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Résumé

Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets
de choix de portefeuilles de grande taille, et de mesure de risque. Le premier
chapitre traite du problème d’erreur d’estimation dans les portefeuilles de
grande taille, et utilise le cadre d’analyse moyenne-variance. Le second cha-
pitre explore l’importance du risque de devise pour les portefeuilles d’actifs
domestiques, et étudie les liens entre la stabilité des poids de portefeuille de
grande taille et le risque de devise. Pour finir, sous l’hypothèse que le preneur
de décision est pessimiste, le troisième chapitre dérive la prime de risque, une
mesure du pessimisme, et propose une méthodologie pour estimer les mesures
dérivées.

Le premier chapitre améliore le choix optimal de portefeuille dans le
cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé
par les résultats très décevants obtenus, lorsque la moyenne et la variance
sont remplacées par leurs estimations empiriques. Ce problème est amplifié
lorsque le nombre d’actifs est grand et que la matrice de covariance em-
pirique est singulière ou presque singulière. Dans ce chapitre, nous exami-
nons quatre techniques de régularisation pour stabiliser l’inverse de la ma-
trice de covariance : le ridge, spectral cut-off, Landweber-Fridman et LARS
Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement,
qui doit être sélectionné. La contribution principale de cette partie, est de
dériver une méthode basée uniquement sur les données pour sélectionner le
paramètre de régularisation de manière optimale, i.e. pour minimiser la perte
espérée d’utilité. Précisément, un critère de validation croisée qui prend une
même forme pour les quatre méthodes de régularisation est dérivé. Les règles
régularisées obtenues sont alors comparées à la règle utilisant directement
les données et à la stratégie näıve 1/N, selon leur perte espérée d’utilité et
leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-
sample) et hors-échantillon (out-of-sample) en considérant différentes tailles
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d’échantillon et nombre d’actifs. Des simulations et de l’illustration empi-
rique menées, il ressort principalement que la régularisation de la matrice de
covariance améliore de manière significative la règle de Markowitz basée sur
les données, et donne de meilleurs résultats que le portefeuille näıf, surtout
dans les cas le problème d’erreur d’estimation est très sévère.

Dans le second chapitre, nous investiguons dans quelle mesure, les porte-
feuilles optimaux et stables d’actifs domestiques, peuvent réduire ou éliminer
le risque de devise. Pour cela nous utilisons des rendements mensuelles de
48 industries américaines, au cours de la période 1976-2008. Pour résoudre
les problèmes d’instabilité inhérents aux portefeuilles de grandes tailles, nous
adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une
famille de portefeuilles optimaux et stables, en permettant aux investisseurs
de choisir différents pourcentages des composantes principales (ou dégrées
de stabilité). Nos tests empiriques sont basés sur un modèle International
d’évaluation d’actifs financiers (IAPM). Dans ce modèle, le risque de devise
est décomposé en deux facteurs représentant les devises des pays industria-
lisés d’une part, et celles des pays émergents d’autres part. Nos résultats
indiquent que le risque de devise est primé et varie à travers le temps pour
les portefeuilles stables de risque minimum. De plus ces stratégies conduisent
à une réduction significative de l’exposition au risque de change, tandis que
la contribution de la prime risque de change reste en moyenne inchangée.
Les poids de portefeuille optimaux sont une alternative aux poids de capi-
talisation boursière. Par conséquent ce chapitre complète la littérature selon
laquelle la prime de risque est importante au niveau de l’industrie et au
niveau national dans la plupart des pays.

Dans le dernier chapitre, nous dérivons une mesure de la prime de risque
pour des préférences dépendent du rang et proposons une mesure du degré
de pessimisme, étant donné une fonction de distorsion. Les mesures intro-
duites généralisent la mesure de prime de risque dérivée dans le cadre de la
théorie de l’utilité espérée, qui est fréquemment violée aussi bien dans des
situations expérimentales que dans des situations réelles. Dans la grande fa-
mille des préférences considérées, une attention particulière est accordée à la
CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est
de plus en plus utilisée pour la construction de portefeuilles et est préconisée
pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité
de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire
de l’inférence sur les mesures proposées. Pour finir, les propriétés des estima-
teurs proposés sont évaluées à travers une étude Monte-Carlo, et une illus-



vii

tration empirique en utilisant les rendements journaliers du marché boursier
américain sur de la période 2000-2011.
Mots-clés : Choix de portefeuille, analyse moyenne-variance, erreur d’esti-
mation, régularisation, modèle de sélection, portefeuille d’actifs domestiques,
risque de devise, modèle d’évaluation d’actifs financiers, prime de risque,
préférences dépendant du rang, pessimisme, valeur à risque conditionnelle,
processus empirique.
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Abstract

This thesis consists of three chapters on the topics of portfolio choice in a
high-dimensional context, and risk measurement. The first chapter addresses
the estimation error issue that arises when constructing large portfolios in
the mean-variance framework. The second chapter investigates the relevance
of currency risk for optimal domestic portfolios, evaluates their ability of to
diversify away currency risk, and study the links between portfolio weights
stability and currency risk. Finally, under the assumption that decision ma-
kers are pessimistic, the third chapter derives the risk premium, propose a
measure of the degree of pessimism, and provide a statistical framework for
their estimation.

The first chapter improves the performance of the optimal portfolio weig-
hts obtained under the mean-variance framework of Markowitz (1952). In-
deed, these weights give unsatisfactory results, when the mean and variance
are replaced by their sample counterparts (plug-in rules). This problem is
amplified when the number of assets is large and the sample covariance is
singular or nearly singular. The chapter investigates four regularization tech-
niques to stabilizing the inverse of the covariance matrix : the ridge, spectral
cut-off, Landweber-Fridman, and LARS Lasso. These four methods involve
a tuning parameter that needs to be selected. The main contribution is to
derive a data-based method for selecting the tuning parameter in an optimal
way, i.e. in order to minimize the expected loss in utility of a mean-variance
investor. The cross-validation type criterion derived is found to take a similar
form for the four regularization methods. The resulting regularized rules are
compared to the sample-based mean-variance portfolio and the naive 1/N
strategy in terms of in-sample and out-of-sample Sharpe ratio and expected
loss in utility. The main finding is that regularization to covariance matrix
significantly improves the performance of the mean-variance problem and
outperforms the naive portfolio, especially in ill-posed cases, as suggested by



ix

our simulations and empirical studies.
In the second chapter, we investigate the extent to which optimal and

stable portfolios of domestic assets can reduce or eliminate currency risk.
This is done using monthly returns on 48 U.S. industries, from 1976 to 2008.
To tackle the instabilities inherent to large portfolios, we use the spectral
cut-off regularization described in Chapter 1. This gives rise to a family of
stable global minimum portfolios that allows investors to select different per-
centages of principal components for portfolio construction. Our empirical
tests are based on a conditional International Asset Pricing Model (IAPM),
augmented with the size and book-to-market factors of Fama and French
(1993). Using two trade-weighted currency indices of industrialized countries
currencies and emerging markets currencies, we find that currency risk is
priced and time-varying for global minimum portfolios. These strategies also
lead to a significant reduction in the exposure to currency risk, while kee-
ping the average premium contribution to total premium approximately the
same. The global minimum weights considered are an alternative to market
capitalization weights used in the U.S. market index. Therefore, our findings
complement the well established results that currency risk is significantly pri-
ced and economically meaningful at the industry and country level in most
countries.

Finally, the third chapter derives a measure of the risk premium for rank-
dependent preferences and proposes a measure of the degree of pessimism,
given a distortion function. The introduced measures generalize the common
risk measures derived in the expected utility theory framework, which is
frequently violated in both experimental and real-life situations. These mea-
sures are derived in the neighborhood of a given random loss variable, using
the notion of local utility function. A particular interest is devoted to the
CVaR, which is now widely used for asset allocation and has been advoca-
ted to complement the Value-at-risk (VaR) proposed since 1996 by the Basel
Committee on Banking Supervision. We provide the statistical framework
needed to conduct inference on the derived measures. Finally, the proposed
estimators are assessed through Monte Carlo study and illustrated using U.S.
stock market data.
Keywords : Portfolio selection, mean-variance analysis, estimation error,
regularization, model selection, optimal domestic portfolio, currency risk,
International asset pricing,risk premium, rank-dependent preferences, pessi-
mism, conditional value-at-risk, empirical process.
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1

Introduction

La présente thèse se situe dans le cadre générale des problèmes de choix
de portefeuille et de mesures de risque. Elle propose des outils statistiques
pour améliorer l’implémentation des règles d’investissement de portefeuille,
et pour mesurer le risque dans le cas particulier où le preneur de décision
est pessimiste. Les deux premiers chapitres s’intéressent aux problèmes de
choix de portefeuilles, tandis que le troisième chapitre se propose de mesu-
rer la prime de risque, sous l’hypothèse que preneur de décision est pessimiste.

Le premier chapitre est basé sur article écrit conjointement avec Ma-
rine Carrasco, dans lequel nous considérons le cadre de l’analyse moyenne-
variance de Markowitz (1952). Dans son cadre théorique, Markowitz fait
l’hypothèse que les rendements moyens et la matrice de covariance, qui in-
terviennent dans la règle optimale de l’investisseur, sont connus. Cependant,
dans la pratique, ces moments sont inconnus et doivent être estimés. Les
problèmes importants causés par l’incertitude dans ces paramètres ont été
soulignés par de nombreux auteurs, voir par exemple Kan et Zhou (2007).
Résoudre le problème de moyenne-variance nécessite l’estimation de la ma-
trice de covariance des rendements et de prendre son inverse. Il en résulte
un problème inverse mal posé et des erreurs d’estimation, amplifiées par
deux faits. Tout d’abord, le nombre de titres est généralement très élevé
et, deuxièmement, les rendements des actifs peuvent être fortement corrélés.
Dans l’échantillon, ces instabilités sont exprimées par le fait que la frontière
minimum variance obtenu de l’échantillon est un estimateur fortement biaisée
de la frontière de la population (Kan et Smith (2008)) ; hors - échantillon,
les règles d’investissement qui en résultent sont caractérisées par des per-
formances très médiocres. Pour résoudre ces problèmes, diverses solutions
ont été proposées. Certains auteurs comme Frost et Savarino (1986), ont
adopté un approche bayésienne. D’autre auteurs, comme Ledoit et Wolf
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(2003, 2004a, b), ont utilisé le shrinkage, qui consiste à remplacer la matrice
de covariance par une moyenne pondérée de la covariance de l’échantillon et
une matrice issue d’un modèle avec peu d’erreur d’estimation. Tu et Zhou
(2009) prennent une combinaison de la règle näıve 1 / N portefeuille avec des
portefeuilles de Markowitz. Alternativement, Brodie, Daubechies, De Mol,
Giannone et Loris (2008) et Fan, Zhang et Yu (2012) utilisent une méthode
appelée Lasso qui consiste à imposer une contrainte sur la somme des va-
leurs absolues (l1-norme) des pondérations du portefeuille. La contrainte l1
généralise la contrainte de vente à découverte de Jagannathan et Ma (2003),
et génère des portefeuilles parcimonieux dont le degré de parcimonie dépend
d’un paramètre de réglage. Récemment, un cadre général et unifié a été pro-
posé par DeMiguel, Garlappi, Nogales et Uppal (2009) en termes de porte-
feuille minimum variance, avec des contraintes utilisant différentes familles de
normes, qui incluent toutes les règles citées ci-dessus. Par ailleurs, une nou-
velle approche prometteuse introduite par Brandt, Santa-Clara et Valkanov
(2009) éviter les difficultés dans l’estimation des rendements des actifs mo-
ments en modélisant directement la pondération du portefeuille dans chaque
actif en fonction des caractéristiques de l’actif.

Dans ce premier chapitre, nous examinons diverses techniques de régulari-
sation (ou stabilisation) empruntées à la littérature sur les problèmes in-
verses. En effet, l’inversion d’une matrice de covariance peut être considérée
comme la résolution d’un problème inverse. Les problèmes inverses sont
rencontrés dans de nombreux domaines et ont été largement étudiés, voir
Carrasco, Florens, et Renault (2007) pour une revue. Ici, nous appliquons
les trois techniques de régularisation qui sont les plus utilisées : le rigde
qui consiste à ajouter une matrice diagonale à la matrice de covariance, la
coupure spectrale qui consiste à exclure les vecteurs propres associés aux
plus petites valeurs propres, et Landweber Fridman qui est une méthode
itérative. Pour être complet, nous considérons également une forme de Lasso
où on pénalise la norme l1 des pondérations optimales de portefeuille. Ces
différentes techniques de régularisation ont été utilisées et comparées dans
le cadre de prévision des séries temporelles macroéconomiques utilisant un
grand nombre de prédicteurs (Bai et Ng, 2008 ; De Mol, Giannone et Rei-
chlin, 2008). Les quatre méthodes envisagées impliquent qu’un paramètre de
régularisation qui doit être sélectionné. Jusqu’à présent très peu a été dit sur
la façon de choisir le paramètre de réglage pour aboutir à une sélection opti-
male du portefeuille. Par exemple en utilisant le Lasso, Brodie et al. (2008),
Fan et al. (2012) montrent qu’en faisant varier le paramètre de régularisation,
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on pourrait construire un portefeuille avec une parcimonie souhaitable, mais
ne donnent pas une règle systématique sur la façon de le sélectionner dans
la pratique. Ledoit et Wolf (2004) choisissent le paramètre de réglage afin
de minimiser l’erreur quadratique moyenne de la matrice de covariance, mais
cette approche n’est pas optimale pour la sélection du portefeuille. DeMi-
guel et al. (2009) calibrent la limite supérieure de la norme sur les poids du
portefeuille minimum-variance, en minimisant la variance, ou en maximisant
le rendement hors-échantillon du portefeuille. Leurs calibrages peuvent être
améliorées en considérant un compromis optimal entre le risque du porte-
feuille et le rendement.

L’objectif du premier chapitre est de dériver une méthode axée sur les
données pour la sélection du paramètre de régularisation de manière op-
timale. Nous adoptons le cadre de Kan et Zhou (2008), et supposons que
l’investisseur est caractérisé par une fonction d’utilité moyenne-variance et
voudrait minimiser la perte espérée due à l’utilisation d’une stratégie de por-
tefeuille donnée. Notre approche englobe différents problèmes tels que le por-
tefeuille de variance minimum considéré dans DeMiguel et al (2009) et Fan
et al. (2012), le portefeuille moyenne-variance pris en compte dans Brodie et
al (2009) et le portefeuille tangent. La perte espérée ne peut pas être dérivée
analytiquement. Notre contribution est de fournir une estimation de la perte
d’utilité anticipée qui utilise seulement les observations. Cette estimation est
une version corrigée du biais, du critère de validation croisée généralisée.
L’avantage de notre critère est qu’il s’applique à toutes les méthodes men-
tionnées ci-dessus et donne une base pour comparer les différentes méthodes.

Le second chapitre se place également dans le cadre des problèmes de
choix de portefeuille. Il explore dans quelle mesure les portefeuilles optimaux
d’actifs domestiques réduisent l’exposition au risque de change, en utilisant
un modèle d’évaluation d’actifs financiers. Dans leur version internationale
ces modèles contiennent des facteurs représentant le risque de devises, en
plus du facteur de risque de marché du modèle standard (Sharpe, 1964 ;
Lintner, 1965). Ce résultat est théoriquement prouvé sous l’hypothèse de
la défaillance bien connue de la parité du pouvoir d’achat (Solnik, 1974 ;
Adler et Dumas, 1983). Sur le marché américain des actions, ce résultat
théorique est soutenu par un grand nombre d’évidences empiriques, tant au
niveau des pays et qu’au niveau de l’industrie (De Santis et Gérard, 1998 ;
Carrieri, Errunza et Majerbi, 2006a ; Francis Hasan et Hunter, 2008). Bien
que les preuves du fait que le risque de change est un facteur primé sont
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accablants, très peu est dit sur les conséquences d’un tel résultat pour les
investisseurs nationaux, en particulier, si le risque de change pourrait être
réduit ou éliminé par une stratégie de portefeuille donnée, sur des actifs
nationaux. En effet, la tarification du risque de change, implique que le risque
de change est systématique et que les investisseurs exigent d’être récompensés
par une prime pour y être exposés. Différentes stratégies de portefeuille sont
susceptibles d’avoir différentes expositions au risque de change. Ceci vient
du fait que ces stratégies utilisent des pondérations différentes sur les actifs
dont l’exposition varie selon les industries et dans le temps (Francis, Hasan et
Hunter, 2008). Par conséquent, face à des prix du risque communs, différentes
stratégies sont également susceptibles de conduire à différentes primes de
risque de change.

Choisir des portefeuilles composés exclusivement d’actifs domestiques,
dans un contexte international est défendable pour au moins trois raisons.
Tout d’abord, les investisseurs ont typiquement un avantage dans la négocia-
tion des actions dans leur pays, pour de nombreuses raisons telles que l’infor-
mations de qualité supérieure, le biais de la réglementation domestique à l’en-
contre des investisseurs étrangers (Choe, Kho, et Stulz, 2005). Deuxièmement,
investir à l’étranger pourrait s’avérer pas nécessaire, car, dans certains cas,
il est possible d’obtenir les gains de la diversification internationale à tra-
vers la diversification domestique (Errunza, Hogan et Hung, 1999). Enfin,
bien que les avantages de la diversification mondiale ont été largement docu-
mentés, et sont toujours d’actualité (par exemple, Solnik, 1974 ; Christoffer-
sen et al, 2012 ;. Driessen et Laeven, 2007), les dernières décennies ont connu
une augmentation du niveau d’intégration internationale des marchés. Entre
autres choses, ces tendances ont conduit à une augmentation des risques de
marchés intérieurs des fluctuations des taux de change, et à la réduction du
potentiel de diversification à l’international (voir par exemple Li, Sarkar et
Wang (2003) 1). Cette réduction des avantages de la diversification interna-
tionale, implique que l’investissement national est de plus en plus pertinent
à considérer et à étudier.

Dans ce chapitre nous considérons des portefeuilles de variance minimale
(DeMiguel, Garlappi, Nogales et Uppal, 2009 ; Jagannathan et Ma, 2003).
Cette stratégie correspond à l’hypothèse que la principale préoccupation de
l’investisseur est de réduire le risque global du portefeuille. Les portefeuilles

1. Bien que les marchés internationaux sont de plus en plus intégré cette n’élimine pas
les avantages de la diversification de nouveaux investissements sur le marché.
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sont construits aux États-Unis en utilisant un ensemble d’investissement com-
posé de 48 portefeuilles d’industrie, et les pondérations optimales sont ob-
tenues de manière récursive basée sur M mois précédents afin d’imiter le
comportement dynamique d’un investisseur. Par ailleurs, comme mentionné
dans le chapitre 1, lors de la construction des portefeuilles moyenne-variance,
l’inverse de la matrice de covariance entre les rendements des actifs doit
être estimée et inversée. Ceci peut conduire à des pondérations optimales
instables, et peut compromettre les gains de diversification (DeMiguel Gar-
lappi et Uppal, 2009 ; Carrasco et Noumon, 2013). Pour cette raison, nous
considérons également dans le Chapitre 2, une famille de portefeuilles globaux
minimaux qui sont régularisés pour faire face aux instabilités qui se posent
dans les portefeuilles de grande taille. Parmi les techniques de régularisation
disponibles, et cité plus haut, nous choisissons la coupure spectrale qui est
étroitement liée à l’analyse des composantes principales, et constitue une
manière de contrôler la stabilité des poids de portefeuilles.

L’objectif du deuxième chapitre est donc de déterminer si les portefeuilles
optimaux d’actifs nationaux sont moins exposés au risque de change, et si
ces portefeuilles conduisent à des primes qui non-négligeable . De plus, puis-
qu’une stabilisation est appliquée aux pondérations optimales considérées,
notre méthodologie nous permet également d’étudier comment les stratégies
stables d’investissement sont affectées par le risque de change. Les études
les plus proches de la nôtre sont De Santis, Gérard et Hillion (1999) et
Francis, Hasan et Hunter (2008). Nous utilisons un modèle similaire à ce-
lui utilisé dans ce dernier papier : la version conditionnelle du modèle de
Fama et French (1993), augmenté du rendement sur deux indices de taux
de change, représentant les pays industrialisés et les marchés émergents. Nos
résultats sont en accord avec cette dernière étude. Cependant notre étude se
distingue, par le fait qu’il étend le cadre de Francis Hasan et Hunter à ce-
lui des portefeuilles optimaux d’industries américaines. De plus, notre étude
ne se limite pas aux 36 industries qui sont les plus susceptibles d’être ex-
posés au risque de change, mais considère les 48 portefeuilles d’industrie qui
fournissent une couverture exhaustive du marché boursier américain. En ce
qui concerne la première étude, De Santis, Gérard et Hillion (1999) utilisent
des stratégies d’allocation d’actifs dynamiques, pour des investisseurs uni-
versels. 2 Contrairement à ces auteurs, notre étude se concentre entièrement

2. Pour ces investisseurs, l’univers d’investissement contient des actions indices bour-
siers, et les dépôts euro-devises à court terme.
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sur les portefeuilles domestiques. De plus ces auteurs décomposent le risque
de change en ses composantes européenne et non européenne, alors que nous
désagrégeons le risque de change en ses composantes correspondant aux les
marchés industrialisés et émergents.

Les résultats du deuxième chapitre, peuvent être résumés en trois points
principaux. Tout d’abord, nous obtenons que le risque de change est aussi un
facteur primé et varie dans le temps, pour les portefeuilles domestiques diver-
sifiés de manière optimale, aux États-Unis. Deuxièmement, nous constatons
que les portefeuilles optimisés sur les avoirs intérieurs réduisent considérable-
ment l’exposition moyenne des industries américaines au risque de change,
tant par la taille que par la volatilité. Troisièmement, pour tous les porte-
feuilles stables de variance minimales considérés, la prime de devise est non-
négligeable, mais reste inchangée en termes de leur contribution à la prime
totale. Ces résultats sont pertinents à bien des égards. Premièrement, comme
les règles d’investissement construits, représentent une alternative aux poids
de la capitalisation boursière standards utilisés pour tester la tarification du
risque de change, nos conclusions fournissent des preuves supplémentaires de
la tarification du risque de change aux États-Unis. Par ailleurs, la réduction
des expositions obtenus peuvent être considérées comme des mesures ad-
ditionnelles de l’avantage de la diversification domestique. Deuxièmement,
nos résultats ont des implications en terme de stratégies de couverture.
Plus précisément, les portefeuilles optimaux domestiques ont le potentiel
de réduire les coûts de couverture du risque de change, puisque ces règles
conduisent à réduire la quantité et la fréquence des opérations de couverture
et de rééquilibrage.

Contrairement au deuxième chapitre qui mesure la prime de risque dans
le cadre d’un modèle d’évaluation d’actifs financiers, le troisième chapitre
mesure la prime de risque en faisant une hypothèse sur les préférences du
preneur de décision, et considère que le risque est représenté par une va-
riable aléatoire X. Ce chapitre est motivé par le fait que dans beaucoup de
situations réelles et expérimentales, les preneurs de décision tendent à adop-
ter un comportement pessimiste, qui consiste à amplifier la probabilité d’un
événement négatif. Ces faits sont supportés aussi bien par les violations des
axiomes de la théorie de l’utilité espérée (le paradoxe d’Allais, et de saint
Petersburg), et par des faits expérimentaux. Ainsi, nous faisons l’hypothèse
que le preneur de décision est caractérisé par des préférences du type rang-
dépendant (RDU) introduit par Quiggin (1982), Schmeidler (1989) et Yaari
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(1987). Cette hypothèse particulièrement opportune au vu de leur utilisation
croissante en finance et en assurance.

Sous l’hypothèse des préférences RDU, le preneur de décision évalue les
alternatives risquées avec une fonction d’utilité sur les réalisations et une
fonction de distorsion qui transforme la distribution de probabilité de ces
réalisations. Différentes hypothèses sur la fonction de distorsion conduisent à
différents comportements. Lorsque cette fonction est concave, cela correspond
à la définition du pessimisme de Basset et al (2004). En effet, dans ce cadre
les probabilités des réalisations les moins favorables sont accentuées.

Cette littérature est étroitement liée à celle des mesures de risque. Plutôt
qu’une définition issue de la théorie économique du choix dans l’incertitude,
cette dernière introduit des mesures de risque qui satisfont des propriétés
désirables. L’un des travaux les plus importants dans cette lignée est l’ar-
ticle de Artzner et al (1999) qui introduit la classe des mesures de risque
cohérentes satisfaisant 4 propriétés désirables : la monotonicité, l’invariance
par translation, l’homogénéité et la sous-additivité.

Plusieurs estimateurs ont été proposés pour l’estimation des mesures du
type RDU. Par exemple Gourieroux et Liu (2006a) estiment l’allocation effi-
cace lorsque les mesures de distorsion définissent la fonction objective et les
contraintes ; Gourieroux et Liu (2006b) proposent un cadre unifié pour l’ana-
lyse des mesures de distorsion et de leur sensibilité ; Scaillet (2004) considère
l’approche non paramétrique pour estimer la CVaR et ses sensibilités ; Bassett
et al. (2004) utilisent une fonction d’utilité de Choquet pour l’optimisation
des portefeuilles pessimistes, en résolvant un problème de régression quantile.

Ce dernier chapitre apporte deux contributions au cadre décrit dans
les paragraphes précédents. La première contribution est la dérivation de
la prime de risque associée aux décideurs pessimistes. Ceci est effectué en
surmontant deux difficultés. Premièrement, la séparation de la notion de
pessimisme de celle de l’aversion pour le risque, est réputée être difficile à
accomplir empiriquement (Quiggin (1982)). La deuxième difficulté vient de
la non linéarité de la fonction de distorsion par rapport aux probabilités.
En effet, ceci empêche l’utilisation immédiate de la définition de la prime
de risque selon Pratt (1964), qui fait l’hypothèse que les décideurs maxi-
misent l’utilité espérée. Par conséquent dériver la prime de risque nécessite
de trouver la fonction d’utilité qu’utilise le preneur de décision, et qui cor-
respond à un critère de maximisation d’utilité espérée. La première difficulté
est surmontée en supposant que le décideur est neutre au risque et utilise
une fonction d’utilité linéaire. Le deuxième question peut être résolue en
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supposant que la fonction des préférences est dérivable par rapport aux pro-
babilités. Sous cette hypothèse la fonction d’utilité requise peut être dérivée
et correspond à la fonction d’utilité locale proposée par Machina (1982). La
résolution de ces questions conduit une mesure de la prime de risque et du co-
efficient d’aversion pour le risque, qui dépendent uniquement du pessimisme
du décideur. En particulier, le coefficient d’aversion pour le risque peut être
utilisé pour comparer et résumer le degré de pessimisme d’un décideur. La
seconde contribution de ce chapitre est de proposer des outils statistiques
pour estimer les mesures de risque dérivées sous l’hypothèse des préférences
du type RDU, principalement sous leur forme de DRM. Précisément nous
considérons le cas général d’une utilité RDU et le cas plus particulier de
la CVaR. Nous adoptons une approche non paramétrique et établissons des
résultats de convergence et de distributions asymptotiques.
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Chapitre 1

Optimal portfolio selection
using regularization

1.1 Introduction

In his seminal paper of 1952, Markowitz stated that the optimal port-
folio selection strategy should be an optimal trade-off between return and
risk instead of an expected return maximization only. In his theoretical fra-
mework, Markowitz made the important assumption that the beliefs about
the future performance of asset returns are known. However in practice these
beliefs have to be estimated. The damage caused by the so-called parame-
ter uncertainty has been pointed out by many authors, see for instance Kan
and Zhou (2007). Solving the mean-variance problem leads to estimate the
covariance matrix of returns and take its inverse. This results in a ill-posed
problem and in estimation error, amplified by two facts. First, the number
of securities is typically very high and second, these security returns may be
highly correlated. In-sample, these problems are reflected by the fact that the
sample minimum-variance frontier is a highly biased estimator of the popula-
tion frontier as shown by Kan and Smith (2008) ; out-of-sample, the resulting
rules are characterized by very poor performances as extensively documented
by DeMiguel, Garlappi, and Uppal (2007). To tackle these issues, various so-
lutions have been proposed. Some authors have taken a Bayesian approach,
see Frost and Savarino (1986). Some have used shrinkage, more precisely Le-
doit and Wolf (2003, 2004a,b) propose to replace the covariance matrix by
a weighted average of the sample covariance and some structured matrix.
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Tu and Zhou (2009) take a combination of the naive 1/N portfolio with the
Markowitz portfolio. Alternatively, Brodie, Daubechies, De Mol, Giannone,
and Loris (2008) and Fan, Zhang, and Yu (2009) use a method called Lasso
which consists in imposing a constraint on the sum of the absolute values
(l1-norm) of the portfolio weights. The l1− constraint generalizes the short
sale constraint of Jagannathan and Ma (2003) and generates sparse portfolios
which degree of sparsity depends on a tuning parameter. Recently, a general
and unified framework has been proposed by DeMiguel, Garlappi, Nogales,
and Uppal (2009) in terms of norm-constrained minimum-variance portfolio
that nests all the rules cited above. A new promising approach introduced
by Brandt, Santa-Clara, and Valkanov (2009) avoid the difficulties in the es-
timation of asset returns moments by modelling directly the portfolio weight
in each asset as a function of the asset’s characteristics.

In this chapter, we investigate various regularization (or stabilization)
techniques borrowed from the literature on inverse problems. Indeed, inver-
ting a covariance matrix can be regarded as solving an inverse problem.
Inverse problems are encountered in many fields and have been extensively
studied, see Carrasco, Florens, and Renault (2007) for a review. Here, we
will apply the three regularization techniques that are the most used : the
ridge which consists in adding a diagonal matrix to the covariance matrix,
the spectral cut-off which consists in discarding the eigenvectors associated
with the smallest eigenvalues, and Landweber Fridman iterative method. For
completeness, we also consider a form of Lasso where we penalize the l1 norm
of the optimal portfolio weights. These various regularization techniques have
been used and compared in the context of forecasting macroeconomic time
series using a large number of predictors by among others Bai and Ng (2008),
and De Mol, Giannone, and Reichlin (2008). The four methods under consi-
deration involve a regularization (or tuning) parameter which needs to be
selected. Little has been said so far on how to choose the tuning parameter
to perform optimal portfolio selection. For example using the Lasso, Brodie
et al. (2008), Fan et al. (2009) show that by tuning the penalty term one
could construct portfolio with desirable sparsity but do not give a systematic
rule on how to select it in practice. Ledoit and Wolf (2004) choose the tu-
ning parameter in order to minimize the mean-square error of the shrinkage
covariance matrix, however this approach may not be optimal for portfolio
selection. DeMiguel et al. (2009) calibrate the upper bound on the norm of
the minimum variance portfolio weights, by minimizing portfolio variance or
by maximizing the last period out-of-sample portfolio return. Their calibra-
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tions may be improved by considering an optimal trade-off between portfolio
risk and return.

The main objective of this chapter is to derive a data-driven method
for selecting the regularization parameter in an optimal way. Following the
framework of Kan and Zhou (2008), we suppose that the investor is charac-
terized by a mean-variance utility function and would like to minimize the
expected loss incurred in using a particular portfolio strategy. The mean-
variance investor approach nests different problems such as the minimum va-
riance portfolio considered in DeMiguel et al. (2009) and Fan et al. (2009), the
mean-variance portfolio considered in Brodie et al. (2009), and the tangency
portfolio. The expected loss can not be derived analytically. Our contribu-
tion is to provide an estimate of the expected loss in utility that uses only
the observations. This estimate is a bias-corrected version of the generalized
cross-validation criterion. The advantage of our criterion is that it applies to
all the methods mentioned above and gives a basis to compare the different
methods.

The rest of the chapter is organized as follows. Section 2 reviews the mean-
variance principle. Section 3 describes three regularization techniques of the
inverse of the covariance matrix. Section 4 discusses stabilization techniques
that take the form of penalized least-squares. Section 5 derives the optimal
selection of the tuning parameter. Section 6 presents simulations results and
Section 7 empirical results. Section 8 concludes.

1.2 Markowitz paradigm

Markowitz (1952) proposes the mean-variance rule, which can be viewed
as a trade-off between expected return and the variance of the returns. For
a survey, see Brandt (2010). Consider N risky assets with random return
vector Rt+1 and a risk-free asset with known return Rf

t . Define the excess
returns rt+1 = Rt+1−Rf

t . We assume that the excess returns are independent
identically distributed with mean and covariance matrix denoted by µ and Σ,
respectively. The investor allocates a fraction x of wealth to risky assets and
the remainder (1− 1′Nx) to the risk-free asset, where 1N denotes a N−vector
of ones. The portfolio excess return is therefore x′rt+1. The investor is assu-
med to choose the vector x to maximize the mean-variance expected utility
function

U (x) = x′µ− γ

2
x′Σx (1.1)
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where γ is the relative risk aversion. The optimal portfolio is given by

x∗ =
1

γ
Σ−1µ. (1.2)

In practice the optimal portfolio that maximizes (1.1) is obtained by first
estimating the expected return µ and the covariance matrix Σ of return, and
then plug them into (1.2) to obtained the so called plug-in rule. For example,
an investor can base his strategy on the T previous observed returns data
ΦT = {r1, r2, · · · , rT} to form a portfolio for period T+1. In particular, an in-
verse of the covariance matrix is needed. The choice of the sample covariance
to form the plug-in rule may not be appropriate because it may be nearly
singular and sometimes not even invertible. The issue of ill-conditioned co-
variance matrix must be addressed because inverting such matrix increases
dramatically the estimation error and then makes the mean variance solution
unreliable. Many regularization techniques can stabilize the inverse. They can
be divided into two classes : regularization directly applied to the covariance
matrix and regularization expressed as a penalized least-squares.

1.3 Regularization as approximation to an in-

verse problem

1.3.1 Inverse problem

Let rt, t = 1, · · · , T be the observations of asset returns and R be the
T ×N matrix with tth row given by r′t. Let Ω = E (rtr

′
t) = E (R′R) /T.

Σ−1µ = (Ω− µµ′)−1
µ

=

(
Ω−1 +

Ω−1µµ′Ω−1

1− µ′Ω−1µ

)
µ

=
Ω−1µ

1− µ′Ω−1µ

where the second equality follows from the updating formula for an inverse
matrix (see Greene, 1993, p.25). Hence

x∗ =
Ω−1µ

γ (1− µ′Ω−1µ)
=

β

γ (1− µ′β)
(1.3)
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where
β = Ω−1µ = E (R′R)

−1
E (R′1T ) . (1.4)

It is customary to replace the unknown expectation µ by the sample ave-
rage µ̂ = 1

T

∑T
t=1 rt and the covariance Σ by the sample covariance Σ̂ =

(R− 1T µ̂
′)′ (R− 1T µ̂

′) /T ≡ R̃′R̃. Replacing µ and Σ by their sample coun-
terparts, one obtains the sample based optimal allocation x̂ = Σ̂−1µ̂/γ. Job-
son and Korkie (1983, Equation (15)) and later Britten-Jones (1999) showed
that x̂ can be rewritten as

x̂ = β̂/
(
γ
(

1− µ̂′β̂
))

where β̂ is the OLS estimate of β in the regression

1 = β′rt+1 + ut+1

or equivalently
1T = Rβ + u (1.5)

where R is the T ×N matrix with rows composed of r′t. In other words, one
should not center rt in the calculation of x∗. Finding β can be thought of as
finding the minimum least-squares solution to the equation :

Rβ = 1T . (1.6)

It is a typical inverse problem.
The ill-posedness of the previous problem depends on the characteristics

of the matrix Ω̂ = R′R/T . Two difficulties may occur : the assets could be
highly correlated (i.e. the population covariance matrix Σ is nearly singular)
or the number of assets could be too large relative to the sample size (i.e.
the sample covariance is (nearly) singular even though the population cova-
riance is not). In such cases, Ω̂ typically has some singular values close to
zero resulting in an ill posed problem, such that the optimization of the port-
folio becomes a challenge. These difficulties are summarized by the condition
number which is the ratio of the maximal and minimal eigenvalue of Ω̂. A
large condition number leads to unreliable estimate of the vector of portfolio
weights x.

The inverse problem literature, that usually deals with infinite dimensio-
nal problems, has proposed various regularization techniques to stabilize the
solution to (1.6). For an overview on inverse problems, we refer the readers
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to Kress (1999) and Carrasco, Florens, and Renault (2007). We will consider
here the three most popular regularization techniques : ridge, spectral cut-
off, and Landweber Fridman. Each method will give a different estimate of

β, denoted β̂τ and estimate of x∗, denoted x̂τ = β̂τ/
(
γ
(

1− µ̂′β̂τ
))

.

The T × N matrix R can be regarded as an operator from RN (endo-
wed with the inner product 〈v, w〉 = v′w) into RT (endowed with the inner

product 〈φ, ϕ〉 = φ′ϕ/T ). The adjoint of R is R′/T. Let
(
λ̂j, φ̂j, v̂j

)
, j =

1, 2, ..., N be the singular system of R, i.e. Rφ̂j = λ̂j v̂j, R
′v̂j/T = λ̂jφ̂j, mo-

reover
(
λ̂2
j , φ̂j

)
are the eigenvalues and orthonormal eigenvectors of R′R/T

and
(
λ̂2
j , v̂j

)
are the nonzero eigenvalues and orthonormal eigenvectors of

RR′/T. If N < T , it is easier to compute φ̂j and λ̂2
j , j = 1, ..., N the ortho-

normal eigenvectors and eigenvalues of the matrix R′R/T and deduce the

spectrum of RR′/T. Indeed, the eigenvectors of RR′ are v̂j = Rφ̂j/λ̂j asso-

ciated with the same nonzero eigenvalues λ̂2
j . Let τ > 0 be a regularization

parameter.

1.3.2 Ridge regularization

The Ridge regression has been introduced by Hoerl and Kennard (1970)
as a more stable alternative to the standard least-squares estimator with
potential lower risk. It consists in adding a diagonal matrix to R′R/T .

β̂τ =

(
R′R

T
+ τI

)−1
R′1T
T

, (1.7)

β̂τ =
N∑
j=1

λ̂j

λ̂2
j + τ

(1′T v̂j) φ̂j.

This regularization has a Bayesian interpretation, see i.e. De Mol et al. (2008).

1.3.3 Spectral cut-off regularization

This method discards the eigenvectors associated with the smallest eigen-
values.

β̂τ =
∑
λ̂2j>τ

1

λ̂j
(1′T v̂j) φ̂j.
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Interestingly, v̂j are the principal components of Ω̂, so that if rt follows a
factor model, v̂1, v̂2,... estimate the factors.

1.3.4 Landweber-Fridman regularization

Let c be a constant such that 0 < c < 1/ ‖R‖2 where ‖R‖ is the largest
eigenvalue of R. The solution to (1.6) can be computed iteratively as

ψk =

(
I − cR

′R

T

)
ψk−1 + c

R′1T
T

, k = 1, 2, ..., 1/τ − 1

with ψ0 = cR′1T/T . Alternatively, we can write

β̂τ =
∑ 1

λ̂j

{
1−

(
1− cλ̂2

j

)1/τ
}

(1′T v̂j) φ̂j.

Here, the regularization parameter τ is such that 1/τ − 1 represents the
number of iterations. The three methods involve a regularization parameter
τ which needs to converge to zero with T at a certain rate for the solution
to converge.

1.3.5 Explicit expression of estimators

For the three regularizations considered above, we have

Rβ̂τ = MT (τ) 1T

with

MT (τ)w =
T∑
j=1

q
(
τ, λ̂2

j

)
(w′v̂j) v̂j

for any T− vectors w. Moreover, trMT (τ) =
∑T

j=1 q
(
τ, λ̂2

j

)
. The function

q takes a different form depending on the type of regularization. For Ridge,

q
(
τ, λ̂2

j

)
= λ̂2

j/
(
λ̂2
j + τ

)
. For Spectral cut-off, q

(
τ, λ̂2

j

)
= I

(
λ̂2
j ≥ τ

)
. For

Landweber Fridman, q
(
τ, λ̂2

j

)
= 1−

(
1− cλ̂2

j

)1/τ

.
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1.3.6 Related estimator : Shrinkage

In this subsection, we compare our methods with a popular alternative
called shrinkage. Shrinkage can also be regarded as a form of regularization.
Ledoit and Wolf (2003) propose to estimate the returns covariance matrix by
a weighted average of the sample covariance matrix Σ̂ and an estimator with
a lot of structure F, based on a model. The first one is easy to compute and
has the advantage to be unbiased. The second one contains relatively little
estimation error but tends to be misspecified and can be severely biased.
The shrinkage estimator takes the form of a convex linear combination :
δF + (1− δ)Σ̂, where δ is a number between 0 and 1. This method is called
shrinkage since the sample covariance matrix is shrunk toward the structured
estimator. δ is referred to as the shrinkage constant. With the appropriate
shrinkage constant, we can obtain an estimator that performs better than
either extreme (invertible and well-conditioned).

Many covariance matrices F could be used. Ledoit and Wolf (2003) sug-
gested the single factor model of Sharpe (1963) which is based on the as-
sumption that stock returns follow the model (Market model) :

rit = αi + βir0t + εit

where residuals εit are uncorrelated to market returns r0t and to one another,
with a constant variance V ar(εit) = δii. The resulting covariance matrix is

Φ = σ2
0ββ

′ + ∆

Where σ2
0 is the variance of market returns and ∆ = diag(δii). σ

2
0 is consis-

tently estimated by the sample variance of market returns, β by OLS, and
δii by the residual variance estimate. A consistent estimate of Φ is then

F = s2
0bb
′ +D.

Instead of using the F derived from a factor model, one can use the constant
correlation model 1 (Ledoit and Wolf (2004a)) or the identity matrix F = I
(Ledoit and Wolf (2004b)). They give comparable results but are easier to
compute.
In the particular case where the shrinkage target is the identity matrix, the

1. All the pairwise covariances are identical.
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shrinkage method is equivalent to Ridge regularization since the convex linear
combination δI + (1− δ)Σ̂ can be rewritten :

ΣShrink = c
(

Σ̂+αI
)
,

and

Σ−1
Shrink = c−1

(
Σ̂ + αI

)−1

,

where c is a constant. Once the shrinkage target is determined one has to
choose the optimal shrinkage intensity δ∗. Ledoit and Wolf (2004b) propose to
select δ∗ so that it minimizes the expected L2 distance between the resulting
shrinkage estimator ΣShrink = δ̂∗F+(1− δ̂∗)Σ̂ and the true covariance matrix
Σ. The limitation of this criterion is that it only focuses on the statistical
properties of Σ, and in general could fail to be optimal for the portfolio
selection.

1.4 Regularization scheme as penalized least-

square

The traditional optimal Markowitz portfolio x∗ is obtained from (1.3) and

β = arg min
β
E
[
|1− β′rt|2

]
If one replaces the expectation by the sample average, the problem becomes :

β̂ = arg min
β
‖1T −Rβ‖2

2 (1.8)

As mentioned before, the solution of this problem may be very unreliable
if R′R is nearly singular. To avoid having explosive solutions, we can pena-
lize the large values by introducing a penalty term applied to a norm of β.
Depending on the norm we choose, we end up with different regularization
techniques.

1.4.1 Bridge method

For ς > 0 the Bridge estimate is given by

β̂τ = arg min
β
‖1T−Rβ‖2

2 + τ
N∑
i=1

|βi|ς
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where τ is the penalty term.
The Bridge method includes two special cases. For ς = 1 we have the Lasso

regularization, while ς = 2 leads to the Ridge method. The term
N∑
i=1

|xi|ς can

be interpreted as a transaction cost. It is linear for Lasso, but quadratic
for the ridge. The portfolio will be sparse as soon as ς ≤ 1. The objective
function is strictly convex when ς > 1, convex for ς = 1 and no longer convex
for ς < 1. The case with ς < 1 is considered in Huang, Horowitz, and Ma
(2008), but will not be examined any further here.

1.4.2 Least Absolute Shrinkage and Selection Opera-
tor (LASSO)

The Lasso regularization technique introduced by Tibshirani (1996) is the
l1-penalized version of the problem (1.8). The Lasso regularized solution is
obtained by solving :

β̂τ = arg min
β
‖1T −Rβ‖2

2 + τ ‖β‖1 .

The main feature of this regularization scheme is that it induces sparsity.
It has been studied by Brodie, Daubechies, De Mol, Giannone, and Loris
(2008) to compute portfolio involving only a small number of securities. For
two different penalty constants τ1 and τ2 the optimal regularized portfolio
satisfies : (τ1 − τ2)

(∥∥β[τ2]
∥∥

1
−
∥∥β[τ1]

∥∥
1

)
≥ 0 then the higher the l1-penalty

constant (τ), the sparser the optimal weights. So that a portfolio with non
negative entries corresponds to the largest values of τ and thus to the sparsest
solution. In particular the same solution can be obtained for all τ greater than
some value τ0.

Brodie et al. consider models without a riskfree asset. Using the fact that
all the wealth is invested (x′1N = 1), they use the equivalent formulation for
the objective function as :

‖1T −Rx‖2
2 + 2τ

∑
i with xi<0

|xi|+ τ

which is equivalent to a penalty on the short positions. The Lasso regression
then regulates the amount of shorting in the portfolio designed by the opti-
mization process, so that the problem stabilizes. For a value of τ sufficiently
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large, all the components of x will be nonnegative, thus excluding short-
selling. This gives a rationale for the finding of Jagannathan and Ma (2003).
Jagannathan and Ma found that imposing the no short-selling constraint
improves the performance of portfolio selection. This constraint acts as a
regularization on the portfolio weights. The general form of the l1-penalized
regression with linear constraints is :

β̂τ = arg min
β∈H
‖b− Aβ‖2

2 + τ ‖β‖1

H is an affine subspace defined by linear constraints. The regularized opti-
mal portfolio can be found using an adaptation of the homotopy / LARS
algorithm as described in Brodie et al. (2008). In appendix A, we provide a
detailed description of this algorithm.

1.4.3 Ridge method

Interestingly, the ridge estimator described in (1.7) can be written alter-
natively as a penalized least-squares with l2 norm. The Ridge regression is
then given by

β̂τ = arg min
β
‖1T −Rβ‖2

2 + τ ‖β‖2
2 (1.9)

Contrary to the Lasso regularization, the Ridge does not deliver a sparse
portfolio, but selects all the securities with possibly short-selling.

1.5 Optimal selection of the regularization pa-

rameter

In order to compare different portfolio rules, a natural objective function
can be established as the average out-of-sample performance. As proposed
by Khan and Zhou (2007), the out-of-sample performance for a given rule x̂τ
can be measured as

U(x̂τ ) = x̂′τµ−
γ

2
x̂′τΣx̂τ ,

which represents the expected utility conditional on the weights being cho-
sen as x̂τ . Since x̂τ is a function of the observed historical returns ΦT =
{r1, r2, · · · , rT}, it is a random variable. As a result, U(x̂τ ) it is also random
variable and it is natural to evaluate a portfolio rule based on its expected
out-of-sample performance E[U(x̂τ )], where the expectation is taken with
respect to the true distribution of ΦT .
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1.5.1 Loss function of estimated allocation

Given the previous argument, the standard statistical decision theory can
be used, and we can define the loss function of using rule x̂τ as :

LT (τ) = U (x∗)− U (x̂τ )

= (x∗ − x̂τ )′ µ+
γ

2
(x̂′τΣx̂τ − x∗′Σx∗)

= (x∗ − x̂τ )′ (µ− γΣx∗) +
γ

2
(x̂τ − x∗)′Σ (x̂τ − x∗)

=
γ

2
(x̂τ − x∗)′Σ (x̂τ − x∗) . (1.10)

The loss LT (τ) depends on the realizations of the historical returns data
ΦT . It is natural to think that the investor would like to select the parameter τ
to minimize the expected loss function ELT (τ) = γ

2
E (x̂τ − x∗)′Σ (x̂τ − x∗)

in order to account for the average losses involving actions taken under va-
rious outcomes of ΦT . Note that the optimal τ will also maximize the expec-
ted out-of-sample performance E (U (x̂τ )).

The risk function ELT (τ) has been used by many authors to rank various
portfolios rules, where the portfolio with the lowest risk is the preferred [
e.g. Jorion (1986), Frost and Savarino (1986), Khan and Zhou (2007)]. A
distinct feature of our study, is that the risk function also depends on the
regularization parameter that we seek to select optimally.

In the remainder of this session, our goal is to give a convenient expression

for the criterion E (LT (τ)). Consider x̂τ = β̂τ/
(
γ
(

1− µ̂′β̂τ
))

where β̂τ is

given by
β̂τ = Ω̂−1

τ R′1T/T (1.11)

where Ω̂−1
τ is a regularized inverse of Ω̂ = R′R/T . Using the notation (1.3),

the optimal allocation x∗ can be written as β/ (γ (1− µ′β)) .
The criterion (1.10) involves

γ (x̂τ − x∗) =
β̂τ

1− µ̂′β̂τ
− β

1− µ′β

=
β̂τ − β(

1− µ̂′β̂τ
)

(1− µ′β)
−

β̂τ (µ′β)− β
(
µ̂′β̂τ

)
(

1− µ̂′β̂τ
)

(1− µ′β)
. (1.12)

Note that |µ′β| < 1 by construction. To evaluate (1.10), we need to eva-
luate the rate of convergence of the different terms in its expansion. To do
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so, we assume that β (or equivalently µ) satisfies some regularity condition.
This condition given in Assumption A is similar in spirit to the smoothness
condition of a function in nonparametric regression estimation for instance.
However contrary to a smoothness condition that would concern only β, this
condition relates the properties of β to those of Ω. It implies that β belongs to
the range of Ων/2. This type of conditions can be found in Carrasco, Florens,
and Renault (2007) and Blundell, Chen, and Kristensen (2007) among others.

Assumption A.
(i) For some ν > 0, we have

N∑
j=1

〈µ, φj〉2

λ2ν+4
j

<∞

where φj and λ2
j denote the eigenvectors and eigenvalues of Ω.

(ii) Σ is Hilbert Schmidt (its eigenvalues are square summable).

Assumption A(i) is equivalent to
∑N

j=1
〈β,φj〉2

λ2νj
<∞ because β = Ω−1µ.

Assumption A implies in particular that ‖β‖2 <∞. Let βτ be defined as

Ê
(
β̂τ |R

)
where Ê (.|R) is the orthogonal projection on R.

Proposition 1. Under Assumption A and assuming N and T go to infinity,
we have

γ2 (1− µ′β)
2
E
[
(x̂τ − x∗)′Σ (x̂τ − x∗)

]
∼ 1

T
E
∥∥∥R(β̂τ − β)∥∥∥2

+
(µ′ (βτ − β))2

(1− µ′β)
.

The proof of Proposition 1 is given in Appendix A.1. The rest rest(τ)
of the approximation in Proposition 1 is evaluated by simulation, and is
generally negligible compared to the left-hand side (less than 1%). Given
that the rest does not have a closed-form analytical expression, we ignore
this term in subsequent optimality results derivations.

1.5.2 Cross-validation

From Proposition 1, it follows that minimizing E (LT (τ)) is equivalent to
minimizing
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1

T
E
∥∥∥R(β̂τ − β)∥∥∥2

(1.13)

+
(µ′ (βτ − β))2

(1− µ′β)
. (1.14)

Terms (1.13) and (1.14) depend on the unknown β and hence need to be
approximated. Interestingly, (1.13) is equal to the prediction error of model
(2.18) plus a constant and has been extensively studied. To approximate
(1.13), we use results on cross-validation from Craven and Wahba (1979), Li
(1986, 1987), and Andrews (1991) among others.

The rescaled MSE
1

T
E

[∥∥∥R(β̂τ − β)∥∥∥2
]

can be approximated by generalized cross validation criterion :

GCV (τ) =
1

T

‖(IT −MT (τ)) 1T‖2

(1− tr (MT (τ)) /T )2 .

Using the fact that

µ̂′ (βτ − β) =
1′T
T

(MT (τ)− IT )Rβ,

(1.14) can be estimated by plug-in :(
1′T (MT (τ)− IT )Rβ̂τ̃

)2

T 2
(

1− µ̂′β̂τ̃
) (1.15)

where β̂τ̃ is an estimator of β obtained for some consistent τ̃ (τ̃ can be
obtained by minimizing GCV (τ)). Note that the expression of (1.15) does
not presume anything on the regularity of β (value of ν).

The optimal value of τ is defined as

τ̂ = arg min
τ∈HT

GCV (τ) +

(
1′T (MT (τ)− IT )Rβ̂τ̃

)2

T 2
(

1− µ̂′β̂τ̃
)


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where HT = {1, 2, ..., T} for spectral cut-off and Landweber Fridman and
HT = (0, 1) for Ridge. In our simulations the bias term contribute on ave-
rage to less than 4% to the value of our criterion. At the optimal τ , this
contribution falls down to 1% and the optimal τ obtained are approximately
the same with and without the bias term.

The Lasso estimator does not take the simple form (1.11). However, Tib-
shirani (1996) shows that it can be approximated by a ridge type estimator
and suggests using this approximation for cross-validation. Let β̃ (τ) be the
Lasso estimator for a value τ . By writing the term

∑
|βj| as

∑
β2
j / |βj|, we

see that β̃ (τ) can be approximated by

β∗ =
(
R′R + τ (c)W− (τ)

)−1
R′1T

where c is the upper bound
∑
|βj| in the constrained problem equivalent

to the penalized Lasso and W (τ) is the diagonal matrix with diagonal

elements
∣∣∣β̃j (τ)

∣∣∣ , W− is the generalized inverse of W and τ (c) is chosen

so that
∑

j

∣∣β∗j ∣∣ = c. Since τ (c) represents the Lagrangian multiplier on

the constraint
∑

j

∣∣β∗j ∣∣ ≤ c, we always have this constraint binding when
τ (c) 6= 0 (ill-posed cases). Let

p (τ) = tr
{
R
(
R′R + τ (c)W− (τ)

)−1
R′
}
.

The generalized cross-validation criterion for Lasso is

GCV (τ) =
1

T

∥∥∥1T −Rβ̃ (τ)
∥∥∥2

(1− p (τ) /T )2 .

Tibshirani (1996) shows in simulations that the above formula gives good
results.

1.5.3 Optimality

Let L∗T (τ) = 1
T

∥∥∥R(β̂τ − β)∥∥∥2

+ (µ′(βτ−β))2

1−µ′β , hence LT (τ) = L∗T (τ) +

rest (τ) (where rest (τ) is defined as LT (τ)−L∗T (τ)). Let R∗T (τ) = EL∗T (τ) .

Assumption B. (i) ut in the regression 1 = β′rt + ut is independent,
identically distributed with mean (1− β′µ) and E (u2

t ) = ω2. Moreover,
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E (utrt) = 0.
(ii) Eu4m

t <∞,
(iii)

∑
τ∈HT (TR∗T (τ))−m → 0 for some natural number m.

(iv) N diverges to infinity as T goes to infinity and NT−1/(ν+2) goes to zero.

Note that the model in Assumption B, (i) should not be regarded as
an economic model. It is an artificial regression for which the assumptions
on ut are consistent with our assumptions on rt and the fact that β =
E (R′R)−1E (R′1).

Using the same argument as in Li (1987, (2.5)), it can be shown that a
sufficient condition for B(iii) for spectral cut-off and m = 2 is

inf
τ∈HT

TR∗T (τ)→∞.

This condition is satisfied under Assumption A (see Lemma 2 in Appendix).

Proposition 2. Under Assumptions A and B, our selection procedure for τ
in the case of spectral cut-off is asymptotically optimal in the sense that

LT (τ̂)

infτ∈HT LT (τ)
→ 1 in probability.

The proof of Proposition 2 draws from that Li (1987) for discrete sets HT .
However, it requires some adjustments for two reasons. First, our residual ut
does not have mean zero. On the other hand, E (utrt) = 0 and we exploit
this equality in our proof. Second, it is usual to prove optimality by assuming
that the regressors are deterministic or alternatively by conditioning on the
regressors. Here, we can not condition on the regressors because, given rt,
ut is not random. Hence, we have to proceed unconditionally. The proof for
the asymptotic optimality of SC is presented in Appendix A.1. The proof for
LF uses a similar approach. The asymptotic optimality for the ridge using
Li (1986) is left for future research.

1.6 Simulations

In this section, we use simulated data to assess the performance of the
proposed investment strategies. The naive 1/N portfolio is taken as a bench-
mark to which we compare the regularized rules. The comparisons are made
in terms of in-sample performance as in Fan and Yu (2009). For a wide range
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of number of observations and level of aversion to risk, we examine the in-
sample expected loss in utility and the sharpe ratio. The expected loss in
utility is also referred to as the actual loss since it is computed using the true
covariance matrix Σ. The out-of-sample performances in terms of Sharpe
ratio are instead provided in the empirical study.

1.6.1 A three-factor model

We use a three-factor model to assess the in-sample performance of our
strategies through a Monte Carlo study. Precisely, we suppose that the N
excess returns of assets are generated by the model :

rit = bi1f1t + bi2f2t + bi3f3t + εit for i = 1, · · · , N (1.16)

or in a contracted form :
R = BF + ε

where bij are the factors loading of the ith asset on the factor fj, εi is the
idiosyncratic noise independent of the three factors and independent of each
other.

We assume further a trivariate normal distribution for the factor loading
coefficients and for the factors : bi ∼ N (µb,Σb) andft ∼ N (µf ,Σf ). The
εi are supposed to be normally distributed with level σi drawn from a uni-
form distribution, so their covariance matrix is Σε = diag(σ2

1, · · · , σ2
N). As a

consequence the covariance matrix of returns is given by :

Σ = BΣfB
′ + Σε

The parameters µf , Σf , µb and Σb used in the model (1.16) are calibrated
to market data from July 1980 to June 2008. The data sets used consist of
20 years monthly returns of Fama-French three factors and of 30 industry
portfolio from French data library. As pointed out in Fan et al. (2008) a
natural idea for estimating Σ is to use the least-squares estimators of B, Σf

and Σε and obtain a substitution estimator :

Σ̂ = B̂Σ̂f B̂
′ + Σ̂ε

where B̂ = RF ′(FF ′)−1 is the matrix of estimated regression coefficients,
Σf is the covariance matrix of the three Fama-French factors. These three
factors are the excess return of the proxy of the market portfolio over the
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one-month treasury bill, the difference of return between large and small capi-
talization, that capture the size effect, and the difference of returns between
high and low book-to-market ratios, that capture the valuation effect. We
choose idiosyncratic noise to be normally distributed with standard devia-
tion σi uniformly distributed between 0.01 and 0.03. The calibrated values
are such that the generated asset returns exhibit three principal components.
This means in practice that the covariance matrix of the generated returns
have three dominant eigenvalues. Once generated, the factor loadings are
kept fixed throughout replications, while the factors differ from simulations
to simulations and are drawn from the trivariate distribution. Table 1.1 sum-
marizes the calibrated mean and covariance matrix for the factors and the
factors loadings.

Parameters for factor loadings Parameters for factor returns
µb Σb µf Σf

0.9919 0.0344 0.0309 0.0005 0.0060 0.0019 0.0003 -0.0005
0.0965 0.0309 0.0769 0.0042 0.0014 0.0003 0.0009 -0.0003
0.1749 0.0005 0.0042 0.0516 0.0021 -0.0005 -0.0003 0.0012

Table 1.1 – Calibrated parameters used in simulations

1.6.2 Estimation methods and tuning parameters

We start by a series of simulations to assess the performance of the dif-
ferent strategies proposed. This is done relative to the benchmark naive 1
over N strategy and the sample based Markowitz portfolio that is well known
to perform poorly. The portfolios considered are the naive equally weighted
portfolio (1oN), the sample-based mean variance portfolio (M), the Lasso
portfolio (L), the ridge-regularized portfolio (Rdg), the spectral cut-off regu-
larized portfolio (SC) and the Landweber-Fridman portfolio (LF) as summa-
rized in Table 1.2.

The three regularization techniques introduced to improve the optimality
of the sample-based Markowitz portfolio involve a regularization parameter
τ and they correspond to the sample-based Markowitz portfolio for τ = 0.
So our approach can be considered as a generalization that aims to sta-
bilize while improving the performance of the sample-based mean-variance
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# Model Abbreviations

1 Naive evenly weighted portfolio 1oN
2 Sample-based mean variance portfolio M
3 Lasso Portfolio L
4 Optimal Ridge portfolio Rdg
5 Optimal Spectral cut-off Portfolio SC
6 Optimal Landweber-Fridman Portfolio LF

Table 1.2 – List of investment rules

portfolio. Here we give some insights about the effect from tuning different
regularization parameters.

The ridge, the spectral cut-off and the Landweber-Fridman schemes have
a common feature that they transform the eigenvalues of the returns cova-
riance matrix so that the resulting estimate has a more stable inverse. This
transformation is done with a damping function q(τ, λ) specific to each ap-
proach as introduced previously.

The Ridge is the easiest regularization to implement and recovers the
sample-based mean-variance minimizer for τ = 0.

For SC, minimizing GCV with respect to τ is equivalent to minimizing
with respect to p, the number of eigenvalues ranked in decreasing order. The
higher the number of eigenvectors kept, the closer we are to the sample based
Markowitz portfolio. For values of τ lower than the smallest eigenvalue, the
SC portfolio is identical to the classical sample-based portfolio.

The Landweber-Fridman regularization technique can be implemented in
two equivalent ways. Either we perform a certain number l of iterations or we
transform the eigenvalues using the function q(1

l
, λ). Consequently, a larger

number of iterations corresponds to smaller value the penalty term τ that
belongs to the interval ]0, 1[. Besides, for a large number of iterations (τ ≈ 0)
the regularized portfolio x̂τ obtained becomes very close to the sample-based
optimal portfolio x̂. In the Landweber-Fridman case we seek the optimal
number of iterations so that x̂τ is the closest to the theoretically optimal rule
x∗. In the ill-posed case we typically have a very few number of iterations
which corresponds to a value of τ close to one. That is, x̂τ is far from the
Markowitz allocation x̂ known to perform very poorly.

In the context of Lasso regularization, the effect of tuning the penalty τ
in the l1-penalized regression has been extensively studied by Brodie et al.



28

(2009). Our approach is different in the fact that we are interested in the
rule that maximizes the expected out-of-sample utility of a mean-variance
investor. An additional distinction is that our rules are function of the pa-
rameter β̂τ derived using the unconstrained version of the Homotopy/Lars
Algorithm (see Appendix A.2 for a detailed description). For a given value
of the penalty term, the algorithm determine the number of assets (from 1
to N) to be included in the portfolio as well as the weights associated up to
a normalization.

The effect of tuning τ can also be captured by the shape of the bias
corrected version of the GCV criterion, GCVb, plotted in Figure 1.1 for a
single sample with N = 100 and T = 120. In our computations, the GCVb
for the Rdg the SC, and the LF portfolios are minimized with respect to τ ,
the number p of eigenvectors kept in the spectral decomposition of returns
covariance matrix, and the number of iterations l, respectively. For all the
regularization schemes, the function GCVb have a convex shape which is
a particularly interesting feature since it guarantees the unicity of the opti-
mal parameter τ. Another interesting pattern of the GCVb is that its curve
gets steeper and gives higher values for the parameters corresponding to the
sample-based investment rule : ridge penalty term close to 0, large number of
eigenvectors kept for SC or large number of iterations for LF. This suggests
that the performance of the regularized rules are always improved relative to
the sample-based rule.

1.6.3 In-sample performance

We perform 1000 replications. In each of the replications, model (1.16) is
used along with the parameters in Table 1.1 to generate T = 120 monthly
observations of asset excess returns. We consider four different values for the
number of assets traded, namely N ∈ {20, 40, 60, 100}. These values cor-
respond to a ill-posed case with a large number of assets and a number of
observations relatively small. The case N = 100 is the worse, while the other
less ill-posed cases give us insights about how our method perform in gene-
ral. Indeed, Table 1.9 displays some characteristics of the minimum and the
maximum eigenvalues of the sample covariance matrix over replications. The
smallest eigenvalue λmin is typically very small (of the order 10−5) relative
to the largest eigenvalue λmax , due to the factor structure of the generating
model. The ill-posedness is better measured by the condition number, λmax/
λmin, and the relative condition number defined as the ratio of the empirical
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Figure 1.1 – Shape of GCVs for Rdg, SC, and LF
The Figure displays GCVb as function of regularization parameters for the Ridge, the
SC, and the LF schemes. We consider a single sample with N=100 assets and T=120
observations of asset returns generated by the three-factor model described in Section
1.6.1. For this particular sample, minima are obtained for τ = 0.08, p = 3, l = 6

condition number to the theoretical condition number. The bigger the condi-
tion number, the more ill-posed the case. Table 1.9 shows the evolution of
the ill-posedness as the number N of assets increases. In effect, the empirical
condition number goes from 0.89 to 12.3 times the value of the theoretical
condition number.

We compare actual loss in utility for different levels of risk aversion and
across the different rules listed in Table 1.2. The different degrees of risk
aversion are reflected by the parameter of risk aversion γ chosen in {1, 3, 5}.
In addition, we also consider the actual Sharpe ratio SR (x̂τ ) = x̂′τµ√

x̂τΣx̂τ
as

a performance criterion to compare strategies. This is particularly relevant
since most investors are interested by the reward to the risk they take by
investing in risky assets. The results on empirical Sharpe ratio SRT (x̂τ ) =

x̂′τ µ̂√
x̂′τ Σ̂x̂τ

are not reported here because they are not reliable. Essentially, they

correspond to values which are overly optimistic and then are subject to the
criticisms made by Khan and Smith (2008) and Fan et al. (2009) concerning
empirical risk : the empirical risk is under evaluated when no constraints are



30

imposed on the portfolio.
We report descriptive statistics on actual loss in utility and on actual

Sharpe ratio across replications for N = 20, 40, 60, and 100 respectively in
Tables 1.3, 1.4, 1.5, and 1.6. Smaller loss in utility and larger Sharpe ratio cor-
respond to higher portfolio performance. The bias corresponding to the actual
SR uses the theoretical Sharpe ratio given by SR (x∗) =

√
µ′Σ−1µ ≡ SR∗. It

appears that the Markowitz sample-based strategy leads to substantial loss
in utility and, as stressed in the literature, does not provide the best actual
Sharpe ratio. However, using the Rdg, SC or LF optimal parameter lead to
significant improvement in terms of actual loss in utility and actual Sharpe
ratio. In almost all the cases the regularized rules outperform the 1/N with
respect to these criteria except the SC for N = 40, where the expected loss
is 0.0188 for 1oN and 0.0176, 0.019 and 0.0165 for Rdg, SC, and LF, res-
pectively. An interesting point is that the good behavior of the regularized
rules seems not to depend on the number of assets considered. Meaning that
they can be expected to work well in-sample, irrespective of the degree of
ill-posedness of the underlying inverse problem. Large numbers of assets give
better results, which correspond to the case where a treatment is necessary.
Indeed, on the one hand for N = 20 the higher average loss in utility for
regularized rules is 0.0123 and is 0.0178 for 1oN ; for N = 40 the higher
loss in utility is 0.019 compared to 0.0188 for 1oN. On the other hand, for
N = 60 the worst performance is 0.0077 compared to 0.0194 for 1oN ; for
N = 100 the higher loss is obtained is 0.007 compared to 0.0202 for the
naive rule. The simulations then reveal that the regularized rules proposed
outperform the 1oN by a larger margin for larger number of assets. The per-
formance of the rules Rdg, SC, and LF are confirmed by the actual Sharpe
ratio for which we obtain similar results.

Concerning the Lasso, for all the value for N and γ, the regularized port-
folios obtained performs better than the sample-based Markowitz portfolio
but is still far from what is theoretically optimal. The adaptation of GCV
criterion proposed by Tibshirani (1996) does not provide a good approxima-
tion to the Lasso penalty term that minimizes the expected loss in utility, in
presence of a large number of assets relative to the sample size. These results
can be explained by the fact that our procedure usually selects a large por-
tion of the available assets, as it appears in Table 1.7, so that the instability
of the inverse problem remains unsolved and the performance of the resulting
sparse portfolio deteriorates.
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1.6.4 Monte Carlo assessment of GCVb

A question that we seek to answer through simulations is whether the
corrected version of generalized cross-validation criterion (GCVb) provides a
good approximation to the theoretically optimal τ that minimizes the expec-
ted loss in utility. To address this issue, we use the 1000 samples generated
in the previous section (T = 120 and N ∈ {20, 40, 60, 100} ). For each of
the samples, we compute the GCVb as a function of τ and determine its
minimizer τ̂ . We provide some statistics for τ̂ in Table 1.8.

To compute the MSE of τ̂ , we need to derive the true optimal regulari-
zation parameter τ0. To do so, we use our 1000 samples to approximate τ0

as the minimizer τ̂0 of the sample counterpart of the expected loss in utility
corresponding to the use of the regularized rule x̂ (τ) = Σ̂−1

τ µ̂/γ :

Ê
[
(x̂ (τ)− x∗)′Σ (x̂ (τ)− x∗)

]
where Ê is an average over the 1000 replications, Σ the theoretical covariance
matrix, Σ̂−1

τ the regularized inverse to the sample covariance matrix and
x∗ = Σ−1µ/γ the theoretical optimal allocation. This first step provides us
with an estimation of the true parameter which is a function of the number of
assets N and the sample size T under consideration and does not depend on
γ. Simulations reported in Table 1.8 show that the minimizers of GCVb are
relatively good approximations to the parameters that minimize the expected
loss in utility of the mean-variance strategy. For each regularization scheme
the true optimal parameter is approximated by the value that minimizes the
sample counterpart of the expected loss in utility Ê .

In general, regularization parameters have a relatively high volatility
across replications especially for the LF. As it appears in the Table 1.8,
this is mainly due to the presence of outliers in the tails. In contrast, the
value provided as a minimizer of the GCVb are relatively accurate for the
Rdg and SC in the sense that they are relatively close to the estimations
of their theoretical value. A very intuitive fact concerning the ridge penalty
term is that it increases with the number of assets in the portfolio, reflecting
that the penalty intensity increase with the degree of ill-posedness. In the
SC case, the GCVb criterion selects on average value of p close to 3, the
number of factors used, which is also the minimizer of the expected loss in
utility in most cases.

To visualize the effectiveness of the rule obtained from the regularization
parameter that minimizes GCVb, we plot the corresponding Rdg, SC, and LF
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strategies in the mean-variance plane. All the rules are computed on a single
sample of 100 asset returns and T = 120 monthly returns. A comparison
is made with three benchmarks : the M, 1oN, and the theoretical tangency
portfolio. Figure 1.2 shows how estimation errors can affect the optimality
of the mean-variance optimizer. We can see a huge discrepancy between the
theoretically optimal mean-variance and the sample-based optimal Marko-
witz portfolio. However, each of our regularized strategies get closer to the
theoretically optimal rule. The main message from Figure 1.2 is that regu-
larization reduces the distance between the sample-based tangency portfolio
and the theoretical tangency portfolio.

Figure 1.2 – Effect of regularization on the mean-variance frontier
The figure displays regularized portfolios in Table 1. We consider a sample of 120
observations and 100 asset returns generated using the three-factor model in Equation (
1.16). Optimal parameters are obtained by minimizing the GCVb. The sample-based MV
portfolio is overly optimistic, while its actual performance is the worse.
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1.7 Empirical Application

In this section, we adopt the rolling sample approach used in MacKinlay
and Pastor (2000) and in Kan and Smith (2008). Given a dataset of size
T and a window size M , we obtain a set of T −M out-of-sample returns,
each generated recursively using the M previous returns. For each rolling
window, the portfolio constructed are held for one year (Brodie et al. (2009))
which in our computations leads essentially to the same results as when
holding optimal rules for one month (DeMiguel et al. (2007, 2009)). The
time series of out-of-sample returns obtained can then be used to compute
out-of-sample performance for each strategy. As pointed out by Brodie et
al. (2009), this approach can be seen as an investment exercise to evaluate
the effectiveness of an investor who bases his strategy on the M last periods
returns. For each estimation window, we minimize the GCVb criterion to
determine the optimal tuning parameter for the ridge, the spectral cut-off
and the Landweber-Fridman. The investment rules listed in Table 1.2 are
then compared with respect to their out-of-sample Sharpe ratios for sub-
periods extending over M years. The obtained values reflect the performance
in terms of the reward to risk an investor would have if he were trading over
the considered period.

We apply our methodology to two sets of portfolios from French web
site : the 48 industry portfolios (FF48) and 100 portfolios formed on size and
book-to-market (FF100), ranging respectively from July 1969 to June 2009
and from July 1963 to June 2009. Following our methodology for FF48, the
optimal portfolios listed in Table 1.2 are constructed at the end of June every
year from 1974 to 2009 for a rolling window of size M = 60 months and from
1979 to 2009 for M = 120. The risk-free rate is taken to be the one-month T-
bill rate. Given the estimation windows considered, the portfolio construction
problem can be considered as ill-posed for the two datasets as reflected by
the condition numbers in Table 1.10. The rolling sample covariance matrices,
tend to have very small eigenvalues and large condition numbers, and the
situation is worse for the cases where the magnitude of N is of a comparable
order of magnitude as the estimation window M .

We use an appropriate range for τ to carry out our optimizations depen-
ding on the regularization scheme. For the Ridge we use a grid on [0, 1] with
a precision of 10−2, for the SC the parameter p ranges from 1 to pmax = N−1
while for LF we use a maximal number of iterations equal to lmax = 300. For
FF48 and M = 60 our first portfolios are constructed in June 1974. From
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the T ×N matrix of excess returns R, empirical mean µ̂, regularized inverse
Ω̂−1
τ and β̂τ are computed using historical returns from July 1969 to June

1974. We then deduce the optimal portfolio corresponding to each type of
regularization as a function of the minimizer of the corrected version of the
GCV criterion. The portfolio obtained is kept from July 1974 to June 1975
and its returns recorded. We repeat the same process using data from July
1970 to June 1975 to predict portfolio return from July 1975 to June 1976.
The simulated investment exercise is done recursively until the last set of
portfolio constructed at the end of June 2009. The different steps are essen-
tially the same for the FF100 except that we only consider a rolling window
of M = 120, so that the first portfolio is constructed in June 1973.

Panel A, B, and C of Table 1.11 indicate that regularized portfolios are a
more stable alternative to the Markowitz sample-based portfolio. Compared
to the naive strategy, the obtained results are relatively good. The perfor-
mance of the proposed rules are better in ill-posed cases, (N = 48, M = 60
and N = 100, M = 120) where the best performance of our regularized rule
is higher than the performance the out-of-sample Sharpe ratio provided by
the 1/N rule in all the break-out periods and in the whole period of study.

The Lasso strategy using the approximated GCVb does not provide consi-
derable improvement upon the Markowitz portfolio as noticed in the in-
sample simulation exercise. Efforts remain to be done to address the unsa-
tisfactory performances of the GCV-based Lasso portfolio. Among possible
alternatives, a promising approach is a regularized version of the post-Lasso
introduced by Belloni and Chernozhukov (2013). This approach is a two-
stage procedure that consists in applying the Rdg, the SC or the LF scheme,
with optimal regularization parameters, 2 to subsets of assets selected by the
Lasso. The open question is how to select, ex-ante, the optimal subset size
that leads to the maximum out-of-sample performance. Table 1.12 shows the
maximum level of out-of-sample attainable by tuning the number of assets
to be kept, after the optimal regularized rules have been used. It supports
the fact that the two-stage procedure offers additional room to improvement.
We plan to investigate this approach in future work.

2. Optimal parameters are obtained by minimizing the GCVb for each optimal subset
containing a given number of assets.
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1.8 Conclusion

In this chapter, we address the issue of estimation error in the frame-
work of the mean-variance analysis. We propose to regularize the portfolio
choice problem using regularization techniques from inverse problem litera-
ture. These regularization techniques namely the ridge, the spectral cut-off,
and Landweber-Fridman involve a regularization parameter or penalty term
whose optimal value is selected to minimize the implied expected loss in uti-
lity of a mean-variance investor. We show that this is equivalent to select the
penalty term as the minimizer of a bias-corrected version of the generalized
cross validation criterion.

To evaluate the effectiveness of our regularized rules, we ran some simu-
lations using a three-factor model calibrated to real data and an empirical
study using French’s 48 industry portfolios and 100 portfolios formed on
size and book-to-market. The rules are essentially compared with respect to
their expected loss in utility and Sharpe ratios. The main finding is that
in ill-posed cases a regularization to covariance matrix drastically improves
the performance of mean-variance problem, very often provides better re-
sults than the existing asset allocation strategies and outperforms the naive
portfolio especially in ill-posed cases.

Our methodology can be used as well for any investment rule that requires
an estimate of the covariance matrix and given a performance criterion. The
appeal of the investment rules we propose is that they are easy to implement
and constitute a valid alternative to the existing rules in ill-posed cases, as
demonstrated by our simulations.
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Table 1.3 – Statistics on actual loss in utility and actual Sharpe ratio from
optimal strategies for N = 20 and T = 120
The table displays distribution characteristics of actual loss in utility and actual Sharpe
ratio from optimal strategies using a three-factor model for N = 20 and T = 120 over
1000 replications. The risk aversion parameter γ is in {1, 3, 5}

Actual Loss in utility for Optimal strategies
γ Statistics 1oN M L Rdg SC LF

Mean 0.0178 0.1516 0.0256 0.0072 0.0123 0.008
Std 0 0.0706 0.0705 0.0262 0.0143 0.009

γ = 1 q1 0.0178 0.1036 0.0056 0.0029 0.0058 0.004
median 0.0178 0.1372 0.009 0.0037 0.0069 0.004

q3 0.0178 0.1835 0.0155 0.0058 0.0121 0.007

Mean 0.0054 0.0505 0.0085 0.0024 0.0041 0.003
Std 0 0.0235 0.0235 0.0087 0.0048 0.003

γ = 3 q1 0.0054 0.0345 0.0019 0.001 0.0019 0.001
median 0.0054 0.0457 0.003 0.0012 0.0023 0.001

q3 0.0054 0.0612 0.0052 0.0019 0.004 0.002

Mean 0.0032 0.0303 0.0051 0.0014 0.0025 0.002
Std 0 0.0141 0.0141 0.0052 0.0029 0.002

γ = 5 q1 0.0032 0.0207 0.0011 0.0006 0.0012 7E-04
median 0.0032 0.0274 0.0018 0.0007 0.0014 8E-04

q3 0.0032 0.0367 0.0031 0.0012 0.0024 0.001

Actual Sharpe ratio for Optimal strategies

Bias -0.0268 -0.1 -0.065 -0.0193 -0.0264 -0.0207
Std 0 0.0537 0.0422 0.0093 0.0156 0.0095

rmse 0.0268 0.1136 0.0776 0.0214 0.0307 0.0227
q1 0.1533 0.0796 0.1037 0.1587 0.153 0.1579

median 0.1533 0.0942 0.12 0.1625 0.1535 0.1601
q3 0.1533 0.107 0.137 0.166 0.1645 0.1634
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Table 1.4 – Statistics on actual loss in utility and actual Sharpe ratio from
optimal strategies for N = 40 and T = 120
Distribution characteristics of actual loss in utility and actual Sharpe ratio from optimal
strategies using a three-factor model for N = 40 and T = 120 over 1000 replications. The
risk aversion parameter γ is in {1, 3, 5}

Actual Loss in utility for Optimal strategies
γ Statistics 1oN M L Rdg SC LF

Mean 0.0188 0.6857 0.1342 0.0176 0.019 0.0165
Std 0 0.2806 0.9555 0.0154 0.007 0.0078

γ = 1 q1 0.0188 0.4844 0.0137 0.0075 0.0147 0.0105
median 0.0188 0.6295 0.0247 0.0107 0.0167 0.0135

q3 0.0188 0.8348 0.0544 0.0211 0.0209 0.0208

Mean 0.0057 0.2286 0.0447 0.0059 0.0063 0.0055
Std 0 0.0935 0.3185 0.0051 0.0023 0.0026

γ = 3 q1 0.0057 0.1615 0.0046 0.0025 0.0049 0.0035
median 0.0057 0.2098 0.0082 0.0036 0.0056 0.0045

q3 0.0057 0.2783 0.0181 0.007 0.007 0.0069

Mean 0.0034 0.1371 0.0268 0.0035 0.0038 0.0033
Std 0 0.0561 0.1911 0.0031 0.0014 0.0016

γ = 5 q1 0.0034 0.0969 0.0027 0.0015 0.0029 0.0021
median 0.0034 0.1259 0.0049 0.0021 0.0033 0.0027

q3 0.0034 0.167 0.0109 0.0042 0.0042 0.0042

Actual Sharpe ratio for Optimal strategies

Bias -0.0286 -0.1165 -0.0645 -0.0216 -0.0212 -0.0205
Std 0.0000 0.0486 0.0312 0.0067 0.0122 0.0053

rmse 0.0286 0.1262 0.0717 0.0226 0.0245 0.0211
q1 0.1556 0.0693 0.1095 0.1603 0.1538 0.1584

median 0.1556 0.0823 0.1209 0.1637 0.1641 0.1642
q3 0.1556 0.0918 0.1339 0.1668 0.1752 0.1682
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Table 1.5 – Statistics on actual loss in utility and actual Sharpe ratio from
optimal strategies for N = 60 and T = 120
Distribution characteristics of actual loss in utility and actual Sharpe ratio from optimal
strategies using a three-factor model for N = 60 and T = 120 over 1000 replications. The
risk aversion parameter γ is in {1, 3, 5}

Actual Loss in utility for Optimal strategies
γ Statistics 1oN M L Rdg SC LF

Mean 0.0194 2.3523 0.3576 0.0045 0.0077 0.0057
Std 0 1.0135 1.1909 0.0007 0.0029 0.001

γ = 1 q1 0.0194 1.6382 0.0068 0.0039 0.0067 0.0053
median 0.0194 2.1435 0.0166 0.0045 0.007 0.0056

q3 0.0194 2.8687 0.0729 0.005 0.0075 0.0058

Mean 0.0058 0.7841 0.1192 0.0015 0.0026 0.0019
Std 0 0.3378 0.397 0.0002 0.001 0.0003

γ = 3 q1 0.0058 0.5461 0.0023 0.0013 0.0022 0.0018
median 0.0058 0.7145 0.0055 0.0015 0.0023 0.0019

q3 0.0058 0.9562 0.0243 0.0017 0.0025 0.0019

Mean 0.0035 0.4705 0.0715 0.0009 0.0015 0.0011
Std 0 0.2027 0.2382 0.0001 0.0006 0.0002

γ = 5 q1 0.0035 0.3276 0.0014 0.0008 0.0013 0.0011
median 0.0035 0.4287 0.0033 0.0009 0.0014 0.0011

q3 0.0035 0.5737 0.0146 0.001 0.0015 0.0012

Actual Sharpe ratio for Optimal strategies
Bias -0.0344 -0.1764 -0.1274 -0.0240 -0.0294 -0.0259
Std 0.0000 0.0471 0.0784 0.0048 0.0124 0.0071

rmse 0.0344 0.1825 0.1496 0.0245 0.0319 0.0269
q1 0.1527 -0.0384 0.0573 0.1589 0.1508 0.1549

median 0.1527 0.0308 0.0864 0.1630 0.1510 0.1565
q3 0.1527 0.0503 0.1089 0.1669 0.1694 0.1680
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Table 1.6 – Statistics on actual loss in utility and actual Sharpe ratio from
optimal strategies for N = 100 and T = 120
Distribution characteristics of actual loss in utility and actual Sharpe ratio from optimal
strategies using a three-factor model for N = 100 and T = 120 over 1000 replications. The
risk aversion parameter γ is in {1, 3, 5}.

Actual Loss in utility for Optimal strategies
γ Statistics 1oN M L Rdg SC LF

Mean 0.0202 138.74 290.92 0.005 0.0038 0.0069
Std 0 126.51 7799.7 0.0029 0.002 0.0026

γ = 1 q1 0.0202 60.586 0.0065 0.0024 0.0024 0.0038
median 0.0202 98.993 0.0246 0.0032 0.003 0.0083

q3 0.0202 171.42 1.6148 0.0082 0.0048 0.009

Mean 0.0059 46.247 96.972 0.0017 0.0013 0.0023
Std 0 42.17 2599.9 0.001 0.0007 0.0009

γ = 3 q1 0.0059 20.195 0.0022 0.0008 0.0008 0.0013
median 0.0059 32.998 0.0082 0.0011 0.001 0.0028

q3 0.0059 57.14 0.5383 0.0027 0.0016 0.003

Mean 0.0036 27.748 58.183 0.001 0.0008 0.0014
Std 0 25.302 1559.9 0.0006 0.0004 0.0005

γ = 5 q1 0.0036 12.117 0.0013 0.0005 0.0005 0.0008
median 0.0036 19.799 0.0049 0.0006 0.0006 0.0017

q3 0.0036 34.284 0.323 0.0016 0.001 0.0018

Actual Sharpe ratio for Optimal strategies

Bias -0.0355 -0.1838 -0.1358 -0.0181 -0.021 -0.0251
Std 0 0.0241 0.0584 0.0072 0.0159 0.0064

rmse 0.0355 0.1853 0.1478 0.0195 0.0263 0.026
q1 0.1532 -0.0127 0.0386 0.1626 0.1525 0.1584

median 0.1532 0.0057 0.0618 0.1737 0.1744 0.1593
q3 0.1532 0.0228 0.0833 0.177 0.1763 0.1709
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Table 1.7 – Statistics on the number of assets kept by the Lasso
The figure shows the distribution characteristics of the optimal number of assets selected
by the Lasso procedure in the in-sample study

Number of assets
Statistics 20 40 60 100

Mean 18.20 36.94 55.26 88.90
Std 1.61 1.60 2.36 3.89
q1 18 36 54 86

median 18 37 55 89
q3 19 38 57 91

Table 1.8 – Optimal regularization parameters for SC, LF, and Rdg
Distribution characteristics of the optimal regularization parameters. The number of ite-
rations performed is 1000 for T = 120 monthly observations. We consider N assets,
N ∈ {20, 40, 60, 100}.

Rule Rdg ( τ) SC(p) LF(l)
N 20 40 60 100 20 40 60 100 20 40 60 100
τ̂0 0.006 0.018 0.01 0.05 2 3 3 3 14 8 149 32

Mean 0.008 0.007 0.023 0.072 2.42 2.93 2.3 2.23 68.48 129.6 113 24.18
Std 0.007 0.006 0.016 0.073 1.94 1.95 1.51 1.17 82.35 105.3 107 20.46

rmse 0.007 0.012 0.021 0.076 1.98 1.95 1.66 1.4 98.7 160.8 113 32.94
q1 0.002 0.002 0.01 0.01 1 1 1 2 12 22 15 8

median 0.006 0.005 0.01 0.02 2 3 1 2 16 110 17 9
q3 0.013 0.012 0.04 0.14 3 3 3 2 103 220 251 50
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Table 1.9 – Statistical properties of the sample covariance matrices eigen-
values
Panel A displays statistical properties of the maximum eigenvalue and the minimum eigen-
value derived from the sample covariance matrices in the in-sample study. Panel B shows
the distribution characteristics of the condition number of the sample covariance matrices
obtained over replications in the in-sample study.

Panel A : Eigenvalues

λ̂min λ̂max

N 20 40 60 100 20 40 60 100
λ 1.52E-05 2.79E-05 7.83E-06 1.53E-05 0.0346 0.0708 0.1039 0.19

Mean 1.26E-05 1.77E-05 3.80E-06 1.50E-06 0.025 0.061 0.1166 0.211
Std 1.78E-06 2.75E-06 6.95E-07 3.97E-07 0.0006 0.001 0.0013 0.002
q1 1.13E-05 1.58E-05 3.30E-06 1.23E-06 0.0245 0.0604 0.1157 0.209

median 1.24E-05 1.77E-05 3.76E-06 1.47E-06 0.025 0.0611 0.1166 0.211
q3 1.37E-05 1.95E-05 4.26E-06 1.75E-06 0.0254 0.0617 0.1175 0.212

Panel B : Condition numbers

λ̂max/λ̂min (λ̂max/λ̂min)/(λmax/λmin)
N 20 40 60 100 20 40 60 100

Mean 2027.9497 3527.8 31767.5 152232 0.8904 1.3879 2.392 12.3
Std 297.58027 573.51 6058.67 47231.5 0.1307 0.2256 0.4562 3.816
q1 1820.7269 3121.4 27225.8 120726 0.7994 1.228 2.05 9.753

median 2008.3814 3454.6 31054.8 143773 0.8818 1.3591 2.3384 11.61
q3 2198.8976 3875.3 35266.7 171208 0.9654 1.5246 2.6555 13.83
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Table 1.10 – Statistics on the eigenvalues and condition numbers of the
rolling window sample covariance matrices.
Statistics on the eigenvalues and condition numbers of the rolling window sample cova-
riance matrices. The estimation window considered are M= 60, 120, and the datasets F48
and FF100.

Data set M Statistics λmin λmax λmax/λmin
Mean 8.93E-06 0.1197 1.77E+04
Std 4.08E-06 0.0443 1.56E+04

FF48 60 q1 6.36E-06 0.0870 8.82E+03
median 8.05E-06 0.1157 1.37E+04

q3 1.14E-05 0.1557 2.14E+04

Mean 8.58E-05 0.1160 1.68E+03
Std 3.66E-05 0.0293 8.79E+02

FF48 120 q1 5.76E-05 0.0940 7.38E+02
median 7.35E-05 0.1136 1.61E+03

q3 0.0001237 0.1399 2.49E+03

Mean 5.23E-06 0.2697 5.74E+04
Std 1.52E-06 0.0645 2.78E+04

FF100 120 q1 4.14E-06 0.2265 3.79E+04
median 5.07E-06 0.2527 5.14E+04

q3 6.17E-06 0.3301 6.73E+04
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Table 1.11 – Out-of-sample Sharpe ratio for regularized rules applied to
industry portfolios
Out-of-sample performance in terms of Sharpe ratio of the optimal rules applied to FF48
and FF100 using a rolling window of length M = {60, 120}. The optimal regularized rules
are obtained using the regularization parameters that minimizes the GCV .

Panel A : Out-of-sample SR for FF48, and M=60months
Period 1oN M L Rdg Sc LF

07/74 - 06/79 0.1334 0.0797 0.1252 0.1243 0.3006 0.2620
07/79 - 06/84 0.1070 -0.2879 0.0004 0.0874 -0.0186 0.1227
07/84 - 06/89 0.1823 0.1302 0.1895 0.2974 0.3131 0.2158
07/89 - 06/94 0.1077 0.0332 -0.1140 0.0490 0.2856 0.1526
07/94 - 06/99 0.2910 0.0433 -0.2273 0.3370 0.2954 0.3379
07/99 - 06/04 0.0767 0.0375 -0.0202 0.0602 0.0673 0.0699
07/04 - 06/09 -0.0119 -0.2494 -0.0294 -0.0212 -0.0987 -0.0111

07/74-06/09 0.1266 -0.0305 -0.0108 0.1334 0.1635 0.1642

Panel B : Out-of-sample SR for FF48, and M=120months

Period 1oN M L Rdg Sc LF

07/79 - 06/89 0.1468 -0.0183 0.0465 0.1311 0.1282 0.1247
07/89 - 06/99 0.2002 -0.0568 -0.0656 0.2427 0.1664 0.2373
07/99 - 06/09 0.0269 -0.0485 -0.0462 -0.0555 -0.0992 -0.0465
07/79 - 06/09 0.1246 -0.0412 -0.0218 0.1061 0.0651 0.1052

Panel C : Out-of-sample SR for FF100, and M=120months
Period 1oN M L Rdg Sc LF

07/79 - 06/89 0.1468 -0.0183 0.0465 0.1311 0.1282 0.1247
07/89 - 06/99 0.2002 -0.0568 -0.0656 0.2427 0.1664 0.2373
07/99 - 06/09 0.0269 -0.0485 -0.0462 -0.0555 -0.0992 -0.0465
07/79 - 06/09 0.1246 -0.0412 -0.0218 0.1061 0.0651 0.1052
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Table 1.12 – Out-of-sample performance in terms of Sharpe ratio for optimal
rules combined with the Lasso and applied to FF48
Out-of-sample performance in terms of Sharpe ratio for optimal rules applied to FF48
using a rolling window length of 60 months. The optimal number of assets over different
subsets of assets obtained using the Lasso as a first step. The combined rules use the Lasso
a first step procedure and are obtained by minimizing GCV over different sets of assets.

Period 1oN M L Rdg Sc LF L-Rdg L-Sc L-LF

07/74 - 06/79 0.1334 0.0797 0.1252 0.1287 0.3006 0.2620 0.3576 0.3506 0.3624
07/79 - 06/84 0.1070 -0.2879 0.0004 0.0879 -0.0186 0.1227 0.4541 0.3826 0.1653
07/84 - 06/89 0.1823 0.1302 0.1895 0.2979 0.3131 0.2158 0.4590 0.4937 0.3763
07/89 - 06/94 0.1077 0.0332 -0.1140 0.0490 0.2856 0.1526 0.2961 0.3551 0.3556
07/94 - 06/99 0.2910 0.0433 -0.2273 0.3372 0.2954 0.3379 0.4847 0.5193 0.4862
07/99 - 06/04 0.0767 0.0375 -0.0202 0.0610 0.0673 0.0699 0.2258 0.2723 0.2542
07/04 - 06/09 -0.0119 -0.2494 -0.0294 -0.0206 -0.0987 -0.0111 0.2369 0.3200 0.3568
07/69 - 06/03 0.1266 -0.0305 -0.0108 0.1344 0.1635 0.1642 0.3592 0.3848 0.3367
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Chapitre 2

Optimal domestic portfolios
and the exchange rate risk

2.1 Introduction

Under the well recognized failure of purchasing power parity (PPP), cur-
rency risk must be a priced factor (Solnik, 1974 ; Adler and Dumas, 1983). In
the U.S. equity market, this theoretical result is supported by a large body
of empirical evidence, both at the country level and at the industry level (De
Santis and Gerard, 1998 ; Carrieri, Errunza, and Majerbi, 2006a ; Francis,
Hasan, and Hunter, 2008). While evidence on the pricing of the exchange
rate risk is overwhelming, very little is said about the implications of such
result for domestic investors, in particular, if currency risk could be reduced
or eliminated through a given portfolio strategy over domestic assets. Indeed,
the pricing of currency risk, implies that currency risk is systematic and that
investors require to be rewarded by a premium for bearing it. Different port-
folio strategies are likely to have different exposures to currency risk. This is
because they use different weights on assets whose exposures vary across in-
dustries and over time (Francis, Hasan, and Hunter, 2008). Therefore, when
exposed to common prices of risk, different strategies are also likely to lead
to different premiums for currency risk.

The case for portfolios consisting exclusively of domestic assets, can be
made in at least three points. First, there is a consensus among financial
economists and practitioners that a country’s domestic investors have an ad-
vantage in trading stocks in their country over foreign investors, for many
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reasons such as superior information, the bias of domestic regulator against
foreign investors (Choe, Kho, and Stulz, 2005). For instance, these reasons
have been used to explain the home bias puzzle, of the predominant share of
domestic investments in investors portfolios, (see French and Poterba, 1991 ;
Cooper and Kaplanis,1994 ; and Kang and Stulz, 1997). Second, investing
abroad might be unnecessary, since in some cases, it is possible to exhaust
the gains from international diversification through home-made diversifica-
tion (Errunza, Hogan and Hung, 1999). Finally, although the benefits of glo-
bal diversification have been extensively documented, and are still relevant,
(e.g. Solnik, 1974 ; Christoffersen et al., 2012 ; Driessen and Laeven, 2007),
the last decades have experienced an increased level of integration in interna-
tional markets. Among other things, these trends have led to an increase in
the exposures of domestic markets to foreign exchange rate movements, and
to the reduction of the potential for international diversification (See e.g. Li,
Sarkar, and Wang (2003) 1). This shrinking benefit from international diversi-
fication, implies that investing domestically is becoming increasingly relevant
to consider and study. Besides, the assessment of the benefits of domestic di-
versification pointed out in previous studies can be made more precise, by
examining how optimal combinations of domestic assets are exposed to in-
ternational sources of risk, in particular to the exchange rate risk.

In testing how domestic investors are impacted by currency risk, we need
to specify the strategies implemented, and how optimal weights are deter-
mined. For example, when studying the impact of the European Monetary
Union (EMU) and non-EMU currency risks on international portfolio choices,
De Santis, Gérard, and Hillion (1999) considered dynamic asset allocation
strategies, for universal investors 2. In contrast to these authors, this chapter
focuses entirely on domestic portfolios. We consider global minimum-variance
portfolios, that have been extensively documented to perform better than
mean-variance portfolios (DeMiguel, Garlappi, Nogales, and Uppal, 2009 ; Ja-
gannathan and Ma, 2003). This strategy corresponds to the assumption that
the investor’s primary concern is to minimize the overall portfolio risk. The
portfolios are constructed in the U.S. using an investment set that consists of
48 industry portfolios, and the optimal weights are obtained recursively based
on M previous months to mimic the dynamic behavior of a mean-variance

1. Though international markets are becoming more integrated this does not eliminate
the diversification benefits of emerging market investment.

2. For such investors, the investment universe contains stock market indices, short-term,
and euro-currency deposits.



51

investor.
When constructing mean-variance portfolios, the inverse of the covariance

matrix between all asset returns, is needed. However, the size of the invest-
ment set and estimation errors can lead to instabilities in the inverse, the
optimal weights, and offset the gain from diversification as investigated in
chapter 1 (e.g DeMiguel, Garlappi, and Uppal, 2009). For this reason, we
also consider a family of global minimum portfolios that are regularized to
deal with the instabilities arising in large portfolios. Among the available
regularization techniques (see Kress, 1999 ; Carrasco, Florens, and Renault,
2007), we choose the spectral cut-off which is closely related to principal
component and factor models. This technique stabilizes optimal portfolios
weights by considering reduced number of the covariance matrix’s principal
components.

The objective of this chapter is to investigate whether optimal portfolios
of domestic assets are associated with lower exchange risk exposures, and if
such portfolios lead to premiums that are economically important. Since a
stabilization is applied to the optimal weights considered, our methodology
also allows us to investigate how stable investment strategies are impacted
by currency risk. Even though our entire focus is on the global minimum
portfolio strategy and its stable extensions, it is worth mentioning, that this
chapter, does not promote a particular rule, or that domestic investment
outperforms international investment.

Currency risk for cross-sections of asset returns, is better assessed in the
context of international asset pricing models (IAPM). Thus to achieve our
objective, we use the optimal portfolios constructed to estimate and test a
conditional IAPM under the assumption the U.S. industries are integrated
with the world stock market. The model we use is similar to the five-factor
conditional IAPM of Francis, Hasan, and Hunter (2008), which is the condi-
tional version of the three Fama and French (1993) model augmented with
the changes in the trade-weighted exchange rates indices, representing in-
dustrialized economies and emerging markets currency risk. In the model
we adopt, we substitute the US market index with the world equity market
index, to be in accordance with our assumption that U.S. industries are inte-
grated with the world market. The model is suited to our objective, since it
has demonstrated its methodological superiority by establishing 3 that cur-

3. Thus resolving the puzzle posed by previous studies that currency risk is priced at
aggregate equity market but not at the industry level.
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rency risk is priced and time-varying at the industry level and is associated
with an economically important premium.

Our findings can be summarized by three main points. First, we find that
currency is also priced and time-varying for cross-sections of optimally diver-
sified domestic portfolios in the US. Second, we find that portfolios optimized
over domestic assets substantially reduce the average industry exposure to
currency risk across U.S. industries, both in size and volatility. Third, for
all the global minimum portfolios considered, the currency premium contri-
bution to the total premium is economically meaningful, but approximately
remains the same in terms of their contributions to total premium.

These results are relevant for many reasons. First, the constructed in-
vestment rules represent an alternative to the standard market capitalization
weights used to test the pricing of currency risk. Therefore, our finding pro-
vide additional evidence for the pricing of currency risk in the U.S.. Besides,
the reduction in exposures obtained can be seen as additional measures of
the benefit of domestic diversification. Second, our results provides insights
for hedging strategies. Indeed, hedging strategy requires the choice of the
amount and type of the hedging instrument, which in turn depends only on
the size and volatility of the exposures. Thus the fact that exposures are
substantially reduced and less volatile, while the contribution to premium
is roughly the same, implies investors can greatly benefit from optimal re-
gularized portfolios, that allows them to reduce their exposures to currency
risk while keeping the same level of reward. In other words, optimal domes-
tic portfolios have the potential to reduce currency risk hedging costs, as
investor reduce the amount and frequency of hedging rebalancing.

The studies closest to ours are De Santis, Gérard, and Hillion (1999) and
Francis, Hasan, and Hunter (2008). Our results are consistent with the latter
study, and extend the industry portfolios level framework to optimal portfolio
of U.S. industries. In addition, in this chapter, we did not restrict ourselves
to the 36 industries, but considers the 48 industries portfolios that provide
an exhaustive coverage of the U.S. stock market. The former paper considers
universal investors and decomposes currency risk into its EMU and non-
EMU components, while we disaggregate currency risk in its industrialized
and emerging markets components.

The rest of the chapter is organized as follows. Section 2 describes the mo-
del and methodology used to construct optimal minimum portfolios, and to
measure currency exposures and premiums. Section 3 presents the data used
as inputs in our estimations, and provides some statistics. Empirical evidence
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on the pricing of currency risk for industry portfolios and global minimum
portfolios are discussed in Section 4. Section 5 performs some diagnostics and
robustness tests, and finally Section 6 concludes.

2.2 Model and Methodology

2.2.1 Investment strategies

The investment universe considered consists of N industry portfolios in
the U.S.. We use ri,t and rp,t to denote the excess returns (over the risk-free
asset) on the ith industry and the returns on a given optimal portfolios p,
respectively. The N-vector rt is the excess returns on the N industries. All
returns are between time t− 1 and time t.

The returns on optimal portfolios rp,t at time t, are obtained from optimal
portfolio weights, wt−1, constructed using observed industry returns up to
period t−1, and the realized return at time t. These time-varying weights are
obtained recursively using a rolling window of M = 100 monthly returns. In
other words, investors first use the last M observations on industry returns, to
construct the weights to be used the next period. Then investment window is
rolled over one month forward for the next investment decision. In the period
t, the realized return on portfolio p, using the weights wt−1 is :

rp,t = w′t−1rt =
N∑
i=1

wi,t−1ri,t (2.1)

The investment strategies considered are the equally weighted portfolio
and the Markowitz’s global minimum variance portfolio. These portfolios re-
present an alternative to the market portfolio that stems the equilibrium
relationship underlying CAPM models. Precisely, instead of market capitali-
zation weights, the weights that we use stems form optimization procedures.
A particular case of portfolio, are single industry portfolios, considered by
Francis, Hasan, and Hunter (2008) as cross section in the estimation of an
IAPM. For example in the case of industry i portfolio, the weight wt−1 has
1 for its ith component and zero everywhere else.



54

The 1 over N equally diversified

As described in Chapter 1, the 1/N rule consists in investing equally in
each asset of given investment universe, that is wi,t−1 = 1

N
, for all asset i.

This rule is not derived from a model, and then has no estimation errors.
As a result, the equally weighted rule tends to perform better than most
existing rules for large number of assets, and has recently been established
as a benchmark investment rule by DeMiguel, Garlappi, and Uppal (2007).

The global minimum portfolio

In this chapter we focus on the minimum-variance portfolio strategy, as
extensive empirical evidence shows that this rule usually performs better
out-of-sample than any other mean-variance portfolio (DeMiguel, Garlappi,
Nogales, and Uppal, 2009 ; Jagannathan and Ma, 2003). This strategy has
the attractive feature that it does not require an estimate of the mean of
asset returns, which has been documented to be difficult to estimate (See
Merton, 1980). It corresponds to a risk-minimizing equity investor, whose
primary concern is to minimize the overall risk of his portfolio. Let Σt−1 be
the sample covariance matrix based on industry returns up to t − 1. The
global minimum 4 variance portfolio weights are function of the inverse Σ−1

t−1

of Σt−1 and are given by 5 :

ωt−1 =
Σ−1
t−11N

1′NΣ−1
t−11N

(2.2)

where 1N is the N -vector of ones.

The inverse of the sample covariance can exhibit explosive effects, when
the investment universe is large, and lead to low levels of portfolio perfor-
mance. Many solutions have been proposed to tackle this issue (See Chapter
1 for a review). Here, we also stabilize the inverse of the covariance matrix,
through a statistical technique called regularization, but we only consider
the spectral cut-off. Other regularizations such as the ridge and Landweber-
Fridman could have been considered. However, these regularizations often
lead to similar performance, when the optimal regularization parameter is

4. The strategies is unrestricted, have no position limits, nor transaction costs.
5. This analytical expression is straightforward and is obtained by solving for ω, in the

optimization problem Minω′H−1t−1ω, st : ω′1N = 1.
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selected. The spectral cut-off is closely related to principal component analy-
sis and factor models, and has appealing statistical and economic interpreta-
tions. In the next paragraph, we recall how the spectral cut-off improves the
poor performance of portfolio weights involving an estimate of the covariance
matrix.

The global minimum portfolios and spectral cut-off

As a positive definite matrix, the covariance matrix Σ can be written
as PΛP ′. Where Λ is the diagonal matrix with the eigenvalues {λj}Nj=1 of
Σ on its diagonal, arranged in decreasing order ; P is the matrix such that
the jth column, Pj, is the eigenvector associated with λj. This means that
ΣPj = λjPj. The inverse of Σ that appears in (2.2) is given by :

Σ−1
t−1 = P


1
λ1

0 · · · 0

0 1
λ2

. . . 0
...

. . . . . . 0
0 · · · 0 1

λN

P ′ (2.3)

Equation (2.3) shows the issue that may arise when inverting a large cova-
riance matrix of assets returns. Indeed, in such a case the smallest eigenva-
lue, λN , tends to converge toward zero (e.g. Florens, Carrasco, and Renault,
2007), leading to unstable portfolio weights.

In general, the regularized inverse of the sample covariance matrix is
obtained using function q(τ̃ , ·) that dampens the possible explosive effects
stemming from inverting eigenvalues. The dampening function q(τ̃ , ·) is pa-
rametrized by τ̃ , which represents the amount of regularization introduced 6.
Precisely, the 1

λj
are replaced by

q(τ̃ ,λj)

λj
in Equation (2.3), which leads to :

Σ−1
τ̃ ,t−1 = P


q(τ̃ ,λ1)
λ1

0 · · · 0

0 q(τ̃ ,λ2)
λ2

. . .
...

...
. . . . . . 0

0 · · · 0 q(τ̃ ,λN )
λN

P ′ (2.4)

6. The dampening functions for the ridge regularization and the Landweber-Fridman

regularization are q(τ, λj) =
λj

λj+τ
and q(τ, λj) = 1− (1− λj)

1
τ , respectively, and are not

considered in this chapter.
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In the case of the spectral cut-off, stability is guaranteed by ruling out
the eigenvectors associated with eigenvalues smaller than a threshold given
by τ̃ . We have :

q(τ̃ , λj) = 1λj>τ̃ (2.5)

Denote by lτ̃ the number of eigenvalues satisfying λj > τ̃ . Using (2.4) and
(2.5), we have :

Σ−1
τ̃ ,t−1 = P


1
λ1

0
. . .

1
λl

0 0

P ′ =
lτ̃∑
j=1

1

λj
PjP

′
j . (2.6)

The parameter lτ̃ is the number of eigenvector used. Similarly, given a
certain percentage τ of eigenvectors to be kept, lτ̃ can be replaced by lτ , the
integer part of τ ∗N .

The corresponding regularized covariance matrix is :

Σ−1
τ,t−1 =

lτ∑
j=1

1

λj
PjP

′
j . (2.7)

The strategy obtained by using the spectral cut-off, with lτ principal
components is :

ωt−1(τ) =
Σ−1
τ,t−11N

1′NΣ−1
τ,t−11N

(2.8)

In this chapter, we interpret the weights ωt−1(τ), as being the strategy
adopted by the investors who uses a certain percentage of the PCs to make
a decision. This percentage also represents the percentage of total variation
in the investment set, and is related to the stability of portfolio weights as
measured by the turnover 7 :

7. The turnover is a measure of stability in portfolio weights, the lower the turnover
the stabler the portfolio. It is equal to the sum of the absolute value of the rebalancing
trades across the N available assets and over the T −M − 1 trading dates, normalized by
the total number of trading dates.
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TO =
1

T −M − 1

T−1∑
t=M

N∑
j=1

(|wj,t+1 − wj,t+|) (2.9)

where wj,t+ is the portfolio weight before rebalancing at t + 1, and wj,t+1 is
the portfolio weight at time t+ 1 after rebalancing.

The lower the percentage τ , the more stable the rule, and so τ can also
be interpreted as the degree of stability required by investors. Indeed, as
displayed in Table 2.2, the turnover which measures the stability of portfolio
weights is a decreasing function of the percentage of PCs used.

In Chapter 1, the parameter τ is selected to achieve specific performance
criterion. The present chapter does not treat the optimal selection of τ , as
its objective is to investigate the ability of optimal and stable portfolios to
reduce the exposures to currency risk, and how the adoption of such strategies
affects currency premiums.

2.2.2 Conditional International Asset Pricing Models

Our empirical model falls is an international asset pricing model. This
section presents the theoretical foundations of such models as well as some
transformations proposed in the literature to make estimations feasible.

In the sequel we adopt the following notations. Ωt−1 denotes the set of
information available to the investor at the end of time t − 1 ; Et−1(·) and
covt−1(·) are the expectation and covariance operator conditioned on Ωt−1,
respectively.

The standard Conditional International Asset Pricing Models

The model we use in our investigations is based on the seminal model
proposed by Adler and Dumas (1983). The failure of PPP assumed in their
model, implies that investors in different countries use different price indices
to evaluate their investments. As a result, optimal portfolios are also different
across countries, and asset pricing models contain a priced currency risk
factor.

In a world with L+ 1 countries, and a set of N securities, the conditional
version of the international asset pricing model expresses the expected excess
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returns on each asset i, as a function of a global market risk premium and
inflation risk premium :

Et−1(ri,t) = δω,t−1covt−1(ri,t, rω,t) +
L∑
j=1

δj,t−1covt−1(ri,t, πj,t) (2.10)

where ri,t and rω,t are the excess returns on asset i and world market port-
folio, in period t, respectively ; πj,t is the inflation rate of country j expressed
in U.S. dollar, the reference currency ; δω,t and δj,t are the prices of the world
market risk and inflation risk, respectively ; covt−1(ri,t, rω,t) measures the ex-
posure of asset i to world market risk and represents market risk component
of the standard CAPM (Sharpe, 1964 ; Lintner, 1965) ; while covt−1(ri,t, πj,t)
measures the exposure of asset i to both inflation risk and exchange rate risk
associated with country j. This last measure of exposure also represents the
additional source of risk induced by PPP deviation.

Two general transformations of the model in Equation (2.10) were adop-
ted in the literature to make estimations feasible. The first transformation
consists in replacing πj,t by the real exchange rate 8, which is a more empiri-
cally tractable variable, and ensures that the adjustment for inflation is also
accounted for, (see Carrieri et al. 2006a). This means that the real exchange
rate is more robust to relatively high levels of inflation. Therefore in the es-
timations of Section 2.4, we adopt the changes in real exchange rate indices
as currency risk factors. In the sequel, the real exchange rate of country j,
with respect to U.S dollar is denoted by ej,t. For i = 1, · · · , N , replacing the
inflation rate of country j by the real exchange rate between the reference
currency and the currency of country j, in Equation (2.10) leads to :

Et−1(ri,t) = δw,t−1covt−1(ri,t, rw,t) +
L∑
j=1

δj,t−1covt−1(ri,t, ej,t), (2.11)

The time-varying exposure of asset i to factor k is measured by the time-
varying beta of portfolio i relative to factor k, βi,kt−1, defined as the condi-

8. An alternative to real exchange rate is the nominal exchange rate, under the assump-
tion that U.S. inflation rate is non-stochastic so that the only random component of πj
comes from the relative changes in the real exchange rate between the reference currency
and the currency of country j. This assumption is violated when changes in domestic in-
flation are is not negligible relative to exchange rate fluctuations (See Dumas and Solnik,
1995 ; De Santis and Gérard, 1998).
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tional covariance risk normalized by the conditional variance of the returns
on factor k. For the currency source of risk j,

βi,j,t−1 =
covt−1(ri,t, ej,t)

vart−1(ej,t)
. (2.12)

If the risk j is priced for the asset i, then investors holding that asset require a
premium for bearing the systematic source of risk j. The premium associated
with the source of risk j is the product between the conditional price of risk of
factor j, δj,t−1, and the conditional covariance covt−1(ri,t, ej,t). In the model
(2.11), the market risk premium (MRP ), and the currency risk premium
(CRP ) are respectively :

MRPt−1,i = δω,t−1covt−1(ri,t, rω,t), and CRPt−1,i =
L∑
j=1

δj,t−1covt−1(ri,t, ej,t).

The second transformation of (2.10) is obtained by replacing the exchange
rates of the L currencies, {ei}Li=1, with a reduced number 9, C, of currency

exchange rates, {ec}Cc=1, or by composite exchange rate measures 10. Follo-
wing Carrieri, Errunza, and Majerbi (2006a) and Francis, Hasan, and Hunter
(2008), we use two exchange rate indices representing U.S. major partners
currency risk (MJ), and emerging market (EM) currency risk. Therefore, the
total currency premium, that consists of the emerging market currency risk
and the major currency risk is expressed as :

CRPt−1,i =
∑

j=mj, em

δj,t−1covt−1(ri,t, ej,t) (2.13)

where emj,t and eem,t are the changes in the two real exchange rate indices of
the major currencies and the EM currencies, respectively, vis-à-vis the U.S.
dollar, the reference currency.

The different transformations of model (2.10) mentioned above lead to
model (2.14) to which refer as the standard model :

Et−1(ri,t) = δω,t−1covt−1(ri,t, rω,t) +
∑

k=mj, em

δk,t−1covt−1(ri,t, ek,t). (2.14)

9. Among others, see De Santis and Gérard, 1998 ; De Santis, Gérard, and Hillion, 2003.
10. See among others, Jorion, 1991 ; Ferson and Harvey, 1993, 1994 ; Choi, Hirachi, and

Takezawa, 1998 ; Carrieri, Errunza, and Majerbi, 2006a.
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The models described above have mainly been estimated to investigate
the pricing of currency risk across countries. While empirical evidence on the
pricing of currency risk at the industry level have long been inconclusive,
Francis et al. (2008) demonstrate that this was due to a methodological
weakness, rather than effective use of hedging at the industry level. We next
review their model which is closely linked to ours.

The conditional Fama-French three-factor model augmented with
currency factors

Francis, Hasan, and Hunter (2008) use a five-factor conditional asset pri-
cing model applied to 36 U.S. industry portfolios. Their model is the condi-
tional version of the Fama and French (1993) model, augmented with two
currency indices. The five factors used are the value-weighted U.S. market
portfolio in excess of the risk-free rate, rm,t ; the returns on the size factor
(SMB), rsmb,t ; the returns on the book-to-market factor (HML), rhml,t ; and
the MJ and EM currency factors. The model specifies the expected excess
returns on each industry as the sum of the products of the time-varying betas
with the expected excess returns on each of the risk factors considered :

Et−1(ri,t) =
∑

k=m,smb,hml

βi,k,t−1Et−1(rk,t) +
∑

k=mj, em

βi,k,t−1Et−1(ek,t) (2.15)

where ri,t is the return at time t on the ith industry in excess of the return
on the risk free asset ; Et−1(rk,t), for k = m, smb, hml, is the conditionally
expected excess return on the kth equity factor ; βi,k,t−1 is the time-varying
exposure of portfolio i relative to factor k defined in (2.12) ; Et−1(emj,t) and
Et−1(eem,t) are the conditionally expected change in the the MJ and EM
currency factors, respectively.

Note that model (2.15) which is equivalent to (2.16), uses the same cur-
rency indices as model (2.13), while the worldwide market index is replaced
by the Fama and French factors.

Et−1(ri,t) =
∑

k=m,smb,hml

δk,t−1covt−1(ri,t, rj,t) +
∑

k=mj, em

δk,t−1covt−1(ri,t, ej,t)

(2.16)
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Model used to evaluate currency risk exposures and currency pre-
miums

In order to evaluate the currency exposures of the portfolio strategies
considered, we use the standard model in Equation (2.14) as a starting point.
The implicit assumption that we make, is that U.S. industries are integrated
with the rest of that world, and are globally priced. This assumption also
has a practical aspect, in the sense that the optimal portfolios we construct
from U.S. industry portfolios might be highly correlated with the U.S. market
portfolio, which is replaced by the world market portfolio. Besides, in order
to capture the cross-section variation in U.S. industries, we augment model
(2.14) with two of the three Fama-French factors : the returns on the size
factor and the returns on the book-to-market factor. The introduction of FF
factors will ensure that it is unlikely that currency risk is priced because it
is a proxy of an omitted factor. This also prevents us from introducing a
missing variable bias in our estimations, as these factors have been shown
to be priced factors for cross sections of U.S. industry portfolios, in previous
studies. As a result, for each industry i :

Et−1(ri,t) =
∑

k=w,smb,hml

δk,t−1covt−1(ri,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(ri,t, ek,t)

(2.17)
By multiplying both side of the previous equation by weights constructed
using information up to t − 1, and summing over all N industries we have,
using (2.1)

Et−1(rp,t) =
∑

k=w,smb,hml

δk,t−1covt−1(rp,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(rp,t, ek,t)

(2.18)
Our model differs from the model in Francis et al. (2008) by the fact that

we considered the world market factor, instead of the U.S. market factor.
This is justified by our assumption that U.S. industries are priced globally.
As shown in Equation (2.18), the price of the sources of risk δk,t−1 remains
unchanged. However, the exposures to risk factors, in particular to currency
risk exposures, are modified. The objective of this chapter is to investigate the
extent to which the adoption of global minimum portfolios of U.S. industries
affects the exposures to and premiums for currency risk.
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2.2.3 Empirical methodology

The model in Equation (2.13) has to hold for every assets. Therefore,
the following system of asset pricing restrictions has to be satisfied for each
portfolio p, at each point in time :

Et−1(rp,t) =
∑

k=w,smb,hml

δk,t−1covt−1(rp,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(rp,t, ek,t)

Et−1(rw,t) =
∑

k=w,smb,hml

δk,t−1covt−1(rw,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(rw,t, ek,t)

Et−1(rsmb,t) =
∑

k=w,smb,hml

δk,t−1covt−1(rsmb,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(rsmb,t, ek,t)

Et−1(rhml,t) =
∑

k=w,smb,hml

δk,t−1covt−1(rhml,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(rhml,t, ek,t)

Et−1(emj,t) =
∑

k=w,smb,hml

δk,t−1covt−1(emj,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(emj,t, ek,t)

Et−1(eem,t) =
∑

k=w,smb,hml

δk,t−1covt−1(eem,t, rk,t) +
∑

k=mj, em

δk,t−1covt−1(eem,t, ek,t)

Denote by rpt , the 6× 1 vector of excess returns rpt = (rp,t, rw,t, rsmb,t,
rhml,t, emj,t, eem,t)

′. The following system of equations can be used to estimate
the conditional version of the ICAPM :

rpt =
∑

k=w,smb,hml

δk,t−1hk,t +
∑

k=mj, em

δk,t−1hk,t + εt, εt|Ωt−1 ∼ N(0, Ht)

(2.19)
where εt = (εp,t, εw,t, εsmb,t, εhml,t, εmj,t, εem,t)

′ is the vector of residuals ; Ht is
the 6× 6 conditional covariance matrix of asset returns. Denote by n the or-
der of the subscript k in the list {w, smb, hml,mj, em}, then the conditional
covariance matrix between each asset and the return on the kth factor, hk,t,
corresponds the (n+1)th column of Ht ; for example hem,t is the last column of
Ht, represents the conditional covariance of asset returns with emerging mar-
ket currency index, and measures the exposure to emerging market currency
risk.

To allow for time variation in the prices of risk, we use a set of instruments
or information variables, well known in the literature of asset pricing to have
a predictive power for equity returns and for the change in the currency
indices. These instruments include a constant and are observed at the end
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of time t − 1. The prices of risk are modeled by a linear relationship for all
risk factors except for the market price of risk, which is constrained to be
positive 11 in Adler and Dumas (1980) model. For this reason, we specify the
world market price as the exponential of a linear relationship (See Bekaert
and Harvey, 1995 ; De Santis and Gérard, 1997, 1998).

We denote by Zs,t−1 the set of information variables related to equities,
and by Zf,t−1 the instruments used to predict changes in the currency factors.
The instruments and their choice is discussed in detail in Section 2.3. We have
the following equations :

δw,t−1 = exp(κ′wZs,t−1)
δj,t−1 = κ′jZs,t−1, j = smb, hml
δj,t−1 = κ′jZf,t−1, j = mj, em

(2.20)

An additional advantage of specifying the dynamics of the prices of risk as
a function of instruments, is that the hypothesis zero and constant price of
risk are easily testable. For instance, testing the significance of the price of
factor j, amounts to testing whether all the element of κj are jointly zero ;
while testing for time-variation in the prices, is equivalent to testing the null
hypothesis that the coefficients of non constant instruments are jointly equal
to zero. In Section 2.4, we test these hypothesis using robust Wald statistics.

Finally, we adopt a parsimonious GARCH process for the residuals to
accommodate the GARCH-in-mean feature found in most tests of asset pri-
cing models (Ding and Engle ,1994 ; De Santis and Gérard, 1997,1998). We
assume that the conditional second moments follow a diagonal GARCH pro-
cess 12(Bollerslev et al., 1988) and that the conditional covariance matrix Ht

is covariance stationary, with H0 its unconditional mean. Thus Ht can be
written as :

Ht = (ιι′ − aa′ − bb′) ∗H0 + aa′ ∗ εt−1ε
′
t−1 + bb′ ∗Ht−1 (2.21)

where ι is the 6× 1 vectors of ones, a and b are 6× 1 vectors of parameters,
and ∗ is the Hadamard (element-by-element) matrix product.

11. The price of risk is the weighted average of the coefficients of risk aversion of all
national investors.

12. The variances in Ht depend only on past squared residuals and an autoregressive
component, while the covariances depend upon past cross product of residuals and an
autoregressive component.
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The model we estimate consists of Equations (2.19), (2.20) and (2.21).
The set of unknown parameters Ψ 13, are estimated, under conditional nor-
mality assumption, the log-likelihood function is :

lnL(Ψ) = −Ts
2

ln 2π − 1

2

T∑
t=1

ln |Ht(Ψ)| − 1

2

T∑
t=1

εt(Ψ)′Ht(Ψ)−1εt(Ψ).(2.22)

To make our estimations robust to the frequent violation of the conditio-
nal normality assumption in financial time series, we use the quasi-maximum
likelihood (QML) approach proposed (Bollerslev and Wooldridge, 1992) to
compute all our tests. The system is estimated using the Broyden, Fletcher,
Goldfarb, and Shanno (1985) and the Berndt, Hall, Hall, and Hausman (1974)
algorithms.

2.3 Data and summary statistics

In this section, we describes the data on the industry portfolios, optimal
portfolios, risk factors and instruments used in the empirical analysis. This
section also investigate the performance of the optimal rules studied in terms
of their Sharpe ratio and turnover.

2.3.1 Description of industry portfolios and GMPs

The global minimum portfolios (GMPs) constructed are based on all 48
U.S. industry portfolios representing an exhaustive coverage 14 of the U.S.
stock market, during the period January 1976-September 2008 (393 obser-
vations). The monthly returns on industry portfolios are obtained from Ken
French’s website 15. The one-month eurodollar deposit quoted in London at
the last day of the month, is extracted from Datastream and is used as the
conditionally risk-free rate (e.g. Carrieri, Errunza, and Majerbi, 2006a ; De

13. The parameter to estimate are the coefficient for the risk prices, κj , for j ∈
{w, smb, hml,mj, em}, in the equation for the mean ; the parameter a and b in the equa-
tions for the volatility ; the unconditional covariance matrix H0.

14. Francis, Hasan, and Hunter (2008) only considered the 36 industries that are the
most likely to affected by currency risk via foreign outputs or exports of domestic outputs,
foreign inputs, foreign competition, foreign clientele, or relation to other industries that
are affected by exchange rate movements.

15. http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.
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Santis and Gérard, 1998). We compute the monthly excess returns by sub-
tracting the eurodollar rate from the monthly returns on each portfolios.

Table 2.1 and Panel A in Table 2.2 display summary statistics, for in-
dustry portfolio returns, and GMP returns, respectively. The returns on the
GMPs are computed recursively, using a rolling windows of M = 100, so we
lose 100 observations. All the statistics are then computed after May 1984 to
match time frame of the GMPs constructed. Industry portfolios are extensi-
vely described in Francis, Hasan, and Hunter (2008), so we focus more on the
GMPs introduced in this chapter. From Table 2.2, when all the PCs are used
(τ = 100%), the GMP yields on average returns lower than the risk-free rate,
and corresponds to the worse performance, in terms of Sharpe ratio, among
the portfolios considered. The GMP (100%) portfolio also leads to a very high
turnover, which is symptomatic of a high level of instability in the portfolio
weights. As discussed in Chapter 1, these poor performance are a reflection of
the negative impact that estimation errors and dimensionality have on Mar-
kowitz portfolios’ performance. By varying the percentage τ of PCs used,
from 90% to 10%, the stability of the weights increases, and the performance
of the GMP is improved both in terms of average excess returns, volatility
and turnover. For instance, all portfolios outperform the GMP(100%), while
the portfolios GMP (τ), with τ ∈ {60%, 50%, 40%, 30%, 20%, 10%}, are asso-
ciated with a lower volatility and higher returns compared to the benchmark
1oN.

In all cases, the Bera-Jarque test statistic strongly rejects the null hypo-
thesis of normally distributed returns, and almost all GMPs exhibit a lack
of autocorrelations, using the Ljung-Box portmanteau statistic. Evidence of
autocorrelation are found in two GMPs at the 5%, and in four GMPs at
the 10% significance level. To complete the statistical analysis of the GMPs,
Table 2.2 also shows the presence of autocorrelation in the squared returns of
the GMPs, at the 1% level for 3 portfolios and at the 5% level for 4 portfolios.
This suggest that the GARCH specification that we adopt is appropriate, es-
pecially for the series displaying such evidence.

In terms of domestic performance, this preliminary analysis reveals that
regularization leads to substantial improvements. The open question is whe-
ther these improvements also translates to the exposures to and premiums for
currency risk. This question is relevant since the exchange rate risk has been
documented to be statistically and economically significant at the country
and industry level in the U.S.. We explore this question in Section 4, where
the performance of GMPs, in terms of currency risk exposures and premiums,
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are compared to the average performance across industries.

2.3.2 Description of the risk factors

The world market returns are computed from MSCI total returns indices,
while the size and the book-to-market factors are extracted from French’s
website. The currency factors are represented by the percentage changes in
two trade-weighted 16 indices of real bilateral exchange rates. These indices
are extracted from the Federal Reserve Board website 17, in U.S. dollar against
the currencies of two groups of U.S. trading partners. The first group of
countries, the major trading partners, consists of 16 industrialized countries.
The second group of countries, consists of 19 other important trading partners
(OITP), mostly emerging market economies. In the sequel, the former and
latter groups will be referred to as EM and MJ, respectively. Since all returns
are expressed in U.S. dollar, we convert 18 the extracted indices in foreign
currencies per U.S. dollar, so that a positive changes in their values reflects
an appreciation of the dollar.

Panel B in Table 2.2 contains statistics for the risk factors described
above. Changes in the EM and MJ currency indices exhibit different patterns.
While their ranges are similar and approximately centered around 5% per
month, the MJ risk is more volatile than the EM currency risk. Besides, we
also found evidence of normality in the changes in the MJ currency index,
whereas the normality assumption is strongly rejected for EM currency risk.
These differences in statistical properties suggest that the exposures and
premiums to the corresponding currency risks are likely to differs. Finally,
Panel C of Table 2.2 shows that the pairwise correlations are low among
the five risk factors considered, with a maximum of 0.336 for the correlation
between the returns on the world market and the returns on the book-to-
market factor (SMB). This means that the risk factors included in our IAPM
model are not proxies for each other, and then non redundant.

16. The index weights are time-varying, and derived from U.S. export shares and from
U.S. and foreign import shares.

17. http : //www.federalreserve.gov/releases/h10/summary/.
18. If It is a currency index expressed U.S. dollar against Foreign currencies, the return

on the U.S dollar, between t− 1 and t is It−1−It
It

.



67

2.3.3 Description of the information instruments

In order to preserve the comparability of our study, with that of Fran-
cis, Hasan, and Hunter (2008), we use the same instruments as theirs to
model the dynamics of the prices of risk. All instruments are lagged one per-
iod relative to factor returns, and have been shown by Francis, Hasan, and
Hunter to have significant explanatory power for the returns on the risk fac-
tors considered. More specifically, for equity related factors, the instruments
include a constant, the change in the U.S. term premium (DUSTP) measu-
red by the difference in yields of the treasury constant-maturity 10-year and
three month bills, the U.S. default premium (USDP) measured by the spread
between the yields on Moody’s Baa-rated and Aaa-rated corporate bonds,
and the Fed Funds rate (FED), which is indicative of monetary policy. The
changes in the exchange rate factors, are instead predicted by the ratio of
imports to GDP (MtoGDP), the ratio of exports to GDP (XtoGDP), and
the Fed funds rate. The variables MtoGDP and XtoGDP are in percent of
GDP, and are computed using data from the International Financial Statis-
tics (IFS) database of the International Monetary Fund. Table 2.3 contains
statistics for both equity and exchange rates related instruments.
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Table 2.1 – Summary statistics of returns on industries and risk factors
The table reports summary statistics for the 48 value-weighted industry portfolios from
Fama and French (1997), computed over the period May 1984-September 2008 (293 obs.).
Returns are expressed in U.S. dollar, in percent per month, and are in excess of the risk-
free rate. The risk free rate is taken to be the one-month eurodollar deposit rate. BJ is
the Bera-Jarque statistic to test whether the returns are normally distributed. Q(12) and
Q(12)2 are the Ljung-Box tests for autocorrelation of order 12 for the excess returns and
the excess returns squared, respectively. * and ** denote statistical significance at the 5%
and 1% levels, respectively.

Panel A : Summary statistics of portfolio excess returns
Industry Mean Std Min Max BJ Q(12) Q(12)2

Agric Agriculture 1.298 5.925 -28.81 28.56 159.232** 11.577 11.275
Food Food Products 1.247 4.5 -17.78 19.34 63.164** 18.376 42.452**
Soda Candy and Soda 1.117 6.582 -26.03 38.9 218.64** 19.461 33.028**
Beer Beer and Liquor 1.362 5.404 -19.74 22.1 44.142** 15.681 26.482**
Smoke Tobacco Products 1.548 6.623 -24.96 32.46 123.512** 7.573 56.553**
Toys Recreation 0.94 6.78 -34.51 23.1 56.958** 11.705 16.036
Books Printing and Publishing 1.302 6.843 -31.89 21.08 75.905** 18.662 9.647
Hshld Consumer Goods 1.075 5.237 -22.59 16.83 15.951** 17.536 22.111*
Clths Apparel 1.015 4.611 -21.67 18.71 76.337** 7.993 14.745
Fun Entertainment 1.188 6.181 -30.86 24.62 126.695** 24.389* 14.484
MedEq Medical Equipment 1.123 5.112 -20.56 16.32 24.567** 9.724 15.316
Drugs Pharmaceutical Products 1.169 4.971 -19.1 16.37 8.01** 15.739 17.013
Chems Chemicals 1.004 5.335 -27.96 22.01 131.56** 8.333 15.276
Rubbr Rubber and Plastic Products 1.129 5.584 -30.49 19.52 172.226** 14.504 11.737
Txtls Textiles 1.026 6.114 -32.63 22.86 181.92** 24.468* 21.571*
BldMt Construction Materials 1.123 5.599 -27.8 19.27 109.332** 10.773 8.768
Cnstr Construction 1.186 7.073 -31.21 24.28 35.297** 20.995* 8.606
Steel Steel Works Etc 0.89 7.463 -30.86 30.67 98.572** 5.959 31.705**
FabPr Fabricated Products 0.755 6.912 -28.91 25.58 108.733** 15.154 12.468
Mach Machinery 1.01 6.103 -31.37 18.68 112.923** 11.14 12.981
ElcEq Electrical Equipment 1.369 6.095 -32.09 18.29 85.161** 8.957 12.771
Autos Automobiles and Trucks 0.855 6.435 -28.11 19.17 43.418** 11.052 21.262*
Aero Aircraft 1.368 6.548 -30.28 25.33 142.048** 14.991 21.038*
Ships Shipbuilding. Railroad Equipment 0.988 6.916 -32.22 22.01 54.201** 5.794 8.639
Guns Defense 1.439 6.485 -30.08 32.87 160.014** 11.729 13.788
Gold Precious Metals 1.038 10.94 -31.09 78.02 659.384** 11.688 5.099
Mines Non-Metallic and Industrial Metal Mining 1.024 7.036 -33.65 20.53 66.818** 3.803 20.898
Coal Coal 1.392 10.008 -38.04 44.04 66.135** 18.168 132.048**
Comps Computers 1.005 7.618 -32.78 24.46 54.202** 11.27 281.828**
Chips Electronic Equipment 1.178 7.889 -31.77 26.8 67.502** 7.118 175.385**
LabEq Measuring and Control Equipment 1.103 7.312 -30.13 22.48 22.064** 11.202 74.169**
Paper Business Supplies 1.021 5.409 -26.16 24.11 152.845** 11.139 28.718**
Boxes Shipping Containers 1.117 5.697 -28.32 20.39 137.759** 5.305 27.228**
Rtail Retail 1.16 5.504 -29.29 16.86 71.472** 17.502 15.382
Meals Restaraunts, Hotels, Motels 1.111 5.549 -23.97 16.06 62.888** 19.391 6.29
Banks Banking 1.184 5.665 -24.05 20.47 67.184** 11.327 12.441
Hlth Healthcare 1.417 7.22 -31.5 21.66 35.797** 12.642 23.384*
Oil Petroleum and Natural Gas 1.29 5.506 -18.27 24.4 32.500** 10.572 48.298**
Util Utilities 1.029 3.921 -12.42 12.02 10.913** 21.193* 29.425**
Telcm Communication 0.97 4.864 -15.45 22.12 41.801** 23.802* 87.696**
PerSv Personal Services 1.08 6.029 -28.23 24.68 60.317** 26.623** 32.361**
BusSv Business Services 1.35 6.768 -27.56 24.12 27.015** 11.954 89.567**
Trans Transportation 1.111 5.549 -23.97 16.06 62.888** 19.391 6.29
Whlsl Wholesale 1.184 5.665 -24.05 20.47 67.184** 11.327 12.441
Insur Insurance 1.196 5.065 -16.84 23.35 35.433** 17.372 23.202*
RlEst Real Estate 0.76 6.041 -25.98 20.76 93.977** 36.026** 25.026*
Fin Trading 1.367 6.121 -26.02 18.54 61.211** 22.455* 126.075**
Other Almost Nothing 0.89 6.285 -26.31 20.08 56.982** 4.691 40.105**
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Table 2.2 – Summary statistics of returns on investment rule and risk factors
Panel A reports summary statistics for GMPs, where GMP (τ) represents global minimum portfolios constructed using τ
percent of PCs. Panel B contains the risk factors. Equity related factors consists of the returns on the world market in excess
of the one-month eurodollar rate (WM) computed using MSCI total returns indices from Datastream, and two Fama and
French (1993) factors : the returns on small minus big firms (SMB), and the returns on high minus low book-to-market value
firms (HML). The currency factors are represented by percentage changes in the real US Treasury trade-weighted exchange
rate index made up of the currencies of 16 developed countries that are the main trading partners of the US (MJ) and the
real index of the currencies of the other important trading partners (OITP) from the emerging economies (EM). Data on both
indices are in foreign currency per US dollar, and are obtained from the Federal Reserve Board. * and ** denote statistical
significance at the 5% and 1% levels, respectively.

Panel A : Summary statistics of portfolio excess returns in the whole sets of assets
Investment rule Mean Std Sharpe ratio Turnover Min Max BJ Q(12) Q(12)2

1oN Equally weighted portfolio 0.489 4.461 0.110 0.000 -30.499 12.141 951.599** 16.198 4.224
GMP Global Minimum portfolio -0.053 4.312 -0.012 2.36e14 -19.694 11.645 41.517** 16.039 5.889
GMP(90%) GMP with 90% of the PCs 0.090 4.200 0.021 1.075 -20.081 11.321 72.121** 17.122 5.203
GMP(80%) GMP with 80% of the PCs 0.227 3.846 0.059 0.935 -17.900 9.936 86.938** 21.088 7.629
GMP(70%) GMP with 70% of the PCs 0.351 3.601 0.097 0.748 -19.274 8.926 145.900** 16.314 2.953
GMP(60%) GMP with 60% of the PCs 0.472 3.639 0.130 0.724 -16.938 14.897 78.711** 15.343 31.601**
GMP(50%) GMP with 50% of the PCs 0.594 3.588 0.166 0.648 -15.670 16.191 63.793** 17.834 51.804**
GMP(40%) GMP with 40% of the PCs 0.607 3.800 0.160 0.496 -19.316 15.780 165.291** 14.492 27.382**
GMP(30%) GMP with 30% of the PCs 0.722 3.730 0.194 0.446 -19.461 14.487 176.209** 20.486 21.672*
GMP(20%) GMP with 20% of the PCs 0.602 3.867 0.156 0.221 -19.651 11.402 231.209** 22.693* 11.314
GMP(10%) GMP with 10% of the PCs 0.428 3.998 0.107 0.205 -22.529 9.993 334.556** 20.559 6.219

Panel B : Summary statistics of returns on the risk factors
Risk Factors Mean Std Min Max BJ Q(12) Q(12)2

WR World market equity index 0.371 4.228 -19.227 10.583 76.161** 10.648 7.829
SMB Size factor in the U.S. -0.010 3.255 -17.901 19.885 702.677** 11.485 131.828**
HML Book-to-market factor in the U.S. 0.296 3.054 -13.467 12.962 115.567** 11.264 365.710**
MJ Major currency index 0.096 1.737 -4.909 5.376 2.679 47.744** 11.219
EM Emerging market currency index 0.040 1.046 -5.222 4.109 570.885** 44.700** 84.279**

Panel C : Unconditional correlations
Risk Factors WM SMB HML MJ EM
WM 1.000
SMB 0.084 1.000
HML -0.360 -0.411 1.000
MJ 0.256 -0.048 -0.088 1.000
EM 0.145 0.133 -0.081 0.182 1.000
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Table 2.3 – Summary statistics for instruments
The set of equity related instruments includes a constant, the change in the U.S. term
premium (DUSTP), the difference in the yields of the Treasury constant-maturity 10-
year and the three-month bills ; the US term premium, the spread between the yields on
Moodys Baa- and Aaa-rated corporate bonds ; the Fed funds rate (FED). The instrumental
variables related to currency factors are, MtoGDP, the percentage of US imports to gross
domestic product (GDP), XtoGDP, the percentage of US exports to GDP, and the fed
fund rate. All variables are in percent per month, lagged one month relative to factor
returns. Data are monthly from May 1984 to September 2008 (293 observations).

Panel A : Summary statistics
Instrument Mean Std Min Max ρ1
DUSTP -0.003 0.255 -0.990 0.800 0.343
USDP 0.946 0.273 0.550 1.760 0.947
FFR 0.431 0.195 0.082 0.965 0.980
MtoGDP 0.893 0.175 0.622 1.443 0.929
XtoGDP 0.583 0.090 0.364 0.823 0.872

Panel C : Unconditional correlations
INSTR DUSTP USDP FFR MtoGDP XtoGDP
DUSTP 1.000
USDP 0.042 1.000
FFR -0.073 0.232 1.000
MtoGDP -0.031 -0.164 -0.477 1.000
XtoGDP 0.056 -0.564 -0.317 0.627 1.000

2.4 Empirical evidence

This section presents the results of our empirical tests. Subsection 2.4.1
performs a number of specification tests on the conditional IAPM, and as-
sesses the significance and time-variation in the prices of risk. In Subsec-
tion 2.4.2, we measure the exposures and premiums associated with currency
risks. Finally, we discuss in Subsection 2.4.3 the performances of global mi-
nimum portfolios in terms of currency exposures and premiums. Overall, the
results presented for industry portfolios are consistent with Francis, Hasan,
and Hunter (2008).
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2.4.1 Specification tests

We test the statistical significance of and time-variation in the market
prices of risk and currency prices of risk. We report in Table 2.4 and Table
2.6 the p-values for the robust Wald test statistics, for industry portfolios
and global minimum portfolios, respectively.

As already mentioned, we disaggregate currency risk in its industriali-
zed countries (MJ) and emerging market (EM) components, and the results
presented concern the significance of currency risk for each components and
jointly.

For all industry portfolios, as in Francis et al. (2008), the null hypothesis
of both zero and constant price of risk, for the MJ currency risk, is rejected
at the 1% significance level. Meaning that the major currency is significantly
priced and time-varying at the 1% significance level. Concerning the EM
currency risk, the price of risk is significant at the 10% significance level for
27 out of 36 industries in the U.S., which is consistent with the 32 out of 36
in Francis et al. (2008). While the currency prices of risk are jointly time-
varying, the null hypothesis of constant EM price of risk cannot be rejected
at any significance level.

The results obtained for industry portfolios also translates to global mini-
mum portfolios, in the case of the MJ risk. Indeed, the MJ price of currency
risk remains significant and time-varying at the 1% significance level, for the
1oN and for all GMPs. However, for the EM risk, the results across global
minimum portfolios vary. EM remains significantly priced when 100% of the
PCs is used. However, for τ = 80%, 40%, 20%, and 10% the EM currency risk
is no longer significant at the 5% significance level. This suggests that emer-
ging currency risk can be diversified away, when investors use less than 100%
of the PCs. As for industry portfolios, we find that EM and MJ currency
risks are jointly time-varying, for GMPs and for the 1oN portfolio.

2.4.2 Economic relevance of currency risk for GMPs

To analyze how GMPs are affected by currency risk, the statistical signi-
ficance of the prices of risk must be complemented by an assessment of the
economic significance of the currency risk premiums to the portfolio expected
returns. This is because even if priced, currency risk can still play a negligible
economic role, since it competes with equity related risks. The economic rele-
vance is typically assessed, by considering the exposures to currency risk, and
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the contribution of currency premium to total premium, in absolute terms
(see among other, De Santis and Gérard, 1998 ; Carrieri, Errunza, and Ma-
jerbi, 2006a). We compare our results to the average across all 48 industries,
as our objective is to investigate how optimal domestic portfolios are affected
by currency risk.

Table 2.7 and Panel A in Table 2.9 display statistics on the exposures
to various sources of risks, for industry portfolios and optimal portfolios,
respectively. Exposures are measured by the respective betas, as defined in
Equation (2.12). We obtain lower mean absolute exposures to the MJ cur-
rency risk for 9 GMPs out of 11 portfolios, compared to the average exposures
across the U.S. industries. For the EM risk, absolute exposures are lower for
all GMPs. These results suggest that stable global minimum portfolios, can
substantially reduce the exposure to EM and MJ currency risks. With the
average MJ exposure reduced by up to 50% (for τ = 60%), and the average
EM exposure reduced by up to 70% (for τ = 70%).

The estimated premiums for equity and currency related factors are dis-
played in Table 2.8, and Panel B of Table 2.9. We find that, at the U.S.
industry level, the currency premium accounts for approximately 13.05% of
the total premium across all 48 industries, and 13.48% across the set S1 of the
36 industries that are the most exposed to currency risk. This is comparable
to the 11.7% 19 average contribution across the set S1, provided by Fran-
cis, Hasan, and Hunter (2008), and to the 20% figure provided by Carrieri,
Errunza, and Majerbi (2006) for the aggregate U.S stock market.

The results in Panel B of Table 2.9, provide strong evidence that currency
risk is also economically relevant for optimal domestic portfolios. First, these
tables reveal that GMPs are associated with reduced risk premia, for equity
sources of risk, as well as currency sources of risk. Second, the average contri-
bution to total premium ranges from 12.94% to 21.94%, with the minimum
achieved for the global minimum portfolios with τ = 60%. This minimum is
approximately equal to the average percentage over all industries. Therefore
this result suggests that the premiums associated with each source of risk
(equity and currency) are reduced by about the same proportion, so that in
relative terms, the contribution of currency premiums is unchanged.

19. The slight difference could be attributed to the period spanned by our sample and
the difference in our specifications.
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Table 2.4 – Hypothesis tests of the pricing of currency and other risks
The table reports p-values of tests of the null hypothesis that the conditional prices of
the risk factors, defined in Table 2.2 are zero and for the hypothesis of constant price
(not time-varying). This amounts to test that coefficients in Equation (2.20) are zero, or
that the coefficient associated with non-constant instruments are zero. All hypotheses are
based on Wald tests made robust to non-normality of the residuals. The instruments for
the equity factors are the one-period lagged USDP, USTP, and FED variables. For the
currency risks, the instruments are MtoGDP, XtoGDP, and FED. Instruments are defined
in Table 2.3.

Panel A : Hypothesis tests for the pricing of equity risk equity risk
World market risk SMB risk is SMB risk is HML risk is HML risk is

H0 : not time-varying not significant not time-varying not significant not time-varying
κw,j = 0, for j > 1 κsmb,j = 0, for j > 0 κsmb,j = 0, for j > 1 κhml,j = 0, for j > 0 κhml,j = 0, for j > 1

df 3 4 3 4 3

Agric 0.022 0.001 0.000 0.011 0.242
Food 0.043 0.001 0.000 0.003 0.367
Soda 0.021 0.001 0.000 0.003 0.157
Beer 0.058 0.001 0.001 0.006 0.428
Smoke 0.022 0.000 0.000 0.002 0.308
Toys 0.040 0.000 0.000 0.001 0.200
Fun 0.039 0.001 0.000 0.002 0.110
Books 0.051 0.113 0.095 0.080 0.331
Hshld 0.088 0.012 0.005 0.051 0.289
Clths 0.053 0.003 0.002 0.002 0.228
MedEq 0.019 0.001 0.000 0.003 0.167
Drugs 0.009 0.002 0.001 0.001 0.177
Chems 0.035 0.001 0.001 0.003 0.247
Rubbr 0.052 0.002 0.001 0.025 0.486
Txtls 0.022 0.001 0.000 0.004 0.202
BldMt 0.066 0.001 0.001 0.004 0.260
Cnstr 0.037 0.001 0.000 0.005 0.205
Steel 0.096 0.000 0.000 0.002 0.211
FabPr 0.032 0.000 0.000 0.000 0.111
Mach 0.050 0.001 0.000 0.002 0.154
ElcEq 0.051 0.001 0.000 0.005 0.258
Autos 0.034 0.000 0.000 0.001 0.108
Aero 0.054 0.001 0.001 0.018 0.322
Ships 0.025 0.004 0.002 0.019 0.226
Guns 0.060 0.001 0.001 0.013 0.385
Gold 0.029 0.001 0.000 0.003 0.175
Mines 0.026 0.002 0.001 0.002 0.123
Coal 0.009 0.000 0.000 0.003 0.075
Comps 0.051 0.182 0.206 0.068 0.503
Chips 0.070 0.000 0.000 0.013 0.186
LabEq 0.057 0.000 0.000 0.003 0.201
Paper 0.050 0.000 0.000 0.004 0.207
Boxes 0.037 0.001 0.000 0.004 0.209
Rtail 0.023 0.001 0.000 0.003 0.283
Meals 0.036 0.001 0.001 0.003 0.294
Banks 0.049 0.001 0.000 0.009 0.274

(Continued on next page)
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Table 2.4 (Continued) Hypothesis tests of the pricing of the currency risks

Panel B : Hypothesis tests for the pricing of currency risks
MJ currency risk MJ currency risk EM currency risk EM currency risk Joint currency risk

H0 : not significant not time-varying real currency risk not time-varying not time-varying
κmj,j = 0, for j > 0 κmj,j = 0, for j > 1 κem,j = 0, for j > 0 κem,j = 0, for j > 1 κmj,j = 0 and κem,j = 0 for j > 0

df 3 4 3 4 3
Agric 0.002 0.001 0.141 0.490 0.004
Food 0.002 0.001 0.238 0.383 0.004
Soda 0.002 0.001 0.014 0.342 0.003
Beer 0.002 0.001 0.019 0.278 0.002
Smoke 0.003 0.001 0.001 0.504 0.007
Toys 0.002 0.001 0.426 0.548 0.002
Fun 0.002 0.001 0.043 0.504 0.005
Books 0.005 0.002 0.085 0.512 0.010
Hshld 0.010 0.004 0.201 0.599 0.018
Clths 0.002 0.001 0.032 0.225 0.002
MedEq 0.003 0.001 0.025 0.427 0.005
Drugs 0.002 0.001 0.091 0.654 0.005
Chems 0.002 0.001 0.045 0.327 0.003
Rubbr 0.002 0.001 0.112 0.470 0.005
Txtls 0.002 0.001 0.089 0.285 0.003
BldMt 0.002 0.001 0.008 0.304 0.003
Cnstr 0.003 0.001 0.001 0.303 0.004
Steel 0.002 0.001 0.025 0.585 0.007
FabPr 0.002 0.001 0.063 0.406 0.003
Mach 0.002 0.001 0.190 0.468 0.004
ElcEq 0.003 0.001 0.033 0.358 0.004
Autos 0.003 0.001 0.093 0.392 0.004
Aero 0.006 0.003 0.000 0.556 0.018
Ships 0.002 0.001 0.250 0.527 0.004
Guns 0.002 0.001 0.000 0.422 0.004
Gold 0.002 0.001 0.072 0.287 0.002
Mines 0.002 0.001 0.077 0.266 0.002
Coal 0.001 0.000 0.060 0.208 0.001
Comps 0.003 0.001 0.000 0.533 0.008
Chips 0.002 0.001 0.000 0.426 0.003
LabEq 0.003 0.001 0.061 0.518 0.004
Paper 0.003 0.002 0.000 0.414 0.004
Boxes 0.002 0.001 0.074 0.383 0.003
Rtail 0.003 0.001 0.279 0.386 0.004
Meals 0.003 0.001 0.018 0.304 0.004
Banks 0.002 0.001 0.104 0.292 0.003
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Table 2.5 – Quasi-maximum likelihood estimates of the conditional International CAPM with time-varying
prices of risk
Estimates are based on monthly continuously compounded returns from Mai 1984 through September 2008. Panel A and B
present the results for a single estimation system (τ = 60%), from the 59 estimations performed. Each mean equation relates
the asset excess return ri,t to its world covariance risks covt−1(ri,t, rk,t) for k ∈ {w, smb, hml,mj, em}. The prices of risk
are functions of a number of equity and currency risk related instruments, denoted Zs,t−1 and Zf,t−1, respectively. These
instruments are described in Table 2.3.

rpt =
∑

k=w,smb,hml

δk,t−1hk,t +
∑

k=mj, em

δk,t−1hk,t + εt, εt|Ωt−1 ∼ N(0, Ht)

where rpt , the 6× 1 vector of excess returns rpt = (rp,t, rw,t, rsmb,t, rhml,t, emj,t, eem,t)
′ and

δw,t−1 = exp(κ′wZs,t−1); δj,t−1 = κ′jZs,t−1, j = smb, hml; δj,t−1 = κ′jZf,t−1, j = mj, em.

The conditional covariance matrix is parametrized as Ht = (ιι′ − aa′ − bb′) ∗H0 + aa′ ∗ εt−1ε′t−1 + bb′ ∗Ht−1, where * denotes
the Hadamard matrix product, a and b are 6 × 1 vectors of constants, and ι is an 6 × 1 unit vector. SE represent the QML
standard errors. ** and *** denote statistical significance at the 5% and 1% levels, respectively

Panel A : Parameter estimates - mean equations
(a) Price of Equity related risks
Constant SE DUSTP SE USDP SE FFR SE

κw -3.179*** 0.757 -1.746** 0.728 -0.601 1.039 0.924 1.144
κsmb 0.026 0.053 0.148* 0.078 0.121** 0.052 -0.307*** 0.076
κhml 0.139** 0.059 0.013 0.073 0.004 0.053 -0.207** 0.082

(b) Price of currency related risks
Constant SE MtoGDP SE XtoGDP SE FFR SE

κmj 0.794*** 0.219 0.465** 0.197 -1.881*** 0.446 -0.218 0.193
κem 0.024 0.324 0.079 0.278 -0.018 0.484 0.024 0.276

Likelihood function -3.848e+03

Panel B : Parameter estimates - Covariance process
GMP(60%) WM SMB HML EM MJ

ai 0.114 0.187*** 0.291*** 0.275*** 0.025 0.714***
SE 0.117 0.042 0.057 0.020 0.053 0.035

bi -0.395 0.943*** 0.919*** 0.937*** 0.992*** 0.284**
SE 0.475 0.019 0.034 0.007 0.007 0.120
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2.4.3 How are GMPs affected by currency risk

As shown in Equations (2.17) and (2.18), adopting a given portfolio stra-
tegy p, primarily affects the covariance risk, covt−1(rp,t, ej,t) (or equivalently
the exposure βp,j,t−1) and leaves the prices of risk δj,t−1, to which all assets are
exposed, unchanged. The resulting premiums are determined by multiplying
the covariance risk of portfolio p, and the prices of the risk considered.

Figure 2.1 – Prices of MJ and EM currency risks

The reduction in the currency risk exposures, discussed above are suppor-
ted by Figure 2.3 that gives a visual summary of the reduction from industry
portfolios, to GMPs. The exposures of GMP(70%) and GMP(60%) are not
only substantially reduced, but the resulting exposures have a very low vo-
latility, and fluctuate around their means within a narrow band. EM and
MJ currency risks exhibit different patterns. The volatility reduction in the
exposure to MJ risks appears to be higher than the reduction in the EM ex-
posure volatility. As a consequence, especially for EM currency risk, GMPs
exposures to currency risk, often display constant signs.

Contrary to the market price of risk, currency prices of risk are not restric-
ted to be positive. Figure 2.1 reveals that the EM and MJ prices of currency
risk take alternatively positive and negative values, over time. As a result,
even though the exposures to currency risk have a constant sign, the asso-
ciated premiums fluctuate around zero, as shown in Figure 2.4 for industry
portfolios, and in Figure 2.5 for optimal portfolios. Besides, Figure 2.5 indi-
cates that, optimal portfolios associated to stable weights tend to lead to less
volatile currency premiums.

To summarize our findings, global minimum variance portfolios can sub-
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stantially reduce exposures to currency risks. However, while the reduction
in exposures is very important (more than half), the corresponding reduction
in the contribution to total premium (in absolute terms), is approximately
unchanged. Finally, better performances are obtained through the use of re-
gularization techniques that stabilizes portfolios weights. This means that,
in order to fully benefit from domestic diversification, in terms of currency
risk exposures, the choice of the investment rules is important, but stable
weights are more likely to provide better results. These characteristics of
GMP currency exposures, are especially attractive in terms of hedging stra-
tegies. Indeed, optimal stable GMPs have the attractive feature that they
can reduce the size and the volatility of the exposures to the exchange rate
risk. This implies that risk-minimizing investors that use stable rules, will in-
cur lower hedging cost, because these rule require smaller amount of hedging
with less frequent rebalancing.

2.5 Diagnostics and robustness tests

The results presented in this chapter are based on a rolling window of size
M = 100. We also considered different values for M that we did not present
here. Larger values for M correspond to better portfolio performance, as
they have less estimation errors. However, large M also correspond to low
amount of data left for our estimations (T−M). Therefore, there is a trade-off
involved in the choice ofM . The fact that we considered all the possible values
for the regularization parameter τ in our estimations, make it irrelevant to
consider different ranges for M .

Table 2.5 and Table 2.10 show that the conditional covariance matrix is
appropriately described by the multivariate GARCH process and that our
model is well specified. In Table 2.5, almost all parameters in the vectors a
and b are statistically significant, and the point estimates indicate that all the
variances and covariance processes in Ht are stationary. 20 Table 2.10 contains
diagnostic statistics on the standardized residuals (εth

−1/2
t ) and on the stan-

dardized residuals squared (ε2
th
−1
t ), for industry portfolios and GMPs. The

normality hypothesis is strongly rejected by the Bera-Jarque test in almost
all portfolios. This typical rejection of the normality assumption do not affect
the validity of our procedures since we adopted the QML approach.

20. Each process in H is covariance stationary if aiaj + bibj < 1 ∀i, j (See Theorem 1 in
Bollerslev (1986)).
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Table 2.6 – Hypothesis tests for the pricing of risk factors in GMPs
The table reports the p-values of tests of the null hypothesis that the conditional prices of the risk factors, defined in Table
2.2 are zero and for the hypothesis of constant price (not time-varying). For each sources of risk, this amounts to test that
coefficients in Equation (2.20) are jointly zero, or that the coefficient associated with non-constant instruments are zero. All
hypotheses are based on Wald tests made robust to non-normality of the residuals. The instruments for the equity factors are
the one-period lagged DUSTP, USDP, and FED. For the currencies, the instruments are FED, MtoGDP, and XtoGDP.

Panel A : Hypothesis tests for the pricing of equity risk equity risk
World market risk SMB risk is SMB risk is HML risk is HML risk is

H0 : not time-varying not significant not time-varying not significant not time-varying
κw,j = 0, for j > 1 κsmb,j = 0, for j > 0 κsmb,j = 0, for j > 1 κhml,j = 0, for j > 0 κhml,j = 0, for j > 1

df 3 4 3 4 3
1oN 0.401 0.000 0.000 0.005 0.155
Gmin(100%) 0.026 0.000 0.000 0.003 0.109
Gmin(90%) 0.024 0.000 0.000 0.002 0.096
Gmin(80%) 0.023 0.001 0.000 0.002 0.109
Gmin(70%) 0.033 0.001 0.000 0.004 0.116
Gmin(60%) 0.027 0.001 0.000 0.006 0.155
Gmin(50%) 0.036 0.003 0.002 0.005 0.242
Gmin(40%) 0.040 0.001 0.001 0.005 0.304
Gmin(30%) 0.034 0.000 0.000 0.003 0.324
Gmin(20%) 0.029 0.000 0.000 0.001 0.182
Gmin(10%) 0.042 0.000 0.000 0.003 0.308

Panel B : Hypothesis tests of the pricing of currency risks
MJ currency risk MJ currency risk EM currency risk EM currency risk Joint currency risk

H0 : not significant not time-varying real currency risk not time-varying not time-varying
κmj,j = 0, for j > 0 κmj,j = 0, for j > 1 κem,j = 0, for j > 0 κem,j = 0, for j > 1 κmj,j = 0 and κem,j = 0 for j > 0

df 3 4 3 4 3
1oN 0.014 0.006 0.030 0.631 0.028
Gmin(100%) 0.002 0.001 0.000 0.584 0.006
Gmin(90%) 0.002 0.001 0.039 0.503 0.005
Gmin(80%) 0.002 0.001 0.085 0.488 0.004
Gmin(70%) 0.002 0.001 0.029 0.479 0.004
Gmin(60%) 0.002 0.001 0.013 0.547 0.008
Gmin(50%) 0.003 0.001 0.000 0.462 0.008
Gmin(40%) 0.003 0.001 0.078 0.529 0.007
Gmin(30%) 0.005 0.002 0.000 0.322 0.010
Gmin(20%) 0.003 0.001 0.118 0.218 0.002
Gmin(10%) 0.005 0.002 0.245 0.275 0.005
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Table 2.7 – Time-varying currency betas for industry portfolios
The table reports the sample mean of the time-varying currency factor betas estimated
from the system of Equations (2.19)-(2.21). Mean abs is the mean of the absolute betas.
All 48 industries are considered. Because of the limited space only betas for the set S1

of the industries are the most likely exposed to currency risk, is displayed (Francis et
al. (2008)). The currency factors are represented by percentage changes in the real US
Treasury trade-weighted exchange rate index made up of the currencies of 16 developed
countries that are the main trading partners of the US (MJ) and the real index of the
currencies of the other important trading partners from the emerging economies (EM).
The indices are in foreign currency per US dollar.

Time varying currency betas
MJ EM

Industry Mean Abs Mean Std Min Max Mean Abs Mean Std Min Max
Agric 0.247 0.247 0.015 0.195 0.297 0.554 0.535 0.312 -0.518 1.99
Food 0.178 0.178 0.02 0.125 0.239 0.346 -0.04 0.483 -1.858 1.547
Soda 0.127 0.11 0.166 -0.115 0.673 0.481 0.076 0.688 -2.581 3.346
Beer 0.395 0.395 0.026 0.315 0.467 0.796 0.65 0.721 -1.793 3.501
Smoke 0.135 0.114 0.141 -0.151 0.521 0.692 0.195 0.974 -3.032 4.062
Toys 0.11 0.11 0.030 0.000 0.218 0.866 0.789 0.59 -2.276 2.328
Fun 0.019 0.008 0.023 -0.069 0.071 0.701 0.653 0.466 -1.725 2.494
Books 0.116 -0.088 0.107 -0.342 0.17 0.533 0.308 0.608 -2.835 2.077
Hshld 0.116 0.115 0.039 -0.1 0.262 0.575 0.417 0.579 -2.443 3.445
Clths 0.135 -0.072 0.145 -0.585 0.324 1.129 0.919 1.032 -5.189 5.162
MedEq 0.094 0.094 0.017 0.059 0.158 0.457 0.428 0.289 -0.79 1.303
Drugs 0.311 0.311 0.02 0.239 0.397 0.285 -0.063 0.395 -1.651 1.182
Chems 0.243 0.243 0.054 0.119 0.397 1.163 1.152 0.451 -0.838 2.583
Rubbr 0.174 0.174 0.064 0.017 0.321 0.894 0.84 0.586 -2.589 2.88
Txtls 0.224 -0.224 0.044 -0.43 -0.098 1.373 1.28 0.886 -3.985 4.049
BldMt 0.212 0.212 0.075 0.027 0.393 0.946 0.89 0.597 -2.415 3.235
Cnstr 0.17 0.17 0.01 0.143 0.202 1.034 1.034 0.368 0.011 1.496
Steel 0.375 0.375 0.045 0.284 0.477 1.829 1.815 0.789 -1.033 4.187
FabPr 0.232 0.231 0.089 -0.169 0.513 2.036 1.967 1.062 -2.364 5.386
Mach 0.334 0.334 0.028 0.239 0.438 1.695 1.694 0.6 -0.216 2.699
ElcEq 0.336 0.336 0.038 0.245 0.464 0.815 0.794 0.418 -1.215 1.939
Autos 0.119 0.119 0.042 -0.019 0.271 1.213 1.081 0.92 -2.859 4.347
Aero 0.091 0.068 0.092 -0.165 0.453 1.149 1.057 0.752 -2.581 5.128
Ships 0.347 -0.347 0.1 -0.674 -0.051 0.888 0.77 0.684 -2.876 3.426
Guns 0.101 -0.101 0.026 -0.174 0.01 0.515 0.195 0.687 -3.196 3.228
Gold 0.782 0.782 0.044 0.409 0.894 1.297 1.179 0.898 -2.171 4.66
Mines 0.353 0.353 0.033 0.29 0.438 2.038 2.032 0.723 -0.721 3.538
Coal 0.478 0.478 0.069 0.263 0.676 2.319 2.224 1.353 -2.844 6.215
Comps 0.514 0.514 0.052 0.389 0.69 1.717 1.55 1.162 -2.697 5.333
Chips 0.311 0.311 0.059 0.074 0.555 1.918 1.827 1.086 -1.664 5.653
LabEq 0.467 0.467 0.059 0.248 0.636 1.692 1.66 0.83 -1.653 3.792
Paper 0.261 0.261 0.017 0.171 0.308 0.735 0.67 0.534 -2.074 3.057
Boxes 0.371 0.371 0.03 0.267 0.521 1.174 1.129 0.682 -2.147 4.111
Rtail 0.21 -0.21 0.029 -0.273 -0.127 0.395 0.318 0.339 -1.519 1.287
Meals 0.084 0.021 0.102 -0.239 0.274 0.994 0.964 0.524 -1.557 2.255
Banks 0.037 0.003 0.049 -0.168 0.155 0.639 0.336 0.787 -2.936 5.132

Panel B : Averages across industries
Average in S1 0.245 0.180 1.052 0.926
Average 0.224 0.154 1.001 0.862
Standard deviation 0.158 0.229 0.498 0.571
t-stat H0 : avg = 0 8.367 3.990 11.902 8.923
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Table 2.8 – Time-varying currency premiums for industry portfolios
Panel A reports the sample mean risk premiums associated with each risk factor, the sum of
the individual currency premiums, the total risk premium, and the percentage of the total
risk premium attributed to the currency risk premiums, respectively. The risk premium is
the product of the respective price of risk and corresponding conditional covariance risk
for each period. The total risk premium is the sum of the three equity and two currency
risk premiums, in each period. For comparison across premiums, all premiums are reported
as the mean of the absolute period-by-period premium. All risk factors are described in
Table 2.2. Panel B contains summary statistics across all 48 industries. Because of the
limited space only premiums for the set S1 of the industries are the most likely exposed
to currency risk, is displayed.

Industry Market SMB HML MJ EM Total Total Currency as a
Currency premium % of total

Panel A : Summary of absolute time-varying risk premiums
Agric 0.467 0.257 0.209 0.081 0.038 0.119 1.052 11.965
Food 0.362 0.124 0.161 0.059 0.029 0.088 0.735 13.546
Soda 0.482 0.097 0.145 0.038 0.048 0.086 0.81 10.018
Beer 0.4 0.126 0.196 0.134 0.066 0.2 0.921 23.611
Smoke 0.344 0.147 0.198 0.049 0.07 0.12 0.809 15.105
Toys 0.631 0.333 0.278 0.036 0.058 0.094 1.335 7.855
Fun 0.7 0.309 0.402 0.007 0.048 0.055 1.466 3.97
Books 0.545 0.117 0.196 0.033 0.038 0.071 0.928 8.168
Hshld 0.506 0.044 0.154 0.034 0.048 0.082 0.786 10.68
Clths 0.729 0.338 0.299 0.04 0.093 0.132 1.498 9.591
MedEq 0.442 0.188 0.376 0.031 0.029 0.06 1.066 5.991
Drugs 0.431 0.073 0.341 0.103 0.023 0.126 0.972 12.826
Chems 0.589 0.092 0.147 0.084 0.08 0.164 0.992 17.538
Rubbr 0.56 0.339 0.228 0.059 0.064 0.124 1.251 11.022
Txtls 0.579 0.349 0.152 0.075 0.092 0.167 1.247 14.175
BldMt 0.626 0.202 0.192 0.074 0.067 0.141 1.161 13.152
Cnstr 0.677 0.351 0.242 0.056 0.068 0.124 1.393 9.666
Steel 0.776 0.523 0.543 0.124 0.122 0.245 2.088 13.348
FabPr 0.644 0.503 0.303 0.077 0.137 0.214 1.663 14.523
Mach 0.662 0.425 0.431 0.111 0.119 0.23 1.748 14.225
ElcEq 0.746 0.115 0.445 0.111 0.054 0.165 1.472 11.475
Autos 0.725 0.218 0.138 0.04 0.092 0.132 1.212 11.573
Aero 0.674 0.159 0.142 0.031 0.096 0.127 1.103 12.213
Ships 0.517 0.25 0.16 0.116 0.061 0.177 1.103 17.545
Guns 0.342 0.111 0.208 0.035 0.059 0.094 0.755 13.744
Gold 0.439 0.336 0.107 0.26 0.09 0.35 1.231 28.309
Mines 0.649 0.29 0.125 0.119 0.165 0.284 1.348 22.161
Coal 0.611 0.419 0.284 0.17 0.164 0.334 1.649 22.766
Comps 0.856 0.514 1.055 0.169 0.17 0.338 2.763 14.283
Chips 0.748 0.628 0.944 0.106 0.18 0.286 2.605 13.471
LabEq 0.702 0.637 0.762 0.156 0.123 0.278 2.38 13.906
Paper 0.564 0.126 0.146 0.089 0.084 0.173 1.01 18.651
Boxes 0.607 0.114 0.215 0.124 0.097 0.221 1.156 19.331
Rtail 0.563 0.165 0.348 0.068 0.027 0.095 1.17 8.366
Meals 0.55 0.169 0.173 0.025 0.065 0.09 0.983 9.969
Banks 0.64 0.17 0.154 0.012 0.052 0.064 1.028 6.527

Panel B : Averages across industries
Average in S1 0.586 0.260 0.294 0.082 0.081 0.163 1.302 13.480
Average 0.573 0.249 0.291 0.074 0.077 0.151 1.265 13.050
Standard deviation 0.125 0.150 0.219 0.051 0.038 0.078 0.468 5.135
Minimum 0.249 0.044 0.070 0.007 0.023 0.055 0.623 3.970
Maximum 0.856 0.637 1.055 0.260 0.180 0.350 2.763 28.309
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Table 2.9 – Time-varying currency betas for the 1oN and global minimum portfolios
Panel A reports the mean of the time-varying currency factor betas estimated from the system of Equations (2.19)-(2.21). The
results displayed are for the benchmark 1oN, global minimum portfolios GMP (τ), where τ represents the percent of PCs used.
Mean abs is the mean of the absolute betas. The currency factors are described in Table 2.2, and are in foreign currency per
US dollar. Panel B reports the sample mean risk premium associated with each risk factor, the sum of the individual currency
premiums, the total risk premium, and the percentage of the total risk premium attributed to the currency risk premiums. For
comparison across premiums, all premiums are reported as the mean of the absolute period-by-period premium. Numbers in
bold face are lower that their corresponding average across all 48 industries portfolios, and the lowest value is indicated by *.

Panel A : Estimates of time-varying currency betas for optimal portfolios

MJ EM
Portfolio Mean Abs Mean Std Min Max Mean Abs Mean Std Min Max
Cross Ind. Avg. 0.224 0.154 1.001 0.862
1oN 0.151 0.143 0.121 -0.155 0.558 0.927 0.860 0.599 -2.602 3.398
Gmin(100%) 0.165 0.165 0.019 0.126 0.201 0.669 0.665 0.321 -0.163 1.44
Gmin(90%) 0.205 0.205 0.009 0.149 0.249 0.516 0.500 0.275 -0.576 1.227
Gmin(80%) 0.141 0.141 0.009 0.100 0.173 0.473 0.451 0.281 -0.686 1.204
Gmin(70%) 0.122 0.122 0.003 0.102 0.135 0.293* 0.279* 0.166 -0.328 0.708
Gmin(60%) 0.113* 0.113* 0.007 0.083 0.154 0.408 0.390 0.233 -0.516 1.402
Gmin(50%) 0.163 0.163 0.016 0.108 0.227 0.445 0.397 0.319 -0.82 2.028
Gmin(40%) 0.225 0.225 0.016 0.179 0.285 0.627 0.602 0.368 -0.926 2.225
Gmin(30%) 0.274 0.274 0.034 0.181 0.426 0.560 0.491 0.429 -1.459 2.315
Gmin(20%) 0.259 0.259 0.059 0.063 0.596 0.693 0.578 0.613 -2.348 2.902
Gmin(10%) 0.202 0.201 0.097 -0.035 0.699 0.698 0.580 0.612 -2.174 2.628

Panel B : Estimates of time-varying risk premiums for optimal portfolios
WM SMB HML MJ EM Total Total Currency as a

Portfolio Currency premium % of total
Cross Ind. Avg. 0.573 0.249 0.291 0.074 0.077 0.151 1.265 13.050
1oN 0.336 0.211 0.219 0.046 0.065 0.111 0.877 14.999
Gmin(100%) 0.340 0.047 0.036 0.055 0.050 0.104 0.527 21.055
Gmin(90%) 0.342 0.032 0.019 0.068 0.034 0.102 0.495 21.602
Gmin(80%) 0.378 0.022 0.043 0.047 0.032 0.080 0.523 15.960
Gmin(70%) 0.352 0.029 0.038 0.040 0.020 0.060 0.479 13.251
Gmin(60%) 0.375 0.026 0.072 0.037 0.030 0.067 0.540 12.942*
Gmin(50%) 0.356 0.070 0.063 0.053 0.043 0.096 0.585 17.753
Gmin(40%) 0.376 0.061 0.073 0.074 0.041 0.115 0.625 20.145
Gmin(30%) 0.418 0.089 0.098 0.088 0.058 0.146 0.752 21.936
Gmin(20%) 0.424 0.109 0.117 0.085 0.055 0.140 0.789 19.372
Gmin(10%) 0.496 0.109 0.158 0.065 0.054 0.119 0.881 14.652



82

Figure 2.2 – Industry portfolio exposures to MJ and EM currency risks
The Figure displays graphs of time-varying MJ and EM currency betas for a subsample
of industries. The MJ currency risk is represented by percentage changes in the real US
Treasury trade-weighted exchange rate index of the currencies of the main trading partners
of the United States. The EM component of currency risk, is a similar risk factor made up
of the currencies of other important trading partners from the emerging economies. Both
indices are expressed as foreign currency per US dollar.

(Continued on next page)
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Figure 2.2 (Continued)
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Figure 2.3 – Time-varying currency betas for optimal portfolios
The Figure plots the exposures of 4 optimal portfolios to MJ and EM currency risks :
the equally weighted portfolio (1oN) and global minimum portfolios GMP (τ) for τ =
100%, 70%, and 60%. The MJ currency risk is represented by percentage changes in the
real US Treasury trade-weighted exchange rate index of the currencies of the main tra-
ding partners of the United States. The EM component of currency risk, is a similar risk
factor made up of the currencies of other important trading partners from the emerging
economies. Both indices are expressed as foreign currency per US dollar.

(Continued on next page)
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Figure 2.3 (Continued)



86

Figure 2.4 – Currency premium for selected industries
The Figure plots the currency risk premiums for a selected number of industry portfolios. The MJ currency risk is re-
presented by percentage changes in the real US Treasury trade-weighted exchange rate index of the currencies of the
main trading partners of the United States. The EM component of currency risk, is a similar risk factor made up of the
currencies of other important trading partners from the emerging economies. Both indices are expressed as foreign cur-
rency per US dollar. The total currency premium is the sum of the premiums for currency risk and equity related risks
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Figure 2.5 – Currency premium for optimal portfolios
The Figure plots the currency risk premiums of four optimal portfolios to MJ and EM currency risk. The equally
weighted portfolio (1oN) and global minimum portfolios GMP (τ) for τ = 100%, 70%, and 60%. The MJ currency risk
is represented by percentage changes in the real US Treasury trade-weighted exchange rate index of the currencies of
the main trading partners of the United States. The EM component of currency risk, is a similar risk factor made up of
the currencies of other important trading partners from the emerging economies. Both indices are expressed as foreign
currency per US dollar. The total currency premium is the sum of the premiums for currency risk and equity related risks
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The Ljung-Box portmanteau statistic is used to test the null hypothesis
of zero autocorrelation, for a maximum of 12 lags, in both the standardized
residuals and the standardized residuals squared. For both industry portfo-
lios and global minimum portfolios, we cannot reject the null hypothesis of
zero mean and zero autocorrelation, for the standardized residuals. Besides,
no dynamic is left in the squared residuals. These results show that the
GARCH(1,1) specification captures the dynamics of the conditional second
moments, for industry portfolios and global minimum portfolios.

Finally, we perform the robustness test also considered in De Santis and
Gérard (1998) and Francis, Hasan, and Hunter (2008). The test consists in
including the instruments described in Table 2.10, as exogenous variables in
the conditional mean equation (2.17). Indeed, if the model is well specified,
then the risk factors used to estimate the expected returns should remove
all time variation in the portfolio returns, so that the instruments have no
explanatory power in the presence of these factors. This test can alternati-
vely be performed by regressing the unstandardized residuals from Equation
(2.17) on a constant and the instruments. The p-value for the Wald tests,
in the fifth column of the Table 2.10. indicates that the hypothesis of non
predictability of unstandardized residual cannot be rejected in any portfolios
considered.

2.6 Conclusion

The chapter investigates whether domestic optimal portfolios have a po-
sitive externality in terms of exchange rate risk exposure reduction, and how
the currency premium is impacted. We restrict ourselves to the global mi-
nimum portfolio (GMP) strategy as this rule corresponds to the lowest risk
among mean-variance portfolios, and to better out-of-sample performance. In
addition, we considered a family of GMPs that extends the GMP, by conside-
ring different percentage of the principal components (PCs) of the covariance
matrix of asset returns. The lower the percentage of PCs kept, the stabler
the portfolio, as measured by the turnover. Thus this chapter also allowed us
to investigate the links between portfolio stability and currency risk.

Our finding can be summarized in three main points. First, we find that
currency risk remains consistently priced, time-varying for cross-sections of
optimal domestic portfolios. However, under some level of stability, it is pos-
sible to completely eliminate the emerging markets component of currency
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risk, so that emerging markets currency risk is not significant. Second, al-
though most industry portfolios are exposed to currency risk, either directly
or indirectly, our results also suggest that global minimum portfolios have
the potential to significantly reduce the exposure to currency risk by more
than half its size. Third, for GMPs, currency risk is economically relevant and
the currency premium contribution to total premium, remains approximately
equal to the average across industries.

The assessment of the relevance of currency risk for GMPs is done in
the framework of a conditional IAPM. Thus, the second chapter provides
additional evidence on the pricing of currency risk, in the US. This work
also has important implications in terms of hedging strategies for domestic
investors. Precisely, adopting stable weights is likely to produce low and
stable exposures to currency risks, then lead lower hedging cost.

Finally, we leave two important questions for future work. The first one,
is related to the selection of the number of PCs (or level of stability) that lead
to lower currency exposures. Ideas such as the one proposed in Chapter 1
could be used here. Second, the focus of the chapter was entirely on domestic
portfolios, leaving opened the question of how optimal domestic portfolios are
related to optimal portfolios diversified internationally, in terms of currency
premiums and exposures. The answer to this last question, will contribute
to the current debate of achieving the gains of international diversification
without investing abroad.
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Table 2.10 – Industry residual diagnostics
The table reports diagnostic tests on the residuals, εit, of the conditional mean model
in Equation (2.19). The portfolios considered are 48 industry portfolios (In Panel B),
and global minimum portfolios (In Panel A). The tests are conducted on the residuals
standardized by the conditional standard deviation of the industry returns obtained from
Equation (2.21). BJ is the Bera-Jarque test of the null hypothesis that the standardized
residuals are normally distributed. Q(12) is the Q-statistic of the test of the null hypothesis
that the standardized residuals are not autocorrelated up to the 12th lag, and Q2(12) tests
for autocorrelation in the squared residuals (i.e., a test for remaining heteroskedasticity in
the residuals). The test in the fifth column tests the null hypothesis that the raw residuals
from the conditional mean equation of the industry returns are not predictable, using the
lagged instruments DUSTP, MtoGDP, USDP, XtoGDP, and FED (See Table 2.5). **And
* represent significance at the 1% and 5% levels, respectively.

Panel A : Industry portfolio residuals
Industry portfolio residuals standardized by conditional standard deviation Unstandardized

H0 : Mean=0 H0 : Not H0 : Not H0 : squared residuals. H0 :
Normal autcorrelated residuals not Residuals are not
(JB=0) Q(12) autcorrelated Predictable

Q2(12)
Agric 0.150 0.001 0.698 0.258 0.943
Food 0.034 0.001 0.515 0.239 0.498
Soda 0.443 0.001 0.349 0.740 0.990
Beer 0.029 0.002 0.442 0.937 0.091
Smoke 0.140 0.001 0.972 0.396 0.284
Toys 0.887 0.001 0.576 0.940 0.382
Fun 0.341 0.001 0.290 0.924 0.623
Books 0.694 0.043 0.023 0.315 0.123
Hshld 0.114 0.001 0.611 0.788 0.550
Clths 0.760 0.001 0.253 0.995 0.528
MedEq 0.015 0.001 0.475 0.812 0.928
Drugs 0.008 0.006 0.104 0.534 0.501
Chems 0.504 0.001 0.543 0.766 0.831
Rubbr 0.569 0.001 0.336 0.972 0.630
Txtls 0.911 0.001 0.100 0.998 0.422
BldMt 0.566 0.001 0.667 0.993 0.429
Cnstr 0.661 0.001 0.006 0.460 0.925
Steel 0.777 0.001 0.874 0.832 0.798
FabPr 0.981 0.001 0.546 0.648 0.459
Mach 0.606 0.001 0.075 0.987 0.940
ElcEq 0.138 0.001 0.409 0.996 0.557
Autos 0.973 0.001 0.445 0.861 0.181
Aero 0.687 0.001 0.590 0.544 0.882
Ships 0.879 0.001 0.950 0.966 0.839
Guns 0.348 0.001 0.667 0.089 0.939
Gold 0.926 0.001 0.194 0.433 0.311
Mines 0.841 0.001 0.534 0.821 0.837
Coal 0.660 0.001 0.685 0.944 0.701
Comps 0.343 0.041 0.547 0.022 0.689
Chips 0.366 0.001 0.990 0.100 0.301
LabEq 0.450 0.001 0.608 0.060 0.826
Paper 0.701 0.001 0.100 0.002 0.736
Boxes 0.464 0.001 0.989 0.935 0.369
Rtail 0.130 0.001 0.223 0.943 0.628
Meals 0.576 0.001 0.398 0.979 0.801
Banks 0.663 0.001 0.855 1.000 0.310

(Continued on next page)
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Table 2.10 (Continued)

Panel B : Optimal portfolio residuals
Optimal portfolio residuals standardized by conditional standard deviation Unstandardized

H0 : Mean=0 H0 : Not H0 : Not H0 : squared residuals. H0 :
Normal autocorrelated residuals not residuals are not
(JB=0) Q(12) autocorrelated Predictable

Q2(12)
1oN 0.187 0.001 0.574 0.999 0.644
GMP(100%) 0.945 0.001 0.164 0.834 0.690
GMP(90%) 0.885 0.001 0.266 0.963 0.894
GMP(80%) 0.679 0.001 0.134 0.977 0.862
GMP(70%) 0.355 0.001 0.322 0.999 0.877
GMP(60%) 0.139 0.001 0.437 0.013 0.788
GMP(50%) 0.059 0.054 0.100 0.000 0.503
GMP(40%) 0.072 0.001 0.310 0.031 0.572
GMP(30%) 0.016 0.004 0.259 0.197 0.557
GMP(20%) 0.083 0.001 0.079 0.935 0.473
GMP(10%) 0.361 0.001 0.369 0.998 0.759
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Chapitre 3

Estimating the local risk
premium for pessimistic
decision makers

3.1 Introduction

The notion of risk premium is one of the most widely used concept of the
modern theory of decision making under uncertainty and risk. When deri-
ving the risk premium under a given preferences assumption, the expected
utility (EU) framework has been mostly used. However, frequent violations
of EU axioms in both experimental and real-life situations (e.g Allais para-
dox) have been reported. Some of these limitations of the EU theory can
be tackled, by considering the rank-dependent expected utility (RDEU or
simply RDU) framework, introduced by Quiggin (1982), Schmeidler (1989),
and Yaari (1987).

Under the RDU assumption, the decision maker evaluates risky alterna-
tives with a utility function over outcomes and a distortion function that
transforms the probability distribution of outcomes. Different assumptions
on the distortion function leads to different behaviors of the decision maker.
In this chapter, we are interested in the behavior of increasing pessimism of
Quiggin (1982), and we call it pessimism as Bassett et al. (2004). This notion
of pessimism is induced by a concave distortion function that accentuates the
probability weights associated with least favorable outcomes.

Defining a notion of risk premium for RDU involves two difficulties. First,
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a well known characteristic of rank-dependent preferences stressed in the li-
terature is that pessimism is rather difficult to distinguish empirically from
risk aversion (e.g. Quiggin (1982)). To isolate the risk premium only due to
the pessimism of the decision maker, we consider risk neutral decision makers
with linear utility function over outcomes. The second issue comes from the
nonlinearity in probability introduced by the distortion function. Indeed, the
original definition of Pratt (1964) assumes that decision makers are expected
utility maximizers, and use a specific utility function over wealth. Therefore,
deriving the risk premium requires finding the utility function used by de-
cision makers to evaluate outcomes, and which corresponds to an expected
utility maximization criterion. The second issue can be solved by assuming
that the preference functional over alternative probability distributions is
smooth, so that the required utility function can be derived, as the local
utility function introduced by Machina (1982). Indeed, Machina established
that any smooth preference functional can have, around a given risk, an ex-
pected utility representation and thereby, inherit the basic concepts, tools
and results of expected utility analysis. By solving the mentioned difficulties,
the risk premium and coefficient of risk aversion that we obtain are only due
to the pessimistic behavior of the decision maker. In particular, the coeffi-
cient of risk aversion can be used to compare and summarize the degree of
pessimism.

The literature on RDU is closely related to that of risk measurement. Ins-
tead of a definition from the economic theory of choice under uncertainty, the
latter literature introduces risk measures satisfying desirable properties. One
of the most prominent endeavor in such a direction is the seminal chapter
of Artzner et al. (1999), who introduced the class of coherent risk measures
satisfying four desirable properties : monotonicity, invariance with respect
to drift, homogeneity and subadditivity. In turn, these properties lead to ap-
pealing representations as weighted sum of quantiles (Kusuoka (2001)), when
comonotonicity and law invariance are further assumed. This last represen-
tation describes the wider family of distortion risk measures (DRM), that
distort the probability measure while using a linear utility. Therefore, DRMs
are directly linked to rank-dependent utility functions, as already pointed
out by many authors (e.g. Wang (1996, 2000), Gourieroux and Liu (2006)).

Considering rank-dependent utilities is particularly relevant in view of
their appealing behavioral interpretation, and their increasing use in Finance
and Insurance. For example, they are used as objective function in portfolio
optimization to generalize the mean-variance analysis, [e.g. Rockafeller and
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Uryasev (2000), Krokhmal et al. (2002), Adam et al. (2008)], and for fixing
the reserves needed to balance or hedge a risky investment. The most fa-
mous member of DRMs is certainly the Conditional Value-at-Risk (CVaR),
advocated by Artzner et al. (1999) to replace the Value-at-risk (VaR) pro-
posed since 1996 by the Basel Committee on Banking Supervision. In effect,
contrarily to the VaR, the CVaR also satisfies the subadditivity property and
takes into account the magnitude of the loss when it occurs.

Many statistical tools have been developed to analyze rank-dependent
preferences, mainly as distortion risk measures. Gourieroux and Liu (2006a)
estimated the efficient portfolio allocation when distortion risk measures de-
fine the objectives and the constraints ; Gourieroux and Liu (2006b) provided
a unified statistical framework for the analysis of distortions risk measures
and of their sensitivity ; Scaillet (2004) considered a nonparametric method
to estimate the CVaR and its sensitivities using kernel estimators ; Bassett
et al. (2004) used Choquet utility for pessimistic portfolio optimization by
solving a linear quantile regression problem. Although considerable effort
has been devoted to provide tools for the statistical study of rank-dependent
preferences, to the best of our knowledge, our study is the first attempt to
provide such tools for the analysis the risk premium associated with rank-
dependent utilities.

The contribution of the chapter is twofold. First, we derive a notion of risk
premium that we call local risk premium and propose a measure of the de-
gree of pessimism for decision makers with rank-dependent utility. By doing
so, we generalize the commonly used notion of risk premium derived under
the expected utility framework. To achieve this result, we derived the local
utility function using Machina’s approach and obtained the associated risk
premium from the original definition of Pratt (1964). This leads to a mea-
sure with the appealing property of depending only on the distribution of
the risk considered and on a distortion function. Our second contribution is
to provide statistical procedures for the nonparametric analysis of the local
utility functional associated with rank-dependent preferences and the corres-
ponding risk premium. More specifically, estimators are proposed, and the
consistency and the asymptotic properties of these estimators are establi-
shed. This is done for a general rank-dependent utility with given distortion
function, and for CVaR preferences.

The rest of the chapter is organized as follows. Section 2 sets some no-
tations and defines the notions, the concepts and tools used throughout the
chapter. Section 3 derives the local utility of rank-dependent preferences
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around a given distribution, and the corresponding risk premium and mea-
sure of pessimism. In Section 4, estimation procedures are proposed for the
measures derived in Section 3, along with consistency and asymptotic nor-
mality results. Section 5 assesses the proposed estimators through Monte
Carlo simulations, and presents an empirical illustration. Finally, Section 6
presents future works and concludes.

3.2 Notations and basic framework

3.2.1 Notations

Let (Ω,F ,P) be a probability space, and Y denote the value of a given
random prospect (profit and loss variable) defined on (Ω,F ,P). There is a
profit if Y is positive and a loss otherwise. The loss and profit variable X
associated with Y is X = −Y . We denote by FX the cumulative distribution
function (c.d.f ) of X and by QX its quantile function, respectively defined
by FX(x) = P (X ≤ x) and QX(t) = inf {x : FX(x) > t}. We call L2 the set
of real-valued random variables with finite second moment. All preference
functionals will be considered on the subset D of L2, containing loss variables
with a density relative to the Lebesgue measure.

Let X and Z be two elements of D. Denote X �1 Z ( resp X �2 Z),
X dominates Z according to first-order (resp. second-order) stochastic do-
minance. Then X �1 Z (resp. X �2 Z ) if and only if FX(x) ≤ FZ(x) (resp.∫ x
−∞ FX(u)du ≤

∫ x
−∞ FZ(u)du), for all x. X and Z are comonotonic if there

exist a random variable U and two increasing functions φ and ψ such that
X = φ(U) and Z = ψ(U) almost surely. A functional Φ defined on D is called
comonotonic additive (CA) if Φ(X + Z) = Φ(X) + Φ(Z) when X and Z are
comonotonic. Φ is said to be law invariant if Φ(X) = Φ(Z) when X and Z
have the same distribution.

Let {xt}Tt=1 be a given i.i.d sample of size T from the random variable
X, where xt denotes the observation of x at time t ; x(k) denotes the order
statistic of order k, that is the kth element when the xt are arranged in
increasing order. The empirical c.d.f and the empirical quantile function of

X, based on the given sample, are respectively F̂T (x) = 1
T

T∑
t=1

1xt≤x for all

x ∈ R and Q̂T (u) = inf
{
x : F̂T (x) ≥ u

}
for all u ∈ [0, 1]. For a fixed real

number x, we denote by tl(x) the number T F̂T (x) of observations before x,
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which can also be written as tl(x) = sup
{
t : x(t) ≤ x

}
.

3.2.2 Basic framework

The basic framework of the chapter involves the notion of rank-dependent
preferences and the notion of local utility required to derive the local risk
premium. This Section defines these notions.

Rank-dependent utility function

The rank-dependent expected utility (RDU) or anticipated utility theory
is an extension of the classical expected utility theory, were the distribution of
the random variable is replaced by a distorted version. If the decision maker
evaluates outcomes with a utility function u, and transforms probability as-
sessments with a distortion function h, his RDU is obtained by averaging the
utility-equivalent of monetary outcomes, u(−QX(1− t)) 1, using a weighting
function dh(t).

The function h is used to attach probability to outcomes depending on
their utility ranking and reflects the decision maker’s attitude toward the
risk distribution. A concave distortion function h corresponds to decreasing
weights associated to outcomes ranked in increasing order of utility. There-
fore, with such distortion, the implicit likelihood of least-favorable outcomes
is accentuated, while the likelihood of the most-favorable outcomes is depres-
sed. RDU preferences with concave distortion then corresponds to a ”pessi-
mistic” behavior, as argued by Bassett et al. (2004). Following this argument,
we define pessimism in the following way :

Definition 1. Pessimism
A decision maker with rank-dependent preferences is said to be pessimistic

if the distortion function h he uses to assess probabilities is concave.

The notion of pessimism in Definition 1 also corresponds to Quiggin’s
(1982) notion of increasing pessimism. A more general definition of pessi-
mism introduced by this author, but that we do not consider in this chapter,
imposes on the distortion h, the condition h(α) ≤ α, for every probability
level α.

1. Since X is the loss variable, the −QX(1− t), with t ∈ [0, 1], represent the quantiles
of the profit in monetary terms.
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The functional form of the RDU theory was introduced by Quiggin (1979)
as a generalization to the expected utility theory, following the violation of
the dominance axiom reported in many studies (e.g. Kahneman and Tvesky
(1979)). Early axiomatization of the RDU theory, include Quiggin (1982)
and Yaari (1987). In the sequel, we adopt Definition 2 as the definition of
rank-dependent preferences. For expository purposes, we consider the par-
ticular case of linear utility function (u(x) = x), which corresponds to a
risk-neutral decision maker. In addition the choice of a linear function will
be key in defining a measure of pessimism. As we will see subsequently, a
risk neutral decision maker still pays a premium if he is pessimistic, that is,
if his distortion function is concave and nonlinear.

Definition 2. Rank-dependent preferences
Let h be a c.d.f on [0, 1]. A preference functional Ψ is said to characterize
rank-dependent preferences, with distortion h, if for all loss and profit variable
X in D, we have

Ψ = Ψh(X) = −
∫ 1

0

QX(1− α)dh (α) , (3.1)

where QX(1− α) is the (1− α)th quantile of X.

The definition of RDU that we adopt is related to many notions in the
literature of decision making under uncertainty and risk. It can be rela-
ted to the Yaari functional representation (1987) of RDU. Indeed, using
h(0) = 0 and h(1) = 1, and by integrating by parts, we obtain that Ψh(X) =
−
∫
h (SX (x)) dx, where SX(t) = 1−FX(t) is the survival function of the ran-

dom variableX. Rank-dependent utility can also be expressed as the Choquet
expectation of X with respect to a capacity 2 µ, denoted by EµX. To see this,
remark that by choosing µ, defined directly on events by µ(A) = −h(P(A)),
for all A ∈ F , Ψh(X) can be rewritten as

Ψh(X) =

∫ 0

−∞
(µ ({X > x})− 1) dx+

∫ +∞

0

(µ ({X > x})) dx = EµX.

Parallel to the literature on decision making under uncertainty, RDU
are widely used in the literature of risk assessment, mostly as distortion

2. A Choquet capacity is a normalized monotone set function. That is, for two events
A and B : A ⊆ B ⇒ µ(A) ≤ µ(B), µ(∅) = 0 and µ(Ω) = 1.
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risk measure (DRM) (e.g. Wang (1996), Gourieroux (2010)). The DRM with
distortion function h of a loss X, that we denote Πh(X), is obtained as

Πh(X) =
∫ 1

0
QX(1− α)dh (α), that is Ψh(X) = −Πh(X). The negative sign

in the expression of Ψh(X) means that a decision maker with rank-dependent
preferences is better off, the lower the distortion measure of the risk he is
facing.

In general, families of rank-dependent functions can be obtained by using
different families of distortions. Example of distortions are summarized in
Table 3.1. The power-law (Pow(θ)) parametrization is given by h(u, θ) =
1 − (1 − u)θ with θ ∈ [1,+∞[ , while the exponential (Exp(θ)) parametri-

zation is characterized by the distortion h(u, θ) = 1−e−θu
1−e−θ . The most famous

representative of the class of DRMs is the conditional value-at-risk (CV aR)
at risk level p, with distortion function h (α, p) = α

p
∧ 1 parametrized by the

risk level p ∈ [0; 1].

Example 1. Conditional Value-at-risk (CV aRp(X))
The CVaR at risk level p of a loss X ∈ D is defined as the average loss under
the condition that X exceeds its (1−p)th quantile, also called the value-at-risk
at risk level p and denoted V aRp(X). That is :

CV aRp(X) = E (X|X ≥ V aRp(X)) , (3.2)

with V aRp(X) such that P (X ≥ V aRp(X)) = p.

Table 3.1 – Example of families of distortion

Distortion h(u, p) Parameter

Power 1− (1− u)p p ∈ [1,+∞]

Exponential 1−e−pu
1−e−p p ∈ [1,+∞]

CVaR u
p
∧ 1 p ∈ [0, 1]

From expression (3.1), rank-dependent preferences are not linear in the
probability distribution of X, which is distorted by the nonlinear function
h. Therefore, for pessimistic decision makers, the expected utility framework
cannot be used to derive the risk premium. In order to apply a definition of
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risk premium in the same spirit as the original definition of Pratt(1964), we
need to find the conditions under which the rank-dependent preference can
be replaced by an expected utility criterion, and derive the corresponding
utility function over outcomes used in such a context.

The solution is provided by the notion of local utility function obtained by
approximating the functional Ψh around the risk FX using Machina’s (1982)
results. The specific condition needed is the smoothness of the preference
functional Ψh. The local utility can then be used to rank risky alternatives
around FX and derive notions of local risk premium and local risk aversion.

Local utility function

Definition 3. (Machina (1982)) Consider a real-valued preference functio-
nal Ψ on D, continuous relative to the topology of convergence in distribution.
Furthermore, suppose Ψ smooth (or differentiable) on D and let F be a dis-
tribution in D. The local utility function relative to Ψ at F is the Fréchet
derivative of Ψ at F , that is the function U(·;F ) such that :

Ψ(F ∗)−Ψ(F )−
∫
U(x;F )(dF ∗(x)− dF (x))→ 0, (3.3)

when F ∗ converges to F .

The notion of local utility function extends the von Neumann-Morgenstern
(1944) framework to cases where the independent axiom is violated but pre-
ferences are smooth. Indeed, under the smoothness of his preference functio-
nal, a decision maker acts around a given random prospect X as an expected
utility maximizer. That is, there exists a function U(·;FX), such that for a
differential shift F ∗X of FX , the decision maker will prefer F ∗X to FX , if and
only if

∫
U (x;FX)dF ∗X ≥

∫
U (x;FX)dFX .

Machina’s results can be extended to cases where the smoothness assump-
tion does not hold as considered in Safra and Segal (2002). In this study we
suppose that this assumption is always satisfied.
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3.3 Local utility function and risk premium

for rank-dependent preferences

3.3.1 Local utility function for rank-dependent prefe-
rences

In this Section, we apply Machina’s definition to derive the local utility
function for rank-dependent preferences defined by Equation (3.1). The ex-
pression for the local utility in the RDU setting seems to be known in the
literature (e.g. Segal (1985)). For completeness, we present this result in Pro-
position 3, and prove it in appendix A, given that we have been unable to
find an existing proof. In the remainder, the distortion function h is supposed
to satisfy assumption A.

Assumption A
The function h satisfies the following conditions

1. h : [0; 1] 7→ R+

2. h is increasing and concave on [0; 1]

3. h′(1) <∞

Proposition 3. Consider a distortion preference Ψ over the set D, defined
as in Equation (3.1).
The local utility function Uh(·;FX) relative to preference Ψ at FX , evaluated
at x is given by :

Uh(x;FX) = −
∫ x

−∞
h′ (1− FX (t)) dt = −

∫ x

−∞
h′ (SX (t)) dt. (3.4)

In the sequel, if the distribution FX is known, Uh(x;FX) will be simply
denoted by Uh(x).

For X ∈ D, the first and the second order derivative of Uh at x are respec-
tively U ′h(x) = −h′(SX(x)) and U ′′h (x) = −F ′X(x)h′′(SX(x)). Under Assump-
tion A, the local utility Uh defined over losses is decreasing and concave, or
equivalently, the function U∗h , defined over returns by U∗h(x) = Uh(−x) for
all x ∈ R, is increasing and concave.
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3.3.2 Local risk premium

Consider a decision maker with smooth preferences Ψh over the set D.
We define the local risk premium of the risk X, by the amount π = π(h, FX),
that the decision maker is ready to pay in order to avoid the random loss
X, around the distribution of FX of X. Around the risk FX , a smooth-
preference decision maker behaves as an expected utility maximizer, using
the local utility function at FX , π can be defined as :

Uh(EX + π;FX) = EX (Uh(X;FX)) , (3.5)

where Uh(·;FX) is the local utility function relative to Ψh at FX . The resulting
risk premium π(h, FX) is a function of the distribution of the risk X and of
the distortion h.
If the local utility function is invertible and its inverse H is known, then the
expression for the risk premium πh = π(h, FX) is :

πh = H (EX (Uh(X;FX)))− EX. (3.6)

3.3.3 Local risk aversion

An approximation of the risk premium similar to that of Pratt (1964), can
be derived and is given by (3.7). In the RDU case, the definition of the risk
aversion function r relies on two approximations : at the distribution level
and at the outcome level. Under suitable regularity conditions, expanding
the local utility Uh(·) in the neighborhood of x gives :

Uh(EX + π) = Uh(EX) + πU ′h(EX) + o
(
π2
)

and

EUh(X) = E

[
Uh(EX) + (X − EX)Uh(EX) +

1

2
(X − EX)2 Uh(EX) +O

(
(X − EX)3)] .

This implies that :

π(h, FX) =
1

2
σXr(h, FX) + o(σ2

X), (3.7)

where the risk aversion function r is r (h, FX) = −U ′′h (EX)

U ′h(EX)
. The function r is

completely characterized by the distribution FX of X and by the function h.
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In the framework of RDU, an explicit expression for r can be derived if h is
given. Using U ′h (x) = −h′ (SX(x)) and U ′′h (x) = F ′X(x)h′′ (SX(x)), gives :

r (FX , h) = −F
′
X(EX)h′′ (SX(EX))

h′ (SX(EX))
, (3.8)

which is positive under assumption A. The risk aversion function can be used
to compare any two arbitrary elements (h1, X1) and (h2, X2). Note that in the
expected utility case, the loss distribution is not distorted since h(x) = x.
This also implies, using (3.8) and h′′ ≡ 0, that the associated local risk
aversion is 0. Therefore, r (h, FX) measures the level of risk aversion only
due to the pessimism of the decision maker, and can be used as a measure
of the degree of pessimism.

Given a degree of pessimism, Equation (3.7) reveals that the risk pre-
mium can be approximated as a linear function of volatility σX . As a result,
higher level of volatility will correspond to higher level of the premium due
to pessimism, since r ≥ 0.

3.3.4 Local utility function and risk premium for the
CVaR

In this section, we determine the local utility function and risk premium
in the conditional value-at-risk (CVaR) case. In addition, we discuss how
these measures can derived in more general cases (power-law or exponential
distortion).

Conditional Value-at-risk (CVaR)

Suppose the decision maker considers the (1−p)th quantile, V aRp(X), as a
threshold, and is better-off for lower average losses above that threshold, then
his preferences can be represented by the functional Ψp(X) = −CV aRp(X) 3.
We will refer to such preferences as CVaR preferences. The parameter p re-
presents an acceptable loss probability level set by the decision maker, and
will be referred to as the level of risk (Gourieroux and Liu (2006b)). For

3. An alternative interpretation is that such decision maker prefers higher returns
when the loss V aRp(X) is exceeded since Ψp(X) can also be written Ψp(X) =
E (Y |Y ≤ QY (p)), where Y is the profit and loss variable.
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example, for an institution p will be the percentage of loss that can be affor-
ded on a particular position. High tolerance to risk, as expressed by large p,
correspond to higher level of utility Ψp(X) for a given risk X. Proposition
2.1 shows that, for the local utility function, such result only hold in the case
of extreme losses.
In Proposition 4, we also determine the local utility function and risk pre-
mium for CVaR preferences, and analyze how they are affected by the risk
level p. The derivations are based on the fact that the CVaR is a DRM with
h (α, p) = α

p
∧ 1, h′ (α, p) = 1

p
1[0,p](α).

Proposition 4. Consider a decision maker with CVaR preferences at risk
level p. We have the following results concerning its local utility function
Up(·;FX) and risk premium π(p) = π(p,X).

1. Up(x;FX) = V aRp(X)−x
p

1x>V aRp(X).

2. For two parameters p1 and p2 such that p1 < p2, we have Up1 (x) ≥
Up2 (x) if and only if x ≤ c(p1, p2), with c(p1, p2) =

p2V aRp1 (X)−p1V aRp2 (X)

p2−p1 .

3. π(p) = [pCV aRp(X) + (1− p)V aRp(X)]− EX.

4. For a given risk X, π is decreasing with p.

The first part of Proposition 4 reveals that, the decision maker with CVaR
preferences has a null local utility when the threshold V aRp(X) is not excee-
ded. However, when V aRp(X) is exceeded, this local utility becomes negative,
and is proportional to the extent to which V aRp(X) is exceeded. The second
result of Proposition 2 implies that decision makers with higher risk level
are better-off, relative to decision makers with lower risk level, only when
extreme losses occur. Indeed, if we consider two decision makers respectively
characterized by the risk levels p1 and p2 with p1 < p2. The level p1 corres-
ponds to higher local utility, as long as the loss magnitude does not exceed a
threshold given by c(p1, p2). The third part of the Proposition states that the
risk premium is the weighted average of the CVaR and the VaR, respectively
with weights p and 1 − p, in excess of the expected loss. Since the CVaR
also take into account the magnitude of the loss when it occurs, the major
implication of Proposition 2.3 is that decision makers with higher tolerance
to risk, care more about the magnitude than the probability of the loss when
it occurs. The last part of Proposition 4 supports the intuition according to
which, higher level of risk, correspond to a lower level of risk premium. These
findings are illustrated in Figure 3.1.
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Contrarily to the CVaR, the power-law and the exponential distortion
functions described in Table (3.1), do not lead to closed-form analytical ex-
pressions for the local utility and the risk premium. However, for a given risk
FX , their value can be computed using numerical procedures or estimated
from a given random sample, as discussed in Section 3.4.

Figure 3.1 – Local utility function and risk premium for CVaR preferences

Figure 3.1 displays local utility functions and the local risk premium, computed

using the results of Proposition 4 and returns distributed according to N(µ =

0.046;σ = 0.953). On the left panel, the decision maker with the lower risk level

(p=0.05) has a higher VaR, and cares less about the magnitude of the incurred

loss than the decision maker with risk level p = 0.1. The right panel describes the

intuition according to which, for a given risk X, the higher the risk level p, the

smaller the risk premium. The limiting case being that a 100% tolerance to risk,

corresponds to a null risk premium.

3.4 Estimating the local utility function and

the risk premium

The local risk premium generalizes the notion of risk premium, with the
additional feature that the degree of pessimism is taken into account as a
function of the loss distribution. In this section, we present a procedure to
estimate the local risk premium using available data. We adopt the i.i.d
setting for expository purpose and also because it corresponds to the most
frequently used approach in practice (e.g. Gourieroux and Liu (2006), Ro-
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ckafeller and Uryasev (2000)). We consider the distortion h to be given and
fixed.

Suppose that we observe i.i.d one-dimensional realizations x1, · · · , xT of a
loss variable X with distribution FX . Our objective is to construct estimators
for the local utility function and the local risk premium associated with a
rank-dependent utility Ψh, for h known. An emphasis is put on the CVaR.

3.4.1 Estimating the local utility function

Estimating Uh(x), for a given outcome x, consists in estimating the in-
tegral of the unknown function φ = −h′ ◦ SX between −∞ and x. The
functions SX and φ can respectively be estimated by ŜX and φ̂ = −h′(ŜX),
where ŜX(x) = 1 − F̂X(x) is the empirical survival function. The estimated
function φ̂ is then defined by interval, and take the values −h′(ŜX(x(t))) on
the interval [x(t), x(t+1)[ for t = 1, · · · , T . Define ∆x(t) = x(t+1) − x(t), we

propose to estimate Uh(x) by the integral of φ̂ :

Ûh(x) = −
tl(x)∑
t=1

h′
(
ŜX(x(t))

)
∆x(t).

When T → ∞, ∆x(t) → 0 and, using tl(x) defined in Section 3.2.1, xtl(x) →
x a.s, so that Ûh(x) is expected to be consistent as we formally show below.

Assumption B

1. x1, · · · , xT is an i.i.d random sample from X.

2. For all x ∈ R,
∫ x
−∞ h

′′ (SX (t)) dt <∞.

Lemma 1. Let ψ be a nonrandom function defined on R, for a fixed x ∈ R,
and under Assumption B.1, we have :

tl(x)∑
t=1

ψ(x(t))∆x(t) →
∫ x

−∞
ψ(u)du a.s when T →∞.

The proof of lemma 1 is a consequence of assumption B.1, and is provided
in appendix A

Proposition 5. Under assumptions A and B, for a fixed x, Ûh(x)→ Uh(x)
a.s, when T → +∞.
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Proposition 6. Under assumptions A and B, for all x :

√
T
[
Ûh(x)− Uh(x)

]
⇒ −

∫ x

−∞
h′ (SX (t))B(FX(t))dt,

where B(·) is a standard Brownian bridge. The limiting distribution of Ûh(x)
is a Gaussian process with pointwise variance given by

V (x) =

∫ x

−∞

∫ x

−∞
h′′ (SX(u1))h′′ (SX(u2)) [FX (u1 ∧ u2)− FX (u1)FX (u2)] du1du2.

V (x) can be consistently estimated by :

tl(x)∑
t1=1

tl(x)∑
t2=1

h′′
(
ŜX(x(t1))

)
h′′
(
ŜX(x(t2))

) [
F̂X
(
x(t1) ∧ x(t2)

)
− F̂X

(
x(t1)

)
F̂X
(
x(t2)

)]
∆x(t1) ∆x(t2).

The proofs of Proposition 5 and 6 are provided in appendix A. The consis-
tency result of Proposition 5 is illustrated by Figure 3.2. Using Proposition
6, bootstrap procedures can be designed to approximate the limiting distri-
bution of the local utility function.

3.4.2 Estimating the risk premium for a given disto-
tion h

Estimating the risk premium for a given function h requires the compu-
tation of the inverse H of Uh. We first provide a procedure to estimate such
a function. Under Assumption A, Uh is a concave and decreasing function,
then admits an inverse that can be determined from Uh using the procedure
described below and illustrated in Figure 3.3.

After observing the losses xt, for a given real x in the interval It =[
x(t), x(t+1)

)
, we have tl(x) = t and Ûh(x) = −

t∑
j=1

h′
(
ŜX(x(j))

)
∆x(j) = λt.

This implies that, conditional on the observed losses, the estimated func-
tion Ûh only takes the values in the set {λt}Tt=1. Besides, these values are such
that λT ≤ · · · ≤ λ1 ≤ λ0, with λ0 = 0.

Given these remarks, we propose to estimate the reciprocal H of the
function Uh, by inverting Ûh. Let y ∈ R, there exists i∗ ∈ {0, · · · , T} such
that y ∈]λi∗+1, λi∗ ]. As illustrated in Figure 3.3 , i∗ can be expressed as

i∗(y) = inf
0≤i≤T

{i : y ≤ λi}. (3.9)
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Figure 3.2 – Estimated local utility as the sample T increases

For each value of T ∈ {50, 100, 500, 1000}, Figure 3.2 plots the theoretical local
utility function numerically computed, and the estimated local utility function.
The dataset used is calibrated to daily returns on the U.S. consumption good
industry from French library (N(µ = 0.046;σ = 0.953)). The theoretical utility
function is evaluated on a grid of 1000 points on the interval [−2; 2], while the local
utility is only evaluated at each points of the generated samples. The distortion
considered is h(u) = 1 − (1 − u)2. These plots illustrate the consistency of the
estimators proposed in Section 4 : the discrepancy between the theoretical and the
estimated local utility curves reduces as the sample size increases.
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Consequently, y = λi∗+1 + α(λi∗ − λi∗+1) = αλi∗ + (1 − α)λi∗+1, with α =
y−λi∗+1

λi∗−λi∗+1
. By linear interpolation, we have the following approximation of H :

Ĥ(y) = (1− α)x(i∗) + αx(i∗+1), (3.10)

where i∗ and λi are defined by (3.9).

As the final step before the estimation of πh, we propose to estimate the

expected local utility EX (Uh(X;FX)) by its sample counterpart ÊX

(
Ûh(X;FX)

)
=

T−1
T∑
t=1

Ûh(xt).

By replacing the estimates of the expected local utility and the inverse of the
local utility in Equation (3.6), the estimator of πh that we propose is :

π̂h = Ĥ

(
T−1

T∑
t=1

Ûh(xt)

)
− T−1

T∑
t=1

xt. (3.11)

Figure 3.3 – Inverting a local utility function

Figure 3.3 illustrates the numerical procedure used to compute the inverse H
of a local utility function Uh. Losses x(i) on the horizontal axis represent observa-
tions arranged in increasing order, while on the vertical axis, the λi represent the
associated level of utility.

In the next section, we show the asymptotic normality of the risk premium
in the CVaR case.
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3.4.3 Estimating the CVaR premium

In the Conditional value-at-risk case, the closed-form analytical expres-
sion of Proposition 4, makes it easy to construct estimators for the local
utility and the risk premium. For a given p, π (p) can be estimated by its
sample counterpart π̂ (p). From Proposition 4, π̂ (p) is obtained by replacing
the empirical estimates of CV aRp(X), V aRp(X) and E(X) in π (p) :

π̂ (p) =
[
pĈV aRp(X) + (1− p)V̂ aRp(X)

]
− X̄T . (3.12)

X̄T is the sample mean, while V̂ aRp(X) 4 and ĈV aRp(X), as distortion
risk measures, can be estimated by L-statistics (Gourieroux and Liu (2006)) :

Π̂T (p) =
T∑
t=1

x(t)

[
h

(
1− t− 1

T

)
− h

(
1− t

T

)]
. (3.13)

We have

V̂ aRp(X) =
T∑
t=1

x(t)

[
1( t−1

T
≤1−p) − 1( t

T
≤1−p)

]
=

{
x(1−p)T if (1− p)T is an integer
x[(1−p)T ]+1,

and ĈV aRp(X) = 1
Tp

T∑
[(1−p)T ]

x(t), obtained by replacing the function h (α, p) =

α
p
∧ 1 in (3.13) ; [b] denotes the integer part of b. The convergence of π̂ (p) in

(3.12) results are summarized in Proposition 7.

Proposition 7. Suppose assumption B.1 holds and denote by X a random
variable with finite variance σ2

X . Then for all real x, and p ∈ [0; 1], we have
the following convergences :

1. π̂ (p)→ π (p) a.s.

2.
√
T (π̂ (p)− π (p))→ N (0, σ2

π), with σ2
π = p2ω2

1 + (1− p)2ω2
2 + σ2

X and

ω2
1 =

V (X |X ≥ V aRp(X)) + (1− p) (CV aRp(X)− V aRp(X))

p

ω2
2 =

p(1− p)
f (QX(1− p))

.

4. VaR is a particular DRM with a distortion h(α, p) = 1α≥p that is not concave. The
VaR is not coherent because it does not satisfy the subadditivity property.
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The function f is the probability density function of X, and ω1 and ω2 are

the asymptotic variances of ĈV aRp(X) and V̂ aRp(X) respectively.

The proof is provided in appendix C. Its main ingredient is that X̄T ,

V̂ aRp(X) and ĈV aRp(X) are asymptotically uncorrelated.
In addition to providing the asymptotic distribution of the CVaR pre-

mium, Proposition 7 reveals that the volatility of the risk premium is mono-
tonic relative to the volatility of the loss and profit variable σX . This fact is
illustrated by our simulations (see Figure 3.4).

3.5 Monte Carlo study

In this section, we perform Monte Carlo simulations to assess the small
sample properties of the proposed estimators for the local risk premium,
considering four distortion functions h and three sample sizes. We use a
loss distribution X which we assume to be normally distributed and that
we calibrate to daily returns on the Consumption good industry (Cnsmr),
over the period 1963-2010 (µ = −0.046;σ = 0.953). The daily returns are
extracted from the 5 Industry Portfolios (hereafter 5IP) compiled on Kenneth
French website 5. Using the calibrated distribution, we generate 1000 samples
for different sample size T ∈ {60, 100, 200}. For each generated sample, the
estimated local risk premium is computed using equations (3.11) and (3.12)
and the four distortions from Table 3.1 : the power distortion for θ = 2 and
θ = 3, the exponential distortion with p = 1 and the CVaR distortion with
p = 0.05. We then obtained for each h and each T , a series of risk premia. The
summary statistics over 1000 replications of the estimated risk premia π̂ are
reported in Table 3.2. The theoretical risk premia π∗ are computed using the
true distribution and the respective distortion h. The reported bias, based
on π∗ are found to be of the order 10−2π∗, for all h. As expected, these bias
decrease with the sample size T . The series of estimated risk premia also
exhibit a ratio of the standard deviation to the mean of order 10−2, which
corresponds to a small dispersion of the estimates around their respective
true value.

The results of the simulations performed suggest that the proposed esti-
mator are expected to be consistent and to have little estimation error, even
in relatively small sample.

5. http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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Table 3.2 – Statistics on the estimated local risk premia throughout 1000
replications, with normal returns, for four distortions

Risk premium

Sample size Statistics Pow(2) Pow(3) Exp(1) CV aR0.05

π∗ 0.30043 0.46072 0.16298 1.58758

Bias 0.00547 0.00744 0.02604 0.06564
Std 0.04586 0.05689 0.03867 0.24521

T = 60 q1 0.27491 0.42873 0.16238 1.48647
median 0.30120 0.46427 0.18110 1.64010

q3 0.32951 0.50371 0.20586 1.80270

Bias -0.00341 -0.00179 0.01237 0.03370
Std 0.03142 0.04176 0.02474 0.18081

T = 100 q1 0.27544 0.43063 0.15857 1.49569
median 0.29405 0.45664 0.17061 1.61413

q3 0.31560 0.48483 0.18726 1.72706

Bias -0.00109 -0.00668 0.00151 0.00809
Std 0.01946 0.02744 0.01287 0.12472

T = 200 q1 0.27641 0.43504 0.15611 1.51145
median 0.28935 0.45330 0.16328 1.58993

q3 0.30201 0.47222 0.17166 1.67808

Table 2 describes the small sample properties of the estimators proposed in Sec-
tion 4. For all the values of h, we observe a small bias that decreases, when the
sample T increases, and a low standard deviation. The distortion functions h are
described in Table (3.1), and summarize how the decision maker distort probability
distributions.
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3.6 Empirical illustration

In this section we empirically illustrate the use of the proposed estimator
for the local risk premium. As in the previous simulations, the loss distri-
bution is derived from 5IP daily returns. Note however that the proposed
estimators could equally be applied to a market index or to any portfolio.
Decision makers are supposed to have CVaR preferences, that is, conditional
to the fact the VaR is exceeded, they prefer higher returns. To reflect the
structural change in the industry portfolio returns, we adopt a rolling window
approach with a window size M = 100. At each date t, formula (3.11) is used
to compute the risk premium π̂t based on the M previous daily observations.
The window is then shifted one day ahead. This step is repeated recursively
until the end of the sample, and provides the time series {π̂t}Tt=M+1 for each
of the five industries considered.

Figure 3.5 exhibits two major periods of high level of local risk premia,
2000-2003 and 2008-2011. The latter is likely to be a reflection of the high
level of volatility that U.S stock market has experienced as a consequence
of the subprime crisis. The former period coincides with the aftermath of
the IT bubble burst in 2000, that resulted in the decline of the U.S stock
market. Figure 3.5 reveals the highest volatility in hightech, which was pre-
cisely the industry the most affected. Indeed, compared to other portfolios,
investor were willing to pay more to avoid holding the hightech industry
portfolio. Between the two highly volatile periods, the intermediary period
(2004-2007) is characterized by a very low volatility and a local risk premium
which fluctuates on average between 1 and 2 for all industries. The evidences
in Figure 3.5 are supported by statistics in Table 3.3, computed for the three
periods mentioned above, and also provide us with a measure of the relative
severity of the crisis during these periods. This relative severity varies accor-
ding to the industry, even though globally these periods are characterized by
high values of risk premia. For example the premium paid during the period
2000-2003 for Cnsmr is approximately twice the premium paid in the stable
period (2004-2007), while the premium paid during 2008-2011 is four times
the premium paid in the stable period. For the Health industry, the maxi-
mum premium in the periods 2000-2003 and 2008-2011 is approximately the
same, and is twice the premium during the 2004-2007 period.

Figure 3.4 reveals that the risk premium, the average conditional loss
and the volatility as measured by standard deviation tend to move together.
This can be explained by the fact that for a given p, a high level of volatility
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corresponds to a high level of CVaR and VaR. An additional explanation
can be provided by the approximation in Equation (3.7) : high degree of
pessimism as measured by the coefficient r(h, FX), and high volatility σX , will
correspond to high risk premium π(h, FX). The proposed local risk premium
measure can therefore be used as a measure of risk, with the additional
feature that it also reflects the level of pessimism.

Figure 3.4 – Comparing CVaR premium with CVaR and volatility
Comparison of series of out-of-sample CVaR premia, CVaR and standard deviation com-
puted for daily returns on the Hitech industry, using CVaR preferences with a risk level
of p ∈ {0.1, 0.25} and a rolling window of M = 100

We also considered the exponential and the power-law hazard distortions,
and two different values for the rolling window, M = 60 and M = 200. The
results obtained are essentially the same and are available upon request.
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Figure 3.5 – Out-of-sample CVaR risk premia for 5IP
The Figures shows series of out-of-sample risk premia computed for daily returns from

5IP, using CVaR preferences with a risk level of p = 0.1 and a rolling window of M = 100

Table 3.3 – Statistics on Out-of-sample daily risk premia for 5IP
Table 3 displays statistics on CVaR risk premia during stressed market conditions (2000-
2003 and 2008-2011), and during normal market conditions (2004-2007). Notice that the
premium paid as a consequence of pessimism depends on the industry considered, and is
higher during stressed market conditions. For example in the aftermath of the dot-com
crisis, the HiTec industry had the highest premium. In addition, for all industries the
premium is relatively higher during stressed market conditions.

Periods Industry Mean Std min q1 median q3 max

Cnsmr 2.5319 0.5442 1.5162 1.9328 2.7082 2.9974 3.4391
Manuf 2.4281 0.5587 1.4217 2.0540 2.2243 2.9055 3.5873

2000-2003 HiTec 4.7710 1.0326 3.1489 3.7573 4.7490 5.9120 6.4908
Hlth 3.5802 1.0112 1.6109 2.6239 4.0809 4.3303 5.1993

Other 3.4392 0.4914 1.6529 3.2022 3.4872 3.7607 4.3133
Cnsmr 1.4941 0.1621 0.9580 1.3860 1.5405 1.6119 1.7232
Manuf 2.0352 0.3829 1.1416 1.7368 2.0155 2.3424 2.6826

2004-2007 HiTec 1.8618 0.3593 1.2084 1.5543 1.8762 2.1021 2.9147
Hlth 1.6187 0.2725 0.9465 1.4471 1.7268 1.7900 2.1093

Other 1.5329 0.2391 1.1143 1.2885 1.5674 1.7036 1.9794
Cnsmr 3.2947 1.4640 1.5883 2.3979 2.6445 3.5417 6.8231
Manuf 4.4095 2.0265 2.0355 3.1033 3.6885 5.3268 8.9533

2008-2011 HiTec 3.9518 1.7627 1.8345 2.8841 3.0651 4.4400 8.1658
Hlth 3.1312 1.4933 1.6869 2.0263 2.4379 4.0318 6.2901

Other 5.2471 2.5359 2.3878 3.5664 3.8850 7.1112 11.0069
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3.7 Conclusion and future work

This chapter derives the local risk premium and proposes a measure of
the degree of pessimism for rank-dependent preferences. These measures are
derived as a function of the loss distribution and of a distortion function cha-
racterizing the decision maker’s pessimism. A statistical procedure is then
provided for the nonparametric analysis of the local utility function and the
local risk premium. A particular attention is devoted to the Conditional
Value-at-Risk as the most commonly used rank-dependent utility. To eva-
luate the small sample properties of the proposed estimates, a Monte Carlo
study is conducted. The proposed measures and their estimates have many
possible applications, once the distortion function is known. For example,
the risk premium can be used to measure the degree or riskiness of a market,
an industry or an instrument, and is consistent with results obtained using
standard risk measures like the variance and the CVaR. To illustrate these
possibilities, we conducted an empirical study using daily returns on 5 U.S.
industry portfolios. We obtained evidences of high volatility in the U.S. stock
market during the periods 2000-2003 and 2008-2011. The developed statis-
tical tools also allowed us to measure the relative level of pessimism during
these two crisis periods. Throughout this chapter, we assumed that the deci-
sion maker’s level of pessimism, described by a function h or a parameter p,
is known. These values could be estimated in a first step, to obtain a data-
dependent distortion function. Our future investigations are oriented toward
deriving h or the p, based on observed risk premia. A straightforward gene-
ralization of this chapter is to consider risk averse and pessimistic decision
makers. In such a framework, we plan to investigate how the total premium
can be decomposed into premium due to risk aversion, and premium due to
pessimism.
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Conclusion Générale

Cette thèse propose des outils statistiques pour améliorer l’implémentation
des règles de choix de portefeuille, et pour mesurer le risque lorsque le preneur
de décision est pessimiste.

Dans le premier chapitre, nous abordons la question de l’erreur d’es-
timation dans le cadre de l’analyse moyenne-variance. Nous proposons de
régulariser le problème de choix de portefeuille en utilisant des techniques de
régularisation tirées de la littérature des problèmes inverses. Ces techniques
de régularisation à savoir le ridge, la coupure spectrale, et le Landweber-
Fridman contiennent un paramètre de régularisation, dont la valeur opti-
male est choisie pour minimiser la perte d’utilité espérée d’un investisseur
moyenne-variance. Nous montrons que cela équivaut à sélectionner le pa-
ramètre de régularisation de manière à minimiser un critère de validation
croisée généralisée, corrigée du biais introduit par la régularisation.

Pour évaluer les performances de nos règles régularisées, nous faisons
des simulations en utilisant un modèle à trois facteurs calibré aux données
du marché boursier américain, ainsi qu’une étude empirique utilisant 48 et
100 portefeuilles d’industrie américaine. Les règles sont essentiellement com-
parées en fonctions de leur perte d’utilité espérée et de leur ratios de Sharpe.
La principale conclusion est que, dans les cas, où le problème inverse sous-
jacent est mal posé, une régularisation de la matrice de covariance améliore
considérablement les performances du problème moyenne-variance, fournit
souvent de meilleurs résultats que les stratégies actuelles d’allocation d’actifs
et donne de meilleurs performances que le portefeuille näıf surtout dans les
cas mal posé.

La méthodologie proposée dans ce premier chapitre peut être utilisée pour
construire toute règle d’investissement nécessitant une estimation de la ma-
trice de covariance et étant donné un critère de performance. Les règles d’in-
vestissement que nous proposons, ont un aspect pratique, en ce sens qu’ils
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sont faciles à mettre en œuvre et constituent une alternative valable aux
règles en vigueur dans les cas mal posés, tel que démontré par nos simula-
tions.

Dans le second chapitre, nous examinons dans quelle mesure l’adoption
de portefeuilles optimaux domestiques conduisent à une réduction de l’expo-
sition au risque de devise, et comment la prime de change correspondante est
affectée. Nous nous limitons aux portefeuilles de minimum variance (PMV),
car cette stratégie correspond au risque le plus faible parmi les portefeuilles
moyenne-variance, et a été documentée avoir une meilleure performance hors-
échantillon. En outre, nous considérons une famille plus générale de PMV,
obtenue en appliquant la méthode de régularisation de coupure spectrale,
c’est à dire en faisant varier le pourcentage retenu des composantes princi-
pales de la matrice de covariance. Plus ce pourcentage est bas, plus le porte-
feuille obtenu est stable. Ainsi, cette étude a également permis d’étudier les
liens entre la stabilité du portefeuille et de risque de change.

Le deuxième chapitre aboutit à trois résultats principaux. Tout d’abord,
nous constatons que le risque de change reste un facteur primé, et variant
dans le temps pour les portefeuilles domestiques optimaux. Toutefois, pour
certain niveaux de stabilité, il est possible d’éliminer complètement la com-
posante marchés émergents du risque de change. Deuxièmement, bien que la
plupart des portefeuilles d’industries sont exposés au risque de change, que
ce soit directement ou indirectement, nos résultats suggèrent également que
les PMV ont le potentiel de réduire significativement l’exposition au risque
de change de plus de la moitié de sa taille. Troisièmement, le risque de change
pour les portefeuilles optimaux étudiés est économiquement important et la
contribution de la prime de change à la prime totale, reste à peu près égale
à la moyenne industrielle.

L’évaluation de la pertinence du risque de change pour les portefeuilles
domestiques optimaux est faite dans le cadre d’un modèle conditionnelle
d’évaluation international des actifs financiers. Ainsi, notre étude fournit
des évidences supplémentaires sur la tarification du risque de change, aux
États-Unis. Ce travail a également des implications importantes en termes
de stratégies de couverture pour les investisseurs nationaux. Précisément,
l’adoption des poids stables est susceptible de produire des expositions faibles
et stables aux risques de change, et donc implique des coûts de couverture
inférieurs.
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Le dernier chapitre se distingue des deux premiers en ce sens qu’il ne
traite pas du problème du choix de portefeuille, mais propose des mesures
de risques associées à un type particulier de préférences. En effet, ce chapitre
dérive la prime de risque locale, propose une mesure du degré de pessimisme
des préférences rang-dépendant (RDU), et finalement propose des outils sta-
tistiques pour les estimer ces mesures. Les mesures de risques sont obtenues
en utilisant la notion d’utilité locale de Machina (1980), et sont fonction
de la distribution de perte et d’une fonction de distorsion qui caractérise le
pessimisme du décideur. Une procédure statistique est établie pour l’analyse
non-paramétrique de la fonction d’utilité locale et la prime de risque local.
Une attention particulière est consacrée à la mesure CVaR (valeur - à - risque
conditionnelle) puisqu’elle représente la fonction d’utilité rang-dépendant la
plus couramment utilisée.

Les propriétés en petit échantillon des estimations proposées sont évaluées,
par une étude de Monté Carlo. Les mesures proposées et leurs estimations
ont de nombreuses applications possibles, dès que la fonction de distorsion est
connue. Par ailleurs, ces mesures sont conformes aux résultats obtenus pour
les mesures de risque standards, comme la variance et de la VaR. Nous illus-
trons l’utilisations de ces mesures en utilisant des rendements quotidiens sur
5 portefeuilles de l’industrie américaine. Nous obtenons des évidences de forte
volatilité pour le marché boursier américain pendant les périodes 2000-2003
et 2008-2011. Les outils statistiques développés nous ont également permis
de mesurer le niveau relatif de pessimisme au cours de ces deux périodes de
crise. Pour finir, dans les dérivations de ce chapitre, nous avons supposé que
le niveau de pessimisme du décideur, décrite par une fonction h ou un pa-
ramètre p, qui sont connus. Ces valeurs peuvent alternativement être estimées
dans un premier temps, à partir de primes de risque observées.
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Annexe A

Chapter 1

A.1 Optimality proofs

An important element of the proofs consists in orthogonalizing the re-
gressors and showing that this will not affect our estimate. Let P be the
matrix having the orthonormal eigenvectors of RR′/T as columns. Note that
P ′ = P−1 and hence P ′(RR′/T )P is a diagonal matrix with λ2

j on the dia-
gonal. The model

1 = Rβ + u (A.1)

can be rewritten as
P1 = PRβ + Pu

or equivalently
y = Xβ + e (A.2)

with y = P1, X = PR, and e = Pu. Note that E (ee′) = E (uPP ′u′) =
E (uu′) = ω2I. Let xt be the tth row of X. If one applies a regulariza-
tion on X ′X as we did on R′R in Section 3, then the resulting estimator
is equal to β̂τ . And we get Xβ̂τ = M̃T (τ) y where now M̃T is a diago-

nal matrix with q
(
τ, λ2

j

)
on the diagonal. Moreover, as

∥∥∥X (β̂τ − β)∥∥∥2

=(
β̂τ − β

)′
R′P ′PR

(
β̂τ − β

)
=
∥∥∥R(β̂τ − β)∥∥∥2

, it is indifferent to look at

the problem
∥∥∥X (β̂τ − β)∥∥∥ in Model (A.2) or at the problem

∥∥∥R(β̂τ − β)∥∥∥
in Model (A.1). Most of the proof will rely on Model (A.2).

Another important element in the proof is the following. As xt (or rt)
is random, so are the eigenvalues λ̂2

j and the matrix M̃T (τ). However the
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eigenvalues converge at a fast rate (
√
T ) to a limit which is non random λ2

j

(see Theorem 3 of Carrasco and Florens, 2000). It is therefore possible to
replace λ̂2

j by λ2
j and treat M̃T (τ) as non random in the analysis. From now

on, all results are derived for λ̂2
j replaced by λ2

j .

Preliminary result :
To prove Proposition 1, we need the following preliminary result.

Lemma 2. Under Assumption A and if N goes to infinity, we have

1

T
E

[∥∥∥R(β̂τ − β)∥∥∥2
]

=
1

T
E

[∥∥∥R(β̂τ − βτ)∥∥∥2
]

+
1

T
E ‖R (βτ − β)‖2

with
1

T
E

[∥∥∥R(β̂τ − βτ)∥∥∥2
]

= O

(
1

Tτ

)
and

1

T
E ‖R (βτ − β)‖2 = O

(
τ ν+1

)
for SC, LF,

= O
(
τmin(ν+1,2)

)
for T.

In summary

1

T
E
∥∥∥R(β̂τ − β)∥∥∥2

∼ σ2 1

Tτ
+ Cτ ν+1

which is minimized for τ = T−1/(ν+2) and is equivalent to T−(ν+1)/(ν+2).
We can check that Li (1986)’s condition for optimality holds, namely that

infτE
∥∥∥R(β̂τ − β)∥∥∥2

→ ∞. Note that if N is fixed, this condition is not

fulfilled.

Proof of Lemma 2. As discussed earlier, it is indifferent to work on∥∥∥X (β̂τ − β)∥∥∥ in Model (A.2) or on
∥∥∥R(β̂τ − β)∥∥∥ in Model (A.1). From

now on, we work with Model (A.2) : y = Xβ + e. We have Xβ̂τ = M̃T (τ) y
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and Ê
(
Xβ̂τ |X

)
≡ Xβτ = M̃T (τ)Xβ where Ê (.|X) denotes the linear

projection on X. Hence,

X
(
β̂τ − βτ

)
= M̃T (τ) e,

X (βτ − β) =
(
M̃T (τ)− IT

)
Xβ.

The first equality in Lemma 2 follows from the fact that the cross-product
vanishes, indeed :

E
〈
X
(
β̂τ − βτ

)
, X (βτ − β)

〉
=
∑
j

qj (1− qj)E
(
ejx
′
jβ
)

= 0,

where qj denotes q
(
τ, λ2

j

)
.

E
∥∥∥X (β̂τ − βτ)∥∥∥2

= E
(
e′M̃T (τ)2 e

)
= ω2

∑
j

q
(
τ, λ2

j

)2

≤ ω2 sup q
(
τ, λ2

j

)∑
j

q
(
τ, λ2

j

)
= O

(
1

τ

)
by Lemma 4 of Carrasco (2012). We have

1

T
‖X (βτ − β)‖2 =

1

T

∥∥∥(M̃T (τ)− IT
)
Xβ
∥∥∥2

=
∑
j

(qj − 1)2 〈Xβ, v̂j〉2

T

=
∑
j

λ2
j (qj − 1)2

〈
β, φ̂j

〉2

=
∑
j

λ2+2ν
j (qj − 1)2

〈
β, φ̂j

〉2

λ2ν
j

≤ supλ2+2ν
j (qj − 1)2

∑
j

〈
β, φ̂j

〉2

λ2ν
j

.
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Taking the expectation, one obtains

1

T
E ‖X (βτ − β)‖2 ≤ supλ2+2ν

j (qj − 1)2
∑
j

〈β, φj〉2

λ2ν
j

=

{
O
(
τ (ν+1)

)
for SC and LF,

O
(
τmin(ν+1,2)

)
for Ridge

by Assumption A and Proposition 3.11 of Carrasco, Florens, and Renault
(2007).

Proof of Proposition 1.
First we analyze the elements of (1.12) :

β̂τ (µ′β)− β
(
µ̂′β̂τ

)
=

(
β̂τ − β

)
(µ′β)− β

(
µ̂′β̂τ − µ′

(
β − β̂τ + β̂τ

))
=

(
β̂τ − β

)
(µ′β)− β

(
(µ̂− µ)′ β̂τ + µ′

(
β̂τ − β

))
=

(
β̂τ − β

)
µ′β︸ ︷︷ ︸

(a1)

− β (µ̂− µ)′
(
β̂τ − β

)
︸ ︷︷ ︸

(a2)

− β (µ̂− µ)′ β︸ ︷︷ ︸
(a3)

− βµ′
(
β̂τ − β

)
︸ ︷︷ ︸

(a4)

.(A.3)

Term (a2) :
∣∣∣(µ̂− µ)′

(
β̂τ − β

)∣∣∣2 ≤ ‖µ̂− µ‖2
∥∥∥β̂τ − β∥∥∥2

= Op

(
N
T

) ∥∥∥β̂τ − β∥∥∥2

.

Term (a3) :
∣∣(µ̂− µ)′ β

∣∣2 ≤ ‖µ̂− µ‖2 ‖β‖2 = Op

(
N
T

)
because ‖β‖2 <∞.

So both terms (a2) and (a3) will be negligible compared to
∥∥∥β̂τ − β∥∥∥2

by

Assumption B(iv) and Lemma 3.

1(
1− µ̂′β̂τ

) ≡ 1

1− θ̂
' 1

1− θ
+

1

(1− θ)2

(
θ − θ̂

)

=
1

1− µ′β
+
µ′
(
β̂τ − β

)
(1− µ′β)2 + o

(
µ′
(
β̂τ − β

))
.

Since µ′
(
β̂τ − β

)
= op (1), we have

β̂τ − β(
1− µ̂′β̂τ

) =
β̂τ − β

(1− µ′β)
+Op

((
β̂τ − β

)
µ′
(
β̂τ − β

))
.
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(
β̂τ − β

)′
Σ
(
β̂τ − β

)
=

(
β̂τ − β

)′
Σ̂
(
β̂τ − β

)
+
(
β̂τ − β

)′ (
Σ− Σ̂

)(
β̂τ − β

)
.

Moreover,(
β̂τ − β

)′ (
Σ− Σ̂

)(
β̂τ − β

)
≤

∥∥∥β̂τ − β∥∥∥2 ∥∥∥Σ− Σ̂
∥∥∥

= Op

(
1√
T

∥∥∥β̂τ − β∥∥∥2
)

by Theorem 4 of Carrasco and Florens (2000) and the Hilbert-Schmidt as-
sumption of Σ.(

β̂τ − β
)′

Σ
(
β̂τ − β

)
=

(
β̂τ − β

)′ [R′R
T
−
(
R′1

T

)(
R′1

T

)′](
β̂τ − β

)
+Op


∥∥∥β̂τ − β∥∥∥2

√
T


=

1

T

(
β̂τ − β

)′
R′R

(
β̂τ − β

)
−
(
β̂τ − β

)′
µ̂µ̂′
(
β̂τ − β

)
+Op


∥∥∥β̂τ − β∥∥∥2

√
T


=

1

T

∥∥∥R(β̂τ − β)∥∥∥2

−
(
µ̂′
(
β̂τ − β

))2

+Op


∥∥∥β̂τ − β∥∥∥2

√
T

 .

Using (1.12) and (A.3), we obtain

γ (x̂τ − x∗) =

(
β̂τ − β

)
(1− µ′β)

+
βµ′

(
β̂τ − β

)
(1− µ′β)2

+Op

((
β̂τ − β

)
µ′
(
β̂τ − β

))
+Op

(√
N

T

)
.
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(x̂τ − x∗)′Σ (x̂τ − x∗) (A.4)

=

(
β̂τ − β

)′
Σ
(
β̂τ − β

)
(1− µ′β)2

+

(
β̂τ − β

)′
µβ′Σβµ′

(
β̂τ − β

)
(1− µ′β)4

+2

(
β̂τ − β

)′
Σβµ′

(
β̂τ − β

)
(1− µ′β)3

+Op

((
β̂τ − β

)′
Σ
(
β̂τ − β

)
µ′
(
β̂τ − β

))
+ op

(√
N

T
Σ
(
β̂τ − β

))
.

Replacing Σ by R′R/T − µ̂µ̂′, (A.4) is equal to

1
T

∥∥∥R(β̂τ − β)∥∥∥2

(1− µ′β)2 (A.5)

−

(
µ̂′
(
β̂τ − β

))2

(1− µ′β)2 (A.6)

+
1

T

∥∥∥Rβµ′ (β̂τ − β)∥∥∥2

(1− µ′β)4 (A.7)

−

(
µ̂′βµ′

(
β̂τ − β

))2

(1− µ′β)4 (A.8)

+
2

T

(
β̂τ − β

)′
R′Rβµ′

(
β̂τ − β

)
(1− µ′β)3 (A.9)

−2

(
β̂τ − β

)′
µ̂ (µ̂′β)µ′

(
β̂τ − β

)
(1− µ′β)3 (A.10)

+rest (τ) . (A.11)

Note that µ̂′β is a scalar that can be approximated by µ′β. The next step
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consists in taking the expectation of each term and writing β̂τ − β = β̂τ −
βτ + βτ − β.

We turn our attention to E

[(
µ̂′
(
β̂τ − β

))2
]
. The variance term is given

by

1

T 2
E

[(
µ̂′
(
β̂τ − βτ

))2
]

=
1

T 2
E

[(
1′T
T
R
(
β̂τ − βτ

))2
]

=
1

T 2
E

[(
1′T
T
MT (τ) e

)2
]

=
1

T 2
E

(
e′MT (τ)

1T1′T
T 2

MT (τ) e

)
=

1

T 2
E

((∑
qjej

)2
)

=

∑
q2
jω

2

T 2
+

1

T 2

∑
j

∑
i 6=j

qjqiω
2

≤
∑
q2
jω

2

T 2
+
ω2

T 2

∑
j

qj
∑
i

qi (A.12)

≤ 1

T 2
E
∥∥∥R(β̂τ − βτ)∥∥∥2

+O

(
1

τ 2T 2

)
.(A.13)

Therefore, this term is negligible with respect to (A.5). However, the bias
term is not :

(µ̂′ (βτ − β))
2

=

(
1′T
T

(MT (τ)− IT )Rβ

)2

≤ ‖1T‖2

T 2
‖(MT (τ)− IT )Rβ‖2

≤ 1

T
‖(MT (τ)− IT )Rβ‖2 .

Therefore, the bias of (A.6) may be of the same order as that of (A.5).
Let us examine the term (A.7) :
The variance corresponding to (A.7) is

1

T
E

[(
β̂τ − βτ

)′
µβ′R′Rβµ′

(
β̂τ − βτ

)]
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Note that R′R
T
β = R′R

T
E
(
R′R
T

)−1
µ ' µ. Replacing µ by µ̂, we get

1

T
E

[(
β̂τ − βτ

)′
µβ′R′Rβµ′

(
β̂τ − βτ

)]
' β′µE

[(
µ̂′
(
β̂τ − βτ

))2
]

which is negligible.
The bias corresponding to (A.7) is

(βτ − β)′ µβ′R
′R
T
βµ′ (βτ − β)

(1− µ′β)4

' µ′β
(µ′ (βτ − β))2

(1− µ′β)4 .

Similarly, the variances of the terms (A.8) to (A.10) are negligible. The
bias term corresponding to (A.8) is equal to

−(µ̂′βµ′ (βτ − β))2

(1− µ′β)4

' −(µ′β)2 (µ′ (βτ − β))2

(1− µ′β)4 .

Combining the biases of (A.7) and (A.8), we obtain

(µ′β) (µ′ (βτ − β))2

(1− µ′β)3 .

The bias corresponding to the term (A.9) is given by

2
(βτ − β)′ R

′R
T
βµ′ (βτ − β)

(1− µ′β)3

' 2
(µ′ (βτ − β))2

(1− µ′β)3 .

The bias term corresponding to (A.10) is equal to

−2
(βτ − β)′ µ̂ (µ̂′β)µ′ (βτ − β)

(1− µ′β)3

' −2
(µ′β) (µ′ (βτ − β))2

(1− µ′β)3 .
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Combining the bias terms of (A.6) to (A.10), we obtain

(µ′β) (µ′ (βτ − β))2

(1− µ′β)3 +
(µ′ (βτ − β))2

(1− µ′β)2

=
(µ′ (βτ − β))2

(1− µ′β)3 .

Combining all the terms together, we obtain :

γ2 (1− µ′β)
2
E
[
(x̂τ − x∗)′Σ (x̂τ − x∗)

]
=

1

T
E
∥∥∥R(β̂τ − β)∥∥∥2

+
(µ′ (βτ − β))2

(1− µ′β)
+ rest (τ) .

Proof of Proposition 2.
Intermediate result : Let Ω = E (xtx

′
t) = E (X ′X) /T = E (R′R) /T.

R∗T (τ) =
1

T
E
∥∥∥Xβ −Xβ̂τ∥∥∥2

+ (1.15)

=
1

T

∑
j

(1− qj)2 (β′Ωβ) +
ω2

T

∑
j

q2
j + (1.15) (A.14)

where ω2 = E
(
e2
j

)
.

Proof of (A.14) : Let AT (τ) = I − MT (τ). Following the proof of Li
(1987), we have

1

T
E
∥∥∥Xβ −Xβ̂τ∥∥∥2

=
1

T
E ‖Xβ −MT (τ) (Xβ + e)‖2

=
1

T
E ‖AT (τ)Xβ −MT (τ) e‖2

=
1

T
‖AT (τ)Xβ‖2 +

1

T
E ‖MT (τ) e‖2 +

2

T
E [〈AT (τ)Xβ,MT (τ) e〉] .

As MT (τ) and AT (τ) are diagonal matrices, we have

1

T
‖AT (τ)Xβ‖2 =

1

T

∑
j

(1− qj)2E
[(
x′jβ
)2
]

=
1

T

∑
j

(1− qj)2 (β′ΩTβ) ,
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where β′ΩTβ = µ′β < 1,

E 〈AT (τ)Xβ,MT (τ) e〉 =
∑
j

qj (1− qj)E
(
ejx
′
jβ
)

= 0

and E
(
‖MT (τ) e‖2) = E

(∑
j q

2
j e

2
j

)
= ω2

∑
j q

2
j .

First we establish the optimality for a Mallows’ CL criterion where ω2 is
assumed to be known. Let

τ̂C = arg min
τ
{Crit (τ)}

where

Crit (τ) =
1

T
‖(IT −MT (τ)) y‖+ 2ω2 1

T
trMT (τ) + (1.15)

We want to show that

LT (τ̂C)

infτ LT (τ)

P→ 1. (A.15)

Crit (τ) can be rewritten as

Crit (τ)

=
1

T
‖e‖2 + LT (τ) +

2

T
〈e, AT (τ)Xβ〉

+
2

T

(
ω2trMT (τ)− 〈e,MT (τ) e〉

)
+(1.15)− (µ′ (βτ − β))2

1− µ′β
−rest (τ) .

To establish (A.15), we need to show that in probability

Crit (τ)− cT = LT (τ) (1 + εT (τ))

where
sup
τ
|εT (τ)| = op (1) .
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Hence, to establish (A.15), it is sufficient to show that

sup
τ

∣∣ 1
T
〈e, AT (τ)Xβ〉

∣∣
R∗T (τ)

→ 0, (A.16)

sup
τ

1
T
|ω2trMT (τ)− 〈e,MT (τ) e〉|

R∗T (τ)
→ 0 (A.17)

sup
τ

|rest (τ)|
R∗T (τ)

→ 0, (A.18)

sup
τ

∣∣∣∣∣(1.15)− (µ′ (βτ − β))2

1− µ′β

∣∣∣∣∣ /R∗T (τ) → 0, (A.19)

sup
τ

∣∣∣∣LT (τ)

R∗T (τ)
− 1

∣∣∣∣ → 0 (A.20)

Proof of the optimality of Mallows’ CL criterion for SC and LF :
Now we focus to the case of SC and LF regularizations. By a slight abuse

of notation, τ denotes from now on the number of eigenvalues retained in
SC or the number of iterations in LF. Note that τ is an integer number
and lies in a discrete index set HT = {1, 2, ..., N} for SC since N ≤ T and
HT = {1, 2, ..., T} for LF. We are going to check the conditions (A.16) to
(A.20). We follow a proof similar to that of Li (1987).

Consider (A.16). By Chebyshev’s inequality, we have

P

[
sup
τ∈HT

∣∣ 1
T
〈e, AT (τ)Xβ〉

∣∣
R∗T (τ)

> δ

]
≤
∑
τ∈HT

1
T 2mE

[
〈e, AT (τ)Xβ〉2m

]
δ2mR∗T (τ)2m (A.21)

for some integer m. Using the fact that AT (τ) is diagonal, we have

E
[
〈e, AT (τ)Xβ〉2m

]
= E

(∑
j

ej (1− qj)x′jβ

)2m


< C

(∑
j

E
((
ejx
′
jβ
)2m
)1/m

(1− qj)2

)m

for some constant C by Theorem 2 of Whittle (1960) using the fact that
ejx
′
jβ are independent and have mean zero (which follows from rt, ut i.i.d.
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and E (utrt) = 0). Moreover, Lp inequality implies that

1

T

∑
j

E
((
ejx
′
jβ
)2m
)1/m

(1− qj)2 ≤ 1

T

∑
j

E
((
ejx
′
jβ
)2
)

(1− qj)2

≤ C
1

T
β′ΩTβ

∑
j

(1− qj)2 (A.22)

≤ CR∗T (τ)

where inequality (A.22) follows from the fact that et = yt − x′tβ and e′Xβ =∑
t etx

′
tβ. Moreover as etx

′
tβ are independent with mean zero, we have

E
(

(etx
′
tβ)

2
)

= E

(
(e′Xβ)2

T

)
= E

(
(u′Rβ)2

T

)
= E

(
(utr

′
tβ)

2
)
.

Now replacing ut by 1− r′tβ, we obtain

E
(

(utr
′
tβ)

2
)
≤ E

(
(r′tβ)

2
)

+ E
(

(r′tβ)
4
)
< CE

(
(r′tβ)

2
)

where C can be taken equal to 2
(
E
(
(r′tβ)2)+ E

(
(r′tβ)4)) /E ((r′tβ)2) .

Therefore, (A.21) is no greater than Cδ−2m
∑

τ∈HT (TR∗T (τ))−m which
tends to zero by assumption B3.

Now, consider (A.17),

ω2trMT (τ)− 〈e,MT (τ) e〉 =
∑
j

(
ω2 − e2

j

)
qj.

Again by Chebyshev’s inequality,

P

[
sup
τ

1
T
|ω2trMT (τ)− 〈e,MT (τ) e〉|

R∗T (τ)
> δ

]
≤
∑
τ

1
T 2mE

[(∑
j

(
ω2 − e2

j

)
qj

)2m
]

R∗T (τ)2m .

By Whittle (1960, Theorem 2), we have

1

T 2m
E

(∑
t

(
ω2 − e2

t

)
qt

)2m
 ≤ C

1

T 2m

(∑
j

q2
jE
((
ω2 − e2

j

)2m
)1/m

)m

≤ C ′
1

T 2m

(∑
j

q2
j

)m

≤ C ′
1

Tm
R∗T (τ) .



139

Hence, (A.17) holds by Assumption B3.
Consider (A.19). Using µ = µ− µ̂+ µ̂, we have

(1.15)− (µ′ (βτ − β))2

1− µ′β

= (1.15)− (µ̂′ (βτ − β))2

1− µ′β
−
(
(µ− µ̂)′ (βτ − β)

)2

1− µ′β
− µ̂′ (βτ − β) (µ− µ̂)′ (βτ − β)

1− µ′β

Note that µ̂′ (βτ − β) =
1′T (MT (τ)−IT )Rβ

T
and(

1′T (MT (τ)− IT )Rβ̂
)2

T 2
(

1− µ̂′β̂
) =

(
1′T (MT (τ)− IT )Rβ̂

)2

T 2 (1− µ′β)
+

(
1′T (MT (τ)− IT )Rβ̂

)2

T 2 (1− µ′β)2

(
µ′β − µ̂′β̂

)
.

Moreover, ∣∣∣∣∣∣∣
(

1′T (MT (τ)− IT )Rβ̂
)2

T 2
− (µ̂′ (βτ − β))

2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1′T (MT (τ)− IT )R

(
β̂ − β

)
T

1′T (MT (τ)− IT )R
(
β̂ + β

)
T

∣∣∣∣∣∣
≤ ‖1′T (MT (τ)− IT )‖2

T

∥∥∥R(β̂ − β)∥∥∥
√
T

∥∥∥R(β̂ + β
)∥∥∥

√
T

=
∑
j

(qj − 1)2

T
op (1)

≤ CR∗T (τ) op (1)

because
∥∥∥R(β̂ + β

)∥∥∥2

/T =
(
β̂ + β

)′
(
∑
rtr
′
t/T )

(
β̂ + β

)
< ∞ because

β′ΩTβ < 1.
Consider (A.20). Given LT = L∗T + rest and (A.18) holds, it suffices to

prove the result for L∗T instead of LT . Let d (τ) denote (µ′ (βτ − β))2 /(1 −
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µ′β).

L∗T (τ) =
1

T

∥∥∥X (β̂τ − β)∥∥∥2

+ d (τ)

=
1

T
‖AT (τ)Xβ −MT (τ) e‖2 + d (τ)

=
1

T
‖AT (τ)Xβ‖2 +

1

T
‖MT (τ) e‖2 − 2

T
〈AT (τ)Xβ,MT (τ) e〉+ d (τ) .

L∗T (τ)−R∗T (τ) =
1

T

(
‖MT (τ) e‖2 − E

(
‖MT (τ) e‖2))

− 2

T
〈AT (τ)Xβ,MT (τ) e〉 .

Hence, we need to show that

sup
τ

1
T
|〈AT (τ)Xβ,MT (τ) e〉|

R∗T (τ)
→ 0, (A.23)

sup
τ

1
T

(
‖MT (τ) e‖2 − E

(
‖MT (τ) e‖2))

R∗T (τ)
→ 0. (A.24)

Note that |〈AT (τ)Xβ,MT (τ) e〉| =
∣∣∣∑j qj (1− qj)x′jβej

∣∣∣ ≤ ∣∣∣∑j (1− qj)x′jβej
∣∣∣

because sup |q| ≤ 1. Similarly,
∣∣‖MT (τ) e‖2 − E

(
‖MT (τ) e‖2)∣∣ =

∣∣∣∑j

(
ω2 − e2

j

)
q2
j

∣∣∣ ≤∣∣∣∑j

(
ω2 − e2

j

)
qj

∣∣∣. So the same proof as for (A.16) and (A.17) can be used to

establish (A.23) and (A.24).
This completes the proof of the optimality of Mallows’ CL criterion for

SC and LF.

Relating the GCV to the CL via the Nil trace estimator :
Denote γT = Xβ and γ̂T = MT (τ) yT .

The GCV can be related to CL via the nil-trace estimate, defined from
the estimate of interest γ̂T as

γ̄T = −αyT + (1 + α)γ̂T

with

α =
n−1trMT (τ)

1− n−1trMT (τ)
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In other words, γ̄T = M̄T (τ) yT with

M̄T (τ) = −αI + (1 + α)MT (τ)

From the previous expression, trM̄T (τ) = 0. Then selecting a model from
the class {γ̂T (τ) : τ ∈ HT } using the GCV criterion, is equivalent to using
the CL to select an estimate from {γ̄T (τ) : τ ∈ HT }. Following Li 87, we
adopt the following assumptions :

Assumption C
A4 : inf

τ∈HT
LT (τ)→ 0

A5 : for any {τT ∈ HT} such that : T−1trMT (τ)MT (τ)′ → 0

we have
(T−1trMT (τ))

2

T−1trMT (τ)MT (τ)′
→ 0

A6 : sup
τ∈HT

T−1trMT (τ) ≤ γ1 for some 1 > γ1 > 0

A7 : sup
τ∈HT

(T−1trMT (τ))
2

T−1trMT (τ)MT (τ)′
≤ γ2 for some 1 > γ2 > 0

Under assumption A1-A7, the crucial inequality (6.3 and 6.4 in Li, 87)

c1 ≤
trM̄T (τ) M̄T (τ)′

trMT (τ)MT (τ)′
≤ c2, c1 ≤

R̄T (τ)

RT (τ)
≤ c2,

where c1 and c2 are two positive constants, still hold. The justification of
the replacement of the original estimate by the nil-trace estimate is then
essentially the same as in Li 87, Theorem 3.2.

Let us check that the assumption C is satisfied for SC. A4 is implied by
Lemma 3 in Appendix. Then note that

T−1trMT (τ)MT (τ)′ =
1

T

∑
j

qj =
1

Tτ
=
Nτ

T

where Nτ is the number of selected eigenvectors. A5 is trivially satisfied. A6
and A7 are equivalent to

Nτ

T
< 1. (A.25)

Given that Nτ is necessarily smaller than N (the number of assets) and
N is limited by assumption B(iv), condition (A.25) holds. The asymptotic
optimality of SC follows. Similar proof apply to LF assuming some extra
conditions.



142

A.2 Homotopy - LARS Algorithms for pena-

lized least-squares

Homotopy (Continuation) is a general approach for solving a system of
equation by tracking the solution of nearby system of parametrized equation.
In the penalized Lasso case the Homotopy variable is the penalty term. We
give below a detailed description of the Homotopy/LARS algorithm which
provides the solution path to the l1-penalized least-squares objective func-
tion :

x̃(τ) = arg min
x
‖y −Rx‖2

2 + τ ‖x‖1 .

The solution to this minimization problem x̃(τ) is provided as a continuous
piecewise function of the penalty τ satisfying the variational equations given
by : {

(R′(y −Rx))i = τ
2
sgn(xi) xi 6= 0

|(R′(y −Rx))i| ≤
τ
2

xi = 0

Meaning that the residual correlations bi = (R′(y −Rx))i corresponding
to non zero weights are equal to τ/2 in absolute value, while the absolute
residual correlation corresponding the zero weights must by bounded by τ/2.
Throughout the algorithm, it is critical to identify the set of active elements,
that is the components with non zeros weights. At a given iteration k of

the algorithm this set is denoted by Jk =
{
i for which |bi| = τk

2

}
, and also

corresponds to the set of maximal residual correlations components.

The algorithm starts with an initial solution satisfying the variational
equations, for a penalty term suitably chosen. The obvious initial solution is
obtained by setting all the weights to zeros. The corresponding penalty term
τ0, must then satisfy τ0 ≡ 2 maxi |(R′y)i|. Hence we have that x̃(τ) = 0 for
all τ ≥ τ0. This allow us to set J1 = {i∗}, where i∗ = argmaxi |(R′y)i|.

From one iteration k to the next, the algorithm manages to update the
active set Jk, which represents the support of x̃(τk), so that the first-order
conditions remains satisfied. Hence in each iteration k + 1, the vector b de-
creases at the same rate γk+1 in the active set to preserve the same level of
correlation for active elements.

(bk+1)Jk+1
= (bk)Jk+1

− γk+1(sign(bk))Jk+1
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This result is obtained by updating the optimal weights while moving
along a walking direction uk+1 :

x(τ k+1) = x(τ k) + γk+1uk+1

Denote RJ the submatrix consisting of the columns J of R, the walking
direction un+1 is a solution to a linear system :

R′Jk+1
RJk+1

(uk+1)Jk+1
= (sgn(bk)Jk+1

) =
(
sgn(bkj )j∈Jk+1

)
= vk+1

The remaining components of uk+1 are set to zero that is :

uk+1
i = 0 for i /∈ Jk+1

The step γk+1 to make in direction uk+1 to find x(τ k+1) is the minimum
value such that an inactive element becomes active or the reverse.

If an inactive element i becomes active, it means that its correlation
reached the maximal correlation in the descent procedure. And then is must
be case that :∣∣bki − γk+1r′k+1

i

∣∣ =
∣∣(bk)Jk+1

− γk+1vJk+1

∣∣ = τk+1 =
τ k

2
− γk+1

with ri is the ith column of R. This implies that :

γk+1 =
τk

2
− bki

1− r′k+1
i

or γn+1 =
τk

2
+ bki

1 + r′k+1
i

The optimal step is then given by :

γk+1
+ = min

i∈Jc
+

{
τk

2
− bki

1− r′k+1
i

;
τk

2
+ bki

1 + r′k+1
i

}

On the other hand, if γn+1 is such that an active element i reaches zero
then (??) implies that :

γk+1
− = − xki

uk+1
i

The smallest step to make so that an element leaves the active set :

γk+1
− = min

i∈Jk+1

+

(
− xki
uk+1
i

)
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Finally the next step is given by :

γk+1 = min
{
γk+1

+ , γk+1
−
}

At the end of each stage the corresponding penalty term is τ k+1 = τ k −
2γk+1 which is smaller than τ k. We stop when τ k+1 becomes negative. After
q + 1 iterations the Algorithm provides q + 1 breakpoints τ0 > τ1 > · · · > τq
and their corresponding minimizers x(τi). From there, the optimal solution
for any τ can be deduced by linear interpolation.



Annexe B

Chapter 2

B.1 Additional tables

Table B.1 – Time varying industry betas relative to equity factors
The table reports the sample mean of the time-varying equity-related factor betas esti-
mated from the system of Equations (2.19)-(2.21). The portfolios are the 48 Fama French
industry portfolioS and a set of global minimum portfolio constructed using different per-
centage of PCs from 10% to 100%. The equity risk factors are the returns on the World
market index from MSCI, the returns on small minus big firms (SMB), and returns on
high minus low book-to-market value firms (HML).

Panel A : Mean of the estimated time-varying betas
Industry Portfolios WM SMB HML
1oN 0.842 0.372 -0.573
Gmin(100%) 0.495 0.061 -0.044
Gmin(90%) 0.518 -0.036 0.023
Gmin(80%) 0.559 0.006 -0.1
Gmin(70%) 0.52 0.054 -0.094
Gmin(60%) 0.556 0.048 -0.183
Gmin(50%) 0.551 0.001 -0.149
Gmin(40%) 0.593 -0.02 -0.187
Gmin(30%) 0.614 -0.065 -0.227
Gmin(20%) 0.648 -0.001 -0.236
Gmin(10%) 0.692 0.121 -0.326
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Table B.1 (Continued) : Time varying portfolio betas relative to the equity
factors

Industry Portfolios WM SMB HML

Panel A : Mean of the estimated time-varying betas
Agric 0.706 0.531 -0.506
Food 0.546 -0.162 -0.271
Soda 0.702 0.061 -0.206
Beer 0.617 -0.13 -0.418
Smoke 0.52 -0.066 -0.156
Toys 0.953 0.635 -0.773
Fun 1.087 0.663 -0.972
Books 0.78 0.214 -0.509
Hshld 0.673 -0.017 -0.445
Clths 0.907 0.544 -0.704
MedEq 0.714 0.409 -0.925
Drugs 0.702 -0.119 -0.789
Chems 0.929 0.133 -0.448
Rubbr 0.852 0.646 -0.662
Txtls 0.838 0.694 -0.339
BldMt 0.905 0.296 -0.524
Cnstr 1.082 0.725 -0.588
Steel 1.282 0.919 -1.011
FabPr 0.93 0.984 -0.626
Mach 1.151 0.799 -0.975
ElcEq 1.148 0.246 -1.025
Autos 1.059 0.32 -0.253
Aero 0.946 0.163 -0.359
Ships 0.715 0.415 -0.343
Guns 0.454 0.143 0.003
Gold 0.612 0.74 -0.147
Mines 0.957 0.612 -0.391
Coal 0.971 0.55 -0.44
Comps 1.278 0.892 -1.869
Chips 1.367 1.031 -1.846
LabEq 1.223 1.035 -1.448
Paper 0.797 0.125 -0.368
Boxes 0.898 0.142 -0.523
Rtail 0.862 0.357 -0.81
Meals 0.805 0.242 -0.496
Banks 0.836 0.019 -0.216

Panel B : Summary statistics of mean betas
Average 0.883 0.411 -0.622
Standard deviation 0.223 0.353 0.430
t-Tests : H0 : Average of all industries =0 23.387 6.885 -8.562



Annexe C

Chapter 3

C.1 Optimality proofs

Proof of proposition 3

We expand the functional Φ around F0 to determine the local utility
function relative to Φ at F0. Let F be a differential shift of F0. We have

Φ(F )− Φ(F0) = −
∫
h (1− F (t)) dt+

∫
h (1− F0 (t)) dt (C.1)

= −
∫

[h (1− F (t))− h (1− F0 (t))] dt. (C.2)

Using the expansion :

h (1− F (t))− h (1− F0 (t)) = h′ (1− F0 (t)) [F0 (t)− F (t)]

+
1

2
f ′′ (1− F0 (t)) [F0 (t)− F (t)]2 + o

(
‖F0 − F‖2) .

We have that

Φ(F0)− Φ(F ) =

∫
h′ (1− F0 (t)) [F0 (t)− F (t)] dt

+
1

2

∫
h′′ (1− F0 (t)) [F0 (t)− F (t)]2 dt+ o

(
‖F − F0‖2) .
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The first term can be rewritten by integration by part :∫
h′ (1− F0 (t)) [F0 (t)− F (t)] dt = g(t) [F0 (t)− F (t)]|10

−
∫ 1

0

g(t) [F ′0 (t)− F ′ (t)] dt

=

∫ 1

0

g(t) [dF (t)− dF0 (t)]

with g′(t) = h′ (1− F0 (t)). Since

lim
‖F−F0‖→0

1
2

∫ 1

0
h
′′

(1− F0 (t)) [F0 (t)− F (t)]2 dt+ o
(
‖F − F0‖2)

‖F − F0‖
= 0

we have that :

Φ(F )− Φ(F0) = −
∫ 1

0

g (t) [dF (t)− dF0 (t)] + o (‖F − F0‖) ,

So that by definition :

UΨ(x;F0) = −g(t) = −
∫ x

−∞
h′ (1− F0 (t)) dt. (C.3)

Proof of proposition 4

Here we want to show that the local utility of CVaR preference at x is
given by :

U(x;FX) =
V aRp(X)− x

p
1x>V aRp(X).

Using the fact that h′ (α, p) = 1
p
1[0,p](α), the expression for the utility in

the CVaR case is given by :
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U(x;F ) = −1

p

∫ x

−∞
1[0,p] (1− F (t)) dt

= −1

p

∫ x

−∞
1[QX(1−p);+∞[ (t) dt

= −1

p

∫ x

QX(1−p)
dt

= −x− V aRp(X)

p
1x>V aRp(X).

We can now compute the CV aR premium.

On the one hand :

U(EX + π;F ) =
EX + π − V aRp(X)

p
1x>QX(1−p)(EX + π).

On the other hand :

EU(X;F ) = E
X − V aRp(X)

p
1x>V aRp(X)

=
1

p
EX1X>V aRp(X) − V aRp(X)

= CV aRp(X)− V aRp(X).

π is then the solution to :

EX + π − V aRp(X)

p
= CV aRp(X)− V aRp(X)

and is given by :

π(p) = [pCV aRp(X) + (1− p)V aRp(X)]− EX

∂

∂p
π(p) = CV aRp(X)− V aRp(X) + p

∂

∂p
CV aRp(X) + (1− p) ∂

∂p
V aRp(X).

From Gourieroux and Lui (2006), p.11, we have :

p
∂

∂p
CV aRp(X) = V aRp(X)− CV aRp(X).

Thus
∂

∂p
π(p) = (1− p) ∂

∂p
V aRp(X) ≤ 0.
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Proof of lemma 1

The function ψ is deterministic, then showing lemma 1, is equivalent to

show that the series of random element (x(t))t=1,··· ,T in
tl(x)∑
t=1

ψ(x(t))∆x(t), is

such that ∆x(t) → 0 for all t, and that xtl(x) → x a.s when T →∞.
This condition is satisfied since as T becomes large, x(t) and x(t+1) become

arbitrarily close . This comes from the fact that x(t) is the empirical quantile

function of X evaluated at t
T

. Thus, when T →∞, 1
T
→ 0 and x(t) = Q̂X

(
t
T

)
and x(t+1) = Q̂X( t

T
+ 1

T
) become arbitrarily close. In addition, the Glivenko-

Cantelli theorem leads to xtl(x) → x a.s when T →∞.

Proof of proposition 5

the empirical quantile function of X evaluated at t
T

by Q̂X

(
t
T

)
or x(t),

the order statistic of order t. The proof of proposition 5 amounts to we show
that :

∣∣∣∣∣∣
tl(x)∑
t=1

h′
(
ŜX(x(t))

)
∆x(t) −

∫ x

−∞
h′ (SX (t)) dt

∣∣∣∣∣∣→ 0 a.s

We have :

Uh(x)− Ûh(x) =

tl(x)∑
t=1

h′(ŜX(x(t)))∆x(t) −
tl(x)∑
t=1

h′
(
SX(x(t))

)
∆x(t)

+

tl(x)∑
t=1

h′
(
SX(x(t))

)
∆x(t) −

∫ x

−∞
h′ (SX (u)) du.

We first show that :

tl(x)∑
t=1

h′
(
ŜX(x(t))

)
∆x(t) −

tl(x)∑
t=1

h′
(
SX(x(t))

)
∆x(t) → 0. (C.4)

The expression in the left hand side of (C.4) can be written as

tl(x)∑
t=1

[
h′
(
ŜX(x(t))

)
− h′

(
SX(x(t))

)]
∆x(t). (C.5)
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Now, by the delta method

h′
(
ŜX(x(t))

)
− h′

(
SX(x(t))

)
≈ −h′′

(
SX(x(t))

) (
F̂X(x(t))− FX(x(t))

)
.

Besides using Assumption B, we have∣∣∣∣∣∣
tl(x)∑
t=1

[
h′
(
ŜX(x(t))

)
− h′

(
SX(x(t))

)]
∆x(t)

∣∣∣∣∣∣ (C.6)

≤ C sup
x

∣∣∣F̂X(x)− FX(x)
∣∣∣
∣∣∣∣∣∣
tl(x)∑
t=1

h′
(
SX(x(t))

)
∆x(t)

∣∣∣∣∣∣ (C.7)

where C is a positive constant. By the Glivenko-Cantelli theorem and
using Lemma 1 applied function ψ = h′′ ◦ SX , the term (C.7) converge to 0
a.s. and so does (C.6).

Second, applying Lemma1 to ψ = h′ ◦ SX leads to :

tl(x)∑
t=1

h′
(
SX(x(t))

)
∆x(t) →

∫ x

−∞
h′ (SX(u)) du. (C.8)

Combining (C.4) and (C.8) establish proposition 5.

Proof of proposition 6

Proving proposition 6 is then equivalent to proving that
√
T
[
Uh(x)− Ûh(x)

]
⇒∫ x

−∞ h
′′ (S (t))B(F (t))dt.

We have :

Uh(x)− Ûh(x) =

tl(x)∑
t=1

h′
(
ŜX(x(t))

)
∆x(t) −

tl(x)∑
t=1

h′
(
SX(x(t))

)
∆x(t) + op(1).

In addition, we have :



152

√
T (

tl(x)∑
t=1

h′(ŜX(x(t)))∆x(t) −
tl(x)∑
t=1

h′(SX(x(t)))∆x(t) ) =
√
T

tl(x)∑
t=1

h′(ŜX(x(t)))− h′
(
SX(x(t))

)
∆x(t)

=

tl(x)∑
t=1

h′′
(
SX(x(t))

)√
T
(
F̂X(x(t))− FX(x(t))

)
∆x(t)

=

tl(x)∑
t=1

h′′
(
SX(x(t))

)
G(x(t))∆x(t) + op(1)

→
∫ x

−∞
h′′ (S (t))G(t)dt

using lemma 1.Which completes the proof of proposition 6.

Proof of proposition 7

First notice that X̄T , V̂ aRp(X) and ĈV aRp(X) are asymptotically un-
correlated. Indeed we have :

Cov
(
X̄T , V̂ aRp(X)

)
=

1

T

T∑
t=1

Cov
(
x(t), x[(1−p)T ]

)
=
σ̂2
X

T
,

Cov
(
X̄T , ĈV aRp(X)

)
=

1

T 2p

T∑
t=1

T∑
[(1−p)T ]

Cov (xt, xj) =
σ̂2
X

T
and

Cov
(
V̂ aRp(X), ĈV aRp(X)

)
=

1

T

T∑
t=[(1−p)T ]

Cov (x1−p, xt) =
σ̂2
X

T

From Gourieroux et Lui (2006), we know that ĈV aRp(X) and V̂ aRp(X) are
asymptotically normal

√
T
(
ĈV aRp(X)− CV aRp(X)

)
→ N

(
0, ω2

1

)
and

√
T
(
V̂ aRp(X)− V aRp(X)

)
→ N

(
0, ω2

2

)
with ω2

1 and ω2
2 defined in proposition 7. We then have that
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√
T

 ĈV aRp(X)− CV aRp(X)

V̂ aRp(X)− V aRp(X)
X̄T − EX

→ N (0,Σ)

where the asymptotic covariance matrix Σ is diagonal and defined by :

Σ =

 ω2
1 0 0

0 ω2
2 0

0 0 σ2
X


Now since

√
T (π̂ (p)− π (p)) =

(
p 1− p −1

)√
T

 ĈV aRp(X)− CV aRp(X)

V̂ aRp(X)− V aRp(X)
X̄T − EX


we have

√
T (π̂ (p)− π (p))→ N

(
0, σ2

π

)
σ2
π =

(
p 1− p −1

)
Σ
(
p 1− p −1

)′
= p2ω2

1 + (1− p)2ω2
2 + σ2

X

which ends the proof.




