
 

Université de Montréal 

 

 

Warfarin-induced vitamin K deficiency is associated 

with cognitive and behavioral perturbations, and 

alterations in brain sphingolipids in rats 

 

by 

Sahar Tamadon-Nejad 

 

Faculté de Médecine 

Département de Nutrition 

 

 

Mémoire présenté à la Faculté de Médecine 

en vue de l’obtention du grade de maîtrise  

en nutrition 

 

Mai, 2013 

 

 

© Sahar Tamadon-Nejad, 2012 



 

 

 

Université de Montréal 

Faculté des études supérieures  

 

 

 

Ce mémoire intitulé : 

 

Warfarin-induced vitamin K deficiency is associated 

with cognitive and behavioral perturbations, and 

alterations in brain sphingolipids in rats 

 

Présenté par : 

Sahar Tamadon-Nejad 

 

 

a été évalué par un jury composé des personnes suivantes : 

 

Christine DesRosier, président-rapporteur 

Guylaine Ferland, directeur de recherche 

Stéphanie Fulton, membre du jury



 

 

 

i 

Résumé 

La Vitamine K (VK) est largement reconnue pour son rôle dans la coagulation sanguine toutefois, 

de plus en plus de travaux indiquent son implication dans la fonction cérébrale. La VK est requise 

pour l'activation de différentes protéines, par exemple la protéine Gas6, et la ménaquinone-

4 (MK-4), le principal vitamère K dans le cerveau, est impliquée dans le métabolisme des 

sphingolipides. Dans un rapport précédent, nous avons montré qu'un régime alimentaire 

faible en VK tout au long de la vie était associé à des déficits cognitifs chez des rats âgés. 

La warfarine sodique est un puissant antagoniste de la VK qui agit en bloquant le cycle de 

la VK, provoquant un «déficit relatif de VK » au niveau cellulaire. À la lumière du rôle 

émergent de la VK dans le cerveau, la warfarine pourrait représenter un facteur de risque 

pour la fonction cérébrale. Ce travail est donc pertinente en raison de la forte proportion 

d'adultes traîtés à la warfarine sodique. Dans la présente étude, 14 rats mâles Wistar ont été 

traités avec 14 mg de warfarine/kg /jour (dans l'eau potable) et des injections sous-cutanées 

de VK (85 mg/kg), 3x/sem, pendant 10 semaines. Quatorze rats témoins ont été traités avec 

de l'eau normale et injectés avec une solution saline. Les rats ont été soumis à différents 

tests comportementaux après quoi les niveaux de phylloquinone, MK-4, sphingolipides 

(cérébroside, sulfatide, sphingomyéline, céramide et gangliosides), et les sous-types de 

gangliosides (GT1b, GD1a, GM1, GD1b), ont été évalués dans différentes régions du 

cerveau. Comparativement aux rats du groupe contrôle, les rats traités à la warfarine 

présentaient des latences plus longues au test de la piscine de Morris (p <0,05) ainsi qu'une 

hypoactivité et un comportement exploratoire plus faible au test de « l’open field » (p 

<0,05). Le traitement par warfarine a également entraîné une diminution spectaculaire du 

niveau de MK-4 dans toutes les régions du cerveau (p <0,001), une altération des 

concentrations de sphingolipidiques, en particulier dans le cortex frontal et le mésencéphale 

(p <0,05), et une perte de différences régionales sphingolipidiques, notamment pour les 

gangliosides. Le traitement par warfarine a été associé à un niveau inférieur de GD1a dans 

l'hippocampe et un niveau supérieur de GT1b dans le cortex préfrontal et le striatum. En 

conclusion, la déficience en VK induite par warfarine altère les niveaux de VK et 
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sphingolipides dans le cerveau, avec de potentiels effets néfastes sur les fonctions 

cérébrales.  

Mots-clés : La vitamin K,  MK-4, warfarin, cognition, sphingolipides, rats. 
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Abstract 

Vitamin K (VK) is widely known for its role in blood coagulation, however many studies 

suggest its involvement in brain function. VK is required for the activation of various 

cerebral proteins (e.g., Gas6) and menaquinone-4 (MK-4), the main K vitamer in brain, is 

involved in sphingolipid metabolism. Furthermore, life-long intake of a low VK diet has 

been associated with cognitive deficits in old rats. Warfarin (W) is a potent VK antagonist 

that acts by blocking the VK cycle causing a “relative VK deficiency” at the cellular level. 

In light of this and the emerging role of VK in brain, W could represent a risk factor for 

cerebral function. The finding of this study is important according to the large proportion of 

adults with thromboembolic diseases being treated with warfarin drugs. This study was 

conducted in a rat model where the impact of W was investigated with respect to cognition, 

behavior, and brain menaquinone-4 (MK-4) and sphingolipid status. Fourteen Wistar male 

rats were treated with 15 mg W/kg/d (in drinking water) and subcutaneous VK (85 mg/kg), 

3X/wk, for 10 wks; 14 control rats were treated with normal water and injected with saline. 

At the end of the treatment period, rats were subjected to different behavioral tests, 

afterwhich their brains assessed for VK (phylloquinone and MK-4) and sphingolipids 

(gangliosides, ceramides, cerebrosides, sphingomyelin and sulfatides) and gangliosides 

subtypes (GT1b, GD1a, GM1, GD1b). Mean latencies to find the hidden platform were 

higher in the W compared to the control group (p<0.05) suggesting cognitive deficits as 

well as hypoactivity and lower exploratory behaviour in the open field test (p<0.05). 

Warfarin treatment also resulted in a dramatic decrease in MK-4 concentration in all brain 

regions (p<0.001), altered sphingolipid level, especially in frontal cortex and midbrain 

(p<0.05), and in a loss of sphingolipid regional differences, notably for gangliosides. W 

treatment was associated with lower GD1a in the hippocampus and higher GT1b in the 

striatum and prefrontal cortex. In conclusion, warfarin-induced VK deficiency alters VK 

and sphingolipid status in brain with potential detrimental effects on brain functions. 

Keywords : Vitamin K, MK-4, warfarin, cognition, sphingolipids, rat. 
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 Introduction 

The history of vitamin K (VK) dates back to 1929, when it was discovered for its 

role in blood coagulation. Specifically, it acts as a cofactor for the ϒ-glutamyl carboxylase 

(GGCX) in the posttranslational carboxylation reaction of ϒ -carboxyglutamic acid (Gla) 

from glutamic acid (Glu), an amino acid common to all VK dependent proteins (VKDP) 

(ie. Gas6 and protein S), and extends the role of this vitamin beyond coagulation (reviewd 

in Ferland 2012b).  

Gas6 and protein S are ligands for the receptor tyrosine kinases of the TAM family 

(Tyro3, Axl, and Mer) and are involved in cell signalling actions. Specifically, protein Gas6 

has been involved in cell growth and survival, myelination, chemotaxis and mitogenesis. 

As for protein S, it has been shown to offer neuronal protection during ischemic/hypoxic 

injury (through its TAM-related actions) in addition to possessing antithrombic properties 

(Varnum, Young et al. 1995).  

Studies have shown the presence of VK in brain tissue, mostly in the form of 

menaquinone-4 (MK-4) (Thijssen and Drittij-Reijnders 1996). The concentration of MK-4 

in the brain of 6 and 21- month old rats was reported at more than 98% of the total VK 

(Carrie, Portoukalian et al. 2004; Carrie, Belanger et al. 2011). In brain, MK-4 is unevenly 

distributed among regions; it is present in  highest concentrations in midbrain and pons 

medulla, whereas cerebellum, olfactory bulb, thalamus, hippocampus, and striatum contain 

the lowest levels (Carrie, Portoukalian et al. 2004). Furthermore, MK-4 concentrations 

increase as a function of phylloquinone intake, decreases with age and, are higher in female 

than in male rats  (Ronden, Thijssen et al. 1998; Huber, Davidson et al. 1999). 

VK is also important to brain as its role in sphingolipid metabolism. Sphingolipids 

are major components of cell membranes and are highly present in the various cell types of 

the nervous system (Bartke and Hannun 2009). In addition to their structural roles, 

sphingolipids play critical roles in cellular events such as proliferation, differentiation, 

senescence, cell-cell interaction, and transformation (Zeidan and Hannun 2007). The 

specific role of VK in sphingolipd synthesis was initially discovered in bacteria in the 
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1970s (Lev and Milford 1972; Lev and Milford 1973), and later confirmed in rats 

(Sundaram and Lev 1988).  

Physiologically, alterations in sphingolipids metabolism have been observed in the 

aging process and in neurodegenerative disorders such as Alzheimer and Parkinson 

diseases (Fantini and Yahi 2010; van Echten-Deckert and Walter 2012) 

VK status has also been shown to affect behaviour. In a study by Cochetto et al., 

rats rendered VK deficient through diet or following treatment with the VK antagonist, 

warfarin, were observed to show hypoactivity and lack of exploratory behaviour 

(Cocchetto, Miller et al. 1985). In a recent report, lifelong consumption of a low VK diet 

was linked to cognitive deficit in old rats, an impairment that was associated with an 

alteration in the sphingolipids profile of the rats’ brain  (Carrie, Belanger et al. 2011).  

Hence, data published thus far point to detrimental effects of a sub-optimal VK 

status for brain function. This finding is important in light of the large proportion of adults 

being treated with warfarin drugs (Božina 2010). 

 In the Cochetto paper, the VK status of the animals was not assessed, hence the 

behavioural conclusions cannot be directly linked to VK. The present study aimed to 

further investigate the role of VK in cognition and behaviour in warfarin-induced VK 

deficiency with respect to brain’s VK and sphingolipid status. 

 

 

 



 

 

Literature Review  

 

1. Vitamin K 

 

VK was discovered in 1929 by Henrik Dam as part of experiments on sterol 

metabolism. When chickens were subjected to a fat-free diet, Dam observed that animals 

developed subcutaneous hemorrhages and anemia. The fat soluble anti-hemorrhagic 

component was found in liver extracts and several plant tissues and in 1935, it  was named 

VK in reference of the first letter of the German word Koagulationn (Suttie 2009). 

 

1.1.   Chemical Structure of Vitamin K 

 

All K vitamers possess a 2-methyl-1,4-naphtoquinone ring structure called 

menadione or K3; the K vitamers  differ based on the side chain at the 3-position which 

varies in length and degree of saturation. VK includes two natural forms: 1) phylloquinone, 

also referred to as K1 (2-methyl-3-phytyl-1, 4-naphtaquinone), is synthesized in plants, and 

2) the menaquinones (MK-n) or K2 (2-methyl-1, 4-naphtaquinone), a family of compounds 

of bacterial origin (Food and Nutrition Board 2001). One of the menaquinone, 

menaquinone 4 (MK-4), is not a product of bacterial synthesis but is produced from 

phylloquinone. Animal studies have shown that this K1  MK-4 conversion is tissue 

specific (Thijssen and Drittij-Reijnders 1994). Menadione is not a natural form of VK, 

although in avian and mammalian tissues it can be alkylated to MK-4. This synthetic 

vitamer has been used as the primary source of VK in animal feeds. High performance 

liquid chromatography (HPLC) is the method of choice for assessing the different K 

vitamers in biological matrices (e.g. plasma, tissues/organs, foods) (Davidson and 

Sadowski 1997). The chemical structures of the principal K vitamers are illustrated in 

figure 1. 
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Figure 1. Chemical structures of principal K vitamers (Ferland 2012a). 

 

 

1.2.  Dietary Sources of vitamin K 

 

Phylloquinone from plants is the main dietary source of VK in North America and 

Europe (Shearer and Newman 2008). Green leafy vegetables contain the highest amount of 

phylloquinone and contribute 40-50% of total daily intake (Booth, Pennington et al. 1996). 

Phylloquinone content of swiss chard, spinach and kale has been assessed at more than 300 

μg/100 g, while broccoli, brussels sprouts, and cabbage contain 100-200 μg/100 g. 

Vegetable oils such as soybean, olive, and canola contain significant amounts of 
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phylloquinone varying from 50-200 μg/100 g (Shearer, Bach et al. 1996; Booth and Suttie 

1998; Ferland G, Nutrition Foundation. et al. 2011). Mixed dishes prepared with 

phylloquinone-rich oils contribute approximately 15% of total dietary phylloquinone intake 

(Booth and Suttie 1998).   

 Green leafy vegetables contain the highest amount of phylloquinone and contribute 

40-50% of total daily intake. Phylloquinone content of swiss chard, spinach and kale has 

been assessed at more than 300 μg/100 g, while broccoli, brussels sprouts, and cabbage 

contain 100-200 μg/100 g. Vegetable oils such as soybean, olive, and canola contain 

significant amounts of phylloquinone varying from 50-200 μg/100 g. Mixed dishes 

prepared with phylloquinone-rich oils contribute approximately 15% of total dietary 

phylloquinone intake (Booth and Suttie 1998). 

The menaquinones are present in limited amounts in foods, however, low levels of 

menaquinones have been reported in animal products such as chicken egg yolk and butter 

(Hirauchi, Sakano et al. 1989). Organ livers (especially pig and bovine) are a good source 

of long chain menaquinones (MK-6 to MK-13) (Koivu-Tikkanen, Ollilainen et al. 2000) as 

cheeses with MK-8 and MK-9 content have been estimated at between 5 to 20 μg/100 g 

(Shearer, Bach et al. 1996). Meat, eggs, and dairy foods are also good sources of MK-4 

(Elder, Haytowitz et al. 2006) while MK-7 is found in the highest quantity in fermented 

soybean products such as Natto, a traditional Japanese dish (Schurgers and Vermeer 2000). 

The US Dietary Reference Intakes for VK in 2001 recommended 120 and 90 µg/day 

for adult males and females, respectively (Food and Nutrition Board 2001). 
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1.3.   Metabolism  

 

1.3.1.   Absorption 

 

In the intestine, VK is incorporated into micelles in a pathway which depends on 

bile salts and pancreatic juices (Yong Ji 2009).  

The efficiency of absorption depends on the dietary source of phylloquinone and the 

presence of fat in the intestine. The absorption efficiency of phylloquinone in healthy adults 

is estimated at ~ 80% when administered in its free form (Shearer, Bach et al. 1996; 

Garber, Binkley et al. 1999) but decreases to ~10% when the vitamin is absorbed from 

green vegetables (Gijsbers, Jie et al. 1996). In one report, the absorption of phylloquinone 

from spinach was found to be 4-17% (Gijsbers, Jie et al. 1996; Garber, Binkley et al. 1999); 

similar low absorption efficiency has been reported for kale (Novotny, Kurilich et al. 2010). 

Reason for the poor bioavailability of phylloquinone in green vegetables is linked to its 

tight binding to the chloroplasts (Newman and Shearer 1998).  

Adding oil to the vegetables has been shown to increase phylloquinone 

bioavailability (Booth, Lichtenstein et al. 2002). In one study, adding butter to spinach 

resulted in a 3-fold (8% to 26%) increase in phylloquinone absorption (Gijsbers, Jie et al. 

1996).  

Recent isotopic studies further indicate that phylloquinone absorption is affected by 

meal components (Jones, Bluck et al. 2008). In  their report  Jones et al. (Jones, Bluck et al. 

2009) showed that absorption of 
13

C-phylloquinone was 3 times higher in a fast foods type 

meal in which 80% of phylloquinone came from oil, than in meals in which 80-90% of the 

phylloquinone came from vegetables.  
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 1.3.2. Transport 

 

In human, > 50% of phylloquinone is carried in triacylglycerol-rich lipoprotein 

(TRGLP), the rest being carried equally in low (LDL) and high (HDL) density lipoprotein 

fractions (~ 15% each) (Lamon-Fava, Sadowski et al. 1998; Schurgers and Vermeer 2002; 

Erkkila, Lichtenstein et al. 2004). In contrast, the menaquinones are mainly transported in 

the TRGLP and LDL fractions (Schurgers and Vermeer 2002). Phylloquinone circulates in 

blood in very small concentrations (0.25-2.7 nmol/L) and has been shown to be strongly 

linked to circulating triacylglycerols (Sadowski, Hood et al. 1989; Azharuddin, O'Reilly et 

al. 2007). 

 

 13.3.  Tissue Store and Distribution 

 

Liver is the main storage site for VK, the long chain menaquinones representing the 

major VK constituent (Suttie 2009).  When assessed in humans, the menaquinones were 

indeed shown to represent ~ 90% and phylloquinone ~10% of total hepatic VK (Suttie 

1995). Phylloquinone stores are generally unstable and can decrease up to 25% within 3 

days in conditions of dietary depletion (Usui, Tanimura et al. 1990). It is known from 

animal studies that the K vitamers (notably phylloquinone and MK-4) are  present in non-

hepatic tissues (Thijssen and Drittij-Reijnders 1994). Specifically, phylloquinone contents 

in heart and pancreas are higher than in liver while lower concentrations are observed in 

brain, kidney, salivary glands and lung. Menaquinone-4 is also widely distributed with low 

concentration in the liver and high levels in brain, pancreas and salivary glands (Thijssen 

and Drittij-Reijnders 1994; Thijssen, Drittij-Reijnders et al. 1996). The origin of MK-4 in 

the brain is discussed in more detail in a later section. 

 Phylloquinone and menaquinones tissue concentration have been shown to increase 

as a function of diet in a tissue-dependent manner (Thijssen, Drittij-Reijnders et al. 1996; 
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Davidson, Foley et al. 1998; Ronden, Thijssen et al. 1998). In a study by Ronden et al., 

phylloquinone and MK-4 concentrations increased in all tissues following ingestion of a 

phylloquinone or MK-4 supplemented diet, while the ratio between phylloquinone and 

MK-4 varied among the tissues; the highest values related to the liver and heart. High levels 

of MK-4 were observed in the pancreas and testis as a result of exclusive phylloquinone 

diet (Ronden, Thijssen et al. 1998).   

Tissue VK level is also affected by age and gender. In a study by Huber et al. 

phylloquinone and menaquinones concentration were assessed in different tissues of male 

and female rats at 3-, 12- and 24-months old. Except in hearts of 3-months of age, 

phylloquinone concentrations were not affected by gender. In contrast, MK-4 levels in 

kidney, heart and brain were significantly higher in females than in males. It was also 

reported that the hepatic phylloquinone and MK-6 concentration elevated with age; while 

MK-4 level did not change. In the brain and the extrahepatic tissues of males and females 

rats, MK-4 concentration declined with age (Huber, Davidson et al. 1999). In humans, 

plasma phylloquinone concentration has been shown to decrease with age (Sadowski, Hood 

et al. 1989). Another study investigated the gender differences in relation to VK intake  and 

reported  the reduced concentration of phylloquinone and MK-4 in the liver of male and 

female; however supplemented- phylloquinone diet was associated with higher MK-4 in 

female rats (Huber, Davidson et al. 1999).  

 

 1.3.4. Turnover 

 

Phylloquinone and menaquinone are excreted by a degradative pathway in which 

the polyisoprenoid side chain is cleaved off into two major carboxylic acid metabolites with 

7- and 5-carbon side chains. In humans, around 20% of metabolized phylloquinone is 

excreted in the urine and 40% to 50% in the feces. Urinary metabolites contain 
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predominantly glucuronide conjugates of derivatives with an oxidized form of phytyl side 

chain (Shearer, Mallinson et al. 1972).   

Compared with other fat-soluble vitamins, the total body pool of VK is very small 

and the stored VK in liver is depleted rapidly as a result of restricted dietary VK.  The 

turnover of phylloquinone has been estimated at around 1.5 days (Olson, Chao et al. 2002). 

The consumed phylloquinone in plasma peaks after 6-9 hours and returns to the baseline 

within 24 hours (Erkkila, Lichtenstein et al. 2004). It was also shown that urinary VK 

metabolites decrease by 20% within 15 days as a result of restricted diet (11µg/d) and 

increases rapidly following a rich VK diet (206 µg/d) (Harrington, Booth et al. 2007). 

However, long-chain menaquinones remain in circulation much longer i.e. ~ 72 hours in the 

case of MK-7 (Schurgers and Vermeer 2000). 

 

 1.3.5. Transformation of Phylloquinone to MK-4 

 

It is now well-established that tissue MK-4 results from phylloquinone conversion 

with menadione as an intermediate (Thijssen, Vervoort et al. 2006). Two routes have been 

suggested: 1) the release of menadione from phylloquinone by removal of the phytyl side 

chain in the intestine followed by prenylation of menadione in tissues, or 2) the side-chain 

cleavage of phylloquinone and generation of menadione followed prenylation occurring 

within the target cell (Ansell, Hirsh et al. 2008). Recently, this team identified the human 

enzyme responsible for MK-4 biosynthesis. This enzyme is UBiA prenyltransferase 

domain-containing protein 1 (UBIAD1) which is expressed in numerous tissues in mice 

and is located in the endoplasmic reticulum (Nakagawa, Hirota et al. 2010) (Figure 2).  
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Figure2. Conversion of phylloquinone to MK-4 by UBIAD1(Nakagawa, Hirota et al. 2010) 

 

 

1.4. Vitamin K Dependent Carboxylation 

 

Within the cell, VK acts as a cofactor in the posttranslation of Gla from Glu which 

is a common residue in all vitamin K dependent proteins (VKDP). The carboxylation is 

catalyzed by GGCX which is a microsomal enzyme located at the luminal surface of the 

endoplasmic reticulum. This reaction requires the reduced form of VK, hydroquinone 

(KH2), and the presence of carbon dioxide and oxygen (Dowd, Ham et al. 1995). The 

conversion of Gla to Glu increases the affinity of these proteins for calcium, a characteristic 

that allows them to bind to biological components associated to their specific role. To 

convert Glu to Gla residues, the carboxylase uses the energy of VK hydroquinone 

oxygenation, and this carboxylation is facilitated by a carboxylase recognition signal 

propeptide (Berkner 2008). In the course of the catalytic sequence, hyrdoquinone is 

oxidized to the epoxide form, an inactive form of VK. The vitamin K 2,3-epoxide (KO) is 

then recycled to quinone and hydroquinone by the VK oxido-reductase (VKOR) which is 

dependent on the presence of dithiol cofactors (Suttie 2009). Coumarin derivatives such as 
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warfarin block the action of VKOR (Wallin and Martin 1985). The formation of KO and its 

conversion back to KH2 makes the VK cycle (Figure 3).  

The liver has a unique reductase enzyme which is not sensitive to coumadin drugs. 

This enzyme is NAD(P)H dependent and makes possible the reduction of the quinone form 

of VK to KH2  in the presence of Coumadin drugs, when a high tissue concentration of VK 

is available (Berkner and Runge 2004) . 

In a condition of insufficient dietary VK or the presence of anticoagulant drugs, the 

carboxylation action is blocked and undercarboxilated forms of proteins are released into 

the plasma. These inactive forms of proteins are called PIVKAs (protein induced by VK 

absence or antagonism) and used as a marker of the nutritional status of VK (Lee, Chung et 

al. 2010) . 
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Figure 3. Scheme showing the vitamin K cycle (Ferland G, Nutrition Foundation. et al. 

2011) 
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1.5.  Vitamin K Dependent Proteins 

 

Although the discovery of VK in 1930 was associated with its specific role in blood 

coagulation, the discovery of Gla, a new amino acid common to all VKDP, extended the 

physiological role of VK. These proteins are involved in bone and calcium metabolism and 

the brain. The VKDP and their function are summarized in Table 1. 

 

1.5.1. Blood Coagulation Proteins 

 

Prothrombine (factor II), factors VII, IX, and X, protein C, S and Z are the VKDPs 

involved in clotting blood. They are all synthesized in the liver and contain 10-12 Gla 

residues (Versteeg, Heemskerk et al. 2013). Calcium mediates the binding of the complexes 

via the Gla residues to the negatively charged phospholipid surfaces expressed by platelets 

and endothelial cells of the injured cells. The generation of thrombin from prothrombin 

leads to the formation of fibrin by an activated factor X, which itself is activated by factors 

VII and IX respectively. Proteins C, S and Z act as the coagulation inhibitors. Protein C 

inhibits coagulation by deactivating factor Va and VIIIa and elevating the level of 

fibrinolysis with protein S as a cofactor, while protein Z acts as a cofactor for blocking the 

activity of factor Xa by protein Z-dependent protease inhibitor (Ferland 1998; Norris 2003). 

(Davie 2003; Berkner and Runge 2004).  

Beside their hemostatic functions the coagulation proteins possess cell signaling 

activities and are involved in a wide-range of cellular events. For instance, thrombin has 

been involved in such phenomenon as tumor growth and metastasis, angiogenesis, 

atherosclerosis, inflammation, survival of neutrophils and monocytes (Sokolova and Reiser 

2008; Chen and Dorling 2009). Similarly, protein C has been shown to possess anti-

inflammatory and anti-apoptotic properties (Danese, Vetrano et al. 2010) 

 1.5.2. Bone Proteins 
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Three main Gla proteins involved in bone metabolism are osteocalcin, matrix Gla 

proteins (MGP) and protein S (Ferland G, Nutrition Foundation. et al. 2011). Osteocalcin 

is a VKDP synthesized by osteoblasts and donotoblasts, and acts as a negative regulator of 

bone formation (Ducy, Desbois et al. 1996; Boskey, Gadaleta et al. 1998). It contains 3 Glu 

residues which increase affinity binding to hydroxyapatite in bone (Booth 2009). In 

vertebrate species, osteocalcin accounts for around 15-20% of the non-collagenous bone 

protein , and its molecular weight is 5,8 kDa (Price, Otsuka et al. 1976). Approximately 

20% of the newly synthesized bone proteins are secreted in blood circulation and are used 

as biochemical markers for bone formation. Osteocalcin deficient rats by warfarin 

administration had excessive bone mineralization and also premature closure of the growth 

plate (Price 1988). Moreover, it was shown that mice with eliminated osteocalcin gene 

coding had increased bone mass and improved bone functional qualities (Ducy, Desbois et 

al. 1996). These data suggest that osteocalcin regulates bone formation negatively.  

Although MGP only accumulates in calcified tissues, it is expressed in many soft 

tissues such as vascular smooth muscle cells. Its main physiological role in vascular 

calcification is explained in the following section (Luo, Ducy et al. 1997).  

Typically protein S is known because of its role in blood coagulation; however, it 

plays a role in maintaining bone homeostasis as well. In early 1990, two cases of 

osteopenia were reported in protein S deficient children (Pan, Gomperts et al. 1990). 

Protein S is synthesized and secreted by osteoblasts and increases the bone resorbing 

activity of mature osteoclasts, an action which is associated to the ability of protein to bind 

tyrosine kinase receptors (Maillard, Berruyer et al. 1992; Nakamura, Hakeda et al. 1998). 
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1.5.3. Protein Involved in Vascular Calcification 

 

MGP contains 5 Gla residue and has a molecular weight around 9.6 kDa (Price, 

Urist et al. 1983). Unlike osteocalcin this protein is widely distributed in body tissues i.e. 

lung, heart, kidney and spleen (Fraser and Price 1988). It is also expressed in cartilage 

(Yagami, Suh et al. 1999) and vascular smooth muscle (Shanahan and Weissberg 1998). 

MGP acts as an inhibitor of tissue calcification (Fraser and Price 1988; Luo, Ducy et al. 

1997; Shearer 2000). A study on mice that targeted the deletion of the MPG gene resulted 

in mortality of the mice within two months as a result of extensive arterial calcification that 

led to blood-vessel rupture (Luo, Ducy et al. 1997). Similar results with a lower degree of 

severity was observed in rats treated with high doses of warfarin (Price, Faus et al. 1998). 

In humans, mutations of the MGP gene results to Keutel syndrome a condition 

characterized by abnormal cartilage and arterial calcification (Hur, Raymond et al. 2005). 

Although the mechanism of action of MGP in vascular calcification is not fully elucidated 

(Proudfoot and Shanahan 2006), it potentially acts by binding to calcium ions and 

inhibiting crystal growth (Roy and Nishimoto 2002), and modulating the action of bone 

morphometric protein type 2 and 4 (Zebboudj, Shin et al. 2003; Yao, Zebboudj et al. 2006). 

 

 

1.5.4. Other Vitamin K Dependent Proteins 

 

Gas6. In 1993, the VKDP Gas6 was discovered as a product of the growth arrest-

specific gene 6. It has a molecular weight of 75 kDa and contains 11-12 Gla residues; its 

673 amino acids shows 43-44% homology with protein S (Manfioletti, Brancolini et al. 

1993). Gas 6 is expressed in numerous tissues and is involved in cellular processes such as 

cell differentiation, proliferation and activation, phagocytosis and protection against 

apoptosis (Bellido-Martin and de Frutos 2008). As discussed later, this protein has many 

actions in the nervous system.  
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Transmemberance Gla proteins (TMGs). These proteins include proline-rich Gla 

proteins 1 and 2 (PRGP 1, PRGP2), and TMG3, TMG4. These single-pass integral 

membrane proteins are widely distributed and although their physiological function are 

presently unknown, their chemical structures suggest that they could be involved in cell 

transduction (Kulman, Harris et al. 1997; Kulman, Harris et al. 2001).   

Gla rich protein (GRP). This protein was identified from calcified cartilage in 2008. 

It has a molecular weight of 10.2 kDa and contains 16 Gla residues. GPR is widely 

distributed in tissues, but its expression is highest in cartilage. The functions of GPR are not 

clear at present, but it could regulate calcium in the extracellular environment (Viegas, 

Simes et al. 2008; Viegas, Cavaco et al. 2009).  

Periostin. This protein which is associated with the extra-cellular matrix and is 

involved in cell migration and angiogenesis was recently identified as a VKDP (Coutu, Wu 

et al. 2008).  

Transthyretin. Identified for its association with thyroid hormones and retinol-

binding protein; the role of its Gla residues is presently unknown (Ruggeberg, Horn et al. 

2008). 
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Table 1. The vitamin K dependent proteins and their functions (Ferland G, Nutrition Foundation. 

et al. 2011). 

Protein Category Physiological function  

Blood coagulation Hemostasis Cell signaling activity 

    Prothrombin 

 

 

    Procoagulant Thrombin: Platelet aggregation; 
tumor growth and metastasis; 

angiogenesis; atherosclerosis and 
inflammation; cell survival : 
chemotaxis 

    Factor VII     Procoagulant  Pro-inflammatory action 

    Factor IX     Procoagulant Pro-inflammatory action 

    Factor X     Procoagulant  

    Protein C     Anticoagulant Anti-inflammatory and anti-

apoptotic actions 

    Protein Z     Anticoagulant  

    Protein S 

 

Bone Protein 

    Anticoagulant Anti-inflammatory and anti-
apoptotic actions; 

phagocytosis of apoptotic cells; 
mitogenesis 
(VSMC); neuronal protection 

    Osteocalcin Negative regulator of bone 

formation 

 

    Matrix Gla protein Inhibitor of calcification  

    Protein S Undetermined  

 

Cell regulation proteins 

  

    Gas 6 Cell differentiation, proliferation, 
adhesion, and chemotaxis; 
phagocytosis and anti-apoptosis 

 

Others   

    TMGs Undetermined  

    GRPs Undetermined  

    Periostin Cell migration and angiogenesis  

    Transthyretin Ligand for thyroid hormones and 
retinol-binding protein 
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2. Vitamin K and Brain Function 

  

2.1. K Vitamers in Brain 

 

The role of VK in brain function has not been systematically investigated even 

though VK is widely expressed in brain. It is well established that MK-4 is the predominant 

form of VK in the brain (Thijssen, Drittij-Reijnders et al. 1996). MK-4 concentration in six 

months old Sprague-Dawley rats has been shown to account for more than 98% of total 

cerebral VK and both phylloquinone, and MK-4 increase in brain as a result of dietary VK 

and are affected by age and sex (section 1.3.3). In rats, MK-4 differs among the different 

brain regions, the highest concentrations being observed in myelinated regions such as pons 

medulla and midbrain (Carrie, Portoukalian et al. 2004). 

 

2.2. Vitamin K Dependents Proteins in the Brain 

 

Gas6 and protein S are two VKDPs in the brain. They are not directly involved in 

cognition, although their signalling actions in neurons (Gas6 and protein S), the glia (Gas6) 

as well as antithrombic function (protein S), suggest contributions of these proteins to the 

cognitive process (reviewd in Ferland 2012a). 

 

2.2.1. Gas6  

 

The distribution of protein Gas6 was assessed in the central nervous system of rats 

using biochemical and histological techniques (Prieto, Weber et al. 1999). In the rat 

embryo, Gas6 expression is mainly in non-neuronal tissues while in the late embryonic 

stages and during adulthood it is more widely expressed. In the brain of adult rats, Gas6 is 

expressed in cerebral and piriform cortex, hippocampus, thalamic and hypothalamic 

structures, midbrain, and cerebellum. It is also highly expressed in the large neurons of the 

dorsal root ganglia and the neurons of the spinal cord (Li, Chen et al. 1996; Prieto, Weber 
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et al. 1999). Compared to other VKDPs such as prothrombin and protein S, plasma Gas6 

concentrations are much lower (Garcia de Frutos, Alim et al. 1994); concentrations of 0.25 

nM (Balogh, Hafizi et al. 2005) or less (Gibot, Massin et al. 2007) having been published. 

In rats, Gas6 concentrations have also been shown to decrease with age. When investigated 

in 6-, 12-, and 24-mo-old Fisher 344 rats, Gas6 expression in 24-mo rats was decreased by 

> 84%  in the frontal cortex and by 55% in the striatum and hippocampus when compared 

to those aged 6 months (Tsaioun 2000). 

Gas6 acts as a ligand for the receptor tyrosine kinases of TAM family (Varnum, 

Young et al. 1995). In the nervous system, Gas6 has been shown to participate in cell 

survival, chemotaxis, mitogenesis, cell growth, and myelination. Specifically, Gas6 has 

been shown to prevent apoptosis of gonadotropin-releasing hormone neurons from 

undergoing serum deprivation (Allen, Zeng et al. 1999) and of neurons subjected to 

phospholipase A2-IIA (Yagami, Ueda et al. 2003). Protein Gas6 has also been shown to 

protect cortical neurons from amyloid β (Aβ) protein-induced apoptosis. Applying Gas6 to 

rat cortical neuron cultures resulted in cell apoptosis prevention by inhibiting Ca2+ influx 

and decreasing Aβ -induced apoptotic features (Yagami, Ueda et al. 2002). 

In addition to its neuron-related role, protein Gas6 modulates the survival and 

functions of glial cell, mainly oligodendrocytes, Schwann cells, and microglia. Schwann 

cells and oligodendrocytes have important roles in neuron myelination in the central and 

peripheral nervous systems, and in the transmission of the nervous impulses. In the central 

nervous system, microglia cells are part of the immune effectors involved in tissue 

homeostasis and repair (Nimmerjahn, Kirchhoff et al. 2005) and possess phagocytic 

functions, removing pathogens, cellular debris, and apoptotic cells, which amass over time 

(Binder, Cate et al. 2008).  Recent studies have illustrated the role of Gas6-dependent 

activation of TAM receptors in the survival of glial cells and the modulation of microglial 

phenotype. In a study, adding Gas6 to the medium of an oligodendrocyte culture of the 

human fetal cord elevated cell survival (Shankar, O'Guin et al. 2006). 
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2-2-2. Protein S 

 

Historically known for its role in blood coagulation, protein S is expressed in the 

central nervous system. Protein S has been identified in the locus coeruleus, choroid plexus, 

and astrocytes of adult nervous system (Stitt, Conn et al. 1995; Hall, Obin et al. 2002). 

Protein S mRNA has also been found in pyramidal neurons of the cortex and hippocampus, 

and granule neurons of the dentate gyrus of rabbit brains (He, Shen et al. 1995). 

Although the actions of protein S in the brain have been less investigated, it is a 

ligand for the TAM receptors like Gas 6 (Varnum, Young et al. 1995). In vivo and in vitro, 

protein S has been shown to plays a role in neuronal protection during ischemic/hypoxic 

injury. In one study, brain infarction and edema volumes were significantly reduced and 

post-ischemic cerebral blood flow was improved in mice treated with protein S. Moreover, 

treatment with protein S resulted in less fibrin deposition and infiltration with neutrophils, 

less apoptotic neurons and enhanced motor performance (Liu, Guo et al. 2003). In another 

study, protein S has been shown to protect neurons from N-methyl-D-aspartate-induced 

toxicity and apoptosis (Zhong, Wang et al. 2010). 

 

3. Vitamin K and Sphingolipids 

 

Sphingolipids are a class of complex lipids found in all mammalian cell membranes. 

They are abundantly distributed in the cells of the central nervous system in the forms of 

ceramide, sphingomyelin, cerebroside, sulfatide, and gangliosides (Bartke and Hannun 

2009). In addition to their structural function, they are bioactive molecules involved in cell-

cell interactions (Ohanian and Ohanian 2001; Chalfant and Spiegel 2005; Siow and 

Wattenberg 2011; Tani 2011) and participate in important cellular events such as 

proliferation, differentiation, senescence and transformation (Zeidan and Hannun 2007). 

Several studies in vitro and in vivo have demonstrated the contribution of VK in 

sphingolipid metabolism in the brain (Denisova and Booth 2005). 
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3.1. The Structure and Metabolism of Sphingolipids  

 

All sphingolipids are composed of a sphingoid long-chain base known as 

sphingosine that is linked to an acyl chain through an amide bond (Figure 4). 

 

 

 

 

Figure 4. General sphingolipds structure (Malagarie-Cazenave, Andrieu-Abadie et 

al. 2002). 

 

The metabolisms of sphingolipids include complex pathways with the sphingoid 

base subjected to the addition of fatty acids, sugars, or phosphate moieties (Brice and 

Cowart 2011; Mencarelli and Martinez-Martinez 2012). 
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Figure 5. Scheme showing the biosynthesis and metabolic interactions of sphingolipids 

(Ferland 2012b). 

 

As illustrated in figure 5, the formation of ceramide represents the initial reaction of 

sphingolipids metabolism and is catalyzed by serine palmitoyl transferase and the 

combination of serine and palmitoyl-COA. Ceramides can also be generated by the action 

of sphingomyelinase from sphingomyelin (Mullen, Hannun et al. 2012) .  

Sphingomyelin, the major sphingolipid in the plasma membrane, is synthesized in 

the Golgi apparatus by the action of two isoforms of sphingomyelin synthase (SMS1 and 
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SMS2). The generation of sphingomyelin occurs by transferring a phosphocholine head 

group from phosphatidylcholine to ceramide (Milhas, Clarke et al. 2010). 

Similarly to sphingomyelin, the glycosphingolipids synthesis occurs in the lumen of 

the Golgi apparatus. Glycosphingolipids are distributed abundantly in the neuronal cells. 

They are structurally and biosynthetially derived from lactosylceramide, except GM4, 

which is a major component of myelin and derived from galactosylceramide. The 

biosynthetic pathway of the ganglio-series of ganglioside is illustrated in figure 6. 

Lactosylceramide and the hematosides GM3, GD3 and GT3 are used as precursors for 

complex gangliosides: the asylio- a-, b-, and c-series respectively. In the successive 

reactions, carbohydrate- and sialic acid residues are attached to glycosyl acceptors by 

specific glycosyl transferases. 

Initially, GM3 is synthesized by adding a sialic acid to LacCer by the action of 

CMP-sialic acid: Lactosylceramide α2-3 sialyltransferase. GD3 and GT3 are synthesized by 

sequential sialic acid addition to GM3, and GD3 by CMP-sialic acid: GM3 α-8 

sialyltransferase. The conversion of simple ganglioside to a complex group is catalyzed by 

UDP-GalNAc:LacCer/GM3/GD3/GT3 β1-4 N-acetylgalactosaminyltransferase, UDP-

Gal:GA2/GM2/GD2/GT2 β1-3 galactosyltransferase, CMP-sialic 

acid:GA1/GM1/GD1b/GT1c α2-8 sialyltransferase (Sandhoff and Kolter 2003; Yu, Tsai et 

al. 2011; Yu, Tsai et al. 2012). 

In the early stages of embryonic brain development, simple gangliosides such as 

GM3 and GD3 are highly expressed, while in later stages the expression of complex 

gangliosides such as GM1, GD1a, GD1b, and GT1b are up-regulated (Ngamukote, 

Yanagisawa et al. 2007; Yu, Nakatani et al. 2009). 
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Figur 6. Biosynthetic pathways of ganglio-series gangliosides (Yu, Tsai et al. 2012).  

 

Galactosylceramide or cerebroside is formed by the condensation of ceramide and 

UDP-galactose via the action of the enzyme galactosyltransferase. Moreover, 

galactosylceramide is a precursor for sulfatide synthesis. Sulfotransferase is the enzyme 

responsible for the synthesis of sulfatide from galactoceramide by activation of a sulfate of 

phosphodenosine-5-phosphosulfate. Galactosylceramide and its subsequent metabolite, 

sulfatide, are highly enriched in myelinated regions of the central nervous system. 

Galactosyltransferase is located in the endoplasmic reticulum transmembrane and its 

catalytic site is at the lumen of the endoplasmic reticulum (Gault, Obeid et al. 2010). 
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Most sphingolipids are degraded in lysosomes and to a lesser extent in the plasma 

membrane. Sphingolipids are catabolized to ceramide, sphingosine, and sphingosine-1-

phosphate via the action of the ceramidase. After ceramide is catalyzed into sphingosine, 

the conversion of sphingosine to sphingosine-1-phosphate occurs by sphingosine kinases. 

In the final step of sphingolipid degradation, sphingosine-1-phosphate is catalyzed by 

sphingosine-1-phosphate lyase function in the endoplasmic reticulum to generate 

hexadecenal and phosphoethanolamine (Gault, Obeid et al. 2010). Byproducts of 

sphingolipids catabolism, i.e. sphingosine, can then access the cytosol, and through the 

salvage pathways regenerate ceramide (Zeidan and Hannun 2007). 

In human cells, the breakdown of sphingomyelin is a major part of membrane 

homeostasis. Sphingomyelin hydrolysis results in ceramide and free phosphocholine via the 

action of the sphingomyelinase enzyme (Gault, Obeid et al. 2010).  

Glycosphingolipis catabolism occurs in the acidic compartments of the cells, the 

endosomes and the lysosomes. Cellular glycolipids are degraded into their building blocks 

by the digestion of cellular membranes. Parts of the plasma membrane are endocytosed and 

transferred through the endosomal compartment to the lysosome. Glycosphingolipids are 

ultimately cleaved into monosaccharides, sialic acid, fatty acids, and sphingosid bases, 

which can be either degraded or re-used for sphingolipids biosynthesis (Sandhoff and 

Kolter 2003). 

 

3.2. The Physiological Function of Sphingolipids 

 

Sphingolipids are important components of the cell membranes. Beside their 

structural role, they have signalling activities and are involved in the regulation of many 

cellular processes. Here, we review the functions of the main sphingolipids in the nervous 

system. 
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3.2.1. Ceramide and Sphingomyeline  

 

Ceramide and sphingomyelin play leading roles in the regulation of cellular events. 

Ceramide is involved in the regulation of cell growth, differentiation, senescence, necrosis, 

proliferation, and apoptosis. It has also been shown that the actions of ceramide are through 

regulation of protein kinase C, raf-1, and the kinase-suppressor of Ras-, notably by 

changing the phosphorylation level of key substrates (Bartke and Hannun 2009). In a series 

of studies, ceramide has been shown to inhibit the neuronal survival pathway regulated by 

phosphatidil-inositol-3-kinase/Akt (Arboleda, Morales et al. 2009), by conveying activity 

to the caspase-9/caspase-3 pathway (Movsesyan, Yakovlev et al. 2002; Stoica, Movsesyan 

et al. 2003). Production of ceramide is induced by stimuli such as tumor necrosis factor-α 

(TNF-α), interleukin (IL)-1, Fas ligand, ionizing radiation, phorbolesters, heat stress, 

oxidative stress, and chemotherapeutics (Nikolova-Karakashian and Rozenova 2010; Barth, 

Cabot et al. 2011; Castro, de Almeida et al. 2011; Barth, Gustafson et al. 2012; Li, Gulbins 

et al. 2012; Martinez, Chen et al. 2012; Pan, Liu et al. 2012; Van Brocklyn and Williams 

2012). High levels of ceramide contribute to the inflammation process and generate 

reactive oxygen species from mitochondria (Ballou, Laulederkind et al. 1996; Jana, Hogan 

et al. 2009). Furthermore, the transient hydrolysis of sphingomyelin into ceramide has been 

observed in response to apoptosis-activation of the sphingomyelinases. These enzymes 

seem to be important for cellular signal transduction (Jana, Hogan et al. 2009; Milhas, 

Clarke et al. 2010). 

 

3.2.2. Cerbroside and Sulfatide  

 

Myelin is greatly enriched with cerebroside (galactosylceramide) and sulfatide. The 

critical physiological function of myelin in the brain is that it insulates axons and provides 

high axon conductivity for nerve impulses. The myelin sheath ensures rapid intercellular 

communication which is essential for brain functions such as motor control (Sandell and 
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Peters 2003; Sandvig, Berry et al. 2004). A series of studies showed that mice lacking 

galactosyltransferase, the enzyme responsible for synthesizing these two myelin lipids, 

presented thin and unstable myelin with abundant abnormalities (Bosio, Binczek et al. 

1996; Coetzee, Fujita et al. 1996; Coetzee, Dupree et al. 1998; Dupree, Girault et al. 1999; 

Marcus, Dupree et al. 2000). Another study showed that sulfatide is required for myelin 

membrane maintenance and axon structures, while galactocerbroside is essential for myelin 

development (Marcus, Honigbaum et al. 2006). Also, a recent study demonstrated an 

inhibitory role of sulfatide in myelin-associated axon outgrowth (Winzeler, Mandemakers 

et al. 2011). 

Finally, cerebroside and sulfatide play major roles in regulating oligodendrocyte 

differentiation and survival. During brain development, oligodendrocyte differentiation is 

critical for reaching the highest level in the elaboration of myelin sheath (Jana, Hogan et al. 

2009). 

 

3.2.3. Gangliosides 

 

In the nervous system, gangliosides interact with numerous regulatory proteins (Yu, 

Nakatani et al. 2009; Furukawa, Ohmi et al. 2011) and are involved in cell survival, 

proliferation, and differentiation during brain development (Yu, Nakatani et al. 2009). 

Gangliosides also contribute to the maintenance and repair of nerve tissues (Kittaka, Itoh et 

al. 2008; Ohmi, Tajima et al. 2009).   

GT1b is one of the major ganglioside subtypes in neuronal and synaptic membranes 

(Viljetic, Labak et al. 2012). It has been shown to influence cellular apoptosis, and to 

possess neurotoxic functions against dopaminergic neurons. Specifically, cultures of 

mesencephalic cells deprived of serum were observed to be more susceptible to GT1b-

induced neurotoxicity (Chung, Joe et al. 2001). In vivo, GT1b injections into the substantia 

resulted in the death of nigra dopaminergic neurons, including dopaminergic neurons (Ryu, 

Shin et al. 2002). Recently, evidence was provided that the Akt/GSK-3/tau signalling 

pathway is involved in the GT1b-mediated neurotoxic actions (Chung, Bok et al. 2010). 
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GT1b-induced apoptosis also has been reported in non-neuronal cells like thymocytes and 

keratinocytes (Zhou, Shao et al. 1998).  

GD3, the precursor of GT1b, also possesses an apoptotic function. Induction of 

apoptosis in cultures of cerebellar granule neurons—by switching the growing medium to a 

medium containing lower concentrations of potassium—was associated with increased 

levels of GD3 and the enzyme that synthesizes GD3 from GM3. The exogenous addition of 

GD3 to the culture accelerated neuronal apoptosis however, no alteration was observed by 

adding GD1a (Melchiorri, Martini et al. 2002). 

GD1a acts as a modulator of cell survival and proliferation. When applied 

exogenously to the FDC-P1 cell line, GD1a enhanced the proliferation of granulocyte-

macrophage colony-stimulating factor (Santos, Maia et al. 2011). In a transgenic model for 

Huntington’s disease (HD), the poor performances of mice in the footprint test were 

associated with lower cerebellar gangliosides and decreased numbers of GD1a-enriched 

granule cells (Denny, Desplats et al. 2010). Also, brains of mice suffering from Rett 

syndrome, a neurodevelopmental disorder of the grey matter, have been shown to contain 

15% lower concentrations of GD1a in the cerebrum/brainstem, a finding associated with 

poorer motor performances (Seyfried, Heinecke et al. 2009).   

GM3 contributes to normal behaviour. Mice lacking GM3 caused by gene 

disruption exhibited progressive motor, sensory dysfunctions, and deterioration in spatial 

learning and memory (Tajima, Egashira et al. 2009; Tajima, Egashira et al. 2010). Nimii et 

al. (Niimi, Nishioka et al. 2011) investigated cognition, motor activity and emotional 

behaviour of GM-3 knockout mice and found better performances in the Y-maze test,  

hyperactivity in the motor activity test, and anxiety in the elevated plus maze test. They 

also exhibited attention-deficit hyperactivity disorder, reduced attention, and increased 

impulsive behaviour.  

Reduced levels of GM1 have been associated with neurodegenerative disorders such 

as Huntington’s disease (HD). Lowered GM1 synthesis in the brain cells of HD transgenic 

mice and also fibroblasts from HD patients have been suggested as potentially contributing 

to the higher susceptibility of HD cells to apoptosis (Maglione, Marchi et al. 2010). 
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3.3. Sphingolipids and Alzheimer’s Disease  

 

Alzheimer’s disease (AD) is an age-related disorder characterized by the deposition 

of Aβ peptide components and extensive neuronal apoptosis in the brain, notably in the 

hippocampus. Recent studies suggest that disturbance in the lipids composition of neurons 

cell membranes and alteration in sphingolipids metabolism could have a role in the 

neuropathological process of AD (Haughey, Bandaru et al. 2010). 

Decreased levels of sphingomyelin and elevated concentrations of ceramides have 

been reported in various brain regions in AD (Mielke, Haughey et al. 2011; Filippov, Song 

et al. 2012; Mielke, Bandaru et al. 2012). 

A significantly higher concentration of ceramides was reported in the brains of 

patients suffering from AD as compared to the age-matched control group (Satoi, 

Tomimoto et al. 2005; Filippov, Song et al. 2012). Finally, high levels of ceramides and 

dihydroceramides were associated with the strong progression in AD, although higher 

plasma concentrations of sphingomyelin, dihydrosphingomyelin were associated with less 

progression (Satoi, Tomimoto et al. 2005). Furthermore, higher levels of serum ceramides 

were associated with an increased risk of AD (Mielke, Bandaru et al. 2012). 

Sulfatides are also affected in AD. Sulfatide concentrations were shown to decrease 

in the white and gray matter in the earliest stage of AD (Pettegrew, Panchalingam et al. 

2001; Han, D et al. 2002; Cheng, Xu et al. 2003). Han et al. reported that sulfatides content 

in the gray matter was depleted by up to 93%, and by 58% in the white matter, in all brain 

regions in subjects with very mild dementia (Han, D et al. 2002). In the nervous system, 

sulfatide transport and homeostasis is linked to the apolipoprotein E (apo-E) metabolic 

pathway. Alterations in apoE-mediated sulfatide trafficking has been associated with 

sulfatide depletion in the early stages of AD (Han 2007; Han 2010) 

Lowered levels of total gangliosides and alterations in gangliosides subtypes have 

been reported in AD (van Echten-Deckert and Walter 2012). Gangliosides form a complex 

with Aβ that is termed “GAβ” and which accumulates in AD brain (Kakio, Nishimoto et al. 

2002; Zou, Kim et al. 2003; Kakio, Yano et al. 2004; Kimura and Yanagisawa 2007; 
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Okada, Wakabayashi et al. 2007; Yanagisawa 2011). It has been suggested that in AD 

brains, ganglioside GM3 and GM1 play a role in amyloid neuropathy and the formation of 

senile plaques. Transgenic mice expressing a mutant amyloid precursor protein have been 

shown to accumulate GM3 while presenting little GM1 (Oikawa, Yamaguchi et al. 2009; 

Chan, Oliveira et al. 2012). 

 

 

3.4. Vitamin K Involvement in Sphingolipids Metabolism 

 

A study conducted in 1958 by Meir Lev’s group was the first to provide evidence 

for the role of VK in sphingolipids metabolism in bacteria. In this study, VK was shown to 

act as a growth factor for Bacteroides melaninogenicus (Lev 1958). In 1972, a lowered 

synthesis of sphingolipids was shown to be linked to the VK-free medium; adding VK to 

the medium resulted in the stimulation of sphingolipid metabolism (Lev and Milford 1972). 

Subsequently, it was shown that applying VK to the VK-depleted P.levii raised the activity 

of serin palmitoyltransferase—the enzyme catalyzes the condensation of palmitoyl-CoA 

and serine as the first step of sphingolipid synthesis (Lev and Milford 1973).  

These findings were confirmed by studies in mice, when warfarin-induced VK 

deficiency resulted in a 19% decrease in brain serine palmitoyltransferase activity. Also, a 

general decrease in sphingolipid levels in the brain was observed, with a 42% decrease of 

sulfatide, a 17% decrease of sphingomyelin, and a 12% decrease of cerebroside. A 

supplemented VK diet for three days led to a normal 3-ketodihydrosphingosine synthesis, 

increased levels of sulfatide and ganglioside, and a continuous decrease in levels of 

cerebroside and sphingomyelin (Sundaram and Lev 1988).  

The role of VK in sphingolipids was then confirmed by studies in rodents. Warfarin 

treatment in mice resulted in a 45% reduction in sulfotransferase activity, the enzyme 

responsible for sulfatide synthesis, while a supplemented phylloquinone diet led to higher 

sulfotransferase activity (Sundaram and Lev 1990). Regarding the mechanism whereby 

sulfotransferase enzyme activity is modulated by VK, it was suggested that phylloquinone 
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(or menadione) + orthophosphate can provide the required enzyme for ATP and VK 

involvement in enzyme phosphorylation (Sundaram and Lev 1990; Sundaram and Lev 

1992). Similarly, studies showed that the concentrations of sulfatide in the brains of mice 

with VK- deficient diets were 21% lower than control mice fed VK-replete food 

(Sundaram, Fan et al. 1996). Studies conducted on mice and rats have shown that VK 

administration in MK-4 form has an impact on sulfatide levels and also on the activity of 

galactosyl-ceramide sulphate transferase (Sundaram, Fan et al. 1996).  

More recently, brain sphingolipids have been shown to correlate with VK status. A 

study by Carrie et al. (Carrie, Portoukalian et al. 2004) reported that MK-4 levels in brain 

are positively correlated with sphingomyelins and sulfatides content, and negatively 

correlated with gangliosides. Positive correlations between MK-4 concentrations and 

sulfatide have also been reported in the hippocampus and cortex of 12- and 24-month-old 

male Fisher 344  rats (Crivello, Casseus et al. 2010). 

 A study on 6-, 12-, and 20-month-old rats with different dietary amounts of VK has 

shown that sulfatides, cerebrosides, and sphingomyelin were present in higher 

concentrations in the pons medulla and midbrain, while ceramides and gangliosides were 

higher in the striatum and hippocampus. In 20-month-old rats, low dietary VK was 

associated with higher levels of ceramides in the hippocampus and lower gangliosides in 

the pons medulla and midbrain compared with rats that received adequate and high VK 

intake (Carrie, Belanger et al. 2011).  

  

 

4. Other Functions of Vtamin K and the Brain 

 

In the brain, the K vitamers have actions of their own beside their carboxylation 

function to the VKDPs. A study showed that phylloquinone and MK-4 could improve 

neurite outgrowth on PC12D cells; this action is mediated by the protein kinase A and with 

MAPK signalling pathways. In addition, both K vitamers resulted in elevating nerve 

growth factor-induced acetylcholinesterase (Tsang and Kamei 2002). These results 



 

 

 

32 

confirmed previous studies, which reported that phylloquinone and MK-4 could enhance 

the survival of cortex, hippocampal, and striatum neuronal cell types at the later stage of 

embiogenesis (Nakajima, Furukawa et al. 1993). A recent study of primary cultures of 

oligodendrocyte precursors and immature fetal cortical neurons provided evidence that the 

K vitamers, particularly MK-4, can inhibit glutathione depletion-mediated oxidative 

injuries (Li, Lin et al. 2003). This protective effect of MK-4 was insensitive to warfarin 

treatment suggesting that the action of MK-4 was independent of the VKDPs. Another 

study confirmed the neuroprotective function of MK-4 in the methylmercury-induced cell 

death and found a significant association with a reduction in intracellular glutathione 

(Sakaue, Mori et al. 2011). 

 

 

5. Vitamin K and Behaviour 

 

Limited animal studies have suggested that VK plays a role in cognition. In 1984, 

Cocchetto et al. reported that VK deficient rats presented lower locomotor activity when 

subjected to the open field paradigm; the reduction was reported as 25% compared with the 

control rats (Cocchetto, Miller et al. 1985). Also, warfarin treatment was linked to an 

alteration in exploratory behaviour—from more to less exploration, when compared to 

control rats, and walked less in the center of an open field as a parameter of exploratory 

behaviour. In the Radial arm maze—a sophisticated test to measure activity and short term 

memory—depleted VK rats made fewer choices compared with control rats. Rats rendered 

VK deficient by low VK dietary intake had decreased rates of movement, with no alteration 

in the accuracy of arm selection. 

In a recent study, Carrie et al. showed that lifetime low VK consumption was 

associated with cognitive perturbations in old rats (Carrie, Belanger et al. 2011). In this 

study, 6-, 12-, and 20-month-old rats were fed either a low 80µg/kg, adequate 500 µg/kg, or 

high 2000 µg/kg phylloquinone throughout their lives. In the Morris water maze paradigm 

– a test to assess the cognition – 20-month-old rats receiving the low VK diet had a greater 
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latency to find the submerged platform compared to other groups. In contrast, locomotion 

and anxiety behavior were not affected at 20-month-old rats; also that diet effects were not 

observed at 6- and 12- month-old rats. 

In humans, fetal exposure to warfarin during the first trimester of pregnancy has 

been shown to result in physical anomalies such as optic atrophy, dilation of the cerebral 

ventricles, blindness, microencephaly, and mental retardation (Hall, Pauli et al. 1980; Pauli 

1988). A study in patients in the early stage of AD reported that the phylloquinone intake 

was significantly lower in the patient (63 ± 90 µg/d vs. 139 ± 233 µg/d) when compared 

with age- and sex-matched controls. Green vegetables, the main dietary source of 

phylloquinone, was consumed in lower amounts in patients with AD as compared to 

control subjects (33% vs. 49%) (Presse, Shatenstein et al. 2008). 

 

5.1. Behavioral Assessment 

 

In laboratory rodents, different types of tests are used to determine whether 

treatments or conditions affect behavioral status. The Morris water maze is widely used to 

assess learning ability and cognition; while open field and elevated plus maze tests are used 

to measure locomotion, exploratory and anxiety-related behaviour, respectively (Walsh and 

Cummins 1976; Walf and Frye 2007; Sharma 2009). 

 

5.1.1. Morris Water Maze Test 

 

In 1984, Richard Morris developed a device known as the “Morris water maze” 

(MWM) to assess spatial learning and memory in laboratory rats (Morris 1984). This test 

has been accepted and extensively used by physiologists and pharmacologists. Although 

the MWM seems simple at first glance, it is a challenging task for animals and is used in 

the most sophisticated experiments in neurobiology, neuropharmacology and 

neurocognition to evaluate the impacts of aging, experimental lesions, and drug effects—

especially in rodents. Studies of neurodegenerative and neuropsychiatric disorders where 
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cognition is damaged (i.e. Alzheimer’s disease, Parkinson’s disease, and schizophrenia) 

confirm the importance of this test. The MWM involve the acquisition and spatial 

localization of visual cues which are processed, consolidated, retained, and retrieved to find 

a relatively small goal (a hidden platform) (Sharma 2009).  

The MWM is a large circular pool (diameter: 150 cm) filled approximately halfway 

with water at room temperature and with a fixed invisible platform, which is submerged 

below the water surface (~1 cm). The pool is designated with two principal axes by 

computer software in order to generate a cross imaginary shape. There are then four points 

at the end of each line: North (N), South (S), East (E), and West (W), and four equal 

quadrants. The platform is placed in the middle of one of these quadrants. Several objects 

or images (e.g. circles, squares, and triangles) are located in the testing room or hung on the 

wall, so rodents are able to use these visual cues for navigating in the maze (Figure 7). 

 

 

Figure 7. Diagram showing the Morris water maze testing room and apparatus 

(Alvin V. Terry 2009). 
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One day after the hidden platform test, a “probe trial” is conducted, meaning that 

the platform is removed. A rat is placed in the pool without the platform and its 

performance in the maze is tracked over 30 seconds for two trials. The percentage of time 

spent in the target quadrant that contained the platform in previous trials is measured. This 

assessment provides an estimation of accuracy and strength of the rat’s ability to recall the 

previous platform location. 

Immediately after the probe test, rats are subjected to the “cue test” in order to 

determine the experimental manipulation that leads to the alteration in their visual acuity. In 

this test, a rat is placed in the pool with a highly visible platform. The time to reach the 

platform can be assessed with the video and software or the stopwatch (Morris 1984; 

D'Hooge and De Deyn 2001; Vorhees and Williams 2006; Alvin V. Terry 2009). 

 

5.1.2. Open Field Test 

 

The open field test (OF) is commonly used to assess the general activity and 

exploratory behavior, in rodents. This test is particularly useful in measurements of the 

quality and quantity of the activity.  

Principally, the OF consists of an enclosure of wood or metal, a plastic square, a 

rectangularly-shaped arena with surrounding walls in order to prevent escape. The 

mechanism of assessing the movement involves an overhead tracking video camera and 

software. The software divides the surface of the box into parallel horizontal and vertical 

lines (forming a grid) (Figure 8). 

The activity of the animal during the experiment is tracked via a camera, and the 

software monitors and computes the number of times that the animal crosses from one box 

to another on the grid, and also tracks the entries into the center or peripheral squares. The 

movement is measured by analyzing parameters such as total distance moved, time spent 

moving, and total crossing squares while the exploratory-related behaviour is assessed by 

the crosses into the center and time spent in the center. The duration of the experiments in 
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OF is between 2 and 10 minutes. Short experiment times focus more on exploratory 

behaviour rather than on activity (Todd D.Gould 2009). 

 

 

Figure 8. Diagrammatic illustration of the open field arenas and results obtained from 

open field testing (CJ 2006). 

 

 

5.1.3. Elevated Plus Maze Test 

 

The Elevated plus maze test (EPM) is commonly used to measure anxiety-like 

behaviour in laboratory rodents. The EPM test was described for the first time by 

Montgomery; it was a task with a Y-shaped apparatus including elevated open and closed 

alleys (Montgomery 1955). In 1984, this task was modified into an elevated maze with a 



 

 

 

37 

cross shape, including two open and two enclosed arms, by Handley and Mithani, who 

described the degree of anxiety by the ratio of time spent on the open arms in relation to the 

closed arms (Handley and Mithani 1984).  

The EPM test has a wide application such as assessing the anxiogenic and anxiolytic 

effects of a drug, the reproductive effects of senescence/aging and/or exposure to a stressor, 

and in behavioural assay to investigate the brain sites (e.g., hippocampus, amygdala, dorsal 

raphe nucleus, etc.) and mechanisms (e.g., GABA, glutamate, serotonin, etc.) underlying 

anxiety behaviour.  

In the EPM test, a rodent is placed in the middle of the intersection of the four arms 

of the maze, facing the open arms opposite the experimenter. The behaviour of the animal 

is monitored by a video-tracking system with a computer for five minutes (Figure 9). 

 

 

 

Figure 9. Diagrammatic illustration of the elevated plus maze test 
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Typically, rodents showed the most robust avoidance-responses being in the open 

arms during this time. Time spent and entries made on the open and closed arms are the 

behaviours that are generally recorded in the EPM. The task measures the conflict between 

the rodent’s fear and preference for protected arms versus its innate desire to explore a new 

environment. Closed arms provide the security whereas the open arms represent 

exploratory values. When anxious, the animal’s tendency is to stay in the enclosed arms 

rather than in the open, and anxiety-related behaviour is assessed by the degree to which 

rodents avoid the open arms (Walf and Frye 2007). 

 

 

6. Physiological Functions of Brain regions 

 

  With respect to spatial memory, the hippocampus is the most important region. The 

hippocampus can integrate information from all over the cortex to build a conjunctive 

representation. The perirhinal cortex passes information from the ventral visual stream in 

the inferior temporal cortex into the hippocampus, although the parahippocampal cortex 

carries the dorsal pathway’s spatial information. These inputs merge into the medial 

entorhinal cortex, and then funnel into the denate gyrus, CA3, and CA1 of the hippocampus 

(Figure 10) (O'Reilly, Bhattacharyya et al. 2011). 

Studies have shown that acquisition of hippocampus-dependent tasks alters neuronal 

properties, resulting in synaptic transmission. It would be expected that the alteration in 

synaptic connectivity reflects physiological measures and would be correlated with 

neuroanatomical characteristics of synaptic contacts (Galvez, Nicholson et al. 2011). It was 

suggested that the hippocampus plays a critical role in the Morris water maze paradigm—

finding the hidden platform—and that the activation of neurons in CA3 hippocampal 

allows the rodent to locate the submerged platform (Redish and Touretzky 1998). Some 

studies use the water maze test to demonstrate hippocampal biophysiology plasticity and 
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reported a reduction in hippocampal afterhyperpolarization (Oh, Kuo et al. 2003; 

Tombaugh, Rowe et al. 2005). 

 

 

Figure 10. Scheme illustration of the flow of information to be encoded in the hippocampus 

(O'Reilly, Bhattacharyya et al. 2011) 

 

The cerebellum historically is known for its role in motor control and coordination; 

however, the cerebellum has a wide-ranging role in cognition, learning and memory, 

language, and executive function (O'Halloran, Kinsella et al. 2012). Many studies have 

reported the various functions of the cerebellum such as skill learning, associative learning, 

working memory, visio-spatial learning, problem solving, spatial memory, orienting of 

attention, emotional disturbances, and fear conditioning (Cabeza and Nyberg 2000; Paulus, 

Magnano et al. 2004; Kalashnikova, Zueva et al. 2005; Schmahmann and Caplan 2006; 

Schmahmann, Weilburg et al. 2007; Zhu, Scelfo et al. 2007; Schmahmann and Pandya 

2008; Stoodley and Schmahmann 2010). The cerebellum connects to supratentorial regions 

in two pathways (Figure 11): The information flow from the prefrontal cortex reaches to 

the cerebellum and is involved in the learning process by direct influence on the prefrontal 

cortex (Kalmbach, Ohyama et al. 2009). 
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Figure 11. Schematic representation of cerebellum-cerebro pathways (O'Halloran, 

Kinsella et al. 2012). 

 

The prefrontal cortex is especially important in executive function, and many studies on 

human and animals demonstrate a wide range of deficits in executive functions as a result 

of manipulation in this region. Also, the connection of this region to subregions like the 

amygdala, temporal cortex, thalamus nuclei, hippocampus, and striatum hypothalamus 

described a complex function mainly contributing to cognitive functions (Kalmbach, 

Ohyama et al. 2009). 

The midbrain as part of the brainstem is mainly known for its roles in planning, 

initiating, and coordinating the gaze-displacing movements of eyes, head, and body 

(Gandhi and Katnani 2011), and also in visuomotor targets selection (Port and Wurtz 2009; 

Nummela and Krauzlis 2010). Recent studies on rats demonstrate the contribution of the 

midbrain to sensorimotor decision-making (Felsen and Mainen 2012). It was also 

demonstrated that the forming information of new memories, which is supported by the 
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hippocampus, is modulated by noradrenergic and dopaminergic system in the midbrain 

(Sara 2009).  

The striatum is involved in the refinement and control of motor movement; 

however, recent evidence suggests that this brain region contributes to reward- and 

decision-making, particularly in initiation and action selection (Balleine, Delgado et al. 

2007; Haber 2011). 

 

7. Warfarin- Vitamin K Antagonist 

 

Warfarin is prescribed to millions of patients worldwide and has been consistently 

shown to be highly effective in many clinical settings (Božina 2010).   

It has long been used as the main drug in the prevention and treatment of venous 

thromboembolism e.g. patients with prosthetic heart valves, and in the prevention of 

myocardial infarction and stroke in high risk individuals. Warfarin and its derivatives 

decrease blood coagulation by inhibiting the VKOR enzyme required to convert the 

epoxide form of VK to KH2 (active form of VK) after it has been involved in the 

carboxylation of clotting proteins (Described in section 1-4) (Alquwaizani, Buckley et al. 

2013) 

Dosage of warfarin varies depending on clinical indications, age, and comorbidities. 

Clinical studies suggest that initial dosing between 2.5 and 10 mg are effective in 

individuals with arterial fibrillation, venous thromboembolism and myocardial infraction. 

Initial doses of less than 5 mg are appropriate in the elderly, in patients with impaired 

nutrition, liver disease, congestive heart failure, and in patients with high risk of bleeding. 

A starting dose of 2 to 3 mg is usually appropriate for individuals who have undergone 

heart valve replacement, this lower dosage being due to their higher sensitivity to vitamin K 

antagonists. The target INR of individuals using warfarin is usually between 2 and 3 

(Ageno, Gallus et al. 2012).  
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In recent years, dietary VK has emerged as an important modulator of long-term 

anticoagulation stability. Small retrospective studies point to more stable anticoagulation in 

patients with high VK intakes, and prospective trials have shown that patients receiving 

small doses of supplemental VK (100-150 µg/d) spend significantly more time in the 

therapeutic range, require fewer warfarin dose changes, and suffer less bleeding and 

thrombotic complications over time (Ford and Moll 2008). 

To this day, whether a relationship exists between warfarin therapy and cognitive 

decline has not been investigated. 
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The Hypothesis and Objectives  

 

In this study, we hypothesized that warfarin-induced VK deficiency will impair 

cognition and other behavioral domains in rats. Furthermore, this impairment will be 

associated with an alteration in sphingolipids metabolism in different brain regions. 

The principles objectives of this study were: 

 To study the effect of warfarin treatment on various behavioral measures (cognition, 

anxiety, locomotion). 

 To study the effect of warfarin treatment on MK-4 distribution in different brain 

regions. 

 To investigate the effect of warfarin on sphingolipids profile in different brain 

regions. 

 To determine whether the behavioral measures are associated with the alteration in 

sphingolipids profile.  
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Abstract  

In a previous report, we showed that life-long intake of a low vitamin K (VK) diet 

was associated with cognitive deficits in old rats. Warfarin is a potent VK antagonist that 

acts by blocking the VK cycle causing a “relative VK deficiency” at the cellular level. This 

study was conducted to investigate the impact of warfarin on brain with respect to 

cognition, behavior and brain Menaquinone-4 (MK-4) and sphingolipid status. Fourteen 

wistar male rats were treated with 14 mg warfarin/kg/d (in drinking water) and 

subcutaneous VK (85 mg/kg) injection, 3X/week, for 10 weeks; 14 control rats were treated 

with normal water and injected with saline. Rats were subjected to different behavioral tests 

after which phylloquinone, MK-4, sphingolipids (cerebroside, sulfatide, sphingomyelin, 

ceramide and gangliosides), and gangliosides subtypes (GT1b, GD1a, GM1, GD1b) were 

assessed in various brain regions. Compared to rats from the controls group, those treated 

with warfarin exhibited longer latencies in the Morris water maze test (p<0.05) as well as 

hypoactivity and lower exploratory behaviour in the open field test (p<0.05). Warfarin 

treatment also resulted in a dramatic decrease in MK-4 level in all brain regions (p<0.001), 

altered sphingolipid concentration, especially in frontal cortex and midbrain (p<0.05), and 

in a loss of sphingolipid regional differences, notably for gangliosides. Warfarin treatment 

was associated with lower GD1a in the hippocampus and higher GT1b in the striatum and 

prefrontal cortex. In conclusion, warfarin-induced VK deficiency alters VK and 

sphingolipid status in brain with potential detrimental effects on brain functions. 
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Introduction         

   

Vitamin K is known historically for its role in blood coagulation however, recent 

studies point to other important functions for this nutrient in the nervous system ( reviewd 

in Ferland 2012a; Ferland 2012b). VK acts as a cofactor for the ϒ-glutamyl carboxylase 

enzyme and conveys biological activity to VK-dependent proteins such as Gas6 and protein 

S (Ferland G, Nutrition Foundation. et al. 2011).  In the central nervous system, Gas6 and 

protein S are involved in a wide range of cellular processes such as cell survival, cell 

growth, apoptosis, myelination, chemotaxis and mitogenesis (Bellido-Martin and de Frutos 

2008).  

In brain, VK is also associated with sphingolipid metabolism, a class of complex 

lipids found in high concentrations in brain cell membranes which includes ceramides, 

sphingomyelin, cerebrosides, sulfatides and gangliosides. In addition to their structural 

function, sphingolipids have critical roles in cellular events such as proliferation, 

differentiation, senescence, cell-cell interaction, and transformation. Alterations in 

sphingolipids metabolism have been observed in the aging process and in 

neurodegenerative disorders such as Alzheimer and Parkinson diseases (Fantini and Yahi 

2010; van Echten-Deckert and Walter 2012). In rodents, brains of mice treated with 

warfarin, a potent VK antagonist, were shown to contain significantly less sulfatides, 

sphingomyelin, and cerebrosides when compared to those of controls (Sundaram and Lev 

1988). More recently, strong correlations were observed between menaquinone-4 (MK-4), 

the main K vitamer in rat brain, and sulfatide, sphingomyelin, and gangliosides (Carrie, 

Portoukalian et al. 2004).  

  There is also data to suggest that VK status can influence cognition and behavior. In 

a recent study by our team,  lifelong low VK consumption was associated with cognitive 

impairment in old rats, a finding also linked to alterations in sphingolipids in specific brain 

regions (Carrie, Belanger et al. 2011).  In an older study (Cocchetto, Miller et al. 1985), 
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short term VK deficiency induced through dietary manipulations or warfarin treatment 

resulted in hypoactivity with no alterations in short-term memory. Furthermore, warfarin 

administration was associated with a shift from more to less exploratory behaviour. 

However, in this study, rats’ nutritional status was not assessed limiting our ability to link 

the observed behavioral perturbations to VK status. In light of the fact that warfarin is the 

most prescribed oral anticoagulant in the world (Božina 2010) and to further characterize 

its impact on cognition and behavior, we conducted a study in which these components 

were investigated with respect to MK-4 and sphingolipid status in brain.  

 

Methodology 

Rats and treatments 

All experimental procedures were approved by the Animal Care Committee of the 

Université de Montréal according to the guidelines of the Canadian Council on Animal 

Care. Male Wistar rats (initial body weights of 175 to 250g) were obtained from Charles 

Rivers Canada. Rats were housed two per cage, kept under a 12 hours reversed light/-dark-

cycle and 22˚C, and had free access to diets and water. The warfarin-induced VK 

deficiency protocol used in the present study was that developed by Price et al. (Price, Faus 

et al. 1998) and as modified by Moreau et al. (Essalihi, Dao et al. 2003). Specifically, 14 

randomly selected rats were treated with warfarin 14 mg/kg/d in their drinking water and 

subcutaneous VK (85 mg/kg/d) injections, three times per week for 10 successive weeks. 

Phylloquinone injections were started one week before warfarin administration and 

warfarin dosing was adjusted three times per week by checking the drunken volume. 

Fourteen control rats were treated with normal water and injected with saline. Both groups 

of rats were fed a diet containing 750 µg phylloquinone/kg diets. Body weights were 

recorded twice a week, and food consumption was assessed once a week by subtracting the 

amount of food left over from the amount of food provided the previous week. Blood 

clotting capacity (international normalized ratio, INR) of warfarin-treated rats was 
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monitored once a week using blood samples from the tail vein using a Coagucheck device 

(Roche, Canada). The health of the rats was monitored daily throughout the experimental 

period.   

Behavioural tests 

After the treatment period, rats from both groups were subjected to the Morris water 

maze (Morris 1984), the open field (Todd D.Gould 2009), and the elevated plus maze 

(Walf and Frye 2007), these tests assessing cognition, motor activity and anxiety, 

respectively (in light cycle). 

 

Morris water maze  

Morris water maze test consisted of a large, circular, metal pool (diameter: 150 cm) 

filled approximately half-way (30 cm) with 22˚C water containing a fixed invisible 

platform (10 cm
2
) which was submerged below the water surface (~ 2 cm). Several objects 

or images (e.g. circles, squares, and triangles) were hung on the walls of the room in which 

the test was conducted, so the rats could use them as visual stimuli for navigating in the 

maze. Each day of the trial, rats were released in the water in one of the four quadrants 

randomly. It took them about 90 sec to find the platform; if successful they were allowed a 

30 s stay on the platform. If they did not reach the platform within 90 s, they were 

physically placed on it and allowed to rest there for 30s.  The test was conducted for three 

trials per day over five consecutive days. The performance of each rat was monitored with a 

camera mounted above the pool and recorded via a DVD recorder. Latencies to find the 

platform, swim speed and time spent in each quadrant were obtained and analyzed using a 

software developed by Dr Rochford (McGill University).  

A Probe trial was conducted one day after the hidden platform tests to assess spatial 

accuracy. The platform was removed, and the rats were placed in the pool and allowed to 

swim freely while their search patterns were tracked over 30 seconds for two trials. The 

percentage of time spent in the target quadrant where the platform had been located during 
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the learning trials was computed. This assessment provided an estimation of accuracy and 

strength of the rats’ recalling of the previous platform position. 

Immediately after the probe trial, rats were subjected to the “Visible Platform Test” 

or Cue trial to determine if the treatment resulted in alterations in visual acuity. In this test, 

rats were placed in the pool with a highly visible platform for 30 sec.  

 

Open field 

The open field consisted of a black wooden box (60×50×50 cm) with surrounding 

walls to prevent escape. Assessing the movement of the rats involved an overhead tracking 

video camera and a tracker system. The software divided the surface of the box into parallel 

horizontal and vertical lines (forming a grid). After 30 minutes of adaption to the testing 

room, the rats were placed in the center of the area, and the activity of the animal during the 

experiment was monitored. Rats were allowed to explore the field freely for five minutes. 

Motor activity was based on total distance moved (cm) and total number of square 

crossings, while exploratory behavior was assessed by the animals’ number of crossings 

into the center and the percentage of time spent in the center. This experiment was 

conducted once a day for three consecutive days and data analyzed by the Field 

2020’software (HVS image).  

 

Elevated plus maze 

Anxiety-like behavior was measured using elevated plus maze, a test that relies on 

the rodent’s innate fear of open spaces and height. The elevated plus maze consisted of a 

grey wooden cross with four arms (90×8 cm) that was elevated 70 cm from the floor. Two 

opposite arms were open, while the other two were enclosed by side end walls (10 cm 

high). After 30 minutes of adaptation to the room, rats were placed in the middle of the 

intersection of the four arms facing an open arm and their behavior was recorded for five 

minutes. The total time spent in the open and closed arms, and the number of open arm 
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entries and total number of entries were computed. The elevated plus maze test was 

conducted once (Pellow, Chopin et al. 1985).  

 

Biochemical analyses 

After completion of the behavioural tests, rats were subjected to biochemical 

analyses. Specifically, rats were anesthetized with pentobarbital and bled from the 

abdominal aorta. The brains were gently removed on ice and dissected into midbrain, 

cerebellum, hippocampus, frontal cortex, striatum, thalamus and sensorimotor cortex. The 

brain regions were frozen in liquid nitrogen and stored at -80˚C until assessments. 

 

Vitamin K analysis 

Phylloquinone and MK-4 were quantified by reverse-phase HPLC (n=6-8/treatment 

group) as previously described (Carrie, Portoukalian et al. 2004). Briefly, tissue samples 

were grounded in Na2SO4 and extracted with acetone containing an internal standard 

K1(25). The dried extracts were then mixed with water and hexane, and the hexane phase 

was purified by solid phase extraction on silica gel columns.  The quantitative analysis of 

phylloquinone throughout the text and MK-4 was performed by HPLC using C-18 reverse 

phase column and fluorescence detection. The calibration standard contained 

phylloquinone, MK-4, and K1(25) at 2ng in 50 µL. 

 

Sphingolipids analyses 

  Sphingolipids which included sulfatides, cerebrosides, sphingomyelin, ceramides, 

and gangliosides were quantified (n=6/treatment group) in the various brain regions as 

described previously  (Carrie, Portoukalian et al. 2004). Briefly, brain lipids were extracted 

with chloroform:methanol (2:1) and separated according to the method of Folch et al.  

(Folch, Lees et al. 1957). Gangliosides were eluted according to the method of Williams 

and McCluer  (Williams and McCluer 1980) and free sialic acids were quantified according 
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to Jourdian et al. (Jourdian, Dean et al. 1971)  Ceramides, cerebrosides, sulfatides, and 

sphingomyelin were loaded onto LC-NH2 columns (Supelco) and eluted sequentially. The 

sulfatide fraction was further applied to C-18 silica columns. All fractions were evaporated 

and suspended in chloroform: methanol (2:1). Ceramides, cerebrosides and sphingomyelin 

were quantitated by determination of sphingosine with fluorescamine according to Naoi et 

al. (Naoi and Lee 1974) and sulfatides with azure A according to Kean et al. (Kean 1968). 

 

Ganglioside analysis 

Gangliosides subtypes were analyzed by high-performance thin-layer 

chromatography (HPTLC) using 20*10cm silica gel 60 HPTLC plates (Merck, Darmstadt, 

Germany). Purified gangliosides standards (GT1b, GD1a, GM1 and GD1b) were purchased 

from Metraya.Inc. Each ganglioside standard mixtures were spotted in duplicate on each 

plate. The HPTLC plates were prewashed with chloroform to eliminate contamination that 

could affect gangliosides mobility (Ravindranath, Muthugounder et al. 2004). After a brief 

drying period, plates were placed in a chamber containing 200ml of developing solvent 

[chloroform/methanol/0.25% aqueous CaCl2 (60/35/7.5 v/v/v)] (Ardail, Popa et al. 

2003)which had equilibrated for at least 2 hours (Ledeen and Yu 1982). Plates were run for 

60 min, air dried, and sprayed with Resorcinol reagent (10ml of 2% resorcinol in water, 

40ml concentrated HCl and 0.250 ml of 0.1M copper sulphate)(Svennerholm 1957). Plates 

were then placed face down on a clean glass cover plate in an oven at 120°C until 

appearance of the bands (about 20min)(Hauser, Kasperzyk et al. 2004). The percent 

distribution of the individual gangliosides was determined by scanning the HPTLC plates 

and computing the bands using Image J software (version 1.42, National Institutes of 

Health, Bethesda, MD). Individual bands from each lane were identified by comparison 

with a standard mixture. 
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Statistical analysis 

 

Statistical analyses were performed using GraphPad Prism (version5). All data were 

expressed as means ± SEM. Body weight, food consumption, Morris water maze and open 

field test were assessed using repeated-measures ANOVA, with warfarin treatment as the 

main effect and time as the repeated measure. Cue and probe trial, swimming speed and 

latencies on individual days (Morris water maze), elevated plus maze, MK-4, sphingolipids 

concentrations and different subtypes of gangliosides for each brain regions were analyzed 

by t-test as a function of warfarin effect. The regional distributions of MK-4, sphingolipids 

concentration, and gangliosides for each group were compared by one-way ANOVA 

followed by Tukey’s post hoc test. Pearson’s correlation test was performed to estimate the 

linear relationship between each class of sphingolipids and MK-4. Differences at P<0.05 

were considered as significant. 
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Results          

Body weight and food consumption 

Body weights increased in both groups during the experimental period (P<0.0001) 

although the warfarin-treated rats gained significantly less weight compared to controls 

(P=0.0062). Also, food intake was lower in rats from the warfarin than the control group 

(P=0.0006) (Figure 1). 

 

Food consumption

1 2 3 4 5 6 7 8

0

10

20

Control

Warfarin

Treatment weeks

F
o

o
d

 c
o

n
s
u

m
p

ti
o

n

g
r/

d

 

Figure 1. (A)Body weight and (B) food consumption of warfarin and control rats. Values are Mean±SEM, 

n=14. Body weights of rats from the warfarin group differed from those of the control group during the 10-wk 

treatment period P=0.0062, and they consumed less food P=0.0006. 
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Behavioral tests 

Morris water maze 

Time to find the hidden platform decreased across the successive training days for 

both groups (P<0.0001), suggesting that learning occurred across trials. On day 2, the 

warfarin-treated rats presented significantly longer latencies when compared to those from 

the control group (P=0.0212). Warfarin treatment had no effect with respect to the Cue trial 

(P = 0.4640) and swim speed (P = 0.6267). In the Probe trial, both groups had a preference 

for the quadrant in which the platform was located during the learning trials but results 

were not affected by warfarin treatment (P =0.4541) (Figure 2).  

 

 

 

 
Figure 2. Performance of control and warfarin treated rats in the Morris Water maze test.  

Values are Mean±SEM., n=14. * warfarin group differ from control group P<0.05 
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Open field 

Distance moved (P=0.0474) and total number of squares crossed (P=0.0495) were 

reduced in warfarin-treated rats over the three days of trials when compared to control rats. 

Warfarin treatment also resulted in lower %time spent in the center squares (P=0.0056) and 

number of center square crossings (P=0.0037) (Figure 3). 
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Figure 3. Open field test. (A) Distance moved. (B) Total squares crossed. (C) % time in the center squares. 

(D) Center squares crossing. The locomotor activity and exploratory capacity of warfarin treated rats were 

significantly lower than control group (P<0.05). 
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Elevated plus maze 

Time spent in the open arms (P=0.3560), % open arms/total time (P=0.5905) and 

percentage of open arms entries / total entries (P=0.1998) as a factor of anxiety-like 

behaviour, did not differ significantly between control and warfarin groups (Figure 4). 
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Figure 4. Elevated plus maze test. (A) Time spent in the open arms (B) Percent time spent in the open arms 

(C) percentage of open arms entries for control and warfarin group as the indicators of anxiety level. There is 

no significant difference between the control and warfarin groups (P>0.05). 
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Biochemical analysis 

Vitamin K 

MK-4, the major form of VK in brain (~ 86.17% of total VK), decreased 

dramatically in all brain regions as a result of warfarin treatment (P<0.001) (Table 1). MK-

4 concentrations in warfarin- treated rats were 25-42% those  of controls. In control rats, 

MK-4 was unevenly distributed in the brain regions (P=0.0006) with the highest 

concentrations observed in frontal cortex, midbrain, thalamus and sensori-motor cortex, and 

the lowest concentrations observed in the cerebellum, hippocampus and striatum. 

Interestingly, these regional differences totally disappeared in brains of the warfarin-treated 

rats, concentrations of MK-4 being comparable across all brain regions (P=0.3822).  

 

Table1  MK-4 concentrations in brain regions of control and warfarin treated  rats 
1
 

Regions Control Warfarin 

(Menaquinone-4) pmol/g 

Striatum 98.48 ± 6.55 
a, c, x

 39.49 ± 3.91 
a, y

 

Hippocampus 99.56 ± 13.70 
a, b, c, x

 38.27 ± 3.53 
a, y

 

Frontal cortex 136.2 ± 9.03 
b, c, x

 48.13 ± 4.78 
a, y

 

Midbrain 143.5 ± 14.04 
b, x

 40.55 ± 4.30 
a, y

 

Sensori-motor cortex 136.3 ± 7.23 
b, c, x

 44.89 ± 6.65 
a, y

 

Cerebellum 88.36 ± 6.39 
a, x

 36.11 ± 2.27 
a, y

 

Thalamus 126.4 ± 9.65 
a, b, c, x

 33.59 ± 6.63 
a, y

 

 

1
 Values are means ± SEM, n=6-8. Means in a column without a common letter (a, b, c) differ, P<0.05; 

means in a row for each vitamer without a common letter (x, y) differ, P<0.05 

 

Sphingolipids 

Concentrations of each class of sphingolipids varied across brain regions 

(P<0.0001). In both groups of rats, highest concentration of sulfatide, sphingomyelin and 

cerebroside were observed in the midbrain (P<0.001) and in control rats, the striatum 
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contained higher ganglioside concentrations (P<0.01). While in the control group 

gangliosides varied significantly across brain regions, this pattern disappeared as a result of 

warfarin treatment (Table 2).  

Except for sulfatides and gangliosides in the frontal cortex, warfarin administration resulted 

in a decline in all sphingolipids in most brain regions. Warfarin was associated with a 

significant decrease in ceramide concentration in all regions of the brain (P=0.0378). The 

reduction in ceramide was more pronounced in the midbrain (13.29% ; P=0.0386), but also 

tended to decrease in the striatum (12.24% ; P=0.0694) and frontal cortex (17.79% ; 

P=0.0592). Also, warfarin administration resulted in a significant decrease in the level of 

sphingomyelin (38.9% ; P=0.0038), and to a lesser degree, sulfatide (14.0% ; P=0.0684) in 

the midbrain. In the frontal cortex, however, the concentration of sulfatide and ganglioside 

increased by 35.8% (P=0.0267) and 25.1% (P=0.0101), respectively. 

 

Table 2 Sphingolipid concentrations in brain regions of control and warfarin treated rats 
1
 

 Striatum Hippocampus Frontal cortex Midbrain Sensori-motor Cortex 

Cerebrosides, µmol sphingosine/g 

Control 15.59 ± 0.93 
a, x

 3.94 ± 0.36 
a, y

 1.84 ± 0.26 
a, y

 27.33 ± 1.63 
a, z

 4.37 ± 0.39 
a, y

 

Warfarin 14.29 ± 0.52 
a, x

 5.53 ± 0.98 
a, y

 1.38 ± 0.10 
a, y

 25.00 ± 1.93 
a, z

 4.32 ± 0.25 
a, y 

Sphingomyelin, µmol sphingosine/g 

Control 1.75 ± 0.13 
a, x

 0.71 ± 0.03 
a, y

 1.41 ± 0.07 
a, x, y

 4.24 ± 0.36 
a, z

 1.21 ± 0.04 
a, x, y

 

Warfarin 1.62± 0.04 
a, x

 0.75 ± 0.06 
a, y

 1.55 ± 0.15 
a, x

 2.60 ± 0.24 
b, z

 1.22 ± 0.03 
a, x, y 

Sulfatides, µmol cerebroside sulfate/g 

Control 2.80 ± 0.21 
a, x

 1.22 ± 0.11 
a, y

 0.83 ± 0.07 
a, y

 4.41 ± 0.20 
a, z

 1.12 ± 0.05 
a, y

 

Warfarin 2.55 ± 0.13 
a, x

 1.22 ± 0.14 
a, y

 1.04 ± 0.04 
b, y

 3.80 ± 0.23 
a, z

 1.20 ± 0.06 
a, y 

Ceramides, µmol sphingosine/g 

Control 0.31 ± 0.01 
a, x

 0.25 ± 0.01 
a, y, z

 0.29 ± 0.02 
a, x, y

 0.20 ± 0.01 
a, z

 0.27 ± 0.01 
a, x, y

 

Warfarin 0.27 ± 0.01 
a, x

 0.24 ± 0.02 
a, x

  0.23 ± 0.01 
b, x, y

 0.18± 0.01 
b, z, y

 0.27 ± 0.01 
a, x 

Gangliosides µmol sialic acid/g 

Control 0.72 ± 0.05 
a, x

 0.51 ± 0.04 
a, y

 0.47 ± 0.02 
a, y, z

 0.37 ± 0.02 
a, z

 0.53 ± 0.03 
a, y

 

Warfarin 0.63± 0.04 
a, x, y

 0.48 ± 0.04 
a, x, y, z

 0.63 ± 0.05 
b, x

 0.40 ± 0.02 
a, z

 0.55 ± 0.02 
a, x, y, z

 

1
 Values are means±SEM, n=6-8. Means in a column (a, b) or row (x, y, z) with superscripts without a 

common letter differ, P<0.0. 
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Correlation between MK-4 and sphingolipids concentration in brain 

The associations between MK-4 and the different sphingolipids were investigated in 

brain for both groups of rats (Figure 5). In control rats, MK-4 was positively correlated 

with sulfatide (r=0.2343, P=0.03494) and negatively correlated with gangliosides (r=-

0.5340, P=0.0272). A strong trend for a positive correlation was also observed between 

MK-4 and sphingomyelin (r=0.4197, P=0.0828). However, in warfarin-treated rats, no 

correlations were observed between MK-4 and either of the sphingolipids, indicating a loss 

of their associations. 

MK-4 - Gangliosides

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Control

Warfarin

MK-4 (pmol/gr)

G
a
n

g
li
o

s
id

e
 (

µ
m

o
l/
g

 t
is

s
u

e
)

MK-4 - Ceramide

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4
Control

Warfarin

MK-4 (pmol/gr)

C
e

ra
m

id
e

 c
o

n
c

e
n

tr
a

ti
o

n

(µ
m

o
l/

g
 t

is
s

u
s

)

MK-4 - Cerebroside

0 50 100 150 200
0

10

20

30

40
Control

Warfarin

MK-4 (pmol/gr)

C
e

re
b

ro
s

id
e

 (
µ

m
o

l/
g

 t
is

s
u

s
)

 MK-4 - Sphingomyelin

0 50 100 150 200
0

1

2

3

4

5
Control

warfarin

MK-4 (pmol/gr)

S
p

h
in

g
o

m
y
e

li
n

 (
µ

m
o

l/
g

 t
is

s
u

s
)

 

 MK-4 - Sulfatide

0 50 100 150 200
0

1

2

3

4

5
Control

Warfarin

MK-4 (pmol/gr)

S
u

lf
a

ti
d

e
 (

µ
m

o
l/

g
 t

is
s

u
s

)

 

Figure 5. Relationship between brain MK-4 and sphingolipids in control and warfarin rats. Data points are 

concentrations from 5 brain regions.  

Control:   r=-0.5340; P=0.0272 

Warfarin: r=0.0214;  P=0.9347 

Control:   r=-0.3443;  P=0.1617 
Warfarin: r=0.1161;   P=0.6683 

 

Control:    r=0.1860; P=0.4597 
Warfarin: r=0.1438; P=0.5947 

 

Control:    r=0.4197; P=0.0828 
Warfarin:  r=0.1813; P=0.5016 

 

Control:    r=0.2343; P=0.0349 

Warfarin: r=0. 2052; P=0.4458 

 



 

 

 

60 

HPTLC ganglioside fractions 

 

In both groups of rats, gangliosides subtypes GD1b, GD1a, GT1b and GM1 were 

differentially distributed across brain regions (P<0.0001) (Table 3).  Specifically, GD1a 

was present in highest concentration in the frontal cortex, striatum, hippocampus and 

sensorimotor cortex while significantly higher levels of GD1b, GT1b and GD1b were 

observed in the midbrain. In control rats, GM1 was present in higher concentrations in the 

striatum and midbrain, while in warfarin rats, GM1 levels were higher in the midbrain 

compared to other regions (P<0.05 in all cases). 

Finally, warfarin administration resulted in a significant reduction in GD1a in the 

hippocampus (P=0.0161), and in significant increases in GT1b in the striatum (P=0.0303) 

and frontal cortex (P=0.0357). 

 

Table 3 Ganglioside distribution in different brain regions of control and warfarin rats 
1
 

 Striatum Hippocampus Frontal cortex Midbrain Sensori-motor cortex 

Percentage 

GT1b 

Control 9.16 ± 1.19 
a, x

 22.03 ± 0.80 
a, y

 21.86 ± 0.53 
a, y

  33.96 ± 1.33
 a, z

  29.47 ± 1.54 
a, z

 

Warfarin 15.36 ± 2.22 
b, x

 22.94 ± 0.47 
a, y

  24.64 ± 0.53 
b, y

 30.95 ± 1.75 
a, z

 25.91 ± 1.53 
a, y, z

 

GD1b 

Control 7.23 ± 1.23 
a, x

 7.76 ± 0.99 
a, x

  7.75 ± 1.31 
a, x

 16.63 ± 1.14 
a, y

 8.82 ± 0.74 
a, x

 

Warfarin 8.58 ± 1.02 
a, x

 7.90 ± 0.72 
a, x

 7.96 ± 0.72 
a, x

 16.42 ± 1.30 
a, y

 9.03 ± 1.09 
a, x

 

GD1a 

Control 50.29 ± 2.28 
a, x

 49.19 ± 1.70 
a, x

 50.60 ± 1.652 
a, x

 14.59 ± 0.88 
a, y

 39.94 ± 1.65 
a, z

 

Warfarin 48.30 ± 1.70 
a, x

 44.06 ± 0.69 
b, x, z

 48.60 ± 0.66 
a, x

  17.49 ± 2.03 
a, y

  41.27 ± 1.12 
a, z

 

GM1 

Control 33.30 ± 3.13 
a, x

 21.01 ± 1.73 
a, y

  19.79 ± 1.62 
a, y

 34.81 ± 2.00 
a, x

 21.77 ± 1.15 
a, y

 

Warfarin 27.76 ± 3.01 
a, x

 25.10 ± 1.01 
a, x, y

  18.80 ± 1.53 
a, y

 35.14 ± 1.12 
a, z

 23.79 ± 1.45 
a, x, y

 

 

1
 Values are means ± SEM, n=7. Means in a column (a, b) or row (x, y, z) with superscripts without a 

common letter differ, P<0.05. 
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Discussion  

 

This study provides further evidence that warfarin-induced VK deficiency results in 

learning deficits, hypoactivity and lower exploratory behaviour in rats, a finding associated 

with a dramatic decrease in brain MK-4 and an alteration in sphingolipid profile. 

Warfarin acts as an inhibitor of the VK oxidoreductase enzyme responsible for the 

recycling of the vitamin. As a result of warfarin treatment, and as shown in the present 

study, VK concentrations in the form of MK-4 significantly decrease in the brain. To our 

knowledge, this study is the first to link cognitive and behaviour impairments to VK status 

and sphingolipid metabolism. 

Specifically, warfarin treatment was associated with longer latencies on day two in 

the Morris water maze paradigm, a result that could suggest impairment of the encoding 

component of the learning process. This deficit was not due to visual or motor impairments 

as results in the cue test and rats’ swim speed were not statistically affected by warfarin 

treatment. Moreover, although prothrombin times were slightly higher in warfarin-treated 

rats [warfarin 2.69s vs. control 1.04s (P=0.0072)] there were no sign of bleeding in any of 

the animals. Interestingly, results reported here on day two are comparable to those 

observed in rats subjected to lifelong low VK consumption (Carrie, Belanger et al. 2011), 

further suggesting a role for VK in hippocampal function.   

 In open field test, warfarin-treated rats travelled significantly less distance and 

crossed fewer squares compared to control rats, suggesting a negative impact of warfarin on 

locomotion. Also, warfarin administration was associated with decreased exploratory 

behaviour, rats from the warfarin group spending less time moving through the center 

squares of the box. However, anxiety-related behaviour was not affected by warfarin 

administration when rats were subjected to the elevated plus maze test. Our results on 

locomotion are in line with those reported by Cocchetto et al. (Cocchetto, Miller et al. 

1985) who observed a significant reduction in locomotor activity as a function of low VK 

intake, and less exploratory behaviour following warfarin treatment.  
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In contrast to the Cochetto et al. study in which rats’ VK status was not 

investigated, we report that our warfarin treatment lead to a significant reduction of MK-4 

concentration in all brain regions. MK-4 is the predominant K vitamer in the brain. It 

represents more than 98% of total VK in brains of Sprague Dawley rats  (Carrie, 

Portoukalian et al. 2004; Carrie, Belanger et al. 2011), and in the present study involving 

Wistar rats, MK-4 accounted for more than 86% of total brain VK. Cerebral MK-4 is 

currently deemed to be the by-product of phylloquinone conversion (Okano, Shimomura et 

al. 2008). Recently, the human UBiA prenyltransferase domain-containing protein 1 

(UBIAD1) enzyme was identified as responsible for MK-4 synthesis (Nakagawa, Hirota et 

al. 2010). Interestingly, our results suggest that the UBIAD1 enzyme is inhibited by 

warfarin for despite injections of high doses of phylloquinone MK-4 in brain tissue 

decreased dramatically.   

In the present study, sphingolipids were found to be altered, especially in the 

midbrain and frontal cortex, as a function of warfarin treatment and depletion of brain MK-

4. Specifically, ceramide and sphingomyelin were significantly reduced in the midbrain, 

results for sulfatides not reaching statistical significance. Ceramides were also significantly 

decreased in the frontal cortex. 

Ceramides make up the backbone structure of all sphingolipids and have been 

shown to mediate many cellular processes such as differentiation, growth, apoptosis and 

senescence (Zeidan and Hannun 2007). Similarly, sphingomyelins are involved in cellular 

signalling and are important regulators of death and growth signals at the plasma membrane 

(Milhas, Clarke et al. 2010; Peter Slotte 2013). Finally, sulfatides contribute to the 

maintenance of myelin and axon structures (Marcus, Honigbaum et al. 2006), and are 

involved in oligodendrocytes differentiation and myelination (Jana, Hogan et al. 2009).  

In contrast to what was observed for ceramides and sphingomyelin, warfarin 

treatment was associated with a significant increase in gangliosides in the frontal cortex. 

Furthermore, when ganglioside subtypes were investigated, the warfarin-induced increase 

in frontal cortex was mainly explained by higher levels of GT1b. Increased levels of GT1b 
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were also observed in the striatum while the hippocampus was found to contain lower 

levels of GD1a.  

In the nervous system, gangliosides interact with numerous regulatory proteins 

(Furukawa, Ohmi et al. 2011; Yu, Tsai et al. 2012) and participate in cell survival, 

proliferation, and differentiation during brain development (Yu, Nakatani et al. 2009). 

Gangliosides also contribute to the maintenance and repair of nerve tissues (Kittaka, Itoh et 

al. 2008; Ohmi, Tajima et al. 2009). In the human brain, approximately half of the sialic 

acid is carried on gangliosides GD1a and GT1b (Sturgill, Aoki et al. 2012). It has been 

shown that GT1b modulate cellular apoptosis and possess neurotoxic functions against 

dopaminergic neurons. Specifically, cultures of mesencephalic cells deprived of serum 

were observed to be more susceptible to GT1b-induced neurotoxicity (Chung, Joe et al. 

2001). In vivo, GT1b injections into the substantia resulted in the death of nigral neurons, 

including dopaminergic neurons (Ryu, Shin et al. 2002). GT1b-induced apoptosis also has 

been reported in non-neuronal cells like thymocytes and keratinocytes (Zhou, Shao et al. 

1998).  

In contrast to the actions of GT1b, GD1a acts as a modulator of cell survival and 

proliferation. When applied exogenously to FDC-P1 cell line, GD1a enhanced the 

proliferation of granulocyte-macrophage colony-stimulating factor (Santos, Maia et al. 

2011). In a transgenic model for Huntington’s disease, the poor performances of mice in the 

footprint test were associated with lower cerebellar gangliosides and decreased numbers of 

GD1a-enriched granule cells (Denny, Desplats et al. 2010). Also, brains of mice suffering 

from Rett syndrome, a neurodevelopmental disorder of the grey matter, have been shown to 

contain 15% lower concentrations of GD1a in the cerebrum/brainstem, a finding associated 

with poorer motor performances (Seyfried, Heinecke et al. 2009).  

Given the reported biological actions of GT1b and GD1a, the observed higher levels 

of GT1b in the striatum and frontal cortex, and lower levels of GD1a in the hippocampus 

could have contributed to the poor performance of the warfarin-treated rats in the Morris 

water maze test as these regions are directly linked to the cognitive process. The 

hippocampus is the most important brain region with respect to spatial memory (O'Reilly, 
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Bhattacharyya et al. 2011) whereas the prefrontal cortex is especially important in 

executive function (Chudasama 2011). The striatum is involved in the control of motor 

movement although recent evidence suggests that this brain region is also involved in 

reward and decision making (Balleine, Delgado et al. 2007; Haber 2011).   

Finally, warfarin treatment as tested in the present study resulted in a loss of 

correlation between MK-4 and the different class of sphingolipids. In control wistar rats, 

and as had been observed in Sprague-Dawley rats, Carrie et al. (Carrie, Portoukalian et al. 

2004) MK-4 was positively correlated with sphingomyelin, sulfatide, and negatively 

correlated with gangliosides. In contrast, no correlations were observed in warfarin-treated 

rats between MK-4 and either of the sphingolipids, indicating a loss of their associations. 

In conclusion, we found that warfarin-induced VK deficiency is associated with 

cognitive impairment, hypoactivity and lower exploratory behaviour in rats. These findings 

were associated with a dramatic reduction of brain MK-4, and an alteration in the 

sphingolipids, notably the gangliosides. In light of the actions of gangliosides GT1b and 

GD1a, their altered profile in regions involved in cognition (hippocampus) and locomotion 

(strtiatum) could have contributed to results of this study. Additional studies are needed to 

determine whether warfarin doses used in the clinical settings represent a cognitive risk for 

patients treated with this drug.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

65 

 References 

 

Ardail, D., I. Popa, et al. (2003). "The mitochondria-associated endoplasmic-reticulum 

subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-

specific glycosyltransferases." Biochem J 371(Pt 3): 1013-1019. 

 

Balleine, B. W., M. R. Delgado, et al. (2007). "The role of the dorsal striatum in reward and 

decision-making." J Neurosci 27(31): 8161-8165. 

 

Bellido-Martin, L. and P. G. de Frutos (2008). "Vitamin K-dependent actions of Gas6." 

Vitamins and hormones 78: 185-209. 

 

Božina, N. (2010). "The pharmacogenetics of warfarin in cinical practice." Biochemia 

Medica 20(1): 33-44. 

 

Carrie, I., E. Belanger, et al. (2011). "Lifelong low-phylloquinone intake is associated with 

cognitive impairments in old rats." J Nutr 141(8): 1495-1501. 

 

Carrie, I., J. Portoukalian, et al. (2004). "Menaquinone-4 concentration is correlated with 

sphingolipid concentrations in rat brain." The Journal of nutrition 134(1): 167-172. 

 

Chudasama, Y. (2011). "Animal models of prefrontal-executive function." Behav Neurosci 

125(3): 327-343. 

 

Chung, E. S., E. Bok, et al. (2010). "GT1b-induced neurotoxicity is mediated by the 

Akt/GSK-3/tau signaling pathway but not caspase-3 in mesencephalic dopaminergic 

neurons." BMC Neurosci 11: 74. 

 

Chung, E. S., E. H. Joe, et al. (2001). "GT1b ganglioside induces death of dopaminergic 

neurons in rat mesencephalic cultures." Neuroreport 12(3): 611-614. 

 

Cocchetto, D. M., D. B. Miller, et al. (1985). "Behavioral perturbations in the vitamin K-

deficient rat." Physiol Behav 34(5): 727-734. 

 

Denny, C. A., P. A. Desplats, et al. (2010). "Cerebellar lipid differences between R6/1 

transgenic mice and humans with Huntington's disease." J Neurochem 115(3): 748-

758. 

 

Essalihi, R., H. H. Dao, et al. (2003). "A new model of isolated systolic hypertension 

induced by chronic warfarin and vitamin K1 treatment." Am J Hypertens 16(2): 

103-110. 



 

 

 

66 

Fantini, J. and N. Yahi (2010). "Molecular insights into amyloid regulation by membrane 

cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases." 

Expert Rev Mol Med 12: e27. 

 

Ferland, G. (2012a). "Vitamin K and the nervous system: an overview of its actions." Adv 

Nutr 3(2): 204-212. 

 

Ferland, G. (2012b). "Vitamin K, an emerging nutrient in brain function." Biofactors 38(2): 

151-157. 

 

Ferland G, Nutrition Foundation., et al. (2011). Present knowledge in nutrition. 

Washington, D.C., ILSI Press International Life Sciences Institute. 

 

Folch, J., M. Lees, et al. (1957). "A simple method for the isolation and purification of total 

lipids from animal tissues." J Biol Chem 226(1): 497-509. 

 

Furukawa, K., Y. Ohmi, et al. (2011). "Regulatory mechanisms of nervous systems with 

glycosphingolipids." Neurochem Res 36(9): 1578-1586. 

 

Haber, S. N. (2011). "Neuroanatomy of Reward: A View from the Ventral Striatum." 

            Hauser, E. C., J. L. Kasperzyk, et al. (2004). "Inheritance of lysosomal acid beta-

galactosidase activity and gangliosides in crosses of DBA/2J and knockout mice." 

Biochem Genet 42(7-8): 241-257. 

 

Jana, A., E. L. Hogan, et al. (2009). "Ceramide and neurodegeneration: susceptibility of 

neurons and oligodendrocytes to cell damage and death." J Neurol Sci 278(1-2): 5-

15. 

 

Jourdian, G. W., L. Dean, et al. (1971). "The sialic acids. XI. A periodate-resorcinol 

method for the quantitative estimation of free sialic acids and their glycosides." J 

Biol Chem 246(2): 430-435. 

 

Kean, E. L. (1968). "Rapid, sensitive spectrophotometric method for quantitative 

determination of sulfatides." J Lipid Res 9(3): 319-327. 

 

Kittaka, D., M. Itoh, et al. (2008). "Impaired hypoglossal nerve regeneration in mutant mice 

lacking complex gangliosides: down-regulation of neurotrophic factors and 

receptors as possible mechanisms." Glycobiology 18(7): 509-516. 

 

Ledeen, R. W. and R. K. Yu (1982). "Gangliosides: structure, isolation, and analysis." 

Methods Enzymol 83: 139-191. 

 



 

 

 

67 

Marcus, J., S. Honigbaum, et al. (2006). "Sulfatide is essential for the maintenance of CNS 

myelin and axon structure." Glia 53(4): 372-381. 

 

Milhas, D., C. J. Clarke, et al. (2010). "Sphingomyelin metabolism at the plasma 

membrane: implications for bioactive sphingolipids." FEBS Lett 584(9): 1887-

1894. 

Morris, R. (1984). "Developments of a water-maze procedure for studying spatial learning 

in the rat." J Neurosci Methods 11(1): 47-60. 

 

Nakagawa, K., Y. Hirota, et al. (2010). "Identification of UBIAD1 as a novel human 

menaquinone-4 biosynthetic enzyme." Nature 468(7320): 117-121. 

 

Naoi, M. and Y. C. Lee (1974). "A fluorometric measurement of ligands incorporated into 

BrCn-activated polysaccharides." Anal Biochem 57(2): 640-644. 

 

Ngamukote, S., M. Yanagisawa, et al. (2007). "Developmental changes of 

glycosphingolipids and expression of glycogenes in mouse brains." J Neurochem 

103(6): 2327-2341. 

 

O'Reilly, R. C., R. Bhattacharyya, et al. (2011). "Complementary Learning Systems." Cogn     

Sci.       DOI: 10.1111/j.1551-6709.2011.01214.x, ISSN: 1551-6709 (Electronic) 0364-

0213 (Linking). 

 

Ohmi, Y., O. Tajima, et al. (2009). "Gangliosides play pivotal roles in the regulation of 

complement systems and in the maintenance of integrity in nerve tissues." Proc Natl 

Acad Sci U S A 106(52): 22405-22410. 

 

Okano, T., Y. Shimomura, et al. (2008). "Conversion of phylloquinone (Vitamin K1) into 

menaquinone-4 (Vitamin K2) in mice: two possible routes for menaquinone-4 

accumulation in cerebra of mice." The Journal of biological chemistry 283(17): 

11270-11279. 

 

Pellow, S., P. Chopin, et al. (1985). "Validation of open:closed arm entries in an elevated 

plus-maze as a measure of anxiety in the rat." J Neurosci Methods 14(3): 149-167. 

 

Peter Slotte, J. (2013). "Molecular properties of various structurally defined 

sphingomyelins - Correlation of structure with function." Prog Lipid Res 52(2): 

206-219. 

 

Price, P. A., S. A. Faus, et al. (1998). "Warfarin causes rapid calcification of the elastic 

lamellae in rat arteries and heart valves." Arteriosclerosis, thrombosis, and vascular 

biology 18(9): 1400-1407. 



 

 

 

68 

Ravindranath, M. H., S. Muthugounder, et al. (2004). "Gangliosides of organ-confined 

versus metastatic androgen-receptor-negative prostate cancer." Biochem Biophys 

Res Commun 324(1): 154-165. 

 

Ryu, J. K., W. H. Shin, et al. (2002). "Trisialoganglioside GT1b induces in vivo 

degeneration of nigral dopaminergic neurons: role of microglia." Glia 38(1): 15-23. 

Santos, A. X., J. E. Maia, et al. (2011). "GD1a modulates GM-CSF-induced cell 

proliferation." Cytokine 56(3): 600-607. 

 

Seyfried, T. N., K. A. Heinecke, et al. (2009). "Brain lipid analysis in mice with Rett 

syndrome." Neurochem Res 34(6): 1057-1065. 

 

Sturgill, E. R., K. Aoki, et al. (2012). "Biosynthesis of the major brain gangliosides GD1a 

and GT1b." Glycobiology 22(10):1289-1301. 

 

Sundaram, K. S. and M. Lev (1988). "Warfarin administration reduces synthesis of 

sulfatides and other sphingolipids in mouse brain." J Lipid Res 29(11): 1475-1479. 

 

Svennerholm, L. (1957). "Quantitative estimation of sialic acids. II. A colorimetric 

resorcinol-hydrochloric acid method." Biochim Biophys Acta 24(3): 604-611. 

 

Todd D.Gould, D. T. D., Colleen E.Kovacsics, Ed. (2009). "Mood and Anxiety Related 

Phenotypes in Mice: Characterization Using Behavioral Tests". Baltimore, MD, 

USA. Genes, Brain and Behavior. 9(5) p:544. 

 

van Echten-Deckert, G. and J. Walter (2012). "Sphingolipids: critical players in 

Alzheimer's disease." Prog Lipid Res 51(4): 378-393. 

 

Viljetic, B., I. Labak, et al. (2012). "Distribution of mono-, di- and trisialo gangliosides in 

the brain of Actinopterygian fishes." Biochim Biophys Acta 1820(9): 1437-1443. 

 

Walf, A. A. and C. A. Frye (2007). "The use of the elevated plus maze as an assay of 

anxiety-related behavior in rodents." Nat Protoc 2(2): 322-328. 

 

Williams, M. A. and R. H. McCluer (1980). "The use of Sep-Pak C18 cartridges during the 

isolation of gangliosides." J Neurochem 35(1): 266-269. 

 

Yu, R. K., Y. Nakatani, et al. (2009). "The role of glycosphingolipid metabolism in the 

developing brain." J Lipid Res 50 Suppl: S440-445. 

 

Yu, R. K., Y. T. Tsai, et al. (2012). "Functional roles of gangliosides in neurodevelopment: 

an overview of recent advances." Neurochem Res 37(6): 1230-1244. 



 

 

 

69 

Zeidan, Y. H. and Y. A. Hannun (2007). "Translational aspects of sphingolipid 

metabolism." Trends Mol Med 13(8): 327-336. 

 

Zhou, J., H. Shao, et al. (1998). "Gangliosides enhance apoptosis of thymocytes." Cell 

Immunol 183(2): 90-98. 

 

 



 

 

Discussion 

The present study investigated the role of VK in relation to behaviour and its 

potential link to the sphingolipids profile in rat brains that were subjected to warfarin 

treatment.   

In the brain, warfarin blocks the VK oxidoreductase enzyme, which is responsible 

for the recycling of the vitamin, and leads to VK deficiency. Unfortunately, despite the 

wide usage of warfarin as an oral anticoagulant drug, there has been no pertinent study on 

its impact on cognition. To our knowledge, this study is the first to link cognitive and 

behaviour impairments to VK status and sphingolipids metabolism. 

In this study we found that warfarin treatment was associated with higher latencies 

in day two of the Morris water maze test, suggesting an impairment of the encoding 

component of the learning process. This learning deficit on day two was similar to what 

was observed in our previous study, when rats were fed lifelong low VK diets (Carrie, 

Belanger et al. 2011). Also, the learning deficit was not due to visual or motor ability 

impairments, for neither performance in the cue test nor swim speed were affected by 

warfarin administration. Importantly, there were no signs of hemorrhage in any of the 

animals despite slightly higher prothrombin times in warfarin-treated rats [warfarin 2.69s 

vs. control 1.04s (P=0.0072)]. 

Furthermore, motor activity and exploratory behaviour declined as a function of 

warfarin treatment when rats were subjected to the open field test. Warfarin-treated rats 

traveled significantly lower distances and crossed fewer squares in the open field compared 

to control rats, suggesting lower activity as a function of warfarin treatment. Also, warfarin 

administration was associated with alterations in exploratory behaviour; rats from the 

warfarin group crossed fewer central squares and spent less time moving through the center 

of the box. However, anxiety-related behaviour—assessed using the elevated plus maze 

test—was not affected by warfarin administration. These findings concord with results from 

a study by Cocchetto et al.(Cocchetto, Miller et al. 1985) who reported a significant 

reduction in locomotor activity by low VK dietary intake, and lower exploratory behaviour 

when rats were rendered VK deficient by warfarin treatment. In Cocchetto et al. study, the 



 

 

 

71 

concentration of VK content in the brain was not investigated. Our study found that 

warfarin treatment was associated with a dramatic reduction of MK-4 concentration in all 

regions of the brain; MK-4 concentrations in warfarin group were 60-70% less than in 

control. 

MK-4 is the predominant K vitamer in the brain. It represents more than 98% of the 

total VK in brains of Sprague Dawley rats (Carrie, Portoukalian et al. 2004; Carrie, 

Belanger et al. 2011), and more than 86% of the total brain VK of Wistar rats as observed 

in the present study. It is well established that cerebral MK-4 is produced by phylloquinone 

conversion (Okano, Shimomura et al. 2008). Recently, the human UBIAD1 enzyme was 

identified as responsible for MK-4 synthesis (Nakagawa, Hirota et al. 2010). Our results 

suggest that the UBIAD1 enzyme is inhibited by warfarin: although high doses of 

phylloquinone were administered to the rats, it was not converted to MK-4 in brain tissue. 

However, the role played by warfarin in the enzymatic activity of UBIAD1 in the 

transformation of phylloquinone to MK-4 needs further investigation. 

In the present study, warfarin treatment and MK-4 depletion were associated with 

an alteration in the sphingolipids profile in the brain. We found that ceramide and 

sphingomyelin were significantly decreased in the midbrain; there was no statistically 

significant change in sulfatide levels. Ceramides were also reduced in the frontal cortex. 

Ceramides—the backbone structure of sphingolipids—have been shown to mediate many 

cellular processes such as differentiation, growth, apoptosis and senescence (Zeidan and 

Hannun 2007). Sphingomyelin—as an important sphingolipid in the structure of cell 

membranes—is involved in cellular signalling (Milhas, Clarke et al. 2010; Peter Slotte 

2013). Sulfatides play important roles in the maintenance of myelin and axon structures of 

the central nervous system (Marcus, Honigbaum et al. 2006), and are involved in the 

regulation of oligodendrocytes differentiation and myelination (Jana, Hogan et al. 2009). 

The significant alteration of sphingolipids in the midbrain could explain the 

locomotion and exploratory behaviour deficits of warfarin treated rats when they were 

subjected to the open field test. The mesencephalic locomotor region is located at the 

junction between the midbrain and hindbrain and is closely associated with controlling 
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motor movements. Mesencephalic locomotor region stimulation induces locomotion with 

an intensity that increases with the stimulation strength (Le Ray, Juvin et al. 2011). Also, 

the substantia nigra portion of the midbrain plays a critical role in the motor system of the 

basal ganglia pathway (Yang, An et al. 2011). Animal studies show that the ventral 

tegmental area of the midbrain is associated with movement and exploratory behaviours. 

The microinjections of dopaminergic or ovarian hormones- 17α estradiol or progesterone- 

into the ventral tegmental area increase the locomotor activity and exploratory behaviour in 

rats (Frye and Rhodes 2008). It has also been reported that in patients with Parkinson’s 

disease, midbrain dopaminergic neurons regulate movement and emotion; their 

degeneration can be linked to motor and cognitive impairment (Heyer, Pani et al. 2012). 

Warfarin administration was also associated with higher levels of total gangliosides 

in the frontal cortex, mainly explained by higher levels of GT1b. We also observed a higher 

level of GT1b in the striatum, and a significantly lower concentration of GD1a in the 

hippocampus. 

Gangliosides interact with numerous regulatory proteins in the nervous system 

(Furukawa, Ohmi et al. 2011; Yu, Tsai et al. 2012). During brain development, they 

participate in many important functions such as survival, proliferation, and differentiation 

(Yu, Nakatani et al. 2009). Also, they act as regulator factors in the maintenance and 

repairing of nerve tissues (Kittaka, Itoh et al. 2008; Ohmi, Tajima et al. 2009).  

Given the biological role of GT1b as a cellular apoptotic and neurotoxic agent 

towards dopaminergic neurons and GD1a as a modulatory survival and proliferation factor 

of neuronal cells (described in section 3-2-3), our results suggest that a high level of GT1b 

in the striatum and frontal cortex and low level of GD1a in the hippocampus might 

contribute to the poor performance of warfarin-treated rats in the Morris water maze test 

due to the link of these regions to the cognitive process. The hippocampus is the most 

important brain region with respect to learning and the consolidation of information from 

short-term to long-term memory and spatial navigation. It also plays a critical role in the 

Morris water maze paradigm (Redish and Touretzky 1998). The frontal cortex is also 

important as it contributes to executive and cognitive functions, planning of movement, 
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recent memory and some aspects of emotion (Chudasama 2011). Finally, the striatum plays 

a role in the refinement and control of motor movement that could also address the motor 

impairment of rats in the open field test (Balleine, Delgado et al. 2007; Haber 2011). 

Finally, warfarin treatment resulted in a loss of the MK-4-sphingolipids correlation. 

In control Wistar rats, MK-4 concentration was positively correlated with sphingomyelin, 

sulfatide, and negatively correlated with gangliosides.  Our findings are in line with those 

reported by Carrie et al. on Sprague Dawley rats fed the same VK-containing diet (750 

µgr/Kg diet) (Carrie, Portoukalian et al. 2004). In contrast, no correlation was observed 

between MK-4 and any class of sphingolipids in warfarin-treated rats, suggesting a loss of 

the MK-4 and sphingolipids correlation as a result of warfarin treatment. 

Whether warfarin treatment represents a risk factor for cognitive function in the 

clinical setting needs to be assessed prospectively. Cognitive impairment has been reported 

in subjects who suffer from various cardiovascular disorders, so patients undergoing 

warfarin therapy are clearly at risk of cognitive dysfunction (Alwerdt, Edwards et al. 2013). 

Given this confounding factor, we therefore need to be cautious in extrapolating results of 

the present study to the clinical setting. Additionally, the dosage of warfarin administered 

to rats in the present study was much higher compared to that given to patients with heart 

disease. To address this, studies could be conducted whereby cognitive function is 

investigated during different treatment periods or different warfarin dosage regimes. For 

instance, the cognitive functions of subjects who have undergone hip surgery and who are 

generally prescribed short- term warfarin therapy could be compared with those of patients 

undergoing long- term treatment for cardiovascular disease. Similarly, animal studies using 

different doses of warfarin could be used to better understand the effect of warfarin on 

cognitive function and behavior. 

Moreover the intracellular signalling pathway of Gas 6 expression, as the main 

VKDP involved in cell survival, cell growth, and myelination of the central nervous system 

needs to be assessed to better determine the detrimental effects of warfarin in relation to 

cognition.  
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In conclusion, this study has shown that warfarin-induced VK deficiency resulted in 

a deficit in learning ability and lowered exploratory locomotor activity in rats, a finding 

associated with a dramatic decrease of MK-4 and an alteration of the sphingolipids profile 

in the brain.  
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Conclusion 

We found that warfarin treatment in rats is associated with a dramatic decrease in 

MK-4- the main cerebral K vitamer - in all the regions of the brain. Also, warfarin altered 

the sphingolipid profile especially in the midbrain and frontal cortex, resulting in a loss of 

correlation with tissue MK-4. Moreover, warfarin administration was linked to a significant 

elevation of cytotoxic GT1b in the frontal cortex and striatum and a significant decline in 

cytoprotective GD1a in the hippocampus. These findings were associated with cognitive 

impairment, hypoactivity and lower exploratory behaviour in warfarin-treated rats. These 

results point to the potential detrimental effect of warfarin compounds on brain functions. 

Findings from the present study are important in light of the large number of individuals 

with thromboembolic conditions treated with coumarinic derivatives. Additional studies are 

needed to determine whether warfarin doses used in the clinical settings pose a cognitive 

risk for patients treated with this drug. 
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