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Abstract

The concept of Ambiguity designates those situations where the information available to the

decision maker is insuffi cient to form a probabilistic view of the world. Thus, it has provided

the motivation for departing from the Subjective Expected Utility (SEU) paradigm. Yet, the

formalization of the concept is missing. This is a grave omission as it leaves non-expected utility

models hanging on a shaky ground. In particular, it leaves unanswered basic questions such as:

(1) Does Ambiguity exist?; (2) If so, which situations should be labeled as "ambiguous"?; (3)

Why should one depart from Subjective Expected Utility (SEU) in the presence of Ambiguity?;

and (4) If so, what kind of behavior should emerge in the presence of Ambiguity? The present

paper fills these gaps. Specifically, it identifies those information structures that are incompatible

with SEU theory, and shows that their mathematical properties are the formal counterpart of the

intuitive idea of insuffi cient information. These are used to give a formal definition of Ambiguity

and, consequently, to distinguish between ambiguous and unambiguous situations. Finally, the

paper shows that behavior not conforming to SEU theory must emerge in correspondence of

insuffi cient information and identifies the class of non-EU models that emerge in the face of

Ambiguity. The paper also proposes a new comparative definition of Ambiguity, and discusses

its relation with some of the existing literature.
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1 Introduction

The past few years have witnessed an ever increasing number of applications of non-Expected

Utility (non-EU) theories. This has been favored both by the recent theoretical developments

and by the general motivation underlying most non-EU theories. On the one hand, the structure

of many non-EU theories has been greatly clarified (see [12] for a recent, comprehensive survey),

appropriate statistical tools have become available (see, for instance, [16], [18], [28]) and extensions

to dynamic settings have been successfully pursued ([8], [14], [26]). On the other hand, non-EU

theories seem to provide the right framework for dealing with problems that lie at the core of

Economics and Finance such as Macroeconomics Policy, Investment choice, Entrepreneurship and

Innovation, Portfolio choice etc. The common thread linking all these problems is the high level of

uncertainty surrounding them and, consequently, they all reduce to choice problems in the presence

of very limited information.

The idea that behavior in situations of limited information should be qualitatively different

from behavior in situations where information abounds is certainly not a new one (dating back

at least to F. Knight), and has been the main inspirational motive behind the theoretical work in

decision making under uncertainty. For instance, Marinacci [19, p. 1] motivates his work on the

multiple-prior model by saying "The basic idea ... is simple and appealing: since the decision maker

has not enough information to form a meaningful simple prior, he uses a set of priors, consisting of

all priors compatible with his limited information".

Intuitive arguments of this sort have not found, however, a formal counterpart. This is a

grave omission because it leaves non-EU models hanging on shaky ground. In particular, it leaves

unanswered basic questions such as: (1) Does Ambiguity exist?; (2) If so, which situations should

be labeled as "ambiguous"?; (3) Why should one depart from Subjective Expected Utility (SEU)

in the presence of Ambiguity?; and (4) If so, what kind of behavior should emerge in the presence

of Ambiguity? The present paper fills these gaps. We will begin by studying the set of all possible

information structures that might be available to a decision maker. We will show that this consists

of two types: those that are compatible with SEU theory and those that are incompatible with it.

As we shall see, the mathematical properties of the latter provide the formal counterpart of the

intuitive idea of insuffi cient information. We will use these properties to give a formal definition

2



of Ambiguity and, consequently, to distinguish between ambiguous situations and unambiguous

ones. We will, then, show that behavior not conforming to SEU theory emerges in correspondence

of insuffi cient information, thus effectively providing the sought after informational foundation for

non-EU theories. Finally, we will identify the class of non-EU models that emerge in the face of

Ambiguity.

1.1 Paper outline

Our first step consists of characterizing the environment within which our inquiry will take place.

We do so in Section 2 by determining, figuratively speaking, the point where non-EU theories

depart from SEU theory. Starting with Section 3, we begin to explore the idea that this departure

might be due to the poor quality of the information available to the decision maker. The study of

Information is the subject matter of Sections 3 to 5. The main result is Theorem 8, which states that

in correspondence of certain information structures the decision maker’s behavior cannot conform

to SEU theory. In Section 6, we give a few examples of such information structures. In Section

7, we discuss the intuition behind their mathematical properties, thus showing that they are the

formal counterpart of the intuitive idea of insuffi cient information. This section completes the

first part of our program, that of showing that Ambiguity exists and that one must depart from

SEU theory in the presence of Ambiguity. These findings are summarized in Section 8 by giving

a formal definition of Ambiguity. With the subsequent section, we move to the second part of our

program, that of identifying the types of non-EU behavior that emerge as a response to Ambiguity.

In Section 9, we isolate the set of all acts that the decision maker can evaluate on the basis of his

information. We call this set the set of subjectively measurable acts. The problem of identifying

the types of non-EU behavior that emerge in the face of Ambiguity takes the form of extending

the decision maker’s preference functional from the set subjectively measurable acts to the set of

all acts in a way that respects the decision maker’s information. The main result is Theorem 27

of Section 10 which identifies the class of these non-EU behaviors. In Section 11, we study the set

of "predictives" in non-EU theories and its relation with the indicators of the Ambiguity perceived

by the decision maker. In the process, we propose a new comparative definition of Ambiguity, and

study its relation with that proposed by Ghirardato et al. in [10].
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2 Background and notation

The intuitive idea behind the study of non-EU models is that the decision maker would conform to

SEU theory if the information is, in some sense, good and would depart from it if the information

is not good. Our strategy to pursue this idea is as follows. If this intuition is correct, we should be

able to find, imaginatively speaking, a point in the theory where the determination of whether or

not to conform to SEU theory has not been made yet. At that point, we would then plug in the

information available to the decision maker, and obtain SEU when we plug in good information

and non-EU when we plug in information that is not good. In this section, we begin our inquiry

by looking for this point.

Recall that, following Savage [24], the alternatives available to the decision maker are modeled

as mappings (S,Σ) −→ X, where (S,Σ) is a measurable space of states of the world and X is a

space of consequences. Let A denote the set of all alternatives, and let Ac be that of constant

alternatives, that is of constant mappings (S,Σ) −→ X. Assume that X is a mixture space (see [3]

and [11]), and let % denote the decision maker’s preference relation over A. In [10], Ghirardato,

Maccheroni and Marinacci isolated a core common to several theories of decision making. This

consists of the five axioms listed below.

A1 % is complete and transitive.

A2 (C-independence) For all f, g ∈ A and h ∈ Ac and for all α ∈ (0, 1)

f � g ⇐⇒ αf + (1− α)h � αg + (1− α)h

A3 (Archimedean property) For all f, g, h ∈ A, if f � g and g � h then ∃α, β ∈ (0, 1) such that

αf + (1− α)h � g and g � βf + (1− β)h.

A4 (Monotonicity) For all f, g ∈ A, f(s) % g(s) for any s ∈ S =⇒ f % g.

A5 (Non-degeneracy) ∃x, y ∈ X such that x � y.

Then, Ghirardato, Maccheroni and Marinacci observed that alternative sixth axioms correspond

to alternative theories of decision making. For instance, one obtains SEU, CEU and MEU as follows:

A6 (a) (SEU, Anscombe and Aumann [3]) For all f, g ∈ A such that f ∼ g, 1
2f + 1

2g ∼ f ;

A6 (b) (CEU, Schmeidler [25]) For all f, g ∈ A such that f ∼ g, 1
2f + 1

2g ∼ f if f and g are
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comonotonic;

A6 (c) (MEU, Gilboa and Schmeidler [13]) For all f, g ∈ A such that f ∼ g, 1
2f + 1

2f % f .

Thus, it appears that the point we are looking for lies at the end of the 5th axiom and before the

6th is imposed. The mathematical environment associated with the first five axioms is completely

characterized by Theorem 1 below, which was proved in [2, Theorems 1 and 2]. In order to state

it, we need to introduce the notation that we will be using throughout the paper.

Notation: The set of bounded, Σ-measurable functions (S,Σ) −→ R equipped with the sup-

norm is denoted by B(Σ). Its dual ba(Σ), the space of bounded charges on Σ, is always endowed

with the weak*-topology produced by the duality (ba(Σ), B(Σ)). The subset of ba(Σ) consisting

of the finitely additive probability measures on Σ is denoted by ba+
1 (Σ). For C a weak*-compact,

convex subset of ba+
1 (Σ), a weak*-continuous affi ne function C −→ R is of the form ψf (P ) =

∫
S

fdp,

P ∈ C, for some f ∈ B(Σ). The space of all weak*-continuous affi ne functions on C equipped with

the sup-norm is denoted by A(C). The mapping κ : f 7−→ ψf is the canonical linear mapping

κ : B(Σ) −→ A(C). The Borel σ-algebra on C is denoted by B, and B(B) denotes the space of

bounded, B-measurable functions C −→ R equipped with the sup-norm. Finally, the set of regular

Borel measures on C is denoted by P(C).

We can now state the theorem characterizing Axioms 1 to 5. Recall that Axioms 1 to 5 imply

that there exist a utility function u : X −→ R and a functional I : B(Σ) −→ R such that for

f̃ , g̃ ∈ A (see [13] and [10], for details)

f̃ % g̃ iff I(u ◦ f̃) ≥ I(u ◦ g̃)

For notational simplicity, throughout the paper we are going to identify an act f̃ ∈ A with the

corresponding function u ◦ f̃ = f ∈ B(Σ).

Theorem 1 (Amarante [2]) A preference relation % on A satisfies Axioms 1 to 5 iff for any

f ∈ B(Σ) the functional I representing it can be written as

I(f) =

∫
C

κ(f)dν =

∫
C

∫
S

fdPdν(P )
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where C is a convex, weak*-compact subset of ba+
1 (Σ) and ν is a capacity on the Borel subsets of C.

Intuitively, Theorem 1 tells us that any behavior satisfying Axioms 1 to 5 corresponds to an

integration over priors when this operation is performed in the sense of Choquet.

3 Information

In line with Bayesian statistics, a decision maker who follows Axioms 1 to 5 entertains several prob-

abilistic descriptions of the world, each represented by a probability in the set C. He, then, weights

these probabilistic descriptions by using a possibly non-additive set function ν, thus obtaining a

possibly non-probabilistic criterion for evaluating his alternatives. As we have seen, it is at this

point that we have to plug in information, and determine whether or not the decision maker can

be Bayesian. As it is customary, we are going to model information as a partition of the set C.

The partition and the associated sub σ-field (that is, the σ-field generated by the partition) convey

that the decision maker has only partial information about C. This corresponds to the following

situation (see Billingsley [5], pp. 57-58 and pp. 427-29): on the basis of his information, the de-

cision maker can construct a statistical experiment whose outcome would tell him (in a statistical

sense) in which element of the partition the true probabilistic description lies. He would not be

able, however, to construct on the basis of his information an experiment capable of distinguishing

among probabilistic descriptions lying in the same cell of the partition. While this is a valuable

interpretation, the reader should be cautioned that it is subject to the qualifications that we will

discuss in Sections 5 and 7. Aside from information about the true probabilistic description of the

world, the decision maker may also have information about the true state of the world. Clearly,

this type of information (that is, information of the form "the true state belongs to the set A ⊂ S")

can always be trivially expressed as information about the set C.1 The following definition records

formally the concept of information structure.

Definition 2 An information structure on (C,B) is a triple {(C,B), I,BI}, where I is a partition

of C and BI is the sub-field of B generated by I.
1 It is interesting to notice that departures from SEU are often associated with the decision maker being given

information explicitly about the set C of probabilities on (S,Σ). This is the case, for instance, in both Ellsberg’s
experiments (the configurations of the urns) as well as in those of Gardenfors and Sahlin [9] (the ability of the players).
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Before we begin our inquiry into the properties of possible information structures, a refinement

of this definition is needed. We have been pursuing the idea that at the point we are at - the one

ideally lying between Axiom 5 and Axiom 6 - the decision maker tries to be Bayesian: it is only the

type of information that he gets at this point that might prevent him from being so. But, if the

information is good enough he will adhere to SEU. It is clear that for this to happen, the decision

maker must have a probability on the set C. Informally, this corresponds to the integration over

priors argument that in traditional Bayesian statistics leads to the determination of the "predictive"

(see [20] and [2, Sec. 3.1]): Given his prior µ on C and the partition I, the decision maker computes

a collection of conditional probabilities, one for each element of the partition; then, he averages

these conditionals with the weights that µ gives to the corresponding elements of the partition, and

SEU obtains. Thus, the existence of the prior µ is a necessary condition for the decision maker

to be Bayesian. Since this prior also contains some form of information available to the decision

maker, it must be explicitly encoded in the formal definition of information structure:

Definition 3 A Bayesian information structure on (C,B) is a quadruple {(C,B), µ, I,BI}, where

µ is a regular Borel measure on (C,B), I is a partition of C and BI is the sub-field of B generated

by I.

Possibly, if the Ambiguity idea holds, the existence of a prior on C is not suffi cient for SEU to

obtain, but that remains to be determined. In the meantime, let it be clear that no extra assumption

has been made with Definition 3. In particular, it has not been assumed that the capacity in

Theorem 1 is actually a measure. As said, the introduction of Bayesian information structures as

in Definition 3 is necessary to guarantee that SEU would obtain whenever the information is good.

In fact, by using Definition 3 and noticing that no information explicitly appears either in Theorem 1

or in any of the classical representation theorems in decision making under uncertainty, we can now

(informally) re-formulate our working hypothesis as If the Ambiguity idea is correct, then Bayesian

integration over priors with bad information must be representable by a non-additive integral. In

other words, the poor quality of the information must reveal itself into the non-additivity of the

integral representing the decision maker’s preference.
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Remark 4 (F) Later in the paper, Corollary 30 will formally prove that the intuition

Lebesgue integration w/ bad information = non-additive integration

is, indeed, correct.

Another brief comment concerns the requirement that the measure in Definition 3 be regular

Borel. This is motivated by the structure of the problem and is without loss of generality.2 In fact,

by allowing for a wider class of measures, we would only strengthen our results (see footnote 5, Sec.

8).

4 Sometimes, the information is ....

Given a Bayesian information structure {(C,B), µ, I,BI}, the integration over priors procedure

supposedly leads to behavior conforming to SEU theory. For this to be true, two conditions must

be met. Let {µi}i∈I be a system of probability measures, one for each element of the partition I.

Then, ∀ϕ ∈ B(B) we must have:

1. The function ψ(i) : C/I −→ R defined by

ψ(i) =

∫
C∩i

ϕ |ι dµι

is a measurable function with respect to the canonical σ-field on C/I (see Appendix A); and

2. ∫
C

ϕdµ =

∫
C/I

∫
ι

ϕ |ι dµιdµ′

where µ′ is the pushforward of µ under the canonical projection π : C −→ C/I (see Appendix

A).

2When the preference is SEU, the functional on B(Σ) which represents it is linear and sup-norm continuous. Thus,
the integration over priors argument must define a sup-norm continuous, linear functional defined on the space A(C)
of continuous affi ne affi ne functions on C. By Hahn-Banach, this functional can be extended to a sup-norm continuous
linear functional on C(C), the Banach space of all continuous functions on C equipped with the sup-norm, and (via
the Riesz representation theorem) there exists a unique regular Borel measure representing it, that is ν ∈ P(C).
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The exact formal meaning of these conditions is fully spelled out in Appendix A. They are,

however, nothing other than the formal transposition of the integration over priors argument. To see

this, let us start from condition 2. The part stating that µ′ is the pushforward of µ under π simply

means that the weights assigned to the cells of the partitions are those determined by µ. Next,

let us consider the inner integral on the RHS of condition 2. This is exactly the function ψ that

appears in Condition 1. If the family {µi}i∈I has to represent a family of conditional probabilities,

then the function ψ(i) : C/I −→ R describes precisely the association cell of the partition −→

conditional evaluation of ϕ at that cell of the partition. Then, the equality in Condition 2. states

that things "add up" properly: that is, if for any ϕ ∈ B(B) we take all of its conditional evaluations

and average them with the weights determined by µ, we obtain the unconditional evaluation of ϕ.

This condition is even more transparent when we take ϕ = χA, the indicator function of a set

A ∈ B. In such a case, the condition states that if we take A, "cut" it by using the elements of

the partition, measure the pieces separately and then add them up, we obtain the original measure

µ(A). To complete the assessment of Conditions 1. and 2., notice that Condition 1. is necessary to

even state Condition 2. as in order to take the integral on the RHS of 2., the function that is being

integrated has, obviously, to be measurable. Condition 1., however, has a very substantial meaning

as well: it expresses that the type of information available to the decision maker is suffi cient both

to evaluate his options in the various contingencies he can distinguish (the cells of the partition)

and to understand how these evaluations relate to one another. We conclude this section by giving

one example of a partition (hence, of an information structure) for which the two conditions hold.

Example 5 Let I be the partition of C generated by the equivalence relation

P ∼ Q iff P = Q

and let {(C,B), µ, I,BI} be the corresponding information structure. In such a case, the RHS of 2.

is given by
∫
C
ϕdµ and thus 2. becomes a tautology. Moreover, for this partition, we have C = C/I

and ϕ ∈ B(B) is the same as saying that 1. is satisfied. Thus, each ϕ ∈ B(B) is evaluated by

∫
C

ϕdµ
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Finally, the evaluation of each f ∈ B(Σ) is achieved by integrating over priors, that is by means of

the functional

I(f) =

∫
C

κ(f)dµ =

∫
C

∫
S

fdPdµ(P )

On the weak*-compact, convex set C, each µ has a unique barycenter [22, Proposition 1.1] P ∗ ∈ C,

and we have that

I(f) =

∫
C

κ(f)dµ = κ(f)(P ∗) =

∫
S

fdP ∗

for every f ∈ B(Σ), which is the SEU functional.

Obviously, this conclusion is far from being surprising. The partition in the example is the finest

possible partition of C, hence it represents the best possible information for the decision maker. We

should have expected the Bayesian integration over priors argument to go through at least in this

case. For future reference, we record this formally in the corollary below.

Corollary 6 If the information available to a Bayesian decision maker is the best possible, then

behavior conforming to SEU theory obtains.

5 ... not enough to rely on a single probability

Now, we have to address the question of whether or not there exist information structures in

correspondence of which the integration over priors procedure fails to lead to behavior conforming

to SEU theory. Theorem 8 of this section answers the question in the affi rmative. In what follows,

we are going to make an assumption, which greatly simplifies the exposition. We are going to

assume that the set of priors C of Theorem 1 is a Polish space. This assumption is fairly minor

(for instance, it is automatically satisfied any time that C is finite dimensional) and it is possible

to dispense with it but, as said, at the price of a cumbersome exposition. At any rate, in order

to dissipate any doubt about the axiomatic foundations of our work, in Appendix C we show that

the assumption is satisfied whenever the decision maker’s preference relation satisfies the axiom of

Monotone Continuity (see Appendix C ).3

3The original monotone continuity axiom was introduced by Arrow in [4], who comments "the assumption of
Monotone Continuity seems, I believe correctly, to be the harmless simplification almost inevitable in the formalization
of any real-life problem"
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The key concept in Theorem 8 below is that of Rokhlin’s non-measurable partition [23]. We

stress that the concept refers to a property of the partition as a whole and not to a property of the

sets making up the partition which might as well be measurable sets.

Definition 7 (Rokhlin [23]) Let (L,Λ, λ) be a Lebesgue space (see Appendix B), and let I be a

partition of L. Let the quotient L/I be endowed with the measure structure induced by the canonical

projection (see Appendix A). The quotient L/I is said to be countably separated if there exists a

countable family of measurable subsets of L/I which separates points. The partition I is called

measurable if L/I is countably separated.

Theorem 8 Let {(C,B), µ, I,BI} be a Bayesian information structure on (C,B). Assume that the

prior µ is not purely atomic and that µ is not supported by a single cell of the partition. Then,

SEU obtains if and only if the partition I of C is measurable.

Notice that the assumption that µ is not supported by a single cell of the partition is clearly

necessary for the conclusion in the theorem. In fact, if µ is supported by a single cell, then (modulo

sets of µ-measure 0) the partition consists of a single element, and we are back to the case examined

at the end of the previous section where SEU obtains trivially.

Proof. By the assumption that µ is not purely atomic, µ can be expressed as the product of a

purely atomic measure and a non-atomic one. Since a system of conditional measures of a purely

atomic measure always exists, we can assume without loss that µ is non-atomic. If I is measurable,

then by Rokhlin’s Theorem [23] there exists a canonical system of conditional probabilities {µι}ι∈I .

By using Definition 42 (Appendix A), it is straightforward to check that for every ϕ ∈ B(B) both

Conditions 1. and 2. of Section 4 are satisfied. Thus, every f ∈ B(Σ) is evaluated by
∫
C
κ(f)dµ

and the SEU functional obtains by means of the barycenter argument exactly as in the example in

Section 4.

Conversely, let I be a nonmeasurable partition, and let {µι}ι∈I be a system of conditional

probabilities, with each µι a non-atomic measure on ι. By Rokhlin’s theorem, {µι}ι∈I cannot be

canonical. Hence, ∃ϕ ∈ B(B) such that at least one of Conditions 1. and 2. of Section 4 is violated.

If such a ϕ belongs to range κ(B(Σ)), then we are done for in such a case there exists at least one

f ∈ B(Σ) that cannot be evaluated by a SEU functional. Now, we are going to show that range

κ(B(Σ)) necessarily contains at least one such ϕ.
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To begin, observe that the (non-canonical) system of conditional probabilities {µι}ι∈I defines

an operator T̃ : B(B) −→ RC/I by

ψ 7→ T̃ (ψ) where T̃ (ψ)(ι) =

∫
C

ψdµι

Also, observe that suppµι ⊂ ι. Let

Θ =

ψ ∈ B(B) | (a) T̃ (ψ) ∈ B(B/I); (b)

∫
C

ψdµ =

∫
C/I

∫
ι

ψ |ι dµιdµ′


By using standard arguments, it is easily checked (see for instance [1], Ch. 13) that Θ is a linear

subspace and a lattice. Now, let {ψn}n∈N be a sequence in Θ;

CLAIM: If either ψn ↗ ψ ∈ B(B) or ψn ↘ ψ ∈ B(B), then ψ ∈ Θ.

Proof of the claim: Let ψn ↗ ψ ∈ B(B).

(a) By the Dominated Convergence Theorem (DCT), for every µι we have
∫
C
ψndµι ↗

∫
C
ψdµι,

that is T̃ (ψn) ↗ T̃ (ψ). Hence, T̃ (ψ) is a pointwise limit of measurable functions, and hence

measurable. Moreover, since ψ ∈ B(B), T̃ (ψ) is bounded, i.e. T̃ (ψ) ∈ B(B/I).

(b) Observe that

∫
C

ψdµ = lim
n→∞

∫
C

ψndµ (by the DCT and ψ ∈ B(B))

= lim
n→∞

∫
C/I

∫
ι

ψndµιdµ
′ (because ψn ∈ Θ)

= lim
n→∞

∫
C/I

T̃ (ψn)dµ′

=

∫
C/I

T̃ (ψ)dµ′ (by (a) and the DCT )

=

∫
C/I

∫
ι

ψ | ιdµιdµ
′

which completes the proof for the case ψn ↗ ψ. The other case is similar.

Now suppose, by the way of contradiction, that range κ(B(Σ)) ⊂ Θ. Let K denote the set of
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continuous, convex functions on C. Then, if γ ∈ K there exists ([22], p. 19) {ζm}m∈N ⊂ A(C) ⊂

range κ(B(Σ)) and a sequence {ηn}n∈N, with ηn = ∧{ζi}ki=1, such that ηn ↗ γ. The sequence

{ηn} ⊂ Θ because Θ is a lattice. Then, by the above claim, γ ∈ Θ, that is K ⊂ Θ. Since Θ is a

linear space, it follows that K −K ⊂ Θ. By the Stone-Weierstrass theorem, K −K is uniformly

dense in C(C), the set of continuous functions on C. Since C is a metric space, for any closed set

A ⊂ C, there exists ([1], Corollary 3.14) {λn}n∈N ⊂ C(C) such that λn ↘ χA, where χA denotes

the indicator function of A. Since K −K is uniformly dense in C(C), for each n ∈ N, there exists

{hnk}k∈N ⊂ K −K such that hnk → λn uniformly as k →∞. Now, let k0 ∈ N be such that

λ0(P )− 1 < h0k0
(P ) < λ0(P ) + 1 , ∀P ∈ C

Then, the function

g0 = h0k0
+ 2

is in Θ because Θ is a linear space, and satisfies

λ0(P ) + 1 < g0(P ) < λ0(P ) + 3 , ∀P ∈ C

Next, let k1 ∈ N be such that

λ1(P )− 1

3
< h1k1

(P ) < λ1(P ) +
1

3
, ∀P ∈ C

Then, g1 = h1k1
+ 2

3 ∈ Θ and satisfies

λ1(P ) +
1

3
< g1(P ) < λ1(P ) + 1 ∀P ∈ C

Moreover, for every P ∈ C, we have

g1(P ) < λ1(P ) + 1 ≤ λ0(P ) + 1 < g0(P )

Inductively, define

gn = hnkn +
2

3n
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Then, {gn}n∈N ⊂ Θ, gn+1(P ) < gn(P ) ∀P ∈ C, and

sup
P∈C
|gn(P )− λn(P )| < 1

3n−1

Now, the inequality

|gn(P )− χA(P )| ≤ |gn(P )− λn(P )|+ |λn(P )− χA(P )|

shows that gn ↘ χA. [Notice that gn(P ) > λn(P ) + 1
3n ≥ χA(P )]

By the above claim, we then have χA ∈ Θ for any closed set A ⊂ C. Next, observe that:

(i) χC ∈ Θ because the function 1 ∈ A(C) ⊂ Θ;

(ii) if χA, χB ∈ Θ and A ⊂ B, then χB\A = χB − χA ∈ Θ because Θ is a linear space;

(iii) if An ↗ A and
{
χAn

}
⊂ Θ, then χAn ↗ χA and χA ∈ Θ by the claim above.

Hence, we conclude that D = {A ∈ C | χA ∈ Θ} is a Dynkin system, which contains all closed

sets. Hence, D = B (the Borel σ-algebra generated by the topology on C). But now, it follows that

Θ contains all the simple functions (because Θ is a linear space) and since {ψn} ⊂ Θ and ψn ↗ ψ

imply ψ ∈ Θ, we conclude that Θ = B(B), a contradiction.

The proof of Theorem 8 shows that the failure SEU theory manifests itself into possible ways:

either for some f ∈ B(Σ) the function T̃ (κ(f))(ι) =

∫
C

κ(f)dµι is not measurable, which indi-

cates that the decision maker has not enough information to evaluate f ∈ B(Σ); or
∫
C
κ(f)dµ 6=∫

C/I

∫
ι
κ(f) |ι dµιdµ′, which indicates that the decision maker cannot come up with a consistent eval-

uation of that f . By Theorem 8, this is going to happen whenever the prior µ has a nonatomic part

and the partition I is nonmeasurable. We will comment on these features extensively in Section 7.

6 Examples

This section contains some examples of information structures for which SEU fails. As the inter-

pretation of these examples and of their mathematical properties requires a thorough discussion,

some explanations will be postponed until the next section. Those readers mainly interested in the

emergence of non-EU theories may jump to Section 8, and possibly come back to these sections

later.
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6.1 Uncertainty on the class of measure zero events

Let (S,Σ) be a Standard Borel Space (see Appendix B) and let ca+
1 (Σ) denote the set of countably

additive probability measures on Σ. The first information structure that we consider has an obvious

relevance to any theory of decision making. It consists of partitioning the set of measures on Σ

so that two measures are in the same cell of the partition if and only if they are associated to the

same collection of measure zero events in S. For P,Q ∈ ca+
1 (Σ) this partition is defined by the

equivalence relation

PZQ iff P � Q and Q� P

where � stands for absolute continuity, and two measures are equivalent if and only if they are

mutually absolutely continuous. Notice that all cells in this partition are measurable (wrt the Borel

σ-algebra generated by the weak*-topology on ca+
1 (Σ)). Informally, the information described by

the partition Z corresponds to statements like “The class of measure zero events in Σ is either Φ

or Ψ”, etc..

Theorem 9 (see Kechris and Sofronidis [17]) The partition Z is nonmeasurable.

As an immediate consequence, we have

Corollary 10 Let the decision maker’s information be given by the quadruple {(C,B), µ,Z,BZ},

where Z is the partition produced by the measure equivalence relation. Assume that µ contains a

non-atomic part. Then, SEU obtains if and only if the decision maker is a priori certain about the

class of measure zero events of S.

In other words, if the only information available to the decision maker regards the class of

measure zero events, and if the decision maker is uncertain about this class (his prior on C is not

concentrated on a single equivalence class), then the decision maker cannot be Bayesian.

6.2 Ellsberg’s three-color urn experiment

In this subsection, we consider Ellsberg’s three-color urn experiment. Ellsberg’s two-urn experiment

is suitable of similar considerations. In the three-color urn experiment, a decision maker faces bets

whose domain is an urn containing 90 balls. He is told that 30 of those are red (R) while the
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remaining are either black (B) or yellow (Y ) in unknown proportions. The following violation of

the SEU paradigm is often observed

R � B

but

R ∪ Y ≺ B ∪ Y

That is, the decision maker prefers betting on red rather than black, but he prefers betting on

"black or yellow" rather than "red or yellow". Two aspects of the experiment are worth stressing:

First, the decision maker explicitly receives information about the set of possible configurations

of the urn; second, the information he receives is symmetric with respect to the labels B and Y .

What is mostly interesting about the experiment is that, in correspondence of the symmetry in the

information, one typically observes a strong symmetry in the decision maker’s table of preferences:

one can replace B with Y (and vice versa) in the table of preferences without changing the table

itself. We believe that this could hardly be considered an accident. In order to follow up on this

idea, we must find a way of properly modeling the notion of symmetry encoded in the information

as well as that of symmetry in the corresponding behavior.

6.2.1 Modeling the symmetry in the information

The set of possible configurations of the urn corresponds to the set C in Theorems 1 and 8. In this

section, we are going to look for an alternative, yet equivalent, representation of that set, one that

would allow us to clearly express the symmetry encoded in the information given to the decision

maker. A configuration of the urn can be thought of as a measure on a set S of 90 points, that

is a vector with 90 coordinates. S is partitioned into three subsets called R, B and Y . Let us

fix an arbitrary configuration p0. An arbitrary configuration represented by some vector pi can be

expressed in terms of p0 as there exists a matrix Ai such that pi = Aip0. Thus, the configurations

of the urn can be identified to a set of (stochastic) matrices, with p0 being associated to the identity

matrix. We are interested in the relation existing among matrices (i.e., configurations) that can

be obtained from one another by means of relabeling of the underlying set S. Here, the idea is

that since there is nothing substantial about the labels (the information is exactly the same if we

replace B with Y and vice versa), it is impossible to distinguish among these matrices.
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A relabeling of S is a bijection t : S −→ S. This is evidently associated with the matrix Pt

which changes the probabilities according to the relabeling t. So, when we apply the relabeling t, we

transform the configuration p0 into the configuration Ptp0; and, by applying the matrix A to this,

we obtain the configuration APtp0. Consider now another configuration, say Bp0, and let us apply

the same relabeling t, thus obtaining the configuration PtBp0. If it turns out that PtB = APt,

we conclude that the two configurations represented by A and B are effectively indistinguishable

because one can be obtained from the other by means of a relabeling of the underlying space.

Summing up,

Definition 11 Two configurations of the urn are the same up to a relabeling of the underlying set

S if the corresponding matrices, A and B, are permutation-similar, that is if there is a permutation

matrix Pt such that B = P−1
t APt.

Remark 12 Possibly, the finer relation of unitary equivalence (obtained by requiring that the ma-

trix Pt in definition be a unitary matrix) is more appropriate since it preserves also the structure of

the underlying space of bets, which is what the decision maker ultimately cares about. This issue,

however, is inconsequential to the remainder of the argument and, therefore, we leave it as is.

In the next subsection, we are going to study a continuous version of Ellsberg’s experiment. We

will go back to the finite version in Subsection 6.4.

6.3 A continuous version

Here, the urn is the interval [0, 1], which we should think of as partitioned into three subsets, labeled

R, B and Y . The set of bets is the set of all indicator functions χE , where E ∈ Λ and Λ is the usual

Borel σ-algebra. The set of possible configurations of the urn is the set of non-atomic measures on

([0, 1],Λ), which we denote by N ([0, 1]). Thus, a configuration P ∈ N ([0, 1]) corresponds to the

measure space ([0, 1],Λ, P ), which under our assumptions is a Lebesgue space (Appendix B). By

fixing a possible configuration as a reference point, say ([0, 1],Λ, P0), the Isomorphism Theorem

for Lebesgue Spaces (see Appendix B) allows us to identify each configuration ([0, 1],Λ, Pi) with

an invertible measure preserving transformation gi : ([0, 1],Λ, P0) −→ ([0, 1],Λ, Pi). Thus, the set

of all possible configurations of the urn can be identified to the group G = Aut(P0) of invertible
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measure preserving transformations of ([0, 1],Λ, P0). The notion of symmetry of two configurations

of the urn is expressed by the following definition.

Definition 13 Two configurations, g1 and g2 in G, are the same up to a relabeling of the underlying

space, and we write g1 ∼ g2, if there exists a t ∈ G such that g1 = tg2t
−1.

Thus the decision maker’s information consists of the partition generated by this equivalence

relation along with a nonatomic prior on G, which specifies that only those measure spaces

([0, 1],Λ, Pi) such that Pi(R) = 1/3 should be considered. Notice that all the cells of the par-

tition are measurable sets (for the measurable structure on G induced by the mapping Pi 7−→ gi).

Theorem 14 (see Hjorth [15, Theorem 1.2]) The partition associated to the equivalence rela-

tion in Definition 13 is nonmeasurable.

From this, just like in the previous subsection, it follows that

Corollary 15 If the decision maker’s prior over G contains a non-atomic part and if the prior is

not concentrated on a single equivalence class, then SEU fails.

6.4 The finite version

As we saw above, the finite case is similar to the continuous one. Some extra consideration is

needed, nonetheless. In the finite case, a measure is a vector in Rn and the usual measurable

structure (Borel) on the set of measures is the one generated by the Euclidean topology on Rn.

This has the inconvenient feature of producing "oversized" information. There is no reasonable

presumption, however, that the Borel structure on Rn be representative of the decision maker’s

information in Ellsberg’s experiment. In fact, the opposite is true as we shall argue below. For the

time being, Corollary 16 will give us some suffi cient conditions for the failure of SEU theory.

Corollary 16 Let C be endowed with a σ-algebra such that (at least one of) the cells of the partition

produced by the relation of permutation similarity of stochastic matrices are not measurable sets.

Then, the partition is nonmeasurable. If the decision maker’s prior contains a non-atomic part and

if the prior is not concentrated on a single equivalence class, then SEU fails.
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A basic result in Linear Algebra tells us that in order to show that two matrices are not

similar, we need enough information to be able to show that they have different Frobenius normal

forms. Consequently, we need even more information to distinguish between permutation non-

similar configurations in Ellsberg’s experiment. To see what this entails, let us consider a simpler

problem, that of distinguishing between different points in Rn. If we had this ability, we could,

for instance, determine that certain matrices are not similar because they have different sets of

eigenvalues. It is clear that it is always possible to distinguish between different points in Rn if

we know the Borel σ-algebra on Rn as, for any given two points in Rn, this contains a set which

contains one point but not the other. The Borel σ-algebra is generated by the cylinder sets

{x = (x1, x2, ..., xn) ∈ Rn | xi = yi, 1 ≤ i ≤ κ}

That is, a cylinder set is obtained by fixing the first κ coordinates, and the class of all cylinder sets

obtains as κ varies between 1 and n. To endow the decision maker in Ellsberg’s experiment with

this σ-algebra would imply, for instance, the following. Let P1 and P2 be two possible configurations

of the urn, that is two measures on S, both supported by 89 points but with supp (P1) 6=supp (P2).

Then, the decision maker would always be able to distinguish between P1 and P2, as he would be able

(by using a a property of a set which contains P1 but not P2) to construct a statistical experiment

whose outcome would tell him which was the true measure. Yet, in the actual experiment there is

nothing suggesting that he would be able to do so. That is, his information must be coarser than

that represented by the class generated by all cylinder sets. Consider now a subclass of that class,

which is obtained by allowing κ to vary only between 1 and m, where m < n. Let Bm denote the

σ-algebra on C which is generated by this subclass. It is clear that this σ-algebra does not separate

points (that is, there exist two points in Rn such that no set in the σ-algebra contains one but not

the other). Thus, if all we know about Rn is this σ-algebra, we cannot distinguish between points

and, hence, between non-similar matrices. In fact, for all choices of m < n, these σ-algebras satisfy

the condition in Corollary 16. In the next section, we will discuss extensively the meaning of the

σ-algebra, its interpretation and the role it plays in the failure of SEU theory. We will revisit all

three examples of this section in Section 9 and in Section 10.3.
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7 Comments: the idea of insuffi cient information

"A person behind a door slips a blank paper through the door. Is that person a male or a female?".

"The eye witness of a robbery describes the perpetrator as a male, wearing a mask and gloves,

medium built, medium height. Is he 5’6" tall or 5’9"? Does he weight 140 lbs or 160 lbs? Does

he have a beard? Is he white, black, Asian?". These are examples of insuffi cient information:

on the basis of the information that you have, you can make certain distinctions but you still

lack information on so many fundamental aspects of the problem that you can only come up with

very coarse, almost useless, distinctions. In the second example, for instance, you know that the

perpetrator is not a female, that is neither very tall nor very short, neither very heavy nor very

light, but clearly there is a lot more you need to know to form an even remote idea of where

to begin the search for the perpetrator. In the first example, you do know that the person is

either a male or a female, but you will never be able to either check that or to form meaningful

probabilistic assessments about that unless some other information is revealed (for instance, you

write questions on that piece of paper and slip it back through the door, the person behind the door

starts talking etc.). As another example, suppose that I am subject to a technological constraints

that allows me to check fractional numbers only up to the tenth digit. Once I know that the number

is 3.1415926535, do I conclude that the number is rational or that it is irrational? This is what

insuffi cient information means in practice, and this is precisely what the mathematical concept of

nonmeasurable partition conveys: if my information is described by a nonmeasurable partition I do

not know enough to tell things apart.

In order to get a thorough understanding of why the concept of nonmeasurable partition is

the mathematical translation of the intuitive idea of insuffi cient information, we must somehow

return to the basics and keep in mind that the words subset and property are interchangeable (as,

by the definition, a subset is the collection of all points having a certain property). For C the set

of measures, let I be a partition of C and let π : C −→ C/I be the canonical projection. Let us

begin with an extreme case, which will make certain features more transparent. Let us suppose

that the decision maker understands nothing about the set of measures. This situation of absolute

ignorance is represented by the decision maker having the trivial σ-algebra {∅, C} on C (that is, the

decision maker knows no properties). In such a case, the σ-algebra on the quotient that makes the
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canonical projection measurable is again the trivial σ-algebra {∅, C/I} and the only measurable

functions on the quotient are the constant functions. It follows that any non-trivial partition on C

will generate, given any system of conditional probabilities, many nonmeasurable functions on the

quotient (Condition 1. in Sec. 4 is violated) and SEU theory must fail. In a manner of speaking,

given his (lack of) understanding of C, the decision maker cannot handle partitions other than the

trivial one. It is clear that the finer the algebra on C, the more partitions the decision maker will be

able to handle. This is only one part of the story, though. As we have seen in the first two examples

of the previous section, even when the algebra on C is fine enough to guarantee that the partition

is made only of measurable sets, it is still possible that SEU would fail. This has to do with the

fact that while the sets making up the partition are measurable (and, hence, "simple" enough when

considered in isolation), the partition as a whole is "too complicated" for the decision maker to

be able to assign (non-trivial) measures to those sets. In other words, the nonmeasurability of a

partition is either a statement that the decision maker does not fully understand the objects making

up the partition or that, while he understands those objects one by one, he is unable to come up

with coherent assessments on the whole. Intuitively, whether or not a partition is measurable

depends on the comparison between "how complicated the partition is" relative to the decision

maker’s knowledge ("how many properties he knows of"). Thus, nonmeasurability of a partition

can be achieved by either complicating the partition or by reducing the amount of properties that

the decision maker knows of.

When we want to distinguish a point x from a point y, short of knowing x with absolute

certainty (which corresponds to the atomic case, hence the nonatomicity condition encountered in

Theorem 8), the minimal condition is that of knowing an open set that contains x and does not

contain y. This is the same as saying that x is different from y because x has a property that y

does not have (the one associated with that open set). When x and y are points in Rn, we can

distinguish between them when we know the Euclidean topology of Rn, but if we are limited only

to the projections on the first n− 1 coordinates, this is no longer possible. This is what is going on

in the third example of the previous section as well as in the rational vs irrational number question

above. The explanation is a bit different in the first two examples of the previous section, but the

spirit is similar. As said above, those examples express situations where the partition is, intuitively

speaking, too complicated. Formally, what is going on is as follows: for any point x ∈ C, any open
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set around x intersects all equivalence classes. In other words, there is no property that the decision

maker knows of that would allow him to distinguish among equivalence classes. Thus, either he is

able to distinguish among points at the outset (which is the purely atomic case) or he does not need

to distinguish between equivalence classes (because his prior is concentrated on a single equivalence

class) or he would not be able to assign weights to the equivalence classes (because as soon as he

assigns a weight to a certain property he would assign that weight to all the equivalence classes;

ultimately this would result in inconsistent evaluations).4

We conclude this discussion by stressing, once more, that the failure of SEU is determined by

the interplay between the σ-algebra (= the decision maker’s knowledge) and the partition (= the

decision maker’s information, given his knowledge). This is a necessary feature which accounts for

two important aspects of the intuitive idea of ambiguity; namely, (a) the ambiguity that is perceived

in a decision problem may vary across different individuals; and (b) for the same individual, the

perceived ambiguity may vary across decision problems. This is intuitively clear. A question of the

type “Does there exist an extension of this functional satisfying such and such property?" may

bear no ambiguity to a trained mathematician while appearing utterly obscure to the untrained

person. At the same time, the very same mathematician might find himself/herself at a loss when

facing the statement "for this type of shot, this type of club is better than that other type".

8 Ambiguity: a formal definition

We can now summarize our findings by means of the following definition. Let C be a set of measures

on (S,Σ), T a σ-algebra of subsets of C, I a partition of C and let TI be the σ-algebra on the quotient

induced by the canonical projection.

Definition 17 A decision maker faces Ambiguity (or Knightian Uncertainty) whenever his infor-

mation about the set C is described by a quadruple {(C, T ), µ, I, TI} (see Definition 3) with the

following properties:

(i) µ contains a non-atomic part;

4Hopefully, the discussion in this and the previous section has not generated the erroneous idea that nonmeasurable
partitions made exclusively of measurable sets do not exist in finite dimension. In fact, these partitions exist even in
the one-dimensional case. An example is given by the unit interval equipped with its usual Lebesgue structure and
by the partition of the unit interval produced by the equivalence relation x ∼ y if and only if y = x + α (mod 1),
where α is a fixed irrational number (see [6]).
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(ii) µ is not concentrated on a single equivalence class;

(iii) the partition I (modulo µ-measure zero events) is non-measurable.

In correspondence to all other information structures, the decision maker faces (Knightian)

Risk.

The necessity and the meaning of all three conditions was explained in the previous section.

Theorem 8 can now be reformulated as follows: If the decision maker faces Ambiguity, then he

cannot obey the SEU paradigm.5

By means of Definition 17, we can partition the set of all (Bayesian) information structures

into two subsets: one represents those information structures which describe good information, and

corresponds to situations of Risk; the other represents those information structures which describe

information which is not good, and corresponds to situations of Ambiguity. A Bayesian decision

maker obeys SEU theory when he faces Risk, and departs from it when he faces Ambiguity.

With this, we have completed the first part of our program: we have shown that Ambiguity

exists, we have formally identified those situations that should be deemed as ambiguous, and we

have shown that departures from SEU must be observed in these situations. In the next section,

we move to the second part of our program, that of showing which non-EU theories might emerge

in situations of Ambiguity.

9 Subjectively measurable acts

In this section, we are going to isolate a subset of the acts: those that the decision maker is able to

evaluate on the basis of his information and for which an expected utility functional (determined

by the decision maker’s prior µ) can be meaningfully defined. We call them subjectively measurable

acts. In the next section, we will study the problem of extending the expected utility functional on

the subjectively measurable acts to the set of all acts in a way that respects the decision maker’s

information. It will be at that point that non-EU behavior will emerge.

5As anticipated at the end of Section 3, the considerations of finitely additive priors only strenghtens our findings.
In fact, if a prior µ over C is finitely additive but not countably additive, then by definition there exists a partition
I and a function ψ ∈ B(B) such that

∫
C
ψdµ 6=

∫
C/I

∫
ι

ψ |ι dµιdµ′. It suffi ces to consider a partition I = {A, {Bi}i∈N}

where {Bi}i∈N is a family of disjoint sets for which µ fails countable additivity. Thus, existence of non-measurable
partitions is a rather easy matter when we allow for measures that are only finitely additive.
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Let {(C,B), µ, I,BI} be an ambiguous information structure (that is, the properties in Definition

17 are satisfied) and let cp = {µι}ι∈I be a collection of probability measures with µι supported by

ι (viewed as a subset of C). As we have seen in the proof of Theorem 8, the family cp = {µι}ι∈I
cannot be a system of canonical condition probabilities and, therefore, cannot be used to evaluate

all acts. Yet, the family cp may display a partial compatibility (possibly trivial) with the decision

maker’s information, and can be used to form at least some conditional evaluations. Precisely,

given an information structure and a family of probabilities cp = {µι}ι∈I , a subset of the acts may

satisfy the two conditions of Section 4. This is the set of subjectively measurable acts determined

by cp, which we denote by ΣMA(cp). Recall that, as in the proof of Theorem 8, an act f ∈ B(Σ)

and a system of probabilities cp = {µι}ι∈I induce a function ψf : C/I −→ R which is defined by

ψf (ι) =

∫
C

κ(f)dµι, where as usual κ is the canonical mapping B(Σ) −→ A(C). Thus (see Sec. 5),

the set of subjectively measurable acts is given by

ΣMA(cp) =

f ∈ B(Σ) | (a) ψf is measurable; (b)

∫
C

κ(f)dµ =

∫
C/I

∫
ι

κ(f) |ι dµιdµ′

 (1)

When the information structure is ambiguous, the complement of this set in B(Σ) is non empty by

Theorem 8, and represents those acts that the decision maker cannot evaluate on the basis of his

information.

A few comments are in order. Firstly, the set of subjectively measurable acts depends, in

principle, on the system of probabilities cp. This is so because the choice of cp may affect the

determination of which functions of the type ψf are indeed measurable. Because of this feature, it

makes sense to consider, alongside with ΣMA(cp), another class of acts, which we call the class of

unambiguously measurable acts and denote by UMA. This is defined as

UMA =

f ∈ B(Σ) |
∫
C

fdP =

∫
fdP ′ for all P, P ′ ∈ C


In Proposition 18 below, we shall see that these acts are precisely those that are subjectively

measurable irrespective of the choice of the system of conditional probabilities cp. Moreover, in

some important cases, for instance in the examples of Sec. 6, the properties of the nonmeasurable
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partition completely pin down the class of subjectively measurable acts and render it equal to

UMA. Part (6) of Proposition 18 below gives a condition for this to be the case. Secondly, it

is important to notice that if f ∈ ΣMA(cp), its evaluation does not depend on the choice of the

system cp but on the decision maker’s prior µ only by virtue of condition (b) in the definition (the

same goes for the natural measure in the Proposition below). Finally, we should like to observe

that it is possible to allow for greater generality than we have done so far. In fact, one could replace

the family cp = {µι}ι∈I with a family of functionals {Vι} which are to be interpreted as conditional

evaluations functionals. In such a case, the function ψf above would be replaced by the function

ψ̃f defined by ψ̃f (ι) = Vι(κ(f)), condition (a) by the condition that this function be measurable

and condition (b) by the condition
∫
C
κ(f)dµ =

∫
C/I

ψ̃fdµ
′. The study of this case can be conducted

along the same lines. In particular, parts (3) to (6) of Proposition 18 below hold unchanged.

The subset of ΣMA(cp) defined by

ΣME(cp) = {χE ∈ B(Σ) | χE ∈ ΣMA}

is of special importance as it describes all the events in Σ to which the decision maker can assign

probabilities (Proposition 18, part (3) below). We call its elements the subjectively measurable

events determined by cp. Just like we did above, in parallel to ΣME(cp), we also introduce the

class of unambiguously measurable events, which is defined by

UME = {χE ∈ B(Σ) | χE ∈ UMA}

The basic properties of the classes ΣMA(cp) and ΣME(cp) are stated in the next proposition.

Proposition 18 The following holds:

(1) ΣMA(cp) is a linear space. Moreover, condition (b) in (1) defines the expected utility

functional E : ΣMA(cp) −→ R by

E(f) =

∫
C

κ(f)dµ

(2) The class ΣME(cp) is non-empty and is a finite λ-system (i.e., is closed under complemen-

tation and finite disjoint unions);
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(3) There exists a natural measure N on ΣME(cp), defined by

N(E) =

∫
C

κ(χE)dµ , E ∈ ΣME(cp)

where µ is the decision maker’s prior on C. In fact, N is the restriction of E to ΣME(cp) (via the

identification E 7→ χE)

(4) UME ⊂ ΣME(cp) for every system cp; that is, UE ⊂ ∩
cp

ΣME(cp)

(5) UMA ⊂ ∩
cp

ΣMA(cp)

(6) If there exists an ergodic nonatomic measure on the quotient C/I, then for every system of

probabilities cp we have

UMA = ΣMA(cp) and UME = ΣME(cp)

Notice that the Proposition still holds in the Risk case, that is when the partition I is measur-

able. In such a case, if cp is canonical then SEU obtains, every event in Σ belongs to ΣME(cp),

every function in B(Σ) is in ΣMA(cp), and the natural set function on Σ is the "average" mea-

sure obtained through the integration over priors theorem. In the Ambiguity case, the inclusions

ΣMA(cp) ⊂ B(Σ) and ΣME(cp) ⊂ Σ are always strict for any system of probabilities cp by

Theorem 8. The final part of Proposition 18 is interesting because, as anticipated, it gives us a

condition guaranteeing that the set of subjectively measurable acts and events are independent of

the choice of the conditional probabilities. A nonatomic measure on the quotient C/I is ergodic if

the measure of any saturated set (= union of equivalence classes) is either 0 or 1. Existence of such

a measure is a property of the partition I and, as anticipated, it is satisfied in all the examples of

Section 6.

Proof. (1) Let cp = {µι}ι∈I be a collection of probability measures with µι supported by ι (viewed

as a subset of C). For ψ ∈ B(B), let ψ̃ : C/I −→ R be defined by ψ̃(ι) =

∫
C

ψdµι. As noted in the

proof of Theorem 8, the set

Θ =

ψ ∈ B(B) | (a) ψ̃ is measurable; (b)

∫
C

ψdµ =

∫
C/I

∫
ι

ψ |ι dµιdµ′


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is a linear subspace of B(B). Since a function f ∈ B(Σ) is subjectively measurable if and only if

κ(f) ∈ Θ, it follows that the class ΣMA(cp) is the set κ−1(κ(B(Σ)) ∩ Θ). From the linearity of

κ, it immediately follows that this is a linear subspace of B(Σ). The second part of the statement

follows at once from the linearity and the positivity of the integral as well as the linearity of κ.

(2) From (1), it follows immediately that ΣME(cp) is closed under finite disjoint unions. More-

over, since constant functions always belong to (κ(B(Σ))∩Θ), the class ΣME(cp) always contains

∅ and S.

(3) χE ∈ ΣME(cp) implies
∫
C
κ(χE)dµ =

∫
C/I

∫
ι
κ(χE) |ι dµιdµ′. Hence, E 7−→

∫
C
κ(χE)dµ is an

additive set function on ΣME(cp).

(4)-(5)-(6) An act (event) f ∈ B(Σ) (E ∈ Σ) is unambiguously measurable iff
∫
s

fdP =

∫
s

fdP ′

(P (E) = P ′(E)) for all P and P ′ in C, which means that the mapping κ(f) (κ(χE)) is a constant

mapping on C. By (2), constant functions are always subjectively measurable, which proves the

inclusions in (4) and (5). Finally, if the condition in part (6) is satisfied, the only subjectively

measurable functions (modulo sets of measure 0) are constant and equality holds.

We conclude this section by determining the sets ΣMA(cp) and ΣME(cp) in the aforementioned

examples. We also notice, by means of an example, that the determination of the set ΣMA(cp)

permits us to derive a new object which, intuitively speaking, represents the understanding (or the

subjective view) that the decision maker has of the (objective) set of states.

Example 19 (Ex. Sec. 6.1 cntd) By [17], condition (6) in Proposition 18 is satisfied. Hence,

an act is subjectively measurable iff it is unambiguously measurable. It is easy to check that for

C = ca+
1 (Σ), ΣMA contains constant functions only and, consequently, ΣME = {∅, S}.

Example 20 (Ex. Sec. 6.3 ctnd) By [15, Theorem 1.2], condition (6) in Proposition 18 is sat-

isfied and an act is subjectively measurable iff it is unambiguously measurable. In this case, the set

ΣME = UME is given by

ΣME = UME = {E ∈ Σ | either E ⊆ R or E ⊆ Rc}

Hence,

ΣMA = UMA =
−−
lin {χE | E ∈ ΣME}
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where
−−· denotes the closed linear span of the set.

Example 21 (Ex. Sec. 6.4 ctnd) If we assume that all the cells of the partition are nonmea-

surable sets, as it would be the case if we use the σ-algebra at the end of Sec. 6.4, then the sets of

subjectively measurable acts and events are exactly as in the previous item.

Example 22 Consider a variation of the previous example where the state space S consists of only

3 points, labeled R, B and Y . The analysis of the example is essentially the same as in Sec. 6.4.

Then, by the previous item, the set ΣMA is spanned by the indicator function of the point R and by

the indicator function of the complement of R in S. Thus, ΣMA is the Euclidean space R2 while

the set of all acts is R3. Effectively, on the basis of his information, the decision maker can only

handle a two-point set of states while the actual one is a three-point set of states.

9.1 Unambiguous events in the sense of [10] and [21]

There is an apparent similarity between our unambiguously measurable events and the unam-

biguous events of Ghirardato, Maccheroni, Marinacci [10] and of Nehring [21]: in both cases, the

unambiguous events are those that are assigned the same measures by all the probabilities in a cer-

tain set. The same observation applies to the comparison between our unambiguously measurable

acts and the crisp acts of [10]. In principle, however, these classes are different because the sets of

probability measures intervening in their definition need not be the same. Obviously, a relation is

to be expected; we will look into it in Section 11.

10 Foundations of non-EU theories

In our inquiry into the role played by Information in problems of decision making under uncertainty,

we have been led to consider Bayesian decision makers who want to integrate over a set of priors.

When the information is ambiguous, this operation is not possible and, consequently, there are

acts that cannot be evaluated. Only a subset of the acts can be evaluated by using an expected

utility functional. Thus, the problem of determining the behavior of these decision makers becomes

that of extending this functional to the set of all acts in a way that respects the decision maker’s
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information. We study this problem in the present section. Its solution will give us the class of

non-EU theories that emerge as a response to Ambiguity.

We should like to stress, once again, that this extension must respect the decision maker’s infor-

mation. This means that no additional information, aside from that contained in the information

structure originally available, can be used in the extension from the set of subjectively measurable

acts to the set of all acts. In other words, an extension obtained by requiring that a certain property,

say Π, be satisfied is legit (and meaningful) only if the decision maker can formulate Π irrespective

of the information available to him. We will focus on extensions satisfying monotonicity : that is,

we require that for any two acts f, g ∈ B(Σ) if f ≥ g then the decision maker must prefer f to

g. We believe that the necessity to restrict to monotone extensions is transparent, and requires

no further explanation. Later, we will also introduce another property (translation invariance),

which is also independent of the information. We believe that, in our setting, the introduction of

this property is also mandatory, and we will argue in favor of our point of view. But, since some

disagreement is possible, we take care of formulating our results also in absence of this property.

The present section is divided into three subsections. The first contains some basic lemmata

that lead to the proof of the main theorem of this section. This is proved in the second subsection.

It states that behavior emerging in the face of Ambiguity belongs to the class of Invariant Bi-

separable preferences (or, in fact, to a wider class, if translation invariance is not imposed). The

third subsection introduces some symmetry considerations, which are mainly motivated by the

examples of the previous sections. These considerations lead to singling out a special model within

the class of IB preferences: the α-MEU model.

10.1 Some lemmata

Let K be a linear subspace of B(Σ) which contains the constant functions, and let E : K −→ R

be a positive linear functional. In terms of interpretation, K is to be thought of as the subset

of subjectively measurable acts and E as the expected utility functional defined on those. Let us
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define two new functionals I
¯

: B(Σ) −→ R and Ī : B(Σ) −→ R as follows

I
¯
(f) = sup

g∈K
{E(g) | g ≤ f}

Ī(f) = inf
g∈K
{E(g) | g ≥ f}

Lemma 23 I
¯
and Ī are monotone, translation invariant extensions of E. Moreover, I

¯
≤ Ī. In

addition, I
¯
is super-additive and Ī is sub-additive.

Proof. (a) I
¯
and Ī are extensions of I:

∀f ∈ B(Σ), the sets {g ≤ f | g ∈ K} and {g ≥ f | g ∈ K} are both nonempty because f is

bounded and K contains the constant functions. Thus, both I
¯
and Ī are well-defined and they are

extensions of E since f ∈ K implies Ī(f) = E(f) =I
¯
(f).

(b) I
¯
≤ Ī: For any ψ,ϕ ∈ K such that ψ ≥ f ≥ ϕ, we have that E(ψ) ≥ E(ϕ) because E is

positive. Hence,

Ī(f) = inf
{ψ≥f |ψ∈K}

E(ψ) ≥ sup
{ϕ≤f |ϕ∈K}

E(ψ) = I
¯
(f)

(c) I
¯
and Ī are monotone:

f ≥ h =⇒ {ψ ≥ f | ψ ∈ K} ⊂ {ψ ≥ h | ψ ∈ K}

=⇒ Ī(f) ≥ Ī(h)

similarly,

f ≥ h =⇒ {ψ ≤ f | ψ ∈ K} ⊃ {ψ ≤ h | ψ ∈ K}

=⇒ I
¯
(f) ≥ I

¯
(h)

(d) I
¯
and Ī are translation invariant:
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Let α ≥ 0 and β ∈ R, and let 1 be the function that is identically equal to 1 on S. Then,

I
¯
(αf + β1) = sup

g∈K
{E(g) | g ≤ αf + β1}

= sup
ψ∈K
{E(αψ + β1) | αψ + β1 ≤ αf + β1} b/c K is a linear space

which contains the constants

= sup
ψ∈K
{αE(ψ) + β | ψ ≤ f} by linearity of E

= α sup
ψ∈K
{E(ψ) | ψ ≤ f}+ β

= αI
¯
(f) + β

which shows that I
¯
is translation invariant. The proof for Ī is similar.

(e) Ī is sub-additive and I
¯
is super-additive:

Let f, h ∈ B(Σ). By definition,

Ī(f) = inf
g∈K
{E(g) | g ≥ f}

Thus, ∀ε > 0 ∃g1, g2 ∈ K such that (1) g1 ≥ f , g2 ≥ h; and (2) Ī(f) > E(g1)−ε and Ī(h) > E(g2)−ε.

Since g1 + g2 ≥ f + h, we have (by definition of Ī) that

Ī(f + h) ≤ E(g1 + g2) < Ī(f) + Ī(h) + 2ε

By letting ε→ 0, we conclude that

Ī(f + h) ≤ Ī(f) + Ī(h)

that is the sub-additivity of Ī.

Similarly, ∀ε > 0 ∃g1, g2 ∈ K such that (1) g1 ≤ f , g2 ≤ h; and (2) I
¯
(f) < E(g1) + ε and

I
¯
(h) < E(g2) + ε. Hence,

I
¯
(f + h) ≥ E(g1 + g2) > I

¯
(f) + I

¯
(h)− 2ε

from which we conclude that

I
¯
(f + h) ≥ I

¯
(f) + I

¯
(h)
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that is the super additivity of I
¯
.

In the next Lemma, we are going to see that any monotone extension of E : K −→ R is

sandwiched between I
¯
and Ī.

Lemma 24 If J : B(Σ) −→ R is a monotone extension of E : K −→ R, then ∀f ∈ B(Σ)

I
¯

(f) ≤ J(f) ≤ Ī(f)

Proof. By the way of contradiction, assume that there exists an f ∈ B(Σ) such that J(f) > Ī(f).

Clearly, f ∈ B(Σ)\K. Since f ∈ B(Σ) and K contains the constant functions, the set

MK(f) = {g ≥ f | g ∈ K} 6= ∅

and, by J = E on K and by the fact that J is monotone, we have that for every g ∈MK(f)

E(g) = J(g) ≥ J(f) > Ī(f)

which implies that J(f) is a lower bound for E(g) on MK(f), thus contradicting the definition of

Ī(f) (as Ī(f) = inf
g∈MK(f)

E(g)). We conclude that Ī(f) ≥ J(f), ∀f ∈ B(Σ).

In a similar fashion, suppose that ∃f ∈ B(Σ) such that J(f) <I
¯
(f). Since the constant mappings

are in K

mK(f) = {g ≤ f | g ∈ K} 6= ∅

and, by the monotonicity of J and J = E on K, we have that ∀g ∈ mK(f)

I
¯
(f) > J(f) ≥ J(g) = E(g)

which implies that J(f) is an upper bound for E(g) on mK(f), thus contradicting the definition of

I
¯
(f) (as I

¯
(f) = sup

g∈mK(f)
E(g)). We conclude that I

¯
(f) ≤ J(f), ∀f ∈ B(Σ).

The next Lemma gives us a representation of the functionals I
¯
and Ī. It is a simple consequence

of the Hahn-Banach theorem. Its proof is standard and is included here only for completeness.

Lemma 25 (representation of I
¯
and Ī) Assume that E(1) = 1. There exists a unique convex,
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weak*-compact set L(I) of linear functionals such that

I
¯

(f) = min
L∈L(I)

L(f) and Ī(f) = max
L∈L(I)

L(f)

Proof. Let B′ denote the set of all linear functionals on B(Σ). Let

L(I) =
{
L ∈ B′ | L is an extension to B(Σ) of E , Ī ≥ L ≥ I

¯
and L(1) = E(1)

}
Notice that all elements of L(I) are positive due to the monotonicity of I

¯
and that they are contin-

uous because they are bounded owing to the condition L(1) = E(1). Moreover, owing to Lemma

24, the elements of L(I) are all the positive extensions of I. By Hahn-Banach, L(I) is nonempty.

For f ∈ B(Σ), let Kf = lin{K, f} be the linear subspace spanned by K and f . The functional

L
¯ f

: Kf −→ R defined by

L
¯ f

(αf + βk) = αI
¯
(f) + βI

¯
(k)

is linear on Kf , L¯ f
≥I
¯
on Kf (by the super-additivity of I¯

) and has the property that L
¯ f

(f) =I
¯
(f).

Again by Hahn-Banach, L
¯ f
has an extension which belongs to L(I), which proves the formula for

I
¯
. Similarly, the functional L̄f : Kf −→ R defined by

L̄f (αf + βk) = αĪ(f) + βĪ(k)

is linear on Kf , L̄f ≤ Ī on Kf (by the sub-additivity of Ī) and has the property that L̄f (f) = Ī(f).

Again by Hahn-Banach, L̄f has an extension which belongs to L(I), which proves the formula for Ī.

Uniqueness of L(I) follows from a standard separation argument as, for instance, in [13]. Convexity

and weak*-compactness of L(I) are obvious.

10.2 ... all priors compatible with his limited information

When facing Ambiguity the decision maker is able to determine, on the basis of his information,

an expected utility functional on the space of subjectively measurable acts. This determination

encompasses all the information available to him. Once this is done, he must face the problem of

evaluating those acts that are not subjectively measurable, that is he must somehow extend his
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evaluation to the set of all acts. As we observed, the most natural way of doing so is to demand that

the extension should satisfy the property of monotonicity (which is automatically satisfied on the

set of subjectively measurable acts). In this section, we begin by studying the class of all monotone

extensions of the decision maker’s functional on the subjectively measurable acts. From these, we

will then single out those that respect the decision maker’s information, that is those that use the

knowledge of the EU functional on the space of subjectively measurable acts and that knowledge

only. We will, then, use these to characterize the type of behavior that emerges in situations of

Ambiguity.

Let E denote the expected utility functional on the set of subjectively measurable acts (Propo-

sition 18). By Lemma 24, any monotone extension of E to B(Σ) has the form

I(f) = α(f)I
¯
(f) + (1− α(f))Ī(f)

where ∀f ∈ B(Σ), α(f) ∈ [0, 1]. By combining Lemma 25 with the Riesz representation theorem,

we can re-write this

I(f) = α(f)min
P∈C

∫
fdP + (1− α(f))max

P∈C

∫
fdP (2)

where C is a (uniquely determined) convex, weak*-compact subset of ba+
1 (Σ). Thus, (2) gives us

the class of all monotone extensions of E . We must now isolate those extensions that do not use

more information than the one available to the decision maker, which is the one embedded into

the functional E . Clearly, the functionals I
¯
and Ī are two such extension as they use only the set

of Hahn-Banach extensions of E . In general, this is not true for all functionals of the type (2). In

fact, the condition translates into a restriction on the coeffi cient α(·) in (2).

Definition 26 An extension I : B(Σ) −→ R of the functional E is measurable with respect to the

decision maker information iff

∫
fdP =

∫
gdP for all P ∈ C =⇒ α(f) = α(g)

That is, if two acts have the same evaluation according to each and every Hahn-Banach exten-

sion, then they should be evaluated in the same way. Transparently, this condition guarantees that

the decision maker uses only the knowledge of the (set of) Hahn-Banach extensions of E to define
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the functional I.

As we have already observed, both functionals I
¯
and Ī are measurable with respect to the

decision maker’s information. These functionals also satisfy an extra property that is not necessarily

shared by a general functional of the form (2): translation invariance, that is for all a ≥ 0, b ∈ R it

holds that I
¯
(af + b1) = aI

¯
(f) + b and Ī(af + b1) = aĪ(f) + b. In the setting we have been focusing

on, translation invariance is an important property. In fact, we have been assuming the existence

of an affi ne utility function on the outcome space X, and this utility is unique only up to a positive

affi ne transformation. In this context, the translation invariance of the preference functional I is the

same as the equivariance of I with respect to transformations of the utility on the outcome space,

that is the statement that the representation of the decision maker’s preference does not depend

on the choice of the utility (within the class of admissible utilities). Because of this, we believe

that translation invariance is a property that should be imposed on all the admissible extensions

of E . Be that as it may, when imposed, translation invariance also translates into a restriction on

the coeffi cient α(·) in (2). The theorem below summarizes our findings (the proof of (4) is omitted

as it follows from simple algebra).

Theorem 27 A decision maker facing Ambiguity is characterized by a preference functional I :

B(Σ) −→ R with the following properties:

(1) I is a positive linear functional on the linear subspace of subjectively measurable acts, which

is determined by (1) in Proposition 18.

(2) I is of the form

I(f) = α(f)min
P∈C

∫
fdP + (1− α(f))max

P∈C

∫
fdP

where C is a (unique) convex, weak*-compact subset of ba+
1 (Σ) and α(f) ∈ [0, 1].

(3) The coeffi cient α(·) in (2) satisfies

∫
fdP =

∫
gdP for all P ∈ C =⇒ α(f) = α(g)

(4) I is translation invariant iff for all a ≥ 0, b ∈ R and f ∈ B(Σ), the coeffi cient α(·) in (2)
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satisfies

α(af + b1) = α(f)

With Theorem 27, we have characterized the class of preference functionals that emerge in

response to Ambiguity. The next theorem expresses the same characterization in terms of properties

of a preference relation on the set of acts.

Theorem 28 Consider a decision maker whose preference functional satisfies properties (1) to (4)

in Theorem 27. Then his preference relation on the set of all acts is an Invariant Bi-separable

preference.

Proof. This is an entirely standard argument. Axiom A5 of Section 2 is satisfied (by construction)

by virtue of our identification of the acts with B(Σ). Since the preference functional is R-valued,

A1 is satisfied. Property (4) implies that A2 is satisfied, and the monotonicity of the functional

implies that so is A4. By virtue of a well-known elementary argument, monotonicity and translation

invariance of the functional imply its sup-norm continuity which, in turn, implies A3.

Remark 29 It is worth noticing that the combination of Theorem 27 and Theorem 28 casts an

entirely new light on property (3) in Theorem 27. This property originally appeared in [10] as a

feature of Invariant Bi-separable preferences. Now, Theorem 27 and Theorem 28 tell us something

entirely new: this property is precisely what indicates that the decision maker extends his preference

functional on the basis of limited information.

As a consequence of the previous theorem and of Theorem 1, we also have

Corollary 30 The preference functional of a decision maker facing Ambiguity is of the form

I(f) =

∫
C

κ(f)dν =

∫
C

∫
S

fdPdν(P )

where ν is a capacity on the Borel subsets of C.

This corollary clarifies the intuition that we gave in Remark 4 of Section 3 and provides the

formal ground for that suggestion: Integrating over priors with bad information gives rise to a

non-additive integral or, if the reader prefers, Lebesgue integration over a non-measurable partition

is represented by a Choquet integral.
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10.3 Symmetry considerations

By Theorem 28, the preferences that emerge in situations of Ambiguity are Invariant Bi-separable.

Moreover, Theorem 27 makes it clear that all of its subclasses obtain by imposing restrictions on

the coeffi cient α(f), that is on the function α(·) : B(Σ) −→ R in (2). In this way, one derives, for

instance, the models of maxmin-EU, maxmax-EU, Choquet EU, etc. In this section, we are going

to focus on a particular restriction on the function α(·), one that is motivated by the examples that

we have encountered in this paper.

We begin with the three-point version of Ellsberg’s experiment discussed at the end of Section

9. When we introduced Ellsberg’s experiment in Section 6.2, we noticed that the behavior which is

typically observed mirrors the symmetry in the information: to an information that is symmetric

in B and Y , there corresponds a table of preferences that is symmetric in B and Y . We can now

express this properly.

Example 31 (Ex. 22 Sec. 9 ctnd) Consider Example 22 of Section 9, and let % be a preference

relation represented by a functional satisfying conditions (1) to (3) in Theorem 27. The preference

% is symmetric with respect to B and Y iff α(B) = α(Y ). Consequently, since the specification

of the coeffi cient α is immaterial in the case of unambiguously measurable acts, the preference

functional representing a symmetric preference is of the form

I(f) = αmin
P∈C

∫
fdP + (1− α)max

P∈C

∫
fdP

Thus, the model with α constant emerges in the three-point example as the only model that

treats B and Y symmetrically.

Example 32 (Ex. Sec. 6.3 and Ex. Sec. 6.4 ctnd) Similar considerations can be made for

the other two versions of Ellsberg’experiment studied in 6.3 and Sec. 6.4, and then again in Sec.

9. In these examples, however, the condition α(B) = α(Y ) is not suffi cient to obtain the α-MEU

model (i.e., the model with α constant). This is so because the condition α(B) = α(Y ) does not

imply anything with regard to the (strict) subsets of B and Y and on the coeffi cient that should be

assigned to the bets on those subsets.
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Example 33 (Ex. Sec. 6.1 ctnd) In the measure equivalence example of Sec. 6.1, there are

nearly no extra conditions that can be imposed in a natural way on the extension from the set

of subjectively measurable (= unambiguous) acts. In fact, for C = ca+
1 (Σ), not even condition

(3) bites, and every monotone extension is automatically measurable with respect to the decision

maker’s information. It is still meaningful, however, to talk about symmetric extensions as those

extensions that treat all acts in the same way, that is α(f) = α(g) for all f, g ∈ B(Σ). In this

sense, α-MEU is the only (fully) symmetric extension in the measure equivalence example.

The corollary below summarizes the discussion of this section on the α-MEU model (notice that

measurability of α-MEU with respect to the decision maker’s information is automatic).

Corollary 34 Suppose that the information structure available to the decision maker is such that

condition (6) in Proposition 18 is satisfied. Then, α-MEU is the only fully symmetric measurable

extension from the set of subjectively measurable acts.

11 Perceived ambiguity and the set of predictives in non-EU the-

ories

The search for indicators of the ambiguity perceived by a decision maker has been a recurrent theme

in the literature on Ambiguous Events. For the class of preferences determined above, it is well-

known that the set of priors appearing in the representations of those non-Eu functionals cannot

be taken, at least at face value, as one such indicator. This is so because different combinations

of sets of priors and functions α(·) may give rise to the same functional. A well-studied example

is provided by the α-MEU model encountered above: for 0 ≤ α ≤ 1, one can start with a set of

priors C, define the α-MEU functional by using this C, and then show that there exists another

representation of the same preference with a set of priors C′ 6= C and a (typically) non-constant

functions α(·) (see, for instance, [7]). Truth to say, there is nothing peculiar to α-MEU in this.

It even happens in the context of Expected Utility: take a set of priors C and a measure µ on it,

and assume that the information is the best possible like in Section 4; then, the pair (C, µ) defines

an EU functional but the exact same functional is defined by the pair ({P ∗}, δ(P ∗)), where P ∗ is

the average measure as in Section 4 and δ is the Dirac measure. It is also clear that there are,
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generally speaking, many pairs (C′, µ′) which define the same linear functional as that defined by

P ∗. Classically, the (uniquely determined) measure P ∗ is the decision maker’s "predictive": given

his information —a pair of the form (C′, µ′) and a measurable partition —a Bayesian decision maker

picks the best (in a Bayesian sense) distribution to predict the next draw from set of states S. In

principle, P ∗ need not even be in C′ (but, necessarily, it is in its convex hull). The situation is

analogous in the non-EU case: given his information (in particular, a set of possible probabilistic

views of the world) the decision maker determines a set of predictives. The only difference is that

this set is not a singleton, which is what "reveals" the presence of Ambiguity. Two questions need

to be addressed, at this point: What is the set of predictives in the non-Eu case? and, What is

an indicator of the Ambiguity perceived by the decision maker? In particular, one might want to

ask if the two necessarily coincide. We are going to answer these questions in the remainder of this

section and, in doing so, we will be able to refine on an observation that we made elsewhere ([2,

Section 3.1]).

At this point of the exposition, it is quite obvious that an indicator of the Ambiguity perceived

by the decision maker is the subspace ΣMA of subjectively measurable acts: the larger this subspace

the less the Ambiguity which is perceived.6 As it is desirable of any Ambiguity index, this indicator

is independent of the decision maker’s attitude toward Ambiguity. It is so because the subspace

ΣMA is determined before the extension of the preference functional, and the attitude toward

ambiguity appears only in that process of extension. Another indicator, equivalent to the one

just proposed, but with the additional appeal of representing the Ambiguity by means of a set of

probability measures, can be achieved as follows. The subspace ΣMA and the linear functional

defined on it are uniquely associated to the set of Hahn-Banach extensions of that functional which,

in turn, can be represented (via the Riesz theorem) by a set of probability measures. Let us denote

this set by CΣMA. Because the association is unique, this set provides us with the same information

as ΣMA: the smaller ΣMA, the larger CΣMA and the larger the perceived Ambiguity. We can use

these observations to make comparisons across decision makers with regard to the Ambiguity that

they perceive as well as their aversion toward that Ambiguity. Let dmi denote a generic decision

maker and let ΣMAi be his subspace of subjectively measurable acts.

6We dropped the reference to the system cp as that is immaterial to the discussion of this section.
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Definition 35 We say that dm1 perceives more ambiguity than dm2 iff ΣMA1 ⊆ ΣMA2 iff

CΣMA1 ⊇ CΣMA2.

Also, by denoting by Ii the preference functional of dmi and by αi(·) the function that appears

in that functional as obtained in Section 10.2, we have

Definition 36 We say that dm1 is more ambiguity averse than dm2 iff α1(f) ≥ α2(f) for every

f ∈ B(Σ).

Given the meaning of CΣMAi , Definition 36 follows naturally because it states that dm1 has a

consistently more pessimistic attitude than dm2. Be it clear, however, that this comparison refers

to the representations of Ii which use CΣMAi and to those representations only, and does not

extend to other representations of the decision makers’preference functionals. This qualification

is necessary because the sets of probability measures appearing in those representations cannot be

interpreted, at least not in an obvious way, as indicators of the perceived ambiguity. It is worth

stressing that the comparison in Definition 36 does not require, unlike [10], the sets CΣMA1 and

CΣMA2 to be in any pre-specified relation; that is, Definition 36 allows for comparisons of decision

makers who might have very different perceptions of ambiguity.

On a logical ground, Definition 35 and Definition 36 seem to us rather uncontroversial. Their

potential weakness is that the set ΣMAi (or CΣMAi), which is their crucial ingredient, is not

immediately derivable from the decision maker’s choices. As we know, ΣMAi is a linear subspace

with the property that the decision maker’s preference functional is linear on it. Thus, in an attempt

to uncover ΣMAi from the decision maker’s choices, one would have to look for something like "the

largest subspace where the preference functional is linear". An attempt of this sort, however, would

inevitably run into two problems. The first, somewhat minor, is that the notion of "largest subspace

where the preference functional is linear" is ill-defined. The second, more substantial, is that by

following that strategy one might end up determining something other than ΣMAi. The reason

is that some "extra-linearity" may appear when extending the preference functional from ΣMAi,

which would result in the existence of subspaces where the preference is linear which are strictly

larger than ΣMAi. Thus, by treating one of these subspaces as ΣMAi, one would effectively

underestimate the ambiguity perceived by the decision maker (equivalently, one would determine a
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set of priors strictly smaller than CΣMAi). In passing, we should like to observe that the tendency

of underestimating ambiguity is inherent to all those approaches that derive Ambiguity indicators

on the basis of the geometric properties of the preference functional (hence, of the decision maker’s

choices). We will come back to this point momentarily. For now, we are going to elaborate more on

the two issues just mentioned. This will shed light on the problem of finding the set of predictives

and of unveiling its relation with the set CΣMA. We begin with a simple example showing us that

extra-linearities can pop up easily in the extension process.

Example 37 Let C be an arbitrary, non-singleton, set of probability measures. Define the set

UMA, and let E be the associated linear functional on it. Since C is not a singleton, B(Σ)\UMA

is non-empty. Let I be the α-MEU extension of E to B(Σ). Then, it is easy to see that if α = 1/2

the functional I is linear on lin{f, UMA} for every f ∈ B(Σ)\UMA.

The example shows that we can exhibit a decision maker for whom ΣMAi = UMA, who has

a non-linear (α-MEU) preference functional on the set of all acts and whose preference functional

is linear on many subspaces which all contain ΣMAi strictly. Elaboration on the same example

also shows that we can exhibit a decision maker who satisfies all the above properties and whose

preference functional is, in addition, never linear on lin{f, g, UMA} for f, g ∈ B(Σ)\UMA and

f 6= g. Thus, in particular, the notion of "largest subspace on which I is linear" is meaningless.

This motivates the following definitions.

Definition 38 Let I be a preference functional satisfying the conditions of Theorem 27. We say

that

(a) A subspace S ⊂ B(Σ) is an AI subspace for I if I is linear on S.

(b) An AI subspace S is said to be saturated if for any g ∈ B(Σ)\S, lin{g,S} is not an AI

subspace.

Let SAI denote the class of all saturated AI subspaces, and define

K∗ = ∩
Sγ∈SAI

Sγ

That is, K∗ is the intersection of all saturated AI subspaces. Since K∗ is itself a linear subspace and

I is linear on K∗, we can determine the set of all Hahn-Banach extensions of the restriction of I to
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K∗ and, hence, associate K∗ to a set of probability measures C∗. Proposition 39 below shows that

C∗ is the set CGMM that Ghirardato el al. derive in [10] and that they interpret as an indicator of

the ambiguity perceived by the decision maker. The proposition also shows that K∗ is equal to the

set of crisp acts of [10], and gives the relation of these two sets with CΣMA and ΣMA, respectively.

Proposition 39 Let I be a preference functional satisfying the condition of Theorem 27. We have

(a) The set C∗ is equal to the set CGMM in [10, Prop. 4]

(b) K∗ is equal to the set of crisp acts in [10, Prop. 10]

(c) K∗ ⊇ ΣMA ⊇ UMA

(d) C∗ ⊆ CΣMA

Proof. (a) Consider the set of all Hahn-Banach extensions of the restriction of I to K∗. By

Lemmata 24 and 25 and [2, Theorems 1 and 2], I admits a representation of the form

I(f) =

∫
C∗

κ(f)dν

where ν is a capacity on the Borel subsets of C∗. Define now a preference relation %∗ on B(Σ) by

f %∗ g iff

∫
fdP ≥

∫
gdP for all P ∈ C∗ iff κ(f) ≥ κ(g)

By the monotonicity of the Choquet integral, we have that κ(f) ≥ κ(g) implies I(f) ≥ I(g), which

shows that f %∗ g implies f % g, that is %∗ is a sub-relation of the decision maker’s preference

relation %. Trivially, the relation %∗ satisfies the Independence Axiom; hence, %∗ is also a sub-

relation of the unambiguous preference relation of [10] since the latter is the maximal restriction of

% which satisfies the Independence Axiom (see [10, Prop. 3 part (7)]). This shows that C∗ ⊇ CGMM .

We want to show that equality holds. To begin, notice that the set of all Hahn-Banach extensions

of I coincide on K∗, that I(ψ) =

∫
ψdP for all ψ ∈ K∗, and that this value is independent of the

choice of P in C∗. Thus, K∗ is a subspace of (in fact, equal to) the linear subspace of B(Σ) defined

by {
l ∈ B(Σ) |

∫
ldP =

∫
ldP ′ for all P, P ′ ∈ C∗

}
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Suppose now that the inclusion C∗ ⊇ CGMM is strict, that is there exists a P ∈ C∗\CGMM . Let

K′ =
{
l ∈ B(Σ) |

∫
ldP =

∫
ldP ′ for all P, P ′ ∈ CGMM

}

Then K′ ⊃ K∗ strictly. But, [10, Prop. 10 part (iv)] implies that K′ belongs to any saturated AI

subspace, hence to their intersection. Since this contradicts the definition of K∗, we conclude that

C∗ = CGMM .

(b) By [10, Prop 10 part (iii)], K′ is the set of crisp acts, and C∗ = CGMM implies K′ = K∗.

(c) Since the decision maker’s preference relation is, by construction linear on ΣMA, ΣMA is

contained in all saturated AI subspaces, hence in K∗.

(d) Follows at once from (c).

Ghirardato et al. use the set C∗ as an indicator of the ambiguity perceived by the decision maker.

Since C∗ is possibly smaller than CΣMA, their indicator tends to underestimate this ambiguity: Our

reasoning above shows that (a) we can start off with a decision maker whose space of subjectively

measurable acts is strictly included in K∗; (b) determine CΣMA; (c) write down his preference

functional as ICΣMA
(f) = α(f) min

CΣMA

κ(f) + (1−α(f))max
CΣMA

κ(f); and, finally (d) choose the function

α(·) so as to guarantee that the intersection of all saturated AI subspaces of ICΣMA
is precisely K∗.

Notice, in particular, that the choice of the function α(·) enters the determination of K∗, which

shows that the information contained in K∗ (equivalently, in C∗) inevitably mixes the perception of

ambiguity with the attitude toward it. A moment of thought shows that this problem is inherent to

all those approaches that determine, like in the case of Ghirardato et al.,7 indicators of Ambiguity

by using only geometric properties of the preference functional.

The set C∗ of Ghirardato et al., however, still plays a very important role, this time exactly

because it is derived only on the basis of the geometric properties of the preference functional: the

set C∗ represents that Ambiguity that cannot be reduced by the decision maker when he extends

the preference functional from ΣMA. As such, the set C∗ (or rather the set of its extreme points)

represents the set of predictives: those probability measures that the decision maker actually uses

to evaluate the acts. In general, there is nothing strange about the fact that this set might be

smaller than the one representing the ambiguity. As we saw above, extra-linearities (effectively

7Ghirardato et al. determine the set C∗ by using the decision maker’s unambiguous preference relation. Loosely
speaking, this is [10, Prop. 10 part (7)] the part of the functional I which satisfies linearity.
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"reductions" of Ambiguity) may emerge during the process of extension from ΣMA, and take

the form of restrictions on the function α(·) generated in that extension. These restrictions may

be motivated by various considerations like, for instance, the symmetry considerations that we

encountered in Ellsberg’s experiments.

Example 40 Restrictions of the form α(f) + α(−f) = 1 have the feature that the extended func-

tional is always linear on lin{f, UMA} and might express conditions on how to evaluate acts when

on different sides of the market (buy or sell).

To summarize, in our opinion the correct indicator of the Ambiguity perceived by the decision

maker is the set CΣMA (or, equivalently, the linear subspace ΣMA). The set of predictives is the

set C∗ of Ghirardato, Maccheroni and Marinacci [10] and represents that ambiguity that cannot be

reduced when evaluating acts. C∗ is always contained in CΣMA, and to use C∗ as an indicator of

the Ambiguity perceived by the decision maker may lead to underestimate that Ambiguity. We

conclude by finding an "upper bound" for the set CΣMA that can be derived from the decision

maker’s choices. The basic idea is to relate the representation of Invariant Bi-separable preferences

given by Ghirardato et al. to other possible representations, and try to detect the extra-linearities

discussed above. The key observation is provided by part (c) of Proposition 39 above, which tells

us that, as extra-linearities appear, the crisps act may grow from UMA to K∗. For C an arbitrary

set of probability measures, let us denote by IC the functionals of the form

IC(f) = αC(f)min
C
κ(f) + (1− αC(f))max

C
κ(f) (3)

where f ∈ B(Σ), κ(f) : C −→ R is defined by κ(f)(P ) =

∫
fdP and αC(f) ∈ [0, 1]. Also, let

var
C
κ(f) = max

C
κ(f) − min

C
κ(f). Now, let % be an Invariant Bi-separable preference. By [10], %

admits a representation by a functional I of the type

IC∗(f) = αC∗(f)min
C∗
κ(f) + (1− αC∗(f))max

C∗
κ(f)

where C∗ is the set of predictives discussed above. For K∗ the corresponding set of crisp acts, let

us say that an act ζ ∈ K∗ satisfies Property L if there exists a representation of % of the type (3)
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such that either (a) var
C
κ(ζ) = 0; or, (b) αC(ζ) =

max
C
κ(ζ)−

∫
ζdP

var
C
κ(ζ) for P ∈ C∗.

Proposition 41 Let Ĉ be largest subset of ba+
1 (Σ) such that every act in K∗ has Property L. Then,

C∗ ⊆ CΣMA ⊆ Ĉ.

Notice that when C = C∗, every ζ ∈ K∗ satisfies Property L with var
C
κ(ζ) = 0. When we

move to representations of the same preference which use a C which strictly contains C∗, for some

ζ ∈ K∗ the property var
C
κ(ζ) = 0 has to disappear. Yet, the new functional still has to stay linear

on K∗, which means that the function αC(·) is to be chosen so to preserve this linearity. This is

exactly what part (b) of Property L demands. Notice that an arbitrary set C may not have the

property that every act in K∗ has Property L. This is so because the necessity of satisfying part

(b) of Property L may be in conflict with other properties that the function α(·) has to satisfy,

for instance properties (3) and (4) in Theorem 27 (that is, if C is such that every act in K∗ has

Property L, then IC may not be a representation of %). If there exists a set C strictly larger than

C∗ with the property that every act in K∗ has Property L, then we can think of C as representing

the Ambiguity and of C∗ as its set of predictives. From what we have seen above, it follows that

C∗ ⊆ CΣMA ⊆ Ĉ.

Proposition 41 provides us with a method for estimating CΣMA as well as for identifying those

situations in which C∗ = CΣMA. Clearly, the effectiveness of Proposition 41 is greatly enhanced

when some extra information, in the form of a restriction on the function α(·), is available. For

instance, it is clear that by restricting to the class of α-MEU preferences, or by simply knowing that

the preference has an α-MEU representation, considerably reduces the ability of satisfying part (b)

of Property L and, hence, makes it more likely that C∗ = CΣMA.
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APPENDICES

A Conditional measures

Let (C,B, µ) be a measure space, let I be a partition of C (modulo µ-measure 0 events) and let C/I

denote the quotient space. Let π : C −→ C/I be the canonical projection. The canonical σ-field on

C/I is the finest σ-field that makes the canonical projection measurable. The measure structure

induced by π on C/I consists of the canonical σ-field and the image measure (pushforward) of µ

under π. We recall the following definition.

Definition 42 A canonical system of conditional measures associated to the partition I is a family

of measures {µι, ι ∈ I}, with the following properties

(i) for any A ∈ B, the set A ∩ ι is measurable in ι for almost all ι ∈ C/I and the function

µι(A ∩ ·) : C/I → R is measurable; and

(ii) for any A ∈ B,

µ(A) =

∫
C/I

µι(A ∩ ι)dµ′

where µ′ is the pushforward of µ under the canonical projection π : C −→ C/I.

B Standard Spaces

A Polish space, (X, τ), is a separable, completely metrizable topological space. Given the topology

τ on X, the Borel σ—field is the one generated by the closed sets. A Standard Borel space is a

Polish space stripped down to its Borel structure.

Given two measurable spaces, (X1,B1) and (X2,B2), a mapping X1 −→ X2 is called a Borel

isomorphism if it is a bijection and is bimeasurable.

Borel isomorphism theorem (see [27, Theorem 3.3.13]) Any two uncountable standard Borel

spaces are Borel isomorphic.

A Standard Borel space along with a finite nonatomic measure is a called a Standard Lebesgue

space. A measurable set in a Standard Lebesgue space is a set which differs from a Borel set by a

set of measure zero.
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Given two measure spaces, (X1,B1,m1) and (X2,B2,m2), a measurable mapping T : X1 −→ X2

is a measure preserving transformation if for all E ∈ B2 we have

m1(T−1(E)) = m2(E)

If T is bijective and its inverse T−1 is also measure-preserving, then T is an invertible measure-

preserving transformation. Two measure spaces, (X1,B1,m1) and (X2,B2,m2), are isomorphic if

there exists an invertible measure preserving transformation T : X1 −→ X2.

Isomorphism of Lebesgue Spaces (see [29, Theorem 2.1]) Any two Standard Lebesgue spaces

are isomorphic.

C A Polish setting

In combination, the two assumptions below guarantee that the set of measures C in Theorem 1 is

a Polish space.

Standard State Space The measurable space (S,Σ) is a standard Borel space.

Let % be a preference relation satisfying Axioms 1 to 5. Let D denote the unambiguous prefer-

ence relation ([10], Sec. B.3) associated to %.

Axiom of Monotone Continuity (see [10]) For all x, y, z ∈ X such that y B z, and all se-

quences of events {An}n≥1 ⊆ Σ with An ↓ ∅, there exists n̄ ∈ N such that y B xAn̄z.

The Axiom of Monotone Continuity is equivalent to the property that all the measures in

Theorem 1 are countably additive [10, Sec. B.3]. Let P(Σ) denote the space of regular Borel

measures on Σ.

Theorem 43 Let (S,Σ) be a standard Borel space. A preference relation % on A satisfies Axioms

1 to 5 and the Axiom of Monotone Continuity iff Theorem 1 holds and the set C ⊂ P(Σ). In

particular, C is a Polish space.

In the course of the proof, we will denote by σ(ba(Σ), Y ) the weak topology on ba(Σ) induced

by a set of mappings Y .
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Proof. Assume that Theorem 1 holds with C ⊂ P(Σ). The function κ defined in Theorem 1 is

sup-norm to sup-norm continuous as a consequence of the inequality

‖κ(f)− κ(g)‖∞ = sup
P∈C

∣∣∣∣∫ fdP −
∫
gdP

∣∣∣∣ ≤ sup
P∈C

∫
|f − g| dP

≤ sup
P∈C

∫
sup
s∈S
|f − g| dP = ‖f − g‖∞

Since the Choquet integral is sup-norm continuous, it follows that the preference defined by the

functional in Theorem 1 satisfies Axioms 1 and 3. By the monotonicity and translation invariance

of both the Lebesgue integral and the Choquet integral, Axioms 2 and 4 are also satisfied. Finally,

the Axiom of Monotone Continuity is satisfied by [10, Sec. B.3]. Now, the converse. Since %

satisfies Axioms 1 to 5, Theorem 1 holds as stated in Section 2. We want to show that, when the

Axiom of Monotone Continuity is satisfied, Theorem 1 continues to hold with C ⊂ P(Σ) and that

this space is Polish. Our strategy will be as follows. We are going to change the topology on the set

ba(Σ) (hence, on C). We will show that, when the the Axiom of Monotone Continuity is satisfied,

this change in the topology leaves C compact. As the new topology is coarser than the old one,

the functions κ(f) : C −→ R are no-longer necessarily continuous. We are going to show, however,

that even with the new topology κ(f) is always a measurable function for the Borel class defined

by the new topology, ∀f ∈ B(Σ). This will guarantee that the functional defined in Theorem 1 is

still well-defined and, being defined pointwise in the exact same way, it still represents the same

preference.

From Theorem 1, we know that C is a weak*-compact subset of (ba(Σ), σ(ba(Σ), B(Σ))). By the

Axiom of Monotone Continuity, all the probabilities in C are countably additive. By the assumption

that (S,Σ) is standard Borel, it follows that all the probabilities in C are regular. If we replace the

topology σ(ba(Σ), B(Σ)) with the topology σ(ba(Σ), Cb(S)) —Cb(S) the set of continuous bounded

functions on S —then C remains compact because the new topology is weaker than the original

one. In particular, C is closed. Finally, (S,Σ) standard implies that the space P(Σ) is Polish in the

topology σ(P(Σ), Cb(S)), and we conclude that C is Polish as well. Next, define κ as in Theorem

1. Since all the measures in C are bounded and countably additive, the Monotone Convergence
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Theorem implies that κ is normal, that is

fn ↗ f =⇒ κ(fn)↗ κ(f), n ∈ N

Let E ∈ Σ, and let χE denote the indicator function of the set E. Then, κ(χE) is obviously bounded

and it is well-known that κ(χE) is measurable for the Borel σ-algebra generated by σ(P(Σ), Cb(S))

[1, Lemma 14.16]; that is, κ(χE) ∈ B(B) for all E ∈ Σ. If h ∈ B(Σ) is a simple function, then h

can be written as a finite linear combination of indicator functions, and linearity of κ along with

the previous observation imply that κ(h) ∈ B(B). Finally, if f ∈ B(Σ) is any function, then there

exists a sequence of simple functions {fn} ⊂ B(Σ) such that fn ↗ f , and normality of κ implies

that κ(f) ∈ B(B). We conclude that when C is equipped with the Polish topology σ(P(Σ), Cb(S)),

the linear mapping κ takes B(Σ) into a subset of B(B).
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