abnormalities in thyroid gland development. Among them, the most common diagnostic 

category is thyroid ectopy (~ 50 % of cases). CHTD is frequently associated with a severe 

deficiency in thyroid hormones (hypothyroidism), which can lead to severe mental retardation if 

left untreated. The newborn biochemical screening program insures the rapid institution of 

thyroid hormone replacement therapy. Even with early treatment (on average at 9 d), subtle 

developmental delay is still be observed in severe cases (i.e., IQ loss of 10 points). 

Although there have been some reports of familial occurrence (in 2% of the cases), 

CHTD is mainly considered as a sporadic entity. Furthermore, monozygotic (MZ) twins show a 

high discordance rate (92%) for thyroid dysgenesis and female predominance is observed in 

thyroid dysgenesis (especially thyroid ectopy), these two observations being incompatible with 

simple Mendelian inheritance. In addition, germline mutations in the thyroid related transcription 

factors NKX2.1, PAX8, FOXE1, and NKX2.5 have been identified in only 3% of sporadic cases 

and linkage analysis has excluded these genes in some multiplex families with CHTD. 

Collectively, these data point to the involvement of non-Mendelian mechanisms in the etiology 

of the majority of cases of thyroid dysgenesis. Among the plausible mechanisms are epigenetic 

modifications, somatic mutations occurring in the thyroid bud early during embryogenesis, or 

stochastic developmental events. Hence, we proposed a two-hit model combining germline and 

somatic (epi)genetic variations that can explain the lack of clear familial transmission of CTHD. 

In this present thesis, we assessed the role of somatic (epi)genetic variations in the 

pathogenesis of thyroid dysgenesis via a genome-wide as well as a candidate gene approach. Our 

genome wide approach revealed that ectopic thyroids show a differential gene expression 

compared to that of normal thyroids, with enrichment for the Wnt signalling pathway. The Wnt 

signalling pathway is crucial for cell migration and for the development of several endoderm-

derived organs (e.g., pancreas). Moreover, a role of Wnt signalling in thyroid organogenesis was 

further supported by recent zebrafish studies which showed thyroid abnormalities resulting from 

the disruption of the Wnt pathway during different steps of organogenesis. Thus, Wnt pathway 

involvement in the etiology of thyroid ectopy is biologically plausible. 
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An unexpected finding of our genome-wide gene expression analysis of ectopic thyroids 

was that they express calcitonin similar to normally located (orthotopic) thyroids. Such a finding, 

although in contradiction with our current knowledge of the embryological development of the 

thyroid attributes C cell origins to extrathyroidal structures (ultimobrachial bodies) upon fusion 

with a fully-formed, normally situated gland. 

Using a candidate gene approach, we were unable to demonstrate any differences in the 

methylation profile between ectopic and eutopic thyroids, but nevertheless we documented the 

presence of a differentially methylated region (DMR) between thyroids and leukocytes in the 

promoter of FOXE1, a gene encoding the only thyroid related transcription factor known to play 

a crucial role in regulating the migration of the thyroid precursors during development as shown 

by animal studies. We demonstrated by in vivo and in vitro studies that the methylation status of 

this DMR is correlated with differential expression of FOXE1 in non-tumoral tissues (thyroids 

and leukocytes). Knowing that DMRs are hotspots for epi(genetic) variations, its screening 

among CTHD patients is justifiable in our search for a molecular basis of thyroid dysgenesis, 

currently underway in a case-control study. 

The results generated during my graduate studies represent unique and novel mechanisms 

underlying the pathogenesis of CHTD, the etiology of which is still an enigma. They also paved 

the way for many future studies that will aid in better understanding both the normal and 

pathogenic development of the thyroid gland. 

 

 

Keywords: Congenital hypothyroidism, Thyroid dysgenesis, Ectopic thyroid, Somatic 

variations, Wnt signalling pathway, Copy number variants (CNVs), Calcitonin-producing C 

cells, FOXE1, Epigenetic regulation, Differentially methylated region (DMR). 
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CHAPTER 1: INTRODUCTION 

1. The thyroid gland 
In humans, the thyroid gland is considered to be one of the largest endocrine glands in the 

body, weighing 15-20 grams in normal adults. It synthesizes, stores, and secretes thyroid 

hormones (THs), thyroxine (T4) and tri-iodothyronine (T3). The production and secretion of THs 

is under the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Mainly through the 

nuclear thyroid hormone receptors (TRs), TRα and TRβ, THs exert various physiological 

responses: they are responsible for the maintenance of the basal metabolic rate as well as 

controlling pre- and post-natal growth and differentiation of numerous tissues, notably the brain, 

through their effects on protein, lipid and carbohydrate metabolism. In addition to THs, the 

thyroid gland secretes the serum calcium-lowering hormone, calcitonin (Kirsten, 2000). 

1.1. Embryology and development 

1.1.1. Normal thyroid development 
In vertebrates, similar to other endodermal-derived organs, the morphogenesis of the 

thyroid gland begins in the floor of the primitive pharynx with a specification event during which 

a monolayer of endodermal cells, precursors of thyroid follicular cells or pTFCs, are committed 

to attaining the thyroid fate. Subsequently, thickening of the monolayer of committed 

endodermal cells representing the thyroid anlage results in the formation of a multilayered 

structure, the thyroid placode, by embryonic day (E) 9-9.5 in mice and E22 in humans (De Felice 

and Di Lauro, 2011). The formation of the thyroid placode is followed by its expansion into the 

underlining mesenchyme resulting in the formation of the thyroid bud (median thyroid 

primordium). By E10.5 in mice, the thyroid bud is recognized as a narrow necked flask-like 

structure that promptly becomes a diverticulum (De Felice and Di Lauro, 2004). The thyroid bud 

begins to migrate caudally along the anterior neck region while it is connected by a narrow 

channel (thyroglossal duct) to a small hole (foramen cecum) at its site of origin in the floor of the 

pharynx. Consequent to the atrophy of the thyroglossal duct (E11.5 in mice and E30-40 in 

humans), the median primordium detaches from the pharyngeal floor and starts its lateral 

expansion by E12 in mice (De Felice and Di Lauro, 2004). At E13.5 in mice and E45-50 in 
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humans, the median thyroid primordium reaches its final destination (Van Vliet, 2003; De Felice 

and Di Lauro, 2004). The mechanisms underlying the translocation of the thyroid primordium 

have not yet been clarified and different ones have been proposed among which are active 

transport (De Felice et al., 1998), involvment of cardiac mesoderm and major blood vessels (Alt 

et al., 2006b; Fagman et al., 2006; Opitz et al., 2012), or relocalization secondary to the 

differential growth of the whole embryo (Gasser, 2006). 

Upon reaching its final location in front of the trachea, fusion between both the median 

thyroid primordium and the ultimobranchial bodies (UBB) or the lateral primordia occurs by E14 

in mice and E60 in humans (De Felice and Di Lauro, 2004). The UBB are a pair of transient 

embryonic structures derived from the fourth and fifth (caudal) pharyngeal pouches in mouse 

and human, respectively to which the precursors of the parafollicular or C cells, cells devoted to 

the production of calcitonin, have migrated from the neural crest and become localized (Pearse 

and Carvalheira, 1967; Fontaine, 1979; Fagman and Nilsson, 2010). In contrast to the established 

neuronal origin of the progenitors of the ultimobranchial C cells in avian species (Kameda, 

1995), that of mammals has been recently challenged (Kameda et al., 2007b). In this regard, 

Kameda et al. have shown that the murine ultimobranchial cells, that ultimately differentiate into 

thyroid C cells, are endodermally derived. Moreover, they have also indicated that the UBB were 

not occupied by neural crest-derived cells at any developmental stage as well as that the thyroid 

C cells exhibited no expression of the neural crest markers (Kameda et al., 2007b). Recently, 

calcitonin-producing C cells have been reported in human ectopic lingual thyroids, thus 

suggesting that UBB are not the sole source of C cells in humans and that the interactions 

between TFCs and calcitonin-producing cells occur early during embryonic development than 

previously known (Vandernoot et al., 2012). 

At E15 the bilobed shape of the gland is attained and by E15.5 (around E70 in humans), 

the final steps of thyroid morphogenesis are detected by the appearance of follicular 

organization. Subsequently, activation of the terminal or functional differentiation takes place 

whereby the thyroid follicular cells (TFCs) ultimately exhibit the expression of the set of proteins 

known to be involved in the biosynthesis of THs, including thyroglobulin (Tg), thyroid 

peroxidase (TPO), Na+/I‾ symporter (NIS), and the thyroid-stimulating hormone (TSH) receptor 

(TSHR) (De Felice and Di Lauro, 2004; 2011). 
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Currently, knowledge concerning the signals inducing the process of commitment or 

specification of a group of multipotent cells to the thyroid fate is still limited. However, studies 

carried out in animal models have pointed to the plausible role of extrinsic (acting outside the  

pTFCs) genetic factors such as Nodal-related signals as well as a number of mesenchymal 

inductive signals in the specification of the thyroid (Fagman and Nilsson, 2010; De Felice and Di 

Lauro, 2011; Fagman and Nilsson, 2011). 

On the other hand, intrinsic genetic factors (acting inside the pTFCs) involved in 

subsequent morphogenetic steps and their functional interactions have been identified (Figure 1) 

(De Felice and Di Lauro, 2011). The pTFCs are differentiated from other cells in the primitive 

pharynx by the coexpression of four transcription factors: thyroid transcription factor 1 (TTF-1 

or NKX2.1), paired homeobox-8 (PAX8), thyroid transcription factor 2 (TTF-2 or FOXE1), and 

hematopoietically expressed homeobox (HHEX) (De Felice and Di Lauro, 2004; 2011). Based 

on their early expression in the thyroid anlage, it has been suggested that these transcription 

factors collaborate to drive the budding, migration, survival, and growth of the pTFCs (De Felice 

and Di Lauro, 2004; Santisteban and Bernal, 2005; De Felice and Di Lauro, 2011). In addition, 

they are also involved in controlling the terminal differentiation of the TFCs via the regulation of 

thyroid-specific gene expression as well as the maintenance of the differentiated phenotype of 

the mature TFCs (Figure 2) (Damante et al., 2001; De Felice and Di Lauro, 2004; Santisteban 

and Bernal, 2005; De Felice and Di Lauro, 2011). Animal models deficient in thyroid 

transcription factors pointed to their crucial role in thyroid development: In the absence of either 

Nkx2-1, Pax8, Foxe1, or Hhex, a proper specification of the thyroid anlage occurs but subsequent 

morphogenesis of the thyroid is severely impaired (Wendl et al., 2002; Elsalini et al., 2003; 

Parlato et al., 2004). 
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Figure 1: Roles and functional interactions of intrinsic genetic factors involved in thyroid 
morphogenesis (adapted From De Felice and Di Lauro, 2011).  
Dashed arrows: involvement in the initiation or maintenance of other factors.  
Solid arrows: controlling crucial steps of thyroid morphogenesis and physiology. 

 

Figure 2: Developmental stages of the thyroid and the list of transcription factors and thyroid-
specific genes involved in cell fate determination and differentiation (modified from 
Santisteban and Bernal, 2005). 
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In addition to the above mentioned thyroid-enriched transcription factors, several recent 

studies in animal models have shed light on novel regulators of thyroid development and 

differentiation. Among the new genetic factors are those involved in early stages of thyroid 

morphogenesis including those encoding the basic helix-loop-helix (bHLH) transcription factor 

Mash1 (Kameda et al., 2007a), the LIM homeodomain transcription factor Isl1 (Westerlund et 

al., 2008), and the bHLH transcriptional repressor Hes1, a known target of the Notch signalling 

pathway (Carré et al., 2011). In addition, genes implicated in late morphogenetic stages were 

also identified among which are the Hox genes, Hoxa-3 and its paralogs Hoxb-3 and Hoxd-3 

(Manley and Capecchi, 1995; 1998), TSHR, the gene encoding for the TSH receptor (Postiglione 

et al., 2002), and the Eyes absent (Eya) gene Eya1 (Xu et al., 2002). Recently, it has been shown 

that mouse models deficient in the microRNA-processing enzyme Dicer exhibit impaired 

postnatal thyroid function, thus indicating the role of an intact microRNA processing machinery 

in maintaining thyroid homeostasis (Frezzetti et al., 2011; Rodriguez et al., 2012). It has been 

shown that genes expressed in the foregut endoderm known to play crucial roles in pharyngeal 

development are involved in the developmental process of the thyroid as well, among which are 

genes involved in fibroblast growth factor receptor (FGFR) signalling (Celli et al., 1998; Ohuchi 

et al., 2000; Revest et al., 2001; De Felice and Di Lauro, 2004; Lania et al., 2009), the Nkx.2 

class homeobox genes Nkx2.5 and Nkx2.6 (Tanaka et al., 2001), the gene encoding Hoxa5 

(Meunier et al., 2003), the candidate gene of the 22q11 deletion syndrome, Tbx1 (Fagman et al., 

2007; Lania et al., 2009), as well as the gene encoding the novel regulator of thyroid 

development, the tyrosine kinase receptor EphA4 (Andersson et al., 2011). The role of the above 

mentioned genes in the development of the thyroid gland will be discussed in detail later in this 

chapter. 

1.1.2. Abnormal thyroid development 
Abnormalities in thyroid gland development, designated thyroid dysgenesis (TD), include 

a thyroid gland that is either ectopically located (thyroid ectopy), completely absent (athyreosis), 

or severely reduced in size (thyroid hypoplasia) (Van Vliet, 2003; De Felice and Di Lauro, 

2004). The ectopic thyroid tissue occurs consequent to the aberrant migration of all or part of the 

thyroid precursor cells. Although it is commonly located at the base of the tongue (lingual 

position), the ectopic gland can be detected in other locations along the normal migratory route 
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followed by the thyroid precursors from the foramen cecum to the neck (Van Vliet, 2003; De 

Felice and Di Lauro, 2004). Rarely, ectopic thyroid tissue has been detected in several other sites 

either within the head and neck region (e.g. submandibular, trachea, iris, and pituitary) or 

distantly (e.g. heart, lung, duodenum, gall bladder, adrenal gland, ovary and uterus). The 

presence of ectopic thyroid tissue in or near the heart could be attributed to developmental 

disturbances of organs sharing a common embryological origin. In subdiaphragmatic positions 

(e.g. duodenum, gall bladder, and adrenal gland), heterotropic differentiation of unspecified 

endodermal cells might be the underlying etiology. Moreover, it has been reported that thyroid 

tissue located in the ovary can arise within a teratoma, an encapsulated tumor containing more 

than one differentiated tissue (Ibrahim and Fadeyibi, 2011; Noussios et al., 2011). 

Thyroid ectopy is the most common cause of permanent primary congenital 

hypothyroidism due to thyroid dysgenesis (CHTD), where it represents ~ 50 % of the cases (Van 

Vliet and Deladoëy, 2012). In the majority of cases, the ectopic thyroid is the only detectable 

thyroid tissue (Batsakis et al., 1996). Ectopic thyroids exhibit both normal histological 

organization and normal capacity to trap and organify iodine and hence to produce THs and Tg 

(Leger et al., 1988; Gallo et al., 2001; Toso et al., 2009). Consequently, the congenital 

hypothyroidism observed in most of the patients with thyroid ectopy is likely attributed to the 

smaller amount of tissue (due to absence of lateral lobes) and from a limited TSH-dependent 

compensatory growth (Stoppa-Vaucher et al., 2010). Of note, some euthyroid individuals (with 

normal thyroid function) have been found to have thyroid ectopy (Castanet et al., 2010a; Stoppa-

Vaucher et al., 2011). In spite of being generally limited, the thyroid hormone producing 

capability of ectopic thyroids remains stable over time, thus reflecting a normal postnatal 

survival of the ectopic cells (Grant et al., 1989; Léger and Czernichow, 1990). 

In addition to thyroid ectopy, absence of TFCs or athyreosis is the second common 

variant of TD (Van Vliet, 2003; De Felice and Di Lauro, 2004; Castanet et al., 2010a). Although 

the specification of the thyroid bud occurs, subsequent abnormalities leading to defects in either 

survival and/or proliferation of the precursors of TFCs (pTFCs) is the underlying cause resulting 

in absence of TFCs. Lack of differentiation of TFCs or shifting to another fate has been 

suggested as alternative mechanisms leading to the disappearance of TFCs (Van Vliet, 2003; De 

Felice and Di Lauro, 2004). A rare variant of TD is hypoplasia of an orthotopic (normally 

located) bilobed thyroid gland. Finally, absence of one of the two lobes of the thyroid, mainly the 
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left one, is a rare variant of TD referred to as hemiagenesis (Van Vliet, 2003; De Felice and Di 

Lauro, 2004). 

Thyroid dysgenesis (TD) is the most common cause of congenital hypothyroidism (CH). 

The characteristics of congenital hypothyroidism from thyroid dysgenesis (CHTD) and its 

underlying pathogenesis will be discussed in later sections. 

1.2. Anatomy and Histology 

1.2.1. Anatomy 
The thyroid is a butterfly-like shaped gland located in the anterior portion of the neck, 

just below the larynx on opposite sides of, and anterior to, the trachea. In mammals and in some 

reptiles, it consists of two lobes joined by the isthmus in the midline (Figure 3) (Stathatos, 2006). 

Occasionally, a pyramidal lobe exists ascending from the isthmus towards the hyoid bone. The 

thyroid is surrounded by a fibrous capsule, the extension of which into the body of the gland 

leads to the formation of septae, thus producing an irregular and incomplete lobulation 

(Stathatos, 2006). 

Major differences in the anatomy of the thyroid are observed among classes of 

vertebrates: In birds and amphibians, the thyroid consists of two unconnected lobes. Moreover, 

in cartilaginous fish, the thyroid follicles are arranged in the form of a compact gland surrounded 

by a capsule (Gorbman, 1986). On the other hand, absence of glandular organization is observed 

in the majority of bony fish (teleosts) where the thyroid follicles are non-encapsulated and 

loosely distributed (Gorbman, 1986), as is observed in zebrafish where the thyroid follicles are 

loosely dispersed along the ventral aorta in the lower jaw region and hence no bilateral lobes are 

formed (Wendl et al., 2002). In contrast to what is observed in mouse and humans concerning 

the composite structure of the thyroid gland resulting from the fusion of the median and lateral 

primordia (Fagman et al., 2006), the two embryonic structures remain separated in chicken 

(Kameda, 1995) and zebrafish (Alt et al., 2006a). 

In addition to differences in thyroid anatomy, species-specific timing of crucial 

embryonic developmental steps do exist as well (Table I) (Deladoëy, 2012). 
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Table I: Timing of morphogenetic events during thyroid embryonic development in different 
species (modified from Deladoëy, 2012). 

Species Specification Budding Migration Follicle 
formation 

Zebrafish 

(Alt et al., 2006a; Opitz 
et al., 2011) 

24 hpf 36–46 hpf 48–55 hpf 55 hpf 

Mouse 

(Fagman and Nilsson, 
2010) 

E8.5 E10 E10.5–13.5 E15.5 

Human 

(De Felice and Di 
Lauro, 2004) 

E20–22 E24 E25–50 E70 

hpf: hours post-fertilization; E: embryonic day 

The thyroid gland is highly vascularized (Figure 3) (Stathatos, 2006). Its arterial supply is 

provided by two superior and two inferior arteries that originate from the external carotid arteries 

and thyrocervical trunks, respectively. The thyroid ima artery, a branch of either the 

brachiocephalic or the aorta, contributes infrequently to the blood supply of the thyroid. Three 

pairs of veins, superior, middle and inferior, are responsible for the venous drainage of the 

thyroid gland. Both the superior and middle veins drain into the internal jugular vein while the 

inferior ones drain into the brachiocephalic and subclavian veins (Stathatos, 2006). 
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Figure 3: Anatomy of the thyroid gland and surrounding structures (From Stathatos, 2006). 

1.2.2. Histology 
The thyroid follicle is the main histological and functional unit of the thyroid gland 

(Figure 4) (Stathatos, 2012). Each follicle consists of a single layer of secretory epithelial cells 

known as the thyroid follicular cells (TFCs) or thyrocytes surrounded by a basement membrane. 

The lumen of each thyroid follicle is filled with a homogenous colloid, mostly formed of 

thyroglobulin (Tg), a macromolecular glycoprotein that functions as a scaffold for the synthesis 

of THs. A significant variation in the size of follicles within the same thyroid gland is attributed 

to the variability of the colloid content within the different follicles. In addition to TFCs, the 

parafollicular or C cells (calcitonin-producing cells which participate in calcium regulation) are 

found in between the follicles (Stathatos, 2006; 2012). 
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Figure 4: Histology of thyroid gland; (1) Thyroid follicle, (2) Follicular cells, (3) Parafollicular 
(C cells) (From Stathatos, 2012). 

1.3. Physiology 

1.3.1. Synthesis and secretion of THs 
Synthesis of thyroid hormones (THs) takes place in the thyroid follicles. It requires a 

normally developed thyroid gland, sufficient dietary iodide intake, as well as a set of successive 

biochemical steps (Figure 5) (Bizhanova and Kopp, 2009). To be able to synthesize THs, 

thyrocytes have to trap iodide from the blood, at their basolateral membrane, in an active process 

against a concentration gradient. Such an energy consuming process is mediated by the Na+/I‾ 

symporter (NIS), which transports two Na+ and one I‾ down the Na+ ion gradient generated from 

the activity of Na+/K+-adenosine triphosphatase (Na+/K+ ATPase). The NIS-mediated iodide 

transport increases its concentration in thyrocytes 20- to 40-fold compared to that in serum 

(Stathatos, 2012). The release of the trapped iodide in the lumen across the apical membrane is 

mediated by an iodide channel, the candidate of which is the anion transporter pendrin (Song et 

al., 2007). However, the elaborated function of pendrin and its role as an apical iodide 
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transporter is still a matter of debate and the reported data are controversial (Bizhanova and 

Kopp, 2011; Twyffels et al., 2011). 

 

Figure 5: Thyroid hormone synthesis in thyrocytes (From Bizhanova and Kopp, 2009). 

At the cell-lumen boundary and in the presence of hydrogen peroxide (H2O2), thyroid 

peroxidase (TPO) catalyzes the organification of iodide via its coupling to selective tyrosyl 

residues in thyroglobulin (Tg) leading to the formation of mono- and diiodotyrosines (MIT and 

DIT). Coupled to TPO at the apical membrane is the dual oxidase type 2 (DUOX2), originally 

known as thyroid oxidase 2 (THOX2), a calcium- and reduced nicotineamide adenine 

dinucleotide phosphate (Ca2+/NADPH)-dependent oxidase, required for the production of H2O2. 
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DUOXA2 is a specific maturation factor required by DUOX2 for the proper translocation of the 

DUOX2/DUOX2A complex from the endoplasmic reticulum (ER) to the apical plasma 

membrane of thyrocytes where H2O2 is produced (Ohye and Sugawara, 2010). In humans and 

many other species, generation of H2O2 as well as binding of oxidized iodide to tyrosine residues 

of Tg and formation of THs are activated by the TSH-dependent phospholipase C-Ca2+-

diacylglycerol (DAG) pathway and inhibited by cyclic adenosine monophosphate (cAMP) 

signalling cascades (Song et al., 2007). In addition, the generation of H2O2 is inhibited at high 

concentrations of iodide (the Wolff-Chaikoff effect) (Wolff and Chaikoff, 1948) via the 

iodinated lipid, 2-iodohexadecanal (IHDA) (Corvilain et al., 1988; Panneels et al., 1994). In 

many vertebrate systems, H2O2 activates signal transduction pathways downstream of insulin and 

growth factors (Rhee et al., 2005) and it enhances proliferation in various mammalian cells at 

physiological levels (Stone, 2004). However, a signalling role of H2O2 in thyrocytes has not been 

yet elucidated, but it can be deduced from studies carried on other cells (Song et al., 2007). In 

comparison with the amounts of iodide incorporated into proteins, H2O2 is largely produced in 

excess within the thyroid cells (Song et al., 2007). Similar to what is observed in other cell types, 

H2O2 exerts toxic effects on thyroid cells in vitro that are potentially mutagenic if not properly 

repaired: at concentrations lower and higher than 0.1 mm, H2O2 induces DNA single- and 

double-strand breaks, respectively (Mondello et al., 2002; Chico Galdo et al., 2006). Moreover, 

apoptosis and necrosis are among the effects of high H2O2 levels on thyrocytes (Riou et al., 

1999; Demelash et al., 2004). In vivo, an H2O2-induced mutagenesis in human thyroid cells is 

substantially supported (Maier et al., 2006; Song et al., 2007). Consequently, the thyroid cells 

exhibit a number of defense mechanisms against the generated H2O2 among which is the 

stringent separation of both the iodination system, located at the apical membrane of the cell, and 

the interior of the cell (Song et al., 2007). 

In addition to the formation of MIT and DIT, TPO catalyzes the coupling of two residues 

of DIT or one DIT and MIT to form either T4 or T3, respectively. Iodinated Tg is stored in the 

follicular lumen until needed (Bizhanova and Kopp, 2009). For THs to be released, iodinated Tg 

is reabsorbed into follicular cells by pinocytosis. Subsequent lysosomal digestion leads to the 

release of T4 and T3 via the basolateral membrane into the bloodstream through an unknown 

mechanism. Deiodination of the unused MIT and DIT is mediated via iodotyrosine dehalogenase 
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1 (DEHAL1) and the released iodide is recycled for further synthesis of THs (Bizhanova and 

Kopp, 2009). 

1.3.2. Transport of THs 

The majority (99 %) of the T4 and T3 released into the plasma remains inactive by being 

bound to carrier proteins, mainly thyroxine-binding globulin (TBG; 70-80 %) and what is left to 

thyroid-binding prealbumin (transthyretin) and albumin. Hence, less than 1 % of the total plasma 

THs are in a free state. The effects of THs on peripheral tissues are exerted by these biologically 

active free T4 (fT4) and T3 (fT3) hormones. Several other serum proteins, in particular high 

density lipoproteins, bind T4 and T3 (Stathatos, 2012). 

In order to be peripherally metabolized and to exert their intracellular genomic actions, 

THs have to be firstly transported across the plasma membrane (Visser et al., 2011). Earlier, it 

had been presumed that THs are transferred across the phospholipid bilayer by simple diffusion 

owing to their lipophilic structure. However, several experimental lines of evidence have pointed 

out the role of specific transporters in the process of THs' uptake by target cells (Krenning et al., 

1981; Hennemann et al., 1986; Krenning et al., 1988), among which are those studies showing 

that, in certain cells, the cellular uptake of THs is energy- and Na+-dependent (Hennemann et al., 

2001). Such observations have been reinforced by the identification of the foremost THs 

transporters, the organic anion transporter subtypes oatp2 and oatp3 (Abe et al., 1998). Later, 

various transporters of iodothyronine derivatives have been identified, including the Na+/ 

taurocholate cotransporting polypeptide (NTCP) (Friesema et al., 1999; Visser et al., 2010), 

members of the organic anion-transporting polypeptide (OATP) family including the specific 

THs transporter OATP1C1 (Friesema et al., 1999; Hagenbuch and Meier, 2003; Hagenbuch, 

2007; van der Deure et al., 2010), the L-type amino acid transporters (LATs) 1 (LAT1) and 2 

(LAT2) which belong to the heterodimeric amino acid transporter (HAT) family (Friesema et al., 

2001; Jansen et al., 2005), as well as various members of the monocarboxylate transporter 

(MCT) family among which is the specific THs transporter MCT8 and the aromatic amino acid 

transporter MCT10 (Friesema et al., 2003; Visser et al., 2007; van der Deure et al., 2010). While 

a number of plasma membrane transporters involved in the intracellular uptake of THs have been 

identified, those incorporated in the translocation of THs across the membranes surrounding 
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either the mitochondria or the nucleus (if required), where the biologically active TH (T3) 

mediates its effects on transcription, are yet unidentified (Visser et al., 2011). 

1.3.3. Peripheral metabolism of THs 

The major TH secreted by the thyroid gland is the prohormone thyroxine (T4), with only 

a minor amount of T3 (less than 10% of the total blood TH) being secreted under normal 

conditions. The majority of T4 is converted to the biologically active 3,5,3′-triiodothyronine (T3). 

Hence, the majority of circulating T3 is derived from the secreted T4 instead of from the thyroid 

itself (Kirsten, 2000). 

The conversion of the long-lived less active T4 to the short-lived more active T3 occurs 

via the outer (phenolic) ring 5′-deiodination (ORD) of T4, a process catalyzed by two 

selenoprotein iodothyronine deiodinases (Ds) types 1 (D1) and 2 (D2) (Darras and Van Herck, 

2012) (Figure 6). The deiodinase D1 is expressed in the thyroid, liver, and kidney and is known 

to be responsible for the conversion of the majority of T4 to T3 in circulation (Gereben et al., 

2008a; Mebis and van den Berghe, 2009). D2 is expressed in brain, pituitary, brown adipose 

tissue (BAT), skeletal muscle, and thyroid and is responsible for the local conversion of T4 to T3 

(Gereben et al., 2008a; Mebis and van den Berghe, 2009). 

On the other hand, type 3 deiodinase (D3), expressed mainly in placenta, brain, skin, and 

several fetal tissues, is considered to be the main T3 and T4 inactivating deiodinase (Gereben et 

al., 2008a; Mebis and van den Berghe, 2009). Through inner (tyrosyl) ring 5-deiodination (IRD), 

it catalyzes the transition of both T3 and T4 to their inactive metabolites 3,3′-diiodothyronine (T2) 

and reverse T3 (rT3), respectively (Figure 6) (Darras and Van Herck, 2012). Owing to its broader 

substrate specificity, D1 is also capable of terminating the action of T3 and prohibiting the 

activation of T4 by converting them into their inactive metabolites via IRD (Darras and Van 

Herck, 2012). 
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Figure 6: Deiodinase-mediated activation or inactivation of T4 and T3 (From Darras and Van 
Herck, 2012). 

Integration of the activities of the iodothyronine deiodinases plays an important role in 

maintaining concentrations of serum T3: Bianco et al. have pointed out to the role of the mutual 

changes in the activity of the main activating (D2) and inactivating (D3) deiodinases in 

maintaining thyroid gland homeostasis in response to variations in plasma T4 and T3 

concentrations (Bianco et al., 2002). Altered thyroid hormone metabolism related to 

abnormalities in iodothyronine deiodinases has been observed in a number of clinical conditions 

including critical illness, referred to as non-thyroidal illness or low T3 syndrome. It is associated 

with lower levels of circulating T3 and even T4 in severe cases, as well as  increased levels of rT3 

and thyrotropin (TSH) levels that are within the normal range (Mebis and van den Berghe, 2009). 

In addition to deiodination, other alternative metabolic pathways of THs include 

conjugation of the phenolic hydroxyl group of the iododthyronines with sulfate (sulfation) or 

glucuronic acid (glucuronidation) (Wu et al., 2005): Sulfation of T4 completely blocks its ORD, 

while it robustly enhances the IRD of both T3 and T4. On the other hand, sulfated T3 (T3S) can 

act as a reservoir for the biologically active T3 that is recovered via the action of tissue sulfatase 

(Wu et al., 2005). The glucuronidated iodothyronines are excreted in bile and then eliminated 

through fecal excretion or recycled in the enterohepatic cycle (Wu et al., 2005). Oxidative 
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deamination of the alanine side-chain of T3 and T4 leads to the formation of the acetic acid 

derivatives, 3,3′,5-triiodothyroacetic acid (triac) and tetraiodothyroacetic acid (tetrac), 

respectively (Wu et al., 2005). The acetic acid derivatives of THs are mainly metabolized via 

deiodination as well as by conjugation (sulfation and glucuronidation) that might be followed by 

monodeiodination (Wu et al., 2005). In addition, the endogenous biologically active 

thyronamines (TAMs), namely 3-iodothyronamine (3-T1AM) and thyronamine (T0AM), are 

derived from the iodothyronine precursors via decarboxylation of their alanine side-chain. 

Recently, it has been shown that, in addition to decarboxylation, the biosynthesis of TAMs 

involves both phenolic and tyrosyl rings deiodination mediated by D1 or D2 (phenolic) as well 

as D1 or D3 (tyrosyl) deiodinases (Gereben et al., 2008b; Piehl et al., 2011). While the 

physiological effects exerted by TAMs were found to be opposite to those of THs, it has been 

suggested that TAMs can either refine or act as antagonists of THs (Gereben et al., 2008b; Piehl 

et al., 2011). Finally, ether link cleavage (ELC) is considered to be a minor metabolic pathway of 

THs, the importance of which is illustrated during infections as it exhibits bacterial killing 

activity (Wu et al., 2005). 

1.3.4. Control of THs synthesis and secretion 

The plasma levels of THs are under the regulation of the hypothalamic-pituitary-thyroid 

(HPT) axis (Stathatos, 2012). At low serum levels of T4 and T3, the heterodimeric glycoprotein 

thyrotropin or thyroid-stimulating hormone (TSH) is released from the anterior pituitary 

thyrotropes. TSH is considered to be the key regulatory factor controlling the synthesis and 

secretion of THs. The release of TSH itself is under the regulation of the thyrotropin-releasing 

hormone (TRH) secreted from the hypothalamus. The actions of TSH are mediated via the TSH-

receptor (TSHR), a seven-transmembrane G protein-coupled receptor located at the basolateral 

membrane of the TFCs (Stathatos, 2012). Binding of TSH to its receptor leads to the activation 

of the enzyme adenylate cyclase (AC) via an activated Gs protein. The consequent increase in 

cAMP intracellular levels together with the activation of cAMP-dependent protein kinase A 

(PKA) mediate the TSH-dependent synthesis of THs as well as the development of TFCs (Yen, 

2001; Rivas and Santisteban, 2003; Bursuk, 2012; Stathatos, 2012). Nearly every step along the 

process of THs' synthesis and secretion is stimulated by TSH. TSH stimulates the synthesis of 

Na+/I‾ symporter, thyroid peroxidase, and thyroglobulin, which are involved in iodide uptake, 
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organification, and formation of iodinated Tg, respectively. As well, TSH stimulates the 

generation of H2O2 via the activation of PLC-Ca2+ / DAG cascade, a key control stage in the 

synthesis process. Moreover, TSH stimulates the internalization of Tg by TFCs, its degradation, 

and the subsequent release of THs into the blood circulation. Hence, TSH assures the sufficient 

uptake of iodine by the TFCs and its efficient release in the circulation as THs (Dunn and Dunn, 

2001). On the other hand, high plasma levels of THs exert a negative feedback action on the 

HPT axis leading to the inhibition of TSH secretion and the concomitant decrease in synthesis 

and secretion of THs (Stathatos, 2012). The mechanism leading to the inhibition of TSH 

secretion involves the type 2 deiodinase (D2)-mediated conversion of T4 to T3 in the pituitary 

(Yen, 2001). Moreover, TSH production is negatively regulated, either directly or indirectly, via 

THs. Direct negative regulation of TSH occurs by TH-mediated decrease in transcription of the 

glycoprotein hormone α- and TSH β-subunit genes (Yen, 2001). Similarly, THs negatively 

regulate the transcription of TRH which leads at last to the decrease in transcription of TSH 

mRNA (Hulbert, 2000; Yen, 2001). 

The other major regulator of THs' synthesis and secretion, in addition to TSH, is iodine 

availability. An inverse relationship between the amounts of iodine available within the TFCs 

and the synthesis of THs is observed: inadequate amounts of iodine lead to increased TSH 

stimulation and uptake of iodine, faster iodine turnover, and increased production of T3 relative 

to T4. However, excess amounts of iodine hinder TPO activity by inhibiting the production of 

H2O2 (the Wolff-Chaikoff effect) (Wolff and Chaikoff, 1948), thus blocking Tg iodination and 

finally inhibiting the synthesis of THs (Dunn and Dunn, 2001; Stathatos, 2012). In addition, 

tissue-specific as well as hormone-dependent regulation of expression of the THs' metabolic 

enzymes, the three iodothyronine deiodinases, represent an additional layer of regulation exerted 

on the synthesis and secretion of THs (Santisteban and Bernal, 2005). 

1.3.5. Actions of THs 

Thyroid hormones play critical roles in regulating a large number of body functions 

including growth, differentiation, and metabolism. The physiological effects of THs affects 

nearly all tissues (Table II) (Kirsten, 2000). 
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Table II: Physiologic effects of thyroid hormones (modified from Kristen, 2000). 

Tissue/Process Effects 
Bone - Promote bone formation during growth 

- Regulate bone turnover in adults 
CNS - Play crucial role in fetal brain development and maturation: 

 Regulate migration and differentiation of neural cells, myelination, 
and synapse formation 

- Indispensable for normal mental development in infants 
- Regulate cognition, memory, and emotions in adults 

Heart - Increase cardiac output 
- Enhance cardiac contractility 
- Modulation of membrane ion channels 
- Increase heart rate 

Hematopoietosis - Direct regulation of cell population growth and apoptosis of human 
 hematopoietic cells 

Gastrointestinal 
tract (GIT) 

- Regulate gastric and intestinal functions 
- Regulate gastric mobility 

Lung  - Involved in regulation of fetal lung development 
 Control synthesis of lung surfactant 

Metabolism - Increase oxygen consumption and body heat production 
- Regulate synthesis and degradation of glucose, lipids, and proteins 

Skin - Stimulate epidermis, dermis, and hair 
- Play role in cutaneous wound repair 

 

1.3.5.1. Genomic actions of THs 

In target tissues, the intracellular genomic effects of the THs are elicited by their specific 

binding, with high affinity, to the nuclear thyroid hormone receptors (TRs), the two major 

isoforms of which are TRα and TRβ. TRα and TRβ are members of a large superfamily of 

nuclear hormone receptors (steriod/thyroid hormone receptor superfamily) that mediate ligand-

dependent transcriptional regulation subsequent to recognition and binding to specific DNA 

sequences, the TH response elements or TREs, located at the regulatory regions of THs' 

responsive genes (Yen, 2001; Huang et al., 2008). Through alternative splicing, the TRα gene 

encodes several proteins, among which TRα-1 is the only authentic TR while the others may act 

as inhibitors. On the other hand, the two isoforms of TRβ, TRβ-1 and TRβ-2, are generated as a 
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result of alternate promoter choice. Both TRβ-1 and TRβ-2 are authentic TRs that can mediate 

TH-mediated transcriptional regulation (Yen, 2001; Huang et al., 2008). 

TRs are capable of binding to TREs in the form of monomers or homodimers, the role of 

which in the transcriptional regulation is not clearly understood (Yen, 2001; Viguerie and 

Langin, 2003; Huang et al., 2008). However, heterodimerization with TR auxiliary proteins 

(TRAPs), mainly retinoid X receptors (RXRs), leads to enhancement of TR binding to TREs 

(Yen, 2001). In addition, interactions with other nuclear proteins, such as coactivators or 

corepressors, are involved in either transcriptional activation or repression of basal transcription, 

respectively (Yen, 2001; Viguerie and Langin, 2003; Huang et al., 2008). Upon binding of the 

natural ligand of TR, T3, the TR/RXR heterodimer undergoes conformational changes that 

ultimately lead to the substitution of a corepressor complex by a coactivator one. The 

transcriptionally active coactivator complex bears a histone acetyl transferase (HAT) activity that 

eventually leads to an accessible chromatin structure and hence a marked increase of gene 

transcription above its basal level (Viguerie and Langin, 2003). In the absence of ligand, the 

TR/RXR heterodimer interacts with a corepressor complex having either a histone deacetylase 

activity (HDAC) or able to interact directly with the basal transcriptional machinery thus leading 

to repression of transcription (Viguerie and Langin, 2003). In addition to the ligand-dependent 

modulation of TRs' transcriptional activity, it has been shown that phosphorylation of TRs 

regulates their transcriptional activity by altering DNA binding ability as well as tissue-specific 

stability (Yen, 2001; Chen et al., 2003; Huang et al., 2008). 

1.3.5.2. Nongenomic (extranuclear) actions of THs 

Although the majority of the actions exerted by the THs involve the nuclear TRs 

(genomic actions), a number of non-genomic actions, not directly influencing nuclear gene 

expression, have been described (Bassett et al., 2003; Cheng et al., 2010; Davis et al., 2011). 

Such nongenomic actions are initiated at the plasma membrane, in the cytoplasm, or in 

intracellular organelles, such as the mitochondria (Cheng et al., 2010; Davis et al., 2011). 

Moreover, the nongenomic actions of THs are mediated via either extranuclear TRs or cell 

surface receptors (certain integrins) and they are associated with the release of intracellular 

secondary messengers and the activation of a number of protein kinase signalling pathways 

(Bassett et al., 2003; Davis et al., 2011). In fact, certain alterations in gene transcription might 
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occur due to effects of THs initiated at the plasma membrane integrin receptor (Davis et al., 

2011). Moreover, other nongenomic actions of T3, involving extranuclear TR isoforms, can start 

in the cytoplasm and ends with gene transcription (Moeller et al., 2006; Lei et al., 2008). Hence, 

it is the site of initiation that differentiates between genomic and nongenomic actions of THs 

rather than whether or not altered gene expression occurs (Davis et al., 2011). In contrast to the 

genomic actions of THs, the nongenomic ones are characterized by being rapid (occur within 

seconds to minutes), unaffected by inhibitors of both transcription and translation, and exhibit 

agonist/antagonist affinity different from those of classical TRs (Bassett et al., 2003). 

Among the nongenomic actions of THs occurring at the plasma membrane is the 

regulation of the basal activity of a number of plasma membrane ion pumps. Such an action is 

mediated via a TH cell surface receptor found on integrin αvβ3 and leads to the activation of the 

mitogen activated protein kinase (MAPK) signal transduction cascade (Davis et al., 2005; Davis 

et al., 2010). Furthermore, other non-genomic actions induced mainly by T4 and to a lesser 

extent by T3 include nuclear translocation of TRβ1 and those resulting in the activation of gene 

transcription leading to the modulation of angiogenesis and tumor cell proliferation (Davis et al., 

2009; Cheng et al., 2010; Davis et al., 2011). Moreover, trafficking of intracellular proteins 

(shuttling of TRα1 as well as several other proteins from cytoplasm to nucleus) and the 

transcription of genes involved in glucose metabolism are T3-induced nongenomic actions 

mediated via the plasma membrane receptor on integrin αvβ3T3 and involves the activation of 

the signal transducing protein phosphatidyl Iinositol 3-Kinase (PI3K) (Cheng et al., 2010). At the 

TH receptor on integrin αvβ3, both the binding and actions of THs is blocked by the deaminated 

derivative of T4, tetraiodothyroacetic acid (tetrac), at both the T4/T3 site and the T3-specific site 

(Cheng et al., 2010; Lin et al., 2011). 

In the cytoplasm, interactions between T3 and the extranuclear TRs isoforms, TRβ1 and 

TRα1, involve the activation of the signal transducing protein PI3K as is observed in the plasma 

membrane. Consequently, transcription of genes involved in glucose metabolism as well as 

plasma membrane insertion and activation of Na+,K+-ATPase. In addition, it was reported that a 

truncated form of TRα1 (TR∆α1) mediated the T4 and rT3-induced regulation of actin 

polymerization (Cheng et al., 2010). 
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In the mitochondria, it has been shown that the extranuclear effect of T3, leading to the 

stimulation of global mitochondrial gene expression, is mediated via the truncated forms of both 

TRα1 and TRβ1. Such a finding points to the coordination between nuclear and extranuclear 

actions of T3 in regulating the mitochondrial transcriptional apparatus since at least two TH-

dependent general mitochondrial transcription factors, the thermogenic PPAR γ coactivator-1 

(PGC-1) and the mitochondrial transcription factor A, are encoded by the nuclear genome 

(Goglia et al., 1999; Cheng et al., 2010). Moreover, it has been shown that 3,5- diiodothyronine 

(T2) is an active iodothyronine as it exhibits direct impacts on the energy transduction apparatus 

by binding with some components of the respiratory chain (Goglia et al., 1999; Moreno et al., 

2008b). 

2. Congenital Hypothyroidism (CH) 

2.1. Definition and classification 
Deficiency of thyroid hormones (THs) at birth is referred to as congenital hypothyroidism 

(CH) (Van Vliet and Deladoëy, 2012). CH diagnosed because of the observation of clinical 

manifestations (before the neonatal screening era) showed an incidence of 1 in 6,100 to 1 in 

6,900 (Grosse and Van Vliet, 2011). However, owing to the introduction of the neonatal 

screening programs for CH, the incidence of CH has increased to up to 1:2,500-1:4,000 

newborns in iodine-sufficient regions worldwide, thus becoming the most common neonatal 

endocrine disorder (Toublanc, 1992; Deladoëy et al., 2011). Due to the neonatal screening 

programs and early treatment, CH is considered to be one of the most common preventable 

causes of mental retardation (Klein and Mitchell, 1996; Grosse and Van Vliet, 2011). However, 

subtle lasting intellectual deficits were still observed among adolescents and young adults in 

spite of early high-dose initial treatment. The median age at treatment was 9 days and the median 

starting dose of levothyroxine was 14.7 µg/kg/d. A low performance intelligence quotient (IQ) 

was observed especially among severe cases (CH due to athyreosis) showing an IQ loss of 10 

points compared to controls (Dimitropoulos et al., 2009; Hauri-Hohl et al., 2011). 

According to the persistence of THs deficiency observed at birth, CH is classified into 

either permanent, with lasting deficiency that requires lifelong replacement therapy, or 

transient where the deficiency reported at birth is recovered to normal within the first few weeks 
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to months after birth (Szinnai, 2013). In 60-85% of cases, permanent CH is due to developmental 

abnormalities of the thyroid gland collectively known as thyroid dysgenesis (TD: OMIM 

218700) (Deladoëy et al., 2011), while it is due to recessively inherited inborn errors of thyroid 

hormone synthesis or dyshormonogenesis in 10-15% of patients (TDHG; OMIM 274400–

274900), both entities represent permanent primary CH characterized by high TSH levels 

corresponding to the extent of TH deficiency (Knobel and Medeiros-Neto, 2003; Moreno et al., 

2003; Van Vliet and Deladoëy, 2012). The molecular mechanisms underlying permanent 

primary CH will be discussed in detail in following sections. 

Permanent central CH (CCH) is rare with an estimated incidence of around 1:20,000 

(van Tijn et al., 2005). It is due to defects within either the pituitary gland (secondary) or the 

hypothalamus (tertiary) resulting in deficiency of TSH or TRH, respectively in the presence of 

low levels of THs (Park and Chatterjee, 2005; Van Vliet and Deladoëy, 2012). CCH is usually 

associated with deficiencies in other pituitary hormones in addition to TSH deficiency causing 

combined pituitary hormone deficiency (van Tijn et al., 2005). Mutations in genes encoding the 

pituitary transcription factors HESX1 (Dattani et al., 1998; Thomas et al., 2001), LHX3 

(Netchine et al., 2000), LHX4 (Machinis et al., 2001), PIT1 (Tatsumi et al., 1992) and PROP1 

(Wu et al., 1998) have been involved in the pathogenesis of familial  combined pituitary 

hormone deficiency, with or without other syndromic features (Kelberman and Dattani, 2007). 

More rarely, isolated CCH occurs due to mutations in either the TSH β subunit gene 

(Hayashizaki et al., 1989; Doeker et al., 1998) or those in the TRH receptor gene (Collu et al., 

1997) resulting in isolated TSH deficiency and TRH resistance, respectively. Recently, loss-of-

function mutations in immunoglobulin superfamily member 1 (IGSF1), a gene encoding a 

plasma membrane immunoglobulin superfamily glycoprotein, have been reported in an X-linked 

syndrome of central hypothyroidism and testicular enlargement. The resulting central 

hypothyroidism occurred secondary to impaired TRH receptor signalling (Sun et al., 2012). In 

addition, novel IGSF1 mutations have been also identified in male patients with CCH and 

variable prolactin (PRL) deficiency (Nakamura et al., 2013). 

Defects in either transport, metabolism, or action of THs are categorized as peripheral 

CH. Thyroid hormone cell membrane transport defects (THCMTD), thyroid hormone 

metabolism defects (THMD), and resistance to thyroid hormones (RTHs), all lead to reduced 

sensitivity to TH or RSTH (Dumitrescu and Refetoff, 2013). Mutations in MCT8 (SLC16A2), the 
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gene encoding the transmembrane TH transporter monocarboxylate transporter 8 (MCT8), were 

reported in male patients with the X-linked mental retardation Allan-Herndon-Dudley syndrome. 

The mutations are associated with severe X-linked psychomotor retardation and high serum T3 

concentrations with low to normal T4. The neurological abnormalities are due to the impaired 

entry of T3 in the neurons via MCT8, resultin in defective T3 action and metabolism, and 

eventually abnormal brain development (Dumitrescu et al., 2004; Friesema et al., 2004). In 

addition, patients with inherited TH metabolism defects (THMD) due to mutations in the 

selenocysteine insertion sequence (SECIS) binding protein 2 (SECISBP2 or SBP2) gene have 

been reported. Homozygous or compound heterozygous SBP2 gene mutations leading to partial 

SBP2 deficiency and a relatively mild phenotype have been described in patients with transient 

growth retardation together with abnormal thyroid function tests, low T3, high T4 and reverse T3, 

as well as slightly elevated TSH. The partial SBP2 deficiency affects the expression of a subset 

of selenoproteins, among which is the iodothyronine deiodinases type 1 (D1) (Dumitrescu et al., 

2005; Di Cosmo et al., 2009; Hamajima et al., 2012). However, a more complex phenotype was 

reported due to SBP2 gene mutations leading to severe SBP2 deficiency resulting in reduced 

synthesis of the majority of the known human selenoproteins (Azevedo et al., 2010; 

Schoenmakers et al., 2010). RTH, commonly undetected by neonatal screening, occurs mainly 

due to dominantly inherited mutations in the TRβ gene. Mostly, the affected individuals are 

euthyroid, although some hypothyroid individuals have been described. High serum levels of T3, 

T4, and rT3 are reported without suppression of TSH (Weiss et al., 1993; Adams et al., 1994; 

Collingwood et al., 1998). Non TR-RTH has been reported in 15% of families with features of 

RTH but no mutations in the TRβ gene (Sadow et al., 2000). Non TR-RTH is neither clinically 

nor biochemically variable from RTH due to TRβ gene mutations (Weiss et al., 1996). Recently, 

RTH due to mutations in the TRα gene has been reported. Unlike RTH with or without TRβ gene 

mutations, the thyroid function tests in the reported cases included low serum T4, high T3, and 

very low rT3 (Bochukova et al., 2012; van Mullem et al., 2012). 

Transient CH can be due to maternal or neonatal factors (Bhavani, 2011). Besides the 

endemic iodine deficiency seen in many countries (see map on iodine status worldwide from 

WHO; http://www.who.int/vmnis/iodine/status/summary/median_ui_2007_color.pdf?ua=1), 

other more common forms of transient primary CH particularly in North America and in Europe 

include: prenatal and postnatal iodine excess (Bartalena et al., 2001; Markou et al., 2001), 
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transplacental TSHR blocking antibodies (Brown et al., 1996; Yang et al., 2005), maternal 

antithyroid medications (Chan and Mandel, 2007), mono- and biallelic DUOX2 gene mutations 

(Moreno et al., 2002; Maruo et al., 2008), and isolated hyperthyrotropinemia CH (Leonardi et 

al., 2008; Zung et al., 2010). Transient central CH, associated with low T4 concentrations and a 

low or normal TSH, might occur due to untreated maternal hyperthyroidism leading to 

suppression of fetal TSH (Liebrand et al., 2006), treatment of critically ill neonates using 

steroids and dopamine, withdrawal of transplacental T4 transfer in premature infants (Bhavani, 

2011), or isolated hypothyroxinemia prevalent in premature and very low birth weight (LBW) 

neonates (Williams and Hume, 2011). 

2.2. Epidemiology 
As previously mentioned, the worldwide incidence of CH is 1:2,500-1:4,000 newborns 

(Toublanc, 1992; Deladoëy et al., 2011). However, different rates of CH incidence have been 

reported among various populations which reflects the use of different protocols with different 

sensitivities. The incidence of CH was reported to be 1:1,800 in Lebanon and Thailand (Daher et 

al., 2003; Panamonta et al., 2003), 1:800 among newborns from the Greek Cypriot population 

over an 11 year period (Skordis et al., 2005), 1:1,300 newborns in the Netherlands (Loeber, 

2007), 1:2,500-1:2,800 live births in Indian population (Jain et al., 2008), 1:357-1:1,465 in 

different areas of Iran (Karamizadeh et al., 2011; Dalili et al., 2012), and an incidence of 

1:2,135-1:2,300 newborns in the Italian population (Olivieri et al., 2013). 

Several studies have shown that the incidence of CH varies depending on various factors 

among which are race and ethnicity. Recently, Harris et al. have shown that the incidence of CH 

is highest in the Asian population (1:1,016) followed by the Hispanic one (1:1,559), while a 

lower incidence was observed among both the White (1:1,815) and the American Black 

(1:1,902) populations (Harris and Pass, 2007). In accordance with the impact of ethnicity on the 

incidence of CH, Stoppa-Vaucher et al. have shown that, among various ethnic groups, a higher 

incidence of CH due to TD (CHTD) was observed in Caucasians compared to Blacks (Stoppa-

Vaucher et al., 2011). Actually, many other risk factors are known to influence the prevalence of 

CH among which are the birth weight and gestational age where CH is related to low birth 

weight (LBW) and postdate delivery (Dalili et al., 2012). 
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In the United States, an increase in the global incidence of CH (including all underlying 

etiologies) has been reported over the past two decades (Harris and Pass, 2007; Olney et al., 

2010). The reported increased incidence has been attributed to the identification of more milder 

(transient) cases of CH and to demographic factors, including the increase in number of births 

among Hispanics and of LBW babies in the United States (Hinton et al., 2010; Parks et al., 

2010). Moreover, it has been shown that a high incidence rate of CH in the United States is 

associated with twin (1:876) and multiple births (1:575) compared to singletons (1:1,765) and 

with advanced maternal age (1:1,328) compared to younger age (1:1,703) (Harris and Pass, 

2007). 

In Europe, changes in screening procedures by lowering TSH cutoff during initial 

screening (from 20 to 10 mU/liter), led to the increase in global incidence of CH consequent to 

the increased case detection, mainly of premature and LBW neonates (Corbetta et al., 2009; 

Mengreli et al., 2010). The impact of lowering TSH threshold during the second screening test 

(from 15 to 5 mU/liter) on the incidence of CH, both globally and according to etiologic 

subgroups, has been assessed in Quebec over a period of 20 yr (Deladoëy et al., 2011). The 

identification of additional mild cases of CH (with thyroid gland in situ) rather than severe ones 

(TD and TDHG cases) was behind the observed increased incidence of CH. When weaning off 

treatment is tested, half of these mild CH cases (which can be defined as isolated 

hyperthyrotropinemias) are transient (Deladoëy et al., 2011; Oren et al., 2013). 

2.3. Clinical presentations 
Due to the relative non-specificity of the clinical signs and symptoms of hypothyroidism 

and because of the residual thyroid function documented in many cases, the majority of 

newborns with CH appear normal with no noticeable physical signs (Büyükgebiz, 2013). Prior to 

the introduction of the neonatal screening program, diagnosis of CH was also delayed since the 

overt clinical signs in the minority of symptomatic CH cases are of later onset, and evolve 

gradually. Consequently, belated diagnosis of CH leads to severe mental retardation due to the 

critical dependence of the developing brain on THs for the first two to three postnatal years of 

life (Zoeller and Rovet, 2004; Bernal, 2007). On the first day of birth, unexplained postmaturity 

and macrosomia with an open posterior fontanel can be observed (Van Vliet and Deladoëy, 

2012). Other common clinical symptoms are prolonged jaundice, poor feeding, lethargy, and 
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constipation (Counts and Varma, 2009; Van Vliet and Deladoëy, 2012). Additional common 

signs include flat nasal bridge, macroglossia, abdominal distention, umbilical hernia, 

hypothermia, hypotonia, hoarse cry, dry and mottled skin, and myxedematous facial features. 

Moreover, clinically detectable goiter is observed in a few of the newborns (Van Vliet and 

Deladoëy, 2012). Immediate measurement of thyroid functions (serum TSH and free T4) is 

mandatory in any infant exhibiting signs/symptoms of hypothyroidism, regardless the collection 

of blood specimen for biochemical screening (Jain et al., 2008; Van Vliet and Deladoëy, 2012). 

2.4. Diagnosis 

2.4.1. Newborn screening (NBS) 
In an attempt to ensure prompt diagnosis of CH and rapid institution of thyroid hormone 

replacement therapy, the newborn screening programs for CH were initiated in the 1970s after 

the development of an assaying method for thyroxine (T4) from dried blood spots (Dussault and 

Laberge, 1973). This has been shown to effectively avoid damage to the brain and the 

development of later neurocognitive and intellectual abnormalities. The mean IQ of children 

with CH was 85 prior to the introduction of newborn screening where less than 20% of affected 

infants were diagnosed within three months after birth, whereas deficits in fine motor control and 

learning disabilities were observed in infants with normal IQ. However, upon application of the 

screening programs and the rapid onset of treatment, the average development of infants with 

CH was within the normal range. Subtle cognitive and health impairments may persist in the 

most severely affected cases (Van Vliet and Deladoëy, 2012). Thus, newborn screening for CH 

is considered to be one of the most effective newborn medical prevention procedures (Grosse 

and Van Vliet, 2011). 

For newborn screening, a heel-prick blood sample, spotted on special filter paper cards, is 

obtained 48 h after birth (3-5 d of life). The timing of sampling is crucial to avoid false positives 

resulting from the physiologic neonatal TSH surge after birth (Büyükgebiz, 2013). However, 

earlier timing of sample collection (before 24 h) is reported in cases of term neonates with acute 

illness who need to be transferred to another hospital, infants who die, and in case of blood 

transfusion (Van Vliet and Czernichow, 2004; Van Vliet and Deladoëy, 2012). Between the 

second and sixth week of age, a second specimen is routinely obtained by many screening 

programs to detect cases with delayed either TSH or T4 rise (LaFranchi, 2010; Salim and Varma, 
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2013). Both total T4 (bound and unbound) and TSH can be measured accurately in blood 

specimens spotted on filter paper (Van Vliet and Deladoëy, 2012). In addition, screening for CH 

on cord blood has been used by some programs (Van Vliet and Czernichow, 2004). However, 

false negatives may result in the case of monozygotic twins due to fetal blood mixing between a 

hypothyroid and an euthyroid twin, thus repeat screening needs to be done automatically at 2 

weeks of age for all same-sex twins (Perry et al., 2002). Moreover, use of cord blood for mass 

screening turned out to be impracticable due to associated risks as well as difficulties in handling 

and transportation (Rastogi and LaFranchi, 2010; Büyükgebiz, 2013). 

By the beginning of the newborn screening era, two main approaches were used: Most of 

the screening programs applied a primary T4 test with a follow-up TSH if T4 levels are below a 

selected cutoff while the others used a primary TSH test approach (Van Vliet and Deladoëy, 

2012). In addition to primary hypothyroidism detection, a primary T4 test is able to detect the 

rare CCH cases and those with low total T4 associated with prematurity, T4-binding globulin 

(TBG) deficiency or severe non-thyroidal illness (Van Vliet and Czernichow, 2004). However, 

as most children (up to 80%) with CCH have normal thyroid function at birth, the initial T4 

screening also failed to diagnose CCH and has been abandoned in many jurisdictions (Nebesio et 

al., 2010). Moreover, some infants with thyroid ectopy will be missed when screened with the 

primary T4 approach due to their T4 levels that might be still above the selected cutoff, but their 

TSH is almost steadily high (Van Vliet and Czernichow, 2004). On the other hand, the primary 

TSH approach is more specific for detection of mild/sub-clinical primary hypothyroidism in 

which T4 is initially normal with elevated TSH (LaFranchi, 2010; Salim and Varma, 2013). 

Nevertheless, cases with peripheral hypothyroidism are not detected by either of the two 

approaches (Rastogi and LaFranchi, 2010). For all the classes of CH to be detected, the most 

sensitive combined T4 and TSH measurement was used by some programs and showed a higher 

incidence of CH (LaFranchi, 2010; Rastogi and LaFranchi, 2010). Noticeably, the two screening 

approaches show an equal recall rate (0.05%) for primary hypothyroidism. However, the false 

positive rate is high in case of initial T4 screening programs (Büyükgebiz, 2013). Nowadays, 

most of the screening programs worldwide use the primary TSH test approach due to both the 

high rates of false positives in initial T4 tests and to the improved sensitivity of TSH assays (Van 

Vliet and Deladoëy, 2012; Salim and Varma, 2013). Some of the newborn screening programs, 

among which is the Quebec screening program, measure T4 as a second step when the blood-spot 
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TSH value is slightly elevated (Van Vliet and Deladoëy, 2012). For the shift between programs, 

age-related TSH cutoffs need to be considered due to the postnatal TSH surge and the 

subsequent drop by the age of one week. Likewise, age-related TSH cutoffs need also to be 

considered in case of specimens collected before 48 h of age that are subjected to initial T4 test 

with a follow-up TSH (LaFranchi, 2010). 

It should be noted that the cutoff values for recalling infants with abnormal screening 

results are set according to each screening program (e.g. Quebec newborn screening program, 

Figure 7) (Deladoëy et al., 2011). Usually, infants are recalled when the screening results of T4 is 

below the 10th percentile and/or that of whole blood TSH is higher than 15 mU/L (Rastogi and 

LaFranchi, 2010; LaFranchi, 2011; Salim and Varma, 2013). It should be noted that lower TSH 

cutoffs at initial screening have been reported in Europe (Korada et al., 2008; Corbetta et al., 

2009; Mengreli et al., 2010) and for the second blood specimen in Quebec (Deladoëy et al., 

2011) as previously mentioned. Neonates with abnormal thyroid screening tests are recalled 

immediately (within two weeks of age) for further investigation, which involves measurement of 

serum TSH and free T4 (Van Vliet and Deladoëy, 2012). 

Blood 

Call parents: Immediate referral

Blood specimen collected BBlood specimen collected by heel prick on filter paper cards on 2nd or 3rd

day of  life (obtained earlier in case of blood transfusion, death, or transfer)

SSpecimens are sent to a screening lab every  weekday

TSH < 11: Normal

Single measurement of TSH test
(Results in mU/L of whole blood)

v15 ≤ TSH < 30
T4 < 120

11 < TSH < 15 & T4 ≤ 150
15 ≤ TSH ≤ 30 & T4 ≥ 120 

Request 2nd filter paper and refer if               
TSH ≥ 10

11 < TSH < 15
T4  > 150: Normal

(Total T4 in nmol/L)
TSH ≥ 30

TSH ≥ 11: Repeat in duplicate on initial blood spot

 
Figure 7: Screening algorithm for CH in Quebec (adapted from Deladoëy et al., 2011). 
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2.4.2. Other diagnostic studies 
Upon confirming the diagnosis of CH, further examinations should be performed to 

unravel the underlying etiology. In addition, these studies are also helpful in defining whether the 

established CH is transient or permanent. Moreover, they provide guidance in CH cases with 

borderline thyroid function test outcomes. It should be noted that the onset of treatment must not 

be delayed as it is independent of the findings of such additional investigations (Jain et al., 2008; 

Van Vliet and Deladoëy, 2012). 

 Besides the confirmatory thyroid function tests (serum TSH and free T4), the additional 

diagnostic studies undertaken are imaging techniques (thyroid scintigraphy and ultrasonography) 

that determine both the location and the size of the thyroid tissue. Newborn thyroid scintigraphy 

(scan), either with radioactive iodine (123I) or 99mTc pertechnetate (99mTcO4), identifies the 

various forms of TD (athyreosis, hypoplasia, or ectopia) (Figure 8A) or a large gland with 

increased uptake consistent with dyshormonogenesis (Figure 8B) (Van Vliet, 2003; Jain et al., 

2008; Rastogi and LaFranchi, 2010; Van Vliet and Deladoëy, 2012). In the latter case, defects in 

iodide oxidation and organification can be identified using the perchlorate discharge test. Genetic 

studies can confirm such an inborn error in TH biosynthesis (LaFranchi, 2011). In infants with 

no thyroid tissue detected by scintigraphy, serum Tg should be measured: undetectable serum Tg 

concentration, reported in 50% of these infants, indicates true athyreosis. However, a hypoplastic 

and hypofunctional thyroid tissue is to be found in the rest of cases. If normally located, this 

hypoplastic thyroid gland occurs consequent to either TSHR-inactivating mutations associated 

with normal Tg levels (apparent athyreosis) or due to transplacental passage of maternal 

thyrotropin receptor blocking antibody (TRB-Ab) leading to a transient CH (Van Vliet and 

Deladoëy, 2012). 

Thyroid scintigraphy is more sensitive than ultrasonography in detecting the position of 

the ectopic thyroid gland (Grüters and Krude, 2012; Van Vliet and Deladoëy, 2012). However, 

previous studies have pointed to the improved sensitivity of color Doppler ultrasonography 

(CDU) in diagnosing thyroid ectopy (Supakul et al., 2012). By detecting an eutopic thyroid in 

the absence of thyroid gland uptake, the ultrasonography is able to differentate between true 

athyreosis and other situations associated with lack of thyroid uptake including TSHβ gene 

mutations, TSHR-inactivating mutations, iodide-trapping defects, and transplacental passage of 
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maternal thyrotropin receptor blocking antibody (TRB-Ab). In addition, ultrasonography can 

confirm the presence of an enlarged thyroid gland suggestive of dyshormonogenesis (LaFranchi, 

2011). 

Ectopic (sublingual) thyroid

Athyreosis

Normal bilobed thyroid
in eutopic position

Frontal view Lateral view

A

Large thyroid (goiter)
in eutopic position

B

 

Figure 8: Thyroid scintigraphy. 8A: Newborn thyroid scintigraphy, using 99mTc, showing 
examples of TD (modified from Van Vliet, 2003). 8B: Tc-99m scan showing a large 
thyroid gland in eutopic position (modified from Rastogi and LaFranchi, 2010). 

Born to a mother with autoimmune thyroid disease, infants exhibiting both absence of 

thyroid uptake and a hypoplastic or a normal-sized thyroid gland are highly likely to have CH 

due to transplacental passage of maternal TRB-Ab (Brown et al., 1993; Pacaud et al., 1995). 

Presence of TRB-Abs can be confirmed by the thyrotropin-binding inhibitor immunoglobulin 

(TBII) test (Rastogi and LaFranchi, 2010; LaFranchi, 2011). 

To confirm either suspected iodine deficiency in a neonate with CH or excessive 

maternal iodine ingestion or neonatal iodine exposure, urinary iodine measurement will indicate 

either low or high levels of iodine, respectively, as it approximates iodine intake (LaFranchi, 

2011). Of note, iodine deficiency is now extremely rare in industrialized countries but remains a 

public health issue in Africa and China (http://www.isns-neoscreening.org/). 
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Thyroid hormones (THs) are known to play a crucial role in normal bone growth. Hence, 

the degree of skeletal maturation (bone age) is among the parameters that evaluate the severity of 

CH and thus the eventual intellectual outcome (Wasniewska et al., 2003). Deficiency of THs 

leads to retardation of bone maturation (BM) as evident by the absence of knee epiphyses on X-

ray in newborns with CH (Van Vliet et al., 2003). Previously, it has been shown that different 

degrees of BM retardation indicate different extents of thyroid hormone deficiency. In addition, 

retardation of BM is usually associated with athyreosis and a lower developmental quotient (DQ) 

during the first year of life, thus implying the importance of BM routine assessment among 

infants with CH before treatment initiation (Wasniewska et al., 2003). Moreover, it has been 

shown that BM differentiates between neonatal transient hypothyroidism (NTH) and TDHG and 

evaluates the risk of the latter as well (Niu et al., 2004). 

 Due to the low yield of the reported germline mutations, especially in case of TD (as will 

be discussed in later sections), testing for specific germline mutations associated with CH are 

probably confined to cases with a known family history or those presenting with suggestive 

presentations (Van Vliet and Deladoëy, 2012). Mutations of NKX2.1, the gene encoding thyroid 

transcription factor NKX2.1 are suggested in case of unexplained respiratory distress, hypotonia, 

and choreoathetosis (Krude et al., 2002; Pohlenz et al., 2002; Maquet et al., 2009) whereas cleft 

palate and spiky hair encourage testing for FOXE1 mutations (Bamforth et al., 1989; Clifton-

Bligh et al., 1998; Castanet et al., 2002; Baris et al., 2006). In case of infants with isolated 

thyroid hypoplasia or apparent athyreosis, mutations in PAX8 are suggested by a dominant 

pattern of inheritance (Macchia et al., 1998; Al Taji et al., 2007), while a recessive pattern points 

to TSH receptor (TSHR) mutations (Abramowicz et al., 1997). On the other hand, it has been 

shown that sequence variants in NKX2.5, the gene encoding the thyroid-related transcription 

factor NKX2.5, are not disease-causing in a persuasive manner, unless probably combined with 

another genetic hit (Hermanns et al., 2011). Analysis of GLIS3 mutations are prompted in non-

consanguineous pedigrees with neonatal diabetes, polycystic kidneys, glaucoma, hepatic fibrosis 

and exocrine pancreatic deficiency (Senée et al., 2006; Dimitri et al., 2011). Other genes 

(SALL1, TBX1, and URB1) are mutated in syndromes associated with generally mild thyroid 

dysfunction together with other dysmorphisms (Zenker et al., 2005; Fagman et al., 2007; Choi et 

al., 2010). Finally, yet unknown genes are involved in some multiplex families (Castanet et al., 

2005). 
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2.5. Treatment 
 For the best cognitive outcome, treatment of infants with abnormal screening tests is 

started immediately as soon as the diagnosis is made and even before the results of confirmatory 

tests are obtained (Van Vliet and Deladoëy, 2012). In addition to the early onset of treatment, an 

adequate postnatal treatment is mandatory. During the first decade after the implementation of 

newborn screening programs, treatment was started at a T4 doses of 5 to 6 µg/kg/day at a mean 

age of 20 to 35 days (Van Vliet and Deladoëy, 2012). However, it was noticed that treatment 

with these doses of T4 was associated with a delayed bone maturation till the age of three years 

(Van Vliet G, 1989) and yet a lower IQ in severe cases (Derksen-Lubsen and Verkerk, 1996). 

Later, a higher initial dose of T4, 10-15 µg/kg/day, started within 2 weeks after birth was 

recommended (Van Vliet and Deladoëy, 2012). According to the severity of CH, it has been 

reported that infants with athyreosis usually need higher doses of T4  compared with those with 

thyroid ectopy, whereas lower doses are required by infants with thyroid dyshormonogenesis 

(Hanukoglu et al., 2001). The goal of the above mentioned treatment strategy is to achieve 

normal developmental and growth rates by maintaining the total or free T4 serum levels in the 

upper half of the reference range during the first year of life (T4: 10-16 µg/dl (130-206 nmol/L) 

and fT4: 1.4-2.3 ng/dl (18-30 pmol/L). In addition, TSH has to be kept within the normal range 

(between 0.5–2.0 mU/L) (Jain et al., 2008; Rastogi and LaFranchi, 2010). Compared to CH 

patients with total serum T4 levels higher than 10 µg/dl during the first year of life, an 

association between persistent total T4 serum levels below 10 µg/dl and a lower IQ score has 

been reported (Heyerdahl, 1996). On the other hand, counteractive effects accompanying 

overtreatment, including acceleration of skeletal maturation, behavioural and temperamental 

problems, and inadequate attention in school attendance patients, have been reported (Rastogi 

and LaFranchi, 2010; LaFranchi, 2011). Recently, it has been shown that CH overtreatment 

during the first two years, as reflected by fT4 concentrations above the individual steady state 

concentration (SSC) range, is associated with lower cognitive outcomes at 11 yr compared with 

undertreatment which leads to normal cognitive development if not complicated with 

overtreatment (Bongers-Schokking et al., 2013). However, this latter study needs to be 

confirmed. 
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 Although the frequency of follow-up visits varies considerably between different clinics, 

it is highly recommended that patients with CH under replacement therapy be followed-up very 

closely during their first three years of life. The following is an example of a monitoring 

schedule according to the recommendations of both the American Academy of Pediatrics (AAP) 

and the European Society for Pediatric Endocrinology (Table III) (LaFranchi, 2011). 

Table III: Monitoring schedule for serum total or free T4 and TSH (modified from LaFranchi, 
2011). 

Schedule Condition/Age 

2 and 4 wk after initiation of L-T4 treatment 

Every 1 to 2 months 0-6 months of age 

Every 2 to 3 months 6 months-3 yr of age 

Every 6 to 12 months until growth is completed 

4 wk after any change in L-T4 dosage 

 

3. Permanent primary CH due to thyroid 
dyshormonogenesis (TDHG) 

The pathogenesis underlying congenital hypothyroidism due to thyroid 

dyshormonogenesis (TDHG) includes genetic defects in almost each of the multiple biochemical 

steps involved in the biosynthesis of THs (Grasberger and Refetoff, 2011; Grüters and Krude, 

2012). In general, such genetic defects follow an autosomal recessive mode of inheritance and 

are highly recurrent in consanguineous families (Kopp, 2002; Park and Chatterjee, 2005). 

Among the most common causes of inborn errors of thyroid hormone biosynthesis are 

defects in TPO, the gene responsible for the iodination and coupling of tyrosyl residues of Tg 

and their coupling to produce T4 and T3 (Grasberger and Refetoff, 2011; Cangul et al., 2013). 

Inactivating mutations in TPO lead to goitrous or multinodular goitrous (MNG) CH consequent 
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to total iodide organification defects (TIOD) (Abramowicz et al., 1992; Ris-Stalpers and Bikker, 

2010; Belforte et al., 2012; Lee et al., 2013). The recessive mode of inheritance of TIOD is 

negated in some cases due to either monoallelic expression of TPO (Fugazzola et al., 2003; 

Neves et al., 2010) or to partial uniparental isodisomy (UPD) of chromosome 2 (Bakker et al., 

2001). Moreover, pseudodominant inheritance of goitrous CH due to TPO mutations has been 

also reported (Deladoëy et al., 2008). In addition to TIOD, partial iodide organification defects 

(PIOD) has also been reported in patients bearing less severe inactivating mutations of TPO 

(Kotani et al., 2003; Nascimento et al., 2003). 

Mutations in the gene encoding DUOX2 are also commonly involved in the etiology of 

dyshormonogenesis consequent to H2O2 deficiency (Grasberger, 2010; Fugazzola et al., 2011). 

Both mono- and biallelic DUOX2 gene mutations have been reported and found to be associated 

with either transient CH with PIOD or permanent CH with TIOD, respectively (Moreno et al., 

2002). Nonetheless, PIOD consequent to biallelic DUOX2 gene mutations has also been reported 

(Vigone et al., 2005; Varela et al., 2006). Moreover, Maruo et al. have shown that biallelic 

DUOX2 gene mutations are also associated with transient CH (Maruo et al., 2008). The 

association between transient CH and inactivation of both DUOX2 alleles has been also 

demonstrated by another group, thus suggesting the involvement of other pathophysiological 

components in the etiology of this sort of dyshormonogenesis (Hoste et al., 2010). Recently, in 

an apparently normal patient during newborn screening, a delayed-onset of transient CH has 

been reported due to biallelic DUOX2 mutations as well as maternal iodine excess. This is one 

example of misleading of screening results due to the impact of the environment on a genetically 

based CH (Kasahara et al., 2013). 

Deficiency in H2O2 generation, leading to PIOD, has been also detected in a patient with 

mild permanent CH due to dyshormonogenesis as a result of biallelic inactivating mutations in 

the gene encoding for the dual oxidase maturation factor 2 (DUOXA2). The milder CH 

phenotype observed, compared to that associated with biallelic DUOX2 mutations, suggests 

partial compensation of DUOXA2 deficiency by its paralog DUOXA1 (Zamproni et al., 2008). 

Recently, such a DUOXA2 mutation together with another novel heterozygous insertion 

mutation, both leading to early termination of protein translation due to the generation of a 

premature stop codon, were considered to be the cause of mild CH in another patient (Yi et al., 

2013). Furthermore, it has been assumed that a homozygous TSHR mutation affecting the 
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TSHR/IP3/Ca2+ signalling pathway, the positive control system for H2O2 generation in the 

thyroid, could be a plausible cause in cases of unexplained PIOD defects (Grasberger et al., 

2007). 

In contrast to the DUOX2 system and beside the reported large deletion affecting both 

DUOX, no other mutations in either DUOX1 or in DUOXA1 have been detected as an underlying 

cause of dyshormonogenesis in patients with primary CH (Grasberger et al., 2012). Likewise, it 

has been reported that mice spontaneously deficient in Duox2 (Duox2thyd) (Johnson et al., 2007) 

rather than Duox1 are congenitally hypothyroid (Donkó  et al., 2010). Recently, a mouse model 

in which the two Duoxa paralogs were knocked-out (Duoxa-/-) was described by Grasberger et al. 

whom showed that animals deficient in the two Duoxa genes, Duoxa1 and Duoxa2, develop 

postnatal goitrous CH due to TIOD consequent to DUOX deficiency. Such a phenotype was not 

observed among Duoxa-/- mutants subjected to chronic postnatal T4 replacement. These findings 

points to the important role of the DUOXA proteins in the maturation process of the DUOX 

isoenzymes who were proven to be the only source of H2O2 required in the process of THs 

biosynthesis (Grasberger et al., 2012). 

 The uncommon iodide transport defects (ITD) identified among patients with CH due to 

dyshormonogenesis are attributed to biallelic mutations in the Na+/I− symporter gene (SLC5A5 or 

NIS) (Fujiwara, 1997; Pohlenz and Refetoff, 1999; Szinnai et al., 2006; Montanelli et al., 2009). 

The intrinsic plasma membrane Na+/I− symporter (NIS) is responsible for the active iodide (I−) 

uptake at the basolateral membrane of the thyroid follicular cells (TFCs) (Bagchi and Fawcett, 

1973; De La Vieja et al., 2000; Dohán et al., 2003; Darrouzet et al., 2014). In addition to limited 

or lack of radioiodide uptake in the thyroid and other SLC5A5-expressing organs (salivary glands 

and stomach) and the low iodide saliva-to-plasma (S/P) ratio, patients with ITD due to SLC5A5 

mutations present with variable degrees of CH and diffuse or nodular goiter (Stanbury and 

Dumont, 1983; Spitzweg and Morris, 2010). Likewise, biallelic mutations in SLC26A4, the gene 

encoding the multifunctional anion exchanger pendrin, lead to variable impaired ability of the 

thyroid to organify iodide (Everett et al., 1997; Kopp, 2000; Campbell et al., 2001; Huang et al., 

2013a). The resulting PIOD has been reported in 10% of the patients with Pendred syndrome 

(PDS), an autosomal recessive disorder defined by a triad of congenital hearing impairment, 

hypothyroidism due to PIOD, and goiter (Morgans and Trotter, 1958; Kopp and Bizhanova, 

2011). In many patients, elevated levels of serum Tg are observed according to the size of the 
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goiter (Sheffield et al., 1996). The role of environmental factors or other modifiers in 

compensating the inactivation of pendrin has been suggested by the lack of thyroid phenotype in 

the majority of patients with SLC26A4 mutations and in Slc26a4−/− mice (Park et al., 2003; 

Tsukamoto et al., 2003; Park et al., 2005; Calebiro et al., 2011). Actually, sufficient iodide 

intake has been shown to modify the thyroid phenotype in patients with PDS where 90% of them 

are reverted to an euthyroid state while the remaining 10% present with goiter (Reardon et al., 

1997). 

 Synthesis defects in thyroglobulin (Tg) consequent to inactivating mutations in the gene 

encoding it (Tg) have been reported in patients with CH due to dyshormonogenesis (Ieiri et al., 

1991; Citterio et al., 2013). The estimated incidence of defective Tg due to Tg gene mutations is 

approximately 1 in 100,000 newborns (Targovnik et al., 2010). In fact, various phenotypes 

associated with Tg mutations have been reported that range from euthyroid to either mild or 

severe goitrous hypothyroidism, with goiter detection either at birth or shortly after it (Targovnik 

et al., 2010). In addition, Tg defects in a goitrous individual are suggested by low serum 

thyroglobulin levels and normal organification of iodide indicated by a negative perchlorate 

discharge test (Medeiros-Neto et al., 2002; Knobel and Medeiros-Neto, 2003). In spite of the 

usual autosomal recessive transmission of Tg defects, an autosomal dominant mode of 

inheritance has been proposed in one kindred (de Vijlder et al., 1983). 

 In addition to the above-mentioned genes, biallelic homozygous mutations in the 

iodotyrosine deiodinase (known also as DEHAL1) gene (IYD) have been reported. In humans, 

IYD mutations lead to iodotyrosine deiodinase deficiency associated with defective intrathyroidal 

iodine recycling and excessive urinary secretion of MIT and DIT (Afink et al., 2008; Moreno et 

al., 2008a). Patients bearing IYD mutations are missed by newborn screening for CH, but they 

present with severe goitrous hypothyroidism at any time point between the neonatal period and 

adolescence (Moreno et al., 2008a); mental retardation was reported in two cases, born to 

consanguineous parents, who presented with hypothyroidism during infancy. In addition to 

homozygous IYD mutations, patients carrying heterozygous mutations that might be associated 

with goiter or a hypothyroid phenotype have been also reported (Afink et al., 2008). The 

variability in the phenotype and in age of onset of hypothyroidism might be attributed to either 

environmental factors (iodine intake) or genetic ones (severity of the involved mutations) 
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(Moreno and Visser, 2010). Alternative to L-T4 treatment, it has been shown that iodine 

supplementation could effectively treat patients with IYD deficiency (Hirsch et al., 1986). 

4. Permanent primary CH due to thyroid dysgenesis 
(CHTD) 

In contrast to the classical Mendelian recessive inheritance of thyroid 

dyshormonogenesis, thyroid dysgenesis (TD) is generally considered to be a sporadic disorder 

with an unknown underlying etiology in the vast majority of cases (Deladoëy, 2012). However, 

evidence indicating a possible role of genetic components have been reported, among which is 

the familial occurrence in a minority (2%) of CHTD cases with either ectopic thyroid or 

athyreosis, a rate that is 15 fold higher than would be expected by chance and that supports the 

contribution of a familial component in the pathogenesis of CHTD (Castanet et al., 2000). The 

occurrence in some families of both types of TD, thyroid ectopy and athyreosis, among affected 

members of the same family points to a possible common underlying mechanism for both forms 

of the disorder (Castanet et al., 2001). Moreover, further studies have shown that the incidence 

of familial cases of TD is even higher than previously described when the presence of 

asymptomatic thyroid developmental anomalies (TDA) in first degree relatives of infants with 

TD are prospectively screened for. Such findings represent an additional argument for a genetic 

component in the etiology of CHTD (Léger et al., 2002; Adibi et al., 2008; Kumorowicz-Czoch 

et al., 2012). 

Among the other lines of evidence supporting the possible involvement of genetic factors 

in the pathogenesis of TD is the female predominance in isolated cases of CHTD (especially for 

thyroid ectopy), where the female to male ratio is 3:1. Thus, the role of the individual's genetic 

background and/or the involvement of sex-modified factors in the etiology of TD is suggested 

(Devos et al., 1999). On the other hand, the reported female/male predominance among familial 

cases of CHTD was similar in both thyroid ectopy and athyreosis, but lower when compared to 

isolated cases (Castanet et al., 2001). Furthermore, the high frequency of additional 

extrathyroidal congenital malformations, notably cardiovascular ones, observed in CHTD cases 

compared to the general population suggests that common genetic factors may underlie TD and 

congenital heart diseases (Siebner et al., 1992; Devos et al., 1999; Castanet et al., 2001; Olivieri 
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et al., 2002; Kreisner et al., 2005; El Kholy et al., 2007; Gu et al., 2009; Kempers et al., 2009; 

Kumar et al., 2009; Reddy et al., 2010; Razavi et al., 2012). 

In addition, variation by ethnicity in the incidence of TD is an additional argument which 

supports the role of genetic background in the pathogenesis of CHTD (Stoppa-Vaucher et al., 

2011). As discussed in a previous section it has been reported that the incidence of CH (all 

etiologic sub-groups included) varies in different racial and ethnic groups with a high incidence 

being reported among newborns that are Asians or Hispanics while the incidence among non-

Hispanic black newborns was found to be low compared to non-Hispanic white ones (Lorey and 

Cunningham, 1992; Waller et al., 2000; Harris and Pass, 2007; Hinton et al., 2010; Chen et al., 

2013). Taking the etiology of CH (TD or TDHG) in consideration, Stoppa-Vaucher et al. have 

shown that the incidence of CHTD varies by ethnicity where Blacks, due to their genetic 

diversity, are less liable to develop TD compared to Caucasians who are more prone to TD 

because of the decreased genetic diversity and hence increased deleterious genetic variation 

among them (Lohmueller et al., 2008; Stoppa-Vaucher et al., 2011). Thus, the observed variation 

by ethnicity in patients with TD strongly supports the role of genetic susceptibility as an 

underlying molecular mechanism of its pathogenesis. 

4.1. Molecular mechanisms of CHTD 

4.1.1. Monogenic mechanisms 
As previously mentioned in section 1.1.1., the embryonic development of the thyroid 

gland is regulated via an interplay between the TFCs enriched transcription factors NKX2.1, 

PAX8, FOXE1, and HHEX (De Felice and Di Lauro, 2004; Parlato et al., 2004; De Felice and 

Di Lauro, 2011). Hence, they are considered to be the most pertinent candidate genes of CH due 

to TD. Actually, various animal models deficient of genes encoding these transcription factors 

develop TD, thus confirming their direct involvement in thyroid development (Table IV). In 

addition to the thyroid-specific transcription factors, other candidate genes (section 1.1.1.) have 

been also identified based on either animal models and/or on their function in human syndromes 

comprising CH associated with TD (Table IV). Extensive screening of patients with CHTD 

revealed the presence of germline mutations in the thyroid transcription factors NKX2.1, PAX8, 

FOXE1 and the thyroid related transcription factor NKX2.5 in a minor subset (3%) of the 

screened cases (Narumi et al., 2010). In addition, inactivating mutations in the TSHR gene, 
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leading to TSH resistance, have also been identified in several patients (Sunthornthepvarakui et 

al., 1995; Abramowicz et al., 1997; Alberti et al., 2002). However, no mutations among patients 

with TD have been detected either in the gene encoding the thyroid transcription HHEX nor in 

the new candidate gene ISL1(Al Taji et al., 2007; Ferrara et al., 2011). Likewise, no mutations 

were identified among TD patients screened for TAZ (WWTR1), a gene coding for one of the 

transcriptional co-factors of PAX8 and NKX2.1 (Ferrara et al., 2009). Collectively, animal 

models deficient of transcription factors that regulate thyroid morphogenesis and gene 

expression as well as the corresponding reported germline mutations in patients with syndromic 

or nonsyndromic TD support the hypothesis that TD has a genetic component. This issue will be 

discussed in the following sections. 
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Table IV: Animal models and human genes of thyroid dysgenesis (TD) (modified from Deladoey, 2012). 

Gene Features Thyroid 
phenotype  Additional phenotype 

Zebrafish  

ace (Wendl et al., 2007) Growth factor; Fgf8 Hypoplasia Lack of cerebellum and mid-hindbrain-boundrary 

bon (Elsalini and Rohr, 2003) Mixer transcription 
factor Athyreosis Overall reduction of endoderm 

cas (Elsalini et al., 2003) Sox transcription 
factor Athyreosis Absence of endoderm 

cyc (Elsalini et al., 2003) Nodal ligand Hypoplasia Overall reduction of endoderm, defects of neural 
tube, and cyclopia 

fau (Reiter et al., 2001) GATA5 transcription 
factor Athyreosis Aplasia of liver, pancreas, and thymus 

hand2 (Wendl et al., 2007) bHLH transcription 
factor 

Athyreosis or 
hypoplasia Heart, pharynx, pectoral fin defects 

hhex (Elsalini et al., 2003) Homeobox 
transcription factor 

Athyreosis or 
hypoplasia Liver aplasia 

nk2.1a (Elsalini et al., 2003) Homeodomain 
transcription factor Athyreosis Forebrain defect 

noi (pax2.1) (Wendl et al., 
2002)  

Paired-box 
transcription factor Athyreosis Lack of pronephric duct and mid-hindbrain-

boundrary 
oep (Elsalini et al., 2003) Nodal cofactor Athyreosis Absence of endoderm 

Mouse  

Chordin (Bachiller et al., 
2003) 

Extracellular BMP 
antagonist Hypoplasia Cardiac outflow tract defects, 

aplasia of thymus and parathyroid 

Edn1 (Kurihara et al., 1995) Endothelin-1; 
signaling peptide 

Hypoplasia, absent 
isthmus Craniofacial, cardiac, and thymus defects 
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Table IV: continued. 

Eya1 (Xu et al., 2002) Eya transcription factor Hypoplasia Aplasia of kidneys, thymus, and 
parathyroid 

Fgf10 (Ohuchi et al., 2000) Growth factor Athyreosis Aplasia of limbs, lungs, pituitary, and 
salivary glands 

Fibulin-1 (Cooley et al., 2008) ECM protein Hypoplasia Craniofacial, cardiac, and thymus defects 

Foxe1 (De Felice et al., 1998) Forkhead transcription 
factor Ectopia or athyreosis Cleft palate 

FRS2α (Kameda et al., 2009) Transducer of FGF 
signaling 

Bilobation defect, 
hypoplasia, UBB defects Thymus and parathyroid defects 

Hes1 (Carré et al., 2011) Basic helix-loop-heix 
transcription factor Hypoplasia Hypoplastic UBB 

Hhex (Martinez Barbera et al., 
2000) 

Homeobox 
transcription factor Athyreosis Forebrain truncations, liver aplasia, and 

complex heart malformations 
Hoxa3 (Manley and Capecchi, 
1995; 1998) 

Homeobox 
transcription factor 

Hypoplasia, bilobation 
defects Cardiovascular and skeletal defects 

Hoxa5 (Meunier et al., 2003)  Homeobox 
transcription factor Empty thyroid follicle  

Hoxb3 (Manley and Capecchi, 
1998) 

Homeobox 
transcription factor 

Ectopy in Hoxa3−/−, 
Hoxb3−/− 
double mutants 

Cardiovascular and skeletal defects 

Hoxd3 (Manley and Capecchi, 
1998) 

Homeobox 
transcription factor 

Ectopy in Hoxa3−/−, 
Hoxd3−/− 
double mutants 

Thymus and parathyroids agenesis 

Isl1 (Westerlund et al., 2008) LIM homeodomain 
transcription factor 

Hypoplasia of thyroid 
placode Heart, pancreas, and neural defects 

Nkx2.1 (Kimura et al., 1996) Homeodomain 
transcription factor Athyreosis Pulmonary aplasia, neural defects 

Nkx2.5 (Dentice et al., 2006) Homeodomain 
transcription factor 

Hypoplasia of thyroid 
placode Cardiac defects 
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Table IV: continued. 

Pax3 (Franz, 1989) Paired-box 
transcription factor 

Hypoplasia, bilobation 
defects Thymus and parathyroid defects 

Pax8 (Mansouri et al., 1998) Paired-box 
transcription factor Athyreosis Reproductive tract defects 

Shh (Fagman et al., 2004) Secreted morphogen Hemiagenesis Holoprosencephaly, midline defect, 
aberrant carotid arteries, and short digits 

Tbx1 (Fagman et al., 2007; 
Lania et al., 2009) 

T-box transcription 
factor 

Hypoplasia, bilobation 
defects 

Cardiac outflow tract defects, 
aplasia of thymus and parathyroids 

twisted (Petryk et al., 2004) Extracellular modulator 
of BMP signaling 

Loss of Hhex expression at 
bud-stage 

Vertebral defects, spectrum of 
midline defects, agnathia 

Human 

FOXE1 (Bamforth et al., 1989) Forkhead transcription 
factor Athyreosis Cleft palate, choanal atresia, and spiky 

hair 

GLIS3 (Senée et al., 2006) Zinc finger 
transcription factor Hypoplasia Neonatal diabetes, cystic kidneys, and 

cholestasis 

NKX2.1 (Krude et al., 2002) Homeodomain 
transcription factor 

Thyroid in situ with 
primary hypothyroidism Respiratory failure, choreoathetosis 

NKX2.5 (Dentice et al., 2006) Homeodomain 
transcription factor 

Thyroid in situ with 
primary hypothyroidism Congenital heart malformations 

PAX8 (Macchia et al., 1998) Paired-box 
transcription factor Hypoplasia Unilateral renal agenesis 

SALL1 (Choi et al., 2010) Zinc finger 
transcription factor 

Thyroid in situ with 
primary hypothyroidism Townes-Brocks Syndrome 

TBX1 (Stagi et al., 2010) T-box transcription 
factor 

Thyroid in situ with 
primary hypothyroidism 

DiGeorge with congenital heart 
malformations 

URB1 (Zenker et al., 2005) E3 ubiquitin ligases of 
the N-end rule pathway 

Thyroid in situ with 
primary hypothyroidism Johanson-Blizzard Syndrome 
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4.1.1.1. TSHR 

The cell surface TSH receptor (TSHR) is a member of the glycoprotein hormone receptor 

(GpHR) subfamily of heterotrimeric G protein-coupled receptors (GPCRs) (Nagayama et al., 

1989; Parmentier et al., 1989; Misrahi et al., 1990). The human TSHR gene (TSHR) is located on 

chromosome 14q31 while in mice Tshr is located on chromosome 12. TSHR/Tshr each consists 

of ten exons, encoding a protein of 764 amino acids which shows a high degree of homology 

between species (Libert et al., 1990; Rousseau-Merck et al., 1990; Taylor et al., 1996). At the 

amino acid levels, homology between the human and mouse TSHRs is greater than 87% 

(Patibandla et al., 1997). The extracellular domain (ECD) of the receptor is responsible for high-

affinity hormone (TSH) binding and is encoded by the first nine exons and part of exon ten. The 

seven-transmembrane domain (TMD) is involved in signal transduction where it activates both 

the adenylyl cyclase (AC) and phospholipase C (PLC) systems leading to the generation of the 

second messenger molecules cyclic adenosine monophosphate (cAMP) and Inositol 

triphosphae/Diacylglycerol (IP3/DAG). Both the TMD and the intracellular domain of the 

receptor are encoded by exon ten (Szkudlinski et al., 2002). 

During thyroid development in rodents, Tshr mRNA expression is scarcely detected by 

E14 and E15 in mice and rat, respectively and profoundly up-regulated by E17-E18 (Postiglione 

et al., 2002; De Felice et al., 2004). The expression pattern of Tshr mRNA is coincident with the 

completion of migration of the thyroid primordium, up-regulation of thyroid-specific genes, 

beginning of colloid formation and follicular development (Postiglione et al., 2002). In humans, 

the probable onset of TSHR expression is by the end of the first trimester (10-12 wk) of gestation 

with increased levels detected by the middle period of a term pregnancy (18-20 wk) (Brown, 

2004). Hence, these findings suggest that the early steps of thyroid organogenesis (0 to 8 wk) are 

independent of the TSH/TSHR signalling (De Felice et al., 2004). 

Fundamental knowledge concerning the role of Tsh/Tshr signalling in controlling the 

morphology as well as the differentiation of the developing thyroid were obtained from mutant 

mouse models with impaired Tsh/Tshr signalling due to deprivation of either TSH or a functional 

TSHR (Postiglione et al., 2002). The mouse model pitdw/pitdw (formerly Snell dwarf or dw/dw) 

represents a model of TSH deprivation (Snell, 1929; Bartke, 1964; Cordier et al., 1976). Among 

the mutant models deprived of a functional TSHR, Tshrhyt/Tshrhyt mice (formerly hyt/hyt mice) 

bears a spontaneous point mutation in the coding sequence of the Tshr gene leading to defective 
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binding of TSH (Beamer et al., 1981; Stein et al., 1994). Another mutant model is the Tshr-

knockout, a mouse model in which the tshr gene was inactivated by homologous recombination 

in embryonic stem cells (Marians et al., 2002). Both the pitdw/pitdw and Tshrhyt/Tshrhyt models 

exhibited severe hypothyroidism associated with thyroid hypoplasia (Cordier et al., 1976; Stein 

et al., 1994). During embryonic development, Postiglione et al. have shown that absence of a 

functional Tshr had no impact on the morphology of the developing thyroid in the mutant 

embryos in contrast to what is observed after birth (Postiglione et al., 2002). Moreover, the 

expression of the thyroid-specific genes Tpo and Nis was undetectable in the mutant embryos 

while no effect was observed on that of either Tg or the thyroid-enriched transcription factors 

Nkx2.1, Pax8 and Foxe1 (Postiglione et al., 2002). The described role of Tsh/Tshr signalling in 

controlling expression of some but not all of the thyroid specific genes during embryonic life in 

mice is consistent with its role during adult life (Marians et al., 2002). Collectively, these data 

indicate that the Tsh/Tshr signalling is not involved in controlling the growth and morphology of 

the thyroid gland during embryonic development as it is during adulthood. On the other hand, the 

Tsh/Tshr signalling pathway seems to be a major regulator of genes involved in iodide 

metabolism (Tpo and Nis) in the developing mouse thyroid gland (Postiglione et al., 2002). 

In addition to mouse models of impaired TSH/TSHR signalling, the role of Tshr during 

embryonic thyroid development has been also investigated in a zebrafish model in which the tshr 

protein was knocked down using a tshr-specific morpholino antisense oligonucleotide (MO) 

(Opitz et al., 2011). Initially, the authors cloned the zebrafish tshr gene and showed a high 

degree of conservation with Tshr from other teleosts and with the mammalian TSHR. 

Furthermore, they have shown that the expression of tshr mRNA in zebrafish embryos occurs 

mainly in the thyroid and is coincident with its budding, a process occurring, distinctly in 

zebrafish, concomitant to an early onset of the expression of the gland's functional differentiation 

markers (Opitz et al., 2011). Furthermore, a TSH-dependent up-regulation of the functional 

differentiation markers slc5a5, tshr, tpo, and iyd was observed in zebrafish embryos treated with 

the hormonogenesis inhibitor phenylthiourea (PTU), a finding comparable to what has been 

observed in mammals (Levy et al., 1997; Milenkovic et al., 2007) and amphibians (Opitz et al., 

2009). 

Contrary to what has been previously reported (Alt et al., 2006a), Opiz and his colleagues 

have shown the presence of an obvious thyroid phenotype among the zebrafish tshr morphants 
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compared to their wild type counterparts. They have demonstrated an impaired functional 

differentiation of the thyroid encompassing, in addition to the reduced number and size of 

functional thyroid follicles, a reduced expression of thyroid transcription factors (nkx2.1a and 

Pax8) together with down-regulation of the gland's functional differentiation markers (tg, tpo, 

slc5a5, and iyd). The observed reduced expression of the thyroid transcription factors along with 

the down-regulation of thyroid differentiation markers recapitulate the thyroid phenotype 

reported in a transgenic mouse with defective cyclic adenosine monophosphate (cAMP) 

signalling (Nguyen et al., 2000) and point to a plausible positive feedback signalling between 

expression of thyroid transcription factors and TSHR signalling in the zebrafish thyroid (Opitz et 

al., 2011). In spite of the obvious role of TSHR signalling in regulating the developing gland’s 

differentiation program, its impact on the growth of the developing gland was not easily 

revealed. Nevertheless, the observed thyroid phenotype resulting from tshr knockdown was 

partially rescued by means of inducible tshr overexpression. Collectively, these data provide 

evidence for the involvement of the TSH/TSHR signalling in regulating the differentiation of the 

developing thyroid in zebrafish and that its impairment leads to a thyroid phenotype that 

matches, in many features, that of mouse models of defective Tshr and cAMP signalling (Opitz 

et al., 2011). 

In humans, loss-of-function (LOF) mutations in the TSHR gene have been reported in 

association with various degrees of TSH resistance (OMIM #275200) (Sunthornthepvarakui et 

al., 1995; Abramowicz et al., 1997; Alberti et al., 2002). The spectrum of phenotypes associated 

with TSHR LOF mutations ranges from euthyroid hyperthyrotropinemia (i.e. elevated TSH with 

fT4 in normal range) to severe congenital hypothyroidism with a hypoplastic thyroid gland, 

variable presentations that are dependent on the extent of TSH resistance (Refetoff, 2003; 

Persani et al., 2010). Itself, the extent of TSH resistance is dependent on the number of mutated 

alleles and on the severity of the functional impairment of the receptor consequent to the 

mutation (Persani et al., 2010). Recessively inherited homozygous or compound heterozygous 

biallelic mutations of the TSHR gene that are associated with complete lack of the receptor's 

function lead to severe CH and thyroid hypoplasia (complete or uncompensated TSH resistance). 

However, less severe biallelic LOF mutations are associated with milder forms of 

hypothyroidism characterized by elevated TSH levels, free thyroid hormones concentrations in 

the normal range, and a thyroid gland that is normal/reduced in size and can be compensated by 



46 
 

adequate increment of serum TSH levels (partial or compensated TSH resistance) 

(Sunthornthepvarakui et al., 1995; Abramowicz et al., 1997; Gagné et al., 1998; Bretones et al., 

2001; Park et al., 2004; Persani et al., 2011; Cassio et al., 2013). On the other hand, monoallelic 

LOF mutations, following an autosomal dominant mode of inheritance, have been reported in 

patients with nonautoimmune subclinical hypothyroidism (NASH) characterized by slight to 

moderate elevations in serum levels of TSH, normal serum concentrations of free thyroid 

hormones, and mainly normal sized (hypoplastic in a few cases) thyroid gland (Alberti et al., 

2002; Camilot et al., 2005; Nicoletti et al., 2009; Rapa et al., 2009; Persani et al., 2010; Calebiro 

et al., 2012; Cassio et al., 2013). 

The main feature of TSHR gene mutations is the high level of phenotypic variability 

whereby the same mutation can be seen with different levels of thyroid function either among 

members of the same family or unrelated subjects. In addition, thyroid hypoplasia has been 

reported in association with heterozygous mutations (Cassio et al., 2013). Hence, the 

involvement of other factors that might be responsible for the phenotypic variability has been 

suggested, among which are genetic rearrangements or mutations in yet unanalyzed regions or 

elements of the TSHR gene, other genes in addition to TSHR gene (digenic inheritance), or 

environmental factors (Lado-Abeal et al., 2011; Sriphrapradang et al., 2011; Cassio et al., 2013). 

Compiled data from several studies indicated that LOF TSHR mutations are more 

common among TD patients than expected with a reported prevalence of 4.3% for mono- and 

biallelic mutations (Szinnai, 2013). Furthermore, a high prevalence (11–29%) of TSHR 

mutations has been recently reported in children with a mild form of TSH resistance in the form 

of hyperthyrotropinemia without a history of CH or of autoimmune thyroid disease (Nicoletti et 

al., 2009; Rapa et al., 2009; Calebiro et al., 2012; Cassio et al., 2013). Collectively, these data 

indicate that LOF TSHR gene mutations are the most common genetic causes of TD (due to 

thyroid hypoplasia) and are frequent cause of NASH (Cassio et al., 2013; Szinnai, 2013). This 

said, it is important to bear in mind that TSHR mutations are not associated with thyroid 

ectopy or athyreosis, as TSHR is dispensable for thyroid migration and survival (Gagné et 

al., 1998). 
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4.1.1.2. NKX2.1 

NKX2.1, also known as TTF-1 (thyroid transcription factor-1), T/EBP (thyroid-specific-

enhancer-binding protein) or TITF-1, is a homeodomain-containing protein that belongs to the 

NKX.2 family of transcription factors (Civitareale et al., 1989; Guazzi et al., 1990). Both the 

mouse Nkx2.1 gene (located on chromosome 12) as well as the human NKX2.1 gene (located on 

chromosome 14q13) contain two and three exons, respectively, and encode highly homologous 

transcription factors. The amino acid sequences of human and mouse NKX2.1 exhibit 98% 

sequence similarity, with a complete conservation of the 60-amino-acid homeodomain (Guazzi et 

al., 1990; Oguchi et al., 1995; Hamdan et al., 1998). During the early stages of embryonic 

development in rodents, Nkx2.1 transcripts and the corresponding encoded protein were 

identified in the primitive pharynx exclusively in the thyroid anlage at the time of its 

specification, at later developmental stages, as well as during adulthood (Lazzaro et al., 1991; De 

Felice and Di Lauro, 2004). Nkx2.1 is essential for the survival of pTFCs, for folliculogenesis, 

and in differentiated TFCs, for regulating the expression of thyroid specific genes Tg, Tpo, Tshr, 

and Slc5a5 (Nis) (Civitareale et al., 1989; Francis-Lang et al., 1992; Civitareale et al., 1993; 

Kimura et al., 1996; Endo et al., 1997). Moreover, transcripts of Nkx2.1 have been identified in 

parafollicular C cells as well as in the epithelial cells of UBB (Mansouri et al., 1998; Suzuki et 

al., 1998). It has been shown that Nkx2.1 is crucial for maintaining the survival of the UBB cells 

during their migration as well as their dissemination into the thyroid diverticulum (Kusakabe et 

al., 2006a). In the adult murine thyroid, it has been shown that Nkx2.1 is required for the 

maintenance of ordered follicular architecture and function of the differentiated thyroid 

(Kusakabe et al., 2006b). Expression of Nkx2.1 was also detected in the endodermal cells of the 

lung bud with the subsequent constant expression in the bronchial epithelium throughout all its 

early differential stages (Guazzi et al., 1990; Lazzaro et al., 1991; Stahlman et al., 1996). In the 

lung, Nkx2.1 regulates the expression of SP (surfactant protein)-A, SP-B, SP-C, and other lung-

specific genes (Bohinski et al., 1994; Bruno et al., 1995; Kelly et al., 1996; Zhang et al., 1997; 

Besnard et al., 2007). In the central nervous system (CNS), the expression of Nkx2.1 is observed 

in restricted regions of the forebrain structures including the hypothalamus (Lazzaro et al., 1991; 

Nakamura et al., 2001), where it is involved in interneuron specification and migration during 

forebrain development and contributes in the regulation of the circadian oscillations in 

gonadotrophin-releasing hormone (GnRH) gene transcription (Butt et al., 2008; Nóbrega-Pereira 
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et al., 2008; Matagne et al., 2012). In humans, starting from the developmental day (d) 32 and 

33, transcripts of NKX2.1 are weekly expressed in the median thyroid anlage (Trueba et al., 

2005; Szinnai et al., 2007). The expression is continued to be detected when the gland reaches its 

final position and in the fetal gland by d 48 (Trueba et al., 2005). Szinnai et al. have shown that 

the expression of NKX2.1 remained stable before and after 11 gestational weeks (GW). In 

addition, expression of NKX2.1 is detected in the lung bud and forebrain by developmental d 32 

and 33, respectively. From 9 GW on, the expression of NKX2.1 is detected in the lung only in the 

epithelium of the most recently formed branches (Trueba et al., 2005). 

The phenotype of Nkx2.1 null mice is consistent with the expression pattern of the gene. 

They exhibit impaired morphogenesis of the lung, lack both the thyroid and pituitary glands, 

have extensive defects in the ventral forebrain, and are dead at birth (Kimura, 1996). Disruption 

of Nkx2.1 at earlier developmental stages (E10) revealed the formation of thyroid anlage in 

Nkx2.1 null mutants with its subsequent degeneration and final elimination via apoptosis around 

E12-13 (Kimura et al., 1999). These latter findings emphasise the role of Nkx2.1 in maintaining 

the survival of pTFCs by inhibiting their apoptosis rather than their specification and that 

athyreosis can be due to a single heritable genetic disorder (Parlato et al., 2004; Montanelli and 

Tonacchera, 2010). On the other hand, mice heterozygous for Nkx2.1 gene deletion (Nkx2.1+/−) 

displayed mild non-goitrous hypothyroidism in addition to mild neurological defects in the form 

of poor coordination (Pohlenz et al., 2002). Moeller et al. have attributed the thyroid phenotype 

observed in the Nkx2.1+/− mice to the reduced expression of the TSH receptor (Tshr) gene as a 

consequence of Nkx2.1 haploinsufficiency. The mild hypothyroidism observed among the 

Nkx2.1+/− mice could be overcome when a higher level of Tshr saturation is attained consequent 

to the administration of an increased amount of exogenous TSH (Moeller et al., 2003). 

In humans, the majority of the reported NKX2.1 mutations alter the DNA-binding ability 

of the protein consequent to its truncation, either before or within the DNA-binding homeobox 

domain localized in exon 3 (Peall et al., 2013). Haploinsufficiency (due to mutation or deletion) 

of NKX2.1 has been reported in patients with the triad of brain, lung, thyroid syndrome (BLTS, 

OMIM #610978) characterized by various combinations of CH, infant respiratory distress 

syndrome (IRDS), and benign hereditary chorea (BHC) (Devriendt et al., 1998; Krude et al., 

2002; Pohlenz et al., 2002; Willemsen et al., 2005). Such an association of symptoms reflects the 

role of NKX2.1 in the development and function of the thyroid gland, basal ganglia, and lung in 
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accordance with its expression pattern in humans (Trueba et al., 2005; Szinnai et al., 2007). 

Nevertheless, the signs and symptoms of the three disorders are not always observed in 

combination and moreover their extent of severity varies greatly (Iwatani et al., 2000; Breedveld 

et al., 2002; Krude et al., 2002; Moya et al., 2006; Carré et al., 2009; Maquet et al., 2009; 

Hamvas et al., 2013; Peall et al., 2013). According to a systematic review of all the reported 

cases with variants of NKX2.1, it has been shown that NKX2.1 mutations occur either de novo or 

via an autosomal dominant mode of inheritance. In addition, this review showed that only 50% 

of the cases had the involvement of the three organs (full triad of the syndrome), 30% showed 

CH and a neurologic disorder, 13% presented with isolated BHC, and 7% exhibited absence of 

BHC (Carré et al., 2009). Concerning the functional and morphological thyroidal abnormalities 

observed among the reported cases, both a higher prevalence of hyperthyrotropinemia (66%), 

compared to overt hypothyroidism (39%), have been noted, with a preponderance of normal 

thyroid morphology (55%) over abnormal morphologies (hypoplasia or hemiagenesis, 35%; 

athyreosis, 10%) (Carré et al., 2009). In contrast to syndromic cases of CH, no mutations of 

NKX2.1 were detected in the three screened cohorts of non-syndromic CH (Al Taji et al., 2007; 

Yuan et al., 2008; Narumi et al., 2010). However, both normal NKX2.1 sequencing and copy 

number analysis have been recently reported in a case with BLTS bearing a 14q13.1–3 deletion 

with a breakpoint mapped to 192 kb proximal to the 3′ end of the NKX2.1 gene and no physical 

interruption of it. The plausible involvement of an enhancer element, located about 400  kbp 3′ to 

the gene, in the developmental regulation of the NKX2.1 gene has been postulated. In addition, 

partial explanation of the patient's phenotype might be attributed to heterozygosity for genes 

involved in neuronal differentiation and lung development, or other genes mapped within the 

deleted region (Barnett et al., 2012). 

4.1.1.3. PAX8 

The paired box gene 8 (PAX8/Pax8) is one of the identified PAX/Pax genes encoding a 

family of nine transcription factors in humans (PAX1-PAX9) and mice (Pax1-Pax9), known for 

their crucial role in embryogenesis. The paired box family is characterized by the presence of a 

highly conserved 128-amino acid paired-box DNA binding domain (PD) at their N-terminal, 

initially identified in the Drosophila pair-rule segmentation gene paired (prd) (Mansouri et al., 

1996; Wang et al., 2008). The members of the paired box family are divided into subfamilies 

based on the presence or absence of two additional DNA-binding domains, an octapeptide (OP) 
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and a prd-like homeodomain (HD) (Stuart et al., 1994; Mansouri et al., 1996). The subfamily II, 

including PAX8 together with PAX2 and PAX5 genes, is characterized by the presence of an 

octapeptide (OP) and a truncated homeodomain (HD) (Mansouri et al., 1996; Goode and Elgar, 

2009). The mouse Pax8 gene is localized on chromosome 2 and the human PAX8 gene, having 

12 exons, maps to chromosome 2q12–q14 (Plachov et al., 1990; Poleev et al., 1992; Stapleton et 

al., 1993). 

During embryonic development of the mouse, Pax8 is expressed in the developing 

thyroid from the time of its specification through all the developmental stages of the TFCs as 

well as in adulthood (Plachov et al., 1990; Mansouri et al., 1998; De Felice and Di Lauro, 2004). 

Moreover, it is known to play a crucial role in initiating as well as maintaining the thyroid cell 

differentiation state (Mansouri et al., 1998; Pasca di Magliano et al., 2000). In synergy with 

Nkx2.1, it enhances the expression of the thyroid differentiation markers Tg, Tpo, and Nis (Pasca 

di Magliano et al., 2000; Di Palma et al., 2003). In the developing CNS, Pax8 is transiently 

expressed in myelencephalon and along the full length of the neural tube. On the other hand, no 

expression was detected in later developmental stages or in the adult brain. Moreover, its 

expression has been reported in the developing and adult kidney (Plachov et al., 1990; De Felice 

and Di Lauro, 2004). 

During development of the human thyroid, Trueba et al. have shown that the expression 

of PAX8 is strongly detected in the median anlage and the fourth pharyngeal arch ectoderm by 32 

d. In addition to the median anlage, PAX8 expression was detected in the thyroglossal duct and 

the UBB by 33 d. After the fusion of the median and lateral thyroid primordia (48 d), the 

developing thyroid kept on strongly expressing PAX8 with a persistent expression observed in 

TFCs at fetal stages (Trueba et al., 2005). In addition to the developing thyroid, expression of 

PAX8 was detected in the otic vesicle, CNS, and the developing kidney by 32 d. In the 

developing CNS, expression of PAX8 is limited to the midbrain-hindbrain boundary, thereafter to 

the spinal cord and myelencephalon. Moreover, human PAX8 is expressed in the condensed 

mesenchyme of the developing kidney, the mesonephric duct, the ureteric bud, and the collecting 

ducts (with no expression detected at their tips) (Trueba et al., 2005). 

The role of Pax8 during embryonic development has been demonstrated by studying 

Pax8 null mice: even though Pax8+/− mice showed no phenotype, Pax8 null mice were born at 
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the expected Mendelian frequency but showed growth retardation and died within 2-3 wk of age 

(Mansouri et al., 1998). The Pax8 null animals exhibited no brain or kidney defects, plausibly 

due to the redundant function of other Pax genes. On the contrary, the thyroid gland of Pax8−/− 

mice are severely affected: they are smaller in size compared to WT embryos (due to absence of 

pTFCs), they lack any follicular organization, and are composed almost entirely of calcitonin-

producing C cells (Mansouri et al., 1998; De Felice and Di Lauro, 2004). In accordance with the 

thyroid developmental defects observed in the Nkx2.1 knockout mouse (Kimura et al., 1999), the 

thyroid anlage is initially formed early during development in Pax8 null mice. However, by 

E11.5, the anlage appeared to be smaller in size compared to the wild type one and at E12.5 the 

thyroid precursors are no longer detectable, thus Pax8 is seemingly required for the survival of 

pTFCs and not for their specification (Mansouri et al., 1998; De Felice and Di Lauro, 2004). 

Moreover, it has been shown that Pax8 is required for the initiation and maintenance of Foxe1 

and Hhex expression in the thyroid anlage, respectively, and that it plays a crucial role in 

regulating the thyroid-differentiated phenotype as previously mentioned (Pasca di Magliano et 

al., 2000; Di Palma et al., 2003; Parlato et al., 2004). Consequently, the Pax8 null animals suffer 

from CH due to TD, the principle cause of their death, as evident from their inability to produce 

thyroid hormones and from being rescued by thyroxine replacement (Mansouri et al., 1998; 

Friedrichsen et al., 2004). Based on the reported anti-apoptotic function as well as impact on cell 

proliferation of many PAX genes (Muratovska et al., 2003; Robson et al., 2006), specifically 

PAX8/Pax8 (Chen et al., 2008; Fagman et al., 2011), it has been proposed that the loss of pTFCs 

through apoptosis might be the underlying mechanism of the observed TD in Pax8 null embryos 

(Fagman and Nilsson, 2010; De Felice and Di Lauro, 2011), as previously suggested (Parlato et 

al., 2004). 

In humans, PAX8 mutations have been initially reported in both sporadic as well as 

familial cases of CHTD (Macchia et al., 1998). To this day, all the reported PAX8 mutations are 

heterozygous and are transmitted among familial cases via an autosomal dominant pattern of 

inheritance with incomplete penetrance and variable expressivity (Congdon et al., 2001). The 

thyroid phenotype of the affected cases varies widely, even among the members of the same 

family; at the biochemical level, euthyroidism to severe hypothyroidism have been described, 

and thyroid gland morphology ranges from a normal-sized gland to athyreosis, but with the 

majority being hypoplastic (Macchia et al., 1998; Esperante et al., 2008; Narumi et al., 2010; 
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Hermanns et al., 2011; Hermanns et al., 2013). However, ectopic thyroids were detected in only 

two patients, a relative small number given the number of CHTD cohorts which were screened 

for PAX8 (Macchia et al., 1998; Tonacchera et al., 2007). A new heterozygous PAX8 mutation 

has been recently identified in a family with six affected cases of CH covering three successive 

generations. The mutation was found to be associated with urogenital malformations in five of 

the six CH affected patients. On the other hand, no mutations have been identified in PAX2, a 

gene that together with PAX8, is essential for kidney development (Carvalho et al., 2013). In 

addition to the variable penetrance and expressivity of PAX8 gene mutations, the role of genetic 

background is highlighted by the variable phenotype, even among members of the same family 

(Montanelli and Tonacchera, 2010). Both the dominant effect of PAX8 gene mutations and the 

contradiction between the presence and absence of a thyroid phenotype in patients with PAX8 

gene mutations and in the Pax8+/− mice, respectively, might be attributed to a number of 

molecular mechanisms. Among the potential mechanisms is haploinsufficiency, whereby the 

normal development of the thyroid is not supported by the reduced amount of PAX8 in the 

affected patients. Actually, haploinsufficiency involving other PAX/Pax genes has been 

previously reported (Wilm et al., 1998; van Raamsdonk and Tilghman, 2000). In addition, a 

dominant-negative effect of the mutated protein might be another underlying mechanism of TD 

in patients with PAX8 gene mutations (De Felice and Di Lauro, 2011). However, cotransfection 

of at least three mutated PAX8 alleles with a WT one showed no dominant-negative effect 

(Congdon et al., 2001; Vilain et al., 2001; Narumi et al., 2010). Moreover, dominant-negative 

effects have never been characterized in phenotypes resulting from mutations of any other PAX 

genes (Strachan and Read, 1994). Finally, monoallelic expression of PAX8 in the affected 

patients might be an alternative mechanism, whereby a hypoplastic gland is formed from a 

heterogenous group of pTFCs encompassing cells that express the mutant PAX8 and others 

expressing the WT gene. However, such a probable mechanism does not explain the severe 

hypolasia observed in some patients that requires the preferential expression of the mutated gene 

(De Felice and Di Lauro, 2004). 

Orthologues of the Pax2/5/8 gene family have been detected in the thyroid of zebrafish 

and Xenopus (Heller and Brandli, 1999; Wendl et al., 2002). In zebrafish, the expression pattern 

of Pax8 is comparable to that observed in mammals: It is detected in the eyes, midbrain-

hindbrain boundary region, as well as in the pronephros and nephric ducts (Pfeffer et al., 1998). 
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Furthermore, it was detected in the developing thyroid from about 28 hours post-fertilization 

(hpf) and throughout gland development (Wendl et al., 2002). In addition to Pax8, it has been 

shown that another member of the Pax2/5/8 gene family, Pax2.1, is expressed in the thyroid 

anlage, even before Pax8 is expressed (around 24 hpf) and continues to be expressed during the 

developmental process of the gland (Wendl et al., 2002; Porazzi et al., 2009). It has been 

suggested that Pax2.1, acting upstream of Pax8, is essential for the proper development and 

differentiation of thyroid follicles in zebrafish and that it has a role comparable to that of Pax8 in 

mammalian thyroid development (Wendl et al., 2002; Elsalini et al., 2003). Mutation of the 

Pax2.1 gene in zebrafish gives rise to the no isthmus (noi−/−) phenotype (Brand et al., 1996; 

Macdonald et al., 1997; Lun and Brand, 1998; Majumdar et al., 2000), which comprises defects 

comparable to those observed in humans and mice deficient in PAX2/Pax2 (Favor et al., 1996; 

Macdonald et al., 1997; Favor and Neuhauser-Klaus, 2000; Porteous et al., 2000). Moreover, the 

thyroid phenotype observed in noi−/− embryos was comparable to that in Pax8−/−  mice 

(Mansouri et al., 1998) i.e. noi−/− embryos completely lack T4-positive follicles, in spite of the 

initial specification of the thyroid primordium (Wendl et al., 2002). However, some T4 

production is independent of pax2.1 as evident by the detection, in the anterior non-follicular 

domain of noi–/– zebrafish mutants, of a bound form of T4 which might not compensate for the 

absence of thyroid follicles (Wendl et al., 2002). On the other hand, Pax2 is not involved in the 

gland’s development in mice, where no expression of this gene was detected in wild type 

embryos. Moreover, the thyroid appears normal in size and shape in Pax2−/− mouse embryos 

(Wendl et al., 2002). In support of the notion that PAX2/Pax2 plays no role in mammalian 

thyroid development is the lack of thyroid phenotype in humans with PAX2 muations (renal-

coloboma syndrome) (Favor et al., 1996; Porteous et al., 2000). 

In contrast to the observed expression of Pax8 during the development of the mammalian 

thyroid (Plachov et al., 1990; Mansouri et al., 1998; Trueba et al., 2005), its expression was not 

detected in the thyroid gland of Xenopus embryos (Heller and Brandli, 1999). Instead, Pax2 is 

detected in place of Pax8 in the thyroid anlage, coincidently with its appearance during 

embryonic development. Its expression starts to decline upon thyroid lobulation until it is no 

longer detected by the time of follicular cell formation (Heller and Brandli, 1999). 
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4.1.1.4. FOXE1 

The forkhead box E1 (FOXE1), also known as thyroid transcription factor 2 (TITF2) and 

formerly as forkhead drosophila homolog-like 15 (FKHL15), is a member of the 

forkhead/winged-helix family of transcription regulators (Civitareale et al., 1994; Chadwick et 

al., 1997). Members of the forkhead/winged-helix family have in common a highly conserved 

forkhead (FKH) DNA-binding domain (FHD) that is comprised of 110 amino acids (Weigel and 

Jackle, 1990; Kaufmann and Knochel, 1996). The FOX proteins play crucial roles during 

embryonic development and metabolism. In addition, their deregulation is associated with a 

number of human genetic diseases and cancer (Carlsson and Mahlapuu, 2002; Lehmann et al., 

2003; Benayoun et al., 2011; Katoh et al., 2013). Earlier, FOXE1 was identified as a thyroid-

specific DNA-binding factor that recognizes, under hormonal stimulation, a specific DNA 

sequence on the promoters of the two thyroid-specific genes Tg and TPO (Civitareale et al., 

1989; Santisteban et al., 1992; Aza-Blanc et al., 1993). The human FOXE1 genetic locus, named 

FOXE1, is located on chromosome 9q22, contains a single exon, and encodes a 42-kDa protein 

having 367 amino acids (Chadwick et al., 1997), while in the mouse, Foxe1 is located on 

chromosome 4 (Zannini et al., 1997). 

In the developing mice, transcripts of Foxe1 are detected starting from E8.5 and beyond 

in the endodermal layer all over the foregut including the thyroid anlage. Moreover, its 

expression is observed in the epithelium lining the anterior pharynx and the pharyngeal arches 

but not in the pouches and their derivatives later during development (thymus, parathyroid, and 

UBB). Caudally, the entire foregut, including the future esophagus, also exhibits Foxe1 

expression (Zannini et al., 1997; Dathan et al., 2002; De Felice and Di Lauro, 2004). 

Consequently, at later developmental stages, Foxe1 is found in the thyroid, tongue, epiglottis, 

palate, and esophagus, tissues derived from the pharyngeal arches and pharyngeal wall, with 

higher and lower expression levels observed during adulthood in thyroid and esophagus, 

respectively. In addition to the foregut and its derivatives, expression of Foxe1 has been detected 

in the ectoderm and tissues derived from it, among which is the Rathke’s pouch, the epithelium 

of the oral cavity, nasal choanae, whiskers, and hair follicles. However, the reported expression 

in the developing pituitary was proven to be transient (Zannini et al., 1997; Dathan et al., 2002; 

De Felice and Di Lauro, 2004). 
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During human development, the expression of FOXE1 is detected in the thyroid anlage at 

d 34, later compared to what is observed in mouse, and continues to be expressed in the thyroid 

throughout the developmental process (Trueba et al., 2005). In addition, its expression was 

detected outside of the thyroid, in the thymus and at lower levels in the oropharyngeal epithelium 

at d 47-48, and at later developmental stages (at 11 weeks) in the esophageal and tracheal 

epithelium (Trueba et al., 2005). In adults, expression of FOXE1 is maintained in the thyroid and 

is detected in the epidermis, hair follicles, and pre-pubertal testis (Chadwick et al., 1997; Clifton-

Bligh et al., 1998; Dathan et al., 2002; Sequeira et al., 2003). 

Although the heterozygous Foxe1 KO mice (Foxe1+/-) are euthyroid and exhibit no 

obvious phenotype, the homozygous ones (Foxe1-/-), born at the expected ratio, die shortly after 

birth likely due to cleft palate. In addition, the mutant animals lack any orthotopic thyroid tissue 

and suffer from severe CH documented by elevated levels of TSH and undetectable levels of T4 

(De Felice et al., 1998). During earlier developmental stages, a detailed analysis of thyroid 

morphogenesis in Foxe1 null mice compared to wild-type (WT) counterparts revealed that at 

E9.5 the pTFCs in null embryos are still attached to the floor of the pharynx while those of WT 

embryos are detached and start to descend caudally. At later developmental stages (E15.5), 50% 

of the Foxe1 null embryos exhibit a small thyroid remnant that is still attached to the floor of the 

pharynx while the other 50% have no thyroid tissue at all (De Felice et al., 1998). 

The variability of the phenotype observed among Foxe1 null embryos can probably be 

attributed to either stochastic events occurring during the gland's development or due to the 

influence of differing genetic backgrounds or hormonal milieu (De Felice and Di Lauro, 2004). 

In spite of the incomplete migration of the thyroid precursors observed in half of the Foxe1-/- 

embryos, the differentiation process of the thyroid cells is completed, as evident by the 

production of Tg (De Felice et al., 1998). These findings point to the incomplete dependence of 

the differentiation process on the proper localization of the TFCs, consistent with reported 

patients who possess fully functional ectopic lingual thyroids (Fisher and Klein, 1981; Gillam 

and Kopp, 2001; Van Vliet, 2003). Collectively, the data obtained from the homozygous Foxe1 

KO mice point to the crucial role of Foxe1 in thyroid migration during morphogenesis and in 

follicular cells survival at a different time point than Nkx2.1 and Pax8 (De Felice and Di Lauro, 

2004; Fagman and Nilsson, 2010). The thyroid phenotype of Foxe1mutant mouse embryos 

favors the involvement of active cell migration in thyroid morphogenesis (De Felice et al., 
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1998). Such a finding has been supported by the rescued thyroid phenotype by knock-in of 

Foxe1 into the Nkx2.1 locus of Foxe1 deficient mice (Parlato et al., 2004). Alternatively, it has 

been proposed that non-cell-autonomous morphogenetic mechanisms might be involved in the 

migration of pTFCs during development including the differential growth of the embryo as a 

whole or the remodeling of the embryonic vessels (Fagman et al., 2006; Gasser, 2006). 

Due to the perinatal death of Foxe1 null mice, the role of Foxe1 in the adult mouse 

thyroid is not yet elucidated. However, it has been reported that FOXE1 can act as a 

transcriptional activator. By binding to the compacted chromatin of the inactive TPO promoter, 

FOXE1 alters the chromatin structure thus enabling other regulatory factors to access the 

chromatin leading to the subsequent expression of TPO (Cuesta et al., 2007). In addition to the 

role of FOXE1 as a transcriptional activator, it has been suggested that FOXE1 also acts as a 

promoter-specific transcriptional repressor based on the interaction between its repression 

domain and coactivator proteins involved in the activation of thyroid-specific gene expression 

(Perrone et al., 2000). 

Genes homologous to Foxe1 have been identified in Xenopus (Kenyon et al., 1999; El-

Hodiri et al., 2005), amphioxus (Yu et al., 2002), in the invertebrate chordate C. intestinalis 

(Ogasawara and Satou, 2003; Hiruta et al., 2005), and zebrafish in which Foxe1 shares a 

common pattern of expression with that of mouse during embryonic development but not during 

adulthood (Nakada et al., 2009). However, it has been shown that in zebrafish, foxe1 plays no 

role in thyroid development, since no thyroid phenotype was observed upon knocking-down the 

zebrafish foxe1 ortholog unlike the findings in the Foxe1 null mice embryos (Nakada et al., 

2009). On the contrary, the role of Foxe1 in craniofacial development seems to be conserved 

among the two species, where knocking-down foxe1 in zebrafish results in cleft palate and 

degeneration of cartilages in line with the craniofacial developmental defects (cleft palate) 

observed in Foxe1 null mice and human patients presenting with Bamforth-Lazarus syndrome 

(Nakada et al., 2009). 

Indeed, homozygous mutations in FOXE1 in humans have been reported in patients with 

a syndromic form of CH, the Bamforth-Lazarus syndrome (OMIM #241850), characterized by 

TD (mainly athyreosis or severe hypoplasia), cleft palate, and spiky hair with or without bilateral 

choanal atresia or bifid epiglottis (Bamforth et al., 1989). In contrast to thyroid ectopy or 
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athyreosis, the two phenotypes observed in Foxe1 null mice, patients with FOXE1 mutations 

exhibit athyreosis as the etiology of TD (Bamforth et al., 1989; Clifton-Bligh et al., 1998; 

Castanet et al., 2002; Carré et al., 2014). The additional features, choanal atresia or bifid 

epiglottis, were not seen in the Foxe1 KO mice and the spiky hair was not examined due to the 

perinatal death of the mutant animals (Gillam and Kopp, 2001). Indeed, the majority of FOXE1 

mutations were reported in familial forms of Bamforth-Lazarus syndrome as they were inherited 

from heterozygous carrier parents who were usually consanguineous (Bamforth et al., 1989; 

Clifton-Bligh et al., 1998; Castanet et al., 2002; Carré et al., 2014). A sporadic case, inherited 

via uniparental disomy (UPD), in a non-consanguineous family has also been described 

(Castanet et al., 2010b). All the reported FOXE1 mutations occurred within the forkhead domain 

(FHD) and led to either partial or complete loss of the DNA-binding ability and of the 

transcriptional activity of the mutated protein (Clifton-Bligh et al., 1998; Castanet et al., 2002; 

Baris et al., 2006; Castanet et al., 2010b). On the other hand, a homozygous missense mutation 

of FOXE1, recently identified in a patient with Bamforth-Lazarus syndrome born to 

consanguineous parents, was associated with increased transcriptional activity of the mutated 

protein. Hence, it has been noted that both gain- and loss-of-function mutations of FOXE1 were 

found to be associated with Bamforth-Lazarus syndrome (Carré et al., 2014). 

Although systematic screening of FOXE1 mutations in cohorts of either syndromic (with 

cleft palate) or isolated CH due to TD revealed their identification in a few patients with 

syndromic CH (Al Taji et al., 2007; Narumi et al., 2010), FOXE1 has been suggested as being a 

susceptibility gene for TD, via its polyalanine tract, rather than being a disease-causing gene 

(Carré et al., 2007). In a large cohort of patients with CH due to TD (athyreosis or ectopy), Carré 

et al. have shown that risk of TD was inversely correlated with the length of the FOXE1 gene 

polyalanine tract where a high and low risk of TD were found to be associated with gene 

possessing 14 and 16 alanines, respectively (Carré et al., 2007). Moreover, these findings were 

confirmed by both transmission-disequilibrium testing and in vitro functional studies, which 

showed differences in transcriptional activity between FOXE1 proteins with 14 versus 16 

alanines (Carré et al., 2007). Taken together, these findings indicate that the role of FOXE1 in 

abnormal thyroid development is to modulate the genetic susceptibility to TD through its 

polymorphic polyalanine tract (Carré et al., 2007). 
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4.1.1.5. NKX2.5/CSX 

In addition to the homeobox Nkx2.1 gene, other members of the NKx2 family, Nkx2.3, 

Nkx2.5/Csx and Nkx2.6, are key players in pharyngeal development (Harvey, 1996). They are 

expressed in the developing pharyngeal endoderm, including the thyroid primordium and other 

tissues (Lints et al., 1993; Biben et al., 1998; Biben et al., 2002). In humans, the NKX2.5/CSX 

locus is located at 5q34 of chromosome 5 near the boundary of 5q34 and 5q35 and comprises 

two exons encoding for a 324 amino acid protein (Shiojima et al., 1995), while the mouse 

homologue, Nkx2.5/Csx, is located at the t-locus of chromosome 17 (Himmelbauer et al., 1994). 

During early embryonic development of mouse, Nkx2.5 is expressed in the progenitors of the 

myocardial cells, continues to be expressed in the atrial and ventricular myocardium throughout 

development, and in the adult heart. In addition, transcripts of Nkx2.5 were detected in the 

pharyngeal endoderm, the origin of the cardiac inducer (Tanaka et al., 1998). Moreover, its 

expression is detected in the developing thyroid (from E8.5 up to E11.5) and tongue as well as in 

the embryonic spleen and stomach (Lints et al., 1993; Tanaka et al., 1998). In accordance with 

the Nkx2.5 mRNA expression pattern, Kasahara et al. detected Nkx2.5 protein signals throughout 

all stages of heart development as well as in the spleen, distal stomach, and tongue. Contrary to 

the previously detected Nkx2.5 mRNA in the murine thyroid (Lints et al., 1993), they did not 

detect Nkx2.5 protein expression in thyroid gland of mouse embryos. However, it was detected 

in the anterior larynx, liver, and a subset of cranial skeletal muscles (Kasahara et al., 1998). 

Because of the early expression of Nkx2.5 in the developing thyroid (Lints et al., 1993), 

Dentice et al. have analyzed the phenotype of the thyroid primordium in Nkx2.5 null embryos 

(Dentice et al., 2006). In spite of normal budding of the gland evident by the expression of the 

thyroid-specific transcription factors Nkx2.1, Foxe1, and Pax8, at E9.5 a smaller sized thyroid 

bud was detected in Nkx2.5 null embryos compared to a normally sized bud in wild type (WT) 

counterparts, thus suggesting that Nkx2.5 is required during the organogenesis of the thyroid. The 

expression of Nkx2.5 was detected until E11.5 but no longer after that (Dentice et al., 2006). A 

plausible functional redundancy between the Nkx2.3, Nkx2.5 and Nkx2.6 genes during early 

embryonic development is suggested based on their overlapping expression domains in the 

pharyngeal endoderm and the thyroid anlage (Biben et al., 2002). In support of this is the 

observed redundant role of Nkx2.3 and Nkx2.5 in cardiogenesis reported in Xenopous embryos as 

well as the lack of abnormalities in the pharynges of Nkx2.5 null embryos but the essential role 
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of Nkx2.6 in pharyngeal development (Biben et al., 2002). In addition, in double-mutant Nkx2.5 

and Nkx2.6 embryos, lack of pharyngeal pouch formation is observed due to the elimination of 

the overlapping functions of both genes, thus supporting their redundant function (Tanaka et al., 

2001). Collectively, these data suggest that the absence of one of these genes in the developing 

thyroid could be compensated by another member of the sub-family (Tanaka et al., 2001; Biben 

et al., 2002). 

Animal models have pointed to the crucial role of Nkx2.5 in the morphogenesis and 

normal physiology of the developing heart (Lints et al., 1993; Lyons et al., 1995; Biben and 

Harvey, 1997; Kasahara et al., 2000). Indeed, mutations in the coding region of the NKX2.5 gene 

and sequence variants within its promoter region have been detected in patients with congenital 

heart disease (CHD) (Schott et al., 1998; Reamon-Buettner and Borlak, 2010; Stallmeyer et al., 

2010) (Pang et al., 2012). In addition, a new NKX2.5 mutation has been described that is 

associated with congenital as well as adult-onset of heart disease (Costa et al., 2013). On the 

basis of the detected Nkx2.5 expression in the developing heart and thyroid as well as the high 

incidence of CHD in children with CHTD compared to the general population (Siebner et al., 

1992; Devos et al., 1999; Kreisner et al., 2005), it is assumed that NKX2.5 is a candidate gene for 

the pathogenesis of CH due to TD (Dentice et al., 2006). Actually, three heterozygous mutations 

of NKX2.5 have been identified in CHTD patients with either thyroid ectopy or athyreosis. The 

reported mutations, inherited from unaffected parents, are functionally characterized by impaired 

binding of DNA, reduced transactivation as well as a dominant negative effect (Dentice et al., 

2006). Among the described variants, p.R25C, is a SNP (rs2893667) that is found in 1% of the 

general population and has been identified in several patients with CHD with no abnormalities in 

thyroid organogenesis (Tennessen et al., 2012; Beffagna et al., 2013). Hence, such a variant 

seems not to be involved in the pathogenesis of TD (van Engelen et al., 2012). Together with a 

maternally inherited mutation in the PAX8 promoter region, a paternally inherited NKX2.5 

mutation, exhibiting reduced function, has been reported in a girl with TD (Hermanns et al., 

2011). Being carried by a healthy parent, sibling, and grandmother as well as being associated 

with a mutation in PAX8 that might account for the TD phenotype, the role of this NKX2.5 

mutation in the pathogenesis of TD has perhaps been overestimated (van Engelen et al., 2012). 

Moreover, a previously reported mutation, p.A119S, in NKX2.5 (Dentice et al., 2006) has been 

recently described in a proband of a family with four affected individuals with CHD and a 
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sporadic CHD patient. The mutation was not associated with CHD in the familial case and none 

of the mutation carriers exhibited a thyroid phenotype (van Engelen et al., 2012). In contrast to 

what has been previously reported (Dentice et al., 2006), functional analysis of the mutant 

protein revealed no transactivation differences compared to its wild type counterpart (van 

Engelen et al., 2012). Except for the reported NKX2.5 mutations (Dentice et al., 2006; Hermanns 

et al., 2011; van Engelen et al., 2012), screening of several TD cohorts, including patients with 

CHD, revealed no additional mutations (Al Taji et al., 2007; Ramos et al., 2009; Narumi et al., 

2010; Passeri et al., 2011; Brust et al., 2012). From all the above, it has been suggested that 

NKX2.5 mutations are not a major contributor in the pathogenesis of TD, although its role as a 

genetic modifier cannot be ruled out (van Engelen et al., 2012). 

4.1.1.6. HHEX/PRH 

Like the thyroid transcription factors NKX2.1, PAX8, and FOXE1, the transcription 

factor HHEX/PRH is expressed in the mature thyrocytes as well as their precursors (pTFCs) 

(Thomas et al., 1998; Pellizzari et al., 2000). It is their combined coexpression that provide the 

pTFCs with a specific molecular signature distinguishing them from other cells in the primitive 

pharynx (Parlato et al., 2004). The haematopoietically expressed homeobox (HHEX) protein, 

also named PRH (proline-rich homeodomain), is encoded by a member of the Homeobox genes, 

a family of transcription factors that share a highly conserved 60 amino acid DNA-binding 

domain known as the homeodomain (Bedford et al., 1993; Hromas et al., 1993). HHEX was 

initially identified in various progenitors of hematopoietic cells (Crompton et al., 1992; Bedford 

et al., 1993). In mice, the genomic locus encoding Hhex, termed Hhex, is located on 

chromosome 19, while in humans it is called HHEX and is located on chromosome 10q23.32 

(Hromas et al., 1993; Ghosh et al., 1999). HHEX encodes a protein that is 270 amino acids and 

has a molecular weight of 30 KDa. It shows a 94% identity to the 271 amino acids protein that is 

encoded by the Hhex locus in mice (Bedford et al., 1993). In addition to the homeodomain, the 

HHEX protein contains an acidic C-terminal and an N-terminal proline-rich domains, where the 

latter is plausibly involved in regulating the transcription of target genes (Crompton et al., 1992; 

Tanaka et al., 1999; Swingler et al., 2004). Hhex/HHEX encodes a tissue-specific transcription 

factor that either activates or represses the transcription of target genes using both direct and 

indirect mechanisms (Soufi and Jayaraman, 2008). 
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During early developmental stages of the mouse, the expression of Hhex is detected in 

the anterior visceral endoderm (AVE) and the definitive endoderm. Subsequently, expression of 

Hhex was found in the endothelial and hematopoietic precursors. Starting from E8.5 onward, the 

primordia of several organs derived from the foregut, including thyroid, liver, gall bladder, 

thymus, pancreas, and lungs are marked by the expression of Hhex, among which both 

developing and adult thyroid showed the highest level of Hhex expression (Bogue et al., 2000; 

Martinez Barbera et al., 2000). 

In accordance with the expression of Hhex in the definitive endoderm during early 

development, it has been shown that it is crucial for the development of the forebrain, liver, and 

thyroid (Martinez Barbera et al., 2000). In Hhex null mice embryos, severe (class I of embryos) 

to mild (class III) truncations of the forebrain were observed together with liver and thyroid 

hypoplasia. In Hhex−/−, although the liver is specified and proliferation of its precursors is 

initiated, migration of these cells into the septum transversum did not occur with the subsequent 

degeneration of the liver diverticulum and disruption of the differentiation of precursor cells. In 

an initial attempt to determine the role of Hhex in the development of the thyroid gland, Martinez 

Barbera et al. have suggested its involvement in the specification of the thyroid gland. They have 

shown that at E9.5, the Hhex−/− mice embryos exhibit either lack of the thyroid primordium or, in 

the majority of embryos, hypoplasia, with no gland detected by E13.5. In addition, no expression 

of the thyroid transcription factors Nkx2.1 and Foxe1 was detected in the thyroid bud (Martinez 

Barbera et al., 2000). However, the thyroid defects exhibited by the Hhex−/− mice embryos might 

be attributed to the general deficiency of the anterior endoderm (Martinez Barbera et al., 2000) 

rather than being thyroid-specific (Fagman and Nilsson, 2010). On the other hand, the role of 

Hhex in specification of the thyroid cells has been ruled out by Parlato et al. as they have 

demonstrated the appropriate formation of the thyroid anlage at E9 together with the expression 

of the thyroid transcription factors Nkx2.1, Pax8, and Foxe1 in the absence of Hhex. At 

subsequent developmental stages (E10), the absence of Hhex was associated with severe 

impairment of thyroid bud morphology, a profound alteration in the number of thyroid cell 

precursors as well as down-regulation of Nkx2.1, Pax8, and Foxe1. Hence, the described thyroid 

phenotype in absence of Hhex reflects its role in regulating the proliferation of thyroid cells and 

is correlated with its crucial role in maintaining the expression of Nkx2.1, Pax8, and Foxe1 

during thyroid development (Parlato et al., 2004). 
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In common with the phenotype of Hhex−/− mouse embryos, Elsalini et al. have shown that 

thyroid specification in zebrafish deficient in hhex occurred with subsequent failure of 

development (Elsalini et al., 2003). In addition, the authors have suggested that, in zebrafish, 

hhex can regulate the proliferation of the thyroid primordial cells after their specification with the 

subsequent regulation of thyroid size during later developmental stages. Such suggestions are 

consistent with what has been recently shown in mouse, where the number of thyroid primordial 

cells determines embryonic thyroid size and is controlled by a mesodermal Tbx1-dependent 

signal derived from cells located lateral and ventral to the pharyngeal endoderm, mediated via 

the fibroblast growth factor 8 (Fgf8) (Lania et al., 2009). 

In humans, systematic screening for genetic defects in thyroid-related transcription 

factors in a phenotype-selected cohort of patients with non-goitrous congenital and early-onset 

hypothyroidism CH revealed no HHEX mutations. In addition, only a very low incidence of 

genetic abnormalities in the other thyroid transcription factors NKX2.1, FOXE1, and NKX2.5 has 

been observed (Al Taji et al., 2007). 

4.1.1.7. Inductive signals and other genes 

In addition to the above mentioned thyroid transcription factors NKX2.1, PAX8, FOXE1, 

and HHEX as well as the thyroid-related genes TSHR and NKX2.5, their role in the 

developmental process of the thyroid gland and their contribution, although low, in the 

pathogenesis of CH due to TD, studies carried out in animal models for TD have pointed to the 

role of non-cell-autonomous inductive signals and other endodermal genes in the induction of a 

thyroid fate and organogenesis of the thyroid gland, respectively (De Felice and Di Lauro, 2004; 

Fagman and Nilsson, 2010). 

4.1.1.7.1. Inductive signals 

Nodal is a member of the transforming growth factor beta (TGFβ) superfamily of 

signalling molecules, which includes TGF-βs, activins, growth/differentiation factors (GDFs), 

and bone morphogenic proteins (BMPs) (Schier, 2009). In vertebrates, Nodal-related signals are 

known for their involvement in the specification and patterning of the mesoderm and endoderm 

germ layers and for the morphological rearrangements that take place during gastrulation (Weng 

and Stemple, 2003; Tian and Meng, 2006). In zebrafish, it has been shown that the development 

of the thyroid gland relied on Nodal signalling: Zebrafish mutants for the one-eyed pinhead 
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(oep), a co-receptor for Nodal ligands, showed no specification of the endoderm and lack of 

formation of the gut tube including the thyroid (Schier et al., 1997). In addition, the thyroid 

primordium was found to be completely absent in zebrafish mutants of casanova (cas) and 

bonnie and clyde (bon), genes acting downstream of Nodal signalling (Elsalini and Rohr, 2003; 

Elsalini et al., 2003). In these mutants, the activation of the endoderm determining gene sox17, is 

disrupted (Aoki et al., 2002; Tam et al., 2003; Sinner et al., 2004). A more thyroid-specific 

impact of Nodal signalling was observed in zebrafish mutants of faust (fau)/gata5, another 

downstream Nodal regulator of sox17. In these mutants, expression of the Nkx2.1 ortholog, 

nk2.1, is lost in the region of the potential thyroid primordium. However, only a mild impact on 

the early gut tube formation was observed (Reiter et al., 2001). On the contrary, thyroid gland 

specification and initial morphogenesis occur in mouse embryos with inactivated Sox17, 

suggesting the involvement of other mechanisms downstream of Gata signalling in the 

development of the thyroid gland (Kanai-Azuma et al., 2002). In zebrafish mutants of the Nodal 

ligand Cyclops (cyc), the thyroid anlage is specified but is small when compared to wild-type 

embryos, possibly reflecting an overall reduction of the pharyngeal endoderm. Moreover, the 

number of follicles in cyc−/− mutants is reduced later during development (Elsalini et al., 2003). 

Taken together, data from the cyc−/− mutants points to the role of the number of cells specified at 

early stages of organogenesis in determining the final size of the organ (Fagman and Nilsson, 

2010). Such a finding is supported by previous studies showing that the pancreas size is limited 

by the number of its embryonic progenitors (Stanger et al., 2007). 

Various studies have pointed to the importance of mesodermal inductive signals in the 

specification of the gut region and the derived organs (Jung et al., 1999; Kumar et al., 2003; 

Serls et al., 2005; Manfroid et al., 2007). Interactions between both the mesoderm and endoderm 

have been shown to play a central role in the specification and subsequent development of the 

thyroid anlage in zebrafish. It has been shown that in zebrafish, the specification of the thyroid is 

influenced, in a non-cell-autonomous manner, by the pharyngeal mesodermal signals mediated 

through hand2, a bHLH transcription factor involved in heart development. In zebrafish mutants 

for hands off (han, hand2), defects in cardiac morphogenesis are associated with complete 

absence of a functional thyroid gland. Likewise, the zebrafish ace (fgf8) mutant exhibited similar 

thyroid developmental flaws as did the han mutants, thus indicating that Fgf8 acts, in a non-cell-

autonomous manner, in thyroid development. It has been shown that Fgf signals act either 
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downstream or in parallel to hand2 signalling in regulating thyroid development. Hence, the 

thyroid defects in zebrafish han mutants are due to the loss of Fgf-expressing tissue  (Wendl et 

al., 2007). 

In mice, the role of Fgf signalling in thyroid gland development has been revealed by the 

absence of the gland in embryos deficient in the Fgf receptor 2 isoform IIIb (Fgfr2b) or its 

ligand, Fgf10, despite the initial development of the thyroid anlage (Celli et al., 1998; Ohuchi et 

al., 2000; Revest et al., 2001). In addition, the docking protein fibroblast growth factor receptor 

substrate 2 (Frs2alpha or Frs2α), that links the Fgf receptors (Fgfrs) to various signalling 

pathways, has been shown to regulate different morphogenetic steps of the thyroid. In the 

Frs2α2F/2F mutant (‾/‾) mice, the thyroid gland was completely absent or hypoplastic and C cells 

were missing or markedly decreased in number (Kameda et al., 2009). 

Tbx1, the major gene whose human homolog is associated with the 22q11 deletion 

syndrome (22q11DS/Di George syndrome), encodes a T-box transcription factor that is 

expressed in both the pharyngeal epithelia (ectoderm and endoderm of the pharyngeal apparatus) 

and the pharyngeal mesoderm (Wurdak et al., 2006), but not in the thyroid primordium at any 

embryonic stage (Fagman et al., 2007). However, the primordium was found to be partially 

surrounded by a caudal mesodermal expression domain of Tbx1 (Fagman et al., 2007; Lania et 

al., 2009). Fagman et al. have shown that Tbx1 is involved, in a non-cell-autonomous 

mechanism, in late developmental stages of the thyroid gland. They have shown that Tbx1 

deficient embryos exhibit thyroid hypoplasia and hemiagenesis due to improper growth and 

translocation of the specified thyroid placode (Fagman et al., 2007). In mouse, a close 

association between the developing thyroid and large embryonic blood vessels originating from 

the cardiac outflow tract has been previously shown (Fagman et al., 2006). Hence, it has been 

suggested that the mechanism underlying the thyroid phenotype in Tbx1−/− mice is the inability 

of the embryonic thyroid to achieve contact with vessels derived from the cardiac outflow tract, 

an interaction crucial for proper bilateral growth and lobulation of the developing gland (Fagman 

et al., 2007). Lately, an earlier role of Tbx1 in thyroid development has been shown whereby it 

regulates the size of the early thyroid primordium by means of its expression in the adjacent 

mesoderm (Lania et al., 2009). Knowing that Tbx1 is a transcriptional regulator of Fgf8 in the 

mesodermal domain surrounding the thyroid primordium (Zhang et al., 2006) and that Fgf8 is 

important for endodermal cell proliferation (Park et al., 2006), it has been postulated that Fgf8 
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mediates the Tbx1-dependent interactions between mesodermal cells and the pTFCs (Lania et 

al., 2009). Consistent with the role of fgf8 in zebrafish thyroid development (Wendl et al., 2007), 

Lania et al. have described a Tbx1-dependent role for Fgf8 in mammalian thyroid development 

as well. They have shown that Tbx1, via Fgf8, is involved in determining the size of the thyroid 

early during mouse development probably via regulating the proliferation of its endodermal-

derived progenitors (Lania et al., 2009). 

In vertebrates, members of the Hedgehog family of secreted proteins are key regulators of 

embryonic development. They are involved in various developmental processes among which is 

tissue patterning and organogenesis from all three germ layers (McMahon et al., 2003). Among 

the Hedgehog members, sonic Hedgehog (shh) is known to be crucial for foregut development 

(Litingtung et al., 1998). Fagman et al. have assessed the role of Shh in early and late stages of 

thyroid development (Fagman et al., 2004). The thyroid phenotype (hypoplasia and 

hemiagenesis) described in Tbx1 null mice (Fagman et al., 2007) has been observed as well in 

mice deficient in Shh, the positive regulator of Tbx1 (Fagman et al., 2004). In spite of the normal 

specification of the thyroid primordium, a trivial delay in both its budding and dislocation has 

been reported in Shh−/− embryos. Later during organogenesis, a defect in the bifurcation and 

localization of the developing gland was observed, resulting in an abnormal, unilateral (mostly 

left sidedness), single thyroid mass (hemiagenesis) in the mutant embryos. However, deficiency 

of shh exhibited no impact on the terminal differentiation of the gland. In addition, ectopic 

Nkx2.1 and Foxe1-positive cells developed in the presumptive trachea of Shh−/− embryos, thus 

indicating the role of shh in repressing the thyroid differentiation program in non-thyroidal 

tissues (Fagman et al., 2004). Indeed, neither Shh nor its patched 1 (Ptc1) receptor mRNA 

expression was detected in the pTFCs nor in the surrounding mesenchyme throughout the 

developmental process of the gland (Fagman et al., 2004). Hence, it has been suggested that the 

impact of shh on thyroid development is indirect and that the observed phenotype is probably 

consequent to morphological defects within the shh-regulated tissues in cervical regions, 

ultimately leading to vascular defects (Fagman et al., 2004). Vascular defects in the head/neck 

region have been previously reported in both Shh or Tbx1 deficient early mouse embryos 

(Yamagishi et al., 2003). In addition, Alt et al. have shown that the thyroid gland is co-

developing with the major arteries, the ventral aorta and carotid arteries in zebrafish and mouse, 
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respectively. They have suggested that these major vessels play role in determining thyroid tissue 

localisation (Alt et al., 2006b). 

Retinoic acid (RA), a derivative of vitamin A, is involved in a variety of essential 

signalling pathways during vertebrate organogenesis (Duester, 2008). In addition to the 

established role of RA in the patterning of both the central nervous system (CNS) and the 

mesoderm (Chazaud et al., 1999; Niederreither et al., 2000; Begemann et al., 2001; Grandel et 

al., 2002; Niederreither et al., 2002), it has been shown that, in a number of vertebrates, RA 

signalling influences the early regionalization of the developing endoderm. In zebrafish, 

inhibition of the RA signalling pathway had no impact on the specification of the thyroid gland 

in contrast to the evident defects in the specification of the hepatopancreatic progenitors. 

However, the position of the thyroid is altered as evident by the lack of hhex expressing cells in 

the thyroid expression domain consequent to interruption of the antero-posterior (AP) patterning 

instructions (Stafford and Prince, 2002). Similarly, specification of the thyroid occurs in chick 

embryos either in the absence of, or at low levels, of RA, whereas it is prevented upon 

application of exogenous RA. Moreover, the expression of the thyroid progenitors’ markers Hex 

and Nkx2.1 was repressed (Bayha et al., 2009). Likewise, Wang et al. have shown recently that, 

in Xenopus embryos, addition of exogenous RA leads to the expression of markers of 

differentiated lung in the presumptive thyroid, with a lack of expression of the early transcription 

factors normally seen (pax2, foxe4, and hhex), thus indicating that development of the thyroid 

gland occurs in the absence of RA signalling (Wang et al., 2011b). Studies carried out in mouse 

embryos also indicated that RA signalling is less likely involved in the early morphogenetic 

events of the thyroid gland (Desai et al., 2004; Goss et al., 2009; Chen et al., 2010a). 

Collectively, these data indicate that RA plays a crucial role in pre-patterning of the foregut 

endoderm and positioning of the buds of organs along the digestive tract (Duester, 2008) but not 

in the determination/specification of the cells destined to become the thyroid. 

From all of the above, we can conclude that the main initiator signal(s) of the 

thyroid anlage specification is still unknown. Although using pluripotent embryonic stem cells 

(ESCs) as an in vitro model could enhance our knowledge about the factor(s) and mechanism(s) 

required for acquiring a thyroid fate, the outcomes of the research work carried on ESC is not yet 

conclusive (Nilsson and Fagman, 2013). Previous studies have shown that differentiation of 

mouse ESC into thyroid cells occurs either in a TSH-dependent (Jiang et al., 2010; Davies et al., 
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2011) or TSH-independent activin A mediated manner (Ma et al., 2009). In the case of activin A 

mediated differentiation, the resultant thyroid cells probably resemble a group of pre-

programmed cells that are turned on after prolonged culture of ESC, following their 

nodal/activin-mediated differentiation into definitive endoderm (Sui et al., 2013). In addition to 

TSH and its importance for the induction and specification for thyrocytes from ESCs, Arufe et 

al. have shown that both insulin and insulin-like growth factor-1 (IGF-1) are essential for their 

maturation (Arufe et al., 2009). Recently, common specification inductive mechanisms for lung 

and thyroid have been suggested (Longmire et al., 2012). Both murine Nkx2.1+ lung and thyroid 

progenitors have been derived and purified from definitive endodermal precursors, following 

transforming growth factor beta/bone morphogenetic protein (TGFβ/BMP) inhibition and 

subsequent combinatorial induction of BMP4 and FGF2 signalling. Such a cell fate restriction 

was accompanied by epigenetic silencing of Oct4 in Nkx2.1+ and altered histone methylation of 

the Nkx2.1 locus in Nkx2.1-negative cells (Longmire et al., 2012). Moreover, Antonica et al. 

have shown that mouse ESCs can be induced in vitro to differentiate into TFCs with the 

subsequent self-formation of functional thyroid follicles via transient overexpression of the two 

thyroid transcription factors Nkx2.1 and Pax8 followed by recombinant human TSH (rhTSH) 

treatment. These findings pave the way for the implementation of ECS technology in the 

treatment of hypothyroidism, keeping in mind that CH is the most common congenital endocrine 

disorder in humans (Antonica et al., 2012). 

4.1.1.7.2. Other genes 

The Hox genes encode a class of transcription factors characterized by the presence of a 

highly conserved DNA binding domain, the Antennapedia homeodomain. They are organized in 

four clusters (Hox A, B, C, and D clusters) that are located on four different chromosomes 

(Krumlauf, 1994). In humans, the clusters HOX A, B, C, and D map to chromosomes 7p14, 

17q21, 12q13 and 2q31, respectively (Mark et al., 1997; Quinonez and Innis, 2014). During 

embryogenesis, the Hox genes play a crucial role in patterning the anterior-posterior axis of the 

developing embryo (Manley and Capecchi, 1995). Among the Hox genes, Hoxa3 is expressed in 

the hindbrain, migrating neural crest, neural-crest-derived mesenchymal cells, and the 

pharyngeal pouch endoderm of the 3rd and 4th pharyngeal arches but not in the thyroid 

primordium (Manley and Capecchi, 1998). Hence, Hoxa3 mutants exhibited multiple 

developmental defects that included deletions and malformations of the throat cartilage and 
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cranial nerves, absence of both thymus and parathyroids as well as thyroid hypoplasia (Manley 

and Capecchi, 1995; 1998). In Hoxa3 mutants, Manley and Capecchi have shown that the 

observed thyroid phenotype is due to defects involving the number and organization of both the 

endoderm-derived follicular cells and the parafollicular C cells, derivatives of the mesenchyme 

neural crest cells. They described alterations in the UBB (precursors of C cells) with a reduction 

in parafollicular C cells that was mainly unilateral. In addition, severe structural defects in the 

follicular lobes of the thyroid have been shown that included a variable overall shape and size of 

the thyroid lobes and the displacement or complete loss of the isthmus (Manley and Capecchi, 

1995). Furthermore, analysis of mice double mutants of Hoxa3 and either of its paralogs, Hoxb3 

or Hoxd3, has revealed an exacerbation of the thyroid phenotype that corresponds to severe 

aberrations in the UBB, thus reflecting the crucial role of Hox3 paralogs in UBB development 

and migration (Manley and Capecchi, 1998). 

Hoxa5 is among the Hox genes that have been shown to affect thyroid development. 

Targeted disruption of the Hoxa5 gene revealed its involvement in axial and appendicular 

specification of the cervicothoracic region (Jeannotte et al., 1993; Aubin et al., 1998) as well as 

in the functional maturation of foregut (Aubin et al., 1997; Aubin et al., 2002) and midgut 

(Aubin et al., 1999) derivatives. Collectively, most of the defects resulting from the loss of 

Hoxa5 function are limited to the cervicothoracic region which also includes the pharyngeal 

glands including the thyroid. Hence, the role of Hoxa5 during the development of the thyroid 

gland was assessed in Hoxa5 mutants (Meunier et al., 2003). Foremost, expression of Hoxa5 was 

detected at E12.5 in regions flanking the UBB and the expanding thyroid tissue as well as in the 

surrounding tracheal mesenchyme; expression disappeared by E18.5. Lack of Hoxa5 function led 

to a transient altered expression of the thyroid transcription factors Nkx2.1, Foxe1 and Pax8 at 

various developmental stages of the thyroid gland. In spite of the normal onset of thyroid 

morphogenesis in Hoxa5−/−  mutants, deficiency of Hoxa5 led to late gestational disturbances at 

the level of both development as well as the structural organization of the thyroid gland 

including the detection of a large proportion of thyroglobulin (Tg)-depleted follicles by E17.5 

and E18.5. The observed abnormal accumulation of Tg in the thyroid follicles is plausibly 

consequent to the defective transport of Tg that hinders its proper distribution in the lumen of the 

thyroid follicles. Apart from Tg-depleted follicles, no other significant differences in either the 

production or the distribution of Tg, calcitonin, and T4 was detected at later fetal as well as 
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postnatal stages. Finally, Hoxa5−/−  mice exhibited transient postnatal growth retardation as well 

as retarded eye opening and ear extension, a postnatal phenotype resembling that reported in 

hyt/hyt mouse and the TG66-19 transgenic mouse line, both of which are animal models of 

congenital hypothyroidism (Beamer et al., 1981; Adams et al., 1989; Wallace et al., 1995). 

Together, these data point to the transient impact exerted by Hoxa5 depletion on thyroid 

development (Meunier et al., 2003). 

Eya1 is one of the members of the Eya gene family, which includes several homologues 

(four genes in mammals) of the Drosophila eyes absent (eya) gene (Duncan et al., 1997; Hanson, 

2001). During mouse development, a robust expression of Eya genes in the pharyngeal region 

and its derivatives has been detected starting from E9.5 (Xu et al., 2002). Xu et al. have assessed 

the role of Eya1 in the development of the pharyngeal organs among which the thymus, 

parathyroid and the thyroid glands. In Eya1–/– embryos, the organ primordia for both thymus and 

parathyroids fail to form. Comparable to what is observed in Hoxa3 null embryos (Manley and 

Capecchi, 1995), Eya1–/– mice presented hypoplastic thyroid lobes together with severe reduction 

in the number of parafollicular C cells, lack of fusion between the UBB and the thyroid lobes as 

well as absence of the isthmus (Xu et al., 2002). Although these data indicate that Eya1 is 

required for the formation of a mature thyroid gland, it has been postulated that the defects in 

thyroid lobes associated with absence of Eya1 are due to the lack of fusion with the UBB rather 

than a direct involvement of Eya1 in the morphogenesis of the gland (Xu et al., 2002). 

Supporting this hypothesis is the lack of expression of Eya1 in the thyroid diverticulum and the 

observation of thyroid defects resembling those observed in Hoxa3 and Eya1 mutants in mice 

deprived of Pax3 or Endothelin-1, two genes known to be implicated in the development of 

neural crest-derived structures (Franz, 1989; Kurihara et al., 1995). In humans, mutations in the 

EYA1 gene have been identified in the Bronchio-Oto-Renal (BOR) syndrome, an extrathyroidal 

syndrome without TD (Abdelhak et al., 1997). 

Hes1 (hairy/enhancer of split 1), a Notch target gene product, is a widely distributed 

proline basic-helix-loop-helix (bHLH) protein characterized by the presence of another two 

domains, the Orange domain and a C-terminal Trp-Arg-Pro-Trp (WRPW) domain involved in 

the selection of bHLH heterodimer partners and transcription repression, respectively (Iso et al., 

2003; Kageyama et al., 2007). As a transcriptional repressor of bHLH target genes, including the 

C cell expressed Mash1, Hes1 regulates the morphogenesis of various tissues by maintaining the 
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undifferentiated state of the progenitor cells (Kageyama et al., 2007). Moreover, it plays a crucial 

role in maintaining the proliferation of progenitor cells through the transcriptional repression of 

the cyclin-dependent kinase inhibitors p21Cip1, p27Kip1, and p57Kip2(Carré et al., 2011). In 

addition, Hes1 was found to be involved in controlling the development of endodermal endocrine 

tissues, the pancreas and the pituitary (Jensen et al., 2000; Raetzman et al., 2007). Indeed, 

Hes1−/− mice embryos exhibited severe neuronal defects and profound both thymic and 

pancreatic hypoplasia (Murata et al., 2005). Furthermore, Carré et al. have shown that Hes1 is 

involved in determining the normal size of the thyroid gland as it regulates the number of 

progenitors of thyrocytes and C cells encompassed in the two thyroid anlagen. Furthermore, they 

have shown that Hes1 is crucial for normal organogenesis of the developing gland as it assures 

the proper fusion of the thyroid anlagen. In addition to the documented hypoplasia and abnormal 

fusion of the thyroid anlagen in Hes1−/− mutants, a reduced endocrine function of both the 

thyrocytes and the C cells was demonstrated, who have a profound decrease in both T4 and 

calcitonin (CT)/NKx2.1 positive surface areas (Carré et al., 2011). Recently, Kameda et al. have 

confirmed the previously reported defects of the pharyngeal endoderm-derived organs, including 

the thymus, parathyroid, and thyroid glands, in Hes1−/−  null mice, with the most striking 

malformations occurring in the form of aplasia of both the UBB (precursors of thyroid C cells) 

and parathyroid glands. In addition, consequent to the defective survival of neural-crest-derived 

mesenchymal cells in the absence of Hes1, they have attributed the observed hypoplasia or 

aplasia of the pharyngeal endoderm-derived organs to the scarcity of these cells in the 

pharyngeal region, the signals from which are essential for the differentiation, migration and 

survival of the pharyngeal endoderm-derived developing organs (Kameda et al., 2013). 

Isl1 is among the novel genes found to be involved in the development of the thyroid 

gland. It encodes Islet1 (Isl1), one of the LIM homeodomain transcription factors, named for the 

LIM domain-containing transcription factors Lin11, Isl1, and Mec3. The LIM protein super 

family possesses, in addition to the DNA binding homeodomain, a LIM homeodomain (LIM-

HD) which is a cysteine-rich zinc-coordinating domain consisting of two tandemly repeated zinc 

fingers. In vertebrates, the 12 LIM homeodomain genes identified to date encode transcription 

factors known to play crucial roles in cellular development and differentiation of various tissues 

including the pituitary and pancreas (Hunter and Rhodes, 2005). 
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The expression pattern of Isl1 in the developing thyroid has been assessed by Westerlund 

et al. (Westerlund et al., 2008). They have shown that Isl1 is expressed in both the median and 

lateral primordia of the developing thyroid gland and the mesenchyme adjacent to the thyroid 

bud. Continuous expression of Isl1 was observed in the two anlagen until their fusion, where a 

prominent expression of Isl1 was detected only in the lateral primordia. Later during 

development, Isl1 expression was detected only in immature C cells before their terminal 

differentiation program is started. Moreover, in the adult gland, the number of Isl1 positive cells 

was lower compared to those expressing calcitonin and might represent a subpopulation of C 

cells that preserve properties of progenitor cells in adult life. Collectively, these data suggest the 

involvement of Isl1 in regulating thyroid development before the terminal differentiation of its 

precursors (Westerlund et al., 2008). 

Although the thyroid median anlage is specified in Isl1 mice null embryos, Westerlund et 

al. have shown that the size of the placode is reduced. Hence, Isl1 might be involved in 

regulating the growth and expansion of the thyroid precursors during the budding of the thyroid 

anlagen and afterwards. Though, it could be attributed to the generalized growth retardation 

reported in Isl1 null embryos that particularly affects the mesoderm, the endoderm, and their 

derivatives. Moreover, the authors have indicated that comparable to the endodermal Isl1, the 

abundantly expressed Isl1 in the mesenchyme located adjacent to the pharyngeal endoderm and 

the thyroid bud exhibited no impact on the specification of the thyroid placode (Westerlund et 

al., 2008). 

EphA4 is one of the Eph receptors (named for the expression in an Erythropoetin-

Producing Hepatocellular carcinoma cell line) representing the largest mammalian tyrosine 

kinase family of receptors. Eph receptors and their membrane-bound ligands, the ephrins, affect 

the morphogenesis of various tissues as well as maintaining homeostasis in many adult organs 

(Pasquale, 2008; Miao and Wang, 2009). The Eph-ephrin receptor-ligand systems transmit their 

signals in a bidirectional (forward and reverse) manner exerted by Eph kinases and ephrins on 

the opposing cells, respectively (Miao and Wang, 2009). Based on their binding preferences, 

both Ephs and their ligands are classified as A- and B-types. Exceptionally, EphA4 is the only 

Eph receptor that can bind to and be activated by both A-and B-type ephrins (Durbin et al., 

1998). 
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Lately, it has been reported that the EphA4 receptor is steadily expressed in the pTFCs in 

early and late developmental stages and in the mouse thyroid beyond birth till adulthood. Hence, 

it has been suggested that Eph/ephrin signalling confers a regulatory role on the development of 

the thyroid gland (Andersson et al., 2011). During the developmental process of the thyroid, no 

signs of thyroid dysgenesis or defective folliculogenesis were observed in EphA4 deficient late 

embryos. In addition, both markers of specification (Nkx2.1) and functional differentiation (Tg) 

were normally expressed. Although the Eph4-null adult mice are euthyroid and have a normal-

sized thyroid, they exhibited fine but marked phenotypic modifications involving the size, 

number, and shape of follicles. On the other hand, a more severe phenotype characterized by 

flattened follicular epithelium and a reduced number of C cells was detected in mutant animals 

with a truncated receptor that is unable to convey a forward signal (Andersson et al., 2011). The 

reduction in the number of C cells might be due to either a decreased proliferation rate or to a 

disturbed migration of C cells; both processes are affected by Eph receptor tyrosine kinases 

(Pasquale, 2005). Together, these data indicate that EphA4 is a novel regulator of postnatal 

thyroid morphogenesis and is probably involved in regulating the morphogenesis of the 

differentiated gland via modulating the development of both the thyroid follicular and the C cells 

(Andersson et al., 2011). 

Dicer, an RNaseIII endonuclease, is involved in the functional maturation of the small 

non-coding RNAS, the microRNAs (miRNAs) (Starega-Roslan et al., 2011). Several animal 

studies have revealed the significant role of small RNAs in the organogenesis of various tissues 

(Rodriguez et al., 2012). The role of small RNAs in thyroid organogenesis has been assessed 

using two mouse models, Pax8(Cre/+); Dicerflox/flox and Tg(Cre/+); Dicerflox/flox, in which Dicer 

was conditionally knocked-out (cKO) in TFCs either early during development (E8.5) or at later 

stages (E14.5), respectively (Rodriguez et al., 2012). In accordance with previous results 

(Frezzetti et al., 2011), inactivation of Dicer in either model showed no impact on early stages of 

thyroid development and an in situ bi-lobed gland was observed. However, at the age of one 

month, the two Dicer cKO mutants exhibited severe hypothyroidism associated with low total T4 

and increased TSH plasma levels resulting from lack of appropriate follicular organization. 

Follicular disorganization, in the form of a low number of follicles with appreciable lumen 

compartment, could lead to the thyroid hypoplasia exhibited by the mutant animals. 

Consequently, the mutant animals die around weaning time with an observed delay of two weeks 
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upon thyroid hormone replacement therapy. In the minority of viable animals on treatment, a 

progressive de-differentiation of the thyroid is seen, as revealed by the significant reduction of 

thyroid related genes (specifically Nis together with Pax8, Foxe1,Tpo, Tg, and Tshr), with the 

exception of Nkx2.1, at both mRNA and protein levels. Moreover, remarkably increased 

proliferation rates were observed in Dicer cKO mutants compared to their wild-type 

counterparts, although no significant differences in the number of follicular cells was observed. 

Indeed, the increased rate of proliferation is less likely to be due to a Tshr-mediated cAMP 

signalling hyperstimulation (Rodriguez et al., 2012). In addition to thyroid differentiation 

markers, it has been previously reported that in absence of Dicer, the expression of the thyroid 

polarity markers, Cdh1 (E-cadherin) and Cdh16 (ksp-cadherin), is either reduced or completely 

lost, respectively, thus influencing cell polarity and consequently thyroid function (Frezzetti et 

al., 2011). 

The thyroid de-differentiation observed in the above described mutant animals resembles 

that observed during human thyroid tumorigenesis with the notable lack of Nis expression 

followed by that of Tshr and Tpo (Gérard et al., 2003). The lack of Nis and Tpo expression could 

be attributed to the down-regulation of Pax8 and Foxe1, the two crucial regulators of their 

expression (Rodriguez et al., 2012). The increased rate of follicular cell proliferation observed in 

the two Dicer cKO models, in spite of the down-regulation of Tshr, reflects the role of miRNAs 

in regulating the expression of genes implicated in controlling cellular proliferation (Chen et al., 

2010c). Collectively, the previous data point to the importance of an intact miRNA biogenesis 

machinery, mediated via the RNase III Dicer, that ensures the inhibition of genes hindering 

normal differentiation of TFCs or driving cancer initiation and/or progression, knowing that a 

crucial role of miRNAs down-regulation in thyroid carcinogenesis has been previously suggested 

(Visone et al., 2007; Braun et al., 2010). Interestingly, humans carrying DICER1 heterozygous 

mutations develop a number of rare embryonal tumors as well as thyroid pathology consisting of 

multinodular goiters, although this autosomal dominant familial cancer syndrome displays a 

wide phenotypic variability (Rio Frio et al., 2011; Choong et al., 2012). 

4.1.2. Alternative mechanisms 
As previously mentioned, germline mutations in the thyroid-specific genes NKX2.1, 

PAX8, and FOXE1 and the thyroid-related TSHR and NKX2.5 genes have been reported in only a 
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few patients with TD (Clifton-Bligh et al., 1998; Macchia et al., 1998; Breedveld et al., 2002; 

Castanet et al., 2002; Krude et al., 2002; Dentice et al., 2006; Narumi et al., 2010). In addition, 

their role in the pathogenesis of TD has been excluded in some multiplex families of TD 

(Castanet et al., 2005). Hence, the pathogenesis of CHTD in the majority of patients is not 

explained by a Mendelian mechanism. Furthermore, the implication of environmental factors in 

the pathogenesis of TD is highly unlikely, since neither seasonal nor temporal trends for CHTD 

have been reported and maternal folate supplementation showed no impact on its incidence 

(Deladoëy et al., 2007b; Deladoëy et al., 2011). Taken together, these data led to the 

consideration of other mechanisms for the vast majority of human CHTD cases (Deladoëy et al., 

2007a). 

4.1.2.1. Multigenic model of TD 

The lack of a clear Mendelian transmission of TD in families with at least one affected 

member and the high incidence of asymptomatic thyroid anomalies among first degree relatives 

suggest the involvement of modifier genes in the pathogenesis of TD and hence a possibly 

multigenic origin. In support of this suggestion is the incomplete penetrance and variable 

expressivity of the inherited PAX8 and NKX2.5 mutations reported in familial cases of CHTD 

(Macchia et al., 1998; Congdon et al., 2001; Dentice et al., 2006). Amendola et al. have 

provided the evidence for the multigenic origin of TD in mice (Amendola et al., 2005). Contrary 

to the singly deficient heterozygous mice, they have shown that mice which are double 

heterozygotes for Nkx2.1 (Titf1) and Pax8-null alleles (DHTP) exhibit severe hypothyroidism 

characterized by thyroid hypoplasia and increased incidence of hemiagenesis in adult mice. 

Moreover, it has been shown that the TD phenotype is strain-specific with two potential modifier 

genes responsible for such specificity, among which one locus exhibits the major effect 

(Amendola et al., 2005): this modifier gene for hypothyroidism was mapped to chromosome 2 

and named hypothyroidism-related chromosome 2 (HTRC2); it encodes Dnajc17, a member of 

the type III heat-shock protein-40 (Hsp40) family. Dnajc17 is highly expressed in the thyroid and 

known for its crucial role in mouse embryonic development and its ability to modify the 

expression of the Tg promoter in vitro (Amendola et al., 2010). 

In humans, a similar mechanism encompassing multiple loci in the pathogenesis of TD 

has been suggested. In line with an oligogenic origin of TD is the recently reported low 
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incidence of CHTD in Blacks when compared to Caucasians who exhibit decreased genetic 

diversity and tend to accumulate pathogenic variants (Lohmueller et al., 2008; Stoppa-Vaucher 

et al., 2011). Recently, CH with no goiter has been reported in individuals of a consanguineous 

kindred bearing both homozygous and compound heterozygous TSHR and TPO mutations, 

respectively (Sriphrapradang et al., 2011). Likewise, TSH resistance in association with CH, 

caused by inactivating mutations in both TSHR and adenylate cyclase-stimulating G alpha 

protein subunit (GNAS), has been reported in several members of a family with CH (Lado-Abeal 

et al., 2011). Interestingly, heterozygous mutations in the PAX8 promoter and NKX2.5 gene have 

been identified in a girl with TD (Hermanns et al., 2011). However, no TD cases with digenic 

defects were identified in either a cohort of 102 Japanese patients with CH (Narumi et al., 2009; 

Narumi et al., 2010) or in a cohort of 170 Czech patients with CHTD or early-onset 

hypothyroidism (Al Taji et al., 2007) screened for genetic aberrations in genes encoding the 

transcription factors NKX2.1, PAX8, FOXE1, HHEX, and NKX2.5 and the TSH-receptor. This 

implies that putative genetic modifiers are outside the coding region of the current candidate 

genes or that other (yet unknown) genes account for CHTD in humans. Moreover, there is also 

an urgent need for considering other sources of genetic and/or epigenetic variation such as (i) de 

novo germ line copy number variants (CNVs), (ii) early somatic mutations and (iii) epigenetic 

modifications.  Indeed, CNVs can act as genetic modifiers of the phenotype by either directly or 

indirectly affecting its penetrance (Cooper et al., 2013). In addition, non-Mendelian mechanisms, 

consistent with the sporadic occurrence of CHTD in the majority (98%) of cases and the high 

discordance rate (92%) between monozygotic (MZ) twins, are strongly suggested as plausible 

underlying pathogenic mechanisms for CHTD. Among these mechanisms are postzygotic 

(somatic) either genetic or epigenetic modifications in thyroid and extrathyroid genes involved in 

the embryonic development of the gland (Deladoëy et al., 2007a; Deladoëy, 2012). The three 

sources of variability will be discussed below. 

4.1.2.2. Copy number variations (CNVs) 

Copy number variations (CNVs) are submicroscopic chromosomal abnormalities, 

ranging in size between one kilobase and one megabase, that alter the copy-number of a specific 

chromosomal region consequent to either deletion or duplication of DNA segments (Tang and 

Amon, 2013). They are either inherited or sporadic (de novo) (Stankiewicz and Lupski, 2010). 

Copy number variants occurring with an altered copy number frequency (ACNF) >1% in the 
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human population are classified as copy number polymorphisms (CNPs), that are heritable and 

enriched in regions of segmental duplications (Locke et al., 2006). According to the underlying 

mechanism involved in their formation, CNVs are classified into either recurrent or nonrecurrent 

(van Binsbergen, 2011). Recurrent CNVs, representing 20–40% of the normal polymorphic 

CNVs and numerous de novo pathogenic CNVs, are developed during meiosis via non-allelic 

homologous recombination (NAHR), a mechanism mediated via pre-existing low-copy repeats 

(LCRs) or segmental duplications (SDs) (Kim et al., 2008; Arlt et al., 2012). On the other hand, 

nonrecurrent CNVs encompass the majority of normal polymorphic CNVs and a large portion of 

disease-related CNVs. Both the recombination-based mechanisms, including nonhomologous 

end joining (NHEJ) and microhomology-mediated end-joining (MMEJ), as well as those 

involving template switching events are responsible for the formation of nonrecurrent CNVs. 

Models based on template switching include the replication-based mechanisms named fork 

stalling and template switching/microhomology-mediated break-induced replication 

(FoSTeS/MMBIR) (Stankiewicz and Lupski, 2010; Arlt et al., 2012). 

Nowadays, CNVs are believed to encompass a larger number of nucleotides and to be 

more frequent than single nucleotide polymorphisms (SNPs) (Stankiewicz and Lupski, 2010; 

Brunham and Hayden, 2013). They cover approximately 13% of the human genome thus 

accounting for a notable source of human genomic evolution and inter-individual genetic 

diversity (Iafrate et al., 2004; Stankiewicz and Lupski, 2010; van Binsbergen, 2011). In addition, 

it has been shown that CNVs are implicated in the etiology of various genomic disorders due to 

the higher de novo locus-specific mutation rate (µ) of genomic rearrangements compared to de 

novo single base mutations (Lupski, 2007; Stankiewicz and Lupski, 2010). They are associated 

with various sporadic and Mendelian diseases (Zhang et al., 2009), birth defects among which 

congenital heart disease (Erdogan et al., 2008; Lu et al., 2008; Hitz et al., 2012; Soemedi et al., 

2012; Southard et al., 2012; Lalani et al., 2013), as well as common complex traits (including 

Alzheimer disease, autism, epilepsy, pancreatitis, Parkinson disease, and schizophrenia) (Lee and 

Lupski, 2006; Sebat et al., 2007; Henrichsen et al., 2009; Stankiewicz and Lupski, 2010; 

Girirajan et al., 2011; Coe et al., 2012). In addition, CNVs have been also associated with 

susceptibility to other human diseases among which are HIV infection (Gonzalez et al., 2005), 

Crohn's disease (Fellermann et al., 2006; McCarroll et al., 2008), systemic lupus erythematosus 

(Fanciulli et al., 2007; Willcocks et al., 2008), as well as numerous others (Stankiewicz and 
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Lupski, 2010). Moreover, both common (present at frequencies > 5%) and rare CNVs (with 

frequencies < 1%) influence genetic susceptibility to cancer, where a high cancer risk was 

observed in association with rare CNVs (Kuiper et al., 2010; Krepischi et al., 2012). 

Based on the reported involvement of de novo CNVs in the pathogenesis of many 

sporadic diseases (Zhang et al., 2009) and the fact that the majority of CHTD cases are sporadic, 

de novo CNVs were considered as potential underlying pathogenic mechanisms (Deladoëy, 

2012). Using genome-wide array-based comparative genomic hybridization (array CGH), 

Thorwarth et al. have screened 80 CHTD patients and two pairs of discordant MZ twins to 

determine the role of CNVs in the etiology of TD (Thorwarth et al., 2010). In contrast to 

previous studies (Bruder et al., 2008), they found no differences in DNA copy number between 

discordant MZ twins. On the other hand, potentially pathogenic nonrecurrent CNVs, four 

deletions and six duplications, have been identified in patients with athyreosis and hypoplasia 

representing 8.75% of all patients screened. Interestingly, four out of the ten described CNVs 

(40%) occurred de novo while the other six CNVs were equally either maternally or paternally 

inherited. None of the identified CNVs encompassed genes known to be involved in thyroid 

morphogenesis except for a duplication of the 22q11.21 chromosomal region including the TBX1 

gene (Thorwarth et al., 2010). Unfortunately, Thorwarth et al. provided no functional studies on 

the candidate genes located in the reportd CNVs. 

Furthermore, somatic variations in DNA copy number (CNVs) in combination with gene 

expression analyses were assessed in three human ectopic (lingual) thyroid tissues. Three 

thyroid-specific CNVs (common variants) have been identified in the ectopic tissues and not in 

matched leukocytes. Moreover, the combined analysis revealed that the expression profile of the 

ectopic thyroids is different compared to normal thyroids. However, such a differential gene 

expression was independent of the identified thyroid-specific CNVs (Abu-Khudir et al., 2010). 

Collectively, based on the high rate of CNVs identified among the screened TD patients, 

a plausible role of CNVs in the pathogenesis of CHTD has been proposed. However, lack of 

their recurrence together with absence of differences in DNA copy number among discordant 

twins and lack of gene expression dependence on CNVs in ectopic thyroids, plead against a 

major role of CNVs in the pathogenesis of TD. In addition, they highlight the need for 
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considering, as disease-relevant, pathways involving the candidate genes located within the 

identified CNVs rather than regarding single disease-related genes (Thorwarth et al., 2010). 

4.1.2.3. Early somatic mutations 

In addition to cancer, somatic mutations can be responsible for a wide range of other non-

cancerous diseases. In the case of CH, both the sporadic occurrence of the majority of CHTD 

cases and the high discordance between MZ twins suggest the involvement of postzygotic (post-

fertilization) events in the pathogenesis of CHTD. Among these events would be an early 

somatic mutation, with a dominant effect, that leads to a loss-of-function mutation in one of the 

genes involved in thyroid development. In order for a somatic loss-of-function mutation to lead 

to a phenotype, it has to occur very early during the developmental process in the common 

ancestral cell of all the cells committed to the thyroid fate (Deladoëy et al., 2007a). Postzygotic 

loss-of-function events leading to a phenotype have been previously reported among which are 

mosaic karyotypes associated with variable features of Turner of syndrome (Costa et al., 1998; 

Lebl et al., 2001), somatic mosaicism of the androgen receptor (AR) observed in patients with 

androgen insensitivity syndrome (AIS) (Holterhus et al., 1997; Köhler et al., 2005), and IRF6 

somatic mutation reported in the affected twin of a MZ pair discordant for the Van der Woude 

syndrome (VWS; OMIM 119300) (Kondo et al., 2002). The role of somatic mutations, including 

brain-only ones, in the development of human neurodevelopmental and neuropsychiatric 

disorders has been increasingly identified as reviewed by Poduri et al. (Poduri et al., 2013). A 

high prevalence of somatic mutations in genes encoding a number of transcription factors 

including TBX5, NKX2.5, GATA4, HEY2 and HAND1, among individuals with congenital heart 

defects (CHDs) has been previously reported (Reamon-Buettner and Borlak, 2004; Reamon-

Buettner et al., 2004; Reamon-Buettner and Borlak, 2005; 2006; Reamon-Buettner et al., 2008; 

Reamon-Buettner et al., 2009). The somatic mutations have been identified in DNA extracted 

from an archive of formalin-fixed cardiac tissues from individuals with atrial (ASD), ventricular 

(VSD), and atrioventricular septal defects (AVSD). However, these findings were not replicated 

by a number of later studies that used fresh-frozen cardiac tissues rather than formalin-fixed 

tissues (Draus et al., 2009; Salazar et al., 2011; Wang et al., 2011a; Sabina et al., 2013). The 

lack of detection of somatic mutations by these recent studies might be attributed to the 

mosaicism that may reduce the probability of detection or due the plausible involvement of these 
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mutations in other forms of CHD, knowing that CHD is clinically classified into at least 21 

different types (Huang et al., 2013b). Nevertheless, an association between somatic mutations in 

the GATA6 gene and sporadic tetralogy of Fallot (TOF), the most common cyanotic CHD, has 

been lately reported (Huang et al., 2013b). 

Recently, a somatic mosaic heterozygous inactivating PAX8 mutation has been reported 

in a female patient who is the mother of two half-siblings with CH and the same PAX8 mutation 

inherited by germline (Narumi et al., 2011). The thyroid function profile of the patient was 

normal but she was subjected to hemithyroidectomy due to a thyroid adenoma. In addition to 

normal thyroid tissue, histological analysis of the patient's thyroid revealed both adenoma tissue 

as well as fetal-like thyroid tissue in the follicular growth stage (TFCs with very small or absent 

follicles). Among the identified tissues, a PAX8 mutation was detected in the fetal-like tissue, 

thus indicating the sensitivity of the follicular growth stage to PAX8 gene dosage. In addition to 

the mutated thyroid tissue, a PAX8 mutation was detected in lymphocytes and nails, tissues 

derived from the mesodermal and ectodermal embryonic layers, respectively as well as in germ 

cells, hence reflecting its early occurrence during embryogenesis (Narumi et al., 2011). 

This case report provides evidence for a postzygotic somatic mutation affecting PAX8, 

one of the genes involved in thyroid development. In his review, Szinnai has attributed the lack 

of a TD phenotype in the mother bearing the PAX8 mutation to its mosaic state which prohibited 

the penetrance of a mild phenotype arising consequent to the mutation (Szinnai, 2013). On the 

contrary, her germline mutation carrier children developed a TD phenotype (thyroid hypoplasia) 

as all their TFCs, among all other body cells, are affected by the mutation. In addition, he 

correlated the severity of the TD phenotype with the time at which the somatic mutation occurs 

during the embryonic life: the earlier it occurs (after the commitment of endodermal cells), the 

greater the proportion of pTFCs that will be affected (Szinnai, 2013). 

4.1.2.4. Epigenetic modifications 

In addition to the possible role of early somatic mutations in the pathogenesis of CHTD, 

the contribution of epigenetic alterations, among which DNA methylation, is a hypothesis worth 

considering (Vassart and Dumont, 2005). The involvement of stochastic epigenetic mechanisms, 

leading to variable degree of gene or allele silencing, in the pathogenesis of TD is more likely 

than that of somatic mutations. This could be attributed to the fact that the low number of 
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founder cells in the embryo is more consistent with the frequency of epigenetic errors than of 

spontaneous somatic mutations (Mathis and Nicolas, 2002). Like somatic mutations, the 

hypothesis of epigenetic mechanisms is compatible with the sporadic nature of TD and with the 

high discordance rate between MZ twins (Deladoëy et al., 2007a). According to this hypothesis, 

quantitative modulation of gene expression via stochastic epigenetic events will lead the cells of 

an organ bud to express single or two alleles of a gene or absolutely none. If ultimately fixed in 

the anlagen, developmental defects might arise consequent to the low expression of the randomly 

selected key gene(s) (Vassart and Dumont, 2005). Of note, discordance between MZ for various 

developmental defects could be attributed to monoallelic expression resulting from random 

silencing (Fraga et al., 2005; Mansilla et al., 2005; Wong et al., 2005). 

The term epigenetics was introduced by the developmental biologist Conrad Waddington 

in the early 1940s. Initially, Waddington defined epigenetics as the interactions of genes with 

their environment which bring the phenotype into being (Waddington, 1942). Currently, 

epigenetics is broadly used to describe mitotically and/or meiotically heritable alterations in gene 

function in the absence of changes in the primary DNA sequence (Dupont et al., 2009) The 

epigenetic factors that modulate gene expression include DNA methylation, various post-

translational modification of histones, regulatory non-coding RNAs (ncRNAs), and chromatin 

remodeling proteins (Mohn and Schubeler, 2009; Handel et al., 2010; Bannister and Kouzarides, 

2011; Inbar-Feigenberg et al., 2013; Li, 2013). The cross-talk between the various epigenetic 

modifications mediates chromatin remodeling thus rendering it either permissive or repressive to 

the transcriptional machinery (Vaissière et al., 2008; Murr, 2010). Much of our understanding 

about the role of DNA methylation and histone modifications in transcriptional regulation has 

come from studying genes that undergo imprinting (gene expression limited to only one allele of 

an autosomal pair in a parent-of-origin specific fashion) as well as genes silenced during sex-

chromosome dosage compensation (X-chromosome inactivation) (Monk, 1986; 1988). However, 

it is now recognized that epigenetic mechanisms are involved in various cellular processes 

among which are genome reprogramming during early embryogenesis and gametogenesis. In 

addition, they are involved in initiation and maintenance of cell differentiation. The patterns of 

epigenetic marks (epigenome) are established early during development and differentiation. 

However, deregulation of these epigenetic patterns via endogenous and/or exogenous 
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(environmental) signals has been associated subsequently with number of human diseases, 

including cancer (Delcuve et al., 2009). 

The two major epigenetic modifications, DNA methylation and histone modifications, 

and their role in modulating gene expression will be reviewed in the following sections. 

4.1.2.4.1. DNA methylation 

DNA methylation is the most extensively studied epigenetic modification and the only 

one that involves a direct chemical modification of the DNA (Dolinoy and Faulk, 2012; Moore et 

al., 2013). DNA methylation involves the covalent addition of a methyl group to the 5́ carbon 

position of cytosine residues to form 5-methylcytosine (5mC) (Auclair and Weber, 2012; Moore 

et al., 2013). In mammalian genomes, methylation of cytosine bases occurs mainly in the context 

of 5́-CpG-3́ dinucleotides, though methylation of cytosine in the sequence context of CHG and 

CHH (H = A, C, T) or CpA has been detected in mouse and human ESCs, oocytes, sensory 

neurons and plants, but rarely in somatic mammalian cells (Ramsahoye et al., 2000; Lister et al., 

2009; Piperi and Papavassiliou, 2011; Tomizawa et al., 2011; Ziller et al., 2011; Xie et al., 

2012). 

In mammals, CpG dinucleotides are scarce in the majority of the genome due to the 

potential mutagenicity resulting from the spontaneous or enzymatic deamination of methyalated 

cytosines to thymidine (Coulondre et al., 1978; Bird, 1980). In general, only 60-80% of the CpG 

dinucleotides in the human genome are methylated and less than 10% are found in CpG islands 

(CGIs), regions where a high density of CpG dinucleotides is observed (Deaton and Bird, 2011). 

CGIs are located within or near the promoters and/or the first exons of housekeeping and 

developmental regulating genes (Gardiner-Garden and Frommer, 1987; Larsen et al., 1992; 

Saxonov et al., 2006; Dolinoy and Faulk, 2012). Most promoter CGIs are not methylated, though 

some of them become methylated in a tissue-specific manner during development or upon 

differentiation (Weber et al., 2007; Illingworth et al., 2008; Portela and Esteller, 2010; Moore et 

al., 2013). On the contrary, CGIs located in intergenic and gene body regions as well as in CpG 

island shores (CGI shores), regions of lower CpG density located ~2 kb from CGIs, exhibit 

tissue-specific methylation patterns (Doi et al., 2009; Irizarry et al., 2009; Moore et al., 2013). 

DNA methylation is initiated (de novo methylation) and maintained (maintenance 

methylation) by the enzymatic activity of the DNA methyltransferases (DNMTs) (Goll and 
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Bestor, 2005). Both DNMT3A and DNMT3B enzymes catalyze the establishment of a de novo 

methylation pattern of unmodified DNA molecules during development, thus they are known as 

de novo DNMTs (Okano et al., 1999). On the other hand, DMNT1, the maintenance DNMT, is 

responsible for maintaining the methylation pattern of the parent DNA molecule during the 

process of replication (Leonhardt et al., 1992; Bestor, 2000). DNMT1 has a preference for 

hemimethylated DNA that limits its de novo methyltransferase activity (Pradhan et al., 1999). 

DNMT3L, has no a catalytic domain, but it interacts with DNMT3A to establish allele-specific 

methylation in imprinted regions and methylation of several repetitive elements of the genome 

(Bourc'his et al., 2001; Hata et al., 2002; Kato et al., 2007). In vertebrates, members of the ten-

eleven translocation (TET) family of enzymes (TET1, TET2, and TET3) can oxidize 5mC into 5-

hydroxymethylcytosine (5hmC), an intermediate of the cytosine demethylation reaction that is 

abundantly found in human and mouse brain and ESCs (Kriaucionis and Heintz, 2009; Tahiliani 

et al., 2009; Ito et al., 2010). The TET can then catalyze the oxidation of 5hmC into the 

additional intermediates of demethylation 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) 

(He et al., 2011; Ito et al., 2011). In addition to DNA demethylation, a role for 5hmC in gene 

regulation has been proposed (Valinluck et al., 2004; Wu et al., 2011). Recently, several somatic 

mutations have been reported in DNMT3A and DNMT1 as well as in the TET protein TET2 in 

cancer (Kanai et al., 2003; Langemeijer et al., 2009; Walter et al., 2011; Yan et al., 2011), 

whereas germline mutations in DNMT1 and DNMT3B have been reported in neurological and 

immunological disorders, respectively (Berdasco and Esteller, 2013). 

The canonical function of DNA methylation is to mediate transcriptional repression at 

promoter elements (Reddington et al., 2013). The impact of DNA methylation on transcriptional 

activity at promoter regions is dependent upon the local CpG-density (Hackett and Surani, 2013; 

Reddington et al., 2013). At low (poor) CpG-density promoters (LCP) that are mostly 

methylated, no correlation between DNA methylation and gene silencing is observed (Weber et 

al., 2007). On the other hand, methylated high CpG-density promoters (HCP) are strongly 

associated with gene silencing whereas, when unmethylated, the transcriptional activity of the 

gene depends on whether or not it is silenced by other forms of repression (Meissner et al., 

2008). Excluding the imprinted genes and the inactive X-chromosome, the HCPs are rarely 

methylated during development (Hackett and Surani, 2013). Finally, methylation status of 

intermediate CpG-density promoters (ICP) is strongly correlated with the transcriptional activity 
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of genes and is responsible for tissue-specific gene regulation (Meissner et al., 2008; Borgel et 

al., 2010). It has been shown that DNA methylation is involved in stably silencing ICPs 

associated with germline-specific genes in somatic cells due to their probable involvement in 

carcinogenesis (Simpson et al., 2005; Maatouk et al., 2006; Meissner et al., 2008; Janic et al., 

2010; Velasco et al., 2010). 

DNA methylation-mediated gene silencing at promoter regions occurs via either 

preventing the direct binding of transcription factors (TFs) to their DNA binding motifs, essential 

for the recruitment of the transcriptional machinery (Watt and Molloy, 1988; Iguchi-Ariga and 

Schaffner, 1989; Santoro and Grummt, 2001; Wiench et al., 2011), or by recruitment of methyl-

CpG-binding proteins (MeCPs) that subsequently attract repressive complexes such as histone 

deacetylases (HDACs) or recruiting histone methyltransferases that add the repressive histone 

H3 lysine 9 (H3K9) methylation, and eventually leads to chromatin compaction and 

transcriptional repression of the gene (Jones et al., 1998; Nan et al., 1998; Bird and Wolffe, 

1999; Bird, 2002; Fuks et al., 2003). The canonical function of DNA methyaltion is considered 

an important mechanism for regulating tissue-specific gene expression (Figure 9) (Reddington et 

al., 2013). In addition to single-copy gene promoters, DNA methylation of repetitive 

transposable elements (TEs) and viral ones leads to their inactivation thus maintaining genomic 

stability and integrity (Yoder et al., 1997; Walsh et al., 1998; Jackson-Grusby et al., 2001). 

 
Figure 9: Canonical function of DNA methylation and tissue-specific gene regulation (modified 

from Reddington et al., 2013). 
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In addition to the established canonical functions of DNA methylation at promoter 

regions, yet unclear possible roles in regulating other genomic regions have been revealed 

(Reddington et al., 2013). In mammals, DNA methylation within the gene body (beyond the first 

exon) has been reported (Figure 10A) (Portela and Esteller, 2010; Jones, 2012; Moore et al., 

2013; Reddington et al., 2013). Previously, the association between active transcription and gene 

body DNA methylation has been confirmed on the active X chromosome (Hellman and Chess, 

2007) as well as by shotgun bisulphite sequencing of animal and plant genomes (Cokus et al., 

2008; Lister et al., 2009; Feng et al., 2010). Among the potential roles of gene body methylation 

is the regulation of the co-transcriptional mRNA processing via splicing modulation (Figure 

10Ai) (Laurent et al., 2010; Reddington et al., 2013). In humans, it has been shown that 

increased DNA methylation of an exon favors its incorporation in a mature transcript (Shukla et 

al., 2011). In addition, gene body DNA methylation, although speculative, might prevent the 

initiation of spurious transcription within gene bodies and the consequent formation of cryptic 

products (Figure 10Aii) (Suzuki and Bird, 2008; Reddington et al., 2013). It has been shown that 

gene body methylation can prevent initiation of transcription, where the activity of the Shank3 

gene was negatively correlated with a tissue-specific methylated CGI that functioned as an 

alternative promoter for it (Maunakea et al., 2010). 

In addition to gene body, a role of methylated inter- and intragenic (orphan) CGIs has 

been suggested (Reddington et al., 2013). A proportion of the orphan CGIs might be promoters 

for either unannotated transcripts, developmentally regulated alternative promoters of known 

transcripts, or promoters of non-coding transcripts such as long ncRNAs (Illingworth et al., 

2010; Maunakea et al., 2010; Reddington et al., 2013). Upon methylation of the orphan CGI, its 

promoter activity will be inhibited (in a tissue-specific manner) (Figure 10Bi) (Illingworth et al., 

2010). In addition, the methylation status of the orphan CGIs can modulate the recruitment of 

chromatin remodeling proteins (Figure 10Bii) (Blackledge et al., 2010; Thomson et al., 2010). In 

addition to orphan CGIs, DNA methylation of CGI shores might be involved in reducing 

transcription of nearby genes, by acting as alternative promoter, in a tissue-specific manner as 

they exhibit tissue-specific DNA methylation pattern (Irizarry et al., 2009; Ji et al., 2010). 

However, it has been suggested that methylation of CGI shores is not correlated with gene 

expression and that they exhibit no significant levels of differential DNA methylation (Deaton et 

al., 2011). 
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Finally, a role of DNA methylation in regulating the function of distal regulatory 

elements, among which are enhancers, has been suggested (Jones, 2012; Reddington et al., 

2013). Enhancers, mostly CpG poor, are situated at varying distances from gene promoters and 

are known to control gene expression (Jones, 2012). It has been suggested that the presence or 

absence of TFs at enhancer elements can modulate their methylation status by either preventing 

or allowing the binding of DNMTs (Figure 10Ci) (Stadler et al., 2011; Thurman et al., 2012). In 

addition, methylation of the enhancer element can modulate the protein-DNA interaction either 

directly by blocking the binding of TF or via a chromatin condensed state mediated by MeCPs 

and HDACs (Figure 10Cii) (Reddington et al., 2013). 

 

Figure 10: DNA methylation-mediated transcriptional regulation at genomic regions other than 
promoter elements (modified from Reddington et al., 2013). 

4.1.2.4.2. Histone modifications 
 The basic repeating structural unit of chromatin is the nucleosome, a DNA-protein 

complex including 147 base pairs of genomic DNA wrapped around an octamer of histone 
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proteins, two copies each of H2A, H2B, H3, and H4 (Luger and Richmond, 1998; Kornberg and 

Lorch, 1999). Mainly, the flexible histone tails are subjected to several covalent post-

translational modifications (PTMs) including, among others, acetylation, methylation, 

phosphorylation, ubiquitylation, sumoylation, and ADP-ribosylation (Strahl and Allis, 2000; 

Kouzarides, 2007; Mehler, 2008; Bannister and Kouzarides, 2011; Gardner et al., 2011; Tan et 

al., 2011; Tammen et al., 2013). In addition, modifications within the globular core region of the 

H3 and H4 proteins have been also identified (Hyland et al., 2005; Ye et al., 2005; Das et al., 

2009; Shukla et al., 2009; Füllgrabe et al., 2011). Histone modifications regulate chromatin 

dynamics and downstream functions (transcription, replication, and DNA repair) via two 

different mechanisms: (i) altering the charges on histone tails leading to the disruption of 

contacts between histones and DNA or between neighboring nucleosomes (acetylation and 

phosphorylation) and (ii) recruitment of non-histone proteins (e.g. chromatin remodelers and 

transcriptional co-activators/repressors) that recognize the ‘histone code’ representing the 

distinct patterns of histone PTMs (Figure 11) (Izzo and Schneider, 2010; Bannister and 

Kouzarides, 2011; Lothrop et al., 2013; Tammen et al., 2013). 

 

Figure 11: Examples of the recruitment of proteins to modified histones (modified from 
Bannister and Kouzarides, 2011). 
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 The dynamic histone PTMs are catalyzed by histone-modifying enzymes that either add 

or remove the histone modifications in response to various intracellular and extracellular stimuli 

(Mehler, 2008). In addition, the histone-modifying enzymes can regulate cellular processes 

associated with gene expression by exerting actions on non-histone proteins. Together with other 

multiple chromatin-modifying enzymes, the histone-modifying enzymes are components of 

larger multi-protein complexes involved in regulating gene expression (Rosenfeld et al., 2006; 

Ruthenburg et al., 2007; Mehler, 2008). In humans, aberrations in histone-modifying enzymes 

have been associated with the development of cancer (Sharma et al., 2010; Füllgrabe et al., 

2011; Butler et al., 2012; Campbell and Turner, 2013). However, it has been reported that only a 

few of the known residues to be modified are incorporated (Kouzarides, 2007). Moreover, 

alterations in histone variants have been reported in cancer as well (Kapoor et al., 2010; Khare et 

al., 2011). 

 The overall impact of histone modifications on chromatin structure and subsequent 

downstream functions is refined by the cross-talk between the various modifications (Figure 12) 

(Izzo and Schneider, 2010; Bannister and Kouzarides, 2011). The mechanisms mediating such an 

interplay include: (i) antagonism between multiple modifications targeting the same amino acid, 

(ii) the dependence of one modification on the other (trans-regulation), (iii) alteration of the 

catalytic activity of an enzyme consequent to the modification of its recognition site, (iv) 

disruption of protein binding to a specific modification because of an adjacent one, and (v) the 

possible collaboration between different modifications to attain efficient recruitment of binding 

proteins (Fischle et al., 2005; Nelson et al., 2006; Kouzarides, 2007; Vermeulen et al., 2010; 

Xhemalce and Kouzarides, 2010; Bannister and Kouzarides, 2011). 
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Figure 12: Cross-talk between histone modifications (modified from Bannister and Kouzarides, 
2011). 

4.1.2.4.3. Interplay between DNA methylation and histone modifications 

It has been reported that changes in chromatin structure induced by DNA methylation are 

mediated via alterations in histone modifications (Kondo, 2009). Several reviews have pointed to 

the interplay between DNA methylation and histone modifications (Bernstein et al., 2007; 

Vaissière et al., 2008; Cedar and Bergman, 2009; Kondo, 2009; Muthusamy et al., 2010; Auclair 

and Weber, 2012), though the order of events is not clearly empathized and that it might be 

dependent on cell type, genomic locus, as well as physiological conditions (Vaissière et al., 

2008; Muthusamy et al., 2010). In addition to the direct inhibition of transcription factors 

binding (Watt and Molloy, 1988; Iguchi-Ariga and Schaffner, 1989; Santoro and Grummt, 2001; 

Wiench et al., 2011), DNA methylation mediates transcriptional gene repression through the 

methyl-CpG-binding domain (MBD)-containing proteins (MBDs), such as MeCP2 or MBD2. 

The MBDs are known to recruit repressor complexes encompassing HDACs that remove histone 

acetylation and lead to the formation of a more compact DNA-histone complex and hence 

trasncriptional repression (Jones et al., 1998; Nan et al., 1998; Bird and Wolffe, 1999; Bird, 

2002). Also, an enhancement of chromatin repression, mediated by MeCP2, is attained via the 
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recruitment of HMTs that methylates histone H3 at lysine 9 (H3K9) (Fuks et al., 2003). 

Furthermore, it has been shown that DNA methylation inhibits histone H3 lysine 4 methylation 

(H3K4me) (Okitsu and Hsieh, 2007; Weber et al., 2007). Trimethylation of histone H3 lysine 4 

methylation (H3K4me3) is an activating modification and a hallmark of unmethylated CGIs 

(Mikkelsen et al., 2007). It has been suggested that, in somatic cells, promoters are protected 

from de novo DNA methylation by the methylation of H3K4 (Appanah et al., 2007; Okitsu and 

Hsieh, 2007; Weber et al., 2007). Moreover, the binding of the DNMTs to H3 histone tails is 

impaired with the subsequent prevention of DNA methylation due to the presence of H3K4me3 

(Ooi et al., 2007; Zhang et al., 2010). In contrast to the evident association between DNA 

methylation and the activation mark H3K4me3, a limited link between DNA methylation and 

repressive histone modifications has been reported in mammalian genomes (Auclair and Weber, 

2012). It has been shown that in ESCs de novo DNA methylation is enhanced by the histone 

H3K9 methyltransferase G9a, in a way that is independent of its histone methyltransferase 

(HMT) activity (Dong et al., 2008; Epsztejn-Litman et al., 2008; Tachibana et al., 2008). 

Likewise, DNA methylation leads to the deposition of H3K9 dimethylation (H3K9me2), a mark 

of repressive chromatin, via the interaction of G9a and DNMT1 during replication 

(Hashimshony et al., 2003; Estève et al., 2006). A number of studies have proposed the 

association of the repressive mark H3K36me3 and DNA methylation, an association that occurs 

through the recognition of H3K36me3 by the PWWP domain of the DNMT3A (Dhayalan et al., 

2010). Trimethylation at histone H3 lysine 27 (H3K27me3) is a histone modification involved in 

the regulation of genes encoding developmental regulators and in early steps of X-chromosome 

inactivation (Cao and Zhang, 2004). The histone H3 Lysine 27 (H3K27) methylation of 

nucleosomes is posited by the histone methyltransferase enhancer of zeste 2 (EZH2), the 

catalytic component of the transcriptional polycomb repressive complex 2 (PRC2) (Kuzmichev 

et al., 2002). H3K27me3 mediates repression of transcription through the formation of compact 

chromatin (Pietersen and van Lohuizen, 2008; Schwartz and Pirrotta, 2008). In addition to the 

suggested role of histone H3 Lysine 9 in directing DNA methylation, it has been proposed that 

the Polycomb group (PcG)-mediated histone H3 Lysine 27 methylation (H3K27me) might be 

also involved in triggering de novo DNA methylation on a number of target genes under certain 

conditions (Hershko et al., 2003; Mikkelsen et al., 2007; Fouse et al., 2008; Meissner et al., 

2008; Mohn et al., 2008). The induction of de novo DNA methylation associated with 
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H3K27me3 is mediated via the interaction between EZH2 and DNMTs via another domain that 

is independent of that responsible for H3K27 methylation (Viré et al., 2006). Notably, other 

factors are implicated in stimulating the de novo DNA methylation of those genes enriched with 

either H3K9 or H3K27 histone methylations. This is suggested by the notion that the presence of  

such histone methylation does not always lead to de novo DNA methylation (Cedar and 

Bergman, 2009; Kondo, 2009). 

 Collectively, the above mentioned data confirm the concept of a bidirectional interplay or 

crosstalk between the two major epigenetic modifications, DNA methylation and histone 

modifications. Mainly, it occurs at the level of the modifying enzymes, the DNA 

methyltransferases and the SET domain histone methyltransferases, thus leading to the 

coordination of these two major epigenetic modifications (Cedar and Bergman, 2009). 
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5. Hypothesis and project objectives 
Congenital hypothyroidism from thyroid dysgenesis (CHTD) is mainly a sporadic 

disorder (only 2% of cases are familial) (Castanet et al., 2000) and exhibits a high discordance 

rate (92%) between MZ twins (Perry et al., 2002). CHTD is characterized by both female and 

Caucasian predominances (Stoppa-Vaucher et al., 2011; Deladoëy, 2012). Moreover, germline 

mutations in the thyroid-related transcription factors NKX2.1, PAX8, FOXE1, and NKX2.5 have 

been identified by systematic genetic screening in at most 3% of patients with sporadic CHTD 

(Narumi et al., 2010). Linkage analysis has excluded these genes in rare multiplex families with 

CHTD (Castanet et al., 2005). Of note, evidence of non-penetrance of mutations in genes such as 

NKX2.5 in close relatives of patients (Castanet et al., 2005) suggests that modifiers, possibly 

additional germline mutations such as CNVs and/or somatic genetic or epigenetic mutations, are 

involved in the pathogenesis of CHTD. In this regard, we hypothesized that a two (or more)-hit 

model combining germline mutations together with somatic mutations or epimutations in 

threshold-sensitive genes involved in thyroid development could account for the pathogenesis of 

TD (Deladoëy et al., 2007a). Such a unifying two (or more)-hit model could account for the lack 

of a clear familial transmission and the sporadic nature of CHTD. In familial cases, the first hit 

could be a germline rare inherited or a de novo mutation, while the additional hits could also be 

germline or otherwise somatic mutations or epimutations in other loci. In sporadic cases, the 

mutational hits occur de novo either in germline, in thyroid tissue or both. By analogy, focal 

congenital hyperinsulinism (CHI), a sporadic endocrine disorder that is less common compared 

to TD, results from such a two-hit mechanism: a paternally inherited mutation in the sulfonylurea 

receptor gene (SUR1) or inward-rectifying potassium channel gene (KIR6.2) gene occurs 

together with loss of the maternal 11p15 allele (loss of heterozygosity (LOH)), a locus 

containing many imprinted genes. The LOH is a somatic event found only in the pancreatic 

lesion (Giurgea et al., 2006). 

Therefore, the three main objectives of my doctoral studies were: 

I. To assess the role of somatic genetic or epigenetic variations in the pathogenesis of CHTD by: 

a) Analysis of a genome-wide gene expression profile of eutopic (normally located) versus 

ectopic (abnormally located) thyroid tissues using microarray analysis. 
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b) Assessment of whether or not somatic changes in DNA methylation play a role in 

dysregulation of gene expression in ectopic thyroids. Methylation profiling was assessed by 

methylated DNA immunoprecipitation (MeDIP) and MeDIP-chip assays. 

c) Assessment of the role of thyroid-specific CNVs (absent in matched leukocytes) in shaping 

the gene expression profile in ectopic thyroids using array comparative genomic hybridization 

(aCGH) of the ectopic thyroid DNA with matched leukocytes. 

II. Based on the finding that no differences in calcitonin expression levels between ectopic and 

normal (orthotopic) thyroids was identified in our genome-wide gene expression study of ectopic 

thyroid tissues (part I), we aimed to determine whether calcitonin-producing C cells are present 

in ectopic lingual thyroids by performing calcitonin immunolabeling and transcript detection on 

ectopic lingual thyroids compared with normal thyroid tissues. 

III. Based on the finding that no differentially methylated regions (DMRs) in ectopic versus 

eutopic were detected (part I) and on the fact that CpG dinucleotides and DMRs are genetic and 

epigenetic mutational hotspots, we aimed to determine whether the promoter methylation profile 

was different between thyroid and leukocytes using genome-wide and candidate gene approaches 

(for the thyroid-related transcription factors FOXE1, PAX8 and NKX2.1). The assessment 

involved: 

a) The determination of the genome-wide methylation profile of thyroids and leukocytes using 

the methylated DNA immunoprecipitation (MeDIP) and MeDIP-chip assays. 

b) The characterization of the methylation profile of the human FOXE1, PAX8 and NKX2.1 

promoters by using bisulfite sequencing. 

c) The assessment of the functional impact of CpG methylation of the FOXE1 promoter on its 

expression using global and regional (patch) in vitro methylation coupled to transient 

transfections and reporter gene assays. 
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Abstract  

Background: Congenital hypothyroidism from thyroid dysgenesis (CHTD) is predominantly a 

sporadic disease characterized by defects in the differentiation, migration or growth of thyroid 

tissue. Of these defects, incomplete migration resulting in ectopic thyroid tissue is the most 

common (up to 80%). Germinal mutations in the thyroid-related transcription factors NKX2.1, 

FOXE1, PAX-8, and NKX2.5 have been identified in only 3% of patients with sporadic CHTD. 

Moreover, a survey of monozygotic twins yielded a discordance rate of 92%, suggesting that 

somatic events, genetic or epigenetic, probably play an important role in the etiology of CHTD. 
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Methodology / Principal Findings: To assess the role of somatic genetic or epigenetic 

processes in CHTD, we analyzed gene expression, genome-wide methylation, and structural 

genome variations in normal versus ectopic thyroid tissue. In total, 1011 genes were more than 

two-fold induced or repressed. Expression array was validated by quantitative real-time RT-PCR 

for 100 genes. After correction for differences in thyroid activation state, 19 genes were 

exclusively associated with thyroid ectopy, among which genes involved in embryonic 

development (e.g. TXNIP) and in the Wnt pathway (e.g. SFRP2 and FRZB) were observed. None 

of the thyroid related transcription factors (FOXE1, HHEX, NKX2.1, NKX2.5) showed 

decreased expression, whereas PAX8 expression was associated with thyroid activation state. 

Finally, the expression profile was independent of promoter and CpG island methylation and of 

structural genome variations. 

Conclusions / Significance: This is the first integrative molecular analysis of ectopic thyroid 

tissue. Ectopic thyroids show a differential gene expression compared to that of normal thyroids, 

although molecular basis could not be defined. Replication of this pilot study on a larger cohort 

could lead to unraveling the elusive cause of defective thyroid migration during embryogenesis. 

285 words 

Introduction 

 Permanent primary hypothyroidism is the most common congenital endocrine disorder. 

In up to 85% of cases, it results from thyroid dysgenesis, a condition comprised of defects in the 

differentiation, migration or growth of thyroid tissue. Of these defects, incomplete migration 

resulting in ectopic thyroid tissue (sub-lingual thyroid) is the most common (up to 80%). The 

etiological diagnosis is established through thyroid scintigraphy [1]. Ectopic thyroids are smaller 

(i.e. they lack the lateral lobes that are characteristic of orthotopic thryroids) but are otherwise 

normal (i.e. they have a normal follicular architecture and their capacity to trap and organify 

iodine and to produce thyroid hormones and thyroglobulin is intrinsically normal [2, 3, 4, 5]. 

This suggests that the hypothyroidism of subjects with thyroid ectopy is due to a smaller amount 

of tissue (hypoplasia), which is a consequence of the migration defect, and not to defects in 

differentiation or in histological organization of the thyroid follicular cells. 

 Congenital hypothyroidism from thyroid dysgenesis (CHTD) is a heterogeneous disease, 

which exists in familial (2%) and non-familial (sporadic, 98%) forms [6]. Moreover, the results 
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of a survey of monozygotic twins yielded a discordance rate of 92% [7], which together with the 

female predominance in CHTD [8] suggest that complex non-Mendelian mechanisms underlie 

this condition. On the other hand, environmental causes operating in utero are unlikely because: 

(i) no temporal or seasonal trends for CHTD have been observed [9] and (ii) MZ twins who are 

discordant for CHTD have similar birth weight (G. Van Vliet, personal communication). 

Germinal mutations in thyroid related transcription factors NKX2.1, FOXE1, PAX-8, and 

NKX2.5 have been identified in only 3% of patients with sporadic CHTD and linkage analysis 

excluded these genes in some multiplex families with CHTD, which is consistent with a complex 

genetic contribution [10]. Together these findings indicate the involvement of novel genes and 

pathways and underlines the importance of somatic epigenetic or genetic events [11]. 

 Combining data of gene expression, DNA methylation and DNA copy number has led to 

the identification of novel genetic regulators of cancer [12, 13]. Consistent with this approach, 

we aim to assess whether the transcriptome of ectopic thyroids is shaped by somatic genomic or 

epigenomic variations (Figure 1). 

Results 

Expression array identified 1011 genes that are more than two-fold induced or repressed. 

 We used microarray analysis to compare the genome-wide RNA expression profile of 

normal (orthotopic; n=1) versus abnormal (ectopic; n=3) thyroid tissue. We identified 1833 

differentially expressed genes, and a total of 1011 genes were induced (n=522) or repressed 

(n=489) more than two-fold. The forty genes with the highest differential expression are listed in 

Table 1. To validate the differential expression identified by microarray analysis, we performed 

quantitative real-time PCR (qRTPCR) of 100 genes in ectopic thyroids compared with the same 

commercial control (Ambion) used for the arrays; these 100 genes included highly differentially 

expressed genes and genes known to play a role in the thyroid function. Overall, there was a 

highly significant correlation between microarray and qRTPCR (Pearson correlation coefficient 

of 0,86, p<2.2 e-16)(Figure S1).  
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Functional annotation clustering of the 1011 differentially expressed genes showed enrichment 

for developmental processes.  

 To assess whether the differentially expressed genes are related to development and 

organogenesis, we classified the 1011 differentially expressed genes into gene ontology (GO) 

groups using DAVID (Database for Annotation, Visualization and Integrated Discovery) with 

medium classification stringency. Table S2 shows the top three clusters for the 1011 

differentially expressed genes (more than two-fold induced or repressed) with enrichment scores 

greater than 6 (i.e. p < 1 E -06). Two of them are clusters of genes enriched for developmental 

processes. We next clusterized separately the induced (n=522) and the repressed (n=489) genes 

using DAVID according to GO terms with high classification stringency.  The top five clusters 

of induced genes with enrichment scores greater than 5.5 (i.e. p < 0.5 E -06) show genes 

important for development, vasculogenesis, the extracellular matrix, immune system 

development and collagen whereas the top five clusters for repressed genes with enrichment 

scores greater than 4 (i.e. p < 1 E -04) show genes important for histone function, apoptosis, 

chromatin function, organelle and contractile functions (Table S3). Finally, the analysis of Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways with DAVID shows enrichment 

(p<0.05) for eight pathways, among which three are associated with cell-to-cell interaction (i.e. 

MAPK signaling pathway, focal adhesion and cell communication) (Figure 2).  

Additional validation against age-matched hyperfunctioning thyroid tissue selects 19 genes 

whose expression is related to thyroid ectopy and independent of thyroid activation state.  

 Level of activity (i.e. thyroid hormone production) and consequently expression of genes 

involved in thyroid hormone production is sensitive to thyroid stimulating hormone (TSH) 

[14,15]. CHTD patients have high TSH at diagnosis, after which the level of their TSH may vary 

depending on the compliance to the treatment; or the TSH is high for years in cases of delayed 

treatment, as in our case 1  (Table S4). To correct for differential TSH-dependent activation of 

thyroid tissue, we extended the qRTPCR analysis for the 100 validated genes to three 

hyperfunctioning thyroid nodules (i.e. somatic activation of the TSH receptor) that had arisen in 

otherwise normal (orthotopic) thyroids. Of the 100 genes, 19 showed consistently induction or 

repression when compared to all types of controls (i.e. hyperfunctioning thyroid nodules and the 

commercial control) (Table 1). The 81 remaining genes showed divergent expression: i.e. they 
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were either induced in ectopic thyroid when compared to the commercial control but repressed 

when compared to the three hyperfunctioning thyroid nodules or vice versa (Table S5), 

suggesting that the expression of those 81 genes was dependent of thyroid activation state. 

Pathway analysis of the 19 selected genes showed association with Wnt signalling pathway 

whereas the 81 excluded genes were enriched for thyroid hormonogenesis and function. 

 We then asked whether the use of two different types of control was able to exclude 

genes that are dependent on thyroid activation state and to identify genes associated exclusively 

with defective migration of the thyroid. To consider the level of expression (which is not 

possible with DAVID), we used the Ingenuity Pathways Analysis software for GO annotation 

and pathway analysis (Ingenuity® Systems, www.ingenuity.com). The 19 selected genes (Table 

2) were enriched for the Wnt pathway, dendritic cell maturation pathway, and embryonic 

developmental functions (for each enrichment scores greater than 1.5; p <0.02 and Benjamini-

Hochberg multiple correction p < 0.05). As expected, the 81 genes (Table S5) excluded because 

of divergent expression are enriched for thyroid hormonogenesis and function: thyroglobulin 

(TG), thyroid peroxidase (TPO), deiodinase type II (DIO2), deiodinase type I (DIO1), dual 

oxidase 2 (DUOX2), paired box gene 8 (PAX8), thyroid stimulating hormone receptor (TSHR) 

and thyroid hormone responsive SPOT14 homolog (THRSP) (i.e for GO term endocrine system 

disorders, the enrichment score is 2; p<0.01 and Benjamini-Hochberg multiple correction p 

<0.01). To control for tissue quality, we also analyzed 10 unregulated genes which are either 

well described thyroid-related transcription factors (FOXE1, HHEX, NKX2.1, NKX2.5) [16] or 

genes involved in the Wnt pathway (CTNNB1, GSK3B, CDH1, APC, AXIN1, AXIN2) [17]. 

CTNNB1 and CDH1 showed divergent expression; APC, AXIN1, AXIN2, FOXE1 and NKX2.1 

showed increases of convergent expression; and NKX2.5 expression was massively increased 

when compared to orthotopic thyroids but only slightly increased when compared to the 

commercial control, which therefore might be considered as divergent. None of the thyroid 

related transcription factors (FOXE1, HHEX, NKX2.1, NKX2.5) showed decreased expression 

regardless of the control used (Table 3).  

Differential gene expression in ectopic thyroid is independent of methylation. 

 The next step was to assess whether somatic changes in DNA methylation play a role in 

dysregulation of gene expression in ectopic thyroids. Methylation profiling by methylated DNA 
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immunoprecipitation (MeDIP) and MeDIP-chip was performed by hybridizing pairs of enriched 

methylated fraction (IP) and normal fraction (IN) of genomic DNA from our three ectopic 

thyroids and three controls orthotopic hyperfunctioning thyroid nodules. The methylation profile 

was similar between the ectopic and orthotopic thyroids: after multiple test correction, there was 

no statistically significant difference (i.e. no region with a less stringent False Discovery Rate 

threshold of 0.1) (data not shown). Consequently, no correlation was found between the 

differential expression in ectopic thyroids and the global methylation profile. 

Differential gene expression in ectopic thyroid is independent of thyroid-specific CNVs. 

 To assess whether thyroid-specific (i.e. absent in matched leucocytes) CNVs shape gene 

expression in ectopic thyroids, we used array comparative genomic hybridization (aCGH) of the 

ectopic thyroid DNA with matched leucocytes. By analyzing data as described in Materials and 

Methods, we found four thyroid-specific CNVs (three validated by qPCR), which are reported 

variants as reported in the Database for Genomic Variants (http://projects.tcga.ca/variation) 

(Table S6). No correlation was found between thyroid-specific CNVs and differentially 

expressed genes in ectopic thyroids.  

Discussion  

 Generally, CHTD is sporadic and shows discordance between MZ twins [7]. Somatic 

genetic or epigenetic events might therefore have a role in the etiology of this condition. The 

objective of this study was to assess whether somatic molecular events account for the failure of 

migration of ectopic thyroids. Therefore, we conducted the first integrative analysis of 

transcriptome, DNA methylation and structural variants (CNV) in ectopic thyroids.  

 We found altered expression in genes and pathways that might play a significant role in 

abnormal thyroid development (e.g. Wnt signaling pathway). Interestingly, none of the thyroid 

related transcription factors (FOXE1, HHEX, NKX2.1, NKX2.5) showed decreased expression, 

whereas PAX8 expression was associated with thyroid activation state. This is a direct indication 

that the expression of these known candidate genes is at least neutral in ectopic thyroid and is 

consistent with the observation that the coding sequences for FOXE1, NKX2.1 and PAX8 were 

normal in case #1 [5]. 
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 Four pathways identified by analysing the results of expression arrays  (i.e. focal 

adhesion, antigen processing and presentation, cell communication, cell adhesion molecules and 

Type I diabetes) have been identified independently in hyperfunctioning thyroid nodules [18]. 

However, our results identify mostly induced genes in these pathways (Figure 1) whereas 

repression of these genes was observed in the aforementioned study [18]. To obtain, in ectopic 

thyroid, an opposite expression pattern when compared to that of orthotopic hyperfunctional 

thyroid (i.e. thyroid with somatic TSH receptor activating mutation) is plausible, but it underlines 

also the need to consider the differential activation of the TSH-receptor signaling pathways in 

our samples. Consequently, we have excluded 81 validated genes for which expression was 

associated with TSH-driven thyroidal activity. 

 The 19 selected genes whose expression was dependent on thyroid location (i.e. ectopy) 

were enriched for pathways involved in cellular movement (i.e. Wnt pathway and dendritic cell 

maturation pathway). This association has biological plausibility especially for the Wnt pathway. 

First, non-canonical Wnt pathway is crucial for cell migration [19] and development of organs of 

endodermal origin (e.g. intestine, lung, pancreas) [20]. There is indirect evidence for the 

involvement of the non-canonical Wnt pathway in the developing thyroid in mice [21], even 

though the canonical Wnt/beta-catenin pathway seems to be inactive during thyroid development 

in mice and humans [21, 22]. Second, as Wnt signaling is implicated in development and cancer 

[23], to find an association between Wnt pathway and thyroid ectopy (i.e. failure of proper 

thyroid migration during development) makes biologically sense. Indeed, SFRPs have been 

associated with embryonic patterning [24], inhibition of meduloblastoma cell proliferation [25] 

and inhibition of glioma cell motility [26]. Inhibition of the Wnt pathway by Wnt5-a has also 

been shown to suppress tumor activity in thyroid carcinoma [27]. 

 This study has several limitations. First, the expression profiles in tissue collected and 

analyzed postnatally may not reflect embryonic expression. Consequently, whether the 

differences we observed are causes or consequences of the ectopic location of the thyroid 

remains to be tested. Second, even though clusters of genes involved in histone and chromatin 

function have repressed expression in ectopic thyroids, we have not formally excluded a role of 

differential histone methylation or acetylation on differential gene expression in ectopic thyroids. 

Third, the arrays used for the CNVs and methylome analyses have their own limits in definition 
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and genome coverage. Lastly, the sample number is small but our preliminary findings justify 

testing a larger number of samples.  

 This study identifies interesting candidate pathways that may play important roles in the 

migration of the embryonic thyroid and provides a prototype approach for the study of congenital 

disorders difficult to explain by classical genetics. 

Methods 

Ethic Statement 

 This study was approved by the Ethics Committee of the CHU Sainte-Justine (ERB 

number 94). All the parents gave written informed consent. 

Patients and Tissue Collection 

 We obtained flash-frozen samples of ectopic thyroid tissue removed from 3 girls aged 8, 

10 and 15 yr, because it caused local symptoms (i.e. dysphagia). For controls, we used (i) thyroid 

tissue from 2 girls (aged 15 and 16 yr) and 1 boy (aged 4 yr) who were operated for a single 

hyperfunctioning thyroid nodule that had arisen in an orthotopic thyroid and (ii) commercially 

available RNA from normal thyroid when appropriate (Table S6).  

Functional clusters and pathways analysis  

 We submitted the 1011 differentially expressed genes into gene ontology (GO) groups 

using the DAVID database (http://david.abcc.ncifcrf.gov) for cluster analysis according to Gene 

Ontology (GO) terms with medium or high classification stringency. To provide a refined 

analysis, the 100 validated gene were analyzed through Ingenuity Pathways Analysis (IPA; 

http:www.ingenuity.com), a software that also considers the level of gene expression. With 

either DAVID or IPA, the proportion of each gene in the submitted list is compared with the one 

in the whole genome to compute the P value of the Fisher’s test, the enrichment scores (i.e. 

geometric mean of the inverse log of each P value) and the Benjamini-Hochberg multiple 

correction P value.  

Expression Arrays  

 After surgical resection, the samples were immediately frozen in liquid nitrogen and 

stored at -70 Celsius until use. Total RNA was extracted as per manufacturer recommendations 
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using the QIAzol kit (QIAGEN Inc., Ontario, Canada). RNA was DNase-treated to minimize 

DNA contamination. RNA quantity was measured by ND-1000 (Nanodrop, Wilmington, DE, 

USA). RNA quality was assessed by electropherograms on the Agilent 2100 Bioanalyzer. 

Microarray hybridization was performed on three different ectopic thyroids (two in duplicate, 

one in quadruplicate) and compared to RNA of thyroid tissue from a Caucasian female, age 68 y 

with gall bladder cancer (Ambion, #AM6872). Double-stranded cDNA was synthesized from 1 

µg of total RNA, followed by production of antisense RNA containing the modified nucleotide 

5-(3-aminoallyl)-UTP using the Amino Allyl MessageAmpTM II aRNA Amplification kit 

(Ambion, Texas, USA). After labeling with Cy3 or Cy5 (GE Healthcare Bio-Sciences, New 

Jersey, USA), sample pairs were hybridized onto Human Exonic Evidence Based 

Oligonucleotide HEEBO slides (Stanford Functional Genomics Facility, CA, USA). The 

oligonucleotide set consists of 44544 70-mer probes that were designed using a transcriptome-

based annotation of exonic structure for genomic loci. Hybridizations were replicated with dye 

swap. Slides were scanned using a Molecular Devices 4000B Laser scanner and expression 

levels were quantified using GenePix Pro 6.1 image analysis software (Axon Instruments, CA, 

USA). Image acquisitions were performed with automatic photomultiplier gains (PMT) 

adjustment. Artefact-associated spots were eliminated by both visual and software-guided flags, 

as were spots with a signal/background fluorescence ratio less than 2. The fluorescence values 

were imported into Acuity 4.0 software package (Molecular Devices, Union City, CA, USA). A 

non-linear locally weighted scatter plot (Lowess) normalization method applied to each 

individual block (print-tip option) was carried out using Acuity 4.0 software package (Molecular 

Devices, Union City, CA, USA) [28]. The identification of genes with significant differences in 

expression levels was performed using the significance analysis of microarray method (SAM one 

class) [29]. SAM estimates the percentage of genes identified by chance, the false discovery rate 

(FDR). We assessed the statistical significance of the differential expression of genes by 

computing a q-value (i.e. minimum FDR) for each gene (Table 1). Genes were considered to be 

differentially expressed when the absolute normalized fold change between ectopic thyroids and 

control was determined to be greater than 2.0 or less than 0.5 in at least one pair of the 

hybridized arrays. Full access to the primary array data is available on the GEO web site 

(http://www.ncbi.nlm.nih.gov/projects/geo/) under accession number GSE16804. 
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Quantitative Real-Time RT-PCR 

 Validation of the expression levels of 100 genes of interest was carried out using TaqMan 

low density array (TLDA) technology (Applied Biosystems, Ontario, Canada). Probes and 

primers have been selected with the publically available software 

http://www5.appliedbiosystems.com/tools/ and can be retrieved by using the assay ID reported in 

Tables 2, 3 and S5. The expression levels were normalized to the expression level of the 18S 

rRNA. Induced (n=49) and repressed (n=51) genes were selected from the 1011 differentially 

regulated genes found in the HEEBO expression microarray analysis. Total RNAs from thyroids 

were first treated with the DNA-free kit to remove residual contamination of genomic DNA 

(Ambion Inc.). DNA-free total RNA (175 ng) was subjected to reverse transcription using High-

Capacity cDNA Reverse Transcription Kits (Applied Biosystems). An aliquot of the cDNA was 

mixed to TaqMan® Gene Expression Master Mix, loaded on the TLDA plates then centrifuged 

for distribution of the material in the 384 wells. Gene target amplifications were performed in 

triplicate using the 7900HT Real-Time PCR System (Applied Biosystems). Sequence Detection 

System software version 2.2.2 (Applied Biosystems) was used for comparative gene expression 

analysis using the ΔCt method. In a first analysis, expression levels found in the normal 

orthotopic thyroid from Ambion were compared to the mRNA levels present in the ectopic 

thyroids. Expression levels in the hot nodules were then compared to the levels found in the 

ectopic thyroids. For analysis, the cut-off log2 value was 0.5. Then, to compare the results of the 

quantitative real-time RT-PCR with those of expression arrays, Pearson correlation was 

calculated with the free statistical software R [30]. 

Methylation Profiling by Methylated DNA Immunoprecipitation (MeDIP) and MeDIP-chip. 

 The MeDIP-chip was performed using pairs of enriched methylated fraction (IP) and 

normal fraction (IN) of genomic DNA from our three ectopic thyroids and three controls (i.e. 

hyperfunctioning thyroid nodules). The methylated fraction of genomic DNA was enriched using 

the methylated DNA immunoprecipitation (MeDIP) assay [31] and interrogated on human 

Promoter plus CpG Island Tiling Arrays with a ChIP design for CpG islands and promoter 

regions (n=28,226) from HG18 using 385,020 Probes selected from CGH probe bank with a 

median spacing of 101bp (Roche NimbleGen, Madison, WI). Briefly, 4 µg MseI digested 

genomic DNA was immunoprecipitated with monoclonal mouse anti 5-methylcytidine antibody 
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(New England Biolab, Pickering, Ontario and Abcam Inc.Cambridge, MA 02139). After washes 

and purification steps, immunoprecipitated material and a sample of input DNA were amplified 

using GenomePlex Complete Whole Genome Amplification (WGA) kit (Sigma-Aldrich, Saint 

Louis, Missouri 63103 USA). The resulting products (4 µg) were labeled, cohybridized and 

scanned by the NimbleGen Customer Service (Roche NimbleGen, Madison, WI). For each 

sample, NimbleScan detects peaks by searching for at least two probes above a P-value cutoff (-

log10) of 2 and peaks within 500bp are merged (gff files on GEO web site). Then, peak data were 

analyzed to compare the methylation profile between ectopic thyroids and orthotopic thyroids 

using the Loess normalized log2 (ChIP/input) ratios with the one-way ANOVA tool of the Partek 

Genomics Suite (PGS) software. A FDR less than 0.1 was considered as significant. Full access 

to the primary array data is available on the GEO web site 

(http://www.ncbi.nlm.nih.gov/projects/geo/) under accession number GSE17581. 

Array Comparative Genomic Hybridization and validation with quantitative real-time PCR 

 Array comparative genomic hybridization (aCGH) was performed using pairs of thyroid 

tissues and leucocytes from the three ectopic thyroids. We used the Nimblegen X1 HG18 whole 

genome CGH design (version 2). The 385,815 probes are distributed across the genome with a 

median spacing of 7073 bp. Probes are 60-mers, with a Tm target of 80 degrees. Labeling, 

hybridization, washing and scanning was performed by the NimbleGen Customer Service 

(Roche NimbleGen, Madison, WI). After normalization, the log2 (test/reference) signals were 

analyzed using a circular binary segmentation algorithm (segMNT) with the PGS Software to 

identify somatically acquired segmental copy number changes. To call a copy number change, 

segMNT required a segment to span a minimum of 5 consecutive probes with a p-value 

threshold of 0.001 and a signal to noise ratio of 0.3. Then, reported regions were set at segMNT 

log2 ratio below 0.3 or above 0.2 in all three samples with a p-value threshold of 0.01. Full 

access to the primary array data is available on the GEO web site 

(http://www.ncbi.nlm.nih.gov/projects/geo/) under accession number GSE17463. Validation of 

the aCGH with quantitative real-time PCR was performed with the TaqMan technology. 

Identified CNVs were validated using TaqMan Gene Copy Number Assays from ABI. Probes 

and primers have been selected with the public available software 

(http://www5.appliedbiosystems.com/tools/cnv/) and can be retrieved by using the assay ID 

reported in Table S6.  
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Figure Legends: 

 

Figure 1. Breakdown of the experimental design and overview of the results. 

 

Figure 2. Expression array: gene pathway distribution in ectopic thyroid according to KEGG. 

The pathways are classified according to the number of regulated genes (HEEBO array results). 

P-values of Fisher’s exact test for each KEGG pathways are listed to the right of the boxes. Dark 

gray, induced genes; gray, repressed genes. 
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Figures: 

 
 

Figure 1 

 

Figure 2 
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Tables: 

Table 1. Result of the expression array: the top twenty induced (upper panel) and top twenty 
repressed (lower panel) genes. 

TOP 20 induced genes     
Entrez Gene Name Entrez Gene ID Arraya q-value  (%)b qRTPCR RQ value c 

LYZ                            4069 5,99 0,0000 5,41 
FOSB                           2354 5,48 0,0000 5,62 
IGJ                            3512 5,44 0,0000  
TRA@                           6955 5,23 0,7897  
PAX8                           7849 4,68 0,0000 2,55 
CYBB                           1536 4,62 0,0000  
TRA@                           6955 4,60 0,0000  
HLA-DQA1                       3117 4,56 0,0000  
CECR1                          51816 4,49 0,0000  
HLA-DQB1                       3119 4,41 0,0000  
EGR1                           1958 4,29 0,0000  
RNASE6                         6039 3,98 0,0000  
SFRP2                          6423 3,91 0,0000 4,74 
GPNMB                          10457 3,87 0,0000 4,97 
PABPC1                         26986 3,85 0,0000  
MS4A6A                         64231 3,84 0,0000  
KLF4                           9314 3,74 0,7897  
HADHA                          3030 3,61 0,7897  
FOS                            2353 3,61 0,0000 4,46 
IGHG4                          3503 3,52 0,7897  

 
TOP 20 repressed genes     

Entrez Gene Name Entrez Gene ID Arraya q-value  (%)b qRTPCR RQ valuec  
ABCA13                         154664 -6,06 0,0000 -4,12 
CKM                            1158 -5,86 0,0000 -10,31 
ACTA1                          58 -5,31 0,0000 -5,06 
C9orf70                        84850 -4,85 0,0000  
CHGA                           1113 -4,83 0,0000 -8,38 
MYBPC1                         4604 -4,60 0,0000  
ATP2A1                         487 -4,19 0,0000  
TNNC2                          7125 -4,09 0,0000 -4,64 
IGSF1                          3547 -4,00 0,0000  
EEF1A2                         1917 -3,87 1,9070  
FLJ32115                       121506 -3,79 0,7897  
PCSK2                          5126 -3,66 1,9070  
RASD1                          51655 -3,53 2,7615 -0,51 
RARRES1                        5918 -3,52 1,9070  
EDN3                           1908 -3,40 1,9070 -1,83 
PRKCE                          5581 -3,32 2,7615 1,98 
GSTT1                          2952 -3,24 4,2100  
FLJ11127                       54491 -3,20 3,2882  
TCAP                           8557 -3,17 3,9587  
LOC440696                      3322 -3,17 3,2882  

aArray mean ratio are expressed in log2. 
bQ-values (i.e. minimal false discovery rate) are expressed in percent, all P-values are less than 
0.001. 
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cValidation with qRTPCR: RQ values are expressed in log2. Bold characters indicate genes that 
are validated (13 of 14 tested) among these 40 genes. 

 
Table 2. Validated genes (n=19) with convergent induced (n=16) and repressed (n=3) expression 

in ectopic thyroid tissue (i.e. independent of the activation state and dependent on the 
localization of the thyroid tissue). 

 
a Array mean ratio and qRTPCR RQ are expressed in log2. 
Bold characters indicate genes that are directly associated with the Wnt pathways (canonical and 
non-canonical). 
Italic characters indicate genes that are regulators of the Wnt/beta-Catenin pathway (Major et al., 
2008).  
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Table 3. Quantitative RTPCR for 10 controls.  
Entrez Gene 
Name 

Entrez Gene 
ID 

RQ of qRTPCR vs 
normal thyroid a 

RQ of qRTPCR vs 
hot nodulesa 

Taq Man Assay ID 
for qRTPCR 

APC 324 2,31 0,13 Hs01568269_m1 

AXIN1 8312 1,39 0,2 Hs00394718_m1 

AXIN2 8313 2,05 0,62 Hs01063168_m1 

CTNNB1 1499 1,35 -0,53 Hs00355045_m1 

CDH1  999 2,07 -0,35 Hs00170423_m1 

FOXE1 2304 2,58 0,47 Hs00538731_s1 

GSK3B 2932 2,1 0 Hs00275656_m1 

HHEX 3087 1,62 0,05 Hs00242160_m1 

NKX2.1 16002 1,43 0,36 Hs00163037_m1 

NKX2.5 1482 0,53 6,93 Hs00231763_m1 

a Array mean ratio and qRTPCR RQ are expressed in log2. 
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Supplementary figure S1: 

 

Figure S1: Reliability of the HEEBO expression array was confirmed by calculating the Pearson 
correlation coefficient (r = 0,86; P<2.2 e-16, n = 100 genes; ectopic thyroid (n = 3) 
vs normal thyroid - Ambion, #AM6872) between microarray and qRT-PCR results. 
Results are expresed in log2 ratio. 
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Supplementary tables: 

Table S1: The top three clusters for the 1011 differentially expressed genes (more than two-fold 
induced or repressed). 
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Table S2: Clusters for the induced (n = 522) and repressed (n = 489) genes. 
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aEnrichment score is the negative log of geometric mean of each member’s P-value in the 
cluster. 
bP-value is calculated by Fisher’s exact tests. 
cBenjamini-Hochberg is the P-value corrected for multiple comparisons. 
 

 

 

Table S3: Source of patients derived thyroid tissues. 

 
 

 

 

 

 

Table S4: Validated genes (n = 81) with divergent expression in ectopic thyroid tissue (i.e. 
dependent on the activation state and independent of the localization of the thyroid 
tissue). 
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Table S5: Thyroid specific CNVs found in ectopic tissues. 
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Précis: Evidence for calcitonin-producing cells in ectopic lingual thyroids challenges the 

concept of ultimobranchial bodies as unique source of calcitonin-producing cells in human 

thyroids. (25 words) 

Abstract 

Context: The thyroid contains two types of cells, the thyroid follicular cells and the calcitonin-

producing cells. The site of origin of the thyroid follicular cells is the median thyroid anlage, an 

endothelial diverticulum in the midline of the ventral pharynx between the first and the second 

pharyngeal pouches. The ultimobranchial bodies (UBB), a pair of transient embryonic structures 

evaginated from the fourth pharyngeal pouch and located symmetrically on the sides of the 

developing neck, are the source of calcitonin-producing cells. In human embryos, the thyroid bud 

starts its migration at embryonic day 24 (E24) and reaches its final location in front of the 

trachea at E45-50. The UBB fuse with the primitive thyroid when thyroid migration is 

completed. Lingual thyroids result from the failure of the thyroid precursor cells to migrate from 

the primordial pharynx to the anterior part of the neck. Therefore, calcitonin-producing cells are 

not expected to be present in lingual thyroids.  

Objectives: Our objective was to determine whether calcitonin-producing C cells are present in 

ectopic lingual thyroids. 

Design, Setting, Patients, and Main Outcome Measure: We performed calcitonin 

immunolabeling and transcript detection on four flash-frozen ectopic lingual thyroids. Additional 

calcitonin immunolabeling was performed on two other paraffin-embedded ectopic lingual 

thyroids.  

Results: We report evidence of calcitonin-producing cells in six independent cases of ectopic 

lingual thyroids.  

Conclusion: The UBB are not the only source of calcitonin-producing cells in humans. 

Interactions between calcitonin-producing and thyroid follicular cells occur earlier than 

previously accepted. 

245 words 
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Introduction 

 Congenital hypothyroidism is the most frequent endocrine disorder in newborns, with a 

birth prevalence of 1 case per 2,500 live births (1). It is caused by defects in thyroid migration 

that lead to lingual or sublingual ectopy, in about 50% of the cases (1, 2). Thyroid lingual ectopy 

results from a failure of the thyroid precursor cells to migrate from their origin in the primordial 

pharynx to their correct final anatomical location at the anterior part of the neck.  

 Thyroid hormones and calcitonin are produced in the thyroid gland by two distinct cell 

types, the thyroid follicular cells (TFCs) and the parafollicular or C cells, respectively. These two 

cell types originate from two different embryonic structures. The site of origin of the TFCs is the 

median thyroid anlage, an endothelial diverticulum in the midline of the ventral pharynx between 

the first and the second pharyngeal pouches. The ultimobranchial bodies (UBB), a pair of 

transient embryonic structures evaginated from the fourth pharyngeal pouch and located 

symmetrically on the sides of the developing neck, are considered to be the only source of the C 

cells (3). The migration of the UBB, from their primitive origin in the neural crest to their final 

location in the thyroid gland, was carefully studied in the chicken embryos in the 1970s (4). In 

humans, the thyroid bud starts its migration at embryonic day 24 (E24), to reach its final location 

in front of the trachea at E45-50 (2). While the human thyroid continues to grow and expand 

laterally, the UBB fuse with the primitive thyroid at around E60 (2). Considering the initial 

localization and migration path of the UBB, C cells are not expected to be present in lingual 

ectopic thyroids. 

 In a genome-wide gene expression study of ectopic thyroid tissue (Gene Expression 

Omnibus, accession number GSE16804) (5), we observed no differences in calcitonin expression 

levels between ectopic and normal (orthotopic) thyroids. This suggests that calcitonin is also 

expressed in ectopic lingual thyroids, which contradicts current knowledge of the embryologic 

development of the thyroid. Moreover, no calcitonin was detected by immunohistochemical 

staining in the few histological studies previously performed on non-tumoral ectopic thyroids in 

cats and dogs(6, 7). In contrast, a case of a sporadic form of cancer arising from C cells (i.e. 

medullary carcinoma of the thyroid) was observed in the lingual thyroid of a 45-year-old woman 

(8). All the tumor cells were positive for calcitonin, coexisting with a few TFCs. No systematic 

search for C cells has been performed in non-tumoral ectopic thyroids. The purpose of this study 
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was therefore to determine whether calcitonin-producing C cells are, as our genome-wide gene 

expression study suggested, present in ectopic lingual thyroids. 

Material and Methods 

Ethics Statement 

 This study was approved by the Ethics Committee of the CHU Sainte-Justine. The 

patients or the parents of the patients from whom samples were taken gave written informed 

consent. 

Characteristics of the participants and tissue collection 

 We obtained flash-frozen samples of ectopic lingual thyroid removed from four girls 

aged 9.5, 14, 9 and 14 yr (lingual thyroids number 1 to 4), and two additional paraffin-embedded 

ectopic lingual thyroids removed from one boy aged 8 yr and one woman aged 26 yr (lingual 

thyroids number 5 and 6); in all these cases, surgery was performed because the ectopic lingual 

thyroid caused local symptoms (e.g. dysphagia) (5, 9). As positive control for the RT-PCR, we 

used tissue (obtained from near-total thyroidectomy) adjacent to papillary thyroid carcinomas 

from 3 girls aged 12, 14 and 16 yr. The non-tumoral nature of the healthy tissues used as controls 

was confirmed by histology. The fact that 5 of 6 lingual thyroid were obtained from females is 

consistent with the known female predominance of ectopic thyroid (1). As negative controls, we 

used RNA from the WRO thyroid cell line (follicular tumoral cells) and RNA from the 

leucocytes of a healthy adult male. 

Immunohistochemical analysis 

 Immunohistochemistry was performed on paraffin-embedded sections using Ultraview 

Universal DAB detection kit (Ventana, Ventana medical system, Tuscon, AR). Antibodies 

against calcitonin (1/1000, rabbit polyclonal, Dako, Glostrup, Denmark) were applied for 32 

min. This was followed by application of Ultraview Universal DAB detection kit reagents in 

accordance with manufacturer’s instructions. Alkaline phosphatase was used as a chromogen and 

hematoxylin was used as a counterstain. Normal rabbit IgG at the same concentration as the 

primary antibody served as negative control. A thyroid sample with C cell hyperplasia, obtained 

at prophylactic thyroidectomy from a 6 yr old boy carrier of the C634Y RET mutation, was used 

as positive control. 
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RNA extraction and reverse-transcriptase PCR 

Calcitonin gene (CALCA, NCBI reference sequence NC_000011.9) mRNA expression 

was examined by reverse transcriptase polymerase chain reaction (RT-PCR) in four ectopic 

lingual thyroids, three orthotopic thyroids (flash-frozen healthy tissues adjacent to papillary 

thyroid carcinomas) and in negative controls (leucocytes and WRO cell line). Total RNA was 

extracted using the RNeasy Plus Mini Kit (QIAGEN Inc., Ontario, Canada) according to the 

manufacturer’s recommendations. RNA was DNase-treated to minimize DNA contamination and 

quantified using ND-1000 (Nanodrop, Wilmington, DE, USA). Performing electropherograms 

on the Agilent 2100 Bioanalyzer assessed RNA quality. Reverse-transcriptase reactions were 

performed with 500 ng of RNA, using the High Capacity cDNA Reverse Transcriptase Kit 

(Applied Biosystem). The CALCA gene is transcribed into two different RNAs, one coding for 

calcitonin and katacalcin (the precursor protein of which is differentially cleaved) and another 

for alpha calcitonin gene-related peptide (CGRP). Therefore, RT-PCR was performed with 

specific primers for calcitonin/katacalcin cDNA, which do not amplify alpha CGRP cDNA. 

Thirty-five cycles of PCR were necessary to detect calcitonin transcripts even in normal thyroids, 

consistent with the fact that C cells are only a minute portion of the thyroid cellular mass. The 

ubiquitous gamma actin gene (ACTG1, NCBI reference sequence NM_001614.2) was used as a 

positive control to ensure the efficiencies of the RNA extraction, retro-transcriptase reaction and 

cDNA amplification. Primers sequences and RT-PCR protocols are available upon request. 

Results  

Immunolabeling of calcitonin-producing cells in human lingual thyroids. 

To assess whether calcitonin-producing cells are present in human lingual thyroids, we 

performed immunostaining for calcitonin on samples from six human ectopic lingual thyroid 

specimens (5). All six samples showed a positive staining for calcitonin (Figure 1). The putative 

C cells identified were isolated and were located in both inter- and intrafollicular areas.  

Detection of calcitonin transcript in human lingual thyroids. 

Calcitonin gene (CALCA) transcripts were detectable through RT-PCR on samples from 

the four flash-frozen ectopic thyroid tissues (samples 1 to 4) (Figure 2). Indeed, low RNA quality 

from paraffin-embedded ectopic thyroids (samples 5 and 6) precluded any molecular analysis. 
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CALCA cDNA was detected in all analyzed thyroid samples, although in lower amounts (as 

shown by signal intensities) than in the three orthotopic thyroid tissues. However, considering 

the random nature of tissue sampling, which often results in variations in the number of counted 

C cells, an absolute quantitative comparison was not possible. 

Discussion 

 Finding calcitonin-producing cells in ectopic lingual thyroid samples challenges the 

current view of thyroid development. This observation is indirectly supported by previous 

findings such as (i) the detection of a medullary carcinoma in a lingual thyroid (8), (ii) the 

equivalent calcitonin expression level in the comparative gene expression study between the 

ectopic and orthotopic thyroid tissue (5) and (iii) the presence of low (but detectable) circulating 

calcitonin levels in patients suffering from congenital hypothyroidism due to thyroid dysgenesis 

(10, 11). 

Origins of C cells in ectopic lingual thyroid 

 Three possible explanations may account for this finding. First, UBB may aberrantly 

migrate towards the base of the tongue and join the primitive thyroid. However, there is no 

literature supporting aberrant UBB migration in developing thyroids and the systematic 

recurrence of aberrant migration in six independent ectopic thyroids seems unlikely. Second, 

some TFCs could differentiate towards heterotopic C cells, i.e. undergo transdifferentiation, in 

which a non-stem cell is transformed into a different cell type. One of the best examples of 

transdifferentiation is Barrett metaplasia, an abnormal change of the cells of the lower esophagus 

into intestinal mucin-secreting cells, caused by damage from chronic stomach acid exposure 

(12). Transdifferentiation of various cell types towards C cells is observed either in tumoral or in 

non-tumoral tissue. Some tumor cells can switch their differentiation program and acquire some 

of the properties of C cells (i.e. the secretion of calcitonin), as in cancers of the lung, breast or 

adrenal medulla(13). The recognition that a small group of primary tumors may undergo both C 

cell and TFC differentiation has given rise to speculation as to whether C cells are solely derived 

from neural crest or whether some are of follicular origin (14). Struma ovarii (i.e. the presence of 

thyroid tissue as major component of an ovarian tumor) can also be explained by a 

transdifferentiation phenomenon. There are also reported cases of non-tumoral ectopic thyroid 

masses in heart, lung or even in infra-diaphragmatic sites, such as the intestine. In one such 
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duodenal ectopic thyroid mass, staining for calcitonin was negative (15). These ectopic thyroids 

are usually observed in patients who have an orthotopic thyroid gland and, considering their 

anatomic position, arise more likely also from cell transdifferentiation: an aberrant migration of 

the thyroid precursors so far from their origin is not plausible. Finally, the third possible 

explanation is that the in situ differentiation of pluripotent stem cells gives rise to both C cells or 

TFCs in ectopic thyroids. Conversely, it has been suggested that UBB cells could differentiate 

into TFCs (16). Some authors maintain that most of the follicular content of the thyroid 

originates from the median anlage but the “lateral thyroid”, corresponding to 1-30% of the gland 

total weight, is derived from UBB (17). Moreover, Williams et al. showed, in cases of thyroid 

ectopy, cystic structures in the region of the upper parathyroids which contained both TFC and C 

cells, suggesting that these intracystic follicular cells are derived from the UBB (18).  

Developmental and marker gene expression in TFCs and C cells 

 There is evidence for an interconnection between the embryologic development of the 

primitive TFCs and of the UBB-derived cells. The two endocrine cell types have common 

markers, such as FOXE1/TITF2, NKX2-1//TITF1 and HES1, which are expressed in both the 

median thyroid anlage and lateral UBB from the beginning of their specification, throughout 

development and in adult tissues (19, 20). FOXE1 is expressed in the UBB but its absence in 

Foxe1 -/- mice does not affect UBB development and function (21). NKX2-1 is mandatory for 

UBB survival (20) and, in Nkx2-1 haploinsufficiency, the UBB does not fuse with the thyroid 

diverticulum and  C cells  persist in clusters around the vesicular structures, as observed 

previously in Nkx2-1 -/- mice (20). In mature C cells , NKX2-1 can be modulated and it 

coordinately regulates genes involved in calcium-homeostasis (22). Hes1, a gene notably 

involved in the development of endoderm-derived endocrine organs, such as the pancreas, has 

recently been shown to play a role in thyroid development. Hes1 knockout mouse embryos had a 

significantly lower number of Nkx2-1 positive progenitor cells, showed a delayed fusion of the 

UBB with the primitive thyroid and had decreased production of both thyroxin and calcitonin 

(19). Moreover, interactions between UBB and median precursor cells seem to be necessary for 

the last steps of thyroid organogenesis. For example, the invalidation of Eya1 in mice resulted in 

two concomitant phenotypes: thyroid hypoplasia and a severe alteration in the migration of the 

UBB, which was accompanied by lack of fusion between these structures and the thyroid lobe. In 

addition, the primordial organ for both the thymus and parathyroid glands failed to form. Since 
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Eya1 is not expressed in the thyroid diverticulum, it is possible that the TFC defect arises 

because the UBB fail to fuse with the thyroid lobes (23). Hoxa3 null mice (24) and mice carrying 

mutations in the Pax3 (25) or Endothelin-1 (26) genes show defects similar to those observed in 

mice deprived of Eya1. Another study demonstrated the variable penetrance of the phenotype in 

mice carrying various combinations of mutant in Hoxa3 and its paralogs Hoxb3 and Hoxd3, with 

a more marked thyroid defect that was associated with increased UBB migration failure (27). 

Other situations are however described where the absence of UBB formation seems to be not 

associated with a structural thyroid anomaly, as in Pax9 defective mice (28). These interactions 

between the UBB and the thyroid diverticulum, which seem to be critical for correct 

morphogenesis, are a unique feature of the mammalian thyroid: in chicken and fish, the UBB 

remain a bilateral structure that does not merge with the thyroid diverticulum (29).  

Functional links between TFCs and C cells 

 In addition to their embryologic links, TFCs and C cells also seem to show functional 

interconnections. The anatomic location of the C cells within the basement membrane of the 

thyroid follicles renders a paracrine interrelationship with the follicular epithelial cells plausible 

and also potentially exposes the C cells to high concentrations of thyroid hormones, their 

precursors and metabolites (30). C cell activity seems to be closely related to the state of TFCs, 

as shown by the alteration of C cells activity in rats with experimental models of hypo and 

hyperthyroidism (31). In addition to their calciotrophic function, which is related to calcitonin, C 

cells produce and secrete a number of regulatory peptides. Some of these act as local stimulators 

of thyroid function (serotonin, gastrin related peptide [GRP], helodermin), whereas others are 

inhibitors (somatostatin, thyrotropin-releasing hormone [TRH], calcitonin-gene related peptide 

[CGRP]) (32).  

 In summary, we report evidence of calcitonin-producing cells in six independent cases of 

ectopic lingual thyroids. This suggests that the ultimobranchial bodies are not the only source of 

calcitonin-producing cells in humans. Interactions between calcitonin-producing and thyroid 

follicular cells occur in an earlier stage of embryonic development than previously accepted. 
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Figure legends: 

 

Figure 1: Immunolabeling of calcitonin-producing cells in six independent human ectopic 

lingual thyroids (arrowheads in C-H); negative immunolabeling (normal IgG instead of primary 

antibody) in a normal thyroid (A); positive immunolabeling of calcitonin-producing cells in a 

thyroid with C cell hyperplasia (arrowheads in B). Scale bars, 20 µm. 

 

Figure 2: Detection of calcitonin transcript in orthotopic and in ectopic lingual thyroids: lower 

signal intensities are observed in ectopic thyroids when compared to the orthotopic thyroids. 
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Figures: 

 
Figure 1 

 
Figure 2 
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Abstract 

Background: Discordance of monozygotic twins for thyroid dysgenesis suggests that epigenetic 

mechanisms may underlie defects in thyroid gland development. This prompted us to evaluate 

whether differentially methylated regions (DMR) can be found between human thyroids (either 

eutopic or ectopic) and matched leukocytes. 

Methods: To compare the genome-wide methylation profile of thyroids and leukocytes, 

immunoprecipated methylated DNA was interrogated on human promoter plus CpG island tiling 

arrays. In addition, the methylation profile of the human FOXE1, PAX8 and NKX2.1 promoter 

was examined using bisulfite sequencing. Finally, the functional impact of CpG methylation of 

the promoter on FOXE1 expression was assessed with luciferase assays. 

Results: Genome-wide methylation profiling and bisulfite sequencing of CpG islands of PAX8 

and NKX2.1 promoters revealed no DMR between thyroid and leukocytes. However, bisulfite 

sequencing revealed that the methylation level of two consecutive CpG dinucleotides (CpG14 and 

CpG15, which were not covered by the genome-wide array) in one CpG island of the FOXE1 

promoter (-1600 to -1140 from the transcription start site) is significantly higher in leukocytes 

than in eutopic or ectopic thyroid tissues, suggesting that methylation of this region may 

decrease FOXE1 gene expression. Indeed, luciferase activities were decreased when FOXE1 

promoter constructs were methylated in vitro. Moreover, derepression of luciferase activity was 

observed when methylation of CpG14 and CpG15 was prevented by mutations. 

Conclusion: We report a tissue-dependent DMR in the FOXE1 promoter. This DMR contains 

two consecutive CpG dinucleotides which are epigenetic modifiers of FOXE1 expression in non-

tumoral tissues. 

244 words 

Introduction 

 The transcription factor forkhead box E1 (FOXE1) is a member of the forkhead/winged-

helix family and plays an essential role in thyroid morphogenesis (1, 2). In humans, FOXE1 

mutations have been identified in a few syndromic cases of athyreosis associated with spiky hair, 

cleft palate, sometimes with choanal atresia and bifid epiglottis (3-5). Animal studies have 

pointed to the critical role of Foxe1 in the embryonic migration of the thyroid. Homozygous 
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Foxe1 knockout mice have either ectopic or absent thyroid gland at embryonic day (E)11.5 while 

the thyroid is completely absent at birth in all (2). In addition, evidence suggests that the 

migration of the thyroid bud is a cell-autonomous event requiring the Pax8-dependent expression 

of Foxe1 in the migrating thyroid cells of mouse embryos (6). In humans, failure of the thyroid 

precursor cells to migrate from their origin in the primordial pharynx to their final anatomical 

location (the anterior part of the neck) results in thyroid ectopy (lingual or sub-lingual) while 

complete absence of the thyroid (athyreosis) may result either from lack of differentiation or 

from disappearance of the thyroid before birth. Ectopy and athyreosis are generally grouped 

under the term thyroid dysgenesis (TD), which is the commonest cause of congenital 

hypothyroidism (CH). The incidence of CH due to TD (CHTD) is 1 in 4,000 live births (7). 

Germline mutations in thyroid-related transcription factors NKX2.1 (8, 9), FOXE1 (4), PAX8 

(10) and NKX2.5 (11) have been identified by candidate gene screening in a small subset (3%) 

of patients with sporadic CHTD (12). Linkage analysis has excluded these genes in rare 

multiplex families with CHTD (13). Indeed, CHTD is predominantly not inherited (98% of cases 

are non-familial (14)), has a high discordance rate of 92% in monozygotic (MZ) twins and a 

female and ethnic (i.e., Caucasian) predominance (15, 16). This, together with evidence of non-

penetrance of mutations in close relatives of patients (e.g. NKX2.5 (11)), suggests that modifiers, 

possibly additional somatic epigenetic or genetic events, are associated with CHTD. CpG island 

hypermethylation is reported in many cancers and some DMRs in cancers are found in regions 

that are also differentially methylated among different non-tumoral tissues (17). Consequently, 

as FOXE1 CpG islands are known to be hypermethylated in cancers of the skin, pancreas and 

breast (18-20), it is plausible that FOXE1 DMR would account for differential FOXE1 

expression in non-tumoral tissues. However, our recent integrative molecular analysis of ectopic 

thyroids did not find any alteration of genomic structure and methylation profile when compared 

to eutopic thyroids even though the expression profile differed (21). To find no DMR in a single 

tissue (thyroid) differing only in its location (ectopic versus eutopic) may be expected but DMR 

are likely to exist between thyroid and leukocytes, two tissues with different expression profiles. 

Moreover, CpGs and DMR are genetic and epigenetic mutational hotspots (22, 23). Thus, 

finding a DMR within the upstream regulatory region of thyroid-related transcription factors 

might pave the way for further studies in which cases with CHTD are screened for genetic 

variants within this DMR. Therefore, in the present study, we set out to determine whether 
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promoter methylation profile was different between thyroid and leukocytes using genome-wide 

and candidate gene approaches (i.e., FOXE1, PAX8 and NKX2.1). 

Methods 

Detailed descriptions of all experimental protocols are available in Supplemental Data. 

Participant characteristics and tissue collection 

 We obtained three ectopic and four eutopic thyroids as described previously (21). 

Because the methylomes of ectopic and eutopic thyroids are similar (21), they were treated as 

one group for the present analysis. For controls, we used matched leukocytes (when available) 

from the above-mentioned cases and additional leukocytes from normal subjects (supplemental 

Table 1). This study was approved by the Ethics Committee of the CHU Sainte-Justine. All the 

parents and participants gave written informed consent. 

Nucleic acid isolation 

 Genomic DNA and/or total cellular RNA were isolated from cell lines, thyroid tissues 

and matched leukocytes using pureLink genomic DNA Mini kit (Life Technologies, Burlington, 

Canada) and RNeasy Mini kit (Qiagen, Mississauga, Canada), respectively. 

Methylation Profiling by Methylated DNA Immunoprecipitation (MeDIP) and MeDIP-chip 

 The MeDIP-chip was performed using pairs of enriched methylated fraction (IP) and 

normal fraction (IN) of genomic DNA from four thyroids and five leukocytes (four matched; see 

supplemental Table 1). The methylated fraction of genomic DNA was enriched using the 

methylated DNA immunoprecipitation (MeDIP) assay (24) and interrogated on human Promoter 

plus CpG Island Tiling Arrays (Roche NimbleGen, Madison, Wisconsin) as described previously 

(21). 

Cell culture 

 The human thyroid cancer cell line WRO was a gift from Dr. H. Mircescu (University of 

Montreal), the human leukemia cell lines Jurkat (T-cell acute lymphoblastic leukemia), K562 

(chronic myelogenous leukemia), and REH (acute lymphoblastic leukemia of the non-T, non-B 

type) were a gift from Dr. A. Ahmad (University of Montreal), the rat follicular thyroid PCCL3 

cell line was a gift from Dr. F. Miot (Université Libre de Bruxelles, Institut de Recherche 
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Interdisciplinaire en Biologie Humaine et Moléculaire, Brussels, Belgium) and the immortalized 

human thyroid Nthy-ori 3-1 cells were obtained from Sigma (St. Louis, Missouri). Culture media 

and conditions are explained in the Supplemental Data. 

Bisulfite genomic DNA sequencing and methylation analysis 

 Bisulfite treatment of genomic DNA was performed using the Zymo EZ DNA 

Methylation-Gold kit (Zymo Research, Irvine, California). The targeted promoter region of 

FOXE1 (−1600 to −125 from transcription start site (TSS)), PAX8 (−635 to −471 from ATG) and 

NKX2.1 (−343 to −107 from ATG) were subsequently amplified with a nested PCR protocol in 

which two sets of forward and reverse primers were used. Primers designed using the 

MethPrimer software (www.urogene.org/methprimer/), reagents and PCR conditions are listed in 

the Supplemental Table 2.  

Construction of luciferase reporter vectors 

 A pGL3-Basic plasmid incorporating a 2.38-Kb fragment that includes the 5′-upstream 

regulatory region of the human FOXE1 (hFOXE1) gene from −1934 to +446 relative to the 

transcriptional start site (+1) was a generous gift from Dr. T. Eichberger (University of Salzburg, 

Salzburg, Austria). A deletion construct missing CpG island 1 was generated by restriction 

enzyme digestion using AflII/NsiI followed by blunt-end ligation. The two CpGs 14 and 15 

within CpG island 1 located at −1417 and −1412 relative to TSS were mutated using the 

QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, California). Primers are reported 

in the Supplemental Data. 

In vitro global methylation assay 

 For in vitro methylation of pGL3-Basic and the different human FOXE1 promoter 

constructs, whole plasmids were methylated using the site-specific CpG Methyltransferase 

M.SssI (New England Biolabs, Whitby, Canada). Mock-methylated plasmids were subjected to 

the same treatment in the absence of M.SssI. Following methylation, the plasmids were purified 

using the EZ-10 spin column DNA Gel Extraction Kit (Bio Basic, Markham, Canada). The 

extent of methylation was subsequently verified by digestion with the CpG methylation-sensitive 

restriction enzyme HpaII (New England Biolabs) and its isoschizomer the CpG methylation-

insensitive MspI (Thermo Scientific, Burlington, Canada). Only completely methylated 



142 
 

(M.SssI+) and mock-methylated (M.SssI_) plasmids were then used in the transfection 

experiments. 

In vitro regional (patch) methylation assay 

 To allow the integration of methylated fragment of CpG island 1 in unmethylated 

plasmids, NdeI and NsiI restriction sites were engineered into both the wild type and point 

mutated FOXE1 promoter fragments using the QuikChange site-directed mutagenesis kit 

(Stratagene). The efficiency of ligation and equivalence of incorporated DNA into the 

methylated and mock-methylated constructs were confirmed by agarose gel electrophoresis as 

published elsewhere (25). In addition, the ligation reactions were transformed into chemically 

competent E. Coli to assess the ligation efficiency. To obtain optimal readouts, luciferase assays 

were performed in the immortalized human thyroid Nthy-ori 3-1 cells. See supplemental Figure 

1 and detailed protocol in the Supplemental Data. 

Transient transfection and luciferase reporter gene assay 

 Rat follicular thyroid PCCL3 cells were transiently transfected with polyethylenimine 

(PEI; Polysciences, Warrington, Pennsylvania) in triplicate in 24-well tissue culture plates 

(Corning, Corning, New York). The volume of PEI used is based on a 4:1 ratio of PEI (µg): total 

plasmid DNA (µg). Cells were seeded at a density of 0.3 × 105 cells/well 48 h prior to 

transfection. Cells were transfected with 0.32 µg/well of the methylated or mock-methylated 

reporter vector pGL3-Basic (Promega, Madison, Wisconsin) and as well as the reporter plasmids 

including the different FOXE1 promoter inserts. To correct for transfection efficiency and 

variation in cell viability between wells, cells were co-transfected with 0.005 µg/well Renilla 

luciferase reporter vector (pRL-TK; Promega) as an internal control. The activities of the firefly 

luciferase and the Renilla luciferase were measured in cell lysates 24 h after transfection using 

the dual-luciferase reporter assay system (Promega). Luminescence was detected by the 2104 

EnVision Multilabel Plate Reader (PerkinElmer, Waltham, Massashussets). For regional 

methylation, each of the religated methylated and mock methylated wild type and point mutated 

plasmids (0.75 µg DNA) were transfected in Nthy-ori 3-1 cells (0.1x 105 cells/well), plated 48 

hrs before transfection, using X-tremeGENE 9 (Roche Diagnostics, Laval, Canada). In each 

experiment performed in triplicate, the pRL-TK plasmid (0.25 µg) was cotransfected for 
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normalization purposes. Luminescence was measured 48 h after transfection using the dual-

luciferase reporter assay system (Promega). 

Semiquantitative RT-PCR 

 The forkhead box E1 gene (FOXE1, NCBI reference sequence NT_008470.19) mRNA 

expression was examined by semiquantitative reverse transcriptase PCR (RT-PCR) in two 

ectopic lingual thyroids, three orthotopic thyroids (flash-frozen healthy tissue adjacent to 

papillary thyroid carcinomas) and leukocytes from normal subjects. In addition, FOXE1 mRNA 

expression was determined in the thyroid cancer WRO cell line and the human leukemia cell 

lines Jurkat, K562, and REH. Primers’ sequences are reported in the Supplemental Data. 

Statistical analysis 

 All data are reported as means ± SEM. The data were subjected to Fisher's exact test or 

unpaired two-tailed Student’s t-test, with correction for multiple comparisons with the Holm-

Sidak method, when appropriate. A P-value of 0.05 or lower was considered statistically 

significant.  

Results 

Lack of tissue-specific methylation differences in CpG islands of PAX8 and NKX2.1 promoter 

 No methylation profile differences were observed in the CpG-rich region of the PAX8 

(−635 to −471 from ATG) and NKX2.1 (−343 to −107 from ATG) promoters using either MeDIP 

arrays or bisulfite sequencing (Supplemental Figure 2). 

A CpG island of the FOXE1 promoter is differentially methylated in human thyroid tissue when 

compared to matched leukocyte DNA 

 To determine whether the CpG rich 5′-flanking region of the FOXE1 gene (−1600 to −125 

from transcription start site) show differences in methylation between tissues with different 

levels of FOXE1 expression, we used bisulfite sequencing of five thyroids, four of which were 

paired with leukocytes from the same donors. Findings were validated with bisulfite 

pyrosequencing on four thyroids and leukocyte tissues (three pairs) (Supplemental Table 1). 

Bisulfite sequencing revealed the presence of a DMR at CpG island 1 (−1600 to −1140 from 

transcription start site, +1) that was globally more methylated in leukocytes (10%) compared to 
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thyroids (3%, P<0.001, two-sided exact Fischer’s test). Indeed, we found two consecutive CpG 

dinucleotides (i.e. CpG14 and CpG15, located −1417 and −1412 relative to transcription start site 

(+1)) with a significantly higher methylation rate in leukocytes (51% for CpG14 and 43% for 

CpG15) when compared to that in thyroids (i.e., 5%; P<0.001, two-sided exact Fischer’s test) 

(Figure 2). These results were validated with bisulfite pyrosequencing, which showed an average 

methylation rate of 24% for GpC14 and 22% for GpC15 in leukocytes whereas the thyroid 

methylation rate was 12% for GpC14 and 11% for GpC15 (P<0.05, two-sided paired t-test, 

corrected for multiple comparison with Holm-Sidak method) (Figure 3). The other CpG island 

(CpG island 2, see Figure 1) encompassing the transcription start site of FOXE1 promoter 

showed no differential methylation (see supplemental Figure 3) and no differences were 

observed at methylation-sensitive restriction enzyme sites close to the ATG (not shown). Of 

note, the dinucleotide stretches CpG7-GpC9 and CpG14-GpC17 were not covered by the probes of 

the CpG Island Tiling Array, which explains why these subtle differences were not detected by 

this technology. 

 The methylation status of this DMR was also analyzed in bisulfite-treated DNA from the 

human leukemia cell lines (Jurkat, K562, and REH) as well as from the thyroid cancer cell line 

WRO. The human leukemia cell lines Jurkat and REH exhibited a high percentage of DMR 

methylation (51% and 86%, respectively), while a moderate percentage of methylation (15%) 

was detected in K562 cells. On the other hand, the DMR in the thyroid cancer WRO cells was 

almost unmethylated (4%, p<0.001), which represented a typical and significant decrease of 

methylation when compared to each of the leukemia cell lines (Figure 2). 

No expression of FOXE1 was detected in normal leukocytes and human leukemia cell lines  

 Since altering DNA methylation in CpG islands is an essential mechanism involved in 

the regulation of gene expression, we examined whether the methylation pattern of the detected 

DMR in thyroids and leukocytes is implicated in the transcriptional status of FOXE1. 

Interestingly, lack of FOXE1 expression was observed in leukocytes that exhibited a global 

hypermethylation of the DMR in comparison to thyroids (Figure 4A). As expected from the 

findings in normal leukocytes, no expression of FOXE1 was detected in the three leukemia cell 

lines (Jurkat, K562, and REH) used in the present study (Figure 4B). On the other hand, FOXE1 

expression was detected in all thyroid tissues (mean FOXE1/γ-actin ratio of 1.06, range 0.95-
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1.32, normalized to that of ectopic thyroid tissue # 3) (Figure 4A). In contrast, in the de-

differentiated thyroid cancer WRO cells which show a globally unmethylated DMR (Figure 2C), 

FOXE1 expression was still detected, but was about 2.5-fold lower than in thyroid tissues (Figure 

4A), which is consistent with previous work (21, 26) and implies that the low expression levels 

of FOXE1 in WRO can be attributed to other controlling mechanisms, such as partial repression 

through the polycomb repressive complex 2 (PRC2), as suggested by our chromatin 

immunoprecipitation (ChIP) assays (supplemental Figure 4). Altogether, methylation of CpG 

sites within the DMR correlates with the expression of FOXE1. 

DNA methylation decreases transcription from the FOXE1 promoter 

 To investigate whether methylation of the 5′-upstream region of FOXE1 gene has an 

impact on transcription from this promoter, a 5′ deletion reporter gene construct (the −1115/+446 

bp deletion construct, from which CpG island 1 was deleted) and constructs with wild type and 

mutated CpG14-CpG15 were in vitro methylated using the CpG methyltransferase M.SssI (Figures 

1 and 5). First, transfection of the mock-methylated construct with deletion of the CpG island 1 

showed a marked increase of the luciferase expression (Figure 5), suggesting that transcriptional 

repressor may target the CpG island 1, which was confirmed by our ChIP assays targeting 

SUZ12 (a core protein of the PRC2) in immunoprecipitated chromatin of WRO cells 

(supplemental Figure 3). Then, transfection with the methylated and mock-methylated promoter 

constructs showed a profound decrease of luciferase expression levels upon methylation (Figure 

5). Notably, the methylated constructs in which CpG14 and CpG15 were either point mutated or 

deleted (−1115/+446 bp deletion construct) exhibited a significant increase in luciferase activity 

(0.6 and 1.6 fold of the basic construct activity, respectively) compared to that of the methylated 

wild type construct (0.27 fold of the basic construct activity, p<0.05).  

 Although these results indicate that the promoter activity of FOXE1 can be suppressed by 

DNA methylation, the observed decrease in luciferase activities could be due in part to 

methylation within the pGL3-Basic vector itself (27, 28) (Figure 5). Therefore, experiments 

where only CpG island 1 (either wild type or mutated) was methylated (i.e. regional “patch” 

methylation) and ligated into unmethylated pGL3-Basic vector were carried out to confirm the 

impact of methylation of CpG island 1 on FOXE1 transcription. Indeed, regional methylation of 

CpG island 1 induced a significant decrease in luciferase activity (a decrease of 33%, from 3.27 



146 
 

to 2.19 fold of the basic construct, p<0.05; 48% if corrected for the background obtained for 

transfections with empty basic vector) whereas regional methylation of the CpG island 1 

construct with mutated CpG14 and CpG15 did not affect FOXE1 expression (Figure 6). 

Discussion 

 Herein, we examined the impact of the tissue-dependent differential methylation on the 

expression of FOXE1. We found a DMR in the FOXE1 promoter when comparing thyroid and 

leukocytes tissues. We then showed that: (i) FOXE1 expression is repressed upon methylation of 

this DMR and (ii) the methylation of two specific consecutive CpG dinucleotides suffices to 

decrease FOXE1 expression.  

 The role of DNA methylation in the regulation of tissue-specific gene expression has 

been previously reported (29, 30). Several genome-wide studies have shown that distinct regions 

of the mammalian genome exhibit a tissue-dependent pattern of DNA methylation and are 

increasingly reported to be associated with tissue-specific gene activity (30-36). These tissue-

specific DMRs are found in either CpG-rich or -poor DNA sequences (37). In a recent attempt to 

identify DMRs in humans, it was shown that DMRs are enriched in promoter regions of genes 

exhibiting tissue-specific functions (promoter-like DMRs) (38). Hence, DNA methylation of 

promoters can be implicated in major cell lineage determination. On the other hand, DMRs 

enriched in enhancer elements (enhancer-like DMRs) are identified as cell-type specific DMRs. 

Thus, DNA methylation is a possible mechanism allowing cells to attain final lineage 

commitment or maintain a distinct cell type. Collectively, a tight association between differences 

in DNA methylation involving gene regulatory elements (promoters and enhancers) and gene 

activity has been established (38). Of note, transcriptional repression is not linearly related to 

methylation (39). Indeed, a tissue-dependent and gene-specific methylation threshold is required 

to attenuate gene expression (40), which explains why low-levels of methylation of FOXE1 

DMR did not hamper FOXE1 expression in thyroid tissue (Figures 3 and 4).  

 Abnormal methylation patterns of FOXE1 gene has been previously reported in primary 

pancreatic carcinomas as well as in pancreatic cancer cell lines. Expression of FOXE1 was 

induced upon treatment with the demethylating agent 5-aza-2'-deoxycytidine in pancreatic cell 

lines and not in unmethylated non-neoplastic cells (19). Moreover, FOXE1 hypermethylation in 

tumor-derived DNA released into the bloodstream of patients with breast cancer has also been 
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described (20). Kuang et al. determined the methylation status of FOXE1 in Jurkat, K562, and 

REH cells, among other leukemia cell lines, using methylated CpG island amplification coupled 

to representational differential analysis (MCA/RDA) or a DNA promoter microarray 

(MCA/microarray) and validated their findings using bisulfite pyrosequecing (41). FOXE1 was 

found to be aberrantly hypermethylated in leukemia cell lines when compared to normal 

peripheral lymphocytes (controls). The genomic region within the FOXE1 promoter that was 

found to be hypermethylated in the abovementioned study is located within the region from −673 

to −124 from TSS. According to our data, this region was not differentially methylated between 

leukocytes and thyroid. For that reason, we have not determined the methylation status of the 

region from −673 to −124 from TSS in leukemia cell lines. On the other hand, the DMR that we 

identified (−1600 to −1140 from TSS or CpG island 1) was not covered on the proximal promoter 

microarray, covering ‾1.0 kb upstream and +0.3 kb downstream from TSS, used in the study of 

Kuang et al. (41). Recently, Venza et al. (18) have shown that hypermethylation of CpG islands 

located within the promoter of FOXE1 gene is frequent among patients with cutaneous simple 

squamous carcinoma (SCC). Although these authors did not specify the site of promoter 

methylation related to transcriptional repression, both the concordance between the methylation 

status of the FOXE1 promoter and its mRNA expression together with the reactivation of 

expression upon treatment with 5-Aza-dc point to the involvement of DNA methylation in the 

transcriptional regulation of FOXE1 in SCC (18). Moreover, a marked hypermethylation was 

found at the transcriptional start site (TSS) of the FOXE1 gene in adenoid cystic carcinoma 

(ACC) of the salivary glands, suggesting the association of FOXE1 aberrant methylation with the 

development and progression of ACC (42).  

 Herein, upon transfection with different globally methylated FOXE1 promoter constructs, 

the luciferase activities were significantly reduced compared to the corresponding mock-

methylated constructs. Given that: (i) the luciferase gene in the plasmids can also be methylated 

by M.SssI methylase (27, 28) and (ii) regions outside CpG island 1 (i.e. the T-DMR of FOXE1 

promoter) were mainly unmethylated in leukocytes (supplemental Figure 3), further regional 

(patch) methylation was carried out to assess the specific impact of CpG island 1 methylation on 

the FOXE1 expression. In this regard, regional methylation of CpG island 1 encompassing wild 

type CpG14 and CpG15 (at −1417 and −1412) leads to a significant decrease in reporter gene 

activity when compared to mock-methylated control. In contrast, no significant difference in the 
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activity was observed upon point mutating the two CpG dinucleotides of interest, which indicates 

their role in regulating the expression of the FOXE1 gene. This is consistent with the previously 

reported involvement of site-specific methylation in tissue or cell-specific gene expression. Grant 

et al. have shown that the methylation status of three promoter CpG dinucleotides (−22, −54, and 

−455) is altered in a tissue-specific manner and that lactoferrin expression was detected in tissues 

exhibiting at least two unmethylated CpG dinucleotides out of three (43). Similarly, Boatright et 

al. have shown that tissue and site-specific methylation of the two CpG dinucleotides (−725 and 

−115) of the murine interphotoreceptor retinoid binding protein (IRBP) promoter decreased the 

promoter activity in vitro and correlated with IRBP expression in vivo (44). Moreover, repression 

of transcription mediated via single-site methylation in promoter regions has been previously 

reported within the promoter region of the Herpes simplex virus thymidine kinase (tk) gene (45), 

the calcium-binding protein gene S100A2 (46), the p16 gene in human bladder cell lines (47), the 

alternative reading frame (ARF) gene promoter (48), and the p53 gene promoter (49). 

Collectively, these observations underline the ability of methylation at specific CpG sites to 

efficiently repress transcriptional activity. Generally, CpG methylation contributes to 

transcriptional suppression by directly preventing ubiquitous transcriptional regulators from 

binding to their target gene promoters (50) or by binding of methyl-CpG-binding proteins that 

subsequently recruit repressive complexes such as histone deacetylases (HDACs) that lead to 

chromatin compaction and in turn transcriptional repression of the gene (51). Among the methyl-

CpG-binding protein, MeCP2 has been shown to bind to as few as one to three methylated 

cytosines (52), thus supporting the notion that site-specific methylation of CpG dinucleotides is 

involved in transcriptional repression. Whether the mechanism via which CpG14 and CpG15 

mediate the differential expression of FOXE1 involves recruitment of methyl-CpG-binding 

proteins or direct blocking of transcription factors binding needs further investigation. 

 Our luciferase assay also suggests that the unmethylated FOXE1 CpG island 1 binds to a 

transcriptional repressor (Figure 5). ChIP assays revealed that this repressor is the polycomb 

repressive complex 2, in which SUZ12 (target of ChIP) is a core component (supplemental 

Figure 4A). This result is consistent with SUZ12-ChIP sequencing data from ENCODE (http: 

genome.ucsc.edu/ ) showing SUZ12 binding in this region of the FOXE1 promoter (supplemental 

Figure 4B). Unmethylayed CpG islands have a key role in polycomb complex recruitment and 

most PRC2 target genes actually remain constitutively unmethylated throughout development 
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(53, 54). Some genes are de novo repressed by PRC2-mediated methylation on H3K27 (such as 

WRO) but subsequently only a subset of these genes become definitively methylated and lose 

their epigenetic plasticity (54). This suggests that there are additional (as yet unknown) factors 

required for definitive DNA methylation (54). 

 In conclusion, the main outcome of the present study supports the concept that DNA 

methylation plays a role in the differential expression of the thyroid transcription factor FOXE1 

in normal leukocytes (cells that do not express FOXE1) and in the thyroid, a tissue that 

abundantly expresses FOXE1. Evidence for the role of DNA methylation mainly depends on the 

CpG methylation profiling of human FOXE1 that exhibited the presence of a DMR in its 5′-

flanking regulatory region. One limitation of the present study is the low number of thyroid 

samples included that were obtained from female in the age range of 8-18 yrs. Tissue-specific 

age-related DMR have been reported in humans (55). Of note, over the 490 age-related DMR 

found through epigenome-wide scans by Bell et al.(55), none were found in FOXE1, PAX8 and 

NKX2.1. Moreover, within this limited age range (8-18 yr), we saw no difference in methylation 

pattern among the different thyroid tissues investigated. In addition to age, sex influences 

genome-wide methylation in humans (56). Indeed, Liu et al. assessed the genome-wide 

methylation profile of 20,493 CpG sites and found 690 sex-related DMR in 432 genes (421 on X 

chromosome, 11 genes on autosomes); none were found in FOXE1, PAX8 and NKX2.1 (56). 

Consequently, there is currently no evidence that age or sex might have an impact on our results. 

However, further studies will determine whether these results are observed in a wider range of 

tissues (in term of age and sex) and will assess whether rare genetic variants in the FOXE1 DMR 

are associated with congenital hypothyroidism due to thyroid ectopy. 
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Figure legends: 

Figure 1: CpG methylation profile of the human FOXE1 promoter. A, CpG methylation 

profile was determined using European Molecular Biology Open Software Suite (EMBOSS) 

CpGblot (http: http://www.ebi.ac.uk/Tools/emboss/). B, schematic representation of the FOXE1 

promoter, numbered from the transcription start site (TSS, +1), with the CpG island 1 (−1600 to 

−1140 from TSS). C, nucleotide sequence of CpG island 1, with CpG dinucleotides numbered; 

CpG14 and CpG15 are highlighted in a box. 

Figure 2: DNA methylation status of CpG island 1 (−1600 to −1140 from TSS) in the 5´-

UTR of the FOXE1 gene using bisulfite sequencing. A-B, CpG island of FOXE1 (−1600 to 

−1140 from transcription start site, +1) is globally more methylated in leukocytes (10%) 

compared to thyroids (3%, P<0.001). In addition, two CpG dinucleotides (i.e. CpG14 and CpG15, 

located −1417 and −1412 relative to transcription start site) show higher methylation in 

leukocytes (51% for CpG14 and 43% for CpG15) when compared to thyroids (5%; P<0.001). C, 

Genomic DNA was extracted from 4 different human cell lines and subjected to sodium bisulfite 

sequencing to analyze the methylation profile of CpG island 1 of the FOXE1 promoter. Seven 

(REH cells) to fourteen (other cell lines) different clones were sequenced. All leukemia cell lines 

showed significantly higher CpG island 1 methylation (Jurkat, 51%; K562, 15%; and REH, 86%) 

when compared to the thyroid cell line WRO (4.4% methylation; P<0.001 when compared with 

each leukemia cell line); this methylation difference is even more pronounced for CpG14 and 

CpG15 (Jurkat, 100%; K562 39%; REH 100% compared to 0% in WRO). Each line represent 

sequencing results of distinct tissues or cell lines. Circles represent the 33 CpG dinucleotides of 

CpG island 1 which are labeled as follows: black, methylation over 75%; dark grey, methylation 

of 50 to 75%; grey, methylation of 10 to 49%; white, methylation under 10%. Numbers of clones 

analysed for each tissue or cell line are listed on the right of the figure. 

Figure 3: Confirmation of DNA methylation status by bisulfite pyrosequencing. The 

methylation profile of the first 17 CpG dinucleotides in CpG island 1 was analyzed using sodium 

bisulfite pyrosequencing. The figure represents the means ± SEM percentage of DNA 

methylation of the 17 CpG dinucleotides in leukocytes (in black) vs thyroid tissues (in grey) (*; 

P<0.05, two-tailed paired t-test, corrected for multiple comparisons with the Holm-Sidak 

method). 
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Figure 4: Semiquantitative RT-PCR analysis of FOXE1 expression. FOXE1 RT-PCR in 

normal leukocytes and thyroid tissues (A), in human leukemia cell lines (Jurkat, K562, and 

REH), and in thyroid cancer WRO cells (B). The numbers denote the ratio of FOXE1:γ-actin 

values, normalized to that of ectopic thyroid tissue # 3 (set as 1.0). 

Figure 5: Effect of global CpG methylation on FOXE1 promoter activity. FOXE1 promoter 

activity was tested in PCCL3 cells using either M.SssI methylated constructs (black bars) or 

mock methylated constructs (grey bars). Values are expressed as fold of the basic empty vector. 

Data represent means ± SEM of three independent experiments, each in triplicate (*, P<0.05; **, 

P<0.01; Student’s t-test). All methylated constructs showed significant decreased luciferase 

activity. Methylated constructs with CpG14-CpG15 mutations and with CpG island 1 deletion 

showed a significant derepression when compared with the methylated WT construct. 

Figure 6: Effect of regional methylation of the DMR on FOXE1 promoter activity. FOXE1 

promoter activity was tested in Nthy-ori 3-1 cells using either M.SssI regionally methylated 

constructs (black bars) or mock methylated constructs (grey bars). Values are expressed as fold 

of the basic empty vector. Data represents means ± SEM of two independent experiments, each 

in triplicate (*, P<0.05; **, P<0.01; n.s., non significant; Student’s t-test). Regional methylation 

of CpG island 1 encompassing the wild type CpG14 and CpG15 (at −1417 and −1412) leads to a 

significant decrease by reducing reporter gene activity by 33% when compared to mock 

methylated control (48% if corrected for the background obtained for transfections with empty 

basic vector). Regional methylation of the CpG island 1 construct with mutated CpG14 and 

CpG15 induced no difference between methylated and mock methylated constructs. 
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Supplemental Data  

A) METHODS 

Participant characteristics and tissue collection 

 We obtained flash-frozen samples of ectopic (lingual) thyroid tissue removed from 3 girls 

aged 8, 10 and 15 yr, because of obstructive symptoms and we obtained also normal eutopic 

thyroid tissue from 4 girls (aged 12, 15, 16, and 18 yr) and 1 boy (aged 4 yr) adjacent to a single 

hyperfunctioning thyroid nodule that had arisen in an orthotopic thyroid for which they had been 

operated. As the methylome of ectopic and eutopic thyroids are similar (1), they were considered 

as a single group for the present analysis. For controls, we used, matched leukocytes (when 

available) of the above-mentioned cases and additional leukocytes from normal subjects 

(supplemental Table 1). This study was approved by the Ethics Committee of the CHU Sainte-

Justine (ERB number 94). All the parents and participants gave written informed consent. 

Nucleic acid isolation 

 Genomic DNA and total cellular RNA were isolated from thyroid tissues and cell lines 

(the human thyroid cancer cell line WRO and the human leukemia cell lines Jurkat, K562, and 

REH) using the pureLink genomic DNA Mini kit (Life Technologies Inc., Burlington, ON, 

Canada) and the RNeasy Mini kit (Qiagen, Mississauga, ON, Canada) respectively. Isolation of 

total genomic DNA from peripheral blood leukocytes was carried out using the standard 

phenol/chloroform extraction method followed by ethanol precipitation while total cellular RNA 

was isolated using the PAXgene Blood RNA kit (Qiagen). Purity and concentration of nucleic 

acids were measured using NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE). Samples were stored at -20°C (DNA) or -80°C (RNA) until time of analysis. 

Methylation Profiling by Methylated DNA Immunoprecipitation (MeDIP) and MeDIP-chip 

 The MeDIP-chip was performed using pairs of enriched methylated fraction (IP) and 

normal fraction (IN) of genomic DNA from four thyroids and five leukocytes (four matched; see 

supplemental Table 1). The methylated fraction of genomic DNA was enriched using the 

methylated DNA immunoprecipitation (MeDIP) assay (2) and interrogated on human Promoter 

plus CpG Island Tiling Arrays with a ChIP design for CpG islands and promoter regions 

(n=28,226) from HG18 using 385,020 probes selected from CGH probe bank with a median 
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spacing of 101bp (Roche NimbleGen, Madison, WI). Briefly, 4 µg MseI digested genomic DNA 

was immunoprecipitated with monoclonal mouse anti 5-methylcytidine antibody (New England 

Biolabs, Pickering, Ontario and Abcam Inc., Cambridge, MA 02139). After washes and 

purification steps, immunoprecipitated material and a sample of input DNA were amplified using 

GenomePlex Complete Whole Genome Amplification (WGA) kit (Sigma-Aldrich, Saint Louis, 

MI). The resulting products (4 µg) were labeled, cohybridized and scanned by the NimbleGen 

Customer Service (Roche NimbleGen, Madison, WI). For each sample, NimbleScan detects 

peaks by searching for at least two probes above a P-value cutoff (-log10) of 2 and peaks within 

500bp are merged. Then, peak data were analyzed to compare the methylation profile between 

ectopic thyroids and orthotopic thyroids using the Loess normalized log2 (ChIP/input) ratios 

with the one-way ANOVA tool of the Partek Genomic Suite (PGS) software. After Bonferroni 

correction for multiple testing, differences in methylation should achieve a p-value of less than 

0.05 to be considered as significant. 

Cell culture 

 The human thyroid cancer cell line WRO was a gift from Dr. H. Mircecsu (University of 

Montreal), the human leukemia cell lines Jurkat (T-cell acute lymphoblastic leukemia), K562 

(chronic myelogenous leukemia), and REH (acute lymphoblastic leukemia of the non-T, non-B 

type) were a gift from Dr. A. Ahmad (University of Montreal) and the rat follicular thyroid 

PCCL3 cell line was a gift from Dr. F. Miot (Université Libre de Bruxelles, Institut de 

Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Brussels, Belgium), and the 

immortalized human thyroid Nthy-ori 3-1 (NT) cells were obtained from Sigma (St  Louis, MO). 

WRO cells, Nthy-ori 3-1 cells, and the human leukemia cell lines were maintained in the RPMI 

1640, HEPES culture medium (Gibco, Life Technologies Inc., Burlington, ON, Canada) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM L-glutamate, and 

antibiotics/anti-mycotics to a final concentration of 100 U/ml penicillin, 100 µg/ml streptomycin, 

and 0.25 µg/ml amphotericin B (Gibco, Life Technologies). PCCL3 cells were maintained in 

Coon's modified Nutrient Mixture F-12 medium (Sigma-Aldrich, Oakville, ON, Canada) 

supplemented with 5% heat-inactivated FBS and a mixture of six hormones to a final 

concentration of 1 mU/ml TSH, 10 µg/ml insulin, 5 µg/ml transferrin, 10 ng/ml somatostatin, 10 

ng/ml glycyl-l-histidyl-l-lysineacetate, and 3.2 ng/ml hydrocortisone (Sigma-Aldrich, Oakville, 
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ON, Canada) together with prophylactic plasmocin (InvivoGen, San Diego, CA). All cells used 

in the present study were cultured at 37°C in 5% CO2 humidified atmosphere. 

Semiquantitative RT-PCR 

 The forkhead box E1 gene (FOXE1, NCBI reference sequence NT_008470.19) mRNA 

expression was examined by semiquantitative reverse transcriptase PCR (RT-PCR) in two 

ectopic lingual thyroids, three orthotopic thyroids (flash-frozen healthy tissue adjacent to 

papillary thyroid carcinomas) and leukocytes from normal subjects. In addition, FOXE1 mRNA 

expression was determined in the thyroid cancer WRO cell line and the human leukemia cell 

lines Jurkat, K562, and REH. Total RNA was extracted as mentioned in nucleic acids isolation. 

First-strand complementary DNA was synthesized using 1 µg of RNA per reaction with the High 

Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems, Foster City, CA). The 

ubiquitous γ-actin gene (ACTG1, NCBI reference sequence NM_001614.2) was used as a 

positive control to ensure the efficiencies of the RNA extraction, retro-transcriptase reaction, and 

cDNA amplification. Amplification of cDNA was performed using primers specific for FOXE1 

and γ-actin. Primers specific for FOXE1 cDNA amplification were sense 5′-

TGCTGGTAATTTCATGGCTGTTA-3′ and antisense 5′-

AAGGGAAAGGGGGAGAGTTATTG-3′ and for γ-actin amplification were sense 5`-

GACACCAGGGCGTCATGGTG-3` and antisense 5′-GCAGCTCGTAGCTCTTCTCC-3′. 

Protocols of RT-PCR are available upon request. The PCR products were resolved on 1.5% 

agarose gel, stained with ethidium bromide, and quantitated using the ImageJ 1.46r software. 

Bisulfite genomic DNA sequencing and methylation analysis 

 Genomic DNA was isolated from cell lines, thyroid tissues and matched leukocytes as 

mentioned above in nucleic acid isolation. Bisulfite treatment of genomic DNA was performed 

using the Zymo EZ DNA Methylation-Gold kit (Zymo Research, Orange, CA) according to the 

manufacturer’s protocol. The targeted region of FOXE1 (-1600 to -125 from transcription start 

site (TSS)), PAX8 (-635 to -471 from ATG) and NKX2.1 (-343 to -107 from ATG) promoters 

were subsequently amplified with a nested Platinum Taq polymerase (Invitrogen, Life 

Technologies Inc., Burlington, ON, Canada) PCR protocol in which two sets of forward and 

reverse primers, designed using the MethPrimer software (www.urogene.org/methprimer/), were 

used. Primers, reagents and PCR conditions are listed in the Supplemental Table 2. PCR 
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amplification products were purified from a 1.5% agarose gel with the QIAquick gel extraction 

kit (Qiagen, Mississauga, ON, Canada). The gel-purified PCR fragments were TA cloned into 

the pCR4-TOPO vector (Invitrogen, Life technologies, Burlington, ON) and then introduced into 

the One Shot TOP10 chemically competent E. coli (Life technologies). To quantify methylation, 

individual clones were sequenced with T3 primer. Sequencing was performed using the DNA 

analyser ABI 3730 at the genomics platform of the Institute for Research in Immunology and 

Cancer (IRIC, University of Montreal). Data analysis and quality control have been performed 

using the BiQ Analyzer software (http:biq-analyzer.bioinf.mpi-sb.mpg.de/) using stringent 

criteria to avoid clonal effect and PCR bias (3). This stringent quality control explains why some 

samples have fewer data available for analysis. To assess whether the difference in methylation 

between thyroid and leukocytes were significant, two-sided exact Fischer’s tests were performed 

for each CpG dinucleotide. To correct for comparison of multiple clones per individual samples 

and to focus on CpGs having the best possible likelihood of biological relevance, only P-values 

less than 0.001 were considered significant. Statistical analysis was performed using the 

statistical software R. To validate our results, DNA from four pairs of thyroids and leukocytes 

were pyrosequenced using Qiagen-Pyrosequencing PSQ MD system (EpigenDx, MA, USA). As 

data are expressed in percent of an arbitrary scale for each CpG, the results were analyzed with 

two-sided paired t-tests, and a P-value less than 0.05 were considered as significant. 

Construction of luciferase reporter vectors 

 A pGL3-Basic plasmid incorporating a 2.38-Kb fragment that includes the 5′ upstream 

regulatory region of the human FOXE1 (hFOXE1) gene from -1934 to +446, phFOXE1(-

1934/+446)-Luc, relative to the transcriptional start site (+1) was a generous gift from Dr. T. 

Eichberger (University of Salzburg, Salzburg, Austria). A deletion construct missing CpG island 

1(phFOXE1(-1115/+446)-Luc)was generated by restriction enzyme digestion using AflII/NsiI 

followed by blunt-end ligation. The two CpGs 14 and 15 within CpG island 1 located at -1417 

and -1412 relative to TSS (+1), respectively were mutated using the QuikChange site-directed 

mutagenesis kit (Stratagene, La Jolla, CA) according to the manufacturer’s instructions. 

Subsequently, a BseYI restriction site (5′-CCCAGC-3′) was created to facilitate further 

screening. The following primers were used in site-directed mutagenesis: sense 5′-

GCCCTCAGCTCACCCCCAGCAAGAACGCGACTAAAAC-3′ and anti-sense 5′-

GTTTTAGTCGCGTTCTTGCTGGGGGTGAGCTGAGGGC-3′. Restriction enzyme analysis 
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and DNA sequencing (IRIC, University of Montreal, Canada) confirmed the integrity of all the 

above constructs. 

In vitro global methylation assay 

 For in vitro methylation of pGL3 Basic and the different human FOXE1 promoter 

reporter plasmids, whole plasmids were methylated using the site-specific CpG 

Methyltransferase M.SssI (New England Biolabs Inc., Whitby, ON, Canada). Mock methylated 

plasmids were subjected to the same treatment in the absence of M.SssI. Following methylation, 

the plasmids were purified using the EZ-10 spin column DNA Gel Extraction Kit (Bio Basic 

Inc., Markham, ON, Canada) according to the manufacturer’s recommendations. The extent of 

methylation was subsequently verified by digestion with the CpG methylation-sensitive 

restriction enzyme HpaII (New England Biolabs) and its isoschizomer the CpG methylation-

insensitive MspI (Thermo Scientific, ON, Canada). Only completely methylated (M.SssI+) and 

mock-methylated (M.SssI-) plasmids were then used in the transfection experiments. 

In vitro regional (patch) methylation assay 

 For regional (patch) methylation of CpG island 1 to allow integration of methylated 

fragment, NdeI and NsiI restriction sites were engineered into both the wild type and point 

mutated FOXE1 promoter fragment using the QuikChange site-directed mutagenesis kit as well 

(Stratagene) according to the manufacturer’s instructions. The following primers were used in 

site-directed mutagenesis: 

NdeI-sense 5′-

CATTACTTGGGAAGAAGGAAACCATATGTTTTGTTTAGCGAGTGTAAAG-3′, NdeI-

antisense 5′-CTTTACACTCGCTAAACAAAACATATGGTTTCCTTCTTCCCAAGTAATG-

3′, NsiI-sense 5′-GATCAGCACACGCCCTCCAGATGCATTTTAACAGAGTAGAACACTG-

3′, and NsiI-antisense 5′-

CAGTGTTCTACTCTGTTAAAATGCATCTGGAGGGCGTGTGCTGATC-3′.  

 Restriction enzyme analysis and DNA sequencing (IRIC; University of Montreal, 

Canada) confirmed the integrity of the constructs. Fourty micrograms of the phFOXE1(-

1934/+446)-Luc plasmid containing either the wild type or the point mutated FOXE1 promoter 

insert were either globally in vitro methylated (using M.SssI methylase) or mock-methylated. 
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The efficiency of in vitro methylation was carried out as mentioned above. The methylated and 

mock-methylated vectors were then double digested with NdeI/NsiI to excise the CpG island 1 

fragments. After fractionation on a 1% agarose gel, the DNA bands corresponding to CpG island 

1 were cut from the gel and isolated using the QIAquick Gel Extraction kit (Qiagen). To 

determine the impact of regional methylation on the expression of the reporter gene, the 

methylated and mock-methylated wild type and point mutated CpG island 1 DNA fragments 

were then ligated into phFOXE1(-1934/+446)-Luc vector between the NdeI and NsiI restriction 

sites. The ligation reaction was performed using T4 DNA Ligase (Thermo scientific) according 

to the manufacturer’s instructions. According to the final yield of the purified methylated and 

mock-methylated CpG islands and due to the maximum amount of 500 ng total DNA/ligation 

reaction, 11 ligation reactions were carried out in which 50 ng of DNA/CpG island were ligated 

to 450 ng of back bone vector. Only one master mix was prepared that was then aliquoted in the 

different tubes. The ligation reactions were carried out overnight and then pooled together. The 

efficiency of ligation and equivalence of incorporated DNA into the methylated and mock-

methylated constructs were confirmed by agarose gel electrophoresis (as published by McGowan 

et al. (4); see supplemental Figure 1A-B). In addition, a small aliquot of the ligation reaction 

were transformed into E.coli XL-10-gold chemically competent cells to check the ligation 

efficiency and not for amplification (see supplemental Figure 1C). Hence, the ligation products 

were transfected directly into the normal human thyroid Nthy-ori cells to attain a significant 

read-out due to the small proportion of either methylated or mock-methylated constructs of 

interest. Of note, direct transfection of the ligation products is the standard procedure used with 

path-methylayed plasmids (4-9), given that subcloning of the ligation products in E. coli erases 

the methylation mark.  

 Then, the pGL3 Basic vector with no promoter insert was used as a negative control. The 

effect of targeted site-specific methylation on the transcriptional activity of the inserted FOXE1 

promoter fragment was expressed as fold change in the luciferase reporter gene activity relative 

to the pGL3 Basic vector. 

Transient transfection and Luciferase reporter gene assay 

 Rat follicular thyroid PCCL3 cells were transiently transfected with polyethylenimine 

(PEI; Polysciences, Inc., Warrington, PA) in triplicate in 24-well tissue culture plates (Corning 
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Inc., NY, USA). The volume of PEI used is based on a 4:1 ratio of PEI (µg): total plasmid DNA 

(µg). Cells were seeded at a density of 0.3 × 105 cells/well 48 h prior to transfection. Cells were 

transfected with 0.32 µg/well of the reporter vector pGL3-Basic (Promega, Madison, WI) and 

reporter plasmids including the different FOXE1 promoter inserts. To correct for transfection 

efficiency and variation in cell viability between wells, cells were co-transfected with 0.005 

µg/well Renilla luciferase repoter vector (pRL-TK; Promega) as an internal control. For 

methylated and mock-methylated plasmids, the activities of the firefly luciferase reporter gene 

and the Renilla luciferase were measured in cell lysates 24 h after transfection using the Dual 

Luciferase Reporter Assay System (Promega) following the manufacturer’s instructions. 

Luminescence was detected by the 2104 EnVision Multilabel Plate Reader (PerkinElmer, 

Waltham, MA). Following normalization with Renilla luciferase activity, luciferase activity 

corresponding to each plasmid was obtained relative to pGL3-Basic vector and the mean and 

standard error of the mean (SEM) from triplicate wells were calculated. Transfections were 

repeated for three independent experiments. 

 For regional methylation, due to the low read-out of the luciferase activities in PCCL3, 

the immortalized human thyroid Nthy-ori 3-1were transfected instead. Each of the religated 

methylated and mock methylated wild type and point mutated plasmids (0.75 µg DNA) were 

transfected in Nthy-ori 3-1 cells (0.1x 105 cells/well), plated 48 hrs before transfection, using X-

tremeGENE 9 (Roche Diagnostics, Laval, QC, Canada). In each experiment (n=2 in triplicate), 

the pRL-TK plasmid (0.25 µg) was cotransfected for normalization purposes. Luminescence was 

measured 48 h after transfection using the dual-luciferase reporter assay system (Promega) as 

previously mentioned. Following normalization with Renilla luciferase activity, luciferase 

activity corresponding to each methylated or mock-methylated plasmid was obtained relative to 

pGL3-Basic vector and the mean and standard error of the mean (SEM) from triplicate wells 

were calculated. Transfections were repeated for two independent experiments. 

In vitro methylation assay 

 For in vitro methylation of pGL3 Basic and the different human FOXE1 promoter 

reporter plasmids, whole plasmids were methylated using the site-specific CpG 

Methyltransferase, M.SssI (New England Biolabs Inc., Whitby, ON, Canada) following the 

manufacturer’s protocol. Mock methylated plasmids were subjected to the same treatment in the 
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absence of M.SssI. Following methylation, the plasmids were purified using the EZ-10 spin 

column DNA Gel Extraction Kit (Bio Basic Inc., Markham, ON, Canada) according to the 

manufacturer’s recommendations. The extent of methylation was subsequently verified by 

digestion with the CpG methylation-sensitive restriction enzyme HpaII (New England Biolabs) 

and its isoschizomer the CpG methylation-insensitive MspI (Fischer Scientific, ON, Canada). 

Only completely methylated (M.SssI +) and mock-methylated (M.SssI-) plasmids were then used 

in the transfection experiments. 

Chromatin Immunoprecipitation Assay (ChIP) 

 WRO cells, grown to ~90% confluence, were treated with thyroid-stimulating hormone 

(TSH) to a final concentration of 1mU/ml and insulin to a final concentration of 10µg/ml for 45 

min at 37 ºC. Treated cells were cross-linked with 1% formaldehyde for 10 min by at room 

temperature and the cross-linking was stopped using glycine to a final concentration of 125 mM. 

Cells were lysed in SDS lysis buffer for 10 min on ice, sonicated to an average size of 300–500 

bp using Fisher Scientific F 60 sonic dismembrator (Thermo Fisher scientifc) and lysates were 

clarified by centrifugation at 13 K for 10 min. Supernatants of sonicated lysates were diluted 

fivefold with ChIP dilution buffer and 10% of the chromatin solution was set aside to evaluate 

input DNA before immunoprecipitation. Samples were pre-cleared by incubating with 60µl of 

protein A agarose/salmon sperm DNA (Millipore, Billerica, MA) for 1h at 4°C with gentle 

agitation. Pre-cleared chromatin from 2 × 106 cells was used for each immunoprecipitation that 

was carried out for overnight at 4°C. The antibodies (3µg/each) used in the ChIP assays included 

anti-SUZ12 (D39F6) XP Rabbit mAb (Cell Signaling Technology, Whitby, Ontario), anti-

Histone H3 (acetyl K27) Rabbit pAb (ab4729, Abcam Inc, Toronto, Ontario), anti-trimethyl 

Histone H3-Lys27 Rabbit pAb (07-449, Millipore), and control Rabbit anti-IgG. Immune 

complexes were collected by incubating with 60µl of protein A agarose/salmon sperm DNA 

(Millipore), washed, and protein or modified histone/DNA complexes were eluted with 500 µl of 

1% SDS and 0.1 M NaHCO3. Cross-linking was reversed for 4h at 65°C and was followed by 

proteinase K digestion. DNA was purified by standard phenol/chloroform and ethanol 

precipitation and was amplified by a primer set related to the region -1529 to -1383 (from TSS) 

of the FOXE1 genomic locus. The primer set was as follows: -1529(sense), 5′- 

GCTTTGAGCGTTTCCACACACC-3′ and -1383 (antisense), 5′-

TGCCTTCCAGGGTTTTAGTCG-3′.  Initially, PCR was performed with different numbers of 
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cycles to determine the linear range of the amplification. After 28 cycles of amplification, PCR 

products were run on 1.5% agarose gel and analyzed by ethidium bromide staining. Composition 

of lysis, dilution, and washing buffers as well as PCR conditions are available upon request. 

B) RESULTS & DISCUSSION 

 No large methylation profile differences observed in whole genome from thyroid and 

leukocytes. 

To assess whether large differences in methylation (i.e., more than 200 bp in length, see 

Methods), we compared the genome-wide methylation profile of promoters and CpG islands 

using MeDIP arrays of four pairs of matched thyroids and leukocytes (with an additional 

unmatched leukocyte in the control group). After multiple test correction (Bonferroni), there was 

no statistically significant difference between thyroids and leukocytes (data not shown). 

Lack of differential methylation of CpG islands in PAX8 and NKX2.1 promoter confirmed by 

bisulfite sequencing 

 To determine whether the CpG rich region of the PAX8 (-635 to -471 from ATG) and 

NKX2.1 (-343 to -107 from ATG) promoters show differences in methylation between tissues, 

we used bisulfite sequencing of matched thyroids and leukocytes. Due to technical constraints 

and stringent quality controls, the final data analysis was possible on three pairs of matched 

thyroids and leukocytes for PAX8 and on one pair of unmatched thyroids and leukocytes for 

NKX2.1. No significant differences were observed. NKX2.1 promoter was completely 

demethylated in leukocytes and thyroids, whereas PAX8 promoter methylation showed large 

inter-individual variations both in leukocytes and thyroids (see supplemental Figure 1). 

The epigenetic modifier SUZ12 binds to CpG island 1 of the human FOXE1 promoter  

 Our data revealed that Suppressor of zeste 12 (SUZ12), a component of the polycomb 

repressive complex 2 (PRC2), can bind to CpG island 1 and more specifically to the -1529/-1383 

region of human FOXE1 gene locus, a result that is consistent with SUZ12-ChIP sequencing 

data available on the UCSC genome browser (supplemental Figure 3). Furthermore, we have 

assessed the methylation of histone H3K27 status within the same region knowing that the 

polycomb group (PcG) proteins are responsible for the deposition of the trimethylation of histone 

H3K27 (H3K27me3), the hallmark of PcG protein-mediated gene silencing. Such a 
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methyltransferase activity is mediated by the catalytic component of the PRC2, enhancer of zeste 

2 (EZH2)(10). Being inactive on its own, EZH2 is assisted by two other core components of the 

PRC2, SUZ12 and embryonic ectoderm development (EED) to attain proper methyltransferase 

activity. On the other hand, faint levels of the activation mark histone H3K27 acetylation 

(H3K27Ac) were observed, a finding that is consistent with the PRC2-mediated prevention of 

H3K27 methylation as a mechanism of transcription repression. Of note, a bivalent histone 

modification is present in the promoter of many lineage-control genes (11) and plays a role in 

stem-cell differentiation and possibly in cancerous de-differentiation (10, 12). Collectively, these 

results indicate that SUZ12 binds to the CpG island 1 of the FOXE1 promoter, within the region 

encompassing the two CpGs 14 and 15, and this binding activity is coincident with H3K27 

trimethylation. 
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Supplementary figures: 

Supplemental figure 1: 

 

 

 
 

A) Checking ligation of WT methylated and mock-methylated CpG island 1 to the vector back 
bone vector (pGL3-FOXE1 CpG island 1-less): The undigested methylated (lane 4) and mock-
methylated (lane 7) WT ligation reactions were loaded on 1.5% agarose gel in parallel to 
original plasmid (lane 1). Digestion products, using EcoRV, of the original plasmid, methylated 
and mock-methylated WT ligations are loaded on lanes 2, 5, and 8, respectively. In addition, 
digestion products, using HindIII, of the original plasmid, methylated and mock-methylated 
WT ligations were loaded on lanes 3, 6, and 9, respectively. Band(s) are expected at 7.2 Kb in 
case of EcoRV, while in case of HindIII bands are expected at 4.8 and 2.4 Kb. In case of 
ligation reactions digested with HindIII, a third band of 1.9 Kb is observed, representing 
promoter region without CpG1 island insert. 
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B) Checking ligation of CpG14-15 mutated methylated and mock-methylated CpG island 1 to the 
vector back bone vector (pGL3-FOXE1 CpG island 1-less): The undigested methylated (lane 2) 
and mock-methylated (lane 5) PM ligation reactions were loaded on 1.5% agarose gel in parallel 
to original plasmid (lane 1). Digestion products, using EcoRV, of the methylated and mock-
methylated PM ligations were loaded on lanes 3 and 6, respectively. In addition, digestion 
products, using HindIII, of the methylated and mock-methylated PM ligations were loaded on 
lanes 4 and 7, respectively. Band(s) are expected at 7.2 Kb in case of EcoRV, while in case of 
HindIII bands are expected at 4.8 and 2.4 Kb. In case of ligation reactions digested with HindIII, 
a third band of 1.9 Kb is observed, representing promoter region without CpG1 island insert. 

 

 

C) Restriction digest, using NdeI/NsiI, of minipreps from bacterial clones resulting from 
transformation of E. coli with ligation reactions of WT methylated and mock-methylated CpG 
island 1 (0.5 kB/each) to backbone vector (6.7 kB). 
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Supplemental figure 2: 

 

A) Bisulfite sequencing results for PAX8 promoter CpG island (−635 to −471 from ATG); 
globally significant, but not consistent when analyzed by matched samples or by single CpG. 
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B) Bisulfite sequencing results for NKX2.1 promoter CpG island (−342 to −107 from ATG). 
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Supplementary figure 3: 

 

A) Bisulfite sequencing results for FOXE1 promoter region −1140 to −880 from TSS (region 
between the CpG islands 1 and 2); globally significant, but not consistent when analyzed by 
matched samples or by single CpG. 
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B) Bisulfite sequencing results for FOXE1 5′ region (−660 to −125 from TSS) of the promoter 
upstream of and within CpG island 2. 
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Supplementary figure 4: SUZ12 binds to FOXE1 promoter in vivo.  

 
A) Chromatin of WRO cells was immunoprecipitated with the specific antibodies for 

SUZ12, H3K27Ac, H3K27me3, or control IgG then amplified by PCR with a 
primers’ set specific for the −1529 to −1383 region. 

 

 
B) Our results are consistent with SUZ12-ChIP sequencing data from ENCODE showing SUZ12 

binding (in the yellow box) in this region of the FOXE1 promoter (http: genome.ucsc.edu/ ). 
Red boxes indicate the CpG dinucleotides 13 to 15 of the CpG island 1. 
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Supplemental tables: 

Supplemental table 1: Patient and sample characteristics with listing of data having pass QC 
check for each assay. 
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Supplemental table 2: Primers, reagents and PCR conditions for amplification of bisulfite 
treated DNA. 
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CHAPTER 3: GENERAL DISCUSSION 
The main goal of this thesis was to assess the association of postzygotic (somatic) de 

novo events (genetic and/or epigenetic) with CH secondary to thyroid ectopy, a disorder that is 

mainly sporadic and is highly discordant between MZ twins. Recently, the importance of somatic 

mutations, including CNVs, in a various number of human diseases has been demonstrated 

(Erickson, 2010). Indeed, early postzygotic mutational events resulting in somatic mosaicism 

have been identified in MZ twins discordant for otopalatodigital syndrome (OPD) spectrum 

disorders (Robertson et al., 2006), Proteus syndrome (Saul et al., 1990; Brockmann et al., 2008), 

and for Dravet’s syndrome (Vadlamudi et al., 2010). In this regard, two main approaches were 

applied: 1) a genome-wide approach, which involved the integrative molecular analysis of 

ectopic thyroid tissues compared to eutopic (normally located) thyroids and 2) a candidate-gene 

approach, which mainly focused on FOXE1, the only transcription factor that has been shown to 

result in thyroid ectopy in KO mice. 

With regards to the genome-wide approach, two major outcomes were obtained: (i) the 

first article presented in this thesis reveals the enrichment of genes involved in the regulation of 

the Wnt signalling pathway in the transcriptome of ectopic thyroids, a finding that was 

independent of genetic (CNVs) and epigenetic (promoter and CpG island methylation) events at 

the level of definition used in the analysis (Abu-Khudir et al., 2010) and (ii) surprisingly, the 

expression level of calcitonin was similar between ectopic and eutopic thyroid glands , a fact that 

was confirmed by immunohistochemistry and reverse transcriptase PCR (RT-PCR) in our second 

article (Vandernoot et al., 2012). Indeed, the Wnt signalling pathway is involved in the 

development of various organs and tissues (Grigoryan et al., 2008; Petrie et al., 2009; Minami et 

al., 2010; Sugimura and Li, 2010; Lade and Monga, 2011; Rodriguez-Seguel et al., 2013). 

Moreover, a vital role of Wnt signalling for thyroid organogenesis is further supported by 

recent zebrafish studies showing thyroid abnormalities in transgenic tg(hsp70l:dkk1) and 

tg(hsp70l:wnt8) embryos in which the activity of the Wnt pathway was globally modulated via 

heat-shock treatment during different steps of thyroid organogenesis (Opitz & Costagliola, 

unpublished data). 

As for the candidate gene approach, our article on the epigenetic control of FOXE1 

revealed a tissue-dependent DMR in FOXE1 promoter upon comparing  leukocytes with thyroid 
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tissues and cell lines. Given the described functional impact of the reported DMR on FOXE1 

expression, we believed that this differentially methylated region is a hotspot for functional 

variants associated with CHTD, a hypothesis that seemed to be confirmed by our recent 

preliminary results as will be discussed later in the perspectives. 

1. Genome-wide approach 
The two main outcomes of our genome-wide approach were: (i) the association of the 

Wnt signalling pathway with thyroid ectopy and (ii) the conserved (and unexpected) expression 

of calcitonin in dysgenetic ectopic thyroid.  

1.1. Wnt signalling and thyroid ectopy 
In an attempt to assess whether the transcriptome of ectopic thyroids is shaped by somatic 

genomic or epigenomic variations, we conducted the first integrative analysis of transcriptome, 

DNA methylation and structural genomic variations (CNVs) in ectopic thyroids (Chapter 2, 

section 1, Figure 1). It is noteworthy that, novel genetic regulators of cancer have been identified 

by applying a similar integrative profiling approach (Adler et al., 2006; Sadikovic et al., 2009; 

Kresse et al., 2012). 

As our results indicated, microarray analysis of the genome-wide RNA expression profile 

revealed a differential gene expression in ectopic compared to normal orthotopic thyroids 

(Chapter 2, section 1, Table 1). Indeed, the highly differentially expressed genes and genes 

known to play a role in thyroid function (n=100) were validated using quantitative real-time PCR 

(qRT-PCR), which showed a highly significant correlation with microarray analysis (Chapter 2, 

section 1, Figure S1). Functional annotation of the differentially expressed genes showed that 

two of the top three clusters are enriched for developmental processes (Chapter 2, section 1, 

Table S1). Moreover, our functional annotation revealed that the top five clusters of genes 

induced in ectopic thyroids encompassed genes important for development, vasculogenesis, the 

extracellular matrix, immune system development and collagen, while the top five clusters for 

repressed genes included genes important for histone function, apoptosis, chromatin function, 

organelle and contractile functions (Chapter 2, section 1, Table S2).  

According to our results, pathway distribution of the differentially expressed, induced 

genes in ectopic thyroids showed their enrichment for eight pathways, three of which are 
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associated with cell-to-cell interaction (MAPK signaling pathway, focal adhesion and cell 

communication) (Chapter 2, section 1, Figure 2). Interestingly, four of the identified pathways, 

including focal adhesion, antigen processing and presentation, cell communication, cell adhesion 

molecules, and Type I diabetes pathways were independently identified in “hyperfunctioning” 

thyroid nodules from familial non-autoimmune hyperthyroidism (FNAH) patients (Hébrant et 

al., 2009). Contrary to our findings, Hébrant et al. found genes that were down-regulated in 

thyroid tissues of FNAH patients, including those involved in focal adhesion and cell adhesion 

that mediate cell/cell as well as cell/extracellular matrix (ECM) interactions (Hébrant et al., 

2009). In addition, they and others also described down-regulated genes in FNAH tissues and in 

thyroid autonomous adenomas which are involved in the immune response and inflammation, 

including antigen processing and presentation (Wattel et al., 2005; Hébrant et al., 2009). 

Due to the difference in the TSH-dependent activation state of ectopic and orthotopic 

thyroid tissues, we have extended our gene expression analysis of the 100 validated genes to 

normally located “hyperfunctioning” thyroid nodules, occurring mainly due to constitutively 

activating TSH receptor (TSHR) mutations (Parma et al., 1993; Paschke and Ludgate, 1997). 

Indeed, genes whose expression is dependent on TSH-driven thyroidal activity, enriched for 

thyroid hormonogenesis and function, were excluded (Chapter 2, section 1, Table S4). We 

believe that the list of TSH-dependent genes described in this study represents the most 

exhaustive list of TSH-driven genes published to date, and many hits were reported by either 

previous or subsequent publications from other groups (Sato et al., 1995; Matowe et al., 1996; de 

Cristofaro et al., 2012). In addition, the list recapitulates all the known TSH-dependent genes 

(TSHR, TPO, Tg, PAX8, DUOX2), substantiating the validity of our data. Moreover, it also 

proposes a lot of new hits related to cell-cell interactions (e.g. cadherin 2 and 16, claudin, and 

fibronectin 1). 

On the other hand, the expression of 19 genes is dependent only on thyroid localization. 

This group of 19 genes is enriched for the Wnt signalling pathway, the dendritic cell maturation 

pathway, and embryonic developmental functions (Chapter 2, section 1, Table 2). Of note, none 

of the genes encoding the thyroid related transcription factors FOXE1, HHEX, NKX2.1, NKX2.5 

showed decreased expression in ectopic thyroids when compared to either normal or 

“hyperfunctioning” thyroids (Chapter 2, section 1, Table 3).  
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Although we have shown that the differential expression determined in our ectopic 

thyroids is independent of the DNA methylation profile of the glands (Chapter 2, section 1, 

Figure 1), the role of histone modifications cannot be ruled out. Various histone modifications 

enriched in promoter regions are associated with either active or repressed genes (Bernstein et 

al., 2005; Kim et al., 2005; Roh et al., 2005; Vakoc et al., 2005; Boyer et al., 2006; Lee et al., 

2006; Squazzo et al., 2006). Moreover, crosstalk between DNA methylation and histone 

modifications has been previously reported (Fuks, 2005; Cedar and Bergman, 2009; Ikegami et 

al., 2009). Our results have shown that the expression of genes involved in histone modifications 

and chromatin function are repressed in ectopic thyroids (Chapter 2, section 1, Table S2), thus 

their probable contribution to the differential expression observed in ectopic thyroids deserves 

further investigation.  

However, none of our validated common CNVs were correlated with the differentially 

expressed genes detected in the ectopic thyroid tissues (Chapter 2, section 1, Figure 1 and Table 

S5). Recently, potentially pathogenic germline CNVs were identified in TD patients, the 

majority of which have not been previously associated with TD (Thorwarth et al., 2010). The 

high rate of CNVs identified in the screened TD patients is in favor of the involvement of these 

genetic variants in the etiology of TD. However, their lack of recurrence and their lack of 

enrichment among the screened patients points to the importance of considering not only these 

candidate genes but the pathways in which they play a role (Thorwarth et al., 2010). Such a 

consideration is in support of our findings revealing the enrichment of pathways involved in 

cellular movement, among which is the Wnt signalling pathway, in our analyzed ectopic tissues. 

An association between the Wnt signalling pathway and abnormal thyroid migration 

during development is biologically acceptable. In multicellualr organisms, the Wnt signalling 

pathway is involved in various aspects of embryonic development and adult tissue homeostasis. 

Consequently, its aberrant regulation leads to serious developmental defects or pathological 

conditions, especially cancer, later in adult life (Barker, 2008; Giunta, 2009; Herr et al., 2012). 

The Wnt ligands induce several signalling pathways: the beta (β)-catenin-dependent signalling 

pathway (canonical pathway) and the β-catenin-independent pathways (non-canonical pathway), 

including the Planar cell polarity (PCP) signalling and the Wnt–Ca2+ pathway (Figure 13) 

(Sastre-Perona and Santisteban, 2012). 
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Figure 13: The Wnt signalling pathways (adapted from Sastre-Perona and Santisteban, 2012). 

The non-canonical Wnt signalling pathway mediates cell migration and polarity during 

embryogenesis (Veeman et al., 2003; Kohn and Moon, 2005) and several animal studies have 

supported that role (Rauch et al., 1997; Heisenberg et al., 2000; Hamblet et al., 2002; 

Wallingford and Harland, 2002; Curtin et al., 2003; Wang et al., 2006; Etheridge et al., 2008; 

Yen et al., 2009). Moreover, mouse mutants for the Wnt antagonists Sfrp1, Sfrp2, and Sfrp5 

provide additional evidence for the importance of the Wnt/PCP signalling pathway in regulating 

the morphogenetic movements during mammalian gastrulation (Satoh et al., 2008). 

In Xenopus and zebrafish, Wnt signalling is known to play an essential role during 

gastrulation and endoderm fate determination (Zorn et al., 1999; Schier and Talbot, 2005; Zorn 

and Wells, 2007), in endoderm patterning (McLin et al., 2007; Goessling et al., 2008), and 

subsequently, Wnt signals enhance the specification and differentiation of the endoderm-derived 
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organs including lungs, liver, pancreas, stomach, and intestine (Murtaugh, 2008; Verzi and 

Shivdasani, 2008; Goss et al., 2009; Lade and Monga, 2011; Poulain and Ober, 2011). In 

Xenopus, it has been suggested that endoderm patterning is mediated via several Wnt ligands that 

signal via both the canonical and non-canonical (Wnt/JNK) pathways which promote hindgut 

fate and morphogenesis in the posterior endoderm, respectively (McLin et al., 2007; Li et al., 

2008; Reed et al., 2009). 

Moreover, analysis of conditional loss- and gain-of-function mutations of β-catenin in 

mice revealed the crucial role of the canonical Wnt/β-catenin signalling pathway in mammals 

where it controls the development of numerous tissues and organs including endoderm-derived 

ones (e.g. intestine, pancreas, liver, and lung) (Grigoryan et al., 2008). The canonical Wnt/β-

catenin signalling is implicated in liver bud expansion and differentiation, postnatal growth and 

development as well as liver regeneration and carcinogenesis (Lade and Monga, 2011; Tremblay, 

2011). Similar to what is observed in Xenopus and zebrafish (McLin et al., 2007; Goessling et 

al., 2008; Li et al., 2008), the Wnt/β-catenin signalling is required for the specification of 

pancreas during early endoderm development in murine and is implicated as well in fetal 

pancreas growth and/or differentiation, especially for exocrine acinar cells. The role of Wnt/β-

catenin signalling in development or function of endocrine islets is a matter of debate. However, 

independent studies in mouse and humans have pointed to the role of the signalling pathway in 

maintaining adult islet function (Murtaugh, 2008). Recently, the non-canonical Wnt pathway 

has been identified as a potential developmental regulator of the pancreatic versus liver cell fate 

specification, in a β-catenin-independent manner, in Xenopus embryos and mammalian cells 

(Rodriguez-Seguel et al., 2013). 

Earlier, Helmbrecht et al. have described a functional Wnt/β-catenin signalling pathway 

in normal human thyroid cells that expressed the major effectors of the pathway including the 

Wnt proteins (Wnt-2, Wnt-3, Wnt-4, Wnt-5a, and Wnt-10b), members of the Frizzled (Fzd) 

receptor family (Fzd-1, -2, and -6), and the intracellular effectors the Disheveled (DVL) isoforms 

DVL-1, -2, and -3. In addition, the β-catenin degradation complex consisting of β-catenin, the 

tumor suppressor Adenomatous polyposis coli (APC), and glycogen synthase kinase 3β 

(GSK3β), was detected in human thyroid cells (Helmbrecht et al., 2001). Moreover, an increase 

in rat and human thyroid cell proliferation has been identified upon TSH-dependent over-

expression of Wnt1 and inhibition of GSK3β by adenoviral-interference (Kim et al., 2007; Chen 
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et al., 2010b). Taken together, these data point to the existence of a functional Wnt pathway in 

thyroid cells that is related to their proliferation. On the other hand, in the mouse embryo, no 

nuclear β-catenin could be detected in thyroid progenitor cells, thus indicating that the canonical 

Wnt/β-catenin pathway seems to be inactive during specification and migration of the thyroid 

anlage in mice (Fagman et al., 2003). 

Several studies have pointed to the role of the canonical Wnt/β-catenin pathway in 

thyroid cancer (Sastre-Perona and Santisteban, 2012). The contribution of Wnt/β-catenin 

signalling pathway to thyroid carcinoma is supported by the modulation of the pathway via the 

thyroid hormone T3 and its receptor TRβ in a mouse model of the well-differentiated follicular 

thyroid carcinoma harboring a dominant negative mutation of TRβ (TRβPV/PV mice) (Guigon 

et al., 2008; Lu et al., 2012). On the other hand, activation of the non-canonical Wnt/Ca2+ 

signalling pathway via the increased expression of its activator Wnt5a leads to inhibition of 

growth, migration, invasiveness, and clonogenicity in a thyroid carcinoma cell line. These effects 

were related to the antagonistic action of Wnt-5a to the canonical Wnt signalling 

(Kremenevskaja et al., 2005). 

Among the identified genes that exhibited convergent expression in our analyzed ectopic 

thyroid tissues are SFRP2 and FRZB, encoding the negative modulators (antagonists) SFRP2 and 

SFRP3, respectively, of the Wnt signalling pathway (Chapter 2, section 1, Table 2). The secreted 

frizzled-related proteins (SFRPs), are among the antagonists which directly interact with Wnt 

proteins or Frizzled (Fzd) receptors and block all Wnt signalling pathways (Kawano and Kypta, 

2003). However, it has been recently demonstrated that SFRPs can either promote or suppress 

Wnt/β-catenin signalling, depending on their concentration, cellular context, and the expression 

pattern of Fzd receptors (Xavier et al., 2014). As recently reviewed by Surana et al., down-

regulation of SFRPs, mainly via DNA hypermethylation, has been reported in a variety of 

malignancies, not including the thyroid, and this is often correlated with poor prognosis (Surana 

et al., 2014). In addition, the inhibitory capacity of SFRPs (SFRP1, SFRP2 or SFRP3) on 

migration, invasion, and growth of a number of cancer cells has been previously demonstrated. 

These inhibitory actions occur via attenuation of either the canonical or non-canonical Wnt 

signalling pathway (Roth et al., 2000; Chung et al., 2009; Kongkham et al., 2010; Ekström et al., 

2011).  
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1.2. Expression of calcitonin in ectopic lingual thyroids 
In our genome-wide gene expression study of ectopic thyroids (Gene Expression 

Omnibus, accession no. GSE16804), we unexpectedly observed no differences in the expression 

level of calcitonin between ectopic and normal (orthotopic) thyroids, thus suggesting the 

presence of calcitonin-producing C cells in ectopic lingual thyroids (Abu-Khudir et al., 2010). In 

our second article (Chapter 2, section 2), we confirmed the presence of calcitonin-producing C 

cells in six independent ectopic lingual thyroids (Chapter 2, section 2, Figures 1 and 2), an 

observation that was further confirmed on two additional paraffin-embedded ectopic thyroids (J. 

Deladoëy, unpublished observation). This unprecedented finding in non-tumoral ectopic thyroids 

contradicts current knowledge of the embryological development of the thyroid.  

During the embryonic development of the human thyroid, the ultimobranchial bodies 

(UBB), considered to be the only source of the C cells (Pearse and Carvalheira, 1967), merge 

with the primitive thyroid at around embryonic days (E) 60 i.e. ten days after the thyroid bud 

reaches its final location in front of the trachea at E45–50 (De Felice and Di Lauro, 2004). 

Accordingly, C cells are not expected to be present in lingual ectopic thyroids, tissues that failed 

to complete their migratory path. Consequently, our finding indicates that the UBB are not the 

sole source of calcitonin-producing C cells in humans and that the interactions between 

calcitonin-producing and TFCs occur earlier than previously accepted. Our results showing that 

human ectopic lingual thyroids contain calcitonin producing C cells are indirectly supported by 

the previously reported observations showing the presence of low but detectable circulating 

calcitonin levels in patients with CHTD (Chanoine et al., 1990; Body et al., 1993) and the 

detection of medullary carcinoma (cancer arising from C cells) in a lingual thyroid (Yaday et al., 

2008).  

Several hypotheses can be generated to explain the cellular origin of calcitonin-producing 

C cells in ectopic lingual thyroids. First, C cells can occur in ectopic thyroids subsequent to the 

differentiation of some TFCs towards C cells (TFCs transdifferentiation). Transdifferentiation of 

various cell types towards C cells is observed either in non-tumoral or in tumoral tissues. Non-

tumoral ectopic thyroid masses have been previously reported in the thoracic or abdominal 

cavities (Bando et al., 1993; Muysoms et al., 1997; Casanova et al., 2000; Gungor et al., 2002). 

Also, non-tumoral ectopic thyroid follicles have been identified in the submucosa of the 
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duodenum, though stained negative for calcitonin (Takahashi et al., 1991). For tumoral tissues, it 

has been demonstrated that properties of C cells, represented by secretion of calcitonin, are 

acquired by some tumor cells (e.g. carcinomas of breast, lung, and adrenal medulla) after 

switching their differentiation program (Coombes et al., 1976; Hillyard et al., 1976; Calmettes, 

1984). Another explanation for the presence of calcitonin-producing C cells in ectopic lingual 

thyroids is the in situ differentiation of pluripotent stem cells to both TFCs and C cells within the 

ectopic thyroid. Similarly, the occurrence of medullary and either papillary or anaplastic 

components in the thyroid may suggest that the tumor had arisen from a common stem cell 

(Shiroko et al., 2001; Tohidi et al., 2013). On the contrary, it has been previously suggested that 

UBB cells could differentiate into TFCs and might be a source of both follicular as well as C 

cells (Weller, 1933; Williams et al., 1989). However, some authors maintain that most of the 

follicular content of the thyroid originates from the median anlage, while the lateral thyroid is 

derived from UBB (Bersaneti et al., 2011). Moreover, the presence of cystic structures in cases 

of ectopic thyroids containing both TFCs and C cells suggests that these intracystic follicular 

cells are derived from the UBB (Williams et al., 1989). Finally, a less likely considered 

explanation for the presence of C cells in ectopic thyroids is the aberrant migration of the UBB 

during thyroid development, where none has been previously reported. In addition, the recurrent 

occurrence of such a developmental defect in the analyzed cases (n=6) is unlikely. 

2. Candidate gene approach 
In order to determine the role of somatic epimutations in the pathogenesis of CHTD, in 

this section of the thesis, we sought to determine whether DNA methylation differences exist 

between ectopic and normally located (orthotopic) thyroids within the promoter regions of the 

human thyroid-specific transcription factors FOXE1, PAX8 and NKX2.1. As previously 

mentioned, we focused our attention on FOXE1, the only thyroid-specific transcription factor 

that has been shown to result in ectopic thyroid in knockout mice (Parlato et al., 2004). 

As our integrative molecular analysis of ectopic and orthotopic thyroids has shown (Abu-

Khudir et al., 2010), no differences in promoter methylation profiles of the candidate genes 

FOXE1, PAX8 and NKX2.1 were observed between the two types of thyroid tissues. Finding no 

differentially methylated region(s) DMR(s) in thyroid tissues differing only in their location 

(ectopic versus eutopic) might be anticipated. However, we believed that a DMR(s) is(are) likely 
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to exist between thyroid and leukocytes, two tissues exhibiting different expression profiles. In 

this regard, we sought to determine whether the promoter methylation profile was different 

between thyroid tissue and leukocytes using MeDIP arrays or bisulfite sequencing. Of note, 

association between DMRs and genetic as well as epigenetic variations has been previously 

proposed, thus they are considered as hotspots for disease-associated mutations (Beaudet and 

Jiang, 2002; Cooper et al., 2010). 

As previously mentioned in the introductory chapter, DNA methylation is the most 

common epigenetic modification (Dolinoy and Faulk, 2012; Moore et al., 2013). It involves the 

covalent addition of a methyl group to the 5́ -position of cytosine in the context of 5́-CpG-3́ 

dinucleotides, a process catalyzed and maintained by enzymes of the DNA methyltransferase 

(DNMT) family (Auclair and Weber, 2012; Kohli and Zhang, 2013; Moore et al., 2013). During 

development, DNA methylation plays a crucial role in the establishment of tissue-specific 

patterns of gene expression, where various patterns of DNA methylation exist between different 

tissues (Futscher et al., 2002; Ching et al., 2005; Klose and Bird, 2006; Bogdanović and 

Veenstra, 2009). Several genome-wide studies have shown that distinct regions of the 

mammalian genome exhibit a tissue-dependent pattern of DNA methylation, known as tissue-

specific differentially methylated regions (T-DMRs) (Song et al., 2005; Eckhardt et al., 2006; 

Khulan et al., 2006; Kitamura et al., 2007; Illingworth et al., 2008; Rakyan et al., 2008; Byun et 

al., 2009; Maunakea et al., 2010). Tissue-specific DMRs are found in either CpG-rich or -poor 

DNA sequences (Ohgane et al., 2008), with a high prevalence in CpG-poor regions in both the 

human and mouse genome (Rakyan et al., 2008; Yagi et al., 2008; Byun et al., 2009; Liang et 

al., 2011; Nagae et al., 2011). Such a finding is supported by the evident existence of tissue-

specific DNA methylation in regions outside CGIs or CGI flanking regions (Slieker et al., 2013). 

Moreover, it has been shown that T-DMRs, identified in multiple peripheral and internal human 

tissues, are mapped to genes with tissue-specific expression. T-DMRs are hypomethylated 

specifically in the tissue expressing those genes, which is in accordance with the inverse 

relationship between DNA methylation and gene expression (Slieker et al., 2013). Recently, 

Zhang et al. have shown that in humans, DMRs are robustly associated with gene regulatory 

elements, promoters and/or enhancers, together with the active chromatin marks H3K4me3 and 

H3K4me1, respectively. In addition, they have shown that DNA methylation of promoters can be 

implicated in major cell lineage determination, whereas methylation of enhancer elements might 
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be involved in modulating gene expression and allowing the cells to possess a final lineage 

commitment or maintain a distinct cell fate (Zhang et al., 2013). 

As mentioned above, we sought to locate T-DMRs in the promoters of the FOXE1, PAX8 

and NKX2.1 genes that might be involved in their differential expression. Our results have shown 

that genome-wide methylation profiling and bisulfite sequencing of CGIs located within the 

promoters of PAX8 and NKX2.1 revealed no T-DMR between thyroid and leukocytes. However, 

we described a T-DMR in the FOXE1 promoter. Bisulfite sequencing revealed that the 

reported DMR in CpG island 1 of FOXE1 promoter (−1600 to −1140 from the transcription start 

site (TSS; +1)) was globally more methylated in leukocytes compared to thyroid tissues (Chapter 

2, section 2, Figure 2A and B). Moreover, within the DMR, the major methylation targets were 

the two consecutive CpG dinucleotides, CpG14 and CpG15, which were not covered by the 

genome-wide array. The two CpG dinucleotides showed a significantly higher methylation rate 

in leukocytes when compared to thyroid tissues (Chapter 2, section 2, Figure 2A and B). These 

results were validated using bisulfite pyrosequencing (Chapter 2, section 2, Figure 3), thus 

suggesting that methylation of this region might be involved in the modulation of FOXE1 gene 

expression. 

According to our results, the methylation status of the reported DMR was correlated with 

FOXE1 mRNA expression, with complete lack of expression in leukocytes versus a clearly 

detected one in thyroid tissues (Chapter 2, section 2, Figure 4A). DNA methylation can inhibit 

gene expression at different levels. In addition, the efficiency of repression is affected by various 

parameters, including position, length, and density of the methylated CpG dinucleotides (Kass et 

al., 1993; Hsieh, 1994; 1997). Moreover, the relationship between gene repression and number 

of modified CpGs is nonlinear with an obvious overall level or a threshold of promoter 

methylation effect. Hence, transcriptional repression can spread only when a sufficient amount of 

CpGs are methylated (Curradi et al., 2002; Choi et al., 2009). In accordance with this threshold-

dependent methylation-mediated model of repression, expression of FOXE1 in our thyroid 

tissues is not hindered, in spite of low-levels of overall methylation, (Chapter 2, section 2, 

Figures 2B and 4A). This also explains the lack of significant difference in FOXE1 expression 

among thyroid tissues, even though the eutopic tissue #2 showed an intermediate-low level of 

methylation in CpG14 and CpG15, the two CpGs shown to modulate the differential expression of 

FOXE1 as will be discussed later (Chapter 2, section 2, Figures 2B and 4A). 
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Several studies have pointed to the association between aberrant methylation patterns of 

FOXE1 and a number of different cancers (Sato et al., 2003; Rush et al., 2004; Kuang et al., 

2008; Weisenberger et al., 2008; Venza et al., 2010; Bell et al., 2011; Vincent et al., 2011; 

Papadia et al., 2014). Moreover, reactivation of FOXE1 expression has been reported in a 

number of pancreatic and cutaneous SCC cancer cell lines. The reactivation of expression 

occurred following treatment of the cells with the demethylating agent 5-Aza-2′-deoxycytidine 

(5-AZA-dc), thus supporting the role of DNA methylation in regulating FOXE1 expression (Sato 

et al., 2003; Venza et al., 2010). 

As our results indicated, the methylation status of the reported T-DMR in the human 

leukemia cell lines (Jurkat, K562, and REH) ranged from moderate (K562) to high (Jurkat and 

REH) methylation (Chapter 2, section 2, Figure 2C). Such a methylation profile was correlated 

with the lack of FOXE1 expression in the mentioned cell lines (Chapter 2, section 2, Figure 4B). 

Previously, Kuang et al. have analyzed FOXE1 promoter-associated CGI methylation in various 

leukemia cell lines, including Jurkat, K562, and REH (Kuang et al., 2008). They have shown 

that the region −673 to −124 from TSS (upstream of and within CpG island 2) is hypermethylated 

in the investigated leukemia cell lines. According to our results, this region showed no tissue-

specific DNA methylation differences between leukocytes and thyroid tissues (Chapter 2, section 

2, supplementary figure 3B), thus, we did not determine its methylation status in the leukemia 

cell lines. It should be noted that our reported T-DMR (encompassing CpG island 1) was not 

covered on the proximal promoter microarray used by Kuang et al. (Kuang et al., 2008). 

Contrary to what we have observed in the human leukemia cell lines, the DMR was 

almost unmethylated in the dedifferentiated thyroid cancer cells WRO (Chapter 2, section 2, 

Figure 2C). In accordance with previous studies (van Staveren et al., 2007; Abu-Khudir et al., 

2010), we have reported that FOXE1 expression was faintly detected in WRO cells (Chapter 2, 

section 2, Figure 4B). Indeed, it is quite interesting to show that FOXE1 expression is slightly 

conserved even in this dedifferentiated cell line which shows no methylation at the two CpGs 14 

and 15. As our results indicate, the low expression levels of FOXE1 in WRO cells implies the 

involvement of other mechanisms, such as partial repression through the polycomb repressive 

complex 2 (PRC2), as suggested by our chromatin immunoprecipitation (ChIP) assay results 

(Chapter 2, section 2, supplemental figure 4A). The main function of PRC2 complex is to repress 

gene expression through imposing trimethylation on histone H3 lysine 27 residue (H3K27me3) 
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(Cao et al., 2002). It has been proposed that prevention of the active mark histone H3 lysine 27 

acetylation (H3K27Ac) by PRC2 is a mechanism by which the complex mediates repression of 

transcription (Pasini et al., 2010). Hence, the observed partial repression of FOXE1 expression in 

WRO cells is attributed to the partial conservation of the H3K27Ac mark. Unmethylayed CGIs 

play a key role in the recruitment of PRCs and most PRC2 target genes remain constitutively 

unmethylated throughout development (Cedar and Bergman, 2009; Lynch et al., 2012). In 

cancer, de novo methylation of these CGIs is triggered, probably via mechanisms involving the 

interaction between enhancer of zeste homolog 2 (EZH2), the histone methyltransferase 

component of PRC2, and DNA methyltransferases (Viré et al., 2006). 

Our in vitro results demonstrated the impact of global DNA methylation of different 

FOXE1 promoter constructs on the activity of the reporter gene, where strong  transcriptional 

repression of the luciferase  activity was seen (Chapter 2, section 2, Figure 5). Moreover, our 

data indicate that regional (patch) methylation of the wild type T-DMR (encompassing CpG 

island 1 with wild type CpG14 and CpG15) resulted in a significant decrease in reporter gene 

activity in comparison to mock-methylated control. In contrast, no significant difference in the 

activity was observed upon point mutating the two CpG dinucleotides (Chapter 2, section 2, 

Figure 6), thus indicating their involvement in modulating the expression of FOXE1. This 

finding is in consistent with the current model depicting the relationship between DNA 

methylation and gene expression. According to this model, CpG dinucleotides residing close to 

the TSS (<2 kb upstream or downstream of TSS) i.e. within the promoter region, whether or not 

they are located in CGIs, correlate negatively with gene expression, hence being 

hypermethylated leads to lower levels of gene expression (Varley et al., 2013). Of note, several 

studies have pointed to the correlation between site-specific CpG methylation and either the 

repression or reduction of tissue or cell-specific gene expression (Ben-Hattar and Jiricny, 1988; 

Wicki et al., 1997; Gonzalgo et al., 1998; Robertson and Jones, 1998; Grant et al., 1999; 

Boatright et al., 2000; Pogribny et al., 2000; Sato et al., 2011). 

Generally, two different mechanisms by which DNA methylation represses gene 

expression have been identified. First, CpG methylation contributes to transcriptional repression 

by directly preventing ubiquitous transcriptional regulators (such as E2F or CREB) from binding 

to their target gene promoters (Iguchi-Ariga and Schaffner, 1989; Campanero et al., 2000; Yoo 

and Jones, 2006). A second mechanism involves the binding of methyl-CpG-binding proteins 
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and the subsequent recruitment of repressive complexes such as histone deacetylases (HDACs) 

that lead to chromatin compaction and in turn transcriptional repression of the gene is an 

alternative indirect mechanism (Jones et al., 1998; Nan et al., 1998; Wade, 2001; Fuks et al., 

2003). Among the methyl-CpG-binding protein, MeCP2 has been shown to bind to as few as one 

to three methylated cytosines (Nan et al., 1993), thus supporting the notion that site-specific 

methylation of CpG dinucleotides is involved in transcriptional repression. The methylation of 

CpGs14-15 of FOXE1, could sterically prevent the binding of a transcription factor/complex to a 

putative regulatory element(s) needed for fine-tuning FOXE1 gene expression. Hence, 

identification of possible cis-regulatory elements in CpG island 1 of FOXE1 will be an 

interesting subject for future research. 

In summary, the results obtained in this thesis provided evidence on the unprecedented 

plausible association between the Wnt signalling pathway with CHTD secondary to thyroid 

ectopy. Such an association was attained via the first integrative analysis of ectopic thyroid 

tissues, which provides a prototype approach for studying other congenital disorders currently 

unexplained by classical genetics. Moreover, our results have demonstrated the presence of a T-

DMR in the promoter of FOXE1, the gene encoding the only thyroid-specific transcription factor 

shown to be associated with thyroid ectopy in animal models. Such a T-DMR is an ideal 

candidate region for variants associated with CHTD. 
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CHAPTER 4: CONCLUSIONS AND 
PERSPECTIVES 

Congenital hypothyroidism from thyroid dysgenesis (CHTD) is a common congenital 

disorder with a prevalence of 1 case in 4,000 live births (Deladoëy et al., 2007b). CHTD occurs 

consequent to a complete absence of thyroid (athyreosis) or a failure of the thyroid to migrate to 

its anatomical location (anterior part of the neck), which results in thyroid ectopy (lingual or sub-

lingual, the most common form). The majority of CHTD cases has no known cause, but is 

associated with a severe deficit in thyroid hormones (hypothyroidism), which can lead to severe 

mental retardation if left untreated. The major contribution of the work presented in this thesis 

was the identification of novel candidate genes and signalling pathways as plausible mechanisms 

underlying the pathogenesis of CHTD (Abu-Khudir et al., 2010). In addition, the identification 

of a T-DMR in the promoter of FOXE1, a thyroid transcription factor known to be involved in 

regulating the migration of the developing thyroid, as it represents an ideal spot for variants that 

might be associated with CHTD (Abu-Khudir et al., 2014). Moreover, we proposed evidence 

that contradicts the current knowledge on the normal development of the thyroid gland 

(Vandernoot et al., 2012). Finally, we believe that the body of work presented in this 

doctoral thesis has paved the way for many future avenues of research that will aid in 

better understanding both the normal and pathogenic development of the thyroid gland. 

These are briefly summarized below.  

Regarding the genome-wide approach, the results of our integrative molecular profiling 

of human ectopic thyroids revealed the association between genes involved in the Wnt signalling 

pathway and congenital hypothyroidism due to thyroid ectopy. Such an association was 

attributed to the differential expression profile of ectopic thyroids, though the molecular basis 

could not be identified (i.e. independent of promoter methylation and CNVs). This was the 

motivation behind considering higher definition methodologies aiming to search for rare genetic 

variants associated with defective thyroid migration during embryogenesis. In this respect, we 

performed the whole-exome of (i) three ectopic thyroids with matched normal tissue (leukocytes) 

from the same individual (looking for somatic mutations), (ii) of six sporadic cases and one 

familial case of direct transmission of thyroid ectopy from mother to daughter (looking for rare 

susceptibility variants). This approach is consistent with the probable multigenic cause of CHTD, 
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where first hits could be rare inherited or de novo germline mutations, while the additional hits 

could also be a germline or else somatic mutations in a different gene. 

Whole-exome sequencing (WES) is an application of the next-generation sequencing 

(NGS) technologies that focuses on the protein-coding regions, or exons, which constitute 1.5–

1.7% of the human genome (Rabbani et al., 2012). These regions of the genome encompass the 

most interpretable disease-causing genetic variations associated with Mendelian (monogenic) 

disorders as well as many disease-predisposing single nucleotide polymorphisms (SNPs). In 

addition, WES is applied in the identification of the genetic bases of various disorders among 

which are intellectual disorders (Shoubridge et al., 2010; Vissers et al., 2010; Abou Jamra et al., 

2011; Caliskan et al., 2011), immunological disorders (Bolze et al., 2010; Byun et al., 2010), 

somatic mutations and predisposing variants in various cancers (Link et al., 2011; Nikolaev et 

al., 2012), and others (Bilgüvar et al., 2010; Gilissen et al., 2010; Lupski et al., 2010; O'Roak et 

al., 2011; Zuchner et al., 2011). With the regard of congenital disorders, novel disease genes 

have been identified via whole-exome studies in congenital heart disease (Arrington et al., 2012; 

Zaidi et al., 2013). Of note, mutations in the Pendrin (SLC26A4) gene have been identified using 

exome sequencing in patients with structural thyroid defect (a secondary loss of normal thyroid 

follicles in the sense of a thyroid atrophy) from consanguineous families, thus extending the 

variable clinical spectrum of patients with SLC26A4 mutations (Kuhnen et al., 2014). 

As mentioned above, to identify putative genetic variants, we performed WES on ectopic 

thyroid tissues as well as on leukocytes from sporadic and familial cases. Subsequently, WES 

data were processed via two approaches, that used different alignment algorithms for single 

nucleotide variants (SNVs) calling. In order to identify genes of potential interest, data were 

analyzed with considering gene ontology (GO), possible thyroid expression, and biological 

relevance. Moreover, results were compared with the transcriptome, methylome, and structural 

genomic variants of ectopic thyroids from our integrative analysis (Abu-Khudir et al., 2010). 

Our preliminary results revealed the occurrence of a recurrent SNV in a novel gene (we 

called it CH1, a gene involved in cell migration) in three affected individuals (over 8 

individual WES data). Once this potential variant will have been validated, its impact on 

migration of the human normal Nthy-ori thyroid cells will be determined using the xCELLigence 

Real-Time Cell Analyzer (RTCA) DP instrument. The xCELLigence system provides 
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continuous measurement and quantification of cellular migration by measuring electrical 

resistance. 

Considering the candidate-gene approach, our results showed a tissue-specific 

differentially methylated region (T-DMR) in the promoter of FOXE1. In light of the previously 

proposed association between differentially methylated regions (DMRs) and genetic and/or 

epigenetic variations and hence their consideration as hotspots for disease-associated mutations 

(Beaudet and Jiang, 2002; Cooper et al., 2010), we decided to screen this DMR in our cohort of 

CHTD patients using Sanger sequencing searching for a functionally relevant genetic variation. 

Our results revealed a 1 bp deletion c. −1277delC in the promoter region of FOXE1 (Figure 14) 

that is recurrent  in our cohort of patients (27/81; 33,33%) than controls (2/84; 2,38%) and these 

results have been validated in an independent replication cohort from France (in collaboration 

with Pr Michel Polak, Hôpital Necker, Paris). Seven independent luciferase reporter gene assays 

were carried out to assess the functional characteristics of this deletion, which showed a 20% 

decrease in promoter activity of the variant construct compared with that of the wild-type 

construct in Nthy-Ori 3-1 cells (Figure 15). For future work, we will determine the impact of this 

deletion on DNA-protein interactions using in vitro (electrophoretic mobility shift assay or 

EMSA) and in vivo (chromatin immunoprecipitation or ChIP assay). 

 

Figure 14: A single base pair deletion in the DMR of FOXE1 promoter (Magne et al., 
unpublished data). 
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Figure 15: Luciferase assay testing wild type and variant FOXE1 promoter constructs (Magne et 
al., unpublished data). 

 

In conclusion, the work in this thesis has helped to further our understanding of the 

molecular mechanisms involved in thyroid dysgeneis. It has already paved the way for additional 

studies to explore new genes and pathways involved not only in thyroid embryogenesis, but also 

potentially in other malformations. 
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