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Résumé 

  

 La progression dans le cycle cellulaire est contrôlée par de vagues oscillantes de 

cyclines et des kinases cycline-dépendantes (Cdk). Ces kinases sont régulées positivement 

par l’association des sous-unités cyclines régulatrices et négativement en se liant aux 

inhibiteurs de Cdk. Parmi ces derniers, p27 inhibe tous les complexes cycline-Cdk quelle 

que soit la phase cellulaire et agit en tant que régulateur négatif principal de la prolifération 

cellulaire dans une variété de cellules et de tissus. Intrinsèquement, p27 phosphorylé est 

ubiquitiné et dégradé par le complexe SCF
Skp2

-Cks1. Des études génétiques de la souris, 

ainsi que des examens cliniques chez l’homme, ont montré que p27 est un important 

suppresseur de tumeur. Le gène est rarement muté. Cependant, p27 est fréquemment 

réprimé dans les cancers humains en raison d’une augmentation de l’expression de Skp2 et 

de Cks1 dans le noyau, ce qui est généralement associée à un mauvais pronostic. La 

localisation subcellulaire de Cks1 est donc d'une importance primordiale dans le contrôle 

de la prolifération cellulaire. Les résultats récents de notre laboratoire ont montré une 

interaction entre Cks1 et les protéines de transport nucléaire importine α1 et β3. Aussi, 

l’analyse de la séquence primaire de Cks1 a également révélé un signal de localisation 

nucléaire classique (NLS) à son extrémité C-terminale. Des mutations ont été effectuées sur 

le NLS suspect pour déterminer si oui ou non l'import nucléaire de Cks1 était contrôlé par 

cette séquence. Un inhibiteur synthétique de l’importine β a également été utilisé pour 

étudier l’import de Cks1 dans le noyau. Les résultats indiquent que l’extrémité C-terminale 
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de Cks1 est en effet un NLS puisque les mutations de Cks1 et l'inhibition de l’importine β 

conduisent, tous deux, à l'accumulation de Cks1 dans le cytoplasme. Ces résultats ont été 

utiles pour mieux comprendre le mécanisme régulant la localisation de Cks1. Toutefois, des 

travaux futurs sont nécessaires pour mieux comprendre l'impact de la séquestration 

cytoplasmique de Cks1 sur le cancer et ainsi espérer aboutir à l'identification de nouvelles 

cibles pharmacologiques impliqués dans la prolifération cellulaire. 

 

Mots-clés: cycle cellulaire, cycline, Cdk, p27, dégradation, Cks1, NLS, localisation  
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Abstract 

 

Progression through the cell cycle is controlled by oscillating waves of cyclins and 

cyclin-dependent kinases (Cdk). These kinases are regulated positively by association with 

cyclin regulatory subunits and negatively by binding of Cdk inhibitors. Among the latter, 

p27 inhibits all cyclin-Cdk complexes regardless of the cell cycle phase and acts as a 

primary negative regulator of cell proliferation in a variety of cell types and tissues. 

Intrinsically, phosphorylated p27 is ubiquitinated and degraded by the SCF
Skp2

-Cks1 

complex. Mouse genetic studies and human clinical investigations have shown p27 as an 

important tumor suppressor, which gene is rarely mutated. However, p27 is frequently 

downregulated in human cancers due to an increased expression of nuclear Cks1 and this is 

usually associated with a poor prognosis. The subcellular localization of Cks1 is thus of 

primordial importance in the control of cell proliferation. Recent results from our 

laboratory have shown an interaction between Cks1 and nuclear transport proteins α1 and 

β3 importin. Analysis of the primary sequence of Cks1 also revealed a classic nuclear 

localization signal (NLS) at its C-terminal. Mutations have been done on the suspected 

NLS to determine whether or not Cks1’s nuclear import is regulated by this motif. A 

synthetic inhibitor of β importin has also been used to study the mechanism of Cks1 import. 

Results indicated that the C-terminal end of Cks1 is indeed a NLS since mutations of Cks1 

and inhibition of β importin both lead to accumulation of Cks1 in the cytoplasm. These 

outcomes were helpful to better understand the mechanism regulating Cks1 localization. 
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However, future works are required to further understand the impact of cytoplasmic 

sequestration of Cks1 on cancer and hopefully lead to the identification of novel 

pharmacological targets involved in cell proliferation.  

 

Keywords: cell cycle, cyclin, Cdk, p27, degradation, Cks1, NLS, localization  
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1. Introduction 

 

1.1. Cell cycle 

Cell division is a process by which one parent cell undergoes different stages in 

order to become two identical daughter cells each with the same genetic material as the 

parent cell. Most of the living organisms will divide once or many times during their life. 

For unicellular creatures, it serves as means of replication. For multicellular organisms, it 

serves many functions: growth, repair, and replacement. Prokaryotic cells replicate via 

either binary fission or budding. However, eukaryotic cells must go through different 

stepwise phases, each of which will start only after the full termination of the previous one. 

All of these steps are called the cell cycle. 

In human, the cell cycle consists mainly of 5 phases (see Fig.1A).
 [1-3]

 The first 

phase or Gap 1 (G1) is where most of the normal adult cells are. They either become 

quiescent (G0) and differentiate into non-dividing cells with specific functions or, upon 

stimulation by mitogenic factors, activate proteins that will drive the cells into cell division. 

The ensuing synthesis phase (S) encompasses the important step of deoxyribonucleic acid 

(DNA) replication. Once past the step of G1/S transition, cells will be committed to cell 

division. All chromosomes duplicate and form pairs of chromatids. The completion of 

DNA duplication is followed by a second gap phase (G2). The cell further increases in size, 

synthesizes proteins, and assembles the necessary cellular structures to prepare for cell 

separation. Mitosis or M phase occurs when the nuclear envelop breaks apart and the sister 

chromatids separate via a system of microtubules, each attached to the kinetochore of a 
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chromatid and to one of the polar bodies located on opposite side of the cell. Cell cleavage 

or cytokinesis occurs and two identical daughter cells are created. Both cells are now in the 

G1 phase and the cycle starts again.   
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1.2. Regulation 

As all biological activities are, the cell cycle is tightly regulated to prevent 

production of genetically damaged daughter cells and uncontrolled cell division that would 

ultimately lead to cancer. At G1, the restriction checkpoint first decide, according to 

environmental factors, whether the cell differentiate or re-enter cell division. 
[4]

 Then, the 

retinoblastoma proteins (Rb), inhibitor of the transcription factor E2F, must be inactivated 

via phosphorylation for the cell to transit from G1 to S phase. The post-replication DNA 

damage checkpoint at the G2/M transition ensures that no damaged DNA will be passed on 

to daughter cells.
[5]

 Finally, the spindle or mitotic checkpoint monitors the even segregation 

of chromosomes via kinetochore attachments and microtubule tensions. 
[6]

 

Cell cycle regulations mainly occur via two post-translational mechanisms: 

phosphorylation and proteolysis. Phosphorylation is mediated by two families of regulatory 

proteins: cyclins and cyclin-dependent kinases (Cdk). 
[1, 2, 7]

 The effect can be either 

activator or inhibitory depending on the function of the substrate or the site of 

phosphorylation. Proteolysis remove proteins no longer required or in excess, whether they 

are negative or positive regulators. 
[8]

 Ubiquitination of proteins targeted for proteolysis is 

marked by two ubiquitin-dependent complexes: the anaphase-promoting 

complex/cyclosome (APC/C) 
[9, 10]

 and the Skp, Cullin, F-box containing (SCF) complex. 

[11]
 The ubiquitinated protein is then directed to the 26S proteasome for degradation. 

[12]
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Figure 1 Cell cycle overview (adapted from {Viglietto et al. Cell Cycle 2002;1(6)}) 

A) Overview: Eukaryotic cells must undergo specific steps in order to produce two 

identical daughter cells. The mammalian cell cycle can be separated into 5 phases. 

Differentiated or quiescent cells are at G0. Normal adult cells are at the G1-phase. In 

presence of mitogens, such as growth hormones, inhibitory phosphorylation of 

retinoblastoma protein occurs, which release the transcription factor E2F, leading to cell 

growth and replication of its DNA at the S-phase. Once past the G1/S transition, the cell 

is committed to finish the cell cycle. At the second gap phase G2, the cell grows further 

in size and produce proteins required for mitosis. Mitosis or M-phase is where the cell 

cleaves into 2 identical daughter calls each containing one copy of the duplicated 

chromosomes. Mitosis is further separated into six steps, each describing a step of DNA 

separation. Finally, cytokinesis is the separation of cell cytoplasm via membrane 

cleavage.  
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B) Cyclin/Cdks: regulatory cyclins and Cdks form holoenzymes that regulate the 

progression of cell cycle. Each cyclin bind to specific Cdks and each cyclin/Cdk 

complex modulate a specific part of the cell cycle. Cyclin C/Cdk3 promote quiescence 

exit in presence of mitogens. Cyclin D/Cdk4 and Cyclin D/Cdk6 up-regulate 

transcription of cell cycle required genes. Cyclin E/Cdk2 mediate the G1/S transition via 

formation of prereplication complex and other proteins required for DNA replication. 

Cyclin B/Cdk1 is the mitotic cyclin complexes that drive the cell to enter into mitosis. 

C) Cyclin/Cdk inhibitors: Inhibition of cell cycle is mediated by two families of cyclin/Cdk 

inhibitors, the Ink4 and Cip/Kip families. Ink4 inhibitors are named due to their abilities 

to inhibit specifically Cdk4 associated complexes. Its members are p16, p15, p18 and 

p19. Cip/Kip inhibitors, however, are involved in regulating all cyclin/Cdk complexes. 

Cip/Kip members are p21, p27 and p57.  

  

 

1.2.1. Phosphorylation 

Phosphorylation refers to the addition of one or more phosphate group (PO4
3-

) to a 

protein. Phosphates are sterically bulky and negatively charged moiety. Therefore, their 

addition can alter a protein’s biochemical properties as well as its structure and activities. 

The conformational and property changes can then create docking sites to mediate protein-

protein interactions, modify signal sequences on proteins to regulate their subcellular 

localization, and activate enzymes by bringing their active sites into proper position. 
[13]

 

Phosphorylation can activate or inhibit a protein depending on its function and 

phosphorylation site. Effects are often amplified due to pathway mechanisms. Thus, 

reversible phosphorylation is an important mechanism of control of cellular enzymatic 
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activities. Protein kinases phosphorylate while protein phosphatases dephosphorylate. In 

the cell cycle, most proteins, required for the activation of genes involved in DNA synthesis 

and replication, are regulated by those mechanisms. The Rb protein is an example of a 

protein whose activity is inactivated by phosphorylation. 

 

 

1.2.1.1. Cyclins 

Cyclins are a family of proteins first discovered by Evans et al. when studying sea 

urchin eggs’ cell division. 
[14]

 They are so named because of the cyclic variation in their 

concentration during the cell cycle. These regulatory proteins are furthermore grouped into 

different classes on the basis of expression timing, amino acid sequences, and structure. 
[15]

 

However, all cyclins share a region of homology called the cyclin box present up to twice 

on the protein depending on its class. 
[1, 16]

 This conserved sequence of about 100 amino 

acids long is responsible for the binding and activation of Cdks. Cyclins are the regulatory 

subunits of Cdk-holoenzymes. 
[17]

 Therefore, most cyclins must associate with specific 

catalytic cofactors (Cdks) to perform checkpoint regulatory functions. 
[18]

 Several cyclins 

have been found to take parts in other regulatory complexes, such as cyclin F which 

compose the F-box protein of the SCF complex. 
[19]

  

There are in total 12 classes of cyclins 
[16]

 : A, B, C, D, E, F, G, H, I, J, K, and L. 

However, only the cyclins A, B, C, D, and E are involved in regulating the cell cycle phase 

transition via cyclin/Cdk complexes. (see Fig.1B) During G0, cyclin C is transcriptionally 



 

 

 

7 

activated in response to mitogens. 
[2]

 By binding and activating Cdk3, the cyclin C/Cdk3 

complex will then mediate the cell cycle re-entry of quiescent cells. 
[20, 21]

 At G1, Cyclin D 

acivation is mitogen-induced. 
[17]

 The formation of cyclin D/Cdk4 and cyclin D/Cdk6 

complexes will in turn phosphorylate Rb, their main substrate, which acts on centrosome 

duplication, mitochondrial function, and cytoskeletal modeling. 
[22]

 Cyclin D has also been 

shown to promote transcriptions, independent of Cdks, by acting on promoter regions. 
[23]

 

Cyclin D/Cdk4/6 also activate indirectly cyclin E by sequestering cyclin/Cdk inhibitor p21 

and p27. During G1, Cyclin E is known to primarily bind and activate Cdk2, but interaction 

with Cdk1 and Cdk3 have also been demonstrated. 
[24]

 The cyclin E/Cdk2 holoenzyme is 

essential for G1/S phase transition due to its role in E2F activation, prereplication complex 

formation, centrosome duplication, histone biosynthesis, and endoreplication. 
[25]

 Recent 

studies by Geng et al. revealed cyclin E’s role in loading of the minichromosome 

maintenance helicase into the DNA replication complex in a cyclin-independent manner. 

[24]
 A- and B-types cyclins are called mitotic cyclins due to their role in S and M phases. 

[26]
 

Cyclin A concentration accumulates in late G1 phase, through S and G2 phase, and rapidly 

decreases in M phase. 
[26]

 Once activated, it forms complexes with Cdk2, and drives DNA 

synthesis by interacting with a subunit of DNA polymerase δ, the proliferating cell nuclear 

antigen. 
[27, 28]

 B cyclins are synthesised during S phase and are retained in the cytoplasm by 

binding to the nuclear export protein Crm1 via its nuclear export signal. 
[29]

 (for mechanism 

of nuclear import/export, see Fig.2) Binding of the cyclin to Cdk1 forms the M-phase-

promoting factor (MPF), essential for the triggering of mitosis. 
[30]

 During mitosis, MPF, 
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activated by cyclin A, enters the nuclear and mediate the dissolution of nuclear envelope 

and the separation of chromatids. 
[1, 31]

   

 

 

Figure 2 Mechanisms of nuclear import and export (adapted from {Pemberton and Paschal, 

Traffic 2005; 6})  

Nuclear import: cytoplasmic proteins containing the nuclear localization signal are 

recognized by specific α importin or karyopheryn (Imp-α) and β importin (imp-β). The 

heterodimerization of imp-α and imp-β on the NLS site of cargo protein mediate its entry 

into the nucleus through nuclear pore complexes.  

Nuclear export: nuclear proteins containing the nuclear export signal (NES) is recognized 

by the exportin or karyopherin Crm1 (Crm1), either directly or indirectly via adaptor 

protein. Crm1 mediate the nuclear export of cargo proteins in cooperation with RanGTP.  
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Ran is a guanosine triphosphate (GTP) binding protein involved in release of importins 

from cargo proteins after import, nuclear export of unbound imp-β, export of unbound imp-

α in cooperation with exportin CAS and export of Crm1-bound proteins. The energy, 

released from hydrolysis of Ran-bond GTP to guanosine diphosphate (GDP) by the 

GTPase-activating protein (RanGTP), is utilized in transport across the nuclear membrane. 

Inactive RanGDP is reactivated by Ran Guanine nucleotide Exchange Factors (RanGEF). 

 

 

1.2.1.2. Cyclin-dependent kinases 

Cyclin-dependent kinases are a family of small proline directed serine/threonine 

kinases, all ranging from 34-40 kiloDalton (kDa). 
[32, 33]

 This kinase family is highly 

conserved through evolution. In an experiment, Lee and Nurse replaced the yeast’s Cdc2 

gene (a Cdk1 homologue in fission yeast) with human Cdk1 gene. The yeast was able to 

progress through the cell cycle. 
[34]

 Also, recent studies have shown a high complementarity 

between the Cdks. In mammalian cells, due to the numerous compensatory mechanisms, 

Cdk1 alone with its’ partner cyclin A and B is able to drive the cell cycle. 
[35]

  

In humans, there are up to twenty different Cdks (1-20) classified to date. 
[2]

 These 

include 11 classical CDKs (Cdk1–11), two recently studied kinases (Cdk12 and 13), 

several proteins named based on the presence of a cyclin-binding element (PFTAIRE and 

PCTAIRE proteins) and a few Cdks-likes with similar sequences, such as CDC2-like 

kinases (CDC2L) or cell cycle-related kinases (CCRK). 
[36]

 Among them, only Cdk1, 2, 3, 
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4, and 6 are involved in the regulation of cell cycle progression at different checkpoints. 

The Cdks accomplish a variety of functions in numerous mechanisms such as DNA 

transcription and modification (Cdk11), mRNA processing, telomere elongation (Cdk1), 

activation of other Cdks (Cdk7), cell differentiation, senescence (Cdk5), etc. 
[2, 32, 37]

  

Crystallography revealed that Cdks form a tertiary structure containing a small 

amino-terminal lobe and a larger carboxyl-terminal lobe between which ATP bind to 

donate its γ-phosphate during phosphorylation. However, a large, flexible T-loop or 

activation loop blocking the binding of protein substrate at the entrance of the active-site 

cleft and incorrectly positioned amino acid side chains prevent Cdk activity. 
[33]

 Indeed, as 

mentioned above, most Cdks are inactive on their own. For activation, binding of its cyclin 

partner and phosphorylation of a threonine near the active site by a Cdk-activating kinase 

are both required. 
[33, 38]

 Thus, the availability of the specific corresponding cyclin is by 

itself a regulation mechanism. Upon holoenzyme formation, 2 alpha helices on the Cdk, the 

PSTAIRE helix and the L12 helix, interact with the bound Cdk and change position and 

structure for the reconfiguration of the active site to allow binding of ATP. Once activated, 

the cyclin/Cdk complexes will phosphorylate their substrates on a specific consensus 

sequence of 4 amino acids long: [S/T*]PX[K/R]. 
[39]

 “S/T” is the serine or threonine on 

which the phosphate group attaches. “P” stands for proline. “X” is any polar amino acid. 

“K” is for lysine. “R” is for arginine.  

 

Cdk1 is the first Cdk studied, also known in yeast as either Cdc28 or Cdc2. 
[40, 41]

 

There are numerous alternatively spliced isoforms produced for the same gene. This kinase 
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forms the catalytic subunit of the highly conserved MPF complex along with cyclin B. 

MPF activates proteins needed for mitosis. A-cyclins also associate with Cdk1 and regulate 

its activity. The phosphatase Cdc25 is responsible for removal of the inhibitory phosphates 

on Thr(14) and Tyr(15), while Wee 1 is responsible for their phosphorylation. 
[42]

 Cdk2 has 

two alternatively spliced variants and binds to both cyclin E and A. 
[43]

 Cdk2 binds to G1-

phase cyclin E to mediate G1/S transition. Activated Cdk2 also interacts with Smads, which 

are signal transduction proteins activated in response to transforming growth factor β 

(TGF-β), to inhibit cell cycle arrest. 
[44]

 In the S phase its association with cyclin A 

recognizes DNA damage and initiate DNA repair during DNA synthesis. The main 

function of cyclin C-associated Cdk3 is to promote cell cycle reentry via Rb 

phosphorylation. 
[20]

 Cdk3 also works downstream of Rb by activating directly E2F to 

promote S-phase entry. 
[45]

 Recent studies by Zheng et al. demonstrated Cdk3’s non-cell 

cycle regulatory function in cell transformation, via its interaction with the activating 

transcription factor 1 (ATF 1). 
[46]

 Type 4 Cdks bind with D-cyclins to regulate the G1/S 

progression.  Along with Cdk2, it regulates Smads during G1/S transition. 
[44]

 Cdk4 is also 

involved in controlling the subcellular localization of BRCA1, a nuclear phosphoprotein 

that function as tumor suppressors by activating apoptosis. 
[47]

 Cdk 6 binds to D-cyclins in 

mid G1 phase, prior to Cdk2 activities, and drives the cell into S phase. 
[48]

 The main 

function of cyclin D/Cdk6 is in the phosphorylation of Rb protein. Slomiany et al. observed 

that primary mouse astrocytes infected with retroviral RCAS-Cdk6 resulted in drastic 

morphological changes. 
[49]

 When further investigated, changes in patterns of gene 
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expression, changes in the actin cytoskeleton and enhanced motility have been noted. These 

changes are all part of the process of cellular differentiation.   

  

 

1.2.2. Proteolysis 

 Proteolysis is defined by the directed degradation or digestion of proteins by cellular 

enzymes into simpler, more soluble substances such as peptides and amino acids. This 

degradation is performed by either a simple protease or the complex proteasome 

machinery. Cell cycle regulating proteolysis is mediated by ubiquitination enzymes that 

label the degradation-targeted protein with multiple ubiquitins (Ub). 
[12, 50]

 The tagged 

protein is then directed to the 26S proteasome, which will catalyze the breakdown of 

peptide bonds.  

Ubiquitins are small proteins (~8 kDa) that target proteins for degradation. First, an 

E1 ubiquitin-activating enzyme activates Ub in an ATP-dependent way. The activated Ub 

is then transferred to an E2 ubiquitin-conjugating enzyme. The latter one, attached to an E3 

ubiquitin-ligase, mediates the covalent bounding of ubiquitin’s carboxyl terminal to a 

lysine residue on the target protein via an isopeptide bond. This step is repeated multiple 

times leading to the formation of a polyubiquitin chain in which each ubiquitin is linked to 

a specific lysine of the previous Ub. 
[12, 50]

 The number of ubiquitins forming the chain 

determines the affinity of the modified substrate protein for the proteasome and also the 

timing of degradation. Studies have shown that 4 Ubs is the minimal targeting signal. 
[51]
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Once the marked protein binds to the proteasome, unfolding and deubiquitination occurs. 

[52]
 The substrate is then translocated to the core proteolytic sites, which cleaves the protein 

into short polypeptides by catalyzing nucleophilic attacks on threonine residues. 
[53]

 Upon 

peptides release, the Ubs are recycled for future ubiquitination.  During the degradation of 

the cyclin/cdk comlplexes, the catalytic subunit cdk is also released, intact. 
[54]

 

Since the length of the polyUb chain is E3-ligase specific and can affect the affinity 

of proteasome binding, the type of E3 involved in the ubiquitination-dependent degradation 

pathway is of primordial importance. In humans, multiple E1, E2 and E3 enzymes have 

been identified, each have a specific subset of ubiquitination partners. E3-ligases are 

classified into 4 major groups on the basis of their subunit composition: HECT-types, 

RING-finger-type, U-box-type and PHD-finger-type. 
[50, 55]

 In cell cycle, two polymeric E3 

ubiquitin-ligases are implicated in the proteolysis pathway, both of which are of the RING-

type class. The SCF complex is active from late G1 to early M phase; it is primarily 

involved in the G1/S and G2/M transitions. On the other hand, APC/C’s expression is 

required from mid-M phase to S phase to induce progression and exit of mitosis. 
[9, 50] 

 

 SCF and APC/C complexes expression overlap and control each other in form of 

positive and negative feedbacks. (see Fig.3) At early mitosis, SCF
β-TRCP

 ubiquitinates 

APC
Cdc20

 inhibitor Emi1/2; thus, activating the latter. Then in G1, APC/C
Cdh1

 recognizes 

Skp2 and mediates its proteolysis, leading to low SCF level and accumulation of cyclin/cdk 

inhibitors. This results in an increase of cyclin/Cdk which phosphorylates Cdh1 and 

mediates its inhibition. 
[50]
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1.2.2.1. Skp, Cullin, and F-box complex 

 The SCF complex is formed of 4 subunits: Ring Box protein 1 (RBX1), CUL1, S-

phase kinase-associated protein (Skp1), and F-box protein. The RBX1 protein contains a 

zinc binding domain, called the RING finger, which binds to the E2 ubiquitin-conjugating 

enzyme. CUL1 is from the cullin protein family that functions as a scaffold protein linking 

RBX1 to Skp1. Skp1 is the adaptor protein that links the substrate receptor protein to the 

CUL1-RING complex. The receptor responsible for tagged substrate recognition is called 

an F-box protein. Consequently, Skp1 is also called an F-box binding protein. 
[56]

 

RBX1 and Skp1 are highly conserved. In some cases, they can be replaced by 

related proteins without affecting the activity rate of SCF. 
[33]

 In fact, the rate of 

ubiquitination by SCF is not controlled by the core RBX1-CUL1-Skp1 complex, but rather 

by the substrate’s affinity for its corresponding F-box protein. The binding affinity is 

influenced by both the phosphorylation of target protein at specific site or sites and by the 

type of F-box receptor involved.  

F-box proteins contain an approximately 40 amino acids long motif, called F-box 

due to its presence on cyclin F when discovered, which functions as a site of substrate 

recognition domain. 
[56-58]

 There are over seventy different F-box proteins identified in 

humans, each of which recognizes a specific subset of target proteins. 
[33, 59]

 They are 

divided into 3 classes, based on their protein-protein interaction domains. Fbw interacts 

with their WD-40 domains while Fbl uses leucine-rich repeats and Fbx contains various 

other protein-protein interaction domains (zinc-finger, proline-rich, carbohydrate-
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interacting, Sec7, cyclin box, calponin homology and Traf-domain-like). 
[11, 60, 61]

 Only 

three of the F-box receptor proteins are implicated in SCF-dependent cell cycle regulation: 

S-phase kinase-associated protein 2 (Skp 2), F-box and WD-40 domain protein 7 (FBW7), 

and β-transducin repeat-containing protein (β-TRCP).  

Skp 2 recognizes and promotes ubiquitination of various regulatory proteins such as 

the transcription factor E2F-1, the RNA elongation factor Cdk 9, and the negative cell cycle 

regulators, p27, p21 and p57; thus, promoting cell cycle progression. On the opposite, 

FBW7 promotes the degradation of positive regulators such as the growth factor receptor 

Notch 4, and the transcription factors Myc and c-Jun. Both Skp2 and FBW7 target cyclin E, 

one on the free form and the other one on the Cdk 2-bound form. β-TRCP has various 

functions during the cell cycle since it regulates IκB, the inhibitor of the transcription factor 

NF-κB, and β-catenin, involved in the Wnt signaling pathway; as well as Wee1, inhibitor of 

Cdk1, and Cdc25, activator of Cdks. 
[59]

 

 

 

1.2.2.2. Anaphase-promoting complex 

The Anaphase-promoting complex or cyclosome is the largest and most complex E3 

ligase known to date. It is a polymeric complex formed from more than 11 different 

proteins. 
[8, 62]

 These subunits include the scaffolding cullin-homolog Apc2, the WD-40 

domain protein APC4 as well as the RING-H2 finger APC11. 
[54]

 Studies have shown that a 

complex formed of only the core subunits, Apc2 and Apc11, is able to catalyse protein 
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ubiquitylation, although in a non-specific manner. 
[62]

 Sequencing of the subunits APC3, 

APC6, APC7 and APC8 revealed the presence of multiple tandem repeats of a conserved 

34-residues motif, dubbed tetratricopeptide repeat (TPR), which is involved in protein-

protein interactions mediating a wide variety of cellular functions. 
[63]

 

As the name implies, the main function of APC/C is to trigger metaphase/anaphase 

transition and mitosis exit. Recent studies have also found a new role in genome replication 

checkpoint by destroying Rad17, a promoter of DNA damage repair, to terminate cell-cycle 

arrest after DNA have been repaired. 
[10]

 The activities of APC/C are highly regulated with 

two activator proteins: Cdc20 and Cdh1; as well as 4 inhibitors: Emi1 and mitotic 

checkpoint complex subunits, Mad2, Mad2b and BubR1. 
[54, 63]

 As with the F-box protein 

subunits of SCF, each activator recognizes a subset of substrates for specific protein 

degradation. The ubiquitination of target protein is mediated by a small, 9 or more residues 

long, amino-terminal motif known as the destruction box. The consensus sequence on B-

cyclins was found to be RXALGXIXN. 
[63]

 However, neither the sequence nor the number 

of destruction-box is conserved between proteins, considerable differences are found even 

in A- and B-type cyclins.  

Metaphase occurs when all duplicated chromosomes align at the metaphase plate. 

Anaphase is where the chromatids separate and move to opposite poles of the cell. Spindle 

assembly checkpoint regulatory proteins, mitotic arrest deficient 2 (Mad2) and 

serine/threonine kinase BubR1, delay chromosomal segregation until all chromosomes are 

aligned and attached at their kinetochore to the opposing poles. Free kinetochores link to 

and inhibit the APC/C activator Cdc20 via the Mad2 protein. 
[64]

 The regulatory cyclin 
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B/Cdk1 complex phosphorylates Cdc20, thus increasing its affinity for APC/C. Once 

activated, APC/C
Cdc20

 mediates the degradation of both mitotic A- and B-cyclins and 

securin. Securin inhibits the cysteine protease separase, which cleaves cohesin, a protein 

complex responsible for holding the sister chromatids together. 
[9]

  

The APC/C activator Cdh1 has much more versatile biological functions. Cdh1 is 

negatively regulated by phosphorylation. APC
Cdc20

-degradation of cyclin B activate Cdh1 

which in turn degrade various substrates including cyclin A, cyclin B and Cdc20. 

Expression of APC
Cdh1

 is required from mid-M phase to S phase. 
[10]

 In late mitosis, it 

participates in mitosis exit by degrading proteins such as kinesin Cin8, aurora kinases A, B 

and C, as well as polo-like kinases Plk1-4, for chromatids separation, centrosome formation 

and cytokinesis. 
[2, 10]

 In G1, Cdh1 coordinates cell division and differentiation. APC
Cdh1

 can 

either degrade transcriptional suppressors of differentiating-licensing factors, Id1,2 and 4, 

for cellular differentiation or proceeds to degrade many proteins, Tome-1, Geminin, Cdc6, 

Skp2, Ets2, Rb protein, etc, to maintain high expression of cyclin/cdk inhibitors such as 

Wee1 and p27 and to assemble the pre-replication complex required in S-phase. 
[10, 65]

 S-

phase Cdh1 let the cell progress to G2-phase after DNA repair. 
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Figure 3 SCF and APC/C complexes regulate each other through cell cycle (adapted from 

{Frescas and Pagano, Nat Rev Cancer 2008; 8(6)}) 

The cross-regulation of SCF and APC/C complexes leads to progression of cell cycle. In 

G1, the APC/C
Cdh1

 complex promotes degradation of cyclins and Skp2, resulting in inactive 

Cdks and cell cycle arrest. Mitogenic factors increase expression and activities of 

cyclin/Cdk complexes, which inhibit Cdh1 via its phosphorylation. In addition to the 

inactivation of Cdh1, the APC/C inhibitor Emi1 binds to APC/C and prevent further 

degradation of Skp2, resulting in the decrease p21 and p27 concentration and increase of 

cyclin/Cdk activities. On the other hand, activated SCF
β-TrCP

 promotes the proteolysis of the 

phosphorylated Cdk activator Cdc25. In G2, dephosphorylation of Cdc25 and 

phosphorylation of Cdk inhibitor Wee1 further contribute to activation of cyclin/Cdks. 

APC/C
Cdc20

 is activated by high cyclin expression and participate in a negative feedback of 

cyclin regulation. Phosphorylation of Emi1 during M-phase releases it from APC/C
Cdh1

, 

which resumes Skp2 and  mitotic cyclins degradation. Cell cycle arrests at the G1-phase.     

 

 

 

  



 

 

 

20 

1.3. Cyclin/Cdk inhibitors 

Cyclin/Cdk complexes are regulators of the cell cycle and are involved in many 

mechanisms. Therefore, their regulation is essential for cell survival. Control of cyclin/cdk 

expression occurs at multiple levels, from synthesis to degradation, through 

phosphorylation and dephosphorylation. As mentioned above, monomeric Cdks are 

endogenously inactive enzymes. Their activation depends on the specific binding of their 

partner cyclin as well as on the phosphorylation of the conserved threonine residues. 

Phosphorylation of T-loop by the Cdk-activating kinase (CAK), a multi-subunit complex 

containing cyclin H and Cdk7, activates Cdks. Wee1-mediated phosphorylation at the N-

terminal inactivates Cdks. 
[38, 66]

 This activation/inactivation phosphorylation effect can be 

reversed by the phosphatase Cdc25. 
[67]

 Moreover, cyclin/cdk is negatively controlled via 

either binding of inhibitory proteins, the cdk inhibitors (Cki), or ubiquitin-dependent 

degradation by SCF and APC/C. Inhibition of cyclin/cdks are mediated by two families of 

CKIs working in coordination: the Ink4 family containing p15, p16, p18 and p19, and the 

Cip/Kip family with p21, p27 and p57.  (see Fig.1C)  

   

 

1.3.1. Ink 4 family 

The Ink4 CKI family is composed of 4 structurally similar members: p16, also 

called ink4a, p15 or ink4b, p18 or ink4c and p19, also known as ink4d. They are named 

after their ability to specifically inhibit the D-cyclins dependent catalytic subunits Cdk4 and 
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Cdk6. 
[68, 69]

 Each ink4 inhibitory protein contains multiple ankyrin repeats, which are 

conserved sequences of 33 amino-acid long that form the protein-protein interaction 

modules 
[70]

, and are essential for recognizing only Cdk4 and 6 but not cyclin D. Ink 4 

proteins are highly conserved through evolution, actually mouse ink4 inhibitors share ~90% 

homology with the corresponding human proteins. 
[71]

 Many cancers often carry mutation 

or deletion of one of the Ink4 genes.   

Outside the inhibition of Cdk4 and 6, p16
ink4a

 also act as a tumor suppressor by 

interacting with c-Jun N-terminal kinases to prevent cell transformation via the c-Jun 

pathway 
[72]

 and by contributing to oxidative stress relief in a Rb-independent way. 
[73]

 An 

alternative spliced form of the p16
ink4a

 gene, p14
arf

, inhibits Mdm2, which is an inhibitor of 

the tumor suppressor p53. 
[74]

 The p15
ink4b

 protein is an important part of the TGF-β-

mediated anti-proliferative response pathway. 
[75]

 It is able to rescue cell-cycle inhibition in 

p16
ink4a

-negative mice embryonic fibroblasts. 
[76]

 The third ink4 member, p18
ink4c

, 

suppresses tumor formation by collaborating with the phosphatase Pten 
[77]

 while working 

independently of the Cip/Kip inhibitor p27 
[78]

 and tumor suppressor p53 
[79]

. The p19
ink4d

 is 

different from the other ink4 proteins as its expression fluctuates during cell cycle and is 

mediated by the transcription factor E2F1, 
[80]

 thus, regulating G1 phase termination. 

Inactivation of p18ink4c and p19ink4d are found to impair fertility in male mouse during 

spermatogenesis. 
[81]
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1.3.2. Cip/Kip family 

 The Cip/Kip family contains three members: p21 also called cip1, p27 or kip1 and 

p57 or kip2. Unlike the Ink4s, the Cip/Kip proteins have a much broader spectrum of 

inhibitory targets; they can modulate and inhibit the activities of all the cyclin D-, E-, A- 

and B-Cdk complexes. They all share a conserved amino-terminal motif which confers 

them the ability to bind to both cyclins and Cdks subunits. 
[69, 82]

 However, no homology 

was found in the rest of their sequences. This indicates that even though each Cip/kip 

preforms different functions, they are still regulated via the same mechanism. 
[83]

 

 The importance of p21
cip1

, p27
kip1

 and p57
kip2

 inhibition during cell cycle has been 

largely documented.  Stress-caused DNA damage activates the tumor suppressor p53 

protein, which will then bind, along with DEAD box RNA helicase p68 
[84]

 , to a consensus 

sequence of the p21
cip1

 promoter, leading to its transcription. 
[85]

 Other than to mediate cell 

cycle arrest, p21 also competes for binding with Fen1 to the proliferating cell nuclear 

antigen (PCNA) to inhibit DNA replication and DNA damage repair. 
[86]

 When not 

required, p21 as well as p27 are cleaved by the cysteine-aspartic acid protease caspase 3, 

which suggests their importance in the caspase-dependent apoptosis pathway. 
[87]

 p27 is 

highly expressed in quiescent cells and in normal cells in the absence of mitogenic signals. 

[66, 83]
 The main regulatory function of p27 is to prevent cell cycle entry in G1 by inhibiting 

both cyclin D/Cdk4 and cyclin E/Cdk2. Once the cell enters the cell cycle, p27 is rapidly 

degraded and exported to the cytoplasm. 
[67]

 Unlike the other CKIs, p57 is pivotal for the 

regulation of embryonic development as it’s the only CKI required during mousse 
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embryogenesis. In addition to cyclin/cdk binding, p57 can inhibit PCNA in similar way as 

p21. 
[88]

 Moreover, p57 is involved in various mechanisms: in cell signaling via Notch, in 

myogenesis via myoD, embryonic growth via the growth factors BMP2 and 6, and 

apoptosis via the p53-homolog p73. 
[83]

     

 Most cell cycle inhibition actions of Cip/kip proteins are performed in the nucleus, 

but they also partake in various non-proliferative mechanisms in the cytoplasm. Indeed, all 

Cip/kip proteins have shown abilities to modulate cytoskeleton dynamics via the RhoA 

pathway, in which the Ras homolog GTPase RhoA is inhibited by p27. 
[83]

 While p21 is 

able to affect cell shape and movement by inhibiting the cytoskeleton regulator rho-kinase 

(ROCK) 
[89]

, p57 interacts with and translocate the serine/threonine kinase LIMK, resulting 

in actin fiber reorganization. 
[90]

 Loss of Cip/Kip inhibitors in cancer cell often results in 

increased cell invasion and metastasis.    
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1.4. Cyclin/Cdk inhibitor p27 

 Among the Cip/Kip inhibitors, one is of particular interest: the p27
kip1

 inhibitor. In 

G1 phase, it is the principal inhibitor responsive to proliferative and anti-proliferative 

signals to maintain the balance between cell differentiation and cell cycle entry. p27 

deregulation has been observed in various types of cancers and often correlates with poor 

prognostic results. 
[91]

 In recent years, p27 has been the target of many anti-cancer strategies 

as it is a pivotal defence mechanism against uncontrolled cell division. Therefore, 

understanding p27’s function and regulation mechanism is primordial.  

 

 

1.4.1. Structure 

 p27
kip1

, encoded by the CDKN1B gene, is a 198 amino acids long intrinsically 

unstructured protein containing two major functional domain. 
[92]

 On the amino-terminal, a 

kinase inhibitory domain (KID), conserved between all Cip/Kip, is responsible for separate 

binding to cyclin and Cdks, which confers more stability to binding of complexes rather 

than cyclin or cdk alone. 
[67, 91]

  The sequential binding of cyclin induces the formation of a 

3
10 helix which then lead to binding of Cdk. The carboxyl-terminal end of p27

kip1
 contains 

various domains responsible for non-cell cycle related functions in the cytoplasm. It 

mediates interactions with GTPases RhoA and Rac, microtubule-destabilizing protein 

Stathmin, adaptor protein Grb2 and regulatory protein 14‑3‑3. 
[91, 93]
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 There are also various regulatory domains and motifs in p27
kip1

. The presence of a 

nuclear export signal (NES) is found near the amino-terminal end of p27. This NES helps 

to recruit the COP9 constitutive photomorphogenic homolog subunit 5 (COPS5) or Jab1 to 

the Jab1 binding domain, located around the center of the protein sequence. 
[67]

 A bipartite 

nuclear localisation signal is located between amino acid 152 and 168. α and β importins 

bind to p27 separately to mediate its nuclear import. 
[91]

 Multiple serine, threonine and 

tyrosine residues on p27 are sites of phosphorylation, which modulate p27 localisation, 

function, and degradation.   

  

 

1.4.2. Function 

 The cell cycle inhibitor p27
kip1

 is mainly expressed in G0 and G1 phases. In the 

absence of mitogens and/or presence of TGF-β, p27
kip1

 binds to cyclin E/Cdk2 complex in a 

sequential manner and inhibits its activities. 
[92]

 This results in maintaining of quiescence 

and cell cycle arrest at the G1 phase 
[94]

. This arrest can be lifted when cyclin E/Cdk4/6 are 

produced in mid-G1 and titrate p27 away from cyclin E/Cdk2. Then, as cell cycle 

progresses, p27 is phosphorylated and exported out of the nucleus. Interesting to note, 

during embryonic development, nuclear p27 was found to promote neuronal differentiation 

by stabilizing neurogenin 2 via its amino-terminal. 
[95]

   

 A Cdk-independent function of p27, once transported into the cytoplasm, is to 

modulate cell shape and motility via actin cytoskeletal rearrangement. Exported p27 co-
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localises with F-actin and binds to Rho GTPase RhoA and Rac1. 
[96]

 Rho-mediated 

signaling pathway leads in inhibition of the actin depolymerizing protein cofilin, resulting 

in stress fibers stabilization. Cytoplasmic p27 prevents Rho GTPase activation by the 

guanine-nucleotide exchange factor (GEF), thus promoting cell migration. 
[91]

 The group of 

Baldassarre also discovered that p27
kip1

 inhibits the extracellular matrix mediated cell 

migration, but not cell-cell adhesion. 
[93]

 This inhibition is done by binding to the 

microtubule-destabilizing protein stathmin via its C-terminal.  

 Another inhibitory function of cytoplasmic p27
Kip1

 is to prevent growth factor 

receptor-bound protein 2 (Grb2) activation by blocking its association with the guanine 

nucleotide exchange factor SOS. 
[97]

 Grb2 plays a role in the activation of the GTPase Ras, 

which is the activator of the mitogen-activating protein kinase (MAPK) signal pathway. 

MAPK cascade promotes transcription activation of a variety of genes involved in cell 

survival, mitosis, cell differentiation, etc. 

 

 

1.4.3. Regulation 

 The regulation of p27 occurs at 3 levels: transcription regulation on the promoter 

region of p27, translational regulation of the mRNA and post-translational cytoplasmic 

retention and proteolysis. 
[67]

 In absence of growth or survival signals, protein kinase B 

(PKB/Akt) is inactivated. PKB/Akt is an inhibitor of transcription factors of the Forkhead 

box class O family (FoxO). Inhibition of PKB/Akt increases FoxO in the nucleus, which in 
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turn results in an increased transcription of the CDKN1B gene as well as p27 protein 

stability. 
[98]

 The oncogenic tyrosine kinase Bcr-Abl was found to interact with p27 

inducers and prevent p27 up-regulation after growth factor deprivation or TGF- β 

treatment. 
[99]

 Bcr-Abl was also found to promote p27 degradation in phosphatidylinositol-

3-kinase (PI3K)-dependent (i.e. PKB/Akt) and PI3K-independent ways. Furthermore, the 

presence of an internal ribosome entry site (IRES) in the 5’ untranslated region (5’-UTR) of 

p27 mRNA facilitates its translation in presence of stress. However, a U-rich region of the 

5’-UTR loop has been shown to interact with the RNA-binding protein HuR, previously 

characterized as an inhibitor of p27 translation and down-regulator of endogenous p27.  
[100]

 

 Post-translational regulation often begins with phosphorylation of p27. In general, 

tyrosine phosphorylation inactivates the protein while phosphorylation of serine or 

threonine residues leads to delocalisation and/or degradation. 
[101]

 In response to mitogens, 

p27 cytoplasmic retention begins with phosphorylation of two sites. While the human 

kinase interacting stathmins (hKIS) phosphorylates serine 10 of p27, PKB/Akt proteins 

phosphorylates the threonine 157 residue. 
[67, 102]

 The phosphorylated p27 is then bound by 

Jab-1 at the NES/Jab 1 binding domain, which serves as an adaptor for binding of p27 to 

the shuttle protein, exportin CRM-1, to mediate nuclear export. 
[103]

 (for mechanism of 

export, see Fig.2) 

 The transport of p27 to the cytoplasm lifts the cell from the p27
kip1

-induced G1 

arrest and pushes it toward cell cycle. Some p27 are retained in the cytoplasm to mediate 

cell motility regulation while most are degraded. The regulatory 14-3-3 protein was shown 
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to compete with α5-importin for binding to p27 NLS to suppress the nuclear transport of 

threonine 157-phosphorylated p27, thus promoting cytoplasmic accumulation of p27. 
[104]

  

 Different mechanisms mediate the proteolysis of p27
Kip1

 depending of its location 

(nuclear or cytoplasmic), state (free or bound) and/or phosphorylated sites. The degradation 

of cyclin-dependent kinase inhibitor p27
Kip1

 at the G1/S transition of the cell cycle by the 

ubiquitin–proteasome pathway is its predominant type of negative regulation. At the G1/S 

transition, cyclin E/Cdk2 complexes phosphorylate nuclear p27 on threonine 187, making it 

susceptible for ubiquitination by the nuclear ubiquitin ligase (E3) SCF
Skp2

. 
[105]

 (see Fig.4) 

 Studies revealed that the tyrosine kinase Src can phosphorylate p27 on both tyrosine 

74 and 88, resulting in a decrease in Cdk2 inhibition of p27 but an increase in cyclin E/Cdk 

2-mediated proteolysis. 
[106]

 However, if p27
Kip1

 is exported from the nucleus, then the 

cytoplasmic Kip1 ubiquitination-promoting complex (KPC) will be the one promoting 

proteolysis of p27
Kip1

. 
[107]

 The adaptor protein Grb2 can bind to exported p27 at its 

phosphor-tyrosine site and accelerate Jab1/CSN5-mediated degradation of p27.
 [108]

  

 

 

1.4.4. Relevance to cancer  

 p27
kip1

 has been deemed a tumor suppressor protein because its functional 

impairment has been implicated in tumor development in humans. Unlike other well 

characterized tumor suppressors, mutation of the p27 CDKN1B gene is rarely observed. 
[67]

 

Most alterations of p27 are caused by down-regulation of translation and transcription, 



 

 

 

29 

increased proteolysis rate, sequestration by cyclin D/Cdk 4/6 complexes and cytoplasmic 

retention. 
[91]

 Indeed, a drastic reduction of p27 level has been observed in about 50% of all 

cancer types, such as breast, colon, lung, etc., and is associated with poor outcome. 
[66, 67]

 

Incidentally, an up-regulation of SCF
Skp2

 was observed in most of the p27 deregulation-

mediated tumor formations. 
[109] 

 Two different tyrosine kinase receptors-activated Ras-mediated signaling pathways 

cause the deregulation of p27 in malignant cells. First, Ras activates PKB/Akt, which 

phosphorylates both p27 and transcription factor Afx, resulting in cytoplasmic retention of 

p27 and lower p27 transcription. Furthermore, Ras activates MAPK signaling, leading to 

increased expression of cyclin D/Cdk4, thus more free cyclin E/Cdk 2 and more nuclear 

p27 degradation. 
[67]

 The consequence of increased degradation of nuclear p27 is the 

absence of cyclin/cdk inhibition, thus absence of cell cycle arrest at G1. Moreover, 

cytoplasmic p27 was observed in 70% of the invasive melanomas while none in the non-

invasive ones. 
[110]

 Since cytoplasmic p27 are involved in cell motility, its delocalisation to 

the cytoplasm contributes to cancer cell metastasis. 
[111]

 

 Many factors, such as tumour differentiation, grade, size, and stage, are often used 

as prognostics to predict severity of a cancer and outcome of a treatment. Levels of p27 are 

found to be of independent prognostic significance, since reduced p27 in cancer cells have 

a 1.82–5.94 fold increased risk of disease recurrence or death. 
[111]

 Therefore, in cancers 

originated from epithelials, central nervous system and lymphoid tissues, where p27 

functions are the most affected, restoration of p27 levels and/or nuclear localization may 

predict treatment responses.   
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 Various anti-cancer therapies have sought to restore p27’s inhibitory functions. 

Studies found that a degradation-resistant form of p27 was able to induce growth arrest and 

apoptosis in breast cancer cells. 
[112]

 In recent years, a multitude of molecular therapies have 

been developed targeting growth factor receptors, including the epidermal and insulin-like 

growth factor families, signal transducer kinase PKB/Akt and MEK (also called MAP2K), 

and tyrosine kinase Bcr-Abl and Src; all of which regulate endogenous p27. 
[91, 111]

 Other 

therapies sought to reduce p27 degradation with use of specific proteasome inhibitors. 

However, to date, only the proteasome inhibitor argyrin A was shown to affect p27 

selectively. 
[91]

 Other strategies are also aiming to reduce metastasis caused by cytoplasmic 

p27. MiRNA-mediated inhibition of p27 translation has emerged as a novel mechanism that 

can reduce p27 in some human cancers. 
[111]

 Two mi-RNAs (miRNA-221 and miRNA-222) 

have been found to down-regulate p27 translation via the 3’UTR of its mRNA. 
[91]
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1.5. Skp2 

 

1.5.1. Structure and Function 

Skp2 protein is called an F-box protein due to the presence of the conserved F–box 

motif substrate recognition domain. 
[56]

 The structural F-box domain is responsible for its 

substrate specificity. Skp2 is a member of the 22 F-box proteins belonging to the Fbl sub-

class in which ‘Fb’ stands for F-box and ‘L’ represents the leucine-rich repeat (LRR). In 

fact, Skp2 counts 10 tandem leucine-rich repeats forming an arc-shaped α-β-repeat-

structured protein-protein interaction domain. 
[11]

  

Skp2 (also called p45) stands for S-phase kinase-associated protein 2, because 

human Skp1 and Skp2 were originally discovered in association with the cyclin A/Cdk2 

complex and was later shown to promote entry into S-phase. 
[105, 113]

 Both Skp2 and cyclin 

A possess a non-canonical interaction motif specific for their mutual binding. This 

association serves to directly protect cyclin A-Cdk2 from p27 inhibition through 

competitive binding. 
[114]

 Most of Skp2’s functions involve in triggering degradation when 

linked to the SCF ubiquitination complex.   
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1.5.2. SCF
Skp2

-complex 

 The SCF
Skp2

 complex refers to the core Cul1 - Rbx1 - Skp1 linked to the substrate-

recognition F-box protein Skp2. (see Fig. 4) Incorporation of Skp2 into the SCF complex 

confers the ability to induce ubiquitination of a variety of targets, namely the Cip/Kip 

cyclin/Cdk inhibitors p21
Cip1

, p27
Kip1

 and p57
Kip2

, cyclins D and E, transcription factors c-

Myc, Foxo1 and E2F-1, as well as the pocket protein p130 and various others. 
[11, 109, 115]

  

 Mostly expressed at G0, p130 form suppressor complexes with E2F factors and 

inhibit all the E2F-dependent transcriptions. In addition, p130 has the ability to directly 

inhibit Cdk2/cyclin E and A complexes. Therefore, poly-ubiquitination of S672-

phosphorylated p130 by SCF
Skp2

 is required to remove cells from quiescence. 
[116]

 

Furthermore, studies discovered that Skp2-containing SCF complexes were able to interact 

directly with E2F-1 and mediate its rapid degradation at the S/G2 transition. 
[117]

  Skp2 also 

mediates the ubiquitination of c-Myc, resulting in cell cycle inhibition. 
[118]

 This inhibition 

was largely compensated by up-regulation of c-Myc promoter gene transcription by the 

complex Skp2-c-Myc.  

 The previous interactions were only a few examples of Skp2’s role in cell cycle 

regulation. Despite all its other functions, ubiquitination of p27 by Skp2 is essential for cell 

cycle progression. At the G1/S transition, SCF
Skp2

 targets specifically T187-phosphorylated 

p27 for proteolysis. 
[105]

 An interesting fact, unlike other known SCF substrates, the binding 

of p27 by SCF
Skp2

 requires the accessory protein Cks1. 
[119]
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Figure 4 Structure of the SCF
Skp2

–Cks1 complex linked to p27-Cdk2 (adapted from 

{Cardozo and Pagano, Nat Rev Mol Cell Biol 2004; 5(9)}) 

The E3 ubiquitin ligase SCF
Skp2

 is composed of a Cul1 scaffolding protein with a Rbx1 E2 

binding protein and a F-box binding protein Skp1 on each end. Rbx1 recognize and bind to 

a E2 ubiquitin conjugating enzyme while Skp1 binds to the Skp2-Cks1-p27 complex. Cks1 

interacts with the F-box protein Skp2 and greatly increases its affinity for T187 

phosphorylated p27. Cks1 further strengthen Skp2-p27 binding by associating with Cdk2, 

which is bound to p27 to mediate its phosphorylation on threonine 187. SCF
Skp2

 then will 

transfer the ubiquitin molecule from E2 to p27. A poly-ubiquitin chain will be formed. This 

poly-Ubs chain targets p27 to the 26S proteasome for proteolysis and increases the 

proteasome’s affinity for the tagged p27.  
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1.5.3. Regulation and Cancer  

 Level of Skp1 and Cul-1 are constant throughout the cell cycle while Skp2 

expression is regulated. Various transcription factors, E2F1, FoxM1, GABP, NFκB, SP1 

and CBF1, all promote Skp2 gene transcription while Foxp3 has been shown to repress 

Skp2 expression. 
[115]

 Akt-mediated phosphorylation of Skp2 can further modulate its 

localisation as well as function. Skp2 accumulates from late G1 and rapidly degrade before 

mitosis. 
[117]

 Poly-ubiquitination of Skp2 was found to be mediated by APC
CDH1

, as a result 

of SCF and APC/C coordinated regulation of cell cycle. 
[120]

 Phosphorylation of Skp2 on 

serine 64 and 72 by Cdk2 and Akt respectively prevent Cdh1 binding. 
[115]

 

 An increased level of Skp2 has been observed along with reduced levels of p27 as 

well as increased invasion and metastasis in many types of cancer. 
[113, 121]

 The level of 

Skp2 mRNA can be used to predict p27 level in tumors and correlate with the tumor stage. 

[122]
 Thus, SCF

Skp2
 inhibitors have been considered as a novel class of antitumor agents. Ji 

et al. discovered that knock-down of Skp2 alone in cancer cells only had mild anti-tumor 

effects. On the other hand, disruption of Skp2-cyclin A interaction by a blocking peptide 

was able to induce selective cancer cell killing. 
[123]

 Further studies permitted Chen et al. to 

find a compound, dubbed compound A, that could prevent the incorporation of Skp2 into 

the SCF complex. This resulted in G1/S cell-cycle arrest as well as SCF
Skp2

- and p27-

dependent, caspase-independent, programmed cell death via autophagy. 
[109]

  

Recent works by Wu et al have identified small molecular inhibitors specific to 

SCF-Skp2 activity using both in silico and in vitro assays. 
[124]

 These compounds 
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selectively blocked SCF
Skp2

-dependent degradation of p27 by acting on the targeted pocket 

formed by Skp2-Cks1. Effective cell cycle arrest at G1 or G2/M phases has been observed 

in cancer cells treated with these inhibitors. Once again, this discovery underlines the 

importance of the Skp2-Cks1-dependent p27 degradation mechanism in cancers.   
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1.6. Cks1 

 The human Cdc28 protein kinase regulatory subunit 1 (Cks1) is encoded by the 

Cks1B gene on the chromosome 1q. 
[125, 126]

 It belongs to the cell cycle regulatory Suc1 

(suppressor of Cdc2 mutation)/Cks family. First discovered in yeasts, they were identified 

as genetic suppressors of Cdk mutations. 
[119, 127]

 Functional domain sequences are largely 

conserved between species. Two homologous Cks1 proteins are found in human: Cks1 

(CksHs1) and Cks2 (CksHs2). They share ~81% of sequence homology, yet differ in 

respective folding. 
[128]

 All Cks proteins are characterized by their ability to bind to a Cdk 

catalytic subunit; however, only human Cks1 possesses the additional ability to mediate 

Skp2-p27 binding. 
[119]

 Cks2 functions in germ cells. They play a role of safeguard in DNA 

replication and cell differentiation. 
[129]

 Cks proteins are essential components of mitotic 

cyclin/Cdk complexes, mice with double knockout of Cks1 and Cks2 are non-viable. 

 

 

1.6.1. Structure and Function 

 Cks1 is a small protein formed from only one polypeptide chain of 79 amino acids 

long (~9.6 kDa) and has a half-life of approximately 4 to 6.6 hours. 
[130-132]

 It is folded into 

four antiparallel β-strands, involved in Cdk binding, and two short α-helices, involved in 

Skp2 binding. 
[133]

 (see Fig.5B) Cks1 is folded in a way that there is a β-hairpin followed by 

an exposed α-helical hairpin on the amino-terminal and a β-hairpin on the carboxyl-

terminal, resulting in a four-stranded β-sheet. 
[128]

 Cks1 contains 3 protein-protein 
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interaction domains for Cdk-binding, anion-binding and Skp2-binding. The anion-binding 

site is responsible for recognizing and binding phosphate, sulfate, or acidic residues of 

proteins, including phosphorylated p27. 
[133]

 (see Fig.5) A function of Cks1 is to promote 

binding of Cdks to partially phosphorylated proteins and mediate their poly-

phosphorylation. The targets of multi-phosphorylation are often substrates of APC/C and 

G2- and M-phase regulators, including Cdc25 and Wee1. 
[127]

  

 Moreover, Cks1 greatly increases the affinity binding of Skp2 to p27. This 

interaction is Skp2-specific, since it was found that ubiquitination of cyclin E by SCF
Skp2

 is 

also mediated by Cks1. 
[133]

 Skp2 associates with Skp1 of the SCF complex by its F-box 

motif while its LRR domain and C-terminal binds to Skp2-binding domain of Cks1. 
[119]

 

Cks1 anion-binding site recognize the phosphorylated Thr187 side chain of p27
Kip1

 and 

along with Skp2, promotes mutual binding to C- and N-terminal of p27 respectively. An 

invariant glutamic acid 185 of p27’s central chain inserts into the interface between Skp2 

and Cks1, interacting with both. 
[119]

 Sitry et al. proposed that interaction of Skp2 with the 

substrate is further strengthened by the association of the Cdk-binding site of Cks1 with 

Cdk2/cyclin E, to which phosphorylated p27 is bound. 
[133]

 (see Fig.4) p21
Cip1

, p57
Kip2

 and 

p130/Rb all have been shown to be ubiquitinated and degraded via the SCF
Skp2

-Cks1 

pathway. p57 shares a homologous C-terminal with p27 that mediate its interaction with 

Skp2-Cks1, while the mechanism of p21 ubiquitination still remain unclear. 
[119]

 p130/Rb is 

an inhibitor of Cdk2 and the transcription factor E2F, degradation of this protein is thus 

essential for mitotic entry. 
[134]
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 Cks1 also exert multiple p27-independent functions in the G1 phase. In yeast, Cks1 

is essential for Cdk activities. 
[135, 136]

 Along with Cdc28, the yeast homolog of Cdk1, Cks1 

is recruited to gene promoters to modulate a subset of genes. The ubiquitin-binding domain 

of Cks1 allows it to selectively recruit ubiquitylated subunits of the proteasome as a 

mechanism of regulation of the transcriptional process. In mammalian cells, various studies 

also confirmed that Cks1 partake in cdks pathways, stimulate the Cdc27 component of the 

APC/C complex, and increase Cdc20 expression. This latter protein is known to be 

involved in two microtubule-dependent processes, therefore suggesting that cytoplasmic 

Cks1 might play a role in cell migration. Recently, Hoellein et al. has shown genetic 

evidence that Cks1 association with Cdk2 instead of SCF
Skp2

 is regulated for the G1/S 

transition. 
[137]
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Figure 5  The amino acid sequence (A) as well as the crystal structure (B) of the human 

form of Cks1. (adapted from {Sitry et al., J Biol Chem, 2002, 277(44)})  

Cks1 forms a single stranded polypeptide of 79 amino acids long. It has 3 distinct binding 

sites for interaction with anion (shown in blue), Skp2 (in red), and Cdk (in green).  
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1.6.2. Relevance to cancer  

 Cks1 expression level fluctuates during the cell cycle and correlates with expression 

of Skp2. Both are ubiqitinated by the APC/C
Cdh1

 complex. 
[130]

 The main activator of Cks1 

transcription is the known nuclear factor Y (NF-Y). 
[138]

 However, FoxM1 was also shown 

to promote expression Cks1, along with Skp2. 
[139]

 Up-regulation of Cks1 is mediated by a 

tandem combination of cell cycle dependent element (CDE) and cell cycle genes homology 

region (CHR) found on the promoter region of Cks1B gene. On the opposite, the tumor 

suppressor p53 repress Cks1 expression in a NF-Y-independent way. 
[138]

  

 The gain of an extra chromosome 1q in cancer leads to nuclear Cks1 and Skp2 

overexpression in various cancer cells, including lung cancer 
[140]

, oral squamous cell 

carcinoma 
[141]

 and multiple myeloma. 
[142]

 With Cks1 being the rate-limiting component of 

SCF
Skp2

-Cks1, its overexpression often results in increased degradation of cell cycle 

inhibitor p27 and poor prognosis. Unlike common beliefs, Cks1 overexpression alone was 

insufficient to cause cancer formation in healthy cells. 
[143]

 However, it does correlate with 

tumor size and metastasis, thus conferring great diagnostic and prognostic value. 
[144, 145]

 

Chang et al. proposed the use of immunohistochemistry for detecting Cks1 to predict 

outcomes and survival rates of p27-reduced cancers. 
[142]

 Moreover, recent studies also 

noted that overexpressed Cks1 is also involved in various p27-independent pathways also 

essential in cancer development, such as increased metastasis 
[126]

, radiotherapy and drug 

resistance 
[145]

, as well as promotion of cell survival via increased interleukin-8 (IL-8) 

expression 
[146]

 and activation the MEK-Erk pathway. 
[126]

 Considering the importance of 
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Cks1 overexpression in cancer, inhibition of Cks1 is of great therapeutic potential. The use 

of small interference RNA to inhibit Cks1 translation was used by various groups and it 

indeed induced G2/M arrest in cancerous cells and not in normal human cells. 
[140, 142]

 Other 

methods such as Skp2-Cks1 ligase inhibitors 
[147]

 and Cks1-related protein inhibitors are 

also being considered.  
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2. Hypothesis & Objectives   

 

Clinical studies have shown that in a variety of cancers, p27 is either over degraded 

in the nucleus or mislocalized to the cytoplasm. Endogenously, nuclear p27’s degradation is 

mediated by the E3 ubiquitin ligase SCF
Skp2

 complex, which targets it to the 26S 

proteasome. Binding of Cks1 to both the F-box protein Skp2 and p27 greatly increases their 

affinities for each other and stabilizes their interactions. Incidentally, overexpression of 

Skp2 and Cks1 is observed in most of the p27-disregulated cancers.  

 A previous project in the lab was aimed to identify all interactions of p27 and p27-

associated proteins with their substrates. A Tandem Affinity Purification (TAP tag) 

approach was used to identify specific binding proteins of Cks1. Among the candidate 

interactors, α1 importin (also known as kpna2) as well as β3 importin (also known as imp5) 

were identified. Concordantly, the amino acid sequence of Cks1 reveals a C-terminal 

ending with lysine – lysine – proline – lysine – lysine (K-K-P-K-K) (see Fig.5), which 

resembles to the classic NLS, formed of a lysine – lysine/arginine – any amino acid – 

lysine/arginine (K-K/R-X-K/R) sequence.  

From those observations, I believe that despite its small molecular size, Cks1 travels 

through nuclear pores via classic α-β importins pathways rather than passive diffusion. 

Therefore, control of Cks1 activity can be achieved by interrupting its nuclear translocation. 

Hence, my objectives were to further investigate the evidence of Cks1 interaction with α-
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importins. Then, using Cks1 C-terminal mutants, verify the functional importance of this 

candidate NLS. Finally, study the consequence of β importin inhibition on Cks1 

localization.  
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3. Materials & Methods 

 

3.1. Plasmids & Mutagenesis 

 The human Cks1 homolog, Cks1B, sequence was obtained from pcDNA3-HA-Cks1 

plasmid, previously created by an ancient member of the lab, Benjamen Turgeon. PCS3-

MT-5Myc-Cks1 plasmids were generated, using the digestion enzymes BamH1 and Xba1, 

for co-immunoprecipitation (Co-Ip), GST pull down, and immunofluorescence purposes. 

The 5Myc tag rather than the HA tag was selected due to the stability it confers to Cks1 

mutants (see Results). Six clones were created, five mutants and one deletion, named 

respectively Cks1_m11, Cks1_m12, Cks1_m21, Cks1_m22, Cks1_m4, and Cks1_del 

according to the number and site of mutagenesis. All changes were made to the C-terminal 

end of the protein on the candidate NLS. The C-terminal amino acid sequence of the wild 

type Cks1 protein is ILLFRRPLPKKPKK. The point mutation mutants were each mutated 

at one or more of the lysine (K) residues. The amino acid lysine was changed into alanine 

(A). Consequently, Cks1_m11 ends with ILLFRRPLPAKPKK, Cks1_m12 ends with 

ILLFRRPLPAAPKK, Cks1_m21 ends with ILLFRRPLPKKPAK, Cks1_m22 ends with 

ILLFRRPLPKKPAA and Cks1_m4 ends with ILLFRRPLPAAPAA. The Cks1_del ends at 

ILLFRRP.   

 Most importin plasmids were given by Dr. Marc Servant, professor of the Faculty of 

Pharmacy at Université de Montréal while Flag-Kpna2 and the control HA-Chk2 plasmids 

were given by Dr. Laura Zannini of the Istituto Nazionale Tumori, Italy.  
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 For infection purposes, the 5Myc-Cks1 wild type (wt) and mutants were subcloned 

into pBabe-puro vector for retroviral infections using the digestion enzymes BamH1 and 

SnaB1. 

 

 

3.2. Cell culture 

 Immortalized transformed human embryonic kidney cell line HEK 293, rat 

fibroblast cell line Rat1, cervical cancer-derived cell line HeLa, the human osteosarcoma 

cell line U2OS, the mouse embryonic fibroblast cell line NIH3T3, and the human 

glioblastoma-derived cell line T98G were used. All cell lines were cultivated in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 

glutamine and antibiotics, penicillin (50 µg/ml) and streptomycin (28.9 µg/ml). Only 

HEK293 cells were plated in both supplemented MEM and DMEM depending of the 

desired growth rate. All plated cells are kept at 37
o
C under 5% CO2 conditions. For storage 

purposes, the cells were frozen and kept at -80
o
C in complete DMEM + 10% dimethyl 

solfoxide (DMSO).  
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3.3. Transfection & Infection 

 Calcium phosphate (CaPO4) transfection 

 A total of 14 µL plasmids were added to 500 µL CaCl2 and vortexed. 500 µL 

phosphate buffer with a pH of 7.1 was added drop by drop 5 min later and vortexed. The 

mixture was incubated at room temperature (RT) for 20 min. The plasmid-CaPO4 mixtures 

were then added drop by drop to the HEK 293 cells pre-plated at 30-50 % confluence in 10 

cm plates. Incubation at 37 
o
C ensued for 12-14 h. The transfection medium was then 

replaced with fresh complete DMEM. Cells were lysed for experiments after 24-30 h 

incubation at 37 
o
C. 

 

 Lipofectamine transfection  

Rat1, NIH3T3, T98G, U2OS or HeLa cells were pre-plated onto glass coverslips for 

24 h at 20 % confluence in 6 cm wells. A total of 5 µg plasmids were added to 250 µL 

Opti-MEM and vortexed. 15 µL Lipofectamine were added to 250 µL Opti-MEM and 

vortexed. After 5 min incubation at RT, the lipofectamine mixture was added drop by drop 

to the plasmids and vortexed. After 20 min of incubation at RT, the plasmid-lipofectamine 

mixture was added to pre-plated cells, which is also in Opti-MEM. Incubation ensued for 4-

6 h. The transfection medium was then replaced with fresh complete DMEM. Cells were 

lysed for experiments after 40 h incubation at 37 
o
C. 
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Lentiviral infection 

 HEK 293 cells were pre-plated at 20 % confluence for 24 h. Plasmids containing the 

shRNA were mixed with pMD2-VSVG, pMDLg-pREE and pRSV-Rev in a ratio of 4:2:1:1 

respectively. The DNA mixture was transfected to HEK 293 cells using CaPO4 

transfection. After 12-14 h incubation, the transfection medium was replaced with fresh 

complete DMEM. Rat1, T98G or NIH3T3 cells were pre-plated at ~30 % confluence for 24 

h. Medium of the infected HEK 293 cells was then filtered with 0.45 µm filters and then 

added to the latter pre-plated cells along with polybrene at 4 µg/ml of filtrate. After 24 h 

incubation, Rat1 cells were selected for successful infections with complete DMEM 

supplemented with 2 µg/ml puromycin. Successfully infected cells were all kept in DMEM 

2µM puromycin.   

 

 Retroviral infection 

 HEK 293 cells were pre-plated at 20 % confluence for 24 h. pBabe-puro 5Myc-

Cks1-wt and mutants’ plasmids were mixed separately with pCL-Ampho at a ratio of 1:1. 

The DNA mixture was transfected to HEK293 cells using CaPO4. 12-14 h later, the 

transfection medium was replaced with fresh complete DMEM. Rat1, T98G or NIH3T3 

cells were plated at ~30 % confluence for 24 h. Medium of the infected HEK293 cells was 

filtered with 0.45µm filters and then added to Rat1, T98G or NIH3T3 cells along with 

polybrene at 4 µg/ml of filtrate. After 24 h incubation, Rat1 cells were selected for 

successful infections with DMEM supplemented with 2 µg/ml puromycin. Successfully 

infected cells were all kept in DMEM 2µg/ml puromycin.   
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3.4. Antibodies 

 For Western blots, mouse monoclonal anti-flag M2 was used to detect Flag-tagged 

Kpna2, while HA-tagged β importin and Chk2 was detected using house made mouse 

monoclonal anti-HA 12ca5 and Covance’s anti-HA.  House made anti-Myc 9e10 and Santa 

Cruz anti-Myc Sc40 were used for detection of 5Myc-Cks1. In immunofluorescence 

experiments, Sigma’s anti-Myc rabbit was used along with the Alexa 488 rabbit as 

secondary antibodies. Santa Cruz’s anti-Imp 5 and anti-Kpna2 were used to determine 

efficacies of the shRNAs.  

 

 

3.5. Co-immunoprecipitation 

 Cell lysis 

 Plasmids were previously co-transfected using CaPO
4
 transfection method in HEK 

293 cells. The transfected cells are then lysed using either classic Co-IP lysis buffer (5 mM 

EDTA, 150 mM NaCl, 50 mM Tris-HCl pH 7.4, 0.1 % NP-40) or ELB buffer (50 mM 

Hepes, 150 mM NaCl, 5 mM EDTA, 0.1 % NP-40) with 1/1000 protease inhibitor 

Leupeptin (Leu), Phenylmethylsulfonyl fluoride (PMSF) and Pepstatin A (PA), and 1/100 

phosphatase inhibitor sodium orthovanadate (Van). Cell lysates, used for Co-IP, were 

obtained after 5 min centrifugation, at 12000 rpm and RT, to spin out cell debris of the 

lysed cells.  
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 Immunoprecipitation  

 For anti-Flag Co-IP, commercial anti-Flag beads were washed with Co-IP buffer. 

For anti-Myc and anti-HA Co-IP, antibodies were incubated with immunoglobulin binding 

protein A and protein G beads respectively at 4
o
C for 3 h in TNET buffer (50 mM Tris-

HCl, 100 mM NaCl, 5 mM EDTA, 0.5 % Triton X-100). Beads were then washed and 

resuspended in Co-IP buffer at 8-15 µg beads per sample. Cell lysates were added to beads 

and incubated at 4
o
C overnight on turning wheel. After 3 washes, the beads were 

resuspended in 150 µL 2X sample buffer (SB) and heated at 90
o
C for 5 min for protein 

unfolding. Samples were then loaded onto gels for Western blot.   

 

 

3.6. GST-pull down 

 GST-beads 

 Laboratory grown E.coli BL21 bacteria were transformed with PGEX-KG-importin 

plasmids, given to us by Dr. Marc Servant. The bacteria were grown overnight on LB-agar 

plate, selected, and grown in liquid LB. Bacteria culture was further diluted 1/50 and 

incubated at 37
o
C until exponential growth phase. IPTG was added to induce production of 

proteins encoded by plasmids. Incubation of bacteria culture at RT overnight ensued. Lysis 

of bacteria in TB buffer (1 % PBS, 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 1 % Triton X-

100, 1 % sarcosyl) with 1/1000 lysozyme. Clarified lysate was obtained after freeze-thaw 
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and sonication. The lysates were continuously mixed on turning wheel with previously TB 

buffer-washed glutathione-sepharose beads for 2 h at 4
o
C. Beads were washed and kept in 

TB buffer.   

  

Pull down 

 HEK 293 cells were previously transfected with 5Myc-Cks1 plasmids using CaPO4 

and lysed with Co-IP buffer. The centrifuged lysate was then incubated with Co-IP buffer-

washed GST beads at 4
o
C overnight, on a turning wheel. Beads were then washed with Co-

IP buffer, eluted in 2X SB and heated for 5 min at 90
o
C. Samples were analysed by 

Western blot.  

 

 

3.7. Radioactive in vitro translation   

 Following Invitrogen’s in vitro translation kit, 0.5 µg Cks1 and 0.5 µg Kpna2 

plasmids were mixed with 25 µL rabbit reticulocyte lysate, 2 µL reaction buffer, 1 µL RNA 

polymerase, 1 µL methionine-free amino acid mixture, 1 µL ribonuclease inhibitor and 1 

µL of radioactive [
35

S] methionine (10 µCi/µl) in 18 µL RNase-free water. After incubation 

of 90 min at 30
o
C with shaking, the mixture was eluted in SB and heated at 90

o
C for 5 min. 

Western blot was then performed to determine the presence of Cks1-Kpna2 complexes.   
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3.8. Western Blot 

 Cell lysis 

 For test of plasmids expression, HEK 293, Rat1, NIH3T3, T98G, U2OS or HeLa 

cells were plated and allowed to grow overnight. They were incubated with or without 2 

µM of proteasome inhibitor MG132 for 6 hours. Then, they were lysed in classic lysis 

buffer (50 mM Tris-HCl pH 8, 100 mM NaCl, 50 mM NaF, 5 mM EDTA, 1 % Triton X-

100) with protease inhibitors 0.01 mg/mL PMSF, PA and Leu, and 1 mM Van. 

Centrifugation of lysed cells was performed to spin out cell debris. Lysates were dosed and 

aliquots containing 150 µg proteins were prepared. These samples were diluted in SB and 

heated at 95
o
C for 5 min for proteins unfolding.  Samples were loaded onto gel for Western 

blot with appropriate weight ladder.  

 

 Gels and loading 

 Resolving gel’s (375 mM Tris pH 8.8, 1 % SDS, 1% APS, 0.1 % TEMED and 

acrylamide) concentration varied from 8 % to 18 % depending of the protein’s size. All 

samples containing HA-Cks1 (~9 kDa) were loaded into 18 % acrylamide gel while 5Myc-

Cks1 (~19 kDa) samples were loaded in 12 % acrylamide gel. Overnight migration in 

running buffer (25 mM Tris, 192 mM Glycine, 0.1 % SDS, pH 8.3) was set to 7-8 

milliamps per gel. Transfer of proteins from gel to cellulose membrane was done at 45 volts 

for 2h in transfer buffer (25 mM Tris, 192 mM Glycine, 0 % or 10 % Methanol, pH 8.3). 

Membranes were then stained with Ponceau red to mark out the molecular weight ladder.    
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 Blotting 

 Membrane was blocked with 5 %  dry milk/TBS/0.1 % Tween for an hour and then 

washed 5 times with TBS/0.1 % Tween (TBS/T) for at least 5min each time. Incubation of 

membrane with primary antibody diluted in 5 % dry milk/TBS/T for an hour at RT or 

overnight at 4
o
C ensued. After 5 washes of membrane with TBS/T of 5 min each time, the 

membrane was further incubated with horseradish peroxidase-conjugated anti-primary 

antibody secondary antibodies diluted in 5 % dry milk/TBS/T for an hour at RT. Proteins 

were revealed with ECL or GE Healthcare’s ECL+ after a third thorough washes with 

TBS/T. 

 

 

3.9. Immunofluorescence 

 Infected or transfected cells were plated onto glass coverslips at 20-40 % 

confluence. Cells were incubated with 3.7 % paraformaldehyde (PFA) at 37
o
C for 20 min 

to be fixed onto the slides, 0.1 M Glycine/PBS at RT for 10 min to quench any remaining 

PFA, and 0.1 % Triton X-100/PBS at RT for 5 min to permeabilize cell membranes for 

antibody entry. Cells were further washed and incubated in a stepwise fashion for an hour 

each time at 37
o
C, 5 % CO2, with PBS/0.1 % BSA to inhibit non-specific antibody 

recognition, primary antibody diluted in PBS/0.1 % BSA, and Alexa 488-labelled 

secondary FITC or TRITC anti-mouse/rabbit fluorochrome. DAPI was added to mark cell 
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nucleus. Slides are finally conserved with Mowiol and kept in the dark at RT. Observation 

were done using inverted microscopy while pictures were taken using an LSM510 confocal 

microscope.    

 

 

3.10. β Importin Inhibitor 

Rat1 cells infected with the retroviral pBabe puro 5Myc-Cks1-wt were incubated in 

DMEM supplemented with 2 µM puromycin at 37
o
C. Cells were grown at 40 % confluence 

on glass cover slides overnight. Proteins expression was inhibited by incubating plated cells 

with 50 µM of protein biosynthesis inhibitor, cycloheximide, during 8 and 10 hours. After 

washing, cells were incubated with supplemented DMEM in presence of 25 µM of either 

karyostatin 1A or DMSO for 0.5 to 6 hours to allow proteins production. Karyostatin 1A is 

a small molecule found to specifically inhibit β importin 
[148]

 and synthesized by the 

chemical platform of IRIC (see Fig. 6). Cells were fixed for immunofluorescence. 
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Figure 6 Inhibitor synthesis (by IRIC chemical platform) 

Hintersteiner et al. first discovered Karyostatin 1A in 2010 using confocal on-bead 

screening of tagged one-bead one-compound library. This small molecule could bind to 

importin β with high nanomolar affinity even at low concentration. It was also found to 

specifically inhibit importin α/β mediated nuclear import by disrupting the interaction 

between importin β and the GTPase Ran. No transportin-mediated nuclear import 

impediments were observed.  
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4. Results 

 

4.1. Tandem Affinity Purification (TAP) 

A previous project of previous  member of the lab, Christel Boutonnet, was aimed 

to identify all interactions of p27 and p27-associated proteins with their substrates. TAP 

was considered as an approach since it allows gentle protein complex purification under 

native conditions. However, considering the nature and size of the protein of interest 

(especially Cks1), the classic purification assays was found to be limited in various ways. 

Its requirement for a large starting concentration of the bait protein not only increases non-

specific interaction, but also renders impossible assays of natively low expressed proteins. 

Then, its bulky double tag can block certain interactions especially for small proteins. 

Furthermore, its multiple washes and gel extraction step can disrupt weak interactions as 

well as protein recovery.   

In order to maximize bindings, rule out non-specific interactions, decrease the steric 

hindrance by the double tag, and recovery after protein dissociation, a modified version of 

TAP tag was generated. (see Fig. 7) Expression of the retroviral bait protein (BP) tagged 

with C-terminal Protein C-Flag3 (Cks1-PC-Flag3) was induced in HEK 293 cells. Cell 

lysates were passed through affinity purification column to isolate Cks1 protein complexes, 

which were then fractioned and sent to liquid chromatography mass spectrometry (LS/MS). 

The analysis results were then compared to the negative control in which GFP-PC-Flag3 is 

used to eliminate background and non-specific interactions.    
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Figure 7 Process of TAP purification (adapted from {Huber LA, Nat Rev Mol Cell Biol, 

2003. 4(1)}) 
[149]

 

HEK293 cells infected with retroviral plasmid containing BP-PC-TEV-Flag3 were induced 

to express the bait protein for a few hours and then lysed with a low stringency buffer. Cell 

lysate was then passed through the affinity purification column containing anti-Flag coated 

beads to select for Flag-tagged protein complexes. The elution was TEV depleted using 

TEV protease to rule out background protein interactions and passed through a second 

nickel affinity column to eliminate residual non-specific bindings. The purified protein 

complex was fractioned and sent to liquid chromatography mass spectrometry for analysis. 
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Systematic background cleaning was done and the result was compared to the negative 

control in which the bait protein was replaced by GFP. The remaining peptides were 

blasted then identified.     

 

 

4.2. Cks1 expression 

 Plasmids containing different mutants of Cks1 were first transfected into HEK 293 

cells to determine whether or not the clones can be properly translated. (see Fig. 8) 

However, the HA-Cks1 mutants were found to be very unstable. Even in presence of the 

MG132 proteasome inhibitor, only HA-Cks1 m4 was weakly expressed. The 5Myc tag was 

then used and all mutants were highly expressed. 
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Figure 8 Cks1 expressions in HEK 293 cells. 150 µg proteins were blotted for each sample. 

Despite the stability conferred by the 5Myc tag, Cks1-m4 and Cks1-del mutants in infected 

cells were still very unstable and degraded rapidly. Therefore, all transformed cells were 

incubated with 2 µM MG132, 4 hours prior to experiment, such as IF, to prevent 

degradation of the protein of interest. (see Fig. 9) Even then, the expression level of m4 and 

del were much lower than the other mutants.  
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Figure 9 Cks1 expression in infected Rat1 cells. 150 µg proteins were blotted for each 

sample. Cks1 m4 and del were weakly expressed even in presence of 2 µM MG132 during 

4 hours. As negative control, Rat1 cells were incubated with 0.1% DMSO for the same 

amount of time. This blot was representative of 3 separate infections of Rat1 cells. 

 

 

4.3. Interaction of Cks1 with importin 

Cks1-wt protein was first co-immunoprecipitated with Flag-Kpna2 with either 

classic Co-Ip buffer or ELB buffer at different NaCl and NP-40 concentration. 

Furthermore, Co-Ips were done in both ways, using anti-Flag and anti-Myc beads. Co-Ip 

with Flag-tagged beads revealed a positive binding of Cks1. However, Cks1 alone was also 

able to bind the beads. (see Fig. 10A). Thus, this interaction had to be deemed non-specific. 

On the other hand, Co-Ip with Myc-tagged beads was characterized by the absence of 

interaction of Kpna2 with the beads even with the gentlest Co-Ip buffer at 0.1% NP-40. The 
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Cks1 bound as predicted (see Fig. 10B). At the same time, a control Co-Ip of Flag-Kpna2 

with HA-Chk2 was done. No interaction was observed either.  

Since the Flag Co-Ip was not conclusive due to the interaction of Cks1 with the 

Flag-tagged beads, we wanted to rule out any possible non-specific interactions. After 

consideration, in vitro translation was chosen since only Cks1 and Kpna2 are produced. 

However, no Cks1-Kpna2 complex was detected after staining. Hence, an intermediate 

protein was suspected to facilitate the Cks1-kpna2 interaction. Consequently, HA-Skp2 and 

HA-impβ were separately added to induce protein complex formation. Still, no positive 

interaction was observed for neither of the Myc or Flag Co-Ip.  
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Figure 10 Co-IP results of Cks1 with Kpna2. Co-Ip were done in three different buffer 

conditions. A) Non-specific binding of Cks1 to the Flag-beads even in the absence of flag-

Kpna2. B) No binding of Kpna2 despite presence of Cks1 on Myc-beads.  
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The GST-pull down of Cks1 by α importin-tagged beads gave the same results as 

the Myc Co-Ip. No interaction of Cks1 with any of the importin was detected. Additionally, 

β importin expression was also induced to mediate formation of the Cks1 nuclear import 

complex. Nonetheless, no binding was observed between 5Myc-Cks1-wt with any of α 

importins, including Flag-Kpna2 (see Fig. 11).  

 

Figure 11 Results of the pull down of Cks1 by α importin-conjugated GST beads. Myc-

IRF3 was used as positive control for α importin bindings.  
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4.4. Subcellular localization of Cks1 

Transfections were first performed in U2OS, NIH3T3, MCF10A, T98G, Rat1, and 

HeLa cell lines for IF purposes. However, these cells were unable to express Cks1 evenly 

and most cells expressing Cks1 demonstrated rather odd morphologies, which rendered the 

observation of Cks1 localization difficult (see Fig. 12A). Various assays using different 

methods of transfection in a variety of cell lines were done in order to generate cells with a 

regular morphology expressing Cks1 clearly and evenly. Finally, retroviral infection in 

Rat1 cells was found to be the best way to maximize Cks1 expression uniformly without 

disrupting regular cellular activities (see Fig. 12B). 

 

 

Figure 12 Cells expressing 5Myc-Cks1. A) Cells transfected with Cks1-wt showed bizarre 

morphologies. B) Rat1 cells infected with Cks1-wt had no visible sign of cellular alteration.     

 



 

 

 

64 

The cells were classified into three types according to Cks1 localizations: nuclear 

more than cytoplasm (N>C), even distribution (N=C) and nuclear less than cytoplasm 

(N<C). For N>C, a clear defined nuclear staining can be seen (see Fig. 13A). For N=C, an 

even staining was observed and no nucleus was defined (see Fig. 13B). Finally, for N<C, a 

darker, less illuminated nucleus can be seen (see Fig. 13C). Sometimes, an aggregation of 

Cks1 on the surface of the nucleus envelop were observed in the form of a peri-nuclear 

ring, suspecting their accumulation at nuclear pores (see Fig. 13D).    
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Figure 13 Immunofluorescence analysis of Cks1 localization. Rat1 cells infected with either 

5Myc-Cks1-wt or mutant were fixed and stained with primary anti-Myc and secondary 

alexa 488. The nucleus was counter-stained with Dapi. A) N>C, the nucleus is much 

brighter than the cytoplasm. B) N=C, the cell has a uniform stain, nucleus is undefined. C) 

N<C, the cytoplasm is much brighter than the nucleus. D) The nucleus and cytoplasm has 

the same brightness, a clear ring is formed around the nucleus.  
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The localization experiment was repeated three times. The Rat1 cells were infected 

separately with the retroviral Cks1-wt and mutants, and examined under the same IF 

conditions. The analysis of all Cks1 slides revealed a decrease in nuclear Cks1 in cells 

infected with Cks1 mutants (see Fig. 14). When compared to the wild type Cks1, the 

mutants also demonstrated an increase in cytoplasmic Cks1, especially the ones in which 

the last two lysines were mutated, namely m21, m4 and del.  
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Figure 14 Cks1-wt and mutants localization in infected Rat1 cells. The ratio of each Cks1 

localization (N=nuclear, C=cytoplasm) is represented in percentage. The graph represents 

the mean and the standard deviation of three separate experiments. Each time, at least 155 

cells were scored for any of the Cks1 slides. The numbers of cells in total counted for each 

construct are written on top of the graph.  

 

 

4.5. β Importin inhibition 

Short hairpin RNAs (shRNA) were used to deplete α1 importin or β3 importin of 

the cells and thus blocking the NLS-mediated nuclear import of Cks1. However, the 

lentiviral infected NIH3T3, T98G and Rat1 cells were unable to express Cks1 evenly. As 
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an alternative approach, karyostatin 1A was synthesised and used instead since it was found 

to be able to inhibit β importin and achieve the same effect as the shRNA. 
[131]

 

Observations of 5Myc-Cks1-Wt infected Rat1 cells revealed the presence of 

overexpressed Cks1 throughout the cell, in the cytoplasm and especially in the nucleus. To 

determine whether or not the inhibition of β importin has an impact on the nuclear import 

of Cks1, the infected Rat1 cells were first depleted of existing nuclear 5Myc-Cks1 using 

cycloheximide for 8 hours (see Fig. 15). Quantification and classification of the cells 

displayed a drastic decrease in nuclear Cks1 in comparison to the no-cycloheximide 

negative control (see Fig. 16). 
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Figure 15 Immunofluorescence of Cks1-wt infected Rat1 cells after protein depletion by 8 

hours of cycloheximide incubation.  

 



 

 

 

70 

 After 4 hours of incubation with DMSO, we can see a recovery, although not back 

to normal, of nuclear Cks1 (see Fig. 16). The cells incubated in presence of karyostatin 1A 

however, showed a much slower recovery of nuclear Cks1 and a higher accumulation of 

cytoplasmic Cks1. A separate experiment was done in parallel, in which nuclear Cks1 was 

first depleted by cycloheximide for 10 hours and allowed to recover in either DMSO or 

inhibitor for 6 hours. The results were similar in every way.     

 

 

Figure 16 Cks1 localization after 8 h incubation of cycloheximide and 4 h DMSO or 

inhibitor. The ratio of each Cks1 localization (N=nuclear, C=cytoplasm) is represented in 

percentage. Each sample counts at least 115 cells. This graph is representative of 2 separate 

experiment results.   
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5. Discussion & Perspectives 

 

Cks1 performs a large array of tasks throughout the cell cycle (see Fig.17). Its main 

and most documented function is to facilitate SCF
Skp2

 in targeting phosphorylated Cdk 

inhibitors p21, p27 and p57, as well as Rb-related p130 for degradation. This step is crucial 

for cell cycle progression. Moreover, Cks1 is also required to bind to Cdk2 for G1/S 

transition. In yeast, Cks1 was found to modulate genes expressions in a kinase-independent 

manner.
 [150]

 By associating with Cdk1, Cks1 is able to recruit the proteasome via its 19S 

component and induce transcription of specific genes.  

Recent findings also pointed out Cks1’s role in cancer cell aggressiveness and 

treatment resistance. Cks1 have been shown stimulate APC/C to induce production of 

Cdc20, involved in cell migration. Furthermore, Cks1 activates both STAT3 and 

MEK/ERK pathways for increased cell survival and drug resistance. In addition, Cks1 also 

seems to be able to confer radiation resistance to cancer cells via an unknown mechanism.  

It is clear that Cks1 plays a critical role in cell division and survival in both normal 

and cancer cells. Yet, its value as potential target for cancer therapy has not been 

recognized. Our objectives were to have a better understanding of its post-translational 

regulation as well as to determine how its localization can affect its function as a tumor 

suppressor inhibitor and a cell survival promoter.   
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Figure 17 Cks1 functions 

Cks1’s roles are mainly focused on cell cycle progression and cell survival. Cks1 associates 

with SCF
Skp2

 to target Cdk inhibitors p21, p27 and p57 for degradation. While, SCF
Skp2

-

Cks1 complex also inhibit Rb-related p130 protein for mitotic entry; Cks1/Cdk2 is required 

for G1/S transition. In yeasts, Cks1 associates with the human Cdk1 homolog Cdc28 to 

modulate expressions of various genes. Cks1 also promotes cell migration via Cdc20 

production. Recent studies pointed out Cks1’s role in multi-drug and radiation resistance of 

cancer cells.  
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5.1. Cks1 expression 

Most studies involving Cks1 have been performed in cancer cell lines or by 

knockdown and rescue in mouse models. These experiments seldom explore Cks1 

interactions and mainly focus on the effects of overexpressing or drastically reducing this 

protein. Little information is known about the regulation and properties of Cks1; Cks1 is a 

relatively small protein, composed of 79 amino acids with a mass of 9.66 kDa, according to 

ExPASy-Protparam, the online bioinformatics tool of the Swiss Institute of Bioinformatics. 

Protein secondary and tertiary structures are formed based on the properties of the amino 

acids in a protein. A deletion of only seven amino acids at Cks1’s C-terminus represents a 

9% reduction of its total weight (see Fig. 5). Hence, the amino acid substitutions of Cks1-

m4 and the amino acid deletions of Cks1-del constitute modifications large enough to lead 

to conformational changes and are enough to offset protein stability.  

We suspected a problem when the small HA-tagged deletion mutant of Cks1 was 

not expressed in HEK 293 cells, which are well known for their high production of proteins 

(Fig. 8). Therefore, the bulky 5myc-tag was chosen because it has been shown to stabilize 

the structure of Cks1 mutants. The 5myc-tag, comprised of five EQKLISEEDL repeats, has 

a molecular weight of ~6kDa, representing about two-thirds the mass of Cks1. However, 

Cks1-m4 and Cks1-del proteins were rapidly degraded and were only present in quantities 

large enough for assays when infected Rat1 cells were treated with the proteasome inhibitor 

MG132. 
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The high expression of Cks1 in transfected as well as infected cells is concordant 

with the Cks1 levels found in cancer cells; the gain of an extra 1q chromosome in cancer 

cells often leads to increased expression of Cks1. Statistical analysis of the breast cancer 

cell line MDA-MB-231 has shown that overexpressed Cks1 is primordial for cell 

proliferation, migration, and invasion 
[126]

, therefore explaining the bizarre morphology of 

certain cells lines, such as MCF10A and T98G, when expressing a high level of wild type 

of mutant Cks1 (see Fig.12 A).   

  

5.2. Cks1 interactions 

We were not able to document any stable interaction between Cks1 and any of the 

importins. There may be two reasons for the absence of binding. First, an absence of co-

factors  could have lowered the affinity and stability of Cks1 binding. When performing 

Co-IP, Skp2 was added. Endogenously, Skp2 is a Cks1-associated protein and its binding 

to Cks1 might be involved in co-transport into the nucleus. In addition, classical β importin 

was added. During nuclear import, NLS-containing cargo proteins are bound to both α and 

β importin, which may act synergistically. None of these co-factors aided the Cks1-

importin interaction. From the results of TAP-tagging, 150 proteins in total were shown to 

interact with Cks1, of which at least 88 are involved in the Skp2-Cks1 pathway (results not 

shown). One or several of these binding factors could take part in Cks1 nuclear co-

translocation.  

 Secondly, the large size of the N-terminal tag was a problem. Despite being an N-

terminal tag, the cumbersome 5Myc tag might still cause steric interference of Cks1 when 
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binding with the importins. Nonetheless, the bulky tag was needed because Cks1 mutants 

were expressed when tagged with 5Myc but not with Ha. An intermediate-sized tag, such as 

a Flag3, similar to the TAP-tag or 3Myc tag, might have been adequate to allow both 

protein stability and protein-protein interaction.   

 In summary, although Cks1’s C-terminus is indeed an NLS, no interaction with any 

of the karyopherins has been confirmed except with the TAP-tagged molecule, which 

represents a different tag and a different interaction protocol. Additional study is needed to 

better understand the mechanism of interaction between karyopherins and Cks1. 

 

 

5.3. Cks1 localization 

The analysis of the various Cks1 mutants shows that there are significant 

differences in Cks1 localization between each mutant. Approximately 80% of wild type 

Cks1 cells exhibit the N>C profile, which is expected because endogenous Cks1 is required 

to degrade p27 in the nucleus. In contrast, the mutants show a tendency for the N=C profile. 

There is an average of 18.69% difference in the ratio of nuclear Cks1 between wild type 

and the mutants, large enough to be significant. Cks1-m21, m22, m4, and del, in particular, 

have a remarkably high ratio of cytoplasmic retention.     

As mentioned, mutations in both Cks1-m4 and Cks1-del might induce 

conformational changes that offset their stability relative to wild type. They are most likely 

passively transported through the nuclear pore complexes rather than actively imported into 
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the nucleus. Therefore, the difference in their localization may not be caused by alteration 

to the suspected NLS. However, Cks1-m21 and m22 are both point mutations, with only 

one or two amino acid changes, and are likely to be folded correctly. Moreover, in each 

experiment, the cells demonstrating the greatest decrease in nuclear Cks1 are point 

mutations, namely m12, m21, and m22.  

The large standard deviations seen in the results are mainly caused by the second 

experiment, which exhibited a much higher level of cytoplasmic Cks1. Taking this into 

consideration; the ratio of cytoplasmic Cks1 against nuclear Cks1 can only be greater. 

Therefore, one can conclude that the C-terminus of Cks1 contains a bona fide NLS. 

Modification of only one amino acid is enough to impede nuclear import. However, the 

difference in ratio of nuclear to cytoplasmic Cks1 was not as great as predicted due to the 

small size of Cks1 and thus its ability to be transported passively through the nuclear pore 

complex.    

 

 

 

5.4. Effect of pharmacological β importin inhibition on Cks1 

localization 

Endogenously, Cks1 is produced in the cytoplasm, translocated, and retained in the 

nucleus. The overexpressed Cks1 of infected Rat1 cells follows the same pattern. To 

determine the effects of impβ inhibition on Cks1 import, nuclear Cks1 must first be 
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eliminated. However, studies have shown discrepancies in the half-life of Cks1, varying 

from 4 hours to 6.6 hours. 
[130-132]

 In addition, the 5Myc tag confers stability to Cks1. After 

cycloheximide chase analysis, the protein depletion times were set at 8 and 10 hours to 

ensure better results.  

The analysis of Rat1 cells after cycloheximide exposure confirmed the efficiency of 

the treatment. Most of these cells were characterized by the absence Cks1 in the nucleus, 

while the untreated cells were characterized by their high ratio of nuclear Cks1. After 

rescue, cells incubated in DMSO as a negative control were compared to those with 

karyostatin. Among the latter, cells displayed a slower recovery rate and were denoted by a 

high ratio of cytoplasmic Cks1. In contrast, a large portion of the non-inhibited cells 

demonstrated a large increase in nuclear Cks1, a recovery toward the wild type phenotype. 

This indicates that impairment of β-importin also impairs Cks1 import.  

Despite the lack of evidence in vitro, this difference in Cks1 localization strongly 

suggests that Cks1 is transported into the nucleus via the β importin pathway in vivo. The 

low level of nuclear Cks1 following karyostatin treatment demonstrates that the inhibition 

of β importin indeed blocked Cks1 import and affected its localization. However, because 

we could not confirm the interaction of Cks1 with any of the importins, the possibility of an 

indirect mechanism cannot be ruled out. β importin is required for multiple pathways and 

its inhibition will affect many cell functions, one of which could be the import of Cks1 into 

the nucleus.   
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5.5. Impact on cancer 

One of the key cell cycle inhibitors is the protein p27. A drastic or total depletion of this 

tumor suppressor has been observed in approximately 50% of cancers, including breast, 

prostate, colon, intestinal, lung, esophagus, and ovarian. 
[151]

 p27 dysregulation is usually 

observed as degradation and/or cytoplasmic retention of this nuclear protein; however, its 

gene is seldom mutated. Thus, p27 is an interesting target for cancer treatment because it 

does not require gene therapy, with associated serious side effects, and it affects many 

cancer types.  

Cks1 and Skp2 overexpression have also been observed in the same cancer cells that 

present with p27 dysregulation. 
[113]

 This suggests that the rate of degradation of nuclear 

p27 is increased due to increased expression of the SCFSkp2-Cks1 complex. Therefore, 

understanding the regulation of these molecules is crucial in restoring p27 function and cell 

cycle arrest.  

Interestingly, recent studies by Westbrook et al. showed that high Cks1 expression in 

certain mammary tumors does not always reduce p27. 
[135]

 In their experiments, mammary 

cancers were initiated in transgenic mice using various carcinogens including ErbB2, 

methylnitrosourea, and polyoma middle-T. In these tumors, despite the expected high level 

of Cks1, unexpectedly, the level of p27 increased only slightly. This suggested that Cks1 

has oncogenic roles on its own, independent of SCFSkp2 or p27. This theory was further 

supported in a recent experiment in which Myc-induced B cell lymphoma was studied. 
[143]
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It was found that loss of Skp2 also resulted in elevated p27 levels, regardless of the high 

Cks1 expression. Surprisingly, no impact on the tumor onset was observed.     

Various studies and analysis of multiple malignant cancers have also shown that 

knockdown of Cks1 significantly decreased the angiogenesis, anchorage-independent 

growth, migration activities, and overall aggressiveness of the tumor cells. 
[152]

 Considering 

the p27-independent functions of Cks1, it is not surprising that Cks1 overexpression is 

required for tumor malignancy. Additionally, Cks1 is able to positively regulate nuclear 

factor kappa B (NF-κB) and stimulate the production of the pro-inflammatory chemokine 

IL-8. This positive feedback further promotes angiogenesis, tissue remodeling, and tumor 

progression. 
[146, 153]

 

 In clinical studies, Cks1 has been used as a diagnostic marker for tumor size and 

stage. It is also an independent prognostic marker for recurrence of and mortality from 

certain cancers. 
[144]

 The level of Cks1 can also predict the efficacy of treatment. A 

significant negative correlation has been found between Cks1 expression and patient 

survival; it was suspected that in some cases, Cks1 overexpression might cause treatment 

resistance. An article was recently published that also reported the ability of Cks1 to cause 

treatment resistance to radiotherapy. 
[145]

 Patients with esophageal squamous cell 

carcinomas presenting a higher level of Cks1 were less responsive to radiotherapy. The 

knockdown of Cks1 in these carcinoma tissues was able to sensitize the cells to radiation 

and a degradation-resistant form of Cks1 was able to rescue this effect.   

 In 2009, a study suggested that Cks1 levels regulate the responsiveness of ER+ 

breast cancers to estrogens and anti-estrogens. 
[135]

 It was observed that stable 
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overexpression of Cks1 in human breast carcinoma MCF-7 cells conferred resistance to 

Faslodex, an estrogen receptor inhibitor used to treat hormone-receptor positive breast 

cancers. However, the mechanism by which it worked was unknown. In 2010, another 

group studying multiple myeloma found that forced expression of Cks1 in these cells 

induced multidrug-resistance. 
[154]

 It was discovered that overexpressed Cks1, in a 

SCFSkp2 independent manner, activated both the STAT3 and the MEK/ERK pathways. 

The transcription activator STAT3 transcribes a set of genes and, along with BCL2, the 

downstream target of the MEK/ERK signaling pathway. This mechanism promotes cell 

survival, thus leading to drug resistance during multiple myeloma therapy.  

 In general, the overexpression of Cks1 is essential in both cancer progression and 

survival. In addition to degradation of the tumor suppressor p27, it also promotes cell cycle 

transitions and cell motility via interaction with Cdks, transcription activators, and 

microtubule modulators. Cks1 will have different impact on cancers depending on its 

localization. While nuclear Cks1 mainly mediates carcinogenesis and cell survival, 

cytoplasmic Cks1 promotes tumor aggressiveness and metastasis. Recent findings also 

revealed that Cks1 is involved in multidrug and radiation resistance, significantly 

decreasing patient survival.   
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5.6. Perspectives 

 In view of the important role played by Cks1 in cancer, a better understanding of 

Cks1 is warranted. Various treatments aimed at reducing Cks1 levels have been studied. It 

is known that the other member of the Cks family, Cks2, is involved in guarding DNA 

replication fidelity and that in response to DNA damage, Cks2 is required to initiate cell-

cycle arrest. 
[129]

 Data from a mouse model suggests that Cks2 counteracts Cks1 and 

stabilizes p27. Cks2 has the same anion pocket capable of recognizing p27 as Cks1, yet has 

no N-terminal residues that recruit Skp2. Therefore, it is suspected that Cks2 blocks p27 

degradation by competing with Cks1 for binding with p27. However, overexpression of 

Cks2 in cancers with elevated levels of Cks1 does not show benefit.  Knockdown studies of 

Cks2 have revealed its participation in promoting tumorigenicity and inhibiting 

programmed cell death. 
[152]

  

 Many studies to date have suggested the use of Cks1 siRNA as the most direct way 

to reduce Cks1 levels in cancer cells; however, only a few studies have employed this 

approach. Tsai et al. demonstrated that treatment of lung cancer cells with Cks1 siRNA 

caused downregulation of Cdc2 activity as well as cell cycle arrest at the G2/M transition. 

Long-term use of the siRNA induced caspase activation and apoptosis in these cells. 
[155] 

Interestingly, normal lung fibroblasts were barely affected and still viable under the same 

conditions. In addition, an in vivo high-throughput screening technique for inhibitors of 

Cks1-Skp2 interaction has been developed. 
[156]

 Various compounds have shown significant 

inhibition of APC/C activity and Skp2-Cks1 interaction. 
[157]

 These inhibitors are very 
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effective; their half maximal inhibitory concentrations are all below 20 μM. However, no 

chemical details have been revealed for commercial reasons.     

 Target specificity is the main issue facing SCFSkp2-Cks1 ligase inhibitors because 

this multi-protein complex has many distinct binding domains common to other proteins; 

this is the reason some sought to target Cks1-related proteins. One of the well-known drugs 

currently on the market is Vorinostat. Commercialized under the name Zolinza, it is a 

histone deacetylase inhibitor that blocks cancer cell proliferation through the regulation of 

cyclin-dependent kinase inhibitors. 
[158]

 This drug is also able to prolong the half-life of p21 

and p27; however, this effect can be reversed by overexpression of Cks1 and Skp2. An 

analysis of Cks1’s drug resistance properties by Shi et al. determined that CKS1-

overexpressing multiple myeloma cells exhibit significant cell death and growth inhibition 

when their STAT3 or MEK/ERK signaling pathways have been targeted with specific 

inhibitors. 
[153]

 Furthermore, the use of inhibitors of both pathways resulted in synergy.  

 In light of my research results, controlling intracellular Cks1 localization appears to 

be a potential new method of inhibiting Cks1 activity in malignant tumor cells in which 

high expression of Cks1 is crucial for cell survival. There would be many benefits to 

blocking Cks1 entry into the nucleus. First, it would prevent the degradation of the cell 

cycle inhibitors p21, p57, p130/Rb, and, especially, p27, thereby inhibiting uncontrolled 

cell division. A quantification of the tumor suppressor protein p27 could be performed 

following Cks1’s import inhibition in p27-reduced cancer cells to determine if indeed Cks1 

is responsible for the major reduction of nuclear p27. On parallel, a cell viability MTT-

assay could be performed to determine if the absence of nuclear Cks1 would lead to cell 
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cycle arrest. Whether p27-dependent or independent, Cks1 partakes in various steps of cell 

cycle progression. Also, a decrease in nuclear Cks1 would lead to reduced activation of the 

MEK/ERK and STAT3 signaling pathways; therefore, reducing cell survival and cancelling 

drug and radiation resistance. The use of NLS-defective Cks1 mutants in cancer cell lines 

expressing high level of Cks1 would be able to confirm whether or not their drug and 

radiation resistance could be overridden. However, the invasiveness and metastasis of 

malignant tumor cells would not be affected and might even increase due to accumulation 

of cytoplasmic Cks1.  

Despite all the potential of a Cks1-specific import inhibitor, the main concern, as 

with all therapeutic agents, would be target specificity. The α-β karyopherins nuclear 

import pathway is common for lots of proteins. Further work on the mechanism of Cks1-

karyopherin interaction as well as in depth study of Cks1 structure are needed. 

Furthermore, Cks1 assists in different pathways, such as cell cycle progression and gene 

expression of regular cells as well. How the inhibition of nuclear import of Cks1 affects 

healthy cells is yet to be determined. Lots of works still need to be done on this important 

yet often overlooked protein.  
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