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Résumé 

Le diabète est une maladie chronique dont la principale 

caractéristique est un niveau plasmatique élevé de glucose, qui est causé 

soit par un défaut dans la production d’insuline, l’action de l’insuline, ou 

les deux à la fois. Plusieurs études ont démontré que l’hyperglycémie 

chronique peut mener à la dysfonction et même la défaillance de 

plusieurs organes, dont le coeur, le système vasculaire, les yeux et les 

reins, se traduisant par des infarctus du myocarde, des accidents 

cérébro-vasculaires et des complications rétinales et rénales, 

respectivement. La néphropathie diabétique (DN) est la principale cause 

de déficience rénale et affecte près de 25-40% des patients diabétiques. 

La DN est invariablement associée à un risque élevé d’accident cérébro-

vasculaire et de dysfonction cardivasculaire. L’angiotensinogène (Agt) est 

l’unique précurseur de tous les types d’angiotensines. En plus du 

système rénine-angiotensine (RAS) sytémique, le rein possède son 

propre système intrarénal et exprime tous les composants du RAS. L’Agt 

est fortement exprimé dans les cellules du tubule proximal rénal (RPTC) 

et y est converti en angiotensine II (AngII), le peptide biologiquement actif 

du RAS. Les patients diabétiques présentent de hauts niveaux d’AngII et 

une augmentation de l’expression des gènes du RAS, suggérant que 

l’activation du RAS intrarénal joue un rôle important dans la progression 

de la DN. Les mécanismes qui contrôlent la régulation du niveau rénal 

d’Agt par l’hyperglycémie et l’insuline demeurent mal compris.  

Le but global de cette thèse est de mieux comprendre les 

mécanismes moléculaires qui contrôlent l’expression du gène Agt chez la 

souris Akita (un modèle murin de diabète de type 1). Dans cette optique, 

la première partie de la thèse se concentre sur deux facteurs de 

transcription de la famille des ribonucléoprotéines nucléaires hétérogènes 

(hnRNP). Chan et collaborateurs ont déjà identifié 2 protéines nucléaires 

hnRNP F et hnRNP K, de 48kD et 70kD respectivement. HnRNP F et 

hnRNP K forment un hétérodimère et se lient à l’élément de réponse à 
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l’insuline (IRE) présent dans le promoteur du gène Agt du rat et inhibent 

la transcription du gène Agt in vitro. Afin de déterminer si hnRNP F / K 

sont responsables de l’inhibition de l’expression rénale de Agt par 

l’insuline in vivo, nous avons étudié des souris Akita males traités ou non 

avec des implants d’insuline pour une période de 4 semaines. Des souris 

non-Akita males ont été employées comme contrôles. Les souris Akita 

développent de l’hypertension et de l’hypertrophie rénale. Le traitement à 

l’insuline rétablit les niveaux de glucose plasmatiques et la pression 

systolique (SBP), et atténue l’hypertrophie rénale, l’albuminurie (ratio 

albumine/créatinine urinaire, ACR) et les niveaux urinaires d’Agt et AngII 

chez les souris Akita. De plus, le traitement à l’insuline inhibe l’expression 

rénale du gène Agt, tout en augmentant l’expression des gènes hnRNP 

F, hnRNP K et ACE2 (enzyme de conversion de l’angiotensine-2). Dans 

des RPTC in vitro, l’insuline inhibe Agt, mais stimule l’expression de 

hnRNP F et hnRNP K en présence de hautes concentrations de glucose, 

et ce via la voie de signalisation MAPK p44/42 (protéine kinase activée 

par un  mitogène). La transfection avec des petits ARN interférents 

(siRNA) contre hnRNP F et hnRNP K prévient l’inhibition de l’expression 

d’Agt par l’insuline dans les RPTC. Cette étude démontre bien que 

l’insuline prévient l’hypertension et atténue les dommages rénaux 

observés chez les souris Akita diabétiques, en partie grâce à la 

suppression de la transcription rénale de Agt, via une augmentation de 

l’expression de hnRNP F et hnRNP K. 

La seconde partie de cette thèse change de focus et se tourne 

vers le facteur Nrf2 (nuclear factor erythroid 2-related factor 2). Nrf2 est 

un facteur de transcription qui contrôle les gènes de la réponse 

antioxydante cellulaire en réponse au stress oxydant ou aux 

électrophiles. Le but de cette étude est d’examiner l’impact de la 

surexpression de la catalase (Cat) dans les RPTC sur l’expression du 

gène Agt via Nrf2 et sur le développement de l’hypertension et des 

dommages rénaux résultants chez les souris diabétiques Akita 
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transgéniques (Tg). Nos études ont démontré que la surexpression de 

Cat dans les souris Akita Cat-Tg normalise la SBP, atténue les 

dommages rénaux et inhibe l’expression des gènes Nrf2 et Agt dans les 

RPTC. In vitro, le glucose élevé (HG) et l’oltipraz (un activateur de Nrf2) 

stimulent l’expression de Nrf2 et Agt, et cet effet peut être bloqué par la 

trigonelline (inhibiteur de Nrf2), des siRNA contre Nrf2, des antioxydants 

ou des inhibiteurs pharmacologiques NF-κB et MAPK p38. La 

suppression de sites de réponse à Nrf2 présents dans le promoteur du 

gène Agt du rat abolit la stimulation par l’oltipraz. Finalement, des souris 

males adultes non-transgéniques traitées avec l’oltipraz montrent une 

augmentation de l’expression de Nrf2 et Agt dans leurs RPTC et cette 

augmentation peut être normalisée par la trigonelline.  Ces données 

permettent d’identifier un nouveau mécanisme d’action de Nrf2, par la 

stimulation du gène Agt intrarénal et l’activation du RAS, qui induisent 

l’hypertension et les dommages rénaux par le glucose élevé et les 

espèces réactives de l’oxygène chez les souris diabétiques. Nos 

conclusions permettent de démontrer que l’insuline induit l’expression de 

hnRNP F et hnRNP K, qui jouent ensuite un rôle protecteur en prévenant 

l’hypertension. La surexpression de la catalase dans les RPTC vient 

quant à elle atténuer l’activation de Nrf2 et ainsi réduit la SBP chez les 

souris Akita. 

 

Mots-clés : rein, angiotensinogène, hnRNP F, hnRNP K, glucose, 

insuline, Nrf2, oltipraz, trigonelline, Akita, hypertension 
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Abstract 

Diabetes mellitus is a chronic metabolic disorder characterized by 

high plasma glucose caused by an impairment of insulin production, 

insulin action or both. Accumulating evidence has shown that chronic 

hyperglycemia can lead to dysfunction and failure of multiple organs 

including the heart, vascular system, eyes, and kidneys resulting in 

myocardial infarction, stroke, and retinal and renal complications, 

respectively. Diabetic nephropathy (DN) is the leading cause of end-stage 

renal disease affecting approximately 25–40% of diabetic patients. DN is 

invariably associated with an increased risk of stroke and cardiovascular 

dysfunction. Angiotensinogen (Agt) is the sole precursor for all types of 

angiotensins. In addition to systemic renin-angiotensin system (RAS), all 

the components of the intrarenal RAS are expressed in the kidney. Agt is 

highly expressed in the renal proximal tubular cells (RPTCs) and 

converted into biologically active angiotensin II (Ang II). In Diabetics, 

intrarenal Ang II level and RAS gene expression are upregulated, 

suggesting that intrarenal RAS activation plays an important role in the 

progression of DN. The mechanism (s) underlying the regulation of renal 

Agt by hyperglycemia and insulin are not completely understood. The 

overall aim of this thesis is to understand the molecular mechanism(s) 

that regulate renal Agt gene expression in an Akita mouse (a mouse 

model of type 1 diabetes). For this purpose, the first part of this thesis 

focuses on two transcription factors from the heterogenous nuclear 

ribonucleoprotein (hnRNPs) family. Previously, Chan’s group identified 

two nuclear proteins hnRNP F and hnRNP K of 48kD and 70kD, 

respectively. hnRNP F and hnRNP K form a heterodimer and bind to the 

insulin-responsive element (IRE) in the rat Agt gene promoter inhibiting 

Agt gene transcription in vitro. To determine whether hnRNP F / K 

mediate insulin inhibition of renal Agt expression in vivo, we used adult 

male Akita mice treated ± insulin implants for 4 weeks. Non-Akita mice 

served as controls. The Akita mice developed hypertension and exhibited 
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renal hypertrophy. Insulin treatment normalized plasma glucose levels 

and systolic blood pressure (SBP), attenuated renal hypertrophy, 

decreased urinary albumin/creatinine ratio (ACR) and urinary Agt and 

Ang II levels in Akita mice. Furthermore, insulin treatment inhibited renal 

Agt expression but enhanced hnRNP F, hnRNP K and angiotensin-

converting enzyme-2 (ACE2) expression. In vitro, insulin inhibited Agt but 

stimulated hnRNP F and hnRNP K expression in high-glucose media via 

p44/42 mitogen-activated protein kinase signaling in RPTCs. Transfection 

with hnRNP F and hnRNP K small interfering RNAs (siRNA) prevented 

the insulin inhibition of Agt expression in RPTCs. This study 

demonstrates that insulin prevents hypertension and attenuates kidney 

injury, at least in part, through suppressing renal Agt transcription via 

upregulation of hnRNP F and hnRNP K expression in diabetic Akita mice. 

In the second part of the thesis we focused on the nuclear factor 

erythroid 2-related factor 2 (Nrf2).  Nrf2 is a transcription factor that 

regulates cellular antioxidant gene defense against oxidative stress or 

electrophiles. The purpose of this study is to investigate the impact of the 

overexpressing catalase (Cat) in RPTCs on Agt gene expression via 

Nrf2and the resulting effects on the development of hypertension and 

renal injury in diabetic Akita transgenic (Tg) mice. Our studies 

demonstrate that Cat overexpression normalizes SBP, attenuates renal 

injury, and inhibits RPTC Nrf2 and Agt gene expression in the Akita Cat-

Tg compared to Akita mice. In vitro, high glucose (HG) and Oltipraz 

stimulated Nrf2 and Agt gene expression; these changes were blocked by 

Trigonelline (an inhibitor of Nrf2), siRNA against Nrf2, antioxidants, or 

pharmacological inhibitors of NF-kB and p38 mitogen-activated protein 

kinase. Moreover, deletion of Nrf2-responsive elements in the rat Agt 

gene promoter abolishes the stimulatory effect of Oltipraz. Finally,non 

transgenic adult male mice treated with the Nrf2 activator Oltipraz, 

upregulated Nrf2 and Agt expression in mouse RPTs, an effect that was 
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normalized by Trigonelline. These data identify a novel mechanism via 

which Nrf2 mediates the stimulation of intrarenal Agt gene expression and 

activates the RAS through whichHG/reactive oxygen species (ROS) 

induce hypertension and renal injury in diabetic mice. Our findings 

demonstrate that the insulin induced hnRNP F and hnRNP K gene 

expression play a protective role in the preventing hypertension. Catalase 

overexpression, in RPT's, attenuates Nrf2 activation and lowers the SBP 

in Akita mice. 

Key words: Kidney, angiotensinogen, hnRNP F, hnRNP K, glucose, 

insulin, Nrf2, Oltiparz, trigonelline, Akita, hypertension. 
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1.1 Kidney physiology and histology 

1.1.1 Renal physiology   

The kidneys are paired retroperitoneal organs. In human adults, each 

kidney weighs about 150 g and is approximately 11-12 cm in length, 5.0-

7.5 cm in width, and 2.5-3.0 cm in thickness [1]. The kidney's principal 

role is to regulate the composition and volume of the extracellular fluid by 

regulating water and electrolyte balance, osmotic and arterial blood 

pressure and also secreting the renin and angiotensin II hormones. The 

kidneys also regulate ion homeostasis in blood plasma maintaining the 

concentrations of sodium, chloride, potassium, and hydrogen 

independently. The kidneys excrete metabolic waste as by-products of 

metabolism, including urea, uric acid and creatinine. In addition, they 

produce specific hormones such as erythropoietin and the active form of 

vitamin D (1,25 -dihydroxy vitamin D3) while also playing an essential role 

in acid–base balance [2]. Table 1-1 shows the quantities of filtered and 

reabsorbed substances by the kidney in a 24 hr period. 

 

 

 

Table 1-1: Substances filtered and reabsorbed by the kidney per 24 hours [3]. 
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1.1.2 Renal histology 

The cross section of a kidney contains two regions, the cortex in the outer 

layer and the medulla in the inner layer. The cortex appears granular due 

to the spherical capillary tufts of the glomeruli. The glomeruli, convoluted 

tubules, and cortical collecting ducts are found in the cortex. The medulla 

has a striated appearance that results from the parallel arrangement of 

the loops of Henle, medullary collecting ducts, and blood vessels and can 

be divided into two regions: the outer and inner medulla [1, 2]. In a human 

kidney section, there are regional differences in the structure. The outer 

portion (cortex) contains all the glomeruli. The collecting ducts form a 

large portion of the inner kidney (medulla), giving it a striped, pyramid-like 

appearance, and these drains into the renal pelvis. The papilla is in the 

inner portion of the medulla [2]. See Figure 1-1. 

 

 

Figure 1-1: Schematic representation of a human kidney section shows 
regional differences. The outer portion (cortex) contains all the glomeruli. 
The collecting ducts form a large portion of the inner kidney (medulla), 
giving it a striped, pyramid-like appearance and these drain into the renal 
pelvis. The papilla is located in the inner portion of the medulla [2].  
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1.1.2.1 The nephron 

The basic functional unit of the kidney is the nephron. Each nephron is an 

independent urine-forming unit. The number of nephrons per kidney is 

about one million in the human adult kidney and 30,000 in a rat kidney [1, 

4]. Each nephron is capable of filtering blood, regulating the water volume 

and concentration of soluble substances, reabsorbing useful components, 

and excreting the rest. Three groups of nephrons are distinguishable, 

based on the location of their glomeruli in the cortex: the superficial, 

midcortical, and juxtamedullary nephrons. A nephron consists of two 

functionally different parts, the glomerulus and the tubules [2, 5].  

 

1.1.2.1.1 Nephron components 

A) The glomerulus 

The renal corpuscle is the initial blood-filtering component of the nephron 

and is composed of a capillary network lined with a thin layer of 

endothelial cells (glomerulus). The glomerulus is a capillary network 

surrounded by the Bowman’s capsule. In the vertebrate kidney, the 

Bowman’s capsule is a double-walled, cup-shaped structure surrounding 

the glomerulus of each nephron [6] that serves as a filter for organic 

waste, excess inorganic salts, and water. The average diameter of the 

glomerulus is approximately 200 μm in the human kidney and 120 μm in 

the rat kidney [6]. The capillary structure of the glomerulus is permeable 

and increases the surface area for blood filtration [7].The mean area of 

filtration surface per glomerulus has been reported to be 0.203 mm2 in the 

human kidney [8] and 0.184 mm2 in the rat kidney [9]. The glomerular 

filtration barrier allows the filtration of small molecules but restricts the 

passage of macromolecules (e.g. plasma proteins). The glomerular 

filtration barrier consists of three layers: the endothelium or the lamina 

fenestra [3, 4], the basement membrane [5], and the podocytes with their 

slit diaphragms [6]. Podocytes are polarized, highly specialized and fully 

differentiated epithelial cells [5]. They line the urinary side of the 



 

4 

 

glomerular basement membrane (GBM), which functions as a fine filter 

permitting the permeability of molecules smaller than albumin. The 

glomerular ultrafiltrate passes into the urinary space of Bowman’s 

capsule. Fluid that comes out of the glomerulus is a plasma-like 

substance that flows into the renal tubule. The filtrate flows downstream 

the nephron through the tubule lumen, where tubular activity alters its 

composition and volume [6, 10].The appearance of protein in the urine 

indicates a compromised glomerular filtration barrier [6]. In diabetic 

nephropathy, proteinuria and microalbuminuria are used as clinical 

biomarkers [11].  Fig 1-2 shows renal corpuscle staining.  

 

 

Figure 1-2: H&E-stained image of the glomerulus. Identified are the mesangial 
cells of the glomerulus and the podocytes of the visceral layer of Bowman’s 
capsule.http://medcell.med.yale.edu/histology/urinary_system_lab/renal_corpus
cle.php. 
 

B) Renal tubules  

The renal tubule, which begins at and leads out of the Bowman’s capsule, 

is made up of a single layer of epithelial cells resting on a basement 

membrane. The renal tubules change the composition of filtrate by 

reabsorbing most of the useful organic nutrients and water that enter the 

tubular system. It also secretes additional waste products that do not 

enter with the ultrafiltrate. The tubule is divided into several components 
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including the proximal tubule, the descending and ascending loop of 

Henle, and the distal convoluted tubule and collecting duct. The cells in 

the tubular wall of each tubular region are structurally different and have 

distinct physiological properties [2]. A schematic representation of the 

nephron components is shown on Figure 1-3. 

 

i) The proximal tubule 

The proximal convoluted tubule comprises the first 60% of the proximal 

tubule [5]. It is about 10 mm in the rabbit [12], 8 mm in the rat, 4 to 5 mm 

in the mouse [13], and approximately 14 mm in the human. The most 

characteristic feature of the proximal tubules is the presence of an edge 

"brush" on the luminal surface of the tubules, which increases the surface 

area for reabsorption [14]. In the rat, three morphologically different 

segments have been identified [15]. The S1 segment is at the proximal 

end of the proximal tubule starting at the glomerulus and constitutes 

approximately two thirds of the pars convoluta. The S2 segment consists 

of the residual of the pars convoluta and the proximal component of the 

pars recta. The S3 segment contains the rest of the proximal tubule [6, 

15]. The proximal tubule is responsible for reabsorbing all of the filtered 

glucose and amino acids and reabsorbing 70% of filtered solutes and 

water. It secretes various organic anions and cations [2]. Renal proximal 

tubular cells express all components of the RAS and overexpression of 

angiotensinogen increases tubular apoptosis in STZ-induced diabetes 

mice [16].  

 

ii) The loop of Henle 

The loop of Henle, connected to the proximal tubule is composed of 

different segments performing distinct functions: the descending limb, the 

thin and the thick ascending limb and the medullary and cortical thick 

ascending limb. The loop of Henle structure is responsible for the specific 

composition of aqueous ionic channels and urine concentration. As a 
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whole, it reabsorbs about 20% of the filtered sodium and chloride and 

10% of the filtered water. The end of the loop of Henle contains cells of 

the macula densa, which monitor the sodium and chloride content of the 

lumen generating signals that influence renal function, specifically via the 

renin-angiotensin system [2]. 

 

 
 
Figure 1-3: Components of the nephron and the collecting duct system. Onthe 
left is a long-looped juxtamedullary nephron;on the right is a superficial cortical 
nephron [5]. 
 
 
iii) Distal convoluted tubule  

The distal nephron is considered to be the portion of the renal tubule 

beginning with the thick ascending limb of the loop of Henle and ending 

with the papillary-collecting duct. The distal convoluted tubuleis located 

immediately after the macula densa [17, 18]. The distal nephron is 

responsible for reabsorbing lower quantities of salt and water consisting 

of 9% of the filtered NaCl and 19% of the filtered water. Steep gradients 

for small ions and water can occur in the distal nephron. The distal 
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tubules are responsible for reabsorbing a certain amount of water and 

sodium ions. The aqueous channels in the apical and basal surfaces of 

these tubules, in turn, control the amount of reabsorbed substance [2].  

 

1.2 Kidney disease 

Kidney disease is associated with a significant reduction in both the 

length and quality of life [19]. Kidney dysfunction accelerates the onset 

and progression of cardiovascular disease, and eventually worsens its 

prognosis [20]. Kidney disease can arise from complications due to 

diabetes leading to diabetic nephropathy or from hypertension, 

widespread risk factors in the population. Other renal diseases include 

anatomic and metabolic kidney diseases and kidney damage due to 

certain nephrotoxic drugs.  In chronic kidney disease (CKD) the damage 

in the kidneys decreases their ability to carry out their appropriate 

functions [21, 22]. The guidelines set forth by the Kidney Disease 

Outcomes Quality Initiative (KDOQI) define CKD as kidney damage 

occurring for 3 or more months caused by structural or functional 

abnormalities with or without a decreased Glomerular Filtration rate 

(GFR) [23, 24]. There are several factors that contribute to CDK but the 

most significant risk factors are diabetes and hypertension and are 

collectively responsible for up to 66% of the CKD cases. Hyperglycemia 

and high blood pressure cause damage to multiple organs including the 

kidney, heart, eye as well as the blood vessels. CKD eventually leads to 

End Stage Renal Disease (ESRD) characterized by kidney function of 

less than 10% of its full capacity [2]. CKD increases the rate of morbidity, 

mortality, and hospitalizations and at this stage patients require kidney 

transplants to survive.  
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1.2.1 Chronic Kidney Disease Prevalence 

Patients with CKD are more likely to die of cardiovascular disease (CVD) 

and a minority progresses to ESRD [25, 26]. The prevalence of Stage 2-5 

CKD has continued to increase since 1988 right along with increases in 

the prevalence of diabetes and hypertension, which are etiologic in 

approximately 40% and 25% of CKD cases aged more than 20 years old, 

respectively. Hypertension is triggered during stages 3–5 CKD while acid-

base imbalance, dyslipidemia, and loss of glucose homeostasis occur 

later [27]. In Stage 4 CKD, death is a competing risk for progression to 

ESRD with about 17% of Stage 4 CKD progressing to Stage 5 [26]. CKD 

increases CVD morbidity and mortality risks in diabetics by 2- to 4-fold 

and in patients with hypertension and diabetes by 4- to 8-fold. 

Furthermore, CKD-attributable CVD risk increases several fold through 

stages 3–5 CKD. In 2010, the healthcare-associated costs for ESRD 

were $28 billion and expected to almost double to $54 billion by 2020 

[27].  

 

1.2.2 Laboratory Measurements for Kidney Disease 

Kidney damage is defined by any one of the following laboratory tests: 

persistent proteinuria as well as estimated GFR (eGFR) less than 

60ml/min/1.73 m2 on two occasions separated by at least 3 months [28]. 

 

1.2.2.1 Assessment of Proteinuria 

Assessment of albumin and/or protein excretion in the urine is a key step 

in the early detection and appropriate management of CKD. In the urine 

of healthy people, albumin is normally present in small quantities. The 

levels of albumin and other proteins rapidly rise when the kidneys are 

damaged, a phenomena referred to as proteinuria [29, 30]. Moreover, 

proteinuria tightly correlates with quantitative histological measures of 

interstitial fibrosis [31]. Microalbuminuria (MAU) refers to the increase in 

the concentration of urinary albumin that is indicative of either systemic or 
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renal malfunction. In CKD, the kidneys excrete more than 30 milligrams of 

albumin per gram of creatinine in their urine, regardless of the change in 

the eGFR [30]. In CKD, the albumin has to cross the glomerular filtration 

barrier under the effect of intraglomerular pressure increases, as well as 

the loss of the negatively-charged glycosaminoglycans in the cellular 

basement membrane, which lead to an enlargement in the pore size of 

the basement membrane and the leaking of albumin from the kidney to 

the urine [32]. Structural abnormalities that cause albuminuria are shown 

in Figure 1-4.  

 

 

Figure 1-4: Structural abnormalities have an effect on albuminuria [32]. 

 

1.2.2.2 Estimation of Glomerular Filtration Rate (GFR) 

The kidneys have a high blood flow. Glomerular filtration involves the 

ultrafiltration of plasma in the glomerulus [8]. The glomerular filtration 

barrier functions as a fine molecular sieve allowing small molecules to 

pass while restricting macromolecules such as plasma proteins. Kidney 

function can be tested by measuring the glomerular filtration rate (GFR) 

[33]. It is defined as the rate at which plasma is filtered by the kidney 

glomeruli [2]. Ideally, the GFR should be measured by inulin levels. Inulin 

has many advantages; it is filterable by the glomeruli, non-toxic, not 

reabsorbed or secreted by the kidney tubules, and it is detectable in both 

plasma and urine samples [34]. The National Kidney Foundation (NKF) 
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Georg Ebers published one of the oldest medical documents written by 

an Egyptian, around 1530 BC, called “Ebers Papyrus” [35]. In it, there is 

mention of specific symptoms indicative of diabetes mellitus and a 

description of a condition of “too great emptying of the urine”. For the 

treatment of this condition, ancient Egyptian physicians advocated the 

use of wheat grains, fruit, and sweet beer [36]. In 130–200 AD, the Greek 

physician Aretaeus noted a disease with symptoms of constant thirst, 

excessive urination and weight loss. He named the condition ‘diabetes’ 

meaning ‘flowing through’ [35]. The first clear reference to diabetes was 

made by an Arab physician, Avicenna (980–1037 AD), who described in 

detail the exact clinical features and complications of the disease and its 

progress [37]. Indian physicians developed the first clinical test for 

diabetes. They observed that the urine from people with diabetes 

attracted ants and flies. They named the condition “honey urine”[36]. In 

1815, Eugene Chevreul proved that the sugar in urine of individuals with 

diabetes was glucose[36]. The diagnostic test developed by Von Fehling 

became an acceptable quantitative test for glucose in urine in 1848. As a 

result, in the nineteenth century, glucosuria became an accepted 

diagnostic criterion for diabetes. In the 20th century Bang, Folin, Lewis, 

Benedict, Shaffer and many others pioneered laboratory methods for 

quantitative blood sugar [35]. 

 

1.3.1 Prevalence of diabetes  

Diabetes is on the rise worldwide and countries are struggling to keep 

pace. Over the past three decades, there has been an explosive increase 

in the prevalence of diabetes mellitus (DM). Diabetes mellitus is a 

complicated, chronic disorder characterized by either insufficient insulin 

production by the beta cells of the pancreas or by cellular resistance to 

insulin. Insulin insufficiency results in elevated blood glucose levels, or 

hyperglycemia [38]. According to the International Diabetes Federation 

(IDF), one in ten of the world’s population will have diabetes by 2035. 
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Today, there are 382 million people living with diabetes. A further 316 

million with impaired glucose tolerance are at high risk from the disease – 

an alarming number that is set to reach 471 million by 2035.  IDF’s most 

recent estimates show that people living with diabetes will surge from 382 

million to 592 million people by 2035 [39].  As a result, individuals with 

diabetes are at greater risk for a number of disorders or complications, 

including myocardial infarction, cerebrovascular accident (stroke), 

blindness, kidney disease, and lower limb amputations. Diabetes 

complications are responsible for 5.1 million deaths and cost USD 548 

billion in healthcare spending (www.idf.org/diabetesatlas).There is 

considerable data indicating that the chronic elevation of plasma glucose 

causes many of the major complications of diabetes, including 

nephropathy, retinopathy, neuropathy, and macro- and microvascular 

damage [40]. Insulin and oral antidiabetic drugs, along with diet and 

exercise, are the cornerstones of treatment for diabetes mellitus [41]. 

They are used to prevent episodes of hypoglycemia and to normalize 

carbohydrate metabolism. The new estimates show an increasing trend 

toward younger and younger people developingdiabetes, a trend that is 

troubling for future generations, Figure 1-5 (www.idf.org/diabetesatlas). 

 
1.3.2 Types of diabetes mellitus 

Diabetes encompasses a group of metabolic diseases characterized by 

hyperglycemia resulting from defects in insulin secretion, insulin action or 

both[38]. There are three major types of diabetes: 

 

1.3.2.1Type 1 diabetes mellitus (T1D)  

Previously, T1D was known as insulin-dependent diabetes. In T1D the 

pancreas does not produce adequate amounts of insulin to regulate 

glucose levels in the blood. Autoimmune destruction of the pancreatic 

beta cells causes the development of T1D. The immune system destroys 

the beta cells that produce insulin in the pancreas [42] and insulin therapy 
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1.3.2.2 Type 2 diabetes mellitus (T2D)  

T2D, formerlyknown as noninsulin-dependent diabetes is the most 

common type of diabetes, in which the pancreas does not produce 

enough insulin, or there is decreased sensitivity to insulin. It is usually 

seen in adults, but it is increasingly prevalent in children and adolescents 

[43]. The risk factors for developing diabetes are obesity, poor diet, 

physical inactivity, advancing age, ethnicity and high blood glucose during 

pregnancy,affecting the unborn child and genetics [43]. 

 

1.3.2.3 Gestational diabetes mellitus (GDM) 

GDM occurs in a minority of pregnant women around the 24th week of 

pregnancy [44, 45] in whom a resistance to insulin and resulting high 

blood glucose occur.  Gestational diabetes in mothers normally resolves 

itself after the birth of the child. However, women who have had 

gestational diabetes are at a higher risk of T2D later in life [46]. 

Gestational diabetes affects the babies by increasing their risk of 

developing T2D later in life [47]. 

 

1.3.3 Diabetic nephropathy (DN) 

DN, a common diabetic complication, is a clinical syndrome characterized 

by progressive renal insufficiency in the setting of hyperglycemia, 

persistent albuminuria, hypertension, decreased GFR, and a highly-

elevated risk of cardiovascular morbidity and mortality [48]. In most 

Western countries, diabetes has become the most common cause of 

kidney failure or end-stage renal disease. DN is a silent disease that usu-

ally manifests itself after 10 years’ duration of T1D, but may be present at 

diagnosis of T2D [49]. Type 1 and type 2 diabetic subjects accounted for 

44% of new cases of kidney dysfunction in 2008 [50].  Several factors 

along with diabetes contribute to inducing renal lesion damage, including 

increased systemic and intraglomerular pressure, as well as activation of 

the RAS and endothelin [51]. In DN, the most important structural 
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abnormality in the kidney glomerulus is thickening of the glomerular 

basement membrane (GBM) and mesangial expansion [52]. The GBM 

thickening change has been recognized as early as 1.5 to 2.5 years after 

the onset of type 1 diabetes [53], while the mesangial expansion can be 

detected 3.5 to 5.5 years later [54] . Thickening in the Bowman's capsule 

is also regularly present. The study done by Gambara et al. [53] shows 

that 33% of patients with proteinuria caused by type 2 diabetes had 

glomerulosclerosis. In addition to the abnormalities in the glomerulus, 

changes occurred in the tubules, which include thickening in the tubular 

basement membrane (TBM) and tubular atrophy [53].  

 

Several mechanisms have been postulated for understanding the effect of 

hyperglycemia and tissue damage. These mechanisms are glucose-

dependent pathways that include advanced glycosylation end products, 

increased polyol pathway flux, increased hexosamine pathway activity, 

oxidative stress and protein kinase C activation [55]. These lead to 

increased proteinuria, glomerulosclerosis and ultimately tubulointerstitial 

fibrosis. It has been shown that DN is one of the most significant long-

term complications in terms of morbidity and mortality for individual 

patients with diabetes[55]. 

 

1.3.3.1 Role of podocytes in diabetic nephropathy 

Podocyte injury has been demonstrated in DN. Podocytes are sensitive to 

mechanical force, implying that mechanical stretching could decrease 

podocyte numbers, reduce proliferation rates [56], and induce podocyte 

apoptosis, as well as detachment from the GBM [57]. It has been reported 

that podocyte numbers decrease in T1D and T2D [58] and since they 

have a limited capacity to renew themselves, the loss of podocytes 

caused by diabetes has been hypothesized to require the remaining cells 

to cover a larger area of GBM. Several studies in rats show that reduced 

nephron numbers lead to glomerular hypertrophy, podocyte injury, the 
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development of proteinuria, foot process widening, and subsequently 

glomerular sclerosis[58, 59]. 

 

1.3.3.1.1 Advanced Glycosylation End Products (AGEs) 

Under normal conditions, glucose binds to proteins by a non-enzymatic 

chemical reaction between its aldehyde and the reactive amino groups in 

proteins, a reaction named the Maillard reaction [60]. Hyperglycemia 

increases the non-enzymatic glycation of proteins, lipids, and nucleic 

acid. These glycated products undergo progressive dehydration, 

cyclization, and rearrangement to form AGEs [60]. Once AGEs are 

formed, the reaction is irreversible and the proteins gradually accumulate 

in the tissue [61]. These advanced products can be involved in the 

pathogenesis of DN by altering the signal transduction via alteration in the 

level of soluble signals, such as cytokines, hormones and free radicals 

[62]. For example, it is reported that glycated albumin products stimulate 

type IV collagen production and inhibit proliferation in cultured mesangial 

cells [63]. Among the many potential pathogenic factors responsible for 

the development of diabetic microvascular disease, the advanced 

glycation pathway is thought to be a pivotal process in mediating tissue 

damage. The kidney contributes to increasing the circulation of AGE 

concentrations through dysfunctional AGE clearance. Studies in diabetic 

patients show that the level of AGEs are significantly increased with the 

progression to microalbuminuria, and subsequently, to overt nephropathy 

[64].  

 

AGEs exert their action through the formation of protein cross-links 

altering the structure and function of the extracellular matrix (ECM), in 

addition to interacting with specific cell surface receptors [65]. The diverse 

action of AGE occurs mainly through the multi-ligand receptor RAGE, a 

member of the immunoglobulin superfamily of cell surface molecules [66]. 

AGE binding sites were identified in proximal tubules of the rat kidney, but 
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it is unclear whether they represent one of the known AGE receptors [67]. 

Numerous studies have implicated RAGEs in the development and 

progression of DN [67]. Yamamoto et al. reported an elevation in 

albuminuria, mesangial cell expansion, and advanced glomerulosclerosis 

in diabetic Tg mice overexpressing RAGE genes in vascular cells [68]. In 

contrast, the diabetic RAGE knockout mice showed less renal injury, 

especially in the mesangial expansion or the GBM thickening compared 

to the control mice [69, 70]. 

 

AGEs induce activation of ROS and upregulate inflammatory gene 

expression. The intracellular accumulation of AGEs initiates several 

signaling events by producing free radicals[67]. In turn, ROS activation 

initiates several intracellular pathways including PKC, mitogen-activated 

protein kinase (MAPK), nuclear transcription factor (NF-κB), and 

increases the production of cytokines, including transforming growth 

factor (TGF-β), interleukin (IL-6), and tumor necrosis factor (TNF-α) [60, 

71]. These downstream AGE-mediate effects exacerbate renal damage. 

AGE signaling can be blocked in cells by expressing RAGE antisense 

cDNA or anti-RAGE ribozyme [72]. Furthermore, administration of 

aminoguanidine (AGN), an AGE inhibitor, attenuates renal AGE 

accumulation and reduces both albuminuria and mesangial expansion 

[73]. 

 

1.3.3.1.2 Protein Kinase C 

Hyperglycemia has been implicated in the pathogenesis of diabetic 

complications through the activation of the protein kinase C (PKC) system 

[72, 74]. PKC is a family of at least 13 isoforms of serine and threonine 

kinases [75]. The various PKC isoenzymes have been subdivided into 

three classes based on both sequence homology and mechanism of 

activation: 1) conventional or classical PKCs (cPKCs: PKC-α, PKC-βI, 

PKC-βII, PKC -γ), which are Ca2+ - sensitive/or dependant and activated 
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by both phosphatidylserine (PS) and the second messenger 

diacylglycerol (DAG); 2) novel PKCs (nPKCs: PKC-δ, PKC-ε, PKC-η and 

PKC-θ), which are Ca2+ - independent and regulated by PS and DAG; 3) 

atypical PKCs (aPKCs: PKC-ζ and PKC-λ/ι) which are Ca2+ - independent 

and do not require DAG for activation although PS regulate activation 

[76].  

 

Among various signaling kinases, PKC seems to be a centerpiece in the 

pathogenesis of DN [70].  PKC-α and PKC-ε expression were increased 

in glomeruli and renal tubules of STZ diabetic rats,  whereasPKC-ζ  was 

decreased in the kidney and heart tissues compared to control [77]. PKC- 

β contributes to hyperglycemia-induced renal matrix production, whereby 

PKC- α is involved in the development of albuminuria. The expression of 

PKC-β was examined in human patients with diabetic nephropathy. PKC-

β mRNA was increased in the kidney biopsies of diabetic patients as 

compared to control subjects [78]. Kelly et al. [79]reported that in vivo 

inhibition of the PKC- β isoform with Ruboxistaurin, in STZ-induced 

diabetic rats,  led to reduction in renal TGF- β 1 expression and structural 

injury of the kidney, as well as albuminuria. Similarly, in type 2 diabetes, 

Ruboxistaurin mesylatealso reduces renal abnormalities in db/db mice 

suggesting a central signaling role in hyperglycemia-induced vascular 

injury [80]. Furthermore, Chan’s group have reported that PKC-βI 

activation induces osteopontin mRNA expression in IRPTCs [81]. Manne 

et al.demonstrated that STZ-induced diabetic PKC-α -/- mice are 

protected  against the development of albuminuria, whereas increased 

TGF β-1and renal hypertrophy are not prevented [82]. Matthias et al. 

demonstrated that PKC-β-deficiency (PKC-β -/-) in vivo reduces renal 

hypertrophy but not albuminuria in the STZ-induced diabetic mouse [83]. 

Dual inhibition of PKC-α and PKC-β isoforms (homozygous PKC-α/β 

double knockout) decreased in glomerular hypertrophy, extracellular 
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matrix and TGF-b when compared with wild-type mice after 8 weeks of 

diabetes [84]. 

 

In diabetic conditions, the cellular events of polyols, the generation of 

AGE products, and ROS activate PKC [72]. It has been shown that 

hydrogen peroxide (H2O2)can activate PKC either directly or by 

increasing DAG production [85]. The potential mechanism for PKC 

activation by ROS is through redox changes in sulfhydryl groups on PKC 

isoform cysteine-rich regions. These redox changes may also cause PKC 

isozymes to be more responsive to DAG activation during signal 

transduction [86]. Experimental studies show that the coactivation of PKC 

and MAPK in the presence of high glucose concentrations suggests that 

these two families of enzymes are linked [87].  

 

1.3.3.1.3 Increased Polyol Pathway Flux 

The polyol pathway is one of the glucose metabolic pathways that plays a 

significant role in the pathogenesis of diabetic complications [55]. Glucose 

use, in the polyol pathway, is 3% in normoglycemic individuals and 30% 

in hyperglycemic individuals [88]. In this pathway, two enzymes are 

involved: aldose reductase (AR), which plays the central role, and sorbitol 

dehydrogenase (SDH). AR normally reduces toxic aldehydes in cells to 

inactive alcohols. In the first enzymatic reaction, AR reduces glucose to 

sorbitol using NADPH as a cofactor. It is important to mention that sorbitol 

plays a role in balancing the osmotic pressure of extracellular NaCl to 

prevent cellular dehydration [88]. In the second enzymatic reaction, SDH 

with its co-factor NAD+ converts sorbitol to fructose [89]. 

 

When intracellular glucose becomes elevated in the kidney, it will cause 

glucose flux through the polyol pathway leading to a marked increase in 

aldose reductase activity, with accumulation of sorbitol altering the 

NADPH/NADP+ ratio [72]. NADPH is essential for regenerating critical 
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intracellular antioxidants. Sorbitol production depletes NADPH, 

consequently reducing glutathione (GSH) levels of nitric oxide (NO) 

production by the endothelial cells, which increases the susceptibility to 

intracellular oxidative stress and alters the antioxidant balance [90]. This 

is in agreement with the Lee et al. study, in which a decreased level of 

GSH was found in the lenses of AR-Tg mice [91]. In the kidney, studies 

have shown that AR protein was localized to podocytes and distal 

convoluted tubules [92]. Type 1 diabetes is associated with increased 

renal sorbitol and fructose levels [93]. Type 2 diabetic patients had higher 

serum and urine myo-inositol concentrations and sorbitol excretion than 

healthy controls [94].In streptozotocin[95]diabetic rats, sorbitol 

accumulation has been found in isolated glomeruli. The consequences of 

heightened sorbitol pathway activity include non-enzymatic glycation 

initiated by fructose, a glycating agent that is ten times more potent than 

glucose in activating PKC [96]. Theories proposed for the pathogenesis of 

diabetic nephropathy are illustrated in figure 1-6. 

 

 

Figure 1-6: Proposed mechanisms for the pathogenesis of diabetic nephropathy 
[60]. 
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1.4 Insulin 

Insulin is a peptide hormone discovered in the 1920s. This hormone is 

secreted by the Beta cells of the pancreatic islets of Langerhans in 

response to increased circulating glucose levels after a meal [97, 98]. 

Insulin is implicated in a wide spectrum of biological responses, including 

blood glucose control and energy metabolism. It acts by stimulating 

glucose influx and metabolism in adipocytes and muscles, and by 

inhibiting gluconeogenesis in the liver. Moreover, insulin regulates the 

transcription of a number of genes and modulates cellular growth and 

differentiation [99, 100]. Since the discovery of insulin, it has been the 

subject of extensive research to elucidate its activity in metabolism, gene 

regulation, protein synthesis, and protein degradation. Impaired insulin 

action either due to insulin hyposecretion or defects in insulin signalling 

causes serious problems in glucose homeostasis and subsequently leads 

to DN [101]. 

 
Insulin exerts its action through binding to a transmembrane receptorthat 

belongs to the large class of tyrosine kinase receptors. Insulin receptors, 

IGF-1 receptors, and insulin receptor-related (IRR) receptors are 

members of the insulin receptor family and are structurally related [102, 

103].  These members share more than 80% of amino acid sequence 

identity in the transmembrane domain with lower similarity in the 

extracellular domain, depending on their specific ligand [103]. The IR 

consists of two extracellular alpha-subunit and two transmembrane beta-

subunit domains linked by disulfide bonds. Insulin bound to the 

extracellular domain results in receptor autophosphorylation on tyrosine 

residues [104]. This leads to conformational changes and enhances 

intrinsic protein tyrosine kinase activities of the transmembrane domain 

by multi-site tyrosine phosphorylation. The activated IR results in 

phosphorylation of several cytosolic IR substrates, such as insulin 

receptor substrates (IRSs), Src homology collagen (Shc) [105], and 
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adaptor protein with pleckstrin homology (APS), Src homology2 (SH2) 

domains, and Casitas B-lineage lymphoma [106]. The phosphorylated 

proteins dock downstream effector molecules that contain the SH2 

domain, which are then able to activate two key signaling pathways. 

These pathways are the phosphoatidylinositol 3-kinase (PI3K)-AKT 

pathway that is responsible for most of the metabolic actions of insulin, 

and the mitogenic signaling pathway or the Ras/MAP kinase cascade, 

which regulates the expression of some genes and cooperates with the 

PI3K pathway to control cell growth and differentiation [107, 108].Figure 

1-7 shows the intracellular insulin signaling transduction pathway. 

 

1.4.1 Phosphatidylinositol-3 kinase (PI-3 Kinase) pathway 
 
The phosphorylated IRSs mediate insulin signaling to downstream 

enzymes by binding to a number of proteins containing the SH2 domain. 

PI3K is one of the intermediate molecules that promote the insulin signal. 

Upon activation of PI3K by IRS, PI3K phosphorylates the phosphatidyl 

inositol lipids in the plasma membrane. Consequently, generated 

phosphatidyl inositol-3, 4, 5-trisphosphate (PIP3) recruits 3’-

phosphoinositide-dependant kinase1 (PDK1). The activated PDK1 

interacts with Akt.  The serine/threonine protein kinases PDK1 and 

PKB/Akt to the plasma membrane [109].  It has been shown that AKT 

regulates the expression of several proteins, including glycogen synthase 

kinase-3 (GSK3), Glut4, NOS, and p70 s6 kinase involved in glycogen 

synthesis, glucose transport, vasodilation and protein synthesis, 

respectively. In adipose tissue PI3K appears to be important for 

stimulation of Glut4 to enhance glucose transport in adipose tissue [110, 

111].  
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1.4.2 The mitogenic signaling pathway or the Ras/MAP kinase 

Cascade. 

The activation of the MAP kinase pathway occurs when the 

phosphorylated Shc ctivates the growth factor receptor binder-2 (Grb2), 

which leads to the formation of complexes with the exchange factor 

mammalian son (mSOS) [112]. Grb2 can be activated by either IRS or 

Shc. The Grb2-mSOS complex results in subsequent activation of a 

series of effectors, such as  Ras, Raf, MEK and the extracellular signal-

regulated kinase (ERK) pathways. It has been shown that Ras is a potent 

activator of the MAP kinase pathway. The MAP kinase pathway involves 

the chronological activation of three kinases: Map kinase kinase kinase 

(Mapkkk), Map kinase kinase (Mapkk), and Map kinase (Mapk) [113]. 

Activated ERK1/2 phosphorylates a downstream ribosomal protein 

kinase, p90 rsk. Both ERK1/2 and p90rsk can be translocated to the 

nucleus where they phosphorylate translocation factors contributing to the 

mitogenic and growth-promoting effects of insulin. This signaling pathway 

is mainly implicated in cell growth, survival and differentiation [111, 114]. 

Zhang et al.demonstrate that insulin prevents the stimulatory effect of 

high levels of glucose on the expression of the renal ANG gene in IRPTC, 

at least in part, via the MAPK kinase signal transduction pathway, 

subsequently inhibiting the activation of the local renal renin-angiotensin 

system [115]. 
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Figure 1-7. Normal intracellular insulin signaling transduction pathway.Akt, 
protein kinase B; APS, adaptor protein with pleckstrin homology and src 
homology 2 domains; CAP,Cbl/Cbl-associated protein; Cbl, Cbl family of 
adapters, which comprises c-Cbl, Cbl-b, and Cbl-c/Cbl-3, is implicated in 
receptor tyrosine kinase signaling; ERK, extracellular signal-regulated kinases; 
Fln, flotillin; Grb2, growth factor receptor binding protein 2; GSK-3, glycogen 
synthase kinase 3; IR, insulin receptor; IRS1, insulin receptor substrate 1; IRS2, 
insulin receptor substrate 2; JNK, Jun N-terminal kinase; MAPK, mitogen-
activated protein kinase; MEK, mitogen-activated protein kinase kinase; mTOR, 
mammaliantarget of rapamycin; NO, nitric oxide; NOS, nitric oxide synthase; 
P70S6K, ribosomal p70 S6 kinase; PCIs, percutaneous coronary interventions; 
PDK1, phosphoinositidedependent kinase-1; PI3K, phosphatidylinositol 30-
kinase; PKC, protein kinase C; RAF, v-raf-1 murine leukemia viral oncogene 
homolog 1, raf proto-oncogene serine/ threonine protein kinase; Ras, a small 
GTP binding protein; Shc, Src homology domain adaptor homolog family 
member; SOS, mammalian son of sevenless; TC10, Rho familymember 
GTPase. [111]. 
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juxtaglomerular apparatus (JGA) is the major site of renin synthesis 

[119].The active form of renin contains 340 amino acids [120]. Renin is 

produced from several proteolytic stages of pre-prorenin. The 406 amino 

acid of pre-prorenin enters the endoplasmic reticulum (ER) [121] in which 

the N-terminal segment (the pre-) that acts as a signal peptide is cleaved, 

yielding prorenin. Prorenin enters the Golgi apparatus resulting in 

prorenin granules that are either secreted or fused to form larger 

secretory granules. Consequently, as these granules mature, active renin 

gets glycosylated and released by exocytosis [122]. Besides the kidney 

(glomeruli, tubules, and vessels), adrenal glands, ovaries, testis, 

placenta, and retina also produce prorenin [122, 123]. Prorenin was 

considered to be an inactive pro-hormone that acted as an inactive 

precursor of renin [124]. It is now thought that prorenin may have its own 

activity or is converted to renin in the circulation or local tissue. There is 

evidence to support the special activity of prorenin [125]. There is a 

correlation between circulatory renin and prorenin concentration. In DN, 

prorenin concentration may increase in an isolated manner [126, 127]. In 

the kidney, it has been suggested that prorenin uptake and intrarenal 

activation of the kidney RAS is responsible for inducing renal damage and 

microvascular changes [128].   

1.5.1.1 Prorenin receptor 

The (pro)renin receptor ((P)RR) is a single transmembrane protein, with  

350–amino acid residue, that binds prorenin and renin [129]. (P)RR is 

abundant in the heart, brain and placenta with lower levels being found in 

kidney and liver [130] as well as lesser expression in the visceral and 

subcutaneous adipose tissue[131]. (P)RR is a highly conserved protein in 

humans, rats, and mice.The binding of prorenin and renin to (P)RR is of 

pivotal importance with regard to the physiology of the local RAS, since it 

provides a mechanism to generate ANG II in a local tissue in addition to 

the ANG II circulating in plasma. Moreover, the binding of prorenin 
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induces intracellular signaling and the activation of the mitogen-activated 

protein (MAP) kinases ERK1/2, leading to upregulation of TGF-β1, 

collagen 1, and fibronectinindependent of angiotensin (Ang) II generation. 

Targeting of the renin receptor mRNA with siRNA blocked ERK activation 

and induction of TGF-beta1 [132, 133]. Additionally, (P)RR  full-length  

cleavage by furin at a single site results in the production of a soluble 

form of the receptor, which is detectable in plasma. Soluble (P)RR is 

hypothesized to bind to specific ligands and receptors and mediate signal 

transduction pathways. Understanding the physiological function of full-

length and soluble (P)RR will be important for establishing its role in 

pathology [134]. Experimental studies shows that over-expression of 

prorenin receptor in rats with normal renin levels may cause an increase 

in blood pressure, plasma aldosterone level, and promote the 

development of glomerulosclerosis [135]. The enzymatic cascade of the 

RAS, its compounds and principal functions are shown in Figure 1-8.  

 

1.5.2 Angiotensin converting enzyme (ACE) 

ACE, or kininase II is an enzyme with a wide pattern of expression and 

distribution in different tissues, including the lung, brain, kidney, testis, 

and endothelial cells of arteries and veins [136, 137]. The cloning of ACE 

showed that it is composed of 2 homologous catalytic domains [138]. 

ACE is known to be a key component of the renin-angiotensin system 

that regulates blood pressure. ACE functions primarily as a “peptidyl 

dipeptidase” that cleaves two amino acids off the C-terminus of its 

substrate. Its primary substrate was identified as Ang I [139].  Moreover, 

ACE cleaves the C-terminal of bradykinin and a number of other small 

peptides that lack a proline residue [140]. Bradykinin promotes 

vasodilation by stimulating the production of nitric oxide and arachidonic 

acid metabolites in the vascular endothelium. ACE determines the 

production of Ang II and the degradation of Ang 1–7  [141]. Therefore 

ACE is considered to regulate the balance between the RAS and the 
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the catalytic domain of somatic ACE [146]. In contrast to ACE, ACE2 

cleaves a single amino acid from its substrate at the C-terminal. The 

substrates for ACE2 are Ang I (forming Ang 1-9, from which ACE may 

form Ang 1-7), Ang II (forming Ang 1-7,) and bradykinin (1-8, forming BK 

1-7, part of the bradykinin degradation process). The major effects of 

ACE2 is to convert Ang II to Ang 1-7, which binds to its own receptor, the 

MAS receptor [147]. In animal studies, Ang 1–7 has been proposed to 

play a significant role in controlling vasodilation, apoptosis, and growth 

arrest in the kidney [148]. The local activity of the enzyme determines the 

relative levels of the vasoconstrictory and pro-oxidative peptide Ang II and 

its vasodilatory and antioxidative metabolite Ang 1–7 at their receptors 

[144]. ACE2 was initially found to be expressed in endothelia of the heart 

and in tubular epithelial cells of the kidney [145].  In the kidneys ACE2 is 

notably abundant in the glomeruli, proximal and distal tubules and at the 

apical surface of epithelial cells [149]. ACE2 is of pivotal importance for 

the physiological effects of the RAS in each tissue. It has been shown 

that ACE2 functions as a negative regulator of the RAS and 

counterbalances ACE effect [139]. ACE2 could be a possible therapeutic 

target for disorders characterized by sodium and fluid retention like 

hypertension and congestive heart failure [139]. ACE2 is involved in the 

production of different angiotensin peptides. ACE2 function is not limited 

to the RAS system. In-vitro assays shows that ACE2 can remove the C-

terminal residue from apelin and other vasoactive peptides such as 

neurotensin, kinetensin (a neurotensin related peptide), and des-Arg 

Bradykinin [139]. Studies have shown that ACE2 mutant mice exhibit late-

onset glomerulosclerosis and renal protein leakage [150].  

 

1.5.4 Angiotensinogen (Agt) and angiotensins 

Liver is the main source of Agt synthesis [151]. High glucose stimulates 

Agt gene expression via ROS generation in rat kidney proximal tubular 

cells [152]. Moreover, intrarenal RAS activation and high glucose may act 
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in concert to increase tubular apoptosis in diabetes [16]. The blockade of 

both ROS generation and activation of the intrarenal RAS improves 

theinhibitory action of insulin on Agt gene expression in IRPTCs in 

conditions of high glucose [153]. Recently, several studies have shown 

that Agt is the main source of different forms of angiotensin. The 

nomenclature for the different angiotensins is based on two systems, one 

of them uses the roman numeral and the other is based on the amino 

acid sequence that composes angiotensin I [154].  
The different forms of angiotensins is listed in Table 1-4. 

 

Table 1-4: The amino acid sequences of angiotensin peptides (substrate), and 
enzymes that convert the substrate into another angiotensin [124, 154]   
Angiotensins are locally produced in different organs or tissue based on 

activation of the RAS pathway. The angiotensin II (ANG II), angiotensin IV 

and angiotensin 1-7 peptides are produced upon RAS activation and 

interact with different cell surface receptors to induce their effects. Ang II 

is a multifunctional hormone that participates in multiple biological 

processes. Most of these actions either support or increase arterial blood 

pressure and maintain glomerular filtration [117]. In mammals, there are 

two different types of Ang II receptors, Ang II type 1 receptor (AT1R) and 
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Ang II type 2 receptor (AT2R). It has been shown that angiotensin IV 

binds to the AT4 receptor and Ang 1-7 interacts with the MAS receptor 

[155]. Figure 1-9 shows the different components of RAS. 

 

1.5.5 Angiotensins receptors 

1.5.5.1 Ang II type 1 receptor (AT1R) 

AT1R is a polypeptide containing approximately 360 amino acids that 

spans the cell membrane seven times. The sequence homology between 

AT1R and AT2R is about 30%. In humans, AT1R is located on 

chromosome 3 [156]. By interacting with Ang II, AT1 receptors induce 

cellular responses via signaling transduction, regulating the expression of 

Ang II itself [157],vasoconstriction, sodium retention, and water retention. 

The AT1R has two isoforms, AT1A and AT1B, which were identified by 

using specific antagonists for the angiotensin II receptor [158]. The 

nucleic and amino acid similarity between the two subtypes is greater 

than 90 [155]. In mice, the two isoforms of the AT1 receptor (AT1A and 

AT1B) are products of differentially expressed and regulated genes [159]. 

The differences between the AT1A, and AT1B receptor can be 

summarized as follows: (a) the protein sequence in the carboxy terminal 

tail of the molecule is different [160]; (b) there are two additional putative 

protein kinase C phosphorylation sites and an absence of apossible 

palmitoylation site in the AT1B sequence [161];(c) there is low homology 

(35%) in the 5' and 3' untranslated regions of the two mRNAs; and (d)the 

restriction maps of the AT1A and AT1B genes are quite different [161, 

162]. These differences raise the possibility that there is differential 

regulation of these two subtypes. All of the identified clinical effects of 

Ang II are mediated by the AT1R. AT1Rs have been found to be 

expressed in the heart, kidney, brain, vascular smooth-muscle cells, 

adrenal glands, platelets, and in the placenta adipocytes [163, 164]. The 

effects of Ang II, such as vasoconstriction, aldosterone and vasopressin 

release, sodium and water retention and sympathetic facilitation, are all 
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mediated by the AT1R. In addition, Ang II is involved in cell proliferation, 

left ventricular hypertrophy, nephrosclerosis, vascular media hypertrophy, 

and endothelial dysfunction [165]. Chan’s group demonstates that RAS 

blockade decreases blood pressure and proteinuria in transgenic mice 

overexpressing rAgt gene in the kidney [166] .Moreover, dual RAS 

blockade normalizes ACE2 gene expression and prevents hypertension 

and tubular apoptosis in Akita angiotensinogen-transgenic mice [167].  

 

1.5.5.2 Angiotensin II type 2 receptor (AT2R)  

The AT2R belongs to the superfamily of G-protein coupled receptors that 

contain seven transmembrane regions [168]. The AT2R is expressed 

abundantly during fetal development, decreasing in the postnatal period 

[169]. In adults the AT2R is expressed at low levels in the adrenals, 

pancreas, uterus, heart, vascular endothelium, and kidneys [170, 171]. 

AT2R is highly conserved across species and tissues within species. The 

nucleic acid sequence homology between rat and human AT2R is around 

90% [168, 172]. The physiological role of the AT2R is unclear and only 

partly understood. It has been shown that AT2R function counterbalances 

some of the effects of Ang II mediated by AT1 receptors. AT2R 

stimulation results in an antiproliferative effect/inhibition of cell growth, cell 

differentiation, tissue repair, vasodilation, and kidney and urinary-tract 

development [173]. Malfunction of the AT2R gene seems to contribute to 

congenital anomalies of the kidney and urinary tract [173]. 

 

1.5.5.3 AT4 receptor (AT4R) 

Angiotensin IV has been demonstrated to acquire unique 

pharmacological properties that are independent of classical angiotensin 

receptors (AT1R and AT2R). Angiotensin IV may be generated from Ang 

III by aminopeptidase M [174]. In 1992, the first study on the angiotensin 

AT4R showed that AT4R had a specific and high-affinity binding site for 

the hexapeptide angiotensin IV (Ang IV) [175]. Structure activity studies 
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revealed that the first three amino acid residues of Ang IV are critical for 

binding to the AT4R[176]. AT4R has been detected in spleen, colon, 

prostate, bladder, and the kidney [177]. The AT4R was reported to occur 

at high levels in the proximal tubules [178].  

 

1.5.5.4 Mas oncogene receptor (MAS) 

As mentioned above, ACE2 is able to hydrolyze Ang I into Ang-(1-9), 

which is converted to Ang-(1-7) via ACE. Moreover, ACE2 more efficiently 

catalyzes the conversion of Ang II to Ang-(1-7) making Ang II the major 

substrate for Ang-(1-7) synthesis [179]. Studies using the selective Ang-

(1–7) antagonist A-779 [180] support the existence of an Ang-(1–7) 

receptor distinct from the classical Ang II receptors AT1R and AT2R [180, 

181]. The study by Santos et al. provided the first evidence for a 

functional role of the Mas receptor as the mediator of the Ang-(1–7) 

effects in thevascular system [182]. The Masproto-oncogene was first 

detected through its tumorigenic activity in in vivo tumor assays [183]. 

The Mas receptor was first cloned and sequenced in NIH 3T3 cells from 

nude mice by Young et al. [184].  It encodes a very hydrophobic protein 

with 7 transmembrane domains featuring characteristics of class I G-

protein–coupled receptors [185]. In mammals, the gene is expressed 

predominantly in the testis, brain, and in detectable levels in the kidneys 

and heart [183, 186]. The protective effect of Ang-(1-7) has been shown 

in animal models of kidney disease as its administration reduced the 

amount of urinary protein excretion [187]. ACEi and ARB cause increases 

in ACE2 gene expression and plasma Ang-(1-7). Therefore, the 

ACE2/Ang-(1-7)/Mas axis could be a potential therapeutic target to 

control blood pressure [148, 188]. The present view of the expanded 

renin-angiotensin systemis is shown in figure 1-9. 
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Figue 1-9: The present view of the expanded renin-angiotensin system. RPR, 
renin⁄prorenin receptor; Mas, mas oncogene, receptor for Ang-(1–7); AT2R, 
angiotensin type 2 receptor; AT1R, angiotensin type 1 receptor, IRAP, insulin-
regulated aminopeptidase; Ang IV receptor AMPA, aminopeptidase A; AMPM, 
aminopeptidase M; ACE, angiotensin-converting enzyme; ACE2, angiotensin-
converting enzyme 2; NEP, neutral endopeptidase [147]. 
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1.6 Reactive oxygen species  

The Reactive Oxygen Species (ROS) includes a number of reactive 

molecules and free radicals derived from molecular oxygen. Although 

oxygen is vital for aerobic respiration, about 5% or more of the inhaled O2 

is transformed to ROS such as O-
2, H2O2, and •OH by the univalent 

reduction of O2[189]. Living organisms produce ROS as a by-product of 

normal cellular metabolism.  ROS are produced in all cell types and serve 

as important cellular messengers for both intra- and inter-cellular 

communications. Physiological levels of ROS are beneficial for the cells 

and at normal physiological conditions; ROS activate the transcription of 

vascular genes and act on the immune system as effectors molecules 

against pathogens. Moreover, ROS are a key messenger in signal 

transduction and cell cycling under normal cellular conditions [190]. The 

cell's response to ROS depends on the intensity, duration, and context of 

the signaling induced but high levels of ROS, however, produce adverse 

modifications to the cell components, such as lipids, proteins, and DNA. 

ROS can activate stress reponse genes [191]. 

 

1.6.1 Endogenous Sources of ROS 

Normally, different free radical species are produced in the body to carry 

out particular functions. Free radicals are chemical species containing a 

single unpaired electron, which is highly reactive as it seeks to pair with a 

new free electron to form either another free radical or a paired electron 

— ultimately leading to damage to the cellular and tissue system [192, 

193]. Superoxide (O2
-.), hydrogen peroxide (H2O2), and nitric oxide (NO) 

are free radical reactive oxygen species (ROS) that are essential for 

normal physiology, as well as mediating cellular degeneration in disease 

states [194]. Reactive oxidants include ROS (i.e. O2
•−, H2O2, •OH, RO2•, 

RO•, 1O2, and O3) and RNS (i.e., •NO, •NO2, and ONOO−).Cellular 

sources of ROS production include the plasma membrane NADPH 

oxidase,intracellular cytosolic xanthine oxidase, peroxisomal oxidases, 
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1.6.2 Oxidative stress  

The term “oxidative stress” refers to a shift in balance between 

oxidant/antioxidant in favor of oxidants [199]. Oxidative stress is a key 

impairment induced by various conditions, including atherosclerosis, 

hypertension, acute respiratory distress syndrome, chronic obstructive 

pulmonary disease, asthma, hepatitis, pancreatitis, cancer, and 

neurodegenerative diseases [190, 202-204]. The excess production of 

free radicals can deplete intracellular antioxidants, resulting in oxidative 

stress. It has been shown that higher levels of ROS induce necrotic cell 

death whereas lower levels lead to apoptosis [190]. 

 

1.6.3 Consequences of oxidative stress 

Oxidative stress resulting from an imbalanced ratio between ROS 

production and detoxification may also disturb physiological signal 

transduction, lead to chain reactions in lipid layers, and damage DNA 

repair enzymes [193]. In certain pathological conditions, increased 

generation of ROS and/or depletion of the antioxidant defense system 

leads to enhanced ROS activity and oxidative stress, resulting in tissue 

damage. Hypertension, diabetes mellitus, metabolic syndrome, smoking, 

as well as alcohol consumption induce renal OS [205]. The kidney is an 

organ highly vulnerable to damage caused by ROS, likely due to the 

abundance of long chain polyunsaturated fatty acids in the composition of 

renal lipids [205]. Excessive ROS production in the kidney has been 

reported in different hypertensive animal models, including angiotensin II-

induced hypertensive rats, N-omega-nitro-L-arginine-induced 

hypertensive rats [206], Dahl salt-sensitive hypertensive rats [207], and 

spontaneously hypertensive rats [208] . Blockade of both ROS generation 

and activationof the intrarenal RAS improves theinhibitory action of insulin 

on Agt gene expression inIRPTCs in conditions of high glucose [153]. 

ROS activate to translocate into the nucleus to bind and activate the 

transcription of ARE-bearing genes [209]. 
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1.6.4 Diabetic nephropathy and ROS 

Chronic hyperglycemia causes oxidative stress in tissues prone to 

complications in patients with diabetes [191]. Hypertension is one of the 

major causes of the onset of renal failure. In diabetes, increased ROS is 

commonly found in the tissues affected by hyperglycemia, including the 

kidney [191, 210]. 

 

1.6.5 Antioxidant   

Antioxidants are defined as any compound that can donate at least one 

hydrogen atom to a free radical, resulting in the termination of radical 

chain reactions [194]. Reactive species are regulated by a complex web 

of antioxidant defenses that diminish the oxidative damage to the 

biomolecules (see Table 1-6). It has also been suggested that antioxidant 

activity itself may be a consequence of ROS production [211]. Dietary 

antioxidant forms the first line of defense against oxidative stress. 

Together, water-soluble vitamin C (ascorbic acid) and fat-soluble vitamin 

E make up an antioxidant system in mammalian cells [212]. Antioxidant 

treatment attenuates renal ROS production and renal injury in the DOCA-

salt hypertensive rats [213]. In this model, treatment with a NADPH 

oxidase inhibitor significantly reduced deoxycorticosterone (DOCA-salt) 

superoxide production in the aorta [214]. In the human disease, this 

‘oxidant–antioxidant’ balance is tilted in favour of the reactive species, so 

that oxidative damage levels tend to increase. In the diabetic rat kidney, 

administration of vitamin C increases the activity of antioxidant enzymes 

such as catalase (CAT) and glutathione peroxidase (GSHPx) [215].  

 

1.6.5.1 Catalase 

Under physiological conditions, H2O2 formation and elimination are kept 

in balance by antioxidant enzymes. The initial step in all ROS formation is 

the conversion of oxygen to superoxide anion (O2
-), which in turn is 

converted to the less-reactive hydrogen peroxide (H2O2) by superoxide 
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1.7 Promoters 

The eukaryotic gene can be divided into different regions. Gene 

transcription occurs strictly in the 5’ -to- 3’ untranslated region (UTR) 

direction. The gene promoter is located at the 5’ UTR flanking region 

upstream from the start codon. At the 3’UTR flanking region, there is the 

stop codon and the polyadenylation site.The existence of the promoter is 

a prerequisite for gene transcription from DNA. The promoter is defined 

as the sequence of DNA upstream of the transcriptional start site (TSS) 

that serves to recruit the polymerase complex that will read the DNA to 

produce an RNA transcript [220]. In the eukaryote, the promoter region is 

divided into three regions. The basal promoter or core promoter region is 

conventionally located -35 to +35 relative to the transcription start site 

(TSS) [221].  Lying directly upstream from the core promoter is the 

proximal promoter. This region contains regulatory elements that code for 

gene activator ROS, which can activate stress response genes (for 

example, pathways triggered by too many ROS binding sites). There is 

also the distal promoter region, which contains distant regulatory 

elements [222, 223]. Other elements that control gene transcription are 

enhancers and silencers. Enhancers can be located upstream or 

downstream, or even within the gene they control, but they are frequently 

located upstream from the TSS [224]. Enhancers contain binding sites for 

transcription factors that increase the rate of gene transcription. On the 

other hand, silencers can inhibit transcription of the gene through different 

mechanisms, e.g. by interfering with activator binding and/or by 

preventing recruitment of the transcriptional machinery and modifying 

chromatin structure [224]. Some features of promoter sequences are 

the TATA box and CpG islands. The TATA box is a consensus of the 

ATATA (A/T)A(A/T) sequence [225]. The TATA box is located 25-50 bp 

upstream of the transcription site [226]. The TATA-binding protein (TBP) 

guides the RNA Pol II recognition of the start site(s) on a gene. It was 

found that RNA Pol II, the general transcription factors (GTFs), and the 
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TBP only support basal transcription and do not respond to gene-specific 

activators[227]. CpG islands in the promoter sequence are 

phosphodiesterase-linked cytosines and guanines,and appear at high 

frequenies in most DNA promoters [225, 227]. Chan’s group identified a 

putative insulin-responsive element (IRE) in rat angiotensinogen gene 

promoter that binds with two nuclear proteins under the action of high 

glucose and insulin [228]. Moreover, the molecular mechanism(s) of 

insulin action are mediated, at least in part, via interaction of the 

functional IRE with hnRNP F (48-kDa) [229] and hnRNP K (70kDa) [230] 

nuclear proteins in the rat ANG gene and are MAPK-dependent. An 

example of the eukaryotic insulin gene promoter is shown in Figure 1-10. 

 

 

Figure 1-10: Human insulin gene promoter as an example for eukaryotic promoter 
[231]. 
 

1.7.1 Promoter function  

A promoter is essential for transcription initiation. Promoter sequences 

have several regions that regulate the speed of transcription into the 

desired protein. If we identify the DNA segment corresponding to the 

promoter sequence, it will enable the understanding of how these 

sequences interact with various transcription factors to regulate gene 

expression. Using the promoter sequence in transgenic animals to look for 

gain-of-function or loss-of-function is a useful tool in assessing function at a 

promoter[232]. 

 

1.7.1.1 Promoter analysis and software 

Most prediction algorithms do not provide high enough sensitivity and 

specificity for promoter prediction. There are numerous challenges in 
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accurately predicting promoter sequences as the promoter region 

represents a very small proportion of the entire genome. The length of a 

promoter varies from a few hundred bases in some genes to thousands in 

others. Insufficient and incomplete information about transcription factors 

(TFs) and TF binding sites adds to thechallenge of understanding the 

nature of binding to a specific binding site in the promoter sequence [220, 

232]. Promoter prediction software is available online and can be a good 

starting point for designing reporter assays or for looking for potential 

motifs for TFs that might regulate a target gene of interest. 

 

1.7.2 Transcription factors (TFs) 

Expression of protein-coding genes in eukaryotes is a multistep process 

that starts with the initiation of transcription by RNA polymerase II at the 

promoters [226]. It is now well established that the primary control of gene 

expression lies at the level of gene transcription with many genes being 

transcribed in tissue and temporal-dependent contexts requiring a specific 

protein[232].Transcription factors are proteins that control which genes 

are turned on or off in the genome; they bind directly to certain DNA 

sequences to activate or inhibit the enzyme that controls the transcription 

of genes. In addition, these transcription factors can interact with each 

other and with the RNA polymerase enzyme itself in order to modulate 

transcription [220, 232]. Transcription factors are essential for the 

regulation of genes. They are usually members of multigene families. For 

example, members of the Rel family serve as central regulators of the 

cellular defense response against stress, injury, and external pathogens 

[233]; the basic leucine zipper (bZIP) transcription factors(the Cap ‘n’ 

Collar (CNC) family [234, 235]) interact with Keap1 (Kelch-like ECH-

associated protein 1); and the heterogeneous nuclear ribonucleoproteins 

family [236] plays a functional role in RNA biogenesis [237]. 

 

 



 

43 

 

1.7.2.1 The heterogeneous nuclear ribonucleoproteins 

The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large 

family of nucleic acid binding proteins. HnRNPs have been identified in 

the budding yeast Saccharomyces cerevisiae and most eukaryotes [238-

240]. The HnRNPs family consists of ~30 members [241]. Subsets of 

hnRNPs are strictly nuclear, while the others shuttle between the nucleus 

and cytoplasm [241]. Some nuclear proteins, including hnRNP proteins, 

exit the nucleus and rapidly re-enter in a process referred to as 

nucleocytoplasmic shuttling [242]. The main function of the proteins that 

shuttle between the nucleus and the cytoplasm is to mediate RNA export 

[243]. 

 

1.7.2.1.1 Heterogeneous nuclear ribonucleoprotein (hnRNP K) 

characterization. 

HnRNP K was first characterized as a component of the hnRNP family in 

1992 [244]. K protein is encoded by a gene mapped to chromosome 9, 17 

and 13 in humans, rats, and mice, respectively [245-247]. Cellular hnRNP 

K isoforms are produced as a result of alternatively spliced transcripts 

that vary by small insertions of five and/or 20 amino acids, respectively. 

SDS-PAGE shows that the molecular weight of the isoforms is in the 

range of 65-70 kD [248]. The predicted amino acid sequence of K does 

not show extensive homology to sequences of any known proteins [244]. 

HnRNP K gene contains evolutionarily conserved KH repeats that provide 

a structural basis for mRNA binding. The KH module is a sequence motif 

identified in a number of diversified RNA-binding proteins and is 

suggested to be the functional element responsible for RNA binding [249], 

as well as enabling these proteins to engage in both protein/nucleic acid 

and protein/protein interactions [250]. KH-like domains are found in RNA-

binding proteins in species as diverse as Escherichiacoli and 

Saccharomyces cerevisiae [251]. KH domains are almost completely 

conserved between Xenopuslaevis and mammals [252].  



 

44 

 

 

The most prevalent domain amongst the hnRNPs is the RRM that 

mediates specific interactions with the pre-mRNA except hnRNPs E/K 

[237]. HnRNPs E1, E2 and K contain three KH domains instead of RRMs 

or RRM-like domains that enable them to interact with pyrimidine rich 

binding sequences in target RNAs [253]. The KH domain was initially 

defined in hnRNP K as a conserved region of 45–55 amino acid residues 

that are repeated three times in this protein [254]. The three KH domains 

of K protein are almost completely conserved between X. Laevis and 

mammals, [255] and are well conserved between flies, nematodes, and 

yeast [256]. The structures of KH domains of various RNA-binding 

proteins have been studied using NMR and X-ray crystallography [257]. It 

has been demonstrated that KH-domains 1 and 2 of hnRNP K are 

separated from domain 3 by different motifs with the first domain 

containing two RGG boxes [254]. Most hnRNPs also harbor RGG boxes 

(repeats of Arg-Gly-Gly tripeptides) and additional glycine-rich, acidic, or 

proline-rich domains [253]. The NMR structure of the KH3 domain of the 

K protein bound to a single-stranded DNA of sequence TCCCT was 

resolved [257].  Dejgaard and Leffers [249] found that the poly (rC)-

binding of hnRNP K is mediated by the third KH domain (KH3). Similarly, 

Ito et al. [258] found that hnRNP K binds dC-rich single-stranded DNA via 

the carboxyl terminus containing the KH3 domain. In contrast, Siomi et al. 

[259] suggested that all three hnRNP K KH domains, KH1, KH2 and KH3 

play a role in binding to poly(rC) under stringent conditions (1 M 

NaClconcentration). The N terminus of the K protein is highly acidic and 

has been reported to have transcriptional activity [260]. Morover, hnRNP 

K protein contains two internal repeats not found in other known proteins, 

as well as Gly-Arg-Gly-Gly and Gly-Arg-Gly-Gly-Phe sequences, which 

occur frequently in many RNA-binding proteins [244]. K protein modular 

domains are illustrated in Figure 1-11. 

 



 

45 

 

 

 
Figure 1-11: Diagrammatic illustration of K protein modular domains. Acidic 
domain is contained in aa 1-40; KH 1 aa 46-98; KH 2 aa 149-197; KH 3 aa 391-
439; GRGG box aa 236-273; Src SH3-binding domain aa 289-315; Zikl-binding 
domain aa 209-337; K protein kinase (KPK)-binding domain aa 337-425 [250] 
 

 

1.7.2.1.2 HnRNP K localization and function 

It was assumed that all hnRNPs proteins were restricted to the nucleus 

[261]. However, hnRNP K protein is abundantly found in the nucleus, 

cytoplasm, and mitochondria belonging to a set of RNA-binding proteins, 

characterized by preferential binding to C-rich binding sites [244, 262]. 

Immunofluorescence microscopy showed that hnRNP K had been 

localized to the nucleus and cytoplasm [263]. It has been reported that 

hnRNPK shuttles between the two cellular compartments. The functional 

versatility of hnRNP K arises from its three KH domains that can interact 

with both RNA and ssDNA [255]. K protein interacts with a diversity of 

molecules involved in gene expression and signal transduction [255, 264] 

including RNA, DNA [262], and factors involved in chromatin remodeling 

[265]. HnRNP K is a nuclear protein that binds to the insulin-responsive 

element of the rat angiotensinogen gene promoter and modulates 

angiotensinogen gene transcription in the kidney[230]. Gardner’s group 

has shown the differential effects of hnRNP K on Sp1 and Sp3-mediated 

transcriptional activation of neuronal nicotinic acetylcholine receptor 
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promoter [266]. In 2004 Bomsztyk et al. showed that hnRNP K acts as a 

‘docking platform’ to coordinate nucleic acid metabolism and mediate the 

cross talk between signaling pathways. As a transcription factor hnRNP K 

may regulate gene transcription [255, 267]. For example, K protein binds 

the homopurine HnRNP K /homopyrimidine (CCCC/ GGGG) tract present 

in the CT motif [250], nested within the c-myc promoter PI [267] and the 

KB motif [268]. The ERK kinase phosphorylates the Serine residue of 

hnRNP K leading to accumulation in the cytoplasm, and enhances the 

DICE-dependant inhibition of mRNA translation [269]. This finding shows 

that hnRNP K is subject to both positive and negative regulation by 

different cellular signals [270]. Matunis et al have shown that hnRNP K 

and J play a role in the nuclear metabolism of hnRNAs, particularly for 

pre-mRNAs that contain cytidine-rich sequences [244]. HnRNP K and 

E1/E2 function as regulators of cytoplasmic mRNAs, particularly in 

erythroid cells. Although hnRNP K and hnRNP E1 share a common 

structural motif, the hnRNP K homology (KH) domain is the substrate for 

c.src phosphorylation but hnRNP E1 is not [254]. 

 

1.7.3 Heterogeneous nuclear ribonucleoprotein F (hnRNP F) 

HnRNP F belongs to the hnRNPs family and its cDNA hnRNP F was 

isolated by Matunis et al. in 1994. The purified hnRNP F protein contains 

415 amino acids, with an apparent molecular weight of 50kDa on SDS-

PAGE [271]. The open reading frame of rat hnRNP F cDNA shows a 98% 

similarity to the human counterpart [272].  HnRNP F is an abundant 

protein present in the thymus, spleen, and testis [271, 273]. Dominguez et 

al. reported on the role of the hnRNP F in alternative splicing regulation 

by remodeling RNA structures [274]. Moreover, hnRNP F has the ability 

to bind ssDNA as well as RNA, with a preference for oligo (dG) [271, 

275]. Repeats of at least three consecutive guanines, known as G-tracts, 

have been reported to be over-represented in RNA molecules, especially 

near splice sites [275]. Transient transfer of sense and antisense hnRNP 
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F cDNA in IRPTCs inhibited and enhanced Agt gene expression, 

respectively. Thus dysregulation of hnRNP F might affect renin-

angiotensin system activation and, subsequently, kidney injury in diabetes 

[229]. 

 

1.7.3.1 HnRNP F and other hnRNPs 

Interestingly, the cellular distribution of hnRNP K is similar to hnRNP F, 

but the relative levels of gene expression for each of them are different 

[271]. Structural similarity between hnRNP F and other hnRNP members 

has been reported in several studies and hnRNP F and hnRNP H are 

highly similar in sequence, structure, and binding preferences [272]. In 

HeLa cells, hnRNP H/F are nuclear localized at steady state, but both 

proteins are localized to a certain degree in the cytoplasm in some 

tissues, while substantial cytoplasmic relocalization (especially for hnRNP 

F) is reported in some tumors [276]. Although hnRNP F/H proteins are 

recognized as regulators of alternative splicing [277, 278], they could 

function as activators of gene expression of certain genes under certain 

conditions [279]. Cross-linking immunoprecipitation assays show that the 

binding site consensus sequence for hnRNP is GU-rich, while hnRNP H 

is GA-rich [280]. The expression of hnRNP F/ hnRNP H antagonize each 

other in the regulation of polyadenylation of mRNAs and display different 

binding specificities for gene regulatory elements [281]; for instance, the 

differentiation of memory cells into B-cells is regulated by hnRNP F. The 

protein level of hnRNP H in memory cells is higher than hnRNP F, which 

may prevent hnRNP F from promoting the differentiation of memory cells 

into B cells [282]. HnRNP F protein overexpression, but not hnRNP H, 

increases cell proliferation, whereas the knockdown shows the reverse 

effect [261]. It has been reported that cell proliferation is regulated 

through hnRNP F function in the nucleus through S6K2 and mTOR. In a 

recent example, hnRNP F regulates the alternative splicing of exon 11 in 

the insulin receptor gene [283]. The dysregulation of hnRNP is a 
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contributor to disease progression such as diabetes. Work by Chan’s 

group showed that overexpressing hnRNP F and hnRNP K leads to the 

inhibition of renal angiotensinogen gene expression. Moreover, many 

hnRNPs are involved in telomere biogenesis involved in tumorigenesis. 

Changes in the activities of hnRNPs A1 and F/H could lead to mis-

splicing of their mRNA target genes, which include cell proliferation 

genes. Defects in hnRNP E/K alternative splicing for c-Myc, the androgen 

receptor, eIF4E (eukaryotic translation initiation factor 4E), and p53 will 

cause unnecessary cell proliferation. HnRNPs dysregulation and 

contribution to carcinogenesis is shown in Figure 1-12[261]. 

 

1.7.4 The CNC-bZIP family 

Eukaryotic cells are frequently exposed to different environmental insults 

and harmful substances such as ROS as a side product of metabolic 

reactions.  Cells have developed adaptive mechanisms to counteract the 

environmental stresses referred to as the detoxification process. This 

metabolic process consists of three phases (I, II, and III) [284, 285]. In 

phase I, the family of cytochrome P-450 enzymes is responsible for 

adding a functional polar group to the xenobiotic insult.  Phase II further 

inactivates the electrophilic metabolites while in phase III the inactive 

metabolites are expelled outside the cell by the action of the membrane 

transporters of the multidrug resistance protein family [286, 287].  One of 

the gene families that play a role in antioxidant defence is the CNC-bZIP 

family. It is composed of four closely related proteins: p45-NFE2, Nrf1, 

Nrf2, and Nrf3 [234, 288-290], as well as two distantly related proteins 

named Bach1 and Bach2. Bach1 and Bach2 differ slightly from the other 

CNC-bZIP proteins in that they have an additional structure referred to as 

the “broad complex tramtrack bric-a-brac” (BTB) domain [291].  
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Figure 1-12 HnRNPs can contribute to carcinogenesis,  pathways (1)–(3) can 
involve multiple hnRNPs, whereas pathways (4) and (5) are specific for hnRNP 
M4 and Fus (hnRNP P2) respectively. (1) Deviations in telomere biogenesis 
resultin genome instability. (2) Defects in splicing regulation result in mis-splicing 
of transcripts involved in cellular proliferation and differentiation, which could 
alter cell-cycle regulation. (3) Changesin gene expression at the transcriptional 
or translational level can up- or down-regulate expression of oncogenes or 
tumour suppressors. (4) HnRNP M4 interacts with cell membrane receptors 
totrigger signalling pathways that promote metastasis. (5) Chromosome 
translocations involving FUS create chimaeric proteins that act as oncoproteins. 
 

1.7.4.1 What is Nrf2?  

Nrf2 is a transcription factor that regulates the antioxidant defense in the 

cells. Nrf2 transcription factor [292] is a member of the Cap‘n’Collar 

(CNC) family of bZIP proteins [197, 289]. It was first discovered in the 

Drosophila Cap ‘n’ Collar and was required for labial and mandibular 

development [293]. Nrf2 was discovered as a regulator of Globin gene 

expression in hematopoietic cells [288]. Nrf2 plays one of the most 
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important roles in cellular defenses against oxidative stress or 

electrophiles. Nrf2 activates the transcription of its target genes by 

binding specifically to the antioxidant response element (ARE) found in 

those gene promoters [294].  The antioxidant response element (ARE) is 

a cis-acting enhancer element located in the 5’ flanking region of many 

phase II detoxifying and antioxidant genes [295]. Many Nrf2 regulated 

genes have been identified such as glutamate–cysteine ligase catalytic 

subunit (GCLC) and heme oxygenase-1 (HO-1)), xenobiotic metabolism 

enzymes (e.g. NADPH quinone oxidoreductase 1 (NQO1) and 

Catalase)[296, 297]. The highly conserved C-terminus of Nrf1, Nrf2 and 

Nrf3 is similar. It is responsible for DNA binding and heterodimerisation 

with small Maf proteins in the nucleus [298].  On the other hand, the Neh2 

and Neh6 domains of Nrf2 were shown to be a redox-insensitive degron 

[299]. The gene structure of Nrf2 is shown in Figure 1-13a. 

 

 

Figure 1-13: Schematic representation for Nrf2 and Keap1domain composition 
(A) Nrf2 consists of six highly conserved domains, Neh1 to Neh6 (NRF2-ECH 
homology: Neh). Neh2 domain is highly conserved among species and binds 
with Keap1. Neh4 and Neh5 are transactivation domains that bind to CBP. Neh1 
is a basic region-leucine zipper structure for dimerization with small Maf and 
DNA binding. (B) Domain structure of Keap1 protein is as follows; NTR (N-
terminal region; a.a. 1-60), BTB (a.a. 61-179), intervening region (IVR; a.a. 180-
314), DC domain harboring six Kelch-repeat domain (a.a. 315-359, 361-410, 
412-457, 459-504, 506-551, 553-598) and C-terminal region (CTR; a.a. 599-
624). BTB domain and N-terminal portion of IVR are regarded important for the 
association with Cul3. DC domain mediates interaction with Neh2 domain of 
Nrf2 [300]. 
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1.7.5 Keap1 

Kelch-like ECH associated protein 1(Keap1), discovered in 1999, belongs 

to the Kelch family, which was identified as an adaptor of Nrf2 

ubiquitination. Murine Keap1 consists of 624 amino acids with 95% 

similarity between mouse and human [301] and a high number of cysteine 

residues, with murine and rat Keap1 containing 25 cysteine residues and 

human Keap1 containing 27 cysteine residues.Keap1 represses the 

nuclear activation of antioxidant responsive elements by Nrf2 through 

binding to the amino-terminal Neh2 domain [302]. Keap1 consists of 

different functional domains (Figure 1-13b). The NTR and the BTB 

domains are essential for homodimerisation of Keap1. The intervening 

region (IVR) is a redox-sensitive cysteine-rich region and the DGRs can 

interact with actin filaments. Moreover, three conserved arginines (Arg-

380, Arg-415, Arg-482) within this domain are reportedly responsible for 

the binding of Nrf2 via its Neh2 domain, whereas the BTB and IVR 

domains are necessary for thermomodulation and degradation of Nrf2 

[302-305] through binding of Cullin 3 (Cul3), a ubiquitin ligase adaptor 

protein [306]. 

 

1.7.5.1 Nrf2 pathways  

Under basal conditions, the Nrf2 protein is negatively regulated in the 

cytosol by Keap1. Keap1 prevents Nrf2 translocation to the nucleus by 

acting as an adaptor to facilitate binding to Cullin 3-based E3 ligase [302]. 

This complex promotes the degradation of Nrf2 via the ubiquitin 

proteasome system. The E3 ubiquitin ligase is one of three enzymes 

required for protein ubiquitination [307]. The E1 ubiquitin ligase acts as 

aubiquitin activating enzyme and E2 as a conjugate enzyme, while the E3 

substrate adaptor protein complex works cooperatively to attach ubiquitin 

to a defined protein [308]. The basal level of Nrf2 maintains the basal 

gene expression of the cytoprotective enzymes. As Nrf2 activity is 

regulated by its degradation and new Nrf2 is de novo synthesized, Nrf2 
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response to the oxidative and electrophilic stress is fast and sensitive. 

Under oxidative stress and/or electrophilic effect, or under the effect of 

chemopreventive compounds, Nrf2 liberate separates from its adaptor 

protein, Keap1, and translocates into the nucleus [309, 310]. The import 

of Nrf2 into the nucleus is regulated by its nuclear localization signal 

(NLS) located in its C-terminus. In the nucleus, Nrf2 binds to the small 

Maf protein, a co-transcription factor, forming a heterodimer. This 

heterodimer binds to the ARE region in the promoter of genes involved in 

phase II detoxification and antioxidant defense [296, 297, 309]. 

 

Different mechanisms have been proposed to explain the activation and 

translocation of Nrf2, including Keap1 modification and Nrf2 

phosphorylation [311, 312].  Under cellular stress, He et al. demonstrate 

the important role of the Keap Cys273 and Cys288 in the suppression of 

Nrf2 gene expression [313]. Moreover, the Bach1 protein competitively 

and preferentially binds to Keap1 [314] leading to Nrf2 release and 

translocation into the nucleus. Several studies have shown that Bach1 

represses Nrf2 downstream genes, such as NQO1 and GST, by binding 

to the ARE and inhibiting ARE-mediated gene expression [314]. It 

appears that activation of several protein kinases such as PI3K, PKC, 

JNK, p38MAPK and ERK induce Nrf2 phosphorylation, facilitating the 

dissociation of Nrf2 from Keap1 and subsequent translocation to the 

nucleus [315]. It has been shown that PKC induces modification of Keap 

1 at cysteine 151 and phosphorylates Nrf2 at amino acid serine 40, 

leading to stabilization and nucleartranslocation of Nrf2 as well as 

increased drug resistance [316]. The Keap1-Nrf2 signaling pathway is 

illustrated in Figure 1-14. 

 

 

 



 

53 

 

 

 

Figure 1-14: General scheme for the induction of cytoprotective genes through 
the Keap1–Nrf2–ARE-signaling pathway. In the basal state (left panel), Nrf2 
exhibits low steady-state levels and rapid turnover due to ubiquitination and 
degradation by the proteasome. Chemopreventive inducers (right panel) such as 
phenolic antioxidants, oltipraz, sulforaphane and triterpenoids increase the 
nuclear translocation of Nrf2 primarily through interactions with Keap1 that 
impare ubiquitination of Nrf2 and subsequent proteasomal degradation. 
Phosphorylation of Nrf2 by a series of kinases also affects its fate and 
distribution. After translocation to the nucleus, Nrf2 transactivates the AREs of 
cytoprotective genes affecting several protective systems, such as 
conjugating/detoxication enzymes, antioxidative enzymes, the proteasome, 
transporters, molecular chaperones and anti-inflammatory pathways [309]. 
 

 

1.7.5.2 Oltipraz and Trigonelline compounds 

Oltipraz, [5-(2-pyrazinyl)-4-methyl-1,2-dithiol-3- thione] is a 

chemopreventive agent for liver and colorectal cancer [317, 318]. 

Comprehensive mechanistic studies suggest that oltipraz exertscancer 

chemopreventive effects through the induction of glutathione S-

transferase (GST) [319].Studies on the mechanisms of action of oltipraz 

indicate its ability to induce a set of detoxification and antioxidant 

enzymes through the activation of intracellular signaling mediated by the 
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nuclear transcription factor named Nrf2. Oltipraz treatment disrupts the 

interaction between Keap1 (Nrf2 inhibitor) and Nrf2, by liberating Nrf2 for 

nuclear translocation and binding to AREs of the antioxidant gene. 

Moreover, Oltipraz increases the Nrf2 promoter activity via ARE/EpRE in 

human hepatoma HepG2 cells [319]. Exposure of experimental animals 

to oltipraz triggers Nrf2 expression and translocation to the nucleus [319, 

320] as well as enhances Nrf2’s antioxidant response element (ARE) 

binding activity. Cillard’s group suggest that oltipraz induced a production 

of reactive oxygen species that probably acted as second messengers in 

order to trigger the transcription of many genes [321].Kelley et al. report 

that weekly oral oltiraz in chronic smokers did not increase mRNA or 

enzymatic activity of phase II enzymes and resulted in no change in 

glutathione levels. Thus, despite moderate drug-related toxicity, there was 

no significant effect on pharmacodynamic or surrogate risk biomarkers 

[322]. Trigonelline alkaloid is a natural compound present in green coffee 

beans [323]. Trigonelline alkaloids have been identified to inhibit Nrf2 

translocation [324]. Arlt et al. demonstrated in different pancreatic cell 

lines that Trigonelline efficiently suppressed Nrf2 activity upon treatment 

with tert-butylhydroquinone -induced Nrf2 activation [325].Trigonelline has 

hypoglycemic, hypolipidemic, neuroprotective, antimigraine, and anti-

tumor activities.  Trigonelline alkaloid acts by affecting β cell regeneration, 

insulin secretion, activities of enzymes related to glucose metabolism, 

and reactive oxygen species [326].  
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1.8 Experimental animal models 

Experimental animal models in fundamental research are crucial to 

advancing knowledge. A model provides researchers with practical tools 

to understand the pathophysiology of disease and to develop drugs for its 

treatment. Our knowledge of the pathophysiology of diabetic nephropathy 

has increased after using diabetic rodents. In diabetes, there are several 

surgical or non-surgical approaches that have been developed to induce 

diabetes in rodents [327]. The surgical method is the most straightforward 

way to induce diabetes; the pancreas of the subject of interest is removed 

in part or completely such that pancreatectomized rats and mice are the 

most commonly used. The non-surgical methods include either damage 

to the pancreas (especially the beta cells by chemical administration) or 

by genetic modification to the insulin gene [328].  

 

1.8.1 Induction of type 1 diabetes 

1.8.1.1 Chemical induction  

(A) Streptozotocin model of diabetes mellitus 

Streptozotocin (STZ) administration has been used to induce 

hyperglycemia in rodents. STZ is a powerful alkylating agent that 

interferes with glucose transporters and induces beta cell damage in the 

pancreas [329]. Although STZ is widely used to induce T1D, it has some 

disadvantages such as the high incidence of liver and kidney toxicity and 

the development of tumors [330]. Thus, the data collected from STZ-

induced diabetes should be analyzed carefully. Tay’s group has reported 

that even by careful optimization of the STZ dose while a stable and 

reproducible diabetic murine modelwas established it was accompanied 

by renal function impairment and acute tubular necrosis [331]. Therefore, 

there are significant limitations to STZ-induced diabetes attributable to 

dosage and duration of the exposure.  
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(B) Alloxan model of diabetes mellitus 

Another popular type 1 diabetes drug inducer is Alloxan, broadly used in 

mice, rats, rabbits and dogs. Alloxan administration provides a 

pathological biomodel to investigate the substance with antioxidant 

activities in vivo [332].  In addition to Alloxan, there are several less 

commonly used chemicals that induce diabetes, such as Vacor, Dithizone 

and 8-hydroxyquinolone [333].  

 

1.8.1.2 Genetically manipulated mice  

 (A)The non-obese diabetic (NOD) 

The NOD mouse is a hypoinsulinemia type 1 diabetic model whose renal 

abnormalities gradually develop with age. In this mouse model, the 

autoimmune diabetes is caused by destruction of the insulin-producing 

beta cells in the pancreasat approximately 5 months of age, although the 

exact age of diabetes onset is somewhat variable[334, 335]. The NOD 

mouse has proved to be an interesting model of type 1 diabetes and is 

particularly useful for studying the early features of diabetic nephropathy. 

Studies of the acute phase of diabetes in the NOD mice showed gradual 

increases in plasma creatinine with significant changes in the kidney 

weight as well as mild changes to the glomeruli [336]. It has been 

reported that in the early stages, NOD mice have high blood pressure, 

increased GFR, as well as glomerular enlargement, which in the late 

stage shows severe mesangial expansion and reduced podocyte 

numbers[337]. Additionally, the RAS is affected; ACE activity is higher in 

the tubules and ACE2 activity is decreased, leading to a change in the 

ACE/ACE2 ratio that may contribute to renal damage [338, 339].  

 

(B)Insulin-2 Akita 

Insulin-2 Akita (Ins2Akita) mice are genetically manipulated to develop 

insulin-dependent diabetes. This model is characterized by more severe 

hyperglycemia, hypoinsulinemia, polydipsia, and polyuria in males than in 
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females, which starts around three to four weeks old [340]. The Ins2Akita 

mutation is autosomal dominant, and is the result of a G-A change at 

position 1907. This mutation alters the seventh amino acid in the A chain 

of mature insulin, Cys96 (TGC) to Tyr (TAC). Jackson Laboratories 

reported that they expected the transition would disrupt a disulfide bond 

between the A and B chains, inducing a major conformational change in 

insulin 2 molecules.  Homozygous mice for the Ins2Akita allele fail to 

thrive and die within one to two months [335]. Akita mice are 

commercially available from Jackson Laboratories. Studies done by Dr. 

Chan’s group and other groups have shown a severe renal histological 

change in the glomeruli and renal tubules, especially in renal proximal 

tubules [218, 341]. Chan’s group has also shown that at 20 weeks of age 

the Akita symptoms include hyperglycemia, hypoinsulinemia, albuminuria, 

and hypertension accompanied by alterations to the RAS system, 

including gene expression changes in angiotensinogen, RAS enzymes, 

and receptors [218]. Insulin pellets implanted in Akita mice at week 12 for 

four weeks almost normalized the glycemic levels, blood pressure, and 

albumin excretion [341]. The advantage and disadvantage of different 

type 1 diabetic models are listed in Table 1-7.  

 

(C) Animal models of type 2 diabetes 

Type 2 diabetes disorders arise as a result of insulin resistance and 

impaired insulin secretion. Various animal models have been developed 

to study type 2 diabetes. Db/db and KKAy mice are two models of type 2 

diabetes widely used to study DN [342, 343]. These two models are 

characterized by albuminuria, mesangial matrix expansion, and 

thickening of glomerular capillary basement membrane [344].  Db/db mice 

were first identified in 1966 [345] . The db gene encodes for a point 

mutation in the leptin receptor, which causes impairment in leptin 

signaling and leads to hyperphagia, obesity, hyperleptinemia, and 

hyperinsulinemia [346].  In the rat, Goto Kakizaki (GK) rats are type 2 
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diabetic models that develop a renal injury similar to human diabetic 

nephropathy [347]. The GK rat model are characterized as a moderate 

type 2 diabetes arising at about three to four weeks of age with insulin 

resistance [348], in addition to a marked renal injury in podocyte and 

mesangial cells and thickening of the basement membrane [349]. Beside 

spontaneous or genetically-derived diabetic animals, there are several 

methods to induce diabetes of diet and/or chemical induction, as well as 

transgenic/knock-out diabetic animals. Table 1-8 shows different 

examples of animal models with T2D. 

 

 

 

Table 1-7: Some mouse models of type 1 diabetes used to study DN [335]. 
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Genetic and environmental interactions contribute to the development of 

hypertension [351]. Animal models are vital for studying the genes 

involved in the pathogenesis of hypertension disease. The perfect animal 

model should resemble hypertension in humans. There is no single 

species that can answer all the questions that are raised in understanding 

the etiology and regulation of hypertension [352]. Thus, several animal 

models are required to answer some individual hypertension traits. 

Understanding the etiology of the hypertension in the animal model will 

lead to developing treatments to control increased hypertension. 

 

1.8.2 Mouse models of hypertension 

Hypertension can be induced in animals in several ways, including by 

surgical induction in dogs. Deoxycorticosterone acetate-salt (DOCA-salt) 

is a common endocrine method to induce hypertension. The generation of 

hypertension usually requires partially removing some renal mass in 

addition to DOCA administration and a high-salt diet [353]. Dahl salt-

sensitive rats develop salt-sensitive hypertension and organ damage 

[354, 355]. Zhuo et al. have shown that ANG II infusion induce 

hypertension mediated through AT1 receptor [356]. 

 

1.8.2.1 Genetically modified animal models 

Genetic engineering techniques are used as tools to develop new types 

of animal models called transgenic or knockout models. Transgenic refers 

to the overexpression of a foreign gene, usually from a different species, 

that targets certain organelles, cells, and/or tissues [352]. Contrary to a 

transgenic model, a knockout model is characterized by the inactive, or 

"knocked out," endogenous gene by its replacement or disruption [357].   
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1.8.2.2 Transgenic models of the Renin Angiotensin System  

The Murine Renin (Ren2d) gene was introduced into the rat’s genome. 

Ren2d-Tg rats developed high blood pressure by eight weeks of age 

[358]. In that model, administering RAS blockers halted the increase in 

systolic blood pressure [359]. Bohm et al. suggested that the 

augmentation of blood pressure was due to an increase in the formation 

of local ANG II [359]. The same transgene was introduced into a single 

renin-gene mouse (Ren1c). Surprisingly, it did increase the blood 

pressure of the mice. The differences in the kinetics of angiotensin 

cleavage by renin in the two species account for the differences in 

observations [360, 361]. 

 

The renin substrate has been described as a gene that potentially 

underlies the development of hypertension [362] and the human 

angiotensinogen gene has been cloned into animal models studying this. 

In situ hybridization of the hAgt-Tg mice shows that human Agt mRNA is 

expressed in the renal proximal tubules, especially in the epithelial cells 

[363]. Similarly, transgenic mice with rat angiotensinogen exhibit an 

increase in systolic blood pressure. Studies by Chan’s group in which 

angiotensinogen was overexpressed in the renal proximal tubules driven 

by the mouse's KAP2 promoter reported that overexpressing rat Agt in 

the mouse renal proximal tubule cells resulted in kidney injury, increased 

albumin excretion in the urine, and high blood pressure. Moreover, RAS 

blockade decreases blood pressure and proteinuria in transgenic mice 

overexpressing rat angiotensinogen gene in the kidney [166]. 

HumanAT1R has been introduced into mice under the control of an 

alpha-myosin heavy chain promoter. The mice overexpressed AT1R in 

cardiomyocytes and showed cardiac hypertrophy with interstitial collagen 

deposition and died prematurely of heart failure [364]. Meanwhile, 

overexpressing human AT1R in rat podocytes, under the control of a 
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nephrin promoter, resulted in increased albuminuria around 8-15 weeks 

of age [365]. Moreover, damage in the glomerulus was reported as a 

result of the formation of pseudocysts in the podocytes that were followed 

by foot process effacement and local detachments enhancing nephron 

loss [365]. Taken together, we conclude that overexpression of AT1R in 

cardiomyocytes or podocytes causes tissue damage and could 

consequently lead to death [366]. 

 

AT2R transgenic mice were generated using the alpha-myosin heavy 

chain promoter [367]. Compared to the wild type, AT2R expression was 

higher in the hearts of the transgenic mice while there was no significant 

change in blood pressure. When ANGII infusion was introduced into the 

wild type and AT2-Tg, the transgenic mice's blood pressure decreased 

compared to the wild type. It has been shown that overexpression of 

AT2R under the control of the alpha-myosin heavy chain promoter leads 

to a decrease in AT1R sensitivity [368].  

 

Human ACE cDNA has been used to generate hACE-Tg rats. ACE was 

expressed in the cardiac ventricles under the control of a 2.1-kb rat 

myosin light chain-2 (rMLC-2) promoter [369]. Under normal conditions, 

no significant change was noted between the wild type and the transgenic 

model. However, induction of hypertension resulted in more damage in 

the transgenic mice compared to the wild type. In addition, there was 

increased cardiac hypertrophy as well as induction of ANF and collagen 

III expression compared to the wild type [369]. As mentioned in section 

1.5.3, ACE2 acts on its substrate ANG II to produce Ang-(1-7), exerting 

effects that are opposite to those of ANG II mediated by the MAS receptor 

[370]. Spontaneously hypertensive stroke-prone rats (SHRSP) are 

hypertensive with low ACE2 gene expression [371]. Michael Bader's 

group has generated ACE2 transgenics expressing human ACE2 in rat 
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vascular smooth muscle under the control of the SM22 promoter [371]. 

The transgenic rats were produced in a SHRSP genetic background. The 

phenotype of these mice indicated low blood pressure compared to the 

SHRSP control group. Moreover, the administration of ANG II to SHRSP-

ACE2-Tg and SHRSP rats attenuated arterial blood pressure in 

transgenic rats compared to the non-transgenic rats with the same 

background [371]. Based on these studies, the promise of transgenic 

mice for the study of ACE2 and as potential targets for therapeutic 

interventions in hypertension is sustained [372]. 

 

1.8.3 Knockout models and RAS system 

Knock out or “gene suppression” is another strategy used to study 

causative genes that are essential for hypertension development. 

Suppression of gene expression is used to examine the physiological 

effects of disrupting basal gene expression, which could reveal the 

fundamental function of the gene. There are different types of gene 

suppression referred to as knock-out, knock-down, and knock-in [373]. 

Through these techniques, a number of models have been produced to 

understand the multifactorial causes of essential hypertension. Knocking 

out the Ren2 gene in mouse strains (129/Ola) had no significant effect on 

blood pressure, while the Ren1 knockout causes reduction of blood 

pressure in the females of both strains [374, 375]. Knocking out 

angiotensinogen results in hypotensive mice [376]. Similarly, the ACE 

knockout gene results in hypotensive mice, especially in males [377]. 

Interestingly, studies on the SNGFR of ACE knockout mice indicate that 

TGF is absent in ACE-deficient mice but can be restored by acute 

infusion of ANG II [378]. Deleted ACE2 from the X chromosome in mice 

results in an impairment in heart function [379]. The loss of ACE2 results 

in cardiac contractility deficiency, increased angiogenesis II levels, and 

upregulation of hypoxia-induced genes in the heart [380]. Angiotensin II 

receptors have been knocked out in the mouse; the AT1R-A knockout 
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resulted in hypotensive mice accompanied with no TGF response [381] 

and showed hypertrophy of the JGA, while mice deficient in AT1B had 

normal phenotypes. These results suggest that AT1a can compensate for 

the role of AT1Breceptors [381]. 

 

1.8.4 Therapy 

Several studies demonstrate local RAS activation in different organs such 

as lipids [382], heart [145, 383], kidneys [128] and the vascular system 

[384] in diabetics. Angiotensinogen is mainly produced in the liver, while 

the kidney is the major source of renin [385]. ACE produced in the lung 

[386] (RAS) participates significantly in the pathophysiology of 

hypertension, congestive heart failure, myocardial infarction, and diabetic 

nephropathy [387]. In diabetic nephropathy, the use of antihypertensive 

drugs slows the progression of the disease with the control of 

hyperglycemia [388, 389]. The RAS blockade focuses mainly on 

disturbing the RAS signal either by targeting its enzymes, such as renin 

and/or ACE, or by blocking the ANG II receptor (AT1) [389]. Inhibitors of 

the RAS are capable of lowering BP. Inhibition of renin activity results in a 

decreased angiotensin I production, consequently suppressing the 

generation of active peptide angiotensin II. For example, Aliskiren is a 

drug used to directly inhibit renin activity [390].  Renin inhibitors show 

antihypertensive and antialbuminuric effects in humans and in animal 

models [391]. The antihypertensive effects of the direct renin inhibitor 

Aliskiren lasts substantially longer after treatment withdrawal than 

expected based upon its plasma half-life [392]. It is thought that since the 

main producer of circulatory renin is the kidney, and Aliskiren 

accumulates in the kidney, it lasts for a longer time following treatment 

cessation than expected based upon its plasma half-life [393]. 
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Hypertension, diabetes and hypercholesteremia conditions are 

associated with activation of ACE tissue that disrupts 

vasodilation/vasoconstriction balance. Pathological activation of tissue 

ACE results in increases of local Ang II  [394].  ACE inhibitors (ACEi) 

have been shown to effectively lower blood pressure and play a 

significant role in renal and cardioprotective effects.  ACEi decrease the 

biosynthesis of Ang II but do not inhibit the non-ACE ANGII generating 

pathway [395] (Figure 1-14). ACE inhibitors are classified based on their 

lipophilicity index and rate of dissociation from ACE in vitro. ACEi 

inhibitors such as Ramipril and Trandolapril have high tissue affinity with 

a high lipophilicity index and slow dissociation from ACE while Enalapril 

and Captopril have low tissue affinity [396, 397]. It has been proposed 

that high affinity tissue may result in better vascular protection. In renal 

disease, ACEi treatment promotes reduction of blood pressure and 

proteinuria, which are important biomarkers of renal disease [398]. In 

addition to the Angiotensin I substrate, ACE has different substrates, 

which include Bradykinin, substance P, and other Tachykinins [399]. 

Thus, some clinicians have reservations about using ACEi because of 

accumulation of ACEi substrates. 

 

The biologically active Ang II protein interacts with at least two known 

membrane receptors. A continual increase of Ang II levels results in 

binding to AT1R, consequently increasing blood pressure, renal damage, 

and myocardial hypertrophy. Ang II production is formed not only by the 

action of the ACE on Angiotensin I but also via pathways involving 

cathepsin G, elastase, tissue plasminogen activators, 

chymostatinsensitive AT-II-generating enzymes, and chymase [400]. 

Therefore, ACEi are only partial inhibitors that reduce the formation of 

Ang II, setting the stage for the development of a specific and selective 

blocker. The angiotensin receptor blockers (ARBs) were developed to 

completely block the RAS and decrease the adverse effects seen with 
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ACE inhibitors. In contrast to ACE inhibitors, ARBs allow activation of AT2 

receptors [401, 402]. Several ARBs currently on the market that are used 

for hypertension and cardiovascular complications include Losartan, 

Valsartan, Candesartan, Eprosartan, and Irbesartan [402]. Losartan is a 

selective oral AT1R antagonist. It is an approved drug for diabetic 

nephropathy treatment. Garcha et al. showed that Losartan is more 

selective towards binding AT1 than AT2 receptors by 30,000 fold [403]. 

ARBs result in a decrease in endothelial dysfunction, a reduction of 

proteinuria, and the preservation of kidney function in diabetic patients 

[404]. In some patients whose blood pressure was poorly controlled by 

either ACEi or ARBs, a combination treatment with the two inhibitors is 

recommended in order to increase the antihypertensive efficacy in those 

patients. It has been reported that ACEi or ARBs are ideal 

antihypertensive agents in patients with CKD [405]. The ACE / ACE2 

balance affects hypertension development, Figure 1-15.  

 

 

Figure 1-15; schematic diagram shows the balance between ACE and ACE2. 

 

ACE2 is expressed in different organs including the lungs, stomach, 

spleen, intestine, bone-marrow, kidney, liver, and the brain as a 

membrane-bound protein [406]. ACE2 degrades ANG II to angiotensin (1-

7)[406].  Interestingly, ACEi can increase Ang-(1–7) levels, mimicking the 
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action of ACE2 on Ang II [395]. Thus, ACE2 has been suggested as a 

candidate for the development of new therapeutic strategies [406]. 

Recently, human recombinant ACE2  (hrACE2) has been developed and 

used to study its efficiency at degrading ANG II in vivo and in vitro. 

Studies showed that ACE2 can rapidly metabolize Ang II by lowering the 

plasma Ang II levels and increasing angiotensin-(1-7) levels [407, 408]. In 

C57BL/6J mice, the increase in blood pressure triggered by Ang II 

infusion was completely blocked by the administration of recombinant 

ACE2 [407]. 

 

The disadvantages of antihypertensive drugs include undesired side 

effects, the lack of specificity, and a short lifetime [409]. Moreover, these 

types of drugs deal with the symptoms of the disease rather than 

addressing the causes of disease. Gene therapy is a novel approach that 

results from the integration of advances in technology and molecular 

biology techniques. Gene therapy approaches provide us with a 

possibility of producing a long term therapy, which is tailored to the 

patient’s own genetic material. Several studies have been exploring these 

technologies by transferring the coding regions of vasodilatory genes into 

hypertensive animal models such as Kallikrein [410, 411], and showed 

reductions in blood pressure. The second approach includes silencing the 

genes involved in vasoconstrictor responses under constitutive promoters 

[412]. The gene therapy field holds many promises but requires more 

investigation, particularly with regard to how to deliver a gene to its 

intended target. 
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1.9 Objectives and hypothesis of this study 

In recent years, Chan’s group has used invitro and invivo models  to 

establish the links between stressinduced in the proximal tubules and the 

progress of kidney diseases such as diabetes and hypertension. The 

central aim of this thesis is to identify the molecular mechanism(s) 

underlying the inhibition or induction of renal Agt by insulin treatment or 

catalase overexpression, respectively, in RPTs of  type 1 diabetic mice. In 

addition, the aim is also to elucidate the possible pathway(s) that might be 

involved in Agt regulation in ROS activation. Invitro studies have shown 

that insulin inhibits the stimulatory effect of high glucose levels on rAgt 

gene expression and the induction of hypertrophy in IRPTCs [153, 413-

415]. Additionally, Wie et al [229, 230] have identified an insulin-

responsive element (IRE) in the rat Agt gene promoter that binds to 

hnRNP F and hnRNP K. In chapter 2, we hypothesized that insulin 

prevention of hypertension and kidney injury is mediated viainhibition of 

renal Agt gene expression and upregulation of hnRNP F and hnRNP K 

expression in the Akitamouse model of type 1 diabetes. 

 

Aim I 

The aim was to investigate the contribution of hnRNP F and hnRNP K on 

insulin inhibition of renal Agt gene expression, prevention of hypertension, 

and kidney injury in Akita mice.In addition, the aim was also to elucidate 

the possible mechanism of action underlying insulin activation of hnRNP 

F / hnRNP K and Agt downregulation. 
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ROS mediate high-glucose stimulation of angiotensinogen gene 

expression in RPTCs invitro [152, 416].  Catalase (Cat) overexpression 

attenuates hypertension and RPTC apoptosis in non-diabetic Agt/Cat-Tg 

[219] and diabetic Cat-Tg mice [417]. Protection against oxidative 

damage is accomplished by a complex defense system composed of 

antioxidant molecules (such as Nrf2) and antioxidant enzymes (SOD, 

GSH and Catalase) that convert excessive reactive species to less 

reactive and less damaging forms [418]. Several reports indicate that the 

persistent accumulation of Nrf2 in the nucleus is harmful. Under oxidative 

or electrophilic stress, Maher et al. [419] reported that Nrf2 regulates the 

expression of several multidrug resistance-associated proteins, which 

could lead to chemotherapeutic drug resistance.  Little information is 

available about the functional relationship between ROS, Nrf2 and Agt 

gene expression in diabetic RPTCs, which may be critical for 

development of diabetic renal injury. In chapter 3 we hypothesize that 

hyperglycemia, with hypo-insulinemia and low catalase activity, induces 

an ROS activation that exerts a stimulatory effect on renal Agt through 

Nrf2 activation; whereas Cat overexpression in RPTs of Akita mice 

attenuates Nrf2-Agt activation axe, systolic blood pressure, and kidney 

injury of diabetic mice.   

 

Aim II  

This study investigated the impact of catalase overexpression in RPTCs 

on Nrf2 stimulation of Agt gene expression and development of 

hypertension and renal injury in diabetic Akita transgenic mice. 
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ABSTRACT 
Aims/hypothesis We investigated whether heterogeneous nuclear 

ribonucleoprotein F and K (hnRNP F/K) mediate insulin inhibition of renal 

angiotensinogen (Agt) gene expression and prevention of hypertension and 

kidney injury in type I diabetic Akita mice.  

Methods Adult male Akita mice (12 weeks of age) were treated +/- insulin 

implants and euthanized at week 16. Untreated non-Akita littermates served as 

controls. The insulin effects on blood glucose, systolic blood pressure (SBP), 

renal proximal tubular cell (RPTC) gene expression and interstitial fibrosis were 

studied. We also examined immortalized rat RPTCs stably transfected with 

control plasmid or plasmid containing rat Agt gene promoter in vitro.  

Results Insulin treatment normalized blood glucose levels and SBP and inhibited 

renal Agt expression but enhanced hnRNP F/K and angiotensin-converting 

enzyme 2 (Ace2) expression, attenuated renal hypertrophy and glomerular 

hyperfiltration, decreased urinary albumin/creatinine ratio, as well as Agt and 

Ang II levels in Akita mice. In vitro, insulin inhibited Agt but stimulated hnRNP 

F/K gene expression in high glucose media via p44/42 mitogen-activated protein 

kinase signaling in RPTCs. Transfection with hnRNP F or hnRNP K small 

interfering RNA prevented insulin inhibition of Agt gene expression in RPTCs.  

Conclusions/interpretation These data indicate that insulin prevents hypertension 

and attenuates kidney injury, at least in part, through suppressing renal Agt gene 

transcription via up-regulation of hnRNP F/K expression in diabetic Akita mice. 

HnRNP F/K may be potential targets in the treatment of hypertension and kidney 

injury in diabetes.  
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ABBREVIATIONS 

ACR, albumin-creatinine ratio; ACE, angiotensin-converting enzyme; Ace2, 

angiotensin-converting enzyme-2; Agt, angiotensinogen; Ang II, angiotensin II; 

Ang 1-7, angiotensin 1-7; DMEM, Dulbecco’s modified Eagle’s medium; 

ELISA, enzyme-linked immunosorbent assay; GFR, glomerular filtration rate; 

hnRNP F, heterogeneous nuclear ribonucleoprotein F; hnRNP K, heterogeneous 

nuclear ribonucleoprotein K; rAgt, rat angiotensinogen; RAS, renin-angiotensin 

system; RPTs, renal proximal tubules; RPTCs, renal proximal tubular cells; RT-

qPCR, real time-quantitative polymerase chain reaction; SBP, systolic blood 

pressure; siRNA, small interfering RNA; Tg, transgenic; TGF-β1, transforming 

growth factor-beta 1;  WT, wild type 
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INTRODUCTION 

Intensive insulin therapy is the most effective treatment for preventing the 

progression of nephropathy in type 1 diabetes, though the underlying 

mechanisms remain incompletely understood [1-3]. The existence of a local 

renin-angiotensin system (RAS) within the kidney is well established [4]. Renal 

proximal tubular cells (RPTCs) express all components of the RAS [5-7]. 

Intrarenal RAS gene expression and urinary angiotensinogen (Agt, the sole 

precursor of angiotensins) levels are elevated in diabetic and hypertensive animal 

models and in humans with hypertension and/or diabetes [8-12]. Transgenic (Tg) 

mice specifically overexpressing murine Agt in their RPTCs develop 

hypertension, albuminuria, and tubular apoptosis [13-15]. Moreover, renal Agt 

overexpression and hyperglycemia act in concert to enhance hypertension and 

kidney injury in diabetic mice [16,17] , indicating important roles for intrarenal 

RAS activation and hyperglycemia in the development of hypertension and 

kidney injury in diabetes. 

We previously reported that insulin inhibits high-glucose stimulation of 

renal rat Agt (rAgt) gene expression and RPTC hypertrophy via a putative 

insulin-responsive element (IRE) in the rAgt gene promoter [18-20] that interacts 

with 2 nuclear proteins, heterogeneous nuclear ribonucleoprotein F and K 

(hnRNP F/K) in vitro [21, 22]. Recently, we observed that hnRNP F 

overexpression inhibited renal Agt expression and attenuated hypertension and 

kidney hypertrophy in Akita (type I diabetic mouse model) Tg mice specifically 

overexpressing hnRNP F in their RPTCs [23]. These findings suggest that 
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hnRNP F either acts alone or interacts with hnRNP K or other transcriptional 

factors to inhibit renal Agt gene transcription in diabetes.  

The aim of the present study was to investigate the contribution of 

hnRNP F/K to insulin inhibition of renal Agt gene expression and prevention of 

hypertension and kidney injury in Akita mice.  

 

MATERIALS AND METHODS 

Reagents 

 D-glucose, D-mannitol, human insulin, PD98059 (an inhibitor of 

p44/42 mitogen-activated protein kinase (p44/42 MAPK)), wortmannin and Ly 

294,002 (specific inhibitors of phosphatidylinositol 3-kinase (PI3-K)) and anti-β-

actin monoclonal antibody were purchased from Sigma-Aldrich Canada Ltd. 

(Oakville, ON, Canada). U0126, an inhibitor of p44/42 MAPK, was from Cell 

Signaling Technology (New England Biolabs Ltd, Whitby, ON, CA). Normal 

glucose (5 mmol/l D-glucose) Dulbecco’s Modified Eagle’s Medium (DMEM, 

catalogue no. 12320), penicillin/streptomycin and fetal bovine serum (FBS) were 

procured from Invitrogen, Inc. (Burlington, ON, Canada). Insulin implants 

(Linβit contains insulin of bovine, porcine or human origin (NB: species of origin 

is not specified by the manufacturer) with a release rate of approximately 0.1 

unit/implant/d for >30 d) were bought from Linshin (Scarborough, ON, Canada). 

The pGL4 [Luc/Puro] vector containing the luciferase reporter was obtained 

from Promega Corp. (Sunnyvale, CA, USA). rAgt gene promoter (N-1498 to 

N+18) [24] was cloned from rat genomic DNA by conventional polymerase 
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chain reaction with specific primers (gene number NW_047536.21; sense primer: 

AAA GGT ACC AGT CTC TCT GGT CAC TAC CCA T and anti-sense primer: 

AAA AAG CTT GCC CAG ACA AGC ACA GCT AT) and inserted into pGL4 

vector via Kpn I and Hind III restriction sites. Rat cAMP-responsive element 

binding protein (CREB) cDNA was cloned in our laboratory (J.S.D.C.) and 

inserted into pRSV vector (25). Rabbit polyclonal antibodies specific to hnRNP 

F (CTARRYIGIVKQAGLER corresponding to amino acids 215 to 230 of mouse 

and human hnRNP F) [21], and polyclonal antibodies against rAgt were 

generated in our laboratory (J.S.D.C.) [26]. The following antibodies were used: 

rabbit polyclonal anti-hnRNP K, anti-transforming growth factor-beta 1 (TGF-

β1), anti-ACE antibody (Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA),  

anti-Ace2 antibody  (R&D Systems, Inc., Minneapolis, MN, USA) and 

monoclonal anti-collagen type IV antibody (Chemicon International, 

Inc.,Temecula, CA, USA).  Scrambled Silencer Negative Control # 1 siRNA and 

hnRNP F/K siRNA were obtained from Ambion, Inc. (Austin, TX, USA) [22]. 

Oligonucleotides were synthesized by Invitrogen, Inc. Restriction and modifying 

enzymes were obtained from Invitrogen, Inc. and Roche Biochemicals (Laval, 

QC, Canada).  

 

Physiological Studies  

Adult male heterozygous Akita mice with a mutated insulin2 gene 

(C57BL6-Ins2Akita/J) were purchased from Jackson Laboratories (Bar Harbor, 

ME, USA: http://jaxmice-jax.org). Akita mice (10 weeks of age) were divided 
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into 2 groups with or without insulin implants at week 12 (8 mice per group), as 

described previously [16]. Briefly, diabetic mice received a subcutaneous insulin 

implant (2 Linβit implants per 20 g body weight (BW) and a 1 Linβit implant for 

each additional 5 g BW). Blood glucose levels were determined with small drops 

(about 2-3 μl/drop) of blood collected from the tail vein following 4-5 hrs fasting 

with an Accu-Chek Performa System (Roche Diagnostics, Laval, QC, Canada). 

Unless otherwise noted, data were collected from male Akita mice aged 10-16 

weeks. Non-Akita littermates of the same age and sex served as wild type (WT) 

controls. All animals were fed standard mouse chow and water ad libitum. 

Animal care and procedures were approved by the CRCHUM Animal Care 

Committee and followed the Principles of Laboratory Animal Care (NIH 

publication no. 85-23, revised 1985: 

http://grants1.nih.gov/grants/olaw/references/phspol.htm). 

Systolic blood pressure (SBP) was measured with a BP-2000 tail-cuff 

pressure monitor (Visitech Systems, Apex, NC, USA) [13, 14, 16, 17, 23] in the 

morning, at least 2-3 times a week, for 5 weeks. The mice were accustomed to 

the procedure for at least 15-20 min per day for 5 days before the first SBP 

measurements. SBP values represent the mean ± SEM of 2-3 determinations per 

week per animal per group. Twenty-four h prior to euthanasia, BW was recorded 

and mice were housed individually in metabolic cages. Blood from individual 

mouse was collected (~ 500 to 1,000 μl) by intra-cardiac exsanguination prior to 

euthanasia and then centrifuged to obtain serum. Urine (~100 to 400 μl/mouse) 

was collected and assayed for albumin (enzyme-linked immunosorbent assay 
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(ELISA), Albuwell, Exocell, Inc., Philadelphia, PA, USA) and creatinine 

(Creatinine Companion, Exocell, Inc.) [13, 14, 16, 17, 23].  

The glomerular filtration rate (GFR) was estimated according to the 

protocol described by Qi et al. [27], as recommended by the Animal Models of 

Diabetic Complications (AMDCC) (http://www.diacomp.org/) with slight 

modifications [28]. Briefly, each mouse received a single intravenous bolus of 

5% fluorescein isothiocyanate-inulin (FITC-inulin), followed by collections of 

blood samples (each ~20 μl) from the saphenous vein at 3, 7, 10, 15, 35, 55, and 

75 min post-FITC-inulin injection. Plasma fluorescence concentration was 

measured by Synergy 2 fluorometer (BioTek Instruments, Inc., Winooski, VT, 

USA) with 485 nm excitation and read at 538 nm emission. GFR was calculated 

according to the following equation: GFR = I/(A/α + B/β), where I is the amount 

of FITC-inulin bolus delivered, A and α are the y intercept and decay constant of 

the rapid (initial) decay phase, respectively, and B and β are the y intercept and 

decay constant of the slow decay phase, respectively [27].  

The kidneys were removed immediately after GFR measurements, 

decapsulated and weighed before Percoll gradient isolation of renal proximal 

tubules (RPTs) [13, 14, 16, 17, 23]. Aliquots of freshly-isolated RPTs from 

individual mice were immediately processed for total RNA or protein isolation. 

The remaining RPTs were then pooled, suspended in normal glucose (5 mmol/l 

D-glucose plus 20 mmol/l D-mannitol) or high glucose (25 mmol/l D-glucose) 

DMEM containing 1% depleted FBS ± insulin (100 mmol/l) [18-22], and 

incubated ex vivo at 37ºC  for 16 h. At the end of the incubation period, RPTs 
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were harvested and assayed for Agt, hnRNP F, hnRNP K and Ace2 mRNA 

expression.    

 

Serum and Urinary Agt and Ang II Measurement  

Serum and urinary Agt were quantified by ELISA (Immuno-Biological 

Laboratories Inc. Minneapolis, MN, USA) [23]. To measure Ang II levels, serum 

and urine samples were extracted using a kit and were assayed by specific ELISA 

for Ang II (Bachem Americas Inc., Torrance, CA, USA) [14, 17, 23].  

 

Morphologic Studies 

Kidneys were collected in Tissue-Tek cassettes (VWR Canlab, Montreal, 

QC, Canada), dipped immediately in ice-cold 4% paraformaldehyde, fixed for 24 

h at 4°C, and then processed by the CHUM Pathology Department. Tissue 

sections (3-4 μm thick, 4-5 sections per organ) were counterstained with periodic 

acid Schiff (PAS) or Masson’s trichrome [14, 16, 17, 23] and analyzed under 

light microscopy by 2 independent investigators blinded to the treatments.  

The tubular luminal area, mean glomerular and RPTC volumes were 

assessed as described previously [14, 16, 17, 23]. 

Immunohistochemical staining of Agt, hnRNP F, hnRNP K, Ace2, ACE, 

TGF-β1 and collagen IV was performed using a standard avidin-biotin-

peroxidase complex method on 4 to 5 sections per kidney and 3 mouse kidneys 

per group (ABC Staining; Santa Cruz Biotechnology) [13, 14, 16, 17, 23]. 

Staining was analyzed under light microscopy by 2 independent investigators 
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blinded to treatment groups. TGF-β1- and collagen IV-immunostained images 

were quantified with National Institutes of Health ImageJ software [13, 14, 16, 

17, 23]. Immunostaining with non-immune normal rabbit serum in non-Akita 

mouse kidneys served as controls, and showed no staining (pictures not shown).  

 

Effect of Insulin on Agt, hnRNP F and hnRNP K Expression in Rat RPTCs 

Immortalized rat RPTCs from passages 12 to 18 [6] that express the 

mRNA and protein of RAS components mimicking RPTCs in vivo were used. 

The plasmids pGL4-Agt N-1498/+18 were transfected into rat RPTCs, and stable 

transformants were selected in the presence of 0.6 mg/l of puromycin (Sigma-

Aldrich Canada Ltd.) according to the limiting dilution method [29]. 

To study the effect of insulin, 75-85% confluent stable transformants 

were synchronized overnight in serum-free 5 mmol/l D-glucose DMEM, then 

incubated in normal glucose (5 mmol/l D-glucose plus 20 mmol/l D-mannitol) or 

high-glucose (25 mmol/l D-glucose) DMEM containing 1% depleted FBS and 

various concentrations of insulin (10-13 to 10-5 mol/l or 0.1 pmol/l to 10 μmol/l) 

for 24 h ± PD 98059 (1×10-5 mol/l) or Ly 294,002 ((1×10-6 mol/l) or wortmannin 

(1×10-6 mol/l) or U0126 (1×10-6 mol/l) as described previously [18-20].  

Promoter activity was measured by the luciferase activity assay [28]. RPTCs 

stably transfected with the plasmid pGL4 served as controls.  

In additional studies, stable transformants (RPTCs) were transfected with 

scrambled siRNA or hnRNP F siRNA or hnRNP K siRNA [22] or with pRSV 

(empty vector), pRSV-CREB, pRSV-hnRNP F and /or pRSV-hnRNP K and the 
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effects of insulin on Agt gene promoter activity and Agt mRNA expression were 

analyzed after 24 h of incubation.  

 

Real Time-Quantitative Polymerase Chain Reaction (RT-qPCR) Assays and 

Western Blotting (WB)  

Agt, hnRNP F, hnRNP K, ACE, Ace2 and β-actin mRNA expression in 

mouse liver, isolated RPTs and cultured rat RPTCs was quantified by RT-qPCR 

using forward and reverse primers corresponding to their cDNA sequence as 

described previously  [17, 21-23].  

WB was performed as described previously [21-23]. The relative 

densities of Agt, hnRNP F, hnRNP K and β-actin bands were quantified by 

computerized laser densitometry (ImageQuant software (version 5.1), Molecular 

Dynamics, Sunnyvale, CA, USA).  

 

Statistical Analysis 

     Statistical significance between the experimental groups was analyzed 

by 1-way ANOVA (analysis of variance) and subsequent Bonferroni test. Values 

are expressed as mean ± SEM. p<0.05 values were considered to be statistically 

significant. 
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RESULTS 

Physiological Parameters in Mice 

Blood glucose levels were significantly elevated in Akita mice compared 

to wild type (WT) controls (Figures 1a and Table I). Insulin treatment decreased 

though never completely normalized blood glucose levels in Akita mice. Average 

SBP was significantly higher (by 20 to 25 mm Hg) in Akita mice at age 11 weeks 

than in WT mice (p<0.005) (Figure 1b and Table I) and remained higher for the 

duration of the study. Insulin treatment completely normalized SBP in Akita 

mice.  

Kidney size, kidney weight (KW, both kidneys), KW/body weight (BW) 

ratio and heart weight (HW)/BW ratio were higher in Akita than WT control 

mice. Insulin treatment normalized KW/BW ratio and attenuated HW/BW ratio 

in Akita mice (Table I). 

Albumin/creatinine ratio (ACR; Figure 1c) and GFR (Figure 1d) were 

significantly higher in 16-week-old male Akita than in WT mice, and these 

changes were normalized by insulin treatment.  

 Urinary levels of Ang II (Figure 1e) and Agt (Figure 1f) were 

significantly higher in Akita than WT mice. Insulin treatment normalized urinary 

Ang II levels and partially attenuated urinary Agt levels in Akita mice.  

 

Histologic and Functional Studies  

Unlike WT controls, Akita mice developed renal structural damage (Figure 2a). 
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Histologic findings included tubular luminal dilation with an accumulation of 

cell debris in the tubular lumen. Insulin treatment of Akita mice markedly 

reversed, though never completely resolved these abnormalities.  

Moreover, renal tubular luminal area, glomerular tuft volume and RPTC 

volume were significantly increased in Akita mice compared to WT mice (Table 

I). Insulin treatment normalized tubular luminal area and glomerular tuft volume 

but did not completely reverse the increases in RPTC volume in Akita mice 

(Table I).  

Masson’s trichrome staining, TGF-β1 and collagen type IV 

immunostaining revealed enhanced expression of collagenous components 

(Figure 2b), TGF-β1 (Figure 2d) and collagen type IV (Figure 2f) in Akita 

mouse kidneys compared to WT controls. Once again, insulin treatment 

normalized these changes. Quantitative analysis of Masson trichrome-stained 

areas (Figure 2c), RT-qPCR for TGF-β1 and collagen IV mRNA expression 

(Figures 2e and 2g, respectively) confirmed these findings. These data indicate 

that insulin treatment effectively prevented tubulointerstitial fibrosis in Akita 

mice. 

 

Agt, hnRNP F, hnRNP K, ACE and Ace2 Expression in Mouse Kidneys 

We detected increased Agt immunostaining in RPTCs of Akita mice 

compared to WT controls, and this was normalized with insulin treatment 

(Figure 3a). In contrast, Akita mice RPTCs exhibited decreased immunostaining 
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for both hnRNP F (Figure 3b) and hnRNP K (Figure 3c) compared to WT 

controls. Insulin treatment led to higher than normal expression of hnRNP F and 

hnRNP K. Western blotting for Agt, hnRNP F and hnRNP K (Figures 3d-f, 

respectively) and RT-qPCR for Agt, hnRNP F and hnRNP K mRNA expression 

(Figures 3g-i, respectively) from isolated RPTs confirmed these findings.  

Interestingly, neither liver Agt mRNA and protein levels nor serum Agt 

and Ang II levels differed significantly in the 3 groups of mice studied 

(Electronic Supplementary Material (ESM) Figure 1). 

 

Immunostaining for Ace2 was decreased in RPTCs of Akita mice 

compared with WT controls and insulin treatment normalized Ace2 

immunostaining in RPTCs of Akita mice (Figure 4a). In contrast, RPTCs of 

Akita exhibited increased immunostaining for ACE compared with WT controls 

(Figure 4b). Insulin treatment, however, had no apparent effect on ACE 

immunostaining in RPTCs of Akita mice (Figure 4b). RT-qPCR for Ace2 and 

ACE mRNA expression (Figure 4c and 4d, respectively) in isolated RPTs 

confirmed these findings.  

To investigate whether insulin could directly inhibit Agt and enhance 

hnRNP F, hnRNP K and Ace2 gene expression in RPTs in vivo, we incubated 

freshly isolated mouse RPTs in the absence or presence of insulin for 16 h ex 

vivo. Figure 4e shows high glucose stimulation of Agt mRNA and inhibition of 

hnRNP F, hnRNP K and Ace2 mRNA expression in RPTs of WT mice. Insulin 

treatment reversed these changes. Similar trends were also observed for the effect 
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of high glucose and insulin on Agt, hnRNP F, hnRNP K and Ace2 mRNA 

expression in Akita RPTs (Figure 4f). These findings demonstrate that insulin 

directly inhibits Agt and stimulates hnRNP F, hnRNP K and Ace2 mRNA 

expression in RPTs cultured ex vivo. 

 

Effect of Insulin on Agt, hnRNP F and hnRNP K Gene Expression in Rat 

RPTCs in vitro 

Consistent with our in vivo observations, high glucose (25 mmol/l D-

glucose) stimulated Agt gene promoter activity in RPTCs compared to normal 

glucose (5 mmol/l D-glucose plus 20 mmol/l D-mannitol), which was inhibited 

by insulin in a dose- and time-dependent manner (Figures 5a and 5b, 

respectively).  PD 98059 and U0126, but not wortmannin and Ly 294,002,  

prevented insulin inhibition of Agt gene promoter activity (Figure 5c) and Agt 

mRNA expression in RPTCs (Figure 5d). In contrast, RPTCs cultured in high 

glucose medium exhibited decreased hnRNP F (Figure 5e) and hnRNP K mRNA 

expression (Figure 5f) as compared to RPTCs cultured in normal glucose 

medium. Insulin treatment normalized both hnRNP F and hnRNP K expression 

(Figures 5e and 5f).  PD 98059 and U0126, but not wortmannin and Ly 294,002, 

rendered RPTCs insensitive to insulin.  Thus, insulin can directly inhibit Agt and 

enhance hnRNP F and hnRNP K gene expression in RPTCs in high-glucose 

medium signaling through the p44/p42 MAPK pathway. 

Next, we investigated whether knock-down of hnRNP F or hnRNP K 

could prevent insulin inhibition of Agt gene expression at the transcriptional 
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level. Transfection of RPTCs with hnRNP F siRNA or hnRNP K siRNA reduced 

endogenous hnRNP F or hnRNP K protein expression in a concentration-

dependent manner, respectively (ESM Figures 2a and 2b). Scrambled siRNA 

had no effect. Transfection with either hnRNP F siRNA or  hnRNP K siRNA 

attenuated insulin inhibition of Agt mRNA expression in a concentration-

dependent manner (Figures 6a and 6b). A combination of both siRNA of hnRNP 

F and siRNA of hnRNP K was more effective in attenuation of insulin inhibition 

of Agt mRNA expression than either siRNA of hnRNP F or siRNA of hnRNP K 

alone (Figure 6c). Agt gene promoter activity assays confirmed that hnRNP F 

siRNA and hnRNP K siRNA abolish the inhibitory effect of insulin on Agt gene 

promoter activity in RPTCs in high glucose medium (Figures 6d and 6e). Again, 

a combination of hnRNP F and hnRNP K siRNA was more effective than either 

hnRNP F siRNA or hnRNP K siRNA alone (Figure 6f). These findings lends 

additional support to the notion that insulin inhibition of Agt gene transcription is 

mediated, at least in part, via up-regulation of both hnRNP F and hnRNP K 

expression in RPTCs in vivo. 

 

 

Effects of hnRNP F and hnRNP K on CREB-mediated Agt Gene Expression in 

Rat RPTCs in vitro 

Transfection of rat RPTCs with either pRSV-hnRNP F or pRSV-hnRNP 

K attenuated the stimulatory effect of pRSV-CREB on Agt gene promoter activity 

(Figure 7a), Agt mRNA  (Figure 7b) and Agt expression (Figure 7c). A 
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combination of pRSV-hnRNP F and pRSV-hnRNP K appears to be more 

effective in inhibiting pRSV-CREB-stimulation of Agt gene promoter activity, 

Agt mRNA and Agt expression than pRSV-hnRNP F or pRSV-hnRNP K alone 

(Figure 7a-c). 

DISCUSSION 

The present report identifies a novel mechanism underlying insulin 

inhibition of renal Agt gene expression and subsequent prevention of 

hypertension and kidney injury in Akita mice via up-regulation of renal 

expression of hnRNP F and hnRNP K. Our observations suggest that cellular 

levels of hnRNP F and hnRNP K might play a critical role in regulating Agt gene 

expression and RAS activation in vivo. 

We reported previously that overexpression of hnRNP F prevents 

systemic hypertension and inhibits renal Agt gene expression and RPTC 

hypertrophy in diabetic Akita hnRNP F-Tg mice [23]. However, the molecular 

regulation of hnRNP F gene expression has not been explored. Extending our 

previous observations, here we provide in vivo and in vitro evidence that insulin 

stimulates hnRNP F and hnRNP K expression, which is critical for inhibition of 

renal Agt gene expression and the antihypertensive and renoprotective actions in 

Akita mice.   

A major limitation of the present studies is that our experimental design 

cannot differentiate a “glucose-lowering effect” from a “direct effect” of insulin 

on renal Agt, hnRNP F and hnRNP K expression in vivo. Future studies are 

needed to address this issue.  
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HnRNP F and hnRNP K are members of the pre-mRNA-binding protein 

family  [30] and they regulate gene expression at both the transcriptional and 

post-transcriptional levels. Indeed, it has been noted that hnRNP F/K engage in 

alternative splicing of various genes [31-34] and associate with TATA-binding 

protein (TBP), RNA polymerase II (Poly II), nuclear cap-binding protein 

complex and various transcriptional factors [35-37]. The molecular mechanisms 

underlying hnRNP F/K regulation of gene transcription are still incompletely 

understood.  

The Akita mouse is an autosomal dominant model of spontaneous type 1 

diabetes in which the insulin2 gene is mutated [38]. Like patients with type 1 

diabetes, Akita mice develop hyperglycemia and systemic hypertension, leading 

to  cardiac hypertrophy and left ventricular diastolic dysfunction, as well as 

glomerulosclerosis and enhanced oxidative stress in RPTs [17, 23, 39-43]. 

A novel observation in our study is that in addition to lowering blood 

glucose level, insulin treatment also prevents systemic hypertension, attenuates 

KW/BW and HW/BW ratios and normalizes the GFR, ACR, pro-fibrotic gene 

expression and tubulointerstitial fibrosis in Akita mice. It appears that insulin 

lowering of SBP is mediated, at least in part, via inhibition of intrarenal Agt gene 

expression and RAS activation. This notion is supported by our previous findings 

that Agt-Tg mice and Akita Agt-Tg mice specifically overexpressing Agt in their 

RPTCs develop hypertension, renal hypertrophy and tubulointerstitial fibrosis 

and that RAS blockade reverses these pathologies [13, 17]. These observations 
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imply that intrarenal Agt gene expression and RAS activation play critical role(s) 

in the development of hypertension, renal and heart injury. 

We did not detect significant differences in liver Agt, serum Agt and 

serum Ang II levels among the 3 different groups of mice studied. In contrast, 

RPT Agt mRNA and protein levels, urinary Agt and Ang II levels were 

significantly higher in Akita mice than in WT controls. Insulin treatment 

normalized RPT Agt mRNA and protein expression and urinary Agt and Ang II 

levels. It is noteworthy that urinary Agt levels in insulin-treated Akita mice 

appeared to be slightly higher than in WT controls without reaching statistical 

significance. These observations highlight tissue-specific regulation of hepatic 

and renal Agt gene expression and indicate that urinary Agt derives 

predominantly from RPTCs and to a lesser degree from extra-renal source(s) in 

diabetic mice. Indeed, recent studies [44-46] have shown that Agt filtered 

through the glomerulus in non-diabetic animals constitutes only a small portion 

of Agt detected in the urine of non-diabetic animals.  

We also detected significantly lower renal Ace2 expression in RPTCs of 

Akita mice, which can be normalized with insulin treatment. Consistent with 

these observations, our ex vivo studies employing freshly isolated RPTs from 

non-Akita and Akita mice showed insulin stimulation of Ace2 mRNA expression 

in normal and high glucose. These data imply a novel role for insulin in up-

regulation of intrarenal Ace2 expression in preventing hypertension and renal 

injury in diabetes.  
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Our studies with pharmacological inhibitors indicate that insulin action on 

Agt, hnRNP F and K gene transcription is mediated via the p44/42 MAPK 

signalling pathway, confirming our earlier report [18]. Insulin has previously 

been reported to stimulate hnRNP K phosphorylation via p44/42 MAPK 

signalling and to enhance its cytoplasmic translocation [47, 48].  Consistently, 

we also observed increased cytoplasmic and nuclear hnRNP F and K in RPTCs 

of Akita mice treated with insulin as well as in RPTCs treated by insulin in vitro 

(ESM Figure 3). 

We have also shown that knock-down of hnRNP F and hnRNP K by their 

respective siRNAs prevented insulin inhibition of Agt gene transcription in 

RPTCs in high glucose medium. These findings clearly indicate involvement of 

hnRNP F/K in mediating insulin inhibition of Agt gene expression in the diabetic 

mouse kidney. Nevertheless, additional studies employing RPTC-specific hnRNP 

F and K knockout mice are needed to firmly establish this pathway.  

The molecular mechanisms by which hnRNP F and hnRNP K inhibit Agt 

gene expression remain to be investigated. Overexpression of CREB augmented 

Agt gene transcription [25] and high glucose enhanced CREB expression in 

RPTCs [49]. We found that overexpression of hnRNP F and/or hnRNP K 

attenuated the stimulatory effect of CREB on Agt gene transcription. These data 

imply that the beneficial actions of hnRNP F and hnRNP K are mediated, at least 

in part, via competition with CREB for binding to TBP and RNA Poly II, 

subsequently attenuating Agt gene transcription. Additional studies are needed to 

confirm this mechanism.  
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In summary, our data demonstrate that hnRNP F and hnRNP K mediate 

insulin inhibition of renal Agt gene expression, prevention of hypertension, and 

amelioration of kidney and cardiac hypertrophy in type 1 diabetic mice. These 

observations imply that dysregulation of hnRNP F/K expression in vivo may 

directly alter activation of intrarenal RAS and, therefore, contribute to 

hypertension and renal injury in diabetes. Thus, hnRNP F/K may be potential 

targets in the treatment of hypertension and kidney injury in diabetes. 
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Table I.  Physiological Measurements 

 

*p<0.05, **p<0.01 and ***p<0.005 vs. WT   

†p<0.05, ††p<0.01 and  †††p<0.005 vs. Akita 

 

 

 

 

 

 

 

 

 

 

 

 WT Akita Akita + insulin 

Systolic blood pressure (mm Hg) 109 ± 1 130 ± 5*** 113 ± 5 †† 

Blood glucose (mmol/l) 7.0 ± 0.7 30.8 ± 0.7*** 15.4 ± 3.9 ††† 

Body weight (g) 29.9 ± 0.8 22.5 ± 0.3*** 23.7 ± 0.3*** 

Kidney weight (g) 0.35 ± .01 0.47 ± 0.12*** 0.32 ± 0.09 ††† 

Heart weight (g) 0.13 ± 0.04 0.17 ± 0.05*** 0.13 ± 0.04 ††† 

Kidney weight/body weight ratio (mg/g) 12.05 ± 0.44 20.72 ± 0.58*** 13.62 ± 0.35 ††† 

Heart weight/body weight ratio (mg/g) 4.66 ± 0.33 7.92 ± 0.14*** 5.76 ± 0.20*, ††† 

Glomerular tuft volume (X 103μm3) 133.2± 5.9 175.8 ± 6.9*** 125.6 ± 2.7  ††† 

RPTC volume(X 103μm3) 6.7± 0.4 9.7 ± 0.4*** 8.1 ± 0.3*, †† 

Tubular laminar area (μm2) 46.7± 4.3 69.9 ± 3.2*** 51.2 ± 4.1  †† 
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FIGURE LEGENDS 

Figure 1: Insulin normalizes elevated blood glucose levels, lowers systolic 

blood pressure (SBP) and ameliorates kidney injury in male Akita mice. (a) 

Longitudinal changes in mean blood glucose levels with fasting for 4-5 hrs in 

male WT (○), Akita (▲) and Akita mice + insulin implants (■). (b) Longitudinal 

changes in mean SBP (measured 2 to 3 times per animal per week in the morning 

without fasting) in male WT (○), Akita (▲) and Akita mice + insulin implants 

(■). Baseline SBP was measured daily over a 5-day period before initiation of 

treatment. (c) Urinary albumin/creatinine ratio,  (d) Glomerular filtration rate 

(GFR), (e) urinary Ang II and (f) urinary Agtlevels at week 16 in WT controls, 

Akita and Akita mice + insulin implants. Urinary Agt and Ang II levels were 

normalized with urinary creatinine levels. Values are means ± SEM, N=8 per 

group. *p<0.05; **p<0.01; ***p<0.005; N.S., not significant (WT vs. Akita). 

†p<0.05; ††p<0.01; N.S., not significant (Akita vs. Akita treated with insulin). 

WT controls (empty bars); Akita (solid bars) and Akita mice + insulin implant 

(light grey bars). 

 

Figure 2: Insulin ameliorates glomerulotubular fibrosis and suppresses pro-

fibrotic gene expression in Akita mice. (a) Periodic acid Schiff (PAS) staining 

in mouse kidneys of WT control littermate, Akita mouse and Akita mouse + 

insulin implant. Magnification X100 and X600. (b) Masson’s trichrome staining 

of collagenous components in mouse kidneys: WT control mouse, Akita mouse, 

and Akita mouse + insulin implant. Magnification X600. (c) Semi-quantitative 
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analysis of Masson’s trichrome staining in glomerulotubular areas of kidney 

sections from WT control mice, Akita mice and Akita mice + insulin implants at 

the age of 16 weeks. (d) Immunohistochemical staining for TGF-β1 and (e) RT-

qPCR of TGF-β1 mRNA expression in RPTs of WT controls, Akita and Akita 

mice + insulin implants. Magnification X 600. (f) Immunostaining for collagen 

type IV 1α and (g) RT-qPCR of collagen type IV 1α in RPTs of WT control 

mouse, Akita mouse, and Akita mouse + insulin implant. Magnification X 600. 

Values are means ± SEM, n=8. ***p<0.005; N.S., not significant. WT controls 

(empty bars), Akita (solid bars) and Akita mice + insulin implant (light grey 

bars). 

 

Figure 3. Agt, hnRNP F and hnRNP K expression in mouse kidneys at the 

age of 16 weeks.Immunohistochemical staining for Agt (a), hnRNP F (b) and 

hnRNP K (c) in kidneys of WT control mouse, Akita mouse and Akita mouse + 

insulin implant, employing respective rabbit anti-Agt, anti-hnRNP F and anti-

hnRNP K polyclonal antibodies. Magnification X 200. Western blotting analysis 

of Agt (d), hnRNP F (e) and hnRNP K (f) expression in RPTs from kidneys of 

WT controls, Akita and Akita mice + insulin implants. RT-qPCR of Agt (g), 

hnRNP F (h) and hnRNP K (i) mRNA expression in RPTs of WT controls, Akita 

and Akita mice + insulin implants.  Values are means ± SEM, n=8 per group. 

**p<0.01; ***p<0.005; N.S., not significant.WT controls (empty bars); Akita 

(solid bars) and Akita mice + insulin implant (light grey bars). 
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Figure 4. Ace2 and ACE expression in mouse kidneys at the age of 16 weeks 

and the effect of insulin on Agt, hnRNP F/K and Ace2 mRNA expression in 

RPTs ex vivo.Immunohistochemical staining for Ace2 (a) and ACE (b) in 

kidneys of WT control mouse, Akita mouse and Akita mouse + insulin implant, 

employing respective rabbit anti-Ace2 and anti-ACE polyclonal antibodies. 

Magnification  X600. RT-qPCR of Ace2 (c) and ACE (d) mRNA expression in 

RPTs of WT controls, Akita and Akita mice + insulin implants.  RT-qPCR of 

Agt, hnRNP F, hnRNP K and Ace2 mRNA expression in RPTs isolated from WT 

control mice (e) and Akita mice (f). Freshly isolated RPTs were incubated in 

normal glucose (5 mmol/l D-glucose plus 20 mmol/l D-mannitol) or high glucose 

(25 mmol/l D-glucose) medium in the absence or presence of insulin (10-7M or 

100 mmol/l) for 16 hrs and then harvested for quantitation of mRNA expression. 

The levels of mRNA expression in cells incubated in medium containing 5 

mmol/l D-glucose plus 20 mmol/l D-mannitol are expressed as 100 percentage of 

control.  The effect of high glucose ± insulin is compared with cells cultured in 

normal glucose (5 mmol/l D-glucose plus 20 mmol/l D-mannitol. Values are 

means ± SEM, n=3 per group. *p<0.05; **p<0.01; ***p<0.005; N.S., not 

significant.Normal glucose (empty bars); normal glucose + insulin (light grey 

bars); high glucose (solid bars) and high glucose + insulin (dark grey bars). 

 

Figure 5. Effect of insulin on Agt gene promoter activity, Agt and hnRNP 

F/K mRNA expression in rat RPTCs. Cells stably transfected with pGL4 rAgt 

N-1498/+18 were incubated in normal glucose (5 mmol/l D-glucose plus 20 
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mmol/l D-mannitol or high glucose (25 mmol/l D-glucose) DMEM in the 

absence or presence of various concentrations of insulin for 24 h (a) or for 

various time periods (b) with or without PD 98059 (10-5 M), U0126 (10-6 M), 

wortmannin (10-6 M) or Ly 294,002 (10-6 M) (c).  Cells were harvested and 

assayed for luciferase activity. In b, normal glucose (▲); normal glucose + 

insulin (10-7 M or 100 mmol/l) (□); high glucose (■); and high glucose + insulin 

(10-7 M or 100 mmol/l) (∆).  Effect of insulin on Agt mRNA (d), hnRNP F 

mRNA (e) and hnRNP K mRNA (f) expression in high glucose medium in the 

absence or presence of PD 98059, U0126, wortmannin or Ly 294,002. The levels 

of luciferase activity or mRNA in cells incubated in medium containing 5 mmol/l 

D-glucose plus 20 mmol/l D-mannitol are expressed as 100 percentage of 

control.  The inhibitory effect of insulin is compared with cells cultured in 25 

mmol/l D-glucose only. The results are expressed as percentages of control 

values (mean ± SEM, n=3). **p≤ 0.01;  ***p≤ 0.005. Similar results were 

obtained in 2 separate experiments. 

 

Figure 6. Effect of hnRNP F and hnRNP K siRNA on insulin inhibition of 

Agt gene expression in RPTCs.  (a) Effect of hnRNP F siRNA on Agt mRNA 

expression in RPTCs incubated in normal or high glucose medium ± insulin 

quantified by RT-qPCR. (b) Effect of hnRNP K siRNA on Agt mRNA expression 

in RPTCs incubated in normal or high glucose medium ± insulin quantified by 

RT-qPCR. (c) Effect of a combination of hnRNP F and hnRNP K siRNA on Agt 

mRNA expression in RPTCs incubated in normal or high glucose medium ± 
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insulin quantified by RT-qPCR. The levels of Agt mRNA in cells incubated in 

normal glucose medium are expressed as arbitrary unit 1. The inhibitory effect of 

insulin was compared with cells cultured in 25 mmol/l D-glucose. (d) Effect of 

hnRNP F siRNA or scrambled siRNA on Agt gene promoter activity in RPTCs 

cultured in normal or high glucose medium ± insulin. (e) Effects of hnRNP K 

siRNA or scrambled siRNA on Agt gene promoter activity in RPTCs cultured in 

normal or high glucose medium ± insulin. (f) Effect of a combination of hnRNP 

F and hnRNP K siRNA on Agt gene promoter activity in RPTCs incubated in 

normal or high glucose medium ± insulin quantified by RT-qPCR. Cells were 

harvested following 24 h of incubation, and Agt gene promoter activity was 

assessed by the luciferase activity assay. The results are expressed as percentages 

of control values (mean ± SEM,  n=3). *p<0.05; **p<0.01; ***p≤ 0.005. N.S., 

not significant. Sc, scrambled. 

Figure 7. Effect of hnRNP F, hnRNP K and CREB on Agt gene promoter 

activity,Agt mRNA and Agt protein expression in RPTCs.  48 h after co-

transfection of pRSV or pRSV-CREB with or without pRSV-hnRNP F, pRSV-

hnRNP K into cells stably transfected with pGL4-Agt N-1498/+18 or RPTCs 

cultured in 5 mM D-glucose medium, the cells were harvested and assayed for 

luciferase activity (a) or Agt mRNA (b) or Agt protein (c) levels. Relative 

luciferase activity or Agt mRNA or Agt protein levels in cells transfected with 

4.0 ug of pRSV was considered as 100% (control). Each point represents the 

mean ± SEM (n=3; assayed in duplicate). *p<0.05; **p<0.01; ***p≤ 0.005. N.S., 

not significant. 
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Effect of insulin on liver Agt expression, serum Agt and Ang II levels in Akita mice. 
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controls, Akita and Akita mice + insulin implants. Liver Agt mRNA levels were 
quantified by RT-qPCR.  Agt protein levels in liver extracts were analyzed by 
Western blotting whereas serum Agt and Ang II  samples were assayed by specific 
ELISA. Values are means ± SEM, n=8 per group. *p<0.05; **p<0.01; N.S., not 
significant. WT controls (empty bars); Akita (solid bars) and Akita mice + insulin 
implant (light grey bars).
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ESM Figure 3 
a b

Effect of insulin on cytosolic and nuclear hnRNP F and hnRNP K expression in 
RPTCs in vitro. a. Western blotting of cytosolic hnRNP F and hnRNP K 
expression and b. Western blotting of nuclear hnRNP F and hnRNP K expression 
in RPTCs cultured in 5 mM D-Glucose + 20 mM D-Mannitol (empty bar), 25 
mM D-Glucose (light grey bar), and 25 mM D-Glucose + Insulin (10-7 mol/l) 
(solid bar). Cells were harvested and fractionated into cytosolic and nuclear 
fraction by Nuclear Isolation Kit (Cytosol/Nuclear Fractionation Kit, Enzo Life 
Sciences, Farmingdale, NY, USA). Values are means ± SEM, n=3 per group. 
*p<0.05; **p<0.01; ***p<0.005; N.S., not significant. 
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ESM Figure 4

Agt, hnRNP F and hnRNP K expression in db/m+ and db/db mouse kidneys at the age
of 16 weeks. Immunohistochemical staining for a. Agt, b. hnRNP  F, and c. hnRNP K in 

kidneys of non-diabetic db/m+ mouse and diabetic db/db mouse, employing respective 
rabbit anti-Agt, anti-hnRNP F and anti-hnRNP K polyclonal antibodies. Magnification 
X 200. 
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ABSTRACT   

This study investigated the impact of catalase (Cat) overexpression 

in renal proximal tubule cells (RPTCs) on nuclear factor erythroid 2-

related factor 2 (Nrf2) stimulation of angiotensinogen (Agt) gene 

expression and development of hypertension and renal injury 

indiabeticAkita transgenic (Tg) mice. Additionally, adult male mice were 

treated with the Nrf2 activator oltipraz ± an inhibitor trigonelline. Rat 

RPTCs, stably transfected with plasmid containing either rat Agt or Nrf2 

gene promoter, were also studied. Cat overexpression normalized 

systolic BP, attenuated renal injury, and inhibited RPTC Nrf2, Agt and 

heme oxygenase-1 (HO-1) gene expression in Akita Cat-Tg compared to 

Akita mice. In vitro, high glucose, hydrogen peroxide and oltipraz 

stimulated Nrf2 and Agt gene expression; these changes were blocked by 

trigonelline, small interfering RNA of Nrf2, antioxidants, or 

pharmacological inhibitors of NF-kB and p38 mitogen-activated protein 

kinase. Deletion of Nrf2-responsive elements in the rat Agt gene promoter 

abolished the stimulatory effect of oltipraz. Oltipraz administration also 

augmented Agt, HO-1 and Nrf2 gene expression in mouse RPTCs, and 

was reversed by trigonelline.These data identify a novel mechanism, 

Nrf2-mediated stimulation of intrarenal Agt gene expression and 

activation of the renin-angiotensin system, by whichhyperglycemia 

induces hypertension and renal injury in diabetic mice.  
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INTRODUCTION 

Hyperglycemia, oxidative stress and dysregulation of the renin-

angiotensin system (RAS) have long been implicated in the development 

and progression of diabetic nephropathy. However, the underlying 

molecular mechanisms remain incompletely understood. In addition to the 

systemic RAS, the existence of a local intrarenal RAS in renal proximal 

tubular cells (RPTCs) has been well-documented (1). Several lines of 

evidence indicate that enhanced generation of reactive oxygen species 

(ROS) is central to the development of hypertension and RPTC apoptosis 

in diabetes. ROS mediate high-glucose (HG) stimulation of 

angiotensinogen (Agt, the sole precursor of all angiotensins) gene 

expression in RPTCs in vitro (2-5).Transgenic (Tg) mice specifically 

overexpressing rat (r) Agt in their RPTCs develop hypertension and 

kidney injury (6).Hyperglycemia and Agt overexpression act in concert to 

induce hypertension and RPTC apoptosis in diabetic Agt-Tg mice (7, 8). 

Conversely, apocynin treatment (9)and catalase (Cat) overexpression 

attenuate hypertension and RPTC apoptosis in non-diabetic Agt/Cat-Tg 

(10)and diabetic Cat-Tgmice (11-13). 

Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a 

master regulator of redox balance in cellular cytoprotective responses (14). 

Nrf2 is normally sequestered in the cytoplasm by a cytosolic repressor, 

Keap1 (Kelch-like ECH-associated protein 1) and is constantly degraded 

(15). However, with oxidative stress, Nrf2 is released from Keap1 
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repression, translocates to the nucleus, forms heterodimers with small 

musculoaponeurotic fibrosarcoma proteins, binds to antioxidant-response 

elements (AREs) and initiates transcription of an array of genes (16). Little 

information is available about the functional relationship between ROS, 

Nrf2 and Agt gene expression in diabetic RPTCs, which may be critical 

for development of diabetic renal injury. 

In the present study, we investigated the relation between oxidative 

stress,Nrf2 and Agt gene expression, hypertension development and 

RPTC injury in HG milieu both invivo and in vitro. We report that Cat 

overexpression prevented hyperglycemia-induced stimulation of Nrf2, 

HO-1 and Agt gene expression in RPTCs, subsequently attenuating 

hypertension and ameliorating renal injury in diabetic Akita mice. In vitro, 

HG, H2O2 and the Nrf2 activator oltipraz stimulated Nrf2, HO-1 and 

Agtgene expression in RPTCs, which can be reversed by trigonelline (a 

Nrf2 inhibitor), small interfering RNAs (siRNAs) of Nrf2, antioxidants, and 

pharmacological blockade of p38 mitogen-activated protein kinase(p38 

MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell 

(NF-κB) signaling. Consistently, in vivo administration of oltipraz 

stimulated Nrf2, HO-1 and Agt gene expression in mouse renal proximal 

tubules (RPTs), which was reversed by trigonelline co-administration. 
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MATERIALS AND METHODS 

Chemicals and Constructs 

D-glucose, D-mannitol, hydrogen peroxide (H2O2), oltipraz (a Nrf2 

activator), the alkaloid trigonelline (C7H7NO2, a Nrf2 inhibitor), 

PD98059 (a p44/42 MAPK inhibitor), wortmannin (an inhibitor of 

phosphatidylinositol 3-kinase (PI3-K)) and anti-β-actin monoclonal 

antibody were purchased from Sigma-AldrichCanada Ltd. (Oakville, ON, 

Canada). SB203580 (an inhibitor of p38 MAPK) was obtained from Cell 

Signaling Technology (New England Biolabs Ltd., Whitby, ON, CA). 

PDTC (pyrrolidinedithiocarbamate ammonium)and BAY-11-

7082(inhibitors of NF-κB activation) were from Calbiochem (San Diego, 

CA, USA). Normal glucose (5 mmol/l D-glucose) Dulbecco’s Modified 

Eagle’s Medium (DMEM, Catalogue No. 12320), penicillin/streptomycin 

and fetal bovine serum (FBS) were procured from Invitrogen, Inc. 

(Burlington, ON, Canada). Anti-Nrf2and anti-Keap1 antibodies were 

obtained from BD Biosciences (Mississauga, ON, Canada) and R & D 

Systems, Inc. (Minneapolis, MN, USA), respectively. Polyclonal anti-HO-1 

antibodies were purchased from Assay Designs (Ann Arbor, MI, USA). 

Rabbit polyclonal antibodies specific for rAgt(17) were generated in our 

laboratory (J.S.D.C). The plasmid pKAP2 containing the kidney-specific 

androgen-regulated protein (KAP) promoter that is responsive to 

androgen was a gift from Dr. Curt D. Sigmund (University of Iowa, Iowa, 

IA, USA) (18). The plasmid pcDNA3.1 containing the Flag-(RelA) 
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p65cDNAwas a gift from Dr. Marc Servant (Faculty of Pharmacy, 

Université de Montréal, Montreal, QC, Canada). Full-length rCat cDNA 

fused with HA-tag (which encodes amino acid residues 98-106 of human 

influenza virus hemagglutinin at the carboxyl terminal with the NotI site at 

both 5’- and 3’-termini) was inserted into plasmid pKAP2 at the NotI site 

(11). The rAgt gene promoter (N-1495 to N+18) (19) and the rat Nrf2 

gene promoter (N-1980 to N+111) (20) were cloned from respective rat 

genomic DNA by conventional polymerase chain reaction (PCR) with 

specific primers and inserted into pGL4.20 vector via Kpn I and Hind III 

restriction sites (19). Quick Change Site-Directed Mutagenesis kits from 

Stratagene Inc. (La Jolla, CA) were used to delete putative Nrf2-REs in 

the rAgt gene promoter (21). Table 1 details the oligo primers for cloning 

of the rAgt and rNrf2 gene promoters and site-directed mutagenesis. 

Scrambled Silencer Negative Control #1 siRNA and Nrf2 siRNA were 

obtained from Ambion, Inc. (Austin, TX, USA). Oligonucleotides were 

synthesized by Invitrogen, Inc. Restriction and modifying enzymes were 

obtained from commercial sources. Viable and fertile mice heterozygous 

for the Akita spontaneous mutation of insulin 2 (Ins2) gene (C57BL/6-

Ins2Akita/J) were purchased from Jackson Laboratories, Bar Harbor, ME, 

USA (http://jaxmice.jax.org). 

 

Generation of Akita Cat-Tg Mice 

We generated Tg mice specifically overexpressing Cat in their 
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RPTCs by cross-breeding homozygous Cat-Tg mice (11) with 

heterozygous Akita mice (N.B.: Homozygous Akita mice are 

infertile).These mice are homozygous for the Cat transgene but 

heterozygous for Ins2 gene mutation(8, 13).  

 

Pathophysiological Studies 

Male adult (16-week-old) non-Akita wild type (WT), Cat-Tg, Akita 

and Akita Cat-Tg mice (8 per group) were used. All animals received 

standard mouse chow and water ad libitum. Animal care and 

experimental procedures were approved by the CRCHUM Animal Care 

Committee. 

Systolic blood pressure (SBP) was monitored with a BP-2000 tail-

cuff pressure machine (Visitech Systems, Apex, NC, USA) in the 

morning,at least 2-3 times a week, for 5 weeks (6-13, 19).  

The glomerular filtration rate (GFR) was estimated according to the 

protocol described by Qi et al. (22), as recommended by the Animal 

Models of Diabetic Complications Consortium (http://www.diacomp.org/) 

(13, 19).  

Body weight (BW) was recorded 24 h prior to euthanasia, and the 

mice were housed individually in metabolic cages. Blood (~500 to 1,000 

μl) was collected from each mouse by intra-cardiac puncture before 

euthanasia and centrifuged for serum. Urine (~100 to 400 μl/mouse) was 
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analyzed by albumin enzyme-linked immunosorbent assay (ELISA, 

Albuwell, Exocell, Inc., Philadelphia, PA, USA) and creatinine kit 

(Creatinine Companion, Exocell, Inc.) (6-13, 19).  

After euthanization, the kidneys were removed, decapsulated and 

weighed. Left kidneys were processed for histology and immunostaining, 

and right kidneys were harvested for isolation of RPTs by Percoll gradient 

(6-13, 19). Aliquots of freshly-isolated RPTs from individual mice were 

immediately processed for total RNA or protein analysis.  

In separate experiments, adult male non-Akita WT mice (age 14 

weeks) received an injection of either corn oil (5 ml.kg-1 of BW) or oltipraz 

(150 mg.kg-1day-1, i.p. in corn oil) ± trigonelline (0.02 mg.kg-1.day-1, i.p. in 

0.9% NaCl) 4 times every other day (i.e., on Days 1, 3, 5 and 7) 

according to published protocols (8 mice per group) (23, 24). Animals 

were euthanized 24 h after the last injection.  

 

Histology  

Tissue sections (4-5 sections per kidney) were counterstained with 

periodic acid Schiff and analyzed by light microscopy by 2 investigators 

blinded to the treatments.  

Immunostaining was performed with the standard avidin-biotin-

peroxidase complex method on 4 to 5 sections per kidney and 3 mouse 

kidneys per group (ABC Staining; Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) (6-13, 19).  
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Oxidative stress in RPTs was assessed by dihydroethidium (DHE; 

Sigma) staining in frozen kidney sections (13). The results were 

confirmed by standard assays of Cat activity (11), ROS generation (4, 5, 

10-12), NADPH oxidase activity (10) and Nox4 mRNA expression (25).  

 

Real Time-quantitative Polymerase Chain Reaction (RT-qPCR) 

Agt, Nrf2, Keap1, HO-1 and β-actin mRNA expression in RPTs was 

quantified by RT-qPCR with forward and reverse primers (Table 1) (7-13, 

19).  

 

Western Blotting 

Western Blotting (WB) was performed as described previously (6-

13, 19). The relative densities of Agt, Nrf2, Keap1, HO-1 and β-actin 

bands were quantified by densitometry using ImageQuant software 

(version 5.1, Molecular Dynamics, Sunnyvale, CA, USA). 

 

Serum and Urinary Agt and Angiotensin II (Ang II) Measurement  

Serum and urinary Agt were quantified by ELISA (Immuno-

Biological Laboratories Inc. Minneapolis, MN, USA) (8, 10, 13, 19). To 

measure Ang II levels, serum and urine samples were extracted using a 

kit and were assayed by specific ELISA for Ang II (Bachem Americas Inc., 

Torrance, CA, USA) (8, 10, 13, 19).  
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Effect of HG, H2O2 and Oltipraz on Agt and Nrf2 Gene Expression in 

rRPTCs 

Immortalized rRPTCs (passages 12 through 18) (26) were studied. 

The plasmids pGL4.20-rAgt N-1495/+18 and pGL4.20-rNrf2 N-1980/+111 

were stably transfected into rRPTCs (designated as stable transformants) 

(19). 

To study the effects of HG, H2O2 and oltipraz, rRPTCs at 75-85% 

confluency or stable transformants were synchronized overnight in 

serum-free DMEM containing 5 mmol/l D-glucose, then incubated in 

medium containing 5 mmol/l D-glucose plus H2O2 (10-6 M) or (5 mmol/l D-

glucose plus 20 mmol/l D-mannitol) (normal glucose) in the absence or 

presence of oltipraz  ± trigonelline  or HG (25 mmol/l D-glucose) DMEM 

containing 1% depleted FBS for 24 h in the presence of antioxidants, NF-

κB inhibitors (PDTC or BAY-11-7082), the p38 MAPK inhibitor 

(SB203580), the p44/42 MAPK inhibitor (PD98059), or wortmannin (a 

PI3-K inhibitor) (2-5) [115, 228, 414] [115, 228, 414]. Agt, HO-1 and Nrf2 

mRNA levels were quantified by RT-qPCR, and corresponding Agt and 

Nrf2 gene promoter activity was measured by the luciferase activity assay 

(19). RPTCs stably transfected with the plasmid pGL4.20 served as 

controls.  

In additional experiments, stable transformant RPTCs were 

transiently transfected with Nrf2 siRNA or scrambled siRNA, and the 
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effects of HG on Nrf2 and Agt mRNA expression and their respective 

gene promoter activities were analyzed after 24 h of incubation. 

 

Statistical Analysis 

The data are expressed as means ± SEM. Statistical comparisons 

were made by Student’s t-test or 1-way analysis of variance and the 

Bonferroni test as appropriate. p<0.05 values were considered to be 

statistically significant. 

 

 

RESULTS 

 

Pathophysiological Measurements in Mice 

Table 2 reports physiological measurements in non-Akita WT mice, 

Cat-Tg mice, Akita mice and Akita Cat-Tg mice at week 16. Briefly, Cat 

overexpression had no effect on blood glucose, whereas it completely 

normalized SBP in Akita Cat-Tg compared to Akita mice. Cat 

overexpression markedly attenuated, but did not completely normalize the 

GFR, urinary albumin-creatinine ratio (ACR), kidney weight/tibia length 

and heart weight/tibia length  ratios, urinary Agt and Ang II levels in Akita 

Cat-Tg compared to Akita mice. In contrast, Cat overexpression did not 

affect any of these parameters except ACR and RPTC volume in Cat-Tg 

compared to WT controls.  
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Histology 

Consistent with earlier observations (8,13,19), Akita mice developed 

renal structural  damage (Supplemental Figure 1A). The histologic 

changes include proximal tubule cell atrophy, tubular luminal dilatation 

with accumulation of cell debris, and increased extracellular matrix 

proteins in glomeruli and tubules. Cat overexpression markedly reversed 

but did not completely resolve these abnormalities in Akita Cat-Tg mice.  

Cat immunostaining (Figure 1A) and Cat activity (Figure 1B) but 

notCat mRNA expression (Figure 1C) were significantly lower in RPTs 

from Akita mice compared to non-Akita WT, Cat-Tg or Akita Cat-Tg mice. 

In contrast, Akita mice exhibited significantly higher ROS levels, 

quantified by lucigenin assay (Figure 1D), NADPH oxidase activity 

(Figures 1E) and Nox4 mRNA, quantified by RT-qPCR (Figures 1F) than 

non-Akita WT and Cat-Tg mice, indicating presence of markedly higher 

levels of oxidative stress. These changes were normalized in Akita Cat-

Tg.  

 

Effect of Cat Overexpression on Agt, Nrf2, HO-1 and Keap1 Expression 

in Akita Mice 

Immunostaining revealed significantly higher Agt (Figure 2A), Nrf2 

(Figure 2B) and HO-1 expression (Figure 2C) in RPTCs from Akita mice 
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compared to non-Akita WT or Cat-Tg mice. Cat overexpression 

normalized Agt, Nrf2 and HO-1 expression in Akita Cat-Tg mice. In 

contrast, no significant differences in Keap1 expression were detected in 

RPTCs among the different groups (Figure 2D). WB for Agt, Nrf2, Keap1 

and HO-1 (Figure 2E, a and b) and RT-qPCR for Agt, Nrf2,Keap1and 

HO-1mRNA expression (Figure 2F, a-d, respectively) from isolated RPTs 

confirmed these findings. Furthermore, increases in nuclear Nrf2 but not 

cytoplasmic Nrf2 levels were observed in RPTs in Akita mice as 

compared to WT and Cat-Tg mice. Cat overexpression attenuated the 

nuclear but not cytoplasmic Nrf2 levels in Akita Cat-Tg mice (Figure 2E, 

c).  

 

Effect of HG and H2O2on Agt, Nrf2 and HO-1 Gene Expression in rRPTCs 

in Vitro 

Consistent with our previous observations on HGregulation of Agt 

gene expression (Supplemental Figure 1B-E), HG stimulated Nrf2 

mRNA in RPTCs in a concentration- and time-dependent manner (Figure 

3A and B, respectively). The HG stimulation of Nrf2 mRNA expression 

was inhibited by apocynin, diphenyleneiodonium chloride (DPI), rotenone 

and Cat (Figure 3C). Likewise, SB 203580, but not PD98059 or 

wortmannin, prevented HG-stimulated increases in Nrf2 mRNAexpression 

(Figure 3D). Furthermore, both PDTC and BAY-11-7082 inhibited HG-

stimulated increases in Nrf2 and Agt both at themRNA (Figure 3E and F, 
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respectively) and protein levels (Figure 3G and H, respectively). 

Similarly, both BAY-11-7082 and PDTC inhibited HG-stimulation of HO-1 

expression at both the mRNA and protein levels (Figure 3I and J, 

respectively). 

We used H2O2 to determine whether ROS could directly stimulate 

Nrf2, Agt and HO-1 gene expression in RPTCs.Indeed, H2O2 stimulated 

Nrf2, Agt and HO-1 mRNA expression in RPTCs and these effects were 

inhibited in the presence SB203580 and BAY-11-7082, but not 

wortmannin or PD98059 (Figure 4A, 4B and 4C, respectively). 

Consistently, H2O2 stimulated Nrf2 and Agt gene promoter activity in 

RPTCs and these were inhibited by SB203580 and BAY-11-7082, but not 

wortmannin and PD98059 (Figure 4D and 4E, respectively). Most 

interestingly, transfection of pcDNA3.1 plasmid containing Flag-(Rel 

A)p65 cDNA stimulated Nrf2 and Agt gene promoter activity in a dose-

dependent manner (Figure 4F and 4G, respectively). 

 

Effect of Nrf2 Activation on Nrf2 and Agt Gene Expression in rRPTCs in 

Vitro 

To study the impact of Nrf2 on Nrf2 and Agt gene expression in 

RPTCs, we used the Nrf2 activator oltipraz and inhibitor alkaloid 

trigonelline as well asNrf2 cDNA transfection. Oltipraz stimulated Nrf2 and 

Agt mRNA expression in a concentration-dependent manner (Figure 5A 

and 5B, respectively). Trigonelline inhibited HGstimulation of Nrf2 and 
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Agt mRNA expression in a concentration-dependent manner (Figure 5C 

and 5D, respectively). Transient transfection of Nrf2 cDNA stimulated 

both Nrf2 and Agt mRNA expression (Figure 5E and 5F, respectively) as 

well as their respective gene promoters (Figure 5G and 5H, respectively) 

. Of note, Nrf2 mRNA levels in Figure 5E were quantified with primers 

specific to the 3’-untranslated region of rat Nrf2 mRNA (Table 1). These 

data demonstrated that Nrf2 activation stimulates both Nrf2 and Agt gene 

expression in RPTCs.   

Next, we investigated the effects of Nrf2 knock-down on HGstimulation of 

Nrf2 and Agt gene expression in RPTCs. Transfection of RPTCs with Nrf2 

siRNA reduced Nrf2 and Agt protein (Figure 6A and 6B, respectively) and 

mRNA (Figure 6C and 6D, respectively) expression in a concentration-

dependent manner without affecting Keap1 mRNA expression (Supplemental 

Figure 1F) . Scrambled siRNA had no effect on Nrf2 and Agtexpression. Nrf2 

siRNA prevented HGstimulation of Nrf2 and Agt gene promoter activity in a 

concentration-dependent manner (Figure 6E and 6F, respectively).  

 

Identification of Nrf2-REs in rAgt Gene Promoter 

Figure 7A represents a schematic diagram of the rAgt gene 

promoter with putative Nrf2-REs. Two putative Nrf2-REs, agagccnn and 

tgagccnn, were localized in nucleotides N-964 to N-959 and N-913 to N-

908 upstream of the transcription starting site of the rAgt gene promoter 

and designated as distal Nrf2-RE (dNrf2-RE) and proximal Nrf2-RE 

(pNrf2-RE), respectively. Transient transfection of plasmid containing 



 

133 

 

nucleotides 1,495 and 1,031 upstream of the transcription starting site 

pGL4.20 (Agt N-1495/+18) and pGL4.20 (Agt N-1031/+18) displayed 15-

fold higher promoter activity than the promoter-less plasmidpGL4.20 

(Figure 7B). Further deletion to N-442 of the rAgt gene promoter 

pGL4.20 (Agt N-442/+18) significantly reduced promoter activity 

compared to pGL4.20 (Agt N-1495/+18) and pGL4.20 (Agt N-1031/+18), 

indicating that enhancer(s) might be localized within nucleotides N-1031 

to N-443 of the rAgt gene promoter.     

Oltipraz stimulated Agt gene promoter activity (pGL4.20 (Agt N-

1495/+18)) (Figure 7C). Trigonelline inhibited oltipraz stimulation of Agt 

gene promoter activity in a concentration-dependent fashion (Figure 7D). 

Interestingly, deletion of either dNrf2-RE or pNrf2-RE only partially 

attenuated the stimulatory effect of oltipraz, whereas deletion of both 

Nrf2-REs completely abolished it (Figure 7E). These data demonstrate 

thatoltipraz induction of Agt gene transcription requires both Nrf2-REs in 

the rAgt gene promoter. 

 

Effect of Oltipraz and Trigonelline on Nrf2 and Agt Expression in Mice in 

Vivo 

Immunostaining of RPTCs for Nrf2, Agt and HO-1 revealed 

significantly higher expression levels in WT mice treated with oltipraz. 

Trigonelline co-administration reduced Nrf2, Agt and HO-1 expression to 

levels similar that of non-treated mice (Figure 8A, 8B and 8C, 
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respectively). Trigonelline alone had no detectable effects on either gene 

expression. WB for Nrf2, Agt and HO-1 protein (Figure 8D, 8E and 8F, 

respectively) and RT-qPCR of Nrf2,Agtand HO-1mRNA expression 

(Figure 8G, 8H and 8I, respectively) confirmed these findings. Oltipraz 

also stimulated Nrf2 mRNA expression in the mouse liver, which was 

prevented by trigonelline (SupplementalFigure 1G). Oltipraz, however, 

did not affect Agt mRNA expression in the liver (SupplementalFigure 

1H). These data demonstrate that Nrf2 activation differentially stimulates 

renal Agt gene expression and RAS activation in mice in vivo. 

Furthermore, oltipraz enhanced ROS generation and this was prevented 

by trigonelline co-administration (Supplemental Figure 1I). However, no 

statistically significant differences in SBP were found between non-

treated, oltipraz ± trigonelline treated mice (Supplemental Figure 1J). 

 

DISCUSSION 

ROS generation, deficient antioxidant defenses and dysregulation of 

RAS have long been implicated in the development of renal injury in 

diabetes. However, the underlying molecular mechanisms are far from 

being fully understood. Our present results document that selective Cat 

overexpression in RPTCs effectively suppresses Nrf2-stimulation of Agt 

gene expression, attenuates systemic hypertension and kidney injury in 

Akita Cat-Tg mice. Nrf2 activation by oltipraz stimulates both Nrf2 and Agt 

gene expression in RPTCs, and reversal of these actions by trigonelline 
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or Nrf2 siRNA both in vitro and in vivo. These data indicate that Nrf2 

activation by oxidative stress (secondary to hyperglycemia) stimulates 

intrarenal Agt gene expression and RAS activation, subsequently leading 

to hypertension and development of nephropathy and identify a novel 

mechanism underlying the protective role of Cat.  

In the Akita mouse, an autosomal dominant model of spontaneous 

type 1 diabetes, the Ins2 gene is mutated, closely resembling that in 

patients with type 1 diabetes (27, 28). In the present study, we detected 

marked increases in ROS generation, NADPH oxidase activity and Nox4 

mRNA expression in RPTCs of Akita mice compared to non-Akita mice. 

These changes were normalized in Akita Cat-Tg mice, indicating that 

oxidative stress is a major component of renal injury in Akita mice.  

Our data indicate that mitigating oxidative stress via kidney-specific Cat 

overexpression protects Akita mice against development of hypertension. The 

mechanisms underlying elevated SBP in Akita mice are still largely unknown. 

Our present findings demonstrate significantly higher Agt expression in RPTCs 

as well as higher urinary Agt and Ang II levels in Akita than in non-Akita WT and 

Cat-Tg mice. Cat overexpression in RPTCs normalized these changes. These 

observations are consistent with the clinical findings of elevated intrarenal RAS 

gene expression in diabetic and hypertensive patients (29-33).  

Consistent with reports that Cat activity and expression were down-

regulated in diabetic rats (34, 35) and that hyperglycemia induced up-

regulation of Nrf2 expression in endothelial cells (36), we observed that 

Cat activity and expression were down-regulated. While Akita mice 
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exhibited slightly decreased Cat mRNA expression, it did not differ 

significantly from that in WT mice. The reason for decreased Cat activity 

remains unclear. One possible explanation is that elevated ROS would 

result in decreased Cat activity without affecting the expression of Cat 

mRNA.  

The precise mechanism(s) by which hyperglycemia leads to up-

regulation of renal Nrf2 and Agt gene expression in diabetes remains 

unclear. One possibility is that ROS or hyperglycemia enhances Nrf2 

activation via promoting its dissociation from Keap1 and translocation into 

the nucleus. Nrf2 would then bind to Nrf2-binding sites in the Agt gene 

promoter region and promoteAgt gene expression. Indeed, our in vitro 

studies in rRPTCs confirmed that HG and oltipraz stimulate both Nrf2 and 

Agt gene expression and these can be reversed by trigonelline, Nrf2 

siRNA, and pharmacological inhibitors of ROS, p38 MAPK and NF-κB. 

Intriguingly, transient transfection of Nrf2 cDNA stimulated both Nrf2 and 

Agt mRNA and their respective gene promoter activities in RPTCs. This 

effect could be explained by the presence of Nrf2-REs in both Nrf2 (37) 

and Agt gene promoters (38). Furthermore, Nrf2 exerts positive auto-

feedback on Nrf2 gene transcription (37). Consistently, deletion of dNrf2-

REs and pNrf2-REs completely abolished the stimulatory effect of oltipraz 

on Agt gene transcription, demonstrating that Nrf2 stimulation of Agt gene 

expression occurs at the transcriptional level.  

In WT mice, administration of oltipraz stimulated Nrf2,Agtand HO-
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1gene expression in RPTCs, and these actions were reversed by 

trigonelline co-administration. In contrast, oltipraz stimulated Nrf2 but not 

Agt gene expression in the liver. These findings highlight tissue-specific 

Nrf2 regulation of Agt gene expression. 

The molecular mechanism(s) by which p38 MAPK and NF-κB signal 

Nrf2 and Agt gene expression are not fully understood. A likely 

mechanism is that HG activates p38 MAPK signaling via ROS generation, 

as we reported previously (3, 4). Activated p38 MAPK would then 

phosphorylate Nrf2, resulting in dissociation from Keap1, as it has been 

reported for various cell lines (39-41). Another possibility is that p38 

MAPK activates NF-κB and increases the dissociation of NF-κB subunit 

p65 from p50. The p65 subunit would then bind to Keap1 and release 

Nrf2 as reported in human embryonic kidney cells (HEK 293) (42). 

Alternatively, the activated p65 subunit likely translocates to the nucleus, 

binds to the NF-κB-RE(s) in the Nrf2 and Agt gene promoter and 

subsequently enhances Nrf2 and Agt gene transcription. Indeed, this 

possibility is supported by our observations that transfection of RelA/p65 

subunit stimulates both Nrf2 and Agt gene promoter activity in RPTCs. 

Furthermore, consensus NF-κB responsive DNA sequences: 5’-GGG 

AAC TCC G-3’ and 5’-GGG ATT  TCC C-3’ have been identified in the 

nucleotides N-371 to N-362 and N-578 to N-569 of the rat Nrf2 (37) and 

rat Agt gene promoter (38), respectively. In contrast, Liu et al (43)reported 

that NFκB could directly repress Nrf2 signalling at the transcriptional level 
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by competing with Nrf2 for transcription co-activator CREB binding protein 

(CBP). We currently do not have an explanation for this discrepancy. 

Whether the Nrf2 released from the CBP (caused by competitive binding 

of p65 on CBP) as described by Liu et al. (43) could exert a “positive” 

feedback on Nrf2 gene transcription as suggested by Kwaket al. (37) is 

unknown. Thus, further studies are needed to define the precise 

relationship of NFκB signalling and Nrf2 gene transcription in RPTCs. 

Studies in rodents with Nrf2 activators (bardoxolone methyl analogs 

RTA 405 and dh404) have yielded conflicting results. Bardoxolone methyl 

analogs were reported to have potent anti-diabetic effects in diet-induced 

diabetic mice and in rodent models of type 2 diabetes and obesity (44, 

45). In sharp contrast, recent studies reported that bardoxolone methyl 

analogs increased albuminuria and blood pressure along with weight loss 

in Zucker diabetic fatty rats (46). In clinical trials, phase 2 studies with 

bardoxolone methyl analogs reported reductions in serum creatinine 

levels or increases in the estimated GFR in human subjects with type 2 

diabetes with stage 3b or 4 chronic kidney disease (47), suggesting a 

renoprotective action. However, phase 3 clinical trials involving patients 

with stage 4 advanced diabetic kidney disease were discontinued in 2012 

after 9 months of follow-up due to increases in mortality rate and heart 

failure and development of hypertension and albuminuria (48). 

Furthermore, the study that was discontinued did not show much slowing 

of change in GFR (48). Our present data demonstrate that Nrf2 activation 
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enhanced intrarenal Agt gene expression, suggesting that Nrf2 might 

exaggerate renal dysfunction via the activation of the intrarenal RAS.  

In summary, our findings indicate ROS-evoked Nrf2-mediated Agt 

gene expression in diabetes models both in vivo and in vitro, and 

document that these changes can be prevented by selective 

overexpression of Cat in RPTCs. Our findings also imply an important 

role for oxidative stress-induced Nrf2 in the development of hypertension 

and renal injury in diabetes by altering the activation of local intrarenal 

RAS. 
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ABBREVIATIONS 

ACR, albumin-creatinine ratio; Agt, angiotensinogen; Ang II, 

angiotensin II; BW, body weight; Cat, catalase; DHE, dihydroethidium; 

DMEM, Dulbecco’s Modified Eagle’s Medium; ELISA, enzyme-linked 

immunosorbent assay; FBS, fetal bovine serum; GFR, glomerular 

filtration rate; H2O2, hydrogen peroxide; HA, human influenza virus 

hemagglutinin; HG, high glucose; HO-1, heme oxygenase-1; Ins2, insulin 

2 gene; KAP, kidney-specific androgen-regulated protein promoter; 

Keap1, Kelch-like ECH-associated protein 1; MAPK, mitogen-activated 

protein kinase; NF-kB, nuclear factor kappa-light chain enhancer of 

activated B cells; Nox4, NADPH Oxidase 4; Nrf2, nuclear factor erythroid 

2-related factor 2; PDTC, pyrrolidinedithiocarbamate ammonium; PI3-K, 

phosphatidylinositol 3-kinase; r, rat; RAS, renin-angiotensin system; REs, 

response elements; ROS, reactive oxygen species; RPTs, renal proximal 

tubules; RPTCs, renal proximal tubular cells; PCR, conventional 

polymerase chain reaction; RT-qPCR, real time-quantitative polymerase 

chain reaction; SBP, systolic blood pressure; siRNAs, small interfering 

RNAs; Tg, transgenic; WB, Western blotting; WT, wild type 
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FIGURE LEGENDS 

Figure 1.Characterization of Akita Cat-Tg mice. (A) 

Immunohistochemical staining for Cat in male non-Akita WT, Cat-Tg, 

Akita and Akita Cat-Tg mouse kidneys with rabbit anti-bovine Cat 

polyclonal antibody. Magnification X200. Cat activity (B), Cat mRNA (C), 

ROS generation (D), NADPH oxidase activity (E) and Nox4 mRNA (F) 

expression in RPTs of WT controls, Cat-Tg, Akita and Akita Cat-Tg mice. 

Values are expressed as means ± SEM, n=8 per group. **p<0.01; 

***p<0.005; NS, not significant.   

 

Figure 2. Agt, Nrf2 and Keap1 expression in Tg mouse kidneys at 

week 16.Immunohistochemical staining for Agt (A), Nrf2 (B), HO-1 (C) 

and Keap1 (D) in mouse kidneys. Magnification X200. (E) WB of Agt, 

Nrf2, Keap1 and HO-1 expression (a) and quantification of their 

expression (b) in RPTs from kidneys of WT controls, Cat-Tg, Akita and 

Akita Cat-Tg mice. The membranes were re-blotted for β-actin. Agt, 

Nrf2,Keap1 and HO-1 levels were normalized by corresponding β-actin 

levels. Values are expressed as means ± SEM (n=8). ***p<0.005; NS, not 

significant.(c) WB of Nrf2 in nuclear and cytoplasmic fraction of RPTs 

from kidneys of WT controls, Cat-Tg, Akita and Akita Cat-Tg mice. (F) 

RT-qPCR of Agt (a), Nrf2 (b),Keap1 (c) and HO-1 (d) mRNA expression 

in RPTs of WT controls, Cat-Tg, Akita and Akita Cat-Tg mice. Agt, Nrf2, 

Keap1 and HO-1 mRNA levels were normalized by corresponding β-actin 
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mRNA levels. mRNA levelsin non-Akita control littermates were 

considered as arbitrary unit 1. Values are reported as means ± SEM, n=8 

(*p<0.05; **p<0.01; ***p<0.005; NS, not significant).WT (empty bars), Cat-

Tg mice (light grey bars), Akita (solid black bars) and Akita Cat-Tg mice 

(dark grey bars). 

 

Figure 3. Effect of HG on Nrf2, Agt and HO-1 mRNA expression in rat 

RPTCs. Cells were incubated in various concentration of D-glucose for 24 

h (A) or for various time periods (B) in the presence of one of the 

following antioxidants: apocynin (10-5 M), DPI (10-7 M), Cat (300 U) or 

Rotenone (10-6 M) (C) or MAPK inhibitors: wortmannin  (10-6 M), 

PD98059 (10-5 M) or SB203580 (10-6 M) or (D) or NF-κB inhibitors: BAY-

11-7082 (10-5 M) or PDTC (10-6 M)) (E and F). Cells were harvested and 

assayed for Nrf2 or Agt mRNA by RT-qPCR. WB of Nrf2 (G) and Agt (H) 

expression in RPTCs cultured in HG medium in the absence or presence 

of inhibitors BAY-11-7082 (10-5 M) or PDTC (10-6 M). RT-qPCR of HO-1 

mRNA (I) and WB of HO-1 protein (J) expression in RPTCs cultured in 

HG medium in the absence or presence of the NF-kB inhibitors BAY-11-

7082 (10-5 M) or PDTC (10-6 M). Cells incubated in medium containing 5 

mmol/l D-glucose plus 20 mmol/l D-mannitol were considered as control 

(arbitrary unit 1). Results are reported as percentages of control values 

(mean ± SEM, n=3). *p≤0.05; **p≤0.01; ***p≤0.005; NS, not significant. 

Similar results were obtained in 2 separate experiments. 
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Figure 4. Effect of H2O2 on Nrf2, Agt and HO-1 mRNA expression in 

rat RPTCs. RPTCs or cells stably transfected with the pGL4.20 

containing Nrf2 or Agt gene promoter were incubated with 10-6 M of H2O2 

in 5 mM D-glucose for 24 h in the absence or presence of wortmannin 

(10-6 M), PD98059 (10-5 M), SB203580 (10-6 M), BAY-11-7082 (10-5 M) or 

PDTC (10-6 M)). Cells were harvested and assayed for Nrf2 or Agt mRNA 

by RT-qPCR (A and B, respectively) or promoter activity of Nrf2 (C) and 

Agt (D) gene by luciferase activity assay or assayed for HO-1 mRNA (E) 

and HO-1 protein (F) by RT-qPCR and WB, respectively. Cells incubated 

in medium containing 5 mmol/l D-glucose were considered as control 

(arbitrary unit 1). Results are expressed as relative values to control 

(mean ± SEM, n=3). *p≤0.05; **p≤0.01; ***p≤0.005; NS, not significant. 

Similar results were obtained in 2 separate experiments. Effect of Flag-

(Rel A)p65 cDNA transfection on Nrf (G) and Agt (H) gene promoter 

activity in RPTCs. Nrf2 and Agt gene promoter activity was quantified by 

luciferase activity assay. Luciferase activity in cells transfected with the 

plasmid, pcDNA 3.1 was considered as control (100%). Results are 

reported as percentages of control values (means ± SEM, n=3). *p≤0.05; 

**p≤0.01; ***p≤0.005; NS, not significant.  

 

Figure 5.Effect of Nrf2 activator on Nrf2 and Agt gene expression in 

rat RPTCs. Cells were incubated in various concentrations of the Nrf2 

activator oltipraz for 24 h (A) and (B) in the absence or presence of 
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various concentrations of the Nrf2 inhibitor alkaloid trigonelline (C and D). 

Effect of Nrf2 cDNA transfection on Nrf (E) and Agt mRNA (F) expression 

in RPTCs. Cells were harvested and assayed for Nrf2 or Agt mRNA by 

RT-qPCR. Effect of Nrf2 cDNA transfection on Nrf (G) and Agt (H) gene 

promoter activity in RPTCs. Nrf2 and Agt gene promoter activity was 

quantified by luciferase activity assay. Cells incubated in a medium 

containing 5 mmol/l D-glucose were considered as control (100%). 

Results are reported as percentages of control values (means ± SEM, 

n=3). *p≤0.05; **p≤0.01; ***p≤0.005; NS, not significant. Similar results 

were obtained in 2 separate experiments. 

 

Figure 6. Effect of Nrf2 siRNA on Nrf2 and Agt gene expression in 

RPTCs in HG medium. Dose-dependent effect of Nrf2 siRNA or 

scrambled siRNA on Nrf2 (A) and Agt (B) protein expression in RPTCs 

incubated in HG medium and quantified by WB. Dose-dependent effect of 

Nrf2 siRNA or scrambled siRNA on Nrf2 (C) and Agt (D) mRNA 

expression in RPTCs incubated in HG medium and quantified by RT-

qPCR. Dose-dependent effect of Nrf2 siRNA or scrambled siRNA on Nrf2 

(E) and Agt (F) gene promoter activity in RPTCs incubated in HG medium 

was quantified by luciferase activity assay. Cells were harvested after 24 

h of incubation. Agt mRNA levels in cells incubated in normal glucose 

medium are expressed as arbitrary unit 1. The results are reported as 
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percentages of control values (means ± SEM, n=3). *p<0.05; **p<0.01; 

***p≤0.005; NS, not significant. Sc, scrambled. 

 

Figure 7.Idenfication of Nrf2-REs in the Agt gene promoter. (A) 

Schematic diagram of rAgt gene promoter with putative Nrf2-REs. (B) 

Activity of plasmid containing various lengths of Agt gene promoter 

assayed by luciferase assay. (C) Concentration-dependent effects of the 

Nrf2 activator oltipraz on Agt gene promoter activity in RPTCs in 5 mM D-

glucose medium in the presence or absence of the Nrf2 inhibitor 

trigonelline (D). (E) Effect of oltipraz on full-length Agt gene promoter 

activity with or without Nrf2-RE (dNrf2-RE or pNrf2-RE or both). The cells 

were incubated in medium containing 5 mM D-glucose for 24 h and then 

harvested. The results are reported as percentages of control values 

(means ± SEM), n=3 independent experiments (*p<0.05; **p<0.01; 

***p<0.005; NS, not significant). 

 

Figure 8. Effect of oltipraz on Nrf2, Agt and HO-1 mRNA expression 

in mice in vivo. Immunohistochemical staining for Nrf2 (A), Agt (B) and 

HO-1 (C) in the kidneys of WT mice ± oltipraz and trigonelline. 

Magnification X200. WB of Nrf2 (D), Agt (E) and HO-1 (F) expression, 

and RT-qPCR of Nrf2 (G), Agt (H) and HO-1 (I) mRNA expression in 

RPTs of WT mice ± oltipraz and trigonelline. Values are expressed as 
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means ± SEM (n=6 per group). *p<0.05; **p<0.01; ***p<0.005; NS, not 

significant. 
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Table 1: Primer sequences for RT-qPCR, site-directed mutagenesis and sub-cloning 

 

Gene 

 

 

Species 

 

Forward/reverse primer sequences 

 

Accession number 

Angiotensinogen 

 

Rat / Mouse F: 5’-CCACGCTCTCTGGATTTATC-3’ NM_007428.3 

R: 5’-ACAGACACCGAGATGCTGTT-3’  

KEAP1 

 

Rat / Mouse F: 5’-CATCCACCCTAAGGTCATGGA-3’ NM_016679.4 

R: 5’-GACAGGTTGAAGAACTCCTCC-3’  

Catalase 

 

Rat / Mouse F: 5’-CGACCAGATGAAGCAGTGGA-3’ NM_009804.2 

R: 5’-CCACTCTCTCAGGAATCCGC-3’  

NOX4 

 

Rat / Mouse F: 5’-TGGCCAACGAAGGGGTTAAA-3’ NM_015760.4 

R: 5’-GATGAGGCTGCAGTTGAGGT-3’  

Nrf2 

 

Rat / Mouse F: 5’-CGCCGCCTCACCTCTGCTGCCAGTAG-3’ NM_010902.3 

R: 5’-AGCTCATAATCCTTCTGTCG-3’  

HO-1 Rat / Mouse F: 5’-CACCAAGTTCAAACAGCTCT-3’ NM_010442.2 

  R: 5’-CAGGAAACTGAGTGTGAGGA-3’  

Nrf2 3’-UTR 

 

Rat F: 5’-GAAATGCAGAAACACTTTATAAG -3’ NM_031789.2 

R: 5’-GACTGTAACAAATGAGAACAG -3’  

Nrf2 (cDNA) 

 

Human F: 5’-AAAGGTACCATGATGGACTTGGAGCTG CCG-3’ NM_006164.4 
R:5’-AAACTCGAGCTAGTTTTTCTTAACATCTGGC-3’  

Nrf2 Promoter 

 

Rat F: 5’-GAACCATGATGATAATTAAGTCTCAG-3’ NM_003807581.1 
R: 5’AAACTCGAGCTGGGACTGTAGTCCTGGCGG-3’  

Agt promoter   

(442bp) 

Rat F: 5’-AAAGGTACCGGTGCGGGAAGGGACTGG -3’ NW_003812957.1 

R: 5’-AAAAAGCTTCCAGACAAGCACAGCTAT -3’  

Agt promoter 

(1044 bp) 

Rat F:5’-AAAGGTACCCCTCCAACAACTGGCTTCC-3’ NW_003812957.1 

R: 5’-AAAAAGCTTCCAGACAAGCACAGCTAT -3’  

Agt promoter -

∆Nrf2 prox.  

Rat F: 5’-CTAGTTTCTTCAGGGACTGCTCTGCC 3’  

R: 5’-GGCAGAGCAGTCCCTGAAGAAACTAG-3’  

Agt promoter -

∆Nrf2 distal. 

Rat F:5’-GAAGGTCACTCTCTCAGCTCAGACACCATC -3’  

R:5’-GATGGTGTCTGAGCTGAGAGAGTGACCTTC -3’  

β-Actin 

 

Rat, Mouse 

& Human 

F: 5’-ACGATTTCCCTCTCAGCTT-3’ NM_031144.3 
R: 5’-TACAATGAGCTGCGTGTGGC-3’  
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Table 2. Physiological Measurements 

 WT CAT-Tg Akita Akita CAT-Tg 

Blood 
glucose(mmol/L) 

9.62±0.75 10.01±0.68 33.49±0.66*** 33.80±0.41*** 

Systolic blood  
pressure (mmHg) 

103.88±3.50 101±4.25 137.34±2.57*** 117±3.75***††† 

Body weight (g) 32.36±0.80 32.71±0.39 23.82±0.49*** 24.84±0.53*** 

Kidney weight (mg) 370±10 380±10 540±24*** 490±10***,† 
Heart weight (mg) 140±10 140±10 160±10 150±10 

Tibia length (mm) 18.5±0.12 18.4±0.14 16.5±0.10*** 17.4±0.11**,†† 
Kidney/Tibia length 
(mg/mm) 

20± 1.11 20.65±1.43 32.74±1.36*** 28.10±0.32***,†† 

Heart/Tibia length 
(mg/mm) 

7.56±0.10 07.60±0.10 9.63±0.31*** 8.64±0.20*,† 

Albumin/Creatinine 
ratio (μg/ml/mg/dL) 

0.23 ±0.03 0.17 ±0.03 3.85 ±0.81*** 2.2 ±0.66***†† 

GFR (ml/min)/BW (g) 9.92±0.80 10.64±0.77 22.75±2.15*** 16.14±1.55**†† 
Glomerular tuft  
volume (X103μm3) 

127.45 ±4.05 131.06 ±3.11 231.39±17.21*** 171.33±6.51**,††† 

RPTC volume 
(X103μm3) 

5.44 ±0.11 4.82 ±0.05* 9.68±0.26*** 5.86 0.14††† 

Tubular luminal  
area (μm2) 

51.38±5.37 48.76±5.54 105.75±14.55** 66.27±9.11*,†† 

Urinary Agt/ 
Creatinine Ratio 
(ng/mg) 

28.14±4.73 28.60±5.91 394.75±91.72*** 220.81±23.48***,† 

UrinaryAngII/ 
Creatinine Ratio 
(ng/mg) 

1.20±0.42 3.56±1.34 38.64±12.04** 12.10±5.01**,† 

 

*p<0.05; **p<0.01; ***p<0.005 vs WT;  †p<0.05; ††p<0.01; †††p<0.005 vs Akita 
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Hyperglycemia, oxidative stress and renin-angiotensin system 

Hyperglycemia, oxidative stress and renin-angiotensin system 

dysfunction have been implicated in the progression of DN, however, the 

underlying molecular mechanisms are far from being fully understood. DN 

is characterized by multiple structural and functional abnormalities, 

specifically at the level of the glomerulus, tubulointerstitium and 

vasculature of the kidneys of diabetic patients. Early tubular injury has 

been reported in DN patients whose glomerular function is intact [420]. 

The activation of the RAS and uncontrolled blood glucose are two of the 

major risk factors for the development of DN. Hyperglycemia in Akita mice 

begins at approximately 3-4 weeks of age. Our findings in chapter 2 

demonstrate the effect of insulin treatment in Akita mice (for 4 weeks) on 

physiological and histological levels of the kidney. Blood glucose level, 

hypertension, ACR, GFR, urinary levels of ANG II and Agt were 

significantly elevated in Akita mice compared with WT controls. Insulin 

treatment decreased, though never completely normalized, the 

hyperglycemia level, SBP, kidney functions and urinary ANG II and Agt 

levels in Akita mice.  

 

Histological findings included collagenous components and tubular 

luminal dilation with an accumulation of cellular debris in the tubular 

lumen; these findings were increased in Akita mice compared to WT. 

Insulin treatment of Akita mice markedly reversed, though never 

completely resolved these abnormalities. These data indicate the effect of 

insulin treatment on preventing tubulointerstitial fibrosis in Akita mice. The 

Agt gene expression was elevated in the RPTCs of adult Akita mice, 

although the underlying mechanisms remain incompletely understood. In 

contrast, the RPTCs of Akita mice exhibited decreased hnRNP F and K 

as well as ACE-2 gene expression compared to WT controls. Insulin 

treatment increased the expression of hnRNP Fand hnRNP K, normalized 

ACE-2 gene expression and downregulated Agt expression in Akita mice.  
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To elucidate the possible mechanism of action underlying insulin 

activation of hnRNP F / hnRNP K and Agt downregulation we used 

immortalized rat RPTCs. The cells were obtained from Dr. Julie R. 

Ingelfinger of Harvard Medical School of Boston [421]. Immortalized rat 

RPTCs were derived from 4 to 6 weeks old WKY male rats with an origin-

defective SV40 plasmid. The IRPTC line expresses all the components of 

RAS [422]. We examined immortalized rat RPTCs stably transfected with 

control PGL4.20 plasmid and  PGL4.20 containing approximately1.5kb of 

rat Agt gene promoter, with and without insulin in high glucose milieu. We 

found that insulin inhibited Agt promoter activity though activation of 

hnRNP F and hnRNP K gene expression. Knockdown of hnRNP F or 

hnRNP K by small interfering RNAs attenuated insulin inhibition of Agt 

expression in RPTCs. Transfection efficiency of hnRNP F siRNA or 

hnRNP K siRNA showed that endogenous hnRNP F or hnRNP K protein 

expression decreased by more than 50%, respectively (chapter 2 ESM 

fig2). Transfection with either hnRNP F siRNA or hnRNP K siRNA 

partially attenuated insulin inhibition of Agt gene expression. This 

observation is in agreement with the study by Wei et al [230] in which 

they demonstrated that hnRNP F and hnRNP K proteins form a 

heterodimer and bind to the IRE region of the Agt promoter to regulate 

the Agt gene expression. Thus, silencing one of the two TFs will not 

completely abolish the inhibitory effect of insulin, whereas a combination 

of both siRNAs is more effective in attenuating the insulin inhibition of Agt 

gene expression. Recently, Lo et al [423] reported that overexpression of 

hnRNP F in RPTs of Akita mice attenuated the SBP, though not 

completely normalized.These observations raise the following question : 

whether the selective overexpression of hnRNP F and hnRNP K in 

RPTCs of a diabetic mouse would be more effective in controling Agt 

gene expression and SBP? Moreover, TFs regulate multiple genes 

indifferent pathways which by silence will disrupt the canonical pathway of 

other regulated genes. For example, under normal conditions hnRNP F 



expre

that m

Thus 

splice

expre

hnRN

signal

demo

renal 

kidney

hnRN

Figure
expres
expres
insulin
activat
 

4.1 Ad

glucos

ssion prom

might influe

hnRNP F

er for other 

ssion. How

Pharmaco

NP F and h

ling pathw

nstrate tha

Agt expre

y function.

NP F and K 

e 4-1 : The 
ssion A: Th
ssion and s
n effect of p4
tion of hnRN

dvantage o

Insulin is 

se metabol

motes alter

nce the ins

F knockdow

genes tha

wever, this h

ological inh

hnRNP K tr

way, confir

at hnRNP F

ession, pre

 The effec

expression

effects of h
he effect o
subsequent 
44/p42 MAP

NPF and K.  

of hyperinsu

a multifunc

lism and co

171

native splic

sulin pathw

wn could a

at might pla

hypothesis 

hibitors sho

ranscription

ming our 

F and hnR

vention of 

ct of high 

n is shown i

high glucose
of hyperglyc

hypertensio
PK and dow
 

ulinemic-eug

ctional horm

ould have a

1 

cing of ins

way and affe

affect its fu

ay an impo

requires fu

ow that the 

n is mediate

earlier fin

RNP K med

hypertens

glucose a

n figure 4-1

e and insulin
cemia on R
on and nep
nregulation 

glycemic cl

mone that p

a positive o

ulin recept

ect Agt gen

unctionas 

ortant role(s

rther invest

action of i

ed via the 

ndings [11

diate insuli

sion and a

and insulin 

1. 

n on the RA
ROS activat
phropathy d
of Agt gene

lamp. 

plays a role 

r negative 

tor gene [2

ne express

an alterna

s) in Agt g

tigation. 

insulin on A

p44/42 MA

5]. Our d

in inhibition

amelioration

on RAS a

AS and hnR
tion, Agt g
evelopment

e expression

in cell grow

effect on g

 

283] 

ion. 

ative 

ene 

Agt, 

APK 

data 

n of 

n of 

and 

 

RNP 
gene 
. B: 

n via 

wth, 

ene 



 

172 

 

transcription. Insulin regulates gene expression or induces post-

translational modifications of preexisting molecules [424]. In chapter 2, we 

identify a novel mechanism underlying insulin inhibition of renal 

Agtexpression and subsequent prevention of hypertension and kidney 

injury of Akita mice via the upregulation of renal hnRNP F and hnRNP K. 

Our experimental design has its limitations, namely that we cannot 

differentiate between a ‘glucose-lowering effect’ and a ‘direct effect’ of 

insulin on renal Agt, hnRNP F and hnRNP K gene expression in vivo.  In 

order to elucidate the direct action of insulin on renal Agt, hnRNP F and K 

gene expression, we performed a hyperinsulinemic-euglycemic clamp in 

wild type mice in collaboration with Dr. Thierry Alquier of the CRCHUM. 

The hyperinsulinemic-euglycemic clamp is used to assess insulin action 

on gene expression and insulin sensitivity independent of its glucose-

lowering effect in vivo [425]. This test is widely used as a standard 

reference to determine metabolic insulin sensitivity in humans [426]. 

Frequently, insulin infusion is accompanied by glucose infusion in order to 

maintain the basal glucose level and to prevent an insulin-induced drop in 

plasma glucose, meaning that the plasma glucose is kept at a normal 

range (euglycemic) during the period of the experiment [425]. The 

experiments have a duration of three hours, with elevation of insulin level 

up to 6 fold compared to control group (saline-infused group) as shown in 

figure 5-1. 

 

In this experiment, we found that the gene expression levels of  

hnRNP F and K were increased in the insulin-infused group while Agt and 

Nrf2 gene expression was decreased in mRNA and protein levels 

(unpublished results figure 5-2a-h). From these results it appears that 

insulin increaseshnRNP F and hnRNP K gene expression and lowers the 

expression of Agt and Nrf2 in renal proximal tubules compared to WT-

saline group. Furthermore, IRPTCs that have been stably transfected with 

the pGL4.20 plasmid containing either the rat hnRNP F or the rat hnRNP 
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K gene promoter were also studied. High glucose decreased the 

promoter activity of hnRNP F and hnRNP K, while insulin treatment 

increased hnRNP F and hnRNP K gene promoter activity in both NG and 

HG milieu (figure 5-8). These results clearly demonstrate that insulin itself 

might play a role in the regulation of hnRNP F, hnRNP K and Agt gene 

expression. Furthermore, these results reinforce our earlier hypothesis 

that dysregulation of hnRNP F and hnRNP K expression in vivo may 

directly alter the activation of intrarenal RAS and, therefore, contribute to 

hypertension and renal injury in diabetes. Thus, hnRNP F and hnRNP K 

may be potential targets in the treatment of hypertension and kidney 

injury in diabetes.  

 

Chan’s group previously reported that Agt mRNA expression is 

upregulated in RPTs of STZ-induced diabetic mice. STZ drug is highly 

genotoxic; it causes DNA methylation, produces DNA strand breaks, 

chromosomal aberrations, micronuclei, and cellular death. STZ is also 

carcinogenic; a single administration induces tumors in the rat kidney, 

liver, and pancreas [329]. To avoid the ‘nephrotoxicity’ associated with 

STZ [331] and to demonstrate the physiological role of hnRNP F, hnRNP 

K and Nrf2, we used spontaneously diabetic Akita mice. The phenotype 

of the Akita mouse is similar to that of the human type 1 diabetic patient. 

Akita mice develop hyperglycemia, hypertension, and high oxidative 

stress leading to cardiovascular damage and glomerulosclerosis [427]. 

Agt is a glycoprotein that is the sole source of multiple angiotensins. 

Studies have demonstrated that Agt mRNA and protein are expressed in 

RPTs. In RPTs of Akita mice, we demonstrated that HG induces an 

increase in Agt gene expression at the transcriptional and translational 

levels, whereas insulin implant or Cat overexpression attenuated Agt 

gene expression as well as normalized systolic blood pressure (as 

described in detail in Chapter 2 and 3). 
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4.3 Promoter and transgenic mice. 

Animal models are used to study the function of certain genes and 

their role in disease progression. Tg animal models help us understand 

the etiology of hypertension and develop strategies to control the disease 

progression. Organ-specific Tg mice is one of the recent advances in the 

Tg model in which expression of the transgene is tissue or organ-specific 

by organ-specific promoter control. For example, in the vascular system, 

Michael Bader generates Tg rats that overexpress human ACE2 in the 

vascular smooth muscle under the control of the SM22 promoter [371]. In 

the heart, overexpression of human AT1R in mouse cardiomyocytes was 

derived by its expression under the control of the alpha-myosin heavy 

chain promoter [364], while the same gene was overexpressed in the rat 

podocyte under the control of a nephrin promoter [365]. In recent years, 

extensive attention has been given to local or tissue RASs. Among these, 

the intrarenal RAS expression is of special interest to us. 

 

4.3.1 Androgen-regulated protein (KAP) promoter 

The KAP is one of the most abundantly expressed genes in the 

proximal convoluted tubules [428]. The androgen-regulated protein (KAP) 

promoter has been used to drive the expression of transgenes in the 

RPTCs. This promoter is androgen-regulated and capable of specific 

targeting in RPTCs. In the human Agt Tg mouse, the construct consisted 

of 1542 base pairs of the KAP promoter fused with 10.3-kb of the human 

angiotensinogen (hAgt) gene (that included exons II, III, IV, and V, the 

intervening introns, a 70-bp segment derived from the 3’-end of intron I, 

and the native 3’-end of the hAgtgene containing the poly(A) sites). 

Studies have demonstrated the efficiency of the 1542 base pairs of the 

KAP promoter to drive the expression of the transgene into a tissue-

specific, cell-specific, and androgen-regulated fashion in Tg mice. The 

KAP2 construct is a modified form of the KAP-hAgt construct 

characterized by the deletion of the coding sequence contained within the 
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hAgt exon II as well as creating a unique Not-1 restriction site 

downstream of the KAP promoter sequence to allow for cDNA insertion of 

any gene at the Not-1 site. By using the KAP2 vector, Chan’s group 

generates rAgt-Tg mice, rCat-Tg, and rat hnRNP F-Tg mice. By studying 

the phenotype of Tg mice that have been crossbred with diabetic mice, 

we are now able to understand the function of these genes in the 

development of hypertension as well as diabetic nephropathy 

progression. Fang et al. demonstrated that overexpression of rAgt in 

RPTCs increases tubular apoptosis in STZ diabetic mice [16]. Cat 

overexpression attenuated Agt expression [417] and apoptosis in diabetic 

mice, while preventing hypertension and tubular apoptosis in Agt-Tg mice 

[219]. Recently, Lo et al.reported that overexpressing hnRNP F in RPTC 

of Akita mice efficiently suppresses Agt gene expression and attenuates 

systemic hypertension, kidney hypertrophy, and glomerulotubular fibrosis. 

These studies suggest a protective role of hnRNP F in preventing ANG II-

induced hypertension and kidney injury [423]. 

 

HnRNP K is a transcription factor that plays a role in alternative 

splicing as well as regulating gene expression [429]. Xiao et 

al.demonstrated the role of hnRNP K as an antiapoptotic gene, 

independent of p53, in hepatocellular carcinoma via the maintenance of 

high levels of endogenous caspase inhibitors, and also identified hnRNP 

K as a possible therapeutic marker for cancer treatment [430]. In vitro 

studies show that overexpression of hnRNP K in IRPTCs inhibits 

angiotensinogen gene expression, and binds to the IRE of the Agt gene 

[230]. In addition, hnRNP F and hnRNP K are able to form heterodimers 

230]. We have reported that the expression of both hnRNP F and hnRNP 

K are lower in the Akita mice (Figure 2-3e, f). Taken together, we 

postulate that overexpression of hnRNPK might play a protective role in 

hypertension. To test this we created Tg mice overexpressing rat hnRNP 

K in their RPTCs using the KAP2 vector. The transgene was tagged with 
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39bp of a myc tag at the 5’ end of rat hnRNP K. The construct is shown in 

figure 5-3a (unpublished data). 

 

The pKAP2-rhnRNPK construct was microinjected into one-cell 

fertilized mouse embryos (performed by Dr. Zhu of IRCM). Out of 75 

offspring born, only 4 Tg founders containing the transgene were 

identified by southern blotting (Figure 5-3B). Three of these founders 

were successfully cross-bred with C57/B6 WT mice to establish the Tg 

lines. Studying the expression of the transgene in various tissues by 

polymerase chain reaction (RT-PCR) showed that rat-myc-hnRNP K is 

overexpressed only in the kidney of line 292. We have further 

characterized the line 292. Male Tg mice express the transgene in the 

kidney but not in other tissues, and exogenous testosterone further 

enhances renal transgene expression as shown in figure 5-3b and C. 

 

Our preliminary data showed that rat hnRNPK is overexpressed in 

mouse RPTs and did not have a damaging effect on kidney histology as 

shown by PAS staining and Masson’s trichrome staining (figure 5-5). 

Evidently, further studies are needed in order to understand the effects of 

hnRNP K oxerexpression in vivo on Agt, hnRNP F and Nrf2 gene 

expression as well as the apoptotic effect on the Akita mice. For that 

purpose we need to crossbreed hnRNPK-Tg mice with a diabetic mice 

model such as db/db (type 2 diabetes) or Akita (type 1 diabetes). An 

alternative way to study the effect of hnRNP K overexpression in RPTs is 

to feed the trangenic mice a high salt diet or induce hypertension by Ang 

II administration for four weeks or more. A follow up of the mice is 

conducted by measuring their body weight and blood pressure, and 

comparing the data collected with those of the non-transgenic mice. More 

details about studies that could be done with the hnRNP K-Tg are 

summarized in perspective studies. 
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4.4 HnRNP F and K knockout mice 

Overexpression of hnRNP F in RPTCs of Akita mice plays a 

protective role in kidney injury and efficiently suppresses Agt gene 

expression [423]. It is important to study hnRNP F and/orhnRNP K 

knockout mice to investigate the physiological role of these two TFs on 

Agt gene expression and kidney injuries. Targeted gene disruption has 

become a tool to study the physiological role of certain genes. 

Conventional knockout  technology has certain limitations in which the 

gene of interest to knockout could be essential for development and 

survival, causing embryonic or postembryonic lethality phenotype [431]. 

For example, homozygous deletion of mouse hnRNP K results in embryo 

lethality prior to embryonic day 13.5, whereas nearly 50 % of 

heterozygous hnRNP K+/- mice survive with developmental defects. 

Surviving hnRNP K+/- mice are at high risk to develop tumors and some 

develop hematological neoplasms[432]. HnRNP F knockout mouse is not 

yet available. Thus, conditional gene knockout represents an extremely 

powerful approach to overcome the limitation of conventional knockout 

[433]. In our lab Dr. Lo is working to create a conditional hnRNP F 

knockout mouse in the RPTCs using the Cre-loxP system. The Cre-loxP 

site-specific recombination system can be used to knockout genes, and 

thus analyse their function, at a single developmental stage or in specific 

cell types or tissues. Dr Lo generates mice harboring a conditional 

hnRNP F allele by flanking hnRNP Fexon 4 with two loxP-recombination 

sites to generate a ‘‘floxed’’ hnRNP F allele. To obtain hnRNP F knockout 

mice in the RPTs, hnRNP Ffloxed/ floxed (floxed mice) will breed with Tg mice 

expressing Cre recombinase under the control KAP2 promoter (KAP2-

Cre mice). KAP promoter is critical to determine the site of Cre 

expression. Cre enzyme, in turn, recombines the floxed gene and 

produces gene knockout. By this approach we will be able to investigate 

the physiological role of hnRNP F knockout in the RPTs as well as its role 

in regulating Agt gene expression.  
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4.4 Catalase gene overexpression 

Akita mice exhibit decreased numbers of β-cells in the pancreatic 

islets, develop hyperglycemia [340], hypertension and increases in 

oxidative stress markers in RPTs that lead to kidney damage [167]. Renal 

injury in the Akita mice is characterized by tubular luminal dilation, 

glomerular hypertrophy and increased RPTC volume.We detected 

marked increases in ROS generation, NADPH oxidase activity and Nox4 

mRNA expression in RPTCs of Akita mice compared to non-Akita mice 

(Chapter 3). These changes were normalized in Akita Cat-Tg mice, 

indicating that oxidative stress is a major component of renal injury in 

Akita mice.  

 

An unbalanced production of ROS plays a role in the pathogenesis 

of different diseases. Protection against oxidative damage is 

accomplished by a complex defense system composed of antioxidant 

molecules (such as Nrf2) and antioxidant enzymes (SOD, GSH and Cat) 

[418] that converts excessive reactive species to less reactive and less 

damaging forms. Catalase plays a major role in cellular antioxidant 

defense by decomposing hydrogen peroxide, thereby preventing the 

generation of hydroxyl radical. In Akita, we detected that the enzyme 

activity of catalase was decreased compared to the control group 

(chapter 3 fig 1c), in addition to renal structural damage, including tubular 

luminal dilation, glomerular hypertrophy, and increased RPTC volume 

[167]. These findings are in agreement with a study done by Kobayashi et 

al.[434], which showed that a deficiency of catalase enzyme activity 

(acatalasemia) promotes enhanced oxidant tissue injury, and interstitial 

fibrosis leading to renal function impairment. Moreover, mice lacking 

catalase develop normally but show differential sensitivity to oxidant 

tissue injury [435]. The role of catalase in defending cells and tissues 

against oxidative stress has been studied extensively. Transgenic mice 

overexpressing various antioxidant enzymes have been generated by 
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several laboratories. Transgenic mice overexpressing rat Cat in their 

heart are protected against cardiotoxicity following doxorubicin treatment 

in these animals [436]. Chan’s group has demonstrated that 

overexpression of rat Cat in RPTs attenuated ROS generation, Agt and 

proapoptotic genes expression in the kidneys of STZ-induced diabetic 

mice [417]. We demonstrate in chapter 3 that overexpression of Cat in 

RPTs of Akita mice attenuates the ROS level which is in agreement with 

the study done by Shi et al. [218] compared to control mice. Additionally, 

Cat overexpression in RPTs of Akita mice prevents hypertension, 

progression of nephropathy, and highlights the importance of intrarenal 

oxidative stress and renal injury in diabetes. Cat overexpression in 

pancreatic beta cells is a partial protection against some beta cell toxins 

and is compatible with normal function [437].     

 

4.5 NADPH oxidase and Nox4. 

The NADPH oxidase is a family of seven members that play a 

major role to catalyze the production of superoxides and other 

ROS.These are NADPH oxidase 1 (Nox1), NADPH oxidase 2 (Nox2), 

NADPH oxidase 3 (Nox3), NADPH oxidase 4 (Nox4), NADPH oxidase 5 

(Nox5), Dual oxidase 1 (Duox1), and Dual oxidase 2 (Duox2) [438]. Nox1, 

Nox2 and Nox4 have been shown to be expressed in the renal cortex but 

Nox4 is the most common Nox isoform to be expressed in the kidney 

[439, 440]. Nox4 contributes to basal ROS production through its 

constitutive activity and to increased ROS generation when stimulated by 

Ang II, glucose, and growth factors [441, 442]. In vitro study shows that 

Nox4 activation produced H2O2and not superoxide [443]. Additionally, 

Nox4 activation regulates Nrf2 and glutathione redox in cardiomyocytes 

[444]. Our data in chapter 3 fig 1d-f, show that Akita mice exhibit 

significantly higher ROS levels, NADPH oxidase activity and Nox4 mRNA 

than non-Akita WT and Cat-Tg mice, indicating presence of markedly 
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higher levels of oxidative stress. These changes were normalized by 

overexpressing Cat in Akita mice. Although the endogenous Cat 

expression is downstream the Nox4 mRNA expression, overexpression of 

rat Cat under KAP promoter in RPTs of Akita mice normalizes the ROS 

level by inhibitingthe Nrf2 translocation to the nucleus (figure- 2E [c]), 

which could lead tonormalizing Nox4 transcription. Pendyala et al. 

demonstrated by CHIP assay that Nrf2 binds to AREs regions of the 

human Nox4 gene promoter and regulates its activity. Moreover, 

hyperoxia stimulated Nrf2 translocation to the nucleus and the knockdown 

of Nrf2gene expression by siRNA approach attenuated hyperoxia-induced 

Nox4 expression [445]. This revealed the important role of Nrf2 in 

regulating Nox4 gene expression. After analysis of 3kb of mouse Nox4 

gene promoter, the putative Nrf2 binding site was found in the proximal 

region between nucleotide number -588and -598 relative to the 

transcription starting site. Additionally, the endogenousCat gene 

expression in the Akita mice group is regulated by the ROS activity and 

Nrf2 activation. 

 

4.6 Advantages and Disadvantages of Nrf2 Activation 

The Nrf2–Keap1 pathway is one of the major protective processes. 

Under physiological conditions, the Nrf2 signaling pathway is negatively 

regulated by Keap1 [301]. In response to oxidative stress, Nrf2 is 

responsible for regulating a series of antioxidant and cellular protective 

genes (such as HO-1, NADPH and glutamatecysteine ligase) to 

neutralize the effects of ROS [296]. Although Nrf2 is translocated to the 

nucleus under high glucose or H2O2 conditions to activate antioxidant 

genes, Han et al. demonstrated that primary cultures of RPTCs treated 

with H2O2 and high glucose show a decrease in the activity of both 

endogenous antioxidants, Cat and glutathione (GSH), in the rabbit. In 

addition, the effect of high glucose on the reduction of Cat was blocked by 
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Rotenone, or Apocynin treatment [446]. STZ-induced diabetes in the rat 

exhibited low catalase activity in the cortex and medulla of these rats 

[447]. We observed that Cat activity and expression were downregulated 

whereas Nrf2 and Agt expression were upregulated in the RPTCs of Akita 

mice. The precise mechanism by which hyperglycemia leads to up-

regulation of renal Nrf2 and Agt gene expression in diabetes still remains 

unclear.  

 

ROS activation or hyperglycemia enhances Nrf2 translocation into 

the nucleus.  Nrf2 would then bind to Nrf2-binding sites in the Agt gene 

promoter region and promoteAgt gene expression. Indeed, our in vitro 

studies in rRPTCs confirmed that HG, Oltipraz, and transient transfection 

of Nrf2 cDNA stimulate Nrf2 and Agt gene expression. This effect could 

be explained by the presence of Nrf2-REs in both Nrf2 [448] and Agt 

gene promoters[449]. Consistently, deletion of dNrf2-REs and pNrf2-REs 

completely abolished the stimulatory effect of Oltipraz on Agt gene 

transcription, demonstrating that Nrf2 stimulation of Agt gene expression 

occurs at the transcriptional level. In WT mice, administration of Oltipraz 

stimulated both Nrf2 and Agt gene expression in RPTCs, and these 

actions were reversed by trigonelline co-administration. In contrast, 

Oltipraz stimulated Nrf2 but not Agt gene expression in the liver. These 

findings highlight the tissue-specific Nrf2 regulation of Agt gene 

expression. 

 

When cells are under oxidative, electrophilic stress, or when 

treated with chemopreventive compound, they often develop mechanisms 

to overcome cellular damage to increase the chance for survival. Several 

genes containing the anti-oxidant responsive element (ARE) in their 

promoters that mediate the effects of Nrf2 have been identified, and some 

of them have shown promise for cancer prevention [450]. 
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Chemopreventive agents such as oltipraz, butylatedhydroxyanisole, and 

bardoxolone methyl stimulate the Nrf2-ARE signaling pathway and are 

used as chemotherapeutics  based on stimulation of the Nrf2-ARE 

signaling pathway [451]. In contrast, several reports indicate that the 

persistent accumulation of Nrf2 in the nucleus is harmful. Under oxidative 

or electrophilic stress, Maher et al.reported that Nrf2 regulates the 

expression of several multidrug resistance-associated proteins (MRPs), 

which could lead to chemotherapeutic drug resistance [419]. Furthermore, 

Nrf2 has been shown to play dual roles in cancer cells [452]. In some 

contexts, Nrf2 is considered as a promising therapeutic target for cancer 

treatment, but this has to be counterbalanced by the fact that Nrf2 

activation can also cause cellular chemoresistance [453]. Therefore, it 

has been suggested that the Nrf2 pathway be inhibited during 

chemotherapy [235]. Lau et al.demonstrate that deregulation of 

autophagy causes the accumulation of p62 that directly interacts with 

Keap1, resulting in the inhibition of Keap1-mediated Nrf2 ubiquitination 

[454]. The non-ubiquitinated Nrf2 activates the Nrf2 pathway in a non-

canonical cysteine-independent mechanism 

 

Pergola et al.reported that severe cases of CKD and type 2 

diabetes treated in the short term with Bardoxolone methyl show 

improvement in the eGFR, renal function, and kidney injury [455]. In 

contrast, Dick de Zeeuw et al. studied the effect of  bardoxolone methyl in 

2185 patients with T2D and stage 4 CKD to determine whether 

Bardoxolone methyl, an activator of the Nrf2 pathway, would lower ESRD 

risk in these patients. Unfortunately, the bardoxolone methyl-treated 

group of patients showed significant increases in the estimated GFR, 

blood pressure, and the urinary albumin-to-creatinine ratio with decreases 

in body weight compared to the placebo group, as well as developed a 

higher risk of cardiovascular events. The study has been terminated 

prematurely due to safety concerns and it was concluded that 
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bardoxolone methyl did not reduce the risk of ESRD or the rate of death 

[456]. This finding leads us to consider that treatment with bardoxolone 

methyl may have adverse side effects, or that the activation of the Nrf2 

pathway could play a role in the increased blood pressure. To further 

explore these ideas, we have investigated the relationship between renal 

Agt gene expression and Nrf2 activation in the RPTs of wild type mice 

(chapter 3).  We found that Oltipraz administration increases Nrf2 and 

renal Agt gene expression. Moreover, gene promoter analysis predicted 

two binding sites for Nrf2 in the rat Agt gene promoter and by deleting 

these sites, the Agt promoter activity was restored to normal levels in high 

glucose media. These findings indicate that Nrf2 might have dual roles: 

stimulation of anti-oxidant genes and hypertensinogenic genes. 

 

In conclusion, controlling the glycemia in Akita diabetic mice by 

insulin implant for 4 weeks normalized systolic blood pressure, 

proteinuria, glomerular hyperfiltration, and the intrarenal expression of 

angiotensinogen via upregulation of hnRNP F and hnRNP K. In vitro 

study in IRPTCs showed that insulin decreased the expression of Agt and 

increased levels of hnRNP F and hnRNP K, possibly through activation of 

MAP kinases. Moreover, hnRNP F and hnRNP K regulate Agt gene 

expression, and knockdown of hnRNP F or hnRNP K prevented the effect 

of insulin on Agt gene expression. 

 

 Additionally, we investigated the effect of hyperglycemia/ hypo- 

insulinism in the modulation of Agt gene expression and Nrf2 with and 

without overexpression of catalase (antioxidant effect) cDNA in the renal 

proximal tubule of Akita mice. Overexpression of catalase normalized 

blood pressure, decreased histological kidney lesions, and decreased 

expression of Nrf2, heme-oxygenase, and renalAgt in Akita mice 

compared to normal mice. Oltipraz administration increases Nrf2, HO-1, 

and  renal Agt gene expression; these effectsare blocked by trigonelline, 
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acting as Nrf2 inhibitor. Moreover, deletion of the Nrf2 response elements 

of the promoter Agt abolished the stimulatory effect of this activator of 

Nrf2 on the expression of Agt, suggesting a direct transcriptional action. 

In summary, our findings indicate the ROS-triggered Nrf2-mediated Agt 

gene expression in diabetes models both in vivo and in vitro, and 

document that these changes can be prevented by selective 

overexpression of Cat in RPTCs. Our findings also imply an important 

role for oxidative stress-induced Nrf2 in the development of hypertension 

and renal injury in diabetes by altering the activation of local intrarenal 

RAS. 
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Chapter 5: Perspectives of Research and  

Unpublished Results  
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5.1Hyperinsulinemic-euglycemic clamp and gene expression.  

We performed this experiment to investigate the direct action of 

insulin on renal Agt, hnRNP F and K as well as Nrf2 gene expression. 

The hyperinsulinemic-euglycemic clampwas performed in two groups of 

wild type mice. The control group (7mice) was injected with salin and the 

other group (7 mice) was injected with insulin. The experimental design 

and results obtained are presented in fig 5-1 and 5-2. 

 
 

Figure 5-1; The Hyperinsulinemic-euglycemic Clamp (a), The experimental 
design for the animal groups and insulin infusion (b, c), blood glycemia and 
insulin levels in WT mice injected with saline (WT-sal) and insulin (WT-Ins). 
ROS level (d) and HO-1 mRNA gene expression (e). 
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Figure 5-2; HnRNP F, hnRNP K, Agt and Nrf2 gene expression in 
hyperinsulinemic-euglycemic experiment; A,B,C and D shows the protein level 
of hnRNP F, hnRNP K , Angiotensinogen and Nrf2 respectively. E, F, G and H 
show the hnRNP F, hnRNP K, Angiotensinogen and Nrf2 mRNA expression by 
real time PCR. Animal number 7 per group. Protein antibodies ; hnRNP F 
titre(1 :5000), hnRNP K(1 :1000) cat #sc-28380, Agt  (1 :2000) and Nrf2 
(1 :1000). 
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5.2 Generation of hnRNP K transgenic mice 
 

 
 

Figure 5-3: Generation of hnRNP K-Tg. A: Schematic map of the KAP2-rat 
hnRNP K construct. The isolated 17-kb KAP2-myc-hnRNP K transgene 
(digested with SpeI and NdeI) was microinjected into one-cell fertilized 
mouse embryos obtained from superovulated C57Bl6 3 C3H mice 
(performed at the Clinical Research Institutes of Montreal, Montreal, 
Quebec, Canada). B: Southern blotting of genomic DNA to detect for 
founders with radioactive hnRNP Fprobe. C: Heterozygous and homozygous 
F1, F2, and F3 were screened by PCR with specific primers. RT-PCR 
product showing tissue expression of myc-hnRNP K mRNA in non -
transgenic, male-Tg and female-Tg with and without testosterone. b-Actin 
myc-hnRNP K fragments are indicated. Br, brain; H, heart; K, kidney; Li, 
liver; Lu, lung; S, spleen; T, testis. 
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Immunohistochemical (IHC) staining was performed according to the 

standard avidin–biotin–peroxidase complex method (ABC Staining 

System, Santa Cruz Biotechnologies, Santa Cruz, CA, USA).  Renal 

sections ofWT mice and hnRNP K –Tg mice were incubated with non-

immune serum (1:100 dilution) or primary anti-hnRNPK (1:100 dilution). 

IHC staining showsan increase of hnRNP K protein in the RPTCs of male 

Tg mice in comparison with male wild type (WT) mice. Freshly isolated 

RPTs from wild type and hnRNP K-Tg used for W.B. analysis. HnRNP K 

is overexpressed in the RPTs of transgenic mice compared with non 

transgenic,  Figure 4-4. 

 

Figure 5-4 : Characterization of myc-hnRNP K-Tg mice. A; DNA genotyping for 
hnRNPK-Tg. B; IHC for WT mouse and hnRNPK-Tg using hnRNPK antibody. C; 
W.B analysis for WT and hnRNPK-Tg mouse using hnRNPK antibody (cat # sc-
28380) titre 1 :1000 and IHC titre 1 :150.  Mice number 2 per group. 
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To assess the abnormalities in kidney structure and collagenous 

components in hnRNP K-Tg mice, we performed periodic acid-Schiff 

(PAS) and Masson’s trichrome staining for kidney sections (4–5 sections, 

3–4 mm thick, per kidney) of WT mice and hnRNP K-Tg mice. Staining 

with PAS demonstrates normal basement membranes in hnRNP K-Tg 

mice. Masson’s Trichrome shows no significant differences in the 

expression of collagenous proteins between the WT and the transgenic 

mice. These observations suggest that overexpression of hnRNP K in 

RPTs does not cause renal damage at the morphological level (Figure 4-

5) 

 

Figure 5-5 : Effect of hnRNP K overexpression on kidney structure and 
glomerulotubular fibrosis. A and B; Periodic acid-Schiff (PAS) staining (10x 
&60X) C; Masson’s Trichrome staining of collagenous components expression 
in mouse kidneys D ; quantification of extracellular matrix component 
accumulation (Masson’s trichrome staining) using ImageJ software: WT control  
and hnRNP K-Tg mice (mice number 2 per group). 
 



 

191 

 

To test whether overexpression of hnRNP K  in the RPTs of 

diabetic mice will either rescue or prevent kidney injury or hypertension, 

we bred male heterozygous Akita mice with homozygous female hnRNP 

K-Tg mice to produce Akita-hnRNPK-Tg mice. These hybrids are 

identified by PCR for the mutated insulin gene 2 and for KAP- hnRNPK 

transgene expression.  

 

To study the effect of the  hnRNP K  transgene in the Akita mouse 

model, the male mice were divided into 4 groups: 1. Non transgenic mice 

(controls) 2. Kap2-hnRNPK-Tg mice 3. Akita mice and Akita- hnRNPK-Tg 

mice. Body and kidney weights were recorded. The animals sacrificed 

after measuring blood pressure, blood glucose, collecting urine and 

measuring GFR. Trunk blood was collected for plasma Agt and ANG II 

analysis. The left kidney of the mouse was removed and processed 

immediately by histology and immunohistochemistry. The preliminary 

data for 5 mice in each group are summarized in fig 5-6,  showing a 

potential role of hnRNPK overexpression in the RPTs of Akita mice on 

kidney size and blood pressure without affecting blood glycemia. The 

blood pressure  was measured  using the tail cuff method by Abouzar 

Otoukesh, Anindya Ghosh, and Ranjit Singh (students of Prof.Dr. Chan’s 

lab). More experiments need to be performed in order to show the 

histology of the kidneys in the four groups, as well as quantification of  

Agt gene expression by quantitative RT-PCR and western blot. In addition 

to the aforementioned genes, it would be preferable to study the effects of 

hnRNPK expression on all the RAS system genes including ACE, ACE2, 

AT1R, AT2R, MAS receptors as well as renin, including microarray 

screening for certain genes. Since hnRNPK plays an important role in 

alternative splicing, apoptosis should be assessed as well. 
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5.3 Rat hnRNP F and hnRNP K gene promoters.  

The rat hnRNP F gene promoter (N-1500 to N+99) and the rat 

hnRNP K gene promoter (N-1516 to N+16) were cloned from respective 

rat genomic DNA by conventional polymerase chain reaction (PCR) with 

specific primers. HnRNP F primers are; F 5’-aaa ggt acc ttt tta aag tct taa 

gca ttt g-3’ and R: 5’ aaa aag ctt cag ggg aaa cgc ttt tcg-3’ whereas 

hnRNP K primers are F: 5’ aaa ggt acc gga ggc aac ggc gga ctc gc-3’ and 

R: 5’-aaa aag ctt acc aat tca cca ttg gtt tcg g-3’. The promoter inserted 

into pGL4.20 vector via Kpn I and Hind III restriction sites. Rat hnRNPF 

promoter analysis is shown in Figure 5-7 and rat hnRNP K in Figure 5-8. 

Rat hnRNP F promoter sequence (1600 nucleotides); NCBI Reference 

Sequence: NC_005103.3 
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Figure 5-7 Rat hnRNPF gene promoter sequence and analysis; Tss 
(Transcription starting site) at +1; Genomatix software suite v2.3 
(http://www.genomatix.de) and TFBIND website (http://tfbind.hgc.jp/) analyzed 
the promoter sequence for transcription starting site and DNA regulatory 
elements. 
 
 
 
 
Rat hnRNP K promoter sequence (1600 nucleotides); NCBI Reference 

Sequence: NC_005116.3. 

 

Figure 5-8 Rat hnRNPF gene promoter sequence and analysis Tss 
(Transcription starting site) at+1 Genomatix software suite v2.3  
(http://www.genomatix.de) and TFBIND website (http://tfbind.hgc.jp/) analyzed 
the promoter sequence for transcription starting site and DNA regulatory 
elements. 
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The plasmids pGL4.20- rhnRNP F-N-1500 - N+99 and rhnRNP K -

N-1516 to N+16 were stably transfected into rRPTCs.To study the effects 

of HG and insulin, hnRNP F and hnRNP K stable transformant cells at 75-

85% confluency were synchronized overnight in serum-free DMEM 

containing 5 mmol/l D-glucose, then incubated in medium containing 5 

mmol/l D-glucose plus insulin in different doses or 5mmol/l D-glucose plus 

20 mmol/l D-mannitol (normal glucose) in the absence or presence of HG 

(25 mmol/l D-glucose) with and without insulin in DMEM containing 1% 

depleted FBS for 24 h,Figure 5-8. 

 

a                                                            b 

 

 

Figure 5-9 shows hnRNP F and hnRNP K gene promoter activity in normal 
glucose (5mmol/l D-glucose plus 20 mmol/l D-mannitol) and high glucose 25 
mmol/l D-glucose) with and without insulin 10-7. 
 

 

5-4 Transcription factors and the angiotensinogen promoter. 

The angiotensinogen gene promoter has an IRE binding site as 

well as Nrf2 binding site. Our data demonstrate that high glucose 

downregulates hnRNP F and hnRNP Kand increases Nrf2 and 

angiotensinogen gene expression.  We would like to investigate the 

competition between the three transcription factors on the Agt gene 
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promoter. Using the Agt promoter stable clone we will transfect each 

transcription factor in combination with Nrf2 to elucidate the major effector  

on Agt promoter activity.  
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