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Résumé 

            Le surenroulement de l’ADN est important pour tous les processus cellulaires qui 

requièrent la séparation des brins de l’ADN. Il est régulé par l’activité enzymatique  des 

topoisomérases. La gyrase (gyrA et gyrB) utilise l’ATP pour introduire des supertours 

négatifs dans l’ADN, alors que la topoisomérase I (topA) et la topoisomérase IV (parC et 

parE) les éliminent. Les cellules déficientes pour la topoisomérase I sont viables si elles ont 

des mutations compensatoires dans un des gènes codant pour une sous-unité de la gyrase. 

Ces mutations réduisent le niveau de surenroulement négatif du chromosome et permettent 

la croissance bactérienne. Une de ces mutations engendre la production d'une gyrase 

thermosensible. L’activité de surenroulement de la gyrase en absence de la topoisomérase I 

cause l’accumulation d’ADN hyper-surenroulé négativement à cause de la formation de R-

loops. La surproduction de la RNase HI (rnhA), une enzyme qui dégrade l’ARN des R-

loops, permet de prévenir l’accumulation d’un excès de surenroulement négatif. En absence 

de RNase HI, des R-loops sont aussi formés et peuvent être utilisés pour déclencher la 

réplication de l’ADN  indépendamment du système normal oriC/DnaA, un phénomène  

connu sous le nom de « constitutive stable DNA replication » (cSDR). 

          Pour mieux comprendre le lien entre la formation de R-loops et l’excès de 

surenroulement négatif, nous avons construit un mutant conditionnel topA rnhA gyrB(Ts) 

avec l’expression inductible de la RNase HI à partir d’un plasmide. Nous avons trouvé que 

l’ADN des cellules de ce mutant était excessivement relâché au lieu d'être hypersurenroulé 

négativement en conditions de pénurie de RNase HI. La relaxation de l’ADN a été montrée 

comme étant indépendante de l'activité de la topoisomérase IV.  Les cellules du triple 

mutant topA rnhA gyrB(Ts) forment de très longs filaments remplis d’ADN, montrant ainsi 

un défaut de ségrégation des chromosomes. La surproduction de la topoisomérase III 

(topB), une enzyme qui peut effectuer la décaténation de l’ADN, a corrigé les problèmes de 

ségrégation sans toutefois restaurer le niveau de surenroulement de l’ADN. Nous avons 

constaté que des extraits protéiques du mutant topA rnhA gyrB(Ts) pouvaient inhiber 

l’activité de surenroulement négatif de la gyrase dans des extraits d’une souche sauvage, 



 

 

 

ii

suggérant ainsi que la pénurie de RNase HI avait déclenché une réponse cellulaire 

d’inhibition de cette activité de la gyrase. De plus, des expériences in vivo et in vitro ont 

montré qu’en absence de RNase HI, l’activité ATP-dépendante de surenroulement négatif 

de la gyrase était inhibée, alors que l’activité ATP-indépendante de cette enzyme demeurait 

intacte. Des suppresseurs extragéniques du défaut de croissance du triple mutant topA rnhA 

gyrB(Ts) qui corrigent également les problèmes de surenroulement et de ségrégation des 

chromosomes ont pour la plupart été cartographiés dans des gènes impliqués dans la 

réplication de l’ADN, le métabolisme des R-loops, ou la formation de fimbriae. 

          La deuxième partie de ce projet avait pour but de comprendre les rôles des 

topoisomérases de type IA (topoisomérase I et topoisomérase III) dans la ségrégation et la 

stabilité du génome de Escherichia coli. Pour étudier ces rôles, nous avons utilisé des 

approches de génétique combinées avec la cytométrie en flux, l’analyse de type Western 

blot et la microscopie. Nous avons constaté que le phénotype Par- et les défauts de 

ségrégation des chromosomes d’un mutant gyrB(Ts) avaient été corrigés en inactivant topA, 

mais uniquement en présence du gène topB. En outre, nous avons démontré que la 

surproduction de la topoisomérase III pouvait corriger le phénotype Par- du mutant 

gyrB(Ts) sans toutefois corriger les défauts de croissance de ce dernier.  La surproduction 

de topoisomérase IV, enzyme responsable de la décaténation des chromosomes chez E. 

coli, ne pouvait pas remplacer la topoisomérase III. Nos résultats suggèrent que les 

topoisomérases de type IA jouent un rôle important dans la ségrégation des chromosomes 

lorsque la gyrase est inefficace. 

         Pour étudier le rôle des topoisomérases de type IA dans la stabilité du génome, la 

troisième partie du projet, nous avons utilisé des approches génétiques combinées avec des 

tests de « spot » et la microscopie. Nous avons constaté que les cellules déficientes en 

topoisomérase I avaient des défauts de ségrégation de chromosomes et de croissance liés à 

un excès de surenroulement négatif, et que ces défauts pouvaient être corrigés en inactivant 

recQ, recA ou par la surproduction de la topoisomérase III. Le suppresseur extragénique 

oriC15::aph isolé dans la première partie du projet pouvait également corriger ces 

problèmes. Les cellules déficientes en topoisomérases de type IA formaient des très longs 
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filaments remplis d’ADN d’apparence diffuse et réparti inégalement dans la cellule. Ces 

phénotypes pouvaient être partiellement corrigés par la surproduction de la RNase HI ou en 

inactivant recA, ou encore par des suppresseurs isolés dans la première partie du projet et 

impliques dans le cSDR (dnaT18::aph et rne59::aph). Donc, dans E. coli, les 

topoisomérases de type IA jouent un rôle dans la stabilité du génome en inhibant la 

réplication inappropriée à partir de oriC et de R-loops, et en empêchant les défauts de 

ségrégation liés à la recombinaison RecA-dépendante, par leur action avec RecQ. 

         Les travaux rapportés ici révèlent que la réplication inappropriée et dérégulée est une 

source majeure de l’instabilité génomique. Empêcher la réplication inappropriée permet la 

ségrégation des chromosomes et le maintien d’un génome stable. La RNase HI et les 

topoisomérases de type IA jouent un rôle majeur dans la prévention de la réplication 

inappropriée. La RNase HI réalise cette tâche en modulant l’activité de surenroulement  

ATP-dependante de la gyrase, et en empêchant la réplication à partir des R-loops. Les 

topoisomérases de type IA assurent le maintien de la stabilité du génome en empêchant la 

réplication inappropriée à partir de oriC et des R-loops et en agissant avec RecQ pour 

résoudre des intermédiaires de recombinaison RecA-dépendants afin de permettre la 

ségrégation des chromosomes.  

 

Mots-clés : Surenroulement, RNase HI, R-loops,  gyrase, ATP, topoisomérases de  type IA, 

topoisomérase I, topoisomérase III, ségrégation des chromosomes, RecA, RecQ Abstract 
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Abstract 

          DNA supercoiling is important for all cellular processes that require strand separation 

and is regulated by the opposing enzymatic effects of DNA topoisomerases. Gyrase uses 

ATP to introduce negative supercoils while topoisomerase I (topA) and topoisomerase IV 

relax negative supercoils. Cells lacking topoisomerase I are only viable if they have 

compensatory mutations in gyrase genes that reduce the negative supercoiling level of the 

chromosome to allow bacterial growth. One such mutation leads to the production of a 

thermosensitive gyrase (gyrB(Ts)). Gyrase driven supercoiling during transcription in the 

absence of topoisomerase I causes the accumulation of hypernegatively supercoiled 

plasmid DNAs due to the formation of R-loops. Overproducing RNase HI (rnhA), an 

enzyme that degrades the RNA moiety of R-loops, prevents the accumulation of 

hypernegative supercoils. In the absence of RNase HI alone, R-loops are equally formed 

and can be used to prime DNA replication independently of oriC/DnaA, a phenomenon 

known as constitutive stable DNA replication (cSDR). 

         To better understand the link between R-loop formation and hypernegative 

supercoiling, we constructed a conditional topA rnhA gyrB(Ts) mutant with RNase HI 

being conditionally expressed from a plasmid borne gene. We found that the DNA of topA 

rnhA gyrB(Ts) cells was extensively relaxed instead of being hypernegatively supercoiled 

following the depletion of RNase HI. Relaxation was found to be unrelated to the activity 

of topoisomerase IV. Cells of topA rnhA gyrB(Ts) formed long filaments full of DNA, 

consistent with segregation defect. Overproducing topoisomerase III (topB), an enzyme that 

can perform decatenation, corrected the segregation problems without restoring 

supercoiling. We found that extracts of topA rnhA gyrB(Ts) cells inhibited gyrase 

supercoiling activity of wild type cells extracts in vitro, suggesting that the depletion of 

RNase HI triggered a cell response that inhibited the supercoiling activity of gyrase. Gyrase 

supercoiling assays in vivo as well as in crude cell extracts revealed that the ATP dependent 

supercoiling reaction of gyrase was inhibited while the ATP independent relaxation 

reaction was unaffected. Genetic suppressors of a triple topA rnhA gyrB(Ts) strain that 
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restored supercoiling and corrected the chromosome segregation defects mostly mapped to 

genes that affected DNA replication, R-loop metabolism and fimbriae formation.  

              The second part of this project aimed at understanding the roles of type IA DNA 

topoisomerases (topoisomerase I and topoisomerase III) in chromosome segregation and 

genome maintenance in E. coli. To investigate the role of type IA DNA topoisomerases in 

chromosome segregation we employed genetic approaches combined with flow cytometry, 

Western blot analysis and microscopy (for the examination of cell morphology). We found 

that the Par- phenotypes (formation of large unsegregated nucleoid in midcell) and 

chromosome segregation defects of a gyrB(Ts) mutant at the nonpermissive temperature 

were corrected by deleting topA only in the presence of topB. Moreover, overproducing 

topoisomerase III was shown to correct the Par- phenotype without correcting the growth 

defect, but overproducing topoisomerase IV, the major cellular decatenase, failed to correct 

the defects. Our results suggest that type IA topoisomerases play a role in chromosome 

segregation when gyrase is inefficient. 

         To investigate the role of type IA DNA topoisomerases in genome maintenance, in 

the third part of the project, we employed genetic approaches combined with suppressor 

screens, spot assays and microscopy. We found that cells lacking topoisomerase I suffered 

from supercoiling-dependent growth defects and chromosome segregation defects that 

could be corrected by deleting recQ, recA or overproducing topoisomerase III and by an 

oriC15::aph suppressor mutation isolated in the first part of the project. Cells lacking both 

type 1A topoisomerases formed very long filaments packed with diffuse and unsegregated 

DNA. Such phenotypes could be partially corrected by overproducing RNase HI or deleting 

recA, or by suppressor mutations isolated in the first part of the project, that affected cSDR 

(dnaT18::aph and rne59::aph). Thus, in E. coli, type IA DNA topoisomerases play a role 

in genome maintenance by inhibiting inappropriate replication from oriC and R-loops and 

by preventing RecA-dependent chromosome segregation defect through their action with 

RecQ. 
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The work reported here reveals that inappropriate and unregulated replication is a major 

source of genome instability. Preventing such replication will ensures proper chromosome 

segregation leading to a stable genome. RNase HI and type IA DNA topoisomerases play a 

leading role in preventing unregulated replication. RNase HI achieves this role by 

modulating ATP dependent gyrase activity and by preventing replication from R-loops 

(cSDR). Type IA DNA topoisomerases ensure the maintenance of a stable genome by 

preventing inappropriate replication from oriC and R-loops and by acting with RecQ to 

prevent RecA dependent-chromosome segregation defects. 

 

Keywords : Supercoiling, RNase HI, R-loops, gyrase, ATP, type I A topoisomerases, 

topoisomerase I, topoisomerase III, chromosome  segregation,  genome maintenance, 

RecA, RecQ. 
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1.1. Historical perspective of the DNA entanglement problem 

            The double helical structure of DNA described by Watson and Crick took the 

scientific community by storm and projected them to instant fame. In their model termed 

the double helix model, the two strands are interwound and follow a right hand helical path 

around a central axis and run in opposite directions with a helical repeat of 10 bp per turn. 

The two strands are held together by base pairing through the formation of hydrogen bonds 

with thymine pairing with adenine and cytosine pairing with guanine (Watson & Crick, 

1953b). In regards to the base pairing in the double helix, Watson and Crick stated that "It 

has not escaped our notice that the specific pairing we have postulated immediately 

suggests a possible copying mechanism for the genetic material" (Watson & Crick, 1953b). 

The concept of complementarity that they predicted in their model suggested that a parent 

DNA molecule could be duplicated by copying each strand in tandem with the Watson and 

Crick base pairing (Watson & Crick, 1953a). 

           The interwound nature of the helix imposes a strict requirement on the mechanism of 

replication. The parental strands need to be unlinked for the separation of daughter 

chromosomes to occur. Watson and Crick acknowledged the challenge but stated that it was 

"not insuperable" (Watson & Crick, 1953b). This admission by Watson and Crick was not 

enough to dissuade criticism of their model. Among them Max Delbruck raised the concern 

on how the semi-conservative scheme of DNA replication (an appellation designated since 

it was envisioned that one half of the progeny duplex was inherited and the other half newly 

synthesized) could be successfully executed without tangling of the progeny DNA,  with 

the parental DNA spelling disastrous consequences for the cell following division. He went 

ahead to propose solutions involving breakage every 1/2 turn of the helix during replication 

and suggested an alternate model of discontinuous DNA replication to avoid the linking 

problem (Delbruck, 1954). The confirmation that DNA replicated semi-conservatively 

(Meselson & Stahl, 1958) implied that the entanglement problem was real. 

In addition, the famous autoradiographic images (Cairns, 1963b) of E. coli showing a 

circular chromosome that  replicates semi-conservatively from a unique region of the parent 

DNA ring (Cairns, 1963a) equally proved the entanglement problem. 
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           Further solidifying the entanglement problem was the discovery that the DNA of   

the polyomavirus that infects animals was a double stranded ring with intact strands (Weil 

& Vinograd, 1963). This observation further complicated the issue of separating the DNA 

strands which became a topological problem. Another observation that added a piece to the 

puzzle was the discovery that polyoma DNA existed in varying forms namely "extended 

cyclic form" and "tightly coiled cyclic form" or supercoiled DNA (Vinograd et al., 1965). 

The observation that DNA from polyomavirus was negatively supercoiled triggered more 

structural studies (Vinograd et al., 1965) which explained the varying forms of DNA 

observed through a quantity called the linking number (Lk).  Lk is the number of times one 

strand crosses the other and it is the sum of two terms twist (Tw) which is the local winding 

of the two strands around each other, and writhe (Wr) a measure of  DNA supercoiling 

(White, 1969). Tw and Wr are related to Lk by the simple equation: Lk = Tw +Wr (White, 

1969). 

        It was soon deduced that a DNA ring from a natural source would display a value of 

LK lower than that of the same ring in its most stable structure under typical experimental 

conditions used in the laboratory. This quantity termed the linking number of a relaxed 

DNA ring has a symbol LK0. A DNA ring with a linking number Lk is said to be negatively 

supercoiled if Lk < LK0, or (Lk- LK0) < 0 or positively supercoiled if Lk > LK0 or (Lk- 

LK0) > 0 (J. C. Wang, 1974). In this regard, the polyoma DNA rings from natural sources 

were thus defined to be negatively supercoiled and the supercoiled state of the DNA was 

viewed as a compensation for the torsional stress produced by a reduction in Lk (Vinograd 

et al., 1965).  

           Proper duplication and transmission of genetic information from one generation to 

another warrant that the linking number must be reduced to zero. It is in this light that a  

prominent topologist named William Pohl rejected the plectonemic Watson-Crick model 

for a paranemic (side-by-side) structure of DNA, for he could not imagine how a global 

property like the Lk could be nulled enzymatically (Pohl & Roberts, 1978). The quest to 

know why DNA from natural sources was negatively supercoiled lead to the discovery of 
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DNA topoisomerases as nature's solution for DNA strand unlinking and modulation of the 

torsional state of the duplex (Wang, 1971, 1985). 

1.1.1. DNA supercoiling 

            As mentioned earlier, supercoiling in a DNA molecule can either be positive or 

negative. Literally speaking, DNA is said to be negatively supercoiled when it has a 

deficiency in the linking number compared with the relaxed DNA. Because negatively 

supercoiled DNA has fewer helical turns than the molecule would normally contain as a 

linear or relaxed molecule, it is said to be underwound (Sinden, 1994). The consequence of 

this underwinding in the number of helical turns is that there are more base pairs per helical 

turn, which leads to a decrease in the angle of twist between the adjacent base pairs. 

Underwinding thus creates torsional tension following the winding of the double helix. This 

torsional tension drives the supertwisting of the molecule forming a right-handed (or 

clockwise) supercoil (Sinden, 1994). On the contrary, positively supercoiled DNA is 

overwound in terms of the number of helical turns, leading to fewer bases per helical turn 

and thus an increase in the winding angle between the adjacent base pairs, which equally 

create torsional tension in the winding of the helix. The tension in the winding helix is 

relieved by the positive supercoiling of the DNA forming a left-handed (counterclockwise) 

supercoil (Sinden, 1994).  

         DNA isolated from natural sources is negatively supercoiled (Vinograd et al., 1965). 

In fact DNA supercoiling has been shown to be a target of evolutionary selection for 

mutations that lead to an overall increase in negative supercoiling have been identified in 

evolutionary experiments. Mutations in genes  such as  topA encoding topoisomerase I 

(topo I)  and  dusB which regulates the expression of fis (encoding the histon-like protein 

Fis ) have been  identified  in long  term  evolutionary experiments (Crozat et al., 2010). 

Several lines of experimental evidence have confirmed that negative supercoiling causes 

the double helix to adopt a branched and plectonemic or interwound structure. Non-viscous 

nucleoids obtained by treating cells with lysozyme (enzymes that hydrolyses bacterial cell 

walls) and mild ionic detergent (for cell lysis) and analyzed by sedimentation and electron 
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microscopy reveals an interwound DNA structure (Giorno, Hecht, & Pettijohn, 1975; 

Kavenoff & Bowen, 1976; Worcel & Burgi, 1972).  Plasmid DNA structure produced by 

recombination with the lambda integrase and analyzed with sensitive and non-disruptive 

topological tests have confirmed the presence of interwound DNA in vivo (Bliska & 

Cozzarelli, 1987). 

         Supercoils do not only exist as interwound supercoils. Negative supercoils can also 

physically exist as left-handed toroidal coils whereby the DNA is wrapped around proteins.  

 

Figure 1. Illustration of the geometry of toroidal and plectonemic supercoils. DNA 
depicting a single form of toroidal DNA and two geometries of plectonemes which have the 
same superhelical density. Conversion of the long plectoneme to the shorter one is achieved 
by DNA bending and untwisting of the DNA duplex (Travers & Muskhelishvili, 2007). 
Figure used with permission from Nature publishing group. 

             In solution, supercoils are manifested as a mixture of interwound and toroidal coils. 

Studies have shown that for DNA in bacteria about 70 % of the linking number deficiency 

is distributed as writhe change and about 30 % is distributed as a change in twist (Boles, 

White, & Cozzarelli, 1990). Toroidal supercoils are very important for the biological 

organization of the nucleosome core in eukaryotes that involves the toroidal coiling of the 

DNA around proteins. In this organization, the supercoiling energy is restrained by this 
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wrapping.  In bacteria, studies have shown that the dominant form of supercoiled DNA is a 

plectoneme (Crisona et al., 1999). In fact, measurements using the cross-linking agent 

trimethyl-psoralen which forms interstrand abducts on DNA have revealed that most of the 

DNA in bacteria exists as unconstrained plectonemic supercoils  in  vivo, whereas little if 

any of the DNA in eukaryotic nucleus is in this form (Sinden, Carlson, & Pettijohn, 1980).  

More importantly it has been found that in the nucleosome, DNA is marginally overtwisted 

(White, Cozzarelli, & Bauer, 1988; Zivanovic et al., 1988) whereas in the plectonemic form 

when free in solution, negatively supercoiled DNA is undertwisted significantly (Boles et 

al., 1990).  

         Undertwisting  facilitates  processes that require strand separation and this explains 

the importance of negative supercoiling in cellular processes such as initiation of  DNA 

replication (Alexandrov et al., 1999; Pruss & Drlica, 1989), positive or negative modulation 

of transcription of numerous bacterial genes (Lim et al., 2003; Peter et al., 2004; Travers & 

Muskhelishvili, 2005b), chromosome segregation (Holmes & Cozzarelli, 2000; Sawitzke & 

Austin, 2000; Usongo et al., 2008), and recombination  (Alexandrov et al., 1999; Crisona et 

al., 1994; Hatfield & Benham, 2002). Even though cellular processes, especially replication 

and transcription, generate strong torsional forces along the DNA axis leading to the 

buildup of transient supercoiling in both the positive and negative directions (Liu & Wang, 

1987; Lockshon & Morris, 1983), homeostatic regulation by DNA topoisomerases (to be 

discussed ahead) resets the topological status into an underwound state (Travers & 

Muskhelishvili, 2007; Zechiedrich et al., 2000). 

1.1.2. Global supercoiling 

            The importance of DNA supercoiling in E. coli has no yard stick measurement as it 

is implicated in numerous cellular transactions as stated below. Because of its importance, a 

modest reduction of negative supercoiling in bacteria is lethal (Zechiedrich, Khodursky, & 

Cozzarelli, 1997). In addition, supercoiling is equally fragile as just a single break in DNA 

can relax the entire chromosome killing the cell since free negative supercoiling is 

necessary for viability (Gellert et al., 1976). The process of DNA replication also causes 
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relaxation because of the presence of gaps in the lagging strand.  Fortunately for the cell, 

these doom day scenarios are avoided thanks to the intuitive organization of the 

chromosome.  Actively replicating parts of the chromosome and any  insults be it physical, 

chemical or enzymatical  to the DNA backbone are confined to isolated regions of the 

chromosomes that are topologically independent and protect the bulk of the chromosome 

from the dangers of relaxation.  These regions are called domains (Postow et al., 2004).           

Topological domains are defined as regions of the DNA that are topologically constrained 

at their ends and are thus independent with regards to the entire chromosome. Global 

supercoiling is defined as the average superhelical density of all supercoiling domains. The 

superhelical density (σ) is controlled in a very narrow range and deviations from this range 

in either direction are growth inhibitory (DiNardo et al., 1982). Mathematically, σ can be 

defined as ∆LK/LK0 (Vologodskii & Cozzarelli, 1994). LK0  = N/γ where N is the number 

of base pairs in the molecule and γ is the mean number of base pairs per turn in the double 

helix under a given set of conditions, ∆LK = LK- LK0 (Vologodskii & Cozzarelli, 1994). 

DNA extracted from cells has a σ between -0.03 and -0.09 (Bauer, 1978). In E. coli, genetic 

studies using DNA topoisomerase mutants have established that for vigorous growth to 

occur, global supercoiling must lie within a +15% range of supercoiling (Drlica, 1992). 
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Figure 2. Schematic representation of topological domain organization of the E. coli 
chromosome. The E. coli chromosome is organized into independent topological domains  
in vivo. The shaded spheres represent the domain boundaries (Sinden, 1994). Figure used 
with permission from Elsevier. 

         Evidence of the existence of domains has been documented.  Chromosomes isolated 

from E. coli are found to be folded by unconstrained negative supercoiling and several 

nicks are required to relax the entire chromosome (Delius & Worcel, 1974; Worcel & 

Burgi, 1972). The conclusion from these papers is that the E. coli chromosome is divided 

into no more than 50 topological domains with an average length of about 100 kb. By 

counting the number of supercoiled loops visible by electron microscopy, domains were 

estimated to be between 65 and 200 per nucleoid (Kavenoff & Bowen, 1976; Kavenoff & 

Ryder, 1976). Another method that is used to estimate the number of domains per nucleoid 

is psoralen photobinding to bacterial chromosomes partially relaxed by DNA breaks 

induced with X-rays in vivo. This method estimates the number of domains to be around 50 

(Sinden & Pettijohn, 1981). More recent experiments employing less invasive approaches 

have shown that domain sizes are much smaller. A study in S. enterica examining the 
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topological requirements of site specific recombinases concluded that topological domains 

average 25 kb in length (Higgins et al., 1996).   

         A recent less invasive method to determine the size of domains has been developed 

(Postow et al., 2004) and it is based on the fact that negative supercoiling can modulate the 

activity of specific promoters by either increasing or decreasing their output (McGovern et 

al., 1994; Travers & Muskhelishvili, 2005b; Willenbrock & Ussery, 2004). This method 

takes advantage of the 306 supercoiling sensitive genes that are distributed widely on the 

genome and respond rapidly and reliably to supercoil relaxation.  After DNA relaxation, 

106 of the supercoiling sensitive genes (SSGs) become induced for transcription while 200 

genes are repressed (Peter et al., 2004). In this method, double strand breaks were 

introduced onto specific locations on the chromosome by controlling the in vivo expression 

of restriction enzymes. The measure of the distance from a SwaI site to the promoter of a 

supercoiling sensitive gene (SSG) was combined with microarray expression patterns 

before and after cleavage with restriction enzymes. Following the analysis of the SSG 

transcription data, a model was proposed which predicts that the E. coli chromosome 

consists of variable loops and random distribution of domain barriers with an average 

domain size of 10 kb, significantly smaller than the previously estimated domain sizes 

(Postow et al., 2004). 

         Small domains confer several advantages to the cell. Small domains make life easy 

for decatenating enzymes by concentrating catenane links, making global processes more 

local (Espeli et al., 2003).  By concentrating catenane links, the free energy of catenation 

will also increase and this will help drive the decatenation reaction to completion 

(Vologodskii & Cozzarelli, 1993). Catenanes and precatenanes will easily be resolved 

following replication in small domains (Schvartzman & Stasiak, 2004). Domain 

independence implies that each domain is shielded from the other by a barrier. Despite the 

importance of domain barriers little is known about the cellular components of these 

barriers in vivo.  For bacteria, in vitro studies with proteins such as FtsK and SpoIIIE found 

that they are able to constrain DNA loops (Aussel et al., 2002; Bath et al., 2000; Pease et 

al., 2005). Moreover, these proteins are anchored in the bacterial inner membrane, making 
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them likely to form topological barriers on chromosomes that they act upon. Stable RNAs 

or transcriptional complexes can also stabilize chromosomes. RNases can decondense 

isolated chromosomes and these decondensed chromosomes contain a high fraction of 

nascent mRNA and DNA-bound RNA polymerase (Pettijohn et al., 1970; Stonington & 

Pettijohn, 1971; Worcel & Burgi, 1972).  

         The role of transcription in domain barrier formation has also been tested with the 

transcriptional inhibitor rifampicin. Although rifampicin causes chromosomes to 

decondense upon isolation (Dworsky & Schaechter, 1973; Pettijohn & Hecht, 1974), there 

is no change in domain numbers in vivo (Sinden & Pettijohn, 1981).  In bacteria, since 

transcription and  translation are coupled, insertion of the nascent polypeptide into the 

membrane in the case of mRNA encoding membrane bound proteins can also act as a 

domain barrier and this has been shown using plasmid DNA (Lynch & Wang, 1993). The 

role of transcription-translation coupling in domain barrier formation has also been 

demonstrated in the Salmonella typhimurium chromosome (Deng, Stein, & Higgins, 2004). 

A more recent in vivo study identified  H-NS, Fis and transketolase (TktA) as domain 

barrier proteins and these proteins play a role in the supercoiling of domains by forming 

topological barriers in the chromosomes (Hardy & Cozzarelli, 2005). 

1.1.3. Local supercoiling 

            Cellular processes such as DNA replication and transcription that involve tracking 

of huge protein complexes along double stranded DNA can transiently cause local 

perturbations in DNA topology. Evidence implicating transcriptional activity with DNA 

supercoiling has been documented. Highly positively supercoiled pBR322 DNA has been 

extracted from E. coli treated with gyrase inhibitors (Lockshon & Morris, 1983).  pBR322 

DNA extracted from topA mutants of E. coli and S. typhimurium harbors a high degree of 

negative supercoiling and this depends on the transcription of the tetA gene (Pruss & 

Drlica, 1986). 
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            These observations led Liu and Wang (Liu & Wang, 1987) to propose the twin 

supercoiled domain model of transcription. The basis of this model is that elongating RNA 

polymerase molecules cannot rotate freely around the double-helical DNA because of the 

bulk of the polymerase with associated nascent transcripts as well as attached ribosomes. 

As a result, the DNA is forced to rotate upon itself.  If the end of the DNA molecules are 

constrained in some way either by being very long or attached to cellular structures, 

polymerase tracking will cause the DNA ahead of the transcription complex to be 

overwound and the DNA behind to be underwound. Thus, polymerase movement will 

generate domains of positive supercoiling ahead of its passage and domain of negative 

supercoiling behind it.  This model has been supported experimentally both in vitro and in 

vivo (Drolet, Bi, & Liu, 1994; Leng, Amado, & McMacken, 2004; Leng & McMacken, 

2002; Rovinskiy et al., 2012). 

 

 

 

 

 

Figure 3. Twin supercoiled domain model: Transcription generates domains of positive 
and negative supercoils respectively in front and behind of the transcription complex 
represented by RNAP. E. depicts the frictional barrier against the rotation of the duplex 
around it helical axis (Wu et al., 1988). Figure adapted with authorization from Elsevier. 

 
            Even though it has been shown that topoisomerases are able to relax transcription 

induced supercoiling (Cook et al., 1992; Drolet, 2006; Massé & Drolet, 1999b; Rovinskiy 

et al., 2012), some studies have shown that irrespective of the presence of topoisomerases, 

localized supercoiling exists and can be exploited to trigger a variety of important DNA 

transactions  (Bowater, Chen, & Lilley, 1994; Dunaway & Ostrander, 1993; Figueroa & 

Bossi, 1988; Kouzine & Levens, 2007; Kouzine et al., 2004; Kouzine et al., 2008; 

Ljungman & Hanawalt, 1992). It has also been found that depending on transcription 

RNAP 
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intensity and the disposition of topoisomerases, local supercoiling may exceed the 

relaxation activity of topoisomerases, forcing the residual DNA torsional stress to 

propagate through the surrounding DNA (referred to as dynamic supercoiling) (Kouzine et 

al., 2008). 

         The double helix which is in the predominant B-form (the most common form of 

DNA inside the cell and the one described by Watson and Crick) could adopt, depending on 

the sequence composition, a variety of alternative structures.  In order to form these 

structures, the DNA duplex must be melted and this can be achieved by a high level of 

negative supercoiling (Bloomfield, Crothers, & Tinoco, 1974). In humans cells, dynamic 

supercoiling has been  measured in vivo and in vitro  by identifying chromosomal regions 

that have sequences susceptible to the formation of non-B DNA structures, and these 

regions are found to be  mostly located upstream of active promoters (Kouzine et al., 2004; 

Kouzine et al., 2008). Dynamic supercoiling has been shown to persist for some time 

irrespective of the presence of normal concentrations of functional topoisomerases in the 

cell (Kouzine et al., 2008) and this suggests that topoisomerases are unable to immediately 

keep up or prevent the build-up of  transient torsional stress induced by transcription. The 

non-B DNAs produced as a result of dynamic supercoiling  have been shown to be bound 

by a variety of proteins that can change DNA conformation, implying that these non-B 

DNAs structure are important to the cell (Brooks, Kendrick, & Hurley, 2010; Kouzine & 

Levens, 2007).  

          The importance of non-B-DNA in gene regulation is illustrated by the human c-myc 

proto-oncogene.  The protein c-Myc is a crucial regulator of up to 15 % of human genes, 

and this protein is essential for cell homeostasis, differentiation and growth (Liu et al., 

2006).  If not properly regulated, c-myc becomes a lethal oncogene that plays a role in 

many cancers (Hanahan & Weinberg, 2011).  Because both the c-Myc mRNA and c-Myc 

protein are too short-lived to provide an effective feedback mechanism, the cell has evolved 

an alternative feedback mechanism that uses DNA dynamics to ensure regulation of c-myc 

transcription. This is provided by a 90 bp far upstream element (FUSE) of the human c-myc 

gene. The transcriptional activity of the c-myc promoter is enhanced by the supercoiling 

sensitive FUSE sequence. This sequence is sensitive to negative supercoiling. Elevated 
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levels of negative supercoiling melts this sequence. This in turn enables this sequence to 

bind to the transcription activator FUSE- binding protein (FBP). FBP increases promoter 

activity by interacting with the general transcription factor TFIIH to drive c-myc 

transcription. Another protein called the FBP interacting repressor (FIR) binds to FBP and 

FUSE and represses c-myc transcription (Liu et al., 2006). Therefore FUSE melting acts as 

a sensor for transcription to provide either positive feedback (via FBP) or negative 

feedback (via FIR) in the regulation of c-myc transcription. 

         Another important conformational sequence involved in c-myc regulation is the CT-

element located 250 bp upstream of the main promoter (Brooks & Hurley, 2009; Siddiqui-

Jain et al., 2002). This element has been shown to adopt non-B structures in supercoiled 

DNA, in vitro as well as in vivo (Kohwi & Kohwi-Shigematsu, 1991; Michelotti et al., 

1996). The transcriptional activator Sp1 binds the CT element in its normal B-DNA 

structure to activate transcription. It has also been suggested that this sequence can also 

adopt a single-stranded conformation due to supercoiling accumulation generated by 

transcription. It is in this single-stranded form that the transcription factors hnRNPK and 

CNBP bind to maintain the active state of transcription (Brooks & Hurley, 2009; Michelotti 

et al., 1995; Tomonaga & Levens, 1996). The CT element can also adopt a non-B DNA 

structure conformation and in this conformation, the binding sites of the transcription 

factors are sequestered, leading to transcriptional silencing (Sun & Hurley, 2009).  

          Transcription induced local supercoiling also plays a role in the regulation of gene 

expression. A well-documented example is the activation of the S. typhimurium leu-500 

promoter. It has been found that a point mutation in this promoter that confers leucine 

auxotrophy is phenotypically suppressed by a mutation in the gene coding for 

topoisomerase I (Lilley & Higgins, 1991). This point mutation is located in the -10 region, 

making open complex formation energetically expensive, and the absence of topo I would 

energetically favor open complex formation at the mutant promoter. However, placing this 

mutant promoter on an extra chromosomal plasmid even in the absence of topo I 

(Richardson, Higgins, & Lilley, 1988) does  not reproduce the same effect, thereby  

implicating local rather than  global change in template topology. In addition, the leu-500 

promoter can be activated in a topo I negative background when it is placed divergent to the 
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tetracycline gene (tetA) on a plasmid (Chen et al., 1992). Activation only occurs upon 

transcription and translation of the tetA gene. Thus, the level of supercoiling that is 

generated is sufficient to induce open complex formation on the leu-500 promoter located 

upstream.  

1.1.4. Constrained versus unconstrained supercoiling 

            A topological domain can harbor two sorts of supercoils: constrained and 

unconstrained supercoils (Cozzarelli & Wang, 1990). Though hidden, constrained 

supercoils are not lost when DNA is nicked (Pettijohn & Pfenninger, 1980). The portion of 

the overall supercoiling that is lost when DNA is nicked is called unconstrained 

supercoiling or superhelical tension. In E. coli, about 50% of the DNA supercoils are free 

(Bliska & Cozzarelli, 1987). Thus, about 50 % of supercoils are constrained by proteins 

binding to DNA (Bensaid et al., 1996; Bliska & Cozzarelli, 1987; Pettijohn & Pfenninger, 

1980; Sinden & Kochel, 1987). Although a major source of this restraining comes from 

proteins that separate DNA strands as well as proteins of the replication apparatus and RNA 

polymerases, architectural proteins such as heat-stable-nucleoid-structuring protein (H-NS), 

integration host factor (IHF), the histone-like HU proteins, and  the factor for inversion 

stimulation (FIS) have also been implicated (Drlica & Rouviere-Yaniv, 1987; Travers & 

Muskhelishvili, 2005a). Even though the exact role and mode of DNA interactions of these 

proteins are not entirely clear, some clues are beginning to emerge. The HU heterodimer 

not only constrains negatively supercoiled DNA by stabilizing plectoneme folds, it may 

also wrap DNA into a left-handed nucleosome-like structure (Guo & Adhya, 2007). HU 

deficient mutant strains have been shown to exhibit levels of supercoiling 15 % lower than 

those of wild-type strains (Hsieh, Rouviere-Yaniv, & Drlica, 1991).  The stabilization of 

negative supercoils by HNS is likely achieved by interacting with DNA crossings. H-NS 

and IHF mutants show a high reduction in negative supercoiling compared to the wild-type 

(Higgins et al., 1988; Parekh, Sheridan, & Hatfield, 1996). The factor for inversion 

stimulation (FIS) binds at crossovers in plectonemes (Schneider et al., 2001) but it can also 

locally stabilize a DNA toroid (Maurer et al., 2006). In eukaryotes, the majority of 
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supercoils are restrained by nucleosomal organization following the toriodal wrapping of 

DNA around histones (Holmes & Cozzarelli, 2000). 

 

Figure 4.Constrained and unconstrained supercoils. In the unrestrained supercoil upper 
figure, any insult on the DNA backbone leading to chromosome breakage will lead to 
complete DNA relaxation. In the constrained supercoil represented below, supercoils are 
constrained by proteins and, in the event of strand breakage, supercoils are not lost since 
they are constrained.  Figure obtained from (Sinden, 1994). Figure used with permission 
from Elsevier. 

 

1.2. DNA topoisomerases 

            The choice was made by nature early in evolution to have the plectonemic DNA 

double helix as the carrier of genetic information. From this initial choice, the challenge to 

duplicate DNA became apparent and this was deeply rooted in the plectonemic nature of 

the DNA helix. However, this challenge was no match to nature's remedy, DNA 

topoisomerases. They evolved alongside DNA to solve the topological problems associated 

with it. Their universal partnership with DNA was blessed by nature from the beginning. 

Equipped with the ability to cut, shuffle and  religate DNA strands, topoisomerases can  

add or remove supercoils, untangle interlocked double stranded DNA segments (catenanes) 
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and introduce or remove knots from DNA rings (Hartman et al., 2013; Wang, 2002). The 

dexterity of these enzymes at solving topological puzzles is achieved via the simple and 

elegant chemistry of transesterification (Wang, 2002). It is through this mechanism that the 

strand breakage reaction of topoisomerases is achieved. The first step is the attack of the 

DNA phosphorus by tyrosyl oxygen of the enzyme, thus forming a covalent 

phosphotyrosine link and at the same time breaking a DNA phosphodiester bond. Through 

a second transesterification reaction, which is the reverse of the first, the DNA strands are 

rejoined. In the reverse reaction, basically the oxygen from the DNA hydroxyl group that is 

generated from the first reaction attacks the phosphorous of the phosphotyrosine link and as 

a result, the covalent bond between the protein and DNA is broken and the DNA backbone 

bond is reformed (Wang, 2002).    
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Figure 5. Catalysis of transient breakage of DNA by DNA topoisomerases. In the 

transesterification reaction, the tyrosyl oxygen of the enzyme attacks the DNA phosphorus 

leading to the breakage of the DNA backbone bond and the formation of a covalent enzyme 

-DNA intermediate. Rejoining the backbone bond occurs by the reversal of the reaction 

shown above. In the reverse or second transesterification reaction, the oxygen of the DNA 

hydroxyl group generated in the first reaction, attacks the phosphorus of the 

phosphotyrosine link breaking the covalent bond between the protein and DNA and reforms 

the DNA backbone bond. In the reaction catalyzed by a type IA or type II enzyme, a 3'-OH 

is the leaving group and the active tyrosyl becomes covalently linked to a 5'-phosphoryl 

group, as shown. In the reaction catalyzed by a type IB enzyme (not shown) a 5'-OH is the 

leaving group and the active-site tyrosyl becomes covalently linked to a 3'-phosphoryl 

group (Wang, 2002). Figure used with permission from Nature Publishing Group. 

The end result of this reaction is the creation of an enzyme mediated transient DNA gate 

through which another DNA strand or a double helix can pass, a phenomenon termed 

enzyme-bridging mechanism (Wang, 2002). This mechanism is illustrated in Figure 8. This 

mechanism has been exploited for clinical purposes to develop drugs that act by trapping 

the covalent enzyme-DNA complex and, this has made these enzymes targets of the 

pharmaceutical industry, as a lot of quinolone antibiotics (Drlica & Zhao, 1997) and 
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anticancer drugs (Pommier, 2013; Staker et al., 2005; Staker et al., 2002) wreak havoc by 

exploiting this route. 

1.2.1. Classification of topoisomerases 

             Using DNA strand cleavage as a discriminatory factor, topoisomerases are 

classified into two broad categories: type I, those that cleave only one DNA strand, and 

type II, those that cleave both DNA strands to generate staggered double strand breaks 

(Hartman et al., 2013; Wang, 2002). Further discrimination of the type I topoisomerases in 

to the subfamily types IA, IB and IC is based on structure and/or mechanistic properties 

(Hartman et al., 2013).  Mechanistic discrimination is based on the point of linkage of the 

enzyme to the phosphate in the DNA. If the enzyme is linked to a 5' phosphate, they are 

classified as type IA and if the enzyme is attached to the 3' phosphate, they are classified as 

types IB (Champoux, 2001; Hartman et al., 2013; Schoeffler & Berger, 2008; Vos et al., 

2011; Wang, 2002) and IC (Forterre, 2006; Schoeffler & Berger, 2008; Vos et al., 2011).  

Prompted by the discovery of a novel type II enzyme from the hyperthermophilic archaeon 

Sulfolobus shibatae (Bergerat et al., 1997; Buhler et al., 1998) the type II topoisomerases 

were further divided into the subfamilies type IIA and type IIB based on structural 

differences (Nichols et al., 1999). Type IA topoisomerases are found in all three domains of 

life namely bacteria, archaea and eukarya (Hartman Chen et al., 2013). The relaxation of 

negatively supercoiled DNA is their primary activity (Hiasa, DiGate, & Marians, 1994; 

Wang, 1971) and this requires an exposed single-stranded region within the DNA substrate 

for activity (Kirkegaard & Wang, 1985). Overwound or positively supercoiled DNA is 

refractive to type  IA enzymes and relaxation of positively supercoiled DNA can only be 

realized if a pre-existing single-stranded region is present (Kirkegaard & Wang, 1985).     

Based on the crystal structure of the N-terminal fragment of type IA enzymes, a mechanism 

of DNA relaxation or catenation-decatenation by type IA topoisomerases has been 

proposed and confirmed subsequently in biochemical and biophysical reactions (Dekker et 

al., 2002; Dekker et al., 2003; Li, Mondragon, & DiGate, 2001).  In this mechanism, the 

type IA enzyme, cleaves one strand to generate a single-strand break which is bridged by 
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the formation of a phosphotyrosine linkage between the enzyme and the 5' end of the 

broken DNA strand, while holding the 3'-end hydroxyl group non-covalently (Brown & 

Cozzarelli, 1981; Champoux, 1981; Depew, Liu, & Wang, 1978; Tse, Kirkegaard, & Wang, 

1980;  Zhang, Cheng, & Tse-Dinh, 2011). Magnesium ions are required for relaxation by 

type IA topoisomerases, as they are essential for catalysis by helping to keep the 3' end of 

the cleaved strand in a proper position in the catalytic site (Schmidt et al., 2010; Zhang et 

al., 2011). 

 

Figure 6. Mechanism of action of type IA DNA topoisomerases. Following the transient 

breakage of a DNA strand ( blue line), the 5' end of the broken DNA is attached covalently 

to the active-site tyrosyl group (red circle) in the lid of the enzyme, while the 3' end is non 

covalently bound to the base of the enzyme. The passage of another strand (blue circle) is 

achieved by lifting the lid away from the base which opens up the gate (Wang, 2002). 

Figure adapted with permission from Macmillan publishers Ltd. 

 

In addition to negative supercoils relaxation, these enzymes can also catalyze 

knotting, unknotting and interlinking of single stranded circles as well as knotting, 

unknotting catenation and decatenation of double stranded DNA molecules provided there 

is a gap in one of them (Dean & Cozzarelli, 1985).  Members of this family include 

bacterial DNA topoisomerase III and I (Srivenugopal, Lockshon, & Morris, 1984; Wang, 

1971), eukaryotic DNA topoisomerase III (Wallis et al., 1989) and reverse gyrase (Kikuchi 

& Asai, 1984). Recent single-molecule techniques have confirmed the general features of 

the strand passage mechanism in type IA topoisomerases as well as the reduction of linking 

number in steps of one per catalytic event (Dekker et al., 2002). The energy required to 
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power reactions catalyzed by type IA topoisomerases is provided by the mechanical tension 

of supercoiled DNA as reactions catalyzed by type IA topoisomerases proceeds without 

ATP. One exception is reverse gyrase which uses ATP to introduce positive supercoils and, 

as its name reflects, its positive supercoiling activity is the opposite of the negative 

supercoiling activity of DNA gyrase (Kikuchi & Asai, 1984). 

Unlike the type IA enzymes which rely on strand passage, type IB enzymes are 

thought to effectuate supercoil relaxation by swiveling the DNA opposite its nicking point 

and this mechanism of supercoil relaxation is supported by structural (Stewart et al., 1998) 

and kinetic (Stivers, Harris, & Mildvan, 1997) data. In this mechanism, a type IB enzyme 

cleaves a single-strand of the duplex DNA and allows one duplex end to rotate with respect 

to the other around the intact phosphodiester bond on the opposing strand. In this scheme, 

only the 3'-OH end of the broken strand is tightly bound to the enzyme through covalent 

binding with the active site tyrosine residue. Because the 5' end of the DNA strand is only 

bound to the enzyme via nonspecific interactions, it can rotate freely (Stivers et al., 1997).  

However, free rotation is hindered by friction between the DNA and the enzyme and this 

helps to align the broken ends prior to resealing, a mechanism termed "controlled rotation" 

(Koster et al., 2005).  

 

 

 

 

 

 

Figure 7. Mechanism of action of type IB DNA topoisomerases. In the case of type IB 

enzymes, the 3' end of the broken DNA is covalently linked to the active-site tyrosyl group 

(Y) of the enzyme (red circle) (Wang, 2002). Figure used with permission from Macmillan 

publishers Ltd. 

 

The efficiency of relaxation by type IB enzymes is also affected by the extent of 

supercoiling. It has been shown that higher supercoiling levels lead to an increase in the 

5ꞌ 
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mean number of supercoils removed by the enzyme per cleavage/religation cycle, thus 

indicating that type IB topoisomerases are sensitive to the torque stored in under-or 

overwound DNA (Koster et al., 2005). The number of supercoils decreases by one per 

DNA rotation. During one catalytic event, several rotations may occur between the strand 

cleavage and  ligation events, and hence the DNA linking number changes at random by 

several units, unlike the type IA topoisomerases whereby the linking number changes in 

steps of one (Koster et al., 2005). Type IB enzymes efficiently relax positively and 

negatively supercoiled DNA (Madden, Stewart, & Champoux, 1995). The catalytic 

domains of type IB enzymes and tyrosine recombinases are evolutionarily related (Cheng et 

al., 1998). Members of this family include eukaryotic DNA topoisomerase I, poxvirus 

topoisomerase I as well as homologues found in certain bacteria (Krogh & Shuman, 2002) 

and in Mimivirus (Benarroch et al., 2006).  

         Topoisomerase V (Slesarev et al., 1993) the only known member of the Type IC 

topoisomerases has so far been found only in the archaea Methanopyrus kandleri which is 

one of the most hyperthermophilic organisms known (Forterre, 2006). Like the type IB 

enzymes, type IC topoisomerases also relax positively and negatively supercoiled DNA via 

a nicking and rotation mechanism and requires neither magnesium ions nor ATP as a 

cofactor (Slesarev et al., 1993; Taneja et al., 2007). Structurally, the active site of type IC 

enzymes show little similarity to that of type IB and appear to be evolutionarily distinct 

(Forterre, 2006; Taneja et al., 2006). 

         As is the case with type IA topoisomerases, type IIA enzymes effect topological 

changes on DNA by creating an enzyme bridge gap in DNA and passing a second DNA 

segment through the break (Brown & Cozzarelli, 1979; Mizuuchi et al., 1980). Type IIA 

topoisomerases however differ in that they cleave both strands of DNA generating a double 

strand break through which a second duplex is passed (Brown & Cozzarelli, 1981; Liu, Liu, 

& Alberts, 1980; Mizuuchi et al., 1980; Sander & Hsieh, 1983). To achieve this feat, the 

enzymes bind and open up a gate in the duplex termed the G segment, and via the 

transesterification mechanism earlier described, a second DNA piece termed the transfer or 

T segment is captured and transported through the gate or G segment. Through a second 

transesterification reaction which is basically the reverse of the first reaction, the gate is 
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closed and the active site tyrosine is reset for the next catalytic event (Hartman Chen et al., 

2013; Wang, 2002). This transient double strand break reaction inverts double-stranded 

DNA crossovers, changing the LK in steps of two (Brown & Cozzarelli, 1979). Unlike the 

type IA topoisomerases, type IIA topoisomerases uses ATP as the driving force behind 

strand passage reactions (Brown & Cozzarelli, 1979; Gellert et al., 1976; Goto & Wang, 

1982). This ATP dependent ability to transport one double helix through another equally 

endows these topoisomerases with the ability to resolve catenanes, the decatenation of 

double stranded rings, as well as the relaxation of positively or negatively supercoiled DNA 

(Champoux, 2001; Mizuuchi et al., 1980; Wang, 1996, 1998).  
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Figure 8. Mechanism of the two gate model of type II DNA topoisomerases. The G 

segment represented by the blue rod is the double stranded DNA segment that contains the 

enzyme-mediated DNA gate through which the T or transfer segment represented by the 

green rod is passed through. The transport and subsequent exit of the T-segment through 

the gate is mediated by ATP binding and hydrolysis respectively. ATP binding sites are 

represented by asterisks (Wang, 2002). Figure adapted with permission from Macmillan 

publishers Ltd. 

 

         Type IIA topoisomerases are widely distributed in  all cellular organisms and they 

include: eukaryotic topo II (Baldi et al., 1980; Hsieh & Brutlag, 1980; Miller, Liu, & 

Englund, 1981), viral and bacteriophage topo II (Lavrukhin et al., 2000; Liu, Liu, & 

Alberts, 1979; Raoult et al., 2004; Stetler, King, & Huang, 1979), bacterial, chloroplast, 

and archael DNA gyrase (Gellert et al., 1976; Sioud et al., 1988; Thompson & Mosig, 

1985),  and bacterial topo IV (Kato et al., 1990). Bacterial DNA gyrase is the only known 

type II A topoisomerase that is capable of introducing negative supercoils into DNA 

(Gellert et al., 1976). 
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           Type IIB topoisomerases like their type IIA counterparts, can relax both positive and 

negative supercoils by strand passage utilizing ATP in the process (Bergerat, Gadelle, & 

Forterre, 1994). Type IIB topoisomerases are found in archaea, plants, and some bacterial, 

protists and algal lineages (Bergerat et al., 1997; Malik et al., 2007). So far this family is 

represented by topo VI (Bergerat et al., 1997). 

         In  E. coli four topoisomerases have been identified with two belonging to the type I 

A family (topoisomerase I and topoisomerase III) and  two belonging to the type IIA family 

(DNA gyrase and  topoisomerase  IV). 

1.2.2. Topoisomerase I (topo I) 

         This was the first topoisomerase to be identified (Wang, 1971). It is encoded by the 

gene topA located in the cys-trp region of the bacterial chromosome (Sternglanz et al., 

1981; Trucksis & Depew, 1981). The first function attributed to this topoisomerase is the 

relaxation of negative supercoils (Wang, 1971) achievable only in the presence of an 

exposed single-stranded DNA region (Kirkegaard & Wang, 1985). The preference of topo I 

for negatively supercoiled DNA is therefore rooted in its selective binding to single-

stranded DNA since negative supercoiling is important for processes that require strand 

separation such as transcription and DNA replication. Proof of this came through 

biochemical experiments demonstrating that positively supercoiled DNA can be relaxed to 

the same efficiency by topo I provided it has a single-strand loop (Kirkegaard & Wang, 

1985). One function of topo I is regulating supercoiling homeostasis along with gyrase 

(Zechiedrich et al., 2000). Studies in  E. coli have highlighted a global supercoiling 

regulation system maintained by the opposing enzymatic actions of  topo I and  gyrase with 

topo I relaxing negative supercoils while gyrase (to be discussed below) introduces 

negative supercoils to ensure balanced growth (Drlica, 1992). Even though some studies 

have shown that E. coli  topA  is  not  essential for viability (Stupina & Wang, 2005), 

previous work  on  E. coli  has shown that topA mutants can acquire compensatory 

mutations during growth that reduce negative supercoiling, and these mutations are located 

in gyrase genes (DiNardo et al., 1982; Pruss, Manes, & Drlica, 1982). One of the most 
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crucial roles of topo I is its involvement in preventing the formation of DNA/RNA hybrids 

(R-loops) during transcription by relaxing transcription-induced negative supercoils 

generated by the movement of RNA polymerase along the DNA template (Drolet et al., 

1994). In fact plasmids extracted from bacteria with mutations inactivating topA are 

hypernegatively supercoiled and this excess supercoiling depends on transcriptional activity 

(Masse & Drolet, 1999a; Pruss, 1985; Pruss & Drlica, 1986; H. Y. Wu, Shyy, Wang, & 

Liu, 1988). 

          In an in vitro study demonstrating the role of topo I in R-loop prevention, it was 

found that in the presence of DNA gyrase and in the absence of topo I, transcription 

elongation caused the template DNA to be hypernegatively supercoiled (DNA is said to be 

hypernegatively supercoiled if it cannot be resolved by DNA intercalators in an agarose 

gel) and this was linked to the formation of R-loops (Drolet et al., 1994; Phoenix et al., 

1997). It has equally been found in in vitro studies that the addition of RNase HI (encoded 

by rnhA), an enzyme that degrades the RNA moiety of an R-loop, inhibits the formation of 

hypernegatively supercoiled DNA (Phoenix et al., 1997). The in vivo significance of R-

loops was confirmed when it was found that in the presence of active gyrase, 

overproducing RNase HI corrected the growth defects of topA null mutants (Drolet et al., 

1995). Interestingly, it has been found that topA rnhA mutants exhibit growth and 

chromosome segregation defects (Stockum, Lloyd, & Rudolph, 2012; Usongo et al., 2008).  

It has equally been found  that the growth defect of various topA null mutants correlates 

with the formation of R-loop dependent hypernegatively supercoiled DNA implying that 

one major role of topo I is to relax transcription-induced negative supercoiling (Massé & 

Drolet, 1999a, 1999b). More recently, studies in our laboratory have shown that excess 

negative supercoiling inhibits growth by causing RNA degradation which in turn affects 

protein synthesis (Baaklini et al., 2008; Drolet, 2006). 

         The role of topo I in removing transcription-driven supercoiling is supported with 

biochemical evidence showing its physical interaction with RNA polymerase.  In one study, 

the lethality of Tn5 transposase overproduction in E. coli was linked to titration of topo I 

(Yigit & Reznikoff, 1999). It was found that the lethal derivatives of Tn5 transposase co-

purified with topo I while the non-lethal derivatives did not. Incidentally, RNA polymerase 
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was also found to co-purify with Tn5 but the co-purification was reduced in extracts of a 

topA mutant strain implying that the interaction between RNA polymerase and topo I was 

responsible for the co-purification of RNA polymerase with Tn5 transposase (Yigit & 

Reznikoff, 1999). This indirect evidence was a proof showing the interaction between topo 

I and RNA polymerase. More direct evidence showing the interaction between topo I and 

the RNA polymerase complex has been demonstrated. It has been shown that protein-

protein interactions link the β' subunit of RNA polymerase and the C-terminal domains of 

topo I, which are homologous to the zinc ribbon domains in a number of transcription 

factors (Cheng et al., 2003). 

         Another dominant role of topo I is the prevention of thermal denaturation bubbles. It 

has been observed that mutations in topA lead to increased thermosensitivity (Qi, Menzel, 

& Tse-Dinh, 1999).  During heat shock, the rapid induction of heat shock genes may lead to 

localized accumulation of negative supercoils at these gene loci which must be rapidly 

relaxed by topo I to prevent the formation of R-loops. Interestingly it has been found that 

topA mutants are readily killed by various stresses (Qi, Menzel, & Tse-Dinh, 1996; Rui & 

Tse-Dinh, 2003; Tse-Dinh, 2000).  In one study, it was found that RNase HI 

overexpression in topA mutants partially restored the σ32 dependent induction of stress 

induced genes in response to high temperature and ethanol, and also improved the survival 

rate of topA mutants following high temperature and oxidative challenges (Cheng et al., 

2003). Judging from the sensitivity of topA mutants from various stresses,  it is not 

surprising that the synthesis of topo I is directed by four promoters of which two, P1 and 

Px1 are respectively under the control of σ32 involved in the heat-shock response and σS 

implicated with the general stress response (Rui & Tse-Dinh, 2003).  

1.2.3. Topoisomerase II (DNA gyrase) 

              DNA gyrase was discovered in 1976 (Gellert et al., 1976) as the only 

topoisomerase that introduces negative supercoils into relaxed or positively supercoiled 

DNA in the presence of ATP. Gyrase is a heterotetramer composed of two A and two B 

subunits (GyrA2GyrB2) (Higgins et al., 1978; Klevan & Wang, 1980). Gyrase is capable of 

introducing negative supercoils into DNA due to its ability to wrap DNA around the C-
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terminal domain (CTD) of its A-subunit (GyrA) forming a positive supercoil, a 

phenomenon described as chiral wrapping (Kampranis & Maxwell, 1996; Liu & Wang, 

1978a, 1978b; Reece & Maxwell, 1991). Following mutational studies, a sequence of 7-

amino acids that is essential for chiral wrapping of DNA around gyrase has been identified 

in the GyrA box (Kramlinger & Hiasa, 2006). To carry-out strand passage, a 140-base pair 

of DNA segment is wrapped around the enzyme. This wrapping allows the G-(gate 

segment) and T-(transfer segment) to be closely spaced on the same DNA, thus favoring 

intramolecular strand passage with the appropriate orientation for unidirectional strand 

passage (Wang, 2002). Upon transfer of the T-segment across the G-segment, the positive 

supercoil is converted into a negative supercoil by reducing the linker number in steps of 

two, in accordance with the sign inversion model (Brown & Cozzarelli, 1979).  The unique 

ability of gyrase to introduce negative supercoiling depends crucially on the C-terminal 

domain of its A-subunit.  Studies have shown that deleting the C-terminal domain of gyrase 

simply converts gyrase into a conventional (DNA-relaxing) type II topoisomerase, also 

implying that the unique properties of gyrase are attributable to DNA wrapping (Kampranis 

& Maxwell, 1996). The importance of DNA wrapping in the negative supercoiling reaction 

of gyrase has also been demonstrated by single-molecule studies. In these studies, it has 

been shown that at high DNA tensions, gyrase loses its ability to wrap DNA and its ability 

to introduce supercoils, but not its ability to relax positive supercoils (Nollmann et al., 

2007). Other studies with single molecules have equally shown that DNA tension affects 

the processivity of gyrase, with greater tensions increasing the probability that the enzyme 

will pause and decreasing the probability that it will initiate another round of supercoiling 

(Gore et al., 2006). All these studies do confirm that DNA wrapping is essential for gyrase 

supercoiling function. 

          The N-terminal domain of GyrB is responsible for binding and hydrolysis of ATP 

(Mizuuchi, O'Dea, & Gellert, 1978; Sugino et al., 1978). This domain forms the entrance 

gate (N gate) for the T segment. Opening and closure of this gate is mediated by ATP 

binding and hydrolysis (Roca & Wang, 1992). Binding of ATP to gyrase drives the 

supercoiling reaction while hydrolysis of ATP to ADP serves to reset the enzyme for a 

second round of catalysis. In the absence of ATP, gyrase has been shown to relax negative 
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supercoils (Nollmann et al., 2007). By determining the final level of supercoiling that can 

be achieved, the ATP/ADP ratio plays a major role in the supercoiling-relaxation 

relationship (Drlica, 1992). This makes gyrase and supercoiling sensitive to intracellular 

energetics, which are themselves sensitive to extracellular environmental factors such as 

salt concentration, oxygen tension, temperature and pH (Cameron, Stoebel, & Dorman, 

2011). 

          The major in vivo function of gyrase as stated above is the introduction of negative 

supercoils into the chromosome. Proof of this major role is the observation that the 

chromosome becomes relaxed if gyrase is inhibited (Drlica & Snyder, 1978; Lockshon & 

Morris, 1983; Steck et al., 1984). In fact initial measurements of the superhelical density of 

the E. coli chromosome shows that the chromosome is maintained at a physiological level 

of ca.-0.05 (Sinden et al., 1980) by the combined action of gyrase, topo I and topo IV with 

the latter two acting as a counter balance to gyrase activity by relaxing negative supercoils 

(Zechiedrich et al., 2000).  As we shall see ahead, the role played by gyrase in maintaining 

global supercoiling is critical for another important role of gyrase in the cell: DNA 

replication. DNA gyrase can also help to bend and fold DNA. This function of gyrase has 

been observed in bacteriophage Mu which contains a strong gyrase binding site. 

Inactivating this site blocks replication by constraining the prophage ends in the host 

genome for both ends need to be brought together prior to replication (Oram et al., 2006; 

Pato, 1994; Pato & Banerjee, 1999; Pato, Howe, & Higgins, 1990; Pato et al., 1995). The 

suppression of a growth defect due the absence of HU, a small DNA-bending protein by 

gyrase mutations is also likely related to the ability of gyrase to bend DNA (Malik et al., 

1996). 

1.2.4. Topoisomerase III (topo III) 

            This topoisomerase is encoded by the gene topB (DiGate & Marians, 1989).  In E. 

coli most of the functions attributed to topo III have been shown through in vitro 

experiments. In vitro, its decatenation activity, which is one of its most interesting 

activities, has been clearly demonstrated. E. coli  cell extracts  containing topo III  have 

been shown, in an in vitro assay, to efficiently decatenate pBR322 replication intermediates 
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and catenated DNA products with single-stranded  gaps and nicks  (DiGate & Marians, 

1988), a function that is attributed to the presence of a decatenating  loop sequence in the 

enzyme (Mondragon et al., 2000). In addition, it has been shown in a reconstituted 

replication assay in vitro that, by acting on single stranded DNA at the replication fork, 

topo III alone can support replication by removing precatenanes (Hiasa & Marians, 1994a; 

Nurse et al., 2003). Other studies have equally questioned the role of topo III in DNA 

unlinking.  In one E. coli study in the absence of topo IV, nearly all the synthesized plasmid 

DNA was catenated (Zechiedrich & Cozzarelli, 1995). Compared to the effects caused by 

the loss of only topo IV which is the major cellular decatenase, additional removal of topo 

III does not cause larger accumulation of catenated intermediates during DNA replication 

(Lopez et al., 2005). When overproduced, topo III may physically remove precatenanes 

(Hiasa et al., 1994; Hiasa & Marians, 1994a; Nurse et al., 2003). However, the in vivo 

significance of this reaction is questionable as the enzyme needs to be overproduced to 

perform this function. 

         Irrespective of these nuances, more recent results have attributed an in vivo function 

for this topoisomerase. The suppression of the Par (formation of large unsegregated 

nucleoid in midcell) and growth defects of temperature sensitive (Ts) mutants of parE and 

parC (genes encoding the subunit of topo IV) at restrictive temperatures by high copy 

suppressors depends strictly on topB (Perez-Cheeks et al., 2012). More recently we have 

shown that both the growth defect and the Par- phenotypes of a gyrB(Ts) mutant at 

nonpermissive temperature are corrected by deleting topA but only when topB is present 

(Usongo et al.,  2013). Therefore, topo III appears to play a role during replication to allow 

chromosome segregation. 

         Some studies have suggested functional interactions between topo I and III. In one 

study, topo III was isolated as a multicopy suppressor of topA (Broccoli, Phoenix, & 

Drolet, 2000).  Double topA topB mutants were shown to be very sick (Stupina & Wang, 

2005; Usongo et al., 2013; Zhu, Pongpech, & DiGate, 2001). Cells harvested from these 

mutants exhibit extensive filamentation and unsegregated nucleoids (Stupina & Wang, 

2005; Usongo et al., 2013; Zhu et al., 2001). Interestingly a mutation in the key 

recombination gene recA corrects the phenotypes of these double mutants suggesting that 
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recombination intermediates not resolved by these enzymes are toxic to the cell (Zhu et al., 

2001).  In S. cerevisiae, loss of topo III (TOP3) results in increase recombination between 

short repeated sequences. These observations seem to suggest that defects in type 1A topo 

activity can affect chromosomal stability due to the failure to resolve recombination 

intermediates. 

         A universal family of proteins involved in DNA repair is the RecQ helicase family 

(Bernstein, Gangloff, & Rothstein, 2010; Cheok et al., 2005; Chu & Hickson, 2009; 

Laursen et al., 2003).  It has been suggested that interactions between RecQ-like helicases 

and topo III may prevent the accumulation of lethal recombination intermediates (Lopez et 

al., 2005). Interestingly, it has been demonstrated in vitro that RecQ helicase and single 

stranded binding protein (SSB) can act in concert with topo III in the resolution of 

converging replication forks (Suski & Marians, 2008). The role of RecQ in this reaction is 

to provide the single stranded DNA region needed for the binding of topo III, and SSB 

mediates the functional interaction between RecQ and topo III. However, Marians et al., 

have been unable to demonstrate a functional interaction between RecQ and topo III in vivo 

(Perez-Cheeks et al., 2012). RecQ helicase has also been shown in vitro to stimulate topo 

III to fully catenate double-stranded DNA (Harmon, DiGate, & Kowalczykowski, 1999). 

The association between a helicase and topo III has also been reported in eukaryotes. In 

yeast, interaction between topo III and Sgs1 (E. coli RecQ homolog), has been proven as 

well as topo III involvement in the recombination pathway (Ui et al., 2005). Five RecQ-like 

helicases have also been identified in humans and they include RECQ1, BLM, WRN, 

RECQ4 and RECQ5 (Bernstein et al., 2010; Chu & Hickson, 2009). Of these five, 

inactivation of three cause the rare genetic disorders Bloom syndrome (BLM), Werner 

syndrome (WRN) and Rosthmund-Thomson syndrome (RECQ4) which carry serious 

health consequences including premature aging and increase risk to cancer (Chu & 

Hickson, 2009). A physical and functional relationship has also been established between 

human Top3α and BLM (L. Wu et al., 2000). As we shall see ahead, this interaction 

between a helicase and topoisomerase III plays a major role in the resolution of Holliday 

junction intermediates following homologous recombination. The pathways involving a 

helicase and topo III in recombination in eukaryotes is well established (Hartman Chen et 
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al., 2013). In E. coli, whether type 1A topos act with RecQ is still debated (Lopez et al., 

2005; Perez-Cheeks et al., 2012). Irrespective of all these studies suggesting possible roles 

for topo III, in E. coli, its main role is in decatenation and this is only possible if single-

stranded regions are present on the DNA (Digate & Marians, 1988). 

1.2.5 Topoisomerase IV (topo IV) 

           Like DNA gyrase, topo IV is a heterotetramer (Top4C)2(Top4E)2  made up of two 

ParC and two ParE subunits that are homologous to GyrA and GyrB respectively (Kato et 

al., 1990; Kato, Suzuki, & Ikeda, 1992; Peng & Marians, 1993). Being a type II 

topoisomerase like gyrase, topo IV uses a double-strand passage mechanism (Hartman 

Chen et al., 2013; Wang, 2002). Irrespective of the fact that both enzymes are sensitive to 

the same inhibitors, the coumarins and quinolone families of antibiotics (Peng & Marians, 

1993), they are functionally different since topo IV does not introduce negative supercoils 

(Ullsperger & Cozzarelli, 1996). This functional difference is rooted in the C-terminal 

domains of these enzymes (Corbett et al., 2005; Hsieh et al., 2004). Though like the GyrA 

subunit of gyrase, the CTD of the ParC subunit of topo IV can bind DNA, unlike GyrA, it 

cannot wrap DNA around itself (Corbett et al., 2005; Peng & Marians, 1995). The 

importance of wrapping as a discriminatory factor in the functional differences of these two 

enzymes is confirmed by the observation that deleting the CTD of the A subunit of gyrase 

simply converts gyrase into an enzyme with a strong decatenating activity much like that of 

topo IV (Kampranis & Maxwell, 1996).  In fact, the absence of the GyrA box  in topo IV 

CTD prompted the CTD of topo IV to be described as the "broken form" of gyrase CTD 

(Hsieh et al., 2004) or as a "degenerate form" homologous to GyrA CTD (Corbett et al., 

2005). 

          DNase I footprinting and exonuclease digestion experiments have deciphered the 

mode of gyrase and topo IV binding to DNA. Through these studies, it has been revealed 

that a region of about 140 base pairs is protected following binding by gyrase and this 

allows the G and T segments to be close to each other for processing (Fisher et al., 1981; 

Kirkegaard & Wang, 1981; Liu & Wang, 1978a; Orphanides & Maxwell, 1994) while topo 

IV binding  protects a region of about 34 base pairs and it bends DNA to an extent that is 
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not sufficient to generate a T segment flanking a G segment (Corbett et al., 2005; Peng & 

Marians, 1995).  It is in this light that wrapping by gyrase favors intra rather than 

intermolecular strand passage while wrapping by topo IV favors the contrary. This gives 

gyrase a poor decatenating activity relative to its supercoiling and relaxing activities and 

explains the inability of topo IV to introduce negative supercoils. It also explains why its 

decatenating activity is better than its relaxation activity. 

         Even though in vitro topo IV has been shown to be able to catalyze the relaxation of 

supercoiled DNA (Kato et al., 1992), recent studies have shown that topo IV relaxes 

positive supercoils much faster than negative supercoils (Charvin et al., 2003; Crisona et 

al., 2000; Stone et al., 2003). However, it has also been shown that both positive and 

negative supercoils compete equally well with linear DNA for topo IV binding (Stone et al., 

2003). Single molecules studies on braided DNA molecules have shown that topo IV 

actually senses DNA crossings rather than supercoiling per se. It has been established that 

topo IV preferentially acts on left handed braids having local segment juxtaposition 

geometry similar to that of positively supercoiled (Charvin et al., 2003; Crisona et al., 

2000; Stone et al., 2003). A recent study demonstrates that topo IV acts processively on 

positively supercoiled DNA, whereas its activity on negatively supercoiled DNA is 

distributive (Neuman et al., 2009). This may explain why topo IV only plays a secondary 

role in negative supercoiling removal (Zechiedrich et al., 2000). Topo IV plays a major role 

in chromosome segregation at the end of DNA replication (Ullsperger & Cozzarelli, 1996;  

Wang et al., 2008; Zechiedrich & Cozzarelli, 1995). Interestingly, topo IV has been shown 

to interact with FtsK and the chromosomal dif sites, both involved in the resolution of 

chromosomal dimers by the XerCD proteins (Espeli et al., 2003; Hojgaard et al., 1999; 

Wang, West & Shapiro, 2006) and also with the cellular condensin MukB that is 

responsible for chromosome compaction to enable efficient chromosome segregation 

(Hayama et al., 2013;  Li et al., 2010).  

1.3. DNA replication 

            Bacteria must duplicate their genomes in order to enable cellular proliferation and 

moreover, genome duplication must occur at the correct time, and only once, during the cell 
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cycle (Katayama et al., 2010; Skarstad, Boye, & Steen, 1986). The first step in the events 

leading to genome duplication is initiation. In E. coli, this requires the binding of the 

initiator protein DnaA to the single origin of replication oriC (Messer, 2002). This is a very 

accurate event and in fact the precision in timing of initiation is very critical especially for 

bacteria growing in rich media where new rounds of replication are initiated before the 

completion of previous rounds, and where newly divided daughters cells inherit 

chromosomes with active replication forks and multiple origins (Cooper & Helmstetter, 

1968; Skarstad et al., 1986). It has been shown that all copies of oriC in these cells initiate 

DNA replication synchronously. This implies that there is an effective mechanism in place 

to achieve this feat (Skarstad et al., 1986). The sequential events that ultimately culminate 

in the pre-replicative complex assembly and the loading of the DnaB helicase begin with 

the unwinding of the duplex DNA within the oriC region by DnaA. This defines the origin 

and set the stage for the pre-RCs assembly (Leonard & Grimwade, 2005; Prasanth et al., 

2004).  
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Figure 9. A revised map of oriC depicting the model of pre-RC assembly. In the first 

stage of pre-RC assembly, DnaA binds to the three high affinity sites R1 R2 and R4 and Fis 

also binds. In the second stage of pre-RC assembly, the high affinity sites help DnaA to 

bind to the low affinity sites (marked in blue) and DnaA must be coupled to ATP to bind 

these sites. Extension of DnaA oligomers displaces Fis (red rectangle), and IHF (green 

rectangle) binds in this stage, modulating the distance between the strong and weak sites. 

SeqA the negative regulator (red pentagon) prevents oligomer extension and unwinding by 

blocking sites containing GATC. The positive regulator DiaA (green circle) is proposed to 

stabilize DnaA interactions that are required to extend DnaA from the nucleation sites, and 

to connect the two converging oligomers at R2. Following the filling and joining of arrays, 

a compact helical filament of DnaA-ATP is formed that extend from R1 into the DUE 

(DNA unwinding element) and DiaA may also stabilize this extension (Rozgaja et al., 

2011). Figure used with permission from John Wiley and Sons. 
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           Sequence analysis of the oriC region has revealed that oriC has an array of nine base 

pair sequence motifs termed DnaA boxes that are bound by DnaA (Fuller, Funnell, & 

Kornberg, 1984). DnaA binds with highest affinity to the DnaA box consensus sequence 5'-

TTATCCACA-3' (Schaper & Messer, 1995) also termed the R-box (Zyskind et al., 1983). 

These DnaA binding sites include the high affinity sites  R1, R2 and R4 (Margulies & 

Kaguni, 1996; Schaper & Messer, 1995) and the low-affinity sites, R3, R5, I1, I2, I3, τ1, τ2 

(Kawakami, Keyamura, & Katayama, 2005; Leonard & Grimwade, 2011; Margulies & 

Kaguni, 1996; McGarry et al., 2004; Ozaki & Katayama, 2012; Rozgaja et al., 2011), C3, 

C2 and C1 (Rozgaja et al., 2011).  Even though these sites are important for oriC function, 

it has been found that only the left half of oriC is required for viability under slow growth 

conditions and both sides are required under conditions of rapid growth (Stepankiw et al., 

2009). Binding sites in oriC are also recognized by the SeqA protein (Slater et al., 1995), 

DiaA (Ishida et al., 2004), IHF and Fis (Roth, Urmoneit, & Messer, 1994). These proteins 

modulate DnaA activity and by doing so they affect initiation (Leonard & Grimwade, 

2005). In addition to the DnaA binding sites, oriC equally carries near its left border, an 

AT-rich duplex unwinding element (DUE) made up of three 13-mer motifs that become 

unwound following binding by DnaA (Bramhill & Kornberg, 1988). 

1.3.1. The replication initiator DnaA 

            DnaA is a member of AAA+ family of proteins conserved in all domains of life 

(Duderstadt & Berger, 2008; Katayama et al., 2010). The   activity of DnaA is regulated by 

its binding to ATP (Sekimizu, Bramhill, & Kornberg, 1987).  Studies have shown that there 

are about 1000-2000 monomers of DnaA per cell in E. coli (Sekimizu et al., 1988)  though 

it has been reported that only about 20 DnaA monomers are needed to form a pre-

replicative complex (Crooke et al., 1993; Ryan et al., 2004) implying that there is more 

DnaA available than required. Irrespective of its cellular abundance, DnaA still sets the cell 

mass at initiation (Lobner-Olesen et al., 1989). Biochemical and structural studies 

combined with genetic approaches have revealed that DnaA contains four distinct domains 

(Kaguni, 2006; Katayama et al., 2010).  Domain I (the-N-terminal, amino acids 1-90) is 

used primarily for protein-protein interactions. This domain equally interacts with the DNA 
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replicative helicase (DnaB) (Abe et al., 2007) as well as with DiaA (Ishida et al., 2004). 

This domain also acts in DnaA oligomerization (Simmons et al., 2003).  Domain II amino 

acids (90-130) is the only non-conserved region of DnaA and functions as a flexible linker 

whose length varies among DnaA homologs (Abe et al., 2007; Molt et al., 2009). This 

domain does not yet have any specific function as studies have shown that systemic 

mutations can be introduced into this region without any loss of cell viability (Messer et al., 

1999; Nozaki & Ogawa, 2008). Domain III amino acids (130-347) contains the sensors I, II 

(box VIII) and box VII motifs of the AAA+ protein family (Erzberger & Berger, 2006). It 

functions in the binding and hydrolysis of ATP (Erzberger et al., 2002). Domain IV the C-

terminal domain amino acids (347-467) contains a helix-turn-helix motif for double 

stranded DNA binding (Erzberger et al., 2002; Fujikawa et al., 2003) and a region for 

membrane interaction that serves to regulate replication initiation (Garner & Crooke, 1996). 

Domain IV also recognizes and binds to the DnaA box motif (Blaesing et al., 2000; 

Erzberger et al., 2002; Fujikawa et al., 2003; Roth & Messer, 1995; Sutton & Kaguni, 

1997). 
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Figure 10. Domain organization of DnaA. A region near the N-terminus is involved in 

the interaction between DnaA and DnaB, HU, Dps, DiaA. This region is also required for 

DnaA oligomerization. Domain II functions as a flexible linker connecting domain I, IIIa 

and IIIb. Domain III is involved in ATP binding while Domain IV is involved in DNA 

binding (Kaguni, 2011). Figure used with permission from Elsevier (Kaguni, 2011). 

 

         To begin initiation, DnaA first binds to the high affinity sites at oriC (Miller et al., 

2009). Domain IV of DnaA is required for efficient localization to these sites. Biochemical 

and genetic studies reveal that two specific elements of Domain IV, which are the DnaA 

signature sequence and a region known as the basic loop, are required for efficient 

localization at oriC (Blaesing et al., 2000; Sutton & Kaguni, 1997). The DnaA signature 

sequence mediates specific recognition of the DnaA box binding site while the basic loop 

contains a conserved arginine residue that is crucial for DNA binding (Blaesing et al., 2000; 

Sutton & Kaguni, 1997). These two motifs thus define the high-affinity interactions 

between DnaA and its cognate binding sites at oriC. The high affinity sites define the origin 

and these sites form the structural platform that is used to assemble the pre-replicative 

complex.  Binding of DnaA to the high-affinity sites helps this protein to bind to the lower 

affinity sites. In fact, high affinity sites play a critical role in pre-replicative complex 

assembly as it has been shown that DnaA cannot occupy any low affinity recognition sites 

in oriC without the cooperative assistance from DnaA bound to the high affinity sites 

(Miller et al., 2009). It has been reported that the loss of high affinity sites have a 
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detrimental effect on oriC function (Langer et al., 1996).  More importantly, it has been 

shown that loss of the high affinity site R1 results in a nonfunctional oriC (Weigel et al., 

2001) while the loss of the high affinity sites R2 and R4 results in defective initiation 

timing (Weigel et al., 2001) and loss of R4 alone also results in severe perturbation in the 

timing of initiation (Riber et al., 2009).  

         DnaA occupation of low affinity sites via cooperation from the high affinity sites 

occur only in the presence of ATP (McGarry et al., 2004). DNA footprinting studies using 

dimethyl sulfate shows that five DnaA binding sites (R-boxes) bind both active ATP-DnaA 

and inactive ADP-DnaA with equal affinity. This is not the case for the low affinity I sites 

which bind DnaA only in the presence of ATP (McGarry et al., 2004).  In fact, it has been 

found that single base substitutions in either I2 or I3 results in reduced amounts of bound 

ATP-DnaA in vitro and inactivate replication of oriC-containing plasmids in vivo 

(McGarry et al., 2004). Binding of DnaA-ATP to the lower affinity 9 mer sites (R5M, I 

sites, and τ sites) that are dispersed on each half of oriC leads to DNA strand separation in 

the AT rich DNA unwinding element (DUE) (Bramhill & Kornberg, 1988). The interplay 

between two distinct modes of DNA binding by DnaA underlie the remodeling activity of 

DnaA at oriC (Duderstadt et al., 2010) whereby the high-affinity interaction with strong 

DnaA boxes localizes DnaA to the origin, while the ATP-dependent and cooperative 

interactions with weaker affinity sites allow DnaA to form an oligomeric complex that is 

able to melt the AT-rich DUE (Duderstadt et al., 2010). 

         Recent studies have also shown that nucleoid associated proteins influence the 

interactions between DnaA and oriC in assembling the pre-replicative complex. IHF binds 

to the left half between R1 and R5M and bends oriC (Roth et al., 1994) and loss of IHF 

though not important for viability, results in perturbations in initiation timing, implying that 

IHF plays a role in modulating the binding of DnaA in pre-replicative complex assembly 

(Roth et al., 1994). The protein DiaA which binds DnaA domain I have been shown to help 

in the process of pre-replicative complex assembly by stimulating the formation of ATP-

DnaA multimers on oriC (Keyamura et al., 2009). Studies have also shown that strains 

lacking diaA have untimely initiations (Ishida et al., 2004).  HU also influences the 
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unwinding of oriC by DnaA as strains lacking hupA that encodes the alpha subunit of HU 

have untimely initiations (Bahloul et al.,  2001). 

1.3.2. DnaB  

               The separation of the two strands of DNA is carried out by the replicative helicase 

DnaB and its action is required for the movement of the replication fork. This protein has 

six identical protomers that assemble into a ring-like structure that serves as a passage for 

single stranded DNA template during replication (Lo et al., 2009).  Studies in E. coli have 

shown that this protein unwinds DNA by translocating in the 5'→3' direction on the single 

strand DNA to which it is bound (Lee et al., 1989; Richardson & Nossal, 1989).  It has 

equally been shown that DnaB must be in complex with its partner DnaC which regulates 

the helicase function of DnaB in order for it to be delivered at oriC to initiate DNA 

replication (Davey et al., 2002; Mott et al., 2008). Structural studies have revealed that 

DnaB protomer has a large C-terminal domain that contains a RecA-like fold and a smaller 

N-terminal domain (Bailey, Eliason, & Steitz, 2007). DnaC binds to the larger C-terminal 

domain with three DnaC monomers for each DnaB hexamer (Makowska-Grzyska & 

Kaguni, 2010). The N-terminal region of DnaC is necessary for its interaction with DnaB 

(Ludlam et al., 2001). 

1.3.3. DnaC 

            As mentioned above, the molecular escort protein DnaC is the essential partner for 

DnaB for its delivery at oriC. It is a member of the AAA+ family of ATPases that contain 

specific amino acid sequence motifs that serves for ATP binding and hydrolysis (Koonin, 

1993). Even though  members of the AAA+ family of proteins have a high affinity for ATP, 

DnaC binds weakly to ATP with a dissociation constant (Kd) of about 8µM (Biswas, 

Flowers, & Biswas-Fiss, 2004; Davey et al., 2002) and is also a weak ATPase itself (Davey 

et al., 2002; Wahle, Lasken, & Kornberg, 1989). The influence of ATP in DnaC function 

has been a puzzle but however, new evidence now suggests that the activation of its 

ATPase only occurs in an early step in oriC replication with maximal activity obtained in 

the presence of both DnaB and ssDNA (Davey et al., 2002). ATP stimulates ssDNA 
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binding by DnaB-DnaC complex and expands the ssDNA bubble at the origin (Davey et 

al., 2002). Studies have also shown that DnaC interacts with DnaA, and this interaction 

suggests that DnaC collaborates with DnaA to load the DnaB helicase (Mott et al., 2008). 

The ATPase and helicase activities of DnaB are inhibited when it is in complex with DnaC, 

so DnaC must dissociate from DnaB in order for helicase activation to occur (Davey et al., 

2002; Mott et al., 2008). In fact, studies have shown that mutant DnaCs that are defective in 

ATP binding due to amino acid substitutions in the Walker A box, a nucleotide binding 

motif, do not inhibit DnaB in vivo and fail to deliver DnaB to oriC in vitro (Davey et al., 

2002; Ludlam et al., 2001). This supports the ATP/ADP switch hypothesis whereby DnaC 

possesses dual states, each with its own positive role in replication. DnaC-ATP state 

inhibits DNA unwinding by DnaB though this state is required to load DnaB onto oriC, and 

the DnaC-ADP state that does not inhibit DnaB but decreases the grip of DnaC on ssDNA 

(Davey et al., 2002). 

1.3.4. Helicase loading by DnaA 

             Following unwinding of oriC, ATP activated DnaA loads the DnaB-DnaC complex 

onto each of the separated strand of oriC with one DnaB-DnaC complex  loaded on the top 

strand near the left border of oriC and a second DnaB-DnaC complex loaded on the lower 

strand next to the DnaA box R1 (Carr & Kaguni, 2001; Fang et al., 1999). Several studies 

support the conclusion that DnaA loads DnaB-DnaC at oriC. Firstly, ATP or ATPγS bound 

to DnaC does not affect the DnaA-dependent loading of DnaB-DnaC complex at oriC 

(Davey et al., 2002; Makowska-Grzyska & Kaguni, 2010). The fact that DnaC still remains 

bound to DnaB in the presence of either ATP or its analog suggests that the act of helicase 

loading does not stimulate the hydrolysis of ATP bound to DnaC or its release from DnaB 

(Makowska-Grzyska & Kaguni, 2010). Secondly, helicase loading involves two regions of 

DnaA located in Domains III and Domain I. The region in Domain III has been identified 

based on studies of a monoclonal antibody that interferes with the interaction between 

DnaA and DnaB measured in solid-phase binding assays (Marszalek & Kaguni, 1994; 

Sutton et al., 1998). This antibody recognizes an epitope within residues 111-148 of DnaA. 

Other studies involving deletion analysis have also established the interaction region to 
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amino acids residues 135-148 which fall within the range of Domain III (Seitz, Weigel, & 

Messer, 2000). For Domain I, it has been shown that an alanine substitution for 

phenylalanine at position 46 affects the interaction between DnaA and the helicase DnaB 

(Keyamura et al., 2009). Thirdly, DnaC is unable to escort DnaB at unwound oriC by 

mutant DnaAs that are defective in self-oligomerization (Felczak & Kaguni, 2004; Felczak, 

Simmons, & Kaguni, 2005). 

 1.3.5. Dissociation of DnaB 

                DnaB must dissociate from DnaC in order to be available to unwind the DNA 

duplex. The dissociation of DnaC from the C-terminal domain of DnaB is enabled by the 

primase (DnaG) which binds to the N-terminal domain of DnaB (Bailey et al., 2007; Tougu 

& Marians, 1996; Wu, Zechner, & Marians, 1992). Most DNA polymerases require a 

primed ssDNA substrate to initiate DNA synthesis and priming is ensured by DnaG which 

synthesizes RNA primers by using the ssDNA as template (Corn & Berger, 2006).  It has 

been observed that the interaction of primase with DnaB while it synthesizes a primer alters 

the conformation of DnaB which leads to the dissociation of DnaC (Makowska-Grzyska & 

Kaguni, 2010). The role of ATP in this dissociation reaction has been demonstrated 

(Makowska-Grzyska & Kaguni, 2010). It has been observed that substituting a conserved 

arginine for alanine in DnaC renders this enzyme defective in ATP hydrolysis and unable to 

dissociate from DnaB. It is thought that the conserved arginine acts to transduce the signal 

generated by the interaction of primase with DnaB and primer formation which leads to the 

release of DnaC from DnaB, via ATP hydrolysis by DnaC (Makowska-Grzyska & Kaguni, 

2010). 

1.3.6. Replication post-initiation 

             The replisome that duplicates the chromosome in E. coli is an ensemble of DnaB, 

the DNA polymerase III holoenzyme and primase. DNA polymerase III is a multi-enzyme 

complex with several subunits (Johnson & O'Donnell, 2005). Because of the anti-parallel 

structure of the duplex and the unidirectional activity of the DNA polymerases, DNA 
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replication is semi-discontinuous. One strand (leading) is synthesized continuously while 

the other strand (lagging) is synthesized discontinuously as Okazaki fragments.  

         Once DnaB is liberated from DnaC, it translocates in the 5'→3' direction on the 

lagging strand as it unwinds the parental duplex. To begin this process, two DnaB 

hexamers are introduced on the unwound region at the origin. Subsequent replication fork 

assembly requires the recruitment of the DNA polymerase III holoenzyme and its 

subsequent link-up with DnaB (Hiasa & Marians, 1994c). By transiently associating with 

DnaB, primase synthesizes a primer-template for the holoenzyme. The binding of the 

holoenzyme to the synthesized primer must happen fast so that there is enough time to 

establish the protein-protein interaction between the τ subunit of the holoenzyme and DnaB 

before the latter enzyme move away to perform her helicase functions. This interaction 

stimulates the rate of DNA unwinding catalyzed by DnaB by 15 fold and holds the 

holoenzyme to the fork (Kim et al., 1996., McHenry, 2003; Pomerantz & O'Donnell, 2007). 

It also designates which of the two DNA polymerase cores (each consisting of the  α, ε, and 

θ subunits) of the holoenzyme becomes the leading-strand polymerase (Yuzhakov et al., 

1996). On the lagging strand template, primase interacting with DnaB synthesizes primers 

for Okazaki fragment synthesis (Lu et al., 1996; Tougu & Marians, 1996; Wu et al., 1992).  

Primase remains attached to the RNA primed site through its interactions with SSB and is 

eventually displaced by the χ subunit (structural gene holC), one of the subunits of the 

clamp loader or γ complex. Following the displacement of primase, the γ complex then 

assembles the β clamp onto the primed site onto which DNA polymerase III core associates 

to form the processive polymerase III (Yuzhakov et al., 1999). The interactions of χ subunit 

with SSB tether Pol III to the lagging strand of replication and increase the processivity and 

efficiency of replication (Marceau et al., 2011; Witte et al., 2003). The SSB mediated 

switch between primase and polymerase frees primase to be recycled and be available to 

prime a new Okazaki fragment (Yuzhakov et al., 1999). Studies have shown that mutations 

in holC the structural gene for χ subunit leads to a defect in the initiation of DNA 

replication (Marceau et al., 2011). Other studies have also shown that a mutation in holC 

could decrease the dynamic exchange in polymerase subunits generating replication forks 

with decreased processivity and efficiency (Nordman, Skovgaard, & Wright, 2007). 
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1.3.7. Regulation of DNA replication initiation via origin sequestration 

              As stated above, regulation of DNA replication initiation is required in order to 

ensure that replication takes place only once every cell cycle and simultaneously from all 

the origins present in the cell (Katayama et al., 2010; Skarstad et al., 1986).  E. coli 

achieves this feat by using oriC and DnaA as targets for regulatory control. In E. coli, 

studies have shown that after initiating each new round of DNA synthesis, the pre-

replicative complex is disassembled in order to reset the origin (Nievera et al., 2006). In 

origin resetting, some of the displaced DnaA reassociates with the high affinity sites R1, R2 

and R4 in the newly replicated copies of oriC, while the lower-affinity sites are blocked by 

the SeqA protein to prevent the formation of the pre-replicative complex (Nievera et al., 

2006). The oriC region of E. coli contains GATC sequences that are found in DUE and in 

the lower-affinity sites R5M, τ1, τ2, I2, and I3. These sequences are normally methylated at 

the adenine nucleotide by Dam methyl-transferase, but immediately following their 

replication, these sites are transiently hemimethylated (Zyskind & Smith, 1986). SeqA 

binds the hemimethylated GATCs with high affinity (Slater et al., 1995) thus blocking pre-

replicative complex reassembly without however impeding rebinding of DnaA at the high 

affinity sites R1, R2 and R4 (Nievera et al., 2006). Studies have shown that oriC is 

refractory to new initiations as well as adenosine remethylation of GATCs by Dam 

methylase for approximately one-third of the cell cycle, a time referred to as the 

sequestration period (Campbell & Kleckner, 1990).  seqA deletion leads to the abolition of 

origin sequestration, which in turns leads to asynchronous replication, premature initiation 

and abnormal localization of nucleoids. All these problems emphasize the many functions 

of SeqA in regulating DNA replication (Boye et al., 1996;  Lu et al., 1994; Olsson et al., 

2003; Slater et al., 1995). In seqA mutants, overinitiation is due to the binding of the 

released DnaA-ATP to low affinity sites in oriC ensuring the reassembly of the pre-

replicative complex (Nievera et al., 2006). Interestingly, in a wild type strain, SeqA also 

binds to the hemimethylated GATCs in the dnaA promoter region during the sequestration 

period, shutting down dnaA gene expression (Nievera et al., 2006). 
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1.3.8. Regulation of replication initiation via DnaA availability 

               The regulation of DnaA activity and availability is tied to replication fork 

movement and DNA sequence elements. New replication forks continue to move around 

the chromosome during the sequestration period when initiation and DnaA activity are 

blocked (Campbell & Kleckner, 1990). DnaA activity is regulated in three different ways as 

a result of fork movement. These regulatory routes are RIDA (regulatory inactivation of 

DnaA) a mechanism whereby DnaA-ATP bound to the chromosome is inactivated 

(Katayama & Sekimizu, 1999), duplication of sites on genomic DNA that have a high 

affinity for DnaA binding and thus titrates DnaA to reduce its availability (Kitagawa et al., 

1998), and the duplication of specialized chromosomal regions known as DARS (DnaA 

recharging site) (Fujimitsu, Senriuchi, & Katayama, 2009). Even though the immediate 

assembly of the pre-replicative complex is prevented by sequestration, that is not enough to 

ensure that replication starts once and only once per cell cycle. Reducing the levels of 

DnaA-ATP coupled with sequestration is necessary. The conversion of DnaA-ATP to 

DnaA-ADP in E. coli is achieved by RIDA (Katayama et al., 2001) that is mediated by the 

Hda protein through its stable association with the sliding clamp of the DNA polymerase 

holoenzyme (Kato & Katayama, 2001). A conserved motif (arginine finger) in Hda 

interacts directly with the ATPase region of DnaA to stimulate ATP hydrolysis (Nievera et 

al., 2006). Studies have shown that ADP activates the in vivo activity of Hda (Su'etsugu et 

al., 2008). The ADP bound to Hda promotes the activated conformation of the protein 

which is a monomer. This monomeric form enables the arginine finger of the Hda AAA+ 

domain to access the ATP bound to the DnaA AAA+ domain (Su'etsugu et al., 2008).  Lack 

of Hda activity produces a variety of phenotypes ranging from excessive overinitiation 

(Camara et al., 2005; Kato & Katayama, 2001) to modest overinitiation and asynchrony 

(Riber et al., 2006). However, less severe phenotypes have been attributed to compensatory 

mutations in Hda defective strains (Riber et al., 2006). It has also been observed that in 

some Hda mutants, the level of DnaA-ATP is almost equal to that seen in wild type cells 

(Fujimitsu et al., 2009) suggesting that other yet unidentified mechanisms that stimulate 

DnaA-ATP hydrolysis exist.  Another mechanism utilized by the cell to control initiation is 
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to titrate free DnaA in order to reduce its availability.  In fact, in E. coli, there are more than 

300 consensus 9-mer DnaA recognition sites spread around the genome (Roth & Messer, 

1998) that perform this function. One of such recognition site is the datA (DnaA titration) 

locus that titrates exceptionally large amounts of DnaA (Kitagawa et al., 1998). datA is 

believed to be the major DnaA titration locus on the chromosome.  datA is located at 94.7 

min on the genetic map (Kitagawa et al., 1996) and is duplicated near the end of the 

sequestration period. In fact, sequestration and the titration of DnaA by datA are two 

separate mechanisms and each operates independently with the latter working after the 

former to assure a single initiation event in the cell cycle (Kitagawa et al., 1998). 

Inactivating datA causes early initiation (Nozaki, Yamada, & Ogawa, 2009) and extra 

copies of datA are not tolerated by E. coli (Morigen et al.,  2001). 

         Even though the cell has put in place mechanisms to regulate DnaA availability, when 

it is time to initiate replication, DnaA must be made available at oriC. Though DnaA-ATP 

is produced de novo, additional DnaA-ATP is also supplied by mechanisms that recharge 

DnaA-ADP. It has recently been discovered that specific genomic sequences termed DARS 

(Fujimitsu et al., 2009) located on distinct chromosomal regions stimulate the production of 

DnaA-ATP from DnaA-ADP. These sequences DARS1 and DARS2 have been shown to 

map near bioD and mutH respectively (Fujimitsu et al., 2009). These chromosomal regions 

have DnaA recognition sites that promote the regeneration of DnaA-ATP from DnaA-ADP, 

by nucleotide exchange. Any alteration to the DARS region such as mutations or deletions 

affects the cell cycle by delaying initiation (Fujimitsu et al., 2009). Recharging DnaA-ADP 

is not only limited to DARS sites. Other mechanisms of recharging are also available and 

one such mechanism involves the interaction of DnaA-ADP with membrane acidic 

phospholipids (Garner & Crooke, 1996).  Interestingly it has been found that both DnaA 

and hemimethylated oriC sequences interact with membranes (Boeneman et al., 2009; 

Ogden, Pratt, & Schaechter, 1988; Saxena et al., 2013). These interactions may facilitate 

DnaA recharging at some point during the cell cycle.  
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1.4. Role of DNA topoisomerases in DNA replication 

            DNA topoisomerases are involved in the various stages of DNA replication from 

initiation to termination. They ensure the smooth sailing of the replication forks by 

removing DNA entanglements that will otherwise stall the progression of the replication 

forks. Their involvement in the various stages of replication ensures the smooth replication 

of DNA. 

1.4.1. Role of DNA topoisomerases and supercoiling in replication 

initiation 

          In addition to the requirement of DnaA (Fuller et al., 1981), initiation of DNA 

replication in E. coli also requires supercoiled oriC DNA and it is in this regard that 

changes in the level of DNA supercoiling or transcriptional activity near oriC affects origin 

function and initiation timing (Baker & Kornberg, 1988; Skarstad et al., 1990). Using an in 

vitro replication system, it has been shown that the timely release of both replication forks 

for bidirectional replication requires topological modulation of the origin and this is 

achieved in the presence of either gyrase or topo IV (Smelkova & Marians, 2001). In E. 

coli the specificity of replication initiation for DnaA and the oriC sequence is maintained 

by topo I (Kaguni & Kornberg, 1984) and RNase HI (Ogawa et al., 1984). 

         Transcriptional activation of the origin has also been demonstrated in the phage λ. 

Initiation of phage λ replication requires transcription near its replication origin and this 

transcriptional activation depends on the transcription process itself rather than on any 

resulting protein product. Interestingly, transcription can start 95 bp downstream from oriλ 

(Furth et al.,1982).  Negative supercoiling in light of the twin-supercoiled model of 

transcription (Liu & Wang, 1987) may play a role in activating the phage λ replication 

origin. That transcription is a major player in regulating oriC activity via negative 

supercoiling is confirmed by the direct interaction between DnaA and RNA polymerase 

(Flatten et al., 2009) and also between the replication initiation protein of λ phage, the λO 

protein, and RNA polymerase (Szambowska et al., 2011).  
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           Because replication initiation depends on local supercoiling, it is therefore regulated 

by DNA topoisomerases. In fact, physiological studies support the view that DNA 

topoisomerases and supercoiling are involved in replication initiation in E. coli. Deleting 

topA suppresses the temperature-sensitivity of dnaA46 mutation (Louarn et al., 1984). Loss 

of topo I activity increases negative supercoiling (Pruss et al., 1982) which again increases 

the likelihood of stable strand separation.  The addition of high concentrations of sodium 

chloride in a culture medium has also been shown to suppress the growth defect of dnaA46 

mutants by increasing negative supercoiling (Kondo et al., 2000). The inability of a gyrase 

mutant to initiate replication at non-permissive temperatures can be corrected by a topA 

deletion which increases negative supercoiling (Usongo et al., 2013). Studies using 

temperature sensitive dnaA initiation mutants have also provided evidence for the 

involvement of gyrase in replication initiation. A dnaA46 mutant growing at the permissive 

temperature is three to four times more sensitive to gyrase inhibitors than a wild-type strain 

(Filutowicz, 1980). In addition, spontaneous novobiocin or nalidixic acid resistant 

mutations arise in dnaA46 strain at a frequency 20 to 30 times lower than observed in the 

wild type strain (Filutowicz, 1980). More importantly, a dnaA46 mutation is suppressed by 

an RNA polymerase mutation (rpoB). This double mutant exhibits three to fourfold lower 

sensitivity to novobiocin than the strain with only the dnaA46 mutation alone (Filutowicz & 

Jonczyk, 1981).  Studies have also shown that overinitiation in a dnaAcos mutant can be 

corrected by inhibiting DNA gyrase (Johnsen et al.,  2010).  

1.4.2. Role of DNA topoisomerases in the early stage of replication fork 

elongation 

            For DNA replication to proceed beyond initiation, the topological linkages ahead of 

the replication fork must be removed.  Removal of each duplex turn as the parental 

template is unwound generates a compensatory positive overwinding ahead of the fork that 

can be manifested in two forms: a positive supercoil that forms in the unreplicated region 

ahead of the replication fork or a precatenane, a positive winding of the two partially 

replicated sister strands behind the fork. Accumulation of the positive supercoils ahead of 
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the fork will render further separation of the strands a daunting task and this will eventually 

stall the progression of the replication fork (Vos et al., 2011). 

 

 

 

 

 

 

 

 

 

Figure 11. The functions of DNA topoisomerases during replication elongation. The 
progression of the replisome creates positive supercoils ahead of the fork and behind the 
fork where newly replicated strands form precatenanes. Positive supercoils and 
precatenanes must be taken care of in order to enable fork progression and proper 
chromosome segregation. Figure adapted with permission from Nature Publishing Group 
(Vos et al., 2011). 
 
         In E. coli, gyrase shoulder the responsibility to remove positive supercoils and topo 

IV supports gyrase in this role.  The best evidence for this division of labor comes from a 

study assessing replication fork progression in temperature sensitive mutants of S. 

typhimurium (Khodursky et al., 2000). In this study, topo IV supports replication fork 

progression at one-third of the rate observed when gyrase and topo IV are present. Thermal 

inactivation of the gene encoding the A subunit of topo IV had very little effect on fork 

movement.  By contrast, thermal inactivation of the gene encoding the A subunit of gyrase 

alone leads to a slow cessation of the replication fork. Thermal inactivation of the genes 

encoding the A subunits of both enzymes leads to rapid cessation of the replication fork.  

Several other lines of experimental evidence have equally pointed to gyrase and topo IV as 

the key topoisomerases in replication fork elongation in vivo. It has been found that the 

parE10 (Ts) mutation which renders E. coli thermo sensitive for growth is lethal at all 

temperatures when PriA, the main replication restart protein, is absent (Grompone et al., 

2004) implying  that topo IV acts prior to replication completion even in the presence of 

topo IV, topo III 
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gyrase. Mutational inactivation of gyrase by shifting thermosensitive mutants of gyrase to 

the nonpermissive temperature causes DNA replication to stop only slowly. If gyrase was 

solely responsible for replication fork movement, the stop would be rapid (Filutowicz, 

1980; Mirkin & Shmerling Zh, 1982; Orr et al., 1979). Other evidence has come from 

experiments with antibacterial drugs which have been shown to target both  gyrase and topo 

IV and convert both enzymes into a poisonous road block on the DNA template that stall 

replication fork progression (Drlica et al., 2008, 2009). 

          Another consequence of replication fork progression is the formation of precatenanes 

as stated above. Evidence for the existence of precatenanes as an important substrate for 

topoisomerase action came from experiments whereby topo III was found to support the 

complete replication and segregation of oriC plasmids in an in vitro system consisting 

entirely of purified proteins (Hiasa & Marians, 1994a). Because topo III is a type 1A 

topoisomerase (Hartman Chen et al., 2013) it cannot relax positive supercoils, implying that 

topo III acts behind the fork to remove precatenanes by having access through the nicks or 

gaps generated during Okazaki fragment synthesis (Nurse et al., 2003). The removal of 

these precatenanes during replication fork progression is the principal responsibility of topo 

IV (Zechiedrich & Cozzarelli, 1995). In fact, studies have shown that precatenanes are 

responsible, at least in part, for E. coli sister chromosome cohesion, and impairing topo IV 

activity leads to increase cohesion time and failure to segregate newly replicated loci 

(Wang et al., 2008). 

          The role of topo IV in replication fork progression has also been questioned in some 

studies. In a study using a temperature sensitive mutant of topo IV, it has been observed 

that inactivating topo IV has a minimal effect on replication fork progression (Wang et al., 

2008). Using an in vitro  system consisting of entirely purified proteins to reconstitute oriC 

plasmid DNA replication as a model system to study the action of DNA topoisomerases, it 

was found that gyrase supported the early stages of replication whereas topo IV was 

important only at the terminal stages of replication (Hiasa & Marians, 1996).  More 

importantly, it has been observed that decreasing gyrase activity slightly with a temperature 

sensitive gyrB mutant held at the semi-permissive temperature causes cell growth to be 

completely dependent on the replication restart protein PriA (Grompone et al., 2003). In 
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this study, the authors suggested that the partially inactivated gyrase was unable to keep 

pace with the generation of positive supercoiling which eventually stalls the replication 

fork. This suggests that topo IV does not compensate for the near inactive gyrase during 

replication fork progression to remove positive supercoils or precatenanes and also suggests 

that precatenanes are no barriers to replication. Interestingly, it has been reported that the 

activity of topo  IV is temporally and partially regulated in the cell implying that topo IV is 

not free to bind DNA at all the times and can act only at a certain time in the cell cycle 

(Espeli et al., 2003).  In fact, this temporal regulation has been confirmed experimentally 

using an isogenic pair of strains in which the A subunit of gyrase was either resistant or 

sensitive to norfloxacin. Norfloxacin targets both gyrase and topo IV (Khodursky et al., 

1995). Cell killing by norfloxacin with the gyrase sensitive allele occurs with the onset of 

replication while cell killing when gyrase is resistant to norfloxacin occurs only late in the 

cell cycle implying that topo IV was  restricted from gaining access to the DNA  until  only 

at the end of the cell cycle (Espeli et al., 2003). Irrespective of all these studies suggesting 

where topo IV or gyrase could possibly act in E. coli, the major function of topo IV in the 

cell is the removal of precatenanes and the decatenation of daughter chromosomes at the 

end of replication. 

1.4.3. Role of DNA topoisomerases in the late stages of replication fork 

elongation 

         Positive supercoiling generated ahead of the replication fork becomes problematic 

near the end of the elongation step when the two replication forks converge for not only is 

the level of positive supercoil accumulation very high, the space between the two forks 

representing the stretch of unreplicated DNA is not long enough for the binding of gyrase 

(Wang, 2002). Depending on the speed at which the helicase unwinds the parental DNA, 

two pathways have been proposed to help replicate this region between the two converging 

replication forks (Wang, 1991). In pathway A, replication is completed before the 

unravelling of the intertwined parental strands. As result, the remaining intertwined 

parental strands are converted to intertwine between the newly replicated chromosomes 

forming catenanes. Type II DNA topoisomerases are needed to unlink the intertwined 



 
 

 

51

duplex molecules that are formed in pathway A. In fact in E. coli, the Par- or partition 

defect phenotype (formation of large unsegregated nucleoid in midcell) has been observed 

in gyrase and topo IV mutants of E. coli suggesting that the action of a type II DNA 

topoisomerase is required in this pathway (Adams et al., 1992; Usongo et al., 2013; Wang 

et al., 2008). In pathway B, unraveling of the parental DNA occurs before replication. In 

this pathway, a type IA DNA topoisomerase can bind to ssDNA region and unlink the 

parental strands forming a pair of gapped but unlinked progeny DNA (Wang, 1991). 

However, due to the fact that single strands DNA regions form only transiently in vivo, it is 

very difficult to pinpoint the exact site of action of a type IA in vivo. As previously 

mentioned, the partnership between a type IA topoisomerase and a RecQ helicase in 

resolving converging replication forks has been demonstrated in vitro  (Suski & Marians, 

2008). This partnership may explain how a type IA may function in vivo.  In eukaryotes, 

this partnership is also present and the RecQ family partner of topo III which is BLM is 

essential (Chan et al., 2007). Also justifying the partnership between a type IA 

topoisomerase and RecQ helicase is the natural fusion of a helicase domain and a 

topoisomerase domain in reverse gyrase which can also resolve convergent replication 

forks (Confalonieri et al., 1993; Declais et al., 2000; Hsieh & Plank, 2006). 

          In E. coli it has been suggested that topo I and topo III may participate in pathway B 

(DiGate & Marians, 1988; Minden & Marians, 1986). The utilization of the pathway B can 

also be inferred from some in vivo observations. It has been shown that temperature 

sensitive alleles of topo IV encoding subunits can be rescued by overexpressing topo III 

(Nurse et al., 2003; Perez-Cheeks et al., 2012).  
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Fig 12: Two pathways showing the merging of a pair of converging replication forks.  

In pathway A, replication is completed before unravelling of the intertwined parental 

strands which are then converted to intertwine between the newly replicated chromosomes 

forming catenanes. A type II topoisomerase (topo IV) performs decatenation leading to 

fully segregated chromosomes. In pathway B, unlinking of the parental DNA strands 

precedes their replication. In this pathway, a type IA DNA topoisomerase can ensure 

unlinking of the parental DNA by binding to ssDNA regions. Type IA DNA topoisomerase 

could be recruited to the ssDNA region through their interactions with SSB and RecQ 

(Wang, 1991). Figure adapted with permission from the American Society for 

Biochemistry and Molecular Biology (ASBMB). 
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1.4.4. Topoisomerases and replication termination 

             The two replication forks that originate from oriC and traverse the chromosome 

bidirectionally meet at defined regions opposite of oriC called the termination region or ter 

sites. This region blocks the replication fork moving in one direction but not the other, by 

essentially creating a ''replication fork trap'' which is a one way ticket that allows the fork to 

enter but not to leave the terminus region (Duggin et al., 2008).  In E. coli, the replication 

termination protein Tus recognizes and binds to the ter sites. In a situation whereby the 

progression of one fork is delayed, the other fork will encounter the ter site bound by Tus. 

In this situation, fork replication ceases until the second replication fork arrives (Neylon et 

al., 2005). The Tus-Ter complex arrest DNA replication by blocking the replicative 

helicase DnaB when it approaches the complex, eventually leading to its dissociation from 

the DNA polymerase complex (Duggin et al., 2008; Neylon et al., 2005). A role for 

topoisomerase I in replication termination in relation to supercoiling has been demonstrated 

in E. coli. In this bacterium, it has been shown that, in the presence of a mutated topo I, the 

ability of the Tus-Ter complex to block the progression of the replicative helicase DnaB is 

greatly diminished (Valjavec-Gratian et al.,  2005). The authors of this study propose that 

an increase in negative supercoiling as a result of the topo I mutation enhances the 

unwinding ability of DnaB and, as a result, the duration of the Tus-DnaB interaction is 

reduced thereby leading to a decrease in the activity of Tus. In eukaryotes, the role of DNA 

topoisomerases in replication fork termination has also been studied. In S. cerevisiae, Top2 

works in concert with the helicase Rrm3 to resolve the torsional stress that arises from 

converging replication forks and by doing so, they facilitate the progression of replication 

forks across chromosomal termination regions (TERs). The TERs in S. cerevisiae contain 

fork pausing elements and the association of Top2 and Rrm3 at TERs ensure replication 

fork fusion, and prevents abnormal genome rearrangements or DNA breaks that could arise 

as a result of fork convergence at these sites (Fachinetti et al., 2010). In E. coli, even though 

the Tus-Ter complex has have been heralded for terminating replication, it has been shown 

that Tus is not essential for survival (Hill, 1992) and it is conserved only in closely related 

bacteria (Neylon et al., 2005).  Recent studies in E. coli have proposed the dif site as an 
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alternative termination site (Hendrickson & Lawrence, 2007). Elements consistent with 

non-Ter blocking mechanisms exist near dif. These include the FtsK translocase which 

moves in the same direction as the replication fork towards dif and opposes replication fork 

movement between dif and TerC or TerA. Another element consistent with termination at 

dif is XerC/D which can block fork progression by forming a stable complex with dif 

(Hendrickson & Lawrence, 2007).  

1.4.5. Role of DNA topoisomerases and supercoiling in chromosome 

segregation 

          Chromosome segregation in E. coli is ensured by protein motors and cytoskeletal 

elements that help to compact the daughter chromosomes and help to move them to the 

appropriate cellular space prior to cell division. FtsK, a powerful protein motor, plays an 

important role in chromosome segregation (Bigot et al., 2007; Reyes-Lamothe, Nicolas, & 

Sherratt, 2012).  It translocates DNA at a very fast rate and reads chromosome polarity with 

the aid of chromosomal sequences termed KOPS on to which it loads. These sequences are 

oriented to enable FtsK to act only at the ter region (Bigot et al., 2007; Reyes-Lamothe et 

al., 2012).  FtsK also couples dimer resolution (mediated by the Xer recombination system) 

to cell division by bringing the dif site in ter to the septal area via translocation. In fact, 

FtsK is part of the divisome and is among the first proteins to localize at midcell to aid in 

the recruitment of other protein components of the divisome (Bigot et al., 2007; Reyes-

Lamothe et al., 2012).  

         Another important protein complex that helps in chromosome segregation is 

MukBEF. This protein complex is encoded respectively by the genes mukB, mukE and 

mukF. The MukBEF protein complex helps to fold and compact DNA into a more 

condensed form with the aid of supercoiling (Holmes & Cozzarelli, 2000; Petrushenko et 

al., 2006). FtsK and MukBEF are important players in chromosome segregation in E. coli. 

ftsK mutants are defective in chromosome segregation and septation (Yu et al., 1998). 

mukB mutants are defective in chromosome segregation (Niki et al., 1991). Double muk 

ftsK mutants are inviable (Yu et al., 1998).  
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            DNA topoisomerases play an important role in chromosome segregation by 

assisting in DNA compaction and disentanglement, and this is achieved by a cooperative 

work with proteins involved in chromosome segregation. Several lines of experimental 

evidence support this collaborative work. In E. coli, a physical association between topo IV 

and FtsK has been reported and the activity of topo IV is stimulated by FtsK. The raison 

d'être of this association could be a way for topo IV to counteract the supercoils created as a 

result of translocation by FtsK and also to help unlink tangled regions of DNA (Bigot & 

Marians, 2010; Espeli et al., 2003). Topo IV has also been found to physically interact with 

the actin-like protein MreB and this interaction stimulates decatenation. mreB mutant 

strains are defective in chromosome decatenation, thereby suggesting that the interaction of 

topo IV and MreB is an additional force that equally promotes chromosome segregation 

(Madabhushi & Marians, 2009). 

         It has been found that the segregation defect observed in muk mutants can be 

corrected by mutations in the topA gene that increase the overall degree of negative 

supercoiling, thus suggesting that supercoiling facilitates chromosome segregation 

(Sawitzke & Austin, 2000).  In addition, it has also been found that muk mutants are 

hypersensitive to the gyrase inhibitor novobocin (Onogi et al., 2000) and the correction of 

the chromosome segregation defect of muk mutants by topA can be reversed by reducing 

the cellular activity of gyrase with coumermycin, an analog of novobiocin (Onogi et al., 

2000). These findings strongly suggest a link between DNA supercoiling and chromosome 

segregation and thus between the topoisomerases that regulate supercoiling and 

chromosome segregation. In fact, the relationship between chromosome segregation and 

supercoiling can be explained by various mechanisms. Firstly, experimental studies coupled 

with simulation analysis have revealed that supercoiling of a pair of linked DNA rings 

facilitate their segregation because supercoiling increases the probability of decatenation of 

the rings and decreases the probability of their catenation (Rybenkov et al., 1997). 

Secondly, in the case of the MukBEF complex, the finding that negative supercoiling 

favors the folding of DNA into a shape normally assumed by DNA in this complex may 

explain why this complex would be partially dispensable in topA mutants (Petrushenko et 

al, 2006). In summary, the role of negative supercoiling on chromosome segregation may 
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be indirect and the common denominator between the two processes may be DNA 

compaction. 

1.5. Recombination dependent replication 

          The maiden journey undertaken by replication forks from the origin to the terminus 

in an attempt to replicate the E. coli chromosome is not always a smooth one. In fact, 

accumulated evidence now shows that replication forks do encounter obstacles such as 

nicks on the DNA template that may trigger them to collapse (Kuzminov, 1995; Michel et 

al., 2007). Replication fork barriers are not only limited to nicks as other obstacles such as 

non-B DNA structures including R-loops, protein-DNA complexes, or even collision 

between the replication and transcription machineries can also slow down or arrest 

replication forks (Hyrien, 2000). Some of these obstacles such as protein-DNA complexes 

or collusion between replication and transcription are cleared by replicative helicases such 

as Rep, DinG and UvrD acting ahead of the replisome to facilitate fork movement. In fact, 

in E. coli, they have been demonstrated to act at forks blocked by replication-transcription 

collisions (Boubakri et al., 2010). Rep is the most important of these three helicases since it 

is the only one required for normal replication. In rep mutants chromosome replication is 

twice slower than in wild-type cells (Lane et al., 1975). Rep interacts physically and 

functionally with the replicative helicase DnaB (Guy et al., 2009).  

          In E. coli, recombination proteins have also been shown to facilitate replication 

progression under various conditions of replication impediment (Michel et al, 2007). 

Recombination plays a critical role (Kreuzer, 2005; McGlynn & Lloyd, 2002b) in the 

processing of impeded replication forks prior to replication restart. Recombination 

dependent DNA replication has been suggested as a means of reinitiating DNA replication 

when the replication fork is disrupted for whatever reason (Asai et al., 1994). Studies using 

E. coli have revealed that in several replication mutants (for example rep, dnaBts), 

recombination proteins play a specific role by participating in a reaction termed replication 

fork reversal (RFR) (Michel et al., 2004). Positive supercoiling has also been shown to 

promote RFR (Postow et al., 2001).  RFR is a mechanism whereby the newly synthesized 

strands are unwound from the daughter duplexes and base pair to form a Holliday junction 
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adjacent to a double-stranded (dsDNA) end. The dsDNA ends are generated following the 

annealing of the leading and lagging strand ends. In a cell, double stranded DNA ends are 

recognized by the RecBCD complex (figure 13B). This complex unwinds and degrades 

double-strand ended DNA simultaneously until it encounters the Chi (crossover hotspot 

instigator) site. Upon encountering this site, the activity of RecBCD is modified. Its 3’→5' 

nuclease activity is attenuated, whereas a weaker 5'→3' activity is activated and its helicase 

activity remains unaltered (Dillingham & Kowalczykowski, 2008). All these biochemical 

activities culminate in the loading of the RecA protein on the 3' ended ssDNA with Chi on 

the 3' terminus (Dillingham & Kowalczykowski, 2008).  RecA plays a key role in the 

homologous recombination reaction that ensues. It binds to single-stranded DNA (ssDNA) 

forming a RecA-ssDNA filament. This filament then invades a homologous double-

stranded DNA (dsDNA) and pairs with its complimentary strand to initiate the strand 

exchange reaction (Cox, 2003). This exchange is extended by RecA-promoted branch-

migration (Cox, 2003) and results in the formation of a four-arm double-stranded DNA 

structure called a Holliday junction (HJ). In E. coli, this junction is recognized by two 

branched DNA specific helicases, RuvAB (Seigneur et al., 1998) and RecG (McGlynn & 

Lloyd, 2000). The RuvAB helicase (West, 1997) acts in concert with the Holliday junction 

specific endonuclease RuvC (Zerbib et al., 1998) to cleave the Holliday junction and 

complete the recombination process (West, 1997). The RecBCD-RecA-catalyzed strand- 

invasion forms a D-loop (a recombination intermediate formed when a single strand DNA 

invades a complementary duplex) adjacent to the HJ. Replication can then restart from this 

D-loop structure with the help of the replication restart protein PriA and its partners which 

act upon these structures (Kowalczykowski, 2000). The assembly of the replisome at D-

loops by PriA essentially couples double strand break (DSB) repair with replication re-

initiation (Kogoma et al, 1996). It has been proposed that DNA lesions that do not generate 

double strand break requires regression of the nascent DNA or migration of the replication 

machinery away from the lesion to allow repair or bypass of the lesion to allow replication 

restart (Michel et al, 2004). This type of damage utilizes the RecFOR repair system (figure 

13A) which loads RecA on the ssDNA and the subsequent formation of the Holliday 

junction (Michel et al, 2007). The SSB (single-stranded binding protein) prevents the 



 
 

 

58

binding of RecA to ssDNA in vivo. The RecF, RecO and RecR proteins catalyze the initial 

stages of recombinational gap repair by promoting the binding of RecA to SSB-covered 

single-strand gaps (Morimatsu & Kowalczykowski, 2003). The 5'-3' single-strand 

exonuclease RecJ acts in several cases prior to RecFOR to enlarge gaps and it is associated 

sometimes with the 3'-5' RecQ helicase (Han et al., 2006).  
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   Figure 13. DNA repair by homologous recombination and subsequent replication 

restart. A. DNA gap repair by the RecFOR pathway. The 5'- 3' exonuclease RecJ enlarges 

the gap. SSB binds to single-strand DNA and prevents RecA loading. RecFOR promotes 

RecA loading on SSB-covered single-strand gaps. Strand exchange is promoted by RecA 

and the Holliday junctions generated are resolved by RuvABC or RecG.  

 B. Repair of double stranded ends by RecBCD which binds and degrades both strands until 

it reaches Chi. Upon reaching Chi, it modifies its activity and loads RecA on the 3'-ended 

single strand. RecA promotes strand-exchange and RuvABC or RecG terminates the 

recombination reaction by resolving the Holliday junction. D-loops generated are acted 

upon by PriA to load the replisome and restart replication. Blue and red lines represent 

DNA strands of two homologous molecules, arrow represents 3' ends. Green indented 

circle RecJ, green circles RecFOR, magenta indented circle RecBCD, yellow circle RecA, 

purple triangle PriA, red star SSB protein (Michel et al, 2007). Figure adapted and used 

with permission from Elsevier.  
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           Holliday junction cleavage by RuvC can generate crossover and non-crossover 

products (Cromie & Leach, 2000; West, 1997). In a situation whereby crossover products 

are generated, subsequent restart and completion of replication will lead to the formation of 

chromosome dimers and this will necessitate the action of the dif/xerCD/ftsk system to 

resolve the dimeric chromosomes to monomers prior to cell division (Lesterlin, Barre, & 

Cornet, 2004). The generation of crossover products generates the risk of undesirable 

genetic exchanges so Holliday junction resolution that gives rise exclusively to non-cross 

over products is the best scenario for the cell. There is now a growing body of genetic 

evidence which indicate that this can be achieved with the action of a type IA 

topoisomerase working  in conjunction with a RecQ-like family helicase (for example BLM 

in humans) to resolve homologous recombination intermediates such as double Holliday 

junctions (dHJs) without genetic exchanges (Ira et al., 2003). 

         Because type IA topoisomerases require single- stranded DNA regions for strand 

passage, (Hartman Chen et al., 2013), this makes their involvement in the resolution of 

double Holliday junction mechanistically challenging. Positive supercoiling stress within 

the dHJ diminishes the chances of single-stranded DNA formation, and also the unique 

topological challenges that this structure poses to the cell (Wang, 2002). The heteroduplex 

intertwines within a Holliday a dHJ cannot be readily converted to intertwine between 

double-stranded DNA segments that can be resolved by type II DNA topoisomerases. 

Moreover even though, practically the dHJ can be resolved by nucleolytic cleavage of DNA 

strands followed by rejoining of the DNA strands, this will generate recombinant DNA 

products (Wang, 2002). To overcome these challenges, a model has been proposed 

whereby topo IIIα and BLM work together in the step by step resolution of dHJ (Hartman 

Chen et al., 2013; Plank & Hsieh, 2009). In this model termed ''unravel and unlink'' the 

single stranded DNA region which is the preferred substrate for type IA topoisomerase is 

provided by the binding and subsequent unwinding of a Holliday junction by BLM aided 

by the single-stranded DNA binding protein RPA (replication protein A), the SSB homolog 

of eukaryotes, which can stabilize the ssDNA regions and that has also been shown to 

stimulate BLM activity through their physical interactions (Brosh et al., 2000). 
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Biochemical validation of this pathway has been demonstrated in vitro with the finding that 

model dHJs can be resolved with a human (Wu & Hickson, 2003) or Drosophila (Plank, 

Wu, & Hsieh, 2006) topoIIIα/BLM association.  
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 A. Unravel and unlink                    B. HJ Migration 

 

Figure 14. Diagrammatic representation of two proposed models for the dissolution of 

dHJs. A. In the first model unravel and unlink, BLM is recruited to a HJ with the help of 

single-stranded DNA-binding protein which is known as replication protein A (RPA) in 

eukaryotes. Binding of BLM to the HJ denatures a region of the heteroduplex in order to 

provide single-stranded DNA which is the preferred substrate for topo IIIα. Binding of topo 

IIIα enables strand passage. RPA dissociates and the denatured bubbles rewind with the 

exchange strand and the process is repeated until the HJ is resolved. B. In the second model 

termed HJ migration, dHJ dissolution is much more coordinated and processive. In this 

model, BLM enables the migration of the HJ while topo IIIα which is also bound to the 

complex comprising BLM, Rmi1 and RPA, perform coordinated strand passage (unlinking) 

on each heteroduplex. RPA helps stabilize the single-stranded DNA region necessary for 

topo IIIα catalysis while Rmi1 promote the activities of BLM and topo IIIα in the 

dissolution of the dHJ (Plank & Hsieh, 2009). Figure used with permission from the 

American Society for Biochemistry and Molecular Biology (ASBMB). 
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 1.5.1. Replication restart 

           Stalled replication forks must be restarted and, because the stalling can happen 

anywhere on the chromosome for several reason as mentioned earlier, this implies that 

restart occurs through an oriC/dnaA-independent mechanism. Replication forks are 

restarted by replication restart proteins (Heller & Marians, 2006; Marians, 2000; Sandler & 

Marians, 2000) and these proteins include PriA, PriB, PriC, DnaT, DnaC, DnaB, and DnaG 

and they are collectively termed the primosomal proteins (Marians, 1992). The importance 

of replication fork restart to the cell is underscored by the existence of multiple genetic 

pathways to achieve this goal (Boonsombat et al., 2006; Sandler, 2000). PriA plays a key 

role in the assembly of the restart primosome (a protein complex that can assemble a 

replication fork independent of oriC/dnaA) (Marians, 2000). The importance of PriA in 

replication restart is validated by the severe phenotypes of priA mutants (Marians, 2000). 

These mutants grow poorly in rich media, filament extensively, have high basal levels of 

SOS expression, are UV sensitive and are also defective in homologous recombination, 

double strand break repair and in both inducible and constitutive stable DNA replication 

(Marians, 2000). The findings that priA mutant cells are viable though debilitated (Heller & 

Marians, 2005) may be explained in the context of the existence of multiple pathways to 

restart replication (Sandler, 2000).  It has been found that cells that are deficient in PriA and 

PriC are not viable, thus supporting the implication of PriC in the PriA-independent 

pathway.  Similarly, the finding that cells lacking both PriA and Rep are not viable 

indicates the importance of Rep in the PriA-independent pathway (Sandler, 2000). Several 

dnaC mutations have been identified as suppressors of the phenotypes of priA mutants and 

some replication restart mutants (Boonsombat et al., 2006; Sandler, 2000; Sandler, Samra, 

& Clark, 1996). dnaC can mutate at several positions to gain a function that allows the cell 

to restart replication in the presence of different combinations of priA, priB, priC, dnaT and 

rep mutations (Hinds & Sandler, 2004., Sandler et al., 1996., Sandler, 2005). One of such 

mutant dnaC alleles that suppress the phenotypes of PriA-null mutant (Sandler et al., 1996) 

encodes DnaC810. Biochemical characterization of DnaC810 reveal that it has gained the 

ability to load DnaB directly onto SSB-coated ssDNA, displacing SSB in the process and 
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bypassing the need for the PriA-directed primosome assembly that also requires PriB, PriC, 

and DnaT (Xu & Marians, 2000). priB priC double mutants are as defective as PriA-null 

mutants in homologous recombination and DNA repair following UV-damage. The 

phenotypes of double priB priC mutants can be partially corrected by the presence of the 

dnaC809 mutation which encodes the same amino acid change as dnaC810, but requires a 

second dnaC suppressor mutation, two codons downstream of the first mutation, to regain 

wild-type activity (Sandler et al., 1996). 

 

 

Figure 15. Multiple genetic pathways to restart replication. This figure shows the 
multiple genetic pathways that can be utilized to assemble a replication fork at a 
recombination intermediate. Each column represents one possible pathway. The steps 
separated by vertical arrows represent the order of action of the indicated proteins during 
the assembly of the primosome. Question marks indicate that the action of the protein in the 
pathway is unclear (Marians, 2000). Figure used with permission from the American 
Society For Microbiology (ASM). 
 

         Studies have shown that the choice of the restart pathway to be used is determined by 

the structure of the stalled replication fork, with the PriA-dependent system acting on fork 

structures with no gaps in the leading strand like the junction of a D-loop, while the PriC-

dependent system uses fork structures with large gaps in the leading strand (Heller & 

Marians, 2005).  In fact, it has been demonstrated in vitro that PriA can direct the assembly 

of a primosome on a D-loop DNA (Liu & Marians, 1999) and this ability of PriA 



 
 

 

65

essentially links DNA replication and recombination (Jones & Nakai, 1999). To enable the 

loading of the primosome, the 3' end of the invading strand within the D-loop structure is 

bound by PriA. The loading of the replicative helicase DnaB and the primase DnaG onto 

the lagging strand template is then triggered by PriA through a series of protein-protein 

interactions (Sandler & Marians, 2000). The key step in fork reassembly is the loading of 

the primosome as this will enable the resumption of the unwinding of the parental strands 

via DnaB, thus enabling the synthesis of the RNA primers required for Okazaki fragments 

synthesis by DnaG. In addition, the 3' end can be used to prime renewed synthesis of the 

leading strand (Liu et al., 1999). 

           In support of the observation that the PriC restart pathway acts on gapped forks is 

the finding that priA mutants in which only the PriC restart system is functional requires the 

RecFOR gap-filling recombination proteins for viability (Grompone et al., 2004). The PriA 

restart pathway is also responsible to directly restart replication forks that disassembled by 

simple mechanical failure without necessitating repair by homologous recombination as 

observed in a gyrase thermo-sensitive mutant (Grompone et al., 2003).  In this mutant, PriA 

is essential since double gyrB priA mutants are nonviable at the semi-permissive 

temperature and this lethality is not corrected by deleting topA implying that lethality is 

independent of the level of negative supercoiling. Inactivation of homologous 

recombination proteins has no effect on the viability of gyrB priA mutants indicating that 

the formation of recombination intermediates is not required for replication restart in 

double gyrB priA mutants. The lethality of double gyrB priA mutants can be suppressed by 

a dnaC809 mutation which allows PriA-independent assembly of the primosome 

(Grompone et al., 2003). 

1.6. Constitutive stable DNA replication (cSDR) 

            In E. coli, DNA replication generally initiates at oriC. In fact, E. coli possesses 

proteins that act as specificity factors to ensure that replication occurs only at oriC. These 

specificity factors are topo I (Kaguni & Kornberg, 1984) and RNase HI (Ogawa et al., 

1984). Interestingly, both proteins have been shown to prevent R-loop formation (Drolet, 

2006). In stationary phase E. coli cells, R-loops have been implicated in genome instability 
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(Wimberly et al., 2013) and this clearly underscore the importance of protecting the oriC 

based system of replication.  

         In E. coli, mutants were isolated that showed stable and constitutive chromosome 

replication (cSDR; replication can continue for a long time after protein synthesis 

inhibition) and that allowed them to support the deletion of the oriC/DnaA system 

(Kogoma, 1978; Kogoma & von Meyenburg, 1983). These mutants were subsequently 

found to be located in the rnhA gene which codes for RNase HI (Ogawa et al., 1984). 

Because oriC/DnaA-independent growth was observed in these mutants, studies were 

pursued to determine whether cSDR occurs at specific sites on the chromosome. Five sites 

or origins collectively termed oriKs were found to be used by rnhA mutants to initiate 

replication (de Massy, Fayet, & Kogoma, 1984; de Massy et al., 1984).  

         A model for cSDR has been proposed (Kogoma, 1997) and in this model, initiation is 

thought to begin at an R-loop generated by transcription. This bodes well with the 

identification of RNase HI as a specificity factor for oriC whose role was predicted to be 

the elimination of RNA transcripts hybridize to the DNA template that could serve as 

primers for DNA replication (Ogawa et al., 1984). In addition to RecA and DNA 

polymerase I, initiation of replication by cSDR also requires the complete assembly of the 

primosome initiated by PriA and the rest of the replisome (Masai et al., 1994). This bodes 

well with a recent model which suggests that replication restart proteins that load the 

replisome on a D-loop interact with substrates associated with cSDR to load the replisome 

(Sandler, 2005). 

         cSDR is not only limited to rnhA mutants. It has been shown that E. coli cells lacking 

recG exhibit cSDR (Hong, Cadwell, & Kogoma, 1995).  However, in this case the 

oriC/DnaA system could not be deleted. It has been shown that RecG can unwind D-loop 

and R-loop structures (Fukuoh et al., 1997; McGlynn et al., 1997; Vincent, Mahdi, & 

Lloyd, 1996) and it was suggested that the persistence of R-loops in both rnhA and recG 

mutants is responsible for cSDR (Hong et al., 1995). It has also been found that damage 

induced SDR (iSDR) is partially responsible for the increase in SDR observed in cells 

lacking RecG (Hong et al., 1995). iSDR is a form of SDR that depends on the activation of 

the SOS response (Kogoma, 1997) and cells lacking RecG have been shown to exhibit a 
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mild SOS constitutive phenotype (Asai & Kogoma, 1994; Lloyd & Buckman, 1991; 

O'Reilly & Kreuzer, 2004). In addition, induction of SOS following thymine starvation 

leads to iSDR levels that are significantly higher in cells lacking RecG compared to wild 

type cells (Asai & Kogoma, 1994). More recent studies have shed more light on the role of 

RecG in SDR.  RecG plays an important role in the control of chromosome replication and 

segregation in bacteria (Rudolph et al., 2009) and this is attributable to the ability of RecG 

to limit SDR (Kogoma, 1997; Rudolph et al., 2009; Rudolph, Upton, & Lloyd, 2009).  

         Several lines of experimental evidence support the role of RecG in SDR.  Firstly, in 

mock-irradiated dnaA46 single mutants shifted to 42oC the temperature at which the mutant 

DnaA protein is inactive, it was found that incorporation of [3H]thymidine continued for 

some time before reducing severely, consistent with the fact that only the forks that were 

already initiated terminated replication while new rounds could not be initiated from oriC 

because of inactive DnaA proteins. UV irradiation was found to increase the level of [3H] 

thymidine incorporation in mock-irradiated wild type strains (Rudolph et al., 2009; 

Rudolph, Upton, & Lloyd, 2007) and this increase was in line with the induction of SDR 

defined by its independence of DnaA (Kogoma, 1997).  In mock dnaA46 recG cells shifted 

to 42oC, the level of incorporation was found to be significantly higher than in mock-

irradiated dna46 cells consistent with the increased levels of SDR reported in recG mutants 

(Hong et al., 1995). The level of incorporation following UV irradiation in dnaA46 recG 

cells was almost as high as in an irradiated recG single mutant implying that replication is 

affected in the absence of RecG, both with and without UV irradiation (Rudolph et al., 

2009). Secondly, the origin and terminus areas of the chromosome in dnaA46 and dna46 

recG strains were tagged with fluorescent proteins (Rudolph, Upton, Harris, et al., 2009; 

Rudolph, Upton, & Lloyd, 2009) and, following UV irradiation at the restrictive 

temperature, a moderate accumulation of origin as well as terminus foci in dnaA46 cells 

was observed after several hours, consistent with the presence of iSDR in these cells 

(Kogoma, 1997). UV irradiation on dnaA46 cells lacking recG further increased SDR. 

Indeed, there was a rapid and dramatic multiplication of the origin and terminus foci in 

these cells and they formed extensive and discrete clusters within the filaments (Rudolph et 
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al., 2009).  Interestingly, this effect has also been observed in recG cells in which origin 

(oriC) firing is functional (Rudolph et al., 2009).  

         The perpetuation of SDR has been attributable to secondary replication forks that are 

initiated as a result of pathological events that arise from unscheduled collisions between 

opposing forks (Hiasa & Marians, 1994b; Krabbe et al., 1997; Markovitz, 2005). RecG has 

been proposed to limit this secondary pathological amplification and this explains the 

elevated SDR and the defects in chromosome segregation and cell division observed in 

recG mutants (Rudolph et al., 2009). That RecG can exploit DNA damage as an initial 

trigger for pathological replication is supported by the observation that SDR can continue 

for an extensive period of time in recG cells regardless of the UV dose and, more 

importantly, a substantial reduction in UV dose did not impact the amplification of origin 

and terminus foci (Rudolph, Upton, & Lloyd, 2009). It has been recently proposed that 

every replication fork collision event has the potential to threaten genome integrity when 

RecG is absent. The replication restart pathway is exploited to re-replicate the chromosome 

in the absence of RecG with the potential to cause genome instability (Rudolph et al., 

2013). Interestingly, most of the observed phenotypes of recG are suppressed by mutations 

in PriA helicase. Several suppressors of recG mutant phenotypes identified so far have 

single amino acid substitution within or near the helicase motif of PriA (Al-Deib, Mahdi, & 

Lloyd, 1996) and these PriA helicase mutations have been shown to effectively suppress 

the damage sensitivity of recG mutants (Al-Deib et al., 1996; Gregg et al., 2002; Jaktaji & 

Lloyd, 2003). Amplification of origin and terminus was dramatically reduced in UV 

irradiated dnaA46 recG priA300 cells at 42oC (Rudolph et al., 2009). This finding is in line 

with a previous observation that strains expressing a helicase-defective PriA protein show 

reduced levels of constitutive as well as damaged induced SDR (Tanaka et al., 2003). The 

fact that cells lacking PriA helicase activity suppressed the recG mutant phenotypes clearly 

demonstrates that the pathological replication in recG cells is linked to SDR.  

1.7. Topoisomerase inhibitors 

Because of their essential functions, topoisomerases are the principal target of most 

antibacterial and chemotherapeutic agents. In bacteria, due to the central role of gyrase in 
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the cell, it is not surprising that it is the target of an important variety of antibacterial 

agents. Mechanistically, gyrase inhibitors are classified into two broad categories. The first 

category which includes the coumarins and cyclothialidines acts by inhibiting the ATP 

dependent reaction of gyrase by preventing ATP hydrolysis, since they compete with ATP 

for binding to the GyrB subunit. This class of antibiotics only inhibits the supercoiling 

reaction of gyrase. The relaxation activity of gyrase is unaffected by this category of 

antibacterial compounds (Lewis et al., 1996; Maxwell, 1999). The synthetic quinolones 

comprise the second category and they function as gyrase poisons by stabilizing the 

enzyme-DNA covalent intermediates (Lewis et al., 1996; Maxwell, 1999). Stabilized 

enzyme-DNA adducts hinder the progression of replication and transcription complexes 

(Drlica & Zhao, 1997; Pohlhaus & Kreuzer, 2005). The release of DNA ends in the 

enzyme-DNA ternary complexes also leads to widespread chromosomal fragmentation 

resulting in rapid quinolone-mediated cell death (M. Malik et al., 2006). There are also 

naturally occurring proteinaceous gyrase inhibitors that inhibit gyrase by trapping the 

enzyme-DNA covalent intermediates. Prominent among this class is CcdB encoded by the 

F plasmid (Couturier, Bahassi el, & Van Melderen, 1998; Kamphuis et al., 2007). The F 

plasmid or F factor is a ring shaped DNA parasite in E. coli. This plasmid encodes proteins 

that ensure equal partition of F DNA progenies following division.  In this system, when an 

E. coli cell of F plasmid progeny inherits both copies of the duplicated F plasmid, the 

plasmid-free E. coli is killed to stop it from producing descendants that are plasmid free. 

This is achieved by a toxin-antitoxin system strategy utilized by the F plasmid (Couturier et 

al., 1998; Kamphuis et al., 2007). This plasmid encodes two proteins, CcdA and CcdB, 

with the former being the antitoxin and the latter the toxin. CcdB is more stable than the 

labile CcdA which must be constantly replenished in E. coli cells bearing the F plasmid. 

This constant replenishment ensures that the complex formed between CcdA and CcdB 

remains harmless to the host cell. When the decaying CcdA cannot be replenished due to 

the loss of the F plasmid, the long lasting CcdB toxin kills the cell. In the absence of CcdA, 

CcdB kills the cell by turning gyrase into a DNA damaging agent. Studies have shown that 

in the CcdB-gyrase complex, the DNA gate in the gyrase-DNA complex cannot be 

regulated and stays permanently unlocked (Couturier et al., 1998; Kamphuis et al., 2007). 
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By doing so, the CcdB toxin prevents the rejoining of gyrase-linked DNA ends in the 

CcdB-gyrase-DNA ternary complex. Other E. coli plasmids also produce toxins that 

employ a strategy similar to that utilized by the F plasmid. They produce a toxin called 

microcin B17 (MccB17) which equally turns gyrase into a lethal enzyme by trapping the 

covalent gyrase-DNA complex (Vizan et al., 1991). 

New endogenous proteinaceous gyrase inhibitors have been discovered that act 

differently from the classical gyrase inhibitors. These are proteins that interact with gyrase 

to modulate its activity. Bacteria may have evolved to adopt this strategy in order to guard 

against external agents that may take advantage of the topoisomerization reaction of DNA 

gyrase. One prominent proteinaceous gyrase inhibitor is YacG. NMR studies revealed the 

presence of a unique zinc finger motif and an unstructured tail in YacG (Ramelot et al., 

2002). This protein was shown to be a member of the interactome of DNA gyrase based on 

protein- protein interactions network (Butland et al., 2005). Recently a function has been 

assigned to this protein which explains why it was found in the interactome of gyrase. 

YacG inhibits gyrase activity by binding to the carboxy terminus domain of the B subunit 

of gyrase, which makes the enzyme unable to bind to DNA (Sengupta & Nagaraja, 2008). 

This action of YacG targets only gyrase, as other topoisomerases such as topo I and topo IV 

are immune to the action of YacG (Sengupta & Nagaraja, 2008). YacG inhibition of gyrase 

protects cells from the cytotoxic effects of gyrase inhibitors which wreak havoc by 

corrupting the topoisomerization reaction of gyrase (Sengupta & Nagaraja, 2008). 

 Another endogenous gyrase inhibitor is glutamate racemase or Mur I (Ashiuchi et 

al., 2002). In E. coli, the dual function of MurI, referred as moonlighting, allows this 

protein to function as a gyrase inhibitor and as a racemization protein catalyzing the 

racemization of glutamate, by converting L-glutamate to D-glutamate, an essential 

component of the peptidoglycan. Whereas the racemization activity can moonlight as a 

gyrase inhibitor in E. coli, in Mycobacterium tuberculosis, racemization and gyrase 

inhibition have been reported as two independent activities of the protein (Sengupta, 

Ghosh, & Nagaraja, 2008). Mur I inhibits gyrase activity by binding to its A subunit and 

this prevents gyrase from gaining access to the DNA substrate. The sequestration of gyrase 
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by Mur I inhibit all reactions catalyzed by gyrase (Sengupta, Shah, & Nagaraja, 2006). The 

activity of Mur I is enzyme specific, as topo I activity is unaffected. Because Mur I is not a 

typical potent gyrase inhibitor, it has been proposed to act as a modulator of gyrase activity 

(Sengupta et al., 2006). In addition to Gyr I discussed in the literature review, other 

inhibitors that inhibit gyrase by interfering with enzyme-DNA interactions include MfpA 

from Mycobacterium sp (Hegde et al., 2005; Montero et al., 2001). 

1.8. Rationale, hypotheses and objectives 

DNA topoisomerases are essential enzymes that regulate and maintain the 

topological state of chromosomal DNA by making transient breaks, passing a DNA 

segment through the break and subsequently resealing the breaks. These enzymes are 

crucial in managing DNA topology during all macromolecular transactions on DNA 

(Wang, 2002). Their activities ensure that processes such as DNA replication and 

subsequent chromosome segregation are successfully executed without which the stability 

of the genome will be seriously compromised. In fact during replication, the excess positive 

topological linkages that accumulate that might otherwise block the progression of 

replication forks are removed by topoisomerases (Wang, 2002). Through their homeostatic 

regulation of supercoiling, DNA topoisomerases prevent the formation of R-loops. Topo I, 

a type IA topo relieve negative supercoils which can facilitate reannealing between the 

nascent transcript and the template DNA leading to the formation of R-loops (Drolet, 

2006). R-loops can block the progression of the replication forks and are generally hotspots 

for genome instability (Drolet, 2006). 

Because of these essential functions and their evolutionary conservation across 

bacterial species, DNA topoisomerase inhibitors are among the most common and most 

effective antibacterial drugs. These enzymes are targets of the pharmaceutical industry. 

Several classes of topoisomerase inhibitors namely the quinolones, coumarins and 

cyclothialidines work by corrupting the topoisomerization reaction, with the end result 

being the block of DNA synthesis and bacterial cell death (Drlica et al., 2008; Malik et al., 

2006).  
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Gyrase is the principal target of most of these antibacterial drugs. Inhibitors of 

gyrase can either prevent the binding of ATP to gyrase thereby preventing supercoiling or 

stabilize the enzyme-DNA covalent intermediates thereby acting as roadblocks for DNA 

tracking machineries (Lewis et al., 1996; Maxwell, 1999). Bacteria have chromosomally 

encoded gyrase inhibitors that protect the cells against compounds that target gyrase. Most 

of them act by limiting the topoisomerization reaction of gyrase and reduce the efficacy of 

antibacterial drugs that target gyrase. An example of a chromosomally encoded gyrase 

inhibitor is GyrI. It has been proposed to act by sequestering gyrase and thereby limiting its 

effective concentration (Chatterji & Nagaraja, 2002). Other chromosomally encoded gyrase 

inhibitors may also be proteins that sequester ATP thereby affecting the supercoiling 

reaction of gyrase. Because most antibacterial drugs target topoisomerases, bacterial 

resistance to these therapies is one of the biggest challenges of the medical world. Most 

antibiotics in use are just a refinement of the antibiotics that were earlier discovered. The 

lack of interest in pursuing new targets has rendered the antibiotic cupboard bare (Walsh & 

Wright, 2005).  

Even though there has been an effort to develop new targets recently, the spread of 

antibiotic resistance has rendered these therapies ineffective not only within community 

settings (Critchley et al., 2007; Jacobs, 2003) but also in hospital settings (Pong & Bradley, 

2004; Prystowsky et al., 2001) and this resistance extend both to gram positive (Howell-

Jones et al., 2005; Jones, 2010) and gram negative organisms (Kollef, 2005; Poole, 2005). 

The spread of antibiotics resistance justifies the need for new antibiotics (Silver & Bostian, 

1993). The identification of new chromosomally encoded gyrase inhibitors may serve as 

attractive targets for the development of new antibacterial drugs. Identifying these targets 

may also help to combat antibiotic resistance. Because these chromosomally encoded 

gyrase inhibitors generally decrease gyrase activity, they render bacterial cell killing by 

topoisomerase inhibitors inefficient leading to the spread of antibiotic resistance. Targeting 

chromosomally encoded gyrase inhibitors will therefore improve the efficacy of antibiotics. 

As mentioned earlier, most of the antibacterial drugs developed so far target only the type II 

DNA topoisomerases. The ubiquitous presence and the numerous cellular functions of the 

type IA DNA topoisomerases will also make them attractive therapeutic targets. 
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In the first part of the project, we wanted to understand the link between R-loop 

formation and hypernegative supercoiling. According to the twin supercoiled domain 

model of transcription (Liu & Wang, 1987), domains of positive and negative supercoils 

are formed in front and behind the RNA polymerase complex respectively during 

transcription. Gyrase removes positive supercoils and introduce negative supercoils while 

topoisomerase I (topA) relaxes the transcription-induced negative supercoils that will 

otherwise cause the formation of R-loops (DNA/RNA hybrids) in topA mutants leading to 

excess negative supercoiling. In the cell, RNase HI (rnhA) is an enzyme that can remove 

the RNA moiety of an R-loop. R-loops can prime DNA replication independent of oriC via 

the mechanism known as cSDR (Kogoma, 1997) described earlier. We constructed a triple 

topA rnhA gyrB(Ts) mutant to better understand the between R-loop formation and 

hypernegative supercoiling. This triple mutant can grow if it carries a plasmid allowing for 

the conditional expression of RNase HI or topoisomerase III. Surprisingly, initial 

supercoiling analysis of this triple mutant revealed that the DNA of these cells was 

extensively relaxed instead of being hypernegatively supercoiled following the depletion of 

RNase HI. This seems to be related to a cellular response leading either to excess relaxation 

or supercoiling inhibition. Also, initial observation of these cells under the microscope 

following DAPI staining revealed cells with long filaments packed with unevenly 

distributed DNA consistent with chromosome segregation defects. These initial 

observations led us to put forward the following hypotheses: 

 -Supercoiling inhibition in triple topA rnhA gyrB(Ts) mutants is not linked to increase 

DNA relaxation activity by topoisomerase IV but to inhibition of supercoiling by gyrase. 

 -GyrI, a well-characterized chromosomally encoded gyrase inhibitor is not implicated in 

supercoiling inhibition in triple topA rnhA gyrB(Ts) mutants. 

 -Supercoiling inhibition in topA rnhA gyrB(Ts) mutants is not linked to the SOS response 

which is chronically expressed in the absence of rnhA. 

 -Gyrase inhibitors accumulate in topA rnhA gyrB(Ts) cells. 

 -The chromosome is over-replicated in topA rnhA gyrB(Ts) mutants. 

 To verify these hypotheses, we had the following objectives: 

-To understand the mechanism of supercoiling inhibition in topA rnhA gyrB(Ts) mutants. 
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- As long term objective, to purify, characterize and study the regulation of the gyrase 

inhibitor(s) synthesized in topA rnhA gyrB(Ts) mutants. 

         To address the first objective, we first of all ascertained that the relaxation observed in 

topA rnhA gyrB(Ts) mutants was unrelated to topoisomerase IV activity. We inhibited the 

activity of topoisomerase IV with norfloxacin (norfloxacin targets both topo IV and gyrase 

but we used a gyrase allele that was resistant to norfloxacin so only topo IV was targeted) 

and we found through in vivo supercoiling analysis that the DNA of topA rnhA gyrB(Ts) 

mutant was still extensively relaxed. We also introduced the smbC::kan allele (smbC 

encodes GyrI) in the triple topA rnhA gyrB(Ts) mutant and following supercoiling analysis, 

we found that the DNA was still extensively relaxed. These results are presented in chapter 

two. Secondly, we performed a genetic screen by using the Tn5 transposon mutagenesis 

system developed by Metcalf and co-workers (Larsen et al., 2002) to identify suppressors 

of topA rnhA gyrB(Ts) cells that restored supercoiling and corrected the growth and 

chromosome segregation defects. We identified suppressors that restored supercoiling and 

corrected the growth and segregation defects of triple topA rnhA gyrB(Ts) mutants. Most of 

these suppressors were found in genes implicated in DNA replication. Part of the 

suppressor screen is presented in chapter four and the rest is presented in the appendix. The 

second objective is still to be realized. 

         The second part of the project is related to the function of type 1A topos in E. coli. It 

was initially based on our observations that topA topB mutants displayed growth and 

chromosome segregation phenotypes similar to those of triple topA rnhA gyrB(Ts) mutants. 

Because of these initial observations, we hypothesized that: 

-In E. coli, type IA topoisomerases play important roles in chromosome segregation and 

genome maintenance by regulating replication. 

-Suppressors of triple topA rnhA gyrB(Ts) mutants that map to genes that encode proteins 

implicated in replication, should correct the growth and segregation defects of topA topB 

mutants. 

To verify these hypotheses we had as objective: 

-To investigate the role of type IA DNA topoisomerases in chromosome segregation and 

genome maintenance. 
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In the first part of this section, we wanted to assess the role of type IA topos in 

chromosome segregation and genome maintenance. To do this, we instigated whether type 

IA topos could correct the phenotypes of a gyrBT(s) mutant at the nonpermissive 

temperature. Gyrase as previously mentioned is encoded by (gyrA and gyrB). This protein 

plays a key role in all the stages of DNA replication. We found that the Par- phenotypes 

and chromosome segregation defects of a gyrB(Ts) mutant at the nonpermissive 

temperature were corrected by deleting topA only when topB was present. Overproducing 

topoisomerase IV failed to correct the segregation defects in the absence of both type IA 

enzymes. These results are presented in chapter three. We also used genetic approaches 

combined with suppressor screens, spot assays and microscopy to further investigate the 

roles of type 1A topoisomerases in genome maintenance. We found that, in the absence of 

type IA topoisomerases, cells formed very long filaments packed with diffuse and 

unsegregated DNA. Compensatory mechanisms that corrected the growth and segregation 

defects in the absence of topA included deleting recQ, recA, and overproducing 

topoisomerase III, while compensatory mechanisms that corrected growth and segregation 

defects in the absence of both enzymes included overproducing RNase HI and deleting 

recA. Moreover, several of the suppressor mutations isolated from our topA rnhA gyrB(Ts) 

strain that affected replication, namely oriC15::aph, dnaT18::aph, holC2::aph and 

rne59::aph, alleviated to different extent the phenotypes of cells lacking topo I and/or 

lacking both topo I and III. These results are presented in chapter four. Altogether, our 

results shed light on the roles of type 1A topoisomerases, supercoiling and R-loops on 

genomic stability may help to identify new targets for antibiotics, and to have a better 

understanding of how unscheduled DNA transactions could lead to various genetic diseases 

and cancer.   
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                        Preface to Chapter 2 

            One major function of DNA topoisomerase I (topA) is to inhibit R-loop formation 

by relaxing transcription induced supercoiling. The accumulation of excess negative 

supercoiling in topA mutants is attributed to R-loop formation coupled to gyrase activity. 

Overproducing RNase HI (rnhA) removes R-loops and suppresses the accumulation of 

hypernegative supercoils in topA mutants. It was predicted that the inability to construct 

topA rnhA gyrB(Ts) mutants was because such mutants would die from toxic levels of 

hypernegative supercoiling. We report here the construction of a conditional topA rnhA 

gyrB(Ts) mutant following the conditional expression of RNase HI from a plasmid borne 

gene. We characterize this mutant using fluorescence microscopy to look at DNA 

distribution and plasmid supercoiling analysis/gyrase assays in crude cell extracts to study 

gyrase supercoiling activity. Our results reveal that depleting RNase HI in a topA gyrB(Ts) 

mutant leads to supercoiling inhibition and chromosome segregation defects. The DNA of 

topA rnhA gyrB(Ts) cells is extensively relaxed. Overproducing topoisomerase III corrects 

the chromosome segregation defects without restoring supercoiling. RNase HI plays a 

major role in the control of DNA topology. 

 

Manuscript I: Usongo, V., Nolent, F., Sanscartier, P., Tanguay, C., Broccoli, S., Baaklini, 

I., Drlica, K., and Drolet, M. (2008).  Depletion of RNase HI activity in Escherichia coli 

lacking DNA topoisomerase I leads to defects in DNA supercoiling and segregation. Mol 

Microbiol,69, 968-981. doi10.1111/j.1365-2958.2008.06334.x  
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Abstract 

Gyrase-mediated hypernegative supercoiling is one manifestation of R-loop formation, a 

phenomenon that is normally suppressed by topoisomerase I (topA) in Escherichia coli. 

Overproduction of RNase HI (rnhA), an enzyme that removes the RNA moiety of R-loops, 

prevents hypernegative supercoiling and allows growth of topA null mutants. We 

previously showed that topA and rnhA null mutations are incompatible. We now report that 

such mutants were viable when RNase HI or topoisomerase III was expressed from a 

plasmid-borne gene. Surprisingly, DNA of topA null mutants became relaxed rather than 

hypernegatively supercoiled following depletion of RNase HI activity. This result failed to 

correlate with the cellular concentration of gyrase or topoisomerase IV (the other relaxing 

enzyme in the cell) or with transcription-induced supercoiling. Rather, intracellular DNA 

relaxation in the absence of RNase HI was related to inhibition of gyrase activity both in 

vivo and in extracts. Cells lacking topA and rnhA also exhibited properties consistent with 

segregation defects. Overproduction of topoisomerase III, an enzyme that can carry out 

DNA decatenation, corrected the segregation defects without restoring supercoiling 

activity. Collectively these data reveal 1) the existence of a cellular response to loss of 

RNase HI that counters the supercoiling activity of gyrase and 2) supercoiling-independent 

segregation defects due to loss of RNase HI from topA null mutants. Thus RNase HI plays 

a more central role in DNA topology than previously thought. 
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Introduction 

Negative DNA supercoiling is a regulated feature of bacterial chromosomes 

(Menzel and Gellert, 1983; DiNardo et al., 1982; Pruss et al., 1982; Drlica, 1992) that is 

important for most processes involving DNA strand separation. In E. coli, supercoiling 

regulation is achieved largely by DNA topoisomerases with opposing enzymatic activities. 

DNA gyrase, encoded by gyrA and gyrB, introduces negative supercoils, while two other 

enzymes, DNA topoisomerase I (topA) and DNA topoisomerase IV (parC and parE), 

remove excess negative supercoils (Pruss et al., 1982; Zechiedrich et al., 2000).  Although 

the ability to create topA null mutants is a clear indication that topoisomerase I is not 

required for survival (Sternglanz et al., 1981; Stupina and Wang, 2005), growth of such 

mutants often requires compensatory mutations that reduce negative supercoiling (DiNardo 

et al., 1982; Pruss et al., 1982). Indeed, very high levels of supercoiling (hypernegative 

supercoiling, detected as plasmid topoisomers that cannot be resolved by electrophoresis in 

agarose gels (Pruss, 1985)) can accumulate in topA null mutants (Pruss, 1985) and correlate 

with growth inhibition (Massé and Drolet, 1999a,b).  

One major pathway for generating hypernegative supercoiling in topA mutants 

involves R-loop formation coupled to gyrase activity (Massé and Drolet, 1999c).  

Hypernegative supercoiling is initiated by the accumulation of negative supercoils behind 

moving RNA polymerase when topoisomerase I is absent (Massé and Drolet, 1999c). These 

negative supercoils promote re-hybridization of nascent transcripts to the template DNA 

strand, which leaves the non-template strand unpaired and the DNA relaxed. Relaxed DNA 

is a substrate for gyrase, which then introduces more supercoils that lead to increased R-

loop formation, more DNA relaxation, and increased gyrase action (Drolet et al., 1994; 

Phoenix et al., 1997; Drolet, 2006). Removal of RNA-DNA hybrids by overproduction of 

RNase HI suppresses the accumulation of hypernegative supercoils and the associated 

growth defect (Drolet et al., 1995; Massé and Drolet, 1999c). Growth inhibition and 

hypernegative supercoiling also correlate with major gene expression defects, as illustrated 

by the accumulation of truncated RNAs (Baaklini et al., 2004; Baaklini et al., manuscript 

submitted). Within this context, our inability to construct double topA rnhA null mutants 
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did not come as a surprise (Massé and Drolet, 1999b; Drolet et al., 1995). Indeed, it was 

predicted that such double mutants would die from toxic levels of hypernegative 

supercoiling. 

In the present work, we constructed topA rnhA double mutants that grew when rnhA 

was expressed from a plasmid-borne gene. Unexpectedly, we found that under 

nonpermissive conditions the DNA of such mutants was relaxed, not hypernegatively 

supercoiled. Depletion of RNase HI activity in topA null mutants triggered a cellular 

response that inhibited supercoiling by gyrase. Moreover, the growth inhibition of topA 

rnhA null double mutants correlated with phenotypes reminiscent of segregation defects: 

extensive cell filamentation with abnormal nucleoid structures and accumulation of 

anucleate cells. Overproduction of topoisomerase III (topB), a type IA enzyme like 

topoisomerase I, corrected the segregation defects and allowed topA rnhA double mutants 

to grow without restoring supercoiling. Such activity was consistent with topoisomerase III 

being able to decatenate daughter DNA molecules (Hiasa et al., 1994) and use R-loops as a 

substrate (Broccoli et al., 2000). Thus high-level expression of a plasmid-borne topB gene 

provided a second way to allow conditional growth of topA rnhA double mutants. Below 

we describe measurements of bacterial DNA supercoiling and cell morphology that reveal 

an important role for RNase HI in preventing transcription from perturbing DNA topology 

beyond viable bounds.   
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Results 

Absence of RNase HI prevents accumulation of hypernegative supercoiling associated 

with a topA deficiency. 

We previously described the effects of topoisomerase I defects in living cells using 

a set of E. coli strains in which a temperature-sensitive gyrase mutation allows the growth 

of topA null cells at 37oC but not at 28oC owing to reactivation of gyrase (Drolet et al., 

1995). In such strains hypernegatively supercoiled DNA accumulates following the 

temperature downshift unless RNase HI is overproduced (Massé and Drolet, 1999c). 

Overproduction of RNase HI at 28oC also restores growth. To better understand 

relationships among hypernegative supercoiling, R-loops, and growth inhibition, we 

constructed a conditional topA rnhA double mutant (transduction was used to introduce an 

rnhA::cam allele into a topA20::Tn10 gyrB(Ts) strain carrying a plasmid expressing rnhA 

under control of the arabinose-inducible PBAD promoter). Transductants were obtained by 

plating at 37oC in the presence but not in the absence of arabinose (not shown). When these 

transductants were transferred to liquid medium lacking arabinose, cells grew slowly, cell 

filamentation occurred, and culture growth stopped prematurely, irrespective of 

temperature (not shown). Thus, when RNase HI is absent, the growth defects of topA null 

gyrB(Ts) mutants were seen even at 37oC. Since colonies arose after plating on solid 

medium containing arabinose, we conclude that deleting rnhA in topA mutants is 

bacteriostatic, not bactericidal (not shown).  

Supercoiling was measured with plasmid pGB2nusB::kan, a low copy-number 

derivative of pSC101 that is prone to R-loop-dependent hypernegative supercoiling in topA 

null mutants (Broccoli et al., 2004). Plasmid topoisomers were resolved using agarose gel 

electrophoresis in the presence of 7.5 μg/ml of chloroquine, as previously described (Massé 

and Drolet, 1999c). Under this condition the more relaxed topoisomers migrated faster; 

hypernegatively supercoiled DNA also migrated rapidly.  With a gyrB(Ts) control strain 

lacking only topA (strain PS152), hypernegatively supercoiled DNA accumulated after 

transfer of cells from 37 to 28oC (Fig. 1a, lane 2, indicated by [--]). When an rnhA null 

mutation was added (strain PS151, which also carried an inducible rnhA gene), and mutant 
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cells from arabinose-containing agar were incubated overnight at 37oC in the absence of 

arabinose, followed by 1:1000 dilution into medium lacking arabinose, cell growth was 

sufficient for examination of plasmid supercoiling. A portion of the DNA was more relaxed 

at 37oC than in topA single mutant cells (Fig. 1a, compare lanes 1 and 3), and 

hypernegatively supercoiled DNA failed to accumulate following a transfer to 28oC (Fig. 

1a, lane 4). The relaxed portion of topoisomers remained extensively relaxed following the 

temperature downshift (Fig. 1a, lanes 3 and 4, indicated by [rel]). These extensively relaxed 

topoisomers were not observed in wild-type (lanes 5 and 6) or in gyrB(Ts) (lanes 7 and 8) 

cells. Thus, removal of rnhA from a topA-deficient strain caused DNA relaxation and loss 

of hypernegative supercoiling.    

When arabinose was added to the diluted (1:1000) overnight culture of the topA 

rnhA double mutant (strain PS151) to produce RNase HI from a plasmid-borne gene, 

supercoiling was restored at 37oC (Fig. 1a, compare lane 3, no arabinose, with lane 9, 

0.05% arabinose) and accumulation of hypernegatively supercoiled DNA occurred 

following a temperature downshift (Fig. 1a, lane 10). Since RNase HI was overproduced in 

this experiment, topA null cells accumulated lower amounts of hypernegatively supercoiled 

DNA than observed with topA null cells having only wild-type levels of RNase HI (Fig. 1a, 

compare lanes 2, topA null cells, and 10, topA rnhA double mutant with 0.05% arabinose). 

Two-dimensional gel electrophoresis confirmed the presence of hypernegatively 

supercoiled and extensively relaxed DNA, respectively, in the presence and absence of 

RNase HI (Fig. 1b; hypernegatively supercoiled DNA is seen at bottom part of the curves at 

high chloroquine concentration ((right panels, indicated by [--]); extensively relaxed DNA 

is at the far right part of the curves at lower chloroquine concentration (left and middle 

panels; lines were traced over the more relaxed topoisomers)). Additional two-dimensional 

gel analyses showed that the more relaxed topoisomers were not positively supercoiled 

(data not shown). Thus, removal of RNase HI relaxed DNA of topA null cells and 

prevented the accumulation of hypernegatively supercoiled DNA rather than increasing it.   
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Supercoiling deficit in a topA rnhA null double mutant after transcription inhibition. 

Excess negative supercoiling in topA mutants originates largely from transcription. 

To determine whether the reduced supercoiling in the topA rnhA double mutant is specific 

to transcription-induced supercoiling, mutant cells (strain PS151) were treated with 

rifampicin, an inhibitor of RNA polymerase. When rifampicin was added to a culture of 

topA null cells (strain PS152, containing wild-type RNase HI) before the temperature 

downshift, almost all of the hypernegatively supercoiled topoisomers were lost (Fig. 2, top 

panels). When RNase HI was absent and most of the DNA was seen as extensively relaxed 

topoisomers, rifampicin had little effect (Fig. 2, bottom panels; a line was traced over the 

more relaxed topoisomers). Thus the extensive relaxation of supercoiling seen in topA rnhA 

double mutants was related to global supercoiling rather than being specifically linked to 

transcription. However, our results also show that the effect of the rnhA deletion on 

supercoiling following a temperature downshift was much stronger when transcription was 

allowed (Fig. 2, compare –rif with +rif, + and – RNase HI). 

 

Levels of topoisomerase IV and gyrase proteins are not altered by deletion of rnhA 

from topA null cells. 

Changes in topoisomerase IV and gyrase concentrations were measured to address 

the possibility that levels of these proteins account for the extensive DNA relaxation 

associated with depletion of RNase HI activity in topA null cells. ParC and ParE were not 

overproduced in the topA20::Tn10 gyrB(Ts) mutant when RNase HI was depleted, as 

assessed by western blot experiments (Fig. 3, compare lanes 5 and 6 with lanes 7 and 8) 

and northern blot experiments (data not shown). GyrA and GyrB levels also exhibited no 

significant difference between the presence and absence of RNase HI (Fig. 3, compare 

lanes 5 and 6 with lanes 7 and 8).  

Lack of significant change in ParC, ParE, GyrA and GyrB level was also observed 

when the rnhA gene was inactivated in the ΔtopA gyrB(Ts) strain carrying pPH1243 (Fig. 

3, lanes 1 to 4). This plasmid, which expressed topB (topoisomerase III) from an IPTG-

inducible promoter, allowed the recovery of rnhA::cam transductants in a ΔtopA recipient 

strain, but only when IPTG was present (Fig. 4a and data not shown).  Western blot 
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experiments with a transductant (strain SB383) confirmed that overproduction of 

topoisomerase III occurred (Fig. 4b).  Plasmid pPH1243 also allowed topA rnhA double 

mutants to grow unless cultures were diluted into IPTG-deficient medium, in which case 

growth eventually stopped during log phase. Thus, introduction of two restrictive 

conditions, depletion of RNase HI or removal of topoisomerase III overexpression failed to 

reveal changes in gyrase and topoisomerase IV concentrations that could explain the 

extensive DNA relaxation observed with topA rnhA double mutants. 

 

Supercoiling in a topA rnhA double mutant is not significantly affected by quinolone-

mediated inhibition of topoisomerase IV. 

  We also considered the possibility that supercoiling by gyrase was reduced. To test 

this hypothesis, we used the gyrAL83 allele to render gyrase resistant to norfloxacin, thereby 

allowing selective quinolone-mediated inhibition of topoisomerase IV, the only remaining 

relaxing activity in topA mutants (Zechiedrich et al., 2000). The gyrAL83 allele was 

introduced into isogenic ΔtopA gyrB(Ts) and ΔtopA gyrB(Ts) rnhA::cam strains carrying 

pPH1243 to obtain, respectively, strains VU21 and PS160. Dilution into medium lacking 

IPTG gradually removed suppression of growth defect by topoisomerase III, but allowed 

enough growth for examination of plasmid supercoiling (as pointed out in a subsequent 

section, topoisomerase III overexpression has no effect on supercoiling).  

Negative supercoiling increased at 37oC after inhibition of topoisomerase IV by 

norfloxacin in both the topA rnhA and the topA mutants following dilution (Fig. 5, compare 

topA rnhA, strain PS160, lanes 1 and 2 with topA, strain VU21, lanes 5 and 6).  However, a 

significant proportion of the topoisomers remained relaxed in the topA rnhA mutant (Fig. 5, 

lane 2, indicated by [rel]). Following a shift to 28oC, the addition of norfloxacin to inhibit 

topoisomerase IV strongly stimulated the accumulation of hypernegatively supercoiled 

DNA in the topA mutant (Fig. 5, compare lanes 7 and 8, indicated by [--]), whereas it did 

not appreciably change the supercoiling level in the topA rnhA mutant (Fig. 5, compare 

lanes 3 and 4). Collectively these results show that topoisomerase IV is not responsible for 

the strong supercoiling deficit in topA rnhA double mutants. It is likely that supercoiling by 

gyrase is impaired when both RNase HI and topoisomerase I are absent. 
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GyrI, a gyrase inhibitor, is not involved in supercoiling inhibition found in a topA 

rnhA double mutant. 

 GyrI is encoded by sbmC, a well-characterized inhibitor of gyrase (Nakanishi et al., 

1998; Chatterji and Nagaraja, 2002). Since GyrI is part of the SOS regulon (Baquero et al., 

1995), which is chronically expressed in rnhA mutants (Kogoma et al., 1993; McCool et 

al., 2004), it is expected to be at elevated levels in topA rnhA double mutants. To examine 

involvement of GyrI in the supercoiling inhibition in topA rnhA double mutants, an 

sbmC::kan allele was introduced into isogenic ΔtopA gyrB(Ts) and ΔtopA gyrB(Ts) 

rnhA::cam strains carrying pPH1243, to obtain, respectively, strains VU64 and VU70. Both 

extensive DNA relaxation and lack of hypernegative supercoiling, which are characteristic 

of the topA rnhA double mutant, were seen whether or not sbmC was present (Fig. 6, 

compare lanes 1 and 4 with lanes 2 and 5, respectively).  The lack of a significant 

supercoiling effect from the absence of GyrI was also illustrated by comparing supercoiling 

in strains VU64 (Fig. 6, rnhA+, lanes 3 and 6) and VU70 (Fig. 6, rnhA-, lanes 2 and 5). 

Thus, GyrI is not responsible for the DNA relaxation seen in topA rnhA double mutants. 

We also examined a lexA3 mutant in which the SOS regulon is non-inducible. DNA was 

relaxed, and hypernegative supercoiling was absent in a lexA3 topA rnhA mutant (not 

shown). 

  

Cell extracts of a topA rnhA double mutant exhibit no supercoiling activity and 

significantly inhibit supercoiling of wild-type cell extracts. 

The restoration of negative supercoiling is slow and requires a significant increase 

in the population cell density of strain PS151 (topA rnhA double mutant carrying 

pBADrnhA) following the addition of arabinose to produce RNase HI (not shown). This 

result suggested involvement of one or more stable factors in inhibiting supercoiling in 

topA rnhA double mutants. To test this idea, we prepared extracts of wild-type (strain 

AQ634), gyrB(Ts) (strain MA249), gyrB(Ts) topA (strain PS152) and gyrB(Ts) topA rnhA 

(strain PS151) cells. Extracts from both wild-type and gyrB(Ts) strains exhibited 

supercoiling activity (Fig. 7a), although with the gyrB(Ts) strain an endonuclease activity 
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was also detected (lane 6). Maximum supercoiling activity was seen at 3.5 μg total protein 

in the reaction mixture for the gyrB(Ts) strain (lane 9); the same amount of protein from 

wild-type cells exhibited more supercoiling activity (compare wild-type, lane 4 with gyrB 

(Ts), lane 9), and a higher supercoiling level was achieved (not shown). Although 

supercoiling activity was also detected in crude extracts of topA null gyrB(Ts) cells (Fig. 

7b, lanes 7 to 12, top panel), it was significantly lower than in extracts of isogenic topA+ 

gyrB(Ts) cells (Fig. 7a, lanes 6 to 10) and was better seen when the gel was probed with a 

[32P]-labelled DNA fragment (Fig 7b, lanes 7 to 12, bottom panel). Even with radioactive 

probing, supercoiling activity was undetectable in extracts from the topA rnhA double 

mutant grown in the absence of arabinose to deplete RNase HI activity (Fig. 7b, lanes 1 to 

6, bottom panel). These results are consistent with crude extracts of topA rnhA null cells 

containing factor(s) that significantly reduce supercoiling activity.   

 As a further test for factor(s) inhibiting supercoiling, aliquots of extracts from both 

topA and topA rnhA double mutant cells were mixed with extracts from wild-type cells.  As 

shown in Fig. 7c, extracts from the topA rnhA double mutant significantly inhibited 

supercoiling activity of wild-type extracts (compare lanes 1 and 5, which used 2.5 μg 

protein from the wild-type cell extract with, respectively, 5 and 0 μg protein from the topA 

rnhA double mutant extract). In contrast, inhibition of supercoiling activity by the extract 

from topA null cells was weak (Fig. 7c, compare lanes 1 and 6, using 2.5 μg protein from 

the wild-type cell extract with 5 μg protein from the topA rnhA or the topA null extracts). 

Thus, a strong inhibitory activity present in extracts of topA rnhA double mutant explains 

the failure to detect supercoiling activity and may explain, at least in part, the impairment 

of supercoiling by gyrase in topA rnhA double mutants.   

 

Topoisomerase III overproduction complements the growth defect of a topA rnhA 

double mutant without restoring supercoiling.  

The data described above failed to relate the growth defect of topA rnhA double 

mutants to excess negative supercoiling. Since in E. coli topoisomerase III is not involved 

in the regulation of supercoiling (Zechiedrich et al., 2000; Lopez et al., 2005), we expected 
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DNA of topA rnhA double mutants to remain relaxed during suppression of growth defect 

by overexpression of topoisomerase III. To test this hypothesis we made use of the finding 

that in a topA null mutant hypernegative supercoiling of pPH1243 is stimulated both by 

transcription from the strong Ptrc promoter, which is activated by the addition of IPTG, and 

by translation inhibitors (Broccoli et al., 2004; Broccoli and Drolet, unpublished results; 

spectinomycin was added 15 min before shifting from 37 to 28oC). In one experimental set, 

IPTG was added throughout growth at 37oC to overexpress topoisomerase III; in the second 

set, IPTG was added after spectinomycin so that the transcription effect of IPTG on 

pPH1243 supercoiling could be observed in the absence of excess topoisomerase III. Fig. 8 

shows that pPH1243 exhibited hypernegative supercoiling upon adding IPTG, either before 

(lane 2) or after (lane 6) the addition of spectinomycin to the topA null mutant. In contrast, 

relaxation of pPH1243 was observed whether or not topoisomerase III was overproduced 

and irrespective of the presence of spectinomycin in the topA rnhA double mutant (Fig. 8, 

lanes 3, 4, 7 and, 8). Two-dimensional gel electrophoresis confirmed relaxation of 

pPH1243 (data not shown). As expected, supercoiling was restored in this topA rnhA 

double mutant following the introduction of a plasmid carrying the rnhA gene (data not 

shown), indicating that relaxation is reversible and due to the absence of RNase HI. 

Collectively, these data support the assertion that overexpression of topoisomerase III 

suppresses the growth defect of topA rnhA double mutants without restoring supercoiling. 

 

Cells of a topA rnhA double mutant form long filaments packed with unevenly 

distributed DNA. 

 Despite the presence of a mechanism to prevent hypernegative supercoiling, topA 

rnhA double mutants do not grow without suppression. This result suggests the presence of 

supercoiling-independent mechanism(s) by which the absence of RNase HI dramatically 

perturbs cell physiology. As shown above, the growth defect of a topA rnhA double mutant 

can be rescued by overproducing topoisomerase III (Fig. 4), which can allow chromosome 

segregation by removing precatenanes during replication (Nurse et al., 2003). We therefore 
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examined the possibility that the growth inhibition of topA rnhA double mutants might be 

related to segregation defects. 

Cells were stained with DAPI and prepared for fluorescence microscopy such that 

both cell morphology and DNA content could be examined. In the absence of topoisomerase 

III overproduction, cells of the topA rnhA double mutant (strain SB383) formed long 

filaments full of DNA, and nucleoid structures were altered (Fig. 9a, panel 2). Anucleate cells 

also accumulated (Fig. 9b, yellow arrows), as did cells with very low amounts of 

chromosomal DNA (Fig. 9b, green arrows). Formation of such cells could result from septum 

closure on nucleoids, a typical manifestation of partition defects (guillotine effect; Niki et al., 

1991). Clearly, the topA rnhA double mutant fails to produce a significant number of normal 

cells. However, more than half of the cells containing aberrant nucleoid structures likely 

remain viable, as cells of strain SB383 incubated in liquid medium lacking IPTG form 

colonies when plated on solid media containing IPTG to overproduce topoisomerase III (data 

not shown). Overproduction of topoisomerase III reduced both cell filamentation and DNA 

content, and it caused DNA to be more regularly distributed within the cells (Fig. 9a, panel 

1). Topoisomerase III overproduction also reduced the number of anucleate cells by more 

than half. Segregation defects were also apparent in the topA20::Tn10 rnhA::cam gyrB(Ts) 

mutant carrying pBADrnhA (strain PS151; Fig. 9a, panel 4, -ara); they were corrected by the 

addition of arabinose to produce RNase HI (panel 3, +ara). Moreover, cells of single rnhA 

and topA null mutants failed to show major morphological or nucleoid defects (Fig. 9c, 

panels 2 and 3 respectively). Thus, combinations of topA and rnhA null mutations lead to 

phenotypes reminiscent of segregation defects, thereby explaining the growth inhibition 

phenotype of topA rnhA double mutants. 
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Discussion 

The work described above, which focused on the properties of topA rnhA double 

mutants, revealed new features of how DNA topology is regulated in bacterial cells. One 

level concerns DNA supercoiling. Basal supercoiling, which is defined as supercoiling in the 

absence of transcription (Drlica et al., 1988), is set largely by the supercoiling activity of 

gyrase opposed by the relaxing activities of topoisomerase I and topoisomerase IV.  

Transcription, through the generation of R-loops coupled with gyrase activity, produces 

hypernegative supercoiling that is countered by topoisomerase I and RNase HI. The growth 

defect associated with a deficiency of topoisomerase I is suppressed by partially defective 

gyrase, overexpression of topoisomerase IV, or overexpression of RNase HI.  Surprisingly, 

topA rnhA null double mutants not only lacked hypernegative supercoiling but also contained 

DNA that was relaxed (Fig. 1 and 8). Evidence was found for the interesting possibility that 

RNase HI normally regulates factor(s) impairing supercoiling by gyrase. A second level of 

topology control concerns decatenation of replicated chromosomes. Decatenation is largely a 

function of topoisomerase IV (Zechiedrich and Cozzarelli, 1995). In our work, a topA rnhA 

double mutant exhibited a defect in chromosome segregation that was corrected by 

overexpression of topoisomerase III (Fig. 9), an enzyme that has no effect on supercoiling 

and is capable of decatenation both in vitro and in vivo (Hiasa et al., 1994; Nurse et al., 

2003). Thus RNase HI, either directly or indirectly, influences both basal levels of 

supercoiling and chromosome segregation as discussed in the following sections.   

 

Supercoiling in topA rnhA double mutants. 

Previous work showed that gyrase-mediated hypernegative supercoiling occurs 

during transcription in vitro in the absence of RNase HI (Drolet et al., 1994; Phoenix et al., 

1997) and in topA null mutants when RNase HI is not overproduced (Massé and Drolet, 

1999c). We expected removal of rnhA from topA mutants to lead to extensive 

hypernegative supercoiling, since cells lacking both topoisomerase I and RNase HI cannot 

be constructed (Massé and Drolet, 1999c; Drolet et al., 1995). Unexpectedly, hypernegative 

supercoiling failed to accumulate in topA rnhA double mutants that had been constructed by 
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conditional expression of rnhA or topB. However, DNA of such mutants was more relaxed 

than usual. Relaxation was not an indirect consequence of cell death, because deleting rnhA 

in topA null mutants was bacteriostatic, not bactericidal. When arabinose was added to non-

growing topA rnhA null cells carrying pBADrnhA to induce the synthesis of RNase HI, 

both growth and supercoiling were restored. More importantly, DNA remained extensively 

relaxed in a topA rnhA double mutant when cell growth was restored by overproducing 

topoisomerase III. Only when a plasmid carrying rnhA was introduced into this mutant that 

supercoiling was also restored. Therefore, DNA relaxation correlated with depletion of 

RNase HI activity in topA mutants. 

Since supercoiling level is set primarily by opposing topoisomerase activities, we 

considered the possibility that the supercoiling deficit in topA rnhA null double mutants 

was due either to an excess of DNA relaxation activity by topoisomerases or to a loss of 

gyrase supercoiling activity. One well established mechanism by which excess negative 

supercoiling is prevented in topA mutants is the overproduction of topoisomerase IV (Kato 

et al., 1990; Free and Dorman, 1994). However, western blot experiments showed that 

topoisomerase IV is not overproduced in topA null cells lacking RNase HI activity.  

Moreover, inhibition of topoisomerase IV by norfloxacin failed to significantly raise 

supercoiling in a topA rnhA double mutant carrying the gyrAL83 quinolone-resistance allele. 

Thus topoisomerase IV was not responsible for the supercoiling deficit in topA rnhA double 

mutants. In agreement with the results of previous experiments showing that topoisomerase 

III is not involved in supercoiling regulation in E. coli (Zechiedrich et al., 2000; Lopez et 

al., 2005), overproducing this enzyme had no effect on supercoiling in either topA single or 

topA rnhA double mutants. Therefore, relaxation activity of topoisomerases is unlikely to 

explain the supercoiling deficit in topA null cells depleted of RNase HI activity.  

Western blot experiments also demonstrated that levels of gyrase protein were not 

altered following the depletion of RNase HI activity in topA mutants. Two experiments 

indicated that the supercoiling deficit is related to impairment of supercoiling by gyrase. 

First, while inhibiting topoisomerase IV by norfloxacin in a single topA null mutant 

strongly promoted hypernegative supercoiling, it did not significantly stimulate 

supercoiling in a double topA rnhA null mutant. Second, supercoiling activity could not be 
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detected in cell extracts of a topA rnhA null double mutant (strain PS151), and these 

extracts significantly inhibited the supercoiling activity when mixed with extracts from 

wild-type cells. Thus, the supercoiling deficit in topA null cells depleted of RNase HI 

activity is likely related to a cellular response that leads to the inhibition of gyrase.  

The cellular response leading to the impairment of gyrase activity in double topA 

rnhA null mutants is currently unknown. The response is related neither to the SOS 

regulon, which is constitutively induced in the absence of RNase HI (Kogoma et al., 1993; 

McCool et al., 2004), nor to the presence of the gyrase inhibitor, GyrI, a member of the 

SOS regulon (Baquero et al., 1995). Previous results also failed to demonstrate an effect of 

GyrI on supercoiling in vivo (Chatterji et al., 2003). While supercoiling by gyrase can be 

prevented by a direct interaction between the enzyme and a specific inhibitor acting like 

GyrI, it may also be inhibited by low [ATP]/[ADP] (Westerhoff et al., 1998; Drlica, 1992) 

and indirectly by proteins that interact with DNA, such as the abundant nucleoid proteins 

Fis, H-NS and HU (Travers and Muskhelishvili, 2005ab). Additional experiments are 

required to work through the many possible ways in which gyrase activity can be lowered.  

 

Segregation defect and growth inhibition suppressed by topoisomerase III. 

The growth inhibition associated with topA rnhA double mutants correlated with 

phenotypes seen previously with chromosomal segregation defects: extensive cell 

filamentation, abnormal nucleoid structures, and accumulation of anucleate cells. Thus, the 

simultaneous absence of topoisomerase I and RNase HI leads to segregation defects not 

observed with cells lacking only one of the enzymes. R-loops may be involved, since a 

relationship between topoisomerase I and RNase HI is well established. If R-loops persist 

in topA rnhA double mutants, particularly at oriK sites where constitutive, stable DNA 

replication is initiated (Kogoma, 1997), excess replication could occur. Over-replication 

may saturate the segregation capacity of the cell, thus requiring more decatenation activity 

than can be provided by excess topoisomerase III. 

Unregulated over-replication is also known to lead to collapse of replication forks, 

DNA double-strand breaks (Kouziminova et al., 2004; Simmons et al., 2004; Michel et al., 

2007), and ultimately hyper-recombination, which can cause segregation defects (Lopez et 
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al., 2005; Zhu et al., 2001; Zahradka et al., 1999; Magner et al., 2007). Accumulation of 

unresolved recombination intermediates interferes with chromosome segregation; 

resolution of these structures can be performed by topoisomerase III (Lopez et al., 2005; 

Zhu et al., 2001), even when it is present at normal or very low levels (less than 10 copies 

per cell; Digate and Marians, 1989).   

The extensive DNA relaxation in topA rnhA double mutants could also contribute to 

segregation defects, since the inhibitory effect of temperature-sensitive gyrase mutations on 

segregation (Steck and Drlica, 1984) is thought to be due to DNA relaxation that then 

suppresses decatenation by topoisomerase IV (Zechiedrich et al., 1997; Holmes and 

Cozzarelli, 2000). Overproduction of topoisomerase III allows chromosome segregation 

when topoisomerase IV is inactive (Nurse et al., 2003). However, in the context of 

extensive DNA relaxation, the ability of topoisomerase III to perform decatenation might 

be reduced because single-stranded DNA regions, the substrate for topoisomerase III, are 

expected to be infrequent. Such regions can also be provided by R-loops (Broccoli et al., 

2000).  

 

Biological function of RNase HI 

 The first function attributed to RNase HI in E. coli was a role in the removal of 

RNA primers of Okazaki fragments (Funnell et al., 1986; Ogawa and Okazaki, 1984). 

However, this enzyme cannot remove the last ribonucleotides at the RNA-DNA junctions. 

In fact, 5’-3’ exonuclease activity (e.g. polymerase I) plays the major role in the removal of 

RNA primers. Interestingly, RNase H activity in various bacterial species was recently 

shown to be dispensable for complete RNA primer removal (Fukushima et al., 2007). Only 

5’-3’ exonuclease activity was shown to be indispensable for this process. Based on the 

results presented in the present work we propose that a major function of RNase HI, and 

possibly other bacterial RNase H molecules, involves the control of DNA topology via R-

loops. 

.  
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Experimental procedures 

 

E. coli strains. Escherichia coli strains used in this work are described in Table 1. Strains 

were constructed by transduction with phage P1vir as previously described (Miller, 1992). 

When needed, tetracycline (10 μg/ml), chloramphenicol (15 μg/ml) or kanamycin (50 

μg/ml) was added to the medium. PCR was used to confirm the presence of only the 

rnhA::cam allele and the sbmC::kan allele, respectively, on the chromosome of the rnhA 

null and the sbmC null transductants.  

 

Plasmids. pBAD18rnhA was constructed by placing an EcoRI-HindIII fragment carrying 

the rnhA gene under the control of the PBAD promoter of pBAD18 (Guzman et al., 1995). 

The rnhA gene was obtained by PCR from pSK760 (Drolet et al., 1995) by using 

d(GTCAGAATTCCAGGAAGTCTACCAGA) and 

d(GTCAAAGCTTGGCAATGTCGTAAACC) oligonucleotides.  pGB2nusB::kan is a 

pSC101 derivative that was constructed by inserting the pUC4K EcoRI fragment carrying a 

kanamycin-resistance cassette into the ScaI site of pGB2nusB (Friedman et al., 1990). 

pPH1243 is a pTrc99a derivative carrying the topB gene under the control of the IPTG-

inducible Ptrc promoter (Broccoli et al., 2000). 

  

Plasmid extraction for supercoiling analysis. Cells were grown overnight at 37°C in LB 

medium supplemented with cysteine (50 μg/ml, for the RFM475 derivatives), thymine (10 

μg/ml, for the MA251 derivatives) or tryptophan (50 μg/ml, for VU35 and VU95 strains). 

When required, ampicillin (50 μg/ml), spectinomycin (30 μg/ml), arabinose (0.05%) or 

IPTG (1 mM) were added. Overnight cultures diluted in pre-warmed medium (37°C), were 

grown to an OD600 of ~0.5 at which time an aliquot of cells was recovered for plasmid 

extraction while the remaining culture was transferred to 28°C. Aliquots of cells were 

recovered for plasmid extraction at the indicated times. Growth was arrested by transferring 

cells into a tube filled with ice, thus immediately lowering the temperature of the culture to 
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0°C. Plasmid DNAs were extracted by alkaline lysis as previously described (24). For 

experiments using derivatives of MA251, overnight cultures were diluted 1:1000; they were 

diluted to an OD600 of 0.03 for the experiments using SB383, VU21, PS160, VU64, and 

VU70. 

 

Plasmid topoisomer analysis. One-dimensional and two-dimensional agarose gel 

electrophoresis in the presence of chloroquine was performed in 0.5 X TBE as described 

(Massé et al., 1997). After electrophoresis, the gels were dried and prepared for in situ 

hybridization with random prime-labelled probes as described (Massé et al., 1997). Images 

were obtained by using a Phosphorimager Typhoon 9400 (Amersham Biosciences). 

Western blot analysis. The equivalent of 200 μl of cell culture at an OD600 of 0.7 was used 

for Western blot analysis. The cell pellets were lysed by boiling in sodium dodecyl sulphate 

(SDS). The proteins were separated by SDS-polyacrylamide (7.5 %) gel electrophoresis. 

Western blots were performed as described previously (Sambrook et al.,1989) by using 

nitrocellulose membranes (Hybond-ECL, GE Healthcare). After transfer, the membranes 

were stained with Ponceau S (Fisher Scientific) to confirm that similar amounts of protein 

were loaded in each lane. ParC and ParE antibodies were obtained from Dr Kenneth J. 

Marians (Memorial Sloan-Kettering Cancer Center, New York, New York). GyrA and 

GyrB antibodies were purchased from John Innes Enterprises Ltd (John Innes Centre, 

Norwich Research Park Colney, Norwich, UK). TopB antibodies were obtained from Dr 

Russell DiGate (Department of Pharmaceutical Sciences, Philadelphia College of 

Pharmacy, Philadelphia, PA). The ECL Plus detection kit (GE Healthcare) was used to 

reveal the specific proteins. 

Gyrase assays in crude cell extracts. Cells were grown in LB medium at 370C to an 

OD600 of 0.7 and transferred to 280C for 30 minutes. Cells were recovered and prepared for 

gyrase assays in crude extracts as previously described (DiNardo et al., 1982). 0.2 μg of 

relaxed pBR322 DNA (prepared by using wheat germ topoisomerase I from Sigma-

Aldrich) was used in the assays. 
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Microscopy. RFM443, RFM475, PH379 and SB383 cells were grown overnight on LB 

plates supplemented, when required, with cysteine (50 μg/ml), ampicillin (50 μg/ml), 

chloramphenicol (10 μg/ml) and/or tetracycline (10 μg/ml). When needed, IPTG (1 mM) 

was added to the plates of SB383 cells. PS151 cells were grown overnight on LB plates 

supplemented with thymine (50 μg/ml) and, when needed, arabinose (0.05%). The plates 

were incubated at 37°C. After overnight growth, cells were resuspended in pre-warmed 

(37°C) liquid LB medium (supplemented as requested) to obtain a starting OD600 of about 

0.01. Cells were grown at 37°C to an OD600 of 0.8. 150 μl of cells were harvested, 

centrifuged, and resuspended in 77% ethanol (fixing solution). The cells were washed with 

500 μl of 0.9% NaCl, centrifuged and resuspended in 100 μl of 0.9% NaCl. 3 μl of the fixed 

samples were spread on slides pre-treated with a Poly-L-Lysine solution (Sigma) and 

allowed to air dry at room temperature. 5 μl of slow fade gold antifade reagent with DAPI 

(4',6-diamidino-2-phenylindole; from Invitrogen) was deposited on the slides and sealed 

with a cover glass. Fluorescence pictures were obtained with a Nikon E600 equipped with a 

100-W mercury lamp and standard DAPI filters using the X100 oil immersion objective. 

The images were captured on the computer using the Nikon ACT-1 software. Exposure 

time was 1/50s at maximum sensitivity. For phase contrast microscopy, the microscope was 

adjusted to the phase contrast optical system and pictures were taken at X100 oil immersion 

objective with the Ph3 annulus. Exposure time was 1/120s at normal sensitivity. The 

images were processed with Adobe Photoshop. 
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TABLES AND FIGURES 

 

Table 1. Escherichia coli strains used in this study. 

 

Strain 

 

 

Genotype 

 

Source or Ref.

AQ634 ilv metB his-29 trpA9605 pro thyA deoB (or C) Hraiky et al., 

2000 

 

MA249 

 

 

MA251 

 

AQ634 gyrB221(couR) gyrB203(Ts) zie-3163::Tn10kan 

 

 

MA249 gyrB221(couR) gyrB203(Ts) zie-3163::Tn10kan 

topA20::Tn10 

 

Hraiky et al., 

2000 

 

Hraiky et al., 

2000 

   

CM23 MA251 pBAD18rnhA This work 

 

RFM430 

 

 

MIC1020 

 

 

PH379 

 

PS147 

 

rpsL, galK2, ΔtrpE 

 

 

AB1157 rnhA::cam 

 

 

RFM430 rnhA::cam 

 

CM23 rnhA::cam 

 

Drolet et al., 

1995 

 

Itaya and 

Crouch, 1991 

 

This work 

 

This work 

 

PS151 

 

PS147 pGB2nusB::kan 

 

This work 
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PS152 

 

MA251 pGB2nusB::kan 

 

This work 

 

RFM445 

 

 

RFM475 

 

 

SB224 

 

SB383 

 

LZ1 

 

 

PS158 

 

VU21 

 

PS160 

 

VU48 

 

 

 

VU56 

 

VU64 

  

rpsL galK2 gyrB221(couR) gyrB203(Ts) Δlac74 

 

 

rpsL galK2 gyrB221(couR) gyrB203(Ts) Δ(topA 

cysB)204 Δlac74 

 

RFM475 pPH1243 

 

SB224 rnhA::cam 

 

Hfr thi gyrAL83 zei-723::Tn10 

 

 

RFM475 gyrAL83 zei-723::Tn10 

 

PS158 pPH1243 

 

SB383 gyrAL83 zei-723::Tn10 

 

MG1655 sbmC::kan 

 

 

 

RFM475 sbmC::kan 

 

VU56 pPH1243 

 

Drolet et al., 

1995 

 

Drolet et al., 

1995 

 

This work 

 

This work 

 

Zechiedrich et 

al., 2000 

 

This work 

 

This work 

 

This work 

 

Carmen 

Gomez-

Eichelmann 

 

This work 

 

This work 
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VU70 

 

 

VU64 rnhA::cam 

 

 

This work 
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Figure 1. Supercoiling in a topA rnhA null double mutant. AQ634 (wild-type), MA249 

(gyrB (Ts)), PS152 (topA-, rnhA+/pGB2nusB::kan) and PS151 (topA-, rnhA-

/pGB2nusB::kan and pBAD18rnhA) cells were grown overnight at 370C in the absence of 

arabinose. Overnight cultures were diluted 1:1000 in LB medium with or without arabinose 

(0.05%) as indicated and grown at 370C. DNA was extracted just before the temperature 

downshift and 60 minutes after the downshift (28oC). DNA samples were loaded on 

agarose gels for 1-D (with 7.5 μg/ml of chloroquine in a) or 2-D (chloroquine 

concentrations in μg/ml are indicated by arrows in b) electrophoresis. The gels were 

hybridized with a probe to detect pGB2nusB::kan. [--] points to hypernegatively 

supercoiled DNA. [rel] indicates extensively relaxed DNA. In b), lines were traced over the 

more relaxed topoisomers. 
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Figure 2. Supercoiling in a topA rnhA null double mutant after transcription 

inhibition. PS152 (topA-, rnhA+/ pGB2nusB::kan) and PS151 (topA-, rnhA-/ 

pGB2nusB::kan and pBAD18rnhA) cells were grown at 37oC in the absence of arabinose as 

indicated in the legend to Fig. 1. Rifampicin (250 μg/ml) was added or not as indicated, 15 

minutes before the temperature downshift and the DNA was extracted 60 min after the 

downshift (28oC). DNA samples were loaded on an agarose gel for 2-D electrophoresis 

(chloroquine concentrations in μg/ml are indicated by arrows). The gel was hybridized with 

a probe to detect pGB2nusB::kan. Lines were traced over the more relaxed topoisomers 

(bottom panels).  
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Figure 3. Western blot analysis to measure topoisomerase IV and gyrase levels in topA 

rnhA mutants. RFM475 (gyrB(Ts) ΔtopA), SB383 (gyrB(Ts) ΔtopA rnhA::cam/pPH1243), 

PS147 (gyrB(Ts) topA20::Tn10 rnhA::cam/pBAD18rnhA) and MA251 (gyrB(Ts) 

topA20::Tn10) cells were grown at 37oC in LB medium (no IPTG, no arabinose).  Aliquots 

of cells were used for western blots as described in Experimental procedures. Lanes 1, 3, 5 

and 7, aliquots of cells grown at 37oC; lanes 2, 4, 6 and 8, aliquots of cells exposed to 28oC 

for one hour. 



 
 

 

110

 

 

 

Figure 4. Complementation of a topA rnhA mutant by topoisomerase III 

overproduction. In (a) SB383 (gyrB(Ts) ΔtopA rnhA::cam/pPH1243) cells were streaked 

on solid LB medium with 1 mM or no IPTG as indicated. The plates were incubated 

overnight at 37oC. In (b) SB383 cells were grown in LB at 37oC with or without 1 mM 

IPTG as indicated and aliquots were used for western blots with anti-topoisomerase III 

antibodies. Aliquots were also obtained from cells 60 min after a temperature downshift to 

28oC. 
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Figure 5. Topoisomerase IV inhibition does not promote hypernegative supercoiling in 

a double topA rnhA mutant. PS160 (topA-, rnhA- gyrAL83/pPH1243) and VU21 (topA-, 

rnhA+ gyrAL83/pPH1243) cells were grown at 37oC in LB without IPTG to log phase and 

norfloxacin (60 μM final) was added or not as indicated. Aliquots of cells were taken for 

DNA extraction 30 min later and the remaining cells were transferred to 28oC. 30 min later 

aliquots of cells were taken for DNA extraction. DNA was analyzed in an agarose gel with 

7.5 μg/ml chloroquine. The gel was hybridized with a probe to detect pPH1243 

topoisomers. [--] point to hypernegatively supercoiled DNA. [rel] indicates extensively 

relaxed DNA. 
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Figure 6. GyrI, a gyrase inhibitor, plays no role in supercoiling inhibition in a topA 

rnhA null double mutant. SB383 (topA-, rnhA-, sbmC+/pPH1243), VU70 (topA-, rnhA-, 

sbmC-/pPH1243) and VU64 (topA-, rnhA+, sbmC-/pPH1243) cells were grown at 37oC in 

the presence of 1 mM ITPG. Spectinomycin was added to 400 µg/ml 15 min before the 

temperature downshift to 28°C. DNA was extracted 60 min after the downshift and samples 

were loaded on an agarose gel (with 7.5 μg/ml of chloroquine) for 1-D electrophoresis. The 

gel was hybridized with a probe to detect pPH1243 topoisomers. [--] point to 

hypernegatively supercoiled DNA. 

 

 



 
 

 

113

Figure 7. Supercoiling assays in crude cell extracts. Crude cell extracts were prepared 

and used for supercoiling assays as described in Experimental procedures. In (a), the 

amounts of protein used in the assays were 28 μg (lanes 1 and 6), 14 μg (lanes 2 and 7), 7 

μg (lanes 3 and 8), 3.5 μg (lanes 4 and 9) and 1.75 μg (lanes 5 and 10). The reactions were 

incubated at 30oC for 2 hours. sup is supercoiled pBR322 and rel is relaxed pBR322. WT 

and gyrB(Ts) respectively indicate AQ634 and MA249 strains that were used in the 

experiment. In (b), the amounts of protein used in the assays were 40 μg (lanes 1 and 7), 20 

μg (lanes 2 and 8), 10 μg (lanes 3 and 9), 5 μg (lanes 4 and 10), 2.5 μg (lanes 5 and 11) and 

1.25 μg (lanes 6 and 12). The reactions were incubated at 30oC for 4 hours with twice the 

amount of ATP. At the top of the ethidium bromide stained gel (top panel), sup is 

supercoiled pBR322 and rel is relaxed pBR322. The bottom panel is a picture of the gel 

probed with a random prime-labelled fragment hybridizing to the bla gene of pBR322. The 

strains used in the experiment were PS151 (topA-, rnhA-/ pGB2nusB::kan and 

pBAD18rnhA) and PS152 (topA-, rnhA+/ pGB2nusB::kan). They were grown in the 

absence of arabinose and the log phase cultures were obtained from the overnight ones 

diluted 1:1000. In (c), 2.5 μg of proteins from a crude cell extract of the wild-type strain 

(AQ634) were mixed with 0, (lane 5), 5 (lane 1), 2.5 (lane 2), 1.25 (lane 3) or 0.63 μg (lane 

4) of proteins from the crude extract of PS151 strain used in (b) and with 5 (lane 6), 2.5 

(lane 7), 1.25 (lane 8) and 0.63 μg (lane 9) of proteins from the crude extract of PS152 

strain used in (b). The reactions were incubated at 300C for 2 hours. sup is supercoiled 

pBR322 and rel is relaxed pBR322. 
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Figure 8. Topoisomerase III overproduction does not change supercoiling in a topA 

rnhA null double mutant. SB224 (topA-, rnhA+/ pPH1243) and SB383 (topA-, rnhA-

/pPH1243) cells were grown in LB to log phase at 370C. Spectinomycin was added to 400 

μg/ml 15 min before the temperature downshift to 28oC. IPTG before spc means that IPTG 

was added to 1 mM during the growth at 37 oC whereas IPTG after spc means that IPTG 

was added to 1 mM 5 min after the temperature downshift. DNA was extracted 60 min after 

the downshift and used for 1-D (7.5 μg/ml chloroquine) gel analysis. The gel was 

hybridized with a probe to detect pPH1243. [--] points to hypernegatively supercoiled 

DNA. [rel] indicates extensively relaxed DNA. 
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Figure 9. DAPI staining of topA rnhA null mutants reveals segregation defects that are 

corrected by topoisomerase III overproduction. Cells were grown and prepared for 

microscopy as described in Experimental procedures. In a), 1 and 2 are fluorescence 

pictures of DAPI stained SB383 cells (gyrB(Ts) ΔtopA rnhA::cam/pPH1243) respectively 

grown in the presence and the absence of IPTG both during overnight growth on plates and 

during growth in liquid. 3 and 4 are fluorescence pictures of DAPI stained PS151 cells 

(gyrB(Ts) topA20::Tn10 rnhA::cam/pBAD18rnhA) respectively grown in the presence and 

the absence of arabinose both during overnight growth on plates and during growth in 

liquid. Superimposed pictures of phase contrast and fluorescence (by using Adobe 

Photoshop) of DAPI stained SB383 (no IPTG) cells are shown in b). Yellow and green 

arrows indicate respectively anucleate cells and cells with low DNA content. In c), 1 to 3 

are fluorescence pictures of DAPI stained RFM430 (wild-type), PH379 (rnhA::cam) and 

RFM475 (gyrB(Ts) ΔtopA) cells, respectively.  
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                          Preface to Chapter 3 

         In chapter 2, we demonstrated that topA rnhA gyrB(Ts) exhibited phenotypes 

consistent with chromosome segregation defects. These cells formed long filaments full of 

DNA. The growth and segregation defects of these mutants were corrected by 

overproducing topoisomerase III, a type IA topoisomerase. This suggested that type IA 

topoisomerases could play a role in chromosome segregation. Here we investigated the role 

of type IA topoisomerases in chromosome segregation. To do this, we use genetic 

approaches coupled with flow cytometry and microscopy to examine cell morphology. We 

found that both the growth defect and Par-phenotypes of a gyrB(Ts) mutant at 

nonpermissive temperatures were corrected by deleting topA, but only when topB was 

present. Our data point to a role for type IA topoisomerases in chromosome segregation 

when gyrase is inefficient. 

 

Manuscript II: Usongo, V., Tanguay, C., Nolent, F., Egbe, J., and Drolet, M. (2013). 

Interplay between type IA topoisomerases and gyrase in chromosome segregation in 

Escherichia coli. Journal of Bacteriology. 195:1758-68. 

 

 

This project was designed by Dr. Marc Drolet. I played a significant role towards the 

publication of this manuscript. I performed half of the experiments reported in this 

manuscript. In addition, I prepared the figures, contributed to ideas through informal 

discussions and proofread the final draft prior to submission. 
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Abstract 

Escherichia coli possesses two type 1A topoisomerases, topo I (topA) and topo III (topB). 

Topo I relaxes excess negative supercoiling and topA mutants can grow only in the 

presence of compensatory mechanisms, such as gyrase mutations. topB mutants grow as 

well as wild-type cells. In vitro topo III, but not topo I, can efficiently decatenate DNA 

during replication. However, in vivo, a chromosome segregation defect is only seen when 

both type 1A topos are absent. Here we present experimental evidence for an interplay 

between gyrase and type 1A topos in chromosome segregation. We found that both the 

growth defect and the Par- phenotypes of a gyrB(Ts) mutant at nonpermissive temperatures 

were significantly corrected by deleting topA, but only when topB was present. 

Overproducing topo IV, the major cellular decatenase, could not substitute for topB. We 

also show that overproducing topo III at a very high level could suppress the Par- 

phenotype. We have previously found that the growth and chromosome segregation defects 

of a triple topA rnhA gyrB(Ts) mutant in which gyrase supercoiling activity was strongly 

inhibited, could be corrected by overproducing topo III. We show here that this 

overproduction could be bypassed by substituting the gyrB(Ts) allele for a gyrB+ one or by 

growing cells in a minimal medium, conditions that reduced both topA- and rnhA--

dependent unregulated replication. Altogether our data point to a role for topo III in 

chromosome segregation when gyrase is inefficient and suggest that topo I plays an indirect 

role via supercoiling regulation. 
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Introduction 

DNA topoisomerases are ubiquitous enzymes found in eubacteria, archaebacteria 

and eukaryotes that solve the topological problem associated with replication, transcription 

and recombination (1). Type 1A topos cleave one DNA strand at a time to change the DNA 

linking number in single steps, and they all require, to various extent depending on the 

enzyme, an exposed single-stranded region within the DNA substrate. E. coli possesses two 

type 1A enzymes, namely topo I (topA) and topo III (topB). Topo I binds to single-stranded 

DNA regions close to double-stranded ones (2) thus explaining its major role in the 

relaxation of excess negative supercoiling, that is mostly generated during transcription (3-

5). Consistent with this function is the finding that many topA mutants can grow owing to 

the presence of compensatory mutations in gyrA or gyrB that reduce the supercoiling 

activity of gyrase (6, 7). One major consequence of excess negative supercoiling is R-loop 

formation and RNA degradation (5, 8, 9). 

Topo III is a very low abundance protein (10) and its cellular role is not well 

defined. This is largely due to the fact that, as opposed to topA null mutants, topB null 

mutants display no obvious phenotype (they grow as well as wild-type strains, at least 

under standard laboratory conditions (10)). Topo III requires stable single-stranded DNA 

regions for activity and does not efficiently relax negatively supercoiled DNA (11). In fact, 

topo III plays no role in supercoiling regulation in vivo (12, 13). In vitro, topo III is a potent 

decatenase providing that single-stranded regions are present on the DNA (11). 

DNA gyrase, the enzyme responsible for the introduction of negative supercoiling 

in DNA, plays major roles in replication. Firstly, via negative supercoiling, gyrase 

facilitates DNA melting at oriC in order for replication initiation to take place (14). 

Secondly, gyrase removes the left-handed positive supercoiling generated in front of 

moving replication forks (15). In fact, it is believed that most of the intertwining generated 

by replication is normally eliminated by gyrase (16). The positive supercoiling generated 

by replication can also migrate behind the replication fork, providing that the replication 

complex is free to rotate, which leads to the formation of precatenanes (intertwining of the 

pair of replicated chromosome segments; 17-19) that can be removed by topo IV, the major 
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cellular decatenase. Once the chromosome is fully replicated, the remaining precatenanes 

becomes catenanes that are also eliminated by topoisomerase IV, thus allowing 

chromosome segregation to take place. In vitro, topo III alone can support replication 

presumably by acting on single-stranded DNA at the replication fork to remove 

precatenanes (20-22). This mechanism has been proposed to explain the suppression of the 

chromosome segregation defect of topo IV mutants by topo III overproduction at very high 

levels (22).           

Interestingly, one of the first mutations isolated that caused a chromosomal 

segregation defect mapped to a subunit of gyrase (23). The observed phenotype was named 

Par- and it is characterized by anucleate cells, guillotined cells and long filaments with 

abnormal nucleoid structures. As topo IV, not gyrase, was later shown to be the major 

cellular decatenase in vivo (24, 25), this result suggested that the gyrase mutation somehow 

reduced the efficiency of decatenation by topo IV. This has been explained based on the 

observation that negative supercoiling strongly favours the decatenation reaction of topo IV 

over its catenation reaction (26-29). Moreover, defective gyrase would favour the 

accumulation of precatenanes. Such precatenanes are good substrates for topo IV only 

when their density is low so that their crossing angle is optimal for enzyme activity (16). 

Thus, defective gyrase (and supercoiling) could lead to chromosome segregation defects by 

rendering topo IV inefficient for two reasons: by promoting the catenation reaction and by 

causing the accumulation of precatenanes. 

Despite biochemical and genetic evidence for the involvement of topo III but not 

topo I in chromosome segregation, a defect in this process could be observed in vivo only 

when both type 1A topos were absent (30). Since only topA mutants, not topB ones, display 

severe growth defects it is possible that the topA topB phenotype reflects an absolute 

requirement for topo III in chromosome segregation when topA is absent. To test this 

hypothesis, we have initiated a study to understand how the various compensatory 

mechanisms for the absence of topA, such as gyrase mutations, RNase HI overproduction 

and others to be presented elsewhere (Usongo et al., manuscript in preparation), can 

modulate this topA topB phenotype. While we were testing the effect of modulating gyrase 

activity by using a gyrB(Ts) allele that is known to compensate for the absence of topA at 
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37oC (31), we found that deleting topA was able to compensate for the strong gyrase 

inhibition at 39-40oC and above (up to 42oC). This temperature also coincided with the 

appearance of the strong Par- phenotype. This complementation by deleting topA was 

found to be totally dependent on the presence of an active topB gene. Here we present these 

results and others allowing us to conclude that topo III can play an important role in 

chromosome segregation in vivo, and that topA likely influences this process indirectly by 

regulating replication via supercoiling. 
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Material and Methods 

E. coli strains. Strains used in this work are described in Table 1. Strains carrying the 

gyrB(Ts) allele carry in fact a gyrB gene with two mutations, one conferring coumermycin 

resistance (gyrB221) and the other one (gyrB203) conferring temperature sensitivity. These 

two mutations were obtained simultaneously following mutagenesis of a wild-type strain 

with N-methyl-N'-nitro-N-nitrosoguanidine (NTG). They have always been used together 

in our studies (4, 8, 9, 31, 33, 35, 41) and in studies from other groups (38), and DNA 

supercoiling is fully restored to a wild-type level when strains carrying these mutations are 

exposed to permissive temperatures (30oC and below; ref. 31).  Strains were constructed by 

transduction with phage P1vir as previously described (32). When needed, tetracycline (10 

μg/ml), or kanamycin (50 μg/ml) was added to the medium. The gyrB+ allele was 

transduced into gyrB(Ts) recipients by selecting first for a nearby Tn10 marker and then for 

thermo-resistant growth (42oC). The presence of the wild-type gyrB allele was confirmed 

by sequencing.  

 

Plasmids. pPH1243 is a pTrc99a derivative carrying the topB gene under the control of the 

IPTG-inducible Ptrc promoter (33). pET11-parEC produces a ParEC fusion protein that is 

active as a topo IV (34). 

 

Plasmid extraction for supercoiling analysis. pPH1243 DNA extraction for supercoiling 

analysis was performed as described previously (35). Chloroquine gel electrophoresis and 

in situ hybridization of the dried gels were done as previously reported (35). 

 

Western blot analysis. Western blot analysis was performed as described previously (35).  

 

Microscopy. Cells were grown overnight on LB plates supplemented, when required, with 

cysteine (50 μg/ml) and appropriate antibiotics. When needed, IPTG (1 mM) was added to 

the plates. The plates were incubated at 37°C. After overnight growth, cells were 

resuspended in pre-warmed (37°C) liquid LB medium (supplemented as requested) to 
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obtain a starting OD600 of about 0.01. Cells were grown at 37°C to an OD600 of 0.8. The 

cells were prepared for microscopy as described before (35). Pictures were randomly taken 

and randomly selected to calculate the number of cells in each category. 

 

Flow cytometry. Overnight cultures were prepared, diluted and cells were grown as 

indicated in either LB or M9 glucose medium supplemented as required. When the cell 

density reached an OD600 of 0.3, the cells were either recovered (Fig. 1) or treated with 

rifampicin (300 μg/ml) to prevent the initiation of new rounds of replication and then 

incubated for an additional two hours, to allow the ongoing replication rounds to terminate 

(run-out experiments, Fig. 8). Cells were washed two times with TE buffer (Tris 10 mM, 

pH 8.0, EDTA 1 mM) before being fixed with ice-cold ethanol (77%). After one wash with 

TE buffer the cells were stained with SYTO 16 (Molecular Probes). RNase A (200 μg/ml) 

was also added during the staining (30 min). Flow cytometry was performed on a Becton 

Dickinson FACScalibur. DNA/mass ratios were obtained by dividing the average SYTO 16 

green fluorescence by the average forward light scatter (FSC) that is roughly equivalent to 

cell mass.  
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Results 

Deleting topA partially corrects the growth defect and the Par- phenotypes of the 

gyrB(Ts) mutant at nonpermissive temperatures. 

We found that deleting topA (strain RFM475) allowed a gyrB(Ts) mutant (strain 

RFM445) to grow at 42oC on LB plates (Fig. 1a). The growth inhibition of a strain carrying 

the same gyrB(Ts) allele was previously shown to correlate with the inhibition of 

replication initiation at nonpermissive temperatures (36-37). Moreover, a strong Par- 

phenotype has been described for this allele at a nonpermissive temperature (38). 

Therefore, this result suggested that the absence of topo I sufficiently increased the negative 

supercoiling level in the gyrB(Ts) mutant to allow replication initiation and chromosome 

segregation to take place in strain RFM475.  

We used flow cytometry to measure cell mass and DNA content in strains RFM445, 

RFM475 and RFM443 as a wild-type control. Fig. 1b shows that the average cell mass at 

37oC was similar for the three strains with that of RFM475 being slightly lower. DNA 

content had a somewhat wider distribution for RFM445 as compared to RFM443 and that 

of RMF475 was significantly wider, with the average DNA content being higher in this 

strain. As a result strain RFM475 clearly had a higher DNA/mass ratio (Fig. 1e, 37oC). This 

could be due, at least in part, to unregulated replication in strain RFM475 (see below).  

At 40 and 42oC, strain RFM445 did not form visible colonies on plates, but gave 

sufficient growth in liquid (five generations) to obtain cells for flow cytometry analysis. Fig 

1c shows a bimodal distribution of the average cell mass for strain RFM445 at 40oC. This 

also coincided with the appearance of a high peak on the left side of the DNA histogram 

which corresponds to non-specific binding of the dye. This indicates the accumulation of 

small anucleate cells (55% of the cells were anucleate), a typical manifestation of the Par- 

phenotype. Moreover, DNA labeling shifted toward the right side of the histogram for 

strain RFM445 reflecting the presence of longer cells, another manifestation of the Par- 

phenotype. Based on these criteria, it can be deduced that deleting topA (strain RFM475) 

significantly corrected the Par- phenotype of the gyrB(Ts) strain (Fig. 1c; 9.4% of anucleate 

cells). This was later confirmed by fluorescence microscopy.  



 
 

 

129

Fig. 1d shows that the Par- phenotype was exacerbated in both RFM445 and 

RFM475 at 42oC (79.4 and 32.8% anucleate cells, respectively) as compared to 40oC, but 

that deleting topA (strain RFM475) still significantly corrected this phenotype. In fact, the 

Par- phenotype was even stronger for strain RFM445 cultivated at 40oC as compared to 

strain RFM475 grown at 42oC (55.06% vs 32.8% anucleate cells, respectively). The 

DNA/mass ratio clearly dropped for strains RFM445 and RFM475 at 40oC compared to 

37oC (Fig. 1e). This probably indicates reduced replication initiation due to the lack of 

negative supercoiling at oriC (14). We also noted that the drop at 42oC was reproducibly 

more important for strain RFM445 as compared to RFM475 (Fig. 1e). We believe that this 

indicates a partial correction of the replication initiation defect in strain RFM475 conferred 

by the absence of topA. Thus, deleting topA significantly corrected the Par- phenotype of 

the gyrB(Ts) strain at nonpermissive temperatures plus all other supercoiling-dependent 

processes, e.g. replication initiation, that are required for growth.    

 

The correction of the growth and the Par- phenotypes of the gyrB(Ts) mutant by 

deleting topA depends upon the presence of the topB gene.   

As gyrase supercoiling activity was strongly inhibited at 40oC and above in strains 

carrying the gyrB(Ts) allele, it was possible that topo IV could not efficiently perform DNA 

decatenation. In this situation, topo III activity could be required if it can actually play a 

role in chromosome segregation in vivo. The correction of the growth defect of the 

gyrB(Ts) strain by deleting topA gave us the opportunity to test this possibility. We used 

P1vir transduction to introduce a topB null allele into the topA gyrB(Ts) strain, RFM475. 

As a control for transduction efficiency, we also introduced the topB null allele within 

isogenic wild-type (RM443) and gyrB(Ts) (RFM445) strains. For these strains, topB null 

transductants were obtained after 18 hours of incubation at 37oC, whereas 48 hours were 

required to obtain transductants of strain RFM475 at the same temperature. The disruption 

of the topB gene was confirmed by PCR for 8 transductants of each group (not shown).  

Upon restreaking on LB plates, transductants of strains RFM443 and RFM445 

formed medium-sized colonies after 18 hrs of incubation, whereas it took 48 hours for 

RFM475 transductants to form colonies of similar size (not shown). The vast majority of 
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the colonies obtained after 48 hours were homogeneous in size. We obtained similar results 

for strain DM800, a widely used topA null mutant that also contains the naturally acquired 

gyrB225 compensatory mutation (6; not shown). Similar results in terms of the number of 

transductants and their growth rate were also reported by another group for strain DM750, a 

topA null mutant carrying the naturally acquired gyrA224 compensatory mutation (39). 

Thus, E. coli cells lacking both type 1A topos are viable but grow slowly. 

Next, we tested the ability of topA gyrB(Ts) cells lacking the topB gene to form 

colonies on LB plates at 35 and 42oC. Fig. 2a shows that, whereas RFM475 cells grew 

better at 42oC than at 35oC, cells of strain CT170, a topB null transductant of strain 

RFM475, formed colonies at 35oC but did not grow at 42oC. The growth behaviour of 

strain RFM475 was previously reported and was shown to be due to the reactivation of 

gyrase activity as the temperature was decreased, so that the gyrB(Ts) allele could no 

longer compensate for the absence of topo I (31). The opposite behaviour of strain CT170 

shows that topB is required for the growth of the topA gyrB(Ts) strain at higher 

temperatures. 

The growth of the two isogenic strains (RFM475 and CT170) was also monitored in 

liquid medium at different temperatures and in some cases cell samples were recovered for 

DAPI staining, and prepared for fluorescence microscopy to examine cell morphology and 

DNA content. The growth rate at 35oC was very similar for both strains, whereas upon 

raising the temperature to 40oC it increased for strain RFM475 but did not significantly 

change for strain CT170 (Fig. 2b, left and right, respectively). The temperature of 37oC was 

found to be the optimal temperature for the growth of the topA topB mutants (Fig. 2c; 

Usongo et al., manuscript in preparation). Major differences between RFM475 and CT170 

strains were observed from 39oC. At 40oC, the growth of strain CT170 stopped during log 

phase at an OD600 of 0.6 (Fig. 2c).  

One typical phenotype of topA topB null mutants that was previously reported is the 

formation of very long filaments with unsegregated nucleoids having abnormal structures 

(30). Such filamentous cells were also observed for our topA topB null mutant (strain 

CT170; Fig. 3, long filaments (>14 chr./cell); Fig. S3 and S4). Importantly, the proportion 

of such cells dramatically increased as the incubation temperature was raised to 39oC, with 
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a maximum being reached at 40oC (Fig. 3, 7% vs. 24% respectively, for 37 and 40oC; this 

roughly corresponds respectively, to 30% and 70% of the total cell mass). This dramatic 

increase correlated with temperatures at which the gyrB(Ts) Par- phenotype started to 

appear.  

As expected because of the Par- phenotype, the proportion of anucleate cells also 

considerably increased at high temperatures (Fig. 3, 4% vs. 48% respectively, for 37 and 

40oC). Although the isogenic RFM475 strain (topA gyrB (Ts)) did not significantly form 

very long filaments at any temperature tested (Fig. S1 and S2; less than 1% at 40oC, Fig. 3), 

it also produced a large proportion of anucleate cells at higher temperatures (Fig. 3, less 

than 0.1% vs. 40% respectively, for 37 and 40oC). As predicted from the results shown in 

Fig. 1, anucleate cells accumulated at a higher frequency in strain RFM445 (Fig. S5; 0.1% 

vs. 67% respectively, for 37 and 40oC). However, RFM445 produced considerably fewer of 

the very long filaments than CT170 (4% vs. 24% respectively, for RFM445 and CT170 at 

40oC). A ΔtopB::Kan derivative of RFM445 (gyrB(Ts) topB) behaved like RFM445 except 

that it produced a higher number of longer cells (not shown). Thus, in the topA deletion 

strain, the topB gene is required to alleviate the Par- phenotype related to defective gyrase 

activity. When topB is deleted, the Par- phenotype is mostly manifested as very long 

filaments with unsegregated nucleoids. This could be due to the fact that the absence of 

topA (increased negative supercoiling) confers to the cells the ability to grow for a while, 

whereas growth is much more restricted in the single gyrB(Ts) mutant. We can conclude 

that topo III at its wild-type level can perform DNA decatenation to allow chromosome 

segregation to take place when gyrase is defective. 

 

Overproducing topo IV cannot bypass the requirement for topo III activity for the 

growth of the topA gyrB(Ts) strain. 

Our data indicated that topo IV could not fully support chromosome segregation in 

the gyrB(Ts) mutant at nonpermissive temperatures, despite the increase in negative 

supercoiling conferred by deleting topA. This could indicate either that there was not 

enough topo IV or that it could not substitute for topo III. To address this issue, we first 

introduced the plasmid pET11-parEC (34) into strains RFM475 (topA gyrB (Ts)) and 
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CT170 (topA topB gyrB (Ts)). This plasmid produces a ParEC fusion protein that is fully 

active as a Topo IV protein in vitro and that was shown to complement the thermosensitive 

growth of parE(Ts) and parC(Ts) strains (34). We found that this plasmid was able to 

stimulate the growth of strain RFM475 (Fig. 4a, RFM475). This result is in agreement with 

the previous finding showing that topo IV overproduction can compensate for the absence 

of topA (40), and also confirmed that an active topo IV could be produced from this 

plasmid. The results of western blot experiments showed that topo IV as a fusion protein 

was indeed produced in both RFM475 and CT170 strains carrying pET11-parEC (Fig. 4b).  

We found that overproducing topo IV did not improve the growth of strain CT170. 

There was even a slight but reproducible negative effect (Fig. 4a, CT170; one log drop in 

the efficiency of plating for cells carrying pET11-parEC that also had a slightly higher 

doubling time than CT170 cells without pET11-parEC). The reason for this effect is 

currently unknown. Nevertheless, it clearly indicates that topo IV cannot substitute for topo 

III in chromosome segregation when gyrase supercoiling activity is significantly impaired. 

This result is also in line with a previous report showing that overproducing topo IV could 

not complement the growth defect of DM750 and DM800 topA- cells in which the topB 

gene had been inactivated (30).   

    

Topo III overproduction at a very high level can correct the Par- phenotype of the 

gyrB(Ts) mutant at a nonpermissive temperature. 

The fact that the gyrB(Ts) strain RFM445 displays a strong Par- phenotype despite 

the presence of the topB gene, may indicate that there is not enough topo III to fully 

decatenate chromosomal DNA to allow segregation. To test this hypothesis, we introduced 

the plasmid pC18pBAD33 (a kind gift from R.J. DiGate, University of the Sciences, 

Philadelphia) into strain RFM445 to overproduce topo III at a very high level. This plasmid 

has the topB gene placed under the control of the strong arabinose-inducible promoter PBAD 

and a strong Shine-Dalgarno box. The same amount of RFM445/pC18pBAD33 cells from a 

concentrated glycerol stock were streaked on three LB plates containing ampicillin and 

either, arabinose (0.05%), glucose (0,2%) or no sugar. The plates were incubated for three 

days at 42oC. We found that growth was essentially restricted to the beginning of the 
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streaks, as very few isolated colonies were obtained (not shown). This was expected as 

negative supercoiling is not restored by overproducing topo III. Cells from the beginning of 

the streaks were recovered for DAPI staining and prepared for fluorescence microscopy to 

examine cell morphology and DNA content.  

Fig. 5a shows that when topo III was not overproduced (0,2% glucose) a large 

number of anucleate cells accumulated. Most strikingly, lemon shaped cells with a huge 

mass of unsegregated DNA at the center were produced. However, very few anucleate cells 

and no lemon shaped cells were produced in the absence of sugar or with 0.05% arabinose 

(Fig. 5b and c respectively). Fig. 5e shows by western blot that a large quantity of topo III 

was produced only when cells were grown on plates with arabinose or no sugar.  

Since the cells were recovered after three days of incubation, we were aware of the 

possibility that suppressor mutations leading to the loss of the Par- phenotype could have 

accumulated. To test this possibility, we took cells from the LB plate no sugar that was 

incubated for three days, and streaked them on an LB plate with glucose. After three days 

of incubation cells from the beginning of the streaks were recovered for DAPI staining and 

prepared for fluorescence microscopy. The fact that a large number of anucleate cells and 

lemon shaped cells accumulated indicated that the correction of the Par- phenotype was due 

to topo III overproduction and not to the accumulation of suppressor mutations. Moreover, 

in an independent experiment we found that RFM445 strain without plasmid produced 

similar amount of anucleate cells and lemon shaped cells whether it was grown on LB plate 

with no sugar or with glucose or arabinose (not shown).       

In another experiment, we used the plasmid pPH1243 in which the topB gene with 

its poor Shine-Dalgarno sequence is placed under the control of the IPTG-inducible Ptrc 

promoter. However, the level of topo III overproduction achieved with this plasmid after 

the addition of IPTG was similar to the level obtained from pC18pBAD33 in the presence 

of glucose (Fig. 5f, compare lanes 2 and 3). This would explain our failure to observe an 

effect of pPH1243 on chromosome segregation in strain RFM445 at 42oC (not shown). 

Thus, overproduction of topo III at a very high level can substantially correct the Par- 

phenotype of the gyrB(Ts) strain. 
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Increasing gyrase activity in a topA rnhA gyrB(Ts) mutant allows chromosome 

segregation and growth independent of topo III overproduction. 

 We have previously described a topA gyrB(Ts) mutant in which the depletion of 

RNase HI (rnhA) activity triggered the inhibition of the supercoiling activity of gyrase and 

lead to chromosome segregation defects and growth inhibition (35). Similarly, this 

extensive supercoiling inhibition was observed in a triple topA rnhA gyrB(Ts) mutant 

(strain SB383) in which topo III overproduction from an IPTG-inducible topB gene on a 

plasmid (pPH1243), corrected both the growth and chromosome segregation defects.  

To test the hypothesis that topo III acts by compensating for the weak gyrase 

activity in strain SB383 (topA rnhA gyrB (Ts)/pPH1243), we first performed P1vir 

transduction to replace the gyrB(Ts) allele of strain SB383 with a wild-type one. Although 

the gyrB(Ts) allele present in strain SB383 compensated for the lack of topA, we reasoned 

that the response leading to gyrase inhibition in the absence of RNase HI would be 

sufficient to allow a gyrB+-derivative of SB383 to grow. Indeed, gyrB+ transductants of 

strain SB383 could be obtained. Moreover, hypernegative supercoiling was not observed 

following the addition of a translation inhibitor (spectinomycin) to a gyrB+ transductant 

(strain NF98: topA rnhA gyrB+/pPH1243; Fig. 6a, lane 2).  

This treatment was previously shown to strongly stimulate hypernegative supercoiling in 

topA null mutants (41), but not when rnhA was absent (as in strain SB383; 35). As a 

control, we show that hypernegative supercoiling accumulated in strain NF88 (topA 

gyrB+/pPH1243) after the addition of spectinomycin (Fig. 6a, lane 1). Steady-state 

supercoiling was significantly higher in strain NF98 as compared to SB383 (Fig. 6b, lane 1, 

SB383 and lane 2, NF98) which is in agreement with the presence of the gyrB+ allele in 

strain NF98. Thus, despite the presence of the response leading to gyrase inhibition in the 

absence of RNase HI, gyrase supercoiling activity was higher in strain NF98 as compared 

to strain SB383. In a recent report, deleting the topA gene in an rnhA mutant with a wild-

type gyrase was shown to generate non-viable cells (42). Presumably, the excess negative 

supercoiling together with the absence of RNase HI, caused the accumulation of stable R-

loops that inhibited growth and precluded the expression of the cellular response leading to 

gyrase inhibition.   
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As would be predicted if increasing gyrase activity could bypass the need for topo 

III overproduction, strain NF98 grown in the absence of IPTG produced much less 

anucleate cells as compared to strain SB383 grown under the same conditions (Fig. 7; 29 

and 2% of anucleate cells, respectively for strains SB383 and NF98; Fig. S6a and S7a). 

Cells with a low DNA content and long filaments with unsegregated nucleoids were also 

produced in low amounts in strain NF98. Noticeably, the suppression was so efficient in 

this strain, that the addition of IPTG to overproduce topo III did not further reduce the 

number of cells with chromosome segregation defects (Fig. 7 and S7b). As expected strain 

NF98, but not SB383, was able to grow overnight on LB plates in the absence of IPTG 

(Fig. S8a) and both strains produced similar amount of topo III protein with and without 

IPTG (Fig. S8b). Thus, the need to overproduce topo III for growth and chromosome 

segregation could be bypassed by increasing gyrase supercoiling activity in a topA rnhA 

gyrB(Ts) strain. This result further supports the interplay between gyrase and topo III in 

chromosome segregation. 

 

The absence of topA and rnhA causes unregulated replication. 

 Replication initiation that takes place at oriC is tightly regulated so that it occurs 

once and only once per cell cycle (43). This process is synchronized with the “initiation 

mass”. Unregulated replication initiation could be especially harmful when gyrase activity 

is suboptimal for chromosome segregation. Interestingly, flow cytometry studies have 

revealed asynchronous replication in the topA null mutant DM800 (44).  We used flow 

cytometry in rifampicin run-out experiments with cells grown in LB medium to investigate 

the regulation of replication initiation in a set of isogenic strains that included RFM443 

(wild-type), RFM445 (gyrB (Ts)) and RFM475 (topA gyrB (Ts)). As shown in Fig. 8a, both 

RFM443 and RFM445 cells contained 2n chromosomes (top left and middle left panels 

respectively), thus showing that replication initiation was well regulated in these strains. 

However, the removal of the topA gene from the gyrB(Ts) strain almost completely 

eliminated the 2n chromosomal pattern (strain RFM475; Fig. 8a, bottom left panel). Thus, 

the absence of topo I leads to the appearance of unregulated replication in strain RFM475. 
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 In the absence of RNase HI, replication can initiate from R-loops at sites other than 

oriC (45). Several of these sites (oriKs) are located close to the Ter region. Replication in 

rnhA mutants was named cSDR (constitutive stable DNA replication) because it could 

continue for several hours following the addition of protein synthesis inhibitors. cSDR is 

not synchronized with the cell cycle but is sensitive to rifampicin. Our rifampicin run-out 

experiments of cells grown in LB medium indicated that replication in rnhA cells was 

highly unregulated, with the loss of discrete chromosomal peaks being observed (strain 

PH379; Fig. 8b, bottom left panel). Thus, extensive unregulated replication is expected to 

occur in cells lacking both rnhA and topA as is the case for strain SB383 (topA rnhA gyrB 

(Ts)/pPH1243). This might be particularly harmful for chromosomal segregation in this 

strain in which gyrase activity is inhibited.  

 If unregulated replication is problematic for the growth (and chromosome 

segregation) of strain SB383, culture conditions that reduce such replication should 

alleviate the problem. We found that strain SB383 could grow in minimal medium without 

the need to overproduce topo III (not shown). Under these conditions, unregulated 

replication was clearly reduced in both topA and rnhA null mutants. Indeed, flow cytometry 

in rifampicin run-out experiments revealed a near perfect 2n chromosomal pattern with only 

one small additional peak, reflecting some asynchrony, for the topA null mutant (strain 

RFM475; Fig. 8a, bottom right panel). A near perfect 2n chromosomal pattern was also 

obtained in run-out experiments for rnhA null cells grown in minimal medium (Fig. 8b, 

bottom right panel). Thus, our results support the hypothesis that unregulated replication 

due to the absence of topA and rnhA can contribute to growth and chromosomal segregation 

problems of cells with a defective gyrase. Therefore, the topA gene would indirectly affect 

chromosomal segregation by regulating replication.  



 
 

 

137

Discussion 

Interplay between topo III and gyrase in chromosome segregation. 

In this paper, we have presented experimental evidence for an interplay between 

gyrase and topo III in chromosomal segregation in vivo. This interplay could not be 

revealed until topA was found to correct the growth defect of the gyrB(Ts) mutant at 

nonpermissive temperatures. Growth inhibition due to defective gyrase has several causes, 

including inhibition of replication initiation, chromosome segregation failure (Par-), 

inhibition of ribosomal RNA synthesis and others (46), that all have at least in part a 

common denominator, namely, the lack of negative supercoiling. Thus deleting topA would 

bring negative supercoiling to a level allowing these key cellular activities to be sufficiently 

completed for growth to occur. However, the topB gene would be required due to the Par- 

phenotype at nonpermissive temperatures. 

topA topB null mutants were previously shown to suffer from severe RecA-

dependent chromosomal segregation defects (30). Therefore, it could be argued that the 

major chromosomal segregation phenotype of the topA topB gyrB(Ts) strain described here 

was the result of two independent effects: a RecA-dependent effect that was due to the 

absence of both type 1A topos plus a Par- related effect due to defective gyrase activity. 

However, for several reasons, we do not believe this to be the case. Firstly, we have 

recently found that compensatory mechanisms (including a recA deletion) that significantly 

correct the chromosomal segregation defects of our topA topB gyrB(Ts) strain at lower 

temperatures, had no effects at higher temperatures (Usongo et al., manuscript in 

preparation). Secondly, here we have presented strong evidence for an interplay between 

gyrase and topo III in two other instances: overproduction of topo III at a very high level 

substantially corrects the Par- phenotype of the gyrB(Ts) strain, and substitution of the 

gyrB(Ts) allele by a gyrB+ one bypasses the need for topo III overproduction for growth 

and chromosome segregation in our topA rnhA gyrB(Ts) strain. Thus, we believe our results 

are consistent with an interplay between gyrase and topo III in chromosomal segregation. 

While this manuscript was in preparation, a paper was published that demonstrated 

an interplay between topo III and topo IV in chromosome segregation in E. coli (47). 
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However, no clues were provided as to when a specific topo instead of the other one would 

be required to allow chromosome segregation to occur. Furthermore, based on the fact that 

deleting topB only had a minor effect on chromosomal segregation in a strain carrying the 

same gyrB(Ts) allele as the one used in the present study, the authors concluded that there 

were no significant interactions between topo III and gyrase in segregation. However, as 

shown in our paper and as stated above, a significant interplay between topB and this 

gyrB(Ts) allele could only be seen when topA was also deleted. Therefore, while the paper 

of Perez-Cheeks et al. (47) clearly reveals an interplay between topo III and topo IV in 

chromosomal segregation, our paper shows an interplay between topo III and gyrase in this 

process.  

The interplay between topo III and topo IV in chromosomal segregation can thus be 

explained, at least in part, in the context of chromosomal supercoiling that is regulated by 

the opposing enzymatic activities of gyrase and topo I. When gyrase activity is defective, 

the supercoiling level is low and topo IV would not be efficient in decatenation. In this 

context the activity of topo III would be required. This would explain why topo IV 

overproduction cannot substitute for topo III in chromosomal segregation at nonpermissive 

temperatures, in our topA gyrB(Ts) strain. On the other hand, an increase in negative 

supercoiling conferred by deleting topA in the gyrB(Ts) strain likely improves the ability of 

topo IV to perform decatenation, but the supercoiling level is still too low, thus explaining 

why topo III is also required.  

Replication-induced positive supercoiling becomes particularly problematic when 

convergent replication forks are about to meet at the Ter region of the E. coli chromosome. 

Not only does a very high level of positive supercoiling accumulate, the space on the DNA 

template may also become too small to accommodate binding by gyrase. It has been shown 

in vitro that topo III together with RecQ and SSB can act at converging replication forks to 

topologically unlink them (48). In this reaction, RecQ helicase provides the single-stranded 

DNA substrate to which topo III can bind. SSB (single-stranded DNA-binding protein), by 

interacting with both proteins, mediates the functional cooperation between RecQ and topo 

III. However, we found that deleting recQ in our topA gyrB(Ts) strain does not affect the 

ability of the topA deletion to complement the gyrB(Ts) mutant at high temperatures, thus 
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indicating that RecQ is not required for topo III to perform its essential function in this 

situation (Usongo et al., unpublished results).  

The location where topo III actually acts in vivo is still unknown. As ssDNA regions 

are expected to form only transiently in vivo (this would even be more problematic when 

gyrase is defective) and as the abundance of topo III is normally very low, it has been 

difficult to pinpoint the exact site of action of topo III in vivo. The ability of topo III to 

physically interact with SSB protein, as recently shown, may explain how topo III can have 

access to its site of action in vivo (48). Indeed, SSB may efficiently bring topo III to its site 

of action that may be situated at the replication forks where SSB also binds. Topo III would 

therefore be properly located to act on precatenanes as suggested (47).  

 

Interplay between topo I and gyrase in chromosomal segregation. 

The severe chromosomal segregation and growth phenotypes seen here when both 

type1A topos were absent may indicate that topo I can substitute for topo III in 

chromosomal segregation. The much lower efficiency of topo I in this process as compared 

to topo III could be compensated for by its much higher abundance than topo III. Although 

this is possible, an alternative and non-mutually exclusive explanation, that may reflect a 

real function of topo I, would be that it indirectly affects chromosome segregation through 

supercoiling by limiting firing from oriC. By doing so, topo I would control the number of 

replication forks travelling on the chromosome. This would facilitate linkage removal, 

especially when gyrase is defective, as is often the case in topA mutants.  

In fact, in an in vitro oriC-based replication system, topo III was shown to support 

replication fork progression and to perform the final decatenation step, whereas inhibition 

of replication initiation from oriC was the only effect seen for topo I (20, 21). Moreover, a 

topA deletion has been shown to suppress the growth defect of a dnaA46(Ts) mutant at the 

nonpermissive temperature (49) and to cause replication from oriC to be unregulated (44), 

as also shown here in our topA null strain. Furthermore, the replication initiation defect of 

the gyrB(Ts) strain at nonpermissive temperatures was shown here to be corrected by 

deleting topA. This support the hypothesis that the lack of topo I activity promotes 

replication from oriC by causing negative supercoiling to increase in this region, thus 
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facilitating DNA melting. Thus, in the topA gyrB(Ts) strain, unregulated replication from 

oriC would make the defective gyrase unable to efficiently support chromosome 

segregation. The wild-type level of topo III activity would then be indispensable, but 

sufficient, for chromosome segregation. Alternatively, we also have to consider the 

possibility that topo I, through supercoiling regulation, may affect chromosome segregation 

indirectly by modulating gene expression.  

In the topA rnhA gyrB(Ts) strain SB383, the absence of RNase HI further enhanced 

the level of unregulated replication already caused by the absence of topA, by allowing 

replication from stable R-loops (cSDR). Moreover, since one major function of topo I is to 

inhibit R-loop formation (5, 8), the absence of topA is also expected to stimulate cSDR. 

Together with the fact that gyrase supercoiling activity is significantly inhibited in the 

absence of RNase HI (35), this high level of unregulated replication could explain why topo 

III needed to be overproduced in strain SB383, to allow growth and chromosomal 

segregation. In this context, our results suggest that the previously reported effect of rnhA 

on chromosomal segregation (35) is indirect and likely related to cSDR. Thus, topo I and 

RNase HI may facilitate chromosomal segregation by limiting replication.  

Interestingly, when the topA rnhA gyrB(Ts) strain was grown in a minimal medium 

instead of a rich one, chromosomal segregation was significantly improved and this 

coincided with a clear reduction in the amount of unregulated replication conferred by 

deleting topA or rnhA. This correlation strongly supports the link between unregulated 

replication and chromosomal segregation defects. Furthermore, our results of transposon 

mutagenesis to isolate suppressors of the growth defect of strain SB383 indicate that 

indeed, unregulated replication conferred by the absence of topA and rnhA significantly 

contributes to the chromosomal segregation defect seen in this strain (Usongo et al., 

manuscript in preparation). Thus topo I, via supercoiling regulation, can likely affect 

chromosomal segregation in two ways: by affecting the efficiency of decatenation by topo 

IV and by regulating replication initiation.  
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TABLES AND FIGURES 

Table 1. Escherichia coli strains used in this study. 

 

 

Strain 

 

 

Genotype 

 

Source or Ref. 

RFM443 

 

 

RFM445 

 

 

RFM475 

 

 

NF88 

 

MD897 

 

CT170 

 

RFM430 

 

PH379 

 

SB383 

 

NF98 

rpsL galK2 Δlac74 

 

 

rpsL galK2 gyrB221(couR) gyrB203(Ts) Δlac74 

 

 

rpsL galK2 gyrB221(couR) gyrB203(Ts) Δ(topA cysB)204 

Δlac74 

 

RFM475 gyrB+ 

 

DM4100 ΔtopB::Kan 

 

RFM475 ΔtopB::Kan 

 

rpsL, galK2, ΔtrpE 

 

RFM430 rnhA::cam 

 

RFM475 rnhA::cam pPH1243 

 

SB383 gyrB+ 

 

 

31 

 

 

31 

 

 

31 

 

 

This work 

 

30 

 

This work 

 

35 

 

35 

 

35 

 

This work 
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Fig. 1. Deleting topA complements the growth and Par- phenotype of the gyrB(Ts) 

strain. a) Cells of strains RFM445 (gyrB (Ts)) and RFM475 (topA gyrB (Ts)) were grown 

at 37oC to an OD600 of 0.7 and streaked on LB plates. The plates were incubated at 42oC for 

24h. b), c) and d) flow cytometry analysis of RFM443, RFM445 and RFM475 cells grown 

in LB medium. Cell mass (left panels) and DNA content (right panels) parameters are 

shown. M1 and M2 respectively correspond to anucleate cells (the percentages are 

indicated in each panel) and to cells with DNA.  e) DNA/mass ratios were obtained from 

the data shown in b) 37oC, c) 40oC and d) 42oC except for strains RFM445 and RFM475 

grown at 42 where the data of two additional experiments were used to obtain an average 

DNA/mass ratio.  
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Fig. 2. The topB gene is required for the growth of the topA gyrB(Ts) strain at 

nonpermissive temperatures. a) Cells of strains RFM475 (topA gyrB (Ts)) and CT170 

(RFM475 topB) were grown at 37oC to an OD600 of 0.7 and streaked on LB plates. The 

plates were incubated for 24h at 35 or 42oC as indicated. b) Cell growth of strains 

RFM475 and CT170 was monitored in liquid LB at 35, 37, 39 and 40oC as indicated. 
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Fig. 3. The topB gene is required for chromosome segregation in the topA gyrB(Ts) 

strain at nonpermissive temperatures. Cells were grown and prepared for microscopy as 

described in Material and Methods. Superimposed pictures of phase contrast and 

fluorescence (by using Adobe Photoshop) of DAPI-stained cells from strains RFM475 

(topA gyrB (Ts)) and CT170 (RFM475 topB) were used to calculate the number of cells in 

the different categories. Total is the number of cells that were examined to calculate the 

percentages of cells in each category. 1The low DNA content category likely reflects 

guillotined cells, a manifestation of the Par- phenotype (23). N/A means that cells in this 

category were not counted. 
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Fig. 4. The effect of overproducing a functional ParEC fusion protein on the growth of 

RFM475 and CT170 strains. a) The effect of pET11-parEC on the growth of RFM475 

and CT170 cells was monitored by spotting 10 μl of serial 10-fold dilutions of cells grown 

in LB to an OD600 of 0.6 (at 30 and 37oC respectively for strain RFM475 and CT170) from 

100 to 10-5 (from left to right) on LB plates that were incubated at 30oC for 48h (RFM475) 

or 37oC for 24h (CT170). Cells grown in liquid were also used to calculate the efficiency of 

plating (EOP; number of viable cells (colonies) without plasmid divided by the number of 

viable cells carrying pET11-parEC) and the doubling time. The results shown here are 

representative of three independent experiments. b) CT170 (lanes 1 and 2) and RFM475 

cells (lanes 3 and 4) with (lanes 2 and 4) or without (lanes 1 and 3) pET11-parEC were 

grown on LB plates at 37oC for 24 h. Aliquots of cells were recovered for Western Blots 

with anti-ParC (top panel) or anti-ParE (bottom panel) antibodies as described in Material 

and Methods.   
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Fig. 5. Overproducing topo III at a very high level corrects the Par- phenotype of a 

gyrB(Ts) strain at 42oC. RFM445 strain (gyrB (Ts)) carrying pC18pBAD33 was grown on 

LB plates with glucose 0.2 % (a), no sugar added (b) or arabinose 0.05% (c) at 42oC for 72 

hours. In all cases, growth was essentially restricted to the beginning of the streaks as 

expected since the chromosomal DNA is extensively relaxed. Cells that were able to grow 

were shown not to be revertants as they kept their thermosensitive growth phenotype. 

Aliquots of cells were recovered for fluorescence microscopy to examine cell morphology 

and DNA content. Superimposed (by using Adobe Photoshop) pictures of phase contrast 

and fluorescence are shown. In (d), an aliquot of cells from the LB plate with no sugar was 

streaked on an LB plate with glucose and incubated for 72 hours at 42oC. Growth was 

restricted to the beginning of the streaks. Cells were recovered for fluorescence microscopy 

as described above. Data shown in a) to d) are representative of three independent 

experiments. Western blots showing the level of topo III overproduction from cells carrying 

either pC18pBAD33 (e) or pPH1243 (f). In e), the bottom panel is an over-exposition of the 

gel to reveal the topo III band in the 0.2% glucose sample. 
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Fig. 6. Effects on DNA supercoiling of substituting the gyrB(Ts) allele of strain SB383 

(topA rnhA gyrB (Ts)) for a gyrB+ one. a) NF88 (RFM475 gyrB+) and NF98 (SB383 

gyrB+) cells were grown in LB with IPTG (1 mM) at 37oC to an OD600 of 0.6 at which time 

spectinomycin (250 μg/ml) was added and 15 minutes later the cells were transferred to 

28oC for 30 minutes. pPH1243 DNA was extracted and the topoisomers were resolved 

following electrophoresis in an agarose gel containing 7.5 μg/ml of chloroquine. At this 

chloroquine concentration the relaxed topoisomers migrate more rapidly than the negatively 

supercoiled ones, except the hypernegatively supercoiled topoisomers that also migrate 

rapidly. b) SB383 and NF98 cells were grown in LB at 37oC to an OD600 of 0.6 at which 

time pPH1243 DNA was extracted and the topoisomers were resolved as described above. 

The gels were hybridized with a probe to detect pPH1243 topoisomers. [--] and [rel] 

respectively point to hypernegatively supercoiled and extensively relaxed DNA. 
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Fig. 7. Substituting the gyrB(Ts) allele of strain SB383 (topA rnhA gyrB (Ts)) for a 

gyrB+ one substantially corrects the chromosomal segregation defect. Cells were grown 

and prepared for microscopy as described in Material and Methods. Superimposed pictures 

of phase contrast and fluorescence (by using Adobe Photoshop) of DAPI-stained cells from 

strain SB383 (topA rnhA gyrB (Ts)/pPH1243) and its gyrB+-derivative (NF98) were used to 

calculate the number of cells in the different categories. Total is the number of cells that 

were examined to calculate the percentages of cells in each category. 1The low DNA 

content category likely reflects guillotined cells, a manifestation of the Par- phenotype (23). 

2Cells in the short filaments category have nucleoids that are not fully segregated. These 

cells were most likely viable since they increased in proportion in strains that grew better 

(e.g. SB383 + IPTG). 
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Fig. 8. Effects of the growth medium on unregulated replication in topA and rnhA 

mutants. Rifampicin run-out experiments for flow cytometry analyses were performed as 

described in Material and Methods. a) RFM443 (wild-type, top panels), RFM445 (gyrB 

(Ts), middle panels) and RFM475 (gyrB(Ts) topA, bottom panels) cells grown in LB (left 

panels) or M9 glucose (right panels) medium and b) RFM430 (wild-type, top panels) and 

PH379 (rnhA, bottom panels) cells grown in LB (left panels) or M9 glucose (right panels) 

medium.       
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                      Preface to Chapter 4 

         In continuation of the work reported in chapter 2, we found that suppressors that 

restored supercoiling and corrected the growth and segregation defects of topA rnhA 

gyrB(Ts) mutants mostly mapped to genes involved in replication. This suggested that the 

chromosome segregation defects observed in these mutants could be linked to unregulated 

replication. We have already provided experimental evidence for interplay between type IA 

topoisomerases and gyrase in chromosome segregation. Here we wanted to find out 

whether type IA topoisomerases affect chromosome segregation by regulating replication. 

We use genetic approaches coupled with suppressor screens, spot assays and microscopy to 

analyse cell morphology and nucleotide shape. We found that deleting recQ, recA, and 

overproducing topoisomerase III corrected the growth and segregation defects of topA 

mutants. We also found that genetic suppressors of topA rnhA gyrB(Ts) that affected 

replication corrected the growth and segregation defects of topA topB mutants. Our data 

strongly suggest that bacterial type IA topos maintain the stability of the genome by 

preventing overreplication and by acting with RecQ to prevent RecA-dependent 

chromosome segregation defects. 

 

Manuscript III: Usongo, V. and Drolet, M. (2013). Roles of type IA topoisomerases in 

genome maintenance in Escherichia coli Submitted to PLOS Genetics PGENETICS-D-13-

02797. Article currently under review. 

 

Author’s contribution. The project was designed by Dr Marc Drolet. My contribution 

towards the preparation of this manuscript was significant. I performed all the experiments 

and equally prepared all the figures in the manuscript. I proofread the final draft prior to 

submission. 
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Abstract  

In eukaryotes, type 1A topoisomerases (topos) act with RecQ-like helicases to maintain the 

stability of the genome. Despite having been the first type 1A enzymes to be discovered, 

much less is known about the involvement of the E. coli topo I (topA) and III (topB) 

enzymes in genome maintenance. For example, whether or not they act with RecQ is still 

unclear. They are thought to have distinct functions in the cell: topo I regulates supercoiling 

and R-loop formation, and topo III is involved in chromosome segregation. To better 

characterize the roles of these enzymes, we have used genetic approaches including 

suppressor screens, combined with microscopy for the examination of cell morphology and 

nucleoid shape. We show that topA mutants can suffer from growth inhibitory and 

supercoiling-dependent chromosome segregation defects. Topo III overproduction and recA 

or recQ deletions correct these problems. Deleting recJ, recO or recR acting in the RecFOR 

recombination pathway has no effects, nor does the overproduction of RNase HI. However, 

an oriC::aph suppressor mutation still oriC-competent in topA null but not in isogenic 

topA+ cells significantly alleviates these problems. When both topo I and III are missing, 

excess supercoiling triggers growth inhibition that correlates with the formation of 

extremely long filaments fully packed with unsegregated and diffuse DNA. These 

phenotypes are corrected by overproducing RNase HI, by deleting recA but not recQ, or by 

genetic suppressors of double topA rnhA mutants that affect replication in general 

(holC::aph) or constitutive stable DNA replication (dnaT::aph and rne::aph), which 

initiates from R-loops. Altogether, our data strongly suggest that bacterial type 1A topos 

maintain the stability of the genome (i) by preventing the deleterious consequences of over-

replication from oriC and R-loops and (ii) by acting with RecQ. Furthermore, topo I appear 

to be the primary type 1A enzyme involved in both functions. 
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Author Summary 

DNA topoisomerases are ubiquitous enzymes that solve the topological problems 

associated with replication, transcription and recombination. Eukaryotic enzymes of the 

type 1A family work with RecQ-like helicases such as BLM and Sgs1 and are involved in 

genome maintenance. Interestingly, E. coli topo I, a type 1A enzyme and the first 

topoisomerase to be discovered, appears to have distinct cellular functions that are related 

to supercoiling regulation and to the inhibition of R-loop formation. Here we present data 

strongly suggesting that these cellular functions are required to inhibit inappropriate 

replication originating from either oriC, the normal origin of replication, or R-loops that 

can otherwise lead to severe chromosome segregation defects. Avoiding such inappropriate 

replication appears to be a key cellular function for genome maintenance, since the other E. 

coli type 1A topo, topo III, is also involved. Furthermore, our data suggest that bacterial 

type 1A topos, like their eukaryotic counterparts, can also act with RecQ in genome 

maintenance. Altogether, our data provide new insight into the role of type 1A topos in 

genome maintenance and reveal an interplay between these enzymes and R-loops, 

structures that can also dramatically affect the stability of the genome as recently shown in 

numerous studies.   
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Introduction  

          Type 1A topoisomerases (topos) are essential and ubiquitous enzymes found in 

bacteria, archaea and eukarya [1,2]. They all require single-stranded DNA (ssDNA) regions 

for activity. Such substrates can already be present, for example, on negatively supercoiled 

DNA, at the replication fork and on R-loops, or can be generated by the action of proteins, 

such as helicases or RNA polymerases. E. coli topo I, the first topo to be discovered [3], is 

the prototype enzyme of this family. This enzyme binds to ssDNA close to dsDNA ones [4] 

and is therefore well suited for the removal of excess negative supercoiling that accumulate 

in the wake of moving RNA polymerases [5], or following the action of DNA gyrase, the 

enzyme that introduces negative supercoiling within the DNA [6].  

The best evidence for a major role of topo I in the regulation of supercoiling came 

from the observation that topA null mutants accumulate compensatory mutations in gyrA or 

gyrB genes allowing them to grow [7]. These mutations decrease the supercoiling activity 

of gyrase which leads to a reduction in the global chromosome supercoiling level below 

that of wild-type cells [8]. The role of topo I in transcription is supported by the finding that 

it physically interacts with RNA polymerase [9]. One major consequence of excess 

negative supercoiling is R-loop formation [10]. This is supported by the observation that 

the growth defect of topA null mutant can be partially compensated by RNase HI 

overproduction [11]. Evidence for extensive R-loop formation in the absence of topo I has 

been provided both in vitro and in vivo [12-15]. It is believed that topo I prevent R-loop 

formation mainly by relaxing transcription-induced negative supercoiling [15]. R-loops are 

also hot-spots for topo I activity [13].  

After a temperature downshift to reactivate gyrase in a topA null mutant carrying a 

gyrB(Ts) allele,  RNase HI overproduction was shown to prevent a transient growth arrest 

that correlated with the accumulation of excess negative supercoiling (hypernegative 

supercoiling) and extensive RNA degradation [16]. RNase HI overproduction was found 

both to reduce the accumulation of excess negative supercoils and to promote their rapid 

removal by topo IV [16,17], the other enzyme that can relax negative supercoiling in E. coli 

[18]. Moreover, evidence for R-loops impeding transcription of ribosomal RNA genes (rrn 
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operons) in topA null mutants has been reported [19]. Interestingly, R-loop-dependent gene 

expression inhibition related to RNA polymerases blockage and RNA degradation has also 

been reported for yeast cells lacking topo I, a type 1B topo [20]. Thus, R-loop-mediated 

impairment of gene expression appears to be a major mechanism by which excess negative 

supercoiling inhibits growth.     

E. coli topo I is a relatively abundant protein being in the top 25% of the most 

abundant proteins in E. coli (134 ppm) [21]. The topA gene is under the control of 

promoters recognized by different sigma factors, σ32, σS and σ70 and its expression is 

important for E. coli response to various stresses including heat and oxidative shocks [22]. 

RNase HI overproduction was shown to partially restore the expression of σ32-regulated 

genes required for the heat shock response [23].  

Although studies of topo I mostly focused on its role in supercoiling regulation and 

its effect on gene expression, evidence for the involvement of this enzyme in other DNA 

transactions such as chromosome segregation and replication initiation has been provided 

[17,24-27]. Interestingly, one of the first function to be proposed for topo I was a role as a 

specificity factor to inhibit non-oriC replication initiation, such as initiation from R-loops, 

that could occur in an in vitro reconstituted system for oriC-dependent replication [28]. 

However, there is no experimental evidence for such a role of topo I in vivo. 

E. coli topo III, the second type 1A topo to be discovered, has a much higher 

preference for ssDNA than E. coli topo I [29]. As a consequence, topo III is very inefficient 

in relaxing DNA with a physiological supercoiling density and, in fact, this enzyme plays 

no role in supercoiling regulation [18,30]. However, topo III was shown to be a very potent 

decatenase during replication in vitro provided that a ssDNA region was present on the 

DNA substrate for the binding of the enzyme [29]. The presence of a unique amino-acid 

sequence in the topo III protein named the “decatenation loop” (absent in eukaryotic type 

1A enzymes), was found to be essential for the decatenation of replication intermediates 

[31].  

Unlike topo I, topo III is a protein of low abundance (9.4 ppm) [21]. Moreover, as 

opposed to topA null mutants, cells lacking topo III activity display no growth defects [32]. 

Recently, it has been shown that topo III plays a role in chromosome segregation in vivo 
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that is likely related to replication, as this function was shown to be mostly required when 

the activity of topo IV [33], the main cellular decatenase, or gyrase [34] were severely 

impaired. Topo III physically interacts with SSB protein and this interaction presumably 

allows topo III to act at the replication fork in the cell [35].  

Similar to eukaryotic type 1A topos (see below), topo III activity was shown to be 

stimulated by RecQ helicase in vitro [35-37], but these two proteins do not physically 

interact. Evidence for RecQ acting with topo III in E. coli cells has been reported [30]. 

However, because some important properties of the strains used in this work could not be 

observed in an independent study, the conclusion that RecQ acts with topo III has been 

questioned [33]. 

Saccharomyces cerevisiae type 1A topo was the first enzyme of this family to be 

discovered in eukaryotic cells [38]. Being the third topo identified in this organism, it was 

named Top3. The existence of this topo was revealed following the isolation of a mutation, 

in top3, that stimulated recombination between repeated sequences [38]. Interestingly, 

phenotypes of top3 mutants including slow growth and sporulation deficiency were 

suppressed to different extents by inactivating SGS1, encoding the RecQ homolog of S. 

cerevisiae, or by overproducing E. coli topo I [38-40]. Moreover, deleting RAD51, 

encoding the RecA homolog of S. cerevisiae, was shown to rescue the slow growth 

phenotype of top3 mutants [41]. Altogether, these data suggested that Sgs1 processed 

recombination intermediates to generate structures that could only be resolved by a type 1A 

topo, such as Top3 or E. coli topo I.  

Physical interactions between type 1A topos (named topo III in higher eukaryotes)  

and their RecQ-like partner from eukaryotic organisms (e.g BLM in human and in 

Drosophila) have been demonstrated [1,39,42,43]. It is now well established that these 

complexes can efficiently resolve homologous recombination intermediates (Double 

Holliday Junctions; DHJs) without genetic exchange [1,44-46]. Reactions of BLM with 

topo III are often stimulated by the presence of RPA, the SSB homolog of eukaryotes that 

presumably stabilizes the BLM-generated ssDNA region, the substrate for topo III [44,46]. 

Eukaryotic topo III enzymes have a higher requirement for ssDNA than E. coli topo I and, 
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in fact, they are generally considered to be more closely related to E. coli topo III than topo 

I [1].   

An interplay between E. coli topo I and III has been reported in two instances. In the 

first one, the topB gene was isolated as a multicopy suppressor of a topA null mutant [47]. 

In this study, in vitro experiments were performed in which an R-looped DNA substrate 

was found to be a relatively better substrate for relaxation by topo III than topo I, whereas 

topo I was found to be more efficient than topo III in relaxing transcription-induced 

negative supercoiling. In fact, in vivo, topo III was found to relax only poorly the excess 

negative supercoiling introduced by gyrase. This is consistent with our observation that 

topo III overproduction, unlike RNase HI overproduction, is unable to prevent the 

supercoiling-dependent transient growth arrest of a topA gyrB(Ts) strain, following a 

temperature downshift ([16]; Baaklini and Drolet, unpublished). 

These results might suggest that topo III overproduction complemented a yet 

unknown function of topo I that was not directly related to excess supercoiling. Indeed, 

here we present genetic evidence for an important role of topo I acting with RecQ to 

resolve RecA-dependent recombination intermediates, that otherwise inhibit chromosome 

segregation. Moreover, our data suggest that the requirement for this activity is related to 

over-replication mostly from oriC that takes place in the absence of topA.     

In the second instance, deleting topB from a topA null mutant carrying a gyrA or 

gyrB compensatory mutation, leads to the formation of very long filaments with 

unsegregated nucleoids having abnormal structures and, eventually, to growth arrest [48]. 

Here, our data suggest that these phenotypes are exacerbated by excess negative 

supercoiling and are related to R-loops and over-replication. Once again, they point to a 

major role for topo I in preventing inappropriate replication. In this context, topo III may 

also play a role in inhibiting unnecessary replication initiated outside of oriC. Thus, E. coli 

type 1A topos are required to prevent the deleterious consequences of unregulated 

replication.  
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Results 

Supercoiling-dependent growth and chromosome segregation defects in cells lacking 

topo I activity.  

To look for chromosome segregation defects in a topA null mutant, cells of a ΔtopA 

gyrB(Ts) strain were stained with DAPI and prepared for microscopy such that both cell 

morphology and DNA content could be examined. By growing the cells at 30oC, the 

permissive temperature for gyrase, we could test the true effect of losing topA on nucleoid 

shape. As can be seen in Fig. 1a, whereas nucleoids of gyrB(Ts) cells (RFM445) were well 

separated and compact, those of isogenic topA gyrB(Ts) cells (RFM475) were less compact 

and clearly not separated, thus showing chromosome segregation defects.  

To verify if these problems were related to excess negative supercoiling, topA null 

cells of strain RFM475 were grown at 37oC so that gyrase activity was reduced.  At this 

temperature the chromosome supercoiling level decreases below that of wild-type cells and, 

as a result, topA null cells can grow robustly [11,49]. At 37oC, chromosome segregation in 

RFM475 strain was significantly improved, as many cells had well separated and more 

compact nucleoids as compared to cells grown at 30oC (Fig. 1a, RFM475, 37oC vs 

RFM475). We tested the effect of RNase HI overproduction on chromosome segregation in 

strain RFM475 grown at 30oC. It did not correct the chromosome segregation defect 

(RFM475/pSK760). Thus, we conclude that topA null cells suffer from supercoiling-

dependent chromosome segregation defects that seem to be unrelated to R-loops.  

 RNase HI overproduction did not correct the chromosome segregation problem 

whereas it clearly stimulated the growth of topA gyrB(Ts) null cells at 30oC (Fig. 1b, 

RFM475 vs RFM475/pSK760). Therefore, at this temperature the defect was not strong 

enough to offset the positive effect of overproducing RNase HI. We have previously shown 

that RNase HI overproduction could not complement the growth defect of topA null 

mutants at lower temperatures. In fact, it had a negative effect [47,50]. The cold sensitivity 

of topA null mutants was found to be, at least in part, related to the inability of topo IV to 

efficiently relax negative supercoiling at low temperatures [16,17]. As a result, 

hypernegative supercoiling accumulated.  
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We found that the chromosome segregation defect of our topA gyrB(Ts) strain  was 

exacerbated at 24oC since the cells were generally longer and the DNA more diffuse as 

compared to cells grown at 30oC (RFM475, Fig. 2a, 24oC vs Fig. 1a, 30oC). Overproducing 

RNase HI further stimulated cell filamentation and produced cells with large DNA-free 

regions (Fig. 2a, RFM475/pSK760). Growth of topA gyrB(Ts) cells on solid LB medium at 

24oC was very poor whether RNase HI was overproduced or not (Fig. 2b). Thus, the cold 

sensitivity of topA null cells triggered by excessive hypernegative supercoiling correlates 

with a strong chromosome segregation defect that is exacerbated by RNase HI 

overproduction.  

 

Topo III overproduction and recA or recQ deletions correct both the growth and 

chromosome segregation defects in cells lacking topo I activity. 

Topo III overproduction was previously shown to partially restore the growth defect 

of topA null mutants at low temperatures [47]. Moreover, not only it counteracted the 

negative effect of RNase HI overproduction, increasing topo III activity allowed the 

positive effect of RNase HI overproduction to be revealed [47]. An additive effect on the 

growth of topA null mutants at 28 and 21oC was observed following the simultaneous 

overproduction of topo III and RNase HI both in liquid and on solid media [47]. In fact, 

overproducing RNase HI in liquid media was shown to stimulate the growth of topA null 

mutants and to partially correct the RNA synthesis defect at 21oC [16]. Therefore, the fact 

that RNase HI overproduction did not promote but rather inhibited colony formation on 

solid media, suggested that the growth stimulation by RNase HI eventually exacerbated the 

chromosome segregation defect of topA null cells. This would imply that topo III 

overproduction complemented the growth defect of topA null cells by correcting their 

chromosome segregation defects.  

This turned out to be true as we found that overproducing topo III almost fully, at 

30oC, or partially, at 24oC, corrected the chromosome segregation defect of topA gyrB(Ts) 

cells (RFM475/pPH1243; fig. 1a, at 30oC the nucleoids are well separated and compact; 

fig. 2a, at 24oC some nucleoids separated, shorter cells and DNA more compact as 

compared to cells not overproducing topo III). As expected, topo III overproduction also 
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promoted growth on solid media at these temperatures (Fig 1b and 2b). Thus, topo III 

overproduction corrects the growth defect of topA null mutants, at least in part, by 

facilitating chromosome segregation.    

Since type 1A topos from different organisms have been shown to act with RecQ-

like helicases, we tested the effect of deleting recQ on the growth and chromosome 

segregation in topA null cells. We found that deleting recQ was as good as overproducing 

topo III in correcting the growth defect of our topA gyrB(Ts) strain (RFM475) at both 30 

and 24oC (Fig. 1b and 2b; RFM475 recQ; Western blot experiments showed that topo IV 

was not overproduced in the topA null strain lacking recQ; Fig. S3). Deleting recQ also 

partially corrected the chromosome segregation defect at these temperatures (Fig. 1a and 

2a). Thus, our results suggest that recQ and topB act in a pathway that is related to 

chromosome segregation in the absence of topA. 

Quite often RecQ-like helicases and type 1A topos act together in the context of 

homologous recombination [1,51]. We therefore tested the effect of deleting recA on the 

growth and chromosome segregation in topA null cells. We found that deleting recA 

partially corrected the growth defect of our topA gyrB(Ts) strain at both 30 and 24oC (Fig. 

1b and 2b; RFM475 recA), though the effect was not as good as the one conferred by 

deleting recQ or overproducing topo III (RFM475 recA vs RFM475 recQ and 

RFM475/pPH1243). In fact, the positive effect of deleting recA on the growth of topA null 

cells at 24oC was better seen after three days of incubation (not shown). Deleting recA also 

partially alleviated the chromosome segregation defects of topA null cells at both 

temperatures (Fig. 1a, 30oC and Fig. 2a, 24oC). These results demonstrate that the 

chromosome segregation defects of topA null mutants are largely RecA-dependent and 

therefore support the involvement of homologous recombination.  

As shown above, overproducing topo III and RNase HI improved the growth of 

topA null mutants for two different reasons. As a result, when they were overproduced 

simultaneously, they had an additive effect on the growth of topA null cells [47]. We found 

that overproducing topo III had no effects on the growth of our recQ- or recA-derivatives of 

the topA gyrB(Ts) strain (Fig. 3, RFM475 recA and recQ, + or – pPH1243)). These results 

suggest that topo III, RecQ and RecA act in the same pathway and, furthermore, that topo 
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III acts after RecA and RecQ. This would be consistent with RecQ processing RecA-

generated recombination intermediates in such a way that they can only be resolved by a 

type 1A topo.  Since topo III needs to be overproduced, we believe that the much more 

abundant topo I enzyme is normally involved in the resolution of these intermediates (see 

Discussion). 

In E. coli, positive effects of deleting recQ on growth and chromosome segregation 

are sometimes attributed to unnecessary RecA-mediated recombination via the RecFOR 

pathway, at arrested replication forks [52,53]. In this pathway, RecQ helicase acts with 

RecJ, a 5’-3’ exonuclease, to provide ssDNA regions on which RecF, O and R facilitate 

RecA nucleoprotein filament assembly.  We found that deleting recJ, recO or recR had no 

effect on growth and chromosome segregation in our topA gyrB(Ts) strain (Fig. 1 and  Fig. 

2b, RFM475 recO; data not shown for recJ and recR). This indicated that the RecFOR 

pathway was not involved and, therefore, further support the involvement of RecQ with 

type 1A topos in resolving RecA-generated recombination intermediates. 

 

An oriC::aph mutation still oriC competent in topA null but not in isogenic topA+ cells 

complements both the growth and chromosome segregation defects.  

 Our data suggested that hypernegative supercoiling in topA null mutants triggered 

RecA-dependent recombination that lead to the accumulation of RecQ-processed 

intermediates. Without a sufficient amount of type 1A topo activity to resolve these 

intermediates, chromosome segregation could not occur. However, how excess negative 

supercoiling stimulated RecA-dependent recombination to a level that caused chromosome 

segregation defects is unclear. 

We have recently used a Tn5 mutagenesis system to isolate genetic suppressors of 

the growth defect of a topA rnhA gyrB(Ts) strain (Materials and Methods; Usongo and 

Drolet, manuscript in preparation). The growth defect of this strain was previously shown 

to be related to chromosome segregation problems that could be corrected by 

overproducing topo III [17]. Improving gyrase activity also suppressed the chromosome 

segregation defects [17]. Moreover, our study of replication in this mutant lead us to 

speculate that unregulated replication either from oriC or R-loops, or from both, could 
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contribute to the segregation defects [34]. In agreement with this hypothesis, insertion 

mutants were found in loci involved in replication. 

In one mutant, the kanr cassette was found to be inserted within the oriC region, 

close to the middle (Fig.4a, aph). It was possible that the suppressed strain could survive 

without an active oriC region, as replication could occur from R-loops due to the absence 

of the rnhA gene (constitutive stable DNA replication, cSDR) [54]. Therefore, to verify if 

this oriC15::aph mutation was still competent for replication initiation, we tried to 

introduce it in wild-type (RFM443), gyrB(Ts) (RFM445) and topA gyrB(Ts) (RFM475) 

isogenic strains. Kanamycin resistant transductants were readily obtained for the topA strain 

(RFM475). Southern blot analysis confirmed that the topA transductants carried the 

mutated (Fig. S4, RFM475 oriC15::aph) but not the wild-type oriC region. The few 

kanamycin resistant transductants of the wild-type (RFM443) and gyrB(Ts) strains 

(RFM445) were found not to be good as they kept the wild-type oriC region ((Fig. S4, a 

false positive RFM443 kanr is shown). We repeated the transduction experiment several 

times and obtained similar results. Therefore, we concluded that the oriC15::aph mutation 

was viable only when the topA gene was absent. 

Our finding that overproducing RNase HI had no effect on the growth of the topA 

null strain carrying the oriC15::aph mutation (at 37 and 41oC, not shown), indicated that 

this strain does not replicate its chromosome via cSDR. This is in agreement with a 

previous report showing that, as opposed to an rnhA null mutant, a topA null mutant could 

not survive without a functional oriC/DnaA system [27]. Therefore, our topA null mutant 

very likely use the oriC15::aph allele to initiate the replication of its chromosome. 

However, we can predict that this allele would be less active than a wild-type one and 

therefore should be able to complement the growth defect of a strain in which excess 

replication from oriC is growth inhibitory. The dnaAcos mutant, isolated as an intragenic 

suppressor of a dnaA46 mutant, fails to grow at 30oC and below, because of excessive 

replication initiation from oriC [55]. We found that a dnaAcos strain carrying the 

oriC15::aph mutation could grow well at both 37 and 30oC whereas an isogenic strain with 

a wild-type oriC region could not (Fig. S5, dnaAcos oriC15::aph vs dnaAcos). Thus, this 
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result confirmed that (i) the oriC15::aph mutation is functional in replication initiation and 

(ii) it is less active than a wild-type oriC region.  

Our results with the oriC15::aph mutation suggested that topo I may play an 

important role in regulating replication initiation from oriC. In a previous study, the left-

half of the oriC region was shown to be essential for oriC function in vivo [56]. This 

section carries the DUE (DNA unwinding element, AT-rich) region from which oriC 

duplex melting is initiated (Fig. 4a) [57]. The smallest oriC fragment found to be functional 

in vivo, was a fragment encompassing nucleotide 1 to 163 of the oriC region (Fig. 4a, 

oriC231). However, a wild-type strain carrying this fragment was sensitive to rich media 

(LB). It was concluded that the right-half of oriC was essential for multi-forked replication 

that is required to support high growth rates in rich media [56]. Therefore, the fact that the 

kanr cassette was inserted at position 142 in the oriC sequence (Fig. 4a), likely explains 

why our oriC15::aph mutation was not functional in a wild-type strain. However, not only 

the mutation was oriC-competent in our topA null mutant, it apparently allowed multi-

forked replication, since our strain was able to grow robustly in rich media. Therefore, 

these results suggest that topo I plays an important regulatory role at oriC.  

We used flow cytometry in rifampicin run-out experiments with cells grown in M9 

medium at 37oC to investigate the regulation of replication initiation in our strains. As 

recently shown [34], both wild-type (RFM443) and gyrB(Ts) (RFM445) cells contained 2n 

chromosome, thus indicating that replication initiation was well regulated in these strains 

(Fig. 4b). Cells of the topA gyrB(Ts) strain (RFM475) had a near perfect 2n chromosomal 

pattern with one small additional peak, showing some asynchrony (Fig. 4b). However, flow 

cytometry analysis revealed that replication initiation was not well regulated in the topA 

null mutant carrying the oriC15::aph mutation, as peaks reflecting 1, 2, 3, or 4 

chromosomes were clearly observed (Fig. 4b, RFM475 oriC15::aph). Highly asynchronous 

replication was also previously detected in a wild-type strain carrying the oriC231 mutation 

[56].  Flow cytometry analysis also revealed that the DNA/mass ratio was higher by 

roughly 40% in the topA gyrB(Ts) strain (RFM475) as compared to wild-type (RFM443) 

and gyrB(Ts) (RFM445) strains (Fig. 4c). Introducing the oriC15::aph mutation within the 

topA null strain restored the DNA/mass ratio to the level seen in RFM443 and RFM445 
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(Fig. 4c, 475 oriC). Thus, the oriC15::aph mutation caused replication initiation to be less 

efficient in the topA null strain as shown by the loss of regulation and the lower DNA/mass 

ratio.  

We found that the oriC15::aph mutation very well corrected the growth defect of 

our topA gyrB(Ts) strain (RFM475) at both 30 and 24oC (Fig 1b and 2b, respectively, 

RFM475 oriC). This mutation also significantly corrected the chromosome segregation 

defects of the topA null strain at both temperatures (Fig 1a and 2a, respectively, RFM475 

oriC). Therefore, the recA-dependent chromosome segregation defects in the topA null 

mutant is likely related to excess replication from oriC. We conclude that one major role of 

E. coli topo I in genome maintenance is to prevent over-replication originating from oriC.   

 

Supercoiling- and R-loop-dependent growth and chromosome segregation defects in a 

topA topB gyrB(Ts) strain. 

 We have recently shown that deleting topA could complement the growth defect of 

our gyrB(Ts) strain at nonpermissive temperatures (40 to 42oC), by partially correcting its 

replication initiation and chromosome segregation defects [34]. However, we found that the 

topB gene was required for chromosome segregation and overproducing topo IV, the main 

cellular decatenase, could not substitute for topB. These results, and others, allowed us to 

conclude that topo III plays a role in replication that becomes essential when gyrase activity 

is defective. Here, we have confirmed that recombination was not involved by showing that 

deleting recA or recQ did not correct the growth and chromosome segregation defects of 

the topA topB gyrB(Ts) strain at a nonpermissive temperatures (40oC, Fig. S6). Moreover, 

RNase HI overproduction had no effects. Thus, at nonpermissive temperatures for the 

gyrB(Ts) allele, the growth and chromosome segregation defects of the topA topB gyrB(Ts) 

strain [34] are unrelated to recombination and R-loops. 

We noticed that the optimal temperature for the growth of the topA topB gyrB(Ts) 

strain was 37oC. Indeed, at 30oC the growth defect was found to be exacerbated (Fig. S7a, 

RFM475 topB/pSK762c vs RFM475 topB/pSK760, at 37 and 30oC). We also found that 

this strain generated a higher proportion of longer cells at 30 than 37oC (Fig. S7b, RFM475 

topB, 37 vs 30oC). Since gyrase was re-activated at 30oC, we considered the possibility that 
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deleting topB exacerbated topA phenotypes at this temperature. If this was true, 

overproducing RNase HI should have a positive effect on growth and chromosome 

segregation in our triple mutant. Indeed, this turned out to be true as the spot assay revealed 

that growth was better, by at least two logs, when RNase HI was overproduced (Fig. 5b, 

RFM475 topB/pSK760 vs RFM475 topB/pSK762c). Moreover, the strong chromosome 

segregation defects illustrated by the formation of very long filaments fully packed with 

diffuse DNA, were significantly corrected by overproducing RNase H. In this case, cells 

were shorter and the DNA was more compact (Fig. 5a). Thus, R-loops-related problems of 

a topA null mutant were exacerbated by deleting topB and were mostly expressed as 

chromosome segregation defects. 

 

RecA-dependent but RecQ-independent growth and chromosome segregation defects 

in a topA topB gyrB(Ts) strain at 30oC. 

  We found that deleting recA significantly improved the growth of the topA topB 

gyrB(Ts) strain at 30oC, though the effect was not as good as the one conferred by 

overproducing RNase HI (Fig. 5b, RFM475 topB recA/pSK762c vs RFM475 

topB/pSK760). However, deleting recA was at least as good as overproducing RNase HI in 

correcting the chromosome segregation defects of the topA topB gyrB(Ts) strain (Fig. 5a, 

RFM475 topB recA/pSK762c vs RFM475 topB/pSK760). Furthermore, overproducing 

RNase HI had no effects on growth and chromosome segregation when recA was deleted 

(Fig. 5a, RFM475 topB recA/pSK760 vs RFM475 topB recA/pSK762c). These results 

demonstrate that the R-loop-dependent chromosome segregation defects in cells lacking 

type 1A topos, are also dependent on RecA.  

 Unlike inactivating recA, we found that deleting recQ did not correct the 

phenotypes of the topA topB gyrB(Ts) strain (Fig. 5a and b, RFM475 topB recQ/pSK762c 

vs RFM475 topB/pSK762c). However, RNase HI overproduction was still able to correct 

these phenotypes when recQ was absent (RFM475 topB recQ/pSK760 vs RFM475 topB 

recQ/pSK762c). Thus, the RecA- and R-loop-dependent growth and chromosome 

segregation defects of the topA topB gyrB(Ts) strain are not caused by the accumulation of 

RecQ-processed recombination intermediates that are substrate for type 1A topos. As RecA 
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was previously shown to be required for cSDR that initiates from R-loops [54], over-

replication could possibly be the triggering event for the growth and chromosome 

segregation defects of cells lacking type 1A topos. This is supported by the genetic 

evidence presented below. 

 

Suppressor mutations affecting R-loop- and/or oriC-dependent replication 

significantly correct the growth and chromosome segregation defects in topA topB 

gyrB(Ts) strains at 30oC. 

One of the best suppressors of the growth defect of the topA rnhA gyrB(Ts) strain 

that has cell filamentation and chromosome segregation phenotypes similar to our topA 

topB gyrB(Ts) strain, had the kanr cassette inserted within the promoter region of the dnaT 

gene (Fig. S8a). DnaT is one of the various proteins that constitute the primosome (PriA-

dependent [58]. This protein complex allows the assembly of a replisome outside of oriC. 

Interestingly, the first mutation found to inhibit SDR mapped within dnaT [59]. The SOS-

dependent form of stable DNA replication (iSDR) was shown to be inhibited in this case 

[54]. However, the involvement of dnaT in the R-loop-dependent form of SDR (cSDR) is 

still unknown [60]. To test this, we introduced the dnaT18::aph mutation in a dnaA46(Ts) 

strain also carrying an rnhA null mutation. The absence of RNase HI allows the 

dnaA46(Ts) strain to grow at 42oC as it can replicate its chromosome from R-loops (Fig. 6 

a and b). Therefore, the fact that the dnaT18::aph allele inhibited the growth of the 

dnaA46(Ts) rnhA strain at 42oC (Fig. 6c, 42oC, rnhA dnaA46 vs rnhA dnaA46 dnaT) 

indicated that the dnaT gene was required for cSDR. 

The dnaT18::aph mutation was also found to partially correct the chromosome 

segregation defects of the topA rnhA gyrB(Ts) strain (Fig. S9). This indicated that 

replication from R-loops could, at least in part, be responsible for these problems. We 

therefore tested the ability of the dnaT18::aph mutation to correct similar defects in cells 

lacking type 1A topos. For this purpose, we used a different null allele of topA, the 

topA20::Tn10 allele that was previously shown to behave similarly to the ΔtopA allele used 

in the present study [11]. We first constructed a topB gyrB(Ts) strain in which the 

topA20::Tn10 allele was either immediately introduced to obtain the topA topB gyrB(Ts) 
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control strain (VU421), or introduced after the dnaT18::aph allele to obtain the topA topB 

gyrB(Ts) dnaT18::aph strain (VU441). We found that the chromosome segregation defects 

were more severe in our new topA topB strain (VU421) as compared to the other one 

carrying the ΔtopA allele (Fig. 5a, RFM475 topB/pSK762c vs Fig. 7a, RFM445 topB topA 

and data not shown). Indeed, strain VU421 at 30oC produced almost exclusively extremely 

long filaments that were fully packed with diffuse DNA. This could be related to our 

previous observation that R-loops-related problems in the absence of topo I were more 

severe in strains carrying the topA20::Tn10 allele instead of the ΔtopA one [61]. RNase HI 

overproduction also significantly corrected both the growth and chromosome segregation 

defects of strain VU421 (Fig. 7a and b, RFM445 topB topA vs RFM445 topB 

topA/pSK760). However, at 24oC, RNase HI overproduction had no effects (Fig. 7c, 

RFM445 topB topA/pSK760 vs RFM445 topB topA/pSK762c). This was expected, as the 

cold-sensitivity of cells lacking topo I is not corrected by RNase HI overproduction (see 

above).   

We found that the dnaT18::aph mutation was at least as good as RNase HI 

overproduction in correcting the chromosome segregation defects of strain VU421 (Fig. 7a, 

RFM445 topB dnaT topA vs RFM445 topB topA/pSK762c and RFM445 topB 

topA/pSK760). However, RNase HI overproduction was slightly better than the 

dnaT18::aph mutation to correct the growth defect of strain VU421 (Fig. 7b, RFM445 topB 

topA/pSK760 vs RFM445 topB dnaT topA). We also found that dnaT18::aph had a 

negative effect on the growth of strain VU421 at 37oC (Fig. 7d, RFM445 topB dnaT topA 

vs RFM445 topB topA). This could be due to the presence of the gyrB(Ts) allele that was 

previously shown, at this semi-permissive temperature, to be incompatible with a mutation 

(priA null) inactivating the primosome [62]. Thus, our results support the hypothesis that 

the R-loop and RecA-dependent chromosome segregation defects in cells lacking type 1A 

topos are, at least in part, related to over-replication initiated from R-loops. The fact that the 

dnaT18::aph mutation slightly promoted the growth of our topA null mutant (Fig. 1b and 

2b, 30 and 24oC respectively, RFM475 dnaT vs RFM475), suggests that cSDR is primarily 

a problem for topA null cells that is exacerbated by deleting topB. This would be consistent 
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with the assumption that topo I is the primary type 1A topo involved in the inhibition of R-

loop formation [47]. 

We have isolated seven different kanr insertion mutations in the C-terminal region 

of RNase E, the main endoribonuclease in E. coli (Valentine and Drolet, manuscript in 

preparation), that suppressed the growth defect of our topA rnhA gyrB(Ts) strain. 

Interestingly, experimental evidence for an interplay between RNase HI and RNase E in 

RNA degradation has been reported [63,64]. One of these rne mutations (rne59::aph, Fig. 

S8c) was introduced in a dnaA46(Ts) rnhA strain to test its effect on cSDR. We found that 

the presence of the rne59::aph mutation significantly reduced the ability of the dnaA46(Ts) 

rnhA strain to grow at 42oC (by 2 to 3 logs; Fig. 6d, 42oC, rnhA dnaA46 vs rnhA dnaA46 

rne). This result shows that the mutated RNase E inhibited cSDR. 

 We constructed a topA topB gyrB(Ts) strain, with the topA20::Tn10 allele as 

described above, that carried the rne59::aph mutation. We found that the rne59::aph 

mutation was slightly better than RNAse HI overproduction to correct the growth defect of 

cells lacking type 1A topos (Fig. 7b, RFM445 topB topA rne vs RFM445 topB 

topA/pSK760). Furthermore, it was at least as good as RNase HI overproduction and the 

dnaT18::aph mutation to correct the chromosome segregation defects in these cells (Fig. 

7a). Thus, our results with the rne59::aph mutation lend further support to the hypothesis 

that cells lacking type 1A topos suffer from excess replication originating from R-loops.    

The origins of replication for cSDR (oriKs) in rnhA null mutants are mostly found 

within or close to the ter region where bi-directional replication initiated at oriC normally 

terminates [54]. Thus, the origin to terminus (oriC/ter) ratio, is expected to be lowered by 

the occurrence of cSDR. This is indeed what we found for the rnhA null mutant (Fig. S10, 

RFM443 vs RFM430 rnhA::cam). The ori/ter ratio was also similarly reduced in the topA 

null mutant, thus supporting the occurrence of cSDR in the absence of topo I (Fig. S10, 

RFM475).  

  Several of our kanr insertion mutants were found to reduce the expression of the 

holC gene (Valentine and Drolet, manuscript in preparation). In a previous study, kanr 

insertion mutants that reduced the expression of the holC gene were also found to suppress 

the growth defect of a dnaAcos strain [65]. The holC gene encodes the χ subunit of the 
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clamp loader, the replicative polymerase in E. coli [66]. The χ subunit interacts with SSB  

and this interaction was recently shown to play an important role in replisome 

establishment and maintenance [67]. We tested the holC2::aph mutation for its ability to 

suppress phenotypes of cells lacking type 1A topos. For this purpose, a topA topB gyrB(Ts) 

holC2::aph strain, carrying the topA20::Tn10 allele, was constructed. The holC2::aph 

mutation was shown to slightly correct the growth defect of cells lacking type 1A topos 

activity (Fig. 7b and c, 30 and 24oC respectively, RFM445 topB holC topA vs RFM445 

topB topA). Both cell length and the amount of DNA were also slightly reduced (Fig. 7a). 

The fact that holC mutations by themselves can cause filamentation and chromosome 

segregation defects [67], may explain why the holC2::aph mutation only partially corrected 

the phenotypes of the topA topB gyrB(Ts) strain.    

The holC2::aph mutation also partially corrected the growth defect of our topA null 

mutant (Fig. 2b, 24oC, 48 h; RFM475 vs RFM475 holC).  Moreover, in rifampicin run-out 

experiments, we found that replication was not well regulated in the topA null mutant 

carrying the holC2::aph mutation, as peaks reflecting 1, 2, 3, or 4 chromosomes were 

clearly observed (Fig. S11, RFM475 vs RFM475 holC2::aph). This result supports the 

hypothesis that the χ subunit of pol III plays a role in replication initiation [67] and 

therefore suggests that initiation from oriC could also be problematic in cells lacking both 

type 1A topos.  
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Discussion 

 

E. coli type 1A topos and RecQ 

 

As stated in the introduction, the strand passage activity of E. coli topo III, but not 

topo I, was shown to be strongly stimulated by RecQ in vitro [35-37]. This would suggest 

that E. coli topo III and RecQ can act together to maintain the stability of the genome, as 

shown in eukaryotic cells [51]. However, no clear evidence for such a role of topo III has 

been reported in E. coli. Recent experimental evidence rather points to a role for topo III in 

chromosome segregation related to replication and independent of RecQ ([33,34]; this 

work). In fact, the data presented here suggest that topo I, not topo III, is the primary type 

1A topo acting with RecQ in E. coli. Indeed, the strong chromosome segregation and 

growth defects of topA null cells at low temperatures were shown to be partially corrected 

by deleting recQ or recA, independent of the RecFOR pathway. This is consistent with 

RecQ processing RecA-dependent recombination intermediates in such a way that they can 

only be resolved by a type 1A topo, as is the case in eukaryotic cells. In this context, topo 

III overproduction would substitute for topo I and perform the resolution, thus meaning that 

topo III can also perform this reaction in vivo, at least when it is overproduced. This would 

also explain why overproducing topo III had no effects on the growth of topA null cells 

lacking either recA or recQ. Furthermore, we found that topo III overproduction does not 

correct the replication initiation phenotype of topA null cells as shown by rifampicin run-

out experiments (not shown).   

 Alternatively, in the absence of topA, DNA substrates for topo I may accumulate 

and some of them could be processed by topo III, thus leading to the depletion of this very 

low abundant protein. This situation would lead to the accumulation of RecQ-processed 

recombination intermediates, if topo III normally resolves them. However, we think that 

this is unlikely for two reasons. Firstly, if topo III was the type 1A topo acting with RecQ 

in E. coli, we could predict that any mutation increasing replication from oriC (as shown 

here for the topA null mutation) would necessitate the action of topo III to resolve RecQ-
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processed recombination intermediates. However, we found that deleting topB from a seqA 

gyrB(Ts) strain had no effects on its growth (37oC and below were tested; not shown). 

SeqA proteins sequester freshly replicated oriC sequences to avoid over-initiation and 

asynchrony [68]. Thus, if indeed a type 1A topo is required to act with RecQ in cells over-

initiating from oriC, this enzyme is not topo III, but topo I. Secondly, whereas a topA recQ 

strain grow very well, deleting topB make this strain very sick with phenotypes identical to 

those of topA topB null cells. If recQ was acting with topB, then deleting topB should have 

had no effect on the growth of the topA recQ strain. Thus, altogether our data suggest that 

topo I is the primary type 1A enzyme acting with RecQ in E. coli. 

Despite the previously observed lack of stimulation of topo I activity by RecQ in 

vitro, we still believe that these two proteins can functionally interact. Indeed, it may be 

that the optimal experimental conditions and/or the appropriate substrate for their 

functional interaction have not yet been well defined. Alternatively or additionally, the 

much higher abundance of topo I in vivo as compared to topo III may compensate for its 

lower level of activity with RecQ. In fact, the finding that either E. coli topo I expression or 

a SGS1 mutation could compensate for the absence of Top3 in S. cerevisiae [38-40], 

support the assumption that E. coli topo I can act with RecQ in vivo. Moreover, in an in 

vitro system for DHJs resolution by BLM helicase with a type 1A topo, E. coli topo I was 

shown to efficiently substitute for human topo IIIα [69]. Hsieh and co-workers have 

recently obtained experimental evidence for their “unravel and unlink” model whereby 

BLM first melts a DNA region to which RPA protein binds and topo IIIα acts to resolve a 

DHJ [1,43]. Indeed, a topo IIIα mutant unable to physically interact with BLM was shown 

to partially resolve a DHJ in the presence of RPA, thus suggesting that the functions of the 

two proteins may be separated [43]. A similar model might also be proposed for RecQ 

acting with topo I, the activity of which can be stimulated by SSB [70], as the two proteins 

do not physically interact.  
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E. coli type 1A topos in replication 

  

In E. coli, replication initiated at oriC is tightly regulated so that it occurs once and 

only once per cell cycle [57]. This process is synchronized with the “initiation mass”. DNA 

supercoiling is among the many elements, including DnaA that are required for replication 

initiation at oriC. Indeed, in vitro replication initiation requires that the oriC plasmid be 

negatively supercoiled [71]. In vivo, deleting topA was found to correct the thermo-

sensitive growth of a dnaA(Ts) mutant [27] and altering gyrase supercoiling activity 

inhibited replication initiation from oriC [72]. Moreover, we have recently shown that a 

topA deletion could correct the replication initiation defect of a strain defective for gyrase 

supercoiling activity [34]. Interestingly, in a screen to isolate DnaA inhibitors, a compound 

was recently found to rescue a dnaAcos mutant from lethal hyperinitiation by targeting 

gyrase [73]. Thus, in vitro and in vivo data demonstrate that negative DNA supercoiling is 

required for replication initiation from oriC. 

The recent determination of the crystal structure of a truncated DnaA ortholog in 

complex with ssDNA supports a model whereby DnaA opens the oriC region by a direct 

ATP-dependent stretching mechanism [74]. This work provides the strongest evidence to 

date for a direct participation of DnaA in DNA melting at oriC, and is fully compatible 

with other elements, such as DNA supercoiling, also playing a role in this process. In a 

recent biochemical study, DNA fragments containing at least the left portion of oriC up to 

I1 or I2 (Fig. 4a) were shown to be required for DnaA-ATP binding to ssDUE in the 

absence of torsional stress [75]. This result is totally consistent with our finding that an 

oriC region lacking these I1 and I2 sequences (oriC15::aph) is functional in a topA null 

mutant, where the negative supercoiling level is elevated, but not functional in an isogenic 

topA+ strain. Thus, our results, together with those reported in the two studies mentioned 

above, may suggest that DNA supercoiling plays an important regulatory role at oriC.  

The de novo synthesis of DnaA is required for a cell to obtain the appropriate level 

of DnaA-ATP needed for replication initiation at oriC [57]. In this way, replication 

initiation can be adjusted to the growth rate. We speculate that in topA null cells, because of 

the excess negative supercoiling at oriC, less DnaA-ATP would be required for replication 
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initiation at oriC. This, in turn, would cause more frequent replication initiation and, 

therefore, over-replication. The level of negative supercoiling and thus the frequency of 

replication initiation may be especially high at lower temperatures (e.g. 24oC) in topA null 

cells, where topo IV activity is also inhibited. The high number of replication forks 

travelling on the chromosome may increase the frequency of both fork collisions between 

themselves and fork collisions with various obstacles such as RNA polymerases [76]. This 

could lead to genomic instability and hyper-recombination with the generation of RecQ-

processed recombination intermediates requiring a type 1A topo for resolution. In addition, 

the excess negative supercoiling, by promoting DNA melting, may render the chromosome 

more susceptible to DNA damage. 

The important role played by topo I in replication initiation at oriC could explain 

why RNase HI overproduction sometimes fails to complement the growth of topA null cells 

[47,50,77]. We have previously shown that upon a temperature downshift (from 37 to 

28oC), the growth of our topA null gyrB(Ts) strain was transiently inhibited, because of the 

failure to accumulate full-length RNAs [61]. As a consequence, protein synthesis (likely 

including the synthesis of DnaA) and replication initiation, were also transiently inhibited 

[61]. Moreover, growth eventually resumed, albeit at a lower rate compared to the topA null 

gyrB(Ts) strain overproducing RNase HI that did not suffer from a transient inhibition. 

Thus, RNase HI overproduction by stimulating protein synthesis (and the accumulation of 

DnaA) also stimulated replication initiation from oriC in topA null mutants. In this context, 

the introduction of a topA null mutation in a wild-type strain overproducing RNase HI 

could rapidly trigger over-replication, thus causing chromosome segregation defects that 

would preclude the survival of the transductants.    

When topB was deleted from a topA null mutant, a new growth inhibitory 

phenotype, again related to replication, appeared at temperatures where the oriC-related 

phenotype was attenuated. Our data suggest that this major phenotype in the absence of 

type 1A topos is related to replication from R-loops (cSDR). This is consistent with a major 

role of topo I in the inhibition of R-loop formation and with the identification of topo I, like 

RNase HI [78], as a specificity factor to inhibit replication initiation at sites other than oriC 

(e.g. R-loops), in an in vitro system [28]. Thus, although the strong phenotype expressed 
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such as extensive cell filamentation, unsegregated nucleoids and growth inhibition, is 

triggered by deleting topB, cSDR is probably also activated in our single topA mutant. This 

is supported by the fact that the dnaT18::aph mutation improved the growth of our topA 

mutant and by the finding that, as was the case in an rnhA null mutant, the ori/ter ratio was 

lower in this topA mutant as compared to a wild-type strain. However, even if cSDR is 

activated in topA null mutants, the oriC/DnaA system is still required in these cells to 

replicate the chromosome. A similar situation has been described for recG mutants, in 

which cSDR is also activated but cannot support replication of the whole chromosome 

[79,80].  

As the strong phenotype is due to the simultaneous absence of both type 1A topos, it 

is likely related to similar functions performed by the two enzymes. We have previously 

shown that an R-loop was a hot-spot for topo III activity in vitro [47]. By acting on an R-

looped plasmid, topo III was shown to destabilize the R-loop. As topo III can travel with 

the replication fork [35], it could possibly act by destabilizing R-loops blocking the 

progression of the replication forks. However, if topo III was playing an important role in 

R-loop removal, a topB strain lacking rnhA should be very sick as is the case for a topA 

mutant without rnhA. Whereas topA rnhA mutants display phenotypes similar to topA topB 

mutants ([17] and Fig. S9), topB rnhA mutants grow very well and show no obvious 

phenotypes (Usongo and Drolet, unpublished results). It may be that topo I is the major 

enzyme involved in R-loop inhibition and that another function of topo I (e.g. in acting with 

RecQ) is necessary when R-loops accumulate. Still, in this scenario, it is unclear why 

deleting topB would have such a strong effect on a topA null mutant. 

One function of topo III when the enzyme is not overproduced, appears to be DNA 

decatenation during replication to allow chromosome segregation [33,34]. Topo III likely 

acts at the replication fork where it physically interacts with SSB protein [35]. Another 

ssDNA decatenation activity appears to be provided by topo I with the help of RecQ as 

suggested from the results of our study. A ssDNA decatenation activity, either provided by 

topo I or III, may be required in the cell especially when the chromosomal DNA is over-

replicated from either oriC or R-loops due to excess negative supercoiling, as is likely the 

case in our topA mutant at 30oC. Furthermore, this ssDNA decatenation activity might be 
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especially required to resolve convergent replication forks, in order to prevent over-

replication when forks collide [81] as proposed [82]. Such unnecessary replication, named 

“pathological replication”, has been detected in recG cells suffering from SDR, mostly 

because replication forks could then meet outside the ter region [80,83,84]. Interestingly, 

excess negative supercoiling in a topA mutant has been shown to reduce the efficacy of 

Tus-mediated arrest of replication forks at ter sites [85] and more recently a double topA 

recG mutant could not be constructed unless topo III was overproduced [77]. Thus, 

although our results suggest that type 1A topos are required to prevent deleterious over-

replication, more work is needed to better establish at which steps they act. 
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Materials and Methods 

 

Bacterial strains and plasmids 

Bacterial strains used in this study are all derivatives of E. coli K12 and are listed in Table 

S1. Details on their constructions as well as the list of plasmids used in this study are also 

given in Table S1. Transductions with P1vir were performed as described previously [34]. 

PCR was used to confirm that the expected gene transfer occurred in the selected 

transductants.   

 

Insertional mutagenesis  

Insertional mutagenesis with pRL27 was performed in a topA rnhA gyrB(Ts) strain and will 

be described in details elsewhere (Usongo and Drolet, manuscript in preparation). Briefly, 

pRL27 carries a hyperactive Tn5 transposase gene under the control of the tetA promoter 

and an insertional cassette with a kanamycin resistance gene (aph) and a pir-dependent 

origin (oriR6K), bracketed by Tn5 inverted repeats [86]. Following electroporation of 

pRL27 in a pir- background, the kanr cassette inserts randomly into the chromosome. A 

topA rnhA gyrB (Ts)/pBAD18rnhA strain was electroporated with pRL27 and plated on LB 

containing 25 µg/ml kanamycin at 40oC, to select for suppressors that grew in the absence 

of arabinose (no RNase HI produced). At this temperature, the strain does not grow because 

of extensive inhibition of the supercoiling activity of gyrase [17], combined with over-

replication ([34] and see below). P1vir was grown on the kanr clones that re-grew at 40oC 

and each phage lysate was used to infect a topA rnhA gyrB (Ts)/pPH1243 strain, that 

normally grows only in the presence of IPTG, to overproduce topo III from pPH1243 [17]. 

Transductants were selected on LB plates containing IPTG and kanamycin (50 µg/ml) at 

37oC. Transductants that re-grew in the absence of IPTG were selected for further 

characterization. Four of the insertion mutants, described in Fig. 4 and S8, were used in the 

present study.  
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Spot tests 

Cells from glycerol stock were resuspended in LB to obtain an OD600 of 0.6. Five µl of 10-

fold serial dilutions were then spotted on LB plates incubated at the indicated temperatures. 

The experiments were performed with cells from glycerol stock to minimize the chance of 

selecting cells with compensatory mutations. However, we eventually found that similar 

results were obtained whether the cells were from glycerol stock or from overnight liquid 

cultures (not shown). 

 

Microscopy 

Cells were grown overnight at 37oC in liquid LB medium supplemented with the 

appropriate antibiotics. Overnight cultures were diluted in LB medium to obtain an OD600 

of 0.01 and grown at the indicated temperature to an OD600 of 0.8. The cells were recovered 

and prepared for microscopy as previously described [17]. Pictures (fluorescence (DAPI) 

and DIC) were randomly taken with a LSM 510 Meta confocal microscope from Zeiss. The 

images were processed using Adobe Photoshop. Representative images are shown both in 

the Results and Supporting Information sections.  

 

Flow cytometry 

The procedure for flow cytometry in rifampicin run-out experiments with cells grown in 

M9 medium has been described [34]. The DNA/mass ratio was calculated has previously 

reported [34]. 
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TABLES AND FIGURES 

Table S1 E. coli strains and plasmids used 

 

Name Genotype  Reference or Source 

MA251 

 

CL581 

 

 

CT150 

CT170 

JE35 

gyrB221 (Cour) gyrB203(Ts) 

zie-3163::Tn10kan topA20::Tn10 

thyA36, deoC2, IN(rrnD-rrnE)I, rph?, 

recQ6215 (sub cat 883 for cdn 19-606) 

recQ6215::cam 

RFM475 recQ6215::cam 

RFM475 ΔtopB::kan 

PH379 dnaA46(Ts) tnaA::Tn10 

[1] 

 

Justin Courcelle 

 

 

RFM475 x P1(CL581) 

[2] 

PH379 x P1(MD48) 

JE36 

JE119 

JW0461-2 

JW1752-1 

JE35 rne59::aph 

MD48  rne59::aph 

ΔrecR776::kan 
ΔtopB761::kan 

This worka 

This worka 

[3] 

[3] 

JW2549-1 ΔrecO737::kan [3] 

JW2860-1 

KA441 

 

MD48 

ΔrecJ743::kan 
ilv thyA thr tyrA(Am) trpE9829(Am)  

metE deo supF6(Ts) dnaAcos tna::Tn10 

MC4100 dnaA46(Ts) tnaA::Tn10 

[3] 

[4] 

 

Lab collection 

PH379 

RFM443 

rnhA ::cam 

rpsL galK2 ∆lac74 

[5] 

[6] 

RFM445 

 

RFM475 

 

rpsL galK2 gyrB221 (Cour) gyrB203(Ts) 

∆lac74 

rpsL galK2 gyrB221 (Cour) gyrB203(Ts) 

∆lac74 ∆(topA cysB)204  

[6] 

 

[6] 
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SB265 

VU29 

VU118 

VU129 

VU148 

VU155 

VU176 

VU188 

VU194 

VU200 

VU204 

VU205 

 

VU243 

VU287 

VU299 

VU306 

VU333 

VU349 

VU363 

VU365 

VU375 

VU379 

VU403 

VU409 

 

VU414 

VU416 

VU421 

RFM475 ΔrecA306 srlR301::Tn10 
RFM443 ΔrecA306 srlR301::Tn10 

RFM475 pPH1243 

VU118 rnhA::cam 

VU129 dnaT18::aph 

RFM475 oriC15::aph 

RFM475 holC2::aph 

RFM475 dnaT18::aph 

KA441 oriC15::aph 

JE35 dnaT18::aph 

MD48 dnaT18::aph 

CT150 ΔtopB::kan 
 

CT170 ΔrecA306 srlR301::Tn10 

RFM475 pSK760 

RFM475 pSK762c 

CT170 pSK760 

CT170 pSK762c 

RFM475 ΔrecJ743::kan 
VU205 pSK760 
VU205 pSK762c 

VU243 pSK760 

VU243 pSK762c 

RFM445 ΔtopB761::kan 
RFM445 ΔtopB 
 

VU409  dnaT18::aph 

VU409  rne59::aph 

VU409 topA20::Tn10 

VU421 pSK760 

VU421 pSK762c 

RFM475 x P1(VU29) 

Lab collection 

This work 

VU118 x P1(PH379) 

This worka 

This worka 

This worka 

This worka 

This worka 

This worka 

This worka 

CT150 x P1(DM4100 

ΔtopB::kan) 

CT170 x P1(VU29) 

This work 

This work 

This work 

This work 

RFM475 x P1(JW2860-1) 

This work 

This work 

This work 

This work 

RFM445 x P1( JW1752-1) 

VU403, kan removed by pCP20 

[7] 

This worka 

This worka 

VU409 x P1(MA251) 
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a The P1vir phage lysates used to transfer the various insertion mutants described in this 

study were obtained from the original suppressed clones obtained at 40oC (see Material and 

Methods) 
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Figure 1. Growth and chromosome segregation defects in a topA gyrB(Ts) strain at 
30oC. (a) Representative superimposed images of DIC and fluorescence pictures of DAPI-
stained cells grown at 30oC, unless otherwise indicated, as described in Materials and 
Methods. Size bars are 5 μm. Additional images are shown in Fig. S1. (b) Spot tests at 
30oC. The LB plates were incubated for 24 h. The strains used are all derivatives of 
RFM475 (ΔtopA gyrB(Ts)) except RFM445 (gyrB(Ts)). They are: VU287 
(RFM475/pSK760), VU155 (RFM475 oriC), CT150 (RFM475 recQ), VU118 
(RFM475/pPH1243), SB265 (RFM475 recA), VU469 (RFM475 recO) and VU188 
(RFM475 dnaT). pSK760 carries the rnhA gene for RNase HI overproduction. Cells 
carrying pPH1243 were grown in the presence of IPTG to overproduce topo III.   
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Figure 2. Growth and chromosome segregation defects in topA gyrB(Ts) strains at 

24oC. (a) Representative superimposed images of DIC and fluorescence pictures of DAPI-

stained cells grown at 24oC as described in Materials and Methods. Size bars are 5 μm. 

Additional images are shown in Fig. S2. (b) Spot tests at 24oC. Pictures of LB plates after 

24 and 48 h of incubation as indicated. The strains used are all derivatives of RFM475 

(ΔtopA gyrB (Ts)). They are: VU287 (RFM475/pSK760), VU155 (RFM475 oriC), CT150 

(RFM475 recQ), VU118 (RFM475/pPH1243), SB265 (RFM475 recA), VU469 (RFM475 

recO), VU188 (RFM475 dnaT) and VU176 (RFM475 holC). pSK760 carries the rnhA gene 

for RNase HI overproduction. Cells carrying pPH1243 were grown in the presence of IPTG 

to overproduce topo III. 
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Figure 3. recA and recQ deletions are epistatic to topB overexpression in correcting 

the growth defect of a topA gyrB(Ts) strain. Spot tests at 24 and 30oC as indicated. The 

LB plates were incubated at 24 and 30oC for respectively 48 and 24 h.  The strains used are 

all derivatives of RFM475 (topA gyrB (Ts)). They are: VU287 (RFM475/pSK760), CT150 

(RFM475 recQ), VU464 (CT150/pPH1243), VU118 (RFM475/pPH1243), SB265 

(RFM475 recA), and VU479 (SB265/pPH1243). pSK760 carries the rnhA gene for RNase 

HI overproduction. Cells carrying pPH1243 were grown in the presence of IPTG to 

overproduce topo III. 
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Figure 4. Replication initiation asynchrony and reduced DNA/mass ratio conferred by 

the oriC15::aph suppressor mutation isolated from a topA rnhA gyrB(Ts) strain. (a) 

Schematic representation of the minimal oriC region (245 bp) with its regulatory elements. 

DUE is the DNA unwinding element with its AT-cluster and 13-mer repeats L, M, and R 

(orange). DnaA binding sites: R1, R2 and R4 are high affinity sites (blue) whereas R3, R5, 

I1-3 and τ1-2 are low affinity sites (yellow). I1-3 and τ1-2 preferentially bind DnaA-ATP. 

IHF and FIS binding sites are also shown. For more details see [57]. aph indicates the 

insertion site of the kanr cassette in our oriC15::aph insertion mutant (position 142 in the 

245 bp oriC region). The oriC231 allele of Stepankiw et al. [56] spanning the left portion 

of oriC up to the arrow is shown for comparison (position 163 in the 245 bp oriC region). 

(b) Rifampicin run-out experiments for flow cytometry analysis were performed as 

described in Materials and Methods. Cells were grown in M9 minimal medium. (c) 

DNA/mass ratios were calculated as described in Material and Methods from three 

independent flow cytometry experiments. The strains used were: RFM443 (wild-type), 

RFM445 (gyrB (Ts)), RFM475 (topA gyrB (Ts)) and VU155 (RFM475 oriC15::aph). 
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Figure 5. The growth and chromosome segregation defects in cells lacking type 1A 

topos are partially corrected by overproducing RNase HI or by deleting recA but not 

recQ. (a) Representative superimposed images of DIC and fluorescence pictures of DAPI-

stained cells grown at 30oC as described in Materials and Methods. Size bars are 5 μm. (b) 

Spot tests at 30oC. The LB plate was incubated for 24 h. The strains used are all derivative 

of RFM475 (ΔtopA, gyrB (Ts)). They are: VU306 (RFM475 topB/pSK760), VU333 

(RFM475 topB/pSK762c), VU363 (RFM475 topB recQ/pSK760), VU365 (RFM475 topB 

recQ/pSK762c), VU375 (RFM475 topB recA/pSK760) and VU379 (RFM475 topB 

recA/pSK762c). pSK760 carries the rnhA gene for RNase HI overproduction, whereas 

pSK762C carries a mutated and inactive rnhA gene. 
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Figure 6. Both the dnaT18::aph and rne59::aph suppressor mutations isolated from a 

topA rnhA gyrB(Ts) strain inhibit cSDR in an rnhA strain. (a) Model for constitutive 

stable DNA replication (cSDR) [54,60]. R-loop forms during transcription when the 

nascent RNA hybridizes with the template DNA strand behind the moving RNA 

polymerase. Both transcription-induced negative supercoiling and RecA protein promote R-

loop formation. DNA pol I synthesizes DNA from the 3’ end of the hybridized RNA for 

primosome (PriA-dependent) assembly. Eventually, the primosome allows the assembly of 

two replisomes for bidirectional replication. The proteins that are included in the present 

study are shown in red: topo I relaxes transcription-induced negative supercoiling; RecA 

promotes the hybridization of the template DNA strand with the nascent RNA [87,88]; 

RNase HI degrades the RNA of the R-loop; RNase E may inhibit R-loop formation by 

degrading the nascent RNA; DnaT may play a role in cSDR via the primosome. (b) A map 

of the E. coli chromosome showing the normal origin of replication (oriC), the putative 

cSDR origins of replication (oriK, [54]) and two of the ten ter sites, with terC believed to 

be a site where many convergent replication forks meet [82]. (c) and (d). Spot tests. The LB 

plates were incubated for 24 h, at 30 or 42oC as indicated. The strains used were: MD48 

(dnaA46(Ts)), JE35 (rnhA dnaA46(Ts)), VU204 (dnaA46(Ts), dnaT), VU200 (rnhA 

dnaA46(Ts) dnaT), JE36 (rnhA dnaA46(Ts) rne) and JE119 (dnaA46(Ts) rne). At 42oC, the 

few colonies of strain MD48 (at 100 and 10-1) were made of cells that have acquired 

compensatory mutations, as they grew robustly upon restreaking them at the same 

temperature.  
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Figure 7. The growth and chromosome segregation defects in cells lacking type 1A 

topos are partially corrected by dnaT18::aph, rne59::aph and holC2::aph suppressor 

mutations isolated from a topA rnhA gyrB(Ts) strain. Representative superimposed 

images of DIC and fluorescence pictures of DAPI-stained cells grown at 30oC as described 

in Materials and Methods. Size bars are 5 μm. (b) Spot tests at 30oC (a), 24oC (b) and 37oC 

(c). The LB plates were incubated for the indicated period of time. The strains used are all 

derivative RFM445 topB (strain VU409: gyrB (Ts), ΔtopB). They are: VU421 (RFM445 

topB topA20::Tn10), VU422 (RFM445 topB topA20::Tn10/pSK760), VU425 (RFM445 

topB topA20::Tn10/pSK762c), VU441 (RFM445 topB dnaT topA20::Tn10), VU469 

(RFM445 topB holC topA20::Tn10) VU473 (RFM445 topB rne topA20::Tn10). pSK760 

carries the rnhA gene for RNase HI overproduction, whereas pSK762C carries a mutated 

and inactive rnhA gene.  
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                      Supporting information 

Figure S1. Chromosome segregation defects in a topA gyrB(Ts) strain at 30oC. 

Superimposed images of DIC and fluorescence pictures of DAPI-stained cells grown at 

30oC, unless otherwise indicated, as described in Materials and Methods. Size bars are 5 

μm. The strains used are all derivatives of RFM475 (ΔtopA gyrB (Ts)) except RFM445 

(gyrB (Ts)). They are: VU287 (RFM475/pSK760), VU155 (RFM475 oriC), CT150 

(RFM475 recQ), VU118 (RFM475/pPH1243), SB265 (RFM475 recA), VU469 (RFM475 

recO) and VU148 (RFM475 dnaT). pSK760 carries the rnhA gene for RNase HI 

overproduction. Cells carrying pPH1243 where grown in the presence of IPTG to 

overproduce topo III. 
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Figure S2. Chromosome segregation defects in a topA gyrB(Ts) strain at 24oC. 

Superimposed images of DIC and fluorescence pictures of DAPI-stained cells grown at 

24oC, unless otherwise indicated, as described in Materials and Methods. Size bars are 5 

μm. The strains used are all derivatives of RFM475 (ΔtopA gyrB (Ts)). They are: VU287 

(RFM475/pSK760), VU155 (RFM475 oriC), CT150 (RFM475 recQ), VU118 

(RFM475/pPH1243) and SB265 (RFM475 recA). pSK760 carries the rnhA gene for RNase 

HI overproduction. Cells carrying pPH1243 where grown in the presence of IPTG to 

overproduce topo III. 
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Figure S3. Topo IV is not overproduced following the deletion of recQ in strain 

RFM475. Cells were grown overnight on LB plates at 37°C. Aliquots were recovered for 

Western blotting using anti-ParC and anti-ParE antibodies as described by Usongo et al. 

(2008). Strains used are RFM475 (topA gyrB( Ts)) and CT150 (RFM475 recQ). The result 

shown here is representative of three independent experiments. (Usongo V, Tanguay C, 

Nolent F,  Bessong JE, Drolet M (2008) Interplay between type 1A topoisomerases and 

gyrase in chromosome segregation in Escherichia coli. Mol Micro 195:1758-1768.  
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  Figure S4. Southern blot experiment showing the successful transfer of the oriC::Tn5 

allele within topA null but not topA+ strains. Strains were grown in LB medium to OD600 

of 0.6 at 37°C. Genomic DNA was prepared essentially as described by Nordman et al. 

(2007). Following genomic DNA extraction, samples were digested with XmnI and 

electrophoresis was performed in 0.8% agarose in 0.5X TBE at 45V for 24 h at room 

temperature. After electrophoresis, samples were transferred onto a nitrocellulose 

membrane (Hybond-N GE Healthcare) and hybridized with a 32P-dCTP-labelled probe 

obtained by PCR using the primers forward 5′- CATTGGCGGGGGTCATGC-3′ and 

reverse 5′-CTTGCTCTCCAGCGTCGG-3′ corresponding to the gidA gene. The bands 

were visualised with a Phosphorimager Typhoon 9400 (GE Healthcare). The strains used 

are: RFM443 (wild-type), RFM443 kanr (wild-type kanr: a false positive), RFM475 (topA 

gyrB (Ts)) and VU155 (RFM475 oriC15::aph). 
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Figure. S5. The oriC15::aph mutation complements the growth defect of a dnaAcos 

mutant at 30oC. The LB plates were incubated for the indicated time and at 30, 36.5 or 

42oC as shown. The strains used were: KA441 (dnaAcos) and VU194 (KA441 

oriC15::aph).  
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Figure. S6. Deleting recA or recQ, or overproducing RNase HI do not complement the 

growth and chromosome segregation defects of a topA topB gyrB(Ts) strain at 40oC. 

(a) Cells were spotted on LB plates and incubated at 40oC. The LB plates were 

photographed after 24 and 48 h of incubation. The strains used are all derivative of 

RFM475 (ΔtopA, gyrB (Ts)). They are: VU306 (RFM475 topB/pSK760), VU333 (RFM475 

topB/pSK762c), VU363 (RFM475 topB recQ/pSK760), VU365 (RFM475 topB 

recQ/pSK762c), VU375 (RFM475 topB recA/pSK760) and VU379 (RFM475 topB 

recA/pSK762c). pSK760 carries the rnhA gene for RNase HI overproduction, whereas 

pSK762C carries a mutated and inactive rnhA gene. CT170 (topA topB gyrB(Ts)), (b), 

VU243 (topA topB gyrB(Ts) recA), (c) and VU205 (topA topB gyrB(Ts) recQ), (d) cells 

were prepared for microscopy as described (Usongo et al., 2008). Shown are superimposed 

images of phase contrast and fluorescence pictures of DAPI-stained cells grown at 40oC. 

(Usongo V, Tanguay C, Nolent F,  Bessong JE, Drolet M (2008) Interplay between type 1A 

topoisomerases and gyrase in chromosome segregation in Escherichia coli. Mol Micro 

195:1758-1768.). 
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Figure. S7. The growth and chromosome segregation defects of a topA topB gyrB(Ts) 

strain are more severe at 30 than 37oC. (a) Cells were spotted on LB plates and incubated 

for 24 h at the indicated temperature. (b) Cells were prepared for microscopy as described 

(Usongo et al., 2008). Shown are superimposed images of phase contrast and fluorescence 

pictures of DAPI-stained cells grown at 37 or 30oC as indicated. The strains used are all 

derivative of RFM475 (ΔtopA, gyrB (Ts)). They are: VU170 (RMF475 topB), VU306 

(CT170/pSK760) and VU333 (CT170/pSK762c). pSK760 carries the rnhA gene for RNase 

HI overproduction, whereas pSK762C carries a mutated and inactive rnhA gene. (Usongo 

V, Tanguay C, Nolent F,  Bessong JE, Drolet M (2008) Interplay between type 1A 

topoisomerases and gyrase in chromosome segregation in Escherichia coli. Mol Micro 

195:1758-1768.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

223

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

224

Figure. S8. aph insertion sites for three suppressor mutants used in this study. The aph 

insertion sites for the dnaT18::aph (a), holC2::aph (b) and rne59::aph (c) alleles are 

shown. For (a) and (b) we show the nucleotide sequence of the regulatory regions for dnaT 

(promoter has been characterized) and holC (promoter unknown) where the aph cassette 

was inserted. In (c) we show the amino acids sequence of RNase E. Note that the aph 

cassette is inserted within the protein scaffold region (position 883 for rne59::aph) that is 

used by RNase E to interact with other proteins to form the RNA degradosome (RhlB 

helicase, Enolase and PNPase) (for details see Mackie (2013)). (Mackie GA (2013) RNase 

E: at the interface of bacterial RNA processing and decay. (Nat Rev Microbiol 11:45-47.). 
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Figure. S9. The effect of dnaT18::aph allele on the chromosome segregation defects of 

a topA rnhA gyrB(Ts) strain.  Superimposed images of DIC and fluorescence pictures of 

DAPI-stained cells grown at 37oC in LB without IPTG. Size bars are 5 μm. The strains 

used are all derivatives of RFM475 (ΔtopA gyrB (Ts)). They are: VU129 (RFM475 

rnhA/pPH1243) and VU148 (VU129 dnaT). pPH1243 carries the topB gene under the 

control of an IPTG-inducible promoter. 
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Figure. S10.  The ori/ter ratio is similarly reduced in strains lacking either rnhA or 

topA. Growth of the strains, genomic DNA extraction and cutting, and Southern blotting 

were performed as described in the legend to Fig. S4. For the “ori” probe, the DNA 

fragment including the gidA gene as described in the legend to Fig. S4 was used. For the 

“ter” probe, a DNA fragment including the cedA gene (obtained from PCR with the 

following primers: 5'-GTTACGCGTATCAGGGGC-3' and 5'-

GAGCGACGCCACAGGATG-3') was used. Strains used were: RFM443 (wild-type), 

RFM445 (gyrB (Ts)), RFM475 (topA gyrB (Ts)) and PH379 (rnhA). The ori and ter bands 

were visualised and by using a Phosphorimager Typhoon 9400 (GE Healthcare). The “ori” 

and “ter” bands were visualised and the signal quantified by using a Phosphorimager 

Typhoon 9400 and the ImageQuant software (GE Healthcare). Sown here are the results of 

two independent experiments.    
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Figure. S11. Replication initiation asynchrony conferred by the holC2::aph mutation.  

Rifampicin run-out experiments for flow cytometry analysis were performed as described 

in Materials and Methods. Cells were grown in M9 minimal medium. The strains used are: 

RFM445 (gyrB (Ts)), RFM475 (topA gyrB (Ts)) and VU176 (RFM475 holC2::aph). 
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                CHAPTER 5: Discussion 

   5.1. Supercoiling inhibition in triple topA rnhA gyrB(Ts) mutants 

   In the first part of this project, we found that depleting RNase HI activity in a topA 

gyrB(Ts) mutant led to extreme DNA relaxation. This was however surprising because we 

predicted that the triple topA rnhA gyrB(Ts) mutant would die from toxic levels of negative 

supercoiling based on  previous observations whereby overproducing RNase HI was shown 

to suppress the growth defect of topA mutants by relaxing hypernegatively supercoiled 

DNA  (Drolet et al., 1995). DNA from the triple topA rnhA gyrB(Ts) mutant was extremely 

relaxed and we equally found that the cells of triple topA rnhA gyrB(Ts) mutants formed 

long filaments full of DNA reminiscent of chromosome segregation defects (Usongo et al., 

2008). Depleting RNase HI activity in triple topA rnhA gyrB(Ts) mutants thus triggered a 

response that leads to the inhibition of gyrase activity (Usongo et al., 2008). This inhibition 

was reversed when RNase HI expression was induced from a plasmid borne-gene implying 

that the observable effects were not due to a mutation. This inhibition was unrelated to the 

SOS response that is expressed when cells lack RNase HI (Kogoma et al., 1993).  We 

confirmed this with our observation that introducing the lexA3 allele (this allele cannot be 

cleaved by RecA to enable the expression of SOS control genes) into the triple topA rnhA 

gyrB(Ts) mutant to prevent the induction of genes under the control of the SOS regulon, 

did not restore supercoiling in the triple topA rnhA gyrB(Ts) mutant (Usongo, unpublished 

results).  

         To ascertain whether an inhibitor may be produced following the depletion of RNase 

HI activity, we assayed gyrase activity in crude cell extracts. We found that the ATP-

independent relaxation of supercoiled pBR322 DNA was similar in extracts of topA- cells 

irrespective of the presence of the rnhA gene, while the ATP-dependent supercoiling 

reaction was much higher in topA- cells carrying the wild-type rnhA allele (Usongo, 

unpublished results). The relaxation observed in extracts of topA- cells could have been due 

either to the relaxation activity of topo IV, or to the ATP-independent relaxation activity of 

gyrase. To test this, we first constructed norfloxacin-resistant (a gyrA nalr allele was used) 
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derivatives of our topA strains. Gyrase and topo IV are both sensitive to norfloxacin 

however, in this construct, gyrase was rendered resistant by the nalr allele so only topo IV 

was specifically targeted. Relaxation in the absence of ATP was only observed in cell 

extracts with the gyrA nalr allele confirming that the relaxation activity was from gyrase 

and not topo IV. These results confirm that topo IV is not responsible for the extensive 

DNA relaxation observed in triple topA rnhA gyrB(Ts) mutants, and also confirm that the 

ATP independent relaxation activity of gyrase was functional. Altogether these results 

strongly suggest that depleting RNase HI activity triggered a cellular response that inhibited 

the ATP-dependent activity of gyrase but not its ATP-independent activity. 

         Further corroborating the fact that the response targeted only the supercoiling activity 

of gyrase were results from an in vivo time course plasmid supercoiling analysis which 

showed that downshifting topA- cells from 37 to 28 oC to reactivate gyrase stimulated 

hypernegative supercoiling in rnhA+ cells and DNA relaxation in rnhA- ones (Usongo, 

unpublished results). Thus, these results clearly showed that the Ts gyrase was reactivated 

in both strains, but that only its ATP-independent relaxation activity was functional in 

rnhA- cells. Thus, depleting RNase HI activity triggered a response that specifically 

inhibited gyrase supercoiling activity. Several models can be advanced to explain why the 

ATP dependent supercoiling reaction in our triple mutant is defective. Supercoiling 

inhibition in triple topA rnhA gyrB(Ts) mutants could be related to over-replication of the 

chromosome. Being the only enzyme that introduces negative supercoils in bacteria, gyrase 

plays a key role in the cell. As previously mentioned, rnhA mutants undergo cSDR 

(Kogoma, 1997) and in addition to replication from oriC, this leads to an increase in the 

overall rate of replication. Excess replication may overwhelm the cellular capacity of the 

cell as gyrase will be recruited to several sites on the chromosome thereby lowering its 

efficacy. The depletion of RNase HI activity may thus trigger a cellular response that 

inhibits gyrase activity as a means to protect the chromosome from excess replication 

which can be pathologic for the cell. 

          Supercoiling inhibition in our triple mutant could be attributed to the endogenous 

gyrase inhibitors such as MurI and GyrI earlier described. GyrI (encoded by smbC) is under 
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the control of the SOS regulon (Chatterji & Nagaraja, 2002). GyrI prevents the interaction 

between gyrase and DNA. As shown in chapter two, deleting smbC had no effect in our 

triple mutant. Whereas the topA gyyrB(Ts) mutant became hypernegatively supercoiled 

following a downshift to 28oC, the triple topA rnhA gyrB(Ts) mutant remained relaxed 

implying that GyrI was not responsible for the extensive DNA relaxation observed in the 

triple topA rnhA gyrB(Ts)  mutant. MurI, another gyrase inhibitor, could also be 

responsible for supercoiling inhibition in the triple topA rnhA gyrB(Ts) mutant. MurI 

inhibits gyrase only in the presence of the peptidoglycan precursor UDP-N-acetyl 

muramyl-l-alanine (UDP-MurNAc-L-Ala) the racemase activator (Ashiuchi et al., 2002). In 

E. coli, it has been shown that the absence of MurI leads to cell filamentation (Doublet et 

al., 1992) while overexpressing MurI lead to a reduction in the negative supercoiling level 

of the chromosome, cell filamentation and segregation defects (Baliko & Venetianer, 

1993). MurI inhibits gyrase by preventing it from gaining access to the DNA substrate 

(Sengupta, Shah, & Nagaraja, 2006). Northern blot experiments from RNA extracted from 

the triple topA rnhA gyrB(Ts) mutant showed that MurI was not overexpressed in this 

mutant implying  that MurI was not responsible for supercoiling inhibition in the triple 

topA rnhA gyrB(Ts) mutant (Usongo, unpublished results). 

         Supercoiling inhibition in the triple topA rnhA gyrB(Ts) mutant can also be attributed 

to the abundant nucleoid associated proteins such as HU and Fis that interact with DNA 

(Travers & Muskhelishvili, 2005ab). HU stimulates gyrase activity in vitro (Marians, 

1987). HU absence leads to slow growth and partial relaxation of the chromosome which is 

corrected by a mutation in gyrB (Malik et al., 1996). Northern blot experiments from RNA 

extracted from the triple topA rnhA gyrB(Ts) mutant clearly showed that there was no 

difference in HU expression levels in topA gyrB(Ts) and topA rnhA gyrB(Ts) implying that 

supercoiling inhibition in the triple topA rnhA gyrB(Ts) mutant was unrelated to HU 

expression (Usongo, unpublished results). Fis controls the transcription of genes coding for 

DNA topoisomerases (Cameron et al., 2011) and directly affects the supercoiling activity of 

gyrase (Cameron et al., 2011). Western blot experiments on protein extracts from a wild 

type, topA gyrB(Ts), and the triple topA rnhA gyrB(Ts) mutant clearly showed that there 

was no change in Fis expression levels (Usongo, unpublished results) implying that 
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supercoiling inhibition in the triple topA rnhA gyrB(Ts) mutant was unrelated to Fis 

expression.  

         In the cell, ATP is produced via the Krebs cycle and glycolysis. It is possible that in 

the triple topA rnhA gyrB(Ts) mutant, the depletion of RNase HI activity may affect the 

metabolic pathway that synthesizes ATP in the cell, limiting its availability. This may 

explain why supercoiling was observed only in topA- gyrB(Ts) both in vivo and in crude 

cell extracts. When RNase HI is depleted, the pathway leading to the production of ATP 

may be affected, leading to a reduction in ATP production. In this regard, supercoiling 

inhibition in the triple topA rnhA gyrB(Ts) mutant may be viewed as an indirect effect of 

RNase HI depletion which affects ATP production. Because ATP is the energy currency of 

the cell, competition for it will limit its availability. Reducing processes that consume ATP 

such as DNA replication will make more ATP available for the supercoiling reaction of 

gyrase. This may explain why supercoiling was restored in suppressors that generally 

affected DNA replication. 

         Alternatively, it can be argued that depleting RNase HI activity may induce the 

synthesis of a protein that consumes ATP and this may explain the supercoiling inhibition 

observed when wild type extracts were mixed with extracts of the triple topA rnhA 

gyrB(Ts) mutant. In this experiment, cells of a wild type strain and those of the triple topA 

rnhA gyrB(Ts) mutant were grown at 37oC. In addition, cells of the triple topA rnhA 

gyrB(Ts) mutant were downshifted to 28oC for 60 minutes to reactivate gyrase. Crude cell 

extracts prepared from the wild type strain were mixed with extracts from the triple topA 

rnhA gyrB(Ts) mutant and these extracts were assayed for the ATP dependent supercoiling 

reaction of gyrase based on their ability to supercoil  relaxed pBR3322 DNA in the 

presence of ATP. Wild type extracts were not inhibited by extracts from a topA gyrB(Ts) 

mutant. To find out whether a protein present in the extract was consuming ATP, we did an 

ATP time course experiment. We found that increasing concentrations of ATP stimulated 

gyrase supercoiling activity to the same extent in the crude cell extracts of the triple topA 

rnhA gyrB(Ts) mutant and in extracts of topA- gyrB(Ts) (Usongo, unpublished results). 

These results clearly indicated that the supercoiling inhibition in the triple topA rnhA 

gyrB(Ts) mutant was not due to the presence of an intracellular factor that consumed ATP 
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at the expense of gyrase for if this was the case, we should not have seen an increase in 

gyrase activity in the extracts of of topA- gyrB(Ts). 

         Other observations suggest that the inhibitor of gyrase in the triple topA rnhA 

gyrB(Ts) mutant is protein in nature. We observe that when extracts of the triple topA rnhA 

gyrB(Ts) mutant were heated prior to in vitro supercoiling assays, gyrase inhibition was 

abolished. Supercoiling was restored in extracts from a wild-type strain when mixed with 

heated extracts of the triple topA rnhA gyrB(Ts) mutant as opposed to unheated extracts 

(Usongo, unpublished results).  It is possible that supercoiling inhibition in the triple topA 

rnhA gyrB(Ts) mutant could be due to a combination of factors. The depletion of RNase HI 

activity as much as it might trigger the synthesis of a gyrase inhibitor as our data indicate, it 

may also affect the metabolic pathway that synthesizes ATP in the cell. Also, excess 

replication in the triple topA rnhA gyrB(Ts) mutant may warrant that many gyrase 

molecules be recruited leaving only few molecules available for supercoiling.  

   

5.2. Suppressors of topA rnhA gyrB(Ts) mutants 

To better understand the mechanism(s) of supercoiling inhibition in the triple topA 

rnhA gyrB(Ts) mutants and potentially identify a gyrase inhibitor, we used a genetic 

approach to identify suppressors of this mutant taking advantage of its inability to grow at 

40oC. The growth defect of gyrB(Ts) single mutants at high temperatures has been 

attributed to the inability of these mutants to initiate replication at oriC as a result of a 

decrease in supercoiling. This growth defect can be corrected by deleting topA which leads 

to an increase in chromosomal supercoiling (Usongo et al., 2013). To identify suppressors 

of the triple topA rnhA gyrB(Ts) mutant, the highly efficient transposon mutagenesis 

system developed by Metcalf and co-workers (Larsen et al., 2002) was used for the 

suppressors search. In this construct, the transposon delivery vector pRL27 has a 

hyperactive Tn5 transposase which is 1000-fold more active than the wild type transposase. 

Moreover, the gene encoding the transposase is located outside of the transposon so that 

after transposition; the transposase is lost, resulting in stable transposon insertions. This 

vector is incapable of replicating in a host that lack pir as was the case in the triple mutant. 
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The transposon has a gene encoding for Kmr, as a selectable marker. This system has been 

successfully used in E. coli to map suppressors (Bradshaw & Kuzminov, 2003; Budke & 

Kuzminov, 2010).  

         Following this approach, we identified three major categories of suppressors. Most of 

these suppressors corrected the supercoiling defect as well as the growth and chromosome 

segregation defects of the triple topA rnhA gyrB(Ts) mutant. The first category of 

suppressors was insertions in genes/loci implicated in DNA replication and among these 

category were insertions in  holC  involved in clamp loading and processivity (Marceau et 

al., 2011), dnaT  implicated in replisome loading in SDR and cSDR and oriC.  However, 

the majority of the suppressors in this category were insertions in genes implicated in 

nucleotide metabolism. The second category of suppressors was insertions in rne encoding 

the endoribonuclease RNase E and rnr encoding the ribonuclease RNase R. Insertions in 

rne and rnr restored supercoiling and corrected the growth and segregation defect of topA- 

rnhA- gyrB(Ts) mutant likely by preventing the formation of R-loops which can be used for 

cSDR (Kogoma, 1997). The third category of suppressors was insertions in diverse genes 

with some of unknown functions. The majority of the suppressors in this category were 

insertions in genes involved in the synthesis of type 1 fimbriae with most insertions in 

genes linked to swarming. In this category, we also obtained an insertion in pta encoding 

Pta (phosphate acetyl transferase) which catalyzes the reversible conversion between 

acetyl-CoA and acetyl phosphate and aceE (component of the pyruvate dehydrogenase 

multi-enzyme complex) that converts pyruvate to acetyl-CoA. These mutants make less 

acetyl-CoA. Acetyl-CoA is the high energy intermediate that sits at the crossroad of central 

metabolism. 

 

5.2.1. Correction by transposon insertions in nucleotide biosynthetic genes 

              Insertions in genes involved in nucleotide biosynthesis may affect the 

deoxynucleoside triphosphate (dNTP) pool. The link between dNTP synthesis and DNA 

replication has long been established by studies which showed that dNTP synthesis is 

coordinated with DNA replication (Mathews & Sinha, 1982; Pato, 1979; veer Reddy & 
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Pardee, 1982). The dNTP pool is highly regulated and it has been found that its level in the 

cell is about 1% of the amount required for a round of DNA replication (Kornberg & 

Baker, 1992). One important regulator of dNTP pool levels in the cell is ribonucleoside 

diphosphate reductase (rNDP reductase) encoded by the nrdAB genes. The precursors for 

DNA synthesis, deoxyribonucleotides are produced by direct reduction of the 

corresponding ribonucleotides catalysed by rNDP reductase (Thelander & Reichard, 1979). 

DnaA protein in its ATP-bound form represses the transcription of nrdAB genes (Messer, 

2002). After initiation of DNA replication, DnaA-ATP is rapidly converted to DnaA-ADP 

and this result in the derepression of nrdAB transcription. This derepression allows the 

correct supply of dNTPs for replication (Gon et al., 2006). The correction of DNA 

supercoiling and chromosome segregation defects in the triple topA rnhA gyrB(Ts) mutant 

by suppressors in this category could be explained by a reduction in DNA replication as a 

result of a decrease in the dNTP pool. A reduction in the dNTP pool will reduce replication 

from oriC as well as oriC independent replication (cSDR).  An overall reduction in 

replication will imply that less gyrase will be consumed and more will be available for 

supercoiling. 

 

5.2.2. Correction by transposon insertions in genes implicated in fimbriae formation 

            Supercoiling was restored both in vivo and in crude cell extracts in mutants with 

insertion in genes involved in fimbriae synthesis. Cells for supercoiling assays in vivo and 

in crude cell extracts were grown at 37oC, and downshifted to 28oC for 60 minutes to 

reactivate gyrase. Supercoiling restoration can be explained by several reasons. A study in 

E. coli identifying swarming related genes also picked up most of the genes identified in 

our screen, and in this study, it was reported that both swimming and swarming use a lot of 

cellular energy (Inoue et al., 2007).  Inactivating genes involved in swarming/swimming 

may make more ATP available for gyrase to power supercoiling. This can be explained in a 

model which posits gyrase acting as a metabolic sensor that bridges environmental 

conditions to physiological adaptation. In this context, gyrase senses the energy status of 

the cell through the ATP/ADP ratio and its ATPase activity. When the ratio is low, 

especially under unfavorable growth conditions, gyrase inhibition leads to fimbriae 
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synthesis which consumes the remaining ATP available. This in turn, causes extensive 

DNA relaxation and growth inhibition. In support of this model, decreasing gyrase activity 

following novobiocin treatment was shown to stimulate fimbriae synthesis (Muller et al., 

2009). Fimbriae formation can then trigger a transition from a planktonic to an attached life 

style culminating in the formation of biofilms. When the sensor that triggers the transition 

is dysfunctional, which may be the case in the topA rnhA gyrB(Ts) mutant, the transition 

mode may be triggered while the cells still have enough energy to grow; implying that the 

cell cycle, including replication and chromosome segregation are still on, so the extensive 

gyrase inhibition now will lead to severe chromosome segregation defects as seen in the 

triple topA rnhA gyrB(Ts) mutant. Inhibiting the formation of fimbriae with suppressor 

mutations in genes involved in fimbriae synthesis, will thus make a great amount of cellular 

ATP at the disposal of gyrase, thus correcting the supercoiling, chromosome segregation 

and growth defects.  

         Another possibility is that when the ATP/ADP ratio is low, supercoiling inhibition 

results in DNA relaxation which then induces fimbriae synthesis plus a gyrase inhibitor that 

may be a fimbriae subunit.  

 

5.2.3. Correction by transposon insertions in genes implicated in central metabolism  

            The correction of growth and chromosome segregation defects as well as 

supercoiling in triple topA rnhA gyrB(Ts) mutant by insertion in genes that lead to a 

reduction in acetyl-CoA production could be explained by two models: one involving 

protein acetylation and the other linking acetyl-CoA to central metabolism. CheY, a protein   

responsible for bacterial chemotaxis controlling flagella movement has been shown to be 

activated by acetylation in addition to phosphorylation. Two mechanisms of CheY 

acetylation have been identified: acetylation by acetyl CoA synthetase (Acs) with acetate or 

acetyl coenzyme A (AcCoA) as an acetyl donor (Barak et al., 2004; Barak et al., 1992) and 

autoacetylation (Barak et al., 2006) with AcCoA as the acetyl donor. Studies have shown 

that both phosphorylation and acetylation determine the ability of CheY to bind to its target 

protein and provide two levels of regulation, fast and slow respectively. Environmental 

signals such as chemotactic stimuli trigger the fast level while the slow level is modulated 
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by the metabolic state of the cell (Liarzi et al., 2010).  CheY generates clockwise rotation 

and thus favors swarming, an energy expensive activity that consumes a lot of ATP. 

Therefore, inactivating CheY acetylation by a reduction in acetyl-CoA pool reduces energy 

consumption by flagella movement and more ATP is made available for supercoiling. This 

may explain the correction of the triple topA rnhA gyrB(Ts) mutant by insertions in pta and 

aceE that both reduce the acetyl-CoA pool. 

         Supercoiling restoration of the triple topA rnhA gyrB(Ts) mutant with insertions in 

genes that reduce acetyl-CoA  production  can  also be explained  by the link between 

acetyl-CoA and central metabolism (Wolfe, 2005). A link between central carbon 

metabolism and DNA replication has been established following studies conducted in E. 

coli as well as in Bacillus subtilis. In B. subtilis, suppressors of temperature sensitive 

replication mutants were detected only in genes encoding enzymes that act at the late stages 

of glycolysis and gluconeogenesis (Janniere et al., 2007). In E. coli, the correlation between 

central metabolism and DNA replication was also demonstrated with the findings that the 

temperature sensitivity of mutants coding for replication proteins could be suppressed by 

mutations coding for enzymes involved in central carbon metabolism (Maciag et al., 2011). 

It was also found in another E. coli study that the cell division defects of various replication 

mutants could be corrected by mutations in genes involved in central carbon metabolism 

(Maciag-Dorszynska et al., 2012).  In both E. coli studies, one of the suppressors was pta 

which we picked up in our suppressor screen. These studies clearly established a link 

between central carbon metabolism and DNA replication initiation and elongation. 

Therefore, the correction of the phenotypes of the triple topA rnhA gyrB(Ts) mutant by 

insertion mutations that reduce acetyl-CoA levels could be linked to ATP availability. 

Indeed, since acetyl-CoA sits at the cross road of central metabolism, reduction in its level 

may lead to an overall decrease in metabolism implying that processes such as DNA 

replication will be slowed down. An overall reduction in DNA replication will increase the 

ATP pool in cells and thus makes more ATP available for gyrase. 
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5.3 type IA topos and genome maintenance 

         In the second part of my project, the role of type IA DNA topoisomerases in DNA 

metabolism in E. coli was studied using a genetic approach to reveal the in vivo functions 

of these topoisomerases. It is not an accident of nature that at least one type IA DNA 

topoisomerase is required in all living organisms spanning from E. coli to humans. Several 

studies have pointed out that one important function of type IA DNA topoisomerases is in 

the resolution of DNA structures that are formed during recombination and clues to this, 

first emerged with studies in yeast. However, we found that the role of type IA DNA 

topoisomerases is not only limited to the resolution of homologous recombination 

intermediates. They equally play a role in DNA replication initiation and contribute to the 

overall maintenance of a stable genome.   

          

5.3.1. Type IA topoisomerases and genome maintenance in E. coli 

           We have demonstrated interplay between gyrase and type IA DNA topoisomerases 

in chromosome segregation. We found that both the growth defect and Par- phenotypes of 

gyrB(Ts) cells at the nonpermissive temperature were corrected by deleting topA only in the 

presence of topB (Usongo et al., 2013). Unlike topoisomerases of types IB and II which 

have well defined and characterized roles in DNA synthesis, type IA topoisomerases have 

mostly been associated with DNA recombination irrespective of the fact that their 

participation in replication has been clearly demonstrated in vitro through reconstituted 

systems (Hiasa & Marians, 1994a, 1996). Their role in recombination has been illustrated 

in vivo by the appearance of long filaments with unsegregated nuclei in cells genetically 

depleted of their activity (Zhu et al., 2001., Usongo, unpublished results). Moreover, the 

work of Digate and coworkers (Zhu et al., 2001) was originally interpreted as indicating the 

involvement of type 1A topos in recombination because their phenotype was corrected by 

recA-; we have shown the same correction by recA- in double topA topB mutants. We have 

further investigated this phenotype and rather found that the involvement of RecA is in the 

frame of cSDR, thus showing that type 1A topos act together in replication (Usongo, 

unpublished results). Moreover, our observation that deleting topA corrects the phenotypes 
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of gyrB(Ts) cells at the nonpermissive temperature only when topB is present clearly 

establishes an in vivo role for type IA topos in DNA replication that is unrelated to the 

resolution of recombination intermediates. This role is supported by our observations that 

deleting recA, a compensatory mechanism that significantly corrected the growth and 

segregation defects of a topA topB gyrB(Ts) mutant at lower temperatures, had no effect at 

high temperatures (Usongo, unpublished results). topA topB null mutants have been shown 

to suffer from severe RecA- dependent segregation defects (Zhu et al., 2001) so it will be 

reasonable to argue that the growth and segregation defects of a topA topB gyrB(Ts) mutant 

at the nonpermissive temperature is RecA-dependent which was however not the case. 

More importantly, we found that overproducing topo III at a very high level corrected the 

Par- phenotype of the gyrB(Ts) strain at the nonpermissive temperature (Usongo et al., 

2013). As mentioned earlier, the growth and chromosome segregation defects of triple topA 

rnhA gyrB(Ts) mutant was corrected by overproducing topo III. We found that in the triple 

topA rnhA gyrB(Ts) mutant substituting the gyrB(Ts) allele by a gyrB+ one bypassed the  

need for topo III overproduction for growth and chromosome segregation in the triple 

mutant (Usongo et al., 2013). This point to an interplay between type IA topos and gyrase 

and suggest that at nonpermissive temperatures when gyrase is ineffective, type IA topos 

play a role in chromosome segregation. 

         We equally found that the oriC15::aph insertion mutation significantly corrected both 

the growth and chromosome segregation defects of the topA mutant at low temperatures. 

This result clearly indicates that topo I plays an important role in regulating replication 

initiation at oriC. Other compensatory mechanisms that corrected the segregation defects of 

topA mutants included deleting recQ, recA, and overproducing topo III. Altogether, these 

findings point to a role of topo I in resolving homologous recombination intermediates. In 

fact, topo I is present in all bacteria while topo III is present only in a few of them (Forterre 

et al., 2007). This may suggest that topo I can normally perform all the functions attributed 

to a type IA topoisomerase in bacteria. Overproducing topo III also corrected the growth 

and segregation defects of the triple topA rnhA gyrB(Ts) mutant (Usongo et al., 2008).  In 

this case topo III may substitute in part for the role of the more abundant protein topo I in 

R-loop prevention. In topA rnhA gyrB(Ts) cells excess replication is due to both R-loop 
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primed cSDR and over-initiation from oriC. Interestingly, studies in our laboratory have 

shown that topo III can inhibit R-loop formation both in vivo and in vitro (Broccoli et al., 

2000). 

          That deleting recQ improved the growth of cells lacking both topo III and IV activity 

(Lopez et al., 2005; Perez-Cheeks et al., 2012), may suggest that topo III, like topo I, can 

also act with RecQ to resolve recombination intermediates. This is in agreement with our 

finding that overproducing topo III can substitute for the absence of topo I (Usongo, 

chapter 4). Thus, by deleting recQ, topo III will be freed from RecQ and more of it will be 

available to help topo IV in removing precatenanes during replication.  

 

            5.3.2. Type IA topoisomerases and genome maintenance in eukaryotes 

          Phenotypes of genome instability are also manifested in eukaryotes in the absence of 

type IA topos. In the budding yeast S. cerevisiae, type IA topo was the first enzyme of this 

family to be identified in eukaryotic cells (Wallis et al., 1989) and since it was the third 

topo to be identified in this organism, it was named Top3. This topo was discovered 

following the isolation of a mutation in top3 that stimulated hyper-recombination between 

repeated sequences (Wallis et al., 1989). Phenotypes of top3 mutants include slow growth. 

In addition, these mutants are also sensitive to DNA damaging agents and are equally 

defective in forming viable spores during sporulation (Chakraverty et al., 2001; Frei & 

Gasser, 2000; Mullen et al., 2000; Saffi et al., 2000; Yamagata et al., 1998). The slow-

growth and sporulation defect of top3 mutants are suppressed by a mutation in SGS1 (SGS 

stands for slow growth suppression) encoding the RecQ homolog (Watt et al., 1995; 

Bennett et al., 1998) of S. cerevisiae or by overproducing E. coli topo I (Gangloff et al., 

1994; Wallis et al., 1989). In fact suppression with the SGS1 mutation bodes well with the 

observation that Top3 physically and functionally interacts with Sgs1 (Bennett et al.,  2000; 

Gangloff et al., 1994; Goodwin et al., 1999). 

         The slow growth and sporulation deficiency of top3 mutants are also suppressed by 

deleting Rad51, encoding the RecA homolog of S. cerevisiae (Oakley et al.,2002; Shor et 

al., 2002). These data suggest that Sgs1 processed recombination intermediates generating 

structures that can only be resolved by a type IA topo such as Top3 or E. coli topo I. A 
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mutation in SGS1 abolishes this pathway and prevents the accumulation of toxic 

recombination intermediates that can only be resolved by Top3. Overproducing E. coli topo 

I suppressed these phenotypes since it can substitute for the absence of Top3 in the 

processing of recombination intermediates generated by SGS1. This bodes well with our 

observation that the growth and segregation defects in cells lacking topo I activity were 

corrected by deleting recQ, recA, or by overproducing topo III. Our data suggest that in E. 

coli, topo I acts with RecQ to resolve RecA-dependent recombination intermediates that 

will otherwise lead to chromosome segregation defects. Our data also suggest that type IA 

topos act in this recombination pathway downstream of RecA. We found that recA and 

recQ deletions were epistatic to topB overexpression in correcting the growth and 

segregation defects of topA gyrB(Ts) (chapter 4). 

 

            5.3.3. Type IA DNA topoisomerases and genome maintenance in higher 

eukaryotes 

              The absence of type IA topos in higher eukaryotes also affects the stability of the 

genome. Vertebrates have two type 1A DNA topoisomerases Top3α and Top3β. Studies in 

mice have shown that embryos in which both copies of Top3α are deleted die shortly after 

implantation (Li & Wang, 1998). Mice lacking Top3β have a shorter life span compared to 

mice with the wild type gene (Kwan & Wang, 2001). They display a decrease in fertility as 

they age and also develop autoimmunity (Kwan et al., 2007; Kwan et al., 2003; Kwan & 

Wang, 2001). The development of autoimmunity in mice lacking Top3β is unrelated to 

problems with B and T lymphocytes but is related to an increase rate of apoptosis due to 

chromosomal damage (Kwan et al., 2007). The lack of Top3β in cells also affects response 

to DNA damage.  p53 plays an important role in mediating the G1/S checkpoint and in the 

absence of Top3β, this pathway is not activated following the induction of DNA damage 

(Mohanty et al., 2008). Zebra fish lacking Top3α die at about ten days after they have been 

fertilized and they also show a distinct lack of differentiating thymocytes and this defect is 

corrected by suppressing p53, suggesting that in the absence of Top3α, the DNA damage 

pathway is activated (Monnich et al., 2010). Top3α is also involved in the embryonic 
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development of Drosophila. When Top3α is absent, embryonic development is arrested at 

an early stage (Plank et al., 2005). 

          Chromosome painting of Top3β mutants has also revealed that these mutants exhibit 

an increase in aneuploidy, hyperploidy and apoptosis in germ line cells (Kwan et al., 2003). 

These findings were attributed to the ability of eukaryotic type IA DNA topos to resolve 

meiotic double Holliday junctions. Interestingly, it has been shown that Top3α interacts 

with BLM the RecQ homolog in humans and this interaction is important for proper 

chromosome segregation (Chan et al., 2007). BLM is required for the localization of Top3α 

on anaphase bridge structures (thin strands of DNA stretching between separating 

chromosomes). These bridges formed at high frequency between segregating sister 

chromosomes in normal human cells undergoing mitosis. The observation that these 

bridges were decorated with BLM led to their identification (Chan et al., 2007). In the 

absence of BLM, the frequency of these bridges increases leading to segregation defects 

(Chan et al., 2007). In fact it has been shown that the activity of BLM at these bridges 

limits the lethality associated with Rad51 (encoding the RecA homolog in human cells) 

down regulation in human cells (Lahkim et al., 2010). Interestingly, our data also reveal 

that in E. coli, RecQ processed recombination intermediates are resolved by a type IA topo 

and this will explain why the growth and segregation defects of topo I were corrected by 

deleting recQ, recA or by overproducing topo III. Deleting recA eliminates this pathway 

while deleting recQ eliminates the RecQ and topo I pathway in the processing of RecA 

generated recombination intermediates. In addition, it has been shown that in human cells, 

BLM acts downstream from RAD51 to resolve RAD51-mediated Holliday junctions 

(Lahkim et al., 2010). Interestingly, we also found an epistatic interaction between RecA 

and RecQ (the topA gyrB(Ts) recA recQ mutant had the viability of the topA gyrB(Ts) recA 

mutant) in E. coli (Usongo, unpublished results). recQ and recA complement the growth 

defect of a topA gyrB(Ts) strain (chapter 4). We observed that recQ complemented the 

growth defect of a topA gyrB(Ts) strain better than recA indicating that in topA gyrB(Ts) 

recA recQ, RecQ had no effect on viability outside the RecA-dependent processes 

confirming that RecQ acts downstream of RecA. These observations clearly indicate that 
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the molecular mechanisms employed in the maintenance of genome stability are conserved 

among type IA topos. 

 

5.6. Type IA DNA topoisomerases and the maintenance of a stable mitochondrial 

genome. 

          Type IA topos plays a role in the maintenance of a stable mitochondrial genome in 

humans as well as other eukaryotes. In mammalian cells, mitochondrial DNA (mtDNA) is 

the only genetic material that is located outside of the nucleus. mtDNA molecules are close 

circular and topologically constrained (Moraes, 2001). Type IB toposimerase have been 

shown to ensure mtDNA replication (Kosovsky & Soslau, 1991; Topcu & Castora, 1995; 

Tua et al., 1997). A human  mitochondrial topo I gene Top1mt encoding a mitochondrial-

targeting type IB DNA topoisomerase and homologous to nuclear Top1 has also been 

identified and shown to possess a mitochondrial localization signal (Zhang et al., 2001). 

Though it has been shown that the mitochondria in human cells harbor a type IB 

topoisomerase (Top1mt), knock-out studies in mice have shown that it is not essential 

(Zhang et al., 2007) suggesting that its role may be substituted by another topoisomerase. 

Interestingly it has been shown that human Top3α (hTop3α) localizes both in the nucleus 

and mitochondria (Wang et al., 2002) suggesting that it can substitute for Top1mt. This 

implies that Top3α can play a major role in mitochondrial genome maintenance. In fact 

studies have shown that replication of both strands of the close circular genome of the 

mitochondria is not synchronous (Brown et al., 2005) implying that single strand gaps may 

persist in the DNA allowing Top3α to gain access to help  terminate replication and  ensure 

faithful chromosome segregation. We found that the growth defect and Par- phenotypes of 

a gyrB(Ts) mutant at the nonpermissive temperature were corrected by deleting topA only 

when topo III was present and overproducing topo IV the major cellular decatenase did not 

substitute for topB. More importantly, overproducing topo III at a very high level was 

shown to suppress the Par- phenotype (Usongo et al., 2013). All these data point to the 

essential role type IA topos play to ensure the stability of the genome. The maintenance of 

a stable genome in mitochondria is of great importance judging from the fact that 

mitochondria produce most of the cellular energy and also defects in mitochondria lead to a 



 
 

 

244

variety of human diseases such as myopathies, diabetes, neurodegeneracies, progeria (early 

aging) and cancers (Greaves & Taylor, 2006; Schapira, 2006). 

         The maintenance of stable genome by type IA topos is not only limited to the human 

mitochondria. Trypanosomatids protozoa which cause important animal and human 

diseases and  include protozoans such as the African  trypanosome Trypanosoma brucei 

and Leishmania  spp also have a complex mitochondrial DNA called kinetoplast (or 

kDNA) (Shapiro & Englund, 1995).  kDNA is a complex network of topologically 

interlocked DNA circles. In the mitochondrion of each cell, this network of kDNA is 

condensed into a disc-shaped structure and this network is made up of two circles termed 

the maxi and mini circles with the former present in few dozen copies and the later in 

several thousand copies (Shapiro & Englund, 1995). These networks are inherited by 

daughter cells through replication. Studies have shown that minicircles do not replicate 

while attached to the network. They replicate via theta structures  intermediates as free 

circles following their release from the network by a type II topoisomerase (Liu et al., 

2005) which could be the mitochondrial enzyme Top2mt (Kulikowicz & Shapiro, 2006). 

Once replication is completed, progeny minicircles are re-attached to the network (Liu et 

al., 2005). Reattachment could be achieved by a type II topoisomerase such as Top2mt, 

however, recent studies in T. brucei have revealed that this reattachment is performed  by a 

type IA topoisomerase, Top1mt (Scocca & Shapiro, 2008). In this study, it was observed 

that silencing the expression of Top1mt by RNAi leads to a striking accumulation of kDNA 

late theta structure intermediates, culminating in the loss of kDNA networks and a halt in 

cell growth. This study thus provides solid evidence that type IA topoisomerases are 

absolutely required in the resolution of late theta replication intermediates. The presence of 

nicks or gaps in the DNA network of kDNA clearly justifies the action of type IA 

topoisomerase since they are capable of attaching nicked or gaped ring as opposed to intact 

rings. In kDNA replication, the conversion of replicated rings into the covalently closed 

rings only occurs after all the minicircles in the network have been replicated, implying that 

the kinetoplast replication system may use the nicks or gaps to identify a minicircle that has 

completed replication. This may serve as a cell cycle control mechanism to ensure that each 

minicircle is replicated once per generation. 
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           In Drosophila producing a Top3α that is localized only in the nucleus following a 

mutation of the start codon upstream of the mitochondrial localization signal also show 

phenotypes of genome instability (Wu, Feng, & Hsieh, 2010).  In this study, mutant flies 

were shown to have a low mtDNA copy number as well as low ATP content, suggestive of 

a problem in DNA replication and underperforming mitochondria respectively. It was also 

observed that female flies were completely sterile while for male flies, a fraction was 

completely sterile and the other fraction manifested gradual loss in sterility. Progressive 

germ line stem cell loss was responsible for male sterility. This implies that Top3α, through 

its mitochondrial function, plays an important role in germ line stem cell maintenance. All 

these observations point to the important role that type IA topos play in the maintenance of 

genome stability in all domains of life. 
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        CHAPTER 6: Conclusion and future directions 

             In the first part of this project we wanted to understand the link between R-loop 

formation and hypernegative supercoiling and we constructed a conditional topA rnhA 

gyrB(Ts) mutant and found that depleting RNase HI activity inhibited supercoiling. We 

performed a suppressor screen and identified suppressor mutations that restored 

supercoiling and corrected the growth and segregation defects of topA rnhA gyrB(Ts) 

mutant. The following conclusions can be drawn from the first part of this project: 

           RNase HI plays an important role in regulating DNA supercoiling by modulating 

gyrase activity. Assays on gyrase activity in vivo and in crude cell extracts of topA rnhA 

gyrB(Ts) indicates that this modulation is via the ATP dependent supercoiling reaction of 

gyrase. In these assays the ATP dependent supercoiling reaction of gyrase was inhibited 

while the ATP independent relaxation was unaffected. This suggest that in the absence of 

RNase HI, an inhibitor is synthesized that specifically target only the ATP dependent 

supercoiling reaction of gyrase. In fact  supercoiling analysis at 37oC in a single rnhA- 

mutant revealed that  DNA was more relaxed in this mutant compared to a wild type  

control and relaxation was more evident  in  rnhA gyrB(Ts) mutant compared to rnhA- 

alone (Usongo, unpublished results). This indicates that the effect of this inhibitor is more 

dramatic when gyrase is defective as is the case with gyrB(Ts) and when replication is 

unregulated as is the case in the triple topA rnhA gyrB(Ts) mutant. 

         RNase HI reduces unregulated replication to allow proper chromosome segregation 

prior to cell division. In topA rnhA gyrB(Ts) unregulated replication due to the absence of 

topA and rnhA both lead to the accumulation of stable R-loops. Replication from these R-

loops (cSDR) in addition to replication from oriC actually overwhelms the capacity of the 

cell to segregate the chromosomes. A good number of suppressor mutations that restored 

supercoiling and corrected the growth and segregation defects of topA rnhA gyrB(Ts) cells 

were in genes that affected DNA replication and nucleotide metabolism. More importantly 

we also isolated suppressors that were shown to reduce cSDR (rne::aph, rnr::aph and 

dnaT::aph). 
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         It is possible that the in the absence of RNase HI, the biochemical pathway that 

synthesizes ATP in the cell (Krebs cycle and glycolysis) might be affected limiting the 

amount of ATP available in the cell. This might explain why suppressors were mapped in 

genes affecting DNA replication and nucleotide metabolism. Since cellular processes such 

as replication consume a lot of ATP, reducing replication will make more ATP available 

for gyrase. In this case, it will be interesting to investigate the possibility that the absence of 

RNase HI renders the metabolic pathway for ATP synthesis defective.  I propose that 

experiments be performed to shed more light on this possibility. To achieve this, the 

expression of genes implicated in the synthesis of ATP in the Krebs and glycolytic pathway 

will need to be analyzed by DNA microarray. The expression patterns in rnhA-, gyrB(Ts), 

topA rnhA gyrB(Ts) and a wild type control strain will give us valuable information on this 

possibility. 

         In the first part of this project, our goals were to understand the mechanism of 

supercoiling inhibition in the triple topA rnhA gyrB(Ts) mutant and to subsequently identify 

the gyrase inhibitor. Our results from the suppressor screen provide interesting leads on the 

way forward to identify potential gyrase inhibitor(s). Supercoiling by gyrase was 

dramatically restored both in vivo and in vitro in three suppressor mutations (ynjD, ygiL and 

ybgP).  The function of these genes in E. coli is still unknown and they are potential 

candidates for a gyrase inhibitor.  Further experiments need to be performed to validate 

them as gyrase inhibitors. The suppressor mutations need to be transduced into a wild type 

strain and tested for supercoiling stimulation at various growth phases. The genes of 

validated candidates needs to be cloned and the protein overexpressed and purified. The 

purified protein will then be assayed on the ability to inhibit the supercoiling activity of 

gyrase in vitro. 

         The second part of this project was to study the roles of type IA topoisomerases in 

chromosome segregation and genome maintenance. The following conclusions can be 

drawn from the second part of this project. 

         Type IA topoisomerases play a role in chromosome segregation via supercoiling by 

controlling the number of forks travelling on the chromosome and this is achieved by 

limiting firing from oriC. In the absence of topA, excess supercoiling will promote DNA 



 
 

 

248

melting at the origin leading to unregulated replication. Moreover, one major function of 

topA, a type IA topo is to prevent R-loop formation that leads to cSDR. In a gyrB(Ts) strain 

at the nonpermissive temperature, deleting topA corrects the replication initiation problem 

via supercoiling. Because gyrase is defective, the unregulated replication from oriC will 

make this defective gyrase unable to support chromosome segregation and this will render 

topo III indispensable for the execution of this function.  

         Type IA topoisomerases play a role in genome maintenance by controlling initiation 

from oriC and by destabilizing R-loops. R-loops can also trigger fork collisions outside of 

the ter region and this has been shown to be an important source of genomic instability in 

E. coli (Wimberly et al., 2013). The control of replication in bacteria is of great importance 

because of their short generation time whereby new rounds of replication are started before 

the completion of previous rounds, implying that all the stages of replication must be 

tightly regulated to ensure proper chromosome segregation and cell division. Type IA 

topoisomerases thus contribute to this regulation by controlling initiation from oriC and by 

destabilizing R-loops that act as alternative sources of replication independent of the tightly 

controlled and regulated oriC/DnaA system. 

         As is the case in eukaryotes, bacterial type IA topoisomerases also play a role in 

genome maintenance by acting with RecQ to prevent RecA-dependent chromosome 

segregation defects. Unlike in eukaryotes where it is well established that RecQ acts with 

Top3, in E. coli we provide genetic evidence that RecQ acts with topo I to prevent RecA-

dependent chromosome segregation defects that will otherwise lead to genome instability. 

In fact it has been shown that E. coli topo I can compensate for the absence of Top3 in S. 

cerevisiae (Wallis et al., 1989; Gangloff et al., 1994). Topo I is present in all bacteria while 

topo III is present only in a limited set of bacteria. This seems to suggest that in bacteria 

whereby only topo I is present, it will substitute for the function of topo III. It is possible 

that topo I in these bacteria have evolved to be efficient in decatenation and precatenane 

removal (Li et al., 2000). I proposed that experiments be performed on bacterial species 

which have only topo I. The in vitro oriC-based replication system (Hiasa et al., 1994; 

Hiasa & Marians, 1994a) can be used to assess whether topo I from these bacteria can 

perform functions assigned to topo III in this system. It is reasonable to speculate that in 
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bacteria, topo III acts as a back-up for the more abundant topo I and this may explain why 

cells lacking topo III activity display no obvious phenotypes (Digate & Marians, 1989). 

 

 

 

 

 

 

 

 

 

 

 

                         

 

 

 

 

 



 
 

 

250

     CHAPTER 7: References and Annexes 

 

 

 

 

 

 

 

 

                                     

 

 

 

 

 

 

 

 

 

 

 



 
 

 

251

7.1. References 

Abe, Y., Jo, T., Matsuda, Y., Matsunaga, C., Katayama, T., & Ueda, T. (2007). Structure 
and function of DnaA N-terminal domains: specific sites and mechanisms in inter-
DnaA interaction and in DnaB helicase loading on oriC. J Biol Chem,24, 17816-
17827. doi: 10.1074/jbc.M701841200 

Adams, D. E., Shekhtman, E. M., Zechiedrich, E. L., Schmid, M. B., & Cozzarelli, N. R. 
(1992). The role of topoisomerase IV in partitioning bacterial replicons and the 
structure of catenated intermediates in DNA replication. Cell,2, 277-288.  

Al-Deib, A. A., Mahdi, A. A., & Lloyd, R. G. (1996). Modulation of recombination and 
DNA repair by the RecG and PriA helicases of Escherichia coli K-12. J 
Bacteriol,23, 6782-6789.  

Alexandrov, A. I., Cozzarelli, N. R., Holmes, V. F., Khodursky, A. B., Peter, B. J., Postow, 
L., . . . Vologodskii, A. V. (1999). Mechanisms of separation of the complementary 
strands of DNA during replication. Genetica,1-2, 131-140.  

Asai, T., Bates, D. B., & Kogoma, T. (1994). DNA replication triggered by double-stranded 
breaks in E. coli: dependence on homologous recombination functions. Cell,78, 
1051-1061.  

Asai, T., & Kogoma, T. (1994). Roles of ruvA, ruvC and recG gene functions in normal 
and DNA damage-inducible replication of the Escherichia coli chromosome. 
Genetics,4, 895-902.  

Ashiuchi, M., Kuwana, E., Yamamoto, T., Komatsu, K., Soda, K., & Misono, H. (2002). 
Glutamate racemase is an endogenous DNA gyrase inhibitor. J Biol Chem,42, 
39070-39073. doi: 10.1074/jbc.C200253200 

Aussel, L., Barre, F. X., Aroyo, M., Stasiak, A., Stasiak, A. Z., & Sherratt, D. (2002). FtsK 
Is a DNA motor protein that activates chromosome dimer resolution by switching 
the catalytic state of the XerC and XerD recombinases. Cell,2, 195-205.  

Baaklini, I., Usongo, V., Nolent, F., Sanscartier, P., Hraiky, C., Drlica, K., & Drolet, M. 
(2008). Hypernegative supercoiling inhibits growth by causing RNA degradation. J 
Bacteriol,22, 7346-7356. doi: 10.1128/JB.00680-08 

Bahloul, A., Boubrik, F., & Rouviere-Yaniv, J. (2001). Roles of Escherichia coli histone-
like protein HU in DNA replication: HU-beta suppresses the thermosensitivity of 
dnaA46ts. Biochimie,2, 219-229.  



 
 

 

252

Bailey, S., Eliason, W. K., & Steitz, T. A. (2007). Structure of hexameric DnaB helicase 
and its complex with a domain of DnaG primase. Science,5849, 459-463. doi: 
10.1126/science.1147353 

Baker, T. A., & Kornberg, A. (1988). Transcriptional activation of initiation of replication 
from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell,1, 113-
123.  

Baldi, M. I., Benedetti, P., Mattoccia, E., & Tocchini-Valentini, G. P. (1980). In vitro 
catenation and decatenation of DNA and a novel eucaryotic ATP-dependent 
topoisomerase. Cell,2, 461-467.  

Baliko, G., & Venetianer, P. (1993). An Escherichia coli gene in search of a function: 
phenotypic effects of the gene recently identified as murI. J Bacteriol,175, 6571-
6577.  

Barak, R., Prasad, K., Shainskaya, A., Wolfe, A. J., & Eisenbach, M. (2004). Acetylation of 
the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from 
Escherichia coli. J Mol Biol,2, 383-401. doi: 10.1016/j.jmb.2004.07.020 

Barak, R., Welch, M., Yanovsky, A., Oosawa, K., & Eisenbach, M. (1992). 
Acetyladenylate or its derivative acetylates the chemotaxis protein CheY in vitro 
and increases its activity at the flagellar switch. Biochemistry,41, 10099-10107.  

Barak, R., Yan, J., Shainskaya, A., & Eisenbach, M. (2006). The chemotaxis response 
regulator CheY can catalyze its own acetylation. J Mol Biol,2, 251-265. doi: 
10.1016/j.jmb.2006.03.033 

Bath, J., Wu, L. J., Errington, J., & Wang, J. C. (2000). Role of Bacillus subtilis SpoIIIE in 
DNA transport across the mother cell-prespore division septum. Science,5493, 995-
997.  

Bauer, W. R. (1978). Structure and reactions of closed duplex DNA. Annu Rev Biophys 
Bioeng, 287-313. doi: 10.1146/annurev.bb.07.060178.001443 

Benarroch, D., Claverie, J. M., Raoult, D., & Shuman, S. (2006). Characterization of 
mimivirus DNA topoisomerase IB suggests horizontal gene transfer between 
eukaryal viruses and bacteria. J Virol,1, 314-321. doi: 10.1128/JVI.80.1.314-
321.2006 

Bennett, R. J., Keck, J. L., & Wang, J. C. (1999). Binding specificity determines polarity of 
DNA unwinding by the Sgs1 protein of S. cerevisiae. J Mol Biol,2, 235-248. doi: 
10.1006/jmbi.1999.2739 



 
 

 

253

Bennett, R. J., Noirot-Gros, M. F., & Wang, J. C. (2000). Interaction between yeast sgs1 
helicase and DNA topoisomerase III. J Biol Chem,35, 26898-26905. doi: 
10.1074/jbc.M003137200 

Bennett, R. J., Sharp, J. A., & Wang, J. C. (1998). Purification and characterization of the 
Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J Biol Chem,16, 9644-
9650.  

Bensaid, A., Almeida, A., Drlica, K., & Rouviere-Yaniv, J. (1996). Cross-talk between 
topoisomerase I and HU in Escherichia coli. J Mol Biol,2, 292-300. doi: 
10.1006/jmbi.1996.0086 

Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P. C., Nicolas, A., & Forterre, P. (1997). 
An atypical topoisomerase II from Archaea with implications for meiotic 
recombination. Nature,6623, 414-417. doi: 10.1038/386414a0 

Bergerat, A., Gadelle, D., & Forterre, P. (1994). Purification of a DNA topoisomerase II 
from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme 
with both bacterial and eucaryal features. J Biol Chem,44, 27663-27669.  

Bernstein, K. A., Gangloff, S., & Rothstein, R. (2010). The RecQ DNA helicases in DNA 
repair. Annu Rev Genet, 393-417. doi: 10.1146/annurev-genet-102209-163602 

Bigot, S., & Marians, K. J. (2010). DNA chirality-dependent stimulation of topoisomerase 
IV activity by the C-terminal AAA+ domain of FtsK. Nucleic Acids Res,9, 3031-
3040. doi: 10.1093/nar/gkp1243 

Bigot, S., Sivanathan, V., Possoz, C., Barre, F. X., & Cornet, F. (2007). FtsK, a literate 
chromosome segregation machine. Mol Microbiol,6, 1434-1441. doi: 
10.1111/j.1365-2958.2007.05755.x 

Biswas, S. B., Flowers, S., & Biswas-Fiss, E. E. (2004). Quantitative analysis of nucleotide 
modulation of DNA binding by DnaC protein of Escherichia coli. Biochem J,Pt 3, 
553-562. doi: 10.1042/BJ20031255 

Blaesing, F., Weigel, C., Welzeck, M., & Messer, W. (2000). Analysis of the DNA-binding 
domain of Escherichia coli DnaA protein. Mol Microbiol,3, 557-569.  

Bliska, J. B., & Cozzarelli, N. R. (1987). Use of site-specific recombination as a probe of 
DNA structure and metabolism in vivo. J Mol Biol,2, 205-218.  

Bloomfield, Victor A., Crothers, Donald M., & Tinoco, Ignacio. (1974). Physical chemistry 
of nucleic acids. New York: Harper & Row. 

Boeneman, K., Fossum, S., Yang, Y., Fingland, N., Skarstad, K., & Crooke, E. (2009). 
Escherichia coli DnaA forms helical structures along the longitudinal cell axis 



 
 

 

254

distinct from MreB filaments. Mol Microbiol,3, 645-657. doi: 10.1111/j.1365-
2958.2009.06674.x 

Boles, T. C., White, J. H., & Cozzarelli, N. R. (1990). Structure of plectonemically 
supercoiled DNA. J Mol Biol,4, 931-951. doi: 10.1016/S0022-2836(05)80272-4 

Boonsombat, R., Yeh, S. P., Milne, A., & Sandler, S. J. (2006). A novel dnaC mutation that 
suppresses priB rep mutant phenotypes in Escherichia coli K-12. Mol Microbiol,4, 
973-983. doi: 10.1111/j.1365-2958.2006.05147.x 

Boubakri, H., de Septenville, A. L., Viguera, E., & Michel, B. (2010). The helicases DinG, 
Rep and UvrD cooperate to promote replication across transcription units in vivo.  
EMBO J,29, 145-157.  

Bowater, R. P., Chen, D., & Lilley, D. M. (1994). Modulation of tyrT promoter activity by 
template supercoiling in vivo. EMBO J,23, 5647-5655.  

Boye, E., Stokke, T., Kleckner, N., & Skarstad, K. (1996). Coordinating DNA replication 
initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc Natl 
Acad Sci U S A,22, 12206-12211.  

Bradshaw, J. S., & Kuzminov, A. (2003). RdgB acts to avoid chromosome fragmentation in 
Escherichia coli. Mol Microbiol,6, 1711-1725.  

Bramhill, D., & Kornberg, A. (1988). Duplex opening by dnaA protein at novel sequences 
in initiation of replication at the origin of the E. coli chromosome. Cell,5, 743-755.  

Broccoli, S., Phoenix, P., & Drolet, M. (2000). Isolation of the topB gene encoding DNA 
topoisomerase III as a multicopy suppressor of topA null mutations in Escherichia 
coli. Mol Microbiol,1, 58-68.  

Brooks, T. A., & Hurley, L. H. (2009). The role of supercoiling in transcriptional control of 
MYC and its importance in molecular therapeutics. Nat Rev Cancer,12, 849-861. 
doi: 10.1038/nrc2733 

Brooks, T. A., Kendrick, S., & Hurley, L. (2010). Making sense of G-quadruplex and i-
motif functions in oncogene promoters. FEBS J,17, 3459-3469. doi: 
10.1111/j.1742-4658.2010.07759.x 

Brosh, R. M., Jr., Li, J. L., Kenny, M. K., Karow, J. K., Cooper, M. P., Kureekattil, R. P., . . 
. Bohr, V. A. (2000). Replication protein A physically interacts with the Bloom's 
syndrome protein and stimulates its helicase activity. J Biol Chem,31, 23500-23508. 
doi: 10.1074/jbc.M001557200 

Brown, P. O., & Cozzarelli, N. R. (1979). A sign inversion mechanism for enzymatic 
supercoiling of DNA. Science,4422, 1081-1083.  



 
 

 

255

Brown, P. O., & Cozzarelli, N. R. (1981). Catenation and knotting of duplex DNA by type 
1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc Natl 
Acad Sci U S A,2, 843-847.  

Brown, T. A., Cecconi, C., Tkachuk, A. N., Bustamante, C., & Clayton, D. A. (2005). 
Replication of mitochondrial DNA occurs by strand displacement with alternative 
light-strand origins, not via a strand-coupled mechanism. Genes Dev,20, 2466-2476. 
doi: 10.1101/gad.1352105 

Budke, B., & Kuzminov, A. (2010). Production of clastogenic DNA precursors by the 
nucleotide metabolism in Escherichia coli. Mol Microbiol,1, 230-245. doi: 
10.1111/j.1365-2958.2009.06994.x 

Buhler, C., Gadelle, D., Forterre, P., Wang, J. C., & Bergerat, A. (1998). Reconstitution of 
DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from 
subunits separately overexpressed in Escherichia coli. Nucleic Acids Res,22, 5157-
5162.  

Butland, G., Peregrin-Alvarez, J. M., Li, J., Yang, W., Yang, X., Canadien, V., . . . Emili, 
A. (2005). Interaction network containing conserved and essential protein 
complexes in Escherichia coli. Nature,7025, 531-537. doi: 10.1038/nature03239 

Cairns, J. (1963a). The bacterial chromosome and its manner of replication as seen by 
autoradiography. J Mol Biol, 208-213.  

Cairns, J. (1963b). Chromosome of Escherichia Coli. Cold Spring Harbor Symposia on 
Quantitative Biology, 43-&.  

Camara, J. E., Breier, A. M., Brendler, T., Austin, S., Cozzarelli, N. R., & Crooke, E. 
(2005). Hda inactivation of DnaA is the predominant mechanism preventing 
hyperinitiation of Escherichia coli DNA replication. EMBO Rep,8, 736-741. doi: 
10.1038/sj.embor.7400467 

Cameron, A. D., Stoebel, D. M., & Dorman, C. J. (2011). DNA supercoiling is 
differentially regulated by environmental factors and FIS in Escherichia coli and 
Salmonella enterica. Mol Microbiol,1, 85-101. doi: 10.1111/j.1365-
2958.2011.07560.x 

Campbell, J. L., & Kleckner, N. (1990). E. coli oriC and the dnaA gene promoter are 
sequestered from dam methyltransferase following the passage of the chromosomal 
replication fork. Cell,5, 967-979.  

Carr, K. M., & Kaguni, J. M. (2001). Stoichiometry of DnaA and DnaB protein in initiation 
at the Escherichia coli chromosomal origin. J Biol Chem,48, 44919-44925. doi: 
10.1074/jbc.M107463200 



 
 

 

256

Chakraverty, R. K., Kearsey, J. M., Oakley, T. J., Grenon, M., de La Torre Ruiz, M. A., 
Lowndes, N. F., & Hickson, I. D. (2001). Topoisomerase III acts upstream of 
Rad53p in the S-phase DNA damage checkpoint. Mol Cell Biol,21, 7150-7162. doi: 
10.1128/MCB.21.21.7150-7162.2001 

Champoux, J. J. (1981). DNA is linked to the rat liver DNA nicking-closing enzyme by a 
phosphodiester bond to tyrosine. J Biol Chem,10, 4805-4809.  

Champoux, J. J. (2001). DNA topoisomerases: structure, function, and mechanism. Annu 
Rev Biochem, 369-413. doi: 10.1146/annurev.biochem.70.1.369 

Chan, K. L., North, P. S., & Hickson, I. D. (2007). BLM is required for faithful 
chromosome segregation and its localization defines a class of ultrafine anaphase 
bridges. EMBO J,14, 3397-3409. doi: 10.1038/sj.emboj.7601777 

Charvin, G., Bensimon, D., & Croquette, V. (2003). Single-molecule study of DNA 
unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc Natl Acad Sci 
U S A,17, 9820-9825. doi: 10.1073/pnas.1631550100 

Chatterji, M., & Nagaraja, V. (2002). GyrI: a counter-defensive strategy against 
proteinaceous inhibitors of DNA gyrase. EMBO Rep,3, 261-267. doi: 
10.1093/embo-reports/kvf038 

Chen, D., Bowater, R., Dorman, C. J., & Lilley, D. M. (1992). Activity of a plasmid-borne 
leu-500 promoter depends on the transcription and translation of an adjacent gene. 
Proc Natl Acad Sci U S A,18, 8784-8788.  

Cheng, B., Rui, S., Ji, C., Gong, V. W., Van Dyk, T. K., Drolet, M., & Tse-Dinh, Y. C. 
(2003). RNase H overproduction allows the expression of stress-induced genes in 
the absence of topoisomerase I. FEMS Microbiol Lett,2, 237-242.  

Cheng, B., Zhu, C. X., Ji, C., Ahumada, A., & Tse-Dinh, Y. C. (2003). Direct interaction 
between Escherichia coli RNA polymerase and the zinc ribbon domains of DNA 
topoisomerase I. J Biol Chem,33, 30705-30710. doi: 10.1074/jbc.M303403200 

Cheng, C., Kussie, P., Pavletich, N., & Shuman, S. (1998). Conservation of structure and 
mechanism between eukaryotic topoisomerase I and site-specific recombinases. 
Cell,6, 841-850.  

Cheok, C. F., Bachrati, C. Z., Chan, K. L., Ralf, C., Wu, L., & Hickson, I. D. (2005). Roles 
of the Bloom's syndrome helicase in the maintenance of genome stability. Biochem 
Soc Trans,Pt 6, 1456-1459. doi: 10.1042/BST20051456 

Chu, W. K., & Hickson, I. D. (2009). RecQ helicases: multifunctional genome caretakers. 
Nat Rev Cancer,9, 644-654. doi: 10.1038/nrc2682 



 
 

 

257

Confalonieri, F., Elie, C., Nadal, M., de La Tour, C., Forterre, P., & Duguet, M. (1993). 
Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same 
polypeptide. Proc Natl Acad Sci U S A,10, 4753-4757.  

Cook, D. N., Ma, D., Pon, N. G., & Hearst, J. E. (1992). Dynamics of DNA supercoiling by 
transcription in Escherichia coli. Proc Natl Acad Sci U S A,22, 10603-10607.  

Cooper, S., & Helmstetter, C. E. (1968). Chromosome replication and the division cycle of 
Escherichia coli B/r. J Mol Biol,3, 519-540.  

Corbett, K. D., Schoeffler, A. J., Thomsen, N. D., & Berger, J. M. (2005). The structural 
basis for substrate specificity in DNA topoisomerase IV. J Mol Biol,3, 545-561. doi: 
10.1016/j.jmb.2005.06.029 

Corn, J. E., & Berger, J. M. (2006). Regulation of bacterial priming and daughter strand 
synthesis through helicase-primase interactions. Nucleic Acids Res,15, 4082-4088. 
doi: 10.1093/nar/gkl363 

Couturier, M., Bahassi el, M., & Van Melderen, L. (1998). Bacterial death by DNA gyrase 
poisoning. Trends Microbiol,7, 269-275.  

Cox, M.M. (2003). The bacterial RecA protein as a motor protein.  Annu Rev Microbiol, 57, 
551-557. doi: 10.1146/annurev.micro.57.030502.090953 

Cozzarelli, Nicholas R., & Wang, James C. (1990). DNA topology and its biological 
effects. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 

Crisona, N. J., Kanaar, R., Gonzalez, T. N., Zechiedrich, E. L., Klippel, A., & Cozzarelli, 
N. R. (1994). Processive recombination by wild-type gin and an enhancer-
independent mutant. Insight into the mechanisms of recombination selectivity and 
strand exchange. J Mol Biol,3, 437-457. doi: 10.1006/jmbi.1994.1671 

Crisona, N. J., Strick, T. R., Bensimon, D., Croquette, V., & Cozzarelli, N. R. (2000). 
Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV 
in single-molecule and ensemble measurements. Genes Dev,22, 2881-2892.  

Crisona, N. J., Weinberg, R. L., Peter, B. J., Sumners, D. W., & Cozzarelli, N. R. (1999). 
The topological mechanism of phage lambda integrase. J Mol Biol,4, 747-775. doi: 
10.1006/jmbi.1999.2771 

Critchley, I. A., Brown, S. D., Traczewski, M. M., Tillotson, G. S., & Janjic, N. (2007). 
National and regional assessment of antimicrobial resistance among community-
acquired respiratory tract pathogens identified in a 2005-2006 U.S. Faropenem 
surveillance study. Antimicrob Agents Chemother,12, 4382-4389. doi: 
10.1128/AAC.00971-07 



 
 

 

258

Cromie, G. A., & Leach, D. R. (2000). Control of crossing over. Mol Cell,4, 815-826.  

Crooke, E., Thresher, R., Hwang, D. S., Griffith, J., & Kornberg, A. (1993). Replicatively 
active complexes of DnaA protein and the Escherichia coli chromosomal origin 
observed in the electron microscope. J Mol Biol,1, 16-24. doi: 
10.1006/jmbi.1993.1481 

Crozat, E., Winkworth, C., Gaffe, J., Hallin, P. F., Riley, M. A., Lenski, R. E., & 
Schneider, D. (2010). Parallel genetic and phenotypic evolution of DNA 
superhelicity in experimental populations of Escherichia coli. Mol Biol Evol,9, 
2113-2128. doi: 10.1093/molbev/msq099 

Davey, M. J., Fang, L., McInerney, P., Georgescu, R. E., & O'Donnell, M. (2002). The 
DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J,12, 3148-3159. 
doi: 10.1093/emboj/cdf308 

de Massy, B., Fayet, O., & Kogoma, T. (1984). Multiple origin usage for DNA replication 
in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J 
Mol Biol,2, 227-236.  

de Massy, B., Patte, J., Louarn, J. M., & Bouche, J. P. (1984). oriX: a new replication 
origin in E. coli. Cell,1, 221-227.  

Dean, F. B., & Cozzarelli, N. R. (1985). Mechanism of strand passage by Escherichia coli 
topoisomerase I. The role of the required nick in catenation and knotting of duplex 
DNA. J Biol Chem,8, 4984-4994.  

Declais, A. C., Marsault, J., Confalonieri, F., de La Tour, C. B., & Duguet, M. (2000). 
Reverse gyrase, the two domains intimately cooperate to promote positive 
supercoiling. J Biol Chem,26, 19498-19504. doi: 10.1074/jbc.M910091199 

Dekker, N. H., Rybenkov, V. V., Duguet, M., Crisona, N. J., Cozzarelli, N. R., Bensimon, 
D., & Croquette, V. (2002). The mechanism of type IA topoisomerases. Proc Natl 
Acad Sci U S A,19, 12126-12131. doi: 10.1073/pnas.132378799 

Dekker, N. H., Viard, T., de La Tour, C. B., Duguet, M., Bensimon, D., & Croquette, V. 
(2003). Thermophilic topoisomerase I on a single DNA molecule. J Mol Biol,2, 
271-282.  

 

Deibler, R. W., Rahmati, S.,  & Zechiedrich, E.L. (2001). Topoisomerase Iv, alone, unknots 
DNA in E. coli. Genes Dev,15, 748-282.  

 



 
 

 

259

Delbruck, M. (1954). On the Replication of Desoxyribonucleic Acid (DNA). Proceedings 
of the National Academy of Sciences of the United States of America,9, 783-788. 
doi: DOI 10.1073/pnas.40.9.783 

Delius, H., & Worcel, A. (1974). Letter: Electron microscopic visualization of the folded 
chromosome of Escherichia coli. J Mol Biol,1, 107-109.  

Deng, S., Stein, R. A., & Higgins, N. P. (2004). Transcription-induced barriers to supercoil 
diffusion in the Salmonella typhimurium chromosome. Proc Natl Acad Sci U S 
A,10, 3398-3403. doi: 10.1073/pnas.0307550101 

Depew, R. E., Liu, L. F., & Wang, J. C. (1978). Interaction between DNA and Escherichia 
coli protein omega. Formation of a complex between single-stranded DNA and 
omega protein. J Biol Chem,2, 511-518.  

DiGate, R. J., & Marians, K. J. (1988). Identification of a potent decatenating enzyme from 
Escherichia coli. J Biol Chem,26, 13366-13373.  

DiGate, R. J., & Marians, K. J. (1989). Molecular cloning and DNA sequence analysis of 
Escherichia coli topB, the gene encoding topoisomerase III. J Biol Chem,30, 17924-
17930.  

Dillingham, M. S., & Kowalczykowski, S.C. (2008). RecBCD enzyme and the repair of 
double-stranded DNA breaks. Microbiol Mol Biol Rev,72, 642-671. 
Doi:10.1128/MMBR.00020-08 

DiNardo, S., Voelkel, K. A., Sternglanz, R., Reynolds, A. E., & Wright, A. (1982). 
Escherichia coli DNA topoisomerase I mutants have compensatory mutations in 
DNA gyrase genes. Cell,1, 43-51.  

Doublet, P., van Heijenoort, J., & Mengin-Lecreulx, D. (1992). Identification of the 
Escherichia coli murI gene, which is required for the biosynthesis of D-glutamic 
acid, a specific component of bacterial peptidoglycan. J Bacteriol,174, 5772-5779.  

Drlica, K. (1992). Control of bacterial DNA supercoiling. Mol Microbiol,4, 425-433.  

Drlica, K., Hiasa, H., Kerns, R., Malik, M., Mustaev, A., & Zhao, X. (2009). Quinolones: 
action and resistance updated. Curr Top Med Chem,11, 981-998.  

Drlica, K., Malik, M., Kerns, R. J., & Zhao, X. (2008). Quinolone-mediated bacterial death. 
Antimicrob Agents Chemother,2, 385-392. doi: 10.1128/AAC.01617-06 

Drlica, K., & Rouviere-Yaniv, J. (1987). Histonelike proteins of bacteria. Microbiol Rev,3, 
301-319.  



 
 

 

260

Drlica, K., & Snyder, M. (1978). Superhelical Escherichia coli DNA: relaxation by 
coumermycin. J Mol Biol,2, 145-154.  

Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. 
Microbiol Mol Biol Rev,3, 377-392.  

Drolet, M. (2006). Growth inhibition mediated by excess negative supercoiling: the 
interplay between transcription elongation, R-loop formation and DNA topology. 
Mol Microbiol,3, 723-730. doi: 10.1111/j.1365-2958.2005.05006.x 

Drolet, M., Bi, X., & Liu, L. F. (1994). Hypernegative supercoiling of the DNA template 
during transcription elongation in vitro. J Biol Chem,3, 2068-2074.  

Drolet, M., Phoenix, P., Menzel, R., Masse, E., Liu, L. F., & Crouch, R. J. (1995). 
Overexpression of RNase H partially complements the growth defect of an 
Escherichia coli delta topA mutant: R-loop formation is a major problem in the 
absence of DNA topoisomerase I. Proc Natl Acad Sci U S A,8, 3526-3530.  

Duderstadt, K. E., & Berger, J. M. (2008). AAA+ ATPases in the initiation of DNA 
replication. Crit Rev Biochem Mol Biol,3, 163-187. doi: 
10.1080/10409230802058296 

Duderstadt, K. E., Mott, M. L., Crisona, N. J., Chuang, K., Yang, H., & Berger, J. M. 
(2010). Origin remodeling and opening in bacteria rely on distinct assembly states 
of the DnaA initiator. J Biol Chem,36, 28229-28239. doi: 
10.1074/jbc.M110.147975 

Duggin, I. G., Wake, R. G., Bell, S. D., & Hill, T. M. (2008). The replication fork trap and 
termination of chromosome replication. Mol Microbiol,6, 1323-1333. doi: 
10.1111/j.1365-2958.2008.06500.x 

Dunaway, M., & Ostrander, E. A. (1993). Local domains of supercoiling activate a 
eukaryotic promoter in vivo. Nature,6414, 746-748. doi: 10.1038/361746a0 

Dworsky, P., & Schaechter, M. (1973). Effect of rifampin on the structure and membrane 
attachment of the nucleoid of Escherichia coli. J Bacteriol,3, 1364-1374.  

Erzberger, J. P., & Berger, J. M. (2006). Evolutionary relationships and structural 
mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct, 93-114. doi: 
10.1146/annurev.biophys.35.040405.101933 

Erzberger, J. P., Pirruccello, M. M., & Berger, J. M. (2002). The structure of bacterial 
DnaA: implications for general mechanisms underlying DNA replication initiation. 
EMBO J,18, 4763-4773.  



 
 

 

261

Espeli, O., Lee, C., & Marians, K. J. (2003). A physical and functional interaction between 
Escherichia coli FtsK and topoisomerase IV. J Biol Chem,45, 44639-44644. doi: 
10.1074/jbc.M308926200 

Espeli, O., Levine, C., Hassing, H., & Marians, K. J. (2003). Temporal regulation of 
topoisomerase IV activity in E. coli. Mol Cell,1, 189-201.  

Fachinetti, D., Bermejo, R., Cocito, A., Minardi, S., Katou, Y., Kanoh, Y., . . . Foiani, M. 
(2010). Replication termination at eukaryotic chromosomes is mediated by Top2 
and occurs at genomic loci containing pausing elements. Mol Cell,4, 595-605. doi: 
10.1016/j.molcel.2010.07.024 

Fang, L., Davey, M. J., & O'Donnell, M. (1999). Replisome assembly at oriC, the 
replication origin of E. coli, reveals an explanation for initiation sites outside an 
origin. Mol Cell,4, 541-553.  

Felczak, M. M., & Kaguni, J. M. (2004). The box VII motif of Escherichia coli DnaA 
protein is required for DnaA oligomerization at the E. coli replication origin. J Biol 
Chem,49, 51156-51162. doi: 10.1074/jbc.M409695200 

Felczak, M. M., Simmons, L. A., & Kaguni, J. M. (2005). An essential tryptophan of 
Escherichia coli DnaA protein functions in oligomerization at the E. coli replication 
origin. J Biol Chem,26, 24627-24633. doi: 10.1074/jbc.M503684200 

Figueroa, N., & Bossi, L. (1988). Transcription induces gyration of the DNA template in 
Escherichia coli. Proc Natl Acad Sci U S A,24, 9416-9420.  

Filutowicz, M. (1980). Requirement of DNA gyrase for the initiation of chromosome 
replication in Escherichia coli K-12. Mol Gen Genet,2, 301-309.  

Filutowicz, M., & Jonczyk, P. (1981). Essential role of the gyrB gene product in the 
transcriptional event coupled to dnaA-dependent initiation of Escherichia coli 
chromosome replication. Mol Gen Genet,1, 134-138.  

Fisher, L. M., Mizuuchi, K., O'Dea, M. H., Ohmori, H., & Gellert, M. (1981). Site-specific 
interaction of DNA gyrase with DNA. Proc Natl Acad Sci U S A,7, 4165-4169.  

Flatten, I., Morigen, & Skarstad, K. (2009). DnaA protein interacts with RNA polymerase 
and partially protects it from the effect of rifampicin. Mol Microbiol,4, 1018-1030. 
doi: 10.1111/j.1365-2958.2008.06585.x 

Forterre, P. (2006). DNA topoisomerase V: a new fold of mysterious origin. Trends 
Biotechnol,6, 245-247. doi: 10.1016/j.tibtech.2006.04.006 

Forterre, P., Gribaldo, S., Gadelle, D., & Serre, M. C. (2007). Origin and evolution of DNA 
topoisomerases. Biochimie,4, 427-446. doi: 10.1016/j.biochi.2006.12.009 



 
 

 

262

Frei, C., & Gasser, S. M. (2000). RecQ-like helicases: the DNA replication checkpoint 
connection. J Cell Sci, 2641-2646.  

Fujikawa, N., Kurumizaka, H., Nureki, O., Terada, T., Shirouzu, M., Katayama, T., & 
Yokoyama, S. (2003). Structural basis of replication origin recognition by the DnaA 
protein. Nucleic Acids Res,8, 2077-2086.  

Fujimitsu, K., Senriuchi, T., & Katayama, T. (2009). Specific genomic sequences of E. coli 
promote replicational initiation by directly reactivating ADP-DnaA. Genes Dev,10, 
1221-1233. doi: 10.1101/gad.1775809 

Fukuoh, A., Iwasaki, H., Ishioka, K., & Shinagawa, H. (1997). ATP-dependent resolution 
of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a 
Holliday junction-specific helicase. EMBO J,1, 203-209. doi: 
10.1093/emboj/16.1.203 

Fuller, R. S., Funnell, B. E., & Kornberg, A. (1984). The dnaA protein complex with the E. 
coli chromosomal replication origin (oriC) and other DNA sites. Cell,3, 889-900.  

Fuller, R. S., Kaguni, J. M., & Kornberg, A. (1981). Enzymatic replication of the origin of 
the Escherichia coli chromosome. Proc Natl Acad Sci U S A,12, 7370-7374.  

Furth, M. E., Dove, W. F., & Meyer, B. J. (1982). Specificity determinants for 
bacteriophage lambda DNA replication. III. Activation of replication in lambda ric 
mutants by transcription outside of ori. J Mol Biol,1, 65-83.  

Gangloff, S., McDonald, J. P., Bendixen, C., Arthur, L., & Rothstein, R. (1994). The yeast 
type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a 
potential eukaryotic reverse gyrase. Mol Cell Biol,12, 8391-8398.  

Garner, J., & Crooke, E. (1996). Membrane regulation of the chromosomal replication 
activity of E.coli DnaA requires a discrete site on the protein. EMBO J,9, 2313-
2321.  

Gellert, M., Mizuuchi, K., O'Dea, M. H., & Nash, H. A. (1976). DNA gyrase: an enzyme 
that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A,11, 3872-
3876.  

Gellert, M., O'Dea, M. H., Itoh, T., & Tomizawa, J. (1976). Novobiocin and coumermycin 
inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci U S A,12, 
4474-4478.  

Giorno, R., Hecht, R. M., & Pettijohn, D. (1975). Analysis by isopycnic centrifugation of 
isolated nucleoids of Escherichia coli. Nucleic Acids Res,9, 1559-1567.  



 
 

 

263

Gon, S., Camara, J. E., Klungsoyr, H. K., Crooke, E., Skarstad, K., & Beckwith, J. (2006). 
A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA 
replication in Escherichia coli. EMBO J,5, 1137-1147. doi: 
10.1038/sj.emboj.7600990 

Goodwin, A., Wang, S. W., Toda, T., Norbury, C., & Hickson, I. D. (1999). Topoisomerase 
III is essential for accurate nuclear division in Schizosaccharomyces pombe. Nucleic 
Acids Res,20, 4050-4058.  

Gore, J., Bryant, Z., Stone, M. D., Nollmann, M., Cozzarelli, N. R., & Bustamante, C. 
(2006). Mechanochemical analysis of DNA gyrase using rotor bead tracking. 
Nature,7072, 100-104. doi: 10.1038/nature04319 

Goto, T., & Wang, J. C. (1982). Yeast DNA topoisomerase II. An ATP-dependent type II 
topoisomerase that catalyzes the catenation, decatenation, unknotting, and 
relaxation of double-stranded DNA rings. J Biol Chem,10, 5866-5872.  

Greaves, L. C., & Taylor, R. W. (2006). Mitochondrial DNA mutations in human disease. 
IUBMB Life,3, 143-151. doi: 10.1080/15216540600686888 

Gregg, A. V., McGlynn, P., Jaktaji, R. P., & Lloyd, R. G. (2002). Direct rescue of stalled 
DNA replication forks via the combined action of PriA and RecG helicase 
activities. Mol Cell,2, 241-251.  

Grompone, G., Bidnenko, V., Ehrlich, S. D., & Michel, B. (2004). PriA is essential for 
viability of the Escherichia coli topoisomerase IV parE10(Ts) mutant. J Bacteriol,4, 
1197-1199.  

Grompone, G., Ehrlich, S. D., & Michel, B. (2003). Replication restart in gyrB Escherichia 
coli mutants. Mol Microbiol,3, 845-854.  

Grompone, G., Sanchez, N., Dusko Ehrlich, S., & Michel, B. (2004). Requirement for 
RecFOR-mediated recombination in priA mutant. Mol Microbiol,2, 551-562. doi: 
10.1111/j.1365-2958.2004.03997.x 

Guo, F., & Adhya, S. (2007). Spiral structure of Escherichia coli HUalphabeta provides 
foundation for DNA supercoiling. Proc Natl Acad Sci U S A,11, 4309-4314. doi: 
10.1073/pnas.0611686104 

Guy, C.P., Atkinson, J., Gupta, K. M., Mahdi, A. A., Gwynn, E.J., Rudolph, C.J., Moon, 
P.B., van Knippenberg, I.C., Cadman, C.J., Dillingham, M.S., LIoyd, R.G., & 
McGlynn, P. (2009). Rep provides a second motor at the replisome to promote 
duplication of protein-bound DNA. Mol Cell,36, 654-666. 
doi:10.1016/j.molcel.2009.11.009 



 
 

 

264

Han, E.S., Cooper, D.L., Persky, V.A., Sutera Jr, R.D., Whitaker, M.L., Montello, S.T., & 
Lovett, S.T. (2006). RecJ exonuclease:substrates, products and interaction with 
SSB. Nucleic Acids Res,34, 1084-1091. 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell,5, 
646-674. doi: 10.1016/j.cell.2011.02.013 

Hardy, C. D., & Cozzarelli, N. R. (2005). A genetic selection for supercoiling mutants of 
Escherichia coli reveals proteins implicated in chromosome structure. Mol 
Microbiol,6, 1636-1652. doi: 10.1111/j.1365-2958.2005.04799.x 

Harmon, F. G., DiGate, R. J., & Kowalczykowski, S. C. (1999). RecQ helicase and 
topoisomerase III comprise a novel DNA strand passage function: a conserved 
mechanism for control of DNA recombination. Mol Cell,5, 611-620.  

Hartman Chen, S., Chan, N. L., & Hsieh, T. S. (2013). New Mechanistic and Functional 
Insights into DNA Topoisomerases. Annu Rev Biochem. doi: 10.1146/annurev-
biochem-061809-100002 

Hatfield, G. W., & Benham, C. J. (2002). DNA topology-mediated control of global gene 
expression in Escherichia coli. Annu Rev Genet, 175-203. doi: 
10.1146/annurev.genet.36.032902.111815 

Hayama, R., Bahng, S., Karasu, M. E., & Marians, K. J. (2013). The MukB-ParC 
interaction affects the intramolecular, not intermolecular, activities of topoisomerase 
IV. J Biol Chem,11, 7653-7661. doi: 10.1074/jbc.M112.418087 

Hegde, S. S., Vetting, M. W., Roderick, S. L., Mitchenall, L. A., Maxwell, A., Takiff, H. 
E., & Blanchard, J. S. (2005). A fluoroquinolone resistance protein from 
Mycobacterium tuberculosis that mimics DNA. Science,5727, 1480-1483. doi: 
10.1126/science.1110699 

Heller, R. C., & Marians, K. J. (2005). The disposition of nascent strands at stalled 
replication forks dictates the pathway of replisome loading during restart. Mol 
Cell,5, 733-743. doi: 10.1016/j.molcel.2005.01.019 

Heller, R. C., & Marians, K. J. (2006). Replisome assembly and the direct restart of stalled 
replication forks. Nat Rev Mol Cell Biol,12, 932-943. doi: 10.1038/nrm2058 

Hendrickson, H., & Lawrence, J. G. (2007). Mutational bias suggests that replication 
termination occurs near the dif site, not at Ter sites. Mol Microbiol,64, 42-56. 
doi:10.1111/j.1365-2958.2007.05596.x 
 



 
 

 

265

Hiasa, H., DiGate, R. J., & Marians, K. J. (1994). Decatenating activity of Escherichia coli 
DNA gyrase and topoisomerases I and III during oriC and pBR322 DNA 
replication in vitro. J Biol Chem,3, 2093-2099.  

Hiasa, H., & Marians, K. J. (1994a). Topoisomerase III, but not topoisomerase I, can 
support nascent chain elongation during theta-type DNA replication. J Biol 
Chem,51, 32655-32659.  

Hiasa, H., & Marians, K. J. (1994b). Tus prevents overreplication of oriC plasmid DNA. J 
Biol Chem,43, 26959-26968.  

Hiasa, H., & Marians, K. J. (1994c). Primase couples leading and lagging-strand DNA 
synthesis from oriC. J Biol Chem,269, 6058-6063.  

Hiasa, H., & Marians, K. J. (1996). Two distinct modes of strand unlinking during theta-
type DNA replication. J Biol Chem,35, 21529-21535.  

Higgins, C. F., Dorman, C. J., Stirling, D. A., Waddell, L., Booth, I. R., May, G., & 
Bremer, E. (1988). A physiological role for DNA supercoiling in the osmotic 
regulation of gene expression in S. typhimurium and E. coli. Cell,4, 569-584.  

Higgins, N. P., Peebles, C. L., Sugino, A., & Cozzarelli, N. R. (1978). Purification of 
subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. 
Proc Natl Acad Sci U S A,4, 1773-1777.  

Higgins, N. P., Yang, X., Fu, Q., & Roth, J. R. (1996). Surveying a supercoil domain by 
using the gamma delta resolution system in Salmonella typhimurium. J 
Bacteriol,10, 2825-2835.  

Hill, T. M. (1992). Arrest of bacterial DNA replication. Annu Rev Microbiol,46, 603-633.  

Hinds, T.,  & Sandler,  S. J. (2004). Allele specific synthetic lethality beteween priC and 
dnaAts alleles at the permissive temperature in E. coli K-12. BMC Microbiol,4, 47-
58. 

Hojgaard, A., Szerlong, H., Tabor, C., & Kuempel, P. (1999). Norfloxacin-induced DNA 
cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of 
interaction with topoisomerase IV. Mol Microbiol,5, 1027-1036.  

Holmes, V. F., & Cozzarelli, N. R. (2000). Closing the ring: links between SMC proteins 
and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci 
U S A,4, 1322-1324. doi: 10.1073/pnas.040576797 

Hong, X., Cadwell, G. W., & Kogoma, T. (1995). Escherichia coli RecG and RecA 
proteins in R-loop formation. EMBO J,10, 2385-2392.  



 
 

 

266

Howell-Jones, R. S., Wilson, M. J., Hill, K. E., Howard, A. J., Price, P. E., & Thomas, D. 
W. (2005). A review of the microbiology, antibiotic usage and resistance in chronic 
skin wounds. J Antimicrob Chemother,2, 143-149. doi: 10.1093/jac/dkh513 

Hsieh, L. S., Rouviere-Yaniv, J., & Drlica, K. (1991). Bacterial DNA supercoiling and 
[ATP]/[ADP] ratio: changes associated with salt shock. J Bacteriol,12, 3914-3917.  

Hsieh, T., & Brutlag, D. (1980). ATP-dependent DNA topoisonmerase from D. 
melanogaster reversibly catenates duplex DNA rings. Cell,1, 115-125.  

Hsieh, T. J., Farh, L., Huang, W. M., & Chan, N. L. (2004). Structure of the topoisomerase 
IV C-terminal domain: a broken beta-propeller implies a role as geometry facilitator 
in catalysis. J Biol Chem,53, 55587-55593. doi: 10.1074/jbc.M408934200 

Hsieh, T. S., & Plank, J. L. (2006). Reverse gyrase functions as a DNA renaturase: 
annealing of complementary single-stranded circles and positive supercoiling of a 
bubble substrate. J Biol Chem,9, 5640-5647. doi: 10.1074/jbc.M513252200 

Hyrien, O. (2000). Mechanisms and consequences of replication fork arrest. Biochimie,1, 5-
17.  

Inoue, T., Shingaki, R., Hirose, S., Waki, K., Mori, H., & Fukui, K. (2007). Genome-wide 
screening of genes required for swarming motility in Escherichia coli K-12. J 
Bacteriol,3, 950-957. doi: 10.1128/JB.01294-06 

Ira, G., Malkova, A., Liberi, G., Foiani, M., & Haber, J. E. (2003). Srs2 and Sgs1-Top3 
suppress crossovers during double-strand break repair in yeast. Cell,4, 401-411.  

Ishida, T., Akimitsu, N., Kashioka, T., Hatano, M., Kubota, T., Ogata, Y., . . . Katayama, T. 
(2004). DiaA, a novel DnaA-binding protein, ensures the timely initiation of 
Escherichia coli chromosome replication. J Biol Chem,44, 45546-45555. doi: 
10.1074/jbc.M402762200 

Jacobs, M. R. (2003). Worldwide trends in antimicrobial resistance among common 
respiratory tract pathogens in children. Pediatr Infect Dis J,8 Suppl, S109-119.  

Jaktaji, R. P., & Lloyd, R. G. (2003). PriA supports two distinct pathways for replication 
restart in UV-irradiated Escherichia coli cells. Mol Microbiol,4, 1091-1100.  

Janniere, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., . . . Ehrlich, S. D. 
(2007). Genetic evidence for a link between glycolysis and DNA replication. PLoS 
One,5, e447. doi: 10.1371/journal.pone.0000447 

Johnsen, L., Weigel, C., von Kries, J., Moller, M., & Skarstad, K. (2010). A novel DNA 
gyrase inhibitor rescues Escherichia coli dnaAcos mutant cells from lethal 
hyperinitiation. J Antimicrob Chemother,5, 924-930. doi: 10.1093/jac/dkq071 



 
 

 

267

Johnson, A., & O'Donnell, M. (2005). Cellular DNA replicases: components and dynamics 
at the replication fork. Annu Rev Biochem, 283-315. doi: 
10.1146/annurev.biochem.73.011303.073859 

Jones, D. B. (2010). Emerging vancomycin resistance: what are we waiting for? Arch 
Ophthalmol,6, 789-791. doi: 10.1001/archophthalmol.2010.105 

Jones, J. M., & Nakai, H. (1999). Duplex opening by primosome protein PriA for replisome 
assembly on a recombination intermediate. J Mol Biol,3, 503-516. doi: 
10.1006/jmbi.1999.2783 

Kaguni, J. M. (2006). DnaA: controlling the initiation of bacterial DNA replication and 
more. Annu Rev Microbiol, 351-375. doi: 
10.1146/annurev.micro.60.080805.142111 

Kaguni, J. M. (2011). Replication initiation at the Escherichia coli chromosomal origin. 
Curr Opin Chem Biol,5, 606-613. doi: 10.1016/j.cbpa.2011.07.016 

Kaguni, J. M., & Kornberg, A. (1984). Topoisomerase I confers specificity in enzymatic 
replication of the Escherichia coli chromosomal origin. J Biol Chem,13, 8578-8583.  

Kamphuis, M. B., Monti, M. C., van den Heuvel, R. H., Lopez-Villarejo, J., Diaz-Orejas, 
R., & Boelens, R. (2007). Structure and function of bacterial kid-kis and related 
toxin-antitoxin systems. Protein Pept Lett,2, 113-124.  

Kampranis, S. C., & Maxwell, A. (1996). Conversion of DNA gyrase into a conventional 
type II topoisomerase. Proc Natl Acad Sci U S A,25, 14416-14421.  

Katayama, T., Fujimitsu, K., & Ogawa, T. (2001). Multiple pathways regulating DnaA 
function in Escherichia coli: distinct roles for DnaA titration by the datA locus and 
the regulatory inactivation of DnaA. Biochimie,1, 13-17.  

Katayama, T., Ozaki, S., Keyamura, K., & Fujimitsu, K. (2010). Regulation of the 
replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat 
Rev Microbiol,3, 163-170. doi: 10.1038/nrmicro2314 

Katayama, T., & Sekimizu, K. (1999). Inactivation of Escherichia coli DnaA protein by 
DNA polymerase III and negative regulations for initiation of chromosomal 
replication. Biochimie,8-9, 835-840.  

Kato, J., & Katayama, T. (2001). Hda, a novel DnaA-related protein, regulates the 
replication cycle in Escherichia coli. EMBO J,15, 4253-4262. doi: 
10.1093/emboj/20.15.4253 

Kato, J., Nishimura, Y., Imamura, R., Niki, H., Hiraga, S., & Suzuki, H. (1990). New 
topoisomerase essential for chromosome segregation in E. coli. Cell,2, 393-404.  



 
 

 

268

Kato, J., Suzuki, H., & Ikeda, H. (1992). Purification and characterization of DNA 
topoisomerase IV in Escherichia coli. J Biol Chem,36, 25676-25684.  

Kavenoff, R., & Bowen, B. C. (1976). Electron microscopy of membrane-free folded 
chromosomes from Escherichia coli. Chromosoma,2, 89-101.  

Kavenoff, R., & Ryder, O. A. (1976). Electron microscopy of membrane-associated folded 
chromosomes of Escherichia coli. Chromosoma,1, 13-25.  

Kawakami, H., Keyamura, K., & Katayama, T. (2005). Formation of an ATP-DnaA-
specific initiation complex requires DnaA Arginine 285, a conserved motif in the 
AAA+ protein family. J Biol Chem,29, 27420-27430. doi: 
10.1074/jbc.M502764200 

Keyamura, K., Abe, Y., Higashi, M., Ueda, T., & Katayama, T. (2009). DiaA dynamics are 
coupled with changes in initial origin complexes leading to helicase loading. J Biol 
Chem,37, 25038-25050. doi: 10.1074/jbc.M109.002717 

Khodursky, A. B., Peter, B. J., Schmid, M. B., DeRisi, J., Botstein, D., Brown, P. O., & 
Cozzarelli, N. R. (2000). Analysis of topoisomerase function in bacterial replication 
fork movement: use of DNA microarrays. Proc Natl Acad Sci U S A,17, 9419-9424.  

Khodursky, A. B., Zechiedrich, E. L., & Cozzarelli, N. R. (1995). Topoisomerase IV is a 
target of quinolones in Escherichia coli. Proc Natl Acad Sci U S A,25, 11801-
11805.  

Kikuchi, A., & Asai, K. (1984). Reverse gyrase--a topoisomerase which introduces positive 
superhelical turns into DNA. Nature,5970, 677-681.  

Kim, S., Dallmann, H.G., McHenry, C.S., & Marians, K.J. (1996). Coupling of a 
replicative polymerase and helicase: a tau-DnaB interaction mediates rapid fork 
movement. Cell,84, 643-650.  

Kirkegaard, K., & Wang, J. C. (1981). Mapping the topography of DNA wrapped around 
gyrase by nucleolytic and chemical probing of complexes of unique DNA 
sequences. Cell,3, 721-729.  

Kirkegaard, K., & Wang, J. C. (1985). Bacterial DNA topoisomerase I can relax positively 
supercoiled DNA containing a single-stranded loop. J Mol Biol,3, 625-637.  

Kitagawa, R., Mitsuki, H., Okazaki, T., & Ogawa, T. (1996). A novel DnaA protein-
binding site at 94.7 min on the Escherichia coli chromosome. Mol Microbiol,5, 
1137-1147.  



 
 

 

269

Kitagawa, R., Ozaki, T., Moriya, S., & Ogawa, T. (1998). Negative control of replication 
initiation by a novel chromosomal locus exhibiting exceptional affinity for 
Escherichia coli DnaA protein. Genes Dev,19, 3032-3043.  

Klevan, L., & Wang, J. C. (1980). Deoxyribonucleic acid gyrase-deoxyribonucleic acid 
complex containing 140 base pairs of deoxyribonucleic acid and an alpha 2 beta 2 
protein core. Biochemistry,23, 5229-5234.  

Kogoma, T. (1978). A novel Escherichia coli mutant capable of DNA replication in the 
absence of protein synthesis. J Mol Biol,1, 55-69.  

Kogoma, T. (1997). Stable DNA replication: interplay between DNA replication, 
homologous recombination, and transcription. Microbiol Mol Biol Rev,2, 212-238.  

Kogoma, T., Cadwell, K.G., & Asai, T. (1996). The DNA replication priming protein, 
PriA, is required for homologous recombination and double strand break repair. J 
Bacteriol,178, 1258-1264.  

Kogoma, T., Hong, X., Cadwell, G.W., Barnard, K.G., & Asai, T. (1993). Requirement of 
homologous recombination functions for viability of the Escherichia coli cell that 
lacks RNase HI and exonuclease V activities. Biochemie,75, 89-99.  

Kogoma, T., & von Meyenburg, K. (1983). The origin of replication, oriC, and the dnaA 
protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia 
coli K-12. EMBO J,3, 463-468.  

Kohwi, Y., & Kohwi-Shigematsu, T. (1991). Altered gene expression correlates with DNA 
structure. Genes Dev,12B, 2547-2554.  

Kollef, M. H. (2005). Gram-negative bacterial resistance: evolving patterns and treatment 
paradigms. Clin Infect Dis, S85-88. doi: 10.1086/426187 

Kondo, T., Mima, S., Fukuma, N., Sekimizu, K., Tsuchiya, T., & Mizushima, T. (2000). 
Suppression of temperature-sensitivity of a dnaA46 mutant by excessive DNA 
supercoiling. Biochem J, 375-379.  

Koonin, E. V. (1993). A superfamily of ATPases with diverse functions containing either 
classical or deviant ATP-binding motif. J Mol Biol,4, 1165-1174. doi: 
10.1006/jmbi.1993.1115 

Kornberg, Arthur, & Baker, Tania A. (1992). DNA replication (2nd ed.). New York: W.H. 
Freeman. 

Kosovsky, M. J., & Soslau, G. (1991). Mitochondrial DNA topoisomerase I from human 
platelets. Biochim Biophys Acta,1, 56-62.  



 
 

 

270

Koster, D. A., Croquette, V., Dekker, C., Shuman, S., & Dekker, N. H. (2005). Friction and 
torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. 
Nature,7033, 671-674. doi: 10.1038/nature03395 

Kouzine, F., & Levens, D. (2007). Supercoil-driven DNA structures regulate genetic 
transactions. Front Biosci, 4409-4423.  

Kouzine, F., Liu, J., Sanford, S., Chung, H. J., & Levens, D. (2004). The dynamic response 
of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol,11, 
1092-1100. doi: 10.1038/nsmb848 

Kouzine, F., Sanford, S., Elisha-Feil, Z., & Levens, D. (2008). The functional response of 
upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol,2, 146-154. 
doi: 10.1038/nsmb.1372 

Kowalczykowski, S. C. (2000). Initiation of genetic recombination and recombination-
dependent replication. Trends Biochem Sci,4, 156-165.  

Krabbe, M., Zabielski, J., Bernander, R., & Nordstrom, K. (1997). Inactivation of the 
replication-termination system affects the replication mode and causes unstable 
maintenance of plasmid R1. Mol Microbiol,4, 723-735.  

Kramlinger, V. M., & Hiasa, H. (2006). The "GyrA-box" is required for the ability of DNA 
gyrase to wrap DNA and catalyze the supercoiling reaction. J Biol Chem,6, 3738-
3742. doi: 10.1074/jbc.M511160200 

Kreuzer, K. N. (2005). Interplay between DNA replication and recombination in 
prokaryotes. Annu Rev Microbiol, 43-67. doi: 
10.1146/annurev.micro.59.030804.121255 

Krogh, B. O., & Shuman, S. (2002). A poxvirus-like type IB topoisomerase family in 
bacteria. Proc Natl Acad Sci U S A,4, 1853-1858. doi: 10.1073/pnas.032613199 

Kulikowicz, T., & Shapiro, T. A. (2006). Distinct genes encode type II Topoisomerases for 
the nucleus and mitochondrion in the protozoan parasite Trypanosoma brucei. J 
Biol Chem,6, 3048-3056. doi: 10.1074/jbc.M505977200 

Kuzminov, A. (1995). Collapse and repair of replication forks in Escherichia coli. Mol 
Microbiol,3, 373-384.  

Kwan, K. Y., Greenwald, R. J., Mohanty, S., Sharpe, A. H., Shaw, A. C., & Wang, J. C. 
(2007). Development of autoimmunity in mice lacking DNA topoisomerase 3beta. 
Proc Natl Acad Sci U S A,22, 9242-9247. doi: 10.1073/pnas.0703587104 



 
 

 

271

Kwan, K. Y., Moens, P. B., & Wang, J. C. (2003). Infertility and aneuploidy in mice 
lacking a type IA DNA topoisomerase III beta. Proc Natl Acad Sci U S A,5, 2526-
2531. doi: 10.1073/pnas.0437998100 

Kwan, K. Y., & Wang, J. C. (2001). Mice lacking DNA topoisomerase IIIbeta develop to 
maturity but show a reduced mean lifespan. Proc Natl Acad Sci U S A,10, 5717-
5721. doi: 10.1073/pnas.101132498 

Lahkim Bennani-Belhaj, K., Rouzeau, S., Buhagiar-Labarchede, G., Chabosseau, P., 
Onclercq-Delic, R., Bayart, E., Cordelieres, F., Couturier, J., & Amor-Gueret, M. 
(2010). The Bloom syndrome protein limits the lethality associated with RAD51 
deficiency. rep mutation Mol Cancer Res,8, 385-394.  

Lane, H.E., & Denhardt, D.T. (1975). The rep mutation. IV. Slower movement of 
replication forks in Escherichia coli rep strains. J Mol Biol,97, 99-112.  

Langer, U., Richter, S., Roth, A., Weigel, C., & Messer, W. (1996). A comprehensive set of 
DnaA-box mutations in the replication origin, oriC, of Escherichia coli. Mol 
Microbiol,2, 301-311.  

Larsen, R. A., Wilson, M. M., Guss, A. M., & Metcalf, W. W. (2002). Genetic analysis of 
pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly 
efficient transposon mutagenesis system that is functional in a wide variety of 
bacteria. Arch Microbiol,3, 193-201. doi: 10.1007/s00203-002-0442-2 

Laursen, L. V., Bjergbaek, L., Murray, J. M., & Andersen, A. H. (2003). RecQ helicases 
and topoisomerase III in cancer and aging. Biogerontology,5, 275-287.  

Lavrukhin, O. V., Fortune, J. M., Wood, T. G., Burbank, D. E., Van Etten, J. L., Osheroff, 
N., & Lloyd, R. S. (2000). Topoisomerase II from Chlorella virus PBCV-1. 
Characterization of the smallest known type II topoisomerase. J Biol Chem,10, 
6915-6921.  

Lee, E. H., Kornberg, A., Hidaka, M., Kobayashi, T., & Horiuchi, T. (1989). Escherichia 
coli replication termination protein impedes the action of helicases. Proc Natl Acad 
Sci U S A,23, 9104-9108.  

Leng, F., Amado, L., & McMacken, R. (2004). Coupling DNA supercoiling to transcription 
in defined protein systems. J Biol Chem,46, 47564-47571. doi: 
10.1074/jbc.M403798200 

Leng, F., & McMacken, R. (2002). Potent stimulation of transcription-coupled DNA 
supercoiling by sequence-specific DNA-binding proteins. Proc Natl Acad Sci U S 
A,14, 9139-9144. doi: 10.1073/pnas.142002099 



 
 

 

272

Leonard, A. C., & Grimwade, J. E. (2005). Building a bacterial orisome: emergence of new 
regulatory features for replication origin unwinding. Mol Microbiol,4, 978-985. doi: 
10.1111/j.1365-2958.2004.04467.x 

Leonard, A. C., & Grimwade, J. E. (2011). Regulation of DnaA assembly and activity: 
taking directions from the genome. Annu Rev Microbiol, 19-35. doi: 
10.1146/annurev-micro-090110-102934 

Lesterlin, C., Barre, F. X., & Cornet, F. (2004). Genetic recombination and the cell cycle: 
what we have learned from chromosome dimers. Mol Microbiol,5, 1151-1160. doi: 
10.1111/j.1365-2958.2004.04356.x 

Lewis, R. J., Tsai, F. T., & Wigley, D. B. (1996). Molecular mechanisms of drug inhibition 
of DNA gyrase. Bioessays,8, 661-671. doi: 10.1002/bies.950180810 

Li, W., & Wang, J. C. (1998). Mammalian DNA topoisomerase IIIalpha is essential in early 
embryogenesis. Proc Natl Acad Sci U S A,3, 1010-1013.  

Li, Y., Stewart, N. K., Berger, A. J., Vos, S., Schoeffler, A. J., Berger, J. M., . . . Oakley, 
M. G. (2010). Escherichia coli condensin MukB stimulates topoisomerase IV 
activity by a direct physical interaction. Proc Natl Acad Sci U S A,44, 18832-18837. 
doi: 10.1073/pnas.1008678107 

Li, Z., Mondragon, A., & DiGate, R. J. (2001). The mechanism of type IA topoisomerase-
mediated DNA topological transformations. Mol Cell,2, 301-307.  

Li, Z., Mondragon, A., Hiasa, H., Marians, K. J., & DiGate, R. J. (2000). Identification of a 
unique domain essential for Escherichia coli DNA topoisomerase III-catalysed 
decatenation of replication intermediates. Mol Microbiol,4, 888-895.  

Liarzi, O., Barak, R., Bronner, V., Dines, M., Sagi, Y., Shainskaya, A., & Eisenbach, M. 
(2010). Acetylation represses the binding of CheY to its target proteins. Mol 
Microbiol,4, 932-943. doi: 10.1111/j.1365-2958.2010.07148.x 

Lilley, D. M., & Higgins, C. F. (1991). Local DNA topology and gene expression: the case 
of the leu-500 promoter. Mol Microbiol,4, 779-783.  

Lim, H. M., Lewis, D. E., Lee, H. J., Liu, M., & Adhya, S. (2003). Effect of varying the 
supercoiling of DNA on transcription and its regulation. Biochemistry,36, 10718-
10725. doi: 10.1021/bi030110t 

Liu, B., Liu, Y., Motyka, S. A., Agbo, E. E., & Englund, P. T. (2005). Fellowship of the 
rings: the replication of kinetoplast DNA. Trends Parasitol,8, 363-369. doi: 
10.1016/j.pt.2005.06.008 



 
 

 

273

Liu, J., Kouzine, F., Nie, Z., Chung, H. J., Elisha-Feil, Z., Weber, A., . . . Levens, D. 
(2006). The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a 
pulse of c-myc expression. EMBO J,10, 2119-2130. doi: 10.1038/sj.emboj.7601101 

Liu, J., & Marians, K. J. (1999). PriA-directed assembly of a primosome on D loop DNA. J 
Biol Chem,35, 25033-25041.  

Liu, J., Xu, L., Sandler, S. J., & Marians, K. J. (1999). Replication fork assembly at 
recombination intermediates is required for bacterial growth. Proc Natl Acad Sci U 
S A,7, 3552-3555.  

Liu, L. F., Liu, C. C., & Alberts, B. M. (1979). T4 DNA topoisomerase: a new ATP-
dependent enzyme essential for initiation of T4 bacteriophage DNA replication. 
Nature,5731, 456-461.  

Liu, L. F., Liu, C. C., & Alberts, B. M. (1980). Type II DNA topoisomerases: enzymes that 
can unknot a topologically knotted DNA molecule via a reversible double-strand 
break. Cell,3, 697-707.  

Liu, L. F., & Wang, J. C. (1978a). DNA-DNA gyrase complex: the wrapping of the DNA 
duplex outside the enzyme. Cell,3, 979-984.  

Liu, L. F., & Wang, J. C. (1978b). Micrococcus luteus DNA gyrase: active components and 
a model for its supercoiling of DNA. Proc Natl Acad Sci U S A,5, 2098-2102.  

Liu, L. F., & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. 
Proc Natl Acad Sci U S A,20, 7024-7027.  

Ljungman, M., & Hanawalt, P. C. (1992). Localized torsional tension in the DNA of human 
cells. Proc Natl Acad Sci U S A,13, 6055-6059.  

Lloyd, R. G., & Buckman, C. (1991). Genetic analysis of the recG locus of Escherichia 
coli K-12 and of its role in recombination and DNA repair. J Bacteriol,3, 1004-
1011.  

Lo, Y. H., Tsai, K. L., Sun, Y. J., Chen, W. T., Huang, C. Y., & Hsiao, C. D. (2009). The 
crystal structure of a replicative hexameric helicase DnaC and its complex with 
single-stranded DNA. Nucleic Acids Res,3, 804-814. doi: 10.1093/nar/gkn999 

Lobner-Olesen, A., Skarstad, K., Hansen, F. G., von Meyenburg, K., & Boye, E. (1989). 
The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell,5, 
881-889.  

Lockshon, D., & Morris, D. R. (1983). Positively supercoiled plasmid DNA is produced by 
treatment of Escherichia coli with DNA gyrase inhibitors. Nucleic Acids Res,10, 
2999-3017.  



 
 

 

274

Lopez, C. R., Yang, S., Deibler, R. W., Ray, S. A., Pennington, J. M., Digate, R. J., . . . 
Zechiedrich, E. L. (2005). A role for topoisomerase III in a recombination pathway 
alternative to RuvABC. Mol Microbiol,1, 80-101. doi: 10.1111/j.1365-
2958.2005.04812.x 

Louarn, J., Bouche, J. P., Patte, J., & Louarn, J. M. (1984). Genetic inactivation of 
topoisomerase I suppresses a defect in initiation of chromosome replication in 
Escherichia coli. Mol Gen Genet,1-2, 170-174.  

Lu, M., Campbell, J. L., Boye, E., & Kleckner, N. (1994). SeqA: a negative modulator of 
replication initiation in E. coli. Cell,3, 413-426.  

Lu, Y. B., Ratnakar, P. V., Mohanty, B. K., & Bastia, D. (1996). Direct physical interaction 
between DnaG primase and DnaB helicase of Escherichia coli is necessary for 
optimal synthesis of primer RNA. Proc Natl Acad Sci U S A,23, 12902-12907.  

Ludlam, A. V., McNatt, M. W., Carr, K. M., & Kaguni, J. M. (2001). Essential amino acids 
of Escherichia coli DnaC protein in an N-terminal domain interact with DnaB 
helicase. J Biol Chem,29, 27345-27353. doi: 10.1074/jbc.M101940200 

Lynch, A. S., & Wang, J. C. (1993). Anchoring of DNA to the bacterial cytoplasmic 
membrane through cotranscriptional synthesis of polypeptides encoding membrane 
proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling 
in mutants deficient in DNA topoisomerase I. J Bacteriol,6, 1645-1655.  

Maciag-Dorszynska, M., Ignatowska, M., Janniere, L., Wegrzyn, G., & Szalewska-Palasz, 
A. (2012). Mutations in central carbon metabolism genes suppress defects in 
nucleoid position and cell division of replication mutants in Escherichia coli. 
Gene,1, 31-35. doi: 10.1016/j.gene.2012.04.066 

Maciag, M., Nowicki, D., Janniere, L., Szalewska-Palasz, A., & Wegrzyn, G. (2011). 
Genetic response to metabolic fluctuations: correlation between central carbon 
metabolism and DNA replication in Escherichia coli. Microb Cell Fact, 19. doi: 
10.1186/1475-2859-10-19 

Madabhushi, R., & Marians, K. J. (2009). Actin homolog MreB affects chromosome 
segregation by regulating topoisomerase IV in Escherichia coli. Mol Cell,2, 171-
180. doi: 10.1016/j.molcel.2009.01.001 

Madden, K. R., Stewart, L., & Champoux, J. J. (1995). Preferential binding of human 
topoisomerase I to superhelical DNA. EMBO J,21, 5399-5409.  

Makowska-Grzyska, M., & Kaguni, J. M. (2010). Primase directs the release of DnaC from 
DnaB. Mol Cell,1, 90-101. doi: 10.1016/j.molcel.2009.12.031 



 
 

 

275

Malik, M., Bensaid, A., Rouviere-Yaniv, J., & Drlica, K. (1996). Histone-like protein HU 
and bacterial DNA topology: suppression of an HU deficiency by gyrase mutations. 
J Mol Biol,1, 66-76. doi: 10.1006/jmbi.1996.0068 

Malik, M., Zhao, X., & Drlica, K. (2006). Lethal fragmentation of bacterial chromosomes 
mediated by DNA gyrase and quinolones. Mol Microbiol,3, 810-825. doi: 
10.1111/j.1365-2958.2006.05275.x 

Malik, S. B., Ramesh, M. A., Hulstrand, A. M., & Logsdon, J. M., Jr. (2007). Protist 
homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary 
history of gene duplication and lineage-specific loss. Mol Biol Evol,12, 2827-2841. 
doi: 10.1093/molbev/msm217 

Marceau, A. H., Bahng, S., Massoni, S. C., George, N. P., Sandler, S. J., Marians, K. J., & 
Keck, J. L. (2011). Structure of the SSB-DNA polymerase III interface and its role 
in DNA replication. EMBO J,20, 4236-4247. doi: 10.1038/emboj.2011.305 

Margulies, C., & Kaguni, J. M. (1996). Ordered and sequential binding of DnaA protein to 
oriC, the chromosomal origin of Escherichia coli. J Biol Chem,29, 17035-17040.  

Marians, K. J. (1987). DNA gyrase-catalyzed decatenation of multiply linked DNA dimers. 
J Biol Chem,262, 10362-10368. 

Marians, K. J. (1992). Prokaryotic DNA replication. Annu Rev Biochem,61,  673-719. 

Marians, K. J. (2000). PriA-directed replication fork restart in Escherichia coli. Trends 
Biochem Sci,4, 185-189.  

Markovitz, A. (2005). A new in vivo termination function for DNA polymerase I of 
Escherichia coli K-12. Mol Microbiol,6, 1867-1882. doi: 10.1111/j.1365-
2958.2005.04513.x 

Marszalek, J., & Kaguni, J. M. (1994). DnaA protein directs the binding of DnaB protein in 
initiation of DNA replication in Escherichia coli. J Biol Chem,7, 4883-4890.  

Masai, H., Asai, T., Kubota, Y., Arai, K., & Kogoma, T. (1994). Escherichia coli PriA 
protein is essential for inducible and constitutive stable DNA replication. EMBO 
J,22, 5338-5345.  

Masse, E., & Drolet, M. (1999a). Escherichia coli DNA topoisomerase I inhibits R-loop 
formation by relaxing transcription-induced negative supercoiling. J Biol Chem,23, 
16659-16664.  

Masse, E., & Drolet, M. (1999b). Relaxation of transcription-induced negative supercoiling 
is an essential function of Escherichia coli DNA topoisomerase I. J Biol Chem,23, 
16654-16658.  



 
 

 

276

Mathews, C. K., & Sinha, N. K. (1982). Are DNA precursors concentrated at replication 
sites? Proc Natl Acad Sci U S A,2, 302-306.  

Maurer, S., Fritz, J., Muskhelishvili, G., & Travers, A. (2006). RNA polymerase and an 
activator form discrete subcomplexes in a transcription initiation complex. EMBO 
J,16, 3784-3790. doi: 10.1038/sj.emboj.7601261 

Maxwell, A. (1999). DNA gyrase as a drug target. Biochem Soc Trans,2, 48-53.  

McGarry, K. C., Ryan, V. T., Grimwade, J. E., & Leonard, A. C. (2004). Two 
discriminatory binding sites in the Escherichia coli replication origin are required 
for DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci U S A,9, 2811-
2816. doi: 10.1073/pnas.0400340101 

McGlynn, P., Al-Deib, A. A., Liu, J., Marians, K. J., & Lloyd, R. G. (1997). The DNA 
replication protein PriA and the recombination protein RecG bind D-loops. J Mol 
Biol,2, 212-221. doi: 10.1006/jmbi.1997.1120 

McGlynn, P., & Lloyd, R. G. (2000). Modulation of RNA polymerase by (p)ppGpp reveals 
a RecG-dependent mechanism for replication fork progression. Cell,1, 35-45. doi: 
10.1016/S0092-8674(00)80621-2 

McGlynn, P., & Lloyd, R. G. (2002a). Genome stability and the processing of damaged 
replication forks by RecG. Trends Genet,8, 413-419.  

McGlynn, P., & Lloyd, R. G. (2002b). Recombinational repair and restart of damaged 
replication forks. Nat Rev Mol Cell Biol,11, 859-870. doi: 10.1038/nrm951 

McGovern, V., Higgins, N. P., Chiz, R. S., & Jaworski, A. (1994). H-NS over-expression 
induces an artificial stationary phase by silencing global transcription. 
Biochimie,10-11, 1019-1029.  

McHenry, C. S. (2003). Chromosomal replicases as asymmetric dimers: studies of subunit 
arrangement and functional consequences. Mol Microbiol,5, 1157-1165.  

Meselson, M., & Stahl, F. W. (1958). The Replication of DNA in Escherichia Coli. Proc 
Natl Acad Sci U S A,7, 671-682.  

Messer, W. (2002). The bacterial replication initiator DnaA. DnaA and oriC, the bacterial 
mode to initiate DNA replication. FEMS Microbiol Rev,4, 355-374.  

Messer, W., Blaesing, F., Majka, J., Nardmann, J., Schaper, S., Schmidt, A., . . . 
Zakrzewska-Czerwinska, J. (1999). Functional domains of DnaA proteins. 
Biochimie,8-9, 819-825.  



 
 

 

277

Michel, B. (2000). Replication fork arrest and DNA recombination. Trends Biochem Sci,4, 
173-178.  

Michel, B., Boubakri, H., Baharoglu, Z., LeMasson, M., & Lestini, R. (2007). 
Recombination proteins and rescue of arrested replication forks. DNA Repair 
(Amst),7, 967-980. doi: 10.1016/j.dnarep.2007.02.016 

Michel, B., Grompone, G., Flores, M. J., & Bidnenko, V. (2004). Multiple pathways 
process stalled replication forks. Proc Natl Acad Sci U S A,35, 12783-12788. doi: 
10.1073/pnas.0401586101 

Michelotti, E. F., Tomonaga, T., Krutzsch, H., & Levens, D. (1995). Cellular nucleic acid 
binding protein regulates the CT element of the human c-myc protooncogene. J Biol 
Chem,16, 9494-9499.  

Michelotti, G. A., Michelotti, E. F., Pullner, A., Duncan, R. C., Eick, D., & Levens, D. 
(1996). Multiple single-stranded cis elements are associated with activated 
chromatin of the human c-myc gene in vivo. Mol Cell Biol,6, 2656-2669.  

Miller, D. T., Grimwade, J. E., Betteridge, T., Rozgaja, T., Torgue, J. J., & Leonard, A. C. 
(2009). Bacterial origin recognition complexes direct assembly of higher-order 
DnaA oligomeric structures. Proc Natl Acad Sci U S A,44, 18479-18484. doi: 
10.1073/pnas.0909472106 

Miller, K. G., Liu, L. F., & Englund, P. T. (1981). A homogeneous type II DNA 
topoisomerase from HeLa cell nuclei. J Biol Chem,17, 9334-9339.  

Minden, J. S., & Marians, K. J. (1986). Escherichia coli topoisomerase I can segregate 
replicating pBR322 daughter DNA molecules in vitro. J Biol Chem,25, 11906-
11917.  

Mirkin, S. M., & Shmerling Zh, G. (1982). DNA replication and transcription in a 
temperature-sensitive mutant of E. coli with a defective DNA gyrase B subunit. Mol 
Gen Genet,1, 91-95.  

Mizuuchi, K., Fisher, L. M., O'Dea, M. H., & Gellert, M. (1980). DNA gyrase action 
involves the introduction of transient double-strand breaks into DNA. Proc Natl 
Acad Sci U S A,4, 1847-1851.  

Mizuuchi, K., O'Dea, M. H., & Gellert, M. (1978). DNA gyrase: subunit structure and 
ATPase activity of the purified enzyme. Proc Natl Acad Sci U S A,12, 5960-5963.  

Mohanty, S., Town, T., Yagi, T., Scheidig, C., Kwan, K. Y., Allore, H. G., . . . Shaw, A. C. 
(2008). Defective p53 engagement after the induction of DNA damage in cells 
deficient in topoisomerase 3beta. Proc Natl Acad Sci U S A,13, 5063-5068. doi: 
10.1073/pnas.0801235105 



 
 

 

278

Molt, K. L., Sutera, V. A., Jr., Moore, K. K., & Lovett, S. T. (2009). A role for nonessential 
domain II of initiator protein, DnaA, in replication control. Genetics,1, 39-49. doi: 
10.1534/genetics.109.104760 

Monnich, M., Hess, I., Wiest, W., Bachrati, C., Hickson, I. D., Schorpp, M., & Boehm, T. 
(2010). Developing T lymphocytes are uniquely sensitive to a lack of topoisomerase 
III alpha. Eur J Immunol,9, 2379-2384. doi: 10.1002/eji.201040634 

Montero, C., Mateu, G., Rodriguez, R., & Takiff, H. (2001). Intrinsic resistance of 
Mycobacterium smegmatis to fluoroquinolones may be influenced by new 
pentapeptide protein MfpA. Antimicrob Agents Chemother,12, 3387-3392. doi: 
10.1128/AAC.45.12.3387-3392.2001 

Moraes, C. T. (2001). What regulates mitochondrial DNA copy number in animal cells? 
Trends Genet,4, 199-205.  

Morigen, Boye, E., Skarstad, K., & Lobner-Olesen, A. (2001). Regulation of chromosomal 
replication by DnaA protein availability in Escherichia coli: effects of the datA 
region. Biochim Biophys Acta,1-3, 73-80.  

Morimatsu, K., Kowalczykowski, S.C. (2003). RecFOR proteins load RecA protein onto 
gapped DNA to accelerate DNA strand exchange: a universal step of 
recombinational repair. Cell,11, 1337-1347.  

Mott, M. L., Erzberger, J. P., Coons, M. M., & Berger, J. M. (2008). Structural synergy and 
molecular crosstalk between bacterial helicase loaders and replication initiators. Cell,4, 
623-634. doi: 10.1016/j.cell.2008.09.058 

Mullen, J. R., Kaliraman, V., & Brill, S. J. (2000). Bipartite structure of the SGS1 DNA 
helicase in Saccharomyces cerevisiae. Genetics,3, 1101-1114.  

Muller, C. M., Aberg, A., Straseviciene, J., Emody, L., Uhlin, B. E., & Balsalobre, C. 
(2009). Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, 
are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog,2, e1000303. doi: 
10.1371/journal.ppat.1000303 

Neuman, K. C., Charvin, G., Bensimon, D., & Croquette, V. (2009). Mechanisms of chiral 
discrimination by topoisomerase IV. Proc Natl Acad Sci U S A,17, 6986-6991. doi: 
10.1073/pnas.0900574106 

Neylon, C., Kralicek, A. V., Hill, T. M., & Dixon, N. E. (2005). Replication termination in 
Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. 
Microbiol Mol Biol Rev,3, 501-526. doi: 10.1128/MMBR.69.3.501-526.2005 

Nichols, M. D., DeAngelis, K., Keck, J. L., & Berger, J. M. (1999). Structure and function 
of an archaeal topoisomerase VI subunit with homology to the meiotic 



 
 

 

279

recombination factor Spo11. EMBO J,21, 6177-6188. doi: 
10.1093/emboj/18.21.6177 

Nievera, C., Torgue, J. J., Grimwade, J. E., & Leonard, A. C. (2006). SeqA blocking of 
DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol Cell,4, 
581-592. doi: 10.1016/j.molcel.2006.09.016 

Niki, H., Jaffe, A., Imamura, R., Ogura, T., & Hiraga, S. (1991). The new gene MukB 
codes for 177 kd protein with coiled-coil domains involved in chromosome 
partitioning in E. coli. EMBO J,10, 183-193. 

Nollmann, M., Stone, M. D., Bryant, Z., Gore, J., Crisona, N. J., Hong, S. C., . . . 
Cozzarelli, N. R. (2007). Multiple modes of Escherichia coli DNA gyrase activity 
revealed by force and torque. Nat Struct Mol Biol,4, 264-271. doi: 
10.1038/nsmb1213 

Nordman, J., Skovgaard, O., & Wright, A. (2007). A novel class of mutations that affect 
DNA replication in E. coli. Mol Microbiol,1, 125-138. doi: 10.1111/j.1365-
2958.2007.05651.x 

Nozaki, S., & Ogawa, T. (2008). Determination of the minimum domain II size of 
Escherichia coli DnaA protein essential for cell viability. Microbiology,Pt 11, 
3379-3384. doi: 10.1099/mic.0.2008/019745-0 

Nozaki, S., Yamada, Y., & Ogawa, T. (2009). Initiator titration complex formed at datA 
with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells,3, 
329-341. doi: 10.1111/j.1365-2443.2008.01269.x 

Nurse, P., Levine, C., Hassing, H., & Marians, K. J. (2003). Topoisomerase III can serve as 
the cellular decatenase in Escherichia coli. J Biol Chem,10, 8653-8660. doi: 
10.1074/jbc.M211211200 

O'Reilly, E. K., & Kreuzer, K. N. (2004). Isolation of SOS constitutive mutants of 
Escherichia coli. J Bacteriol,21, 7149-7160. doi: 10.1128/JB.186.21.7149-
7160.2004 

Oakley, T. J., Goodwin, A., Chakraverty, R. K., & Hickson, I. D. (2002). Inactivation of 
homologous recombination suppresses defects in topoisomerase III-deficient 
mutants. DNA Repair (Amst),6, 463-482.  

Ogawa, T., Pickett, G. G., Kogoma, T., & Kornberg, A. (1984). RNase H confers 
specificity in the dnaA-dependent initiation of replication at the unique origin of the 
Escherichia coli chromosome in vivo and in vitro. Proc Natl Acad Sci U S A,4, 
1040-1044.  



 
 

 

280

Ogden, G. B., Pratt, M. J., & Schaechter, M. (1988). The replicative origin of the E. coli 
chromosome binds to cell membranes only when hemimethylated. Cell,1, 127-135.  

Olsson, J. A., Nordstrom, K., Hjort, K., & Dasgupta, S. (2003). Eclipse-synchrony 
relationship in Escherichia coli strains with mutations affecting sequestration, 
initiation of replication and superhelicity of the bacterial chromosome. J Mol Biol,5, 
919-931.  

Onogi, T., Yamazoe, M., Ichinose, C., Niki, H., & Hiraga, S. (2000). Null mutation of the 
dam or seqA gene suppresses temperature-sensitive lethality but not hypersensitivity 
to novobiocin of muk null mutants. J Bacteriol,20, 5898-5901.  

Oram, M., Travers, A. A., Howells, A. J., Maxwell, A., & Pato, M. L. (2006). Dissection of 
the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in 
Mu biology and DNA gyrase mechanism. J Bacteriol,2, 619-632. doi: 
10.1128/JB.188.2.619-632.2006 

Orphanides, G., & Maxwell, A. (1994). Evidence for a conformational change in the DNA 
gyrase-DNA complex from hydroxyl radical footprinting. Nucleic Acids Res,9, 
1567-1575.  

Orr, E., Fairweather, N. F., Holland, I. B., & Pritchard, R. H. (1979). Isolation and 
characterisation of a strain carrying a conditional lethal mutation in the cou gene of 
Escherichia coli K12. Mol Gen Genet,1, 103-112.  

Ozaki, S., & Katayama, T. (2012). Highly organized DnaA-oriC complexes recruit the 
single-stranded DNA for replication initiation. Nucleic Acids Res,4, 1648-1665. doi: 
10.1093/nar/gkr832 

Parekh, B. S., Sheridan, S. D., & Hatfield, G. W. (1996). Effects of integration host factor 
and DNA supercoiling on transcription from the ilvPG promoter of Escherichia 
coli. J Biol Chem,34, 20258-20264.  

Pato, M. L. (1979). Alterations of deoxyribonucleoside triphosphate pools in Escherichia 
coli: effects on deoxyribonucleic acid replication and evidence for 
compartmentation. J Bacteriol,2, 518-524.  

Pato, M. L. (1994). Central location of the Mu strong gyrase binding site is obligatory for 
optimal rates of replicative transposition. Proc Natl Acad Sci U S A,15, 7056-7060.  

Pato, M. L., & Banerjee, M. (1999). Replacement of the bacteriophage Mu strong gyrase 
site and effect on Mu DNA replication. J Bacteriol,18, 5783-5789.  

Pato, M. L., Howe, M. M., & Higgins, N. P. (1990). A DNA gyrase-binding site at the 
center of the bacteriophage Mu genome is required for efficient replicative 
transposition. Proc Natl Acad Sci U S A,22, 8716-8720.  



 
 

 

281

Pato, M. L., Karlok, M., Wall, C., & Higgins, N. P. (1995). Characterization of Mu 
prophage lacking the central strong gyrase binding site: localization of the block in 
replication. J Bacteriol,20, 5937-5942.  

Pease, P. J., Levy, O., Cost, G. J., Gore, J., Ptacin, J. L., Sherratt, D., . . . Cozzarelli, N. R. 
(2005). Sequence-directed DNA translocation by purified FtsK. Science,5709, 586-
590. doi: 10.1126/science.1104885 

Peng, H., & Marians, K. J. (1993). Escherichia coli topoisomerase IV. Purification, 
characterization, subunit structure, and subunit interactions. J Biol Chem,32, 24481-
24490.  

Peng, H., & Marians, K. J. (1995). The interaction of Escherichia coli topoisomerase IV 
with DNA. J Biol Chem,42, 25286-25290.  

Perez-Cheeks, B. A., Lee, C., Hayama, R., & Marians, K. J. (2012). A role for 
topoisomerase III in Escherichia coli chromosome segregation. Mol Microbiol. doi: 
10.1111/mmi.12039 

Peter, B. J., Arsuaga, J., Breier, A. M., Khodursky, A. B., Brown, P. O., & Cozzarelli, N. R. 
(2004). Genomic transcriptional response to loss of chromosomal supercoiling in 
Escherichia coli. Genome Biol,11, R87. doi: 10.1186/gb-2004-5-11-r87 

Petrushenko, Z. M., Lai, C. H., Rai, R., & Rybenkov, V. V. (2006). DNA reshaping by 
MukB. Right-handed knotting, left-handed supercoiling. J Biol Chem,8, 4606-4615. 
doi: 10.1074/jbc.M504754200 

Pettijohn, D. E., Clarkson, K., Kossman, C. R., & Stonington, O. G. (1970). Synthesis of 
ribosomal RNA on a protein-DNA complex isolated from bacteria: a comparison of 
ribosomal RNA synthesis in vitro and in vivo. J Mol Biol,2, 281-300.  

Pettijohn, D. E., & Hecht, R. (1974). RNA molecules bound to the folded bacterial genome 
stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harb Symp 
Quant Biol, 31-41.  

Pettijohn, D. E., & Pfenninger, O. (1980). Supercoils in prokaryotic DNA restrained in 
vivo. Proc Natl Acad Sci U S A,3, 1331-1335.  

Phoenix, P., Raymond, M. A., Masse, E., & Drolet, M. (1997). Roles of DNA 
topoisomerases in the regulation of R-loop formation in vitro. J Biol Chem,3, 1473-
1479.  

Plank, J., & Hsieh, T. S. (2009). Helicase-appended topoisomerases: new insight into the 
mechanism of directional strand transfer. J Biol Chem,45, 30737-30741. doi: 
10.1074/jbc.R109.051268 



 
 

 

282

Plank, J. L., Chu, S. H., Pohlhaus, J. R., Wilson-Sali, T., & Hsieh, T. S. (2005). Drosophila 
melanogaster topoisomerase IIIalpha preferentially relaxes a positively or 
negatively supercoiled bubble substrate and is essential during development. J Biol 
Chem,5, 3564-3573. doi: 10.1074/jbc.M411337200 

Plank, J. L., Wu, J., & Hsieh, T. S. (2006). Topoisomerase IIIalpha and Bloom's helicase 
can resolve a mobile double Holliday junction substrate through convergent branch 
migration. Proc Natl Acad Sci U S A,30, 11118-11123. doi: 
10.1073/pnas.0604873103 

Pohl, W. F., & Roberts, G. W. (1978). Topological considerations in the theory of 
replication of DNA. J Math Biol,4, 383-402.  

Pohlhaus, J. R., & Kreuzer, K. N. (2005). Norfloxacin-induced DNA gyrase cleavage 
complexes block Escherichia coli replication forks, causing double-stranded breaks 
in vivo. Mol Microbiol,6, 1416-1429. doi: 10.1111/j.1365-2958.2005.04638.x 

Pomerantz, R. T., & O'Donnell, M. (2007). Replisome mechanics: insights into a twin 
DNA polymerase machine. Trends Microbiol,4, 156-164. doi: 
10.1016/j.tim.2007.02.007 

Pommier, Y. (2013). Drugging topoisomerases: lessons and challenges. ACS Chem Biol,1, 
82-95. doi: 10.1021/cb300648v 

Pong, A., & Bradley, J. S. (2004). Clinical challenges of nosocomial infections caused by 
antibiotic-resistant pathogens in pediatrics. Semin Pediatr Infect Dis,1, 21-29.  

Poole, K. (2005). Efflux-mediated antimicrobial resistance. J Antimicrob Chemother,1, 20-
51. doi: 10.1093/jac/dki171 

Postow, L., Hardy, C. D., Arsuaga, J., & Cozzarelli, N. R. (2004). Topological domain 
structure of the Escherichia coli chromosome. Genes Dev,14, 1766-1779. doi: 
10.1101/gad.1207504 

Postow, L., Ullsperger, C., Keller, R.W., Bustamante, C., Vologodskii, A.V.,  & Cozzarelli, 
N. R. (2001). Positive torsional strain causes the formation of a four-way junction at 
replication forks. J Biol Chem,276, 2790-2796. 

Prasanth, S. G., Mendez, J., Prasanth, K. V., & Stillman, B. (2004). Dynamics of pre-
replication complex proteins during the cell division cycle. Philos Trans R Soc Lond 
B Biol Sci,1441, 7-16. doi: 10.1098/rstb.2003.1360 

Pruss, G. J. (1985). DNA topoisomerase I mutants. Increased heterogeneity in linking 
number and other replicon-dependent changes in DNA supercoiling. J Mol Biol,1, 
51-63.  



 
 

 

283

Pruss, G. J., & Drlica, K. (1986). Topoisomerase I mutants: the gene on pBR322 that 
encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl 
Acad Sci U S A,23, 8952-8956.  

Pruss, G. J., & Drlica, K. (1989). DNA supercoiling and prokaryotic transcription. Cell,4, 
521-523.  

Pruss, G. J., Manes, S. H., & Drlica, K. (1982). Escherichia coli DNA topoisomerase I 
mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell,1, 
35-42.  

Prystowsky, J., Siddiqui, F., Chosay, J., Shinabarger, D. L., Millichap, J., Peterson, L. R., 
& Noskin, G. A. (2001). Resistance to linezolid: characterization of mutations in 
rRNA and comparison of their occurrences in vancomycin-resistant enterococci. 
Antimicrob Agents Chemother,7, 2154-2156. doi: 10.1128/AAC.45.7.2154-
2156.2001 

Qi, H., Menzel, R., & Tse-Dinh, Y. C. (1996). Effect of the deletion of the sigma 32-
dependent promoter (P1) of the Escherichia coli topoisomerase I gene on 
thermotolerance. Mol Microbiol,4, 703-711.  

Qi, H., Menzel, R., & Tse-Dinh, Y. C. (1999). Increased thermosensitivity associated with 
topoisomerase I deletion and promoter mutations in Escherichia coli. FEMS 
Microbiol Lett,1, 141-146.  

Ramelot, T. A., Cort, J. R., Yee, A. A., Semesi, A., Edwards, A. M., Arrowsmith, C. H., & 
Kennedy, M. A. (2002). NMR structure of the Escherichia coli protein YacG: a 
novel sequence motif in the zinc-finger family of proteins. Proteins,2, 289-293. doi: 
10.1002/prot.10214 

Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., . . . Claverie, J. M. 
(2004). The 1.2-megabase genome sequence of Mimivirus. Science,5700, 1344-
1350. doi: 10.1126/science.1101485 

Reece, R. J., & Maxwell, A. (1991). The C-terminal domain of the Escherichia coli DNA 
gyrase A subunit is a DNA-binding protein. Nucleic Acids Res,7, 1399-1405.  

Reyes-Lamothe, R., Nicolas, E., & Sherratt, D. J. (2012). Chromosome replication and 
segregation in bacteria. Annu Rev Genet, 121-143. doi: 10.1146/annurev-genet-
110711-155421 

Riber, L., Fujimitsu, K., Katayama, T., & Lobner-Olesen, A. (2009). Loss of Hda activity 
stimulates replication initiation from I-box, but not R4 mutant origins in 
Escherichia coli. Mol Microbiol,1, 107-122. doi: 10.1111/j.1365-
2958.2008.06516.x 



 
 

 

284

Riber, L., Olsson, J. A., Jensen, R. B., Skovgaard, O., Dasgupta, S., Marinus, M. G., & 
Lobner-Olesen, A. (2006). Hda-mediated inactivation of the DnaA protein and 
dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the 
Escherichia coli chromosome. Genes Dev,15, 2121-2134. doi: 10.1101/gad.379506 

Richardson, R. W., & Nossal, N. G. (1989). Characterization of the bacteriophage T4 gene 
41 DNA helicase. J Biol Chem,8, 4725-4731.  

Richardson, S. M., Higgins, C. F., & Lilley, D. M. (1988). DNA supercoiling and the leu-
500 promoter mutation of Salmonella typhimurium. EMBO J,6, 1863-1869.  

Roca, J., & Wang, J. C. (1992). The capture of a DNA double helix by an ATP-dependent 
protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell,5, 
833-840.  

Roth, A., & Messer, W. (1995). The DNA binding domain of the initiator protein DnaA. 
EMBO J,9, 2106-2111.  

Roth, A., & Messer, W. (1998). High-affinity binding sites for the initiator protein DnaA 
on the chromosome of Escherichia coli. Mol Microbiol,2, 395-401.  

Roth, A., Urmoneit, B., & Messer, W. (1994). Functions of histone-like proteins in the 
initiation of DNA replication at oriC of Escherichia coli. Biochimie,10-11, 917-923.  

Rovinskiy, N., Agbleke, A. A., Chesnokova, O., Pang, Z., & Higgins, N. P. (2012). Rates 
of gyrase supercoiling and transcription elongation control supercoil density in a 
bacterial chromosome. PLoS Genet,8, e1002845. doi: 
10.1371/journal.pgen.1002845 

Rozgaja, T. A., Grimwade, J. E., Iqbal, M., Czerwonka, C., Vora, M., & Leonard, A. C. 
(2011). Two oppositely oriented arrays of low-affinity recognition sites in oriC 
guide progressive binding of DnaA during Escherichia coli pre-RC assembly. Mol 
Microbiol,2, 475-488. doi: 10.1111/j.1365-2958.2011.07827.x 

Rudolph, C. J., Upton, A. L., Harris, L., & Lloyd, R. G. (2009). Pathological replication in 
cells lacking RecG DNA translocase. Mol Microbiol,3, 352-366. doi: 
10.1111/j.1365-2958.2009.06773.x 

Rudolph, C. J., Upton, A. L., & Lloyd, R. G. (2007). Replication fork stalling and cell cycle 
arrest in UV-irradiated Escherichia coli. Genes Dev,6, 668-681. doi: 
10.1101/gad.417607 

Rudolph, C. J., Upton, A. L., & Lloyd, R. G. (2009). Replication fork collisions cause 
pathological chromosomal amplification in cells lacking RecG DNA translocase. 
Mol Microbiol,4, 940-955. doi: 10.1111/j.1365-2958.2009.06909.x 



 
 

 

285

Rudolph, C. J., Upton, A. L., Stockum, A., Nieduszynski, C. A., & Lloyd, R. G. (2013). 
Avoiding chromosome pathology when replication forks collide. Nature. doi: 
10.1038/nature12312 

Rui, S., & Tse-Dinh, Y. C. (2003). Topoisomerase function during bacterial responses to 
environmental challenge. Front Biosci, d256-263.  

Ryan, V. T., Grimwade, J. E., Camara, J. E., Crooke, E., & Leonard, A. C. (2004). 
Escherichia coli prereplication complex assembly is regulated by dynamic interplay 
among Fis, IHF and DnaA. Mol Microbiol,5, 1347-1359. doi: 10.1046/j.1365-
2958.2003.03906.x 

Rybenkov, V. V., Vologodskii, A. V., & Cozzarelli, N. R. (1997). The effect of ionic 
conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. J 
Mol Biol,2, 312-323. doi: 10.1006/jmbi.1996.0877 

Saffi, J., Pereira, V. R., & Henriques, J. A. (2000). Importance of the Sgs1 helicase activity 
in DNA repair of Saccharomyces cerevisiae. Curr Genet,2, 75-78.  

Sander, M., & Hsieh, T. (1983). Double strand DNA cleavage by type II DNA 
topoisomerase from Drosophila melanogaster. J Biol Chem,13, 8421-8428.  

Sandler, S. J. (2000). Multiple genetic pathways for restarting DNA replication forks in 
Escherichia coli K-12. Genetics,2, 487-497.  

Sandler, S. J. (2005). Requirements for replication restart proteins during constitutive stable 
DNA replication in Escherichia coli K-12. Genetics,4, 1799-1806. doi: 
10.1534/genetics.104.036962 

Sandler, S. J., & Marians, K. J. (2000). Role of PriA in replication fork reactivation in 
Escherichia coli. J Bacteriol,1, 9-13.  

Sandler, S. J., Samra, H. S., & Clark, A. J. (1996). Differential suppression of priA2::kan 
phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. 
Genetics,1, 5-13.  

Sawitzke, J. A., & Austin, S. (2000). Suppression of chromosome segregation defects of 
Escherichia coli muk mutants by mutations in topoisomerase I. Proc Natl Acad Sci 
U S A,4, 1671-1676. doi: 10.1073/pnas.030528397 

Saxena, R., Fingland, N., Patil, D., Sharma, A. K., & Crooke, E. (2013). Crosstalk between 
DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and 
Acidic Phospholipids Present in Bacterial Membranes. Int J Mol Sci,4, 8517-8537. 
doi: 10.3390/ijms14048517 



 
 

 

286

Schaper, S., & Messer, W. (1995). Interaction of the initiator protein DnaA of Escherichia 
coli with its DNA target. J Biol Chem,29, 17622-17626.  

Schapira, A. H. (2006). Mitochondrial disease. Lancet,9529, 70-82. doi: 10.1016/S0140-
6736(06)68970-8 

Schmidt, B. H., Burgin, A. B., Deweese, J. E., Osheroff, N., & Berger, J. M. (2010). A 
novel and unified two-metal mechanism for DNA cleavage by type II and IA 
topoisomerases. Nature,7298, 641-644. doi: 10.1038/nature08974 

Schneider, R., Lurz, R., Luder, G., Tolksdorf, C., Travers, A., & Muskhelishvili, G. (2001). 
An architectural role of the Escherichia coli chromatin protein FIS in organising 
DNA. Nucleic Acids Res,24, 5107-5114.  

Schoeffler, A. J., & Berger, J. M. (2008). DNA topoisomerases: harnessing and 
constraining energy to govern chromosome topology. Q Rev Biophys,1, 41-101. doi: 
10.1017/S003358350800468X 

Schvartzman, J. B., & Stasiak, A. (2004). A topological view of the replicon. EMBO Rep,3, 
256-261. doi: 10.1038/sj.embor.7400101 

Scocca, J. R., & Shapiro, T. A. (2008). A mitochondrial topoisomerase IA essential for late 
theta structure resolution in African trypanosomes. Mol Microbiol,4, 820-829. doi: 
10.1111/j.1365-2958.2007.06087.x 

Seigneur, M., Bidnenko, V., Ehrlich, S. D., & Michel, B. (1998). RuvAB acts at arrested 
replication forks. Cell,3, 419-430.  

Seitz, H., Weigel, C., & Messer, W. (2000). The interaction domains of the DnaA and 
DnaB replication proteins of Escherichia coli. Mol Microbiol,5, 1270-1279.  

Sekimizu, K., Bramhill, D., & Kornberg, A. (1987). ATP activates dnaA protein in 
initiating replication of plasmids bearing the origin of the E. coli chromosome. 
Cell,2, 259-265.  

Sekimizu, K., Yung, B. Y., & Kornberg, A. (1988). The dnaA protein of Escherichia coli. 
Abundance, improved purification, and membrane binding. J Biol Chem,15, 7136-
7140.  

Sengupta, S., Ghosh, S., & Nagaraja, V. (2008). Moonlighting function of glutamate 
racemase from Mycobacterium tuberculosis: racemization and DNA gyrase 
inhibition are two independent activities of the enzyme. Microbiology,Pt 9, 2796-
2803. doi: 10.1099/mic.0.2008/020933-0 



 
 

 

287

Sengupta, S., & Nagaraja, V. (2008). YacG from Escherichia coli is a specific endogenous 
inhibitor of DNA gyrase. Nucleic Acids Res,13, 4310-4316. doi: 
10.1093/nar/gkn355 

Sengupta, S., Shah, M., & Nagaraja, V. (2006). Glutamate racemase from Mycobacterium 
tuberculosis inhibits DNA gyrase by affecting its DNA-binding. Nucleic Acids 
Res,19, 5567-5576. doi: 10.1093/nar/gkl704 

Shapiro, T. A., & Englund, P. T. (1995). The structure and replication of kinetoplast DNA. 
Annu Rev Microbiol, 117-143. doi: 10.1146/annurev.mi.49.100195.001001 

Shor, E., Gangloff, S., Wagner, M., Weinstein, J., Price, G., & Rothstein, R. (2002). 
Mutations in homologous recombination genes rescue top3 slow growth in 
Saccharomyces cerevisiae. Genetics,2, 647-662.  

Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., & Hurley, L. H. (2002). Direct evidence for a 
G-quadruplex in a promoter region and its targeting with a small molecule to 
repress c-MYC transcription. Proc Natl Acad Sci U S A,18, 11593-11598. doi: 
10.1073/pnas.182256799 

Silver, L. L., & Bostian, K. A. (1993). Discovery and development of new antibiotics: the 
problem of antibiotic resistance. Antimicrob Agents Chemother,3, 377-383.  

Sinden, R. R., Carlson, J. O., & Pettijohn, D. E. (1980). Torsional tension in the DNA 
double helix measured with trimethylpsoralen in living E. coli cells: analogous 
measurements in insect and human cells. Cell,3, 773-783.  

Sinden, R. R., & Kochel, T. J. (1987). Reduced 4,5',8-trimethylpsoralen cross-linking of 
left-handed Z-DNA stabilized by DNA supercoiling. Biochemistry,5, 1343-1350.  

Sinden, R. R., & Pettijohn, D. E. (1981). Chromosomes in living Escherichia coli cells are 
segregated into domains of supercoiling. Proc Natl Acad Sci U S A,1, 224-228.  

Sinden, Richard R. (1994). DNA structure and function. San Diego ; 

Toronto: Academic Press. 

Simmons, L.A., Felczak, M., & Kaguni, J.M. (2003). DnaA protein of Escherichia coli: 
oligomerization at the E. coli chromosomal origin is required for initiation and 
involves specific N-terminal amino acids. Mol Microbiol,49, 849-858.  

Sioud, M., Possot, O., Elie, C., Sibold, L., & Forterre, P. (1988). Coumarin and quinolone 
action in archaebacteria: evidence for the presence of a DNA gyrase-like enzyme. J 
Bacteriol,2, 946-953.  



 
 

 

288

Skarstad, K., Baker, T. A., & Kornberg, A. (1990). Strand separation required for initiation 
of replication at the chromosomal origin of E.coli is facilitated by a distant RNA--
DNA hybrid. EMBO J,7, 2341-2348.  

Skarstad, K., Boye, E., & Steen, H. B. (1986). Timing of initiation of chromosome 
replication in individual Escherichia coli cells. EMBO J,7, 1711-1717.  

Slater, S., Wold, S., Lu, M., Boye, E., Skarstad, K., & Kleckner, N. (1995). E. coli SeqA 
protein binds oriC in two different methyl-modulated reactions appropriate to its 
roles in DNA replication initiation and origin sequestration. Cell,6, 927-936.  

Slesarev, A. I., Stetter, K. O., Lake, J. A., Gellert, M., Krah, R., & Kozyavkin, S. A. (1993). 
DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a 
hyperthermophilic prokaryote. Nature,6439, 735-737. doi: 10.1038/364735a0 

Smelkova, N., & Marians, K. J. (2001). Timely release of both replication forks from oriC 
requires modulation of origin topology. J Biol Chem,42, 39186-39191. doi: 
10.1074/jbc.M104411200 

Srivenugopal, K. S., Lockshon, D., & Morris, D. R. (1984). Escherichia coli DNA 
topoisomerase III: purification and characterization of a new type I enzyme. 
Biochemistry,9, 1899-1906.  

Staker, B. L., Feese, M. D., Cushman, M., Pommier, Y., Zembower, D., Stewart, L., & 
Burgin, A. B. (2005). Structures of three classes of anticancer agents bound to the 
human topoisomerase I-DNA covalent complex. J Med Chem,7, 2336-2345. doi: 
10.1021/jm049146p 

Staker, B. L., Hjerrild, K., Feese, M. D., Behnke, C. A., Burgin, A. B., Jr., & Stewart, L. 
(2002). The mechanism of topoisomerase I poisoning by a camptothecin analog. 
Proc Natl Acad Sci U S A,24, 15387-15392. doi: 10.1073/pnas.242259599 

Steck, T. R., Pruss, G. J., Manes, S. H., Burg, L., & Drlica, K. (1984). DNA supercoiling in 
gyrase mutants. J Bacteriol,2, 397-403.  

Stepankiw, N., Kaidow, A., Boye, E., & Bates, D. (2009). The right half of the Escherichia 
coli replication origin is not essential for viability, but facilitates multi-forked 
replication. Mol Microbiol,2, 467-479. doi: 10.1111/j.1365-2958.2009.06877.x 

Sternglanz, R., DiNardo, S., Voelkel, K. A., Nishimura, Y., Hirota, Y., Becherer, K., . . . 
Wang, J. C. (1981). Mutations in the gene coding for Escherichia coli DNA 
topoisomerase I affect transcription and transposition. Proc Natl Acad Sci U S A,5, 
2747-2751.  



 
 

 

289

Stetler, G. L., King, G. J., & Huang, W. M. (1979). T4 DNA-delay proteins, required for 
specific DNA replication, form a complex that has ATP-dependent DNA 
topoisomerase activity. Proc Natl Acad Sci U S A,8, 3737-3741.  

Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G., & Champoux, J. J. (1998). A model for 
the mechanism of human topoisomerase I. Science,5356, 1534-1541.  

Stivers, J. T., Harris, T. K., & Mildvan, A. S. (1997). Vaccinia DNA topoisomerase I: 
evidence supporting a free rotation mechanism for DNA supercoil relaxation. 
Biochemistry,17, 5212-5222. doi: 10.1021/bi962880t 

Stockum, A., Lloyd, R. G., & Rudolph, C. J. (2012). On the viability of Escherichia coli 
cells lacking DNA topoisomerase I. BMC Microbiol, 26. doi: 10.1186/1471-2180-
12-26 

Stone, M. D., Bryant, Z., Crisona, N. J., Smith, S. B., Vologodskii, A., Bustamante, C., & 
Cozzarelli, N. R. (2003). Chirality sensing by Escherichia coli topoisomerase IV 
and the mechanism of type II topoisomerases. Proc Natl Acad Sci U S A,15, 8654-
8659. doi: 10.1073/pnas.1133178100 

Stonington, O. G., & Pettijohn, D. E. (1971). The folded genome of Escherichia coli 
isolated in a protein-DNA-RNA complex. Proc Natl Acad Sci U S A,1, 6-9.  

Stupina, V. A., & Wang, J. C. (2005). Viability of Escherichia coli topA mutants lacking 
DNA topoisomerase I. J Biol Chem,1, 355-360. doi: 10.1074/jbc.M411924200 

Su'etsugu, M., Nakamura, K., Keyamura, K., Kudo, Y., & Katayama, T. (2008). Hda 
monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP 
hydrolysis. J Biol Chem,52, 36118-36131. doi: 10.1074/jbc.M803158200 

Sugino, A., Higgins, N. P., Brown, P. O., Peebles, C. L., & Cozzarelli, N. R. (1978). 
Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc 
Natl Acad Sci U S A,10, 4838-4842.  

Sun, D., & Hurley, L. H. (2009). The importance of negative superhelicity in inducing the 
formation of G-quadruplex and i-motif structures in the c-Myc promoter: 
implications for drug targeting and control of gene expression. J Med Chem,9, 
2863-2874. doi: 10.1021/jm900055s 

Suski, C., & Marians, K. J. (2008). Resolution of converging replication forks by RecQ and 
topoisomerase III. Mol Cell,6, 779-789. doi: 10.1016/j.molcel.2008.04.020 

Sutton, M. D., Carr, K. M., Vicente, M., & Kaguni, J. M. (1998). Escherichia coli DnaA 
protein. The N-terminal domain and loading of DnaB helicase at the E. coli 
chromosomal origin. J Biol Chem,51, 34255-34262.  



 
 

 

290

Sutton, M. D., & Kaguni, J. M. (1997). Threonine 435 of Escherichia coli DnaA protein 
confers sequence-specific DNA binding activity. J Biol Chem,37, 23017-23024.  

Szambowska, A., Pierechod, M., Wegrzyn, G., & Glinkowska, M. (2011). Coupling of 
transcription and replication machineries in lambda DNA replication initiation: 
evidence for direct interaction of Escherichia coli RNA polymerase and the 
lambdaO protein. Nucleic Acids Res,1, 168-177. doi: 10.1093/nar/gkq752 

Tanaka, T., Taniyama, C., Arai, K., & Masai, H. (2003). ATPase/helicase motif mutants of 
Escherichia coli PriA protein essential for recombination-dependent DNA 
replication. Genes Cells,3, 251-261.  

Taneja, B., Patel, A., Slesarev, A., & Mondragon, A. (2006). Structure of the N-terminal 
fragment of topoisomerase V reveals a new family of topoisomerases. EMBO J,2, 
398-408. doi: 10.1038/sj.emboj.7600922 

Taneja, B., Schnurr, B., Slesarev, A., Marko, J. F., & Mondragon, A. (2007). 
Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism. 
Proc Natl Acad Sci U S A,37, 14670-14675. doi: 10.1073/pnas.0701989104 

Thelander, L., & Reichard, P. (1979). Reduction of ribonucleotides. Annu Rev Biochem, 
133-158. doi: 10.1146/annurev.bi.48.070179.001025 

Thompson, R. J., & Mosig, G. (1985). An ATP-dependent supercoiling topoisomerase of 
Chlamydomonas reinhardtii affects accumulation of specific chloroplast transcripts. 
Nucleic Acids Res,3, 873-891.  

Tomonaga, T., & Levens, D. (1996). Activating transcription from single stranded DNA. 
Proc Natl Acad Sci U S A,12, 5830-5835.  

Topcu, Z., & Castora, F. J. (1995). Mammalian mitochondrial DNA topoisomerase I 
preferentially relaxes supercoils in plasmids containing specific mitochondrial DNA 
sequences. Biochim Biophys Acta,3, 377-387.  

Tougu, K., & Marians, K. J. (1996). The interaction between helicase and primase sets the 
replication fork clock. J Biol Chem,35, 21398-21405.  

Travers, A., & Muskhelishvili, G. (2005a). Bacterial chromatin. Curr Opin Genet Dev,5, 
507-514. doi: 10.1016/j.gde.2005.08.006 

Travers, A., & Muskhelishvili, G. (2005b). DNA supercoiling - a global transcriptional 
regulator for enterobacterial growth? Nat Rev Microbiol,2, 157-169. doi: 
10.1038/nrmicro1088 

Travers, A., & Muskhelishvili, G. (2007). A common topology for bacterial and eukaryotic 
transcription initiation? EMBO Rep,2, 147-151. doi: 10.1038/sj.embor.7400898 



 
 

 

291

Trucksis, M., & Depew, R. E. (1981). Identification and localization of a gene that specifies 
production of Escherichia coli DNA topoisomerase I. Proc Natl Acad Sci U S A,4, 
2164-2168.  

Tse-Dinh, Y. C. (2000). Increased sensitivity to oxidative challenges associated with topA 
deletion in Escherichia coli. J Bacteriol,3, 829-832.  

Tse, Y. C., Kirkegaard, K., & Wang, J. C. (1980). Covalent bonds between protein and 
DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases 
and DNA. J Biol Chem,12, 5560-5565.  

Tua, A., Wang, J., Kulpa, V., & Wernette, C. M. (1997). Mitochondrial DNA 
topoisomerase I of Saccharomyces cerevisiae. Biochimie,6, 341-350.  

Ui, A., Seki, M., Ogiwara, H., Onodera, R., Fukushige, S., Onoda, F., & Enomoto, T. 
(2005). The ability of Sgs1 to interact with DNA topoisomerase III is essential for 
damage-induced recombination. DNA repair (Amst),2, 191-201. doi: 
10.1016/j.dnarep.2004.09.002  

Ullsperger, C., & Cozzarelli, N. R. (1996). Contrasting enzymatic activities of 
topoisomerase IV and DNA gyrase from Escherichia coli. J Biol Chem,49, 31549-
31555.  

Usongo, V., Nolent, F., Sanscartier, P., Tanguay, C., Broccoli, S., Baaklini, I., . . . Drolet, 
M. (2008). Depletion of RNase HI activity in Escherichia coli lacking DNA 
topoisomerase I leads to defects in DNA supercoiling and segregation. Mol 
Microbiol,4, 968-981. doi: 10.1111/j.1365-2958.2008.06334.x 

Usongo, V., Tanguay, C., Nolent, F., Bessong, J. E., & Drolet, M. (2013). Interplay 
between type 1A topoisomerases and gyrase in chromosome segregation in 
Escherichia coli. J Bacteriol,8, 1758-1768. doi: 10.1128/JB.02001-12 

Valjavec-Gratian, M., Henderson, T. A., & Hill, T. M. (2005). Tus-mediated arrest of DNA 
replication in Escherichia coli is modulated by DNA supercoiling. Mol Microbiol,3, 
758-773. doi: 10.1111/j.1365-2958.2005.04860.x 

veer Reddy, G. P., & Pardee, A. B. (1982). Coupled ribonucleoside diphosphate reduction, 
channeling, and incorporation into DNA of mammalian cells. J Biol Chem,21, 
12526-12531.  

Vincent, S. D., Mahdi, A. A., & Lloyd, R. G. (1996). The RecG branch migration protein 
of Escherichia coli dissociates R-loops. J Mol Biol,4, 713-721. doi: 
10.1006/jmbi.1996.0671 

Vinograd, J., Lebowitz, J., Radloff, R., Watson, R., & Laipis, P. (1965). The twisted 
circular form of polyoma viral DNA. Proc Natl Acad Sci U S A,5, 1104-1111.  



 
 

 

292

Vizan, J. L., Hernandez-Chico, C., del Castillo, I., & Moreno, F. (1991). The peptide 
antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli 
DNA gyrase. EMBO J,2, 467-476.  

Vologodskii, A. V., & Cozzarelli, N. R. (1993). Monte Carlo analysis of the conformation 
of DNA catenanes. J Mol Biol,4, 1130-1140. doi: 10.1006/jmbi.1993.1465 

Vologodskii, A. V., & Cozzarelli, N. R. (1994). Conformational and thermodynamic 
properties of supercoiled DNA. Annu Rev Biophys Biomol Struct, 609-643. doi: 
10.1146/annurev.bb.23.060194.003141 

Vos, S. M., Tretter, E. M., Schmidt, B. H., & Berger, J. M. (2011). All tangled up: how 
cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol,12, 
827-841. doi: 10.1038/nrm3228 

Wahle, E., Lasken, R. S., & Kornberg, A. (1989). The dnaB-dnaC replication protein 
complex of Escherichia coli. I. Formation and properties. J Biol Chem,5, 2463-
2468.  

Wallis, J. W., Chrebet, G., Brodsky, G., Rolfe, M., & Rothstein, R. (1989). A hyper-
recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. 
Cell,2, 409-419.  

Walsh, C., & Wright, G. (2005). Introduction: antibiotic resistance. Chem Rev,2, 391-394. 
doi: 10.1021/cr030100y 

Wang, J. C. (1971). Interaction between DNA and an Escherichia coli protein omega. J 
Mol Biol,3, 523-533.  

Wang, J. C. (1974). The degree of unwinding of the DNA helix by ethidium. I. Titration of 
twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J Mol 
Biol,4, 783-801.  

Wang, J. C. (1985). DNA topoisomerases: nature's solution to the topological ramifications 
of the double-helix structure of DNA. Harvey Lect, 93-110.  

Wang, J. C. (1991). DNA topoisomerases: why so many? J Biol Chem,11, 6659-6662.  

Wang, J. C. (1996). DNA topoisomerases. Annu Rev Biochem, 635-692. doi: 
10.1146/annurev.bi.65.070196.003223 

Wang, J. C. (1998). Moving one DNA double helix through another by a type II DNA 
topoisomerase: the story of a simple molecular machine. Q Rev Biophys,2, 107-144.  

Wang, J. C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nat 
Rev Mol Cell Biol,6, 430-440. doi: 10.1038/nrm831 



 
 

 

293

Wang, James C. (2009). Untangling the double helix : DNA entanglement and the action of 
the DNA topoisomerases. Cold Spring Harbor, N.Y.: Cold Spring Harbor 
Laboratory Press. 

Wang, S. C., West, L., & Shapiro, L. (2006). The bifunctional FtsK protein mediates 
chromosome partitioning and cell division in Caulobacter. J Bacteriol,4, 1497-
1508. doi: 10.1128/JB.188.4.1497-1508.2006 

Wang, X., Reyes-Lamothe, R., & Sherratt, D. J. (2008). Modulation of Escherichia coli 
sister chromosome cohesion by topoisomerase IV. Genes Dev,17, 2426-2433. doi: 
10.1101/gad.487508 

Wang, Y., Lyu, Y. L., & Wang, J. C. (2002). Dual localization of human DNA 
topoisomerase IIIalpha to mitochondria and nucleus. Proc Natl Acad Sci U S A,19, 
12114-12119. doi: 10.1073/pnas.192449499 

Watson, J. D., & Crick, F. H. (1953a). Genetical implications of the structure of 
deoxyribonucleic acid. Nature,4361, 964-967.  

Watson, J. D., & Crick, F. H. (1953b). The structure of DNA. Cold Spring Harb Symp 
Quant Biol, 123-131.  

Watt, P. M., Louis, E. J., Borts, R. H., & Hickson, I. D. (1995). Sgs1: a eukaryotic homolog 
of E. coli RecQ that interacts with topoisomerase II in vivo and is required for 
faithful chromosome segregation. Cell,2, 253-260.  

Weigel, C., Messer, W., Preiss, S., Welzeck, M., Morigen, & Boye, E. (2001). The 
sequence requirements for a functional Escherichia coli replication origin are 
different for the chromosome and a minichromosome. Mol Microbiol,2, 498-507.  

Weil, R., & Vinograd, J. (1963). The Cyclic Helix and Cyclic Coil Forms of Polyoma Viral 
DNA. Proc Natl Acad Sci U S A, 730-738.  

West, S. C. (1997). Processing of recombination intermediates by the RuvABC proteins. 
Annu Rev Genet, 213-244. doi: 10.1146/annurev.genet.31.1.213 

White, J. H. (1969). Self-Linking and Gauss-Integral in Higher Dimensions. American 
Journal of Mathematics,3, 693-&. doi: Doi 10.2307/2373348 

White, J. H., Cozzarelli, N. R., & Bauer, W. R. (1988). Helical repeat and linking number 
of surface-wrapped DNA. Science,4863, 323-327.  

Willenbrock, H., & Ussery, D. W. (2004). Chromatin architecture and gene expression in 
Escherichia coli. Genome Biol,12, 252. doi: 10.1186/gb-2004-5-12-252 



 
 

 

294

Wimberly, H., Shee, C., Thornton, P. C., Sivaramakrishnan, P., Rosenberg, S. M., & 
Hastings, P. J. (2013). R-loops and nicks initiate DNA breakage and genome 
instability in non-growing Escherichia coli. Nat Commun, 2115. doi: 
10.1038/ncomms3115 

Witte, G., Urbanke, C., & Curth, U. (2003). DNA polymerase III chi subunit ties single-
stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids 
Res,15, 4434-4440.  

Wolfe, A. J. (2005). The acetate switch. Microbiol Mol Biol Rev,1, 12-50. doi: 
10.1128/MMBR.69.1.12-50.2005 

Worcel, A., & Burgi, E. (1972). On the structure of the folded chromosome of Escherichia 
coli. J Mol Biol,2, 127-147.  

Wu, C. A., Zechner, E. L., & Marians, K. J. (1992). Coordinated leading- and lagging-
strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors 
act to modulate Okazaki fragment size. J Biol Chem,6, 4030-4044.  

Wu, H. Y., Shyy, S. H., Wang, J. C., & Liu, L. F. (1988). Transcription generates positively 
and negatively supercoiled domains in the template. Cell,3, 433-440.  

Wu, J., Feng, L., & Hsieh, T. S. (2010). Drosophila topo IIIalpha is required for the 
maintenance of mitochondrial genome and male germ-line stem cells. Proc Natl 
Acad Sci U S A,14, 6228-6233. doi: 10.1073/pnas.1001855107 

Wu, L., Davies, S. L., North, P. S., Goulaouic, H., Riou, J. F., Turley, H., . . . Hickson, I. D. 
(2000). The Bloom's syndrome gene product interacts with topoisomerase III. J Biol 
Chem,13, 9636-9644.  

Wu, L., & Hickson, I. D. (2003). The Bloom's syndrome helicase suppresses crossing over 
during homologous recombination. Nature,6968, 870-874. doi: 
10.1038/nature02253 

Xu, L., & Marians, K. J. (2000). Purification and characterization of DnaC810, a 
primosomal protein capable of bypassing PriA function. J Biol Chem,275, 8196-
8205. doi: 10.1074/jbc.275.11.8196 

Yamagata, K., Kato, J., Shimamoto, A., Goto, M., Furuichi, Y., & Ikeda, H. (1998). 
Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 
mutant: implication for genomic instability in human diseases. Proc Natl Acad Sci 
U S A,15, 8733-8738.  

Yigit, H., & Reznikoff, W. S. (1999). Escherichia coli DNA topoisomerase I copurifies 
with Tn5 transposase, and Tn5 transposase inhibits topoisomerase I. J Bacteriol,10, 
3185-3192.  



 
 

 

295

Yu, X. C., Weihe, E. K., & Margolin, W. (1998). Role of the C terminus of FtsK in 
Escherichia coli chromosome segregation. J Bacteriol,23, 6424-6428.  

Yuzhakov, A., Turner, J., & O'Donnell, M. (1996). Replisome assembly reveals the basis 
for asymmetric function in leading and lagging strand replication. Cell,86, 877-886.  

Yuzhakov, A., Kelman, Z., & O'Donnell, M. (1999). Trading places on DNA--a three-point 
switch underlies primer handoff from primase to the replicative DNA polymerase. 
Cell,1, 153-163.  

Zechiedrich, E. L., & Cozzarelli, N. R. (1995). Roles of topoisomerase IV and DNA gyrase 
in DNA unlinking during replication in Escherichia coli. Genes Dev,22, 2859-2869.  

Zechiedrich, E. L., Khodursky, A. B., Bachellier, S., Schneider, R., Chen, D., Lilley, D. M., 
& Cozzarelli, N. R. (2000). Roles of topoisomerases in maintaining steady-state 
DNA supercoiling in Escherichia coli. J Biol Chem,11, 8103-8113.  

Zechiedrich, E. L., Khodursky, A. B., & Cozzarelli, N. R. (1997). Topoisomerase IV, not 
gyrase, decatenates products of site-specific recombination in Escherichia coli. 
Genes Dev,19, 2580-2592.  

Zerbib, D., Mezard, C., George, H., & West, S. C. (1998). Coordinated actions of RuvABC 
in Holliday junction processing. J Mol Biol,4, 621-630. doi: 
10.1006/jmbi.1998.1959 

Zhang, H., Barcelo, J. M., Lee, B., Kohlhagen, G., Zimonjic, D. B., Popescu, N. C., & 
Pommier, Y. (2001). Human mitochondrial topoisomerase I. Proc Natl Acad Sci U 
S A,19, 10608-10613. doi: 10.1073/pnas.191321998 

Zhang, H., Meng, L. H., & Pommier, Y. (2007). Mitochondrial topoisomerases and 
alternative splicing of the human TOP1mt gene. Biochimie,4, 474-481. doi: 
10.1016/j.biochi.2006.11.002 

Zhang, Z., Cheng, B., & Tse-Dinh, Y. C. (2011). Crystal structure of a covalent 
intermediate in DNA cleavage and rejoining by Escherichia coli DNA 
topoisomerase I. Proc Natl Acad Sci U S A,17, 6939-6944. doi: 
10.1073/pnas.1100300108 

Zhu, Q., Pongpech, P., & DiGate, R. J. (2001). Type I topoisomerase activity is required for 
proper chromosomal segregation in Escherichia coli. Proc Natl Acad Sci U S A,17, 
9766-9771. doi: 10.1073/pnas.171579898 

Zivanovic, Y., Goulet, I., Revet, B., Le Bret, M., & Prunell, A. (1988). Chromatin 
reconstitution on small DNA rings. II. DNA supercoiling on the nucleosome. J Mol 
Biol,2, 267-290.  



 
 

 

296

Zyskind, J. W., Cleary, J. M., Brusilow, W. S., Harding, N. E., & Smith, D. W. (1983). 
Chromosomal replication origin from the marine bacterium Vibrio harveyi functions 
in Escherichia coli: oriC consensus sequence. Proc Natl Acad Sci U S A,5, 1164-
1168.  

Zyskind, J. W., & Smith, D. W. (1986). The bacterial origin of replication, oriC. Cell,4, 
489-490. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

297

 7.2 Annex I: Table showing suppressors of triple topA rnhA 

gyrB(Ts) mutant 

Number of 
independent 
isolates 

Category Comments 

28 Reduce 
replication 

holC(8): clamp loader, interaction with SSB, processivity  
-oriC, dnaT (replisome loading, cSDR) 
-nucleotides metabolism (18): 
affect dNTP pool; some also increase ATP pool (supercoiling defect 
was corrected)  
-The findings reported in this thesis demonstrate the correlation 
between the ability to reduce replication and supercoiling restoration. 

16 Ribonuclea
ses 

rne (12). Corrects supercoiling by reducing cSDR. Our data 
demonstrates correlation between this category of mutants and the 
reduction of cSDR 
rnr (4). Correction of supercoiling defect by RNase R possibly linked 
to cSDR. 
 

7 Implicated 
in the 
formation 
of type I 
fimbriae  
 

Fimbriae synthesis affects swarming/swimming make more ATP 
available for gyrase (very high supercoiling activity observed in this 
category of suppressors. Prominent in this category is the gene fimD.  

5 Global 
regulators 

cyaA and crp (5). Global transcription regulator that controls the 
expression of more than 200 genes. Exert global control over 
processes of cellular physiology and virulence such as catabolite 
repression and motility (type I fimbriae formation). Supercoiling was 
restored in these mutants and this could be related to ATP 
availability. 

2 Central 
metabolism 

pta and aceE 
Supercoiling defect was corrected in these mutants. These genes are 
involved in central metabolism. Correlation between central 
metabolism and DNA replication has been established. Reduction of 
acetyl-CoA pool in aceE mutants affects flagella movement via 
CheY acetylation. In both instances more ATP might be made 
available for supercoiling and this might explain the correction of the 
supercoiling defect. 

8 others In this category we had genes of unknown functions. Supercoiling 
defect was corrected in mutants of this category. Some of them were 
putative ATPase’s. Very high supercoiling activity was observed in 
three genes in this category: ynjD, ygiL, and ygbP. 

 



 
 

 

298

   

 

 

  7.2. Annex II: Published article not discussed in this thesis 

In the course of my PhD work, I also participated in the publication of an article that is not 

mentioned in this thesis. I was the second author in this publication. My contribution in this 

project was significant. I performed all the plasmid supercoiling experiments that 

established the correlation between the relaxation of hypernegative supercoiling and growth 

resumption. This article can be viewed using the link below. 

http://www.ncbi.nlm.nih.gov/pubmed/18790862.  

 

 

 

 

 


