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SOMMAIRE

La these est composée d’un chapitre de préliminaires et de deux articles sur le sujet
du déploiement de singularités d’équations différentielles ordinaires analytiques dans
le plan complexe.

L’article Analytic classification of families of linear differential systems unfold-
ing a resonant irreqular singularity traite le probleme de ’équivalence analytique
de familles paramétriques de systémes linéaires en dimension 2 qui déploient une
singularité résonante générique de rang de Poincaré 1 dont la matrice principale est
composée d'un seul bloc de Jordan. La question: quand deux telles familles sont-
elles équivalentes au moyen d’un changement analytique de coordonnées au voisi-
nage d’une singularité? est complétement résolue et I’espace des modules des classes
d’équivalence analytiques est décrit en termes d’'un ensemble d’invariants formels
et d'un invariant analytique, obtenu a partir de la trace de la monodromie. Des
déploiements universels sont donnés pour toutes ces singularités.

Dans l'article Confluence of singularities of non-linear differential equations via
Borel-Laplace transformations on cherche des solutions bornées de systémes para-
métriques des équations non-linéaires de la variété centre de dimension 1 d’une sin-
gularité col-nceud déployée dans une famille de champs vectoriels complexes. En
général, un systtme d’EDO analytiques avec une singularité double posséde une
unique solution formelle divergente au voisinage de la singularité, a laquelle on peut
associer des vraies solutions sur certains secteurs dans le plan complexe en util-
isant les transformations de Borel-Laplace. L’article montre comment généraliser
cette méthode et déployer les solutions sectorielles. On construit des solutions de
systemes paramétriques, avec deux singularités réguliéres déployant une singularité
irréguliere double, qui sont bornées sur des domaines «spirals» attachés aux deux
points singuliers, et qui, a la limite, convergent vers une paire de solutions secto-
rielles couvrant un voisinage de la singularité confluente. La méthode apporte une

description unifiée pour toutes les valeurs du parametre.
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SUMMARY

The thesis is composed of a chapter of preliminaries and two articles on the theme of
unfolding of singularities of analytic differential equations in a complex domain. They
are both related to the problem of local analytic classification of parametric families
of linear systems: When two parametric families of linear systems are equivalent by
means of an analytic change of coordinates in a neighborhood of the singularity?

The article Analytic classification of families of linear differential systems unfold-
ing a resonant irreqular singularity deals with the question of analytic equivalence
of parametric families of systems of linear differential equations in dimension 2 un-
folding a generic resonant singularity of Poincaré rank 1 whose leading matrix is a
Jordan bloc. The problem is completely solved and the moduli space of analytic
equivalence classes is described in terms of a set of formal invariants and a single
analytic invariant obtained from the trace of the monodromy. Universal unfoldings
are provided for all such singularities.

The article Confluence of singularities of non-linear differential equations via
Borel-Laplace transformations investigates bounded solutions of systems of differen-
tial equations describing a 1-dimensional center manifold of an unfolded saddle-node
singularity in a family of complex vector fields. Generally, a system of analytic ODE
at a double singular point possesses a unique formal solution in terms of a divergent
power series. The classical Borel summation method associates to it true solutions
that are asymptotic to the series on certain sectors in the complex plane. The article
shows how to unfold the Borel and Laplace integral transformations of the summa-
tion procedure. A new kind of solutions of parameter dependent systems of ODE
with two simple (regular) singular points unfolding a double (irregular) singularity
are constructed, which are bounded on certain “spiraling” domains attached to both
singular points, and which at the limit converge uniformly to a pair of the classi-
cal sectorial solutions. The method provides a unified treatment for all values of

parameter.
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INTRODUCTION

The use of divergent formal power series solutions of meromorphic differential equa-
tions near a singular point has a long and fruitful tradition. In case of a multiple
singular point their divergence is the general rule. It is known that one can always
construct true analytic solutions, defined on certain sectors attached to the singular-
ity, which are asymptotic to the formal series, and which are in some sense unique.
In the case where the singularity is not too degenerate, the method of construction
of such sectorial solutions is called the Borel summation, or k-summation (where
k + 1 is in the generic case the multiplicity of the singularity), while in the very
general case the method is called accelero-summation (or multisummation). Based
on an original idea of E. Borel from the end of the 19th century, it has been largely
developed during 1970-1980’s by J. Ecalle (cf. [Ec]), and by J.-P. Ramis (cf. [Ra3]),
and became one of the main tools in the local study of singularities of analytic dif-
ferential equations. In general, the solutions on different sectors do not coincide, and
if extended to larger sectors, they may drastically change their asymptotic behavior
due to the presence of hidden exponentially small terms. This is traditionally known
as the (linear or non-linear) Stokes phenomenon. It is now understood, that the
divergence of the asymptotic series is caused by singularities of its Borel transform,
which also encode information on the geometry of the singularity.

The work in this thesis is part of a general program of studying parametric
families of differential systems unfolding such multiple singularities in several simple
ones. There are two basic goals for such an investigation:

1. To provide normal forms for germs of analytic unfoldings of singularities with

respect to analytic change of variables.

2. To explain the complex geometry of the multiple singularity and the Stokes
phenomena through a study of confluence of simple singularities. Generically,
analytic ODEs possess special particular local analytic solutions near simple
singularities, but there is no reason why they should match. Hence their limits

as the parameter tends to zero may only exist in sectors.



The thesis is composed of two parts, corresponding to two of my papers, address-

ing two particular problems within the outlined framework.

The first article

[K1] M. Klimes, Analytic classification of families of linear differential systems un-

folding a resonant irreqular singularity, preprint (2013),

presented in Chapter 2, deals with the question of analytic equivalence of certain
parametric families of linear differential systems unfolding a generic resonant irreg-

ular singularity of Poincaré rank 1 in dimension 2.

The second article

[K2] M. Klimes, Confluence of singularities of non-linear differential equations via

Borel-Laplace transformations, preprint (2013),

presented in Chapter 3, shows how to generalize the Borel method of summation of
1-summable formal series in order to investigate bounded solutions of systems of non-
linear differential equations describing a center manifold of an unfolded saddle-node

singularity of a parametric family of complex vector fields.

The problems addressed in each of the two articles are presented below.

0.1. ON ANALYTIC CLASSIFICATION OF SINGULARITIES OF LINEAR DIFFER-
ENTIAL SYSTEMS

A meromorphic linear differential system with a singularity at the origin is written
locally as
xk+1% = Ag(2)y, z € (C,0), (0.1.1)

where A is an analytic matrix in neighborhood of 0 with Ay (0) # 0, y(x) € C", and
k is a non-negative integer, called the Poincaré rank.

The problem of analytic classification consists in determining when two germs of
systems can be transformed one to another by means of an analytic linear change of
the variable y, and in describing the moduli space of the equivalence classes.

This can be rephrased as a problem of existence of local isomorphisms between
parametric families of meromorphic connections on vector bundles on Riemann sur-
faces, as well as of existence of local coordinates in which they have certain canonical
form as simple as possible (e.g. diagonal). This is a problem with a long and rich his-
tory going back to B. Riemann and his work on the monodromy of the hypergeometric
functions. In contrast to regular! singularities, which are analytically equivalent if

and only if they are equivalent by means of a formal power series transformation,

!The singularity at 0 of a system (0.1.1) is called regular if solutions have a moderate (power-like)
growth near the singularity; else it is irregular.
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in case of irregular singularities such formal transformations are generally divergent.
In other words, the formal normal forms are too simple to contain all the possible
complexities of the geometry of solutions near the irregular singular point.

The analytic classification of irregular singularities of systems (0.1.1) is now well
known. It has been first achieved for non-resonant® irregular singularities by G.D.
Birkhoff in 1910’s, and completed in the general case during the 1980’s in a series of
works by W. Balser, W.B. Jurkat, B. Malgrange, J.-P. Ramis, Y. Sibuya and others
(see [Va] and the references therein). The role that monodromy?® plays in the case of
regular singularities is here embodied by a set of so called Stokes matrices: matrices
of passage between solutions with the same asymptotics on neighboring sectors.

An unfolding of a system (0.1.1) is a germ of a parametric family of linear systems
h(z,m)% = A(z,m)y,  (z,m) € (CxC,0), (0.1.2)

with A(z,0) = 2F*! and A(z,0) = Ap(x), analytic in both the variable 2 and the
parameter m. As before, two families of linear systems (0.1.2) depending on the same
parameter m are said to be analytically equivalent if there is an invertible analytic
linear gauge transformation bringing solutions of the first system to solutions of the
second system.

The problem is to extend the analytic classification to parametric families of
systems (0.1.2) unfolding an irregular singularity, and to understand the meaning
of the Stokes data by relating the analytic invariants of the original system to the
ones of the unfolded system. Relatively little has been written about this problem
until recently (apart of the study of confluence of hypergeometric equation by J.P.
Ramis, A. Duval, C. Zhang). It has been conjectured independently by V.I. Arnold,
A. Bolibruch and J.-P. Ramis, and later proved by A. Glutsyuk [G1], [G3], that
Stokes matrices of the limit problem (0.1.1) can be obtained as limits of transition
matrices between certain canonical solution bases at the regular singular points of
a generically perturbed system. All these works concern families depending on one
generic parameter and are limited to confluence in some sector of opening less that
27 in the parameter space. Very recently a complete analytic classification of germs
of parametric families of systems unfolding a non-resonant irregular singularity was

obtained, first by C. Lambert in her thesis [LR] for singularities of Poincaré rank

2The irregular singularity at the origin of (0.1.1), k > 1, is non-resonant if the eigenvalues of the
leading matrix Ao(0) are distinct.

3Continuing a solution of a linear system around a singularity produces another solution of the
system. This gives rise to the so called the monodromy operator, a linear representation associ-
ating to each loop from the fundamental group of the z-space punctured at the singularities an
automorphisms of the linear space of solutions of the system.
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k =1, and later generalized to any Poincaré rank k£ by J. Hurtubise, C. Lambert and
C. Rousseau [HLR.

My article [K1] gives a full classification of parametric families unfolding a res-
onant irregular singularity of Poincaré rank k£ = 1 and dimension n = 2, whose
leading matrix is a Jordan bloc. The modulus of analytic equivalence of such para-
metric families is given by formal invariants and by an analytic invariant obtained
from the trace of the monodromy around the two singular points. The moduli space
is identified and an explicit polynomial normal form is provided for each equivalence
class.

There are two essential parameters in the unfolding of such singularity: one pa-
rameter separates the double (irregular) singularity into two simple (regular) ones,
the other separates the double (resonant) eigenvalue into two different (non-resonant)
ones. Hence, apart from the phenomenon of confluence of singularities, a new phe-
nomenon occurs which has not been studied before: a change of order of summability
of the formal normalizing transformations from 1-summable for non-resonant irreg-
ular singularity to %—summable for the limit resonant irregular singularity. They are

both explained together with the Stokes phenomenon in the parametric family.

0.2. ON THE BOREL-LAPLACE TRANSFORMATIONS AND THEIR UNFOLDING

The classical Borel-Laplace method is used to find sums of divergent series ob-
tained as formal solutions of ordinary differential equations near a singular point. A
typical example is given by a center manifold of a codimension 1 saddle-node singu-
larity of a complex analytic vector field. It is described by a non-linear system of
ODEs with a double singularity at origin

d
2% = ng+ fO(x7y)7 (‘ray) € Cx Cm7 (021)

where My is an invertible matrix and fo(z,y) = O(x)+O(||y||?) is a germ of analytic

X

vector function. Such a system possesses a unique formal solution g () = 352, yox!,
which is generically divergent, however it is Borel 1-summable with unique sums de-
fined in certain sectors of opening > m, covering a full neighborhood of the singularity.
Hence, in general, no analytic center manifold of a saddle-node does exist, but in-
stead there exist unique “sectoral center manifolds”. The goal of my article [K2] is
to study how these sectoral center manifolds unfold in a parametric family of vector
fields deforming the singularity.

In view of the fact that the classical Borel method does not allow to treat sev-
eral singularities at one time, it is not suited for studying confluence in parametric

families.
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The article shows how one can generalize (unfold) the classical Borel-Laplace
transformations, and use them to investigate bounded solutions in family of non-

linear differential systems unfolding (0.2.1)
d
(22— e)d—z = M(e)y + f(z,y,¢),  (z,y,€) €CxC"xC, (0.2.2)

where M (0) is an invertible matrix and f(x,y, €) = O(||y[|?)+z O(||y||)+(z*—¢€) O(1).

It is well known that for generic (non-resonant) values of the parameter € # 0,
there exists a local analytic solution on a neighborhood of each simple singularity
x = ++/e. Previous studies of confluence ([M],[SS],[G2]) have focused at the limit
behavior of these local solutions when ¢ — 0. Because the resonant values of e
accumulate at 0 in a finite number of directions, these directions of resonance in the
parameter space could not be covered in those studies. In my work, a new kind of
solutions are constructed, which are defined and bounded on certain ramified domains
attached to both singularities z = +./€ (at which they possess a limit) in a spiraling
manner. They depend analytically on the parameter € taken from a ramified sector
of opening > 27 (thus covering a full neighborhood of the origin in the parameter
space, including those parameters values for which the unfolded system is resonant),
and they converge uniformly, when e tends radially to 0, to a pair of the classical
sectoral solutions: Borel sums of the formal power series solution of the limit system
(0.2.1), which are defined on two sectors covering a full neighborhood of the confluent
double singularity at the origin. In fact, each such pair of the sectoral Borel sums
for € = 0, unfolds to a unique above mentioned parametric solution.

A motivation for looking at these solutions came originally from [LR] where
such solutions have been constructed in the particular case of systems of Riccatti
equations, using a different method. My work deals with the general case, from
which the previous results follow as corollary. It also provides a new perspective,

and an insight similar to that of the classical Borel-Laplace approach.






Chapter 1

PRELIMINARIES

Notation 1.0.1. Throughout the text, N = {0,1,2,...} denotes the set of non-
negative integers, and N* = N\ {0}.

1.1. SUMMATION OF DIVERGENT SERIES

Formal power series solutions of analytic ODEs near a multiple singular point
are generically divergent. The idea of Borel summation is to associate to these series
analytic functions uniquely defined on certain sectors, that are asymptotic to the
formal series. It turns out, that these “sectorial sums” are in fact solutions to the
original differential equation. What is crucial is the angular size of the sector: if
the sector is too narrow many asymptotic functions exist; if, on the other hand, the
sector is too wide, there may be none.

The material of this section largely follows the notes [Ma2], [MR2], [Ra3].

Definition 1.1.1. An open sector at the origin in the complex plane is a set
S={zeC:lz[<r B <argz < B2} U{0},

where r > 0 is its radius, and 0 < By — 1 < 27 is its opening. If B2 — B1 > 27, one
may define a ramified sector S by taking x from the “universal sector” @, obtained
by adjoining 0 to the universal covering C* of C*=C ~ {0}. A closed sector is the
topological closure of an open sector. For two sectors S and S, we write S’ cC S if

the closure of S’ is contained in S.

1.1.1. Asymptotic series

If f is an analytic function on a sector S (i.e. continuous on S and analytic on its
interior), then one says that f is asymptotic to a formal series f (x) = Zﬁ;’% apx® if

for any closed subsector S’ CC S there exists a sequence of positive constants A,
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n € N, such that

< Aplz|™, for all z € 5.

fl@) =Y apa®

| n—1
k=0

The function f is said to be asymptotic of Gevrey order s to f (s > 0), if A, <
CA™'(1+ sn) for some C, A > 0 (I' being the I'-function). Note that s = 0 means

that the series f is convergent with sum equal to f.

Lemma 1.1.2. A function f is asymptotic of Gevrey order s = % to 0 on S, if and
__B
only if, on every S’ CC S, |f(z)] < Ce 1= for some B,C > 0.

Lemma 1.1.3 (Borel, Ritt, Gevrey). If the growth of the coefficients of f(z) =
S0 apak is bounded by |a,| < CA"T(1 + sn) for some s > 0, then on any open
sector S of opening < smw there exists an analytic function f asymptotic of Gevrey

order s to f

In fact, there are infinitely many such functions f: assuming for simplicity that
_B
S = {|argz| < °F}, one can freely add any multiple of the function e =%, s = %,

B > 0, which is asymptotic of Gevrey order s to 0 on the sector. On the other hand:

Lemma 1.1.4 (Watson). If S is a closed sector of opening > sm, then any analytic

function f on S asymptotic of Gevrey order s to f: 0 us null.

This is a consequence of the Phragmeén—Lindel6f theorem.

1.1.2. Borel summability

The Borel method of summation of (1-summable) divergent series is the following.
Suppose that the coefficients of a formal power series §(z) = > ;L y; z! have at
most factorial growth: |y| < CA!! for some C, A > 0. Using the Euler formula for
the I-function: T'(l) = f0+°° 2/=le™# dz, which is equal to (I — 1)! if I € N*, one can

formally rewrite the series as

. B e e] L e ¢] n +Ooeia 1 ¢ B +ooei°‘/\ R e
y(i)—;yzw—zr(l)/o £l wdi—/o BIAI() % de.

=1

where

Bljl(e) =S 2 ¢t 1.1.1
960 =3 (11)

is the formal Borel transform of ¢, which is convergent on a neighborhood of £ = 0.
Let ¢ be the sum of B [§] and assume that it extends analytically on a half-line e**R™,
with at most exponential growth at infinity: |¢(z)| < CeBll, ¢ € e®R*, for some



C,B > 0. Then the Laplace integral

Laldl@) = [ et (1.1.2)

is convergent for z in an open disc of diameter % attached to 0 in the direction «
and extends to 0, defining there the Borel sum of §(x). A series g[z] is I-summable
if its Borel sum exists in all but finitely many directions 0 < o < 2. When varying
continuously the direction in which the series is summable, the Borel sums are ana-
lytic extensions one of the other, yielding a function defined on a sector of opening
> T

Let us remark that §[z] is convergent if and only if it is Borel summable in all
directions. This means that the Borel sums of divergent series can only exist on

sectors. This is also known as the Stokes phenomenon.

Lemma 1.1.5. The Borel sum of a 1-summable formal series §(x) is asymptotic to

9(x) of Gevrey order 1 on its sector of definition.

An important propriety of the Borel summation is that it preserves differential
relations, hence if §(x) is a formal solution to some analytic differential equation,

then so are its Borel sums.

Example 1.1.6. Perhaps the most simple example of a divergent series is the Euler

series §(z) = 3;7°0(1 — 1)!z!, a formal solution of the equation
dy
2
= =y-—z
dz 7

Its formal Borel transform is B[j](¢) = 1—2&, hence ¢ is Borel summable in all direc-
tions but R*. This means that the Borel sum of 7 is defined on the open ramified

sector S = {argz € (—F,28)} U {0}.

If f is an analytic function on an open sector S of opening > 7 bisected by e’®R*
which is uniformly O(z*), A > 0, at 0 on any subsector S’ CC S, then its analytic

Borel transformation in direction o is well defined by
Balfl©) = 5 VP [y@)es = ok [yt 5, for ce ot
v v

where the first integral is defined as the “Cauchy principal value” (V.P.) of the
integral over a circle v = Re% = A for some A > 0, while the second integral, over
a path + as in Figure 1.1, is absolutely convergent.

In particular, for A > 0

gkfl

Bala (6 = 135

(1.1.3)
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FIGURE 1.1. Integration paths of the Borel transformation in direction a.

Proposition 1.1.7.
(7’) ﬁa[Ba[f]] = f: and Ba[£a[¢]] = ¢7

whenever the respective transformations B, [f] and Ly[¢] are defined.

(ii) Balfg) = Balf] * Balgl, where [¢+3](€) = [5 (€ — s)v(s)ds,
Bola? E] = € - Balf].

1.1.3. k-summability
The k-summability is a natural generalization of 1-summability.

Definition 1.1.8. Let £ > 0. An analytic function f on a closed sector of opening
> T, bisected by ¢'“R, that is asymptotic of Gevrey order % to a formal series f
is called a k-sum of f in direction . It is unique by the Watson’s lemma (Lemma

1.1.4). A series f is k-summable if it has a k-sum in all but finitely many directions.

Hence k-summability is just 1-summability in z = z*. Let p; be the ramification
map & — 2%, The k-sum of some f in a direction « can be obtained by the Borel—
Laplace summation method as

N

La [Balf o pil] o ",

where f o pi is a fractional power series whose formal Borel transformation Z/S;[ f o pk)

is well defined by (1.1.1) on the interior of some sector bisected by e!*R*.

Example 1.1.9. Let us consider the following vector field in C™*! with a codimen-

ston k saddle-node singularity
=2 g=My+ f(z,y),  (x,y) €CxC™, (1.1.4)

where M is an invertible m x m-matrix and f(z,y) = O(z) + O(||ly||?) is a germ of

analytic vector function. It possesses a unique formal center manifold given by a
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formal solution §(z) of the system

MY My fay), (g eCxCn (1.L5)

This formal solution is k-summable in every direction o with e?**R* N Spec M = 0,
providing sectoral center manifolds on some sectors of opening > 7.
In Chapter 3, we will study the unfolding of such sectoral center manifolds in a

parametric family of complex vector fields unfolding the singularity for k£ = 1.

1.2. POINCARE-DULAC THEORY OF VECTOR FIELDS

A germ of a holomorphic vector field on a neighborhood of 0 € C™, with a

singularity at 0, is written as

d 3}
= F(u), or Fl(“)aTl +...+ Fm(u)ﬁ,

with ' = (Fi,...,Fy) : (C™,0) — (C™,0). Two such germs F, F" are analytically
(resp. formally) equivalent, if there exist an invertible analytic (resp. formal) map
H: (C™ 0) — (C™,0) such that

(%) (w) - F(u) = F'(H(u)).

Definition 1.2.1. Let A = (%—5)(0) be the linearization matrix of a vector field
(1.2.1), and let Aq,..., Ay, be its eigenvalues (with possible repetitions). It has a res-

u € (C™,0), (1.2.1)

onance if for some \; there exists a tuple of non-negative integers k = (ki1,...,kn) €
N™ such that

ANi =kid 4+ R, (1.2.2)
with |k| = ki1 + ...+ kpn > 2, or |k| = 1 and k; = 0. A resonant monomial

corresponding to such a resonance is a monomial vector field u’fl. ok 82_ .
K2

Theorem 1.2.2 (Poincaré, Dulac). A germ of a vector field F(u) = Au+ ... is
formally equivalent to a vector field F'(u) = Ju+ ... with J the Jordan normal form

of A and with only resonant monomials in the non-linear part.

More information on this subject can be found in [IY].
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1.3. ANALYTIC CLASSIFICATION OF SINGULARITIES OF LINEAR DIFFEREN-
TIAL SYSTEMS

In this section we summarize some classical results on local analytic classification
of linear differential systems near a singular point, which we place at the origin of
the complex plane. Such a system can be written as

K14y n
et = A(z) v, xz € (C,0), y e C", (1.3.1)
with A(z) a matrix of germs of holomorphic functions at the origin, A(0) # 0. The
non-negative integer k is called the Poincaré rank of the singularity.

A fundamental matriz solution of (1.3.1) is a matrix function ®(x) whose columns
form a local basis of solutions of the system near some point xg # 0. The analytic
continuation of ® along a counterclockwise loop around zero t — €%z, t € [0,1],
defines another fundamental matrix solution, which we denote ®(e*x). It is related
to the original one by a constant invertible matrix M, called the monodromy matrixz
of ®:

d(*™x) = d(x) M.

The conjugacy class of the monodromy matrix is an invariant independent of the

choice of fundamental matrix solution.

In order to understand the behavior of the solutions as  — 0, one investigates
invertible linear transformations y = T'(x)u which bring the system (1.3.1) to another

System,
e du
dx
which one would like to be as simple as possible.

T
= B(z)u, with B=T1AT — xk+1%, (1.3.2)

Definition 1.3.1. One says that the two systems (1.3.1) and (1.3.2) are: analyt-
ically equivalent (resp. meromorphically equivalent) if T(x) is analytic and ana-
lytically invertible (resp. meromorphic and meromorphically invertible) near the
origin; and one calls them formally equivalent (resp. formally meromorphically
equivalent) if T(x) = 3,°% T)x! is a formal transformation with Ty invertible (resp.

T(z) = Z;;Olf) Tz, Iy € Z, is formally meromorphically invertible).

Let us remark that analytic and formal transformations preserve the Poincaré
rank, but meromorphic and formal meromorphic transformations may change it.
Here we are interested in formal / analytic equivalence of singularities.

Formal classification of singularities of linear systems (1.3.1) can be reduced to

formal classification of the associated vector fields

b= g =A)y. (1.3.3)
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Indeed, the normalizing transformations provided by the Poincaré—Dulac theory can
be constructed so that they preserve the x-coordinate and are linear in y-coordinates.

The only resonant monomials in such a vector field are xlyja%i, l € N, i =# j, which

may appear when the eigenvalues )\go), e ,)\%0) of A(0) satisfy a relation
1, if k=0,
AN =2D40.s s=
0, ifk>1.

Definition 1.3.2. The singularity is:
— Puchsian, if K = 0. A Fuchsian singularity is called non-resonant if no two
eigenvalues of the leading matrix A(0) differ by an integer.
— regular, if the solutions have a moderate growth (i.e. at most polynomial in
ﬁ) in any sector at the origin.

— drregular, if it is not regular (necessarily & > 0). An irregular singularity is

called non-resonant if the eigenvalues of the leading matrix A(0) are distinct.

Lemma 1.3.3 (Sauvage). A singularity of linear system is reqular if and only if it is
meromorphically equivalent to a Fuchsian singularity. In fact, it is meromorphically
equivalent to any singularity x% = Ay with a constant coefficient matrix A whose

exponential €2™4 belongs to the conjugacy class of the monodromy matriz.

Proposition 1.3.4. (i) Formal (meromorphic) transformations between regular sin-
gularities are convergent.

(i) A Fuchsian singularity (1.3.1), whose leading matriz A(0) has eigenvalues

)\go)’ . ,/\Ef”, is analytically equivalent to a system
dyi <
T = sz‘j(w) Yj»
7j=1
bij(z) = 3% bg-)xl, where bg?) = )\EO) and bg-) = 0 unless there is a resonance

)\Z(»O)— )\§-0) = 1. In particular, one can order the eigenvalues in such a way that the
matrizc B(x) = (bjj(x)) is upper-triangular. This system possesses a fundamental
matriz solution ®(x) = 2™z, where A = Diag( go)’ cey /\%0)) and N = B(1) — A is
nilpotent.

It follows that two non-resonant Fuchsian singularities are analytically equivalent

if and only if their leading matrices have the same eigenvalues.

For irregular singularities, the analytic classification is finer that the formal one
due to the divergence of the formal transformations (the Stokes phenomenon). A
complete formal and analytic classification of irregular singularities can be found for
example in [BJL2], [Ba], [BV], [MR3]|.
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1.3.1. Non-resonant irregular singularities.

It follows form the Poincaré-Dulac theorem that a non-resonant irregular singularity
of a linear system is formally equivalent to a singularity of a diagonal system. But

one say more:

Proposition 1.3.5. Let a singularity (1.3.1) be non-resonant irreqular of Poincaré
rank k > 1, and let

N(@) =AY 1D AW =1,

be the eigenvalues of A(x) modulo O(z**1). The singularity (1.3.1) is formally equiv-
alent to its formal normal form

ka% = A(x) u, A(x) = Diag(Ai(x), ..., A\(x)), (1.3.4)

A

by means of a k-summable formal transformation y = T (x)u, unique up to multipli-
cation by a constant diagonal matriz on the right. Its directions of non-summability
are those o for which )\l(o) — )\5-0) € e Rt for some pair | # j.

Remark 1.3.6. The proof of this proposition can be reduced to a particular case
of Example 1.1.9. The general idea is the following: Assuming that A(0) = A(0),
one can decompose T'(z) = (t;;(x)) as T'(x) = (I + U(z)) - Diag (t11(z), ..., tan(2)),
where U has only zeros on the diagonal, t;; are analytic functions of U, and the
off-diagonal terms w;; of U satisfy a system of Ricatti equations of the form
du. .
.Z‘k—'_lidww = ()\7; — )\j)uij +...,

which then possesses a unique k-summable formal solution. We will use the same idea
in Theorem 3.2.7 to construct “sectoral” normalizing transformations for parametric
families of linear systems unfolding a non-resonant irregular singularity of Poincaré
rank k = 1.

The diagonal system (1.3.4) has a diagonal fundamental matrix solution
. fmdx
B(z) = Ding(n,. ... 6n), & =l X (1.3.5)
)‘EO)f)‘g'U)
kak
On one side of such a ray, the quotient function % is flat (asymptotic to 0) of

For each pair ¢ # j, the 2k rays where Re = 0 are called separation rays.

Gevrey order k, and it is vertical on the other side. The separation rays allow
determining the maximal size of sectors on which the Borel sums of the formal

normalizing transformation exist.

Theorem 1.3.7 (Sibuya). Let T(:E) be the formal transformation of Proposition 1.3.5.

Then on any sector that contains exactly one separation ray for each pairi # j, there
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exists a unique normalizing sectorial transformation asymptotic to T($), that brings
the system (1.3.1) to (1.3.4).

If T,,, T3 are two normalizing transformations defined on two adjacent sectors S,
S and asymptotic to T, then Tﬁ_lTa is an automorphism of the system (1.3.4) on the
intersection S, N Sg, asymptotic to the identity matrix. Let ®,, ®z be restrictions
on Sy, Sg of the fundamental matrix solution ®(z) (1.3.5) of (1.3.4), then

Ts(z) ' To(2) = @5(2)CoaPa(z) (1.3.6)

for a constant matrix Cg, € GLy,(C), called a Stokes matriz. It follows, that at least
one of the entries of Cg, at each two symmetric positions ();;, ();; must be null for
every i # j, and that its diagonal entries must be equal to 1; hence Cjg, is a unipotent
matrix (i.e. Cgq — I is nilpotent).

Let us now fix sectors Sy, . . ., Soi of the Sibuya theorem, covering a neighborhood
of the origin in clockwise order, together with unique normalizing transformations
Ty, ..., Ty, asymptotic to T, and diagonal fundamental matrix solutions ®1,..., ®op
(1.3.5). This determines a set of Stokes matrices Cia,Cas,...,Cor1 (1.3.6) called
Stokes data. Let us remark that one can always choose the covering sectors so that
Cin,m+1 is upper-triangular if m is odd and lower-triangular if m is even. The product
C12093 . .. Oy 1 is equal to the monodromy matrix of the fundamental matrix solution
T1®; of the original system (1.3.1).

Theorem 1.3.8 (Birkhoff). Two formally equivalent germs of systems (1.3.1) with a
non-resonant irreqular singularity at the origin are analytically equivalent if and only
if their Stokes data are conjugate by a same invertible diagonal matriz. Any Stokes

data are realizable by a system (1.3.1) formally equivalent to the system (1.3.4).

This can also be naturally formulated in a more general way in terms of a non-
abelian cohomology of a Stokes sheaf (i.e. non-abelian sheaf of sectorial automor-

phisms of (1.3.4) asymptotic to the identity), see e.g. [Mal], [BV].
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Chapter 2

ANALYTIC CLASSIFICATION OF FAMILIES OF
LINEAR DIFFERENTIAL SYSTEMS UNFOLDING A
RESONANT IRREGULAR SINGULARITY

Abstract. We give a complete classification of analytic equivalence of germs of
parametric families of systems of complex linear differential equations unfolding
a generic resonant singularity of Poincaré rank 1 in dimension n = 2 whose
leading matrix is a Jordan bloc. The moduli space of analytic equivalence
classes is described in terms of a tuple of formal invariants and a single analytic
invariant obtained from the trace of monodromy. Moreover, analytic normal
forms are given for all such singularities.

2.1. INTRODUCTION

A system of meromorphic linear differential equations with a singularity at the
origin can be written locally as Ag(z)y = 0, with
d
Ag(z) = zk+1d— — Ap(2), z € (C,0), (2.1.1)
z
y(z) € C", where Ag is an analytic matrix in a neighborhood of 0 with Ay(0) # 0,
and k is a non-negative integer, called the Poincaré rank. Its unfolding is a germ of
a parametric family of systems A(z,m)y = 0, with
Az, m) = h(z,m)
z,m) = h(z,m)—
) ) dZ

y(z,m) € C", where the scalar function h and the n x n-matrix function A depend

— A(z,m),  (z,m) € (C xC.0), (2.1.2)

analytically on both the variable z and the parameter m. Two families of linear
systems (2.1.2) depending on the same parameter m are analytically equivalent if
there exists an invertible analytic linear gauge transformation bringing solutions of
the first system to solutions of the second.

The analytic classification of singularities of single systems (2.1.1) is well known:

it is given by a formal normal form and by so called Stokes operators. Regular
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singularities are analytically equivalent if and only if they are equivalent by means
of a formal power series transformation. In contrast, for irreqular singularities such
formal transformations are generally divergent. However they are asymptotic to true
analytic transformations on certain sectors, whose general mismatch is known as the
Stokes phenomenon.

Investigating parametric unfoldings of singularities has two essential goals: to
explain the Stokes phenomenon through confluence, and to provide analytic normal
forms for germs of parametric systems. It has been conjectured independently by V.I.
Arnold, A. Bolibruch and J.-P. Ramis, that Stokes matrices of the limit problem can
be obtained as limits of transition matrices between certain canonical solution bases
at the regular singular points of a generically perturbed system; this was later proved
by A. Glutsyuk for non-resonant [G1] and certain resonant singularities [G3]. But
Glutsyuk’s approach covers only a sector in the parameter space, on which the defor-
mation is generic: all the singularities are supposed to be simple and non-resonant.
A complete analytic classification of germs of parametric families of systems unfold-
ing a non-resonant irregular singularity was obtained recently by J. Hurtubise, C.
Lambert and C. Rousseau [LR], [HLR].

This article provides the first results on analytic classification of parametric fam-
ilies unfolding a resonant irregular singularity. We consider germs of parametric
families of systems A(z,m) in a neighborhood of (z,m) = 0 unfolding a system
Ap(z) = A(z,0),

A(@—zﬂf—Au) ith Ag(0) = SR (2.1.3)
0 R 0\%), W 0 = 0 )\(()0) 5 -1

that has a resonant singularity of Poincaré rank 1 at the origin, and satisfies a generic

condition that the element agll) on the position 5 1 of the matrix d%AO (0) is non-zero:

aly = =L det(Ag(z) — NT)|,_, # 0. (2.1.4)

An analytic classification of germs of such single systems Ag(z) was originally given
in [JLP2].

In Section 2.2.1 we give a complete analytic classification of all germs of para-
metric systems A(z, m) unfolding such a Ag(z) (Theorem I), and an explicit analytic
normal form, i.e. a universal unfolding for any system A (2.1.3) satisfying (2.1.4)
(Theorem II). No restriction is imposed on the nature of the analytic deformation
A(z,m) of Ag(z) or on the complex parameter m € (C!,0).

Section 2.2.2 is devoted to a study of the Stokes phenomena in parametric fami-

lies. We construct “sectorial” transformations in the (z, m)-space between formally
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equivalent families (Theorem III), and explain the phenomena of confluence of sin-

gularities and of change of order of summability.

2.2. STATEMENT OF RESULTS

Definition 2.2.1. By a parametric system we shall mean a germ (2.1.2) unfolding
(2.1.3) satisfying (2.1.4).

Definition 2.2.2. Let A(z,m)y = 0 be a parametric family of linear systems (2.1.2)
and y(z,m) = T(z,m)u(z, m) be a linear transformation of the dependent variable.
Let us define a transformed system

1dT

2.2.1
. (22.1)

T*A := hi — T YAT —hT~
dz

satisfying (T*A)u = 0 if and only if Ay = 0.

We say that two germs of parametric systems A(z,m) = h(z,m)% — A(z,m),
A'(z,m) = h/(z, m)d% — A’(z,m), depending on the same parameter m are analyti-
cally equivalent, if there exists an invertible linear transformation 7'(z, m) € GL,(C),
depending analytically on (z,m), such that h'~1. A’ = =1 . T*A.

Definition 2.2.3 (The invariants).
(i) After multiplying by a non-vanishing germ of scalar function, any parametric

system A(z, m) unfolding (2.1.3) can be written in a unique way with
h(z,m) = 22 + Y (m)z + hO(m). (2.2.2)

We shall suppose that h is in this form from now on. Then we define invariant

polynomials A(z,m), a(z, m) by

Az,m) = Jtr A(z,m) (mod h(z,m))

= 2D (m) z + X0 (m),
(2.2.3)
a(z,m) = —det (A(z,m)—A(z,m)I) (mod h(z,m))
= aW(m)z + a®(m).
We call the triple h(z,m), A(z,m), a(z,m) formal invariants of A.
(ii) We define an analytic invariant v(m) by
y(m) = e 2D m) ¢y M(m), (2.2.4)

where for each fixed value of the parameter m, M (m) is a monodromy matrix of
some fundamental solution ®(z,m) of the system A(-,m) around the two zeros

of h(z,m) in the positive direction:

B(e*™ 25, m) = (29, m)M(m).
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The value of (m) is independent of the choice of the fundamental solution
®(z,m) or of the point zp, and can be calculated for each value of m indepen-

dently.

Proposition 2.2.4. h(z,m), A\(z,m), a(z,m) and v(m) are all analytic in m and
invariant under analytical equivalence of systems. The genericity condition (2.1.4)
means that () (0) # 0.

ProOF. Elementary. O

Remark 2.2.5. Let

Ay, = A(,m)
denote the restriction of A to a fixed parameter m. The corresponding restriction
of the invariants h(z,m), A(z,m), a(x,m), determine for almost all values of m a
complete set of formal invariants of A,,, i.e. invariants with respect to formal power
series transformations T}, (z) = 3.5, T,gi)(z —z)l. (cf. [Ba],[IY],[Wa]).

(a) If h(z,m) has a double zero at z; and A(z1,m) has a double eigenvalue, i.e.
a(z1,m) = 0, then A,, has a resonant irreqular singularity', and the values
Mz1,m), AW (m), oV (m) constitute a complete set of its formal invariants.
[JLP2]

(b) If h(z,m) has a double zero at z; and a(z;,m) # 0, then A,, has a nonreso-
nant irreqular singularity®, and X(z1,m), A (m), a(z1,m), o) (m) constitute
a complete set of its formal invariants. [JLP1]

(c) If h(z,m) has two different zeros z; # 22, then the system A, has a Fuchsian
singulam'ty at each of them. Supposing that A,, is non-resonant at z;, i.e. that
2 ”Z_ (24.m) ¢ 7 (j = 3 — 1), then the values of (Z“’Z_) and (a(z“m))z constitute a

complete set of formal invariants for the germ of A,, at z;. [IY],[Wa]

2.2.1. Analytic theory

Theorem I (Analytic classification).
(a) Two germs of parametric systems A(z,m), A'(z,m) are analytically equivalent

if and only if their invariants h, X\, a,y are the same:

' A singularity of a system A, (2) = hin(2) - — Am(2) is Fuchsian if it is a simple pole of A"‘((Z)),

regular if the growth of solutions is power-like, or equivalently, if it is meromorphically equivalent to
a simple pole; else it is irregular. A Fuchsian singularity at z1 is non-resonant if no two eigenvalues of

the residue matrix of % Am ((Z;
21

it is

at z; differ by an integer. An irregular singularity at z is non-resonant

if the eigenvalues of A ( ) are distinct.
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(b) Any four germs of analytic functions h(z,m), A(z,m), a(z,m), v(m) with

h(z,0) = 22, a9(0) = 0 and oV (0) # 0 are realizable as invariants of some

parametric system A(z,m).

Corollary 2.2.6. Two germs of parametric systems A(z,m), A'(z,m) are analyti-

cally equivalent if and only if there exists a small neighborhood Z x M of 0 in C x C!

such that for each m € M the restricted systems A, (z), Al (z) are analytically

equivalent on Z.

The Theorem II provides a normal form for any germ of parametric system

unfolding Ay.

Theorem II (Universal unfolding). Let A(z,m) be a germ of parametric system and

h(z,

(%)

(%)

m), Mz,m), a(z,m), y(m) its invariants.
If v(0) # 2, then A(z,m) is analytically equivalent to a germ at 0 of parametric
system A(h(z,m), Mz, m),a(z,m), q(m)) given by

~ d A 1

Al an0) = hiz) 2 - ( ® ) | (2.25)
dz

where q(m) is an analytic germ such that

v(m) = —2cos my/1 + 4q(m). (2.2.6)

Let us remark that A is meromorphic in z € CP' and has a reqular singular
point at infinity.

Ifv(0) # —2, then A(z,m) is analytically equivalent to a germ at 0 of parametric
system A (h(z,m), Az, m), a(z,m),b(m)) given by

. Az) 14b
Ahonanb) = h(z)L = (M2 1Hb=) (2.2.7)
dz \B(z)  Az)
with
o — b
T 1 oh(M) + b230)

B(z) = o 4+ prO M 4 g1 5 B (2.2.8)

where b(m) is an analytic germ such that

y(m) = 2cos 2m1/b(m)BM) (m). (2.2.9)

Let us remark that A is meromorphic in z € CP' and has a Fuchsian singular

point at infinity. It is in, so called, Birkhoff normal form.?

2V. Kostov [Ko] showed that any unfolding of an arbitrary system Ag (2.1.1) in a Birkhoff normal

form, whose eigenvalues of Res z:o“g—fﬁf) do not differ by a non-zero integer, is analytically equivalent
to a parametric system in a Birkhoff normal form. Our result confirms it in the case studied here:

7(0)

= —2 corresponds exactly to systems A{ violating the condition of Kostov.
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2.2.2. Formal theory and a study of confluence

Proposition 2.2.7 (Formal classification). A germ of parametric system A(z,m) is

formally equivalent to its formal normal form

A(z,m) = h(z,m)i - ()\(z,m) ! ) , (2.2.10)

dz a(z,m) Az,m)

by means of a unique formal power series transformation in (z,m)

“+00
T(xz,m) = Z TEK gimk ok = mlfl .. .mfl, 700 =T
Generically, this series is divergent in x and m.
In this sense, two parametric systems A(z,m), A'(z,m) are formally equivalent

if and only if their formal invariants h, A, a are the same.

Remark 2.2.8. Let us remark that any linear transformation 7'(z,m) commutes
with scalar matrices

T*(A = X)) =T"A -\,
i.e. that two systems A, A’ are analytically (resp. formally) equivalent if and only if
the systems A — X\, A’ — X\ are. Hence we can restrict ourselves to systems whose

formal invariant A(z,m) = 0.

Definition 2.2.9 (Reduced invariants e(m), pu(m)). Let A(z,m) be a parametric

system with formal invariants h(z,m), A\(z,m), a(z,m). Put
(1) (1)
2(zm) =y (24 557)  and e(m) = (515)? ((250)2 = b)), (2.2.11)
so that h(z,m) = (a()2(2? — €). Then in the new coordinate z, after division by
oW, the system A — A becomes

A(z,m) = (2° =€)k - A(Z(“”m)”;‘()anﬁj(x’m)’m”,

with formal invariants
hiz,m) = 22— e(m), Aa,m) =0, alw,m)=p(m)+z,

where
NG R(D

- (a<1>)2 2a(1> :

The invariants ¢(m) and u(m) are responsible for two basic qualitative changes
of the system:
e ¢(m) corresponds to separation of the double singularity (e = 0) into two simple
ones (e # 0),
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e 1(m) corresponds, when €¢(m) = 0, to separation of the double eigenvalue (u =
0) of A(0,m) into two simple ones (u # 0), hence to the disappearance of

resonance.

In the rest of this section we will for simplicity assume that A(x,m) = A(xz,m)

is in this reduced form, and so is its formal normal form of Proposition 2.2.7

Alz,m) = (2*— e)i - ( 0 1) . (2.2.12)
dx p+z 0

Remark 2.2.10 (Sectorial normalization of A,,(z)). Let A(z,m) be analytic on a

polydisc XxM C CxC!, and let m € M be such that both roots of h(z, m) = 2%—¢(m)

are in X. As before, let A,,(x) denote the restriction of A(x,m) to the fixed value

of m. Following Remark 2.2.5, depending on €(m) and u(m) we have the following
four possible situations:

(a) € = =0: The restricted system A,,, which has a resonant irregular singu-

larity at the origin, is formally equivalent to ﬁm by means of a %-summable

formal power series transformation T ,,(x). In particular, there exists a unique

normalizing sectorial transformation Tp ,,(x), defined on a ramified sector
Som ={zr e X||argz + 7| < 2r —n}, with n > 0 arbitrarily small,

which is asymptotic to the formal series To,m.

(b) € =0, pu+# 0: The restricted system A,,, which has a non-resonant irreqular
singularity at the origin, is formally equivalent to Am by means of a 1-summable
formal power series transformation Tl,m (). In particular, there exists a unique

pair of normalizing sectorial transformations T’ Iim (z), defined on a pair of sectors
Sfm ={x e X||argx Farg/p| <7 —mn}, with n > 0 arbitrarily small,

which are asymptotic to the formal series TI’m.

(c) € # 0: The restricted system has two Fuchsian singularities at x1 = /€ and
x9 = —y/e. Supposing that m is such that the singularity at x; is non-resonant,
i.e. that @ ¢ 7, then there exists a unique local analytic transformation
Tim(z), defined on a neighborhood S;,, of x;, such that T;,,(z;) = I and
T Am = A,,. One can take

Sim ={x € X||argzx —argz;| <™ —n}, with n > 0 arbitrarily small.

(d) € # 0 : If a Fuchsian singularity at x; is resonant, i.e. :lziv’g“ = k € N*, then

there exists a transformation T; () = T, (z) + (v — z;)F log(x — x;) T}, (),
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Tk,0)

N

(a) 0<e<p? u>0 b)e=0<p (c)e=p=0

FIGURE 2.1. Examples of the outer and inner domains O(e, ), I(e, p) of
Theorem III for selected values of u, €.

with T/

i,m>

nilpotent, such that 77, A, = A

T}, analytic on a neighborhood S; . of z;, T}, (x;) = I and T},

i,m

The change of order of summability of the formal normalizing transformations in
between the cases (a) and (b) is a phenomenon that has not been studied previously.
In the following Theorem III it is explained by an appearance of a new domain of
normalization I(y,€), for (u,€) # (0,0), with a new normalizing transformation 77
corresponding to the case (b), different than the transformation T corresponding
to the case (a), which persists on a domain O(u,€). These domains I, O, and the
normalizing transformations 77, To on them, will be defined for all values of the
parameter m taken from a ramified domain covering a full neighborhood of 0 in the

parameter space.

Definition 2.2.11 (Analytic functions on parametric domains). Let € be a con-
nected (ramified) set in the space (z,m) € C x C!, corresponding to a parametric

family of (ramified) domains
Qm) = {z | (z,m) € O},
in the z-plane depending on a parameter m. We write
feB ) if (i) felC()NO(intQ)
(i) f(-,m) € O(intQ(m)) for each m.
Theorem IIT (Sectoral normalization). Let A(z,m) be a germ of a parametric

system, unfolding Ao(x), and let e(m), u(m) be its reduced formal invariants. There
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exist two ramified domains of normalization in the (x,m)-space: an outer domain
O and an inner domain I, covering together a full neighborhood of 0 € C x C!, on
which ezist normalizing gauge transformations To € GLa(B(O)), Tr € GLa(B(I)),

between the unfolded system and its formal normal form (2.2.12):
TsA=A, Q=0,1.

More precisely, the domains Q = O,1 can be written as parametric families of
ramified domains Q(u(m),e(m)) in the xz-plane, whose shape depends only on the
invariants e(m), u(m)

Q= J Qu(m),e(m)) x {m}
meM
over a ramified domain M covering the parameter space m. See Figure 2.1.

(a) The outer domain O(u(m),e(m)) is doubly attached to x1 = /€. For (u,€) =
(0,0) it becomes a ramified sector O(0,0) at the origin of opening > 2w, in which
case To(-,m) = Tom of Remark 2.2.10.

(b) The inner domain I(p(m),e(m)) is ramified and attached to x1 = /€ and xo =
—V/e. For e=0,u(m) #0, it splits in to a pair of sectors I=(u(m),0) at the
origin of opening > w, in which case Tr(-,m) = T;’Em of Remark 2.2.10. For
(1, €) = (0,0) the domain shrinks to a single point 1(0,0) = {0}.

The domains O, I are constructed in section 2.3.6.

As a corollary, we obtain the following result on convergence of the normalizing

transformations of Remark 2.2.10, (b) 77 and (c) Tim to (a) Tom.

Theorem IV. Following the notation of Remark 2.2.10.

(i) The normalizing transformations T;fm (resp. Ty ,,,) converge to To m, as pu(m) —
0 radially, for each m with 0 < argu(m) < 2w (resp. 0 > argpu(m) > —27).
The convergence is uniform on compact sets in S;fm (resp. St .,)-

(71) The normalizing transformation Ty ,, analytic on a neighborhood of xo=—+/€e(m),
converges to To m, when e(m) — 0 radially and p(m) = O(e(m)), if argay €
(2,35), i.e. |arg/e(m)| < Z. The convergence is uniform on compact sets in
S9.m.-

The second statement was originally established by A. Glutsyuk [G3] in a more

general setting.
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2.3. PROOFS

Without loss of generality, we can always assume that the parametric system

A(x,m) has the reduced form of Definition 2.2.9 with formal invariants equal to
h(z,m) = z?—€(m), Xaz,m)=0, az,m)=pu(m)+z. (2.3.1)

Our strategy will be the following. In Section 2.3.1 we will bring the system by
an analytic gauge transformation to a simple prenormal form and prove Proposition
2.2.7. Theorem II follows from Theorem I (a) by an easy calculation of the invariants
of the two families A, A/, done in Section 2.3.2. And part (b) of Theorem I is a direct
consequence of Theorem II. To prove part (a) of Theorem I, we will first construct
the normalizing transformations of Theorem III, together with their natural domains
Q = 0,1, and provide a canonical set of fundamental matrix solutions defined on
these domains. The analytic equivalence of two parametric systems with the same
analytic invariant v is established after expressing all the connection matrices (Stokes
matrices) between the canonic fundamental solutions.

It turns out that it is better to do all this in a new ramified coordinate

S=+/u+x.

The lifting to this s-coordinate produces a two-fold symmetry of the systems as well
as their normalizing transformations. After establishing the analytic equivalence of
the lifted systems in the s-coordinate, one uses this symmetry to push it down to

the x-coordinate.

While everything, all the transformations and connection matrices, will depend
on the parameter m, we will often drop it from our notation, and think of it as im-

plicitly present; for example, we will sometimes write (i, €) rather than (u(m), e(m)).

2.3.1. Prenormal form.

Proposition 2.3.1 (Prenormal form). A germ of a parametric system A(x,m), with

formal invariants (2.3.1), is analytically equivalent to

"(x,m) = x2—ei— 0 !
Az, m) = (a7~ €) e (2 Orem) 0] (2.3.2)

PRroOOF. We will bring the system A into the demanded form in four steps.

1) There exists an analytic germ of an invertible matrix C'(m), constant in z, such
that

d
DA (2 - _ 0,1
A =:C"'A=(z"—¢) T A(x,m), with A(z,m)= lgo AWDyg
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0 1
and A©) = <a<o) . 0)> , see [Ar].

(
21 922

2) We look for a transformation in the form of a convergent series

s 0 0
T(x,m)=1+ ZT(Z) (m)z!, with TO = <t<z> t<z)> :
21

I=1 22

analytic in m, such that Ay =: T*A; = (22 — €)-L — B(z,m),

dx
B(z,m) =Y BYa!, with BO =40 and BY = (b?w ,,?n) - (233
=0 21 V22
This means that
-1 -1
BW =140, 70 4 A0 4 Z AW pU=3) _ Z TEEDBO — (1—=1)TED 4 e(141)THD,
j=1 j=1

with elements in the first line equal to

0= ) +al + T aflD, i1,
j=1

giving a recursive formula for the coefficients of T'. Knowing that A(z) is convergent,

ie. |a](€?| < K for some K >0, we shall find inductively that ‘tg,)z| < (2K)": indeed,

£ < X4y 2K < 2K

1 ;22 (1)), then

2

3) Let baa(z,m) = >_12, bng)xl (2.3.3), and put S(z,m) = (

d l1722(1’,m) 1
Ay = S*Ay = (22 — _(2 )
3 2 (x 6) dx f(z,m) %bzz (x;m) )’

for some f(x,m). By the assumption (2.3.1) we know that we can write bgs(x,m) =
(22 — €)g(x,m) with an analytic germ ¢, and that f(z,m) = u+x + (22— €)r(z,m)
for some germ 7.

z 1
4) Finally use R(z,m) =e" Jo 29Em)dt 1t oet rid of the diagonal term: R*Az=A’

is in the demanded form. ]

PROOF OF PROPOSITION 2.2.7. Let A(x,m) be a germ of parametric system in the
prenormal form (2.3.2). We will show that there exists a formal transformation
T(:U, m) in form of a power series in (z, u, €) whose coefficients depends analytically
on m, that brings A(z,m) to the reduced formal normal form A(z, m) (2.2.12). We

shall be looking for 7" written as

T(x,m) = a(z,m) I + b(x,m) ( 0 1) + (2% =€) (c( 0 0 ) .

pw+z 0 x,m) d(x,m)
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We want that A = T */A, which means

o 0 ’ 0 0}y my = HLlwm)
(“er 0)7(0(96,771) d(a;,m))]jL(r(x’m) 0) T(z,m) R

where [, -] stands for the commutator of matrices. This gives a system of equations
c=d, (2.3.4)

d=1, (2.3.5)

—(p+x)d+ar=b+ (u+ )b + 2xc+ (22— €), (2.3.6)

—c+br=d +2zd+ (2% €e)d, (2.3.7)

where ’ stands for the (formal) derivative w.r.t. x. Substituting (2.3.4) and (2.3.5)
in (2.3.6) and (2.3.7) gives

b+ 2(u+ )b = ar — 2zd’ — (2*— €)d”, (2.3.8)
2a' = br — 2zt — (2*— €)D", (2.3.9)

Writing a(x, m) = 32 k. ajpi(m)pd ebxt, b(z, m) = Gkl bjki(m)pdebat, r(z,m) =
S, ri(m)zt, and identifying the coefficients of the term p/efz! in (2.3.8) and (2.3.9)
shows that
(204+1)bjrs +2(l4+1)bj_1 k41 is a finite linear combination of
asip Gk D) <cex (3, k1),
2(l+1)ajr+1 is a finite linear combination of
biip (i kD) <pmx (5, k1),
where <ppx is the lexicographic ordering on N3. There is no constraint on the
coefficients a; 1), which we choose 0 for (j,k) # (0,0), and a0y = 1. All the

coefficients are now uniquely determined through a transfinite recursion with respect

to the <ppx-ordering on (j,k,1) € N3. O

2.3.2. Proof of Theorem I1I.

Lemma 2.3.2. The analytic invariant vy defined by (2.2.4) of a system

d

RO
he) o~ [A@ + ADz] = o, mhA®:<“”> (2.3.10)

k) (k
“él) ‘1§2>

and h(z) = 22 + KWz 4+ hO s equal to

1 @

1
_ 2
v = 2cos 2w\/(W) +allall) (2.3.11)
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PROOF. This system considered on the Riemann sphere CP! has singularities only
at the zero points of h(z) and at the point z = co. Therefore in the formula (2.2.4)

(1) (1)
» ayy +a
~ e_QWM(l)trZ\L ith A\M 11 . 22 ’
M is a matrix of monodromy around z = oo in the negative direction. In the

coordinate ¢t = 27! the system (2.3.10) is equivalent to
d
t(1+hWt+ h(o)tQ)& + (AW 4 A0y = 0, (2.3.12)
which has only a regular singularity at ¢ = 0. The eigenvalues of its principal matrix
(1) _ (1)
—AW are =AM £ /D where D = (“1;%22)2 4 agé)aéll). Suppose first that the
singularity is non-resonant, i.e. that 2v/D ¢ Z, in which case there exists a local

analytic transformation 7'(t) near ¢ = 0, that brings (2.3.12) to the diagonal system

d
t(1+nWt + h(o)tQ)% + (*“)g@ A(I)O\/ﬁ> =0,

for which an associated diagonal fundamental solution has its monodromy matrix
around ¢t = 0 in the negative direction equal to

M _ 627”')\(1) eZ‘/ri\/B 0
0 6727”'\/5 ’

Therefore v = 2 cos 2V D.

The resonant case is a limit of non-resonant cases, and the formula (2.3.11)
for v remains valid, because the trace of monodromy depends analytically on the
coefficients of A. O

PrROOF OF THEOREM II. Use (2.2.3) to verify that h(z), A(z) and «(z) are indeed
the formal invariants of the system A(h, A, a,q) (resp. A’(h, A, a,b)).

To verify (2.2.6), set @ := 2(—1+/T+4q), so that ¢ =Q*+Q, and T(2) :=
( ! 0), then

Qz 1
B g Az) + Q2 1
T*A(h, A 0, q) = h(2) o = (a(z) +(hO +hD2)Q? Az) - Qz) |

Now v = 2cos 2mQ) = —2cos my/1+ 4q (2.2.6) using (2.3.11).
Also, (2.2.9) follows directly from the formula (2.3.11). If v(0) # —2, then the
equation (2.2.9) with 8V (m) = oV (0) + O(m) given by (2.2.8), a(1)(0) # 0, has an

analytic solution b(m) for small m. O
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2.3.3. Systems in the s-coordinate.

Let A(z,m) be a germ of parametric system in the prenormal form of Proposition
2.3.1. The problem of Theorem I (a) is that of proving that two such systems with
the same pu, € are analytically equivalent if and only if they have the same trace of
monodromy.

Let s be a new coordinate defined by

x =5y, (2.3.13)
and let
11
S =(3), v=(11) (2.3.14)
Then the transformed parametric system A® := % - (SV)*A in the s-coordinate is
equal to

AS(S’m):x;_zejs _ [((1)01)331;36(—11 —11)+””Z;2€r(11 11)]. (2.3.15)

We will be looking for normalizing transformations Fq(s,m), defined on some do-

mains € in the (s, m)-space, bringing it to a diagonal system Fo*A® = A’ for
2 2

—s _zf—ed 10 T-—€
This diagonal system A’ is a model system in the s-coordinate. However, the corre-
sponding system A = s- (V"15"1*A” in the & coordinate,

— d z?—€ /_

- 2 N % 0 1 10
A(ac,m)—(x e)dw‘ [(u+x0)+4(u+x) ( 0 1)] ’

has an additional singularity at the point £ = —u, hence does not belong to the

considered class of systems. So instead, in the z-coordinate, we take the formal
normal form A(x,m) (2.2.12) as the model. Now, if Eq(s,m) is the diagonalizing
transformation “Fg(s,m)” for the transform A® = s71 . (SV)*A of (2.2.12) on a

domain 2, then the composed transformation
To(xz,m) = S(s)VFq(s,m)Eq(s,m) 'V 18(s)~ 1, (2.3.17)

defined on the ramified projection of the domain 2 into the z-coordinate, will be
non-singular at the point x =—p and will bring A to To"A = A.

The diagonal model system (2.3.16) serves as an intermediate through which to
compare systems, and for which one knows an explicit canonical fundamental matrix
solution, denoted ¥ (see below). Hence the advantage of the s-coordinate. The
lifted system A®(s,m) then has a canonical fundamental matrix solution FnoW¥q on

the domain €2, where Wq is a restriction of ¥ on €.
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Fundamental solution of A°(s,m).

On a neighborhood of 0o on the Riemann sphere CP! = CU{o0}, define the function
0(s, p,€) by

d 252 252
B = 3 = oy (o) (2:3.18)
We have
VIEVE oo STVEEVE  VimVE stV ITVE e 2
2\/€ 0 5_;’_\/“_’_\& Qﬁ Og s—&-\/,u—\/E’ 1 e(lu 6) # 07
— 5 — L Jog StVE if €=0,
O(s,pe) =4 =F ?«/ﬁrg sV (2.3.19)
1 S—v/2, : 2 __
—ﬁlog - Qﬁ’ if ur=e,
—%, if p,e=0.

which is analytic in s € CP* ~ UL,[0, s;], if each [0, s;] denotes the closed segment
between the origin and a zero point s;(u, €) of 2%(s) —e = (s>— u)?—e. The function
(s, 1, €) is continuous in (p,€) € C? and analytic for (u,€) € C? ~ {e(u®—¢€) # 0}.
It is odd in s
0(—s, p,€) = —0(s, p,€),
and it satisfies
(s, p,€) = (s, >, €) = O(s, u, ™€)

for each s in its domain. The function 6(s, u,€) has a ramified analytic extension
0(3, 1, €) defined on a ramified covering of the (s, u, €)-space with ramification at the
zero points s;(fi, €) of (s2— u)?— e. We will use the notation (3, ji,¢) for the points

on this ramified cover that project to (s, p,€).

A simple calculation shows that the matrix function

0(s,1.6) 0
a1 e
U(s,p,€) = %2is 2 ( 0 6_6(3’”’5)> (2.3.20)

is a fundamental solution for the diagonal model system A’ (2.3.16).

Fundamental solutions of A(z,m) (resp. A(z,m)).

If Fo (resp. Egq) are normalizing transformations for A®(s,m) (resp. As(s,m))
as above, on some domain 2, and Wq is a restriction of ¥ on ), then the matrix
functions

SVFqWUq, (resp. SVEQUq) (2.3.21)

are fundamental solutions for the parametric systems A(z,m) (resp. A(z,m)).
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2.3.4. Zs-symmetry.

Let us remark that if (s, p,€) is a fundamental solution of A®; or A’ on a do-

main Q(m) in the s-plane, then W§(s,m) = ((1) (1)) Ua(—s,m) ([1) (1)) is a fundamental

solution of the same system, this time on a rotated domain Q(m)"” = —Q(m). Con-
sequently, if F is a normalizing transformation for A% on a domain Q, Fo*A’% = Zs,

then so is Fg on QF.

The following definition gives the ()P notation precise meaning.

Definition 2.3.3 (Rotation action of Zy). If g(s) is a function on some domain Y’

in the s-space, denote
g7(s) == gle™™s), scYP:=emy

the rotated function on the rotated domain. For a 2x2-matrix function G(s), denote

GRs) = (94) Gle™s) (94),
and for a constant matrix C,

or— ()e (1))

Equation of the normalizing transformation Fg.
We will be looking for Fg written as

Fo(s,m) = Pq(s,m) Dq(s,m) (2.3.22)

1 p;
with Py = (,,Ppl ) that diagonalizes A° :

J

. As z2—e d 10 z2—¢ z2—¢ BRs) 0
(PQ) A= 252 E_ l(o_l)_ 453 I+ 52 (0 5z(s)> ’

and

Do(o,1h) = efzﬁjP(s)ds 0
a(s,m) = . fosis)as |

This means that the transformation Py needs to satisfy

Toedpy = [((1) _01) >Pﬂ} + $423_36<(; é)Pﬂ i (—11 —11)P9 - :CEQEPQ(?P—;) ’

2—c d ( 0 Pz‘) 2( 0 pi) n 22 ¢ (p; 1) " x25< 1+Pf 1+pi) n 22 (—5;’ Pzﬂz’)
S de | P = p 3 TS5 2 .
2s% ds \ p; 0 —p; 0 457\ 1 p; 257 \=1-pF —1-p; s* \-pfBP B
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The diagonal terms give:
—Bi = 25pi — 5(1+pi)

BF = 2ep; + 5(L+p)). (23.23)
The anti-diagonal terms after substitution of (2.3.23) and division by 1228_25 are:
Lpi= A pit 5 (1—p) + (1+p)r,
— oy = Epy— (=) + (1 +p))*r.
Therefore both p;, p; are solutions of the same ODE
dp=42 pr LA —p) +(1+p)r (2.3.24)

2.3.5. Solution p; of (2.3.24) on a ramified domain D;.

For each zero s;(ji,¢) of the function h(z,m) = (s~ u)?— ¢, we construct a ramified
domain D;(fi, €) in the s-space adherent to it, on which there exists a unique bounded
solution p;(s,m) to the equation (2.3.24), obtained as a fixed point of an integral
operator associated to the equation. Each domain D; will be constructed as a ramified
union of integration paths of this operator: real trajectories of the vector field wy;,
with (52— )2
X(s, p, €) == T
and some w € C. The complex vector field y is defined on the Riemann sphere

CP! = C U {00}, and is polynomial in s~ !.

Bs, (2.3.25)

Let the three constants ds,0,, 0 > 0 determine small discs
S={|s| <05}, M={p| <.}, & ={le <} (2.3.26)

And let s;(f1,€), i =1,...,4, be zeros of (s>— p)?— e depending continuously on a
ramified coordinate (fi,€) from a covering space of M x & (this covering is ramified
over the set {e (u?—¢€) = 0} and includes it). The projection map m +— (u(m),e(m))
from the parameter space to Mx¢& lifts to a map m — (fi(h), €(m)) from a covering
of the parameter space. We shall suppose that d,,, . are small enough so that all the

zero points s;(fi, €) fall inside S.

Definition 2.3.4 (Domains D;). Let a constant L > 2, determining an annular
region in the s-plane

(s* — p)?

— €
5s, L, 2.3.27
ol < d [ < (2:3.27)

and an angular constant 0 < 1 < § be given. For each value of (fi,€), and a zero
point s;(fi,€) of (52— p)?— ¢, we define a ramified simply connected set D;(ji, €)

(see Figure 2.2) as the union of real positive trajectories of the vector fields w x,
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with continuously varying —n < argw < 7, that end in the point s;(f, ¢) and never
leave the annular region (2.3.27). Hence § € D;(fi,€) if there exists w = w($),
with argw € (—n,7n) depending continuously on §, and a real positive trajectory
a(§), € € RT, of the vector field wy, such that

e 5=0(0), si(f1,€) =lime,io00(&),

° o(§)] < s, ‘%Fj] < L, forall £ € RT,

do o (€)2—1)2—e
o G e
w&=20(c(§), p,€) —26(s, p, €), (2.3.28)

for the function 6 (2.3.19). In particular s;(f, €) € D;(ji, €).
For some values of (ji,¢) the interior D;(ji,€) of D;(fi,€) can be empty. This is

the case when s;(fi, €) is a repulsive point of the real vector field wy for all admissible

w, or when s;(fI,€) = 0 and p # 0, in which case s; is not a singular point of wy.
We set

(a) 0<e<p? u>0 b)e=0<p (c)e=p=

FIGURE 2.2. The domains D;(u, €) for selected values of p, €

Lemma 2.3.5. Let the constants L,n from Definition 2.3.4 satisfy

Lés(1+4 sup [sr|) <2cosn, (2.3.29)
|s]<ds
where 7 = r(xz(s,m),m) is as in (2.3.24). Then the equation (2.3.24) possesses a
unique solution p; € B(D;) that is bounded in the domain D; and satisfies p;(s;(fi, €),m) =
0.
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PrOOF OF LEMMA 2.3.5. We are looking for a solution p; € B(D;) of (2.3.24) sat-
isfying p;(s;) =0. From the definition of the function 6 (2.3.18) and from (2.3.24)

we have

- dp; 2 =
(e p) = — i = 5,(L-p) + (L+p)r,

which we use to rewrite (2.3.24) as an integral equation

S _ 2 p
pi(s) = / e20(5)=20() (11203() + (14 p;i(0))? - T(O’Q—,u)) do = Kipi(s).

Taking the real trajectories o(€), £ € RT, of the field wy (2.3.25), |w| =1, |argw| <

7, as the integration trajectories and substituting £ as in (2.3.28), we obtain

too e (07— p)*—e (1 — P}

Kipi(s) = —w/ et 102 5o

i +<1+p02-r> dg

We are looking for a fixed point p; of K; in the space of the functions f € B(D;)

bounded by 1
[If]| := sup [f(s)] < 1.

seD;
Using (2.3.27) and (2.3.29) we have

5%—p)?—e¢ —f(s)? 1
(e (WD 4 (14 £(9))% )| < 480 (1 + dllsr) < 5 cos.

Therefore

+o0o
| < feosn- [ e Melag < bty < 4,
Similarly

e (g @+ )7 (- )

TLos (L+4llsri) [1£1 = fol

scosn - ||f1 — fal],

IN

IN

and hence

i f1 = Kifoll < 3111 = fall
So K; is a contraction and the solution p; of (2.3.24) on D; exists, and is unique and
bounded by 1. O

2.3.6. Domains ) and normalizing transformations Fy,.

If p; is defined on D; and p;> is defined on D]P, then the diagonalizing transformation
Fq(s,m) is well defined on a component, €2(fi, €) of the intersection D (fi, ¢) ﬂDjP(/i, €),
which is attached to the points s;(/i, €) and SJP(/E, €) = —s;(f1,€). We set

i, €) = Qji, €) U {s(j1, €), —s5(ji, )},

and show that F(-,m) extends to Q(, €).
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In order to understand such domains €2 better, we need to understand first the
vector field x (2.3.25).

Remark 2.3.6 (Rotated vector field.). The change of coordinates (s, ¢') =
(ws, w?n,we), w € C, transforms the vector field x to wy:

(8/2 _ ILL/)Q _ 6/

2 Oy

X (s, 1,6) =

Bifurcations of the vector field x.

If in Definition 2.3.4 w=1 was fixed, then D;(/i, €) would be just the attractive basin
of the point s;(fi, €) relative to the annular region (2.3.27). To simplify things further,
supposing that é; =L =+00, i.e. that the annular region is the whole C \ oo, then
the interior (ji, €) of Q(ji, €) would be exactly the regions in CP' bounded by the
real separatrices of the singularity at the origin of the vector field x(s, i, €) and by
its unique real trajectory passing through the point at infinity. For a generic value
of the parameters (fi,€), this gives 4 different regions: a symmetric pair of inner
regions that are bounded solely by the separatrices of the origin, and a symmetric
pair of outer regions bounded by the trajectory through oo and the separatrices of
the origin, see Figure 2.4. When € = 0, each of the inner regions splits in two parts;
when 2 = ¢, the inner regions become empty.
Let us take a better look to how these regions evolve depending on the parameters
(fi,€). There are two possibilities for a bifurcation:
>r: when the stability of a zero point s; of x changes between attractive and
repulsive through a center: the dashed lines in Figure 2.3,
Y.0: when the trajectory passing by infinity changes its end points: the solid curve
in Figure 2.3.
Both of the bifurcations X;, ¥ are instances of a same phenomenon: appearance of

a homoclinic orbit through the origin in CP*.

Ve

The bifurcation 3; occurs when the multiplier o of the linearization Si:(s—si)ﬁs
. o . . e
of vector field x at the point s; = +4/u + /€ becomes purely imaginary: i €

iR, which is equivalent to

pE Fve—eRT =3 (e). (2.3.30)

It is well known that a holomorphic vector field in C is analytically equivalent to its

linearization near each simple zero (see e.q. [IY]). As a consequence, if u € Xy(e)

then the real phase portrait of y near the point s; with purely imaginary multiplier
is that of a center.

The bifurcation X occurs when the trajectory through infinity passes by the

origin, or equivalently when a separatrix of the origin passes through infinity. This
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means that 6(0) — (o) € R, where 6 is as in (2.3.19), i.e. :E—V’“L\/;j;g VI=VE i e R,

2__
which is equivalent to Ve VI —aeRT or

pe{—3a+ea)|a>0}=:Toe). (2.3.31)

The set Xp(€) is a branch of a hyperbola.

(ii)

FIGURE 2.3. Bifurcation curves in the p-plane for the vector field x(s, u,€)
according to values of e: dashed lines ¥;(¢) correspond to change of stability
of a singular point, solid line curve ¥ (€) corresponds to bifurcation of the
trajectory passing through oo.
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(iii) e € —R™:

FIGURE 2.4. The real phase portrait of the vector field x according to u for
selected values of e.
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The ramified domains €.

From the construction, a point § belongs to (ji, €) if there exists w, (resp. w_) for
which the positive trajectory of wix (resp. negative trajectory of w_x) starting at
§ stays within the annular region (2.3.27) and connects to the point s;(fi, €) (resp.
—s;j(f1,€)). We will not lose much by restricting Q(j1, €) only to the points for which
the same w; =w_ =:w is admissible, in another words, the whole real trajectory
of wy through s stays inside the annular region. Let us take a closer look at such

domains €.

For each w, |w| = 1, and a generic value of (u, €) the vector field wx(s, p, €) has 4
connected zones consisting of complete real trajectories inside the annulus (2.3.27):
a symmetric pair of inner regions, denote them Ry (i, €), REW(;L ¢), and a symmetric
pair of outer regions, denote them Rop (i, €), Rg’w(ﬂ, ¢), see Figure 2.5 (a).

Depending on (u, €) the following can happen: When w?p € X7(we) U {£w?\/e},
the inner regions Ry (fi, €) become empty, and they split in two components when
e =0, u # 0. The outer regions Ro . (fi, €) are empty whenever a separatrix of the
origin of the field wx(s, i, €) leaves the disc of radius ds (2.3.27): this happens for
values of (1, €) close to the bifurcation set ¥ (2.3.31), see Figure 2.5 (b). Therefore
a bifurcation of the region Rp ., occurs when a separatrix of the origin touches the
boundary of the disc of radius d5 from inside for the first time: at that moment the
region ceases to exist as no outer points can be joined to both s; and —s; inside the

annulus.

FIGURE 2.5. The outer and inner regions Rp 1(fi, €) and Ry 1(f,€) (with
w = 1) inside the annulus (2.3.27) for (a) € € iRT, u =0, (b) € € iRT,
 close to £1(e): Ro,1 = Rg’l = (). Compare with the corresponding vector
fields in Figure 2.4 (ii).



42

Corresponding to the inner and outer regions of the vector field y there are four
domains €2: a symmetric pair of inner domains €27, Qf, and a symmetric pair of
outer domains 2o, Qg, obtained as ramified unions of the regions Rj ., REW and
Row, Rg’w over varying w. They experience the same kind of bifurcations as their
corresponding regions R, ,,, but this time it is delayed by the effect of the variation of
argw € (—n,n). This will determine the set of ramified parameters (fi, ¢) for which

they exist.
Let M, € (2.3.26) be small discs of radii 6, d. in the p- and e-spaces, and let n

be as in Definition 2.3.4. Define a ramified sectorial cover & of £ as
E={&||¢ <6 & |argé| < 2w +n},

with each ¢ being projected to € € £. For each value of w and ¢ € &, let M, (€)
denote the connected component of the set {1x € M | Ro(f1,€) # 0} ~ Xi(e) that
contains the point u=+/¢. By Remark 2.3.6

Rew(f1,€) = w ' Ra1(wii,w'e), =0,1,

hence M,,(€) = w2 M (w*). Define the domain M (&) of ramified parameter i as
a ramified union
M@E = | M= | w M,
|w|=1 |w|=1
largw|<n largw|<n
with /i=+/€ as the ramification point included in M(&). See Figure 2.6.

To fix the notation, from now on, let

$1(01,€) ==\ i + Ve, sa(ji, &) i= i — VE (2.3.32)

such that for arge = 0 and p > /e > 0 they are given by the usual square root. Let’s
agree that out of the two inner regions, Ry (fi, €) is the one consisting of trajectories
from s1(f1,€) to sa(fi, €), and that out of the two outer regions (both consisting of
trajectories from s1(f, €) to —s1(fL, €)), Row(fi, €) is the upper one (Figure 2.5).
For each th € M let
(&)= | Rew(ité), e=0,I (2.3.33)
w such that

HEM, (€)

be a ramified union of the regions in the s-plane, and let

Qr(f, &)  (resp. Qo(fi,€))

be Q1 (ji, €) (resp. Qo(fi, €)) with the corresponding zero points s1(ji, €), s2(ji, €) (resp.
)

s1(f1, €), —s1(j1, €)) of (82— p)?— € from its adherence added as in Proposition 2.3.7.
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FIGURE 2.6. The ramified domains M (¢) for the parameter ji depending
onécé.

(@) 0<e<py® p>0 (b)e=0<p (c)e=pu=0
FIGURE 2.7. The domains Q¢ (i, €) and Q;(f, €) for selected values of p, €.

While the outer domain Qo (ji, €) is connected nonempty for all € € M, ji € M(&),
following from its construction, the inner domain becomes empty whenever ;> = e,
and splits into two components if € = 0: Qr(7,0) = Qr(f,0) U Qr(f,0), with a
common point s1(fi,0) = s2(f1,0) =+/1 (see Figure 2.7).
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If e € £ENe2™E and € = e¥™e € £ N e2™E are two ramified parameters in &
that correspond to the same ¢, then the two domains M(€), M(€) form together
a ramified cover of the p-space M (if 0, d. in (2.3.26) are sufficiently small), see
Figure 2.6.

The union of M(&) in the (ji, €)-space

U M(@) x {&}
éet
is a single simply connected ramified cover of M x€&.
We define the ramified domain M in the m-space, covering a neighborhood M of

0 in the m-space, by lifting this ramified cover (u(m),e(m)) : M — MxE

M S > (ji(ri), &) € Upeg M(&) x {8}

I ]

M3>m +—— (u(m),e(m))e MxE
Finally let Q4 be the union of all Q4(ji, ¢) -fibered over M

Qui= | Qu(jim), &(m)) x {1h}.

TREM

Proposition 2.3.7. Let a parametric system A°(s,m) be as in (2.3.15) and its diag-
onal model A°(s,m) be as in (2.3.16). On the domains Qe and QF = e™Q),, o = O, 1,
defined above, there exists unique diagonalizing transformations

S

F, € GLy(B(Q)), (FJ)*A*=A
FP e GLo(B(QF)), (FPyas=A

S

(see Definition 2.2.11 and Notation 2.3.3), such that

Fi(s1,:8) = (g, ) Filsa &) = (097,

0 rir(fis€ o1 (2.3.34)
. 1 0 v v ko (f,€) O o
FO(Sl,,U,, 6) = (0 Iio(ﬂf))’ FO(827N) 6) = ( O(OM ) 1) )

where the functions ko, k; € C(M) N O(int M) are uniquely determined by AS.

PROOF. By construction,
p287(0)d
2 A efSJP gy 0
Q(S’m) = p; 1

0 eif;i 28;(o)do
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with g = —ﬁpk + 5(1 4 p), so it is well defined and bounded on the component Q
of the intersection D; N DjP. We need to show that the limits

Fo(sg,m) = Slgrslk Fo(s,m), sp=si,—S;

exist and are diagonal. In fact, for each 7h fixed and si(fi, €) a singular point of AS
it is well known from the non-parametric theory that there exists a diagonalizing
transformation defined on the restriction of (i, €) to a small neighborhood of the
point, which extends continuously as I to si(fi,€) (cf. Remark 2.2.10). Therefore
Fo(-,m) is related to such a transformation by right side multiplication by a bounded
automorphism of Z;Sn. Lemma 2.3.8 below shows that this automorphism extends
continuously to the point s; as a diagonal matrix, therefore Fq(si(f,€), fi, €) exist
and is diagonal. The unicity of Fp follows from Corollary 2.3.9 below.

Using the Liouville-Ostrogradski formula we know that the determinant of the
fundamental solution ®q = SV Fqa¥q (2.3.21) of A(z,m) is constant for each (i, €)

fixed since the trace of the matrix of this system is null; therefore
det F(s,m) = det ®o(x,m) = kq(m) € C*.

If F(s;) is diagonal, then we also know from the construction that Fq(s;) has 1 at
the second diagonal position, and similarly that Fo(—s;) has 1 at the first diagonal
position, so we obtain (2.3.34). O

Automorphisms of A’

Lemma 2.3.8. For m fized, let U be a simply connected open subset of C \ {s |
(52— u(m))— e(m) = 0} and let Ay(s) be an automorphism of the diagonal system
A (2.3.16): (Ap) A = A0 . If U(s) is a fundamental solution (2.3.20) of A,
we have
Ay (s) = U(s)CW(s)~?

for some constant invertible matriz C = (cg;). If Ay is bounded on U, and if U
contains a real-positive trajectory o4 (§) of wix (resp. a real-negative trajectory
o (§) of w_x) for some wx, |argws| < §, then necessarily c12 = 0 (resp. c21 = 0)

and

tim Au(r(©) = (3 2) (rep = Jim_Av(o-() ).

£—+o0 0 cao

PROOF. Let 0(s) be a branch of the function (s, y1, €) in (2.3.19) on U. We have

20(s)

C11 (& C12
Ay(s) = (629(5)021 - ) :
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If |argw+| < %, then it follows from (2.3.28) that Re (6(04(£))) — +oo as £ — +o0
(resp. Re (A(o0_(&))) — —o0 as & — —o0), which implies that ¢12 = 0 (resp. c21 = 0),
else Ay (o) would not be bounded. O

Corollary 2.3.9. An automorphism Aq of A° (2.3.16) on a domain Q of Proposition

2.8.7 is just a diagonal matriz constant w.r.t. s.

Proof of Theorem III

PROOF OF THEOREM III. Let #(5,m) = 5% — ji(m), a one-to-one map from the
ramified coordinate § to a ramified coordinate & (projecting on z), be a lifting of the
map x(s,m) = s2 — u(m) (2.3.13). Then the ramified images of Qp, s in the i-
coordinate: #(Qo(j1, €))NX, #(Qr(ji,€)) NX, cover for each (ji, ¢) a full neighborhood
of each singular point = £4/e. Define

depending continuously on m € M, as simply connected ramified extensions of these
images, in such a way that they agree with them near each singularity, are open
away of the singularities, and the union of their projections covers all X for each
m. In particular, we want to cover the points & = p corresponding to s =0, which
was not covered by Qo U Q7. Since the fundamental solutions SV FeW, of A(z,m)
and SVE,U, of A(x,m) (see Section 2.3.3) are analytic away from the singularities
x = £+/€, the transformations (2.3.17)

To(#,11) = S(s)V Fe(3,1)Ee(3,m)'VIS(s)™!, =0,

extend then on e = O, [ as normalizing transformation for the parametric system
Az, m):
T, € GLy(B(s)), TiA=A.

2.3.7. Connection matrices and proof of Theorem I (a).

For the following discussion we will want to fix a branch W, of the fundamental
solution W (2.3.20) of the diagonal system A” on each of the domains €. In order
to do so, we need to split the inner domain Q;(f,¢€) in two parts: Qr(ft,€) and
Qr_(f1,€), corresponding to the two components of QI([L, 0) when é = 0.

First we divide each inner region Ry (f,€) of the field wy into two parts by
cutting it along a chosen trajectory going from the repelling point s1(f, €) to the

attracting point sa(fi, €): If € is the function (2.3.19), one knows that the imaginary
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part of w™'f stays constant along each trajectory. Using (2.3.32), we can write 6 as

0(§’ﬁ7 g) — 51 (f1,€) s—51(f1,€) s2(f1,€) log s—sa(

2v/e 08 sTsi(id) | 2ve sts2(

€)

l}?
[,€)°

and we know (by setting s = 0o) that points on the unique trajectory from s; through
oo satisfy

Im(9(§,ﬁ, €)> _
To cut Ry, we will use the “opposite” outcoming trajectory from sq, that is the
trajectory, whose points s satisfy

0(s, [, é s1(f, €
Im( ( y )) _ :I:Im( 1(:“7 v)7”»)
w w Qﬁ

(the sign depends on from which side does one extend the function €, the both

correspond to the same trajectory in the s-plane).
For each w this trajectory divides Ry, into: Ry, and Rj_,,, see Figure 2.8 (a).
We define Qy,(j,¢) and Q7 (i, €) in the same way as in (2.3.33) for each ji? # ¢.
Hence
Qr=QruQL, (see Figure 2.8 (b))

and we set Fry = Fr|p and Fr_ = Fr|r.

%&? -5 s (A
RI—,‘I QI—
(a) (b)

FIGURE 2.8. (a) The regions Rpy 1(fi, €) of the vector field x with the di-

viding trajectory from s; to so dotted. (Picture with e,u € RY, u? > ¢,

compare to Figure 2.4 (i).) (b) The corresponding domains (i, €) and

Q_(f1, €), where Qp (i, €) = Qp(f, €) UQ (i, €) is as in Figure 2.7 (a).
Definition 2.3.10. Let &, ®3 be two fundamental matrix solutions of a linear
system on two domains U;, Uy with connected non-empty intersection Uy N Usy. We
call the matrix C = (I>1_1<I>2 a connection matriz between ®; and ®5 and represent
it schematically as

o -5 @,

Choice of fundamental solutions W,.

On the interior €, of each of the domains Qo, @ = O, [+, -, we fix a branch W, (3, i, €)
of the fundamental solution W(3, /i, ¢) (2.3.20) of the diagonal system A’ so that the

connection matrices between them are as in Figure 2.9.
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FIGURE 2.9. The connection matrices between the fundamental solutions
U, for each fixed parameter (fi,¢), with g% # € # 0, where N; and N
are given by (2.3.35) and (2.3.36). If ¢ = 0 then s1(f,0) = s2(f,0) and the
matrices N; are missing from the picture. If ji2 =¢ then only the fundamental
solutions ¥ and \IIS persist together with the two connection matrices —il.

The monodromy matrices of W(s, fi, €) around the points s; (i, €), resp. sa2(fi, €),
in the positive direction are independent of the choice of the branch, and are given

by

o |eva™ o0 o e TV 0
Ni(f, €) = IR RO I No(fi, €) = so(d) o | (2‘3-35)
0 e Ve 0 e Ve

They satisfy
NP=N7Y i=1,2

The monodromy matrix of ¥ around both of the points s1(f, €), s2(fi, €) is equal to

21702 g
L. . L. e Ve 0
N (4, 6) = Nl(ﬂae)NZ(M7 €) = _s1zsa | (2'3'36)
0 e e
%m’
eVi 0
At the limit when ¢ — 0 we get N(f,0) = _ 1 |» which is for u # 0
0 e Vi

the monodromy matrix of ¥ around the double zero s1(fi,0) = sa(f,0), while none
of the matrices Ni(fi,€), Na(fi,€) has a limit. This is the reason for splitting the
domain €7 into Qp, Q7 and choosing Wy, U in the way we did. Therefore, the
fundamental solutionW zr are well defined on the whole QO = and Yo is well defined

on the whole 5920.
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Considering now the fundamental solutions FoW, of A’ (2.3.15) on the ramified
(8, m)-space, there is a connection matrix whenever a point (s,m) € S x M is covered
more than once: FEither there can be two domains Q(fi,€) with the same (i, ¢),
or with two different ramified parameters (fi,€) corresponding to the same (u,e€).
The collection of all these connection matrices carries all the information about the

analytic equivalence class of the system A.

Proposition 2.3.11. Let A(x,m), A'(x,m) be two families of parametric systems
and let A%(s,m), A’*(s,m) be their transforms as in (2.3.15). Let F,, F, be normal-

izing transformations for A%, A’S:
(Fo)* & = A” = (F))*A”

on the domains e = O, I+, I— defined above. If all the connection matrices associated
to the fundamental solutions FoWe of A° agree with those associated to the funda-
mental solutions FlW¥, of A’®, then the two parametric families of systems A, A’ are

analytically equivalent.

PROOF. Let H(s,m) := F.(3,m) Fs(5,m)~!. Since all the connection matrices are
equal, H is a well defined non-ramified invertible matrix function defined on the union
of the projections of the domains 4 to (s,m)-space, @ = O, I+ - It is bounded
on a neighborhood of each singularity s;, hence H can be analytically extended on
(S~ {0}) x M x &, where S, M, & are as in (2.3.26). It satisfies H = H" if s is
in the projection of Q4(fi,¢) and H(s,m) = F.(3,m) Fy(3,m)~! then —s is in the

projection of QF and

Hence the function
G(x,m) = S(s,m) VH(s,m) V187 1(s,m),

with S,V as in (2.3.14), is well defined. The fundamental solutions ®4(&,m) =
S(s) VFe(3,m) We(8,m) (resp. ®,(Z,m) = S(s) VF,(5,1) Ue(8,m)) of the systems
A(x,m) (resp. A'(z,m)) can for u? # € be analytically extended on a neighborhood
of the point z = —p (i.e. s=0) which is non-singular for these systems. As G =
@, P, 1, it means that G*A’ = A and that G is an invertible analytic matrix function

on (XxM) \ {x = —pu, e = p?}, where

X = {Je] < 62— 5,.}.
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Since the problematic points are in a set of codimension 2, GG is analytic on the whole
neighborhood X xM of 0. 0

FIGURE 2.10. The connection matrices between the fundamental solutions
F, ¥, for a fixed parameter (fi,€), ji2 # €. For i = ¢, only the fundamental
solutions Fpo¥o and FS\IIS persist, with the two corresponding connection
matrices —iCy, —iCJ. (Picture with (ji,¢) as in Figures 2.9 and 2.7(a)).

Lemma 2.3.12. Let F, be the normalizing transformations from Proposition 2.3.7
satisfying (2.3.34) with the uniquely determined functions ke, and let Vo be as Figure

2.9. Then for each fixed h € M the connection matrices between the solutions FqW,

on the domains Qe (f1, €) are given in Figure 2.10 with the matrices Co(mh), ..., Ca(mh)
equal to
1 oy 1 ixte2am
Co = ) C3 = 3
"o 1) ’ (o )1 )
1 iﬁ_l(’y o e2(17ri_ e—2a7ri) 1 _,i/i—1€2a,7ri
o= . Oy = : 9.3.37
o 1 o s (2:3.37)
1 0
Cy = . )
2 —ike2ami 1)
where
51 (f1,€)—s2(f1,€) Zf & 7& 0
a(im) = 2ve (2.3.38)
2% if €=0 and ji#0,
(i) = OT) (2.3.39)
w1 (1h)

and y(m), the analytic invariant of the system A(x,m), is the trace of monodromy.



o1

ProOOF. From Lemma 2.3.8 we know that a connection matrix on an intersection
domain that is adjacent to point s1(f,€) (resp. s2(fi, €)) must be upper triangular
(resp. lower triangular), with the diagonal terms determined by the values of the
corresponding pair of transformations Fe(s1(fi,€), ) (resp. Fe(s2(fi,€),m)). Hence

we have

a=(37). =02, a=(19). a=(m). a=(5).

for some co(m), ..., ca(mh).

Let M () be the monodromy matrix of the fundamental solution
(I)O(':Ea m) = S(S) VFO(‘§7 Th) \IIO(‘§7 £y g)

of the system A around the two singular points = £++/¢ in the positive direction.

On the one hand we have

.

M =58 Fo(3) " 'V1S(s)™L - S(—s) VEo(e™5) W (e™
= Wo(3) T Fo(3) VTS (s) - S(s) VES(3) wEG) (V) = =i Co ()
On the other hand, as apparent from Figure 2.10,

M = C3C1NCyCy

2ami 0

where N = ( ¢ . Therefore
(“" o)

e—2a7rz

i co((f (1)) = C3CNCyC5 ! = M,

K C2

(—ico —i) B (62‘1”—1— e 20Ticy(e14e3) ke 29 (cp+c3)(1—cac3) — me2‘””'c3)
o Y

— 0 71672a7ri 672am'(1—0203)

which implies that

v =trM = —icy = e?¥™ 4 7297 4 20T oy (2.3.40)
cocs =1, and co = —ike29™, g =ik le 29T,
From Figure 2.10 one also sees that
C3C1 = CpCly,
which gives the matrix Cy. O

The matrices Co(1h), . . ., C4(rh) of Lemma 2.3.12 determine for each fixed m € M
all the relations between the set of fundamental solutions Fe(-,m), ¢ = O, I4-, - and

their symmetric counterparts FJ(-,71). We will now look at the situation of two
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different 1 € M corresponding to the same value of m. One finds that the corre-
sponding connection matrices can be expressed in terms of the values of Cy,...,Cy

for the two ramified parameters, while certain cocycle relations must be satisfied.

Lemma 2.3.13. Let F,, U, be as in Lemma 2.3.12. We will use the following kind
of notation: If m,m € M (resp. T, m € |\7|) are two values of the ramified parameter
m, we write X = X (m), X = X (m) (resp. X = X (1), X = X (m)) for any object
X depending on m.

(a) Let m, m € M be two values of the ramified parameter that project to the same

m, such that
E=é=:1¢ and j—Vé=eT(n— Ve,

i.e. [i is [i plus one positive turn around the ramification point /€ in /\>l(€) So

§1 = §1, 52 = eﬂigg.
Hence
Qo =Qo, Fo=Fp, Yo=Yy,

and we have
K

X
1

0=ko=——" 5 (2.3.41)

1—e “ve
(b) Let m, m € M be two values of the ramified parameter that project to the same

m such that

(ﬁ” g) = e2m(ﬂ’ g)v

or more precisely, for |u| > /||, (i1, €) is obtained from (fi, €) by simultaneously
turning both € and fi. So

§1=¢e™3y, §y=¢"5, and N=N"1

Hence . ~ 5 ~ . .
Qpp=Qf,  Fp=Fr, Vp=—iVp,
QI,:QE_, FI,ZFII_T_, \i/[,:—’i\i}:_N_l.
Therefore
C1=N"'CYN, Cy=CF (2.3.42)
and we have
1= R, (2.3.43)
v = 20y T g om0 (2.3.44)

where & and & are defined in (2.3.38) and (2.3.39), and a = —a.
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PROOF. (a) For each ¢ € £ the ramification of the fi-parameter domain M (€)
corresponds to the bifurcation Xj(e): the difference between (i1, €) and (fi, €) is that
of crossing the line Xj(€). Since this bifurcation affects only the inner regions of
the field ;, it therefore affects only the internal domains Qp., QF, while the outer
domains are not affected. Therefore (ZZO = Qo and consequently ff:b = Fp.

To obtain the assertion (2.3.41), it is enough to prove it for generic values of
(1, €), and extend it to the other values by continuity. So we can assume that € # 0,
p? # e and moreover that both of the points s1(ji,€), s2(ji, €) are non-resonant.
In that case, aside from the transformations Fe($,m), ¢ = O, I+, I—, we have also
unique local normalizing transformations F;($, 7h) defined on a neighborhood €Q; (i, €),
i =1,2, of s;(f,€) not containing any other singularity s;(/, €) nor the origin, with
F;(3i(f1,€),m) = I. They satisfy

ﬁl :Fl, FQZFQP.
Let A; be the connection matrix between F;W . and Fr Wy, :
FrVp = FV A,

see Figure 2.11. It is easy to see that the monodromy of Fry ¥ around the point

s1 (resp. s2) is equal to
OlNl = Al_lNlAl, (resp. NQCQ = A2_1N2A2 ),

from which one can calculate using Lemma 2.3.12 that

1 e K 0
A= G A= ] , (2.3.45)
0 K/I 1—6;262 1

el e e — el
and ¢; =ik~ (v o ), and ¢g = ikgh.

with

€1

Knowing that Fp = F‘ZP one can see from Figure 2.11 that
ACyt = NG (ND)7HCD) ™

where (N)™' = Ny, i.e.

= .= e _ > - €
K1 —ikr g R—2 1 —jR—3
. = =% e (2.3.46)
.= élég = 17 . &g _
thi—sz Mtz kI, ki
This is satisfied if and only if
= é
RIKI = KO ==,

62—62
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FI1GURE 2.11. Connection matrices between fundamental solutions £, W, of
Lemma 2.3.12, with € fixed and g # p . (Picture with argé = 0.) The
corresponding diagram for the diagonal solutions ¥, of A® is obtained by
erasing all the F’s and replacing the matrices A;, C; by identity matrices.
The top arrow in the diagram here FQP\TIZF AL Fy U, follows from the

. = —iN1 T . . .
corresponding arrow \I/i ——— W, which one can easily read in the cor-

responding diagram for the diagonal solutions.

which is equivalent to (2.3.41). Similarly, one would find that
56 = 4,0y,
which is satisfied without imposing any new condition, since

1 mel—l—ieg—liegl
—1 s
Al 03 == €176
0 KO

(b) Similarly to (a), the passage between (fi,é), i € M(€), and (fi,€) = 2™ (i, é),
i€ M(E), is that of crossing the curve ¥p(e€), which affects only the outer regions,
and hence the outer domains. The inner domains rotate together with their vertices
s1(f1,€), s2(ji, €), therefore Qr, = QF and Q;_ = Q]PJF. So we have
One can see from Figure 2.12 that the fundamental solutions Wy of the diagonal
system A° satisfy

Fp = i 0P, B = WP,
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This then implies (2.3.42), i.e.

5 (1 —ife2ami 5 _ (1 —iRe2ami
=) a=07T)
0 1

~ 1 0 = 1 0
¢z = <fme%” 1) o Ge= (—z'éeﬁm' 1) ’

as @ = —a. Then (2.3.44) follows from (2.3.40).

FIGURE 2.12. Connection matrices between fundamental solutions ¥, of
Lemma 2.3.12 with (i, €) = e*™(f1, €).

O

All the connection matrices between the fundamental solutions F,¥, can now be
determined from Lemmas 2.3.12 and 2.3.13.

Proposition 2.3.14. (a) Let A be a parametric system, X° its transform (2.3.15),
let Fy be the normalizing transformations from Proposition 2.3.7 determined by the
condition (2.3.34) and let Wo be as in Figure 2.9. The collection of all the connection
matrices between the fundamental solutions FeW,e is uniquely determined by k = ’;—?
and by the invariant v, satisfying the relation (2.3.44).
(b) Let v(m) be a germ of analytic function and assume that there exists an analytic
germ Q(m) such that v = 2 cos 27Q. Let a(fi,€) be as in (2.3.38) and

b(f1, €) :=

S1+ S2

2V/E

~

Then any triple of functions k1, Ko, £ = 52 € B(M) with ko(m) =1 if (f1,€) =0
and k() = 1 if € = 0, i € M(0), satisfying the relations (2.3.41), (2.3.43) and
(2.3.44) of Lemma 2.3.13 are equal to

_ %F(%)F(%) 2b10gb—%log%—%log%+ﬂ
I(1+6—Q)T(b+Q) ’

K (2.3.47)
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o P(ZE)T(A+ 2%) o 2alogat2blogb—2Llog L + fo
O T T (14+a—Q)T(14+6—-Q)T(a+Q) T(b+Q) |
(2.3.48)
S1 S1 s2 \—1
52 P(ﬁ)r(\@) e2aloga7%log%+%log%+f’ (2.3.49)

"T1+a—Q)T(at+Q)

where I' is the gamma function and
f=(s1+s2) g(s159, s7+53), fr = (s1—s2)g(—s159, si+53), fo=f+[1,

for a unique analytic germ g.

PROOF. (a) All the connection matrices between the fundamental solutions FeW,

can be determined from Lemmas 2.3.12 and 2.3.13.
(b) Denote o : m — m the continuation map from Lemma 2.3.13 (a), and p : i — m
the continuation map from Lemma 2.3.13 (b). Hence,

5100 = 81, $200 = €8y, aoo=b, boo=a,

sjop=¢€"'sy, sq0op=-ce”'sy, aop=-¢e "‘a, bop=0>.

One can easily verify that the functions kz, ko, k of (2.3.47)—(2.3.49) satisfy k = &2

K1
and the identities
S9 .
Wﬂ'i
(2.3.41): Koo = Ko = Kémg)ez
i sin S
(2.3.43) :  Krop = Ky,
(2.3.44) : 2cos 2nQ = 2cos 2ma — k (Kop) e 2™,
using the standard reflection formula I'(2)['(1 — z) = Z—. It follows from the

Stirling formula:

F(1+z)~ \/%(E)Z (1 + O(%)) in the sector at infinity where
‘ |arg z| <n for any 0 <n <,
that lime o k7(h) =1 and lim; ¢ 0 ko () = 1 with the limits being inside M.
On the other hand if k7, ko, k are some functions satisfying the assumptions of
the proposition, let k7, kp, k' be given by (2.3.47)—(2.3.49) with f; = fo = f =0,
then it follows that the functions

KT KO K
fr= 10g7a fo 3:10g7, f= log—,,
KT Ko K
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satisfy

fO:f—‘f_fI) fOO':f[, fOOU:fO7 fIOP:fIa fop:_f

This implies, in particular, that fooo? = fo = foop?, hence that fo is non-ramified
as a function of (si,s2), and therefore fo is an analytic function of (si,s2). Since
one can express f = L(f — fop) = 3(fo — foop) and f; = L(fo + foop), they too
are analytic functions of (sy, s2). Moreover 0 = lim¢_,¢ fr = limg, —s,—50 f1, SO we can
write
fr=(s1—52)-9, and f=(s1+s2) (g00), fo=/fr+f,

with g that is p-invariant, thus an analytic function of s1s5 = /12 — ¢ and of s7+s3 =
2[1, which are algebraically independent and form a Hilbert basis of the space of

polynomials of (s1,s2) that are invariant to the action of p. O

Corollary 2.3.15. Two germs of parametric families of systems A(x, m) and A'(z,m)
are analytically equivalent by means of a germ of analytic transformation G(x, m)
satisfying

G(x,m) =1 whenever x*—e=0, (2.3.50)

if and only if they have the same k.

PRrROOF. If G satisfying (2.3.50) is such that G*A’ = A, and if F,, ¢ = O, I, are
the uniquely determined diagonalizing transformations of Proposition 2.3.7 for A°
(2.3.15): F,*A* = A, then F. =V 1S~'GSVF, must be the uniquely determined

transformations for A’®, and therefore
ke = det Fy = det F. = k).

Conversely, if £ = &/, then also ko = kp, k1 = K} and v = 4/, which are de-
termined by (2.3.41), (2.3.39) and (2.3.44). Therefore the collections of connection
matrices are the same for the two systems (Proposition 2.3.14), and the transforma-
tion G(z,m) of the proof of Proposition 2.3.11 has the property (2.3.50). O

Everything is now ready to finish the proof of Theorem I.

PROOF OF THEOREM I (A). Let A(z,m), A’'(x,m) be two parametric families of
systems, A(s,m), A’(s,m) their transforms (2.3.15) and F,, F, be the normalizing
transformations from Proposition (2.3.7) determined by the condition (2.3.34) with
Ke, Ku. Suppose that their invariants v = ' are the same. We want to show that
the two families of systems A, A’ are then analytically equivalent. We know that

kr(m) = 1 = k}(m) when ¢ = 0, and ko(m) = 1 = k() when (,¢) = 0. Let
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d(mh) depending continuously on the parameter m € M be such that
/
fo _ 5250 s0)=1.
Ky K1
The relation (2.3.44) implies that §(1n) §(/m) = 1. Put

Fy=0""Fy, Ff=F(°"0).

They are also normalizing transformations for the system A’s: (F[)*A’ = A’s. Tt is
easily verified that the connection matrices between the fundamental solutions F) W,
are exactly the same as those between the fundamental solutions FoW, (with ¥, as

in Figure 2.10), hence one concludes by Proposition 2.3.11. 0

PrROOF OF THEOREM IV. (i) For €(m) = 0, the transformation T;fm converges to
Tom, i.e. |Tl+m(s) —Tom(s)] = 0, s € Sim’ if and only if Fj(-,m) converges to
Fo(-,m), which happens if and only if the matrix C3(m) — I.

(ii) To show that the transformation T ,, converges to 7o ,,, we need to show that
the corresponding transformation Fs(-,m) converges to Fp(-,m). It will be enough
to show that the difference of fundamental solutions FoWp — FpWo converges to 0
for each fixed s. We know from the proof of Lemma 2.3.13 (a), Figure 2.11, that
Fovp = FQ\I’OAQCg_l, where Aj is given by (2.3.45) and AgCgl has been calculated
in (2.3.46)

1 KT —Z'/i[% s;jmi
A5 = , where e; =e Ve, j=1,2.
ikeey et
l—eg l—eg

We need that ACy L' I, which happens if and only if 2—? — 0 and ejes — 0
as e(m) — 0, i.e. Im(%) > 0 and Im(%) > 0. For p = O(e), we have

s1 =€t + O(e%), sy = i€t + O(e%), hence % = % + O(ei), sots1 — —1dd

€ 82

<

O(e%). Therefore the condition of convergence is satisfied if arg sy € (7, ?ﬁf), ie. if

arg ro € (%,37“) 0



Chapter 3

CONFLUENCE OF SINGULARITIES OF
NON-LINEAR DIFFERENTIAL EQUATIONS VIA
BOREL-LAPLACE TRANSFORMATIONS

Abstract.  Borel summable divergent series usually appear when studying
solutions of analytic ODE near a multiple singular point. Their sum, uniquely
defined in certain sectors of the complex plane, is obtained via the Borel-Laplace
transformation. This article shows how to generalize the Borel-Laplace trans-
formation in order to investigate bounded solutions of parameter dependent
non-linear differential systems with two simple (regular) singular points un-
folding a double (irregular) singularity. We construct parametric solutions on
domains attached to both singularities, that converge locally uniformly to the
sectoral Borel sums. Our approach provides a unified treatment for all values
of the complex parameter.

3.1. INTRODUCTION

When studying solutions of complex analytic ODE near a multiple singular point,
it is the general rule to find divergent series. This is explained when considering
generic parameter depending deformations which split the multiple singular point
into several simple singularities: the local analytic solutions at each singular point
of the deformed equation do not match, thus explaining why solutions with nice
asymptotic behavior at the limit when the singular points coalesce only exist in
sectors. The solutions in these sectors can be found, using the Borel and Laplace
transformations, as the Borel sums of the divergent formal solution. Examples of
Borel summable (1-summable) divergent power series usually arise as formal solutions
of systems of ODEs at a double singular point.

When investigating families of analytic systems of ODEs depending on a complex
parameter, that unfold a multiple singularity, we are faced with the problem that
the Borel-Laplace method as such does not allow to deal with several singularities

and their confluence.
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The goal of this article is to show how one can generalize (unfold) the corre-
sponding Borel-Laplace transformations in order to investigate bounded solutions of
first order non-linear parametric systems with an unfolded double singularity of the
form

d
(22— e)di/ =M@y + flz,y,6),  (2,y,€) €CxC™xC, (3.1.1)
x
with M (0) an invertible m x m-matrix and f(z,y,¢) = O(||y||?) + 2 O(||ly||) + (2> —
€) O(1). Such solutions correspond to ramified center manifolds of an unfolded codi-

mension 1 saddle-node singularity in a family of complex vector fields
j::xQ_ea y:M(G)y+f(fE,y76)

It is well known that for generic (non-resonant) values of the parameter € # 0,
there exists a local analytic solution on a neighborhood of each simple singularity
x = +4/e. Previous studies of the confluence phenomenon (see [SS], [G2]) have
focused at the limit behavior of these local solutions when ¢ — 0. Because the
resonant values of € accumulate at 0 in a finite number of directions, these directions
of resonance in the parameter space could not be covered in those studies.

We will construct a new kind of parametric solutions of systems (3.1.1) which
are defined and bounded on certain ramified domains attached to both singularities
x = +4/e (at which they possess a limit) in a spiraling manner. They depend
analytically on the parameter e taken from a ramified sector of opening > 27 (or /e
from a sector of opening > ), thus covering a full neighborhood of the origin in the
parameter space (including those parameters values for which the unfolded system
is resonant), and they converge uniformly when € tends radially to 0 to a pair of the
classical sectoral solutions: Borel sums of the formal power series solution of the limit
system, defined on two sectors covering a full neighborhood of the double singularity
at the origin. In fact, each such pair of the sectoral Borel sums for ¢ = 0 unfolds
to a unique above mentioned parametric solution. We state these results in Section
3.2.2, and illustrate them in Section 3.2.3 on the problem of existence of normalizing
transformations for families of linear differential systems unfolding a non-resonant
irregular singularity of Poincaré rank 1.

While these solutions can also be obtained by other methods, the advantage of our
approach is that it provides a unified treatment for all values of the parameter ¢ and
elucidates the form of natural domains on which the solutions exist and are bounded.
Most importantly, it gives an insight to intrinsic properties of the singularity and to
the source of the divergence similar to that provided by the classical Borel-Laplace

approach.
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3.2. STATEMENT OF RESULTS

Notation 3.2.1. Throughout the text (a,b) (resp. [a,b]) denotes the open (resp.
closed) oriented segment between two points a,b € C; Rt = [0, +00e!®) is an
oriented ray, and ¢ + €®R = (c — 00e’, ¢ + 00e'®), with a € R, ¢ € C, is an oriented

line.

3.2.1. Borel-Laplace transformations and their unfolding

The Borel method of summation of (1-summable) divergent series is used to construct
their sectoral Borel sums: unique analytic functions that are asymptotic to the series
in certain sectors of opening > 7 at the singular point and satisfy the same differential
relations.

The formal Borel transform of a formal power series §(z) = Z;zo‘i yp ¥ is a

series
“+o0

Blol(e) =S Lk ¢h-1, 3.2.1
96 = 3 %6 (3.2.)

The plane of £ is also called the Borel plane. If the coefficients of §(x) have at most
factorial growth ( |yx| < ¢Fk! for some ¢ > 0), then the series B[§](€) is convergent on
a neighborhood of 0 with a sum ¢(&). Now, if ¢ has an analytic extension to a half-
line R+, and has at most exponential growth there (|p(z)] < K eMél, € € el*RY,

for some K, A > 0), then its Laplace transform in the direction «

Lafole) = [ o) ae (32.2)

is convergent for x in a small open disc of diameter % centered at % and extends to
0 (which lies on the boundary of the disc), defining there the Borel sum of §(z) in
direction a. A series g[z] is called Borel summable (or 1-summable) if its Borel sum
exists in all but finitely many directions 0 < @ < 2w. When varying continuously the
direction in which the series is summable, the corresponding Borel sums are analytic
extensions one of the other, yielding a function defined on a sector of opening > .

Let us remark that ¢[x| is convergent if and only if it is Borel summable in all
directions. This means that the Borel sums of divergent series can only exist on
sectors. This is also known as the Stokes phenomenon.

Each Borel sum of §(z) is asymptotic to the formal series §(z) at the origin, and
most importantly, if §(x) is a formal solution to some analytic differential equation,
then so are the Borel sums. More detailed information on the Borel summability can
be found, for example, in [MR2] and [MaZ2].
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A typical source of Borel summable power series are formal solutions of generic

ODEs at a double irregular singular point.
Example 3.2.2. A non-linear analytic ODE with a double singularity at the origin

d
x%%=y+ﬂ%w,(%w€CXC, (3.2.3)

where f(x,y) = O(x) + O(||y||?) is a germ of analytic function, possesses a unique

formal solution g(z). Generically, this series is divergent (for instance if f(z,y) = —x
then §(x) = 3729 (n — 1)!z" is the Euler series). The reason for the divergence of

g(z) is materialized by a singularity of the Borel transform B [9](&) at &€ = 1. The

~

Borel sum y(x) = Lo[B[9]](x) of g(x), o € (0,27), is a solution to (3.2.3), well

defined in a ramified sector argz € (=%, 2F). The set (z,y(z)) is a center manifold

of a saddle-node singularity of the vector field

=12 y=y+ flz,y).

Hence, this example shows that in general an analytic center manifold does not exist,

but instead there are “sectoral center manifolds”.

The analytic Borel transformation in direction a of a germ of function y(x),
which is analytic in a closed sector of opening > 7 bisected by e’*R* and vanishes
at 0 as O(x) uniformly in the sector for some A > 0, is defined as the “Cauchy
principal value” (V.P.) of the integral

Baly](§) = 5 V.P. /y(:c) es . for & € R, (3.2.4)
v

over a circle v = {Re (%) = C}, C > 0, inside the sector.
The formal Borel transform (3.2.1) of an analytic germ y vanishing at 0 is related

to the analytic one by

Balyl(€) = x& (&) - Blyl(€),  for &€ ™R, (3.2.5)

where

0, if e (—o0e',0).

The idea of unfolding the Borel-Laplace operators in order to generalize the meth-
ods of Borel summability and resurgent analysis to systems with several confluent
singularities was initially brought up by Sternin and Shatalov in [SS]. The key lies
in appropriate unfolding of the “kernels” es i—% and e~ 3 d¢ of the transformations

(3.2.2) and (3.2.4), and in right determination of the paths of integration. The Borel
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transformation is designed so that it converts the derivation x2% to multiplication

by £, and we will want to preserve this property.

The complex vector field :1:28% with a double singularity at the origin is naturally

(and universally) unfolded as
(z*—€)Z, ecC. (3.2.6)
We will associate to it the unfolded Borel and Laplace transformations

B;r[y](§7 ﬁ) = %m/ y(x) et(x:6)£ dt(ﬂj‘), 0< C < Re (eia%)’
Reet@t(z,e)=C

oo ()¢
£a[¢](x7 \/g) = [ io ¢(£) € 5 dg,
where t(z, €) is the negative complex time of the vector field (3.2.6),
dr — —(2°—¢). (3.2.8)

Let us remark that the (unilateral) Laplace transformation L,[¢] in (3.2.2) is equal
to the (bilateral) Laplace transformation £4[¢] with € =0 and t(z,0) = 2, if one
extends the integrand by 0 for ¢ € (—oce'®, 0):

Lal¢] = Lalxd ¢]-

In Sections 3.3 and 3.4 we will establish some general properties of these transfor-
mations based on the classical theory of Fourier and Laplace integrals, and in Section
3.5 we will apply them to study solutions of (3.1.1) in the vicinity of the singular

points.

3.2.2. Center manifold of an unfolded codimension 1 saddle—node

type singularity

An isolated singular point of a holomorphic vector field in C™*! is of saddle-node
type if its linearization matrix has exactly one zero eigenvalue; it is of codimension 1 if
the multiplicity of the singualr point is 2. In convenient coordinates, such singularity

can be written as

i=a% §=DMy+ folz,y), (z,y) € (CxC™,0), (3.2.9)

with My an invertible mxm-matrix and fo(z,y) = O(z)+O(||y||?) a germ of analytic
vector function. We consider a generic family of vector fields in C™*! depending

analytically on a parameter ¢ € (C,0) unfolding (3.2.9). Such a family is locally
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orbitally analytically equivalent to a family of vector fields’
it=a’—¢ y=M@Ey+ f(x,y,€), (x,y,¢) € (CxC"xC,0), (3.2.10)

with M(0) = My invertible and f(z,y,¢) = O(||yl|*) + zO(|ly|) + (2 —€) O(1) a
germ of analytic vector function at the origin of C x C™ x C, f(z,y,0) = fo(z,y).
The vector field (3.2.9) possesses a ramified 1-dimensional center manifold con-
sisting of several sectoral pieces tangent to the z-axis. We will study its parametric
unfolding in the family (3.2.10): It is given as a graph of a function y = y(z, \/e),
ramified at © = +4/¢, satisfying the singular non-linear system of m ordinary differ-

ential equations

(xQ—e)% =M(e)y + f(x,y,€), (z,y,e) e Cx C"x C. (3.2.11)

Proposition 3.2.3 (Formal solution). The system (3.2.11) possesses a unique solu-

tion in terms of a formal power series in (x,€):

400

§(z,€) = (z°—€) Z yijkej, yrj € C™. (3.2.12)
k,j=0

PROOF. Write §j(z, €) = (z2—¢) >k yrjatel and f(z,y,€) = (2% —¢) >k forjahel +

21 2k frejz®elyl, with yk;, fir; € C™, and M(e) = > Mjel. Substituting

g(x,€) for y in f and writing % =2 (k+ 1) (Yk—15 — Ykt1,5-1) z¥ed in (3.2.11), one

can then divide by (22— ¢) and compare the coefficients of 2¥¢/, obtaining a set of

equations
Moyr; = —fouj + Pej{ywy | K <k, 7 <j, K'+7 <k+j—1} = (k+ Dykr1,j-1,

where Py; is a polynomial in y;/;» without constant term whose coefficients are linear
combinations of columns of M;» and fyprjn, 37,7 < j, K" <k, K"+ 25" +2|l] <
k + 2j. Recursively with respect to the linear ordering of the indices (k, j) given by:

(K, < (k,j) if ¥+j <k+j orif ¥+j =k+j and j <}

this uniquely determines all the coefficient vectors yy;. O

Sectoral center manifold and its unfolding.

For e = 0 it is known that the equation (3.2.11) has a unique solution in terms of a 1-
summable formal power series go(z) = §(x,0) (cf. [Br|, or [MR1] for m = 1). Its for-
mal Borel transform B[j](€) extends analytically on Zg := C~ Uxespec (M) [As +00A)

with singularities at the eigenvalues of My. The series fo(z) is Borel 1-summable

1See [RT], Proposition 3.1; it is stated and proved for planar vector fields (m = 1), but it stays valid
for any dimension m > 1.
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in each direction a with e/*R*T C Z;. To each connected component € of C ~
Uxespec (Mo) AR™ in the Borel plane (Figure 3.1) corresponds a unique Borel sum of
Jo(z), a solution of the equation, defined on a sector in the z-plane of opening > 7
asymptotic to go(z) (cf. [Mlm]). For each two opposite components Q, Q™ of the
Borel plane (i.e. such that Q™ UQ~ U {0} contains some straight line ¢?*R), the two
corresponding sectors of summability form a covering of a neighborhood of the origin

in the z-plane.

&R*
4

e

%
s A

FIGURE 3.1. Therays AR*, XA € Spec M (0) divide the Borel plane in sectors.
The integration path e’*R* of the Laplace transform L,[B[fo]] varies in
such sectors.

Theorem 3.2.4 will show that each such covering pair of sectors {Z1(0), 2~ (0)}
unfolds for € # 0 to a single ramified domain Z(,/€), adherent to both singular points
x = +4/€ (see Figure 3.2), on which there exists a unique bounded solution y(z,/€)
of (3.2.11), depending analytically on /e taken from a sector S of opening > m, that

converge uniformly to the two respective Borel sums of o(z) on Z*(0), Z~(0), when

Ve —0.

Theorem 3.2.4. Consider a system (3.2.11) with M(e) a germ of an invertible
m x m-matriz and f(z,y,¢) = O(|lyl|*) + zO(||y|) + (22— €) O(1) a germ of an
analytic function at the origin of CxC™ xC.

(i) To each pair {QF, Q7 } of opposite sectoral components of C\Uyespee (m(0)) AR™
(i.e. such that @t U Q™ U {0} contains some straight line e'*R), there exists an as-
sociated family of ramified domains Z(\/€) parametrized by \/e from a sector S of
opening > m (see Figure 3.2), and a unique bounded analytic solution y(x,+/€) to

(3.2.11) that is uniformly continuous on

Z ={(z,Ve) |z € Z(/e)}

and analytic on the interior of Z and vanishes (is uniformly O(x*—¢€)) at the singular

points.
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FIGURE 3.2. Example of the spiraling domains Z(y/€) of Theorem 3.2.4 (i)
according to /e € S.

FIGURE 3.3. The domains Z(y/e) of Theorem 3.2.4(i) in the time ¢-
coordinate (3.4.1). They are obtained as unions of strips of convergence
of the unfolded Laplace transforms L, [y ](z(t),/€) (3.5.21) with varying
o € (B1, ) N (arg Ve + n,arg e+ 7 — 1) (here fy ~ %, f ~ 4F).
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To be more precise:

e S is a simply connected sectoral domain such that vS C S for any v € [0,1],
and S~ {0} is open.

e Fach Z(\/€) is a simply connected ramified set in the z-plane, whose ramification
points £+/€ belong to Z(\/€) and are approached from within its interior Z(\/€)~
{Ve, —/€} following a logarithmic spiral. The domain Z(0) is composed of two
opposing sectoral domains ZF(0) of opening > 7 intersecting at the origin.

e The domains Z(\/€) depend continuously on /e € S\ {0} and converge radially
to a sub-domain lim,_ oy Z(vy/€) C Z(0), while Z(0) is the union of these
radial limits.

o There exists a fixed neighborhood of the origin in the x-plane covered by each
domain Z(\/€), for each \/e small enough.

o When /e tends radially to 0, the solution y(x,+\/€) converges to y(x,0) uni-
formly on compact sets of the sub-domain lim,_o+ Z(v+\/€) of Z(0). The re-
striction of y(x,0) to Z%(0) is the Borel sum of the formal series §j(z,0) (3.2.12)
in directions o with e Rt c QF U {0}.

e In the t-coordinate (3.2.8), the domains Z(\/€) are simply unions of slanted
strips that pass in between discs of radius A > 0 (independent of \/€) centered
at the points kﬂe, k € Z, of continuously varying directions —a + 5, with
a € (B1,P2) N (argy/e + n,arg\/e + m — n), for n > 0 arbitrarily small and
B1 < B2 such that the cone Uge g, g,) ePR is contained in QT UQ~ U{0} (and
hence it does not contain any eigenvalue of M(€)). See Figure 3.5.

The solution y(x,~/€), and its domain Z, associated to each pair {QT,Q~} are

unique up to the reflection (x,+/€) — (x,—+/€), and an analytic extension.

(ii) If, moreover, the spectrum of the matriz M(0) is of Poincaré type (the convex
hull of Spec M (0) does not contain 0 inside or on the boundary), i.e. if there exists a
(unique) component Q1 of C\ Uxespec (M(0)) AR™ of opening > , then the solution
y1(x,/€) on the domain Z1(\/€), \/e € S1, associated to the pair {Q1,Q1} is ramified
only at one of the singular points, and analytic at the other (see Figure 3.4).

Such is the case in dimension m = 1.

The solutions y(z, v/€) will be constructed in Section 3.5.

Remark 3.2.5 (Hadamard-Perron interpretation for € # 0). The linearization of
the vector field (3.2.10) at x = £/€ is equal to

i=42Ve (xFVe), §=DM(e)-y. (3.2.13)



68

FIGURE 3.4. Example of the spiraling domains Z; (y/€) of Theorem 3.2.4 (ii)
according to /e € 5.

&R
, /(M "(1

FIGURE 3.5. The spectrum of M (¢) in the Borel plane; the line e**R is the
dividing line of the Hadamard—Perron theorem and also the integration path
of the Laplace transform £, (3.5.21).

(i) Let a line e’R separate the point 2,/¢ and k of the eigenvalues of M (¢)
from the point —2./¢ and the other m — k eigenvalues (0 < k < m), see Figure
3.5. Then by the Hadamard—Perron theorem the vector field (3.2.10) has a unique
(k+ 1)-dimensional local invariant manifold at (1/€,0), tangent to the z-axis and the
corresponding k eigenvectors, and a unique (m — k + 1)-dimensional local invariant

manifold at (—+/¢,0), tangent to the z-axis and the corresponding m—k eigenvectors.
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They intersect transversally as the graph of the solution y(z, v/€) of Theorem 3.2.4.
Since the root parameter /e can vary within the half-plane bounded by the line
e'R, whose angle a can also vary a bit, this gives a sector S of opening > 7. We

see that one cannot continue this description in /¢ beyond such maximal sector S.

(ii) If all the eigenvalues of M (e) are in a same open sector of opening < 7 (i.e.
Spec (M (0)) is of Poincaré type), and —24/€ lies in the interior of the complementary
sector of opening > 7, one obtains the solution y(z,+/€) from Theorem 3.2.4 as
a continuation of the local analytic solution at = —y/e (i.e. of the local invari-
ant manifold of (3.2.10), tangent to the z-axis, provided by the Hadamard—Perron
theorem) to the domain Z;(y/€).

While the Hadamard—Perron approach explains where do the solutions of The-
orem 3.2.4 come from, it does not provide their natural domain on which they are
bounded. Omne should however notice the similarities between the description pro-
vided by the Hadamard—Perron theorem for € # 0 (Figure 3.5) and that of the Borel
summation for e = 0 (Figure 3.1). In Section 3.5 we will unify the two of them using

the unfolded Borel-Laplace transformations (3.2.7).

Remark 3.2.6 (Local invariant manifolds for non-resonant € # 0 and their conver-
gence). If the simple singular point of (3.2.10) at = /e # 0 satisfies the following
non-resonance condition

2y/e NN Spec M (€) = 0,

then it is known that the equation (3.2.11) possesses a unique convergent formal
solution near x = /¢, i.e. the vector field (3.2.10) has a 1-dimensional local analytic
invariant manifold tangent to the x-axis at the singularity. The resonant values
Ve = %, A\ € Spec M(€), n € N*, accumulate at the origin along the rays AR™,
A € Spec M (¢), dividing the /e-plane in a finite number of sectors (Figure 3.6). It has
been shown,? that if /€ # 0 lies in of one of these sectors (i.e. /eRT*NSpec M(0) = (),
then the local analytic solution at x = /e converges, when /e tends radially to 0,
to the sectoral Borel sum Lq[Blfjo]](x) of the formal solution of the limit system (cf.
Figure 3.1), where a = arg /€ is the direction on which lies the eigenvalue 2,/€ of the
linearization (3.2.13) at = y/e. Unless the spectrum of M (0) is of Poincaré type,

these sectors in the \/e-plane, on which the convergence happens, are of opening < .

2In [G2] for planar vector fields, m = 1, and in [SS] for linear systems; the method of latter can be
generalized also for non-linear systems (3.2.11).
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2 : . /(2

.

FIGURE 3.6. The resonant values of \/e = 2=, A € Spec M(¢), n € N*,

on
accumulate along the rays AR™, dividing the /e-plane in sectors on which
the local analytic solutions near x = /e # 0 converge as /e — 0 to sectoral

solutions.

3.2.3. Sectoral normalization of families of non-resonant linear

differential systems.

An application of Theorem 3.2.4, interesting on its own, is the problem of existence
of normalizing transformations for linear differential systems near an unfolded non-
resonant irregular singularity of Poincaré rank 1. We will show that this problem can
be reduced to a system (3.2.11) of m = n (n — 1) Ricatti equations (where n is the
dimension of the system), providing thus a simple proof of a sectoral normalization

theorem by Lambert and Rousseau [LR].

Consider a parametric family of linear systems A(z,€)y = 0 given by

Alz,€) = (22— e)% — Az,  (w,6) € (T xC,0) (3.2.14)

where y(z,e) € C", A(x,€) is analytic, and assume that the eigenvalues /\EO)(O),
i = 1,...,n, of the matrix A(0,0) are distinct. Let \;(x,e) = )\EO)(E) + :E)\Z(-l)(e),
i=1,...,n, be the eigenvalues of A(x,¢) modulo O(x?— ¢), and define

A(az, €) = (22— 6)% — A(z,€), A(z,€) = Diag(Ai(z,€),..., A\u(x,€)), (3.2.15)

the formal normal form for A. The problem we address, is to find a bounded

invertible linear transformation y = T'(x, /€) u between the two systems Ay = 0 and
Au = 0. Such T is a solution of the equation

ar

(2% — e)% = AT — TA. (3.2.16)

Note that if V(x,€) is an analytic matrix of eigenvectors of A(z,e) then the

transformation y = V(z, €) y; brings the system Ay = 0 to Ajy; = 0, whose matrix

is written as Aj(z,€) = Az,€) + (22— €)R(z,¢€), with R = —V 7149 (see [LR]).

Hence we can suppose that system (3.2.14) is already in such form.
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Theorem 3.2.7 ([LR|, Theorem 4.21). Let A(x,€) be a non-resonant system (3.2.14)
with A(z,€) = Az, €) + (22— €)R(x, €) for some analytic germ R(x,¢), and let A(x, €)
be its formal normal form (3.2.15). Then there exists a family of ramified “spiraling”
domains Z(\/€), /e € S, as in Theorem 3.2.4 (i), Figure 3.2, on which there exists
a normalizing transformation T (x,+\/€), solution to the equation (3.2.16), which is

uniformly continuous on

Z ={(x,ve) | 2 € Z(/O)}

and analytic on its interior, and such that T(£\/e,\/e) = I + O(/€) is diagonal.
This transformation T on Z is unique modulo right multiplication by an invertible

diagonal matriz constant in x.

PROOF. Write T'(z,v/€) = (I+U(x,€)) - Tp(x,€), where Tp(z, /€) is the diagonal
of T, and the matrix U(z, /€) = O(x?— ¢) has only zeros on the diagonal. We search
for U(x, \/€), such that yp = (I + U(x, \ﬁ))fly satisfies

d
(22— =2 — (A(z,€) + (2= €)D(, Ve Jyp =0,
for some diagonal matrix D(x,+/€), and set
To(r, /e) = elie POV

The matrix U(z, /€) is solution to

d
(ﬁ-@% — AU~ UA+ (22— )(R(I +U) — (I +U)D),
where one must set D to be equal to the diagonal of R (I + U). Therefore, U =

(ui5)i ;=1 is solution to the system of n(n — 1) equations

dug; .,

(@ =)L = (N = Ajuij + (2 =€) (i + 3 rung —wigrgj —wig ) rjwung), i £ J,
k#j k#j

and one can apply Theorem 3.2.4. ]

3.3. PRELIMINARIES ON FOURIER—LAPLACE TRANSFORMATIONS

We will recall some basic elements of the classical theory of Fourier—Laplace
transformations on a line in the complex plane. The book [Do] can serve as a good
reference.

For an angle o € R and a locally integrable function ¢ : /R — C, one defines
its two-sided Laplace transform

+ooei™

Lalél) = [ o()e g (33.1)

—ooete
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whenever it exists. Later on, in Section 3.4, we will replace the variable ¢ by the time
variable t(z, €) (3.4.1) of the vector field (3.2.6).

Definition 3.3.1. Let A, B € C be such that Re(e!®A) < Re(e’*B). Let us intro-

duce the two following norms on locally integrable functions ¢ : e®R — C:

G5 = sup |o(9)]- (e + e )

ze

A8 = [ o (1 4 1) g e

WR < +00, then the Laplace transform L, [¢](t) converges

absolutely and s analytzc for t in the closed strip

TP .= {t € C | Re(¢"®A) < Re(et) < Re (¢"“B)).

Moreover, L,[¢](t) tends uniformly to 0 as t — oo in TQ’B.

PROOF. The integral [~ 0 soeia (&) € —tE ¢ converges absolutely in the closed half-plane
Re(e'*t) < Re(e'B), while the integral [ ooet $(€) e~ d¢ converges absolutely in
the closed half-plane Re(e‘®t) > Re(e’*A). For the second statement see [Do],
Theorem 23.6. Ul

Lemma 3.3.3. If A,B,D € C are such that 0 < Re(e®D) < $Re(e’(B — A)),
then for any function ¢ : R — C,

A+D,B—D
H¢Heii—R < Re(e4 w‘D) ‘QS‘BZD‘R
PRrOOF.
0 —(A+D)¢ —(B-D)¢ —
| 16©)] (je D] e (5P g e

_Ooel()é
0 )
[ 1 Polds - sup [6(6)] (Jem A28 4| )
—0o0 tcer R

IN

S Re ezaD) 2‘¢|ezaRa

since |[e 487208 < |e7BE| < e + e B¢, for € € (—o0e™,0]. The same kind of

estimate is obtained also for 0+°°e ) O

eWR < 400, then the Laplace transform Ly[¢](t) converges

absolutely and s analytzc for t in the open strip

TAB .= {t € C | Re (e’ A) < Re(e'™t) < Re (e’ B)}.

A1,B1

Moreover, Lq[¢](t) tends to 0 ast — oo uniformly in each T, CTAB,
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Definition 3.3.5. The Borel transformation is defined for any function f analytic

on some open strip 747, that vanishes at infinity uniformly in each closed substrip

TﬁhBl C T&LLB’ by
- C'+ooie e )
F(&) = Balf](§) = 55 V.P. () et dt, for ¢ € R, (3.3.2)
C—oote—
where V.P. fgj{;’g@iﬁ stands for the “Cauchy principal value” limy_ fg:’:;f]i,v ,
and C € T8,

The (two-sided) Laplace transformation (3.3.1) and the Borel transformation
(3.3.2) of analytic functions are inverse one to the other when defined. We will only

need the following particular statement.

Theorem 3.3.6.

1) Let f € O(TAB) be absolutely integrable on each line C+ie R C TE and
vanishing at infinity uniformly in each closed sub-strip of T:5B. Then the Borel
transform f(€) = Ba[f](€) is absolutely convergent and continuous for all £ € 'R,

~A =A1,B

il <d sw ([ i@l for T T,

CETél’Bl C+ie @R

and f(t) = Lo[f](t) for allt € TAB.
2) Let f be as in 1) with B = By = +ooe™'?, the strips being replaced by half-planes.

Then the Borel transform f(§) = Ba[f](§) is absolutely convergent and continuous
on €°R, and f(€) =0 for £ € (—oce'®,0),
~ Ay 4ooe—ie . A 1 C+ooie~ @
AR = s Jf@et sk s [ ),
£€(0,+o00ere) Re(ei@C)>Re(ei@ Ay) JC—ooie e
and

s =talfir= [ Fee e

is the one-sided Laplace transform Off in the direction «.

PROOF. See [Do], Theorems 28.1 and 28.2. O

Under the assumptions of Theorem 3.3.6, the Borel transformation converts de-

rivative to multiplication by —¢:

Bo|41(€) = —¢ - Ba[f1(€),

which can be seen by integration by parts. It also converts the product to the

convolution:

Balfi-f2] (€) = [f1 * fa)a(8),
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defined by '
+oo0e’™

5w, =, = [ ouE-9ds (333

Indeed, we have Lo[f1* fo](t) = La[f1)(t) - Lalf)(t) = fi(t) - f2(t) using Fubini
theorem and Theorem 3.3.6, and the assertion is obtained by the inversion theorem
of the Laplace transform: B, [La[¢]](€) = 3 lim, 04 (€ + €' v) + ¢(€ — e™v) (cf.
[Do], Theorem 24.3), using the continuity of [f1* fa]a(€).

Lemma 3.3.7 (Young’s inequality).

ol < oLl lZE Cand < |IglIZ - Ik,

sg < ISR 181150

PROOF. Observe that
(e + e B)) < (le™ | + e B2]) - (JlemAC)| 4 e BE))), (3.3.4)

the rest follows easily. O

3.3.1. Conwvolution of analytic functions on open strips.

In the subsequent text, rather then dealing with functions on a single line e’®R, one
will work with functions which are analytic on some open strips in the £-plane (also
called the Borel plane), or on more general regions obtained as a connected union of
open strips of varying directions a.

If © is a non-empty open strip in direction «, then for two constants A, B € C,
with Re (e’*A) < Re(e’*B), define the norm of analytic functions ¢ € O(),

A,B A,B
|¢|Q = Sup |¢|C+eio‘R’
ct+et@RCO

A,B
ol = Sup H¢IIC+QWR
cteleR

Similarly for more general domains. For any two strips ;, j = 1,2, of the same

direction «, and two analytic functions ¢; € O(£2;)) of bounded || - || 5 _norm, their
convolution
c14o00et® .
Greo)©= [ 6 a6~ s)ds, Eeertert R e,
c1—ooet™

is well defined and analytic on the strip ©Q; + €. The Young’s inequalities of

Lemma 3.3.7 are easily generalized as
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A,B : A,B A,B A,B AB
91 % P210) 10, < min{|olg)” - lo2llg) s lollg)” - lo2lo) ) (3.3.5)

AB AB AB
101 % P2llar a0, < lI01llo]” - lo2llg; - (3.3.6)

3.3.2. Dirac distributions in the Borel plane.

It is convenient to introduce for each a € C the Dirac mass distribution d,(&), acting
on the &-plane as shift operators £ — & — a: If ¢(§) is an analytic function on some

strip 2 in a direction « one defines

[0a  ¢](£) := 6(§ — a),

its translation to the strip 2 — a. With this definition, the operator dy plays the role
of the unity of convolution. One can represent each d, as a “boundary value” of the

function m (cf. [Bre]): Let

5,%(5) = m I C~ [a,a + ooie™), 52(5) = m | C N [a,a — coie),

be its restrictions to the two cut regions (see Figure 3.7). One then writes

8a(€) = 65(&) — 61(9),

and defines the convolution and the Laplace transform involving J, by integrating
each term &) (resp. &) along deformed paths % (resp. 7)) of direction « in their

respective domains as in Figure 3.7,

0ax 6)(©) = ViP. [ | gy (6 — 5)ds = (6 — a),

vl
1 —t. —at
ﬁa[éa} (t) =V.P. ,yé_,yg 27 (6—a) (& £ dé. =e .
a N & 2
7 7

e
e

FIGURE 3.7. The domains of definition of §} (resp. 1) together with the
deformed integration paths v} (resp. 71).
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3.4. THE BOREL AND LAPLACE TRANSFORMATIONS ASSOCIATED TO THE

0
ox

VECTOR FIELD (2% —¢)
In this section we define the unfolded Borel and Laplace transformations B, L,

(3.2.7) and summarize their basic properties. We need to specify:

- the time function t(z, €) of the kernel,

- the paths of integration,

- the domains in z-space and £-space where the transformations live,

- sufficient conditions on functions for which the transformations exist.
We provide these depending analytically on a root parameter /e € C. Here /e
is to be interpreted simply as a symbol for a new parameter (a coordinate on the

“/e-plane”), that naturally projects on the original parameter € = (1/€)2.

Let

t(z, ) = —/ fm - {_;ﬁbg e A0 (3.4.1)
ro—e %, if e=0,
with t(oo,€) = 0, be the complex time of the vector field —(352—6)6%; well defined
for z € CP' < [—\/€, v/e]. And let X(,/€) denote the Riemann surface of the analytic
continuation of ¢(-,€). Let us remark that the limit surface lim z_,, X (/€) is com-
posed of Z-many complex planes identified at the origin, but the surface X (0) is just

the x-plane in the middle.

Definition 3.4.1. For 0 < A < —Z—, denote

2¢/]el
X (A, Ve) :={x € C|lt(z,e) *k%ﬂ > A, kelZ}
an open neighborhood of the origin in the z-plane (of radius ~ % when € is small)
containing the roots +/e.

If « is a direction, assuming that A satisfies 0 < 2A < —Re (em’”), denote

Ve
XI (A Ve) i={z € X(/e) | A < Re(e™t(z, ) < —Re () — A},
X7 (AVe) i={z € X(/e) | A > Re(e™t(w,€)) > Re(<£) + A},

open domains of the ramified surface X (V/€), corresponding to slanted strips of direc-
tion —a + 5 in the t-coordinate passing between two discs of radius A centered at 0
and $\7}—ig (see Figures 3.8 and 3.9). Their projection to the z-plane is contained inside
the neighborhood X (A, 1/€). Let us remark that the radial limits lim, o X=(A, vy/€)
split each into two opposed discs of radius ﬁ tangent at the origin, of which only
one lies inside the surface X(0) (i.e. the z-plane): X (A,0) is a disc centered at

ek, and X7 (A,0) is a disc centered at —el .k (Figure 3.9 (b)).
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. - X2 (NO)
XA @‘;—; e 'l ,:C_/\,o ]
> ) + i
2 € C_‘l‘ Lé‘dﬂ; < 7
©
ct > Cﬁ—iéd {Q ‘,:* 4}( R
ct+ i€
~mé LX) £ [XE o]
Je SO
(a) Ve#0 (b) Ve=0

FIGURE 3.8. The domains XZ(A,/€) in the time coordinate ¢ with the

integration paths of the Borel transformation for o = 7.

(b) Ve=0

(a) Ve#0

FIGURE 3.9. The domains X*(A, /€) projected to the z-plane for v = 5
The integration paths v(jf are projections of the paths ¢* — ie R in the
t-coordinate (which have opposite direction than those in Figure 3.8).

In order to apply the Borel transformation (3.3.2) in a direction « to a function f
analytic on the neighborhood X (A, \/€), one may choose to lift f either to Xt (A, /)
or to X (A, \/€) giving rise to two different transforms B [f] and B [f]:

Definition 3.4.2. Assume that XF(A,\/€) # 0, a € (arg /e, arg /e + 7), and let
f € O(XE(A,/€)) vanish at both points /€, —/e. The unfolded Borel transforms
BZ[f] are defined as:

BV = o [

¢t —ocoie—ia

ct4ooije i

flate)edt, & et[XEN Vo).

For \Je #0: If z € XE(A, \/€) respectively, then t(z,e) = —2\1/g (log ﬁ;i + m’) ,

Lri x €—x 7%
BLAE Ve :eﬂﬁ'ﬁ/i LD () P da, (3.4.2)
Yo
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where the integration path vI (see Figure 3.9) follows a real time trajectory of the
vector field ie‘ia(:cZ—e)a% inside X£(A, \/€). Hence

Baf1(6,V/e) = eV - BEfI(E, V) (3.4.3)
- _B;’z_+7r[ ](gveﬂ-i\ﬁ)v (344)

as Xo (A, v/e) = X (A, emV/e).
For \/e =0:
BESIE0) = ok [, 18 e da, (3.4.5)

21 i T

where 7 is a real time trajectory of the vector field ie*iaan% inside X’ai(A,O).

It is the radial limit of the precedent case as /e — 0,
BLIA1€,0) = lim BI[f](§ vv/e).

The transformation BF[f](£,0) is the standard analytic Borel transform (3.2.4) in

direction «, and

B, 1f1(6,0) = =Bi - [f](€,0). (3.4.6)
If f = f(x,¢) depends analytically on ¢, we define BE[f](£, v/€) := BE[f(-, €)](&, Ve).

The following proposition summarizes some basic proprieties of these unfolded

Borel transformations.

Proposition 3.4.3. Let a be a direction, and suppose that arg/e € (o — 7, ) if
e # 0.

1) If \Je # 0, let a function f € O(XE(A,\/€)), be uniformly O(|z—/€|*|z++/€|®) at
the points /e, for some a,b € R with a +b > 0. Then the transforms BE[f](£, /€)
converge absolutely for £ in the strip

Qo = {—Im (e 7"*2by/€) > Im (e 7%¢) > Im (e "*2a+/€)}, (3.4.7)
see Figure 3.10, and are analytic extensions of each other for varying o. Moreover
for any A < Ay < —Re(e;f/?) and A = e Ay, B = —% — e\, they are of
bounded norm |BE[f] i’ij on any line c + ¢ “R C Q.

2) If Je 20 and a+ b > 0, then for £ € Q, (defined in (3.4.7))
_gmi armi _
Bl o) e+ VO (€ Ve) = ¢ 2T 2/ L L Bla— 55, b+

where B is the Beta function.

i

3) In particular, for a positive integer n, and & in the strip in between 0 and 2n./e,

BE(r— Va6, vVe) = G (6 V) - (S — 2V - (S — 2v) - (6 — 2v),
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2c¥e+ chE

/
ILE /ZCSE }

/

Fi1GURE 3.10. The strip €, in the &-plane.

where for \/e 0 and a € (arg /e,arg /e + )
1 -1

Xa (& Ve) = ——7, Xo (6,/€) = ——, (3.4.8)
1—eve 1—e Ve
and for /e =0
1, if €e(0,+o0e™®),
Xa (€,0) = if £€=0, Xa (€6,0) = x4 (§,0) - 1.

1
2
0, if &€ (—o0e™,0),

Let us remark that xE (€, v\/€) Vo0t XZ(€,0) for & € R~ {0}.

4) If f(x) is analytic on an open disc of radius r > 2./|e| centered at xo = —+/€ (or
xo =€) and f(xg) =0, then

Bt:xt[f]({? \&) - Xi(& \ﬁ) ) ¢(§)

€]
where ¢ is is an entire function with at most exponential growth at infinity < eR=2VIel.

O(VI€]) for any 2\/]e] < R < r (where the big O is uniform for (&,+/€) — (00,0)).

5) For \Je # 0, ¢ € C, the Borel Transform BZ [(I_‘[) } (§,Ve) = Oy e(§) s
the Dirac mass at 2cy\/€, acting as translation operator on the Borel plane by & —

& — 2c\/e:
(€

Remark 3.4.4. Although in 7) and 2) of Proposition 3.4.3 the function f = O((z—
VO (x++/€)), a +b > 0, might not vanish at both points /¢ as demanded in

Definition 3.4.2, one can write

(r=Va) (Ve = (5%) (r= VO (e +va) ™, forany —b<e<a,

)" £] (€ Ve) = BELSI(E — 20v/e, V).
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hence, using 5) of Proposition 3.4.3, the Borel transform BZ[f] is well defined as the
translation by 2¢y/e of the Borel transform of the function f - (Zé)_c’ this time
vanishing at both points:

BEIA(E Vo) = BE[f - (5%) " 1(€ — 2ev/e V).

PROOF OF PROPOSITION 3.4.3. 1) For /e # 0, one can express

72ft 1
T—Ve=/er—rm, ahVe= Ve

If ¢ is in the strip Qq, & € 2¢y/€ + R for some ¢ € (—b, a), one writes

By [z —Ve) (a+v/e)1(€,Ve) =9 / (@) Ve eE eIl gy
CEfe—iaR

—2\/Et)a—c
—(9 a+bi/ (e (E=2eV/e)t gy
VO™ e C*te—iaiR (1 — e=2Vet)atb ¢ dt
The term e6 26Vt stays bounded along the integration path, while the term (2\/;%

decreases exponentially fast as t —C* — +ooie™™ and t—C* — —ooie ™, if

a ¢ arg /e + 7.
2) From (3.4.2)

B (o= V) (/)€ V) = —e vt L / (Ve—a) 1T (Vera) T e do

+

@

£

a—1—-5_
— e 2\/+a”l‘(2\/g)a+b—1 ﬁ/(1_8) 1 Ve g b— 1+2fd5
0

substituting s = \f—jg For a = arg+/e + §, the integration path v+ (= a real

trajectory of the vector field e =278 \E(mQ—e)%) can be chosen as the straight oriented
segment (1/€, —/€). The result follows.

3) From 2) using standard formulas.

4) For xg = —+/€, one can write f(x) as a convergent series f(z) = S an, (v+
Ve)" with |a,| < CK™ for some C' > 0 and 2 < K < +. Hence

(=) BN VA) = 3 o (57 - 2v8) (5 - 2v8) = Do (e V)

where the series on the right is absolutely convergent for any ¢ € C. Indeed, let
N = N(£,v/€) be the positive integer such that

e
N+1-~

5

<SR-2y/ld < (3.4.9)

then
o forn >N +1: K-(%+2\/|e|) < RK,
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[§

n

o for n < N: 2¢/|¢] <

24/ el

R—2./le|
+oo N-1 +0o0
S b6 Ve = D bnsr(E VO + D b (€, Ve)
n=1 n=N

n=0

and hence K - (% +2/]e]) < %(1 +

1, &
" R-2./le’

) <

=~ el g\ L g VWV
— _ . n—N
< an%CKn! (R_2 |E> +CK+ (R_2 |e> n;V(RK)

€] -1 — &
<cxe o 1t (i)
€

Z2y/]e C R—2+/)¢|
=ef-2Vid . <0K+ rRE gﬂ(Rﬂ lel) +O( €] )) ’

using (3.4.9) and the Stirling formula: T'(z)~! = (£)*- ( 5+ O(i)) , 2 — +00.

z

5) From the definition. O

There is also a converse statement to point 1) of Proposition 3.4.3.

Proposition 3.4.5. Let € # 0 and a € (arg /e, arg/e + ). If ¢(§) is an ana-
lytic function in a strip Qq (3.4.7), with a + b > 0, such that it has a finite norm

](ﬁ\i’\BﬁﬂmR on each line 2c\/e + R C Q,, for some 0 < A < —Re(e;f/?) and
A=eA, B= —&\/gi — e A, then the unfolded Laplace transform of ¢
2¢y/e+ooe™
Laldlla v = [ " 0@ e, e (-ha) (3410
2cy/e—o0et™

is analytic on the domain XE (A, \/€), and is uniformly o(|z—+/e|* |z++/€|*) for any
a1 < a, by < b, on any sub-domain XE(Ay,\/€), Ay > A.

PRroOF. This is a reformulation of Corollary 3.3.4, which also implies that L,[¢] is

0( ﬁ;ﬁ C) for any —b < ¢ < a. O

Definition 3.4.6 (Borel transform of z). We know form Proposition 3.4.3 that for
Ve # 0, BE[x4+/€] = x in the strip in between —24/€ and 0, while B[z —/c] = xT

in the strip in between 0 and 2./¢, and the function Xf has a simple pole at 0 with
_ e

T om

, therefore
By le +v/e| = Bylz =] = 2V/edo

in the sense of distributions (see section 3.3.2), where dy is the Dirac distribution

residue Resox

(identity of convolution). Hence one can define the distribution

BE[a] = B[z — /e + Vedy = BE[z +/e] — Ved.
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Correspondingly, the convolution of BX[z] with a function ¢, analytic on an open

strip containing the line €’®R, is then defined as
Bl ola(€ v = [ 0l6 ) (s VO ds +VEG(O). 1€ (0.2V9
= [ LA DNE Vs = VDO, ea € (-210)

3.4.1. Remark on Fourier expansions.

For /€ # 0, we have defined the Borel transformations B for directions transverse
to /e R: in fact, we have restricted ourselves to a € (arg /e, arg /e+ 7). Let us now
take a look at the direction arg+/e. So instead of integrating on a line ¢t + ie R
in the t-coordinate as in Figure 3.8, this time we shall consider an integrating path
CRr + ﬁR in the half plane Re(e!®8Vet) > A (resp. cf + ﬁR in the half plane
Re(e'8Vet) < —A), see Figure 3.11. If f is analytic on a neighborhood of x = /e
(resp. © = —y/€), then the lifting of f to the time coordinate, f(x(t,€)), is \%—
periodic in the half-plane Re (e?*8Vet) > A (resp. Re(e’*8Vet) < —A) for A large

enough, and can be written as a sum of its Fourier series expansion:

Z“ eIt Z“ <x+\f) ’
resp. f(z ZaLeZ”‘[t Za (H‘[)

n=0

The Borel transform (3.3.2) of f(z(t,€)) on the line cg + ﬁR (resp. cr, + ﬁR) is

equal to the formal sum of distributions

cRJriEoo
BRAE V) =5 [ flalt.e) edt = za@wf

CR— 7z

cL—l—ﬁoo

resp.  BY[f](€,Ve) == o fla(t,e)) et = Zaﬁ O /e(§)-
n=0

cL—ﬁoo

These transformations were studied by Sternin and Shatalov in [SS]. Let us remark
that one can connect the coefficients ay, of these expansions to residues of the unfolded

Borel transforms B, arg /e < a < arg /e + T,
all = f(V/e), a, —2mRe82n\/B [fl, neN*,
aOL:f(—\/E), al = 2miRes_ 2n\fB [fl, mneN*,

(the residues of BY[f] and B [f] at the points £ € 21/ Z are equal).
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creR

LR (e = L, R) in the time t-coordinate.

FI1GURE 3.11. The integration paths ce + 7e

Remark 3.4.7. Without providing details, let us remark that one could apply these
Borel transformations B® (resp. B%) to the system (3.2.11) to show the convergence
of its unique local analytic solution at x = /e # 0 (resp. * = —y/e # 0) to a
Borel sum in direction arg /e of the formal solution go(z) of the limit system, when
Ve — 0 radially in a sector not containing any eigenvalue of M (e), as mentioned in
Remark 3.2.6.

3.5. SOLUTION TO THE EQUATION (3.2.11) IN THE BOREL PLANE.

We will use the unfolded Borel transformation B to transform the equation
(3.2.11) : (.TQ*E)% =M(e)y+ f(z,y,€)

to a convolution equation in the Borel plane (= the &-plane), and study its solutions
there. We write the function f(z,y,€) = O(||y|?) +z O(||y||) + (z®—€) O(1) as
fly,e)= > m)y +z- > al)y + (=€ > alz,ey (3.5.1)
l[>2 ll]>1 l11>0
where y! = ylt - ... . ybm for each multi-index | = (I,...,l,) € N™ and |I| =
Let a vector variable § = 3(&, \/€) correspond to the Borel transform B [y] (£, \/€),
with a € (arg /e, arg /e + ) if /e # 0. Then the equation (3.2.11) is transformed

to a convolution equation in the Borel plane

EG=MEOT+ S my*+hT+ S (@it + b« g, (3.5.2)
0 l
[1[>2 7] >1
where 7* = @111 ... % g*m is the convolution product of components of 7, each

taken li—times,

hit (€,Ve) = By [(2%— €) gi] (&, V),
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and 3 = BX[z] is the distribution of Definition 3.4.6. The convolutions are taken
in the direction a. Let us remark that by 1) of Proposition 3.4.3, the functions
?Lli(f, V/€) are analytic in the &-plane in strips passing in between the points —2./e
and 2+/e. In Proposition 3.5.2, we will find a unique analytic solution 7= (¢, /€) of

the convolution equation (3.5.2) as a fixed point of the operator

GEIB(E, ve) = (€1 = M(e)) " (Z m G by 4 Y (@ T )+ y*l) (3:5:3)
1|>2 1>1

on a domain Q(/€) in the &-plane, obtained as union of (a bit more narrow) strips
0 (/€) of continuously varying direction «, that stay away from the eigenvalues
of the matrix M (e) as well as from all the points £2/eN* (N* = N~ {0}); see
Figure 3.12. In general, several ways of choosing such a domain 2(y/€) are possible,
depending on its position relative with respect to the eigenvalues of M(e€). Different
choices of the domain 2(y/€) will, in general, lead to different solutions 7+ (z, \/€) of
(3.5.2), as shown in Example 3.5.6 below.

S
JUeE)

FIGURE 3.12. The regions §2(y/€) and the eigenvalues A1, ..., A, (here m =
3) of M(e) in the &-plane according to /€ € S, together with integration
paths R of the Laplace transformation £,.
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Family of regions Q(,/¢) in the Borel plane, parametrized by /c € S.
Let p > 0 be small enough, and let 31 < 82 be two directions, such that for |\/e| < p

none of the closed strips

Qa(Ve) = U c+ R, (3.5.4)
Ce[_%\ﬁ%\/a
with a € (B4, f2), contains any eigenvalue of M (¢). Let 0 < n < %(ﬁz—ﬁl) < § bean
arbitrarily small angle and define a family of regions 2(,/€) in the &-plane depending
parametrically on /e € S as

where
max{arg /e + 1, 31} < a < min{Bs,arg /e + ™ — n}, (3.5.5)

and where S is a sector at the origin in the y/e-plane of opening > 7, determined by
(3.5.5),

S={VeeClargVee (b1 —m+n,B2—n), [Vel <p}uU{0}. (3.5.6)
We denote 2 the union of the Q(,/€), /e € S, in the (£, \/€)-space

Q= {(€.Ve) | € € QW) (3.5.7)

Definition 3.5.1. Let € be as above, with some p, n > 0, and let 0 < A < %;“7.
For a vector function ¢ = (¢1,...,¢nm) : Q@ — C™, we say that it is analytic on Q, if
it is continuous on €2, analytic on the interior of 2, and ¢(+,1/€) is analytic on Q(y/€)
for all /e € S. We define the norms

A -— . AOA,B& A — . AouBa
|¢|Q T m?X sSup ’(bl Qal/e)’ H¢HQ E m?x \S[?pa ||¢l||QQ(\/g)7

\/E,CM

where /e € S and « as in (3.5.5), i.e. such that Q,(/€) C Q(/€), and A, = e @A,
Bo=—-Tc—e€ A.

Let us remark that the convolution of two analytic functions ¢, 1 on (/€) does
not depend on the direction a (3.5.5), and that the norms |¢ * ¥|5, ||é * || satisfy

the Young’s inequalities (3.3.5) and (3.3.6):

(&% 9fg < min {|[3 - 1[5, 111G - [013} (3.5.8)

65 9l < Nl - 111G (3.5.9)
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Proposition 3.5.2. Suppose that the matriz M (€) and the vector function f(x,y,€)
in the equation (3.2.11) are analytic for

e X(A,Ve), Y lul<i, Vel <p, for Ai,Li,pr>0.
i=1

Then there exists A > A1, 0 < p < p1, and a constant ¢ > 0, such that the operator
Gt (&, Ve) = GTo](€,Ve) (3.5.3) is well-defined and contractive on the space

{¢: Q= C™| ¢ is analytic on Q, ||||5 < ¢, |¢|5 < +00}

with respect to both the || -||3-norm and the |- |8-norm. Hence the equation G [yt] =

Ut possesses a unique analytic solution y+(&,\/€) on Q, satisfying ||y |5 < ¢ and
emi

|78 < +oo. Similarly, the vector function §~(&,/€) == e Ve - g+ (£,\/€) is a unique

analytic solution of the equation G~ [y~ =y~ on Q.

To prove this proposition we will need the following technical lemmas which will

allow us to estimate the norms of G*[¢].

Lemma 3.5.3. There ezists a constant C = C(A1,n) > 0 such that, if f € O(X (A1, e)),
Vel < p, and Ay < A < %;”7 (where n,p > 0 are as in (3.5.5), (3.5.6) ), then

Bz =) fll5 < Cp  sup  [f(x)].
z€X (A1,1/€)

PROOF. By a straightforward estimation. Essentially, we need to estimate the inte-

gral [e (cioy=n z;£|cd|x|, with ¢ € [-2, 2] and o € (arg /e+n,arg /e+m—n). O

Lemma 3.5.4. Let ¢ be an analytic function on Q with a finite |¢|3 (resp. |o||3).

+

Then its convolution with the distribution T is again an analytic function on

whose norm satisfies
5 0l < loly - (p+ IENS, ) (3.5.10)
resp. |7« ollf < llollh - (o + IDENS,) (3.5.11)
where x= is given in (3.4.8), p is the radius of S, and

QL) = QWe) N (QVe)—2Ve), for each +/e € S. (3.5.12)

PRrROOF. It follows from Definition 3.4.6 and 2/e-periodicity of x. O

Lemma 3.5.5. If ¢,1 : Q — C™ are analytic vector functions such that || ¢[|8, ||[w[|4 <
a, then for any multi-index | € N |[| > 1,

6% — < 1] - a7t o — 8.

The same holds for the || - |§-norm as well.
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PRrOOF. Writing ¢* = ¢, % ... * Giys 45 € {1,...,m}, we have

¢ — M = (i =iy ) ¢ Big ok By Vi x (Biy— i) * By ko iy +
N + 7/’@'1* S X wi‘”,l * (¢’L|” _wlm)

The statement now follows from the convolution inequalities (3.5.8) (resp. (3.5.9)).
O

PROOF OF PROPOSITION 3.5.2. Let my(e), ai(e), gi(z,€) be as in (3.5.1). If L >
m - L1, then there exists K > 0 such that for each multi-index [ € N™

max{||mu(e)|l, llai(€)ll, lgi(, o)} < & - () LI,

where for y € C™, ||y|| = 2% |vil, and where (‘é') are the multinomial coefficients
given by (y1+ ... +ym)" == (‘é') y', satisfying

S () =

=
It follows from Lemma 3.5.3, Lemma 3.5.4 and Lemma 3.3.3, that if A > Ay, then
the terms of (3.5.2) can be bounded by

RIS < K1, Jlad® + RS < K- () L,

for some Kj > 0. Moreover, if we take A sufficiently large and p sufficiently small,
then we can make the constant K small enough so that it satisfies (3.5.13) below.
Let

1
1
d= 16 — M(e)) |
B 1€ = M(9)) <1>H 10mKL’

then § < 400 if the radius p of S is small, and let
1 1

= < ,
50m20 K L? — 5mL
First we show that ||¢||3 < c implies |G [¢]||4 < ¢

ooty <o+ (3 3 (et s 3% 57 (1) e

k=2 |l|=k k=1 |I|=k

<6 (Kio:okakck—kK io FLkeh)
> 1 m C

and Kj < (5emL)?*K < (5emL)K. (3.5.13)

<o (KGemL? S 2 eSS h) <€ (L 4By o
= ( (Cm)];57+ 1257)_5‘(%—#1)_0,
=2 k=0
using (3.3.6) and (3.5.13); in the first sum of the second line, we have ¢ < ((ZZLLL));

since k > 2. Similarly, |G [#]|4 < max{c, |¢|A} if |4]5 < e
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Now we show that [G*[¢] — G*[6]l4 < 4Ié — I if 94 IlWlIA < c. Using
Lemma 3.5.5, (3.5.13) and the convolution inequality (3.5.8), we can write

|g+[|¢;_z’—Aw (Z 5 K(ru)Lk RS Y Ky (u)Lk,kckl)

k=2 |l|=k k=1|l|=k
<d- ((SCmL KmLZ 5k I —I—KlmLZ e 1)
9 25 1
< 5em*SKL? - <.
o (6 T 16) =2
The same holds for the || - [|3-norm. Hence the operator G* is | - |3-contractive, and

the sequence (GT)"[0] converges, as n — +00, |- |-uniformly to an analytic function

gt satisfying T [gt] =g ™.
From (3.4. 3) it follows that hl . hf and 3 =e 7. T+, hence G [y 7| =
G~ [efy ]_6‘/ -Gty ]—ef -yt =17 is a fixed point of G~. O

The following example shows that the solutions §* of the convolution equation

(3.5.2) in the Borel plane depend on the choice of the domain .
Example 3.5.6. Let u satisfy

)dz —u+ (22— ), (3.5.14)

and let y = (22— €)u. It satisfies a differential equation

(22— €

(22— 6):1% =y 4 2zy + (2% — €)% (3.5.15)
The Borel transform of the equation (3.5.14) is
Sy =y +€ Xa
therefore u;; (5 Ve) = 1Xa £(¢&,\/€), which is independent of the direction a. This

is no longer true for the solution y= = @ * BX 22— €] of the Borel transform of the
equation (3.5.15)

o = Ta + 205 %0y + x5 - (67— 4e€).
If, for instance, Im (/€) < 0, and arg /e < a1 < 0 < ag < arg /e + m, then the strips
o, VE), Qay(VE) (3.5.4) in directions ai, ag, are separated by the point £ = 1, and
one easily calculates that for £ € Qq, (V€) N Qa, (V/€)

T, (6 V/€) = Ty (6, V) = (€ = D xa (L, V) xar (€ = 1,V6),
i.e. the two solutions @i, 17@ differ near £ = 0 by a term that is exponentially flat

in /e
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SLEED

FIGURE 3.13. The extended regions Q(y/€) in the Borel plane, together
with the modified integration path I" of the Laplace transform (compare with
Figure 3.12). The limit region ©1(0) := U jcg N, sor 1 (vVe) N (—2V€)N*
is composed of two sectors connected at the origin; the solution y*(,0)
vanishes on the lower sector, while the solution y~(£,0) vanishes on the
upper one.

Proposition 3.5.7. If the spectrum of M (0) is of Poincaré type, i.e. if it is contained
in a sector of opening < 7, then, for small \/€, the region Q(/€) may be chosen so
that it has all the eigenvalues of M(€) on the same side—let’s say the side where
2\/€ is. In such case, let Q1(\/€) be the extension of Q(y/€) to the whole region on the
opposite side (see Figure 3.13). The solutions §=(£,+/€) of Proposition 3.5.2 can be
analytically extended to Q1(y/€) N (—2v/€)N* with at most simple poles at the points
—2/eN* (where N* = N\ {0}). The function % is analytic in Q1 and has at most
exponential growth < CeMél for some A, C > 0 independent of VE.

PRrROOF. The solution 3T is constructed as a limit of the iterative sequence of func-
tions (G7)"[0], n — +oo. We will show by induction that for each n, the function
(GT)™[0] is analytic on Q1 \ {£ € —2,/eN*} and has at most simple poles at the points
¢ € —2/eN*, and that the sequence converges uniformly to ™ with respect to the

norm

1918, = S |-2:(&, Vo) e Ml (3.5.16)
) e)elily
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To do so we will introduce another norm | - |} , defined in (3.5.20) below, such that
the two norms satisfy convolution inequalities similar to those satisfied by | - |$ and
| 1|4 (Lemma 3.5.8 below). Then one can simply replicate the proof of Proposi-
tion 3.5.2 with the norm [ - ”61 in place of | - |3 and the norm |- |$1 in place of

- 18-
?Cw““fR
‘;
§+2KE o
I
I 7—‘2\@ c @
200N |

(a) Im(%) >0

FIGURE 3.14. The integration path I'¢ of convolution (¢ *¥)(§), & € Q1(/e).

Let us first show that if ¢, are two functions analytic on Q4 (/€) \ (—2/eN*¥),
then so is their convolution ¢*v. If &€ € Q;(y/€) /€ R, then the analytic continuation
of ¢ x ¢ at the point & is given by the integral

(6 1) (€) = /F ) v =) ds

with I'¢ a symmetric path with respect to the point % passing through the segments

[—%\/E, %\/a and [5—%#, 5—1—% €|, as in Figure 3.14. Note that when & approaches a
point on (—oov/€, —21/€) \ (—21/eN*) from one side or another, the values of the two
integrals are identical, since both paths I's pass in between the same singularities.
Suppose now that ¢, have at most simple poles at the points —2,/eN*. If
¢ is in Q(Ve) U 2Q(/e€) (2 is defined in (3.5.12)), then I'¢ = ¢ + ¢® for some
c € [-3Ve,—3 e C Qu(Ve). Else & € 2Q,(/€) — 2k/€ for some k € N*, and one

can express the convolution as

k
G40 = [ G)0l€ — s)ds + 2mi Y- Res_yj 6 (€ + 2V

c—2k+/e+et*R J=1
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k—1
= [olt = 2kve vlgo — dt = 2VE Y. L (=2(k— V) Bl — 21VE),
cteteR 7=0

! (3.5.17)

where ¢ € [~3/6,—3/€] C Qr(e) and & = £ + 2ky/e € c+ QL(Ve), Le. E—s €

Qr(/e), see Figure 3.14. We will use this formula to obtain an estimate for the norm

smi (§—s)mi
ﬂ(]ﬁ*lbﬂé\h, A > 0. Since ]ﬁ| <(1+4leve)(1+1]e v |), cf. (3.3.4), we have

1222(©)e M < sup fe(s)[(1+[eve ) e M )l e
SEQL(V/e)—2k/e

+2/idl 1o z Lt — 20NV, (35,19

due to the 2y/e-periodicity of x.
Let 4 > 1 be such that

1+ |e%| < u|m| for all s € Qp(\/e) (3.5.19)
and define
1018, = wl¢ls + sup 2\FZ |5 (€ — 2ky/e)| e MEm2kVe, (3.5.20)

§GQQL(\f)
Then (3.5.18) implies that

06+ w5, <008, - 1¥15,

Note that by 4) of Proposition 3.4.3, if M is analytic on {|2% —¢| < 2} x {|¢] <
p?} for some 7 > 2p > 0, then for any A >

r2p

1Balf118, < +oo,  IBIIfIS, < +oc,

and one can see that |B,[f] |61 can be made arbitrarily small taking A sufficiently
large (cf. Lemma 3.3.3). O

Lemma 3.5.8. Let X+, % be analytic functions on Q1 such that (0 Ve) =

7”(0’ \Ve) =0. Then

0o * 0[S, <1808, - 1¥15,
Lo =018, <1918, - 1418,
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PROOF. The first inequality is given in the proof of Lemma 3.5.7. We need to prove

the second one. By definition

+o0
165013, = ullo < vlh+ sup 2/[dl S 2L (€ — 2hy/e)| e ME2Va,
Vees k=0
£€2Qr (V)
The first term is smaller than
A A A A .
pllold 1olle < w?lold Il since p> 1.

For the second term, using (3.5.17), (3.5.19) and 2./e-periodicity of x™, we have

Z ‘qs*w( ok /e)| e M2k

< [u zr%t—zwe>|e*A't*M‘-(w<s O+ e v e ) aj +

cteteR -

+oo k

+ 2\/ﬂ Z Z ‘% 2]\[ —A[25V/el | ‘%(é‘ _ 2(k _])\E)’ e,AKfQ(kij)ﬁl

k=0j=1
< sup Z@+ — 2k /e)] e AIET2hVE

£€2QL(/6) & .
-(u\wungg Sup 2 \e\Zy%(,g_gj@,e—Aw—wﬂ)
S =0

L(/e)

O]

PROOF OF THEOREM 3.2.4. i) Let yF(&,/€) be the solution of the convolution
equation (3.5.2) of Proposition 3.5.2 on Q with bounded | - [|[A-norm. Its Laplace
transform

+ooeia

vE@Ve) = LV = [ Ve ek dg, (3.5.21)

—ooer™

where o can vary as in (3.5.5), is a solution of (3.5.1) defined for z € |J, X (A, /),
(see Figure 3.3 for the domain of convergence in the time #(x)-coordinate). Both
yT and y~ project to the same ramified solution on a domain Z(,/€) in the z-plane
(Figure 3.2).

i) If the spectrum of M (0) is of Poincaré type and y+ (&, \/€) is defined on Q1 as in
Proposition 3.5.7, with 5[4, < +oc, then, for z € Z1(,/€) N {Re (e'8Vet(z,€)) <
—A}, one may deform the integration path of the Laplace transform (3.5.21) to
I, indicated in Figure 3.13, and use the Cauchy formula to express y*(z,/€), for
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Ve # 0, as a sum of residues at the points £ = —2k\/e, k € N*|

oo
k
vE VO = [T Ve e dg = 2mi Y Res et ()
k=1

_ _Qﬁi () (~2hv/, Vo). (ifé)k (3.5.22)
k=1

2VIelAand its coefficients are the same in

This series is convergent for |i_—+é| <e”
both cases g+ and §~. It defines a solution y1 (z,v/€) of (3.2.11) on a domain Z; (/e),

analytic at z = —/e and ramified at x = /e (Figure 3.4). O
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CONCLUSION

The article [K1], presented in Chapter 2, is part of the large program of explaining the
geometric meaning of analytic invariants of irregular singularities of linear differential
systems by unfolding the systems. It shows that the program can also be performed
for resonant singularities when there is a change of the order of summability. The
thesis provides full analytic classification of germs of parametric systems unfolding a
generic resonant singularity of Poincaré rank £ = 1 in dimension n = 2. The analytic
classification of parametric systems unfolding a non-resonant irregular singularity of
arbitrary Poincaré rank k in any dimension n has been achieved in [HLR]. There are
several possibilities of generalization. The next step may be to provide an analytic
classification of parametric systems unfolding a generic resonant singularity with, for
example,

e Poincaré rank k£ > 1 and dimension n = 2,

e Poincaré rank £ = 1 and dimension n > 2, whose leading matrix has a single

Jordan bloc,
e Poincaré rank k£ = 1 and dimension n > 2, whose leading matrix has one
double eigenvalue in 2 x2-Jordan bloc and other eigenvalues simple.

The general strategy should be the same: First, one needs to determine formal invari-
ants and construct sectorial normalizing transformations between formally equiva-
lent systems (as in Theorem IIT in section 2.2.2). We know from the previous studies
([LR], [HLR], [K1], [K2]) that the domains on which such transformations exist
are obtained as unions of real trajectories of a certain polynomial, or rational, vector
field on CP!. Then one has to identify the modulus of analytic equivalence. We
should remark here that the situation of Theorem I (in section 2.2.1 of the present
study), where there is just a single analytic invariant, which can be easily calculated
from the monodromy, is very special to the particular case studied here. In the more
general situations mentioned above, when k£ > 1 or n > 2, there will be at least
(kn —1)(n — 1) analytic invariants needed, and thus the modulus will have to be de-
scribed in terms of equivalence of certain Stokes data (i.e. set of transition matrices

between canonical fundamental matrix solutions). A natural way of considering such
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Stokes data is as representing some kind of “cocycle” of automorphisms of a system
in a formal normal form. Finally, one has to identify which moduli are realizable by
an analytic family of systems; and possibly provide analytic normal forms (this last
problem is however still open even for non-resonant irregular singularities of single
(non-parametric) systems in dimensions n > 4).

An interesting question that comes to one’s mind is that of whether Corollary

2.2.6 stays valid also in more general situations:

Considering two families of systems depending on the same parameter, if the
systems restricted to each parameter value are analytically equivalent on some open
set independent of the parameter, does that imply that they are also equivalent as

parametric families on that set?

The second article [K2], presented in Chapter 3, shows that it is possible to
unfold the Borel-Laplace correspondence. In the literature the classical Borel-Laplace
transform can take two forms: it could be a correspondence between sets of functions
defined on sectors or a correspondence between a set of formal series and a set of
convergent series. Unfolding the second form with parameters in a general setting is
an interesting challenge. There are also some smaller questions more closely related to
the article itself that deserve to be considered. For instance, it remains to describe
what is the relation between the different solutions of the transformed equation
(3.5.1) in the Borel plane corresponding to different choices of the domain 27 We
know that at the limit, for /e = 0, they are just analytic extensions of the same
function—the Borel transform of the unique formal solution o (z) of the limit system
(3.2.11) defined on a neighborhood of £ = 0.

Another problem is to generalize the present construction for saddle-node singular
points of multiplicity k& + 1 (which are points with one zero eigenvalue), k > 1,
i.e. to unfold the k-summation. Again, the corresponding unfolded Borel-Laplace
transformations should be associated to the universal unfolding of the vector field
mkﬂa% (let us mention that such polynomial complex vector fields in C have been
studied in the seminal work of A. Douady and P. Sentenac [DES], see also [BD]).
Possible difficulties may come from the more complicated geometry of the Riemann

surface of the time function of such unfolded vector field.

We hope to address some of these problems in the near future.
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