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RÉSUMÉ 

Le glaucome est la première cause de cécité irréversible à travers le monde. À présent 

il n‟existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La 

perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes 

ganglionnaires, les neurones qui envoient de l‟information visuelle de la rétine au cerveau. Le 

mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du 

glaucome n‟est pas bien compris, mais quelques responsables putatifs ont été proposés tels que 

l‟excitotoxicité, le manque de neurotrophines, la compression mécanique, l‟ischémie, les 

astrocytes réactifs et le stress oxidatif, parmis d‟autres. Indépendamment de la cause, il est 

bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par 

la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis 

qui déclenchent l‟apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal 

définis. Pour aborder ce point, j‟ai avancé l‟hypothèse centrale que l‟identification de voies 

de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes 

ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de 

celles-ci lors de neuropathies oculaires telles que le glaucome. 

Dans la première partie de ma thèse, j‟ai caractérisé le rôle de la famille de protéines 

stimulatrices d‟apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort 

apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription 

nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l‟apoptose. Les 

membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de 

p53 qui régulent l‟apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules 

rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l‟hypothèse 
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de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des 

cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un 

modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du 

nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. 

Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique 

des cellules rétiniennes ganglionnaires, et qu‟une baisse ciblée de ASPP1 et ASPP2 par acide 

ribonucléique d‟interference promeut la survie des cellules rétiniennes ganglionnaires. 

Dans la deuxième partie de ma thèse, j‟ai caractérisé le rôle d‟iASPP, le membre anti-

apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes 

ganglionnaires. L‟hypothèse de cette seconde étude est que la surexpression d‟iASPP 

promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats 

(Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la 

mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par 

virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires.  

En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure 

compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes 

ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles 

stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le 

glaucome. 

Mots clés : cellule ganglionnaire de la rétine, mort  neuronale, protéine stimulatrice 

d‟apoptose de p53, axotomie du nerf optique  
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SUMMARY 

Glaucoma is the leading cause of irreversible blindness worldwide. At present, there is 

no cure for glaucoma, and current therapies are often inadequate. Loss of vision in glaucoma 

results from the death of retinal ganglion cells, the neurons that send visual information from 

the retina to the brain. The principal mechanism leading to retinal ganglion cell damage during 

glaucoma is not well understood, however, putative culprits have been proposed including 

excitotoxicity, neurotrophin deprivation, mechanical compression, ischemia, reactive 

astrocytes and oxidative stress. It is well established that retinal ganglion cell loss during 

glaucoma is caused by apoptotic programmed cell death, however, the precise mechanisms 

that lead to apoptotic death of adult retinal ganglion cells are poorly defined. To address this 

point, I put forth the central hypothesis that the identification of signaling pathways involved 

in apoptotic retinal ganglion cell death would offer therapeutic avenues to slow or prevent 

retinal ganglion cell death during ocular neuropathies such as glaucoma.  

In the first part of my thesis, I characterised the role of Apoptosis Stimulating Protein 

of p53 family (ASPP) proteins, which are regulators of p53, in the apoptotic death of retinal 

ganglion cells. p53 is a nuclear transcription factor implicated in cellular functions ranging 

from transcription to apoptosis. ASPP family members ASPP1, ASPP2 and iASPP are p53 

binding proteins that belong to a family of protein regulators of p53-dependent apoptotic 

death. However, the role of ASPP family members in retinal ganglion cell death is unknown. 

As ASPP1 and ASPP2 are pro-apoptotic, the hypothesis of our first study was that the 

knockdown of ASPP1 and ASPP2 gene expression would lead to retinal ganglion cell survival 

after an optic nerve lesion. We used a well-characterized experimental model of neuronal 

apoptosis induced by optic nerve axotomy in Sprague Dawley rats. The results of this study 
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(Wilson et al. Journal of Neuroscience, 2013) demonstrated that p53 is implicated in retinal 

ganglion cell death, and that targeted knockdown of ASPP1 and ASPP2 by short interference 

ribonucleic acid promotes retinal ganglion cell survival. The knockdown of ASPP2 correlates 

with a reduction in the levels of pro-apoptotic p53 regulated targets PUMA and Fas/CD95.  

In the second part of my thesis, I characterized the role of the anti-apoptotic member of 

the ASPP family, iASPP, in the apoptotic death of retinal ganglion cells. The hypothesis of 

this second study is that the overexpression of iASPP would promote retinal ganglion cell 

survival after axotomy. The data (Wilson et al. PLoS ONE, 2014) demonstrate that the 

targeted knockdown of iASPP by short interference ribonucleic acid exacerbates retinal 

ganglion cell death, and that the overexpression of iASPP by adeno-associated virus promotes 

retinal ganglion cell survival. The overexpression of iASPP correlates with a reduction in 

protein levels of PUMA and Fas/CD95. 

In conclusion, the findings presented in this thesis contribute to a better understanding 

of the pathological mechanisms underlying retinal ganglion cell loss by apoptosis and might 

provide insights into the design of novel neuroprotective treatments for neurodegenerative 

diseases such as glaucoma. 

 

Key words : retinal ganglion cell, neuronal death, apoptosis-stimulating protein of p53, 

axotomy 
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CHAPTER 1 

 

 

 

 

I. GENERAL INTRODUCTION 
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I.1. THE RETINA AS AN EXPERIMENTAL MODEL SYSTEM 

 When the Roman physician Galen of Pergamon observed the superficial blood vessels 

spanning across the retina, he concluded that the purpose of the retina was to feed the eye, 

which he described in his manuscript De Usu Partium Corporis Humani (On the Usefulness of 

the Parts of the Body) in the second century A.D. That beneath these blood vessels lay nervous 

tissue only became apparent when Johannes Kepler‟s optical description of the eye identified 

the retina as the sensitive receptor of the eye (Kepler, 1604). William Bowman, a British 

surgeon, furthered this realisation by stating that “the eyeball [...] consists primarily and 

essentially of a sheet of nervous matter visually endowed”, the retina (Bowman, 1849). 

Furthermore, the exquisite drawings of the Spanish histologist Santiago Ramón y Cajal laid 

the groundwork for the understanding of how the retina functions (Ramón y Cajal, 1899).  

 Cajal teased out the inter-relationships between neurons and traced the interweavings 

of neural communities. The quality of Cajal‟s observation revealed that the nervous system 

was made up of many independent, but interlinked, cells. Cajal not only identified a diversity 

of neurons, but also hypothesized that neurons receive electrical impulses through incoming 

dendrites, and conduct signals through outgoing axons (Ramón y Cajal, 1899). His findings 

revealed that the nervous system was to be understood not just through the behaviours of 

individual neurons, but through their connections with other cells. 

I.1.1. Retinal cytoarchitecture  

The retina is comprised of many cell types: photoreceptors, bipolar cells, horizontal 

cells, amacrine cells, retinal ganglion cells (RGC) and Müller glia (Figure 1). There are two 

types of photoreceptors in the retina: rods, which function as low light photoreceptors, and 
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cones, which are responsible for colour vision. Photoreceptors are light-sensitive cells that 

have an outer segment, composed of membranous disks that contain photopigment and lies 

adjacent to the pigment epithelial layer, and an inner segment that contains the cell nucleus 

and gives rise to synaptic terminals that contact bipolar or horizontal cells. Absorption of light 

by the photopigment (rhodopsin or cone opsins) in the outer segment of the photoreceptors 

initiates a cascade of events that changes the membrane potential of the photoreceptor, and 

therefore the amount of neurotransmitter released by the photoreceptor synapses onto the cells 

they contact. The synapses between photoreceptor terminals and bipolar or horizontal cells 

occur in the outer plexiform layer. The cell bodies of photoreceptors make up the outer nuclear 

layer, whereas the cell bodies of bipolar cells lie in the inner nuclear layer. The short axonal 

processes of bipolar cells make synaptic contacts on the dendritic processes of RGCs in the 

inner plexiform layer. The much larger axons of the RGCs form the optic nerve and carry 

retinal nerve impulses to the brain. 

Horizontal and amacrine cells have their cell bodies in the inner nuclear layer and are 

primarily responsible for lateral interactions within the retina. The processes of amacrine cells, 

which extend laterally in the inner plexiform layer, are postsynaptic to bipolar cell terminals 

and presynaptic to the dendrites of ganglion cells. Müller glia, which represent the principal 

glial cells of the retina, span radially across the entire retina, with their endfeet enveloping 

RGCs and displaced amacrine cells in the ganglion cell layer. Their cell bodies are found at 

the level of the inner nuclear layer. 
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Figure 1. A schematic diagram of the retina demonstrating the principal cell types 

involved in retinal signaling. 

The main retinal cell types are depicted as follows, with their respective attributed colour in 

parenthesis: rod photoreceptor (brown), cone photoreceptor (light grey), Müller glia (dark 

blue), horizontal cell (green), bipolar cell (orange), amacrine cell (yellow), retinal ganglion 

cell (red). Source: adapted from Wilson et al., Gene Therapy. 2012 
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I.1.2. The retina as a model system to study neurodegenerative mechanisms  

 RGCs are classified in 10 to 15 subtypes based on morphology or physiology in 

mammalian species (Masland, 2001a, b, Rockhill et al., 2002) but, despite their diversity, 

RGCs display the typical properties of CNS neurons, and comprise a cell body, dendrites and 

an axon. The RGC axons converge at the optic nerve head (ONH) to form the optic nerve 

which projects to four main targets: 1) the lateral geniculate nucleus of the thalamus, 2) the 

superior colliculus, 3) the pretectal nucleus, and 4) the suprachiasmatic nucleus. In rodents, a 

majority of axons project to the superior colliculus, whereas in humans the lateral geniculate 

nucleus is the predominant projection site (Linden and Perry, 1983, Purves, 2001). The optic 

nerve is the second of twelve paired cranial nerves but it is part of the CNS as it is derived 

from an evagination of the diencephalon during embryonic development and, as a 

consequence, the fibers are covered with myelin produced by oligodendrocytes, rather than 

Schwann cells found in the PNS. The accessibility of the retina renders it an ideal model in 

which to study neurodegenerative processes. One such disease is glaucoma, models of which 

will be discussed in the following section. 

I.2. GLAUCOMA MODELS 

I.2.1. Definition, risk factors and pathological features of glaucoma 

Glaucoma refers to a group of chronic optic neuropathies characterized by progressive 

optic nerve damage and selective loss of RGCs, which functionally translates to progressive 

visual field defects leading to irreversible blindness. It is estimated that more than 60 million 

people suffer from glaucoma worldwide (Quigley and Broman, 2006) and according to the 

World Health Organization, glaucoma is the second leading cause of blindness after cataracts, 
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accounting for 12% of total cases of blindness globally (Foster and Resnikoff, 2005). 

Furthermore, glaucoma is the first irreversible cause of blindness worldwide, as vision loss 

from cataracts is reversible. Age and ethnic background are important risk factors for 

developing glaucoma. Individuals over the age of 40 are at a much higher risk of developing 

this ocular neuropathy (Coleman and Miglior, 2008). Individuals of African descent are at 

higher risk of developing glaucoma and have the highest rate of blindness due to this disease 

(Leske et al., 2007). Elevated intraocular pressure (IOP) is also an important risk factor, and 

the only modifiable one, for developing glaucoma. Ocular hypertension is characterized by an 

IOP in the human eye of over 21 mmHg, whereas a value of 15 mmHg is considered normal 

(Quigley et al., 1994). Although IOP is regarded as an important risk factor, it is not an 

accurate predictor of glaucoma since over 30% of glaucoma patients have an IOP in the 

normal range (Nemesure et al., 2007).  

Glaucoma is characterized by damage to the neural components of the visual pathway 

including the retina, the optic tract, and the brain at the level of the lateral geniculate nucleus 

and the visual cortex. One of the determining features of glaucoma pathology is the selective 

loss of RGCs, which is characteristic of all glaucoma patients (Kendell et al., 1995, Quigley, 

1999). 

I.2.2. Implication of the aqueous humour in experimental models of glaucoma 

As IOP is an important risk factor linked to glaucoma pathogenesis, many animal 

models have been developed based on inducible high IOP, which results in ONH damage and 

gradual RGC death. Incidentally, the production, circulation and drainage of the aqueous 

humor -the clear fluid which fills the anterior and posterior chambers of the eye- are 
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determining factors in the regulation of IOP levels. To understand how these animal models of 

glaucoma induce IOP increase, we will review the anatomical structures of the eye involved in 

the production and circulation of the aqueous humour. 

The aqueous humour, produced by the ciliary epithelium in the ciliary body, provides 

nutrients for the lens and removes waste as it flows through the pupil into the anterior chamber 

of the eye (Krupin et al., 1986). The aqueous humor fills the anterior chamber and provides 

nutrients to the cornea as well. Within the anterior chamber, the cornea and iris join and it is 

here where the drainage of the aqueous humour takes place (Figure 2). The angle with which 

the cornea and iris join is of particular interest, as the two major categories of glaucoma are 

defined by the formation of an open or closed angle between the cornea and the iris: primary 

open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). 

Aqueous fluid flows toward the angle where it enters the trabecular meshwork (TM) 

(Tamm, 2009), which filters and directs the aqueous fluid into the Schlemm‟s canal 

(Johnstone, 2004). Several models of inducible and spontaneous glaucoma rely on a blockade 

of the aqueous humour drainage and will be discussed in subsequent sections. 
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Figure 2. Schematic presentation of the aqueous humour circulation within the eye. 

Aqueous humour is produced by the ciliary body and enters the anterior chamber through the 

pupil. The trabecular meshwork (TM) is located in the angle between cornea and iris and 

provides an outlet for aqueous drainage by directing it into the Schlemm's canal. Reproduced 

with permission from (Kwon et al., 2009), Copyright Massachusetts Medical Society. 
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I.2.3. Experimental models of glaucoma 

I.2.3.1. Primary-angle closure glaucoma 

Primary-angle closure glaucoma (PACG) is characterized by the blockade of the 

aqueous humour drainage and/or its circulation. This results in increased IOP and consequent 

damage to the retina and optic nerve. Several breeds of dogs are prone to developing 

spontaneous glaucoma (Reinstein et al., 2009) however the high cost of purchasing and 

housing dogs, and complications of handling dogs in large experimental groups have resulted 

in the limited use of this model. A model of laser photocoagulation to induce the closure of the 

anterior chamber angle has been adapted for mice (Aihara et al., 2003). This model employs a 

diode laser which creates burn spots causing the iris root to attach to the peripheral cornea, 

which consequently obstructs the aqueous outflow and results in an elevation of IOP (Aihara 

et al., 2003). The IOP elevation in this model is accompanied by significant loss of RGC 

axons (Mabuchi et al., 2003). However, the small size of mice eyes demands a high level of 

dexterity by the experimenter, as excessive or misplaced laser burns could result in an 

inflammatory response and retinal damage. 

I.2.3.2. Open-angle glaucoma 

Primary open angle glaucoma (POAG) is the most common form of glaucoma 

worldwide. POAG is characterized by changes in the optic nerve head (also called optic disk), 

damage to RGC axons in the optic nerve, and loss of RGCs in the retina (Quigley, 2005). 

POAG is not necessarily associated with IOP elevation, however high IOP is a major risk 

factor for developing POAG (Leske et al., 2003).  
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In primate models of POAG, Rhesus or Cynomolgus monkeys are subjected to laser 

photocoagulation whereby burn spots are created on the circumference of the TM, resulting in 

moderate IOP increase (Wang et al., 1998). Loss of RGCs and visual deficits are well 

documented in this model (Hood et al., 1999, Morgan et al., 2000, Yücel et al., 2000, Hare et 

al., 2001, Yücel et al., 2003). However, the high cost of monkeys, their limited availability and 

difficulty to work with are drawbacks of this model. 

The laser photocoagulation technique has also been used in rodent models of POAG 

(Ueda et al., 1998, Levkovitch Verbin et al., 2002, Gross et al., 2003, Ji et al., 2005). Another 

rodent model of POAG is the Morrison rat model, in which a hypertonic saline solution is 

injected into an episcleral vein of Brown Norway rat eyes. Hypertonic saline disrupts the 

structure of the TM and gradually reduces the aqueous outflow, resulting in IOP elevation 

(Morrison et al., 1997). Another method of reducing the aqueous outflow is by cauterizing the 

episcleral veins (Shareef et al., 1995). In this model, two to three veins are isolated and 

blocked using an ophthalmic cautery instrument. Obstruction of the TM and elevation of IOP 

can also be achieved by injection of sterile latex microspheres (Weber and Zelenak, 2001, 

Urcola et al., 2006) or microbeads into the anterior chamber of rodent eyes (Sappington et al., 

2010, Chen et al., 2011). Finally, a hereditary mutation in the DBA/2J mice leads to iris 

pigment dispersion and adhesion of the iris to the cornea, which results in significant elevation 

of IOP by 6 months of age (John et al., 1998).  

1.2.4 Glaucoma model caveats 

The aforementioned glaucoma models each have their advantages and disadvantages. 

Chronic animal models of glaucoma rely on OHT induction to ultimately cause RGC 
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neurodegeneration, and yet not all glaucoma patients exhibit an increase in IOP. Furthermore, 

signaling pathways activated in chronic experimental models of glaucoma, much like the 

disease, are complex and variable. The complexity and variability in these models are not ideal 

for the detection of precise molecular mechanisms leading to apoptotic RGC death, a crucial 

aspect in the pathophysiology of all forms of glaucoma. The identification of key molecular 

mechanisms involved in neuronal death in vivo often requires a model that allows reliable, 

reproducible and predictable time-course of RGC death.  

I.3. OPTIC NERVE AXOTOMY MODEL 

Following traumatic injury to the mammalian CNS, neurons die by apoptosis, necrosis, 

or autophagy. Neurons that have their axons sheared open will undergo fundamental cellular 

and biochemical changes. Notably, the physical separation of the cell body from its target 

effectively prevents retrograde transport of neurotrophic factors thought to be required for 

survival (Oppenheim, 1991). Furthermore, calcium influx destabilizes the cytoskeleton and 

contributes to the activation of apoptotic pathways and the ensuing cellular degradation 

(Trump and Berezesky, 1995). Neurons that survive are severely impaired and rendered 

inactive, at least transiently, by the dramatic variations in their ionic and metabolic 

environment. In brief, adult mammalian CNS neurons are unable to regenerate an axon and 

their soma dies or atrophies after lesion (Ramon y Cajal, 1928).  

I.3.1. Acute optic nerve injury and RGC death 

The optic nerve transmits visual input from the retina to the visual cortex where image 

processing occurs. Damage to the optic nerve will affect this transmission of visual 

information, thus compromising vision. Optic nerve afflictions include: 1) glaucoma, in which 
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the optic nerve at the optic nerve head are damaged; 2) optic neuritis, an inflammation of the 

optic nerve which leads to the degradation of the myelin sheath enveloping the optic nerve; 3) 

cancerous tumours such as a pituitary tumour which compresses the nerve at the level of the 

optic chiasm, and 4) acute trauma such as an orbital fracture. Although a full transection 

(axotomy) is unlikely to occur and traumatic injury of the optic nerve is very rare (Steinsapir 

and Goldberg, 1994), the optic nerve axotomy produces a well characterized time course of 

RGC death, permitting the accurate evaluation of neuroprotective and regenerative strategies. 

In addition, RGCs die by apoptosis after optic nerve axotomy as they do in glaucoma (Garcia-

Valenzuela et al., 1995) and other CNS diseases. However, because a larger number of RGCs 

die abruptly after axotomy, the molecular mechanisms that promote neuronal apoptosis might 

be more readily identified in this simpler model of RGC death. Furthermore, the initial wave 

of apoptotic RGC death is more reproducible in an axotomy model than in experimental rat 

glaucoma models, allowing for a spatiotemporal correlation between pro-apoptotic gene 

expression and RGC loss in vivo. Thus, strategies to promote cell survival in this system may 

be extrapolated to other neurodegenerative diseases affecting other neuronal populations. For 

these reasons, the optic nerve axotomy model was selected for the studies presented in this 

dissertation. Importantly, the axotomy model has proved extremely useful in the study and 

treatment of traumatic CNS injuries. Indeed, optic nerve axotomy has been extensively used to 

study the molecular mechanisms underlying retinal neuron death. For example, this model was 

used to detect the activation of apoptosis initiator caspase 9 (Kermer et al., 2000, Koeberle, 

2009) and cleavage of effector caspase 3 in RGCs (Kermer et al., 1999, Hu et al., 2012) after 

optic nerve lesion, and subsequent TUNEL reactivity (Berkelaar et al., 1994, Quigley et al., 

1995). This model has also been useful to evaluate the effect of neuroprotective strategies in 
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vivo; for example with the demonstration that caspase inhibitors reduced RGC loss following 

optic nerve axotomy (Kermer et al., 1998, Chaudhary et al., 1999, Ahmed et al., 2011, 

Monnier et al., 2011). Moreover, this was an effective model to investigate the signal 

transduction pathways involved in RGC survival, including TrkB signaling (Cheng et al., 

2002b), the Erk1/2 pathway (Pernet et al., 2005, Almasieh et al., 2011), and the opposing 

effects of TrkA and p75 receptor signaling pathways (Lebrun-Julien et al., 2009).  

I.3.2. Pattern of RGC cell death in the axotomy model 

Transection of the adult rat optic nerve leads to a bi-phasic pattern of cell death. The 

first phase is prolonged, as within the first 4 to 5 days after lesion only a negligible number of 

RGCs die (Berkelaar et al., 1994, Peinado-Ramón et al., 1996). The second stage is rapid, 

however, and is characterized by massive cell death. Indeed, seven days after axotomy, only 

50% of RGCs survive and less than 10% remain 14 days after injury (Berkelaar et al., 1994, 

Quigley et al., 1995). Interestingly, approximately 5% of RGCs remain  up to 20 months after 

transection (Villegas-Perez et al., 1993), however, the molecular basis for this apparent 

resilience is currently unknown. 

Following optic nerve axotomy, RGC death has been described as apoptotic (Berkelaar 

et al., 1994, Garcia-Valenzuela et al., 1994). Indeed, RGCs die by apoptosis in optic nerve 

acute lesion models, such as the optic nerve axotomy or crush models (Berkelaar et al., 1994), 

experimental glaucoma (Quigley et al., 1995), human glaucoma (Kerrigan LA, 1997), an 

observation that has been confirmed by in vivo real-time visualization in ocular hypertensive 

rat eyes (Cordeiro et al., 2004). Apoptosis is an energy consuming process that requires de 

novo protein synthesis. Apoptosis is a common mechanism of neuronal loss in the injured or 
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degenerating visual system. The hallmark structural features of apoptosis are cellular round-

up, retraction of pseudopodia, reduction of cellular volume, nuclear fragmentation, 

modification of cytoplasmic organelles, plasma membrane blebbing, and engulfment by 

resident phagocytes (Kerr, 1972, Kerr et al., 1995). The apoptotic process can be triggered by 

various stimuli and involves the death receptor and/or mitochondrial apoptotic pathways.  

Autophagy, traditionally defined as a non-apoptotic type of programmed cell death, 

involves lysosomal degradation of dysfunctional cellular components. Mutations in the Toll-

Like Receptor 4 (TLR4) gene, a sensor for autophagy, have been associated with normal 

tension glaucoma in a Japanese cohort study (Shibuya et al., 2008). There is evidence that 

autophagy occurs in glaucoma, as LC3-B and Beclin-1 upregulation as well as an 

accumulation of autophagosomes were detected in RGCs after IOP elevation in a hypertensive 

rat glaucoma model (Park et al., 2012), and in a rhesus monkey hypertensive glaucoma model 

(Deng et al., 2013). In addition, an upregulation of genes linked to autophagy was detected in 

ocular hypertensive astrocyte samples (Tezel et al., 2012). Autophagy is also activated 

following optic nerve transection, and was compellingly revealed to have a neuroprotective 

role following axotomy (Kim et al., 2008, Rodriguez Muela and Boya, 2012).  

Although apoptosis is the active process by which RGCs die after axonal damage, a 

small number of cells die by necrosis due to mechanical or inflammatory damage inflicted by 

the injury (Thanos et al., 1993, Bien et al., 1999). Necrosis typically occurs after toxic insult, 

hypoxia, energy depletion or other exogenous insults. It results in a swelling of the cell body 

and mitochondria, followed by perforation of the cell membrane resulting in the leakage of 

cellular contents and consequent inflammatory response. It is likely that there is a continuum 
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between axotomy-induced apoptotic and necrotic cell death, as both modes share common 

characteristics (Nicotera et al., 1999). While the orchestral role of p53 in apoptotic pathways is 

well established, recent findings have reported a novel role in necrosis, whereby p53 opens the 

mitochondrial permeability transition pore to trigger necrosis (Vaseva et al., 2012). An 

understanding of p53 function in RGC death is therefore warranted. We opted to focus on 

apoptotic cell death in our studies because of the central role apoptosis plays in RGC death 

during glaucoma. Furthermore, despite potential crosstalk amongst apoptotic, necrotic and 

autophagic pathways, there is no strong evidence of necrosis occurring in glaucoma (Osborne 

et al., 1999b), and the understanding of autophagic processes in glaucomatous 

neurodegeneration is incipient. 

I.4. p53 AND ITS REGULATORS 

I.4.1. The p53 family 

The p53 transcription factor belongs to a family of proteins called the p53 family, 

comprised of three evolutionarily conserved transcription factors, p53, p63 and p73. The p53 

family proteins are involved in many important cellular functions, including tumour 

suppression (p53 and p73), epithelial cell stratification (p63), and CNS development (p73). 

Furthermore, p53, p63 and p73 genes can independently mediate apoptosis (Sheikh and 

Fornace, 2000). All p53 family members are expressed during retinal development, but their 

levels are downregulated in the adult eye (Vuong et al., 2012). Upregulation of p63 and p73, 

but not p53, are observed in human retinoblastoma tumour samples, an eye cancer affecting 

the retina (Adithi et al., 2008).  
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All three members of the p53 family share significant homology at the genomic and 

protein levels. They share common structural motifs, including a transactivation domain (TA), 

a DNA-binding domain (DBD) and an oligomerization domain (OD). In addition, p63 and 

p73, but not p53, contain long C-termini containing a sterile alpha motif (SAM), which is a 

protein-protein interaction domain (Chi, 1999) (Figure 3). p63 and p73 genes have been found 

to encode several proteins whose structure and functions are similar yet not identical to those 

of p53 (Kaghad et al., 1997, Yang et al., 1998). p53, p63 and p73 encode differentially spliced 

mRNAs, with most of splicing occurring at the 3‟ end for p63 and p73, creating proteins with 

varying C-termini lengths (Kaghad et al., 1997, De Laurenzi et al., 1998, De Laurenzi et al., 

1999, Ueda et al., 1999). Not only do all three p53 family members express multiple splice 

variants, they also contain different internal promoters in addition to their proximal promoters, 

yielding truncated or full length variants, respectively. This allows for a multitude of transcript 

variants arising from p53, p63 and p73 gene transcription. Altogether, the p53 gene can 

transcribe ten different variants: p53 (α, β, γ), ∆40p53 (α, β, γ), ∆133p53 (α, β, γ) and ∆p53 

(Courtois et al., 2004, Bourdon et al., 2005, Mills, 2005, Rohaly et al., 2005) (Figure 3). In the 

case of p63 and p73, the promoter and differential splicing options yield α, β, γ, δ, ε, δ, ε , and 

φ isoforms for both full length and truncated forms (Figure 3). Furthermore, p73 has 3 

additional truncated forms due to an additional amino-terminal splicing site (Moll and Slade, 

2004). As the N terminus is crucial for the transactivation of target genes, full-length isoforms 

of p53, p63 and p73 can be functionally distinguished from the transactivation-compromised 

∆N isoforms that show anti-apoptotic and dominant–negative properties.  



 
 

17 
 

 

Figure 3: p53 family structural motifs. The overall protein architecture of the p53 family is 

highly conserved, and consists of a central sequence-specific DNA binding domain (DBD), an 

N-terminal transactivation domain (TA) and a C-terminal oligomerization domain (OD). Both 

p63 and p73 have a sterile alpha motif (SAM) domain implicated in protein–protein 

interactions, whereas p53 does not. The highest degree of homology is seen within the DBD, 

where >97% of all tumour-associated p53 mutations are located. All three genes express many 

differently spliced isoforms, and contain a second intronic promoter that generates N-

terminally truncated proteins (∆133p53, ∆Np63 and ∆Np73). Alternative splicing of C-

terminal exons yields many different isoforms (α, β, γ, δ, ε, δ, ε , and ζ) with still incompletely 

understood DNA-binding properties, transcriptional activities and biological functions. Source 

of image adapted by permission from Macmillan Publishers Ltd: [Nature Reviews Cancer] 

(Stiewe, 2007), copyright (2007). 
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I.4.2. The p53 transcription factor 

I.4.2.1. p53 in ocular development 

The role of p53 during ocular development has been assessed in p53 knockout mice of 

varying strains, which revealed striking differences. Indeed, in two strains, the C57BL x CBA 

and 129/Sv x C57BL/6 mice, there were no reported ocular developmental defects 

(Donehower et al., 1992, Jacks et al., 1994).  However, abnormalities were detected in the p53 

knockout mice with C57BL/6 and BALB/c OlaHsd backgrounds. Indeed, cataract formation 

was detected in p53-null BALB/c OlaHsd mice, as well as aberrant hyaloid vasculature, which 

is a transient embryonic vasculature that regresses with the formation of adult retinal vessels 

(Reichel et al., 1998). In addition to abnormal hyaloid structure, p53-null mice in a C57BL/6 

background also exhibited retinal folding and underdeveloped (hypoplastic) optic nerves 

(Ikeda et al., 1999). It was hypothesized that the phenotype discrepancy between p53-null 

mice with 129/Sv or C57BL/6 backgrounds was caused by protective and compensatory 

alleles for p53 loss present in 129/Sv mice (Ikeda et al., 1999).  

p53 transcript levels during murine retinal development peak at embryonic days E17-

E18 and decrease gradually until postnatal day P15, where they remain low in the post-mitotic 

retina (Vuong et al., 2012). Likewise, p53 protein was readily detected at E18, after which 

time point protein levels began to decrease, and were undetectable by P7 (Vuong et al., 2012). 

This decrease in p53 levels in the murine retina coincides with the developmental time point 

that retinal cells exit the cell cycle, differentiate, and become postmitotic (Cepko et al., 1996). 

p53 is not required for developmental programmed death of RGCs, as mice deficient for one 
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or both alleles of p53 do not exhibit developmental changes in RGC number in comparison to 

wild-type animals (Li et al., 2002). 

I.4.2.2. p53 in post-mitotic neurons  

The tumour suppressor and nuclear transcription factor p53 mediates the apoptosis of 

post-mitotic neurons exposed to a wide range of insults such as DNA damage, neurotrophic 

factor deprivation, oxidative stress, ischemia and excitotoxicity (Culmsee and Mattson, 2005). 

Stress signals lead to activation and accumulation of p53, which then promotes the 

transcription of pro-apoptotic genes (Michalak et al., 2005). Neuronal apoptosis induced by 

p53 has been well documented in models of neurodegenerative disorders including 

Alzheimer‟s disease, Parkinson‟s disease, Huntington‟s disease and amyotrophic lateral 

sclerosis (de la Monte et al., 1997, González de Aguilar et al., 2000, Martin, 2000, Duan et al., 

2002, Tamagno et al., 2003, Ryan et al., 2006), suggesting a key role for this transcription 

factor in the regulation of neuronal viability after neural injury. Given its critical role in the 

control of cell death, several mechanisms exist to ensure a tight regulation of p53 activity. The 

level of p53 protein is normally kept low in most cell types, including neurons (Soussi, 2000), 

via rapid and continuous degradation following ubiquitination by the E3 ubiquitin ligases 

Mdm2 and MdmX (Wade et al., 2010). Additional control of p53 function is exerted via post-

translational acetylation, phosphorylation or methylation; and by interactions with protein 

partners including the apoptosis-stimulating proteins of p53 (ASPP) family (Iwabuchi, 1994, 

Nagase et al., 1998, Boehme and Blattner, 2009).  

 p53 has been shown to exert an important pro-oxidant activity in the retina (Chatoo et 

al., 2009). Inactivation of the p53 gene, or reduced p53 expression, has been shown to protect 
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RGCs against retinal ischemia or excitotoxic death (Rosenbaum, 1998, Li et al., 2002). Pro-

apoptotic genes induced by p53 including Gadd45a and Ei24 are upregulated in the retina after 

optic nerve transection and in experimental glaucoma models (Levkovitch-Verbin et al., 

2006). Attempts to link single nucleotide polymorphisms in the p53 gene with glaucoma have 

been contradictory: while some studies found a correlation in Caucasian and Chinese 

populations (Ressiniotis et al., 2004, Daugherty et al., 2009) an association has not been found 

in other ethnic groups (Acharya et al., 2002, Dimasi et al., 2005, Mabuchi et al., 2009, Saglar 

et al., 2009, Silva et al., 2009). A recent study demonstrated that loss of WDR36, a gene of 

unknown function identified as causative for glaucoma (Monemi et al., 2005), leads to 

activation of the p53 stress-response pathway in zebrafish (Skarie and Link, 2008). These 

studies suggest that defects in p53 pathway genes may increase the risk of certain populations 

to develop glaucoma (Fan et al., 2010). Furthermore, p53 has been implicated in age-related 

macular degeneration (AMD): AMD is generally believed to start with retinal pigment 

epithelium (RPE) cell death, and p53 is upregulated in RPE cells in response to high-energy 

light exposure, inducing apoptosis (Westlund et al., 2009, Bhattacharya et al., 2012). In 

retinoblastoma, Mdm4 is overexpressed in response to loss of RB1, leading to degradation of 

p53 (Laurie et al., 2006, Wallace, 2006). 

I.4.3. p53 regulation  

There are over 100 known p53 binding proteins, whose interactions with p53 along 

with p53 post-translational modifications frequently dictate p53 function, for example whether 

it induces cell cycle arrest or apoptosis (Braithwaite et al., 2005). These regulating 

mechanisms range from inhibition to coactivation of p53. The identification of p53 in 1979 

has led to nearly 70,000 peer-reviewed publications, and was named the „Molecule of the 
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year‟ in 1993 by the journal Science (Koshland, 1993). p53 is mutated in nearly half of all 

human cancers (Petitjean, 2007), a trait rarely found in p63 and p73 family members (Strano 

et al., 2007). Not only does p53 act as a tumour suppressor, it is activated in response to 

various stress signals. p53 activation occurs via multiple mechanisms including increased p53 

protein concentration, often caused by decreased p53 degradation (Ashcroft et al., 2000), 

nuclear translocation (Liang and Clarke, 2001), and post-translational protein modifications 

including phosphorylation and acetylation (Jayaraman and Prives, 1999). Furthermore, p53 

can also be activated by non-covalent modifications such as electrostatic interactions with 

other proteins (Benyamini and Friedler, 2011). p53 is modified by as many as 50 individual 

posttranslational modifications, which mediate precise protein-protein interactions, an array of 

modifications that is interdependent (Meek and Anderson, 2009). 

 The p53 interactome is continuously being updated, however relatively few of these 

p53 binding partners have been studied in the CNS. The following sections on p53-regulating 

proteins focus on the ASPP family, and additional p53 regulating proteins whose roles have 

been assessed in the retina. 

I.4.3.1. The ASPP family 

The ASPP proteins constitute a recently discovered family of proteins that bind and 

modulate p53-dependent apoptosis (Trigiante and Lu, 2006). Their name is an acryonym 

either based on the domain organization of the proteins (Ankyrin-repeat, SH3, and Proline-rich 

domain containing Protein) or their function (Apoptosis-Stimulating Protein of p53). The 

founding member of the family, ASPP2, was initially identified as 53BP2 (p53 binding protein 

2) in a yeast two-hybrid screen, using the p53 DNA binding core domain as bait (Iwabuchi, 
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1994). ASPP1 was identified later in a homology search (Nagase et al., 1998). Functional 

studies revealed that p53-induced apoptosis was substantially enhanced in the presence of 

ASPP1 or ASPP2 (Lopez et al., 2000, Ao et al., 2001, Samuels-Lev, 2001) and that complexes 

with ASPP1 or ASPP2 increased the affinity of p53 for promoters of pro-apoptotic genes 

(Samuels-Lev, 2001, Bergamaschi et al., 2006). Furthermore ASPP1 and ASPP2 selectively 

enhance the apoptotic-promoting ability of p53 without affecting p53 cell cycle arrest 

functions (Bergamaschi et al., 2003). This preferential activation of apoptotic genes in the 

presence of ASPP1 and ASPP2 was also observed for p63 and p73 (Bergamaschi et al., 2004). 

The third member of the ASPP family, iASPP, was originally identified as an inhibitor of the 

nuclear factor kappa  (NFk) (Yang, 1999). iASPP is the p53 inhibitor within the ASPP 

family, blocking apoptosis by repressing the transactivation potential of p53 (Bergamaschi et 

al., 2003, Bergamaschi et al., 2006) (Figure 4). Notably, the ability of iASPP to inhibit p53 

mediated apoptosis is conserved from C. elegans to humans. 
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Figure 4. ASPP family apoptotic signaling pathway. The pro-apoptotic ASPP1 (ankyrin-

repeats-, SH3-domain- and proline-rich-region-containing protein 1) and ASPP2 are induced 

by the E2F1 transcription factor and cooperate with the p53 transcription factor and its family 

members p63 and p73 in transactivating pro-apoptotic genes to promote apoptosis. The 

inhibitory family member iASPP functions as a transrepressor of the same genes that ASPP1 

and ASPP2 transactivate. (Image generated by Ariel Wilson). 
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The regions of ASPP family members that interact with p53 have been mapped to their 

C-termini (Patel et al., 2008, Robinson, 2008). The N termini of ASPP1 and ASPP2 confers 

their apoptotic activity (Samuels Lev et al., 2001), and show no sequence similarity with the N 

terminal of iASPP (Bergamaschi et al., 2003). ASPP1/2 and iASPP bind to the core domain of 

p53 (Robinson, 2008), and iASPP also binds to the proline-rich region of p53 (Bergamaschi et 

al., 2006) (Figure 5). 

Pro-apoptotic ASPP1 and ASPP2 are frequently downregulated in tumours, and anti-

apoptotic iASPP is frequently upregulated (Bergamaschi et al., 2003, Jiang et al., 2011, Li et 

al., 2011, Li et al., 2012, Mak et al., 2013, Zhao et al., 2013). Post-translational modifications 

of ASPP family members in cancer cells have been discovered. Indeed, ASPP2 is 

phosphorylated by the Ras/MAPK pathway in an osteocarcinoma cell line (Godin Heymann et 

al., 2013), and Cyclin B1/CDK1 phosphorylates iASPP in melanoma cells (Lu et al., 2013). 

Other mechanisms of ASPP regulation have been uncovered, such as the study of ASPP1 and 

ASPP2 epigenetic regulation which revealed that in tumour cells expressing wild-type p53, 

ASPP1 and ASPP2 promoters are hypermethylated and subsequently downregulated in 

hepatocellular carcinoma tumours (Zhao et al., 2010) as well as in breast cancer and lung 

carcinoma tumour cell lines (Liu et al., 2005). Furthermore, microRNA downregulation of 

iASPP protein levels was detected in a cerebral ischemia mouse model (Liu et al., 2013). 

  



 
 

25 
 

 

Figure 5. Amino acid sequences and domain organisation of ASPP and p53 proteins.  A) 

Domain organization of ASPP2, ASPP1 and iASPP. Individual domains are as follows: 

ubiquitin-like (ULD), glutamine-rich (Gln), proline-rich (Pro), ankyrin repeats (ANK), and Src 

homology 3 (SH3). B) Domain organization of p53. Individual domains are the transcription 

activation (TAD), the proline-rich (Pro), the DNA binding or core (CD), the linker (L), the 

oligomerization or tetramerization (OD), and the basic (BD) domains. Source of image: 

adapted from Ahn et al., 2009, originally published in the Journal of Biological Chemistry © 

the American Society for Biochemistry and Molecular Biology. 
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I.4.3.2. MDM2/MDMX  

The murine double minute 2 (MDM2) and murine double minute X (MDMX) (also 

known as MDM4) inhibit p53 activity by engaging its N-terminus transactivation domain 

(Momand et al., 1992, Kussie et al., 1996, Laurie et al., 2006). MDM2 and MDMX are RING 

(Really Interesting New Gene) domain proteins, and many proteins containing a RING 

domain have been shown to play a key role in the ubiquitination pathway (Joazeiro and 

Weissman, 2000). However, despite their similar structures, only MDM2 has intrinsic E3 

ubiquitin ligase activity, conferring MDM2 the ability to target p53 for degradation by the 

proteasome (Honda et al., 1997). Although MDM2 alone can inhibit p53, its RING-dependent 

heterodimerization with MDMX has an important role in p53 inhibition. Indeed, MDM2 

inhibits the transactivation ability of p53 (Momand et al., 1992), and MDMX stabilizes 

MDM2 by preventing it to self-ubiquitinate (Stad et al., 2001).  

Within the retina, the role of MDM2 was assessed in RPE cells, which are essential for 

photoreceptor function by regulating cell homeostasis and serving as blood-retinal barrier 

(Strauss, 2005). Inhibition of MDM2 in primary RPE cultured cells resulted in an increase of 

pro-apoptotic targets, sensitizing RPEs to apoptosis (Bhattacharya et al., 2011). In aged RPEs, 

the MDM2/p53 pathway interaction is disrupted, leading to an age-dependent increase in 

apoptosis (Bhattacharya et al., 2012). Furthermore, MDM2 has been studied in the context of 

retinoblastoma. Mutations in the tumour suppressor RB1 gene are pivotal in the development 

of this early childhood cancer of the retina. Indeed, loss of RB1 function in the developing 

retina leads to MDM2 and MDMX amplification, contributing to p53 pathway inactivation 

(Laurie et al., 2006), which facilitates retinal cell transformation and tumorigenesis.  



 
 

27 
 

I.4.3.3. YY1 

Yin yang 1 (YY1) is a transcription factor that belongs to the Polycomb family, a 

group of chromatin modulators that are critical to homeobox gene regulation during 

development. First identified in 1991 (Shi et al., 1991), YY1 is a highly conserved and 

multifunctional transcription factor. Its name, representing interconnected yet seemingly 

opposing forces, stems from the fact that YY1 can act as an activator or repressor of 

transcription (Shi et al., 1997). YY1 has been implicated in cell proliferation, differentiation 

and apoptosis (Gordon et al., 2006), and is crucial for embryonic development as YY1 

deficiency results in peri-implantation lethality, i.e. lethality occurring in the period between 

blastocyst formation and uterine implantation (Donohoe et al., 1999). 

YY1 negatively regulates p53 protein levels and activity (Sui et al., 2004). YY1 acts as 

an MDM2 cofactor, facilitating MDM2-p53 interaction, and YY1 downregulation results in 

p53 accumulation due to a decrease in p53 ubiquitination levels. In contrast, YY1 

overexpression increases p53 ubiquitination and degradation (Sui et al., 2004). YY1 is 

ubiquitously expressed in the CNS during early embryonic development (Kwon and Chung, 

2003), and is highly expressed in the adult neural retina (Bernard and Voisin, 2008). In mouse 

embryos and Xenopus oocytes, YY1 was shown to activate Otx2, a transcription factor that 

controls photoreceptor cell fate (Kwon and Chung, 2003, Nishida et al., 2003, Takasaki et al., 

2007). In the adult retina, YY1 is mainly expressed by photoreceptors at the level of the inner 

segments and nuclei in the intact chicken retina, and weakly in the inner nuclear layer 

(Bernard and Voisin, 2008).  
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I.4.3.4. P300/CBP 

p300 and CREB Binding Protein (CBP) are highly homologous nuclear proteins that 

play a key role in transcriptional regulation. The interaction of p53 with p300 and/or CBP 

(p300/CBP) regulates the ability of p53 to bind to its cognate DNA sequences and activate 

transcription. It is specifically the acetyltransferase activity of p300/CBP that has been 

implicated in the regulation of p53 function. Indeed, in response to DNA damage, 

transcription coactivators p300/CBP bind to and acetylate p53, which stimulates the DNA 

binding activity of p53 (Gu and Roeder, 1997, Prives and Hall, 1999, Grossman, 2001). 

There is evidence that p300/CBP are involved in retinal function. For instance, 

mutations in CBP or p300 are responsible for a subset of Rubinstein-Taybi syndrome cases 

(Schepis et al., 2001, Zimmermann et al., 2007), a disease in which retinal dystrophy and 

glaucoma are common (van Genderen et al., 2000). The study of p300/CBP in animal models 

revealed that p300 and CBP knockout mice are embryonic lethal (Yao et al., 1998, Tanaka et 

al., 2000). The development of photoreceptor-specific p300/CBP conditional knockout mice 

was instrumental to demonstrate a key role for p300/CBP in photoreceptor gene expression 

(Hennig et al., 2013). Furthermore, p300 and CBP are expressed by adult RGCs, and 

adenoviral-mediated overexpression of p300 in RGCs has been shown to promote optic nerve 

regeneration (Gaub et al., 2011). Although p53 C-terminal acetylation by p300 is known to be 

involved in the fine-tuning of p53 stress responses (Krummel et al., 2005), these modifications 

do not appear to play a crucial role in RGC death. Indeed, in an acetylation-deficient missense 

mutant mouse model, the loss of p53 acetylation at its C terminus by CBP/p300 was not 

required for p53 transactivation (Krummel et al., 2005).  



 
 

29 
 

The ASPP family, MDM2/MDMX, YY1, and CBP/p300, along with additional p53 

regulating proteins, are implicated in the apoptotic function of p53. The signaling cascades 

occurring during apoptosis in RGCs will be discussed in the subsequent section.  

I.5. APOPTOTIC PATHWAYS ACTIVATED IN RGCs  

The apoptotic machinery is present in all cells and is therefore considered to be an 

intrinsic suicide program. Neuronal survival relies on a detailed interaction between the cell 

and its environment. The neuron is thought to be continuously on the verge of apoptosis, 

requiring survival signals to prevent its death (Raff, 1992, Raff et al., 1993). Neurotrophins, 

cytokines, growth factors such as brain derive neurotrophic  factor (BDNF) and ciliary 

neurotrophic factor (CNTF), and other peptide ligands stimulate transmembrane receptors, 

which activate intracellular pathways and ultimately inhibit this internal death program 

(Jacobson et al., 1997) (Figure 6). The apoptotic pathway can be induced either through a 

mitochondrial pathway (Green and Reed, 1998), or by stimulation of cell surface death 

receptors (Ashkenazi, 1998), which are referred to as the intrinsic and extrinsic apoptotic 

pathways, respectively.  
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Figure 6. Extrinsic and intrinsic apoptotic pathways regulating retinal ganglion cell 

death. The apoptotic death of RGCs can be triggered by various stimuli and involves extrinsic 

and intrinsic pathways. Extrinsic signals include the death-receptor ligands TNF-α, Fas-L, and 

TRAIL, and their respective receptors, which induce RGC death. Lack of neurotrophic factors 

may result in deficits of pro-survival pathways including Erk1/2 and PI3K. The intrinsic 

pathway converges on the Bcl-2 family members: pro-apoptotic (Bax, Bad, Bid) or anti-

apoptotic (Bcl-2, Bcl-XL), which regulate the mitochondrial outer membrane 

permeabilization. These proteins control the release of cytochrome c into the cytosol which 

can activate the caspases, executioners of apoptosis. Source: from Wilson et al., Gene 

Therapy. 2012  
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I.5.1 The intrinsic apoptotic pathway 

I.5.1.1. Pro-apoptotic kinases 

The mitogen-activated protein kinases (MAPKs) are a large family of protein Ser/Thr 

kinases that relay extracellular signals to the intracellular milieu and, as such, are central 

regulators of many cellular functions (Cargnello and Roux, 2011). The conventional MAPKs 

family comprises extracellular signal-regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal 

kinases (JNKs), p38 isoforms and Erk5. In contrast to the RGC survival response associated 

with activation of the Erk1/2 pathway, pro-apoptotic MAPK are typically activated by a 

variety of stress signals and have been proposed to contribute to RGC death. One such 

MAPKs subfamily are the JNKs, also known as stress-activated protein kinases (SAPKs), 

which play central roles in the regulation of signal transduction in the mammalian brain 

(Brecht et al., 2005). The elucidation of JNKs function in vivo has been challenging due to the 

presence of ten different JNK isoforms that result from alternative splicing (Kyriakis et al., 

1994) and display differential specificity towards their target proteins (Gupta et al., 1996, 

Kallunki et al., 1996, Chang and Karin, 2001). C-jun, a transcription factor activated by JNK 

phosphorylation, mediates the transcription of pro-apoptotic genes (Curran and Franza, 1988) 

(Figure 6). The JNK/c-jun pathway is upregulated in RGCs after optic nerve axotomy or crush 

(Herdegen et al., 1993, Hull and Bahr, 1994, Robinson, 1994, Isenmann and Bähr, 1997, 

Kreutz et al., 1999, Takeda et al., 2000, Yang et al., 2007), during excitotoxic damage 

(Bessero et al., 2010), in rodent models of experimental glaucoma (Levkovitch-Verbin et al., 

2005, Kwong and Caprioli, 2006, Yang et al., 2007), and in human glaucoma (Tezel et al., 

2003). Of interest, long-term activation of c-Jun has been observed in optic nerve head 

astrocytes of monkeys subjected to experimental ocular hypertension (Hashimoto 2005). Short 
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interfering RNA (siRNA)-mediated knockdown of c-Jun resulted in RGC survival after optic 

nerve lesion (Lingor et al., 2005), and administration of a JNK inhibitor conferred moderate 

RGC protection in an acute ocular hypertension model (Sun et al., 2011). To assess the 

functional role of JNK activation on RGC survival, recent studies have examined the effect of 

genetic deletion of JNK genes in mouse models of optic nerve injury. Induction of ocular 

hypertension in JNK3 null mice did not show significant RGC neuroprotection (Quigley et al., 

2011). In contrast, mice lacking both JNK isoforms (Jnk2-/-Jnk3-/-) displayed marked RGC 

survival after injury and this response involved c-jun and Bim activation  (Harder et al., 2011). 

These results suggest that the different JNK isoforms might act to compensate for deficiencies 

in this pathway to ensure apoptosis of injured RGCs. Future work is required to establish 

whether combined deletion of JNK2 and JNK3 influence RGC fate in experimental glaucoma.  

The p38 MAPKs, a subfamily comprising four isoforms (p38, p38, p38, p38), is a 

group of kinases that are highly responsive to stress stimuli (Cuadrado and Nebreda, 2010). 

p38 is expressed at higher levels than the other isoforms; therefore the majority of the 

published studies to date refer to p38form. p38 is strongly activated by various 

environmental signals such as inflammatory cytokines, chemokines, oxidative stress and 

ischemia, and plays a role in apoptotic death signaling by affecting death receptor function and 

Bcl-2 family members (Cuenda and Rousseau, 2007). The active, phosphorylated form of p38 

has been shown to increase in RGCs following optic nerve axotomy (Kikuchi et al., 2000), in 

a translimbal photocoagulation laser model of rat glaucoma (Levkovitch Verbin et al., 2007) 

and in human glaucomatous eyes (Tezel et al., 2003). A time-course analysis revealed a 

sustained increase in phosphorylated p38, which appeared rapidly after intraocular pressure 
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elevation (Levkovitch Verbin et al., 2007). Intravitreal injection of a p38 inhibitor at the time 

of axotomy increased the number of surviving RGCs (Kikuchi et al., 2000) supporting a 

potential functional role for p38 in the regulation of RGC death. However, functional studies 

to assess the role of p38 in RGC death in experimental glaucoma are currently lacking. 

Both JNKs and p38 are direct protein targets of the apoptosis signal regulating kinase 1 

(ASK1), a SAPK and mitogen-activated protein kinase kinase kinase (MAPKKK) family 

member that plays key roles in human neurodegenerative diseases (Hattori et al., 2009). ASK1 

has been shown to activate JNK and p38 in response to diverse stress stimuli, particularly 

inflammatory cytokines and oxidative stress (Ichijo et al., 1997, Saitoh et al., 1998, Hatai et 

al., 2000, Nishitoh et al., 2002, Zhang et al., 2007, Min et al., 2008). In a recent study, Harada 

et al. demonstrated that ASK1 is primarily expressed by RGCs, and that a substantial number 

of these neurons are protected from ischemic injury in ASK1 null mice (Harada et al., 2010). 

Furthermore, both p38 MAPK and caspase-3 activation were suppressed in mice lacking 

ASK1, suggesting a role for these downstream signaling components. ASK1 deficiency was 

also shown to attenuate RGC death in mice lacking the glial glutamate/aspartate transporter 

(GLAST) (Harada et al., 2010), which display spontaneous RGC death and optic nerve 

degeneration without elevated intraocular pressure (Harada et al., 2007).  

I.5.1.2. The Bcl-2 family 

A major class of intracellular regulators of apoptosis is the Bcl-2 family, which 

comprises evolutionarily conserved proteins from worms to humans (Adams and Cory, 1998). 

Bcl-2, a gene activated by chromosomal translocation in human follicular lymphoma (Bakhshi 

et al., 1985, Tsujimoto et al., 1985, Cleary et al., 1986), was initially found to promote the 
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survival of hematopoietic cells in the absence of an essential cytokine (Vaux et al., 1988). A 

hydrophobic tail on Bcl-2 enables it to bind to the cytoplasmic face of the outer mitochondrial 

membrane, but Bcl-2 can also be present in the endoplasmic reticulum and nuclear envelope 

(Green and Reed, 1998, Zamzami et al., 1998). Bcl-2 can inhibit apoptosis by blocking the 

release of cytochrome C from the mitochondria and consequent activation of proteases 

involved in the dismantling of the cell (Zou et al., 1997, Green and Reed, 1998, Zamzami et 

al., 1998). Several Bcl-2 family members have been identified in mammals: some that inhibit 

apoptosis (e.g. Bcl-2, Bcl-XL) and others that promote programmed cell death (e.g. Bax, Bad 

and Bid) (Figure 6 and 7). Bcl-2-related proteins contain at least one of four Bcl-2 homology 

domains (BH1-4), used for protein-protein interactions among family members (Kelekar and 

Thompson, 1998). A sub-group of Bcl2-related proteins only carry a BH3 domain (e.g. Bim, 

Noxa and PUMA) and have primarily pro-apoptotic functions (Zong et al., 2001) (Figure 7). 

The pro- and anti-apoptotic members of the Bcl-2 family can interact to form heterodimers 

acting as self-regulators of each other‟s function (Oltval et al., 1993). Based on this, it was 

proposed that the relative concentration of these proteins acts as a rheostat for activation of 

apoptosis (Korsmeyer et al., 1993, Nickells, 2010).  
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Figure 7. The Bcl-2 family of proteins. The Bcl-2 family of proteins is comprised of anti-

apoptotic and pro-apoptotic members. The anti-apoptotic members include Bcl-2 and Bcl-XL, 

which contain four Bcl-2 homology (BH) domains: BH1, BH2, BH3 and BH4. They also have 

transmembrane (TM) domains. The pro-apoptotic proteins can be subdivided into two groups: 

effector and BH3-only members. The effectors proteins Bak and Bax also contain BH1-BH4 

domains, while the BH3-only proteins solely have one BH domain, BH3, which is required for 

interactions with anti-apoptotic and effector proteins. The BH3-only proteins include Noxa, 

Puma, Bim, Bid, and Bad. Source of image adapted by permission from Macmillan Publishers 

Ltd: [Nature Reviews Molecular Cell Biology] (Jesenberger and Jentsch, 2002), copyright 

(2002).  
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The function of the Bcl-2 gene family on RGC survival in acute and chronic models of 

optic nerve lesion has been studied by several groups (Nickells et al., 2008). Among anti-

apoptotic Bcl-2 family members, Bcl-XL appears to be the predominant anti-apoptotic protein 

in the rat retina (Levin et al., 1997). Both Bcl-2 and Bcl-XL retinal mRNA levels have been 

shown to decrease after optic nerve axotomy (Chaudhary et al., 1999). Consistent with this, 

AAV-mediated gene transfer of Bcl-XL promoted the survival of axotomized RGCs (Malik et 

al., 2005). Nevertheless, Bcl-2 also seems to play an important role based on initial reports 

showing that increased numbers of RGCs are found in transgenic mice overexpressing Bcl-2, 

both during developmental cell death and after optic nerve axotomy (Bonfanti et al., 1996, 

Cenni et al., 1996). More recently, gene transfer of BAG1, a Bcl-2-associated protein, 

protected RGCs in optic nerve cut or crush rat models (Planchamp et al., 2008).  

Among pro-apoptotic family members, Bax has been shown to play a pivotal role in 

the regulation of RGC death. Deletion of the Bax gene results in RGC neuroprotection 

following developmental pruning, in optic nerve cut or crush models and in DBA/2J mice 

(Mosinger Ogilvie et al., 1998, Li et al., 2000, Libby, 2005). Of interest, deletion of the pro-

apoptotic Bax gene was shown to be neuroprotective for RGC soma but failed to prevent axon 

degeneration in DBA/2J mice (Libby, 2005) suggesting a compartmentalized effect of Bax in 

neurodegeneration. Gene dosage experiments in mice carrying a single wild-type Bax allele 

showed that genetic background can influence neuronal death, including RGC loss in 

experimental glaucoma (Knudson et al., 1995, Deckwerth et al., 1998, Sun and Oppenheim, 

2003, Libby, 2005). Bax heterozygote DBA/2J mice displayed complete protection of RGCs 

while Bax heterozygote 129B6 mice exhibited substantial RGC loss (Libby, 2005, Semaan et 

al., 2010). These distinct phenotypes have been recently attributed to differential Bax 
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transcriptional activity, which leads to higher levels of Bax mRNA in susceptible RGCs from 

the 129B6 genetic background (Nickells, 2010, Semaan et al., 2010). Bax knockdown by 

injection of siRNA into the optic nerve did not enhance the survival of axotomized RGCs 

(Lingor et al., 2005), which may reflect that reduction of Bax levels achieved with this siRNA 

strategy might not have been below a minimum threshold required to confer resistance against 

cell death. 

BH3-only proteins, usually pro-apoptotic, have also been shown to be expressed by 

RGCs including Bad (Rickman et al., 1999, Huang et al., 2005c, Yang et al., 2008, 

Levkovitch-Verbin et al., 2010), Bim (Näpänkangas et al., 2003, McKernan and Cotter, 2007) 

and Bid (Huang et al., 2005a, Das et al., 2006). A recent study demonstrated that the Bad-

interacting protein 14-3-3, a scaffold protein responsible for sequestering Bad in the 

cytoplasm, is phosphorylated in ocular hypertensive eyes resulting in Bad translocation to the 

mitochondria and RGC apoptosis (Yang et al., 2008). Although the functional role of BH3-

only proteins in RGC death in glaucoma is still obscure, they have been proposed to serve as 

important molecular checkpoints in the apoptotic process, therefore future work is warranted 

to assess their contribution to neurodegeneration in this disease.  

I.5.1.3. Mitochondrial dysfunction 

The mitochondria has been aptly named the battleground of cell fate, as this organelle 

is the center stage for interactions between anti- and pro-apoptotic Bcl-2 family members 

(Kroemer, 2007). When the balance is tilted towards apoptosis, there is increased 

mitochondrial membrane permeability and release of a variety of mediators of cell death 

(Scaffidi, 1998). Mitochondrial membrane permeabilization is a point-of-no-return in the 
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apoptotic process, after which cell loss is irreversible, and it is a conserved feature of all cell 

types undergoing this death modality. In healthy cells, mitochondria typically exhibit a high 

transmembrane potential and the permeability transition pore complex (PTPC) mediates the 

exchange of metabolites. Pro-apoptotic signals have been proposed to destabilize the lipid 

organization in the mitochondrial outer membrane allowing the formation of pores and 

subsequent release of intermembrane space molecules. For example, in physiological 

conditions Bax is a cytosolic protein but, upon an apoptotic stimulus, it can insert into the 

outer mitochondrial membrane (Wolter et al., 1997) where it forms Bax homo- or hetero-

oligomeric pores (in association with Bak or truncated Bid) that facilitate the release of death-

promoting factors (Kuwana et al., 2002). Once in the cytoplasm, these proteins can activate 

caspase-dependent and caspase-independent pathways. The first mitochondrial protein shown 

to be released into the cytosol was cytochrome c, an essential protein component of the 

respiratory chain (Kluck et al., 1997, Yang et al., 1997). Once in the cytoplasm, cytochrome c 

binds to the apoptotic protease-activating factor-1 (Apaf-1) to form the apoptosome, a 

complex that recruits and activates procaspase 9 (Li et al., 1997) (Figure 6). Other well-

characterized intermembrane space proteins that are released from mitochondria during 

apoptosis include the second mitochondria-derived activator of caspases (SMAC), also known 

as DIABLO (direct inhibitor of apoptosis (IAP)-binding protein with low pI), the apoptosis-

inducing factor (AIF), endonuclease G (EndoG) and the high-temperature-requirement protein 

A2 (OMI/HTRA2) (Saelens et al., 2004). Optic nerve axotomy leads to early cytochrome c 

release in injured RGCs (Cheung et al., 2003) but, at present, the specific role of toxic 

mitochondrial proteins in RGC death in glaucoma remains ill defined. 
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RGCs have a high metabolic activity and energy demand, which is reflected by the 

numerous mitochondria in RGC soma and the intra-retinal portion of their axons (Hollander et 

al., 1995, Wang et al., 2003). Mitochondria are also present (albeit at lower densities) in the 

myelinated portion of RGC axons within the optic nerve (Bristow et al., 2002). It is possible 

that nuclear and mitochondrial DNA damage increases with age (Brasnjevic et al., 2008), 

especially considering the proximity of the mitochondrial DNA to the source of reactive 

oxygen species (ROS) within this organelle (de Souza-Pinto et al., 2008). Moreover, a study 

using mitochondria isolated from primary open angle glaucoma (POAG) patients showed 

numerous sequence alterations in the mitochondrial DNA, suggesting a pathogenic potential 

due to decreased respiratory activity (Abu Amero et al., 2006). The rate of ATP production by 

mitochondria decreases in the aging brain (Navarro and Boveris, 2007) and, given the age-

related nature of glaucoma onset and progression, it is possible that a decline in mitochondrial 

function is involved. A recent study demonstrated that the ATP content in the mouse optic 

nerve dropped with age, and that the rate of ATP decline was amplified by increased 

intraocular pressure in DBA/2J mice leading to RGC axon dysfunction (Baltan et al., 2010). A 

cellular energy crisis due to reduced ATP availability could negatively impact RGC function 

because it disables Na+/K+ ion pumps, which in turn blocks normal transduction of action 

potentials along RGC axons (Gordon et al., 1990, Ames et al., 1992, Ames, 2000).  

OPA-1, a protein embedded in the inner mitochondrial membrane, is mutated in the 

majority of patients with autosomal-dominant optic atrophy, a condition characterized by RGC 

degeneration and childhood blindness. OPA-1 is a GTPase dynamin-like protein that mediates 

mitochondrial fusion, thus loss of OPA-1 function leads to mitochondrial fragmentation, 

cytochrome C release, mitochondrial DNA damage and increased reactive oxygen species 
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(Cipolat et al., 2006). Of interest, overexpression of OPA-1 by AAV-mediated gene transfer 

increased RGC survival while decreasing the number of reactive astroglia and microglia in 

DBA/2J mice (Ju et al., 2010).  

I.5.1.4. Caspases  

Caspases are a family of aspartate-specific cysteine proteases, with homology to the 

interleukin-1-Converting Enzymes (ICE), that play central roles in the execution of the 

apoptotic death program (Thornberry and Lazebnik, 1998). Caspases are expressed as pro-

enzymes, which have little catalytic activity, and then undergo proteolytic cleavage and 

dimerization to become active (Gu et al., 1995). Caspases are categorized by their roles as 

either initiators of apoptosis (caspase-2, -8, -9, -10), executioners of apoptosis (caspase-3, -6, -

7), or mediators of inflammation (caspase-1, -4, -5, -11, -12, -13, -14) (Fan et al., 2005). 

Initiator caspases (e.g. caspase 9) contain a long N-terminal region (prodomain) with caspase 

recruitment and death effector domains that are essential for their function, including cleavage 

and activation of executioner caspases (e.g. caspase 3). The initiator caspases are thought to 

undergo auto-activation and often require the assembly of multi-component complexes 

(Adams and Cory, 2002). Effector caspases contain short (20-30 residues) prodomain 

sequences (Riedl and Shi, 2004) and, once activated, are responsible for the proteolytic 

cleavage of many protein substrates resulting in cell death. The intrinsic and extrinsic 

apoptotic pathways involve the activation of distinct initiator caspases (Figure 6). In the 

intrinsic pathway, cytochrome C is released from the mitochondria and together with Apaf-1 

and procaspase 9 forms the apoptosome, which facilitates caspase-9 activation and 

downstream cleavage of caspase-3 (Li et al., 1997). In the extrinsic pathway, an active death 

receptor recruits the intracellular adaptor protein Fas-associated death domain which in turn 
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recruits procaspase-8 to form a death-inducing signaling complex (Kischkel, 1995). Caspase-8 

is cleaved and activated through autoproteolysis leading to subsequent activation of caspase-3 

(Muzio et al., 1998).   

The expression of both initiator and effector caspases has been investigated in RGCs 

following acute or chronic optic nerve injury. Active, cleaved caspases -3, -8 and -9 have been 

detected after optic nerve transection or crush (Chaudhary et al., 1999, Kermer et al., 1999, 

Kermer et al., 2000, Weishaupt et al., 2003, Cheung et al., 2004, Grosskreutz et al., 2005, 

Homma et al., 2007), ocular hypertension (Hänninen VA, 2002, McKinnon et al., 2002a) as 

well as ischemic injury (Vidal-Sanz et al., 2000, Harada et al., 2006). To assess the role of 

apoptosis on primary and secondary waves of RGC degeneration (Yoles and Schwartz, 1998), 

RGC death was monitored for 6 months after partial lesion of the optic nerve (Levkovitch-

Verbin et al., 2003). Although caspase 3 was implicated in both waves of RGC apoptosis, it 

was active for a longer period of time and with greater intensity during the primary wave of 

RGC loss (Levkovitch Verbin et al., 2010). The inhibition of caspases to extend RGC survival 

after optic nerve injury is a strategy that has been tested with varying degrees of success. 

Intraocular injection of caspase-3 or capase-9 inhibitors promoted some RGC protection from 

axotomy-induced apoptosis (Kermer et al., 1998, Chaudhary et al., 1999, Kermer et al., 2000). 

siRNA-based gene knockdown of Apaf-1, a key mediator of caspase-induced cell death, was 

shown to enhance survival of axotomized RGCs (Lingor et al., 2005). A recent study 

demonstrated that caspase-2 is expressed and activated primarily in RGCs following optic 

nerve injury (Ahmed et al., 2011, Vigneswara et al., 2012). Moreover, inhibition of caspase-2 

expression using a chemically modified siRNA delivered intravitreally led to robust RGC 

survival after optic nerve crush or cut (Ahmed et al., 2011), as did pharmacological inhibition 
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of caspase-2 with z-VDVAD (Vigneswara et al., 2012). Caspase-6 was also recently shown to 

be upregulated in injured RGCs, and selective inhibition of caspase-6 enhanced RGC survival 

and axonal regeneration (Monnier et al., 2011). During development, caspases play an 

important role in dendritic pruning (Kuo et al., 2006, Williams et al., 2006, Schoenmann et al., 

2010), in addition to axonal pruning (Nikolaev et al., 2009, Simon et al., 2012). Although 

caspases are not implicated in Wallerian degeneration, i.e. the process of axonal degeneration 

after injury (Finn et al., 2000, Simon et al., 2012), the question of whether caspases are 

involved in dendritic remodelling occurring in the neurodegenerative context of glaucoma 

(Weber et al., 1998, Weber and Harman, 2005) has not yet been addressed. Although caspases 

do not appear to be involved in dendritic remodelling following axonal injury in drosophila 

(Tao and Rolls, 2011), their role in dendritic remodelling in a mammalian system remains 

unknown. 

The inhibitor of apoptosis (IAP) family is composed of proteins with the ability to bind 

and inhibit caspases through their baculovirus IAP repeat (BIR) domains, thus preventing 

caspase-dependent cell death (Gyrd-Hansen and Meier, 2011). The cellular inhibitor of 

apoptosis-1 (cIAP1), a member of the IAP family, is downregulated during retinal 

development at the time of RGC maturation and is nearly absent in adult RGCs (Kisiswa et al., 

2010). IAP-1, another family member, is upregulated in both the primary and secondary 

phases of RGC death after partial optic nerve lesion (Levkovitch-Verbin et al., 2011). An 

effective approach has been to target the Baculoviral IAP Repeat-Containing 4 (BIRC4), also 

known as X-linked inhibitor of apoptosis protein (XIAP), an IAP family member that can 

directly inhibit several death effectors including caspases 3, 7, and 9 (Deveraux et al., 1997). 

AAV-mediated gene transfer of BIRC4/XIAP successfully promoted RGC protection in 
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chronic and acute ocular hypertension models (McKinnon et al., 2002b, Renwick et al., 2005). 

Of interest, combined administration of adenoviral vectors encoding BIRC4/XIAP or glia-

derived neurotrophic factor (GDNF) had a synergistic effect on the survival of axotomized 

RGCs which was greater than upregulation of each individual pathway (Straten et al., 2002). 

Therefore, the use of strategies that target multiple anti-apoptotic pathways appears to be a 

promising avenue to increase RGC survival after optic nerve damage.  

I.5.1.5. Calcium-dependent mechanisms 

Calcium (Ca2+) is a vital intracellular messenger indispensable for a broad range of 

cellular functions. However, Ca2+ overload can compromise the integrity of organelles such as 

the mitochondria and the endoplasmic reticulum, and leads to activation of intracellular 

proteins that trigger neuronal death (Orrenius et al., 2003). Increased Ca2+ influx into RGC 

soma and axons has been proposed to contribute to neurodegeneration in glaucoma (Osborne 

et al., 2004, Whitmore et al., 2005, Crish and Calkins, 2011). Extracellular Ca2+ accumulation 

in RGC axons occurs through the reversal of the Na+/Ca2+ exchanger and has been implicated 

in neuronal damage following ischemia (Stys et al., 1992). In addition, Ca2+ release from intra-

axonal stores also plays a detrimental role on RGC axon function (Nikolaeva et al., 2005). 

Real-time imaging of Ca2+ dynamics in RGC-5 cells subjected to elevated hydrostatic pressure 

revealed a strong temporal correlation between calcium peak occurrence and morphological 

changes including neurite retraction and cell body shrinkage (Lee et al., 2010). When 

intracellular Ca2+ levels are elevated, either by influx from the extracellular space or by release 

from intracellular calcium stores, multiple Ca2+-dependent pro-apoptotic enzymes are 

activated. Calpain is a Ca2+-dependent, non-lysosomal cysteine protease that is expressed 

ubiquitously in mammalian cells. Calpain becomes active in rat RGCs after axotomy 
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(McKernan et al., 2007a), hypoxia (Tamada et al., 2005), and ocular hypertension (Huang et 

al., 2010). Calcineurin, a Ca2+-dependent phosphatase, is cleaved and activated by calpain in 

experimental glaucoma (Huang et al., 2010). Constitutively active calcineurin has been 

detected in the retinas of ocular hypertensive rats and was associated with Bad 

dephosphorylation, cytochrome C release and RGC death (Huang et al., 2005b).  

Several strategies aimed at the blockade of Ca2+ influx into RGCs or the inhibition of 

pro-apoptotic Ca2+-dependent proteins in these neurons have been examined with relative 

success. Pharmacological agents that reduce intraocular pressure and increase vascular 

nutrition while exerting a dual function as blockers of Ca2+ and Na+ channels have been shown 

to confer RGC neuroprotection (Osborne et al., 2005). ß-adrenoceptor antagonists such as 

betaxolol, levobetaxalol, levobunolol and timolol, compounds that increase impaired blood 

flow and are known to have Na+- and/or Ca2+-blocking activities, promote RGC 

neuroprotection and increase retinal function in experimental animals with 

ischemia/reperfusion damage or high intraocular pressure (Gross et al., 1999b, Osborne et al., 

1999a, Hirooka et al., 2000, Schuettauf et al., 2002, Wood et al., 2003, Osborne et al., 2004). 

Ca2+ channel antagonists can, in principle, block Ca2+ influx into RGCs and protect them from 

injury without the need to induce vasodilation. Other Ca2+ channel blockers including 

nifedipine, nimodipine, lomerizine, flunarizine, riluzole have also been shown to attenuate 

RGC death in animals models of ischemia and ocular hypertension (Araie and Mayama, 

2011). The transient receptor potential vanilloid 1 (TRPV1) channel was recently implicated 

in Ca2+ influx and apoptosis of primary cultured RGCs exposed to increased hydrostatic 

pressure and blockers of TRPV1 resulted in neuroprotection (Sappington et al., 2009). The 

inhibition of calpain and calcineurin following increased Ca2+ influx into RGCs has been 
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investigated in models of optic nerve injury. For example, calpain inhibitors have been shown 

to attenuate RGC death after axotomy (McKernan et al., 2007b) and ocular 

hypertension/ischemia (Oka et al., 2006a, Oka et al., 2006b). Administration of FK506, a 

calcineurin inhibitor, was shown to block caspase-9 activation and protect RGCs following 

optic nerve crush (Freeman and Grosskreutz, 2000, Grosskreutz et al., 2005) and in 

experimental glaucoma (Huang et al., 2005c).  

I.5.2. The extrinsic apoptosis pathway 

Extrinsic apoptotic signals include an array of death-receptor ligands: TNF-α, FasL, 

and TNF-related apoptosis-inducing ligands (TRAIL) that bind to their respective receptors, 

TNF-R, Fas/CD95, and TRAIL-R, to induce cell death. Death receptor activation results in the 

recruitment of intracellular adaptor Fas-associated death domain (FADD), which typically 

recruits the initiator procaspase-8 leading to caspase-8 activation followed by executioner 

caspase-3 activation and cell death. These molecular pathways are being increasingly 

recognized as important signals in the regulation of RGC death in glaucoma.  

I.5.2.1. Tumour Necrosis Factor alpha (TNFα) 

TNFα is a pro-inflammatory cytokine that acts on two distinct receptors, TNFR1 and 

TNFR2. Initially discovered for its ability to cause hemorrhagic necrosis of experimental 

cancers (Carswell et al., 1975), TNFα has emerged as a critical element in immune 

homeostasis and  mediator of apoptosis. Elevated levels of TNFα have been observed in the 

brain, cerebrospinal fluid, and serum of patients with Alzheimer‟s disease, Parkinson‟s 

disease, multiple sclerosis and HIV-dementia, and following traumatic brain injury or 

chemically-induced neurotoxicity (Sriram and O‟Callaghan, 2007). TNFα is produced as a 22-
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kDa membrane-bound precursor (pro-TNFα) that is cleaved by a cell surface trans-membrane 

protease known as ADAM17 or TACE (for TNFα-converting enzyme) to release the soluble 

17-kDa protein (Moss et al., 1997). Interestingly, both the trans-membrane and secreted forms 

of TNFα are biologically active and play distinct roles in vivo (Alexopoulou et al., 2006). The 

blockade of TNFα has been successfully introduced in the clinic for the treatment of 

rheumatoid arthritis, psoriasis and inflammatory bowel disease (Feldmann and Maini, 2001), 

however, side effects such as susceptibility to infection and auto-immune reactions have been 

reported (Slifman et al., 2003).  

Intravitreal injection of TNFα leads to RGC loss and optic nerve degeneration 

(Nakazawa et al., 2006, Lebrun-Julien et al., 2010), and RGCs lacking TNFR1 are protected 

from mechanical damage and ocular hypertension (Tezel et al., 2004, Nakazawa et al., 2006). 

Notably, TNFα and TNFR1 are upregulated in experimental glaucoma (Nakazawa et al., 2006) 

and human donor eyes with glaucoma (Yan et al., 2000, Yuan and Neufeld, 2000, Tezel et al., 

2001). Moreover, TNFα levels are increased in the aqueous humor of glaucoma patients 

(Sawada et al., 2010, Balaiya et al., 2011), and TNFα gene polymorphisms have been 

correlated with the most common form of glaucoma, Primary Open Angle Glaucoma (POAG) 

(Lin et al., 2003, Funayama et al., 2004, Fan et al., 2010, Bozkurt et al., 2011). TNFα gene 

expression is strongly induced by the transcriptional activity of NF-κB (Shakhov et al., 1990, 

Hiscott et al., 1993, Mori and Prager, 1996). A recent study demonstrated that excitotoxic 

damage leads to selective activation of NF-κB in Müller glia resulting in robust production of 

TNFα by these cells (Lebrun-Julien et al., 2009). Furthermore, inhibition of TNFα activity in 

the retina using pharmacological or genetic approaches resulted in marked RGC 

neuroprotection (Lebrun-Julien et al., 2009), thus Müller glia-derived TNFα is a potent 
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mediator of RGC death. In experimental glaucoma, upregulation of the truncated TrkC or 

p75NTR receptor activation in Müller glia has been correlated with increased TNFα production 

and RGC death (Bai et al., 2010a, Bai et al., 2010b).  

Ligand binding to TNFR1 typically triggers apoptosis by induction of caspase-8 

activation which in turn activates caspase-3 and promotes cell death (Boldin et al., 1996, Hsu 

et al., 1996). Previous studies have shown that TNF released from microglia can kill primary 

cortical neurons via a caspase 8-dependent mechanism (Velier et al., 1999, Kaushal and 

Schlichter, 2008), however, caspase-8 inhibition had no effect on glia-derived TNF-

mediatedapoptosis of RGCs in vivo (Lebrun-Julien et al., 2009). Indeed, studies using primary 

RGC cultures demonstrated that although TNF leads to the loss of the mitochondrial 

membrane potential and subsequent release of cytochrome c and AIF, caspase inhibitors did 

not confer neuroprotection (Tezel and Yang, 2004). These findings suggest that caspase-

independent events might contribute to TNF-mediated RGC death. The study of alternative 

mechanisms by which TNF might induce RGC death becomes a priority to understand how 

this cytokine contributes to neurodegeneration. Along these lines, TNFα has emerged as a 

crucial regulator of neuronal glutamate receptors in the CNS (Pickering et al., 2005, Beattie et 

al., 2010). For example, glial TNFα increases the surface expression of neuronal -amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) hence increasing synaptic 

efficacy (Beattie et al., 2002, Stellwagen and Malenka, 2006). Recently, TNFα was shown to 

mediate the insertion of Ca2+-permeable AMPAR during excitotoxic injury (Lebrun-Julien et 

al., 2009) and in experimental glaucoma (Cueva Vargas et al., 2011) which correlated with 

devastating loss of RGCs. Consistent with this, Ca2+-permeable AMPAR inhibitors protected 
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RGCs from excitotoxicity and ocular hypertension damage (Lebrun-Julien et al., 2009, Cueva 

Vargas et al., 2011). These findings highlight the possibility that TNFα mediates RGC death 

by modulating membrane insertion of Ca2+-permeable channels and increasing neuronal 

susceptibility to damage. 

I.5.2.2. Fas ligand and Fas/CD95 

Fas ligand (FasL), a member of the TNF superfamily of cytokines, was initially 

identified as a mediator of T-cell apoptosis (Kägi et al., 1994, Ju et al., 1995). FasL is 

synthesized as a trans-membrane protein which is then cleaved by metalloproteinases to 

produce soluble FasL (Kayagaki et al., 1995, Tanaka et al., 1995, Mitsiades et al., 2001). Once 

processed, soluble FasL (sFasL) is not toxic and can compete with membrane-bound FasL 

(mFasL), while the mFasL form has pro-apoptotic activity (Suda et al., 1997, Schneider et al., 

1998, Holler et al., 2003). The FasL receptor Fas/CD95 is a type I trans-membrane receptor 

which, like TNFR, belongs to the death receptor family. In addition to cell death, FasL-

induced Fas/CD95 activation mediates a host of cellular responses including inflammation, 

cell growth and proliferation (Magnusson and Vaux, 1999). Both FasL and Fas/CD95 have 

been shown to be expressed in neurons and glial cells including oligodendrocytes, astrocytes, 

microglia and Schwann cells (Choi and Benveniste, 2004). 

An early study demonstrated that the FasL-Fas/CD95 system participates in the 

maintenance of immune privilege in the eye (Griffith et al., 1995). For example, inflammatory 

cells that enter the eye in response to a viral infection are eliminated through FasL-mediated 

Fas/CD95 activation thus abrogating tissue damage. In contrast, mice that lacked functional 

FasL displayed massive infiltration of inflammatory cells into ocular tissues (Griffith et al., 
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1995). The current information on the role of FasL and Fas/CD95 in RGC death after optic 

nerve injury and in glaucoma is rather limited; however, recent studies suggest a role for this 

pathway in RGC neurodegeneration. For example, increased expression of FasL in retinal 

microglia was reported in rats with chronic ocular hypertension (Ju et al., 2006) and in 

DBA/2J mice (Gregory et al., 2011), and loss of RGCs induced by autoimmunity to heat shock 

proteins was shown to be mediated through T-cell-derived FasL (Wax et al., 2008). A recent 

study reported opposing roles of sFasL versus mFasL in RGC death induced by exogenous 

administration of TNFα or in DBA/2J mice (Gregory et al., 2011). Using mice deficient in 

FasL or mice in which cleavage of membrane-bound FasL was impaired, this group 

demonstrated that while microglia-derived sFasL played a neuroprotective role, mFasL was 

neurotoxic and caused more extensive RGC death. The interesting contrast between sFasL 

neuroprotection and mFasL neurotoxicity suggests that the ratio of these two FasL forms, 

regulated at the level of FasL cleavage by matrix metalloproteinases, might play a key role in 

experimental glaucoma (Gregory et al., 2011). However, the precise molecular mechanisms 

through which sFasL protects and mFasL kills RGCs in glaucoma remain unknown. 

I.6. TOOLS FOR GENE DELIVERY TO INJURED RGCS   

Gene therapy for blinding diseases is based on the principle that the genetic material of 

a retinal cell can be manipulated by the insertion, removal or modification of a gene with the 

objective of restoring vision. When a specific genetic mutation is linked to disease onset or 

progression, the strategy is to deliver a healthy copy of the gene to the affected cell to restore 

functional deficits and promote neuroprotection. This approach has been particularly 

successful for inherited retinal degenerations of the outer retina, characterized by 

photoreceptor loss, for which the genetic basis of disease has been well established. For 
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example, gene therapy for Leber‟s congenital amaurosis, a form of inherited retinal 

degeneration caused by deficiency of retinal pigment epithelium-specific-65-kDa protein 

(RPE65), demonstrated promising results in the laboratory and is now being tested in clinical 

trials (Buch et al., 2008, MacLaren, 2009, Cideciyan, 2010). The elucidation of the genetic 

defects underlying glaucoma and other age-related optic neuropathies has been substantially 

more difficult because the prevalent adult-onset of disease limits the number of individuals 

available for linkage analysis. At least 29 genetic loci for various forms of glaucoma and 12 

causative genes have been identified by linkage studies (Fan and Wiggs, 2010 ). However, 

further work is required to clarify the relationship between gene defects and RGC 

pathophysiology in glaucoma before gene replacement therapies for these neurons can be 

developed. In addition, multiple genes, individual risk factors and environmental factors are 

likely to contribute to glaucoma onset. For these reasons, most gene therapy strategies for 

RGC neuroprotection to date are based on enhancing neuronal survival rather than correcting 

the primary genetic defect or injury source. Since RGC death in human glaucoma typically 

occurs over several decades, strategies that do not address the initial cause but can delay RGC 

death and support functional vision throughout life are likely to be beneficial. Given the wide 

range of tools currently available for retinal gene transfer, we will focus here only on those 

that have had a significant impact on studies of RGC neuroprotection and discuss the 

advantages and disadvantages of each system. 

I.6.1. Virus vector-based approaches to target RGCs or surrounding cells  

Viruses have the evolutionary advantage of using molecular mechanisms to effectively 

transfer their genomes into infected cells. Based on this, recombinant virus-based vectors have 

been developed to infect post-mitotic cells in the retina as a means to promote transgene 
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expression. Improvements in the design of viral vectors and the methods to increase viral titers 

and purity suitable for in vivo delivery have contributed to their popularity. The ideal viral 

vector is expected to have the following characteristics: i) it can transduce large numbers of 

the target cell, ii) it mediates gene expression specifically in the infected cells, iii) it allows 

stable expression of the delivered gene product at physiologically adequate levels, iv) it is 

safe, entailing no toxic or immunological responses in the target tissue, v) it has no limitation 

in the size of DNA that it can accommodate, and vi) it is easy to produce in high purity, high 

titer stocks that can be scaled up for human use. Although at present there is not a single 

vector system that meets all these criteria, the next sections describe a number of useful viral 

vectors that are currently used in gene transfer therapies for RGC neuroprotection.  

I.6.1.1. Adeno-associated virus (AAV) 

Among all currently available viral vector systems, the adeno-associated virus (AAV) 

vector has emerged as a favored tool for targeting adult RGCs. AAV is a member of the 

parvoviridae family that requires a helper virus for replication, hence its initial identification 

as a contaminant of adenovirus preparations. The wild-type AAV houses a single-stranded 

genome of 4.7 kilo base-pairs (kb) containing two genes, rep and cap, that encode proteins 

involved in replication and encapsidation respectively. The AAV genome is flanked by two 

identical 145-bp inverted terminal repeats (ITRs), which are essential for packaging, 

replication and integration. Recombinant AAV vectors were originally derived from human 

parvovirus AAV by substituting all viral sequences, with the exception of ITRs, for a 

transgene of interest. Packaging of functional AAV particles requires the presence of the rep 

and cap gene products typically provided in trans.  

http://www.discoverymedicine.com/category/species-and-cell-types/virus/adeno-associated-virus/
http://www.discoverymedicine.com/tag/aav/
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The ability of AAV to infect distinct retinal cell-types depends on the virus serotype, 

the route of vector administration and the age of the host animal. Early studies in adult rat and 

mouse retinas identified AAV as an effective tool to transduce a large number of RGCs 

following intravitreal injection of the vector (Cheng et al., 2002b, Harvey et al., 2002), 

whereas subretinal AAV administration led to infection of photoreceptors and RPE (Ali et al., 

1996, Bennett et al., 1999). A variety of different AAV serotypes have been tested for retinal 

gene transfer, but the general consensus is that AAV serotype 2 displays the highest 

transduction of RGCs after intravitreal injection (Hellstrom et al., 2009). Although RGC-

specific promoters have not yet been used to drive transgene expression following AAV 

transduction, constitutive viral promoters such as the cytomegalovirus (CMV) promoter with a 

chicken β-actin (CBA) enhancer have been shown to be effective. The combination of a CBA-

containing promoter with the woodchuck hepatitis posttranscriptional regulatory element 

allowed transduction of ~85% of rat RGCs within 2 weeks of intravitreal virus injection 

(Martin et al., 2002). Tetracycline-regulatable promoter systems are currently being 

investigated as a means to regulate AAV-mediated transgene expression (Stieger et al., 2009). 

Other advantages of the AAV vector system for in vivo gene delivery include that it is 

not pathogenic and has not been implicated in the etiology of any known human disease, it 

mediates long-term transgene expression that can last for several years in the retina (Stieger et 

al., 2008), and it has low immunogenicity. In the absence of helper virus, wild-type AAV can 

integrate at a specific site on the q arm of chromosome 19 to establish latent infection. 

However, the lack of rep proteins has been shown to compromise integration specificity 

leading to random insertion of recombinant AAV. Although viral integration into the genome 

may contribute to the stability of AAV-mediated transgene expression, a careful evaluation of 
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the risks associated with insertional mutagenesis is required before implementing AAV-based 

therapies. A disadvantage of AAV has been the size constraint for packaging genes larger than 

4.7-kb. Although methods have been developed to increase the size of delivered transgenes by 

trans-splicing two independent vectors co-administered to the same tissue (Lai et al., 2005), 

this remains a limitation of the AAV system. The laborious work needed to produce AAV 

vectors has often been regarded as a disadvantage. However, recent improvements in the 

protocols have facilitated the preparation of high-titer and pure AAV stocks following good 

manufacturing practice (GMP), which is a requirement for use in humans.  

I.6.1.2. Adenovirus 

Adenovirus (Ad) contains a linear double-stranded DNA genome of approximately 36-

kb encapsidated in an icosahedral protein shell. Immediate early genes (E1, E2, E3 and E4) 

orchestrate viral gene transcription and suppression of the host immune response, while late 

genes are necessary for viral assembly. Ad vectors were initially generated with deletions of 

the early region 1 (E1), that contains genes required for virus replication, rendering vectors 

replication defective and more suitable for gene transfer into mammalian cells. A major 

disadvantage of these early Ad vectors is the strong cytotoxic and immune response elicited 

upon infection of the host cells. Recent versions of Ad vectors have been produced in which 

the entire viral genome, except for the terminal repeat regions required for viral assembly, has 

been replaced by exogenous gene sequences. These so-called “gutless” vectors, also referred 

to as Helper-dependent adenovirus (Hd-Ad), exhibit considerably reduced immune response 

but can only be produced in the presence of a helper virus that provides all the proteins 

required for viral replication (Kumar-Singh, 2008). These new vectors are less immunogenic 

and mediate long-term transgene expression following subretinal or intravitreal injection 
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(Takahashi et al., 2003, Oshima et al., 2004a, Oshima et al., 2004b, Lamartina et al., 2007). 

For example, intravitreal administration of helper-dependent Ad promoted transgene 

expression for up to 1 year in transduced Müller glia. 

 A cardinal feature of Ad vectors in the adult retina is that it efficiently infects non-

neuronal cell-types - epithelial cells or glia - whereas it has a poor ability to infect neurons. 

Intravitreal injection of  Ad results in preferential transduction of Müller cells, the 

predominant glial cell in the retina, and one of the primary targets for Ad infection in vivo (Di 

Polo et al., 1998). This approach has proved to be useful for delivery of genes encoding 

diffusible factors to promote neuroprotection of injured RGCs (Di Polo et al., 1998, Isenmann 

et al., 1998). Ad vectors have also been shown to effectively transduce the RPE following 

subretinal injections (Bennett et al., 1994, Li et al., 1994). Under some experimental 

conditions, limited transduction of RGCs by Ad has been observed. For example, introduction 

of Ad to the superior colliculus or to the transected optic nerve stump results in retrograde 

transport of viral particles and subsequent gene expression in some RGCs (Kugler et al., 

2000).  

I.6.1.3. Lentivirus 

Lentivirus (LV), a genus of retroviruses, consists of two identical single-stranded RNA 

molecules and enzymes required for replication within a viral protein core. Following virus 

internalization, the viral RNA is reverse transcribed into double-stranded DNA and 

transported to the cell nucleus. Viral DNA is then permanently integrated into the host genome 

to become a provirus. The retrovirus genome contains gag, pol and env genes flanked by long-

terminal repeats (LTRs), genes that encode proteins essential for replication, encapsidation, 

internalization and reverse transcription. Replication-deficient recombinant retroviral vectors 



 
 

56 
 

have been generated by substituting all viral genes for a transgene of interest with the 

exception of the cis-acting sequences required for vector propagation. Most retroviral vectors 

can only transfer genes into cells that are actively proliferating, thus their use in 

neuroprotective strategies which typically involve gene transfer into fully differentiated cells 

is rather limited. An exception to the rule is LV, such as the human immunodeficiency virus 

(HIV), which can efficiently infect non-mitotic cells. This ability relies on nuclear localization 

signals in the pre-integration complex that allow entry into the nucleus without the need for 

nuclear membrane fragmentation (Roe et al., 1993). Advantages of the LV system are its 

relatively large cloning capacity, close to 10 kb, its ability to mediate high levels of transgene 

expression in vivo and the low immunogenicity elicited in the target tissues. The main concern 

with LV vector systems is the risk of generating replication competent recombinant virus 

during the production of viral stocks. Because HIV is a human pathogen, considerable work 

has been done to increase biosafety of LV production systems. Other concerns include low 

vector titers and the risks associated with insertional mutagenesis as the vector integrates into 

the host genome. The LV tropism in the retina was first characterized by subretinal injection 

which demonstrated LV-mediated gene expression in photoreceptors and RPE cells as well as 

some bipolar and Müller cells (Miyoshi et al., 1997). Although some studies have observed 

limited transduction of the inner retina when LV vectors are delivered intravitreally (Harvey et 

al., 2002), others have reported transduction of RGCs without apparent cytotoxicity (Cheng et 

al., 2002a).  

I.6.2. DNA- and RNA-based technologies to modify RGC gene expression 

Non-viral gene transfer strategies have the advantage of circumventing the safety 

concerns that stem from the potential immunogenic response and risk of chromosomal 
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integration associated with viral vectors. The downside of non-viral approaches is that they 

yield low DNA transduction rates resulting in limited and often short-lived transgene 

expression in vivo. These gene transfer strategies might be useful when transgene expression is 

required only during a critical time window to boost RGC survival. Sustained transgene 

expression using non-viral vectors might be attainable through multiple intraocular injections, 

topical (corneal) applications or intra-nasal delivery.   

I.6.2.1. Naked DNA 

DNA plasmids or oligonucleotides are easy to prepare and can be readily injected into 

the eye, but they are not easily taken up by cells. Antisense oligonucleotides against pro-

apoptotic molecules have been delivered to RGCs by intravitreal injection or by retrograde 

transport via injection in the superior colliculus, but these approaches resulted in only modest 

protection of axotomized RGCs due to limited transfection efficiency (Isenmann S, 1999, 

Thaler S, 2006). In general, the ability of DNA molecules to transduce mammalian cells can 

be enhanced by chemical methods (e.g. liposomes, polymers); or by physical methods such 

as ballistic delivery (gene gun), micro-injection, electroporation, iontophoresis, laser or 

ultrasound. Liposomes are artificially prepared vesicular systems generated by the self-

assembly of lipid bilayers. Cationic lipids, such as cholesterol, are often used in liposome 

preparations because they effectively bind DNA to form stable lipoplexes useful for gene 

delivery. Although liposomes have been shown to facilitate intravitreal or topical delivery of 

DNA to the inner retina, the usefulness of this approach in RGC neuroprotection remains 

largely unexplored. Among the physical methods to deliver DNA plasmids to the RGCs, 

electroporation has received special attention because it is safe while providing effective gene 

transfer to these neurons in vivo. The underlying principle of gene transfer by electroporation 
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is that electrical pulses increase membrane permeability and induce electrophoretic influx of 

DNA into the target cells. Electric field strength, pulse duration and stimulation pattern can 

be controlled to achieve maximum transduction efficiency of RGCs. Transgene expression 

using electroporation can be detected as early as 2-3 days after gene delivery in vivo, which 

can last up to 3 weeks. This approach has been successfully used to deliver neurotrophic 

factor and thioredoxin genes to promote RGC survival in different models of optic nerve 

injury (Mo X, 2002, Ishikawa et al., 2004, Caprioli et al., 2009 ).  

I.6.2.2. Small Interference RNA (siRNA)  

RNA interference (RNAi) is a conserved cellular mechanism by which gene 

expression is tightly regulated in living cells. Two types of small RNA molecules are crucial 

in the RNA interference process: miRNA and siRNA. The endogenous RNA interference 

pathway is initiated in the nucleus with the expression of primary miRNAs that are cleaved 

into precursor miRNAs and exported to the cytoplasm. Once in the cytosol, miRNAs are 

further processed by Dicer nuclease and incorporated into the RNA-induced silencing 

complex (RISC). This complex is directed to a target mRNA sequence leading to its cleavage 

and degradation, ultimately resulting in gene silencing. A similar mechanism mediates the 

processing of siRNA but, in contrast to miRNA, siRNA perfectly matches the target mRNA 

sequence hence its robust ability to suppress gene expression. In general, the siRNA 

technology is based on sequence-specific silencing of gene expression using short double-

stranded RNAs of approximately 20-25 nucleotides in length. A limitation of siRNA-based 

strategies is the potential for non-specific effects that occur when the siRNA activates innate 

immune receptors, a problem that can overcome by optimizing the sequence design (Samuel-

Abraham and Leonard, 2010). siRNA has been successfully delivered to RGCs via injection 
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into the superior colliculus (Lingor et al., 2005, Koeberle et al., 2009), however, the highly 

invasive nature of this approach limits its clinical application. Alternatively, siRNA can be 

injected intravitreally leading to effective delivery to RGCs soon after administration. 

Although other retinal cells are likely to uptake siRNA delivered to the vitreous chamber, this 

strategy might be suitable for silencing genes that are specific or highly enriched in RGCs. 

Intravitreal administration of siRNA against vascular endothelial growth factor-1 in patients 

with age-related macular degeneration was well-tolerated and led to improvements in visual 

acuity (Kaiser et al., 2010). Another approach is to use viral vectors, such as AAV, to express 

functional siRNA from short hairpin RNA (shRNA) or miRNA-based shRNA (Gorbatyuk et 

al., 2007, Georgiadis et al., 2010) to increase cell-specificity and reduce off-target effects.  

I.7. OBJECTIVES OF THE THESIS, HYPOTHESES AND EXPERIMENTAL 
APPROACHES 
 

Problem: The principal mechanisms leading to RGC damage in glaucoma are not well 

understood, however it is well established that RGC loss is caused by apoptotic cell death. 

Elucidating the signaling pathways involved in RGC apoptosis is necessary to develop novel 

therapeutic approaches to slow or halt the progression of glaucoma and other optic 

neuropathies affecting RGC viability. 

Hypothesis: In this thesis, we explore the role of ASPP family members in the 

apoptotic death of RGCs. We put forth the hypothesis that the ASPP family is implicated in 

RGC apoptosis. As ASPP proteins are regulators of p53, we first assessed the role of p53 in 

axotomy-induced RGC apoptosis. We then selected two different genetic approaches to 

address the roles of ASPP proteins in RGC survival after optic nerve lesion. Firstly, we 
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administered siRNA targeting pro-apoptotic ASPP1 and ASPP2 and determined their effect on 

RGC survival. Secondly, we designed an AAV selectively expressed in RGCs encoding anti-

apoptotic iASPP and assessed its neuroprotective properties. 

Objectives: 1) To assess the role of p53 in axotomy-induced apoptotic death of RGCs, 

2) To evaluate the effect of pro-apoptotic ASPP1/2 knockdown by siRNA on improving RGC 

survival, 3) To measure the neuroprotective potential of anti-apoptotic iASPP overexpression 

in RGCs by AAV and 4) To study the molecular pathways of RGC survival mediated by 

ASPP family members. 

Experimental Protocols: 1) Animal model: The optic nerve axotomy model of 

apoptotic RGC death was carried out in adult Sprague-Dawley rats, 2) Endogenous ASPP 

expression pattern in the retina was assessed by immunohistochemistry on retinal crossections, 

3) Gene expression modulation: siRNA and AAV were delivered by intravitreal injections, 4) 

Evaluation of RGC survival: RGCs were either retrogradely labeled with Fluorogold or 

immunolabeled with a cell-specific marker (e.g. Brn3a), and the number of surviving RGCs 

was counted on flat-mounted retinas, 5) ASPP signaling components were characterized by 

western blots, qPCR and RT-PCR of retinal lysates. 
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CHAPTER 2 

 

 

II. FIRST ARTICLE: “ASPP1/2 REGULATE P53-DEPENDENT DEATH OF 
RETINAL GANGLION CELLS THROUGH PUMA AND FAS/CD95 ACTIVATION IN 

VIVO” 
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II.1. ABSTRACT 

The transcription factor p53 mediates neuronal death in a variety of stress-related and 

neurodegenerative conditions. The pro-apoptotic activity of p53 is tightly regulated by the 

apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1 and ASPP2. However, 

whether ASPP1/2 play a role in the regulation of p53-dependent neuronal death in the CNS is 

currently unknown. To address this, we asked whether ASPP1/2 contribute to the death of 

retinal ganglion cells (RGC) using in vivo models of acute optic nerve damage in mice and 

rats. Here, we show that p53 is activated in RGCs soon after injury and that axotomy-induced 

RGC death is attenuated in p53 heterozygote and null mice. We demonstrate that ASPP1/2 

proteins are abundantly expressed by injured RGCs, and that siRNA-based ASPP1 or ASPP2 

knockdown promotes robust RGC survival. Comparative gene expression analysis revealed 

that siASPP-mediated downregulation of PUMA, Fas/CD95 and Noxa depends on p53 

transcriptional activity. Furthermore, siRNA against PUMA or Fas/CD95 confers 

neuroprotection, demonstrating a functional role for these p53 targets in RGC death. Our study 

demonstrates a novel role for ASPP1 and ASPP2 in the death of RGCs, and provides evidence 

that blockade of the ASPP-p53 pathway is beneficial for central neuron survival after axonal 

injury. 

 

Keywords: Retinal Ganglion Cell, p53, Apoptosis, Ankyrin Repeat and Proline-Rich Domain-

Containing Proteins (ASPP). 
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II.2. INTRODUCTION 

 The nuclear transcription factor p53 mediates the apoptosis of post-mitotic neurons 

exposed to a wide range of insults (Culmsee and Mattson, 2005). Neuronal death induced by 

p53 has been documented in a variety of neurodegenerative diseases, suggesting a key role for 

this transcription factor in the regulation of neuronal viability after injury (Chatoo et al., 2011, 

Chang et al., 2012). Given its critical role in the control of cell death, several mechanisms 

exist to ensure tight regulation of p53 activity. The level of p53 protein is kept low in most cell 

types, including neurons (Soussi, 2000), via rapid and continuous degradation following 

ubiquitination by Mdm2 and MdmX (Wade et al., 2010). Additional control of p53 function is 

exerted via post-translational modifications such as phosphorylation, acetylation and/or 

methylation; and by interactions with protein partners (Boehme and Blattner, 2009).  

The identification of the apoptosis-stimulating proteins of p53 (ASPP), a family of 

ankyrin repeat and proline-rich domain-containing proteins, has revealed a new form of p53 

regulation. The ASPP family is composed of three members: ASPP1, ASPP2 and iASPP. 

ASPP2 was identified as a p53-binding protein in a yeast two-hybrid screen (Iwabuchi et al., 

1994), and ASPP1 was found in a homology search (Nagase et al., 1998). ASPP1 and ASPP2 

enhance p53-dependent death of tumour cells by selectively increasing the ability of p53 to 

activate pro-apoptotic gene transcription (Lopez et al., 2000, Ao et al., 2001, Samuels Lev et 

al., 2001, Bergamaschi et al., 2006), whereas iASPP inhibits p53-dependent cell death (Yang, 

1999, Bergamaschi et al., 2003). ASPP1 and ASPP2 play a role in tumour suppression by 

increasing the ability of p53 to induce apoptosis, but not cell cycle arrest, in tumour-derived 

cell lines (Samuels Lev et al., 2001, Slee et al., 2004). ASPP2 null mice die perinatally and 

although ASPP2 heterozygous mice survive to adulthood, they display a much higher 
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propensity for developing tumours compared to wild-type counterparts (Vives et al., 2006). 

This may have physiological relevance since ASPP1/2 protein levels are reduced in many 

forms of cancer, a deficit associated with poor patient‟s prognosis (Lossos et al., 2002 , Liu et 

al., 2004, Agirre et al., 2005, Liu et al., 2005).  

ASPP1/2 function has been examined solely in relation to tumour biology, but the role 

of these proteins in neuronal apoptosis has not been established. To address this, we asked 

whether ASPP1 or ASPP2 regulate death of adult retinal ganglion cells (RGCs) after axonal 

injury. RGCs are CNS neurons that undergo a predictable onset and time-course of apoptotic 

death following optic nerve axotomy. Here, we demonstrate that ASPP1 and ASPP2 proteins 

are abundantly expressed by intact and injured RGCs, and that depletion of ASPP1 and 

ASPP2 using short interfering RNAs (siRNAs) promotes RGC survival in vivo. Moreover, our 

data support a critical role for the p53-upregulated-modulator-of-apoptosis (PUMA) and 

Fas/CD95 in siASPP2-mediated survival of injured RGCs. This study identifies a novel role 

for ASPP1 and ASPP2 as important regulators of neuronal death in the injured CNS. 

 

II.3. MATERIALS AND METHODS 

II.3.1. Experimental animals 

Animal procedures were performed in accordance with the guidelines of the Canadian 

Council on Animal Care for the use of experimental animals (www.ccac.ca). All surgeries 

were carried out in adult, female Sprague-Dawley rats (180-200 g) or in p53 knockout mice 

under general anesthesia (2% Isoflurane, 0.8 liter/min). p53 heterozygote mice (B6; 129S2-
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Trp53tm1Tyj/J, Jackson Laboratory, Bar Harbor, ME), were maintained in our animal facility 

and bred to produce p53 null and wild-type littermate control mice.  

II.3.2. Axotomy-induced RGC death assay 

Selective RGC death was induced by complete transection (axotomy) of the optic 

nerve leading to rapid onset and predictable apoptotic loss of these neurons (Berkelaar et al., 

1994, Cheng et al., 2002). Prior to axotomy, RGCs were backlabeled by application of 

Fluorogold (2%, Fluorochrome, Englewood, CO) to the superior colliculus, the primary target 

of these neurons in the rodent brain. To ensure that all RGCs were fully labeled prior to axonal 

injury, axotomy was performed 7 days after Fluorogold application. The left optic nerve was 

transected at 0.5-1 mm from the optic nerve head avoiding damage to the ophthalmic artery. 

Fundus examination was performed to check the integrity of the retinal circulation after 

surgery. The right eye was never operated on and served as intact control. At 1 or 2 weeks 

post-lesion, rats were anesthetised by intraperitoneal injection of 1mL/kg of anaesthetic 

cocktail (100 mg/mL ketamine, 20 mg/mL xylazine, 10 mg/mL acepromazine) and perfused 

with 4% paraformaldehyde (PFA); the retinas were removed and flat-mounted vitreal side up 

on a glass slide for examination of the ganglion cell layer. Fluorogold-labeled neurons were 

counted within 3 square areas at distances of 1, 2 and 3 mm from the rat optic disc in each of 

the 4 retinal quadrants for a total of 12 retinal areas. In mice retinas, quantification was 

performed as in rats but sampled areas were localized at 0.25 mm, 0.625 mm and 1 mm from 

the optic disc for a total of 12 retinal areas. Microglia and macrophages, that may have 

incorporated Fluorogold after phagocytosis of dying RGCs, were excluded from our analysis 

of neuronal survival based on their morphology (Raibon et al., 2002). Fluorescent staining was 

examined with a Zeiss Axioskop 2 Plus microscope (Carl Zeiss Canada, Kirkland, QC), and 
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pictures were captured with a CCD video camera (Retiga, Qimaging, Burnaby, BC) and 

analyzed with Northern Eclipse software (Empix Imaging, Mississauga, ON).  

II.3.3. Reverse transcription and quantitative real time PCR (qPCR)   

Total RNA was isolated from individual retinas using the RNEasy Mini kit (Qiagen 

Inc., Valencia, CA) or TRIzol reagent (Invitrogen, Burlington, ON). cDNAs were generated 

from 0.5 µg-3 µg of total RNA using the MML-V reverse transcriptase (Invitrogen). PCR for 

p53 was performed using the following primers: p53 forward: 5´-

GATGGTGACGGCCTGGCTCCT-3´, p53 reverse: 5´-CTCGAAGCGCTCACGCCCAC -3´, 

ß-actin forward: 5'-CACCACTTTCTACAATGAGC-3´, ß-actin reverse: 5'-CGGTC 

AGGATCTTCATGAGG-3´, and the following cycle conditions: 94°C for 1 min, 58°C for 1 

min, 72°C for 1 min. Reaction products were separated on agarose gels, visualized under UV 

light and digitalized using Gel Doc™ EZ System (Biorad, Hercules, CA). Densitometric 

analysis was performed with ImageJ software (NIH, USA). For p53 target genes, quantitative 

real-time PCR (qPCR) was performed using the Platinum SYBRGreen SuperMix (Invitrogen) 

and a real-time PCR apparatus (ABI Prism 7000). Rat primer sets were as follows: PUMA 

forward: 5‟-CGGAGACAAGAAGAGCAACA-3‟, PUMA reverse: 5‟-TAGTTGGGCTCCAT 

TTCTGG-3‟, Fas/CD95 forward: 5‟-CCGACAACAACTGCTCAGAA-3‟, Fas/CD95 reverse: 

5‟-GGTGCAGTTCGTTTCCACTT-3‟, Bax forward: 5‟-TGCAGAGGATGATTGCTGAC-3‟, 

Bax reverse: 5‟-GATCAGCTCGGGCACTTTAG-3‟, Noxa forward: 5‟-GGAGTGCACCGG 

ACATAACT-3‟, Noxa reverse: 5‟-CTCCAATTCTCCGGAGTTGA-3‟, GAPDH forward: 5‟-

ATGGGAAGCTGGTCATCAAC-3‟, GAPDH reverse: 5‟-GTGGTTCACACCCATCACAA-

3‟. The ASPP2 primers (QT01599402) were purchased from Qiagen Inc. Mouse primer sets 

were as follows: PUMA forward: 5‟-CAAGAAGAGCAGCATCGA CA-3, PUMA reverse: 
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5‟-TAGTTGGGCTCCATTTCTGG-3‟, Fas/CD95 forward: 5‟-AAACAAACTGCACCCTGA 

CC-3‟, Fas/CD95 reverse: 5‟-CAACCATAGGCGATTTCTGG-3‟, Bax forward: 5‟-

CACGTGACCGTGGTGCGCCG-3‟: Bax reverse, 5‟-CCGCTCCCAAGCTGCTCCCCG-3‟, 

Noxa forward: 5‟-CACCGGACATAACTGTGGTT-3‟, Noxa reverse: 5‟-TTGAGCACACTC 

GTCCTTCA-3‟, HRPT forward: 5‟-ACTGTAATGATCAGTCAACGGG-3‟, and HRPT 

reverse: 5‟-GGCCTGTATCCAACACTTCG-3‟. ß-actin, HRPT and GAPDH were used as 

internal standards for data calibration, and the 2-Ct formula was used for the calculation of 

differential gene expression as described (Chatoo et al., 2009). 

II.3.4. Short interfering RNA (siRNA) 

The siRNA molecules against ASPP1, ASPP2 and Cy3-labeled siRNA were designed 

at Quark Pharmaceuticals Inc. The control siRNA against GFP has been described elsewhere 

(Hamar et al., 2004). All these siRNAs were stabilized by alternating 2‟O-methylation 

(Czauderna et al., 2003) and were synthesized by BioSpring GmbH (Frankfurt, Germany). The 

following siRNA sequences (sense strands) for ASPP1 and ASPP2 were tested with similar 

results, ASPP1: 5‟-GGAGAGAAGCACACTGAAA-3‟, 5‟-CAGCGTTTACATTTCCTAA-

3‟, and 5‟-CCGTGTTCTTGAGCAACAA-3‟; ASPP2: 5‟-AGGGAGTGTTTGAATAAGC-3‟, 

and 5‟-CACCCAGAGAACATTTATT-3‟. The siRNA sequences (sense strands) against 

PUMA: 5‟-GAGCGGCGGAGACAAGAAGAGUU-3‟; Fas/CD95: 5‟-GUGCAAGUGCAAA 

CCAGACUU-3‟; and Noxa: 5‟-CAAGGAAAGCUGACGGAGA-3‟, 5‟-GAACAGAAGUGG 

CUACGAA-3‟, 5‟-CCAUGGAUUUCCUCGGCAA-3‟, 5‟-AAGCAAUGGUCGUCGAGCA-

3‟; were purchased from Dharmacon (Thermo Scientific, Lafayette, CO). The fluorescent 

siRNA used for the visualization of intraocular distribution, sequence 5‟-GUGCCAACCUGA 
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UGCAGCU-3‟ (sense strand), contained a Cy3 fluorophore at the 3‟ end of the antisense 

strand. 

II.3.5. Intravitreal injections 

siRNA against ASPP1, ASPP2, PUMA, Fas/CD95, Noxa, siCy3 or control siGFP (2 

µg/µl, total volume: 5 µl) were injected into the vitreous chamber of the left eye using a 

Hamilton syringe fitted with a 32-gauge glass microneedle. Phosphate buffer saline (PBS) was 

used as vehicle control. The sclera was exposed and the tip of the needle was inserted at a 45° 

angle through the sclera and retina into the vitreous space using a posterior approach. This 

route of administration avoided injury to the iris or lens, which can promote RGC survival 

(Mansour-Robaey et al., 1994, Leon et al., 2000).  

II.3.6. Retinal immunohistochemistry 

 Animals were perfused transcardially with 4% PFA and retinal cryosections (16 µm) 

were prepared as previously described (Pernet et al., 2005, Lebrun-Julien et al., 2009). 

Primary antibodies were added to the retinal sections in blocking solution and incubated 

overnight at 4°C: phospho-p53 (Ser15) (20 µg/ml, Abcam, Cambridge, MA), ASPP1 (1 

µg/ml, Bethyl Laboratories, Montgomery, TX), ASPP2 (0.5 µg/ml, Bethyl Labs) or iASPP 

(0.5 µg/ml, Bethyl Laboratories). For phospho-p53 (Ser15), retinas were subjected to heat-

mediated antigen retrieval by incubating sections in 0.01 M sodium citrate in 0.5% Tween-20 

(pH 6) at 85-90oC for 30 min. Blocking peptides (2.5 µg/ml, Bethyl Laboratories) were 

incubated overnight with ASPP1 or ASPP2 primary antibodies (5:1 ratio) prior to application 

onto retinal sections. Sections were washed and incubated with secondary antibodies: anti-

rabbit IgG (1-8 µg/ml, Cy3, Alexa 594 or Alexa 488, Jackson ImmunoResearch Laboratories 
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Inc., West Grove, PA). Fluorescent labeling was observed with a microscope Zeiss AxioSkop 

2 Plus (Carl Zeiss Canada).  

II.3.7. Western blot analysis 

Whole fresh retinas were rapidly dissected and homogenized with an electric pestle 

(Kontes, Vineland, NJ) in ice-cold lysis buffer (20 mM Tris pH 8.0, 135 mM NaCl, 1% NP-

40, 0.1% SDS, and 10% glycerol supplemented with protease inhibitors).  Protein 

homogenates were centrifuged at 10,000 rpm for 10 min, and the supernatants were removed 

and resedimented to yield solubilized extracts. Retinal extracts were resolved on SDS 

polyacrylamide gels and transferred to nitrocellulose membranes (Bio-Rad Life Science, 

Mississauga, ON). Blots were incubated overnight at 4°C with each of the following primary 

antibodies: phospho-p53 (Ser15) (2 µg/ml, Abcam), ASPP1 (1 µg/ml, Bethyl Laboratories), 

ASPP2 (0.5 µg/ml, Bethyl Laboratories), iASPP (0.5 µg/ml, Bethyl Laboratories), Bax (1.5 

µg/ml, N20, Santa Cruz Biotechnologies, Santa Cruz, CA), PUMA (1 µg/ml, Abcam), Noxa 

(0.5 µg/ml, Sigma-Aldrich, Oakville, ON), Fas/CD95 (1 µg/ml, BD Transduction 

Laboratories, San Jose, CA) or -actin (0.5 µg/ml, Sigma-Aldrich). Membranes were 

incubated in anti-rabbit or anti-mouse peroxidase-linked secondary antibodies (0.5 µg/ml, 

Amersham Biosciences, Baie d‟Urfé, QC). Blots were developed with a chemiluminescence 

reagent (ECL, Amersham Biosciences) and exposed to X-OMAT imaging film (Eastman 

Kodak, Rochester, NY). Densitometric analysis was performed using Scion Image software 

(Scion Corporation, Frederick, MD) on scanned autoradiographic films obtained from a series 

of 3 independent western blots each carried out using retinal samples from distinct 

experimental groups.  
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II.3.8. Statistical analyses 

Data analysis and statistics were performed using the GraphPad Instat software 

(GraphPad Software Inc., San Diego, CA) by a one-way analysis of variance (ANOVA), 

followed by the Bonferroni post hoc test, or by a Student‟s t test. 

 

II.4. RESULTS 

II.4.1. Axotomized RGCs die in a p53-dependent manner 

p53 protein is abundantly expressed in the developing retina, but it is substantially 

downregulated during maturation (O'Connor, 2008). To establish whether p53 gene expression 

or activity increase following optic nerve injury, we carried out biochemical and 

immunohistochemical analysis of retinal samples after axotomy. While p53 mRNA levels did 

not change at one (not shown) or three days (Fig. 1A) after injury, a significant increase in 

injury-induced phosphorylation of p53 at serine 15 (S15), a key phosphorylation target during 

p53 activation (Dumaz and Meek, 1999, Unger et al., 1999) was readily detected at one day 

post-lesion (Fig. 1B). Immunostaining of Fluorogold-labeled retinas demonstrated selective 

phospho-p53 upregulation in RGCs at one day after axotomy (Fig. 1C), a time point that 

precedes the onset of RGC death in this model (Villegas-Perez et al., 1993, Berkelaar et al., 

1994). Phosphorylation of p53 at S15 has been shown to be sufficient to induce apoptosis of 

human glioma cells and leads to selective increase of the pro-apoptotic p53 targets Fas/CD95 

and PUMA (Amano et al., 2009). Consistent with axotomy-induced phosphorylation of retinal 

p53 at S15, we observed increased protein expression of PUMA and Fas/CD95 at one day 

after axotomy, whereas levels of Bax and Noxa did not change (Fig. 1D). Of interest, 
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phospho-p53 (S15), PUMA and Fas/CD95 proteins dropped to basal levels at seven days post-

injury (Figs. 1B, D) indicating that axotomy leads to early and transient activation of this 

pathway.  

To address the functional role of increased p53 activity in axotomy-induced RGC 

death, we analyzed the density of RGCs in p53 heterozygote (p53+/-) and null (p53-/-) mice 

subjected to optic nerve injury. RGCs were first labeled by application of the retrograde tracer 

Fluorogold to the superior colliculus, followed by axotomy and quantification of neuronal 

survival. Figure 1E shows that 73% of RGCs survived in p53-/- retinas and 65% in p53+/- 

retinas, while only 50% remained in wild-type retinas at one week post-lesion. The total 

density of RGCs in non-injured (intact) p53+/+, p53+/- and p53-/- adult retinas was similar 

indicating that p53 is not required for developmental programmed RGC death, consistent with 

previous findings (Li et al., 2002). These data demonstrate that optic nerve axotomy leads to 

activation of p53 in RGCs and that p53 plays a role in axotomy-induced RGC death in a dose 

dependent manner. 

II.4.2. ASPP1 and ASPP2 are expressed by adult RGCs 

 To characterize the role of ASPP1 and ASPP2 in RGC death, we first determined 

which retinal cells express them. Retinal immunohistochemistry showed abundant expression 

of endogenous ASPP1 and ASPP2 in the ganglion cell layer (GCL) (Fig. 2A, K) while other 

retinal layers were virtually devoid of ASPP1/2. Since displaced amacrine cells account for 

~40% of the total number of neurons in the GCL (Perry, 1981), we performed co-localization 

studies where RGCs were retrogradely labeled with Fluorogold (Fig. 2B, L). All Fluorogold-

labeled neurons displayed robust ASPP1 and ASPP2 immunoreactivity (Figs. 2C-F and 2M-P) 
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indicating that adult RGCs are endowed with high levels of ASPP1/2 proteins. Co-labeling 

with the nuclear marker DAPI demonstrated that ASPP1 had a nuclear and cytoplasmic 

(perinuclear) localization within RGCs (Fig. 2H-J), while ASPP2 was primarily found in RGC 

nuclei (Fig. 2R-T). ASPP1 and ASPP2 blocking peptides resulted in absence of staining (Fig. 

2 G, Q) confirming the specificity of the ASPP1 and ASPP2 antibodies.  

Following axotomy, there were no detectable changes in the levels or sub-cellular 

localization of ASPP1, ASPP2 or the anti-apoptotic member iASPP visualized by retinal 

immunohistochemistry (Fig. 3A). Analysis of protein homogenates at 24 hrs or 48 hrs (Figs. 3 

and 4) after axotomy confirmed that ASPP1, ASPP2 and iASPP levels were similar to those in 

intact, non-injured retinas (Fig. 3B, C). A time-course analysis of ASPP proteins up to five 

days post-axotomy revealed no change in their levels with respect to control retinas (not 

shown). Collectively, these data indicate that ASPP1 and ASPP2 are abundantly expressed by 

intact and axotomized RGCs.   

II.4.3. Selective knockdown of retinal ASPP1 or ASPP2 by intravitreal siRNA delivery 

 To investigate the role of ASPP1/2 proteins in retinal neuron death, we synthesized 

siRNA sequences against ASPP1 or ASPP2. We first examined whether intraocular siRNA 

delivery led to effective uptake by adult RGCs using a Cy3-tagged control siRNA. Figure 4 

shows that a single intravitreal injection of Cy3-siRNA resulted in robust Cy3 labeling in 

RGCs as early as 5 hrs after administration (Fig. 4A-F). The co-localization of Cy3 and 

Fluorogold confirmed that siRNA was rapidly taken up by RGCs after intravitreal delivery 

(Fig. 4G-I). 
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 To assess the ability of siRNAs to knockdown retinal ASPP1 or ASPP2 protein 

expression in vivo, we carried out western blot analysis of retinal homogenates from eyes that 

received a single injection of each siRNA at the time of axotomy. Administration of siRNA 

against ASPP1 (siASPP1) led to a significant reduction of retinal ASPP1 protein at 24 hrs 

after delivery, while a control siRNA against GFP (siGFP) had no effect (Fig. 4J, K). 

Importantly, siASPP1 did not reduce the protein levels of the other family members, ASPP2 or 

iASPP, confirming the specificity of the siRNA. Similarly, siRNA against ASPP2 (siASPP2) 

selectively depleted retinal ASPP2 protein levels without reducing ASPP1 or iASPP levels 

(Fig. 4L, M). Quantification of ASPP1 or ASPP2 protein levels at 24 hrs after treatment with 

siASPP2 or siASPP1, respectively, did not show a compensatory increase in these proteins 

(Fig. 4K, M, hatched bars). Endogenous levels of ASPP1 and ASPP2 proteins returned to 

basal at 48 hrs after siRNA delivery (Fig. 4J-M, black bars). Immunohistochemistry of 

axotomized retinas treated with siASPP1 or siASPP2 confirmed that siRNA-mediated 

knockdown of ASPP1/2 occurred in RGCs, visualized with Fluorogold (Fig. 4N, O). These 

data demonstrate that intravitreal delivery of siRNA results in rapid and effective uptake by 

RGCs, and that siRNAs against ASPP1 and ASPP2 promote transient depletion of ASPP 

proteins in these neurons.  

II.4.4. ASPP1 and ASPP2 knockdown protects RGCs from axotomy-induced death  

To determine if ASPP1 and ASPP2 were required for axotomy-induced RGC death, 

we asked whether targeted siRNA-mediated knockdown promoted RGC survival. For this 

purpose, RGCs were retrogradely labeled prior to optic nerve transection and intravitreal 

injections of siRNA against ASPP1 or ASPP2 were performed concomitant with axotomy. 

Flat-mounted retinas from eyes treated with siASPP1 or siASPP2 consistently displayed 
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higher densities of Fluorogold-labeled RGCs than those treated with control siGFP (Figs. 5A-

D). Quantitative analysis demonstrated that ASPP1 or ASPP2 knockdown resulted in 

substantial RGC survival relative to vehicle-treated (PBS) or control siGFP-treated eyes (Fig. 

5E), with siASPP2 promoting slightly more neuroprotection (79%: 1636 ± 62 RGCs/mm2) 

than siASPP1 (69%: 1430 ± 34 RGCs/mm2) at one week post-injury. All the siRNA sequences 

against ASPP1 or ASPP2 yielded similar results. 

We also examined the effect of siASPP1 and siASPP2 on RGC survival at two weeks 

after axotomy, a time-point when few RGCs remain alive in the absence of treatment (Lebrun-

Julien et al., 2009). Figure 5E shows that only 6% of RGCs survived in animals treated with 

vehicle or control siGFP (130 ± 7 RGCs/mm2) whereas 26% RGC survival was observed in 

animals that received siASPP1 or siASPP2 (542 ± 30 RGCs/mm2, 509 ± 24 RGCs/mm2, 

respectively). The combination of siASPP1 and siASPP2 did not increase RGC survival 

further (Fig. 5E, black bars) suggesting that ASPP1 and ASPP2 activate redundant pathways 

to promote RGC death. We conclude that ASPP1 and ASPP2 are required for p53-dependent 

axotomy-induced death of RGCs in the adult retina.  

II.4.5. siASPP2 protects axotomized RGCs through downregulation of the p53 pro-

apoptotic targets PUMA and Fas/CD95  

To investigate the mechanisms by which ASPP protein knockdown might lead to RGC 

neuroprotection after optic nerve injury, we examined changes in p53 pro-apoptotic targets at 

the mRNA and protein levels (Figs. 6, 7). We focused on siASPP2 because it confers 

enhanced neuroprotection over siASPP1. Real-time qPCR analysis of rat retinal samples at 6 

hrs after axotomy and siASPP2 administration, a time-point when siRNA is already present in 
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RGCs (Fig. 4A-I), revealed downregulation of ASPP2 and the p53 apoptotic targets PUMA, 

Fas/CD95 and Noxa compared to uninjured or control siRNA-treated retinas (Fig. 6A). There 

was no change in Bax expression levels. To further substantiate our findings, we performed 

qPCR in retinal samples from p53 null mice and wild-type littermate controls collected at 6 

hrs after axotomy with or without siASPP2 treatment. Overall, the transcript levels of PUMA, 

Fas/CD95 and Noxa were significantly reduced in non-injured or axotomized p53 null mice 

with respect to wild-type littermates, suggesting that these genes are transcriptionally 

regulated by p53 (Figs. 6B, C, E). More importantly, ASPP2 knockdown effectively reduced 

PUMA, Fas/CD95 and Noxa gene expression in axotomized retinas from p53 wild-type mice 

but not from p53 knockout mice (Figs. 6B, C, E), while Bax remained unchanged (Fig. 6D). 

siASPP2 did not reduce PUMA and CD95 expression further relative to the already reduced 

levels found in p53 null mice. Collectively, these data demonstrate that siASPP2-mediated 

knockdown of PUMA, Fas/CD95 and Noxa depends on p53 transcriptional activity. 

Western blot analysis of axotomized retinal samples at 24 hrs after siRNA 

administration showed that siASPP2 reduced PUMA and Fas/CD95 protein levels relative to 

control siGFP (Fig. 7A, B), while Bax and Noxa levels did not change with any of the 

treatments (Figs. 7C, D). These findings, supported by our observation that PUMA and 

Fas/CD95 are upregulated following axotomy (Fig. 1D) raised the possibility that they might 

play a role in the p53-dependent death of axotomized RGCs. To test this, we administered 

siRNAs against PUMA or Fas/CD95 at the time of axotomy and quantified retrogradely 

labeled RGCs at one week post-injury. siPUMA or siFas/CD95 effectively downregulated 

endogenous retinal PUMA or Fas/CD95, respectively (Fig. 7E-G). Importantly, a substantial 

increase in RGC survival was observed in retinas exposed to siPUMA (77%: 1597 ± 38 
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RGCs/mm2, n=4) or siFas/CD95 (69%: 1432 ± 71 RGCs/mm2, n=4) relative to siGFP-treated 

controls (Fig. 7H). Unlike PUMA or Fas/CD95, siASPP2-mediated decrease in Noxa 

transcript levels at 6 hrs after axotomy (Fig. 6) did not correlate with Noxa protein reduction at 

24 hrs post-injury (Fig. 7D). Since this discrepancy might simply reflect a difference in the 

kinetics of Noxa mRNA and protein synthesis (Aikawa et al., 2010, Armstrong et al., 2010), 

we also used a siRNA against Noxa to assess its role on RGC survival at one week after 

axotomy. siNoxa effectively reduced endogenous Noxa protein levels (Fig. 7G), but did not 

result in significant RGC protection (Fig. 7H) suggesting that although Noxa is 

transcriptionally regulated by p53, it does not play a prominent role in RGC death. We 

conclude that ASPP2 knockdown protects RGCs via downregulation of the p53 targets PUMA 

and Fas/CD95, and that these molecules mediate axotomy-induced RGC apoptosis. 

 

II. 5. DISCUSSION 

The present study explored the functional role of the p53 co-activators ASPP1 and 

ASPP2 in the regulation of injury-induced death of adult retinal neurons in vivo. Our data 

support four major conclusions. First, axotomy-induced RGC death is mediated inter alia 

through p53 activation in a gene dose-dependent manner. Second, ASPP1 and ASPP2 proteins 

are abundantly expressed by intact and injured RGCs. Third, selective siRNA-mediated 

knockdown of ASPP1 or ASPP2 leads to substantial RGC survival after axonal injury. Fourth, 

the neuroprotective effect of siASPP2 involves downregulation of the p53 apoptotic targets 

PUMA and Fas/CD95, and siRNAs against PUMA or Fas/CD95 effectively promote RGC 
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survival. Our data support a novel, key role of pro-apoptotic ASPP family members in the 

regulation of retinal neuron death.  

Axonal injury is a major cause of neuronal loss in the CNS of adult mammals and it is 

the primary damaging event in most optic neuropathies, including glaucoma. Using an 

axotomy model, we found that p53 phosphorylation and upregulation of the p53 pro-apoptotic 

targets PUMA and Fas/CD95 are markedly increased at one day after injury, a time that 

precedes the onset of RGC death.  In adult rodents, RGCs survive for five days after axotomy 

and then die abruptly (Villegas-Perez et al., 1993, Berkelaar et al., 1994), therefore this finding 

suggests that early p53 activation plays a causal role in injury-induced RGC loss. In support of 

this, our data further demonstrate that p53 deficiency promotes RGC survival after axotomy in 

a gene dose dependent manner and this is consistent with studies showing that inactivation of 

the p53 gene attenuates RGC death following ischemia, excitotoxicity or optic nerve crush 

(Rosenbaum et al., 1998, Li et al., 2002, Park et al., 2008).  

ASPP1 and ASPP2 are co-factors that enhance the pro-apoptotic function of p53, but 

not its ability to regulate cell cycle arrest (Samuels-Lev, 2001). ASPP proteins are known to 

interact directly with the p53 DNA-binding domain through their ankyrin and SH3 domains, 

readily increasing its transcriptional activity at pro-apoptotic gene promoters (Gorina and 

Pavletich, 1996, Patel et al., 2008). We demonstrate that RGCs express high endogenous 

levels of ASPP1 and ASPP2 that do not change after axotomy, supporting the hypothesis that 

these neurons become vulnerable to injury-induced activation of p53. It is unlikely that the 

function of ASPP1 and ASPP2 changes after injury, but rather that they are poised to act as 

co-factors to facilitate rapid p53-mediated transcriptional activation of PUMA and Fas/CD95 
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following axotomy. This is consistent with previous studies showing that other p53 co-factors, 

such as Brn-3b and SP1, can effectively modulate p53 activity without undergoing stress-

induced changes in function or expression levels (Budhram-Mahadeo et al., 2006, Dhar et al., 

2006, Chatoo et al., 2011). 

To address the functional role of ASPP1/2, we used a siRNA-based approach to 

knockdown ASPP1/2 gene expression in vivo. siRNA has been successfully delivered to 

RGCs via injection into the optic nerve or the superior colliculus (Lingor et al., 2005, 

Koeberle et al., 2009), but the invasive nature of these approaches greatly limits their 

application. We chose to deliver siRNA molecules by intravitreal injections which led to 

effective siRNA uptake by RGCs, as previously demonstrated by us (Ahmed et al., 2011). We 

cannot rule out that other retinal cells also incorporated siRNA injected into the vitreous 

chamber; however, we show that this strategy is suitable for silencing genes that are highly 

enriched in RGCs. Our results show that targeted siRNA successfully downregulated retinal 

ASPP1 and ASPP2 by ~85-90% at 24 hrs after intravitreal delivery, but this effect was 

transient since protein levels were restored by 48 hrs. In spite of this short-lived effect, our 

data demonstrate a strong neuroprotective effect of siASPP1/2 suggesting that there is a 

window of opportunity soon after axotomy in which ASPP1/2 knockdown counters the pro-

apoptotic effect of p53. This is supported by our observation that the levels of phospho-p53, 

PUMA and Fas/CD95, which are upregulated at 24 hrs after axotomy, drop to basal levels at 7 

days post-injury. Therefore, siASPP1/2 treatment to knockdown pro-apoptotic p53 targets 

during this critical period effectively attenuates RGC loss.  
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To identify the mechanism by which ASPP1/2 silencing delayed RGC death, we 

examined mRNA and protein levels of p53 pro-apoptotic targets. Comparative gene 

expression analysis revealed a substantial downregulation of PUMA, Fas/CD95 and Noxa in 

axotomized rat retinas derived from eyes treated with siASPP2 but not with control siRNA. 

Importantly, ASPP2 knockdown effectively reduced PUMA, Fas/CD95 and Noxa expression 

in axotomized retinas from p53 wild-type but not from p53 null mice, demonstrating that 

downregulation of these apoptotic genes depends on p53 transcriptional activity. At the 

protein level, siASPP2 substantially reduced retinal PUMA and Fas/CD95 proteins, while 

Noxa remained unchanged. Consistent with this, our data show that while targeted siRNA 

against Noxa failed to promote significant neuroprotection, siRNAs against PUMA or 

Fas/CD95 knockdown led to robust RGC survival indicating that these molecules play a 

functional role in axotomy-induced RGC death. PUMA is a BH3-only protein and a potent 

inducer of cell death, but so far there have been no reports of its role on RGC death. The pro-

apoptotic activity of PUMA requires its interaction with anti-apoptotic Bcl-2 family members, 

localization to the mitochondria, and induction of cytochrome c release leading to caspase 

activation and cell death (Nakano and Vousden, 2001). Biochemical studies suggest that 

PUMA regulates mitochondrial outer membrane permeabilization by binding to anti-apoptotic 

Bcl-2 proteins, which results in derepression and activation of Bax or Bak (Chipuk and Green, 

2009 ). Although we did not detect changes in Bax mRNA or protein levels in the presence of 

siASPP2, we cannot entirely rule out a decrease in Bax activity following PUMA 

downregulation. PUMA can release cytosolic p53 from its inactive complex with Bcl-XL to 

form a PUMA-Bcl-XL complex, allowing p53 to activate Bax (Chipuk et al., 2005). 
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Therefore, a decrease in PUMA levels could potentially reduce Bax activity by reducing its 

release from Bcl-XL.  

Our data also demonstrate that ASPP2 knockdown leads to downregulation of 

Fas/CD95 and that siRNA-mediated Fas/CD95 silencing was neuroprotective. Fas/CD95 is a 

death receptor of the tumour necrosis factor receptor superfamily of single-pass trans-

membrane proteins (Ashkenazi, 2002, Peter et al., 2007). Fas/CD95 is activated by Fas ligand 

(FasL) leading to the recruitment of the adaptor protein FADD (Fas-associated death domain) 

and activation of caspase 8 (Haase et al., 2008). Analysis of p53 responsive elements in the 

CD95 gene revealed a role for p53 in Fas/CD95 transcription (Schilling et al., 2009).  

Furthermore, nuclear ASPP1 can activate p53-induced Fas/CD95 expression (Aylon et al., 

2010). FasL has been shown to increase in retinal microglia in a rat model of ocular 

hypertension (Ju et al., 2006) and FasL-positive autoreactive T cells have been implicated in 

the loss of RGCs following heat shock protein immunization (Wax et al., 2008). More 

recently, the membrane-bound form of FasL was implicated in glaucomatous RGC 

degeneration (Gregory et al., 2011). Collectively, these studies support a role for Fas/CD95 in 

RGC death. Our data, specifically, demonstrate that Fas/CD95 contributes to ASPP1/2-p53 

pro-apoptotic signaling and that Fas/CD95 downregulation promotes marked RGC protection 

after axonal injury. 

Recent studies have unveiled a novel and unexpected role for p53 in the promotion of 

neurite outgrowth and axonal regeneration that is independent of its pro-apoptotic function (Di 

Giovanni and Rathore, 2012). Indeed, p53 gene silencing or dominant negative forms of p53 

have been shown to inhibit neurotrophin-dependent outgrowth in vitro and axonal 
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regeneration in vivo (Di Giovanni et al., 2006, Zhang et al., 2006, Tedeschi et al., 2009). Of 

interest, p53 acetylation at specific lysine residues is thought to be required for the p53 

growth-promoting effects (Tedeschi et al., 2008, Gaub et al., 2010). More recently, viral-

mediated overexpression of the histone acetyltransferase p300 in RGCs increased axonal 

regeneration within the injured optic nerve (Gaub et al., 2011). We have previously 

demonstrated that signaling pathways that lead to RGC survival may differ from those that 

promote RGC axon regeneration (Pernet and Di Polo, 2006). Therefore, although our current 

data demonstrate a pro-apoptotic role of p53 we cannot rule out the possibility that p53 might 

enhance RGC axon growth through activation of different signaling pathways. In this context, 

it should be of interest to assess the role of ASPP1/2 on axonal regeneration following optic 

nerve injury.  

In conclusion, we used a loss-of-function approach to identify the role of the p53 

activators ASPP1 and ASPP2 in retinal neuron death following optic nerve axotomy. Our data 

demonstrate a novel and prominent role of the pro-apoptotic ASPP1/2 proteins in the death of 

RGCs that involves the p53 targets PUMA and Fas/CD95. These findings expand our 

understanding of the molecular basis of RGC neurodegeneration, and might have implications 

for the design of strategies for neuroprotection in the injured CNS.  
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Figure 1. Axotomized RGCs die in a p53-dependent manner.  

(A) RT-PCR analysis revealed that p53 mRNA levels do not change at 1 day or 3 days (shown 

here) after axotomy with respect to non-injured retinas (Student‟s t test, p>0.05). (B) In 

contrast, a significant increase in axotomy-induced phosphorylation of p53 at serine 15 (S15) 

was readily detected at 1 day after axotomy, but returned to basal levels at 7 days post-lesion 

(ANOVA, *=p<0.05). (C) Retinal immunostaining of Fluorogold-labeled RGCs confirmed 

that p53 phosphorylation (activation) was detected in these neurons at 1 day after axotomy. 

Scale: 10 µm. (D) Protein levels of the p53 apoptotic targets PUMA and Fas/CD95 increased 

at 1 day after axotomy, but returned to normal levels at 7 days post-injury. Bax and Noxa 

remained unchanged. (E) Analysis of RGC loss quantified at 1 week after axotomy in p53 

null, heterozygote and wild-type retinas demonstrated an allelic dose dependency on p53 

(ANOVA, ***=p<0.001). Data are expressed as RGC densities (RGCs/mm2; mean ± S.D.). 
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Figure 2. ASPP1 and ASPP2 are expressed by adult RGCs.  

Retinal immunofluorescence demonstrated abundant expression of endogenous ASPP1 (A-G) 

and ASPP2 (K-Q) in RGCs visualized with the retrograde tracer Fluorogold. DAPI staining 

showed that ASPP1 is present in RGC nuclei and cytoplasm (perinuclear) (H-J), while ASPP2 

is primarily in the nuclei (R-T). ASPP1 and ASPP2 blocking peptides resulted in absence of 

staining (G, Q) confirming the specificity of the ASPP1 and ASPP2 antibodies. Scale bars: (A-

C) and (K-M) = 70 µm; (D-G) and (N-Q) = 50 µm; (H-J) and (R-T) = 10 µm. RPE: Retinal 

Pigment Epithelium; PS: Photoreceptor Segments; ONL: Outer Nuclear Layer; OPL: Outer 

Plexiform Layer; INL: Inner Nuclear Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell 

Layer. 
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Figure 3. Expression of ASPP family members after optic nerve axotomy.  

(A) The levels or sub-cellular localization of ASPP1, ASPP2 or the anti-apoptotic member 

iASPP, visualized by retinal immunohistochemistry and Fluorogold (FG) staining, did not 

change at 48 hrs after optic nerve injury. Scale bar: 10 µm. (B) Analysis of protein 

homogenates confirmed that ASPP1, ASPP2 and iASPP levels in axotomized retinas collected 

at 48 hrs were similar to those in intact, non-injured retinas. The lower panel represents the 

same blot as in the upper panel but probed with an antibody that recognizes -actin used to 

confirm equal protein loading. (C) Densitometric analysis of western blots, showing the ratio 

of ASPP proteins relative to -actin, confirmed that there is no significant change in protein 

expression after injury (Student‟s t test, p>0.05).  
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Figure 4. Selective knockdown of retinal ASPP1 or ASPP2 by intravitreal siRNA 

delivery.  

Intravitreal delivery of Cy3-tagged siRNA resulted in rapid and effective uptake by RGCs. 

Lack of Cy3 fluorescence in non-injected control retinas (A-C) contrasted with robust Cy3 

labeling in RGCs, visualized with Fluorogold (FG) (D-I), as early as 5 hrs after siRNA 

administration. (J-M) Intravitreal delivery of siRNA against ASPP1 (siASPP1) led to a 

significant reduction of retinal ASPP1 protein at 24 hrs after delivery while control siRNA 

against GFP (siGFP) had no effect (ANOVA, *=p<0.05). siASPP1 did not decrease or 

increase the protein levels of the other family members, ASPP2 or iASPP, confirming the 

specificity of the siRNA. Similarly, siRNA against ASPP2 (siASPP2) selectively depleted 

retinal ASPP2 protein levels (ANOVA, *=p<0.05) without altering ASPP1 or iASPP levels. 

Endogenous levels of both ASPP1 and ASPP2 proteins returned to basal at 48 hrs after siRNA 

delivery. Immunohistochemistry of axotomized retinas at 24 hrs after siASPP1 or siASPP2 

administration confirmed that siRNA-mediated knockdown of ASPP1/2 occurred in RGCs, 

visualized with Fluorogold (N, O). Scale bars: (A-F) = 50 µm; (G-I) = 10 µm; (N-O) = 12 µm. 

PS: Photoreceptor Segments; ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; INL: 

Inner Nuclear Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 5. ASPP1 and ASPP2 knockdown protects RGCs from axotomy-induced death.   

Fluorogold-labeled RGCs in flat-mounted retinas from a representative non-injured eye (A) or 

axotomized eyes treated with siASPP1 (B), siASPP2 (C) or control siGFP (D) at one week 

post-injury. Scale bars: 100 µm. (E) Quantitative analysis of RGC survival following 

intraocular injection of siASPP1 (hatched), siASPP2 (dark grey), combined siASPP1 and 

siASPP2 (black), control siGFP (light grey) or PBS (white) (ANOVA, ***=p<0.001; 

*=p<0.05). The density of RGCs in intact, uninjured Sprague-Dawley rat retinas is shown as 

reference (open bar). Data are expressed as the mean ± S.E.M.  
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Figure 6. siASPP2-mediated knockdown of PUMA, Fas and Noxa depends on p53 

transcriptional activity.  

(A) Real-time qPCR analysis of rat retinal samples at 6 hrs after axotomy and siASPP2 

administration revealed that ASPP2 knockdown leads to downregulation of PUMA, Fas/CD95 

and Noxa (ANOVA, ***=p<0.001; **=p<0.01), but not Bax (ANOVA, p>0.5) gene 

expression. (B-E) qPCR of retinal samples from p53 null mice and wild-type littermate 

controls collected at 6 hrs after axotomy and siASPP2 injection. Transcript levels of PUMA, 

Fas/CD95 and Noxa were significantly reduced in non-injured or axotomized p53 null mice 

with respect to wild-type littermates. Moreover, ASPP2 knockdown effectively reduced 

PUMA, Fas/CD95 and Noxa gene expression in axotomized retinas from p53 wild-type mice, 

but not from p53 knockout mice (B, C, E) (ANOVA, ***=p<0.001; **=p<0.01). Bax gene 

expression remained unchanged (D).   
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Figure 7. siASPP2 protects RGCs through downregulation of the p53 pro-apoptotic 

targets PUMA and Fas/CD95.  

(A) Western blot analysis of axotomized and injected retinal samples at 24 hrs after siRNA 

administration show that PUMA and Fas/CD95 protein levels are downregulated compared to 

control siGFP (A, B; Student‟s t test, *=p<0.05), whereas Bax and Noxa remained unchanged 

(C, D; Student‟s t test, p>0.05). Western blot analysis of axotomized and injected retinal 

samples at 24 hrs show that siFas/CD95, siPUMA and siNoxa downregulated endogenous 

retinal Fas/CD95 (E), PUMA (F) and Noxa (G) protein levels, respectively, compared to 

control siGFP (Student‟s t test *=p<0.05). (H) A significant increase in RGC survival was 

observed in retinas exposed to siPUMA (black) or siFas/CD95 (dark grey) with respect to 

siGFP-treated (light grey) or PBS-treated (white) controls (ANOVA, **=p<0.01; *=p<0.05). 

Administration of siNoxa (horizontal lines) did not result in significant RGC survival 

(ANOVA, p>0.5). The density of RGCs in intact, uninjured Sprague-Dawley rat retinas is 

shown as reference (open bar). Data are expressed as the mean ± S.E.M. 

 

  



 
 

94 
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III.1. ABSTRACT 

The transcription factor p53 mediates the apoptosis of post-mitotic neurons exposed to 

a wide range of stress stimuli. The apoptotic activity of p53 is tightly regulated by the 

apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1, ASPP2 and iASPP. 

We previously showed that the pro-apoptotic members ASPP1 and ASPP2 contribute to p53-

dependent death of retinal ganglion cells (RGCs). However, the role of the p53 inhibitor 

iASPP in the central nervous system (CNS) remains to be elucidated. To address this, we 

asked whether iASPP contributes to the survival of RGCs in an in vivo model of acute optic 

nerve damage. We demonstrate that iASPP is expressed by injured RGCs and that iASPP 

phosphorylation at serine residues, which increase iASPP affinity towards p53, is significantly 

reduced following axotomy. We show that short interference RNA (siRNA)-induced iASPP 

knockdown exacerbates RGC death, whereas adeno-associated virus (AAV)-mediated iASPP 

expression promotes RGC survival. Importantly, our data also demonstrate that increasing 

iASPP expression in RGCs downregulates p53 activity and blocks the expression of pro-

apoptotic targets PUMA and Fas/CD95. This study demonstrates a novel role for iASPP in the 

survival of RGCs, and provides further evidence of the importance of the ASPP family in the 

regulation of neuronal loss after axonal injury. 

 

Keywords: Retinal Ganglion Cell, Axotomy, Inhibitor of Apoptosis-Stimulating Protein of 
p53 (iASPP), Apoptotic Cell Death, Adeno-Associated Virus (AAV), Short Interference RNA 
(siRNA). 
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III.2. INTRODUCTION 

iASPP is the most evolutionarily conserved member of the „Ankyrin-repeat, SH3-

domain, and Proline-rich-region containing Protein‟ (ASPP) family (Bergamaschi et al., 

2003), comprised of ASPP1, ASPP2, and iASPP. The first detected form of iASPP, a 

truncated variant termed RelA-associated inhibitor (RAI), was identified as a nuclear factor 

kappa beta (NFB) inhibitor in a yeast two hybrid screen (Yang et al., 1999b). The full-length 

isoform of iASPP, which is the predominant form of this molecule expressed in cells, was 

later discovered and shown to carry a C-terminus identical to RAI (Slee et al., 2004). ASPP 

family members have attracted much attention since their implication in a novel mechanism of 

p53 apoptotic regulation was identified in cancer cells. During tumorigenesis, pro-apoptotic 

ASPP1/2 enhance p53-dependent cell death (Lopez et al., 2000, Ao et al., 2001, Samuels Lev 

et al., 2001, Bergamaschi et al., 2006), while anti-apoptotic iASPP binds to p53 to inhibit its 

ability to transactivate pro-apoptotic target genes (Yang et al., 1999a, Lopez et al., 2000, 

Bergamaschi et al., 2003, Bergamaschi et al., 2004, Bergamaschi et al., 2006, Ahn et al., 

2009).  

Since its discovery, iASPP was shown to be encoded by the Protein Phosphatase 1 

Regulatory Subunit 13-Like (PPP1R13L) gene, which is overexpressed in many tumors 

including acute leukemia (Zhang et al., 2005), breast cancer (Bergamaschi et al., 2003), 

glioblastoma (Li et al., 2011), ovarian cancer (Jiang et al., 2011), and head and neck squamous 

cell carcinoma (Liu et al., 2012). Previous studies demonstrated that overexpression of iASPP 

in a human osteosarcoma cell line increased their resistance to ultraviolet radiation or 

cisplatin-induced apoptosis, without altering p53 expression (Bergamaschi et al., 2003). Due 

to its potent inhibitory role of p53 apoptotic activity, iASPP function has been studied 
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primarily in cancer cells or in the context of tumor biology. However, the role of iASPP in 

neuronal survival and neurodegeneration is not well understood.  

To address this, we asked whether iASPP is implicated in the survival of retinal 

ganglion cells (RGC) after axonal injury. RGCs are central nervous system (CNS) neurons 

that undergo a predictable onset of apoptotic death following optic nerve transection 

(Berkelaar et al., 1994, Cheng et al., 2002). Here, we demonstrate that iASPP is expressed by 

adult intact and axotomized RGCs. We show that short interference RNA (siRNA)-mediated 

knockdown of retinal iASPP expression exacerbates RGC death, while iASPP overexpression 

using serotype 2 adeno-associated virus (AAV) promotes RGC survival in vivo. We 

demonstrate that increased iASPP expression leads to a reduction in p53 apoptotic activity as 

evidenced by downregulation of p53 phosphoserine 15 (pSer15 p53), and its targets PUMA 

and Fas/CD95. In summary, our study identifies a novel role for iASPP in the survival of 

RGCs after acute optic nerve damage, and further supports a critical role of ASPP family 

members in the regulation of neuronal loss in the injured CNS. 

 

III.3. MATERIAL AND METHODS  

III.3.1. Experimental Animals  

Animal procedures were performed in accordance with the guidelines of the Canadian 

Council on Animal Care for the use of experimental animals (www.ccac.ca). All protocols 

were approved by the Committee on the Ethics of Use of Experimental Animals at the 

University of Montreal (Permit Number: 13-018). Surgeries were carried out in adult, female 

Sprague-Dawley rats (250-275 g), and performed under general anesthesia (2% Isoflurane, 0.8 
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liter/min). The number of animals used in each experiment is indicated in the results and the 

legend of the corresponding figure. All efforts were made to minimize the suffering of 

experimental animals. 

III.3.2. Optic nerve axotomy 

The left optic nerve was exposed and carefully transected at 1 mm from the optic nerve 

head avoiding injury to the ophthalmic artery, as previously described (Cheng et al., 2002, 

Pernet et al., 2005, Wilson et al., 2013). The right eye was never operated on and served as 

internal control. Fundus examination was performed immediately after axotomy and three 

days later to check the integrity of the retinal circulation after surgery. Animals showing signs 

of compromised blood supply were excluded from the study. 

III.3.3. Short interfering RNA (siRNA) 

The siRNA sequences against iASPP were purchased from Dharmacon (Smartpool, 

Thermo Scientific, Lafayette, CO) (sense strands): 5‟-CCGCCAAAGUGGACGAAUU-3‟, 5‟-

UGACAGGCGGUUCUGACGUU-3‟, 5‟-CCGAAGGCCUGGAACGAGU-3‟, 5‟-UGGUAC 

AGCAGGCGGUGAA-3‟. The control siRNA against GFP was kindly provided by Dr. Elena 

Feinstein (Quark Pharmaceuticals Inc.) and has been described elsewhere (Hamar et al., 2004). 

III.3.4. Recombinant AAV Serotype 2 Vectors 

A murine iASPP cDNA containing a c-terminal, myc tag (synthesized by GenScript 

USA Inc., Piscataway, NJ) was inserted downstream of the Synapsin 1 (Syn1) promoter into 

an AAV vector plasmid containing bovine growth hormone poly A and AAV serotype 2 

terminal repeats. Site-directed mutagenesis of surface-exposed tyrosine residues on AAV2 

was done to prevent proteasome-mediated degradation and improve transduction efficiency as 



 
 

107 
 

previously described (Zhong et al., 2008). Vectors were packaged, concentrated, and titered 

using standard methods (Hauswirth et al., 2000). A control vector containing the green 

fluorescent protein (GFP) gene under control of the same Syn1 promoter was prepared in 

identical fashion and used as control. The titers of the vector stocks were: 1.07E+13 vector 

genomes/ml (vg/ml) for hSyn1-iASPP-myc AAV2 Triple Y-F (AAV.iASPP) and 8.23E+12 

vg/ml for Syn1-hGFP AAV2 Triple Y-F (AAV.GFP).  

III.3.5. Intravitreal injections 

siRNA against iASPP or control siGFP (2 µg/µl), as well as AAV encoding iASPP 

(AAV.iASPP, 1.07E+13 vg/ml) or control GFP (AAV.GFP, 8.23E+12 vg/ml) were injected 

into the vitreous chamber of the left eye using a Hamilton syringe fitted with a 32-gauge glass 

microneedle (total volume: 5 µl). The sclera was exposed and the tip of the needle inserted at a 

45° angle through the sclera and retina into the vitreous space using a posterior approach. This 

route of administration avoided injury to anterior eye structures, which can promote RGC 

survival (Mansour-Robaey et al., 1994, Leon et al., 2000). Surgical glue (Indermill, Tyco 

Health Care, Mansfield, MA) was used to seal the injection site. Intraocular injection of 

siRNA was performed at the time of optic nerve axotomy, while injection of AAV was 

performed two weeks prior to axotomy to allow for AAV-mediated transgene expression to 

reach a plateau (Cheng et al., 2002, Pernet et al., 2005). 

III.3.6. Retinal immunohistochemistry 

 Animals were perfused transcardially with 4% paraformaldehyde (PFA) in 0.1 M 

phosphate buffered saline (PBS, pH 7.4). Retinal cryosections (16 µm) were prepared as 

previously described (Pernet et al., 2005, Lebrun-Julien et al., 2009). For iASPP 
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immunohistochemistry, retinas were subjected to heat-mediated antigen retrieval by 

incubating sections in 0.01 M sodium citrate in 0.5% Tween-20 (pH 6) at 85oC for 15 min. 

The following primary antibodies were added to the retinal sections in blocking solution and 

incubated overnight at 4°C: RNA binding protein with multiple splicing (RBPMS), Brn3a (1 

µg/ml, Santa Cruz Biotechnologies, Santa Cruz, CA), iASPP (1 µg/ml, Bethyl Laboratories, 

Montgomery, TX), iASPP (1 µg/mL, Clone LXO49.3, 1 µg/ml, Sigma-Aldrich, Saint-Louis, 

MO), Calretinin (1:1000, Millipore, Billerica, MA), Calbindin (1:10,000, Swant, Switzerland), 

or c-myc (1 µg/mL, Abcam, Cambridge, MA). For RBPMS, rabbit and guinea pig polyclonal 

antibodies were generated against the N-terminus GGKAEKENTPSEANLQEEEVR 

(RBPMS4-24) by ProSci Inc. (Powy, CA). Sera were collected following immunization and 

affinity purified using a RBPMS polypeptide affinity column as described (Rodriguez et al., 

2013). Sections were then incubated with secondary antibodies: anti-rabbit IgG, anti-mouse 

IgG, or anti-goat IgG (1-8 µg/ml, Cy3, Alexa 594, Alexa 488, Alexa 350, Jackson 

ImmunoResearch Laboratories Inc., West Grove, PA), washed and mounted in anti-fade 

reagent (SlowFade, Molecular Probes, Eugene, OR). Fluorescent labeling was observed with a 

Zeiss AxioSkop 2 Plus microscope (Carl Zeiss Canada, Kirkland, QC).  

 

 

III.3.7. Western blot analysis  

Whole fresh retinas were rapidly dissected and homogenized with an electric pestle 

(Kontes, Vineland, NJ) in ice-cold lysis buffer (20 mM Tris pH 8.0, 135 mM NaCl, 1% NP-

40, 0.1% SDS, and 10% glycerol supplemented with protease inhibitors). For phosphorylated 

protein analysis, retinas were homogenized in ice-cold phosphorylation lysis buffer (50 mM 
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Tris HCl pH 7.4, EDTA 1 mM, NaCl 150 mM, NP40 1%, NaF 5 mM, Na deoxycholate 

0.25%, NaVO3 2 mM, supplemented with protease and phosphatase inhibitors). Protein 

homogenates were centrifuged at 10,000 rpm for 10 min, and the supernatants removed and 

resedimented for an additional 10 min to yield solubilized extracts. Retinal extracts (40 µg) 

were resolved on SDS polyacrylamide gels and transferred to nitrocellulose membranes (Bio-

Rad Life Science, Mississauga, ON). Blots were incubated overnight at 4°C with each of the 

following primary antibodies: phospho-p53 (Ser15) (2 µg/ml, Abcam), acetyl p53 (Lys 373, 

Lys 382) (1:100, Millipore), iASPP (0.5 µg/ml, Bethyl Laboratories), iASPP (0.1 µg/ml, 

Clone LXO49.3, Sigma-Aldrich), Bax (1.5 µg/ml, N20, Santa Cruz Biotechnologies), PUMA 

(1 µg/ml, Abcam), Noxa (0.5 µg/ml, Sigma-Aldrich), Fas/CD95 (1 µg/ml, BD Transduction 

Laboratories, San Jose, CA) or -actin (0.5 µg/ml, Sigma-Aldrich). Membranes were washed 

and incubated in anti-rabbit or anti-mouse peroxidase-linked secondary antibodies (0.5 µg/ml, 

Amersham Biosciences, Baie d‟Urfé, QC). Blots were developed with a chemiluminescence 

reagent (ECL clarity, BioRad, Hercules, CA) and imaged by ChemiDoc MP (BioRad). 

Densitometric analysis was performed using Image Lab software (BioRad) on scanned 

nitrocellulose membranes obtained from a series of three independent blots each carried out 

using retinal samples from distinct experimental groups.  

III.3.8. Immunoprecipitation 

Retinal extracts of AAV.iASPP or AAV.GFP injected eyes were immunoprecipitated 

with 2 µg of phosphoserine or control IgG antibodies (Millipore) following Catch and Release 

version 2.0 kit procedures (Millipore) and processed for Western blot analysis. Briefly, retinal 

extracts (400 µg) were incubated in continuous rotation for 3 hrs at 4oC in 500 µl of affinity 

beads carrying rabbit polyclonal anti-phosphoserine IgG (2 µg, Millipore). The beads were 
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washed three times with wash buffer (Millipore), and the bound proteins were eluted by 

treating the beads twice with 70 µl of elution buffer. Detection and identification of 

immunoprecipitated proteins were performed by Western blots analysis as described above. 

III.3.9. Quantification of RGC survival  

Rats were euthanized at one or two weeks post-axotomy by transcardial perfusion with 

4% PFA and both the left (optic nerve lesion) and right (intact control) retinas were dissected 

and fixed for an additional 15 min. Brn3a immunodetection on whole-mounted retinas was 

performed as described (Nadal-Nicolas et al., 2009). Briefly, whole mounted retinas were 

permeabilized in PBS containing 0.5% Triton X-100 (Fisher, Waltham, MA) by freezing them 

at -80oC for 15 min, rinsed and incubated overnight at 4oC with goat-anti-Brn3a (0.27 µg/ml, 

Santa Cruz Biotechnologies, C-20) in blocking buffer (PBS, 2% normal donkey serum, 2% 

Triton X-100). Retinas were washed and incubated for 2 hrs at room temperature with Alexa 

Fluor donkey anti-goat IgG (1 µg/ml, Jackson ImmunoResearch Laboratories Inc.). Retinas 

were then rinsed, mounted vitreal side up, and covered with anti-fade solution (SlowFade, 

Molecular Probes, Eugene, OR). Brn3a-labeled neurons were counted within three square 

areas at distances of 1, 2 and 3 mm from the rat optic disc in each of the four retinal quadrants 

for a total of twelve retinal areas. Fluorescent staining was examined with a Zeiss Axioskop 2 

Plus microscope (Carl Zeiss Canada, Kirkland, QC). Images were captured with a CCD video 

camera (Retiga, Qimaging, Burnaby, BC) and analyzed with Northern Eclipse software 

(Empix Imaging, Mississauga, ON).  
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III.3.10. Statistical analyses 

Data analysis and statistics were performed using the GraphPad Instat software 

(GraphPad Software Inc., San Diego, CA) by a one-way analysis of variance (ANOVA) 

followed by the Bonferroni post hoc test or Student‟s t test. 

 

III.4. RESULTS 

III.4.1. iASPP is abundantly expressed by injured RGCs but its activity decreases after 

axonal damage 

To characterize the role of the p53 inhibitor iASPP in RGC death, we first determined 

its cellular localization in the adult rat retina. Retinal immunohistochemistry showed 

expression of endogenous iASPP in the ganglion cell layer (GCL) and inner nuclear layer 

(INL) (Fig. 1A). As displaced amacrine cells account for ~40-50% of the total number of 

neurons in the rat GCL (Perry, 1981, Schlamp et al., 2013), we performed co-localization 

studies using antibodies against iASPP and „RNA binding protein with multiple splicing‟ 

(RBPMS), a selective RGC marker (Kwong et al., 2010, Rodriguez et al., 2013). All RBPMS-

positive neurons were immunoreactive for iASPP (Fig. 1B-F), indicating that adult RGCs are 

endowed with high levels of constitutive iASPP protein. In the INL, iASPP immunolabeling 

co-localized with calretinin, a marker of amacrine cells, and calbindin, a horizontal cell-

specific marker (Fig. 1G-J), indicating that these cells also express iASPP. There was no co-

localization between iASPP and PKC suggesting that iASPP is not expressed by rod bipolar 

cells (not shown). 
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 In adult rodents, RGCs survive for five days after axotomy and then die abruptly 

(Villegas-Perez et al., 1993, Berkelaar et al., 1994). We did not detect changes in the levels or 

cellular localization of iASPP at 24 hrs or 3 days after axotomy (Fig. 2A-C), indicating that 

iASPP levels are similar in axotomized and non-injured retinas prior to the onset of RGC 

death. This finding was confirmed by western blot analysis of iASPP protein at 6 hrs, 12 hrs, 

24 hrs, 48 hrs, 3 days and 5 days after axotomy (Fig. 2D, E). The phosphorylation of iASPP at 

serine residues increases its affinity towards p53 thus blocking the transcription of p53 pro-

apoptotic target genes (Lu et al., 2013). Therefore, we asked whether iASPP undergoes injury-

induced changes in phosphorylation at serine residues. For this purpose, immunoprecipitation 

(IP) of endogenous phosphoserine proteins was performed on retinal lysates, and the eluates 

were probed with iASPP antibody to detect endogenous iASPP phosphorylated at serine 

residues. Phosphoserine IP showed enrichment of retinal iASPP in the intact eye, whereas no 

co-precipitation of iASPP was observed in axotomized retinas (Fig. 2F). Retinal lysates 

subjected to IP with an IgG antibody, to control for non-specific interactions, did not show 

detectable bands (Fig. 2F). Our finding suggests that optic nerve injury reduces iASPP 

phosphorylation at serine residues, which might compromise its ability to inhibit p53-mediated 

apoptosis. 

III.4.2. Retinal iASPP knockdown exacerbates RGC loss after axonal damage  

 To elucidate the role of iASPP in retinal neuron death, we first undertook a loss-of-

function approach based on siRNA-mediated iASPP knockdown. We previously demonstrated 

that a single intravitreal injection of siRNA rapidly downregulates target mRNAs in RGCs 

(Wilson et al., 2013). Analysis of axotomized retinas treated with siRNA against iASPP (si-

iASPP) at the time of axotomy revealed effective knockdown of iASPP protein in the GCL as 
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early as 24 hrs after administration (Fig. 3A, B). Treatment with si-iASPP led to depletion of 

iASPP from RGCs, visualized with RBPMS (Fig. 3 D-F), whereas a control siRNA against 

GFP (si-GFP) had no effect (Fig. 3C). Similarly, western blot analysis confirmed robust 

knockdown of iASPP following si-iASPP administration in injured retinas (Fig. 3 G, H). Next, 

we asked whether iASPP depletion had an effect on axotomy-induced RGC loss. Quantitative 

analysis of Brn3a-labeled RGCs demonstrated that siRNA-mediated iASPP downregulation 

resulted in significantly greater RGC death (63%: 821 ± 68 RGCs/mm2, n=4) compared to 

siGFP-treated eyes (48%: 1154 ± 27 RGCs/mm2, n=4) at one week post-axotomy (Fig. 3I). 

These results indicate that loss of iASPP exacerbates RGC death following optic nerve injury. 

III.4.3. AAV-mediated iASPP overexpression selectively increases iASPP activity in 

RGCs  

AAV serotype 2 vectors were administered by intraocular injection to examine iASPP 

transgene expression in retinal cells in vivo. Retinas were examined two to four weeks 

following administration of AAV, the time required for optimal transgene expression using 

this vector (Cheng et al., 2002, Pernet et al., 2005). To distinguish AAV-mediated iASPP from 

endogenous iASPP, we used an antibody against the c-myc tag present only in the iASPP 

transgene. Robust c-myc staining was observed in a large number of cells in the GCL of 

retinas treated with AAV.iASPP, but not in control eyes injected with AAV.GFP (Fig. 4A, B). 

Co-localization of c-myc with RBMPS confirmed that AAV-transduced iASPP was expressed 

by RGCs (Fig. 4C-E). Quantification of double-labeled c-myc and RBMPS-positive cells 

demonstrated that ~85% of RGCs produced virally-encoded iASPP, consistent with previous 

reports showing high RGC transduction rates following intraocular administration of AAV 

serotype 2 (Cheng et al., 2002, Pernet et al., 2005). Western blot analysis confirmed virally-
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mediated iASPP upregulation in injured retinas, while control AAV.GFP had no effect (Fig. 4 

F, G). Next, we asked whether overexpression of iASPP increased its availability to undergo 

serine phosphorylation after axotomy. IP experiments demonstrated a significant enrichment 

of iASPP phosphorylated at serine residues in axotomized retinas treated with AAV.iASPP, 

while no detectable iASPP phosphoserine was observed in AAV.GFP-treated injured retinas 

(Fig. 4H). Our data demonstrate that AAV-mediated iASPP expression increases the amount 

of serine phosphorylated iASPP in axotomized retinas. 

III.4.4. AAV.iASPP protects RGCs from axotomy-induced death 

 The widespread expression of AAV-mediated iASPP in RGCs and its ability to 

activate iASPP in vivo prompted us to test its effect on RGC survival. For this purpose, 

intravitreal injections of AAV.iASPP or AAV.GFP were performed two weeks prior to 

axotomy and retinas were examined histologically at 7 and 14 days post-lesion to determine 

the density of surviving RGCs in all retinal quadrants. Flat-mounted retinas from eyes treated 

with AAV.iASPP showed higher densities of Brn3a-positive RGCs compared to AAV.GFP-

treated control retinas (Fig. 5A, B). Quantitative analysis demonstrated that iASPP 

overexpression resulted in significant RGC survival (77%: 1720 ± 61 RGCs/mm2, n=5) with 

respect to eyes that received AAV.GFP (49%: 1094 ± 55 RGCs/mm2, n=5) at one week post-

injury (Fig. 5 C). At two weeks after axotomy, only 9% of RGCs remained in eyes treated 

with AAV.GFP (221 ± 14 RGCs/mm2, n=5) whereas 27% of RGCs survived following 

AAV.iASPP treatment (615 ± 31 RGCs/mm2, n=4). These data indicate that AAV-mediated 

iASPP expression delays RGC death after injury and supports the conclusion that iASPP 

activity promotes RGC survival following axonal injury 
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III.4.5. iASPP downregulates p53 activity and the expression of pro-apoptotic targets 

PUMA and Fas/CD95 

To investigate the mechanisms by which iASPP overexpression might promote RGC 

survival, we first examined its effect on p53 post-translational modifications. Acetylation at 

p53 lysine residues 373 and 382 (Lys373, Lys382) by p300 occurs in the carboxyl-terminal 

region of p53 and has been correlated with its apoptotic function (Liu et al., 1999, Knights et 

al., 2006, Yamaguchi et al., 2009). No changes in p53 acetylation at Lys373 and Lys382 were 

detected 24 hrs after axotomy in retinas treated with AAV.iASPP or control AAV.GFP (Fig. 6 

A, B). In contrast, AAV.iASPP markedly inhibited the axotomy-induced increase in 

phosphoserine 15 (pSer15) p53 (Fig. 6 A, C), a key phosphorylation target during p53 

activation (Dumaz and Meek, 1999, Unger et al., 1999). The reduction of pSer15 p53 in 

retinas overexpressing iASPP prompted us to assess the levels of the p53 pro-apoptotic targets 

PUMA, Fas/CD95, Bax and Noxa. Western blot analysis of retinal samples showed that 

AAV.iASPP markedly reduced PUMA and Fas/CD95 protein levels relative to control 

AAV.GFP (Fig. 6 D, E, F), while Bax and Noxa did not significantly change with any of the 

treatments (Fig. 6 D, G, H). We conclude that iASPP overexpression leads to downregulation 

of PUMA and Fas/CD95, suggesting that iASPP protects RGCs by inhibiting the ability of 

p53 to activate key pro-apoptotic targets. 

 

III.5. DISCUSSION 

The critical anti-apoptotic function of iASPP is underscored by its phylogenetic 

conservation, as it is the most evolutionarily conserved inhibitor of p53 (Bergamaschi et al., 
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2003). Our study provides novel insight into the functional role of iASPP in neuronal survival, 

and allows us to draw the following conclusions. First, iASPP is abundantly expressed by 

adult RGCs, as well as a subset of amacrine and horizontal cells. Second, although total iASPP 

levels are not altered by optic nerve injury, phosphoserine iASPP levels, which serve as a 

readout of iASPP activity, were markedly reduced after axotomy. Third, selective knockdown 

of iASPP exacerbated RGC death while targeted iASPP overexpression increased 

phosphoserine iASPP levels and promoted RGC survival. Finally, we showed that AAV-

mediated iASPP expression resulted in reduced p53 activity and rapid downregulation of pro-

apoptotic targets PUMA and Fas/CD95. These data reveal a critical role for iASPP in the 

survival of CNS neurons following axonal injury. 

We report constitutive expression of iASPP in RGCs, amacrine and horizontal cells of 

the adult rat retina. Although we previously showed that the expression of pro-apoptotic ASPP 

family members, ASPP1 and ASPP2, is restricted to the ganglion cell layer (Wilson et al., 

2013), another p53 inhibitor, MDM2, is also expressed by amacrine and horizontal cells in 

adult mice (Xu et al., 2009). MDM4, which is structurally similar to MDM2, is also 

constitutively expressed in the adult retina (Guo et al., 2008), suggesting that complementary 

mechanisms are in place to ensure a tight regulation of p53 pro-apoptotic activity in retinal 

cells. Our finding that selective knockdown of iASPP by siRNA exacerbates RGC death after 

axonal injury is consistent with recent findings showing that downregulation of endogenous 

iASPP expression increases apoptosis in tumors of different origin including lung, breast, and 

prostate cancer as well as leukemia (Liu et al., 2008, Liu et al., 2009, Zhang et al., 2011, Li et 

al., 2012). Indeed, the inhibition of iASPP has been proposed as a novel strategy for treating 

tumors affected by deregulation of p53 function. Of interest, our observation that AAV-
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mediated iASPP increases RGC survival following axotomy resembles the conferred 

resistance of iASPP-overexpressing cancer cells to chemotherapeutic drugs including 

placlitaxel (Jiang et al., 2011), and cisplatin (Bergamaschi et al., 2003). Thus, our 

complementary loss-of-function and gain-of-function experiments reveal a close parallel 

between the strong anti-apoptotic role of iASPP in cancer cells and that reported here for adult 

RGCs.  

Our data show that retinal iASPP protein levels were not altered after optic nerve 

axotomy, similar to pro-apoptotic ASPP family members ASPP1 and ASPP2 (Wilson et al., 

2013). Unlike cancer or stroke models in which the total level of ASPP has been shown to 

vary, this finding supports that, instead, iASPP phosphorylation is markedly reduced after 

axonal injury suggesting loss of iASPP activity in damaged neurons. The phosphorylation of 

iASPP at serine residues Ser84 and Ser113 sites was found to increase iASPP binding affinity 

to p53 (Lu et al., 2013). PhosphoSitePlus (Hornbeck et al., 2012), a curated protein 

phosphorylation site database identified by large scale Mass Spectrometry screening from 

various tissues and cell lines, reports the identification of at least 9 other serine 

phosphorylation residues in iASPP in addition to the Ser84 and Ser113 sites. Although not 

residue-specific, our phosphoserine immunoprecipitation assay demonstrates that iASPP is 

endogenously phosphorylated in the intact retina and that the level of iASPP serine 

phosphorylation is markedly reduced following optic nerve injury. These data suggest that, in 

the axotomized eye, the affinity of retinal iASPP towards p53 is reduced and, as such, may 

contribute to tilting the fate of injured neurons towards death. This hypothesis is strengthened 

by our finding that phosphoserine iASPP increases in AAV.iASPP-treated retinas, further 

supporting the conclusion that the affinity of iASPP towards p53 is greater in retinas 
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overexpressing iASPP thereby blocking the apoptotic effect of p53 and enhancing cell 

survival.  

We previously demonstrated that RGCs die in a p53-dependent manner following 

axonal damage and that although total p53 expression levels did not change after injury, 

critical post-translational modifications occurred in vivo (Wilson et al., 2013). We detected 

phosphorylation of p53 at serine 15, which has been shown to increase the ability of p53 to 

recruit CBP/p300 acetyltransferase (Lambert et al., 1998). However, we did not detect changes 

in acetylation of p53 on Lys 373 and Lys 382 soon after axotomy, which is consistent with a 

previous study in which neither acetylation at Lys373 nor p300 acetyltransferase levels were 

altered in RGCs 24 hrs after optic nerve crush (Gaub et al., 2011). Therefore, although 

acetylation at Lys373 and Lys382 are known to be involved in fine-tuning the p53 stress 

response (Krummel et al., 2005), these modifications do not appear to play a critical role in 

early changes associated with RGC death. In agreement with this, the loss of p53 acetylation 

at its C terminus by CBP/p300 was not required for p53 transactivation in an acetylation-

deficient missense mutant mouse model (Krummel et al., 2005).  

Along with an increased affinity towards p53, phosphorylated iASPP has been reported 

to reduce pro-apoptotic gene transcription (Lu et al., 2013). Indeed, iASPP phosphorylation at 

Ser84 and Ser113 resulted in reduced transcriptional activity of p53 targets PUMA, Bax and 

PIG3 compared to wild-type ASPP in melanoma cells (Lu et al., 2013). Although we did not 

detect a change in Bax protein levels following axotomy and AAV-iASPP administration, we 

cannot rule out a role for Bax in our model as Bax activation results in its translocation from 

the cytosol to the mitochondria, and not necessarily altered transcription rates or protein levels 

(Wolter et al., 1997, Schellenberg et al., 2013). We do however show that AAV-iASPP 
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significantly increases the levels of phosphoserine iASPP, which coincided with reduced 

levels of PUMA and Fas/CD95, leading to neuronal survival. Of interest, siRNA-mediated 

knockdown of PUMA or Fas/CD95 resulted in substantial RGC protection after optic nerve 

injury [18]. Decreased PUMA and Fas/CD95 expression may rescue RGCs by affecting 

intrinsic and extrinsic apoptotic pathways, respectively. Active PUMA, a BH3-only Bcl-2 

family member and critical mediator of p53-dependent apoptosis (Jeffers et al., 2003), may act 

indirectly on pro-apoptotic Bcl-2 family members by relieving the inhibition imposed by anti-

apoptotic members (Kim et al., 2009, Ren et al., 2010). Fas/CD95, a death receptor that 

triggers apoptosis when bound by Fas ligand after recruiting the adapter protein FADD (Fas-

associated death domain) and pro-caspase 8 (Medema et al., 1997), is weakly expressed in the 

intact rodent retina (Kim and Park, 2005, Wax et al., 2008). The expression of Fas/CD95 

markedly increases in the ganglion cell layer as well as microglia during glaucomatous 

damage (Kim and Park, 2005, Ju et al., 2006). Furthermore, FADD is upregulated in RGCs 

subjected to ocular hypertension (Ju et al., 2006), and FasL-expressing microglia can induce 

apoptotic RGC death in a spontaneous mouse glaucoma model (Gregory et al., 2011). The 

reduction of Fas/CD95 levels reported here following iASPP.AAV administration may 

effectively decrease the activation of death receptor apoptotic pathways mediated by FasL, 

thereby increasing RGC survival. Overall, our data suggest that iASPP expression in RGCs is 

required as a molecular checkpoint to ensure that p53 activity is kept low and under tight 

control in healthy cells. Specifically, iASPP is likely to inhibit the ability of p53 to stimulate 

pro-apoptotic retinal targets, including PUMA and Fas/CD95, thus preventing or attenuating 

p53-dependent neuronal death.  
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In conclusion, we identify a novel role for the highly conserved p53 inhibitor iASPP in 

the survival of retinal neurons subjected to axonal injury. Our findings expand our current 

understanding of the role of the ASPP family of p53 regulators in neurodegeneration which 

could prove beneficial for the design of strategies aimed at curtailing neuronal loss in the 

injured CNS. 

 

Acknowledgements: We thank Dr. Timothy E. Kennedy (Montreal Neurological Institute, 

McGill University) for comments on the manuscript, and Dr. Elena Feinstein (Quark 

Pharmaceuticals Inc.) for kindly providing the siRNA against GFP.  

  



 
 

121 
 

III.6. REFERENCES  
 

Ahn J, Byeon I-J, Byeon C-H, Gronenborn A (Insight into the structural basis of pro- and 
antiapoptotic p53 modulation by ASPP proteins. J Biol Chem 284:13812-13822.2009). 

Ao Y, Rohde LH, Naumovski L (p53-interacting protein 53BP2 inhibits clonogenic survival 
and sensitizes cells to doxorubicin but not paclitaxel-induced apoptosis. Oncogene 
20:2720-2725.2001). 

Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X (ASPP1 and ASPP2: 
common activators of p53 family members. Mol Cell Biol 24:1341-1350.2004). 

Bergamaschi D, Samuels Y, O'Neil N, Trigiante G, Crook T, Hsieh J, O'Connor D, Zhong S, 
Campargue I, Tomlinson M, Kuwabara P, Lu X (iASPP oncoprotein is a key inhibitor 
of p53 conserved from worm to human. Nat Genet 33:162-167.2003). 

Bergamaschi D, Samuels Y, Sullivan A, Zvelebil M, Breyssens H, Bisso A, Del Sal G, Syed 
N, Smith P, Gasco M, Crook T, Lu X (iASPP preferentially binds p53 proline-rich 
region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet 
38:1133-1141.2006). 

Berkelaar M, Clarke DB, Wang Y-C, Bray GM, Aguayo AJ (Axotomy results in delayed 
death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368-
4374.1994). 

Cheng L, Sapieha P, Kittlerová P, Hauswirth WW, Di Polo A (TrkB gene transfer protects 
retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 22:3977-
3986.2002). 

Dumaz N, Meek DW (Serine15 phosphorylation stimulates p53 transactivation but does not 
directly influence interaction with HDM2. EMBO J 18:7002-7010.1999). 

Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S (The 
histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134:2134-
2148.2011). 

Gregory M, Hackett C, Abernathy E, Lee K, Saff R, Hohlbaum A, Moody K-S, Hobson M, 
Jones A, Kolovou P, Karray S, Giani A, John SWM, Chen D, Marshak Rothstein A, 
Ksander B (Opposing roles for membrane bound and soluble Fas ligand in glaucoma-
associated retinal ganglion cell death. PLoS ONE 6:e17659-e17659.2011). 

Guo Y, Pajovic S, Gallie B (Expression of p14ARF, MDM2, and MDM4 in human 
retinoblastoma. Biochem Biophys Res Commun 375:1-5.2008). 

Hamar P, Song E, Kokeny G, Chen A, Ouyang N, Lieberman J (Small interfering RNA 
targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad 
Sci U S A 101:14883-14888.2004). 

Hauswirth WW, Lewin AS, Zolotukhin S, Muzyczka N (Production and purification of 
recombinant adeno-associated virus. Methods Enzymol 316:743-761.2000). 

Hornbeck P, Kornhauser J, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan 
M (PhosphoSitePlus: a comprehensive resource for investigating the structure and 
function of experimentally determined post-translational modifications in man and 
mouse. Nucleic Acids Res 40:D261-D270.2012). 

Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden 
T, Ihle JN, McKinnon PJ, Cleveland JL, Zambetti GP (Puma is an essential mediator 
of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321-328.2003). 



 
 

122 
 

Jiang L, Siu MKY, Tam K-F, Lu X, Lam EWF, Ngan HYS, Le X-F, Wong ESY, Monteiro L, 
Chan H-Y, Cheung ANY (iASPP and chemoresistance in ovarian cancers: effects on 
paclitaxel-mediated mitotic catastrophe. Clin Cancer Res 17:6924-6933.2011). 

Ju KR, Kim HS, Kim JH, Lee NY, Park CK (Retinal glial cell responses and Fas/FasL 
activation in rats with chronic ocular hypertension. Brain Res 1122:209-221.2006). 

Kim H, Tu H-C, Ren D, Takeuchi O, Jeffers J, Zambetti G, Hsieh JJD, Cheng EHY (Stepwise 
activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial 
apoptosis. Mol Cell 36:487-499.2009). 

Kim HS, Park CK (Retinal ganglion cell death is delayed by activation of retinal intrinsic cell 
survival program. Brain Res 1057:17-28.2005). 

Knights C, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong A, Zhang 
X, Beerman T, Pestell R, Avantaggiati M (Distinct p53 acetylation cassettes 
differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533-
544.2006). 

Krummel K, Lee C, Toledo F, Wahl G (The C-terminal lysines fine-tune P53 stress responses 
in a mouse model but are not required for stability control or transactivation. Proc Nat 
Acad Sci USA 102:10188-10193.2005). 

Kwong JMK, Caprioli J, Piri N (RNA binding protein with multiple splicing: a new marker 
for retinal ganglion cells. Invest Ophthalmol Vis Sci 51:1052-1058.2010). 

Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (Phosphorylation of p53 
serine 15 increases interaction with CBP. J Biol Chem 273:33048-33053.1998). 

Lebrun-Julien F, Morquette B, Douillette A, Saragovi HU, Di Polo A (Inhibition of p75NTR 
in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol Cell 
Neurosci 40:410-420.2009). 

Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (Lens injury stimulates axon regeneration in 
the mature rat optic nerve. J Neurosci 20:4615-4626.2000). 

Li G, Wang R, Gao J, Deng K, Wei J, Wei Y (RNA interference-mediated silencing of iASPP 
induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human 
glioblastoma cells. Mol Cell Biochem 350:193-200.2011). 

Li S, Shi G, Yuan H, Zhou T, Zhang Q, Zhu H, Wang X (Abnormal expression pattern of the 
ASPP family of proteins in human non-small cell lung cancer and regulatory functions 
on apoptosis through p53 by iASPP. Oncol Rep 28:133-140.2012). 

Liu H, Wang M, Diao S, Rao Q, Zhang X, Xing H, Wang J (siRNA-mediated down-regulation 
of iASPP promotes apoptosis induced by etoposide and daunorubicin in leukemia cells 
expressing wild-type p53. Leukemia Res 33:1243-1248.2009). 

Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (p53 
sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA 
damage. Mol Cell Biol 19:1202-1209.1999). 

Liu Z-J, Cai Y, Hou L, Gao X, Xin H-M, Lu X, Zhong S, Gu S-Z, Chen J (Effect of RNA 
interference of iASPP on the apoptosis in MCF-7 breast cancer cells. Cancer Invest 
26:878-882.2008). 

Liu Z, Huang D, Liu Y, Zhang X, Liu L, Li G, Dai Y, Tan H, Xiao J, Tian Y (Elevated 
expression of iASPP in head and neck squamous cell carcinoma and its clinical 
significance. Med Oncol 29:3381-3388.2012). 



 
 

123 
 

Lopez CD, Ao Y, Rohde LH, Perez TD, O'Connor DJ, Lu X, Ford JM, Naumovski L 
(Proapoptotic p53-interacting protein 53BP2 is induced by UV irradiation but 
suppressed by p53. Mol Cell Biol 20:8018-8025.2000). 

Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, Ratnayaka I, Sullivan A, Brown N, 
Endicott J, Knapp S, Kessler B, Middleton M, Siebold C, Jones EY, Sviderskaya E, 
Cebon J, John T, Caballero O, Goding C, Lu X (Restoring p53 function in human 
melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear 
iASPP. Cancer Cell 23:618-633.2013). 

Mansour-Robaey S, Clarke DB, Wang Y-C, Bray GM, Aguayo AJ (Effects of ocular injury 
and administration of brain-derived neurotrophic factor on survival and regrowth of 
axotomized retinal ganglion cells. Proc Natl Acad Sci USA 91:1632-1636.1994). 

Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME 
(FLICE is activated by association with the CD95 death-inducing signaling complex 
(DISC). EMBO J 16:2794-2804.1997). 

Nadal-Nicolas F, Jimenez-Lopez M, Sobrado Calvo P, Nieto-Lopez L, Canovas-Martinez I, 
Salinas Navarro M, Vidal Sanz M, Agudo M (Brn3a as a marker of retinal ganglion 
cells: qualitative and quantitative time course studies in naive and optic nerve-injured 
retinas. Invest Ophthalmol Vis Sci 50:3860-3868.2009). 

Pernet V, Hauswirth WW, Di Polo A (Extracellular signal-regulated kinase 1/2 mediates 
survival, but not axon regeneration, of adult injured central nervous system neurons in 
vivo. J Neurochem 93:72-83.2005). 

Perry VH (Evidence for an amacrine cell system in the ganglion cell layer of the rat retina. 
Neurosci 6:931-944.1981). 

Ren D, Tu H-C, Kim H, Wang G, Bean G, Takeuchi O, Jeffers J, Zambetti G, Hsieh JJD, 
Cheng EHY (BID, BIM, and PUMA are essential for activation of the BAX- and 
BAK-dependent cell death program. Science 330:1390-1393.2010). 

Rodriguez A, de Sevilla Muller LP, Brecha N (The RNA binding protein RBPMS is a 
selective marker of ganglion cells in the mammalian retina. J Comp Neurol (In 
Press).2013). 

Samuels Lev Y, O'Connor D, Bergamaschi D, Trigiante G, Hsieh J, Zhong S, Campargue I, 
Naumovski L, Crook T, Lu X (ASPP proteins specifically stimulate the apoptotic 
function of p53. Mol Cell 8:781-794.2001). 

Schlamp C, Montgomery A, Mac Nair C, Schuart C, Willmer D, Nickells R (Evaluation of the 
percentage of ganglion cells in the ganglion cell layer of the rodent retina. Mol Vis 
19:1387-1396.2013). 

Slee E, Gillotin Sb, Bergamaschi D, Royer C, Llanos S, Ali S, Jin B, Trigiante G, Lu X (The 
N-terminus of a novel isoform of human iASPP is required for its cytoplasmic 
localization. Oncogene 23:9007-9016.2004). 

Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M, Haupt Y (Mutations in 
serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18:3205-
3212.1999). 

Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ (Rapid and 
protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of 
adult rats. J Neurobiol 24:23-36.1993). 

Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ 
(Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal 



 
 

124 
 

ganglion cell neurons via activated T-cell-derived Fas-ligand. J Neurosci 28:12085-
12096.2008). 

Wilson A, Morquette B, Abdouh M, Unsain Ns, Barker P, Feinstein E, Bernier G, Di Polo A 
(ASPP1/2 regulate p53-dependent death of retinal ganglion cells through PUMA and 
Fas/CD95 activation in vivo. J Neurosci 33:2205-2216.2013). 

Xu X, Fang Y, Lee T, Forrest D, Gregory Evans C, Almeida D, Liu A, Jhanwar S, Abramson 
D, Cobrinik D (Retinoblastoma has properties of a cone precursor tumor and depends 
upon cone-specific MDM2 signaling. Cell 137:1018-1031.2009). 

Yamaguchi H, Woods N, Piluso L, Lee H-H, Chen J, Bhalla K, Monteiro A, Liu X, Hung M-
C, Wang H-G (p53 acetylation is crucial for its transcription-independent proapoptotic 
functions. J Biol Chem 284:11171-11183.2009). 

Yang J, Hori M, Sanda T, Okamoto T (Identification of a novel inhibitor of nuclear factor-
kappaB, RelA-associated inhibitor. J Biol Chem 274:15662–15670.1999a). 

Yang JP, Hori M, Sanda T, Okamoto T (Identification of a novel inhibitor of nuclear factor-
kappaB, RelA-associated inhibitor. J Biol Chem 274:15662-15670.1999b). 

Zhang B, Xiao HJ, Chen J, Tao X, Cai LH (Inhibitory member of the apoptosis-stimulating 
protein of p53 (ASPP) family promotes growth and tumorigenesis in human p53-
deficient prostate cancer cells. Prostate Cancer Prostatic Dis 14:219-224.2011). 

Zhang X, Wang M, Zhou C, Chen S, Wang J (The expression of iASPP in acute leukemias. 
Leukemia Res 29:179-183.2005). 

Zhong L, Li B, Mah C, Govindasamy L, Agbandje McKenna M, Cooper M, Herzog R, 
Zolotukhin I, Warrington K, Weigel-Van Aken KA, Hobbs J, Zolotukhin S, Muzyczka 
N, Srivastava A (Next generation of adeno-associated virus 2 vectors: point mutations 
in tyrosines lead to high-efficiency transduction at lower doses. Proc Nat Acad Sci 
USA 105:7827-7832.2008). 

 

  



 
 

125 
 

Figure 1. Adult RGCs express iASPP. 

Endogenous retinal iASPP was detected by immunofluorescence in the ganglion cell layer 

(GCL) and inner nuclear layer (INL) (A, C, D, and G). iASPP staining in RGCs was 

confirmed using the RGC-specific marker RBPMS (D-F). iASPP was also detected in 

amacrine and horizontal cells, visualized with calretinin (H,J, arrows) and calbindin (I,J, 

arrows), respectively. Scale bars: (A-C) = 50 µm; (D-J) = 20 µm. PS: Photoreceptor 

Segments; ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; INL: Inner Nuclear 

Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 2. iASPP protein and phosphoserine levels after axotomy. 

Retinal iASPP expression and localization did not change at 24 hrs or 3 days after optic nerve 

injury compared to intact eyes (A-C). Scale bar: 10 µm. Analysis of protein homogenates from 

axotomized retinas collected at 6, 12, 24, 48 hrs, 3 and 5 days confirmed that iASPP levels 

were similar to those in intact, non-injured retinas. The lower panel represents the same blot as 

in the upper panel but probed with an antibody that recognizes -actin used to confirm equal 

protein loading (D). Densitometric analysis of western blots, showing the ratio of iASPP 

protein relative to -actin, confirmed that there is no significant change in protein levels after 

injury (E) (ANOVA, p>0.05). Phosphoserine immunoprecipitation (IP) of intact and 

axotomized retinas probed with iASPP antibody revealed a decrease in phosphoserine iASPP 

at 24 hrs after axotomy. IP of retinal homogenates with an IgG antibody was included as 

control for non-specific interactions (F). ONL: Outer Nuclear Layer; OPL: Outer Plexiform 

Layer; INL: Inner Nuclear Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 3. Selective siRNA knockdown of iASPP exacerbates axotomy-induced RGC 

death. 

A significant reduction of iASPP in the GCL was observed by immunohistochemistry of 

axotomized retinas at 24 hrs after intravitreal delivery of siRNA against iASPP (si-iASPP) 

compared to intact retinas, while control siRNA against GFP (siGFP) had no effect (A-C). 

RBPMS labeling confirmed that siRNA-mediated knockdown of iASPP occurred in RGCs (D-

F). Scale bars: (A-C) = 50 µm; (D-F) = 15 µm. Western blot analysis confirmed that 

intravitreal delivery of si-iASPP led to marked reduction of retinal iASPP protein at 24 hrs 

after delivery, while siGFP had no effect (G, H; Student‟s T-test, ***=p<0.001). Quantitative 

analysis of RGC survival at one week after axotomy following intraocular injection of si-

iASPP (black), or control siGFP (grey) (n=4/group, ANOVA, *=p<0.05). The density of 

RGCs in intact, uninjured Sprague-Dawley rat retinas is shown as reference (open bar). Data 

are expressed as the mean ± S.E.M. ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; 

INL: Inner Nuclear Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 4. Targeted overexpression of iASPP in RGCs increases iASPP phosphoserine 

levels post-axotomy. 

AAV-mediated iASPP expression was distinguished from endogenous iASPP with an 

antibody against the c-myc tag encoded only in iASPP transgenes. Robust c-myc labeling was 

observed in the GCL of retinas that received AAV.iASPP, but not in control eyes injected with 

AAV.GFP (A, B). Selective expression of AAV-mediated iASPP in RGCs was confirmed 

using the RGC marker RBPMS (C-E). Scale bars: (A-B) = 50 µm; (C-E) = 15 µm. 

Immunoblotting and densitometric analyses confirmed that intravitreal delivery of 

AAV.iASPP led to significant overexpression of iASPP protein while AAV.GFP had no effect 

(F, G; Student‟s T-test, ***=p<0.001). Phosphoserine immunoprecipitation of retinas probed 

with an iASPP antibody reveals abundant iASPP phosphoserine levels in axotomized retinas 

(24 hrs) treated with AAV.iASPP but not with control AAV.GFP (H). PS: Photoreceptor 

Segments; ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; INL: Inner Nuclear 

Layer; IPL: Inner Plexiform Layer; GCL: Ganglion Cell Layer. 
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Figure 5. AAV-mediated iASPP overexpression increases RGC survival.  

Brn3a-labeled flat-mounted retinas from axotomized eyes demonstrate higher RGC densities 

following treatment with AAV.iASPP (A) than with AAV.GFP (B) at one week post-injury. 

Scale bars: 100 µm. Quantitative analysis of RGC survival following axotomy and intraocular 

injection of AAV.iASPP (black) or control AAV.GFP (grey) (ANOVA, ***=p<0.001) at one 

and two weeks post-injury (C). The density of RGCs in intact, uninjured Sprague-Dawley rat 

retinas is shown as reference (open bar). Data are expressed as the mean ± S.E.M.  
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Figure 6. AAV.iASPP inhibits p53 activation and downregulates retinal PUMA and 

Fas/CD95 levels. 

Western blot analysis of axotomized retinal samples show that p53 phosphoserine15 (pSer15) 

levels are reduced in AAV.iASPP-treated retinas compared to control AAV.GFP at 24 hrs 

post-axotomy (A, C; ANOVA, *=p<0.05). Acetyl p53 levels remained unchanged (A, B; 

ANOVA, p>0.05). The p53 apoptotic targets PUMA and Fas/CD95 protein levels decrease in 

retinas treated with AAV.iASPP compared to AAV.GFP-treated control retinas (D, E, F; 

ANOVA, ***=p<0.005, **=p<0.001), whereas Bax and Noxa remained unchanged (D, G, H; 

ANOVA, p>0.05). 
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IV.1. THE ROLE OF P53 IN RGC APOPTOTIC DEATH  

In the first article presented in this thesis (Chapter 2), we explored the role of p53 

regulators ASPP1 and ASPP2 in apoptotic death of RGCs. We first assessed whether p53 was 

implicated in axotomy-induced apoptotic RGC death. Heretofore, the role of p53 in apoptotic 

death of RGCs had never been clearly demonstrated. Although it was surmised that p53 

played a key role in the apoptosis of RGCs in glaucoma (Nickells, 1999), and despite the fact 

p53 implication had been demonstrated in NMDA-induced excitotoxic and hypoxic/ischemic 

death of RGCs (Joo et al., 1999, Li et al., 2002), its role had not been clearly shown in an 

apoptotic death model. As p53 protein and mRNA levels are not significantly upregulated 

following optic nerve injury or in glaucomatous models (Levkovitch-Verbin, 2006), the role of 

p53 was not as evident as in excitotoxic or hypoxic/ischemic paradigms. We showed 

upregulation of p53 phosphoserine 15, a key apoptotic p53 post-translational modification site, 

in RGCs following optic nerve axotomy. We also showed marked increase of p53 downstream 

targets Fas/CD95 and PUMA following axotomy. Most importantly, optic nerve axotomy in 

p53 knockout, heterozygote and wild-type mice revealed a tight correlation between p53 gene 

expression and RGC survival. Indeed, increased RGC survival was observed in p53 

heterozygote and knockout mice compared to wild type mice. The survival rate of RGCs in 

p53-/- following optic nerve lesion was not 100%, but 73%, demonstrating that although p53 is 

an important contributor to apoptotic RGC death, it is not the sole pathway involved.  
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IV.2. THE ROLE OF ASPP FAMILY MEMBERS IN RGC SURVIVAL  

IV.2.1. Retinal expression pattern of ASPP family members 

Our findings presented in Chapters 2 and 3 revealed that pro-apoptotic ASPP1 and 

ASPP2 are solely expressed in the ganglion cell layer in the adult rat retina, whereas anti-

apoptotic iASPP is found in the ganglion cell layer as well as in the inner nuclear layer. 

Interestingly, it is the expression pattern of iASPP that most closely resembles that of p53 

mRNA. Indeed, although p53 protein is not detectable in the intact adult retina, in situ 

hybridization revealed that p53 mRNA is expressed in the inner nuclear layer and ganglion 

cell layer of adult rats (Shin et al., 1999). Furthermore, other p53 interacting proteins have 

been shown to have similar expression patterns to ASPP1/2 or iASPP. Pro-apoptotic Bax 

mRNA is solely expressed in the ganglion cell layer (Shin et al., 1999), similarly to ASPP1/2. 

Anti-apoptotic Bcl-2 mRNA is expressed in the inner nuclear layer and in the ganglion cell 

layer (Shin et al., 1999), similar to iASPP. It would, however, be oversimplifying to state that 

pro-apoptotic and anti-apoptotic p53-interacting proteins have distinct expression patterns, as 

p53 interacting proteins Brn3a and Brn3b, both confined to the ganglion cell layer (Nadal-

Nicolas et al., 2012), have both anti-apoptotic and pro-apoptotic roles,  respectively (Budhram 

Mahadeo et al., 2006). 

The presence of both pro-apoptotic and anti-apoptotic proteins in the ganglion cell 

layer of an intact retina fits the hypothesis that apoptosis is a default pathway that needs to be 

kept under control to allow cell survival. Thus, the levels of iASPP in the ganglion cell layer 

might be necessary to promote neuronal survival because iASPP inhibits p53 from binding to 

ASPP1 and ASPP2, also expressed in RGCs, thus blocking the apoptotic cascade. 
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IV.2.2. Putative role of ASPP family members in ocular neuropathies 

In an ischemic model, p53 upregulation was detected in the inner nuclear layer as well 

as the ganglion cell layer after a 60-minute period of ischemia (Rosenbaum, 1998). Following 

ischemic insults, neurons in the inner nuclear layer and ganglion cell layer undergo necrotic 

and apoptotic degeneration (Joo et al., 1999). Of interest, the necroptotic protein RIP3, which 

switches TNF-α induced cell death from apoptosis to necrosis (Zhang et al., 2009), has a 

similar expression pattern to iASPP as it was also found in amacrine and horizontal cells as 

well as in the ganglion cell layer (Huang et al., 2013). As p53 is implicated in necrosis in 

addition to apoptosis (Vaseva et al., 2012), it is possible that iASPP may also regulate 

necrosis. Consistent with this, downregulation of iASPP by siRNA resulted in an increase of 

apoptosis and necrosis in an MCF-7 breast cancer cell line expressing wild-type p53 (Wang, 

2010). Could iASPP be involved in the necrotic events occurring in the ischemic retina? 

Further investigation of iASPP in ocular neuropathies is warranted. It would be of great 

interest to assess the implication of iASPP in glaucoma. Indeed, iASPP is an inhibitor of NF-

k, a transcription factor commonly upregulated in glaucoma. Therefore, the effect of NF-k 

inhibition by iASPP in glaucoma would be highly relevant. Of interest, a cohort of POAG 

patients were associated with p53-PRO, a TP53 sequence polymorphism resulting in a proline 

at amino-acid 72 position in the p53 protein (Wiggs et al., 1998). Normally, iASPP 

preferentially inhibits the p53-PRO form and not the arginine variant p53-ARG (Bergamaschi 

et al., 2006), and yet in this group of glaucoma patients the apoptotic activity of p53-PRO was 

enhanced (Wiggs et al., 1998). It would be of interest to assess if this enhancement of p53-

PRO activity is due to a reduction in iASPP activity. 



 
 

141 
 

The roles of ASPP1 and ASPP2 should also be assessed in glaucoma, as they might 

play novel roles in disease progression. ASPP2 can directly interact and inhibit pro-survival 

Bcl-2 and Bcl-XL (Katz et al., 2008), and, interestingly, the levels of Bcl-2 and Bcl-XL are 

significantly reduced in models of glaucoma and optic nerve lesion, but not following 

excitotoxic injury (Levkovitch Verbin et al., 2010, Levkovitch Verbin et al., 2013). It would 

be useful to assess whether ASPP2 levels are upregulated in animal models of ocular 

hypertension and in human glaucoma. 

IV. 2.3. Regulation of ASPP family apoptotic activity by phosphorylation 

 The most common type of post-translational modification in signal transduction is 

protein phosphorylation (reviewed in (Ubersax and Ferrell, 2007)). It has been estimated that 

30% of all cellular proteins are phosphorylated on at least one residue (Pinna and Ruzzene, 

1996, Cohen, 2000). ASPP1, ASPP2 and iASPP belong to this family of proteins whose 

functions can be regulated by the addition of a γ-phosphate group, as the phosphorylation of 

ASPP family members have been shown to play a key role in their apoptotic activity. Indeed, 

the phosphorylation of ASPP1 and ASPP2 increases their pro-apoptotic activity, whereas 

iASPP phosphorylation enhances its anti-apoptotic activity (Aylon et al., 2010, Godin 

Heymann et al., 2013, Lu et al., 2013). It was shown that ASPP1 can be phosphorylated by the 

tumor suppressor Large Tumor Suppressor 2 (Lats2), which increases p53 binding to pro-

apoptotic Fas/CD95, PUMA and Bax protomoters (Aylon et al., 2010). Futhermore, ASPP2 

was recently shown to be phosphorylated by Ras/MAPK, and this serine phosphorylation 

event enhances ASPP2 pro-apoptotic activity by upregulating p53-mediated transactivation of 

Bax (Godin Heymann et al., 2013). iASPP anti-apoptotic activity is also regulated by its 

phosphorylation status, as iASPP phosphorylation by Cyclin B1/CDK1 increases its affinity 
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towards p53 (Lu et al., 2013). We demonstrated that iASPP phosphorylation status is affected 

by optic nerve injury in Chapter 3 of this thesis. As apoptotis-specific phosphorylation events 

abound (Dix et al., 2012), it would be interesting to assess whether ASPP proteins belong to 

the apoptotic phosphoproteome of glaucoma. 

IV.2.4. Summary of the role of ASPP family members in RGC apoptosis  

The ASPP family is comprised of both initiators and inhibitors of cell death, similarly 

to other gene families expressing members with dichotomous roles such as the Bcl-2 

superfamily and the TNF superfamily (Gross et al., 1999a, Aggarwal, 2003). Indeed, these 

families express both pro-apoptotic and anti-apoptotic members. Families of genes including 

members with distinct and opposing functions allows for careful orchestration of cell fate. 

Indeed, the cell‟s ability to regulate the expression levels of anti-apoptotic and pro-apoptotic 

proteins assures a checkpoint in the switch between cell survival and programmed cell death 

pathways. Furthermore, protein family members have similar protein domains thus similar 

ligand binding sites, and by acting on the same proteins the inhibitory family members can 

counteract the pro-apoptotic actions of their family members in a targeted manner. They help 

maintain the balance between cell life and cell death via competitive interactions with each 

other. 

 The roles of ASPP family members ASPP1, ASPP2 and iASPP were assessed in the 

intact and injured retina, revealing a novel role for these proteins in the apoptotic pathway 

induced by axonal damage after optic nerve axotomy. Figure 8 summarizes our model of 

ASPP family pathways implicated in intact and apoptotic events occurring in RGCs following 

optic nerve lesion.  
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Figure 8. Model of ASPP family signaling in intact and injured RGCs. a) In the intact 

retina, the phosphorylation of iASPP at one or more serine sites promotes iASPP-p53 

interaction, inhibiting p53 apoptotic function. iASPP overexpression by AAV (green arrow) in 

the axotomized retina promotes serine phosphorylation of iASPP and consequently inhibits 

p53 apoptotic function, increasing RGC survival. Knockdown of iASPP by siRNA (red arrow) 

exarcerbates RGC death. b) In the axotomized retina, p53 is phosphorylated at its Ser15 site, a 

key apoptotic activation site. iASPP serine phosphorylation is lost and iASPP is displaced by 

pro-apoptotic ASPP1/2. Pro-apoptotic p53 downstream targets PUMA and Fas/CD95 are 

upregulated, resulting in RGC death. Knockdown of ASPP1 and ASPP2 by siRNA (red arrow) 

reduces PUMA and Fas/CD95 activation levels and increases RGC survival. (Image generated 

by Ariel Wilson).   
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IV.3. NOVEL ROLE OF PUMA IN RGC APOPTOSIS 

In the first chapter of this thesis, we uncovered a role for PUMA in RGC apoptosis. 

PUMA is a BH3-only Bcl-2 family member and a critical mediator of p53-dependent 

apoptosis (Jeffers et al., 2003). It is known that mitochondrial apoptotic signaling pathways 

are critically dependent on the interaction between BH3-only proteins and their pro-survival 

counterparts (Youle and Strasser, 2008). Relevantly, other Bcl-2 family members have been 

shown to play an important role in RGC survival, such as Bax (Isenmann et al., 1999, Semaan 

et al., 2010), Bim (McKernan and Cotter, 2007), Bcl-XL (Levkovitch Verbin et al., 2013) and 

Bcl-2 (Levkovitch Verbin et al., 2013). Furthermore, PUMA promotes neuronal death induced 

by trophic factor deprivation, endoplasmic reticulum stress, ischemia and oxidative stress 

(Reimertz et al., 2003, Steckley et al., 2007, Niizuma et al., 2009, Galehdar et al., 2010, 

Ambacher et al., 2012). The data shown in this thesis allow us to now add axonal injury to the 

list of cellular stresses leading to PUMA activation and neuronal death in the CNS.  

PUMA acts indirectly on the Bcl-2 family members Bax and/or Bak by relieving the 

inhibition imposed by antiapoptotic members. Bax is an essential effector responsible for the 

mitochondrial outer membrane permeabilization, and requires activation by PUMA (Kim et 

al., 2009, Ren et al., 2010). PUMA thus liberates activated Bax to translocate to the 

mitochondrial membrane and mediate the release of AIF, SMAC and cytochrome C, leading 

to caspase activation. As PUMA knockdown by siRNA reduced cytokine-induced Bax 

activation and translocation to the mitochondria (Gurzov et al., 2010), we surmise that reduced 

levels of PUMA observed in the context of iASPP overexpression and axotomy could 

diminish Bax activation levels following optic nerve injury, tilting the fate of injured RGC 

towards survival. Therefore, although we did not detect modulations of Bax levels following 
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AAV.iASPP administration and axotomy, Bax apoptotic activity could indirectly be affected 

by PUMA downregulation. 

Furthermore, PUMA has the ability of disrupting the interaction between cytosolic p53 

and Bcl-XL, an anti-apoptotic Bcl-2 family member present in the GCL (Medearis et al., 

2011). This p53-Bcl-XL disruption by PUMA liberates p53 to directly activate pro-apoptotic 

Bcl-2 members Bax and Bak (Follis et al., 2013). It is of interest that the pro-apoptotic role of 

PUMA uncovered in an optic nerve axotomy model may be implicated in glaucomatous 

neurodegeneration, as siRNA or AAV-mediated regulation of the ASPP proteins influences 

PUMA protein levels, and therefore activity. 

IV.4. USE OF AAV AND SIRNA TO REGULATE RGC SURVIVAL IN VIVO 

The robust RGC survival rates following administration of siRNA to knockdown pro-

apoptotic ASPP1 or ASPP2, or administration of AAV encoding iASPP to overexpress anti-

apoptotic iASPP reflects the neuroprotective possibilities afforded by gene therapy tools. 

Although many studies target the apoptotic pathway with the common goal of rescuing RGCs 

from apoptotic death, the use of AAV and siRNA in our studies had the additional advantage 

of allowing the identification of the function of ASPP family members in axotomy-induced 

RGC death.  

Our findings highlight the advantages of using gene therapy strategies that target 

multiple anti-apoptotic pathways, as this appears to be a promising avenue to increase RGC 

survival after axonal damage. One such pathway is neurotrophin-regulated signaling. There is 

substantial evidence that neurotrophic factors suppress the intrinsic apoptotic cascade by 

activating intracellular survival signals. Upon binding to their cognate tyrosine kinase 
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receptors, most neurotrophic factors stimulate two primary pro-survival signaling pathways: 

the extracellular signal-regulated kinase 1/2 (ERK1/2) and the phosphatidylinositol-3 kinase 

pathways (Kaplan and Miller, 2000). Some factors, such as CNTF, can also activate the Janus 

kinase/signal transducer and activator of transcription 3 (Peterson et al., 2000). AAV-mediated 

gene transfer of constitutively active extracellular signal-regulated kinase kinase 1 

(ERKK1/2), the obligate upstream activator of ERK1/2, resulted in robust survival rates of 

RGCs in both axotomy and ocular hypertension models of optic nerve injury  (Pernet et al., 

2005, Zhou et al., 2005). 

In contrast to protein tyrosine kinases that promote neuronal survival, there are several 

pro-apoptotic protein kinases that contribute to RGC death, such as the c-Jun N-terminal 

kinase (Bessero et al., 2010). c-Jun, activated by c-Jun N-terminal kinase phosphorylation, 

mediates transcription of pro-apoptotic genes and has been shown to be upregulated in rat and 

monkey models of glaucoma (Hashimoto et al., 2005, Levkovitch-Verbin et al., 2005). 

siRNA-mediated gene expression knockdown of c-Jun in RGCs resulted in a threefold 

increase in RGC survival after optic nerve lesion (Lingor et al., 2005). These studies support 

our findings that administration of siRNA or AAV may be beneficial to modulate the activity 

of signaling intermediaries and promote RGC neuroprotection after injury.  

The intravitreal injection of siRNA or AAV might be considered as of non-selective 

delivery of gene therapy, as the injected genetic material is diffused into the vitreous chamber 

of the eye to reach the retina. The main caveats of this approach are the need to increase the 

concentration of the injected siRNA or AAV to assure that an adequate quantity reaches the 

retina, and that it might produce undesirable effects on other ocular tissues, however the AAV 
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promoter assures only the targeted cells will express the transgene. The advantage of this 

approach is that it results in diffuse distribution of siRNA or AAV across the retina. 

The therapeutic potential of viral vectors as a treatment for glaucoma has mainly 

focused on adeno-associated vectors as opposed to retroviruses, lentiviruses, herpes simplex 

viruses or adenoviruses. Insofar as the main limitation of AAVs is a relatively small packaging 

capacity, the main advantage is that AAVs are non-inflammatory and non-pathogenic 

(Thomas et al., 2003, Wilson and Di Polo, 2012). Other viral vectors are either less efficient at 

transducing RGCs, elicit immunogenic responses, or lack clinical safety data (Balaggan and 

Ali, 2012). There is currently substantial clinical experience with AAV subretinal injections to 

target photoreceptors and retinal pigmented epithelial cells, as well as pre-clinical experience 

with AAV intravitreal injections to target RGCs. Indeed, AAV subretinal injections were 

tested in human patients in a clinical trial of Leber‟s Congenital Amaurosis (LCA) (Cideciyan 

et al., 2009, Cideciyan, 2010, Jacobson et al., 2012, Cideciyan et al., 2013) and resulted in 

improved vision. Not to be confused with LCA, Leber Hereditary Optic Neuropathy (LHON), 

also described by Theodore Leber, is another ocular pathology for which AAV therapy was 

tested. LHON is associated with mitochondrial DNA mutations including the nicotidamide 

adenine dinucleotide dehydrogenase subunit IV (ND4) gene (reviewed in (Yen et al., 2006)). 

In pre-clinical studies, RGCs were targeted by intravitreal injection of AAVs encoding ND4. 

Intravitreal injection of ND4.AAV in rodent, nonhuman primate and ex vivo human eyes 

resulted in expression of ND4 in RGCs in the ex vivo human eye, rescue of the Leber 

Hereditary Optic Neuropathy (LHON) mouse model, and no serious adverse reactions in the 

primates followed up for 3 months (Koilkonda et al., 2014). Clinical testing of an intravitreal 

injection of AAV.ND4 in LHON patients with mutated ND4 is planned (Lam et al., 2014).  
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IV.5. GENERAL CONCLUSIONS  

The medical need for neuroprotective therapies for glaucoma is undeniable. In the last 

10 years, there has been tremendous progress in the use of gene therapy strategies not only to 

understand the molecular basis of RGC death, but also to stimulate the survival and 

regeneration of these neurons in a variety of preclinical models of optic nerve injury. The 

work presented in this thesis introduces the novel role of the ASPP pathway in RGC apoptotic 

death induced by optic nerve axotomy. We used nonviral and viral approaches to modulate 

RGC gene expression: siRNA, which is a novel approach in the retinal field, and an AAV-2 

vector which has the ability to mediate infection of a large number of adult RGCs in vivo with 

relatively high specificity. The ASPP family represent a key molecular pathway that dictates 

the fate of RGCs after optic nerve injury. ASPP1, ASPP2 and iASPP are candidate molecules 

that have emerged as promising therapeutic targets, and further investigation into their role in 

glaucoma will determine if targeting this pathway is a promising avenue for several optic 

neuropathies including glaucoma.  

Current glaucoma therapies involve the IOP lowering interventions, including 

medicated eye drops, laser treatment or surgery. IOP remains the only modifiable and 

clinically validated risk factor that has been shown to slow the progression of glaucomatous 

loss of vision (Chang and Goldberg, 2012). But lowering IOP is only partially effective and 

does not address the underlying susceptibility of RGCs to glaucomatous death. Gene therapy 

is a potential therapeutic approach that is inching closer to reality in the treatment of glaucoma 

(Borras, 2012). As ASPP proteins were initially discovered and characterized in cancer cells, 

cells whose death – and not survival – is the ultimate goal, current drug design strategies are 
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not targeting pro-apoptotic ASPP1/2, but anti-apoptotic iASPP. Peptide inhibitors of iASPP 

have been patented (Lu et al., 2008), but no pharmaceutical inhibitors of ASPP1 or ASPP2 

have been designed. Our findings therefore suggest new targets for gene expression and gene 

silencing approaches. A caveat to testing siRNAs in glaucomatous eyes is that Toll-Like-

Receptor (TLR) signaling is upregulated in human glaucoma (Luo et al., 2010), and siRNAs 

of sizes over 21 nucleotides have been shown to activate TLR3, resulting in off-target effects 

including retinal degeneration (Kleinman et al., 2012). The ASPP siRNAs used in our studies 

were of 19-20 nucleotides in length, below the threshold of TLR activation.  

Another important issue relates to the effect of long-term modification of gene 

expression, such as that provided by AAV, in glaucoma. For example, neurotrophic factor 

supplementation by gene therapy is a promising strategy to promote RGC survival in several 

models of optic nerve damage, but the long-term effect and safety of increased diffusible 

neurotrophin levels in the retina are currently unknown. Sustained AAV-mediated expression 

of CNTF or BDNF leads to changes in the dendritic structure of transduced RGCs (Harvey et 

al., 2009). Therefore, if administration of AAV.iASPP is neuroprotective in glaucoma, it will 

be important to establish whether the dendritic structure of RGCs is modified, and whether 

these morphological changes have a tangible effect on RGC electrophysiological function. 

Whether ASPP proteins are modulated in human glaucoma is unknown, and whether 

they are acting in other ocular tissues remains to be seen. If the ASPP family is implicated in 

other neurodegenerative diseases, our work will be relevant as it demonstrated the potential of 

ASPP regulation by AAV or siRNA to promote neuronal survival. In conclusion, the studies 

presented in this thesis have demonstrated that regulation of ASPP proteins is beneficial for 
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neuroprotection of injured RGCs, and we delineated their molecular pathways. The challenge 

now is to assess how this knowledge can be translated into potential gene therapies for 

neuroprotection in glaucoma. 
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