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Résumé 

 
Les  « Facteurs de croissance des fibroblastes» (FGF) agissent comme 

des régulateurs locaux sur la qualité des follicules et sont connus pour 

promouvoir la prolifération des cellules de granulosa, réduire l’apoptose et la 

stéroïdogenèse. Parmi la sous-famille FGF8, FGF18 est une exception 

puisqu’il semblerait avoir une fonction pro-apoptotique alors que FGF8 n’a 

pas été jusqu’à présent rapporté comme altérant la viabilité des cellules de 

la granulosa. Ces deux ligands ont un mode d’activation similaire et il 

pourrait être proposé que toute la sous-famille FGF8 ait la même réponse. 

L’objectif de cette étude était de déterminer si FGF8 et FGF18 activaient la 

même réponse précoce de gènes dans des cultures de granulosa bovine. 

Pour répondre à cette question, nous avons cultivé des cellules de la 

granulosa dans du milieu de culture sans sérum pendant 5 jours. Le jour 5, 

les cellules ont été traitées avec FGF8 ou FGF18. Nous avons eu recours à 

une approche de « puce à ADN » afin d’identifier la réponse précoce de 

gènes induite par FGF8 et FGF18, et les données ont été confirmées par 

des PCRs en temps réel lors d’une expérience in vitro où les cellules de 

granulosa ont été traitées avec FGF8 et FGF18 pendant différents temps. 

L’analyse du puce à ADN a identifié 12 gènes surexprimés par FGF8, 

incluant SPRY2, NR4A1, XIRP1, BAMBI, EGR1, FOS et FOSL1. A l’inverse, 

FGF18 n’a régulé aucun gène de manière significative. Les analyses de 

PCR ont confirmé l’augmentation d’ARNm codant pour EGR1, EGR3, FOS, 

XIRP1, FOSL1, SPRY2, NR4A1 et BAMBI après 2 h de traitement. FGF18 a 

entrainé seulement une augmentation de l’expression de EGR1 après 2 h de 

traitement parmi tous les gènes testés. Ces résultats démontrent donc que 

FGF8 et FGF18, malgré leur similarité dans le mode d’activation de leurs 

récepteurs, agissent sur les cellules de la granulosa via différentes voies de 

signalisation. FGF8 et FGF18, sont donc tous les deux capables de stimuler 



	
   ii	
  

l’expression de EGR1, mais les voies de signalisation induites par la suite 

divergent. 

 
Mots clés: cellules de la granulosa, fibroblast growth factors, EGR1, 

prolifération, apoptose. 
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Abstract 
 
 

Fibroblast growth factors (FGF) act as local regulators of follicular health 

and are known to increase granulosa cell (GC) proliferation, reduce 

apoptosis and decrease steroidogenesis. One exception is FGF18, which 

appears to be a pro apoptotic member of the FGF8-subfamily while FGF8 

has not been reported to alter GC health. These two ligands have similar 

activation patterns and it could be proposed that all FGF8-subfamilies would 

have the same response. The objective of this study was to determine if 

FGF8 and FGF18 activate the same early response genes in cultured bovine 

GC. To address this we cultured GC in serum free medium for five days. On 

day 5, cells were challenged with FGF8 or FGF18. We used a microarray 

approach to identify early response genes altered by FGF8 and FGF18, and 

data were confirmed by real-time PCR in an independent time-course 

experiment.  Microarray identified 12 genes up-regulated by FGF8, including 

SPRY2, NR4A1, XIRP1, BAMBI, EGR1, FOS and FOSL1.  In contrast 

FGF18 did not result in significant regulation of any gene. PCR analysis 

confirmed the stimulation of abundance of mRNA encoding EGR1, EGR3, 

FOS, XIRP1, FOSL1, SPRY2, NR4A1 and BAMBI after 2 hours of 

challenge. FGF18 resulted in an increase of EGR1 mRNA abundance at 2 h, 

but not of the other genes tested. These results demonstrate that FGF8 and 

FGF18, despite reportedly similar receptor activation patterns, act on 

granulosa cells through different intracellular pathways.  Both FGF8 and 

FGF18 stimulate EGR1 expression, but thereafter their signaling pathways 

diverge.  

 

Key words: granulosa cells, fibroblast growth factors, EGR1, proliferation, 

apoptosis. 
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Introduction 
 

Fertility is a corner stone of human society and from an agricultural 

perspective, fertility is important for the maintenance of genetically superior 

dairy and beef herds. In the last decades there has been a well documented 

decline worldwide in fertility in dairy cattle, the reasons for which include 

factors from management to genetics, but in many cases involve the ovary 

and with it, the follicle. When follicular hormone secretion is perturbed there 

is a direct impact on oocyte quality and uterine environment, and as a result 

of this, a direct impact on the establishment of pregnancy. Therefore 

follicular health is of critical importance for improving fertility (Lucy, 2007). 

 

Follicle health is determined by an array of endocrine, paracrine and 

autocrine factors. The pituitary gonadotrophins, LH and FSH are the major 

drivers of follicle development, but their actions are regulated by local 

hormones and growth factors. One of these local regulators of gonadotropin 

action is the family of fibroblast growth factors (FGF). Fibroblast growth 

factors are a large family of 22 related proteins that act as key-

mesenchymal-epithelial signaling molecules in a variety of tissues, 

especially during organogenesis. In the ovary, FGF are predominantly 

expressed in theca cells and granulosa cells express the FGF receptors 

(FGFR). In granulosa cells FGF produce an increase in proliferation while 

decreasing differentiation and estradiol production (Berisha et al., 2004; 

Buratini et al., 2007). 

 

In the ovary, the major signaling pathways of FGF are the mitogen-

activated protein kinases (MAPK), protein kinase C and phosphatidylinositol 

3-kinase. FGF2 and several other FGFs activate ERK 1/2, and FGF early- 
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response genes including members of the Sprouty, NR4A and ETS families 

of proteins, which are believed to be responsible for some FGF functions in 

granulosa cells including regulation of cell proliferation, regulation of tyrosine 

kinase receptors, steroidogenesis and prevention of apoptosis. FGF are 

classed into subfamilies, and of interest to this thesis is the FGF8-subfamily 

that includes also FGF18. These two ligands have similar receptor activation 

patterns and it could be proposed that they would have the same actions in 

bovine granulosa cells.  FGF8 is a mitogenic growth factor that increases 

follicular health by increasing proliferation and suppressing cell 

differentiation. On the other hand, FGF18 appears to be a pro-apoptotic 

member, affecting gene expression of pro-survival factors such as 

GADD45b (Buratini et al., 2005a; Jiang et al., 2011; Portela et al., 2010). 

The objective of the present study was to identify the early response genes 

induced by FGF8 and FGF18, and to gain insight as to how FGF18 is pro-

apoptotic whereas typical FGF signaling is pro-survival. 
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1. The bovine ovary 
 

The ovaries are the female gonads, and they are found in pairs located in 

the pelvic area and in the cow they have an almond form with a size of 3.5 x 

2.5 x 1.5 cm (Marieb Elain N, 1993). The development of the ovary starts as 

a paired thickening of the coelomic epithelium that lines the body cavity in 

the ventral-medial surface of the mid-region on embryonic day 34; the 

reasons why the thickening begins are unknown and studies performed 

mainly in mice are focusing on finding the genes required for this process 

(Gospodarowicz et al., 1974).   

 

The ovary is considered to have two main functions in reproduction: the 

first is gametogenesis leading to the production through meiosis of a 

competent oocyte and the second is the secretion of female sexual 

hormones such as estrogen and progesterone that are required for follicular 

development, maintenance of estrous cyclicity and reproductive functions 

including preparation of the reproductive tract for fertilization and subsequent 

establishment of pregnancy (Marieb Elain N, 1993).  In terms of 

steroidogenic function, the ovaries are required to perform a highly 

coordinated series of complex events that will lead to follicular development 

(Gospodarowicz et al., 1974). 

 

 

 

 

 

 

 



	
   4	
  

2.  The follicle 

 

The structure of the follicle changes during development and can be 

classified into three different groups according to their size, complexity and 

responsiveness to circulating gonadotropins: preantral, antral and 

preovulatory follicles. Preantral follicles start as primordial follicles that 

possess a single layer of squamous pre-granulosa cells surrounding the 

oocyte. The theca cell layer has not formed and there is no vascular system. 

As they start to grow they become primary follicles consisting of a single 

layer of cuboidal granulosa cells. Primary follicles develop into secondary 

follicles, in which the follicles possess two or more layers of granulosa cells 

surrounding the oocyte but have no theca layer or antral cavity (McGee and 

Hsueh, 2000). 

 

As the follicle transforms into an antral follicle, extracellular fluid 

accumulates between the granulosa cells that will later merge to form a 

central liquid-filled cavity called the antrum. The zona pellucida forms at this 

stage and two or more granulosa cells layers surrounding the oocyte 

become the cumulus granulosa cells. The theca cell layer is now well formed. 

The proportion of primordial follicles that undergo folliculogenesis and reach 

the antral stage is very low as most of the follicles undergo regression and 

atresia (Marieb Elain N, 1993). 

 

2.1 Structures 

 
Each follicle consists of an oocyte surrounded by the zona pellucida and one 

or more layers of somatic cells referred to as cumulus granulosa cells (CGC), 

the antrum and the basal lamina which separates mural granulosa cells from 
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the theca cells, which are of stromal origin and are considered to be the 

interstitial tissue of the follicle (Figure 1) (Gospodarowicz et al., 1974). 

 

 

 

 
 

 

Figure 1:  Schematic representation of a pre-ovulatory mammalian 
follicle. The cell types comprising the follicle are shown; the fully grown 

oocyte and cumulus granulosa cells. Also pointed out are theca cells, 

granulosa cells, extracellular matrix produced by the oocyte (zona pellucida) 

and antrum (Erickson et al., 1985). 
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 2.1.1 Oocyte 

 
The oocyte is the female germ cell prior to fertilization; the number of 

oocytes in the mammalian ovary is fixed early in life (Conner et al., 2005).  

The development of the oocyte starts with the primordial germ cells (PGC) 

which undergo meiosis to form an oogonium. PGC have the ability to 

perform extensive migration from the place of their formation to the 

developing gonad. This process is regulated by somatic germ cell 

interactions and some additional factors including FGF; in mice FGF2 has 

been reported to be a mitogenic factor that affects motility of PGC by 

mediating activation of the MAP-kinase pathway, and  FGF7 has also been 

found to have a role in regulating PGC numbers by activation of FGFRIIIb 

(Takeuchi et al., 2005). Once the gonad is assembled from PGC, the cells 

start differentiating and proliferating resulting in the formation of the oogonia. 

In many organisms the oogonia divide several times forming clusters of 

interconnected cells; after each division cytoplasmic bridges remain allowing 

continuous communication between cells and coordinated development. The 

oogonia differentiate by meiosis into primary oocytes that arrest in prophase 

and form the major reserve of oocytes in primordial follicles (Voronina and 

Wessel, 2003). 

 

 The best-documented stimulators of oocyte maturation are hormones 

and growth factors. Some mechanisms of maturation have been proposed 

and they include: 1) the production of a maturation-inducing substance by 

follicular cells that drives oocytes to mature, possibly involving activation of 

membrane receptors by steroid hormones; 2) inactivation of follicle-derived 

maturation inhibitor; and 3) inhibition of gap junction-mediated transport to 

prevent transfer of a follicle-derived inhibitor (Conner et al., 2005). 
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2.1.2 Granulosa cells 
 

GC are important for oocyte maturation as they provide nutrients that 

support further development. As follicles grow and the antrum cavity is 

formed, the GC separates into two anatomically and phenotypically different 

subtypes: the cumulus granulosa cells (CGC), which are in direct contact 

with the oocyte, have a high rate of proliferation, low steroidogenic capacity, 

low LH receptor (LHCGR) expression and high levels of insulin growth factor 

I (IGF-1); and the mural granulosa cells (MGC) which have a primarily  

endocrine function and support follicle growth, and which undergo terminal 

differentiation to luteal cells after ovulation. The interaction between oocytes 

and CGC is complex; CGC express characteristics distinct from the MGC 

that are acquired under the influence of the oocyte and which promote cell 

differentiation and development of the GC (Albertini et al., 2001). The oocyte 

achieves this by secreting labile paracrine signaling factors, and perturbation 

of this signaling results in the production of an oocyte unable to undergo 

normal maturation (Yeo et al., 2009). It is possible that MGC are antagonist 

or insufficient for supporting the last stages of oocyte maturation (Eppig et al., 

1997). 

 

GC lack a vascular supply, therefore they require contact with their 

neighboring cells via gap junctions; these gap junctions contain different 

connexins such as connexin 32, 43 and 45. Connexin 43 has been studied 

widely in the mouse where it is has been detected from the onset of 

folliculogenesis just after birth and persists through ovulation. In later stages 

it has been found that coupling between GC is mediated specifically by 

connexin 43 and is essential for continued follicular growth, expansion of the 

GC population during early stages of follicular development, and that 
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mutations in this gap junction lead to a retarded oocyte growth, poor 

development of the zona pellucida of both granulosa cells and oocytes 

(Ackert et al., 2001; Gospodarowicz et al., 1974). 

 

2.1.3 Theca cells 
 

Theca cells (TC) are endocrine cells that play essential roles within the 

ovary by producing androgen substrates under LH control that are required 

for ovarian estrogen biosynthesis, and they provide structural support of the 

growing follicle as it progresses through various developmental stages 

(Figure 2). They are highly vascularized and through this vascularization 

they provide the rest of the follicle with essential nutrients and endocrine 

hormones from the pituitary axis (Magoffin, 2005; Young and McNeilly, 

2010).  

 

TC are believed to be recruited from surrounding stromal tissue; the 

hypothesis of the origin of TC is that growing follicles secrete a series of 

signals that stimulates TC differentiation and some evidence suggests that 

these signals involve unknown small molecular-weight proteins secreted by 

GC (Magoffin, 2005). During development, the majority of follicles undergo 

atresia, and the TC are often the final follicular cell type to die. For those 

follicles that ovulate, the TC then undergo hormone-dependent 

differentiation into luteinized TC of the corpus luteum (Young and McNeilly, 

2010). 
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Figure 2: Thecal cell development and function. Thecal cells are 

essential for folliculogenesis. TC are required for the production of 

androgens and they form the vascular compartment of the follicle. After 

ovulation, thecal cells luteinize and form cells of the corpus luteum (Young 

and McNeilly, 2010). 

 

 

2.2 Follicular growth and development 
 

Folliculogenesis describes the formation of the primordial follicle and its 

progression through the successive stages of preantral, antral and finally 

preovulatory growth (Figure 3). The development from primordial follicle to 

preovulatory follicle is a time-consuming event, estimated in cows to take 

180 days. It appears that FSH (follicle stimulating hormone) plays a 
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predominant role in follicle selection and final preovulatory growth. After the 

LH surge, there is a series of events that lead to ovulation; it is known that 

LH activates progesterone (P4) receptor in GC, the expression of 

prostaglandin synthase 2 and the epidermal growth factor-like ligands such 

as amphiregulin and epiregulin that induce changes in CGC (Gospodarowicz 

et al., 1974). 

 

 
 

 

Figure 3:  Folliculogenesis. Formation of the primordial follicle and its 

progression through different stages (Erickson et al., 1985; Young and 

McNeilly, 2010).  
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In cattle a rise in blood FSH concentrations recruits a cohort of small 

antral follicles into a phase of growth. The largest of these follicles becomes 

the 'dominant follicle', and secretes high levels of estrogen and inhibins, 

which then suppress pituitary FSH secretion, which in turn induces atresia in 

the remaining follicles in the cohort (McGee and Hsueh, 2000; Sisco et al., 

2003). The dominant follicle also produces higher levels of autocrine and 

paracrine factors that stimulate an increase in vasculature and FSH 

responsiveness. One of these factors is IGF1, which serves to enhance GC 

responsiveness to FSH by increasing expression of the FSH receptor. A new 

factor that has been studied is cell-cell adhesion and cell-extracellular matrix 

(ECM) interactions as they are related to changes in the follicular basal 

lamina and may have an effect on differentiation of GC and TC (Albertini et 

al., 2001; McGee and Hsueh, 2000).  

 

Studies using ultrasonic imaging have documented that follicular growth 

in cattle occurs in a wave-like pattern and that the majority of estrous cycles 

in cattle consist of two or three waves. The first wave starts on the day after 

ovulation (Day 0), the second wave occurs around day 9 and, in the case of 

a third, it emerges around day 15 (Adams et al., 2008). Each follicular wave 

is preceded by an increase in FSH that begins about day 2.5 before the 

wave and starts to decrease about the time of the appearance of the cohort 

of follicles in the wave (Figure 4) (Bao and Garverick, 1998). During follicular 

growth, three major events take place: recruitment, selection and dominance. 

The recruitment begins with the growth of 8-41 small follicles between 3-4 

mm, which continue to grow at a similar rate for two days. After this period, 

one of the follicles is selected and continues growing until it becomes 

dominant, the rest of the follicles become atretic and regress (Adams et al., 

2008). 
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Figure 4: FSH regulation. Representation of a two follicular wave bovine 

cycle, each follicular wave is preceded by an increase in FSH blood levels 

(Adams et al., 2008). 

 

 

2.2.1 Recruitment 

 

Follicle activation or recruitment takes place in two phases: 1) a 

continuous recruitment of the dormant primordial follicles into the growing 

follicle pool; and 2) a cyclical recruitment in response to FSH (Figure 5). It 

has been demonstrated that FSH can bind to GC of preantral follicles 

making them responsive to FSH and permitting them to follow a wave-like 

pattern in response to periodical endogenous surges of FSH (Adams et al., 

2008; McGee and Hsueh, 2000). Follicle recruitment is associated with 

initiation of simultaneous expression of P450ssc and CYP19a1 mRNA  
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in GC of the recruited cohort of follicles, which are likely to be increased by 

circulating FSH (Bao and Garverick, 1998). 

 

During gowth of the cohort, follicles grow from 5 mm to 8-9 mm diameter, 

and the GC express CYP19a1 and P450scc mRNA, but not 3β-HSD mRNA, 

and the TC express LHCGR, P450scc, P450c17, 3β-HSD, and StAR mRNA. 

This suggests that GC start to metabolize androgens coming from TC to 

estradiol (E2) and cholesterol to pregnenolone, but not pregnenolone to P4 

because of the lack of 3β-HSD (Bao and Garverick, 1998). Follicles at this 

stage of development are all antral, and most will undergo atretic 

degeneration, leaving just the dominant follicle to the reach preovulatory 

stage (Kolpakova et al., 1998; McGee and Hsueh, 2000). This stage of 

follicular development is considered to be gonadotropin dependent (Bao and 

Garverick, 1998). 
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Figure 5: Recruitment of bovine ovarian follicles. Bovine follicle 

recruitment in two-wave pattern, showing initial and cyclic recruitment 

(McGee and Hsueh, 2000).  

 

 

2.2.2 Selection and dominance 
 

In monovulatory species, selection is the process where a single follicle is 

chosen from the cohort of medium size growing follicles for further 

development while the rest become atretic (Fortune et al., 2004). In 

polyovulatory species, multiple follicles are selected and grow synchronously 
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until ovulation. The exact process of how a follicle is selected remains 

unknown, although it has been suggested that the selected follicle shows 

increased expression of FSHR, LHCGR and 3β-HSD in GC, permitting them 

to be responsive to LH and continue developing in the face of lowered FSH 

concentrations (Aerts and Bols, 2010). It has also been proposed that the 

increased follicular growth rate is due to an increase in IGF1 bioavailability in 

the dominant follicle (Lucy, 2007). It has been established that the 

development of one antral follicle until it becomes dominant requires 42 days 

in the cow, or the equivalent of two estrous cycles (Aerts and Bols, 2010). A 

dominant follicle has higher concentrations of E2 in follicular fluid, higher 

LHCGR mRNA levels in TC and GC, higher levels of 17α-hydroxylase and 

aromatase in GC compared with non-dominant growing follicles (Fortune et 

al., 2004). Another characteristic of dominant follicles is the high expression 

of StAR mRNA in TC, which may assure enough cholesterol transport to the 

mitochondria for androgen production (Bao and Garverick, 1998).  

 

If the dominant follicle becomes the preovulatory follicle, a cascade of 

events started by the preovulatory LH surge results in ovulation. LH 

increases the synthesis of progesterone receptors, prostaglandins and 

epidermal growth factor (EGF)-like factors in GC, and induces the primary 

oocyte to complete meiosis I. There is also an up-regulation of the 

expression of proteases thought to play critical roles in follicular rupture 

(Russell and Robker, 2007).  
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2.2.3 Atresia 

 
Follicular atresia occurs by apoptosis or programmed cell death. Atresia 

occurs in the dominant follicle if it does not become the preovulatory follicle, 

for example as first-wave dominant follicle, and also in the subordinate 

follicles recruited in a cohort, where atresia has been associated with a 

suppression of E2 secretion and CYP19a1 expression (Bao and Garverick, 

1998). Major intracellular effectors of atresia include the B-cell lymphoma 2 

family and the caspase family (Hengartner, 2000).  

 

3.  Steroidogenesis 
 

Steroid hormones are derivates of cholesterol; they can be classified into 

five categories: glucocorticoids (cortisol), mineralocorticoids (aldosterone), 

androgens (testosterone), estrogens (estradiol and estrone) and progestins 

(progesterone). In the bovine follicle five enzymes are required for the 

production of estradiol. Steroidogenesis starts with the internalization of 

blood-borne low-density lipoproteins, and once inside the cell cholesterol is 

maintained as liquid droplets (cholesterol esters), which are converted to 

free cholesterol by the enzyme cholesterol ester hydrolase. Free cholesterol 

is then mobilized to the mitochondria by the steroidogenic acute regulatory 

protein (StAR) where it is converted to pregnenolone by the enzyme 

cytochrome P450 cholesterol side-chain cleavage. Pregnenolone can follow 

two different routes, 1) conversion to progesterone by the enzyme 3ß-

hydroxysteroid dehydrogenase (3ß-HSD) or 2) to 17α-hydroxypregnenolone 

by the enzyme cytochrome P450 17α-hydroxylase (CYP11a1). 17α-

hydroxypregnenolone can be converted to androstenedione by CYP11a1 

and 3ß-HSD. Androstenedione is converted into testosterone by 17ß-

hydroxyosteroidehydrogenase (17ß-HSD); TC secrete androstenedione and  
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testosterone and GC can convert androstenedione to estradiol by 17ß-HSD 

and testosterone to estrone by CYP19a1. Progesterone can be mobilized 

directly from TC to GC (Figure 6) (Miller and Auchus, 2011). 

 

 

 
 

 

Figure 6: Diagram of the major steroidogenic pathways in ruminants 

(Miller and Auchus, 2011). 
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3.1 Estradiol 

 
E2 regulates the structure and function of the female reproductive system. 

One characteristic of the growing follicle is its considerable capacity for E2 

production. Once the increase of E2 synthesis within the follicle has begun, it 

has the capacity of self-augmenting by up-regulating androgen synthesis in 

TC and pregnenolone in GC (Beg and Ginther, 2006). In cattle, E2 promotes 

development of preantral follicles and stimulates steroidogenesis. Shortly 

before the beginning of deviation between the largest follicle and the second 

largest follicle, there is a marked difference in concentrations of E2 in the 

follicular fluid of the two follicles, and enhance a rapid increase in E2 content 

is a key characteristic of a dominant follicle. In addition, E2 concentrations 

decrease in subordinate follicles while the dominant follicle continues 

growing. As the rate of growth of the follicle slows, estradiol concentrations 

do not decrease until the follicle starts to regress. All these make E2 a 

marker for health or atresia of follicles (Beg and Ginther, 2006; Fortune et al., 

2004; Price et al., 1995). 

 

 

3.2 Progesterone 

 
P4 is a steroid hormone involved in pregnancy and embryogenesis. P4 is 

produced in TC and GC. During the beginning of follicular growth there are 

no differences in P4 levels between the two largest follicles, however some 

studies have found that after the second largest follicle starts regressing, 

there is an increase in P4, making unclear the role of progesterone in the 

process of growth and differentiation (Beg and Ginther, 2006). The role of P4 

is essential not only for the establishment but also for the maintenance of 

pregnancy, as it supports ovulation and uterine and mammary gland 
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development (Kim et al., 2010). The major source of P4 during pregnancy is 

the corpus luteum and in some species the placenta. The genomic actions of 

P4 are mediated by the intracellular progesterone receptors, and blocking 

P4 binding sites results in abortion (Arck et al., 2007). 

 
4. Growth factors 

 

Ovarian folliculogenesis is modulated by diverse growth factors, including 

insulin-like growth factors (IGF), epidermal growth factors (EGF), 

transforming growth factor β (TGF-β) and FGF (Ben-Ami et al., 2006).  

 

4.1 Insulin-like growth factors 
 

The IGF family includes two ligands, six binding proteins and two 

receptors. They are produced in ovarian follicles. In the ovary, their main role 

is during follicular development where they can stimulate the growth of antral 

follicles and proliferation of GC, and they synergize with gonadotropins to 

promote differentiation of follicle cells and to inhibit apoptosis (Beg and 

Ginther, 2006). IGF also increases the expression of FSHR and LHCGR and 

stimulates the synthesis and secretion of E2, P4, testosterone, oxytocin, 

inhibin A, activin-A and prostaglandins (Figure 7) (Quirk et al., 2004). The 

bioavailability of IGF is regulated within the follicle by a family of six binding 

proteins, which are non-glycosylated peptides that act as carriers for IGF in 

the serum and regulate the half life of IGF (Beg and Ginther, 2006).  

 



	
   20	
  

 
 

 

 
Figure 7: IGF effect on steroid production. Relationship between IGF 

receptor (IGFR) and the increase in the production of ovarian steroids 

(Poretsky et al., 1999). 
 

 

4.2 Epidermal growth factor 

 
EGF is a protein of 53 amino acids which plays a crucial role in 

reproduction. Other members of the EGF family include TGF-α, amphiregulin 

(Areg), epiregulin (Ereg), betacellulin (BTC), epigen, neuregulins and 

heparin-binding EGF-like growth factor. These proteins can work through 

four types of transmembrane receptors (Ben-Ami et al., 2006). The main 

functions of EGFR within the follicle are stimulating proliferation of GC, 

increasing P4 secretion, and controlling of the release of E2. In oocytes, 

EGF affects maturation and cumulus expansion, and inhibits apoptosis.  
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The role of EGF has also been investigated as a paracrine mediator of 

LH induced ovulation (Quirk et al., 2004; Sirotkin, 2010). The EGF receptors 

also play important roles in cell proliferation, survival, adhesion, motility, 

invasion, and angiogenesis in normal and in malignant cells, including 

ovarian tumors (Jiang et al., 2011). 

 

4.3 Transforming growth factor beta  
 

The TGF-β superfamily of extracellular signaling molecules includes over 

35 structurally related but functionally diverse proteins. These proteins 

function as extracellular ligands involved in numerous physiological 

processes. This superfamily has been classified into several subfamilies: the 

TGF-β subfamily (TGF-β1, TGF-β2, TGF-β3), the bone morphogenetic 

protein (BMP) subfamily, the growth and differentiation factor (GDF) 

subfamily, the activin/inhibin subfamily, the glial cell-derived neurotrophic 

factor (GDNF) subfamily and other members such as anti-Mullerian hormone 

(AMH) (Knight and Glister, 2006). Within the ovary, GDF9, BMP15, inhibins, 

activins, and AMH are all expressed (Knight and Glister, 2003). 

 

Functions of TGF-β subfamily members vary widely from regulating 

folliculogenesis to regulating proliferation. GDF9 and BMP15 are expressed 

in the oocyte from the preantral stage of development and play key roles in 

promoting preantral follicle growth. Studies on later stages of follicle 

development indicate an important positive role for granulosa cell-derived 

activin, BMP2, BMP5 and BMP6, theca cell-derived BMP2, BMP4 and BMP7 

and oocyte-derived BMP6 in promoting granulosa cell proliferation, follicle 

survival and prevention of premature luteinization and/or atresia.  



	
   22	
  

 

Secretion of TGF-β from theca cells increases LH receptor production by 

granulosa cells in response to FSH stimulation, whereas it inhibits androgen 

production by theca cells (Knight and Glister, 2003, 2006). 

 
5. Fibroblast growth factors 

 
The fibroblast growth factors (FGFs) are a large family of growth factors 

that consists of at least 22 small related proteins between 17 and 34 kDa. 

They have a high affinity for heparan sulfate proteoglycans and require it to 

activate the seven cell surface FGF receptors (Oulion et al., 2012). They are 

found in organisms ranging from nematodes to humans and most FGFs are 

highly conserved across species. They are characterized by a central 

domain of 120 to 130 amino acids and an internal core region with 28 highly 

conserved and 6 identical amino acid residues which interact with the FGF 

receptor (Ornitz and Itoh, 2001). FGFs interact with heparin which stabilizes 

FGFs and prevents thermal denaturation, proteolysis and is required for FGF 

receptor activation (Itoh and Ornitz, 2004).  

 

FGFs have an effect on a variety of cells in different biological processes 

in both developing and adult tissues, which include stimulating mitogenesis, 

angiogenesis, morphogenesis, differentiation and tissue injury repair 

(Kolpakova et al., 1998). They were first isolated from bovine pituitary glands 

and were reported to control the division of an ovarian cell line maintained in 

tissue culture (Itoh and Ornitz, 2004; Oktem and Oktay, 2008). Most FGF (3-

8, 10, 17-19, 21 and 23) have an N-terminal signal peptide and are readily 

secreted from cells. On the other hand FGF9, 16 and 20 lack the signal 

peptide but are still secreted. Instead these FGF have a N-terminal 

hydrophobic sequence that is required for secretion.  
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FGF1 and 2 are not secreted through classical pathways but can be 

released from damaged cells or by an exocytotic mechanism. FGF22 has a 

putative N-terminal signal peptide and remains attached to the cell surface 

rather that being secreted. FGF11-14 lack signal peptides and have an 

intracellular function in a receptor independent manner (Itoh and Ornitz, 

2004). 

 

5.1 FGF families 
 

In vertebrates, FGFs can be classified into different subfamilies that 

share sequence similarity, and biochemical and developmental properties 

(Ornitz and Itoh, 2001). Phylogenic analysis divides the human FGF genes 

into seven subfamilies (Table 1). The chromosomal locations of all human 

FGF genes (except FGF16) are known and most human FGF genes are 

scattered through the genome indicating that they were generated by gene 

duplications and translocations during evolution (Itoh and Ornitz, 2004). The 

human FGF11 and FGF7 subfamilies each consist of four closely related 

members. They may have arisen from an ancestral gene by two successive 

genome duplications (Itoh and Ornitz, 2004). 
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Table 1: Evolutionary relationship within the human FGF gene family. 
Twenty-two genes have been identified, and phylogenic analysis suggests 

that these genes can be arranged into seven subfamilies, each containing 

two or four members (Ornitz and Itoh, 2001). 

 

 

Sub-Family FGF 

FGF1 1,2  

FGF4 4,5,6 

FGF7 3,7,10,22 

FGF8 8,17,18 

FGF9 9,16,20 

FGF11 11,12,13,14 

FGF19 19,21,23 

 

 
5.2 FGF receptors 

 
FGFs act by binding to transmembrane tyrosine kinase receptors (RTKs) 

on the cell surface (Fantl et al., 1993). RTKs are plasma membrane 

receptors that control multiple fundamental cellular processes during 

development and adult life, including cell cycle, migration, metabolism, 

survival, proliferation, and differentiation (Lemmon and Schlessinger, 2010). 

RTKs are single-pass membrane proteins with an extracellular ligand-

binding domain and an intracellular kinase domain that distinguishes RTK 
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from all other receptors. Humans have 58 known RTKs, which fall into 20 

subfamilies based on their amino acid sequence similarities, their structural 

architectures and biological functions (Bae and Schlessinger, 2010). These 

families include the epidermal growth factor receptors (EGFRs), the 

fibroblast growth factor receptors (FGFRs), the insulin and the insulin-like 

growth factor receptors (IR and IGFR), the platelet derived growth factor 

receptors (PDGFRs), the vascular endothelial growth factor receptors 

(VEGFRs), the hepatocyte growth factor receptors (HGFRs), and the nerve 

growth factor receptors (NGFRs) (van der Geer et al., 1994). 

 

Despite the diversity of RTKs, there is a great degree of commonality in 

the types of intracellular signaling pathways initiated by these proteins. In 

mammalian systems, biochemical and molecular genetic analyses have 

shown that for all RTKs, the binding of ligand to the extracellular domain 

activates the tyrosine kinase in the cytoplasmic domain. This leads to 

downstream activation of a number of common signaling molecules. 

Frequently activated proteins include phospholipase C-γ, 

phosphatidylinositol 3-kinase (PI3K), GTPase-activating protein, pp60c-src, 

p21ras, Raf-l kinase, ERK 1 and ERK 2 kinases (also referred to as MAP 

kinases), and S6 ribosomal kinases (Figure 8). Ultimately, the activation of 

signaling pathways involving these molecules leads to changes in gene 

expression and a change in the phenotypic state of the cell (Fantl et al., 

1993). 
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Figure 8: RTK signaling. Transactivation of multiple pathways of 

ERK/MAPK signaling by RTK activation (Wetzker and Bohmer, 2003). 

 

 

The family of FGFRs includes four major receptors (FGFR1-4) that like 

other RTKs are activated by ligand induced receptor dimerization followed 

by tyrosine kinase activation and autophosphorylation of specific tyrosine 

residues in the cytoplasmic region, a process shown to be mediated by a 

precise and sequentially ordered reaction (Furdui et al., 2006). 

 

One characteristic of the FGF activation of the FGFRs is that it requires 

the cooperation of the accessory molecule heparin sulfate proteoglycan 

(HSPG) to stabilize FGFR dimers at the cell surface under normal 

physiological conditions (van der Geer et al., 1994). Another crucial factor for 
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binding with the FGF ligands is the extracellular regions of FGFR, which 

contain three Ig-like domains (D1-D3) of which D2 and D3 are essential for 

FGF binding (Figure 9). Receptor affinity is determined by the receptor 

genes and also by alternative splicing of the FGFR mRNA. One RNA 

splicing event in the third Ig-like domain results in three different versions of 

D3, usually called IIIa, IIIb and IIIc variants for FGFR 1-3 (FGFR4 is not 

alternatively spliced). The IIIb and IIIc variants of each receptor are 

expressed on the cell surface and are fully active receptors. However, the 

IIIa splice variant is usually inactive, but a further splicing event that removes 

the entire third Ig domain results in a variant that is activated by low 

concentrations of FGF1 (Tomlinson and Knowles, 2010).  

 

 

 
 

Figure 9: FGFR domains. Extracellular regions containing three Ig-like 

domains (Lemmon and Schlessinger, 2010) 
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FGF1 activates all receptor proteins, whereas FGF2 activates only the “c” 

splice variants of FGFR1, FGFR2 and FGFR3 as well as FGFR4. Receptor 

activation pattern tends to be similar within FGF subfamilies, for example, 

both FGF7 and FGF10 activate almost exclusively only FGFR2b, and 

members of the FGF8 subfamily preferentially bind to FGFR3c and FGFR4 

(Zhang et al., 2006).  In the bovine ovary, all FGFR are expressed. FGFR3 

and 4 are both activated by FGF8 and FGF18.  FGFR3c is expressed in 

granulosa and theca cells while FGFR4 is only expressed in theca cells. 

Their expression appears to be involved with follicular growth; FGFR4 

mRNA levels decrease as follicular size increases, and FGFR3c mRNA 

levels increase in healthy follicles and is positively correlated with follicular 

estradiol levels (Buratini et al., 2005b).  It is now well established that 

several FGFR mutations are linked to developmental disorders, including a 

variety of human cancers that are caused by gain or loss of function. It has 

been suggested that changes in the alternative-splicing pattern of the 

receptors are correlated with the progression of several tumors towards 

malignancy (Ezzat and Asa, 2005; Tomlinson and Knowles, 2010). 

 

5.3 FGF signaling pathways 
 

FGF signaling is generally mediated by a dual-receptor system consisting 

of high affinity FGFR and low affinity heparan sulfate proteoglycan receptors 

that are most often lacking of signaling capabilities but enhance ligand 

presentation to the receptors. FGF binding results in receptor 

oligomerization, activation of the cytoplasmic tyrosine kinase domains and 

receptor autophosphorylation. Intracellular signaling is mediated by tyrosine 

phosphorylation of key substrates and activation of downstream pathways. 

The main activated pathways are the mitogen activated protein kinases 

(MAPK), protein kinase C (PKC) and PI3K (Kornmann et al., 1998) . 
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Figure 10: FGF signaling pathways. Main pathways activated by FGFs  

include MAPK, PKC and PI3K (Kornmann et al., 1998). 

 

 

MAPKs are widely believed to be responsible for the mitogenic responses 

of cells to FGF actions. Activation of MAPK is always observed in response 

to FGF (Portela et al., 2010). Signaling pathways include ERK 1/2, p38 and 

JNK kinases. The activation of ERK 1/2 and p38 has been observed in all 

cell types examined, and involves receptor mediated recruitment to the 

receptor of the docking protein FRS2a along with tyrosine phosphatase 

Shp2, the adaptor Grb2 and the docking protein GAB1.  It seems that FGF 

signals induce a MAPK mediated negative feedback loop that leads to a 

reduction in the recruitment of the adaptor Grb2. This negative loop also 

includes signals via activation of the Sprouty proteins that also inhibit the 
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recruitment of Grb2. Meanwhile XFLRT3, a member of a leucine-rich-repeat 

transmembrane protein family, is also activated by FGFs and acts as a 

positive modulator  (Dailey et al., 2005). It has also been suggested that 

MAPK phosphorylation, Sprouty protein  and XFLRT3 expression are 

modulated in strength and in duration by FGFs and that different levels of 

activation of these molecules may lead to differential responses to each FGF 

(Dailey et al., 2005). 

 

The activation of the PKC pathway involves the release of intracellular 

calcium, and requires the recruitment of PLC-y to the FGFR domain. 

Inhibition of this pathway seems to have no effect on the proliferative 

response of cells (Dailey et al., 2005). PI3K is known as the survival 

pathway activated by FGFs by leading to activation of the AKT pathway, 

which affects the expression of pro-apoptotic factors. Akt also blocks the 

activity of GSK-3β, which enhances antiapoptotic signal (Dailey et al., 2005; 

Hacohen et al., 1998).  

 

5.4 FGF early-response genes 
 

Sprouty proteins (SPRY) are a family of four cysteine-rich proteins that 

were first described as antagonists of FGF-stimulated apical branching of 

the airway in Drosophila. FGF signaling induces Sprouty expression, and 

Sprouty acts in a competitive fashion to inhibit intracellular FGF signaling 

(Hacohen et al., 1998). In cattle, FGF2 (Figure 11) stimulates the expression 

of SPRY1, 2 and 4 in bovine granulosa cells through ERK 1/2 and Akt 

signaling, as well as the PKC pathway (Jiang et al., 2011). In the case of 

SPRY2, intracellular calcium flux is critical and sufficient for its up-regulation 

in granulosa cells independently of the PKC pathway (Jiang et al., 2011). 

Studies in mouse oocytes have showed that FGF8 cooperates with BMP15 
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to suppress cumulus cell expression of Spry2 mRNA in growing follicles but 

to promote Spry2 mRNA levels stimulated by EGF in periovulatory follicles 

(Sugiura et al., 2009). 

 

 

 

 
 

Figure 11: FGF8 signaling pathway; FGF8 activation of MAP-kinase 

cascade (Niehrs and Meinhardt, 2002). 
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FGF has also been linked to expression of members of the NR4A family 

of orphan nuclear receptors, which are involved in cell cycle mediation, 

inflammation and apoptosis. In bovine granulosa cells, NR4A1, NR4A2 and 

NR4A3 are rapidly induced by FGF, and in the case of NR4A1, the activation 

by FGF2 seems to be dependent on intracellular calcium signaling. 

Overexpression of NR4A1 resulted in a repression of aromatase 

transcription that may explain the inhibitory effects of FGFs on E2 production 

(Jiang et al., 2011; Ohno et al., 2009). 

 

As FGFs have a major role during organ development in the embryo, 

they have been associated with the ETS family of transcription factors. In 

limb buds, FGF signaling through ETV4 and ETV5 control proximal-distal 

limb outgrowth and promotes sonic hedgehog expression in the posterior 

limb. In the mouse, ETV4 and ETV5 have been found in GC and CC during 

folliculogenesis while in the bovine ovary they are present only in GC and 

their mRNA levels can be stimulated by FGF2. The function of ETVs has not 

been described in the follicle (Zhang et al., 2009) (Jiang et al., 2011). 

 

5.5 Role of FGF 
 

The expression patterns of FGFs suggest that they have an important 

role in development, and in the development and progression of various 

malignant diseases.  FGF2 exerts mitogenic effects and is over-expressed in 

human tumor cell lines, however FGF2 expression may also be associated 

with favorable prognosis in ovarian and breast cancer. FGF1 can display 

biological activities similar to those of FGF2. FGF3 was initially identified as 

an oncogene implicated in mouse mammary tumors. FGF4 is also called 

“human cancer transforming factor-1”, and its over-expression also 

increased the metastic potential of breast cancer cells in association with 
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altered expression of matrix metallo-proteinases. In addition, FGF5 is also 

expressed in breast cancer and in some gastrointestinal and urinary tract 

cancers along with FGF6. In the case of FGF8, it has been proposed to 

enhance murine mammary tumorogenesis in cooperation with Wnt-1 proto-

oncogene (Kornmann et al., 1998). 

 

FGFs are known for their non-pathological roles in the developing embryo. 

FGF10 in vertebrates is critical for limb development and FGF2, FGF9 and 

FGF18 play roles in gonadal development and sex differentiation (Ornitz and 

Itoh, 2001; Portela et al., 2010).  

 

5.6 Role in the ovary 
 

FGFs control cell proliferation and in early studies they were found to be 

one of the most potent mitogens, specially in GC were they produced a 300-

3000 fold change in GC mitogenesis (Gospodarowicz et al., 1977). In rat 

granulosa cells, FGF inhibited the ability of FSH to stimulate E2 production 

and to induce LH receptors, but with suboptimal concentrations of FSH, 

FGFs enhanced the synthesis of P4 (Baird and Hsueh, 1986). This 

demonstrated the ability of FGFs to differentially regulate steroidogenesis in 

GC. 

 

FGF2 is well known as an inhibitor of steroidogenesis, and one of its 

roles is the regulation of angiogenesis. Early studies performed with rat GC 

demonstrated the effects of FGF2 on E2 and P4 production, where 

treatment with FGF2 inhibited FSH-induced E2 and P4 production in mature 

GC but increased E2 levels in FSH-primed GC; these opposite effects 

indicated a role for FGF2 as a mediator of follicular development, ovulation 

and luteinization. Also, FGF2 inhibited SERPINE2 expression in bovine GC, 



	
   34	
  

and SERPINE2 is correlated with E2 secretion (Cao et al., 2006). FGF2 has 

a mitogenic effect on monolayer cultures of GC (Lavranos et al., 1994). In 

bovine GC, FGF2 leads to a rapid up-regulation of the orphan nuclear 

receptor NR4A1, which is correlated with an inhibition of steroidogenesis 

(Jiang et al., 2011). FGF2 increased the levels of GADD45B mRNA in 

bovine GC, which has been associated with cell proliferation and survival in 

non-ovarian cell types (Jiang et al., 2011).  

 

FGF7 is also known as keratocyte growth factor. In rats FGF7 is localized 

in the follicle from early preantral stages, specifically in mesenchymal cells, 

and in primordial follicles FGF7 interacts with the epithelial growth factor kit 

ligand (KITL) to promote transition to the primary stage. This interaction 

creates a feedback loop where primordial follicles will produce KITL and thus 

promote TC formation, which in turn will produce FGF7 that promotes the 

production of KITL from GC (Kezele et al., 2005). In cattle FGF7 is present 

in TC and GC along with its receptors FGFR2IIIb and FGFR3IIIc, and mRNA 

levels increase with follicular growth supporting a role for this FGF in 

folliculogenesis and angiogenesis (Berisha et al., 2004). 

 

FGF9 mRNA and protein, and its receptor FGFR3, are present in rat 

ovaries, mainly in GC where they have been linked to P4 production. Studies 

in vitro have shown that FGF9 combined with FSH stimulated P4 production 

by GC, and this was associated with increased P450 side-chain cleavage 

mRNA levels (Drummond et al., 2007). In cattle, FGF9 may act as an 

autocrine differentiation factor regulating ovarian function as it is present in 

higher amounts in small follicles (1-5mm) compared to large follicles. FGF9 

stimulated GC proliferation and inhibited FSHR and CYP11A1 mRNA 

abundance; FGF9 increased proliferation and also inhibited LHCGR, 

CYP11A1 and CYP17A1 mRNA levels in TC. In summary FGF9 regulates 
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ovarian function by inhibiting gonadotropin receptors and the cAMP signaling 

cascade while stimulating proliferation (Hacohen et al., 1998; Schreiber and 

Spicer, 2012; Schreiber et al., 2012). 

 

FGF10 mRNA has been detected in oocytes and TC of preantral and 

antral bovine follicles while its protein in oocytes, GC and TC from antral 

follicles. FGF10 expression varies during follicular growth, decreasing as 

follicle E2 content increases. This, coupled with the inhibition of E2 secretion 

caused by the addition of FGF10 to granulosa cells in vitro, led to the 

hypothesis that FGF10 acts to restrain GC differentiation in small growing 

follicles, and as FGF10 levels decrease, the GC differentiate and secrete 

greater amounts of E2 (Buratini et al., 2007). 

 

 

6. FGF8 and FGF18 

 

The FGF8 subfamily consists of three members, FGF8, FGF17 and 

FGF18. They have 70-80% amino acid sequence identities, similar receptor 

binding properties and some overlapping sites of expression (Ornitz and Itoh, 

2001). The three members are closely linked to the nucleophosmin genes 

indicating that these FGF might have arisen from a common ancestral gene 

(Itoh and Ornitz, 2004). Another important characteristic is that the ligands 

from this family have similar receptor activation patterns and it could be 

proposed that they would have the same actions on bovine granulosa cells. 

 

FGF8 is a mitogenic growth factor, and in adult mice it is only detected in 

the oocyte. Studies in knockout mice demonstrated that the lack of FGF8 

produced abnormalities of the estrous cycle and a reduction in GC 

proliferation (Lan et al., 2008). Again in mice, FGF8 acts as a paracrine 
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factor to promote glycolysis in cumulus cells, and does so in cooperation 

with BMP15 (Sugiura et al., 2009). Studies in rats demonstrated that FGF8 

suppressed FSH-induced E2 production in GC while not affecting P4 and 

cAMP levels, but in the presence of BMPs there was a suppression of P4 

secretion and cAMP levels, making this interaction critical in the regulation of 

steroidogenesis (Miyoshi et al., 2010). In cattle FGF8 is detected in the 

oocyte, TC and GC, and both FGF8 receptors, FGFR3c and FGFR4, are 

expressed within the follicle (Buratini et al., 2005a). In antral follicles, 

FGFR3c is expressed in GC and TC, and FGFR4 exclusively in TC. FGFR3c 

expression is up-regulated by FSH, and increased along with E2 levels, a 

known marker for follicular health (Buratini et al., 2005b).  

 

FGF18 has been detected in oocytes in mice (Zhong et al., 2006), 

whereas in cattle it was detected in GC and TC but not in oocytes (Portela et 

al., 2010). FGF18 mRNA abundance is lower in healthy dominant follicles 

compared to the regressing follicles suggesting a down-regulation during 

follicular growth and up-regulation during follicular atresia. In addition, 

FGF18 inhibits E2 and SerpinE2 secretion, which are considered markers of 

non-atretic follicles, and it reduces the secretion of P4 (Portela et al., 2010). 

Interestingly, FGF18 reduced the expression of GADD45B, a cell cycle 

regulator known for its role in the protection of GC from apoptosis; FGF18 

also increased the proportion of atretic cells as determined by DNA 

fragmentation and cell cycle analysis (Portela et al., 2010). This was the first 

reported incidence of an apoptotic action for an FGF in the follicle.  
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Hypothesis and Objectives 
 

 

As mentioned in the preceding paragraph, FGF8 and FGF18 are 

members of the same FGF subfamily and possess similar receptor binding. 

It could be proposed that they would have the same effects on bovine 

granulosa cells, but FGF8 is a mitogenic growth factor that increases 

follicular health while the FGF18 appears to be a pro-apoptotic factor.  

 

Our hypothesis is that upon FGFR activation, FGF8 and FGF18 activate 

different signaling pathways in bovine granulosa cells.  

 

The objective of the present study was to determine the early response 

genes in FGF8 and FGF18 pathways, and gain insight into how FGF18 is 

pro-apoptotic whereas the typical FGF signaling is pro-survival.  
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Materials and methods 

 
Primary cell culture 

 

All materials were obtained from Life Technologies Inc (Burlington, ON, 

Canada). Bovine granulosa cells were cultured in serum-free conditions that 

maintain estradiol secretion and responsiveness to FSH (Gutierrez et al., 

1997; Sahmi et al., 2004; Silva and Price, 2000). Under these conditions, 

cells respond to FGF2 with phosphorylation of ERK1/2 and Akt, and acute 

increases in abundance of mRNA encoding SPRY2, SPRY4 and NR4A1 

(Jiang et al., 2011). Bovine ovaries were obtained from adult cows, 

irrespective of stage of the estrous cycle, at an abattoir and transported to 

the laboratory at 30°C in phosphate-buffered saline (PBS) containing 

penicillin (100 IU/ml), streptomycin (100 mg/ml) and fungizone (1 mg/ml). 

Granulosa cells were harvested from follicles 2 – 5 mm diameter, and the 

cell suspension was filtered through a 150 mesh steel sieve (Sigma-Aldrich 

Canada, Oakville ON). Cell viability was assessed by Trypan blue dye 

exclusion. Cells were seeded into 24-well tissue culture plates (Sarstedt Inc., 

Newton, NC) at a density of 1 million viable cells in 1 ml DMEM/F12 

containing sodium bicarbonate (10 mmol/l), sodium selenite (4 ng/ml), 

bovine serum albumin (BSA) (0.1%; Sigma-Aldrich), penicillin (100 U/ml), 

streptomycin (100 mg/ml), transferrin (2.5 mg/ml), nonessential amino acid 

mix (1.1 mmol/l), bovine insulin (10 ng/ml), androstenedione (10-7 M at start 

of culture and 10-6 M at each medium change) and bovine FSH (10 ng/ml 

starting on day 2; AFP5346D; National Hormone and Peptide Program, 

Torrance, CA). Cultures were maintained at 37°C in 5% CO2, 95% air for 5 

days, with 70% medium being replaced on days 2 and 4. 
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Cell lines 
 

 Different cell lines were used including three human cell lines: KGN 

(Nishi et al., 2001), HEK293t (Graham et al., 1977) and SVG (Major, 1987), 

and a bovine granulosa cell line, A1 (donated by Khampoune Sayasith, 

CRRA, Université de Montréal). KGN, HEK293t, and A1 cells were cultured 

in DMEM/F12 medium containing fetal bovine serum (10%) and gentamycin 

(50 µg/ml). SVG cells were cultured in Opti-MEM medium containing fetal 

bovine serum (5%) and gentamycin (50 µg/ml). Cells were cultured in 20 ml 

flasks (Sarstedt Inc., Newton, NC) until they reached confluence, after which 

they were removed from the flask using phosphate-buffered saline (PBS) 

and trypsin (0.05% for SVG cells and 0.25% for the other lines). Cells were 

then seeded in 24-well tissue culture plates (Sarstedt Inc., Newton, NC) at a 

density of 3 X 10-5/well and maintained at 37°C in 5% CO2, 95% air until 

cells reached confluence and then they were treated with FGFs. 

 

Experimental treatments 
 

The effect of FGF8 and FGF18 on granulosa cells was assessed in 

separate cultures with time and dose response experiments. Recombinant 

human FGF8 and FGF18 (PeproTech) were added on day 5 for 0, 1, 2, 4 

and 8 h at a dose of 10 ng/ml in PBS. For the microarray experiment, the 2 h 

and 0 h time points were compared for each FGF. For every experiment, a 

pool of cells collected on a specific day constituted one replicate, and all 

experiments were performed with three independent replicates. 
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Total RNA extraction and RT-PCR 

 
After treatments, the culture medium was removed and total RNA was 

extracted using Trizol according to the manufacturer’s instructions. Total 

RNA was quantified by absorbance at 260 nm. Reverse transcription was 

performed on 1 µg DNase-treated total RNA in the presence of 1 mmol/l 

oligo (dT) primer and 4 U Omniscript RTase (Qiagen, Mississauga, ON, 

Canada), 0.25 mmol/l dideoxynucleotide triphosphate (dNTP) mix and 19.33 

U RNase Inhibitor (GE Healthcare, Baie D’Urfé, QC, Canada) in a volume of 

20 µl at 37°C for 1 h. The reaction was terminated by incubation at 93°C for 

5 min.  

 
Microarray analysis 

 
RNA from the FGF8 time-course and the FGF18 time-course 

experiments were used for microarray analysis to detect early-response 

genes activated by each FGF. The 2 h and 0 h time points were compared 

for each FGF. RNA samples were amplified with the RiboAmp HSPlus RNA 

Amplification kit (Life Technologies Inc) and labeled with Cy3 and Cy5 with 

the ULS Fluorescent Labeling kit (Kreatech Inc, Durham NC). The 

EmbryoGENE bovine microarray contains 42,242 probes and has been 

described in detail elsewhere (Robert et al., 2011). Samples were hybridized 

with the array in a dye-swap design for 17 h at 65°C, followed by washes in 

Expression Wash Buffer 1 for 1 min at room temperature, in Expression 

Wash Buffer 2 at 65°C for 3 min, for 10 sec in 100% acetonitrile, and for 30 

sec in Stabilization and Drying Solution (Agilent Technologies Canada, 

Mississauga ON). The array was scanned with a PowerScanner (Tecan US 

Inc, Durham, NC) and fluorescence intensities analyzed on the ELMA 

platform (elma.embryogene.ca). After background subtraction and 
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normalization (Loess), genes that were significantly (P<0.05) altered at least 

2-fold at 2 h of treatment compared to time 0 control were identified with the 

Limma algorithm. Allocation of genes to common pathways was investigated 

with Ingenuity Pathway Analysis (IPA; Ingenuity Systems, Redwood City, 

CA). Raw and normalized microarray data for FGF8 (GEO: GSE41489) and 

FGF18 (GEO: GSE41480) have been deposited in the NCBI GEO database. 

To verify microarray results, further cultures were performed with addition of 

FGF8 or FGF18 (10 ng/ml for each) for 0, 1, 2, 4 and 8 h, and abundance of 

mRNA measured by real-time PCR as described above. Primers for the 

genes identified by microarray are given in Table 2, and were designed so 

that the amplicon spans an exon/exon junction. Amplicon authenticity was 

verified by sequencing all products. 

 

Table 2: Primer sequences for microarray validation. 

 

Gene 
symbol 

Forward primer Reverse primer 

EGR1 AAGCGAGCAGCCCTACGA GCAGCCGGGTGGTTTG 

FOS ATGGGTTCTCCCGTCAATGC GGTCGAGATGGCAGTCACTGT 

BAMBI TCGCCACTCCAGCTACATCTT TGGGCTGCATCACAGTAGCA 

FOSL1 AGTGCAGGAACCGGAGGAAA TCTCTCGCTGCAGTCCAGATT 

XIRP1 CAAACAAGAGGAACCGACAGA GGCATTGGCCATCCTTCT 

PLK2 GAACCCTTGGAACACAGGAGAA TTCACAGCCGTGTCCTTGTTT 

HAS2 GTGATTCAGACACCATGCTTGAC CTCCCCCGACACCTCCAA 



	
   42	
  

 

 

Real-time PCR 
 

 Real-time PCR was performed on a 7300 Real-Time PCR system 

(Applied Biosystems, Streetsville ON, Canada) with Power SYBR Green 

PCR Master Mix. The bovine-specific primers for target genes other than 

those listed in Table 1 have previously been published (Jiang et al., 2011). 

Common thermal cycling parameters (3 min at 95°C, 40 cycles of 15 sec at 

95°C, 30 sec at 59°C, and 30 sec at 72°C) were used to amplify each 

transcript. Melting-curve analyses were performed to verify product identity. 

Samples were run in duplicate and were expressed relative to histone 

H2AFZ as housekeeping gene. This gene is routinely used in our laboratory, 

and shows similar stability to cyclophilin A, both of which were more stable in 

granulosa cells than glyceraldehyde-3-phosphate dehydrogenase as 

determined by geNorm software (Ramakers et al., 2003). Data were 

normalized to a calibrator sample using the ΔΔCt method with correction for 

amplification efficiency (Pfaffl, 2001). 

 

Statistical analyses 

 
All statistical analyses were performed with JMP software (SAS institute, 

Cary NC). Data were transformed to logarithms if they were not normally 

distributed (Shapiro-Wilk test). The data are presented as least square 

means ± SEM. 
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Results 

 

Microarray analysis of FGF8 and FGF18 activated early response genes 

 

In order to explore early-response genes activated by FGF8 and FGF18, 

a microarray analysis was performed on samples collected 0 h and 2 h after 

challenge with FGF. The microarray software identified 12 genes up-

regulated by FGF8 (P<0.05) (Table 1) including genes already known to be 

FGF target genes,  SPRY2 and NR4A1. Also up-regulated were genes that 

had never been studied in relation with FGFs, such as EGR1, XIRP1, HAS2, 

FOS, BAMBI, PKL2 and CTGF. These genes had a significant role in 

reproduction or were related to a growth factor network by Ingenuity 

Pathway Analysis (IPA) (Fig 12). In contrast, no gene was significantly 

regulated by FGF18. 
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Table 3: Genes significantly regulated by FGF8 in bovine granulosa cells. 

 

 

Gene 

symbol 

Gene name Fold 

change 

EGR1 Early growth response 1 3.90 

XIRP1 Xin actin-binding repeat containing 

1 

3.68 

HAS2 Hyaluronan synthase 2 3.61 

FOS FBJ murine osteosarcoma viral 

oncogene homolog 

2.49 

BAMBI BMP and activin membrane-bound 

inhibitors homolog 

2.93 

SPRY2 Sprouty homolog 2 3.14 

NR4A1 Nuclear receptor subfamily 4, 

group A, member 1 

2.62 

PLK2 Polo-like kinase 2 2.13 

CTGF Connective tissue growth factor 1.82 
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Real time PCR validation of microarray results 

 

Real time was performed with the purpose of validating the microarray 

up-regulated genes by FGF8. A new time course for both FGF8 and FGF18 

(0 h, 1 h, 2 h, 4 h and 8 h) was used to validate each gene.  EGR1 was 

significantly up-regulated by FGF8 and FGF18 (P < 0.001) after 1 h 

challenge, but FGF8 appeared to cause a higher up-regulation compared to 

FGF18. FOS, a gene related to EGR1, was only significantly up-regulated by 

FGF8 (P < 0.001) after 1 h post-challenge. A downstream gene of FOS, 

FOSL1 was significantly up regulated by both FGFs at different time points. 

FGF8 (P < 0.01) up-regulated FOSL1 after 2 h of treatment while FGF18 (P 

< 0.05) up-regulation was after 8 h post-challenge (Figure 13). 

 

As seen before for other FGFs, FGF8 significantly up-regulated levels of 

SPRY2 (P < 0.05) after 2 h treatment and NR4A1 (P < 0.001) after 1 h 

treatment. The inhibitor of the TGFβ signaling, BAMBI, was up-regulated by 

both FGFs at different time points; FGF8 (P < 0.05) started increasing 

BAMBI mRNA levels at 2 h while FGF18 (P < 0.01) started just after 4 h 

treatment.  PLK2 was up regulated by both FGFs, FGF8 (P < 0.05) from 1 h 

post-treatment while FGF18 (P < 0.05) cause an increase only at 1 h. Finally 

XIRP1 mRNA levels increased at 1 h post-challenge with FGF8 (P < 0.01) 

while FGF18 produced no changes (Figure 13). 
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EGR3 expression 

 

The most highly up-regulated signal on the microarray (a 8-fold increase) 

was to a probe set listed as an unknown gene. Querying the NCBI Blast 

database revealed the probe sequence to be homologous to the 

transcription factor EGR3. Real-time PCR demonstrated that FGF8 

significantly increased EGR3 mRNA levels after 2 h challenge (P < 0.001) 

while FGF18 had no effect (Fig 14). 

 

To verify if FGF8 and FGF18 had divergent effects on EGR3 expression 

in other cell types, we tested EGR3 regulation in different human cell lines, 

including SVG, KGN and HEK293t. To our surprise EGR3 mRNA levels 

were increased after challenge with both FGF8 and FGF18 in all cell lines 

tested (Figure 15). For SVG and HEK 293t cells, the increase in EGR3 

mRNA was rapid and transient in a pattern similar to primary granulosa cells 

but of much greater magnitude. The KGN cells line responded to FGF8 with 

a transient increase in EGR3, whereas FGF18 produced a more prolonged 

increase in these cells.  

 

Effects of FGF8 and FGF18 in bovine granulosa cell line A1 

 

The bovine granulosa cell line A1 was tested as a potential new model to 

study FGF actions in granulosa cells. The effect of FGF8 and FGF18 was 

tested as for primary cells. FGF8 but not FGF18 increased Spry2 mRNA 

levels, and both increased EGR1 mRNA levels. FGF8 increased EGR3 

mRNA after 1 h challenge whereas FGF18 increased mRNA levels 4-fold 

but this did not reach statistical significance (Figure 16). Interestingly FGF18 

did not cause a down-regulation of GADD45b as it does in primary cells. 
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FGF2 and EGF differential up-regulation of EGR1 and EGR3 

 
We then tested whether other RTK ligands stimulate the expression of 

EGR1 and EGR3. Primary bovine granulosa cells were cultured for 5 days 

and treated with 10 ng/ml FGF2 or EGF for 0, 1, 2, 4 and 8 h. FGF2 

transiently stimulated both EGR genes in a similar manner, resulting in a 7-

fold change after 1 h (Fig 17). Challenge with EGF also resulted in a rapid 

and transient increase of both EGR mRNAs, but the increase in EGR3 

mRNA was of greater magnitude than that of EGR1 (Fig 18). 
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Figure 12: Identification of FGF8 early response gene network by 

ingenuity pathway analysis (IPA). Bovine granulosa cells were cultured 

under serum free conditions for 5 days, on day 5 cells were challenged with 

FGF8 or FGF18 (10 ng/ml) and collected at different time points (0 h and 2 

h). A microarray analysis was performed were time 2 h was compared to 0 h, 

and up-regulated genes were analyzed by IPA. The image taken from the 

network shows the connection between the highly up-regulated genes (red), 

it also includes genes with non-significant up-regulation (white) and down 

regulated genes (green).  
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Figure 13: Regulation by FGF8 and FGF18 of early-response genes 
identified by microarray. Bovine granulosa cells were cultured in serum-

free medium for 5 days, and then challenged with 10 ng/ml FGF8 or FGF18 

for the times given. Abundance of mRNA was measured by real-time PCR. 

Data are means ± SEM of four independent replicates. For each mRNA, 

means without common letters are significantly different (P<0.05); no letters 

indicates no significant effect of treatment. 
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Figure 14: Differential expression of EGR3 by FGF8 and FGF18 in 
primary bovine granulosa cells. Bovine granulosa cells were cultured in 

serum-free medium for 5 days, and then challenged with 10 ng/ml FGF8 or 

FGF18 for the times given. Abundance of mRNA encoding EGR3 was 

measured by real-time PCR. Data are means ± SEM of four independent 

replicates. For each mRNA, means without common letters are significantly 

different (P<0.05); no letters indicates no significant effect of treatment. 
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Figure 15: Effect of FGF8 and FGF18 on EGR3 mRNA levels in  human 

cell lines (KGN, HEK293t and SVG). Human cell lines KGN, HEK293t and 

SVG, were cultured for two days, and on day two cells were treated with 

FGF8 and FGF18 (10 ng/ml) and collected at the time points shown. 

Abundance of mRNA encoding EGR3 was measured by real-time PCR. 

Data are means ± SEM of four independent replicates. For each mRNA, 

means without common letters are significantly different (P<0.05). 
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Figure 16: Effect of FGF8 and FGF18 on gene expression in the bovine 

granulosa cell line A1. A1 cells were cultured for two days and then treated 

with FGF8 and FGF18 (10 ng/ml) for the times shown. Abundance of mRNA 

encoding EGR1, EGR3, SPRY2 and GADD45b were measured by real-time 

PCR. Data are means ± SEM of four independent replicates. For each 

mRNA, means without common letters are significantly different (P<0.05). 
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Figure 17: Effect of FGF2 on expression of EGR1 and EGR3 in primary 
bovine granulosa cells. Bovine granulosa cells were cultured under serum 

free conditions for 5 days, on day 5 cells were challenged with FGF2 (10 

ng/ml) and collected at at the time points shown. Abundance of mRNA 

encoding EGR1 and EGR3 were measured by real-time PCR. Data are 

means ± SEM of four independent replicates. For each mRNA, means 

without common letters are significantly different (P<0.05). 
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Figure 18: Effect of EGF on expression of EGR1 and EGR3 in primary 

bovine granulosa cells. Bovine granulosa cells were cultured under serum 

free conditions for 5 days, on day 5 cells were challenged with EGF 

(10ng/ml) and collected at at the time points shown. Abundance of mRNA 

encoding EGR1 and EGR3 were measured by real-time PCR. Data are 

means ± SEM of four independent replicates. For each mRNA, means 

without common letters are significantly different (P<0.05). 
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Discussion 
 

Most FGFs are mitogenic and stimulate the expression of SPRY and 

NR4A transcription factors. One exception is FGF18, which appears to have 

a pro-apoptotic effect on granulosa cells (Portela et al., 2010). A similar 

ligand, FGF8, has the same receptor binding specificity as FGF18 and might 

be expected to have the same biological effect. The results of the present 

study show that this is clearly not the case, and describe in some detail the 

divergence of signaling between FGF8 and FGF18. 

 

As expected, treatment of granulosa cells with FGF8 increased 

abundance of mRNA encoding the typical FGF response genes, SPRY2 and 

members of the NR4A transcription family, in a manner very similar to that 

previously observed in this cell type for FGF2 (Jiang et al., 2011). These 

data are consistent with FGF8 stimulation of SPRY2 mRNA abundance in 

mouse cumulus cells (Sugiura et al., 2009), and NR4A mRNA levels in 

osteoblasts (Lammi and Aarnisalo, 2008). To our surprise, treatment with 

FGF18 consistently failed to stimulate expression of any SPRY or NR4A 

gene at any dose or time.  

 

Among the other genes confirmed to be acutely upregulated by FGF8 

were the transcription factors EGR1, FOS and FOSL1. EGR1 is a zinc-finger 

transcription factor that responds rapidly to FGF1, FGF2 and FGF23 in 

several non-ovarian cell types, and its expression is regulated through the 

MAPK pathway (Damon et al., 1997; Delbridge and Khachigian, 1997; 

Passiatore et al., 2011; Yamazaki et al., 2010). In the rat ovary, EGR1 is  
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rapidly increased by the preovulatory LH surge, marking it as an early event 

in the cascade of inflammatory-like changes during ovulation (Espey et al., 

2000). 

 

 A link between EGR1 and FSH has also been studied where it has been 

reported that FSH rapidly induced EGR1 expression in GC of small growing 

follicles. Together these data indicate that EGR1 may mediate molecular 

programs of proliferation and differentiation during growth, ovulation and 

luteinization (Russell et al., 2003).  

 

FOS is rapidly induced by several FGFs including by FGF8 in 

myogenic cells (Kwong et al., 2001). FOS is often co-expressed with EGR1; 

in studies of hamster ovaries, EGR1 and FOS are both up-regulated after 

overexpressing the insulin receptor and this activation can occur through 

multiple signal transduction pathways (Harada et al., 1996), and GnRH 

stimulates LHβ and FSHβ subunit transcription via induction of both EGR1 

and FOS (Reddy et al., 2013). Recent evidence has shows that FSH 

stimulates the induction of FOS mRNA in GC in vivo and in vitro through the 

PKC pathway (Plotnikov et al., 1999).  

 

 FOSL1 has been identified as a transcriptional target of FOS in non-

ovarian cell types. In osteoclasts, FOSL1 is regulated in a FOS-dependent 

manner to control differentiation of the cells (Matsuo et al., 2000). FGF2 

induced a sustained increase in steady state levels of FOSL1 mRNA in 

pulmonary fibroblasts, resulting in decreased elastin gene transcription (Rich 

et al., 1999). To our knowledge, these are the first data to demonstrate that 

FGF8 regulates EGR1 or FOSL1 in any tissue, and the first to show FGF8 

regulation of FOS in a reproductive tissue. Interestingly, FGF18 increased  
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EGR1 and FOSL1 mRNA levels in a manner similar to FGF8, but had no 

effect on FOS mRNA levels.  

 

The microarray data also revealed acute upregulation of BAMBI, 

XIRP1 and PLK2 by FGF8, and this was confirmed by PCR. The 

pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI), 

formerly known as NMA, is an endogenous antagonist of BMP signaling and 

exhibits structural homology to TGF-βRI but lacks an intracellular kinase 

domain. In non-ovarian cell types, overexpression of BAMBI leads to 

proliferation and metastasis of tumor cells through the Wnt/β-catenin 

pathway, one example of which is the role of BAMBI in the progression of 

osteosarcoma by regulation of β-catenin (Zhou et al., 2013). In adipocytes, 

FGF1 decreased BAMBI mRNA levels (Luo et al., 2012) whereas loss of 

FGF8 decreased BAMBI expression in heart mesodermal cells (Park et al., 

2008).  

 

There are few studies of BAMBI in the reproductive system. The role 

of BAMBI was studied in ovarian development in fish, where an increase in 

BAMBI mRNA levels was not observed until the development of competent 

oocytes in sexually mature animals (Lankford and Weber, 2010). In human 

GC, hCG decreased BMP2 mRNA levels while simultaneously increasing 

BAMBI expression, suggesting a regulatory link between the two (Shi et al., 

2011). Interestingly, in the mouse, BMP15 suppressed FGF-stimulated 

SPRY2 mRNA levels in cumulus cells (Sugiura et al., 2009), therefore in a 

situation where BAMBI is increased, endogenous BMP signaling would be 

decreased, thus allowing enhanced cell responsiveness to FGFs. This may 

partially explain the present divergent effects of FGF8 and FGF18 in Spry2 
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expression, as FGF8 resulted in a rapid 6-fold increase in BAMBI mRNA 

levels, whereas FGF18 resulted in a slow increase to a 3-fold increase.  

 

 

PLK2 (polo-like kinase-2) is a serum early response gene and 

regulates mitosis in non-ovarian cell types; it is not an EGR1 target gene in 

keratinocytes (Kristl et al., 2008). The only studies of PLK2 in the ovary 

employed a rat model where PLK2 is highly induced by LH and hCG; it is 

believed that PLK2 regulation depends on prostaglandins and the EGF 

pathway inhibitors. Experiments overexpressing PLK2 caused rats GC to 

arrest at G0/G1 and a knockdown decreased the number of cells in G0/G1 

and increased GC viability (Li et al., 2012). These results suggest that PLK2 

plays a role in the GC cell cycle, which is an important step for GC 

luteinization.  

 

XIRP1 (xin actin-binding repeat containing 1) protects actin from 

depolymerization. We can find no link in the literature between PLK2 or 

XIRP1 and FGF signaling. XIRP1 was originally found in the intercalated 

disc of cardiac muscle, suggesting a role in cardiac development and 

function (Feng et al., 2013). There are no studies of XIRP1 in the ovary, and 

this is the first to show a link between XIRP1 and FGF. Interestingly FGF8 

up-regulated XIRP1 mRNA levels whereas FGF18 had no effect, which 

suggests that XIRP1 is part of the divergence in signaling between FGF8 

and FGF18. 

 

The various experiments in this study all point to a consistent divergence 

in intracellular signaling by FGF8 and FGF18, despite their similar receptor 

activation properties. A direct comparison of FGF8 and FGF18 action has 

been described for the mouse embryonic midbrain, in which FGF8 but not 



	
   59	
  

FGF18 increased Spry1 mRNA abundance, and FGF8 and FGF18 had 

opposing effects on midbrain development (Liu et al., 2003). The mechanism 

of this divergence may be related to interactions between ligands and 

specific heparan sulfate proteoglycans (HSPGs). Another pair of FGFs that 

share considerable structural and receptor binding homologies are FGF7 

and FGF10, which activate FGFR2b (Zhang et al., 2009). These two ligands 

result in different patterns of salivary gland morphogenesis and cellular 

signaling, and this has been attributed to differing affinity to HSPGs that 

altered motility through the extracellular matrix and strength of receptor 

activation (Makarenkova et al., 2009). This is unlikely to be the case for 

FGF8 and FGF18 as there were examples of equal stimulation of genes 

(FOSL1) as well as opposing effects on GADD45B mRNA levels. 

 

One striking result in the present study was the divergent effect of 

FGF8 and FGF18 on EGR3 mRNA levels.  EGR1 and EGR3 are closely 

related genes, are believed to have the same stimulatory effects, and are 

regulated in a similar pattern (Kumbrink et al., 2010). Our studies are the first 

to demonstrate a different pattern of activation of EGR1 and EGR3 by FGF. 

A differential expression of EGR response has been reported in rat brains 

where administration of the convulsant NMDA kainite and pentylenetetrazole 

differentially induced EGR1, 2 and 3 DNA binding activities (Beckmann et al., 

1997).  The inability of FGF18 to stimulate EGR3 is specific, as both FGF2 

and EGR increased both EGR1 and EGR3 mRNA levels.  

 

In order to investigate further the divergent signaling of FGF8 and 

FGF18, we sought a cell line that would reflect the response to primary cells. 

This would permit state-of-the-art proteomic approaches to investigating the 

pathways of FGF18 action, such as SILAC. The KGN line is able to secrete 

pregnenolone and progesterone after stimulation with cAMP and E2 in the 
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presence of FSH and androstenedione (Nishi et al., 2001), the HEK293 line 

is a human embryonic kidney cell line (Graham et al., 1977), and SVG are 

human fetal glial cells capable of proliferating and growing in culture (Major, 

1987).  Unfortunately, FGF18 resulted in significant expression of EGR3 in 

all these cell lines. A granulosa cell line of bovine origin was tested, and 

although FGF18 failed to stimulate Spry2 in these cells, there was a 4-fold 

increase in EGR3 that reduces the usefulness of this cell line as a model of 

FGF18 action. The reason why FGF18 acts differently on these cell lines 

compared to primary cells may be the very different level of cell 

differentiation, although we cannot rule out the possibility that interfering 

factors present in the serum-containing medium altered the gene expression 

patterns. 

 

As the cell lines did not prove to be useful, future experiments would 

be restricted to the use of primary cells. An interesting possibility to explore 

the importance divergent EGR signaling would be to overexpress and inhibit 

EGR1 and EGR3 signaling, to see if this results in cell responses similar to 

those seen with FGF8 or FGF18. For overexpression, one approach would 

be by the use of adenovirus containing recombinant EGR1 and EGR3 

(Ehrengruber et al., 2000), as bovine cells in serum-free culture do not 

proliferate and do not respond well to transfection by other methods. If 

divergent signaling is important for FGF signaling, one would expect that 

overexpression of EGR1 and EGR3 would result in Spry expression typical 

of FGF signaling, whereas overexpression of EGR1 alone would fail to 

stimulate Spry expression and may even lead to apoptosis in a manner 

similar to that induced by FGF18. 
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Conclusion 

 

In summary, we have shown that FGF8 provokes a typical FGF 

response in bovine granulosa cells that results in increased Spry2 and 

NR4A1 expression, mediated in part through early-response genes including 

EGR1, EGR3, FOS and FOSL1. In contrast, FGF18, which reportedly 

activates the same receptor as FGF8, fails to increase Spry and NR4A1 

mRNA, although it does stimulate EGR1 and FOSL1 mRNA levels. One key 

difference between these FGFs is the inability of FGF18 to increase EGR3 

mRNA levels, and this likely underpins the different responses of granulosa 

cells to these FGFs (Fig 19). 

 

 
 

Figure 19: Model to explain the divergent signaling between FGF8 
and FGF18. Although FGF8 and FGF18 reportedly activate the same 

receptor, and both increase expression of the transcription factor EGR1, 

FGF8 increases EGR3 expression whereas FGF18 does not. This may 

direct the different cell responses downstream of EGR3. 
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