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Résumé

Dans cette thèse, je me suis interessé à l’identification partielle des ef-
fets de traitements dans différents modèles de choix discrets avec traitements
endogènes. Les modèles d’effets de traitement ont pour but de mesurer l’im-
pact de certaines interventions sur certaines variables d’intérêt. Le type de
traitement et la variable d’intérêt peuvent être défini de manière générale
afin de pouvoir être appliqué à plusieurs différents contextes. Il y a plusieurs
exemples de traitement en économie du travail, de la santé, de l’éducation,
ou en organisation industrielle telle que les programmes de formation à l’em-
ploi, les techniques médicales, l’investissement en recherche et développe-
ment, ou l’appartenance à un syndicat. La décision d’être traité ou pas n’est
généralement pas aléatoire mais est basée sur des choix et des préférences
individuelles. Dans un tel contexte, mesurer l’effet du traitement devient
problématique car il faut tenir compte du biais de sélection.

Plusieurs versions paramétriques de ces modèles ont été largement étu-
diées dans la littérature, cependant dans les modèles à variation discrète,
la paramétrisation est une source importante d’identification. Dans un tel
contexte, il est donc difficile de savoir si les résultats empiriques obtenus
sont guidés par les données ou par la paramétrisation imposée au modèle.
Etant donné, que les formes paramétriques proposées pour ces types de mo-
dèles n’ont généralement pas de fondement économique, je propose dans cette
thèse de regarder la version nonparamétrique de ces modèles. Ceci permettra
donc de proposer des politiques économiques plus robustes.

La principale difficulté dans l’identification nonparamétrique de fonctions
structurelles, est le fait que la structure suggérée ne permet pas d’identifier
un unique processus générateur des données et ceci peut être du soit à la pré-
sence d’équilibres multiples ou soit à des contraintes sur les observables. Dans
de telles situations, les méthodes d’identifications traditionnelles deviennent
inapplicable d’où le récent développement de la littérature sur l’identification
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dans les modèles incomplets. Cette littérature porte une attention particu-
liere à l’identification de l’ensemble des fonctions structurelles d’intérêt qui
sont compatibles avec la vraie distribution des données, cet ensemble est
appelé : l’ensemble identifié .

Par conséquent, dans le premier chapitre de la thèse, je caractérise l’ensemble
identifié pour les effets de traitements dans le modèle triangulaire binaire.

Dans le second chapitre, je considère le modèle de Roy discret. Je ca-
ractérise l’ensemble identifié pour les effets de traitements dans un modèle
de choix de secteur lorsque la variable d’intérêt est discrète. Les hypothèses
de sélection du secteur comprennent le choix de sélection simple, étendu et
généralisé de Roy.

Dans le dernier chapitre, je considère un modèle à variable dépendante
binaire avec plusieurs dimensions d’hétérogéneité, tels que les jeux d’entrées
ou de participation. je caractérise l’ensemble identifié pour les fonctions de
profits des firmes dans un jeux avec deux firmes et à information complète.

Dans tout les chapitres, l’ensemble identifié des fonctions d’intérêt sont
écrites sous formes de bornes et assez simple pour être estimées à partir des
méthodes d’inférence existantes.
Mots-clés : Effet de traitement, Evaluation de politique, Endogeneité, Mo-
dèle de sélection, Modèle incomplet, Ensemble identifié , Borne aigüe, Modèle
nonparamétrique.
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Abstract

In this thesis, I have been interested in the nonparametric (partial) iden-
tification of structural potential outcome functions and Average Treatment
Effect (ATE) in various discrete models with endogenous selection and treat-
ment. This topic of treatment effect concerns measuring the impact of an in-
tervention on an outcome of interest. The type of treatments and outcomes
may be broadly defined in order to be applied in many different contexts.
There are many examples of treatment in economics (Labor, health, educa-
tion, trade, industrial organization) such that Job training programs, surgi-
cal procedures, higher education level, research and development investment,
being a member of a trade union etc. The decision to be treated or not, is
usually not random but is based on individual choices or preferences. In such
a context, determining the impact of the treatment becomes an important
issue since we have to take into account the selectivity bias.

The parametric version of such models has been widely studied in the
literature, however in models with discrete variation, the parametrization is
a strong source of identification. Then, we don’t know if the empirical results
we obtain, are driven by the data or by the parametrization imposed on the
model. I propose to look at a fully nonparametric version of those models, in
order, to have more robust policy recommendations.

The central challenge in this nonparametric structural identification is
that the hypothesized structure fails to identify a single generating pro-
cess for the data, either because of multiple equilibria or data observability
constraints. In such cases, many traditional identification techniques become
inapplicable and a framework for identification in incomplete models is deve-
loping, with an initial focus on identification of the set of structural functions
of interest compatible with the true data distribution (hereafter identified
set).

Therefore, in the first chapter, I provide a full characterization of the
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identified set for the ATE in a binary triangular system.
In the second chapter, I consider a model with sector specific unobserved

heterogeneity. I provide the full characterization of the identified set for the
structural potential outcome functions of an instrumental variables model of
sectoral choice with discrete outcomes. Assumptions on selection include the
simple, extended and generalized Roy models.

In the last chapter, I consider a binary model with several unobserved
heterogeneity dimensions, such as entry and participation games. I provide
the full characterization of the identified set for the payoffs in 2 × 2 games
with perfect information, including duopoly entry and coordination games.

In all chapters, the identified set of the functions of interest are nonpa-
rametric intersection bounds and are simple enough to lend themselves to
existing inference methods.
Keywords : Potential outcome, Average Treatment Effect, Policy evalua-
tion, Endogeneity, Selection model, Incomplete model, Partial identification,
Identified set, Sharp bound, Nonparametric model.
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Chapitre 1

Sharp bounds on treatment
effects in binary triangular
system.

1.1 Introduction
This paper considers the evaluation of the average treatment effect (ATE)

of a binary endogenous regressor on a binary outcome when I impose a thre-
shold crossing model on both the endogenous regressor and the outcome.
This model encompasses many important applications in different areas of
economics including labor economics as in Battistin and Rettore (2002), edu-
cation, as in Canton and Bloom (2004), Beffy, Fougère and Maurel (2010),
health economics as in Bhattacharya, Shaikh, and Vytlacil (2008), Carpenter
and Dobkin (2009), political economy as in Lee (2008) among many others.

The joint threshold crossing model was recently investigated by Shaikh
and Vytlacil (2011), but their proposed bounds are sharp only under a criti-

I am grateful to Louis-Philippe Béland, Ivan Canay, Marc Henry, Sung Jae Jun, Joris
Pinkse, Christoph Rothe, Alexander Torgovitsky, Bernard Salanié for helpful discussions
and comments from participants to Second CIREQ-CeMMAP Conference on Incomplete
models and from seminar audiences in Cambridge, Chicago, Columbia, Exeter Business
School, PennState, University of Toronto and Warwick economics departments. Parts of
this chapter were written while I was visiting Penn State, I thank my hosts for their
hospitality and support.
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cal restriction imposed on the support of the covariates and the instruments.
The support condition required is very strong and fails when we have deter-
ministic treatment or partially deterministic treatment. Even without deter-
ministic treatment, SV’s support condition is likely to fail for a wide range of
models. Basically, the SV critical support condition is more likely to hold in
the rare case when there is no common covariates between the outcome and
the treatment equations. Indeed, SV takes advantage of the threshold cros-
sing condition imposed on the endogenous regressor, to refine known bounds
on the ATE in the model with unrestricted endogenous regressor. Howe-
ver, when the support condition fails they do not take full advantage of the
threshold crossing condition imposed on the endogenous regressor. In some
cases, their bounds do not have any empirical content beyond the model with
unrestricted endogenous regressor. I show throughout this paper, how it is
possible to fully exploit the second threshold crossing restriction imposed on
the endogenous regressor without imposing any support restrictions. More
specifically, I show under the joint threshold crossing model, that the sign of
the marginal average effect may be identified, and observable bounds of the
marginal average effect can be derived. I take advantage of that to construct
sharp bounds on the ATE.

Therefore, this paper complements SV’s work by providing a methodo-
logy which allows to construct sharp bounds on the ATE by efficiently using
variation on covariates and which does not need to impose any support res-
trictions. Our methodology requires only mild regularity conditions on the
distribution of unobservable variables and an usual exogeneity assumption
between the covariates (except the binary endogenous regressor) and the
unobservable variables. The proof of sharpness of our proposed bounds is ba-
sed on copula theory and a characterization theorem proposed by Chiburis
(2010). A similar objective is pursued by Chiburis (2010), but his approach
relies on an algorithm to determine existence of a copula, which is compu-
tationally infeasible in many cases of interest. I provide a methodology to
reduce the computational burden of the Chiburis (2010) technique. Howe-
ver, the method proposed in this paper remains much simpler to apply. In
addition, this method can be easily extended to a triangular system with
nonbinary-valued discrete endogenous regressors and continuous outcome.

This joint threshold crossing model is a special case of nonparametric
triangular systems. Imbens and Newey (2009) and Kasy (2011) develop non-
parametric identifications results in triangular systems by using the “control
function” approach. Their results hold when dependent and endogenous va-
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riables are continuous, but do not extend to the present context. This model
is also a particular case of Chesher (2005), but his analysis requires a strong
rank condition and an additional assumption on the joint distribution of the
unobservable variables. His rank condition rules out the case where the endo-
genous regressor is binary. Jun, Pinkse and Xu (2010, JPX) relax this rank
condition but still maintain an additional assumption on the joint distri-
bution of the unobservable variables. Moreover, identification of the ATE in
this model was previously considered by Vytlacil and Yildiz (2007, VY). They
showed that under a strong support condition it is possible to point identify
the ATE. Jun, Pinkse and Xu (2011) weaken the VY support condition by
using the identification method proposed in JPX, but still maintain an ad-
ditional assumption on the joint distribution of the unobservable variables.
Here, I do not impose such restrictions, which might be very restrictive.

The rest of the paper is organized as follows. The next section revisits
single threshold crossing models, when no structural form is assumed for the
binary endogenous regressor. The following section considers joint threshold
crossing models, explains why SV’s bounds fails to be sharp without their
support condition and proposes a methodology to sharpen their bounds in
the case, where the latter fails to hold. The third section presents a numerical
illustration and the fourth section presents an application of our methodology
to the assessment of the effect of migration decisions on the standard of living
of the family left behind in Cameroon. The last section concludes and proofs
are collected in the appendix.

The last section concludes and proofs are collected in the appendix.

1.2 Threshold crossing model with unrestricted
binary treatment

I adopt in this section the framework of the potential outcomes model
Y = Y1D + Y0(1 − D), where Y is an observed outcome, D denotes the
observed binary endogenous regressor and Y1, Y0 are unobserved potential
outcomes. Potential outcomes are as follows :

Yd = 1{F (d, x, u) > 0}, d = 1, 0 (1.1)

where 1{.} denotes the indicator function and F is an unknown function of
a vector of exogenous regressors X, and unobserved random variable u. The
formal assumptions I use in this section may be expressed as follows :
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Assumption 1. The functions F (d, x, u), d=1,0, both have weakly separable
errors. As shown in Vytlacil (2002) and Vytlacil and Yildiz (2007), potential
outcomes can then be written Yd = 1{ν(d, x) > u} without loss of generality.

Assumption 2. (X,Z) and u are statistically independent, where Z is an
available instrument.

Assumption 3. The distribution of u has positive density w.r.t Lebesgue
measure on R.

According to equation (1.1) we have E[Yd|X,Z] = E[Yd|X]. It follows
from assumptions 1 and 3 that we may impose, without loss of generality,
the normalization that u is uniformly distributed on [0,1] (u ∼ Uniform
[0,1]). This normalization is very convenient, since it implies E[Yd | X =
x] = P (Yd = 1 | X = x) and bounds on treatment effects parameters can
be derived from bounds on the structural parameters ν(1, x) and ν(0, x).
Then we may define the average structural function (ASF ) and the average
treatment effect (ATE), respectively, as follows :

ν(d, x) = P (Yd = 1 | X = x)

∆ν(x) = P (Y1 = 1 | X = x)− P (Y0 = 1 | X = x).

In all this section , I shall use the notation P (i, j|x, z) = P (Y = i,D =
j|X = x, Z = z). Now, I will provide a proposition which recalls known
result on sharp bounds on the ASF when the binary endogenous regressor
is unrestricted.

Proposition 1 (Chiburis (2010)). Suppose Y, D determined by model (1.1).
Let Dom(X) and Dom(Z) denote the respective domains of the random va-
riables X and Z. Under assumptions 1, 2 and 3, the following bounds are
sharp for the average structural function (ASF ) in the model (1.1) :
For each x in Dom(X),

— if ν(0, x) ≤ ν(1, x)

sup
z
{P (1, 0|x, z)} ≤ ν(0, x) ≤ inf

z
{P (Y = 1 | x, z)}

sup
z
{P (Y = 1|x, z)} ≤ ν(1, x) ≤ inf

z
{P (1, 1 | x, z) + P (D = 0 | x, z)},
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— if ν(0, x) ≥ ν(1, x)

sup
z
{P (Y = 1|x, z)} ≤ ν(0, x) ≤ inf

z
{P (1, 0|x, z) + P (D = 1|x, z)}

sup
z
{P (1, 1|x, z)} ≤ ν(1, x) ≤ inf

z
{P (Y = 1|x, z)},

where the supremum and the infimum are taken over the domain of the ran-
dom variable Z (Dom(Z)).

One proof of this result is given by Chiburis (2010), but I give an al-
ternative proof which considers this model as a particular case of discrete
outcome models with multiple equilibria. (See Appendix .1). The proof I
propose is convenient since it allows to derive sharp bounds for model with
specific sector heterogeneity i.e Yd = 1{F (d, x, ud) > 0}, as it has been
done in subsequent paper, see Henry and Mourifié (2012). It, also, allows
to derive sharp bounds in a case of non-binary discrete endogenous regres-
sor. In a case where the bounds cross for one of the two cases the sign of
the ATE is identified. For instance, supz{P (1, 0|x, z)} > infz{P (Y = 1 |
x, z)} but supz{P (Y = 1|x, z)} ≤ infz{P (1, 0|x, z) + P (D = 1|x, z)} and
supz{P (1, 1|x, z)} ≤ infz{P (Y = 1|x, z)} then ∆ν(x) < 0. If the bounds
cross in both cases, the joint assumption of weakly separable errors and the
presence of a valid instrument Z is rejected. When no instrument is available,
the previous sharp bounds of proposition 1 become :

— if ν(0, x) ≤ ν(1, x)

P (1, 0|x) ≤ ν(0, x) ≤ P (Y = 1|x)

P (Y = 1 | x) ≤ ν(1, x) ≤ P (1, 1|x) + P (D = 0|x),

— if ν(0, x) ≥ ν(1, x)

P (Y = 1|x) ≤ ν(0, x) ≤ P (1, 0|x) + P (D = 1|x)

P (1, 1|x) ≤ ν(1, x) ≤ P (Y = 1|x),

which are the same as Manski and Pepper’s (2000) bounds on the ASF . In
such a context, it is immediately apparent that the sign of the ATE is not
identified and the weakly separable errors assumption cannot be falsified.
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1.3 Joint threshold crossing model
In this section, I put more structure on the previous model by assu-

ming that the binary endogenous regressor has the following structure D =
1{G(x, z, v) > 0}, where G is an unknown function weakly separable in v.
Then I propose the following model :

Yd = 1{F (d, x, u) > 0}, d = 0, 1

D = 1{G(x, z, v) > 0}.
(1.2)

This model can be summarized without loss of generality ( see Vytlacil (2002)
and Vytlacil and Yildiz (2007)) as follows :

Yd = 1{ν(d, x) > u}, d = 0, 1

D = 1{p(x, z) > v},
(1.3)

where Y = Y1D+Y0(1−D) denotes the observed binary outcome of interest,
D denotes the observed binary endogenous regressor, (X,Z) is a vector of
exogenous regressors, (u, v) are unobserved random variables. The formal
assumptions I use in this section may be expressed as follows :

Assumption 4. (X,Z) and (u, v) are statistically independent.

Assumption 5. The distribution of (u, v) has positive density w.r.t Lebesgue
measure on R2.

It follows from assumptions 4 and 5, that we may impose, without loss
of generality, the normalization that u, v ∼ U [0, 1], ν(d, x) = E[Yd|X = x] =
P (Yd = 1 | X = x), P (X,Z) = P (D = 1 | X,Z) and ν(d, x) = E[Yd|X =
x, P (X,Z) = p]. Then, the ASF is ν(d, x) = P (Yd = 1 | X = x) and the
ATE is ∆ν(x) = P (Y1 = 1 | X = x)−P (Y0 = 1 | X = x). In all this section,
I shall use the notation P (i, j|x, p) = P (Y = i,D = j|X = x, P (X,Z) = p).
Similar analysis has been carried out, previously, by SV. Their work provides
bounds on the ASF , which are based on observable quantities, and which
exploit covariates variation. SV used the joint threshold crossing equations
determining Y and D and additional assumptions to determine the sign of
[ν(1, x′) − ν(0, x)] from the distribution of observed data, and then take
advantage of this information to construct bounds on ASF which exploit va-
riation on covariates. Denote by Supp(P (X,Z) | X) the support of P (X,Z)
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conditional on X and write P (X,Z) = P in the rest of the paper. Before
going into details, let’s provide a simple intuition of the main idea of this
paper. We have

ν(0, x) = P (u ≤ ν(0, x), v ≥ p(x, z)) + P (u ≤ ν(0, x), v ≤ p(x, z)),

where P (u ≤ ν(0, x), v ≥ p(x, z)) = P (1, 0|x, p), but the second term P (u ≤
ν(0, x), v ≤ p(x, z)) = P (Y0 = 1, D = 1|X = x) is the unobserved counterfac-
tual. SV proposed to bound this counterfactual by exploiting variation on co-
variates. Indeed, SV’s idea suggests that, we may bound the unobserved coun-
terfactual for untreated individuals (D = 0) with characteristic x by using
information on treated individuals (D = 1) with different characteristics x′
whenever they have exactly the same probability to be treated. In fact, if we
have a treated individual with characteristic x′ belonging to the following set
∆(x) = {x′ : ν(0, x) ≤ ν(1, x′)} ∩ {x′ : ∃z′ ∈ Dom(Z), p(x, z) = p(x′, z′)},
the proposed bounds of SV for the unobserved counterfactual can be sum-
marized as follows

P (u ≤ ν(0, x), v ≤ p(x, z)) ≤

{
P (u ≤ ν(1, x′), v ≤ p(x′, z′)) if x′ ∈ ∆(x)

p(x, z) if ∆(x) = ∅

where P (u ≤ ν(1, x′), v ≤ p(x′, z′)) = P (1, 1|x′, p′). Their idea is quite inter-
esting, but not sufficient to provide the sharp bounds. Our argument relies on
the fact that, under the threshold crossing model assumption imposes on the
treatment (D), we may bound the unobserved counterfactual P(Y0 = 1, D =
1|x, z) by using information on treated individuals with different characteris-
tics x′ even if they have different probabilities to be treated. In fact, if we have
a treated individual with characteristic x′ belonging to the following subset
∆̃(x) = {x′ : ν(0, x) ≤ ν(1, x′)} ∩ {x′ : ∃z′ ∈ Dom(Z), p(x, z) ≤ p(x′, z′)},
the unobserved counterfactual may be bounded as follows

P (u ≤ ν(0, x), v ≤ p(x, z)) ≤

{
P (1, 1|x′, p′) if x′ ∈ ∆̃(x)

p(x, z) if ∆̃(x) = ∅.

Then, it is immediately apparent that, the subset ∆(x) is necessary but not
sufficient to construct the sharp bound for ν(0, x). Instead of using ∆(x), I
propose to visit ∆̃(x). Since ∆(x) ⊆ ∆̃(x), it is easy to see that we may get
an improvement over SV’s bounds by using ∆̃(x) instead of ∆(x), especially
when ∆(x) is empty or ∆(x)={x}. When Supp(P |X = x) = Supp(P |X = x′)
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we have ∆̃(x) = ∆(x), this fact explains why the SV bounds would be sharp
when Supp(P |X = x) = Supp(P |X = x′). This first idea is not sufficient
to fully characterize all the empirical content of the model. In this first idea
we show that, to bound the ASF for an untreated individual (D = 0) with
characteristic x, we may use information on a treated individual (D = 1)
with different characteristic x′. Our second idea relies on the fact that, under
the threshold crossing model assumption imposes on the treatment (D), to
bound the ASF for an untreated individual (D = 0) with characteristic x,
we may, also, use information on other untreated individual (D = 0) with
different characteristic x′. In fact, if we have two untreated individuals with
characteristics x and x′ such that ν(0, x) < ν(0, x′), we have the following

P (ν(0, x) ≤ u ≤ ν(0, x′)) = P (ν(0, x) ≤ u ≤ ν(0, x′), v ≥ p(x, z))

+ P (ν(0, x) ≤ u ≤ ν(0, x′), v ≤ p(x, z))

≥ P (ν(0, x) ≤ u ≤ ν(0, x′), v ≥ p(x, z))

≥ P (u ≤ ν(0, x′), v ≥ p(x, z))

−P (u ≤ ν(0, x), v ≥ p(x, z)),

then for all p(x, z) ≤ p(x′, z′) we have

ν(0, x′)− ν(0, x) ≥ P (u ≤ ν(0, x′), v ≥ p(x′, z′))

−P (u ≤ ν(0, x), v ≥ p(x, z))

≥ P (1, 0|x′, p′)− P (1, 0|x, p).

Thus for all x′ belonging to {x′ : ν(0, x) ≤ ν(0, x′)} ∩ {x′ : ∃z′ ∈ Dom(Z),
p(x, z) ≤ p(x′, z′)}, we shall have

ν(0, x′)− ν(0, x) ≥ max[P (1, 0|x′, p′)− P (1, 0|x, p), 0]. (1.4)

We can easily see that SV’s bounds do not recover this feature of the model.
For instance, in a case where Supp(P |X = x) ∩ Supp(P |X = x′) = ∅, SV’s
bounds become the bounds derived in proposition 1, and then, if ν(1, x′) >
ν(0, x′) > ν(0, x) > ν(1, x) we have ν(0, x′) − ν(0, x) ≥ P (1, 0|x′, p′) −
P (1, 0|x, p)−P (D = 1|x, p) which is wider than the bound proposed in (1.4).
To the best of our knowledge, this paper is the first to construct bounds on the
ATE which respect such feature of the model. As we can remark throughout
the above discussion the signs of the following quantities [ν(1, x′)− ν(0, x)],
[ν(d, x′)− ν(d, x)], for d = 1, 0 are very important in our analysis.
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Model (1.3) has the additional nice feature that it allows identification of
the sign of the following marginal average effect

E[Y1|X = x′]− E[Y0|X = x] = [ν(1, x′)− ν(0, x)] (1.5)

and

E[Yd|X = x′]− E[Yd|X = x] = [ν(d, x′)− ν(d, x)], d=1,0 (1.6)

under very mild assumptions. SV showed that [ν(1, x′) − ν(0, x)] share the
same sign as the following observable function h(x, x′, p, p′) = (P (1, 1|x′, p)−
P (1, 1|x′, p′)) − (P (1, 0|x, p′) − P (1, 0|x, p)), when P is not degenerate, and
both p and p′ belong to Supp(P | X = x)∩Supp(P | X = x′) such that p′ < p.
As we can remark, the SV idea cannot identified the sign of [ν(1, x′)−ν(0, x)]
when Supp(P | X = x)∩Supp(P | X = x′) is empty or a singleton. However,
the sign of [ν(1, x′) − ν(0, x)] would still be identified. Indeed, if there are
p′1 < p′2 ∈ Supp(P | X = x′) and p1 < p2 ∈ Supp(P | X = x) such that
[p′1, p

′
2] ⊆ [p1, p2] the sign of [ν(1, x′)− ν(0, x)] would be identified using the

following observable function [P (1, 1|x′, p′2)−P (1, 1|x′, p′1))− (P (1, 0|x, p1)−
P (1, 0|x, p2)]. In the Lemma 2 in Appendix .1, I show how the sign of
[ν(1, x′) − ν(0, x)] may be identified under weaker assumptions. Moreover,
I show that the sign of [ν(d, x′) − ν(d, x)] d = 1, 0 may also be identified
under very mild assumptions.

This interesting feature of the model, will help to reduce considerably the
computation burden of our proposed bounds, as we will see later.

Now, let recall the SV bounds. SV take advantage of the knowledge of
the sign of [ν(1, x′)− ν(0, x)], to construct an upper bound for ν(0, x), when
Supp(P | X = x)∩Supp(P | X = x′) is not empty. Therefore, if p ∈ Supp(P |
X = x) ∩ Supp(P | X = x′), and h(x, x′, p, p′) ≥ 0 we have

ν(0, x) = P (u ≤ ν(0, x), v ≥ p) + P (u ≤ ν(0, x), v ≤ p)

≤ P (u ≤ ν(0, x), v ≥ p) + P (u ≤ ν(1, x′), v ≤ p),

for all x′ ∈ X(x) = {x′ : h(x, x′, p, p′) ≥ 0}. Hence,

ν(0, x) ≤ inf
p
{P (1, 1|x, p) + p inf

x′∈X(x)
P (1|1, x′, p′)}.

Similarly, we can derive the lower bound for ν(0, x), and also the lower
and upper bounds for ν(1, x). Hereafter, I adopt the convention that the
supremum over empty set is zero and the infimum over the empty set is one.
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Remark 1. SV take advantage of the knowledge of the sign of [ν(1, x′) −
ν(0, x)], to construct an upper bound for ν(0, x) only whenever there exist
p′ < p belong to Supp(P | X = x)∩Supp(P | X = x′). Lemma 2 showed that
we may take advantage of the knowledge of the sign of [ν(1, x′)− ν(0, x)], to
construct an upper bound for ν(0, x) even if Supp(P | X = x) ∩ Supp(P |
X = x′) is empty or a singleton.

SV showed that these bounds are sharp under further assumptions, which
can be expressed as follows :

Assumption 6. The functions ν(0, .), ν(1, .) and p(.) are continuous.

Assumption 7. The support of the distribution of (X,Z), Supp(X,Z), is
compact.

Assumption 8. (critical support condition) Supp(X,P ) = Supp(X)×Supp(P ).

Their result remains restrictive due to the strong restriction imposed by
the “critical support condition”.

1.3.1 Plausibility of the “critical support condition”

Assumption 8 implies that Supp(P | X = x) = Supp(P | X = x′) for all
(x, x′) ∈ Dom(X) × Dom(X), in others terms for all (x, x′) ∈ Dom(X) ×
Dom(X) and z ∈ Dom(Z), there exist z′ ∈ Z such that p(x, z) = p(x′, z′).
This type of “perfect matching restriction” may be difficult to achieve in
many applications.

partially deterministic treatment

In the treatment effect setting, there are many applications where we have
additional information about the treatment assignment : it’s known that the
treatment assignment mechanism depends (at least in part) on the value
of observed variables. Then, the treatment may be deterministic for some
characteristics (x′, z′) such that the treated probability is degenerate in some
points i.e (p(x′, z′) = 1 or p(x′, z′) = 0). One well suited example for this type
of deterministic treatment is the financial aid selection rule. Van der Klaauw
(2002) studied financial aid selection rule and showed that USA’s colleges use
generally SRT (Standard Reasoning Test) and GPA (Grade Point Average)
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to rank students into a small number of categories and then decide on a
particular selection rule. Let

Gl =



1 if 0 ≤ GPA ≤ C1,

2 if C1 ≤ GPA ≤ C2,

.

.

.

L if CL−1 ≤ GPA ≤ CL,

denote the financial aid group. Denote by Z the vector of others characte-
ristics such as special awards, recommendation letters or/and extracurricu-
lar activities. The selection rule is usually the following : the higher ran-
ked category is directly selected i.e (p(CL−1 ≤ GPA ≤ CL, z) = 1 for all
z ∈ Dom(Z), the lower one is directly excluded i.e (p(0 ≤ GPA ≤ C1, z) = 0
for all z ∈ Dom(Z)) and for the others, we look at others characteristics such
as special awards, recommendation letters or/and extracurricular activities.
i.e (p(C1 ≤ GPA ≤ CL−1, z) ∈ (0, 1)). In this generic example, there does
not exist (z, z′) ∈ Dom(Z) × Dom(Z) such that P (G1, z) = P (Gl, z

′) for
1 < l ≤ L, then SV’s “critical support condition” fails. We have showed in
the latter example, that SV’s “critical support condition” fails when we have
deterministic treatment or partially deterministic treatment. Furthermore,
our numerical illustration shows that even without deterministic treatment
SV’s “critical support condition” is likely to fail.

Semiparametric bounds

Depending on the economic model you have, it is possible to assume
some functional forms or parametric forms for either ν(d, x) or p(x, z) or
both of them. For instance, we may have ν(d, x) = F (x′β + dα) or p(x, z) =
Φ(x′γ + z′η). Manski (1988) discussed the identification of the single index
model where F or Φ is unknown and showed that this model fits a wide
range of model. Here, we will assume a linear index model for D, with Φ an
unknown, strictly increasing, function. Then, we have the following semipa-
rametric model :

Y = 1{ν(D, x) > u}

D = 1{Φ(xγ + zη) > v},
(1.7)
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withDom(X) ⊂ R,Dom(Z) = {0, 1} and Φ(.) ∈ [0, 1]. We can easily see that
the SV support condition fails to hold for this specification which fits a wide
range of models. Indeed, since Φ(.) is strictly increasing, Supp(P | X = 0) =
{Φ(0),Φ(η)} 6= {Φ(γ),Φ(γ + η)} = Supp(P | X = 1) for all (γ, η) 6= (0, 0).
Moreover, since in this case Supp(P | X = x) ∩ Supp(P | X = x′) is
empty, SV’s bounds fail to improve bounds that we found in proposition 1. It
means that in this context their bounds do not take advantage of the linear
index structure imposed on D. In a case where, Dom(Z) is discrete non-
binary the SV critical support condition still fails to hold. However, when the
instrument Z has a continuous and a large support such that limz→+∞Φ(xγ+
zη) = 1, and limz→−∞Φ(xγ + zη) = 0 for all x ∈ Dom(X) and η > 0,
the SV critical support condition would hold. But, in such a context, the
partial identification approach entertains by SV and this present paper is
less relevant since we have identification at infinity of our object interest
ν(d, x) for all x ∈ Dom(X).

Basically, the SV critical support condition is more likely to hold only
when p(x, z) does not depend on x, which is only true in the rare case of a
complete dichotomy between variables in the outcome equation and variables
in the treatment equation.

1.3.2 Failure of sharpness of SV’s bounds without the
critical support condition

SV’s bounds take advantage of the observability of the sign of [ν(1, x′)−
ν(0, x)] when Supp(P | X = x) ∩ Supp(P | X = x′) is not empty and not
reduced to a singleton. Whenever Supp(P | X = x) ∩ Supp(P | X = x′)
is empty or reduced to a singleton, SV’s bounds do not take advantage of
the additional weak separability restriction that we impose on the equa-
tion determining D. I will now show, how it is possible to sharpen bounds
on the ASF and the ATE, without imposing the “critical support condi-
tion”(assumption 8). Before formalizing our idea, I will define some subsets
summarized in Table 1.1.

1.3.3 Sharpening the bounds

I will show in a first step, that it is still possible to improve proposi-
tion 1’s bounds when p(x, z) /∈ Supp(P | X = x) ∩ Supp(P | X = x′),
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Table 1.1 – Collection of sets

P+(x′, p) = {p(x′, z′) = p′ ∈ Supp(P |X = x′) : p ≤ p′}

P−(x′, p) = {p(x′, z′) = p′ ∈ Supp(P |X = x′) : p ≥ p′}

Ω+
d1d2

(x) = {x′ : ν(d1, x) ≤ ν(d2, x
′)}

Ω−d1d2
(x) = {x′ : ν(d1, x) ≥ ν(d2, x

′)}

by taking advantage simultaneously of the sign of [ν(1, x′)− ν(0, x)] and the
range P+(x′, p). In a second step I will show how it is possible to narrow SV’s
bounds by also using the sign of [ν(0, x′)− ν(0, x)] and the range P+(x′, p).

First step :
When p(x, z) /∈ Supp(P | X = x) ∩ Supp(P | X = x′), we cannot identify
P (u ≤ ν(1, x′), v ≤ p(x, z)) from the data. Then SV proposed in this case to
bound P (u ≤ ν(1, x′), v ≤ p(x, z)) from above by P (v ≤ p(x, z)) = p(x, z).
But whenever it is possible to find p(x′, z′) in P+(x′, p), I propose to bound
P (u ≤ ν(1, x′), v ≤ p(x, z)) from above by P (u ≤ ν(1, x′), v ≤ p(x′, z′)) =
P (1, 1|x′, p′), which may be lower than P (v ≤ p(x, z)) = p(x, z) in some cases.
The upper bound for ν(0, x) that we can build with this strategy is lower than
the one proposed by SV. Indeed, for all x′ ∈ Ω+

01(x) and p(x′, z′) ∈ P+(x′, p)
we have :

ν(0, x) = P (u ≤ ν(0, x), v ≥ p(x, z)) + P (u ≤ ν(0, x), v ≤ p(x, z))

≤ P (u ≤ ν(0, x), v ≥ p(x, z)) + P (u ≤ ν(1, x′), v ≤ p(x, z))

≤ P (u ≤ ν(0, x), v ≥ p(x, z)) + min[P (u ≤ ν(1, x′), v ≤ p(x′, z′)), p(x, z)]

≤ P (1, 0|x, p) + min[ inf
Ω+

01(x)
inf

P+(x′,p)
P (1, 1|x′, p′), p].

The upper bound for ν(0, x) we just built is lower than SV’s bounds, but may
not be sharp, since it is also possible to take advantage of the knowledge of
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the sign of [ν(0, x′)− ν(0, x)] and the range of P+(x, z).

Second step :
Let’s assume that there exists (x′, z∗) such that p(x′, z∗) = 0, then

ν(0, x′) = P (u ≤ ν(0, x′))

= P (u ≤ ν(0, x′), v ≥ p(x′, z∗)) + P (u ≤ ν(0, x′), v ≤ p(x′, z∗))

= P (u ≤ ν(0, x′), v ≥ p(x′, z∗))

= P (1, 0|x′, p∗).

Thus ν(0, x′) is point identified. As it was pointed out by Vytlacil and Yildiz
(2007), we also have point identification if there exists (x′′, z′′) such that
ν(0, x′) = ν(1, x′′) and p(x′, z′) = p(x′′, z′′). Indeed, we have :

ν(0, x′) = P (u ≤ ν(0, x′), v ≥ p′) + P (u ≤ ν(0, x′), v ≤ p′)

= P (u ≤ ν(0, x′), v ≥ p′) + P (u ≤ ν(1, x′′), v ≤ p′′)

= P (1, 0|x′, p′) + P (1, 1|x′′, p′′).

Moreover, we may have identification under weaker assumptions as showed
in Jun, Pinkse and Xu (2011). Previously we bounded P (u ≤ ν(0, x), v ≤
p(x, z)) by P (u ≤ ν(1, x′), v ≤ p(x′, z′)) because the first term is non identi-
fiable from the data while the second term may be identifiable. If ν(0, x′) is
point identified we can identify P (u ≤ ν(0, x′), v ≤ p(x′, z′)) from the data.
Indeed, since P (u ≤ ν(0, x′), v ≤ p(x′, z′)) = ν(0, x′) − P (u ≤ ν(0, x′), v ≥
p(x′, z′)), we have P (u ≤ ν(0, x′), v ≤ p(x′, z′)) = P (1, 0|x′, p∗)−P (1, 0|x′, p′)
or P (u ≤ ν(0, x), v ≤ p(x, z)) = P (1, 1|x′′, p′′) depending on the source of
identification. Then, depending on the sign of [ν(0, x′) − ν(0, x)] we will
be able to bound ν(0, x) from above by terms other than P (1, 0|x, p) +
min[infΩ+

01(x) infP+(x′,p) P (1, 1|x′, p′), p]. Indeed, for all x′ ∈ Ω+
00(x) and p′ ∈

P+(x′, p), such that ν(0, x′) is point identified we have the following

ν(0, x) ≤ P (u ≤ ν(0, x), v ≥ p(x, z)) + P (u ≤ ν(0, x′), v ≤ p(x′, z′)).

This means that we may take advantage from the identification of a given
ASF (i.e ν(0, x′)) to refine bounds for others ASF (i.e ν(0, x)). Moreover, our
bounds should respect the necessary condition derived in (1.4). Therefore, I
proposed the following strategy to take into account those features of the
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model. For all x′ ∈ Ω+
00(x) and p′ ∈ P+(x′, p) we have :

ν(0, x′)− ν(0, x) ≥ max[P (1, 0|x′, p′)− P (1, 0|x, p), 0]

≥ sup
p

{
sup

P+(x′,p)

max[P (1, 0|x′, p′)− P (1, 0|x, p), 0]
}
.

Similarly, we can derive the lower bound for ν(0, x), and also the lower and
upper bounds for ν(1, x). I have just shown that ν(0, x) and ν(1, x) should
respect some necessary conditions. The following theorem proves that these
necessary conditions are sufficient to fully characterize the empirical content
of the model. The proof is quite involved and it relies on copula theory and
a characterization theorem in Chiburis (2010).

Theorem 1. Suppose Y, D determined by model (1.3) . Under assumptions 4
and 5 , the characterization of the identified set for ν(0, .), ν(1, .) is the fol-
lowing

sup
p

{
P (1, 0|x, p) + sup

Ω−01(x)

sup
P−(x′,p)

P (1, 1|x′, p′)
}

≤ ν(0, x) (1.8)

≤ inf
p

{
P (1, 0|x, p) + min( inf

Ω+
01(x)

inf
P+(x′,p)

P (1, 1|x′, p′), p)
}
,

sup
p

{
P (1, 1|x, p) + sup

Ω−10(x)

sup
P+(x′,p)

P (1, 0 | x′, p′)
}

≤ ν(1, x) (1.9)

≤ inf
p

{
P (1, 1|x, p) + min( inf

Ω+
10(x)

inf
P−(x′,p)

P (1, 0|x′, p′), (1− p))
}

for all x′ ∈ Ω+
00(x)

ν(0, x′)− ν(0, x) ≥ sup
p

{
sup

P+(x′,p)

max[P (1, 0|x′, p′)− P (1, 0|x, p), 0]
}

and for all x′ ∈ Ω+
11(x)

ν(1, x′)− ν(1, x) ≥ sup
p

{
sup

P−(x′,p)

max[P (1, 1|x′, p′)− P (1, 1|x, p), 0]
}
.



xxx

We can remark in this characterization of the identified set that there
exists a dependence between the sharp bounds for ν(d, x) and ν(d, x′). An
equivalent characterization of the identified set which provides more intuition
on this dependence may be derived. Let’s assume that we know the sharp
bounds [SL0(x′), SU0(x′)] for ν(0, x′), (1.10) may be rewritten equivalently
as follows : for all x′ ∈ Ω+

00(x) and p′ ∈ P+(x′, p)

ν(0, x)− P (u ≤ ν(0, x), v ≥ p) ≤ ν(0, x′)− P (u ≤ ν(0, x′), v ≥ p′)

≤ SU0(x′)− P (u ≤ ν(0, x′), v ≥ p′).

Hence,

ν(0, x) ≤ P (u ≤ ν(0, x), v ≥ p) + SU0(x′)− P (u ≤ ν(0, x′), v ≥ p′)

≤ P (1, 0|x, p) + (SU0(x′)− P (1, 0|x′, p′)).

Therefore,

ν(0, x) ≤ P (1, 0|x, p) + inf
Ω+

00(x)
inf

P+(x′,p)
(SU0(x′)− P (1, 0|x′, p′)). (1.10)

By combining the upper bounds for ν(0, x) derived in (1.8) and (1.10). We
may propose the following upper bound for ν(0, x).

ν(0, x) ≤ inf
p

{
P (1, 0|x, p) + min

[
min( inf

Ω+
01(x)

inf
P+(x′,p)

P (1, 1|x′, p′), p),

inf
Ω+

00(x)
inf

P+(x′,p)
(SU0(x′)− P (1, 0|x′, p′))

]}
.

Similarly, we can derive the lower bound for ν(0, x), and also the lower and
upper bounds for ν(1, x). Then, we have the following equivalent characte-
rization of the identified set for ν(0, .) and ν(1, .). Hereafter, I shall denote
by SLd(x) and SUd(x) respectively the sharp lower bound and sharp upper
bound for ν(d, x) d=0,1.

Corollary 1. Suppose Y, D determined by model (1.3). Under assumptions 4
and 5 , the characterization of the identified set for ν(0, .), ν(1, .) is the fol-
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lowing

sup
p

{
P (1, 0|x, p) + max

[
sup

Ω−01(x)

sup
P−(x′,p)

P (1, 1|x′, p′),

sup
Ω−00(x)

sup
P−(x′,p)

(SL0(x′)− P (1, 0|x′, p′))
]}

≤ ν(0, x)

≤ inf
p

{
P (1, 0|x, p) + min

[
min( inf

Ω+
01(x)

inf
P+(x′,p)

P (1, 1|x′, p′), p),

inf
Ω+

00(x)
inf

P+(x′,p)
(SU0(x′)− P (1, 0|x′, p′))

]}
and

sup
p

{
P (1, 1|x, p) + max

[
sup

Ω−10(x)

sup
P+(x′,p)

P (1, 0 | x′, p′),

sup
Ω−11(x)

sup
P+(x′,p)

(SL1(x′)− P (1, 1|x′, p′))
]}

≤ ν(1, x)

≤ inf
p

{
P (1, 1|x, p) + min

[
min( inf

Ω+
10(x)

inf
P−(x′,p)

P (1, 0|x′, p′), (1− p)),

inf
Ω+

11(x)
inf

P−(x′,p)
(SU1(x′)− P (1, 1|x′, p′))

]}
.

The intuition which allows us to derive the sharp bounds for ν(0, x) by
using variation in covariates in corollary 1 is the following : the width of the
bounds on ν(0, x′) depends on Supp(P |X = x′). Then, when supp(P |X = x′)
is large the bounds for ν(0, x′) become narrower. Using the relation that
our model imposes between ν(0, x′) and ν(0, x), we may refine the bounds
for ν(0, x) using narrower bounds for ν(0, x′). This fact explains why the
sharp bounds for ν(0, x) depend on SL0(x′) and SU0(x′), which are the
sharp bounds for ν(0, x′). This dependence vanishes for the lower bound
SL0(x) when x′ /∈ Ω−00(x) and for the upper bound when x′ /∈ Ω+

00(x). The-
refore, when Ω+

00(x) = ∅, the upper bound for ν(0, x) becomes SU0(x) =

infp

{
P (1, 0|x, p) + min(infΩ+

01(x) infP+(x′,p) P (1, 1|x′, p′), p)
}

which no longer
depends on others ASF sharp bounds.
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1.3.4 Computation of the bounds

For the construction of our bounds we need to know the ordering of the
elements of the set S1 = {ν(d, x) : x ∈ Dom(X) and d ∈ {0, 1}}, in order to
compute the collections of subsets defined in Table 1.1. Without restrictions
on the true ordering on S1, one may go over all possible orderings of S1,
and keep only orderings for which the bounds derived in Theorem 1 do not
cross. Unfortunately, this method may be very costly, even under parametric
restrictions for ν. Indeed, to derive sharp bounds on ATE for the model (1.3),
Chiburis (2010) proposes to visit all possible orderings of S1. In his empirical
example, he assumes parametric restrictions for ν to reduce the number of
orderings to be checked, but still fails to determine the bounds on the ATE
in some cases due to computational intractability, even for a very limited
Dom(X). Even though our proposed bounds are easier to derive than bounds
in Chiburis (2010), it is valuable to find a methodology to reduce the number
of orderings to be checked. The properties of the function h(x, x′, p, p′) and the
functions h̃d(x, x′, p, p′), h(d, x, x′, p1, p2, p

′
1, p
′
2), h̃d(x, x′, p1, p2, p

′
1, p
′
2) defined

in Lemma 2 help to identify a partial ordering on S1, which can dramatically
reduce the number of orderings to be checked, particularly when Supp(P |
X = x) ∩ Supp(P | X = x′) is large. This is illustrated in this following
example :

Example 1. Denoting P (Y = 1, D = d|X = x, Z = z) = p(1, d|x, z),
consider X = {0, 1}, Z = {0, 1}, and the following observables :

p(1, 1|0, 0) = β1 p(1, 0|0, 0) = γ1

p(1, 1|0, 1) = β2 p(1, 0|0, 1) = γ2

p(1, 1|1, 0) = β3 p(1, 0|1, 0) = γ3

p(1, 1|1, 1) = β4 p(1, 0|1, 1) = γ4,

with 0 < βi, γi < 1 for i = 1...4; and p(x, z) such that
1. β1 − β2 > γ2 − γ1 > γ2 − γ1 > β3 − β4 > γ4 − γ3

2. p(0, 1) = p(1, 1) < p(0, 0) < p(1, 0)

Those conditions are sufficient to determine the sign of some marginal ave-
rage effects. We can describe the set of all possible orderings on S1 as follows :

ν(d1, d
′
1) < ν(d2, d

′
2) < ν(d3, d

′
3) < ν(d4, d

′
4),
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where {di, d′i} 6= {dj, d′j} for i 6= j and di, d
′
i ∈ {0, 1}, hence there are 24

possible orderings.
We have Supp(P |X = 0) = {p(0, 1), p(0, 0)} and Supp(P |X = 1) =

{p(1, 1), p(1, 0)}. Thus, Supp(P | X = 0) 6= Supp(P | X = 1). The approach
of SV can allow to identify only the sign of [ν(1, 1) − ν(0, 1)] and [ν(1, 0) −
ν(0, 0)] from the observable function h(x,x’,p,p’).

sign[ν(1, 1)− ν(0, 1)] = sign[h(1, 1, p(1, 1), p(1, 0))] = +

sign[ν(1, 0)− ν(0, 0)] = sign[h(0, 0, p(0, 0), p(0, 1))] = +.

Then, we have the following partial ordering ν(0, 1) ≤ ν(1, 1) and ν(0, 0) ≤
ν(1, 0) on S1. Among the 24 possible orderings only 6 are compatible with res-
trictions imposed by this partial ordering. We can see that even in a worst case
when Supp(P | X = x)∩Supp(P | X = x′) is empty or a singleton, the num-
ber of orderings to be checked drops from 24 to 6 (i.e when Supp(P | X = x)
is not a singleton we can always identified the sign of sign[ν(1, x)−ν(0, x)]).
Moreover, we can see that the sign of [ν(0, 1)−ν(1, 0)] may be identified using
the function h(0, 0, 1, p(1, 1), p(1, 0), p(0, 1), p(0, 0)) defined in Lemma 2. In-
deed, sign[ν(0, 1)−ν(1, 0)] = +. Then, we have only one ordering compatible
with the data in this generic case : ν(0, 0) < ν(1, 0) < ν(0, 1) < ν(1, 1).

Since the number of orderings to be checked is reduced, it is now va-
luable to propose an efficient procedure to construct our bounds. The follo-
wing iterative procedure can be used. The idea is to use the last information
we obtained on previous sharp bounds, to sharpen remaining ASF bounds.
For instance, first, construct SU0(x) such that Ω+

00(x) = ∅, then construct
SU0(x′) such that x = Ω+

00(x′), then SU0(x′′) such that {x, x′} = Ω+
00(x′′)

and then iterate the strategy. The same iterative procedure holds to derive
the lower sharp bounds for every element of the set {ν(0, x) : x ∈ Dom(X)},
and also the lower and upper sharp bounds for every element of the set
{ν(1, x) : x ∈ Dom(X)}. For instance, in the latter example, one plausible
ordering to be checked is the following :

ν(0, 0) < ν(1, 0) < ν(0, 1) < ν(1, 1).

Our procedure proposes to construct the lower bounds in the following orde-
ring :

SL0(0), SL1(0), SL0(1), SL1(1),
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and the upper bounds in the following ordering :

SU1(1), SU0(1), SU1(0), SU0(0).

1.4 Numerical illustration
Now, I provide a numerical illustration of the bounds on ATE using

Theorem 1. In addition to the bounds proposed in Theorem 1, I will compute
the SV bounds. Consider the following special case of the model :

Y = 1{αD + xβ > ε1}

D = 1{xγ + zη > ε2},
(1.11)

with Dom(X) = [−2, 2] and Dom(Z) = {0, 1} and (ε1, ε2) v N(0,
∑

) where∑
=

(
1 ρ
ρ 1

)
.

We can easily see that the SV support condition fails to hold for γ 6= 0.
Indeed, Supp(P | X = x)∩Supp(P | X = x′) is either empty or reduces to a
singleton, for all x ∈ [−2, 2]. I will construct the bounds by fixing α = 2, ρ = 1

2

while varying other parameters. I consider all the ordering induced by the
parametric form α′D+xβ′. In fact, every couple of parameter (α′, β′) induces
one ordering. Before constructing the bounds I will apply Lemma 2 to reduce
the number of ordering to be checked. For example, the function h(x, x, p, p′)
allows to identify the sign of [ν(1, x) − ν(0, x)] for all x, which implies that
α′ > 0. Now, we may visit only the ordering induced by (α′ > 0, β′). In this
numerical illustration, I consider all the ordering induced by α′ ∈ (0, 5) and
β′ ∈ [β − 2.5, β + 2.5]. It is possible to consider a lager space, but within the
simulation we note that most of the orderings induced by (α′, β′) are rejected
whenever those orderings deviate slightly from the true ordering induced by
the true parameters (α, β).

All the figures show the ATE(x) while x varying from [−2, 2] for different
values of the parameters. Here, I will describe four different facts :

1. The Figure 1.1 represents the case where (β = 1, γ = 1
5
, η = 1

2
).

We can see that our lower bound improves significantly on the SV
lower bound, while the upper bound is exactly the same. Indeed, since
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Figure 1.1 – Sharp bounds on ATE when (β = 1, γ = 1
5
, η = 1

2
).

ν(0, x′) ≤ ν(1, x) for many values of (x, x′) our bounds refine the lower
bound of ν(1, x), similarly for the upper bound of ν(0, x′). However,
the bounds do not refine the SV upper bound for two main raisons.
There are only few values of (x, x′) such that ν(1, x) ≤ ν(0, x′) and
in the case where it holds it is likely to have p(x′, z′) ≥ p(x, z), while
we need to have p(x′, z′) ≤ p(x, z) if we want to refine ν(1, x) using
ν(0, x′).

2. In figure 1.2, I increase the strength of the effect of the instrument
(β = 1, γ = 1

5
, η = 4). I note two important facts : First, I am now

able to refine the upper bound of ν(1, x) using ν(0, x′) since it is likely
that p(x′, 0) ≤ p(x, 1). The discontinuity denotes the point where both
following conditions start to hold simultaneously : ν(1, x) ≤ ν(0, x′)
and p(x′, 0) ≤ p(x, 1). Second, when the strength of the instrument in-
creases we tend to have identification. This phenomenon is an example
of identification at infinity as in Heckman (1990). We can see that the
SV bounds do not respect this feature when their support condition
fails.

3. In Figure 1.3, I decrease the strength of the covariate in the selection
equation, to see how the bounds behave when the SV support condi-
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Figure 1.2 – Sharp bounds on ATE when (β = 1, γ = 1
5
, η = 4).

tion almost holds (β = 1, γ = 1
100
, η = 1). We see that our bounds

improve on the SV bounds. Indeed, when we are getting closer to the
“perfect matching restriction” our bounds become better in a conti-
nuous way, but the SV bounds are not sensitive to that and jump
directly to the tightest bounds when γ = 0.

4. In Figure 1.4, I reduce the strength of the covariate in the outcome
equation, (β = 1, γ = 1

5
, η = 1

2
), I note that both type of bounds are

very wide, and I get only a small improvement over the SV bounds.
Indeed, the strength of this present analysis is based on the variation
of the covariates. Then, when Dom(X) is small, our improvement over
the SV might be small. This fact explains why Chiburis (2010) found
only a small improvement over the SV bounds within his empirical
example where the domain of X was {0, 1}2.

1.5 Empirical illustration
This empirical illustration examines the effect of migration decisions of

cameroonian students on the standard of living of the family left behind.
Modelling such effects is a difficult problem due to the endogeneity of the
migration decision. As it was pointed out by Nakosteen and Zimmer (1980)
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Figure 1.3 – Sharp bounds on ATE when (β = 1, γ = 1
100

, η = 1).

Figure 1.4 – Sharp bounds on ATE when (β = 1, γ = 1
5
, η = 1

2
).
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the migration decision is not random because families make the decision to
send their children to other countries because they have some basis for per-
ceiving a more favorable future outcome from this decision. This rationality
implies that individuals tend to self-select. Even if we were able to control
the selection on observables, we would not be sure that all factors that may
affect migration decisions and the standard of living of the family left behind
were taken into account. We may have selection on unobservables, for ins-
tance, the income of the parents, child motivations and the degree of parental
affection. Therefore, the selection issues are still present. Lucas (1997) and
Adams (1993) suggest a non linear relationship between income or wealth
and the migration decision and argue that there is a certain threshold such
that for income or wealth over this threshold, migration decisions are not
considered necessary. I, therefore, model the effect of the migration decision
on the standard of living of the family left behind in Cameroon with the joint
threshold crossing model considered throughout this paper.

In the following, I first present the database, the explanatory variables I
use, and some summary statistics, before giving a short discussion on the pos-
sible instruments. Then, I construct the empirical analogues of SV’s bounds
for the ASF , followed by the construction of the empirical analogues of our
proposed bounds and discuss the results.

1.5.1 Data

For illustration I use a sample of 307 Cameroonians who are all high
school graduates. This sample is taken from a survey conducted by Romuald
Méango from the University of Montreal. He conducted an online survey
from March 27, 2011 to May 8, 2011. The title of his survey was “Migration
des jeunes Camerounais apres le BAC ” (Migration of young Cameroonians
after high-School). For each individual from our database we know her/his
current migration status, her/his father’s education at the moment of the
migration decision, the migration status of her/his siblings at the moment of
the migration decision, and if she/he graduated from high-school with honors.
To measure the improvement in the standard of living of the family, I use
available information we have on capital ownership (fridge, car and land) at
the moment of the migration decision and at the time where the survey was
made. Table 1.2 presents the list of the variables used in the analysis. More

http ://migration-cameroun.com/website/index.php.
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summary statistics can be found in Appendix .2.

Table 1.2 – List of variables

Variables Equal to 1 if : Percentage of sample

Edp Father’s educ level univ graduate and more 34.52
Imp Previous migration 1 and more 26.38
Hon Graduate h-school with honors yes 25.08
D Migration decision yes 60.91
Y Improve in the standard of living add unit on capital ownership 18.24

The following equation describes the relationship between the migration
decision (D) and the improvement in the standard of living of the family left
behind (Y ) taking into consideration the available variables that are likely
to influence D and Y .

Y = 1{ν(D, Edp, Imp) > u}
D = 1{P (Edp, Imp, Hon) > v}.

I consider in this model the variable Hon as an instrument. The validity
of our proposed instrument remains debatable but I think that it is still
the most appropriate one among all available candidates from our database.
Indeed, graduating high-school with honors increases significantly the pro-
bability with which the student will get a scholarship from another country
without appearing correlated with the income or the wealth of the family.



xl

1.5.2 Empirical results

Shaikh and Vytlacil’s (2011) bounds

I begin by deriving the empirical analogues of SV’s bounds for the dif-
ferent ASF . I get the following result :

0.0667 ≤ ν(0, 1, 0) ≤ 0.1053

0.2000 ≤ ν(1, 1, 0) ≤ 0.4000

0.2655 ≤ ν(0, 0, 0) ≤ 0.5840

0.1327 ≤ ν(1, 0, 0) ≤ 0.1333

0.1428 ≤ ν(0, 0, 1) ≤ 0.6250

0.1250 ≤ ν(1, 0, 1) ≤ 0.1250.

I provide all ASF bounds except for ν(D,Edp = 1, Imp = 1). Indeed,
for this ASF I find some inconsistency in the bounds, in the sense that the
lower bound is greater than the upper bound. This inconsistency may have
occurred due either to the small sample problem or the violation of the joint
assumption of threshold crossing restriction imposed on (D) and the presence
of a valid instrument Z.

To deal with this inconsistency I propose to remove the equation (D =
1{P (Edp, Imp,Hon) > v}) and to construct the bounds for the threshold
crossing model with unrestricted binary treatment. Then, we may apply the
result of proposition 1 when no instrument is available. I get the following
result :

— if ν(0, 1, 1) ≤ ν(1, 1, 1)

0 ≤ ν(0, 1, 1) ≤ 0.1052

0.1052 ≤ ν(1, 1, 1) ≤ 0.2368,

— if ν(0, 1, 1) ≥ ν(1, 1, 1)

0.1052 ≤ ν(0, 1, 1) ≤ 0.8684

0.1052 ≤ ν(1, 1, 1) ≤ 0.1052.

These bounds give no improvement over Manski and Pepper’s (2000) bounds
on the ASF since I do not use an instrument to determine the sign of
[ν(1, 1, 1)− ν(0, 1, 1)] as it is possible with the others ASF .
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Improvement over Shaikh and Vytlacil’s (2011) bounds

The SV bounds would be sharp if we had {p(Edp, Imp, 1), p(Edp, Imp, 0)} =
{p(Edp′, Imp′, 1), p(Edp′, Imp′, 0)} for all (Edp, Imp) 6= (Edp′, Imp′). As we

Table 1.3 – Migrant’s propensity scores

Migrants Non-migrants Migrant’s propensity scores

#{Edp=1,Imp=1,Hon=1} 17 2 0.8947
#{Edp=1,Imp=1,Hon=0} 16 3 0.8421
#{Edp=1,Imp=0,Hon=1} 22 8 0.7333
#{Edp=1,Imp=0,Hon=0} 20 18 0.5263
#{Edp=0,Imp=0,Hon=1} 33 12 0.7333
#{Edp=0,Imp=0,Hon=0} 51 62 0.4513
#{Edp=0,Imp=1,Hon=1} 5 3 0.6250
#{Edp=0,Imp=1,Hon=0} 23 12 0.6571

can remark in Table 1.3, this “perfect matching restriction” doesn’t hold.
Then, let’s construct the empirical analogues of our proposed bounds. In

fact, according to the SV bounds we have :

ν(0, 1, 0) ≤ ν(1, 0, 0)

ν(1, 0, 0) ≤ ν(0, 0, 1).

By using the ranges P+(Edp = 1, Imp = 0, Hon = 0) and P−(Edp =
0, Imp = 1, Hon = 0) I improve the upper bound for ν(0, 1, 0) and the lower
bound for ν(0, 0, 1). Indeed, we have :

ν(0, 1, 0) ≤ P (u ≤ ν(0, 1, 0), v ≥ p(1, 0, 0)) + P (u ≤ ν(1, 0, 0), v ≤ p(0, 0, 1))

≤ P (u ≤ ν(0, 1, 0), v ≥ 0.5263) + P (u ≤ ν(1, 0, 0), v ≤ 0.7333)

= 0.0930

= 0.1053− 0.0123,
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and

ν(0, 0, 1) ≥ P (u ≤ ν(0, 0, 1), v ≥ p(0, 1, 0)) + P (u ≤ ν(1, 0, 0), v ≤ p(0, 0, 0))

≥ P (u ≤ ν(0, 0, 1), v ≥ 0.6571) + P (u ≤ ν(1, 0, 0), v ≤ 0.4513)

= 0.1613

= 0.1428 + 0.0185.

Then, our proposed bounds are significant improvement over the upper bound
for ν(0, 1, 0) and the lower bound for ν(0, 0, 1).

Discussion on the empirical results

This illustration is flawed in two aspects. First, I used estimated rather
than true probabilities without applying any inference procedure. Second, the
sample is non-random. However, our aim was just to provide one empirical
situation where the “critical support condition”of SV fails and show how it is
possible to narrow their bounds in such a case. Nevertheless, our result give
some insights on the effect of migration decisions on the standard of living
of the family left behind in Cameroon for this particular sample. Indeed, the
sample suggests that :

— The probability to improve the standard of living of the family in
Cameroon is greater for the migrants with well-educated father rather
than for the non-migrants with well-educated father i.e (ν(1, 1, 0) ≥
ν(0, 1, 0)).

— The probability to improve the standard of living of the family left in
Cameroon is greater for the first migrant of the family i.e (ν(1, 0, 1) ≤
ν(1, 0, 0)).

1.6 Conclusion
I have considered the special case of joint threshold crossing model, where

no parametric form or distributional assumptions are imposed. I provided
sharp bounds on the Average Treatment effect (ATE) when I imposed only
mild regularity conditions on the distribution of unobservable variables. I pre-
sented a methodology which allows to construct sharp bounds on the ATE
by efficiently using variation on covariates without imposing any support
restrictions. A numerical illustration showed our proposed bounds may have
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significant improvement over the Shaikh and Vytlacil (2011) bounds, which
where until now, the tightest feasible bounds proposed in the literature for
this model. Also, an illustration of our bounds was carried out on the analy-
sis of the effect of migration decisions. There are several natural extensions
of this work. First, this methodology may be easily used to provide sharp
bounds for others functionals of treatment, not just the average. Second, this
methodology efficiently exploits variation on covariates to sharpen bounds
and it may be extended to narrow cross-sectional bounds using time varia-
tion in panel data. Finally, it has been extended to provide sharp bounds on
the ATE in the generalized discrete Roy model.
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Chapitre 2

Sharp bounds in the binary Roy
model

2.1 Introduction
A large literature has developed since Heckman and Honoré (1990) on

the empirical content of the Roy model of sectorial choice with sector speci-
fic unobserved heterogeneity. Most of this literature, however, concerns the
case of continuous outcomes and many applications, where outcomes are dis-
crete, fall outside its scope. They include analysis of the effects of different
training programs on the probability of renewed employment, of competing
medical treatments or surgical procedures on the probability of survival, of
higher education on the probability of migration and of competing policies
on schooling decisions in developing countries among numerous others. The
Roy model is still highly relevant to those applications, but very little is
known of its empirical content in such cases. Sharp bounds are derived in bi-
nary outcome models with a binary endogenous regressor in Chesher (2010),

This chapter is a joint work with Marc Henry. This chapter was conducted in part,
while Marc Henry was visiting the University of Tokyo and I was visiting Penn State.
We thank our respective hosts for their hospitality and support. Helpful discussions with
Laurent Davezies, James Heckman, Hidehiko Ichimura, Koen Jochmans, Aureo de Paula
and comments from seminar audiences in Cambridge, Ecole polytechnique, Princeton,
UCL, UPenn and participants at the Vanderbilt conference on identification and inference
in microeconometrics are also gratefully acknowledged.
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Shaikh and Vytlacil (2011), Chiburis (2010), Jun, Pinkse, and Xu (2010) and
Mourifié (2011)under a variety of assumptions, which all rule out sector spe-
cific unobserved heterogeneity. Finally, Heckman and Vytlacil (1999) derive
identification conditions in a parametric version of the binary Roy model.

We consider three distinct versions of the binary Roy model : the original
model, where selection is based solely on the probability of success ; the exten-
ded Roy model (in the terminology of Heckman and Vytlacil (1999)), where
selection depends on the probability of success and a function of observable
variables (sometimes called “nonpecuniary component”) ; and the generali-
zed Roy model (in the terminology of Heckman and Honoré (1990)), with
selection specific unobservable heterogeneity. When considering the generali-
zed Roy model, we further distinguish restrictions on the selection equation
and restrictions on the joint distribution of sector specific unobserved he-
terogeneity. We specifically consider the case, where selection variables are
independent of sector specific unobserved heterogeneity and the case, where
sector specific unobserved heterogeneity follows a factor structure proposed
in Aakvik, Heckman, and Vytlacil (2005).

Following Heckman, Smith, and Clements (1997), we apply results from
optimal transportation theory to derive sharp bounds on the structural pa-
rameters, from which a range of treatment parameters can be derived. More
specifically, we apply Theorem 1 of Galichon and Henry (2011) (equiva-
lently Theorem 3.2 of Beresteanu, Molchanov, and Molinari (2011)) to derive
bounds for the generalized binary Roy model. The latter Theorem was re-
cently applied in a similar context by Chesher, Rosen, and Smolinski (2011)
to derive sharp bounds for instrumental variable models of discrete choice.
We spell out the point identification implications of the bounds under cer-
tain exclusion restrictions. The bounds are simple enough to lend themselves
to existing inferential methods, specifically Chernozhukov, Lee, and Rosen
(2009) and Andrews and Shi (2011) in the instrumental variables case.

The remainder of the paper is organized as follows. Section 3.2 clarifies
the analytical framework and the objectives. In Section 2.3, sharp bounds
are derived for the binary Roy model, when selection depends only on the
probability of success and possibly on observable variables. Identification
implications are spelled out under exclusion restrictions. Section 2.4 considers
the generalized binary Roy model and the last section concludes.
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2.2 Analytical framework
We adopt the framework of the potential outcomes model Y = Y1D +

Y0(1−D), where Y is an observed outcome, D is an observed selection indi-
cator and Y1, Y0 are unobserved potential outcomes. Heckman, and Vytlacil
(2009) trace the genealogy of this model and we refer to them for terminology
and attribution. Potential outcomes are as follows :

Yd = 1{Y ∗d > 0} = 1{F (d,Xd, ud) > 0}, d = 1, 0, (2.1)

where 1{.} denotes the indicator function and F is an unknown function
of the vector of observable random variables Xd and unobserved random
variable ud. We make the following assumptions throughout Sections 2.3
and 2.4.

Assumption 9 (Weak separability). Potential outcomes can then be written
Yd = 1{fd(Xd) > ud} for some unknown (measurable) functions fd, d = 0, 1.
As shown in Vytlacil (2002), the latter is implied by weak separability of the
functions F (d,Xd, ud), d=1,0.

Assumption 10 (Regularity). The sector specific unobserved variables ud,
d = 1, 0, are uniformly continuous with respect to Lebesgue measure, so that
they may be assumed without loss of generality to be distributed uniformly on
[0, 1].

The normalization of Assumption 10 is very convenient, since it implies
fd(xd) = E(Yd|xd, z) and bounds on treatment effects parameters can be
derived from bounds on the structural parameters f1 and f0.

Assumption 11 (Instruments). Observable variables Xd, d = 1, 0, and ins-
truments Z are independent of (u1, u0). Common components of X1 and X0

will be dropped from the notation in the remainder of the paper and by slight
abuse of notation, Xd will refer only to the variables that are excluded from
the equation for Y1−d and Z to variables that are excluded from both outcome
equations (when the case arises).

In all the paper, we shall use the notation P(i, j|X) for P(Y = i,D = j|X)
and W = (Z,X1, X0), ω = (z, x1, x0).

Our objective is to characterize all the information that can be gathered
from the distribution of observed variables (Y,W ) about the unknown ele-
ments of the model, namely the functions f1 and f0 and the joint distribution
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(or copula, since the marginals are normalized) of the sector specific hetero-
neity vector (u1, u0). We shall call this characterizing the empirical content
of the model. The empirical content of the model, relative to the unknown
functions f1 and f2 will be of primary interest and will take the form of sharp
bounds such as :

G(ω) ≤ fd(xd) ≤ Ḡ(ω), (2.2)

in which case, exhibiting the functions G and Ḡ will be the object of the
analysis. In the case of a linear specification of the binary Roy model fd(xd) =
f̃d(β

′
dxd), where f̃d : R → [0, 1] is a known invertible function of the single

index β′dxd and the unknown parameter vector βd is the object of analysis,
we can derive sharp bounds on βd from (2.2) straighforwardly. From G(ω) ≤
f̃d(β

′
dxd) ≤ Ḡ(ω), we derive f̃−1

d G(ω) ≤ β′dxd ≤ f̃−1
d Ḡ(ω). Hence, the bounds

on the parameter vector βd will be given by the projections of f̃−1
d G(ω) and

f̃−1
d Ḡ(ω) on xd.

2.3 Sharp bounds for the binary Roy and ex-
tended Roy models

2.3.1 Simple binary Roy model

In the original model proposed by Roy (1951), the sector yielding the
highest outcome is selected, i.e., D = 1{Y ∗1 > Y ∗0 }. In the binary case, this
is equivalent to selecting the sector with the highest probability of success.
The empirical content of the model under this selection rule is characterized
in Figures 2.1 and 2.2.

Bounds on the structural functions

For each value of the exogenous observable variables and each value of
the pair (u1, u0), the outcome is uniquely determined. If the joint distribution
were known, the likelihood of each of the potential outcomes (Y = 1, D = 1),
(Y = 1, D = 0), (Y = 0, D = 1) and (Y = 0, D = 0) would be determi-
ned. However, only the marginal distributions of u1 and u0 are fixed, not
the copula, so that only the probability of vertical and horizontal bands
in Figures 2.1 and 2.2 are uniquely determined. Thus we see for instance
that f1 = P(Y = 1, D = 1) is identified when f0 = 0 (as in Figure 2.2)
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Figure 2.1 – Characterization of the empirical content of the simple binary Roy model in the unit

square of the (u1, u0) space.
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Figure 2.2 – Characterization of the empirical content of the simple binary Roy model in the unit

square of the (u1, u0) space in case f0 = 0.
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and f0 = P(Y = 1, D = 0) is identified when f1 = 0 in a way that is
akin to identification at infinity, as in Heckman (1990), when fi(x) follows a
single index restriction. But in other cases (as in Figure 2.1), we only know
P(Y = 1, D = 1) ≤ f1 ≤ P(Y = 1) and P(Y = 1, D = 0) ≤ f0 ≤ P(Y = 1).
The following proposition, proved in the Appendix, shows that these bounds
are jointly sharp.

Proposition 2 (Roy model). Under Assumptions 9-11, the following in-
equalities characterize the identified set for (f1, f0) under model (2.1) with
D = 1{Y ∗1 > Y ∗0 }.

sup
x0

P(1, 1|x1, x0) ≤ f1(x1) ≤ inf
x0

[
P(1, 1|x1, x0) + P(1, 0|x1, x0)1{f0(x0) > 0}

]
(2.3)

sup
x1

P(1, 0|x1, x0) ≤ f0(x0) ≤ inf
x1

[
P(1, 0|x1, x0) + P(1, 1|x1, x0)1{f1(x1) > 0}

]
(2.4)

where the infima and suprema are taken over the domains of the excluded
variables X1 or X0 as indicated and when they exist.

The validity of the bounds was shown above. To prove sharpness, we show
in Appendix .3 that we can construct joint distributions for (u1, u0) such
that each of the extreme points of the identified region for (f1(x1), f0(x0))
defined by (2.3) and (2.4) are attained. Since the bounds in Proposition 2
are obtained as intersections over the domains of the excluded variables, they
are called “intersection bounds”. They are also semiparametric in the non
excluded variables. Inference on such bounds can be conducted with existing
methods described in Chernozhukov, Lee, and Rosen (2009) or in Andrews
and Shi (2011).

A simple implication of selection equation D = 1{Y ∗1 > Y ∗0 } is that actual
success is more likely than counterfactual success.

Assumption 12 (Roy model). E(Yd|D = d,X1, X0) ≥ E(Y1−d|D = d,X1, X0)
for d = 1, 0.

Under Assumption 12, omitting conditioning variables for ease of nota-
tion,

fd = E[Yd]

= E[Yd|D = d]P(D = d) + E[Yd|D = 1− d]P(D = 1− d)

≤ P[Y = 1, D = d] + E[Y1−d|D = 1− d]P(D = 1− d)

= P(Y = 1, D = d) + P(Y = 1, D = 1− d).
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Moreover, if fd > 0 and f1−d = 0, P(Y = 1, D = 1 − d) = 0. This implies
that

P(1, d|x1, x0) ≤ E[Yd|x1, x0] ≤ P(1, d|x1, x0)+P(1, 1−d|x1, x0)1{E[Y1−d|x1, x0] > 0}

characterizes the empirical content of the potential outcomes model Y =
Y1D + Y0(1 − D) in all generality (i.e., without weak separability and wi-
thout assumptions on the dimension of unobservable heterogeneity). It also
shows that the simple binary Roy model has no empirical content relative to
(f1, f0) beyond Assumption 4. More precisely, the identified set for (f1, f0)
under Assumptions 9-12 is the same as under Assumption 9-11 with Roy
selection D = 1{Y ∗1 > Y ∗0 }. Indeed, bounds (2.3) and (2.3) still hold un-
der Assumptions 9-12. They are also sharp, since D = 1{Y ∗1 > Y ∗0 } implies
Assumption 12.

Corollary 2. The identified set for (f1, f0) under Assumptions 9-12 is cha-
racterized by inequalities (2.3) and (2.4).

In case of exclusion restrictions, an immediate corollary to Proposition 2
gives conditions for identification of the outcome equations. This identi-
fication result is related to Heckman (1990)’s identification at infinity in
the following sense : in the special case of a single index model, where
f0(x0) = φ(x0β), where φ is a distribution function and β is a conformable
vector of parameters, if x0j → −∞ for some element x0j of x0 such that
βj > 0, then f0(x0)→ 0 as required.

Corollary 3 (Identification). Under Assumptions 9-12, the following hold
(writing ω = (z, x1, x0) as before).

a. If there is x0 ∈ Dom(X0) such that f0(x0) = 0, then f1 is identified
over Dom(X1).
b. If there is x1 ∈ Dom(X1) such that f1(x1) = 0, then f0 is identified
over Dom(X0).
a’. Take x1 ∈ Dom(X1). If there is x0 ∈ Dom(X0) such that P(1, 0|x1, x0) =
0, then f1(x1) is identified.
b’. Take x0 ∈ Dom(X0). If there is x1 ∈ Dom(X1) such that P(1, 1|x1, x0) =
0, then f0(x0) is identified.

The existence of valid instruments or exclusion restrictions is often pro-
blematic in applications of discrete choice models. However, in the Roy model
of sectorial choice with sector specific unobserved heterogeneity, it is natural
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to expect some sector specific observed heterogeneity as well. Such sector
specific observed heterogeneity would provide exclusion restrictions in the
form of variables affecting outcome equation for Yd without affecting out-
come equation for Y1−d. Such exclusion restrictions would yield intersection
bounds in Proposition 2. Of course, even if it exists, sector specific observed
heterogeneity may not satisfy a. or b. of Corollary 3. However, the availabi-
lity of an exclusion restriction as in a. or b. of Corollary 3 is consistent with
the spirit of a model of sector specific heterogeneity.

Bounds on the joint distribution of sector specific heterogeneity

The bounds proposed in Proposition 2 are joint sharp bounds on the
structural functions, hence on treatment effects. To derive them, we treated
the joint distribution of sector specific heterogeneity as a nuisance parameter.
One may also be interested in the empirical content of the model relative to
sector specific heterogeneity. Since the distributions of u1 and u0 are both
normalized and assumed uniform on [0, 1], the joint distribution satisfies Fré-
chet bounds :

max(f1(x1) + f0(x0)− 1, 0) ≤ P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0)

≤ min(f1(x1), f0(x0)).

The relevant question, therefore, is whether the Roy model assumption on
selection D = 1{Y ∗1 > Y ∗0 } holds empirical content relative to the distribu-
tion of unobserved sector specific heterogeneity beyond Fréchet bounds. On
Figure 2.1, P(Y = 1) is equal to the L-shaped region on the left side of the
graph. The area of the left vertical band is f1 and the area of the lower hori-
zontal band is f0. These two bands overlap on the lower left rectangle, whose
area is equal to P(u1 ≤ f1, u0 ≤ f0). Hence f1 + f0 = P(Y = 1) + P(u1 ≤
f1, u0 ≤ f0). Adding conditioning variables, we have the following bounds on
the joint distribution of sector specific heterogeneity :

P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) = f1(x1) + f0(x0)− P(Y = 1|x1, x0).(2.5)

This yields a sharper lower bound than the Fréchet bounds whenever P(Y =
1|x1, x0) < 1. Note however, that the above constraint no longer holds when
we replace the Roy selection hypothesis D = {Y ∗1 > Y ∗0 } by Assumption 12.
Hence the conclusion that the latter two assumptions hold the same empirical
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content is valid when considering empirical content relative to the structu-
ral functions and the treatment effects, but not when considering empirical
content relative to the distribution of unobserved heterogeneity.

2.3.2 Extended binary Roy model

Extended selection assumption

Assumption 12 is very restrictive and recent research by Haultfoeuille
and Maurel (2011) and Bayer, Khan, and Timmins (2011) on the Roy model
with continuous outcomes has focused on an extended version according to
the terminology of Heckman and Vytlacil (1999), where selection depends
on Y ∗1 − Y ∗0 and a function of observable variables g(Z,X1, X0) sometimes
called “non pecuniary component”. We now investigate the implications of
this selection assumption in the binary case.

Assumption 13 (Observable heterogeneity in selection). D = 1{Y ∗1 −Y ∗0 >
g(Z,X1, X0)} for some unknown function g of the vector of the observable
variables Z, X1 and X0.

Assumption 13 includes separability of the structural selection function
in Y ∗1 − Y ∗0 and g(Z,X1, X0). The more general case without separability of
the selection function is considered in Section 2.3.2. Under Assumptions 9-11
and 13, we may still characterize the empirical content of the model graphi-
cally, in Figures 2.3 and 2.4.

We drop Z,X1 andX0 from the notation in the discussion below. For each
value of (u1, u0), the outcome is uniquely determined by f1, f0 and g. Again,
the missing piece to compute the likelihood of outcomes P(i, j), i, j = 1, 0, is
the copula for (u1, u0). From the knowledge of the probabilities of horizontal
and vertical bands in the (u1, u0) space, we can derive the sharp bounds on
structural parameters f1, f0 and g. Four cases are considered below to explain
the bounds, which are derived formally in Proposition 3.

a. Case where g ≥ f1 on Figure 2.4. The probability of outcome (Y =
1, D = 0) is seen to be exactly equal to the area of the lower hori-
zontal band. Hence f0 = P(1, 0) is identified. Moreover, the area of
the horizontal band (f0, f0− f1 + g) is smaller than the probability of
outcome (Y = 0, D = 0). Hence g ≤ f1 + P(0, 0). Similar reasoning
yields P(1, 1) ≤ f1 ≤ P(Y = 1) + P(0, 0).
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Figure 2.3 – Characterization of the empirical content of the extended binary Roy model in the

unit square of the (u1, u0) space in case 0 ≤ g < f1.

Figure 2.4 – Characterization of the empirical content of the extended binary Roy model in the

unit square of the (u1, u0) space in case g ≥ f1.
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b. Case where 0 ≤ g < f1 on Figure 2.3. The area of the lower horizontal
band (0, f0 − f1 + g) is smaller than the probability of outcome (Y =
1, D = 0). Hence g ≤ f1 − f0 + P(1, 0). Moreover, the area of the
horizontal band (0, f0) is larger than the probability of outcome (Y =
1, D = 0) and smaller than the probability of outcome (Y = 1). Hence
P(1, 0) ≤ f0 ≤ P(Y = 1). Finally, P(1, 1) ≤ f1 ≤ P(Y = 1) + P(0, 0)
still holds.

c. Case where −f0 < g ≤ 0. Similarly to Case b., we obtain bounds
g ≥ f1 − f0 + P(1, 1), P(1, 0) ≤ f0 ≤ P(Y = 1) + P(0, 1) and P(1, 1) ≤
f1 ≤ P(Y = 1).

d. Case where g ≤ −f0. Similarly to Case a., f1 = P(1, 1) is identified
and P(1, 0) ≤ f0 ≤ P(Y = 1) + P(0, 1) and g ≥ −f0 − P(0, 1).

In addition, in both cases a. and b., where g > f1 − f0, corresponding to
Figures 2.4 and 2.3, the marginal constraint on u1 fixes the probability mass
in the thin right vertical band to f0−f1 +g. Hence the maximum probability
mass that can be shifted to the left of f1 is p11 + p10 + p00− (f0− f1 + g), so
that we have the additional constraint f0 ≤ p11 +p10 +p00−g. Symmetrically,
in case g < f1 − f0, we have the constraint f1 ≤ g + p11 + p10 + p00. Since
g > f1 − f0 also implies f1 ≤ g + p11 + p10 + p00 and g < f1 − f0 also implies
f0 ≤ p11 + p10 + p00 − g, the two constraints f0 ≤ p11 + p00 + p10 − g and
f1 ≤ g + p11 + p10 + p01 always hold. Proposition 3 shows validity of the
bounds discussed above for the triplet (f1(x1), f0(x0), g(ω)).

Proposition 3 (Bounds for the extended binary Roy model). Under As-
sumptions 9-11 and 13, the following bounds for (f1, f0, g) hold (writing
ω = (z, x1, x0) as before).

f1(x1) ∈
[
supz,x0 P(1, 1|ω), infz,x0 [P(1, 1|ω) + P(0, 0|ω)1{g(ω) > 0}

+ min[min(P(1, 0|ω), f0(x0) + g(ω))1{g(ω) > −f0(x0)}),
g(ω) + P(1, 0|ω) + P(0, 1|ω)]]

]
,

f0(x0) ∈
[
supz,x1 P(1, 0|ω), infz,x1 [P(1, 0|ω) + P(0, 1|ω)1{g(ω) < 0}

+ min[min(P(1, 1|ω), f1(x1)− g(ω))1{g(ω) < f1(x1)}),
P(1, 1|ω) + P(0, 0|ω)− g(ω)]]

]
(2.6)
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and

g(ω) ∈
([
−f0(x0)− P(0, 1|ω),−f0(x0)

]
∪
[
f1(x1)− f0(x0)− P(1, 1|ω),

f1(x1)− f0(x0) + P(1, 0|ω)
]
∪
[
f1(x1), f1(x1) + P(0, 0|ω)

])
∩
[
f1(x1)− P(1, 1|ω)− P(1, 0|ω)− P(0, 1|ω),P(1, 1|ω) + P(1, 0|ω) + P(0, 0|ω)− f0(x0)

] (2.7)

where the infima and suprema are taken over the domain of Z, X1 or X0 as
indicated and when they arise.

Identification implications of exclusion restrictions

Simple identification conditions can be derived for f1 and f0 from the
bounds of Proposition 3 under exclusion restrictions. However, it can be seen
immediately that exclusion restrictions cannot identify g( ), since it would
require P(Y = 1, D = 1|ω), P(Y = 0, D = 1|ω), P(Y = 1, D = 0|ω) and
P(Y = 0, D = 0|ω) to simultaneously equal zero.

Corollary 4 (Identification). Under Assumptions 9-11 and 13, the following
hold (writing ω = (z, x1, x0) as before).

a. If there is z ∈ Dom(Z) and x0 ∈ Dom(X0) such that g(ω) ≤
−f0(x0), then f1(x1) = P(1, 1|ω) is identified.
b. If there is z ∈ Dom(Z) and x1 ∈ Dom(X1) such that g(ω) ≥ f1(x1),
then f0(x0) = P(1, 0|ω) is identified.
a’. Take x1 ∈ Dom(X1). If there is x0 ∈ Dom(X0) or z ∈ Dom(Z)
such that P(1, 0|ω) = P(0, 0|ω) = 0, then f1(x1) is identified.
b’. Take x0 ∈ Dom(X0). If there is x1 ∈ Dom(X1) or z ∈ Dom(Z) such
that P(1, 1|ω) = P(0, 1|ω) = 0, then f0(x0) is identified.

Sharp bounds in the extended Roy model

When the object of interest is treatment parameters only, the three di-
mensional identification region defined by the sharp bounds on (f1, f0, g) is
projected on the two-dimensional space (f1, f0) as follows.

Proposition 4 (Sharp bounds for the extended Roy model). Under Assump-
tions 9-11 13, the identified set for (f1, f0) is characterized by the following
bounds, where λ takes the values 1 or 0 and ε > 0 is arbitrarily small :
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supz,x0 P(1, 1|ω) ≤ f1(x1) ≤ infz,x0 [P(1, 1|ω) + P(1, 0|ω) + λmax(0,P(0, 0|ω)− ε)]

supz,x1 P(1, 0|ω) ≤ f0(x0) ≤ infz,x1 [P(1, 0|ω) + P(1, 1|ω) + (1− λ) max(0,P(0, 1|ω)− ε)]
(2.8)

The binary λ ensures joint sharpness of the bounds on f1 and f0. It reflects
the fact that in Figure 2.3 the diagonal separating the D = 1 from the D = 0
regions is either on the right of the point (f1, f0), in which case the sharper
bound on f1 holds, or on the left of point (f1, f0), in which case the sharper
bound on f0 holds, but not both at the same time. The presence of ε > 0 in
the bounds reflects the fact that if, as in Figure 2.3, the diagonal is on the
right of the point (f1, f0), i.e., λ = 1, then f1 could only attain the upper
bound p11 + p10 + p00 if all the mass corresponding to Region (Y = 0, D = 0)
was shifted into the triangle below the diagonal, above f0 and left of f1.
However, this is impossible since the vertical band on the right has non zero
mass by the uniform marginal constraint on u1. Hence, the presence of ε in
the bounds is due to the linearity of the boundary between Regions D = 0
and D = 1. This explains why it disappears in the nonseparable case of the
next section.

If the object of interest is the non pecuniary component g, the three
dimensional identification region is projected on the one-dimensional space
for g into the single interval [−P(1, 1|ω) − P(1, 0|ω),P(1, 1|ω) + P(1, 0|ω)],
since the bounds in (2.6) cross at those values. In the presence of instruments
(or exclusion restrictions), the projections on (f1, f0) and on g can be much
tighter and the projection on (f1, f0) may even be reduced to a point, as in
Corollary 4.

Testing the Roy selection assumption

As we have just seen, in the absence of exclusion restrictions, the identified
region always contains the hyperplane g = 0, so that it is impossible to test
the classical Roy selection hypothesis. However, in the presence of exclusion
restrictions, the hypothesis g(ω) = 0 may become testable. There is a non
zero non pecuniary component in the selection equation if the hyperplane
g(ω) = 0 does not intersect the three dimensional identification region for
(f1(x1), f0(x0), g(ω)) defined by the bounds in Proposition 3. This implies
the crossing of the intersection bounds in Proposition 2, in the sense that

sup
x0,z

P(1, 1|x1, x0, z) > inf
x0,z

[
P(1, 1|ω) + P(1, 0|ω)1{f0(x0) > 0}

]
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or

sup
x1,z

P(1, 0|ω) > inf
x1,z

[
P(1, 0|ω) + P(1, 1|ω)1{f1(x1) > 0}

]
so that by Proposition 2, the simple Roy model is rejected. In practice, the
test for the existence of a non pecuniary component would be carried out by
constructing a confidence region according to the methods proposed in Cher-
nozhukov, Lee, and Rosen (2009) or Andrews and Shi (2011) and checking,
whether the hyperplane g(ω) = 0 intersects the confidence region. If it does,
we fail to reject the hypothesis of existence of a non pecuniary component
and if it doesn’t, we reject the hypothesis at significance level equal to 1
minus the confidence level chosen for the confidence region. The hypotheses
g ≥ 0 or g ≤ 0 may be tested in the same way.

Sharp bounds without separability of the selection function

The same arguments can be applied to derive the empirical content of
the model where the selection equation generalizes Assumption 13 with the
following.

Assumption 14 (Nonseparable selection function). Suppose the selection
rule is D = 1{u0 > h(u1,W )} and h strictly increasing in u1, for all W .

Assumption 13 is a special case of Assumption 14, where h(u1,W ) =
u1 + f0(X0)− f1(X1) + g(W ).

The identified region for the pair (f1(x1), f0(x0)) is obtained in the same
way as the separable case except that f1 attains P(1, 1) + P(1, 0) + P(0, 0)
and f0 attains P(1, 1)+P(1, 0)+P(0, 0). This occurs because the nonlinearity
of the curve separating region D = 1 from region D = 0 allows all the mass
corresponding to P(0, 0) to be shifted on the left of f1, as in Figure 2.5.

Proposition 5 (Sharp bounds for the extended Roy model without sepa-
rability). Under Assumptions 9-11 and 14, the identified set for (f1, f0) is
characterized by the following inequalities, where λ takes the values 1 or 0 :

supz,x0 P(1, 1|ω) ≤ f1(x1) ≤ infz,x0 [P(1, 1|ω) + P(1, 0|ω) + λP(0, 0|ω)]

supz,x1 P(1, 0|ω) ≤ f0(x0) ≤ infz,x1 [P(1, 0|ω) + P(1, 1|ω) + (1− λ)P(0, 1|ω)]
(2.9)

In this context, however, the Roy selection assumption D = 1{Y ∗1 > Y ∗0 }
may not be tested with the strategy developed above.
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Figure 2.5 – Characterization of the empirical content of the binary Roy model in the unit square

of the (u1, u0) space without separability of the selection function.

2.4 Sharp bounds for the generalized binary
Roy model

So far, we have assumed that selection occurs on the basis of success
probability and other observable variables. We now turn to the general case,
where unobservable heterogeneity, beyond u0 − u1, may play a role in secto-
rial selection. Knowledge of (u1, u0) now no longer uniquely determines the
outcome (Y = i,D = j) as seen on Figure 2.6.

Multiplicity of equilibria and lack of coherence of the model can be dealt
with, however, with the optimal transportation approach of Galichon and
Henry (2011) (or equivalently with the random set approach of Beresteanu,
Molchanov, and Molinari (2011) as in Chesher, Rosen, and Smolinski (2011)),
as shown in the proof of Theorem 2 below.

Theorem 2 (Sharp bounds for the generalized Roy model). Under Assump-
tion 9-11, the empirical content of the model is characterized by inequali-
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Figure 2.6 – Characterization of the empirical content of the generalized binary Roy model in the

unit square of the (u1, u0) space.
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ties (2.10)-(2.12) below (writing ω = (z, x1, x0) as before).

sup
z,x0

P(1, 1|ω) ≤ f1(x1) ≤ 1− sup
z,x0

P(0, 1|ω), (2.10)

sup
z,x1

P(1, 0|ω) ≤ f0(x0) ≤ 1− sup
z,x1

P(0, 0|ω) (2.11)

and

sup
z

max
(

0, f0(x0)− P(1, 0|ω)− P(0, 1|ω), f1(x1)− P(1, 1|ω)− P(0, 0|ω)
)

≤ P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) (2.12)

≤ inf
z

min
(
P(Y = 1|ω), f1(x1) + f0(x0)− P(Y = 1|ω)

)
.

Theorem 2 is not an operational characterization of the empirical content
of the model since the sharp bounds involve the unknown quantity P(u1 ≤
f1(x1), u0 ≤ f0(x0)|x1, x0), which, by the normalization of Assumption 10,
is exactly the copula of (u1, u0). In the case of total ignorance about the
copula of (u1, u0), after plugging Fréchet bounds max(f1(x1)+f0(x0)−1, 0) ≤
P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) ≤ min(f1(x1), f0(x0)), inequalities (2.12)
are shown to be redundant. Hence we have the following.

Corollary 5. The identified set for (f1, f0) under Assumption 9-11 is cha-
racterized by inequalities (2.10) and (2.11).

In order to sharpen those bounds, we may consider restrictions on the
copula for (u1, u0) or restrictions on the selection equation. We consider both
strategies in turn.

2.4.1 Restrictions on selection

Consider the following selection model, where selection depends on Y ∗1 −
Y ∗0 and g(Z,X1, X0) and selection specific unobserved heterogeneity v, which
is separable and which is independent of (resp. dependent on) sector speci-
fic unobserved heterogeneity (u1, u0) under Assumption 15 (resp. Assump-
tion 16). As before, write W = (Z,X1, X0).

Assumption 15. D = 1{Y ∗1 − Y ∗0 > g(W ) + v}, with v ⊥⊥ (u1, u0,W ) and
Ev = 0 (without loss of generality).
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With v ⊥⊥ (u1, u0), we have P(ud ≤ g(z, x1, x0)+v+f1(x1)−f0(x0)|z, x1, x0) =
EvE[1{ud ≤ g(z, x1, x0)+v−f1(x1)+f0(x0)}|z, x1, x0, v] = max(0, g(z, x1, x0)−
f1(x1)+f0(x0)) and it is shown in Corollary 6 that the bounds on g( ) derived
in Section 2.3 remain valid.

Corollary 6. Under assumptions 9-11 and 15, (2.7) holds.

As for the bounds on (f1, f0), (2.6) remain valid under specific domain
restrictions for v.

Assumption 16. D = 1{Y ∗1 − Y ∗0 > g(W ) + v}, with v ⊥⊥ W , Ev = 0
(without loss of generality).

Note that Assumption 16 is equivalent to assuming the selection equation
D = 1{h(W ) > η} with η arbitrarily dependant on (u1, u0). Indeed, one can
take h(W ) = f1(X1)− f0(X0)− g(W ) and η = v + u1 − u0.

Corollary 7. Under Assumption 9-11 and 16, (2.10) and (2.11) are sharp
bounds for the pair (f1, f2).

From Corollary 7, we conclude that the separability of the selection spe-
cific unobserved heterogeneity term has no empirical content, in the sense
that the identified set for (f1, f0) is identical to the case, where there is no
information on selection. This is related to the lack of empirical content of
LATE in Kitagawa (2009) and it is in sharp contrast with the case of no
sector specific heterogeneity in Shaikh and Vytlacil (2011), Jun, Pinkse, and
Xu (2010) and Mourifié (2011), where the ordering between f1 and f0 can
be used as identifying information. Indeed, if f1 ≤ f0, we have f1 = P(Y =
1, D = 1) + P(u1 ≤ f1, D = 0) ≤ P(Y = 1, D = 1) + P(u1 ≤ f0, D = 0). The
last term is equal to P(Y = 1, D = 0) if u1 = u0 but is not identified in the
case with sector specific unobserved heterogeneity.

2.4.2 Restrictions on the joint distribution of sector spe-
cific heterogeneity

Parametric restrictions on the copula

In case the copula for (u1, u0) is parameterized with parameter vector θ,
sharp bounds are obtained straightforwardly by replacing P(u1 ≤ f1(x1), u0 ≤
f0(x0)|x1, x0) with the parametric version F (f1(x1), f0(x0); θ) in (2.12).
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Perfect correlation

In the case of perfect correlation between the two sector specific unobser-
ved heterogeneity variables, P(u1 ≤ f1(x0), u0 ≤ f0(x0)) = min(f1(x1), f0(x0))
so that the sharp bounds of Theorem 2 specialize to (2.10), (2.11),
min(f1(x1), f0(x0)) ≤ infz P(Y = 1|z, x1, x0) and supz P(Y = 1|z, x1, x0) ≤
max(f1(x1), f0(x0)), which are the bounds derived in Chiburis (2010).

Independence

In the special case, where the two sector specific errors are independent of
each other u1 ⊥⊥ u0, sharp bounds can be derived from Theorem 2 and P(u1 ≤
f1(x0), u0 ≤ f0(x0)) = P(u1 ≤ f1(x1))P(u0 ≤ f0(x0)) = f1(x1)f0(x0). The
sharp bounds obtained allow formal tests of the hypothesis of independence of
the two unobserved heterogeneity components. This would not be achievable
based only on Fréchet bounds (as noted by Tsiatis (1975) in the case of
competing risks), as we always have f0 + f1 − 1 ≤ f0f1 ≤ min(f1, f0) when
0 ≤ f1, f0 ≤ 1.

Factor structure

Theorem 2 also allows us to characterize the empirical content of the
factor model for sector specific unobserved heterogeneity proposed in Aakvik,
Heckman, and Vytlacil (2005).

Assumption 17 (Factor model). Sector specific unobserved heterogeneity
has factor structure ud = αdu + ηd, d = 1, 0, with Eu = 0, Eu2 = 1 (without
loss of generality) and η1 ⊥⊥ η0|u. ηd is uniformly distributed on [0, 1] for
d = 1, 0, conditionally on u.

This factor specification for sector specific unobserved heterogeneity is
particularly appealing in applications to the effects of employment programs.
Success in securing a job depends on common unobservable heterogeneity in
talent and motivation and sector specific noise. Under Assumptions 9, 11 and
17, we still have E[Yd|z, x1, x0] = fd(xd) and

P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) = EuP(η1 ≤ f1(x1)− α1u,

η0 ≤ f0(x0)− α0u|x1, x0, u)

= EuP(η1 ≤ f1(x1)− α1u|x1, u)

P(η0 ≤ f0(x0)− α0u|x1, x0, u)

= f1(x1)f0(x0) + α1α0.
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Hence we can obtain sharp bounds on parameters f1, f0, α1 and α0 as follows.

Corollary 8 (Sharp bounds for the factor model). Under Assumptions 9, 11
and 17, the empirical content of the model is characterized by (2.10), (2.11)
and (writing ω = (z, x1, x0) as before)

sup
z

max
(

0, f0(x0)− P(1, 0|ω)− P(0, 1|ω), f1(x1)− P(1, 1|ω)− P(0, 0|ω)
)

≤ f1(x1)f0(x0) + α1α0

≤ inf
z

min
(
P(Y = 1|ω), f1(x1) + f0(x0)− P(Y = 1|ω)

)
We recover the case of independent sector specific heterogeneity variables,

when α1 = α0 = 0.

2.5 Conclusion
We have derived sharp bounds in the simple, extended and generalized bi-

nary Roy models, including a factor specification proposed by Aakvik, Heck-
man, and Vytlacil (2005). The bounds are simple enough to lend themselves
to existing inference methods for intersection bounds as in Chernozhukov,
Lee, and Rosen (2009) and Andrews and Shi (2011). The methods introdu-
ced here can be applied to the derivation of nonparametric sharp bounds for
the Tobit version of the Roy model as well as in other binary models with
several unobserved heterogeneity dimensions, such as entry and participation
games.
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Chapitre 3

Nonparametric sharp bounds
for payoffs in 2× 2 games.

3.1 Introduction
The empirical analysis of full information game theoretic models has

emerged as a leading way to learn about strategic interactions between eco-
nomic agents and to estimate, for example, the extent of monopoly advantage
in imperfect competitive environments or free riding incentives in coopera-
tion settings. Beside the numerous applications in industrial organization, as
evidenced by the recent survey in Bajari, Hong, and Nekipelov (2012), areas
of impact include labor economics, as in Bjorn and Vuong (1984) and Koore-
man (1994), social interactions, as in Soetevent and Kooreman (2007), family
economics, as in Engers and Stern (2002), or development economics, as in
Méango (2012). The empirical approach to models of multiperson simulta-
neous decisions goes back at least to Bjorn and Vuong (1984) and was popu-
larized in the field of industrial organization by Bresnahan and Reiss (1990,
1991) and Berry (1992) among others. In those cases, attention was restric-
ted to specific parametric utilities or profits and unobserved heterogeneity
types. Coherency of the model, in the sense of Heckman (1978) and Gourié-

This chapter is a joint work with Marc Henry. This chapter was conducted in part,
while Marc Henry was visiting Sciences-Po and Polytechnique and I was visiting Penn
State. We thank our respective hosts for their hospitality and support.
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roux, Laffont, and Monfort (1980), was obtained by removing multiplicity of
predicted outcomes in the game Bjorn and Vuong (1984) assume an ad-hoc
uniform equilibrium selection device, whereas Bresnahan and Reiss (1991)
coarsen the outcome space). The multiplicity issue was addressed head-on
by Jovanovic (1989) and Tamer (2003) and both Galichon and Henry (2006,
2011) and Beresteanu, Molchanov, and Molinari (2008, 2011) propose cha-
racterizations of the empirical content of Nash equilibrium play in models
with simultaneous decisions by multiple agents, while retaining the para-
metric framework for payoffs and unobserved types. Much of the empirical
content in the latter characterizations, however, rests on the specific parame-
tric assumptions maintained, some of which may be structurally motivated,
but others, especially parametric assumptions on unobserved type distribu-
tions, are entirely ad-hoc. Kline and Tamer (2012) seem to be the first to
remove parametric assumptions and consider sharp bounds in full informa-
tion games, but their focus, however, is best response functions, which may
be of interest in their own right, but which are not the focus of the litera-
ture, generally interested in recovering payoff functions (utilities and profits).
Aradillas-Lopez (2011) considers nonparametric bounds on predicted proba-
bilities of strategy profiles under asymmetric information. Neither considers
nonparametric sharp bounds on payoff functions in full information games
as we do here.

Within the class of two person games with binary strategies in full in-
formation, we consider the identification problem, where the distribution
of realized decisions is known by the analyst, who assumes that such rea-
lizations emerge from Nash equilibrium play (in pure or mixed strategies)
in the game. Hence we adopt a pure revealed preference approach to the
model of interaction and analyze the empirical content of maximizing beha-
vior as in Henry and Mourifié (2012), with the additional complication that
the dummy endogenous variable is the result of a simultaneous decision by
a second agent. Based on the characterization of the empirical content of
games with Shapley regular core in Galichon and Henry (2011), we derive
sharp nonparametric bounds on payoffs and unobserved heterogeneity dis-
tributions. Additional constraints on the order of payoffs, to consider games
of complements or games of susbstitutes, and on type distributions, to eva-
luate shape and other distributional restrictions, can be easily added to see
how they shrink the identified region. One of the main arguments for allo-
wing agents to randomize in the empirical analysis of games, as in Bajari,
Hong, and Ryan (2010), Beresteanu, Molchanov, and Molinari (2008, 2011),
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Bajari, Hahn, Hong, and Ridder (2011) and Galichon and Henry (2011), is
almost sure existence of equilibrium in mixed strategies, whereas existence
of equilibrium in pure strategies only is not garanteed. This argument is only
relevant in case of parametric assumptions on the unobserved heterogeneity
(or type) distribution, but fails to sway in the framework entertained here, as
regions of the type space may well have zero probability. We therefore ana-
lyze the implications of restricting play to pure strategies and derive sharp
bounds on payoffs and type distributions in that case too. Considering type
distributions as nuisance infinite dimensional parameters and projecting the
identified region allows us then to derive sharp nonparametric bounds on
the payoff functions themselves. We find that the hypothesis of Nash equi-
librium play is not falsifiable in this framework, as the identified region is
never empty. Rejection of the model becomes possible under the assumption
of an exclusion restriction, namely variation in the payoff of a player that
leaves the opponent’s profit unchanged. In the latter case, the bounds be-
come intersection bounds, as in Chernozhukov, Lee, and Rosen (2009) and
they can cross. We also find that, without additional prior information, we
cannot identify, whether the game is of complements or substitutes. However,
we obtain non trivial sharp bounds on monopoly advantage and free-riding
incentives, when they arise.

The remainder of the paper is organized as follows. Section 3.2 derives
the analytical framework, the games analyzed, their equilibrium correspon-
dences and the objects of interest. Section 3.3 derives joint sharp bounds for
payoff functions and type distributions, treating the equilibrium selection me-
chanism as a nuisance parameter. Section 3.4 considers implications of pure
strategy play and derives the projection of the identified set to obtain sharp
bounds for the payoff functions. Sharp bounds are also given for monopoly
advantage and free riding incentives. The last section concludes.

3.2 Analytical framework
We shall be concerned with the following econometric model.

Yi = 1{Πi(Y3−i, Xi) > εi} and εi ∼ U [0, 1], i = 1, 2, (3.1)

where 1{A} = 1 if A is true and zero otherwise, Y = (Y1, Y2) is a pair of
observed binary outcome variables, Π = (Π1,Π2) are unknown functions of
Y3−i, observable random vectors X = (X1, X2) and unobservable random
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variables ε = (ε1, ε2). We assume that the only source of endogeneity in
the econometric model is the interaction between players and the simulta-
neous choice. Hence, we assume that observable heterogeneity variables are
exogenous.

Assumption 18 (Exogeneity). The following exogeneity assumption holds :
(X1, X2) ⊥⊥ (ε1, ε2) and for ease of notation, we shall drop all components
that are common to X1 and X2 and relabel Xi as the vector of observable
heterogeneity variables (if they arise) that affect Πi but are excluded from
Π3−i.

We give two structural interpretation of this model within the range of
noncooperative games of perfect information with 2 players and 2 strategies
each.

3.2.1 General 2× 2 games

In a first structural interpretation of Model (3.1) we consider general
2× 2 games of perfect information with payoff structure given in Table 3.1,
which is common knowledge to the two players. Working under assumptions
that rule out ties, the best response of Player 1 to Y2 = 1 is Y1 = 1 if
Π̃1(1, 1, X1) − Π̃1(0, 1, X1) > [ε̃1(0, 1) − ε̃1(1, 1)] and zero otherwise, whe-
reas the best response to Y2 = 0 is Y1 = 1 if Π̃1(1, 0, X1) − Π̃1(0, 0, X1) >
[ε̃1(0, 0)− ε̃1(1, 0)] and zero otherwise. Best responses for Player 2 are obtai-
ned symmetrically. Assuming that the unobserved heterogeneity differences
ε̃1(1, Y2) − ε̃1(0, Y2) and ε̃2(Y1, 1) − ε̃2(Y1, 0) are independent of the oppo-
nent’s action and are absolutely continuous with respect to Lebesgue mea-
sure and setting Π1(Y2, X1) = Π̃1(1, Y2, X1) − Π̃1(0, Y2, X1), Π2(Y1, X2) =
Π̃2(Y1, 1, X2)−Π̃2(Y1, 0, X2), ε1 = −ε̃1(1, Y2)+ε1(0, Y2) and ε2 = −ε̃2(Y1, 1)+
ε2(Y1, 0), we obtain Model (3.1), where εi ∼ U [0, 1] is without loss of gene-
rality.

3.2.2 Participation games

In a second structural interpretation of Model (3.1), we consider the spe-
cial case of 2 × 2 participation games, where a player’s payoff when she
chooses not to participate is independent of the opponent’s behavior and can
therefore be normalized to zero. Each player has 2 strategies and 3 different
payoffs. For each player, the 3 different payoffs can be ranked in 3! distinct
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Table 3.1 – Payoff structure of 2× 2 games.

1 0

1 Π̃1(1, 1, X1) + ε̃1(1, 1), Π̃2(1, 1, X2) + ε̃2(1, 1) Π̃1(1, 0, X1) + ε̃1(1, 0), Π̃2(1, 0, X2) + ε̃2(1, 0)

0 Π̃1(0, 1, X1) + ε̃1(0, 1), Π̃2(0, 1, X2) + ε̃2(0, 1) Π̃1(0, 0, X1) + ε̃1(0, 0), Π̃2(0, 0, X2) + ε̃2(0, 0)

Table 3.2 – Payoff structure of 2× 2 participation games.

1 0

1 Π1(1, X1, ε1),Π2(1, X2, ε2) Π1(0, X1, ε1), 0

0 0,Π2(0, X2, ε2) 0, 0

ways. Hence there are 36 classes of ordinally equivalent such 2× 2 participa-
tion games (but only 7 strategically distinct classes of games as we shall see).
The payoff structure as in Table 3.2, which is common knowledge to the two
players.

Assuming that the profit functions are weakly separable in εi, i = 1, 2,
and the latter are absolutely continuous with respect to Lebesgue measure,
the game can be summarized by Model (3.1) without loss of generality (see
Vytlacil (2002)).

3.2.3 Implications of each structural interpretation

Depending on the chosen structural interpretation, the analyst will be
able to answer different empirical questions. Two questions of particular re-
levance in 2 × 2 game theoretic modeling of economic interactions are the
price of competition and the extent of free riding incentives. 2 × 2 games
are applied to the empirical analysis of imperfect competition since at least
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Bresnahan and Reiss (1990) and Berry (1992). Two questions of particular
interest arise : whether the two players (firms) are complements or substi-
tutes and the extent of the monopoly advantage if they are substitutes. Both
questions can be answered (partially) if the quantities

Π̃1(1, 0, X1) + ε̃1(1, 0)− [Π̃1(1, 1, X1) + ε̃1(1, 1)]

Π̃2(0, 1, X2) + ε̃2(0, 1)− [Π̃2(1, 1, X2) + ε̃2(1, 1)]

are (partially) identified. Now, with the structural interpretation of partici-
pation games in Section 3.2.2, we have

Π̃1(1, 0, X1) + ε̃1(1, 0)− [Π̃1(1, 1, X1) + ε̃1(1, 1)] = Π1(0, X1)− Π1(1, X1)

Π̃2(0, 1, X2) + ε̃2(0, 1)− [Π̃2(1, 1, X2) + ε̃2(1, 1)] = Π2(0, X2)− Π2(1, X2)

and we shall derive sharp bounds on Π = (Π1(1, X1),Π1(0, X1),Π2(1, X2),Π2(0, X2).
2 × 2 games are also used to model the provision of public goods. In that
context, the extent of free riding incentives is of particular empirical relevance
and it is measured by the following quantities.

Π̃1(0, 1, X1) + ε̃1(0, 1)− [Π̃1(1, 1, X1) + ε̃1(1, 1)]

Π̃2(1, 0, X2) + ε̃2(1, 0)− [Π̃2(1, 1, X2) + ε̃2(1, 1)].

Under both the structural interpretations of Sections 3.2.1 and 3.2.2, we have
the following.

Π̃1(0, 1, X1) + ε̃1(0, 1)− [Π̃1(1, 1, X1) + ε̃1(1, 1)] = ε1 − Π1(1)

Π̃2(1, 0, X2) + ε̃2(1, 0)− [Π̃2(1, 1, X2) + ε̃2(1, 1)] = ε2 − Π2(1)

and we shall derive sharp bounds on Π1(1) and Π2(1).

3.2.4 Equilibrium

We assume, as is customary, that players choose the strategy that maxi-
mizes their payoff in pure or mixed strategy Nash equilibrium (see Aradillas-
Lopez and Tamer (2008) for some discussion of the empirical content of other
notions of rationality in games). We distinguish four cases, according to the
ordering between Πi(1, Xi) and Πi(0, Xi).
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1. Duopoly entry game : Πi(1, Xi) ≤ Πi(0, Xi), i = 1, 2.

2. Coordination game : Πi(0, Xi) ≤ Πi(1, Xi), i = 1, 2.

3. Asymmetric game 1 : Π1(0, X1) ≤ Π1(1, X1) and Π2(1, X2) ≤ Π2(0, X2).
4. Asymmetric game 2 : Π1(1, X1) ≤ Π1(0, X1) and Π2(0, X2) ≤ Π2(1, X2).

In each case, the equilibrium correspondence is represented on the unit square
as a function of the pair (ε1, ε2) in Figures 3.1-3.3 and Case (4) can be
obtained from Case (3) by permuting the two players.

Definition 1 (Equilibrium correspondence). The equilibrium correspondence,
denoted G(ε,X,Π), is the set of equilibria of the game for a given values of
(ε,X,Π). It is a subset of the simplex on {(1, 1), (1, 0), (0, 1), (0, 0)} and its
elements are non degenerate probabilities in case the equilibrium is in mixed
strategies and degenerate probabilities in case the equilibrium is in pure stra-
tegies.

The equilibrium has similar features in the duopoly, coordination and
asymmetric games. When

ε /∈ [min(Π1(1, X1),Π1(0, X1)),max(Π1(1, X1),Π1(0, X1))]

×[min(Π2(1, X2),Π2(0, X2)),max(Π2(1, X2),Π2(0, X2))],

there is a unique equilibrium in pure strategies. For instance, when εi >
max(Πi(1, Xi),Πi(0, Xi)), i = 1, 2, the game is a Prisoner’s Dilemma. When,
on the other hand,

ε ∈ [min(Π1(1, X1),Π1(0, X1)),max(Π1(1, X1),Π1(0, X1))]

×[min(Π2(1, X2),Π2(0, X2)),max(Π2(1, X2),Π2(0, X2))],

there is always one equilibrium in mixed strategies. There is also two equi-
libria in pure strategies in the case of duopoly entry and coordination. For
instance, when Πi(1) < εi < Πi(0), i = 1, 2, we have a game of Chicken (or
public good provision) and when Πi(0) < εi < Πi(1), i = 1, 2, we have a
Battle of the Sexes.

3.2.5 Object of inference

The analyst observes the realized strategy profile and realized values of the
heterogeneity variables X1 and X2. However, realized values of heterogeneity
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Figure 3.1 – Equilibrium correspondence in the duopoly entry case. For each value of the pair

(ε1, ε2), the predicted equilibria are given. In the central rectangle, corresponding to values of unobserved

heterogeneity such that Πi(1) ≤ εi ≤ Πi(0), for i = 1, 2, three equilibria are predicted, including two

in pure strategies, (Y1 = 1, Y2 = 0) and (Y1 = 0, Y2 = 1) and one in mixed strategies, with Player i

participating with probability σi(ε3−i) = (Π3−i(0)−Π3−i(1))−1(Π3−i(0)−ε3−i). In the rest of the (ε1, ε2)

space, single pure strategy Nash equilibria are predicted for each value of the unobserved heterogeneity

pair (ε1, ε2).
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Figure 3.2 – Equilibrium correspondence in the coordination case. For each value of the pair

(ε1, ε2), the predicted equilibria are given. In the central rectangle, corresponding to values of unobserved

heterogeneity such that Πi(0) ≤ εi ≤ Πi(1), for i = 1, 2, three equilibria are predicted, including two

in pure strategies, (Y1 = 1, Y2 = 1) and (Y1 = 0, Y2 = 0) and one in mixed strategies, with Player i

participating with probability σi(ε3−i) = (Π3−i(1)−Π3−i(0))−1(ε3−i−Π3−i(0)). In the rest of the (ε1, ε2)

space, single pure strategy Nash equilibria are predicted for each value of the unobserved heterogeneity

pair (ε1, ε2).
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Figure 3.3 – Equilibrium correspondence in the asymmetric case. For each value of the pair (ε1, ε2),

the predicted equilibria are given. In the central rectangle, corresponding to values of unobserved hetero-

geneity such that Π1(0) ≤ ε1 ≤ Π1(1) and Π2(1) ≤ ε2 ≤ Π2(0), a single equilibrium in mixed strategies is

predicted, with Player i participating with probability σi(ε3−i) = (Π3−i(0)−Π3−i(1))−1(Π3−i(0)−ε3−i).

In the rest of the (ε1, ε2) space, single pure strategy Nash equilibria are predicted for each value of the

unobserved heterogeneity pair (ε1, ε2).
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variables ε1 and ε2 are not observed and the payoff functions Π1 and Π2 are
unknown and are the object of inference. The model is incomplete in two
respects :

1. The marginal distributions of the unobserved heterogeneity variables
ε1 and ε2 are normalized. However, the joint distribution of (ε1, ε2),
which we shall denote C(ε1, ε2) (since it is equal to the copula, given
the uniform normalization) is unknown. This implies that although
the probability of any horizontal or any vertical band in Figures 3.1-
3.3 is predicted by the model, the probability of other rectangles are
not. This means in particular that the likelihood of observing, say,
(Y1 = 1, Y2 = 1) in the duopoly entry case of Figure 3.1 is not pinned
down by the model.

2. In each of the three Figures 3.1-3.3, multiple equilibria arise in the
central region of the (ε1, ε2) space. This implies that, short of additio-
nal information about the equilibrium selection mechanism, the model
delivers multiple predictions for the strategy profile, only one of which
is actually realized.

Model incompleteness results here, as we shall see, in partial identification of
the payoff functions, the joint distribution of unobserved heterogeneity and
the equilibrium selection mechanism. Throughout the paper, we shall treat
the equilibrium selection mechanism as a nuisance parameter and concentrate
on the derivation of the empirical content of the model, when no additional
assumption is maintained about equilibrium selection. We shall proceed in
two steps.

1. First we define and characterize the identified set for the distribution
of unobserved heterogeneity and for the payoff functions (jointly). This
will be achieved in Section 3.3 with an application of the characteri-
zation of the identified set for Shapley regular games in Galichon and
Henry (2011).

2. Second we treat both the equilibrium selection mechanism and the
distribution of unobserved heterogeneity as nuisance parameters and
we derive in Section 3.4 the identified set for the payoff functions as
the projection of the joint identified set obtained in Point (1).
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3.3 Identified set for payoffs and heterogeneity
distribution

In order to define and characterize the empirical content of Nash equili-
brium play in 2 × 2 games of perfect information, we first clarify the obser-
vability structure and the structural elements to be identified.

Definition 2 (True frequencies). The probabilities of each of the four strategy
profiles (Y1 = j1, Y2 = j2), for j1, j2 = 1, 0, (as would be obtained from an
infinite sample of i.i.d. replications of the game) are called true frequencies
and denoted P (Y1 = j1, Y2 = j2|X1, X2) or P ((j1, j2)|X1, X2) for j1, j2 = 1, 0.
We shall assume throughout this (partial) identification analysis that the true
frequencies are known.

Knowing the true frequencies of strategy profiles, we seek to characterize
all the informational content of Nash equilibrium play with a finite collection
of inequalities involving payoff functions Πi(j,Xi), i = 1, 2 and j = 1, 0 and
the joint distribution of unobserved heterogeneity denoted :

C(u1, u2) = P (ε1 ≤ u1, ε2 ≤ u2), ∀(u1, u2) ∈ [0, 1]2. (3.2)

The notation C(u1, u2) is chosen in reference to the fact that, given the
uniform normalization of the marginals, C is also the copula of the pair
(ε1, ε2).

The inequalities characterizing the empirical content of the model will be
sharp in the sense that all (C,Π1,Π2) that satisfy them are compatible with
Nash equilibrium play in the 2×2 perfect information game specification. We
define the identified set as in Beresteanu, Molchanov, and Molinari (2011).

Definition 3 (Identified set). The identified set for payoff functions and
unobserved heterogeneity distribution is the collection of values of (C,Π1,Π2)
such that there exists a probability σ 7→ µ(σ|ε,X,Π) (an equilibrium selection
mechanism) on the equilibrium correspondence G(ε,X,Π) satisfying for each
strategy profile (Y1 = j1, Y2 = j2), j1, j2 = 1, 0,

P ((j1, j2)|X) =

∫
[0,1]2

{∫
G(ε,X,Π)

σ((j1, j2), ε,Π)µ(σ|ε,X,Π)

}
dC(ε1, ε2),

where P ((j1, j2)|X) is the true frequency of (Y1 = j1, Y2 = j2).
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Definition 3 is a rephrasing of the fact that there is a way to complete the
model so that predicted probabilities are equal to true frequencies. Applying
Theorem 5 of Galichon and Henry (2011) for Shapley regular games and
removing redundant inequalities yields the characterization of the identified
set given in Theorem 3 (see Appendix .3 for the proof). First, we need some
additional notation relative to the probabilities of each strategy profile under
mixed strategies.

Lemma 1 (Profile probabilities under mixed strategies). The probability
that Player i participates in case the mixed strategy equilibrium is selected
is σi(ε3−i,Π3−i) = (Π3−i(0) − Π3−i(1))−1(Π3−i(0) − ε3−i) and the predicted
probability of strategy profile (j1, j2) is Σj1,j2(C,Π) with :

Σ11(C,Π) =
∣∣∣∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
σ1(ε2,Π2)σ2(ε1,Π1)dC(ε1, ε2)

∣∣∣ ,
Σ00(C,Π) =

∣∣∣∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
(1− σ1(ε2,Π2)) (1− σ2(ε1,Π1)) dC(ε1, ε2)

∣∣∣ ,
Σ10(C,Π) =

∣∣∣∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
σ1(ε2,Π2) (1− σ2(ε1,Π1)) dC(ε1, ε2)

∣∣∣ ,
Σ01(C,Π) =

∣∣∣∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
(1− σ1(ε2,Π2))σ2(ε1,Π1)dC(ε1, ε2)

∣∣∣ .
(3.3)

With this notation, we can state the characterization of the identified set.

Theorem 3 (Identified set). (C,Π) belongs to the identified set if and only if
one of the following holds for almost all values of X. For ease of exposition,
we denote P (i, j) = P (Y1 = i, Y2 = j|X1, X2) and Πi(j,Xi) = Πi(j), i = 1, 2,
and j = 1, 0.

1. (Duopoly entry) Πi(1) ≤ Πi(0), i = 1, 2, and

C(Π1(1),Π2(1)) ≤ P (1, 1) ≤ C(Π1(1),Π2(1)) + Σ11(C,Π)

1− Π1(0)− Π2(0) + C(Π1(0),Π2(0)) ≤ P (0, 0)

≤ 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0)) + Σ00(C,Π), (3.4)
Π2(0) + [C(Π1(0),Π2(1))− C(Π1(1),Π2(1))]− C(Π1(0),Π2(0)) ≤ P (0, 1)

≤ Π2(0)− C(Π1(1),Π2(0)),

Π1(0) + [C(Π1(1),Π2(0))− C(Π1(1),Π2(1))]− C(Π1(0),Π2(0)) ≤ P (1, 0)

≤ Π1(0)− C(Π1(0),Π2(1)).
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2. (Coordination game) Πi(1) ≥ Πi(0), i = 1, 2, and

Π2(0)− C(Π1(1),Π2(0)) ≤ P (0, 1)

≤ Π2(0)− C(Π1(1),Π2(0)) + Σ01(C,Π),

Π1(0)− C(Π1(0),Π2(1)) ≤ P (1, 0)

≤ Π1(0)− C(Π1(0),Π2(1)) + Σ10(C,Π),

C(Π1(0),Π2(1)) + [C(Π1(1),Π2(0))− C(Π1(0),Π2(0))] ≤ P (1, 1)

≤ C(Π1(1),Π2(1)), (3.5)
1− Π1(0)− Π2(0) + [C(Π1(0),Π2(1))− C(Π1(1),Π2(1))] + C(Π1(1),Π2(0))

≤ P (0, 0) ≤ 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0)).

3. (Asymmetric case 1) Π1(1) ≥ Π1(0), Π2(1) ≤ Π2(0) and

P (1, 1) = C(Π1(1),Π2(1)) + Σ11(C,Π),

P (0, 0) = 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0)) + Σ00(C,Π),

P (0, 1) = Π2(0)− C(Π1(1),Π2(0)) + Σ01(C,Π), (3.6)
P (1, 0) = Π1(0)− C(Π1(0),Π2(1)) + Σ10(C,Π)..

4. (Asymmetric case 2) The constraints of Case (3) hold after permuta-
tion of the two players.

Consider the duopoly entry case. All other cases are derived in the same
way. The equilibrium correspondence of the game is represented in Figure 3.1.
The observation of strategy profile (Y1 = 1, Y2 = 1) is rationalizable as the
result of a pure strategy equilibrium in region ε ∈ [0,Π1(1)]× [0,Π2(1)] with
probability C(Π1(1),Π2(1)) or as the result of a mixed strategy equilibrium
in region ε ∈ [Π1(1),Π1(0)]× [Π2(1),Π2(0)] with probability Σ11 if the equi-
librium in mixed strategies is selected. Hence the true frequency P (1, 1) is at
least equal to C(Π1(1),Π2(1)) if the equilibrium in mixed strategies is never
selected and at most equal to C(Π1(1),Π2(1)) + Σ11 if the equilibrium in
mixed strategies is always selected. Hence we recover the bounds on the first
line of (3.4). The same reasoning applies to strategy profile (Y1 = 0, Y2 = 0)
to yield the second line of (3.4).

The observation of strategy profile (Y1 = 0, Y2 = 1) can be rationalized as
the result of a pure strategy equilibrium in the lower right L-shaped region or
as the result of a pure strategy equilibrium or a mixed strategy equilibrium in
region ε ∈ [Π1(1),Π1(0)] × [Π2(1),Π2(0)]. The maximum rationalizable true
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frequency P (0, 1) is therefore obtained when the pure strategy equilibrium
(Y1 = 0, Y2 = 1) is always selected in region ε ∈ [Π1(1),Π1(0)]×[Π2(1),Π2(0)].
The resulting upper bound is equal to P (ε1 ≥ Π1(1), ε2 ≤ Π2(0)), which is
equal to the right-hand side on the third line of (3.4). The minimum rationa-
lizable true frequency P (0, 1) is obtained when the pure strategy equilibrium
(Y1 = 1, Y2 = 0) is always selected so that (Y1 = 0, Y2 = 1) never occurs
in region ε ∈ [Π1(1),Π1(0)] × [Π2(1),Π2(0)]. The resulting lower bound is
the probability of the lower left L-shaped region, whose probability is equal
to the left-hand side of Line 3 of (3.4). The same reasoning applies to true
frequency P (1, 0) and Line 4 of (3.4).

Note that additional constraints can be derived from the analysis of the
game. In particular, the maximum rationalizable frequency P (0, 1) is obtai-
ned when the pure strategy equilibrium (Y1 = 0, Y2 = 1) is always selec-
ted in the region with multiple equilibria. This implies of course that the
other equilibria are never selected, which constrains the rationalizable fre-
quency P (Y1 = 1, Y2 = 0). Hence P (0, 1) + P (1, 0) is bounded above by
1 − Π1(0) − Π2(0) + C(Π1(1),Π2(1)) − C(Π1(0),Π2(0)). However, the lat-
ter constraint on (C,Π) is redundant, as it is implied by the combination of
P (1, 1) ≥ C(Π1(1),Π2(1)) and P (0, 0) ≥ 1−Π1(0)−Π2(0)+C(Π1(0),Π2(0)).

This shows that true frequencies that are rationalizable as Nash equili-
brium strategy profiles of the 2 × 2 game necessarily satisfy inequalities in
(3.4-3.6). The proof of Theorem 3 in Appendix .3 shows the converse, namely
that true frequencies that satisfy inequalities (3.4-3.6) are rationalizable as
Nash equilibrium strategy profiles of the 2 × 2 game. Hence, the bounds of
Theorem 3 are sharp.

3.4 Empirical content of equilibrium in pure
strategies

When equilibria in mixed strategies are ruled out, Σj1j2 = 0 for j1, j2 =
1, 0 and the lower bounds in each of the inequalities in (3.4)-(3.6) are redun-
dant. Hence we have the following result.

Theorem 4 (Identified set for (C,Π) with only pure strategies). (C,Π) be-
longs to the identified set if and only if one of the following holds for almost
all values of X. For ease of exposition, we denote P (i, j) = P (Y1 = i, Y2 =
j|X1, X2) and Πi(j,Xi) = Πi(j), i = 1, 2, and j = 1, 0.
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1. (Duopoly entry) Πi(1) ≤ Πi(0), i = 1, 2, and

P (1, 1) = C(Π1(1),Π2(1))

P (0, 0) = 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0)),

P (0, 1) ≤ Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) ≤ Π1(0)− C(Π1(0),Π2(1)).

(3.7)

2. (Coordination game) Πi(1) ≥ Πi(0), i = 1, 2, and

P (0, 1) = Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) = Π1(0)− C(Π1(0),Π2(1)),

P (1, 1) ≤ C(Π1(1),Π2(1)),

P (0, 0) ≤ 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0)).

(3.8)

3. (Asymmetric case 1) Π1(1) ≥ Π1(0), Π2(1) ≤ Π2(0) and

P (1, 1) = C(Π1(1),Π2(1))

P (0, 0) = 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0))

P (0, 1) = Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) = Π1(0)− C(Π1(0),Π2(1)).

(3.9)

4. (Asymmetric case 2) The constraints of Case (3) hold after permuta-
tion of the two players.

The results of Theorem 4 can be applied in several ways. We describe
two polar cases. On the one hand, we may add assumptions on the joint
distribution of firm specific unobserved heterogeneity (ε1, ε2), positing (1)
a parametric copula, (2) perfect correlation of (ε1, ε2), as in the case of an
industry-wide shock or (3) independence of ε1 and ε2 as in the case of purely
idiosyncratic shocks. A combination of the latter two cases can also be en-
tertained in the form of (4) a factor model. These implications are detailed
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in Section 3.4.1. On the other hand, we may acknowledge total ignorance of
the joint distribution of firm specific unobserved heterogeneity and project
the identified region of Theorem 5 to obtain nonparametric sharp bounds on
the payoff functions only. We describe this in Section 3.4.2.

3.4.1 Restrictions on the joint distribution of firm spe-
cific heterogeneity

We consider first refinements of the bounds of Theorem 4 based on a
variety of assumptions on the joint distribution of firm specific unobserved
heterogeneity.

Parametric restrictions on the copula

In the case where the copula for (ε1, ε2) is parameterized with parameter
vector θ, sharp bounds are obtained straightforwardly by replacing C(ε1, ε2)
with the parametric version C(ε1, ε2, θ) in Lemma 1 and Theorems 3 and 4.
Parameterizing the copula C(ε1, ε2) while leaving the marginal distributions
of ε1 and ε2 unrestricted yields nonparametric bounds, akin to those derived
by Aradillas-Lopez (2010) in the case of incomplete information games.

Perfect correlation

The case of perfect correlation between the two firm specific unobser-
ved heterogeneity components is also of interest, as it corresponds to an
industry-wide productivity shock in industrial organization applications. In
that case, the copula attains its Fréchet upper bounds C(ε1, ε2) = min(ε1, ε2)
so that the sharp bounds of Theorem 4 in case of duopoly entry yield
P (1, 1) = min(Π1(1),Π2(1)), P (0, 0) = min(1− Π1(0), 1− Π2(0)), P (0, 1) ≤
max(Π2(0) − Π1(1), 0) and P (1, 0) ≤ max(Π1(0) − Π2(1), 0). Similar sharp
bounds for the three others cases may be easily derived.

Independence

In the other polar case, where the two firms specific unobserved heteroge-
neity components are purely idiosyncratic shocks, ε1 ⊥⊥ ε0 and sharp bounds
are derived from Theorem 2 by simply setting C(ε1, ε2) = ε1ε2.
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Factor structure

Intermediate cases between the two polar cases of industry-wide shock and
idiosyncratic shocks can also be entertained with a simple factor model for the
pair of unobserved heterogeneities (ε1, ε2). Suppose unobserved heterogeneity
has factor structure εd = αdε + ηd, d = 1, 2, with Eε = 0, Eε2 = 1 (without
loss of generality) and η1 ⊥⊥ η2|ε. ηd is uniformly distributed on [0, 1] for
d = 1, 2, conditionally on ε. This factor specification achieves a decomposition
of unobserved heterogeneity components into an industry common shock ε
and a purely idiosyncratic shock ηd, d = 1, 2. We recover the case of purely
idiosyncratic firm specific unobserved heterogeneity, when α1 = α0 = 0. By
iterated expectations, we find for each i, j = 1, 0 :

C(Π1(i, x1),Π2(j, x2)|x1, x2) = P(ε1 ≤ Π1(i, x1), ε2 ≤ Π2(j, x2)|x1, x2)

= EεP(η1 ≤ Π1(i, x1)− α1ε,

η2 ≤ Π2(j, x2)− α2ε|x1, x2, ε)

= EεP(η1 ≤ Π1(i, x1)− α1ε|x1, ε)

P(η2 ≤ Π2(j, x2)− α2ε|x1, x2, ε)

= Π1(i, x1)Π2(j, x2) + α1α2,

from which sharp bounds can be derived for the payoff functions and the pair
(α1, α2).

3.4.2 Sharp bounds on the payoff functions

From the identified set for (Π, C) we can derive sharp bounds for the
payoff functions alone using Fréchet bounds on C in each of the four cases.
Consider the duopoly entry case for instance. Line 1 of (3.7) yields P (1, 1) =
C(Π1(1),Π2(1)) ≤ min(Π1(1),Π2(2)) (Fréchet bound). Similarly, Line 2 of
(3.7) yields 1 − P (0, 0) ≥ max(Π1(0),Π2(0)). Since Π2(0) ≥ Π2(1), we have
C(Π1(1),Π2(0)) ≥ C(Π1(1),Π2(1)) and Lines 1 and 3 of (3.7) combined yield
P (1, 1)+P (0, 1) ≤ Π2(0)−[C(Π1(1),Π2(0))−C(Π1(1),Π2(1))] ≤ Π2(0). Simi-
larly, Lines 1 and 4 yield P (1, 1)+P (1, 0) ≤ Π1(0). Finally, P (0, 1)+P (1, 1) =
1−P (1, 0)−P (0, 0) ≥ Π2(0)− [C(Π1(0),Π2(0))−C(Π1(0),Π2(1))] ≥ Π2(0)−
[Π2(0)−Π2(1)] = Π2(1) and similarly P (1, 0)+P (1, 1) ≥ Π1(1). We therefore
have the validity of the following bounds for the duopoly entry case :

P (1, 1) ≤ Π1(1) ≤ P (1, 1) + P (1, 0) ≤ Π1(0) ≤ 1− P (0, 0),
P (1, 1) ≤ Π2(1) ≤ P (1, 1) + P (0, 1) ≤ Π2(0) ≤ 1− P (0, 0).
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For the coordination case, the same method (see the proof of Theorem 5)
yields :

P (1, 0) ≤ Π1(0) ≤ P (1, 1) + P (1, 0) ≤ Π1(1) ≤ 1− P (0, 1),
P (0, 1) ≤ Π2(0) ≤ P (1, 1) + P (0, 1) ≤ Π2(1) ≤ 1− P (1, 0).

and finally for the asymmetric cases :

P (1, 0) ≤ Π1(0) ≤ P (1, 1) + P (1, 0) ≤ Π1(1) ≤ 1− P (0, 1),
P (1, 1) ≤ Π2(1) ≤ P (1, 1) + P (0, 1) ≤ Π2(0) ≤ 1− P (0, 0),

and similarly after permutation of the two players. We can now formally cha-
racterize the joint sharp bounds on payoff functions when only pure strategies
are entertained.

Theorem 5 (Sharp bounds for payoff functions). Π belongs to the identified
set if and only if (3.10) and (3.11) below hold.

min (Π1(1, x1),Π1(0, x1)) ≤ infx2

(
P (1, 1|x1, x2) + P (1, 0|x1, x2)

)
max (Π1(1, x1),Π1(0, x1)) ≥ supx2

(
P (1, 1|x1, x2) + P (1, 0|x1, x2)

)
min (Π2(1, x2),Π2(0, x2)) ≤ infx1

(
P (1, 1|x1, x2) + P (0, 1|x1, x2)

)
max (Π2(1, x2),Π2(0, x2)) ≥ supx1

(
P (1, 1|x1, x2) + P (0, 1|x1, x2)

)
(3.10)

and

supx2 P (1, 1|x1, x2) ≤ Π1(1, x1) ≤ infx2

(
1− P (0, 1|x1, x2)

)
supx2 P (1, 0|x1, x2) ≤ Π1(0, x1) ≤ infx2

(
1− P (0, 0|x1, x2)

)
supx1 P (1, 1|x1, x2) ≤ Π2(1, x2) ≤ infx1

(
1− P (1, 0|x1, x2)

)
supx1 P (0, 1|x1, x2) ≤ Π2(0, x2) ≤ infx1

(
1− P (0, 0|x1, x2)

)
.

(3.11)
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In the case without excluded variables, it is immediately apparent from
the bounds of Theorem 5 that the sign of Πi(1)−Πi(0) is not identified, hence
we cannot determine from the data only, whether the game is a duopoly
entry game, a game of cooperation or an asymmetric game. With exclusion
restrictions, however, it becomes possible to identify the class of games if
bounds cross in all cases except one. An example is the case when

sup
x2

(P (1, 0|x1, x2) + P (1, 1|x1, x2)) > inf
x2

(1− P (0, 1|x1, x2))

and

sup
x1

(P (0, 1|x1, x2) + P (1, 1|x1, x2)) > inf
x1

(1− P (1, 0|x1, x2)) ,

so that cooperation and asymmetric games are rejected, whereas

sup
x2

(P (1, 0|x1, x2) + P (1, 1|x1, x2)) ≤ inf
x2

(1− P (0, 0|x1, x2))

and

sup
x1

(P (0, 1|x1, x2) + P (1, 1|x1, x2)) ≤ inf
x1

(1− P (0, 0|x1, x2)) ,

so that the duopoly entry game is not rejected.
In the case without excluded variable, the bounds on the payoff functions

Πi(1) and Πi(0) can be reduced to a point, but may never cross, so that
the hypothesis of Nash equilibrium play is not falsifiable. If, on the other
hand, there is an exclusion restriction, hence variation in the payoff of one
player that leaves the other player’s payoff unchanged, the bounds may cross
and the joint assumption of Nash equilibrium play and the exclusion restric-
tion may be rejected. For instance, if infx2 (P (1, 0|x1, x2) + P (1, 1|x1, x2)) <
min(supx2 (P (1, 1|x1, x2)) , supx2 (P (1, 0|x1, x2))) then the bounds cross in all
cases and the model is rejected.

Sharp bounds on monopoly advantage can also be easily derived from
the bounds of Theorem 5. Indeed, considering Player 1 only for simplicity,
monopoly advantage is

|Π1(0, x1)− Π1(1, x1)| ≤ 1−min

(
sup
x2

P (0, 0|x1, x2), sup
x2

P (0, 1|x1, x2)

)
− sup

x2

P (1, 1|x1, x2).
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If we assume a priori that the game is duopoly entry, then the bounds on
monopoly advantage simplify to

Π1(0, x1)− Π1(1, x1) ≤ 1− sup
x2

P (0, 0|x1, x2)− sup
x2

P (1, 1|x1, x2)

. Bounding free-riding incentives ε1−Π1(1) (free riding incentives of Player 1)
is a little more involved, since they involve the unobserved heterogeneity
component ε. We may however apply the bounds of Theorem 4 to derive
joint sharp bounds on the distribution of the pair (ε1 − Π1(1), ε2 − Π2(1)).

Conclusion
This paper contributed to the literature on the empirical analysis of game

theoretic models of economic interactions by providing sharp bounds on non-
parametrically specified payoff functions and type distributions. This com-
plements results of Kline and Tamer (2012) who derive sharp bounds on best
response functions. The bounds obtained lend themselves to standard partial
identification inference methods, and therefore allow nonparametric inference
on utility functions, profit functions, unobserved heterogeneity distributions
and more specific quantities such as the extent of monopoly advantage in
duopoly entry games and free riding incentives in cooperation games. The
method employed to derive sharp bounds on payoff functions only as a projec-
tion of the joint identified region for payoff functions and type distributions
could be applied to higher dimensions to extend the present results to multi-
person games with more complex strategy spaces. Other equilibrium concepts
(Stackelberg, correlated strategies etc...) could also be entertained in future
work.
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Annexes

.1 Proof of main results in Chapter 1
Lemma 2. Suppose Supp(P |X = x) is not a singleton for all x ∈ Dom(X).

1. (Lemma 1, SV) Let p and p′ belong to Supp(P | X = x) ∩ Supp(P |
X = x′) such that p′ < p, then

sign([ν(1, x′)− ν(0, x)]) = sign(h(x, x′, p, p′))

where h(x, x′, p, p′) = (P (1, 1|x′, p) − P (1, 1|x′, p′)) − (P (1, 0|x, p′) −
P (1, 0|x, p)).

2. Let p′1 < p′2 ∈ Supp(P | X = x′) and p1 < p2 ∈ Supp(P | X = x) such
that [p′1, p

′
2] ⊆ [p1, p2] then,

h(1, x, x′, p1, p2, p
′
1, p
′
2) ≥ 0⇒ [ν(1, x′)− ν(0, x)] ≥ 0

where h(1, x, x′, p1, p2, p
′
1, p
′
2) = (P (1, 1|x′, p′2)−P (1, 1|x′, p′1))−(P (1, 0|x, p1)−

P (1, 0|x, p2)).

3. Let p′1 < p′2 ∈ Supp(P | X = x′) and p1 < p2 ∈ Supp(P | X = x) such
that [p′1, p

′
2] ⊆ [p1, p2] then,

h(0, x, x′, p1, p2, p
′
1, p
′
2) ≥ 0⇒ [ν(0, x′)− ν(1, x)] ≥ 0

where h(0, x, x′, p1, p2, p
′
1, p
′
2) = (P (1, 0|x′, p′1)−P (1, 0|x′, p′2))−(P (1, 1|x, p2)−

P (1, 1|x, p1)).

4. Let p and p′ belong to Supp(P | X = x)∩Supp(P | X = x′) such that
p′ < p, then

sign([ν(1, x′)− ν(1, x)]) = sign(h̃1(x, x′, p, p′))

where h̃1(x, x′, p, p′) = (P (1, 1|x′, p) − P (1, 1|x′, p′)) − (P (1, 1|x, p) −
P (1, 1|x, p′)).
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5. Let p and p′ belong to Supp(P | X = x)∩Supp(P | X = x′) such that
p′ < p, then

sign([ν(0, x′)− ν(0, x)]) = sign(h̃0(x, x′, p, p′))

where h̃0(x, x′, p, p′) = (P (1, 0|x′, p′) − P (1, 0|x′, p)) − (P (1, 0|x, p′) −
P (1, 1|x, p)).

6. Let p′1 < p′2 ∈ Supp(P | X = x′) and p1 < p2 ∈ Supp(P | X = x) such
that [p′1, p

′
2] ⊆ [p1, p2] then,

h̃1(x, x′, p1, p2, p
′
1, p
′
2) ≥ 0⇒ [ν(1, x′)− ν(1, x)] ≥ 0

where h̃1(x, x′, p1, p2, p
′
1, p
′
2) = (P (1, 1|x′, p′2)−P (1, 1|x′, p′1))−(P (1, 1|x, p2)−

P (1, 1|x, p1)).

7. Let p′1 < p′2 ∈ Supp(P | X = x′) and p1 < p2 ∈ Supp(P | X = x) such
that [p′1, p

′
2] ⊆ [p1, p2] then,

h̃0(x, x′, p1, p2, p
′
1, p
′
2) ≥ 0⇒ [ν(0, x′)− ν(0, x)] ≥ 0

where h̃1(x, x′, p1, p2, p
′
1, p
′
2) = (P (1, 0|x′, p′1)−P (1, 0|x′, p′2))−(P (1, 0|x, p1)−

P (1, 1|x, p2)).

Proof of lemma 2. I will prove cases (2), (4) and (6). The cases (3), (5), and
(7) can be similarly proved.

— Case (2) Let p′1 < p′2 ∈ Supp(P | X = x′) and p1 < p2 ∈ Supp(P |
X = x) such that [p′1, p

′
2] ⊆ [p1, p2].

h(1, x, x′, p1, p2, p
′
1, p
′
2) = (P (1, 1|x′, p′2)− P (1, 0|x′, p′1))

−(P (1, 0|x, p1)− P (1, 1|x, p2))

= P (u ≤ ν(1, x′), p′1 < v < p′2)

−P (u ≤ ν(0, x), p1 < v < p2)

≤ P (u ≤ ν(1, x′), p1 < v < p2)

−P (u ≤ ν(0, x), p1 < v < p2).

The last inequality holds since [p′1, p
′
2] ⊆ [p1, p2]. Therefore, if

h(1, x, x′, p1, p2, p
′
1, p
′
2) ≥ 0 then

P (u ≤ ν(1, x′), p1 < v < p2)− P (u ≤ ν(0, x), p1 < v < p2) ≥ 0,
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which implies that [ν(1, x′)−ν(0, x)] ≥ 0 since we have the following :[
P (u ≤ ν(1, x′), p1 < v < p2)− P (u ≤ ν(0, x), p1 < v < p2)

]
=

P (ν(0, x) ≤ u ≤ ν(1, x′), p1 < v < p2) if ν(1, x′) > ν(0, x)

0 if ν(1, x′) = ν(0, x)

−P (ν(1, x′) ≤ u ≤ ν(0, x), p1 < v < p2) if ν(1, x′) < ν(0, x).

— Case (4) Let p and p′ belong to Supp(P | X = x)∩Supp(P | X = x′)
such that p′ < p.

h̃1(x, x′, p, p′) = (P (1, 1|x′, p)− P (1, d|x′, p′))− (P (1, 1|x, p)− P (1, 1|x, p′))
= P (u ≤ ν(d, x′), p′ < v < p)− P (u ≤ ν(d, x), p′ < v < p),

then

h̃d(x, x
′, p, p′) =


P (ν(d, x) ≤ u ≤ ν(d, x′), p′ < v < p) if ν(d, x′) > ν(d, x)

0 if ν(d, x′) = ν(d, x)

−P (ν(d, x′) ≤ u ≤ ν(d, x), p′ < v < p) if ν(d, x′) < ν(d, x).

— Case (6) Let p′1 < p′2 ∈ Supp(P | X = x′) and p1 < p2 ∈ Supp(P |
X = x) such that [p′1, p

′
2] ⊆ [p1, p2].

h̃1(x, x′, p1, p2, p
′
1, p
′
2) = (P (1, 1|x′, p′2)− P (1, 0|x′, p′1))

−(P (1, 1|x, p2)− P (1, 1|x, p1))

= P (u ≤ ν(1, x′), p′1 < v < p′2)

−P (u ≤ ν(1, x), p1 < v < p2)

≤ P (u ≤ ν(1, x′), p1 < v < p2)

−P (u ≤ ν(1, x), p1 < v < p2).

The last inequality holds since [p′1, p
′
2] ⊆ [p1, p2]. Therefore, if

h̃1(x, x′, p1, p2, p
′
1, p
′
2) ≥ 0 then

P (u ≤ ν(1, x′), p1 < v < p2)− P (u ≤ ν(1, x), p1 < v < p2) ≥ 0,

which implies that [ν(1, x′)−ν(1, x)] ≥ 0 since we have the following :[
P (u ≤ ν(1, x′), p1 < v < p2)− P (u ≤ ν(1, x), p1 < v < p2)

]
=

P (ν(1, x) ≤ u ≤ ν(1, x′), p1 < v < p2) if ν(1, x′) > ν(1, x)

0 if ν(1, x′) = ν(1, x)

−P (ν(1, x′) ≤ u ≤ ν(1, x), p1 < v < p2) if ν(1, x′) < ν(1, x).
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This completes our proof.

Proof of proposition 1. Under assumption 1, if ν(0, X) < ν(1, X) the mo-
del (1.1) can be written in the form of a multi-valued mapping Gν(., X) from
unobservable u to observable (Y,D,X,Z) in the following way :

Gν : u 7−→ (y, d, x, z)

[0, ν(0, x)] 7−→ {(1, 0, x, z); (1, 1, x, z)}
[ν(0, x), ν(1, x)] 7−→ {(0, 0, x, z); (1, 1, x, z)}

[ν(1, x), 1] 7−→ {(0, 1, x, z); (0, 0, x, z)}

When ν(0, X) > ν(1, X) we can derived an analogous multi-valued mapping :

Gν : u 7−→ (y, d, x, z)

[0, ν(1, x)] 7−→ {(1, 0, x, z); (1, 1, x, z)}
[ν(1, x), ν(0, x)] 7−→ {(1, 0, x, z); (0, 1, x, z)}

[ν(0, x), 1] 7−→ {(0, 1, x, z); (0, 0, x, z)}

Let call P the distribution of observable variables (Y,D) ∈ {(0, 0), (0, 1), (1, 0),
(1, 1)} = (Y ,D) which can be estimated from the data and U the uniform
distribution on [0, 1], of the unobservable variable u. The model relating out-
comes variables (Y,D) and unobservable variable u is given by :

P ({(Y,D) ∈ Gν(u | X,Z)}) = 1 X,Z-as for some ν

such as ν is generally non-unique, which prompts the following definition.

Definition 4. ν(d, x) = P (Yd = 1 | X = x) belongs to the identified set if
and only if P ({(Y,D) ∈ Gν(u | X,Z)}) = 1 X,Z a.s

According to Theorem 1 of Galichon and Henry (2011), the identified set
is equal to the set ν such that the following inequalities hold :

P(A | X,Z) ≤ U({u | Gν(u | X,Z) ∩ A 6= ∅}),∀A ∈ 2(Y,D) (12)

We find exactly 6 non redundant inequalities which can be rewritten as fol-
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lows :

P (Y = 1, D = 0 | X,Z) ≤ ν(0, X)

P (Y = 0, D = 0 | X,Z) ≤ 1− ν(0, X)

P (Y = 1, D = 1 | X,Z) ≤ ν(1, X)

P (Y = 0, D = 1 | X,Z) ≤ 1− ν(1, X)

P (Y = 0 | X,Z) ≤ max(1− ν(0, X), 1− ν(1, X))

P (Y = 1 | X,Z) ≤ max(ν(0, X), ν(1, X)).

This completes our proof.

Proof of theorem 1.

Definition 5. (Nelsen 2006) A two-dimentional subcopula (or briefly subco-
pula) is a function C with the following properties :

1. Domain(C)=D1×D2 where D1 and D2 are subsets of [0, 1] containing
0 and 1.

2. C(u1, v1) − C(u1, v2) − C(u2, v1) + C(u2, v2) ≥ 0, for all u1, u2 ∈ D1

and v1, v2 ∈ D2 such that u1 ≥ u2 and v1 ≥ v2.
3. C(u, 1) = u and C(1, v) = v for all u ∈ D1 and for all v in D2.

Claim 1. Under assumptions 4 and 5, ν(d, x) : {0, 1} ×Dom(X) −→ [0, 1]
is in the identified set if and only if there exists a subcopula C whose domain
is S1 ∪ {0, 1} × S2 ∪ {0, 1} such that :

1. C(u, 0) = C(0, v) = 0, for all u ∈ S1∪{0, 1} and for all v in S2∪{0, 1}.
2. C(ν(1, x), p) = P (1, 1|x, p) and C(ν(0, x), p) = ν(0, x) − P (1, 0|x, p)

for all (x, p) ∈ Dom(X, supp(P |X)).
where S2 = {p(x, z) : (x, z) ∈ Dom(x, z)}.

The proof of this claim is given in Chiburis (2010).
In the main text, we prove that the characterization of the identified set

derived in the theorem (1) is equivalent to the characterization derived in
the corollary (1). Then to prove the theorem (1) I will prove that the bounds
proposed in the corollary (1) are sharp. For the sake of simplicity, I shall use in
this section the following notation, L0(x, p) = supΩ−01(x) supP−(x′,p) P (1, 1|x′, p′)
andM0(x, p) = supΩ−00(x) supP−(x′,p)(SL0(x′)−P (1, 0|x′, p′)). Throughout the
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main text, we showed that ν(0, x) lies inside the following interval [SL0(x), SU0(x)].
To show that these bounds are sharp, it is sufficient to construct a subco-
pula which respects conditions cited in claim 1 when ν(0, x) equals SL0(x)
or SU0(x). Then, assume that,

ν(0, x) = SL0(x)

= sup
p
{P (1, 0|x, p) + max[L0(x, p),M0(x, p)]},

where the supremum is taken over Supp(P | X). I will now show that the
following function is a subcopula on domain S1 ∪ {0, 1} × S2 ∪ {0, 1} :

C(ν(1, x), p) = P (u ≤ ν(1, x), v ≤ p)

C(ν(0, x), p) = −P (u ≤ ν(0, x), v ≥ p) + sup
p
{P (1, 0|x, p)

+ max[L0(x, p),M0(x, p)]}.

By construction, our function verifies properties (1) and (3) of definition 5,
it remains to verify property (2). When Supp(P×X) = Supp(P )×Supp(X),
property (2) imposes restrictions on ν(0, x) for all p, p′ ∈ Supp(P ) = Supp(P |
X) = Supp(P | X ′). It’s no longer the case when we have Supp(P × X) 6=
Supp(P )×Supp(X) because of additional data observability constraints. In-
deed, C(ν(1, x), p(x′, z′)) = P (u ≤ ν(1, x), v ≤ p(x′, z′)) cannot be identified
from the data when p(x′, z′) /∈ Supp(P | X). So, property (2) doesn’t always
impose additional testable constraints. To clarify this point, consider the two
following situations :

1. Supp(P | X) ∩ Supp(P | X ′) = ∅, u1 = ν(0, x), u2 = ν(1, x′), v1 =
p(x′, z′) and v2 = p(x, z). Then property 2 doesn’t impose additional
restrictions on ν(0, x) since we cannot identify C(ν(1, x), p(x′, z′)) =
P (u ≤ ν(1, x), v ≤ p(x′, z′)).

2. Supp(P | X) ∩ Supp(P | X ′) = ∅, u1 = ν(0, x), u2 = ν(1, x′), v1 =
p(x, z) and v2 = p(x′, z′).

The only constraint from property 2 is : C(ν(1, x), p(x, z)) ≥ C(ν(1, x′), p(x′, z′)).
I now prove in 2 steps, that our proposed function verifies property (2). Before
going over these steps, we need a technical result :

Claim 2. For all (u1, u2, v1, v2) ∈ [0, 1]4 such that u1 ≥ u2 and v1 ≥ v2, we
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have :

P (u2 ≤ u ≤ u1, v2 ≤ v ≤ v1) = (P (u ≤ u1, v ≤ v1) + P (u ≤ u2, v ≥ v1))

−(P (u ≤ u1, v ≤ v2) + P (u ≤ u2, v ≥ v2))

≥ 0.

First step : Let p ∈ Supp(P | X) ∩ Supp(P | X ′) 6= ∅

1. Let (x, x′) satisfy ν(0, x) ≥ ν(1, x′).

C(ν(0, x), p)− C(ν(1, x′), p)

= −(P (u ≤ ν(0, x), v ≥ p) + P (u ≤ ν(1, x′), v ≤ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p) + max[L0(x, p),M0(x, p)]}

≥ −(P (u ≤ ν(0, x), v ≥ p) + P (u ≤ ν(1, x′), v ≤ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p) + L0(x, p)}

≥ −(P (u ≤ ν(0, x), v ≥ p) + P (u ≤ ν(1, x′), v ≤ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p)

+ sup
Ω−01(x)

sup
P−(x∗,p)

P (u ≤ ν(1, x∗), v ≤ p∗)}

≥ 0.

The last inequality holds because p ∈ Supp(P | X), x′ ∈ Ω−01(x) and
p ∈ P−(x′, p). Also, C(ν(0, x), p)− C(ν(1, x′), p) is increasing in p by
the first equality. Indeed, by claim 2 (P (u ≤ ν(1, x′), v ≤ p) + P (u ≤
ν(0, x), v ≥ p)) is decreasing in p since ν(0, x) ≥ ν(1, x′). Then, for
all p′ < p ∈ Supp(P | X) ∩ Supp(P | X ′) we have C(ν(0, x), p) −
C(ν(1, x′), p) ≥ C(ν(0, x), p′) − C(ν(1, x′), p′). Thus, C(ν(0, x), p) −
C(ν(1, x′), p) − C(ν(0, x), p′) + C(ν(1, x′), p′) ≥ 0. So, the property 2
is verified.
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2. Let (x, x′) satisfy ν(0, x) ≤ ν(1, x′).

C(ν(0, x), p)− C(ν(1, x′), p)

= −(P (u ≤ ν(0, x), v ≥ p) + P (u ≤ ν(1, x′), v ≤ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p) + max[L0(x, p),M0(x, p)]}

≤ −(P (u ≤ ν(0, x), v ≥ p) + P (u ≤ ν(0, x), v ≤ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p) + max[L0(x, p),M0(x, p)]}

≤ −P (u ≤ ν(0, x))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p) + max[L0(x, p),M0(x, p)]}

≤ −P (u ≤ ν(0, x)) + SL0(x)

≤ 0.

The first inequality holds because ν(0, x) ≤ ν(1, x′). Also, C(ν(0, x), p)−
C(ν(1, x′), p) is increasing in p by the first equality. Indeed, by claim 2
(P (u ≤ ν(1, x′), v ≤ p)+P (u ≤ ν(0, x), v ≥ p)) is increasing in p since
ν(0, x) ≤ ν(1, x′).
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3. Let (x, x′) satisfy ν(0, x) ≥ ν(0, x′)

C(ν(0, x), p)− C(ν(0, x′), p)

= −(P (u ≤ ν(0, x), v ≥ p)− P (u ≤ ν(0, x′), v ≥ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p) + max[L0(x, p),M0(x, p)]}

− sup
p′∈Supp(P |X′)

{P (u ≤ ν(0, x′), v ≥ p) + max[L0(x′, p′),M0(x′, p′)]}

≥ −(P (u ≤ ν(0, x), v ≥ p)− P (u ≤ ν(0, x′), v ≥ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p) +M0(x, p)]} − SL0(x′)

≥ −(P (u ≤ ν(0, x), v ≥ p)− P (u ≤ ν(0, x′), v ≥ p))

+ sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p)

+ sup
Ω−00(x)

sup
P−(x∗,p)

(SL0(x∗)− P (u ≤ ν(0, x∗), v ≥ p∗))}

−SL0(x′)

≥ −(P (u ≤ ν(0, x), v ≥ p)− P (u ≤ ν(0, x′), v ≥ p))

sup
p∈Supp(P |X)

{P (u ≤ ν(0, x), v ≥ p)− P (u ≤ ν(0, x′), v ≥ p))}

≥ 0.

The fourth inequality holds because x′ ∈ Ω−00(x) and p ∈ P−(x′, p).
Also, C(ν(0, x), p)−C(ν(0, x′), p) is increasing in p by the first equality.

4. Let (x, x′) satisfy ν(0, x) ≤ ν(0, x′)
by interchanging x by x′ in point (3) we obviously get that C(ν(0, x), p)−
C(ν(0, x′), p) is decreasing in p and greater than 0.

Second step : Supp(P | X) ∩ Supp(P | X ′) = ∅

1. ν(0, x) ≥ ν(1, x′) and p(x, z) ≥ p(x′, z′)

C(ν(0, x), p)− C(ν(1, x′), p′) ≥ C(ν(0, x), p)− C(ν(1, x′), p)

≥ 0.

The last inequality holds by point (1) of first step.
2. ν(0, x) ≤ ν(1, x′) and p(x, z) ≤ p(x′, z′)

C(ν(0, x), p)− C(ν(1, x′), p′) ≤ C(ν(0, x), p)− C(ν(1, x′), p)

≤ 0.
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The last inequality holds by point (2) of first step.
3. ν(0, x) ≥ ν(0, x′) and p(x, z) ≥ p(x′, z′)

C(ν(0, x), p)− C(ν(0, x′), p) ≥ C(ν(0, x), p)− C(ν(0, x′), p)

≥ 0.

The last inequality holds by point (3) of first step.
4. ν(0, x) ≤ ν(0, x′)

C(ν(0, x), p)− C(ν(0, x′), p) ≥ C(ν(0, x), p)− C(ν(0, x′), p)

≥ 0.

The last inequality holds by point (4) of first step.

Then the property (2) holds. We can proceed in the same way for ν(0, x) =
SU0(x). This completes our proof.
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.2 Data summary statistics

Table 3 – Summary statistics

Migrants Non-migrants m1(E, I,H) m0(E, I,H)

{Y=1,Edp=1,Imp=1,Hon=1} 1 0 0.0588 0
{Y=1,Edp=1,Imp=1,Hon=0} 3 0 0.1875 0
{Y=1,Edp=1,Imp=0,Hon=1} 4 2 0.1818 0.2500
{Y=1,Edp=1,Imp=0,Hon=0} 3 1 0.1500 0.0555
{Y=1,Edp=0,Imp=0,Hon=1} 3 3 0.0909 0.2500
{Y=1,Edp=0,Imp=0,Hon=0} 15 15 0.2941 0.2419
{Y=1,Edp=0,Imp=1,Hon=1} 1 0 0.2000 0
{Y=1,Edp=0,Imp=1,Hon=0} 4 1 0.1739 0.0833

.3 Proof of main results in Chapter 2
In all the proofs, we use the notation ω = (z, x1, x0). When there is no

ambiguity, we shall write f1 = f1(x1), f0 = f0(x0) and g = g(ω).

.3.1 Proof of Proposition 2

Validity of the bounds

See main text.

Sharpness of the bounds

To show the sharpness of the joint bounds for f1(x1) and f0(x0), it is
sufficient to construct joint distributions for the unobserved heterogeneity
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vector (u∗0, u
∗
1) such that each point in the identified region is attained and

which is compatible with the observed data in the following sense :

1. P (u∗0 ≤ f0(x0), u∗1 ≥ u∗0 +f1(x1)−f0(x0)|x1, x0) = P (Y = 1, D = 0|ω),
2. P (u∗1 ≤ f1(x1), u∗1 ≤ u∗0 +f1(x1)−f0(x0)|x1, x0) = P (Y = 1, D = 1|ω),
3. P (u∗0 ≥ f0(x0), u∗1 ≥ u∗0 +f1(x1)−f0(x0)|x1, x0) = P (Y = 0, D = 0|ω),
4. P (u∗1 ≥ f1(x1), u∗1 ≤ u∗0 +f1(x1)−f0(x0)|x1, x0) = P (Y = 0, D = 1|ω).

We construct a joint distribution for (u∗0, u
∗
1) such that f1(x1) = P(1, 1|ω)+

α1 and f0(x0) = P(1, 0|ω) +α0, for any (α1, α0) satisfying 0 ≤ α1 ≤ P(1, 0|ω)
and 0 ≤ α0 ≤ P(1, 1ω) and consider the case where f0 − f1 ≥ 0. The case
where f0−f1 ≤ 0 can be derived similarly. We propose the following candidate
as a potential joint distribution. Denoting δ = P(1, 0|ω)+α0−P(1, 1|ω)−α1,
let P(u∗0 ≤ s, u∗1 ≤ t) = 0 if 0 ≤ t ≤ 1 − δ, s ≤ δ, P(u∗0 ≥ s, u∗1 ≥ t) = 0 if
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t ≥ 1− δ, s ≥ δ and

P(P(1, 0|ω) + α0 ≤ u∗0 ≤ s, u∗1 ≤ t) =
a(t, s)

a(P(1, 1|ω) + α1, 1)
(P(1, 1|ω)− α0)

if 0 ≤ t ≤ P(1, 1|ω) + α1, s ≥ P(1, 0|ω) + α0,

P(u∗0 ≤ s, 1− δ ≤ u∗1 ≤ t) =
(t− (1− δ))s

δ
if t ≥ 1− δ, s ≤ δ,

P(δ ≤ u∗0 ≤ s,P(1, 1|ω) + α1 ≤ u∗1 ≤ t) =
b(t, s)

b(1− δ,P(1, 0|ω) + α0))
(P(1, 1|ω)− α0)

if P(1, 1|ω) + α1 ≤ t ≤ 1− δ, δ ≤ s ≤ P(1, 0|ω) + α0,

P(δ + u∗1 ≤ u∗0 ≤ s, u∗1 ≤ t) =
c(t, s)

c(P(1, 1|ω) + α1,P(1, 0|ω) + α0))
α0

if 0 ≤ t ≤ P(1, 1|ω) + α1, δ + u∗1 ≤ s ≤ P(1, 0|ω) + α0,

P(δ ≤ u∗0 ≤ u∗1 + δ, u∗1 ≤ t) = t− c(t,P(1, 0|ω) + α0)

c(P(1, 1|ω) + α1,P(1, 0|ω) + α0))
α0

− a(t, 1)

a(P(1, 1|ω) + α1, 1)
(P(1, 1|ω)− α0)

if 0 ≤ t ≤ P(1, 1|ω) + α1, δ + u∗1 ≤ s ≤ P(1, 0|ω) + α0

P(δ ≤ u∗0 ≤ s, s− δ ≤ u∗1 ≤ t) =
(s− δ)t

P(1, 1|ω) + α1)
− P(δ ≤ u∗0 ≤ s, u∗1 ≤ s− δ)

− b(t, s)

b(1− δ,P(1, 0|ω) + α0))
(P(1, 1|ω)− α0),

if s− δ ≤ t ≤ P(1, 1|ω) + α1, δ ≤ s ≤ P(1, 0|ω) + α0,

P(u∗1 + δ ≤ u∗0 ≤ s,P(1, 1|ω) + α1 ≤ u∗1 ≤ t) =
d(t, s)

d(1− δ, 1)
P(0, 1|ω)

if P(1, 1|ω) + α1 ≤ t ≤ 1− δ, u∗1 + δ ≤ s ≤ 1,

P(P(1, 0|ω) + α0 ≤ u∗0 ≤ u∗1 + δ,P(1, 1|ω) + α1 ≤ u∗1 ≤ t) = (t− P(1, 1|ω)− α1)

− d(t, 1)

d(1− δ, 1)
P(0, 1|ω)− b(t,P(1, 0|ω) + α0)

b(1− δ,P(1, 0|ω) + α0))
(P(1, 1|ω)− α0)

if P(1, 1|ω) + α1 ≤ t ≤ 1− δ,

P(P(1, 0|ω) + α0 ≤ u∗0 ≤ s, s− δ ≤ u∗1 ≤ t) =
(s− P(1, 0|ω) + α0)t

1− δ
−P(P(1, 0|ω) + α0 ≤ u∗0 ≤ s,P(1, 0|ω) + α0 ≤ u∗1 ≤ s− δ)

−a(P(1, 1|ω) + α1, s)

a(P(1, 1|ω) + α1, 1)
(P(1, 1|ω)− α0)

if s− δ ≤ t ≤ 1− δ,P(1, 0|ω) + α0 ≤ s ≤ 1,



cvi

where

a(t, s) = t(s− (P(1, 0|ω) + α0)),

b(t, s) = (t− (P(1, 1|ω) + α1))(s− δ),

c(t, s) =
1

2
[s− (δ) + (s− (t+ (δ)))]t,

d(t, s) =
1

2
[(s− (P(1, 0|ω) + α0) + (s− (t+ (δ)))](t− (P(1, 1|ω) + α1))

The proof is complete upon verifying that this function is a joint distri-
bution such as the marginals are uniform distribution over [0,1] and which
is compatible with the observed data (i.e., respects Conditions 1 to 4) when
f1(x1) = P(1, 1|ω)+α1 and f0(x0) = P(1, 0|ω)+α0, for any (α1, α0) satisfying
0 ≤ α1 ≤ P(1, 0|ω) and 0 ≤ α0 ≤ P(1, 1ω).

.3.2 Proof of Proposition 3

To show validity of the bounds, we drop all the conditioning variables
ω = (z, x1, x0) from the notation. We have D = 1⇒ Y ∗0 + g ≤ Y ∗1 ⇒ 1{Y ∗0 +
g ≥ 0} ≤ 1{Y ∗1 ≥ 0} ⇒ 1{Y ∗0 + g ≥ 0}1{D = 1} ≤ 1{Y ∗1 ≥ 0}1{D = 1} ⇒
E[1{Y ∗0 +g ≥ 0}|D = 1] ≤ E[1{Y ∗1 ≥ 0}|D = 1]⇒ E[1{Y ∗0 +g ≥ 0}|D = 1] ≤
E[Y1|D = 1]. We can easily derive equivalent inequalities when D = 0. Hence,
if D = 1{Y ∗1 > Y ∗0 + g} then E[1{Y ∗0 + g ≥ 0}|D = 1] ≤ E[Y1|D = 1] and
E[Y1|D = 0] ≤ E[1{Y ∗0 + g ≥ 0}|D = 0]. Hence, when g ≥ 0, E[Y0|D = 1] ≤
E[Y1|D = 1] and when g ≤ 0, E[Y1|D = 0] ≤ E[Y0|D = 0]. Finally, if g = 0
we have E[Yd|D = d] ≥ E[Yd|D = 1− d] where d ∈ {0, 1}. Those inequalities
allow us to construct the sharp bounds for f1 and f0 in the case where D =
1{Y ∗1 > Y ∗0 + g}. Indeed, f1 = E[Y1] = E[Y1, D = 1] + E[Y1|D = 0]P (D = 0)
and f0 = E[Y0] = E[Y0, D = 0] + E[Y0|D = 1]P (D = 1). Now, if g ≥ 0, then
P (Y = 1, D = 1) ≤ f1 ≤ P (Y = 1, D = 1) + P (D = 0) and P (Y = 1, D =
0) ≤ f0 ≤ P (Y = 1). On the other hand, if g ≤ 0, P (Y = 1, D = 1) ≤ f1 ≤
P (Y = 1) and P (Y = 1, D = 0) ≤ f0 ≤ P (Y = 1, D = 0) + P (D = 1).
Finally, f0 = E[1{u0 ≤ f0}1{u1 ≥ u0 + f1 − f0 − g}] + E[1{u0 ≤ f0}1{u1 ≤
u0 +f1−f0−g}]. Hence, if g ≥ f1, then {u1 ≤ u0 +f1−f0−g} ⇒ {u0 ≥ f0}
and f0(X0) ≤ E[1{u0 ≤ f0}1{u1 ≥ u0 + f1 − f0 − g}] + E[1{u0 ≤ f0}1{u0 ≥
f0}] ≤ E[1{u0 ≤ f0}1{u1 ≥ u0 + f1 − f0 − g}] = P (Y = 1, D = 0).

Now the bounds for g can be obtained as follows.
— If g+f0−f1 ≥ 0 and g ≤ f1, then {u0 ≤ g+f0−f1} ⇒ {u0 ≤ u1 +g+

f0−f1} and {u0 ≤ g+f0−f1} ⇒ {u0 ≤ f0}. So {u0 ≤ g+f0−f1} ⇒
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{u0 ≤ u1 + g + f0 − f1} ∩ {u0 ≤ f0}. Hence g + f0 − f1 = P (u0 ≤
g+f0−f1) ≤ P ({u0 ≤ u1+g+f0−f1}∩{u0 ≤ f0}) = P (Y = 1, D = 0).

— If g + f0 − f1 ≥ 0 and g ≥ f1, then {u0 ≤ g + f0 − f1} ⇒ {u0 ≤
u1 + g+ f0− f1}, hence g+ f0− f1 = P (u0 ≤ g+ f0− f1) ≤ P ({u0 ≤
u1 + g + f0 − f1}) = P (D = 0). As f0 = P (Y = 1, D = 0) we have
g − f1 ≤ P (Y = 0, D = 0).

— If g + f0 − f1 ≤ 0 and g ≥ −f0, then by similar arguments, we have
g + f0 − f1 ≥ −P (Y = 1, D = 1).

— If g + f0 − f1 ≤ 0 and g ≤ −f0, then g + f0 ≥ −P (Y = 0, D = 1).
Finally, the validity of bounds f1(x1)−P(1, 1|ω)−P(1, 0|ω)−P(0, 1|ω) ≤

g(ω) ≤ P(1, 1|ω)+P(1, 0|ω)+P(0, 0|ω)−f0(x0) is shown formally in the main
text. This completes the proof.

.3.3 Proof of Proposition 4

As previously, our method consists in constructing joint distributions for
(u1, u0) such that all points of the identified set for (f1, f0) are attained. All
points in the identified set of Proposition 2 can be attained as shown in the
proof of Proposition 2.

There remains to show that all points in the rectangle with corners
(P(1, 1|ω)+P(1, 0|ω)+min(0,P(0, 0|ω)−ε),P(1, 0|ω)), (P(1, 1|ω)+P(1, 0|ω)+
min(0,P(0, 0|ω) − ε),P(1, 0|ω) + P(1, 1|ω)), (P(1, 1|ω) + P(1, 0|ω),P(1, 0|ω))
and (P(1, 1|ω)+P(1, 0|ω),P(1, 0|ω)+P(1, 1|ω)) for ε > 0 arbitrarily small (and
symmetrically all points in the rectangle with corners (P(1, 1|ω),P(1, 0|ω) +
P(1, 1|ω)+min(0,P(0, 1|ω)−ε)), (P(1, 1|ω)+P(1, 0|ω),P(1, 0|ω)+P(1, 1|ω)+
min(0,P(0, 1|ω)−ε)), (P(1, 1|ω)+P(1, 0|ω),P(1, 0|ω)+P(1, 1|ω)) and (P(1, 1|ω)+
P(1, 0|ω),P(1, 0|ω) + P(1, 1|ω))).

Compatibility between the joint distribution and the observed data can
be expressed as follows :

1. P (u∗0 ≤ f0(x0), u∗1 ≥ u∗0 + f1(x1) − f0(x0) − g(ω)|ω) = P (Y = 1, D =
0|ω),

2. P (u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1) − f0(x0) − g(ω)|ω) = P (Y = 1, D =
1|ω),

3. P (u∗0 ≥ f0(x0), u∗1 ≥ u∗0 + f1(x1) − f0(x0) − g(ω)|ω) = P (Y = 0, D =
0|ω),

4. P (u∗1 ≥ f1(x1), u∗1 ≤ u∗0 + f1(x1) − f0(x0) − g(ω)|ω) = P (Y = 0, D =
1|ω),
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The method of proof is illustrated in Figure 4. Assume that P(0, 0|ω) >
0 (otherwise the rectangle treated below collapses). We construct a joint
distribution for (u1, u0) such that f1(x1) = (P(1, 1|ω)+P(1, 0|ω)+P(0, 0|ω)−
α1 and f0(x0) = P(1, 0|ω) +α0, for any (α1, α0) satisfying 0 < α1 ≤ P(0, 0|ω)
and 0 ≤ α0 ≤ P(1, 1ω).

Figure 4 – Characterization of the empirical content of the extended binary Roy model in the unit

square of the (u1, u0) space in case f0(x0) > f1(x1), 0 < g(ω) < f1(x1) and f0(x0) + g(ω) < 1.

There remains to verify that this function is defines a joint distribution
which is compatible with the observed data (i.e respects conditions 1 to 4) and
such that f1(x1) = P (u∗1 ≤ f1(x1)|x1) = P (Y = 1, D = 1|ω) + P (D = 0|ω)
and g(ω) + f0(x0) − f1(x1) = P (u∗0 ≤ g(ω) + f0(x0) − f1(x1)|ω) = P (Y =
1, D = 0|ω), when g(ω) is set equal to α1 − f0(x0) + f1(x1).

Symmetrically, we can show that any point in the rectangle with cor-
ners (P(1, 1|ω),P(1, 0|ω) + P(1, 1|ω) + min(0,P(0, 1|ω) − ε)), (P(1, 1|ω) +
P(1, 0|ω),P(1, 0|ω)+P(1, 1|ω)+min(0,P(0, 1|ω)−ε)), (P(1, 1|ω)+P(1, 0|ω),P(1, 0|ω)+
P(1, 1|ω)) and (P(1, 1|ω)+P(1, 0|ω),P(1, 0|ω)+P(1, 1|ω)) can be attained and
this completes the Proof.



cix

.3.4 Proof of Proposition 5

The proof is exactly identical to the that of Proposition 4 except that
h(u1, ω) can be chosen as in Figure 2.5 so that all the mass P(0, 0|ω) can
be shifted on the left of f1(x1) and therefore we can no longer restrict α1

to be strictly positive. The case α1 = 0 is also attained. The result follows
immediately.

.3.5 Proof of Theorem 2

Under Assumptions 9-11, the model can be equivalently written (Y,D) ∈
G((u1, u0)|W ) almost surely conditionally on W = (Z,X1, X0), where G is a
multi-valued mapping, which to (u1, u0) associates (y, d) = G((u1, u0)|W ) =
{(1, 1), (1, 0)} if u1 ≤ f1(x1) and u0 ≤ f0(x0), {(0, 1), (1, 0)} if u1 > f1(x1)
and u0 ≤ f0(x0), {(1, 1), (0, 0)} if u1 ≤ f1(x1) and u0 > f0(x0) and {(0, 1), (0, 0)}
if u1 > f1(x1) and u0 > f0(x0). Hence Theorem 1 of Galichon and Henry
(2011), applies and the empirical content of the model is characterized by the
collection of inequalities P (A|W ) ≤ P ((u1, u0) : G((u1, u0)|W ) hits A|W )
for each subset A of {(0, 0), (0, 1), (1, 0), (1, 1)} (i.e., 16 inequalities). The only
non redundant inequalities are P (1, 1|W ) ≤ f1(X1), P (1, 0|W ) ≤ f0(X0),
P (0, 1|W ) ≤ 1−f1(X1), P (0, 0|W ) ≤ 1−f0(X0), P (Y = 0|W ) ≤ 1−P (u1 ≤
f1(X1), u0 ≤ f0(X0)|X1, X0), P (Y = 1|W ) ≤ 1 − P (u1 > f1(X1), u0 >
f0(X0)|X1, X0), P (0, 0|W )+P (1, 1|W ) ≤ P (u1 ≤ f1(X1), u0 ≤ f0(X0)|X1, X0)+
P (u0 > f0(X0)|X0) and P (0, 1|W ) + P (1, 0|W ) ≤ P (u1 ≤ f1(X1), u0 ≤
f0(X0)|X1, X0) + P (u1 > f1(X1)|X1). After some manipulation, the result
follows.

.3.6 Proof of Corollary 6

We show that the bounds (2.7) for g remain valid. We drop conditioning
variables from the notation throughout this section.

— If g + v + f0 − f1 ≥ 0 and g + v ≤ f1, then {u0 ≤ g + v + f0 − f1} ⇒
{u0 ≤ u1 + g + v + f0 − f1} and {u0 ≤ g + v + f0 − f1} ⇒ {u0 ≤ f0}.
So {u0 ≤ g + v + f0 − f1} ⇒ {u0 ≤ u1 + g + v + f0 − f1} ∩ {u0 ≤ f0}.
Therefore P (u0−v ≤ g+f0−f1) ≤ P ({u0 ≤ u1+g+v+f0−f1}∩{u0 ≤
f0}) = P (Y = 1, D = 0).

— If g + v + f0 − f1 ≥ 0 and g + v ≥ f1, then {u0 ≤ g + v + f0 − f1} ⇒
{u0 ≤ u1 + g + v + f0 − f1}. Therefore P (u0 − v ≤ g + f0 − f1) ≤



cx

P ({u0 ≤ u1 + g + v + f0 − f1}) = P (D = 0).
— If g+ v+ f0− f1 ≤ 0 and g+ v ≥ −f0, then {u1 ≤ f1− f0− g− v} ⇒
{u1 ≤ u0 + f1 − f0 − g − v} and {u1 ≤ f1 − f0 − g − v} ⇒ {u1 ≤ f1}.
So {u1 ≤ f1− f0− g− v} ⇒ {u1 ≤ u0 + f1− f0− g− v} ∩ {u1 ≤ f1}.
Therefore P (u1+v ≤ f1−f0−g) ≤ P ({u1 ≤ u0+f1−f0−g−v}∩{u1 ≤
f1}) = P (Y = 1, D = 1).

— If g+ v+ f0− f1 ≤ 0 and g+ v ≤ −f0, then {u1 ≤ f1− f0− g− v} ⇒
{u1 ≤ u0 + f1− f0− g− v}. Hence P (u1 + v ≤ f1− f0− g) ≤ P (u1 ≤
u0 + f1 − f0 − g − v) = P (D = 1).

Now, since v ⊥⊥ (u0, u1), we have : P (u0 ≤ g + v + f0 − f1) = Ev[E[1{u0 ≤
g + v + f0 − f1}|v]] = Ev[g + v + f0 − f1] = g + f0 − f1. Then, we get the
following :

— If g+v+f0−f1 ≥ 0 and g+v ≤ f1, then g+f0−f1 ≤ P (Y = 1, D = 0).
— If g+ v+ f0− f1 ≥ 0 and g+ v ≥ f1, then g− f1 ≤ P (Y = 0, D = 0).
— If g + v + f0 − f1 ≤ 0 and g + v ≥ −f0, then g + f0 − f1 ≥ −P (Y =

1, D = 1).
— If g+v+f0−f1 ≤ 0 and g+v ≤ −f0, then g+f0 ≥ −P (Y = 0, D = 1).

which completes the proof.

.3.7 Proof of Corollary 7

Our goal here is to show that the following bounds are sharp for f0 and
f1.

P (Y = 1, D = 1|ω) ≤ f1(x1) ≤ P (Y = 1, D = 1|ω) + P (D = 0|ω)

P (Y = 1, D = 0 | ω) ≤ f0(x0) ≤ P (Y = 1, D = 0|ω) + P (D = 1|ω).

The previous results show that the lower bounds are sharp. Now, to show
that these bounds are sharp for f1(x1) it is sufficient to construct a joint
distribution (u∗0, u

∗
1) such that f1(x1) equals P (Y = 1, D = 1|ω)+P (D = 0|ω)

and f(0, x) = P (Y = 1, D = 0|ω) + P (D = 1|ω) and which is compatible
with the observed data in the following sense :

1. P (u∗0 ≤ f0(x0), u∗1 ≥ u∗0 + f1(x1) − f0(x0) − g(ω) − v|ω) = P (Y =
1, D = 0|ω)

2. P (u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1) − f0(x0) − g(ω) − v|ω) = P (Y =
1, D = 1|ω)

3. P (u∗0 ≥ f0(x0), u∗1 ≥ u∗0 + f1(x1) − f0(x0) − g(ω) − v|ω) = P (Y =
0, D = 0|ω)
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4. P (u∗1 ≥ f1(x1), u∗1 ≤ u∗0 + f1(x1) − f0(x0) − g(ω) − v|ω) = P (Y =
0, D = 1|ω)

Define the following joint distribution (u∗0, u
∗
1, v
∗) such that u∗0 + u∗1 ≤

f1(x1) + f0(x0) and 2v∗ = 3u∗0 − 3u∗1 − 3f0(x0) + 3f1(x1)− 2g(ω). Under the
condition that u∗0 +u∗1 ≤ f1(x1)+f0(x0), we have {u∗1 ≥ u∗0 +f1(x1)−f0(x0)−
g(ω)− v∗} ⇒ {u∗1 ≤ f1(x1)} and {u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω)− v∗} ⇒
{u∗0 ≤ f0(x0)}. Hence,

f1(x1) = P (u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω)− v|ω)

+P (u∗1 ≤ f1(x1), u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω)− v|ω)

= P (u∗1 ≤ f1(x1), u∗1 ≤ u∗0 + f1(x1)− f0(x0)− g(ω)− v|ω)

+P (u∗1 ≥ u∗0 + f1(x1)− f0(x0)− g(ω)− v|ω)

= P (Y = 1, D = 1|ω) + P (D = 0|ω).

With the same strategy, we can also show f0(x0) = P (Y = 1, D = 0|ω) +
P (D = 1|ω).

.4 Proof of main results in Chapter 3
In all that follows, for ease of notation, we drop the conditioning variables

and write Πi(Y3−i = j,Xi) = Πi(j) for i = 1, 2 and j = 1, 0 and pj1j2 =
P (Y1 = j1, Y2 = j2|X1, X2). We shall also use the following symmetries in the
game. All results concerning the second asymmetric game can be obtained
from results concerning the first asymmetric game after permutation of the
two players. The coordination game is obtained from the duopoly entry game
by relabeling. Hence all results for the coordination game can be obtained
from the results for the duopoly entry game with the following conversion
table : Π1(0) in the duopoly entry case is replaced by 1 − Π1(1) and vice-
versa. Π2(1) is replaced by Π2(0) and vice-versa. Σj1,j2 is replaced by Σ1−j1,j2 .
P (j1, j2) is replaced by P (1− j1, j2). Finally, σ1 is replaced by 1− σ1.

.4.1 Proof of Theorem 3

Dropping all explanatory variables from the notation, the equilibrium
correspondence ε = (ε1, ε2) 7→ G(ε), namely the set of all Nash equilibria in
mixed strategies, for a given value of ε = (ε1, ε2), is represented in Figure 3.1
and formally defined byG(ε) = {(0, 0)} if εi > Πi(0), i = 1, 2,G(ε) = {(1, 1)}
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if εi < Πi(1), i = 1, 2, G(ε) = {(σ1, σ2)} if Πi(1) < εi < Πi(0), i = 1, 2,
G(ε) = {(1, 0)} if ε1 < Π1(1) ε2 > Π2(1) or ε1 < Π1(0) ε2 > Π2(0), with the
convention that a degenerate mixed strategy is denoted as its realization.

For almost all values of ε, there is at most one equilibrium in non dege-
nerate mixed strategies. Hence, by Lemma 2 of Galichon and Henry (2011)„
the game has a Shapley regular core (see for instance Definition 9 of Ga-
lichon and Henry (2011),) and Theorem 5 of Galichon and Henry (2011),
applies. The identified set for payoff functions and type distributions is the-
refore characterized by P (B) ≤

∫ (
maxσ∈G(ε) σ(B)

)
dC(ε), for all subsets B

of the set of realized decision profiles {(0, 1), (1, 0), (0, 0), (1, 1)}. This induces
the following inequalities.

P (1, 1) ≤ C(Π1(1),Π2(1)) +

∫
∆

σ1(u2)σ2(u1)dC(u1, u2), (13)

P (0, 0) ≤ 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0))

+

∫
∆

(1− σ1(u2))(1− σ2(u1))dC(u1, u2), (14)

P (0, 1) ≤ Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) ≤ Π1(0)− C(Π1(0),Π2(1)),

P (1, 1) ≥ C(Π1(1),Π2(1)) (15)
P (0, 0) ≥ 1− Π1(0)− Π2(0) + C(Π1(0),Π2(0)) (16)
P (0, 1) ≥ Π2(0)− C(Π1(1),Π2(1))− [C(Π1(0),Π2(0))− C(Π1(0),Π2(1))],(17)
P (1, 0) ≥ Π1(0)− C(Π1(1),Π2(1))− [C(Π1(0),Π2(0))− C(Π1(1),Π2(0))],(18)

and
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P (0, 0) + P (0, 1) ≤ 1− Π1(0) + [C(Π1(0),Π2(0))− C(Π1(1),Π2(0))],(19)
P (0, 0) + P (1, 0) ≤ 1− Π2(0) + [C(Π1(0),Π2(0))− C(Π1(0),Π2(1))],(20)
P (1, 1) + P (0, 1) ≤ Π2(0) + [C(Π1(1),Π2(1))− C(Π1(1),Π2(0))], (21)
P (1, 1) + P (1, 0) ≤ Π1(0) + [C(Π1(1),Π2(1))− C(Π1(0),Π2(1))], (22)
P (1, 0) + P (0, 1) ≤ Π1(0) + Π2(0)− C(Π1(1),Π2(1))− C(Π1(0),Π2(0)),(23)

P (0, 0) + P (1, 1) ≤ C(Π1(1),Π2(1)) +

∫
∆

σ1(u2)σ2(u1)dC(u1, u2)

+1− Π1(0)− Π2(0) + C(Π1(0),Π2(0))

+

∫
∆

(1− σ1(u2))(1− σ2(u1))dC(u1, u2). (24)

Now, we will show that (19)-(24) are redundant. (15) and (18) jointly imply
that P (1, 1) + P (1, 0) ≥ Π1(0)− [C(Π1(0),Π2(0))−C(Π1(1),Π2(0))] so that
1−Π1(0)+[C(Π1(0),Π2(0))−C(Π1(1),Π2(0))] ≥ 1−P (1, 1)−P (1, 0), hence
(19) holds. Similarly, (15) and (17) imply (20), (16) and (18) imply (21), (16)
and (17) imply (22), (15) and (16) imply (23) and finally (13) and (14) imply
(24). The result follows.

.4.2 Proof of Theorem 5

Duopoly entry case

Consider first the duopoly entry case, with Πi(0) ≥ Πi(1), i = 1, 2. The
bounds are shown to hold in the main text as a corollary of Theorem 4. We
show now that the bounds are jointly sharp. To do so, take any given true
frequency profile (p11, p10, p01, p00) and exhibit a joint distribution C(ε1, ε2)
and an equilibrium selection mechanism δ ∈ [0, 1] (denoting the probability
that (Y1 = 1, Y2 = 0) is selected in the region of multiplicity) such that all Π
can be rationalized.

Construction of the joint distribution

We construct the joint distribution in the following way. Assume P (ε1 ≤
Π1(1), ε2 ≤ Π2(1)) = p11 and P (ε1 ≥ Π1(0), ε2 ≥ Π2(0)) = p00. From the
marginal constraints, P (ε1 ≤ Π1(1)) = Π1(1) and P (ε1 ≥ Π1(0) = 1−Π1(0).
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Hence we can choose s and t in [0, 1] such that the following hold.

P (ε1 ≤ Π1(1), ε2 ≥ Π2(0)) = (1− s)(Π1(1)− p11),

P (ε1 ≤ Π1(1),Π2(1) ≤ ε2 ≤ Π2(0)) = s(Π1(1)− p11),

P (ε1 ≥ Π1(0), ε2 ≤ Π2(1)) = (1− t)(1− p00 − Π1(0)),

P (ε1 ≥ Π1(0),Π2(1) ≤ ε2 ≤ Π2(0)) = t(1− p00 − Π1(0)).

The mass in the remaining regions is constrained accordingly. In particular,
we have :

P (Π1(1) ≤ ε1 ≤ Π1(0),Π2(1) ≤ ε2 ≤ Π2(0)) = Π2(0)− Π2(1)− s(Π1(1)− p11)

−t(1− p00 − Π1(0)).

This mass can be divided between (Y1 = 1, Y2 = 0) and (Y1 = 0, Y2 = 1) with
an appropriate choice of equilibrium selection mechanism, in order to satisfy
the following constraint.

p10 = 1− p00 − Π2(0) + s(Π1(1)− p11)

+δ
(

Π2(0)− Π2(1)− s(Π1(1)− p11)− t(1− p00 − Π1(0))
)
,(25)

with equilibrium selection parameter δ ∈ [0, 1]. There remains to show that
equation (25) has a solution for (s, t, δ) ∈ [0, 1]3.

Case 1− p00 = Π1(0) : When 1− p00 = Π1(0), equation (25) becomes

p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1)) + s(1− δ)(Π1(1)− p11) = 0.

If Π1(1) = p11, then δ can be chosen equal to (Π2(0) − p01 − p11)/(Π2(0) −
Π2(1)) (or δ unrestricted in case Π2(0) = Π2(1)). If (1− δ)(Π1(1)− p11) > 0,
then

s =
Π2(0)− p01 − p11 − δ(Π2(0)− Π2(1))

(1− δ)(Π1(1)− p11)

must be between 0 and 1. So we must have δ ≤ (Π2(0)− p01− p11)/(Π2(0)−
Π2(1)) (no restriction if Π2(0) = Π2(1)) and

(Π2(0)− p01 − p11)− (Π1(1)− p11) ≤ δ
(

(Π2(0)− Π2(1))− (Π1(1)− p11)
)
.(26)

We denote the latter A ≤ δB. Since Π2(1) ≤ p01 + p11, only three cases need
to be considered :
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1. 0 < A ≤ B : the δ needs to be chosen larger than or equal to A/B.
Combined with the above, it yields 0 < A/B ≤ δ ≤ (A + Π1(1) −
p11)/(B + Π1(1) − p11) ≤ 1, which has solutions since A ≤ B and
Π1(1) ≥ p11.

2. A < 0 ≤ B : then (26) is always satisfied for δ ≥ 0 since the left-hand-
side is negative and the right-hand-side is non negative.

3. A < B < 0 : then any δ ∈ [0, 1] satisfies (26) since −A > −B.
Case 1− p00 − Π1(0) > 0 : When δ(1− p00 − Π1(0)) > 0, equation (25)

can be rewritten :

t =
p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1)) + s(1− δ)(Π1(1)− p11)

δ(1− p00 − Π1(0))

so we need to show there exists (s, δ) ∈ [0, 1]2 such that

0 ≤ p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1)) + s(1− δ)(Π1(1)− p11)

≤ δ(1− p00 − Π1(0)). (27)

Subcase Π1(1) = p11 : We need to show the existence of δ ∈ [0, 1] such
that

0 ≤ δ(Π2(0)− Π2(1))− (Π2(0)− p01 − p11) ≤ δ(1− p00 − Π1(0)).

The left inequality is satisfied for

Π2(0)− p01 − p11

Π2(0)− Π2(1)
≤ δ ≤ 1, (28)

since Π2(1) ≤ p01 + p11 ≤ Π2(0). The right inequality is equivalent to

−
(

Π2(0)− p01 − p11

)
≤ δ
(

1− p00 − Π1(0)− (Π2(0)− Π2(1))
)
,

which is true for any δ ≥ 0 if 1− p00 − Π1(0) ≥ Π2(0)− Π2(1) and for any

0 ≤ δ ≤ Π2(0)− p01 − p11

Π2(0)− Π2(1)− (1− p00 − Π1(0))
(29)

otherwise. (28) and (29) are compatible since 1− p00 ≥ Π1(0).
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Subcase Π1(1) > p11 : (27) is equivalent to

−
(
p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))

)
(1− δ)(Π1(1)− p11)

≤ s

≤
δ(1− p00 − Π1(0))−

(
p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))

)
(1− δ)(Π1(1)− p11)

.

The latter admits a solution s ∈ [0, 1] if and only if

δ(1− p00 − Π1(0))−
(
p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))

)
≥ 0 (30)

and −
(
p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))

)
≤ (1− δ)(Π1(1)− p11).(31)

(31) is equivalent to

δ
(

(Π1(1)− p11)− (Π2(0)− Π2(1))
)
≤ (Π1(1)− p11)− (Π2(0)− p01 − p11),(32)

which we denote δB ≤ A. Since Π2(1) ≤ p01 + p11, we have A ≥ B and
we need only consider the following three cases :

1. If 0 < B ≤ A, (32) is satisfied for all δ ∈ [0, 1].
2. If B ≤ 0 ≤ A, (32) is satisfied for all δ ≥ 0, since the left hand side is

negative and the right-hand-side positive.
3. If B ≤ A < 0 : (32) is satisfied for a choice of δ ≥ A/B, namely

(Π2(0)− p01 − p11)− (Π1(1)− p11)

(Π2(0)− Π2(1))− (Π1(1)− p11)
≤ δ ≤ 1. (33)

(30) is equivalent to

δ
(

1− p00 − Π1(0)− (Π2(0)− Π2(1))
)
≥ p01 + p11 − Π2(0).

The right-hand-side is negative, so the statement is
1. true for all δ ∈ [0, 1] when 1− p00 − Π1(0)− (Π2(0)− Π2(1)) ≥ 0,
2. true for all

0 ≤ δ ≤ Π2(0)− p01 − p11

(Π2(0)− Π2(1))− (1− p00 − Π1(0))
(34)

when 1− p00 − Π1(0)− (Π2(0)− Π2(1)) < 0.
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Note that there is a solution to both (33) and (34). Indeed, calling the left-
hand-side of (33) −A/(−B), with both numerator and denominator positive,
we can write the right-hand-side of (34) as [−A+(Π1(1)−p11)]/(−B+(Π1(1)−
p11) − (1 − p00 − Π1(0))), which is larger than or equal to −A/(−B). This
completes the proof for the duopoly entry case.

Coordination case :

As shown above, results for the coordination case can be obtained from
results pertaining to the duopoly entry case by relabeling of payoff functions.

Asymmetric cases :

From the identified set for (Π, C) we can derive sharp bounds for the
payoff functions alone using Fréchet bounds on C. Line 1 of (3.9) yields
P (1, 1) = C(Π1(1),Π2(1)) ≤ min(Π1(1),Π2(2)) ≤ Π2(1) (Fréchet bound). Si-
milarly, Line 4 of (3.9) yields P (1, 0) = Π1(0)−C(Π1(0),Π2(1)) ≤ Π1(0) and
1 − P (1, 0) = 1 − Π1(0) + C(Π1(0),Π2(1)) ≥ Π2(1) (Fréchet lower bound).
Line 3 yields 1 − P (0, 1) = 1 − Π2(0) + C(Π1(1),Π2(0)) ≥ Π1(1). Since
Π1(1) ≥ Π1(0), we have C(Π1(1),Π2(1)) ≥ C(Π1(0),Π2(1)) and Lines 1
and 4 of (3.9) combined yield P (1, 1) +P (1, 0) = Π1(0) + [C(Π1(1),Π2(1))−
C(Π1(0),Π2(1))] ≥ Π1(0). Similarly, since Π2(1) ≤ Π2(0), we have C(Π1(1),Π2(1)) ≤
C(Π1(1),Π2(0)) and Lines 1 and 3 yield P (1, 1)+P (0, 1) = Π2(0)+[C(Π1(1),Π2(1))−
C(Π1(1),Π2(0))] ≤ Π2(0). Finally, P (0, 1)+P (1, 1) = Π2(0)−[C(Π1(1),Π2(0))−
C(Π1(1),Π2(1))] ≥ Π2(0)− [Π2(0)− Π2(1)] = Π2(1) and similarly P (1, 0) +
P (1, 1) ≥ Π1(0).

We show now that the bounds are jointly sharp. To do so, take any
given true frequency profile (p11, p10, p01, p00) and exhibit a joint distribution
C(ε1, ε2) such that all Π can be rationalized.
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Construction of the joint distribution

We construct the joint distribution in the following way. Let (s, t, u, v) ∈
[0, 1]4 be such that the following hold.

P (ε1 ≤ Π1(0), ε2 ≤ Π2(1)) = (1− u)p11,

P (Π1(0) ≤ ε1 ≤ Π1(1), ε2 ≤ Π2(1)) = up11,

P (ε1 ≥ Π1(1), ε2 ≤ Π2(1)) = (1− t)p01,

P (ε1 ≥ Π1(1),Π2(1) ≤ ε2 ≤ Π2(0)) = tp01,

P (ε1 ≥ Π1(1), ε2 ≥ Π2(0)) = (1− s)p00,

P (Π1(0) ≤ ε1 ≤ Π1(1), ε2 ≥ Π2(0)) = sp00,

P (ε1 ≤ Π1(0), ε2 ≥ Π2(0)) = (1− v)p10,

P (ε1 ≤ Π1(0),Π2(1) ≤ ε2 ≤ Π2(0)) = vp10.

Marginal constraints are given by 1− Π1(1) = p01 + (1− s)p00, 1− Π2(0) =
p00 + (1− v)p10, Π1(0) = p10 + (1− u)p11 and Π2(1) = p11 + (1− t)p01.

and the solution for (s, t, u, v) ∈ [0, 1]4 is the following.

(s, t, u, v) =

(
Π1(1)− p11 − p10

p00

,
p11 + p01 − Π2(1)

p01

,
p11 + p10 − Π1(0)

p11

,
Π2(0)− p11 − p01

p10

)
.

Note that Π1(0) = 0 and Π1(1) = 1 can only be reached if p10 = p01 = 0,
which in turns forces Π2(1) = Π2(0) = p11 = 1 − p00. Similarly, Π2(0) = 1
and Π2(1) = 0 can only be reached if p11 = p00 = 0, which in turns forces
Π1(1) = Π1(0) = p10 = 1− p01.

The bounds for the second asymmetric game are obtained by permuting
the two players and the result follows.




