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Résumé 
 

Le syndrome du X fragile (SXF) est la première cause héréditaire de déficience 

intellectuelle et également la première cause monogénique d’autisme. Le SXF est causé par 

l'expansion de la répétition du nucléotide CGG sur le gène FMR1, ce qui empêche 

l’expression de la protéine FMRP. L’absence du FMRP mène à une altération du 

développement structurel et fonctionnel de la synapse, ce qui empêche la maturation des 

synapses induite par l’activité et l’élagage synaptique, qui sont essentiels pour le 

développement cérébral et cognitif. Nous avons investigué les potentiels reliés aux 

événements (PRE) évoqués par des stimulations fondamentales auditives et visuelles dans 

douze adolescents et jeunes adultes (10-22) atteints du SXF, ainsi que des participants 

contrôles appariés en âge chronologique et développemental. Les résultats indiquent un profil 

des PRE altéré, notamment l’augmentation de l’amplitude de N1 auditive, par rapport aux 

deux groupes contrôle, ainsi que l’augmentation des amplitudes de P2 et N2 auditifs et de la 

latence de N2 auditif. Chez les patients SXF, le traitement sensoriel semble être davantage 

perturbé qu’immature. En outre, la modalité auditive semble être plus perturbée que la 

modalité visuelle. En combinaison avec des résultats anatomique du cerveau, des mécanismes 

biochimiques et du comportement, nos résultats suggèrent une hyperexcitabilité du système 

nerveux dans le SXF. 

 

Mots-clés : Syndrome du X Fragile, déficience intellectuelle, traitement des informations 

sensorielles, potentiels reliée aux évènements, N1 
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Abstract 
 

We investigated early auditory and visual information processing in Fragile X 

Syndrome (FXS), the most common form of X-linked Intellectual Disability (ID) and the only 

known monogenetic cause of autism. FXS is caused by a trinucleotide repeat expansion in the 

FMR1 (‘Fragile X mental retardation 1’) gene, which prevents expression of the ‘fragile X 

mental retardation protein’ (FMRP). FMRP absence leads to altered structural and functional 

development of the synapse, while also preventing activity-based synapse maturation and 

synaptic pruning, which are essential for cerebral and cognitive development. We review the 

contribution of electrophysiological signal studies for the understanding of information 

processing in FXS and compare event-related potential (ERP) findings to those concerning 

other clinical populations that share symptoms with FXS. In our research project, we 

investigated ERPs evoked by basic auditory and visual stimulation in twelve adolescents and 

young adults (10-22) with FXS, as well as healthy chronological- and developmental- age 

matched controls. We found an altered ERP profile in FXS, including increased auditory N1 

amplitude, relative to both control groups, as well as increased auditory P2 and N2 amplitudes 

and increased auditory N2 latencies. Rather than being immature, sensory processing appears 

to be specifically disrupted in FXS. Furthermore, the auditory modality seems to be more 

affected than the visual modality. In combination with brain anatomical, biochemical and 

behavioural findings, our results suggest a hyperexcitable nervous system in FXS. 

 

Key words: Fragile X Syndrome, intellectual disability, sensory information processing, 

event-related potentials, N1 
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General introduction 
 

Learning mechanisms 
 

Learning mechanisms and their underlying brain functions are a major field of 

interest and research in cognitive neuroscience. One of the most influential attempts to account 

for the neuronal processes underlying associative learning was introduced in the late 1940s by 

Donald Hebb in his book The Organization of Behaviour (Hebb, 2002). His theory explains 

the formation of memory traces through synaptic plasticity. Frequent reverberatory activity 

between neurons is believed to stabilize the connection between these neurons through growth 

or metabolic changes. Thus, memory traces are represented through neural networks (Hebb, 

2002). Modern neuroimaging techniques enable us to non-invasively investigate information 

processing and learning mechanisms in the human brain. However, not all of these techniques 

have a sufficient temporal resolution to allow the investigation of rapid neural processes like 

postsynaptic potentials, which usually last between tens and hundreds of milliseconds (ms) 

(Luck, 2005). Hemodynamic measures like functional magnetic resonance imaging (fMRI) 

and positron emission tomography (PET), for example, are limited to a resolution of several 

seconds and are thus not suited for the investigation of synaptic processes. The method of 

choice to address neural processes is electroencephalography, the measurement of electrical 

activity in the brain through electrodes placed on the scalp, which is plotted in voltage over 

time. Neural responses associated with specific sensory, cognitive and motor events can be 

extracted from the electroencephalogram (EEG) using averaging techniques in order to discard 

random brain activity from the specific event-related potential (ERP) (Luck, 2005). ERPs are 

currently believed to reflect cerebral local field potentials, which are summarized postsynaptic 

potentials from large groups of neurons (Luck, 2005). ERP waveforms consist of a series of 

positive and negative voltage deflections, which are called ‘ERP components’ and named 

according to the order or latency-window in which they occur. However, it is important to 

note that some authors refer to underlying cerebral generator processes, which contribute to 

the polarity of the recorded voltage deflection, when they talk about ERP components 
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(Näätänen & Picton, 1987). Usually, the early components are associated with basic sensory 

processing and differ according to modality, whereas the later components (starting with N2) 

are expected to reflect more cognitive phenomena, like face (N170) and language (N400, 

P600) processing or error detection (error related negativity). It is possible to investigate 

sensory and cognitive processing using ERPs since an extensive body of research identifies a 

number of factors that influence the amplitude and latency of specific ERP components and 

can be manipulated in experiments. Further, ERP components have been found to specifically 

change with brain development, which makes them valuable instruments in the investigation 

of brain maturation (Lippé, Roy, Perchet, & Lassonde, 2007). 

 

Intellectual disability 
 

A complementary approach to the study of brain mechanisms in healthy individuals is 

to investigate pathologies presenting deficits in these mechanisms. Results obtained from 

pathology research can provide insight toward understanding the proper functioning found in 

healthy individuals, while also serving as a basis for developing treatments for the condition in 

question. In the study of information processing and learning mechanisms, Intellectual 

Disability (ID) (formerly mental retardation) is thus a disorder of particular interest, since it is 

‘characterized by significant limitations both in intellectual functioning and in adaptive 

behavior as expressed in conceptual, social and adaptive skills.’ (Schalock et al., 2007). 

Generally, ID can be assessed using Standard Intelligence Quotient (IQ) tests with a mean of 

100 and a standard deviation of 15 in combination with the Vineland adaptive Behavior 

Scales, and must be diagnosed before the age of 18 (Schalock et al., 2007). In this context, ID 

is diagnosed when IQ is assessed as <70 (i.e., at least 2 standard deviations below the mean) 

(Ropers, 2010) and a significant deficit in adaptive functioning is identified (Perry & Factor, 

1989). However, ID cannot be considered a homogeneous condition, since it can be caused by 

numerous genetic and environmental factors. In 30 to 50% of cases, the cause of ID remains 

unknown (Daily, Ardinger, & Holmes, 2000). In order to study the underlying mechanisms of 

a disorder, a certain extent of phenotypic, genetic and mechanistic homogeneity is required. 

Thus, it is reasonable to investigate a condition with an identified cause. Among genetic 
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causes, X-linked recessive gene defects are believed to be accountable for approximately 10-

12% of ID found in males (Ropers & Hamel, 2005). The most common form of X-linked 

intellectual disability is Fragile X Syndrome (FXS), which affects about 2% of male ID 

patients (Ropers & Hamel, 2005). Since FXS is caused by a single gene mutation, it is 

regarded as an important pathology in the investigation of gene-brain-behavior relationships. 

 

Fragile X Syndrome 
 

The physical phenotype of FXS is rather subtle, including a long face, prominent ears 

and hyperextensible joints (Hull & Hagerman, 1993). Over 90% of male and over 50% of 

female FXS individuals meet the criteria for an ID, ranging from mild to severe for male 

patients and from mild to moderate in females (Hessl et al., 2009). FXS patients who do not 

meet the criteria for ID often present learning disabilities (Loesch et al., 2003). Since cognitive 

growth in children with FXS is significantly slower than in typical developing children (Hall, 

Burns, Lightbody, & Reiss, 2008), the intellectual discrepancy increases with age, resulting in 

an age-dependent gradual decline in IQ (Schneider, Hagerman, & Hessl, 2009). The most 

severely impaired cognitive domain in FXS is executive functions, including deficits in 

working memory, planning and set shifting, attentional control and inhibition (K. M. Cornish 

et al., 2008; Schneider et al., 2009). Further, visual-spatial cognition is often impaired, 

including visual-spatial reasoning, object occlusion and arithmetical problem solving (K. M. 

Cornish et al., 2008; Farzin & Rivera, 2010; Loesch et al., 2003). Over 50% of male FXS 

patients meet the behavioral criteria for Attention-Deficit/Hyperactivity Disorder (ADHD), as 

reported by parents and teachers (Sullivan et al., 2006). Hyperarousal to sensory stimuli is 

especially common in FXS, while hyperactivity, impulsivity, impairment of inhibitory control 

and short attention span are also frequently found (Schneider et al., 2009; Sullivan et al., 

2006). Many of the symptoms found in FXS are typical of the autistic spectrum; about 30% of 

male individuals with FXS meet the full diagnostic criteria for autism, with FXS considered 

the only known monogenetic cause of autism (Rogers, Wehner, & Hagerman, 2001). The 

main symptoms shared between FXS and autism concern abnormal behavior, lack of social 

cognition and language deficits (Schneider et al., 2009). Abnormal behavior in FXS includes 
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stereotyped behavior, self-injury, perseverative preoccupations and interests (Bregman, 

Leckman, & Ort, 1988), as well as delayed socialization and avoidance (Budimirovic et al., 

2006). Delayed echolalia, idiosyncratic responses, abnormalities in intonation and rhythm, 

verbal perseveration, tangential language and cluttering of speech are examples of language 

deficits found in FXS (Bregman et al., 1988; K. M. Cornish et al., 2008; Sudhalter & Belser, 

2001). Even though many FXS males show a broad spectrum of anxiety symptoms, they often 

do not meet the criteria for an established anxiety disorder enumerated in the Diagnostic and 

Statistical Manual of Mental Disorders. However, anxiety symptoms most frequently observed 

in FXS, such as poor eye contact, gaze aversion and excessive shyness are reminiscent of 

social phobia (Tranfaglia, 2012). Thus, a broad spectrum of functioning is found to be 

impaired in FXS, even though the specific symptoms, as well as their intensity, vary 

considerably from case to case (Schneider et al., 2009). On the other hand, vocabulary, verbal 

working memory and long-term memory for meaningful information appear to be well 

preserved in most cases (K. Cornish et al., 2005b). 

 

Genetic mechanisms underlying FXS 
 

FXS is caused by a CGG trinucleotide repeat expansion in the fragile X mental 

retardation 1 (FMR1) gene, which is located on the X-chromosome. Generally, it follows the 

hereditary transmission of X-chromosomal inheritance, but with some particular features. 

Firstly, despite their existing non-mutated X-chromosome, women can also be affected 

(approximately half of the prevalence found in men) but with greater variation in the 

phenotype expression (Bennetto, Pennington, Porter, Taylor, & Hagerman, 2001). Besides the 

full mutation of more than 200 trinucleotide repeats (compared to the normal length of 

approximately 30 triplets), a premutation with an intermediate length of between 55 and 200 

repeats also exists. This premutation leads to non-penetrant carriers, who may pass on a full 

mutation to their child, due to the instability of the premutation in meiosis (Bassell & Warren, 

2008). Normally, the FMR1 gene codes for the ‘fragile x mental retardation protein’ (FMRP) 

(Verheij et al., 1993). FMRP is a messenger ribonucleic acid (mRNA)-binding protein, which 

has been shown to strongly inhibit translation of various mRNAs (Laggerbauer, Ostareck, 
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Keidel, Ostareck-Lederer, & Fischer, 2001). The FMR1 mutation found in FXS silences the 

transcription of FMRP, resulting in an FMRP absence (Laggerbauer et al., 2001). According 

to the mGluR theory of FXS, FMRP deficit results in an exaggerated mRNA translation and 

thus causes continuous enhanced mGluR-dependent Long Term Depression. Consequently, 

the protein-synthesis in the synapses is not modified specifically to stimuli induction, resulting 

in a loss of protein synthesis-dependent plasticity (Bassell & Warren, 2008). Further, FMRP 

absence leads to altered axonal development, including increased density of dendritic spines, 

weak, elongated dendritic spines and immature synaptic connections (Comery et al., 1997). 

Based on the assumed molecular mechanisms, mGluR5 inhibitors were investigated as 

possible medical treatments for the FXS phenotype in several animal models (Krueger & Bear, 

2011). Subsequent to findings that a number of phenotypes were reversed in animal models, a 

clinical pilot with human patients was carried out. No clinically significant adverse effects 

were detected in FXS patients after the administration of a single dose of the mGluR5 

inhibitor fenobam and potentially beneficial clinical effects were discovered in half of the 

patients (Berry-Kravis et al., 2009). However, to this day no double-blind randomized trial 

with fenobam in FXS patients has been completed. 

 

Brain anatomy in FXS 
 

A number of structural studies have investigated brain anatomy in FXS. One of the 

most frequently and consistently found differences between FXS and age-matched controls is 

a significantly enlarged caudate nucleus in FXS patients (Lightbody & Reiss, 2009). The 

caudate nucleus is a structure located in the basal ganglia believed to be involved in 

movement, learning and memory, notably in associative learning (Packard & Knowlton, 

2002), as well as in transferring information to the frontal lobe (Ring & Serra-Mestres, 2002). 

The alterations observed in the caudate nucleus might therefore be connected with deficits in 

learning, motor coordination and attention found in FXS (Lightbody & Reiss, 2009). The 

enlarged caudate nucleus is found early on in FXS and not only in comparison to healthy 

controls, but also when compared to children with idiopathic developmental delay and autism 

(Hazlett et al., 2009). Some authors found a difference in relative volume increase between 
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male and female FXS patients (Eliez, Blasey, Freund, Hastie, & Reiss, 2001; Gothelf et al., 

2008), whereas others did not find these gender differences (Lee et al., 2007). Further, a 

positive correlation between caudate nucleus volume and aberrant behavior, as assessed by the 

Aberrant Behavior Checklist and the Stereotypy subscale of the Autism Behavior Checklist, 

has been found (Gothelf et al., 2008). The second structure in which volume alterations have 

been detected is the cerebellar vermis, which has been found to be consistently smaller in FXS 

(Lightbody & Reiss, 2009). While the cerebellum has traditionally been mainly associated 

with motor functioning, evidence has accumulated that it may also play a role in cognitive 

processes, especially spatial cognition, language production and executive functions 

(Rapoport, van Reekum, & Mayberg, 2000), all of which have been found to be disturbed in 

FXS. Since the reduced volume of the cerebellar vermis has been found early on and 

consistently in FXS, it has been suggested as a distinguishing feature of brain anatomy for the 

disorder (Hoeft et al., 2008). Further, a positive relationship between cerebellar vermis size 

and IQ has been found in FXS, but not in healthy controls (Gothelf et al., 2008). However, 

results concerning the cerebellar vermis and autistic behavior in FXS have been inconsistent, 

possibly due to differences in group size and diagnostic criteria (Lightbody & Reiss, 2009). 

Studies of FXS brain anatomy have also found a smaller superior temporal gyrus (Gothelf et 

al., 2008), which is involved in auditory processing, including language, and also in social 

cognition (Bigler et al., 2007). The amygdala has been found to be significantly smaller in 

children affected with FXS, even at very young ages (Hazlett et al., 2009; Kates, Abrams, 

Kaufmann, Breiter, & Reiss, 1997). The amygdala is known to play a central role in the 

mediation of emotions, particularly fear (LeDoux, 1995), and in the organization of social 

behavior (Adolphs, Tranel, & Damasio, 1998). Considering the autistic symptoms often found 

in FXS, such as social avoidance and gaze aversion, it is not surprising that the amygdala has 

been found to be reduced in FXS patients with autism diagnosis (Lightbody & Reiss, 2009). 

However, the amygdala also appears to be reduced in patients with FXS who do not show 

signs of autism (Hazlett et al., 2009). Alterations found in the size of the hippocampus, a 

structure important for memory and learning, were too inconsistent in the case of FXS to 

establish any general conclusions, since the hippocampus of FXS patients has been found to 

be larger, smaller and not different from that of controls (Lightbody & Reiss, 2009). Hoeft and 

colleagues found an enlarged fusiform gyrus and a decreased insula in young children with 
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FXS in comparison to normally developing and developmentally delayed control children 

(Hoeft et al., 2008). The fusiform gyrus is a cortical region specialized in face processing 

(Kanwisher & Yovel, 2006), while the insula is believed to be involved in interoceptive 

awareness, emotional responses, empathetic processes, as well as salience and cognitive 

control (Menon & Uddin, 2010). Aberrant maturation of the prefrontal gyri has been linked to 

abnormal intellectual development in FXS (Bray et al., 2011). Diffusion tensor imaging (DTI), 

an MRI method that maps molecular diffusion in the brain, showed a decreased white matter 

tract connectivity in frontostriatal pathways and parietal sensory-motor tracts in FXS females, 

relative to healthy controls (Barnea-Goraly et al., 2003). These pathways are believed to be 

involved in the mediation of sensory processes, while also affecting regulation, executive 

functions and motor programming (Hessl, Rivera, & Reiss, 2004) - domains that have been 

found to be impaired in FXS. 

 

Functional neuroimaging in FXS 
 

Given that, in contrast to structural studies, functional studies do not allow for 

sedation of participants, it is more difficult to obtain functional data from FXS patients. The 

behavioral phenotype of FXS patients, often including hyperactivity, anxiety, impulsivity and 

stereotyped behavior, makes it nearly impossible for some of them to stay motionless and 

attentive in an unknown and somewhat intimidating setting, as required in fMRI. Thus, most 

of the earlier studies focus on the more functional female FXS patients (Lightbody & Reiss, 

2009). However, advantages in behavioral training and pre-test preparation in recent years 

have made it possible to test some male patients as well (Lightbody & Reiss, 2009). Given the 

gaze aversion frequently found in FXS, face and gaze processing are of particular interest in 

functional imaging studies. While female FXS patients appeared to process face stimuli in a 

relatively appropriate manner, they did not show a preference for the more socially relevant 

forward faces in terms of brain activation, as found in healthy controls (Garrett, Menon, 

MacKenzie, & Reiss, 2004). In a follow-up study with male patients, it was found that face 

processing was accompanied by less prefrontal cortex activity, while activity in the insula and 

amygdala were enhanced (Watson, Hoeft, Garrett, Hall, & Reiss, 2008). Thus, FXS patients 
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showed an increased sustained activation in brain regions related to emotion perception and 

arousal, in comparison to typically developing controls and controls with non-syndromic 

developmental delay. A study investigating anxiety and face processing in FXS showed that 

FXS patients with high reported anxiety recruited encoding, social cognition and memory 

related areas of the brain significantly less during face processing than FXS patients with 

lower levels of anxiety (Holsen, Dalton, Johnstone, & Davidson, 2008). The relationship 

between autism and FXS with regard to face processing has been examined by Dalton and 

colleagues (Dalton, Holsen, Abbeduto, & Davidson, 2008). While activation in the fusiform 

gyrus was comparable across FXS and autism groups, FXS patients showed more activation in 

the left hippocampus, the right insula, left postcentral gyrus and superior temporal gyrus than 

healthy and idiopathic autism control groups. These findings suggest that, despite similar 

behavioral outcomes, the underlying cerebral mechanisms in FXS and autism might differ. 

Working memory is one of the executive functions that has been investigated in FXS. Two 

studies with female FXS patients showed that brain areas associated with working memory 

(inferior and middle frontal gyri, superior parietal lobule and supramarginal gyrus) are 

activated during specific working memory tasks (N-back task and math calculations) (Kwon et 

al., 2001; Rivera, Menon, White, Glaser, & Reiss, 2002). However, unlike the healthy control 

group, the FXS females in both studies did not show increased brain activation in response to 

greater task difficulty, suggesting a failure to recruit additional resources when demanded. 

With regards to attention and impulse control, Hoeft and colleagues carried out a study 

investigating inhibition in male adolescent FXS patients using a Go/No Go fMRI task (Hoeft 

et al., 2007). While developmentally delayed and normally developed controls recruit a right 

fronto-striatal network during the response inhibition task, the FXS group demonstrated what 

may have been a compensatory strategy through increased ventrolateral pre-frontal cortex 

activity. 
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Electrophysiology in FXS 
 

The recording of spontaneous electrical activity over a short period of time is 

generally used in a clinical context in order to diagnose epileptic activity. Epilepsy describes a 

set of neurologic syndromes whose predominant feature is a predisposition to recurrent 

unprovoked seizures (Chang & Lowenstein, 2003). In FXS, epilepsy is reported in 10 to 20% 

of cases, an incidence significantly larger than in the general population (<1%) (Berry-Kravis, 

2002). The seizure pattern most frequently resembles benign focal epilepsy of childhood, an 

idiopathic age-specific epileptic syndrome that usually goes into remission in adolescence. 

The EEG pattern in benign childhood epilepsy features centrotemporal epileptiform foci with 

wide spikes that appears bi- or triphasic with a relatively high amplitude (Kramer, 2008). 

Thus, FMRP absence seems to cause increased neuronal excitability and susceptibility to 

epilepsy (Berry-Kravis, 2002).  

Van der Molen and Van der Molen investigated the oscillatory dynamics during 

resting-state EEG in male FXS patients (M. J. Van der Molen & Van der Molen, 2013). They 

found an increased relative theta power and a decreased relative upper alpha power in FXS 

when compared to healthy controls. This is a pattern also typically found in children and 

adults with ADHD (Barry, Clarke, & Johnstone, 2003). Alpha rhythm in EEG is believed to 

play a pulsed inhibition role in cognitive processing, which gates information by reducing the 

processing capabilities of a given area (Jensen & Mazaheri, 2010). The reduction of alpha 

activity in FXS may thus be a neural marker of a hyperexcitable nervous system, since the 

neural inhibitory mechanism that regulates incoming sensory information is aberrant (M. J. 

Van der Molen & Van der Molen, 2013). The pulsed inhibition reflected by the alpha rhythm 

is believed to be influenced by gamma-Aminobutyric acid (GABA)ergic input from the 

interneural network. This supports the observation of reduced alpha oscillations in FXS, since 

the GABAergic system appears to be dysfunctional in FXS patients and in animal models 

(Paluszkiewicz, Martin, & Huntsman, 2011). The alpha/theta power abnormalities may 

underlie further information processing deficits, since alpha/theta synchronization has also 

been associated with cognitive and memory performance (Klimesch, 1999). The results 

obtained during resting state in FXS already indicate that electrophysiology is a promising 

method of investigating information processes in FXS.  
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After having described the behavioral and cognitive phenotype of FXS, the 

underlying genetic mechanisms, as well as alterations in brain anatomy and activation, the 

question arises: how does FXS affect the synaptic mechanism underlying information 

processing? How does the reduction in synaptic plasticity caused by FMRP absence affect 

basic sensory processing and more sophisticated cognitive processing? As described in the 

beginning of this section, ERPs enable us to non-invasively investigate sensory and cognitive 

processing in humans. A review presenting and discussing relevant ERP studies conducted 

with full mutation FXS patients is the first of two articles presented within the framework of 

this master’s thesis and logically precedes the research article, which is presented second. 

 

ERP alterations in FXS 
 

The aim of writing the review article was to collect and discuss all results obtained 

thus far in relevant ERP studies investigating information processing in FXS. We then 

designed a study based on what has previously been found, while also adding new elements, in 

order to broaden knowledge of specific brain responses in FXS. Surprisingly, only five 

relevant ERP studies with FXS full mutation patients have been published since the 1980s. 

The explanation for this is most likely found in the difficulty of testing FXS patients due to the 

behavioral phenotype they present, a problem we also encountered in our own study. In 

contrast to clinical EEG, the participant cannot be sedated during EEG if brain responses to 

specific sensory events are to be evoked and recorded. The installation of electrodes often 

poses a problem, since most of the patients present social anxiety and do not like to be touched 

by a stranger or restricted by an EEG net. Further, participants need to remain still during the 

testing, since movement artifacts distort the data and recorded segments during which the 

participant has moved must be rejected in the analysis.  

The review first gives a brief description of FXS and its underlying genetic 

mechanisms, as well as its cognitive profile. After a short introduction of the ERP method, the 

five selected studies are presented and a detailed comparison of their methods is given. In the 

main part of the review, each of the following ERP components is presented in detail: N1, P2, 

MMN, N2 and P3. A general description is given for each component, followed by the 
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findings of each study concerning them and possible alterations in FXS. These are then 

compared to findings in syndromes sharing symptoms with FXS, namely other IDs and 

autism. Further, the maturation of every component is described, in case the alterations found 

in FXS reflect an immature brain response resembling that of a younger child with the same 

level of cognitive functioning. Possible factors that might have influenced or caused the 

deviances are discussed and hypotheses concerning underlying neuronal mechanisms are 

proposed. Finally, controversies between studies are addressed. In the discussion and 

conclusion the ERP profile specific to FXS is presented, including all reported alterations. 

While parameters of the more cognitive components MMN, N2 and P3 appear to be generally 

altered in ID, the basic sensory components N1 and P2 seem to be altered more specifically in 

FXS. In conclusion, the review article suggests that basic stimulus processing, attentional 

processing, and memory formation are impaired, which is consistent with symptoms found in 

FXS. 

 

Implications for our study design 
 

Since basic sensory processing seemed to be especially impaired in FXS, we decided 

to choose a simple auditory and visual stimulation paradigm in order to evoke basic stimulus 

processing brain responses. The tasks involved were used in two earlier studies investigating 

the maturation of infant auditory and visual processing realized by my supervisor, Sarah Lippé 

(Lippé, Martinez-Montes, Arcand, & Lassonde, 2009; Lippé et al., 2007). So far, only oddball 

paradigms have been studied in FXS patients with full mutation. Furthermore, only one study 

investigated visual ERPs and the results seemed to suggest that stimulus processing in the 

visual modality is less affected than in the auditory modality in FXS, implying an important 

modality difference. Thus, we wanted to further examine visual processing in FXS by 

investigating basic visual ERPs. 

While a number of imaging studies contains a control group with non-syndromic ID 

or with younger controls matching the developmental age of the patients in order to control for 

general effects of ID or brain immaturity, this has only been done in one of the ERP studies of 

FXS. It is therefore difficult to determine whether brain development in FXS remains 
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immature, causing ERP profiles to appear similar to younger children with the same level of 

cognitive functioning as the patients, or if the absence of FMRP further disrupts sensory 

processing, leading to an ERP profile specific to FXS. In order to differentiate these two 

possibilities, we not only tested a healthy age and gender matched control group, but also 

healthy controls in the age of cognitive functioning (developmental age) of the patients tested. 

The ethics, scientific and administrative committee at the CHU Sainte-Justine Mother 

and Child University Hospital Center reviewed the research protocol and asked for minor 

specifications concerning recruitment methods, data access, neuropsychological testing, 

statistical analysis and number of participants as well as group sizes. In consequence, we 

modified the protocol and the consent form in order to obtain final permission from all 

committees. 
Considering the expected difficulties in testing FXS patients, we decided to 

administer the IQ test during a home visit preceding the EEG recording at the CHU Sainte-

Justine Mother and Child University Hospital Center. This allowed the patient to feel safe 

while meeting us first in a well-known environment and thus to develop a positive relationship 

with us, which was especially important for the second visit when the EEG was recorded. 

During the first visit, we prepared the patients for the EEG by showing them pictures and 

explaining the procedure in simple words. During the EEG testing we created a pleasant 

environment, by playing a movie in the beginning and offering the patient snacks and toys 

while they got used to the environment. While installing the electrodes, we proceeded 

effectively but carefully in order to avoid disturbing the patient more than necessary. 

Whenever the patient was continuously dissatisfied with the situation, we stopped the testing. 

Given the high prevalence of epilepsy in FXS, we presented all patient EEG data to a 

neurologist. In the case of epileptic activity, data was excluded from analysis and the family 

doctor of the patient was contacted in order to inform the patient and schedule a follow-up 

meeting for an accurate diagnosis at the hospital. 
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Hypotheses 
 

Based on the structural and functional alterations in neurons and synaptic plasticity 

caused by the FMRP absence, the cognitive phenotype, as well as the alterations in brain 

anatomy and brain activation described above, and in particular the ERP alterations 

summarized in our literature review, we assume that basic neuronal information processing is 

impaired in FXS. 

Therefore, we expect to find an auditory and visual ERP profile in our FXS patient 

population that differs in several components, notably in auditory N1, P2 and N2 and visual 

N70, P1 and N2 amplitude, as well as in N2 latency, from the healthy control group matched 

to the patient group on the basis of chronological age and gender. 

Since the absence of FMRP is believed to lead to altered neurodevelopment, and 

since aberrations in brain anatomy are found as early as one year of age, we expect that at least 

some of the components will not only appear immature, but specifically altered, in FXS. Thus, 

we expect that the auditory components N1 and P2 will not only be altered relative to the 

chronological control group, but also relative to a healthy control group that is matched to the 

developmental age of cognitive functioning of patients with ID. Component N2, however, 

might not differ from the developmental control group, since it is typically altered in ID and 

could therefore reflect an immature brain response associated with the level of cognitive 

functioning. 

A modality difference in basic processing impairments between the auditory and 

visual modality in FXS has been suggested in a previous ERP study. This modality difference 

seems to gain further support through language deficits often found in FXS, which could be 

partially explained by impairments in auditory processing. Thus, we expect visual ERPs to be 

less aberrant in FXS than auditory ERPs, meaning that fewer components differ significantly 

from the control groups in the visual compared to the auditory modality. 
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Contributions to the articles 
 

First article 

 

The first article is a literature review presenting all relevant ERP studies that have 

thus far been conducted with patients with FXS full mutation. The objective of this article was 

to unveil the contribution of electrophysiological signal studies for the understanding of the 

information processing impairments in FXS. The literature review, as well as the initial draft 

of the article, were entirely carried out by Inga Sophia Knoth. Sarah Lippé’s corrections and 

commentaries were taken into account before the manuscript was submitted to Frontiers in 

Human Neuroscience in April 2012. The article was accepted and published in November 

2012. 

 

Second article 

 

The second article describes the research project that was realised by Inga Sophia 

Knoth in the framework of her Master’s degree. The initial idea of the project originated from 

Sarah Lippé and Jacques Michaud. The EEG paradigm was created by Sarah Lippé in the 

framework of her PhD studies. Jacques Michaud provided his database of FXS patients for the 

project. Recruitment and screening of patients and controls, IQ testing and evaluation, EEG 

recording, EEG pre-treatment, ERP and statistical analysis were mainly carried out by Inga 

Sophia Knoth. Phetsamone Vannasing helped with patient EEG recording and EEG pre-

treatment. Some patients were tested by neuropsychologist Domitille Malfait. Bachelor 

students Maude Joannette and Patricia Laniel helped with recruitment and EEG recording of 

control participants. The first draft of the article was entirely written by Inga Sophia Knoth. 

Corrections and commentaries of the co-authors have been taken into account and the 

manuscript is ready for submission to the Journal of Neurodevelopmental Disorders. 
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Abstract 
 

Fragile X Syndrome (FXS) is the most common form of X-linked intellectual 

disability (ID), associated with a wide range of cognitive and behavioral impairments. FXS is 

caused by a trinucleotide repeat expansion in the FMR1 gene located on the X-chromosome. 

FMR1 is expected to prevent the expression of the “fragile X mental retardation protein 

(FMRP)”, which results in altered structural and functional development of the synapse, 

including a loss of synaptic plasticity. This review aims to unveil the contribution of 

electrophysiological signal studies for the understanding of the information processing 

impairments in FXS patients. We discuss relevant event-related potential (ERP) studies 

conducted with full mutation FXS patients and clinical populations sharing symptoms with 

FXS in a developmental perspective. Specific deviances found in FXS ERP profiles are 

described. Alterations are reported in N1, P2, Mismatch Negativity (MMN), N2, and P3 

components in FXS compared to healthy controls. Particularly, deviances in N1 and P2 

amplitude seem to be specific to FXS. The presented results suggest a cascade of impaired 

information processes that are in line with symptoms and anatomical findings in FXS. 

 

Key words: fragile X syndrome, event-related potential, cognition, intellectual disability, 

autism spectrum disorders 
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Introduction 
 

Intellectuel Disability and Fragile X Syndrome 
 

Intellectual disability (ID) is among the most common and severe handicaps of 

childhood. It is defined as “a condition of arrested or incomplete development of the mind, 

which is especially characterized by impairment of skills manifested during the developmental 

period, skills which contribute to the overall level of intelligence, i.e., cognitive, language, 

motor, and social abilities” (World Health Organization, 2004). Generally, Standard 

Intelligence Quotient (IQ) tests with a mean of 100 and a standard deviation of 15 are used for 

diagnosis. In this context, ID is determined by assessing an IQ <70 (i.e., less than 2 standard 

deviations below the mean) (Ropers, 2010). Numerous genetic and environmental factors can 

cause ID. They remain unknown in 30–50% of cases (Daily et al., 2000). Among genetic 

causes, X-linked recessive gene defects are believed to be responsible for approximately 10–

12% of ID found in males (Ropers and Hamel, 2005). The most common form of X-linked 

mental retardation is the Fragile X Syndrome (FXS), which affects about 2% of male ID 

patients (Ropers and Hamel, 2005). FXS is caused by a trinucleotide repeat expansion in the 

FMR1 gene, which is located on the X-chromosome. Generally, it follows the hereditary 

transmission of X-chromosomal inheritance, but with some particular features. Firstly, despite 

their existing non-mutated X- chromosome, women can also be affected (approximately half 

of the prevalence found in men) but with greater variation in the phenotype expression 

(Bennetto et al., 2001). Besides the full mutation of more than 200 repeats which underlies 

FXS in comparison to the normal length of 30 triplets, there also exists a premutation with an 

intermediate length between 55 and 200 repeats. This premutation leads to non-penetrant 

carriers, who may pass on a full mutation to their child, due to the instability of the 

premutation in meiosis (Bassell and Warren, 2008). According to the mGluR theory of FXS, 

the FMR1 gene prevents expression of the encoded “fragile X mental retardation protein 

(FMRP)” (Bear et al., 2004). Normally, FMRP is known to repress the translation of specific 

mRNAs in response to the activation of metabotropic Glutamate Receptors (mGluRs). In turn, 

mGluRs are regulated by the inhibitory GABAergic system presynaptically, a putative altered 

mechanism in FXS. In Fragile X patients, the absence of FMRP leads to altered structural and 
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functional development of the synapse. On the structural level, altered dendritic development, 

including increased density of dendritic spines, weak, elongated dendritic spines, and 

immature synaptic connections, are found in FXS patients and FXS animal models (Comery et 

al., 1997). Functionally, the FMRP deficit results in an exaggerated mRNA translation and 

thus causes continuous enhanced mGluR-dependent long-term depression. Consequently, the 

protein-synthesis in the synapses is not modified specifically to stimuli induction and therefore 

a loss of protein synthesis-dependent plasticity occurs (Bassell and Warren, 2008). The FMRP 

absence might therefore prevent activity-based synapse maturation and synaptic pruning, 

which is essential for normal brain development (Weiler and Greenough, 1999) and cognitive 

development (Schneider et al., 2009). In this context, the mGluR5 inhibitors were investigated 

as possible medical treatments for the FXS phenotype in several animal models (Krueger and 

Bear, 2011). Subsequent to the finding of a number of reversed phenotypes in animal models, 

clinical trials with human patients have been initiated and show promising preliminary results 

(Berry-Kravis et al., 2009). 

In this review, we aim at unveiling the contribution of electro- physiological signal 

studies for the understanding of information processing impairments of a common intellectual 

deficiency syndrome, FXS. 

 

Cognitive impairments found in FXS 
 

The ID in FXS does not globally extend to all cognitive domains, but concerns abilities 

within and across specific domains, which show stability into adulthood (Cornish et al., 2008). 

In most cases, vocabulary, verbal working memory and long-term memory for meaningful 

information are well preserved (Cornish et al., 2005), whereas the cognitive and behavioral 

domains listed in table I tend to be affected frequently. Since the FXS phenotype shows great 

variability from case to case, the mentioned symptoms occur in some, but not all, FXS 

patients. In addition, the intensity of the symptoms ranges from mild to severe (Schneider et 

al., 2009). The deficits shown in behavior and social cognition, marked in gray within the 

table, are shared with disorders belonging to the autistic spectrum; about 30% of male 

individuals with FXS meet the diagnostic criteria for autism (Rogers et al., 2001).  
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Although non-exhaustive, table I shows a wide range of cognitive impairments in 

FXS patients. Most studies have investigated patients with FXS full mutation; however, it is 

worth mentioning that a recent study found attentionally based enumeration impairments in 

premutation carriers (Goodrich-Hunsaker et al., 2011). Premutation carriers may thus also 

present subtle cognitive impairments. 

 

Table I. Symptoms frequently found in FXS patients sorted by domains. 
 

Domain Symptoms frequently found in FXS patients 
Behavior 
 

Pervasive hyperactivity & Impulsivity (Baumgardner, Reiss, Freund, & Abrams, 1995; 
Bregman et al., 1988; Schneider et al., 2009)  
Stereotyped behavior, self injury, perseverative preoccupations and interest (Bregman et 
al., 1988) 
Poor fine and gross motor coordination (Loesch et al., 2003) 
Delayed socialization and avoidance (Budimirovic et al., 2006) 

Social cognition Gaze aversion (Bregman et al., 1988; Schneider et al., 2009) 
Impaired face recognition & emotion perception (Turk & Cornish, 1998) 
Theory of mind (Garner, Callias, & Turk, 1999) 

Language Delayed echolalia (Bregman et al., 1988; K. Cornish et al., 2005a; Schneider et al., 2009) 
Idiosyncratic responses (Bregman et al., 1988) 
Abnormalities in intonation & rhythm (Bregman et al., 1988)  
Verbal perseveration (Bregman et al., 1988; Schneider et al., 2009)  
Cluttering of speech (K. Cornish et al., 2005a) 
Tangential language (Sudhalter & Belser, 2001) 

Executive 
functions 

Working memory (K. Cornish et al., 2005a; K. M. Cornish et al., 2008; Schneider et al., 2009)  
Planning & set shifting (Schneider et al., 2009) 
Deficits in attentional control (Bregman et al., 1988; K. Cornish et al., 2005a) 
Inhibition (K. Cornish et al., 2005a) 
Sequential processing (Loesch et al., 2003) 

Emotional 
stability 

Anxiety disorders (Bregman et al., 1988; K. Cornish et al., 2005a; Schneider et al., 2009) 
Social avoidance (K. Cornish et al., 2005a; Schneider et al., 2009) 
Aggression (Schneider et al., 2009) 

Visual-spatial 
cognition 

Impairments in visual-spatial reasoning (K. M. Cornish et al., 2008; Schneider et al., 2009) 
Object occlusion (Farzin & Rivera, 2010) 
Arithmetic problems (Loesch et al., 2003) 

Hyperarousal Hyperarousal to sensory stimuli (Schneider et al., 2009) 

 

ERP findings in FXS 
 

In order to address maturational abnormalities in FXS, cortical and subcortical 

morphology have been studied and were found to be associated with alterations in cognition 

(Meguid et al., 2012). Given the availability of the Event Related Potential technique and its 
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capacity to record local field potentials, which are summarized postsynaptic potentials from 

large groups of neurons (Luck, 2005), it is surprising that only a few ERP studies have 

addressed FXS, in which synaptic plasticity is assumed to be impaired. Indeed, five relevant 

ERP studies conducted with full mutation FXS patients have been published since the 1980s 

(St. Clair et al., 1987; Rojas et al., 2001; Castrèn et al., 2003; Van der Molen et al., 2012a,b). 

After a short description of the applied study designs, their findings will be presented in an 

order corresponding to the investigated ERP components. 

 

Study design 

 

Table II shows the study population characteristics in the reviewed studies. Samples varied 

between 5 and 28 individuals, from children to adults, and male and female frequency varied 

between studies’ samples1. 

 
Table II. Study population characteristics in the reviewed studies. 

 

Study 

FXS patients Healthy controls Down Syndrome  

N 
Age in 
years 

Mental 
age /IQ 

Co-
morbidity N 

Age in 
years IQ N 

Age in 
years 

Mental 
age 

St. Clair 
et al., 
1987 

28, 
2♀, 
26♂ 

16-66 
M: 43 
(±13)  

 

1.8-4.6 
M: 3.08 
(±0.08) 

No epilepsy, 
no autism 

 

83 18-75 
 

N.A. 90 
36 
54 

16-66 
16-37 
38-66 

 
3(±1.5) 

2.17(±1.5)  

Rojas et 
al., 2001 

11, 
6♀, 
5♂ 

 

M: 
28.95 

(±2.51)  

IQ: 
67.55 

(±5.47) 

N.A. 11, 
6♀, 
5♂ 

M: 
28.83 

(±2.51) 

127.5 
(±2.9) 

Castrèn 
et al., 
2003 

5♂ 7-13 
M: 11.6 
(±2.8) 
1x 28 

 

N.A. No epileptic 
seizures, no 
medication 

4♂ M: 10.6 
(±0.6) 

N.A. 

Van der 
Molen et 
al., 
2011/12 

16 
/11
♂ 

18-42 
M: 29.6 

7.7 
(±1.6) 

No 
medication 

20/ 
22♂ 

19-47 
M: 29.2 

121.5 
(±25.8) 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Some of the listed specifications for St. Clair’s study population were detailed elsewhere (St. 
Clair and Blackwood, 1985; Primrose et al., 1986). 
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All researchers investigated full mutation FXS patients and age-matched healthy 

controls. However, St. Clair and colleagues included an additional control group with ID, i.e., 

Down syndrome (DS). This control group enabled differentiation between obtained effects 

that rely on the level of brain development and effects that are specific for brain mechanisms 

underlying FXS. Therefore, the developmental level of the FXS patients has to be considered 

as a confounding variable to the results of the other four studies. Both chronological and 

mental age show considerable variation among the reported studies, ranging from children in 

Castrèn’s study to patients in retirement age in St. Clair’s study. This variation has to be kept 

in mind when results between the studies are compared, since both chronological and 

developmental age is expected to influence ERP waves (Courchesne, 1990). The IQs reported 

for the control subjects in Rojas and Van der Molen’s studies are strikingly high, which 

probably reflects the tendency to recruit controls in the university setting, since years of 

education are positively correlated with IQ (Rowe et al., 1998). 

The higher prevalence of FXS full mutations in men is reflected in the gender 

distribution in the majority of the studies. By contrast, Rojas and colleagues investigated more 

female FXS patients (Rojas et al., 2001), which might account for the rather moderate ID 

found in their population compared to the other three studies which provide maturational age 

for their FXS patients (St. Clair et al., 1987; Van der Molen et al., 2012a,b), since the female 

FXS phenotype shows more variability (Bennetto et al., 2001). 

The authors reported little on possible comorbidities in the investigated patients. Only 

St. Clair and colleagues specifically mentioned the absence of autism in their population 

(Primrose et al., 1986), whereas most of the other studies mainly controlled for epilepsy and 

medication. All participants were tested for sufficient hearing. 

Experimental procedures used in the reviewed studies are listed in table III. All 

studies investigated the auditory modality. However, Van der Molen and colleagues (2012b) 

investigated the visual modality in their second study. Except for Rojas and colleagues (2001), 

all other studies made use of oddball paradigms—active in half of the cases and passive in the 

other half. St. Clair’s group did not report the behavioral outcomes of their task, nor did they 

connect them with the recorded brainwaves, since they used it predominantly to check if the 

participants were able to perceive the difference between the standard and the deviant tone. 
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Table III. Comparison of the experimental procedures used in the reviewed studies. 

Study Experimental 
paradigm 

Stimuli parameters Task 

St. Clair et al., 
1987 

Active auditory 
oddball paradigm 
 

− Standard/Deviant tone (1000/1500 Hz) 
− Ratio 9:1 
− Stimulus rate 1.1/sec 
− Intensity: 75dB binaurally through headphones 
− Stimulus duration: 20ms, rise/fall time 9.9ms 

Count aloud 
infrequent tones 
(check of task 
comprehension) 

Rojas et al., 
2001 

Presentation of 
pure tones 

− 1000 Hz sine-wave tone 
− Intensity: 80dB monaurally through headphones 
− Stimulus duration: 30ms, rise/fall time 5ms 
− 4s inter-stimulus interval 

No task, participants 
watched silent movie 

Castrèn et al., 
2003 

1. Passive auditory 
oddball paradigm 
(only ERP to 
standard tones 
were analysed) 

− Standard/deviant tone (800/560 Hz) 
− Ratio 8.5:1.5 
− Stimulus duration: 84ms, rise/fall time 7ms 
− Intensity: 60dB above subject’s hearing threshold, 

right ear through headphones 
− 1s inter-stimulus interval  

No task, participants 
watched silent movie 

2. Auditory 
habituation 

− Trains with 4 identical standard tones 
− 1s inter-stimulus interval 
− 12s inter-train interval 

Van der Molen 
et al., 2011 

Passive auditory 
oddball paradigm 

− 1000/1500 Hz sinusoidal tone 
− Deviant/standard order counterbalanced across 

subjects 
− Ratio 9:1 
− Stimulus duration: 75ms, rise/fall time 5ms 
− Intensity: 80dB binaurally through headphones 
− 1sec inter-stimulus Interval  

No task, participants 
watched silent movie 

Van der Molen 
et al., 2012 
(Task order 
counterbalanced 
across subjects) 

1. Active auditory 
oddball paradigm 
 

− 1000/1500 Hz sinusoidal tone 
− Deviant/standard order counterbalanced across 

subjects 
− Ratio 8:2 
− Stimulus duration: 100ms, rise/fall time 5ms 
− Intensity: 80dB binaurally through headphones 
− 500ms inter-stimulus Interval  

− Response as 
quickly/accurate as 
possible to onset of 
deviant stimuli by 
pressing space bar 

− Responses 
(hits/false alarms, 
reaction times) 
registered within a 
100-1200ms time 
window after 
stimulus onset 

2.Active visual 
oddball paradigm 
 

− Blue/yellow coloured smiley faces 
− 9.34 cd/m2, width 3.66°, height 3.68° 
− Centrally presented against black background (2.19 

cd/m2) on a 17-inch laptop screen, 70cm distance 
to screen 

 
Rojas and colleagues (2001) used Magnetoencephalography (MEG) as opposed to 

EEG. Their study is nevertheless considered in this review, since MEG signals are expected to 

originate from the same neurophysiological processes as EEG and offer evoked field 

potentials equivalent to ERPs. The details of the conducted EEG/MEG recording and analysis 

in the reviewed studies are summarized in table IV. Obviously, the time span between the first 

study reviewed in this article, published by St. Clair and colleagues in 1987, and the most 

recent studies by Van der Molen and colleagues (2012a,b) has an influence on the technical 
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sophistication of EEG recording and analysis equipment. The number of recording electrodes 

has increased as well as the computational possibilities to remove artifacts. Moreover, St. Clair 

and colleagues did not report separate results according to standard and deviant tones, even 

though they claim to have analyzed them separately. 

 

Table IV. EEG/MEG registration and analysis in the reviewed studies. 

Study Electrodes Processing Component Analysis 
St. Clair et 
al., 1987 

1 Ag/AgCl-electrode at Cz, 
earlobe electrode as 
reference 

− Separated average for 
standard/deviant tones 

− 500 trials total 

− N1, P2, N2, P3 determined 
through 2 independent rater 

− Latencies/ amplitudes calculated 
separately for each FXS patient 

Rojas et 
al., 2001 

4D Neuroimaging Magnes I 
neuro-magnetometer 
system, 37 axially-wound, 
first-order gradiometers, 
right-handed Cartesian 
coordinate system as 
reference 

− Signal averaged separately for 
each hemisphere to obtain 
averaged auditory evoked 
magnetic field 

− Min. 150 trials/ear 

− P50m, N100m, P200m observed 
in auditory evoked field data 

− Source analysis 

Castrèn et 
al., 2003 

19 Ag/AgCl electrodes, 10-
20 system, right mastoid 
electrode as reference 

− Signal averaged for standard 
tones 
 

− N1, N2 determined at the highest 
peak amplitude site (Fz) 

− Global field power  
Van der 
Molen et 
al., 2011 

EasyCap electrode cap with 
28 Ag/AgCl ring electrodes, 
left & right mastoid 
electrode as linked 
references 

− Average: 895/99 resp. 892/99 
(standard/ deviant) trials in 
controls resp. FXS patients 

− N1, P2, MMN, N2b, P3a at F3, 
Fz, F4, FC1, FCz, FC2, C3, Cz, 
C4, P3, Pz, P4, O1, Oz, and O2 

− Peak amplitude defined by the 
method of local peak amplitude 
measurement (Luck, 2005), 
relative to the pre-stimulus 
baseline 

Van der 
Molen et 
al., 2012 

− Average: 
Auditory task: 236/58 resp. 
234/59 (standard/deviant) trials 
for controls resp. FXS 
Visual task: 216/48 resp. 
212/48 trials for controls resp. 
FXS  

 

ERP components investigated 
 

ERPs enable us to extract neural responses associated with specific sensory, 

cognitive, or motor events from the overall EEG (Luck, 2005). Currently, ERPs are believed 

to reflect cerebral local field potentials, which are summarized postsynaptic potentials from 

large groups of neurons (Luck, 2005). Whereas the ERP technique enables an excellent 

temporal solution of 1ms or better under optimal conditions, the spatial solution has to be 

studied with caution since the voltage measured at an electrode always reflects the 

summarized contributions from several different ERP generator sources (Luck, 2005). 
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The reviewed studies compare ERP components between FXS patients and control 

groups. The term “ERP component” can either simply describe the positive and negative 

voltage deflections within an ERP waveform according to the order or latency-window in 

which they occur (Luck, 2005) or it can refer to underlying cerebral generator processes, 

which contribute to the polarity of the recorded voltage deflection (Näätänen and Picton, 

1987). Usually, the early components are related to sensory events and thus differ among 

modality, whereas the later components (starting with N2) are expected to reflect more 

cognitive phenomena. The reviewed studies reported results regarding auditory N1 and N2 (St. 

Clair et al., 1987; Castrèn et al., 2003; Van der Molen et al., 2012a,b), auditory P2 and P3 (St. 

Clair et al., 1987; Van der Molen et al., 2012a,b) and auditory and visual MNN, visual N1, P2, 

N2, and P3 (Van der Molen et al., 2012b). This covers most of the commonly investigated 

auditory components and some of the cognitive components; however, it should be mentioned 

that other components exist, which might also allow interesting contributions to FXS research. 

Some of the predominantly cognitive ones will be addressed in the discussion toward the end 

of this article. 

 

N1 

 
Description of N1 
 

The N1 is usually not the first major sensory response. In the auditory modality, 

brainstem evoked responses occur within the first 10ms after stimulus onset, which are 

followed by midlatency components at around 10–50ms and finally an auditory P1 at about 

50ms before the auditory N1 (Luck, 2005). In the visual modality, the first ERP component, 

the C1 wave, typically arises 40–60ms after stimulus onset and shows a positive or negative 

deflection depending on which part of the visual field the stimulus is presented in (Luck, 

2005). So far, no study has investigated the very early sensory components in FXS patients. 

Nevertheless, the main purpose of studying N1 in FXS is detecting alterations in early sensory 

stimulus processing. The auditory N1 peaks frontocentral at around 100ms after the onset of 

an auditory stimulus, whereas the visual N1 peaks 30–40ms later, at about 135ms after the 

onset of a visual stimulus (Näätänen and Picton, 1987). Näätänen and Picton (1987) conclude 



	
   25 

in their review that the auditory N1 consists of three “true” components upon which three 

other stimulus-dependent components overlap. The first subcomponent is supposed to be a 

frontocentral negativity generated in the auditory cortex on the superior part of the temporal 

lobe. The second subcomponent, the T-complex, which peaks at temporal sites and consists of 

a positive wave at around 100ms and a negative wave at 150ms, probably stems from the 

auditory association cortices in the superior temporal gyrus. Lastly, there is a subcomponent of 

unknown source, generating a negative wave at the vertex at around 100ms after stimulus 

onset, which is believed to reflect an unspecific reaction to sensory stimulation and often 

overlaps with the first described subcomponent. 

The visual N1 was decomposed by Di Russo et al. (2002) into four subcomponents to 

find pairs of generator dipoles which fit the N1 complex. They suggest an occipital source for 

the early N150, which peaks at occipito–parietal sites and has a centro-parietal source for the 

fronto-central N155. The later temporo-parietal N180 and occipito-parietal N200 are expected 

to be associated with the early P1 sources in the lateral extrastriate cortex and the late P1 

source in the ventral occipito–temporal cortex (Di Russo et al., 2002). Research interest has 

been focused on the effects of spatial attention (Luck et al., 2000) and discrimination 

processing (Vogel and Luck, 2000). 

 

N1 findings in FXS 

 

St. Clair and colleagues (1987) reported that N1 latency in FXS did not differ from 

that in healthy controls, whereas it has been found to be significantly longer in patients with 

DS, during the active auditory oddball paradigm. N1 amplitude was found to be generally 

enhanced at vertex electrode Cz in response to both standard and deviant tones in FXS 

patients, compared to patients with DS and healthy controls. Rojas et al. (2001) considered the 

N1 equivalent in MEG, the N100 m auditory-evoked field potential, in response to pure tones 

and also found a significantly higher amplitude in FXS patients than in healthy aged matched 

controls. They further observed a difference in the lateralization of the N100 m source. While 

healthy adults show N100 m source location asymmetry (right anterior to left), a reduction in 

lateralization is found in FXS patients. The authors proposed that the reduced asymmetry 

either reflects a non-specific neurodevelopmental disturbance which occurs during prenatal 
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development of cerebral asymmetry, since the phenomenon has also been found in 

schizophrenia (Reite et al., 1989, 1997), or stems from postnatal influences of the FXS 

mutation on the temporal lobe (Reiss et al., 1994). In either case, reduced N100 m source 

location asymmetry would be an outcome of disrupted brain development. Castrén and 

colleagues (2003) also found significantly larger auditory N1 amplitudes in FXS patients 

compared to healthy age matched controls in response to standard tones in their auditory 

oddball paradigm. This difference in N1 amplitude was most prominent in the frontal site Fz 

and was confirmed through global field power analysis. Van der Molen and colleagues 

(2012a) did not find any group differences of N1 latency at FCz. As for amplitude, they 

reported a significantly larger N1 amplitude to standard tones in FXS in a passive auditory 

oddball paradigm. This difference could be observed at electrodes Fz, the fronto-central FCz 

and Cz, whereas no differences were found for posterior sites. Further, the N1 amplitudes in 

controls were significantly larger for deviant than for standard tones, a difference which could 

not be found in FXS. Using an active oddball paradigm, a second study of Van der Molen et 

al. (2012b) again did not find any differences in N1 latency, neither in the auditory, nor in the 

visual modality. In the active auditory oddball paradigm, they reported larger N1 amplitudes 

for standard and deviant tones in FXS. In the active visual oddball paradigm, they found N1 

peak amplitudes to be maximal at occipito-central electrode Oz in controls, but at FCz in FXS 

patients. At FCz the visual N1 amplitude was significantly larger for both stimuli in FXS than 

in controls. In both groups, visual N1 amplitude was larger at FCz than at Oz. 

In addition, two groups tested habituation of N1 in response to stimulus repetition 

(Castrèn et al., 2003; Van der Molen et al., 2012a). Castrèn and colleagues (2003) tested short-

term habituation of N1 to trains of four identical standard tones. Van der Molen and 

colleagues compared N1 response to late standard tones with N1 response to early standards. 

In both studies, controls showed a reduction of N1 amplitude after several presentations of the 

same tone, whereas no N1 habituation could be found in FXS patients. 

Regarding behavioral results, Van der Molen’s group (Van der Molen et al., 2012b) 

reported less accuracy, more false alarms and an increase in reaction time in FXS patients in 

both auditory and visual task compared to controls. 
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Summarizing the N1 findings in FXS, no differences in N1 latency were found, 

whereas all studies reported larger N1 amplitudes and a lack of N1 amplitude habituation in 

FXS compared to controls. 

 

Maturation of N1 

 

The complexity of data concerning maturational changes of N1 makes it difficult to 

determine if the results obtained in FXS are due to brain alterations specifically underlying 

FXS, or if they are, at least partially, a phenomenon of delayed brain maturation. Moreover, 

whereas the auditory N1 characteristics are known to change with brain maturation, studies 

investigating these changes obtained inconsistent results (Mueller et al., 2008). Already the 

time point from which an N1 response can be consistently evoked is a matter of controversy. 

While some researchers found a clear N1 response in children at the age of 9 (Ruhnau et al., 

2011), others only obtained a visible N1 in 9-year olds by filtering out slow activity 

(Ceponiene et al., 2002). In children younger than 9, some researchers managed to evoke an 

N1 response with longer inter-stimulus-intervals (Paetau et al., 1995), but others could not 

identify it reliably before 5 years of age (Lippé et al., 2009). The difficulties in detecting an 

N1 component in children might be due to an overlap of slow P1 and N2 waves, and also to a 

refractoriness of N1 generators in toddlers, which decreases with age (Ceponiene et al., 2002). 

According to peak location, the auditory N1 was found at temporal sites in children under six 

(Bruneau et al., 1997) and thereupon shifted to central sites (Tonnquist-Uhlen et al., 1995), as 

is prominently found in adults. The results regarding auditory N1 latency are more uniform, 

indicating a general decrease in latency with maturation (Ladish and Polich, 1989; Gomes et 

al., 2001; Ceponiene et al., 2002). The visual N1 shows a U-shaped pattern in amplitude from 

one month to 5 years of age (Lippe et al., 2007), and then a fairly uniform decrease in 

amplitude (Johnson, 1989; Brecelj et al., 2002) and latency (Johnson, 1989; Lippe et al., 

2007). Finally, results concerning N1 amplitude again are somehow inconsistent. Whereas 

some researchers found an increase in auditory N1 amplitude from 5 to 19 years (Ladish and 

Polich, 1989), others found an N1 decrease for target tones from 8 to 17 years (Johnstone et 

al., 1996), while again others could not find any differences in auditory N1 amplitude from 

one month to 5 years of age (Lippé et al., 2009) nor from 7 to 20 (Johnson, 1989). Gomes and 
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colleagues (Gomes et al., 2001) explained this inconsistency regarding auditory N1 amplitude 

by appeal to differences in maturation of the N1 subcomponents described above. They found 

no auditory N1 amplitude differences across age in what they call the central N1, which 

corresponds to the frontocentral N1 subcomponent described above. On the contrary, they 

found a lateral N1 amplitude decrease from childhood to adulthood at temporal electrodes, 

which corresponds to the T-complex subcomponent. This explanation is similar to Ceponiene 

and colleagues’ account that proposed differently weighted N1 subcomponents in children and 

adults (Ceponiene et al., 2002). 

With such controversy in N1 amplitude developmental characteristics, it is not 

appropriate to conclude of a delay of maturation in FXS. In fact, larger amplitude and the 

absence of differences in latencies do not fit the early developmental pattern of N1. 

 

N1 in ID and autism 

 

Since N1 maturation results are mixed, they should be considered in other clinical 

populations that share some of the symptoms with FXS in order to determine if the results 

obtained in FXS are a more general phenomenon or if they are specific to it. Patients with ID 

show relatively consistently prolonged auditory N1 latencies in comparison with healthy 

controls. This was found by Yamamori et al. (2002) in 30% of young ID patients (1–19 years) 

in response to randomly presented fixed and enlarged tones. Similary, Ikeada et al. (2009) 

found longer N1 latencies in response to simple tones in a passive auditory oddball paradigm 

in their adult cultural-familial type and organic (no chromosomal abnormalities) ID patients. 

Prolonged N1 latencies in response to an active auditory oddball paradigm have also been 

found in adolescents (Seidl et al., 1997) and young adults (César et al., 2010) with DS. Using a 

visual active discrimination task, Henderson et al. (2000) observed prolonged N1 latencies in 

children with phenylketonuria. These results fit well with the developmental changes of N1 

latency reduction described above, suggesting that prolonged N1 latency in comparison to 

age-matched controls displays retardation in the development of early sensory processing. It is 

therefore surprising that none of the studies investigating ERP in FXS found a prolonged N1 

latency, while several other forms of ID show this characteristic. We might assume differences 

in the cerebral perturbations underlying some forms of ID and FXS. Results obtained in 
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patients with autism and ID again shows a different picture. Ferri et al. (2003) investigated 

ERPs in subjects diagnosed with low-functioning autism and found significantly shorter N1 

latencies in response to standard tones in a passive auditory oddball paradigm. The finding of 

normal N1 latency in FXS, whereas latency is prolonged in ID and shortened in autism, might 

offer a possibility to differentiate between these disorders even if we cannot yet concretely 

determine the underlying cerebral mechanisms. 

The increase in N1 amplitude found in FXS might also be somehow specific for FXS, 

since the studies investigating N1 in ID (Yamamori et al., 2002; Ikeda et al., 2009), DS (Seidl 

et al., 1997; César et al., 2010), and phenylketonuria (Henderson et al., 2000) did not find 

differences in N1 amplitude between patient population and healthy controls. On the contrary, 

Henderson and colleagues found a smaller visual N1 in children with phenylketonuria in 

active discrimination tasks. Moyle et al. (2006) also found reduced visual N1 amplitudes in 

adults with phenylketonuria compared to healthy controls in a Go-Nogo task. In autism, the 

results concerning N1 amplitude are fairly inconsistent, which Bomba and colleagues (Bomba 

and Pang, 2004) explained in their review on auditory evoked potentials through the fact that 

older ERP studies did not take the developmental changes of N1 into account. More recent 

studies found either a reduced auditory N1 in response to randomly presented tones of varying 

intensity in autistic pre-school children with ID, compared to children only diagnosed with ID 

and healthy controls (Bruneau et al., 1999), or no difference between auditory N1 in response 

to a passive oddball paradigm in children and adolescents with low-functioning autism and 

healthy controls (Ferri et al., 2003). 

 

Hyperarousal in FXS as possible factor influencing N1 

 

The auditory N1 complex is supposed to be determined by physical characteristics of 

the stimulus, such as onset, intensity, frequency, threshold, stimulus rate, and ear of 

stimulation. Similarly, the appearance of the visual N1 complex is influenced by physical 

stimulus characteristics, such as luminance (Johannes et al., 1995). Since physical 

characteristics of the stimulus are always held constant between clinical population and 

control group, it is unlikely that they are responsible for the increased N1 amplitude found in 

FXS compared to control groups (St. Clair et al., 1987; Rojas et al., 2001; Castrèn et al., 2003; 
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Van der Molen et al., 2012a,b). However, the auditory N1 is known to be sensitive to subject 

factors, states of arousal, and level of performance (Näätänen and Picton, 1987). Näätänen and 

Picton reported several studies that found an increase in auditory N1 amplitude with higher 

levels of arousal and alertness. Considering the hyperarousal to sensory stimulation frequently 

found in FXS (Schneider et al., 2009), it seems probable that this generally higher state of 

arousal is reflected in an increased N1 amplitude in FXS. 

The positive association between levels of performance and N1 amplitude (Näätänen 

and Picton, 1987) should be closely examined in this context. However, the only study 

reporting behavioral results and N1 characteristics in FXS is the second study by Van der 

Molen et al. (2012b), indicating that controls outperformed FXS patients on all behavioral 

measurements. Comparing the performance of FXS patients with healthy controls might not 

be appropriate to investigate this association. An ERP study comparing the N1 characteristics 

in a simple vs. a difficult task in FXS would therefore be interesting. 

 

Habituation of ERP components in ID and autism 

 

Habituation of the N1 component, characterized by a decrease in N1 amplitude with 

stimulus repetition in controls (Karhu et al., 1997), is found to be attenuated in FXS. 

Habituation may be based on two mechanisms. First, the unspecific arousal response to the 

appearance of a new stimulus, which is part of the orienting reflex (Sokolov, 1963), is 

decreased after repetition (Karhu et al., 1997). Second, a strengthening of selective cortical 

connections occurs, which is expected to reflect the neural representation of the stimulus 

characteristics, and thus the memory trace. Surprisingly few studies investigated habituation of 

ERP components in populations with intellectual disabilities besides FXS and most of them 

are fairly old. Psatta (1981) investigated habituation of visual-evoked potentials in response to 

flashes in three groups of children with ID (idiopathic, exogenous, DS) and in age-matched 

healthy controls. In DS, which was the most impaired group, they found an inversed pattern of 

habituation, characterized through an increase in amplitude instead of a decrease. The other 

two groups with ID showed a reduction in amplitude in the later compared with earlier trials 

that, however, in contrast to the control group did not reach statistical significance. Thus, even 

though habituation of ERP components was visible in two groups with ID, it did not occur in 
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the same extent as in normal controls. However, it should be kept in mind that Psatta 

compared the ID groups only to healthy individuals matched regarding their chronological, not 

their mental age. Schafer and Peeke (1982) found no habituation in auditory-evoked potentials 

in patients with DS in response to regularly presented clicks at electrode Cz, whereas healthy 

controls showed rapid habituation in the N1-P2-N2 complex. Karrer et al. (1995) investigated 

habituation of visual ERPs in DS using a passive oddball task with colored slides of two adult 

female faces serving as stimuli. They concluded that infants with DS habituate to repeated 

stimuli, indicated by a smaller N1 amplitude in response to frequent compared to novel trials. 

However, this habituation effect could only be found centrally (Cz), but not frontally (Fz). The 

authors explained this finding through either a different neural organization of visual 

discrimination in DS or a lack of habituation over the frontal cortex. As for autism, using a 

visual habituation and recovery paradigm, Verbaten et al. (1991) found no differences in 

decrease of negativity/positivity for N1, P1, N2, P3, N4, and P4 between autistic children 

without ID and healthy children, children with conduct disorder and children with emotional 

disorder. Thus, the autistic group showed no impairment in neuronal repetition suppression. A 

more recent study by Guiraud et al. (2011) investigated auditory habituation in infants at high-

risk for autism (defined by having at least one full older sibling diagnosed with autism). They 

found poor habituation of P150 in response to standards in an auditory oddball paradigm in the 

high-risk, but not in the control group. The discrepancy between the two studies could be 

explained by differences between the visual and auditory modality in autism, whereas 

Courchesne et al. (1985) found less impairment in the processing of simple visual than 

auditory information in autism. However, studies targeting a high-risk group of infants should 

be treated with caution, since it is not clear if they will really develop an autistic spectrum 

disorder. Moreover, no information about the developmental stage of the subjects was given, 

which might have accounted more for the lack of habituation than a possible diagnosis of 

autism. With some qualifications, lack of neuronal habituation seems to be common in ID. 

Thus, the findings of an absence of N1 habituation in FXS support the hypothesis of neural 

adaptation being generally impaired in ID. Given that habituation is considered to be the most 

elementary form of learning, which occurs as early as the fetal stage (Morokuma et al., 2004), 

impairments in the underlying synaptic mechanisms may contribute to learning difficulties 

found in ID. 
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Alterations in brain anatomy and deficient synaptic pruning in FXS as possible basis for 

deviances displayed in N1 

 

On the neuronal level, this increased N1/N100 m amplitude in FXS patients suggests 

that more neurons are synchronously active in response to the stimulus presentation than in 

healthy controls (Rojas et al., 2001). Alternatively, sensory gain control mechanisms, which 

have been investigated in the context of selective attention (Hillyard et al., 1995), could 

account for the increased N1 amplitude. Gain control could be altered in FXS, in a way that 

signals get amplified constantly instead of only when stimuli are expected. These alterations 

might be related to either early, possibly even prenatal, alteration of neurodevelopment or 

delayed or otherwise disrupted synaptic pruning occurring postnatally. Comparing anatomic 

brain alterations that are found very early in FXS to cerebral alterations occuring later in life 

helps differentiate between these mechanisms (Hoeft et al., 2010). Volumetric, voxel-based, 

and surface-based modeling approaches in magnetic resonance imagery showed among other 

alterations a smaller superior temporal gyri in children and adults with FXS full mutation 

(Gothelf et al., 2008) compared to healthy subjects. In addition, greater gray matter volumes in 

occipito- temporal areas have been found in infants with FXS compared to normally 

developed and children with non-syndromic delay (Hoeft et al., 2010). As described above, 

these two regions are believed to be involved in auditory/visual N1 generation. Further, FXS 

toddlers showed a greater gray matter increase over time in temporal and occipital areas, 

which was interpreted as a possible indication of deficient synaptic pruning in FXS (Hoeft et 

al., 2007), fitting observations in animal models (Weiler and Greenough, 1999; Pfeiffer and 

Huber, 2007, 2009). According to these models, reduction of unnecessary neurons and 

synapses and strengthening of neuronal connections in order to compensate by tempting more 

efficient synaptic configurations are believed to be impaired in FXS. 

However, assumptions regarding the underlying brain mechanisms remain 

hypothetical and should be addressed by combining EEG with other brain imaging techniques. 
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P2 
 

Description of P2 

 

Similar to N1, P2 is studied in FXS in order to reveal alterations in early sensory 

processing. The auditory P2 is the second ERP with positive polarity, occurring after N1 with 

a latency of approximately 50–250ms (Crowley and Colrain, 2004). Especially in older ERP-

studies, the P2 was mainly referred to in combination with the N1 component, as the N1-P2 

complex or “vertex potential,” but recent research suggested the potential of the P2 as a 

component on its own, which is the result of independent processes (Crowley and Colrain, 

2004). In contrast to other components, the P2 has a similar scalp topography across auditory, 

somatosensory, and visual modalities, being maximal over the vertex (Crowley and Colrain, 

2004). Previously, the auditory P2 sources were assumed to be located in the auditory cortex, 

but recent studies indicated more distributed sources, most likely in the mesencephalitic 

reticular activating system (Crowley and Colrain, 2004), the planum temporale, as well as the 

auditory association cortex (Godey et al., 2001). For the visual P2, source analyses suggested a 

generator in the parieto–occipital and temporal regions (Freunberger et al., 2007). Appearance 

of auditory P2 is influenced by stimulus characteristics like tone intensity, pitch, and inter-

stimulus interval, as well as subject factors including attention and age (Crowley and Colrain, 

2004). The visual P2 seems to be larger for animals than for non-animal nature scenes or 

simple visual patterns (Antal et al., 2000) and is also influenced by attention (Luck and 

Hillyard, 1994). 

 
P2 findings in FXS 

 
St. Clair’s group (St. Clair et al., 1987) reported no differences in auditory P2 latency 

between FXS patients, DS patients, and healthy controls. As for amplitude, they found the P2 

amplitude to be significantly larger in FXS compared to DS and healthy controls. Rojas and 

colleagues did not investigate the P200m responses, because they were only measureable in 

nine of 11 subjects in each group (Rojas et al., 2001). Similarly to St. Clair, Van der Molen 

and colleagues found no differences between FXS and controls concerning P2 latency. This 
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was the case in the passive auditory oddball paradigm (Van der Molen et al., 2012a) as well as 

in the active auditory and visual oddball paradigms (Van der Molen et al., 2012b). However, 

the latency in the active auditory oddball paradigm was found to be significantly shorter in 

both groups following deviant stimuli, in comparison to standard stimuli. In the passive 

auditory oddball paradigm, the P2 amplitude following both standard and deviant stimuli was 

larger at all sites in FXS than in controls (Van der Molen et al., 2012b). In controls, P2 

amplitude in response to deviant stimuli was significantly smaller than in response to standard 

stimuli. This difference in P2 amplitude according to the probability of the stimulus could not 

be found in FXS. In contrast to this finding, FXS patients showed smaller P2 amplitudes 

following deviant stimuli in the active auditory oddball paradigm, as did controls, and P2 

amplitudes were not found to be larger in FXS (Van der Molen et al., 2012b). In the visual 

modality, there was neither a difference between amplitudes in FXS and controls, nor did the 

probability of the stimulus have an effect. Consequently, the obtained P2 results are somehow 

inconsistent with an increased P2 amplitude in FXS only in the auditory modality, once in an 

active (St. Clair et al., 1987) and once in a passive paradigm (Van der Molen et al., 2012a), 

whereas in another study no differences in the active paradigm were found (Van der Molen et 

al., 2012b). Moreover, the FXS patients showed a difference in P2 amplitude between 

standard and deviant stimuli, but only in the active auditory paradigm, whereas controls 

showed this difference also in the passive paradigm. The lack of differences between visual P2 

in FXS patients and controls is not discussed by the authors, but could reflect modality 

differences in stimulus processing, suggesting that visual processing in FXS is less impaired 

than auditory processing. This would be in line with the modality differences found in P3 

amplitude discussed below. The most investigated influence on P2 amplitude is attention, with 

a decrease in P2 amplitude in response to an increase in level of attentiveness (Crowley and 

Colrain, 2004). Both groups show this effect in the active auditory but not in the visual oddball 

paradigm, in such a way that the P2 amplitude is decreased in response to deviant tones which 

require a behavioral response. Additionally, the controls show this difference in the passive 

oddball paradigm. It is possible that the controls paid more attention to the deviant tones even 

though no response was required, whereas the FXS patients might have been distracted by the 

silent movie which they watched during the task. However, this is only a hypothesis, and 
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factors influencing the P2 in FXS patients need further research since the results obtained so 

far do not allow clear conclusions. 

 

Maturation of P2 

 

The auditory P2 becomes a clearly distinguishable wave at all central sites at about 

age 10. The maximum peak shifts from Pz in younger children to Fz and Cz in older children 

and adults (Ponton et al., 2000). Changes in auditory P2 latency with maturation were not 

found by Johnstone and colleagues in children from 8 to 17 years (Johnstone et al., 1996), 

neither by Ponton’s group in subjects from 5 to 20 (Ponton et al., 2000) or Mueller’s group in 

different age groups between 9 and 74 (Mueller et al., 2008). However, it seems as though 

auditory P2 latency decreases with age between one month and 5 years of age (Lippé et al., 

2009) and increases with age in adulthood (Picton et al., 1984; Anderer et al., 1996). The 

results concerning auditory P2 amplitude are more controversial. Johnstone and colleagues 

reported a P2 amplitude increase from 8 to 17 (Johnstone et al., 1996) and Mueller and 

colleagues found greater P2 amplitudes in the adult than in the child population (Mueller et al., 

2008). Conversely, Ponton’s group (Ponton et al., 2000) and Lippé’s group (Lippé et al., 2009) 

observed a decrease in P2 amplitude across age. This controversy makes it difficult to 

determine if the alterations found in P2 amplitude in FXS might be caused by developmental 

delay. 

 

P2 in ID and autism 

 

Three of the reviewed investigators who studied N1 reported similarly prolonged 

auditory P2 latencies in subjects with ID (Yamamori et al., 2002) and DS (Seidl et al., 1997; 

César et al., 2010), whereas no differences in amplitude were found. In one of the few studies 

mentioning P2 results, Lincoln and colleagues report no differences between subjects with 

autism, subjects with receptive developmental language disorder and healthy controls 

regarding P2 amplitude or latency in response to randomly presented tones differing in 

frequency and intensity (Lincoln et al., 1995). Thus, the increased auditory P2 amplitude 

partially found in FXS might be specific to FXS, since it is not found in other forms of ID or 
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autism, whereas the prolonged P2 latency commonly found in ID is not observed in FXS. 

Congenital and developmental aberrations in the temporal lobe that affect areas believed to be 

involved in P2 generation (Gothelf et al., 2008; Hoeft et al., 2010) might be related to the P2 

amplitude alterations found in FXS, as discussed for N1 above. Van der Molen and colleagues 

emphasize the influence that these early sensory processing deficits probably have on the 

generation of memory templates required for stimulus discrimination (Van der Molen et al., 

2012a). 

 

Mismatch Negativity – MMN 
 

Description of MMN 

 

In contrast to the components discussed so far, which predominantly reflect early 

sensory processing, the MMN is the first cognitive component. The MMN has mainly been 

investigated in the auditory modality and describes a negative-deflecting wave that peaks 

maximally at central midline scalp sites between 160 and 220ms in response to a mismatching 

stimulus occurring in a repetitive train of identical stimuli (Luck, 2005). Thus, the MMN 

reflects the brain mechanisms underlying the classification and differentiation of perceived 

stimuli. Two approaches explain the generation of MMN differently. Some authors describe 

the MMN as the outcome of a relatively automatic process not specifically requiring attention 

to compare incoming stimuli with a sensory memory trace of preceding stimuli (Alho, 1995). 

Sources are believed to lie in the auditory cortex, differing with stimulus characteristics, with 

supplementary sources in the frontal lobe and possibly in the hippocampus and the thalamus 

(Alho, 1995). In this approach, the MMN is seen as a process independent from the N1 with 

distinct source generators in the auditory cortex (Korzyukov et al., 1999). Other authors 

presented evidence suggesting a competing theory, namely, that MMN is not generated by 

separate auditory cortex sources, but rather arises from stimulus-specific adaptation of N1 

activity (Jääskeläinen et al., 2004). 
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MMN findings in FXS 

 

Castrèn and colleagues only analyzed the ERPs in response to the standard stimulus 

in their oddball paradigm and therefore could not report MMN results (Castrèn et al., 2003). 

Van der Molen and colleagues investigated the MMN with a classical passive auditory oddball 

paradigm (Van der Molen et al., 2012b). They found a trend for longer MMN latency in 

controls compared to FXS, which did not reach significance. MMN was found to maximally 

peak at Cz in controls and Fz in FXS patients, with significantly smaller amplitude in FXS at 

Cz, Pz and Oz. 

 

Maturation of MMN 

 

Auditory MMN is considered a developmentally stable ERP component that is 

already present in preterm infants (Cheour- Luhtanen et al., 1996) and thus might reflect 

information processing mechanisms developing very early in ontogenesis (Csepe, 1995; 

Cheour et al., 2000; Mueller et al., 2008). However, differences between MMN in infants and 

adults have been reported, including a decrease in latency with age (Cheour et al., 2000; 

Shafer et al., 2000; Mueller et al., 2008). Concerning MMN amplitude, smaller amplitudes in 

infants than in school-aged children and adults have been found (Oades et al., 1997; Cheour et 

al., 2000). In contrast, general (Shafer et al., 2000) or local decreases in amplitude with age 

(Gomot et al., 2000; Mueller et al., 2008) have also been reported. Thus, it has been suggested 

that the frontal system matures earlier than the sensory- specific temporal system (Gomot et 

al., 2000). According to these results, it might be possible that the reduced MMN amplitude 

found in FXS does reflect some sort of delay in brain maturation, but it cannot be said with 

certainty since the results concerning MMN amplitude maturation are not clear cut. 

 

MMN in ID and autism 

 

Attenuated MMN amplitudes are frequently found in ID. Ikeda and colleagues 

conducted three studies investigating MMN in adult subjects with ID, using a passive oddball 

paradigm with synthetic vowels and pure tones. An attenuated MMN amplitude to both kinds 
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of stimuli was found in patients with ID in all three studies (Ikeda et al., 2000, 2004, 2009), 

whereas greater MMN latencies in ID were only observed in the first study (Ikeda et al., 

2000). Holopainen’s group also found attenuated MMN amplitudes in a passive oddball 

paradigm at the individual maximal electrode for children with ID and children with dysphasia 

in comparison to a group with healthy control children, but no differences in latency 

(Holopainen et al., 1998). Nakagawa and colleagues found a smaller MMN amplitude in 

adults with ID compared to healthy controls in a passive oddball paradigm with fixed inter-

stimulus intervals, whereas in conditions with random inter-stimulus-intervals the ID patients 

did not show any MMN (Nakagawa et al., 2002). By contrast, children with low-functioning 

autism tend to show shorter MMN latencies (Gomot et al., 2002; Ferri et al., 2003) and higher 

MMN amplitudes in response to novel, but not to deviant stimuli in comparison with healthy 

controls (Ferri et al., 2003). Therefore, it seems that MMN amplitude is generally reduced in 

several forms of ID, including FXS, whereas other forms of MMN alterations are found in 

autistic subjects with ID. In line with Jääskeläinen’s theory (Jääskeläinen et al., 2004), 

perturbations in brain mechanisms underlying N1 would also account for alterations in MMN 

appearance. This may gain some support through the fact that FXS patients also show 

alterations in N1 amplitude. However, if the MMN is a component on its own with distinct 

sources in the temporal lobe, congenital, and developmental aberrations in the temporal lobe, 

such as those mentioned above under N1 and P2 (Gothelf et al., 2008; Hoeft et al., 2010), 

might contribute to MMN alterations in FXS. 

 

N2 
 

Description of N2 

 

As mentioned above, N2 is one of the first cognitive components that have been 

studied in FXS. Several components are identified in the N2 time range. Luck differentiates 

between three types of N2: first, a basic N2, probably consisting of different subcomponents, 

and elicited by a repetitive, non-target stimulus (Näätänen and Picton, 1986); second, the 

MMN evoked by deviant, but task-irrelevant stimuli (sometimes also referred to as N2a); and 
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finally a N2b that responds to deviant target stimuli and thus is expected to reflect stimulus 

categorization processes (Luck, 2005). This section will primarily discuss this last type of N2, 

the N2b. For auditory deviant stimuli, the N2b is largest over central sites, whereas it is 

maximal at posterior sites for visual stimuli (Simson et al., 1977). However, it is not clear if 

auditory and visual N2b reflect homologous neural processes (Luck, 2005). Sources for 

auditory N2 in response to target and novel stimuli were suggested in the temporal lobe, in the 

narrow area of the auditory cortex close to N1 generators (Albrecht et al., 2000), more 

specifically in the superior/middle temporal gyrus (Kiehl et al., 2001). Visual N2 generators 

were suggested to lie in the inferior temporal cortex (Wijers et al., 1997). 

 

N2 findings in FXS 

 

The extent to which the N2 results of St. Clair and colleagues can be interpreted is 

limited. Even though they stated that they have averaged responses to frequent and rare tones 

separately, they only reported general N2 results, and it is not clear for which kind of stimulus 

the average is shown. Moreover, they did not report any behavioral results obtained through 

their active oddball paradigm task, since they only used it to control for whether participants 

were able to perceive the difference between the stimuli. Nevertheless, they found 

significantly longer N2 latencies in FXS and DS patients relative to healthy controls, but no 

differences in N2 amplitude between the three groups (St. Clair et al., 1987). Van der Molen 

and colleagues found that N2b maximally peaks at Oz in controls and at FCz in FXS patients 

in their passive auditory oddball paradigm (Van der Molen et al., 2012a). N2b latency was 

found to be shorter in response to deviant tones in both groups. Moreover, N2b latency was 

found to be longer in FXS patients in response to both stimuli compared to controls. N2b 

amplitude was larger in FXS than in controls, but only in response to standard stimuli. In 

controls, N2b amplitude differed between deviant and standard stimuli, with larger amplitude 

in response to deviant stimuli. This probability-based difference was not found in FXS 

patients. In the auditory active oddball paradigm, N2b peaked at Fz in controls and at FCz in 

FXS patients (Van der Molen et al., 2012b). N2b latencies were shorter in response to deviant 

tones in both groups, whereas FXS patients showed generally longer latencies. Larger auditory 

N2b amplitudes were found in FXS in response to both kinds of stimuli. In the visual 
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modality, N2b peaked at F3 in controls for standard stimuli and at Fz for deviant stimuli, 

whereas it peaked at F4 in FXS patients for both stimuli. In controls, N2b latencies were 

shorter in response to deviants than to standards, whereas FXS patients tended to show an 

inversed pattern. FXS patients showed longer N2b latencies and larger N2b amplitudes than 

controls. In the active auditory and visual oddball paradigms, FXS patients were generally less 

accurate, slower, and showed more false alarms than the control group, and they committed 

significantly more false alarms in the auditory compared to the visual task (Van der Molen et 

al., 2012b). However, ERP results were not presented separately for correct vs. incorrect 

answers. 

 

Controversy in N2 results obtained in FXS 

 

It is worth mentioning again that Van der Molen’s group did not find differences in 

N2b amplitude in the active oddball paradigms. This absence of result is puzzling, since the 

N2b is supposed to be larger in response to task-relevant deviants. On the other hand, this 

larger N2b amplitude for deviants is observed in the passive oddball paradigm, which is 

normally known to elicit MMN rather than N2b. In the P2 section, it has been discussed that 

controls might have paid more attention to the deviant stimuli in the passive auditory 

paradigm, even though there were no task requirements, which could also account for the 

differences in N2b amplitude found in the passive oddball paradigm. Since the authors did not 

address this topic, it is difficult to determine which part of the paradigm might account for the 

missing differences between N2b amplitude in response to standards and deviants in the active 

paradigms. Further, this makes it more difficult to interpret alterations observed in FXS 

patients. Since St. Clair and colleagues also found the enhanced N2 amplitude, it could be a 

general phenomenon in FXS. On the other hand, Castrèn’s group (Castrèn et al., 2003) found 

smaller N2 amplitudes in response to standard tones in FXS, which is in contrast to St. Clair 

and Van der Molen’s findings. However, unlike St. Clair and Van der Molen’s groups, Castrèn 

and colleagues investigated children with FXS and not adults. Further, they used a passive 

oddball paradigm and only report ERPs in response to standard tones. Thus, their N2 is most 

likely a basic N2, whereas the active paradigms of St. Clair and Van der Molen might also 

evoke N2b responses. St. Clair’s group also found a more frontal N2 scalp distribution in 
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patients with FXS compared to healthy controls, which is not reported in Van der Molen’s 

active paradigms (Van der Molen et al., 2012b), but in the passive auditory paradigm with 

N2b peaking at Fz in FXS and Oz in controls (Van der Molen et al., 2012a). Thus, it seems 

that the more frontal distribution in FXS mainly appears in passive paradigms. The data for N2 

in FXS is more controversial than for other components discussed so far, which might be 

partially due to the fact that it is more sensitive to changes in task parameters, making it more 

difficult to compare studies with different experimental designs. Supplementary differences 

between the study designs, which might have contributed to the inconsistent results, can be 

consulted in tables II, III and IV. 

 

Maturation of N2 

 

In their review, Patel and Azzam suggest a maturation effect on N2b latency, which 

decreases with age and is directly associated with decreasing reaction times (Patel and Azzam, 

2005). On the contrary, Mueller’s group did not find differences in N2 latency between 

different age groups (Mueller et al., 2008). As for amplitude, a decrease in auditory N2 

amplitude across age is reported (Johnstone et al., 1996; Mueller et al., 2008). Maximal N2 

peak amplitude is known to move from posterior sites in infants to frontal sites in adults, 

beginning at approximately 14 years of age (Oades et al., 1997). Thus, the more frontal 

distribution of N2 in FXS children compared to controls found in passive paradigms by 

Castrèn’s and Van der Molen’s group is puzzling and cannot be explained through a delay in 

brain maturation. Only in Van der Molen’s active auditory oddball paradigm do FXS patients 

show a more parietal N2b peak than controls, which would be in line with a delayed 

development of topography. 

 

N2 in ID 

 

Findings in ID fit largely with the observed decrease in N2 latency with maturation, in a way 

that patients with ID (Yamamori et al., 2002) and DS (Seidl et al., 1997; César et al., 2010) 

showed prolonged N2 latencies compared with healthy controls, and thus showed a delayed 

maturation of N2. This is also supported by the fact that, in patients with DS, St. Clair and 
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colleagues found the same N2 latency prolongation as in FXS (St. Clair et al., 1987). Thus, it 

seems as if the prolonged N2 latency in FXS is indeed a general phenomenon in ID, reflecting 

delayed brain maturation. Alterations in N2 amplitude were only reported by César et al. 

(2010), who found smaller N2 amplitudes in patients with DS. N2 amplitude findings are not 

only controversial in FXS, but also in other forms of ID, as is also the case for observations 

regarding the effect of brain maturation on N2 amplitude. Further research investigating N2 in 

well-controlled paradigms is therefore needed. 

 

P3 
 

Description of P3 

 

Similar to N2, the components in the P3 time range of about 250–500ms after 

stimulus onset can be broken down to several distinguishable ERPs. The main distinction is 

made between a frontal-central maximal P3a and a parietal maximal P3b component (Squires 

et al., 1975), which occur after unpredictable, infrequent deviances in stimulus characteristics. 

The P3a component is believed to be somewhat more automatic (Squires et al., 1975) and is 

elicited by truly unexpected or surprising stimuli (Verleger et al., 1994). The literature focuses 

mainly on the P3b component, which is often simply referred to as P3. The P3b occurs in 

response to task-relevant shifts and is sensitive to target probability, not to physical stimuli 

characteristics (Picton, 1992). The P3b is generated after the stimulus categorization process, 

but before response selection and execution (Luck, 1998). P3b amplitude increases in 

proportion to the effort devoted to the task (Isreal et al., 1980), but is also decreased by task 

difficulty (Luck, 1998), which complicates the interpretation of the component. There is no 

consensus in the field about the cognitive process reflected by P3b, but one frequently 

discussed hypothesis is the “context updating” process suggested by Donchin (1981), 

according to which the P3b reflects the updating of one’s representation of the environment. In 

Polich’s theoretical framework, P3a reflects focal attention processing which facilitates 

context maintenance, which itself is reflected by P3b and involves working memory 

operations. P3 is believed to be generated through frontal and temporal/parietal brain 
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activation, suggesting a circuit pathway between these areas (Polich, 2007). The P3 is of 

particular interest in FXS, since it is known to be strongly determined by genetic factors and 

biological determinants (Polich, 2007). 

 

P3 findings in FXS 

 

St. Clair and colleagues found a longer P3 latency in FXS and DS patients in 

comparison to the healthy control group (St. Clair et al., 1987). Additionally, the P3 amplitude 

in FXS and DS was found to be significantly smaller than in healthy controls. This was 

consistently found in FXS patients, independently of variables such as age, percentage of 

fragility, and intellectual functioning. St. Clair and colleagues found the P3 to be split in 

different components in some of their FXS patients. Seven out of 28 FXS patients showed a 

P3 clearly separated into two parts and several others showed partial P3 separation. It is not 

clear if the separation simply goes back to the P3a and P3b components or if it is caused by a 

genetic factor determining the ERP profile. They explored the relation between physical 

dysmorphysm, i.e., facial and testicular abnormalities, and complete separation of P3, since 

subjects without physical dysmorphism never showed completely separated P3 components. 

However, the correlation failed to reach significance. Another striking feature of the 

waveforms was that most of the FXS and some of the DS patients generated P3 in response to 

both frequent and infrequent stimuli. This lack of differentiation in P3 amplitude could not be 

traced back to an insufficient comprehension of the two-tone discrimination task, since the 28 

patients chosen for analysis were all able to identify the deviant tones. 

Van der Molen and colleagues (Van der Molen et al., 2012a,b) did not report an FXS 

specific separation of the P3 component, but, in contrast to St. Clair and colleagues, they 

investigated the P3a (Van der Molen et al., 2012a) and P3b (Van der Molen et al., 2012b) 

component separately, since they used a passive oddball paradigm in the first and an active 

oddball paradigm in the second study. Van der Molen’s group found a prolonged P3a latency 

in FXS in response to standard and deviant tones in the passive auditory oddball paradigm. 

They also found differences in lateralization of P3a generation. Whereas the peak amplitudes 

for P3a were observed at the central midline in controls, the P3a peaked maximally at the left 

central electrode leads in FXS patients. Controls and FXS patients both showed larger P3a 
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amplitudes in response to deviant in comparison to standard tones, whereas the amplitudes in 

response to deviant tones were larger in controls than in FXS. In the active auditory oddball 

paradigm, P3b latency was longer at Cz than at Oz in both groups. Additionally, P3b latency 

was longer in FXS patients than in controls at Cz. P3b amplitude peaked at Cz in controls for 

both kinds of stimuli, whereas it peaked at Oz in FXS for standard stimuli, and at Pz for 

deviant stimuli. FXS patients showed smaller P3b amplitudes in comparison to controls for 

standard and deviant tones. In the visual modality, FXS patients also showed longer P3b 

latencies than controls, which was significant for standard stimuli. Visual P3b peaked at Cz 

(standard stimuli) and Pz (deviant stimuli) in controls, and FCz (standard stimuli) and Oz 

(deviant stimuli) in FXS. Similar to the auditory conditions, visual P3b amplitude was 

significantly smaller in FXS in response to both stimuli, but was generally larger in response 

to deviant stimuli in both groups. Van der Molen and colleagues also found an interesting 

modality specific difference in FXS patients: P3b amplitude to auditory stimuli was 

significantly reduced in comparison to visual stimuli. The behavioral results matched the 

modality differences found in P3b amplitude, showing that FXS patients made fewer errors in 

the visual than in the auditory task. This difference was not found in controls. To assess if 

ERP components can predict behavioral performance, Van der Molen and colleagues carried 

out a regression analysis (Van der Molen et al., 2012b). The P3b amplitude relating to deviant 

auditory stimuli was the only ERP that could predict performance in the active oddball 

paradigm task. It predicted reaction time to deviant tones in FXS patients and controls, as well 

as the hit rate to deviant stimuli and the proportion of false alarms to standard stimuli in FXS 

patients. In the visual paradigm, this pattern could not be found, even though the P3b 

difference scores were considered to be the best explanation for the variance in reaction times 

to deviant stimuli in FXS patients. Since both MMN and P3a seem to be attenuated in FXS, 

the authors expected factors affecting the MMN component to also have an influence on the 

P3a component. However, linear regression analysis did not reveal a significant direct 

association between MMN and P3a latency or amplitude (Van der Molen et al., 2012a). To 

summarize, both groups investigating P3 in FXS found prolonged P3 latencies in active and 

passive auditory and active visual oddball paradigms (St. Clair et al., 1987; Van der Molen et 

al., 2012a,b). The most striking difference were the deviances in P3 amplitude observed in 

FXS. Even though Van der Molen and colleagues reported larger P3a and P3b amplitudes for 
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deviant stimuli compared to standard stimuli in both controls and FXS patients (Van der 

Molen et al., 2012a,b), FXS patients still showed significantly reduced P3b amplitudes in both 

modalities. Given that FXS patients already showed delays in N2, it is not surprising that P3 

latency is also prolonged in comparison to controls. Moreover, P3 latency is known to be 

proportional to stimulus evaluating time and varies with individual differences in cognitive 

capability (Polich, 2007). 

 

Maturation of P3 – P3 in autism 

 

Results concerning auditory P3 maturation consistently show a decrease in latency 

(Goodin et al., 1978; Johnson, 1989; Ladish and Polich, 1989; Pearce et al., 1989; Fuchigami 

et al., 1993; Johnstone et al., 1996) and an increase in amplitude (Ladish and Polich, 1989; 

Johnstone et al., 1996; Mueller et al., 2008) from childhood to adolescence. The same pattern 

is found in visual P3 maturation (Pfueller et al., 2011). Studies investigating P3 in ID are 

predominantly in line with these findings, suggesting a delayed maturation of the P3 

component. Ikeda and colleagues found a decrease in auditory P3 latency with an increase in 

IQ in response to a passive oddball paradigm in their adult ID patients (Ikeda et al., 2009). 

Consistently with St. Clair and colleagues’ findings (St. Clair et al., 1987), a prolonged 

auditory P3 latency has been observed in DS (Seidl et al., 1997; César et al., 2010). 

Additionally, patients with DS showed no P3 habituation to repeated stimulus presentation 

(Seidl et al., 1997) and a lower P3 amplitude (César et al., 2010). In contrast, Henderson et al. 

(2000) did not find differences between children with phenylketonuria and healthy controls in 

visual P3 latency and amplitude in an active oddball paradigm. The authors explained this 

absence of differences by appeal to the good dietary phenylalanine control of the patients, 

which limits the severity of ID, as well as the simplicity of the task. It may also arise from 

modality differences in the impairments found in ID, as suggested by the modality differences 

found by Van der Molen’s group in FXS (Van der Molen et al., 2012b). Regarding autism, 

Bomba and Pang summarized the most common auditory P3 findings, indicating an unaffected 

latency and an attenuation in amplitude (Bomba and Pang, 2004). Thus, the P3 alterations 

found in FXS largely fit into general P3 latency prolongation in ID and amplitude reduction in 

autism. 
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Associations between alterations in early stages of information processing and later 
stages of stimulus categorization in FXS 

 

The observed P3 alterations in FXS have been explained by St. Clair and colleagues 

through a general malformation of limbic and associated medial temporal regions of the brain, 

in which P3 generators are assumed to be located (Smith et al., 1986). Part of this general 

malformation would be abnormal pyramidal neuronal functioning (Opitz et al., 1984). On the 

synaptic level, initial impairment in early stimulus processing, as reflected in N1 and P2 

deviations, is likely to impair the formation of stimulus memory that is needed for the later 

N2, MMN, and P3 components. Thus, it is in line with these deviations that P3 latency is 

prolonged in FXS, since the latency of P3 is believed to reflect the duration of stimulus 

evaluation (Donchin, 1981). This assumed relation between the underlying synaptic 

impairments in the early stages of information processing, reflected through N1 and P2 

enhancement, which compromises pre-attentive change detection (MMN) and stimulus 

categorization (N2), involuntary triggering of attention (P3a), and context updating (P3b), may 

also account for the deviations found in P3 amplitude. If the building of a memory trace for a 

stimulus was impaired, as suggested by the findings for the ERP components discussed so far, 

the stimulus categorization would be more difficult. This would have an influence on P3 

latency and amplitude (Luck, 1998). Van der Molen and colleagues calculated the correlation 

between early sensory change detection components (N1 and P2) and active attentional 

components (N2b and P3) and found these to be positively associated in the auditory 

paradigms in controls, but not in FXS (Van der Molen et al., 2012b). Since there is no direct 

association between N1-P2 and N2b-P3, it seems probable that additional factors contribute to 

P3 alterations in FXS, despite the alterations found in previous components. Surprisingly, no 

direct association between MMN and P3a was found (Van der Molen et al., 2012a), even 

though it would seem plausible that pre-attentive change detection reflected by the MMN 

would have an effect on the mechanism detecting unattended stimuli, the cognitive process 

reflected by P3a. The authors contended that the missing association results from differences 

in the neuronal mechanisms generating the MMN and P3a (Van der Molen et al., 2012a). The 

MMN is believed to be generated in auditory and frontal cortices, and the P3a through 

frontocentral neuronal mechanisms, which also reflects assumed bottom-up (MMN) vs. top-
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down (P3a) information processing (Escera and Corral, 2007). Thus, the MMN activity is not 

a prerequisite for P3a generation. Moreover the two components are differently affected by 

changes in stimulus characteristics and contextual demands (Sussman, 2007; Wetzel and 

Schroger, 2007). 

 

Associations between P3b and behavioural performance in FXS 
 

Even though only correlative and thus not necessarily causative, the association 

between P3b and behavioral performance measures found by Van der Molen and his group 

suggests that the impairments reflected by deviances in P3b characteristics may underlie the 

deficits in behavioral performance found in FXS (Van der Molen et al., 2012b). This is an 

important notion for the significance of ERP measures, since they reflect underlying neural 

mechanisms on the one hand and enable prediction of behavioral outcomes on the other. The 

differences between auditory and visual P3b amplitudes in FXS also manifested themselves in 

the behavioral results, since FXS patients performed significantly worse in the auditory than 

the visual oddball task (Van der Molen et al., 2012b). The authors discussed the possibility of 

a difference in the meaning of the stimuli, which might elicit more attention in the visual task 

(smiley faces vs. pure tones). However, this is not reflected in reaction times, which do not 

differ between the two tasks. Thus, Van der Molen and colleagues saw the explanation in poor 

auditory discrimination abilities rather than in poor task engagement (Van der Molen et al., 

2012b). This is supported by findings indicating modality differences in FXS performance 

impairments (Sullivan et al., 2007; Van der Molen et al., 2010) and fits with the FXS modality 

differences found in the P2 and P3b components (Van der Molen et al., 2012b). Therefore, it 

can be assumed that the severity of stimulus processing impairments found in FXS varies 

across modalities, with the auditory modality being more affected than the visual modality. 

The authors matched lateralization differences found for P3a in FXS (Van der Molen et al., 

2012a) to similar left lateralized brain activity during working memory tasks observed through 

neuroimaging studies (Hoeft et al., 2007). This could be interpreted as compensatory brain 

activity required for recruitment of attentional resources (Van der Molen et al., 2012a). 
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General discussion and conclusion 
 

ERP alterations found in FXS: common in ID vs. specific for FXS 

 

The ERP findings obtained in the five studies discussed above and summarized in 

table V, show that ERP is a useful measure to investigate impaired mechanisms of information 

processing in FXS, since several components showed a different profile in FXS patients 

compared to healthy controls. 

 
Table V. Main ERP component findings in FXS patients compared with healthy controls. 
 

Component 
 

 

Latency 
 

 

Amplitude 
 

N1 
 

No difference  
(Castrèn, Paakkonen, Tarkka, Ryynanen, & 
Partanen, 2003; Rojas et al., 2001; St Clair, 
Blackwood, Oliver, & Dickens, 1987; M. J. 
Van der Molen et al., 2011, 2012a) 

 

Increased  
(Castrèn et al., 2003; Rojas et al., 2001; St Clair et 
al., 1987; M. J. Van der Molen et al., 2011, 2012a) 
No habituation  
(Castrèn et al., 2003; M. J. Van der Molen et al., 
2011) 
 

 

P2 
 

No difference  
(St Clair et al., 1987; Van der Molen et al., 
2011; 2012) 

 

Inconsistent 
Increased  
(St Clair et al., 1987; Van der Molen et al., 2011) 
No difference  
(Van der Molen, 2012) 
 

 

MMN 
 

No difference, Trend: prolonged, n.s.  
(Van der Molen et al., 2011) 
 

 

Decreased  
(Van der Molen et al., 2011) 

 

N2 
 

Prolonged  
(St. Clair et al., 1987; Van der Molen, 
2011; 2012) 

 

Inconsistent 
No difference  
(St. Clair et al., 1987) 
Increased  
(Van der Molen, 2011; 2012) 
 

 

P3 
 

Prolonged  
(St Clair et al., 1987; Van der Molen, 2011; 
2012) 
 

 

Decreased 
(St. Clair et al., 1987. Van der Molen, 20122; 
2012) 

 

However, reported results were not always consistent, especially in N2, for which 

two groups found enhanced amplitudes and one group reduced amplitudes, which might have 

been due to differences in study design. However, comparisons with studies investigating the 

development of ERPs with age suggest that some of the alterations might be caused by a 

general delay of brain maturation. According to the findings presented in this review, this 

could particularly concern MMN, N2, and P3. Further, some of the alterations might be 
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common in clinical populations sharing symptoms with FXS, like other forms of ID or autism. 

Indications for general alterations in ID are found for N1 habituation, MMN amplitude, N2 

and P3 latency and P3 amplitude. In contrast to that, N1 and P2 amplitude alterations seem 

more FXS specific. It is possible that distinct syndrome-specific perturbations in early sensory 

processes influence later components in similar ways. To address this topic, it would be 

advisable to consider supplementary control groups, matching the FXS patients’ stage of 

mental development. This could be done using either patients with other forms of ID or 

chronologically younger healthy controls. Furthermore, it would be interesting to study 

different age groups with FXS to investigate the developmental course of ERP components in 

FXS. 

 

Cascade of impaired neuronal mechanisms as a basis for symptoms in FXS 

 

ERP results obtained so far in FXS consistently show a cascade of impaired 

mechanisms in electrical summation necessary for basic stimulus processing, attentional 

processing, and memory formation. This is consistent with some of the symptoms found in 

FXS, as attentional problems might be explained through synaptic processes probably also 

underlying the ERP deviances. Further, the described cascade of impaired mechanisms could 

be the basis for other symptoms found in FXS. For example, hyperarousal, hyperactivity, and 

anxiety in FXS might be related to neural hyperreactivity in response to sensory stimuli. 

Moreover, the formation of a cerebral stimulus representation might be impaired through 

synaptic dysfunction. It is likely that this difficulty in memory formation affects further 

learning, which then results in cognitive deficits. 

 

Future directions 

 

All in all, the ERP results fit with the symptoms found in FXS, as well as the 

anatomical findings obtained through brain imaging studies and assumptions concerning 

underlying neuronal mechanisms gained in animal models. Until now only a few FXS ERP 

studies have been published, so much remains to be discovered. Since existing ERP studies 

mainly focused on the auditory modality, other modalities should be investigated. The results 
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obtained so far suggest that processing impairments vary across modalities. Moreover, deficits 

in the domain of social cognition could be addressed by using stimuli with more social 

relevance, like human voices or faces. It would be of particular interest to study other ERP 

components that are related to cognitive processes known to be impaired in FXS. For example, 

the face-specific N170 would be a promising candidate, since some evidence for impaired face 

recognition in FXS is reported (Turk and Cornish, 1998). Further, language-related ERPs like 

the N400, which occurs in response to violations of semantic expectations (Luck, 2005), or the 

P600, which is evoked by syntactic violations, would be interesting, since language is among 

the most impaired cognitive functions in FXS. Additionally, habituation of more ERP 

components besides N1 could be investigated. Finally, ERP studies might be helpful as 

outcome measures in clinical trials to assess the influence of medical treatment on the synaptic 

mechanisms reflected by ERP components. 
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Abstract 
 

Fragile X Syndrome (FXS) is the most common form of X-linked Intellectual 

Disability (ID) and the only known mono-genetic cause of autism. It is caused by a 

trinucleotide repeat expansion in the FMR1 (‘Fragile X mental retardation 1’) gene, which 

prevents expression of the ‘fragile X mental retardation protein’ (FMRP). In FXS, the absence 

of FMRP leads to altered structural and functional development of the synapse, while 

preventing activity-based synapse maturation and synaptic pruning, which are essential for 

normal brain development and cognitive development. Possible impairments in information 

processing can be non-invasively investigated using electrophysiological methods. We 

examined event-related potentials (ERPs) evoked by basic auditory and visual stimulation in 

twelve adolescents and young adults (10-22) affected by FXS, as well as healthy controls 

matched by chronological age and developmental age of cognitive functioning. We found an 

increased auditory and visual N1 amplitude in FXS, relative to both control groups, as well as 

an increased auditory P2 and N2 amplitude and an increased auditory N2 latency. The ERP 

profile suggests disruptions in sensory processing specific to FXS that exceed immaturity of 

physiological activity. Thereby, the auditory modality seems to be more affected than the 

visual modality. Results are discussed in light of possible underlying neuronal mechanisms, 

including deficits in synaptic pruning and neuronal inhibition that might account for a 

hyperexcitable nervous system in FXS. 
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Introduction 
 
Fragile X Syndrome (FXS) is the most common form of X-linked Intellectual 

Disability (ID), which affects about 2% of male ID patients (Ropers & Hamel, 2005). It is 

caused by a trinucleotide repeat expansion in the FMR1 (‘Fragile X mental retardation 1’) 

gene, which is located on the X-chromosome. Despite their non-mutated X-chromosome 

women can also be affected (approximately half of the prevalence found in men), but with 

greater variation in the phenotype (Bennetto et al., 2001). The FMR1 mutation prevents 

expression of the ‘fragile X mental retardation protein’ (FMRP), which is known to repress the 

translation of specific mRNAs in response to the activation of metabotropic Glutamate 

Receptors (mGluRs) (Bear, Huber, & Warren, 2004). In FXS, the absence of FMRP leads to 

altered structural and functional development of the synapse. Structurally, altered dendritic 

development, such as increased density of dendritic spines, weak, elongated dendritic spines 

and immature synaptic connections are found in FXS patients and fragile X knockout mice 

(Comery et al., 1997). Functionally, the exaggerated mRNA translation caused by the FMRP 

deficit results in continuous enhanced mGluR-dependent synaptic long-term depression. In 

consequence, protein-synthesis in the synapses is not modified specifically to stimuli 

induction, which results in a loss of protein synthesis dependent plasticity (Bassell & Warren, 

2008). Thus, the FMRP absence is likely to prevent activity-based synapse maturation and 

synaptic pruning, which are essential for normal brain development (Weiler & Greenough, 

1999) and cognitive development (Schneider et al., 2009). 

Patients affected by FXS frequently show deficits in language, executive functions, 

visuo-spatial and social cognition. Further, they tend to show abnormal behavior, emotional 

instability and hyperarousal to sensory stimulation (Schneider et al., 2009). Most of the 

symptoms found in FXS are typical of the autistic spectrum; about 30% of male individuals 

with FXS meet the full diagnostic criteria for autism, which explains why FXS is considered 

the only known monogenetic cause of autism (Rogers et al., 2001). However, symptoms and 

their intensity vary considerably between different patients affected by FXS (Schneider et al., 

2009). 

Disrupted pathways in synaptic plasticity, the potential link between the genetic 
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mutation of FMR1 and the learning disability often found in FXS, are likely to be associated 

with impairments in mechanisms of information processing (Belmonte & Bourgeron, 2006). 

Early sensory and cognitive processing can be non-invasively investigated using the Event 

Related Potential (ERP) technique that records local field potentials, which are summarized 

postsynaptic potentials from large groups of neurons (Luck, 2005). Studies investigating ERPs 

in FXS so far exclusively used oddball paradigms and mostly studied auditory ERPs (Castrèn 

et al., 2003; St Clair et al., 1987; M. J. Van der Molen et al., 2012a, 2012b). Auditory N1 

amplitude has been found to be enhanced in FXS (Castrèn et al., 2003; Rojas et al., 2001; St 

Clair et al., 1987; M. J. Van der Molen et al., 2012a, 2012b). Results concerning auditory P2 

amplitude are inconsistent; in two studies an enhanced P2 amplitude was reported (St Clair et 

al., 1987; M. J. Van der Molen et al., 2012b), whereas in another study no difference between 

FXS patients and control group was detected (M. J. Van der Molen et al., 2012a). Mismatch-

negativity (MMN) amplitude was found to be decreased (M. J. Van der Molen et al., 2012b), 

whereas results for auditory N2 amplitude were again inconsistent, stating an increase in 

amplitude in FXS (M. J. Van der Molen et al., 2012a, 2012b) or no difference between FXS 

and controls (St Clair et al., 1987). Finally, auditory P3 amplitude was consistently found to be 

decreased in FXS compared to healthy controls (St Clair et al., 1987; M. J. Van der Molen et 

al., 2012a, 2012b). Concerning latency, auditory N2 and P3 latency appeared to be increased 

in FXS patients compared to healthy controls (St Clair et al., 1987; M. J. Van der Molen et al., 

2012a, 2012b), whereas no differences were detected in auditory N1, P2 and MMN latency 

(Castrèn et al., 2003; Rojas et al., 2001; St Clair et al., 1987; M. J. Van der Molen et al., 

2012a, 2012b). Only one study investigated visual ERPs in FXS thus far, also using an oddball 

paradigm and showing an increase in N1 and N2 amplitude and a decrease in P3 amplitude, 

but no differences in latencies and P2 amplitude (M. J. Van der Molen et al., 2012a). 

According to this study, the alterations found in stimulus processing in FXS vary across 

modalities, with the auditory modality being more affected than the visual modality. This 

seems to match modality differences in performance found in FXS (Sullivan et al., 2007; M. J. 

W. Van der Molen et al., 2010).  

Further, alterations in the sensory components N1 and P2 seem to be more specific to 

FXS, whereas the latter three merely cognitive components are frequently found to be altered 
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in most types of ID (Knoth & Lippé, 2012). 

Parameters of ERPs like amplitude and latency have also been found to specifically 

change with brain development, which makes them valuable instruments in the investigation 

of brain maturation (Lippé et al., 2007). However, ERP studies conducted with FXS patients 

so far mostly compared the ERPs of the FXS population only to healthy age matched controls 

(Knoth & Lippé, 2012). Thus, it is not clear if brain development in FXS remains immature 

due to deficient synaptic pruning, or if sensory processing is further disrupted, leading to an 

ERP profile specific to FXS. So far the possibility of immature physiological activity as cause 

for the aberrant ERP profile in FXS has not been taken into account. 

In this study we aimed to investigate both basic auditory and visual processing, since 

the early sensory components appear to be specifically altered in FXS. Therefore, we chose 

basic auditory and visual stimulation paradigms. In order to distinguish between immaturity 

and specific alterations of the ERPs, we compared the FXS patients not only to healthy age 

matched controls, but also to healthy controls with their developmental age of cognitive 

functioning, assessed by Intelligence Quotient (IQ).  
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Method 
 

Participants 
 
Twelve FXS patients aged from 10 to 22 years diagnosed with full mutation of the 

FMR1 gene were compared to 21 healthy controls matched by chronological age or 

developmental age and gender (Table I). The developmental control group contains children 

whose chronologic age matches the developmental age of patients with intellectual disability 

(IQ<70). Note that not all patients meet the criteria for an intellectual disability. A total of 18 

FXS patients had been tested; six patients were excluded from data analysis due to epileptic 

activity, difficulties in testing and extensive movement artifacts.  

 

Patients were recruited on the basis of DNA analysis previously conducted by 

geneticists at the CHU Sainte-Justine Mother and Child University Hospital Center in 

Montreal. Healthy controls were recruited by posters and pamphlets displayed in the Ste-

Justine Hospital, the University of Montreal and kindergartens around the hospital. In 

addition, parents were directly approached in kindergartens and summer day camps and ads 

were placed on classified websites. Seven of the 12 FXS patients had also been diagnosed with 

autistic disorder; eight FXS patients showed language delay and eight FXS patients were also 

diagnosed with Attention Deficit Hyperactivity Disorder (ADHD). Five of the tested patients 

did not take any medication, while seven patients were medicated with psychostimulant (5x 

methylphenidate, 2x atomoxetine, 1x amphetamine mixed salts) and/or antidepressant (1x 

citalopram) drugs to treat symptoms of autism, attention deficit hyperactivity disorder, 

depression and anxiety. All patients underwent detailed physical examinations in the 

developmental clinic of the hospital following their diagnosis. None of the patients has been 

diagnosed with hearing deficits within the scope of these evaluations. Parents reported normal 

hearing and normal or corrected-to-normal vision in all patients and control participants upon 

specific request. Healthy controls had no history of brain injuries, psychiatric or neurological 

illnesses and did not take any medication. All participants were born at term and right-handed. 

Intelligence in patients and controls was examined using the completely non-verbal 

Leiter-R International Performance Scale (Roid & Miller, 1997) for children and adolescents 
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and the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999) for adults. The non-

verbal scale was chosen in order to reduce the impact of language deficits in patients on the 

global IQ result. Developmental age of patients was calculated on the basis of IQ in order to 

match them with healthy controls. Autistic behavior was quantified using the repetitive 

behavior scale and the abnormal behavior questionnaire, which were completed by parents of 

patients and minor control participants. The study protocol was reviewed and approved by the 

ethics, administrative, and scientific committees at the Ste-Justine’s Hospital Research Center. 

Informed consent was obtained from participants and parents or legal caregivers before the 

experiment. 

 

Table I. Demographics of the study population. 

Variable FXS Patients Chronological age 
matched controls 

Developmental age 
matched controls 

 

N 
Age range 
Mean age (SD) 
IQ range 
Mean IQ (SD) 

 

12, 4 ♀ 
10-22 years 
14.7 (3.75) 
32-93 
51 (± 16.57) 
 

 

12, 3 ♀ 
11-32 years 
16.9 (± 6.02) 
87-129 
113 (± 14.05) 

 

9, 3 ♀ 
5-7 years 
5.8 (± 0.83) 
97-118 
108 (± 7.25) 

 

Apparatus and Stimuli 
 
Auditory and visual stimuli were generated by a Dell GX150 PC using E-Prime 1.0 

(Psychology Software Tools Inc. Pittsburgh, PA, USA). The EEG recording took place in a 

dark soundproof experimental chamber. Auditory stimulation consisted of 50ms broadband 

noise presented in a randomly distributed inter-stimulus interval varying from 1200 to 1400 

ms at 79 dB SPL intensity and 16-bit resolution. The two speakers (Optimus XTS 24, Boston, 

MA, USA) were located laterally at 30 cm distance from the subject’s ears. During auditory 

stimulation all subjects watched a silent movie. Following this, visual stimulation consisted of 

a black and white checkerboard stimulus presented at a reversal rate of 1 Hz, meaning that the 

checkerboard changed every 500ms, and subtending a visual angle of 2 degrees. Stimuli had a 

luminance of 40 cd/m2 and were displayed on a 40.5 X 30.5 cm ViewSonic monitor 

(ViewSonic, Canada) at 114 cm distance from the participant’s eyes. An assistant observed 
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whether the participant looked at the screen at all times and gave a signal whenever the 

participant looked elsewhere, in order to exclude these EEG segments from analyses. The 

assistant likewise directed the attention of participants to the screen by holding small objects 

in the lower middle part of the screen and talking to them if necessary. A dense array EEG 

system containing 128 electrodes was used for recording (Electrical Geodesics System Inc., 

Eugene, OR, USA). The vertex was used as the reference electrode during recording and 

impedances were maintained below 40kΩ (Tucker, 1993). Signals were acquired and 

processed by a G4 Macintosh computer using NetStation EEG Software (Version 2.0). 

Digitalization of EEG data was carried out at a sampling rate of 250Hz in 1024 ms epochs and 

an analog 0.01-100Hz bandpass filter was applied. 

Off-line analyses were carried out with BrainVision Analyser software, version 2.0 

(Brain Products, Munich, Germany). Data were digitally filtered with a 1-50 Hz filter for the 

visual and a 1-30 Hz filter for the auditory experiment and re-referenced to an average 

reference. Eye movement artifacts were corrected using semi-automatic Ocular Correction 

ICA as implemented in BrainVision Analyser. Algorithmic artifact rejection of voltage 

exceeding ± 100µV was followed by visual data inspection of segmented data in which 

segments with artifacts were manually rejected. In the patient group, an average of 4 of 150 

segments were rejected in the auditory and an average of 8 of 200 segments were rejected in 

the visual paradigm. For the control groups, rejection rates were 1/150 in the auditory and 

1/200 in the visual paradigm for the chronological control group and 1/150 in the auditory and 

8/200 in the visual paradigm for the developmental control group. Rejection rates did not 

differ significantly between the three groups (auditory condition: (χ² (2) = 1.63, p = .43), 

visual condition: (χ² (2) = 5.79, p = .06)). 

Auditory and Visual Event-related Potential Analysis 
	
  

Artifact-free segments were averaged and baseline corrected. In the auditory 

paradigm, an average of 146 artifact-free segments were available for the patient group and an 

average of 149 segments for the chronological and developmental control group. In the visual 

paradigm, an average of 191 segments were available for patients, 198 for chronological 

controls and 191 for developmental controls. Number of presented segments did not differ 
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between the three groups (auditory condition: (χ² (2) = 1.27, p = .53), visual condition: 

(χ² (2) = 5.79, p = .06)). Amplitudes and latencies were measured at electrodes FCz and Cz for 

auditory ERPs since they showed the clearest N1, P2 and N2 amplitudes in all groups, and at 

electrode Oz for visual ERPs, since they showed the clearest N70, P1 and N2 amplitudes. 

Approximate time windows for each component were defined by visual inspection of group 

averages. Components were then individually selected for each subject. Amplitudes were 

defined from baseline (200ms pre-stimulus) to the highest amplitude of each component and 

latencies were defined from stimulus onset to the highest point of each component. 

Statistical analysis 
	
  

Statistical analyses were performed using SPSS statistics, version 20 (IBM Corp., 

Armonk, NY, USA). Firstly, we compared the following variables between male and female 

FXS patients: IQ; N1, N2 and P2 amplitudes and latencies at electrode Cz and FCz for 

auditory ERPs and N70, P1 and N2 amplitudes and latencies at electrode Oz for visual ERPs. 

Since female patients are known to be less affected, due to their intact X-chromosome, which 

mitigates the outcome of the FMR1 mutation, we verified whether male and female patients 

differed from each other in respect of ERPs or can be considered as a single group. Student’s 

t-test has been used for normally distributed variables and the Mann-Whitney U test for not 

normally distributed variables. Analysis was then carried out between FXS patients, 

chronological and developmental age matched controls for the variables listed above. 

Normally distributed variables for which homogeneity of variance could be assumed were 

tested using analysis of variance (ANOVA) and if significant differences between groups were 

detected, Tukey’s test was carried out for post-hoc analysis. Not normally distributed variables 

were tested using the non-parametric Kruskal–Wallis one-way analysis of variance (K-W 

ANOVA) and if significant differences between groups were detected, pairwise comparisons 

were carried out using the Mann-Whitney U test controlling for the familywise error rate with 

a Bonferroni correction. Effect sizes are provided for significant ANOVAs and K-W 

ANOVAs. Data obtained from the abnormal behaviour questionnaire and the repetitive 

behaviour scale were compared between FXS patients and chronological control group, using 

student’s t-test or Mann-Whitney U test. Significance level for all statistical tests was set to 

5% (α = .05).  
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Results 
 

Male vs. female FXS patients 
 

With a mean of 68.25 (±17.11), female patients had higher IQs than male patients 

(M = 43.38, ± 8.38) (p = .006). However, no significant difference between male and female 

FXS patients was found in the visual ERP components N70, P1 and N2 at electrode Oz, as 

well as in the auditory components N1, P2 and N2 at electrode FCz and Cz (p > .05). Thus, 

FXS patients of both genders were combined into one patient group. 
 

IQ, abnormal and repetitive behaviour 
 

One-way ANOVA shows a difference in IQ between FXS patients, chronological and 

developmental age matched controls (F(2,28) = 67.12, p = .00, R2 = 0.83). FXS patients differ 

from the chronologic age matched control group (p = .00) and the developmental age matched 

control group (p = .00), while both control groups do not significantly differ from each other. 

Table II shows mean values of abnormal and repetitive behaviour in FXS patients and 

chronological controls as reported by parents/care givers in the abnormal behaviour 

questionnaire and the repetitive behaviour scale.  
 
Table II. Mean values (SD) of abnormal and repetitive behaviour in participants as reported 
by their parents/caregivers.   
 
 

Scale 
 

FXS patients  
 
 

 

Chronological controls 
 

p-value  
 

Irritability  
 

4 (4.54)* 0.78 (1.09) 0.04 
 

Lethargy 
 

4.13 (5.11)* 0.33 (0.52) 0.04 
 

Stereotypical Behaviour 
 

1.75 (3.24) 0 (.00) 0.08 
 

Hyperactivity 
 

3.35 (4.34)* 1.52 (0.51) 0.02 
 

Inappropriate Speech 
 

3.25 (3.45)* 0.33 (0.52) 0.02 
 

Self Mutilation 
 

1.78 (2.22)* 0.17 (0.41) 0.03 
 

Compulsive Behaviour 
 

1.78 (2.49) 0.33 (0.82) 0.06 
 

Ritualized Behaviour 
 

1.89 (1.96)* 0 (0.00) 0.01 
 

Immutable Behaviour 
 

4.22 (4.92)* 0.17 (0.41) 0.02 
 

Restrictive Behaviour 
 

1.22 (1.64)* 0 (0.00) 0.03 
* significant difference between FXS and chronological control group (p<.05) 
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Event-related potentials 
 

Auditory ERPs 
 
Group averages of the auditory ERP responses at electrode FCz and Cz are presented in figure 

1 and 2. Table III shows mean amplitudes and latencies at electrode FCz and Cz for every 

group. 
 
Table III. Mean amplitudes in  µV and latencies in ms (SD) for auditory ERP components in 
FXS patients, chronological control group and developmental control group. 
 
Component Parameter Electrode FXS patients Chronological 

control group 
Developmental 
control group 

N1 Amplitude FCz -.92 (1.25)	
  Ŧ -0.34 (0.93) 0.66 (0.69) 
 Cz -2.62 (1.7) *Ŧ -0.74 (0.75) 1.07 (1.36) 
Latency FCz 100 (16) 96.67 (20.6) 88 (22.54) 
 Cz 94 (10.85) Ŧ 94.33 (12.47) 78.22 (16.38) 

P2 Amplitude FCz 3.63 (1.91) *Ŧ 0.95 (1.00) 1.72 (1.13) 
 Cz 6.08 (2.29) *Ŧ 1.93 (1.09) 3.74 (1.46) 
Latency FCz 180.67 (30.22)	
  Ŧ 178.67 (26.22) 134.22 (20.99) 
 Cz 185 (28.85)	
  Ŧ 172 (21.57) 142.22 (24.59) 

N2 Amplitude FCz -1.76 (0.97)  -0.99 (1.05) -1.08 (0.70) 
 Cz -3.07 (1.36) *Ŧ -1.04 (0.65) -1.12 (0.86) 
Latency FCz 328.83 (27.47) *Ŧ 269 (24.67) 245.78 (59.47) 
 Cz 319.67 (26.67) Ŧ 288.67 (24.17) 245.78 (61.32) 

* significant difference between FXS and chronological control group (p<.05) 
Ŧ	
  significant difference between FXS and developmental control group (p<.05) 
 
 

 
Figure 1. Group Averages of Auditory ERPs at electrode FCz for the FXS group and the two 
control groups. 0ms marks stimulus onset. Significant differences are only marked for 
differences between FXS and control groups. 
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Figure 2. Group Averages of Auditory ERPs at electrode Cz for the FXS group and the two 
control groups. 0ms marks stimulus onset. Significant differences are only marked for 
differences between FXS and control groups. 
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Auditory N1 amplitude differed between groups at electrode FCz 

(F(2,30) = 6.41, p = .005, R2 = .30), with post hoc analysis revealing that FXS patients had a 

higher N1 amplitude than developmental controls (p = .004). A difference between groups in 

N1 was also found at electrode Cz (χ² (2) = 23.87, p = .00, R2 = .57). According to post hoc 

analysis, the differences between all three groups were significant (p = .00). FXS patients 

showed the highest N1 amplitude, followed by the chronological controls and finally 

developmental controls, which showed the smallest N1 amplitude. At electrode FCz there was 

no difference in N1 latency between groups (F(2,30) = .99, p = .38), whereas a difference in 

latency was found at electrode Cz (F(2,30) = 4.85, p = .015, R2 = .24). Post hoc analysis 

showed that N1 latency at electrode Cz was shorter in developmental controls, compared to 

both other groups (p = .024). 

 
Auditory P2 
 

A difference in auditory P2 between the three subgroups was found at electrode FCz 

(F(2,30) = 11.07, p = .005, R2 = .42) and Cz (F(2,30) = 17.72, p = .00, R2 = .54). Post hoc 

analysis revealed that auditory P2 amplitude was higher in FXS patients than in chronological 

controls (p = .00 for both electrodes) and developmental controls (p = .013 for electrode FCz 
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and p = .011 for electrode Cz). Auditory P2 latency also differed between groups at electrode 

FCz (F(2,30) = 9.61, p = .001, R2 = .39) and Cz (F(2,30) = 7.56, p = .002, R2 = .34). P2 latency 

was smaller in developmental controls, compared to FXS patients (p = .001 for electrode FCz 

and p = .002 for electrode Cz) and chronological controls (p = .002 for electrode FCz and 

p = .031 for electrode Cz). 

 

Auditory N2 

 

At electrode FCz, there was no difference found in auditory N2 amplitude between 

FXS patients and both control groups (F(2,30) = 2.39, p = .108), whereas a difference between 

groups was detected at electrode Cz (F(2,30) = 14.81, p = .00, R2 = .50). N2 amplitude 

appeared to be larger in FXS patients than in chronological controls and developmental 

controls at electrode Cz (p = .00 for both groups). N2 latency differed between groups at 

electrode FCz (F(2,30) = 6.41, p = .005, R2 = .48), being longer in FXS patients than in 

chronological controls (p = .002) and developmental controls (p = .00). At electrode Cz, N2 

latency also differed between groups (F(2,30) = 9.5, p = .001, R2 = .39), being smaller in 

developmental controls than in FXS patients (p = .00) and chronological controls (p = .043).  
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Visual ERPs 
 

Mean amplitudes and latencies at electrode Oz for every subgroup are presented in 

table IV. Figure 3 shows the group averages of the visual ERP response at electrode Oz. 

 
Table IV. Mean amplitudes in µV and latencies in ms (SD) for visual ERP components in 
FXS patients, chronological control group and developmental control group. 
 
Component Parameter FXS patients Chronological 

control group 
Developmental 
control group 

N70 Amplitude -2.56 (1.63)* -1.09 (0.73) -2.21 (1.66) 
Latency 74 (11.63) 78.67 (5.74) 78.22 (4.06) 

P1 Amplitude 4.30 (3.62) 3.94 (2.73) 5.73 (2.40) 
Latency 109 (11.71) 111.67 (3.17) 113.33 (4.00) 

N2 Amplitude -2.25 (1.89)* -0.75 (0.83) -1.36 (1.43) 
Latency 309.33 (35.91) 275.5 (37.25) 348 (30.20) 

 

* significant difference between FXS and chronological control group (p<.05) 
Ŧ	
  significant difference between FXS and developmental control group (p<.05) 
 
 
 

 
Figure 3. Group averages of visual ERPs at electrode Oz for the FXS group and the two 
control groups. 0ms marks stimulus onset. Significant differences are only marked for 
differences between FXS and control groups. 
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Visual N70 
 

A difference in N70 amplitude between the three groups was detected at electrode Oz 

(F(2,30) = 3.68, p = .037, R2 = .19). Post-hoc analysis revealed that the N70 amplitude was 

larger in FXS patients than in the chronological control group (p = 0.036), whereas there was 

no difference between developmental control group and the two other groups. No difference 

between the groups has been found in N70 latency (χ² (2) = 0.64, p = .727). 

 

Visual P1 
 

No difference was detected in visual P1 amplitude between the three groups 

(F(2,30) = 0.30, p = .747). Visual P1 latency was found to differ between groups 

(F(2,30) = 9.14, p = .001, R2 = .38). According to post hoc analysis developmental controls 

appeared to have a longer visual P1 latency than chronological controls (p = .001). P1 latency 

in FXS patients appeared longer than in chronological controls, but this difference failed to 

reach significance (p = .057). FXS patients and developmental controls also did not differ in 

P1 latency. 

 

Visual N2 
 

Visual N2 amplitude differed between groups (χ² (2) = 7.00, p = .03, R2 = .18). Post 

hoc analysis revealed that N2 amplitude is higher in FXS patients than in chronological 

controls (p = 0.01), while it does not differ from the N2 amplitude in developmental controls 

(p = .277). Chronological and developmental control group did not differ in N2 amplitude 

(p = .148). A difference between groups was also found in N2 latency 

(F(2,30) = 11.06, p = .00, R2 = .42). N2 latency appeared to be longer in developmental 

controls than in FXS patients (p = .046) and chronological controls (p = .00), whereas the 

difference between FXS patients and chronological controls failed to reach significance 

(p = .062). 
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Discussion 
 

FXS patients showed alterations in ERPs evoked by basic auditory and visual 

stimulation. However, we found that auditory processing is more impaired in FXS patients 

than visual processing. Furthermore, FXS patients are not only impaired compared to their 

age-matched peers, but also compared to children with the same developmental age. Auditory 

information processing in FXS patients does not resemble immature information processing, 

but has its own particularities. A summary of ERP alterations in FXS found in our study is 

given in table V. 

 
Table V. Alterations in auditory and visual ERPs in FXS obtained in this study. 
 
Component Modality Amplitude Latency 
 

N1 
 

Auditory 
 
  

 

Increased in FXS compared to 
developmental controls at FCz 
 

Increased in FXS compared to both 
control groups at CZ 
 

 

No difference 

N70 
 

Visual 
 

 

Increased in FXS compared to 
chronological control group 
 

 

No difference 

 

P2 
 

Auditory 
 

Increased in FXS compared to both 
control groups at FCz and Cz 
 

 

No difference 

P1 
 

Visual 
 

 

No difference 
 

No difference 
 

N2 
 

Auditory 
 

Increased in FXS compared to both 
control groups at Cz 
 

 

Increased Latency in FXS 
compared to both control 
groups at FCz 

 

Visual 
 

Increased in FXS compared to 
chronological control group 
 

 

No difference 

 
 

Specifically, an increased auditory N1 amplitude and no difference in N1 latency has 

been found in our patient population, replicating the findings of every relevant ERP study 

conducted with FXS patients so far (Castrèn et al., 2003; St Clair et al., 1987; M. J. Van der 

Molen et al., 2012a, 2012b). We also found an increased visual N70 amplitude in FXS, but 

only compared to the chronological control group, while no difference in latency was found. 

This resembles the findings of Van der Molen’s group (M. J. Van der Molen et al., 2012a), 

who published the only study investigating visual ERPs in FXS to this point and who found 

the first negative component (N1) to be increased in FXS, compared to healthy controls. Thus, 
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increases in the first negative auditory and visual component seem to be fairly consistently 

found in FXS.  Since our findings revealed a larger auditory N1 amplitude in FXS compared 

not only to the chronological but also to the developmental age matched control group, it is 

unlikely that the processes involved in the generation of the auditory N1 are simply immature 

functioning in FXS. Further, the increase in N1 amplitude seems to be somewhat specific to 

FXS when compared to other forms of ID and autism that often present a difference in N1 

latency and no difference (or even a reduction) in N1 amplitude (Knoth & Lippé, 2012). An 

increased state of arousal is believed to increase auditory N1 amplitude (Näätänen & Picton, 

1987). Since hyperarousal to sensory stimuli is often found in FXS (Schneider et al., 2009), 

the increased N1 amplitude might reflect this state of hyperarousal and there might be a 

common underlying mechanism for both. Regarding the neural mechanisms, Rojas and 

colleagues, who conducted a Magnetoencephalography (MEG) study with FXS patients and 

found a higher N100m (the N1 equivalent in MEG) amplitude in FXS suggest that more 

neurons are synchronously active in response to the sensory stimulation in FXS than in healthy 

controls (Rojas et al., 2001). This could mean that FXS patients have a surplus of neurons in 

brain regions that are involved in N1 generation. Alternatively, neuronal activation could be 

less inhibited in FXS than in healthy controls.  

An explanation supposing a surplus of neurons is supported by neuroanatomical 

aberrations in FXS. Among other alterations, greater gray matter volume in the occipital 

cortex has been found in infants with FXS compared to normally developed children and 

children with non-syndromic delay (Hoeft et al., 2008). The occipital cortex contains most of 

the visual cortex, which is believed to be involved in visual N70 generation (Shigeto, 

Tobimatsu, Yamamoto, Kobayashi, & Kato, 1998). In contrast, the superior temporal gyrus, 

which contains the primary auditory cortex and is believed to be involved in auditory N1 

generation (Näätänen & Picton, 1987), is found to be smaller in FXS, relative to healthy 

controls (Gothelf et al., 2008). However, over a course of two years FXS children showed a 

greater gray matter increase in several brain structures, including not only temporal-occipital 

regions, but also the superior temporal gyrus, relative to chronological- and developmentally-

age matched controls. This could indicate deficient synaptic pruning in FXS (Hoeft et al., 

2010). Synaptic pruning, a neuroregulatory process in which unnecessary neurons and 
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synapses are reduced in order to strengthen more efficient neuronal configurations, might be 

impaired in FXS, according to animal model studies (Pfeiffer & Huber, 2007, 2009; Weiler & 

Greenough, 1999). In consequence, more redundant neurons, which have not been eliminated 

through synaptic pruning, would respond to sensory stimulation in a sort of non-specific 

arousal response, accounting for the increased N1 amplitude.  

This finds support in studies that investigated N1 habituation in FXS (Castrèn et al., 

2003; M. J. Van der Molen et al., 2012b). In both studies, controls showed a reduction of N1 

amplitude after several presentations of the same stimulus, while this N1 habituation did not 

occur in FXS. The reduction of N1 amplitude in controls suggests that less neurons 

synchronously respond to a stimulus after several repetitions, which could reflect a reduction 

of the non-specific arousal or novelty response that generally occurs after the first appearance 

of a sensory stimulus (Karhu et al., 1997). Thus, deficient synaptic pruning might lead to an 

excess of less adapted synaptic configurations that non-specifically respond to sensory 

stimulation, while reducing the capacity for more efficient synaptic connections. This 

mechanism might be reflected in increased auditory N1 amplitude and a lack of N1 

habituation. 

Impaired neuronal inhibition as an explanation for increased N1 amplitudes finds 

support in a study that investigated resting state EEG in FXS (M. J. Van der Molen & Van der 

Molen, 2013). They found an increased relative theta power and a decreased relative upper 

alpha in FXS, compared to healthy controls. Alpha oscillations in EEG are believed to be 

involved in neural inhibitory regulation mechanisms that gate information by reducing the 

processing capabilities of a given area (Jensen & Mazaheri, 2010). A reduced alpha rhythm in 

FXS could indicate impaired sensory gating mechanisms, which fail to inhibit redundant 

neural activity. In consequence, there would be more neuronal activation, which might be 

reflected in increased N1 amplitude. It would be interesting to further investigate the possible 

relationship between alpha/theta power abnormalities and increased N1 amplitude in FXS. 

All hypotheses described above concerning the possible neuronal mechanism 

underlying the increased N1 amplitude seem to suggest a hyperexcitable nervous system in 

FXS. These assumptions remain hypothetical, however, and should be further addressed by 

combining EEG with other brain imaging techniques.  
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Previous P2 results in FXS were somewhat inconsistent, since an increased auditory 

P2 amplitude in FXS has been found in two studies (St Clair et al., 1987; M. J. Van der Molen 

et al., 2012b), whereas no difference in auditory and visual P2 amplitude was found in another 

study (M. J. Van der Molen et al., 2012a). P2 latency did not differ between FXS patients and 

controls in any of the studies. Our study is in accordance with the greater part of the literature, 

having found increased auditory P2 amplitude in FXS patients in comparison with 

chronological and developmental control groups, but no differences in P2 latency. The 

increased auditory P2 amplitude seems to be part of the ERP profile specific to FXS, since 

other IDs show mostly a prolonged P2 latency, but no changes in P2 amplitude (Knoth & 

Lippé, 2012).  

The fact that no alterations are found in the visual P1 in FXS indicates a modality 

difference in basic sensory information processing in FXS, suggesting more altered 

components in the auditory modality. This is in accordance with modality differences in 

performance found in FXS (Sullivan et al., 2007; M. J. W. Van der Molen et al., 2010). 

Further differences between visual and auditory ERPs have been found in the later P3 

component in FXS, suggesting again that there are less processing deficits in the visual 

modality than in the auditory (M. J. Van der Molen et al., 2012a).  

Lastly, we investigated auditory and visual basic N2 in FXS. In the visual modality, 

no difference in N2 latency was found, which differs from the results reported by Van der 

Molen and colleagues, who found an increased visual N2 latency in FXS, compared to 

chronological controls (M. J. Van der Molen et al., 2012a). However, since the mean latency 

of our developmental group lies between FXS patients and chronological controls, the 

difference between FXS patients and chronological controls might have been significant in a 

direct comparison. Further, visual N2 amplitude was only found to be larger in FXS compared 

to the chronological control group, but did not differ from the developmental control group. 

Since N2 amplitude is known to decrease with age (Lippé et al., 2007) and the visual N2 

amplitude did not differ between FXS and developmental control group, it can be argued that 

the visual N2 is immature in FXS rather than specifically altered. Moreover, prolonged N2 

latency seems to be a general phenomenon in ID (Knoth & Lippé, 2012).  
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In contrast, we found a prolonged auditory N2 latency at FCz and an increased 

auditory N2 amplitude at Cz in FXS, compared to both control groups. Again, there seems to 

be a modality difference in the N2 in FXS, again suggesting that auditory processing is more 

affected. However, auditory N2 results obtained in FXS so far are quite inconsistent (Knoth & 

Lippé, 2012). The controversy might be partially due to the fact that the N2 is more sensitive 

to changes in task parameters than the previously described components, making it more 

difficult to compare studies with different experimental designs.  

 

Conclusion 
 

The present study presents a profile of altered ERPs in FXS, which likely reflects 

impairments in basic neural sensory processing. The additional comparison to a control group 

matched by developmental age of cognitive functioning of patients with ID leads to the 

conclusion that auditory components in FXS are not simply immature, but appear specifically 

altered. Conversely, the visual N70 and N2 amplitude does not differ between FXS patients 

and developmental controls. Notably, information processing seems to be more severely 

impaired in the auditory than in the visual modality, as suggested by Van der Molen (M. J. 

Van der Molen et al., 2012a), which could account for language deficits in FXS. The 

knowledge that visual processing is less affected, as well as indications of a hyperexitable 

nervous system, could be considered in the design of behavioral treatments for FXS patients.  

A longitudinal study with frequent follow-ups investigating ERPs from a very young 

age in infants affected by FXS could help discriminate early, possibly even prenatal, 

alterations of neurodevelopment resulting from delayed or otherwise altered synaptic pruning 

occurring postnatally. However, the implementation of such a study would be very difficult, 

since FXS is currently diagnosed at an average age of 3 years in boys and 3.4 years in girls 

(Bailey, Raspa, Bishop, & Holiday, 2009). Routine genetic screenings in newborns have 

recently been discussed (Bailey, Skinner, Davis, Whitmarsh, & Powell, 2008) and might offer 

an opportunity to further unravel the mechanisms of neurodevelopment and early information 

processing in FXS.  
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Concerning ERPs, it would be interesting to investigate more complex stimulus 

processing and learning mechanisms in FXS. Of particular interest would be the face-specific 

N170 ERP, since impaired face recognition has been reported in FXS (Turk & Cornish, 1998). 

Further, alterations in a cortical region specialized in face processing, the fusiform gyrus, have 

been found in FXS (Hoeft et al., 2008) and functional studies show that FXS patients recruit 

brain regions differently from healthy controls during face and gaze processing (Dalton et al., 

2008; Garrett et al., 2004; Holsen et al., 2008; Watson et al., 2008). Another field of particular 

interest in FXS would be language processing, since language is a cognitive domain that is 

especially impaired in FXS. ERPs in response to words pronounced by a human voice could 

be interesting as well as the examination of language-related ERPs, like the N400 and the 

P600. 
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General discussion 
 

The primary objective of this Master’s thesis was to investigate basic information 

processing in a syndromic ID caused by an X-linked genetic mutation – FXS – for which an 

impaired cascade of biological mechanisms is well defined. We expected impaired 

information processing, more so in the auditory than the visual modality, to be reflected in an 

altered ERP profile specific to FXS, rather indicating immature physiological activity. 
 

The first necessary step in designing an ERP study in FXS was to review studies that 

have been conducted so far, in order to connect our work with the existing literature. This 

literature review has been presented in the first part of this Master’s thesis. The results 

summarized and discussed in the review lead to the following conclusions. First, FXS patients 

show an altered ERP profile in response to auditory stimulation. These alterations can most 

likely be ascribed to altered neurodevelopment and resultant impairments in neuronal 

information processing. Further, the alterations in ERP profile may be related to the aberrant 

brain anatomy and performance deficits found in FXS. Alterations in early sensory ERP 

components appear to be relatively specific to FXS, whereas more cognitive components 

occurring later seem to be altered in other forms of ID as well. Finally, a modality difference 

might exist in the extent of impairment in sensory processing, suggesting that auditory 

processing is more severely impaired than visual processing in FXS. 
 

A general shortcoming of the reviewed studies was the lack of control for immature 

brain responses as a possible cause for altered ERPs, since they only compare FXS patients to 

healthy aged matched controls (except for one study in which a third group of patients with 

Down Syndrome is tested in order to control for effects that rely on intellectual disability (St 

Clair et al., 1987)). For all other studies, the level of cognitive functioning of FXS patients 

must be considered as a confounding variable that might influence the results. 
 

On the basis of these conclusions, we decided to investigate basic sensory processing 

in FXS. In order to control for immaturity of brain responses, we added a control group of 

healthy children that match the age of cognitive functioning of FXS patients with ID. Since, 

among other things, the absence of FMRP causes aberrant neurodevelopment rather than 



	
   89 

immaturity, we expected at least some of the ERP components in FXS patients to differ not 

only from the chronological, but also from the developmental control group. 

Finally, an earlier ERP study, as well as behavioural findings, suggest a modality 

difference in the extent of impairment in FXS, with the auditory modality being more affected 

than the visual modality. Thus, we investigated both basic auditory and visual processing in 

order to detect possible modality differences in the altered ERP components. 

 

As assumed, we found an altered ERP profile in FXS that largely corresponded to the 

scarce existing literature. This is an important finding since only a few studies with rather 

small FXS sample sizes have been published so far. Notably, increased N70/N1 amplitude in 

response to visual and auditory stimulation, as well as prolonged auditory N2 latency, can be 

considered fairly stable phenomena in FXS, since they have now been found in six and four 

studies respectively, using different paradigms. Importantly, our findings of increased auditory 

P2 and N2 amplitude in FXS help clarify a certain discrepancy that has been found in the 

literature concerning these components. Since our basic stimulation created less interference 

with higher cognitive factors that might influence the appearance of these components, such as 

attention and memory in oddball paradigms, we can assume that the ERP profile obtained in 

our study uniquely reflects basic sensory processing. Therefore, it is likely that increased 

auditory P2 and N2 amplitudes are part of the basic ERP profile in FXS, with deviant results 

in some other studies possibly due to the influence of additional cognitive processes on the 

components evoked by the paradigm. 

 

The second important finding in our study goes beyond what has been found in the 

literature up to now, since a comparison between FXS patients and our additional group of 

developmental controls showed that the auditory ERP profile in FXS does not reflect an 

immaturity of brain responses, but specific alterations. If cognitive functioning similar to that 

of the less mature brain were reflected in ERPs, rather than alterations in information 

processing specific to FXS, the ERP would not differ between developmental controls and 

FXS patients. However, auditory ERP components in FXS differ not only from those of 

controls matched by chronological age, but also from those found in controls matched by 
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developmental age. In contrast, visual N70 and N2 appear similar in FXS and developmental 

controls and might therefore reflect similar levels of cognitive functioning, rather than 

alterations in neuronal information processing. 

 

Lastly, a modality difference is found between visual and auditory processing. Visual 

ERP components seem to be less altered in FXS than auditory components, relative to healthy 

controls. While auditory N1, P2 and N2 amplitude, as well as N2 latency differ significantly 

from both control groups, no visual component differs significantly from both control groups. 

Thus, we found that auditory information processing is more impaired than visual information 

processing in FXS. 

We can thus conclude that our study supports the two main hypotheses that have been 

formulated in the research objective, i.e. alterations in the ERP profile in FXS relative to 

chronological as well as to developmental controls and a different extent of ERP alterations 

between the auditory and the visual modality in FXS.  

 

Impaired mechanisms in FXS 
 

By interpreting the observed ERP alterations in FXS in light of what is known about 

neurochemical outcomes of FMRP absence, as well as brain activity and anatomy in FXS, we 

can attempt to understand the neuronal mechanisms underlying deficient information 

processing in FXS. At this point, the ideas concerning underlying neuronal mechanisms that 

have been briefly mentioned in the discussion of the research article will be discussed in more 

detail.  

 

The increased auditory N1 amplitude is of particular interest, since it is the most 

consistent finding in FXS and reflects early sensory processing. Findings in FXS patients 

concerning increased N100m (the N1 equivalent in MEG) amplitude, indicate that more 

neurons are synchronously active in the cerebral cortex during stimulus processing (Rojas et 

al., 2001). We suggest two explanations for the increased neuronal activation in FXS; a 

surplus of neurons in brain regions that are involved in generating the N1 component and a 

deficit in neuronal inhibition. These explanations are not meant to be mutually exclusive or 
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exhaustive, since most likely a number of factors influence the impairments in information 

processing found in FXS. 

 

The occipital cortex, which contains most of the visual cortex, has been suggested as 

a source for the greater part of the visual N70 (Shigeto et al., 1998). The auditory N1 is 

believed to be generated in the superior temporal gyrus, which includes the primary auditory 

cortex (Näätänen & Picton, 1987). Greater gray matter volume has been found in the occipital 

cortex of infants with FXS, relative to normally developed children and children with non-

syndromic delay (Hoeft et al., 2008). This supports the hypothesis of a surplus of neurons in 

FXS, which might contribute to larger visual N70 amplitude. In contrast, a decreased gray 

matter volume is found in the superior temporal gyrus in children and adolescents with FXS, 

compared to healthy controls (Gothelf et al., 2008). This seems to contradict the surplus 

hypothesis upon first sight, since smaller gray matter volume implies fewer neurons. However, 

findings obtained in a longitudinal study investigating gray matter volume changes with age in 

FXS and age- and developmentally matched controls offer a possible explanation (Hoeft et al., 

2010). Over the course of two years, a greater gray matter increase was found in several brain 

structures in FXS, including not only temporal-occipital regions, but also the superior 

temporal gyrus. The authors contrast these findings with early, possibly prenatal, alterations in 

neurodevelopment, and suggest delayed or otherwise disrupted synaptic pruning occurring 

postnatally as a cause for the greater volume increase (Hoeft et al., 2010). Synaptic pruning is 

a regulatory process during neurological development, in which unnecessary neurons and 

synapses are reduced in order to facilitate changes in structure and strengthen more efficient 

neuronal configurations. Deficits in synaptic pruning lead to an overabundance of redundant 

synapses and neurons. Disruptions in synaptic pruning have been found in animal models of 

FXS (Pfeiffer & Huber, 2007, 2009; Weiler & Greenough, 1999). Further, synaptic plasticity 

is known to be impaired in FXS (Bassell & Warren, 2008). Synaptic plasticity is the ability of 

synapses to strengthen or weaken their connections to other synapses in response to increased 

or decreased common activity (Hebb, 2002). The combination of impaired synaptic pruning 

and impaired synaptic plasticity in FXS could imply that redundant synapses, which have not 

been eliminated in synaptic pruning, cannot be efficiently integrated into the neural network. 
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Thus, sensory stimulation might lead to an increased, non-specific arousal response in these 

redundant synapses, accounting for the increased N1 amplitude.  

 

This finds further support through studies investigating N1 habituation in FXS. 

Habituation is considered the most elementary form of learning and occurs as early as the fetal 

stage of development (Morokuma et al., 2004). Habituation (i.e. repetition suppression) is the 

brain response to repeated stimuli presentations in any modality. ERPs typically show reduced 

brain activity amplitude with stimulus repetition (Grill-Spector, Henson, & Martin, 2006), 

which represents the process of habituation. Both studies investigating N1 habituation in FXS 

found the expected reduction of N1 amplitude after several presentations of the same stimulus 

in controls (Castrèn et al., 2003; M. J. Van der Molen et al., 2012b). FXS patients, however, 

did not show N1 habituation. The reduction of N1 amplitude in controls most likely reflects 

the reduction of the non-specific arousal or novelty response that generally occurs after the 

first appearance of a sensory stimulus (Karhu et al., 1997). After a few repetitions, the overall 

local activity in unspecialized connections is usually suppressed by active inhibition 

modulated through GABA receptor mechanisms (Disney & Calford, 2001). Given that the 

GABAergic system appears to be dysfunctional in FXS (Paluszkiewicz et al., 2011), this 

active inhibition of the arousal response may be impaired in FXS. Further, the second process 

involved in habituation, the strengthening of selective cortical connections that reflect the 

neural representation of a stimulus (‘memory trace’) is also known to be impaired in FXS. As 

explained earlier, FMRP deficit leads to an exaggerated mRNA translation, which again 

causes continuous enhanced mGluR-dependent long term depression. In consequence, the 

protein-synthesis in the synapses is not modified specifically to stimuli induction and a loss of 

protein synthesis-dependent plasticity occurs (Bassell & Warren, 2008). 

Thus, deficient synaptic pruning might lead to an excess of redundant, less adapted 

synaptic configurations that non-specifically respond to sensory stimulation, while, 

simultaneously, deficient neuronal inhibition and the loss of synaptic plasticity impair the 

formation of more efficient synaptic configurations. These mechanisms might be partially 

reflected in increased N1 amplitude and absence of N1 habituation in FXS, while likely 

contributing to deficient information processing and learning disability in FXS. 
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An explanation for increased N1 amplitudes focusing on impaired neuronal inhibition 

finds support in a study previously mentioned in the electrophysiology section of the 

introduction that investigated resting state EEG in FXS (M. J. Van der Molen & Van der 

Molen, 2013). They found an increased relative theta power and a decreased relative upper 

alpha in FXS, compared to healthy controls. Alpha oscillations in EEG are believed to be 

involved in neural inhibitory regulation mechanisms that gate information by reducing the 

processing capabilities of a given area (Jensen & Mazaheri, 2010). Further, evoked alpha and 

theta oscillations have recently been linked to the generation of the P1-N1 complex (Klimesch 

et al., 2004). A reduced alpha rhythm in FXS could indicate impaired sensory gating 

mechanisms, which fail to inhibit redundant neural activity. In consequence, there would be 

more neuronal activation, which might be reflected in an increased N1 amplitude. As 

mentioned above, GABAergic feedback from inhibitory interneurons is believed to play a key 

role in alpha power generation (Jensen & Mazaheri, 2010). A dysfunctional GABAergic 

system thus appears again as a key mechanism in impaired information processing in FXS. 

 

All of the hypotheses presented above concerning the possible neuronal mechanism 

underlying increased N70/N1 amplitude seem to suggest a hyperexcitable nervous system in 

FXS. This would account for some of the symptoms found in FXS, such as hyperarousal and 

attention deficits. Possible explanations remain hypothetical, however, and should be further 

explored by combining EEG with other brain imaging techniques.  
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Findings in children 
 

In the course of our study, we also investigated children between the age of 4.5 and 6 

affected by FXS. Unfortunately, some of the children were very anxious and agitated during 

the testing, forcing us to stop the EEG. Finally, auditory ERP data was only available for three 

and visual data only for two children. This sample size was not sufficiently large for statistical 

testing. However, visual inspection of the ERP profiles in FXS children compared to controls 

matched by chronological and developmental age, suggested an increased visual and auditory 

N2 amplitude, as well as a prolonged auditory N2 latency. This indicates that at least some of 

the ERP alterations can already be found in very young FXS patients. In the discussion of the 

research article, we propose a longitudinal study investigating ERPs at a very young age in 

infants affected by FXS with frequent follow-ups in order to discriminate early, possibly even 

prenatal, alterations in neurodevelopment from delayed or otherwise altered synaptic pruning 

occurring postnatally. The late diagnosis of FXS around the age of 3 years (Bailey et al., 2009) 

has been mentioned as the main problem in the realization of such a project and routine 

genetic screenings have been suggested as a possible solution (Bailey et al., 2008). However, 

the difficulty in testing young children with FXS that we have observed during the course of 

our study might pose an additional problem. 

 

Implications for treatments of FXS 
 

In the section describing the genetic mechanisms underlying FXS, we mentioned the 

possibility of treating FXS with mGluR5 inhibitors like fenobam. ERPs could be used as an 

outcome measure in clinical trials to assess the influence of medical treatments on information 

processing in FXS. Further, our finding that information processing is less impaired in the 

visual than in the auditory modality could help justify the design of behavioral trainings for 

FXS patients that rely more on visual stimulation. For example, pictograms might be more 

useful than verbal explanations. In addition, indications for a hyperexcitable brain in FXS, 

especially concerning auditory stimulation, point to the importance of maintaining a calm 

environment in order to avoid constant hyperarousal. 
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Limitations 
 

Even though our study provides exciting evidence for information processing deficits 

in FXS, some issues should be addressed. More than half of our patient population was 

medicated during the EEG recording with psychostimulant and/or other drugs. Parents or 

caregivers often decided that the EEG recording would not be possible if they did not 

administer medication before coming to hospital. As psychoactive drugs are known to have an 

influence on the parameters of ERPs, medication might have been a confounding variable in 

our study. However, psychoactive drugs that have been found to influence parameters of ERPs 

are more likely to reverse the ERP profile of the treated pathology so that it no longer differs 

from that of controls. For example, children that have been diagnosed with ADHD showed 

enhanced N1 and P2 amplitudes, as well as reduced N2 amplitudes relative to healthy controls 

in a cued Go/Nogo task. After being medicated with methylphenidate, a psychostimulant, 

these components did not differ significantly from controls any more (Broyd et al., 2005). 

Likewise, reduced P3 amplitude found in non-medicated children with ADHD no longer 

differed from the control group after they were treated with methylphenidate (Seifert, 

Scheuerpflug, Zillessen, Fallgatter, & Warnke, 2003). Thus, it seems unlikely that the altered 

ERP profile, which we detected in our patient population, is caused by drug effects rather than 

the FXS pathology. On the contrary, the medication would have been more likely to mask 

ERP alterations in FXS rather than creating alterations. This finds further support in the fact 

that our results are generally in concordance with the results obtained by Van der Molen’s 

group, who tested non-medicated FXS patients (M. J. Van der Molen et al., 2011, 2012a). 

Moreover, our results indicate that the medication taken by the patients did not reverse the 

phenotype in FXS. However, this cannot be said with certainty, since not all patients were 

medicated and those who were differed in drug type and dosage. A study strategically 

investigating possible changes in ERP profile induced by psychoactive drugs, including 

fenobam, would therefore be interesting. 

Another shortcoming in our study is the fact that our subjects were not given an 

audiometric test prior to the EEG testing, to ensure equivalent peripheral sensory integrity of 

the auditory system. The time and patience of our patient population for our experiment was 

limited and all of them underwent detailed physical examinations in the developmental clinic 
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of the hospital upon their diagnosis. In the scope of these evaluations, none of the patients 

have been diagnosed with hearing deficits. Further, parents reported normal hearing in all 

patients and control participants upon specific request. However, an audiometric test would 

have added valuable information to our experiment and will be considered in future studies. 

Although the addition of a second control group matching the cognitive functioning 

of patients with ID has provided us with valuable knowledge and is one of the strongest points 

in our study, it would have been interesting to have a control group with another kind of ID. 

Our control group provides evidence that the alterations found in the ERP profile are mostly 

specific to FXS and do not reflect immature information processing linked to the level of 

performance. However, a control group with non-syndromic ID or a different kind of 

syndromic ID would not only have strengthened our conclusion that the ERPs do not simply 

reflect immature information processing, but also that the ERP profile in FXS might differ 

from what is generally found in ID. In our literature review, we gathered ERP results in other 

IDs and autism and compared them to what has been found in FXS. Alterations in N1 and P2 

amplitude seemed to be specific to FXS, whereas N1 habituation, MMN and P3 amplitude and 

N2 and P3 latency seemed to be altered in a similar way in other forms of ID. We suggested 

the possibility of heterogeneous syndrome-specific perturbations in early sensory processes 

that lead to homogeneous outcomes in later components. However, it is difficult to compare 

EEG studies from different research groups, since a number of factors varies between studies, 

such as paradigm, stimuli parameters, tasks and investigated electrodes, as well as analysis 

procedures that might all have an influence upon the results. Therefore it is preferable to 

compare several syndromes, such as different forms of ID, in a single study, in order to 

investigate information processing. 

 

Perspectives 
 

As mentioned above, it would be interesting to investigate another ID population with 

the same study parameters in order to discriminate FXS specific alterations from alterations 

generally found in ID. We are planning to add another ID population to our study, i.e. patients 

with de novo mutations in the autosomal gene SYNGAP1. Protein-truncating de novo 
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mutations in the SYNGAP1 gene have recently been identified in 3% of a series of 94 patients 

with nonsyndromic ID (Hamdan et al., 2009). The gene mutation results in the production of 

several deficient proteins that are known to be important for synaptic plasticity (Komiyama et 

al., 2002). Six of these patients have already been identified at the CHU Sainte-Justine 

Hospital University Center and can be tested for our project. Since both FXS and SYNGAP1 

mutations seem to impair synaptic plasticity, it would be of particular interest to compare 

basic information processing between these IDs. 

Additionally, it would be interesting to go beyond basic stimulus processing and 

investigate more complex information processing in FXS. We are in the course of analysing 

two more EEG experiments that we carried out with our FXS patient population. Both 

experiments are habituation paradigms featuring natural stimuli, i.e. human faces and pseudo-

words pronounced by a human voice. Since brain anatomy studies found alterations in FXS in 

the fusiform gyrus, a brain region that seems to be specialized in face processing (Hoeft et al., 

2008), and functional studies found altered activity during face and gaze processing in FXS 

(Dalton et al., 2008; Garrett et al., 2004; Watson et al., 2008), it is of particular interest to 

investigate face processing in FXS using electrophysiology. We are currently examining 

habituation of the face-specific ERP N170 in FXS and healthy controls in order to detect 

possible alterations in face processing and synaptic plasticity, since habituation is a form of 

learning that can easily be reflected using ERPs. Preliminary results obtained in three patients 

showed an increased N170 in FXS compared to chronological and developmental age matched 

controls. While N170 amplitude decreased after the first repetition of a face in controls, the 

opposite pattern was found in FXS. These preliminary results indicate disturbed face 

processing and synaptic plasticity in FXS. However, the sample size is as yet too small to 

draw any firm conclusions. Likewise, we plan to investigate habituation of ERP components 

evoked by pseudo-words in FXS and controls, since language processing seems to be 

particularly impaired (Schneider et al., 2009) and alterations are found in language associated 

brain areas of FXS patients (Gothelf et al., 2008) 

 

Moreover, we plan to carry out additional methods of analysis with our EEG data that 

go beyond ERPs and might provide further insights into neuronal mechanisms in FXS. On the 



	
   98 

one hand, we will calculate the energy of our EEG data, defined as the normalized sum of 

amplitudes, reflected through sampling points, in a given time window. Previous studies in our 

laboratory showed that energy in the signal reduces with repetition of a stimulus (Lafontaine et 

al., in preparation) and is thus likely to reflect habituation processes. On the other hand, we 

want to investigate complexity in FXS brain signal, relative to healthy controls. Complexity of 

EEG signals is believed to reflect ‘brain noise’, which is defined as the variation generated by 

the deterministic and random components of the brain network process (McIntosh et al., 

2010). It can be estimated by multiscale entropy (Costa, Goldberger, & Peng, 2005), which 

assesses the temporal predictability of the signal in a time series. Complexity of the brain 

signal is known to increase with maturation (Lippe, Kovacevic, & McIntosh, 2009) and 

positively predicts performance in behavioural measures of learning tasks (McIntosh, 

Kovacevic, & Itier, 2008). Furthermore, local complexity decreases with maturation, whereas 

distributed complexity, which reflects the integration between distributed neuronal populations 

in the brain, increases (Vakorin, Lippe, & McIntosh, 2011). Thus, a relation between brain 

noise and the functional variability of the brain can be assumed (McIntosh et al., 2008). Since 

increased complexity can be observed in a familiar stimulus as compared to an unfamiliar one 

(Heisz, Shedden, & McIntosh, 2012), habituation is likely reflected in increased brain signal 

complexity. Finally, reduced signal complexity is found in various pathologies, including 

autism (Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011). Thus, since complexity is 

believed to reveal maturation and functional variability in the brain, and is lower in other 

pathologies, like autism, we expect it to be reduced in FXS. Further, we expect to find a 

lessened increase in complexity with stimulus repetition in the habituation paradigm in FXS, 

relative to controls, reflecting learning disability and impairments in synaptic plasticity.  
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Conclusion 
 
We found an altered ERP profile in response to basic auditory and visual stimulation 

in FXS, including increased auditory increased auditory N1, P2 and N2 amplitudes and 

increased auditory N2 latencies, reflecting impaired neuronal information processing. The 

auditory ERP profile is not only found to differ from controls matched by chronological age, 

but also from controls matched to the developmental age of cognitive functioning, indicating 

aberrations in neurodevelopment specific to FXS rather than immaturity of physiological 

activity. However, visual N70 and N2 amplitude were only increased in FXS relative to 

chronological, but not to developmental controls. Thus, we found auditory information 

processing to be more impaired than visual processing in FXS, reflected in fewer ERP 

alterations in the visual paradigm. In combination with findings of brain anatomy, 

biochemistry and behaviour, our results suggest a hyperexcitable nervous system in FXS. 

Further electrophysiological paradigms and additional methods of analysis will help us to 

investigate more complex forms of information processing in FXS, including habituation, face 

and language processing, and compare them with other forms of ID. 
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